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Preface

This book is a result of our ten-year fruitful collaboration. It deals with integral
operators of harmonic analysis and their various applications in new, non-standard
function spaces. Specifically, we deal with variable exponent Lebesgue and amal-
gam spaces, variable exponent Hölder spaces, variable exponent Campanato, Mor-
rey and Herz spaces, Iwaniec–Sbordone (grand Lebesgue) spaces, grand variable
exponent Lebesgue spaces, which unify two types of spaces mentioned above, grand
Morrey spaces, generalized grand Morrey spaces, as well as weighted analogues of
most of them.

In recent years it was realized that the classical function spaces are no longer
appropriate spaces when we attempt to solve a number of contemporary problems
arising naturally in: non-linear elasticity theory, fluid mechanics, mathematical
modelling of various physical phenomena, solvability problems of non-linear par-
tial differential equations. It thus became necessary to introduce and study the
spaces mentioned above from various viewpoints. One of such spaces is the variable
exponent Lebesgue space. For the first time this space appeared in the literature
already in the thirties of the last century, being introduced by W. Orlicz. In the be-
ginning these spaces had theoretical interest. Later, at the end of the last century,
their first use beyond the function spaces theory itself, was in variational prob-
lems and studies of p(x)-Laplacian, in Zhikov [375, 377, 376, 379, 378], which in its
turn gave an essential impulse for the development of this theory. The extensive
investigation of these spaces was also widely stimulated by appeared applications
to various problems of Applied Mathematics, e.g., in modelling electrorheological
fluids Acerbi and Mingione [3], Rajagopal and Růžička [301], Růžička [306] and
more recently, in image restoration Aboulaich, Meskine, and Souissi [1], Chen,
Levine, and Rao [42], Harjulehto, Hästö, Latvala, and Toivanen [127], Rajagopal
and Růžička [301].

Variable Lebesgue space appeared as a special case of the Musielak–Orlicz
spaces introduced by H. Nakano and developed by J. Musielak and W. Orlicz.

The large number of various results for non-standard spaces obtained during
last decade naturally led us to two-volume edition of our book. In this Preface to
Volume 1 we briefly characterize the book as a whole, and provide more details
on the material of Volume 1.

 v



vi Preface

Recently two excellent books were published on variable exponent Lebesgue
spaces, namely:

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and
Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics,
Vol. 2017, Springer, Heidelberg, 2011,

and

D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Foundations
and Harmonic Analysis, Birkhäuser, Springer, Basel, 2013.

A considerable part of the first book is devoted to applications to partial differen-
tial equations (PDEs) and fluid dynamics. In the recent book

V. Kokilashvili and V. Paatashvili, Boundary Value Problems for An-
alytic and Harmonic Functions in Non-standard Banach Function Spa-
ces, Nova Science Publishers, New York, 2012,

there are presented applications to other fields, namely to boundary value prob-
lems, including the Dirichlet, Riemann, Riemann–Hilbert and Riemann–Hilbert–
Poincaré problems. These problems are solved in domains with non-smooth bound-
aries in the framework of weighted variable exponent Lebesgue spaces.

The basic arising question is: what is the difference between this book and the
above-mentioned books? What new theories and/or aspects are presented here?
What is the motivation for a certain part of the book to treat variable exponent
Lebesgue spaces? Below we try to answer these questions.

First of all, we claim that most of the results presented in our book deal with
the integral transforms defined on general structures, namely, on measure metric
(quasi-metric) spaces. A characteristic feature of the book is that most of state-
ments proved here have the form of criteria (necessary and sufficient conditions).

In the part related to the variable exponent Lebesgue spaces in Volume 1
we single out the results for: weighted inequality criteria for Hardy-type and
Carleman–Knopp operators, a weight characterization of trace inequalities for
Riemann–Liouville transforms of variable order, two-weight estimates, and a solu-
tion of the trace problem for strong fractional maximal functions of variable order
and double Hardy transforms. It should be pointed out that in this problem the
situation is completely different when the fractional order is constant. Here two-
weight estimates are derived without imposing the logarithmic condition for the
exponents of spaces. We also treat boundedness/compactness criteria for weighted
kernel operators including, for example, weighted variable-order fractional inte-
grals.

For the variable exponent amalgam spaces we give a complete description of
those weights for which the corresponding weighted kernel operators are bounded/
compact. The latter result is new even for constant exponent amalgam spaces. We
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give also weighted criteria for the boundedness of maximal and potential operators
in variable exponent amalgam spaces.

In Volume 1 we also present the results on mapping properties of one-sided
maximal functions, singular, and fractional integrals in variable exponent Lebesgue
spaces. This extension to the variable exponent setting is not only natural, but
also has the advantage that it shows that one-sided operators may be bounded
under weaker conditions on the exponent those known for two-sided operators.
Among others, two-weight criterion is obtained for the trace inequality for one-
sided potentials.

In this volume we state and prove results concerning mapping properties of
hypersingular integral operators of order less than one in Sobolev variable exponent
spaces defined on quasi-metric measure spaces. High-order hypersingular integrals
are explored as well and applied to the complete characterization of the range of
Riesz potentials defined on variable exponent Lebesgue spaces.

Special attention is paid to the variable exponent Hölder spaces, not treated
in existing books. In the general setting of quasi-metric measure spaces we present
results on mapping properties of fractional integrals whose variable order may
vanish on a set of measure zero. In the Euclidean case our results hold for domains
with no restriction on the geometry of their boundary.

The established boundedness criterion for the Cauchy singular integral op-
erator in weighted variable exponent Lebesgue spaces is essentially applied to the
study of Fredholm type solvability of singular integral equations and to the PDO
theory. Here a description of the Fredholm theory for singular integral equations
on composite Carleson curves oscillating near modes, is given using Mellin PDO.

In Volume 2 the mapping properties of basic integral operators of Harmonic
Analysis are studied in generalized variable exponent Morrey spaces, weighted
grand Lebesgue spaces, and generalized grand Morrey spaces. The grand Lebesgue
spaces are introduced on sets of infinite measure and in these spaces bounded-
ness theorems for sublinear operators are established. We introduce new function
spaces unifying the variable exponent Lebesgue spaces and grand Lebesgue spaces.
Boundedness theorems for maximal functions, singular integrals, and potentials in
grand variable exponent Lebesgue spaces defined on spaces of homogeneous type
are established.

In Volume 2 the grand Bochner–Lebesgue spaces are introduced and some of
their properties are treated.

The entire book is mostly written in the consecutive way of presentation of
the material, but in some chapters, for reader’s convenience, we recall definitions
of some basic notions. Although we use a unified notation in most of the cases, in
some of the cases the notation in a chapter is specific for that concrete chapter.
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Chapter 1

Hardy-type Operators in Variable
Exponent Lebesgue Spaces

In this chapter we consider the Hardy-type operators

Hα,μf(x) = xα(x)+μ(x)−1

xˆ

0

f(y) dy

yα(y)
, Hβ,μf(x) = xβ(x)+μ(x)

∞̂

x

f(y) dy

yβ(y)+1
,

with variable exponents, in variable exponent Lebesgue spaces. We present also
results on the Lp(·)-boundedness of the Mellin convolution operators

∞̂

0

K
(
x

y

)
f(y)

dy

y

on R+, which generalize the above Hardy operators in the case of constant α, β
and μ ≡ 0. When proving Hardy-type inequalities, we pay a special attention to
the estimation of the constants arising in inequalities, which enables us to prove
also Knopp–Carleman inequalities in the variable exponent setting, via the known
dilation arguments with respect to the exponent, which is variable in this case.

In the case of constant exponents, the classical Hardy inequalities have the
form ∥∥∥∥xα+μ−1

xˆ

0

f(y) dy

yα

∥∥∥∥
Lq(R+)

� C ‖f‖Lp(R+) (1.1)

and ∥∥∥∥xβ+μ

∞̂

x

f(y) dy

yβ+1

∥∥∥∥
Lq(R+)

� C ‖f‖Lp(R+) , (1.2)
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2 Chapter 1. Hardy-type Operators in Variable Exponent Lebesgue Spaces

where 1 < p � q < ∞ and 1
p + 1

p′ = 1. They hold if and only if

0 � μ <
1

p
and

1

q
=

1

p
− μ

and

α <
1

p′
and β > −1

p
,

respectively. We prove such inequalities for variable exponent spaces. As is known
(Hardy, Littlewood, and Pólya [123]; see also Section 2 of Karapetyants and Samko
[151] for more details), one of the ways to prove these inequalities is to use the
homogeneity property of the kernels of the corresponding integral operators. This
property allows to reduce these inequalities, via the exponential change of vari-
ables, to the application of the Young theorem to convolution operators. We use
this approach also because it allows us to estimate the constants arising in the
Hardy inequalities.

1.1 Preliminaries

1.1.1 Definitions and Basic Properties

We do not give proofs of most of the initial basic material for the variable expo-
nent Lebesgue spaces; they are well presented in the already available books by
Cruz-Uribe and Fiorenza [49] and Diening, Harjulehto, Hästö, and Růžička [69].
However, we provide all the necessary definitions.

For an open set Ω ⊆ Rn, we denote by Lp(·)(Ω, �) the weighted space of
measurable functions f : Ω → C with weight as a multiplier, i.e.,

‖f‖Lp(·)(Ω,
) := ‖�f‖p(·) = inf

{
λ > 0 :

ˆ

Ω

∣∣∣∣�(x)f(x)λ

∣∣∣∣p(x) dx � 1

}
< ∞. (1.3)

The notation Lp(·)(Ω) stands for Lp(·)(Ω, 1).

The relation

‖f‖p(·) = ‖f s‖1/sp(·)/s s ∈ (0, p−] (1.4)

will prove useful in the sequel.

We will also use the notation L
p(·)
w (Ω) for the spaces defined by the norm

‖f‖
L

p(·)
w (Ω)

:= inf

{
λ > 0 :

ˆ

Ω

∣∣∣∣f(x)λ

∣∣∣∣p(x) w(x) dx � 1

}
,

when we wish to interpret the weight as a measure.
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We often assume that either

1 � p− � p(x) � p+ < ∞ on Ω, (1.5)

or

1 < p− � p(x) � p+ < ∞ on Ω. (1.6)

From the definition of the norm ‖f‖ := ‖f‖Lp(·)(Ω) there follow the inequal-
ities

‖f‖p+ � Ip(·)(f) � ‖f‖p− , if ‖f‖ � 1, (1.7)

‖f‖p− � Ip(·)(f) � ‖f‖p+, if ‖f‖ � 1, (1.8)

where the modular Ip(·) is given by

Ip(·)(f) :=
ˆ

Ω

|f(y)|p(y)dy.

Theorem 1.1. Under the condition (1.5) the norm convergence in the space Lp(·)(Ω)
is equivalent to the modular convergence:

lim
m→∞ ‖fm − f‖p(·) = 0 ⇐⇒ lim

m→∞ Ip(·)(fm − f) = 0

for fm, f ∈ Lp(·)(Ω).

Proof. The proof is obvious by (1.7). �

We also admit the case where p(x) = +∞ on a set denoted by

Ω∞ = {x ∈ Ω : p(x) = +∞} .
The norm in this case is introduced as

‖f‖p(·) = ‖f‖(p) + ‖f‖L∞(Ω∞), (1.9)

where

‖f‖(p) = inf

{
λ > 0 :

ˆ

Ω\Ω∞

∣∣∣∣f(y)λ

∣∣∣∣p(y) dy � 1

}
.

We often use the local log-condition

|p(x)− p(y)| � A

ln 1
|x−y|

for all x, y ∈ Ω with |x− y| � 1

2
, (1.10)

where A > 0 does not depend on x and y. In case of a bounded set Ω, the condition
(1.10) may be also written in the form

|p(x)− p(y)| � A1

ln D
|x−y|

x, y ∈ Ω, D > diam Ω.
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The condition

|p(x)− p(y)| � C

ln(e + |x|) , |y| � |x|,

introduced in Cruz-Uribe, Fiorenza, and Neugebauer [51] is known as the decay
condition used for unbounded sets Ω. It is equivalent to the condition that there
exists a number p∞ ∈ [1,∞) such that∣∣∣∣ 1p∞ − 1

p(x)

∣∣∣∣ � Ap

ln(e + |x|) , for all x ∈ Ω. (1.11)

Finally, we recall that the Hölder inequality∣∣∣∣∣
ˆ

Ω

f(x)g(x) dx

∣∣∣∣∣ � k‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω), k =
1

p−
+

1

p′−
, (1.12)

is known to hold for f ∈ Lp(·)(Ω), g ∈ Lp′(·)(Ω), 1 � p(x) � p+ < ∞.

1.1.2 Equivalent Norms

As is well known, when p is constant, the Riesz representation theorem states that

‖f‖p = sup
‖g‖p′�1

∣∣∣∣∣
ˆ

Ω

f(x)g(x) dx

∣∣∣∣∣.
It holds also for variable exponents p(x) in terms of norm equivalence. By ‖f‖∗p(·)
we denote one of the norms

‖f‖∗p(·) := sup
‖g‖p′(·)�1

∣∣∣∣∣
ˆ

Ω

f(x)g(x) dx

∣∣∣∣∣, or ‖f‖∗p(·) := sup
‖g‖p′(·)�1

ˆ

Ω

|f(x)g(x)| dx.

(1.13)

Theorem 1.2. Let Ω ⊆ Rn be an open set and let the measurable exponent p satisfy
the condition (1.5). Then

‖f‖p(·) � ‖f‖∗p(·) � k‖f‖p(·),
for each of the norms (1.13), where ‖f‖p(·) is the norm (1.3).

Proof. The proof is straightforward, like in the case of constant p. The right-hand
side inequality follows by the Hölder inequality (1.12). It suffices to prove the
left-hand side inequality inequality for f with ‖f‖Lp(·) = 1. We choose g(x) =
g0(x) := |f(x)|p(x)−1signf(x) for the first norm in (1.13) and g0(x) := |f(x)|p(x)−1

for the second one, so that g0 ∈ Lp′(·)(Ω) and Ip′(·)(g0) = Ip(·)(f), and then
‖g0‖Lp′(·) = ‖f‖Lp(·) = 1, and get ‖f‖∗p(·) �

´
Ω g0(x)f(x) dx,= Ip(·)(f) = 1. �

For one more version of the norm for variable exponents, known as Amemiya
norm, we refer to Fan [84], where it was studied in the setting of Musielak–Orlicz
spaces.
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1.1.3 Minkowski Integral Inequality

Theorem 1.3. Let Ω ⊆ Rn be an open set and let p satisfy the condition (1.6).
Then ∥∥∥∥∥

ˆ

Ω

f(·, y)dy
∥∥∥∥∥
p(·)

� k

ˆ

Ω

‖f(·, y)‖p(·)dy. (1.14)

Proof. For the norm (1.13) we have∥∥∥∥∥
ˆ

Ω

f(·, y)dy
∥∥∥∥∥
∗

p(·)
�
ˆ

Ω

‖f(·, y)‖∗p(·)dy

with the constant 1, by the definition of this norm and Fubini’s theorem. Then
(1.14) follows by Theorem 1.2. �

1.1.4 Basic Notation

Everywhere in the sequel we use the following notation:

N is the set of all natural numbers; N0 = N ∪ {0};
R

n is the n-dimensional Euclidean space with the distance |x| =
√
x2
1 + · · ·+ x2

n;

Z is the set of all integers;

B(x, r) = {y ∈ R
n : |y − x| < r};

B(x, r) is the closed ball with center x and radius r;

S
n−1 = {x ∈ R

n : |x| = 1};
en+1 = (0, 0, 0, . . . , 0, 1) ∈ Rn+1;

Ω is an open set in Rn;

∂Ω is the boundary of Ω;

P(Ω) is the class of measurable functions p : Ω → [1,∞], not necessarily bounded;

P(Ω) is the class of exponents p ∈ P(Ω) with 1 < p− � p+ < ∞;

P log(Ω) is the set of bounded exponents p∈P(Ω) satisfying the local log-condition;

Plog(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− � p+ < ∞;

for unbounded sets Ω, P∞(Ω), P∞(Ω), P log
∞ (Ω), and Plog

∞ (Ω) denote the subsets of
the corresponding above sets of exponents which satisfy the decay condition;

in the case Ω = R+, we denote by P0,∞(R+) the class of exponent p ∈ P(R+)
satisfying the decay condition at the origin and infinity, as in (1.47);

Ap(R
n), p = const, is the usual Muckenhoupt class of weights, see (2.1);

Ap(·)(Ω) is the class of weights � such that the maximal operator is bounded in

the weighted space Lp(·)(Ω, �);
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Ap(·)(Rn) is the class of weights � satisfying the condition (2.3);

Ap(·)(Ω) is the class of restriction onto Ω ⊂ Rn of weights � ∈ Ap(·)(Rn);

We usually write inf and sup instead of ess inf and ess sup, without danger of
confusion of these notions;

The notation A ≈ B for A � 0 and B � 0 means the equivalence c1A � B � c2A,
with positive c1 and c2 not depending on values of A and B.

1.1.5 Estimates for Norms of Characteristic Functions of Balls

We will often use the inequality

‖χB(x,r)‖Lp(·)(Ω) � Cr
n

p(x) , (1.15)

when Ω is bounded or unbounded, but r runs over a finite interval; see also Lemma
1.4. We also provide its proof for bounded sets in a more general setting of quasi-
metric measure spaces in Lemma 2.57, see also a more general situation in the
Euclidean setting in Theorem 2.62, and Corollary 2.63.

For unbounded sets the following estimate is valid (its indirect proof was
given in Diening, Harjulehto, Hästö, and Růžička [69, Corollary 4.5.9]; we give an
independent simple proof).

Lemma 1.4. Let Ω = Rn, 1 � p− � p(x) � p+ < ∞ and let p satisfy the local
log-condition in the case r � 1 and the decay condition in the case r > 1. Then

‖χB(x,r)‖Lp(·)(Ω) � Cr
n

p(x,r) , (1.16)

where

p(x, r) :=

{
p(x), if 0 < r � 1,
p(∞), if r > 1.

Proof. The case r � 1 is in fact a direct consequence of the local log-condition
(see more details concerning the case r � 1 in the proof of Lemma 2.57, in the
setting of quasimetric measure spaces). So we pay the main attention to the case
r � 1.

It is obvious that it suffices to estimate the function

F (x, r) :=

ˆ

|y|>1
|y−x|<r

r−n p(y)
p(∞) dy.

Let first |x| � 2r. Then |y| > |x| − |x− y| > r. We have

|p(y)− p(∞)| ln r � |p(y)− p(∞)| ln |y| � C
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by the decay condition, which yields 1

r
−n

p(y)
p(∞)

� C
rn . Consequently,

F (x, r) � C

rn
|B(x, r)| = C.

Let now |x| < 2r. Then B(x, r) ⊂ B(0, 3r), so that

F (x, r) �
ˆ

1<|y|<3r

dy

r−n p(y)
p(∞)

where we proceed as follows:

F (x, r) �
N∑

k=0

ˆ

mk(r)<|y|<2−k3r

dy

r−n p(y)
p(∞)

with the notation mk(r) := max(1, 2−k−13r) and N = [log2(3r)] + 1. Hence

F (x, r) �
N∑

k=0

ˆ

mk(r)<|y|<2−k3r

dy

(2k|y|/3)−n p(y)
p(∞)

� C
N∑

k=0

2−k
p−

p(∞)

ˆ

mk(r)<|y|<2−k3r

dy

|y|−n p(y)
p(∞)

.

Therefore, in view of the decay condition we obtain

F (x, r) � C

N∑
k=0

2−k
p−

p(∞)

ˆ

mk(r)<|y|<2−k3r

dy

|y|n = C

N∑
k=0

2−k
p−

p(∞)

2−k3rˆ

mk(r)

d�

�
� C < ∞.

�

1.2 Convolution Operators

The Young theorem for convolution operators with a kernel k ∈ L1(Rn) is not valid
in general in the case of variable exponents, but some classes of integrable kernels
for which the convolution operators may be bounded in Lp(·)(Rn) are known, as
presented in the next subsection.

1.2.1 Convolution Operators Bounded in Lp(·)(Rn)

As is well known, a convolution operator with sufficiently “nice” kernel is controlled
by the maximal operator

M f(x) = sup
r>0

1

|B(x, r)|
ˆ

B(x,r)

|f(y)| dy.
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Namely, the pointwise inequality

sup
ε>0

1

εn

∣∣∣∣∣
ˆ

Rn

k

(
x− y

ε

)
f(y) dy

∣∣∣∣∣ � cM f(x) (1.17)

holds whenever the kernel k satisfies the following property (A):

(A) k has a radial decreasing integrable majorant, i.e., |k(x)| � K(|x|) and´
Rn K(|x|) dx < ∞.

Note that in this case c = 2‖K‖L1(Rn). Consequently, every convolution op-

erator with such a kernel is bounded in Lp(·)(Rn) whenever the maximal operators
is bounded in this space.

In the sequel we denote

kε(x) :=
1

εn
k
(x
ε

)
.

Kernels kε satisfying the above property (A) are called potential type dilations.

By Theorem 2.19, presented later, the condition p ∈ Plog
∞ (Rn) guarantees the

uniform boundedness

sup
ε>0

∥∥∥∥∥
ˆ

Rn

kε (x− y) f(y) dy

∥∥∥∥∥
p(·)

� C‖f‖p(·)

of such dilations. Recall that the assumption p ∈ Plog
∞ (Rn) excludes the case

p− = 1.

For the maximal operator over a domain Ω we use the same notation;

M f(x) = sup
r>0

1

|B(x, r)|
ˆ

B(x,r)∩Ω

|f(y)| dy.

In the following, we denote by P(Ω) the set of exponents p ∈ P(Ω) for which the
maximal operator is bounded in the space Lp(·)(Ω).

The following theorem, where we consider

kε ∗ f(x) :=
ˆ

Ω

kε(x − y)f(y) dy

over an arbitrary open set Ω ⊆ Rn, is free of the restriction p− > 1.

Theorem 1.5. Let Ω ⊆ Rn be an open set. Then each of the conditions:

(i) kε is a potential type dilation and p ∈ P(Ω),
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(ii) k has compact support and k ∈ Lp+(Rn) and

p ∈
{
P log∞ (Ω), if Ω is unbounded,

P log(Ω), if Ω is bounded,

implies the uniform estimate

‖kε ∗ f‖p(·) � c‖f‖p(·).

The proof of Theorem 1.5 in full detail may be found in Cruz-Uribe and
Fiorenza [48]; we will also prove it later in Section 7.7.2 under the hypothesis
(ii) for bounded sets Ω, when we will use this theorem to prove the denseness of
C∞

0 -functions in variable exponent Sobolev spaces, see Theorem 7.27.

Corollary 1.6. Let p ∈ P log∞ (Rn), and let the kernel k satisfy one of the assumptions
(i), (ii) of Theorem 1.5 and f ∈ Lp(·)(Rn). If

´
Rn k(x) dx = 1, then kε ∗f converges

to f both in the norm of Lp(·)(Rn) and almost everywhere.

This is an immediate consequence of Theorem 1.5, the Banach–Steinhaus
theorem, denseness of Lp−(Rn)∩Lp+(Rn) in Lp(·)(Rn), the embedding Lp(·)(Rn) ⊂
Lp−(Rn)∪Lp+(Rn) and the known validity of such a convergence in the constant
exponent case.

Note that Theorem 1.5 and its corollary use both the local log and the decay
conditions. In Theorem 1.14 we show that convolutions with a certain class of
integrable kernels with radial majorant (in particular, various convolutions used
in applications) are bounded without assuming the local log condition, only the
decay condition being required.

Later, in Theorem 7.30 we prove another result on approximations by con-
volutions, where the assumptions on the kernel are given in terms of its Fourier
transform.

1.2.2 Estimation of Norms of Some Embeddings
for Variable Exponent Lebesgue Spaces

Lemma 1.7. Let p, q ∈ P(Rn) and q(x) � p(x) almost everywhere, and

1

r(x)
:=

1

q(x)
− 1

p(x)
.

If 1 ∈ Lr(·)(Rn), then
‖f‖q(·) � 21/q−‖1‖r(·)‖f‖p(·). (1.18)

Proof. The embedding (1.18) is known (see Lemma 3.3.1 in Diening, Harjulehto,
Hästö, and Růžička [69]) in the form

‖f‖q(·) � 2‖1‖r(·)‖f‖p(·). (1.19)
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To get (1.18), we use the relation

‖f1/α‖ααp(·) = ‖f‖p(·), α > 0, (1.20)

valid for the norm (1.9). Since αq(x) � αp(x), we apply the inequality (1.19)
to the function f1/α with respect to the norms ‖ · ‖αq(·) and ‖ · ‖αp(·), which is

possible when α � 1
q− , and get ‖f1/α‖αq(·) � 2‖1‖αr(·)‖f1/α‖αp(·). Then we again

use (1.20) and arrive at ‖f‖q(·) � 2α‖1‖r(·)‖f‖p(·). It remains to choose the best

possible value α = 1
q−

. �

We use the standard norms

‖f‖X∩Y = max{‖f‖X, ‖f‖Y }, ‖f‖X+Y := inf
f=g+h,
g∈X,h∈Y

(‖g‖X + ‖h‖Y )

for the intersection X ∩ Y and the sum X + Y := {g + h : g ∈ X,h ∈ Y } of two
Banach spaces.

Lemma 1.8 (See Theorem 3.3.11 in Diening, Harjulehto, Hästö, and Růžička [69]).
Let p1, p2, p3 ∈ P(Rn) and p1(x) � p2(x) � p3(x) almost everywhere on R

n. Then

Lp1(·)(Rn) ∩ Lp3(·)(Rn) ↪−→ Lp2(·)(Rn) ↪−→ Lp1(·)(Rn) + Lp3(·)(Rn),

with
1

2
‖f‖Lp1(·)+Lp3(·) � ‖f‖Lp2(·) � 21/(p1)−‖f‖Lp1(·)∩Lp3(·) . (1.21)

Denote

m∞(x) = min{p(x), p∞} and M∞(x) = max{p(x), p∞}.
Lemma 1.9. Let p ∈ P∞(Rn) and

1

s(x)
:=

∣∣∣∣ 1

p(x)
− 1

p∞

∣∣∣∣ . (1.22)

Then
LM∞(·)(Rn) ↪−→ Lp(·)(Rn) ↪−→ Lm∞(·)(Rn) (1.23)

if and only if
1 ∈ Ls(·)(Rn), (1.24)

and then

‖f‖m∞(·) � 21/p−‖1‖Lp̃1(·)‖f‖p(·), (1.25)

‖f‖p(·) � 21/p−‖1‖p̃2(·)‖f‖M∞(·), (1.26)

where p̃1(x) and p̃2(x) are variable exponents defined by

1

p̃1(x)
:= max

{
0,

1

p∞
− 1

p(x)

}
,

1

p̃2(x)
:= max

{
0,

1

p(x)
− 1

p∞

}
. (1.27)
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Proof. The equivalence between (1.23) and (1.24) was proved in Lemma 3.3.5
in Diening, Harjulehto, Hästö, and Růžička [69], the constants arising in (1.25)
following from the arguments there: let Π+ = {x ∈ Rn : p(x) � p∞} and Π− =
R

n\Π+, so that

1

s(x)
=

{
1

p̃1(x)
, x ∈ Π+,

1
p̃2(x)

, x ∈ Π−.

As shown in Diening, Harjulehto, Hästö, and Růžička [69, p. 84], condition (1.24)
implies that 1 ∈ Lp̃1(·)(Rn) ∩ Lp̃2(·)(Rn), so that Lemma 1.7 is applicable, from
which we easily derive (1.25)–(1.26). �
Remark 1.10. Let p ∈ P∞(Rn). Then 1 ∈ Ls(·)(Rn) with s(x) defined in (1.22)
and the embeddings (1.23) with the inequalities (1.25) and (1.26) hold. Indeed, the
decay condition guarantees the validity of the embeddings in (1.23), see Section
3.3 in Diening, Harjulehto, Hästö, and Růžička [69]. Consequently, by Lemma 1.9,
the decay condition is sufficient for the inclusion (1.24).

Let p ∈ P∞(Rn). The equivalence

Lp(·)(Rn) ∩ Lp+(Rn) ∼= Lp∞(Rn) ∩ Lp+(Rn) (1.28)

and the embedding

Lp(·)(Rn) ↪−→ Lp∞(Rn) + Lp−(Rn) (1.29)

are known to hold if 1 ∈ Ls(·)(Rn), where s(x) is defined in (1.22), see Lemma
3.3.12 in Diening, Harjulehto, Hästö, and Růžička [69] (see also Lemma 4.5 in
Diening and Samko [67]). In the following lemma we specify the constants for the
embedding operators in the statements (1.28) and (1.29).

Lemma 1.11. Let p ∈ P∞(Rn). Then the equivalence (1.28) is valid in the form

‖f‖Lp∞∩Lp+ � 22/p−‖1‖p̃1(·)‖f‖Lp(·)∩Lp+ , (1.30)

‖f‖Lp(·)∩Lp+ � 2(1/p−+1/p∞)|1‖p̃2(·)‖f‖Lp∞∩Lp+ (1.31)

and the embedding (1.29) holds in the form

‖f‖Lp∞+Lp− � 2
1+ 1

p− ‖1‖p̃1(·)‖f‖p(·) (1.32)

with 2(1+1/p−) replaced by 21/p− in the case p− = p∞.

Proof. We first observe that the following inequalities follow from Lemma 1.8:

p∞ � M∞(x) � p+ ⇒ ‖f‖M∞(·) � 21/p∞ max{‖f‖p+, ‖f‖p∞}, (1.33)

p(x) � M∞(x) � p+ ⇒ ‖f‖M∞(·) � 21/p− max{‖f‖p+ , ‖f‖p(·)}, (1.34)

m∞(x) � p∞ � M∞(x) ⇒ ‖f‖p∞ � 21/p− max{‖f‖m∞(·), ‖f‖M∞(·)}, (1.35)

m∞(x) � p(·) � M∞(x) ⇒ ‖f‖p(·) � 21/p− max{‖f‖m∞(·), ‖f‖M∞(·)}.
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Then the estimate (1.30) is obtained as follows:

max{‖f‖p∞, ‖f‖p+}
� 21/p− max{‖f‖m∞(·), ‖f‖M∞(·), ‖f‖p+} by (1.35)

� 22/p− max{‖1‖p̃1(·)‖f‖p(·), ‖f‖p(·), ‖f‖p+} by (1.25) and (1.34)

� 22/p−‖1‖p̃1(·)‖f‖Lp(·)∩Lp+ ,

with ‖1‖p̃1(·) > 1 taken into account. Similarly (1.31) is obtained:

max{‖f‖p(·), ‖f‖p+} � 21/p−‖1‖p̃2(·)max{‖f‖M∞(·), ‖f‖p+} by (1.26)

� 2(1/p−+1/p∞)‖1‖Lp̃2(·) max{‖f‖p∞ , ‖f‖p+} by (1.33)

Finally,

‖f‖Lp∞+Lp− � 2‖f‖m∞(·) by (1.21) (1.36)

� 21+1/p−‖1‖Lp̃1(·)‖f‖p(·) by (1.25)

which proves (1.32).

In the case p− = p∞, the factor 2
1+ 1

p− in (1.32) may be replaced by 2
1

p− , since
m∞(x) ≡ p∞ in this case, so that (1.36) turns into ‖f‖Lp∞+Lp− = ‖f‖m∞(·) �

In the next lemma we estimate the norm ‖1‖Lr(·)(Rn) which appeared in the
embedding Lemmas 1.7 and 1.11. This estimation is given in terms of the decay
constant. Let the variable exponent r(x) be given by one of the relations

1

r(x)
= max

{
0,

1

p(x)
− 1

p∞

}
,

1

r(x)
= max

{
0,

1

p∞
− 1

p(x)

}
,

1

r(x)
=

∣∣∣∣ 1p∞ − 1

p(x)

∣∣∣∣ .
(1.37)

By ς0 = ς0(n) ∈ (n,∞) we denote the unique root of the equation

(t− 1)(t− 2) · · · (t− n)et = |Sn−1|(n− 1)!en. (1.38)

Remark 1.12. In the one-dimensional case n = 1 one has ς0 = 1+δ, where δ > 0 is
the root of the equation tet = 2, i.e., ς0 = W (2), where W is the Lambert special
function. Note that 1, 693 ≈ 1 + ln 2 < ς0 < 2 in this case.

Lemma 1.13. Let p ∈ P(Rn) satisfy the decay condition (1.11) and r(x) be defined
by one of the relations (1.37). Then

‖1‖Lr(·)(Rn) � eς0Ap . (1.39)
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Proof. As observed in the proof of Proposition 4.1.8 in Diening, Harjulehto, Hästö,
and Růžička [69], under the condition (1.11) for every m > 0 there holds the
estimate γr(x) � (e + |x|)−m with γ � e−mAp . Taking m > n and λ = emAp we
then have ˆ

Rn

(
1

λ

)r(x)

dx �
ˆ

Rn

dx

(e+ |x|)m =: Cm.

Direct calculation gives Cm = |Sn−1|(n − 1)!en−m Γ(m−n)
Γ(m) = |Sn−1|(n−1)!en−m

(m−1)(m−2)···(m−n) .

With the choicem = ς0 we haveCς0 = 1, so that
´
Rn

(
1
λ

)r(x)
dx � 1 with λ = eς0Ap ,

which proves (1.39). �

1.2.3 Estimation of the Norm of Convolution Operators

Let

Kf(x) :=

ˆ

Rn

k(x− y)f(y) dy

be a convolution operator. The constant exponents r0 � 1 and s0 � 1 used in
Theorem 1.14 are defined by

1

r0
= 1− 1

p(∞)
+

1

q(∞)
,

1

s0
= 1− 1

p−
+

1

q+
, r0 � s0. (1.40)

We also use the notation of type (1.27)

1

p̃1(x)
:= max

{
0,

1

p(∞)
− 1

p(x)

}
,

1

q̃2(x)
:= max

{
0,

1

q(x)
− 1

q(∞)

}
.

Theorem 1.14. Let p, q ∈ P∞(Rn) and q(∞) � p(∞). If

k ∈ Lr0(Rn) ∩ Ls0(Rn),

then the convolution operator K is bounded from Lp(·)(Rn) to Lq(·)(Rn)∩Lq+(Rn)
and

‖Kf‖Lq(·)∩Lq+ � κ(k; p, q)‖f‖Lp(·) , (1.41)

with

κ(k; p, q) = 2
1+ 2

p− + 1
p∞ ‖1‖Lq̃2(·)‖1‖Lp̃1(·) max {‖k‖Lr0 , ‖k‖Ls0} (1.42)

� 2
1+ 2

p− + 1
p∞ eς0(Ap+Aq) max {‖k‖Lr0 , ‖k‖Ls0} , (1.43)

where Ap, Aq are the constants from the decay condition (1.11), ς0 = ς0(n) is the

root of the equation (1.38), and 2
1+ 2

p− + 1
p∞ may be replaced by 2

2
p− + 1

p∞ in the
case p− = p∞.
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Proof. Besides (1.40), define

1

r1
= 1− 1

p−
+

1

q(∞)
,

1

s1
= 1− 1

p(∞)
+

1

q+
.

Then

1 � r0 � min{r1, s1} � max{r1, s1} � s0 � ∞.

By the classical Young inequality for the convolution operator K, we have

‖Kf‖q+ � ‖k‖s0‖f‖p− , ‖Kf‖q(∞) � ‖k‖r1‖f‖p− ,

and

‖Kf‖q+ � ‖k‖s1‖f‖p(∞), ‖Kf‖q(∞) � ‖k‖r0‖f‖p(∞). (1.44)

Therefore,

‖Kf‖q+ � ‖k‖Ls0∩Ls1‖f‖Lp−+Lp(∞)

and

‖Kf‖q(∞) � ‖k‖Lr0∩Lr1‖f‖Lp−+Lp(∞) .

Consequently,

‖Kf‖Lq+∩Lq(∞) � B‖f‖Lp−+Lp(∞)

with

B := max {‖k‖Ls0 , ‖k‖Ls1 , ‖k‖Lr0 , ‖k‖Lr1} = max {‖k‖Lr0 , ‖k‖Ls0} , (1.45)

where the last equality in (1.45) is a consequence of the continuous embeddings
Lr0 ∩ Ls0 ↪→ Lr1 ∩ Ls0 , Lr0 ∩ Ls0 ↪→ Lr0 ∩ Ls1 with the norm of the embedding
operator equal to 1. More precisely, ‖k‖r1 � ‖k‖tr0‖k‖1−t

s0 � ‖k‖Lr0∩Ls0 where

t = r0(s0−r1)
r1(s0−r1)

∈ (0, 1), and then ‖k‖Lr1∩Ls0 � ‖k‖Lr0∩Ls0 ; similarly, ‖k‖Lr0∩Ls1 �
‖k‖Lr0∩Ls0 . Therefore, ‖Kf‖Lq+∩Lq(∞) � 2

1+ 1
p− B‖1‖Lp̃1(·)‖f‖Lp(·) by the inequal-

ity (1.32). Then by (1.31),

‖Kf‖Lq(·) � 2
1+ 2

p− + 1
p∞ B‖1‖Lp̃2(·)‖1‖Lp̃1(·)‖f‖Lp(·)

which proves (1.41)-(1.42). The line in (1.43) follows from Lemma 1.13.

The possibility to replace 2
1+ 2

p− + 1
p∞ by 2

2
p− + 1

p∞ is provided by Lemma
1.11. �
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1.3 Reduction of Hardy Inequalities
to Convolution Inequalities

We return to the Hardy operators Hα,μ and Hβ,μ. Let first μ ≡ 0. In the case
where α and β are constant, the Hardy operators

Hαf(x) = xα−1

xˆ

0

f(y)

yα
dy and Hβf(x) = xβ

∞̂

x

ϕ(y) dy

yβ+1

have kernels, homogeneous of degree −1:

kα(x, y) =
1

x

(
x

y

)α

θ+(x− y) and kβ(x, y) =
1

y

(
x

y

)β

θ+(y − x),

respectively, where θ+(x) =
1
2 (1 + signx).

1.3.1 Equivalence Between Mellin Convolution on R+ and
Convolutions on R. The Case of Constant p

It is known that an integral operator

Kf(x) =

ˆ ∞

0

k(x, y)f(y)dy

on R+ with the kernel homogeneous of order −1: k(x, y) = 1
yk
(

x
y , 1
)
, known as

Mellin convolution, may be transformed to a convolution operator on R via the
exponential change of variables, see Hardy, Littlewood, and Pólya [123]; Kara-
petyants and Samko [151, p. 51], and in the case of constant p, the transformation

(Wpf)(t) = e−
t
p f(e−t) , −∞ < t < ∞, (1.46)

realizes an isometry of Lp(R+) onto Lp(R) : ‖Wpf‖Lp(R) = ‖f‖Lp(R+), and

WpKW−1
p = H

where

Hg =

ˆ

R

h(t− τ)g(τ)dτ, h(t) = e
t
p′ k(1, et), t ∈ R,

and

‖h‖L1(Rn) =

∞̂

0

y−
1
p |k(1, y)|dy.
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1.3.2 The Case of Variable p

In the case of variable exponent p(x), on R+, we will suppose that f ∈ P0,∞(R+)
and impose the decay conditions at the origin and infinity of the form

|p(x)− p0| � C

|ln x| , 0 < x � 1

2
, and |p(x)− p∞| � C

ln x
, x � e. (1.47)

We also write p0 = p(0), p∞ = p(∞) in this case.

With the passage from R+ to R in mind, we denote

p∗(t) = p
(
e−t
)
, t ∈ R.

We focus on the case p0 = p∞. Note that

p0 = p∞ ⇐⇒ p∗(−∞) = p∗(+∞).

In the case p0 = p∞ we will use the decay constant

A∗
p := sup

x∈R+

|p(x) − p∞| · | ln x|, (1.48)

the existence of which for bounded p(x) follows from (1.47). Obviously (1.48)
implies that

Ap := sup
x∈R+

|p(x) − p∞| ln (e+ | ln x|) < ∞ (1.49)

for bounded p(x) with p(0) = p(∞). Clearly, (1.49) is equivalent to

Ap := sup
x∈R+

|p∗(x) − p∗(∞)| ln (e+ |t|) < ∞. (1.50)

We now use the mapping of type (1.46) in the form

(Wpf)(t) = e−
t

p(0) f(e−t) , t ∈ R, (1.51)

under the assumption that p ∈ P0,∞(R+) and p(0) = p(∞).

Lemma 1.15. Let p be a bounded exponent in P∗
0,∞ and p0 = p∞. Then the operator

Wp maps the space Lp(·)(R+) isomorphically onto the space Lp∗(·)(R), and

e−A∗
p � ‖Wp‖Lp(·)(R+)→Lp∗(·)(R) � eA

∗
p , (1.52)

where A∗
p is the constant from (1.48).

Proof. We have

ˆ

R

∣∣∣∣Wpf(t)

λ

∣∣∣∣p∗(t)

dt =

ˆ

R

∣∣∣∣∣e−
t

p(0) f (e−t)

λ

∣∣∣∣∣
p∗(t)

dt =

ˆ

R+

∣∣∣∣ f(x)

λx
1

p(x)
− 1

p(0)

∣∣∣∣p(x)dx.
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From (1.48) it follows that e−A∗
p � x

1
p(x)

− 1
p(0) � eA

∗
p . Hence,

ˆ

R+

∣∣∣∣ f(x)

‖Wpf‖p∗eA
∗
p

∣∣∣∣p(x)dx � 1 =

ˆ

R

∣∣∣∣ Wpf(t)

‖Wpf‖p∗

∣∣∣∣p∗(t)

dt �
ˆ

R+

∣∣∣∣ f(x)

‖Wpf‖p∗e−A∗
p

∣∣∣∣p(x)dx,
which yields (1.52). �
Lemma 1.16. For the Hardy operators Hα,μ and Hβ,μ with constant α, β and μ
the following relations are valid:

(WqH
α,μW−1

p )ψ(t) =

ˆ

R

h−(t− τ)ψ(τ)dτ, (1.53)

and

(WqHβ,μW
−1
p )ψ(t) =

ˆ

R

h+(t− τ)ψ(τ)dτ, (1.54)

where

h−(t) = e

(
1

p′(0)−α
)
t
θ−(t) and h+(t) = e−(

1
p(0)

+β)tθ+(t),

q is defined by the condition 1
q(0) = 1

p(0) − μ, and θ−(t) = 1− θ+(t).

Proof. The proof is a matter of direct verification. �

Thanks to Lemmas 1.16 and 1.15 and Theorem 1.14, we are now able to
prove the main result for Hardy operators, which is done in the next section.

1.4 Variable Exponent Hardy Inequalities

Definition 1.17. By M0,∞(R+) we denote the class of functions g ∈ L∞(R+) with
the property that there exist g0, g∞ ∈ R such that

|g(x) − g0| � A

|ln x| , 0 < x � 1

2
, and |g(x)− g∞| � A

ln x
, x � 2. (1.55)

We also write g0 = g(0), g∞ = g(∞).

Theorem 1.18. Let α, β, μ ∈M0,∞(R+), p ∈ P0,∞(R+) and p− > 1 and

0 � μ(0) <
1

p(0)
and 0 � μ(∞) <

1

p(∞)
.

Let also q(x) be any function in P0,∞ such that

1

q(0)
=

1

p(0)
− μ(0) and

1

q(∞)
=

1

p(∞)
− μ(∞). (1.56)
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Then the Hardy-type inequalities∥∥∥∥∥xα(x)+μ(x)−1

xˆ

0

f(y) dy

yα(y)

∥∥∥∥∥
Lq(·)(R+)

� C ‖f‖Lp(·)(R+) (1.57)

and ∥∥∥∥∥xβ(x)+μ(x)

∞̂

x

f(y) dy

yβ(y)+1

∥∥∥∥∥
Lq(·)(R+)

� C ‖f‖Lp(·)(R+) , (1.58)

hold if and only if α and β satisfy the conditions

α(0) <
1

p′(0)
, α(∞) <

1

p′(∞)
,

respectively

β(0) > − 1

p(0)
, β(∞) > − 1

p(∞)
. (1.59)

Proof. A) Sufficiency.

1◦. The case where p(0) = p(∞), μ(0) = μ(∞), α(0) = α(∞) and β(0) =
β(∞). In this case, by the decay condition we have the equivalence

xμ(x) ≈ xμ(0), xα(x) ≈ xα(0), xβ(x) ≈ xβ(0),

on the whole half-line R+, so that our Hardy operators Hα,μ, Hβ,μ are equivalent
to the Hardy operators with constant exponents μ = μ(0), α = α(0), β = β(0),
respectively. To the latter we can apply Lemmas 1.15 and 1.16. We have

‖Wpf‖Lp∗(·)(R) ≈ ‖f‖Lp(·)(R+) and ‖W−1
q ψ‖Lq(·)(R+) ≈ ‖ψ‖Lq∗(·)(R), (1.60)

where p∗(t) = p(e−t) and q∗(t) = q(e−t).

Therefore, by Theorem 1.16, the Lp(·)(R) → Lq(·)(R) boundedness of Hα,μ

and Hβ,μ follows from the Lp∗(·)(R) → Lq∗(·)(R) boundedness of the convolution
operators on R with the kernels h+(t) and h−(t), respectively.

Since 1
p′(0) − α > 0 and 1

p(0) + β > 0, the convolutions h− ∗ ψ and h+ ∗ ψ
are bounded operators from Lp∗(·)(R) to Lq∗(·)(R) in view of Theorem 1.14. Con-
sequently, the Hardy operators Hα,μ and Hβ,μ are bounded from Lp(·)(R+) to
Lq(·)(R+).

2◦. The general case. Let 0 < δ < N < ∞. We have

Hα,μf(x) =
(
χ[0,δ] + χ[δ,N ] + χ[N,∞)

)
Hα,μ

(
χ[0,δ] + χ[δ,N ] + χ[N,∞)

)
f(x)

= V1(x) + V2(x) + V3(x),

where

V1(x) := χ[0,δ](x)
(
Hα,μχ[0,δ]f

)
(x),

V2(x) := χ[δ,∞)(x)
(
Hα,μχ[0,N ]f

)
(x),
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and

V3(x) := χ[N,∞)(x)
(
Hα,μχ[N,∞)f

)
(x).

It suffices to estimate separately the modulars Iq(Vk), k = 1, 2, 3, assuming
that ‖f‖Lp(·)(R+) � 1. For Iq(V1) we obtain

Iq(V1) =

δˆ

0

∣∣∣∣∣
xˆ

0

xα(x)−1

yβ(y)
f(y)dy

∣∣∣∣∣
q(x)

dx

�
∞̂

0

( xˆ

0

xα1(x)+μ1(x)−1

yβ1(y)
|f(y)|dy

)q1(x)

dx

= Iq1 (H
α1,μ1f),

(1.61)

where α1(x), μ1(x), and p1(x) are arbitrarily chosen extensions of the functions
α(x), μ(x), and p(x) from [0, δ] to the whole half-line with the preservation of the
classes M0,∞(R+) and P0,∞(R+), and such that

α1(∞) = α(0), μ1(∞) = μ(0) and p1(∞)]μ(0).

Such an extension may be done, for example, in the form p1(x) = ω(x) p(x)+ (1−
ω(x)) p(∞), where ω ∈ C∞([0,∞)) has compact support and ω(x) = 1 for x ∈ [0, δ]
and similarly for α1(x) and μ1(x)). From (1.61) we obtain that Iq(V1) � C < ∞
whenever ‖f‖Lp(·)(R+) � 1, according to part 1◦ of the proof.

The estimation of Iq(V3) is quite similar to that of Iq(V1), with the only
difference that the corresponding extension must be made from [N,∞) to R+.

Finally, the estimation of Iq(V2) is evident:

Iq(V2) �
∞̂

δ

∣∣∣∣∣ xα(∞)−1

N̂

0

f(y)

yα(0)
dy

∣∣∣∣∣
p(x)

dx

where it suffices to apply the Hölder inequality in Lp(·)(R+) in the inner integral,
taking into account that α < 1

p′(0) , and make use of the fact that α(∞) < 1
p′(∞)

in the outer integral.

Similarly, the case of the operator Hβ is considered (or alternatively, one
can use the duality arguments, but the latter should be modified by considering
separately the spaces on [0, δ] and [N,∞), because we admit p(x) = 1 in between).

B) Necessity. Choose

f0(x) =
χ[0, 12 ]

(x)

x
1

p(0) ln (1/x)
∈ Lp(·)(R+),
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for which the existence of the integral

Hα,μf0(x) = xα(x)+μ(x)−1

xˆ

0

dy

yα(x)+
1

p(0) ln 1
y

dy, 0 < x <
1

2

implies the condition α(0) < 1
p′(0) . To show the necessity of the condition at

infinity, choose f∞(x) =
χ[2,∞)(x)

xλ ∈ Lp(·)(R+), λ > max(1, 1−α(∞)). For x � 3
we have

Hα,μf∞(x) ≈ xα(∞)+μ(∞)−1

xˆ

2

dy

yα(∞)−λ

� xα(∞)+μ(∞)−1

3ˆ

2

dy

yα+λ

= cxα(∞)+μ(∞)−1,

which belongs to Lq(·)(R+) only if α(∞) < 1
p′(∞) .

Similarly, the necessity of the conditions (1.59) is proved. �

1.5 Estimation of Constants in the Hardy Inequalities

We note that the estimation of constants arising in the boundedness statements
in variable exponent spaces is not an easy task (it is not always easy even in the
case of constant exponents). For variable exponents, they may depend on p(x), for
instance, via the constants p−, p+, and the constants from the log-condition and
decay condition.

In this subsection, based on the calculations presented in Section 1.2, we
give some estimation of the constants in the Hardy inequalities (1.57)–(1.58) in
the cases where

i) α, β and μ are constants,

ii) p(0) = p(∞) and q(0) = q(∞).

Note that in the case where all the exponents p, α, β and μ are constant, the
Hardy inequalities (1.1)–(1.2) hold at the least with the constant

C =

(
1− μ

ν

)1−μ

, (1.62)

where ν = 1
p′ −α for the operator Hα,μ and ν = 1

p + β for the operator Hβ,μ (use

the relations (1.53)–(1.54) and apply Young (p → q)-theorem for convolutions).
However, this is not the sharp constant. The sharp constant for constant exponents
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was known in the p → p case; in the p → q case, p < q, in the general form it was
found in Persson and Samko [280].

The decay constants Ap, Aq and A∗
p, A

∗
q in the following theorem are those

which were defined in (1.49) and (1.48). We also use the notation

δ =
1

p−
− 1

q+

and recall that the constantW (2) was defined in Remark 1.12, 1+ln 2 < W (2) < 2.
Compare formulas (1.64), (1.65) with (1.62).

Theorem 1.19. Let p, q ∈ P0,∞(R+), p0 = p∞, q0 = q∞, 0 � μ < 1
p∞

, and 1
q0

=
1
p0
−μ. Under the conditions α < 1

p′∞
and β > − 1

p∞
, the Hardy inequalities (1.57)

and (1.58) hold with the constant

C = 2
1+ 2

p− + 1
p∞ eA

∗
p+A∗

q+W (2)(Ap+Aq)λ(p, q), (1.63)

where

λ(p, q) := max

⎧⎨⎩
(

1− μ
1

p′∞
− α

)1−μ

,

(
1− δ
1
p′
+
− α

)1−δ
⎫⎬⎭ � 1(

1
p′∞

− α
)1−μ (1.64)

for the operator Hα,μ, and

λ(p, q) := max

⎧⎨⎩
(

1− μ
1

p∞
+ β

)1−μ

,

(
1− δ
1
p+

+ β

)1−δ
⎫⎬⎭ � max

{
1,

1
1

p∞
+ β

}1−μ

(1.65)

for the operator Hβ.μ; the factor 2
1+ 2

p− + 1
p∞ in (1.63) may be replaced by 2

2
p− + 1

p∞

in the case p− = p0 = p∞.

Proof. The estimates will follow from the relations (1.53)–(1.54) and Theorem
1.14 for convolutions. From (1.53), by Lemma 1.15, we have ‖Hα,μ‖Lq(·)(R+) �
eA

∗
q‖h− ∗Wpf‖Lq∗(·)(R), where q

∗(t) = q(e−t). Subsequently, by Theorem 1.14 and
Lemma 1.15 again, we obtain

‖Hα,μ‖Lq(·)(R+) � eA
∗
qκ(h−; p∗, q∗)‖Wpf‖Lp∗(·)(R)

� eA
∗
p+A∗

qκ(h−; p∗, q∗)‖f‖Lp(·)(R+).
(1.66)

Similarly,
‖Hβ,μ‖Lq(·)(R+) � eA

∗
p+A∗

qκ(h+; p
∗, q∗)‖f‖Lp(·)(R+). (1.67)

To estimate the constants κ(h±; p∗, q∗) corresponding to the kernels h±, we
use (1.42) and obtain

κ(h±; p∗, q∗) = 2
1+ 2

p∗−
+ 1

p∗∞ ‖1‖
Lq̃∗2(·)‖1‖Lp̃∗1(·) max

{‖h±‖Lr∗0 , ‖h±‖Ls∗0

}
,
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with

1

p̃∗1(t)
:= max

{
0,

1

p∗∞
− 1

p∗(t)

}
,

1

q̃∗2(x)
:= max

{
0,

1

q∗(t)
− 1

q∗∞

}
,

and

1

r∗0
= 1− 1

p∗∞
+

1

q∗∞
= 1− 1

p∞
+

1

q∞
= 1− μ,

1

s∗0
= 1− 1

p∗−
+

1

q∗+
= 1− 1

p−
+

1

q+
= 1− δ.

From Lemma 1.13 and Remark 1.12 it follows that

‖1‖
Lq̃∗2(·)‖1‖Lp̃∗1(·) � eW (2)(Ap+Aq),

so

κ(h±; p∗, q∗) � 2
1+ 2

p∗−
+ 1

p∗∞ eW (2)(Ap+Aq) max
{‖h±‖Lr∗

0
, ‖h±‖Ls∗

0

}
.

Then from (1.66) and (1.67) we obtain (1.63) with

λ(p, q) = max
{‖h±‖Lr∗

0
, ‖h±‖Ls∗

0

}
.

It remains to calculate the corresponding norms ‖h±‖. For constant exponents
σ ∈ [1,∞) we have

‖h±‖Lσ(R) =
1(

σγ±
p

) 1
σ

:= g±(σ),

where γ−
p = 1

p′∞
− α and γ+

p = 1
p∞

+ β, and then

λ1(p, q) = max{g−(r0), g−(s0)}, λ2(p, q) = max{g+(r0), g+(s0)},

which gives equalities in (1.64)–(1.65). To justify the inequalities in (1.64)–(1.65),

observe that the function g±(σ) =
(
σγ±

p

)− 1
σ , σ ∈ (0,∞), has the minimum at

σ0 = e
γ±
p

equal to e−
γ±
p
e , while g±(1) = 1

γ±
p

and g±(∞) = 1. (Note that the

point σ0 may lie outside the interval [1,∞) in the case of h+.) Consequently, since
1
γ−
p

> 1, we have λ1(p, q) � 1
γ−
p
, and λ2(p, q) � max

{
1, 1

γ+
p

}
. �

Remark 1.20. Note that the exponent q(x) in the above theorem may have for
0 < x < ∞ values that are completely independent of those of p(x): the only
relation between these exponents is imposed at the end points x = 0 and x = ∞
by the condition 1

q0
= 1

p0
− μ, and the assumptions p0 = p∞, q0 = q∞.
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1.6 Mellin Convolutions in Variable Exponents
Spaces Lp(·)(R+)

The above estimations may be similarly applied to a more general case of integral
operators

Kμf(x) = xμ

∞̂

0

K
(
x

y

)
f(y)

dy

y

with the kernel homogeneous of order μ − 1, in the case μ = 0 which are called
Mellin convolution operators. We do not dwell on the estimation of the norm of
this operator with a general kernel.

For simplicity we consider the case where μ = 0 and p(0) = p(∞). The reader
can easily modify the arguments for the case μ > 0, but to allow for the case of
p(0) �= p(∞) one needs additional assumptions on the kernel K.

Lemma 1.21. Every Mellin convolution operator K0 = Kμ

∣∣
μ=0

on R+ reduces to

the convolution operator on R via the relation

(WpKμW
−1
p )ψ(t) =

ˆ

R

h(t− τ)ψ(τ)dτ,

where Wp is the mapping (1.51) and h(t) = e−
t

p(0)K (e−t), with

‖h‖L1(R) =

∞̂

0

y
− 1

p′(0) |K(y)|dy.

Proof. The proof is a matter of direct verification. �
Theorem 1.22. Let p ∈ P0,∞(R+) and p(0) = p(∞). If

∞̂

0

x
s

p(0) |K(x)|sdx < ∞ (1.68)

for s = 1 and s = s0, where
1
s0

= 1− 1
p−

+ 1
p+

, then

‖K0f‖Lp(·)(R+) � C ‖f‖Lp(·)(R+) .

Proof. As in the proof of Theorem 1.18, we have the isomorphism (1.60) with
p∗(t) = p(e−t). Therefore, the boundedness of the operator K0 in Lp(·)(R+) is
equivalent to the boundedness of the convolution operator h ∗ in Lp∗(·)(R) with

the kernel h(t) = e−
t

p(0)K (e−t), see Lemma 1.21. By Theorem 1.14, the latter
convolution is bounded if h ∈ L1(R) ∩ Ls0(R), which is equivalent to (1.68). �
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Corollary 1.23. Let p ∈ P0,∞(R+) and p(0) = p(∞). The operator K0 is bounded
in the space Lp(·)(R+; d̄t), where d̄t = dt

t , if

∞̂

0

|K(t)|s dt
t

< ∞ for s = 1 and s = s0. (1.69)

Proof. In terms of the corresponding modular, the Lp(·)(R+; d̄t)-boundedness of
the operator K0 means that

∞̂

0

∣∣∣∣K0f(t)

t1/q(t)

∣∣∣∣p(t) dt � C whenever

∞̂

0

∣∣∣∣ f(t)t1/p(t)

∣∣∣∣p(t) dt � 1.

By the decay condition and the assumption p(0) = p(∞), this is equivalent to a
similar condition with p(t) in the exponent in the denominator replaced by p(∞).
The latter condition means the Lp(·)(R+)-boundedness of the operator

K̃0f(t) =

∞̂

0

K̃
(
t

τ

)
f(τ)d̄τ

with the kernel K̃(t) = t−
1

q(∞) K̃(t). Applying condition (1.68) to the latter, we
arrive at (1.69). �

1.7 Knopp–Carleman Inequalities in the Variable

Exponent Setting

In this subsection we apply the known dilation procedure to derive the Knopp–
Carleman integral inequality with variable exponents from the Hardy inequalities.
To apply this procedure, we rely on the estimation of the constants in the Hardy
inequalities obtained in Theorem 1.19.

Recall that we do not assume that the local log-condition holds.

Theorem 1.24. Let p ∈ P0,∞(R+), p0 = p∞ = p− and f(x) � 0. Then∥∥∥∥∥exp
(
(1 − α)xα−1

xˆ

0

ln f(y)

yα
dy

)∥∥∥∥∥
Lp(·)(R+)

� Cpe
1

(1−α)p∞ ‖f‖Lp(·)(R+) (1.70)

for all α < 1
p′∞

, and∥∥∥∥∥exp
(
βxβ

∞̂

x

ln f(y)

yβ+1
dy

)∥∥∥∥∥
Lp(·)(R+)

� Cpe
− 1

βp∞ ‖f‖Lp(·)(R+) (1.71)
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for all 0 < β < B(δ) − 1
p∞

, where B(δ) = (1 − δ)
δ−1
δ , δ = 1

p−
− 1

p+
and Cp =

2
3

p∞ e2[A
∗
p+W (2)Ap].

Note that the B(δ) appearing in the bound for the exponent β is a decreasing
function of δ ∈ (0, 1), with B(0) = ∞ and B(1) = 1, so that this bound goes to
infinity when p(x) is taken to be constant.

Proof. We rewrite (1.57) with the constant C = C(p) given in (1.63) for the case
μ = 0 and p(x) ≡ q(x) in the form∥∥∥∥∥(1− α)xα−1

xˆ

0

f(y) dy

yα

∥∥∥∥∥
Lp(·)(R+)

� C(p)(1− α) ‖f‖Lp(·)(R+) .

We replace f(x) by f(x)λ, and also p(x) by p(x)
λ , where λ is an arbitrary

positive number, and make use of the relation ‖fλ‖p(·) = ‖f‖λλp(·) and get∥∥∥∥∥
(
(1− α)xα−1

xˆ

0

f(y)λ dy

yα

) 1
λ
∥∥∥∥∥
Lp(·)(R+)

�
[
(1− α)C

( p
λ

)] 1
λ ‖f‖Lp(·)(R+)

= 2
3

p∞ e
2[A∗

p
λ
+W (2)A p

λ

1
λ ]

(
1− α

1− α− λ
p∞

) 1
λ

‖f‖Lp(·)(R+) . (1.72)

Denote

gλ(x) = (1− α)xα−1

xˆ

0

f(y)λ dy

yα
,

so that limλ→0 gλ(x) = 1. We have (gλ(x))
1
λ = e

ln gλ(x)

λ , and therefore there exists
the almost everywhere limit

lim
λ→0

(gλ(x))
1
λ = exp

(
lim
λ→0

d

dλ
ln gλ(x)

)
= exp

(
(1 − α)xα−1

xˆ

0

ln f(y)

yα
dy

)
.

By Fatou’s theorem (see Theorem 2.3.17 in Diening, Harjulehto, Hästö, and
Růžička [69] on the application of Fatou’s theorem with respect to a variable
exponent norm), we may pass to the limit in (1.72) as λ → 0. Since 1

λA p
λ
= Ap,

we obtain (1.70).

The inequality (1.71) is proved following the same arguments. �

From (1.71) we obtain also the following

Corollary 1.25. Under the assumptions of Theorem 1.24 on p(x)

sup
0<β<1

∥∥∥∥∥exp
(

1

βp∞
− βxβ

∞̂

x

ln 1
f(y)

yβ+1
dy

)∥∥∥∥∥
Lp(·)(R+)

� Cp‖f‖Lp(·)(R+).



26 Chapter 1. Hardy-type Operators in Variable Exponent Lebesgue Spaces

1.8 Comments to Chapter 1

We do not dwell in detail on the history of variable exponent Lebesgue spaces; good
presentations can be found in the already existing books on these spaces. Besides the
books, during the last two decades of extensive studies of variable exponent spaces,
several survey papers: Diening, Hästö, and Nekvinda [68], Kokilashvili [169], Kokilashvili
and Samko [194], Samko [324], were published; see also the recent survey by Izuki, Nakai,
and Sawano [140], where more details and references may be found.

Chapter 1 is mainly based on the papers by Diening and Samko [67], and Samko
[327].

Comments to Section 1.1

For classical Hardy inequalities (1.1) and (1.2) we refer for instance to Kufner and Persson
[219, p. 6]. Theorem 1.3 was proved in Samko [317].

Comments to Section 1.2

The failure of Young’s theorem for convolutions in the case of variable exponents was
first observed in Samko [319, Remark 2.1].

For the estimate (1.17) of convolutions via the maximal operator we refer to Stein
[351]. The term potential type dilations was introduced in Cruz-Uribe and Fiorenza [48].

Lemma 1.9 is a slight revision of Lemma 3.3.5 from Diening, Harjulehto, Hästö,
and Růžička [69].

Theorem 1.14 is a specification of Theorem 4.6 from Diening and Samko [67] with
respect to the estimation of the norm of the operator K.

In the case of constant exponents, the sharp constant for (p → q)-Hardy inequalities
was found in Persson and Samko [280], some particular cases were studies earlier in
Manakov [243].

Comments to Section 1.4

For one-dimensional Hardy inequalities in variable exponent Lebesgue spaces we refer also
to Mashiyev, Çekiç, Mamedov, and Ogras [247] and for their multidimensional versions,
including weighted setting, to Cruz-Uribe, Fiorenza, and Neugebauer [55], Cruz-Uribe
and Mamedov [50], Harman and Mamedov [128], Mamedov [237], Mamedov and Harman
[238, 239], Mamedov and Zeren [240, 241], and references therein.

Comments to Section 1.6

Additional information on Mellin convolution operators on R+ in variable exponent
Lebesgue spaces may be found in Samko [329]. In the case of constant exponents see
also Karapetyants and Samko [150].

Comments to Section 1.7

Knopp–Carleman inequalities in the case of constant p and the approach to treat them
as the limiting case of the Hardy inequality as p → ∞ are known, we refer, e.g., to
Jain, Persson, and Wedestig [142], Johansson, Persson, and Wedestig [144] where other
references and historical comments may be also found.



Chapter 2

Maximal, Singular, and Potential
Operators in Variable Exponent
Lebesgue Spaces with Oscillating
Weights

In this chapter we present estimations for maximal, singular, and potential op-
erators in variable exponent Lebesgue spaces with oscillating weights. In the Eu-
clidean case the weights under consideration have the form

�(x) =
N∏

k=1

wk(|x− xk|), xk ∈ Ω,

where the weight functions wk(r) belong to the so-called Zygmund–Bari–Stechkin
class, see definitions in Section 2.2.

In the case of the maximal operator there are known characterizations of
general weights, for which the operator is bounded in Lp(·); see Theorem 2.4,
which provides a generalization of the Muckenhoupt Ap-condition, well known in
the case of constant p:

sup
Q

‖�χQ‖p(·) · ‖�−1χQ‖p′(·) � C|Q|.

We pay a special attention to the case of classes of radial oscillating weights.
The main and principal reason for that is that in many applications, in particular
those considered in this book, of extreme importance is to admit concrete classes
of weights, and it is known that, for instance, weighted boundedness criteria, with
concrete classes of weights, of the Cauchy singular integral operator constitute a
crucial tool for the study of boundary value problems of analytic functions.

The above-mentioned general Muckenhoupt type condition does not allow
effective verification in the case of concrete weights (note that this was difficult

© Springer International Publishing Switzerland 2016  
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even in the case of constant p, and in many cases it was known that a weight
belongs to the Muckenhoupt class Ap, because there existed an independent proof
showing under what conditions the maximal operator is bounded with this weight).

We deal also with weighted boundedness of the maximal operator in the
general setting of quasimetric measure spaces.

Besides the maximal operator, we consider also singular and potential oper-
ators, for which there are not known general characterizations of weights. In the
case of Cauchy singular integral operator, with a view to applications, we obtain
criteria for its weighted boundedness on an arbitrary Carleson curve and generalize
the classical result of David to the case of variable exponents.

In this chapter we also study weighted boundedness of spherical potential

operators and generalized potentials defined by the kernel K(x, y) = k(d(x,y))
[d(x,y)]N , in

the framework of quasimetric measure spaces.

Finally, this chapter contains weighted extrapolation results for variable ex-
ponents in the general setting of quasimetric measure spaces, with various appli-
cations.

2.1 Preliminaries

In this section we present some known facts for Lp(·)-spaces which will be used in
the sequel. Concerning their proofs, see comments to this chapter; we refer also
to the books Cruz-Uribe and Fiorenza [49] and Diening, Harjulehto, Hästö, and
Růžička [69].

Theorem 2.1. Let pj : Ω → [1,∞) be bounded measurable functions, j = 1, 2, and
let A be a linear operator defined on Lp1(·)(Ω)∩Lp2(·)(Ω). Then A is also bounded
in Lp(·)(Ω), where 1

p(·) =
1−θ
p1(·) +

θ
p2(·) , 0 � θ � 1, and

‖A‖Lp(·)→Lp(·) � ‖A‖θLp1(·)→Lp1(·) ‖A‖1−θ
Lp2(·)→Lp2(·) .

The Hölder inequality in weighted form reads∣∣∣∣∣
ˆ

Ω

u(x)v(x) dx

∣∣∣∣∣ � k‖u‖Lp′(·)(Ω,
−1)‖v‖Lp(·)(Ω,
),

where 1
p(x) +

1
p′(x) = 1, k = 1

p−
+ 1

p′
−

� 2, and under the condition (1.6), for the

conjugate space [Lp(·)(Ω, �)]∗, one has:

[Lp(·)(Ω, �)]∗ = Lp′(·) (Ω, �−1
)

From the Hölder inequality one derives the following embedding theorem for
sets Ω with |Ω| < ∞.
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Theorem 2.2. Let 1 � r(x) � p(x) � p+ < ∞ for x ∈ Ω and |Ω| < ∞. Then
Lp(·)(Ω) ↪→ Lr(·)(Ω).

By C∞
0 (Ω) we denote the set of C∞-functions with compact support in Ω.

Theorem 2.3. Let Ω be an open set in Rn, p(x) a measurable function on Ω such
that 1 � p− � p(x) � p+ < ∞, and � a weight function on Ω such that [�(x)]p(x) ∈
L1
loc(Ω). Then C∞

0 (Ω) is dense in the space Lp(·)(Ω, �).

The Muckenhoupt class Ap = Ap(R
n), 1 < p < ∞, well known for constant

exponents, is described as

Ap =

{
� : sup

Q

(
1

|Q|
ˆ

Q

�p(x)dx

)(
1

|Q|
ˆ

Q

�−p′
(x)dx

)p−1

< ∞
}
, (2.1)

in accordance with the definition of the weighted space in (1.3), where sup is taken
with respect to all cubes with edges parallel to the coordinate axes.

For the maximal operator to be bounded in the weighted space (1.3) with
constant p, as is well known, it is necessary and sufficient that � ∈ Ap.

For an open set Ω ⊂ Rn we treat the Muckenhoupt class Ap(Ω) as the class
of restrictions onto Ω of weights in Ap(R

n), the definition of “restriction” will be
given when it will be needed.

In the case of radial weights �(x) = w(|x− x0|), x0 ∈ Rn, the Ap-condition
(2.1) takes the form (see Dynkin and Osilenker [71]):

rˆ

0

�p(t)tn−1dt

( rˆ

0

�−p′
(t)tn−1dt

)p−1

� Crnp. (2.2)

The following theorem gives a complete characterization of those weights
that govern the boundedness of the maximal operator in the space Lp(·)(Rn, �),
see Cruz-Uribe, Diening, and Hästö [53], Cruz-Uribe and Fiorenza [49, Theorem
4.77]. We refer also to Zhikov and Surnachev [381] for a version of Muckenhoupt
type condition for variable exponents on bounded domains in Rn.

Theorem 2.4. Let p ∈ Plog
∞ (Rn). Then the maximal operator is bounded in the

space Lp(·)(Rn, ρ) if and only if the weight ρ satisfies the condition

‖�χQ‖p(·) · ‖�−1χQ‖p′(·) � C|Q|. (2.3)

By Ap(·)(Rn) we denote the class of weights satisfying the condition (2.3),
and by Ap(·)(Ω), where Ω ⊂ Rn, we denote the class of restrictions of weights in
Ap(·)(Rn) to Ω.

We will also deal with a weighted space Lp(·)(Sn, �) with variable exponent
on the unit sphere S

n = {σ ∈ R
n+1 : |σ| = 1}, defined by the norm

‖f‖Lp(·)(Sn,
) = inf

{
λ > 0 :

ˆ

Sn

∣∣∣∣�(σ)f(σ)λ

∣∣∣∣p(σ) dσ � 1

}
.
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Similarly to the Euclidean case, by Plog(Sn) we denote the set of exponents
p(σ) on Sn which satisfy the conditions 1 < p− � p(σ) � p+ < ∞, σ ∈ Sn,
|p(σ)− p(ξ)| � A

ln 3
|σ−ξ|

, σ, ξ ∈ Sn.

In connection with applications, we will work also with the variable exponent
Lebesgue spaces Lp(·)(Γ) on a rectifiable curve Γ, finite or infinite, in the complex
plane, defined by the modular

ˆ

Γ

|f(t)|p(t)dν(t) (2.4)

with arc-length measure dν(t) and p : Γ → [1,∞) a measurable function; the
weighted variable exponent space Lp(·)(Γ, �) will be defined via �f ∈ Lp(·)(Γ). The
notations P(Γ),P log(Γ),Plog(Γ),P∞(Γ), and P log

∞ (Γ) will have the same meaning
as in the Euclidean case.

2.2 Oscillating Weights of Bari–Stechkin Class

2.2.1 Some Classes of Almost Monotone Functions

In the sequel, a nonnegative function f on [0, �], 0 < � � ∞, is called almost
increasing (almost decreasing), if there exists a constant C(� 1) such that f(x) �
Cf(y) for all x � y (respectively, x � y). Equivalently, a function f is almost
increasing (almost decreasing), if it is equivalent to an increasing (decreasing,
resp.) function g, i.e., c1f(x) � g(x) � c2f(x), with c1 > 0, c2 > 0.

Lemma 2.5. Let a nonnegative function w ∈ C([0, �]) have the property that there
exist a, b ∈ R such that taw(t) is almost increasing and tbw(t) is almost decreasing.
Then c1w(τ) � w(t) � c2w(τ) for all t, τ ∈ [0, �] such that 1

2 � t
τ � 2, where c1

and c2 do not depend on t, τ .

Proof. The proof is a matter of direct verification. �
Definition 2.6. Let 0 < � < ∞. We introduce the following notation:

1) W = W ([0, �]) is the class of continuous and positive functions ϕ on (0, �]
such that there exists finite or infinite limx→0 ϕ(x).

2) W0 = W0([0, �]) is the subclass of almost increasing functions ϕ ∈ W ([0, �]).

3) W = W ([0, �]) is the class of functions ϕ ∈ W such that xaϕ(x) ∈ W0 for
some a = a(ϕ) ∈ R.

4) W = W ([0, �]) is the class of functions ϕ ∈ W such that ϕ(t)
tb is almost

decreasing for some b ∈ R.

Definition 2.7. Let 0 < � < ∞.

1) W∞ = W∞([�,∞]) is the class of functions ϕ, continuous, positive, with the
finite or infinite limx→∞ ϕ(x), and almost increasing on [�,∞).
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2) W∞ = W∞([�,∞)) is the class of functions ϕ, continuous, positive, with the
finite or infinite limx→∞ ϕ(x), such xaϕ(x) ∈ W∞ for some a = a(ϕ) ∈ R.

By W (R+) we denote the set of functions on R+ whose restrictions to (0, 1)
and [1,∞) are inW ([0, 1]) andW∞([1,∞)), respectively. The setW (R+) is defined
similarly.

Lemma 2.8. Let ϕ ∈ W ([0, �]) ∪W ([0, �]), c > 1 and 0 < r < �
c . Then

r < x < cr =⇒
{
c1w(r) � w(x) � c2w(cr), if ϕ ∈ W ([0, �]),

c1w(cr) � w(x) � c2w(r), if ϕ ∈ W ([0, �]),

where c1 and c2 in general depend on c, but not depend on x and r.

The proof is direct.

2.2.2 ZBS Classes and MO Indices of Weights at the Origin

In this subsection we assume that � < ∞.

Definition 2.9. We say that a function ϕ belongs to the Zygmund class Zβ , β ∈ R,
if ϕ ∈ W ([0, �]) and

xˆ

0

ϕ(t)

t1+β
dt � c

ϕ(x)

xβ
, x ∈ (0, �),

and to the Zygmund class Zγ , γ ∈ R, if ϕ ∈ W ([0, �]) and

�ˆ

x

ϕ(t)

t1+γ
dt � c

ϕ(x)

xγ
, x ∈ (0, �).

We also denote
Φβ

γ := Z
β
⋂

Zγ ,

the latter class being also known as Zygmund–Bari–Stechkin class (ZBS-class).

Note that

Φβ1
γ1

⊆ Φβ2
γ2

⊆ Φ0
γ2
, 0 � β2 � β1 � γ1 � γ2. (2.5)

The property of a function to be almost increasing or almost decreasing after
the multiplication (division) by a power function is closely related to the values of
the numbers

m(ϕ) = sup
0<x<1

ln

(
lim
h→0

ϕ(hx)
ϕ(h)

)
lnx

= lim
x→0

ln

(
lim
h→0

ϕ(hx)
ϕ(h)

)
lnx

(2.6)
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and

M(ϕ) = sup
x>1

ln

(
lim
h→0

ϕ(hx)
ϕ(h)

)
lnx

= lim
x→∞

ln

(
lim
h→0

ϕ(hx)
ϕ(h)

)
lnx

, (2.7)

known as the Matuszewska–Orlicz type lower and upper indices (MO indices) of
the function ϕ(r). Note that in this definition ϕ(x) need not to be an N -function:
only its behavior at the origin is of importance. Observe that 0 � m(ϕ) � M(ϕ) �
∞ for ϕ ∈ W0, and −∞ < m(ϕ) � M(ϕ) � ∞ for ϕ ∈ W , and the following
formulas hold:

m[xaϕ(x)] = a+m(ϕ), M [xaϕ(x)] = a+M(ϕ), a ∈ R, (2.8)

m([ϕ(x)]a) = am(ϕ), M([ϕ(x)]a) = aM(ϕ), a � 0, (2.9)

m

(
1

ϕ

)
= −M(ϕ), M

(
1

ϕ

)
= −m(ϕ). (2.10)

m(uv) � m(u) +m(v), M(uv) � M(u) +M(v) (2.11)

for ϕ, u, v ∈ W .

For functions in W ([0, �]) ∪ W ([0, �]) both MO indices are finite and the
following theorem holds.

Theorem 2.10. Let ϕ ∈ W ([0, �]) and β, γ ∈ R. Then ϕ ∈ Zβ ⇐⇒ m(ϕ) > β and
ϕ ∈ Zγ ⇐⇒ M(ϕ) < γ. Moreover,

m(ϕ) = sup

{
μ > 0 :

ϕ(x)

xμ
is almost increasing

}
, (2.12)

M(ϕ) = inf

{
ν > 0 :

ϕ(x)

xν
is almost decreasing

}
, (2.13)

and for ϕ ∈ Φβ
γ the inequalities

c1x
M(ϕ)+ε � ϕ(x) � c2x

m(ϕ)−ε, 0 < x � � < ∞ (2.14)

hold with an arbitrarily small ε > 0 and c1 = c1(ε), c2 = c2(ε).

The proof of Theorem 2.10 may be found in Samko [307] for β, γ > 0, and in
Karapetyants and Samko [149] for β, γ ∈ R.

Corollary 2.11. Let ϕ ∈ W ([0, �]) and β, γ ∈ R. Then

ϕ ∈ Φβ
γ ⇐⇒ β < m(ϕ) � M(ϕ) < γ. (2.15)

Let 0 < γ < ∞. For every w ∈ Φ0
γ there exists a δ = δ(w) > 0 such that w ∈ Φ0

γ−δ.

Proof. Choose any δ in the interval 0 < δ < γ −M(w). �
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We define the following subclass in W ([0, �]) for b ∈ R:

W 0,b =

{
ϕ ∈ W :

ϕ(t)

tb
is almost increasing

}
.

Lemma 2.12. Let w ∈ W,M(w) < γ, and λ � 0. Then tγ

[w(t)]λ
∈ Z0 if λM(w) < γ,

i.e.,
rˆ

0

tγ−1dt

[w(t)]λ
� crγ

[w(r)]λ
, 0 < r � �.

Proof. For w1(x) = xγ

[w(x)]λ
, by the properties (2.8), (2.9), and (2.10) we have

mw1 = γ − λM(w). Hence m(w1) > 0. It is easily checked that w1 ∈ W . Then
w1 ∈ Z0 by Theorem 2.10. �
Lemma 2.13. Let w ∈ W̃ , λ ∈ R, Ω a bounded domain in Rn, and x0 ∈ Ω. Then
[w(|x− x0|)]λ ∈ Ap(Ω) if

[w(r)]λprn, [w(r)]−λqrn ∈ Z
0,

or, equivalently,

− n

λp
< m(w) � M(w) <

n

λp′
when λ > 0 (2.16)

and

− n

|λ|q < m(w) � M(w) <
n

|λ|p when λ < 0. (2.17)

Proof. We have to check the condition (2.2) for radial weights on the interval
[0, �], � = diamΩ. Observe that radial weights satisfying this condition for a finite
interval 0 < r � � are extendable by w(r) ≡ w(�), r � �, to radial Ap(R

n)-weights
(recall that our weights w(r) are continuous for r > 0). We rewrite (2.2) for
�(t) = [w(t)]λ as

rˆ

0

w1(t)

t
dt

( rˆ

0

w2(t)

t
dt

)p−1

� Crnp (2.18)

where w1(t) = [w(t)]λptn, w2(t) = [w(t)]−λp′
tn. The feasibility of condition (2.18)

is obviously connected with the validity of the Z0-condition, introduced by Defi-
nition 2.9, for the functions w1(t) and w2(t). By Theorem 2.10, w1, w2 ∈ Z0 if and
only if m(w1) > 0 and m(w2) > 0. By formulas (2.8)–(2.10) we have

m(w1) = n+ λpm(w) and m(w2) = n− λp′M(w)

when λ � 0 and

m(w1) = n+ λpM(w) and m(w2) = n− λp′m(w)
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when λ � 0, which leads to conditions (2.16)–(2.17). Consequently, in view of
Corollary 2.11, under these conditions the left-hand side of (2.18) is dominated by
w1(r)[w2(r)]

p−1 = Crnp, which completes the proof. �

The following technical lemma will be used in Theorem 2.62 to obtain weight-
ed estimates for truncated potential kernels, important for our goals. In Lemma
2.14 we use the following notations, for x0 ∈ Ω:

A(x, r) :=

ˆ

y∈Ω
|y−x|>r

w(|y − x0|) dy
|y − x|n+a(x)

,

and

A(x, r) :=

ˆ

y∈Ω
r<|y−x|<2r

w(|y − x0|) dy
|y − x|n .

Lemma 2.14. Let Ω be a bounded open set and d =: infx∈Ω a(x) > 0. Then the
estimates

A(x, r) � Cr−a(x)w(rx),

A(x, r) � Cw(rx),
(2.19)

hold if
w ∈ Φ−n

d ([0, �]) and w ∈ Φ−n
0 ([0, �]), � = diam Ω, (2.20)

respectively, where rx = max(r, |x−x0|) and C > 0 does not depend on x ∈ Ω and
r ∈ (0, �].

Proof. Note that Φ−n
0 ([0, �]) ⊂ Φ−n

d ([0, �]).

We take x0 = 0 for simplicity, assuming that 0 ∈ Ω. We present the proof
simultaneously for the functions A(x, r) and A(x, r). To this end, let A(x, r) denote
any one of them. The proof is essentially the same for both, with some changes
for A(x, r) = A(x, r), which will be always indicated.

We treat separately the cases |x| � r
2 ,

r
2 � |x| � 2r, and |x| � 2r. The

changes in the proof for A(x, r) appear only in the third case.

The case |x| � r
2 . We have |y|

|y−x| �
|y−x|+|x|

|y−x| � 1 + |x|
r � 2, and similarly |y|

|y−x| �
1 − |x|

r � 1
2 . Hence

1
2 � |y|

|y−x| � 2. Therefore, by Lemma 2.5, we have w(|y|) �
Cw(|x − y|). Consequently,

A(x, r) � C

ˆ

|y−x|>r

|x− y|−n−a(x))w(|x − y|) dy � C

�ˆ

r

t−1−a(x)w(t) dt.

The inequality
´ �
r t−1−a(x)w(t) dt � Cr−a(x)w(r) with C > 0 not depending on

x and r, is valid. Indeed, this is nothing else but the statement that w ∈ Za(x)
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uniformly in x ∈ Ω, which holds because condition (2.20) implies the validity of
the uniform inclusion w ∈ Za(x) by (2.5). Therefore,

A(x, r) � Cr−a(x)w(r). (2.21)

The case r
2 � |x| � 2r. We split the integration in A(x, r) as follows:

A(x, r) =

ˆ

r<|y−x|<2|x|

|y − x|−n−a(x)w(|y|) dy +

ˆ

|y−x|>2|x|

|x− y|−n−a(x)w(|y|) dy

=: I1 + I2.

For I1 we have I1 � r−n−a(x)
´
r<|y−x|<2|x|w(|y|) dy. Note that |y−x| > r implies

that |y| � |y − x|+ |x| � |y − x|+ 2r � 3|y − x|. Consequently,

I1 � r−n−a(x)

ˆ

|y−x|<2|x|
|y|�3|y−x|

w(|y|) dy � r−n−a(x)

ˆ

|y|<6|x|

w(|y|) dy

= Cr−n−a(x)

6|x|ˆ

0

tn−1 w(t) dt.

Since tnw(t) ∈ Φ0
n+d, we obtain I1 � Cr−a(x)w(6|x|) � Cr−a(x)w(|x|). The esti-

mate for I2 = A(x, 2|x|) is contained in (2.21) with r = 2|x|. Thus, A(x, r) obeys
the estimate (2.21) in this case as well.

The case |x| � 2r. Let first A(x, r) = A(x, r). We have that

A(x, r) =

ˆ

r<|y−x|<1
2 |x|

|x− y|−n−a(x)w(|y|) dy) +
ˆ

1
2 |x|<|y−x|

|x− y|−n−a(x)w(|y|) dy

=: I3 + I4.

For the term I3 we have 1
2 |x| � |y| � 3

2 |x|, so that w(|y|) � Cw(|x|) by

Lemma 2.5. Therefore, I3 � Cw(|x|) ´ |x|
2

r
t−1−a(x)dt � Cr−a(x)w(|x|), |x| � 2r.

The term I4, coincides with A (x, |x|/2) and its estimate is contained in the pre-
ceding case r

2 � |x| � 2r.

Now let A(x, r) = A(x, r). We arrange the same splitting (needed only for

|x| < 4r), so that I3 � Cw(|x|) ´ 2r

r
dt
t =� C ln 2Cw(|x|), with the same argu-

ments for I4 as above.

Gathering all the estimates, we arrive at (2.19). �
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2.2.3 Examples of Weights

The functions

w(r) = rλ
(
ln

C

r

)α

, w(r) = rλ
(
ln ln

C

r

)α

, etc.,

are the simplest examples of weights in Φβ
γ , with m(w) = M(w) = λ. Less trivial

examples are

w(r) = r
λ+ c

lnα 1
r .

More generally, one can take w(r) = rg(r), where g(r) satisfies the log-condition

|g(r + h)− g(r)| = o

(
1

| ln |h||
)
.

The last example can be also generalized in the following way: if the weight function

w(r) fulfils the condition limh→0
w(rh)
w(h) = rα, α = const, then m(w) = M(w) =

α. All the above examples have coinciding indices m(w) = M(w). Examples of
oscillating weights with non-coinciding indices m(w),M(w) are more complicated.
We refer for such examples to Aslanov and Karlovich [24], and Samko [308].

2.2.4 ZBS Classes and MO Indices of Weights at Infinity

Definition 2.15. Let −∞ < α < β < ∞. We put Ψβ
α := Ẑβ ∩ Ẑγ , where Ẑβ is the

class of functions ϕ ∈ W∞ satisfying the condition

∞̂

x

(x
t

)β ϕ(t) dt

t
� cϕ(x), x ∈ (�,∞),

and Ẑα is the class of functions ϕ ∈ W ([�,∞)) satisfying the condition

xˆ

�

(x
t

)α ϕ(t) dt

t
� cϕ(x), x ∈ (�,∞),

where c = c(ϕ) > 0 does not depend on x ∈ [�,∞).

The indices m∞(ϕ) and M∞(ϕ) that determine the behavior of functions
ϕ ∈ Ψβ

α([�,∞)) at infinity are introduced in the way similar to (2.6) and (2.7):

m∞(ϕ) = sup
x>1

ln

[
lim
h→∞

ϕ(xh)
ϕ(h)

]
ln x

, M∞(ϕ) = inf
x>1

ln

[
lim
h→∞

ϕ(xh)
ϕ(h)

]
ln x

.
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Properties of functions in the class Ψβ
α([�,∞)) are easily derived from those

of functions in Φα
β([0, �]) thanks to the equivalence

ϕ ∈ Ψβ
α([�,∞)) ⇐⇒ ϕ∗ ∈ Φ−β

−α([0, �
∗]), (2.22)

where ϕ∗(t) = ϕ
(
1
t

)
and �∗ = 1

� . Direct calculations show that

m∞(ϕ) = −M(ϕ∗), M∞(ϕ) = −m(ϕ∗), ϕ∗(t) : = ϕ

(
1

t

)
. (2.23)

By (2.22) and (2.23), one can easily reformulate properties of functions of the
class Φβ

γ near the origin, given in Theorem 2.10, for the case of the corresponding

behavior at infinity of functions of the class Ψβ
α and obtain that

c1t
m∞(ϕ)−ε � ϕ(t) � c2t

M∞(ϕ)+ε, t � �, ϕ ∈ W∞, (2.24)

m∞(ϕ) = sup{μ ∈ R : t−μϕ(t) is almost increasing on [�,∞)},
M∞(ϕ) = inf{ν ∈ R : t−νϕ(t) is almost decreasing on [�,∞)}.

We say that a continuous function ϕ : R+ → R+ is in the class W 0,∞(R+),
if its restriction to (0, 1) belongs to W ([0, 1]) and its restriction to (1,∞) belongs
to W∞([1,∞]). For functions in W 0,∞(R+) the notation

Z
β0,β∞(R+) = Z

β0([0, 1])∩Zβ∞([1,∞)), Zγ0,γ∞(R+) = Zγ0([0, 1])∩Zγ∞([1,∞))
(2.25)

has an obvious meaning (note that in (2.25) we use Zβ∞([1,∞)) and Zγ∞([1,∞)),

not Ẑβ∞([1,∞)) and Ẑγ∞([1,∞))). In the case where the indices coincide, i.e.,
β0 = β∞ := β, we will simply write Zβ(R+) and similarly for Zγ(R+). We also
denote

Φβ
γ(R+) := Z

β(R+) ∩ Zγ(R+).

Using Theorem 2.10 for Φα
β([0, 1]) and relations (2.23), one easily arrives at

the following statement.

Lemma 2.16. Let ϕ ∈ W (R+). Then

ϕ ∈ Z
β0,β∞(R+) ⇐⇒ m(ϕ) > β0, m∞(ϕ) > β∞

and

ϕ ∈ Zγ0,γ∞(R+) ⇐⇒ M(ϕ) < γ0, M∞(ϕ) < γ∞.

Besides the bounds (2.14) and (2.24), the following estimates hold:

c1x
M(ϕ)+ε � inf

0<y<1

ϕ(xy)

ϕ(y)
, sup

0<y<1

ϕ(xy)

ϕ(y)
� c2x

m(ϕ)−ε, 0 < x < 1, (2.26)
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and

c1x
m∞(ϕ)−ε � inf

y>1

ϕ(xy)

ϕ(y)
, sup

y>1

ϕ(xy)

ϕ(y)
� c2x

M∞(ϕ)+ε, x > 1, (2.27)

the proof of which may be found in Maligranda [236, Theorem 11.13].

Recall that the inclusion ϕ ∈ W [0, �]∩W [0, �] implies that ϕ has finite indices
m(ϕ) and M(ϕ) (and also finite indices m∞(ϕ) and M∞(ϕ) in the case � = ∞).

Lemma 2.17. Let 0 < � � ∞ and ϕ ∈ W [0, �] ∩W [0, �]. Then the inequality

xˆ

0

ϕ(t)

t1+β
dt � c

ϕ(x)

xβ
, x ∈ (0, �),

where β ∈ R, implies the inverse inequality

ϕ(x)

xβ
� c

xˆ

0

ϕ(t)

t1+β
dt, x ∈ (0, �).

Similarly, the inequality
´ �
x

ϕ(t)
t1+γ dt � cϕ(x)

xγ , x ∈ (0, �), where γ ∈ R, implies ϕ(x)
xγ �

c
´ �
x

ϕ(t)
t1+γ dt, x ∈ (0, �).

2.3 Maximal Operator with Oscillating Weights

We will admit weights of the form

�(x) =
N∏

k=1

wk(|x− xk|), xk ∈ Ω, (2.28)

with wk(r) belonging to the Zygmund–Bari–Stechkin class.

In the case Ω = Rn, a special attention will be paid also to power type weights

�(x) = (1 + |x|)β
m∏

k=1

|x− xk|βk , xk ∈ R
n. (2.29)

Remark 2.18. Assuming that the points xk are pairwise distinct, we can use
smooth partition of unity in the proof of the boundedness of operators to sep-
arate the weight functions in (2.28), so that in most of the cases we take simply

�(x) = w(|x − x0|), x0 ∈ Ω,

but sometimes, for instance in Section 2.5.6, we will work with a weight that is
the product of two weights, one related to the origin, the other to infinity.

Indeed, for the weight w(x) =
∏N

k=1 wk(x) with the function wk(x) standing

for wk(|x − xk|), we make use of a standard partition of unity 1 =
∑N

k=1 ak(t),
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where ak(t) are smooth functions equal to 1 in a neighbourhood of the point xk

and equal to 0 outside some neighbourhood of xk, (and similarly in a neighbour-
hood of infinity if in our product we have the factor related to infinity), so that
ak(x)wj(x)

± ≡ 0 in a neighbourhood of the point xk, if k �= j. Then

w(x)

w(y)
=

N∑
μ=1

wμ(x)bμ(x)

N∑
ν=1

cν(y)

wν(y)
,

where bμ(x) and cν(x), μ, ν = 1, . . . , N , are bounded functions supported in neigh-
bourhoods of the points xk. Then, e.g., for the maximal operator

M f(x) = sup
r>0

1

|B(x, r)|
ˆ

B(x,r)∩Ω

|f(y)| dy,

we have

wM
f

w
� C

N∑
μ=1

wμM
f

w̃μ
+ C

N∑
μ,ν=1
μ
=ν

wμM
f

wν
,

where the terms with μ �= ν have separated singularities and are easily treated by
means of the Hölder inequality.

Denote

Mwf(x) := sup
r>0

Mw
r f(x), where Mw

r f(x) =
w(|x − x0|)
|B(x, r)|

ˆ

B(x,r)∩Ω

|f(y)|
w(|y − x0|) dy.

(2.30)
The non-weighted boundedness of the operator M is covered by the following
theorem, the proof of which may be found for instance in Cruz-Uribe and Fiorenza
[49], see Theorem 3.16 there, where unbounded p(x) are allowed.

Theorem 2.19. The maximal operator M is bounded in the space Lp(·)(Ω), if p ∈
Plog
∞ (Ω).

2.3.1 Weighted Pointwise Estimates

The proof of Theorem 2.24 on the weighted boundedness of the maximal operator,
proved later, will be based on the pointwise estimate of the weighted averages given
in Lemma 2.21. We need first the following technical result.

Lemma 2.20. Let w ∈ Zn, λ(x) � 0, and supx∈Ω λ(x) < n
M(w) . Then the inequality

Φ(r) :=
[w(|x − x0|)]λ(x)

|B(x, r)|
ˆ

B(x,r)

dy

[w(|y − x0|)]λ(x) � c (2.31)

holds with c > 0 not depending on r > 0 and x, x0 ∈ Ω.
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Proof. We treat separately the cases |x− x0| � 2r and |x − x0| � 2r. In the case
|x−x0| � 2r we have 3

2 |x−x0| � |y−x0| � |x−x0|−|y−x| � |x−x0|−r � 1
2 |x−x0|.

Since w ∈ Zn ⊂ W , it is not hard to see then that w(|y − x0|) � cw
(
1
2 |x− x0|

)
�

cw(|x− x0|) and then the estimate (2.31) becomes evident.

Let |x− x0| � 2r. In this case B(x, r) ⊂ B(x0, 3r), hence

Φ(r) � C[w(|x − x0|)]λ(x)
|Br(x)|

ˆ

B(x0,3r)

dy

[w(|y − x0|)]λ(x)

= c
[w(|x − x0|)]λ(x)

rn

3rˆ

0

�n−1d�

[w(�)]λ(x)
.

Then, by Lemma 2.12, we get Φ(r) � c
(

w(|x−x0|)
w(3r)

)λ(x)
� c
(

w(2r)
w(3r)

)λ(x)
� c. �

Lemma 2.21. Let Ω be bounded, p ∈ Plog(Ω) and w ∈ W . If

0 � m(w) � M(w) <
n

p′(x0)
, (2.32)

then[
w(|x − x0|)
|B(x, r)|

ˆ

B(x,r)

|f(y)|dy
w(|y − x0|)

]p(x)
� c

(
1 +

1

|B(x, r)|
ˆ

B(x,r)

|f(y)|p(y) dy
)
(2.33)

for all f ∈ L(p(·)(Ω) such that ‖f‖p(·) � 1, where c = c(p, w) is a constant that
does not depend on x, r and x0.

Proof. From (2.32) and the continuity of p(x) it follows that there exists a d > 0
such that

M(w)p′(x) < n for all |x− x0| � d. (2.34)

We may assume that d � 1.

1◦ The case |x− x0| � d
2 and 0 < r � d

4 (the main case).

Let pr(x) = min|y−x|�r p(y). We have M(w)p′r(x) < n. Applying the Hölder
inequality with the exponent pr(x) for the average

Mrf(x) =
1

|B(x, r)|
ˆ

B(x,r)∩Ω

|f(y)| dy,
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we get∣∣∣∣Mr

(
f(y)

w(|y − x0|)
)∣∣∣∣p(x) (2.35)

� c

rnp(x)

( ˆ

B(x,r)

|f(y)|pr(x) dy

) p(x)
pr(x)
( ˆ

B(x,r)

dy

[w(|y − x0|)]p′
r(x)

) p(x)

p′r(x)

.

Here the last integral converges, because for small |y − x0| by (2.14) we have
[w(|y − x0|)]p′

r(x) � c|y − x0|(M(w)+ε)p′
r(x), where one may choose ε sufficiently

small so that, according to (2.34), |y − x0|(M(w)+ε)p′
r(x) � |y − x0|n−δ for some

δ > 0.

We may use the estimate (2.31) in (2.35), since according to Theorem 2.10
w ∈ Zn under the condition M(w) < n

p′(x0)
< n. We obtain

∣∣∣∣Mr

(
f(y)

w(|y − x0|)
)∣∣∣∣p(x) � c

[w(|x − x0|)]−p(x)

r
np(x)
pr(x)

( ˆ

B(x,r)

|f(y)|pr(x) dy

) p(x)
pr(x)

.

Here
´

B(x,r)

|f(y)|pr(x) dy �
´

B(x,r)

dy +
´

B(x,r)
|f(y)|�1

|f(y)|p(y) dy, since pr(x) � p(y) for

y ∈ B(x, r). We have

∣∣∣∣Mr

(
f(y))

w(|y − x0|)
)∣∣∣∣p(x) � c1

[w(|x − x0|)]−p(x)

r
np(x)
pr(x)

[
rn +

1

2

ˆ

B(x,r)

|f(y)|p(y) dy
] p(x)

pr(x)

.

Since r � d
2 � 1

2 and the second term in the brackets is also less than or equal to
1
2 , we arrive at the estimate

[
w(|x − x0|)
|B(x, r)|

ˆ

B(x,r)

|f(y)|
w(|y − x0|) dy

]p(x)
� c

r
np(x)
pr(x)

[
rn +

ˆ

B(x,r)

|f(y)|p(y) dy
]

� c rn
pr(x)−p(x)

pr(x)

[
1 +

1

rn

ˆ

B(x,r)

|f(y)|p(y) dy
]
.

This yields (2.33), because rn
pr(x)−p(x)

pr(x) � c. Indeed, we have

rn
pr(x)−p(x)

pr(x) = e
n
pr

[p(x)−pr(x)] ln
1
r ,
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where
∣∣∣ npr

[
p(x) − pr(x)

]
ln 1

r

∣∣∣ � n
∣∣p(x) − p(ξr)

∣∣ ln 1
r with ξr ∈ B(x, r), and then

by the log-condition we get∣∣∣ n
pr

[
p(x)− pr(x)

]
ln

1

r

∣∣∣ � nA
ln 1

r

ln 1
|x−ξr|

� nA.

2◦ The case |x − x0| � d
2 , 0 < r � d

4 . This case is trivial, because |y − x0| �
|x− x0| − |y − x| � d

2 − d
4 = d

4 , so that w(|y − x0|) � c > 0, and also w(|x − x0|)
is bounded from above.

3◦ The case r � d
4 . This case is also easy, because Mw

r f(x) is bounded. Indeed,

Mw
r f(x) � cw(diamΩ)(

d
4

)n
( ˆ

|y−x0|� d
8

|f(y)|
w(|y − x0|) dy +

ˆ

|y−x0|� d
8

|f(y)|
w(|y − x0|) dy

)
,

where the first integral is estimated via the Hölder inequality with the exponent
p d

8
= min|y−x0|� d

8
p(y), while the estimate of the second integral is obvious since

|y − x0| � d
8 . �

Corollary 2.22. Let Ω, p and w satisfy the assumptions of Lemma 2.21. Then

|Mwf(x)|p(x) � c
(
1 + M

[
|f(·)|p(·)

]
(x)
)

(2.36)

for all f ∈ Lp(·)(Ω) such that ‖f‖p(·) � 1.

2.3.2 Weighted Boundedness; the Euclidean Case

Before to prove Theorem 2.24, we need the following lemma.

Lemma 2.23. Let Ω be bounded, p ∈ P log(Ω), and w be any nonnegative function
on [0, �], � = diam Ω, such that c1r

a � w(r) � c2r
−b, r ∈ (0, �) for some a, b ∈ R.

Then

1

C
[w(|x − x0|)]p(x0) � [w(|x − x0|)]p(x) � C[w(|x − x0|)]p(x0), (2.37)

where C > 1 does not depend on x, x0 ∈ Ω.

Proof. Denote g(x, x0) = [w(|x − x0|)]p(x)−p(x0) for brevity. To show that 1
C �

g(x, x0) � C, i.e., | ln g(x, x0)| � C1, C1 = ln C, we note that | ln g(x, x0)| =
|p(x)− p(x0)| · | ln w(|x − x0|)|. Therefore, we get | ln g(x, x0)| � A� | ln w(|x−x0|)|

ln 2	
|x−x0|

,

which is bounded by the assumption on w. �
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Theorem 2.24. Let Ω ⊂ Rn be a bounded open set and p ∈ Plog(Ω). The maximal
operator M is bounded in the space Lp(·)(Ω, �) with the weight (2.28), if

r
n

p(xk)wk(r) ∈ Φ0
n, k = 1, 2, . . . , N,

or, equivalently, if the MO indices of the functions wk(r) satisfy the conditions

− n

p(xk)
< m(wk) � M(wk) <

n

p′(xk)
, k = 1, 2, . . . , N. (2.38)

Proof. We have to show that
∥∥Mwf

∥∥
p(·) � c in some ball ‖f‖p(·) � R, which is

equivalent to Ip(Mwf) � c for
∥∥f∥∥

p(·) � R. In view of (2.37) we have

Ip(M
wf) � c

ˆ

Ω

w(|x − x0|)p(x0)

∣∣∣∣M ( f(y)

w(|y − x0|)
)
(x)

∣∣∣∣p(x) dx.
We first prove the bound

∥∥Mwf
∥∥
p(·) � c in the case

− n

p(x0)
< m(w) � M(w) <

n

q0
, (2.39)

where 1
q0

= p−−1
p(x0)

. Observe that 1
q0

� 1
q(x0)

, so that the interval (2.39) for the

indices m(w),M(w) is somewhat narrower than the whole interval
(
− n

p(x0)
, n
q0

)
.

