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Preface

Analogy is one of the most effective techniques of human reasoning: When we
face new problems, we compare them with simpler and already known ones, in the
attempt to use what we know about the latter ones to solve the former ones. This
strategy is particularly common in Mathematics, which offers several examples of
abstract and seemingly intractable objects: Subsets of the plane can be enormously
complicated but, as soon as they can be approximated by rectangles, then they can be
measured; Uniformly finite metric spaces can be difficult to describe and understand
but, as soon as they can be approximated by Hilbert spaces, then they can be proved
to satisfy the coarse Novikov’s and Baum-Connes’s conjectures.

These notes deal with two particular instances of such a strategy: Sofic and
hyperlinear groups are in fact the countable discrete groups that can be approxi-
mated in a suitable sense by finite symmetric groups and groups of unitary matrices.
These notions, introduced by Gromov and Rădulescu, respectively, at the end of
the 1990s, turned out to be very deep and fruitful, and stimulated in the last 15
years an impressive amount of research touching several seemingly distant areas
of mathematics including geometric group theory, operator algebras, dynamical
systems, graph theory, and more recently even quantum information theory. Several
long-standing conjectures that are still open for arbitrary groups were settled in the
case of sofic or hyperlinear groups. These achievements aroused the interest of an
increasing number of researchers into some fundamental questions about the nature
of these approximation properties. Many of such problems are to this day still open
such as, outstandingly: Is there any countable discrete group that is not sofic or
hyperlinear? A similar pattern can be found in the study of II1 factors. In this case,
the famous conjecture due to Connes (commonly known as Connes’ embedding
conjecture) that any II1 factor can be approximated in a suitable sense by matrix
algebras inspired several breakthroughs in the understanding of II1 factors, and
stands out today as one of the major open problems in the field.

The aim of this monograph is to present in a uniform and accessible way
some cornerstone results in the study of sofic and hyperlinear groups and Connes’
embedding conjecture. These notions, as well as the proofs of many results, are
here presented in the framework of model theory for metric structures. We believe
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vi Preface

that this point of view, even though rarely explicitly adopted in the literature, can
contribute to a better understanding of the ideas therein, as well as provide additional
tools to attack many remaining open problems. The presentation is nonetheless
self-contained and accessible to any student or researcher with a graduate-level
mathematical background. In particular, no specific knowledge of logic or model
theory is required.

Chapter 1 presents the conjectures and open problems that will serve as common
thread and motivation for the rest of the survey: Connes’ embedding conjecture,
Gottschalk’s conjecture, and Kaplansky’s conjecture. Chapter 2 introduces sofic and
hyperlinear groups, as well as the general notion of metric approximation property;
outlines the proofs of Kaplansky’s direct finiteness conjecture and the algebraic
eigenvalues conjecture for sofic groups; and develops the theory of entropy for
sofic group actions, yielding a proof of Gottschalk’s surjunctivity conjecture in the
sofic case. Chapter 3 discusses the relationship between hyperlinear groups and
the Connes’ embedding conjecture; establishes several equivalent reformulations
of the Connes’ embedding conjecture due to Haagerup-Winsløw and Kirchberg;
describes the purely algebraic approach initiated by Rădulescu and carried over
by Klep-Schweighofer and Juschenko-Popovich; and finally outlines the theory of
Brown’s invariants for II1 factors satisfying the Connes’ embedding conjecture. An
appendix by V. Pestov provides a pedagogically new introduction to the concepts
of ultrafilters, ultralimits, and ultraproducts for those mathematicians who are not
familiar with them, and aiming to make these concepts appear very natural.

The choice of topics is unavoidably not exhaustive. A more detailed introduction
to the basic results about sofic and hyperlinear groups can be found in [125, 126].
The surveys [118, 120, 121] contain several other equivalent reformulations of the
Connes’ embedding conjecture in purely algebraic or C*-algebraic terms.

This survey originated from a short intensive course that the authors gave at the
Universidade Federal de Santa Catarina in 2013 in occasion of the “Workshop on
sofic and hyperlinear groups and the Connes’ embedding conjecture” supported
by CAPES (Brazil) through the program “Science without borders”, PVE project
085/2012. We would like to gratefully thank CAPES for its support, as well as the
organizers of the workshop Daniel Gonçalves and Vladimir Pestov for their kind
hospitality, and for their constant and passionate encouragement.

Moreover, we are grateful to Hiroshi Ando, Goulnara Arzhantseva, Samuel
Coskey, Ilijas Farah, Tobias Fritz, Benjamin Hayes, Liviu Păunescu, Vladimir
Pestov, David Sherman, Alain Valette, and five anonymous referees for several
useful comments and suggestions.

Amsterdam, The Netherlands Valerio Capraro
CA, USA Martino Lupini
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Chapter 1
Introduction

Valerio Capraro and Martino Lupini

1.1 von Neumann Algebras and II1 Factors

Denote by B.H/ the algebra of bounded linear operators on the Hilbert space H.
Recall that B.H/ is naturally endowed with an involution x 7! x� associating with
an operator x its adjoint x�. The operator norm kxk of an element of B.H/ is defined
by

kxk D sup fkx�k W � 2 H, k�k � 1g .

Endowed with this norm, B.H/ is a Banach algebra with involution satisfying the
identity

kx�xk D kxk2 (C*-identity)

i.e. a C*-algebra.
The weak operator topology on B.H/ is the weakest topology making the map

x 7! hx�; �i

V. Capraro (�)
Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
e-mail: caprarovalerio@gmail.com
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e-mail: mlupini@mathstat.yorku.ca

© Springer International Publishing Switzerland 2015
V. Capraro, M. Lupini, Introduction to Sofic and Hyperlinear Groups and Connes’
Embedding Conjecture, Lecture Notes in Mathematics 2136,
DOI 10.1007/978-3-319-19333-5_1

1

mailto:caprarovalerio@gmail.com
mailto:mlupini@mathstat.yorku.ca


2 V. Capraro and M. Lupini

continuous for every �; � 2 H, where h�; �i denotes the scalar product of H. The
strong operator topology on B.H/ is instead the weakest topology making the maps

x 7! kx�k

continuous for every � 2 H. As the names suggest the strong operator topology is
stronger than the weak operator topology. It is a consequence of the Hahn-Banach
theorem that, conversely, a convex subset of B.H/ closed in the strong operator
topology is also closed in the weak operator topology (see Theorem 5.1.2 of [91]).

A (concrete) von Neumann algebra is a unital *-subalgebra (i.e. closed with
respect to taking adjoints) of B.H/ that is closed in the weak (or, equivalently,
strong) operator topology. It is easy to see that if X is a subset of B.H/, then the
intersection of all von Neumann algebras M � B.H/ containing X is again a von
Neumann algebra, called the von Neumann algebra generated by X. Theorem 1.1.1
is a cornerstone result of von Neumann, known as von Neumann double commutant
theorem, asserting that the von Neumann algebra generated by a subset X of B.H/
can be characterized in a purely algebraic way. The commutant X0 of a subset X
of B.H/ is the set of y 2 B.H/ commuting with every element of X. The double
commutant X00 of X is just the commutant of X0.

Theorem 1.1.1 The von Neumann algebra generated by a subset X of B.H/
containing the unit and closed with respect to taking adjoints coincides with the
double commutant X00 of X.

A faithful normal trace on a von Neumann algebra M is a linear functional � on
M such that:

• �.x�x/ � 0 for every x 2 M (� is positive);
• �.x�x/ D 0 implies x D 0 (� is faithful);
• �.xy/ D �.yx/ for every x; y 2 M (� is tracial);
• �.1/ D 1 (� is unital)
• � is continuous on the unit ball of M with respect to the weak operator topology

(� is normal).

A (finite) von Neumann algebra endowed with a distinguished trace will be called
a tracial von Neumann algebra. A tracial von Neumann algebra is always finite
as in [92, Definition 6.3.1]. Conversely any finite von Neumann algebra faithfully
represented on a separable Hilbert space has a faithful normal trace by Kadison and
Ringrose [92, Theorem 8.2.8].

The center Z.M/ of a von Neumann algebra M � B.H/ is the subalgebra of
M consisting of the operators in M commuting with any other element of M. A
von Neumann algebra M is called a factor if its center is as small as possible, i.e. it
contains only the scalar multiples of the identity. A finite factor has a unique faithful
normal trace (see [92, Theorem 8.2.8]). Moreover any faithful unital tracial positive
linear functional on a finite factor is automatically normal, and hence coincides with
its unique faithful normal trace.
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Example 1.1.2 If Hn is a Hilbert space of finite dimension n, then B.Hn/ is a finite
factor denoted by Mn.C/ isomorphic to the algebra of n � n matrices with complex
coefficients. The unique trace on Mn.C/ is the usual normalized trace of matrices.

It is a consequence of the type classification of finite factors (see [92, Sect. 6.5])
that the ones described in Example 1.1.2 are the unique examples of finite factors
that are finite dimensional as vector spaces.

Definition 1.1.3 A II1 factor is an infinite-dimensional finite factor.

Theorem 1.1.4 is a cornerstone result of Murray and von Neumann (see [115,
Theorem XIII]), offering a characterization of II1 factors within the class of finite
factors.

Theorem 1.1.4 If M is a II1 factor, then M contains, for every natural number n, a
unital copy of Mn.C/, i.e. there is a trace preserving *-homomorphism from Mn.C/

to M.

It follows from weak continuity of the trace and the type classification of finite
factors that if M is a finite factor, then the following statements are equivalent:

1. M is a II1 factor;
2. the trace � of M attains on projections all the real values between 0 and 1.

The unique trace � on a finite factor M allows to define the Hilbert-Schmidt
norm k�k2 on M, by jjxjj2 D �.x�x/

1
2 . The Hilbert-Schmidt norm is continuous

with respect to the operator norm k�k inherited from B.H/. A finite factor is called
separable if it is separable with respect to the topology induced by the Hilbert-
Schmidt norm.

Let us now describe one of the most important constructions of II1 factors. If �
is a countable discrete group then the complex group algebra C� is the complex
algebra of formal finite linear combinations

�1�1 C � � � C �k�k

of elements of � with coefficients from C. Any element of C� can be written as

X

�

a��;

where .a/�2� is a family of complex numbers all but finitely many of which are
zero. Sum and multiplication of elements of C� are defined by

 
X

�

a��

!
C
 
X

�

b��

!
D
X

�

�
a� C b�

�
�
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and

 
X

�

a��

! 
X

�

b��

!
D
X

�

0

@
X

��0D�
a�b�0

1

A � .

Consider now the Hilbert space `2.�/ of square-summable complex-valued func-
tions on � . Each � 2 � defines a unitary operator �� on `2.�/ by:

��.f /.x/ D f .��1x/.

The function � ! �� extends by linearity to an embedding of C� into the algebra
B
�
`2.�/

�
of bounded linear operators on `2.�/.

Definition 1.1.5 The weak closure of C� (identified with a subalgebra of
B
�
`2.�/

�
) is a von Neumann algebra denoted by L� and called the group von

Neumann algebra of � .

The group von Neumann algebra L� is canonically endowed with the trace �
obtained by extending by continuity the condition:

�

 
X

�

a��

!
D a1� ;

for every element
P

� a�� of C� .

Exercise 1.1.6 Assume that � is an ICC group, i.e. every nontrivial conjugacy class
of � is infinite. Show that L� is a II1 factor.

Exercise 1.1.7 Show that the free group Fn on n � 2 generators and the group Sfin1
of finitely supported permutations of a countable set are ICC.

It is a milestone result of Murray and von Neumann from [115] (see also
Theorem 6.7.8 of [92]) that the group factors associated with the free group F2 and,
respectively, the group Sfin1 are nonisomorphic. It is currently a major open problem
in the theory of II1 factors to determine whether free groups over different number
of generators have isomorphic associated factors.

Connes’ embedding conjecture asserts that any separable II1 factor can be
approximated by finite dimensional factors, i.e. matrix algebras. More precisely:

Conjecture 1.1.8 (Connes [43]) If M is a separable II1 factor with trace �M then for
every " > 0 and every finite subset F of M there is a function ˆ from M to a matrix
algebra Mn.C/ that on F approximately preserves the operations and the trace. This
means that ˆ.1/ D 1 and for every x; y 2 F:

• kˆ.x C y/ � .ˆ.x/Cˆ.y//k2 < ";
• kˆ.xy/�ˆ.x/ˆ.y/k2 < ";
•
ˇ̌
�M.x/ � �Mn.C/ .ˆ.x//

ˇ̌
< ".
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1.2 Voiculescu’s Free Entropy

Connes’ embedding conjecture is related to many other problems in pure and
applied mathematics and can be stated in several different equivalent ways. The
simplest and most practical way is probably through Voiculescu’s free entropy.

Consider a random variable which outcomes the set f1; : : : ; ng with probabil-
ities p1; : : : ; pn. Observe that its Shannon’s entropy, �P pi log.pi/, can also be
constructed through the following procedure:

1. Call microstate any function f from f1; 2; : : : ;Ng to f1; 2; : : : ; ng. A microstate f
"-approximates the discrete distribution p1; : : : pn if for every i 2 f1; 2; : : : ; ng

ˇ̌
ˇ̌
ˇ

ˇ̌
f �1.i/

ˇ̌

N
� pi

ˇ̌
ˇ̌
ˇ < ".

Denote the number of such microstates by �.p1; : : : ; pn;N; "/.
2. Take the limit of

N�1 log j�.p1; : : : ; pn;N; "/j;

as N ! 1
3. Finally take the limit as " goes to zero.

One can show that the result is just the opposite of the Shannon entropy,
that is,

P
i2n pi log pi. Over the early 1990s, Voiculescu, in part motivated by the

isomorphism problem of whether the group von Neumann algebras associated to
different free groups are isomorphic or not, realized that this construction could be
imitated in the noncommutative world of II1 factors.

1. Microstates are self-adjoint matrices, instead of functions between finite sets.
Formally, let ";R > 0, m; k 2 N, and X1; : : : ;Xn be free random variables1

on a II1-factor M. We denote �R.X1; : : : ;XnI m; k; "/ the set of .A1; : : : ;An/ 2
.Mk.C/sa/

n such that kAmk � R and

jtr.Ai1 � � � Aim/ � �.Xi1 � � � Xim/j < "

for every 1 � m � p and .i1; : : : ; im/ 2 f1; 2; : : : ; ngm.
2. The discrete measure is replaced by the Lebesgue measure � on .Mk.C/sa/

n.
3. The limits are replaced by suitable limsups, sups, and infs.

1Freeness is the analogue of independence in the noncommutative framework of II1-factors. For a
formal definition we refer the reader to [147].
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Specifically, set

	R.X1; : : : ;XnI m; k; "/ WD log�.�R.X1; : : :XnI m; k; "//;

	R.X1; : : :XnI m; "/ WD lim sup
k!1

.k�2	R.X1; : : :XnI m; k; "/C 2�1n log.k//;

	R.X1; : : :Xn/ WD inff	R.X1; : : :XnI m; "/ W m 2 N; " > 0g;

Finally, define entropy of the variables X1; : : : ;Xn the quantity

	.X1; : : :Xn/ WD supf	R.X1; : : : Xn/ W R > 0g.

The factor k�2 instead of k�1 comes from the normalization. The addend 2�1n log.k/
is necessary, since otherwise 	R.X1; : : :XnI m; "/ would always be equal to �1.

It is not clear why this construction should give entropy different from �1.
Indeed Voiculescu himself proved that it is �1 when X1; : : : ;Xn are linearly depen-
dent (see [148, Proposition 3.6]). A necessary condition to have 	.X1; : : : ;Xn/ >

�1 is that �R.X1; : : : ;Xn;m; k; "/ is not empty for some k, i.e. the finite subset
X D fX1; : : : ;Xng of Msa has microstates. This requirement turns to be equivalent to
the fact that M satisfies Connes’ embedding conjecture.

Theorem Let M be a II1 factor. The following conditions are equivalent

1. Every finite subsets X � Msa has microstates.
2. M verifies Connes’ embedding conjecture.

1.3 History of Connes’ Embedding Conjecture

Connes’ embedding conjecture had its origin in Connes’ sentence: “We now
construct an approximate imbedding of N in R. Apparently such an imbedding
ought to exist for all II1 factors because it does for the regular representation of free
groups. However the construction below relies on condition 6” (see [43, page 105]).
This seemingly innocent observation received in the first 15 years after having been
formulated relatively little attention. The situation changed drastically in the early
1990s, when two fundamental papers appeared on the scene: the aforementioned
[148] where the Connes embedding conjecture is used to define free entropy, and
[101] where Kirchberg obtained several unexpected reformulations of the Connes
embedding conjecture very far from its original statement, such as the fact that the
maximal and minimal tensor products of the group C*-algebra of the free group on
infinitely many generators coincide:

C�.F/˝min C�.F/ D C�.F/˝max C�.F/: (1.1)
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What is most striking in this equivalence is that Connes’ embedding conjecture
concerns the class of all separable II1 factors, while (1.1) is a statement about a
single C*-algebra. Even more surprising is the fact that the equivalence of these
statements can be proved a topological way as shown in [83].

Following the aforementioned papers by Voiculescu and Kirchberg, a series of
papers from different authors proving various equivalent reformulations of Connes’
embedding conjecture appeared, such as [16, 41, 64, 84, 118] contributing to arouse
the interest around this conjecture. In particular Florin Rădulescu showed in [130]
that Connes’ embedding conjecture is equivalent to some noncommutative analogue
of Hilbert’s 17th problem. This in turn inspired work of Klep and Schweighofer,
who proved in [103] a purely algebraic reformulation of Connes’ embedding
conjecture (see also the more recent work [89]). In [25] it is observed that Connes’
embedding conjecture could theoretically be checked by an algorithm if a certain
problem of embedding Hilbert spaces with some additional structure into the
Hilbert space L2.M; �/ associated to a II1 factor has a positive solution. Another
computability-theoretical reformulation of the Connes’ embedding conjecture has
more recently been proved in [73]. Other very recent discoveries include the fact
that Connes’ embedding conjecture is related to Tsirelson’s problem, a major open
problem in Quantum Information Theory (see [66, 88, 121]) and that it is connected
to the “minimal” and “commuting” tensor products [97] of some group operator
systems [35, 62, 63].

1.4 Hyperlinear and Sofic Groups

In [131] Rădulescu considered the particular case of Connes’ embedding conjecture
for II1 factors arising as group factors L� of countable discrete ICC groups.
A countable discrete ICC group � is called hyperlinear if L� verifies Connes’
embedding conjecture. As we will see in Sects. 2.2 and 2.6 the notion of hyperlinear
group admits several equivalent characterizations, as well as a natural generalization
to the class of all countable groups. The notion of hyperlinear group turned out to
be tightly connected with the notion of sofic groups. Sofic groups are a class of
countable discrete groups introduced by Gromov in [79] (even though the name
“sofic” was coined by Weiss in [150]). A group is sofic if, loosely speaking, it can
be locally approximated by finite permutation groups Sn up to an error measured
in terms of the Hamming metric Sn (see Sect. 2.1). Elek and Szabó in [54] showed
that every sofic group is hyperlinear. Gromov’s motivation to introduce the notion
of sofic groups came from an open problem in symbolic dynamics known as
Gottschalk’s surjunctivity conjecture: Suppose that � is a countable group and A
is a finite set. Denote by A� the set of �-sequences of elements of A. The product
topology on A� with respect to the discrete topology on A is compact and metrizable.
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The Bernoulli shift of � with alphabet A is the left action of � on A� defined by

� � �a�
�
�2� D �

a��1�

�
�2� :

A continuous function f W A� ! A� is equivariant if it preserves the Bernoulli
action, i.e. f .� � x/ D � � f .x/, for every x 2 A� and � 2 � . Conjecture 1.4.1
was proposed by Gottschalk in [76] and it is usually referred to as Gottschalk’s
surjunctivity conjecture.

Conjecture 1.4.1 Suppose that � is a discrete group and A is a finite set. If f W A� !
A� is a continuous injective equivariant function, then f is surjective.

It is currently an open problem to determine whether Gottschalk’s surjunctivity
conjecture holds for all countable discrete groups. Gromov proved in [79] using
graph-theoretical methods that sofic groups satisfy Gottschalk’s surjunctivity con-
jecture. Another proof was obtained Kerr and Li in [99] as an application of the
theory of entropy for actions of sofic groups developed by Bowen, Kerr, and Li (see
[15, 99, 100]). The countable discrete groups satisfying Gottschalk’s surjunctivity
conjecture are sometimes called surjunctive. An example of a monoid that does not
satisfy the natural generalization of surjunctivity for monoids has been provided in
[33]. More information about Gottschalk’s surjunctivity conjecture and surjunctive
groups can be found in the monograph [31].

Since Gromov’s proof of Gottschalk’s conjecture for sofic groups, many other
open problems have been settled for sofic or hyperlinear groups such as the
Kervaire-Laudenbach conjecture (see Sect. 2.8), Kaplansky’s direct finiteness con-
jecture (see Sects. 1.5 and 2.10), and the algebraic eigenvalues conjecture (see
Sect. 2.12). This showed how deep and fruitful the notion of hyperlinear and sofic
groups are, and contributed to bring considerable attention to the following question
which is strikingly still open:

Open Problem 1.4.2 Is there any countable discrete group � that is not sofic or
hyperlinear?

1.5 Kaplansky’s Direct Finiteness Conjecture

Suppose that � is a countable discrete group, and consider the complex group
algebra C� defined in Sect. 1.1. Kaplanksi showed in [93] that C� is a directly
finite ring. This means that if a; b 2 C� are such that ab D 1 then ba D 1. In [19]
Burger and Valette gave a short proof of Kaplansky’s result by means of the group
von Neumann algebra construction introduced in Sect. 1.1. Indeed, one can regard
C� as a subalgebra of the group von Neumann algebra L� and prove that L� is
directly finite using analytic methods. This is the content of Theorem 1.5.1.
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Theorem 1.5.1 If M is a von Neumann algebra endowed with a faithful finite trace
� , then M is a directly finite algebra.

We now prove this theorem. Let M be a von Neumann algebra and � be a faithful
normalized trace on M. If x; y 2 M are such that xy D 1 then yx 2 M is an
idempotent element such that

�.yx/ D �.xy/ D �.1/ D 1:

It is thus enough to prove that if e 2 M is an idempotent element such that �.e/ D 1

then e D 1. This is equivalent to the assertion that if e 2 M is an idempotent element
such that �.e/ D 0 then e D 0. The latter statement is proved in Lemma 1.5.2 (see
[19, Lemma 2.1]).

Lemma 1.5.2 If M is a von Neumann algebra endowed with a faithful finite trace
� and e 2 M is an idempotent such that �.e/ D 0, then e D 0.

Proof The conclusion is obvious if e is a self-adjoint idempotent element (i.e. a
projection). In fact in this case

�.e/ D �
�
e�e
� D 0

implies e D 0 by faithfulness of � . In order to establish the general case it is enough
to show that if e 2 M is idempotent, then there is a self-adjoint invertible element z
of M such that f D ee�z�1 is a projection and �.e/ D �.f /. Define

z D 1C �
e� � e

�� �
e� � e

�
:

Observe that z is an invertible element (see [14, II.3.1.4]) commuting with e. It is
not difficult to check that f D ee�z�1 has the required properties. ut

The construction of the complex group algebra of � introduced in Sect. 1.1 can
be generalized replacing C with an arbitrary field K. One thus obtains the group
K-algebra K� of � consisting of formal finite linear combinations

k1�1 C : : :C kn�n

of elements of � with coefficients in K. As before a typical element a of K� can be
denoted by

X

�

a��
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where the coefficients a� 2 K are zero for all but finitely many � 2 � . The
operations on K� are defined by

 
X

�

a��

!
C
 
X

�

b��

!
D
X

�

�
a� C b�

�
�

and

 
X

�

a��

! 
X

�

b��

!
D
X

�

0

@
X

��0D�
a�b�0

1

A � .

Conjecture 1.5.3 is due to Kaplansky and usually referred to as direct finiteness
conjecture.

Conjecture 1.5.3 The algebra K� is directly finite, i.e. any one-side invertible
element of K� is invertible.

Kaplansky’s direct finiteness conjecture was established for residually amenable
groups in [3] and then for sofic groups in [53]. Section 2.10 contains a proof
of Conjecture 1.5.3 for sofic groups involving the notion of rank ring and rank
ultraproduct of rank rings. It is a well know fact (see Observation 2.1 in [126])
that any field embeds as a subfield of an ultraproduct of finite fields (see Sect. 1.2
of for the definition of ultraproduct of fields). It is not difficult to deduce from this
observation that a group � satisfies Kaplansky’s direct finiteness conjecture as soon
as K� is directly finite for every finite field K (this fact was pointed out to us by
Vladimir Pestov). This allows one to deduce that Gottschalk’s conjecture is stronger
than Kaplansky’s direct finiteness conjecture. In fact suppose that � is a group
satisfying Gottschalk’s conjecture and K is a field that, without loss of generality,
we can assume to be finite. Consider the Bernoulli action of � with alphabet K. We
will denote an element .a/�2� of K� by

P
� a�� , and regard the group algebra K�

as a subset of K� . Defining

 
X

�

a��

!
�
 
X

�

b��

!
D
X

�

0

@
X

��0D�
a�b�0

1

A �

for
P

� a�� 2 K� and
P

� b�� 2 K� one obtains a right action of K� on K� that
extends the multiplication operation in K� and commutes with the left action of
� on K� . Suppose that a, b 2 K� are such that ab D 1� . Define the continuous
equivariant map f W K� ! K� by f .x/ D x � a. It follows from the fact that b is
a right inverse of a that f is injective. Since � is assumed to satisfy Gottschalk’s
conjecture, f must be surjective. In particular there is x0 2 K� such that

x0 � a D f .x0/ D 1� .
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It follows that a has a left inverse. A standard calculation allows one to conclude
that a is invertible with inverse b.

1.6 Kaplansky’s Group Ring Conjectures

Conjecture 1.5.3 is only one of several conjectures concerning the group algebra
K� for a countable discrete torsion-free group � attributed to Kaplansky. Here is
the complete list:

• Zero divisors conjecture: K� has no zero divisors;
• Nilpotent elements conjecture: K� has no nilpotent elements;
• Idempotent elements conjecture: the only idempotent elements of K� are 0 and
1;

• Units conjecture: the only units of K� are k� for k 2 K nf0g and � 2 �;
• Trace of idempotents conjecture: if b is an idempotent element of K� then the

coefficient b1� corresponding to the identity 1� of � belongs to the prime field
K0 of K (which is the minimum subfield of K).

All these conjectures are to this day still open, apart from the last one which has
been established by Zalesskii in [151]. We will present now a proof of the particular
case of Zalesskii’s result when K is a finite field of characteristic p. Recall that a
trace on K� is a K-linear map � W K� ! K such that �.ab/ D �.ba/ for every
a; b 2 K� . If n is a nonnegative integer and a 2 K� , define �n.a/ to be the sum of
the coefficients of a corresponding to elements of � of order pn. In particular �0.a/
is the coefficient of a corresponding t the identity element 1� of � .

Exercise 1.6.1 Verify that �n is a trace on K� .

Exercise 1.6.2 Show that if K is a finite field of characteristic p and � is any trace
on K� , then

� ..a C b/p/ D �.ap/C �.bp/; (1.2)

for every a; b 2 K� . Thus by induction

�.ap/ D
X

�

ap
� �.�

p/.

The identity (1.2) can be referred to as “Frobenius under trace” in analogy with
the corresponding identity for elements of a field of characteristic p. Suppose now
that e 2 K� is an idempotent element. We want to show that �.e/ belongs to the
prime field K0 of K. To this purpose it is enough to show that �.e/p D �.e/. For
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n � 1 we have, by Exercises 1.6.1 and 1.6.2, denoting by j� j the order of an element
� of �:

�n.e/ D �n.e
p/

D
X

�

ep
� �n.�

p/

D
X

j� jDpnC1

ep
�

D
0

@
X

j� jDpnC1

e�

1

A
p

D �nC1.e/p:

On the other hand:

�0.e/ D �0.e
p/

D
X

�

ep
� �0.�

p/

D
X

j� jD1
ep
� C

X

j� jDp

ep
�

D �0.e/
p C �1.e/

p:

From these identities it is easy to prove by induction that

�0.e/ D �0.e/
p C �n.e/

pn
;

for every n 2 N. Since e has finite support, there is n 2 N such that �n.e/ D 0. This
implies that �0.e/ D �0.e/p and hence �0.e/ 2 K0.

The proof of the general case of Zalesskii’s theorem can be inferred from the
particular case presented here. The details can be found in [19].



Chapter 2
Sofic and Hyperlinear Groups

Martino Lupini

2.1 Definition of Sofic Groups

A length function ` on a group G is a function ` W G ! Œ0; 1
 such that for every
x; y 2 G:

• `.xy/ � `.x/C `.y/;
• `.x�1/ D `.x/;
• `.x/ D 0 if and only if x is the identity 1G of G.

A length function is called invariant if it is moreover invariant by conjugation.
This means that for every x; y 2 G

`.xyx�1/ D `.x/

or equivalently

`.xy/ D `.yx/.

A group endowed with an invariant length function is called an invariant length
group. If G is an invariant length group with invariant length function `, then the
function

d W G � G ! Œ0; 1
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defined by d.x; y/ D `.xy�1/ is a bi-invariant metric on G. This means that d is a
metric on G such that left and right translations in G are isometries with respect to d.
Conversely any bi-invariant metric d on G gives rise to an invariant length function
` on G by

`.x/ D d.x; 1G/.

This shows that there is a bijective correspondence between invariant length
functions and bi-invariant metrics on a group G. If � is any group, then the function

`0.x/ D
(
0 if x D 1G,

1 otherwise;

is an invariant length function on � , called the trivial invariant length function. In the
following any discrete group will be regarded as an invariant length group endowed
with the trivial invariant length function.

Consider for n 2 N the group Sn of permutations over the set n D
f0; 1; : : : ; n � 1g. The Hamming invariant length function ` on Sn is defined by

`Sn.�/ D 1

n
jfi 2 n W �.i/ ¤ ig .

Exercise 2.1.1 Verify that `Sn is in fact an invariant length function on Sn.

The bi-invariant metric on Sn associated with the invariant length function `Sn

will be denoted by dSn .

Definition 2.1.2 A countable discrete group � is sofic if for every " > 0 and every
finite subset F of � nf1�g there is a natural number n and a function ˆ W � ! Sn

such that ˆ.1�/ D 1Sn and for every g; h 2 F nf1�g :

• dSn .ˆ.gh/; ˆ.g/ˆ.h// < ";
• `Sn .ˆ.g// > r.g/ where r.g/ is a positive constant depending only on g.

This local approximation property can be reformulated in terms of embedding
into a (length) ultraproduct of the permutation groups. The product

Y

n2N
Sn

is a group with respect to the coordinatewise multiplication. Fix a free ultrafilter U
over N (see Appendix B for an introduction to ultrafilters). Define the function

`U W
Y

n2N
Sn ! Œ0; 1


by

`U ..�n/n2N/ D lim
n!U

`Sn.�n/.
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It is not hard to check

NU D
(

x 2
Y

n2N
Sn W `U .x/ D 0

)

is a normal subgroup of
Q

n Sn. The quotient of
Q

n Sn by NU is denoted by
Y

U Sn

and called the ultraproduct relative to the free ultrafilter U of the sequence .Sn/n2N
of permutation groups regarded as invariant length groups.

Exercise 2.1.3 Show that if .�n/n2N; .�n/n2N 2 Q
n Sn belong to the same coset of

NU then `U ..�n/n2N/ D `U ..�n/n2N/.

Exercise 2.1.3 shows that the function `U passes to the quotient inducing a
canonical invariant length function on

Q
U Sn still denoted by `U . If x 2 Q

U Sn

belongs to the coset of NU associated with .�n/n2N 2 Qn Sn, then .�n/n2N is called a
representative sequence for the element x. It is not difficult to reformulate the notion
of sofic group in term of existence of an embedding into

Q
U Sn.

Exercise 2.1.4 Suppose that � is a countable discrete group. Show that the
following statements are equivalent:

1. � is sofic;
2. there is an injective group *-homomorphism ˆ W � ! Q

U Sn for every free
ultrafilter U over N;

3. there is an injective group *-homomorphism ˆ W � ! Q
U Sn for some free

ultrafilter U over N.

Hint For 1: ) 2: observe that the hypothesis implies that there is a sequence
.ˆn/n2N of maps from � to Sn such thatˆn .1�/ D 1Sn and for every g; h 2 � nf1�g

lim
n!C1 dSn .ˆn .gh/ ; ˆn.h/ˆn .g// D 0

and

lim inf
n!C1 `Sn .ˆn .g// � r .g/ > 0.

Define ˆ W � ! Q
U Sn sending g to the element of

Q
U Sn having .ˆn .g//n2N as

representative sequence. For 3: ) 1: observe that if ˆ W � ! Q
U Sn is an injective

*-homomorphism and for every g 2 G

.ˆn .g//n2N

is a representative sequence of ˆ.g/ then the maps ‰n D ˆn .1�/
�1 ˆn .g/ satisfy

the following properties:‰n .1�/ D 1Sn and for every g; h 2 � nf1�g
lim

n!U
dSn .‰n .gh/ ; ‰n .g/‰n.h// D 0
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and

lim
n!U

`Sn .‰n .g// � `U .ˆ .g// .

If F � � is finite and " > 0 then the maps ‰n for n large enough witness the
condition of soficity of � relative to F and " > 0.

In view of the fact that a (countable, discrete) group is sofic if and only embeds
in
Q

U Sn for some free ultrafilter U , the (length) ultraproducts of the sequence of
permutations are called universal sofic groups (see [54, 111, 124, 126, 145]).

Universal sofic groups are not separable. This fact follows from a well known
argument. Two functions f ; g W N ! N are eventually distinct if they coincide only
on finitely many n’s.

Exercise 2.1.5 Suppose that h W N ! N is an unbounded function. Show that there
is a family F of size continuum of pairwise eventually distinct functions from N to
N such that f .n/ � h .n/ for every f 2 F .

Hint For every subset A of N define fA W N ! N by

fA .n/ D
X

k<n

	A .n/ 2
k

where 	A denotes the characteristic function of A. Observe that

F0 D ffA W A � Ng
is a family of size continuum of pairwise eventually distinct functions such that
f .n/ � 2n for every n 2 N.

Exercise 2.1.6 Show that for any free ultrafilter U there is a subset X of
Q

U Sn

of size continuum such that every two distinct elements of X have distance one.
Conclude that any dense subset of

Q
U Sn has the cardinality of the continuum.