After that we treat the remaining case. We use the known trick

Ip(M
wf) � c

ˆ

Ω

(
[w(|x − x0|)]p1(x0)

∣∣∣∣M ( f(y)

w(|y − x0|)
)
(x)

∣∣∣∣p1(x)
)p−

dx, (2.40)

where p1(x) =
p(x)
p−

.

1◦ The case − n
p(x0)

< m(w) � M(w) < n
q0
.

Estimate (2.36) with w ≡ 1 says that

|Mψ(x)|p1(x) � c
(
1 + M

[
ψp1(·)](x)) (2.41)

for all ψ ∈ Lp1(·)(Ω) with ‖ψ‖p1 � C for some C < ∞. We intend to choose

ψ(x) = ψf (x) :=
f(x)

w(|x−x0|) in (2.41), with f ∈ Lp(·). To this end, let us show that

‖ψf‖p1 � C for all f ∈ Lp(·) with ‖f‖p � c. Since r
n

p(x0)w(r) ∈ Φ0
n, by (2.14) we

have w(|x − x0|) � c|x− x0|M(w)+ε, ε > 0 and then

ˆ

Ω

|ψf (x)|p1(x) dx � c

ˆ

Ω

|f(x)|
p(x)
p−

|x− x0|(M(w)+ε)p1(x0)
dx.
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We apply the Hölder inequality with the constant exponent p−, using the fact that

Ip′
−

(
1

|x−x0|(M(w)+ε)p1(x0)

)
=
´
Ω

dx
|x−x0|(M(w)+ε)q0

, where (M(w)+ε)q0 < n under the

choice of small ε < n
q0
−M(w), and obtain that ‖ψf‖p1 � C. Then we apply (2.41)

and from (2.40) obtain

Ip(M
wf) � c

ˆ

Ω

(
[w(|x − x0|)]p1(x0)

[
1 + M

(∣∣∣∣ f(y)

w(|y − x0|)
∣∣∣∣p1(y)

)])p−

dx.

By the property (2.37), this yields

Ip(M
wf)

� c

ˆ

Ω

{
[w(|x − x0|)]p(x0)+

[
[w(|x − x0|)]p1(x0)M

( |f(y)|p1(y)

[w(|y − x0|)]p1(x0)

)]p−
}
dx.

Here the integral in the first term is finite since w(|x − x0|) � C|x − x0|mω−ε by
(2.14) and m(w)p(x0) > −n. Hence

Ip(M
wf) � c+ c

ˆ

Ω

[
Mwp1(x0)

(|f(·)|p1(·))(x)
]p−

dx,

in the notation (2.30).

The weighted maximal operator Mwp1
is bounded in Lp− with a constant

p− > 1 if the weight [w(|x−x0|)]p1(x0) belongs to the corresponding Muckenhoupt
class Ap− . The condition (2.16) of Lemma 2.13 which guarantees this is exactly
the assumption that − n

p(x0)
< m(w) � M(w) < n

q0
. Therefore,

Ip(M
wf) � c+ c

ˆ
Ω

|f(y)|p1(y)·p− dy = c+ c

ˆ
Ω

|f(y)|p(y) dy

which completes the proof in this case.

2◦ The remaining case n
q0

� M(w) < n
p′(x0)

: reduction to the case of power weights.

To get rid of the right-hand side bound in (2.39), we may split integration over
Ω into two parts, one over a small neighbourhood B(x0, δ) of the point x0, and
another over its exterior Ω\B(x0, δ), and to choose δ sufficiently small so that the

number p−(B(x0,δ))−1
p(x0)

is arbitrarily close to p(x0)−1
p(x0)

= 1
p′(x0)

. To this end, we put

Mw = χB(x0,δ)M
wχB(x0,δ) + χB(x0,δ)M

wχΩ\B(x0,δ)

+ χΩ\B(x0,δ)M
wχB(x0,δ) + χΩ\B(x0,δ)M

wχΩ\B(x0,δ)

=: Mw
1 + Mw

2 + Mw
3 + Mw

4 .

(2.42)

Since the weight is strictly positive and bounded beyond any neighbourhood of
the point x0, we get

Mw
4 f(x) � CM f(x). (2.43)
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For Mw
3 we have

Mw
3 f(x) = sup

r>0

χΩ\B(x0,δ)(x0)(x)

|B(x, r)|
ˆ

B(x,r)∩B(x0,δ)∩Ω

w(|x− x0|)
w(|y − x0|) |f(y)| dy.

Here |x− x0| > r > |y − x0|. Observe that the function wε(t) =
w(t)

tM(w)+ε is almost
decreasing for any ε > 0, see (2.13). Therefore,

w(|x − x0|)
w(|y − x0|) =

wε(|x− x0|)
wε(|y − x0|) ·

|x− x0|M(w)+ε

|y − x0|M(w) + ε)
� C

|x− x0|M(w)+ε

|y − x0|M(w) + ε
.

Hence

Mw
3 f(x) � CMM(w)+εf(x), (2.44)

where MM(w)+εf(x) is the weighted maximal function with the power weight
|x− x0|M(w)+ε. Similarly, it may be shown that

Mw
2 f(x) � CMm(w)−εf(x). (2.45)

Thus from (2.42), by the estimates in (2.43), (2.44), and (2.45), we have

Mwf(x) � χB(x0,δ)M
wχB(x0,δ)f(x) + M f(x) + MM(w)+εf(x) + Mm(w)−εf(x).

The boundedness of the first term, i.e., the boundedness of Mw on the small
set Ωδ = B(x0, δ) ∩ Ω, holds according to the previous part of the proof, if

− n

p(x0)
< m(w) � M(w) <

n

qδ
, (2.46)

where qδ = p−(Ωδ)−1
p(x0)

. Let us show that, given the condition − n
p(x0)

< m(w) �
M(w) < n

p′(x0)
, one can always choose δ sufficiently small so that (2.46) holds.

Given M(w) < n
p′(x0)

, we have to choose δ so that M(w) < n
qδ

� n
q(x0)

. We have
n
qδ

= n
p′(x0)

− a(δ), where a(δ) = n
p(x0)

[p(x0)− p−(Ωδ)]. By the continuity of p(x),

we can choose δ so that a(δ) < n
q(x0)

− M(w). Then n
qδ

> M(w) and condition

(2.46) is fulfilled, so that the operator Mw is bounded in the space Lp(·)(B(x0, δ)).

It remains to treat the case of the operators MM(w)+ε and Mm(w)−ε with
power weights

3◦ The case of power weights w = |x− x0|β. We separately treat the cases β � 0
and β � 0.

A) The case − n
p(x0)

< β � 0. By the estimate (2.36), applied with w ≡ 1, we have

|Mψ(x)|p1(x) � c
(
1 + M

[
ψp1(·)](x)) (2.47)
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for all ψ ∈ Lp1(·)(Ω) with ‖ψ‖p(·) � c. For ψ(x) = ψf (x) := f(x)|x−x0|−β we have∥∥ψf

∥∥
p1(·) � (diamΩ)|β|

∥∥ f∥∥
p1(·) ,� C

∥∥ψf

∥∥
p1(·) � C

∥∥f∥∥
p(·) � Cq, so that (2.47) is

applicable. Then from (2.40) we get

Ip(M
wf) � c

ˆ

Ω

(
|x− x0|βp1(x0)

[
1 + M

(∣∣∣∣ f(y)

|y − x0|β
∣∣∣∣p1(y)

)])p−

dx

� c

ˆ

Ω

{
|x− x0|βp(x0) +

(
|x− x0|βp1(x0)M

(
f(y)|p1(y)

|y − x0|βp1(x0)

))p−
}

dx

� c+ c

ˆ

Ω

(
Mw1

(
|f(·)|p1(·)

)
(x)
)p−

dx,

where w1(x) = |x− x0|γ , γ = βp1(x0) =
βp(x0)
p−

. The operator Mw1 is bounded in

Lp− , if − n
p− < γ < n

p′
−
, see for instance, Dynkin and Osilenker [71], p. 2097. The

latter condition is satisfied since − n
p(x0)

< β � 0. Therefore,

Ip(M
wf) � c+ c

ˆ

Ω

|f(y)|p1(y)·p− dy = c+ c

ˆ

Ω

|f(y)|p(y) dy � C.

B) The case 0 � β < n
p′(x0)

. We express the modular Ip(Mwf) as

Ip(M
wf) =

ˆ

Ω

(∣∣Mwf(x)
∣∣p1(x)

)λ
dx (2.48)

with p1(x) =
p(x)
λ > 1, λ > 1, where λ will be chosen in the interval 1 < λ < p−.

In (2.48) we wish to use the pointwise estimate (2.36) with p(x) replaced by p1(x),
which will be possible, if ‖f‖p1(·) � c and β < n

[p1(x0)]′
. The former is fulfilled since

p1(x) � p(x), for the latter we have to choose λ < n−β
n p(x0). Therefore, under

the choice 1 < λ < min
(
p−, n−β

n p(x0)
)
we obtain

Ip(M
wf) � c+ c

ˆ

Ω

∣∣M (|f |p1(·))(x)
∣∣λ dx � c+ c

ˆ

Ω

(|f(x)|p1(x)
)λ

dx � C,

thanks to the boundedness of the maximal operator in Lλ(Ω), λ > 1. �

We single out the case of power weights where we show that the obtained
conditions are necessary.

Theorem 2.25. Let Ω ⊂ R
n be a bounded open set, p ∈ P

log(Ω). The operator Mw

with the weight w(x) = |x− x0|β, x0 ∈ Ω, is bounded in Lp(·)(Ω) if and only if

− n

p(x0)
< β <

n

p′(x0)
. (2.49)
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If x0 ∈ ∂Ω, the condition (2.49) is sufficient; it is also necessary if Ω has the
property |{y ∈ Ω : r < |y − x0| < 2r}| � crn at the point x0 ∈ ∂Ω.

Proof. The sufficiency of the conditions (2.49) follows from Theorem 2.24. To
prove the necessity, we construct counterexamples. Suppose that Mw is bounded
in Lp(x)(Ω). Then for all functions f(x) such that Ip(wf) � c1, we have

Ip(wM f) � c. (2.50)

1) We choose f(x) = |x − x0|μ with μ > −β − n
p(x0)

. Then we have Ip(wf)

� c
´
Ω

|x− x0|(β+μ)p(x)dx = C < ∞. However,

Ip(wM f) � c

ˆ

Ω∩B(x0,r)

|x− x0|βp(x0)dx ,

which diverges if βp(x0) � −n (in the case x0 ∈ ∂Ω use the inequality

ˆ

Ω

|x− x0|γ dx �
ˆ

Ωr

|x− x0|γ dx = |ξ − x0|βp(x0)|Ωr| ≈ rn+βp(x0),

where Ωr = {y ∈ Ω : r < |y − x0| < 2r} and ξ ∈ Ωr). Therefore, from (2.50) it
follows that β > − n

p(x0)
.

2) Suppose that β � n
p′(x0)

. If β > n
p′(x0)

, we choose f(x) = 1
|x−x0|n , for

which Ip(wf) converges, but M f just does not exist. When β = n
p′(x0)

, we choose

f(x) = 1
|x−x0|n

(
ln 1

|x−x0|
)γ

for |x− x0| � 1
2 and 0 otherwise. Then Ip(wf) exists

under the choice γ < − 1
p(x0)

, but M f does not exist when γ > −1. Taking

γ ∈ (− 1,− 1
p(x0)

)
, we arrive at a contradiction. �

For the case of the whole space Rn the following theorem is valid.

Theorem 2.26. Let p ∈ Plog(Rn) and assume that there exist an R > 0 such that
p(x) ≡ p∞ = const for |x| � R. Then the maximal operator M is bounded in the
space Lp(·)(Rn, w) with weight (2.29), if and only if

− n

p(xk)
< βk <

n

p′(xk)
and − n

p∞
< β +

n∑
k=1

βk <
n

p′∞
. (2.51)

We omit the proof of Theorem 2.26. It was given in Kokilashvili and Samko
[192] in a different setting of infinite curves instead of Rn; the proof for the Eu-
clidean case is essentially the same.

Recall that by Ap(·)(Ω) we denote the class of restrictions onto Ω of weights
from the class Ap(·)(Rn); the relation of the latter to the maximal function is
characterized in Theorem 2.4.
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For our goals it is important to emphasize that when p ∈ Plog(Ω) and Ω is
bounded, the following is valid:

a) by Theorem 2.25, the power weight �(x) = |x − x0|β , x0 ∈ Ω, is in Ap(·)
if and only if

− n

p(x0)
< β <

n

p′(x0)
;

b) by Theorem 2.24, oscillating weights of the type �(x) = w(|x− x0|) are in
Ap(·)(Ω), if

− n

p(x0)
< m(w) � M(w) <

n

p′(x0)
,

and from the property (2.14) and Theorem 2.25 it follows that the condition

− n

p(x0)
� m(w) � M(w) � n

p′(x0)

is necessary for w(|x − x0|) ∈ Ap(·)(Ω).

2.3.3 A Non-Euclidean Case

The weighted boundedness of the maximal operator presented in the preceding
sections, can be extended to the case where the underlying space is different from
sets in Rn. We do not dwell on the proofs in such a general setting in order not
to overload this volume by many details necessary for the proof, but refer the
interested reader for proofs of Theorems 2.27 and 2.28 for the maximal operator

M f(x) = sup
r>0

1

μ(B(x, r))

ˆ

B(x,r)

|f(y)| dμ(y)

to Kokilashvili, Samko, and Samko [200]; see also Kokilashvili and Samko [192]
for the case where X = Γ is a Carleson curve in the complex plane.

The notions related to quasimetric measure spaces are presented later in
Section 2.5.3; in particular, the lower dimension dim(X) is defined in (2.187). We
always assume that the measure μ is non-atomic and such that such that μB(x, r)
is continuous in r for every fixed x ∈ X and infx∈X μB(x, r) > 0 for every r > 0.

In Theorems 2.27 and 2.28 we deal with weights

�(x) =
N∏

k=1

wk(d(x, xk)), xk ∈ X,

when X is bounded, and

�(x) = w0[1 + d(x0, x)]

N∏
k=1

wk[d(x, xk)], x0, xk ∈ X,

when X is unbounded.
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Theorem 2.27. Let X be a bounded quasimetric space with doubling measure and

p ∈ Plog(X). The maximal operator M is bounded in L
p(·)
μ (X, �), if r

dim(X)
p(xk) wk(r) ∈

Φ0
dim(X) or, equivalently, wk ∈ W ([0, �]), � = diam X, and

−dim(X)

p(xk)
< m(w) � M(w) <

dim(X)

p′(xk)
, k = 1, 2, . . . , N. (2.52)

Theorem 2.28. Let X be an unbounded quasimetric space with doubling measure
and p ∈ P

log(X) and let p(x) ≡ p(∞) = const, x ∈ X\B(x0, R) for some R > 0.

The operator M is bounded in L
p(·)
μ (X, �), if besides (2.52), the condition

−dim∞(Ω)

p(∞)
<

N∑
k=0

m∞(wk) �
N∑

k=0

M∞(wk) <
dim∞(Ω)

p′∞
−Δp∞ ,

holds, where Δp(∞) =
dim∞(Ω)−dim∞(Ω)

p(∞) .

We single out a particular case of this result for the case where X = Γ and
w is a power weight, which we need for our applications in Chapter 10.

The maximal operator in this case is defined in the usual way:

M f(t) = sup
r>0

1

ν{γ(t, r)}
ˆ

γ(t,r)

|f(τ)|dν(τ),

where
γ(t, r) := Γ ∩B(t, r), t ∈ Γ, r > 0,

dν stands for the arc-length measure; for brevity we denote |γ(t, r)| := ν(γ(t, r)).

We admit now power weights of the form

w(t) =

n∏
k=1

|t− tk|βk , tk ∈ Γ, (2.53)

in the case of finite curve, and the weights

w(t) = |t− z0|β
n∏

k=1

|t− tk|βk , tk ∈ Γ, z0 /∈ Γ (2.54)

in the case of infinite curve.

Recall that a curve Γ is called Carleson curve (regular curve), if there exists
a constant c0 > 0 not depending on t and r, such that

|γ(t, r)| � c0r.

The following theorem was proved in Kokilashvili and Samko [192].
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Theorem 2.29. Assume that

i) Γ is a finite or infinite simple Carleson curve;

ii) p ∈ Plog(Γ) and, if Γ is unbounded, p(t) ≡ p∞ = const outside some big disc
B(0, R).

Then the maximal operator M is bounded in the space Lp(·)(Γ, w) with the weight
(2.53) or (2.54), if and only if

− 1

p(tk)
< βk <

1

p′(tk)
and − 1

p∞
< β +

n∑
k=1

βk <
1

p′∞
.

2.4 Weighted Singular Operators

In this section we study the boundedness of singular Calderón–Zygmund-type
operators

Tf(x) = lim
ε→0

ˆ

|x−y|>ε

k(x, y)f(y) dy (2.55)

in the spaces Lp(·)(Ω, �) over a bounded open set in Rn with oscillating radial
type weights from the Zygmund–Bari–Stechkin type classes. We suppose that the
kernel k(x, y) is standard in the well-known sense, i.e., satisfies the assumptions:

i) |k(x, y)| � A|x− y|−n; (2.56)

ii) |k(x, y)− k(z, y)| � A
|x− z|δ
|x− y|δ+n

, |k(y, x)− k(y, z)| � A
|x− y|δ
|x− y|δ+n

(2.57)

for all |x − z| � 1
2 |x − y| with some A > 0 and δ > 0; It is known that any such

operator, if bounded in L2(Rn) or of weak (1,1) type, then is also bounded in any
space Lp(Rn), 1 < p < ∞, p = const, see for instance Christ [43].

Remark 2.30. In Section 10.2, in connection with applications to the normal solv-
ability of Pseudo-differential Operators (PDO), we will also consider other ver-
sions of Calderón–Zygmund-type singular operators, better suited for the theory
of PDO.

The boundedness of the singular Cauchy integral operator

SΓf(t) =
1

πi

ˆ

Γ

f(τ)

τ − t
dν(τ) (2.58)

along a Carleson curve Γ in the spaces Lp(·)(Γ, �) with similar weights is also
considered in this section.
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2.4.1 Calderón–Zygmund-type Operators: the Euclidean Case

Let

M �f(x) = sup
r>0

1

|B(x, r)|
ˆ

B(x,r)∩Ω

|f(y)− fB(x,r)| dy, x ∈ R
n, (2.59)

be the sharp maximal function (Fefferman–Stein function), where

fB(x,r) =
1

|B(x, r)|
ˆ

B(x,r)∩Ω

f(z) dz.

In the proof of Theorem 2.35 we will follow the known approach based on
the statements below.

Recall that an operator A is called of weak (1, 1) type if

|{x : |Af(x)| � t}| � C
‖f‖1
t

.

Theorem 2.31 (Alvarez and Pérez [18]). Let k(x, y) be a standard kernel and let the
operator T be of weak (1, 1) type. Then for an s ∈ (0, 1), there exists a constant
cs > 0 such that [

M �(|Tf |s)(x)] 1s � csM f(x), x ∈ R
n,

for all f ∈ C∞
0 (Rn).

Theorem 2.32 (Diening and Růžička [64]). Let p be a bounded exponent with p− > 1
such that the maximal operator is bounded in Lp(·)(Rn). Then for all f ∈ Lp(·)(Rn)
and g ∈ Lp′(·)(Rn), ∣∣∣∣∣

ˆ

Rn

f(x)g(x) dx

∣∣∣∣∣ � c

ˆ

Rn

M �f(x)M g(x) dx

with a constant c > 0 not depending on f .

Theorem 2.33. Let p ∈ Plog
∞ (Rn) and w ∈ Ap(·)(Rn). Then

‖wf‖Lp(·)(Rn) � c‖wM �f‖Lp(·)(Rn), (2.60)

with a constant c > 0 not depending on f .

Proof. By Theorem 1.2 we have

‖fw‖Lp(·)(Rn) � c sup
‖g‖

Lp′(·)(Rn)
�1

∣∣∣∣∣
ˆ

Rn

f(x)g(x)w(x) dx

∣∣∣∣∣.
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Then, by Theorem 2.32,

‖fw‖Lp(·)(Rn) � c sup
‖g‖

Lp′(·)(Rn)
�1

∣∣∣∣∣
ˆ

Rn

M �f(x)w(x)[w(x)]−1M (gw) dx

∣∣∣∣∣.
Hence, by the Hölder inequality,

‖fw‖Lp(·)(Rn) � c sup
‖g‖

Lp′(·)�1

‖wM �f‖Lp(·)(Rn)‖w−1M (wg)‖Lp′(·)(Rn).

By Theorem 2.4, w ∈ Ap(·)(Rn) ⇐⇒ w−1 ∈ Ap′(·)(Rn), so that the operator

w−1Mw is bounded in Lp′(·)(Rn), which completes the proof. �
Corollary 2.34. The inequality (2.60) holds for exponents p ∈ Plog(Rn) that are
constant at infinity and weights (2.29) satisfying the condition (2.51).

Theorem 2.35. Let p be a bounded exponent with p− > 1 and let the weight �
satisfy the assumptions

i) � ∈ Ap(·)(Rn);

ii) there exists an s ∈ (0, 1) such that �s ∈ A p(·)
s

(Rn).

Then a singular operator T with a standard kernel k(x, y) and of weak (1, 1) type,
is bounded in the space Lp(·)(Rn, �).

Proof. Let f ∈ C∞
0 (Rn) and 0 < s < 1. By (1.4), we have ‖�Tf‖Lp(·)(Rn) =

‖�s|Tf |s‖ 1
s

L
p(·)
s (Rn)

. Applying Theorem 2.33 with w(x) = [�(x)]s and p(·) replaced

by p(·)
s , we obtain ‖�Tf‖Lp(·)(Rn) � c

∥∥�sM �(|Tf |s)∥∥ 1
s

L
p(·)
s (Rn)

. Then, by (1.4),

Theorem 2.31 and we have

‖�Tf‖Lp(·)(Rn) � c
∥∥∥� [M �(|Tf |s)] 1s ∥∥∥

Lp(·)(Rn)

� c ‖�(M f)‖Lp(·)(Rn) � c ‖�f‖Lp(·)(Rn)

for all f ∈ C∞
0 (Rn). To complete the proof of the theorem, it remains to observe

that C∞
0 (Rn) is dense in Lp(·)(Rn, �) by Theorem 2.3 (that theorem was stated

with the assumption [�(x)]p(x) ∈ L1
loc(R

n), which follows from the fact that � ∈
Ap(·)(Rn)). �

From Theorem 2.35 we derive

Theorem 2.36. Let Ω be a bounded open set in Rn and p ∈ Plog(Ω). A singu-
lar operator T with a standard kernel k(x, y) and of weak (1, 1) type, is bounded
in the space Lp(·)(Ω, �) with weight �(x) = w(|x − x0|), x0 ∈ Ω, where w, 1

w ∈
W ([0, �]), � = diam Ω, if

− n

p(x0)
< m(w) � M(w) <

n

p′(x0)
. (2.61)



2.4. Weighted Singular Operators 53

Proof. To apply Theorem 2.35, we use the extension of f(x) by zero outside Ω,

denoted by f̃(x), extend p(x) outside Ω as p∗(x) with preservation of the log-
condition in Rn and either constant at infinity, or satisfying the decay condition,
which is always possible. We also extend the weight �(x) to be constant outside
some big ball: �̃(x) := w̃(|x− x0|), where

w̃(r) =

{
w(r), 0 � r � �
w(�), r � �.

We have
‖�Tf‖Lp(·)(Ω) � ‖�̃ T f̃‖Lp∗(·)(Rn). (2.62)

Observe that �̃ ∈ Ap∗(·)(Rn). Indeed,

Ip∗(�̃M f̃) �
ˆ

Ω

|�(x)M f(x)|p(x)dx + C

ˆ

Rn\Ω

|M f(x)|p∗(x)dx.

The first term here is covered by Theorem 2.24, while the second term does not
involve the weight and is bounded by Theorem 2.19.

Therefore, Theorem 2.35 is applicable to the right-hand side of (2.62), which
completes the proof. �

2.4.2 Singular Integrals with General Weights on Lyapunov Curves

Before we pass to weighted results on an arbitrary Carleson curve, we show in
Theorem 2.38 that on better curves the result may be obtained much easier and
for general weights, by appealing to Theorem 2.4.

Recall that Γ = {t ∈ C : t = t(s), 0 < s < �} is called a Lyapunov curve,
if |t′(s) − t′(σ)| � C|s − σ|γ for some γ ∈ (0, 1). It is called a curve of bounded
rotation, if t′(s) is a function of bounded variation.

Recall also that Ap(·)(0, �) stands for the class of restrictions of weights from
Ap(·)(R) to (0, �), 0 < � < ∞.

Remark 2.37. Note that Theorem 2.45 for power and oscillating weights, proved
later in this chapter (see also Remark 2.44), cannot be derived directly from The-
orem 2.38 with general weights even in the case of nice curves, because we cannot
explicitly check that power or oscillating weights belong to the class Ap(·). Quite
the contrary, since the condition w ∈ Ap(·) is necessary in case of the maximal oper-
ator, thanks to the separate treatment of special classes of weights for the maximal
operator in the preceding sections, we know that those weights are in Ap(·).

Theorem 2.38. Let Γ be a bounded closed Lyapunov curve or a curve of bounded
rotation without cusps. Then the operators

(SΓf)(t) =
1

πi

ˆ

Γ

f(τ)

τ − t
dτ and S∗f(t) = sup

ε>0

ˆ
|t−τ |>ε

f(τ)dτ

τ − t
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are bounded in the space Lp(·)(Γ, w), p ∈ Plog(Γ), if the weight w[t(s)] belongs to
the class Ap(·)(0, �).

Proof. First we note that for both Lyapunov curves and curves of bounded rotation
without cusps, the arc-chord condition

|t(s)− t(σ)| ≈ |s− σ| (2.63)

holds, see Danilyuk [57, p. 20].

We will denote f̃(s) := f [t(s)] and w̃(s) := f [w(s)] for brevity and similarly

p̃(s) := p[t(s)], so that p̃(0) = w̃(s). Also, f̃(s) := f [t(s)]. We use the notation

(Hf̃)(s) =
1

πi

�ˆ

0

f̃(σ)

σ − s
dσ

for the Hilbert transform on [0, �].

1◦. The case of Lyapunov curves. It is known that for Lyapunov curves

t′(σ)
t(σ) − t(s)

=
1

σ − s
+O

(
1

|σ − s|1−γ

)
,

which follows from the relation

t′(σ)
t(σ) − t(s)

− 1

σ − s
=

1

t(σ) − t(s)

1ˆ

0

[t′(σ) − t′(s+ ξ(σ − s))] dξ. (2.64)

We assume p̃(s) to be extended to the whole R as p̃(s) = p̃(0) = p̃(�) for
s ∈ R\[0, �]. We use the properties

‖f̃‖Lp̃(·)(R,w̃) � c‖M �f̃‖Lp̃(·)(R,w̃). (2.65)

and

M �
(
|Hf̃ |r

)
(s) � c[M f(s)]r, 0 < r < 1, (2.66)

where M �f is the sharp maximal function, introduced in (2.59), and it is assumed

that f̃(s) is extended by zero beyond [0, �]. These properties are well known in the
Euclidean case for constant exponents; later in Section 2.4.3 we verify that they
hold for variable exponents on an arbitrary infinite Carleson curve.

The term

T f̃(s) =

�ˆ

0

|f̃(σ)|
|σ − s|1−γ

dσ

with potential kernel, is also controlled by the maximal function:

|(T f̃)(s)| � CM f̃(s). (2.67)
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Indeed, with f̃(σ) continued by zero for σ /∈ [0, �] we have

�ˆ

0

|f̃(σ)|
|σ − s|1−γ

dσ =

2�ˆ

−�

|f̃(σ)|dσ
|σ − s|1−γ

=

∞∑
j=0

ˆ
	

2j+1 <|σ−s|< 	

2j

|f̃(σ)|dσ
|σ − s|1−γ

�
∞∑
j=0

1(
�

2j+1

)1−γ

ˆ
|σ−s|< 	

2j

|f̃(σ)|dσ � CM f̃(s).

Then, by (2.67) and Theorem 2.4,

‖T f̃‖Lp̃(·)((0,�),w̃) � C‖T f̃‖Lp̃(·)((0,�),w̃) � C‖M f̃‖Lp̃(·)((0,�),w̃)

� C‖M f̃‖Lp̃(·)(R,w̃) � C‖f̃‖Lp̃(·)((0,�),w̃).

The boundedness of the operator S∗
Γ in Lp(·)(Γ, w) then follows from the

pointwise inequality

(S∗
Γf)(t) � CM (SΓf)(t) + C(M f)(t), (2.68)

well known for the case of maximal Hilbert operator H∗ (see Stein [352, p. 34])
and also known for Lyapunov curves in view of (2.64).

2◦. The case of a curve of bounded rotation without cusps. Let V be the total
variation of the function t′(s) on [0, �]. By (2.64) and (2.63), we have∣∣∣∣∣

ˆ

|t(σ)−t(s)|>ε

f̃(σ) t′(σ)
t(σ) − t(s)

dσ

∣∣∣∣∣
� C

∣∣∣∣∣
ˆ

|σ−s|>ε

f̃(σ)

σ − s
dσ

∣∣∣∣∣+
∣∣∣∣∣
ˆ

|σ−s|>ε

f̃(σ) · V (σ) − V (s)

σ − s
dσ

∣∣∣∣∣. (2.69)

Hence,

(S∗
Γf)(t) � c

[
(H∗f)(s) + V (s)(H∗f̃)(s) + (H∗V f̃)(s)

]
.

The operator H∗ is bounded in the space Lp̃(·)((0, �), w̃) by the part 1◦ of
the proof.

Consequently, the operator S∗
Γ and then the operator SΓ are bounded in the

space Lp(·)(Γ, w). �

2.4.3 Preliminaries Related to Singular Integrals on Curves

Recall that

‖f‖Lp(·)(Γ) = inf

{
λ > 0 :

ˆ

Γ

∣∣∣∣f(t)λ

∣∣∣∣p(t) dν(t) � 1

}
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and, as in the Euclidean case,

‖f‖β(f)p(·) � Ip(f) � ‖f‖α(f)p(·) , (2.70)

where

α(f) =

{
p+, if ‖f‖p(·) � 1,
p−, if ‖f‖p(·) < 1,

and β(f) =

{
p−, if ‖f‖p(·) � 1,
p+, if ‖f‖p(·) < 1.

(2.71)

The auxiliary statements of this section will be used to obtain the results
on weighted Lp(·)-boundedness of the Cauchy singular integral operator along
Carleson curves in Section 2.4.4. Let Γ be a rectifiable curve and

M �f(t) = sup
r>0

1

|γ(t, r)|
ˆ

γ(t,r)

|f(τ)− fγ(t,r)| dν(τ), t ∈ Γ, (2.72)

be the sharp maximal operator on Γ, where fγ(t,r) =
1

|γ(t,r)|
´
γ(t,r) f(τ) dν(τ).

As a counterpart of Theorem 2.33 we have the following statement, proved
similarly to Theorem 2.33.

Theorem 2.39. Let Γ be an infinite Carleson curve, p a bounded exponent on Γ
with p− > 1, and w such that 1

w ∈ Ap′(·)(Γ). Then

‖wf‖Lp(·)(Γ) � c‖wM �f‖Lp(·)(Γ) (2.73)

with a constant c > 0 not depending on f .

Taking into account Theorem 2.29, we have the following corollary.

Corollary 2.40. The inequality (2.73) holds on an infinite Carleson curve Γ for
the weight w(t) = |t− t0|β , t0 ∈ C, when p ∈ P

log(Γ) and p(t) = p∞ outside some
circle B(t0, R), and

− 1

p(t0)
< β <

1

p′(t0)
and − 1

p∞
< β <

1

p′∞
if t0 ∈ Γ,

under the single condition − 1
p∞ < β < 1

p′∞
if t0 /∈ Γ.

The proof of the weighted boundedness of the singular operator via the
boundedness of the maximal operator is based on the estimate

M � (|SΓf |s) (t) � c[M f(t)]s, 0 < s < 1, (2.74)

the Euclidean version of which was given above in Theorem 2.31. To prove (2.74)
for Carleson curves, we need the following technical lemmas.
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Lemma 2.41. Let Γ be a simple Carleson curve, z0 ∈ Γ, and γr = γ(z0, r) and

Hr,z0(t) :=
1

|γr|2
ˆ

γr

ˆ

γr

∣∣∣∣ 1

z − t
− 1

τ − t

∣∣∣∣ dν(z)dν(τ). (2.75)

Then for any locally integrable function f the pointwise estimate

sup
r>0

ˆ

t∈Γ:|t−z0|>2r

|f(t)|Hr,z0(t)dν(t) � CM f(z0)

holds, where C > 0 does not depend on f and z0.

Proof. We have

Hr,z0(t) =
1

|γr|2
ˆ

γr

ˆ

γr

|τ − z|
|z − t| · |τ − t|dν(z)dν(τ).

For |t− z0| > 2r we have |z − t| � |t− z0| − |z − z0| � |t− z0| − r � 1
2 |t− z0| and

similarly |τ − t| � 1
2 |t− z0|, so that Hr,z0(t) � Cr

|t−z0|2 , where the constant C > 0

depends only on the length of the curve Γ. Then

sup
r>0

ˆ

t∈Γ:|t−z0|>2r

|f(t)|Hr,z0(t)dν(t) � c sup
r>0

m∑
k=0

ˆ

2kr<|t−z0|<2k+1r

r|f(t)|
|t− z0|2 dν(t)

with m = m(r). Hence,

sup
r>0

ˆ

t∈Γ:|t−z0|>2r

|f(t)|Hr,z0(t)dν(t) � 2c sup
r>0

m∑
k=0

1

2k
1

2k+1r

ˆ

|t−z0|<2k+1r

|f(t)|dν(t)

� 2cM f(z0)

m∑
k=0

1

2k
� c1M f(z0). �

Lemma 2.42. Let f be an integrable function on Γ and fγ = 1
|γ|
´
γ
f(τ)dν(τ),

where γ ⊂ Γ. Then

1

|γ|
ˆ

γ

|f(τ) − fγ |dν(τ) � 2

|γ|
ˆ

γ

|f(τ)− C|dν(τ)

for any constant C on the right-hand side.

Proof. The proof is well known:

1

|γ|
ˆ

γ

|f(τ) − fγ |dν(τ) � 1

|γ|2
ˆ

γ

ˆ

γ

|f(τ)− f(σ)|dν(τ)dν(σ)
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� 1

|γ|2
ˆ

γ

ˆ

γ

(|f(τ) − C|+ |C − f(σ)|)dν(τ)dν(σ)

=
2

|γ|
ˆ

γ

|f(τ)− C|dν(τ). �

Lemma 2.43. The estimate (2.74) holds on every simple Carleson curve.

Proof. By Lemma 2.42, it suffices to show that for any locally integrable function
f and any 0 < s < 1 there exists a positive constant A such that(

1

|γ|
ˆ

γ

∣∣∣∣ |SΓf(ξ)|s −As

∣∣∣∣dν(ξ)
) 1

s

� CM f(z0), γ = γ(z0, r),

for almost all z0 ∈ Γ, where C > 0 does not depend on f and z0. We set f =
f1 + f2, where f1 = f · χγ(z0,2r) and f2 = f · χΓ\γ(z0,2r). We take A = (SΓf2)γ =
1
|γ|
´
γ
|SΓf2(ξ)| dν(ξ). Since ||a|s − |bs|| � |a− b|s for 0 < s < 1, we have(
1

|γ|
ˆ

γ

∣∣∣∣ |SΓf(ξ)|s −As

∣∣∣∣dν(ξ)
)1/s

� c

(
1

|γ|
ˆ

γ

∣∣∣∣SΓf1(ξ)

∣∣∣∣sdν(ξ)
)1/s

+ c

(
1

|γ|
ˆ

γ

∣∣∣∣ |SΓf2(ξ)| −A

∣∣∣∣sdν(ξ)
)1/s

=: c(I1 + I2).

The term I1 is estimated by means of the Kolmogorov inequality(
1

|Γ|
ˆ

Γ

|SΓf(t)|sdν(t)
)1/s

� c
1

|Γ|
ˆ

Γ

|f(t)|dν(t), (2.76)

where s ∈ (0, 1), valid for a finite Carleson curve, which yields

I1 � 1

|γ|
ˆ

γ

|f1(ξ)|dν(t) � 1

|γ|
ˆ

γ

|f(t)|dν(ξ) � M f(z0).

For I2, Jensen’s inequality and Fubini’s theorem yield, after easy estimations,

I2 � 1

|γ|
ˆ

γ

∣∣∣∣∣(SΓf2)(ξ)− 1

|γ|
ˆ

γ

(SΓf2)(τ)dν(τ)

∣∣∣∣∣dν(ξ) �
ˆ

Γ\γ(z0,2r)

|f(t)|Hr,z0(t)dν(t),

where Hr,z0(t) was defined in (2.75). Hence, by Lemma 2.41, I2 � CM f(z0),
which completes the proof. �
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2.4.4 Singular Integrals with Cauchy Kernel on Carleson Curves

In this section we study the singular integral operator

SΓf(t) =
1

πi

ˆ

Γ

f(τ)

τ − t
dν(τ) (2.77)

along a Carleson curve Γ and extend the result of Guy David [58] to the case of
variable exponents by proving that the operator SΓ is bounded in weighted spaces
Lp(·)(Γ, �) with power type weights, if and only if Γ is a Carleson curve.

To simplify the presentation, we consider the power weights (2.53)–(2.54) in
the form

�(t) = |t− t0|β , t0 ∈ Γ, (2.78)

in the case of finite curves, and in the form

�(t) = |t− z0|a|t− t0|β , t0 ∈ Γ, z0 /∈ Γ, (2.79)

in the case of infinite curves.

We mainly assume that p ∈ Plog(Γ). In the case where Γ is an infinite curve,
we also assume that p satisfies the following condition at infinity:

|p(t)− p(τ)| � A∞
ln 1

| 1t − 1
τ |

,

∣∣∣∣1t − 1

τ

∣∣∣∣ � 1

2
, |t| � L, |τ | � L (2.80)

for some large L > 0, so that p(∞) = limΓ�t→∞ p(t) exists.

Remark 2.44. To simplify the proof of the next theorem, we give it for the case of
power weights, which is the most important for our further applications. It holds
also for more general oscillating weights of form �(x) = w(|t − t0|) (and similarly
for (2.79)) with w in the ZBS class. In this case (2.82) should be replaced by the
condition

− 1

p(t0)
< m(w) � M(w) <

1

p′(t0)
, (2.81)

for MO indices, and similarly in (2.83) For simplicity we give all the details of
the proof for the case of power weights, which is the most important for our
applications to singular integral equations on curves in the complex plane.

Theorem 2.45. Suppose that

i) Γ is a simple Carleson curve;

ii) p ∈ Plog(Γ) and also satisfy the assumption (2.80) in the case where Γ is an
infinite curve.

Then the singular operator SΓ is bounded in the space Lp(·)(Γ, �) with weight (2.78)
or (2.79), if and only if

− 1

p(t0)
< β <

1

p′(t0)
, (2.82)
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and also

− 1

p(∞)
< a+ β <

1

p′(∞)
(2.83)

in the case where Γ is infinite.

Proof. We consider the single weight |t− t0|β , where t0 does not necessarily lie on
Γ in case Γ is infinite, which is possible since the factors in the weight (2.79) can be
separated (see the procedure of such a separation in the beginning of Section 2.3).

Sufficiency part.

I). The case of an infinite curve and p constant at infinity. For this case we assume
that p(t) ≡ const = p(∞) outside some large ball B(0, R). Let 0 < s < 1. Observe
that

‖SΓf‖Lp(·)(Γ,
) = ‖|SΓf |s‖
1
s

L
p(·)
s (Γ,
)

.

Then by Corollary 2.40 we have

‖SΓf‖Lp(·)(Γ,
) � C
∥∥M �(|SΓf |s)

∥∥ 1
s

L
p(·)
s (Γ,
)

for s sufficiently close to 1. Indeed, Corollary 2.40 is applicable in this case, because
p(·)
s ∈ Plog(Γ) if s and the exponent β of the weight satisfy the condition − 1

p(t0)
s

<

β < 1
p′(t0)

s

, when s is sufficiently close to 1.

Therefore, by Lemma 2.43,

‖SΓf‖Lp(·)(Γ,
) � c ‖(M f)s‖ 1
s

L
p(·)
s (Γ,
)

= c ‖M f‖Lp(·)(Γ,
) .

It remains to apply Theorem 2.29 to obtain ‖SΓf‖Lp(·)(Γ,
) � c‖f‖Lp(·)(Γ,
).

II). The case of a finite curve and p constant on some arc. For this case we assume
that there exists an arc γ ⊂ Γ with |γ| > 0 on which p(t) ≡ const.

First we observe that the singular integral may be considered in the form

SΓf(t) =
1

πi

ˆ

Γ

f(τ)

τ − t
dτ

instead of (2.77), since dτ = τ ′(s)dν(τ) and |τ ′(s)| = 1 on Carleson curves, so that
‖fτ ′‖Lp(·)(Γ,
) = ‖f‖Lp(·)(Γ,
).

The present case is reduced to the previous case I) by a change of variables.
Let z0 be any point of Γ (different from t0 if t0 ∈ Γ). Without loss of generality
we may assume that z0 = 0. Let

Γ∗ =

{
t ∈ C : t =

1

τ
, τ ∈ Γ

}
and p̃(t) = p

(
1

t

)
, t ∈ Γ∗,
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so that Γ∗ is an infinite curve and p̃(z) is constant on Γ∗ outside some large disc.
By the change of variables 1

τ = w and 1
t = z we get

(SΓf)(t) = −z(SΓ∗ψ)(z), z ∈ Γ∗ (2.84)

where ψ(w) = 1
wf
(
1
w

)
. The following modular equivalence holds

Ip,Γ
(|t− t0|βf(t)

) ≈ Ip̃,Γ∗ (�
∗(t)ψ(t)) , (2.85)

where �∗(t) = |t|ν |t− t∗0|β with t∗0 = 1
t0
∈ Γ∗, and ν = 1−β− 2

p̃(∞) = 1−β− 2
p(0) .

Indeed,

Ip,Γ
(|t− t0|βf(t)

)
=

ˆ

Γ

|t− t0|βp(t)|f(t)|p(t)|dt|.

After the change of variables t → 1
t we get

Ip,Γ
(|t− t0|βf(t)

)
=

ˆ

Γ∗

|t0|βp̃(t) |t
∗
0 − t|βp̃(t)
|t|βp̃(t)

∣∣∣∣f (1t
)∣∣∣∣p̃(t) |dt||t2| .

Since |t0|βp̃(t) ≈ const and f
(
1
t

)
= tψ(t), we obtain

Ip,Γ
(|t− t0|βf(t)

) ≈ ˆ
Γ∗

|t∗0 − t|βp̃(t)
|t|βp̃(t)+2

|tψ(t)|p̃(t) |dt|

≈
ˆ

Γ∗

(
|t∗0 − t|β

|t|(β−1)+ 2
p̃(t)

|tψ(t)|
)p̃(t)

|dt|.

We assumed that point z = 0 does not be on Γ, so that |t|(β−1)+ 2
p̃(t) ≈|t|(β−1)+ 2

p̃(∞) .
As a result we arrive at (2.85). Then from (2.85) we also have ‖f‖Lp(·)(Γ,|t−t0|β) ≈‖ψ‖Lp̃(·)(Γ∗,
∗) and correspondingly

‖SΓf‖Lp(·)(Γ,|t−t0|β) ≈ ‖SΓ∗ψ‖Lp̃(·)(Γ∗,
∗), (2.86)

where we used (2.84). Observe also that

− 1

p(t0)
< β <

1

p′(t0)
⇐⇒ − 1

p̃(t∗0)
< ν <

1

p̃′(t∗0)
. (2.87)

Obviously, p̃ ∈ Plog(Γ). Since p̃(t) is constant at infinity, the operator SΓ∗ is
bounded in the space Lp̃(·)(Γ∗, �(t)) according to part I) of the proof, the required
conditions on the weight �∗(t) being satisfied by (2.87) and by the fact that β+ν =

1 − 2
p̃(∞) is in the interval

(
− 1

p̃(∞) ,
1

p̃′(∞)

)
. Then the operator SΓ is bounded in

the space Lp(·)(Γ, |t− t0|β) by (2.86).
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III). The general case of a finite curve. Let γ1 ⊂ Γ and γ2 ⊂ Γ be two disjoint
non-empty arcs of Γ, γ1 ∩ γ2 = ∅. According to the part II) of the proof, the
operator wSΓ

1
w with w(t) = |t − t0|β , t0 ∈ Γ, is bounded in the spaces Lp1(·)(Γ)

and Lp2(·)(Γ), if

pi ∈ P
log(Γ), − 1

pi(t0)
< β <

1

p′i(t0)
and pi(t) is constant on γi , i = 1, 2.

(2.88)

Aiming to make use of the Riesz interpolation theorem, we observe that
the following statement is valid: Given β ∈ (−1, 1) and p ∈ Plog(Γ) such that
− 1

p(t0)
< β < 1

p′(t0)
, there exist non-intersecting arcs γ2 ⊂ Γ and γ1 ⊂ Γ such that

p(t) may be represented in the form

1

p(t)
=

θ

p1(t)
+

1− θ

p2(t)
, θ =

1

2
,

where pj(t), j = 1, 2, satisfy the conditions in (2.88) and pj(t0) = p(t0), j = 1, 2.

To prove this statement, we re-denote for brevity: a(t) := 1
p(t) and ai(t) =

1
pi(t)

. We have to show that given a function a(t) on Γ satisfying the log-condition

and the assumption 0 < d � a(t) � D < 1 on Γ, there exist non-intersecting
non-empty arcs γi and functions ai(t) on Γ with the same properties, such that

a(t) =
a1(t) + a2(t)

2
with ai(t) ≡ const on γi

and ai(t0) = a(t0), i = 1, 2. We take γi so that t0 /∈ γ1 ∪ γ2 and construct the
functions a1(t) and a2(t) as

a1(t) =

⎧⎪⎨⎪⎩
A, t ∈ γ1,

�(t), t ∈ Γ\(γ1 ∪ γ2),

2a(t)−B, t ∈ γ2,

and

a2(t) =

⎧⎪⎨⎪⎩
2a(t)−A, t ∈ γ1,

2a(t)− �(t), t ∈ Γ\(γ1 ∪ γ2),

B, t ∈ γ2,

where A,B ∈ (0, 1) are some constants. The link �(t) between values of a1(t) on
γ1 and on γ2 may be chosen as a smooth interpolation, at each of the components
of the set Γ\(γ1 ∪ γ2), between the number A and the values of 2a(t)− B at the
endpoints of this component, with the only restriction that �(t0) = a(t0) in the case
where this component contains the point t0. Then b(t) and c(t) are log-continuous
on Γ. To guarantee the remaining interval conditions for ai(t), we choose A and
B so that 2a(t) − 1 < A < 2a(t) on γ1 and 2a(t) − 1 < B < 2a(t) on γ2. Let



2.4. Weighted Singular Operators 63

a−(γi) = inf t∈γi a(t) and a+(γi) = supt∈γi
a(t), i = 1, 2. It suffices to choose A

and B in the intervals

A ∈ (max{0, 2a+(γ1)− 1},min{2a−(γ1), 1}) ,
B ∈ (max{0, 2a+(γ2)− 1},min{2a−(γ2), 1}) .

These intervals are non-empty, if a+(γi)− a−(γi) < 1
2 , i = 1, 2, which is fulfilled if

γi are chosen sufficiently small.

In view of the statement we have just proved, the boundedness of the singu-
lar operator in Lp(·)(Γ) with given p follows from the Riesz–Thorin interpolation
Theorem 2.1.

IV). The general case of an infinite curve. Obviously, after step III), the general
case of an infinite curve, i.e., the case where Γ is infinite and p is not necessarily
constant outside some disc, is reduced to the case of a finite curve by mapping the
infinite curve Γ onto a finite curve Γ∗ in the same way as it was done in step II).

Necessity part. Let Γ be a finite curve. From the boundedness of SΓ in Lp(·)(Γ, �) it
follows that SΓf(t) exists almost everywhere for any f ∈ Lp(·)(Γ, �). Thus � should
be such that Lp(·)(Γ, �) ⊂ L1(Γ). The function f = f��−1 belongs to L1(Γ) for
any f ∈ Lp(·)(Γ, �) if and only if �−1 ∈ Lp′(·). The function �−1(t) = |t − t0|−β ,
t0 ∈ Γ, belongs to Lp′(·)(Γ) if and only if β < 1

p′(t0)
. Indeed, by the log-condition

we have
|t− t0|−βq(t) ≈ |t− t0|−βp′(t0)

and it remains to note that for Carleson curves from |t− t0|−βq(t0) ∈ L1 it follows
that β < 1

p′(t0)
.

The necessity of the condition − 1
p(s0)

< β follows by a duality argument.

The case of an infinite curve and a weight fixed to infinity is treated in a
similar way, with small modifications. �

2.4.5 The Property of Γ to be a Carleson Curve is Necessary

In this subsection, in Theorem 2.49, we extend, to the case of variable exponents,
Guy David’s theorem (Paatashvili and Khuskivadze [277]) known for constant
exponents and stating that the boundedness of the singular operator along a rec-
tifiable curve Γ necessarily implies that Γ is a Carleson curve.

We first need some auxiliary statements.

Remark 2.46. If the operator SΓ is bounded in Lp(·)(Γ) and γ is a measur-
able subset of Γ, then the operator Sγ = χγSΓχγ is bounded in Lp(·)(γ) and
‖Sγ‖Lp(·)(γ) � ‖SΓ‖Lp(·)(Γ) (we will denote the restriction of p(·) to γ by the same
symbol p(·)).

In Theorem 2.49 below we prove an important statement on the necessity for
Γ to be a Carleson curve. To this end, we first have to prove two auxiliary lemmas.
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Lemma 2.47. For every point t ∈ Γ and every r ∈ (0, 16diam Γ
)
there exists a

function ϕt := ϕt,r(τ) such that

Ip (SΓϕt) � m

( |γ(t, r)|
r

)p−−1

Ip (ϕt) , (2.89)

where m > 0 is a constant not depending on t and r.

Proof. Let us fix the point t = t0 and consider circles centred at t0 of radii r,
2r and 3r and 8 rays with the angle π

4 between them, one parallel to the axis of
abscissas. These rays split the disc |z − t0| < r and the annulus 2r < |z − t0| < 3r
into 16 parts. It suffices to treat only those parts which lie in a half-plane, for
example, in the upper semi-plane. We denote these parts of the disc |z − t0| < r
by Γk := Γk,t0,r and the parts of the annulus 2r < |z − t0| < 3r by γk := γk,t0,r,
respectively, k = 1, 2, 3, 4, counting them, e.g., counter clockwise. These rays may
be chosen so that there exists a pair k0, j0 such that

|Γk0 | �
1

8
|γ(t0, r)| and |γj0 | �

1

8
r. (2.90)

Without loss of generality we may take k0 = 1.

Let

ϕt0 = ϕt0,r(t) =

{
1, t ∈ Γ1,

0, t ∈ Γ\Γ1.
(2.91)

We have to estimate the integral

Ip(SΓϕt0,r) =

ˆ

Γ

∣∣∣∣∣
ˆ

Γ

ϕt0(τ)

τ − t
dν(τ)

∣∣∣∣∣
p(t)

dν(t). (2.92)

Let τ − t = |τ − t|eiα(τ,t). We have

Ip(SΓϕt0) �
ˆ

γj0

∣∣∣∣∣
ˆ

Γ1

cosα(τ, t)− i sinα(τ, t)

|τ − t| dν(τ)

∣∣∣∣∣
p(t)

dν(t).

Let first j0 = 1. We put M1 = (r, 0) and M2 =
(
2r cos π

4 , 2r sin
π
4

)
. It is easily seen

that max |α(τ, t)| � β1 < π
2 , where β1 is the angle between the vector M2M2 and

the axis of abscissas. Similarly it can be seen that

if τ ∈ Γ1, t ∈ γ2, then π
4 � α(τ, t) � π − β2,

if τ ∈ Γ1, t ∈ γ3, then π
2 � α(τ, t) � π − β3,

if τ ∈ Γ1, t ∈ γ4, then 3π
4 � α(τ, t) � π + β4

where β2 = arctg 2, β3 = arctg 1
3 and β4 = arctg 2

√
2−1
7 . Therefore, when τ ∈ Γ1

and t ∈ γj0 , j0 = 1, 2, 3, 4, then

either | cosα(τ, t)| � m0 > 0, or | sinα(τ, t)| � m0 > 0.
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Moreover, when τ ∈ Γ1 and t ∈ γ2 or t ∈ γ4, then cosα(τ, t) preserves the sign and
when τ ∈ Γ1 and t ∈ γ2 or t ∈ γ3, then sinα(τ, t) preserves the sign. Consequently,
from (2.92) we get

Ip(SΓϕt0) �
ˆ

γj0

max

(∣∣∣∣∣Re
ˆ

Γ1

ϕt0(τ)dν(τ)

τ − t

∣∣∣∣∣
p(t)

,

∣∣∣∣∣Im
ˆ

Γ1

ϕt0(τ)dν(τ)

τ − t

∣∣∣∣∣
p(t))

.

Hence

Ip(SΓϕt0) �
ˆ

γj0

∣∣∣∣∣
ˆ

Γ1

m0

3r
dν(τ)

∣∣∣∣∣
p(t)

dν(t) �
(m0

3

)p+
ˆ

γj0

( |Γ1|
r

)p(t)

dν(t).

Then by (2.90)

Ip(SΓϕt0) �
( m0

3 · 8
)p+
ˆ

γj0

( |γ(t, r)|
r

)p(t)

dν(t) � m1

( |γ(t, r)|
r

)p−

|γj0 |.

Since |γ(t, r)| � Ip(ϕt) = |Γ1| and |γj0 | � r
8 , we obtain

Ip(SΓϕt0) �
m1

8

( |γ(t, r)|
r

)p− r

|γ(t, r)| |Γ1| = m

(
ν(γ(t, r))

r

)p−−1

Ip(ϕt0 )

which proves (2.89) with (2.91). �

Lemma 2.48. If the operator SΓ is bounded in the space Lp(·)(Γ), then for every
t ∈ Γ the estimate

|γ(t, r)|
r

� cΓ|γ(t, r)|δΓ(t) (2.93)

holds, where

δΓ(t) =
1

p− − 1

(
α(SΓϕt)

β(ϕt)
− 1

)
, CΓ =

(
8‖SΓ‖p+

Lp(·)(Γ)

m

) 1
p−−1

, β(ϕt)

comes from (2.71) and the function ϕt and the constant m were introduced in
(2.89).

Proof. Denote K = ‖SΓ‖Lp(·) . By the boundedness ‖SΓf‖Lp(·) � K‖f‖Lp(·) and
property (2.70), we have

Ip(SΓf) � Kα(SΓf)‖f‖α(SΓf)

Lp(·) � Kα(SΓf)[Ip(f)]
α(SΓf)

β(f) .
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We choose f = ϕt and use (2.89) and (2.91), which yields

Kα(SΓf)[Ip(ϕt)]
α(SΓf)

β(SΓϕt) � Ip(SΓϕt) � m

( |γ(t, r)|
r

)p−−1

Ip (ϕt)

� m

8

( |γ(t, r)|
r

)p−−1

|γ(t, r)|. (2.94)

We observe that in the first term in this chain of inequalities we have Ip(ϕt) �
|γ(t, r)|, and then (2.94) yields (2.93). �

Theorem 2.49. Let Γ be a finite rectifiable curve and p : Γ → [1,∞) be a continuous
function. If the singular operator SΓ is bounded in the space Lp(·)(Γ), then the curve
Γ has the property that

sup
t∈Γ
r>0

|γ(t, r)|
r1−ε

< ∞ (2.95)

for every ε > 0. If p(t) satisfies the log-condition, then (2.95) holds with ε = 0,
i.e., Γ is a Carleson curve.

Proof. Note that if the operator SΓ is bounded in Lp(·)(Γ) and γ is a measur-
able subset of Γ, then the operator Sγ = χγSΓχγ is bounded in Lp(·)(γ) and
‖Sγ‖Lp(·)(γ) � ‖SΓ‖Lp(·)(Γ) (we denote the restriction of p(·) to γ by the same
symbol p(·)).

Let γ = γ(t, 3�) = Γ ∩ {z : |z − t| < 3�}. By the above remark, the operator
Sγ is bounded in Lp(·)(γ). Then, by Lemma 2.48, we obtain

|γ(ξ, �)|
�

� cγ |γ(ξ, �)|δγ (ξ) � cΓ|γ(ξ, �)|δγ(ξ), ξ ∈ γ, (2.96)

where CΓ is the same as in Lemma 2.48 and δγ(ξ) =
1

p−(γ)−1

(
α(Sγϕξ)
β(ϕξ)

− 1
)
with

p−(γ) = minτ∈γ p(τ). Depending on the values ‖Sγϕξ‖Lp(·)(γ) and ‖ϕξ‖Lp(·)(γ), the
exponent δγ(ξ) may take only three values 0, δ1 and −δ2, where

δ1 =
p+(γ)− p−(γ)

p+(γ)

1

p−(γ)− 1
, δ2 =

p+(γ)− p−(γ)
p−(γ)

1

p−(γ)− 1

(in fact, according to (2.96) only two values 0 and −δ2 are possible, since γ(ξ,
)

 �

1). Therefore, when � is small, |δγ(ξ)| also has small values:

|δγ(ξ)| � λω(p, 6�), λ =
1

(p−(Γ)− 1)p−(Γ)
, (2.97)

where ω(p, h) is the modulus of continuity of the function p, since p(t) is continuous
on the compact set Γ, and consequently uniformly continuous.
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Let �1 < 1 be sufficiently small such that λω(p, 6�1) < ε. From (2.96) we
have |γ(ξ, �)|1−δγ(ξ) � CΓ�, and then

|γ(ξ, �)| < C
1

1−δ(ξ)

Γ �
1

1−δγ (ξ) < C
1

1−ε

Γ �
1

1+ε for � < �1 (2.98)

(where we took into account that CΓ > 1 and � � �1 < 1). Thus, (2.95) has been
proved.

Now let p(t) satisfy the log-condition. By (2.98), for the function ψξ(�) =
|γ(ξ, �)|δγ(ξ), we have

| lnψξ(�)| = |δγ(ξ) ln |γ(ξ, �)|| � λω(p, 6�)

(
lnCΓ

1− ε
+

| ln �|
1 + ε

)
.

In view of (2.97) we then obtain

| lnψξ(�)| � λA

1− ε

ln CΓ




ln �
3


, � < min

{
�1,

�

6

}
.

It is easy to see that ln(CΓ/�)/ ln(�/3�) is bounded for small �, so that | lnψξ(�)| �
C < ∞. Since |γ(ξ,
)|


 � CΓψξ(�) by (2.96), we get |γ(ξ,
)|

 � CΓe

C , which means
that Γ is a Carleson curve. �

2.5 Weighted Potential Operators

In this section we study the fractional integrals, in general of variable order:

Iα(·)f(x) =
ˆ

Ω

f(y)

|x− y|n−α(x)
dy, x ∈ Ω,

in weighted variable Lebesgue spaces Lp(·)(Rn, �), where α : Ω → (0, n). We first
consider the case where Ω is bounded and the weight w is of radial oscillating type.
We also cover the case of the whole space Ω = Rn and prove a weighted Sobolev–
Stein–Weiss type theorem for the Riesz potential operator over R

n, but in this
case we restrict ourselves to constant α and give the proof for power weights fixed
to the origin and infinity, but formulate the corresponding statement for general
oscillating weights.

We prove also a similar theorem for the spherical analogue of the Riesz po-
tential in the corresponding weighted spaces Lp(·)(Sn, �) on the unit sphere Sn in
Rn+1, see Section 2.5.7.

We start with three subsections on non-weighted results.
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2.5.1 Non-weighted Estimates in the Prelimiting Case
supα(x)p(x) < n: the Euclidean Version

For bounded sets Ω, an extension of the Sobolev theorem for the potential opera-
tors runs as follows.

Theorem 2.50. Let Ω ⊂ Rn be an open bounded set and p ∈ Plog(Ω). Let also
infx∈Ω α(x) > 0 and supx∈Ω α(x)p(x) < n. Then the operator Iα(·) is bounded

from the space Lp(·)(Ω) to Lq(·)(Ω) with 1
q(x) =

1
p(x) − α(x)

n .

The proof of Theorem 2.50 is contained in that of Theorem 2.64 for the
weighted setting.

For unbounded sets Ω and constant orders α the corresponding Sobolev the-
orem, proved in Capone, Cruz-Uribe, and Fiorenza [39], runs as follows.

Theorem 2.51. Let 0 < α < n and Ω ⊂ Rn be an open unbounded set and p ∈
Plog
∞ (Ω). Let also 1 < p− � p+ < n

α . Then the operator Iα is bounded from the

space Lp(·)(Ω) to Lq(·)(Ω) with 1
q(x) =

1
p(x) − α

n .

The Sobolev theorem on Rn holds also for variable α(x) with an additional
weight at infinity, as is stated in the next result, the proof of which may be found
in Kokilashvili and Samko [188].

Theorem 2.52. Let p ∈ Plog
∞ (Rn), 1 < p(∞) � p(x) � p+ < ∞, infx∈Rn α(x) > 0,

and supx∈Rn α(x)p(x) < n. Then

‖(1 + |x|)−γ(x)Iα(·)f‖Lq(·)(Rn) � c ‖f‖Lp(·)(Rn) , (2.99)

where 1
q(x) = 1

p(x) − α(x)
n and γ(x) = A∞α(x)

[
1− α(x)

n

]
� n

4A∞, with A∞ =

supx∈Rn |p(x)− p(∞)| · ln(e + |x|).

The Sobolev theorem with variable α(x) holds without such a weight related
to infinity, if we use an algebraic sum of spaces for the resulting space.

Theorem 2.53. Let the exponent p ∈ Plog∞ (Ω), and let α(x) fulfil the conditions
inf α(x) > 0, supα(x)p(x) < n, and α+ < n

p(∞) . Then the operator Iα(·) is

bounded from the space Lp(·)(Rn) to the algebraic sum

Lq(·)(Rn) + Lq∞(·)(Rn),

where q(x) is the same as above and 1
q∞(x) =

1
p(∞) − α(x)

n .

Theorem 2.53 is a particular case of Theorem 13.46 proved later in Volume
2 in the general setting of variable exponent Morrey spaces.
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2.5.2 Non-weighted Estimates in the Limiting Case α(x)p(x)≡n:
the Euclidean Version

A question of interest in the variable exponent setting is to cover the case where

α(x)p(x) ≡ n.

For constant exponents, it is known that the Riesz fractional integration operator
acts in this case from Lp to the space

BMO = {f : M �f ∈ L∞}, ‖f‖BMO := ‖M �f‖∞,

where

M �f(x) := sup
r>0

1

|B(x, r)|
ˆ

B̃(x,r)

∣∣∣f(y)− fB̃(x,r)

∣∣∣ dy
is the sharp maximal function and fB̃(x,r) =

1

|B̃(x,r)|
´
B̃(x,r)

f(z) dz. This goes back

to a result in Stein and Zygmund [353], where it was given in terms of convolution;
for weighted versions of such a result for Riesz potentials we refer to Muckenhoupt
and Wheeden [264].

We show that the Riesz fractional integration operator Iα(·) of variable order
on a bounded open set in Ω ⊂ Rn in the limiting Sobolev case α(x)p(x) ≡ n acts
boundedly from Lp(·)(Ω) into BMO(Ω), as expected, if p(x) satisfies the standard
log-condition and α(x) is Hölder continuous of an arbitrarily small order.

The case of unbounded sets needs special treatment, not only in the variable
exponent, where there are well-known problems related to infinity, but also in the
case of constant exponents. Even when α and p are constant, the operator Iα on
an unbounded set Ω is not well defined as a convergent integral on the whole space
Lp(Ω) when αp = n, although it may be treated as a continuous extension from a
dense set in Lp.

The operator may be treated also in this case by resorting to a distributional
interpretation. Since the Schwartz space of test functions is not invariant with
respect to the Riesz fractional integration, another space (known as the Lizorkin
test function space (Samko [322, Chap. 2]) is used; we deal with the Lizorkin
space in Section 7.2. In Samko [321] it was shown that when the Riesz fractional
operator Iα acts on functions f ∈ Lp(Rn) with α � n

p , then the result, interpreted
distributionally, is a regular distribution. More precisely, any distribution Iαf, 0 <
α < ∞, generated by a function f ∈ Lp, 1 � p < ∞, is a regular distribution and
even belongs to Lp

loc(R
n).

Let

Mβ(·)f(x) = sup
r>0

1

rn−β(x)

ˆ

B̃(x,r)

|f(y)| dy, x ∈ Ω,
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be the variable-order fractional maximal function. In the following lemma we allow
the set Ω to be unbounded, but the main statement in Theorem 2.55 concerns only
bounded sets. See also an extension of a part of Lemma 2.54 to the case where the
underlying space is a quasimetric measure space, given in Lemma 8.15.

Lemma 2.54. Let p ∈ Plog(Ω). In case Ω is unbounded we also suppose that p ∈
Plog
∞ (Ω) and p− = p(∞). Then

‖Mβ(·)f‖L∞(Ω) � C‖f‖Lp(·)(Ω)

for any measurable function β(x) such that β(x) � n
p(x) , when Ω is bounded, and

n
p(x) � β(x) � n

p(∞) , when Ω is unbounded.

Proof. By the Hölder inequality for variable exponents, we have Mβ(·)f(x) �
supr>0 r

β(x)−n‖χB(x,r)‖Lp′(·)(Ω)‖f‖Lp(·)(Ω). By (1.15),

Mβ(·)f(x) � C sup
0<r<diamΩ

r
β(x)−n+ n

p′(x) ‖f‖Lp(·)(Ω) (2.100)

when Ω is bounded, and by (1.16),

Mβ(·)f(x) � C sup
r>0

r
β(x)−n+ n

p′(x,r) ‖f‖Lp(·)(Ω)

when Ω is unbounded. Hence the statement of the lemma follows. �

By Hλ(Ω) we denote the space of functions f on Ω satisfying the Hölder
condition:

|f(x)− f(y)| � C|x− y|λ, 0 < λ � 1.

Let H(Ω) =
⋃

0<λ�1 H
λ(Ω).

In Theorem 2.55 we assume that α(x)p(x) � n instead of α(x)p(x) ≡ n. This
assumption has some disadvantage, because at the points x ∈ Ω where α(x)p(x) >
n we should require that the Riesz fractional integral behaves better than just as a
BMO function: it should be there locally Hölder continuous of order α(x)− n

p(x) .

However, an advantage of the assumption α(x)p(x) � n is that we do not need
to require that p(x) be Hölder continuous, which would immediately follow in the
cases where α(x)p(x) ≡ n.

Theorem 2.55. Let Ω be a bounded open set, p ∈ P
log(Ω), and α ∈ H(Ω). If

α(x)p(x) � n, then the Riesz potential operator is bounded from Lp(·)(Ω) to
BMO(Ω).

Proof. Suppose that f(z) � 0. We continue the function f as zero outside Ω
whenever necessary. Given r > 0, we decompose the function f as f(z) = f1(z) +
f2(z), where

f1(z) = f(z)χB(x,2r)(z), f2(z) = f(z)χΩ\B(x,2r)(z),
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and then
Iα(·)f(y) = Iα(·)f1(y) + Iα(·)f2(y) =: F1(y) + F2(y).

Estimation of F1(y). For y ∈ B(x, r), and z ∈ B(x, 2r) we have |z − y| < 3r, so
that

F1(y) �
ˆ

|y−z|<3r

f(z) dz

|z − y|n−α(y)
,

and we can now use the known inequality

ˆ

|y−z|<r

f(z) dz

|z − y|n−α(y)
� 2nrα(y)

2α(y) − 1
M f(y), α(y) > 0 (2.101)

(see for instance, Adams and Hedberg [7, p. 54], where α(x) = const; the proof
for variable α is the same via dyadic decomposition), so that

F1(y) �
2n(3r)α(y)

2α(y) − 1
M f(y) � Crα(y)M f(y)

for y ∈ B(x, r). Then, since rα(y)−α(x) � c,

1

|B(x, r)|
ˆ

B(x,r)

F1(y) dy � Crα(x)−n

ˆ

B(x,r)

M f(y) dy.

We apply the Hölder inequality and obtain

1

|B(x, r)|
ˆ

B(x,r)

F1(y) dy � Crα(x)−n‖χB(x,r)‖Lp′(·)‖M f‖Lp(·).

Hence, by (1.15) and the boundedness of the maximal operator in Lp(·)(Ω), we get

1

|B(x, r)|
ˆ

B(x,r)

F1(y) dy � Cr
α(x)−n+ n

p′(x) ‖f‖Lp(·) � C‖f‖Lp(·) . (2.102)

Estimation of F2(y). We denote

cf = F2(x) =

ˆ

Ω\B(x,2r)

f(z) dz

|x− z|n−α(x)
.

Then

|F2(y)− cf | =
∣∣∣∣∣
ˆ

Ω\B(x,2r)

f(z)

[
1

|y − z|n−α(y)
− 1

|x− z|n−α(x)

]
dz

∣∣∣∣∣,
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whence

|F2(y)− cf | �
ˆ

Ω\B(x,2r)

|f(z)|
∣∣∣∣ 1

|y − z|n−α(x)
− 1

|x− z|n−α(x)

∣∣∣∣ dz
+

ˆ

Ω\B(x,2r)

|f(z)|
∣∣∣∣ 1

|y − z|n−α(y)
− 1

|y − z|n−α(x)

∣∣∣∣ dz =: G1 +G2.

To estimate G1, we use the inequality

|a−γ − b−γ | � |γ| · |a− b|(min{a, b})−γ−1, a > 0, b > 0, γ ∈ Ω,

and observe that |y − x| < r and |z − y| > 2r imply |x− z| < 3
2 |y − z|, so that

G1 � C|x− y|
ˆ

Ω\B(x,2r)

|f(z)| dz
|x− z|n−α(x)+1

= c|x− y|
∞∑
k=1

ˆ

B(x,2k+1r)\B(x,2kr)

|f(z)| dz
|x− z|n−α(x)+1

.

By the inequality

ˆ

B(x,2r)\B(x,r)

f(z) dz

|x− z|n−α(x)+1
� 2n−α(x)

r
Mα(·)f(x)

valid for 0 < α(x) < n, we get

G1 � C
|x− y|

r
Mα(·)f(x) � CMα(·)f(x)‖f‖Lp(·)(Ω)

Therefore,

‖G1‖L∞ � C‖f‖Lp(·)(Ω) (2.103)

by Lemma 2.54.

For G2 we use the inequality

∣∣ta − tb
∣∣ � |a− b|

{
tmin{a,b}, if 0 < t � 1,

tmax{a,b}, if t � 1,

and obtain

G2 � |α(x) − α(y)|
ˆ

Ω\B(x,2r)

|f(z)|
(

1

|y − z|n−α(y)
+

1

|y − z|n−α(x)

)
dz.
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Since |y − z| � 2
3 |x− z| and Ω\B(x, 2r) ⊆ Ω\B(y, r), we obtain

G2 � C|α(x) − α(y)|
( ˆ

Ω\B(y,r)

|f(z)| dz
|y − z|n−α(y)

+

ˆ

Ω\B(x,2r)

|f(z)| dz
|x− z|n−α(x)

)

=: C|α(x) − α(y)|[H(y) +H(x)].

Since y runs over the ball B(x, r) centred at x, it suffices to deal only with the
term H(y). Let δ ∈ (0, p−− 1) be a small number. We apply the Hölder inequality

with the variable exponent pδ(x) =
p(x)
1+δ and obtain

|α(x) − α(y)|H(y) � C|α(x) − α(y)|‖f‖Lpδ(·)

∥∥∥∥ χΩ\B(y,2r)

|z − y|n−α(y)

∥∥∥∥
Lp′

δ
(·)

.

The estimate∥∥∥∥ χΩ\B(y,2r)

|z − y|n−α(y)

∥∥∥∥
Lp′

δ
(·)

� r
n

p′
δ
(y)

−(n−α(y))
= Cr−

nδ
p(y) � Cr

− nδ
p− .

is valid; it is a particular case of a more general weighted estimate that will be
proved later in Theorem 2.62. Therefore,

|α(x) − α(y)|[H(y) +H(x)] � C sup
|x−y|<r

|α(x) − α(y)|r− nδ
p− ,

which yields the boundedness of |α(x) − α(y)|[H(y) + H(x)] provided α(x) has
the corresponding Hölder property. Since δ may be chosen arbitrarily small, it is
sufficient to suppose that α is Hölderian of an arbitrarily small order.

Taking also the embedding ‖f‖Lpδ(·) � C‖f‖Lp(·) into account, we obtain

‖G2‖L∞ � C‖f‖Lp(·). (2.104)

Consequently,
‖F2 − cf‖L∞ � C‖f‖Lp(·), (2.105)

by (2.103) and (2.104).

It remains to gather the estimates (2.102) and (2.105). �

2.5.3 Non-weighted Estimates in the Prelimiting Case
α(x)p(x) < n on Quasimetric Measure Spaces

Preliminaries on Quasimetric Measure Spaces

In the sequel, (X, d, μ) denotes a quasimetric space with the quasidistance d, sat-
isfying the triangle inequality

d(x, y) � ct[d(x, z) + d(z, y)], ct � 1, (2.106)

where ct = ctriangle � 1, and Borel regular measure μ.
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Note that in this chapter we deal only with symmetric distances:

d(x, y) = d(y, x).

We denote � = diam X and assume that 0 < � � ∞.

We refer to the books by Edmunds, Kokilashvili, and Meskhi [76], Genebash-
vili, Gogatishvili, Kokilashvili, and Krbec [104] and Heinonen [133] for the basics
on quasimetric measure spaces. By B(x, r) = {y ∈ X : d(x, y) < r} we denote a
ball in X . The following standard conditions will be assumed to be satisfied:

1) all the balls B(x, r) are measurable,

2) the space C(X) of uniformly continuous functions on X is dense in L1(μ).

In most of the statements we also suppose that

3) the measure μ satisfies the doubling condition

μB(x, 2r) � CμB(x, r),

where C > 0 does not depend on r > 0 and x ∈ X . A measure satisfying
this condition is called doubling measure. A quasimetric measure space with
doubling measure is called a space of homogeneous type (SHT).

The conditions

μ (B (x, r)) � c1r
n (2.107)

and

μB(x, r) � c0 r
N , (2.108)

imposed on the measure μ, are known as the upper and lower Ahlfors conditions ;
the first one is also referred to as the growth condition.

It is known that from the doubling condition it follows that

μB(x, �)

μB(y, r)
� C
(�
r

)N
, N = log2 Cμ, (2.109)

for all the balls B(x, �) and B(y, r) with 0 < r � � and y ∈ B(x, r), where C > 0
does not depend on r, �, and x. From (2.109) it follows that the doubling condition
always implies the validity of the lower Ahlfors condition for any open bounded
set Ω ⊆ X on which infx∈Ω μB(x, �) > 0, � = diam Ω.

We will return to these definitions later, in Section 4.1.2.

The Hardy–Littlewood maximal function of a locally μ-integrable function
f : X → R is defined by

M f(x) = sup
r>0

1

μ(B(x, r))

ˆ

B(x,r)

|f(y)| dμ(y).
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It is known (see, e.g., Maćıas and Segovia [233]) that the Hardy–Littlewood
maximal operator defined on an SHT has weak (1,1) type.

The spaces Lp(·)(X) = L
p(·)
μ (X) with the μ-measurable exponent p : X →

[1,∞), on quasimetric measure spaces are defined in the familiar way:

‖f‖
L

p(·)
μ (X)

= inf

{
λ > 0 :

ˆ

X

∣∣∣∣f(x)λ

∣∣∣∣p(x) dμ(x) � 1

}
. (2.110)

In the setting of quasimetric measure spaces we use two forms of the log-
condition. By P log(X) we denote the set of μ-measurable exponents p : X → [1,∞)
which satisfy the standard local log-condition on (X, d, μ) :

|p(x)− p(y)| � Cp

− ln d(x, y)
, d(x, y) � 1

2
, x, y ∈ X, (2.111)

and by P log
μ (X) we denote the set of μ-measurable exponents p : X → [1,∞)

which satisfy the condition

|p(x) − p(y)| � A

− lnμB(x, d(x, y))
(2.112)

for all x, y ∈ X such that μB(x, d(x, y)) < 1
2 .

In the case d(x, y) = d(y, x) the condition (2.112) is equivalent to its sym-
metric form

|p(x) − p(y)| � A

− lnμB(x, d(x, y))
+

A

− lnμB(y, d(x, y))
.

The log-condition in form (2.112), which coincides with (2.111) in the Eu-
clidean case, is more suitable in the context of general quasimetric measure spaces,
because in some results it allows to put less restrictions on the space (X, d, μ).

Lemma 2.56. Let (X, d, μ) be the quasimetric measure space. If the lower Ahlfors
condition holds, then

P log(X) ⊆ P log
μ (X). (2.113)

If the upper Ahlfors condition holds, then,

P log
μ (X) ⊆ P log(X).

Proof. The proof is a matter if direct verification. �
Lemma 2.57. Let Ω be an open bounded set in a quasimetric measure space
(X, d, μ). If p ∈ P log

μ , then∥∥χB(x,r)

∥∥
p(·) � C [μB(x, r)]

1
p(x) (2.114)

for all r ∈ [0, diamΩ], where C > 0 does not depend on x and r. The estimate
(2.114) is valid also for p ∈ P log if the lower Ahlfors condition is satisfied.
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Proof. Let x ∈ Ω and 0 < r < diam Ω. For p ∈ P log
μ it is easy to check that

1
C μB(x, r) � [μB(x, r)]

p(y)
p(x) � C μB(x, r) for all y ∈ B̃(x, r). Hence for C1 = C

1
p−

we have ˆ

B̃(x,r)

dμ(y)

C
p(y)
1 [μB(x, r)]

p(y)
p(x)

�
ˆ

B̃(x,r)

dμ(y)

μB(x, r)
� 1.

It follows that

∥∥∥χB̃(x,r)

∥∥∥
p(·)

= inf

{
η > 0 :

ˆ

B̃(x,r)

η−p(y) dμ(y) � 1

}
� C1 [μB(x, r)]

1
p(x) .

When p ∈ P log, it suffices to refer to (2.113). �

Different Versions of Fractional Operators

Let Ω be an open set in X . In what follows, B(x, r) will stand for B(x, r) ∩Ω, for
simplicity. Fractional integrals over quasimetric measure spaces are known to be
considered in different forms. Let α(·) be a μ-measurable positive function on Ω.
We find it convenient to introduce the following notation

Iα(·)m f(x) =

ˆ

Ω

f(y) dμ(y)

[d(x, y)]m−α(x)
, m > 0, (2.115)

and

Iα(·)f(x) =
ˆ

Ω

[d(x, y)]α(x)

μB(x, d(x, y))
f(y) dμ(y). (2.116)

We will be mainly interested in the case where m = n is the “upper dimension”
from (2.107). Obviously,

Iα(·)f(x) � 1

c0
Iα(·)n f(x), f � 0,

in case the measure μ satisfies the lower Ahlfors condition (2.108). Similarly,

Iα(·)n f(x) � c1I
α(·)f(x), f � 0,

when (2.107) holds. When X has constant dimension in the sense that C1r
N �

μB(x, r) � C2r
N , then Iα(·)f(x) and I

α(·)
N f(x) are equivalent. In the case where

n < N , the operator Iα(·) is better suited for spaces X with lower Ahlfors bound,

while I
α(·)
n is better adjusted for spaces with upper Ahlfors bound.
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Sobolev-type Theorem for the Fractional Operators Iα(·)
n and Iα

Let n be the exponent from the upper Ahlfors condition and supx∈Ω α(x)p(x) < n.
In the theorem below, for doubling measure spaces with the upper bound (2.107),
we deal with the “quasi-Sobolev” exponent q̃ = q̃(x, n,N), defined by

1

q̃(x)
=

1

q(x)
· 1

1− α(x)p(x)
(
1
n − 1

N

) ,
where 1

q(x) = 1
p(x) − α(x)

n , so that p(x) < q̃(x) � q(x). Note that in Theorem 2.58

we impose neither the log-condition, nor any condition of continuity on α(·), so
that α(·) may be any bounded μ-measurable function satisfying conditions (2.117),
hence q̃(·) may be discontinuous everywhere.

Theorem 2.58. Let Ω be a bounded open set in X. Suppose the measure μ is
doubling, the upper Ahlfors condition (2.107) is satisfied, and p ∈ Plog(Ω). Suppose
also

α− > 0, α+p+ < n. (2.117)

Then
‖Iα(·)n f‖q̃(·) � C ‖f‖p(·).

Proof. We have to show that
´
Ω

∣∣∣Iα(·)n f(x)
∣∣∣q̃(x) dμ(x) � C < ∞ when ‖f‖p(·),Ω � 1.

To verify that [
Iα(·)n f(x)

]q̃(x)
� C[M f(x)]p(x), (2.118)

we will use Hedberg’s approach to estimation of potentials via the maximal oper-
ator (see Hedberg [131]), adjusted for the case of quasimetric measure spaces and
variable exponents.

To this end, we make use of the standard decomposition

Iα(·)n f(x) =

ˆ

B(x,r)

f(y) dμ(y)

[d(x, y)]n−α(x)
+

ˆ

Ω\B(x,r)

f(y) dμ(y)

[d(x, y)]n−α(x)
=: Ar(x) + Br(x),

(2.119)
where 0 < r < diamΩ. For Ar(x), via the dyadic decomposition

Ar(x) =

∞∑
k=0

ˆ

Bk(x,r)

f(y) [d(x, y)]α(x)−ndμ(y)

with Bk(x, r) = B(x, 2−kr)\B(x, 2−k−1r), we obtain

Ar(x) � c1
2nrα(x)

2α(x) − 1
M f(x) � c rα(x)M f(x), (2.120)

where c1 is the constant from (2.107) and the last inequality follows from (2.117).
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For the term Br(x) we make use of the Hölder inequality and obtain

Br(x) � ‖f‖p(·)‖χΩ\B(x,r)(y)d(x, y)
α(x)−n‖p′(·) � ‖χΩ\B(x,r)(y)d(x, y)

α(x)−n‖p′(·),

the norm being taken with respect to y. Since ‖f‖p(·) = ‖fa‖ 1
a
p(·)
a

, 0 < a � p−, we

have

Br(x) �
∥∥∥∥χΩ\B(x,r)(·)

[d(x, ·)]n
∥∥∥∥

n−α(x)
n

n−α(x)
n p′(·)

. (2.121)

The pointwise estimate

χΩ\B(x,r)(y)

[d(x, y)]n
� CM

[
χB(x,r)

μB(x, r)

]
(y) (2.122)

is valid, with C > 0 not depending on x, y and r. Indeed, (2.122) must be checked
for y ∈ Ω\B(x, r). We have

M

[
χB(x,r)

μB(x, r)

]
(y) � sup

δ>0

μ{B(x, r) ∩B(y, δ)}
[μB(x, r)][μB(y, δ)]

� μ{B(x, r) ∩B(y, δ0)}
[μB(x, r)][μB(y, δ0)]

,

with an arbitrary δ0 > 0. We choose it so that 2ctd(x, y) � δ0 � 3ctd(x, y),
where ct is the constant from the triangle inequality. Then B(x, r) ⊂ B(y, δ0), and
consequently μ{B(x, r) ∩B(y, δ)} = μB(x, r). Therefore,

M

[
χB(x,r)

μB(x, r)

]
(y) � 1

μB(y, δ0)
� 1

c1δn0
� C

[d(x, y)]n
, y ∈ Ω\B(x, r),

where C = 1
c1(3ct)n

, which proves (2.122). Now (2.121) and (2.122) yield

Br(x) �
C

[μB(x, r)]
n−α(x)

n

∥∥M [χB(x,r)

]∥∥n−α(x)
n

n−α(x)
n p′(·) .

By (2.117), we have infx,y∈Ω
n−α(x)

n p′(y) > 1. Therefore, by Theorem 2.27 on the
boundedness of the maximal operator,

Br(x) �
C

[μB(x, r)]
n−α(x)

n

∥∥χB(x,r)

∥∥n−α(x)
n

n−α(x)
n p′(·) =

C
∥∥χB(x,r)

∥∥
p′(·)

[μB(x, r)]
n−α(x)

n

.

Using Lemma 2.57 and the lower Ahlfors condition (2.108) we conclude that

Br(x) �
C

[μB(x, r)]
1

p(x)
−α(x)

n

� C

rN[
1

p(x)
−α(x)

n ]
. (2.123)

Therefore, from (2.119), (2.120) and (2.123) we obtain

Iα(·)n f(x) � C
{
rα(x)M f(x) + rN[

α(x)
n − 1

p(x) ]
}
.



2.5. Weighted Potential Operators 79

Optimizing the right-hand side with r = [M f(x)]
− 1

α(x)+ N
q(x) , after easy cal-

culations we arrive at (2.118). It remains to apply Theorem 2.27 to the right-hand
side of (2.118), which completes the proof. �
Theorem 2.59. Let Ω be a bounded open set in X and μ be doubling. Let also
p ∈ P

log(Ω) and
α− > 0 and sup

x∈Ω
α(x)p(x) < N.

Then Iα(·) is bounded from Lp(·)(Ω) to Lq(·)(Ω), where 1
q(x) =

1
p(x) − α(x)

N .

We omit the proof of this theorem, which is carried out by means of the same
Hedberg approach as in Theorem 2.58; this proof may be found in Almeida and
Samko [16].

Fractional Maximal Operators

The fractional maximal function Mα(·)f of a locally integrable function f is de-
fined by

Mα(·)f(x) = sup
r>0

rα(x)

μB(x, r)

ˆ

B(x,r)

|f(y)| dμ(y), (2.124)

where the variable order α : X → [0,∞) is a μ-measurable function with 0 �
α− � α+ < ∞.

In the following lemma we make use of the condition

μB(x, �)

μB(x, r)
� C
(�
r

)α(x)
for all � < r, (2.125)

where the constant C > 0 is assumed to be independent on �, r and x. Note that in
the cases where μ is doubling, from (2.109) it follows that (2.125) is only possible if

α(x) � N.

Note that measures μ satisfying the halving condition

μB
(
x,

r

2

)
� cμ(x)μB(x, r), 0 < cμ(x) < 1, (2.126)

have order of growth α(x) with α(x) = log2
1

cμ(x)
. Inequality (2.125) follows from

(2.126) by reiterating (2.126), similarly to how (2.109) is derived from (8.12).

We find it convenient to say that the measure μ has order order of growth α,
if condition (2.125) is fulfilled.

Lemma 2.60. Let X be an arbitrary metric measure space whose measure has order
of growth α. Then the pointwise estimate

Mα(·)f(x) � C Iα(·)f(x), f � 0, (2.127)

holds, with the same constant C as in (2.125).
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Proof. The proof is obvious: by condition (2.125), we have

rα(x)

μB(x, r)

ˆ

B(x,r)

|f(y)| dμ(y) � C

ˆ

B(x,r)

[d(x, y)]α(x)

μB(x, d(x, y))
|f(y)| dμ(y),

from which (2.127) follows. �
Theorem 2.61. Let Ω be a bounded open set in X, and let the measure μ be doubling
and satisfying the condition (2.125).

If p ∈ Plog(Ω), α− > 0, and supx∈Ω α(x)p(x) < N , then

‖Mα(·)f‖q(·) � c ‖f‖p(·), 1

q(x)
=

1

p(x)
− α(x)

N
.

Proof. Apply the inequality (2.127) and Theorem 2.59. �

2.5.4 Weighted Norm Estimates of Truncated Potential Kernels
in the Euclidean Case

In this section we give estimates of truncated potential kernels, on which the proof
of weighted Sobolev type theorems will be based.

Let χr(x) = χRn\B(0,r)(x) and �(x) = w(|y − x0|), x0 ∈ Ω. We denote

nβ,p,
(x, r) = ‖|x− ·|−β(x)χr(x− ·)‖Lp(·)(Ω,
) (2.128)

= inf

{
λ > 0 :

ˆ

Ω

∣∣∣∣w(|y − x0|)|x − y|−β(x)χr(x − y)

λ

∣∣∣∣p(y) dy � 1

}
,

used later with β(x) = n− α(x) and p(·) replaced by p′(·).
Theorem 2.62. Let Ω be a bounded open set in Rn, x0 ∈ Ω, and let p ∈ Plog(Ω)
and β ∈ L∞(Ω). If

γ := inf
x∈Ω

β(x)p(x) > n and tnwp(x0)(t) ∈ Φ0
γ , (2.129)

then

nβ,p,
(x, r) � Cr
n

p(x)
−β(x)w(rx), rx = max(r, |x− x0|), (2.130)

for all x ∈ Ω, 0 < r < � = diam Ω, where C > 0 does not depend on x and r.

Proof. For simplicity we take x0 = 0, assuming that 0 ∈ Ω. By the definition of
the norm, we have

ˆ

y∈Ω
|y−x|>r

(
w(|y|)|y − x|−β(x)

nβ,p,


)p(y)

dy = 1. (2.131)

We will often use the fact that wp(x)(|x|) ≈ wp(0)(|x|), as shown in Lemma 2.23.
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1st step: only the values nβ,p,
(x, r) � 1 are of interest. This assertion follows from
the fact that the right-hand side of (2.130) is bounded from below:

inf
x∈Ω,0<r<�

rn−β(x)p(x)wp(x)(rx) := c1 > 0, rx = max(r, |x|), (2.132)

where � = diam Ω.

To show (2.132), note that from the condition infx∈Ω β(x)p(x) > n it follows
that

rn−β(x)p(x)wp(x)(rx) � c min{rn−β(x)p(x)wp(0)(r), |x|n−β(x)p(x)wp(0)(|x|)}
� min{C, inf

0<r<min(1,�)
rn−γwp(0)(r)}

and to arrive at (2.132), it remains to observe that rn−γwp(0)(r) is bounded from

below: the condition rnwp(0)(r) ∈ Φ0
γ implies that rnwp(0)(r)

rγ is almost decreasing
and consequently bounded from below.

2nd step: only small values of r are of interest. We assume that r is small enough,
0 < r < ε0. To show that this assumption can be fulfilled, we have to check that
the right-hand side of (2.130) is bounded from below and nβ,ν,p(x, r) is bounded
from above when r � ε0. The former was proved at Step 1 even for all r > 0. To
verify the latter for r � ε0, we observe that from (2.131) and from the fact that
nβ,p,
 � 1 it follows that

1 �
ˆ

|y−x|>ε0

|y − x|−β(x)p(y)

nβ,p,

wp(y)(|y|) dy,

whence

nβ,p,
(x, r) �
ˆ

|y−x|>ε0

|y − x|−β(x)p(x) wp(y)(|y|)u(x, y) dy,

where u(x, y) = |y − x|−β(x)[p(y)−p(x)] is bounded by the log-condition for p(x).
Then

nβ,p,
(x, r) � C

ˆ

|y−x|>ε0

wp(y)(|y|) dy
|y − x|β(x)p(x) � C

ˆ
Ω

wp(y)(|y|) dy = const,

since wp(0) ∈ L1(Ω), which is easily derived from condition (2.129). This proves
the boundedness of nβ,p,
(x, r) from above.

3rd step: rough estimate. First, we derive a weaker estimate

nβ,p,
(x, r) � Cr−β(x) (2.133)
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which will be used later to obtain the final estimate (2.130). To this end, we note
that always λp(y) � λinf p(y) + λsup p(y), λ > 0, so that from (2.131) we have

1 �
ˆ

y∈Ω
|y−x|>r

[( |y − x|−β(x)

nβ,p,


)p−

+

( |y − x|−β(x)

nβ,p,


)p+
]

wp(y)(|y|) dy.

Since |y − x| > r, we obtain 1 �
[(

r−β(x)

nβ,p,�

)p−
+
(

r−β(x)

nβ,p,�

)p+
] ´
y∈Ω

wp(y)(|y|) dy.

Hence
(

r−β(x)

nβ,p,�

)p−
+
(

r−β(x)

nβ,p,�

)p+

� c, which yields r−β(x)

nβ,p,�
� C, and we arrive at

(2.133).

4th step. We split integration in (2.131) as follows

1 =

3∑
i=1

ˆ

Ωi(x,ε0)

( |y − x|−β(x)

nβ,p,


)p(y)

wp(y)(|y|) dy : = I1 + I2 + I3, (2.134)

where

Ω1(x, ε0) =

{
y ∈ Ω : r < |y − x| < ε0,

|y − x|−β(x)

nβ,p,

> 1

}
,

Ω2(x, ε0) =

{
y ∈ Ω : r < |y − x| < ε0,

|y − x|−β(x)

nβ,p,

< 1

}
,

and Ω3(x, ε0) = {y ∈ Ω : |y − x| > ε0}.
5th step: Estimation of I1. We have

I1 =

ˆ

Ω1(x,ε0)

( |y − x|−β(x)

nβ,p,


)p(x)

wp(y)(|y|) ur(x, y) dy

where ur(x, y) =
(

|y−x|−β(x)

nβ,p,�

)p(y)−p(x)

. The function ur(x, y) is bounded from

below and from above, with bounds not depending on x, y and r. Indeed,

|ln ur(x, y)| � C

∣∣∣∣∣∣
ln
(

|y−x|−β(x)

nβ,ν,p

)
ln N

|x−y|

∣∣∣∣∣∣ ,
where N > max(1, diamΩ). Since |y−x|−β(x)

nβ,ν,p
� 1 (which also implies that |x −

y| < 1), we obtain |ln ur(x, y)| � C
β(x) ln 1

|y−x|−ln nβ,ν,p

ln N
|x−y|

� A
β(x) ln 1

|y−x|
ln N

|x−y|
� C.

Therefore,

I1 � C

n
p(x)
β,p,


ˆ

|y−x|>r

|y − x|−β(x)p(x)wp(y)(|y|) dy.



2.5. Weighted Potential Operators 83

We may use here the estimate (2.19), which is applicable by (2.129), and get

I1 � C

n
p(x)
β,p,


rn−β(x)p(x)wp(x)(rx).

6th step: Estimation of I2 and I3 and the choice of ε0. In the integral I2 we have

I2 � C

ˆ

Ω2(x,ε0)

( |y − x|−β(x)

nβ,p,


)pε0 (x)

wp(y)(|y|) dy,

where pε0(x) = min
|y−x|�ε0

p(y). Then

I2 � C

n
pε0 (x)

β,p,


ˆ

|y−x|>r

|y − x|−β(x)pε0(x) wp(y)(|y|) dy.

To apply estimate (2.19), we need to check the corresponding condition (2.20).
To this end, we will have to choose ε0 sufficiently small. By conditions (2.129)
and Corollary 2.11, there exists a δ ∈ (0, γ − n) such that tnwp(x)(t) ∈ Φ0

γ−δ,
γ = infx∈Ω β(x)p(x). Since p(x) is continuous and β(x) is bounded, we may choose
ε0 small enough so that β(x)pε0 (x) > γ− δ > n. Then condition (2.20) for a(x) =
aε0(x) = β(x)pε0 (x) − n is satisfied and estimate (2.19) is applicable. It gives

I2 � C

n
pε0(x)

β,p,


rn−β(x)pε0 (x)wp(x)(rx).

Estimation of I3 is immediate:

I3 � C

n
p−
β,p,


.

7th step. Gathering the estimates for I1, I2, and I3, (2.134) yields

1 � C0

⎛⎝r−β(x)p(x)+n

n
p(x)
β,p,


wp(x)(rx) +
r−β(x)pε0(x)+n

n
pε0(x)

β,p,


wp(x)(rx) +
1

n
p−
β,p,


⎞⎠ . (2.135)

We may assume that nβ,p,
(x, r) �
(

1
2C0

) 1
p−

:= C1 because for those x and r

where nβ,p,
(x, r) � C1, there is nothing to prove. Then from (2.135) we derive
the inequality

1 � 2C0

⎛⎝r−β(x)p(x)+n

n
p(x)
β,p,


+
r−β(x)pε0 (x)+n

n
pε0 (x)

β,p,


⎞⎠wp(x)(rx). (2.136)
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Since Cr−β(x)

nβ,p,�
� 1 by (2.133) and since pε0(x) � p(x), we have

r−β(x)pε0(x)+n

n
pε0(x)

β,p,


� C
r−β(x)p(x)+n

n
p(x)
β,p,


.

Therefore, from (2.136) we obtain the estimate r−β(x)p(x)+n

n
p(x)
β,p,�

wp(x)(rx) � C, which

yields (2.130). �
Corollary 2.63. Let Ω be a bounded open set in Rn, p ∈ Plog(Ω), and β ∈ L∞(Ω).
If inf

x∈Ω
β(x)p(x) > n, then

‖|x− y|−β(x)χB(x,r)(y)‖p(y) � Cr
n

p(x)
−β(x), x ∈ Ω, 0 < r < �. (2.137)

2.5.5 Fractional Integrals on Bounded Sets Ω ⊂ Rn

with Oscillating Weights and Variable Order α(x)

The main result in this section is the weighted Sobolev type Theorem 2.64. We
assume that the function α : Ω → (0, n) satisfies the log-condition

|α(x) − α(y)| � A

ln 1
|x−y|

, |x− y| � 1

2
. (2.138)

Theorem 2.64. Let Ω be bounded, p ∈ Plog(Ω), infx∈Ω α(x) > 0, supx∈Ω α(x)p(x) <
n. Let also �(x) = w(|x − x0|), x0 ∈ Ω, where

w ∈ Φβ
γ ([0, �]), � = diam Ω, with β = α(x0)− n

p(x0)
, γ =

n

p′(x0)
, (2.139)

or equivalently

α(x0)− n

p(x0)
< m(w) � M(w) <

n

p′(x0)
. (2.140)

Suppose one of the following conditions is satisfied:

i) w(r) is almost increasing;

ii) w(r) is almost decreasing and α(x) satisfies (2.138).

Then ∥∥∥Iα(·)f∥∥∥
Lq(·)(Ω,
)

� C ‖f‖Lp(·)(Ω,
) . (2.141)

In the excluded case, where w is oscillating, so that it is neither almost increasing
nor almost decreasing, one has∥∥∥Iα(·)f∥∥∥

Lq(·)(Ω,
ϕ)
� C ‖f‖Lp(·)(Ω,
) , (2.142)

where �ϕ(x) = ϕ(|x−x0|)w(|x−x0 |) and ϕ(t) is any bounded nonnegative function

such that
´ �
0

[ϕ(t)]
1

p(x0)

t dt < ∞.
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Remark 2.65. In the case w(r) is almost decreasing and 0 � m(w) � M(w) <
n

p′(x0)
, the log-condition (2.138) on α may be omitted, see part 1◦ of the proof.

Note also that the case where w is neither almost increasing, nor almost decreasing,
is only possible when m(w) = M(w) = 0. Typical examples of such non-almost
monotonic functions are functions w(r) oscillating between positive and negative
powers of ln A

r , A > diamΩ.

Proof. We first note that the equivalence of conditions (2.139) and (2.140) follows
from Corollary 2.11. We take x0 = 0 for simplicity, assuming that 0 ∈ Ω, and take
f(x) � 0 with ‖f‖Lp(·)(Ω,
) � 1.

1◦ The estimate via the maximal operator independent of the almost monotonicity
of the weight.

We use Hedberg’s trick, already applied in the proof of Theorem 2.58, and
split the fractional integral as

Iα(·)f(x) =
ˆ

|x−y|<r

f(y) dy

|x− y|n−α(x)
+

ˆ

|x−y|>r

f(y) dy

|x− y|n−α(x)
=: Ar(x) + Br(x).

(2.143)
For the term Ar(x) we use the inequality (2.101) and get

|Ar(x)| � 2nrα(x)

2α(x) − 1
M f(x). (2.144)

For the term Br(x), the Hölder inequality yields

|Br(x)| � k nβ,p′, 1�
(x, r)‖f‖Lp(·)(Ω,
) � nβ,p′, 1�

(x, r),

where the notation (2.128) is used and β(x) = α(x)−n. To apply estimate (2.130)
for nβ,p′, 1�

, we have to check the validity of the assumptions in (2.129). They yield

the conditions

0 < m

(
tn

w(t)

)
� M

(
tn

w(t)

)
< γ

with γ = infx∈Ω[n−α(x)]p′(x), or equivalently n−γ < m(w) � M(w) < n, which
holds in our case, if we take into account that γ > n in view of the relation

[n− α(x)]p′(x) ≡ n+
n− α(x)p(x)

p(x)− 1
.

Using the estimate (2.130) we then obtain

|Br(x)| � C r−
n

q(x)w−1(rx) � C r−
n

q(x)w−1(|x| + r), (2.145)

where rx = max{r, |x|}, and we use the fact that rx � r + |x| � 2rx, so that
w(rx) ≈ w(r + |x|). Then from (2.143) and the estimates (2.144) and (2.145) we
obtain

Iα(·)f(x) � C
[
rα(x)M f(x) + w−1(r + |x|) r− n

q(x)

]
. (2.146)
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2◦ The case where w is almost increasing.

Note that m(w) � 0 in this case by (2.12), so that we are now in the situation

0 � m(w) � M(w) < n[p(x0)− 1]. (2.147)

Observe that we do not use the log-condition (2.138) on α in this case. The function
1
w is almost decreasing by the assumption (note that this is the only place where
we use the fact that w is almost increasing). Therefore, (2.146) yields

Iα(·)f(x) � C
[
rα(x)M f(x) + w−1(|x|) r− n

q(x)

]
.

It remains to choose the value of r which minimizes the right-hand side (up to

a factor which is bounded from below and above): r = [w(|x|)M f(x)]
− p(x)

n .
Substituting this into the above estimate, we get

Iα(·)f(x) � Cw−1(|x|)[wM f(x)]
p(x)
q(x) .

Hence ˆ

Ω

∣∣∣w(|x|)Iα(·)f(x)∣∣∣q(x) dx � C

ˆ

Ω

|w(|x|)M f(x)|p(x) dx,

after which it remains to make use of Theorem 2.24.

3◦ The case where w is almost decreasing. In this case we have M(w) � 0 by
(2.13), so that we are now in the situation

α(x0)− n

p(x0)
< m(w) � M(w) � 0.

This case is reduced to the previous case by duality arguments. Observe that the
operator conjugate to Iα(·) has the form

(Iα(·))∗g(x) =
ˆ

Ω

g(y) dy

|x− y|n−α(y)
≈
ˆ

Ω

g(y) dy

|x− y|n−α(x)
= Iα(·)g(x)

thanks to the log-condition for α(x).

We pass to the duality statement, using the fact that the theorem has already
been proved for almost increasing weights satisfying condition (2.147).

From (2.141) we obtain that
∥∥Iα(·)g∥∥(Lp(·)(Ω,
))∗ � C‖g‖(Lq(·)(Ω,
))

∗ , i.e.,

‖Iα(·)g‖Lp′(·)(Ω, 1� )
� C‖g‖Lq′(·)(Ω, 1� )

.

Now we redefine

1

�(|x|) =: �1(|x|), 1

w(|x|) =: w1(|x|), q′(x) = p1(x).
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For the exponent p1(x) we have p1(x) =
np(x)

n[p(x)−1]+α(x)p(x) and

n− α(x)p1(x) =
n2[p(x)− 1]

n[p(x)− 1] + α(x)p(x)
� c > 0.

Its Sobolev exponent is

q1(x) =
np1(x)

n− p1(x)α(x)
= p′(x).

Under this passage to the new exponent p1(x) and the new weight w1(|x|), the
whole interval α(0) − n

p(0) < m(w) � M(w) < n
p′(0) transforms into the com-

pletely similar interval α(0) − n
p1(0)

< m(w1) � M(w1) < n
p′
1(0)

. Besides this,

the subinterval 0 � m(w) � M(w) < n
p′(0) is transformed into the subinterval

α(0) − n
p1(0)

< m(w1) � M(w1) � 0, and the fact that w is almost decreasing is

equivalent to saying that 1
w is almost increasing, which allows us to apply part 2◦

of the proof.

4◦ The case where w is neither almost increasing, nor almost decreasing. We return
to (2.146) and represent the term r−

n
q(x)w−1(r + |x|) from there as

r−
n

q(x)w−1(r + |x|) = r−
n

q(x) [w−1(r + |x|)(r + |x|)−ε](r + |x|)ε,
where ε > 0 will be chosen sufficiently small. Since m(w) = 0 (see Remark 10.87),
the function w(r)rε is almost increasing for every ε > 0 by (2.12). Then

r−
n

q(x)w−1(r + |x|) � Cr−
n

q(x)w−1(|x|)
(
r + |x|
|x|
)ε

.

With 0 < ε < n, (2.146) yields

Iα(·)f(x) � C
(
rα(x)M f(x) + r−

n
q(x)w−1(|x|)

)
if r � |x|, (2.148)

and

Iα(·)f(x) � C
(
rα(x)M f(x) + rε−

n
q(x) |x|−εw−1(|x|)

)
if r � |x|. (2.149)

The minimizing value of r = r0 for the right-hand side of(2.148) is the same as

in part 1◦ of the proof, r0 = [wM f(x)]
− p(x)

n . The minimizing value r1 for (2.149)
(obtained as the value of r for which both terms in (2.149) are equivalent), is

r1 := [|x|εw(|x|)M f(x)]
1

ε− n
p(x) .

Observe that r1
|x| =

(
r0
|x|
) n

n−εp(x)

(choose ε < n
p+

). Then

r1 � |x| ⇐⇒ r0 � |x| ⇐⇒ M f(x) � v(x),

r1 � |x| ⇐⇒ r0 � |x| ⇐⇒ M f(x) � v(x),
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where v(x) = |x|− n
p(x)w−1(|x|). Therefore, from (2.148) and (2.149) we have

Iα(·)f(x) � Cr
α(x)
0 M f(x) in the case where M f(x) � v(x),

and
Iα(·)f(x) � Cr

α(x)
1 M f(x) in the case where M f(x) � v(x).

Substituting the above values of r0 and r1, we obtain

Iα(·)f(x) � C[w(|x|)]− α(x)p(x)
n [M f(x)]

p(x)
q(x)

and

Iα(·)f(x) � C|x|
εα(x)

ε− n
p(x) [w(x)]

α(x)

ε− n
p(x) M f(x)

p1(x)

q(x) ,

respectively, where

p1(x) := q(x)

[
1− α(x)

n
p(x) − ε

]
= p(x)

⎛⎝1− εα(x)q(x)

n
(

n
p(x) − ε

)
⎞⎠ < p(x).

Consequently,ˆ

Ω

∣∣∣w(x)Iα(·)f(x)∣∣∣q(x) dx � C

ˆ

Ω

|w(|x|)M f(x)|p(x)dx

in the first case, andˆ

Ω

∣∣∣w(|x|)Iα(·)f(x)∣∣∣q(x) dx � C

ˆ

Ω

|x|−β(x)|w(|x|)M f(x)|p1(x)dx (2.150)

in the second case, where β(x) = εα(x)
n

p(x)
−ε . There is nothing to do in the first case,

so we have to work with the inequality (2.150). Let p2(x) = p(x)
p1(x)

. Obviously,

infx∈Ω p2(x) > 1. Application of the Hölder inequality in (2.150) with the expo-
nents p2(x) and p′2(x) is not helpful, because β(x)p

′
2(x) ≡ n (independently of the

choice of ε!; this explains the appearance of the additional factor ϕ in the weight
in this case).

So instead of (2.150) we write
ˆ

Ω

∣∣∣ϕ(|x|)w(|x|)Iα(·)f(x)∣∣∣q(x) dx � C

ˆ

Ω

ϕp1(x)(|x|)|
|x|β(x) |w(|x|)M f(x)|p1(x)dx.

(2.151)

Then the Hölder inequality with the exponents p2(x) and p′2(x) and the
boundedness of the maximal operator in the space Lp(·)(Ω, w) by Theorem 2.24
provide the inequality (2.142), if∥∥∥∥ϕp1(x)(|x|)

|x|β(x)
∥∥∥∥
Lp′

2
(·)

< ∞.
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This is equivalent to

ˆ

Ω

ϕp1(x)p
′
2(x)(|x|)

|x|β(x)p′
2(x)

dx < ∞, i.e.,

ˆ

Ω

ϕ
1

p(x0) (|x|)
|x|n dx < ∞,

which holds by the assumption on ϕ. This completes the proof. �
Corollary 2.66. Let p and α satisfy the assumptions of Theorem 2.64. The operator
Iα(·) is bounded from the space Lp(·) (Ω, �) to the space Lq(·) (Ω, �) with the weight

�(x) = |x− x0|γ lnβ D

|x− x0| ,

where D > diamΩ, x0 ∈ Ω, and β ∈ R, if

α(x0)− n

p(x0)
< γ <

n

p′(x0)
.

2.5.6 Fractional Integrals on Rn with Power Weights Fixed
at the Origin and Infinity and Constant α

We take α constant in this section, so that

1

q(x)
=

1

p(x)
− α

n

and consider power weights with different orders at the origin and infinity:

�(x) = �γ0,γ∞(x) = |x|γ0(1 + |x|)γ∞−γ0 .

To consider fractional integrals Iα on Rn, we impose a condition at infinity on p(x):

|p∗(x)− p∗(y)| � A∞
ln 1

|x−y|
, |x− y| � 1

2
, x, y ∈ R

n, (2.152)

where p∗(x) = p
(

x
|x|2
)
, which is stronger than the decay condition (similarly to

the fact that the log-continuity in a neighbourhood of a finite point is stronger
than just the log-decay condition at that point; relevant counterexamples may
be found in Samko and Vakulov [330]). The global log-condition and assumption
(2.152) taken together are equivalent to the following log-condition:

|p(x)− p(y)| � C

ln

(
2
√

1+|x|2
√

1+|y|2
|x−y|

) , x, y ∈ R
n. (2.153)

We need the following auxiliary result.
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Lemma 2.67. Let x, y ∈ Rn and x∗ = x
|x|2 , y∗ = y

|y|2 . The following relations hold:

|x∗ − y∗| = |x− y|
|x| · |y| , |x∗ − x| =

∣∣1− |x|2∣∣
|x| , (2.154)

|x∗ − y|2 =
|x− y|2 + (1 − |x|2)(1 − |y|2)

|x|2 , (2.155)

and

|x∗ − y| � |x− y|
|x| for |x| � 1, |y| � 1. (2.156)

Proof. The relations in (2.154) and (2.155) are verified directly: |x∗ − y∗|2 =
1

|x|2 − 2 x·y
|x|2|y|2 + 1

|y|2 = |x−y|2
|x|2|y|2 , and similarly for the second relation in (2.154)

and formula (2.155). The inequality in (2.156) is a consequence of (2.155). �
Theorem 2.68. Let 0 < α < n, and let p ∈ P

log(Rn) and satisfy the condition
(2.152). Let also supx∈Rn p(x) < n

α . Then the operator Iα is bounded from the

space Lp(·)(Rn, �γ0,γ∞) to the space Lq(·)(Rn, �γ0,γ∞) with 1
q(x) =

1
p(x) − α

n , if

α− n

p(0)
< γ0 <

n

p′(0)
, α− n

p(∞)
< γ∞ <

n

p′(∞)
. (2.157)

Proof. Let

Ap
γ0,γ∞(f) :=

ˆ

Rn

[|x|γ0(1 + |x|)γ∞−γ0 |f(x)|]p(x)dx.
We have to show that Aq

γ0,γ∞ (Iαf) � c < ∞ for all f with Ap
γ0,γ∞ (f) � 1, where

c > 0 does not depend on f . Let

B+ = {x ∈ R
n : |x| < 1} and B− = {x ∈ R

n : |x| > 1}.
We have

Aq
γ0,γ∞ (Iαf) � c (A++ +A+− +A−+ +A−−) ,

where

A++ =

ˆ

B+

∣∣∣∣∣|x|γ0

ˆ

B+

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx, A+− =

ˆ

B+

∣∣∣∣∣|x|γ0

ˆ

B−

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx,

and

A−+ =

ˆ

B−

∣∣∣∣∣|x|γ∞
ˆ

B+

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx, A−− =

ˆ

B−

∣∣∣∣∣|x|γ∞
ˆ

B−

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx

so that we may separately estimate these terms.

The term A++ is covered by Corollary 2.66.
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Estimation of the term A−− is reduced to that of A++ by means of the simulta-
neous change of variables (inversion):

x =
u

|u|2 , dx =
du

|u|2n , y =
v

|v|2 , dy =
dv

|v|2n .

As a result, we obtain

A−− =

ˆ

B+

|x|−2n

∣∣∣∣∣|x|−γ∞
ˆ

B+

f(y∗) dy
|y|2n|x∗ − y∗|n−α

∣∣∣∣∣
q∗(x)

dx,

where we denoted q∗(x) = q(x∗). By (2.154), we obtain

A−− =

ˆ

B+

|x|−2n

∣∣∣∣∣|x|(n−α)q∗(x)−γ∞
ˆ

B+

|y|−n−αf(y∗) dy
|x− y|n−α

∣∣∣∣∣
q∗(x)

dx.

Since q(x) satisfies the log-condition (2.152) at infinity, the function q∗(x) satisfies
the local log-condition near the origin, so that |x|(n−α)q∗(x) ≈ c|x|(n−α)q∗(0) =
c|x|(n−α)q(∞) for |x| � 1, and we get

A−− �
ˆ

B+

∣∣∣∣∣|x|γ1

ˆ

B+

ψ(y) dy

|x− y|n−α

∣∣∣∣∣
q∗(x)

dx,

where

γ1 = (n− α)− 2n

q(∞)
− γ∞ and ψ(y) = |y|−n−αf

(
y

|y|2
)
.

It is easily checked that
ˆ

B+

||x|γ1ψ(x)|p∗(x) dx =

ˆ

B−

∣∣|x|γ∞f(x)
∣∣p(x) dx < ∞

and the conditions

αp∗(0)− n < γ1 < n[p∗(0)− 1] and γ1 =
q∗(0)
p∗(0)

γ1

hold. Therefore, Corollary 2.66 is applicable again and then A−− � c < ∞.

Estimation of the term A−+. We split A−+ as A−+ = A1 +A2, where

A1 =

ˆ

1<|x|<2

∣∣∣∣∣ |x|μ∞
ˆ

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx, A2 =

ˆ

|x|>2

∣∣∣∣∣ |x|μ∞
ˆ

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx.
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The term

A1 � C

ˆ

1<|x|<2

|x|μ0

∣∣∣∣∣
ˆ

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx � C

ˆ

|x|<2

|x|μ0

∣∣∣∣∣
ˆ

|y|<2

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx

is covered by Corollary 2.66. For the term A2 we have |x − y| � |x| − |y| � |x|
2 .

Therefore,

A2 � C

ˆ

|x|>2

(
|x|μ∞+α−n

ˆ

|y|<1

|f(y)| dy
)q(x)

dx.

Observe that
´
|y|<1

|f(y)| dy � C‖f‖Lp(·)(Rn,
), which is easily obtained by the

Hölder inequality thanks to the conditions in (2.157). Then A2 � C < ∞, since
(μ∞ + α− n)q(∞) < −n.

Estimation of the term A+−. The estimation of A+− is similar to that of to A−+:
we split A+− as A+− = A3 + A4, where

A3 =

ˆ

|x|<1

∣∣∣∣∣ |x|μ0

ˆ

1<|y|<2

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx, A4 =

ˆ

|x|<1

∣∣∣∣∣ |x|μ0

ˆ

|y|>2

f(y) dy

|x− y|n−α

∣∣∣∣∣
q(x)

dx.

The term A3 is covered by Corollary 2.66, similarly to the term A1 above.

For the term A4, we have |x− y| � |y| − |x| � |y|
2 . Then∣∣∣∣∣

ˆ

|y|>2

f(y) dy

|x− y|n−α

∣∣∣∣∣ � C

ˆ

|y|>2

|f(y)| dy
|y|n−α

= C

ˆ

|y|>2

|f0(y)| dy
|y|n−α+γ∞

,

where f0(y) = |y|γ∞f(y). Since ‖f0‖Lp(·)(Rn\B(0,2)) � ‖f‖Lp(·)(Rn\B(0,2).
), the ap-

plication of the Hölder inequality shows that
´
|y|>2

|f0(y)| dy
|y|n−α+γ∞ � C < ∞. Then

A4 � C < ∞, because γ −∞q(∞) > −n. �

In exactly the same way one can prove the more general statement of the
next theorem, where we deal with the weight “fixed” at a finite point x0 = 0 and
infinity:

�(x) = w0(|x|)w∞ (|x|) , (2.158)

where w0(r) belongs to some Φβ
γ -class on [0, 1] and w∞(r) belongs to some Ψβ

γ -class
on [1,∞] and both weights are continued as constant to [0,∞):

w0(r) ≡ w0(1), 1 � r < ∞ and w∞(r) ≡ w∞(1), 0 < r � 1.

Theorem 2.69. Let 0 < α < n and let p ∈ Plog(Rn) satisfy the assumption (2.152)
at infinity and the condition supx∈Rn p(x) < n

α . Let �(x) be the weight of the form
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(2.158) where each of the functions w0(r) on [0, 1] and w∞(r) on [1,∞) is either
almost increasing or almost decreasing. Then the operator Iα is bounded from the
space Lp(·)(Rn, �) to the space Lq(·)(Rn, �), if

w0(r) ∈ Φβ0
γ0
([0, 1]), w∞(r) ∈ Ψβ∞

γ∞ ([1,∞)),

where β0 = α− n
p(0) , γ0 = n

p′(0) , β∞ = α− n
p(∞) , γ∞ = n

p′(∞) , or equivalently

α− n

p(0)
< m(w0) � M(w0) <

n

p′(0)
,

and

α− n

p(∞)
< m(w∞) � M(w∞) <

n

p′(∞)
.

2.5.7 Spherical Fractional Integrals on Sn with Power Weights

Let S
n = {σ ∈ R

n+1 : |σ| = 1} be the unit sphere in R
n+1. In this section we

study the spherical fractional integration operator

Kαf(x) =

ˆ

Sn

f(σ)

|x− σ|n−α
dσ, x ∈ S

n, 0 < α < n, (2.159)

which plays an important role in harmonic analysis on the unit sphere Sn ⊂ Rn+1,
see for instance, Chapter 7 in Samko [322].

The weighted variable exponent space with a power weight on the unit sphere
is defined in the usual way:

Lp(·)(Sn, �β) =

{
f :

ˆ

Sn

|�β(σ)f(σ)|p(σ) dσ < ∞
}
, �β(σ) = |σ − a|β ,

where dσ stands for the surface measure and a ∈ S
n, with the norm

‖f‖Lp(·)(Sn,
βa,βb
) =

{
λ > 0 :

ˆ

Sn

∣∣∣∣ |σ − a|βf(σ)
λ

∣∣∣∣p(σ) dσ � 1

}
.

In the usual way, we assume that

1 < p− � p(σ) � p+ < ∞, σ ∈ S
n, (2.160)

|p(σ1)− p(σ2)| � A

ln e
|σ1−σ2|

, σ1 ∈ S
n, σ2 ∈ S

n, (2.161)

sup
σ∈Sn

p(σ) <
n

α
. (2.162)
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Theorems on mapping properties of the spherical operator (2.159) will be
derived from the corresponding results for spatial fractional integrals via the stere-
ographic projection of Sn onto Rn = {x ∈ Rn+1 : xn+1 = 0}. The latter is defined
(see for instance Mikhlin [258]) by the following change of variables in R

n+1:

ξ = s(x) = {s1(x), s2(x), . . . , sn+1(x)},

where

sk(x) =
2xk

1 + |x|2 , k = 1, 2, . . . , n and sn+1(x) =
|x|2 − 1

|x|2 + 1
,

x ∈ Rn+1, |x| =
√
x2
1 + · · ·+ x2

n+1.

We recall some useful formulas of the passage from Rn to Sn:

|x| = |ξ + en+1|
|ξ − en+1| ,

√
1 + |x|2 =

2

|ξ − en+1| ,

|x− y| = 2|σ − ξ|
|σ − en+1| · |ξ − en+1| , dy =

2n dσ

|σ − en+1|2n ,
(2.163)

and the formulas of the inverse passage from Sn to Rn:

|ξ − en+1| = 2√
1 + |x|2 , |ξ + en+1| = 2|x|√

1 + |x|2 ,

|ξ − σ| = 2|x− y|√
1 + |x|2√1 + |y|2 , dσ =

2n dy

(1 + |y|2)n ,
(2.164)

where ξ = s(x), σ = s(y), x, y ∈ Rn+1, and en+1 = (0, 0, . . . , 0, 1).

Lemma 2.70. If the spatial exponent p(x) defined on Rn+1 satisfies the log-condition
(2.153) for x, y ∈ Rn+1, then the exponent p[s−1(σ)] satisfies the log-condition
(2.161) on Sn. Conversely, if a function p(σ), σ ∈ Sn, satisfies the condition
(2.161), then p[s(x)], x ∈ R

n, satisfies the log-condition (2.153).

Proof. The proof is direct. �

Theorem 2.71. Let p : Sn → [1,∞) satisfy the conditions (2.160), (2.161), and
(2.162). The spherical potential operator Kα is bounded from the space Lp(·)(Sn,�β)
with the weight �β(σ) = |σ − a|β , a ∈ Sn, to the space Lq(·)(Sn, �β), where 1

q(σ) =
1

p(σ) − α
n ,

α− n

p(a)
< β <

n

p′(a)
.
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Proof. By an appropriate rotation on the sphere we reduce the proof to the case
where a = en+1 = (0, 0, . . . , 0, 1). Formulas (2.163)–(2.164) give the relations

ˆ

Rn

ϕ(y) dy

|x− y|n−α
= 2α

ˆ

Sn

ϕ∗(σ) dσ
|ξ − σ|n−α

, (2.165)

where ξ = s(x), σ = s(y), and ϕ∗(σ) = ϕ[s−1(σ)]
|σ−en+1|n+α . We have also the modular

equivalence

ˆ

Sn

||σ − en+1|βϕ∗(σ)|p(σ) dσ ≈
ˆ

Rn

|(1 + |y|)γ∞ϕ(y)|p̃(y) dy, (2.166)

where

p̃(y) = p[s(y)], γ∞ = −β + (n+ α) − 2n

p̃(∞)
.

Direct verification shows that the corresponding interval for the spherical
weight exponent β coincides with the corresponding interval for the spatial weight
exponent γ∞:

γ∞ ∈
(
α− n

p̃(∞)
,

n

p̃′(∞)

)
⇐⇒ β ∈

(
α− n

p(en+1)
,

n

p′(en+1)

)
.

Using of the relation (2.165) and the equivalence (2.166), we then easily derive
the statement of the theorem from Theorem 2.68 after obvious recalculations. �

2.6 Generalized Potentials

Let us study the generalized Riesz potential operators

IKf(x) :=
ˆ

X

K(x, y)f(y)dμ(y), K(x, y) =
k (d (x, y))

[d (x, y)]n
, (2.167)

over a bounded measure space X with quasimetric d, where n is the upper Ahlfors
dimension of X .

The function k : [0, �] → [0,∞) is assumed to be continuous, almost increas-
ing, positive for r > 0 with k(0) = 0, and such that

�ˆ

0

k(r)

r
dr < ∞. (2.168)

We prove a Sobolev type theorem on the boundedness of the operator IK from
Lp(·)(X) to a certain Orlicz–Musielak space.
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In this section, the measure μ is supposed to satisfy the growth condition
(2.107).

A function Φ : X × [0,∞) → [0,+∞) is said to be a Φ-function, if for every
x ∈ X the function t �→ Φ (x, t) is convex, non-decreasing and continuous for
t ∈ [0,∞), Φ (x, 0) = 0, Φ (x, t) > 0 for every t > 0, and x �→ Φ (x, t) is a
μ-measurable function of x for every t � 0.

The Orlicz–Musielak space LΦ(X) is defined as the set of all real-valued

μ-measurable and μ-almost everywhere finite functions f onX such that IΦ
(

f
λ

)
<

∞ for some λ > 0, where

IΦ(f) =
ˆ

X

Φ(x, |f(x)|)dμ(x).

This is a Banach space with respect to the norm

‖f‖Φ = inf

{
λ > 0 : IΦ

(
f

λ

)
� 1

}
.

In particular, Φ(x, t) = tp(x), where 1 � p(x) < ∞, is a Φ-function, and the

corresponding space is the variable exponent Lebesgue space L
p(·)
μ (X).

Some of the auxiliary results will be obtained without the assumption that
the measure is doubling.

In the main result given in Theorem 2.72 we impose the condition that

k(r)

rλ
is almost decreasing on [0, �] for some 0 < λ <

n

p+
. (2.169)

We use of the notation

A (r) =

rˆ

0

k(t)

t
dt.

Observe that for a function k ∈ W0 we have the equivalence

C1k(r) � A(r) � C2k(r),

where the right-hand side inequality holds if a(r)
rδ

is almost increasing for some

δ > 0, while the left-hand side one holds if a(r)
rλ is almost decreasing for some

λ > 0, see Theorem 2.10.

Theorem 2.72. Let X be a bounded quasimetric measure space with doubling mea-
sure and upper Ahlfors n-regular, let p ∈ Plog(X), and let k(r) satisfy (2.168) and

(2.169). Then the operator IK is bounded from L
p(·)
μ (X) to the Orlicz–Musielak
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space LΦ(X), where the Φ-function is defined by its inverse (for every fixed x ∈
X) as

Φ−1(x, u) =

û

0

A
(
t−

1
n

)
t
− 1

p′(x) dt (2.170)

and k(t) is assumed to be continued as k(t) ≡ k(�) for r > �.

Theorem 2.72 is proved in Section 2.6.4.

Corollary 2.73. Let X be a bounded quasimetric measure space with doubling mea-
sure, upper Ahlfors n-regular, and let p ∈ P

loc(X). The operator IK is bounded

from L
p(·)
μ (X) to the Orlicz–Musielak space LΦ(X), if the function k(r) is almost

increasing, satisfies condition (2.168), and its upper MO index M(k) satisfies the
condition M(k) < n/p.

Proof. To derive this statement from Theorem 2.72, it suffices to refer to Theorem
2.10. �

Remark 2.74. The function Φ−1(x, u) may be equivalently represented as

Φ−1(x, u) =

∞̂

r

A(t) dt

t1+
n

p(x)

≈ 1

r
n

p(x)

rˆ

0

k(t) dt

t
+

∞̂

r

k(t) dt

t1+
n

p(x)

, r = u− 1
n ,

which follows from the identity

n

p(x)

∞̂

r

A(t)t−1− n
p(x) dt = r−

n
p(x)

rˆ

0

k(t) dt

t
+

∞̂

r

k(t)t−1− n
p(x) dt,

obtained by the direct interchange of order of integration in the repeated integral.

We also reformulate of Theorem 2.72 in terms of the so-called upper MO
type index of the function k(r), see Theorem 2.73.

To prove Theorem 2.72, we use Hedberg’s trick already applied in the proof
of Theorem 2.58. The main difficulty is the estimation of the variable norms of
the kernel of the potential truncated to exterior of balls.

This estimation, evident for the Riesz potential in the case of constant expo-
nent p, becomes a more difficult task for generalized potentials, even in the case
of constant exponents.

For Riesz potentials, such an estimation, and consequently the realization of
Hedberg’s approach for variable exponent norms was achieved in Section 2.5.4.
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2.6.1 Preliminaries

For brevity, by VN,p(·) we denote the class of functions k ∈ W0([0, �]), 0 < � < ∞,

such that k(0) = 0,
´ �
0

k(t)
t dt < ∞ and

sup
x∈X

sup
0<r<�

( �ˆ

r

[
k(t)

t
n

p(x)

]p′(x)
dt

t

)
·
(

1

r
n

p(x)

rˆ

0

k(t)

t
dt

)−p′(x)

< ∞. (2.171)

The power function k(r) = rα belongs to the class Vn,p(·), if and only if
0 < α < n

p+
. The following lemma gives a sufficient condition for a nonnegative

function k(t) to belong to the class Vn,p(·).

Lemma 2.75. Let 1 < p− � p(x) � p+ < +∞ and let k(r) be a nonnegative
function satisfying the condition (2.169). Then k(t) satisfies the condition (2.171).

Proof. The proof is direct: under the conditions of the lemma on p(x) and k(t),

the first integral in (2.171) has an upper bound C
(
k(r)r−

n
p(x)
)p′(x)

with C > 0
not depending on x and r, and the second integral has the same lower bound, the
condition λ < n

p+
from (2.169) being needed only for the upper bound of the first

integral. �
Lemma 2.76. Let k(r) be a nonnegative continuous almost increasing function on
[0, �], 0 < � � ∞, and let the variable exponents λ(x) and γ(x) satisfy the assump-
tions infx∈X λ(x) > 0, supx∈X λ(x) < ∞, and infx∈X |γ(x)| > 0, supx∈X |γ(x)| <
∞. Then

C1

	
2ˆ

r

[
k(t)

tγ(x)

]λ(x)
dt

t
�

[log2 	
r ]∑

j=1

[
k
(
2jr
)

(2jr)
γ(x)

]λ(x)
� C2

�ˆ

r

[
k(t)

tγ(x)

]λ(x)
dt

t
, (2.172)

where 0 < r < 1
2� for the first inequality and 0 < r < � for the second one, and

it is also assumed that k(t) satisfies the doubling condition k(2t) � Ck(t) for the
second inequality in the case � < ∞.

Proof. Since k(t) is almost increasing, we have

2jrˆ

2j−1r

[
k(t)

tγ(x)

]λ(x)
dt

t
� C
[
k(2jr)

]λ(x) 2jrˆ

2j−1r

t−λ(x)γ(x)−1dt � C

[
k(2jr)

(2jr)γ(x)

]λ(x)
.

Hence,

[log2
	
r ]∑

j=1

[
k(2jr)

(2jr)γ(x)

]λ(x)
� C

[log2
	
r ]∑

j=1

2jrˆ

2j−1r

[
k(t)

tγ(x)

]λ(x)
dt

t
= C

d·2−θˆ

r

[
k(t)

tγ(x)

]λ(x)
dt

t
,
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where θ = θ(r) = log2
�
r −
[
log2

�
r

] ∈ [0, 1), and then

[log2
	
r ]∑

j=1

[
k(2jr)

(2jr)γ(x)

]λ(x)
� C

	
2ˆ

r

[
k(t)

tγ(x)

]λ(x)
dt

t
.

To prove the inverse inequality, we again use the almost monotonicity of k(t)
and have

2jrˆ

2j−1r

[
k(t)

tγ(x)

]λ(x)
dt

t
� C
[
k(2j−1r)

]λ(x) 2jrˆ

2j−1r

t−λ(x)γ(x)−1dt

� C
[
k(2j−1r)

]λ(x)
(2jr)−λ(x)γ(x).

Therefore,

[log2
	
r ]∑

j=1

[
k(2j−1r)

(2jr)γ(x)

]λ(x)
� C

[log2
	
r ]∑

j=1

2jrˆ

2j−1r

[
k(t)

tγ(x)

]λ(x)
dt

t
� C

�ˆ

r

[
k(t)

tγ(x)

]λ(x)
dt

t
.

Since k(2j−1r) � Ck(2jr), we obtain the right-hand side inequality in (2.172). �
Lemma 2.77. Let k(r) be a nonnegative continuous almost increasing function on
[0, �], 0 < � � ∞, and let it satisfy also the doubling condition k(2t) � Ck(t) in
the case � < ∞. If 1 < p− � p+ < ∞, then

ˆ

X\B(x,r)

(
k [d(x, y)]

d(x, y)n

)p(x)

dμ(y) � C

�ˆ

r

[
k(t)

t
n

p′(x)

]p(x)
dt

t
+ C[k(�)]p(x), 0 < r < �,

(2.173)
where C > 0 does not depend on x ∈ X and r ∈ (0, �); (2.173) may be also
written as

ˆ

X\B(x,r)

(
k [d(x, y)]

d(x, y)n

)p(x)

dμ(y) � C

�ˆ

r

[
a(t)

t
n

p′(x)

]p(x)
dt

t
, (2.174)

when 0 < r < �
2 .

Proof. We have

ˆ

X\B(x,r)

(
k [d(x, y)]

d(x, y)n

)p(x)

dμ(y) =

[log2
	
r ]∑

j=1

ˆ

2j−1r<d(x,y)<2jr

(
a [d(x, y)]

d(x, y)n

)p(x)

dμ(y)

+

ˆ

2−θ�<d(x,z)<�

(
k [d(x, y)]

d(x, y)n

)p(x)

dμ(y) =: F1(x, r) + F2(x, r),
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where F2(x, r) ≡ 0 in the case � = ∞. For F1(x, r) the almost monotonicity of
k(x) yields

F1(x, r) � C

[log2
	
r ]∑

j=1

[
k
(
2jr
)

(2j−1r)
n

]p(x) (
2jr
)n

= C2np(x)
[log2

ell
r ]∑

j=1

[
k
(
2jr
)

(2jr)
n

p′(x)

]p(x)
.

Then

F1(x, r) � C

�ˆ

r

[
k(t)

t
n

p′(x)

]p(x)
dt

t

by Lemma 2.76. For F2(x, r) we make use of the fact that �
2 � 2−θ� and obtain

F2(x, r) �
ˆ

	
2<d(x,y)<�

(
k [d(x, y)]

d(x, y)n

)p(x)

dμ(y) � C[k(�)]p(x),

which yields (2.173). The passage to (2.174) in the case 0 < r < �
2 is obvious. �

2.6.2 Estimation of the Variable Exponent Norm
of Truncated Generalized Potentials

We are interested in the estimation of the norm

βp = βp(x, r) : =
∥∥K(x, ·)χX\B(x,r)(·)

∥∥
p(·) as r → 0,

of the kernel K(x, y), truncated to the exterior of the ball B(x, r). We first prove a
“rough” estimate in Lemma 2.78, which will be used in Theorem 2.79 to get a more
precise estimate which will suit well our purposes. Recall that a similar estimate
for the case of usual potential kernel, i.e., k(r) ≡ rα was given in Theorem 2.62 in
a more general weighted setting.

Lemma 2.78. Let X be bounded and upper Ahlfors n-regular, 1 < p− � p+ < ∞,

and let k : (0, �) → (0,+∞) such that k(r)
rn is almost decreasing. Then there exists

a constant C > 0, not depending on x ∈ X and r ∈ (0, �), such that

βp(x, r) � Cr−nk(r). (2.175)

Proof. By the definition of the norm,

ˆ

X\B(x,r)

(K(x, y)

βp

)p(y)

dμ(y) = 1. (2.176)
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Hence, taking into account that Ap(y) � Ap− + Ap+ , A > 0, and that k(r)r−n is
almost decreasing, we get

1 �
ˆ

X\B(x,r)

[(
k[d(x, y)]

[d(x, y)]nβp

)p−

+

(
k[d(x, y)]

d(x, y)nβp

)p+
]
dμ (y)

�
[(

k(r)

rnβp

)p−

+

(
k (r)

rnβp

)p+
]
μ(X).

If k(r)
rnβp

� 1, there is nothing to prove. When k(r)
rnβp

� 1, we obtain the in-

equality 1 � 2μ(X)
(

k(r)
rnβp

)p−
, which proves the estimate. �

Theorem 2.79. Let X be bounded and upper Ahlfors n-regular, and p ∈ P
log(Ω).

Suppose that the nonnegative continuous function k(r) is almost increasing and
k(r)r−n is almost decreasing on (0, �], � = diam (X). Then there exists a constant
C > 0, not depending on x ∈ X and r ∈ (0, �), such that

βp(x, r) � C

( �ˆ

r

[
k(t)

t
n

p′(x)

]p(x)
dt

t

) 1
p(x)

+ Cχ[ 	2 ,�]
(r). (2.177)

Proof. Since 1 < p− � p+ < ∞, the right-hand side of (2.177) is uniformly
bounded from below. Therefore, it suffices to estimate the norm βp(x, r) when
βp(x, r) � 1 and 0 < r < min(1, �). Suppose that � � 1 for definiteness. From
(2.176) we have

1 =

ˆ

r<d(x,y)<1
K(x,y)>βp

(K(x, y)

βp

)p(y)

dμ (y) +

ˆ

r<d(x,y)<1
K(x,y)�βp

(K(x, y)

βp

)p(y)

dμ(y)

+

ˆ

d(x,y)>1

(K(x, y)

βp

)p(y)

dμ(y) = I1 + I2 + I3.

We need to estimate I1, I2, I3 from above. For I1 we have

I1 =

ˆ

r<d(x,y)<1
K(x,y)>βp

gr(x, y)

(K(x, y)

βp

)p(x)

dμ (y) ,

where gr(x, y) = (K(x, y)/βp)
p(x)−p(y)

. By the log-condition for p(x), we get

|ln gr(x, y)| � C

∣∣∣∣∣ ln
[K(x, y)β−1

p

]
lnD (x, y)

∣∣∣∣∣ = c
ln[K(x, y)]− lnβp

| ln d(x, y)| � c
ln
(

k[d(x,y)]
[d(x,y)]n

)
| ln d(x, y)| � C,

where in the last inequality we used the boundedness of k(r).
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Therefore, I1 � C

β
p(x)
p

´
X\B(x,r)

(
k[d(x,y)]
d(x,y)n

)p(x)
dμ (y) . Then, by (2.173) and

(2.174),

I1 � C

β
p(x)
p

( �ˆ

r

[
k(t)

t
n

p′(x)

]p(x)
dt

t
+ χ[ 	2 ,�]

(r)

)
. (2.178)

For I2 we obtain

I2 �
ˆ

r<d(x,y)<1

(K(x, y)

βp

)p−

dμ(y) =
C

β
p−
p

ˆ

r<d(x,y)<1

(
k[d(x, y)]

[d(x, y)]n

)p−

dμ(y),

and the application of Lemma 2.77 gives

I2 � C

β
p−
p

( �ˆ

r

[
k(t)

t
n

(p−)′

]p− dt

t
+ χ[ 	2 ,�]

(r)

)
. (2.179)

The estimation of I3 is easy:

I3 � C

β
p−
p

. (2.180)

Therefore, by (2.178), (2.179) and (2.180) we have

1 � C

[
1

β
p(x)
p

( �ˆ

r

tn−1

(
k(t)

tn

)p(x)

dt+ χ[ 	2 ,�]
(r)

)

+
1

β
p−
p

( �ˆ

r

tn−1

(
k(t)

tn

)p−

dt+ χ[ 	2 ,�]
(r)

)
+

1

β
p−
p

]
.

(2.181)

We may consider βp(x, r) only for those x, r for which βp(x, r) is sufficiently large:

βp(x, r) � (2C)
1

p− , where C is the constant from (2.181) (otherwise, there is
nothing to prove). For such x, r we have C

β
p−
p

� 1
2 and then from (2.181) we obtain

1

2
� C

�ˆ

r

tn−1

[(
k(t)

βptn

)p(x)

+

(
k(t)

βptn

)p−
]
dt+ C

χ[ 	2 ,�]
(r)

β
p(x)
p

, (2.182)

where we have used the fact that
χ
[ 	2 ,	]

(r)

β
p−
p

� C
χ
[ 	2 ,	]

(r)

β
p(x)
p

. By (2.175) we have(
k(t)
βptn

)p−
� C
(

k(t)
βptn

)p(x)
. Therefore, from (2.182) we get the estimate

1 � C

dˆ

r

tn−1

(
k(t)

βptn

)p(x)

dt+ C
χ[ 	2 ,�]

(r)

β
p(x)
p

,

whence (2.177) follows. �
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Corollary 2.80. Let p(x) and k(r) satisfy the assumptions of Theorem 2.79. If
k ∈ Vn,p(·), then

βp′(x, r) � C
A(r)

r
n

p(x)
,

where A(r) =
´ r
0

k(t)
t dt.

2.6.3 An Appropriate Φ-Function

The function Φ(x, u) defining the Musielak–Orlicz space LΦ(X) into which the

generalized potential maps the variable space L
p(·)
μ (X) is defined by the relation

Φ−1(x, u) =

∞̂

r

A(t) dt

t1+
n

p(x)

, r = u− 1
n , (2.183)

where Φ−1 stands for the inverse function with respect to u. We always, whenever
necessary, continue the function k(t) as k(�) for t > �, so that A(t) ≡ c+ k(�) ln t

�
for large t(> �).

In the following two lemmas we check that the function so defined is indeed
a Φ-function and it is equivalent to A(r)r−

n
p(x) .

Lemma 2.81. Let 1 < p− � p+ < ∞ and k(r) be a nonnegative continuous on
[0, �], 0 < � < ∞ function such that

�ˆ

0

k(t)dt

t
< ∞,

�ˆ

0

k(t)dt

t
1+ n

p+

= ∞. (2.184)

Then the function Φ(x, r) defined by its inverse (2.183), is a Φ-function.

Proof. The condition limr→0 Φ(x, r) = 0 ←→ limr→0 Φ
−1(x, r) = 0 is obvious

because of the convergence at infinity of the integral in (2.183) for every x. So
we have only to check that Φ(x, r) is a convex function of r or, equivalently, that

Φ−1(x, r) is a concave function. To this end, it suffices to check that ∂2

∂r2Φ
−1(x, r) �

0, which is done by direct verification:

∂2

∂r2
Φ−1(x, r) = − 1

n2
r

1
p(x)

−2

[
A′
(
r−

1
n

)
r−

1
n + n

(
1− 1

p(x)

)
A
(
r−

1
n

)]
� 0

taking into account that A(r) � 0, A′(r) � 0. �
Lemma 2.82. Let 1 < p− � p+ < ∞ and let the function k(r) be nonnegative

almost increasing and continuous on [0, �], 0 < � < ∞, and such the function k(t)

t
n

p+
−ε

is almost decreasing for some ε > 0. Then there exist constants C1 > 0, C2 > 0,
not depending on x and r, such that

C1A(r)r
− n

p(x) � Φ−1
(
x, r−n

)
� C2A(r)r

− n
p(x) . (2.185)
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Proof. In the equivalence (2.185), i.e.,

C1A(r)r
− n

p(x) �
∞̂

r

A(t) dt

t1+
n

p(x)

� C2A(r)r
− n

p(x) , (2.186)

the left-hand side inequality follows from the fact that A(t) is increasing and the

right-hand side one is easily derived from the property that A(t)t
− n

p+
+ε

is almost
decreasing. �

2.6.4 Proof of Theorem 2.72

First we note that the function Φ(x, r) defined by (2.170) is indeed a Φ-function, by
Lemma 2.81; the first of the conditions in (2.184) is satisfied by the assumption,
while the second easily following from the assumption that k(r)r−λ is almost
decreasing for some λ < n/p+.

It suffices to prove that ‖IKf‖Φ � C < ∞ for ‖f‖p(·) � 1. We split IKf (x)
in the standard way:

Iaf (x) =

ˆ

B(x,r)

k [d(x, y)]

d (x, y)
n f (y)dμ (y) +

ˆ

X\B(x,r)

k [d(x, y)]

d (x, y)
n f(y)dμ(y) = Ar(x) + Br(x)

and suppose that f(x) � 0. Since k(t)t−n is almost decreasing, for Ar(x) we have

Ar(x) =
∞∑
j=0

ˆ

2−j−1r� d(x,y)<2−jr

k [ d(x, y)]

d (x, y)
n f (y) dμ (y)

� C

∞∑
j=0

k
(
2−j−1r

)
(2−j−1r)

n

ˆ

2−j−1r� d(x,y)<2−jr

f (y) dμ (y)

� CM f (x)

∞∑
j=0

a
(
2−j−1r

)

� CM f (x)

∞∑
j=0

2−jrˆ

2−j−1r

k(t)

t
dt.

Therefore,
Ar(x) � CA(r)M f(x).

For Br(x), the Hölder inequality for variable exponents and the condition ‖f‖p(·) �
1 yield the estimate

Br(x) � C ‖f‖p(·)
∥∥K(x, ·)χX\B(x,r)(·)

∥∥
p′(·)

� C
∥∥K(x, ·)χX\B(x,r)(·)

∥∥
p′(·)

= Cβp′(x, r).
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Then, by Theorem 2.79,

Br(x) � C

( �ˆ

r

[
k(t)

t
n

p(x)

]p′(x)
dt

t

) 1
p′(x)

+ C
χ[ 	2 ,�]

(r)

β
p(x)
p

.

By Lemma 2.75, inequality (2.171) is applicable and we get Br(x) � Cr−
n

p(x)A (r) .

Therefore, Ikf(x) � C
(
M f (x) + r−

n
p(x)

)
A (r) . Then

Ikf(x) � C
[
M f(x)r

n
p(x) + 1

]
Φ−1
(
x, r−n

)
,

thanks to (2.185). Now we choose r = [M f(x)]−
p(x)
n . Then the last inequality

turns into Ikf(x) � CΦ−1
(
x, [M f(x)]p(x)

)
, and consequently,

ˆ

X

Φ

(
x,

IKf(x)
C

)
dμ(x) �

ˆ

X

[M f(x)]p(x)dμ(x) � 1.

Hence ‖IKf‖Φ � C, which completes the proof.

2.6.5 Weighted Version

Let Φ be a Φ-function and w a weight. The weighted Orlicz–Musielak space,
denoted by LΦ(X,w), is defined by the norm

‖f‖Φ,w = inf

{
λ > 0 :

ˆ

X

Φ

(
x,

w(x)f(x)

λ

)
dμ(x) � 1

}
.

An extension of the previous Sobolev type theorem to the case of power
weights

wν(x) = [ d(x, x0)]
ν , x0 ∈ X,

is given in Theorem 2.83. In that theorem we make use of the notion of the lower
dimension of X , defined by

dim(X) = sup
t>1

ln

(
lim
r→0

inf
x∈X

μB(x,rt)
μB(x,r)

)
ln t

; (2.187)

we refer to Section 2.7.1 for more information on this notion. It is clear that
dim(X) = n in the case where X has constant dimension n in the sense that
c1r

n � μB(x, r) � c2r
n. In general, if X has the property that

0 < dim(X) < ∞,
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then X satisfies the growth condition with every

0 < n < dim(X).

This follows from the inequality

μB(x, r) � Crdim(X)−ε,

where ε > 0 is arbitrarily small and C = C(ε) > 0 does not depend on x, which
is easily derived from the definition of dim(X), by using properties of MO indices
presented in Section 2.2.

Theorem 2.83. Let (X, d, μ) be a bounded quasimetric space with doubling measure
and positive finite lower dimension dim(X), and let p ∈ Plog(X) and

0 � ν <
dim(X)

p′(x0)
.

Suppose that there exists a β ∈
(
0,

dim(X)

p+

)
such that

k(r)

rβ
is almost decreasing.

Then the operator IK is bounded from the space Lp(·) (X,wν) to the weighted
Orlicz–Musielak space LΦ(X,wν1 ), where ν1 = ν

p(x0)
and the function Φ is de-

fined by its inverse (for every fixed x ∈ X)

Φ−1 (x, r) =

rˆ

0

A
(
t−

1
n

)
t
− 1

p′(x) dt.

For the proof of Theorem 2.83 we refer to Hajiboyev and Samko [114].

2.7 Weighted Extrapolation in the Setting of
Quasimetric Measure Spaces

2.7.1 Preliminaries Related to Quasimetric Measure Spaces

In the sequel, (X, d, μ) denotes a quasimetric space with the quasidistance d. Some
preliminaries on such spaces have already been given in Section 2.5.3. Recall the
notation � = diam X and the following standard assumptions:

1) all the balls B(x, r) = {y ∈ X : d(x, y) < r} are measurable,

2) the space C(X) of uniformly continuous functions on X is dense in L1(X,μ).
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In most of the statements we also assume that

3) the measure μ satisfies the doubling condition μB(x, 2r) � CμB(x, r).

The Hardy–Littlewood maximal function of a locally μ-integrable function
f : X → R is defined by

M f(x) = sup
r>0

1

μ(B(x, r))

ˆ

B(x,r)

|f(y)| dμ(y).

The spaces L
p(·)
μ (Ω), Ω ⊆ X , on quasimetric measure spaces were defined in

(2.110). In the weighted case we interpret weights as multipliers, i.e.,

Lp(·)
μ (Ω, �) = {f : �f ∈ Lp(·)

μ (Ω)}.

In this section and in the next one we use the notation As, where 1 � s < ∞,
for the class of Muckenhoupt weights w : X → R interpreted as measures, i.e.,
w ∈ As, if

sup
B

(
1

μB

ˆ

B

w(y)dμ(y)

)(
1

μB

ˆ

B

w− 1
s−1 (y)dμ(y)

) 1
s−1

< ∞

in the case 1 < s < ∞, and Mw(x) � Cw(x) for almost all x ∈ X in the case
s = 1.

For variable exponents, we let Ap(·)(Ω) denote the class of all those weights

on Ω, for which the maximal operator is bounded in the space L
p(·)
μ (Ω, �).

Recall that P log(Ω) denotes the class of bounded exponents p : Ω → [1,∞)
satisfying the log-condition |p(x)− p(y)| � A

| ln d(x,y)| , d(x, y) � 1
2 , x, y ∈ Ω.

The notions of lower and upper local dimension of X at a point x, intro-
duced as

dimX(x) = lim
r→0

lnμB(x, r)

ln r
, dimX(x) = lim

r→0

lnμB(x, r)

ln r

are known, see, e.g., Falconer [82]. We will use different notions of local lower
and upper dimensions, inspired by the versions of the MO indices m(w),M(w) of
almost monotonic functions w, introduced in Section 2.2.2.

Definition 2.84. The numbers

dim(X ;x) = sup
r>1

ln

(
lim
h→0

μB(x,rh)
μB(x,h)

)
ln r

, dim(X ;x) = inf
r>1

ln

(
lim
h→0

μB(x,rh)
μB(x,h)

)
ln r

(2.188)
will be referred to as local lower and upper dimensions at a point x ∈ X .
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Observe that dim(X ;x) may be also rewritten in terms of the upper limit:

dim(X ;x) = sup
0<r<1

ln

(
lim
h→0

μB(x,rh)
μB(x,h)

)
ln r

. (2.189)

Since the function

μ0(x, r) = lim
h→0

μB(x, rh)

μB(x, h)

is semi-multiplicative in r, i.e., μ0(x, r1r2) � μ0(x, r1)μ0(x, r2), by properties of
such functions (Krein, Petunin, and Semenov [217, p. 75]; Krein, Petunin, and
Semenov [218]) we obtain that dim(X ;x) � dim(X ;x) and we may rewrite the
dimensions dim(X ;x) and dim(X ;x) in the form

dim(X ;x) = lim
r→0

lnμ0(x, r)

ln r
, dim(X ;x) = lim

r→∞
lnμ0(x, r)

ln r
. (2.190)

The introduction of dimensions dim(X ;x) and dim(X ;x) just in form (2.189)–
(2.190) is motivated by the fact – within the frameworks of general quasimetric
measure spaces – they are well adjusted to the oscillating weights we use.

We will mainly work with the lower bound

dim(Ω) := inf
x∈X

dim(Ω;x)

of the lower dimensions dim(X ;x) on an open set Ω ⊆ X :

In case where Ω is unbounded, we will also need similar dimensions connected
in a sense with the influence of infinity. Let

μ∞(x, r) = lim
h→∞

μB(x, rh)

μB(x, h)
.

We introduce the numbers

dim∞(X ;x) = lim
r→0

lnμ∞(x, r)

ln r
, dim∞(X ;x) = lim

r→∞
lnμ∞(x, r)

ln r

and their bounds

dim∞(Ω) = inf
x∈Ω

dim∞(X ;x), dim∞(Ω) = sup
x∈Ω

dim∞(X ;x).

It is not hard to see that dim(Ω), dim∞(Ω), and dim∞(Ω) are nonnegative. In
the sequel, when considering these bounds of dimensions, we always assume that
dim(Ω), dim∞(Ω), dim∞(Ω) ∈ (0,∞).
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2.7.2 Classes of the Weight Functions

Let Π = {x0, x1, . . . , xN} be a given finite set of points in X . We consider the
weights of the form

�(x) = w0[1 + d(x0, x)]

N∏
k=1

wk[d(x, xk)] (2.191)

with “radial” weights, where the functions w0 and wk, k = 1, . . . , N , belong to a
class of Zygmund–Bari–Stechkin type introduced in Sections 2.2.2 and 2.2.4.

Definition 2.85. A weight function � of form (2.191) is said to belong to the class
V osc
p(·)(Ω,Π), where p(·) ∈ C(Ω), if

wk ∈ W ([0, �]), � = diam Ω and − dim(Ω)

p(xk)
< m(wk) � M(wk) <

dim(Ω)

p′(xk)
,

(2.192)
and (in the case Ω is unbounded) also w0

(
1
r

)
, wk

(
1
r

) ∈ W ([0, 1]), k = 1, 2, . . . , N ,
and

−dim∞(Ω)

p(∞)
<

N∑
k=0

m∞(wk) �
N∑

k=0

M∞(wk) <
dim∞(Ω)

p′∞
−Δp∞ , (2.193)

where Δp(∞) =
1

p(∞) (dim∞(Ω)− dim∞(Ω)).

Observe that in the case Ω = X = Rn conditions (2.192) and (2.193) take
the form

wk(r) ∈ W (R+) :=

{
w : w (r) , w

(
1

r

)
∈ W ([0, 1])

}
(2.194)

and

− n

p(xk)
< m(wk) � M(wk) <

n

p′(xk)
,

− n

p(∞)
<

N∑
k=0

m∞(wk) �
N∑

k=0

M∞(wk) <
n

p′∞
.

(2.195)

By Vp(·)(Ω,Π) we denote the class of power type weights

�(x) = [1 + d(x0, x)]
β∞

N∏
k=1

[d(x, xk)]
βk , xk ∈ X, k = 0, 1, . . . , N,

with β∞ = 0 in the case where X is bounded, which belong to V osc
p(·)(Ω,Π).

Remark 2.86. For every p0 ∈ (1, p−) one has the implications � ∈ V osc
p(·)(Ω,Π) −→

�−p0 ∈ V osc
(p̃)′(·)(Ω,Π) and �∈Vp(·)(Ω,Π)=⇒ �−p0 ∈V(p̃)′(·)(Ω,Π), where p̃(x) =

p(x)
p0

.
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We will base ourselves on the following two theorems, which are reformula-
tions of Theorems 2.27 and 2.28 in terms of the introduced notation for classes of
oscillating weights.

Theorem 2.87. Let X be a metric space with doubling measure and let Ω be

bounded. If p ∈ Plog(Ω) and � ∈ V osc
p(·)(Ω,Π), then M is bounded in L

p(·)
μ (Ω, �).

Theorem 2.88. Let X be a quasimetric space with doubling measure and let Ω be
unbounded. Let p ∈ Plog(Ω) and p(x) ≡ p(∞) = const, x ∈ Ω\B(x0, R) for some

R > 0. If � ∈ V osc
p(·)(Ω,Π), then M is bounded in L

p(·)
μ (Ω, �).

We will also use the following simple fact, where Ap−(Ω) stands for the class
of restrictions of weights in Ap−(X).

Theorem 2.89. Let Ω be a bounded open set in a doubling quasimetric measure

space X, and p ∈ P(Ω). Then the maximal operator M is bounded in L
p(·)
μ (Ω, �),

if [�(x)]p(x) ∈ Ap−(Ω).

Proof. Let f be continued as 0 outside Ω. With � a weight function, denote

M 
f(x) = sup
r>0

�(x)

μ(B(x, r))

ˆ

B(x,r)

|f(y)|
�(y)

dμ(y).

Let
∥∥f∥∥

p(·) � 1. We follow the known trick and represent Ip(·)(M 
f) as

Ip(·)(M 
f) =

ˆ

Ω

(
[�(x)]p1(x)

∣∣∣∣M (f(y)�(y)

)
(x)

∣∣∣∣p1(x)
)p−

dμ(x),

where p1(x) =
p(x)
p−

. The known pointwise estimate

|Mψ(x)|p1(x) � c
(
1 + M

[
ψp1(·)](x)) (2.196)

valid for all ψ ∈ Lp1(·)(Ω) with ‖ψ‖p1(·) � C (considered in the Euclidean case in
Section 2.3.1) holds also in the general setting of quasimetric measure spaces with
doubling condition, the proof of which may be found in Harjulehto, Hästö, and
Latvala [125]. It is applicable in our case with ψ(y) = f(y)/�(y) and f ∈ Lp(·)(Ω),

because
´
Ω

∣∣∣f(y)
(y)

∣∣∣ p(y)p−
dμ(y) � C (apply the Hölder inequality with the exponent

p− and take into account that
´
Ω
[�(y)]

− p(y)
p−−1 dμ(y) < ∞, by the assumption that

[�(x)]p(x) ∈ Ap−(Ω)). Applying (2.196), we obtain

Ip(·)(M 
f) � c

ˆ

Ω

[�(x)]p(x)

[
1 + M

(∣∣∣∣f(y)�(y)

∣∣∣∣p1(y)
)]p−

dμ(x).

Since
´
Ω[�(x)]

p(x)dμ(x) < ∞, we obtain the key estimate Ip(·)(M 
f) �
c + c

´
Ω

[
M 
1(|f(·)|p1(·))(x)

]p−
dμ(x) with �1(x) = [�(x)]p1(x). As is well known,
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see for instance the book by Stein [352, p. 201], the maximal operator with Ap-
weights, p = const, is bounded in Lp, p = p− = const. This completes the proof
since �1 ∈ Ap− . �

2.7.3 Extrapolation Theorem

Let (X, d, μ) be a space of homogeneous type. For a locally μ-integrable function
f : X → R, we consider the Hardy–Littlewood maximal function

M f(x) = sup
r>0

1

μ(B(x, r))

ˆ

B(x,r)

|f(y)| dμ(y).

By As = As(X), where 1 � s < ∞, we denote the class of weights (locally
almost everywhere positive μ-integrable functions) w : X → R which satisfy the
Muckenhoupt condition

sup
B

(
1

μB

ˆ

B

w(y)dμ(y)

)(
1

μB

ˆ

B

w− 1
s−1 (y)dμ(y)

)s−1

< ∞

in the case 1 < s < ∞, and the condition

Mw(x) � Cw(x)

for almost all x ∈ X , with a constant C > 0, not depending on x ∈ X , in the case
s = 1, A1 ⊂ As, 1 < s < ∞.

As is known, see, e.g., Calderón and Torchinsky [38], Maćıas and Segovia
[233], the weighted boundedness

ˆ

X

(M f(x))sw(x)dμ(x) � C

ˆ

X

|f(x)|sw(x)dμ(x),

holds, if and only if w ∈ As.

In the sequel F = F(Ω) denotes a family of ordered pairs (f, g) of nonnegative
μ-measurable functions f, g, defined on an open set Ω ⊂ X . When saying that an
inequality of type (2.198) holds for all pairs (f, g) ∈ F and weights w ∈ A1, we
always mean that it is valid for all the pairs for which the left-hand side is finite,
and that the constant c depends only on p0, q0 and the A1-constant of the weight.

In what follows, p0 and q0 denote positive numbers such that

0 < p0 � q0 < ∞, p0 < p− and
1

p0
− 1

p+
<

1

q0
(2.197)

and

p̃(x) =
p(x)

p0
, q̃(x) =

q(x)

q0
.
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Theorem 2.90. Let X be a quasimetric measure space and Ω an open set in X.
Assume that for some p0 and q0, satisfying the conditions (2.197), and for every
weight w ∈ A1(Ω),( ˆ

Ω

f q0(x)w(x)dμ(x)

) 1/q0

� c0

( ˆ
Ω

gp0(x)[w(x)]
p0
q0 dμ(x)

) 1/p0

(2.198)

for all f, g in a given family F . Let the variable exponent q(x) be defined by

1

q(x)
=

1

p(x)
−
(

1

p0
− 1

q0

)
, (2.199)

let p(x) satisfy the condition 1 < p− � p+ < ∞, and let

�−q0 ∈ A(q̃)′(Ω).

Then for all (f, g) ∈ F with g ∈ Lp(·)(Ω, �) the inequality

‖f‖Lq(·)(Ω,
) � C‖g‖Lp(·)(Ω,
) (2.200)

is valid where C > 0 does not depend on f and g.

Proof. By Theorem 1.2, we have

‖f‖q0
Lq(·)(Ω,
)

= ‖f q0�q0‖Lq̃(·) � C sup

ˆ

Ω

fp0(x)h(x)dμ(x),

where we assume that f is nonnegative and sup is taken with respect to all non-
negative h such that ‖h�−q0‖L(q̃)′(·) � 1. (Note that Theorem 1.2 holds also for an
arbitrary quasimetric measure space, as can be easily seen from its proof.) We fix
any such a function h. Let us show that

ˆ

Ω

f q0(x)h(x)dμ(x) � C‖g�‖q0
Lq(·) (2.201)

for an arbitrary pair (f, g) from the given family F with C > 0, not depending on
h, f , and g. By the assumption �−q0 ∈ A(q̃)′(Ω), we have

‖�−q0Mϕ‖L(q̃)′(·)(Ω) � C0‖�−q0ϕ‖L(q̃)′(·)(Ω) (2.202)

where C0 > 0 does not depend on ϕ. We use the Rubio de Francia construction
(Rubio de Francia [305]):

Sϕ(x) =

∞∑
k=0

(2C0)
−kM kϕ(x),
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where M k is the k-iterated maximal operator and C0 is the constant from (2.202)
(one may take C0 � 1). The following statements are obvious:

ϕ(x) � Sϕ(x), x ∈ Ω for any nonnegative function ϕ, (2.203)

‖�−q0Sϕ‖L(q̃)′ (Ω) � 2‖�−q0ϕ‖L(q̃)′ (Ω),

M (Sϕ)(x) � 2C0Sϕ(x), x ∈ Ω,
(2.204)

so that Sϕ ∈ A1(Ω) with the A1-constant not depending on ϕ. Therefore Sϕ ∈
Aq0(Ω).

By (2.203), for ϕ = h we have

ˆ

Ω

f q0(x)h(x)dμ(x) �
ˆ

Ω

f q0(x)Sh(x)dμ(x). (2.205)

By the Hölder inequality, property (2.204), and the condition f ∈ Lq(·)(Ω, �), we
have ˆ

Ω

f q0(x)Sh(x)dμ(x) � k‖f q0�q0‖Lq̃(·) · ‖�−q0Sh‖L(q̃)′(·)

� C‖f�‖q0
Lq(·) · ‖h�−q0‖L(q̃)′(·) � C‖f�‖q0

Lq(·) < ∞.

Consequently, the integral
´
Ω f q0(x)Sh(x)dμ(x) is finite, which enables us to make

use of condition (2.198) with respect to the right-hand side of (2.205). The con-
dition (2.198), being assumed to hold with an arbitrary weight w ∈ A1, is in
particular valid for w = Sh. Therefore,

ˆ

Ω

f q0(x)Sh(x)dμ(x) � C

( ˆ
Ω

gp0(x)[Sh(x)]
p0
q0 dμ(x)

) q0
p0

.

Applying the Hölder inequality on the right-hand side, we get

ˆ

Ω

f q0(x)Sh(x)dμ(x) � C

(
‖gp0�p0‖

L
p(·)
p0

∥∥∥(Sh) p0
q0 �−p0

∥∥∥
L(p̃)′(·)

) q0
p0

.

Thus, ˆ

Ω

f q0(x)Sh(x)dμ(x) � C ‖�g‖q0
Lp(·)

∥∥∥�−p0(Sh)
p0
q0

∥∥∥ q0
p0

L(p̃)′(·)
.

From (2.199) we have (p̃)′(x) = q0
p0
(q̃)′(x), and then

∥∥∥�−p0(Sh)
p0
q0

∥∥∥ q0
p0

L(p̃)′(·)
=
∥∥�−q0Sh

∥∥
Lq̃′(·) .
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Consequently,

ˆ

Ω

f q0(x)Sh(x)dμ(x) � C ‖�g‖q0
Lp(·)
∥∥�−q0Sh

∥∥
Lq̃′(·) . (2.206)

To prove (2.201), in view of (2.206) it suffices to show that ‖�−q0Sh‖Lq̃′ (·) may be

estimated by a constant not depending on h. This follows from (2.204) and using
the condition ‖h�−q0‖L(q̃)′(·) � 1 we complete the proof. �

Remark 2.91. It is easy to check that in view of Theorem 2.89 the condition

[�(y)]q1(y) ∈ As, where q1(y) =
q(y)(q+ − q0)

q(y)− q0
and s =

q+
q0

,

is sufficient for the membership �−q0 ∈ A(q̃)′(Ω) of Theorem 2.90.

By means of Theorems 2.87 and 2.88, the following statement is an immediate
consequence of Theorem 2.90, in which we denote

γ =
1

p0
− 1

q0
.

Theorem 2.92. Let X be a quasimetric space with doubling measure and Ω an open
set in X. Let also the following be satisfied:

1) p ∈ Plog(Ω), and in the case Ω is an unbounded set, let p(x) ≡ p(∞) = const
for x ∈ Ω\B(x0, R) with some x0 ∈ Ω and R > 0;

2) the inequality (2.198) holds for some p0 and q0 satisfying the assumptions in
(2.197) and all (f, g) in some family F and every weight w ∈ A1(Ω). Then

I) the inequality (2.200) holds for all pairs (f, g) ∈ F with f ∈ Lp(·)(Ω, �)
and weights � of form (2.191), where(

γ − 1

p(xk)

)
dim(Ω) < m(wk) � M(wk) <

(
1

p′(xk)
− 1

p′0

)
dim(Ω)

(2.207)
and, in case Ω is unbounded,

δ +

(
γ − 1

p(∞)

)
dim(Ω) <

N∑
k=0

m(wk) �
N∑

k=0

M(wk)

<

(
1

p′∞
− 1

p′0

)
dim(Ω),

(2.208)

where

δ =
[
dim∞(Ω)− dim∞(Ω)

] ( 1

p0
− 1

p(∞)

)
;
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II) in case the inequality (2.198) holds for all p0 ∈ (1, p−), the term 1
p′
0
in

(2.207) and (2.208) may be omitted, and δ may be taken in the form

δ =
[
dim∞(Ω)− dim∞(Ω)

] ( 1

p−
− 1

p(∞)

)
.

2.8 Application to Boundedness Problems
in Lp(·)(Ω, �) for Classical Operators

of Harmonic Analysis

2.8.1 Potential Operators and Fractional Maximal Function

We first apply Theorem 2.90 to the potential operators

IγXf(x) =

ˆ

X

f(y) dμ(y)

μB(x, d(x, y))1−γ
,

where 0 < γ < 1. We assume that μ(X) = ∞ and the measure μ satisfies the
doubling condition. We also additionally assume the following conditions to be
fulfilled:

there exists a point x0 ∈ X such that μ(x0) = 0 (2.209)

and
μ(B(x0, R)\B(x0, r)) > 0 for all 0 < r < R < ∞. (2.210)

In the case of constant exponents the following statement holds; see for in-
stance Edmunds, Kokilashvili, and Meskhi [76, p. 412].

Theorem 2.93. Let X be a metric measure space with doubling measure satisfying
conditions (2.209)–(2.210), μ(X) = ∞, let 0 < γ < 1, 1 < p0 < 1

γ and 1
q0

= 1
p0
−γ.

The operator IγX obeys the estimate( ˆ
X

|v(x)IγXf(x)|q0dμ
) 1

q0

�
( ˆ

X

|v(x)f(x)|p0dμ

) 1
p0

, (2.211)

whenever the weight v(x) satisfies the condition

sup
B

(
1

μB

ˆ

B

vq0(x)dμ

) 1
q0
(

1

μB

ˆ

B

v−p′
0(x)dμ

) 1
p′0

< ∞, (2.212)

where B stands for a ball in X.
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Using Theorem 2.93 and the extrapolation Theorem 2.90 we arrive at the
following statement.

Theorem 2.94. Let X satisfy the assumptions of Theorem 2.93, and let 0 < γ < 1
and 1 < p− � p+ < 1

γ . The weighted estimate

‖IγXf‖
L

q(·)
μ (X,
)

� C ‖f‖
L

p(·)
μ (X,
)

(2.213)

with the limiting exponent q(·) defined by 1
q(x) =

1
p(x) − γ, holds if

�−q0 ∈ A(
q(·)
q0

)′(X) (2.214)

for any choice of q0 ∈ (1, q−).

Proof. By Theorem 2.93, the inequality (2.211) holds under the condition (2.212).
Condition (2.212) is satisfied if vq0 ∈ A1. Consequently, inequality (2.198) with
f = IγXg holds for every w ∈ A1 and 1 < p0 < ∞, 1

q0
= 1

p0
− γ.

Then (2.213) follows from Theorem 2.90. �

For the Riesz potential operator

Iαf(x) =

ˆ

Rn

f(y)|x− y|α−n dy, 0 < α < n,

we then have the following corollary.

Corollary 2.95. Let p ∈ Plog
∞ (Rn) and 1 < p− � p+ < n

α . The weighted Sobolev
inequality

‖Iαf‖Lq(·)(Rn,
) � C ‖f‖Lp(·)(Rn,
) (2.215)

with 1
q(x) =

1
p(x) − α

n , holds if �q0 ∈ A q(·)
q0

(Rn) forr any choice of q0 ∈ (1, q−).

This corollary follows from Theorem 2.94 with the natural choice �−q0 ∈
A(

q(·)
q0

)′(Rn), which is equivalent to �q0 ∈ A q(·)
q0

(Rn) by Theorem 2.4.

In the case of oscillating weights, Theorems 2.87 and 2.88 provide sufficient
conditions to satisfy assumption (2.214), so we could write down the corresponding
statements on the validity of (2.215) in terms of the weights used in Theorems
2.87 and 2.88. In the sequel we give results of such a kind for other operators.

2.8.2 Fourier Multipliers

The Fourier transform is defined in the form

Ff(x) = f̂(x) :=

ˆ

Rn

f(y)eixy dy, F−1f(y) = f̃(y) :=
1

(2π)n

ˆ

Rn

f(y)e−ixy dy.
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A measurable function m : Rn → R is said to be a Fourier multiplier in the space
Lp(·)(Rn, �), if the operator Tm, defined on the Schwartz space S (Rn) by

T̂mf = mf̂,

admits an extension to a bounded operator in Lp(·)(Rn, �).

We give below a generalization of the classical Mikhlin theorem (see Mikhlin
[258] or Stein [351]) on Fourier multipliers, to the case of weighted Lebesgue spaces
with variable exponent.

Theorem 2.96. Let p ∈ Plog∞ (Rn) and let the function m(x) be continuous every-
where in Rn, except for probably the origin, have the mixed distributional derivative

∂nm
∂x1∂x2···∂xn

and the derivatives Dαm = ∂|α|m
∂x

α1
1 ∂x

α2
2 ···∂xαn

n
, α = (α1, . . . , αn) of orders

|α| = α1 + · · ·+ αn � n− 1 continuous beyond the origin and such that

|x||α||Dαm(x)| � C, |α| � n, (2.216)

where the constant C > 0 does not depend on x. Then m is a Fourier multiplier
in Lp(·)(Rn, �), if �p0 ∈ Ap(·)/p0

(Rn) for some p0 ∈ (1, p−).

Proof. Theorem 2.96 follows from Theorem 2.90 under the choice Ω = X = Rn

and F = {Tmg, g} with g ∈ S (Rn), since in the case of constant p0 > 1 and
weight � ∈ Ap0(⊃ A1), a function m satisfying the assumptions of Theorem 2.96,
is a Fourier multiplier in Lp0(Rn, �), as is known, see for instance Kurtz [222],
Kokilashvili [170]. �

Corollary 2.97. Let m satisfy the assumptions of Theorem 2.96 and let the exponent
p and the weight � satisfy the assumptions

i) p ∈ Plog(Rn) and p(x) = p(∞) = const for |x| � R with some R > 0,

ii) � ∈ V osc
p(·)(R

n,Π),Π = {x1, . . . , xN} ⊂ Rn.

Then m is a Fourier multiplier in Lp(·)(Rn, �). In particular, assumption ii) holds
for weights � of the form

�(x) = (1 + |x|)β∞
N∏

k=1

|x− xk|βk , xk ∈ R
n, (2.217)

where − n
p(xk)

< βk < n
p′(xk)

, k = 1, 2, . . . , N, and − n
p(∞) < β∞ +

N∑
k=1

βk < n
p′∞

.

Proof. It suffices to observe that conditions on the weight � imposed in Theorem
2.96 are fulfilled for � ∈ V osc

p(·)(R
n,Π), which follows from Remark 2.86 and Theorem

2.88. In the case of power weights, conditions defining the class V osc
p(·)(R

n,Π) turn
into the given inequalities for the exponents. �
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Theorem 2.98. Let p ∈ Plog∞ (Rn) and let the function m : Rn → R have distribu-
tional derivatives up to order � > n

p−
satisfying the condition

sup
R>0

(
Rs|α|−n

ˆ

R<|x|<2R

|Dαm(x)|sdx
) 1/s

< ∞

for some s, 1 < s � 2 and all the multi-indices α with |α| � �. If 1 < p− � p+ < ∞
and �p0 ∈ Ap(·)/p0

(Rn) for some p0 ∈ (1, p−), then m is a Fourier multiplier in

Lp(·)(Rn, �).

Proof. Theorem 2.98 is similarly derived from Theorem 2.90, if we take into ac-
count that in the case of constant p0 the statement of the theorem for Muckenhoupt
weights is known, see Kurtz and Wheeden [223]. �

Corollary 2.99. Let a function m : Rn → R satisfy the assumptions of Theorem
2.98 and let p and � satisfy the conditions i) and ii) of Corollary 2.97. Then m is
a Fourier multiplier in Lp(·)(Rn, �).

Proof. Follows from Theorem 2.98, since conditions on the weight � imposed in
Theorem 2.96, are fulfilled for � ∈ V osc

p(·)(R
n,Π) by Theorem 2.88 and Remark

2.86. �

In the next result by Δj denotes the interval of the form Δj = [2j , 2j+1] or
Δj = [−2j+1,−2j], j ∈ Z.

Theorem 2.100. Let p ∈ Plog
∞ (R) and let m be representable as

m(λ) =

ˆ λ

−∞
dμΔj , λ ∈ Δj ,

in each interval Δj, where μΔj are finite measures such that supj var μΔj < ∞. If

�p0 ∈ Ap/p0
(R) for some p0 ∈ (1, p−), then m is a Fourier multiplier in Lp(·)(R, �).

Proof. To derive Theorem 2.100 from Theorem 2.96, it suffices to refer to the
boundedness of the maximal operator in the space Lp(·)(R, �) (Theorem 2.88) and
the fact that in the case of constant p and � ∈ Ap, the theorem is known, see
Lizorkin [228] for � ≡ 1 and Kokilashvili [170, 171] for � ∈ Ap). �

Corollary 2.101. Let m satisfy the assumptions of Theorem 2.100 and let the ex-
ponent p and weight � fulfil the conditions i) and ii) of Corollary 2.97 with n = 1.
Then m is a Fourier multiplier in Lp(·)(R, �).

The “off-diagonal” Lp(·)(R, �) → Lq(·)(R, �)-version of Theorem 2.100 in the
case q(x) > p(x) is covered by the following theorem.
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Theorem 2.102. Let p ∈ Plog∞ (R) and let the function m : R → R be representable
in each interval Δj as

m(λ) =

λ̂

−∞

dμΔj (t)

(λ− t)α
, λ ∈ Δj ,

where 0 < α < 1
p+

and μΔj are the same as in Theorem 2.100. Then Tm is a

bounded operator from Lp(·)(R, �) to Lq(·)(R, �), where 1
q(x) =

1
p(x) − α and � is a

weight of form (2.217) whose exponents satisfy the conditions

α− 1

p(xk)
< βk <

1

p′(xk)
, k = 1, 2, . . . , N, and α− 1

p(∞)
< β∞ +

N∑
k=1

βk <
1

p′∞
.

Proof. We use the known fact (see Kokilashvili [173]) that the operator Tm is
bounded from Lp0(R, v) to Lq0(R, v) for p0 ∈ (1,∞), 0 < α < 1

p0
, 1

q0
= 1

p0
− α,

and a weight v satisfying the condition

sup
I

(
1

|I|
ˆ

I

vq0(x)dx

) 1
q0
(

1

|I|
ˆ

I

v−p′
0(x)dx

) 1
p0

, (2.218)

where the supremum is taken with respect to all intervals. The condition (2.218) is
satisfied if vq0 ∈ A1. Then inequality (2.198) with f = Tmg holds for every w ∈ A1.
Consequently, the statement of the theorem follows immediately from Part II of
Theorem 2.92, conditions (2.207)–(2.208) turning into the formulated inequalities
for the exponents βk, since dim(Ω) = dim∞(Ω) = 1, m(wk) = M(wk) = βk, k =
1, . . . , N , and m(w0) = M(w0) = β∞. �

Some additional properties of Fourier multipliers for the spaces Lp(·)(Rn) are
also given in Section 7.8.1.

All the statements in the following subsections are also similar direct conse-
quences of the general statement of Theorem 2.92 and results of Theorems 2.87
and 2.88 on the maximal operator in the weighted spaces Lp(·)(Ω, �), so that in
the sequel for the proofs we only make references to where these statements were
proved in the case of constant p and Muckenhoupt weights.

2.8.3 Multipliers of Trigonometric Fourier Series

In the Sections 2.8.3 and 2.8.4 we assume that the exponent p(x) is 2π-periodic
continuous on the real line.

With the help of Theorem 2.92 and known results for constant exponents,
we are now able to give a generalization of theorems on Marcinkiewicz multipliers
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and Littlewood–Paley decompositions for trigonometric Fourier series to the case
of weighted spaces with variable exponent.

Let T = [−π, π] and f be a 2π-periodic function with expansion

f(x) ∼ a0
2

+

∞∑
k=0

(ak cos kx+ bk sin kx). (2.219)

Theorem 2.103. Let a sequence λk satisfy the conditions

|λk| � A and

2k−1∑
j=2k−1

|λj − λj+1| � A,

where A > 0 does not depend on k. Suppose that

p ∈ P
log(T) and �p0 ∈ A(p̃(·))′(T) (2.220)

with some p0 ∈ (1, p−(T)). Given f ∈ Lp(·)(T, �), there exists a function F (x) ∈
Lp(·)(T, �) such that the series λ0a0

2 +
∞∑
k=0

λk(ak cos kx+bk sin kx) is Fourier series

for F and
‖F‖Lp(·)(T,
) � cA‖f‖Lp(·)(T,
)

where c > 0 does not depend on f ∈ Lp(·)(T, �).

Corollary 2.104. Theorem 2.103 remains valid if the condition p ∈ Plog(T) is
satisfied and � has the form

�(x) =

N∏
k=1

wk(|x− xk|), xk ∈ T (2.221)

where

wk ∈ W ([0, 2π]) and − 1

p(xk)
< m(wk) � M(wk) <

1

p′(xk)
. (2.222)

Theorem 2.105. Let the conditions (2.220) be fulfilled. For f given by (2.219), let

Ak(x) = ak cos kx+ bk sin kx, k = 0, 1, 2, . . . , A2−1 = 0.

Then there exist constants c1 > 0 and c2 > 0 such that

c1‖f‖Lp(·)(T,
) �
∥∥∥∥∥
( ∞∑

j=0

∣∣∣∣∣
2j−1∑

k=2j−1

Ak(x)

∣∣∣∣∣
2 ) 1

2
∥∥∥∥∥
Lp(·)(T,
)

� c2‖f‖Lp(·)(T,
) (2.223)

for all f ∈ Lp(·)(T, �).

In the case of constant p and � ∈ Ap this theorem was proved in Kurtz [222].
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2.8.4 Majorants of Partial Sums of Fourier Series

Let
S∗(f) = S∗(f, x) = sup

k�0
|Sk(f, x)|,

where Sk(f, x) =
k∑

j=0

Aj(x) is a partial sum of Fourier series.

Theorem 2.106. Let 1 < p− � p+ < ∞ and the condition (2.220) be fulfilled. Then

‖S∗(f)‖Lp(·)(T,
) � c‖f‖Lp(·)(T,
). (2.224)

In the case of constant p and � ∈ Ap, Theorem 2.106 was proved in Hunt
and Young [137].

Corollary 2.107. The inequality (2.224) is valid for p ∈ P(T) and weights � of
form (2.221)–(2.222).

2.8.5 Cauchy Singular Integral

The singular integral operator SΓ along a Carleson curve Γ in the weighted setting
was already studied in Section 2.4.4. The following theorem, obtained from the
extrapolation approach, complements the results of Section 2.4.4.

Theorem 2.108. Let Γ be a Carleson curve, p ∈ Plog
∞ (Γ) and �−p0 ∈ A(p̃(·)′)(Γ) for

some p0 ∈ (1, p−), where p̃(·) = p(·)
p0

. Then SΓ is bounded in Lp(·)(Γ, �).

We use the Muckenhoupt class

As(Γ)=

{
ρ : sup

t∈Γ
r>0

(
1

r

ˆ

γ(t,r)

ρs(τ)dν(τ)

)(
1

r

ˆ

γ(t,r)

ρ−s′(τ)dν(τ)

)s−1

<∞
}
, 1<s<∞,

where γ(t, r) := Γ ∩B(t, r).

For constant p and � ∈ Ap(Γ), Theorem 2.108 was proved in Khuskivadze,
Kokilashvili, and Paatashvili [167] and by Böttcher and Karlovich [31]. (As is
known, �−p0 ∈ A(p̃)′(Γ)) ⇐⇒ �p0 ∈ A p

p0
(Γ) for an arbitrary Carleson curve in the

case of constant p).

Corollary 2.109. Let Γ be a finite Carleson curve. The operator SΓ is bounded
in the space Lp(·)(Γ, �), if p ∈ P log(Γ) and the weight � has the form �(t) =∏N

k=1 wk(|t− tk|), tk ∈ Γ, where

wk ∈ W ([0, ν(Γ)]) and − 1

p(tk)
< m(wk) � M(wk) <

1

p′(tk)
.

A certain modification of Corollary 2.109 holds also for infinite Carleson
curves; for details in the case of power weights, we refer to Kokilashvili, Paatashvili,
and Samko [197].
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2.8.6 Multidimensional Singular-type Operators

Similarly, we can amend the results of Section 2.4.1 for multidimensional singular
operators (2.55) with a standard singular kernel K(x, y).

Theorem 2.110. Let Ω ⊆ R
n, 1 < p− � p+ < ∞ and the kernel K(x, y) fulfils

the conditions (2.56)–(2.57). If the operator T is bounded in L2(Ω) and �−p0 ∈
A(p̃)′(Ω) with p̃(·) = p(·)

p0
, then the operator T is bounded in the space Lp(·)(Ω, �).

In the case of constant p and � ∈ Ap, Theorem 2.110 was proved in Cordoba
and Fefferman [47].

Corollary 2.111. Let p ∈ Plog(Ω) and p(x) ≡ p(∞) = const for large |x| > R
in case Ω is unbounded. The operator T with the kernel satisfying the assump-
tions of Theorem 2.110 is bounded in the space Lp(·)(Ω, �) with the weight �(x) =∏N

k=1 wk(|x− xk|), xk ∈ Ω, where wk ∈ W (0, �), � = diamΩ, if

− 1

p(xk)
< m(wk) � M(wk) <

1

p′(xk)

and

− n

p(∞)
<

N∑
k=1

m∞(wk) �
N∑

k=1

M∞(wk) <
n

p′(∞)
.

Let

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x), x ∈ R
n,

be a commutator generated by the singular integral operator T over Rn, where
b ∈ BMO(Rn).

Theorem 2.112. Let p ∈ Plog∞ (Rn) and let the kernel K(x, y) fulfil the assumptions
of Theorem 2.110. Let b ∈ BMO(Rn). Then if �p0 ∈ Ap(·)/p0

(Rn), the commutator

[b, T ] is bounded in the space Lp(·)(Rn, �).

In the case of constant p and � ∈ Ap(R
n), Theorem 2.112 was proved in

Pérez [278]. In the case of variable p(·), the non-weighted case of Theorem 2.112
was proved in Karlovich and Lerner [161] under the assumption that 1 ∈ Ap(·)(Rn).

Corollary 2.113. Let p ∈ P(Rn), let the kernel K(x, y) satisfy the assumptions of
Theorem 2.110, and let b ∈ BMO(Rn). Then the commutator [b, T ] is bounded
in the space Lp(·)(Rn, �), if p(x) ≡ p(∞) for large |x| > R, and �(x) = w0(1 +

|x|)∏N
k=1 wk(|x− xk|), xk ∈ Rn, with the factors wk, k = 0, 1, . . . , N , satisfying

the conditions (2.194)–(2.195).

The next application is to pseudodifferential operators (PDO). We refer to
the books by Kumano-go [221], Taylor [358], Taylor [360] for the theory of PDO,
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but note that some basics of PDO will be later presented in Section 10.2 of Volume
2. For a pseudodifferential operator σ(x,D) defined by its symbol σ(x, ξ),

σ(x,D)f(x) =

ˆ

Rn

σ(x, ξ)e2πi(x,ξ)f̂(ξ) dξ,

we arrive at the following result.

Theorem 2.114. Let p ∈ Plog∞ (Rn) and let the symbol σ(x, ξ) satisfy the condition∣∣∂α
ξ ∂

β
xσ(x, ξ)

∣∣ � cαβ(1 + |ξ|)−|α|

for all the multi-indices α and β. Then under the condition �p0 ∈ Ap̃(R
n) with

p̃(·) = p(·)
p0

, the operator σ(x,D) admits a continuous extension to the space

Lp(·)(Rn, �).

In the case of constant p and � ∈ Ap Theorem 2.114 was proved in Miller [259].

Corollary 2.115. Let p ∈ P(Rn) and p(x) ≡ p(∞) for large |x|. Then the PDO
σ(x,D) is bounded in the weighted space Lp(·)(Rn, �), if � ∈ V osc

p(·)(R
n,Π).

2.8.7 Fefferman–Stein Function and Vector-valued Operators

Let M �f(x) be the Fefferman–Stein sharp maximal function, defined in (2.59).

Theorem 2.116. Let 1 < p− � p+ < ∞. Under the condition �p0 ∈ Ap̃(R
n) with

p̃(·) = p(·)
p0

, the inequality

‖M f‖Lp(·)(Rn,
) � C‖M �f‖Lp(·)(Rn,
) (2.225)

is valid for any measurable function f such that |{x : |f(x)| > t}| < ∞ for any
t > 0, where C does not depend on f .

In the case of constant p and � ∈ Ap inequality (2.225) was proved in Feffer-
man and Stein [88].

Corollary 2.117. The inequality (2.225) is valid, in particular, under the condi-
tions: p ∈ P(Rn), p(x) ≡ p(∞) for large |x|, and � ∈ V osc

p(·)(R
n,Π).

Let f = (f1, . . . , fk, . . . ), where fi : R
n → R are locally integrable functions.

Theorem 2.118. Let 0 < θ < ∞. Suppose that �p0 ∈ Ap̃(R
n) with p̃(·) = p(·)

p0
. Then∥∥∥∥∥

( ∞∑
j=1

(M fj)
θ

)1/θ∥∥∥∥∥
Lp(·)(Rn,
)

� C

∥∥∥∥∥
( ∞∑

j=1

|fj |θ
)1/θ∥∥∥∥∥

Lp(·)(Rn,
)

, (2.226)

where c > 0 does not depend on f .
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In the case of constant p and � ∈ Ap weighted inequalities for vector-valued
functions were proved in Kokilashvili [170, 171, 173], see also Andersen and John
[19].

Corollary 2.119. The inequality (2.226) is valid under the conditions

i) p ∈ P log(Rn) and p(x) ≡ p(∞) for large |x|,
ii) � ∈ V osc

p(·)(Ω,Π).

Remark 2.120. The corresponding statements for vector-valued operators are also
similarly derived from Theorem 2.92 in the case of singular integrals, commutators,
Fefferman–Stein maximal function, Fourier multipliers, etc.

2.9 Comments to Chapter 2

Some general references on weighted results

The problem of the boundedness of the maximal operator in Lp(·) spaces was solved
for bounded sets by Diening [62], who also showed the importance and geometric sig-
nificance of the log continuity condition in variable exponent spaces. His technique was
generalized to the case of unbounded sets by Cruz-Uribe, Fiorenza, and Neugebauer [51]
and Nekvinda [272]. We refer to Futamura and Mizuta [90], where the maximal operator
was studied in variable exponent Lebesgue spaces in some situations where p(x) may
approach 1.

The boundedness of the Riesz potential operators (Sobolev theorem) in the space
Lp(·)(Ω) was first proved in Samko [319] in the case of bounded domains Ω in R

n under
the condition on exponents and assumption that the maximal operator is bounded in
this space, the latter under the log-condition being later proved in Diening [62].

Further results were derived in Capone, Cruz-Uribe, and Fiorenza [39], Cruz-Uribe,
Fiorenza, Martell, and Perez [52], Diening [61], Futamura, Mizuta, and Shimomura [92].

The boundedness problem for Calderón–Zygmund operators defined on Euclidean
spaces was investigated in Diening and Růžička [64], Cruz-Uribe, Fiorenza, Martell, and
Perez [52]. We refer also to Mizuta and Shimomura [260] for related topics.

The results derived in Cruz-Uribe, Fiorenza, Martell, and Perez [52] are based on
an extrapolation theorem for operators acting in variable exponent Lebesgue spaces.

The extrapolation Theorem 2.90 with variable exponents in the Euclidean setting
was proved in Cruz-Uribe, Fiorenza, Martell, and Perez [52]. For extrapolation theorems
in the case of constant exponents we refer, e.g., to Rubio de Francia [305] and Harboure,
Maćıas, and Segovia [121].

The extrapolation theorem for operators in weighted spaces Lp(·)(X,w) on quasi-
metric measure spaces was proved in Kokilashvili and Samko [193], where it was used to
derive the boundedness of various operators of analysis.

Criteria for the boundedness of the Hardy–Littlewood maximal operator M in L
p(·)
w

was obtained in Hästö and Diening [129]. In Cruz-Uribe, Diening, and Hästö [53] it was

shown that a necessary and sufficient condition for the boundedness of M in L
p(·)
ρ (R) is

that ρ ∈ Ap(·)(R), provided that p ∈ P
log
∞ (Rn). The same result was derived by another

approach in Cruz-Uribe, Fiorenza, and Neugebauer [55].
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In Kokilashvili, Samko, and Samko [200] it was proved that if X is bounded and p ∈
P
log, then the condition �(x)p(x) ∈ Ap− guarantees the boundedness of M in Lp(·)(X, �).

Spaces (X, d, μ) of homogeneous type and all their generalizations arise naturally
when studying boundary value problems for partial differential equations with variable
coefficients, for instance, when the quasimetric is induced by a differential operator, or
tailored to fit kernels of integral operators. The problem of the boundedness of integral
operators arises naturally also in the Lebesgue spaces with non-standard growth. For
the definition, history, and essential properties of spaces of homogeneous type we refer
to the monographs Strömberg and Torchinsky [355], Coifman and Weiss [46], Edmunds,
Kokilashvili, and Meskhi [76], and references cited therein.

For Hardy spaces with variable exponents we refer to Nakai and Sawano [270].

Historically, the boundedness of the maximal and fractional integral operators
in spaces L

p(·)
μ (X) defined on quasimetric measure spaces was studied in Harjulehto,

Hästö, and Latvala [125], Harjulehto, Hästö, and Pere [124, 126], Kokilashvili and Meskhi
[183], Kokilashvili and Samko [191, 193], Kokilashvili, Samko, and Samko [200], Khabazi
[165, 166], Almeida and Samko [16], Futamura, Mizuta, and Shimomura [91], Almeida

and Samko [15]. Weighted inequalities for classical operators in the spaces L
p(·)
w with

radial power or oscillating weights were established in Kokilashvili and Samko [186, 187,
188, 189, 190], Kokilashvili, Samko, and Samko [200], Kokilashvili and Samko [193, 194],
Kokilashvili, Samko, and Samko [196, 198, 199], Edmunds and Meskhi [73], Samko and
Vakulov [330], Samko, Shargorodsky, and Vakulov [332], Diening and Samko [67] etc.,
while the same problems with general weights for Hardy, maximal and fractional inte-
gral operators were studied in Edmunds, Kokilashvili, and Meskhi [77, 78, 81], Koki-
lashvili and Meskhi [179, 181, 183], Kokilashvili, Meskhi, and Sarwar [202], Kokilashvili
and Samko [191], Asif, Kokilashvili, and Meskhi [23], Kopaliani [208], Cruz-Uribe, Di-
ening, and Hästö [53], Cruz-Uribe, Fiorenza, and Neugebauer [51], Mamedov and Zeren
[240, 242].

Comments to Section 2.1

The validity of the Riesz–Thorin interpolation theorem for the variable exponent spaces
Lp(·), stated in Theorem 2.1, was established by L. Diening; it is known in a more
general setting for Musielak–Orlicz spaces, see Musielak [265], Theorem 14.16. Theorem
2.1 follows from the fact that Lpθ(·)(Rn) is an interpolation space between Lp1(·)(Rn)
and Lp2(·)(Rn) under the method of real interpolation. For complex interpolation for
Lp(·)-spaces we refer to Diening, Hästö, and Nekvinda [68].

Theorem 2.4 was proved in Cruz-Uribe, Diening, and Hästö [53]; we refer also to its
presentation in the book Cruz-Uribe and Fiorenza [49]. The proof of Theorem 2.3 mainly
follows the same lines as for the case of constant exponent; the details of the proof for
variable exponents may be found in Kokilashvili and Samko [187].

For the Muckenhoupt class Ap with constant p (see (2.1)) we refer, for instance, to
Stein [352].

Comments to Section 2.2

In the presentation of the results in Section 2.2 we mainly follow the papers by Kara-
petyants and Samko [149] and Samko [308].

The notion of Zygmund–Bari–Stechkin class goes back to the paper Bari and
Stechkin [26].
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For MO indices (2.6)–(2.7) and their properties we refer to Karapetyants and Samko
[149], Krein, Petunin, and Semenov [217], Maligranda [235, 236], Matuszewska and Orlicz
[248], Samko [307, 308].

The statements of Theorem 2.10 were proved in Karapetyants and Samko [149], see
Theorems 3.1, 3.2 and 3.5 there (in the formulations in Karapetyants and Samko [149]
it was assumed that β � 0, γ > 0, and ϕ ∈ W0; it is evidently true also for ϕ ∈ W and
all β, γ ∈ R, in view of formulas (2.8)).

For the inequalities (2.26) and (2.27) we refer to Theorem 11.13 in Maligranda
[236].

Comments to Section 2.3

Theorem 2.19 was proved in Diening [62] for bounded sets Ω and in Cruz-Uribe, Fiorenza,
and Neugebauer [51] in the general case.

Statements of Sections 2.3.1 and 2.3.2 were proved in Kokilashvili, Samko, and
Samko [196]. Theorem 2.26 was stated in Khabazi [165], its proof presented in Kokilashvili
and Samko [192] for spaces on infinite curves, in view of applications; the proof in the
Euclidean case follows the same lines.

The non-Euclidean versions in Theorems 2.27 and 2.29 were proved in Kokilashvili,
Samko, and Samko [200], and Kokilashvili and Samko [192]. Note also a result of Karlo-
vich [157], related to Theorem 2.29, where power weights with a node at a whirling point
of a spiral type curve were allowed.

Variable exponent space on quasimetric measure spaces and maximal and potential
operators in such spaces were studied in Adamowicz, Harjulehto, and Hästö [4], Almeida
and Samko [14], Edmunds, Kokilashvili, and Meskhi [77], Futamura, Harjulehto, Hästö,
Mizuta, and Shimomura [93], Harjulehto, Hästö, and Pere [124, 126], Harjulehto, Hästö,
and Latvala [125], Khabazi [166], Kokilashvili and Samko [191].

Comments to Section 2.4

In this section we follow work of Kokilashvili, Paatashvili, and Samko [197], Kokilashvili,
Samko, and Samko [199], and Kokilashvili and Samko [191].

For the notion of the standard kernel for singular Calderón–Zygmund-type opera-
tors (2.55) we refer for instance to Journé [145]; Christ [43]; Duoandikoetxea [70, p. 99].

Theorem 2.33 for constant p is known, see Stein [352, p. 148], where it is given in
the non-weighted case.

Theorem 2.36 in the non-weighted case was proved in Diening and Růžička [64],
Diening [63].

Theorem 2.38 was proved in Kokilashvili and Samko [195], where there was also
given an application of this theorem to the boundedness of generalized singular operators
of Vekua type. In Karlovich and Spitkovsky [164] one can find an extension of Theorem
2.38 to the case of Carleson curves.

Conditions of type (2.61), (2.81) for the indices m(w),M(w) of the weight w are
sufficient for the boundedness of the singular operator, while the conditions − n

p(x0)
�

m(w � M(w) � n
p′(x0)

) are necessary. In the case of the Cauchy singular integral operator

on curves, this necessity statement was proved in Karlovich [156].

The estimate (2.74) in the Euclidean case was proved in Alvarez and Pérez [18]; in
the proof of Lemmas 2.41 and 2.42 we follow the ideas from that paper, adjusting them
for the case of Carleson curves.
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Theorem 2.45 was proved in Kokilashvili and Samko [192].

For the validity of the Kolmogorov inequality (2.76) (Kolmogorov [207]) on Carleson
curves see David [58], Hofmann [134]; note that this inequality is a consequence of the
fact that the singular operator on Carleson curves is of weak (1,1) type, see David [58].

Comments to Section 2.5

Theorem 2.50 was proved in Samko [319] under the assumption that p ∈ P
log(Ω) and the

maximal operator is bounded in Lp(·)(Ω). Boundedness for p ∈ P
log(Ω) was later proved

in Diening [62].

Theorem 2.51 was proved in Capone, Cruz-Uribe, and Fiorenza [39] and Theorem
2.52 in Kokilashvili and Samko [188].

In Mizuta, Ohno, and Shimomura [261] Sobolev type theorem was proved in the
setting of the spaces of type Lp(·)(logL)q(·).

In the presentation of the BMO-result of Section 2.5.2 we follow the paper Samko
[328].

Note that in Izuki and Sawano [139] there was given an extension of the well-known
characterization of BMO in terms of p-norms to the case of variable p(x), see also Izuki,
Sawano, and Tsutsui [141].

The estimate (2.137) was proved in Samko [318, Corollary to Lemma 3.22] and a
simpler proof was given in Samko [326].

Lemma 2.57 in a different formulation was proved in Harjulehto, Hästö, and Latvala
[125], see also Almeida, Hasanov, and Samko [17] for an alternative proof; the Euclidean
version of Lemma 2.57, in a more general weighted setting, was proved in Samko [318].

The fractional operators Iαn and Iα defined in (2.115) and (2.116) were widely stud-
ied in the case of constant exponents, see, e.g., the book by Genebashvili, Gogatishvili,
Kokilashvili, and Krbec [104] and papers by Kokilashvili and Meskhi [175, 177] for Iα,
and the book by Edmunds, Kokilashvili, and Meskhi [76] and papers by Garćıa-Cuerva
and Gatto [97], Gatto [99], Gatto, Segovia, and Vagi [102], Gatto and Vagi [100, 101] for
Iαn and references therein. Theorems 2.58 and 2.59 were proved in Almeida and Samko
[16].

In the case of constant exponents p and α, the statement of Theorem 2.58 is known
to be valid without the doubling condition and with the optimal Sobolev exponent q
instead of the “quasi-Sobolev” exponent q̃, see Theorem 3.2 and Corollary 3.3 in Garćıa-
Cuerva and Gatto [97]. The progress achieved in Garćıa-Cuerva and Gatto [97] was based
on the weak estimate for the potential Iαn and the Marcinkiewicz interpolation theorem.

Theorem 2.59 for constant α but variable dimension N was proved in Harjulehto,
Hästö, and Latvala [125], where a certain modification Jα of the operator Iα was also
considered, |Iαf | � Jα(|f |), see Theorem 4.8 and Remark 4.9 in Harjulehto, Hästö, and
Latvala [125].

Theorem 2.62 was proved in Samko, Samko, and Vakulov [312], see also its modifi-
cation for Carleson curves in Kokilashvili and Samko [192]. Theorem 2.64 was proved in
Samko, Samko, and Vakulov [312], see also a correction in Samko, Samko, and Vakulov
[313].

Sections 2.5.6 and 2.5.7 are based on the papers Samko, Shargorodsky, and Vakulov
[332] and Samko and Vakulov [330].
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Comments to Section 2.6

In Section 2.6 we follow Hajiboyev and Samko [114, 113]. The generalized Riesz potential
operator IK defined in (2.167) in the constant exponent setting was studied for instance
in Gunawan [112], Nakai [268], where such potentials were studied in Orlicz spaces in
the case of X = R

n with the Euclidean metric, and in Nakai and Sumitomo [271], where
homogeneous spaces with constant dimension were allowed. We refer also to Pustyl’nik
[284] for the study of the similar generalized potentials in the Euclidean setting, in
rearrangement invariant spaces.

The statement of Theorem 2.72 is stronger than the previously known results even
in the case of constant p: the corresponding result in Nakai and Sumitomo [271] was
obtained under more restrictive assumptions on k(r). In the case where k(r) ≡ rα and p
is constant, when the corresponding Musielak–Orlicz space is the Lebesgue space Lq with
1
q
= 1

p
− α

N
, statements of the type of Theorem 2.72 were obtained earlier in Kokilashvili

and Meskhi [175] (see also Kokilashvili and Meskhi [177] and Edmunds, Kokilashvili, and
Meskhi [76, Thm. 6.1.1]) and in Garćıa-Cuerva and Gatto [97], Gatto [99], Gatto and
Vagi [100] (note that in Kokilashvili and Meskhi [175] there was also shown that the
growth condition (2.107) is necessary for the validity of such a Sobolev theorem).

The Gagliardo–Nirenberg inequality for generalized Riesz potentials in Musielak
spaces was proved in Mizuta, Nakai, Sawano, and Shimomura [262].

Let us mention that for the case of non-generalized potentials and constant p the
corresponding Sobolev theorem is known without the assumption that the measure is
doubling. In the case of variable exponent p(x) we have to impose this condition.

The dimension (2.187) was introduced in Samko [309].

Comments to Sections 2.7–2.8

Presentation in Sections 2.7–2.8 follows the paper Kokilashvili and Samko [193].

The results presented in Section 2.7.3 are extensions of the extrapolation results
for variable exponent Lebesgue spaces obtained in Cruz-Uribe, Fiorenza, Martell, and
Perez [52] in the non-weighted case and in the Euclidean setting, to the weighted case and
quasimetric measure spaces. For extrapolation theorems in the case of constant exponents
we refer to Rubio de Francia [305].

Local dimensions (2.188) were introduced in Samko and Vakulov [311], Samko [309].

The statement of Corollary 2.115 in the non-weighted case was proved, by a different
method, in Rabinovich and Samko [292].

In Bernardis, Dalmasso, and Pradolini [29] there was given a characterization of
weights governing the boundedness of generalized maximal functions and related integral
operators in weighted variable exponent Lebesgue spaces. In particular, for the fractional
maximal function Mα the following statement was obtained.

Theorem 2.121. Let 0 � α < n, w be a weight, and p ∈ P
log
∞ (Rn). Let q be the function

defined by 1/q(x) = 1/p(x)−α/n. Then Mα is bounded from Lp(·)(Rn, w) to Lq(·)(Rn, w)
if and only if there exists a positive constant C such that for every ball B,

‖wχB‖q(·) · ‖w−1χB‖p′(·) � c|B|1−α
n .

When α = 0 this result was earlier proved in Cruz-Uribe, Diening, and Hästö [53].



Chapter 3

Kernel Integral Operators

This chapter is devoted mainly to the study of the boundedness/compactness of
the weighted Volterra integral operators

Kvf(x) = v(x)

xˆ

0

k(x, t)f(t)dt, x > 0,

and

(Kvf)(x) = v(x)

xˆ

−∞
k(x, t)f(t)dt, x ∈ R,

in variable exponent Lebesgue spaces and variable exponent amalgam spaces
(VEAS) under the log-condition on exponents of spaces, where v is an a.e. positive
function.

We introduce some definitions for a kernel k.

Definition 3.1. Let I := (0, a), 0 < a � ∞. We say that a kernel k : {(x, y) :
0 < y < x < a} → (0,∞) belongs to the class V (I) (k ∈ V (I)) if there exists a
constant c1 such that for all x, y, t with 0 < y < t < x < a,

k(x, y) � c1k(x, t).

Definition 3.2. Let r be a measurable function on I := (0, a), 0 < a � ∞, with
values in (1,+∞). We say that a kernel k belongs to the class Vr(·)(I) if there
exists a positive constant c2 such that for a.e. x ∈ (0, a),

‖χ( x
2 ,x)

(·)k(x, ·)‖Lr(·)(I) � c2x
1

r(x) k
(
x,

x

2

)
.

Definition 3.3. Let r be a measurable function on I := R+ with values in (1,+∞).
We say that a kernel k belongs to the class V̄r(·)(I) if there exists a positive constant
c̄2 such that for a.e. x ∈ (0, a),

‖χ( x
2 ,x)

(·)k(x, ·)‖Lr(·)(I) � c̄2‖χ(x
2 ,x)

‖Lr(·)k
(
x,

x

2

)
.
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Example 3.4 (Lemma 3 of Ashraf, Kokilashvili, and Meskhi [22]). Let I := [0, a),
where 0 < a � ∞. Let α be a measurable function on I satisfying the condition
0 < α−(I) � α+(I) � 1. Suppose that r is a function on I with values in (1,+∞)
satisfying the condition r ∈ P log(I). Suppose that r(x) ≡ r0 ≡ const outside some
interval (0, b) when a = +∞. Then k(x, t) = (x − t)α(x)−1 ∈ V (I) ∩ Vr(·)(I) when
r(x) < 1

1−α(x) .