Hint By Exercise 2.1.5 there is a family F of size continuum of pairwise eventually
distinct functions such that f .n/ � p

n for every n 2 N and f 2 F . For every f 2 F
consider the element xf of

Q
U Sn having

�
� f .n/

n

�

n2N
as representative sequence, where �n is any cyclic permutation of n. Show that

X WD ˚
xf W f 2 F�

has the required property.
An amplification argument of Elek and Szabó (see [54]) shows that the condition

of soficity is equivalent to the an apparently stronger approximation property, which
is discussed in the following Exercise 2.1.8.
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Definition 2.1.7 Suppose that G;H are invariant length groups, F is a subset of
G, and " is a positive real number. A function ˆ W G ! H is called an .F; "/-
approximate morphism if ˆ.1G/ D 1H and for every g; h 2 F:

•
ˇ̌
`H
�
ˆ.gh/ˆ.h/�1ˆ.g/

�ˇ̌
< ";

• j`H .ˆ.g// � `G.g/j < ".
Exercise 2.1.8 Prove that a countable discrete group � is sofic if and only if for
every positive real number " and every finite subset F of � there is a natural number
n and an .F; "/-approximate morphism from � to Sn, where � is regarded as an
invariant length group with respect to the trivial invariant length function.

Hint If n; k 2 N and � 2 Sn consider the permutation �˝k of the set Œn
k of k-
sequences of elements of n defined by

�˝k .i1; : : : ; ik/ D .�.i1/; : : : ; �.ik// :

Identifying the group of permutations of

k times‚ …„ ƒ
n � � � � � n with Snk , the function

� 7! �˝k

defines a group *-homomorphism from Sn to Snk such that

1 � `Snk

�
�˝k

� D .1 � `Sn .�//
k .

Using Exercise 2.1.8 one can express the notion of soficity in terms of length-
preserving embedding into ultraproducts of permutations groups.

Exercise 2.1.9 Suppose that � is a countable discrete group regarded as an
invariant length group endowed with the trivial invariant length. Show that the
following statements are equivalent:

• � is sofic;
• there is a length-preserving *-homomorphism ˆ W � ! Q

U Sn for every free
ultrafilter U over N;

• there is an length-preserving *-homomorphism ˆ W � ! Q
U Sn for some free

ultrafilter U over N.

Hint Follow the same steps as in the proof of Exercise 2.1.9, replacing the condition
given in the definition of sofic group with the equivalent condition expressed in
Exercise 2.1.8.

In a number of cases it is useful to consider approximate morphisms sat-
isfying convenient additional properties. An example of such morphisms with
additional properties is considered in the following exercise, originally proved in
[55, Lemma 2.1].
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Exercise 2.1.10 Suppose that � is a countable discrete sofic group, F is a finite
symmetric subset of � containing the identity element, and " is a positive real
number. Show that one can find an .F; "/-approximate morphism g 7! �g from
� to Sn for some n 2 N such that, for every g 2 F, �g has no fixed points and
�g�1 D ��1

g .

Hint Fix � > 0 small enough and set OF D F � F. By Exercise 2.1.8 one can consider
an . OF; �/-approximate morphism g 7! �g from � to Sn for some n 2 N. For any
nonidentity element g of OF consider the largest subset Ag of n such that �g�1�g is the
identity on Ag and �g has no fixed points on Ag. Verify that �g defines a bijection
between Ag and Ag�1 . Define an approximate morphism g 7! �g from � to S2n in
the following way. Identify S2n with the group of premutations of n � 2. For any
nonidentity element g of OF fix a bijection �g from AgnAg�1 � 2 to Ag�1nAg � 2 and
a fixed-point free involution  g of

�
nn.Ag [ Ag�1 /

� � 2 such that �g�1 D ��1
g and

 g�1 D  �1
g . Define then

�g .i; j/ D

8
ˆ̂<

ˆ̂:

�
�g .i/ ; j

�
if i 2 Ag,

�g .i; j/ if i 2 AgnAg�1 ,
�g�1 .i; j/ if i 2 Ag�1nAg,
 g .i; j/ otherwise.

Verify that for � small enough the assignment g 7! �g is an .F; "/-approximate
morphism with the required extra properties.

2.2 Definition of Hyperlinear Groups

Recall that Mn.C/ denotes the tracial von Neumann algebra of n � n matrices over
the complex numbers. The normalized trace � of Mn.C/ is defined by

�
�
.aij/

� D 1

n

nX

iD1
aii.

The Hilbert-Schmidt norm kxk2 on Mn.C/ is defined by

kxk2 D �.x�x/
1
2 .

An element x of Mn.C/ is unitary if x�x D xx� D 1. The set Un of unitary elements
of Mn.C/ is a group with respect to multiplication. The Hilbert-Schmidt invariant
length function on Un is defined by

`Un.u/ D 1

2
ku � 1k2 .
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Exercise 2.2.1 Show that `Un is an invariant length function on Un such that
`Un.u/

2 D 1
2
.1 � Re .�.u///.

Hyperlinear groups are defined exactly as sofic groups, where the permutation
groups with the Hamming invariant length function are replaced by the unitary
groups endowed with the Hilbert-Schmidt invariant length function.

Definition 2.2.2 A countable discrete group � is hyperlinear if for every " > 0

and every finite subset F of � nf1�g there is a natural number n and a function
ˆ W � ! Un such that ˆ.1�/ D 1Un and for every g; h 2 F:

• dUn .ˆ.gh/; ˆ.g/ˆ.h// < ";
• `Un .ˆ.g// > r.g/ where r.g/ is some positive constant depending only on g.

As before this notion can be equivalently reformulated in terms of embedding
into ultraproducts. If U is a free ultrafilter over N the ultraproduct

Q
U Un of the

unitary groups regarded as invariant length groups is the quotient of
Q

n Un with
respect to the normal subgroup

NU D
�
.un/n2N W lim

n!U
`Un .un/ D 0

�

endowed with the invariant length function

`U ..un/NU / D lim
n!U

`.un/.

Exercise 2.2.3 Suppose that � is a countable discrete group. Show that the
following statements are equivalent:

• � is hyperlinear;
• there is an injective *-homomorphismˆ W � ! Q

U Un for every free ultrafilter
U over N;

• there is an injective *-homomorphismˆ W � ! Q
U Un for some free ultrafilter

U over N.

As in the case of sofic groups, (length) ultraproducts of sequences of unitary
groups can be referred to as universal hyperlinear groups in view of Exercise 2.2.3.
Exercise 3.2.1 in Sect. 3.2 shows that the same conclusion of Exercise 2.2.3 holds
for (length) ultrapowers of the unitary group of the hyperfinite II1 factor (see
Definition 3.1.2).

If � is a permutation over n denote by P� the permutation matrix associated with
� , acting as � on the canonical basis of Cn. Observe that P� is a unitary matrix and
the function

� 7! P�

is a *-homomorphism from Sn to Un. Moreover

� .P� / D 1 � `Sn.�/
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and hence

`Un .P� /
2 D 1

2
`Sn.�/. (2.1)

It is not difficult to deduce from this that any sofic group is hyperlinear. This is the
content of Exercise 2.2.4.

Exercise 2.2.4 Fix a free ultrafilter U over N. Show that the function

.�n/n2N 7! .P�n/n2N

from
Q

n Sn to
Q

n Un induces an algebraic embedding of
Q

U Sn into
Q

U Un.

Proposition is an immediate consequence of Exercise 2.2.4, together with Exer-
cises 2.1.4 and 2.2.3.

Proposition 2.2.5 Every countable discrete sofic group is hyperlinear.

It is currently and open problem to determine whether the notions of sofic and
hyperlinear group are actually distinct, since no example of a nonsofic groups is
known.

Exercise 2.2.6 Show that for any free ultrafilter U there is a subset X of
Q

U Un of
size continuum such that every pair of distinct elements of X has distance 1p

2
.

Hint Proceed as in Exercise 2.1.6, where for every n 2 N the cyclic permutation
�n is replaced with the unitary permutation matrix P�n associated with �n. Recall
the relation between the Hamming length function and the Hilbert-Schmidt length
functions given by Eq. (2.1).

It follows from Exercise 2.2.6 that a dense subset of
Q

U Un has the cardinality
of the continuum. In particular the universal hyperlinear groups are not separable.

An amplification argument from [131] due to Rădulescu (predating the analogous
argument for permutation groups of Elek and Szabó) shows that hyperlinearity is
equivalent to an apparently stronger approximation property. In order to present this
argument we need to recall some facts about tensor product of matrix algebras.

If Mn.C/ and Mm.C/ are the algebras of, respectively, n � n and m � m matrices
with complex coefficients, then their tensor product (see Appendix A) can be
canonically identified with the algebra Mnm.C/ of nm � nm matrices. Concretely
if A D .aij/ 2 Mn.C/ and B D �

bij
� 2 Mm.C/ then A˝B is identified with the block

matrix

0
BBB@

a11B a12B : : : a1nB
a21B a22B : : : a2nB
:::

:::
: : :

:::

an1B : : : : : : annB

1
CCCA .
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It is easily verified that

� .A ˝ B/ D �.A/� .B/

and A ˝ B is unitary if both A and B are.

Exercise 2.2.7 Suppose that u 2 Un. If u is different from the identity, then the
absolute value of the trace of

	
u 0

0 1Un



2 U2n

is strictly smaller than 1.

Exercise 2.2.8 If u 2 Un then define recursively u˝1 D u 2 Un and u˝.kC1/ D
u˝k ˝ u 2 UnkC1 . Show that the function

u 7! u˝k

is a group *-homomorphism from Un to Unk such that

�.u/ D �.u/k.

We can now state and prove the promised equivalent characterization of hyper-
linear groups.

Proposition 2.2.9 A countable discrete group � is hyperlinear if and only for every
finite subset F of � and every positive real number " there is a natural number n
and an .F; "/-approximate morphism from � to Un, where � is regarded as invariant
length groups with respect to the trivial length function.

Proof Suppose that � is hyperlinear. If F is a finite subset of � and " is a positive
real number, consider the map ˆ W � ! Un obtained from F and " as in the
definition of hyperlinear group. By Exercise 2.2.7 after replacingˆ with the map

� ! U2n

� 7!
	
ˆ.�/ 0

0 1Un




we can assume that

j� .ˆ.�//j < 1
for every � 2 F. It is now easy to show using Exercise 2.2.8 that the map

� ! Unk

� 7! ˆ.�/˝k
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for k 2 N large enough satisfies the requirements of the statement. The converse
implication is obvious. ut

As before we can deduce a characterization of hyperlinear groups in terms of
length-preserving embeddings into ultraproducts of unitary groups.

Exercise 2.2.10 Suppose that � is a countable discrete group regarded as an
invariant length group endowed with the trivial invariant length function. Show that
the following statements are equivalent:

• � is hyperlinear;
• there is a length preserving *-homomorphism ˆ W � ! Q

U Un for every free
ultrafilter U over N;

• there is a length preserving *-homomorphism ˆ W � ! Q
U Un for some free

ultrafilter U over N.

We conclude this section with yet another reformulation of the definition of
hyperlinear group in terms of what are usually called microstates. Suppose that � is
a finitely generated group with finite generating set S D fg1; : : : ; gmg. If n 2 N and
" > 0 then an .n; "/-microstate for � is a map ˆ W � ! Mk .C/ for some k 2 N

such that for every word w in xi and x�1
i for i � m of length at most n one has that

j� .w .ˆ .g1/ ; : : : ; ˆ .gm///j < " whenever w .g1; : : : ; gm/ ¤ 1� ,

and

j� .w .ˆ .g1/ ; : : : ; ˆ .gm///� 1j < " whenever w .g1; : : : ; gn/ D 1� .

A countable discrete groups is hyperlinear if and only if it admits .n; "/-microstates
for every n 2 N and " > 0. In order to verify that such a definition is equivalent to the
previous ones—and, in particular, does not depend on the choice of the generating
set S—let us consider the relation R .x/ defined by

max fkxx� � 1k2 ; kx�x � 1k2g .

It is obvious that an element a in Mn .C/ is a unitary if and only if R.a/ D 0.
Moreover such a relation has the following property, usually called stability: for
every " > 0 there is ı > 0 such that for every n 2 N and every element a of Mn .C/ if
R.a/ < ı then there is a unitary u 2 Mn .C/ such that ka � uk2 < ". In other words
any approximate solution to the equation R .x/ D 0 is close to an exact solution.
Such a property, which holds even if one replaces Mn .C/ with an arbitrary tracial
von Neumann algebra, can be established by means of the polar decomposition of
an element inside a von Neumann algebra; see [14, Sect. III.1.1.2].

Exercise 2.2.11 Using stability of the relation defining unitary elements, verify that
the microstates formulation of hyperlinearity is equivalent to the original definition.
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2.3 Classes of Sofic and Hyperlinear Groups

A classical theorem of Cayley (see [29]) asserts that any finite group is isomorphic
to a group of permutations (with no fixed points) on a finite set. To see this just let
the group act on itself by left translation. This observation implies in particular that
finite groups are sofic. This argument can be generalized to prove that amenable
groups are sofic. Recall that a countable discrete group � is amenable if for every
finite subset F of � and for every " > 0 there is an .H; "/-invariant finite subset K
of � , i.e. such that

jhK4Kj < " jKj
for every h 2 H. Amenable groups were introduced in 1929 in [149] by von Neu-
mann in relation with his investigations upon the Banach-Tarski paradox. Since then
they have been the subject of an intensive study from many different perspectives
with recent applications even in game theory [23, 26]. More information about this
topic can be found in the monographs [77, 122].

Proposition 2.3.1 Amenable groups are sofic.

Proof Suppose that � is an amenable countable discrete group, F is a finite subset
of � , and " is a positive real number. Fix a finite

�
F [ F�1; "

�
-invariant subset K of

� . If � 2 F then define

�� .x/ D �x

for x 2 ��1K\K and extended �� arbitrarily to a permutation of K. Observe that this
defines an .F; 2"/-approximate morphism from G to the group SK of permutations
of K endowed with the Hamming length (which is isomorphic as invariant length
group to Sn where n is the cardinality of K). This concludes the proof that � is
sofic. ut

If C is a class of (countable, discrete) groups, then a group � is locally
embeddable into elements of C if for every finite subset F of � there is a functionˆ
from � to a group T 2 C such that ˆ is nontrivial and preserves the operation on F,
i.e. for every g; h 2 F:

ˆ.gh/ D ˆ.g/ˆ.h/,

and

ˆ.g/ ¤ 1; for all g ¤ 1.

The group � is residually in C if moreover ˆ is required to be a surjective
*-homomorphism. Recall also that � is locally in C if every finitely generated
subgroup of � belongs to C. It is clear that if � is either locally in C or residually
in C, then in particular � is locally embeddable into elements of C.
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It is clear from the very definition that soficity and hyperlinearity are property
concerning only finite subsets of the group. This is made precise in Exercise 2.3.2.

Exercise 2.3.2 Show that a group that is locally embeddable into sofic groups is
sofic. The same is true replacing sofic with hyperlinear.

In particular Exercise 2.3.2 shows that locally sofic and residually sofic groups
are sofic.

Groups that are locally embeddable into finite groups were introduced and
studied in [75] under the name of LEF groups. Since finite groups are sofic,
Exercise 2.3.2 implies that LEF groups are sofic. In particular residually finite
groups are sofic. More generally groups that are locally embeddable into amenable
groups (LEA)—also called initially subamenable—are sofic. It is a standard result
in group theory that free groups are residually finite (see [126, Example 1.3]).
Therefore the previous discussion implies that free groups are sofic . Examples
of hyperlinear and sofic groups that are not LEA have been recently constructed
by Andreas Thom [143] and Yves de Cornulier [45], respectively. We will present
these examples in Sect. 2.5.

It should be now mentioned that it is to this day not know if there is any group
which is not sofic, nor if there is any group which is not hyperlinear.

Open Problem 2.3.3 Are the classes of sofic and hyperlinear groups proper sub-
classes of the class of all countable discrete groups?

It is not even known if every one-relator group, i.e. a finitely presented group
with only one relation, is necessarily sofic or hyperlinear. This is an open problem
suggested by Nate Brown. Similarly it is not known whether all Gromov hyperbolic
groups are sofic. In fact it is not known whether there is a Gromov hyperbolic groups
that is not residually finite. An example of a monoid that does not satisfy the natural
generalization of soficity for monoids is provided in [32].

2.4 Closure Properties of the Classes of Sofic
and Hyperlinear Groups

The classes of sofic and hyperlinear groups have nice closure properties.

Proposition 2.4.1 The class of sofic groups is closed with respect to the following
operations:

1. Subgroups;
2. Direct limits;
3. Direct products;
4. Inverse limits;
5. Extensions by amenable groups;
6. Free products;
7. Free products amalgamated over an amenable group;
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8. HNN extension over an amenable group;
9. Graph product.

It is clear from the definition that soficity is a local property. Therefore a group
is sofic if and only if all its (finitely generated) subgroups are sofic. In particular
subgroups of sofic groups are sofic. It immediately follows that the direct limit of
sofic groups is sofic.

To see that the direct product of two sofic groups is sofic, suppose that �0; �1 are
sofic groups and F0;F1 are finite subsets of �0 and �1 respectively. If �0 and �1 are
elements of Sn and Sm respectively, then define �0 ˝ �1 2 Snm by

.�0 ˝ �1/ .im C j/ D �0.i/m C �1 .j/

for i 2 n and j 2 m. If ˆ0 W �0 ! Sn is an .F0; "/-approximate morphism and
ˆ1 W �1 ! Sm is an .F1; "/-approximate morphism, then the map

ˆ0 ˝ˆ1 W �0 � �1 ! Snm

defined by

.�0; �1/ 7! ˆ0 .�0/˝ˆ1 .�1/

is an .F0 � F1; 2"/-approximate morphism. This observation is sufficient to con-
clude that a direct product of two sofic groups is sofic. The result easily generalizes
to arbitrary direct products in view of the local nature of soficity. Since the inverse
limits is a subgroup of the direct product, it follows from what we have observed so
far that the inverse limit of sofic groups is sofic.

We now prove the result—due to Elek and Szabó [55]—that the extension of a
sofic group by an amenable group is sofic. Suppose that � is a group, and N is a
normal sofic subgroup of � such that the quotient �=N is amenable. We want to
show that � is sofic. Fix " > 0 and a finite subset F of � . Denote by g 7! g the
canonical quotient map from � to �=N and let r be a (set-theoretic) inverse for the
quotient map. Observe that r .g/�1 g 2 N for every g 2 G. Følner’s reformulation
of amenability yields a finite subset A of �nN such that

ˇ̌
AgnA

ˇ̌ � "
ˇ̌
A
ˇ̌

for every g 2 F. Let A be the image of A under r and OF be N \ .A � F � A�1/. Since
N is sofic there is a . OF; "/-approximate morphism g 7! �g from N to Sn for some
n 2 N. Let k be njAj D n

ˇ̌
A
ˇ̌

and identify Sk with the group of permutations of n�A.
Define the map g 7! �g from � to Sk by setting

�g .i; h/ D
( �

�
r.gh/

�1
gh
.i/ ; r.gh/

�
if gh 2 A

.i; h/ otherwise.

This is well defined since, as we observed above, r
�
gh
��1

gh 2 N.
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Exercise 2.4.2 Show that the map g 7! �g is an .F; 3"/-approximate morphism
from � to Sk.

Hint Suppose that g 2 Fn f1�g. To show that �g has at most "n jAj fixed points,
distinguish the cases when g … N and g 2 N. In the first case observe that .i; h/ is a
fixed point only if gh … A, and use the fact that

ˇ̌
AgnA

ˇ̌ � "
ˇ̌
A
ˇ̌
. In the second case

observe that .i; h/ is a fixed point only if i is a fixed point for �h�1gh, and use the

fact that h�1gh 2 OF and � 7! �� is a . OF; "/-approximate morphism. To conclude
fix g; g0 2 F and observe that for all but " jAj values of h 2 A, gh and g0gh both
belong to A. For such values of h show that for all but "n values of i 2 n one has that
�g0�g .i; h/ D �g0g .i; h/.

It is a little more involved to observe that the free product of sofic groups is sofic,
which is a result of Elek and Szabó from [55]. Suppose that �0; �1 are sofic groups,
F0;F1 are finite subsets of �0 and �1, and " > 0. We identify canonically �0 and �1
with subgroups of the free product � D �0 	�1. Every element � of � has a unique
shortest decomposition

� D g1h1 � � � gnhn

with gi 2 �0 and hi 2 �1. Fix N 2 N and set F to be the set of elements of
� of � such that the unique shortest decomposition of � has length at most N
and its elements belong to F0 [ F1. By Exercise 2.1.10 one can find n 2 N, an
.F0; "/-approximate morphism g 7! �

.0/
g from �0 to Sn and an .F1; "/-approximate

morphism g 7! �
.1/
g from �1 to Sn such that

�
�
.i/
g

��1 D �
.i/
g�1 and �.i/g has no fixed

points for g 2 F.i/n f1�ig and i D 0; 1. It follows from the already recalled fact that
free groups are residually finite that there is a finite group V generated by elements
vij for i; j 2 Œn
 such that the generators satisfy no nontrivial relation expressed
by words of length at most N. Equivalently the Cayley graph of V with respect to
the generators vij has no cycle of length smaller than or equal to N. Consider then
k D n2 jVj and identify Sk with the permutation group of n�n�V . Define for g 2 �0
the permutation �g of n � n � V by

�g .i; j;w/ D
�
�.0/g .i/ ; j;w

�
.

Similarly define for h 2 �1 the permutation �h of Œn
 � Œn
 � V by

�h .i; j;w/ D
�

i; �.1/h .j/ ;w � v�1
ij � v

i;�
.1/
h .j/

�
.

Finally is � is an element of F with shortest decomposition g1h1 � � � gnhn for n � N
set

�� D �g1 ı �h1 ı � � � ı �gn ı �hn .
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Exercise 2.4.3 Show that the map � 7! �� defied above is an .F; "/-approximate
morphism from � to Sk.

Hint The fact that the generators vij of V satisfy no nontrivial relations expressed
by words of length at most N implies that �� has no fixed points whenever �
is a nonidentity element of F. Suppose now that �; � 0 2 Fn f1g and consider
the corresponding unique shortest decompositions � D g1h1 � � � gnhn and � 0 D
g0
1h

0
1 � � � g0

nh0
n. In order to show that �� ı �� 0 and ��� 0 differ on at most "k points

of Œn
 � Œn
 � V consider different cases depending whether both, none, or exactly
one between hn and g0

1 is equal to the identity.
The result about the free product of sofic groups has been later generalized by

Collins and Dykema, who showed that the free product of sofic groups amalgamated
over a monotileable amenable group is sofic [42]. The monotileability assumption
has been later removed by Elek and Szabó [56, Theorem 1] and, independently, by
Paunescu [123].

Suppose that � is a group with presentation hSjRi, H is a subgroup of � , and
˛ W H ! � is an injective homomorphism. Let t be a symbol not in � . The
corresponding HNN extension O� is the group generated by S [ ftg subject to the
relations R and t�1ht D ˛.h/ for h 2 H. We claim that O� is sofic whenever � is
sofic an H is amenable. Define �i D t�i�ti for i 2 Z, and let S be the subgroup of
O� generated by �i for i 2 Z. Then O� is an extension of S by Z. In particular to show
that O� is sofic it suffices to show that S is sofic. To show that S is sofic it is enough to
show that for every n 2 N the group Sn D h�i W i 2 Œ�n; n
\ Zi is sofic. This can be
shown by induction on n observing that S0 D � , and SnC1 can be obtained as a free
product of Sn and isomorphic copies of � amalgamated over amenable subgroups
isomorphic to H.

A different generalization of the result about free products consists in considering
the graph products of sofic groups. Suppose that .V;E/ is a simple undirected graph
and, for every v 2 V , �v is a group. The corresponding graph product is the quotient
of the free products of the �v’s by the normal subgroup generated by the relators
Œgv; gw
 for gv 2 �v and gw 2 �w such that v and w are connected by an edge. Clearly
free products correspond to graph products where there are no edges. Theorem 1.1
of [38] refines the argument for free products to show that in fact an arbitrary graph
product of sofic groups is sofic.

2.5 Further Examples of Sofic Group

In this section we want to list some interesting examples of sofic and hyperlinear
groups. It follows from the discussion in Sect. 2.3 that all residually finite groups
are sofic. In particular free groups are sofic. To obtain an example of a sofic
group that is not residually finite one can consider, for n;m � 2 distinct, the
Baumslag-Solitar group BS.m; n/ generated by two elements a; b satisfying the
relation a�1bma D bn. These groups were introduced in [11] to provide examples
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of simple finitely presented groups that are not Hopfian, i.e. admit a surjective
but not injective endomorphism. It is known that one hand such groups are not
residually finite [113, Theorem C]. On the other hand they are residually solvable
[104, Corollary 2] and, in particular, sofic.

An example of a sofic (and in fact LEF) finitely generated group that is not
residually amenable is provided in [55, Theorem 3], adapting a construction from
[75]. Recall that a function � W � ! C has positive type if whenever �i 2 C and
gi 2 � are for i � n then

X

i;j�n

�i�j�
�
g�1

i gj
� � 0.

A group � has Kazhdan’s property (T) if any sequence of positive type functions on
G that converges pointwise to the function 1 constantly equal to 1 in fact converges
to 1 uniformly. Such a property, originally introduced by Kazhdan in [90], has
played a key role in the latest developments of geometric group theory; see [12].
Property (T) can be regarded as a strong antithesis to amenability, since the only
amenable groups with property (T) are the finite groups. Since property (T) is
preserved by quotients, it follows that an amenable quotient of a property (T) group
must be finite. We also recall here that a group with property (T) is finitely generated
[12, Theorem 1.3.1].

Consider an infinite hyperbolic residually finite property (T) group K. (Examples
of such groups are provided in [78].) Let P be the group of finitely supported
permutations of K, and Q be the group generated by P and the left translations
by elements of K. Then P is a normal subgroup of Q and Q is a semidirect product
of P and K. Consistently we identify K with a subgroup of Q. Let S be a finite set of
generators for K and TS be the set of transpositions of the form .1; s/ for s 2 S.

Exercise 2.5.1 Show that S [ TS is a set of generators for Q.

Hint Observe that if s 2 S and g 2 K then the transposition .g; gs/ can be written
as g�1 .1; s/ g. Recall that the group of permutations on n symbols x1; : : : ; xn is
generated by the transpositions .xi; xiC1/ for i � n � 1.

We now observe that Q is not residually amenable. Recall that every hyperbolic
group contains an nontorsion element. Let t 2 K such an element, and let a 2
P be the transposition .t; 1/. Observe that tnat�n D �

tnC1; t
� ¤ a for every n 2

N. Suppose by contradiction that there is a homomorphism � W Q ! M into an
amenable group M such that �.a/ ¤ 1M and � .t/ ¤ 1M. Let A be the (simple)
subgroup of P of even permutations. Since A is simple, a 2 A, and �.a/ ¤ 1M, �
must be injective on A. As observed before the fact that K has property (T) implies
that the image of K under � is finite. Let n be the rank of � ŒK
 and observe that
� .tn/ D 1. Therefore � .t�nat�n/ D �.a/ while t�nat�n ¤ a. This contradicts the
injectivity of � on A.

We now show that Q is sofic and, in fact LEF. Denote by Bn.K/ the n-ball around
1K in the Cayley graph of K associated with the generating set S. Define Fn to be
the set of elements of Q of the form k� where k 2 Bn.K/ and � 2 P is supported on
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Bn.K/. We want to define an injective map from F2n to a finite group that preserves
the operation on Fn. Since K is residually finite it has a finite-index normal subgroup
Nn such that Nn \B2n.K/ D f1Kg. Define Hn to be the (finite) group of permutations
on K=Nn. Denote by n the quotient map from K onto K=Hn and define  n W F2n !
Hn by setting

 n .k�/ D  n .k/  n .�/ .

Here  n .k/ is the left translation by  .k/, while  n .�/ is defined by
 n .�/ .n.h// D  .�.h// if h 2 B2n.K/ and acts as the identity otherwise.
Clearly  n is injective on F2n.

Exercise 2.5.2 Show that  n .xy/ D  n .x/  n .y/ for x; y 2 Fn.

Hint Want to show that  n .xy/ .n.h// D  n .x/  n .y/ .n.h// for every h 2 K.
Distinguish the cases when h 2 B2n.K/ and h … B2n.K/.

Another example of a not residually finite sofic group which is moreover finitely
presented (and in fact one-relator) was provided by Jon Bannon in [8]; see also [9]
for other similar examples. Consider the group � generated by two elements a; b
subject to the relation a D �

a; ab
�

where ab D bab�1 and
�
a; ab

�
is the commutator

of a and ab. Such a group was introduced by Baumslag in [10] as an example of a
non-cyclic one-relator group all of whose finite quotients are cyclic. In particular �
is not residually finite and, in fact, not residually solvable since a belongs to all the
derived subgroups of � . We now show that it is sofic.

Set x D a�1 and y D bab�1. Then the relator a�1 �a; ab
�

becomes x�2y�1xy.
Observe that the group H D ˝

x; yjy�1xy D x2
˛
is the Baumslag-Solitar group B .1; 2/

and, in particular, sofic. Moreover � is the HNN extension of H with respect to the
isomorphism xn 7! yn between the subgroups hxi and hyi of H. It follows that � is
sofic since HNN extensions of sofic groups over amenable groups are sofic.

We would now like to present examples of hyperlinear and sofic groups that are
not LEA. Recall that a group is locally embeddable into amenable groups (LEA) if,
briefly, every finite portion of its multiplication table can be realized as a portion of
the multiplication table of an amenable group. The first example of a hyperlinear
not LEA group was constructed by Thom in [143], adapting a construction due to
de Cornulier [47] and Abels [1].

If n;m 2 N denote by Mn;m

�
Z

h
1
p

i�
the space of n � m matrices over Z

h
1
p

i
and

by SLn

�
Z

h
1
p

i�
the group of n � n matrices of determinant 1. Let � be the group of

matrices in SL8
�
Z

h
1
p

i�
of the form

2

664

1 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 1

3

775
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where the diagonal blocks are square matrices of rank 1; 3; 3; 1 and a22; a33 2
SL3

�
Z

h
1
p

i�
. The center C of � consists of the matrices of the form

2
664

1 0 0 a
0 I 0 0
0 0 I 0
0 0 0 1

3
775

where I is the 3� 3 identity matrix and a 2 K. Thus C is isomorphic to the additive

group of Z
h
1
p

i
. In particular C contains a subgroup Z isomorphic to Z.

It is shown in [47, Proposition 2.7] that � is a lattice in a locally compact group
with property (T). Since property (T) passes to lattices [12, Theorem 1.7.1], it
follows that � has property (T) and, in particular, is finitely generated. It is moreover
shown in [47, Sect. 3] that � and (hence)�=Z are finitely presented. We present here
the argument to show that �=Z is not Hopfian, i.e. it has a surjective endomorphism
with nontrivial kernel.

Denote by Z

h
1
p

i�
the multiplicative group of invertible elements of Z

h
1
p

i
. Then

Z

h
1
p

i�
identified with the group of matrices of the form

2

664

a 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

3

775

naturally acts on � by conjugation. Considering p 2 Z

h
1
p

i�
gives an automorphism

ˇ of � that maps the center Z of � to its property subgroup Zp. Thus ˇ induces a
surjective endomorphism ˇ of �=Z whose kernel is the (nontrivial) subgroup C=Z
of �=Z; see [47, Lemma 2.3]. As a consequence �=Z is not Hopfian.

As observed in [143, 3.1] a finitely presented LEA group that has property (T) is
necessarily Hopfian. In fact a finitely presented LEA group is residually amenable
by Ceccherini-Silberstein and Coornaert [31, Proposition 7.3.8]. As recalled before
an amenable quotient of a property (T) group is necessarily finite. Therefore a
property (T) residually amenable group is residually finite. Finally a residually finite
finitely generated group is easily seen to be Hopfian. It follows from this argument
that the group �=Z, being finitely presented, property (T), and not Hopfian, is not
LEA.

To conclude one needs to observe that �=Z is hyperlinear. Considering the
reduction modulo q where q is an arbitrary positive integer prime with p shows
that the group � is residually finite and, in particular, hyperlinear. The argument is
concluded by showing that hyperlinearity is preserved by taking quotients by central
subgroups; see [143, Remark 3.4].
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It is not known whether the group �=Z above is sofic. We conclude this sequence
of examples with an example due to de Cornulier of a finitely presented sofic group
that is not LEA [45]. Let � be the group of matrices

2

666664

a b u02 u03 u04
c d u12 u13 u14
0 0 pn2 u23 u24
0 0 0 pn3 u34
0 0 0 0 1

3

777775

with

•


a b
c d

�
2 SL2 .Z/,

• uij 2 Z

h
1
p

i
, and

• n2; n3 2 Z.

Let M be the normal subgroup of � consisting of matrices of the form

2
666664

1 0 0 0 m1

0 1 0 0 m2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3
777775

with m1;m2 2 Z

h
1
p

i
. The normal subgroup MZ is defined similarly with m1;m2 2

Z. Then one can consider the quotient �=MZ. It is shown in [45] that such a group
is sofic and finitely presented but not LEA.

In order to prove soficity, it is enough to show that � can be obtained as an
extension of a sofic group by an amenable group. Consider the normal subgroup ‡
of elements of � for which n2 D n3 D 0. Observe that �=‡ is isomorphic to Z

2.
Therefore it remains to show that ‡=MZ is sofic.

Fix m 2 N and consider the subgroup ‡m of elements of ‡ for which

• u02; u12; u23; u34 2 p�m
Z,

• u03; u13; u24 2 p�2m
Z, and

• u04; u14 2 p�3m
Z.

It is clear that
S

m‡m D ‡ . Therefore by the local nature of soficity we are left
with the problem of showing that ‡m=MZ is sofic for every m 2 N. Such a group is
in fact residually finite and hence sofic. Consider the subgroupƒ of elements of �
for which the block


a 0
0 b

�
2 SL2 .Z/
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is the identity matrix. Observe that .‡m \ƒ/=MZ is a normal subgroup of‡m=MZ,
and moreover ‡m=MZ is isomorphic to the semidirect product .‡m \ƒ/=MZ Ì
SL2 .Z/. Now ‡m \ƒ is solvable and finitely generated, and hence residually finite
[80, 2.1]. The proof is concluded by observing that a semidirect product of a finitely
generated residually finite group by a residually finite group is residually finite.

Observe that the quotient map� 7! �=MZ restricted to the subgroup (isomorphic
to SL2 .Z/) of elements

2

666664

a b 0 0 0
c d 0 0 0
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3

777775

is injective. Thus �=MZ contains a copy of SL2 .Z/ and, hence, of the free group on
2 generators F2. (Recall that the matrices

A D

1 2

0 1

�
and B D


1 0

2 1

�

generate a copy of F2 inside SL2 .Z/; see [126, page 3].)
By [31, Corollary 7.1.20] in order to show that �=MZ is not LEA it is enough

to show that it is an isolated point in the space of marked groups. Fix n 2 N.
An n-marked group is a group � endowed with a distinguished generating n-tuple
.�1; : : : ; �n/. Let Gn be the space of n-marked groups. Given an n-marked group one
can consider the kernel of the epimorphism Fn ! � mapping the canonical free
generators of Fn to the �i’s. Conversely any normal subgroup N of Fn gives rise to
the n-marked group Fn=N where the distinguished n-tuple of generators is the image
of the free generators of Fn. This argument shows that one can identify the space Gn

of n-marked group with the space of the normal subgroups of Fn. Identifying in turn
a normal subgroup of Fn with its characteristic function yields an inclusion of Gn

into 2Fn as a closed subspace. This defines a compact metrizable zero-dimensional
topology on Gn. Corollary 7.1.20 in [31] shows that a group is LEA if and only if it
is a limit of amenable groups in the space of marked groups. Therefore since �=MZ

is not LEA, it is enough to show that �=MZ is isolated, i.e. it is an isolated point in
the space of marked groups.