An example of a kernel k belonging to V (R) ∩ V̄r(·)(R) will be given later.

The next examples of kernels can be checked easily:

Example 3.5. Let I := [0, a), where 0 < a � ∞. Suppose that α is a measurable
function on I satisfying the condition 0 < α−(I) � α+(I) � 1. Let r be a function
on I with values in (1,+∞) satisfying the condition r, r̄ ∈ P log(I), where r(t) =
r(t1/σ). Suppose that r(x) ≡ r0 ≡ const outside some interval (0, b) when a = +∞.
Then k(x, y) = (xσ − yσ)α(x)−1 ∈ V (I) ∩ Vr(·)(I) when r(x) < 1

1−α(x) and σ > 0.

Example 3.6. Let I := [0, a), 0 < a � ∞. Let r be a function on I with values in
(1,+∞) such that r ∈ P log(I) and r is increasing on I. Suppose that r(x) ≡ r0 ≡
const outside some interval (0, b) when a = +∞. Further, let 0 < α− � α(x) � 1

and α(x)+β(x) > 2− 1
r(x) . Then k(x, y) = (x−y)α(x)−1lnβ(x)−1 x

y ∈ V (I)∩Vr(·)(I).

Example 3.7 (Power-logarithmic kernel). Let I := [0, a), 0 < a < ∞ and let r and
α be constants satisfying the condition 1/r < α � 1. Let a � γ < ∞ and β � 0.
If k(x, y) = (x− y)α−1 lnβ γ

(x−y) , then k(x, y) ∈ V (I) ∩ Vr(I).

For other examples of kernel k satisfying the condition k ∈ V (I) ∩ Vr(I),
where r is constant, we refer to Meskhi [253] (see also Meskhi [251]).

3.1 Preliminaries

3.1.1 Variable Exponent Lebesgue Spaces

Let us recall some definitions and auxiliary results regarding variable exponent
Lebesgue spaces.

Let (X,μ) be a complete σ-finite measure space without atoms. Suppose that
for an exponent p on X , the condition

1 < p−(X) � p+(X) < ∞ (3.1)

is satisfied.

Let ρ be a μ-a.e. positive function on X . The space L
p(·)
μ (X, �) is defined

with respect to the norm

‖f‖
L

p(·)
μ (X,
)

= inf
{
λ > 0 : Ip(·)

(
f�/λ
)
� 1
}
,

where

Ip(·)(g) =
ˆ

X

|g(x)|p(x)dμ(x).
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If � is constant, then we use the symbol L
p(·)
μ (X). In particular, if X is a

domain in Ω in Rn and μ is the Lebesgue measure, then we denote L
p(·)
μ (Ω, �)

by Lp(·)(Ω, �). Further, if dμ = w(x)dx, where w is a weight function on Ω and

dx is the Lebesgue measure, then we denote L
p(·)
μ (X) by L

p(·)
w (Ω), i.e., L

p(·)
w (Ω) =

Lp(·)(Ω, w(·)1/p(·)).
The next statement is well known (see Kováčik [212], Sharapudinov [340],

Samko [318]).

Proposition 3.8. Let for an exponent p condition (3.1) be satisfied. Then

(i) ‖f‖p+(X)

Lp(·)(X)
� Ip(fχX) � ‖f‖p−(X)

Lp(·)(X)
, ‖f‖Lp(·)(X) � 1,

‖f‖p−(X)

Lp(·)(X)
� Ip(·)(fχX) � ‖f‖p+(X)

Lp(·)(X)
, ‖f‖Lp(·)(X) � 1;

(ii) the Hölder inequality∣∣∣∣∣
ˆ

X

f(x)g(x)dx

∣∣∣∣∣ � ( 1

p−(X)
+

1

(p+(X))′
)
‖f‖Lp(·)(X) ‖g‖Lp′(·)(X)

holds for any f ∈ Lp(·)(X) and g ∈ Lp′(·)(X);

(iii) ‖f‖Lp(·)(X) � sup
‖g‖

Lp′(·)(X)
�1

∣∣∣∣∣
ˆ

X

f(y)g(y)dy

∣∣∣∣∣
for any f ∈ Lp(·)(X).

Lemma 3.9 (Diening [62]). Let I0 be an interval in R+. Then p ∈ P log(I0) if and
only if there exists a positive constant C such that

|J |p−(J)−p+(J) � C

for all intervals J ⊆ I0 with |J | > 0.

Remark 3.10. If p ∈ P log
∞ (R), then following conditions are satisfied at 0 and ∞:

|p(x)− p(0)| � A0

| ln |x|| , |x| � 1,

|p(x) − p∞| � A∞
ln |x| , |x| > 1.

Remark 3.11. Let I := R+. It is known that ‖χ(0,r)‖Lp(·)(R+) ≈ r1/p(0) as r → 0 if
p(x) satisfies the local log-condition continuity condition, and ‖χ(0,r)‖Lp(·)(R+) ≈
r1/p∞ as r →∞, if p ∈ P log∞ (I).
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Lemma 3.12. Let D > 1 be a constant and p ∈ P log∞ (R+). Then

1

c0
r

1
p(0) � ‖χ(r,Dr)‖Lp(·) � c0r

1
p(0) for 0 < r � 1,

and
1

c∞
r

1
p∞ � ‖χ(r,Dr)‖Lp(·) � c∞r

1
p∞ for r � 1,

where c0 � 1 and c∞ � 1 depend on D, but not on r.

The proof of this lemma is given in a more general setting latter in Section
13.1.2 of Volume 2 (see Lemma 13.2).

Example 3.13. Let I := R+. Let α be a measurable function on I satisfying the
condition 0 < α−(I) � α+(I) � 1. Suppose r ∈ P log

∞ (I) and r is non-increasing on
(a,∞) for some large a > 0. Then k(x, t) = (x − t)α(x)−1 ∈ V (I) ∩ V̄r(·)(I) when
(αr′)+(I) > 1.

Indeed, first it is easy to check that k ∈ V (I). Further, to prove that k ∈
V̄r(·)(I) we need to show

I(x) := ‖(x− ·)α(x)−1χ(x/2,x)(·)‖Lr(·) � c‖χ(x/2,x)(·)‖Lr(·)xα(x)−1, (3.2)

where the constant c does not depend on x. Since r ∈ P log∞ (I), by Lemma 3.9 for
x− t < 1, we have

(x− t)r(t) � c1(x− t)r(x) � c2(x− t)r(t) (3.3)

where c1 and c2 does not depend on x.
Since r is non-increasing, for x− t � 1, we have

(x− t)r(t) � (x− t)r(x). (3.4)

Consequently,

S(x) :=

xˆ

x/2

(x− t)(α(x)−1)r(t)dt

=

ˆ

{t: t∈(x/2,x), (x−t)<1}

(· · · ) +

ˆ

{t: t∈(x/2,x), (x−t)�1}

(· · · )

=: S1(x) + S2(x).

First we estimate S1(x). Taking into account (3.3) we have the following pointwise
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estimate:

S1(x) �
ˆ

{t: t∈(x/2,x), (x−t)<1}

(x− t)(α(x)−1)r(x)dt

�
xˆ

x/2

(x− t)(α(x)−1)r(x)dt = cx(α(x)−1)r(x)+1.

By using (3.4) for S2(x), we have

S2(x) �
ˆ

{t: t∈(x/2,x), (x−t)�1}

(x− t)(α(x)−1)r(x)dt

�
xˆ

x/2

(x− t)(α(x)−1)r(x)dt = cx(α(x)−1)r(x)+1.

Since I(x) � d for some positive constant d, Proposition 3.8 and Lemma 3.12 yield

I(x)

d
� cS(x)1/r−([x/2,x]) = cS(x)1/r(x)

= cxα(x)−1+ 1
r(x) � cxα(x)−1+ 1

r∞

= c‖χ(x/2,x)(·)‖Lr(·)(I)k(x/2, x).

Hence, we have estimate (3.2).

In the sequel the following notation will be used:

En := [2n, 2n+1); In := [2n−1, 2n+1); Vn := [a2n, a2n+1),

where a ∈ R+.

For the next statement we refer to Kopaliani [208].

Proposition 3.14. Let p and q be measurable functions on I := (a, b) (−∞ <
a < b � +∞) satisfying the condition 1 < p−(I) � p(x) � q(x) < q+(I) < ∞,
x ∈ I. Let p,q ∈ P log

∞ (I). Then there is a positive constant c, depending only on
p and q, such that for all f ∈ Lp(·)(I), g ∈ Lq′(·)(I) and all sequences of intervals
Ak := [xk, xk+1), where [xk, xk+1) are disjoint intervals satisfying the condition⋃

k[xk, xk+1) = I,∑
k

‖fχAk
‖Lp(·)(I)‖gχAk

‖Lq′(·)(I) � c‖f‖Lp(·)(I)‖g‖Lq′(·)(I).

In the next statement, we assume that the exponents are constant outside
some large interval; this is useful because it allows us to give the explicit values
of constants. For the next statement we refer to Kopaliani [208] in the case of a
finite interval, and Ashraf, Kokilashvili, and Meskhi [22] for an infinite interval.
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Proposition 3.15. Let p and q be measurable functions on I := (a, b) (−∞ <
a < b � +∞) satisfying the condition 1 < p−(I) � p(x) � q(x) < q+(I) < ∞,
x ∈ I. Let p,q ∈ P log(I). Suppose also that if b = ∞, then p(x) ≡ pc ≡ const,
q(x) ≡ qc ≡ const outside some large interval (a, d). Then there is a positive
constant c, depending only on p and q, such that for all f ∈ Lp(·)(I), g ∈ Lq′(·)(I)
and all sequences of intervals Sk := [xk−1, xk+1), where [xk, xk+1) are disjoint
intervals satisfying the condition ∪k[xk, xk+1) = I,∑

k

‖fχSk
‖Lp(·)(I)‖gχSk

‖Lq′(·)(I) � cCa,b‖f‖Lp(·)(I)‖g‖Lq′(·)(I).

Moreover, the value of Ca,b is defined as follows: Ca,b = [(b − a) + 1]2 if b < ∞,
and Ca,∞ = [(d− a) + 1]2 + 1 if b = ∞.

In the next statement the intervals Sk are replaced by Ia,bk , where

Ia,bk :=

[
a+

b − a

2k+1
, a+

b− a

2k−1

)
, k ∈ N,

for b < ∞;

Ia,∞k :=
[
a+ 2k−1, a+ 2k+1

)
, k ∈ Z.

Proposition 3.16. Let p and q be measurable functions on I := (a, b) (−∞ < a <
b � +∞) satisfying the condition 1 < p−(I) � p(x) � q(x) < q+(I) < ∞, x ∈ I.
Let p,q ∈ P log

∞ (I). Then there is a positive constant c, depending only on p and q,

such that for all f ∈ Lp(·)(I), g ∈ Lq′(·)(I) and all intervals Ia,bk ,∑
k

‖fχIa,b
k
‖Lp(·)(I)‖gχIa,b

k
‖Lq′(·)(I) � c‖f‖Lp(·)(I)‖g‖Lq′(·)(I).

Proof. The proof in the case of I = (0, 1) can be found in Ashraf, Kokilashvili,
and Meskhi [22]. For simplicity, let us assume that I = R+. In this case a = 0,
b = ∞ and consequently, I0,∞k = Ik. Now the proof follows in same manner as in
Kopaliani [210], Proposition 3.4, since the map g := I → (−1/2, 1/2) defined by
g(x) = arctanx

π keeps the property
∑
k

χg(Ik)(x) � 2. Details are omitted. �

Proposition 3.17 (Diening [62]). Let p and q be bounded variable exponents on Ω.
Then Lp(·)(Ω) ↪→ Lq(·)(Ω) if and only if q � p a.e. and

lim
λ→0

ˆ

Ω

λ
p(x)q(x)

p(x)−q(x) dx < +∞,

where 0 � λ < 1, and λ
p(x)q(x)

p(x)−q(x) = 0 is p(x) = q(x).
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Definition 3.18. Let Ω be an open set in Rn. Let 1 � p−. We say that the exponent
function p(·) ∈ P̃(Ω) if there is a constant 0 < δ < 1 such that

ˆ

Ω

δ
p(x)p−

p(x)−p− dx < +∞.

Remark 3.19. It follows from Proposition 3.17 that if 1 � p− and p ∈ P̃(Ω), then
Lp(·)(Ω) ↪→ Lp−(Ω).

3.1.2 Variable Exponent Amalgam Spaces (VEAS)

Let I be R or R+, and α = {In;n ∈ Z} be a partition of I consisting of disjoint
half-open intervals In, each of the form [a1, a2). Suppose that u is a weight on I.
Let

‖f‖
(L

p(·)
u (I),lq)α

:=

(∑
n∈Z

‖χIn(·)f(·)‖qLp(·)
u (I)

)1/q

.

We define the general amalgams with variable exponent as

(Lp(·)
u (I), lq)α = {f : ‖f‖

(L
p(·)
u (I),lq)α

< ∞}.

If u ≡ const, then (L
p(·)
u (I), lq)α is denoted by (Lp(·)(I), lq)α.

Let p ≡ pc ≡ const and u ≡ const. Then we have the usual irregular amalgam
(see Stewart and Watson [354]); if I = R and In = [n, n+ 1), then (Lpc(I), lq)α is
the amalgam space introduced by N. Wiener (see Wiener [372, 373]) in connection
with the development of the theory of generalized harmonic analysis.

We call (L
p(·)
u (I), lq)α irregular weighted amalgam spaces with variable ex-

ponent. If In = [n, n+ 1), then (L
p(·)
u (I), lq)α will be denoted by (L

p(·)
u (I), lq).

Let d = {[2n, 2n+1); n ∈ Z} and I = R+. We denote weighted dyadic amal-

gam with variable exponent by (L
p(·)
u (I), lq)d. Some properties regarding general

amalgams with variable exponent can be derived in the same way as for usual
irregular amalgams (Lp

u(R), l
q)α, where p is constant. Irregular amalgams were

introduced in Jakimovski and Russell [143] and studied in Stewart and Watson
[354].

Theorem 3.20. Let p be a measurable function on I with 1 < p−(I) � p+(I) <
∞ and q be constant with 1 < q < ∞. The irregular amalgams with variable
exponent (Lp(·)(I), lq)α is a Banach space whose dual space is (Lp(·)(I), lq)∗α =
(Lp′(·)(I), lq

′
)α. Further, the Hölder inequality holds in following∣∣∣∣∣

ˆ

I

f(t)g(t)dt

∣∣∣∣∣ � ‖f‖(Lp(·)(I),lq)α‖g‖(Lp′(·)(I),lq′ )α .
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Proof. Since Lp(·) is a Banach space and the dual of Lp(·) is given by
(
Lp(·))∗ =

Lp′(·), general arguments (see Day [59], Fournier and Stewart [89], Köthe [211],
Stewart and Watson [354]) yield the claimed result. �

The next statement for more general amalgams (X, lq), where X is a Banach
space, can be found in Stewart and Watson [354].

Theorem 3.21. Let p be a measurable function on I and 1 � q1 � q2. Then

(Lp(·)(I), lq1)α ⊂ (Lp(·)(I), lq2)α.

Other structural properties of amalgams are investigated, e.g., in Fournier
and Stewart [89] and Stewart and Watson [354].

The next statement is a generalization of Theorem 4 in Stewart and Watson
[354] for variable exponent amalgams with weights.

Proposition 3.22. Let p, q be measurable functions on I such that 1 � q−(I) �
q(x) < p(x) � p+(I) < ∞, and let 1 � r < ∞. Then (L

p(·)
w (I), lr)α is continuously

embedded in (L
q(·)
v (I), lr)α if

S := sup
n∈Z

ˆ

In

(
v(x)

w(x)

) p(x)
p(x)−q(x)

w(x)dx < ∞. (3.5)

Conversely, if 1 < q−(I) � q+(I) < p−(I) � p+(I) < ∞, then condition (3.5) is

also necessary for the continuous embedding of (L
p(·)
w (I), lr)α into (L

q(·)
v (I), lr)α.

Proof. It is known (see Edmunds, Fiorenza, and Meskhi [79]) that the continuous

embedding L
p(·)
w (I) ↪→ L

q(·)
v (I) (q(x) < p(x)) holds if and only if

ˆ

I

(
v(x)

w(x)

) p(x)
p(x)−q(x)

w(x)dx < ∞.

Moreover, the estimate∥∥∥(v(·)/w(·))1/(p(·)−q(·))∥∥∥
L

q(·)
v∥∥∥(v(·)/w(·))1/(p(·)−q(·))∥∥∥

L
p(·)
w

�‖Id‖
L

p(·)
w →L

q(·)
v

�cmax

{
1,‖v(·)/w(·)‖

L

(
p(·)/q(·)

)′
w

}
(3.6)

holds, where the positive constant c depends only on p and q; Id is the identity
operator.

Let condition (3.5) hold. Then

‖Id‖
L

p(·)
w (In)→L

q(·)
v (In)

� ‖Id‖
L

p(·)
w (I)→L

q(·)
v (I)

< ∞.

Hence, (L
p(·)
w , lr)α ↪→ (L

q(·)
v , lr)α.
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Conversely, let the continuous embedding (L
p(·)
w , lr)α ↪→ (L

q(·)
v , lr)α hold and

let 1 < q−(I) � q+(I) < p−(I) � p+(I) < ∞. By taking functions supported in
In we can derive the estimate

sup
n∈Z

‖Id‖
L

p(·)
w (In) →L

q(·)
v (In)

� ‖Id‖
(L

p(·)
w (I),lr)α →(L

q(·)
v (I),lr)α

.

By applying the left-hand side inequality in (3.6) and Proposition 3.8 we conclude
that condition (3.5) is satisfied. �

3.1.3 Two-weighted Hardy Operator on the Real Line

Let v and w be a.e. positive measurable function on [a, b), −∞ < a < b � ∞,
and let

(H(a,b)
v,w f)(x) = v(x)

xˆ

a

f(t)w(t)dt, x ∈ [a, b).

Further, we denote

(HR+
v,wf)(x) = v(x)

xˆ

0

f(t)w(t)dt, x > 0,

(HR

v,wf)(x) = v(x)

xˆ

−∞
f(t)w(t)dt, x ∈ R.

Let us recall the two-weight criterion for the Hardy operator in the classical
Lebesgue spaces (see, e.g., Muckenhoupt [263], Kokilashvili [172]).

Theorem 3.23. Let r and s be constants such that 1 < r � s < ∞. Suppose that
0 � a < b � ∞. Let v and w be nonnegative measurable functions on (a, b). Then
the Hardy inequality( bˆ

a

v(x)

( xˆ

a

f(t)dt

)s

dx

)1/s

� c

( bˆ

a

w(t)(f(t))rdt

)1/r

, f � 0,

holds if and only if

A := sup
a�t�b

( bˆ

t

v(x)dx

)1/s( tˆ

a

w1−r′(x)dx

)1/r′

< ∞.

Moreover, if c is the best constant in the Hardy inequality, then there are positive
constants c1 and c2, depending only on r and s, such that c1A � c � c2A.
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To get the boundedness results for kernel operators we need to prove some
auxiliary results.

The following statement was obtained in Kopaliani [208] for a finite interval;
for the case of an infinite interval we refer to Kokilashvili and Meskhi [184].

Theorem 3.24. Let −∞ < a < b � +∞ and let p and q be measurable functions
on I := (a, b) satisfying the conditions: 1 < p−(I) � p(x) � q(x) � q+(I) < ∞,
p, q ∈ P log(I). We assume that p ≡ pc ≡ const, q ≡ qc ≡ const outside some large

interval (a, d) if b = ∞. Then H
(a,b)
v,w is bounded from Lp(·)(I) to Lq(·)(I) if and

only if

Aa,b := sup
a<t<b

‖χ(t,b)(·)v(·)‖Lq(·)(I)‖χ(a,t)(·)w(·)‖Lp′(·)(I) < ∞.

Moreover, there are positive constants c1 and c2, independent of the interval I,
such that

c1Aa,b � ‖H(a,b)
v,w ‖Lp(·)(I)→Lq(·)(I) � c2Ca,bAa,b

where the constant Ca,b is defined in Proposition 3.15.

Proof. Sufficiency. Let f � 0. Suppose that b < ∞ and that

bˆ

a

f(t)dt ∈ [2m0 , 2m0+1)

for some integer m0. We construct a sequence {xk} so that

xkˆ

a

fw =

xk+1ˆ

xk

fw = 2k.

It is easy to check that (a, b) =
⋃

k[xk, xk+1). Let g be a function satisfying the
condition ‖g‖Lq′(·)([a,b]) � 1. Applying the Hölder inequality for variable exponent
Lebesgue spaces and Proposition 3.15 we have that

bˆ

a

(
H(a,b)

v,w f
)
g �
∑
k

( xk+1ˆ

xk

gv

)( xk+1ˆ

0

fw

)

= 4
∑
k

( xk+1ˆ

xk

gv

)( xkˆ

xk−1

fw

)

� 4
∑
k

‖χ(xk,xk+1)(·)g(·)‖Lq′(·)(I)‖χ(xk,xk+1)(·)v(·)‖Lq(·)(I)

× ‖χ(xk−1,xk)(·)f(·)‖Lp(·)(I)‖χ(xk−1,xk)(·)w(·)‖Lp′(·)(I)

� 4Aa,b

∑
k

‖χ(xk,xk+1)(·)g(·)‖Lq′(·)(I)‖χ(xk−1,xk)(·)f(·)‖Lp(·)(I)

� 4Ca,bAa,b‖f(·)‖Lp(·)(I)‖g(·)‖Lq′(·)(I),
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where Ca,b is the constant defined in Proposition 3.15. Taking now the supremum
with respect to g we have sufficiency for b < ∞.

Let now b = ∞. Then

‖H(a,∞)
v,w f‖Lq(·)((a,+∞)) �

∥∥∥v(x) xˆ

a

fw
∥∥∥
Lq(·)((a,d))

+
∥∥∥v(x) xˆ

a

fw
∥∥∥
Lqc ([d,+∞))

:= I1 + I2.

Applying arguments already used we have that I1 � 4Ca,∞Aa,+∞, where Ca,∞ =
[(d− a) + 1]2. Further, thanks to the Hölder inequality and Theorem 3.23

I2 �
∥∥v(x) dˆ

a

fw
∥∥
Lqc ([d,+∞))

+
∥∥v(x) xˆ

d

fw
∥∥
Lqc ([d,+∞))

� ‖v(·)χ[d,+∞)(·)‖Lq(·)‖w(·)χ[a,d)(·)‖Lp′(·)‖f‖Lp(·) + 4Aa,+∞‖f‖Lp(·)(I)

� 5Aa,+∞‖f‖Lp(·)(I).

To get the lower bound for ‖Hv,w‖Lp(·)(I)→Lp(·)(I) is trivial by choosing the appro-

priate test function f(x) = χ(a,t)(x), a < t < b, for the boundedness of HI
v,w from

Lp(·)(I) to Lq(·)(I). �
Corollary 3.25. Let p(·) and q(·) be defined on R+ and satisfy the conditions of
Theorem 3.24. Then for all n ∈ Z,∥∥∥∥v(x)

xˆ

2n

f(t)w(t)dt

∥∥∥∥
Lq(·)([2n,2n+1])

� D‖f‖Lp(·)([2n,2n+1]),

where D = max{c(2d+ 1)2, 4} sup
n∈Z

A2n,2n+1, A2n,2n+1 is defined in Theorem 3.24,

and the constant c depends only on p and q.

Proof. By the hypothesis, p and q are constant outside some large interval (0, d).
Let d ∈ [2m0−1, 2m0) for some integer m0. Then, by Theorem 3.24, for n � m0,

‖H(2n,2n+1)
v,w ‖Lp(·)([2n,2n+1))→Lq(·)([2n,2n+1)) � c(2n + 1)2A2n,2n+1

� c(2m0 + 1)2A2n,2n+1

� c(2d+ 1)2 sup
n∈Z

A2n,2n+1,

where the positive constant c depends only on p and q. If n > m0, then p and q
are constant on the intervals [2n, 2n+1). In this case, taking the proof of Theorem
3.24 into account we find that

sup
n>m0

∥∥H(2n,2n+1)
v,w

∥∥
Lp(·)([2n,2n+1])→Lq(·)([2n,2n+1])

� 4 sup
n∈Z

A2n,2n+1 . �
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Theorem 3.26. Let I = R+ and 1 < p−(I) � p(x) � q(x) � q+(I) < ∞. Suppose

that p, q ∈ P log
∞ (I). Then H

R+
v,w is bounded from Lp(·)(I) to Lq(·)(I) if and only if

D∞ := D∞(t) := sup
t>0

‖χ(t,∞)(·)v(·)‖Lq(·)(I)‖χ(0,t)(·)w(·)‖Lp′(·)(I) < ∞.

Proof. Sufficiency. Let f � 0, and
∞́

0

f(t)w(t)dt = ∞. We construct a sequence

{xk} so that
xkˆ

0

fw =

xk+1ˆ

xk

fw = 2k.

It is easy to check that [0,∞) =
⋃

k[xk, xk+1). Let g be a function satisfying
the condition ‖g‖Lq′(·)([a,b]) � 1. By applying the Hölder inequality for variable
exponent Lebesgue spaces and Proposition 3.14, we have that

∞̂

0

(
HR+

v,wf
)
g �
∑
k

( xk+1ˆ

xk

gv

)( xk+1ˆ

0

fw

)

= 4
∑
k

( xk+1ˆ

xk

gv

)( xkˆ

xk−1

fw

)

� 4
∑
k

‖χ(xk,xk+1)(·)g(·)‖Lq′(·)(I)‖χ(xk,xk+1)(·)v(·)‖Lq(·)(I)

× ‖χ(xk−1,xk)(·)f(·)‖Lp(·)(I)‖χ(xk−1,xk)(·)w(·)‖Lp′(·)(I)

� 4D∞
∑
k

‖χ(xk,xk+1)(·)g(·)‖Lq′(·)(I)‖χ(xk−1,xk)(·)f(·)‖Lp(·)(I)

� 4D∞‖f(·)‖Lp(·)(I)‖g(·)‖Lq′(·)(I).

Taking now the supremum with respect to g we obtain the sufficiency.
Necessity follows in the standard way, taking the test function f supported in (0, t)
with ‖f‖Lp(·) � 1. �

Remark 3.27. It is easy to see that the norm ‖χ(0,2n)(·)‖Lp′(·)(I) can be replaced

by ‖χEn(·)‖Lp′(·)(I). Further, if w is constant and p ∈ P log∞ (I), then D∞ < ∞ is
equivalent to the condition:

D̄∞ := sup
n∈Z

‖χEn(·)v(·)‖Lq(·)(I)‖χ(0,2n)(·)‖Lp′(·)(I) < ∞.

This follows from Lemma 3.12 and Remark 3.11. The fact that D∞ < ∞ implies
D̄∞ < ∞ is obvious.
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Conversely, let D̄∞ < ∞. Let us now take t ∈ I. Then t ∈ [2m, 2m+1) for
some m ∈ Z. Consequently,

D∞(t) �
∞∑

n=m

‖χEn(x)v(x)‖Lq(x)(I)‖χ(0,2m+1)(·)‖Lp′(·)(I)

� D̄∞

( ∞∑
n=m

‖χ(0,2n)(·)‖−1
Lp′(·)(I)

)
‖χ(0,2m+1)(·)‖Lp′(·)(I).

Hence,

D∞(t) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D̄∞
[( 0∑

n=m
2−n/p′(0)

)
2m/p′(0) +

( ∞∑
n=0

2−n/(p∞)′
)
2m/(p∞)′

]
� c1(p)D̄∞ if m < 0,

D̄∞
( ∞∑

n=m
2−n/(p∞)′

)
2m/(p∞)′ � c2(p)D̄∞ if m � 0,

where c1(p) and c2(p) are constants depending only on p. Finally, D∞ � cD̄∞.

3.1.4 Some Discrete Inequalities

Now we discuss some discrete weighted inequalities.

Let {un}n∈Z be a positive (weight) sequence. In the sequel, lp{un}(Z), 1 < p <

∞, will denote the class of all sequences {gk}k∈Z for which

‖gk‖lp{un}(Z)
=

( ∑
k∈Z

|gk|puk

)1/p

< ∞.

If uk is a constant sequence, then we denote lp{un}(Z) by lp(Z).

Sometimes we use the symbol T ({gk})(n) instead of T ({gk})n for a discrete
operator T .

Lemma 3.28 (see, e.g., Aguilar Cañestro and Salvador Ortega [9]). Let 1 < q <
q̄ < ∞ and 1

s = 1
q − 1

q̄ . Suppose that {un} and {vn} are sequences of positive real
numbers. The following statements are equivalent:

(i) There exists C > 0 such that the inequality{∑
n∈Z

(|an|un)
q

}1/q

� C

{∑
n∈Z

(|an|vn)q̄
}1/q̄

holds for all sequences {an} of real numbers.

(ii)

{∑
n∈Z

(unvn
−1)s
}1/s

< ∞.
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The next statement is the discrete Hardy inequality (see, e.g., Sinnamon
[347], Carton-Lebrun, Heinig, and Hofmann [41], Bennett [28]).

Lemma 3.29. Let p, q be constants such that 1 < p, q < ∞. Suppose that vk � 0,
wk > 0, k ∈ Z. Then there exists a constant c > 0 such that{∑

n∈Z

(
vn

n∑
k=−∞

ak

)q}1/q

� c

(∑
n∈Z

(
wnan

)p)1/p

holds for all nonnegative sequences {ak} ∈ lp{wp
k}
(Z), if and only if

(i) in the case 1 < p � q < ∞,

A1 := sup
m∈Z

( ∞∑
n=m

vqn

)1/q( m∑
n=−∞

w−p′
n

)1/p′

< ∞;

(ii) in the case 1 < q < p < ∞,

A2 :=

{∑
m∈Z

( ∞∑
n=m

vqn

)r/q( m∑
n=−∞

w−p′
n

)r/q′

w−p′
m

}1/r

< ∞,

where 1/r = 1/q − 1/p.

3.2 Kernel Operators in Lp(·) Spaces

This section deals with boundedness/compactness criteria for the weighted kernel
operator Kv in variable exponent Lebesgue spaces Lp(·). If Kv is bounded but
not compact, then the distance between Kv and the class of compact operators is
estimated from above and below.

3.2.1 Boundedness Criteria

Here we derive boundedness criteria for the operator Kv from Lp(·)(I) to Lq(·)(I),
where I is either a bounded interval (0, a) or R+.

Let us formulate and prove the main results.

The following notation will be used:

En := [2n, 2n+1); In := [2n−1, 2n+1); Vn := [a2n, a2n+1), a > 0.

Theorem 3.30. Let I := (0, a) be a bounded interval and let 1 < p−(I) � p(x) �
q(x) � q+(I) < ∞. Let k ∈ V (I) ∩ Vp′(·)(I). Assume that p, q ∈ P log(I). Then the
following statements are equivalent:

(i) ‖Kvf‖Lq(·)(I) � c‖f‖Lp(·)(I), f ∈ Lp(·)(I).
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(ii) Ca := sup
0<t<a

Ca(t) := sup
0<t<a

∥∥∥χ(t,a)(x)v(x)k(x,
x
2 )
∥∥∥
Lq(x)(I)

t1/p
′(0) < ∞.

(iii) C̄a := sup
n∈Z−

C̄a(n) := sup
n∈Z−

∥∥∥χVn−1(x)v(x)k(x,
x
2 )
∥∥∥
Lq(x)(I)

(a2n)1/p
′(0) < ∞.

Moreover, ‖Kv‖Lp(·)(I)→Lq(·)(I) ≈ Ca ≈ C̄a.

Proof. For simplicity we take a = 1. In this case Ca = C1 and C̄a = C̄1. First we
prove that (ii) ⇒ (i). Suppose that f � 0. We write

(Kvf)(x) = v(x)

x/2ˆ

0

k(x, t)f(t)dt+ v(x)

xˆ

x/2

k(x, t)f(t)dt

=: (K(1)
v f)(x) + (K(2)

v f)(x).

Hence,

‖(Kvf)(x)‖Lq(x)(I) � c‖(K(1)
v f)(x)‖Lq(x)(I) + ‖(K(2)

v f)(x)‖Lq(x)(I) =: S(1) + S(2).

It is easy to see that if k ∈ V (I) and 0 < t < x/2, then k(x, t) � ck(x, x
2 ).

Hence, using Theorem 3.24, we have that

S(1) � c

∥∥∥∥∥v(x)k(x, x/2)
( xˆ

0

f(t)dt

)∥∥∥∥∥
Lq(x)(I)

� cC1‖f‖Lp(·)(I).

Suppose now that ‖g‖Lq′(·)(I) � 1. Applying the Hölder inequality twice with

respect to the pairs of exponents (p(·), p′(·)), (q(·), q′(·)) (see Proposition 3.8),
Lemma 3.9 and the condition k ∈ Vp′(·)(I) we find that

1ˆ

0

v(x)

( xˆ

x/2

k(x, t)f(t)dt

)
g(x)dx

� c
∑
n∈Z−

ˆ

En−1

v(x)‖χ(x/2,x)(·)f(·)‖Lp(·)(I)‖χ(x/2,x)(·)k(x, ·)‖Lp′(·)(I)g(x)dx

� c
∑
n∈Z−

‖χIn−1(·)f(·)‖Lp(·)(I)

ˆ

En−1

v(x)x1/p′(x)k(x, x/2)g(x)dx

� c
∑
n∈Z−

‖χIn−1(·)f(·)‖Lp(·)(I)

∥∥∥χEn−1(x)v(x)x
1/p′(x)k(x, x/2)

∥∥∥
Lq(x)(I)

× ‖χEn−1(·)g(·)‖Lq′(·)(I)

� c
∑
n∈Z−

2n/p
′(0)‖v(x)k(x, x/2)χEn−1(x)‖Lq(x)(I)‖χIn−1(·)f(·)‖Lp(·)(I)

× ‖χEn−1(·)g(·)‖Lq′(·)(I) � cC1‖f‖Lp(·)(I)‖g‖Lq′(·)(I) � cC1‖f‖Lp(·)(I).
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Taking the supremum with respect to g and combining the estimates for S(1)

and S(2) yields the desired result.

(i) ⇒ (iii): Let us take fn(x) = χ(0,2n](x), where n ∈ Z−. Then, by Proposition
3.8 (part (i)) and Lemma 3.9,

‖fn‖Lp(·)(I) � c2n/p+((0,2k]) � c2n/p(0).

On the other hand, since k ∈ V (I),

‖Kvf‖Lq(x)(I) � c‖χEn−1(x)v(x)k(x,
x

2
)x‖Lq(x)(I)

� c2n‖χEn−1(x)v(x)k(x,
x

2
)‖Lq(x)(I).

Hence, by the boundedness of Kv we conclude that

C̄1 := sup
n∈Z−

C̄1(n) := sup
n∈Z−

‖χEn−1(x)v(x)k(x,
x

2
)‖Lq(x)(I)2

n/p′(0) < ∞.

(iii) ⇒ (ii): Let us now take t ∈ I. Then t ∈ [2m−1, 2m) for some m ∈ Z−.
Consequently,

C1(t) �
0∑

n=m

‖χEn−1(x)v(x)k(x,
x

2
)‖Lq(x)(I)2

m/p′(0)

� C̄12
m/p′(0)

0∑
n=m

2−n/p′(0) � cC̄1,

i.e., C1 < cC̄1. �

For the case of R+ we have the next statement.

Theorem 3.31. Let I := R+ and let 1 < p−(I) � p(x) � q(x) � q+(I) < ∞. Let
k ∈ V (I) ∩ V̄p′(·)(I). Assume that p, q ∈ P log

∞ (I). Then the following statements
are equivalent

(i) ‖Kvf‖Lq(·)(I) � c‖f‖Lp(·)(I), f ∈ Lp(·)(I).

(ii) C̄∞ :=sup
n∈Z

C̄∞(n) :=sup
n∈Z

∥∥∥χEn(x)v(x)k(x,
x
2 )
∥∥∥
Lq(x)(I)

‖χ(0,2n)(·)‖Lp′(·)<∞.

(iii) C∞ :=sup
t>0

C∞(t) :=sup
t>0

∥∥∥χ(t,∞)(x)v(x)k(x,
x
2 )
∥∥∥
Lq(x)(I)

‖χ(0,t)(·)‖Lp′(·)(I)<∞.

Moreover, ‖Kv‖Lp(·)(I)→Lq(·)(I) ≈ C∞ ≈ C̄∞.

Proof. (iii) ⇒ (i): Suppose that f � 0. Write

(Kvf)(x) = v(x)

x/2ˆ

0

k(x, t)f(t)dt+ v(x)

xˆ

x/2

k(x, t)f(t)dt

=: (K(1)
v f)(x) + (K(2)

v f)(x).
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Then,

‖(Kvf)(x)‖Lq(x)(I) � ‖(K(1)
v f)(x)‖Lq(x)(I) + ‖(K(2)

v f)(x)‖Lq(x)(I) =: S(1) + S(2).

It is easy to see that if 0 < t < x/2, then k(x, t) � c1k(x,
x
2 ). Hence, taking

Theorem 3.26 into account we have that

S(1) � c

∥∥∥∥∥v(x)k(x, x/2)
( xˆ

0

f(t)dt

)∥∥∥∥∥
Lq(x)(I)

� cC∞‖f‖Lp(·)(I).

Suppose now that g � 0, ‖g‖Lq′(·)(I) � 1. Applying the Hölder inequal-

ity twice with respect to the pairs of exponents (p(·), p′(·)), (q(·), q′(·)) (see (ii)
of Proposition 3.8), Lemmas 3.9, 3.12, Proposition 3.16, and the condition k ∈
V̄p′(·)(I) we find that

∞̂

0

v(x)

( xˆ

x/2

k(x, t)f(t)dt

)
g(x)dx

� c
∑
n∈Z

ˆ

En

v(x)‖χ(x/2,x)(·)f(·)‖Lp(·)(I)‖χ(x/2,x)(·)k(x, ·)‖Lp′(·)(I)g(x)dx

� c
∑
n∈Z

‖χIn(·)f(·)‖Lp(·)(I)

ˆ

En

v(x)‖χ(x/2,x)(·)‖Lp′(·)k(x, x/2)g(x)dx

� c
∑
n∈Z

‖χIn(·)f(·)‖Lp(·)(I)‖χIn(·)‖Lp′(·)

ˆ

En

v(x)k(x, x/2)g(x)dx

� c
∑
n∈Z

‖χIn(·)f(·)‖Lp(·)(I)‖χ(0,2n)(·)‖Lp′(·)

∥∥∥χEn(x)v(x)k(x, x/2)
∥∥∥
Lq(x)(I)

× ‖χEn(·)g(·)‖Lq′(·)(I)

� cC∞‖f‖Lp(·)(I)‖g‖Lq′(·)(I) � cC∞‖f‖Lp(·)(I).

Taking the supremum with respect to g and combining the estimates for S(1)

and S(2) we obtain the desired result.

(i) ⇒ (ii): For necessity take the test function fn(x) = χ(0,2n)(x). Then, by Re-
mark 2,

‖fn‖Lp(·) ≈ 2n/p(0) if n < 0,

‖fn‖Lp(·) ≈ 2n/p∞ if n � 0.

Hence,
‖Kvfn‖Lq(·) � c2n‖χEn−1(x)v(x)k(x, x/2)‖Lq(·) .
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Using the boundedness of Kv we have

‖χEn−1(x)v(x)k(x, x/2)‖Lq(·)2n/p
′(0) < ∞ if n < 0 (3.7)

‖χEn−1(x)v(x)k(x, x/2)‖Lq(·)2n/p
′
∞ < ∞ if n � 0. (3.8)

Combining (3.7) and (3.8) we have the required conclusion. The last implication
(ii) ⇒ (iii) can be proved easily by applying the arguments used in Remark 3.27;
therefore, we omit the details. �

3.2.2 Compactness

In this section we derive criteria for the compactness of Kv from Lp(·) to Lq(·).
Let us formulate a sufficient condition for the compactness of a kernel opera-

tor in variable exponent Lebesgue spaces. For this statement we refer to Edmunds
and Meskhi [73].

Theorem 3.32. Let p(x) and q(x) be measurable functions on an interval I ⊆ R+.
Suppose that 1 < p−(I) � p+(I) < ∞ and 1 < q−(I) � q+(I) < ∞. If∥∥∥‖k(x, y)‖Lp′(y)(I)

∥∥∥
Lq(x)(I)

< ∞,

where k is a nonnegative kernel, then the operator

Kf(x) =

ˆ

I

k(x, y)f(y)dy

is compact from Lp(·)(I) to Lq(·)(I).

Theorem 3.33. Let I = (0, a), where 0 < a < ∞. Suppose that 1 < p−(I) �
p(x) � q(x) � q+(I) < ∞ and that k ∈ V (I) ∩ Vp′(·)(I). Further, assume that

p, q ∈ P log(I). Then the following statements are equivalent:

(i) Kv is compact from Lp(·)(I) to Lq(·)(I);
(ii) Ca < ∞ and lim

d→0+
Cd = 0, where

Cd := sup
0<t<d

Cd(t) := sup
0<t<d

∥∥∥χ(t,d)(x)v(x)k(x, x/2)
∥∥∥
Lq(x)(I)

t1/p
′(0);

(iii) C̄a < ∞ and lim
j→−∞

C̄a(j) = 0, where C̄a and C̄a(j) are defined in Theorem

3.30.

Proof. (ii) ⇒ (i): For simplicity assume that a = 1. Thus, Ca = C1. We represent
Kv as

Kvf(x) = K(1)
v f(x) +K(2)

v f(x),
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where
K(1)

v f(x) = χ(0,β](x)Kvf(x), K(2)
v f(x) = χ(β,1](x)Kvf(x),

and 0 < β < 1.

Observe that, by Proposition 3.8 and Lemma 3.9,

‖χ(x/2,x)‖Lp(·)(I) ≈ x1/p′(0).

Hence, the condition k ∈ V (I) ∩ Vp′(·)(I) yields:∥∥∥χ(β,1](x)v(x)
∥∥χ(0,x](y)k(x, y)

∥∥
Lp′(y)(I)

∥∥∥
Lq(x)(I)

�
∥∥∥χ(β,1](x)v(x)

∥∥χ(0,x/2](y)k(x, y)
∥∥
Lp′(y)(I)

∥∥∥
Lq(x)(I)

+
∥∥∥χ(β,1](x)v(x)

∥∥χ(x/2,x](y)k(x, y)
∥∥
Lp′(y)(I)

∥∥∥
Lq(x)(I)

� c
∥∥χ(β,1](x)v(x)x

1/p′(0)k(x, x/2)
∥∥
Lq(x)(I)

� c
∥∥χ(β,1](x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

< ∞,

because C1 < ∞. Consequently, by Theorem 3.32, K
(1)
v is compact. Further, ac-

cording to Theorem 3.30 we have

‖Kv −K(1)
v ‖Lp(·)(I)→Lq(·)(I) � ‖K(2)

v ‖Lp(·)(I)→Lq(·)(I) � c sup
0<t<β

C1(t),

where the positive constant c depends only on p, q, and α. Letting β → 0, we have
that Kv is compact as a limit of compact operators.

(i)⇒ (iii): Suppose that fn(x) = 2−n/p(0)χ(0,2n)(x), n ∈ Z−. Then, by Proposition
3.8 and Lemma 3.9, we have that

∣∣∣∣
1ˆ

0

fn(x)ϕ(x)dx

∣∣∣∣ � cp‖fn(·)‖Lp(·)(I)‖ϕ(·)χ(0,2n)(·)‖Lp′(·)(I)

� c2−n/p(0)2n/p+((0,2n))‖ϕ(·)χ(0,2n)(·)‖Lp′(·)(I)

� c‖ϕ(·)χ(0,2n)(·)‖Lp′(·)(I) −→ 0

for all ϕ ∈ Lp′(x)(I) as n → −∞. Hence, fn converges weakly to 0 as n → −∞.
Further, it is obvious that

‖Kvfn‖Lq(·)(I) � c2n/p
′(0)∥∥χEn−1(x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

.

Finally, we conclude that lim
n→−∞ C̄1(n) = 0 because a compact operator maps

weakly convergent sequence into strongly convergent ones.
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(iii)⇒ (ii): Let d ∈ (0, 1). Then there exists an integerm such that d ∈ [2m−1, 2m),
and consequently,

Cd � sup
0<t<2m

∥∥χ(t,2m)(x)v(x)k(x, x/2)
∥∥
Lq(x)(I)

t1/p
′(0) =: sup

0<t<2m
A2m(t).

If t ∈ (0, 2m), then t ∈ [2n−1, 2n) for some integer n � m. Consequently, we obtain

A2m(t) �
∥∥χ(2n−1,2m)(x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

2n/p
′(0)

� 2n/p
′(0)

m∑
j=n

∥∥χEj−1(x)v(x)k(x, x/2)
∥∥
Lq(x)(I)

� 2n/p
′(0)

m∑
j=n

C̄1(j).2
−j/p′(0)

� c sup
j�m

C̄1(j).

If d → 0+, then 2m → 0+. Therefore lim
d→0+

Cd = 0 as lim
j→−∞

C̄1(j) = 0. �

Theorem 3.34. Let I = R+. Suppose that 1 < p−(I) � p(x) � q(x) � q+(I) < ∞
and that k ∈ V (I) ∩ V̄p′(·)(I). Further, assume that p, q ∈ P log

∞ (I). Then the
following statements are equivalent:

(i) Kv is compact from Lp(·)(I) to Lq(·)(I).
(ii) C̄∞ < ∞ and lim

n→−∞ C̄∞(n) = 0 = lim
n→∞ C̄∞(n),

where C̄∞ and C̄∞(n) are defined in Theorem 3.31.

(iii) C∞ < ∞ and lim
d→0+

Cd = lim
b→+∞

Cb = 0,

where C∞ is defined in Theorem 3.31 and

Cd := sup
0<t<d

Cd(t) := sup
0<t<d

∥∥χ(t,∞)(x)v(x)k(x, x/2)
∥∥
Lq(x)(I)

‖χ(0,t)(·)‖Lp′(·) ,

Cb := sup
t�b

Cb(t) := sup
t�b

∥∥χ(t,∞)(x)v(x)k(x, x/2)
∥∥
Lq(x)(I)

‖χ(0,t)(·)‖Lp′(·) .

Proof. First we show that (iii) ⇒ (i) holds. We represent Kvf =
∑4

n=1 K
(n)
v f ,

where

K(1)
v f(x) = χ(0,d)(x)(Kv(χ(0,d)f)(x),

K(2)
v f(x) = χ[d,b)(x)Kv(χ(0,b)f)(x),

K(3)
v f(x) = χ[b,∞)(x)Kv(χ(0,b/2]f)(x),

K(4)
v f(x) = χ[b,∞)Kv(χ(b/2,∞)f)(x),
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where 0 < d < 1 < b < ∞. Now observe that

K(2)
v f(x) =

ˆ

I

k(2)(x, y)f(y)dy,

where k(2)(x, y) = v(x)χ[d,b)(x)k(x, y) if 0 < y < x < ∞, and k(2)(x, y) = 0 if

0 < x � y < ∞. Consequently, since k ∈ V (I) ∩ V̄p′(·)(I), we have for K
(2)
v ,∥∥χ[d,b](x)v(x)

∥∥k(2)(x, y)∥∥
Lp′(y)(I)

∥∥
Lq(x)(I)

=
∥∥χ[d,b](x)v(x)

∥∥χ(0,x)(y)k(x, y)
∥∥
Lp′(y)(I)

∥∥
Lq(x)(I)

�
∥∥χ[d,b](x)v(x)

∥∥χ(0,x/2)(y)k(x, y)
∥∥
Lp′(y)(I)

∥∥
Lq(x)(I)

+
∥∥χ[d,b](x)v(x)

∥∥χ[x/2,x)(y)k(x, y)
∥∥
Lp′(y)(I)

∥∥
Lq(x)(I)

�
∥∥χ[d,b](x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

∥∥χ(0,b/2)(y)
∥∥
Lp′(y)(I)

+
∥∥χ[d,b](x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

∥∥χ(d/2,b)(y)
∥∥
Lp′(y)(I)

� 2
∥∥χ[d,b](x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

∥∥χ(0,b)(y)
∥∥
Lp′(y)(I) =: J.

It is easy to see that J < ∞, since C∞ < ∞. Hence, by Theorem 3.32,

we conclude that K
(2)
v is compact. Similarly, we can show that K

(3)
v is compact.

Applying now Theorem 3.31 for the interval (0, d) we find that

‖K(1)
v ‖Lp(·)(I)→Lq(·)(I) = ‖Kv‖Lp(·)([0,d))→Lq(·)([0,d)) � c sup

0<t<d
Cd(t)

as d → 0+, where the positive constant c depends only on p, q. Further following
the proof of Theorem 3.31 we have∥∥∥K(4)

v

∥∥∥
Lp(x)([b,∞))→Lq(x)([b,∞))

� c sup
t�b

‖χ(t,∞)(x)v(x)k(x, x/2)‖Lq(·)‖χ(0,t)(·)‖Lp′(·)

= c sup
t�b

Cb(t).

Further,

‖Kv−K(2)
v −K(3)

v ‖Lp(·)(I)→Lq(·)(I)�‖K(1)
v ‖Lp(·)(I)→Lq(·)(I)+‖K(4)

v ‖Lp(·)(I)→Lq(·)(I)

�c

(
sup

0<t<d
Cd(t)+sup

t�b
Cb(t)

)
where the positive constant c depends only on p, q and α. Letting d → 0+ and
b → +∞ we conclude that Kv is compact.

(i) ⇒ (ii): Let fn(x) = 2−n/p(0)χIn(x), n ∈ Z− and define fn(x) = 2−n/p∞χIn(x),
n > 0. Let us denote pn = p(0) for n < 0 and pn = p∞ for n � 0. Hence by the
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condition k ∈ V (I) and Proposition 3.8, Lemmas 3.9, 3.12 we have that∣∣∣∣
∞̂

0

fn(x)ϕ(x)dx

∣∣∣∣ � cp‖fn(·)‖Lp(·)(I)‖ϕ(·)χ(0,2n)(·)‖Lp′(·)(I)

� c2−n/pn‖χIn(·)‖Lp(·)‖ϕ(·)χ(0,2n)(·)‖Lp′(·)(I)

� c‖ϕ(·)χIn(·)‖Lp′(·)(I) → 0

for all ϕ ∈ Lp′(x)(I) as n → ±∞. Hence, fn converges weakly to 0 as n → ±∞.

Further, it is obvious that

‖Kvfn‖Lq(·)(I) � c2n/p
′(0)
∥∥∥χEn(x)v(x)k

(
x,

x

2

) ∥∥∥
Lq(x)(I)

for n � −1,

‖Kvfn‖Lq(·)(I) � c2n/p
′
∞
∥∥∥χEn(x)v(x)k

(
x,

x

2

)∥∥∥
Lq(x)(I)

for n > 1.

Finally we conclude that lim
n→±∞ C̄∞(n) = 0 because a compact operator maps

a weakly convergent sequence into a strongly convergent one. The implication (ii)
⇒ (iii) follows from estimates similar to those given in Remark 3.27; therefore we
omit details. �

3.2.3 Measure of Non-compactness

This section deals with two-sided estimates of the distance between the operator
Kv and the class of compact linear operators from Lp(·)(I) to Lq(·)(I) when I is
an interval (0, a), 0 < a � ∞, provided that p and q satisfy the log condition on I.

Let X and Y be Banach spaces. Suppose that K(X,Y ) (resp. FR(X,Y ))
denotes the class of compact linear operators (resp. finite rank operators) acting
from X to Y . Let us denote the distance from T to K(X,Y ) and from T to
FR(X,Y ) by

‖T ‖K(X,Y ) := dist{T,K(X,Y )}; α(T ) := dist{T, FR(X,Y )},
respectively, where T is a bounded linear operator from X to Y .

Theorem 3.35 (Meskhi [251, p. 80]). Let I := (0, a), where 0 < a � ∞. Assume that
X is a Banach space and that 1 < q−(I) � q+(I) < ∞. Let the Hardy–Littlewood
maximal operator defined on I be bounded in Lq(·)(I). Then

‖T ‖K(X,Lq(·)(I)
) = α(T )

for any bounded linear operator T from X to Lq(·)(I).
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Theorem 3.36. Let I := (0, a), where 0 < a < ∞. Suppose that 1 < p−(I) �
p(x) � q(x) � q+(I) < ∞. Let p, q ∈ P log(I) and let Ca < ∞ (see Theorem 3.30).
Then there exist two positive constants b1 and b2 such that

b1C � ‖Kv‖K(Lp(·)(I),Lq(·)(I)) � b2C,

where C := lim
β→0

Cβ, Cβ := sup
0<t<β

Ca(t), and Ca(t) is defined in Theorem 3.30.

Proof. For simplicity we assume that a = 1. In this case, by our notation, En = Vn.
The upper estimate follows immediately from the estimate

‖Kv −K(2)
v ‖Lp(·)(I)→Lq(·)(I) � ‖K(1)

v ‖Lp(·)(I)→Lq(·)(I) � cCβ ,

where K
(1)
v = χ(0,β](x)Kvf(x), K

(2)
v = χ[β,1](x)Kvf(x), 0 < β < 1 (see the

proof of Theorem 3.33 for the details) and the fact that K
(2)
v is compact (by

Theorem 3.32). To get the lower estimate, we take a positive number λ such
that λ > ‖Kv‖K(Lp(·)(I),Lq(·)(I)). Consequently, by Theorem 3.35, we have that

λ > α(Kv). Hence, there exist g1, . . . , gN ∈ Lq(·)(I) such that

α(Kv) � ‖Kv − F‖ < λ,

where Ff(x) =
∑N

j=1 αj(f)gj(x), αj are linear bounded functionals in Lp(·)(I) and
gi are linearly independent. Further, there exist ḡ1, . . . , ḡN such that the supports
of ḡi are in [σi, a], 0 < σi < a, and

‖Kv − F0‖ < λ,

where F0f(x) =
∑N

j=1 αj(f)ḡj(x). Suppose that σ = min{σj}. Then obviously,
suppF0f ⊂ [σ, a]. Let fn := χ(2n−1,2n+1). Then for negative integer n chosen so
that 2n+1 < σ, we have

λ‖fn‖Lp(·)(I) � ‖χEn(x)(Kvfn(x)− F0fn(x))‖Lq(x)(I)

� ‖χEn(x)(Kvfn)(x)‖Lq(x)(I)

�
∥∥∥∥χEn(x)v(x)

xˆ

x/2

k(x, y)fn(y)dy

∥∥∥∥
Lq(x)(I)

� c
∥∥χEn(x)v(x)xk(x, x/2)

∥∥
Lq(x)(I)

� c2n · ∥∥χEn(x)v(x)k(x, x/2)
∥∥
Lq(x)(I)

.

Further, using the condition p ∈ P log(I) and Lemma 3.9 we find that

λ � c
∥∥χEn(x)v(x)xk(x, x/2)

∥∥
Lq(x)(I)

2(n+1)/p′(0) = cC1(n+ 1),
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where the positive constant c depends only on p and q, and C1(n) is defined in
Theorem 3.30. Since λ is arbitrarily close to ‖Kv‖K(Lp(·)(I),Lq(·)(I)), we conclude
that

c lim
n→−∞C1(n) � ‖Kv‖K(Lp(·)(I),Lq(·)(I)).

Further, it is easy to check that (see also the proof of (iii) ⇒ (ii) in Theorem 3.30)

C � c lim
n→−∞C1(n),

where the positive constant c depends only on p and q. Now the result follows. �

Theorem 3.37. Let I := R+. Suppose that 1 < p−(I) � p(x) � q(x) � q+(I) < ∞
and that k ∈ V (I) ∩ V̄p′(·)(I). Let p, q ∈ P log∞ (I) and let C̄∞ < ∞ (see Theorem
3.31 for the definition of C̄∞). Then there exist two positive constants b1 and b2
depending only on p, q and the constants c1 and c̄2 defined in Definitions 3.1 and
3.3, respectively, such that

b1J � ‖Kv‖K(Lp(·)(I),Lq(·)(I)) � b2J, (3.9)

where

J = lim
n→∞ C̄∞(n) + lim

n→−∞ C̄∞(n).

Proof. The upper estimate follows immediately from the inequalities

‖Kv−K(2)
v −K(3)

v ‖Lp(·)(I)→Lq(·)(I)�‖K(1)
v ‖Lp(·)(I)→Lq(·)(I) + ‖K(4)

v ‖Lp(·)(I)→Lq(·)(I)

�c[sup
i�m
i∈Z

C̄∞(i) + sup
j�n
j∈Z

C̄∞(j)],

where K
(i)
v , i = 1, . . . , 4 are defined in Theorem 3.34 assuming d = 2m, b = 2n,

m < 0 and n > 0 (see the proof of Theorem 3.34 for the details), and the fact that,

according to Theorem 3.32, K
(2)
v and K

(3)
v are compact. To get the lower estimate

we take a positive number λ so that λ > ‖Kv‖K(Lp(·)(I),Lq(·)(I)). Consequently, by

Theorem 3.35, we have that λ > α(Kv). Hence, there exist g1, . . . , gN ∈ Lq(·)(I)
such that

α(Kv) � ‖Kv − F‖ < λ,

where Ff(x) =
∑N

j=1 αj(f)gj(x), αj are bounded linear functionals in Lp(·)(I),
and gi are linearly independent. Further, there exist ḡ1, . . . , ḡN such that supports
of ḡi are in [σi, ηi], 0 < σi < ηi < ∞, and

‖Kv − F0‖ < λ,

where F0f(x) =
∑N

j=1 αj(f)ḡj(x). Suppose that σ = min{σj}, η = max{ηj}.
Then obviously suppF0f ⊂ [σ, η]. Let fn := χ(2n−1,2n+1). Then since the condition
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k ∈ V (I), for a negative integer n chosen so that 2n+1 < σ, we find that

λ‖fn‖Lp(·)(I) � ‖χEn(x)(Kvfn(x)− F0fn(x))‖Lq(x)(I)

� ‖χEn(x)(Kvfn)(x)‖Lq(x)(I)

�
∥∥∥∥χEn(x)v(x)

xˆ

x/2

k(x, y)fn(y)dy

∥∥∥∥
Lq(x)(I)

� c1
∥∥χEn(x)v(x)xk(x, x/2)

∥∥
Lq(x)(I)

� c12
n
∥∥χEn(x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

.

Further, using the assumptions that p ∈ P log
∞ (I) and k ∈ V (I) together with

Lemma 3.12, we find that

λ � d1
∥∥χEn(x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

2n/p
′(0),

where the positive constant d1 depends only on p, q, and the constant c1 from
Definition 3.1. Consequently, we have λ � d1 lim

n→−∞ C̄∞(n).

Similarly, let fm := χ(2m−1,2m+1). Now choosing a positive integer m so that
2m+1 > η and using Lemma 3.9 we find that

λ � d2
∥∥χEm(x)v(x)k(x, x/2)

∥∥
Lq(x)(I)

2m/(p∞)′ ,

where the positive constant d2 depends only on p, q, and the constant c1 from
Definition 3.1. Hence, λ � d2 lim

m→+∞ C̄∞(m).

Since λ is arbitrarily close to ‖Kv‖K(Lp(·)(I),Lq(·)(I)), we conclude that the
lower estimate in (3.9) holds. �

Analogously follows the next statement, proof of which is omitted.

Theorem 3.38. Let I := R+. Suppose that 1 < p−(I) � p(x) � q(x) � q+(I) < ∞
and that k ∈ V (I) ∩ V̄p′(·)(I). Let p, q ∈ P log

∞ (I) and let C∞ < ∞ (see Theorem
3.31 for the definition of C∞). Then there exist two positive constants e1 and e2
depending only on p, q and the constants c1 and c̄ defined in Definitions 3.1 and
3.3, respectively, such that

e1U � ‖Kv‖K(Lp(·)(I),Lq(·)(I)) � e2U,

where
U = lim

d→0+
Cd + lim

b→+∞
Cb

and Cb and Cd are defined in Theorem 3.34.

Results similar to Theorems 3.37 and 3.38 were derived in Meskhi [251,
pp. 80–81] for the weighted variable exponent Riemann–Liouville operator (we
refer to Edmunds, Kokilashvili, and Meskhi [76, Chap. 2] for the kernel operator
in the classical Lebesgue spaces).
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3.2.4 The Riemann–Liouville Operator with Variable Parameter

Now we are ready to apply the results of the previous subsections (see also Ex-
amples 3.4 and 3.13) to derive weighted boundedness/compactness criteria for the
weighted Riemann–Liouville operator with variable parameter

Rα(x)
v f(x) = v(x)

xˆ

0

f(t)

(x− t)1−α(x)
dt, x > 0,

in variable exponent Lebesgue spaces; here v is an almost everywhere positive
measurable function.

Let us recall the notation:

En := [2n, 2n+1); Vn := [a2n, a2n+1), a > 0.

First we treat the boundedness problem.

Theorem 3.39. Let I := (0, a) be a bounded interval and let 1 < p−(I) � p(·) �
q(·) � q+(I) < ∞. Suppose that α(·) is a variable parameter satisfying the con-
dition (αp)+ > 1 and that p, q, α ∈ P log(I). Then the following statements are
equivalent:

(i) ‖Rα(·)
v f‖Lq(·)(I) � c‖f‖Lp(·)(I), f ∈ Lp(·)(I).

(ii) Cα
a := sup

0<t<a
Cα

a (t) := sup
0<t<a

∥∥∥χ(t,a)(x)v(x)x
α(x)−1

∥∥∥
Lq(x)(I)

t1/p
′(0) < ∞.

(iii) C̄α
a := sup

n∈Z−
C̄α

a (n) := sup
n∈Z−

∥∥∥χVn−1(x)v(·)
∥∥∥
Lq(·)(I)

(a2n)α(0)−1/p(0) < ∞.

Moreover, ‖Kv‖Lp(·)(I)→Lq(·)(I) ≈ Cα
a ≈ C̄α

a .

Proof. The case α+ � 1 follows from Theorem 3.30 and Example 3.13. The case
α− � 1 follows from the obvious inequality (x − y)α(x)−1 � xα(x)−1, where 0 <
y < x, and Theorem 3.24.

It remains to consider the case α− < 1 < α+. This case can be reduced
to the previous cases by considering the norms defined with respect to the sets
{x : α(x) � 1} and {x : α(x) > 1} separately. �

The next result follows analogously:

Theorem 3.40. Let I := R+ and let 1 < p−(I) � p(·) � q(·) � q+(I) < ∞.
Assume that α(·) is a variable parameter satisfying the condition (αp)+ > 1.
Assume that there is a positive number a such that p is non-decreasing on (a,∞).
Let p, q, α ∈ P log

∞ (I). Then the following statements are equivalent:

(i) ‖Rα(·)
v f‖Lq(·)(I) � c‖f‖Lp(·)(I), f ∈ Lp(·)(I).

(ii) C̄α
∞ :=sup

n∈Z

C̄α
∞(n) :=sup

n∈Z

∥∥∥χEn(x)v(x)x
α(x)−1

∥∥∥
Lq(x)(I)

‖χ(0,2n)(·)‖Lp′(·)<∞.
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(iii) Cα
∞ :=sup

t>0
Cα

∞(t) :=sup
t>0

∥∥∥χ(t,∞)(x)v(x)x
α(x)−1

∥∥∥
Lq(x)(I)

‖χ(0,t)(·)‖Lp′(·)(I)<∞.

Moreover, ‖Rα
v ‖Lp(·)(I)→Lq(·)(I) ≈ Cα

∞ ≈ C̄α
∞.

Regarding the compactness we have the next statements:

Theorem 3.41. Let I = (0, a), where 0 < a < ∞. Suppose that p(·), q(·), and
α(·) satisfy the conditions of Theorem 3.39. Then the following statements are
equivalent:

(i) Rα(·)
v is compact from Lp(·)(I) to Lq(·)(I).

(ii) Cα
a < ∞ and lim

d→0+
Cα

d = 0, where

Cα
d := sup

0<t<d
Cα

d (t) := sup
0<t<d

∥∥∥χ(t,d)(x)v(x)x
α(x)−1

∥∥∥
Lq(x)(I)

t1/p
′(0).

(iii) C̄α
a < ∞ and lim

j→−∞
C̄α

a (j) = 0, where C̄α
a and C̄α

a (j) are defined in Theorem

3.39.

For an unbounded interval we have the next statement:

Theorem 3.42. Let I := R+ and let p(·), q(·) and α(·) satisfy the conditions of
Theorem 3.40. Then the following statements are equivalent:

(i) Rα(·)
v is compact from Lp(·)(I) to Lq(·)(I).

(ii) C̄α
∞ < ∞ and lim

n→−∞ C̄α
∞(n) = lim

n→+∞ C̄α
∞(n) = 0,

where C̄α
∞ and C̄α

∞(n) are defined in Theorem 3.40.

(iii) Cα∞ < ∞ and lim
d→0+

Cα
d = lim

b→+∞
Cα

b = 0,

where Cα
∞ is defined in Theorem 3.40 and

Cα
d := sup

0<t<d
Cα

d (t) := sup
0<t<d

∥∥∥χ(t,∞)(x)v(x)x
α(x)−1

∥∥∥
Lq(x)(I)

‖χ(0,t)(·)‖Lp′(·) ,

Cb := sup
t�b

Cb(t) := sup
t�b

∥∥∥χ(t,∞)(x)v(x)x
α(x)−1

∥∥∥
Lq(x)(I)

‖χ(0,t)(·)‖Lp′(·) .

Regarding the estimate of the measure of non-compactness of the operator

Rα(·)
v in variable exponent Lebesgue spaces we have the next two statements.

Theorem 3.43. Let I := (0, a), where 0 < a < ∞, and let p(·), q(·) and α(·) satisfy
the conditions of Theorem 3.39. Suppose that Cα

a < ∞ (see Theorem 3.39). Then
there exist two positive constants b1 and b2 depending only on p(·), q(·), and α(·),
such that

b1Cα � ‖Rα(·)
v ‖K(Lp(·)(I),Lq(·)(I)) � b2Cα,

where Cα := lim
β→0

Cα
β , C

α
β := sup

0<t<β
Cα

a (t), and Cα
a (t) is defined in Theorem 3.39.
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Theorem 3.44. Let I = R+ and let p(·), q(·) and α(·) satisfy the conditions of
Theorem 3.40. Suppose that C̄α

∞ < ∞ (see Theorem 3.40 for the definition of
C̄α∞). Then there exist two positive constants b1 and b2 depending only on p, q,
and α, such that

b1J
α � ‖Rα(·)

v ‖K(Lp(·)(I),Lq(·)(I)) � b2J
α, (3.10)

where

Jα = lim
n→+∞ C̄α

∞(n) + lim
n→−∞ C̄α

∞(n),

and C̄α
∞(n) is defined in Theorem 3.40.

3.3 Boundedness in Variable Exponent

Amalgam Spaces

This section is devoted to the study of the boundedness (and in some cases com-
pactness) of kernel, maximal, and fractional integral operators in VEAS. First
we prove a general type theorem (see Theorem 3.48) for Banach function spaces.
From that statement we deduce results regarding maximal and fractional integrals
in VEAS. Since the conditions of the general type theorem are difficult to check
for a general kernel operator, in this case we obtain boundedness/compactness
results without resorting to the general type statement.

3.3.1 General Operators on Amalgams

We begin this section with the definition of a Banach function space.

Definition 3.45. A Banach function space (BFS) X(R) on R (sometimes we use
the symbol X for X(R)) is a normed linear space of measurable functions on R

for which the following conditions are satisfied:

(A1) the norm ‖f‖X is defined for every measurable function f and ‖f‖X = 0
if and only if f = 0 almost everywhere;

(A2) ‖f‖X = ‖|f |‖X for every f ∈ X ;

(A3) if 0 � f � g μ-a.e., then ‖f‖X � ‖g‖X;

(A4) if 0 � fn ↑ f a.e., then ‖fn‖X ↑ ‖f‖X ;

(A5) if E is a measurable subset of R with finite measure, then ‖χE‖X < ∞,
where χE is the characteristic function of the set E;

(A6) for every measurable E ⊂ R with finite measure there exists a positive
constant cE such that

´
E f(x)dx � cE‖f‖X for every f ∈ X .
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For the BFS X(R), its associate space X ′(R) is given by

X ′(R) =

{
f :

ˆ

X

f(s)g(s)ds < ∞ for all g ∈ X(R)

}
,

and endowed with the associate norm

‖f‖X′ = sup

{ˆ
X

f(s)g(s)ds : ‖g‖X � 1

}
.

X ′(R) is also a Banach function space.

Both X and X ′ are complete linear spaces, and X ′′ = X . Moreover, for every
f ∈ X and g ∈ X ′, the Hölder inequality is fulfilled:ˆ

X

f(s)g(s)ds � ‖f‖X · ‖g‖X′. (3.11)

Definition 3.46 (Aguilar Cañestro and Salvador Ortega [9]). Let T be an operator
defined on a set of real measurable functions f on R. Define a sequence of local
operators by

(Tnf)(x) := T (fχ(n−1,n+2))(x), x ∈ (n− 1, n+ 2), n ∈ Z.

Let us assume that there is a discrete operator T d satisfying the following
conditions:

(i) There exists a positive constant c such that for all nonnegative functions f ,
x ∈ (n, n+ 1), and arbitrary n ∈ Z the inequality

T (fχ(−∞,n−1) + fχ(n+2,∞))(x) � cT d

( m̂

m−1

f

)
(n)

holds.

(ii) There is c > 0 such that for all sequences {ak} of nonnegative real numbers
and n ∈ Z, the inequality

T d({ak})(n) � cT f(y)

holds for all y ∈ (n, n+1) and all nonnegative f , where
ḿ

m−1

f =: am, m ∈ Z.

It is also assumed that T satisfies the conditions

Tf = T |f |, T (λf) = |λ|Tf, T (f + g) � Tf + Tg, T f � Tg iff � g.

We will say that an operator T satisfying all the conditions listed above is admis-
sible on R.
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We refer to Bennett and Sharpley [27] for a clear presentation of the funda-
mental properties of Banach function spaces.

For example, Hardy operators, Hardy–Littlewood maximal operators, frac-
tional integral operators, fractional maximal operators are admissible on R (see
Aguilar Cañestro and Salvador Ortega [9]).

A general type result for the admissible operators reads as follows:

Theorem 3.47 (Aguilar Cañestro and Salvador Ortega [9]). Let 1 < p, p̄, q, q̄ < ∞,
and let w and v be weight functions on R. Suppose that T is an admissible operator
on R. Then the inequality

‖vTf‖(Lp(R),lq) � c‖wf‖(Lp̄(R),lq̄)

holds for all measurable f if and only if

(i) T d is bounded from lq̄{wn} to lq{vn}, where

wn :=

( n̂

n−1

w−p̄′
)−q̄

p̄′

, vn :=

( n+1ˆ

n

v

) q
p

.

(ii) (a) sup
n∈Z

‖Tn‖[Lp̄

wp̄(n−1,n+2)→Lp
vp

(n−1,n+2)] < ∞ for 1 < q̄ � q < ∞.

(b) ‖Tn‖[Lp̄

wp̄(n−1,n+2)→Lp
vp

(n−1,n+2)] ∈ ls, where 1
s = 1

q − 1
q̄ for 1 < q < q̄ <

∞.

We establish a statement similar to Theorem 3.47 for amalgam spaces defined
with respect to a Banach function space, i.e., in the amalgam spaces, where instead
of the ‖ · ‖Lp(·)(R) norm is taken the Banach function norm ‖ · ‖X(R). This general
amalgam space will be denoted by (X(R), lq). The associate space of X(R) is
denoted by X ′(R).

It should be emphasized that by the change of variable z → log2 x it is possi-
ble to get appropriate boundedness or compactness results from dyadic amalgams
(Lp(·)(R+), l

q)d to amalgams defined on R.

Let, as before, T be an operator defined on a set of measurable functions on
R, and let Tv,w be an operator defined by

Tv,wf = vT (wf),

where v and w are a.e. positive functions on R.

Theorem 3.48. Let X(R) and Y (R) be Banach function spaces and let q and q̄ be
constants satisfying 1 < q, q̄ < ∞. Assume that w and v are weight functions on
R and that T is an admissible operator on R. Then the inequality

‖Tv,wf‖(Y (R),lq) � c‖f‖(X(R),lq̄) (3.12)
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holds if

(i) T d is bounded from lq̄{w̄n} to lq{v̄n}, where w̄n := ‖χ(n−1,n)(·)w(·)‖−q̄
X(R), v̄n :=

‖χ(n,n+1)(·)v(·)‖qY (R).

(ii) (a) sup
n∈Z

‖(Tn)v,w‖[X(n−1,n+2)→Y (n−1,n+2)] < ∞ for 1 < q̄ � q < ∞.

(b) ‖(Tn)v,w‖[X(n−1,n+2)→Y (n−1,n+2)] ∈ ls(Z) with 1
s = 1

q − 1
q̄ for 1 < q <

q̄ < ∞.

Conversely, let (3.12) hold. Then

1) condition (ii) is satisfied;

2) condition (i) is satisfied for w ≡ const.

Proof. Suppose that (i) and (ii) hold. Then

‖vTf‖(Y (R),lq) � c

{∑
n∈Z

‖T [wf(χ(−∞,n−1) + χ(n+2,∞))]v(·)‖qY (n,n+1)

}1/q

+ c

{∑
n∈Z

‖vTn(fw)‖qY (n,n+1)

}1/q

=: S1 + S2.

Let am :=
ḿ

m−1

fw. By the hypothesis and the Hölder inequality (see (3.11)),

S1 � c

{∑
n∈Z

(T d({am})(n))q‖χ(n,n+1)v‖qY (n,n+1)

}1/q

� c

{∑
n∈Z

aq̄n‖χ(n−1,n)w‖−q̄
X′(n−1,n)

}1/q̄

� c‖f‖(X(R),lq).

Let us estimate S2. Suppose that 1 < q̄ � q < ∞. Since the operators (Tn)v,w are
uniformly bounded we find that

S2 � c

{∑
n∈Z

‖f‖qX(n−1,n+2)

}1/q

� c

{∑
n∈Z

‖f‖q̄X(n−1,n+2)

}1/q̄

� c‖f‖(X(R),lq̄).

If 1 < q < q̄ < ∞, then by using the Hölder inequality (see (3.11)) we find that

S2 � c

{∑
n∈Z

‖(Tn)v,w‖q[
X(n−1,n+2)→Y (n−1,n+2)

]‖χ(n−1,n+2)f‖qX(R)

}1/q

� c

[{∑
n∈Z

‖(Tn)v,w‖
qq̄

q̄−q

} q̄−q
q
{∑

n∈Z

‖χ(n−1,n+2)f‖q̄X(R)

} q
q̄

]1/q
� c‖f‖(X(R),lq̄).
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Assume now that (3.12) holds. Let n ∈ Z and let f be a nonnegative function
supported in (n− 1, n+ 2). Then

‖f‖(X(R),lq̄) � 3‖fχ(n−1,n+2)‖(X(R)).

On the other hand,

‖Tv,wf‖(Y (R),lq) � ‖vχ(n−1,n+2)T (fw)‖Y (R) � ‖vTn(fw)‖Y (R).

Consequently,

‖vTn(fw)‖Y (R) � C‖fχ(n−1,n+2)‖X(R),

where the positive constant C does not depend on f and n. Hence, (a) of (ii) holds.
Let us now show that if 1 < q < q̄ < ∞, then (b) of (ii) holds as well.

Since

‖(Tn)v,w‖[X(R)→Y (R)] = sup
{f :‖f‖X(R)=1}

‖vTn(fw)‖Y (R),

we have that for each n, there exists a nonnegative measurable function fn,
with the support in (n − 1, n + 2) and with ‖χ(n−1,n+2)fn‖X(R) = 1, such that

‖(Tn)v,w‖X(R)→Y (R) < ‖vTn(fnw)‖Y (R) +
1

2|n| . So it is sufficient to prove that
‖vTn(fnw)‖X(R) ∈ ls.

Let {an} be a sequence of nonnegative real numbers and f =
∑

n anfn. For
each n ∈ Z, f(x) � anfn(x) and then v(x)T (fw)(x) � anv(x)Tn(fnw)(x) for all
x ∈ (n− 1, n+ 2).

Thus,

‖Tv,wf‖(Y (R),lq) �
{∑

n∈Z

caqn‖χ(n−1,n+2)vTn(fw)‖qY (R)

}1/q

= c
{∑

n∈Z

aqn‖vTn(fnw)‖qY (R)

}1/q
.

Hence, (3.12) yields that{∑
n∈Z

aqn‖vTn(fnw)‖qY (R)

}1/q

� c

{∑
n∈Z

‖χ(n−1,n+2)f‖q̄X(R)

}1/q̄

� c

{∑
n∈Z

aq̄n‖χ(n−1,n+2)fn‖q̄X(R)

}1/q̄

= c

{∑
n∈Z

aq̄n

}
.
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Finally, Lemma 3.28 shows that (b) of (ii) holds.

Now let us prove that (i) holds when w ≡ const. If {am} is a sequence of
nonnegative real numbers and if f :=

∑
m∈Z

amχ(m−1,m), then
´m
m−1 f = am, and

‖χ(n,n+1)f‖q̄X(R) = aq̄n‖χ(n,n+1)‖q̄X(R) = aq̄n. By the properties of T we have,

‖vTf‖(Y (R),lq) =

{∑
n∈Z

‖χ(n,n+1)vTf‖qY (R)

}1/q

�
{∑

n∈Z

‖χ(n,n+1)vT
d

( m̂

m−1

f

)
‖qY (R)

}1/q

� c

{∑
n∈Z

T d(am)q(n)‖χ(n,n+1)v‖qY (R)

}1/q

= ‖v̄nT d{am(n)}‖lq .

Hence,

‖v̄nT d{am(n)}‖lq � c

{∑
n∈Z

‖χ(n,n+1)f‖q̄X(R)

}1/q̄

= c

{∑
n∈Z

aq̄n

}1/q̄

= ‖an‖lq̄ ,

and so (i) holds. �

Proposition 3.49. Let p̄(·), p(·) be measurable functions on R satisfying the con-
ditions 1 < p−(R) � p+(R) < ∞ and 1 < p̄−(R) � p̄+(R) < ∞. Let q and q̄ be
constants satisfying 1 < q, q̄ < ∞. Assume that w and v are weight functions on
R and that T is an admissible operator on R. Then the inequality

‖vTf‖(Lp(·)(R),lq) � c‖wf‖(Lp̄(·)(R),lq̄) (3.13)

holds if

(i) T d is bounded from lq̄{w̄n} to lq{v̄n} where w̄n := ‖χ(n−1,n)(·)w−1(·)‖−q̄

Lp̄′(·) ,

v̄n := ‖χ(n,n+1)(·)v(·)‖qLp(·) .

(ii) (a) sup
n∈Z

‖Tn‖[
L

p̄(·)
w(·)p̄(·) (n−1,n+2)→L

p(·)
v(·)p(·)

(n−1,n+2)
] < ∞ for 1 < q̄ � q < ∞.

(b) ‖Tn‖[Lp̄(·)
w(·)p̄(·)

(n−1,n+2)→L
p(·)
v(·)p(·)

(n−1,n+2)]
∈ ls with 1

s = 1
q − 1

q̄ for 1 <

q < q̄ < ∞.

Conversely, let (3.13) hold. Then

1) condition (ii) is satisfied;

2) condition (i) is satisfied for w ≡ const or for p and p̄ being constant outside
some large interval [−m0,m0], m0 ∈ Z.
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Proof. The proof follows from Theorem 3.48. We only need to show that if (3.13)
holds, then condition (i) is satisfied for p and p̄ being constant outside some large
interval [−m0,m0], m0 ∈ Z.

Suppose now that w is a general weight and there is a positive integer m0

such that p, p̄ are constant outside [−m0,m0].

Taking

f(x) =
∑
m∈Z

amχ(m−1,m)(x)

( m̂

m−1

w−p̄′(y)(y)dy

)−1

w−p̄′(x)(x)

it is easy to see that
ḿ

m−1

f = am. Moreover, by Proposition 3.8 and the fact that

m̂

m−1

w−p̄′(y)(y)dy �
m0ˆ

−m0

w−p̄′(y)(y)dy < ∞, [m− 1,m] ⊂ [−m0,m0],

it follows that for m � m0 + 1,

‖χ(m−1,m)fw‖Lp̄(·) = am

( m̂

m−1

w−p̄′(y)(y)dy

)−1

‖χ(m−1,m)w
1−p̄′(·)‖Lp̄(·)

� cam

( m̂

m−1

w−p̄′(y)(y)dy

)−1/p̄+

(
[m−1,m)

)
,

where the positive constant c depends on m0. Since

‖vTf‖(Lp(·)(R),lq) � C‖v̄n(T d{am})(n)‖lq ,
using again Proposition 3.8 we find that

‖v̄n(T d{am})(n)‖lq � C

[∑
m

∥∥χ(m−1,m)fw‖q̄Lp̄(·)(R)

]1/q̄

� c

[∑
m

aq̄m

( m̂

m−1

w−p̄′(y)(y)dy

)−q̄/p̄+([m−1,m))]1/q̄
= ‖amw̄m‖lq̄ . �

Definition 3.50. Let T be an operator defined on a set of real measurable functions
f on R+. We say that T is admissible on R+ if the conditions of Definition 3.46
are satisfied with n replaced by 2n, n ∈ Z.

The next statement can be obtained in the similar manner as Theorem 3.48;
therefore we omit the proof.
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Theorem 3.51. Let X(R+) and Y (R+) be Banach function spaces. Let q and q̄ be
constants satisfying 1 < q, q̄ < ∞. Assume that w and v are weight functions on
R+ and that T is an admissible operator on R+. Then the inequality

‖Tv,wf‖(Y (R+),lq) � c‖f‖(X(R+),lq̄) (3.14)

holds if

(i) T d is bounded from lq̄{w̄n} to lq{v̄n} where w̄n := ‖χ(2n−1,2n)(·)w(·)‖−q̄
X(R), v̄n :=

‖χ(2n,2n+1)(·)v(·)‖qY (R).

(ii) (a) sup
n∈Z

‖(Tn)v,w‖[X(2n−1,2n+2)→Y (2n−1,2n+2)] < ∞ for 1 < q̄ � q < ∞.

(b) ‖(Tn)v,w‖[X(2n−1,2n+2)→Y (2n−1,2n+2)] ∈ ls with 1
s = 1

q − 1
q̄ for 1 < q <

q̄ < ∞.

Conversely, let (3.14) hold. Then

1) condition (ii) is satisfied;

2) condition (i) is satisfied for w ≡ const.

The following statement is a corollary of Theorem 3.51; therefore we omit
the proof.

Proposition 3.52. Let p̄(·), p(·) be measurable functions on R+ satisfying 1 <
p−(R+) � p+(R+) < ∞, 1 < p̄−(R+) � p̄+(R+) < ∞. Let q and q̄ be constants
satisfying 1 < q, q̄ < ∞. Suppose also that w and v are weight functions on R+

and that T is an admissible operator on R+.

Then the inequality

‖vTf‖(Lp(·)(R+),lq)d � c‖wf‖(Lp̄(·)(R+),lq̄)d (3.15)

holds if

(i) T d is bounded from lq̄{w̄n} to lq{v̄n}, where

w̄n :=‖χ(2n−1,2n)(·)w−1(·)‖−q̄

Lp̄′(·) , v̄n := ‖χ(2n,2n+1)(·)v(·)‖qLp(·) .

(ii) (a) sup
n∈Z

‖Tn‖[
L

p̄(·)
wp̄(·) (2

n−1,2n+2)→L
p(·)
vp(·)

(2n−1,2n+2)
] < ∞ for 1 < q̄ � q < ∞.

(b) ‖Tn‖[Lp̄(·)
wp̄(·) (2

n−1,2n+2)→L
p(·)
vp(·)

(2n−1,2n+2)]
∈ ls with 1

s = 1
q − 1

q̄ for 1 < q <

q̄ < ∞.

Conversely, if (3.15) holds, then

1) condition (ii) is satisfied;

2) condition (i) is also satisfied, but for w ≡ const, or for p and p̄ satisfying the
condition p ≡ const, p̄ ≡ const outside some large interval [0, 2m0], m0 ∈ Z.
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3.3.2 Two-weighted Hardy Operator

The next statement gives the two-weight inequality for Hv,w in variable exponent
dyadic amalgam spaces.

Proposition 3.53. Let I := R+ and let 1 < p̄−(I) � p̄(·) � p(·) � p+(I) < ∞. Let
1 < q̄, q < ∞. Suppose that p, p̄ ∈ P log(R+) and that p ≡ pc ≡ const outside some
large interval (0, b). Then the inequality

‖Hv,wf‖(Lp(·)(I),lq)d � c‖f‖(Lp̄(·),lq̄)d

with a positive constant independent of f holds if

(i) in the case 1 < q̄ � q < ∞,

(a) sup
m∈Z

{ ∞∑
n=m

‖χ[2n,2n+1)(·)v(·)‖qLp(·)

}1/q

×
{ m∑

n=−∞
‖χ[2n−1,2n)(·)w(·)‖q̄

′

Lp̄′(·)

}1/q̄′

< ∞,

(b) sup
n∈Z

sup
0<α<1

‖χ[2n+α,2n+1)(·)v(·)‖Lp(·)‖w(·)χ(2n,2n+α)(·)‖Lp̄′(·) < ∞;

(ii) in the case 1 < q < q̄ < ∞,

(a) {Cn} ∈ ls, where
Cn = sup

β∈(0,1)

‖χ[2n+β,2n+1)v(·)‖Lp(·)‖w(·)χ[2n,2n+β)‖Lp̄(·) ,

(b)

{∑
n∈Z

( ∞∑
k=n

‖χ[2k,2k+1)v(·)‖qLp(·)

)s/q

×
( n∑

k=−∞
‖χ[2k−1,2k)w‖1−q̄′

Lp′(·)

)s/q̄′

‖χ[2n,2n+1)v(·)‖qLp(·)

}1/s

< ∞,

where 1
s = 1

q̄ − 1
q .

Proof. Let 1 < q̄ � q < ∞. Suppose that f � 0. We write

(
Hv,wf

)
(x) = v(x)

2nˆ

0

f(t)w(t)dt + v(x)

xˆ

2n

f(t)w(t)dt

=: (H(1)
v,wf)(x) + (H(2)

v,wf)(x), x ∈ [2n, 2n+1].

(3.16)

We have

‖(Hv,wf)χ[2n,2n+1)(·)‖Lp(·)

� ‖v(·)χ[2n,2n+1)(·)‖Lp(·)

( 2nˆ

0

f(t)w(t)dt

)
+ ‖v(x)

xˆ

2n

f(t)w(t)dt‖Lp(·)([2n,2n+1))

=: S
(n)
1 + S

(n)
2 .
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Let ak :=
´ 2k
2k−1 fw. Then by the discrete Hardy inequality (see Lemma 3.29) and

the Hölder inequality with respect to the exponents p̄(·) and (p̄(·))′ we derive

(∑
n∈Z

(
S
(n)
1

)q)1/q

=

[∑
n∈Z

‖v(·)χ[2n,2n+1)(·)‖qLp(·)

(
n∑

k=−∞

2kˆ

2k−1

f(t)w(t)dt

)q
]1/q

� c

[∑
n∈Z

( 2nˆ

2n−1

f(t)w(t)dt

)q̄

‖w(·)χ[2n−1,2n)(·)‖−q̄

Lp̄′(·)

]1/q

� c

[∑
n∈Z

‖χ[2n−1,2n)(·)f(·)‖q̄Lp̄(·)

]1/q̄
= c‖f‖(Lp̄(·),lq̄)d .

Further, by Corollary 3.25 and Theorem 3.21,(∑
n∈Z

(
S
(n)
2

)q)1/q

=

[∑
n∈Z

‖v(x)
xˆ

2n

f(t)w(t)dt‖q
Lp(·)(2n,2n+1)

]1/q

� c

[∑
n∈Z

‖f(·)χ(2n,2n+1)(·)‖qLp̄(·)(2n,2n+1)

]1/q

� c

[∑
n∈Z

‖f(·)χ(2n,2n+1)(·)‖q̄Lp̄(·)(2n,2n+1)

]1/q̄
= c‖f‖(Lp̄(·),lq̄)d .

Let 1 < q < q̄ < ∞. Using representation (3.16) we derive

‖(Hv,wf)‖(Lp(·)(R+),lq)d �
[∑
n∈Z

‖χ[2n,2n+1)H
(1)
v,wf‖qLp(·)

]1/q

+

[∑
n∈Z

‖χ[2n,2n+1)H
(2)
v,wf‖qLp(·)

]1/q
=: S1 + S2.

We estimate S1 and S2 separately. First,

S1 =

[∑
n∈Z

‖χ[2n,2n+1)(·)v(·)‖qLp(·)

( 2nˆ

0

fw

)q]1/q

=

[∑
n∈Z

‖χ[2n,2n+1)(·)v(·)‖qLp(·)

(
n∑

k=−∞

2kˆ

2k−1

fw

)q]1/q
.



166 Chapter 3. Kernel Integral Operators

By the two-weight inequality for the discrete Hardy operator (see Lemma 3.29),
we have

S1 � c

[∑
n∈Z

‖χ[2n−1,2n)(·)w(·)‖−q̄

Lp̄′(·)

( 2nˆ

2n−1

fw

)q̄]1/q̄

� c

[∑
n∈Z

‖χ[2n−1,2n)(·)w(·)‖−q̄

Lp̄′(·)‖χ[2n−1,2n)f‖q̄Lp̄(·)‖χ[2n−1,2n)w‖q̄Lp̄′(·)

]1/q̄
� c‖f‖(Lp̄(·)(R+),lq̄)d .

Now we estimate S2. Using Corollary 3.25 for intervals (2n, 2n+1] and the Hölder
inequality, we find that

S2 � c

{∑
n∈Z

Cq
n‖χ[2n,2n+1)f‖qLp̄(·)

}1/q

� c

{(∑
n∈Z

‖χ[2n,2n+1)f‖q̄Lp̄(·)

)q/q̄(∑
n∈Z

C
qq̄

q̄−q
n

) q̄−q
q
}1/q

� c

(∑
n∈Z

Cs
n

)1/s

‖f‖(Lp̄(·)(R+),lq̄)d . �

3.3.3 Kernel Operators in (Lp(·)(R+), l
q)d and (Lp(·)(R), lq)

The conditions in the general type statements (see Propositions 3.49 and 3.52 )
are not easily verifiable for general kernel operators as well as for some concrete
fractional integral operators, such as the Riemann–Liouville fractional integral
operator with variable parameter. That is why we investigate mapping properties
of general kernel operators separately.

Let us recall that

(Kvf)(x) = v(x)

ˆ x

0

f(t)k(x, t)dt, x > 0

and

(Kvf)(x) = v(x)

ˆ x

−∞
k(x, t)f(t)dt x ∈ R.

One of our aims is to characterize a class of weights v governing the bound-
edness of Kv from (Lp̄(·), lq̄)d to (Lp(·), lq)d.

We will use the notation:

B1 := sup
m∈Z

[ ∞∑
n=m

‖χ(2n,2n+1](x)k
(
x,

x

2

)
v(x)‖q

Lp(·)

] 1
q
[ m∑
n=−∞

‖χ(2n−1,2n]‖q̄
′

Lp̄′(·)

] 1
q̄′

(3.17)
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and

B2 := sup
n∈Z

sup
0<α<1

‖χ(2n+α,2n+1]k(x, x/2)v(x)‖Lp(·)‖χ(2n,2n+α]‖Lp̄′(·) . (3.18)

Theorem 3.54. Let I := R+, 1 < p̄−(I) � p̄(x) � p(x) � p+(I) < ∞ and let
p̄, p ∈ P log(I). Suppose that q̄ and q are constants such that 1 < q̄ � q < ∞. Let
p(x) ≡ pc ≡ const and p̄(x) ≡ p̄c ≡ const outside some large interval (0, 2m0),
m0 ∈ Z. Let k ∈ V (I)

⋂
Vp̄′(·)(I). Then Kv is bounded from (Lp̄(·)(I), lq̄)d to

(Lp(·)(I), lq)d if and only if B < ∞, where B = max{B1, B2}.
Proof. Sufficiency. Using the representation

(Kvf)(x) = v(x)

x/2ˆ

0

k(x, t)f(t)dt+ v(x)

xˆ

x/2

k(x, t)f(t)dt

=: (K(1)
v f)(x) + (K(2)

v f)(x),

we have that

‖Kvf‖(Lp(·),lq)d � ‖K(1)
v f‖(Lp(·),lq)d + ‖K(2)

v f‖(Lp(·),lq)d .

Further, using Proposition 3.53 and the condition k ∈ V (I) into account we find
that ∥∥∥K(1)

v f
∥∥∥
(Lp(·)(I),lq)d

� c
∥∥∥v(x)k(x, x/2) xˆ

0

f(t)dt
∥∥∥
(Lp(·),lq)d

� cB‖f‖(Lp̄(·)(I),lq)d .

Now observe that by the condition k ∈ Vp̄′(·)(I), Proposition 3.8 and Lemma 3.9
we obtain

‖K(2)
v f‖(

Lp(·)([0,2m0+1)),lq
)
d

�
[

+∞∑
k=−∞

∥∥∥∥∥χ(2k,2k+1](x)v(x)

( xˆ

x/2

f(t)k(x, t)dt

)∥∥∥∥∥
q

Lp(x)

] 1
q

�
[ +∞∑
k=−∞

∥∥∥χ(2k,2k+1](x)v(x)‖χ(x/2,x)(·)f(·)‖Lp̄(·)‖χ(x/2,x)k(x, ·)‖Lp̄′(·)

∥∥∥q
Lp(x)

] 1
q

�
[ +∞∑
k=−∞

∥∥∥∥χ(2k,2k+1](x)v(x)x
1

p̄′(x) k(x, x/2)

∥∥∥∥q
Lp(x)

∥∥χ(2k−1,2k+1)(·)f(·)
∥∥q
Lp̄(·)

] 1
q

� c

[ +∞∑
k=−∞

2kq/(p̄)
′(2k)
∥∥∥∥χ(2k,2k+1](x)v(x)k(x, x/2)

∥∥∥∥q
Lp(x)

∥∥χ(2k−1,2k+1)(·)f(·)
∥∥q
Lp̄(·)

] 1
q



168 Chapter 3. Kernel Integral Operators

� cB̄1

[ +∞∑
k=−∞

‖χ(2k−1,2k)(·)f(·)‖qLp̄(·)

] 1
q

+ cB̄1

[ +∞∑
k=−∞

‖χ(2k,2k+1)(·)f(·)‖qLp̄(·)

] 1
q

� cB̄1‖f‖(Lp̄(·)(R+),lq̄)d ,

where
B̄1 := sup

n∈Z

∥∥∥χ(2n,2n+1](x)k
(
x,

x

2

)
v(x)
∥∥∥
Lp(x)

21/(p̄n)
′
,

p̄n :=

{
p̄(2n), if n � m0,

p̄c, if n > m0.

Now note that by Lemma 3.9, B̄1 ≈ Ā � cB1, where

Ā := sup
k∈Z

‖v(·)k(x, x/2)χ(2k,2k+1]‖Lp(·)‖χ(2k−1,2k](·)‖Lp̄′(·) .

Necessity. Let p̄n be the sequence defined above. Considering the test function
fn = χ(2n,2n+1]2

−n/p̄n in the boundedness of the operator Kv from (Lp̄(·)(I), lq̄)d
to (Lp(·)(I), lq)d and taking the condition k ∈ V (I) into account, we have that

In := ‖χ(2n,2n+1](x)v(x)k(x, x/2)‖Lp(x) � c2−n/(p̄n)
′
.

It is easy to see that

(i)

∞∑
n=m

In � c

(
2−m/p̄′(0) + 2−m0/p̄′

c

)
(3.19)

for m � m0;

(ii)

∞∑
n=m

In � c2−m0/p̄′
c (3.20)

for m � m0 + 1.

Denoting Sm :=

[ ∞∑
n=m

Iqn

]1/q[ m−1∑
n=−∞

‖χ(2n,2n+1]‖q̄Lp̄′(·)

]1/q̄
and using (3.19),

Proposition 3.8, and Lemma 3.9, we have for m � m0,

Sm �
[ ∞∑
n=m

Iqn

]1/q
2m/p̄′(0) �

[
2−m/p̄′(0) + 2−m0/p̄′

c

]
2m/p̄′(0)

� 1 + 2m/p̄′(0)2−m0/p̄′
c � 1 + 2m0/p̄

′(0)2−m0/p̄′
c < ∞.

Similarly, if m � m0 + 1, then by (3.20),

Sm �
[ ∞∑
n=m

Iqn

]1/q
[2m0/p̄

′(0) + 2m/p̄′
c ] � 2−m/p̄′

c [2m0/p̄
′(0) + 2m/p̄′

c ]

� 1 + 2m0/p̄
′(0)2−m0/p̄′

c < ∞.

Hence, B1 < ∞.
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Now let f be a function supported in (2m, 2m+1]. Then thanks to the bound-
edness of Kv from (Lp̄(·)(I), lq̄)d to (Lp(·)(I), lq)d and the condition k ∈ V (I) we
have that∥∥∥∥∥χ(2m,2m+1]v(x)k(x, x/2)

( xˆ

2m

f(y)dy

)∥∥∥∥∥
(Lp(·)(I),lq)d

� c
∥∥∥χ(2m,2m+1]f

∥∥∥
(Lp̄(·)(I),lq̄)d

,

where the positive constant c does not depend on n. Using Theorem 3.24 with
respect to the intervals [2m, 2m+1) and the weight pair (v̄, w), where v̄(x) =
v(x)k(x, x/2) χ(2m,2m+1] and w̄ ≡ const, we conclude that B2 < ∞. �

Remark 3.55. We have noticed in the proof of Theorem 3.54 that B1 ≈ Ā, where
Ā is defined in the same proof.

Example 3.56. Let p̄ and p be constants satisfying the condition 1 < p̄ � p < ∞.
Let 1 < q̄ � q < ∞. Suppose that k(x, y) = (x − y)α−1, where 1/p̄ < α < 1.
Let v(x) = x1/p−1/p−α. Then max{B1, B2} < ∞, where B1 and B2 are defined by
(3.17) and (3.18), respectively. Consequently, the conditions of Theorem 3.54 are
satisfied for constant exponents.

Example 3.57. Let p̄, p, q̄, q be constants satisfying the conditions of Example
3.56. Let k(x, y) = (x− y)α−1, where 1/p̄ < α < 1. Suppose that

v(x) =
∑
n∈Z

xγ(x − 2n)λχ[2n,2n+1),

where λ = 1/p̄−1/p−α−γ, 1/p̄−1/p−α < γ < 1/p̄−α. Then max{B1, B2} < ∞,
where B1 and B2 are defined by (3.17) and (3.18), respectively, and consequently,
by Theorem 3.54, Kv is bounded from (Lp̄, lq̄)d to (Lp, lq)d.

Now we formulate the boundedness criteria for the kernel operator Kv.

Let k(x, y) be a kernel on {(x, y) : y < x} and v, p, p̄ be defined on R. For
the next statement we define k̃, ṽ, p0 and p̄0 as follows:

k̃(x, t) :=

(
t−1/p̄′(log2 t)

x1/p(log2 x)

)
k(log2 x, log2 t)

ṽ(x) := v(log2 t)

p̄0(x) := p̄(log2 x), p0(x) := p(log2 x).

Theorem 3.58. Let 1 < p̄−(R) � p̄(x) � p(x) � p+(R) < ∞ and let p̄0, p0 ∈
P log(R+). Let q̄ and q be constants such that 1 < q̄ � q < ∞. Assume that
p̄(x) ≡ p̄c ≡ const and p(x) ≡ pc ≡ const outside some large interval (−∞, b). Let
k̃ ∈ V (R+)

⋂
V(p̄0(·))′(R+). Then Kv is bounded from (Lp̄(·)(R), lq̄) to (Lp(·)(R), lq)
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if and only if

D1 := sup
m∈Z

[ ∞∑
n=m

‖χ[2n,2n+1)(x)k̃(x, x/2)ṽ(x)‖qLp0(·)(R+)

]1/q
×
[ m∑
n=−∞

‖χ[2n−1,2n)‖q̄
′

L(p̄0(·))′ (R+)

]1/q̄′
< ∞

and

D2 := sup
n∈Z

sup
0<α<1

‖χ[2n+α,2n+1)k̃(x, x/2)ṽ(x)‖Lp0(·)(R+)‖χ[2n,2n+α)‖L(p̄0(·))′ (R+) < ∞.

Proof. The proof follows from Theorem 3.54 by the change of variable z → log2 t.
�

Let

(Rα(·)f)(x) = v(x)

xˆ

−∞

2tf(t)

(x− t)1−α(x)
dt,

where 0 < α− � α+ < 1 and x ∈ R+.

Using Theorem 3.58 and Example 3.4, we can easily deduce the next state-
ment:

Corollary 3.59. Let p, p̄, q and q̄ be constants. Suppose that α is a measurable
function on R and that 1 < p̄ � p < ∞, 1 < q̄ � q < ∞, 1

p̄ < α(x) < 1. Then the

operator Rα(·) is bounded from (Lp̄, lq̄) to (Lp, lq) if and only if

D̃1 = sup
m∈Z

[ ∞∑
n=m

( n+1ˆ

n

(2u)
p
p̄ vp(u)du

)q/p]1/q
2m/p̄′

< ∞

and

D̃2 = sup
n∈Z

sup
0<β<1

( n+1ˆ

n+β

(2u)
p
p̄ vp(u)du

)1/p(
2n(2β − 1))1/p̄

′
< ∞.

Moreover, there are positive constants c1 and c2 depending on p, p, q, q and α, such
that

c1 max{D̃1, D̃2} � ‖Rα(·)‖ � c2 max{D̃1, D̃2}.

3.4 Maximal Functions and Potentials on VEAS

Definition 3.60. Let J be a bounded interval in R. We say that a measure μ
satisfies the doubling condition on J (μ ∈ DC(J)) if there is a positive constant b
such that for all x ∈ J and all r, 0 < r < |J |,

μ
(
(x − 2r, x+ 2r) ∩ J

)
� bμ
(
(x − r, x+ r) ∩ J

)
.
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We need also the notion of the so-called reverse doubling measure on R (see
also Chapter 4 for the definition).

Definition 3.61. Let μ be a measure on R. We say that μ satisfies the reverse
doubling condition on R (μ ∈ RDC(R)) if there is a constant B > 1 such that

μ(x− 2r, x+ 2r) � Bμ(x− r, x+ r).

It is well known (see, e.g., Strömberg and Torchinsky [355, Lem. 20]) that if
μ ∈ RDC(R), then μ ∈ DC(R).

For a weight function u, as before, we sometimes denote

u(E) :=

ˆ

E

u(x)dx, E ⊆ R.

The next statement, in a more general setting, will be proved in Chapter 4
(see Lemma 4.20).

Lemma 3.62. Let J be a finite interval and let μ be a doubling measure on J .
Suppose that p is a continuous function on J satisfying the conditions 1 � p−(J) �
p(x) � p+(J) < ∞ and p ∈ P log(J). Then there is a positive constant C depending
only on the doubling constant b, such that for all subintervals I of J ,

(μ(I))p−(I)−p+(I) � C.

Let J be bounded interval in R and let

(M (J)
α f)(x) = sup

I�x
I⊂J

1

|I|1−α

ˆ

I

|f(y)|dy, x ∈ J,

where α is a constant, 0 � α < 1.

Together with M
(J)
α we are interested in the maximal operators defined on

R+ and R: (
M (R+)

α f
)
(x) = sup

h>0

1

h1−α

ˆ

(x−h,x+h)∩R+

|f(y)|dy

and (
M (R)

α f
)
(x) = sup

h>0

1

h1−α

x+hˆ

x−h

|f(y)|dy,

where again 0 � α < 1.

When α = 0, we recover the Hardy–Littlewood maximal operator. In this

case we denote M
(J)
α , M

(R+)
α and M

(R)
α by M (J), M (R+) and M (R), respectively.

The next statement is a solution of the one-weight boundedness problem
for the Hardy–Littlewood maximal operator (see Cruz-Uribe, Diening, and Hästö
[53]). We formulate the result for a bounded interval.
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Proposition 3.63. Let p ∈ Plog
∞ (R). Then the operator M (R) is bounded in L

p(·)
w (R)

if and only if w ∈ Ap(·)(R), i.e., there is a positive constant C such that for all
bounded intervals I in R,

‖wχI‖Lp(·)‖w−1χI‖Lp′(·) � C|I|. (3.21)

Consider the fractional integral operator

(Iαf)(x) :=

ˆ

R

f(y)

|x− y|1−α
dy, x ∈ R,

defined on R, where 0 < α < 1.

The next statement (see Theorem 3.64) is a generalization for variable ex-
ponent Lebesgue spaces of the result by Adams [6]. To formulate that result we
introduce some notation.

Let (Iα({gk}))n =
∑

k∈Z,k 
=n

gk
|n− k|1−α

, n ∈ Z

(Rα({gk})
)
n
=

n∑
k=−∞

gk
(n− k + 1)1−α

, n ∈ Z,

(Wα({gk})
)
n
=

∞∑
k=n

gk
(k − n+ 1)1−α

, n ∈ Z,

be discrete fractional integral operators, where 0 < α < 1.

It is easy to check that

1

2

((Rα({gk})
)
n−1

+
(Wα({gk})

)
n+1

)
�
(Iα({gk}))n

=
(Rα({gk})

)
n−1

+
(Wα({gk})

)
n+1

.

Let (X,U , μ) and (Y,B, ν) be measure spaces with ν being σ-finite. Let k(x, y)
be a nonnegative real-valued U × B-measurable function and

Kf(y) =

ˆ

X

k(x, y)f(x)dμ(x)

be the corresponding kernel operator.

Denote:

eλ(x) := {y ∈ Y : k(x, y) > λ}, eλ(y) := {x ∈ X : k(x, y) > λ},
where λ is a positive number;

Mr(μ)(y) := sup
λ>0

λrμ
(
eλ(y)

)
, Ms(ν)(x) := sup

λ>0
λsν
(
eλ(x)

)
,

where r and s are real numbers.
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To prove the statements regarding fractional integrals we use the following
result, which is a corollary of part (ii) of Theorem A in Adams [6].

Theorem 3.64. Suppose that 1 < p < q < ∞, s
q = r

p + 1 − r, where r > 0. If

Mr(μ)(y) � A < ∞ for all y ∈ Y and Ms(ν)(x) � B < ∞ for all x ∈ X, then the
operator K is bounded from Lp

μ(X) to Lq
ν(Y ).

Proposition 3.65. Suppose that p, q and α are constants satisfying the conditions
1 < p < q < ∞, 0 < α < 1/p. Then the following statements are equivalent:

(i) Rα is bounded from lp(Z) to lq{vk}(Z).

(ii) Wα is bounded from lp(Z) to lq{vk}(Z).

(iii) Iα is bounded from lp(Z) to lq{vk}(Z).

(iv) B := sup
m∈Z,j∈N

( m+j∑
k=m

vk

)1/q

(j + 1)α−1/p < ∞.

Proof. (iv) ⇒ (i) Suppose that X = Y = Z, μ is the counting measure on Z, and
dν(n) = vndμ(n), where {vn}n∈Z is the weight sequence. In our case the kernel
operator is given by

{Rα{gm}}n =

∞∑
m=−∞

k(m,n)gm, n ∈ Z,

where

k(m,n) = χ{m∈Z:m�n}(n−m+ 1)α−1.

Let r = 1
1−α and let s

q = r
p + 1− r, that is, s = q(α−1/p)

α−1 > 0. We have

sup
n∈Z

Mr(μ)(n) = sup
λ�1,n∈Z

λrμ{m ∈ Z : m � n; (n−m+ 1)α−1 > λ}

= sup
λ�1,n∈Z

λr(α−1)μ{m ∈ Z : m � n;n−m+ 1 < λ}

� sup
k∈N,n∈Z

k−1
n∑

m=n−k

1 � c.

Further,

sup
m∈Z

Ms(ν)(m) = sup
λ�1,m∈Z

λsν{n ∈ Z : m � n; (n−m+ 1)α−1 > λ}

= sup
λ�1,m∈Z

λs(α−1)ν{n ∈ Z : m � n;n−m+ 1 < λ}

� sup
k∈N,m∈Z

ks(α−1)
m+k∑
n=m

vn � cBq.
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(i) ⇒ (iv) Let

(β(m))k =

{
1, if m− j < k � m,
0, otherwise,

where m, j are positive integers such that j � m. Then

( ∞∑
n=1

vn

( n∑
k=−∞

(β(m))k
(n− k + 1)1−α

)q) 1
q

�
( m+j∑

n=m

vn

( m∑
k=m−j

1

(n− k + 1)1−α

)q) 1
q

� c

( m+j∑
n=m

vn

) 1
q

jα.

Therefore, by the boundedness of Rα,( m+j∑
n=m

vn

)1/q

jα−1/p � c, 1 � j � m.

(i) ⇒ (ii) Let

(β(m))k =

{
1, if m− j < k � m,
0, otherwise,

where m ∈ Z and j ∈ Z. Then

(∑
n∈Z

vn

( n∑
k=−∞

(β(m))k
(n− k + 1)1−α

)q) 1
q

�
( m+j∑

n=m

vn

( m∑
k=m−j

1

(n− k + 1)1−α

)q) 1
q

� c

( m+j∑
n=m

vn

) 1
q

jα.

Therefore, by the boundedness of Rα,( m+j∑
n=m

vn

)1/q

jα−1/p � c, m ∈ Z, j ∈ Z.

The remaining implications (ii) ⇒ (iv) and (iii) ⇒ (iv) follow in much the
same way; therefore, we omit the proofs. �

The next statement gives criteria guaranteeing the trace inequality for the
discrete potential operators in the diagonal case, i.e., when p = q. These criteria
are of Maz’ya–Verbitsky [250] type.
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Proposition 3.66. Let 1 < p < ∞ and 0 < α < 1/p.

(i) The inequality
+∞∑

i=−∞

(
Rαgj

)p
i
vi � c

+∞∑
i=−∞

gpi (3.22)

holds for all nonnegative sequences {gi}i if and only if {Wαvi}i < ∞ for all
i ∈ Z, and there is a positive constants c such that for all i ∈ Z,{

Wα[Wαvj ]
p′}

i
� c
{
Wαvj

}
i
. (3.23)

(ii) The inequality
+∞∑

i=−∞

(
Wαgj

)p
i
vi � c

+∞∑
i=−∞

gpi

holds for all nonnegative sequences {gi}i if and only if {Rαvi}i < ∞ for all
i ∈ Z, and there is a positive constant c such that for all i ∈ Z,{

Rα[Rαvj ]
p′}

i
� c
{
Rαvj

}
i
.

To prove Proposition 3.66 we need some auxiliary statements.

Proposition 3.67. Let 1 < p < ∞ and 0 < α < 1/p. If Rα is bounded from lp(Z)
to lp{vi}(Z), then there exist a positive constant c such that

m+h∑
i=m

vi � c h1−αp (3.24)

for all m ∈ Z and h ∈ N.

Proposition 3.67 follows just in the same way as the proof of the implication
(i) ⇒ (iv) of Proposition 3.65 and details are omitted.

We will prove the first part of Proposition 3.66. The second part follows
analogously.

Proof of (i) of Proposition 3.66. Let us first show that from (3.22) it follows that
{Wαvk}k < ∞ for all k ∈ Z. By duality, (3.22) is equivalent to the inequality

∞∑
i=1

(
Wαgj

)p′

i
� c

∞∑
i=1

gp
′

i v1−p′
i . (3.25)

Let v
(1)
i = viχ{i:m�i<m+2h} and v

(2)
i = viχ{i: i<m or i�m+2h}, where m ∈ Z and

h ∈ N.
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Note that for k � m+2h−1 andm � i � m+h, we have that k−m+1 � 2(k−i+1).
Further, by using (3.24), we obtain the estimates

{Wαv
(2)
j }i �

∞∑
k=m+2h−1

vk(k − i+ 1)α−1 � c

∞∑
k=m+h

vk(k −m+ 1)α−1

� c

∞∑
k=m+h

vk

( ∞∑
j=k−m+1

jα−2

)
� c

∞∑
j=h+1

jα−2

( j+m−1∑
k=m

vk

)

� c

∞∑
j=h+1

jα−2j1−αp < ∞.

Therefore,
(Wαv

(2)
j

)
i
< ∞. The fact that

(Wαv
(1)
j

)
i
< ∞ is obvious. Thus,(Wαvj

)
i
< ∞ for every i ∈ Z because m and h are taken arbitrarily.

Now we prove that (3.22) yields (3.23). For this we need the next lemmas.

Lemma 3.68. Let 0 < α < 1. Then there are positive constants c
(1)
α and c

(2)
α

depending only on α, such that for all m ∈ Z,

(Wαβm)m � c(1)α

∞∑
j=1

jα−2

(m+j−1∑
k=m

βk

)
� c(2)α (Wαβm)m,

where βm � 0.

Proof. The proof follows easily if we observe that there are positive constants b
(1)
α

and b
(2)
α , independent of k and m, such that

∞∑
j=k−m+1

jα−2 � b(1)α (k −m+ 1)α−1 � b(2)α

∞∑
j=k−m+1

jα−2.

It remains to change the order of summation. �

Corollary 3.69. Let 0 < α < 1, βm � 0. Then there are positive constants c
(1)
α and

c
(2)
α such that for all m ∈ Z,

{
Wα[Wαβm]p

′}
m

� c(1)α

∞∑
j=1

jα−2

(m+j−1∑
k=m

{Wαβm}p′
)

� c(2)α

{
Wα[Wαβm]p

′}
m
.

Let v
(1)
i and v

(2)
i be defined as above. Then by using (3.25) we have that

m+h∑
i=m

(
Wαv

(1)
j

)p′

i
� c

m+h∑
i=m

vi.
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Thus, by Corollary 3.69, we conclude that

{
Wα[Wαv

(1)
i ]p

′}
i
� c

∞∑
j=1

jα−2

( i+2(j−1)∑
k=i

vk

)
� c
{
Wα[Wαvi]

}
i
.

For the estimate of
{
Wα[Wαv

(2)
i ]p

′
}
i
we need some auxiliary statements.

Lemma 3.70. Let 0 < α < 1. Then there is a positive constant c such that for all
natural numbers m, k and an integer j satisfying the condition m � k � m+ j−1,

{
Wαv

(2)
j

}
k
� c

∞∑
s=j

sα−2

(m+s−1∑
t=m

vt

)
.

Proof. We recall that v
(2)
k = vkχ{k: k<m or k�m+2j}. Using the arguments of the

proof of Lemma 3.68 and the fact that

(
Wαv

(2)
j

)
k
=

∞∑
s=m+2j

vs(s− k + 1)α−1

we have (
Wαv

(2)
j

)
k
� c

∞∑
s=m+2j

vs(s−m+ 1)α−1

� c

∞∑
s=m+2j

vs

∞∑
t=s−m+1

tα−2 � c

∞∑
t=j

tα−2

(m+t−1∑
s=m

vs

)
. �

Lemma 3.71. Let 0 < α < 1. Then there is a positive constant c such that for all
m ∈ Z,

{
Wα[Wαv

(2)
i ]p

′}
m

� c

∞∑
t=1

tα−1

( ∞∑
s=t

sα−2

(m+s−1∑
j=m

vj

))p′

.

Proof. Using Lemma 3.70 in Corollary 3.69 we have that

{
Wα[Wαv

(2)
i ]p

′}
m

� c

∞∑
t=1

tα−2

(m+t−1∑
k=m

{Wαvk}p′
)

� c
∞∑
t=1

tα−2
m+t−1∑
k=m

( ∞∑
s=t

sα−2
m+s−1∑
ε=m

vε

)p′
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(the inner sum does not depend on k)

= c

∞∑
t=1

tα−2

( ∞∑
s=t

sα−2
m+s−1∑
ε=m

vε

)p′(m+t−1∑
k=m

1

)

= c

∞∑
t=1

tα−2

( ∞∑
s=t

sα−2
m+s−1∑
ε=m

vε

)p′

. �

Lemma 3.72. Let 0 < α < 1. Then there is a positive constant c such that for all
m ∈ Z,{

Wα[Wαv
(2)
i ]p

′}
m

� c

∞∑
t=1

tα
( ∞∑

s=t

sα−2
m+s+1∑
ε=m

vε

)p′−1(
tα−2

m+t+1∑
j=m

vj

)
.

Proof. We will deduce the discrete case from the continuous case. Let v(x) = vj ,

j � x < j + 1. Then
´ j+1

j v(x)dx = vj . Hence, by using the lemmas proved above
and integration by parts, we find that{

Wα[Wαv
(2)
i ]p

′}
m

� c

∞∑
n=1

nα−1

( ∞∑
j=n

jα−2

(m+2j∑
k=m

vk

))p′

� c

∞∑
n=1

n+1ˆ

n

xα−1

( ∞∑
i=2n

i+1ˆ

i

yα−2

(m+y∑
k=m

vk

)
dy

)p′

dx

� c

∞̂

1

xα−1

( ∞̂

x

yα−2

(m+y∑
k=m

vk

)
dy

)p′

dx

= c

[
xα

α

( ∞̂

x

· · ·
)p′ ∣∣∣∣∞

1

+

∞̂

1

xα

( ∞̂

x

· · ·
)p′−1

xα−2

(m+x∑
k=m

vk

)
dx

]

� c

∞̂

1

xα

( ∞̂

x

· · ·
)p′−1

xα−2

(m+x∑
k=m

vk

)
dx

= c

∞∑
n=1

n+1ˆ

n

xα

( ∞̂

x

· · ·
)p′−1

xα−2

(m+n+1∑
k=m

vk

)
dx,

and continuing{
Wα[Wαv

(2)
i ]p

′}
m
� c

∞∑
n=1

nα

( ∞̂

n

· · ·
)p′−1

nα−2

(m+n+1∑
k=m

vk

)

� c

∞∑
n=1

nα

( ∞∑
k=n

k+1ˆ

k

kα−2

(m+k+1∑
i=m

vi

)
dy

)p′−1

nα−2

(m+n+1∑
k=m

vk

)
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= c

∞∑
n=1

nα

( ∞∑
k=n

kα−2

(m+k+1∑
i=m

vi

))p′−1

nα−2

(m+n+1∑
k=m

vk

)
. �

Now the necessity part in Proposition 3.66(i) follows easily thanks to Propo-
sition 3.67. Indeed, by using Proposition 3.67 we have that

{
Wα[Wαv

(2)
j ]p

′}
m

� c

∞∑
n=1

nα

( ∞∑
k=n

kα−2(k + 2)1−αp

)p′−1(
nα−2

m+n+1∑
k=m

vk

)

� c

∞∑
n=1

nα−2
m+n+1∑
k=m

vk � c
{
Wαvm

}
m
.

In the last inequality we used Lemma 3.68, in particular, the right-hand side
inequality.

Necessity of (i) of Proposition 3.66 is proved.

Now we prove sufficiency of (i) of Proposition 3.66. We again need some
auxiliary statements.

Lemma 3.73. Let 1 < p < ∞ and 0 < α < 1. Then there exists a positive constant
c such that for all nonnegative sequences {gi}i∈Z and all i ∈ Z,

{Rαgk}pi � c{Rα[Rαgk]
p−1
j gm}i. (3.26)

Proof. First we assume that {Vαgi}i := {Rα[Rαgk]
p−1gj}i and

{Vαgj}i � {Rαgj}pi .
Otherwise (3.26) is obvious for c = 1. Now let us assume that 1 < p � 2. Then we
have

{Rαgk}pi =

i∑
k=−∞

(i − k + 1)α−1gk

( i∑
j=−∞

(i − j + 1)α−1gj

)p−1

�
i∑

k=−∞
(i − k + 1)α−1gk

( k∑
j=−∞

(i − j + 1)α−1gj

)p−1

+

i∑
k=−∞

(i − k + 1)α−1gk

( i∑
j=k

(i − j + 1)α−1gj

)p−1

=: I
(1)
i + I

(2)
i .

It is obvious that if j � k � i, then k − j + 1 � i− j + 1. Consequently,

I
(1)
i �

i∑
k=−∞

(i− k + 1)α−1gk

( k∑
j=−∞

(k − j + 1)α−1gj

)p−1

= {Vαgi}i.
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Now we use the Hölder inequality with respect to the exponents 1
p−1 ,

1
2−p and the

measure dμ(k) = (i− k + 1)α−1gk dμc(k) (here μc is the counting measure on Z).
We have

I
(2)
i �

[ i∑
k=−∞

(i− k + 1)α−1gk

]2−p

×
[ i∑
k=−∞

( i∑
j=k

(i− j + 1)α−1gj

)
(i− k + 1)α−1gk

]p−1

= {Rαgi}2−p
i (Ji)

p−1,

where

Ji :=

i∑
k=−∞

( i∑
j=k

(i − j + 1)α−1gj

)
(i− k + 1)α−1gk.

Using the Fubini Theorem we have

Ji =

i∑
j=−∞

(i− j + 1)α−1gj

( j∑
k=−∞

(i− k + 1)α−1gk

)
.

Further, it is obvious that the following simple inequality

j∑
k=−∞

(i − k + 1)α−1gk �
( j∑

k=−∞
(i− k + 1)α−1gk

)p−1{
Rαgi

}2−p

i

� {Rαgj}p−1
j {Rαgi}2−p

i

holds, where j � i. Taking into account the last estimate, we obtain

Ji �
( i∑

j=−∞
(i − j + 1)α−1gj {Rαgj}p−1

j

){
Rαgi

}2−p

i
= {Vαgi}i{Rαgi}2−p

i .

Thus,

I
(2)
i � {Rαgi}2−p

i {Rαgi}(2−p)(p−1)
i {Vαgi}p−1

i = {Rαgi}p(2−p)
i {Vαgi}p−1

i .

Combining the estimate for I(1) and I(2) we derive

{Rαgi}pi � {Vαgi}i + {Rαgi}p(2−p)
i {Vαgi}p−1

i .

As we have assumed that {Vαgi}i � {Rαgi}pi , we obtain

{Vαgi}i = {Vαgi}2−p
i {Vαgi}p−1

i � {Vαgi}p−1
i {Rαgi}p(2−p)

i .



3.4. Maximal Functions and Potentials on VEAS 181

Hence

{Rαgi}pi � {Vαgi}p−1
i {Rαgi}p(2−p)

i + {Vαgi}p−1
i {Rαgi}p(2−p)

i

= 2{Vαgi}p−1
i {Rαgi}p(2−p)

i .

Next, since
(Rαgj

)
i
< ∞, we find that

{Rαgi}pi � 2
1

p−1 {Vαgi}i.
Now we shall deal with the case p > 2. Let us assume again that

{Vαgj}i � {Rαgj}pi .
Since p > 2, we have

{Rαgi}pi =

i∑
k=1

(i − k + 1)α−1gk

( i∑
j=1

(i − j + 1)α−1gj

)p−1

� 2p−1
i∑

k=1

(i− k + 1)α−1gk

( k∑
j=1

(i− j + 1)α−1gj

)p−1

+ 2p−1
i∑

k=1

(i− k + 1)α−1gk

( i∑
j=k

(i− j + 1)α−1gj

)p−1

=: 2p−1I
(1)
i + 2p−1I

(2)
i .

It is clear that if j � k � i, then (i − j + 1)α−1 � (k − j + 1)α−1. Therefore

I
(1)
i � {Vαgi}i. Now we estimate I

(2)
i . We obtain( i∑

j=k

(i − j + 1)α−1gj

)p−1

=

( i∑
j=k

(i− j + 1)α−1gj

)p−2( i∑
j=k

(i − j + 1)α−1gj

)

�
{
Rαgi

}p−2

i

i∑
j=k

(i− j + 1)α−1gj .

Using the Fubini Theorem and the last estimate we have

I
(2)
i �

{
Rαgi

}p−2

i

i∑
k=−∞

(i − k + 1)α−1gk

i∑
j=k

(i − j + 1)α−1gj

=
{
Rαgi

}p−2

i

i∑
j=−∞

(i− j + 1)α−1gj

j∑
k=−∞

(i− k + 1)α−1gk

�
{
Rαgi

}p−2

i

i∑
j=−∞

(i− j + 1)α−1gj

j∑
k=−∞

(j − k + 1)α−1gk.
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Using the Hölder inequality with respect to the exponents
{
p − 1, p−1

p−2

}
and the

measure dμ(j) = (i − j + 1)α−1gjdμc(j) (μc is the counting measure on Z), we
derive

i∑
j=−∞

(i− j + 1)α−1gj

j∑
k=−∞

(j − k + 1)α−1gk

�
( i∑

j=−∞
(i − j + 1)α−1gj

) p−2
p−1

×
( i∑

j=−∞

( j∑
k=−∞

(j − k + 1)α−1gk

)p−1

(i− j + 1)α−1gj

) 1
p−1

= {Rαgi}
p−2
p−1

i {Vαgi}
1

p−1

i .

Combining these estimates we obtain

{Rαgi}pi � 2p−1{Vαgi}i + 2p−1{Rαgi}
p(p−2)
p−1

i {Vαgi}
1

p−1

i .

By virtue of the inequality {Vαgij}i � {Rαgj}pi it follows that

{Vαgj}i = {Vαgj}
1

p−1

i {Vαgj}
p−2
p−1

i � {Vαgj}
1

p−1

i {Rαgj}
p(p−2)
p−1

i .

Hence,

{Rαgj}pi � 2p−1
(
{Vαgj}

1
p−1

i {Rαgj}
p(p−2)
p−1

i + {Vαgj}
1

p−1

i {Rαgj}
p(p−2)
p−1

i

)
= 2p{Vαgj}

1
p−1

i {Rαgj}
p(p−2)
p−1

i .

From the last estimate we conclude that

{Rαgj}pi � 2p(p−1){Vαgj}i,
where 2 < p < ∞. �
Lemma 3.74. Let 1 < p < ∞, 0 < α < 1 and vi be a sequence of positive numbers
on Z. Let there exist a constant c > 0 such that the inequality

‖Rα{gi}‖lp
{v(1)

i
}
(Z) � c1‖gi‖lp(Z), {v(1)i }i = {Wαvi}p

′
i ,

holds for all sequences {gi} ∈ lp(Z). Then

‖Rα{gi}‖lp{vi}(Z) � c2‖gi‖lp(Z), {gi} ∈ lp(Z),

where c2 = c
1/p′

1 c1/p.
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Proof. Let gi � 0. Using Lemma 3.73, the Fubini Theorem, and the Hölder in-
equality, we derive the following chain of inequalities:

∞∑
k∈Z

{Rαgk}pkvk � c

∞∑
k∈Z

k∑
i=−∞

{Rαgj}p−1
i gi(k − i+ 1)α−1vk

= c
∞∑
i∈Z

{Rαgj}p−1
i gi{Rαvj}i

� c

( ∞∑
i=1

gpi

)1/p( ∞∑
i=1

{Rαgj}pi v(1)i

)1/p′

= c‖gi‖lp(Z)‖Rαgi‖p−1
lp

{v(1)
i

}
(Z)

� cp−1
1 c‖gi‖lp(Z)‖gi‖p−1

lp(Z) = cp−1
1 c‖gi‖plp(Z).

Hence,

‖Rαgj‖lp{vi}(Z) � c
1/p′

1 c1/p‖gj‖lp(Z). �

Lemma 3.75. Let 0 < α < 1 and 1 < p < ∞. Suppose that {Wαvi}i < ∞ and{
Wα[Wαvi]

p′}
i
� c
{
Wαvi

}
i

for all i ∈ Z. Then we have

‖Rα{gi}‖lp
{v(1)

i
}
(Z) � c‖gi‖lp(Z), {gi} ∈ lp(Z), (3.27)

where {v(1)i }i = {Wαvi}p
′

i .

Proof. Let gi � 0 and let gi be supported on the set Em,l := {i : l � i � m},
where m, l ∈ Z. Let t

(n)
i,j = χ{j:j�i} min{(i − j + 1)α−1, n}, n ∈ Z. Then using

Lemma 3.73 (which is true also for the kernel t
(n)
i,j ), the Fubini Theorem, and the

Hölder inequality, we obtain the following chain of inequalities:

∞∑
i=−∞

( i∑
j=−∞

t
(n)
i,j gj

)p

v
(1)
i � c

∞∑
i=−∞

( i∑
j=−∞

t
(n)
i,j

( j∑
k=1

t
(n)
j,k gk

)p−1

gj

)
v
(1)
i

� c

∞∑
j=−∞

gj

( j∑
k=−∞

t
(n)
j,k gk

)p−1( ∞∑
i=j

t
(n)
i,j v

(1)
i

)

� c‖gi‖lp(Z)
( m∑

j=−∞

( j∑
k=1

t
(n)
j,k gk

)p{
Rα[Rαvj ]

p′}p′

j

)1/p′

� c‖gi‖lp(Z)
( m∑

j=1

( j∑
k=1

t
(n)
j,k gk

)p{
Rαvj

}p′

j

)1/p′

.
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Since
∑j

k=1 t
(n)
j,k gk < ∞ and {Wvj}j < ∞ for all j, we have that( ∞∑

i=1

( i∑
j=1

t
(n)
i,j gj

)p

v
(1)
i

)1/p

� c‖gi‖lp(Z).

Passing now by to the limits asm,n → +∞, and by l → −∞, we derive (3.27). �

Combining these lemmas we have also sufficiency of (i) of Proposition 3.66.

Part (ii) of the same statement follows analogously. Proposition 3.66 is com-
pletely proved.

The next lemma will also be useful for us:

Lemma 3.76. Let 1 < r, s < ∞ and let {gn} be a nonnegative sequence. Suppose
that un be a positive sequence on Z.

(i) The following two inequalities are equivalent:(∑
n∈Z

[ n−1∑
m=−∞

(n−m)α−1gm

]r
un

)1/r

� c1‖gk‖ls(Z),

and (∑
n∈Z

(Rαgk)n]
run+1

)1/r

� c1‖gk‖ls(Z),

where the positive constant c1 does depend on gk.

(ii) The following two inequalities are equivalent:(∑
n∈Z

[ ∞∑
m=n+3

(m− n)α−1gm

]r
un

)1/r

� c2‖gk‖ls(Z),

and (∑
n∈Z

(Wαgk)n]
run−3

)1/r

� c2‖gk‖ls(Z),

where again the positive constant c2 does depend on gk.

3.4.1 Maximal Operators in (Lp(·)(R), lq)

In this section we establish criteria for the boundedness of maximal operators in
variable exponent amalgam spaces.

Recall Sawyer’s result (see Sawyer [337]) for the discrete fractional maximal
operator

M d
α ({an})(j) = sup

r,k
r�j�k

1

(k − r + 1)1−α

k∑
i=r

|ai|, 0 < α < 1,
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which is a consequence of a more general result regarding two-weight criteria
for maximal operators defined on spaces of homogeneous type (see Sawyer and
Wheeden [338]).

Theorem 3.77. Let r, s and α be constants satisfying the condition 1 < r � s < ∞,
0 < α < 1, and let {αn}, {βn} be positive sequences on Z. Then the two-weight
inequality (∑

n∈Z

(
M d

α({an})
)s
(n)αn

)1/s

� c

(∑
n∈Z

|an|rβn

)1/r

holds if and only if there is a positive constant c such that for all r, k ∈ Z with
r � k, ( k∑

j=r

(
M d

α({β1−r′
n }χ[r,k])

)s
(j)αj

)1/s

� c

( k∑
j=r

β1−r′
j

)1/r

.

Corollary 3.78. Let 1 < r � s < ∞, 0 < α < 1 and let {αn} be a positive sequences
on Z. Then the weighted inequality(∑

n∈Z

(
M d

α({an})
)s
(n)αn

)1/s

� c

(∑
n∈Z

|an|r
)1/r

(3.28)

holds if and only if

sup
k,r∈Z,r<k

( k∑
j=r

αj

)1/s

(k − r + 1)α−1/r � c,

where the positive constant c is independent of {an}.
For the next statement we refer to Verbitsky [367].

Theorem 3.79. Let s and r be constants satisfying the condition 1 < s < r < ∞,
and let {αn} be a positive sequence on Z. We set

hj := sup
r,k

r�j�k

1

(k − r + 1)1−αr

k∑
i=r

αi.

Then the inequality (3.28) holds if and only if {hj}j ∈ l
s

r−s

{αj}.

Now we formulate our result regarding variable exponent amalgam spaces.

Theorem 3.80. Let p ∈ P
log
∞ (R). Suppose that

(a) w ∈ Ap(·)(R);
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(b) the pair of discrete weights ({w̄n}, {v̄n}) satisfies the condition: there is a
positive constant c such that for all r, k ∈ Z with r � k,

k∑
j=r

(
M d({w̄1−q′

n }χ[r,k])
)q
(j)v̄j � c

k∑
j=r

w̄1−q′
j ,

where

w̄n := ‖χ(n−1,n)(·)w−1(·)‖−q

Lp′(·)(R), v̄n := ‖χ(n,n+1)(·)w(·)‖qLp(·)(R).

Then M (R) is bounded in (Lp(·)(R, w), lq).
Conversely, let M (R) be bounded in (Lp(·)(R, w), lq). Then (3.21) holds for

all intervals I ⊂ [n, n + 1), n ∈ Z, with the constant C independent of I and n.
If, in addition, there is a large positive integer m0 such that p is constant outside
[−m0,m0], then condition (b) is also satisfied.

Proof. Observe that the Hardy–Littlewood maximal operator M (R) is admissible
(see Rakotondratsimba [302]) and the associated discrete operator is given by

M d({an})(j) = sup
r,k

r�j�k

1

k − r + 1

k∑
i=r

|ai|.

Also, (M (R))nf(x) = M ([n−1,n+2))f(x), x ∈ [n−1, n+2). Further, condition
(a) and Proposition 3.49 guarantee that

‖(M (R))nf‖Lp(·)(R,v) � C‖f‖Lp(·)(R,w),

with the positive constant C independent of f and n. Now Theorem 3.77 and
Proposition 3.63 yield the desired result. �
Theorem 3.81. Let p be a continuous function defined on R and satisfying the
condition 1 < p−(R) � p+(R) < ∞. Let 0 � α < 1. Suppose that v, w are weight
functions on R and that dν(x) := w(x)−p′(x)dx satisfies the doubling condition

on R. Suppose also that p ∈ P log(R). Then the operator M
(R)
α is bounded from

(Lp(·)(R, w), lq) to (Lp(·)(R, v), lq) if

(i) there is a positive constant c such that for all n and all intervals I ⊆ [n −
1, n+ 2),ˆ

I

(v(x))p(x)M ([n−1,n+2))
α

(
w(·)−p′(·)χI(·))

)p(x)
dx � c

ˆ

I

w−p′(x)dx < ∞;

(ii) there is a positive constant c such that for all r, k ∈ Z with r � k,

k∑
j=r

(
(Mα)

d({w̄1−q′
n }χ[r,k])

)q
(j)v̄j � c

k∑
j=r

w̄1−q′
j ,
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where

w̄n := ‖χ(n−1,n)(·)w−1(·)‖−q̄

Lp̄′(·)(R), v̄n := ‖χ(n,n+1)(·)v(·)‖qLp(·)(R).

Conversely, let M
(R)
α be bounded from (Lp(·)(R, w), lq) to (Lp(·)(R, v), lq).

Then (i) holds. If, in addition, there is a large positive integer m0 such that p
is constant outside [−m0,m0], then condition (ii) is also satisfied.

Proof. It is known (see Rakotondratsimba [302]) that the operator M
(R)
α is admis-

sible and that its discrete version is M d
α . Further, (M

(R)
α )n = M

([n−1,n+2))
α . The

operator M
([n−1,n+2))
α is defined on the interval [n − 1, n + 2). Observe that, by

Theorem 4.31 (see Chapter 4), condition (i) implies the inequality

‖(M (R)
α )nf‖Lp(·)(R,v) � C‖f‖Lp(·)(R,w),

with the positive constant C independent of f and n. This follows from the fact

that the bound of ‖(M (R)
α )n‖Lp(·)(R,w) →Lp(·)(R,v) does not depend on n (see the

proof of Theorem 4.31 for details).

Now Theorem 3.77 and Proposition 3.49 complete the proof. �
Theorem 3.82. Let p be a continuous function defined on R satisfying the condition
1 < p−(R) � p+(R) < ∞. Assume that α is a constant such that 0 < α < 1.
Suppose that v is a weight functions on R. Suppose also that p ∈ P log(R). Then

the operator M
(R)
α is bounded from (Lp(·)(R), lq̄) to (Lp(·)(R, v), lq) if and only if

(i) in the case 1 < q̄ � q < ∞,

sup
I⊂(n−1,n+2)

n∈Z

1

|I|
ˆ

I

(v(x))p(x)|I|αp(x)dx < ∞

and

sup
k,r∈Z,r<k

( k∑
j=r

v̄j

)1/q

(k − r + 1)α−1/q̄ � c,

where v̄n = ‖χ[n,n+1)v‖qLp(·)(R);

(ii) in the case 1 < q < q̄ < ∞, {Jn} ∈ ls, where 1
s = 1

q − 1
q̄ , and {Hj}j ∈ l

q
q̄−q

{vj},
where

Jn := sup
I⊂(n−1,n+2)

1

|I|
ˆ

I

(v(x))p(x)|I|αp(x)dx,

Hj := sup
r,k

r�j�k

1

(k − r + 1)1−αq̄

k∑
i=r

v̄i, v̄n := ‖χ(n,n+1)(·)v(·)‖qLp(·)(R).
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Proof. Part (i) is established in the same way as Theorem 3.81. Here we use
Corollary 3.78. The proof of Part (ii) is similar, by applying Proposition 3.49,
Theorem 3.79, and Corollary 4.33. �

To formulate the next result we need the definition of the class RDC(R) (see
Definition 6.3).

Theorem 3.83. Let p be a measurable function on R such that 1 < p−(R) �
p+(R) < ∞. Let p̄, q, q̄ and α be constants satisfying the conditions 1 < p̄ < p−,
1 < q̄ � q < ∞, 0 < α < 1. Suppose that w−p̄′ ∈ RDC(R). Then the operator

M
(R)
α is bounded from (Lp̄(R, w), lq̄) to (Lp(·)(R, v), lq) if and only if

(i) sup
n∈Z

I⊂[n−1,n+2)

|I|α−1‖vχI‖Lp(·)(R)‖w−1χI‖Lp̄′(R) < ∞

and

(ii)

( k∑
j=r

(
M d({w̄1−q̄′

n }χ[r,k])
)q
(j)v̄j

)1/q

� c

( k∑
j=r

w̄1−q̄′
j

)1/q̄

,

where

w̄n := ‖χ(n−1,n)(·)w−1(·)‖−q̄

Lp̄′(R)
, v̄n := ‖χ(n,n+1)(·)w(·)‖qLp(·)(R).

Theorem 3.83 is a direct consequence of Theorems 6.7, 3.77, Proposition 3.49
and Remark 6.4.

3.4.2 Fractional Integrals. Trace Inequality

Now we discuss trace inequality criteria for the fractional integrals operators Iα,
Rα, and Wα in weighted VEAS defined on R. For the proof of the next statement
we refer to Rakotondratsimba [302] (proof of Theorem 3.1).

Lemma 3.84. The following relations hold:

(Iαfχ(−∞,n−1))(x) ≈
n−1∑

m=−∞
(n−m)α−1G(m),

(Iαfχ(n+2,∞))(x) ≈
∞∑

m=n+3

(m− n)α−1G(m)

where x ∈ [n, n+ 1) and G(m) =
´m
m−1

f(y)dy.

Theorem 3.85. Let p be a measurable function on R such that 1 < p−(R) �
p+(R) < ∞. Let p̄, q, q̄ and α be constants satisfying the condition 1 < p̄ < p−(R),
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1 < q̄ < q < ∞, 0 < α < min{1/p̄, 1/q̄}. Then the following statements are
equivalent:

(i) Iα is bounded from (Lp̄(R), lq̄) to (Lp(·)(R, v), lq).

(ii) (a) sup
n∈Z

I⊂[n−1,n+2)

‖χI‖Lp(·)(I,v)|I|α−1/p̄ < ∞; (3.29)

(b) sup
m∈Z
j∈N

(m+j∑
k=m

v̄k

)1/q

(j + 1)α−1/q̄ < ∞, (3.30)

where v̄n := ‖χ[n,n+1)(·)‖qLp(·)(R,v).

Proof. First observe that

(Iα)nf(x) =

n+2ˆ

n−1

f(t)

|x− t|1−α
dt, x ∈ [n− 1, n+ 2).

Due to Theorem 6.12 (for the case n = 1), the uniform boundedness of (Iα)n
is equivalent to (3.29). Further, it is easy to see that condition (3.30) is equivalent
to each of the following two conditions:

sup
m∈Z,j∈N

(m+j∑
k=m

v̄
(i)
k

)1/q

(j + 1)α−1/q̄ < ∞, i = 1, 2,

where v̄
(1)
k = v̄k+1, v̄

(2)
k = v̄k−3.

Since (see Rakotondratsimba [302])

(Iα)d({aj})(n) ≈
n−1∑

k=−∞

ak
(k − n)1−α

+

+∞∑
k=n+3

ak
(k − n+ 1)1−α

,

Proposition 3.49, Lemma 3.84, Lemma 3.76, and Proposition 3.65 yield the desired
result. �
Theorem 3.86. Let p be a measurable function on R such that 1 < p−(R) �
p+(R) < ∞. Let p̄, q and α be constants satisfying the condition 1 < p̄ < p−(R),
1 < q < ∞, 0 < α < min{1/p̄, 1/q}. Then the following statements are equivalent:

(i) Iα is bounded from (Lp̄(R), lq) to (Lp(·)(R, v), lq).

(ii) (a) sup
n∈Z

I⊂[n−1,n+2)

‖χI‖Lp(·)(I,v)|I|α−1/p̄ < ∞;

(b) {Wαv̄i}i < ∞ for all i ∈ Z, and there is a positive constant c such that{
Wα[Wα(v̄j)]

q′
}
k
� c
{
Wα(v̄j)

}
k

for all k ∈ Z, where v̄n is the same as in Theorem 3.85;
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{Rαv̄i}i < ∞ for all i ∈ Z, and there is a positive constant c such that{
Rα[Rα(v̄j)]

q′
}
k
� c
{
Rα(v̄j)

}
k

for all k ∈ Z, where v̄n is defined in Theorem 3.85.

Proof. The proof of this statement follows similarly by applying Theorem 6.12,
Proposition 3.66, Lemma 3.84, Lemma 3.76, and Proposition 3.49. �

3.5 Compactness of Kernel Operators on VEAS

In this section we derive necessary and sufficient compactness conditions for kernel
operators on VEAS. Since for the amalgam norm it holds that

‖fn‖(Lp(·)(I),lq)α ↓ 0, fn ↓ 0, a.e.,

fn ∈ (Lp(·)(I), lq)α, the following statement is valid (see Kantorovich and Akilov
[146, Chap. XI]).

Proposition 3.87. Let p, p̄ be measurable functions on I such that 1 < p̄, p < ∞.
Let q, q̄ be constants satisfying the condition 1 < q, q̄ < ∞. Then the set of all
functions of the form

kn(s, t) :=

n∑
i=1

ηi(s)λi(t), s, t ∈ I,

is dense in the mixed norm space (Lp(·)(I), lq)α[(Lp̄(·)(I), lq̄)α], where

λi := χBi , χBi ∈ (Lp̄(·)(I), lq̄)α

(Bi are measurable disjoint sets of I) and

ηi ∈ (Lp(·)(I), lq)α ∩ L∞(I).

The next statement gives a sufficient condition for a kernel operator to be
compact on amalgams defined on R+.

Proposition 3.88. Let p(x) and q(x) be measurable functions on an interval I ⊆
R+. Suppose that 1 < p−(I) � p+(I) < ∞, 1 < p̄−(I) � p̄+(I) < ∞. Let q, q̄ be
constants such that 1 < q̄, q < ∞. If

M :=
∥∥‖k(x, y)‖(L(p̄(y))′ (I),l(q̄)′ )α

∥∥
(Lp(x)(I),lq)α

< ∞,

where k is a nonnegative kernel, then the operator

Kf(x) =

ˆ

I

k(x, y)f(y)dy

is compact from (Lp̄(·)(I), lq̄)α to (Lp(·)(I), lq)α.
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Proof. By Proposition 3.87, the set of functions

km(s, t) =

m∑
i=1

ηi(s)λi(t), s, t ∈ I,

is dense in (Lp(·)(I), lq)α[(Lp̄′(·)(I), lq̄′)α]. By the Hölder inequality for amalgam
spaces (see Theorem 3.20), we have

|Kf(x)| =
∣∣∣∣∣
ˆ

I

k(x, y)f(y)dy

∣∣∣∣∣ � ‖f‖(Lp̄(·)(I),lq̄)α‖k(x, y)‖(L(p̄(·))′ (I),l(q̄)′ )α .

Hence,

‖Kf‖(Lp(·)(I),lq)α �
∥∥‖k(x, y)‖(L(p̄(y))′ (I),l(q̄)′ )α

∥∥
(Lp(x)(I),lq)α

‖f‖(Lp̄(·)(I),lq̄)α

� M‖f‖(Lp̄(·)(I),lq̄)α .

This means that ‖K‖ � M .

Now we prove the compactness of K. For each n ∈ N, let

(Knφ)(x) =

ˆ

I

kn(x, y)φ(y)dy.

Note that,

(Knφ)(x) =

ˆ

I

kn(x, y)φ(y)dy

=

n∑
i=1

ηi(x)

ˆ

I

λi(y)φ(y)dy =:

n∑
i=1

ηi(x)bi,

where

bi =

ˆ

I

λi(y)φ(y)dy.

This means that Kn is a finite-rank operator, i.e., it is compact. Further, let ε > 0.
Using the arguments above, we see that there is N0 ∈ N such that for n > N0,

‖K −Kn‖ �
∥∥‖k(x, y)− kn(x, y)‖(L(p̄(y))′ (I),l(q̄)′ )α

∥∥
(Lp(x)(I),lq)α

< ε.

ThusK can be represented as a limit of finite-rank operators. Hence,K is compact.
�
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Theorem 3.89. Let 1 < p̄−(R+) � p̄(x) � p(x) � p+(R+) < ∞ and let p̄, p ∈
P log(R+). Let q̄ and q be constants such that 1 < q̄ � q < ∞. Assume that k ∈
V (R+)

⋂
V(p̄(·))′(R+) and that p̄(x) ≡ p̄c ≡ const and p(x) ≡ pc ≡ const outside

some large interval (0, 2m0). Then Kv is compact from (Lp̄(·), lq̄)d to (Lp(·), lq)d if
and only if the following conditions are satisfied:

(i) B1 < ∞, B2 < ∞;

(ii) lim
m→−∞B1(m) = lim

m→+∞B1(m) = 0;

(iii) lim
n→−∞B2(n) = lim

n→+∞B2(n) = 0.

Here B1 and B2 are defined by (3.17) and (3.18), respectively, and

B1(m) := ‖χ[2m,2m+1)k(x, x/2)v(x)‖Lp(·)2m/p̄′(0),

B1(m) :=

[ ∞∑
n=m

‖χ[2n,2n+1)k(x, x/2)v(x)‖qLp(·)

] 1
q
[ m∑
n=−∞

‖χ[2n−1,2n)(·)‖(q̄)
′

L(p̄(·))′

] 1
(q̄)′

,

B2(n) := sup
0<α<1

‖χ[2n+α,2n+1)(x)v(x)k(x, x/2)‖Lp(·)‖χ(2n,2n+α)(·)‖L(p̄(·))′ .

Proof. Sufficiency. Let k0 and n0 be integers such that k0 < m0 < n0. We repre-
sent Kv as follows:

(Kvf)(x) = χ[0,2k0 ](x)Kv(fχ[0,2k0 ))(x) + χ(2k0 ,2n0)(x)Kv(fχ[0,2n0))(x)

+ χ[2n0 ,∞)(x)Kv(fχ[0,2n0−1))(x) + χ[2n0 ,∞)(x)Kv(fχ(2n0−1,∞))(x)

=:
(
K(1)

v f
)
(x) +

(
K(2)

v f
)
(x) +

(
K(3)

v f
)
(x) +

(
K(4)

v f
)
(x).

It is clear that

(K(2)
v f)(x) =

ˆ

R+

k2(x, y)f(y)dy,

where k2(x, y) = v(x)χ(2k0 ,2n0)(x)k(x, y) if y < x and k2(x, y) = 0 if y � x. Then∥∥∥‖k2(x, y)‖(L(p̄)′(y)(I),l(q̄)′ )d

∥∥∥
(Lp(x)([2k0 ,2m0 )),lq)d

=

{ n0−1∑
m=k0

∥∥∥χ(2m,2m+1)(x)v(x)

( m∑
n=−∞

‖χ(2n,2n+1)k(x, y)‖(q̄)
′

L(p̄)′(y)

)1/(q̄)′∥∥∥q
Lp(x)

} 1
q

=: J(x).

Denoting I(x) :=
∑m

n=−∞ ‖χ(2n,2n+1)k(x, y)‖(q̄)
′

L(p̄)′(y) , x ∈ [2m, 2m+1), k0 � m �
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n0 − 1, we represent I(x) as

I(x) =

m−2∑
n=−∞

‖χ(2n,2n+1)(y)k(x, y)‖(q̄)
′

L(p̄)′(y)

+ ‖χ(2m−1,2m)(y)k(x, y)‖(q̄)
′

L(p̄)′(y) + ‖χ(2m,x)(y)k(x, y)‖(q̄)
′

L(p̄)′(y)

=: I1(x) + I2(x) + I3(x).

Now we estimate I1(x), I2(x) and I3(x) separately:

I1(x) � ck(q̄)
′
(x, x/2)

m−2∑
n=−∞

‖χ[2n,2n+1)(y)‖(q̄)
′

L(p̄)′(·)

� ck(q̄)
′
(x, x/2)

[ m0∑
n=−∞

‖χ[2n,2n+1)(·)‖(q̄)
′

L(p̄)′(·) +
m−2∑

n=m0+1

‖χ[2n,2n+1)(y)‖(q̄)
′

L(p̄)′(y)

]

� ckq̄
′
(x, x/2)

[ m0∑
n=−∞

(2n)
(q̄)′/(p̄)′(0)

+

n0∑
m0+1

(2n)
(q̄)′/(p̄)′c

]
� ck(q̄)

′
(x, x/2)

[
(2m0)(q̄)

′/(p̄)′(0) + (2n0)(q̄)
′/(p̄)′c
]
.

Further,

I2(x) + I3(x) � 2‖χ(0,x)k(x, y)‖(q̄)
′

L(p̄)′(y)

� c‖χ(0,x/2)k(x, y)‖(q̄)
′

L(p̄)′(y) + c‖χ(x/2,x)k(x, y)‖(q̄)
′

L(p̄)′(y)

� k(q̄)
′
(x, x/2)

[
‖χ(0,2m)(y)‖(q̄)

′

Lp̄(y) + x(q̄)′/(p̄)′(x)
]
.

Considering separately the cases m � m0 and m > m0, by using Proposition
3.8 and Lemma 3.9 we find that

I2(x) + I3(x) � ck(q̄)
′
(x, x/2)

[
(2m)

(q̄)′/(p̄)′(0)
+ (2m)

(q̄)′/(p̄)′c
]
.

Consequently, since k0 � m < n0 − 1, we have

I(x) � ck(q̄)
′
(x, x/2)

[
(2n0)(q̄)

′/(p̄)′(0) + (2n0)
(q̄)′/(p̄)′c

]
=: ck(q̄)

′
(x, x/2)Bn0 .

Since B1 < ∞,

J(x) � B1/(q̄)′
n0

[ n0−1∑
m=k0

‖χ[2n,2n+1)k(x, x/2)v(x)‖qLp(·)

]1/q
< ∞.

So by Proposition 3.88 we conclude that K
(2)
v is a compact operator. Further,

write K
(3)
v as

K(3)
v f(x) =

ˆ

R+

k3(x, y)f(y)dy,
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where k3(x, y) = k(x, y)χ(0,2n0−1)(y)χ[2n0 ,∞)(x)v(x) if y < x and k3(x, y) = 0 if
y � x. Then we have∥∥∥‖k3(x, y)‖(L(p̄)′(y)(I),l(q̄)′ )d

∥∥∥
(Lp(x)(I),lq)d

=

{ ∞∑
m=n0

‖χ(2m,2m+1)(x)v(x)

( n0−2∑
n=−∞

‖χ(2n,2n+1)(y)k(x, y)‖(q̄)
′

L(p̄)′(y)

) 1
(q̄)′

‖q
Lp(x)

} 1
q

�
[ ∞∑
m=n0

‖χ(2m,2m+1)(x)v(x)k(x, x/2)‖qLp(x)

] 1
q
( n0−2∑

n=−∞
‖χ(2n,2n+1)(y)‖(q̄)

′

L(p̄)′(y)

) 1
(q̄)′

=: G.

Denoting F :=
(∑n0−1

n=−∞ ‖χ(2n,2n+1)(y)‖(q̄)
′

Lp̄(·)

)1/(q̄)′
and considering the two cases

when m0 � n0 − 2 and m0 > n0 − 2 separately, we derive as previously, that

F � c
[
(2m0)(q̄)

′/(p̄)′(0) + (2n0)(q̄)
′/(p̄)′c
]1/(q̄)′

=: Bn0,m0 ,

and since B1 < ∞ we have

G � Bn0,m0

[ ∞∑
m=n0

‖χ[2n,2n+1)(x)k(x, x/2)v(x)‖qLp(x)

]1/q
< ∞.

Hence, by Proposition 3.88, K
(3)
v is compact.

Let us denote

Im := ‖χ[2m,2m+1)(x)k(x, x/2)v(x)‖Lp(·) . (3.31)

Following the proof of Theorem 3.54 and applying Proposition 3.8 and Lem-
ma 3.9, we have that

‖K(1)
v ‖(

Lp̄(·)(I),lq̄
)
→
(
Lp(·)(I),lq

)
d

� max

{
sup
n�k0

[ k0∑
m=n

Iqm

]1/q[ n∑
m=−∞

‖χ[2m−1,2m)(·)‖(q̄)
′

L(p̄(·))′

]1/(q̄)′
, sup
m�k0

B2(m)

}

� cmax

[[
sup
m�k0

Im2m/p̄′(0)
]
sup
n�k0

[ ∞∑
m=n

2−m/p̄′(0)
][ n∑

m=−∞
2m/p̄′(0)

]
, sup
m<k0

B2(m)

]
� cmax

{
sup
m�k0

Im2m/p̄′(0), sup
m<k0

B2(m)

}
−→ 0

as k0 → 0 because lim
m→−∞B1(m) = lim

m→−∞B2(m) = 0. Further, applying Theorem

3.54 we find that

‖K(4)
v ‖(

Lp̄(·)(I),lq̄
)
→
(
Lp(·)(I),lq

) � max
{

sup
m�n0

B1(m), sup
m�n0

B2(m)
}
−→ 0

as n0 → +∞.
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Therefore,

‖Kvf −K(2)
v f −K(3)

v f‖ � ‖K(1)
v f‖+ ‖K(4)

v f‖ −→ 0

as B1(m) → 0, Bi(m) → 0, i = 1, 2. Hence Kv is compact, since it is a limit of
compact operators.

Necessity. First we show that limm→+∞ B1(m) = 0.

Let us take fn = χ(2n−1,2n+1)2
−n/p̄n , where p̄n is defined in the proof of

Theorem 3.54. Then, fn → 0 weakly in (Lp̄(·)(I), lq̄)d as n → +∞. Indeed, let
φ ∈ (L(p̄(·))′(I), l(q̄)

′
)d. Then∣∣∣∣

∞̂

0

fn(y)φ(y)dy

∣∣∣∣ � (‖χ(2n−1,2n]‖q̄Lp̄(·) + ‖χ(2n,2n+1]‖q̄Lp̄(·)

)1/q̄
2−n/p̄c

×
(
‖φχ(2n−1,2n]‖(q̄)

′

L(p̄(·))′ + ‖φχ(2n−1,2n]‖(q̄)
′

L(p̄(·))′

)1/(q̄)′
−→ 0

as n → +∞.

Observe now that

‖Kvfn‖(Lp̄(·)(I),lq̄)d � ‖χ(2n,2n+1)(x)v(x)k(x, x/2)‖Lp(·)2n/p̄
′
n , n ∈ Z. (3.32)

Hence lim
n→−∞B1(n) → 0, because Kv is compact and p̄n = p̄(0) if n < m0.

Further, (3.32) implies that

‖χ(2n,2n+1)(x)v(x)k(x, x/2)‖Lp(·)2n/(p̄c)
′ −→ 0

as n → +∞.

To show that lim
n→+∞B1(n) → 0 we represent B1(n) as

B1(n) =

( ∞∑
m=n

Iqm

)1/q( n−1∑
m=−∞

‖χ(2m,2m+1]‖q̄L(p̄(·))′

)1/q̄

�
( ∞∑

m=n

Iqm

)1/q( m0−1∑
m=−∞

2mq̄/(p̄(0))′
)1/q̄

+

( ∞∑
m=n

Iqm

)1/q( n−1∑
m=m0

2mq̄/(p̄c)
′
)1/q̄

=: J (1)
n + J (2)

n ,

where n � m0 and Im is defined by (3.31). Observe now that

J (1)
n =

( ∞∑
m=n

Iqm

)1/q

2m0/(p̄(0))
′ −→ 0

as n → +∞, because (
∑∞

m=n I
q
m)1/q → 0 as n → +∞. The latter convergence

follows from the convergence of the series.
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Further,

J (2)
n � c sup

m�n

(
Im2m/(p̄c)

′
)
2−n/(p̄c)

′
2n/(p̄c)

′

� c sup
m�n

Im2m/(p̄c)
′ −→ 0

as n → +∞, because Im2m/(p̄c)
′ → 0 as m → +∞ (see (3.32)). Hence, we have

limm→+∞ B1(m) = 0.

Further, it is easy to see that for 0 < α < 1 and our choice of fn,

‖Kvfn‖(Lp(·),lq)d � 2−n/p̄n‖χ(2n,2n+1)(x)v(x)k(x, x/2)x‖Lp(·)

� 2n/(p̄n)
′‖χ(2n,2n+1)(x)v(x)k(x, x/2)‖Lp(·)

� c
(
2n(2α − 1

)1/(p̄n)
′
‖χ(2n+α,2n+1)(x)v(x)k(x, x/2)‖Lp(·) .

Hence

‖Kvfn‖(Lp(·),lq)d

� sup
0<α<1

(
2n(2α − 1

)1/(p̄n)
′
‖χ(2n+α,2n+1)(x)v(x)k(x, x/2)‖Lp(·) −→ 0

as n → +∞ or n → −∞.

The conditions B1 < ∞ and B2 < ∞ follow from the fact that every compact
operator is bounded. �
Example 3.90. Let p̄, p, q̄, and q be constants satisfying the conditions of Theorem
3.89. Suppose that k(x, y) = (x − y)α−1, where 1/p < α < 1. Suppose that

v(x) =

{
xγ , if 0 < x � 1,

xβ , if x > 1,

where γ > 1/p̄− 1/p−α, β < 1/p̄− 1/p−α. Then, by Theorem 3.89 the operator
Kv is compact from (Lp̄, lq̄)d to (Lp, lq)d.

Now we formulate compactness criteria for the weighted kernel operator Kv

defined on R.

Theorem 3.91. Let 1 < p̄−(R) � p̄(x) � p(x) � p+(R) < ∞ and let p̄0, p0 ∈
P log(R+). Let q̄ and q be constants such that 1 < q̄ � q < ∞. Assume that
p̄(x) ≡ p̄c ≡ const and p(x) ≡ pc ≡ const outside some large interval (−∞, 2m0).
Let k̃ ∈ V (R+)

⋂
V(p̄0(·))′(R+). Then Kv is compact from (Lp̄(·), lq̄) to (Lp(·), lq) if

and only if the following conditions are satisfied:

(i) D1 = sup
m∈Z

D1(m) < ∞, D2 = sup
n∈Z

D2(n) < ∞;

(ii) lim
m→−∞D1(m) = lim

m→∞D1(m) = 0;
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(iii) lim
n→−∞D2(n) = lim

n→∞D2(n) = 0,

where
D1(m) := ‖χ[2m,2m+1)k̃(x, x/2)ṽ(x)‖Lp0(·)2m/p̄′

0(0),

D1(m) :=

[ ∞∑
n=m

‖χ[2n,2n+1)k̃(x, x/2)ṽ(x)‖qLp0(·)

]1/q
×
[ m∑
n=−∞

‖χ[2n−1,2n)(·)‖(q̄)
′

Lp̄
′
0(·)

]1/(q̄)′
,

D2(n) := sup
0<α<1

‖χ[2n+α,2n+1)(x)k̃(x, x/2)ṽ(x)‖Lp0(·)‖χ(2n,2n+ alpha)(·)‖L(p̄0(·))′ ;

k̃, ṽ and p0 and p̄0 are defined before the formulation of Theorem 3.58.

Proof. The proof follows from Theorem 3.89 by the change of variable z → log2 t.
�

3.6 Product Kernel Integral Operators with Measures

This section deals with the boundedness of the positive multiple kernel operator

(Kμf)(x1, . . . , xn) =

ˆ

(0,x1]

· · ·
ˆ

(0,xn]

( n∏
i=1

ki(xi, ti)

)
f(t1, . . . , tn)dμ(t1, . . . , tn), xi > 0,

from Lp
μ(R

n
+) to Lq

ν(R
n
+) under some restrictions on the measure μ, where μ =

μ1 × · · · × μn.

As a corollary we derive the appropriate result for the fractional integral
operator with product kernels

(Rμ
α1,...,αn

f)(x1, . . . , xn) =

ˆ
· · ·
ˆ

(0,x1]×···×(0,xn]

f(t1, . . . , tn)
n∏

i=1

(μi(ti, xi])1−αi

dμ(t1, . . . , tn)

and the strong one-sided fractional maximal operator defined with respect to the
measure μ,

(M μ
α1,...,αn

f)(x1, . . . , xn) = sup
0<ri�xi
1�i�n

n∏
i=1

(μi(xi − ri, xi])
αi−1

×
ˆ

· · ·
ˆ

(x1−r1,x1]×···×(xn−rn,xn]

|f(t1, . . . , tn)|dμ(t1, . . . , tn),
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where 0 < αi < 1, i = 1, . . . , n. The formal dual of Rμ
α1,···αn is given by

(Wμ
α1,...,αn

f)(x1, . . . , xn) =

ˆ
· · ·
ˆ

[x1,∞)×···×[xn,∞)

f(t1, . . . , tn)
n∏

i=1

(μi(xi, ti])1−αi

dμ(t1, . . . , tn),

where xi ∈ R+, i = 1, . . . , n.

Let μ be a positive Borel measure on a set Ω ⊆ R
n. We denote by Lp

μ(Ω),
1 < p < ∞, the set of all measurable functions f : Ω → R for which the norm

‖f‖Lp
μ(Ω) =

( ˆ
Ω

|f(x)|pdμ(x)
) 1

p

is finite.

The proof of the main results for Kμ is based on the two-weight (two-measure)
criterion for the Hardy operator

(Hμ
nf)(x1, . . . , xn) =

ˆ
· · ·
ˆ

(0,x1]×···×(0,xn]

f(t1, . . . , tn)dμ(t1, . . . , tn),

which is also obtained in this section. The similar problem is studied for the
Hardy-type operator

(H̃μ
nf)(x1, . . . , xn) =

ˆ
· · ·
ˆ

(−∞,x1]×···×(−∞,xn]

f(t1, . . . , tn)dμ(t1, . . . , tn). (3.33)

Finally, we emphasize that a new Fefferman–Stein-type inequality for the operator
Rμ

α1,...,αn
is also established.

3.6.1 Hardy Operator with Respect to a Measure

For the next statements regarding the two-weight (two-measure) inequality for the
Hardy operators

(Hμf
)
(x) :=

ˆ

(0,x]

f(t)dμ(t), x > 0,

(H̃μf
)
(x) :=

ˆ

(−∞,x]

f(t)dμ(t), x ∈ R,

defined with respect to a general measure μ, we refer, e.g., to the PhD thesis of
Sinnamon [347].
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Theorem 3.92. Suppose that 1 < p � q < ∞ and μ, ν are nonnegative regular
Borel measures on R+. Then there exists a constant c > 0 such that( ˆ

R+

(Hμg
)q
(x)dν(x)

) 1/q

� c

( ˆ
R+

gp(x)dμ(x)

) 1/p

(3.34)

holds for all nonnegative g ∈ Lp
μ(R), if and only if

c1 := sup
y∈R+

( ˆ

[y,∞)

dν

)1/q( ˆ
(0,y]

dμ

)1/p′

< ∞.

Furthermore, if c is the smallest constant such that (3.34) holds, then c ≈ c1.

Theorem 3.93. Suppose that 1 < p � q < ∞ and μ, ν are nonnegative regular
Borel measures on R. Then there exists a constant c > 0 such that(ˆ

R

(H̃μg
)q
(x)dν(x)

) 1/q

� c

( ˆ
R

gpdμ

) 1/p

(3.35)

holds for all nonnegative g ∈ Lp(R, μ), if and only if

c2 := sup
y∈R

( ˆ

[y,∞)

dν

)1/q( ˆ

(−∞,y]

dμ

)1/p′

< ∞.

Furthermore, if c is the smallest constant such that (3.35) holds, then c ≈ c2.

Proposition 3.94 (Sinnamon [347, Lem. 2.4]). Let 1 < p < ∞. Then there exists a
constant c > 0 such that for all x ∈ R,

ˆ

[x,∞)

(
μ(−∞, t]

)−p
dμ(t) � c

(
μ(−∞, x]

)1−p
.

Proposition 3.95. Let 1 < p < ∞. Then there exists a constant c > 0 such that for
for all x ∈ R+, ˆ

[x,∞)

(
μ(0, t]

)−p
dμ(t) � c

(
μ(0, x]

)1−p
.

Proof. We follow the proof of Lemma 2.4 in Sinnamon [347]. If μ((0, x]) = 0 or
μ((0, x]) = ∞, then the result holds trivially. The non-trivial case arises when
0 < μ((0, x]) < ∞. Fix x ∈ R+ and a > 1, define

Fn :=
{
t ∈ R+ : μ((0, t]) � anμ((0, x])

}
for n = 0, 1, 2, . . . ,
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and F−1 := (0, x). Then Fn ⊆ Fn+1 for all n ∈ Z, and
⋃

n�−1 Fn = R+. Since
μ((0, t]) is non-decreasing as a function of t, there exists a real number tn such
that Fn = (0, tn) or Fn = (0, tn].

If Fn = (0, tn), then μ(Fn) = lim
ε→0+

μ((0, tn − ε]) � anμ((0, x]). In the latter

case if Fn = (0, tn] we have μ(Fn) � anμ((0, x]). In any case, we have the following
estimate for Fn:

μ(Fn) � anμ((0, x]).

Further, if t /∈ Fn−1, then μ((0, t]) > an−1μ((0, x]). Consequently,
ˆ

[x,∞)

μ
(
(0, t]
)−p

dμ(t) =

∞∑
n=0

ˆ

Fn\Fn−1

(
μ(0, t]

)−p
dμ(t)

�
∞∑

n=0

ˆ

Fn\Fn−1

(
an−1μ(0, x]

)−p
dμ(t) �

(
μ(0, x]

)1−p
ap

∞∑
n=0

a(1−p)n

� c
(
μ(0, x]

)1−p
. �

3.6.2 Main Results

In order to state our main results, we introduce some definitions.

Definition 3.96. We say that a sequence {ui1,...,in}∞i1,...,in=1 is a product sequence
if there are sequences {u1,i1}∞i1=1, . . . , {un,in}∞in=1 such that u1,...,in = u1,i1 × · · ·×
un,in .

Proposition 3.97. Let 1 < p < ∞. Then for any regular Borel measure μ on R

there exists c > 0 such thatˆ

R

(
1

μ
(
(−∞, x])

) ˆ

(−∞,x]

fdμ

)p

dμ(x) � c

ˆ

R

fpdμ

for all nonnegative f ∈ Lp
μ(R).

Proof. By taking the measure dν(x) =
(
μ(−∞, x]

)−p
dμ(x) in Theorem 3.93 (for

p = q) and using Proposition 3.94, we getˆ

R

(
1

μ
(
(−∞, x]

) ˆ

(−∞,x]

fdμ

)p

dμ(x) � c

ˆ

R

fpdμ. �

Proposition 3.98. Let 1 < p < ∞. Then for any measure μ on R+ there exists
c > 0 such that ˆ

R+

(
1

μ
(
(0, x])

) ˆ
(0,x]

fdμ

)p

dμ(x) � c

ˆ

R+

fpdμ

holds for all nonnegative f ∈ Lp
μ(R+).
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Proof. The proof is similar to that of Proposition 3.97; in this case we use Theorem
3.92 instead of Theorem 3.93. �

Now we formulate the main results of this section. We begin with the Hardy
inequality.

Theorem 3.99. Let 1 < p � q < ∞ and let μ, ν be regular Borel measures on Rn.
Suppose that μ = μ1 × · · · × μn, where μi are regular Borel measures on R for
i = 1, . . . , n. Then there exists a constant c > 0 such that the inequality( ˆ

Rn

∣∣∣∣ ˆ
(−∞,x1]

· · ·
ˆ

(−∞,xn]

f(t1, . . . , tn)dμ(t1, . . . , tn)

∣∣∣∣qdν(x1, . . . , xn)

) 1
q

� c

( ˆ
Rn

|f(x1, . . . , xn)|pdμ(x1, . . . , xn)

) 1
p

(3.36)

holds for all f ∈ Lp
μ(R

n), if and only if

B1 := sup
a1,...,an∈R

(
ν
(
[a1,∞)× · · · × [an,∞)

)) 1
q

×
(
μ1(−∞, a1] · · ·μn(−∞, an]

) 1

p
′
< ∞.

Moreover, if c is the best constant in (3.36), then c ≈ B1.

Theorem 3.100. Let 1 < p � q < ∞ and let μ, ν be regular Borel measures on
Rn

+. Suppose that μ = μ1 × · · · × μn, where μi are regular Borel measures on R+

for i = 1, . . . , n. Then there exists a constant c > 0 such that the inequality( ˆ
Rn

+

∣∣∣∣ ˆ
(0,x1]

· · ·
ˆ

(0,xn]

f(t1, . . . , tn)dμ(t1, . . . , tn)

∣∣∣∣qdν(x1, . . . , xn)

) 1
q

� c

( ˆ
Rn

+

|f(x1, . . . , xn)|pdμ(x1, . . . , xn)

) 1
p

(3.37)

holds for all f ∈ Lp
μ(R

n
+) if and only if

B2 := sup
a1,...,an>0

(
ν
(
[a1,∞)× · · · × [an,∞)

)) 1
q
(
μ1(0, a1] · · ·μn(0, an]

) 1

p
′
< ∞.

Moreover, if c is the best constant in (3.37), then c ≈ B2.
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For the discrete case we have the following statements:

Corollary 3.101. Let 1 < p � q < ∞. Suppose that {wk1,...,kn} and {vk1,··· ,kn}
are positive sequences on Zn. Assume that wk1,...,kn = w1,k1 · · ·wn,kn for some
sequences {wj,kj}∞kj=1, j = 1, . . . , n. Then there exists a constant c > 0 such that

( ∞∑
m1=−∞

· · ·
∞∑

mn=−∞

∣∣∣∣ m1∑
k1=−∞

· · ·
mn∑

kn=−∞
ak1,...,kn

∣∣∣∣qvm1,...,mn

) 1
q

� c

( ∞∑
m1=−∞

· · ·
∞∑

mn=−∞

∣∣am1,...,mn

∣∣pwm1,...,mn

) 1
p

holds for all sequences {ak1,...,kn} ∈ lp{wk1,...,kn}(Z
n) if and only if

B3 := sup
k1,...,kn∈Z

( ∞∑
l1=k1

· · ·
∞∑

ln=kn

vl1,...,ln

) 1
q
( k1∑

l1=−∞
w1−p

′

1,l1
· · ·

kn∑
ln=−∞

w1−p
′

n,ln

) 1

p
′
< ∞.

Corollary 3.102. Let 1 < p � q < ∞. Suppose that {wk1,...,kn} and {vk1,...,kn}
are positive sequences on N

n. Assume that wk1,...,kn = w1,k1 · · ·wn,kn for some
sequences {wj,kj}∞kj=1, j = 1, . . . , n. Then there exists a constant c > 0 such that

( ∞∑
m1=1

· · ·
∞∑

mn=1

∣∣∣∣ m1∑
k1=1

· · ·
mn∑

kn=1

ak1,...,kn

∣∣∣∣qvm1,...,mn

) 1
q

� c

( ∞∑
m1=1

· · ·
∞∑

mn=1

∣∣am1,...,mn

∣∣pwm1,...,mn

) 1
p

holds for all sequences {ak1,...,kn} ∈ lp{wk1,...,kn}(N) if and only if

B4 := sup
k1,...,kn∈N

( ∞∑
l1=k1

· · ·
∞∑

ln=kn

vl1,...,ln

) 1
q
( k1∑

l1=1

w1−p
′

1,l1
· · ·

kn∑
ln=1

w1−p
′

n,ln

) 1

p
′
< ∞.

To formulate the main results for positive kernel operators Kμ we need some
definitions (cf. Definitions 3.1, 3.2). The following class of kernels is a special case
of the kernels introduced in Definition 3.1 but we define it again with a different
constant.

Definition 3.103. We say that a kernel k : {(x, y) : 0 < y < x < ∞} → (0,∞)
belongs to V (k ∈ V ) if there exists a constant d1 such that for all x, t, z with
0 < t < z < x < ∞,

k(x, t) � d1k(x, z).
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Definition 3.104. A kernel k belongs to Vλ(μ), where μ is a Borel measure on R+

and 1 < λ < ∞, if there exists a positive constant d2 such that for a.e. x > 0,ˆ

(x/2,x]

kλ
′
(x, y)dμ(y) � d2μ(0, x]k

λ′
(
x, x/2

)
,

where λ′ = λ/(λ− 1).

Lemma 3.105. Let 1 < p < ∞, and 1
p < α < 1. Then for any Borel measure μ on

R+, there exists a positive constant c such that for all x ∈ R+

I(x) :=

ˆ

(x/2,x]

(μ(t, x])(α−1)p′
dμ(t) � c

(
μ(x/2, x]

)(α−1)p′+1

.

Proof. We have

I(x) =

∞̂

0

μ
({t ∈ (x/2, x] : (μ(t, x])(α−1)p′

> λ})dλ
=

A(x,p,α)ˆ

0

(
· · ·
)
dλ+

∞̂

A(x,p,α)

(
· · ·
)
dλ := I1(x) + I2(x),

where A(x, p, α) := μ((x/2, x])(α−1)p′
.

First, note that

I1(x) �
(
μ(x/2, x]

)
A(x, p, α) =

(
μ(x/2, x]

)(α−1)p′+1

.

Now let us estimate I2(x). For this we show that

Eλ(x) := μ
({t ∈ (x/2, x] : (μ(t, x])(α−1)p′

> λ}) � λ
1

(α−1)p′ .

Indeed, let

t0 := inf
{
t : μ
({t ∈ (x/2, x] : (μ(t, x])(α−1)p′

> λ})}.
It is easy to see that

μ(t0, x] � λ
1

(α−1)p′ .

Hence,

Eλ(x) � μ(t0, x] � λ
1

(α−1)p′ .

Using this estimate we find that

I2(x) �
∞̂

A(x,p,α)

λ
1

(α−1)p′ dλ � c
(
μ(x/2, x]

)(α−1)p′+1

. �
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Example 3.106. Let 1 < p < ∞ and let k(x, t) = μ(t, x]α−1, where 1
p < α � 1.

Then k ∈ V ∩ Vp(μ).

Indeed, it is easy to check that k ∈ V . Further, the fact that k ∈ Vp(μ) follows
from Lemma 3.105.

Remark 3.107. Examples of appropriate kernels k(x, y) =
(
μ(t, x]

)α−1
are

k(x, y) = (x − y)α−1, 1
p < α � 1, and k(x, y) = (xσ − yσ)α−1, where 1

p < α � 1
and σ > 0.

For other examples of kernels k satisfying the condition k ∈ V ∩ Vp(dx) with
respect to the Lebesgue measure dx we refer to Meskhi [253] (see also Edmunds,
Kokilashvili, and Meskhi [76, Chap. 2]).

To formulate the next result we need to introduce some classes of measures.

Definition 3.108. We say that a measure μ defined on R+ satisfies the doubling
condition at 0 (μ ∈ DC0(R+)) if there exists a constant d > 1 such that for all
a > 0, μ[0, 2a) � dμ(0, a], where ρ(E) :=

´
E

ρ.

Definition 3.109. We say that a measure μ defined on R+ satisfies the strong
doubling condition at 0 (μ ∈ SDC0(R+)) if there is a constant d > 1 such that for
all a > 0,

μ[0, 2a) � dmin{μ[0, a), μ[a, 2a)}. (3.38)

If μ(E) =
´
E

ρ, where ρ is a weight function, then we say that the weight ρ

satisfies the doubling condition at 0 (resp. the strong doubling condition at 0) if
the corresponding condition is satisfied for μ.

Remark 3.110. It is easy to check that if μ ∈ DC0(R+), then μ satisfies the reverse
doubling condition: there is a positive constant d1 > 1 such that

μ
(
[0, 2t)

)
� d1 max

{
μ
(
[0, t)
)
, μ
(
[t, 2t)

)}
. (3.39)

Indeed, by (3.38) we have

μ
(
[0, 2t)

)
� 1

d
μ([0, 2t)) + μ

(
[t, 2t)

)
.

Then

μ
(
[0, 2t)

)
� d

d− 1
μ
(
[t, 2t)

)
.

Analogously,

μ
(
[0, 2t)

)
� d

d− 1
μ
(
[0, t)
)
.

Finally, we have (3.39) for d
d−1 .
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Theorem 3.111. Let 1 < p � q < ∞. Suppose that ν and μ are regular Borel
measures on Rn

+. Suppose also that μ = μ1 × · · · × μn, where μi are regular Borel
measures on R+ such that μi ∈ SDC0(R+), i = 1, . . . , n. Assume that the kernels
ki belong to V ∩ Vp(μi) for i = 1, . . . , n. Then the operator Kμ is bounded from
Lp
μ(R

n
+) to Lq

ν(R
n
+) if and only if

B̃μ,ν := sup
a1,...,an>0

( ˆ

[a1,∞)

· · ·
ˆ

[an,∞)

n∏
i=1

kqi (xi, xi/2)dν(x1, . . . , xn)

) 1
q

×
(
μ1(0, a1] · · ·μ2(0, an]

) 1
p′

< ∞.

Theorem 3.111 and Example 3.106 immediately imply the next statement.

Corollary 3.112. Let 1 < p � q < ∞ and 1
p < αi < 1 for i = 1, . . . , n. Suppose that

ν and μ are regular Borel measures on Rn
+. Suppose also that μ = μ1 × · · · × μn,

where μi are regular Borel measures on R+ such that μi ∈ SDC0(R+). Then the
operator Rμ

α1,...,αn
is bounded from Lp

μ(R
n
+) to Lq

ν(R
n
+) if and only if

B̄μ,ν := sup
a1,...,an>0

( ˆ

[a1,∞)

· · ·
ˆ

[an,∞)

n∏
i=1

(μi(xi/2, xi])
(αi−1)qdν(x1, . . . , xn)

) 1
q

×
( n∏

i=1

μi(0, ai]

) 1
p′

< ∞. (3.40)

Corollary 3.113. Let 1 < p � q < ∞ and 1
p < αi < 1 for i = 1, . . . , n. Suppose

that ν and μ are regular Borel measures on Rn
+. Suppose also that μ = μ1 ×

· · · × μn, where μi are regular Borel measures on R+ such that μi ∈ SDC0(R+),
i = 1, · · · , n. Then the operator M μ

α1,...,αn
is bounded from Lp

μ(R
n
+) to Lq

ν(R
n
+) if

and only if (3.40) holds.

3.6.3 Proofs of the Main Results

In this section we prove the statements of Section 3.6.2. For simplicity we give the
proofs for n = 2. Proofs of other cases can be carried out in the same manner, and
therefore are omitted.

Proof of Theorem 3.99. Necessity. Let the operator H̃μ
2 defined by (3.33) (for n =

2) be bounded from Lp
μ(R

2) to Lq
ν(R

2) and let us take the test function

fab(x, y) = χ(−∞,a]×(−∞,b](x, y), a, b ∈ R.

Then
‖fab‖Lp

μ(R2) = (μ1(−∞, a]× μ2(−∞, b])
1
p < ∞.
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On the other hand,

‖H̃μ
2fab‖Lq

ν(R2) �
( ˆ

[a,∞)

ˆ

[b,∞)

( ˆ

(−∞,a]

ˆ

(−∞,b]

dμ(t, τ)

)q

dν(x, y)

) 1
q

= (ν([a,∞)× [b,∞)))
1
q μ1(−∞, a]μ2(−∞, b].

By the boundedness of H̃μ
2 we conclude that B1 < ∞.

Sufficiency. Suppose that f � 0 and ‖f‖Lp
μ(R2) � 1. Define

xk := inf

{
x ∈ R :

ˆ

(−∞,x]

dμ1 � 2k

}
, yj := inf

{
y ∈ R :

ˆ

(−∞,y]

dμ2 � 2j

}
,

K := {k ∈ Z : xk < xk+1}, J := {j ∈ Z : yj < yj+1},

and denote
Ek := (xk, xk+1], Fj := (yj , yj+1].

Then it is easy to see that R =
⋃

k∈K

Ek =
⋃
j∈J

Fj and R2 =
⋃

k∈K,j∈J

Ek × Fj .

Now observe that the following estimates hold for i = 1, 2:

μi(−∞, xk] = lim
x→x+

k

μi(−∞, x] � 2k,

μi(−∞, xk) = lim
x→x−

k

μi(−∞, x] � 2k,

μi(−∞, xk] � 4−1μi(−∞, xk+2),

μi[xk+1, xk+2] � μi(−∞, xk+1) � μi(−∞, xk].

Taking into account these estimates we find that

‖H̃μ
2f‖qLq

ν(R2)
=

ˆ ˆ

R2

( ˆ ˆ

(−∞,x]×(−∞,y]

f(t, τ)dμ(t, τ)

)q

dν(x, y)

=
∑

k∈K,j∈J

ˆ ˆ

Ek×Fj

( ˆ ˆ

(−∞,x]×(−∞,y]

f(t, τ)dμ(t, τ)

)q

dν(x, y)

�
∑

k∈K,j∈J

( ˆ ˆ
Ek×Fj

dν(x, y)

)( ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)q

�
∑

k∈K,j∈J

( ˆ ˆ

[xk,∞)×[yj ,∞)

dν(x, y)

)( ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)q

.
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� Bq
1

∑
k∈K,j∈J

(
μ1(−∞, xk]μ2(−∞, yj])

)−q

p
′
( ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)q

� Bq
1

∑
k∈K,j∈J

(
μ1(−∞, xk]μ2(−∞, yj])

) q
p

(
1

μ1(−∞, xk]μ2(−∞, yj]

×
ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)q

� cBq
1

∑
k∈K,j∈J

(
μ1[xk+1, xk+2]μ2[yj+1, yj+2])

) q
p

(
1

μ1(−∞, xk]μ2(−∞, yj]

×
ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)q

� cBq
1

∑
k∈K,j∈J

( ˆ ˆ

[xk+1,xk+2]×[yj+1,yj+2]

(
1

μ1(−∞, x]μ2(−∞, y]

×
ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)p

dμ(x, y)

) q
p

� cBq
1

( ∑
k∈K,j∈J

ˆ ˆ

[xk+1,xk+2]×[yj+1,yj+2]

(
1

μ1(−∞, x]μ2(−∞, y]

×
ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)p

dμ(x, y)

) q
p

� cBq
1

(ˆ ˆ
R2

(
1

μ1(−∞, x]μ2(−∞, y]

ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)

× dμ(t, τ)

)p

dμ(x, y)

) q
p

:= cBq
1S,

where

S :=

( ∞̂

−∞

∞̂

−∞

(
1

μ1(−∞, x]μ2(−∞, y]

×
ˆ ˆ

(−∞,xk+1]×(−∞,yj+1]

f(t, τ)dμ(t, τ)

)p

dμ(x, y)

) q/p

.
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By Proposition 3.97,

S � c

( ∞̂

−∞

1

μ1(−∞, y]p

( ∞̂

−∞

( ˆ

(−∞,y]

f(x, τ)dμ2(τ)

)p

dμ1(x)

)
dμ2(y)

) q/p

.

Using the generalized Minkowski inequality and Proposition 3.97 again we
have that

S � c

( ∞̂

−∞

1

μ1(−∞, y]p

( ˆ

(−∞,y]

( ∞̂

−∞
fp(x, τ)dμ1(x)

) 1/p

dμ2(τ)

)p

dμ2(y)

) q/p

� c

( ∞̂

−∞

( ∞̂

−∞
fp(x, y)dμ1(x)

) p/p

dμ2(y)

) q/p

� c

( ˆ ˆ
R2

fp(x, y)dμ1(x)dμ2(y)

) q/p

� c‖f‖q
Lp

μ(R2)
.

Hence,
‖H̃μ

2f‖Lq
ν(R2) � c‖f‖Lp

μ(R2). �

Proof of Theorem 3.100. Follows in much the same way as Theorem 3.99, therefore
we omit the details. �

Proof of Corollary 3.101. For simplicity we give the proof for n = 2. Let δk,j
denote the Dirac measure concentrated at the point (k, j) ∈ Z × Z and δi denote
the Dirac measure concentrated at i ∈ Z.

Considering the measures

μ1 =
∑
k∈Z

w1−p
′

1,k δk, μ2 =
∑
j∈Z

w1−p
′

2,j δj and ν =
∑
k,j∈Z

vk,jδk,j

in Theorem 3.100, the inequality( ∞∑
n=−∞

∞∑
m=−∞

∣∣∣∣ n∑
k=−∞

m∑
j=−∞

f(k, j)w1−p
′

1,k w1−p
′

2,j

∣∣∣∣qvn,m)1/q

� c

( ∞∑
n=−∞

∞∑
m=−∞

∣∣f(n,m)w1−p
′

1,n w1−p
′

2,m

∣∣pwn,m

)1/p

holds for all f ∈ Lp
μ(Z) = lp

w1−p′
n,m

(Z2), if and only if B3 < ∞.

Now letting ak,j = f(k, j)w1−p
′

k,j we have the required result. �

Proof of Corollary 3.102. Similar to that of Corollary 3.101 and is omitted. �

To prove the next result we need the following Lemma.
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Lemma 3.114. Let 1 < p � q < ∞ and let μ be a regular Borel measure on R+.
Then there exists a constant c > 0 such that the inequality( ˆ

R+

( ˆ
(0,x]

f(t)dμ(t)

)q(
μ(0, x]

)−q/p′−1
dμ(x)

) 1/q

� c

( ˆ
R+

(f(x))pdμ(x)

) 1/p

(3.41)
holds for all nonnegative f ∈ Lp

μ(R+).

Proof. By Theorem 3.92, (3.41) holds if

sup
y>0

( ˆ

[y,∞)

(μ(0, t])
−q

p′ −1
dμ(t)

) 1/q

μ(0, y]
1
p′ < ∞.

Using Proposition 3.95 (for q
p′ + 1 > 1) we find that( ˆ

[y,∞)

(μ(0, t])
−q

p′ −1
dμ(t)

) 1/q

μ(0, y]
1
p′ � cμ(0, y]

− 1
p′ μ(0, y]

1
p′ = c.

Hence, (3.41) holds. �

Proof of Theorem 3.111. Sufficiency. Let f � 0. Represent Kμf(x, y) as a sum of
four two-dimensional integrals:

Kμf(x, y) =

ˆ

(0,x/2]

ˆ

(0,y/2]

(· · · )dμ(t, τ) +
ˆ

(0,x/2]

ˆ

(y/2,y]

(· · · )dμ(t, τ)

+

ˆ

(x/2,x]

ˆ

(0,y/2]

(· · · )dμ(t, τ) +
ˆ

(x/2,x]

ˆ

(y/2,y]

(· · · )dμ(t, τ)

= K(1)
μ f(x, y) +K(2)

μ f(x, y) +K(3)
μ f(x, y) +K(4)

μ f(x, y).

For t � x/2, the condition k1, k2 ∈ V gives ki(x, t) � diki(x, x/2), i = 1, 2.
Using Theorem 3.100 we have

‖K(1)
μ f‖q

Lq
ν(R2

+)
� cB̃q

μ,ν‖f‖qLp
μ(R2

+)
.

Applying the Hölder inequality and the assumptions that ki ∈ Vp(μi), μi ∈
SDC0(R+), i = 1, 2, we have that

‖K(4)
μ f‖q

Lq
ν(R2

+)
�
ˆ ˆ

R2
+

( ˆ

(x/2,x]

ˆ

(y/2,y]

(
f(t, τ)

)p
dμ(t, τ)

) q
p

×
( ˆ

(x/2,x]

kp
′

1 (x, t)dμ1(t)

) q

p′
( ˆ

(y/2,y]

kp
′

2 (y, τ)dμ2(τ)

) q

p′

dν(x, y)
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� c

ˆ ˆ

R2
+

( ˆ

(x/2,x]

ˆ

(y/2,y]

(
f(t, τ)

)p
dμ(t, τ)

) q
p

×
(
μ1(0, x]k

p′
1 (x, x/2)μ2(0, y]k

p′
2 (y, y/2)

) q

p′
dν(x, y)

� c
∑
k∈Z

∑
j∈Z

( ˆ

(2k,2k+1]

ˆ

(2j ,2j+1]

(
μ1(0, x]μ2(0, y]

) q

p′
kq1(x, x/2)k

q
2(y, y/2)

)

×
( ˆ

(x/2,x]

ˆ

(y/2,y]

(
f(t, τ)

)p
dμ(t, τ)

) q
p

dν(x, y)

� cB̃q
μ,ν

∑
k∈Z

∑
j∈Z

( ˆ

(2k−1,2k+1]

ˆ

(2j−1,2j+1]

(
f(t, τ)

)p
dμ(t, τ)

) q
p

� cB̃q
μ.ν‖f‖qLp

μ(R2
+)
.

Now we estimate ‖K(2)
μ f‖q

Lq
ν(R2

+)
. Using the Hölder inequality for the integral´

(y/2,y]

, the conditions k1 ∈ V , k2 ∈ Vp(μ2), μ2 ∈ SDC0(R), and Lemma 3.114 we

have that

‖K(2)
μ f‖q

Lq
ν(R2

+)

� c

¨

R2
+

kq1(x, x/2)

( ˆ

(0,x/2]

ˆ

(y/2,y]

f(t, τ)k2(y, τ)dμ1(t)dμ2(τ)

)q

dν(x, y)

� c

¨

R2
+

kq1(x, x/2)

( ˆ

(0,x/2]

( ˆ

(y/2,y]

(f(t, τ))pdμ2(τ)

) 1
p

×
( ˆ

(y/2,y]

kp
′

2 (y, τ)dμ2(τ)

) 1
p′

dμ1(t)

)q

dν(x, y)

� c

¨

R2
+

kq1(x, x/2)k
q
2(y, y/2)μ

q
p′
2 (0, y]

×
( ˆ

(0,x/2]

( ˆ

(y/2,y]

(f(t, τ))pdμ2(τ)

) 1
p

dμ1(t)

)q

dν(x, y)
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� c
∑
k∈Z

∑
j∈Z

( ˆ

(2k,2k+1]

ˆ

(2j ,2j+1]

kq1(x, x/2)k
q
2(y, y/2)μ

q

p′
2 (0, y]dν(x, y)

)

×
( ˆ

(0,2k]

( ˆ

(2j−1,2j+1]

(f(t, τ))pdμ2(τ)

) 1
p

dμ1(t)

)q

� cB̃q
μ,ν

∑
k∈Z

∑
j∈Z

(μ1(0, 2
k])

−q

p′

×
( ˆ

(0,2k]

( ˆ

(2kj ,2j+1]

(f(t, τ))pdμ2(τ)

) 1
p

dμ1(t)

)q

=: A.

Observe now that the condition μ1 ∈ SDC0(R+) implies that

μ1(0, 2
k+1] � cmin{μ1(0, 2

k], μ1(2
k, 2k+1]},

where the positive constant c does not depend on x. Hence,

A � cB̃q
μ,ν

∑
k∈Z

ˆ

(2k,2k+1]

(μ1(0, 2
k+1])

−q

p′ −1

×
( ˆ

(0,x]

( ˆ

(2k−1,2k+1]

(f(t, τ))pdμ2(τ)

) 1
p

dμ1(t)

)q

dμ1(x)

� cB̃q
μ,ν

∑
k∈Z

( ˆ
R+

ˆ

(2k−1,2k+1]

(f(x, τ))pdμ2(τ)dμ1(x)

) q
p

� cB̃q
μ,ν‖f‖qLp

μ(R2
+)
.

Similarly, the conditions μ1 ∈ DC0(R+), μ2 ∈ SDC0(R+) yield that

‖K(3)
μ f‖q

Lq
ν(R2

+)
� cB̃q

μ,ν‖f‖qLp
μ(R2

+)

Taking into account the estimates for K(j)
μ f , j = 1, 2, 3, 4, we conclude that

‖Kμf‖qLq
ν(R2

+)
� cB̃q

μ,ν‖f‖qLp
μ(R2

+)
.

Necessity. Taking the test function fa,b(x, y) = χ(0,a](x)χ(0,b](y), a, b > 0, we

find that ‖fa,b‖Lp
μ(R

2
+) =

(
μ1(0, a]μ2(0, b]

) 1
p

. On the other hand, by the conditions
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ki ∈ V , i = 1, 2, we have

‖Kμfa,b‖qLq
ν(R2

+)

�
( ˆ

[a,∞)

ˆ

[b,∞)

( ˆ

(x/2,x]

ˆ

(y/2,y]

k1(x, t)k2(y, τ)dμ1(t)dμ2(τ)

)q

dν(x, y)

) 1
q

� c

( ˆ

[a,∞)

ˆ

[b,∞)

kq1(x, x/2)k
q
2(y, y/2)(μ1(x/2, x]μ2(y/2, y])

qdν(x, y)

) 1
q

.

Observe that if x � a and μ1 ∈ SDC0(R+), then

μ1(x/2, x] � cμ1(0, x] � cμ1(0, a].

Similarly, we have that

μ2(y/2, y] � cμ2(0, b]

for y � b. Using these estimates in the inequality above we conclude that

‖Kμfa,b‖qLq
ν(R2

+)
� c

( ˆ

[a,∞)

ˆ

[b,∞)

kq1(x, x/2)k
q
2(y, y/2)dν(x, y)

) 1
q

(μ1(0, a]μ2(0, b])

holds for a positive constant c independent of a and b. By the boundedness of Kμ,

we finally have that B̃μ,ν < ∞. �

Proof of Corollary 3.113. Sufficiency is a consequence of Corollary 3.113 and the
estimate Rμ

α1,α2
f � M μ

α1,α2
f where f � 0.

Necessity follows by taking the test function fa,b(x1, x2) = χ(0,a](x1)χ(0,b](x2),
a, b > 0, in the two-weight inequality. Observe that for a, b > 0,

‖M μ
α1,α2

fa,b‖Lq
ν(R2

+)

� μ1(0, a]μ2(0, b]

( ˆ

[a,∞)

ˆ

[b,∞)

2∏
i=1

μi(0, xi])
(αi−1)qdν(x1, x2)

) 1
q

� cμ1(0, a]μ2(0, b]

( ˆ

[a,∞)

ˆ

[b,∞)

2∏
i=1

μi(xi/2, xi])
(αi−1)qdν(x1, x2)

) 1
q

,

where we applied the condition μi ∈ SDC0(R+), i = 1, 2. �
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3.6.4 A Fefferman–Stein-type Inequality

Now we derive a Fefferman–Stein-type inequality for the multiple Riemann–Liou-
ville operator Rμ

α1,...,αn
, where μ is a product measure.

Lemma 3.115. Let 0 < α < 1 and μ be a regular Borel measure on R+. Then there
exists a positive constant c such that for all x ∈ R+ the following inequality holds:

J(x) :=

ˆ

(0,x]

(μ(t, x])α−1dμ(t) � c
(
μ(0, x]

)α
.

Proof. We have

J(x) =

∞̂

0

μ
({t ∈ (0, x] : (μ(t, x])α−1 > λ})dλ

=

A(x,α)ˆ

0

(
· · ·
)
dλ+

∞̂

A(x,α)

(
· · ·
)
dλ := J1(x) + J2(x),

where A(x, α) := μ((0, x])α−1.

First, note that

J1(x) �
(
μ(0, x]

)
A(x, α) = μ

(
(0, x]
)α

.

Now let us estimate J2(x). For this we show that the inequality

Eλ(x) := μ
({t ∈ (0, x] : (μ(t, x])α−1 > λ}) � λ

1
α−1

holds. Indeed, let

t0 := inf
{
t : μ
({t ∈ (0, x] : (μ(t, x])α−1 > λ})}.

It is easy to see that

μ(t0, x] � λ
1

α−1 .

Hence,

Eλ(x) � μ(t0, x] � λ
1

α−1 .

This estimate yields

J2(x) �
∞̂

A(x,α)

λ
1

α−1 dλ � c(μ(0, x])α. �
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Theorem 3.116. Let 1 < p < ∞, 0 < αi < 1, and μ be a measure on Rn
+ such that

μ = μ1 × · · · × μn where μi are Borel measures on R+ for i = 1, . . . , n. We set

dν(x1, . . . , xn) = v(x1, . . . , xn)dμ(x1, . . . , xn)

dν1(x1, . . . , xn) =
(
Wμ1×···×μn

α1,...,αn
v
)
(x1, . . . , xn)dμ(x1, . . . , xn),

where xi > 0 and v is a nonnegative μ-measurable function on Rn
+. Then there

exists a positive constant c such that

‖(μ1(0, x])
−α1 × · · · × (μn(0, x])

−αnRμ1×···×μn
α1,...,αn

f‖Lp
ν(Rn

+) � c‖f‖Lp
ν1

(Rn
+).

Proof. For simplicity we prove the theorem for n = 2. Let ‖g‖
Lp′

ν (R2
+)

� 1, where

dν(x, y) = (μ(0, x])α(μ(0, y])βdν(x, y).

Using the Hölder inequality twice, Fubini’s Theorem, and Lemma 3.115, we
have that

∞̂

0

∞̂

0

(
Rμ1×μ2

α,β f
)
(x, y)g(x, y)v(x, y)dμ1(x)dμ2(y)

=

∞̂

0

∞̂

0

f(x, y)
(Wν

α,βg
)
(x, y)dμ1(x)dμ2(y)

�
∞̂

0

∞̂

0

f(x, y)

( ˆ

[x,∞)

ˆ

[y,∞)

1

(μ1(x, t])1−α(μ2(y, τ ])1−β
dν(t, τ)

) 1
p

×
( ˆ

[x,∞)

ˆ

[y,∞)

gp
′
(t, τ)dν(t, τ)

(μ1(x, t])1−α(μ2(y, τ ])1−β

) 1
p′

dμ1(x)dμ2(y)

�
( ∞̂

0

∞̂

0

fp(x, y)

( ˆ

[x,∞)

ˆ

[y,∞)

dν(t, τ)

(μ1(x, t])1−α(μ2(y, τ ])1−β

)
dμ1(x)dμ2(y)

) 1
p

×
( ∞̂

0

∞̂

0

( ˆ

[x,∞)

ˆ

[y,∞)

gp
′
(t, τ)dν(t, τ)

(μ1(x, t])1−α(μ2(y, τ ])1−β

)
dμ1(x)dμ2(y)

) 1
p′

=

( ∞̂

0

∞̂

0

fp(x, y)
(Wν

α,β1
)
dμ1(x)dμ2(y)

) 1
p

×
( ∞̂

0

∞̂

0

gp
′
(t, τ)

( ˆ
(0,t]

ˆ

(0,τ ]

dμ1(x)dμ2(y)

(μ1(t, x])1−α(μ2(τ, y])1−β

)
dν(t, τ)

) 1
p′
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� cα,β‖f‖Lp(R2
+,ν1)

( ∞̂

0

∞̂

0

gp
′
(t, τ)(μ1(0, t])

α(μ2(0, τ ])
βdν(t, τ)

) 1
p′

= cα,β‖f‖Lp
ν1

(R2
+)‖g‖Lp′

ν (R2
+)

� cα,β‖f‖Lp
ν1

(R2
+).

Taking the supremum over all g satisfying ‖g‖
Lp′

ν (R2
+)

� 1 completes the proof. �

Corollary 3.117. Let 1 < p < ∞, 0 < αi < 1 for i = 1, . . . , n, and let v be
a nonnegative Lebesgue measurable function on Rn

+. Then there exists a positive
constant c such that

‖x−α1
1 · · ·x−αn

n Rα1,...,αnf‖Lp(Rn
+,vdx) � c‖f‖Lp(Rn

+,Wα1,...,αnvdx),

where Rα1,...,αn and Wα1,...,αn denote the operators Rμ
α1,...,αn

and Wμ
α1,...,αn

, re-
spectively, in the case when μ is the n-dimensional Lebesgue measure on Rn

+.

3.7 Comments to Chapter 3

The boundedness of the maximal, potential, and singular operators in Lp(·)(Rn) spaces
was established in Diening [61, 62], Diening and Růžička [64], Nekvinda [272], Cruz-
Uribe, Fiorenza, Martell, and Perez [52], Capone, Cruz-Uribe, and Fiorenza [39], Koki-
lashvili and Samko [186, 187, 188, 189, 190, 193, 194], Kokilashvili, Samko, and Samko
[196, 198, 199, 200], Edmunds and Meskhi [73], Samko and Vakulov [330], Samko, Shar-
gorodsky, and Vakulov [332], Diening and Samko [67] etc. The same problems with general
weights for Hardy, maximal, and fractional integral operators were studied in Edmunds,
Kokilashvili, and Meskhi [77, 78, 81], Kokilashvili and Meskhi [179, 181, 183], Koki-
lashvili, Meskhi, and Sarwar [202], Kokilashvili and Samko [191], Ashraf, Kokilashvili,
and Meskhi [22], Asif, Kokilashvili, and Meskhi [23], Kopaliani [208], Cruz-Uribe, Dien-
ing, and Hästö [53], Cruz-Uribe, Fiorenza, and Neugebauer [51], Mamedov and Zeren
[240, 242]. Moreover, in Cruz-Uribe, Diening, and Hästö [53] a complete solution of the
one-weight problem for the Hardy–Littlewood maximal functions defined on Euclidean
spaces is given in terms of Muckenhoupt type conditions (see also the comments to
Chapter 2).

Comments to Section 3.1

Boundedness/compactness of fractional integral operators with power weights was stud-
ied in Edmunds and Meskhi [73]. We refer to Rafeiro and Samko [297, 298] for compact-
ness of a class of integral operators involving fractional integrals.

The material presented in this chapter is based on the papers by Kokilashvili and
Meskhi [184], Edmunds, Fiorenza, and Meskhi [79], Kokilashvili, Meskhi, and Zaighum
[205, 206].
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Comments to Sections 3.3, 3.4 and 3.5

The idea of considering amalgam spaces, instead of the classical Lebesgue spaces is natu-
ral because it allows us to separate the global behavior from local behavior of functions.
This idea goes back to Norbert Wiener (1926), who considered special cases of amalgam
spaces. Other cases have appeared sporadically since then, but the first systematic study
of these spaces was undertaken in 1975 by Holland [135] (see also the survey by Fournier
and Stewart [89]).

Carton-Lebrun, Heinig, and Hofmann [41] established two-weight criteria for the

Hardy operator (HR
v,wf)(x) =

x́

−∞
f(t)dt in amalgam spaces defined on R (see also

Ortega Salvador and Ramı́rez Torreblanca [276], Heinig and Kufner [132] for related
topics). In Carton-Lebrun, Heinig, and Hofmann [41] the authors derived some suf-
ficient conditions for the two-weight boundedness of the kernel operator (Kf)(x) :=´ x
−∞ k(x, y)f(y)dy, where k is non-decreasing in the second variable and non-increasing
in the first one. In Aguilar Cañestro and Salvador Ortega [9] the two-weight problem
for generalized Hardy-type kernel operators, including the fractional integrals of order
greater than one (without singularity), was solved.

In Aydin and Gürkanli [25] there was defined Wiener amalgam spaces of

W
(
Lp(x)(Rn), Lq(Rn, w)

)
,

where the local component is the variable exponent Lebesgue space Lp(x)(Rn) and the
global component is a weighted Lebesgue space Lq(Rn, w). In that paper it is shown
that these Wiener amalgam spaces are Banach function spaces, and new Hölder type
inequalities and embeddings for these spaces are presented; it is also shown that under
certain conditions the Hardy–Littlewood maximal function is not mapping the space
W (Lp(x)(Rn), Lq(Rn, w)) into itself.

Comments to Section 3.6

Criteria for the boundedness of the operator Rαf(x) :=
x́

0

f(t)

(x−t)1−α dt from Lp(R+) to

Lq(R+, v), where 1 < p � q < ∞, 1
p
< α < 1, and v is a weight function on R have been

obtained under simple transparent condition in Meskhi [252] (see also Prokhorov [282],
Edmunds, Kokilashvili, and Meskhi [76], Chapter 2 and references cited therein for this
and related results). In particular, one such result can be formulated as follows:

Theorem 3.118. Let 1 < p � q < ∞ and let 1/p < α < 1. Then the following statements
are equivalent:

(i) the operator Rα is bounded from Lp(R+) to Lq(R+, v);

(ii) sup
t>0

( ˆ ∞

t

v(x)

x(1−α)q
dx

)1/q

t1/p
′
< ∞.