It is shown in [46, Lemma 1] that being isolated is indeed a well defined property
of a group, independent of the marking. Proposition 2 in [46] provides the following
characterization of being isolated: a group is isolated if and only if it is finitely
presented and moreover finitely discriminable, i.e. it contains a finite subsets that
meets every nontrivial normal subgroup in a nonidentity element. The proof that
�=MZ satisfies these conditions is presented in [45, Sect. 3] and [46, 5.4].

Other examples of finitely presented sofic groups that are not LEA are provided
in [94].
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2.6 Logic for Invariant Length Groups

The logic for metric structures is a generalization of the usual first order logic.
It is a natural framework to study algebraic structures endowed with a nontrivial
metric and their elementary properties (i.e. properties preserved by ultrapowers
or equivalently expressible by formulae). In the sequel we introduce a particular
instance of logic for metric structures to describe and study groups endowed with
an invariant length functions.

A term t.x1; : : : ; xn/ in the language of invariant length groups in the variables
x1; : : : ; xn is a word in the indeterminates x1; : : : ; xn, i.e. an expression of the form

xn1
i1
: : : xnl

il

for l 2 N and ni 2 Z for i D 1; 2; : : : ; l. For example

xyx�1y�1

is a term in the variables x; y. The empty word will be denoted by 1. If G is an
invariant length group, g1; : : : ; gm are elements of G, and t.x1; : : : ; xn; y1; : : : ; ym/

is a term in the variables x1; : : : ; xn; y1; : : : ; ym, then one can consider the
term t.x1; : : : ; xn; g1; : : : ; gm/ with parameters from G, which is obtained from
t .x1; : : : ; xn; y1; : : : ; ym/ replacing formally yi with gi for i D 1; 2; : : : ;m. The
evaluation tG.x1; : : : ; xn/ in a given invariant length group G of a term t .x1; : : : ; xn/

in the variables x1; : : : ; xn (possibly with parameters from G) is the function from
Gn to G defined by

.g1; : : : ; gn/ 7! t .g1; : : : ; gn/

where t .g1; : : : ; gn/ is the element of G obtained replacing in t.x1; : : : ; xn/ every
occurrence of xi with gi for i D 1; 2; : : : ; n. For example the evaluation in a invariant
length group G of the term xyx�1y�1 is the function from G2 to G that assigns to
every pair .g; h/ of elements of G their commutator ghg�1h�1. The evaluation of the
empty word is the function on G constantly equal to 1G.

A basic formula ' in the variables x1; : : : ; xn is an expression of the form

` .t.x1; : : : ; xn//

where t.x1; : : : ; xn/ is a term in the variables x1; : : : ; xn. The evaluation
'G.x1; : : : ; xn/ of '.x1; : : : ; xn/ in an invariant length group G is the function
from Gn to Œ0; 1
 defined by

.g1; : : : ; gn/ 7! `G
�
tG .g1; : : : ; gn/

�

where `G is the invariant length of G. For example

`.xyx�1y�1/
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is a basic formula whose interpretation in an invariant length group G is the function
assigning to a pair of elements of G the length of their commutator. This basic
formula can be thought as measuring how much x and y commute. The evaluation
at .g; h/ of its interpretation in an invariant length group G will be 0 if and only if g
and h commute.

Finally a formula ' is any expression that can be obtained starting from basic
formulae, composing with continuous functions from Œ0; 1
n to Œ0; 1
, and taking
infima and suprema over some variables. In this framework continuous functions
have the role of logical connectives, while infima and suprema should be regarded
as quantifiers. With these conventions the terminology from the usual first order
logic is used in this setting. A formula is quantifier-free if it does not contain any
quantifier. A variable x in a formula ' is bound if it is within the scope of a quantifier
over x, and free otherwise. a formula without free variables is called a sentence. The
interpretation of a formula in a length group G is defined in the obvious way by
recursion on its complexity. For example

sup
x

sup
y
`.xyx�1y�1/

is a sentence, with bound variables x and y. Its evaluation in an invariant length
group G is the real number

sup
x2G

sup
y2G

`G.xyx�1y�1/:

This sentence can be thought as measuring how much the group G is abelian. Its
interpretation in G is zero if and only if G is abelian. This example enlightens the
fact that the possible truth values of a sentence (i.e. values of its evaluations in an
invariant length group) are all real numbers between 0 and 1. Moreover 0 can be
thought as “true” while strictly positive real numbers of different degrees as “false”.
In this spirit we say that a sentence ' holds in G if and only if its interpretation in
G is zero. Using this terminology we can assert for example that an invariant length
group G is abelian if and only if the formula

sup
x

sup
y
`.xyx�1y�1/

holds in G. Observe that if ' is a sentence, then 1�' is a sentence such that ' holds
in G if and only if the interpretation of 1� ' in G is 1. Thus 1� ' can be though as
a sort of negation of the sentence '. Another example of sentence is

sup
x

min fj`.x/ � 1j ; j`.x/jg :

Such sentence holds in an invariant length group G if and only if the invariant length
function in G attains values in f0; 1g, i.e. it is the trivial invariant length function on
G. It is worth noting at this point that for any sentence ' as defined in the logic for
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invariant length groups there is a corresponding formula '0 in the usual (discrete)
first order logic in the language of groups such that the evaluation of '0 in a discrete
group G coincides with the evaluation of ' in G regarded as an invariant metric
group endowed with the trivial invariant length function. For example the (metric)
formula expressing that a group is abelian corresponds to the (discrete) formula

8x8y .xy D yx/.

Sentences in the language of invariant length groups allow one to determine
which properties of an invariant length group are elementary. A property concerning
length groups is elementary if there is a set ˆ of sentences such that an invariant
length group has the given property if and only if G satisfies all the sentences
in ˆ. For example the property of being abelian is elementary, since an invariant
length group is abelian if and only if it satisfies the sentence supx;y `.xyx�1y�1/.
Two invariant length groups G and G0 are elementarily equivalent if they have the
same elementary properties. This amounts to say that any sentence has the same
evaluation in G and G0. A class C of invariant length groups will is axiomatizable
if the property of belonging to C is elementary. The previous example of sentence
shows that the class of abelian length groups is axiomatizable by a single sentence.
Elementary properties and classes are closely related with the notion of ultraproduct
of invariant length groups.

Suppose that .Gn/n2N is a sequence of invariant length groups and U is a free
ultrafilter over N. The ultraproduct

Q
U Gn of the sequence .Gn/n2N with respect

to the ultrafilter U is by definition quotient of the product
Q

n Gn by the normal
subgroup

NU D
�
.gn/n2N W lim

n!U
`Gn .gn/ D 0

�

endowed with the invariant length function

`U ..gn/NU / D lim
n!U

`Gn .gn/ .

As before a sequence .gn/n2N in
Q

n Gn is called representative sequence for
the corresponding element in

Q
U Gn. Observe that ultraproducts of the sequence

.Sn/n2N of permutation groups endowed with the Hamming invariant length function
as defined in Sect. 2.1 and ultraproducts of the sequence .Un/n2N of unitary groups
endowed with the Hilbert-Schmidt invariant length function as defined in Sect. 2.2
are particular cases of this definition. When the sequence .Gn/n2N is constantly equal
to a fixed invariant length group G the ultraproduct

Q
U Gn is called ultrapower of

G and denoted by GU . Observe that diagonal embedding of G into GU assigning to
g 2 G the element of GU having the sequence constantly equal to g as representative
sequence is a length preserving group homomorphism. This allows one to identify
G with a subgroup of GU .

The ultraproduct construction behaves well with respect to interpretation of
formulae. This is the content of a theorem proven in the setting of the usual first
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order logic by Łoś in [108]. Its generalization to the logic for metric structures can be
found in [13] (Theorem 5.4). We state here the particular instance of Łoś’ theorem
in the context of invariant length groups.

Theorem 2.6.1 (Łoś) Suppose that '.x1; : : : ; xk/ is a formula with free variables
x1; : : : ; xk, .Gn/n2N is a sequence of invariant length groups, and U is a free
ultrafilter over N. If g.1/; : : : ; g.k/ are elements of

Q
n Gn then

'
Q

U Gn
�
g.1/; : : : ; g.k/

� D lim
n!U

'Gn
�
g.1/n ; : : : ; g

.k/
n

�

where g.i/ is any representative of the sequence
�

g.i/n

�
, for i D 1; 2; : : : ; k. In

particular if ' is a sentence then

'
Q

U Gn D lim
n!U

'Gn .

Theorem 2.6.1 can be proved by induction on the complexity of the formula '.
The particular instance of Theorem 2.6.1 when the sequence .Gn/n2N is constantly
equal to an invariant metric group G shows that G and any ultrapower GU of G
are elementarily equivalent. Moreover the diagonal embedding of G into GU is
an elementary embedding, i.e. it preserves the value of formulae possibly with
parameters from G.

A particularly useful property of ultraproducts is usually referred to as countable
saturation. Roughly speaking countable saturation of a group H asserts that
whenever one can find elements of H approximately satisfying any finite subset of a
given countably infinite set of conditions, then in fact one can find an element of H
exactly satisfying simultaneously all the conditions. In order to precisely define this
property, and prove it for ultraproducts, we need to introduce some model-theoretic
terminology, in the particular case of invariant length groups.

Definition 2.6.2 Suppose that H is a group endowed with an invariant length
function. A countable set of formulae X in the free variables x1; : : : ; xn and possibly
with parameters from H is:

• approximately finitely satisfiable in H or consistent with H if for every " > 0

and every finite collection of formulae '1 .x1; : : : ; xn/ ; : : : ; 'm.x1; : : : ; xn/ from
X there are a1; : : : ; an 2 H such that

'H
i .a1; : : : ; an/ < "

for every i D 1; 2; : : : ; n;
• realized in H if there are a1; : : : ; an 2 H such that

'H.a1; : : : ; an/ D 0

for every formula '.x1; : : : ; xn/ in X . In this case the n-tuple .a/ is called a
realization of X in H.
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In model-theoretic jargon, a set of formulae X as above is called a type over A,
where A is the (countable) set of parameters of the formulae in X . Clearly any set
of formulae which is realized in H is also approximately finitely satisfiable H. The
converse to this assertion is in general far from being true. For example suppose that
H is the direct sum G˚N of countably many copy of a countable group G with trivial
center endowed with the trivial length function. Consider the set X of formulae

max
˚j1 � `.x/j ; ` �xax�1a�1��

in the free variable x where a ranges over the elements of G˚N. Being the center of
G˚N trivial, the set of formulae X is not realized in G˚N. Nonetheless the fact that
one can find in H a nonidentity element commuting with any given finite subset of
G˚N shows that X is approximately finitely satisfiable in H.

Definition 2.6.3 An invariant length group is countably saturated if any countable
set of formulae X with parameters from H which is approximately finitely satisfied
in H is realized in H.

Thus in a countably saturated invariant length group a countable set of formulae
is approximately finitely satisfiable if and only if it is realized. Moreover it can be
easily shown by recursion on the complexity that in the evaluation of a formula in
a countably saturated structure infima and suprema can be replaced by minima and
maxima respectively. More generally one can define �-saturation for an arbitrary
cardinal � replacing countable types with types with less than � parameters (it is not
difficult to check that countable saturation is the same as @1-saturation). An invariant
length group G is saturated if it is �-saturated where � is the density character of
G, i.e. the minimum cardinality of a dense subset of G. The notions of saturation
and countable saturation here introduced are the particular instances in the case
of invariant length groups of the general model-theoretic notions of saturation and
countable saturation. Being countably saturated is one of the fundamental features
of ultraproducts. The proof of this fact in this context can be easily deduced from
Łoś’ theorem and is therefore left as an exercise.

Exercise 2.6.4 Suppose that .Gn/n2N is a sequence of invariant length groups,
and U is a free ultrafilter over N. Show that the ultraproduct

Q
U Gn is countably

saturated.

Saturated structures have been intensively studied in model theory and have some
remarkable properties. In the case of usual first order logic it is a consequence of the
so called Chang-Makkai’s theorem (see [34, Theorem 5.3.6]) that the automorphism
group of a saturated structure of cardinality � has 2� elements. The generalization to
this result to the framework of logic for metric structures is an unpublished result of
Ilijas Farah, Bradd Hart, and David Sherman. Proposition is the particular instance
of such result in the case of invariant length groups of density character @1.
Proposition 2.6.5 Suppose that G is an invariant length group. If G is countably
saturated and has a dense subset of cardinality @1 then the group of automorphisms
of G that preserve the length has cardinality 2@1 .
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Proposition 2.6.6 is an immediate consequence of Proposition 2.6.5 and Exer-
cise 2.6.4. Recall that the Continuum Hypothesis asserts that the cardinality of the
power set of N coincides with the first uncountable cardinal @1. A cornerstone result
in set theory asserts that the Continuum Hypothesis is independent from the usual
axioms of set theory, i.e. can not be neither proved nor disproved (see [39, 40, 72]).

Proposition 2.6.6 Suppose that .Gn/n2N is a sequence of separable invariant
length groups. If the Continuum Hypothesis holds then

Q
U Gn has 2@1 length

preserving automorphisms for any free ultrafilter U over N. In particular
Q

U Gn

has outer length-preserving automorphisms.

Proof Assuming the Continuum Hypothesis
Q

U Gn has a dense subset of cardinal-
ity @1. Moreover by Exercise 2.6.4

Q
U Gn is countably saturated. It follows from

Proposition 2.6.5 that
Q

U Gn has 2@1 length-preserving automorphisms. ut
Corollary 2.6.7 is the particular instance of Proposition 2.6.6 when the sequence

.Gn/n2N is the sequence of permutation groups or the sequence of unitary groups,
one can obtain

Corollary 2.6.7 Assume that the Continuum Hypothesis holds. For any free ultra-
filter U over N the universal sofic group

Q
U Sn has 2@1 automorphisms. As a

consequence
Q

U Sn has outer automorphisms. The same is true for the universal
hyperlinear group

Q
U Un.

We do not know if there exist models of set theory where some universal sofic or
hyperlinear groups have only inner automorphisms. It is conceivable that this could
be proved using ideas and methods from [136]. For example in [109] Lucke and
Thomas show using a result from [136] that there is a model of set theory where
some ultraproduct of the permutation groups regarded as discrete groups has only
inner automorphisms.

Corollary 2.6.7 and the discussion that follows address a question of Păunescu
from [124]: Theorem 4.1 and Theorem 4.2 of [124] show that all automorphisms of
the universal sofic groups preserve the length function and the conjugacy classes.
Păunescu then asks if it is possible that all automorphisms of the universal sofic
groups are in fact inner. Corollary 2.6.7 in particular implies that such assertion
does not follow from the usual axioms of set theory.

An application of Theorem 2 from [50] (known as Dye’s theorem on auto-
morphisms of unitary groups of factors) allows one to prove the analogue of
Theorem 4.1 and Theorem 4.2 from [124] in the case of universal hyperlinear
groups. More precisely all automorphisms of the universal hyperlinear groups
preserve the length function, while the normal subgroup of automorphisms that
preserves the conjugacy classes has index 2 inside the group of all automorphisms.
The not difficult details can be found in [110].

Finally let us point out another consequence of countable saturation of ultraprod-
ucts. Suppose that � is a discrete group of size @1 such that every countable (or
equivalently finitely generated) subgroup of � is sofic. It is not difficult to infer
from Exercise 2.1.9 and countable saturation of

Q
U Sn that for any ultrafilter U over



2 Sofic and Hyperlinear Groups 39

N there is a length-preserving homomorphism from � (endowed with the trivial
length function) to

Q
U Sn. For example this implies that

Q
U Sn contains a free

group on uncountably many generators. Analogue facts hold for hyperlinear groups
and ultraproducts

Q
U Un.

2.7 Model Theoretic Characterization of Sofic
and Hyperlinear Groups

In this section we shall show that the classes of sofic and hyperlinear groups are
axiomatizable in the logic for invariant metric groups. Equivalently the properties
of being sofic or hyperlinear are elementary. Recall that the quantifiers in the logic
for invariant metric groups are inf and sup. More precisely sup can be regarded as
the universal quantifier, analogue to 8 in usual first order logic, while inf can be
seen as the existential quantifier, which is denoted by 9 in the usual first order logic.
A formula is therefore called universal if it only contains universal quantifiers, and
no existential quantifiers. The notion of existential sentence is defined in the same
way. A quantifier-free formula is just a formula without any quantifier. Say that
two formulae ' and ' 0 are equivalent if they have the same interpretation in any
invariant length group. It can be easily proved by induction on the complexity that
any universal sentence is equivalent to a formula of the form

sup
x1
: : : sup

xn

 .x1; : : : ; xn/

where  .x1; : : : ; xn/ is quantifier-free. An analogous fact holds for existential
sentences. It is easy to infer from this that if ' is a universal sentence, then 1 � '

is equivalent to an existential sentence, and vice versa. Exercise 2.7.1 together with
Łoś’ theorem on ultraproducts shows that universal and existential formulae have
the same values in any ultraproduct of the symmetric groups regarded as invariant
length groups.

Exercise 2.7.1 If ' is a universal sentence then the sequence
�
'Sn
�

n2N of its
evaluation in the symmetric groups converges. Infer that the same is true for
existential formulae. Deduce that the same holds for existential formulae.

Proof Fix n 2 N and " > 0. If N > n write

N D kn C r

for k 2 N and r 2 n. Define the map � W Sn ! SN by

�.�/ .ik C j/ D
(

in C � .j/ if i 2 k and j 2 n

in C j otherwise.
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Observe that � is a group homomorphism that preserves the Hamming length
function up to 1

k . This means that

j`Sn.�/ � `SN .�.�//j � 1

k
.

Deduce that if ' is a universal sentence and " > 0 then

ˇ̌
'SN � 'Sn

ˇ̌
< ".

for N 2 N large enough. ut
Theorem 5.6 of [111] asserts that the same conclusion of Exercise 2.7.1 holds

for formulae with alternation of at most two quantifiers. It is currently an open
problem if the same holds for all formulae. A positive answer to this question
would imply that the universal sofic groups, i.e. the length ultraproducts of the
permutation groups, are pairwise isomorphic as invariant length groups if the
Continuum Hypothesis holds. Theorem 1.1 of [145] asserts that if instead the
Continuum Hypothesis fails there are 22

@0 ultraproducts of the permutation groups
that are pairwise nonisomorphic as discrete groups.

We can now show that the property of being sofic is axiomatizable. Suppose that
� is a sofic group. By Exercise 2.1.9 there is a length preserving embedding of �
into

Q
U Sn for any free ultrafilter U , where � is endowed with the trivial length

function. It is easily inferred from this that

'� � '
Q

U Sn D lim
n!C1'Sn

for any universal sentence ' in the language of invariant length groups. If ' is
instead an existential sentence then

'� � lim
n!C1'Sn .

In particular if ' is an existential sentence that holds in � , then limn!C1 'Sn .
Exercise 2.7.2 shows that this condition is sufficient for a group to be sofic.

Exercise 2.7.2 Suppose that � is a (countable discrete) group with the property that
for any existential sentence ' that holds in � the sequence

�
'Sn
�

n2N of the evaluation
of ' in the symmetric groups is vanishing. Show that � is sofic.

Hint Fix " > 0 and a finite subset F D fg1; : : : ; gng of � . Write an existential
sentence ' witnessing the existence of elements g1; : : : ; gn with the multiplication
rules given by � . Infer from the fact that ' holds in � that ' approximately holds
in Sn for n large enough. Use this to construct an .F; "/-approximate morphism
ˆ W � ! Sn.
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It is easy to deduce from Exercise 2.7.2 the following characterization of sofic
groups, showing in particular that soficity is an elementary property.

Proposition 2.7.3 If � is a group, the following statements are equivalent

1. � is sofic;
2. if ' is an existential sentence that holds in � , then limn!C1 'Sn D 0;
3. if ' is a universal sentence such that limn!C1 'Sn D 0, then '� D 0.

All the results of this section carry over to the case of hyperlinear group, when
one replaces the permutation groups with the unitary groups (see [111]). The
analogue of Exercise 2.7.1 for the unitary groups can be proved in a similar way,
considering for u 2 Un and N D kn C r the unitary matrix

	
u ˝ Ik 0

0 1Ur
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2.8 The Kervaire-Laudenbach Conjecture

Let � be a countable discrete group and �1; : : : ; �l 2 � . Denote w.x/ the monomial

w.x/ D xn1�1 : : : x
nl�l;

where ni 2 Z for i D 1; 2; : : : ; l. Consider the following problem: Determine if the
equation

w.x/ D 1

has a solution in some group extending � . The answer in general is “no”. Consider
for example the equation

xax�1b�1 D 1

If a and b have different orders then clearly this equation has no solution in any
group extending � . Assuming that the sum

Pl
iD1 ni of the exponents of x in w.x/

is nonzero is a way to rule out this obstruction. A conjecture attributed to Kervaire
and Laudenbach asserts that this is enough to guarantee the existence of a solution
of the equation w.x/ D 1 in some group extending � .

We will show in this section that the Kervaire-Laudenbach conjecture holds for
hyperlinear groups (see Definition 2.2.2). This result, first observed by Pestov in
[125], will be a direct consequence of the following theorem by Gerstenhaber and
Rothaus (see [69]).
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Theorem 2.8.1 Let Un denote the group of unitary matrices of rank n. If a1; : : : ; ; ak

are elements of Un then the equation

xs1a1 � � � xsk ak D 1

has a solution in Un as long as
Pk

iD1 si ¤ 0.

Proof Let w.x; a1; : : : ; ak/ WD xs1 � � � xsk ak and consider the map f W Un ! Un

defined by

b 7! w.b; a1; : : : ; an/:

We just need to prove that f is onto. Recall that Un is a compact manifold of
dimension n2. Thus the homology group Hn2 .Un/ is an infinite cyclic group. (A
standard reference for homology theory is [67, Chap. 23].) Being continuous (and
in fact smooth) f induces a homomorphism

f� W Hn2 .Un/ ! Hn2 .Un/ .

If e is a generator of Hn2 .Un/ then

f�.e/ D de

for some d 2 Z called the degree of f . In order to show that f is onto, it is enough
to show that its degree is nonzero. We claim that d D sn, where s D Pn

iD1 si. Being
Un connected, the map f is homotopy equivalent to the map

fs W Un ! Un

defined by

b 7! bs.

By homotopy invariance of the degree of a map, f and fs have the same degree.
Therefore we just have to show that fs has degree sn. This follows from the facts that
the generic element of Un has sn s-roots of unity, and that the degree of a map can
be computed locally. ut

Theorem 2.8.1 is in fact a particular case of [69, Theorem 2], where arbitrary
compact Lie groups and system of equations with possibly several variables are
considered.

Let us now discuss how one can infer from Theorem 2.8.1 that the Kervaire-
Laudenbach conjecture holds for hyperlinear group. Consider a word

w.x; y1; : : : ; yk/ 
 xs1y1x
s2y2 � � � xsk yk;
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where
Pk

iD1 si ¤ 0. By Theorem 2.8.1, formula

sup
y1;:::;yk

inf
x
` .w.x; y1; : : : ; yk//

evaluates to 0 in any unitary group Un. By Łoś’ theorem on ultraproducts, the same
formula evaluates to 0 in any ultraproduct

Q
U Un of the unitary groups. Thus if

a1; : : : ; ak are elements of
Q

U Uk

inf
x2QU Un

` .w.x; a1; : : : ; ak// D 0.

By countable saturation of
Q

U Un one can find b 2 Q
U Un where the infimum is

achieved. This means that

` .w.b; a1; : : : ; ak// D 0

and hence b is a solution of the equation

xs1a1 � � � xsk ak.

This shows that any ultraproduct
Q

U Un satisfies the Kervaire-Laudenbach con-
jecture. Since hyperlinear groups are subgroups of

Q
U Un, they will satisfy the

Kervaire-Laudenbach conjecture as well.

2.9 Other Metric Approximations and Higman’s Group

The notions of sofic and hyperlinear groups as defined in Sects. 2.1 and 2.2 respec-
tively admit natural generalizations where one considers approximate morphisms
into different classes of invariant length groups. Suppose that C is a class of groups
endowed with an invariant length function.

Definition 2.9.1 A countable discrete group � has the C-approximation property if
for every finite subset F of � nf1�g and every " > 0 there is an .F; "/-approximate
morphism (as defined in Definition 2.1.7) from � endowed with the trivial length
function to a group T in C, i.e. a functionˆ W � ! T such thatˆ.1�/ D 1T and for
every g; h 2 F:

• `T
�
ˆ.gh/ˆ.h/�1ˆ.g/�1

�
< ";

• `T .ˆ.g// > 1 � ".

The following characterization of groups locally embeddable into some class of
invariant length groups can be proved with the same arguments as Sect. 2.6, where
the notions of universal and existential sentence are introduced.



44 M. Lupini

Proposition 2.9.2 The following statements about a countable discrete group �
(endowed with the trivial length function) are equivalent:

1. � has the C-approximation property;
2. There is a length-preserving group homomorphism from � to an ultraproductQ

U Gn of a sequence .Gn/n2N of invariant metric groups from the class C;
3. For every existential sentence ' in the language of invariant length groups

'� � inf
˚
'G W G 2 C�

where 'G denotes the evaluation of ' in the invariant length group G;
4. For every universal sentence ' in the language of invariant length groups

'� � sup
˚
'G W G 2 C� .

This characterization in particular shows that the C-approximation property is
elementary in the sense of Sect. 2.6

Observe that when C is a class of groups endowed with the trivial length function,
the C-approximation property coincides with the notion of local embeddability into
elements of C as defined in Sect. 2.3. It is immediate from the definition that a
group is sofic if and only if it has the C-approximation property where C is the
class of symmetric groups endowed with the Hamming invariant length function.
Analogously hyperlinearity can be seen as the C-approximation property where C
is the class of unitary groups endowed with the Hilbert-Schmidt invariant length
functions. Weakly sofic groups as defined in [70] are exactly C-approximable groups
where C is the class of all finite groups endowed with an invariant length function.
More recently Arzhantseva and Păunescu introduced in [6] the class of linear sofic
groups, which can be regarded as C-approximable groups where C is the class of
general linear groups endowed with the invariant length function

`.x/ D N.x � 1/

where N is the usual normalized rank of matrices.
Giving a complete account of the notion of local metric approximation in group

theory (not to mention other areas of mathematics) would be too long and beyond
the scope of this survey. It should be nonetheless mentioned that it can be found
in nuce in the work of Malcev. More recently it has been considered by Gromov
in the paper [79] that lead to the introduction of sofic groups. The notion of C-
approximation is defined implicitly by Pestov in [125, Remark 8.6] and explicitly
by Thom in [144, Definition 1.6], as well as by Arzhantseva and Cherix (Quantifying
metric approximations of groups, unpublished).

A more general notion of metric approximation called asymptotic approximation
has been more recently defined by Arzhantseva for finitely generated groups in [5,
Definition 9]: A finitely generated group � is asymptotically approximated by a
class of invariant length groups C if there is a sequence .Xn/n2N of finite generating
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subsets of � such that for every n 2 N there is a
�
BXn.n/;

1
n

�
-approximate morphism

as in Definition 2.1.7 from � endowed with the trivial invariant length function to
an element of C, where BXn.n/ denotes the set of elements of � that have length at
most n according to the word length associated with the generating set Xn. In the
particular case when the finite generating set Xn does not depend on n one obtains
the notion of C-approximation as above. It is showed in [5, Theorem 11] that several
important classes of finitely generated groups, including all hyperbolic groups and
one-relator groups, are asymptotically residually finite, i.e. have the asymptotic C-
approximation property where C is the class of residually finite groups endowed
with the trivial length function. In particular these groups are asymptotically sofic.
(It is currently not known if these groups are in fact sofic.)

To this day no countable discrete group is known to not have the C-approximation
property as in Definition 2.9.1 when C is any of the classes of invariant length groups
mentioned above. In an attempt to find an example of a countable discrete group
failing to have the C-approximation property with respect to some natural large
class of invariant length groups, Thom introduced in [144] the class Fc of finite
commutator-contractive invariant length groups, i.e. finite groups endowed with an
invariant length function ` satisfying

`.xyx�1y�1/ � 4`.x/`.y/.

Examples of such groups, besides finite groups endowed with the trivial length
function, are finite subgroups of the unitary group of a C*-algebra A endowed with
the length function

`.x/ D 1

2
k1 � xk .

Corollary 3.3 of [144] shows that groups with the Fc-approximation property form
a proper subclass of the class of all countable discrete groups. More precisely Hig-
man’s group H introduced by Higman in [85] does not have the Fc-approximation
property. This is one of the few currently know examples of a group failing to have
the C-approximation property for some broad class C of groups endowed with a
(nontrivial) invariant length function.

Higman’s group H is the group with generators hi for i 2 Z =4Z subject to the
cyclic relations

hiC1hih
�1
iC1 D h2i ;

for i 2 Z =4Z where the sum i C 1 is calculated modulo 4. It was first considered
by Higman in [85], who showed that H is an infinite group with no nontrivial finite
quotients, thus providing the first example of a finitely presented group with this
property. Higman’s proof in fact also shows that H is not locally embeddable into
finite groups. Theorem 3.2 and Corollary 3.3 from [144] strengthen Higman’s result,
showing that H does not even have the Fc-approximation property.
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We will now prove, following Higman’s original argument from [85], that
Higman’s group H is nontrivial and in fact infinite. Consider for i 2 Z =4Z the
group Hi generated by hi and hiC1 subjected to the relation

hiC1hih
�1
iC1 D h2i ;

where again i C 1 is calculated modulo 4. It is not hard to see that every element
of Hi can be expressed uniquely as hn

i hm
iC1 for n;m 2 Z. In particular hi and

hiC1 respectively generate disjoint cyclic free groups in Hi. Define H01 to be the
free product of H0 and H1 amalgamated over the common free cyclic subgroup
generated by h1, and H23 to be the free product of H2 and H3 amalgamated over
the common free cyclic subgroup generated by h3. By Corollary 8.11 from [116]
fh0; h2g generates a free subgroup of both H01 and H23. Define H to be the free
product of H01 and H23 amalgamated over the subgroup generated by fh0; h2g. Again
by Corollary 8.11 from [116] fh1; h3g generates a free subgroup of H. In particular
H is an infinite group.

As mentioned before, Higman showed that the group H is not locally embeddable
into finite groups. Equivalently the system RH.x0; x1; x2; x3/ consisting of the
relations

xiC1xix
�1
iC1 D x2i ;

for i 2 Z =4Z has no nontrivial finite models. This means that if F is any finite
group and ai 2 F for i 2 Z =4Z satisfy the system RH , i.e. satisfy

aiC1aia
�1
iC1 D a2i ;

for i 2 Z =4Z , then

a0 D a1 D a2 D a3 D 1F.

In fact suppose by contradiction that one of the ai’s is nontrivial. Define p to be
the smallest prime number dividing the order of one of the ai’s. Without loss of
generality we can assume that p divides the order of a0. From the equation

a1a0a
�1
1 D a20;

one can obtain by induction

an
1a0a

�n
1 D a2

n

0 :

In particular if n is the order of a1 we have

a2
n�1
0 D 1F;
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which shows that 2n � 1 is a multiple of the order of a0 and hence of p. In particular
p is an odd prime and

2n 
 1 .modp/ .

Thus by Fermat’s little theorem p � 1 divides n, contradicting the assumption that p
is the smallest prime dividing the order of one of the ai’s.

A similar argument from [141] shows that the system RH has no nontrivial
solution in GLn.C/ for any n 2 N. In fact suppose that ai 2 GLn.C/ for i 2 Z =4Z

satisfy the system RH . The relation

aiC1aia
�1
iC1 D a2i

implies that ai and a2i are conjugate and, in particular, have the same eigenvalues.
This implies that the eigenvalues of ai are roots of unity. Considering the Jordan
canonical form of ai shows that the absolute value of the entries of an

i grows at most
polynomially in n. Now the relation

an
iC1aia

�n
iC1 D a2

n

i

shows that also the absolute value of the entries of a2
n

i grows at most polynomially
in n. It follows that ai is diagonalizable and, having roots of unity as eigenvalues, a
finite order element of GLn.C/. The same argument as before now shows that the
ai’s are equal to the unity of GLn.C/.

Andreas Thom showed in [144, Corollary 3.3] that H does not have the Fc-
approximation property where Fc is the class of finite groups endowed with
a commutator-contractive invariant length function. This is a strengthening of
Higman’s result that H is not locally embeddable into finite groups, since the
trivial invariant length function on a group is commutator-contractive. The fol-
lowing proposition is the main technical result involved in the proof; see [144,
Theorem 3.2].

Proposition 2.9.3 Suppose that G is a finite commutator contractive invariant
length group and " is a positive real number smaller than 1

176
. If ai for i 2 Z =4Z

are elements of G satisfying the system RH up to "; then

`.ai/ < 4"

for every i 2 Z =4Z .

In view of Proposition 2.9.2 in order to conclude that Higman’s group H does not
have the Fc-approximation property, it is enough to show that there is a universal
sentence ' such that 'G D 0 for every invariant length group G but '� D 1. Write

 .x0; x1; x2; x3/ 
 max
i2Z=4Z

`.xi/� 4 max
i2Z=4Z

`.xiC1xix
�1
iC1x�2

i /
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where i C 1 is calculated modulo 4, and define ' to be the universal sentence

sup
x0;x1;x2;x3

f . /

where f is the function

x 7! min fmax fx; 0g ; 1g .

Observe that by Proposition 2.9.3 the interpretation of ' in any commutator-
contractive invariant length group is 0, while the interpretation of ' in Higman’s
group endowed with the trivial length function is 1.

2.10 Rank Rings and Kaplansky’s Direct Finiteness
Conjecture

Recall that Kaplansky’s direct finiteness conjecture for a countable discrete group
� asserts that if K is a field, then the group algebra K� is directly finite. This
means that if a; b are elements of K� such that ab D 1 then also ba D 1. This
conjecture has been confirmed when � is a sofic group by Elek and Szabó in [54].
An alternative proof of this result has been obtained in [30, Corollary 1.4] using the
theory of cellular automata; see also [31, Sect. 8.15]. The proof of this result can be
naturally presented within the framework of rank rings.

Definition 2.10.1 Suppose that R is a ring. A function N W R ! Œ0; 1
 is a rank
function if:

• N.1/ D 1;
• N.x/ D 0 iff x D 0;
• N.xy/ � min fN.x/;N.y/g;
• N.x C y/ � N.x/C N.y/.

If N is a rank function on R then

d.x; y/ D N.x � y/

defines a metric that makes the function x 7! x C a isometric and the functions
x 7! xa and x 7! ax contractive for every a 2 R. A ring endowed with a rank
function is called a rank ring.

In the context of rank rings, a term in the variables x1; : : : ; xn is just a polynomial
in the indeterminates x1; : : : ; xn. A basic formula is an expression of the form

N .p.x1; : : : ; xn//
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where p.x1; : : : ; xn/ is a term in the variables x1; : : : ; xn. Formulae, sentences
and their interpretation in a rank ring can then be defined starting from terms
analogously as in the case of invariant length groups. Also the notion of elementary
property, and axiomatizable class, saturated and countably saturated structure carry
over without change.

Suppose that .Rn/n2N is a sequence of rank rings and U is a free ultrafilter over
N. The ultraproduct

Q
U Rn is the quotient of the product ring

Q
n Rn by the ideal

IU D
�
.xn/ 2

Y
n

Rn

ˇ̌
ˇ̌ lim
n!U

Nn.xn/ D 0

�
.

The function

NU .xn/ D lim
n!U

Nn.xn/

induces a rank function in the quotient, making
Q

U Rn a rank ring. Then all the
Rn coincide with the same rank ring R the corresponding ultraproduct will be
called ultrapower of R. The notion of representative sequence of an element of
an ultraproduct of rank rings is defined analogously as in the case of length groups.
Łoś’ theorem and countable saturation of ultraproducts can be proved in this context
in a way analogous to the case of invariant length groups. In particular:

Theorem 2.10.2 (Łoś) Suppose that '.x1; : : : ; xk/ is a formula for rank rings with
free variables x1; : : : ; xk, .Rn/n2N is a sequence of rank rings, and U is a free
ultrafilter over N. If a.1/; : : : ; a.k/ are elements of

Q
n Rn then

'
Q

U Rn
�
a.1/; : : : ; a.k/

� D lim
n!U

'Rn
�
a.1/n ; : : : ; a

.k/
n

�

where a.i/ is any representative sequence of
�

a.i/n

�

n2N for i D 1; 2; : : : ; k. In

particular if ' is a sentence then

'
Q

U Rn D lim
n!U

'Rn.

A rank ring R such that for every x; y 2 R

N.xy � 1/ D N .yx � 1/

is called a finite rank ring. Clearly any finite rank ring is a directly finite ring.
Moreover the class of finite rank rings is axiomatizable by the formula

sup
x

sup
y

jN.xy � 1/� N .yx � 1/j .
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It follows that an ultraproduct of finite rank rings is a finite rank ring and in particular
a directly finite ring. Exercise 2.10.3 shows that there is a tight connection between
rank functions on rings and length functions on groups.

Exercise 2.10.3 Suppose that N is a rank function on a ring R. Define

`.x/ D N.x � 1/;

for x 2 R. Show that ` is a length function on the multiplicative group R� of
invertible elements of R, which is invariant if and only if R is a finite rank ring.

A natural example of finite rank rings is given by rings of matrices over an
arbitrary field K. Denote by Mn.K/ the ring of n � n matrices with coefficients
in K Suppose that � is the usual matrix rank on Mn.K/, i.e. �.x/ for x 2 Mn.K/ is
the dimension of the range of x regarded as a linear operator on a K-vector space of
dimension n. Define

N.x/ D 1

n
�.x/

for every x 2 Mn.K/.

Exercise 2.10.4 Prove that N is a rank function on Mn.K/ as in Definition 2.10.1.
Show that moreover Mn.K/ endowed with the rank N is a finite rank ring.

Another natural example of finite rank rings comes from von Neumann algebra
theory: If � is a faithful normalized trace on a von Neumann algebra M, then

N� .x/ D � .s.x// ;

where s.x/ is the support projection of x, is a rank function on M. Moreover M
endowed with the rank function N� is a finite rank ring.

Fix a free ultrafilter U over N. In this section the symbol
Q

U Mn.K/ will denote
the ultraproduct with respect to U of the sequence of matrix rings Mn.K/ regarded
as rank rings. By Exercise 2.10.4 and Łoś’ theorem on ultraproducts

Q
U Mn.K/ is

a finite rank ring (and in particular a directly finite ring).
The rest of this section is dedicated to the proof from [53] that sofic groups satisfy

Kaplansky’s direct finiteness conjecture. The idea is that soficity of � together with
the algebraic embedding of Sn into Mn.K/ obtained by sending � to the associated
permutation matrix P� allows one to construct an injective *-homomorphism from
the group algebra K� to the ultraproduct

Q
U Mn.K/. In order to do this one needs

some relations between the rank of a linear combination of permutation matrices
and the lengths of the associated permutations. Explicit upper and lower bounds
of the former in term of the latter ones are established in Exercise 2.10.5 and
Exercise 2.10.6 respectively.
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In the following for � 2 Sn denote by P� 2 Mn.K/ the associated permutation
matrix as in Sect. 2.2.

Exercise 2.10.5 Show that

N .P� � I/ � `Sn.�/

where `Sn is the Hamming invariant length function.

Hint Define c .�/ the number of cycles of � (including fixed points). Show that

N .P� � I/ D 1 � c .�/

n

by induction on the number of cycles.

Exercise 2.10.6 Suppose that �1; : : : ; �k 2 Sn and �1; : : : ; �k 2 K nf0g . Define

" D min
1�i�k

.1 � `.�i// .

Prove that

N

 
kX

iD1
�iP�i

!
� 1 � "k

k2
.

Hint Denote by fei j i 2 ng the canonical basis of Kn. Recall that Sn is assumed to
act on the set n D f0; 1; : : : ; n � 1g. Define D to be a maximal subset of n such that
for s; t 2 X and 1 � i; j � k such that either s ¤ t or i ¤ j one has

�i .s/ ¤ �j .t/ .

Observe that if x 2 span fei j i 2 Dg then

kX

iD1
�iP�i.x/ ¤ 0.

Infer that

N

 
kX

iD1
�iP�i

!
� jDj

n
.

By maximality of X for every s 2 n there are t 2 D and 1 � i; j � k such that

s D ��1
i �j .t/

When i; ; j vary between 1 and k and t varies in D the expression

��1
i �j .t/
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attains at most "nk C k2 jDj values. Infer that

jDj
n

� 1 � "k

k2
:

Exercises 2.10.5 and 2.10.6 allow one to define a nontrivial morphism from the
group algebra K

�Q
U Sn

�
to
Q

U Mn.K/. This is the content of Exercise 2.10.7.

Exercise 2.10.7 Define, using Exercise 2.10.5, a ring morphism‰ W K
�Q

U Sn
� !Q

U Mn.K/. Prove using Exercise 2.10.6 that if x1; : : : ; xk 2 Q
U Sn are such that

`U .xi/ D 1 for i D 1; 2; : : : ; k and �1; : : : ; �k 2 K nf0g then

N .�1x1 C � � � C �kxk/ � 1

k
.

One can now easily prove that a sofic group � satisfies Kaplansky’s finiteness
conjecture. In fact if � is sofic then � embeds into

Q
U Sn in such a way that the

length of any element in the range of � nf1�g is 1. This induces a ring morphism
from K� into K

�Q
U Sn

�
. By composing it with the ring morphism described in

Exercise 2.10.7, we obtain a ring morphism from K� into
Q

U Mn.K/ that is one to
one by the second statement in Exercise 2.10.7. This shows that K� is isomorphic
to a subring of the directly finite ring

Q
U Mn.K/. In particular K� is itself directly

finite.

2.11 Logic for Tracial von Neumann Algebras

In the context of tracial von Neumann algebras a term p.x1; : : : ; xn/ in the variables
x1; : : : ; xn is a noncommutative *-polynomial in x1; : : : ; xn, i.e. a polynomial in the
noncommuting variables x1; : : : ; xn and x�

1 ; : : : ; x
�
n . A basic formula is an expression

of the form

� .p.x1; : : : ; xn// ;

where p.x1; : : : ; xn/ is a noncommutative *-polynomial. General formulae can be
obtained from basic formulae composing with continuous functions or taking infima
and suprema over norm bounded subsets of the von Neumann algebra or of the field
of scalars. More formally if '1; : : : ; 'm are formulae and f W Cm ! C is a continuous
function then

f .'1; : : : ; 'm/

is a formula. Analogously if '.x1; : : : ; xn; y/ is a formula then

inf
kyk�1

Re .' .x1; : : : ; xn; y//
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and

inf
j�j�1

Re .' .x1; : : : ; xn; �//

are formulae. Similarly one can replace inf with sup. The interpretation of a formula
in a tracial von Neumann algebra is defined in the obvious way by recursion on the
complexity. For example

�
�.x�x/

� 1
2

is a formula usually abbreviated by kxk2 whose interpretation in a tracial von
Neumann algebra .M/ is the 2-norm on M associated with the trace � . Analogously

sup
kxk�1

sup
kyk�1

kx � yk2

is a sentence (i.e. a formula without free variables) that holds in a tracial von
Neumann algebra M iff M is abelian, while

sup
kxk�1

inf
j�j�1

kx � �k2

is a sentence which holds in .M/ iff M is one-dimensional (i.e. isomorphic to C).
The notion of elementary property and axiomatizable class of tracial

von Neumann algebras are defined as in the case of length groups or rank rings.
In particular the previous examples shows that the property of being abelian
and the property of being one-dimensional are elementary. Exercise 2.11.1 and
Exercise 2.11.2 show that the property of being a factor and, respectively, the
property of being a II1 factor are elementary.

Recall that the center Z.M/ of a von Neumann algebra M is the set of elements
that commute with any other element of M. This is a weakly closed subalgebra of M
and hence it is itself a von Neumann algebra. The von Neumann algebra M is called
a factor if its center contains only the scalar multiples of the identity.

The unitary group U.M/ of M is the multiplicative group of unitary elements of
M, i.e. elements u satisfying uu� D u�u D 1. Recall that it can be seen using the
Borel functional calculus [14, I.4.3] that the set of linear combinations of projections
of a von Neumann algebra is dense in the �-weak topology.

Exercise 2.11.1 Suppose that M is a von Neumann algebra endowed with a faithful
trace � . Show that M is a factor if and only if for every x 2 M

kx � �.x/k2 � sup
y2M1

kxy � yxk2 . (2.2)

Conclude that the property of being a factor is elementary.
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Hint If M is not a factor then a nontrivial projection p in Z.M/ violates equation
(2.2). If M is a factor and x is an element of the unit ball of M consider the strong
closure of the convex hull of the orbit

fuxu� W u 2 U.M/g

of x under the action of U.M/ on M by conjugation. Observe that such set endowed
with the Hilbert-Schmidt norm is isometrically isomorphic to a closed subset of
the Hilbert space L2 .M; �/ obtained from � via the GNS construction [14, II.6.4].
It therefore has a unique element of minimal Hilbert-Schmidt norm x0, which by
uniqueness must commute with every element of U.M/. Since the convex hull of
U.M/ is dense in the unit ball of M by the Russo-Dye theorem [14, II.3.2.17], x0
belongs to the center of M. Moreover by normality of the trace x0 must coincide
with �.x/. Thus �.x/ can be approximated in the Hilbert-Schmidt norm by convex
combinations of elements of the form uxu�, with u 2 U.M/. Equation (2.2) easily
follows from this fact.

Exercise 2.11.2 Fix an irrational number ˛ 2 .0; 1/. Using the type classification
of factors prove that a factor M is II1 if and only there is a projection of trace ˛.
Deduce that the property of being a II1 factor is elementary.

Hint Recall that by Theorem 1.1.4 the trace in a II1 factor attains on projections all
the values between 0 and 1.

Let us now define the ultraproduct
Q

U Mn of a sequence .Mn/ of tracial von
Neumann algebras with respect to a free ultrafilter U over N. Define `1.M/ the
C*-algebra of sequences

.an/n2N 2
Y

n
Mn

such that

sup
n

kank < C1

endowed with the norm

k.an/k D sup
n

kank .

The ultraproduct
Q

U Mn is the quotient of `1.M/ with respect to the norm closed
ideal IU of sequences .a/ such that

lim
n!U

�
�
a�

n an
� D 0

endowed with the faithful trace

� ..an/C IU / D lim
n!U

�.an/.
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Being the quotient of a C*-algebra by a norm closed ideal,
Q

U Mn is a C*-algebra.
Exercise 2.11.3 shows that in fact

Q
U Mn is always a von Neumann algebra. When

the sequence .Mn/ is constantly equal to a tracial von Neumann algebra M, the
ultraproduct

Q
U Mn is called ultrapower of M and denoted by MU . The notion of

representative sequence of an element of an ultraproduct of tracial von Neumann
algebras is defined analogously as in the case of invariant length groups.

The notions of approximately finitely satisfiable (or consistent) and realized
set of formulae and countably saturated structure introduced in Definitions 2.6.2
and 2.6.3 for invariant length groups admit obvious generalization to the setting
of tracial von Neumann algebra. An adaptation of the proof of Exercise 2.6.4
shows that an ultraproduct of a sequence of tracial von Neumann algebras is
countably saturated. If moreover the elements of the sequence are separable, and
the Continuum Hypothesis is assumed, then ultraproducts are in fact saturated (cf.
the discussion after Exercise 2.6.4).

Exercise 2.11.3 Show that the unit ball of
Q

U Mn is complete with respect to the
2-norm. Infer that

Q
U Mn is a von Neumann algebra.

Hint Recall that an ultraproduct of a sequence of tracial von Neumann algebra is
countably saturated. Suppose that .xn/n2N is a sequence in the unit ball of

Q
U Mn

which is Cauchy with respect to the 2-norm. Define for every n 2 N

"n D sup
˚��xi � xj

��
2

W i; j � n
�

.

Observe that ."n/n2N is a vanishing sequence. Consider for every n 2 N the formula
'n .y/

inf
kyk�1

max fkxn � yk2 � "n; 0g .

Argue that the set X of formulae containing 'n .y/ for every n 2 N is approximately
finitely satisfiable and hence realized in

Q
U Mn. A realization x of X is such that

kxn � xk2 � "n

for every n 2 N and hence the sequence .xn/n2N converges to x. In order to conclude
that

Q
U Mn is a von Neumann algebra it is enough to observe that, by completeness

of its unit ball with respect to the 2-norm and Kaplansky’s density theorem (see [14,
I.9.1.3]),

Q
U Mn coincides with the von Neumann algebra generated by the GNS

representation of
Q

U Mn associated with the canonical trace � of
Q

U Mn.
Łoś’ theorem on ultraproducts also holds in this context without change.

Theorem 2.11.4 (Łoś’ for Tracial von Neumann Algebras) Suppose that
' .x1; : : : ; xk/ is a formula with free variables x1; : : : ; xk, .Mn/n2N is a sequence
of tracial von Neumann algebras, and U is a free ultrafilter over N. If a.1/; : : : ; a.k/
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are elements of
Q

n Mn then

'
Q

U Mn
�
a.1/; : : : ; a.k/

� D lim
n!U

'Mn
�
a.1/n ; : : : ; a.k/n

�
;

where a.i/ is any representative sequence of
�

a.i/n

�

n2N for i D 1; 2; : : : ; k. In

particular if ' is a sentence then

'
Q

U Mn D lim
n!U

'Mn .

In particular Łoś’ theorem implies that a tracial von Neumann algebra M is
elementarily equivalent to any ultrapower MU of M. This means that if ' is any
sentence, then ' has the same evaluation in M and in MU . It follows that any
two ultrapowers of M are elementarily equivalent. If moreover M is separable
and the Continuum Hypothesis is assumed, then any two ultrapowers of M, being
saturated and elementarily equivalent, are in fact isomorphic by a standard result in
model theory (see Corollary 4.14 in [60]). Conversely if the Continuum Hypothesis
fails then, assuming that M is a II1 factor, by Theorem 4.8 in [59] there exist
nonisomorphic ultrapowers of M (and in fact 22

@0 many by Proposition 8.2 of [61]).
Theorem 2.11.4 together with the fact that the property of being a II1 factor is

elementary (see Exercise 2.11.2) shows that an ultraproduct of II1 factors is again a
II1 factor. Analogously an ultraproduct of factors is a factor and an ultraproduct of
abelian tracial von Neumann algebras is abelian.

The trace on the von Neumann algebra naturally induces an invariant length
function on U.M/, as shown in the following exercise.

Exercise 2.11.5 Suppose that M is a tracial von Neumann algebra. Show that the
function ` W U.M/ ! Œ0; 1
 defined by

`.u/ D 1

2
ku � 1k2

is an invariant length function on U.M/.

In particular if M is the algebra Mn.C/ of n � n complex matrices, then U.M/
coincides with the group Un of n � n unitary matrices, and the induced length
function on Un coincides with the one considered in Sect. 2.2.

Recall that in Sect. 2.2 we introduced the following relation

max fkx�x � 1k2 ; kxx� � 1k2g .

This is a formula 'u in the logic for tracial von Neumann algebras. We have
also mentioned that the polar decomposition shows that such a formula is stable,
i.e. every approximate solution of 'u .x/ D 0 is close to an exact solution
(and the estimate is uniform over all tracial von Neumann algebras). In model



2 Sofic and Hyperlinear Groups 57

theoretic jargon this means that the zero-set of the interpretation 'u in a given von
Neumann algebra M—i.e. the unitary group U.M/—is a definable set as in [13,
Definition 9.16]; see also [13, Proposition 9.19]. In particular it can be inferred
that the unitary group of an ultraproduct of tracial von Neumann algebras is the
ultraproduct of corresponding unitary groups. This is the content of Exercise 2.11.6.

Exercise 2.11.6 Suppose that .Mn/n2N is a sequence of tracial von Neumann
algebras, and U is a free ultrafilter on N. Show that any element of the unitary
group of the ultraproduct

Q
U Mn admits a representative sequence of unitary

elements. Conclude that U
�Q

U Mn
�

is isomorphic as invariant length group to the
ultraproduct

Q
U U.Mn/ of the sequence of unitary groups of the Mn’s endowed with

the invariant length described in Exercise 2.11.5.

In particular the unitary group of
Q

U Mn.C/ can be identified with the groupQ
U Un introduced in Sect. 2.2.

Exercise 2.11.7 The unitary group of
Q

U Mn.C/ contains a subset X of size
continuum such that ku � vk2 D p

2 for every pair of distinct elements u; v of
X. Deduce that the same conclusion holds for the unitary group of any ultraproductQ

U Mn of a sequence of II1 factors.

Hint The first statement follows directly from Exercises 2.11.6 and 2.2.6. For the
second statement observe that by Theorem 1.1.4, if .Mn/n2N is a sequence of II1
factors, and U is a free ultrafilter on N, then

Q
U Mn .C/ embeds into

Q
U Mn.

2.12 The Algebraic Eigenvalues Conjecture

Suppose that � is a (countable, discrete) group. Considering the particular case of
the group algebra construction for the field C of complex numbers as in Sect. 1.1
one obtains the complex group algebra C� of formal finite linear combinations

�1�1 C � � � C �k�k

where �i 2 C and �i 2 � . The group ring Z� is the subring of C� of finite linear
combinations

n1�1 C � � � C nk�k

where ni 2 Z and �i 2 � . The natural action of C� on the Hilbert space `2� defines
an inclusion of C� into B

�
`2�

�
. A conjecture due to Dodziuk, Linnell, Mathai,

Schick, and Yates known as algebraic eigenvalues conjectures (see [49]) asserts
that elements x of Z� regarded as linear operators on `2� have algebraic integers
as eigenvalues. Recall that a complex number is called an algebraic integer if it is
the root of a monic polynomial with integer coefficients. The algebraic eigenvalues
conjecture has been settled for sofic groups by Andreas Thom in [142]. The proof
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involves the notion of ultraproduct of tracial von Neumann algebras and can be
naturally presented within the framework of logic for metric structures.

The complex group algebra C� can be endowed with a linear involutive map
x 7! x� such that

.��/� D ���1.

Recall that the trace � on C� is defined by

�

 
X

�

���

!
D �1� .

The weak closure L� of C� in B
�
`2�

�
is a von Neumann algebra containing C� as

a *-subalgebra. The trace of C� admits a unique extension to a faithful normalized
trace � on L� . Moreover C� is dense in the unit ball of L� with respect to the
2-norm of L� defined by kxk2 D �.x�x/

1
2 .

In the rest of the section the matrix algebra Mn.C/ of n � n matrices with
complex coefficients is regarded as a tracial von Neumann algebra endowed with
the (unique) canonical normalized trace �n. If U is an ultrafilter over N thenQ

U Mn.C/ denotes the ultraproduct of Mn.C/ as tracial von Neumann algebras.
(Note that this is different from the ultraproduct of Mn.C/ as rank rings.) Denote byQ

U Mn.Z/ the closed self-adjoint subalgebra of
Q

U Mn.C/ consisting of elements
admitting representative sequences of matrices with integer coefficients. Recall that
Un denotes the group of unitary elements of Mn.C/. If � is a permutation over n,
then the associated permutation matrix P� is a unitary element of Mn.C/ such that
� .P� / D 1 � `.�/. This fact can be used to solve Exercise 2.12.1. The argument is
analogous to the proof that sofic groups are hyperlinear (see Exercise 2.2.4).

Exercise 2.12.1 Suppose that � is a sofic group and U is a nonprincipal ultrafilter
over N. Show that there is a trace preserving *-homomorphism of *-algebras from
C� to

Q
U Mn.C/ sending Z� into

Q
U Mn.Z/.

Hint Use, as at the end of Sect. 2.2, the embedding of Sn into Mn .C/ sending � to
its associated permutation matrix P� , recalling that �.P� / D 1 � `.�/.

Since the *-homomorphism from C� to
Q

U Mn.C/ obtained in Exercise 2.12.1
is trace-preserving, it extends to an embedding of L� into

Q
U Mn.C/. This can

be seen using the GNS construction associated with � (see [14, Sect. II.6.4]), or
observing that by Kaplansky’s density theorem [14, I.9.1.3] the operator norm unit
ball of C� is dense in the norm unit ball of L� with respect to the �-strong topology
(which coincides with the topology induced by the Hilbert-Schmidt norm associated
with �).

Suppose now that M is a von Neumann algebra, and x is an operator in M.
Considering the spectral projection p 2 M on Ker .x � �I/ shows that a complex
number � is an eigenvalue of x if and only if there is a nonzero projection p 2 M
such that .x � �/ p D 0. It follows that if ‰ W M ! N is an embedding of von
Neumann algebra, then x and ‰.x/ have the same eigenvalues. This observation
together with Exercise 2.12.1 and its following observation allow one to conclude
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that in order to establish the algebraic eigenvalues conjecture for sofic groups it is
enough to show that the elements of

Q
U Mn.Z/ have algebraic eigenvalues. This is

proved in the rest of this section using Łoś’ theorem on ultraproducts together with
a characterization of algebraic integers due to Thom.

Suppose in the following that � 2 C is not an algebraic integer. Theorem 2.12.2
is a consequence of Theorem 3.5 from [142].

Theorem 2.12.2 Suppose that " is a positive real number, and that N is a natural
number. There is a positive constant M.�;N; "/ depending only on �, N, and " with
the following property: For every monic polynomial p with integer coefficients such
that all the zeros of p have absolute value at most N the proportion of zeros of p at
distance less than 1

M.�;N;"/ from � is at most ".

Corollary 2.12.3 is a direct consequence of Theorem 2.12.2.

Corollary 2.12.3 Suppose that " is a positive real number, and that N is a natural
number. Denote by M.�;N; "/ the positive constant given by Theorem 2.12.2. For
every finite rank matrix with integer coefficients A of operator norm at most N there
is a complex matrix B of the same size of operator norm at most M .�;N; "/ such
that

kB .� � A/� Ik2 � ".

Proof If A is a finite rank matrix with integer coefficients of norm at most N, then
the minimal polynomial pA of A is a monic polynomial with integer coefficients
whose zeros have all absolute value at most N. Since � is not an algebraic integers,
� is not an eigenvalue of pA and hence � � A is invertible. Moreover by the choice
of M.�;N; "/ the proportion of zeros of p at distance at least 1

M.�;N;"/ from � is at
least 1 � ". This means that if p is the projection on the eigenspace corresponding
to these eigenvalues, then � .p/ > 1 � ". Define B D p .� � A/�1, and observe that
B has operator norm at most M .�;N; "/ and

kB .� � A/� 1k2 D k1 � pk2 D � .1� p/ � ".

ut
Define for every M > 0 the formula 'M.x/ in the language of tracial von

Neumann algebras by

inf
kyk�1

kMy .� � x/� 1k2 .

By Corollary 2.12.3 if a is any element of Mn.Z/ of operator norm at most N, then

'M.�;N;"/.a/ � "

where M.�;N; "/ is the constant given by Theorem 2.12.2. By Łoś’ theorem on
ultraproducts the same is true for any element a of

Q
U Mn.Z/ of operator norm at

most N. It follows that for every a 2 Q
U Mn.Z/ and every positive real number "
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there is b 2 QU Mn.C/ such that kbk � M.�; kak ; "/ and

kb .a � �/� 1k2 � ".

Therefore if p is a projection such that .a � �/ p D 0, then

kpk2 � k.b .a � �/� 1/ pk2 C kb .a � �/ pk
� kb .a � �/� 1k2
� ".

Being this true for every positive real number ", p D 0. This shows that � is not
an eigenvalue of a for any element a of

Q
U Mn.Z/, concluding the proof that the

elements of
Q

U Mn .Z/ have algebraic eigenvalues.

2.13 Entropy

2.13.1 Entropy of a Single Transformation

Suppose that X is a zero-dimensional compact metrizable space, i.e. a compact
space with a countable clopen basis. Denote by T a transformation of X, i.e. a
homeomorphism T W X ! X. A (necessarily finite) clopen partition P of X is
generating for T if for every pair of distinct points x; y of X there are C 2 P and
n 2 N such that Tnx 2 C and Tny … C. Suppose that T has a generating clopen
partition P (observe that in general this might not exist). Consider P as a coloring
of X and Pn as a coloring of Xn. Denote for n � 1 by Hn .P ;T/ the number of
possible colors of partial orbits of the form

�
x;Tx;T2x; : : : ;Tnx

� 2 Xn.

Equivalently Hn .P ;T/ is the cardinality of the clopen partition of X consisting of
sets

C0 \ T�1C1 \ : : : \ T�nCn;

where Ci 2 P for i D 0; 1; 2; : : : ; n.
A sequence .an/n2N of real numbers is called submultiplicative if anCm � an � am

for every n;m 2 N.

Exercise 2.13.1 Show that the sequence

.Hn .P ;T//n2N

is submultiplicative.

Fekete’s lemma from [65] asserts that if .an/n2N is a submultiplicative sequence
then the sequence

�
1
n log.an/

�
n2N converges to infn2N 1

n log.an/.
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Exercise 2.13.2 Prove Fekete’s lemma.

It follows from Fekete’s lemma and Exercise 2.13.1 that the sequence

	
1

n
log .HnCm .P ;T//




n2N

has a limit h .T/ that is by definition the entropy of the transformation T. Despite
being defined in terms of the partition P , the entropy h .T/ of T does not in fact
depend on the choice of the clopen partition of X generating for T.

Exercise 2.13.3 Show that the entropy of T does not depend from the choice of P.

Observe that h .T/ is at most log jP j for any clopen partition P of X generating
for T. Recall that transformations T and T 0 of compact Hausdorff spaces X and X0
are topologically conjugate if there is a homeomorphism f W X ! X0 such that
T 0 ı f D f ıT for every x 2 X. It is not difficult to verify that entropy is a topological
conjugacy invariant, that is, topologically conjugate transformations have the same
entropy.

2.13.2 Entropy of an Integer Bernoulli Shift

Suppose that A is a finite alphabet of cardinality k and X is the space AZ. Consider
the Bernoulli shift T on X defined by

T.ai/i2Z D .ai�1/i2Z .

For a 2 A consider the clopen set

Xa D f.ai/i2Z W a0 D ag

and observe that P D fXa j a 2 A g is a clopen partition of X generating for T. It is
not hard to verify that

Hn .P ;T/ D kn;

for every n 2 N, and hence

h .T/ D log.k/.

Gottschalk’s conjecture for Z asserts that if f W X ! X is a continuous injective
function such that T ı f D f ı T then f is surjective. In view of the conjugation
invariance of entropy, in order to establish Gottschalk’s conjecture for Z it is enough
to show that if Y is any proper closed T-invariant subspace of X, then the entropy
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h .TjY/ of the restriction of T to Y is strictly smaller then the entropy h .T/ of X.
Suppose that Y is a proper closed T-invariant subspace of X. Observe that

Q D fXa \ Y W a 2 Ag
is a generating partition for TjY . It is easy to see that

Hn .Q;TjY/

is the number of A-words of length n that appear in elements of Y. Since Y is a
proper closed T-invariant subspace of X there is some n 2 N such that

Hn .Q;TjY/ < kn

and hence

h .TjY ;Y/ D inf
n

1

n
log .Hn .Q;TjY // < log.k/ D h .T;X/ .

This concludes the proof of Gottschalk’s conjecture for Z.

2.13.3 Tilings on Amenable Groups

Suppose in the following that � is a (countable, discrete) group. If E;F are subsets
of � , then define

• F�E D T
�2E F��1 D fx 2 � jxE � F g;

• FCE D S
�2E F� D fx 2 � jxE \ F ¤ ¿ g;

• @EF D FCE
�

F�E .

The subset F of � is .E; ı/-invariant for some positive real number ı if

j@EFj
jFj < ı.

The group � is amenable if and only if for every finite subset E of � and every
positive real number ı there is a finite .E; ı/-invariant subset F of � . This is
equivalent to the existence of a Følner sequence, i.e. a sequence .Fn/n2N of finite
subsets of � such that

lim
n

j@EFnj
jFnj D 0

for every finite subset E of � .
Suppose in the following that � is an amenable group. A function � from the set

Œ�
<@0 of finite subsets of � to the set RC of positive real numbers is called:

• subadditive if �.a [ b/ � �.a/C � .b/ and � .¿/ D 0;
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• right invariant if �.a/ D �.a�/ for every � 2 � .

Lindenstrauss and Weiss proved in [106] using the theory of quasi-tilings for
amenable groups introduced by Ornstein and Weiss in [117] that if � W Œ�
<@0 !
RC is a right-invariant subadditive function, then the function E 7! j�.E/j

jEj has a
Følner limit `.�/. This means that for every " > 0 there is a finite subset E of � and
a positive real number ı such that for every .E; ı/-invariant finite subset F of �

ˇ̌
ˇ̌�.F/

jFj � `.�/

ˇ̌
ˇ̌ < ".

If E and E0 are subsets of � , then an .E;E0/-tiling is a subset T of � such that the
family f�E j� 2 T g is made of pairwise disjoint sets, while the family f�E0 j� 2 T g
is a cover of � .

Exercise 2.13.4 If 1 2 E and E0 D EE�1, then there is an .E;E0/-tiling of � .
Moreover if T is any .E;E0/-tiling, then for every finite subset F of �

ˇ̌
T \ F�E

ˇ̌

jFj � 1

jE0j � j@E0.F/j
jFj .

Hint To show existence consider any maximal set T with the property that the family
fT� j� 2 E g contains pairwise disjoint elements. For the second statement, observe
that

n
�E0

ˇ̌
ˇ� 2 T \ FCE0

o

covers F, while

�
T \ FCE0

���
T \ F�E

� � FCE0

/
F�E0 D @E0.F/.

Thus

ˇ̌
T \ F�E

ˇ̌

jFj �
ˇ̌
ˇT \ FCE0

ˇ̌
ˇ � j@E0.F/j

jFj

� 1

jE0j � j@E0.F/j
jFj .
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2.13.4 Entropy of Actions of Amenable Groups

Suppose that � Õ X is an action of an amenable group � on a zero-dimensional
compact space X admitting a generating clopen partition. This means that P is a
clopen partition of X such that for every x; y 2 X distinct there are � 2 � and
C 2 P such that � � x 2 C and � � y … C. Regard P as a coloring of X and, for any
finite subset F of � , PF as a coloring of XF. Denote by HF .P ; �;X/ the number of
possible colors of partial orbits

.� � x/�2F 2 XF.

Equivalently HF .P ; �;X/ is the cardinality of the clopen partition of X consisting
of sets of the form

\

�2F

��1C�

for C� 2 P .

Exercise 2.13.5 The function F 7! log .HF .P ; �;X// is right-invariant and
subadditive.

It follows from Exercise 2.13.5 and the Lindenstrauss-Weiss theorem on right-
invariant subadditive functions that there is a positive real number h .�;X/, called
entropy of the action � Õ X, such that for every " > 0 there is a finite subset E of
� and a positive real number ı such that if F is an .E; ı/-invariant subset of � then

ˇ̌
ˇ̌h .�;X/� 1

jFj log .HF .P ; �;X//
ˇ̌
ˇ̌ < ".

As for the case of integer actions, it can be verified that the entropy h .�;X/ does not
depend on the chosen generating clopen partition. Recall that two actions � Õ X
and � Õ X0 are topologically conjugate if there is a homeomorphism f W X ! Y
such that for every � 2 �

f .�x/ D � f .x/.

It is easy to verify that topologically conjugate actions have the same entropy.

2.13.5 Entropy of Bernoulli Shifts of an Amenable Group

Suppose that � is an amenable group, A is a finite alphabet of cardinality k, and A�

is the space of �-sequences of elements of A. The Bernoulli action of � on X is
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defined by

� .ah/h2� D �
a��1h

�
h2� .

The clopen partition P of X containing for every a 2 A the set

Xa D f.ah/h2� ja1 D a g
is generating for the Bernoulli action. It is not hard to verify that for every finite
subset F of �

HF
�P ; �;A�� D kjFj

and hence

h
�
�;A�

� D log.k/.

Gottschalk’s conjecture for the group � asserts that if f W A� ! A� is a
continuous injective function such that f .�x/ D � f .x/ for every � 2 � and x 2 A�

then f is surjective. As in the case of integers, in order to establish Gottschalk’s
conjecture it is enough to show that if Y is any proper closed invariant subspace of
X then the entropy h .�;Y/ of the Bernoulli action of � on Y is strictly smaller than
log.k/. The theory of tilings is useful to show that a proper Bernoulli subshift has
strictly smaller entropy.

Suppose that Y is a proper Bernoulli subshift. If F � � is finite, define YF to
be the set of restrictions of elements of Y to F. Observe that HF .�;Y/ D jYFj.
Moreover since Y is a proper subshift of X there is a finite subset E of � such that
1 2 E and YE is a proper subset of AE. Define E0 D EE�1.

Exercise 2.13.6 Show that for any finite subset F of �

1

jFj log jYFj � logk �
	
1

jE0j � j@E0.F/j
jFj



log

 
kjEj

kjEj � 1

!
:

Hint Pick an .E;E0/-tiling T. If F is a finite subset of � , then define

T� D T \ F�E

and

F� D Fn
[

�2T�

�E.

Observe that

YF � AF� �
Y

g2T�

YgE: (2.3)
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Deduce from Eq. (2.3) and from Exercise 2.13.4 that the conclusion holds.
It follows from Exercise 2.13.6 that

h .�;Y/ � log.k/ � 1

jE0j log

 
kjEj

kjEj � 1

!
< log.k/.