It should be emphasized that another characterization, different from Corollary
3.101, regarding the two-weight double discrete Hardy inequality was given in Okpoti,
Persson, and Wedestig [274].
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The results of Section 3.6 are a generalization of the Lp(Rn
+) → Lq(Rn

+, v) bound-
edness result established in Kokilashvili and Meskhi [178] (see also Kokilashvili, Meskhi,
and Persson [201]: Section 2.1) regarding the product kernel operator

(Kf)(x1 · · · , xn) =

ˆ x1

0

× · · · ×
ˆ xn

0

( n∏
i=1

ki(xi, ti)

)
f(t1, . . . , tn)dt1 · · · dtn, xi > 0,

involving the classical Riemann–Liouville operator. It should be emphasized that Lp(R+)

→ Lq(R+, v) boundedness results for (Kf)(x) :=
x́

0

k(x, y)f(y)dy, including fractional

order integral operators with kernels such as k(x, y) = (x− y)α−1, 1
p
< α < 1; k(x, y) =

(x − y)α−1 logβ−1 γ
x−y

, 1
p

< α < 1, 1 − α + 1
p

< β < 1; k(x, y) = (x − y)α−1 logβ x
y
,

0 < α < 1, β > 0; k(x, y) = x−σ(α+η)(xσ − yσ)α−1yση+σ−1, σ > 0, 0 < α � 1 etc., were
derived in Meskhi [252, 253] (see also Edmunds, Kokilashvili, and Meskhi [76, Chap. 2]).
For the solution of two-weight problems in the classical Lebesgue spaces (Lp

w → Lq
v

boundedness for 1 < p < q < ∞) for general integral transforms with positive kernels
defined on an SHT we refer to Genebashvili, Gogatishvili, Kokilashvili, and Krbec [104],
Theorems 3.1.1 and 3.4.2.

Weighted characterization of boundedness/compactness of the Riemann–Liouville

operator with variable parameter Rα(·)
v in Lp(·) spaces, where exponents of spaces are

constants outside some large interval, was established in Ashraf, Kokilashvili, and Meskhi
[22]. We refer also to the monograph by Meskhi [251]. Therein two-sided estimates of the

measure of non-compactness for Rα(·)
v were also given in variable exponent Lebesgue

spaces when exponents are constant outside some large interval. Also in [251] lower
weighted estimates of the measure of non-compactness for other operators (identity op-
erators, potentials, maximal functions, singular integrals) were derived. Some necessary
conditions and sufficient conditions guaranteeing two-weight inequalities for one-sided
fractional integrals were derived in Kokilashvili, Meskhi, and Sarwar [203].

This chapter is based on the papers of Kokilashvili, Meskhi, and Zaighum [205, 206],
and Meskhi and Zaighum [255, 256, 257].



Chapter 4

Two-weight Estimates

In this chapter two-weight boundedness problems for various integral operators in
variable exponent Lebesgue spaces defined on Euclidean, as well as quasimetric
measure spaces are explored. Namely, Sawyer’s type two-weight criteria for frac-
tional maximal functions Mα (0 � α < 1) defined on finite or infinite intervals
of the real line are established; modular and norm type two-weight boundedness
conditions for maximal functions and singular integrals are derived; two-weight
estimates for Hardy-type transforms defined on quasimetric measure spaces are
obtained. A part of this chapter deals with variable-parameter potentials. Here
two-weight boundedness criteria for fractional integrals with variable parameters
on spaces of homogeneous type are established.

4.1 Preliminaries

4.1.1 Some Properties of Variable Exponent Lebesgue Spaces

Let u be an a.e. positive locally integrable function on an interval J ⊆ R. We recall
the definition of a doubling weight (see also Chapter 3).

Definition 4.1. Let J be a bounded interval in R. We say that a nonnegative
function u satisfies the doubling condition on J (u ∈ DC(J)) if there is a positive
constant b such that for all x ∈ J and all r, 0 < r < |J |, the inequality

u
(
I(x− 2r, x+ 2r) ∩ J

)
� bu
(
I(x − r, x+ r) ∩ J

)
holds, where the symbol u(E) denoted

´
E

u(x)dx.

Lemma 4.2. Let J be a bounded interval and let 1 � r−(J) � r+(J) < ∞. Suppose
that r ∈ P log(J) and that the measure μ lies in DC(J). Then there is a positive
constant c such that for all f , such that ‖f‖Lr(·)(J,μ) � 1, all intervals I ⊆ J and

© Springer International Publishing Switzerland 2016 
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all x ∈ I,(
1

μ(I)

ˆ

I

|f(y)|dμ(y)
)r(x)

� c

[(
1

μ(I)

ˆ

I

|f(y)|r(y)dμ(y)
)

+ 1

]
.

Proof. We follow the idea of Diening [62] (see also Harjulehto, Hästö, and Pere
[124] for the analogous statement in the case of metric measure spaces with dou-
bling measure). We give the proof for completeness.

First recall that (see, e.g., Harjulehto, Hästö, and Pere [124]) since J with
the Euclidean distance and the measure μ is a bounded doubling metric measure
space with finite measure μ, the condition r ∈ P log(J) implies that(

μ(I)
)r−(I)−r+(I) � C (4.1)

for all subintervals I of J .

Assume that μI � 1/2. By the Hölder inequality,(
1

μ(I)

ˆ

I

|f(y)|dμ(y)
)r(x)

�
(

1

μ(I)

ˆ

I

|f(y)|r−(I)dμ(y)

)r(x)/r−(I)

� cμ(I)−r(x)/r−(I)

[
1

2

ˆ

I

|f(y)|r(y)dμ(x) + 1

2
μ(I)

]r(x)/r−(I)

.

Observe now that the expression in brackets is less than or equal to 1. Conse-
quently, using (4.1) we find that(

1

μ(I)

ˆ

I

|f(y)|dμ(y)
)r(x)

� cμ(I)1−r(x)/r−(I)

(
1

μ(I)

ˆ

I

|f(y)|r(y)dμ(y) + 1

)

� cμ(I)(r−(I)−r+(I))/r−(I)

(
1

μ(I)

ˆ

I

|f(y)|r(y)dμ(y) + 1

)

� c

(
1

μ(I)

ˆ

I

|f(y)|r(y)dμ(y) + 1

)
.

The case μ(I) > 1/2 is trivial. �

4.1.2 Variable Exponent Lebesgue Space on Quasimetric
Measure Spaces

Let X := (X, d, μ) be a topological space with a complete measure μ such that the
space of compactly supported continuous functions is dense in L1(X,μ) and there
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exists a nonnegative real-valued function (quasimetric) d on X ×X satisfying the
conditions:

(i) d(x, y) = 0 if and only if x = y;

(ii) there exists a constant ct > 0, such that d(x, y) � ct(d(x, z) + d(z, y)) for all
x, y, z ∈ X ;

(iii) there exists a constant cs > 0, such that d(x, y) � csd(y, x) for all x, y,∈ X .

We assume that the ballsB(x, r) := {y ∈ X : d(x, y) < r} are measurable and
0 � μ(B(x, r)) < ∞ for all x ∈ X and r > 0; for every neighbourhood V of x ∈ X ,
there exists r > 0, such that B(x, r) ⊂ V . Throughout this chapter it is assumed
that μ{x} = 0 for all x ∈ X , i.e., X does not contain any atoms. Sometimes it will
be assumed that a quasimetric measure spaces (X, d, μ) satisfies the condition:
there is a constant c0 > 1 such that for all x ∈ X and 0 < r < R < �/c0,

B(x,R) \B(x, r) �= ∅, (4.2)

where

� := diam (X) = sup{d(x, y) : x, y ∈ X}.

The triple (X, d, μ) is called a quasimetric measure space. Recall that if μ
satisfies the doubling condition

μ(B(x, 2r)) � bμ(B(x, r)),

where the positive constant b does not depend on x ∈ X and r > 0, then (X, d, μ)
is called a space of homogeneous type (SHT briefly). For the definition, examples
and some properties of an SHT see, e.g., monographs by Strömberg and Torchinsky
[355], Coifman and Weiss [46], Edmunds, Kokilashvili, and Meskhi [76].

Notice that the condition � < ∞ implies that μ(X) < ∞, because we assumed
that every ball in X has finite measure.

We say that the measure μ is upper Ahlfors Q-regular if there is a positive
constant c1 such that μB(x, r) � c1r

Q for for all x ∈ X and r > 0. Further, μ is
lower Ahlfors q-regular if there is a positive constant c2 such that μB(x, r) � c2r

q

for all x ∈ X and r > 0.

If μ is Ahlfors 1-regular, then sometimes we say that μ satisfies the growth
condition on X (μ ∈ GC(X)).

Definition 4.3. A measure μ on X is said to satisfy the reverse doubling condition
(μ ∈ RDC(X)) if there exist constants A > 1 and B > 1 such that the inequality
μ
(
B(a,Ar)

)
� Bμ

(
B(a, r)

)
holds.

Definition 4.4. An SHT (X, d, μ) is called RD-space if μ satisfies the reverse dou-
bling condition (see Han, Müller, and Yang [119, 120]).
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Remark 4.5.

(i) It is easy to check that μ satisfies the reverse doubling condition if and only if
there exist constants k > 0 and 0 < c � 1 such that for all x ∈ X , 0 < r < 2�,
and 1 � λ < 2�/r,

cλkμ(B(x, r)) � μ(B(x, λr)).

(ii) It is known that (X, d, μ) is an RD space if and only if it is an SHT and
condition (4.2) is satisfied (for the proof we refer to, e.g., Strömberg and
Torchinsky [355, p. 11, Lem. 20], Han, Müller, and Yang [120, Rem. 1.2]). In
particular, any connected space of homogeneous type is an RD-space.

(iii) For any space of homogeneous type (X, d, μ), the set

At(X, d, μ) := {x ∈ X : μ({x}) > 0}

is countable and for every x ∈ At(X, d, μ) there is r > 0 such that B(x, r) =
{x} (see Maćıas and Segovia [234]).

(iv) It is easy to check that any RD-space is non-atomic, i.e., μ{x} = 0 for all
x ∈ X .

Definition 4.6. Sometimes we will assume that a quasimetric measure space
(X, d, μ) satisfied the doubling condition at a single point x0 ∈ X (μ ∈ DC0(x0)),
i.e., there is a constant D > 1, which might depend on x0, such that for all r > 0,

μ(B(x0, 2r)) � Dμ(B(x0, r)).

Let p be a nonnegative μ-measurable function on X . Suppose that E is a
μ-measurable set in X . We use the standard notations:

p−(E) := inf
E

p; p+(E) := sup
E

p; p− := p−(X); p+ := p+(X);

B(x, r) := {y ∈ X : d(x, y) � r}, kB(x, r) := B(x, kr); Bxy := B(x, d(x, y));

Bxy := B(x, d(x, y)); gB :=
1

μ(B)

ˆ

B

|g(x)|dμ(x).

Assume that 1 � p− � p+ < ∞. The variable exponent Lebesgue space
Lp(·)(X) (sometimes denoted by Lp(x)(X)) is the class of all μ-measurable func-
tions f on X for which

Ip(·)(f) :=
ˆ

X

|f(x)|p(x)dμ(x) < ∞.

The norm in Lp(·)(X) is defined as

‖f‖Lp(·)(X) = inf{λ > 0 : Ip(·)(f/λ) � 1}.
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Definition 4.7. Let (X, d, μ) be a quasimetric measure space and let N � 1 be a
constant. Suppose that p satisfy the condition 0 < p− � p+ < ∞. We say that
p belongs to the class PN,x, where x ∈ X , if there are positive constants b and c
(which might depend on x) such that

μ(B(x,Nr))p−(B(x,r))−p+(B(x,r)) � c (4.3)

for all r, 0 < r � b. Further, we write p ∈ PN if there are positive constants b and
c such that (4.3) holds for all x ∈ X and all r such that 0 < r � b.

Further, we denote

Px := P1,x; P := P1.

Remark 4.8. It is easy to check that PN1 ⊂ PN2 (respectively, PN1,x ⊂ PN2,x)
whenever N2 � N1 � 1.

Definition 4.9. Let (X, d, μ) be an SHT. Suppose that 0 < p− � p+ < ∞. We say
that p ∈ P log(X, x) (p satisfies the log-type condition at the point x ∈ X) if there
are positive constants b and c (which might depend on x) such that

|p(x)− p(y)| � c

− ln
(
μ(Bxy

)) (4.4)

for all y satisfying the condition d(x, y) � b. Further, p ∈ P log(X) (p satisfies the
log-type condition on X) if there are positive constants b and c such that (4.4)
holds for all x, y with d(x, y) � b.

We shall also need another form of the log-condition given by the following
definition:

Definition 4.10. Let (X, d, μ) be a quasimetric measure space and let 0 < p− �
p+ < ∞. We say that p ∈ P log

(X, x) if there are positive constants b and c (which
might depend on x) such that

|p(x)− p(y)| � c

− lnd(x, y)
(4.5)

for all y with d(x, y) � b. Further, we write p ∈ P log
(X) if (4.5) holds for all x, y

with d(x, y) � b.

As already noted in Lemma 2.57 in a slightly different notation, if a measure
μ is upper Ahlfors Q-regular and p ∈ P log(X) (or p ∈ P log(X, x)), then p ∈
P log

(X) ( p ∈ P log
(X, x), respectively. Further, if μ is lower Ahlfors q-regular and

p ∈ P log
(X) (or p ∈ P log

(X, x)), then p ∈ P log(X) (p ∈ P log(X, x), respectively).

Remark 4.11. It can be easily checked that if (X, d, μ) is an SHT, then μ(Bx0x) ≈
μ(Bxx0).
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Remark 4.12. If � < ∞, then the measure μ is lower Ahlfors regular. Indeed, from
the doubling condition for μ it follows that there are positive constants c and q,
depending only on the doubling constant, such that

μ(B(x,R)) � c

(
R

r

)q

μ(B(x, r)).

Taking now R sufficiently large, we conclude that μ is lower Ahlfors q-regular.

Proposition 4.13. Let (X, d, μ) be an SHT with � < ∞. If p ∈ P log
(X), then

p ∈ P . Further, if μ is upper Ahlfors regular, then the condition p ∈ P implies

that p ∈ P log
(X).

Proof. Indeed, let p ∈ P log
(X). Then by Remark 4.12 we have that μ is lower

Ahlfors q-regular for some q. Then for balls B with radii less than or equal to 1/2,
we find that

μ(B)p−(B)−p+(B) � c
(
rq
)p−(B)−p+(B) � cr

−cq

log 1
2ctr � c,

where ct is the constant from the definition of the quasimetric of d.

Let now μ be upper AhlforsQ-regular and let p ∈ P . Suppose that d(x, y) � b,
where the positive constant b is chosen so that μ(B) � 1, whereB := B(x, 2d(x, y)).
Then

|p(x)− p(y)| � c(p+(B) − p−(B))
c log μ(B)

log d(x, y)
� c

− log d(x, y)
. �

Proposition 4.14. Let c > 0 be a constant and let 1 < p−(X) � p+(X) < ∞ and

p ∈ P log(X) (resp. p ∈ P log
(X)). Then the functions cp(·), 1/p(·), and p′(·) belong

to P log(X) (resp. P log
(X)). Further if p ∈ P log(X, x) (resp. p ∈ P log

(X, x)) then

cp(·), 1/p(·) and p′(·) belong to P log(X, x) (resp. p ∈ P log
(X, x)).

The proof of the latter statement can be checked immediately using the

definitions of the classes P log(X, x), P log(X), P log
(X, x), P log

(X).

Proposition 4.15. Let (X, d, μ) be an SHT and let p ∈ P . Then (μ(Bxy))
p(x) �

c(μ(Byx))
p(y) for all x, y ∈ X with μ(B(x, d(x, y))) � b, where b is a small constant

and the constant c does not depend on x, y ∈ X.

Proof. Due to the doubling condition for μ, the condition p ∈ P and the fact that
x ∈ B(y, ct(cs + 1)d(y, x)) we have the following estimates:

μ(Bxy)
p(x) � μ

(
B(y, ct(cs + 1)d(x, y))

)p(x) � cμB(y, ct(cs + 1)d(x, y))p(y)

� c(μByx)
p(y). �

The proof of the next statement is trivial and follows directly from the defi-
nition of the classes PN,x and PN . Details are omitted.
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Proposition 4.16. Let (X, d, μ) be a quasimetric measure space and let x0 ∈ X.
Suppose that N � 1 be a constant. Then the following statements hold:

(i) If p ∈ PN,x0 (resp. p ∈ PN ), then there are positive constants r0, c1 and c2
such that for all 0 < r � r0 and all y ∈ B(x0, r) (resp. for all x0, y with

d(x0, y) < r � r0), we have that μ
(
B(x0, Nr)

)p(x0) � c1μ
(
B(x0, Nr)

)p(y) �
c2μ
(
B(x0, Nr)

)p(x0)
.

(ii) Let p ∈ PN,x0. Then there are positive constants r0, c1 and c2 (in general,
depending on x0) such that for all r (r � r0) and all x, y ∈ B(x0, r) we have

μ
(
B(x0, Nr)

)p(x) � c1μ
(
B(x0, Nr)

)p(y) � c2μ
(
B(x0, Nr)

)p(x)
.

(iii) Let p ∈ PN . Then there are positive constants r0, c1 and c2 such that for all
balls B with radius r (r � r0) and all x, y ∈ B, we have that μ(NB)p(x) �
c1μ(NB)p(y) � c2μ(NB)p(x).

For the next statement we refer, e.g., to Kováčik and Rákosńık [213] and
Samko [318] (see also Proposition 3.8).

Lemma 4.17. Let f be a measurable function on X and E is a measurable subset
of X. Then

(i) ‖f‖p+(E)

Lp(·)(E)
� Ip(·)(fχE) � ‖f‖p−(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) � 1.

(ii) ‖f‖p−(E)

Lp(·)(E)
� Ip(·)(fχE) � ‖f‖p+(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) > 1.

(iii) The Hölder inequality in the variable exponent Lebesgue spaces has the form

ˆ

E

fgdμ �
(
1/p−(E)+1/(p′)−(E)

)
‖f‖Lp(·)(E)‖g‖Lp′(·)(E), p′(·) = p(·)

p(·)− 1
.

(iv) Let E be a subset of X of finite measure. Then

‖f‖Lp1(·)(E) � (1 + μ(E))‖f‖Lp2(·)(E), 1 � p1(x) � p2(x).

Lemma 4.18. Let (X, ρ, μ) be a quasimetric measure space satisfying the growth
condition. Suppose that σ > −1. Then there exists a positive constant c such that
for all a ∈ X and r > 0, the inequality

I(a, r, σ) :=

ˆ

B(a,r)

d(a, x)σdμ � crσ+1

holds.

Proof. Let σ � 0. Then the result is obvious because of the growth condition on
μ. Further, assume that −1 < σ < 0.
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We have

I(a, r, σ) =

∞̂

0

μ{x ∈ B(a, r) : d(a, x)σ > λ}dλ

=

∞̂

0

μ(B(a, r) ∩B(a, λ1/σ))dλ =

rσˆ

0

(· · · ) +
∞̂

rσ

(· · · )

=: I(1)(a, r, σ) + I(2)(a, r, σ).

By the growth condition for μ,

I(1)(a, r, σ) � rσμ(B(a, r)) � crσ+1,

while for I(2)(a, r, σ) we find that

I(2)(a, r, σ) � c

∞̂

rσ

λ1/σdλ =
−c(σ + 1)

σ
rσ+1 = c1r

σ+1,

because 1/σ < −1. �
Lemma 4.19. Let (X, d, μ) be an SHT.

(i) If β is a measurable function on X such that β(x) < −1 and if r is a small
positive number, then there exists a positive constant c, independent of r and
x, such that ˆ

X\B(x,r)

(μBxy)
β(x)dμ(y) � c

β(x) + 1

β(x)
(μB(x, r))β(x)+1.

(ii) Suppose that p and α are measurable functions on X satisfying the conditions
1 < p− � p+ < ∞ and α− > 1/p−. Then there exists a positive constant c
such that for all x ∈ X

J(x) :=

ˆ

B(x0,2d(x0,x))

(
μ(B(x, d(x, y)))

)(α(x)−1)p′(x)
dμ(y)

� c
(
(μB(x0, d(x0, x)))

)(α(x)−1)p′(x)+1
.

(4.6)

Proof. (i) We have

A(x, y) =

∞̂

0

μ((X \B(x, r)) ∩ {y ∈ X : (μ(Bxy))
β(x) > λ})dλ

=

(μ(B(x,r))β(x)ˆ

0

(· · · ) +
∞̂

(μ(B(x,r))β(x)

(· · · ) =: A1(x, r) +A2(x, r).



4.1. Preliminaries 227

First observe that A2(x, r) = 0 for all x ∈ X and small r. Indeed, let x ∈ X and
λ > (μ(B(x, r)))β(x). We denote

Eλ(x) := {y ∈ X : (μBxy)
β(x) > λ}.

Suppose that y ∈ (X \B(x, r)) ∩Eλ(x). Then

μ(Bxy) < λ1/β(x).

On the other hand, if λ > (μ(Bxy))
β(x), then μ(Bxy) < λ1/β(x) < μ(B(x, r)).

When y ∈ X\B(x, r) we have d(x, y) � r and therefore, μ(Bxy) � μ(B(x, r)).
Consequently, (X \B(x, r))∩Eλ(x) = ∅ if λ > (μ(B(x, r)))β(x), which implies that
A2(x, r) = 0.

Now we estimate A1(x, r). First we show that

μ(Eλ) � b2λ1/β(x), (4.7)

where b is the constant from the doubling condition for μ. If μ(Eλ) = 0, then (4.7)
is obvious. If μ(Eλ) �= 0, then 0 < t0 < ∞, where

t0 = sup{s ∈ (0, �) : μ(B(x, s)) < λ1/β(x)}.
Indeed, since � < ∞, we have t0 < ∞. Assume now that t0 = 0. Then Eλ = {x};
otherwise, there exists y ∈ Eλ(x), such that d(x, y) > 0 and μ(Bxy) < λ1/β(x),
which contradicts the assumption t0 = 0. Hence we conclude that 0 < t0 < ∞.
Further, let z ∈ Eλ(x). Then μ(Bxz) < λ1/β(x). Consequently, d(x, z) � t0. From
this we have z ∈ B(x, 2t0), which due to the doubling condition yields

μ(Eλ)(x) � μ(B(x, 2t0)) � b2μ(B(x, t0/2)) � b2λ1/β(x).

This implies (4.7). Since β(x) < −1, we have

A1(x, r) � b2
(μ(B(x,r)))β(x)ˆ

0

μ(Eλ)(x)dλ =
b2β(x)

1 + β(x)
(μ(B(x, r)))β(x)+1.

To prove (ii) we follow the proof of Lemma 6.5.2 in Edmunds, Kokilashvili,
and Meskhi [76]. Let α(x) � 1. Then for d(x0, y) � 2d(x0, x) we have(
B(x, d(x, y))

)α−1 �
(
μ(B(x, ct(cs + 2)d(x0, x)))

)α(x)−1

� c1
(
μ(B(x, d(x0, x)))

)α(x)−1 � c2
(
μ(B(x0, d(x0, x)))

)α(x)−1
.

Consequently,

J(x) � c3
(
μ(B(x0, d(x0, x)))

)(α(x)−1)p′(x)+1
.
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Now let 1
p− < α− < 1. Then we have

J(x) =

∞̂

0

μ
(
B̄(x0, 2d(x0, x)) ∩ {y : μ(B(x, d(x, y)))(α(x)−1)p′(x) > λ})dλ

�
(μ(Bx0x))

(α(x)−1)p′(x)ˆ

0

μ(B̄(x0, 2d(x0, x)))dλ

+

∞̂

(μ(Bx0x))(α(x)−1)p′

μ{y : μ(B(x, y)))(α(x)−1)p′(x) > λ}dλ

=: J1(x) + J2(x).

Using the doubling condition for μ we obtain

J1(x) � c4
(
μ(B(x0, d(x0, x)))

)(α(x)−1)p′(x)+1
.

Next, let us prove the inequality

μ
(
Eλ(x)

)
� bλ

1
(α(x)−1)p′(x) (4.8)

for all λ > μ(B(x0d(x0, x)))
(α(x)−1)p′(x) and x ∈ X , where b is the constant from

the definition of the doubling condition for the measure μ and

Eλ(x) ≡
{
y : μ(B(x, d(x, y))) < λ

1
(α−1)p′(x)

}
.

If Eλ(x) = ∅, then (4.8) is obvious. Let Eλ(x) �= ∅ and suppose that

t0 = sup
{
s : μ(B(x, s)) < λ

1
(α(x)−1)p′(x)

}
.

First we show that t0 > 0. Indeed, if t0 = 0, then Eλ(x) = {x}. Conse-
quently, μ{x} < λ

1
(α(x)−1)p′(x) (otherwise Eλ(x) = ∅). From this inequality we

have μ(B(x, s)) < λ
1

(α(x)−1)p′(x) for some s > 0. Therefore,
{
s > 0 : d(x, s) <

λ
1

(α(x)−1)p′(x)
} �= ∅. Hence t0 > 0.

Now we show that t0 < ∞. From λ
1

(α(x)−1)p′(x) < μ(B(x0, d(x0, x))) we have

that s < d(x0, x) < a for all s with the condition μ(B(x0, s)) < λ
1

(α(x)−1)p′(x) .
Hence, t0 � a. If μ(X) < ∞, then t0 < ∞.

Let μ(X) = ∞ and t0 = ∞. Then there is a sequence {tn} such that tn →∞
and μ(B(x0, tn)) < λ

1
(α(x)−1)p′(x) . Consequently μ(X) = lim

n→∞μ(B(x0, tn)) < ∞.
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Let z ∈ Eλ(x). Then d(x, z) � t0, i.e., z ∈ B̄(x0, t0). On the other hand,

μ(B(x, t0)) � λ
1

(α−1)p′ and we obtain

μ
(
Eλ(x)

)
� μ(B̄(x, t0)) � bμ(B(x, t0)) � λ

1
(α(x)−1)p′(x) .

Inequality (4.8) is proved.

From (4.8) it follows that

J2(x) � b

∞̂

(μ(Bx0x))(α(x)−1)p′(x)

λ
1

(α(x)−1)p′(x) dλ = b1
(
μ(Bx0x)

)(α(x)−1)p′(x)+1
.

Finally we have (4.6). �

Lemma 4.20. Let (X, d, μ) be an SHT. Suppose that 0 < p− � p+ < ∞. Then
p ∈ P (resp. p ∈ P1,x) if and only if p ∈ P log(X) (resp. p ∈ P log(X, x)).

Proof. We follow Diening [62]. Necessity. Let p ∈ P and let x, y ∈ X with d(x, y) <
c0 for some positive constant c0. Observe that x, y ∈ B, where B := B(x, 2d(x, y)).
By the doubling condition for μ we have that(

μ(Bxy)
)−|p(x)−p(y)| � c

(
(μB)
)−|p(x)−p(y)| � c

(
μ(B)
)p−(B)−p+(B) � C,

where C is a positive constant greater than 1. Taking now the logarithm in the
last inequality we have that p ∈ P log(X). If p ∈ P (1, x), then the same argument
shows that p ∈ P log(X, x).

Sufficiency. Let B := B(x0, r). First observe that if x, y ∈ B, then μ(Bxy) �
cμ(B(x0, r)). This inequality and the condition p ∈ P log(X) yield that

|p−(B)− p+(B)| � C

− ln
(
c0μ(B(x0, r))

) .
Further, there exists r0 such that 0 < r0 < 1/2 and

c1 �
ln
(
μ(B)
)

− ln
(
c0μ(B)

) � c2,

where c1 and c2 are positive constants. Hence

(
μ(B)
)p−(B)−p+(B) �

(
μ(B)
) C

ln

(
c0μ(B)

)
= exp

(
C ln
(
μ(B)
)

ln
(
c0μ(B)

)) � C.
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Let now p ∈ P log(X, x) and let Bx := B(x, r), where r is small. We have that
p+(Bx) − p(x) � c

− ln
(
c0μ(B(x,r))

) and p(x)− p−(Bx) � c

− ln
(
c0μ(B(x,r))

) for some

positive constant c0. Consequently,

(μ(Bx))
p−(Bx)−p+(Bx) =

(
μ(Bx)

)p(x)−p+(Bx)(
μ(Bx)

)p−(Bx)−p(x)

� c
(
μ(Bx)

) −2c
− ln(c0μBx)) � C. �

Lemma 4.21. Let (X, d, μ) be an SHT. Suppose that there is a point x0 ∈ X such
that p ∈ P log(X, x0). Let A be the constant introduced in Definition 4.3. Then
there exist positive constants r0 and C (which might depend on x0) such that for
all r, 0 < r � r0, the inequality

(μ(BA))
p−(BA)−p+(BA) � C

holds, where BA := B(x0, Ar) \B(x0, r) and the constant C is independent of r.

Proof. Let B := B(x0, r). Taking into account that (X, d, μ) is also RD-space, we
have that μ(BA) = μ(B(x0, Ar)) − μ(B(x0, r)) � (B − 1)μ(B(x0, r)) � cμ(AB).
Suppose that 0 < r < c0, where c0 is a sufficiently small constant. Then we find
that (

μ(BA)
)p−(BA)−p+(BA) � c

(
μ(AB)

)p−(BA)−p+(BA)

� c
(
μ(AB)

)p−(AB)−p+(AB) � c. �

In the sequel we will use the notation:

I1,k :=

{
B(x0, A

k−1�/ct) if � < ∞,

B(x0, A
k−1/ct) if � = ∞,

I2,k :=

{
B(x0, A

k+2ct�) \B(x0, A
k−1�/ct) if �<∞,

B(x0, A
k+2ct) \B(x0, A

k−1/ct) if � = ∞,

I3,k :=

{
X \B(x0, A

k+2�ct) if � < ∞,

X \B(x0, A
k+2ct) if � = ∞,

Ek :=

{
B(x0, A

k+1�) \B(x0, A
k�) if � < ∞,

B(x0, A
k+1) \B(x0, A

k) if � = ∞,

where the constants A and ct are taken respectively from Definition 4.3 and the
triangle inequality for the quasimetric d, and � is the diameter of X .

Lemma 4.22. Let (X, d, μ) be an RD-space and let 1 < p−(x) � p(x) � q(x) �
q+(X) < ∞. Suppose that there is a point x0 ∈ X such that p, q ∈ P log(X, x0).
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Assume that if � = ∞, then p(x) ≡ pc ≡ const and q(x) ≡ qc ≡ const outside
some ball B(x0, a). Then there exists a positive constant C such that∑

k

‖fχI2,k‖Lp(·)(X)‖gχI2,k‖Lq′(·)(X) � C‖f‖Lp(·)(X)‖g‖Lq′(·)(X)

for all f ∈ Lp(·)(X) and g ∈ Lq′(·)(X).

Proof. Suppose that � = ∞. To prove the lemma note first that

μ(Ek) ≈ μ(B(x0, A
k)) and μ(I2,k) ≈ μ(B(x0, A

k−1)).

This holds because μ satisfies the reverse doubling condition (see Definition 4.3)
and, consequently,

μ(Ek) = μ
(
B(x0, A

k+1) \B(x0, A
k)
)
= μ(B(x0, A

k+1))− μ(B(x0, A
k))

= μ(B(x0, AA
k))− μ(B(x0, A

k)) � Bμ(B(x0, A
k))− μ(B(x0, A

k))

= (B − 1)μ(B(x0, A
k)).

Moreover, the doubling condition yields μ(Ek) � μ(B(x0, AA)
k)� cμ(B(x0, A

k)),
where c > 1. Hence, μ(Ek) ≈ μ(B(x0, A

k)).

Further, since we can assume that ct � 1, we obtain

μ(I2,k) = μ
(
B(x0, A

k+2ct) \B(x0, A
k−1/ct)

)
= μ(B(x0, A

k+2ct))− μ(B(x0, A
k−1/ct))

= μ(B(x0, AA
k+1ct))− μ(B(x0, A

k−1/ct))

� Bμ(B(x0, A
k+1ct))− μ(B(x0, A

k−1/ct))

� B2μ(B(x0, A
k/ct))− μ(B(x0, A

k−1/ct))

� B3μ(B(x0, A
k−1/ct))− μ(B(x0, A

k−1/ct))

= (B3 − 1)μB(x0, A
k−1/ct).

Moreover, using the doubling condition for μ we have that

μ(I2,k) � μ(B(x0, A
k+2r)) � cμ(B(x0, A

k+1r)) � c2μ(B(x0, A
k/ct))

� c3μ(B(x0, A
k−1/ct)).

This gives the estimates

(B3 − 1)μ(B(x0, A
k−1/ct)) � μ(I2,k) � c3μ(B(x0, A

k−1/ct)).

For simplicity assume that a = 1. Let m0 be an integer such that Am0−1

ct
> 1.

We split the sum as follows:∑
i

‖fχI2,i‖Lp(·)(X) · ‖gχI2,i‖Lq′(·)(X) =
∑
i�m0

(
· · ·
)
+
∑
i>m0

(
· · ·
)
=: J1 + J2.
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Since p(x) ≡ pc = const, q(x) = qc = const outside the ball B(x0, 1), Hölder’s
inequality and the fact that pc � qc show that

J2 =
∑
i>m0

‖fχI2,i‖Lpc(X) · ‖gχI2,i‖L(qc)′ (X) � c‖f‖Lp(·)(X) · ‖g‖Lq′(·)(X).

Let us estimate J1. Suppose that ‖f‖Lp(·)(X) � 1 and ‖g‖Lq′(·)(X) � 1. By

Proposition 4.14, 1/q′ ∈ P log(X, x0), which, together with Lemma 4.20 shows

that μ
(
I2,k
) 1

q+(I2,k) ≈ ‖χI2,k‖Lq(·)(X) ≈ μ
(
I2,k
) 1

q−(I2,k) and μ
(
I2,k
) 1

q′
+

(I2,k) ≈
‖χI2,k‖Lq′(·)(X) ≈ μ

(
I2,k
) 1

q′−(Ik) , where k � m0. Further, observe that these esti-
mates and the Hölder inequality yield the following chain of inequalities:

J1 � c
∑

k�m0

ˆ

B(x0,Am0+1)

‖fχI2,k‖Lp(·)(X) · ‖gχI2,k‖Lq′(·)(X)

‖χI2,k‖Lq(·)(X) · ‖χI2,k‖Lq′(·)(X)

χEk
(x)dμ(x)

= c

ˆ

B(x0,Am0+1)

∑
k�m0

‖fχI2,k‖Lp(·)(X) · ‖gχI2,k‖Lq′(·)(X)

‖χI2,k‖Lq(·)(X) · ‖χI2,k‖Lq′(·)(X)

χEk
(x)dμ(x)

� c

∥∥∥∥ ∑
k�m0

‖fχI2,k‖Lp(·)(X)

‖χI2,k‖Lq(·)(X)

χEk
(x)

∥∥∥∥
Lq(·)(B(x0,Am0+1))

×
∥∥∥∥ ∑

k�m0

‖gχI2,k‖Lq′(·)(X)

‖χI2,k‖Lq′(·)(X)

χEk
(x)

∥∥∥∥
Lq′(·)(B(x0,Am0+1))

=: cS1(f) · S2(g).

Now we claim that S1(f) � cI(f), where

I(f) :=

∥∥∥∥ ∑
k�m0

‖fχI2,k‖Lp(·)(X)

‖χI2k‖Lp(·)(X)

χEk(·)

∥∥∥∥
Lp(·)(B(x0,Am0+1))

and the positive constant c does not depend on f . Indeed, suppose that I(f) � 1.
Then using Lemma 4.20 we have that∑

k�m0

1

μ(I2,k)

ˆ

Ek

‖fχI2,k‖p(x)Lp(·)(X)
dμ(x)

� c

ˆ

B(x0,Am0+1)

( ∑
k�m0

‖fχI2,k‖Lp(·)(X)

‖χI2,k‖Lp(·)(X)

χEk(x)

)p(x)

dμ(x) � c.

Consequently, since p(x) � q(x), Ek ⊆ I2,k and ‖f‖Lp(·)(X) � 1, we find that∑
k�m0

1

μ(I2,k)

ˆ

Ek

‖fχI2,k‖q(x)Lp(·)(X)
dμ(x) �

∑
k�m0

1

μ(I2,k)

ˆ

Ek

‖fχI2,k‖p(x)Lp(·)(X)
dμ(x)�c.
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This implies that S1(f) � c. Thus the desired inequality is proved. Further, let us
introduce the function

P(y) :=
∑
k�2

p+(I2,k)χEk(y).

It is clear that p(y) � P(y) because Ek ⊂ I2,k. Hence,

I(f) � c

∥∥∥∥ ∑
k�m0

‖fχI2,k‖Lp(·)(X)

‖χI2k‖Lp(·)(X)

χEk(·)

∥∥∥∥
LP(·)(B(x0,Am0+1))

for some positive constant c. Then by using this inequality, the definition of the

function P, the condition p ∈ P log(X) and the obvious estimate ‖χI2,k‖p+(I2,k)

Lp(·)(X)
�

cμ(I2,k), we find that

ˆ

B(x0,Am0+1)

( ∑
k�m0

‖fχI2,k‖Lp(·)(X)

‖χI2,k‖Lp(·)(X)

χEk(x)

)P(x)

dμ(x)

=

ˆ

B(x0,Am0+1)

( ∑
k�m0

‖fχI2,k‖p+(I2,k)

Lp(·)(X)

‖χI2,k‖p+(I2,k)

Lp(·)(X)

χEk(x)

)
dμ(x)

� c

ˆ

B(x0,Am0+1)

( ∑
k�m0

‖fχI2,k‖p+(I2,k)

Lp(·)(X)

μ(I2,k)
χEk(x)

)
dμ(x)

� c
∑

k�m0

‖fχI2,k‖p+(I2,k)

Lp(·)(X)

� c
∑

k�m0

ˆ

I2,k

|f(x)|p(x)dμ(x) � c

ˆ

X

|f(x)|p(x)dμ(x) � c.

Consequently, I(f) � c‖f‖Lp(·)(X). Hence, S1(f) � c‖f‖Lp(·)(X). Analogously

taking into account the fact that q′ ∈ P log(X, x0) and arguing as above we find
that S2(g) � c‖g‖Lq′(·)(X). Thus summarizing these estimates we conclude that∑

i�m0

‖fχIi‖Lp(·)(X)‖gχIi‖Lq′(·)(X) � c‖f‖Lp(·)(X)‖g‖Lq′(·)(X). �

Lemma 4.23. Let (X, d, ν) be a quasimetric measure space and let s be a constant
satisfying the condition s < −1. Suppose that the measure ν ∈ DC0(x0), where x0

is a fixed point of X. Then there exists a positive constant c independent of r such
that

A(x0, r) :=

ˆ

X\B(x0,r)

(
ν(Bx0x)

)s
dν(y) � c(ν(B(x0, r)))

s+1.
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Proof. The proof is similar to that of part (i) of Lemma 4.19 but we give it for
completeness.

We have

A(x0, r) =

∞̂

0

ν((X \B(x0, r)) ∩ {x ∈ X : (ν(Bx0x)
s > λ}))dλ

=

(ν(B(x0,r)))
sˆ

0

(· · · ) +
∞̂

(ν(B(x0,r)))s

(· · · ) := A1(x0, r) +A2(x0, r).

First observe that A2(x0, r) = 0 for all small r. Indeed, let λ > (νB(x0, r))
s. We

denote

Eλ(x0) := {x ∈ X : (ν(Bx0x))
s > λ}.

Suppose that x ∈ (X \ B(x0, r)) ∩ Eλ(x0). Then ν(Bx0x) < λ1/s. On the
other hand, if λ >

(
ν(B(x0, r))

)s
, then ν(Bx0x) < λ1/s < ν(B(x0, r)).

For x ∈ X \ B(x0, r), we have that d(x0, x) � r and therefore, ν(Bx0x) �
ν(B(x0, r)). Consequently, (X \B(x0, r)) ∩ Eλ(x0) = ∅, whence A2(x0, r) = 0.

Now we estimate A1(x0, r). First we show that

ν(Eλ(x0)) � b2λ1/s, (4.9)

where b is the constant from the doubling condition for ν. If ν(Eλ(x0)) = 0, then
(4.9) is obvious. If ν(Eλ) �= 0, then 0 < t0 < ∞, where

t0 = sup{s ∈ (0, �) : ν(B(x0, s)) < λ1/s}.

Indeed, since � < ∞, we have that t0 < ∞. Assume now that t0 = 0. Then
Eλ(x0) = {x0}; otherwise there exists x ∈ Eλ(x0), such that d(x0, x) > 0 and
ν(Bx0x) < λ1/s, which contradicts the assumption t0 = 0. Hence, 0 < t0 < ∞.
Further, let z ∈ Eλ(x0). Then ν(Bx0z) < λ1/s. Consequently, d(x0, z) � t0. From
this we have z ∈ B(x0, 2t0), which due to the doubling condition for ν at x0 yields
that

ν(Eλ(x0)) � ν(B(x0, 2t0)) � b2ν(B(x0, t0/2)) � b2λ1/s.

This implies (4.9). Since s < −1, we have that

A1(x0, r) �
(νB(x0,r))

sˆ

0

ν(Eλ(x0))dλ =
b2s

1 + s
(ν(B(x0, r)))

s+1. �
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Lemma 4.24. Suppose that (X, d, μ) is an SHT such that � < ∞. Assume that s is
a function satisfying the conditions 1 � s− � s+ < ∞ and s ∈ P log(X, x0), where
x0 is a fixed point in X. Let β be a constant satisfying the condition β < −1/s−.
Then there are positive constants c and r0 such that for all r, 0 < r < r0, the
inequality

Nr,β(x0) := ‖χX\B(x0,r)(x)
(
μ(Bx0x)

)β‖Ls(x)(X) � c
(
μ
(
B(x0, r)

))β+1/s(x0)

holds.

Proof. We follow Samko [318]. It is enough to consider the case whenNr,β(x0) � 1.
By the definition of the norm ‖ · ‖Ls(·) ,

1 =

ˆ

X\B(x0,r)

[(
μBx0x

)β
Nr,β(x0)

]s(x)
dμ(x).

Let us denote:

E(1)
r,x0

:= {x ∈ X : r � d(x0, x) < b, (μ
(
Bx0x

)
)β > Nr,β(x0)},

E(2)
r,x0

:= {x ∈ X : r � d(x0, x) < b, (μ
(
Bx0x

)
)β � Nr,β(x0)},

where b is a sufficiently small positive constant. Hence,

1 =

ˆ

E
(1)
r,x0

[
(μ(Bx0x))

β

Nr,β(x0)

]s(x)
dμ(x) +

ˆ

E
(2)
r,x0

[
(μ(Bx0x))

β

Nr,β(x0)

]s(x)
dμ(x)

+

ˆ

X\B(x0,b)

[
(μ(Bx0x))

β

Nr,β(x0)

]s(x)
dμ(x) =: I1 + I2 + I3.

For I1, we have that

I1 =

ˆ

E
(1)
r,x0

[
(μ(Bx0x))

β

Nr,β(x0)

]s(x)−s(x0)[ (μ(Bx0x))
β

Nr,β(x0)

]s(x0)

dμ(x).

Observe that the condition s ∈ P log(X, x0) yields for d(x0, x) < b,∣∣∣∣ ln [
(
μ(Bx0x)

)β
Nr,β(x0)

]s(x)−s(x0)∣∣∣∣ = |s(x) − s(x0)|
∣∣∣∣ ln [(μ(Bx0x)

)β
(Nr,β(x0))

−1
]∣∣∣∣

� c

∣∣∣∣ ln
(
μ(Bx0x)

)β − ln
(
Nr,β(x0)

)
ln
(
μ(Bx0x)

) ∣∣∣∣ � c,
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where the positive constant c does not depend on x. Hence, by using this estimate
and Lemma 4.23, we conclude that

I1 � c[Nr,β(x0)]
−s(x0)

ˆ

X\B(x0,r)

(μ(Bx0x))
s(x0)βdμ(x)

� c
(
Nr,β(x0)

)−s(x0)
(μ(B(x0, r)))

s(x0)β+1.

Taking Lemma 4.23 into account we obtain for I2 that

I2 �
ˆ

r<d(x0,x)<b

[(
μ(Bx0x)

)β
Nr,β(x0)

]s−
dμ(x)

=
c

(Nr,β(x0))s−

ˆ

r<d(x0,x)<b

(
μ(Bx0x)

)βs−
dμ(x)

� c(
Nr,β(x0)

)s− (μ(B(x0, r))
βs−+1.

It remains to estimate I3. By Lemma 4.23,

I3 � c

(Nr,β(x0))s−

ˆ

d(x0,x)>b

(μ(Bx0x))
s(x)βdμ(x)

� c

(Nr,β(x0))s−

ˆ

d(x0,x)>b

(μ(Bx0x))
βs−dμ(x) � c

(Nr,β(x0))s−
.

Summarizing these estimates we find, for all 0 < r < b, that

1 � c

(Nr,β(x0))s(x0)

(
μ(B(x0, r))

)s(x0)β+1
+

c

(Nr,β(x0))s−

(
μ(B(x0, r))

)s−β+1

+
c

(Nr,β(x0))s−
.

Now we show that since β < 0,[(
μ(B(x0, r))

)β
Nr,β(x0)

]s−
� c

[(
μ(B(x0, r))

)β
Nr,β(x0)

]s(x0)

. (4.10)

This follows from the fact that(
μ(B(x0, r))

)β
Nr,β(x0)

� c > 0.
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To show the last inequality observe that

1 =

ˆ

X\B(x0,r)

[
(μ(Bx0x))

β

Nr,β(x0)

]s(x)
dμ(x)

�
ˆ

X\B(x0,r)

([
(μ(Bx0x))

β

Nr,β(x0)

]s−
+

[
(μ(Bx0x))

β

Nr,β(x0)

]s+)
dμ(x)

� μ(X)

([
(μ(B(x0, r)))

β

Nr,β(x0)

]s−
+

[
(μ(B(x0, r)))

β

Nr,β(x0)

]s+)
.

If (μ(B(x0,r)))
β

Nr,β(x0)
� 1, then nothing is to prove. If (μ(B(x0,r)))

β

Nr,β(x0)
� 1, then

1 � 2μ(X)

(
(μ(B(x0, r)))

β

Nr,β(x0)

)s−

.

This completes the proof of (4.10) and hence of the lemma. �

4.1.3 Carleson–Hörmander Inequality

Let k ∈ Z and let Λk = 2−kZn be the lattice formed by those points in Rn whose
coordinates are integer multiples of 2−k. Let D(k)(Rn) be the collection of the
cubes with side length 2−k and vertices in Λk. Let D(Rn) =

⋃
k∈Z

D(k)(Rn) be the
set of all dyadic cubes in Rn.

The main property of the dyadic cubes is that if |Q′| � |Q|, then Q′ ⊂ Q or
Q′ ∩Q = ∅. Each Q ∈ D(k) is the union of 2n non-overlapping intervals belonging
to D(k+1)(Rn) (for details and some properties of the dyadic intervals we refer, for
instance, to Garćıa-Cuerva and Rubio de Francia [98, p. 136]).

The next statements give sufficient conditions guaranteeing the validity of
Carleson–Hörmander type (Carleson [40], Hörmander [136]) inequalities.

Proposition 4.25 (Sawyer and Wheeden [339, Lem. 3.20]). Let s be a constant
such that 1 < s < ∞ and let u � 0 on R

n. Suppose that {Qi}i∈A is a countable
collection of dyadic intervals in Rn and that {ai}i∈A,{bi}i∈A are sequences of
positive numbers satisfying the conditions:

(i)
´
Qi

u � ai for all i ∈ A;

(ii)
∑

{j∈A:Qj⊂Qi}
bj � cai for all i ∈ A.

Then there is a positive constant cs depending on s such that the inequality(∑
i∈A

bi

(
1

ai

ˆ

Qi

g(x)u(x)dx

)s
)1/s

� cs

( ˆ
Rn

gs(x)u(x)dx

)1/s

holds for all nonnegative functions g.
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Corollary 4.26. Let 1 < s < ∞ and let u be a nonnegative locally integrable
function on Rn. Suppose that {Qi}i∈A is a sequence of dyadic cubes in Rn and
that {bi}i∈A is a sequence of positive numbers satisfying the condition∑

{j∈A:Qj⊂Qi}
bj � cu(Qi).

Then there is a positive constant c such that for all nonnegative functions g the
inequality

∑
i∈A

bi

(
1

u(Qi)

ˆ

Qi

g(x)u(x)dx

)s

� c

( ˆ
Rn

gs(x)u(x)dx

)1/s

holds.

Definition 4.27. We say that the measure μ satisfies the dyadic reverse doubling

condition on Rn (or belongs to the class RDC
(d)

(Rn)) if there exists a constant

δ > 1, such that for all dyadic cubes Q and Q′, Q ⊂ Q′, |Q| = |Q′|
2n ,

μ(Q′) � δμ(Q).

Definition 4.28. Let J be a bounded interval in R and let D(J) be the set of all

dyadic subintervals of J . We say that μ ∈ RDC
(d)

(J) if there exists a constant
δ > 1 for which

μ(I ′) � δμ(I)

for all dyadic sub-intervals I and I ′ of J (i.e., I, I ′ ∈ D(J)) satisfying the condition

|I| = |I′|
2 .

Remark 4.29. When we deal with the class D(J), it is assumed that J is itself
dyadic.

The following statement is a special case of the Carleson–Hörmander type
inequality (see, e.g., Sawyer and Wheeden [339], Tachizawa [357]).

Proposition 4.30. Let 1 < p < r < ∞. Suppose that the weight ρ−p′ ∈ RDC
(d)
(Rn).

Then there exists a positive constant C such that for all nonnegative f the inequal-
ity

∑
Q∈D(Rn)

( ˆ
Q

ρ−p′
(x)dx

)−r/p′( ˆ
Q

f(y)dy

)r

� C

( ˆ
Rn

(f(x)ρ(x))pdx

)r/p

holds.
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4.2 A Sawyer-type Condition on a Bounded Interval

Let J be bounded interval in R and let

(M (J)
α f)(x) = sup

I�x
I⊂J

1

|I|1−α

ˆ

I

|f(y)|dy, x ∈ J,

where x ∈ J and α is a constant satisfying the condition 0 � α < 1.

Theorem 4.31. Let 1 < p− � p(x) � p+ < ∞ and let the measure dν(x) =
w(x)−p′(x)dx belong to DC(J). Suppose that 0 � α < 1 and that p ∈ P log(J).
Then the inequality

‖v(·)M (J)
α f‖Lp(·)(J) � c‖w(·)f(·)‖Lp(·)(J)

holds, if and only if there exist a positive constant c such that, for all intervals I,
I ⊂ J ,

ˆ

I

(v(x))p(x)(M (J)
α (w(·)−p′(·)χI(·)))p(x)dx � c

ˆ

I

w−p′(x)dx < ∞.

Suppose that R is an interval in R and let us introduce the dyadic maximal
operator (

M (d),R
)
f(x) = sup

x∈I
I∈D(R)

|I|α−1

ˆ

I

|f(y)|dy,

where 0 � α < 1 and D(R) is the dyadic lattice in R.

To prove Theorem 4.31 we need the following statement:

Lemma 4.32. Let R be a bounded interval on R and let J be a subinterval of R.
Suppose that σ(x) := w−p′(x) belongs to the class DC(J) and that p ∈ P log(J),
where 1 < p−(J) � p(x) � p+(J) < ∞. Let 0 � α < 1. If there is a positive
constant c such that for all intervals I, I ⊂ J ,

ˆ

I

(v(x))p(x)
(

M (d),R
α

(
χI(·)σ(·)

))p(x)

(x)dx � c

ˆ

I

σ(x)dx < ∞,

then the estimate

‖v(·)M (d),R
α

(
f(·)χJ (·)

)‖Lp(·)(J) � c‖w(·)f(·)‖Lp(·)(J)

holds.

Proof. We use the idea of E. Sawyer. Suppose that ‖f‖
L

p(·)
w (J)

� 1 and let f1 :=

χJf . Consider the set

Jk = {x ∈ S : 2k < (M (d),R
α f1)(x) � 2k+1}, k ∈ Z.
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Suppose that for k, Jk �= ∅, {Ikj } is a maximal dyadic interval, Ikj ⊂ D(R), such
that

1

|Ikj |1−α

ˆ

Ik
j

|f1(y)|dy > 2k. (4.11)

It is obvious that such a maximal interval always exists. Now observe that

(i) {Ikj } are disjoint for fixed k;

(ii) Jk := {x ∈ S :
(
M (d),R

α f1
)
(x) > 2k} =

⋃
j
Ikj .

Indeed, (i) holds because if Iki ∩ Ikj �= ∅, then Iki ⊂ Ikj or Ikj ⊂ Iki . Conse-

quently, if Iki ⊂ Ikj , then Ikj is maximal interval for which (4.11) is fulfilled.

To see that (ii) holds, observe that if x ∈ Jk, then M
(d),R
α f1(x) � 2k. Hence,

there is a maximal dyadic interval Ikj containing x such that (4.11) holds for Ikj .

Now let x ∈ ⋃
j

Ikj . Then x ∈ Ikj0 for some j0. Hence,
(
M

(d),R
α f1

)
(x) > 2k because

(4.11) holds for Ikj0 .

Denote
Ek

j := Ikj \{x ∈ S : M (d),R
α f1(x) > 2k+1}.

Then Ek
j = Ikj ∩ Jk. Indeed, if x ∈ Ek

j , then x ∈ Ikj and M
(d),R
α f1(x) � 2k+1.

Hence, by (4.11),

2k < |Iki |α−1

ˆ

Ik
j

|f1(y)|dy � M (d),R
α f1(x) � 2k+1.

This means that x ∈ Ikj ∩ Jk. Now let x ∈ Ikj ∩ Jk. Then obviously M
(d),R
α f1(x) �

2k+1. Consequently, x ∈ Ek
j .

Observe that {Ek
j } are disjoint for every j, k because, as we have seen,

Ek
j = {x ∈ Ikj : 2k < M (d),R

α f1(x) � 2k+1}.
Also, Ek

j ⊂ Ikj . Assume that ‖w(·)f1(·)‖Lp(·)(R) � 1. Denote

v1 := vχJ , σ1 := σχJ .

By the above arguments and using Lemma 4.2 with r(·) = p(·)/p− and the measure
dμ(x) = σ(x)dx, we have that
ˆ

J

(v(x))p(x)
(
M (d),R

α f1

)p(x)
(x)dx =

ˆ

S

(v1(x))
p(x)
(
M (d),R

α f1

)p(x)
(x)dx

�
∑
j,k

ˆ

Ek
j

(v1(x))
p(x)2(k+1)p(x)dx � c

∑
j,k

ˆ

Ek
j

(v1(x))
p(x)

(
1

|Ikj |1−α

ˆ

Ik
j

|f1(y)|dy
)p(x)

dx
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= c
∑
j,k

ˆ

Ek
j

(v1(x))
p(x)

(
σ(Ikj ∩ J)

|Ikj |1−α

)p(x)
(

1

σ(Ikj ∩ J)

ˆ

Ik
j

∣∣∣∣f1σ
∣∣∣∣σ
)p(x)

dx

= c
∑
j,k

ˆ

Ek
j

(v1(x))
p(x)

(
σ(Ikj ∩ J)

|Ikj |1−α

)p(x)
(

1

σ(Ikj ∩ J)

ˆ

Ik
j

∣∣∣∣f1σ
∣∣∣∣σ
)p(x)

dx

� c
∑
j,k

( ˆ
Ek

j

(v1(x))
p(x)

(
σ(Ikj ∩ J)

|Ikj |1−α

)p(x)

dx

)(
1

σ(Ikj ∩ J)

ˆ

Ik
j

∣∣∣∣f1(y)σ(y)

∣∣∣∣
p(y)
p−

σ(y)dy

)p−

+ c
∑
j,k

( ˆ
Ek

j

(v1(x))
p(x)

(
σ(Ikj ∩ J)

|Ikj |1−α

)p(x)

dx

)

≡ c

(∑
j,k

Ak
j +
∑
j,k

Bk
j

)
.

Notice that the sum is taken over all those j and k for which σ(Ikj ∩ J) > 0.

To use Corollary 4.26 observe that∑
Ik
j ⊂Ii

Ik
j ,Ii∈D(R)

ˆ

Ek
j

(v1(x))
p(x)

(
σ(Ikj ∩ J)

|Ikj |1−α

)p(x)

dx

�
∑
Ik
j ⊂Ii

ˆ

Ek
j

(v1(x))
p(x)
(
M (d),R

α (χIi∩Jσ)
)p(x)

(x)dx

�
ˆ

Ii

(v1(x))
p(x)
(
M (d),R

α (χIi∩Jσ)
)p(x)

(x)dx

� c

ˆ

Ii∩J

σ(x)dx = c

ˆ

Ii

σ1(x)dx.

Now Corollary 4.26 implies that∑
j,k

Ak
j =
∑
j,k

( ˆ
Ek

j

(v1(x))
p(x)

(
σ(Ikj ∩ J)

|Ikj |1−α

)p(x)

dx

)

×
(

1

σ1(Ikj )

ˆ

Ik
j

∣∣∣∣f1(y)σ(y)

∣∣∣∣
p(x)
p−

σ1(y)dy

)p−

� c

ˆ

R

|f1(x)|p(x)σ(x)−p(x)σ1(x)dx = c

ˆ

R

|f1(x)|p(x)wp(x)dx � c.
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For the second term we have that

∑
j,k

Bk
j =
∑
j,k

ˆ

Ek
j

(v1(x))
p(x)

(
σ(Ikj ∩ J)

|Ikj |1−α

)p(x)

dx

�
∑
j,k

ˆ

Ek
j

(v1(x))
p(x)
(
M (d),R

α (χJσ)
)p(x)

(x)dx

=

ˆ

J

(v(x))p(x)
(
M (d),R

α (χJσ)
)p(x)

(x)dx � c

ˆ

J

σ(x)dx < ∞.

Finally we conclude that

‖v(·)(M (d),R
α f1

)
(·)‖Lp(·)(J) � c

for ‖w(·)f(·)‖Lp(·)(J) � 1. �

Proof of Theorem 4.31. Sufficiency. Let us take an interval R containing J . With-
out loss of generality we can assume that R is a maximal dyadic interval and that

|J | � |R|
8 . Further, suppose also that J and R have one and the same centre.

Without loss of generality, assume that |R| = 2m0 for some integer m0. Then
every interval I ⊂ J has length |I| less than or equal to 2m0−3. Assume that
|I| ∈ [2j , 2j+1) for some j, j � m0 − 4. Let us introduce the set

F = {t ∈ (−2m0−4, 2m0−4) : there is I1 ∈ D(R)− t, I ⊂ I1 ⊂ R, |I1| = 2j+1}.

A simple geometric argument (see also Garćıa-Cuerva and Rubio de Francia [98])
shows that |F | � 2m0−4.

Further, let

(Ktf1)(x) := sup
R⊃I1�x

I1∈D(R)−t

1

|I1|1−α

ˆ

I1

|f1|, t ∈ F,

where f1 = χJf . Then for x ∈ J there exist I � x, I ⊂ J , such that

|I|α−1

ˆ

I

|f1| > 1

2
(M (J)

α f1)(x).

For the interval I, we have that |I| ∈ [2j , 2j+1), j � m0 − 4. Therefore, for t ∈ F ,
there is an interval I1, I1 ∈ D(R)− t, I ⊂ I1 ⊂ R, |I1| = 2j+1, such that

|I|α−1

ˆ

I

|f1| � c

|I1|1−α

ˆ

I1

|f1|.
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Hence,
(M (J)

α f)(x) � c(Ktf1)(x), for every t ∈ F, x ∈ J,

with the positive constant c depending only on α. Consequently,

(M (J)
α f)(x) � 1

|F |
ˆ

F

(Ktf1)(x)dt �
c

|I(0, 2m0−4)|
ˆ

I(0,2m0−4)

(Ktf1)(x)dt.

Suppose that ‖w(·)f(·)‖Lp(·)(J) � 1. Then by Lemma 4.32 we have that

St :=

ˆ

J

(v(x))p(x)
(
(Ktf1)(x)

)p(x)
dx

=

ˆ

J

(v(x))p(x)

(
sup

R⊃I1�x
I1∈D(R)−t

1

|I1|1−α

ˆ

I1

|f1|
)p(x)

dx

=

ˆ

J+t

(vt(x))
p(x−t)

(
sup

R⊃I1�x
I1∈D(R)

|I1|α−1

ˆ

I1

χJ(s− t)f1(s− t)ds

)p(x−t)

dx

=

ˆ

J+t

(vt(x))
pt(x)

(
sup
I1�x

I1∈D(R)

|I1|α−1

ˆ

I1

χJ+t(s)f1(s− t)ds

)pt(x)

dx

=

ˆ

J+t

(vt(x))
pt(x)
(
M (d),R

α

(
χJ+t(·)f1(· − t)

))pt(x)

dx � c,

provided thatˆ

J+t

(wt(x))
pt(x)(f1(x − t))pt(x)dx =

ˆ

J

w(x)|f(x)|p(x)dx � 1,

where vt(x) = v(x−t), wt(x) = w(x−t), pt(x) = p(x−t). To justify this conclusion
we need to check that for every I, I ⊂ J + t,

ˆ

I

(vt(x))
pt(x)
(
M (d),R

α (σtχI)(x)
)pt(x)

dx � c

ˆ

I

σt(x)dx < ∞,

where the positive constant c is independent of I and t. Indeed, observe that
ˆ

I

(vt(x))
pt(x)
(
M (d),R

α (σtχI)(x)
)pt(x)

dx

=

ˆ

I

(vt(x))
pt(x)

(
sup
I1�x

I1∈D(R)

|I1|α−1

ˆ

I1

χI(s)σ(s − t)ds

)pt(x)

dx
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=

ˆ

I

(vt(x))
pt(x)

(
sup

I1−t�x−t
I1∈D(R)

|I1 − t|α−1

ˆ

I1−t

χI(s+ t)σ(s)ds

)pt(x)

dx

=

ˆ

I−t

(v(x))p(x)

(
sup
I1�x

I1∈D(R)−t

|I1|α−1

ˆ

I1

χI−t(s)σ(s)ds

)p(x)

dx

�
ˆ

I−t

(v(x))p(x)
(
M (J)

α (χI−tσ)
)p(x)

(x)dx �
ˆ

I−t

σ(x)dx

=

ˆ

I

σt(x)dx < ∞.

Further, let g ∈ Lp′(·)(J) with ‖g‖Lp′(·)(J) � 1. Then

ˆ

J

(M (J)
α f)(x)v(x)g(x)dx

�
ˆ

J

(
1

|I(0, 2m0−4)|
ˆ

I(0,2m0−4)

(Ktf1)(x)dt

)
v(x)g(x)dx

� 1

|I(0, 2m0−4)|
ˆ

I(0,2m0−4)

( ˆ
J

(Ktf1)(x)g(x)v(x)dx

)
dt

� 1

|I(0, 2m0−4)|
ˆ

I(0,2m0−4)

‖(Ktf1)v‖Lp(·)(J)‖g‖Lp′(·)(J)dt � c,

provided that ‖f‖
L

p(·)
w (J)

� 1.

Finally, we conclude that ‖(M (J)
α f)v‖Lp(·)(J) � c if ‖fw‖Lp′(·)(J) � 1.

Sufficiency is proved.

Necessity. Let fI(t) = χI(t)w
−p′(t)(t). Suppose that β = ‖w−1(·)‖Lp′(·)(J) � 1. We

have that∥∥v(·)(M (J)
α f)p(·)(·)∥∥

Lp(·)(J) �
∥∥χI(·)v(·)

(
M (J)

α

(
w−p′(·)(·)χI(·)

))
(·)∥∥

Lp(·)(J) =: A.

Hence, by the boundedness of M
(J)
α and (4.1) for r = 1/p (recall that the measure

dν(x) = w(x)−p′(x)dx satisfies the doubling condition and 1/p ∈ P log(J)), we find
that

A =
∥∥χI(·)v(·)M (J)

α

(
w−p′(·)(·)χI(·)

)
(·)∥∥

Lp(·)(J)

� c
∥∥w(·)w−p′(·)(·)χI(·)

∥∥
Lp(·)(J)
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� c

( ˆ
I

w−p′(x)p(x)(x)wp(x)(x)dx

)1/p+(I)

� c̄

( ˆ
I

w−p′(x)(x)dx

) 1
p−(I)

� c̄.

On the other hand,

A = c̄
∥∥∥1
c̄
χI(·)v(·)M (J)

α

(
w−p′(·)χI(·)

)
(·)
∥∥∥
Lp(·)(J)

� c̄

( ˆ
I

(c̄)−p(x)(v(x))p(x)
[
M (J)

α

(
w−p′(·)χI(·)

)]
(x)dx

) 1
p−(I)

� c

[ ˆ
I

(v(x))p(x)
(
M (J)

α

(
w−p′(·)χI(·)

)
(x)
)p(x)

dx

] 1
p−(I)

.

Combining these inequalities we conclude that

ˆ

I

(v(x))p(x)
(

M (J)
α

(
w−p′(·)χI(·)

)
(x)

)p(x)

dx � c

ˆ

I

w−p′(x)(x)dx < ∞.

Suppose now that β � 1. Let us take

f(t) =
w−p′(t)(t)χI(t)

β
.

Then

‖fI(·)w(·)‖Lp(·)(J) =
‖w1−p′(·)(·)χI(·)‖Lp(·)(J)

β
� 1.

Arguing as above we have the desired result. It remains to show that

A :=

ˆ

J

w−p′(x)(x)dx < ∞.

Suppose that A = ∞. Then ‖w−1(·)‖Lp′(·)(J) = ∞. Hence, there exists a function

g, ‖g‖Lp(·)(J), g � 0, such that

ˆ

J

g(x)w−1(x)dx = ∞.
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Let f(x) = g(x)w−1(x). Then∥∥∥v(·)(M (J)
α f
)
(·)
∥∥∥
Lp(·)(J)

�
( ˆ

J

w−1(x)g(x)

)∥∥∥v(·)|J |α−1
∥∥∥
Lp(·)(J)

= ∞,

while
‖fw‖Lp(·)(J) = ‖g‖Lp(·)(J) < ∞. �

Corollary 4.33. Let J be a bounded interval and let 1 < p−(J) � p(x) � p+(J) <
∞ and let 0 � α < 1. Assume that p ∈ P log(J). Then the inequality∥∥v(·)(M (J)

α f
)
(·)∥∥

Lp(·)(J) � c‖f‖Lp(·)(J) (4.12)

holds if and only if

sup
I,I⊂J

1

|I|
ˆ

I

(v(x))p(x)|I|αp(x)dx < ∞.

Proof. Sufficiency. By Theorem 4.31, it is enough to verify that(
M (J)

α χI

)
(x) � |I|α for x ∈ I.

This is true because of the following estimates:

sup
S,S⊂J
S�x

|S|α−1

ˆ

S

χI � sup
S∩I�x
S⊂J

|S ∩ I|α−1

ˆ

S∩I

dx = sup
S∩I�x
S⊂J

|S ∩ I|α = |I|α.

Necessity follows by choosing the appropriate test functions in (4.12). �

4.3 A Sawyer-type Condition on an

Unbounded Interval

Now we derive criteria for the validity of a two-weight inequality for the following
maximal operators:(

M (R+)
α f

)
(x) = sup

h>0

1

h1−α

ˆ

(x−h,x+h)∩R+

|f(y)|dy

and (
M (R)

α f
)
(x) = sup

h>0

1

h1−α

x+hˆ

x−h

|f(y)|dy,

where 0 � α < 1.

In the sequel we will assume that vp(·)(·) and w−p′(·)(·) are a.e. positive locally
integrable functions.
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Theorem 4.34. Let 0 � α < 1, 1 < p−(R+) � p � p+(R+) < ∞ and let p ∈
P log(R+). Suppose that there is a bounded interval [0, a] such that w−p′(·)(·) ∈
DC([0, a]) and p ≡ pc ≡ const outside [0, a]. Then the inequality

‖vM (R+)
α f‖Lp(·)(R+) � ‖wf‖Lp(·)(R+),

holds if and only if there is a positive constant b such that for all bounded intervals
I ⊂ R+,

‖vM (R+)
α (w−p′(·)χI)‖Lp(·)(I) � c‖w1−p′(·)‖Lp(·)(I) < ∞. (4.13)

Proof. Sufficiency. Suppose that ‖wf‖Lp(·)(R+) < ∞. We will show that

‖vM (R+)
α ‖Lp(·)(R+) < ∞.

Represent M
(R+)
α f(x) as follows:

M (R+)
α f(x) = χ[0,a](x)M

(R+)
α

(
f · χ[0,a]

)
(x)

+ χ[0,a](x)M
(R+)
α

(
f · χ(a,∞)

)
(x) + χ(a,∞)(x)M

(R+)
α

(
f · χ[0,a]

)
(x)

+ χ(a,∞)(x)M
(R+)
α

(
f · χ(a,∞)

)
(x)

=: M (1)
α f(x) + M (2)

α f(x) + M (3)
α f(x) + M (4)

α f(x).

Since ‖wf‖Lp(·)(R+) < ∞, we have that ‖wf‖Lp(·)([0,a]) < ∞. Applying now Theo-

rem 4.31 we find that ‖vM (1)
α f‖Lp(·)(R+) < ∞.

Further, observe that

M (2)
α f(x) � sup

h>a−x

1

h1−α

x+hˆ

a

|f(y)|dy �
(
M (R+)

α f
)
(a) < ∞.

Hence,
‖vM (2)

α f‖Lp(·)(R+) �
(
M (R+)

α f
)
(a) · ‖v‖Lp(·)([0,a]) < ∞.

Let us use the following representation for M
(3)
α f(x):(

M (3)
α f
)
(x) = χ(a,2a](x)M

(R+)
α

(
f · χ[0,a]

)
(x) + χ(2a,∞)(x)M

(R+)
α

(
f · χ[0,a]

)
(x)

=:
(
M

(3)

α f
)
(x) +

(
M̃ (3)

α f
)
(x).

It is easy to check that for x ∈ (a, 2a],

(
M

(3)

α f
)
(x) � sup

h>x−a

1

(a− x+ h)1−α

aˆ

x−h

|f(y)|dy �
(
M (R+)

α f
)
(a).

Consequently,

‖vM (3)

α f‖Lp(·)(R+) � ‖f‖
Lpc

(
(a,2a]
)(M (R+)

α f
)
(a) < ∞,
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because vp(·)(·) is locally integrable on R+. Further, for x > 2a,

(
M̃ (3)

α f
)
(x) � 1

(x− a)1−α

aˆ

0

|f(y)|dy.

Hence, by using the Hölder inequality in Lp(·) spaces, we find that∥∥∥∥vM̃ (3)
α f

∥∥∥∥
Lp(·)(R+)

�
∥∥∥∥ v(x)

(x− a)1−α

∥∥∥∥
Lpc

(
(2a,∞)

)
( aˆ

0

|f(y)|dy
)

�
∥∥∥∥ v(x)

(x− a)1−α

∥∥∥∥
Lpc

(
(2a,∞)

)∥∥fw∥∥Lp(·)
(
(0,a]
)∥∥w−1

∥∥
Lp′(·)
(
(0,a]
)

= I1 · I2 · I3.

Since I2 < ∞ and I3 < ∞, we need to show that I1 < ∞. This follows from the
fact that condition (4.13) yields∥∥vM̄α

(
w−(pc)

′
χI

)∥∥
Lpc

(
(2a,∞)

) � ∥∥w1−(pc)
′
(·)χI(·)

∥∥
Lpc

(
(2a,∞)

), I ⊂ (2a,∞),

(4.14)
where M̄α is the maximal operator defined on (2a,∞) by

(
M̄αf

)
(x) = sup

h>0

1

h1−α

ˆ

(2a,∞)∩(x−h,x+h)

|f(y)|dy.

Using the result of Sawyer [337] (see also Garćıa-Cuerva and Rubio de Francia [98,
Chap. 4]) for Lebesgue spaces with constant parameter, we see that (4.14) implies
the inequality ∥∥vM̄αf

∥∥
Lpc

(
(2a,∞)

) � c
∥∥fw∥∥

Lpc

(
(2a,∞)

).
Since

M̄αf(x) �
1

(x− a)1−α

xˆ

2a

|f(y)|dy for x > 2a,

we have that for the Hardy operator

(
Haf
)
(x) =

xˆ

2a

f(t)dt, x > 2a,

the two-weight inequality∥∥v(x)(x − a)α−1Haf
∥∥
Lpc

(
(2a,∞)

) � ∥∥wf∥∥
Lpc

(
(2a,∞)

) (4.15)
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holds. Let us recall (see, e.g., Maz’ya [249, Sec. 1.3]) that a necessary condition
for (4.15) is that

sup
t>2a

( ∞̂

t

[
v(x)

(x − a)1−α

]pc

dx

) 1
pc
( tˆ

2a

w1−(pc)
′
(x)dx

) 1
(pc)′

< ∞.

Hence,

∞̂

2a

[
v(x)

(x − a)1−α

]pc

dx =

3aˆ

2a

(· · · ) +
∞̂

3a

(· · · )

� aα−1

3aˆ

2a

(
v(y)
)pc

+

∞̂

3a

[
v(x)

(x− a)1−α

]pc

dx < ∞.

It remains to estimate I := ‖vM (4)
α f‖Lp(·)(R+). But I < ∞ because of the two-

weight result of Sawyer [337] (see also Garćıa-Cuerva and Rubio de Francia [98,
Chap. 4]) for the maximal operator defined on (a,∞) in Lebesgue spaces with
constant exponent. Sufficiency is proved.

Necessity follows easily by taking the test function f(·) = χI(·)w−p′(·)(·) in

the two-weight inequality for M
(R+)
α . �

The next statement follows in the same way as the previous one; therefore
we omit the proof.

Theorem 4.35. Let 0 � α < 1, 1 < p− � p � p+ < ∞, and let p ∈ P log(R).
Suppose that there is a positive number a such that w−p′(·)(·) ∈ DC([−a, a]) and
p ≡ pc ≡ const outside [−a, a]. Then the inequality

‖vM (R)
α f‖Lp(·)(R) � ‖wf‖Lp(·)(R),

holds if and only if there is a positive constant b such that for all bounded intervals
I ⊂ R,

‖vM (R)
α (w−p′(·)χI)‖Lp(·)(R) � c‖w1−p′(·)‖Lp(·)(I) < ∞.

4.4 Hardy-type Operators on Quasimetric
Measure Spaces

Our aim now is to derive modular type two-weight conditions for the operators

Tv,wf(x) = v(x)

ˆ

Bx0x

f(y)w(y)dμ(y) and T ∗
v,wf(x) = v(x)

ˆ

X\Bx0x

f(y)w(y)dμ(y).
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Let a be a positive constant and let p be a measurable function defined on
X . Let us introduce the notation:

p0(x) := p−(Bx0x); p̃0(x) :=

{
p0(x) if d(x0, x) � a,
pc = const if d(x0, x) > a,

p1(x) := p−
(
B(x0, a) \Bx0x

)
; p̃1(x) :=

{
p1(x) if d(x0, x) � a,
pc = const if d(x0, x) > a.

Remark 4.36. If we deal with a quasimetric measure space with � < ∞, then we
will assume that a = �. Obviously, p̃0 ≡ p0 and p̃1 ≡ p1 in this case.

Theorem 4.37. Let (X, d, μ) be a quasimetric measure space. Assume that p and q
are measurable functions on X satisfying the condition 1 < p− � p̃0(x) � q(x) �
q+ < ∞. In the case when � = ∞ suppose that p ≡ pc ≡ const, q ≡ qc ≡ const,
outside some ball B(x0, a). If

A1 := sup
0�t��

ˆ

t<d(x0,x)��

(
v(x)
)q(x)( ˆ

d(x0,x)�t

w(p̃0)
′(x)(y)dμ(y)

) q(x)

(p̃0)′(x)

dμ(x) < ∞,

then Tv,w is bounded from Lp(·)(X) to Lq(·)(X).

Proof. First we notice that p− � p0(x) � p(x) for all x ∈ X . Let f � 0 and let
Ip(·)(f) � 1. First assume that � < ∞. We denote

I(s) :=

ˆ

d(x0,y)<s

f(y)w(y)dμ(y) for s ∈ [0, �].

Suppose that I(�) < ∞. Then I(�) ∈ (2m, 2m+1] for some m ∈ Z. Let us denote

sj := sup{s : I(s) � 2j}, j � m, and sm+1 := �. Then
{
sj
}m+1

j=−∞ is a non-

decreasing sequence. It is easy to check that I(sj) � 2j , I(s) > 2j for s > sj ,
and 2j �

´
sj�d(x0,y)�sj+1

f(y)w(y)dμ(y). If β := lim
j→−∞

sj , then d(x0, x) < � if and

only if d(x0, x) ∈ [0, β] ∪
m⋃

j=−∞
(sj , sj+1]. If I(�) = ∞, then we take m = ∞. Since

0 � I(β) � I(sj) � 2j for every j, we have that I(β) = 0. It is obvious that
X =

⋃
j�m

{x : sj < d(x0, x) � sj+1}. Further, we have that

Iq(Tv,wf) =

ˆ

X

(Tv,wf(x))
q(x)dμ(x) =

ˆ

X

(
v(x)

ˆ

B(x0, d(x0,x))

f(y)w(y)dμ(y)

)q(x)

dμ(x)

=

ˆ

X

(v(x))q(x)

( ˆ

B(x0, d(x0,x))

f(y)w(y)dμ(y)

)q(x)

dμ(x)
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�
m∑

j=−∞

ˆ

sj<d(x0,x)�sj+1

(v(x))q(x)

( ˆ

d(x0,y)<sj+1

f(y)w(y)dμ(y)

)q(x)

dμ(x).

Let us denote

Bj(x0) := {x ∈ X : sj−1 � d(x0, x) � sj}.

Notice that I(sj+1) � 2j+1 � 4
´

Bj(x0)

w(y)f(y)dμ(y). This estimate and the Hölder

inequality with respect to the exponent p0(x) imply that

Sq

(
Tv,wf

)
� c

m∑
j=−∞

ˆ

sj<d(x0,x)�sj+1

(v(x))q(x)

( ˆ

Bj(x0)

f(y)w(y)dμ(y)

)q(x)

dμ(x)

� c

m∑
j=−∞

ˆ

sj<d(x0,x)�sj+1

(v(x))q(x)Jk(x)dμ(x),

where

Jk(x) :=

( ˆ

Bj(x0)

f(y)p0(x)dμ(y)

) q(x)
p0(x)
( ˆ

Bj(x0)

w(y)(p0)
′(x)dμ(y)

) q(x)

(p0)′(x)

.

Observe now that q(x) � p0(x). Hence, this fact and the condition Ip(·)(f) �
1 imply that

Jk(x) � c

( ˆ

Bj(x0)∩{y:f(y)�1}

f(y)p0(x)dμ(y) +

ˆ

Bj(x0)∩{y:f(y)>1}

f(y)p(y)dμ(y)

) q(x)
p0(x)

×
( ˆ

Bj(x0)

w(y)(p0)
′(x)dμ(y)

) q(x)

(p0)′(x)

� c

(
μ
(
Bj(x0)

)
+

ˆ

Bj(x0)∩{y:f(y)>1}

f(y)p(y)dμ(y)

)( ˆ

Bj(x0)

w(y)(p0)
′(x)dμ(y)

) q(x)

(p0)′(x)

.

It follows now that

Iq(Tv,wf) � c

(
m∑

j=−∞
μ
(
Bj(x0)

) ˆ

sj<d(x0,x)�sj+1

v(x)q(x)
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×
( ˆ

Bj(x0)

w(y)(p
′
0)

′(x)dμ(y)

) q(x)

(p0)′(x)

dμ(x)

+

m∑
j=−∞

( ˆ

Bj(x0)∩{y:f(y)>1}

f(y)p(y)dμ(y)

)

×
ˆ

sj<d(x0,x)�sj+1

v(x)q(x)

( ˆ

Bj(x0)

w(y)(p0)
′(x)dμ(y)

) q(x)

(p0)′(x)

dμ(x)

)

:= c
(
N1 +N2

)
.

Since � < ∞ it is obvious that

N1 � A1

m+1∑
j=−∞

μ
(
Bj(x0)

)
� CA1

and

N2 � A1

m+1∑
j=−∞

ˆ

Bj(x0)

f(y)p(y)dμ(y) � C

ˆ

X

(
f(y)
)p(y)

dμ(y) = A1Ip(·)(f) � A1.

Finally, Iq(Tv,wf) � c
(
CA1 +A1

)
< ∞. Thus, Tv,w is bounded if A1 < ∞.

Let us now suppose that � = ∞. We have

Tv,wf(x) = χB(x0,a)(x)v(x)

ˆ

Bx0x

f(y)w(y)dμ(y)

+ χX\B(x0,a)(x)v(x)

ˆ

Bx0x

f(y)w(y)dμ(y)

=: T (1)
v,wf(x) + T (2)

v,wf(x).

Since the diameter of the ballB(x0, a) is finite, using the already proved result

for � < ∞ we find that ‖T (1)
v,wf‖

Lq(·)
(
B(x0,a)

) � c‖f‖
Lp(·)
(
B(x0,a)

) � c because

A
(a)
1 := sup

0�t�a

ˆ

t<d(x0,x)�a

(
v(x)
)q(x)( ˆ

d(x0,x)�t

w(p0)
′(x)(y)dμ(y)

) q(x)

(p0)′(x)

dμ(x)

� A1 < ∞.
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Further, observe that

T (2)
v,wf(x) = χX\B(x0,a)(x)v(x)

ˆ

Bx0x

f(y)w(y)dμ(y)

= χX\B(x0,a)(x)v(x)

ˆ

d(x0,y)�a

f(y)w(y)dμ(y)

+ χX\B(x0,a)(x)v(x)

ˆ

a�d(x0,y)�d(x0,x)

f(y)w(y)dμ(y)

=: T (2,1)
v,w f(x) + T (2,2)

v,w f(x).

By using the two-weight inequality for the Hardy-type operator defined on a
measure space (see Theorem 1.1.6 in Edmunds, Kokilashvili, and Meskhi [76]) we
have

A
(a)

1 := sup
t�a

( ˆ

d(x0,x)�t

(
v(x)
)qc

dμ(x)

) 1
qc
( ˆ

a�d(x0,y)�t

w(y)(pc)
′
dμ(y)

) 1
(pc)′

< ∞,

which guarantees the boundedness of the operator

Tv,wf(x) = v(x)

ˆ

a�d(x0,y)<d(x0,x)

f(y)w(y)dμ(y)

from Lpc
(
X\B(x0, a)

)
to Lqc

(
X\B(x0, a)

)
. Thus T

(2,2)
v,w is bounded. It remains to

prove that T
(2,1)
v,w is bounded. We have

‖T (2,1)
v,w f‖Lp(·)(X) =

( ˆ
(
B(x0,a)

)c v(x)qcdμ(x)

) 1
qc
( ˆ

B(x0,a)

f(y)w(y)dμ(y)

)

�
( ˆ
(
B(x0,a)

)cv(x)qcdμ(x)
) 1

qc

‖f‖
Lp(·)
(
B(x0,a)

)‖w‖
Lp′(·)
(
B(x0,a)

).
Observe now that the condition A1 < ∞ guarantees that the integral

ˆ
(
B(x0,a)

)c v(x)qcdμ(x)
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is finite. Moreover, N := ‖w‖
Lp′(·)
(
B(x0,a)

) < ∞. Indeed, we have that

N �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( ´
B(x0,a)

w(y)p
′(y)dμ(y)

) 1(
p−(B(x0,a))

)′
if ‖w‖Lp′(·)(B(x0,a))

� 1,( ´
B(x0,a)

w(y)p
′(y)dμ(y)

) 1(
p+(B(x0,a))

)′
if ‖w‖Lp′(·)(B(x0,a)

> 1.

Further,

ˆ

B(x0,a)

w(y)p
′(y)dμ(y) =

ˆ

B(x0,a)∩{w�1}

w(y)p
′(y)dμ(y)+

ˆ

B(x0,a)∩{w>1}

w(y)p
′(y)dμ(y) := I1+I2.

For I1, it holds that I1 � μ
(
B(x0, a)) < ∞. Since � = ∞ and condition (4.2) holds,

there exists a point y0 ∈ X such that a < d(x0, y0) < 2a. Consequently, B(x0, a) ⊂
B(x0, d(x0, y0)) and p(y) � p−

(
B(x0, d(x0, y0))

)
= p0(y0), where y ∈ B(x0, a).

Consequently, the condition A1 < ∞ yields I2 �
´

B(x0,a)

w(y)(p0)
′(y0)dy < ∞.

Finally, we have that ‖T (2,1)
v,w f‖Lp(·)(X) � C. Hence, Tv,w is bounded from Lp(·)(X)

to Lq(·)(X). �

The proof of the following statement is similar to that of Theorem 4.37, and
we omit it (see also the proofs of Theorem 1.1.3 in Edmunds, Kokilashvili, and
Meskhi [76] and Theorems 2.6 and 2.7 in Edmunds, Kokilashvili, and Meskhi [78]
for similar arguments).

Theorem 4.38. Let (X, d, μ) be a quasimetric measure space. Assume that p and q
are measurable functions on X satisfying the condition 1 < p− � p̃1(x) � q(x) �
q+ < ∞. If � = ∞, then we assume that p ≡ pc ≡ const, q ≡ qc ≡ const outside
some ball B(x0, a). If

B1 = sup
0�t��

ˆ

d(x0,x)�t

(
v(x)
)q(x)( ˆ

t�d(x0,x)��

w(p̃1)
′(x)(y)dμ(y)

) q(x)

(p̃1)′(x)

dμ(x) < ∞,

then T ∗
v,w is bounded from Lp(·)(X) to Lq(·)(X).

Remark 4.39. If p ≡ const, then the condition A1 < ∞ in Theorem 4.37 (resp.
B1 < ∞ in Theorem 4.38) is also necessary for the boundedness of Tv,w (resp.
T ∗
v,w) from Lp(·)(X) to Lq(·)(X). See Edmunds, Kokilashvili, and Meskhi [76, pp.

4–5], for the details.

Now let us investigate the two-weight problem for the operators Tv,w and
T ∗
v,w under conditions written in terms of Lp(x) norms.
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Let us denote

fν,B :=
1

ν(B)

ˆ

B

f(x)dν(x),

where ν is a measure on X and B ⊂ X is a ball.

Proposition 4.40. Let (X, d, ν) be an SHT with � < ∞ and let x0 ∈ X. Suppose
that 1 � p(·) � p+ < ∞. If p ∈ P log(X, x0), then there is a positive constant c
such that for all 0 < r < �, x ∈ B(x0, r) and f ∈ Lp(·)(X) with ‖f‖Lp(·)(X) � 1
and f � 0, the inequality(

fν,B(x0,r)

)p(x)
� c

[(
fp(·)(·)

)
ν,B(x0,r)

+ 1

]
holds.

Proof. Let B := B(x0, r). We follow Lemma 3.3 of Diening [62]. First assume that
ν(B) > 1/2. Then

(
fν,B

)p(x)
�
(

1

ν(B)

ˆ

B

((
f(y)
)p(y)

+ 1
)
dν(y)

)p(x)

� c

[(
fp(·)(·)

)
ν,B

+ 1

]
.

Assume now that νB � 1/2. By the Hölder inequality,

(
fν,B

)p(x)
�
(

1

ν(B)

ˆ

B

fp−(B)(x)dν(x)

)p(x)/p−(B)

� cν(B)−p(x)/p−(B)

[
1

2

ˆ

B

(f(x))p(x)dν(x) +
1

2
ν(B)

]p(x)/p−(B)

.

Observe that the expression in brackets is less than or equal to 1. Conse-
quently, by Lemma 4.20 we find that(

fν,B

)p(x)
� cν(B)1−p(x)/p−(B)

((
fp(·)(·)

)
ν,B

+ 1

)
� c

((
f(·)p(·)

)
ν,B

+ 1

)
. �

The next lemma will prove useful.

Lemma 4.41. Let (X, d, ν) be a quasimetric measure space. Suppose that r is a
constant satisfying 1 < r < ∞, and assume that ν ∈ DC0(x0). Then the inequality

ˆ

X

(
1

ν
(
Bx0x

) ˆ
Bx0x

f(y)dν(y)

)r

dν(x) � c

ˆ

X

(
f(x)
)r
dν(x)

holds for all nonnegative ν-measurable functions f .
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Proof. By Theorem 1.2.1 of Edmunds, Kokilashvili, and Meskhi [76], it is enough
to check that

sup
0<t<�

∥∥∥(ν(Bx0x)
)−1
∥∥∥
Lr
(
X\B(x0,t),ν

)‖χB(x0,t)‖Lr′(X,ν) < ∞.

But this follows from Lemma 4.23. �
Theorem 4.42. Let (X, d, μ) be a quasimetric measure space and let v and w be
weights on X. Assume that 1 < p− � p+ < ∞ and that there is a point x0 ∈ X
such that μ{x0} = 0, p ∈ P log(X, x0) and the measure dν(x) = wp′(x)(x)dμ(x)
belongs to the class DC0(x0). In the case when � = ∞ suppose that p ≡ pc ≡ const
outside some large ball B(x0, a). Then the operator Tv,w is bounded in Lp(·)(X) if
and only if

B := sup
0<t<�

∥∥v∥∥
Lp(·)(X\B(x0,t))

∥∥w∥∥
Lp′(·)(B(x0,t))

< ∞.

Proof. To prove sufficiency we will show that the inequality

‖Tv,wf‖Lp(·)(X) � c‖f(·)w(·)1/p(·)‖Lp(·)(X)

holds if

B1 := sup
0<t<�

B1(t) := sup
0<t<�

∥∥v∥∥
Lp(·)(X\B(x0,t))

∥∥w(·)1/p′(·)∥∥
Lp′(·)(B(x0,t))

< ∞,

provided that the measure

dν1(x) := w(x)dμ(x)

belongs to the class DC0(x0).

Let f � 0 and let Ip(·)
(
f(·)w(·)1/p(·)

)
� 1. We denote

I(s) := ν1
(
B(x0, s)

)
,

where s ∈ [0, �].

Suppose that I(�) < ∞. Then I(�) ∈ (2m, 2m+1] for some m ∈ Z. Let us

denote sj := sup{s : I(s) � 2j}, j � m, and sm+1 := �. Then
{
sj
}m+1

j=−∞ is a

non-decreasing sequence. It is easy to check that I(sj) � 2j , I(s) > 2j for s > sj ,
and 2j � ν1

(
B(x0, sj+1) \ B(x0, sj)

)
. If β := lim

j→−∞
sj , then d(x0, x) < � if and

only if d(x0, x) ∈ [0, β] ∪
m⋃

j=−∞
(sj , sj+1]. If I(�) = ∞ then we take m = ∞. Since

0 � I(β) � I(sj) � 2j for every j, we have that I(β) = 0. It is obvious that

X =
⋃
j�m

{x : sj < d(x0, x) � sj+1}.
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Using the notation Ek := {x : sj < d(x0, x) � sj+1} it is easy to check that the
condition B1 < ∞ implies that

sup
j�m−2

∥∥v∥∥p̃(Ej)

Lp(·)(Ej)

∥∥w(·)1/p′(·)∥∥p̃(Ej)

Lp′(·)(B(x0,sj−1))
< ∞, (4.16)

where

p̃(Ej) =

{
p−(Ej) if ‖v‖Lp(·)(Ej) � 1,

p+(Ej) if ‖v‖Lp(·)(Ej) > 1.

Further, the conditions p ∈ P log(X, x0), w ∈ DC0(x0), Lemma 4.20, Proposi-
tion 4.16 and the properties of I(s) mentioned above imply that there is a positive
constant c such that the inequality

(
ν1
(
B(x0, sj−1)

))− p−(Ej)

(p′)−(B(x0,sj−1)) (
ν1(B(x0, sj+1))

)p(x0) � cν1
(
B(x0, sj−1))

(4.17)
holds for all j, j � m− 2.

We have

Ip(·)(Tv,wf) =

ˆ

d(x0,x)>sm−2

(
Tv,wf(x)

)p(x)
dμ(x) +

ˆ

B(x0,sm−2)

(
Tv,wf(x)

)p(x)
dμ(x)

=: S(1) + S(2).

Due to the Hölder inequality it is clear that S(1) < ∞, while for S(2), by
applying Proposition 4.40, we find that

S(2) =

ˆ

B(x0,sm−2)

(
Tv,wf(x)

)p(x)
dμ(x)

�
m−2∑
j=−∞

ˆ

Ej

v(x)p(x)
(
ν1(B(x0, sj+1))

)p(x)

×
(

1

ν1
(
B(x0, sj+1)

) ˆ

B(x0,sj+1)

f(y)dν1(y)

)p(x)

dμ(x)

� c

[
m−2∑
j=−∞

( ˆ
Ej

v(x)p(x)dμ(x)

)(
ν1
(
B(x0, sj+1)

))p(x0)

×
(

1

ν1
(
B(x0, sj+1)

) ˆ

B(x0,sj+1)

(
f(y)
)p(y)/p−

dν1(y)

)p−
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+

m−2∑
j=−∞

( ˆ
Ej

v(x)p(x)dμ(x)

)(
ν1
(
B(x0, sj+1)

))p(x0)

dμ(y)

]

=: c[A1 +A2].

Let us estimate A1 and A2 separately. We have

A1 =
∑

{j�m−2:‖v(·)‖
Lp(·)(Ej)

�1}

(
· · ·
)
+

∑
{j�m−2:‖v(·)‖

Lp(·)(Ej)
>1}

(
· · ·
)

:= c(S
(1)
1 + S

(2)
1 ).

We estimate only S
(1)
1 , because the estimation for S

(2)
1 is similar.

By (4.16), (4.17) and the Hardy inequality (see Lemma 4.41),

S
(1)
1 �

∑{
j�m−2:‖v(·)‖

Lp(·)(Ej)
�1
} ‖v(·)‖p−(Ej)

Lp(·)(Ej)

(
ν1(B(x0, sj+1))

)p(x0)

×
(

1

ν1
(
B(x0, sj+1)

) ˆ

B(x0,sj+1)

(
f(y)
)p(y)/p−

w(y)dν(y)

)p−

� c
∑

{j�m−2}

(
ν1
(
B(x0, sj−1)

))− p−(Ej)

(p′)−(B(x0,sj−1)) (
ν1(B(x0, sj+1))

)p(x0)

×
(

1

ν1B(x0, sj+1)

ˆ

B(x0,sj+1)

(
f(y)
)p(y)/p−

dν1(y)

)p−

� c
∑

{j�m−2}
ν1(B(x0, sj−1)

(
1

ν1B(x0, sj+1)

ˆ

B(x0,sj+1)

(
f(y)
)p(y)/p−

dν1(y)

)p−

� c

ˆ

X

(
1

ν1(Bx0x)

ˆ

Bx0x

(
f(y)
)p(y)/p−

dν1(y)

)p−

dν1(x)

� c

ˆ

X

(
f(x)
)p(x)

w(x)dμ(x) � C.

Hence,
A1 � C.

The estimate for A2 is easier. Indeed, by (4.16) and (4.17),

A2 � c

m−2∑
j=−∞

ν1
(
B(x0, sj+1)

)
� cν1

(
B(x0, �)

)
� C.
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Suppose now that � = ∞. We have

Tv,wf(x) = χB(x0,a)(x)v(x)

ˆ

Bx0x

f(y)w(y)dμ(y)

+ χX\B(x0,a)(x)v(x)

ˆ

Bx0x

f(y)w(y)dμ(y)

=: T (1)
v,wf(x) + T (2)

v,wf(x).

Using the already proved result for � < ∞ and the fact that the diameter of

the ballB(x0, a) is finite, we find that ‖T (1)
v,wf‖Lp(·)(B(x0,a)) � c‖f‖Lp(·)(B(x0,a)) � c,

because

A
(a)
1 := sup

0�t�a

∥∥v(·)∥∥
Lp(·)
(
B(x0,a)\B(x0,t)

)‖w‖
Lp′(·)
(
B(x0,t)

) � B < ∞.

Further, observe that

T (2)
v,wf(x) = χX\B(x0,a)(x)v(x)

ˆ

B(x0,a)

f(y)w(y)dμ(y)

+ χX\B(x0,a)(x)v(x)

ˆ

a<d(x0,y)�d(x0,x)

f(y)w(y)dμ(y)

=: T (2,1)
v,w f(x) + T (2,2)

v,w f(x).

It is easy to verify (see also Edmunds, Kokilashvili, and Meskhi [76, Chap. 1])
that the condition

A
(a)

1 := sup
t�a

( ˆ

d(x0,x)�t

(
v(x)
)qc

dμ(x)

) 1
qc
( ˆ

a�d(x0,y)�t

w(y)(pc)
′
dμ(y)

) 1
(pc)′

< ∞

guarantees the boundedness of the operator

(Tv,wf)(x) = v(x)

ˆ

a<d(x0,y)<d(x0,x)

f(y)w(y)dμ(y)

in Lpc
(
X\B(x0, a)

)
. Thus T

(2,2)
v,w is bounded because A

(a)

1 � B. It remains to prove

that T
(2,1)
v,w is bounded. By using the Hölder inequality for Lp(·) spaces we find that

‖T (2,1)
v,w f‖Lp(·)(X) =

( ˆ
(
B(x0,a)

)c v(x)pcdμ(x)

) 1
qc
( ˆ

B(x0,a)

f(y)w(y)dμ(y)

)
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�
( ˆ
(
B(x0,a)

)c v(x)qcdμ(x)

) 1
qc

‖f‖
Lp(·)
(
B(x0,a)

)‖w‖
Lp′(·)
(
B(x0,a)

) � B.

Finally, ‖T (2,1)
v,w f‖Lp(·)(X) � C. Consequently, Tv,w is bounded in Lp(·)(X).

Necessity. Let Tv,w be bounded in Lp(·)(X), i.e.,

‖Tv,wf‖Lp(·)(X) � C for ‖f‖Lp(·)(X) � 1.

Suppose that f has support in B(x0, t), where t > 0. Then

‖Tv,wf‖Lp(·)(X) � ‖Tv,wf‖Lp(·)(X\B(x0,t))

� ‖v‖Lp(·)(X\B(x0,t))

( ˆ

B(x0,t)

f(y)w(y)dy

)
.

Taking now the supremum over such f and using the inequality (see, e.g., Samko
[318])

‖g‖Lp(·) � sup
‖h‖

Lp′(·)�1

∣∣∣∣ ˆ ghdμ

∣∣∣∣
we conclude that B < ∞. �

The next statement for the operator T ∗
v,w can be proved using duality argu-

ments. Details are omitted.

Theorem 4.43. Let (X, d, μ) be a quasimetric measure space and let v and w be
weights on X. Assume that 1 < p− � p+ < ∞ and that there is a point x0 ∈ X
such that p ∈ P log(X, x0). Let the measure dν(x) = vp(x)(x)dμ(x) belong to the
class DC0(x0). In the case when � = ∞, suppose that p ≡ pc ≡ const outside some
large ball B(x0, a). Then the operator T ∗

v,w is bounded in Lp(·)(X) if and only if

B′ := sup
0<t<�

∥∥w∥∥
Lp′(·)(X\B(x0,t))

∥∥v∥∥
Lp(·)(B(x0,t))

< ∞.

4.5 Modular Conditions for Fractional Integrals

In this section we discuss two-weight estimates for the potential operators

(Kα(·)f)(x) =
ˆ

X

f(y)

μ
(
B(x, d(x, y))

)1−α(x)
dμ(y)

and

(Iα(·)f)(x) =
ˆ

X

f(y)

d(x, y)1−α(x)
dμ(y)
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on quasimetric measure spaces, where 0 < α− � α+ < 1. If α ≡ const, then we
denote Kα(·) and Iα(·) by Kα and Iα, respectively.

Theorem 4.44. Let (X, d, μ) be an SHT. Suppose that 1 < p− � p+ < ∞ and
p ∈ P (1). Assume that if � = ∞, then p ≡ const outside some ball. Let α be a

constant satisfying the condition 0 < α < 1/p+. Set q(x) =
p(x)

1−αp(x) . Then Kα is

bounded from Lp(·)(X) to Lq(·)(X).

Theorem 4.45. Let (X, d, μ) be a quasimetric measure space with � < ∞ and let
N = ct(1+2cs), where the constants cs and ct are taken from the definition of the
quasimetric d. Suppose that 1 < p− < p+ < ∞, p, α ∈ PN and that μ is upper

Ahlfors 1-regular. Define q(x) = p(x)
1−α(x)p(x) , where 0 < α− � α+ < 1/p+. Then

Iα(·) is bounded from Lp(·)(X) to Lq(·)(X).

For the statements in this section and their proofs we keep the notation of
Section 4.4 and, in addition, introduce the new notation:

v(1)α (x) := v(x)(μBx0x)
α−1, w(1)

α (x) := w−1(x); w(2)
α (x) := w−1(x)(μBx0x)

α−1,

Fx :=

{
{y ∈ X : d(x0,y)�

A2ct
� d(x0, y) � A2�ctd(x0, x)}, if � < ∞,

{y ∈ X : d(x0,y)
A2ct

� d(x0, y) � A2ctd(x0, x)}, if � = ∞,

where A and ct are the constants in Definition 4.3 and the triangle inequality for
d, respectively. We begin this section with the following general type statement:

Theorem 4.46. Let (X, d, μ) be an SHT without atoms. Suppose that 1 < p− �
p+ < ∞ and α is a constant satisfying the condition 0 < α < 1/p+. Let p ∈ P .

We set q(x) = p(x)
1−αp(x) . Further, if � = ∞, then we assume that p ≡ pc ≡ const

outside some ball B(x0, a). Then the inequality

‖v(Kαf)‖Lq(·)(X) � c‖wf‖Lp(·)(X) (4.18)

holds if the following three conditions are satisfied:

(a) T
v
(1)
α ,w

(1)
α

is bounded from Lp(·)(X) to Lq(·)(X);

(b) T
v,w

(2)
α

is bounded from Lp(·)(X) to Lq(·)(X);

(c) there is a positive constant b such that one of the following inequalities holds:

1) v+(Fx) � bw(x) for μ-a.e. x ∈ X;

2) v(x) � bw−(Fx) for μ-a.e. x ∈ X.

Proof. For simplicity suppose that � < ∞. The proof for the case � = ∞ is similar
to that of the previous case. The sets Ii,k, i = 1, 2, 3 and Ek were defined in



262 Chapter 4. Two-weight Estimates

Section 1. Let f � 0 and let ‖g‖Lq′(·)(X) � 1. We have

ˆ

X

(Kαf)(x)g(x)v(x)dμ(x) =
0∑

k=−∞

ˆ

Ek

(Kαf)(x)g(x)v(x)dμ(x)

�
0∑

k=−∞

ˆ

Ek

(Kαf1,k)(x)g(x)v(x)dμ(x) +
0∑

k=−∞

ˆ

Ek

(Kαf2,k)(x)g(x)v(x)dμ(x)

+

0∑
k=−∞

ˆ

Ek

(Kαf3,k)(x)g(x)v(x)dμ(x) := S1 + S2 + S3,

where f1,k = f · χI1,k , f2,k = f · χI2,k , f3,k = f · χI3,k .