2.13.6 Entropy of Actions of Sofic Groups

Suppose that � Õ X is an action of a sofic group on a zero-dimensional space X.
As before we will assume that there is a clopen partition P that is generating for the
action, and we will regard P as a coloring of X and Pn as a coloring of Xn. If F is a
finite subset of � and � is a function from � to Sn, define

HF;ı .�;P ; �;X/

to be the number of colors .Ci/i2n in Pn such that there is a sequence .xi/i2n 2 Xn

such that for every � 2 F and for a proportion of at least .1 � ı/ indexes i 2 n,
��1xi has color C��1

� .i/. Suppose that † is a sofic approximation sequence of � , i.e.
a sequence .�n/n2N of maps �n W � ! Sn such that for every �; � 0 2 �

lim
n!C1 d

�
�n
�
�� 0� ; �n.�/�n

�
� 0�� D 0

and

lim
n!C1 d .�n.�/; 1/ D 1;

for all � ¤ 1� . Define h†;F;ı .P ; �;X/ to be

lim sup
n!C1

1

n
log .HF;ı .�n;P ; �;X// .

The entropy h† .�;X/ of the action � Õ X relative to the sofic approximation
sequence† is the infimum of h†;F;ı .P ; �;X/when F varies among all finite subsets
of � and ı varies among all positive real numbers. Observe that, as before, h† .�;X/
is at most log jP j, it does not depend on the generating finite clopen partition chosen,
and it is invariant by topological conjugation. It is shown in Sect. 5 of [100] using
the so called Rokhlin lemma for sofic approximations of countable amenable groups
(see Sect. 4 of [100]) that the sofic entropy associated with any sofic approximation
sequence of an amenable group coincide with the classical notion of entropy for
actions of amenable groups. Nonetheless the entropy of an action of a nonamenable
sofic group can in general depend on the choice of the sofic approximation sequence.
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2.13.7 Bernoulli Actions of Sofic Groups

Suppose that � is a sofic group, A is a finite alphabet, and � Õ A� is the Bernoulli
action of � with alphabet A of cardinality k. The entropy h†

�
�;A�

�
of the Bernoulli

action with respect to any sofic approximation sequence† is log.k/. In fact consider
as before the clopen partition P of A� consisting of the sets

Xa D
n�

a�
�
�2� ja1� D a

o

for a 2 A.
In the following we will say that � W � ! Sn is a good enough sofic

approximation if

d
�
���; ����

�
< "

for every �,� 2 F, where F is a large enough finite subset of � and " is a small
enough positive real number. It is not difficult to see that if � is a good enough sofic
approximation then

HF;ı
�P ; �;A�� D kn.

It follows that

h†
�
�;A�

� D log.k/.

As in the case of amenable groups, Gottschalk’s conjecture for sofic groups can be
proved by showing that a proper subshift of the Bernoulli shift has entropy strictly
smaller than log.k/. Suppose thus that Y is a proper closed invariant subspace of A� .
It is easy to see that if some element of A does not appear as a digit in any element
of Y then h† .�;Y/ � log .k � 1/ < log.k/. Thus without loss of generality we
can assume that all elements of A appear as digits in some element of Y. Since Y
is a proper closed subset of X there is a finite subset F of � such that the set YF of
restrictions of elements of Y to F is a proper subset of AF. We will prove that, if N
is the cardinality of F, then

inf
ı>0

h†;F;ı .P ; �;Y/ � log.k/ � 1

N2
log

	
kN

kN � 1



.

Fix an element
�
b�
�
�2F

of AF nYF , a function � W � ! Sn for some n 2 N, and

�; ı > 0 such that ı jFj < � < 1

2jFj2C1 .

Lemma 2.13.7 Suppose that .ci/i2n 2 An. If there is .xi/i2n 2 Yn such that for every
� 2 F

��1xi 2 Xc
��1
� .i/
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for a proportion of i 2 n larger than .1 � ı/ then

1

n

ˇ̌
ˇ̌
ˇ̌
\

�2F

��
�˚

i 2 n W ci D b�
��
ˇ̌
ˇ̌
ˇ̌ < ı jFj .

Proof Define

B D
\

�2F

��
�˚

j 2 n W cj D b�
��

and suppose by contradiction that

jBj
n

� ı jFj .

Observe that there is a subset C of n such that

1

n
jCj > 1 � ı jFj

and for every i 2 C and � 2 F

��1xi 2 Xc
��1
� .i/

.

It follows that there is i 2 C \ B. Define y D xi and observe that for every � 2 F

y 2
\

�2F

�X��1
� .i/

where

c��1
� .i/ D b� .

This contradicts the fact that
�
b�
�
�2F

… YF. ut
Denote by Z the set of i 2 n such that for every distinct �; � 0 2 F one has

�� .i/ ¤ �� .i/.

Assuming that � is a good enough sofic approximation we have

1

n
jZj > 1 � �
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For every i 2 Z consider the set

Vi D
n
��1
� .i/ W � 2 F

o

and observe that jVij D F. Take a maximal subset Z0 of Z subject to the condition
that Vi and Vj are disjoint for distinct i and j in Z0. Then by maximality

Z �
[

�;� 02F

��1
� �� 0

�
Z0�

and hence

1

n

ˇ̌
Z0 ˇ̌ � jZj

n jFj2 � 1 � �
jFj2

Denote by S the set of choices of colors c D .ci/i2n 2 An for which there is some
Z00 � Z0 such that

1

n

ˇ̌
Z00 ˇ̌ > �

and for every � 2 F and i 2 Z00 one has that c��1
� .i/ D b� . For any such c one has

that
\

�2F

��1
�

�˚
j 2 n W cj D b�

�� � Z00

and hence

1

n

ˇ̌
ˇ̌
ˇ̌
\

�2F

��1
�

�˚
j 2 n W cj D b�

��
ˇ̌
ˇ̌
ˇ̌ � 1

n

ˇ̌
Z00 ˇ̌ > �.

By Lemma 2.13.7 this shows that when � is a good enough sofic approximation

H .Y;F; ı; �/ � jAn nS j .

Observe that if c D .ci/i2n 2 An nS then for every Z00 � Z0 such that jZ00j > �n

there is i 2 Z00 such that the sequences
�
b�
�
�2F and

�
c��1

� .i/

�

�2F
are distinct. This

implies that there is W � Z0 such that jWj D jZ0j � b�nc and for every i 2 W the

sequence
�
��1
� .i/

�

�2F
differs from the sequence

�
b�
�
�2F. Therefore the number of
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elements of An nS is bounded from above by

 
jZ0j

jZ0j � b�nc

!�
jAjjFj � 1

�jZ0j�b�nc jAjn�.jZ0j�b�nc/jFj . (2.4)

Define the function � .t/ D �tlog .t/ for t 2 Œ0; 1
, and observe that � is a concave
function. By Stirling’s approximation formula (see [132] for a very short proof) the
expression (2.4) is in turn bounded from above by

Cexp

	ˇ̌
Z0 ˇ̌ �

	
1 � �n

jZ0j



C ˇ̌
Z0 ˇ̌ �

	
�n

jZ0j




jAjn

 
jAjjFj

jAjjFj � 1

!�.jZ0j��n/

(2.5)

for some constant C not depending on jZ0j or n. From the fact that � is a concave
function and

1

n

ˇ̌
Z0ˇ̌ � .1 � �/

jFj2 > 2�

we obtain the estimate

�

	
1 � �n

jZ0j



C �

	
�n

jZ0j



� �

 
1 � � jFj2 n

1� �

!
C �

 
� jFj2 n

1 � � n

!
.

It follows that the quantity (2.5) is smaller than or equal to

Cexp

 
n�

 
1 � � jFj2

1 � �

!
C n�

 
� jFj2
1 � �

!!
jAjn

 
jAjjFj

jAjjFj � 1

!�
	
1��

jFj
2 ��



n

.

Thus

1

n
log .HF;ı .�;P ; �;Y//

� �

 
1 � � jFj2

1 � �

!
C �

 
� jFj2
1 � �

!

Clog jAj �
	
1 � �

jFj2 � �



log

 
jAjjFj � 1

jAjjFj

!
C o.1/.
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Since this is true for every good enough sofic approximation � , if † is any sofic
approximation sequence then

h†;ı;F .P ; �;Y/

D lim sup
n!C1

1

n
log .HF;ı .�n;P ; �;Y//

� �

 
1 � � jFj2

1 � �

!
C �

 
� jFj2
1 � �

!
C log jAj �

	
1 � �

jFj2 � �



log

 
jAjjFj � 1

jAjjFj

!
.

Being this true for every ı; � < 0 such that ı jFj < � < 1

2jFj2C1 , it follows that

inf
ı>0

h†;ı;F .P ; �;Y/ � log jAj � 1

jFj2 log

 
jAjjFj � 1

jAjjFj

!

as desired.



Chapter 3
Connes’ Embedding Conjecture

Valerio Capraro

3.1 The Hyperfinite II1 Factor

Recall that a von Neumann algebra, as defined in Sect. 1.1, is a weakly closed
*-subalgebra of the algebra B .H/ of bounded linear operators on a Hilbert space
H. A factor is just a von Neumann algebra whose center consists only of scalar
multiples of the identity. An infinite-dimensional factor endowed with a (necessarily
unique and weakly continuous) faithful normalized trace is a II1 factor.

Definition 3.1.1 Suppose that M and N are two factors. If F is a subset of M and
" is a positive real number, then an .F; "/-approximate morphism from M to N is a
functionˆ W M ! N such that ˆ.1/ D 1 and for every x; y 2 F:

• kˆ.x C y/ � .ˆ.x/Cˆ.y//k2 < ";
• kˆ.xy/�ˆ.x/ˆ.y/k2 < ";
• j�M.x/� �N .ˆ.x//j < ".

A II1 factor M satisfies Connes’ embedding conjecture (or CEC for short) if for
every finite subset F of M and every positive real number " there is a natural number
n and an .F; "/-approximate morphismˆ W M ! Mn.C/.

Definition 3.1.2 A finite von Neumann algebra is called hyperfinite if it contains
an increasing chain of copies of matrix algebras whose union is weakly dense.

Exercise 3.1.3 Show that a separable hyperfinite II1 factor satisfies the CEC.

Hyperfiniteness is a much stronger property than satisfying the CEC. In fact
it is a cornerstone result of Murray and von Neumann from [115] that there is a
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unique separable hyperfinite II1 factor up to isomorphism, usually denoted by R.
The separable hyperfinite II1 factor admits several different characterizations. It can
be seen as the group von Neumann algebra (as defined in Sect. 1.1) of the group
Sfin1 of finitely supported permutations of N. Alternatively it can be described as the
von Neumann algebra tensor product

N
nM2.C/ of countably many copies of the

algebra of 2 � 2 matrices. This description enlightens the useful property that R
is tensorially self-absorbing, i.e. R ' R˝R. A deep result of Connes from [43]
asserts that R is also the unique II1 factor that embeds in any other separable II1
factor.

In the following all II1 factors are assumed to be separable, apart from
ultrapowers of separable II1 factors that are never separable by Exercise 2.11.7.
Moreover R will denote the (unique up to isomorphism) hyperfinite separable II1
factor.

The CEC can be equivalently reformulated in terms of local representability into
R.

Definition 3.1.4 A II1 factor M is locally representable in a II1 factor N if for
every finite subset F of M and for every positive real number " there is an .F; "/-
approximate morphism from M to N.

Exercise 3.1.5 Show that a separable II1 factor satisfies the CEC if and only if it is
locally representable into R.

Local representability can be equivalently reformulated in terms of embedding
into an ultrapower, or in terms of values of universal sentences. (The notion
of formula and sentence for tracial von Neumann algebras has been defined in
Sect. 2.11.) The arguments are analogous to the ones seen in Sect. 2.6 and are left to
the reader as Exercise 3.1.6. As in Sect. 2.6 a formula is called universal if it is of
the form

sup
x1

sup
x2
: : : sup

xn

 .x1; : : : ; xn/

where no sup or inf appear in  .

Exercise 3.1.6 Suppose that N and M are a separable II1 factors. Show that the
following statements are equivalent:

1. M is locally representable in N;
2. M embeds into some or, equivalently, every ultrapower of N;
3. 'M � 'N for every universal sentence '.

The universal theory of a II1 factor M is the function associating with any
universal sentence its value in M. The existential theory of M is defined similarly,
where universal sentences are replaced by existential sentences. Since R embeds in
any other II1 factor, the universal theory of R is minimal among the universal theory
of II1 factors, i.e. 'R � 'M for any II1 factor M. In view of this observation and
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Exercise 3.1.5, the particular instance of Exercise 3.1.6 when N is the hyperfinite
II1 factor implies that the following statements are equivalent:

1. M satisfies the CEC;
2. M embeds into some or, equivalently, every ultrapower of R;
3. M has the same universal theory as R.

In the terminology of [58], a II1 factor N is called locally universal if every II1
factor is finitely representable in N. Thus CEC asserts that the separable hyperfinite
II1 is locally universal.. The existence of a locally universal II1 factor, which
can be regarded as a sort of weak resolution of the CEC, is established in [58,
Example 6.4]. It should be noted that on the other hand by [119, Theorem 2] there is
no universal separable II1 factor, i.e. there is no separable II1 factor containing any
other separable II1 factor as a subfactor.

3.2 Hyperlinear Groups and Rădulescu’s Theorem

Hyperlinear groups were defined in Sect. 2.2 in terms of local approximations
by unitary groups of matrix algebras (see Definition 2.2.2). They can also be
equivalently characterized in terms of local approximations by the unitary group
of the hyperfinite II1 factor. This is discussed in Exercise 3.2.1.

Exercise 3.2.1 Suppose that � is a countable discrete group. Regard � as an
invariant length group with respect to the trivial length function, and the unitary
group U.R/ of R as an invariant length group with respect to the invariant length
described in Exercise 2.11.5. Then the following statements are equivalent:

1. � is hyperlinear;
2. for every finite subset F of � and every positive real number " there is an .F; "/-

approximate morphism (as in Definition 2.1.7) from � to U.R/;
3. there is an injective group homomorphism from � to U.R/U for some or,

equivalently, any free ultrafilter U over N;
4. there is a length preserving group homomorphism from � to U.R/U for some or,

equivalently, any free ultrafilter U over N.

Hint The equivalence of 1 and 2 can be can be shown using the characterization of
hyperlinear groups given by Proposition 2.2.9. The equivalence of 1, 3, and 4 can
be established as in Exercises 2.2.3 and 2.2.10.

Observe that, by Exercise 2.11.6, the ultrapower U.R/U of the unitary group
of R with respect to the free ultrafilter U can be identified with the unitary group
U.R/ of the corresponding ultrapower of R. Therefore, in view of Exercise 3.2.1,
U.R/ can be regarded as a universal hyperlinear group, analogously as the
ultraproduct

Q
U Un of the finite rank unitary groups as we have seen in Sect. 2.2.

Proposition 2.6.6 allows one to infer (cf. Corollary 2.6.7) that if the Continuum
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Hypothesis holds then the unitary group of any ultrapower of R has 2@1 outer
automorphisms.

It is a consequence of condition (4) in Exercise 3.2.1 that if � is a countable
discrete hyperlinear group, then the group von Neumann algebra L� of � (see
Definition 1.1.5) satisfies the CEC (this a result of Rădulescu from [131]). In fact
a length preserving homomorphism from � to U.R/ extends by linearity to a trace
preserving embedding of C� to RU . This in turn induces an embedding of L� into
RU , witnessing that L� satisfies the CEC.

With a little extra care one can show that any (not necessarily countable)
subgroup � of the unitary group of some ultrapower of R has the property that the
group von Neumann algebra L� of � embeds into a (possibly different) ultrapower
of R. This is the content of Theorem 3.2.2, established by the first-named author
and Păunescu in [24].

Theorem 3.2.2 For any group � , the following conditions are equivalent:

1. � admits a group monomorphism into U.R/ for some free ultrafilter U on N;
2. The group von Neumann algebra L� embeds into RV for some (possibly

different) free ultrafilter V on N.

If the Continuum Hypothesis holds then, as discussed in Sect. 2.11, all the
ultrapowers of R as isomorphic. In particular one can always pick the same
ultrafilter. It is not clear that this is still possible under the failure of the Continuum
Hypothesis (see [21]).

In the rest of this section we will present the proof of Theorem 3.2.2 that involves
the notion of product of ultrafilters. Let us denote for k 2 N and B � N the vertical
section fn 2 N W .k; n/ 2 Bg of B corresponding to k by Bk.

Definition 3.2.3 Suppose that U , V are free ultrafilters on N. The (Fubini) product
U � V is the free ultrafilter on N � N such that B 2 U � V if and only if the set of
k 2 N such that Bk 2 V belongs to U .

Exercise 3.2.4 Show that the operation � is not commutative.

Exercise 3.2.5 Suppose that U , V are free ultrafilters on N. Show that U � V is a
free ultrafilter on N � N. Moreover if .an;m/n;m2N is a double-indexed sequence in
R, then

lim
n!U

lim
m!V

an;m D lim
.n;m/!U�V

an;m.

It follows from Exercise 3.2.5 that an iterated ultrapower can be regarded as a
single ultrapower. More generally:

Proposition 3.2.6 If .Mn;m; �n;m/ is a double-indexed sequence of tracial von
Neumann algebras, then

Y
U

�Y
V Mn;m

�
'
Y

U�V Mn;m.
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In particular

�
MV�U ' MU�V .

Exercise 3.2.7 This exercise describes an amplification trick to be used in the proof
of Theorem 3.2.2.

1. Let z 2 C such that jzj � 1 and jz C 1j D 2. Prove that z D 1.
2. Let u be a unitary in a II1 factor with trace 1. Show that u D 1.
3. Let u be a unitary in a II1 factor N and let M2.N/ be the factor of two-by-two

matrices with entries in N and denote by � its normalized trace. Consider the
element

u0 D
	

u 0
0 1



:

Show that j�.u0/j < 1.

Proof of Theorem 3.2.2 (2) implies (1) is trivial. Conversely, let � be a group and
� W � ! U.RU / a group monomorphism. Define the new group homomorphism
�1 W � ! U.M2.RU // by

� 0.�/ D
	
�.�/ 0

0 1�



.

By Exercise 3.2.7, this monomorphism verifies the property that j�.� 0.�//j < 1, for
all � ¤ 1. Recall that R is up to isomorphism, the unique (separable) hyperfinite
II1 factor (see Definition 3.1.2). In particular R is isomorphic to R N̋ R, as well as
to the algebra M2.R/ of 2 � 2 matrices over R. As a consequence one obtains an
isomorphism between RU , .R N̋ R/U , and M2.R/. This allows one to regard �1 as a
group monomorphism from � to the unitary group of RU itself.

Now define �2 to be the map from � to the unitary group of .R/U defined in the
following way: If �1.�/ has a representative sequence of unitaries .un/n2N 2 U.R/
(this exists by Exercise 2.11.6) then �2.�/ has representative sequence

.un ˝ un/n2N .

Identifying .R N̋ R/U with RU one can regard �2 as a map from � to the unitary
group of RU . Define analogously �n W � ! U.R/ for every natural number
n taking the tensor product of �1 by itself (coordinatewise). Observe that �n is a
monomorphism that moreover has the property that

j�.�n.�//j D j�.�1.�//jn
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for every � 2 � . Next define �1 from � the unitary group of the iterated ultrapower
.RU /U (which by Exercise 3.2.5 is isomorphic to RU�U ) assigning � to the element
of .RU /U having

.�n.�//n2N

as representative sequence. It is easy to check that �1 is a group monomorphism
verifying the additional property that � .�.�// D 0 for every � ¤ 1� . It is easy
to infer from this, as in the discussion after Exercise 3.2.1, that there is a trace-
preserving embedding of L� into .RU /U ' RU�U . ut

3.3 Kirchberg’s Theorem

As mentioned in the Introduction, Connes’ embedding conjecture can be reformu-
lated in several different ways. The purpose of this section is to present probably the
most unexpected of such reformulations, originally proved by Kirchberg in [101].

Theorem 3.3.1 The following statements are equivalent:

1. Connes’ embedding conjecture holds true,
2. C�.F1/˝max C�.F1/ D C�.F1/˝min C�.F1/:

We refer the reader to Appendix A for all definitions needed to understand the
statement of Kirchberg’s theorem, as the minimal and maximal tensor product of
C*-algebras and the full C*-algebra associated to a locally compact group.

We are not going to present the original proof, but a more recent and completely
different one provided by Haagerup and Winsløw [82, 83]. This is fundamentally a
topological proof relying on the use of the Effros-Marechal topology on the space of
von Neumann algebras. To present a completely self-contained proof of this theorem
is pretty much impossible, since it relies on the Tomita-Takesaki modular theory.
However, we will present the idea in quite many details, leaving out a few technical
lemmas, whose proof is highly non-trivial.

3.3.1 Effros-Marechal Topology on the Space of von Neumann
Algebras

Let H be a Hilbert space and vN.H/ be the set of von Neumann algebras acting
on H, that is the set of von Neumann subalgebras of B.H/. The Effros-Marechal
topology on vN.H/, first introduced in Effros in [52] and Marechal in [112], can be
defined is several different equivalent ways and we will in fact be playing with two
different definitions.
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Let us first recall some terminology. Given a net fCaga2A on a direct set A, we
say that a property P is eventually satisfied if there is a 2 A such that, for all b � a,
Cb satisfies property P. We say that P is frequently satisfied if for all a 2 A there is
b � a such that Cb satisfies property P.

First Definition of the Effros-Marechal Topology. Let X be a compact
Hausdorff space, c.X/ be the set of closed subsets of X and N .x/ be the filter of
neighborhoods of a point x 2 X. N .x/ is a direct set, ordered by inclusion. Let fCag
be a net of subsets of c.X/, define

limCa D fx 2 X W 8N 2 N .x/;N \ Ca ¤ ; eventuallyg ; (3.1)

limCa D fx 2 X W 8N 2 N .x/;N \ Ca ¤ ; frequentlyg : (3.2)

It is clear that limC˛ � limC˛ , but the other inclusion is far from being true in
general.

Exercise 3.3.2 Find an explicit example of a sequence Cn of closed subsets of the
real interval Œ0; 1
 such that limCn ¨ limCn.

Effros proved in [51] that there is only one topology on c.X/, whose convergence
is described by the condition:

Ca ! C if and only if limCa D limCa D C: (3.3)

Exercise 3.3.3 Let M be a von Neumann subalgebra of B.H/. Denote by Ball.M/
the unit ball of M. Prove that Ball.M/ is weakly compact in Ball.B.H//.

The previous exercise allows to use Effros’ convergence in our setting.

Definition 3.3.4 Let fMag � vN.H/ be a net. The Effros-Marechal topology is
described by the following notion of convergence:

Ma ! M if and only if limBall.Ma/ D limBall.Ma/ D Ball.M/:
(3.4)

Second Definition of the Effros-Marechal Topology. Recall that the strong*
topology on B.H/ is the weakest locally convex topology making the maps

x 7! kx�k and x 7! kx��k

continuous for every � 2 H. Let x 2 B.H/ and let so�.x/ denote the filter of
neighborhoods of x with respect to the strong* topology.
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Definition 3.3.5 Let fMag � vN.H/ be a net. We set

lim inf Ma D fx 2 B.H/ W 8U 2 so�.x/;U \ Ma ¤ ; eventuallyg : (3.5)

Observe that lim inf Ma is obviously so*-closed, contains the identity and it is
closed under involution, scalar product and sum, since these operations are so*-
continuous. Haagerup and Winsløw proved in [82], Lemma 2.2 and Theorem 2.3,
that lim inf Ma is also closed under multiplication. Therefore lim inf Ma is a von
Neumann algebra. Moreover, by Theorem 2.6 in [82], lim inf Ma can be seen as
the largest von Neumann algebra whose unit ball is contained in limBall.Ma/. This
suggests to define lim sup Ma as the smallest von Neumann algebra whose unit ball
contains limBall.Ma/, that is clearly .limBall.Ma//

00. Indeed, the double commutant
of a subset of B.H/ is always a *-algebra and the double commutant theorem of von
Neumann states that this is the smallest von Neumann algebra containing the set. So
we are led to the following

Definition 3.3.6 Let fMag � vN.H/ be a net. We set

lim sup Ma WD �
limBall.Ma/

�00
: (3.6)

Definition 3.3.7 The Effros-Marechal topology on vN.H/ is described by the
following notion of convergence:

Ma ! M if and only if lim inf Ma D lim sup Ma D M:

These two definitions of the Effros-Marechal topology are shown to be equivalent
in [82], Theorem 2.8.

Connes’ embedding conjecture regards separable II1 factors, that is, factors with
a faithful representation into B.H/, with H is separable. Assuming separability on
H, the Effros-Marechal topology on vN.H/ turns out to be separable and induced
by a complete metric (i.e. vN.H/ is a Polish space). One possible distance is given
by the Hausdorff distance between the unit balls:

d.M;N/ D max

(
sup

x2Ball.M/

�
inf

y2Ball.N/
d.x; y/

�
; sup

x2Ball.N/

�
inf

y2Ball.M/
d.x; y/

�)
;

(3.7)

where d is a metric on the unit ball of B.H/ which induces the weak topology [112].
Since vN.H/ is separable, we may express its topology by using sequences instead
of nets. This turns out to be particularly useful, since, if fMag D fMng is a sequence,
then the definition of the Effros-Marechal topology may be simplified by making
use of the second definition. One has

lim inf Mn D
n
x 2 B.H/ W 9fxng 2

Y
Mn such that xn !s�

x
o
: (3.8)
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We now state the main theorem of [83]. A part from being of intrinsic interest, it
allows to reformulate Kirchberg’s theorem in the form that we are going to prove.

Let us fix some notation: FIfin is the set of finite factors of type I acting on H,
that is the set of von Neumann factors that are isomorphic to a matrix algebra. FI

is the set of type I factors acting on H, that is the set of von Neumann factors that
are isomorphic to some B.H/, with H separable. FAFD is the set of approximately
finite dimensional or AFD factors acting on H, that is the set of factors containing
an increasing chain of matrix algebras whose union is weakly dense. Finally, Finj is
the set of injective factors acting on H, that is the set of factors that are the image of
a bounded linear projection of norm 1, P W B.H/ ! M.

Theorem 3.3.8 (Haagerup-Winsløw) The following statements are equivalent:

1. FIfin is dense in vN.H/,
2. FI is dense in vN.H/,
3. FAFD is dense in vN.H/,
4. Finj is dense in vN.H/,
5. Connes’ embedding conjecture is true.

Moreover, a separable II1 factor M is embeddable into RU if and only if M 2 Finj.

Since FIfin � FI � FAFD, the implications .1/ ) .2/ ) .3/ are trivial. The
implication .3/ ) .1/ follows from the fact that AFD factors contain, by mere
definition, an increasing chain of type Ifin factors, whose union is weakly dense
and from the first definition of the Effros-Marechal topology (Definition 3.3.4). The
equivalence between (3) and (4) is a theorem by Alain Connes proved in [43]. What
is really new and important in Theorem 3.3.8 is the equivalence between (4) and
(5), proved in [83], Corollary 5.9, and the proof of the last sentence, proved in [83],
Theorem 5.8.

3.3.2 Proof of Kirchberg’s Theorem

By using Theorem 3.3.8, it is enough to prove the following statements:

1. If FIfin is dense in vN.H/, then C�.F1/˝min C�.F1/ D C�.F1/˝max C�.F1/.
2. If C�.F1/˝min C�.F1/ D C�.F1/˝max C�.F1/, then Finj is dense in vN.H/.

Proof of (1) Let  be a *-representation of the algebraic tensor product C�.F1/ˇ
C�.F1/ into B.H/. Since C�.F1/ is separable, we may assume that H is separable.
In this way

A D .C�.F1/ˇ C1/ and B D .C1ˇ C�.F1//
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belong to B.H/, with H separable. Let fung be the universal unitaries in C�.F1/, as
in Exercises A.4 and A.5. Let

vn D .un ˝ 1/ 2 A and wn D .1˝ un/ 2 B:

Set M D A00 2 vN.H/. By hypothesis, there exists a sequence fFmg � FIfin such
that Fm ! M in the Effros-Marechal topology. Therefore, A � M D lim inf Fm D
lim sup Fm. Thus, we have

A � lim inf Fm:

It follows that

fvng � U.A/ � U.lim inf Fm/ D limBall.Fm/ \ U.B.H//;

where the equality follows from [82], Theorem 2.6. Let w.x/ and so�.x/ respectively
the filters of weakly and strong* open neighborhoods of an element x 2 B.H/. We
have just proved that for every n 2 N and W 2 w.vn/, one has W \ Ball.Fm/ \
U.B.H// ¤ ; eventually in m. Let S 2 so�.vn/, by [82] Lemma 2.4, there exists
W 2 w.vn/ such that W \ Ball.Fm/ \ U.B.H// � S \ Ball.Fm/ \ U.B.H//. Now,
since the first set must be eventually non empty, also the second one must be the
same. This means that we can approximate in the strong* topology vn with elements
vm;n 2 U.Fm/.

In a similar way we can find unitaries wm;n in F0
m such that wm;n !so�

wn. Indeed,
we have

B � A0 D M0 D .lim sup Fm/
0 D lim inf F0

m;

where the last equality follows by the commutant theorem ([82], Theorem 3.5).
Therefore, we may repeat word-by-word the previous argument.

Now let m be fixed, m;1 be a representation of C�.F1/ mapping un to vm;n

and m;2 be a representation of C�.F1/ mapping un to wm;n. We can find these
representations because the u0

ns are free and because any representation of G
extends to a representation of C�.G/. Notice that the ranges of these representations
commute, since vn 2 A and wn 2 B and A;B commute. More precisely, the image
of m;1 belongs into C�.Fm/ and the image of m;2 belongs to C�.F0

m/. So, by
the universal property in Proposition A.10, there are unique representations m of
C�.F1/˝max C�.F1/ such that

m.un ˝ 1/ D vm;n and m.1˝ un/ D wm;n; m; n 2 N;

whose image lies into C�.Fm;F0
m/.

Exercise 3.3.9 Prove that C�.Fm;F0
m/ D Fm ˝min F0

m. (Hint: use Theorem 4.1.8(iii)
in [91] and Lemma 11.3.11 in [92].)
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By Exercise 3.3.9, C�.Fm;F0
m/ D Fm ˝min F0

m and thus m splits: m D �m ˝�m,
for some �m; �m representation of C�.F1/ in C�.Fm;F0

m/. Consequently, by the
very definition of minimal C*-norm, jjm.x/jj � jjxjjmin for all m 2 N and x 2
C�.F1/ˇ C�.F1/. Now, by Exercise A.5, the sequence fung is total and therefore
m converges to  in the strong* point-wise sense. Namely, for all x 2 C�.F1/ˇ
C�.F1/, one has m.x/ !so�

.x/.

Exercise 3.3.10 Prove that if xn 2 B.H/ converges to x 2 B.H/ in the strong*
topology, then jjxjj � lim inf jjxnjj.

Therefore

jj.x/jj � lim inf jjm.x/jj � jjxjjmin; 8x 2 C�.F1/ˇ C�.F1/:

Since  is arbitrary, it follows that jjxjjmax � jjxjjmin and the proof of the first
implication is complete. ut

In order to prove (2) we need a few more definitions and preliminary results.
Given two *-representation  and � of the same C*-algebra A in the same B.H/, we
say that they are unitarily equivalent, and we write  � �, if there is u 2 U.B.H//
such that, for all x 2 A, one has u.x/u� D �.x/. Given a family of representations
a of the same C*-algebra in possibly different B.Ha/, we may define the direct sumL

a a to be a representation of A in B.
L

Ha) in the obvious way, that is,

�M
a

�
.x/� D

M
.a.x/�a/ ; for all � D .�a/ 2

M
Ha:

A family of representation is called separating if their direct sum is faithful (i.e.
injective).

We state the following deep lemma, proved by Haagerup and Winsløw in [83],
Lemma 4.3, making use of Voiculescu’s Weyl-von Neumann theorem.

Lemma 3.3.11 Let A be a unital C*-algebra and �; � representations of A in B.H/.
Assume � is faithful and satisfies � � � ˚ � ˚ � � � . Then there exists a sequence
fung � U.B.H// such that

un�.x/u
�
n !s�

�.x/; 8x 2 A:

The other preliminary result is a classical theorem by Choi (see [37], Theorem 7).

Theorem 3.3.12 Let F2 be the free group with two generators. Then C�.F2/ has a
separating family of finite dimensional representations.

Exercise 3.3.13 Show that F1 embeds into F2.

Proof (Proof of (2)) By using Choi’s theorem and Exercise 3.3.13 we can find
a sequence �n of finite dimensional representations of C�.F1/ such that � D
�1 ˚ �2 ˚ � � � is faithful. Replacing � with the direct sum of countably many
copies of itself, we may assume that � � � ˚ � ˚ � � � . Now, � D � ˝ � is a
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faithful (by [140], IV.4.9) representation of C�.F1/˝min C�.F1/, because � splits.
Moreover, � still satisfies � � � ˚ � ˚ � � � . Now, given M 2 vN.H/, let fvng; fwng
be strong* dense sequences of unitaries in Ball.M/ and Ball.M0/, respectively. Let
fzng be the universal unitaries representing free generators of F1 in C�.F1/, as in
Exercises A.4 and A.5. Since the zn’s are free, we may find *-representations�1 and
�2 of C�.F1/ in B.H/ such that

�1.zn/ D vn and �2.zn/ D wn:

Since the ranges of these representations commute, we can apply the universal
property in Proposition A.10 to find a representation � of C�.F1/ ˝min C�.F1/
such that

�.zn ˝ 1/ D vn and �.1˝ zn/ D wn; 8n 2 N;

where we can use the minimal norm instead of the maximal one thank to the
hypothesis of the theorem. This means that � and � satisfy the hypotheses of
Lemma 3.3.11 and therefore there are unitaries un 2 U.B.H// such that

un�.x/u
�
n !so�

�.x/; 8x 2 C�.F1/˝min C�.F1/:

Define

Mn D un�.C
�.F1/˝ C1/00u�

n :

Therefore, using also Equation (3.8), we have

�.C�.F1/˝ C1/ D lim inf un�.C
�.F1/˝ C1/u�

n � lim inf Mn: (3.9)

Now, observe that

un�.C1˝ C�.F1//u�
n � M0

n

and therefore

�.C1˝ C�.F1// � lim inf M0
n: (3.10)

Since lim inf Ma is always a von Neumann algebra, the inclusions in (3.9) and (3.10)
still hold passing to the weak closure. Therefore, by (3.9), we obtain

M D �.C�.F1/˝ C1/00 � lim inf Mn; (3.11)

where the equality with M follows from the fact that the vn’s are strong* dense in
Ball.M/. Analogously, by (3.10), we obtain

M0 D �.C1˝ C�.F1//00 � lim inf M0
n; (3.12)
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where the equality with M0 follows from the fact that the wn’s are strong* dense in
Ball.M0/.

Now, using (3.11) and (3.12) and applying the commutant theorem ([82],
Theorem 3.5), we get

M D M00  �
lim inf M0

n

�0 D lim sup.Mn/
00 D lim sup Mn:

Therefore

lim sup Mn � M � lim inf Mn;

i.e. Mn ! M in the Effros-Marechal topology. Therefore, we have proved that every
von Neumann algebra M can be approximated by von Neumann algebras Mn that
are constructed as strong closure of faithful representations that are direct sum of
countably many finite-dimensional representations. Such von Neumann algebras are
injective and therefore, we have proved that vNinj.H/ is dense in vN.H/. Now, by
[82], Theorem 5.2, vNinj is a Gı subset of vN.H/ and by [82], Theorem 3.11, and
[83], Theorem 2.5, the set of all factors F.H/ is a dense Gı-subset of vN(H). Since
vN.H/ is a Polish space, we can apply Baire’s theorem and conclude that also the
intersection vNinj.H/\ F.H/ D Finj.H/ must be dense. ut

Let K denote the class of groups � satisfying Kirchberg’s property

C�.�/˝min C�.�/ D C�.�/˝max C�.�/

The following seems to be an open and interesting problem [20].

Problem 3.3.14 Does K contain a countable discrete non-amenable group?

Another interesting question comes from the observation that the previous proof
as well as Kirchberg’s original proof uses free groups in a very strong way.

Problem 3.3.15 For which groups � , does the property � 2 K implies Connes’
embedding conjecture?

3.4 Connes’ Embedding Conjecture and Lance’s WEP

Kirchberg’s theorem 3.3.1 is an astonishing link between the theory of von Neu-
mann algebras and the theory of C*-algebras. In the same paper, Kirchberg found
another profound link between these two theories: Connes’ embedding conjecture
is a particular case of a conjecture regarding the structure of C*-algebras, the
QWEP conjecture, asking whether any C*-algebra is a quotient of a C*-algebra with
Lance’s WEP. It is then natural to ask whether there is a direct relation between
Connes’ embedding conjecture and WEP. Nate Brown answered this question in



86 V. Capraro

the affirmative, proving that Connes’ embedding conjecture is equivalent to the
analogue of Lance’s WEP for separable type II1 factors.

Definition 3.4.1 Let A;B be C*-algebras. A linear map � W A ! B is called positive
if �.a�a/ � 0, for all a 2 A.

Definition 3.4.2 Let A;B be C*-algebras and � W A ! B be a linear map. For every
n 2 N we can define a map �n W Mn.A/ ! Mn.B/ by setting

�nŒaij
 D Œ�.aij/


� is called completely positive if �n is positive for every n.

Exercise 3.4.3 Show that any *-homomorphism between C*-algebras is com-
pletely positive.

Definition 3.4.4 Let A � B be two C*-algebras. We say that A is weakly cp
complemented in B if there exists a unital completely positive map � W B ! A��
such that �jA D IdA.

Let A be a C*-algebra. We recall that there is always a faithful representation
of A into a suitable B.H/, for instance the GNS representation. In other words, one
can always regard an abstract C*-algebra as a sub-C*-algebra of B.H/ through a
faithful representation. Hereafter, we use the notation A � B.H/ to say that we have
fixed one particular such representation. As we will see, the concepts we are going
to introduce are independent of the representation.

Definition 3.4.5 A C*-algebra A has the weak expectation property (WEP, for
short) if it is weakly cp complemented in B.H/ for a faithful representation A �
B.H/.

The weak expectation property was introduced by Lance in [105].

Exercise 3.4.6 Show that WEP does not depend on the faithful representation A �
B.H/.

Representation-free characterizations of WEP have been recently proven in [63,
64, 96] leading to new formulations of Connes’ Embedding Problem [64].

Definition 3.4.7 A C*-algebra A has QWEP if it is a quotient of a C*-algebra with
WEP.

QWEP conjecture states that every C*-algebra has QWEP. As mentioned above,
in [101], Kirchberg proved also the following theorem.

Theorem 3.4.8 Let M be a separable II1 factor. The following statements are
equivalent

1. M is embeddable into some RU ,
2. M has QWEP.
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We refer to the original paper by Kirchberg [101] and to the more recent survey
by Ozawa [118] for the proof of this theorem. In these notes we focus on a
technically easier but equally interesting topic: the von Neumann algebraic analogue
of Lance’s WEP and the proof of Brown’s theorem.

Definition 3.4.9 Let M � B.H/ be a von Neumann algebra and A � M a weakly
dense C*-subalgebra. We say that M has a weak expectation relative to A if there
exists a ucp map ˆ W B.H/ ! M such that ˆjA D IdA.

Theorem 3.4.10 (Brown, [16] Theorem 1.2) For a separable type II1 factor M the
following conditions are equivalent:

1. M is embeddable into RU .
2. M has a weak expectation relative to some weakly dense subalgebra.

Observe that the notion of injectivity for von Neumann algebras can be stated
also this way: M � B.H/ is injective if there exists a ucp map ˆ W B.H/ ! M such
that ˆ.x/ D x, for all x 2 M. So relative weak expectation property is something
just a bit less than injectivity. In fact Brown’s theorem can be read by saying that
weak expectation relative property is the “limit property of injectivity”.

Corollary 3.4.11 For a separable type II1 factor the following conditions are
equivalent:

1. M has a relative weak expectation property,
2. M has QWEP,
3. M is Effros-Marechal limit of injective factors.

Proof It is an obvious consequence of Theorems 3.4.10 and 3.3.8. ut
The equivalence between (2) and (3) has been recently generalized to every von

Neumann algebra (see [2], Theorem 1.1).
We now move towards the proof of Theorem 3.4.10. Let A be a separable C*-

algebra.

Definition 3.4.12 A tracial state on A is map � W AC ! Œ0;1
 such that

1. �.x C y/ D �.x/C �.y/, for all x; y 2 AC;
2. �.�x/ D ��.x/, for all � � 0; x 2 AC;
3. �.x�x/ D �.xx�/ for all x 2 A;
4. �.1/ D 1.

A tracial state extends to a positive functional on the whole A. We will often identify
the tracial state with its extension.

Definition 3.4.13 A tracial state � on A � B.H/ is called invariant mean if there
exists a state  on B.H/ such that

1.  .uTu�/ D  .T/, for all u 2 U.A/ and T 2 B.H/;
2.  jA D � .
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Note 3.4.14 Theorem 3.4.19 shows that the notion of invariant mean is independent
of the choice of the faithful representation A � B.H/.

In order to prove Brown’s theorem we need a characterization of invariant means
that will be proven in Theorem 3.4.19.

In order to prove such result we need two classical theorems and one lemma.
Recall that Lp.B.H// stands for the ideal of linear and bounded operators a such

that jjajjp WD Tr
�
.a�a/

p
2

� 1
p

is finite, where Tr is the canonical semifinite trace on

B.H/. The notation Lp.B.H//C stands for the cone of operators a in Lp.B.H// that
are positive, that is, .a�; �/ � 0, for all � 2 H. The following well known inequality
is sometimes called Powers-Størmer inequality (see [128]).

Theorem 3.4.15 Let h; k 2 L1.B.H//C. Then

jjh � kjj22 � jjh2 � k2jj1;
In particular, if u 2 U.B.H// and h � 0 has finite rank, then

jjuh1=2 � h1=2ujj2 D jjuh1=2u� � h1=2jj2 � jjuhu� � hjj1=21 :

We now use Powers-Størmer’s inequality to prove a lemma. Recall that Mq .C/

stands for the von Neumann algebra of q-by-q matrices with complex entries.

Lemma 3.4.16 Let H be a separable Hilbert space and h 2 B.H/ be a positive,
finite rank operator with rational eigenvalues and Tr.h/ D 1. Then there exists a
ucp map ˆ W B.H/ ! Mq .C/ such that

1. tr.ˆ.T// D Tr.hT/, for all T 2 B.H/;
2. jtr.ˆ.uu�/�ˆ.u/ˆ.u�//j < 2jjuhu� � hjj1=21 , for all u 2 U.B.H//;

where tr stands for the normalized trace on Mq .C/.

We prove the two statements separately.

Proof of (1) Let v1; : : : ; vk 2 H be the eigenvectors of H and p1
q ; : : : ;

pk
q be the

corresponding eigenvalues. Thus

1. hvi D pi
q ;

2.
Pk

iD1
pi
q D tr.h/ D 1. It follows that

P
pi D q.

Let fwmg be an orthonormal basis for H and let

B D fv1˝w1; : : : ; v1˝vp1g[fv2˝w1; : : : ; v2˝wp2g[� � �[fvk ˝w1; : : : vk ˝wpk g

Let V be the subspace of H ˝ H spanned by B and let P W H ˝ H ! V be the
orthogonal projection. Given T 2 B.H/, observe that the following formula holds

Tr.P.T ˝ 1/P/ D
kX

iD1
pihTvi; vii:
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Indeed P.T ˝ 1/P is representable (in the basis B) by a q � q block diagonal matrix
whose blocks have dimension pi with entries ETE, where E W H ! spanfv1; : : : vkg
is the orthogonal projection.

Now defineˆ W B.H/ ! Mq .C/ by setting ˆ.T/ D P.T ˝ 1/P. We have

tr.ˆ.T// D 1

q
Tr.P.T ˝ 1/P/

D
kX

iD1
hT

pi

q
vi; vii

D
kX

iD1
hThvi; vii D Tr.Th/:

The following exercise concludes the proof of the first statement. ut
Exercise 3.4.17 Prove that ˆ is ucp.

Proof of (2) By writing down the matrix of P.T ˝ 1/P.T� ˝ 1/P in the basis B we
have

Tr.P.T ˝ 1/P.T� ˝ 1/P/ D
kX

i;jD1
jTi;jj2 min.pi; pj/;

where Ti;j D hTvj; vii. Analogously, by writing down the matrices of h1=2T;Th1=2

and h1=2Th1=2T� in any orthonormal basis beginning with fv1; : : : vkg we have

Tr.h1=2Th1=2T�/ D
kX

i;jD1

1

q
.pipj/

1=2jTi;jj2:

By using these formulae, we can make the following preliminary calculation

jTr.h1=2Th1=2T�/� tr.ˆ.T/ˆ.T�//j

D
ˇ̌
ˇ̌
ˇ̌

kX

i;jD1

1

q
.pipj/

1=2jTi;jj2 � 1

q
Tr.P.T ˝ 1/P.T� ˝ 1/P/

ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌

kX

i;jD1

1

q
jTi;jj2..pipj/

1=2 � min.pi; pj/

ˇ̌
ˇ̌
ˇ̌

�
kX

i;jD1

1

q
jTi;jj2p1=2i

ˇ̌
ˇp1=2j � p1=2i

ˇ̌
ˇ
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�
0

@
kX

i;jD1

1

q
jTi;jj2pi

1

A
1=20

@
kX

i;jD1

1

q
jTi;jj2

�
p1=2i � p1=2j

�
1

A
1=2

D jjTh1=2jj2jjh1=2T � Th1=2jj2;

where the first inequality follows by the property min.pi; pj/ � pi and the second
one is obtained by applying the classical Hölder inequality. Now suppose that
T 2 U.B.H//, so that jjTh1=2jj2 D jjh1=2jj2 D 1. Using again the Powers-Størmer
inequality, we can continue the previous computation as follows:

jjh1=2T � Th1=2jj2 D jjTh1=2T� � h1=2jj2
� jjThT� � Tjj1=21

We can now conclude the proof. Indeed, using the triangle inequality, the previous
computation and the Cauchy-Schwarz inequality, we find

jTr.ˆ.TT�/�ˆ.T/ˆ.T�//j
� j1� Tr.h1=2Th1=2T�/j C jjThT� � hjj1=21
D jTr.ThT�/ � Tr.h1=2Th1=2T�/j C jjThT� � hjj1=21
D jTr..Th1=2 � h1=2T/h1=2T�/j C jjThT� � hjj1=21
� jjh1=2T�jj2jjTh1=2 � h1=2Tjj2 C jjThT� � hjj1=21
� 2jjThT � hjj 121 ;

where the last inequality follows by using the fact that T is unitary and by applying
Powers-Størmer inequality once again. ut

The last preliminary result needed for the proof of Theorem 3.4.19 is classical
theorem by Choi [36].

Theorem 3.4.18 Let A;B be two C*-algebras and ˆ W A ! B be a ucp map. Then

fa 2 A W ˆ.aa�/ D ˆ.a/ˆ.a�/; ˆ.a�a/ D ˆ.a�/ˆ.a/g
D fa 2 A W ˆ.ab/ D ˆ.a/ˆ.b/; ˆ.ba/ D ˆ.b/ˆ.a/;8b 2 Ag:

We are now ready to prove a useful characterization of invariant means, first
proved in [102], Proposition 3.2.

Theorem 3.4.19 Let � be a tracial state on A � B.H/. Then the following are
equivalent:

1. � is an invariant mean.
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2. There exists a sequence of ucp maps ˆn W A ! Mk.n/ such that

(a) jjˆn.ab/�ˆn.a/ˆn.b/jj2 ! 0 for all a; b 2 A,
(b) �.a/ D limn!1tr.ˆn.a//, for all a 2 A.

3. For any faithful representation � W A ! B.H/ there exists a ucp mapˆ W B.H/ !
� .A/00 such that ˆ.�.a// D �.a/, for all a 2 A, where � stands for the GNS
representation associated to � .1

Proof of .1/ ) .2/ Let � be an invariant mean with respect to the faithful repre-
sentation � W A ! B.H/. Thus we can find a state  on B.H/ which extends
� and such that  .uTu�/ D  .T/, for all u 2 U.A/ and for all T 2 B.H/.
Since the normal states are weak* dense in the dual of B.H/ and they can be
represented in the form Tr.h�/, with h 2 L1.B.H//, we can find a net h� 2 L1.B.H//
such that Tr.h�T/ !  .T/, for all T 2 B.H/. Moreover, the representatives h�
can be chosen to be positive and with trace 1. Now, since  .uTu�/ D  .T/,
it follows that Tr.uh�u�T/ D Tr.h�u�Tu/ !  .u�Tu/ D  .T/ and thus
Tr.h�T/ � Tr..uh�u�/T/ ! 0, for all T 2 B.H/, i.e. h� � uh�u� ! 0 in the
weak topology of L1.B.H//. Now let fUng be an increasing family of finite sets of
unitaries whose union have dense linear span in A and " D 1

n . Let Un D fu1; : : : ; ung.
Fixed n, let us consider the convex hull of the set fu1h�u�

1 � h�; : : : ; unh�u�
n � h�g.

Its weak closure contains 0 (because of the previous observation) and coincide with
the 1-norm closure, by the Hahn-Banach separation theorem. Thus there exists a
convex combination of the h�’s, say h, such that

1. Tr.h/ D 1,
2. jjuhu� � hjj1 < ";8u 2 Un,
3. jTr.uh/� �.u/j < ";8u 2 Un.

Moreover, since finite rank operators are norm dense in L1.B.H//, we can assume
without loss of generality that h has finite rank with rational eigenvalues. Now we
can apply Lemma 3.4.16 in order to construct a sequence of ucp mapsˆn W B.H/ !
Mk.n/ such that

1. Tr.ˆn.u// ! �.u/,
2. jTr.ˆn.uu�//�ˆn.u/ˆn.u�/j ! 0,

for every unitary in a countable set whose linear span is dense in A. So the property
2(b) is true for unitaries and consequently, being a linear property, it holds for all
operators.

1We briefly recall the GNS construction (see [68, 134]). Setting hx; yi WD �.x�y/, one obtains a
possibly singular inner product on A. Let I be the subspace of elements x such that hx; xi D 0 and
consider the Hilbert space H obtained by completing A=I with respect to h�; �i. Using the fact that
I is a left ideal, one sees that the operator �.x/ defined by � .x/.y/ D xy passes to a linear and
bounded operator from H to itself and then the mapping x ! � .x/ is a representation of A into
B.H/. It turns out that this representation is always faithful: if A is unital, then this is immediate.
Otherwise, one has to use a more subtle argument using approximate identities in C*-algebras.
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In order to prove 2(a), we observe thatˆn.uu�/�ˆn.u/ˆn.u�/ � 0 and thus the
following inequality holds

jj1�ˆn.u/ˆn.u
�/jj22 � jj1 �ˆn.u/ˆn.u

�/jjtr.ˆn.uu�/�ˆn.u/ˆn.u
�//

Since the right hand side tends to zero, also the left hand side must converge to 0.
Now define ˆ D ˚ˆn W A ! Q

Mk.n/ � `1.R/ and compose with the quotient
map p W `1.R/ ! RU . The previous inequality shows that if u is a unitary such
that jjˆn.uu�/ � ˆn.u/ˆn.u�/jj2 ! 0 and jjˆn.u�u/ �ˆn.u�/ˆn.u/jj2 ! 0, then
u falls in the multiplicative domain of p ı ˆ. But such unitaries have dense linear
span in A and hence the whole A falls in the multiplicative domain of p ı ˆ (by
Choi’s Theorem 3.4.18). By definition of ultraproduct this just means that jjˆn.ab/�
ˆn.a/ˆn.b/jj2 ! 0, for all a 2 A. ut
Proof of .2/ ) .3/ Let ˆn W A ! Mk.n/ be a sequence of ucp maps with the
properties stated in the theorem. By identifying each Mk.n/ with a unital subfactor
of R we can define a ucp map Q̂ W A ! `1.R/ by x ! .ˆn.x//n. Since the
ˆ0

ns are asymptotically multiplicative in the 2-norm one gets a �-preserving *-
homomorphism A ! RU by composing with the quotient map p W l1.R ! RU .
Note that the weak closure of p ı Q̂ .A/ into RU is isomorphic to �.A/00. Thus we
are in the following situation

where K is a representing Hilbert space for `1.R/ and i is a natural embedding
induced by an embedding H ! K, whose existence is guaranteed by the fact that H
is separable. Since `1.R/ is injective, there is a projection E W B.K/ ! `1.R/
of norm 1. Let F W RU ! � .A/00 be a conditional expectation (see [140],
Proposition 2.36), one has
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Define ˆ W B.H/ ! �.A/00 by setting ˆ D FpEi. One has ˆ.�.a// D � .a/. ut
Proof of .3/ ) .1/ The hypothesis ˆ.a/ D �.a/ guarantees that ˆ is multiplica-
tive on A, since � is a representation. By Choi’s Theorem 3.4.18 it follows that
ˆ.aTb/ D � .a/ˆ.T/� .b/, for all a; b 2 A;T 2 B.H/. Let � 00 be the vector trace
on � .A/00 and consider � 00 ı ˆ. Clearly it extends � . Moreover it is invariant under
the action of U.A/, indeed

.� 00 ıˆ/.u�Tu/ D � 00.� .u/�ˆ.T/� .u// D � 00.ˆ.T// D .� 00 ıˆ/.T/

Hence � is an invariant mean. ut
The following proposition was also proved by Nate Brown in [16].

Proposition 3.4.20 Let M be a separable II1 factor. There exists a
*-monomorphism � W C�.F1/ ! M such that �.C�.F1// is weakly dense in
M.

Proof Observe that C�.F1/ can be viewed as inductive limit of free products of
copies of itself. This can be proven by partitioning the set of generators in a sequence
Xn of countable sets, by defining An D C�.X1; : : : ;Xn/ and by observing that An D
An�1 	 C�.Xn/ Š C�.F1/, where 	 stands for the free product with amalgamation
over the scalars. Now, by Choi’s Theorem 3.3.12 we can find a sequence of integers
fk.n/gn2N and a unital *-monomorphism � W A ! Q

n2N Mk.n/. Note that we may
naturally identify each Ai with a subalgebra of A and hence, restricting � to this
copy, get an injection of Ai into

Q
Mk.n/.

Assume we can prove the existence of a sequence of unital *-homomorphism
�i W Ai ! M such that:

1. Each �i is injective;
2. �iC1jAi D �i where we identify Ai with the “left side” of Ai 	 C�.F1/ D AiC1;
3. The union of f�i.Ai/g is weakly dense in M.

then we would have completed the proof. Indeed, it would be enough to define � as
the union of the �i’s.

The purpose is then to prove existence of such a sequence �i. To this end we first
choose an increasing sequence of projections of M such that �M.pi/ ! 1. Then we
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define the orthogonal projections qn D pn � pn�1 and consider the II1 factors Qi D
qiMqi. Now, by the division property of II1 factors (see Theorem 1.1.4), we can find
a unital embedding

Q
Mk.n/ ! Qi � M. By composing with � , we get a sequence

of embeddings A ! M, which will be denoted by �i. Now piMpi is separable and
thus there is a countable family of unitaries whose finite linear combinations are
dense in the weak topology. Hence we can find a *-homomorphismi W C�.F1/ !
piMpi with weakly dense range (take the generators of F1 into C�.F1/ and map
them into that total family of unitaries). Now we define

�1 D 1 ˚
0

@
M

j�2
�jjA1

1

A W A1 ! p1Mp1 ˚ .…j�2Qj/ � M

�1 is a *-monomorphism, since each �i is already faithful on the whole A.
Now define a *-homomorphism �2 W A2 D A1 	 C�.F1/ ! p2Mp2 as the free

product of the *-homomorphism A1 ! p2Mp2 defined by x ! p2�1.x/p2 and 2 W
C�.F1/ ! p2Mp2. We then set

�2 D �2 ˚
0

@
M

j�3
�jjA2

1

A W A2 ! p2Mp2 ˚ .…j�3Qj/ � M

Clearly �2jA1 D �1. In general, we construct a map �nC1 W An 	 C�.F1/ !
pnC1MpnC1 as the free product of the cutdown (by pnC1) of �n and n. This map
need not be injective and hence we take a direct sum with ˚j�nC2�jjAnC1

to remedy
this deficiency. These maps have all the required properties and hence the proof is
complete (note that the last property follows from the fact that the range of each �n

is weakly dense in pnC1MpnC1). ut
Theorem 3.4.21 (Brown [16]) Let M be a separable II1 factor and U be a free
ultrafilter on the natural numbers. The following conditions are equivalent:

1. M is embeddable into RU .
2. M has the weak expectation property relative to some weakly dense subalgebra.

Proof of .1/ ) .2/ Let M be embeddable into RU . By Proposition 3.4.20, we may
replace M with a weakly dense subalgebra A isomorphic to C�.F1/. We want to
prove that M has the weak expectation property relative to A. Let � the unique
normalized trace on M, more precisely we will prove that � .M/ has the weak
expectation property relative to �.A/. Indeed � is faithful and w-continuous and
hence �.M/ and � .A/ are respectively copies of M and A and �.A/ is still
weakly dense in � .M/. We first prove that � jA is an invariant mean. Take fung
universal generators of F1 into A. Let n be fixed, since un 2 RU , then un is
jj � jj2-ultralimit of unitaries in R (see Exercise 2.11.6). On the other hand, the
unitary matrices are weakly dense in U.R/ and hence they are jj � jj2-dense in
U.R/ (since weakly closed convex subsets coincide with the jj � jj2-closed convex
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ones (see, e.g., [87])). Thus we can find a sequence of unitary matrices which
converges to un in norm jj � jj2. Let � be the mapping which sends each un to such a
sequence. Since the un’s have no relations, we can extend � to a *-homomorphism
� W C�.F1/ ! Q

Mk .C/ � `1.R/. Let p W `1.R/ ! RU be the quotient
mapping. By the 2-norm convergence we have .p ı �/.x/ D x for all x 2 C

�.F1/.
Let pn W Q1

kD1 Mk .C/ ! Mn .C/ be the projection, by the definition of the trace in
RU , we have

�.x/ D lim
n!U

trn.pn.�.x///;

where trn is the normalized trace on Mn .C/. Now we can apply Theorem 3.4.19(2)
by setting �n D pn ı� (they are ucp since they are *-homomorphisms) and conclude
that � jA is an invariant mean. Now consider �.M/ � B.H/ and � .A/ D � jA.A/ �
B.H/. By Theorem 3.4.19 there exists a ucp map ˆ W B.H/ ! �.A/00 D �.M/
such that ˆ.a/ D �.a/. Thus M has the weak expectation property relative to
C�.F1/. ut
Proof of .2/ ) .1/ Let A � M � B.H/, with A weakly dense in M, and ˆ W
B.H/ ! M a ucp map which restricts to the identity on A. Let � be the unique
normalized trace on M. After identifying A with � .A/, we are under the hypothesis
of Theorem 3.4.19(3) and thus � jA is an invariant mean. By Theorem 3.4.19 it
follows that there exists a sequence �n W A ! Mk.n/ such that

1. jj�n.ab/� �n.a/�n.b/jj2 ! 0 for all a; b 2 A,
2. �.a/ D limn!1 trn.�n.a//, for all a 2 A.

Let p W `1.R/ ! RU be the quotient mapping. The previous properties guarantee
that the ucp mapping ˆ W A ! RU , defined by setting ˆ.x/ D p.f�n.x/g/ is a *-
homomorphism which preserves � jA. It follows that ˆ is injective. Indeed, ˆ.x/ D
0 ) ˆ.x�x/ D 0 ) �.x�x/ D 0 ) x D 0. Observe now that the weak closure of
A into RU is isomorphic to M (they are algebraically isomorphic and have the same
trace) and hence M embeds into RU . ut

3.5 Algebraic Reformulation of the Conjecture

In this section we present a new line of research that has been initially designed
by Rădulescu, with his proof that Connes’ embedding conjecture is equivalent to a
non-commutative analogue of Hilbert’s 17th problem, and continued by Klep and
Schweighofer first and Juschenko and Popovich afterwards, who arrived to a purely
algebraic reformulation of Connes embedding conjecture. This section is merely
descriptive and serves to introduce the reader to a new field of research, which,
though motivated by the Connes embedding conjecture, is quite far from geometric
group theory and operator theory, which are the main topics of this monography.
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The reader interested in technical details of this approach, is referred to the original
papers [89, 103, 130].

We begin with a short description of the original formulation of Hilbert’s
problem and we show hot to get to Rădulescu’s formulation through a series of
generalizations.

Let RŒx1; : : : ; xn
 denote the ring of polynomials with n indeterminates
and real coefficients and R.x1; : : : ; xn/ denote its quotient field. A polynomial
f 2 RŒx1; : : : ; xn
 is called non-negative if, for all .x1; : : : ; xn/ 2 R

n, one has
f .x1; : : : ; xn/ � 0.

Problem 3.5.1 (Hilbert’s 17th Problem) Can every non-negative polynomial be
expressed as sum of squares of elements belonging to R.x1; : : : ; xn/?

This problem was solved in the affirmative by Emil Artin [4], who provided an
abstract proof of existence of such a sum. More recently, Delzell [48] provided an
explicit algorithm.

More recently, scholars have been looking for challenging generalizations of
this problem, the most intuitive of which is the one concerning matrices. Consider
positive semi-definite matrices with entries in RŒx1; : : : ; xn
, that is, matrices that
are positive semi-definite for all substitution .x1; : : : ; xn/. Observe that the matrix
analogue of a square, is a positive semi-definite symmetric matrix. Indeed, every
matrix B such that B D A�A, is also symmetric, that is B� D B; conversely, every
positive semi-definite symmetric matrix B can be rooted (by functional calculus)
and so it is a square: B D .

p
B/2.

Problem 3.5.2 Can all positive semi-definite matrices with entries in RŒx1; : : : ; xn


be written as sum of squares of symmetric matrices with entries in R.x1; : : : ; xn/?

This problem was solved in the affirmative independently by Gondard and
Ribenoim [74] and Procesi and Schacher [129]. A constructive solution has been
provided much later by Hillar and Nie [86].

In order to present the version of this problem using operator theory, we need
to pass through a geometric analogue. To this end, observe that a polynomial
f 2 RŒx1; : : : ; xn
 is just a function from R

n to R. So one may attempt to extend
Hilbert’s 17th problem from polynomial on R

n to more general functions defined on
manifolds. Recall that an n-manifold M is called irreducible if for any embedding
of the n-sphere Sn�1 into M there exists an embedding of the n-ball Bn into M such
that the image of the boundary of Bn coincides with the image of Sn�1.

Problem 3.5.3 (Geometric Analogue of Hilbert’s 17th Problem) Let M be a
paracompact irreducible analytic manifold and f W M ! R be a non-negative
analytic function. Can f be expressed as a sum of squares of meromorphic functions?

Recall that meromorphic functions are those functions which are analytic on the
whole domain expect for a set of isolated points, which are their poles. So, rational
functions are meromorphic and one can thus recognize a generalization of Hilbert’s
17th problem. In its generality, this problem is still open. A complete solution is
known only for dimension n D 2 (see [28]) and for compact manifolds (see [133]).
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The basic idea to get to Rădulescu’s analogue in terms of operator theory is to
generalize analytic functions with formal series. Let Y1; : : : ;Yn be n indeterminates.
Define

In D f.i1; : : : ; ip/; p 2 N; i1; : : : ; ip 2 f1; : : : ; ngg:

For each I D .i1; : : : ; ip/ 2 In, set YI D Yi1 � : : : � Yip and define the space

V D
8
<

:
X

I2In

˛IYI; ˛I 2 C W 8R > 0;

������

X

I2In

˛IYI

������
R

WD
X

I

j˛I jRjIj < 1
9
=

; :

Rădulescu showed in [130], Proposition 2.1, that V is a Fréchet space and so it
carries a natural weak topology �.V;V�/ induced by its dual space. To generalize
the notion of “square” and “sum of squares” to this setting, we need to introduce
a notion of symmetry in V . Since V is a space of formal series, this is done in the
obvious way. We set .Yi1 � : : : � Yip/

� WD Yip � : : : � Yi1 and ˛� WD N̨ . This mapping
can clearly be extended to an adjoint operation on V . Also, we observe that formal
series are, by definition, possibly infinite sums and so there is no hope, in general,
to have them expressed as a finite sum of squares. This motivates the need to use
weak limits of sum of squares, instead of just the finite sums of squares.

Definition 3.5.4 We say that a formal series q 2 V is a sum of squares if it is in the
weak closure of the set of the elements of the form p�p, for p 2 V .

We now observe that the original formulation of Hilbert’s 17th problem concerns
matrices with real entries and its geometric variant concerns real valued analytic
functions. Recalling that the operator analogue of real valued functions are self-
adjoint operators, it follows that the right setting in which Hilbert’s 17th problem
can be generalized is that of self-adjoint operators. We then introduce the space
Vsa D fv 2 V W v� D vg. It remains only to generalize the notion of positivity.

Definition 3.5.5 A self-adjoint operator v 2 Vsa is called positive semidefinite if
for every N 2 N and for every N-tuple of self-adjoint matrices X1; : : : ;XN , one has

tr.p.X1; : : : ;XN// � 0:

The cone of positive semi-definite operators is denoted VC
sa .

One last step is needed to get to the operator analogue of Hilbert’s 17th problem.
Indeed, in case of polynomials, one has YI � YQI D 0, for every permutation QI of I.
Since this is no longer the case in the non-commutative world of formal series, we
need to identify series which differ by a permutation.

Definition 3.5.6 Two elements p; q 2 VC
sa are called cyclic equivalent if p � q is

weak limit of sums of scalars multiples of monomials of the form YI � YQI , where QI
is a cyclic permutation of I.
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Problem 3.5.7 (Non-commutative Analogue of Hilbert’s 17th Problem) Is
every element of VC

sa cyclic equivalent to a weak limit of sums of squares?

As mentioned, the interest in this problem comes from the fact that it is equivalent
to Connes’ embedding conjecture.

Theorem 3.5.8 (Rădulescu) The following statements are equivalent:

1. Connes’ embedding conjecture is true;
2. Problem 3.5.7 has a positive answer.

The proof of this theorem is quite involved and we refer the interested reader
to the original paper by Rădulescu. Here we move on to further developments,
which led to a purely algebraic reformulation of Connes’ embedding conjecture.
Such a purely algebraic reformulation is unexpected since all formulations we have
discussed so far have a strong topological component. We discuss two different,
though similar, purely algebraic reformulations of Connes’ embedding conjecture;
one due to Klep and Schweighofer [103], the other to Juschenko and Popovich [89].

We start by discussing Klep and Schweighofer’s approach. This differs from
Rădulescu in many parts, the most important of which is that they do not use formal
series but they get back to polynomials. Using finite objects instead of infinite
objects is the ultimate reason why they are able to get rid of every topological
condition.

Let K be either the real or the complex field and let V denote the ring of
polynomials on n indeterminates with coefficients in K. Instead of using Rădulescu’s
adjoint operation they define the adjoint operation acting identically on monomials
and switching each coefficient with its conjugate. As before, the set of self-adjoint
elements is denoted Vsa. Moreover, instead of using the cyclic equivalence, they
define two polynomial p and q to be equivalent when their difference is a sum of
commutators.

Definition 3.5.9 A polynomial f 2 V is called positive semidefinite if for every
N 2 N and for every contractions A1; : : : ;An 2 MN.R/ one has

tr.f .A1; : : : ;An// � 0:

The set of positive semidefinite elements is denoted by VC.

The introduction of the quadratic module is the major difference with Răd-
ulescu’s approach.

Definition 3.5.10 A subset M � Vsa is called quadratic module if the following
hold:

1. 1 2 M;
2. M C M � M;
3. p�Mp � M, for all p 2 V .
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The quadratic module generated by the elements 1 � X21; : : : ; 1 � X2n is denoted by
Q.

Theorem 3.5.11 (Klep-Schweighofer) The following statements are equiva-
lent:

1. Connes’ embedding conjecture is true;
2. For every f 2 VC and for every " > 0, there exists q 2 Q such that f C " is

equivalent to q, in the sense that f C " � q is a sum of commutators.

One may wish to be able to replace the quadratic module by the more standards
squares, namely elements of the form v�v. We conclude this section by describing
the approach by Juschenko and Popovich, which is indeed aimed to this.

One way to reformulate Klep and Schweighofer’s approach is by considering
the free associative algebra K.X/ generated by a countable family of self-adjoint
elements X D .X1;X2 : : :g. Thus, a polynomial f 2 V is just an element of
K.X/. Klep-Schweighofer’s theorem affirms that Connes’ embedding conjecture is
equivalent to the statement that every positive semidefinite element of K.X/ cab be
written as an element of the quadratic module, up to a sum of commutators and ",
with " arbitrarily small.

Instead of considering the free associative algebra K.X/, Juschenko and
Popovich considered the group *-algebra F of the countably generated free
group F1 D hu1; u2; : : :i. With this choice they were able to simplify Klep
and Schweighofer’s theorems in two ways. First, instead of using the quadratic
module, they were able to use standard squares; second, instead of considering
every polynomial f , they were able to consider only polynomials of degree at most
two, in the variables ui. Before presenting the theorem, we redefine the notion of
positivity in this new context.

Definition 3.5.12 An element f 2 F with n indeterminates is called positive
semidefinite if for all m � 1 and all n-tuples of unitary matrices U1; : : : ;Un of
dimension m, one has

tr.f .U1; : : : ;Un// � 0:

Theorem 3.5.13 (Juschenko-Popovich) The following statements are equiva-
lent:

1. Connes’ embedding conjecture is true;
2. For every self-adjoint positive semidefinite f 2 F and for every " > 0, one has

f C " D g C c, where g is a sum of squares (elements of the for v�v) and c is a
sum of commutators.
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3.6 Brown’s Invariant

Most of research about Connes’ embedding conjecture has been focusing on
impressive reformulations of it, that is, on finding apparently very far statements
that turn out to be eventually equivalent to the original conjecture.