Observe that if x ∈ Ek and y ∈ I1,k, then d(x0, y) � d(x0, x)/Act. Con-
sequently, the triangle inequality for d yields d(x0, x) � A′ctcsd(x, y), where
A′ = A/(A − 1). Hence, by using Remark 4.11 we find that μ(Bx0x) � cμ(Bxy).
Applying now condition (a) we have that

S1 � c

∥∥∥∥(μBx0x

)α−1
v(x)

ˆ

Bx0x

f(y)dμ(y)

∥∥∥∥
Lq(x)(X)

‖g‖Lq′(·)(X) � c‖wf‖Lp(·)(X).

Further, observe that if x ∈ Ek and y ∈ I3,k, then μ
(
Bx0y

)
� cμ
(
Bxy

)
. By

condition (b) we find that S3 � c‖wf‖Lp(·)(X).

Now we estimate S2. Suppose that v+(Fx) � bw(x). Theorem 4.44 and
Lemma 4.22 yield

S2 �
∑
k

‖(Kαf2,k
)
(·)χEk

(·)v(·)‖Lq(·)(X)‖gχEk
(·)‖Lq′(·)(X)

�
∑
k

(
v+(Ek)

)‖(Kαf2,k)(·)‖Lq(·)(X)‖g(·)χEk
(·)‖Lq′(·)(X)

� c
∑
k

(
v+(Ek)

)‖f2,k‖Lp(·)(X)‖g(·)χEk
(·)‖Lq′(·)(X)

� c
∑
k

‖f2,k(·)w(·)χI2,k (·)‖Lp(·)(X)‖g(·)χEk
(·)‖Lq′(·)(X)

� c‖f(·)w(·)‖Lp(·)(X)‖g(·)‖Lq′(·)(X) � c‖f(·)w(·)‖Lp(·)(X).

The estimate of S2 for the case when v(x) � bw−(Fx) is similar to that of
the previous case. Details are omitted. �

Theorems 4.46, 4.37 and 4.38 imply the following statement:

Theorem 4.47. Let (X, d, μ) be an SHT. Suppose that 1 < p− � p+ < ∞ and α is a

constant satisfying the condition 0 < α < 1/p+. Let p ∈ P . We set q(x) = p(x)
1−αp(x) .
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If � = ∞, then we suppose that p ≡ pc ≡ const outside some ball B(x0, a). Then
inequality (4.18) holds if the following three conditions are satisfied:

(i)

P1 := sup
0<t��

ˆ

t<d(x0,x)��

(
v(x)(

μ(Bx0x)
)1−α

)q(x)( ˆ
d(x0,y)�t

w−(p̃0)
′(x)(y)dμ(y)

) q(x)

(p̃0)′(x)

dμ(x) <∞;

(ii)

P2 :=sup
0<t��

ˆ

d(x0,x)�t

(
v(x)
)q(x)( ˆ

t<d(x0,y)��

(
w(y)
(
μ(Bx0y)

)1−α
)−(p̃1)

′(x)
dμ(y)

) q(x)

(p̃1)′(x)

dμ(x)<∞,

(iii) condition (c) of Theorem 4.46 holds.

Remark 4.48. If p = pc ≡ const on X , then the conditions Pi < ∞, i = 1, 2, are
necessary for (4.18). Necessity of the condition P1 < ∞ follows by taking the test
function f = w−(pc)

′
χB(x0,t) in (4.18) and observing that μ(Bxy) � cμ(Bx0x) for

those x and y which satisfy the conditions d(x0, x) � t and d(x0, y) � t, while
necessity of the condition P2 < ∞ can be derived by choosing the test function

f(x) = w−(pc)
′
(x)χX\B(x0,t)(x)

(
μ(Bx0x)

)(α−1)((pc)
′−1)

and taking into account the
estimate μ(Bxy) � μ(Bx0y) for d(x0, x) � t and d(x0, y) � t.

The next statement follows in the same manner as the previous one. In this
case Theorem 4.45 is used instead of Theorem 4.44. The proof is omitted.

Theorem 4.49. Let (X, d, μ) be a quasimetric measure space with � < ∞. Let
N = ct(1 + 2cs). Suppose that 1 < p− � p+ < ∞, p, α ∈ PN and that μ is upper

Ahlfors 1-regular. We define q(x) = p(x)
1−α(x)p(x) , where 0 < α− � α+ < 1/p+. Then

the inequality

‖v(·)(Iα(·)f)(·)‖Lq(·)(X) � c‖w(·)f(·)‖Lp(·)(X) (4.19)

holds if

(i)

sup
0�t��

ˆ

t<d(x0,x)��

(
v(x)(

d(x0, x)
)1−α(x)

)q(x)
( ˆ

B(x0,t)

w−(p0)
′(x)(y)dμ(y)

) q(x)

(p0)′(x)

dμ(x)<∞;

(ii)

sup
0�t��

ˆ

B(x0,t)

(
v(x)
)q(x)( ˆ

t<d(x0,y)��

(
w(y)d(x0, y)

1−α(y)
)−(p1)

′(x)
dμ(y)

) q(x)

(p1)′(x)

dμ(x)<∞,

(iii) condition (c) of Theorem 4.46 is satisfied.

Remark 4.50. It is easy to check that if p and α are constants, then conditions
(i) and (ii) in Theorem 4.49 are also necessary for (4.19). This follows easily by
choosing appropriate test functions in (4.19) (see also Remark 4.48).
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Theorem 4.51. Let (X, d, μ) be an RD-space. Let 1 < p− � p+ < ∞ and let α be a

constant with the condition 0 < α < 1/p+. We set q(x) = p(x)
1−αp(x) . Assume that p

has a minimum at x0 and that p ∈ P log(X). Suppose also that if � = ∞, then p is
constant outside some ball B(x0, a). Let v and w be positive increasing functions
on (0, 2�). Then the inequality

‖v(d(x0, ·))(Kαf)(·)‖Lq(·)(X) � c‖w(d(x0, ·))f(·)‖Lp(·)(X) (4.20)

holds if

I1 := sup
0<t��

I1(t) := sup
0<t��

ˆ

t<d(x0,x)��

(
v(d(x0, x))(
μ(Bx0x)

)1−α

)q(x)

×
( ˆ

d(x0,y)�t

w−(p̃0)
′(x)(d(x0, y))dμ(y)

) q(x)

(p̃0)′(x)

dμ(x) < ∞

for � = ∞;

J1:= sup
0<t��

ˆ

t<d(x0,x)��

(
v(d(x0, x))(
μ(Bx0x)

)1−α

)q(x)( ˆ
d(x0,y)�t

w−p′(x0)(d(x0, y))dμ(y)

) q(x)

p′(x0)

dμ(x)<∞

for � < ∞.

Proof. We prove the theorem for � = ∞. The proof for the case when � < ∞ is
similar. Observe that, by Lemma 4.20, the condition p ∈ P log(X) implies p ∈ P .

We will show that the condition I1 < ∞ implies the inequality v(A2ctt)
w(t) � C for

all t > 0, where A and ct are the constants in Definition 4.3 and the triangle
inequality for d respectively. Indeed, let us assume that t � b1, where b1 is a small
positive constant. Then, thanks to the monotonicity of v and w, and the facts that
p̃0(x) = p0(x) (for small d(x0, x)) and μ ∈ RDC(X), we have

I1(t)�
ˆ

A2ctt�d(x0,x)<A3ctt

(
v(A2ctt)

w(t)

)q(x)(
μB(x0, t)

)(α−1/p0(x))q(x)
dμ(x)

�
(
v(A2ctt)

w(t)

)q− ˆ

A2ctt�d(x0,x)<A3ctt

(
μB(x0, t)

)(α−1/p0(x))q(x)
dμ(x)

� c

(
v(A2ctt)

w(t)

)q−

.

Hence, c := lim
t→0

v(A2ctt)
w(t) < ∞. Further, if t > b2, where b2 is a large number, then
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since p and q are constants, for d(x0, x) > t, we have that

I1(t) �
( ˆ

A2ctt�d(x0,x)<A3ctt

v(d(x0, x))
qc
(
μB(x0, t)

)(α−1)qc
dμ(x)

)

×
( ˆ

B(x0,t)

w−(pc)
′
(x)dμ(x)

)qc/(pc)
′

dμ(x)

� C

(
v(A2ctt)

w(t)

)qc ˆ

A2ctt�d(x0,x)<A3ctt

(
μB(x0, t)

)(α−1/pc)qc
dμ(x)

� c

(
v(A2ctt)

w(t)

)qc

.

In the last inequality we used the fact that μ satisfies the reverse doubling
condition.

Now we show that the condition I1 < ∞ implies that

sup
t>0

I2(t) := sup
t>0

ˆ

d(x0,x)�t

(v(d(x0, x)))
q(x)

( ˆ

d(x0,y)>t

w−(p̃1)
′(x)(d(x0, y))

× (μ(Bx0y)
)(α−1)(p̃1)

′(x)
dμ(y)

) q(x)

(p̃1)′(x)

dμ(x) < ∞.

Due to the monotonicity of the functions v and w, the condition p ∈ P log(X),
Proposition 4.14, Lemma 4.19, Lemma 4.20, and the assumption that p has a
minimum at x0, we find that for all t > 0,

I2(t) �
ˆ

d(x0,x)�t

( v(t)
w(t)

)q(x)(
μ
(
B(x0, t)

))(α−1/p(x0))q(x)

dμ(x)

� c

ˆ

d(x0,x)�t

( v(t)
w(t)

)q(x)(
μ
(
B(x0, t)

))(α−1/p(x0)
)
q(x0)

dμ(x)

� c

( ˆ

d(x0,x)�t

(v(A2ctt)

w(t)

)q(x)
dμ(x)

)(
μ
(
B(x0, t)

))−1

� C.

Now Theorem 4.47 completes the proof. �
Theorem 4.52. Let (X, d, μ) be an SHT with � < ∞. Suppose that p, q, and α are
measurable functions on X satisfying the conditions: 1 < p− � p(x) � q(x) �
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q+ < ∞ and 1/p− < α− � α+ < 1. Assume that α ∈ P log(X) and there is a point
x0 ∈ X such that p, q ∈ P log(X, x0). Suppose also that w is a positive increasing
function on (0, 2�).Then the inequality

‖(Kα(·)f
)
v‖Lq(·)(X) � c‖w(d(x0, ·))f(·)‖Lp(·)(X)

holds if the following two conditions are satisfied:

Ĩ1 := sup
0<t��

ˆ

t�d(x0,x)��

(
v(x)(

μ(Bx0x)
)1−α(x)

)q(x)

×
( ˆ

d(x0,x)�t

w−(p0)
′(x)(d(x0, y))dμ(y)

) q(x)

(p0)′(x)

dμ(x) < ∞;

Ĩ2 := sup
0<t��

ˆ

d(x0,x)�t

(
v(x)
)q(x)( ˆ

t�d(x0,x)��

(
w(d(x0, y))

×(μ(Bx0y)
)1−α(x)

)−(p1)
′(x)

dμ(y)

) q(x)

(p1)′(x)

dμ(x) < ∞.

Proof. For simplicity assume that � = 1. First observe that, by Lemma 4.20,
p, q ∈ Px0 and α ∈ P . Suppose that f � 0 and

Ip(·)
(
w(d(x0, ·))f(·)

)
=

ˆ

X

(
w(d(x0, y))f(y)

)p(y)
dy � 1.

We will show that Iq(·)
(
v(Kα(·)f)

)
=
´
X

(
v(x)Kα(x)f(x)

)q(x)
dx � C.

We have

Iq(·)
(
vKα(·)f

)
� Cq

[ ˆ
X

(
v(x)

ˆ

d(x0,y)�d(x0,x)/(2ct)

f(y)
(
μ(Bxy)

)α(x)−1
dμ(y)

)q(x)

dμ(x)

+

ˆ

X

(
v(x)

ˆ

d(x0,x)/(2ct)�d(x0,y)�2ctd(x0,x)

f(y)
(
μ(Bxy)

)α(x)−1
dμ(y)

)q(x)

dμ(x)

+

ˆ

X

(
v(x)

ˆ

d(x0,y)�2ctd(x0,x)

f(y)
(
μ(Bxy)

)α(x)−1
dμ(y)

)q(x)

dμ(x)

]

:= Cq[I1 + I2 + I3].



4.5. Modular Conditions for Fractional Integrals 267

First observe that the doubling condition for μ, Remark 4.11, and simple
calculation we find that μ

(
Bx0x

)
� cμ

(
Bxy

)
. This estimate and Theorem 4.37

yield

I1 � c

ˆ

X

(
v(x)(

μ(Bx0x)
)1−α(x)

ˆ

d(x0,y)<d(x0,x)

f(y)dμ(y)

)q(x)

dμ(x) � C.

Further, it is easy to see that if d(x0, y) � 2ctd(x0, x), then the triangle
inequality for d and the doubling condition for μ yield that μ(Bx0y) � cμ(Bxy).

Hence due to Proposition 4.15 we see that
(
μ(Bx0y)

)α(x)−1 � c
(
μ(Bxy)

)α(y)−1
for

such x and y. Therefore, Theorem 4.38 implies that I3 � C.

It remains to estimate I2. Let us denote

E(1)(x) :=Bx0x \B
(
x0, d(x0, x)/(2ct)

)
; E(2)(x) := B

(
x0, 2ctd(x0, x)

) \Bx0x.

Then

I2 � C

[ ˆ
X

[
v(x)

ˆ

E(1)(x)

f(y)
(
μ(Bxy)

)α(x)−1
dμ(y)

]q(x)
dμ(x)

+

ˆ

X

[
v(x)

ˆ

E(2)(x)

f(y)
(
μ(Bxy)

)α(x)−1
dμ(y)

]q(x)
dμ(x)

]

:= c[I21 + I22].

Using the Hölder inequality for the classical Lebesgue spaces we find that

I21 �
ˆ

X

vq(x)(x)

( ˆ

E(1)(x)

wp0(x)(d(x0, y))(f(y))
p0(x)dμ(y)

)q(x)/p0(x)

×
( ˆ

E(1)(x)

w−(p0)
′(x)(d(x0, y))

(
μ(Bxy)

)(α(x)−1)(p0)
′(x)

dμ(y)

)q(x)/(p0)
′(x)

dμ(x).

Denote the first inner integral by J (1) and the second one by J (2).

Since p0(x) � p(y), where y ∈ E(1)(x), we see that

J (1) � μ(Bx0x) +

ˆ

E(1)(x)

(f(y))p(y)
(
w(d(x0, y))

)p(y)
dμ(y),
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while by applying Lemma 4.19, for J (2), we have that

J (2) � cw−(p0)
′(x)
(d(x0, x)

2ct

) ˆ

E(1)(x)

(
μ(Bxy)

)(α(x)−1)(p0)
′(x)

dμ(y)

� cw−(p0)
′(x)
(d(x0, x)

2ct

)(
μ(Bx0x)

)(α(x)−1)(p0)
′(x)+1

.

Summarizing these estimates for J (1) and J (2) we conclude that

I21 �
ˆ

X

vq(x)(x)
(
μ(Bx0x)

)q(x)α(x)
w−q(x)

(d(x0, x)

2ct

)
dμ(x)

+

ˆ

X

vq(x)(x)

( ˆ

E(1)(x)

wp(y)(d(x0, y))(f(y))
p(y)dμ(y)

)q(x)/p0(x)

× (μ(Bx0x)
)q(x)(α(x)−1/p0(x))

w−q(x)
(d(x0, x)

2ct

)
dμ(x) =: I

(1)
21 + I

(2)
21 .

By applying monotonicity of w, the reverse doubling property for μ with the
constants A and B (see Remark 4.5), and the condition Ĩ1 < ∞ we have that

I
(1)
21 � c

0∑
k=−∞

ˆ

B(x0,Ak)\B(x0,Ak−1)

v(x)q(x)
( ˆ

B
(
x0,

Ak−1

2ct

)w−(p0)
′(x)(d(x0, y))dμ(y)

) q(x)

(p0)′(x)

× (μ(Bx0,x)
) q(x)

p0(x)
+(α(x)−1)q(x)

dμ(x)

� c

0∑
k=−∞

(
μ(B(x0, A

k))
)q−/p+

×
ˆ

B(x0,Ak)\B(x0,Ak−1)

v(x)q(x)

( ˆ

B
(
x0,Ak
)w−(p0)

′(x)(d(x0, y))dμ(y)

) q(x)

(p0)′(x)

× (μ(Bx0,x)
)q(x)(α(x)−1)

dμ(x)

� c

0∑
k=−∞

(
μ(B̄(x0, A

k) \B(x0, A
k−1))

)q−/p+

� c

0∑
k=−∞

ˆ

B̄(x0,Ak)\B(x0,Ak−1)

(
μ(Bx0,x)

)q−/p+−1
dμ(y)

� c

ˆ

X

(
μ(Bx0,x)

)q−/p+−1
dμ(y) < ∞.
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Since q(x) � p0(x), Ip(·)
(
w
(
d(x0, ·)f(·)

))
� 1, Ĩ1 < ∞, and w is increasing,

for I
(2)
21 , we find that

I
(2)
21 � c

0∑
k=−∞

( ˆ

B̄(x0,Ak+1ct)\B(x0,Ak−2)

wp(y)(d(x0, y))(f(y))
p(y)dμ(y)

)

×
( ˆ

B̄(x0,Ak)\B(x0,Ak−1)

vq(x)(x)

( ˆ

B(x0,Ak−1)

w−(p0)
′(x)(d(x0, y))dμ(y)

) q(x)

(p0)′(x)

× (μ(Bx0,x)
)(α(x)−1)q(x)

dμ(x)

)
� cIp(·)(f(·)w(d(x0 , ·)) � c.

Analogously, it follows the estimate for I22. In this case we use the condition
Ĩ2 < ∞ and the fact that p1(x) � p(y) when d(x0, y) � d(x0, y) < 2ctd(x0, x).
The details are omitted. The theorem is proved. �

Recalling the proof of Theorem 4.51 we can easily derive the following state-
ment, the proof of which is omitted:

Theorem 4.53. Let (X, d, μ) be an SHT with � < ∞. Suppose that p, q and α are
measurable functions on X satisfying the conditions 1 < p− � p(x) � q(x) � q+ <
∞ and 1/p− < α− � α+ < 1. Assume that α ∈ P log(X). Suppose also that there
is a point x0 such that p, q ∈ P log(X, x0) and p has a minimum at x0. Let v and
w be positive increasing function on (0, 2�) satisfying the condition J1 < ∞ (see
Theorem 4.51). Then inequality (4.20) is fulfilled.

Theorem 4.54. Let (X, d, μ) be an SHT with � < ∞ and let μ be upper Ahlfors

1-regular. Suppose that 1 < p− � p+ < ∞ and that p ∈ P log
(X). Let p have

a minimum at x0. Assume that α is constant satisfying the condition α < 1/p+
and set q(x) = p(x)

1−αp(x) . If v and w are positive increasing functions on (0, 2�)

satisfying the condition

E := sup
0�t��

ˆ

t<d(x0,x)��

(
v(d(x0, x))(
d(x0, x)

)1−α

)q(x)( ˆ

d(x0,x)�t

w−(p0)
′(d(x0,x))(y)dμ(y)

) q(x)

(p0)′(x)

dμ(x)

< ∞,

then the inequality

‖v(d(x0, ·)
)
(Iαf)(·)‖Lq(·)(X) � c‖w(d(x0, ·)

)
f(·)‖Lp(·)(X)

holds.

Proof. Similar to that of Theorem 4.51. We only discuss some details. First observe
that due to Proposition 4.13 and Remark 4.8 we have that p ∈ PN , where N =
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ct(1+2cs). It is easy to check that the condition E < ∞ implies that v(A2ctt)
w(t) � C

for all t, where the constant A is defined in Definition 4.3 and ct is from the triangle
inequality for d. Further, Lemma 4.23, the fact that p has a minimum at x0, and
the inequality

ˆ

d(x0,y)>t

(
d(x0, y)

)(α−1)(p1)
′(x)

dμ(y) � ct(α−1)(p1)
′(x)+1,

where the constant c does not depend on t and x, yield

sup
0�t��

ˆ

d(x0,x)�t

(v(d(x0, x)))
q(x)

( ˆ

d(x0,y)>t

(
w(d(x0, y))(
d(x0, y)

)1−α

)−(p1)
′(x)

dμ(y)

) q(x)

(p1)′(x)

dμ(x)

< ∞.

Theorem 4.49 completes the proof. �

Example 4.55. Let v(t) = tγ and w(t) = tβ , where γ and β are constants satisfying

the condition 0 � β < 1/(p−)′, γ � max
{
0, 1− α− 1

q+
− q−

q+
(−β + 1

(p−)′ )
}
.

Then (v, w) satisfies the conditions of Theorem 4.51.

4.6 Modular Conditions for Maximal and
Singular Operators

Let M and K be maximal and Calderón–Zygmund operators, respectively, defined
on X :

M f(x) := sup
x∈X,r>0

1

μ(B(x, r))

ˆ

B(x,r)

|f(y)|dμ(y)

and

Kf(x) = p.v.

ˆ

X

k(x, y)f(y)dμ(y),

where k : X ×X \ {(x, x) : x ∈ X} → R be a measurable function satisfying the
conditions:

|k(x, y)| � c

μB(x, d(x, y))
, x, y ∈ X, x �= y;

|k(x1, y)− k(x2, y)|+ |k(y, x1)− k(y, x2)| � cω
(d(x2, x1)

d(x2, y)

) 1

μB(x2, d(x2, y))
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for all x1, x2 and y with d(x2, y) � cd(x2, x1), where ω is a positive non-decreasing
function on (0,∞) which satisfies the Δ2 condition ω(2t) � cω(t) (t > 0), as well

as the Dini condition
1́

0

(
ω(t)/t

)
dt < ∞.

We also assume that for some constant s, 1 < s < ∞, and all f ∈ Ls(X) the
limit Kf(x) exists almost everywhere on X and that K is bounded in Ls(X).

It is known (see, e.g., Edmunds, Kokilashvili, and Meskhi [76, Chap. 8]) that
if r is a constant such that 1 < r < ∞, (X, d, μ) is an SHT, and the weight function
w ∈ Ar(X), i.e.,

sup
B

(
1

μ(B)

ˆ

B

w(x)dμ(x)

)(
1

μ(B)

ˆ

B

w1−r′(x)dμ(x)

)r−1

< ∞,

where the supremum is taken over all balls B in X , then the one-weight inequality

‖w1/rKf‖Lr(X) � c‖w1/rf‖Lr(X) (4.21)

holds.

Lemma 4.56. Let 1 � q− � q+ < ∞. Suppose that q ∈ P . Let μ(X) < ∞. Then
there is a positive constant c depending on X such that

(M f(x))q(x) � c[M (|f |q(·))(x) + 1]

for all x ∈ X.

Proof. First observe that there is a positive constant Cq such that for all nonneg-
ative f , ‖f‖Lq(·)(X) � 1, balls B ⊂ X and x ∈ B,

(
fB
)q(x) � Cq

[(
f q(·)(·))

B
+ 1
]
.

This inequality can be obtained just in the same manner as Proposition 4.40, and
so details are omitted. Now the result follows immediately. �

Theorem 4.57. Let (X, d, μ) be an SHT and let μ(X) < ∞. Suppose that 1 < p− �
p+ < ∞ and p ∈ P . Then M is bounded in Lp(·)(X).

Proof. The proof is a consequence of Lemma 4.56 taking q(·) = p(·)/p− and ap-
plying the boundedness of M in Lp−(X); the details are omitted. �

Remark 4.58. Theorem 4.57 was proved in Harjulehto, Hästö, and Pere [124] in
the case of metric-measure spaces (see also Khabazi [165], Kokilashvili and Meskhi
[183] for quasimetric measure spaces).

Using Theorems 4.57, 2.90 and (4.21) we have the next statement.
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Theorem 4.59. Let (X, d, μ) be an SHT with μ(X) < ∞. Suppose that 1 < p− �
p+ < ∞ and that p ∈ P . Then the Calderón–Zygmund operator K is bounded in
Lp(·)(X).

Theorem 4.60. Let (X, d, μ) be an SHT and let � = ∞. Suppose that 1 < p− �
p+ < ∞ and p ∈ P . Suppose also that p = pc = const outside a ball B := B(x0, R)
with x0 ∈ X and r > 0. Then M is bounded in Lp(·)(X).

Proof. We use arguments of Lemma 3.4 and Theorem 3.5 of Diening [62]. Let
‖f‖Lp(·)(X) � 1. First we show that there is a positive constant c such that(

M f(x))p(x)/p− � cM
(|f |p(·)/p−

)
(x) + ch(x), (4.22)

where

h(x) = χB(x0,2ctcsr)(x) + χX\B(x0,2ctcsr)(x)
(
μ(Bx0x)

)−1
.

Let q := p/p− and let qc := pc/p−. It is easy to check that q satisfies the
condition q ∈ P(1). Consequently, by Lemma 4.56 we have(

M f(x)
)q(x) � CM (|f(·)|q(·))(x) + C. (4.23)

Suppose that x ∈ X \ (2ctcsB). Then

E := B

(
x,

d(x0, x)−R

2ctcs

)
∩B = ∅.

Indeed, assume that there is a point z such that z ∈ E. Then

d(x0, x) � ctd(x0, z) + ctd(z, x) � ctd(x0, z) + ctcsd(x, z) � ctR + ctcsd(x, z)

� ctR+
d(x0, x)

2
− R

2
� ctR− R

2
+

d(x0, x)

2
.

Hence,

d(x0, x) � (2ct − 1)R < 2ctcsR.

This contradicts the assumption that d(x0, x) � 2ctcsR.

Further, observe that

d(x0, x)−R >

(
1− 1

2ctcs

)
d(x0, x)

for x ∈ X \ 2ctcsB.

Split f as follows: f = f1 + f2, where f1 = fχB and f2 = fχX\B. Taking
into account the doubling condition for μ and the fact that suppf1 ⊂ B we have
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for x ∈ X\B(x0, 2csctR),

(
M f1(x)

)q(x) � ( sup
r�(d(x0,x)−R)/(2ctcs)

1

μ
(
B(x, r)

) ˆ
B(x,r)

|f1(y)|dμ(y)
)q(x)

�
(

C

μ(B(x, d(x0, x)))

ˆ

B(x0,2ctcsR)

|f(y)|dμ(y)
)q(x)

�
(

C

μ(B(x, d(x0, x)))

ˆ

B(x0,2ctcsR)

(|f(y)|p(y) + 1)dμ(y)

)q(x)

� C

μ(B(x, d(x0, x)))
� C

μ(Bx0x)
,

where the positive constant C depends on R and q.

Further, it is easy to see that

(M f2(x))
q(x) = (M f2(x))

qc � M (|f2|qc)(x) � M (|f |q(·))(x)

when x ∈ X \B(x0, 2ctcsR). Hence

(M f2(x))
q(x)χX\2ctcsB(x) � M (|f(·)|q(·))(x)χX\2ctcsB(x).

Finally, combining these estimates with (4.23), we conclude that

M f(x) � χ2ctcsB(x)
(
M f(x)

)q(x)
+ χX\2ctcsB(x)

(
M f1(x) + M f2(x)

)q(x)
� χ2ctcsB(x)

(
M f(x)

)q(x)
+cpχX\2ctcsB(x)

[
(M f1(x))

q(x)+(M f2(x))
q(x)
]

� CM (|f |q(·))(x) + Cχ2ctcsB(x) + CχX\2ctcsB(x)
(
μ(Bx0x)

)−1
.

Inequality (4.22) has been proved.

Now we will show that Ip(·)(M f) � C when Ip(·)(f) � 1. Using (4.23) and
the boundedness of M in Lebesgue spaces with constant exponent Lp−(X) we
find that

Ip(·)(M f) = ‖(M f)q‖p−
Lp−(X) � C

(
‖M (|f |q(·))‖Lp−(X) + ‖h‖Lp−(X)

)p−

� C
(
‖|f |q(·)‖Lp−(X) + ‖h‖Lp−(X)

)p−

=
(
CIp(·)(f)1/p− + ‖h‖Lp−(X)

)p−
,

where h has the desired form. Now the result follows. �
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Before formulating the next result we introduce the notation

v(x) :=
v(x)

μ(Bx0x)
, w̃(x) :=

1

w(x)
, w̃1(x) :=

1

w(x)μ(Bx0x)
.

Theorem 4.61. Let (X, d, μ) be an SHT and let 1 < p− � p+ < ∞. Suppose that
p ∈ P log(X). If � = ∞, then we assume that p is constant outside a ball B(x0, a)
for some x0 ∈ X and a > 0. Then the inequality

‖v(Nf)‖Lp(·)(X) � C‖wf‖Lp(·)(X), (4.24)

where N is M or K, holds if

(a) Tv,w̃ is bounded in Lp(·)(X);

(b) T ∗
v,w̃1

is bounded in Lp(·)(X);

(c) there is a positive constant b such that one of the following inequalities holds:

(1) v+(Fx) � bw(x) for μ-a.e. x ∈ X;

(2) v(x) � bw−(Fx) for μ-a.e. x ∈ X, where Fx is defined in Section 4.5.

Proof. First notice that, by Lemma 4.20, p ∈ P . Suppose that � = ∞ and let
‖g‖Lp′(·)(X) � 1. Take

B := B(x, r); hB :=
1

μ(B)

ˆ

B

|h(y)|dy.

We have

ˆ

X

(Nf)(x)v(x)g(x)dμ(x) �
3∑

j=1

[∑
k∈Z

ˆ

Ek

(Nfj,k)(x)v(x)g(x)dμ(x)

]
=:

3∑
j=1

Sj ,

where fj,k := fχIj,k (recall that the constant A is defined in Definition 4.3). We

prove the theorem for the case N = M . If x ∈ Ek and y ∈ I1,k, then
d(x0,x)

A′ �
d(x, y), where A′ := A/(A−1). Further, if r � d(x0,x)

A′ , then B(x, r)∩
{
y : d(x0, y) �

d(x0,x)
A′

}
= ∅. Consequently, (f1,k)B = 0. Now let r > d(x0,x)

A′ . Then taking into

account Remark 4.11 we have

(f1,k)B � c

μ(Bx0x)

ˆ

Bx0x

|f(y)|dμ(y)

for x ∈ Ek. Hence,

M f1,k(x) �
c

μ(Bx0x)

ˆ

Bx0x

|f(y)|dμ(y).
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Consequently, Theorem 4.37 and condition (a) yield

S1 � c

ˆ

X

(
Tv,1(|f |)(x)g(x)dx � c‖(Tv,1(|f |)‖Lp(·)(X)‖g‖Lp′(·)(X) � c‖fw‖Lp(·)(X).

To estimate S3, first observe that

M (fχI3,k)(x) � c sup
j�k+1

(
μ(B(x,Aj))

)−1
ˆ

Dj

|f(y)|dμ(y), x ∈ Ek, (4.25)

where Dj := B(x0, ctA
j+1) \ B(x0, ctA

j). To prove (4.25) we take r so that 0 <
r < Ak. Then it is easy to see that B(x, r) ∩ I3,k = ∅. Consequently, (f3,k)B = 0.
Further, let r � Ak. Then r ∈ [Am, Am+1) for some m � k. If y ∈ B, then

d(x0, y) � ctA
m+l+1 for the integer l defined by l =

[
ln 2
lnA

]
+1. On the other hand,

there are positive constants b1 and b2 such that

μ(B(x0, A
m)) � b1μ(B(x,Am)) � b2μ(B(x0, A

m)),

when x ∈ Ek and m � k. Consequently, applying the reverse doubling condition,
for such r we have

(f3,k)B � 1

μ(B(x,Am))

ˆ

ctAk+1<d(x0,y)�ctAm+l+2

|f(y)|dμ(y)

� 1

μ(B(x0, Am))

m+l+1∑
j=k+1

ˆ

Dj

|f(y)|dμ(y)

� c sup
j�k+1

(
(μB(x,Ai))

)−1
ˆ

Dj

|f(y)|dμ(y)

=: sup
j�k+1

Pj(f),

where the positive constant c depends on the constant A. Further, taking into
account condition (b) and the inequality sup �

∑
, we find that

S3 � c
∑
k

( ˆ
Ek

v(x)g(x)dμ(x)

)( ∞∑
j=k+1

Pj(f)

)

= c
∑
j

(
μ(B(x0, A

j))
)−1
( ˆ

Dj

|f(y)|dμ(y)
)

j−1∑
k=−∞

( ˆ
Ek

v(x)g(x)dμ(x)

)

= c
∑
j

(
μ(B(x0, A

j))
)−1
( ˆ

Dj

|f(y)|dμ(y)
)( ˆ

B(x0,Aj)

v(x)g(x)dμ(x)

)
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� c
∑
j

(
μ(B(x0, A

j))
)−1
( ˆ

Dj

|f(y)|
(
μ(B(x0, d(x0, y)))

)−1

×
( ˆ

B(x0,d(x0,y))

v(x)g(x)dμ(x)

)
dμ(y)

)

� c

ˆ

X

v(x)g(x)

( ˆ

d(x0,y)�d(x0,x)

|f(y)|
(
μ(B(x0, d(x0, y)))

)−1

dμ(y)

)
dμ(x)

� c‖g‖Lp′(·)(X)

∥∥T ∗
v(·),d(x0,·)f

∥∥
Lp(·)(X)

� c‖f‖Lp(·)(X).

If, for example, (i) of condition (c) is satisfied, then Theorem 4.60 and Lemma
4.22 yield

S2 �
∑
k

(
v+(Ek)

)‖Mf2,k(·)‖Lp(·)(X)‖g(·)χEk
(·)‖Lp′(·)(X)

�
∑
k

(
v+(Ek)

)‖fχI2,k(·)‖Lp(·)(X)‖g(·)χEk
(·)‖Lp′(·)(X)

� c
∑
k

‖fwχI2,k(·)‖Lp(·)(X)‖g(·)χEk
(·)‖Lp′(·)(X) � c‖fw(·)‖Lp(·)(X).

When (ii) is satisfied, then the same arguments yield the desired result.

The proof of the theorem for the operator N = K is similar to that for the
case N = M . In this case Theorem 4.59 is used instead of Theorem 4.60 The
details are omitted. �

The next two statements are direct consequences of Theorems 4.61, 4.37, and
4.38 (see also appropriate statements in Section 4.5). Details are omitted.

Theorem 4.62. Let (X, d, μ) be an SHT and let 1 < p− � p+ < ∞. Further
suppose that p ∈ P log(X). If � = ∞, then we assume that there are an x0 ∈ X
and a positive constant a such that p ≡ pc ≡ const outside B(x0, a). Let N be M
or K. Then inequality (4.24) holds if:

(a) sup
0�t<�

ˆ

t�d(x0,x)<�

(
v(x)

μBx0,x

)p(x)
( ˆ

B(x0,t)

w−(p̃0)
′(x)(y)dμ(y)

) p(x)

(p̃0)′(x)

dμ(x) < ∞,

(b) sup
0�t<�

ˆ

B(x0,t)

(
v(x)
)p(x)( ˆ

t�d(x0,x)<�

(
w(y)

μBx0y

)−(p̃1)
′(x)

dμ(y)

) p(x)

(p̃1)′(x)

dμ(x) < ∞,

(c) condition (c) of Theorem 4.61 is satisfied.
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Theorem 4.63. Let (X, d, μ) be an SHT without atoms. Let 1 < p− � p+ < ∞.
Assume that p has a minimum at x0 and that p ∈ P log(X). If � = ∞ we also
assume that p ≡ pc ≡ const outside some ball B(x0, a). Let v and w be positive
increasing functions on (0, 2�). Then the inequality

‖v(d(x0, ·)(Nf)(·)‖Lp(·)(X) � c‖w(d(x0, ·))f(·)‖Lp(·)(X), (4.26)

where N is M or K, holds if the following condition is satisfied:

sup
0<t<�

ˆ

t<d(x0,x)<�

(
v(d(x0, x))

μ(Bx0x)

)p(x)( ˆ

B(x0,t)

w−(p̃0)
′(x)(d(x0, y))dμ(y)

) p(x)

(p̃0)′(x)

dμ(x) < ∞.

Example 4.64. Let (X, d, μ) be a quasimetric measure space with � < ∞. Suppose
that 1 < p− � p+ < ∞ and p ∈ P log(X). Assume that the measure μ is both upper
and lower Ahlfors 1-regular. Let there exist x0 ∈ X such that p has a minimum
at x0. Then the condition

S := sup
0<t��

ˆ

t<d(x0,x)<�

(
v(d(x0, x))

μ(Bx0x)

)p(x)( ˆ

B(x0,t)

w−p′(x0)(d(x0, y))dμ(y)

) p(x)

p′(x0)

dμ(x) < ∞

is satisfied for the weight functions v(t) = t1/p
′(x0), w(t) = t1/p

′(x0) ln 2�
t , and

consequently, by Theorem 4.63, inequality (4.26) holds, where N is M or K.

Indeed, first observe that v and w are both increasing on [0, �]. Further it is
easy to check that the condition p ∈ P log(X), Proposition 4.16, and Lemma 4.20
implies that (

v(d(x0, x))

μ(Bx0x)

)p(x)

� c(d(x0, x))
−1.

We have also( ˆ

B(x0,t)

w−p′(x0)(d(x0, y))dμ(y)

) p(x)

p′(x0)

=

( ˆ

B(x0,t)

d(x0, y)
−1

(
ln

2�

d(x0, y)

)−p′(x0)

dμ(y)

) p(x)

p′(x0)

� C ln−1 2�

t
.

Hence,

S � c ln
2�

t
· ln−1 2�

t
= c < ∞.

This example for constant p and X = Rn was presented in Edmunds and
Kokilashvili [72] (see also Edmunds, Kokilashvili, and Meskhi [76, Chap. 8] for
spaces of homogeneous type).
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4.7 Norm-type Conditions for Maximal and
Calderón–Zygmund Operators

This section is devoted to two-weight estimates for maximal and singular integrals
defined, generally speaking, on quasimetric measure spaces. Weighted inequalities
are derived under norm type conditions on weights. The same problems for these
operators defined on R+ are also studied.

4.7.1 Maximal Functions and Singular Integrals on SHT

Let M and K be the Hardy–Littlewood maximal and Calderón–Zygmund opera-
tors, respectively, defined on quasimetric measure spaces (X, d, μ) (see Section 4.6
for the definitions).

In this section we use the following notation:

v(x) :=
v(x)

μ(Bx0x)
, w̃(x) :=

1

w(x)
, w̃1(x) :=

1

w(x)μ(Bx0x)
.

Theorem 4.65. Let (X, d, μ) be an SHT and let 1 < p− � p+ < ∞. Suppose
that p ∈ P log(X). If � = ∞, then we assume that p is constant outside some ball
B(x0, a). Let v and w be μ-a.e. positive functions on X such that the measures
dν(·) = w−p′(·)(·)dμ(·) and dν1(·) = vp(·)(·)dμ(·) belong to the class DC0(x0).
Then the inequality

‖v(Nf)‖Lp(·)(X) � C‖wf‖Lp(·)(X), (4.27)

where N is M or K, holds if

(i) N1 :=
∥∥v(x)(μ(Bx0x))

−1
∥∥
Lp(x)(X\B(x0,t))

∥∥w−1(·)∥∥
Lp′(·)(B(x0,t))

< ∞
(ii) N ′

1 = sup
0<t<�

S(t)

:= sup
0<t<�

∥∥∥w−1(x)
(
μ(Bx0x)

)−1
∥∥∥
Lp′(x)(X\B(x0,t))

∥∥v(·)∥∥
Lp(·)(B(x0,t))

< ∞.

(iii) Condition (c) of Theorem 4.61 is satisfied.
Conversely, if inequality (4.27) holds for N = M , then condition (i) is sat-
isfied.

Proof. If (i), (ii) and (iii) hold, then Theorems 4.61, 4.42, and 4.43 immediately
imply (4.27). Conversely, let (4.27) hold. Then the pointwise estimate

M f(x) � c

μ(Bx0x)

ˆ

Bx0x

f(y)dμ(y),

where f � 0, and Theorem 4.42 give the desired result. �
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The following statement shows that for radial type weights the following
simple condition is a criterion guaranteeing the two-weight inequality:

Theorem 4.66. Let (X, d, μ) be an SHT and let 1 < p− � p+ < ∞. Suppose that
p ∈ P log(X) and x0 ∈ X. If � = ∞ we assume that p ≡ pc ≡ const outside some
large ball B(x0, a). Let v and w be positive increasing functions on (0, 2�), and let
the measures dν(·) = w−p′(·)(d(x0, ·))dμ(·) and dν1(·) = vp(·)(d(x0, ·))dμ(·) belong
to the class DC0(x0). Then the inequality

‖v(d(x0, ·))(Nf)(·)‖Lp(·)(X) � c‖w(d(x0, ·))f(·)‖Lp(·)(X), (4.28)

where N is M or K, holds if the condition

S := sup
0<t<�

S(t) := sup
0<t<�

∥∥v(d(x0, x))(μ(Bx0,x))
−1
∥∥
Lp(x)(X\B(x0,t))

×∥∥w−1
(
d(x0, ·)

)∥∥
Lp′(·)(B(x0,t))

< ∞
(4.29)

is satisfied. Conversely, if (4.28) holds for N = M , then S < ∞.

Remark 4.67. Let (Hf)(x) = p.v.
´
R

f(y)
x−ydy be the Hilbert transform, X = R,

dμ(x) = dx, d(x, y) = |x − y|, x0 = 0. By choosing appropriate test functions
in (4.28) it is easy to check that the condition (4.29) is also necessary for the
two-weight inequality (4.28).

Proof of Theorem 4.66. Sufficiency.We prove the theorem for � = ∞. By Theorem
4.61, it is enough to show that (a)

v(λt) � cw(t), (4.30)

where the positive constant does not depend on t > 0 and λ is a fixed number
greater than 1; and (b)

S′ := sup
0<t<�

S′(t) := sup
0<t<�

∥∥∥w−1(d(x0, ·))
(
μ(Bx0x)

)−1
∥∥∥
Lp′(·)(X\B(x0,t))

×∥∥v(d(x0, ·))
∥∥
Lp(·)(B(x0,t))

< ∞.

Let t be a small positive number, and denote

Et := B(x0, At) \B(x0, t),

where the constant A is taken from the definition of the reverse doubling condition
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for μ. By using the fact that 1/p, 1/p′ ∈ P log(x0) we find that

C � S(t) �
( v(t)

w(t/λ)

)∥∥∥χEt(·)
(
μ(Bx0·)

)−1
∥∥∥
Lp(·)(X)

‖χ{d(x0,·)<t/λ}(·)‖Lp′(·)(X)

� c
( v(t)

w(t/λ)

)(
μ(B(x0, t))

)−1(
μEt

)1/p−(Et)(
μ(B(x0, t/λ))

)1/(p′)−
(
B(x0,t/λ)

)
� c
( v(t)

w(t/λ)

)(
(μB(x0, At))

)−1(
μ(B(x0, At)

)1/p−(B(x0,At))

× (μ(B(x0, At))
)1/(p′)−(B(x0,At)) � c

( v(t)

w(t/λ)

)
.

Hence (4.30) holds for small t. If t is large, then we are dealing with p ≡ const
and using similar arguments we derive the desired result. Finally we conclude that
(4.30) holds for all t > 0.

It remains to check that S′ < ∞. Indeed, by applying Lemma 4.24, inequality
(4.30), and the condition p ∈ P log(X), for small positive t, we have that

S′(t) �
∥∥w−1(d(x0, x))

(
μ(Bx0x)

)−1∥∥
Lp′(x)(X\B(x0,t))

∥∥v(d(x0, ·))
∥∥
Lp(·)(B(x0,t))

�
∥∥w−1(d(x0, ·))

(
μ(Bx0·)

)−1∥∥
Lp′(·)(B(x0,a)\B(x0,t))

∥∥v(d(x0, ·))
∥∥
Lp(·)(B(x0,t))

+
∥∥w−1(d(x0, ·))

(
μ(Bx0·)

)−1∥∥
Lp′(·)(X\B(x0,a))

∥∥v(d(x0, ·))
∥∥
Lp(·)(B(x0,a))

� c
( v(t)
w(t)

)(
μ(B(x0, t))

)−1+1/p′(x0)(
μ(B(x0, t))

)1/p(x0)

+ c
( v(a)
w(a)

)(
μ(B(x0, a))

)−1/pc+1/p+(B(x0,a)) � C.

If t is large, then we can assume that t � R0 > a for some fixed positive
number R0. Then we have that

S′(t)�
∥∥w−1(d(x0,x))

(
μ(Bx0x)

)−1∥∥
L(pc)′ (X\B(x0,t))

∥∥v(d(x0,·))
∥∥
Lp(·)(B(x0,a))

+
∥∥w−1(d(x0,x))

(
μ(Bx0x)

)−1∥∥
L(pc)′ (X\B(x0,t))

∥∥v(d(x0,·))
∥∥
Lpc(B(x0,t)\B(x0,a))

=:S′
1(t)+S′

2(t).

Let us estimate S′
1 and S′

2 separately. By applying Lemmas 4.20 and 4.23 we
find that

S′
1(t) � c

v(t)

w(t)
μ
(
B(x0, t)

)−1/pc
(
μB(x0, a)

)1/p(x0)

� c
v(t)

w(t)
μ
(
B(x0, R0)

)−1/pc
(
μB(x0, R0)

)1/p(x0) � c
v(t)

w(t)
� C.
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Further, Lemma 4.23 implies that

S′
2(t) � c

v(t)

w(t)
� C,

which yields the desired result.

Necessity is a direct consequence of Theorem 4.65. �

To show appropriate example satisfying the conditions of Theorem 4.66 we
need some lemmas:

Lemma 4.68. Let (X, d, μ) be an SHT and let x0 be a point of X. Suppose that
� < ∞ and that μ is 1-Ahlfors upper regular. Let b be a positive constant such that
μ(B(x0, b)) < min{�, 1}. Suppose that s is a function on X such that 1 � s− �
s+ < ∞ and s ∈ P log(X, x0). Then there is a positive constant c such that for all
0 < t < b

Js(x0) :=
∥∥∥χEt,b

(x)d(x0, x)
−1/s(x0)

∥∥∥
Ls(x)(X)

� c

[
ln1/s(x0) 2�

t

]
,

where Et,b := B(x0, b) \B(x0, t).

Proof. We use the arguments of the proof of Lemma 4.24. It is enough to assume
that Js(x0) � 1. We have

1 =

ˆ

Et,b

[
d(x0, x)

−1/s(x0)

Js(x0)

]s(x)
dμ(x)

=

ˆ

Et,b∩{d(x0,x)−1/s(x0)>Js(x0)}

(· · · ) +

ˆ

Et,b∩{d(x0,x)−1/s(x0)�Js(x0)}

(· · · )

=: I1 + I2.

Observe that the condition s ∈ P log(X, x0) implies

ln

∣∣∣∣ [d(x0, x)
−1/s(x0)

Js(x0)

]s(x)−s(x0) ∣∣∣∣ � C.

Hence,

I1 � Js(x0)
−s(x0)

ˆ

Et,b

d(x0, x)
−1dμ(x) � cJs(x0)

−s(x0) ln
2�

t
.

Here we used the estimate

Nt :=

ˆ

Et,b

d(x0, x)
−1dμ(x) � c ln

2�

t
. (4.31)
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Let us check (4.31). We have

Nt =

∞̂

0

μ
(
Et,b ∩B(x0, λ

−1)
)
dλ =

1/tˆ

0

(· · · ) +
∞̂

1/t

(· · · ) =: S1 + S2.

It is easy to see that S2 = 0, while for S1, we have

S1 =

1ˆ

0

(· · · ) +
1/tˆ

1

(· · · ) � μ
(
B(x0, t)

)
+

1/tˆ

1

λ−1dλ � c+ ln
1

t
� c ln

1

t
.

Finally we conclude that (4.31) holds. Further, it is easy to see that

I2 � μ
(
B(x0, b)

)
=: B.

Combining the estimates derived above we find that

1 � cJs(x0)
−s(x0) ln

2�

t
+B,

where B is a positive constant less than 1. �

Lemma 4.69. Let (X, d, μ) be an SHT. Assume that μ is upper Ahlfors 1-regular.
Let α be a constant such that α < −1. Let ϕ be the function defined on (0, b),
0 < b < ∞, by

ϕ(t) := t−1 lnα b

t
.

Then there is a positive constant c such that for all t ∈ (0, b) the inequality

Jt :=

ˆ

B(x0,t)

ϕ
(
d(x0, x)

)
dμ(x) � c lnα+1 b

t

holds.

Proof. It is obvious that

Jt =

∞̂

0

μ
(
B(x0, t) ∩B(x0, ϕ

−1(λ))
)
dλ =

ϕ(t)ˆ

0

(· · · ) +
∞̂

ϕ(t)

(· · · ) =: S1 + S2.

Simple calculations for each term show that

S1 � ϕ(t)μ
(
B(x0, t)

)
� cϕ(t)t � c lnα+1 b

t
;
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S2 �
∞̂

ϕ(t)

μ
(
B(x0, ϕ

−1(λ))
)
dλ

� c

∞̂

ϕ(t)

ϕ−1(λ)dλ = c

tˆ

0

−ϕ′(u)u du � c lnα+1 b

t
. �

The next lemma can be proved analogously, and its proof is omitted:

Lemma 4.70. Let (X, d, μ) be an SHT. Assume that μ is lower Ahlfors 1-regular.
Let α be a constant such that α < −1. Let ϕ be the function on (0, b), 0 < b < ∞,
defined in Lemma 4.69. Then there is a positive constant c such that for all t ∈
(0, b) ˆ

B(x0,t)

ϕ
(
d(x0, x)

)
dμ(x) � c lnα+1 b

t
.

Now we are ready to formulate our example of pair of weights.

Example 4.71. Let (X, d, μ) be an SHT and let x0 be a fixed point of X . Suppose
that � < ∞. Assume that μ is lower and upper Ahlfors 1-regular at x0. Let
1 < p− � p+ < ∞ and p ∈ P log(X). We set

v(t) = t1/p
′(x0), w(t) = t1/p

′(x0) ln
2�

t
.

Then the pair (v, w) satisfies the conditions of Theorem 4.66 and, consequently,
inequality (4.28) holds, where N is M or K.

Indeed, observe first that Lemmas 4.69 and 4.70 imply that the measures
dν(·) = w−p′(·)(d(x0, ·))dμ(·) and dν1(·) = vp(·)(d(x0, ·))dμ(·) belong to the class
DC0(x0). Further, it is easy to check that the condition p ∈ P log(X, x0) and the
fact that μ is Ahlfors regular at x0 imply that there are positive constants c1, c2
and b such that for all x ∈ B(x0, b),

lnp(x)
1

d(x0, x)
� c1 ln

p(x0) 1

d(x0, x)
� c2 ln

p(x) 1

d(x0, x)
. (4.32)

Also, there are positive constants C1, C2 and b such that for all balls B := B(x, r)
with μ(B) � b

lnp+(B) 1

r
� C1 ln

p−(B) 1

r
� C2 ln

p+(B) 1

r
. (4.33)

Now, using the estimates of the Lp(·) norms by p(·) modulars, estimates
(4.32), (4.33), as well as Lemmas 4.68 and 4.69, we find that (4.29) is satisfied.

Remark 4.72. Notice that the weights vp(·)
(
d(x0, ·)

)
and wp(·)(d(x0, ·)

)
in Ex-

ample 4.71 do not belong to the well-known Muckenhoupt class Ap(X) even for
constant p.
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4.7.2 Maximal Functions and Singular Integrals on R+

The results of this section can be derived from the appropriate statements of the
previous section, but we give the proofs for completeness.

Let

(Hf)(x) = p.v.

∞̂

0

f(t)

x− t
dt, x ∈ R+,

(M (R+)f)(x) = sup
I�x

1

|I|
ˆ

I

|f(t)|dt, x ∈ R+,

where the supremum is taken over all finite intervals I ⊂ R+ containing x. It is
assumed that the weights are monotonic.

Let us recall the definition of the two-weight Hardy operator and its formal
dual (see Chapter 3) defined on R+:

(Hv,wf)(x) = v(x)

xˆ

0

f(t)w(t)dt,

(H∗
w,vf)(x) = w(x)

∞̂

x

f(t)v(t)dt.

The next statement is a special case of the similar one for quasimetric measure
spaces.

Theorem 4.73. Let 1 < p− � p+ < ∞. Suppose that p ∈ P log(R+) and that
p = pc = const outside some interval. Then the inequality

‖vTf‖Lp(·)(R+) � c‖wf‖Lp(·)(R+), (4.34)

where T is M (R+) or H, holds if

(i) Hv,w̃ is bounded in Lp(·)(R), where v(x) := v(x)
x , w̃(x) := 1

w(x) ;

(ii) H∗
v,w̃1

is bounded in Lp(·)(R), where w̃1(x) :=
1

w(x)x ;

(iii) v+([x/4, 4x]) � cw(x) a.e., or v(x) � cw−([x/4, 4x]) a.e. (4.35)

This theorem implies the next statement:

Theorem 4.74. Let 1 < p− � p+ < ∞ and let p ∈ P log(R+). Suppose that p =
pc ≡ const outside some interval [0, a]. Suppose also that v and w are weights on
R+. Then the inequality (4.34), where T is M (R+) or H, holds if

(i) E1 := sup
t>0

E1(t) := sup
t>0

‖v(x)x−1‖
Lp(x)
(
(t,∞)
)‖w−1‖

Lp′(·)
(
(0,t)
) < ∞; (4.36)
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(ii) E2 := sup
t>0

E2(t) := sup
t>0

‖v‖
Lp(·)
(
(0,t)
)‖w−1(x)x−1‖

Lp′(x)
(
(0,t)
) < ∞ (4.37)

(iii) condition (4.35) is satisfied.

Theorem 4.75. Let 1 < p− � p+ < ∞ and let p ∈ P log(R+). Suppose that p = pc ≡
const outside some interval [0, a]. Suppose also that v and w are positive increasing
functions on R+. Then inequality (4.34), where T is M (R+) or H, holds if and
only if (4.36) is satisfied.

Proof. Sufficiency. By Theorems 3.24 and 4.74, it is enough to verify that condition
(4.36) implies conditions (4.37) and (4.35). For (4.35) we will show that there is a
positive constant c such that for all t > 0,

v(4t) � cw(t). (4.38)

Indeed, inequality (4.1) with respect to the Lebesgue measure dμ(x) = dx and the
exponent r = p′ which belongs to P log([0, a]), for small t, yields that

E1(t) � ‖v(·)χ[t,4t](·)| · |−1‖Lp(·)(R+) ‖ χ[0,t/4](·)w−1(·) ‖Lp′(·)(R+)

� c
v(t)

t
t

1
p−([t,4t])w−1(t/4)t

1
(p′)−([0,t/4]) � c

v(t)

w(t/4)
t−1t

1
p−([0,4t]) t

1
(p′)−([0,t/4])

= c
v(t)

w(t/4)
.

Further, for large t, we have that

E1(t) � ‖v(x)x−1χ(t,2t)(x)‖Lpc (R+)‖χ[t/8,t/4](·)w−1(·)‖L(pc)′ (R+)

� c
v(t)

w(t/4)
t−1t

1
pc t

1
(pc)′ = c

v(t)

w(t/4)
.

Thus, condition (4.35) is satisfied.

Using inequality (4.38) and the fact that v and w are increasing we can easily
conclude that condition (4.37) is satisfied.

Necessity. First observe that inequality (4.34) implies that ‖w−1‖Lp′(·)(0,t) < ∞
for all t > 0.

Let T = M (R+). Then using the obvious inequality

M (R+)f(x) � c

x

xˆ

0

f(t)dt, x > 0,

and Theorem 3.24, we have necessity for M (R+). Now let T = H. We take f � 0
such that ‖f‖Lp(·)(R+,w) � 1. Then,

‖vHf‖Lq(·)(R+) � C. (4.39)

Obviously, (4.39) yields that

C � ‖vHf‖Lq(·)(R+) � ‖χ(t,∞)(·)vHf‖Lp(·)(R+).
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If f has support on (0, t), t > 0, then this inequality implies that

C �
∥∥∥∥∥χ(t,∞)(·)v(·)

( tˆ

0

f(y)

· − y
dy

)∥∥∥∥∥
Lp(·)(R+)

� c
∥∥∥χ(t,∞)(x)v(x)x

−1
∥∥∥
Lp(·)(R+)

( tˆ

0

f(y)dy

)
.

By taking now the supremum with respect to f and using Lemma 4.17 we
have necessity. �

4.8 Potentials with Variable Parameters

This section is devoted to the two-weight problem for variable-parameter fractional
integral operators in the classical Lebesgue spaces and the trace inequality for these
operators in variable exponent Lebesgue spaces. The problems are studied on an
SHT (X, d, μ) (see Section 4.1.2 for the necessary definitions and some properties
of SHTs).

We will assume that the conditions (4.2) and � < ∞ are satisfied for (X, d, μ);
in addition, we assume that μ is upper Ahlfors s-regular, i.e., there exist positive
constants c0 and s such that

μB(x, r) � c0r
s (4.40)

for all x ∈ X and all r > 0.

As before, we assume that ‖f‖Lp(·)(X,w) := ‖wf‖Lp(·)(X).

Let us recall Adams’ trace inequality result (Adams [6]) for the Riesz poten-
tial defined on Rn,

Iαf(x) =

ˆ

Rn

f(y)

|x− y|n−α
dy, 0 < α < n.

Theorem 4.76. Let γ, λ, and α be constants such that 1 < γ < λ < ∞ and
0 < α < n/γ, and let ρ be a measurable function on Rn, positive a.e. Then the
trace inequality( ˆ

Rn

(|Iαf(x)|ρ(x))λdx
)1/λ

� c

( ˆ
Rn

|f(x)|γdx
)1/γ

,

where f ∈ Lγ(Rn), holds if and only if

sup
x∈R

n

r>0

rλ(α−n/γ)

ˆ

B(x,r)

ρλ(x)dx < ∞,

where B(x, r) is the open ball in R
n with centre x and radius r.
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The main object of our study here is the generalized Riesz potential

Iα(x)f(x) =

ˆ

X

(
d(x, y)

)α(x)−s
f(y)dμ(y), 0 < α(x) < s.

Our main goal is to prove two statements. The first concerns criteria for a two-
weight inequality to hold for the operator Iα(x) in a weighted Lebesgue space with
constant exponent. A trace inequality for Iα(x) in Lebesgue spaces with variable
exponent will be given in Theorem 4.81. Then we derive some corollaries and
indicate the interesting special cases, such as potentials on thin sets.

Let k be a positive measurable function on X ×X and let

Kf(x) =

ˆ

X

k(x, y)f(y)dμ(y)

and

K∗f(x) =
ˆ

X

k∗(x, y)f(y)dμ(y),

where k∗(x, y) = k(y, x).

To prove the results presented above we need some auxiliary statements.

Definition 4.77. We say that k belongs to the class V (k ∈ V ) if there exists a
positive constant c such that

k(x, y) � ck(x′, y)

for all x, y, and x′ such that d(x, x′) � Nd(x, y), where N = 2ct(1 + 2cs). Here cs
and ct are the constants arising in the definition of the quasimetric d.

The next statement is well known (see Genebashvili, Gogatishvili, Koki-
lashvili, and Krbec [104, Thm. 3.4.2]).

Theorem 4.78. Let 1 < γ < λ < ∞ and let k, k∗ ∈ V . Then the operator K is
bounded from Lγ(X,w) to Lλ(X, v) if and only if

sup
x∈X,
0<r<�

(vλB(x,Nr))1/λ

( ˆ

X\B(x,r)

kγ
′
(x, y)w−γ′

(y)dμ(y)

)1/γ′

< ∞

and

sup
x∈X,
0<r<�

(w−γ′
B(x,Nr))1/γ

( ˆ

X\B(x,r)

kλ(y, x)vγ(y)dμ(y)

)1/λ

< ∞.

Note that the condition (4.40) is not needed for this result.
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4.8.1 Weighted Criteria for Potentials

Now we formulate the weighted results for Iα(x).

Theorem 4.79. Let 1 < γ < λ < ∞, 0 < α(x) < s and α ∈ P log(X); let ρ and w
be weights.

Then the operator Iα(x) is bounded from Lγ(X,w) to Lλ(X, ρ) if and only if

sup
x∈X,
0<r<�

(ρλB(x,Nr))1/λ

( ˆ

X\B(x,r)

w−γ′
(y)(d(x, y))(α(x)−s)γ′

dμ(y)

)1/γ′

< ∞

(4.41)

and

sup
x∈X,
0<r<�

(w−γ′
B(x,Nr))1/γ

′
( ˆ

X\B(x,r)

ρλ(y)(d(x, y))(α(x)−s)λdμ(y)

)1/λ

< ∞,

(4.42)

where N = 2ct(1 + 2cs). The constants cs and ct are from the definition of the
quasimetric d in SHT.

Corollary 4.80. Let 1 < γ < λ < ∞, α ∈ P log(X), and supx∈X α(x) < s/γ. Then

i) the operator Iα(x) acts boundedly from Lγ(X) into Lλ(X, ρ) if

sup
x∈X,
0<r<�

rλ(α(x)−s/r)

ˆ

B(x,r)

ρλ(y)dμ(y) < ∞. (4.43)

ii) If X is compact and

b1r
s � μB(x, r) � b2r

s

for some positive constants b1 and b2, then condition (4.43) is also necessary
for the boundedness of Iα(x) from Lγ(X) to Lλ(X, ρ).

Theorem 4.81. Let p(·) and q(·) be measurable functions on X with α ∈ P log(X)
and α+ < s/p−, and let v be a weight.

Then the condition

sup
x∈X,
0<r<�

rq+(α(x)−s/p−)

ˆ

B(x,r)

(v(y))q(y)(y)dμ(y) < ∞ (4.44)

implies the boundedness of Iα(x) from Lp(·)(X) to Lq(·)(X, v).
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From this theorem it follows, for example, the statement of Sobolev type for
Iα(x).

Corollary 4.82. Let p(·) and q(·) be arbitrary measurable functions on X such that

1 < p− < q+ < ∞. Suppose that α ∈ P log(X) and s
(

1
p− − 1

q+

)
� α− � α+ < s

p− .

Then Iα(x) acts boundedly from Lp(·)(X) into Lq(·)(X).

Now we derive Theorem 4.79 from Theorem 4.78. For that we observe that
if the parameter α(·) satisfies the condition α ∈ P log(X), then the inequality

c1(d(x, y))
α(y)−s � (d(x, y))α(x)−s � c2(d(x, y))

α(y)−s (4.45)

holds with the constants c1 and c2 independent of x and y.

Proof of Theorem 4.79. Suppose that k(x, y) = (d(x, y))α(x)−s. Then due to The-
orem 4.78 it is enough to prove that k and k∗ belong to the class V . Let

d(x, x′) � Nd(x, y).

We have

d(x′, y) � ct(d(x
′, x) + d(x, y)) � ct(csNd(x, y) + d(x, y))

= ct(csN + 1)d(x, y).

From the last inequality and (4.45) we conclude that

k(x, y) � c1(d(x, y))
α(y)−s � c2(d(x

′, y))α(y)−s

� c3(d(x
′, y))α(x

′)−s = c3k(x
′, y).

The inclusion k∗ ∈ V follows analogously. Now applying Theorem 4.78 we
come to the desired result. �

Proof of Corollary 4.80. To prove (i) it suffices to show that the condition (4.43)
implies conditions (4.41) and (4.42).

Denote

Dk(x, r) := B(x, 2k+1r) \B(x, 2kr), k = 0, 1, 2, . . . .

We have

(ρλ(B(x,Nr)))γ
′/λ

ˆ

X\B(x,r)

(d(x, y))(α(x)−s)γ′
dμ(y)

= (ρλ(B(x,Nr)))γ
′/λ

∞∑
k=0

ˆ

Dk(x,r)

(d(x, y))(α(x)−s)γ′
dμ(y)
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� (ρλ(B(x,Nr)))γ
′/λ

∞∑
k=0

μDk(x, r)(2
kr)(α(x)−s)γ′

� c(ρλ(B(x,Nr)))γ
′/λ

∞∑
k=0

(2kr)(α(x)−s)γ′+s

� c(ρλ(B(x,Nr)))γ
′/λr(α(x)−s)γ′+s

∞∑
k=0

2k((α(x)−s)γ′+s) � c.

In the last inequality we used (4.43) and the condition α+ < s
γ .

Further

rsλ/γ
′
ˆ

X\B(x,r)

ρλ(y)(d(x, y))(α(x)−s)λdμ(y)

= rsλ/γ
′

∞∑
k=0

ˆ

Dk(x,r)

ρλ(y)(d(x, y))(α(x)−s)λdμ(y)

� rsλ/γ
′

∞∑
k=0

(2kr)(α(x)−s)λ

ˆ

Dk(x,r)

ρλ(y)dμ(y)

=
∞∑
k=0

(2kr)
(α(x)−s)λ+ λs

γ′ 2
−k λs

γ′
ˆ

Dk(x,r)

ρλ(y)dμ(y) � c5

∞∑
k=0

2
−k λs

γ′ < ∞.

Now let us prove ii). Let the operator Iα(x) be bounded from Lγ(X) to
Lλ
ρ(X). By Theorem 4.79 it follows that condition (4.41) is satisfied. Let us show

that in our case this means that (4.43) is valid.

Recall that the doubling condition implies the reverse doubling condition (see
Remark 4.5), i.e., there exist some constants A and B > 1 such that

μB(x,Ar) � BμB(x, r)

for small r.

Consequently,

μ(B(x, ηk+1
1 r)\B(x, ηk1 r)) = μ(B(x, ηk+1

1 r))−μ(B(x, ηk1 r)) � (η2−1)μ(B(x, ηk1r)).

Our aim is to show that taking w(x) ≡ 1 in (4.41) we get (4.43).

Let us consider the decomposition

X \B(x, r) =

m⋃
k=0

(B(x, ηk+1
1 r) \B(x, ηk1 r)),

for some positive integer m.
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Put Dη1

k (x, r) = B(x, ηk+1
1 r) \B(x, ηk1r).

Then we have( ˆ

X\B(x,r)

(d(x, y)(α(x)−s)γ′
)dμ(y)

)λ/γ′

=

(
m∑

k=0

ˆ

D
η1
k (x,r)

(d(x, y))(α(x)−s)γ′
dμ(y)

)λ/γ′

� c1

( m∑
k=0

(ηk+1
1 r)(α(x)−s)γ′

μ(B(x, ηk1 r))

)λ/γ′

� c2r
λ(α(x)− s

γ )

( m∑
k=0

η
k((α(x)−s)γ′+s)
1

)λ/γ′

� c3r
λ(α(x)− s

γ ).

In the last estimate we do not need the assumption supα(x) < s/γ. For this
it is enough that inf α(x) � s

γ .

Thus we proved that condition (4.43) is satisfied. �

Proof of Theorem 4.81. Let us recall the notation

q− := inf
x∈X

q(x) and q+ := sup
x∈X

q(x).

Let f � 0 and suppose that

ˆ

X

(f(x))p(x)dx � 1.

Then we have

ˆ

X

(v(x))q(x)

( ˆ
X

(d(x, y))α(x)−sf(y)dμ(y)

)q(x)

dμ(x)

=

ˆ

X∩{x:Iα(x)f(x)�1}

(v(x))q(x)(Iα(x)f(x))q(x)dx

+

ˆ

X∩{Iα(x)f(x)<1}

(v(x))q(x)(Iα(x)f(x))q(x)dx ≡ J1 + J2.
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If we put (ρ(x))λ = (v(x))q(x) in Corollary 4.80, then we obtain

J1 �
ˆ

X∩{x:Iα(x)f(x)�1}

(v(x))q(x)(Iα(x)f(x))q+dμ(x)

� c

( ˆ
X

(f(x))p−dμ(x)

)q+/p−

.

On the other hand, from condition (4.44) it is obvious that

sup
x∈X,
0<r<�

rq−(α(x)−s/p−)

ˆ

B(x,r)

(v(y))q(y)dy < ∞.

Therefore, using Corollary 4.80 again we obtain

J2 �
ˆ

X

(v(x))q(x)(Iα(x)f(x))q−dμ(x) � c

( ˆ
X

(f(x))p−dμ(x)

)q−/p−

.

Now we observe thatˆ

X

(f(x))p−dμ(x) =

ˆ

X∩{f<1}

(f(x))p−dμ(x) +

ˆ

X∩{f�1}

(f(x))p−dμ(x)

�
ˆ

X

(f(x))p(x)dμ(x) + μ(X) � 1 + μ(X).

Thus, ˆ

X

(v(x))q(x)(Iα(x)f(x))q(x)dμ(x) � c.

This proves the boundedness of Iα(x) from Lp(x)(X) to Lq(x)(X, v). �

Proof of Corollary 4.82. It is clear that when v(x) ≡ 1 the condition (4.44) is
satisfied if

α− � s(1/p− − 1/q+). �

4.8.2 Applications to Gradient Estimates

From the results of the previous section we can obtain the embedding theorem of
Sobolev type for weighted spaces with variable exponent.

Let Ω be a bounded open set in Rn and let Dku be the vector of all weak
derivatives of u of order k.
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Proposition 4.83. Let n � 2, 1 < p− < q+ < ∞, and let k be any positive integer
smaller than n/p−. Suppose that the functions p and q satisfy condition (4.44) of
Theorem 4.81 for X = Ω. If

sup
x∈Ω,
0<r<�

rq+(k−n/p−)

ˆ

B(x,r)

(v(y))q(y)dy < ∞, (4.46)

where � is a diameter of Ω, then there exists a positive constant c such that

‖u‖Lq(·)(Ω,v) � c‖Dku‖Lp(·)(Ω) (4.47)

for all real-valued functions u in Ω whose continuation by zero outside Ω has weak
derivatives up to the order k in R

n.

Proof. Following Cianchi and Edmunds [44] it can be shown that Dku ∈ L1(Rn),
and therefore (see Maz’ya [249, Thm. 1.1. 10/2]) there is a constant c1, depending
only on n and k, such that

|u(x)| � c1

ˆ

Ω

|Dku(y)|
|x− y|n−k

dy.

Then using condition (4.46) and Theorem 4.81 we conclude that (4.47) is valid.
�

The proof of the next statement is based on the ideas used in Cianchi and
Edmunds [44].

Proposition 4.84. Let n � 2 and let 1 < p− < q+ < ∞. Suppose that k is any
positive integer smaller than n/p−. If condition (4.46) holds and Ω is convex, then
there exists a positive constant c, depending only on n, k, and Ω, such that

inf
P∈Pk−1

‖u− P‖Lq(·)(Ω,v) � c‖Dku‖Lp(·)(Ω) (4.48)

for all real-valued functions u in Ω having weak derivatives up to the order k in
Ω; here Pm denotes the space of polynomials of order less than or equal to m. If
k = 1, inequality (4.48) holds, in particular, with P = 1

|Ω|
´
Ω

u(x)dx.

Proof. It is known (see Maz’ya [249, Thm. 1.1.10/1] and Cianchi and Edmunds
[44]) that there exists a positive constant c2, depending only on n, k, and Ω, and
a polynomial P ∈ Pk−1, depending on n, such that

|u(x)− P (x)| � c2

ˆ

Ω

|Dku(y)|
|x− y|n−k

dy

for all x ∈ Ω and u, Dku ∈ L1(Ω). Theorem 4.81 and condition (4.46) complete
the proof. �
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4.8.3 Potentials on Fractal Sets

Let Γ be a subset of Rn which is an s-set (0 < s � n) in the sense that there is a
Borel measure μ on Rn such that

i) the support of μ is Γ;

ii) there are positive constants c1 and c2 such that for all x ∈ Γ and r ∈ (0, 1),

c1r
s � μ(B(x, r) ∩ Γ) � c2r

s. (4.49)

It is known (see Triebel [361]) that μ is equivalent to the restriction of the
Hausdorff s-measure Hs; we shall thus identify μ with Hs|Γ. Given x ∈ Γ, put
Γ(x, r) = B(x, r)∩Γ. Let us indicate some examples of SHT for which the condition
(4.49) is satisfied.

Let Γ ⊂ C be a connected rectifiable curve and let ν be the arc-length measure
on Γ. By definition, Γ is regular if

ν(Γ ∩B(z, r)) � cr

for every z ∈ C and r > 0.

For r smaller than half the diameter of Γ, the reverse inequality

ν(Γ ∩B(x, r)) � r

holds for all z ∈ Γ. Equipped with ν and the Euclidean metric, the regular curve
becomes an SHT.

Now let

Tα(t)f(t) =

ˆ

Γ

f(τ)

|t− τ |1−α(t)
dτ

be an integral with weak variable singularities.

The Cantor set in Rn is an s-set, where

s =
log(3n − 1)

log 3
.

Consider the potential type integral operator on a bounded Cantor set F ,

Jα(x)f(x) =

ˆ

F

f(y)

|x− y|s−α(x)
dHs, 0 < α(x) < s.

Then from the previous results we can derive a trace inequality for the operator
Jα(·). In some cases the statements have the form of criteria.

To illustrate this, we present these results for the case of Jα(·).
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Proposition 4.85. Let 1 < γ < λ < ∞, α ∈ P log(X), and supx∈F < s/γ. Then the
operator Jα(·) acts boundedly from Lγ(F ) into Lλ(F, ρ) if and only if

sup
x∈F,
0<r<�

rλ(α(x)−s/γ)

ˆ

Γ(x,r)

ρλ(y)dHs(y) < ∞,

where � is the diameter of F and Γ(x, r) := B(x, r) ∩ F .

Proposition 4.86. Let p(·) and q(·) be measurable functions on F with 1 < p− <
q+ < ∞, let α ∈ P log(F ) and supx∈F α(x) < s/p−, and let v be a weight. Denote
by � a diameter of F . Then the condition

sup
x∈F,
0<r<�

rq+(α(x)−s/p−)

ˆ

Γ(x,r)

(v(y))q(y)dHs(y) < ∞

implies the boundedness of Jα(·) from Lp(·)(F ) to Lq(·)(F, v).

Proposition 4.87. Let p(·) and q(·) be as in the previous proposition. Suppose that
α ∈ P log(F ) and

s(1/p− − 1/q+) � inf
x∈F

α(x) � sup
x∈F

α(x) < s/p−.

Then Jα(·) acts boundedly from Lp(·)(F ) into Lq(x)(F ).

4.9 Comments to Chapter 4

For the two-weight theory of integral operators in the classical Lebesgue spaces we refer,
e.g., to the monographs by Garćıa-Cuerva and Rubio de Francia [98], Kokilashvili and
Krbec [174], Edmunds, Kokilashvili, and Meskhi [76], Cruz-Uribe, Martell, and Pérez
[54], Volberg [368], and references therein. It should be emphasized that the two-weight
characterization for the Hilbert transform in terms of Sawyer type test conditions and a
variant of the two-weight A2 condition were given in Hytönen [138].

The proof of Theorem 4.37 is based on the arguments of the proofs of Theorem
1.1.4 in Edmunds, Kokilashvili, and Meskhi [76] (see also Edmunds, Kokilashvili, and
Meskhi [78]).

A statement similar to Proposition 4.40 for an exponent p ∈ P log(X) and for
arbitrary balls B ⊂ X (with the constant c independent of B) was derived in Harjulehto,
Hästö, and Pere [124] (see also Kokilashvili and Meskhi [180]).

Lemma 4.56 and Theorem 4.60 were proved by Diening [62] for Euclidean spaces.
For a similar result in the case of SHT we refer to Harjulehto, Hästö, and Pere [124].

An example analogous to Example 4.71 for the classical weighted Lebesgue spaces
defined on R

n first appeared in the paper Edmunds and Kokilashvili [72]. In the paper
by Edmunds, Kokilashvili, and Meskhi [81] the authors constructed a similar pair of
weights guaranteeing the two-weight inequality in Lp(·) spaces for maximal and Calderón–
Zygmund operators, but under the restriction that p has a minimum at the origin.

This chapter is based on the papers by Kokilashvili and Meskhi [184], Edmunds,
Kokilashvili, and Meskhi [77, 81], Kokilashvili, Meskhi, and Sarwar [203, 204].



Chapter 5

One-sided Operators

This chapter is devoted to the study of the behavior of one-sided maximal func-
tions, Calderón–Zygmund integrals, and potentials in Lp(·)(I) spaces, where I is
an interval of R. Namely, we show that these operators are bounded in Lp(·)(I)
if p belongs to a certain class which is larger than the class P log(I). From the
general results we conclude, for example, that left-sided (right-sided) operators
are bounded in Lp(·)(I), where I is a bounded interval, if p is non-increasing (resp.
non-decreasing). In the case when I = R+ or I = R we assume, in addition, that
p satisfies the Cruz-Uribe–Fiorenza–Neugebauer condition (“decay condition”) at
infinity.

The proofs of the main results for one-sided potentials and singular integrals
are based on one-sided extrapolation, which is also established in this chapter.

In this chapter we investigate also the boundedness of one-sided maximal
functions and potentials in weighted Lebesgue spaces with variable exponent. In
particular, we derive a one-weight inequality for one-sided maximal functions; suf-
ficient conditions (in some cases necessary and sufficient conditions) governing
two-weight inequalities for one-sided maximal and potential operators; criteria
for the trace inequality for one-sided fractional maximal functions and potentials;
Fefferman–Stein-type inequality for one-sided fractional maximal functions; gener-
alizations of the Hardy–Littlewood theorem for the Riemann–Liouville and Weyl
operators; the one-weight modular inequality for the Riemann–Liouville operator
on the cone of decreasing functions from the variable exponent viewpoint. It is
worth mentioning that some results of this chapter imply the following fact: the
one-weight inequality for one-sided maximal functions automatically holds when
both the exponent of the space and the weight are monotonic functions.

© Springer International Publishing Switzerland 2016 
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5.1 Preliminaries

Let I be an open set in R and

1 < p−(I) � p+(I) < ∞. (5.1)

Definition 5.1. We say that an exponent p belongs to the class P log
− (I) if there exists

a positive constant c1 such that for a.e. x ∈ I and a.e. y ∈ I with 0 < x− y � 1/2,
the inequality

p(x) � p(y) +
c1

ln(1/(x− y))
(5.2)

holds. Further, we say that p belongs to P log
+ (I) if there exists a positive constant

c2 such that for a.e. x ∈ I and a.e. y ∈ I with 0 < y − x � 1/2, the inequality

p(x) � p(y) +
c2

ln(1/(y − x))
(5.3)

holds.

It is easy to see that if p is a non-increasing function on I, then condition
(5.2) is satisfied, while for non-decreasing p condition (5.3) holds.

Let

I+(x, h) := [x, x+ h] ∩ I; I−(x, h) := [x− h, x] ∩ I;

I(x, h) := [x− h, x+ h] ∩ I.

Observe that either I+(x, h) = ∅ or |I+(x, h)| > 0, because I is an open set.
The same conclusion is true for I−(x, h) and I(x, h).

Proposition 5.2. Let p be a measurable positive function on I such 0 < p−(I) �
p+(I) < ∞. The following conditions are equivalent:

(a) (5.2) holds;

(b) there exists a positive constant C1 such that for a.e. x ∈ I and all r with
0 < r � 1

2 and I−(x, r) �= ∅,

rp−(I−(x,r))−p(x) � C1; (5.4)

(c) the inequality
rp(x)−p+(I+(x,r)) � C2

holds, for a.e. x ∈ I and all r with 0 < r � 1/2 and I+(x, r) �= ∅.
Proof. Let us show that (a) is equivalent to (b). The equivalence (a) ⇔ (c) can be
obtained in a similar way. We follow Diening [62]. Let (5.4) hold and take x, y ∈ I
such that 0 < x− y � 1/2. We choose r with 0 < r/2 � x− y � r. Then

C1 � rp−(I−(x,r))−p(x) � cp

(
1

x− y

)p(x)−p−(I−(x,r))

,
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where cp = 2p−(I)−p+(I). Hence

p(x) � p−(I−(x, r)) +
c

ln(1/(x− y))
,

and so, (5.2) holds.

Conversely, suppose that (5.2) holds and take r so that 0 < r � 1
2 and

I−(x, r) �= ∅. Observe that if

Sr,x := (1/2) esssup
y∈I−(x,r)

(p(x) − p(y)) � 0,

then p(x) � p(y) for a.e. y ∈ I−(x, r). Therefore, p(x) � p−(I−(x, r)), and conse-
quently, (5.4) holds for such r and x. Further, if Sr,x > 0, then we take x0 ∈ I−(x, r)
such that

0 < Sr,x � p(x)− p(x0).

Hence,

rp−(I−(x,r))−p(x) �
(

1

x− x0

)2(p(x)−p(x0))

�
(

1

x− x0

)2c/ ln(1/(x−x0))

� C. �

The next statement can be proved in a similar manner; therefore we omit
the proof.

Proposition 5.3. Let p be a measurable positive function on I such that 0 < p−(I) �
p+(I) < ∞. The following conditions are equivalent:

(a) (5.3) holds;

(b) the inequality

rp−(I+(x,r))−p(x) � C1

holds for a.e. x ∈ I and all r with 0 < r � 1
2 and I+(x, r) �= ∅;

(c) the inequality

rp(x)−p+(I−(x,r)) � C2

holds for all x ∈ I and all r satisfying 0 < r � 1
2 and I−(x, r) �= ∅.

Remark 5.4. Let I be a bounded interval in R and let p be continuous on I. Then
P(I) = P log

− (I) ∩ P log
+ (I).

Proposition 5.2 implies the next statement.

Proposition 5.5.

(a) p′ ∈ P log
− (I) if and only if p ∈ P log

+ (I); p′ ∈ P log
+ (I) if and only if p ∈ P log

− (I).

(b) Let s be a positive constant. If p satisfies (5.2) (resp. (5.3)), then s · p also
satisfies (5.2) (resp. (5.3)).
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Let us introduce the following maximal operators:(
M f
)
(x) = sup

h>0

1

2h

ˆ

I(x,h)

|f(t)|dt,

(
M−f

)
(x) = sup

h>0

1

h

ˆ

I−(x,h)

|f(t)|dt,

(
M+f

)
(x) = sup

h>0

1

h

ˆ

I+(x,h)

|f(t)|dt,

where I is an open set in R and x ∈ I.

Let
R(x) := (e+ |x|)−1.

Lemma 5.6 (Cruz-Uribe, Fiorenza, and Neugebauer [51], Capone, Cruz-Uribe, and
Fiorenza [39]). Let r and s be nonnegative functions on a set G ⊆ R. Assume that
β is a measurable function on G with values in R. Suppose that

0 � s(x) − r(x) � C

log(e + |β(x)|)
for a.e. x ∈ G. Then there exists a positive constant Cr such that for every func-
tion f , ˆ

G

|f(x)|r(x)dx � Cr

ˆ

G

|f(x)|s(x) +
ˆ

G

(R(β(x)))r
−
Gdx.

Lemma 5.7 (Capone, Cruz-Uribe, and Fiorenza [39]). Let r and s be nonnegative
functions on a set G ⊆ R. Suppose that for a.e. x ∈ G,

|s(x) − r(x)| � C

log(e+ |x|) .

Then there exists a positive constant Cr such that for every function f satisfying
|f(x)| � 1 for x ∈ G, one has

ˆ

G

|f(x)|r(x)dx � Cr

ˆ

G

|f(x)|s(x) +
ˆ

G

R(x)r
−
Gdx.

Definition 5.8. Let I = R+ (resp. I = R). Suppose that p is a constant, 1 < p < ∞.
We say that w ∈ A+

p (I) if there exists c > 0 such that(
1

h

xˆ

x−h

w(t)dt

)1/p(
1

h

x+hˆ

x

w1−p′
(t)dt

)1/p′

� c

for all h, x > 0, h < x (resp. x ∈ R, h > 0).
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We say that w ∈ A+
1 (I) if there exists c > 0 such that (M−w)(x) � cw(x)

for a.e. x ∈ R when I = R, and for a.e. x ∈ R+ when I = R+.

Let I = R+ (resp. I = R). We say that w ∈ A−
p (I) if there exists c > 0 such

that (
1

h

x+hˆ

x

w(t)dt

)1/p(
1

h

xˆ

x−h

w1−p′
(t)dt

)1/p′

� c

for all h, x > 0, h < x (resp. x ∈ R, h > 0).

We say that w ∈ A−
1 (I) if there exists c > 0 such that (M+w)(x) � cw(x)

for a.e. x ∈ R when I = R, and for a.e. x ∈ R+ when I = R+.

It is easy to verify that A+
1 (I) ⊂ A+

p (I), p > 1.

Let 1 � p−(I) � p+(I) < ∞, and let ρ and w be weight functions on I. Let
us recall that

‖f‖Lp(·)(I,ρ) := ‖ρf‖Lp(·)(I),

‖f‖
L

p(·)
w (I)

:= ‖w(·)1/p(·)f(·)‖Lp(·)(I),

Ip(·)(f) :=
ˆ

I

|f(x)|p(x)dx.

The following statements can be found in Sawyer [334] for R, and in Andersen
and Sawyer [20] for R+.

Theorem 5.9. Let I = R or I = R+. Suppose that p is a constant and that
1 < p < ∞. Then

(i) M+ is bounded in Lp(I, w) if and only if wp ∈ A+
p (I).

(ii) M− is bounded in Lp(I, w) if and only if wp ∈ A−
p (I).

We shall also need

Definition 5.10. Let p and q be constants such that 1 < p < ∞, 1 < q < ∞. We
say that U ∈ A+

pq(R+) if

sup
0<h�x

(
1

h

xˆ

x−h

Uq(t)dt

) 1
q
(
1

h

x+hˆ

x

U−p′
(t)dt

) 1
p′

< ∞.

Further, U ∈ A−
pq(R+) if

sup
0<h�x

(
1

h

x+hˆ

x

Uq(t)dt

) 1
q
(
1

h

xˆ

x−h

U−p′
(t)dt

) 1
p′

< ∞.
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Theorem 5.11 (Andersen and Sawyer [20]). Let p and α be constants. Suppose that
0 < α < 1, 1 < p < 1

α , and q = p
1−αp . Then the Weyl operator Wα given by

Wαf(x) =

∞̂

x

f(t)(t− x)α−1dt, x ∈ R+,

is bounded from Lp(R+,U) to Lq(R+,U) if and only if U ∈ A+
pq(R+). Further, the

Riemann–Liouville operator

Rαf(x) =

xˆ

0

f(t)(x− t)α−1dt, x ∈ R+,

is bounded from Lp(R+,U) to Lq(R+,U) if and only if U ∈ A−
pq(R+).

5.2 One-sided Extrapolation

Now we prove a one-sided version of Rubio de Francia’s extrapolation theorem for
variable exponent Lebesgue spaces.

Theorem 5.12. Let I = R+ or I = R. Let F be a family of pairs of nonnegative
functions such that for some p0 and q0 with 0 < p0 � q0 < ∞, the inequality( ˆ

I

f(x)q0w(x)dx

) 1
q0

� c0

( ˆ
I

g(x)p0w(x)p0/q0dx

) 1
p0

(5.5)

holds for all (f, g) ∈ F , where w ∈ A+
1 (I) (resp. A

−
1 (I)) and the positive constant

c0 depends on the A+
1 (I) constant of the weight w. Given p satisfying (5.1) and

also the condition p0 < p−(I) � p+(I) <
p0q0
q0−p0

, define a function q by

1

p(x)
− 1

q(x)
=

1

p0
− 1

q0
, x ∈ I. (5.6)

If M−
(
resp. M+

)
is bounded in L(q(·)/q0)′(I), then for all (f, g) ∈ F such that

f ∈ Lq(·)(I) the inequality

‖f‖Lq(·)(I) � c‖g‖Lp(·)(I)

holds.

Proof. Let us prove the theorem for I = R+ and w ∈ A+
1 (I). The proof for

other cases is the same. First notice that q satisfies (5.1). Let p̄(x) := p(x)
p0

and
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q̄(x) := q(x)
q0

. Observe that 1 < (q̄′)−(I) � (q̄′)+(I) < ∞. By assumption, M− is

bounded in L(q̄)′(·)(R+), i.e.,

‖M−f‖L(q̄)′(·)(R+) � B ‖f‖L(q̄)′ (·)(R+).

Let us define H on L(q̄)′(·)(R+) by

(H )φ(x) =

+∞∑
k=0

(
M

(k)
− φ
)
(x)

2kBk
,

where

M
(k)
− = M− ◦ M− ◦ · · · ◦ M−︸ ︷︷ ︸

k

M
(0)
− = Id.

From the definition it follows that

(a) if φ � 0, then φ(x) �
(
H φ
)
(x);

(b) ‖H φ‖L(q̄)′(·)(R+) � 2‖φ‖L(q̄)′(·)(R+);

(c) M−
(
H φ
)
(x) � 2B (H φ)(x) for every x ∈ R+.

It follows that H φ ∈ A+
1 (R+) with an A+

1 (R) constant independent of φ.

Further, by the definition and elementary properties of Lp(·) spaces (see pre-
vious chapters) we have

‖f‖q0
Lq(·)(R+)

= ‖ |f |q0‖Lq̄(·)(R+) � sup

ˆ

R+

|f(x)|q0h(x)dx,

where the supremum is taken over all nonnegative h ∈ L(q̄)′(·)(R+) with the norm
‖h‖L(q̄)′(·)(R+) = 1. Let us fix such an h. We will show that

ˆ

R+

|f |q0h(x) dx � c ‖g‖q0
Lp(·)(R+)

,

where c is independent of h and f ∈ Lq(·)(R). By (a), (b), and the Hölder inequality
for Lp(·) spaces we have

ˆ

R+

|f |q0h(x) dx �
ˆ

R+

|f |q0 H h(x) dx � 2 ‖ |f |q0‖Lq̄(R+)‖H h‖L(q̄)′ (R+)

� 2c ‖ f‖q0
Lq(·)(R+)

‖h‖L(q̄)′(·)(R+) = 2c ‖ f‖q0
Lq(·)(R+)

< ∞.
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Using the fact that the A+
1 (I) constant of H h is bounded by 2B, and applying

(5.5) and the Hölder inequality with respect to p̄ we find that

ˆ

R+

|f |q0H h(x) dx � c

[ ˆ
R+

g(x)p0
(
H h(x)

) p0
q0 dx

] q0
p0

� c ‖ gp0‖
q0
p0

Lp̄(·)(R+)
‖ (H h)

p0
q0 ‖

q0
p0

L(p̄)′(·)(R+)

= c‖g‖q0
Lp(·)(R+)

‖ (H h)
p0
q0 ‖

q0
p0

L(p̄)′(·)(R+)
,

where p̄(·) = p(·)
p0

. In view of these estimates, it remains to show that

‖(H h)
p0
q0 ‖

q0
p0

L(p̄)′(·)(R+)
� c,

where c is independent of h. From (5.6) we have

(p̄)′(x) =
p(x)

p(x)− p0
=

q0
p0

q(x)

q(x) − q0
=

q0
p0

(q̄)′(x)

for x ∈ R+. Hence by (b) we conclude that

‖(H h)
p0
q0 ‖

q0
p0

L(p̄)′(·)(R+)
= ‖H h‖L(q̄)′(·)(R+) � c ‖h‖L(q̄)′(·)(R+) = c,

where c does not depend on h. �

5.3 One-sided Maximal Functions

In this section we establish the boundedness of one-sided maximal functions in Lp(·)

spaces. According to the next statement, in the case of an exponent p exhibiting
jumps the operator M is not bounded in Lp(·)(I), but one of the one-sided maximal
operators is bounded in the same space. In particular, we have

Proposition 5.13. Let I = [0, b] be a bounded interval. Then

(a) there exists a discontinuous function p on I satisfying (5.1) such that M− is
bounded in Lp(·)(I), but M is not bounded in Lp(·)(I).

(b) there exists a discontinuous function p on I satisfying (5.1) such that M+ is
bounded in Lp(·)(I) but, M is not bounded in Lp(·)(I).

Proof. Let p1 and p2 be constants such that 1 < p2 < p1 < ∞ and let

p(x) =

{
p1, x ∈ (0, β],

p2, x ∈ (β, b],

where 0 < β < b.
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It is easy to see that the operator M+ (and consequently M ) is not bounded

in Lp(·)(I). Indeed, let f(x) = (x − β)−1/p1χ(β,b)(x). Then
b́

0

(f(x))p(·)dx < ∞,

while
b́

0

(
M+f

)p(·)
(x)dx = ∞ since

M+f(x) = sup
β−x�h�b−x

F (h) = F ((β − x)p1) = c(β − x)−1/p1

for x ∈ (0, β], where the positive constant c depends only on p1.

Let us show that M− is bounded in Lp(·)(I). Let ‖f‖Lp(·)(I) � 1 and let
us represent f as follows: f = f1 + f2, where f1(x) = χ(0,β](x)f(x), f2(x) =
f(x)− f1(x). Then we have

bˆ

0

(
M−f

)p(·)
(x)dx � c

[ β̂

0

(
M−f1

)p1
(x)dx +

bˆ

β

(
M−f1

)p2
(x)dx

+

β̂

0

(
M−f2

)p1
(x)dx +

bˆ

β

(
M−f2

)p2
(x)dx

]
:= c

4∑
i=1

Ii.

By the boundedness of ML on Lp1(I), we have

I1 �
bˆ

0

(
M−f1

)p1
(x)dx � c

bˆ

0

|f(x)|p1dx � c

bˆ

0

|f(x)|p(·)dx � c.

Further, it is easy to check that

(
M−f1

)
(x) � sup

x−β�h�x

(β − x+ h)1/p
′
1

h
= c(x− β)−1/p′

1

when x ∈ (β, b). Consequently, since p2 < p1, we have I2 < ∞.

It is also obvious that I3 = 0, while due to the boundedness of M− in Lp2(I),

I4 �
bˆ

c

(
M−f2

)p2
(x)dx � c

bˆ

c

|f(x)|p2dx � c.

Analogously we can prove part (b). �

Proposition 5.13 motivates us to establish the boundedness of one-sided max-
imal function under a condition on p(·) which is weaker than the log-condition.

Theorem 5.14. Let I be a bounded interval, (5.1) be satisfied for an exponent p,

and let p ∈ P log
− (I). Then M− is bounded in Lp(·)(I).
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Proof. We use the arguments from Diening [62]. For simplicity let us assume that
I = (0, b). First we show that the inequality

(
M−,hf

)p(x)
(x) � C(p)

(
1

h

ˆ

I−(x,h)

|f(t)|p(t)dt+ 1

)
, 0 < h < x, (5.7)

holds for all f with ‖f‖Lp(·) � 1, where

(
M−,hf

)
(x) :=

1

h

ˆ

I−(x,h)

|f(y)|dy

and the positive constant C(p) depends only on p.

If h � 1
2 , then

(
M−,hf

)p(x)
(x) =

(
1

h

ˆ

I−(x,h)

|f(y)|dy
)p(x)

�
(
1

h

ˆ

I−(x,h)∩{|f |�1}

|f(y)|p(y)dy + 1

)p(x)

�
(
1

h

ˆ

I−(x,h)

|f(y)|p(y)dy + 1

)p(x)

� (2 + 1)p(x) � 3p+(I),

which proves (5.7) for this case.

Let h < 1/2. Then using the Hölder inequality we have

(
M−,hf

)p(x)
(x) �

(
1

h

ˆ

I−(x,h)

|f(y)|p−(I−(x,h))dy

) p(x)
p−(I−(x,h))

�
(
1

h

ˆ

I−(x,h)∩{|f |�1}

|f(y)|p(y)dy + 1

) p(x)
p−(I−(x,h))

� h
− p(x)

p−(I−(x,h))

( ˆ

I−(x,h)

|f(y)|p(y)dy + h

) p(x)
p−(I−(x,h))

.
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Since
b́

0

|f(x)|p(·)dx � 1 and 0 < h < 1
2 , we have that

1

2

ˆ

I−(x,h)

|f(y)|p(y)dy + 1

2
h � 1.

The last estimate and the assumption that p ∈ P log
− (I) yield

(M−,h)
p(x)(x) � Ch

− p(x)
p−(I−(x,h))

(
1

2

ˆ

I−(x,h)

|f(y)|p(y)dy + 1

2
h

)

= Ch
p−(I−(x,h))−p(x)

p−(I−(x,h))

(
1

h

ˆ

I−(x,h)

|f(y)|p(y)dy + 1

)

� C
(
M−,h(|f |p(·))(x) + 1

)
.

Thus (5.7) has been proved. Inequality (5.7) immediately implies(
M−f

)p(x)
(x) � C(p)

[(
M−(|f |p(·))

)
(x) + 1

]
. (5.8)

Suppose now that q(x) = p(x)
p−

. Then using the fact q ∈ P log
− (I), inequality

(5.8), and the boundedness of M− in Lp−(I) we find that

bˆ

0

(
M−f(x)

)p(x)
dx � C

bˆ

0

(
M−(|f |q(·)(x))p−dx+ C

� C

bˆ

0

|f(x)|p(x)dx+ C � C. �

The next theorem follows analogously. The proof is based on the inequality

(M+f(x))
p(x) � c(p)

[
M+(|f |p(·))(x) + 1

]
, (5.9)

which can be proved in the same manner as (5.8) was proved.

Theorem 5.15. Let I be a bounded interval and let (5.1) be satisfied for an exponent

p. Let p ∈ P log
+ (I). Then M+ is bounded in Lp(·)(I).

Now we investigate the boundedness of one-sided maximal functions in Lp(·)

spaces defined on unbounded intervals.
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Proposition 5.16. Let I be an open subset of R. Suppose that p ∈ P log
+ (I)∩P∞(I).

Suppose also that Sp(·)(f) � 1. Then there exists a positive constant C such that(
M+f(x)

)p(x) � C
(
M+(|f(·)|p(·)/p−(I))(x)

)p−(I)
+ S(x) (5.10)

for a.e. x ∈ I, where S ∈ L1(R).

Proof. We use the arguments of Lemmas 2.3 and 2.5 in Cruz-Uribe, Fiorenza, and
Neugebauer [51] and Theorem 4.1 in Capone, Cruz-Uribe, and Fiorenza [39]. Let
f � 0. We shall see that there exists a positive constant C such that for a.e. x ∈ I
and all h > 0,(

1

h

ˆ

I+(x,h)

f(t)dt

)p(x)

� C

(
1

h

ˆ

I+(x,h)

(f(t))p(t)/p−(I)dt

)p−(I)

+ S(x).

Let us denote

M+,hf(x) :=
1

h

ˆ

I+(x,h)

f(t)dt.

We divide the proof into two parts:

(a) f(x) � 1 or f(x) = 0, x ∈ I;

(b) f(x) � 1 on I.

Proof of (a). Case 1 (h < |x|/4). Denote p̄(x) = p(x)/p−(I). Then it is obvious

that p̄ ∈ P log
+ (I)∩P∞(I). It is also clear that p̄(x) � 1 a.e. on I. Further, we claim

that for a.e. t ∈ I+(x, h),

0 � p̄(t)− p−(I+(x, h)) �
C

log(e+ |t|) . (5.11)

Indeed, if z ∈ I+(x, h) and |z| � |t|, then

p̄(t)− p̄(z) � C/ log(e+ |t|). (5.12)

On the other hand, if |z| < |t| we observe that

|t| � h+ |x| � 5(|x| − 3h) � 5|z|.

Hence |z| > |t|/5. Consequently, since p ∈ P∞(I),

p̄(t)− p̄(z) � C/ log(e+ |z|) � C/ log(e + |t|).

Taking the infimum in (5.12) with respect to z we will find that (5.11) holds.
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Further, the Hölder inequality and Lemma 5.6 yield (here r(·) ≡ p̄−(I+(x, h)),
s(t) = p̄(t), β(t) = t)

(
M+,hf(x)

)p(x) � ( 1

h

ˆ

I+(x,h)

(f(t))p̄−(I+(x,h))dt

)p(x)/p̄−(I+(x,h))

�
(
C

h

ˆ

I+(x,h)

(f(t))p̄(t)dt+
1

h

ˆ

I+(x,h)

R(t)p̄−(I+(x,h))dt

)p(x)/p̄−(I+(x,h))

�
(
C

h

ˆ

I+(x,h)

(f(t))p̄(t)dt+ C(R(x))p̄−(I(x,h))

)p(x)/p̄−(I+(x,h))

� C

(
C

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p(x)/p̄−(I+(x,h))

+ C(R(x))p(·).

Moreover, by the Hölder inequality and the condition Sp(·)(f) � 1 we have

(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p(x)/p̄−(I+(x,h))

=

(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p−(I)(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p(x)/p̄−(I+(x,h))−p−(I)

�
(
1

h

ˆ

I+(x,h)

(f(t))p(t)dt

)(p(x)/p̄−(I+(x,h))−p−(I))/p−(I)(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p−(I)

.

Now observe that

− 1

p−(I)

[
p(x)

p̄−(I+(x, h))
− p−(I)

]
= p(x)

[
1

p(x)
− 1

p−(I+(x, h))

]
= p(x)

[
p−(I+(x, h))− p(x)

p(x)p−(I+(x, h))

]
� 0.

Hence,

A(x, h) := h−(p(x)/p̄−(I+(x,h))−p−(I))/p−(I) � 1

for h � 1, while by Proposition 5.3,

A(x, h) � h(p−(I+(x,h))−p(x))p+(I)/(p−(I))2 � C
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when h � 1. In addition,( ˆ

I+(x,h)

(f(t))p(t)dt

)(p(x)/p̄−(I+(x,h))−p−(I))/p−(I)

� 1

because Sp(·)(f) � 1 and (p(x)/p̄−(I+(x, h)))− p−(I) � 0. Consequently,(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p(x)/p̄−(I+(x,h))

� C

(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p−(I)

,

and the desired inequality follows.

Case 2 (|x| � 1 and r � |x|/4). In this case, it is easy to check that

0 � p̄(t)− p̄−(I+(x, h)) � p̄+(I) − p̄−(I) �
C

log(e+ |x|) ,

where t ∈ I+(x, h), because |x| � 1.

Consequently, the Hölder inequality and Lemma 5.6 yield (with s(·) = p̄(·),
β(x) ≡ x, r(·) ≡ p̄−(I+(x, x+ h)))

(
M+,hf(x)

)p(x) � ( 1

h

ˆ

I+(x,h)

(f(t))p̄−(I+(x,h))dt

)p(x)/p̄−(I+(x,h))

�
(
C

h

ˆ

I+(x,h)

(f(t))p̄(t)dt+
1

h

ˆ

I+(x,h)

R(x)p̄−(I+(x,h))dt

)p(x)/p̄−(I+(x,h))

� C

(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p(x)/p̄−(I+(x,h))

+ CR(x)p(x).

Now using the arguments from Case 1 we obtain the desired estimate.