Over the last couple of years another point of view has been also taken, mostly
due to Nate Brown’s paper [17]. He assumes that a fixed separable II1 factor M
verifies Connes’ embedding conjecture and tries to tell something interesting about
M. In particular, he managed to associate an invariant to M, now called Brown’s
invariant, that carries information about rigidity properties of M. The purpose of
this section is to introduce the reader to this invariant.

3.6.1 Convex Combinations of Representations into RU

Let M be a separable II1 factor verifying Connes’ embedding conjecture and fix a
free ultrafilter U on the natural numbers. The set Hom.M;RU / of unital morphisms
M ! RU modulo unitary equivalence is non-empty. We shall show that this set,
that is in fact Brown’s invariant, has a surprisingly rich structure.

We can equip Hom.M;RU / with a metric in a reasonably simple way. Since M is
separable, it is topologically generated by countably many elements a1; a2 : : :, that
we may assume to be contractions, that is jjaijj � 1, for all i. So we can define a
metric on Hom.M;RU / as follows

d.Œ
; Œ�
/ D inf
u2U.RU /

 1X

nD1

1

22n
jj.an/� u�.an/u

�jj22
! 1

2

;

since the series in the right hand side is convergent. A priori, d is just a pseudo-
metric, but we can use Theorem 3.1 in [137] to say that approximately unitary
equivalence is the same as unitary equivalence in separable subalgebras of RU . This
means that d is actually a metric. Moreover, while this metric may depend on the
generating set fa1; a2; : : :g, the induced topology does not. It is indeed the point-wise
convergence topology.

Hom.M;RU / does not carry any evident vector space structure, but Nate
Brown’s intuition was that one can still do convex combinations inside
Hom.M;RU / in a formal way. There is indeed an obvious (and wrong) way to
proceed: given *-homomorphisms ; �W M ! RU and 0 < t < 1, take a projection
pt 2 ..M/[�.M//0 \RU such that �.pt/ D t and define the “convex combination”
t C .1 � t/� to be

x 7! .x/pt C �.x/p?
t :
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Since the projection pt is chosen in ..M/[�.M//0, then tC.1�t/� is certainly
a new unital morphism of M in RU . Unfortunately this procedure is not well defined
on classes in Hom.M;RU / and the reason can be explained as follows: if p 2 RU

is a nonzero projection, then the corner pRUp is still a hyperfinite II1-factor and
so, by uniqueness, it is isomorphic to RU . Thus the cut-down p can be seen as
a new morphism M ! RU . The problem is that the isomorphism pRUp ! RU

is not canonical and this reflects on the fact that convex combinations as defined
above are not well-defined on classes in Hom.M;RU /. The idea is to allow only
particular isomorphisms pRUp ! RU that are somehow fixed by conjugation by a
unitary. This is done by using the so-called standard isomorphisms, that represent
Nate Brown’s main technical innovation.

Definition 3.6.1 Let p 2 RU be a non-zero projection. A standard isomorphism
is any map �pW pRUp ! RU constructed as follows. Lift p to a projection .pn/ 2
`1.R/ such that �R.pn/ D �RU .p/, for all n 2 N, fix isomorphisms �nW pnRpn !
R, and define �p to be the isomorphism on the right hand side of the following
commutative diagram

Definition 3.6.2 Given Œ1
; : : : ; Œn
 2 Hom.N;RU / and t1; : : : ; tn 2 Œ0; 1
 such
that

P
ti D 1, we define

nX

iD1
tiŒi
 WD

"
nX

iD1

�
��1

i ı i
�
#
;

where �iW piRUpi ! RU are standard isomorphisms and p1; : : : ; pn 2 RU are
orthogonal projections such that �.pi/ D ti for i 2 f1; : : : ; ng.

We can explain in a few words why this procedure of using standard isomor-
phisms works. It has been originally proven by Murray and von Neumann that there
is a unique unital embedding of Mn .C/ into R up to unitary equivalence. Since
R contains an increasing chain of matrix algebras whose union is weakly dense,
it follows that all unital endomorphisms of R are approximately inner. Now, if we
take an automorphism ‚ of RU that can be lifted (i.e. it is of the form .�n/n2N
where �n is an automorphism of `1.R/), it follows that ‚ is just the conjugation
by some unitary, when restricted to a separable subalgebras or RU . Now, Nate
Brown’s standard isomorphisms are exactly those isomorphisms pRUp ! RU that
are liftable and therefore it is intuitively clear that, after passing to the quotient by
the relation of unitary equivalence, the choice of the standard isomorphism should
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not affect the result. The formalization of this rough idea leads to the following
theorem.

Theorem 3.6.3 (Brown [17])
Pn

iD1 tiŒi
 is well defined, i.e. independent of the
projections pi, the standard isomorphisms �i and the representatives i.

To prove this result we need some preliminary observations.

Lemma 3.6.4 Let p; q 2 R be projections of the same trace and � W pRp ! qRq
be a unital *-homomorphism, that is �.p/ D q. Then there is a sequence of partial
isometries vn 2 R such that:

1. v�
n vn D p,

2. vnv
�
n D q,

3. �.x/ D limn!1 vnxv�
n ,

where the limit is taken in the 2-norm.

Proof Since p; q have the same trace, we can find a partial isometry w such that
w�w D q and ww� D p. Consider the unital endomorphism �w W pRp ! pRp
defined by �w.x/ D w�.x/w�. Since R is hyperfinite, every endomorphism is
approximately inner in the 2-norm, that is, we can find unitaries un 2 pRp such
that w�.x/w� D limn!1 unxu�

n . Defining vn D w�un completes the proof. ut
Proposition 3.6.5 Assume p; q 2 RU are projections with the same trace, M �
pRUp is a separable von Neumann subalgebra and‚ W pRUp ! qRUq is a unital
*-homomorphism. Let .pi/; .qi/ 2 `1.R/ lifts of p and q, respectively, such that
�R.pi/ D �R.qi/ D �RU .p/, for all i 2 N. If there are unital *-homomorphisms
�i W piRpi ! qiRqi such that .�i.xi// is a lift of ‚.x/, whenever .xi/ 2 …piRpi is a
lift of x 2 M, then there are a partial isometry v 2 RU such that:

1. v�v D p,
2. vv� D q,
3. ‚.x/ D vxv�, for all x 2 M.

Proof We shall prove the proposition only in the case M D W�.X/ is singly
generated.

Let .xi/ 2 …piRpi be a lift of X. By Lemma 3.6.4, there are partial isometries
vi 2 R such that v�

i vi D pi, viv
�
i D qi and jj�i.xi/ � vixiv

�
i jj2 < 1=i. Observe that

.vi/ 2 `1.R/ drops to a partial isometry v 2 RU with support p and range q. To
show that ‚.X/ D vXv�, fix " > 0 and consider the set

S" D fi 2 N W jj�i.xi/� vixiv
�
i jj2 < "g:

This set contains the cofinite set fi 2 N W i � 1
"
g and therefore S" 2 U . ut

Exercise 3.6.6 Prove Proposition 3.6.5 in the general case. (Hint: pick the vi’s to
obtain inequalities of the shape jj�i.Yi/ � viYiv

�
i jj2 < 1=i on a finite set of Yi’s that

corresponds to lifts of a finite subset of a generating set of M.)
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Proof of Theorem 3.6.3 Let �i W qiRUqi ! RU be standard isomorphisms, built
by pairwise orthogonal projections qi of trace ti and assume Œ�i
 D Œi
. By
Proposition 3.6.5, applied to the standard isomorphism ��1

i ı�i W piRUpi ! qiRUqi,
there are partial isometries vi 2 RU such that v�

i vi D pi, viv
�
i D qi and

vi
�
��1

i ı i
�
.x/v�

i D �
��1

i ı i
�
.x/; for all x 2 M:

Now since Œi
 D Œ�i
, we can find unitaries ui such that �i D uiiu�
i . The proof is

then completed by the following exercise.

Exercise 3.6.7 Show that u WD P
��1

i .ui/vi is a unitary conjugating
P
��1

i ı i

over to
P
��1

i ı �i.

ut
Having a notion of convex combinations on Hom.N;RU /, it is natural to ask (a)

whether this set can be embedded into a vector space; and, if so, (b) what can be done
with this vector space. Nate Brown himself proved in [17] that his notion of convex
combinations verifies the axioms of a so-called convex-like structure. Afterwards,
Capraro and Fritz showed in [22] that every convex-like structure is linearly and
isometrically embeddable into a Banach space, but their proof is strongly based on
Stone’s representation theorem [138], which provides an abstract embedding into a
vector space. Therefore, taken together, these two results provide only an abstract
embedding of Hom.N;RU / into a Banach space. In the appendix, the interested
reader can find a sketch of a concrete embedding, using a construction appeared in
[18].

3.6.2 Extreme Points of Hom.M;RU/ and a Problem of Popa

In this section we present one application of the Hom space. Given a separable II1
factor M that embeds into RU , Sorin Popa asked whether there is always another
representation  such that .M/0 \ RU is a factor. The following theorem by
Nate Brown[17] shows that this problem is equivalent to a geometric problem on
Hom.M;RU /.

Theorem 3.6.8 Let  W M ! RU be a representation. Then .M/0 \RU is a factor
if and only if Œ
 is an extreme point of Hom.M;RU /.

In this section we prove only the “only if” part: if Œ
 is an extreme point, then
.M/0 \ RU is a factor.

Definition 3.6.9 We define the cutdown of a representation  W M ! RU by a
projection p 2 .M/0 \ RU to be the map M ! RU defined by x ! �p.p.x//,
where �p W pRUp ! RU is a standard isomorphism.
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Lemma 3.3.3 in [17] shows that this definition is independent by the standard
isomorphism, hence we can denote it by Œp
.

Lemma 3.6.10 Let  W M ! RU be a morphism p; q 2 .M/0 ! RU be
projections of the same trace. The following statement are equivalent:

1. Œp
 D Œq
,
2. p and q are Murray-von Neumann equivalent in .M/0 \ RU , that is, there is a

partial isometry v 2 .M/0 \ RU such that v�v D p and vv� D q.
3. there exists v 2 RU such that v�v D p, vv� D q and v.x/v� D q.x/, for all

x 2 M.

Exercise 3.6.11 Prove the equivalence between (2) and (3) in Lemma 3.6.10.

Exercise 3.6.12 Given projections p; q and a partial isometry v such that v�v D p
and vv� D q, show that there exist lifts .pn/; .qn/; .vn/ 2 `1.R/ such that pn; qn are
projections of the same trace as p, and v�

n vn D pn, vnv
�
n D qn, for all n 2 N.

Proof of .3/ ) .1/ Let pn; qn; vn as in Exercise 3.6.12 and fix isomorphisms �n W
pnRpn ! R and �n W qnRqn ! R and use them to define standard isomorphisms
� W pRUp ! RU and � W qRUq ! RU and use them to define p and q.
The isomorphism on the right hand side of the following diagram2 is liftable by
construction and so Proposition 3.6.5 can be applied to it, giving unitary equivalence
between p and q.

ut
Exercise 3.6.13 Use a similar idea to prove the implication .1/ ) .3/.

We recall that a projection p 2 M is called minimal if pMp D C1. A von
Neumann algebra without minimal projections is called diffuse.

2The notation Adu in the diagram stands for the conjugation by the unitary operator u.
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Exercise 3.6.14 Let M be a diffuse von Neumann algebra with the following
property: every pair of projections with the same trace are Murray-von Neumann
equivalent. Show that M is factor. (Hint: show that every central projection is
minimal.)

Proof of the “only if” of Theorem 3.6.8 Let Œ
 be an extreme point of Hom
.M;RU / and p 2 .M/0 \ RU . Since

Œ
 D �.p/Œp
C �.p?/Œp? 
;

it follows that Œp
 D Œ
, for all p 2 .M/0 \ RU , p ¤ 0. By Lemma 3.6.10, it
follows that two projections in .M/0 \ RU are Murray-von Neumann equivalent
into .M/0 \ RU if and only if they have the same trace. Since .M/0 \ RU is
diffuse, Exercise 3.6.14 completes the proof. ut

From Theorem 3.6.8 we obtain the following geometric reformulation of Popa’s
question.

Problem 3.6.15 (Geometric Reformulation of Popa’s Question) Does Hom
.M;RU / have extreme points?

This problem is still open. There are two obvious ways to try to attack it, leading
to two related problems, whose positive solution would imply a positive solution of
Popa’s question.

1. Since Hom.M;RU / is a bounded, closed and convex subset of a Banach space
one cannot apply Krein-Milman’s theorem and conclude existence of extreme
points. Nevertheless, one can ask the question whether the Banach space into
which Hom.M;RU / embeds is actually a dual Banach space. In this case,
Hom.M;RU / would be compact in the weak*-topology and one could apply
Krein-Milman’s theorem.

Problem 3.6.16 Does Hom.M;RU / embed into a dual Banach space?

Note that one way to try to attack this problem is by observing that M is the
dual Banach space (every von Neumann algebra is a dual Banach space) of a
unique Banach space, usually denoted by M�. Consequently there might be some
possibility to express representations M ! RU in terms of dual representations
of RU� into M�.

We mention that Chirvasitu [95] has shown that Hom.M;RU N̋ B.H//
is Dedekind-complete with respect to the order induced by the cone
HomC.M;RU N̋ B.H//. Since Dedekind-completeness is a necessary condition
for Banach spaces of the form CR.K/, with K compact Hausdorff, to have a
predual, we can consider Chirvasitu’s result as a small measure of evidence that
Hom.M;RU N̋ B.H// is a dual Banach space.

2. The second approach is through a simple observation about geometry of Banach
spaces. Recall that a Banach space B is called strictly convex if b1 ¤ b2 and
jjb1jj D jjb2jj D 1 together imply that jjb1 C b2jj < 2.
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Exercise 3.6.17 Let B be a strictly convex Banach space and C � B be a convex
subset. Fix c0 2 C and assume that there is c 2 C such that d.c0; c/ is maximized
in C. Show that c is an extreme point of C.

Exercise 3.6.18 Let M D W�.X/ be a singly generated II1 factor which embeds
into RU . Fix Œ0
 2 Hom.M;RU /. Show that the function Hom.M;RU / 3
Œ
 ! d.Œ0
; Œ
/ attains its maximum.

With a little bit more effort one can extend Exercise 3.6.18 to every separable
II1 factor. Consequently, Exercises 3.6.17 and 3.6.18 together imply that if the
convex-like structure on Hom.M;RU /were strictly convex, then Popa’s question
would have affirmative answer.

Problem 3.6.19 Does Hom.M;RU / embed into a strictly convex Banach space?

Observe that Theorem 3.6.21 suggests that Hom.M;RU / itself should not be
strictly convex.

The study of the extreme points of Hom.M;RU / is not only interesting in light of
Popa’s question, but also because it provides a method to distinguish II1 factors. For
instance, Brown proved in [17], Corollary 5.4, that rigidity of an RU -embeddable
II1 factor M with property (T) reflects on the rigidity of the set of the extreme points
of its Hom.M;RU /, that turns out to be discrete. Property (T) for von Neumann
algebras is a form of rigidity introduced by Connes and Jones in [44] and inspired
to Kazhdan’s property (T) for groups [98]. A simple way to define property (T) for
von Neumann algebras is through the following definition.

Definition 3.6.20 A II1 factor M with trace � has property (T) if for all " > 0,
there exist ı > 0 and a finite subset F of M such that for all �-preserving ucp maps
� W M ! M, one has

sup
x2F

jj�.x/� xjj2 � ı ) sup
Ball.M/

jj�.x/� xjj2 � ":

The interpretation of property (T) as a form of rigidity should be clear: if a trace-
preserving ucp map is closed to the identity on a finite set, then it is actually close
to the identity on the whole von Neumann algebra.

Classical examples of factors with property (T) are the ones associated to
SL.n;Z/, with n � 3. The following result was proved by Nate Brown in [17],
Corollary 5.4.

Theorem 3.6.21 If M has property (T), then the set of extreme points of
Hom.M;RU / is discrete.

Proof Popa proved in [127], Sect. 4.5, that for every " > 0, there is a ı > 0 such
that if Œ
; Œ�
 2 Hom.M;RU / are at distance � ı, then there are projections p 2
.M/0 \ RU and q 2 �.M/ \ RU and a partial isometry v such that v�v D p,
vv� D q, �.p/ > 1 � ", and v.x/v� D q�.x/, for all x 2 M. This implies that
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p and q� are approximately unitarily equivalent and consequently, by countable
saturation, Œp
 D Œ�q
.

Now fix " > 0 assume that Œ
 and Œ�
 are ı-close extreme points and take
projections p 2 .M/0 \ RU and q 2 �.M/0 \ RU such that Œp
 D Œ�q
. Since Œ

and Œ�
 are extreme points, we can apply Theorem 3.6.8 and conclude that Œ
 D
Œp
 and Œ�
 D Œ�q
, that is, Œ
 D Œ�
. ut
Remark 3.6.22 Observe that Theorem 3.6.21 tells that the set of extreme points is
discrete but, as far as we know, it might be empty. Indeed the problem of proving
that extreme points actually exist for RU -embeddable II1 factors is open even for
factors with property (T).

We conclude mentioning that also examples of factors with a continuous non-
empty set of extreme points are also known in (see [17] Corollaries 6.10 and 6.11).



Conclusions

The problem of whether every countable discrete group is sofic or hyperlinear is
currently of paramount importance. Along this monograph, we have shown that
answering these problems would automatically settle a number of conjectures from
different fields of pure and applied mathematics.

In the sofic case this problem seems to boil down to understanding which
relations (or, more generally, existential formulas in the language of invariant
length groups; see Sect. 2.6) are approximately satisfiable in the permutation groups
endowed with the Hamming distance. This connection has been made explicit in
[7, 71]. Similar arguments holds for hyperlinear groups.

Suppose that w .x/ is a word, where x D .x1; : : : ; xn/, and G is an invariant length
group. A tuple g D .g1; : : : ; gn/ in G is a solution of the equation ` .w .x// D 0 if
`G .w .g// D 0 or, equivalently, w .g/ equals the identity of G. A ı-approximate
solution of ` .w .x// D 0 is a tuple .g/ such that `G .w .g// < ı.

Suppose now that C is a class of invariant length groups. The formula ` .w .x// is
stable with respect to C if, roughly speaking, every approximated solution of such
an equation is close to an exact solution. More precisely for any given " > 0 there
is ı > 0 such that whenever G is an element of the class C and g is ı-approximate
solution of the equation ` .w .x// D 0 in G, there is an exact solution h in G such
that maxi `G

�
gih�1

i

�
< ".

More generally if ' .x/ is an arbitrary formula in the language of invariant length
groups, then one can define as above the notion of solution and ı-approximate
solution of the equation ' .x/ D 0. The formula ' .x/ is stable with respect to a
class C if for any " > 0 there is ı > 0 such that whenever G is an element of C and
g is a tuple in G such that ' .g/ < ı there is a tuple h in G such that '

�
h
� D 0 and

maxi `G
�
gih�1

i

�
< ". Stability is a key notion in model theory for metric structures,

being tightly connected to the concept of definability [27, 57]. (This use of the word
“stability” should not be confused with the classical model-theoretic stability theory
as in [135].) In the field of operator algebras, stability and the related notion of
(weak) semiprojectivity are of fundamental importance; see [107].
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Recall from Sect. 2.9 that a countable discrete group has the C-approximation
property if it admits a length-preserving embedding into a length ultraproduct of
elements of C, i.e. an embedding such that the image of every element other than
the identity has length 1. For a discrete group, soficity is equivalent to the C-
approximation property, where C is the class of permutation groups endowed with
the Hamming distance. Similarly a discrete group is LEF (respectively LEA) if and
only if it has the C-approximation property, where C is the class of finite (resp.
amenable) groups endowed with the trivial length function.

Stability of a formula with respect to a class C of invariant length groups allows
one to perturb a C-approximation to obtain a Cdisc-approximation, where Cdisc is
the class of groups from C endowed with the trivial length function. The following
proposition is a consequence of this observation.

Proposition Suppose that

� D hg1; : : : ; gn W wi .g/ D 1 for i � ki

is a finitely presented group. If � has the C-approximation property, and the formula

max
i�k

` .wi .x//C .1 � min
j�n

`
�
xj
�
/

is stable with respect to the class C, then � has the Cdisc-approximation property.

In the particular case when C is the class of permutation groups endowed with
the Hamming length function one obtains the following consequence; see also [71,
Proposition 3] and [7, Theorem 7.3]. (Recall that a finitely presented LEF group is
residually finite.)

Corollary (Glebsky-Rivera, Arzhantseva-Paunsecu) Suppose that

� D hg1; : : : ; gn W wi .g/ D 1 for i � ni

is a finitely-presented group that is not residually finite. If the formula

max
i�n

` .wi .x//C 1 � min
j�n

`
�
xj
�

is stable with respect to the class of permutation groups endowed with the Hamming
length function, then � is not sofic.

This provides a possible line of attack to the soficity problem of some groups,
first suggested in [7, 71]. There are in fact many finitely-presented groups that are
known to be not residually finite. Among these Higman’s group which we have
considered in Sect. 2.9. Recall that this is the group H with presentation

˝
h1; h2; h3; h4 W hiC1hih

�1
iC1h�2

i D 1 for i � 4
˛
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where the sum i C 1 is evaluated modulo 4. Thus the corollary above provides the
following sufficient conditions for H being not sofic: the formula

max
i�k

`
�
xiC1xix

�1
iC1x�2

i

�C 1 � min f` .x1/ ; ` .x2/ ; ` .x3/ ; ` .x4/g

is stable with respect to the class of permutation groups endowed with the Hamming
length function. This means that for every " > 0 there is ı > 0 such that whenever
n 2 N and �1; �2; �3; �4 2 Sn are such that `Sn .�i/ > 1 � ı and

`Sn

�
�iC1�i�

�1
iC1��2

i

�
< ı

for i � 4, then there are �1; �2; �3; �4 2 Sn such that �iC1�i�
�1
iC1 D �2i and

`Sn

�
�i�

�1
i

�
< " for i � 4.

Another candidate for this line of approach is Thompson’s group F. This is a
very famous groups with several equivalent descriptions. For our purposes it can be
regarded as the finitely presented groups with presentation

˝
a; b W �ab�1; a�1ba

� D �
ab�1; a�2ba2

� D 1
˛
.

While it is known that F is not elementarily amenable, it is a famous open problem
whether F is amenable. If fact it even seems to be unknown whether F is sofic. In
view of the corollary above one can conclude that a sufficient condition to refute
soficity of F is the stability of the formula

max
˚
`
��

xy�1; x�1yx
��
; `
��

xy�1; x�2yx2
���C 1 � min f` .x/ ; ` .y/g

with respect to the class of permutation groups endowed with the Hamming length
function. Concretely this means that for every " > 0 there is ı > 0 such that
whenever n 2 N and �; � 2 Sn are such that `Sn .�/ > 1 � ı, `Sn .�/ > 1 � ı,
`Sn

��
���1; ��1��

��
< ı, and `Sn

��
���1; ��2��2

��
< ı, there are �; � 2 Sn such

that ���1 commutes with ��1�� and ��2��2, `Sn

�
���1� < ", and `Sn

�
���1� < ".

These reformulations show the importance of determining stability of formulas
in permutation groups. This problem seems to be currently not well understood.
Among the few papers dedicated to this subject we can mention [7, 71, 114]. In par-
ticular it is shown in [7] that, remarkably, the commutator relation `

�
xyx�1y�1� D 0

is stable in permutation groups. This seems to be the first natural step towards
determining whether the nonsoficity criterion above applies to Higman’s and
Thompson’s group.



Appendix A
Tensor Product of C*-Algebras

A normed *-algebra is an algebra A (over C) equipped with:

1. an involution 	 such that

• .x C y/� D x� C y�,
• .xy/� D x�y�,
• .�x/� D �x�.

2. a norm jj � jj such that jjxyjj � jjxjjjjyjj.
A Banach *-algebra is a normed *-algebra that is complete.

Definition A.1 A C*-algebra is a Banach *-algebra verifying the following addi-
tional property, called C*-identity:

jjx�xjj D jjxjj2; 8a 2 A:

The C*-identity is a relation between algebraic and topological properties. It
indeed implies that sometimes algebraic properties imply topological properties.
A classical example of this interplay is the following fact.

Fact A *-homomorphism from a normed *-algebra to a C*-algebra is always a
contraction.

Example of C*-algebras certainly include the (commutative) algebra of complex
valued functions on a compact space equipped with the sup norm and B.H/ itself.
But, exactly as in case of von Neumann algebras, one can start from a group and
construct a C*-algebra in a natural way.

Example A.2 Let G be a locally compact group. Fix a left-Haar measure � and
construct the convolution *-algebra L1.G/ as follows: the elements of L1.G/
are �-integrable complex-valued functions on G. The convolution is defined by
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V. Capraro, M. Lupini, Introduction to Sofic and Hyperlinear Groups and Connes’
Embedding Conjecture, Lecture Notes in Mathematics 2136,
DOI 10.1007/978-3-319-19333-5

113



114 A Tensor Product of C*-Algebras

. f 	 g/.x/ D R
G f .y/g.y�1x/d�.y/ and the involution is defined by f �.x/ D

f .x�1/�.x�1/, where� is the modular function, i.e. the (unique) function� W G !
Œ0;1/ such that for all Borel subsets A of G one has �.Ax�1/ D �.x/�.A/. The full
C*-algebra of G, denoted by C�.G/ is the enveloping C*-algebra of L1.G/, i.e. the
completion of L1.G/ with respect to the norm jj f jj D sup jj. f /jj, where  runs
over all non-degenerate *-representations of L1.G/ in a Hilbert space.1

Exercise A.3 Show that in fact jj � jj is a norm on L1.G/.

In particular, we can make this construction for the free group on countably many
generators, usually denoted by F1. Observe that this group is countable and so
its Haar measure is the counting measure which is bi-invariant. Consequently, the
modular function is constantly equal to 1.

Exercise A.4 Let ıg W G ! R be the characteristic function of the point g. Show
that g ! ıg is an embedding F1 ,! U.C�.F1//.

Exercise A.5 Prove that the unitaries in Exercise A.4 form a norm total sequence
in C�.F1/.

Given two C*-algebras A1 and A2, their algebraic tensor product is a *-algebra in
a natural way, by setting

.x1 ˝ x2/.y1 ˝ y2/ D x1x2 ˝ y1y2;

.x1 ˝ x2/
� D x�

1 ˝ x�
2 :

Nevertheless it is not clear how to define a norm to obtain a C*-algebra.

Definition A.6 Let A1;A2 be two C*-algebras and A1 ˇ A2 their algebraic tensor
product. A norm jj � jjˇ on A1 ˝ A2 is called C*-norm if the following properties are
satisfied:

1. jjxyjjˇ � jjxjjˇjjyjjˇ, for all x; y 2 A1 ˇ A2;
2. jjx�xjjˇ D jjxjj2ˇ, for all x 2 A1 ˇ A2.

If jj � jjˇ is a C*-norm on A1 ˇ A2, then A1 ˝ˇ A2 denotes the completion of A1 ˇ A2
with respect to jj � jjˇ. It is a C*-algebra.

Exercise A.7 Prove that every C*-norm ˇ is multiplicative on elementary tensors,
i.e. jjx1 ˝ x2jjˇ D jjx1jjA1 jjx2jjA2 .

The interesting thing is that one can define at least two different C*-norms, a
minimal one and a maximal one, and they are indeed different in general. To define
these norms, let us first recall that a representation of a *-algebra A is a *preserving

1A representation  W L1.G/ ! B.H/ is said to be non-degenerate if the set f.f /� W f 2
L1.G/; � 2 Hg is dense in H.
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algebra-morphism from A to some B.H/. We denote Rep.A/ the set of representation
of A.

Definition A.8

jjxjjmax D sup fjj.x/jj W  2 Rep.A1 ˇ A2/g (A.1)

Exercise A.9 Prove that jj � jjmax is indeed a C*-norm. (Hint: to prove that jjxjjmax <

1, for all x, take inspiration from Lemma 11.3.3(iii) in [92].)

The norm jj � jjmax is named maximal norm, or projective norm, or Turumaru’s
norm, being first introduced in [146]. The completion of A1 ˇ A2 with respect to it
is denoted by A1 ˝max A2.

Let A be a C*-algebra and S � A. Denote by C�.S/ the C*-subalgebra of A
generated by S. The maximal norm has the following universal property (see [140],
IV.4.7).

Proposition A.10 Given C*-algebras A1;A2;B. Assume i W Ai ! B are *-
homomorphisms with commuting ranges, that is for all x 2 1.A1/ and y 2 2.A2/,
one has xy D yx. Then there exists a unique *-homomorphism  W A1 ˝max A2 ! B
such that

1. .x1 ˝ x2/ D 1.x1/2.x2/
2. .A1 ˝max A2/ D C�.1.A1/; 2.A2//

Exercise A.11 Prove Proposition A.10.

We now turn to the definition of the minimal C*-norm. The idea behind its
definition is very simple. Instead of considering all representations of the algebraic
tensor product, one takes only representations which split into the tensor product of
representations of the factors.

Definition A.12

jjxjjmin D sup fjj.1 ˝ 2/.x/jj W i 2 Rep.Ai/g (A.2)

Exercise A.13 Prove that jj � jjmin is a C*-norm on A1 ˇ A2.

This norm is named minimal norm, or injective norm, or Guichardet’s norm,
being first introduced in [81]. The completion of A1ˇA2 with respect to it is denoted
by A1 ˝min A2.

Remark A.14 Clearly jj � jjmin � jj � jjmax, since representations of the form 1 ˝ 2
are particular *-representation of the algebraic tensor product A1 ˇ A2. These
norms are different, in general, as Takesaki showed in [139]. Notation jj � jjmax

reflects the fact that there are no C*-norms greater than the maximal norm, that
follows straightforwardly from the GNS construction. Notation jj � jjmin has the same
justification, but it is much harder to prove:

Theorem A.15 (Takesaki, [139]) jj � jjmin is the smallest C*-norm on A1 ˇ A2.



Appendix B
Ultrafilters and Ultralimits

Vladimir G. Pestov

B.1 Let us recall that the symbol `1 denotes the linear space consisting of
all bounded sequences of real numbers. This linear space is sometimes viewed as
an algebra, meaning that it supports a natural multiplication (the product of two
bounded sequences is bounded). Besides, `1 is equipped with the supremum norm,

kxk D 1
sup
nD1

jxnj

and the corresponding metric.

B.2 The usual notion of the limit of a convergent sequence of real numbers can be
interpreted as a mapping from a subset of `1 consisting of all convergent sequences
(this subset is usually denoted c, it is a closed normed subspace of `1) to R. This
map,

c 3 x D .xn/
1
nD1 7! lim

n!1 xn 2 R;

has the following well-known properties (refer to first-year Calculus for their
proofs):

1. limn!1.xn C yn/ D limn!1 xn C limn!1 yn.
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2. limn!1.xnyn/ D limn!1 xn � limn!1 yn.
3. limn!1.�xn/ D � limn!1 xn.
4. If xn � yn, then limn!1 xn � limn!1 yn.
5. The limit of a constant sequence of ones is 1:

lim
n!1

N1 D 1;

where N1 D .1; 1; 1; : : :/.

B.3 In a sense, the main shortcoming of the notion of a limit is that it is not
defined for every bounded sequence. For instance, the following sequence has no
limit in the usual sense:

0; 1; 0; 1; 0; 1; 0; : : : ; 0; 1; 0; : : : (B.1)

As we all remember from the student years, there are very subtle cases where
proving or disproving the convergence of a particular sequence can be tricky!

Can one avoid such difficulties and devise the notion of a “limit” which would
have all the same properties as above, and yet with regard to which every sequence
will have a limit, even the one in formula (B.1)?

B.4 The response to the question in (B.3) turns out to be very simple and
disappointing. It is enough, for example, to define a “limit” of a sequence .xn/ by
selecting the first term:

�.x/ D x1:

This clearly satisfies all the properties listed in (B.2). But this is not what we want:
such a “limit” does not reflect the asymptotic behaviour of a sequence at the infinity.
And of course this unsatisfying response is due to a poorly-formulated question. We
have, therefore, to reformulate the question as follows.

B.5 Does there exist a notion of a “limit” of a sequence which

• is defined for all bounded sequences,
• has all the same properties listed in (B.2), and
• coincides with the classical limit in the case of convergent sequences?

B.6 Answering this question is the main goal of the present Appendix. Mean-
while, the sequence in Eq. (B.1) will serve as a guiding star, or rather as a guinea
pig. Indeed, assuming such a wonderful specimen of a limit does exist, it will in
particular assign a limit to this concrete sequence, so perhaps it would be a good
idea, to begin by trying to guess what it will be? Say, will 1=2 be a reasonable
suggestion?
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Let us analyse this question in the context of all binary sequences, that is,
sequences taking values 0 and 1 only. The family of all binary sequences is f0; 1gNC ,
the Cantor space (though the metric and topology on this space will not play any role
for the moment). Every binary sequence is just a map

xWNC ! f0; 1g;

and so can be identified with the characteristic function of a suitable subset A � NC
of natural numbers, namely the set of all n where xn takes value one:

	A.n/ D
(
1; if n 2 A;

0; otherwise.

For instance, the sequence in Eq. (B.1) is the characteristic (indicator) function of
the set of all even natural numbers.

B.7 Suppose the desired limit exists. Let us denote it, for the time being, simply
by lim. What are the properties of this limit on the set of binary sequences?

First of all, it must send the constant sequence of ones (the indicator function of
NC) to one, this was one of the rules required:

B.7.1 lim	NC
D lim.1; 1; 1; 1; : : :/ D 1.

This implies that the limit of the zero sequence (the indicator function of the
empty set) is zero: indeed, the sum of the two sequences is the sequence of ones,
and the additive property of the limit implies

1C lim	; D lim	NC
C lim	; D lim	NC

D 1:

We summarize:

B.7.2 lim	; D lim.0; 0; 0; 0; : : :/ D 0.
The next observation is that the only possible values of our limit on binary

sequences are 0 or 1. Indeed, for a binary sequence ."n/, where "n 2 f0; 1g, one
has "2n D "n, and so

lim."n/ D lim."2n/ D .lim "n/
2;

but there are only two real numbers satisfying the property "2 D ".

B.7.3 For every subset A � NC, one has lim	A 2 f0; 1g.
This excludes a “natural” possibility to assign the limit 1=2 to the sequence in

Eq. (B.1).
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Now let 	A be any binary sequence. We can “flip” the sequence and replace all
ones with zeros, and vice versa. This corresponds to the indicator function of the
complement Ac D NC n A. What about the limit of this sequence? It turns out the
limit flips as well.

B.7.4 lim.	Ac/ D 1 � lim	A.
Indeed, 	A C 	Ac D 	NC

is the identical sequence of ones whose limit is one,
and now one has

lim	Ac D lim	NC
� lim	A D 1 � lim	A:

Since the limit of every binary sequence must exist by assumption, this property
implies the next one:

B.7.5 Let A be any subset of the positive natural numbers. Then either lim	A D
1, or lim	Ac D 1, but not both at the same time.

Let us address the following situation. Suppose we have a sequence 	A whose
limit we know to be one. Now we take a subset B of the natural numbers which
contains A:

B  A;

and consider the sequence 	B. Thus, some zeros in 	A have been (possibly) replaced
with ones, and all the ones in 	A keep their values. What about the limit of the new
sequence, 	B?

B.7.6 If A � B and lim	A D 1, then lim	B D 1.
Indeed, 	A � 	B, and according to the property (5) in (B.2), we conclude:

lim	A � lim	B:

However, lim	A D 1, and lim	B cannot be strictly greater than one. We conclude.
The next situation to consider is as follows. Suppose A and B are two subsets of

the natural numbers. Their intersection corresponds to the product of the indicator
functions, as is well known and easy to see:

	A � 	B D 	A\B:

It follows that

lim	A � lim	B D lim	A\B:

In particular:

B.7.7 If lim	A D lim	B D 1, then lim	A\B D 1.
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B.8 Now it is time to put together some of the properties proved. Notice that
instead of binary functions, one can just as well talk of subsets of the set NC. To
some subsets A there is associated the value one (when lim	A D 1), to others, the
value zero (if lim	A D 0). All subsets of NC are therefore grouped in two classes.
Let us denote the class of all subsets A to which we associate the limit one by U :

U D fA � NCW lim	A D 1g:

The properties established above immediately translate into the following.

1. ; … U .
2. For every subset A � NC, either A 2 U , or Ac 2 U .
3. If A;B 2 U , then A \ B 2 U .

B.8.1 Ultrafilters. A collection of subsets of natural numbers (or, in fact, of any
fixed non-empty set) satisfying the above three axioms is called an ultrafilter (on
this set).

There is no need to include more axioms in the definition of an ultrafilter.

B.8.2

Exercise Convert the rest of the properties that we have established in (B.7.1)–
(B.7.7) into a set-theoretic form and deduce them from the three axioms above.

B.8.3

Example The property (B.7.6) becomes: if A � B and A 2 U , then B 2 U .

G This follows from the axioms of an ultrafilter: assuming the contrary, one must
have N n B 2 U (axiom 2), meaning ; D A \ .X n B/ 2 U , a contradiction. F
B.9 Thus, each time we have the concept of a limit with the properties that we
have specified in (B.2), we get an ultrafilter on the set of natural numbers.

B.9.1 Principal Ultrafilters. In particular, to the disappointing example of a
“limit” described in (B.4), there corresponds the following ultrafilter:

U D fA � NW 1 2 Ag:

In other words, a binary sequence has limit one if and only if the first term of this
sequence is one. This happens exactly when A 3 1, where our sequence is 	A.

More generally, one can repeat the construction given any chosen element n 2
NC. The resulting ultrafilter is denoted .n/,

.n/ D fA � NCW n 2 Ag;

and called a trivial (or: principal) ultrafilter.
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B.9.2 Non-principal Ultrafilters. This is, in a sense, a non-interesting situation.
What is an interesting one? An ultrafilter U is called free, or non-principal, if its
elements have no points in common:

\
U D ;:

B.9.3 Every Ultrafilter Is Either Trivial or Free.
G Suppose U is an ultrafilter which is not trivial. This means: for every n 2 NC,

U ¤ .n/. This can mean two things: either there is A 3 n which is not in the
ultrafilter (in which case Ac is), or else there is A 2 U so that A 63 n. In both cases,
we can find an element A of U not containing n. Since this holds for all n, it is
clear that the intersection of all members of U is an empty set, and the ultrafilter is
non-principal. F
B.10 How to establish the existence of free ultrafilters? We need the following
notion. A system C of subsets of a certain non-empty set is called a centred system
if the intersection of every finite collection of elements of C is non-empty:

8n; 8A1;A2; : : : ;An 2 C; A1 \ A2 \ : : : \ An ¤ ;:

B.10.1 Every Ultrafilter Is a Centred System.
This follows immediately from one of the axioms of an ultrafilter.

B.10.2 Every Ultrafilter Is a Maximal Centred System. In Other Words, if U Is
an Ultrafilter and A … U , Then the System U [ fAg Is Not Centred.

G Indeed, since A … U , we must have Ac 2 U , and since A and Ac are both
members of the system U [ fAg and their intersection is empty, the system is not
centred. F
B.10.3 Ultrafilters Are Exactly Maximal Centred Systems.

More precisely, let C be a collection of subsets of a non-empty set (in our case,
we are interested in the set of natural numbers, NC). Then C is an ultrafilter if and
only if C is a maximal centred system.

We have already established ) in the previous paragraph, now let us prove the
other implication.

G Suppose C is a maximal centred system. “Maximal” means that if we add to
C any subset A of NC which is not in C , then the resulting system of sets

C [ fAg

is no longer centred. Let us verify all three properties of an ultrafilter.
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(1) Clearly, ; … C , because otherwise C would not be a centred system to begin
with: for example,

; \ ; D ;:

(2) Let A;B 2 C . We need to prove A \ B 2 C . Consider the system

C [ fA \ Bg:
This system is centred: indeed, if A1; : : : ;An are elements of this system, then,
if A \ B is not among them, their intersection is clearly non-empty (as C is
centred). If we add A \ B, then

A1 \ : : : \ An \ .A \ B/ D A1 \ : : : \ An \ A \ B ¤ ;;
because C is centred and all sets A1; : : : ;An;A;B belong to C .

We conclude: the system C[fA\Bg cannot be strictly larger thanC , because
of maximality of the latter. But this means that

A \ B 2 C :

(3) Let A � NC be any subset. We want to show that either A or its complement
Ac D NC n A belong to C . Suppose neither holds, towards a contradiction. The
assumption that A … C implies that the system C \ fAg is not centred, and so
there exist A1;A2; : : : ;Am 2 C with

A1 \ A2 \ : : : \ Am \ A D ;:
Note that this observation can be rewritten as

A1 \ A2 \ : : : \ Am � Ac: (B.2)

Likewise, the assumption Ac … C implies the existence of elements
B1;B2; : : : ;Bk 2 C satisfying

B1 \ B2 \ : : : \ Bk \ Ac D ;;

or, in an equivalent form,

B1 \ B2 \ : : : \ Bk � A: (B.3)

Together, the equations (B.2) and (B.3) imply

A1 \ A2 \ : : : \ Am \ B1 \ B2 \ : : : \ Bk � A \ Ac D ;;

which contradicts the fact that C is a centred system. We are done. F
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B.11 Existence of Free Ultrafilters.

B.11.1 Zorn’s Lemma. Let .X;�/ be a partially ordered set. Suppose that X has
the following property: every totally ordered subset C of X has an upper bound.
(One says that X is inductive.) Then X has a maximal element.

An element x is maximal if there is no y 2 X which is strictly larger than x. It
does not mean that x is necessarily the largest element of X.

The statement of Zorn’s lemma is an equivalent form of the Axiom of Choice,
which is a part of the standard system of axioms of set theory ZFC.

B.11.2

Exercise Let C be a family of centred systems on a set NC which is totally ordered
by inclusion. Prove that the union of this family, [C, is again a centred system.

B.11.3 Every Centred System Is Contained in a Maximal Centred System.
G Let C be a centred system of subsets of a certain non-empty set (let us again

assume that this set is NC, this does not affect the argument in any way). Denote
X the family of all centred systems of subsets of NC which contain C . This family
is ordered by inclusion. Due to the previous exercise, it is inductive. Since clearly
[C contains C , it follows that [C belongs to X and it forms an upper bound for the
chain [C.

Zorn’s lemma implies the existence of a maximal element, D , in X. This D
is a centred system which contains C and which is not contained in any strictly
larger centred system containing C . Since every centred system containing D will
automatically contain C as well, the latter statement can be cut down to: D is a
centred system which contains C and which is not contained in any strictly larger
centred system. In other words, D is a maximal centred system containing C , as
required. F

Let us reformulate this result as follows.

B.11.4 Every Centred System Is Contained in an Ultrafilter.

B.11.5 Consider the following collection of subsets of NC:

C D fNC n fngW n 2 NCg:

In other words, C consists of all complements to singletons. This system is clearly
centred, and its intersection is empty. According to the previous result, there is an
ultrafilter U containing the system C . One has:

\U � \C D ;:

Thus, U is a non-principal (free) ultrafilter.
In fact, one can show that NC supports 2c pairwise different free ultrafilters. They

are extremely numerous.
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B.11.6

Solution to Exercise B.11.2 Let n 2 NC and

A1;A2; : : : ;An 2
[

C

be arbitrary elements of C. For every i D 1; 2; : : : ; n fix a centred system Ci which
belongs to the family C and contains Ai:

Ai 2 Ci 2 C:

Elements of the collection Ci, i D 1; 2; 3; : : : ; n of centred systems are pairwise
comparable by inclusion between themselves because C is totally ordered by
inclusion. Every finite totally ordered set has the largest element: for some i0 D
1; 2; : : : ; n one has

8i D 1; 2; : : : ; n; Ci � Ci0 :

This means in particular that

8i D 1; 2; : : : ; n; Ai 2 Ci0 :

Since Ci0 is a centred system, one concludes

A1 \ A2 \ : : : \ An ¤ ;;

as required.

B.12 Ultralimits. Now let us re-examine the existence of our conjunctural limits
making sense for every bounded sequence. Notice first that if ."n/ is a binary
sequence, then, according to the initial way we defined ultrafilters in B.8,

lim "n D 1 ” fnW "n D 1g 2 U : (B.4)

This definition depends on the choice of an ultrafilter, and for this reason, the
corresponding limit is called the ultralimit along the ultrafilter U . It is denoted

lim
n!U

"n:

(This notation actually makes good sense, as we will see later.)
This definition in the above form will clearly not work in a general case (simply

because it is possible that all the terms of a convergent sequence are different from
the limit). However, it extends readily to sequences taking finitely many distinct
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values (Exercise). How to extend this definition to an arbitrary bounded sequence?
In fact, such an extension is quite natural and moreover unique.

B.12.1

Exercise Let U be an ultrafilter on natural numbers. By approximating a given
bounded sequence .xn/ with sequences taking finitely many different values in the
`1 norm, extend the definition of the ultralimit to all bounded sequences in such
a way that it respects all of our required axioms. Show that this extension is well
defined (does not depend on an approximation).

B.12.2

Exercise Conclude that, given an ultrafilter U on the natural numbers, there is a
unique way to define the ultralimit along U on all bounded sequences which satisfies
the properties listed in (B.2) as well as the property in Eq. (B.4).

B.12.3

Exercise Conclude that there is a natural correspondence between the ultrafilters
on the set of natural numbers and the limits on bounded sequences satisfying the
properties stated in (B.2).

At the same time, the definition of an ultralimit based on approximations is not
very convenient. We are going to reformulate it now.

B.13 A Workable Definition of an Ultralimit. The right definition in a usable
form is obtained by adjusting in an obvious way the classical concept of a convergent
sequence xn ! x:

8" > 0; 9N; 8n � N; jx � xnj < ":

This means that, given an " > 0, for “most” values of n the point xn is within " from
the limit. In this context, “most” means that the set of such n is cofinite.

If U is an ultrafilter, “most” values of n means that the set of n with this property
belongs to U . So we say that a sequence .xn/ of real numbers converges to a real
number x along the ultrafilter U ,

x D lim
n!U

xn;

if

8" > 0; 9A 2 U ; 8n 2 A; jx � xnj < ":
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Since every superset of such an A also belongs to U , an equivalent statement is:

8" > 0; fn 2 NCW jx � xnj < "g 2 U :

B.13.1

Exercise Show that the definition of the ultralimit given in this subsection is
equivalent to the definition in the language of approximations in Exercise B.12.1.

B.13.2

Example If U D .n0/ is a trivial ultrafilter generated by the natural number n0, then
the statement

lim
n!U

xn D x

means that for every " > 0,

fn 2 NCW jx � xnj < "g 3 n0;

that is, simply

8" > 0; jx � xn0 j < ";

which means

x D xn0 :

This is an “uninteresting” case of an ultralimit. The interesting cases correspond to
free ultrafilters.

B.13.3

Exercise Show that if limn!1 xn D x (in a usual sense), then for every free
ultrafilter U on NC,

lim
n!U

xn D x:

B.13.4

Exercise Show that, if one has

lim
n!U

xn D x
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for every free ultrafilter U on NC, then

lim
n!1 xn D x:

Thus, the familiar symbol 1 essentially means all the free ultrafilters lumped
together, and the existence of a limit in the classical sense signifies that all the free
ultrafilters on NC agree between themselves on what the value of this limit should
be. If there is no such agreement, then the limit in the classical sense does not exist,
and the sequence .xn/ is divergent. However, every free ultrafilter still gives its own
interpretation of what the limit of the sequence is.

B.13.5

Example Recall the alternating sequence

"n D .�1/nC1

of zeros and ones as in Eq. (B.1) Every ultrafilter U on N either contains the set
of odd numbers, or the set of even numbers. In the former case, the ultralimit of
our sequence is 0, in the latter case, 1. Because of this, the ultrafilters “disagree”
between themselves on what the limit of the sequence should be. Consequently,
limn!1 "n does not exist and the sequence is divergent in the classical sense.

B.13.6

Theorem Every bounded sequence of real numbers has an ultralimit along every
ultrafilter on NC.

G Let .xn/ be a bounded sequence of real numbers, which we, without loss in
generality, will assume to belong to the interval Œ0; 1
. Let U be an ultrafilter on
NC. The proof closely resembles the proof of the Heine–Borel theorem about
compactness of the closed unit interval, but is actually simpler.

Subdivide the interval I0 D Œ0; 1
 into two subintervals of length half, Œ0; 1=2

and Œ1=2; 1
. Set

A D fn 2 NCW xn 2 Œ0; 1=2
g:

Either A belongs to U , or else its complement, Ac, does. In the latter case, since

fnW xn 2 Œ1=2; 1
g  Ac;

the set fnW xn 2 Œ1=2; 1
g is in U as well. We conclude: at least one of the two
intervals of length 1=2, denote it I1, has the property

fn 2 NCW xn 2 I1g 2 U :
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Continue dividing the intervals in two and selecting one of them. At the end,
we will have selected a nested sequence of closed intervals Ik of length 2�k,
k D 0; 1; 2; 3; : : :, with the property that for all k,

fnW xn 2 Ikg 2 U :

According to the Cantor Intersection Theorem, there is c 2 Œ0; 1
 so that

1\

kD0
Ik D fcg:

We claim this c is the ultralimit of .xn/ along U . Indeed, let " > 0 be arbitrary. For a
sufficiently large k, the interval Ik is contained in the interval .c � "; c C "/ (indeed,
enough to take k D � log2 "C 1). Now one has

fnW c � " < xn < x C "g  fnW xn 2 Ikg 3 U ;

from where one concludes that the former set is also in U . F
B.13.7

Solution to Exercise B.13.3 We will verify the definition of an ultralimit. Let " > 0.
For some N and every n � N, one has jx � xnj < ". Let us write

N D f1g [ f2g [ : : : [ fN � 1g [ fN;N C 1;N C 2; : : :g:

One of these sets must belong to U . If it were one of the singletons, fig, then every
other element A 2 U must meet fig, therefore contain i, so U would be a principal
ultrafilter generated by i. One concludes:

fN;N C 1;N C 2; : : :g 2 U ;

and so

fnW jx � xnj < "g 2 U ;

because the set on the left hand side is a superset of fN;N C 1;N C 2; : : :g.

B.13.8

Solution to Exercise B.13.4 We have just seen that if xn ! x in the classical sense,

then we have convergence xn
U! x along every free ultrafilter U . This means that

the only case to eliminate is where xn
U! x along every free ultrafilter U , yet at the

same time xn 6! x in the classical sense. Assume that xn does not converge to x.
Then for some " > 0 and every N there is n D n.N/ � N with d.x; xn/ � ". The
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set I D fn.N/W N 2 Ng is infinite. There is a free ultrafilter U on NC containing I,
namely an ultrafilter containing the centred system fI n fngW n D 1; 2; 3; : : :g. Since
I 2 U ,

fnW d.x; xn/ < "g … U ;

because the set above is disjoint from I. We conclude: xn 6 U! x.

B.14 Ultralimits in Metric Spaces. So far, we have only considered ultralimits
of sequences of real numbers. Of course the definition extends readily to an arbitrary
metric space, as follows. A sequence .xn/ of elements of a metric space .X; d/
converges to a point x along an ultrafilter U on the set of positive natural numbers if
for every " > 0 the set

fn 2 NCW d.x; xn/ < "g

belongs to U .

B.14.1

Exercise Prove that a sequence .xn/ of elements of a metric space X can have at
most one ultralimit along a given ultrafilter. That is, let U be an ultrafilter on NC.
Prove that the ultralimit limn!U xn, if it exists, is unique.

B.14.2 At the same time, let us note that in an arbitrary metric space, not every
bounded sequence of elements needs to have an ultralimit. For instance, if X is a
metric space with a 0-1 metric and .xn/ is a sequence of pairwise different elements
of X, then for every free ultrafilter U on NC, the ultralimit limn!U xn does not exist.

Indeed, let x 2 X be arbitrary. The set

fn 2 NCW d.x; xn/ < 1g

contains at most one element (in the case where x D xn for some n) and so does not
belong to U . We conclude: xn does not converge to x along U . Since this argument
applies to every point x 2 X, the sequence .xn/ does not have an ultralimit.

B.14.3 Since not every bounded sequence in a metric space X needs to have an
ultralimit, a natural question to ask is, can be enlarge X in such a way that every
sequence has an ultralimit, much in the same way as we can form a completion of
X so that every Cauchy sequence is assigned a limit in it?

The following result provides a negative answer to this question.

B.14.4

Theorem For a metric space X, the following conditions are equivalent.
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1. X is compact.
2. Every sequence of elements in X has an ultralimit along every free ultrafilter U

on NC.
3. There exists a free ultrafilter U on NC with the property that every sequence of

elements in X has an ultralimit along U .

G (a) ) (b): very much the same proof as for the interval. For every " > 0, choose
a finite cover of X with open "-balls. One of these balls, say B, has the property

fnW xn 2 Bg 2 U :

Proceeding recursively, we obtain a centred sequence of open balls Bi of radius
converging to zero satisfying

Ai D fnW xn 2 Big 2 U :

The ball centers form a Cauchy sequence and so converge to some limit, x. Every
neighbourhood V of x contains some Bi for i large enough, and so the set

fnW xn 2 Vg
contains Ai and so belongs to U .

(b))(c): trivial, given that free ultrafilters on N exist. Now just pick any one of
them.

(c))(a): by contraposition. If X is not compact, then either it is not totally
bounded (in which case there is a sequence of points at pairwise distances � "0 > 0

from each other, which has no ultralimit due to the argument in B.14.2), or non-
complete. In the latter case, select a Cauchy sequence .xn/ without a limit. We
will show that it does not admit an ultralimit along U either. Assume x is such
an ultralimit. For every " > 0, the set fnW d.xn; x/ < "g is in U , so non-empty, and
using this, one can recursively select a subsequence of xn converging to x in the
usual sense. But .xn/ is a Cauchy sequence, so this would mean xn ! x. F
B.14.5

Exercise Deduce that a metric space X metrically embeds into a space OX in which
every bounded sequence has an ultralimit if and only if every ball in X is totally
bounded. In this case, OX is the metric completion of X, and every closed ball in X is
compact.

This is of course a rather restrictive condition, which, for instance, is failed by
any infinite-dimensional normed space.

B.14.6

Solution to Exercise B.14.1 Suppose x; y 2 X and

lim
n!U

xn D x and lim
n!U

xn D y:
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For every " > 0, both sets

fn 2 NCW d.x; xn/ < "g and fn 2 NCW d.y; xn/ < "g

belong to the ultrafilter U , and so does their intersection. As a consequence, this
intersection is non-empty, and one can find n 2 N with

d.x; xn/ < " and d.y; xn/ < ":

By the triangle inequality,

d.x; y/ < 2";

and since this holds for every " > 0, we conclude: x D y.

B.15 Ultraproducts. In view of (B.14.5), we cannot hope to attach a “virtual”
ultralimit to every bounded sequence of points of a metric space, X. If the space is
not totally bounded, some sequences are destined to diverge along some ultrafilters
in every metric extension of X. Still, we can assign to every such sequence an ideal
new point, which will be the limit (hence, ultralimit) in case of a Cauchy sequence,
and otherwise will register the asymptotic behaviour of the sequence with regard to
the given ultrafilter. Now we will briefly examine this important construction.

B.15.1 Space of Bounded Sequences in a Metric Space. Let X D .X; dX/ be a
metric space. Fix an ultrafilter U on the integers. Since we are going to assign
an “ideal” point to every bounded sequence, the right place to start will be the
set `1.NCI X/ of all bounded sequences with elements in X. (For example, the
space `1 is, in this notation, `1.NCIR/.) We would formally identify the space
of “ideal” points with `1.NCI X/, or rather with its quotient space under a suitable
equivalence relation—just like we do when we construct the completion of a metric
space beginning with the set of all Cauchy sequences.

Observe that the set `1.NCI X/ admits a structure of a metric space with regard
to the `1-distance:

d1.x; y/ D sup
n2NC

dX.xn; yn/:

B.15.2

Exercise Show that the metric space `1.NCI X/ is complete if and only if X is
complete.

B.15.3 It is quite natural to make two bounded sequences x and y share the same
“ideal point” if the distance between the corresponding terms of those sequences
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converges to zero along the ultrafilter U :

x
U� y ” lim

n!U
dX.xn; yn/ D 0:

The resulting equivalence relation
U� on `1.NCI X/ agrees with the metric in

the sense that the quotient metric on the quotient set is well defined. For an
x 2 `1.NCI X/ denote

Œx
U D fy 2 XW x
U� yg

the corresponding equivalence class.

B.15.4

Exercise Show that the rule

d.Œx
; Œy
/ D inffd1.x0; y0/W x0 2 Œx
U ; y0 2 Œy
U g

defines a metric on the quotient set X=
U�, and that this quotient metric can be

alternatively described by

d.Œx
; Œy
/ D lim
n!U

dX.xn; yn/:

B.15.5 Metric Ultrapowers. The quotient metric space `1.NCI X/=
U� is called

the metric ultrapower of X with regard to the ultrafilter U , and denoted XN

U .

B.15.6

Exercise Show that the original metric space X canonically isometrically embeds
inside of its metric ultrapower under the diagonal embedding

X 3 x 7! Œ.x; x; x; : : :/
U 2 XN

U ;

no matter what the ultrafilterU is. In particular, the metric ultrapower of a non-trivial
space is itself non-trivial.

B.15.7

Exercise Show that, if U D .n/ is a principal ultrafilter, the metric ultrapower XN

U is
canonically isometric to X.

B.15.8

Exercise Let U be a non-principal ultrafilter, and suppose that X is a separable
metric space. Show that the metric ultrapower XN

U is isometric to X (not necessarily
in a canonical way!) if and only if X is compact.
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Before establishing a couple of other properties of the ultrapower, let us extend
the definition to the case where terms of sequences come from possibly different
metric spaces: for every n,

xn 2 Xn;

where .Xn/, n D 1; 2; : : :, are metric spaces which may or may not differ from each
other.

B.15.9 Pointed Metric Spaces. In this situation, how do we define a bounded
sequence x D .xn/? The notion of boundedness becomes purely relative: one can
say that a sequence y is bounded with regard to another sequence, x, if the values
dXn.xn; yn/, n 2 N, form a bounded set. However, there is no absolute notion of
boundedness. For this reason, it is necessary to select a sequence x� D .x�

n /, x�
n 2

Xn, thus fixing a class of sequences bounded with regard to x�. In other words, we
are dealing with a family of pointed metric spaces, .Xn; x�

n /.
For example, in cases of considerable interest, where Xn are normed spaces

or metric groups, the selected points are usually zero and the neutral element,
respectively. If all spaces Xn D X are the same, in order to obtain the usual
notion of (absolute) boundedness of a sequence, one chooses any constant sequence
.x�; x�; : : :/, all of them giving the same result. If the spaces Xn have a uniformly
bounded diameter, the choice of a distinguished sequence does not matter.

B.15.10 Ultraproduct of Pointed Metric Spaces. Now it is clear how to reformu-
late the definitions. The metric space consisting of all relatively bounded sequences
with regard to x� is the `1-type sum of pointed spaces .Xn; x�

n /, denoted

˚`1

n .Xn; x
�
n /:

In cases like the above where the choice of distinguished points is clear or does not
matter, these points are suppressed.

The equivalence relation and the distance on the quotient metric space are defined
in exactly the same fashion as above. The resulting metric space

˚`1

n .Xn; x
�
n /=

U�

is called the metric ultraproduct of (pointed) metric spaces .xn; x�
n / modulo the

ultrafilter U , and denoted

 
Y

n

.Xn; x
�
n /

!

U
:
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B.15.11

Exercise Assuming that U is a non-principal ultrafilter, show that there is a
canonical isometry between the metric ultraproducts

 
Y

n

.Xn; x
�
n /

!

U
and

 
Y

n

.bXn; x
�
n /

!

U
;

where bXn denotes the completion of the metric space Xn.

G Hint: observe that the ultraproduct on the left admits a canonical isometric
embedding into the one on the right. F
B.15.12

Exercise Given a Cauchy sequence in the metric ultraproduct of spaces Xn, show
that it is the image under the quotient map of some Cauchy sequence in the `1-type
sum of the spaces Xn.

G Hint: use the following equivalent definition: a sequence .an/ is Cauchy if and
only if for every " > 0 there is N such that the open ball B".xN/ contains all xn with
n � N. F

The following stands in contrast to Exercise B.15.2.

B.15.13

Exercise Deduce from the previous two exercises that the metric ultraproduct of a
family of arbitrary metric spaces, formed with regard to a non-principal ultrafilter,
is always a complete metric space.

Recall that the covering number N.X; "/, where " > 0, of a metric space X is the
smallest size of an "-net for X.

B.15.14

Exercise (	) Prove that if the metric ultraproduct X of a family .Xn/ of separable
metric spaces is separable, then it is compact. Moreover, in this case for every " > 0
the sequence of covering numbers N.Xn; "/ is essentially bounded, that is, uniformly
bounded from above for all n belonging to some element A D A."/ of the ultrafilter.

Otherwise, X has density character continuum.

B.16 The Space of Ultrafilters. In conclusion, we want to give a clear literal
meaning to the symbol

lim
n!U

xn;

used for an ultralimit along an ultrafilter U . In fact, an ultralimit of a sequence can
be interpreted as a limit in the usual sense.
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B.16.1 Denote by ˇN the set of all ultrafilters on the set N of natural numbers.
Identify N with a subset of ˇN by assigning to each natural number n the
corresponding principal ultrafilter, .n/ D fA � NW A 3 ng:

N ,! ˇN; N 3 n 7! .n/ 2 ˇN:

This mapping is clearly one-to-one, and in this sense we will often refer to N as a
subset of ˇN.

B.16.2 For every A � N, denote by QA the family of all ultrafilters � 2 ˇN

containing A as an element:

QA D fU 2 ˇNW A 2 Ug:

B.16.3

Exercise Prove that the collection

f QAW A � Ng

forms a base for a topology on ˇN.

B.16.4

Exercise Prove that the above described topology on ˇN induces the discrete
topology on N as on a topological subspace.

B.16.5

Exercise Prove that the topology as above on ˇN is Hausdorff.

B.16.6

Exercise Prove that ˇN with the above topology is compact.

B.16.7

Exercise Prove that N forms an everywhere dense subset in ˇN, that is, the closure
of N in ˇN is the entire space ˇN.

B.16.8

Exercise Let X be an arbitrary compact space, and let f WN ! X be an arbitrary
mapping. Prove that f extends to a continuous mapping Qf WˇX ! X.
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B.16.9

Exercise Prove that a continuous mapping Qf as above is unique for any given f ,
assuming the space X is compact Hausdorff. In other words, if gWˇN ! X is a
continuous mapping with gjN D f , then g D Qf .

B.16.10 The compact space ˇN as above is called the Stone–C̆ech compactifica-
tion (or else universal compactification) of the discrete space N.

B.16.11

Exercise Let U 2 ˇN be an ultrafilter, and let x D .xn/ be a sequence of points
in a compact metric space X, in other words, a function xWN ! X. Prove that the
ultralimit of .xn/ along U is exactly the value of the unique continuous extension Qx
at U , that is, the usual classical limit of the function x as n ! U :

lim
n!U

xn D Qx.U/ D lim
n!U

x:

B.16.12

Exercise Generalize the above as follows: suppose U is an ultrafilter on N, and
let .xn/ be a sequence of points in a metric space X. Prove that the following are
equivalent:

1. The sequence .xn/ converges along the ultrafilter U to some point x 2 X.
2. The function n 7! xn has a classical limit x 2 X as n approaches the point U in

the topological space ˇN.

Moreover, if the two limits in (1) and (2) exist, they are equal.

B.16.13

Solution to Exercise B.16.3 Since every ultrafilter U on N contains N and thus U 2
QN, one concludes that QN D ˇN and therefore

[A�N
QA D ˇN:

Now let A;B � N, and let U 2 QA \ QB. Then U 3 A and U 3 B, therefore U 3 A \ B.
It means that U 2 AA \ B. On the other hand, clearly AA \ B � QA \ QB because, more
generally, if C � D � N, then QC � QD (un ultrafilter containing C necessarily
contains D as well). We have proved that AA \ B D QA \ QB, from where the second
axiom of a base follows.

B.16.14

Solution to Exercise B.16.4 Here one should notice that N is naturally identified
with a subset of ˇN through identifying each element n 2 N with the principal
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(trivial) ultrafilter, .n/, generated by n:

N 3 n 7! .n/ D fA � NW A 3 ng 2 ˇN:

This mapping is clearly one-to-one, and so we will often think of N as a subset of
ˇN.

To establish the claim, it is enough to show that every singleton in N is open in
the induced topology. Let n 2 N. Then it is easy to see that

ffng D f.n/g;

because if an ultrafilter U contains the set fng, it must coincide with the trivial
ultrafilter .n/. Since the singleton f.n/g is open in ˇN, it is also open in N. F

B.16.15

Solution to Exercise B.16.5 Let U ; � 2 ˇN, and let U ¤ �. What is means, is this:
there is an A � N such that A belongs to one ultrafilter (say U) and not the other
(that is, A … �). A major property of ultrafilters implies then that N n A 2 �. The
sets QA and AN n A are both open in ˇN, contain U and � respectively, and are disjoint:
indeed, assuming � 2 QA \ AN n A would mean that the ultrafilter � contains both A
and N n A, which is impossible.

B.16.16

Solution to Exercise B.16.6 Let � be an arbitrary open cover of ˇN. Then

ˇ WD f QAW for some V 2 � , QA � Vg

is also an open cover of ˇN: indeed, if U 2 ˇN, then for some V 2 � one has
U 2 V , and by the very definition of the topology on ˇN, there is an A � N with
U 2 QA � V . Notice that it is now enough to select a finite subcover, say ˇ1, of
ˇ: this done, we will then replace each QA 2 ˇ1 with an arbitrary V 2 � such that
V  QA, and thus we will get a finite subcover of � . From now on, we can forget of
� and concentrate on ˇ alone, and the cover ˇ consists of basic open sets.

Consider the system of subsets of N,

ı WD fA � NW QA 2 ˇg:

This is clearly a cover ofN: [ı D N. If we assume that ı contains no finite subcover,
it is the same as to assume that the system of complements,

fN n AW A 2 ıg;
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is centred. Being centred, it is contained in an ultrafilter, say U . One has

8A 2 ı; N n A 2 U ;

and consequently,

8A 2 ı; A … U ;

which can be rewritten as

8A 2 ı; U … QA;

that is,

U … [ˇ;

a contradiction. One concludes: there are finitely many elements A1;A2; : : : ;An 2 ı
with

A1 [ A2 [ � � � [ An D N:

By force of a familiar property of ultrafilters, if U is an arbitrary ultrafilter on N, it
must contain at least one of the sets Ai, i D 1; : : : ; n, or, equivalently, U 2 eAi for
some i D 1; 2; : : : ; n. It follows that

eA1 [ eA2 [ � � � [ eAn D ˇN;

which of course finishes the proof by supplying the desired finite subcover ˇ1 of ˇ.

B.16.17

Solution to Exercise B.16.7 It is enough to find an element of N in an arbitrary non-
empty open subset of ˇN, say U. Since U is the union of basic open subsets, for
some A � N, A ¤ ;, one has QA � U. Let a 2 A be arbitrary. Then A 2 .a/, that is,
.a/ 2 QA � U, as required.

B.16.18

Solution to Exercise B.16.8 Let U 2 ˇN be arbitrary. Since the space X is compact,
there is a limit, limn!U f .x/ 2 X. Denote this limit Qf .U/. It remains to prove the
continuity of Qf . Let U � X be open, and let Qf .U/ 2 U for some U 2 ˇN. We want
to find a neighbourhood V of U in ˇN such that Qf .V/ � U.

Every compact space (T1 or not) is regular: this is easily proved using an argu-
ment involving finite subcovers of covers of closed sets with open neighbourhoods.
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Therefore, one can find an open set, W, in X with

Qf .U/ 2 W � cl W � U:

The condition Qf .U/ 2 W, that is, limn!U f .x/ 2 W, implies that f �1.W/ 2 U .
Set A WD f �1.W/. It is a non-empty subset of N, and therefore V WD QA forms an
open neighbourhood of U in ˇN. If now � 2 V , that is, � 3 A D f �1.W/, then
every neighbourhood of the limit, Qf .�/, in X meets W, meaning that Qf .�/ 2 cl W and
consequently Qf .�/ 2 U, as required. We conclude: Qf .V/ � W. The continuity of the
mapping

Qf WˇN ! X

is thus established.

B.16.19

Solution to Exercise B.16.9 This follows at once from a much more general asser-
tion, making no use of compactness whatsoever: if f ; gW X ! Y are continuous
mappings between two topological spaces, where Y 2 T2, and if Z � X is
everywhere dense in X, and if f jZ D gjZ , then f D g.

Indeed, assume that for some x 2 X one has

f .x/ ¤ g.x/:

Find disjoint open neighbourhoods V and U in Y of f .x/ and g.x/, respectively.
Their preimages, f �1.V/ and g�1.U/, form open neighbourhoods of x in X, and so
does their intersection. Since Z is everywhere dense in X, there is a z 2 Z such that
z 2 f �1.V/ \ g�1.U/. Now one has

V 3 f .z/ D g.z/ 2 U;

a contradiction since V \ U D ;.
Without the assumption that X be Hausdorff, the statement is no longer true. A

simple example is this: let X D f0; 1g be a two-element set with indiscrete topology
(that is, only ; and all of X are open). Clearly, such an X is compact. Define a map
f WN ! X as the constant map, sending each n 2 N to 0. Since an arbitrary map
from any topological space to an indiscrete space is always continuous, the map f
admits more than one extension to a map to X, and all of them are continuous. (For
example, one can send all elements of the remainder ˇN n N to 1, or else to 0.)

Thanks to Tullio G. Ceccherini-Silberstein and Michel Coornaert for a number
of remarks on this appendix.
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