Case 3 (|x| � 1 and h � |x|/4). By the conditions Sp(·)(f), f � 1 or f = 0, we
have

(
M+,hf(x)

)p(x) � h−p(x)

( ˆ

I+(x,h)

(f(y))p(y)dy

)p(x)

� h−p(x)

� C|x|−p(x) � CR(x)p(·).

Proof of (b). The proof is the same as in the previous argument, except for Case
3, because the condition f � 1 or f = 0 was used only in this case. Assume that
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|x| � 1 and h � |x|/4. We have

(
M+,hf(x)

)p(x) � C

(
1

h

ˆ

I+(x,h)∩I(0,|x|)

f(t)dt

)p(x)

+ C

(
1

h

ˆ

I+(x,h)\I(0,|x|)

f(t)dt

)p(x)

:= I1 + I2.

Let E := I+(x, h) \ I(0, |x|). Since p ∈ P∞(I), we find that

|p̄(t)− p̄(z)| � |p̄(t)− p̄(x)|+ |p̄(z)− p̄(x)| � C

log(e + |x|)
when t, z ∈ E, because in this case |x| � |y| and |x| � |z|. Hence,

0 � p̄(t)− p̄−(E) � C

ln(e + |x|)
for all t ∈ E. Consequently, by the Hölder inequality and Lemma 5.6 with r(·) ≡
p̄−(E), s(·) = p̄(·), β(x) ≡ x we find that(

1

h

ˆ

E

f(t)dt

)p(x)

�
(
1

h

ˆ

E

(f(t))p̄−(E)dt

)p(x)/p̄−(E)

�
(
C

h

ˆ

E

(f(t))p̄(t)dt+
1

h

ˆ

E

(R(x))p̄−(E)dt

)p(x)/p̄−(E)

� C

(
1

h

ˆ

I+(x,h)

(f(y))p̄(t)dt

)p(x)/p̄−(E)

+ C(R(x))p(x)

:= S(x, h) + C(R(x))p(x).

Notice that p̄(x) � p̄−(E) for a.e. x ∈ E. Now we argue as in Case 1. We have

S(x, h) =

(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p−(I)(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)(p(x)/p̄−(E))−p−(I)

= h−(p(x)/p̄−(E))−p−(I)

( ˆ

I+(x,h)

(f(t))p̄(t)dt

)(p(x)/p̄−(E))−p−(I)

×
(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p−(I)

.



312 Chapter 5. One-sided Operators

Observe that since −(p(x)/p̄−(E)) + p−(I) � 0 we have

h−(p(x)/p̄−(E))+p−(I) � 1.

Indeed, for h with h � 1, the inequality is obvious, while for h < 1, using Propo-
sition 5.3, we find that

h−(p(x)/p̄−(E))+p−(I) = h(p−(I)/p−(E))(p−(E)−p(x))

� h(p−(I)/p+(I))(p−(I+(x,h))−p(x)) � C.

Consequently,

I2 � C

(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p−(I)

+ C(R(x))p(x).

To estimate I1, we denote F := I(0, |x|) ∩ I+(x, h). Using again the assump-
tion that p ∈ P∞(I) we see that

|p̄(x) − p̄(t)| � C

log(e+ |t|) ,

because if t ∈ F , then |t| � |x|. Applying the Hölder inequality and Lemma 5.6
with r(x) ≡ p̄(x) and s(t) = p̄(t), we see that(
1

h

ˆ

F

f(t)dt

)p(x)

�
(
1

h

ˆ

F

(f(t))p̄(x)dt

)p(x)/p̄(x)

�
(
C

h

ˆ

F

(f(t))p̄(t)dt+
1

h

ˆ

I(0,|x|)

(R(t))p̄(x)dt

)p−(I)

� C

(
1

h

ˆ

F

(f(t))p̄(t)dt

)p−(I)

+ C

(
1

h

ˆ

I(0,|x|)

(R(t))p̄(x)dt

)p−(I)

�
(
1

h

ˆ

I+(x,h)

(f(t))p̄(t)dt

)p−(I)

+ C

(
1

|x|
ˆ

I(0,|x|)

(R(t))p̄(x)dt

)p−(I)

,

because h > |x|/4, F ⊂ I+(x, h), and F ⊂ I(0, |x|).
Further, let us take the constant r so that 1 < r < p−(I). Then by the Hölder

inequality,(
1

|x|
ˆ

I(0,|x|)

(R(t))p̄(x)dt

)p−(I)

� |x|−p−(I)/r

( ˆ

I(0,|x|)

(R(t))p̄(x)rdt

)p−(I)/r

.



5.3. One-sided Maximal Functions 313

Now observe that p̄(x)r � p̄−(I)r > 1 and R(t) � 1. Therefore simple
estimates give us ˆ

I(0,|x|)

(R(t))p̄(x)rdt �
ˆ

I(0,|x|)

(R(t))p̄−(I)rdt � C.

Further, since |x| > 1 we see that

|x|−p−(I)/r � C(e + |x|)−p−(I)/r.

Since the last function is in L1(R), we finally have the desired result. �
Proposition 5.17. Let I be an open subset of R and let the exponent p satisfy the
condition 1 � p−(I) � p+(I) < ∞. Suppose that p ∈ P log

− (I) ∩ P∞(I), and also
that Sp(·)(f) � 1. Then there exists a positive constant C such that(

M−f(x)
)p(x) � C

(
M−(|f(·)|p(·)/p−(I))(x)

)p−(I)
+ S(x)

for a.e. x ∈ I, where S ∈ L1(R).

The proof of this statement is similar to that of Proposition 5.16. In this case
we need Proposition 5.2 instead of Proposition 5.3. The proof is omitted.

Proposition 5.18. Let I be an open set in R. Let (5.1) be satisfied for p. Suppose

that p ∈ P log
+ (I) ∩ P∞(I). Then the operator M+ is bounded in Lp(·)(R+).

Proof. Inequality (5.10) and the boundedness of the operator M+ in the Lebesgue
space with constant exponent p−(I) yield the desired result. �

In a similar way it follows

Proposition 5.19. Let I be an open set in R and let the exponent function p satisfy
(5.1). Suppose further that p ∈ P log

− (I)∩P∞(I). Then the operator M− is bounded

in Lp(·)(R+).

Theorem 5.20. Let I = R+ and let p satisfy condition (5.1). Suppose further that

p ∈ P log
+ (I) and there is a positive number a such that p ∈ P∞((a,∞)). Then M+

is bounded in Lp(·)(R+).

Proof. Since M+ is positive and sublinear, it is sufficient to show that

‖M+f‖Lp(·)(R) < ∞ if ‖f‖Lp(·)(R) < ∞.

Let f1(x) = χ[0,a](x)f(x), f2(x) = f(x)− f1(x). Then

∞̂

0

(
M+f

)p(x)
(x)dx � c

[ aˆ

0

(
M+f1

)p(x)
(x)dx +

∞̂

a

(
M+f1

)p(x)
(x)dx

+

aˆ

0

(
M+f2

)p(x)
(x)dx +

∞̂

a

(
M+f2

)p(x)
(x)dx

]
:= c

4∑
k=1

Ik.
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Since
á

0

|f1(x)|p(x)dx �
∞́

0

|f(x)|p(x)dx < ∞ and p ∈ P log
+ ([0, a]), using Theo-

rem 5.15 we have that I1 � c.

It is obvious that I2 = 0.

Let us evaluate I3. Notice that if 0 < h � a − x, then 1
h

x+h´
x

|f2(t)|dt = 0,

while for h > a− x > 0, we have

1

h

x+hˆ

x

|f2(t)|dt = 1

h

x+hˆ

a

|f(t)|dt � 1

x+ h− a

x+hˆ

a

|f(t)|dt � (M+f
)
(a).

By Theorem 5.15,
(
M+f

)
(x) < ∞ a.e. on every finite interval. Thus we can

take a so that
(
M+f

)
(a) < ∞. Then

(
M+f2

)
(x) �

(
M+f

)
(a) < ∞ when x ∈

[0, a] and, consequently, I3 � a
(
M+f

)p−([0,a])
(a) < ∞ if

(
M+f

)
(a) � 1; I3 �

a
(
M+f

)p+([0,a])
(a) < ∞ if

(
M+f

)
(a) > 1.

The boundedness of M+ in Lp(·)((a,∞)) (see Proposition 5.18) yields

I4 =

∞̂

a

(
M+f2

)p(x)
(x)dx < ∞. �

Corollary 5.21. Let I = R+. Suppose that p satisfies condition (5.1) and is non-
decreasing on I. Suppose also that there exists a positive number a such that

p(x) � p(y) +
C

log(e+ y)
, a < y < x.

Then M+ is bounded in Lp(·)(R+).

This follows from Theorem 5.20 and the fact that for nondecreasing p the
condition (5.2) is satisfied.

Theorem 5.22. Let I = R+ and let the exponent p satisfy condition (5.1). Assume

that p ∈ P log
− (I) and that p ∈ P∞((a,∞)) for some positive a. Then M− is bounded

in Lp(·)(I).

Proof. Keeping the notation of Theorem 5.20, we have (we assume ‖f‖Lp(·)(R+) <
∞)

∞̂

0

(
M−f

)p(x)
(x)dx � c

[ 4∑
k=1

Ik
]
.
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It is obvious that I1 � c, thanks to Theorem 5.14. Further,

I2 =

∞̂

a

(
M−f1

)p(x)
(x)dx =

∞̂

a

(
sup

x−a�h�x
h−1

xˆ

x−h

|f1(y)|dy
)p(x)

dx

=

2aˆ

a

+

∞̂

2a

:= I21 + I22.

Notice that for x ∈ [a, 2a],

sup
x−a�h�x

h−1

xˆ

x−h

|f(y)|dy = sup
x−a�h�x

h−1

aˆ

x−h

|f(y)|dy �
(
M−f

)
(a).

By Theorem 5.14 we can assume that
(
M−f

)
(a) < ∞. Consequently, I21

� a
(
M−f

)p−([a,2a])
(a) < ∞ if

(
M−f

)
(a) � 1 and I21 � a

(
M−f

)p+([a,2a])
(a) < ∞

if
(
M−f

)
(a) > 1.

Let us estimate now I22. Assume that a > 1. Then for x−a � h < x we have

1

h

aˆ

x−h

∣∣f1∣∣ � 1

h
‖f‖Lp(·)(R+)‖χ(x−h,a)(·)‖Lp′(·)(R+) � Ca1/(p

′)−(I)/(x− a).

Hence, since a > 1,

I22 � c

∞̂

2a

(x− a)−p−(I)dx = c

∞̂

a

x−p−(I)dx < ∞.

Further, it is clear that I3 = 0, while Proposition 5.19 yields

I4 �
∞̂

a

(
M−f2

)p(x)
(x)dx < ∞. �

Corollary 5.23. Let I = R+. Suppose that p satisfies condition (5.1) and is non-
increasing on I. Suppose also that there exists a positive number a such that

p(x) � p(y) +
C

log(e+ x)
, a < x < y.

Then M− is bounded in Lp(·)(R+).

Theorem 5.24. Let I = R. Suppose that p satisfies condition (5.1) and p ∈ P log
+ (I).

Suppose further that there is a positive number a such that p ∈ P∞(R \ [−a, a]).
Then M+ is bounded in Lp(·)(I).
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Proof. Let ‖f‖Lp(·)(R) < ∞. We have

ˆ

R

(M+f(x))
p(x)dx � c

aˆ

−a

(M+f1)
p(x)(x)dx + c

aˆ

−a

(M+f2)
p(x)(x)dx

+ c

ˆ

R\[−a,a]

(M+f1)
p(x)(x)dx + c

ˆ

R\[−a,a]

(M+f2)
p(x)(x)dx

=: c

4∑
k=1

Ik,

where f1 = fχ[−a,a], f2 = fχR\[−a,a].

It is easy to see that, by the definition of M+,

I2 =

ˆ a

−a

(M+(fχ(a,∞)(x))
p(x)dx, I3 =

ˆ −a

−∞
(M+(f1(x))

p(x)dx.

To evaluate I2, observe that when x ∈ (−a, a),

(
M+f3

)
(x) = sup

r>a−x

1

r

x+rˆ

a

|f(t)|dt � sup
r>a−x

1

x+ r − a

x+rˆ

a

|f(t)|dt

�
(
M+f

)
(a) < ∞.

Further,
(
M+f

)
(a) < ∞ because we can always choose such an a.

Hence

I2 � a

{
a
(
M+f

)p−
[−a,a](a), if

(
M+f

)
(a) � 1,

a
(
M+f

)p+
[−a,a](a), if

(
M+f

)
(a) > 1.

This implies that I2 < ∞.

Further,

I3 �
−2aˆ

−∞
(M+f1(x))

p(x)dx+

−aˆ

−2a

(M+f1(x))
p(x)dx := I

(1)
3 + I

(2)
3 .

By the Hölder inequality and simple calculations, we have (we can assume
that a > 1)

I
(1)
3 �

−2aˆ

−∞
(−a− x)p(x)

( aˆ

−a

|f(t)|dt
)p(x)

dx

�
−2aˆ

−∞
(−a− x)p

−
I

∥∥χ(−a,a)f
∥∥p(x)
Lp(·)
∥∥χ(−a,a)

∥∥p(x)
Lp′(·)dx � c

∞̂

a

dt

tp
−
I

� C < ∞,

where the positive constant C depends on a, f and p.
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Notice that

I
(2)
3 �

aˆ

−2a

(M+f1(x))
p(x)dx < ∞,

because
∥∥f1∥∥Lp(·)([−2a,a])

< ∞ and p ∈ P+([−2a, a]).

Finally, Theorem 5.15 and Proposition 5.18 yield

I1 < ∞; I4 < ∞
respectively. �
Theorem 5.25. Let I = R and let p satisfy (5.1). Let p ∈ P log

− (I). Suppose further
that there exists a positive number a such that p ∈ P∞(R \ [−a, a]). Then M− is
bounded in Lp(·)(I).

The proof of this statement is similar to that of Theorem 5.24 and is omitted.
We only mention that in this case Theorem 5.14 and Proposition 5.17 are used
instead of Theorem 5.15 and Proposition 5.18, respectively.

5.4 One-sided Potentials

In this section we assume that I = [0, b), where 0 < b � ∞. Let

(Iα(·)f
)
(x) =

bˆ

0

f(t)|x− t|α(x)−1dt, x ∈ (0, b),

(Rα(·)f
)
(x) =

xˆ

0

f(t)(x− t)α(x)−1dt, x ∈ (0, b),

(Wα(·)f
)
(x) =

bˆ

x

f(t)(t− x)α(x)−1dt, x ∈ (0, b),

where 0 < α(x) < 1.

If α(x) ≡ α = const, then we denote Iα(·), Rα(·), Wα(·) by Iα, Rα and Wα,
respectively.

We analyse these operators in much the same way as the maximal operators
were handled earlier.

Proposition 5.26. Let I = [0, b] be a bounded interval and let α ∈ (0, 1) be a
constant. Then

(a) there exists a discontinuous function p on I such that Rα is bounded from
Lp(·)(I) to Lq(·)(I) and Iα is not bounded from Lp(·)(I) to Lq(·)(I), where
q(x) = p(x)

1−αp(x) and 0 < α < 1/p+(I);
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(b) there exists a discontinuous function p on I such that Wα is bounded from
Lp(·)(I) to Lq(·)(I) and Iα is not bounded from Lp(·)(I) to Lq(·)(I), where
q(x) = p(x)

1−αp(x) and 0 < α < 1/p+(I).

Proof. We prove part (a). The proof of (b) is similar; therefore it is omitted.

Let

p(x) =

{
p1, 0 � x � a,
p2, a < x � b,

where p1 and p2 are constants, a ∈ I, q2 < p1 and qi =
pi

1−αpi
, i = 1, 2.

It is clear that p2 < q2 < p1. Let f � 0 let ‖f‖Lp(·)([0,b]) � 1. We have

bˆ

0

( xˆ

0

f(t)

(x− t)1−α
dt

)q(x)

dx

� c

[ aˆ

0

( xˆ

0

f1(t)

(x− t)1−α
dt

)q1

dx +

aˆ

0

( xˆ

0

f2(t)

(x− t)1−α
dt

)q1

dx

+

bˆ

a

( xˆ

0

f1(t)

(x − t)1−α
dt

)q2

dx+

bˆ

a

( xˆ

0

f2(t)

(x− t)1−α
dt

)q2

dx

]
:= c
[ 4∑
k=1

Ik

]
,

where f1 = fχ(0,a) and f2 = fχ[a,b).

It is obvious that I1 � c because
á

0

(f1(t))
p1dt � 1 and consequently, Rα

is bounded from Lp1([0, a]) to Lq2([0, a]). It is also clear that I2 = 0. Now let
x ∈ (a, b). Then

xˆ

0

f1(t)

(x− t)1−α
dt � cxα

(
M−f1

)
(x).

Hence, by the boundedness of M− in Lp2(I) and the Hölder inequality, we
have

I3 � cbαp2

bˆ

0

(
M−f1

)p2
(x)dx � c

( bˆ

0

(f(t))p(t)dt
) p2

p1 � c.

Using the boundedness of R̃α from Lp2([a, b]) to Lq2([a, b]) (see, e.g., Samko,
Kilbas, and Marichev [331]), where

(R̃α
)
(x) =

xˆ

a

f(t)(x− t)α−1dt, x ∈ (a, b),

we have I4 < ∞, because
b́

a

(f2(t))
p2dt �

b́

0

(f(t))p(t)dt � 1.
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Let us now prove that Wα is not bounded from Lp(·)(I) to Lq(·)(I). Let

f(x) = χ[a,b)(x)(x − a)λ, where λ = −α − 1
q1
. Then

b́

0

(f(x))p(·)dx < ∞, because

−α− 1
q1

= − 1
p1

> − 1
p2
.

On the other hand, it is easy to see that, for x ∈ (0, a), we have
(Wαf

)
(x) �

c(a− x)λ+α. Hence ‖Wαf‖Lp(·)(I) = ∞.

Finally, we conclude that Wα is not bounded from Lp(·)([0, b]) to Lq(·)([0, b])
and, consequently, Iα is not bounded from Lp(·)([0, b]) to Lq(·)([0, b]). �

Theorem 5.27. Let I = R+ and let p satisfy condition (5.1). Suppose that p ∈
P log
+ (I) and that there exists a positive constant a such that p ∈ P∞((a,∞)).

Suppose further that α is a constant on I, 0 < α < 1
p+(I) and q(x) = p(x)

1−αp(x) .

Then Wα is bounded from Lp(·)(I) to Lq(·)(I).

Proof. By Proposition 5.5, the assumption p ∈ P log
+ (I) implies q̄′ ∈ P log

− (I), where

q̄(x) = q(x)
q0

and q0 is a constant such that 1 < q0 < q−(I). Let us choose p0

so that 1
p0

− 1
q0

= 1
p(x) − 1

q(x) = α. Then p+(I) < 1
α = p0q0

q0−p0
. It is clear that

p0 = q0
αq0+1 < q−(I)

αq−I +1
= p−(I).

It remains to apply Theorems 5.11, 5.12, and 5.22, together with the fact
that ρq0 ∈ A+

1 (I) ⇒ ρ ∈ A+
p0q0(R+) (see Section 5.2). �

Theorem 5.28. Let I = R+ and p satisfy condition (5.1). Suppose that p ∈ P log
− (I).

Let α be a constant on I, 0 < α < 1
p+(I) , and let q(x) = p(x)

1−αp(x) . Suppose further

that p ∈ P∞((a,∞)) for some positive number a. Then Rα is bounded from Lp(·)(I)
to Lq(·)(I).

The proof of this theorem is similar to that of the previous one.

Remark 5.29. Theorems 5.27 and 5.28 remain valid if we replace the assumption
p ∈ P∞((a,∞)) by: p is constant outside an interval (0, a) for some positive
number a.

Theorem 5.30. Let I := [0, b] be a bounded interval and p satisfy condition (5.1).

Assume that p ∈ P log
+ (I), 0 < α−(I) and that (αp)+(I) < 1. Suppose that q(x) =

p(x)
1−α(x)p(x) . Then Wα(·) is bounded from Lp(·)(I) to Lq(·)(I).

Remark 5.31. Notice that if p ∈ P+([0, b]), then there exists a positive constant
c such that for a.e. x ∈ [0, b] and all r with 0 < r < 1/2 and I+(x, r) �= ∅, the
inequality

r
1

(p−(I+(x,r)))′ − 1
p′(x) � c

holds.

To prove Theorem 5.30 we need the next statement.
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Lemma 5.32. Let I = [0, b] be bounded, p satisfy condition (5.1) and ‖f‖Lp(·)(I) �
1. Suppose that p ∈ P log

+ (I) and 0 < α < 1
p+(I) , and let q(x) = p(x)

1−α(x)p(x) . Then

there exists a positive constant c, depending only on p and α, such that

Wα(·)(|f |)(x) � c
[
(M+f)(x)

] p(x)
q(x) , x ∈ I.

Proof. For simplicity we assume that b = 1, i.e., I = [0, 1]. We have

Wα(·)(|f |)(x) �
ˆ

0�t−x�1

|f(t)|
(t− x)1−α(x)

dt � c

ˆ

0�t−x�1

|f(t)|
( 2(t−x)ˆ

t−x

rα(x)−2dr

)
dt

� c

2ˆ

0

rα(x)−2

( ˆ

0�t−x�min{r,1}

|f(t)|dt
)
dr = c

εˆ

0

(· · · ) + c

2ˆ

ε

(· · · ) =: c(I1 + I2),

where ε will be chosen later (if ε > 2 we assume that I2 = 0). It is easy to check
that

I1 =

εˆ

0

rα(x)−1

(
1

r

ˆ

[x,x+r]∩(0,1)

|f(t)|dt
)
dr.

Further, if x+ r � 1, then

1

r

ˆ

[x,x+r]∩(0,1)

|f(t)|dt � 1

r

x+rˆ

x

|f(t)|dt � M+f(x);

if x+ r > 1, then again

1

r

ˆ

[x,x+r]∩(0,1)

|f(t)|dt � 1

1− x

1ˆ

x

|f(t)|dt � M+f(x).

So, for all 0 < r < 2 we have

1

r

ˆ

[x,x+r]∩(0,1)

|f(t)|dt � M+f(x),

which implies that

I1 � M+f(x)
εα(x)

α(x)
� cαM+f(x)ε

α(x).
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Now by the Hölder inequality and elementary properties for Lp(·) spaces
together with Remark 5.31 we find that

I2 � 2

2ˆ

ε

rα(x)−2‖χ[x,x+r]f‖Lp(·)([0,1])‖χ[x,x+r]‖Lp′(·)([0,1])dr

� c

2ˆ

ε

rα(x)−2r
1

(p−([x,x+r]))′ dr � c

2ˆ

ε

r
α(x)−2+ 1

p′(x) dr = cεα(x)−
1

p(x) .

Taking ε =
(
M+f(x)

)−p(x)
we have

Wα(·)(|f |)(x) � cα,p
[
(M+f)(x)

] p(x)
q(x) . �

Proof of Theorem 5.30. Let ‖f‖Lp(·)([0,b]) � 1, which is equivalent to saying that
b́

0

|f(x)|p(·)dx � 1.

By Lemma 5.32 and Theorem 5.15,

bˆ

0

|Wα(·)f(x)|q(x)dx � c

bˆ

0

(
M+f(x)

)p(·)
dx � c.

The theorem has been proved. �

The next statement follows analogously.

Theorem 5.33. Let I = [0, b] be a bounded interval and let condition (5.1) hold

for an exponent p. Let p ∈ P log
− (I). Suppose that 0 < α−(I). Assume also that

(αp)+(I) < 1 and let q(x) = p(x)
1−α(x)p(x) . Then Rα(·) is bounded from Lp(·)(I) to

Lq(·)(I).

5.5 One-sided Calderón–Zygmund Operators

We begin this section with the definition of the Calderón–Zygmund kernel defined
on R.

Definition 5.34. We say that a function k in L1
loc

(
R\{0}) is a Calderón–Zygmund

kernel if the following properties are satisfied:

(a) there exists a finite constant B1 such that∣∣∣∣∣
ˆ

ε<|x|<N

k(x)dx

∣∣∣∣∣ � B1



322 Chapter 5. One-sided Operators

for all ε and all N , with 0 < ε < N , and furthermore

lim
ε→0

ˆ

ε<|x|<N

k(x)dx

exists;

(b) there exists a positive constant B2 such that

∣∣k(x)∣∣ � B2

|x| , x �= 0;

(c) there exists a positive constant B3 such that for all x and y with |x| > 2|y| > 0
the inequality

|k(x− y)− k(x)| � B3
|y|
|x|2

holds.

It is known (see Aimar, Forzani, and Mart́ın-Reyes [10], Mart́ın-Reyes [244])
that conditions (a)–(c) are sufficient for the boundedness of the operators:

K∗f(x) = sup
ε>0

∣∣Kεf(x)
∣∣ and Kf(x) = lim

ε→0
Kεf(x),

where

Kεf(x) =

ˆ

|x−y|>ε

k(x− y)f(y)dy,

in Lr(R), 1 < r < ∞.

It is clear that Kf(x) � K∗f(x).
The following example shows the existence of a non-trivial Calderón–Zyg-

mund kernel with support contained in (0,+∞).

Example 5.35. The function

k(x) =
1

x

sin(ln x)

lnx
χ(0,+∞)(x)

is a Calderón–Zygmund kernel (for details see, e.g., Aimar, Forzani, and Mart́ın-
Reyes [10], Mart́ın-Reyes [244]).

There exists also a non-trivial Calderón–Zygmund kernel supported in the
interval (−∞, 0).

The next results are well known (see Aimar, Forzani, and Mart́ın-Reyes [10],
Mart́ın-Reyes [244]).
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Theorem 5.36. Let p be a constant, 1 < p < ∞, and let k be a Calderón–Zygmund
kernel with support in (−∞, 0). Then the condition w ∈ A+

p (R) implies the in-
equality ˆ

R

∣∣K∗f(x)
∣∣pw(x)dx � c

ˆ

R

∣∣f(x)∣∣pw(x)dx, f ∈ Lp
w(R).

Theorem 5.37. Let k be a Calderón–Zygmund kernel with support in (0,+∞) and
let p be a constant, 1 < p < ∞. If w ∈ A−

p (R), then K∗ is bounded in Lp
w(R).

Theorems 5.12, 5.24, 5.25, 5.36, 5.37 yield our main results of this section:

Theorem 5.38. Let I = R, and let condition (5.1) be satisfied and p ∈ P log
+ (I).

Suppose that p ∈ P∞(R \ [−a, a]) for some positive number a. Then the operator
K∗, with kernel k supported in (−∞, 0), is bounded in Lp(·)(I).

Theorem 5.39. Let I = R, and let condition (5.1) be satisfied and p ∈ P log
− (I).

Assume that p ∈ P∞(R \ [−a, a]) for some positive number a. Then the operator
K∗, with kernel k supported in (0,+∞), is bounded in Lp(·)(I).

5.6 Weighted Criteria for One-sided Operators

Let us introduce the following maximal operators with variable parameter:(
Mα(·)f

)
(x) = sup

h>0

1

(2h)1−α(x)

ˆ

I(x,h)

|f(t)|dt,

(
M−

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

ˆ

I−(x,h)

|f(t)|dt,

(
M+

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

ˆ

I+(x,h)

|f(t)|dt,

where 0 < α−(I) � α+(I) < 1, I is an open set in R, and x ∈ I.
If α ≡ 0, then M−

α(·) and M+
α(·) are the one-sided Hardy–Littlewood maximal

operators, which are denoted by M− and M+, respectively.

Recall that the symbols D(R) and D(R+) denote the dyadic lattice in R and
R+, respectively.

5.6.1 Hardy–Littlewood One-sided Maximal Functions.
One-weight Inequality

In this subsection we discuss the one-weight problem for the one-sided Hardy–
Littlewood maximal operators M+ and M−.

The following two theorems are the main results of this section:
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Theorem 5.40. Let I be a bounded interval in R and let p be a measurable function
on I satisfying condition (5.1).

(i) If p ∈ P log
+ (I) and the weight function w satisfies the condition w(·)p(·) ∈

A+
p−(I), then for all f ∈ L

p(·)
w (I),

‖(Nf)w‖Lp(·)(I) � C‖wf‖Lp(·)(I), (5.13)

where N = M+.

(ii) Let p ∈ P log
− (I) and let w(·)p(·) ∈ A−

p−(I). Then inequality (5.13) holds for

all f ∈ L
p(·)
w (I), where N = M−.

In the case of unbounded intervals we have the next statement:

Theorem 5.41. Let I = R+ and let p be a measurable function on R+ such that
1 < p− � p+ < ∞. Suppose that there is a positive number a such that p(x) ≡
pc ≡ const outside (0, a).

(i) If p ∈ P log
+ (I) and w(·)p(·) ∈ A+

p−(I), then (5.13) holds for N = M+.

(ii) If p ∈ P−log(I) and w(·)p(·) ∈ A−
p−(I), then (5.13) holds for N = M−.

Theorem 5.40 yields the following corollaries:

Corollary 5.42. Let p be an increasing function on an interval I = (a, b) such that
1 < p(a) � p(b) < ∞. Suppose that w is an increasing positive function on I.
Then the one-weight inequality

‖(M+f)(·)‖
L

p(·)
w (I)

� c‖f(·)‖
L

p(·)
w (I)

holds.

Corollary 5.43. Let p be a decreasing function on an interval I = (a, b) such that
1 < p(b) � p(a) < ∞. Suppose that w is a decreasing positive function on I. Then
the one-weight inequality

‖(M−f)(·)‖
L

p(·)
w (I)

� c‖f(·)‖
L

p(·)
w (I)

holds.

Now we prove Theorems 5.40 and 5.41.

Proof of Theorem 5.40. Since the proof of (ii) is similar to that of (i), we prove
only (i). It is enough to show that

Ip(·)
(
wM+(f/w)

)
� C

for all f satisfying the condition ‖f‖Lp(·)(I) � 1.

First we prove that Ip̃(·)
(

f
w

)
< ∞, where p̃(x) = p(x)

p−
·
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By using the Hölder inequality we find that

Ip̃(·)

(
f

w

)
=

ˆ

I

[f/w]p̃(x) (x)dx

�
( ˆ

I

|f(x)|p(x)dx
) 1

p−
( ˆ

I

w(x)p(x)(1−(p−)′)dx

) 1
´(p−)′

< ∞,

because wp(·)(·) ∈ A+
p−(I). Further, by (5.9) for p̃ instead of p, and the boundedness

of M+ in L
p−
wp(·)(I), we have

Ip(·)
(
w(M+f/w)

)
=

ˆ

I

[
M+(f/w)(x)

]p(x)
wp(x)(x)dx

=

ˆ

I

([
M+ (f/w) (x)

]p̃(x))p−
wp(x)(x)dx

� C

ˆ

I

(
1 + M+(|f/w|p̃(·))(x)

)p−
(w(x))p(x)dx

� C

ˆ

I

(w(x))
p(x)

dx+ C

ˆ

I

(
M+(|f/w|p̃(·))(x)

)p−
wp(x)(x)dx

� C + C

ˆ

I

∣∣f/w∣∣p(x)wp(x)(x)dx � C. �

Proof of Theorem 5.41. First we prove (i). Without loss of generality we can as-
sume that M+f(a) < ∞. Since M+ is a sublinear operator, it suffices to prove
that Ip(·)(wM+f) < ∞ whenever Ip(·)(wf) < ∞. We have

ˆ

R+

(
M+f

)p(x)
(x)w(x)p(x)dx

� c

[ aˆ

0

(
M+fχ[0,a]

)p(x)
(x)w(x)p(x)dx+

aˆ

0

(
M+(fχ[a,∞))

)p(x)
(x)w(x)p(x)dx

+

∞̂

a

(
M+(fχ[0,a])

)p(x)
(x)w(x)p(x)dx+

∞̂

a

(
M+fχ[a,∞)

)p(x)
(x)w(x)p(x)dx

]
= c[I1 + I2 + I3 + I4].

Using the assumptions w(·)p(·) ∈ A+
p−([0, a]), p+ ∈ P+((0, a)) and Theorem 5.40,

we find that I1 < ∞. Further, the condition w(·)p(·) ∈ A+
p−(I) implies that
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w(·)p(·) ∈ A+
p−((a,∞)). Consequently, since p ≡ pc ≡ const on (a,∞), by the

boundedness of the operator M+,af := χ(a,∞)M
+(fχ(a,∞)) in Lpc

wp(·)((a,∞)) we
have I4 < ∞.

Now observe that M+(fχ[0,a])(x) = 0 when x ∈ (a,∞). Therefore, I3 = 0.

It remains to estimate I2. For this notice that if x ∈ (0, a), then

M+
(
f · χ[a,∞)

)
(x) = sup

h>0

1

h

x+hˆ

x

|f(y)|χ[a,∞)(y)dy = sup
h>a−x

1

h

x+hˆ

a

|f(y)|χ[a,∞)(y)dy

� sup
h>a−x

1

x+ h− a

a+(x+h−a)ˆ

a

|f(y)|χ[a,∞)(y)dy

� M+f(a) < ∞.

Hence,

I2 � c

aˆ

0

w(x)p(x)dx < ∞

because w(·)p(·) is locally integrable on R+.

To prove (ii) we use the notation of the proof of (i), substituting M+ by M−.
In fact, the proof is similar to that of (i). The only difference is in the estimates of

I2 :=

aˆ

0

(
M−(fχ[a,∞))

)p(x)
(x)w(x)p(x)dx

and

I3 :=

∞̂

a

(
M−(f · χ[0,a])(x)

)p(x)
(x)w(x)p(x)dx.

Obviously, we have that I2 = 0. Further, we represent I3 as follows:

I3 =

∞̂

a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx

=

2aˆ

a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx+

∞̂

2a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx

=: I
(1)
3 + I

(2)
3 .

Observe that for x ∈ (a, 2a],

M−(f · χ[0,a])(x) � sup
x−a<h<x

1

a− x+ h

aˆ

a−(a−x+h)

|f(y)|dy � M−f(a) < ∞.
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Hence,

I
(1)
3 � (M−f)pc(a)

2aˆ

a

(w(x))pc dx < ∞.

If x > 2a, then (
M−f

)
(x) � 1

a− x

aˆ

0

|f(y)|dy.

Therefore, the Hölder inequality with respect to the exponent p(·) yields

I
(2)
3 �

( ∞̂

2a

(w(x))
pc (a− x)−pcdx

)( aˆ

0

|f(x)|dx
)pc

� c

( ∞̂

2a

(w(x))
pc (a− x)−pcdx

)
‖fw ‖pc

L
p(·)
([0,a])

‖w−1‖pc

L
p′(·)
([0,a])

=: cJ1 · J2 · J3.
It is clear that J2 < ∞. Further, since w(·)p(·) ∈ A−

p−

(
(a,∞)

)
, by the Hölder

inequality we have that w(·)p(·) ∈ A−
pc

(
(a,∞)

)
, because pc � p−. Hence, the

operator M−f := M−(fχ(a,∞)) is bounded in Lpc
w ((a,∞)). Consequently, the

Hardy operator

Hαf(x) =
1

x− a

xˆ

a

|f(t)|dt, x ∈ (a,∞),

is bounded in Lpc
w ((a,∞)). This implies that J1 < ∞.

It remains to see that J3 < ∞. Indeed, we have

‖w−1‖Lp′(·)([0,a]) � (1 + a)‖w−1‖
L(p−)′·([0,a])

� c‖χ{w−1�1}(·)w−1(·)‖
L(p−)′(·)([0,a]) + ‖χ{w−1<1}(·)w−1(·)‖

L(p−)′ ([0,a])

� c
∥∥χ{w−1�1}(·)w− p(·)

p− (x)
∥∥
L(p−)′ ([0,a]) + c

�
( aˆ

0

wp(x)(1−(p−)′)(x)dx

)1/(p−)′

+ c.

Thus I
(2)
3 < ∞. �

5.6.2 One-sided Fractional Maximal Operators.
One-weight Inequality

In this section we derive the one-weight inequality for one-sided fractional maximal
operators. The main results are the following statements:
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Theorem 5.44. Let I be a bounded interval and let condition (5.1) be satisfied
for an exponent p. Suppose that α is a constant such that 0 < α < 1/p+. Let

q(x) = p(x)
1−αp(x) .

(i) If p ∈ P log
+ (I) and a weight w satisfies the condition w(·)q(·) ∈ A+

p−,q−(I),
then the inequality

‖(Nαf)w‖Lq(·)(I) � C‖wf‖Lp(·)(I), f ∈ Lp(·)
w (I), (5.14)

holds for Nα = M+
α .

(ii) Let p ∈ P log
− (I) and let w(·)q(·) ∈ A−

p−,q−(I). Then inequality (5.14) holds for

Nα = M−
α .

Theorem 5.45. Let I = R+ and let condition (5.1) be satisfied for an exponent
p. Suppose that p(x) ≡ pc ≡ const outside some interval (0, a). We set q(x) =

p(x)
1−αp(x) , where α is constant satisfying 0 < α < 1/p+.

(i) If p ∈ P log
+ (I) and w(·)q(·) ∈ A+

p−,q−(I), then (5.14) holds for Nα = M+
α .

(ii) If p ∈ P log
− (I) and w(·)q(·) ∈ A−

p−,q−(I), then (5.14) holds for Nα = M−
α .

Proof of Theorem 5.44. We prove (i). The proof of (ii) is the same. First we show
that the inequality

M+
α (f/w)(x) �

(
M+
(
fp(·)/s(·)w−q(·)/s(·))(x))s(x)/q(x)( ˆ

I

fp(y)(y)dy

)α

holds, where f � 0 and s(x) = 1 + q(x)/p′(x). Indeed, denoting

g(·) := (f(·))p(·)/s(·)(w(·))−q(·)/s(·)

we see that

f(·)/w(·) = (g(·))s(·)/p(·)wq(·)/p(·)−1 = (g(·))1−αgs(·)/p(·)+α−1wαq(·).

By using the Hölder inequality with the exponent (1−α)−1 and the relations
s(·)/q(·) = 1− α, (s(y)/p(y) + α− 1)/α = s(y), we have

1

h1−α

ˆ

I+(x,x+h)

f(y)

w(y)
dy �

(
1

h

ˆ

I+(x,x+h)

g(y)dy

)1−α

×
( ˆ

I+(x,x+h)

g(s(y)/p(y)+α−1)/α(y)wq(y)(y)dy

)α

�
(
M+g(x)

)s(x)/q(x)( ˆ

I+(x,x+h)

gs(y)(y)wq(y)(y)

)α
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�
(
M+g(x)

)s(x)/q(x)( ˆ
I

fp(y)(y)dy

)α

.

Now we prove that Iq(·)
(
wM+

α (f/w)
)
� C when Sp(f) � 1. By applying the

above-derived inequality we find that

Iq(·)
(
wM+

α (f/w)
)
� c

ˆ

I

(
M+

α (fp(·)/s(·)w−q(·)/s(·))
)s(x)

(x)wq(x)(x)dx

= cIs(·)
(
M+(fp(·)/s(·)w−q(·)/s(·))wq(·)/s(·)).

Observe now that the condition on the weight w is equivalent to the as-
sumption wq(·)(·) ∈ A+

s−(I). On the other hand, ‖fp(·)/s(·)‖Ls(·)(I) � 1. Therefore
applying Theorem 5.40 we have the desired result. �

Proof of Theorem 5.45. (i) Let f � 0 and let Sp,w(f) < ∞. We have

Iq(·)(wM+
α f) =

ˆ

I

(
M+

α f
)q(x)

(x)w(x)q(x)dx

� c

[ aˆ

0

(
M+

α fχ[0,a](x)
)q(x)

(x)w(x)q(x)dx

+

aˆ

0

(
M+

α (f · χ[a,∞))(x)
)q(x)

(x)w(x)q(x)dx

+

∞̂

a

(
M+

α (f · χ[0,a])(x)
)q(x)

(x)w(x)q(x)dx

+

∞̂

a

(
M+

α (fχ[a,∞))(x)
)q(x)

(x)w(x)q(x)dx

]
=: c[I1 + I2 + I3 + I4].

It is easy to see that I1 < ∞, thanks to Theorem 5.44 and the condition wq(·)(·) ∈
A+

p−,q−([0, a]). Further, it is obvious that I3 < ∞, because M+
α (fχ[0,a])(x) = 0 for

x > a. Also,

I2 � c

aˆ

0

w(x)q(x)dx < ∞,

where the positive constant c depends on α, f , p, a.

It is easy to check that, by the Hölder inequality with exponent(
(pc)

′/qc
)
/
(
(p−)′/q−

)
,
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the condition w(·)qc ∈ A+
p−,q−([a,∞)) implies w(·)qc ∈ A+

pc,qc([a,∞)). Hence,
I4 < ∞.

(ii) We keep the notation of the proof for (i) but substitute M+
α by M−

α . The
only difference between the proofs of (i) and (ii) is in the estimates of I2 and I3.

It is obvious that I2 = 0, while for I3 we have

I3 =

2aˆ

a

(
M−

α (f · χ[0,a])(x)
)q(x)

(x)w(x)q(x)dx

+

∞̂

2a

(
M−

α (f · χ[0,a])(x)
)qc

(x)w(x)qcdx

=: I
(1)
3 + I

(2)
3 .

If x > a, then

M−
α f(x) � sup

x−a<h<x
hα−1

aˆ

x−h

|f(y)|dy � cM−
α f(a).

Consequently,

I
(1)
3 � c

(
M−

α f(a)
)qc 2aˆ

a

(
w(x)
)qc

dx < ∞.

Now observe that when x > a we have the following pointwise estimates:

M−
α (fχ[0,a]))(x) � (x − a)α−1

aˆ

0

|f(y)|dy

� (x − a)α−1‖fw‖Lp(·)([0,a])‖w−1‖Lp′(·)([0,a])

=: (x − a)α−1J1 · J2.

Hence,

I
(2)
3 �

( ∞̂

2a

(x− a)(α−1)qc(w(x))qcdx

)
(J1 · J2)qc .

It is obvious that J1 < ∞. Further,

J2 � ‖w−1(·)χ{w−1>1}(·)‖Lp′(·)([0,a]) + ‖w−1(·)χ{w−1�1}(·)‖Lp′(·)([0,a])

=: J
(1)
2 + J

(2)
2 .
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It is clear that J
(2)
2 < ∞. To estimate J

(1)
2 , observe that

J
(1)
2 � (1 + a)‖w−1χ{w−1>1}‖Lp−([0,a]) � (1 + a)‖w−q(·)/q−χ{w−1>1}‖Lp−([0,a])

� (1 + a)‖w−q(·)/q−‖Lp−([0,a]) < ∞.

Since M−
α is bounded from Lpc

w ([a,∞)) to Lqc
w ([a,∞)), we have the Hardy inequal-

ity( ∞̂

a

(x−a)(α−1)qcwqc(x)

( xˆ

a

|f(t)|dt
)qc

dx

)1/qc

� c

( ∞̂

a

|f(x)|pcwpc(x)dx

)1/pc

,

which in turn yields

∞̂

2a

(x − a)(α−1)qc(w(x))qcdx < ∞. �

5.7 Generalized One-sided Fractional

Maximal Operators

In this section we establish two-weight inequalities for one-sided fractional maximal
operators with variable parameters. For that we first investigate the two-weight
problem for one-sided dyadic fractional maximal functions, which is of indepen-
dent interest. Fefferman–Stein-type inequalities for one-sided fractional maximal
functions are also investigated.

5.7.1 The Two-weight Problem

Let I := [a, b) be a bounded interval and let

I+ := [b, 2b− a), I− := [2a− b, a).

Let Q = I1 × I2 × · · · × In be a cube in R
n. We denote:

Q+ := I+1 × I+2 × · · · × I+n , Q− := I−1 × I−2 × · · · × I−n .

Let α be a measurable function on Rn, 0 < α− � α(x) � α+ < n. Define
one-sided dyadic fractional maximal functions on Rn by(

M
+,(d)
α(·) f

)
(x) = sup

x∈Q
Q∈D(Rn)

1

|Q|1−α(x)
n

ˆ

Q+

|f(y)|dy,

(
M

−,(d)
α(·) f

)
(x) = sup

x∈Q
Q∈D(Rn)

1

|Q|1−α(x)
n

ˆ

Q−

|f(y)|dy.
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If α(x) ≡ 0, then we have the one-sided Hardy–Littlewood dyadic maximal
functions M+,(d), M−,(d).

Recall that the symbols D(Rn) and RDC
(d)

(Rn) denote the dyadic grid
in Rn and the class of weights satisfying the dyadic reverse doubling condition
respectively.

Theorem 5.46. Let p be constant and let 1 < p < q− � q+ < ∞, 0 < α− � α+ < n,

where q and α are measurable functions on Rn. Suppose that w−p′ ∈ RDC
(d)

(Rn).

Then M
+,(d)
α(·) is bounded from Lp(Rn, w) to Lq(·)(Rn, v) if and only if

A := sup
Q,Q∈D(Rn)

∥∥χQ(·)|Q|
α(·)
n −1v(·)∥∥

Lq(·)(Rn)

∥∥χQ+w−1
∥∥
Lp′(Rn)

< ∞. (5.15)

Proof. Necessity. Assuming f = χQ+w−p′
(Q ∈ D(Rn)) in the inequality∥∥M+,(d)

α(·) f
∥∥
Lq(·)(Rn,v)

� C‖f‖Lp(Rn,w), (5.16)

we have that∥∥∥∥∥χQ(·)
(

1

|Q|1−α(·)
n

ˆ

Q+

f

)∥∥∥∥∥
Lq(·)(Rn,v)

=
∥∥χQ(·)|Q|

α(·)
n −1
∥∥
Lq(·)(Rn,v)

( ˆ
Q+

w−p′
(y)dy

)

�
∥∥M+,(d)

α(·) f
∥∥
Lq(·)(Rn,v)

� C

( ˆ
Q+

w−p′
(y)dy

)1
p

.

Thus, to show that (5.15) holds it remains to prove that for all dyadic cubes
Q, SQ =

´
Q

w−p′
(y)dy < ∞. Indeed, suppose the contrary, i.e., SQ = ∞ for some

cube Q. Then SQ = ‖w−1‖Lp′(Q) = ∞. This implies that there is a nonnegative

function g such that g ∈ Lp(Q) and
´
Q

g(y)w−1(y)dy = ∞. Further, let Q = Q̄+,

where Q̄ ∈ D(Rn). Then taking f = χQ′gw−1, we have

‖f‖Lp(Rn,w) =

( ˆ
Q̄+

gp(x)dx

) 1
p

< ∞.

Further,∥∥M+,(d)
α(·) f

∥∥
Lq(·)(Rn,v)

�
∥∥χQ̄(·)|Q̄|

α(·)
n −1
∥∥
Lq(·)(Rn,v)

( ˆ
Q̄+

f(y)dy

)

=
∥∥χQ̄(·)|Q̄|

α(·)
n −1
∥∥
Lq(·)(Rn,v)

ˆ

Q̄+

g(y)w(y)−1dy = ∞.

This contradicts (5.16).
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Sufficiency. For every x ∈ Rn we take Qx ∈ D(Rn) (x ∈ Qx) so that

|Qx|
α(x)
n −1

ˆ

Q+
x

|f(y)|dy >
1

2

(
M

+,(d)
α(·) f

)
(x). (5.17)

Assume that f is nonnegative, bounded, and with compact support. Then it is
easy to see that we can take the maximal cube Qx containing x for which (5.17)
holds. Let Q ∈ D(Rn) and let us introduce the set

FQ :=

{
x ∈ Q : Q is maximal for which |Q|α(x)

n −1̂

Q+

f(y)dy >
1

2
M

+,(d)
α(·) f(x)

}
.

It is known that dyadic cubes have the following property: if Q1, Q2 ∈ D(Rn),

and
◦
Q1

⋂ ◦
Q2 �= ∅, then Q1 ⊂ Q2 or Q2 ⊂ Q1, where

◦
Q denotes the interior of

a cube Q.

Now observe that FQ1

⋂
FQ2 �= ∅ if Q1 �= Q2. Indeed, if

◦
Q1

⋂ ◦
Q2 = ∅, this

is clear. If
◦
Q1

⋂ ◦
Q2 �= ∅, then Q1 ⊂ Q2 or Q2 ⊂ Q1. Take x ∈ FQ1

⋂
FQ2 . Then

x ∈ Q1, x ∈ Q2 and

1

|Q1|1−α(x)
n

ˆ

Q+
1

f(y)dy >
1

2

(
M

+,(d)
α(·) f

)
(x),

1

|Q2|1−α(x)
n

ˆ

Q+
2

f(y)dy >
1

2

(
M

+,(d)
α(·) f

)
(x).

If Q1 ⊂ Q2, then Q2 would be the maximal cube for which (5.17) holds.
Consequently x �∈ FQ1 and x ∈ FQ2 . Analogously we have that if Q2 ⊂ Q1, then
x ∈ FQ1 and x �∈ FQ2 .

Further, it is clear that FQ ⊂ Q and
⋃

Q∈Dm(Rn)

FQ = R
n, where

Dm(Rn) :=
{
Q : Q ∈ D(Rn), FQ �= ∅}.

Suppose that ‖f‖Lp
w(Rn) � 1 and that r is a number satisfying the condition

p < r < q−. We have∥∥M+,(d)
α(·) f

∥∥r
Lq(·)(Rn,v)

=
∥∥vr(M+,(d)

α(·) f
)r∥∥

L
q(·)
r (Rn)

= sup

ˆ

Rn

vr(x)
(
M

+,(d)
α(·) f

)r
(x)h(x)dx,

where the supremum is taken over all functions h with ‖h‖
L

(
q(·)
r

)′
(Rn)

� 1.
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Now for such an h, using Proposition 4.30, we have that

ˆ

Rn

vr(x)
(
M

+,(d)
α(·) f

)r
(x)h(x)dx =

∑
Q∈Dm(Rn)

ˆ

FQ

vr(x)
(
M

+,(d)
α(x) f

)r
(x)h(x)dx

� C
∑

Q∈Dm(Rn)

( ˆ
FQ

vr(x)|Q|(α(x)
n −1)rh(x)dx

)( ˆ
Q+

f(y)dy

)r

� C
∑

Q∈Dm(Rn)

∥∥vr(·)|Q|(α(·)
n −1)rχQ(·)

∥∥
L

q(·)
r (Rn)

∥∥h∥∥
L

(
q(·)
r

)′
(Rn)

( ˆ
Q+

f(y)dy

)r

= C
∑

Q∈Dm(Rn)

∥∥v(·) |Q|α(·)
n −1χQ(·)

∥∥r
Lq(·)(Rn)

∥∥h∥∥
L

(
q(·)
r

)′
(Rn)

( ˆ
Q+

f(y)dy

)r

� CAr
∑

Q∈Dm(Rn)

( ˆ
Q+

w−p′
(y)dy

)− r
p
( ˆ

Q+

f(y)dy

)r

� CAr‖f‖rLp(Rn,w).

In the last inequality we used also the fact that Q+ ∈ D(Rn) if and only if
Q ∈ D(Rn).

Let us pass now to an arbitrary f , where f ∈ Lp
w(R

n). For such an f we take
the sequence fm = fχQ(0,km)χ{f<jm}, where

Q(0, km) := {(x1, . . . , xn) : |xi| < km, i = 1, . . . , n}.

and km, jm → ∞ as m → ∞. Then it is easy to see that fm → f in Lp(Rn, w)

and also pointwise. Moreover, fm(x) � f(x). On the other hand,
{
M

+,(d)
α(·) fm

}
is

a Cauchy sequence in Lq(·)(Rn, v), because∥∥M+,(d)
α(·) fm − M

+,(d)
α(·) fj

∥∥
Lq(·)(Rn,v)

�
∥∥M+,(d)

α(·)
(
fm − fj

)∥∥
Lq(·)(Rn,v)

� C
∥∥fm − fj

∥∥
Lp(Rn,w)

.

Since Lq(·)(Rn, v) is a Banach space, there exists g ∈ Lq(·)(Rn, v) such that∥∥(M+,(d)
α fm

)− g
∥∥
Lq(·)(Rn,v)

→ 0.

Hence, we conclude that there is a subsequence M
+,(d)
α(·) fmk

which converges

to g in Lq(·)(Rn, v) and also almost everywhere.

But fmk
converges to f in Lp(Rn, w) and almost everywhere. Consequently,

‖g‖Lq(·)(Rn,v) � C‖f‖Lp(Rn,w), (5.18)
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where the positive constant C does not depend on f . Now observe that since fmk

is non-decreasing, for fixed x ∈ Q, Q ∈ D(Rn), we have that

|Q|α(x)
n −1

ˆ

Q+

f(y)dy = lim
k→∞

|Q|α(x)
n −1

ˆ

Q+

fmk
(y)dy

� lim
k→∞

sup
x∈Q

|Q|α(x)
n −1

ˆ

Q+

fmk
(y)dy

= lim
k→∞

(
M

+,(d)
α(·) fmk

)
(x)

and the last limit exists because it converges to g almost everywhere. Hence,(
M

+,(d)
α(·) f

)
(x) � lim

k→∞

(
M

+,(d)
α(·) fmk

)
(x) = g(x),

for almost every x. Finally, (5.18) yields∥∥M+,(d)
α(·) f

∥∥
Lq(·)(Rn,v)

� C‖f‖Lp(Rn,w). �

The proof of the next statement is similar to that of Theorem 5.46, and is
omitted.

Theorem 5.47. Let 1 < p < q− � q+ < ∞, 0 < α− � α+ < n, where p is constant

and q, α are measurable functions on Rn. Suppose that w−p′ ∈ RDC
(d)

(Rn). Then

M
−,(d)
α(·) is bounded from Lp(Rn, w) to Lq(·)(Rn, v) if and only if

sup
Q,Q∈D(Rn)

∥∥χQ(·)|Q|
α(·)
n −1v(·)∥∥

Lq(·)(Rn)

∥∥w−1(·)χQ−(·)∥∥
Lp′(Rn)

< ∞.

Let us now consider the case when p ≡ q ≡ const.

Theorem 5.48. Let 1 < p < ∞, where p is constant. Suppose that 0 < α− � α+ <

n. Then M
+,(d)
α(·) is bounded from Lp(Rn, w) to Lp(Rn, v) if and only if

ˆ

Rn

vp(x)
(
M

+,(d)
α(·)
(
w−p′

χQ

)
(x)
)p

dx � C

ˆ

Q

w−p′
(x)dx < ∞,

for all dyadic cubes Q ⊂ Rn.

Proof. Sufficiency. It is enough to show that the inequality∥∥∥v M
+,(d)
α(·),u f

∥∥∥
Lp(Rn)

� C
∥∥∥u 1

p f
∥∥∥
Lp(Rn)

(5.19)

holds if for all Q ∈ D(Rn),ˆ

Rn

vp(x)
(
M

+,(d)
α(·),u χQ

)p
(x) dx � C

ˆ

Q

|f(x)|pu(x) dx,
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where (
M

+,(d)
α(·),u f

)
(x) = M

+,(d)
α(·)

(
fu
)
(x).

To prove (5.19) we argue in the same manner as in the proof of Theorem
5.46. Let us construct the set FQ for Q ∈ D(Rn). We haveˆ

Rn

vp(x)
(
M

+,(d)
α(·),u

)p
(x) dx

� 2p
∑

Q∈Dm

ˆ

FQ

vp(x)

(
1

|Q|1−α(x)
n

ˆ

Q+

f(y)u(y)dy

)p

dx

= C
∑

Q∈Dm

( ˆ
FQ

vp(x) |Q|
(

α(x)
n −1
)
p dx

)( ˆ
Q+

f(y)u(y)dy

)p

= C
∑

Q∈Dm

( ˆ
FQ

vp(x) |Q|
(

α(x)
n −1
)
p dx

)(
u(Q+)

)p( 1

u(Q+)

ˆ

Q+

f(y)u(y)dy

)p

.

Taking Proposition 4.25 into account it is enough to show that

S :=
∑

j: Qj⊂Q
F

Q
−
j

=∅

Qj∈D(Rn)

ˆ

F
Q

−
j

vp(x)

(∣∣Q−
j

∣∣α(x)
n −1

ˆ

Qj

u(y)dy

)p

dx � c

ˆ

Q

u(y)dy.

Indeed, we have

S �
∑

j: Qj⊂Q
F

Q
−
j

=∅

Qj∈D(Rn)

ˆ

F
Q

−
j

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx

=

ˆ
⋃

Qj⊂Q F
Q

−
j

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx

�
ˆ

Rn

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx � C

ˆ

Q

u(y)dy.

Necessity. Taking the test function fQ = χQw
−p′

in the two-weight inequality∥∥∥v (M+,(d)
α(·) f

)∥∥∥
Lp(Rn)

� C
∥∥∥f w
∥∥∥
Lp(Rn)

and observing that
´
Q

w−p′
(y)dy < ∞ for every Q ∈ D(Rn), we obtain the desired

result. �
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The proof of the next statement is similar to that of the previous theorem,
and is omitted.

Theorem 5.49. Suppose that 1 < p < ∞, where p is constant. Then M
−,(d)
α(·) is

bounded from Lp(Rn, w) to Lp(Rn, v) if and only if there is a positive constant C
such that for all Q ∈ D(Rn),

ˆ

Rn

vp(x)
(
M

−,(d)
α(·)
(
w−p′

χQ

))p
(x)dx � C

ˆ

Q

w−p′
(x)dx < ∞.

Next we now discuss the two-weight problem for the one-sided maximal func-
tions M+

α(·), M−
α(·) defined on R.

Recall that M
+,(d)
α(·) and M

−,(d)
α(·) denote the one-sided dyadic maximal func-

tions. Now we assume that they are defined on R.

Together with these operators we need the following maximal operators:

(
M̄−

α(·)f
)
(x) = sup

h>0

1

(h/2)1−α(x)

x+hˆ

x+h
2

|f(y)|dy,

(
M̄+

α(·)f
)
(x) = sup

h>0

1

(h/2)1−α(x)

x−h
2ˆ

x−h

|f(y)|dy;

(
M̃+

α(·)f
)
(x) = sup

j∈Z

1

2(j−1)(1−α(x))

x+2jˆ

x+2j−1

|f(y)|dy.

To prove the next statements we need some lemmas.

Lemma 5.50. Let f ∈ Lloc(R). Then the following pointwise estimates hold:(
M+

α(·)f
)
(x) � 2α+−1

1− 2α+−1

(
M̄+

α(·)f
)
(x),(

M−
α(·)f
)
(x) � 2α+−1

1− 2α+−1

(
M̄−

α(·)f
)
(x)

(5.20)

for every x ∈ R.

Proof. Observe that

1

h1−α(x)

x+hˆ

x

|f(t)|dt = 1

h1−α(x)

x+h
2ˆ

x

|f(t)|dt+ 1

h1−α(x)

x+hˆ

x+h
2

|f(t)|dt
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= 2α(x)−1 1

(h/2)1−α(x)

x+h
2ˆ

x

|f(t)|dt+ 2α(x)−1 1

(h/2)1−α(x)

x+hˆ

x+h
2

|f(t)|dt

� 2α(x)−1
(
M+

α(·)f
)
(x) + 2α(x)−1

(
M̄+

α(·)f
)
(x).

Hence, (
M+

α(·)f
)
(x) � 2α(x)−1

(
M+

α(·)f
)
(x) + 2α(x)−1

(
M̄+

α(·)f
)
(x).

Consequently, (
1− 2α(x)−1

)(
M+

α(·)f
)
(x) � 2α(x)−1

(
M̄+

α(·)f
)
(x),

which implies

(
M+

α(·)f
)
(x) � 2α(x)−1

1− 2α(x)−1

(
M̄+

α(·)f
)
(x) � 2α+−1

1− 2α+−1

(
M̄+

α(·)f
)
(x).

Inequality (5.20) is established analogously. �
Lemma 5.51. The inequality(

M̄+
α(·)f
)
(x) � C

(
M̃+

α(·)f
)
(x) (5.21)

holds with a positive constant C independent of f and x.

Proof. Take h > 0. Then h ∈ [2j−1, 2j) for some j ∈ Z, and so

1

(h/2)1−α(x)

x+h
2ˆ

x+h

|f(t)|dt � 1

(2j−2)1−α(x)

x+2jˆ

x+2j−2

|f(t)|dt

=
1

2(j−2)(1−α(x))

x+2j−1ˆ

x+2j−2

|f(t)|dt+ 1

2(j−2)(1−α(x))

x+2jˆ

x+2j−1

|f(t)|dt

=
1

2(j−2)(1−α(x))

x+2j−1ˆ

x+2j−2

|f(t)|dt+ 2α(x)−1

2(j−1)(1−α(x))

x+2jˆ

x+2j−1

|f(t)|dt

�
(
M̃+

α(·)f
)
(x) + 2α+−1

(
M̃+

α(·)f
)
(x) =

(
1 + 2α+−1

)(
M̃+

α(·)f
)
(x).

Hence, (5.21) holds for C = 1 + 2α+−1. �
Lemma 5.52. There exists a positive constant C depending only on α such that for
all f , f ∈ Lloc(R), and x ∈ R,(

M̃+
α(·)f
)
(x) � C

(
M

+,(d)
α(·) f

)
(x). (5.22)
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Proof. Let h = 2j for some integer j. Suppose that I and I ′ are dyadic intervals
such that I

⋃
I ′ is again dyadic, |I| = |I ′| = 2j−1, and [x + h

2 , x + h) ⊂ (I
⋃
I ′).

Then x ∈ (I
⋃
I ′)−, where (I

⋃
I ′)− is dyadic, and

x+hˆ

x+h
2

|f(t)|dt �
ˆ

I
⋃

I′

|f(t)|dt � 2j(1−α(x))
(
M

+,(d)
α(·) f

)
(x),

whence (
M̃+

α(·)f
)
(x) � 21−α−

(
M

+,(d)
α(·) f

)
(x).

If I
⋃
I ′ is not dyadic, then we take I1 ∈ D(R) of length 2j containing I ′. Con-

sequently, x ∈ I−1 , where I−1 is dyadic. Observe that x ∈ I−, where I− is also
dyadic. Consequently,

x+hˆ

x+h
2

|f(t)|dt �
ˆ

I
⋃

I1

|f(t)|dt =
ˆ

I

|f(t)|dt+
ˆ

I1

|f(t)|dt � C h1−α(x)
(
M

+,(d)
α(·) f

)
(x)

with positive constant C independent of j. Finally, we have (5.22). �
Lemma 5.53. There exists a positive constant C, depending only on α, such that(

M
+,(d)
α(·) f

)
(x) � C

(
M+

α(·)f
)
(x) (5.23)

for all f ∈ Lloc(R) and all x ∈ R.

Proof. Let x ∈ I, I ∈ D(R). Denote I = [a, b). Then I+ = [b, 2b − a). Let
h = 2b− a− x. We have

1

|I|1−α(x)

ˆ

I+

|f(t)|dt � 21−α(x)

|I⋃ I+|1−α(x)

x+hˆ

x

|f(t)|dt

� 21−α− 1

h1−α(x)

x+hˆ

x

|f(t)|dt � 21−α−M+
α(·)f(x).

Since I is an arbitrary dyadic cube containing x, (5.23) holds for C = 21−α− . �

Summarizing Lemmas 5.50–5.53, we have the next statement:

Proposition 5.54. There exists positive constants C1 and C2 such that for all f ,
f ∈ Lloc(R), and x ∈ R the two-sided inequality

C1

(
M+

α(·)f
)
(x) �

(
M

+,(d)
α(·) f

)
(x) � C2

(
M+

α(·)f
)
(x)

holds.
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Now Theorem 5.46 (for n = 1) and Proposition 5.54 yield the following result,

for the formulation of which we need the class P̃(I) of exponents (see Definition
3.18).

Theorem 5.55. Let p, q, and α be measurable functions on I = R, 1 < p− < q− �
q+ < ∞, 0 < α− � α+ < 1. Suppose also that p ∈ P̃(I). Further, assume that

w−(p−)′ ∈ RDC
(d)

(I). Then M+
α(·) is bounded from Lp(·)(I, w) to Lq(·)(I, v) if

B := sup
a∈R

h>0

∥∥χ(a−h,a)(·) hα(·)−1
∥∥
L

q(·)
v (R)

∥∥χ(a,a+h)w
−1
∥∥
L(p−)′ (R) < ∞.

Proof. By Theorem 5.46, the condition B < ∞ implies

‖M+,(d)
α(·) f‖Lq(·)(R) � C‖fw‖Lp−(R).

Now Propositions 3.17 and 5.54 complete the proof. �

Analogously the next statement can be proved:

Theorem 5.56. Let p, q, and α be measurable functions on I := R, 1 < p− <

q− � q+ < ∞, 0 < α− � α+ < 1. Suppose also that p ∈ P̃(I) and that w−(p−)′ ∈
RDC

(d)
(I). Then M−

α(·) is bounded from Lp(·)(I, w) to Lq(·)(I, v) if

B1 := sup
a∈I
h>0

∥∥χ(a,a+h)(·)hα(·)−1v(·)∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1
∥∥
L(p−)′ (I) < ∞.

The results of this section have the following corollaries:

Corollary 5.57. Let I := R and 1 < p < q− � q+ < ∞, 0 < α− � α+ < 1,

where p is constant. Assume that w−p′ ∈ RDC
(d)

(R). Then M+
α(·) is bounded

from Lp(I, w) to Lq(·)(I, v) if and only if

sup
a∈I
h>0

∥∥χ(a−h,a)(·) hα(·)−1
∥∥
L

q(·)
v (I)

∥∥χ(a,a+h)w
−1
∥∥
Lp′(I) < ∞.

Corollary 5.58. Let I := R and let 1 < p < q− � q+ < ∞, where p is constant.
Suppose that α is a measurable function on R satisfying 0 < α− � α+ < 1.

Suppose also that w−p′ ∈ RDC
(d)

(I). Then M−
α(·) is bounded from Lp(I, w) to

Lq(·)(I, v) if and only if

sup
a∈I
h>0

∥∥χ(a,a+h)(·)hα(·)−1v(·)∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1
∥∥
Lp′(I) < ∞.

Corollary 5.59. Let I = R, 1 < p− < q− � q+ < ∞, 0 < α− � α+ < 1. Assume

that p− = p(∞), p ∈ P∞(I) and w−(p−)′ ∈ RDC
(d)

(R). Then:

(i) M+
α(·) is bounded from Lp(·)(I, w) to Lq(·)(I, v) if B < ∞;

(ii) M−
α(·) is bounded from Lp(·)(I, w) to Lq(·)(I, v) if B1 < ∞.
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Proof of Corollary 5.57. Sufficiency is a direct consequence of Theorem 5.55.

Necessity follows immediately by applying the two-weight inequality for the test
function f(x) = χ(a,a+h)(x)w

−p′
(x) (see also the necessity part in the proof of

Theorem 5.46 for details). �

The proof of Corollary 5.58 is similar to that of Corollary 5.57.

Proof of Corollary 5.59. (i) follows from Theorem 5.55 and Proposition 3.17 be-
cause the condition p ∈ P∞(I) implies that

ˆ

I

δp(x)p(∞)/|p(x)−p(∞)|dx < ∞.

Hence, by using the assumption p(∞) = p− we have that p ∈ P̃(I).

The second part of the corollary is obtained in a similar manner, and is
omitted. �

The next statement gives the boundedness of M+
α(·) in the diagonal case

p ≡ q ≡ const.

Theorem 5.60. Let I := R and let 1 < p < ∞, where p is constant. Suppose that
0 < α− � α+ < ∞. Then M+

α(·) is bounded from Lp(I, w) to Lp(I, v) if and only

if there is a positive constant C such that for all bounded intervals J ⊂ R,

ˆ

R

vp(x)
(
M+

α(·)
(
w−p′

χJ

)
(x)
)p

dx � C

ˆ

J

w−p′
(x)dx < ∞.

Proof. Sufficiency follows from Proposition 5.54 and Theorem 5.48 for n = 1.

Necessity. We take f = χJ wp′
in the two weight inequality∥∥v M+

α(·) f
∥∥
Lp(I)

� C
∥∥w f
∥∥
Lp(I)

and we are done. �

The following theorem is established analogously.

Theorem 5.61. Let I := R and let 1 < p < ∞, where p is constant. Suppose that
0 < α− � α+ < ∞. Then M−

α(·) is bounded from Lp(I, w) to Lp(I, v) if and only if

ˆ

R

vp(x)
(
M−

α(·)
(
w−p′

χJ

)
(x)
)p

dx � C

ˆ

J

w−p′
(x)dx < ∞

for all bounded intervals J ⊂ R.
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5.7.2 Fefferman–Stein-type Inequalities

In this section we derive Fefferman–Stein-type inequalities for the operators M−
α(·),

M+
α(·).

Theorem 5.62. Let α, p and q be measurable functions on I = R. Suppose that
1 < p− < q− � q+ < ∞ and 0 < α− � α+ < 1/p−. Suppose that p ∈ P̃(I). Then
the following inequalities hold:

‖v(·)(M+
α(·)f)(·)‖Lq(·)(R) � c‖f(·)(Ñ−

α(·)v)(·)‖Lp(·)(R), (5.24)

‖v(·)(M−
α(·)f)(·)‖Lq(·)(R) � c‖f(·)(Ñ+

α(·)v)(·)‖Lp(·)(R), (5.25)

where (
Ñ−

α(·)v
)
(x) = sup

h>0
h−1/p−‖v(·)hα(·)χ(x−h,x)(·)‖Lq(·)(R),(

Ñ+
α(·)v
)
(x) = sup

h>0
h−1/p−‖v(·)hα(·)χ(x,x+h)(·)‖Lq(·)(R).

Proof. We prove (5.24). The proof of (5.25) is the same. First we show that the
inequality

‖v(·)(M+,(d)
α(·) f)(·)‖Lq(·)(R) � c‖f(·)(Ñ−

α(·)v)(·)‖Lp(·)(R)

holds.

We repeat the arguments of the proof of Theorem 5.46 for one-dimensional
dyadic intervals J and construct the sets FJ . Taking h, ‖h‖L(q(·)/r)′ (R) � 1, where
p− < r < q−, the Hölder inequality yieldsˆ

R

vr(x)
(
M

+,(d)
α(·) f(x)

)r
h(x)dx =

∑
J∈Dm(R)

ˆ

FJ

v(x)r
(
M

+,(d)
α(·) f

)r
(x)h(x)dx

� c
∑

J∈Dm(R)

( ˆ
FJ

vr(x)|J |(α(x)−1)rh(x)dx

)( ˆ
J+

f(t)dt

)r

� c
∑

J∈Dm(R)

∥∥∥vr(·)|J |(α(·)−1)rh(·)χFJ (·)
∥∥∥
Lq(·)/r(R)

‖h‖L(q(·)/r)′ (R)

( ˆ
J+

f(t)dt

)r

� c
∑

J∈Dm(R)

∥∥∥vr(·)|J |(α(·)−1)rχFJ (·)
∥∥∥
Lq(·)/r(R)

( ˆ
J+

f(t)dt

)r

= c
∑

J∈Dm(R)

( ˆ
J+

f(x)
∥∥∥v(·)|J |α(·)−1χFJ (·)

∥∥∥
Lq(·)(R)

dx

)r

= c
∑

J∈Dm(R)

|J |−r/(p−)′
( ˆ

J+

f(x)
∥∥∥v(·)|J |α(·)−1/p−χFJ (·)

∥∥∥
Lq(·)(R)

dx

)r
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� c
∑

J∈Dm(R)

|J |−r/(p−)′
( ˆ

J+

f(x)
(
Ñ−

α(·)v
)
(x)dx

)r

� c‖f(·)(Ñ−
α(·)v
)
(·)‖rLp− (R) � c‖f(·)Ñ−

α(·)v(·)‖rLp(·)(R).

Here we used the inequality

sup
J+�x

∥∥∥v(·)|J |α(·)−1/p−χFJ (·)
∥∥∥
Lq(·)(R)

� Cα,p

(
Ñ−

α(·)v
)
(x), x ∈ J+,

which follows in the same manner as Lemma 5.53. Now Proposition 5.54 completes
the proof. �

5.8 Two-weight Inequalities for Monotonic Weights

This section deals with two-weight estimates of the one-sided maximal functions
and one-sided potentials defined on R+ := [0,∞).

Let us recall the notation for the weighted Hardy operators:

(Hv,wf)(x) = v(x)

xˆ

0

f(y)w(y)dy, x ∈ R+,

and

(H∗
v,wf)(x) = v(x)

∞̂

x

f(y)w(y)dy, x ∈ R+.

We will also use the following notation:

vα(x) :=
v(x)

x1−α
, w̃(x) :=

1

w(x)
, w(x) :=

1

w(x)x
, wα(x) :=

1

x1−αw(x)
.

Obviously, v0(x) :=
v(x)
x . Let us fix a positive number a and let

p0(x) := p−([0, x]), p̃0(x) :=

{
p0(x), if x � a,
pc = const, if x > a,

p1(x) := p−([x, a]), p̃1(x) :=

{
p

1
(x), if x � a,

pc = const, if x > a,

Ik := [2k−1, 2k+2], k ∈ Z, Ek = [2k, 2k+1], k ∈ Z.

The following statements follow immediately from Theorems 4.37 and 4.38 taking
X = R+, dμ = dx, x0 = 0, and d(x, y) = |x− y|.
Theorem 5.63. Let 1 < p̃

0
(x) � q(x) � q+(R+) < ∞ and let p be a measurable

function on R+. Suppose that there exists a positive number a such that p(x) =
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pc = const for x > a. If

sup
t>0

∞̂

t

(
v(x)
)q(x)( tˆ

0

w(y)(p̃0)
′(x)dy

) q(x)

(p̃0)′(x)

dx < ∞,

then Hv,w is bounded from Lp(·)(R+) to Lq(·)(R+).

Theorem 5.64. Let 1 < p̃
1
(x) � q(x) � q+(R+) < ∞ and let p be a measurable

function on R+. Suppose that there exists a positive number a such that p(x) =
pc = const for x > a. If

sup
t>0

tˆ

0

(v(x))
q(x)

( ∞̂

t

w(y)(p̃1)
′(x)dy

) q(x)

(p̃1)′(x)

dx < ∞,

then H∗
v,w is bounded from Lp(·)(R+) to Lq(·)(R+).

Now we prove some lemmas which will be useful for us.

Lemma 5.65. Let 1 < p−(R+) � p0(x) � p(x) � p
+
(R+) < ∞, where p is a

measurable function on R+, and let p(x) ≡ pc ≡ const if x > a for some positive
constant a. Suppose that v and w are positive increasing functions on R+ satisfying
the condition

B := sup
t>0

∞̂

t

(v(x)
x

)p(·)( tˆ

0

w(y)−(p̃0)
′(x)dy

) p(x)

(p̃0)′(x)

dx < ∞. (5.26)

Then v(4x) � cw(x) for all x > 0, where the positive constant c is indepen-
dent of x.

Proof. First assume that 0 < t < a. The fact that c = lim
t→0

v(4t)
w(t) < ∞ follows from

the inequalities:

∞̂

t

(
v(x)

x

)p(·)( tˆ

0

w(y)−(p̃0)
′(x)dy

) p(x)

(p̃0)′(x)

dx �
8tˆ

4t

(
v(4t)

w(t)

)p(·)
· t

p(x)

(p̃0)′(x) · x−p(x)dx

�
(
v(4t)

w(t)

)p−
8tˆ

4t

t
p(x)

(p̃0)′(x) · x−p(x)dx � c

(
v(4t)

w(t)

)p−
,

where the positive constant c is independent of the small positive number t. Fur-
ther, suppose that δ is a positive number such that v(4t) � (c+ 1)w(t) for t < δ.
If δ < a, then for all δ < t < a, we have that

v(4t) � v(4a) � c̃w(δ) � c̃w(t),

where c depends on v, w and δ. Now it is enough to take c = max{(c+ 1), c}.
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Let now a � t < ∞. Then p(x) ≡ pc ≡ const for x > t, and consequently

B � sup
t>0

( ∞̂

t

(
v(x)

x

)pc

dx

)( tˆ

0

w(x)−p′
cdx

)pc−1

� c

(
v(4t)

w(t)

)pc

.

The lemma is proved. �

The proof of the next lemma is similar, and we omit it.

Lemma 5.66. Let 1 < p−(R+) � p1(x) � p(x) � p+(R+) < ∞, and let p(x) ≡ pc
≡ const if x > a for some positive constant a. Suppose that v and w are positive
decreasing functions on R+. If

B̃ := sup
t>0

tˆ

0

(v(x))p(·)
( ∞̂

t

(w(y))(p̃1)
′(x) dy

) p(x)

(p̃1)′(x)

dx < ∞, (5.27)

then v(x) � cw(4x), where the positive constant c does not depend on x > 0.

Theorem 5.67. Let 1 < p−(R+) � p+(R+) < ∞ and let p ∈ P log(R+). Suppose
that p(x) ≡ pc ≡ const if ∈ (a,∞) for some positive number a. Let v and w be
weights on R+ such that

(a) Hv0,w̃ is bounded in Lp(·)(R+);

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) ess sup
y∈[ x4 ,4x]

v(y) � bw(x) for almost all x ∈ R+;

(ii) v(x) � b ess inf
y∈[x4 ,4x]

w(y) for almost all x ∈ R+.

Then M− is bounded from Lp(·)(R+, w) to Lp(·)(R+, v).

Proof. Suppose that ‖g‖Lp′(·)(R+) � 1. We have

∞̂

0

(
M−f(x)

)
v(x)g(x)dx

�
∑
k∈Z

2k+1ˆ

2k

(
M−f1,k(x)

)
v(x)g(x)dx +

∑
k∈Z

2k+1ˆ

2k

(
M−f2,k(x)

)
v(x)g(x)dx

+
∑
k∈Z

2k+1ˆ

2k

(
M−f3,k(x)

)
v(x)g(x)dx = S1 + S2 + S3,

where f1,k = f · χ[0,2k−1], f2,k = f · χ[2k+1,∞], f3,k = f · χ[2k−1,2k+2].
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If y ∈ [0, 2k−1) and x ∈ [2k, 2k+1], then y < x/2. Hence x/2 � x − y.
Consequently, if h < x/2, then for x ∈ [2k−1, 2k+2], we have

1

h

xˆ

x−h

| f1,k(y) | dy =
1

h

xˆ

x−h

| f · χ[0,2k−1] | dy = 0.

Further, if h > x
2 , then

1

h

xˆ

x−h

| f1,k(y) | dy =
1

h

xˆ

x−h

| f · χ[0,2k−1] | dy � c
1

x

xˆ

0

| f(y) | dy.

This yields that

M−f1,k(x) � c
1

x

xˆ

0

| f(y) | dy for x ∈ [2k, 2k+1].

Hence, due to the boundedness of Hv0,w̃ in Lp(·)(R+) we have that

S1 � c

∞̂

0

(Hv0,1|f |) (x) g(x)dx

� c ‖Hv0,1|f | ‖Lp(·)(R+) · ‖g‖Lp′(·)(R+) � c ‖fw‖Lp(·)(R+).

Observe now that S2 = 0 because f2,k = f · χ[2k+2,∞]. Let us estimate S3. By

using condition (i) of (b), boundedness of the operator M− in Lp(·)(R+), and
Proposition 3.16 we have that

S3 � c
∑
k

(ess sup
Ek

v)‖M−f3,k‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

� c
∑
k

(ess sup
Ek

v)‖f(·)χIk‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

� c ‖fw‖Lp(·)(R+).

If condition (ii) of (b) holds, then

v(z) � b ess inf
y∈[ z4 ,4z]

w(y) � b ess inf
y∈(2k−1,2k+2)

w(y) � bw(x),

for z ∈ Ek and x ∈ Ik. Hence,

ess sup
Ek

� bw(x),

if x ∈ Ik. Consequently, taking into account this inequality and the estimate of S3

in the previous case we have the desired result for M−. �
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Theorem 5.68. Let 1 < p−(R+) � p+(R+) < ∞ and let p ∈ P log(R+). Suppose
that p(x) ≡ pc ≡ const if x > a, where a is some positive number. Let v and w be
weight functions on R+ such that

(a) H∗
v,w is bounded in Lp(·)(R+);

(b) there exists a positive constant b such that one of the following two conditions
holds:

(i) ess sup
y∈[ x4 ,4x]

v(y) � bw(x) for almost all x ∈ R+;

(ii) v(x) � b ess inf
y∈[x4 ,4x]

w(y) for almost all x ∈ R+.

Then M+ is bounded from Lp(·)(R+, w) to Lp(·)(R+, v).

Proof. Suppose that ‖g‖Lp′(·)(R+) � 1. Then

∞̂

0

(
M+f(x)

)
v(x)g(x)dx �

∑
k∈Z

2k+1ˆ

2k

(
M+f1,k(x)

)
v(x)g(x)dx

+
∑
k∈Z

2k+1ˆ

2k

(
M+f2,k(x)

)
v(x)g(x)dx

+
∑
k∈Z

2k+1ˆ

2k

(
M+f3,k(x)

)
v(x)g(x)dx

=:S1 + S2 + S3,

where fi,k, i = 1, 2, 3 are as defined in the proof of the previous theorem. It is easy
to see that S1 = 0. To estimate S2 observe that

M+f · χ[2k+1,∞)(x) � c sup
j�k+2

2−j

ˆ

Ej

|f(y)|dy, x ∈ Ek. (5.28)

Indeed, notice that if y ∈ (2k+2,∞) and x ∈ Ek, then y − x � 2k+1. Hence,

1

h

x+hˆ

x

| f2,k(y) | dy � 1

h

ˆ

{y:y−x<h,y−x>2k+1}

|f(y)|dy = 0

for h � 2k+1 and x ∈ Ik.

Let now h > 2k+1. Then h ∈ [2j, 2j+1) for some j � k + 1. If y − x < h,
then it is clear that y = y − x + x � h + x � 2j+1 + 2k+1 � 2j+1 + 2j � 2j+2.



348 Chapter 5. One-sided Operators

Consequently, for such an h we have that

1

h

x+hˆ

x

|f2,k(y)|dy =
1

h

x+hˆ

x

|f · χ[2k+2,∞)(y)|dy � 1

h

ˆ

{y:y−x<h,y>2k+2}

|f(y)|dy

� 1

x

ˆ

{y: y∈[2k+2,2j+2]}

|f(y)|dy �
j+1∑

i=k+2

2−j

2i+1ˆ

2i

|f(y)|dy

which proves inequality (5.28).

Taking into account estimate (5.28) and the boundedness ofH∗
v,w in Lp(·)(R+)

we find that

S2 � c
∑
k

ˆ

Ek

v(x)g(x)

(
sup

j�k+1
2−j

ˆ

Ej

|f(y)|dy
)
dx

� c
∑
k

( ˆ
Ik

v(x)g(x)dx

)( ∞∑
j=k+1

2−j

ˆ

Ej

|f(y)|dy
)

= c
∑
j

2−j

( ˆ
Ej

|f(y)|dy
)

j−1∑
k=−∞

( ˆ
Ek

v(x)g(x)dx

)

= c
∑
j

2−j

( ˆ
Ej

|f(y)|dy
)( 2jˆ

0

v(x)g(x)dx

)

� c
∑
j

ˆ

Ej

|f(y)| y−1

( yˆ

0

v(x)g(x)dx

)
dy

= c

ˆ

R+

|f(y)| y−1

( yˆ

0

v(x)g(x)dx

)
dy

= c

ˆ

R+

v(x)g(x)

( ∞̂

x

|f(y)| y−1dy

)
dx

� c ‖g‖Lp′(·)R+
· ‖H∗

v(·),1/·f‖Lp(·)R+
� c‖fw‖Lp(·)R+

.

To estimate S3 assume that condition (i) of (b) is satisfied. By Proposition 3.16
and the boundedness of the operator M+ in Lp(·)(R+), we conclude that

S3 � c
∑
k

(ess sup
Ek

v)‖M+f3,k(·)‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)
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� c
∑
k

(ess sup
Ek

v)‖f(·)χIk‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

� c
∑
k

‖f(·)w(·)χIk (·)‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

� c ‖f(·)w(·)‖Lp(·)(R+) · ‖g(·)‖Lp′(·)(R+) � c ‖f(·)w(·)‖Lp(·)(R+). �

Let us recall that P log(I) denotes the class of all bounded exponents p : I →
[1,+∞) satisfying the local log-condition.

Theorem 5.69. Let 1 < p− � p0(x) � p(x) � p+ < ∞ and let p ∈ P log(I). Suppose
that p(x) ≡ pc ≡ const if x > a, where a is a positive constant. Assume that v and
w are positive increasing weights on (0,∞). If condition (5.26) is satisfied, then
M− is bounded from Lp(·)(R+, w) to Lp(·)(R+, v).

Proof. The proof follows by using Lemma 5.65 and Theorem 5.67. �

Theorem 5.70. Let 1 < p− � p1(x) � p(x) � p+ < ∞, and let p ∈ P log(I).
Suppose that p(x) ≡ pc ≡ const if x > a, where a is some positive constant. Let
v and w be positive decreasing weights on (0,∞). If condition (5.27) is satisfied,
then M+ is bounded from Lp(·)(R+, w) to Lp(·)(R+, v).

Proof. The proof follows immediately from Lemma 5.66 and Theorem 5.68. �

Next we discuss two-weight estimates for the one-sided potentials defined
on R+,

Rαf(x) =

xˆ

0

f(t)

(x− t)1−α
dt, Wαf(x) =

∞̂

x

f(t)

(t− x)1−α
dt,

where x > 0 and 0 < α < 1.

Now we are going to prove the main results regarding the one-sided potentials:

Theorem 5.71. Let 1 < p−(R+) � p(x) � q(x) � q+(R+) < ∞, α < 1/p+,

q(x) = p(x)
1−αp(x) , p ∈ P log(R+). Suppose that p(x) ≡ pc ≡ const if x > a, where a

is some positive number. Let v and w be a.e. positive measurable functions on R+

such that

(a) Hvα,w̃ is bounded from Lp(·)(R+) to Lq(·)(R+);

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) ess sup
y∈[ x4 ,4x]

v(y) � bw(x) for almost all x ∈ R+;

(ii) v(x) � b ess inf
y∈[x4 ,4x]

w(y) for almost all x ∈ R+.

Then Rα is bounded from Lp(·)(R+, w) to Lq(·)(R+, v).
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Theorem 5.72. Let 1 < p−(R+) � p(x) � q(x) � q+(R+) < ∞, α < 1/p+,

q(x) = p(x)
1−αp(x) , p ∈ P log(R+). Suppose that p(x) ≡ pc ≡ const if x > a, where a

is some positive number. Let v and w be a.e. positive measurable functions on R+

satisfying the conditions:

(a) H∗
v,wα

is bounded from Lp(·)(R+) to Lq(·)(R+)

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) ess sup
y∈[ x4 ,4x]

v(y) � bw(x) for almost all x ∈ R+;

(ii) v(x) � b ess inf
y∈[x4 ,4x]

w(y) for almost all x ∈ R+.

Then Wα is bounded from Lp(·)(R+, w) to Lq(·)(R+, v).

Proof of Theorem 5.71. Let f � 0 and let ‖g‖Lq′(·)(R+) � 1. It is obvious that

∞̂

0

(Rαf(x)) v(x)g(x)dx �
∑
k∈Z

2k+1ˆ

2k

(Rαf1,k(x)) v(x)g(x)dx

+
∑
k∈Z

2k+1ˆ

2k

(Rαf2,k(x)) v(x)g(x)dx

+
∑
k∈Z

2k+1ˆ

2k

(Rαf3,k(x)) v(x)g(x)dx =: S1 + S2 + S3,

where fi,k, i = 1, 2, 3 are defined in the proof of Theorem 5.67.
If y ∈ [0, 2k−1) and x ∈ [2k, 2k+1], then y < x

2 . Hence

Rαf1,k(x) �
c

x1−α

xˆ

0

f(t)dt, x ∈ [2k−1, 2k+2].

By using the Hölder inequality, Theorem 5.63, Remark 5.29 we find that condi-
tion (i) guarantees the estimate

S1 � c‖fw‖Lp(·)(R).

Further, observe that if x ∈ [2k, 2k+1), then Rαf2,k(x) = 0. Hence S2 = 0.

To estimate S3 we argue as in the proof of Theorem 5.67. �

The proof of Theorem 5.72. is similar to that of Theorem 5.71; therefore it
is omitted.

Now we formulate other results of this section:

Theorem 5.73. Let 1 < p−(R+) � p(x) � q(x) � q+(R+) < ∞ and let α be

a constant satisfying the condition α < 1/p+. Suppose that q(x) = p(x)
1−αp(x) and
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p ∈ P log(R+). Assume that p(x) ≡ pc ≡ const outside some interval [0, a], where a
is a positive constant. Let v and w be positive increasing functions on R+ satisfying
the condition

∞̂

t

(vα(x))
q(x)

( tˆ

0

w−(p̃0)
′(x)(y)dy

) q(x)

(p̃0)′(x)

dx < ∞.

Then Rα is bounded from Lp(·)(R+, w) to Lq(·)(R+, v).

Theorem 5.74. Let 1 < p−(R+) � p(x) � q(x) � q+(R+) < ∞ and let α be

a constant satisfying the condition α < 1/p+. Suppose that q(x) = p(x)
1−αp(x) and

p ∈ P log(R+). Suppose also that p(x) ≡ pc ≡ const outside some interval [0, a],
where a is a positive constant and that v and w are positive decreasing functions
on R+ satisfying the condition

sup
t>0

tˆ

0

(v(x))
q(x)

( ∞̂

t

(wα(y))
(p̃1)

′(x)
dy

) q(x)

(p̃1)′(x)

dx < ∞.

Then Wα is bounded from Lp(·)(R+, w) to Lq(·)(R+, v).

The proofs of Theorems 5.73 and 5.74 are based on Theorems 5.71, 5.72 and
the following lemmas:

Lemma 5.75. Let the conditions of Theorem 5.73 be satisfied. Then there is a
positive constant c such that

v(4t) � cw(t)

for all t > 0.

Lemma 5.76. Let the conditions of Theorem 5.74 be satisfied. Then there is a
positive constant b such that

v(t) � bw(4t)

for all t > 0.

The proof of Lemma 5.75 (resp. 5.76) is similar to that of Lemma 5.65 (resp.
Lemma 5.66); therefore we omit it.

5.9 The Riemann–Liouville Operator on the

Cone of Decreasing Functions

In this section we investigate the Riemann–Liouville operator on the cone of de-
creasing functions in weighted Lp(·) spaces. First we show that the two-sided point-
wise estimate

c1H
0f(x) � R̄αf(x)) � c2H

0f(x),
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holds on the class of functions f : R+ → R+ that are nonnegative and decreasing,
where

H0f(x) =
1

x

xˆ

0

f(t)dt and R̄αf(x) =
1

xα

xˆ

0

f(t)

(x− t)1−α
dt, 0 < α < 1.

The notation Tf ≈ Kf , where T and K are linear positive operators defined
on appropriate classes of functions, means here that there are positive constants
c1 and c2 independent of f and x such that

c1Tf(x) � Kf(x) � c2Tf(x).

Suppose that u is a weight on (0,∞). Define the local oscillation of p by

ϕp(·),u(δ) = ess sup
x∈(0,δ)∩suppu

p(x)− ess inf
x∈(0,δ)∩suppu

p(x).

Note that ϕp(·),u(δ) is a non-decreasing and positive function such that

lim
δ→∞

ϕp(·),u(δ) = p+u − p−u ,

where p+u and p−u denote, respectively the essential supremum and infimum of p
on the support of u.

Definition 5.77. Let D be the class of all nonnegative decreasing functions on
R+. Suppose that u is a measurable a.e. positive function on R+. Let us recall
that Lp(·)(R+, u) denotes the weighted variable exponent Lebesgue space (i.e.,

f ∈ Lp(·)(R+, u) ⇔ fu ∈ Lp(·)(R+).) By the symbol L
p(·)
dec (u,R+) we mean the

class Lp(·)(R+, u) ∩D.

Now we list the well-known results regarding the one-weight inequality for
the operator H0. For the following statement we refer to Ariño and Muckenhoupt
[21].

Theorem 5.78. Let r be a constant such that 0 < r < ∞. Then the inequality

∞̂

0

(
u(x)H0f(x)

)r
dx � C

∞̂

0

(
u(x)H0f(x)

)r
dx, f ∈ Lr

dec(u,R+)

holds if and only if there exists a positive constant C such that for all s > 0

∞̂

s

(
s

x

)r

ur(x)dx � C

sˆ

0

ur(x)dx. (5.29)

Condition (5.29) is called the Br condition and was introduced in Ariño and
Muckenhoupt [21].
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Theorem 5.79 (Boza and Soria [37]). Let u be a weight on (0,∞) and let p : R+ →
R+ be such that 0 < p− � p+ < ∞. Assume that ϕp(·),u(δ) = 0. The following
assertions are equivalent:

(a) There exists a positive constant C such that for any positive and non-increas-
ing function f ,

∞̂

0

(
u(x)H0f(x)

)p(·)
dx � C

∞̂

0

(
u(x)f(x)

)p(·)
dx.

(b) For any r, s > 0,

∞̂

r

(
r

sx
u(x)p(x)

)p(·)
� C

rˆ

0

u(x)p(·)

sp(·)
dx.

(c) p|supp u ≡ p0 a.e. and u ∈ Bp0 .

Our result in this section is the following statement:

Theorem 5.80. Let p : R+ → R+ be such that such that 0 < p− � p+ < ∞.
Assume that ϕp(·),u(δ) = 0. The following assertions are equivalent:

(i) R̄α is bounded from L
p(·)
dec (u,R+) to Lp(·)(R+, u);

(ii) condition (b) of Theorem 5.79 holds;

(iii) condition (c) of Theorem 5.79 holds.

Proof. In view of Theorem 5.79 it is enough to show that the following relation
between the operators R̄α and T holds:

R̄αf ≈ H0f, 0 < α < 1, f ∈ D.

Upper estimate. Represent R̄αf as

R̄αf(x) =
1

xα

x/2ˆ

0

f(t)

(x − t)1−α
dt+

1

xα

xˆ

x/2

f(t)

(x− t)1−α
dt = S1(x) + S2(x).

Observe that if t < x/2, then x/2 < x− t. Hence,

S1(x) � c
1

x

x/2ˆ

0

f(t)dt � cH0f(x),

where the positive constant c does not depend on f and x. Since f is non-
increasing, we find that

S2(x) � cf(x/2) � cH0f(x).

The lower estimate follows immediately by using the fact that f is nonnega-
tive and the obvious estimate x− t � x where 0 < t < x. �
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5.10 Comments to Chapter 5

Motivation for the study of one-sided operators acting between the classical Lebesgue
spaces is provided in Samko, Kilbas, and Marichev [331], Mart́ın-Reyes [244], Edmunds,
Kokilashvili, and Meskhi [76]. Our extension of this study to the setting of variable
exponent spaces is not only natural, but has the advantage that it shows that one-sided
operators may be bounded under weaker conditions on the exponent than those were
known for two-sided operators.

In Diening and Růžička [64] and Cruz-Uribe, Fiorenza, Martell, and Perez [52] the
boundedness of the Calderón–Zygmund singular integral was established in Lp(·)(Rn),
while Sobolev type theorems for the Riesz potentials have been obtained in Samko
[318, 319], Diening [61], and Cruz-Uribe, Fiorenza, Martell, and Perez [52]. Weighted in-
equalities with power type weights for the Hardy transforms, Hardy–Littlewood maximal
functions, singular and fractional integrals were established in Kokilashvili and Samko
[188, 186], Edmunds and Meskhi [73], Samko [323], Samko and Vakulov [330], Samko,
Shargorodsky, and Vakulov [332], Kokilashvili, Samko, and Samko [196], Diening and
Samko [67], and for general type weights in Diening [63], Kokilashvili and Meskhi [179],
Edmunds, Kokilashvili, and Meskhi [81] (see also Samko [324], Kokilashvili [169]).

The one-weight problem for one-sided operators in the classical Lebesgue spaces
was settled in Sawyer [334] and Andersen and Sawyer [20]. Trace inequalities for one-sided
potentials in Lp spaces were characterized in Meskhi [252] and Kokilashvili and Meskhi
[176] (we refer also to Prokhorov [282]) under transparent conditions (see also comments
to Section 3.6). It should be emphasized that the two-weight problem in the classical
Lebesgue spaces under integral conditions on weights for one-sided maximal functions
and potentials in the non-diagonal case is solved in the monographs by Genebashvili,
Gogatishvili, Kokilashvili, and Krbec [104, Chap. 2 and 3] and Edmunds, Kokilashvili,
and Meskhi [76, Chap. 2)]. For Sawyer type two-weight criteria for one-sided fractional
operators we refer to Mart́ın-Reyes, Ortega Salvador, and de la Torre [246], Mart́ın-Reyes
and de la Torre [245], Lorente [231].

A result similar to Theorem 5.40 has been derived in Kokilashvili and Samko [191,
193] for the Hardy–Littlewood maximal operator defined on a domain in R

n.

In the paper by Ombrosi [275] the two-weight weak type inequality was proved
in the classical Lebesgue spaces for the one-sided dyadic Hardy–Littlewood maximal
functions defined on R

n.

Notice that the Fefferman–Stein-type inequality for the classical Riesz potentials
for the diagonal case was established by E. Sawyer (see, e.g., Sawyer [335]).

This chapter is based on the papers Edmunds, Kokilashvili, and Meskhi [80] and
Kokilashvili, Meskhi, and Sarwar [203].



Chapter 6

Two-weight Inequalities for
Fractional Maximal Functions

In this chapter necessary and sufficient conditions for boundedness of the fractional
maximal functions

(Mα(·)f)(x) := sup
Q�x

1

|Q|1−α(x)/n

ˆ

Q

|f(y)|dy, 0 < α− � α+ < n,

and Riesz potentials

(Iα(·)f)(x) :=
ˆ

Rn

f(y)

|x− y|n−α(x)
dy, 0 < α− � α+ < n,

from Lp(Rn, w) to Lq(·)(Rn, v) are given in the case when the parameter α(·) and
the weights are general-type functions.

Let B and Q be a ball and cube respectively in Rn. In the sequel we will use
the notation

B̂ := B × [0, rad(B)); Q̂ := Q× [0, l(Q)],

where rad(B) and l(Q) denotes radius and side-length of B and Q, respectively.

Our conditions on the triple (α(·), v(·), w(·)) are transparent and we do not
require the log-condition for parameters and exponents. The target space is the
classical Lebesgue space and the right-hand side weight raised to a certain power
satisfies the (reverse) doubling condition. In particular, from the general results we
have: a generalization of the Sobolev inequality for potentials; criteria for the valid-
ity of the trace inequality for fractional maximal functions and potential operators;
a theorem of Muckenhoupt–Wheeden type (one-weight inequality) for fractional
maximal functions defined on a bounded interval,(

M
(J)
α(·)f
)
(x) := sup

I�x; I⊆J

1

|I|1−α(x)

ˆ

I

|f(y)|dy
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V. Kokilashvili et al., Integral Operators in Non-Standard Function Spaces,  
Operator Theory: Advances and Applications 248, DOI 10.1007/978-3-319-21015-5_6 

355



356 Chapter 6. Two-weight Inequalities for Fractional Maximal Functions

in the case when the parameter satisfies the log-condition. Also, Sawyer-type two-
weight criteria for fractional maximal functions are derived. Further, similar prob-
lems are studied for fractional integrals with variable parameter defined on the
upper half-space.

The two-weight problem for the double Hardy operator and the strong frac-
tional maximal operator is also studied in variable exponent Lebesgue spaces.
In particular, we derive a complete characterization of a class of weights which
guarantee the trace inequality for these operators.

We keep the notation of Chapter 3 for weighted variable exponent Lebesgue
spaces.

6.1 Preliminaries

The following definitions were introduced in Chapter 2 on an SHT but we give
them again for the case of a domain Ω ⊆ Rn.

Definition 6.1. We say that a measure μ satisfies the doubling condition on a
domain Ω (μ ∈ DC(Ω)) if there exists a positive constant b such that for all x ∈ Ω
and all r > 0,

μ(B(x, 2r) ∩ Ω) � bμ(B(x, r) ∩ Ω).

Definition 6.2. Let 1 < p < ∞. We say that a weight function w belongs to the
Muckenhoupt class on a domain Ω (w ∈ Ap(Ω)) if

sup
a∈Ω
r>0

Aa,r
p := sup

a∈Ω
r>0

(
w(Ω ∩B(a, r))

|Ω ∩B(a, r)|
)1/p(

w1−p′
(Ω ∩B(a, r))

|Ω ∩B(a, r)|
)1/p′

< ∞,

where p′ = p
p−1 .

It is easy to check that if, for example, n = 1 and Ω is an interval J , then
the condition w ∈ Ap(J) implies μ ∈ DC(J), where dμ = w(x)dx.

In Chapter 4 we introduced the class of weights RDC
(d)

(Rn) (see Definition
4.27). We need also the class of weights RDC(Rn) introduced in the following
definition.

Definition 6.3. A measure μ belongs to the class RDC(Rn) if there is a constant
δ > 1 such that for all cubes Q and Q′ such that Q is a sub-cube of Q′ obtained
by dividing Q′ into 2n equal parts, the inequality

μ(Q′) � δμ(Q)

holds.



6.1. Preliminaries 357

Remark 6.4. It is easy to check that μ ∈ RDC(Rn) implies μ ∈ RDC(Rn) (see
Definition 4.3); in particular, it follows that there are constants A,B > 1 such
that for all x ∈ Rn and r > 0,

μ
(
Q(x,Ar)

)
� B
(
Q(x, r)

)
,

where Q(x, r) denotes the cube with centre x and side-length 2r.

The following lemma will be useful for us:

Lemma 6.5. Let p be a constant such that 1 < p < ∞ and J be an interval in
R. Assume that α is a variable parameter defined on J satisfying the conditions
α(·) ∈ P log(J) and 0 < α− � α(x) � α+ < 1/p. Set q(x) = p

1−α(x)p . If

B := sup
I⊂J

‖χI |I|α(·)−1w‖Lq(·)(J)‖χIw
−1‖Lp′(J) < ∞,

then w−p′ ∈ RDC
(d)

(J).

Proof. First we show that wp ∈ Ap(J).

By Lemma 4.17,( ˆ
I

wq−(I)

)1/q−(I)

� (1 + |I|)‖χIw‖Lq(·)(J) � (1 + |J |)‖χIw‖Lq(·)(J).

The latter inequality, the assumption α(·) ∈ P log(J), Proposition 4.13 (forX = J),
and the equality q−(I) = p

1−α−(I)p yield

B � ‖χI |I|α(·)−1w‖Lq(·)(J)‖χIw
−1‖Lp′(J)

� c|I|α+(I)−1‖χIw‖Lq−(I)(J)‖χIw
−1‖Lp′(J)

� c|I|α−(I)−1‖χIw‖Lq−(I)(J)‖χIw
−1‖Lp′(J).

On the other hand, using the Hölder inequality with the exponent q−(I)/p we find
that

|I|−1‖χIw‖Lp(J)‖χIw
−1‖Lp′(J) � |I|−1|I|

1
(q−(I)/p)′p ‖χIw‖Lq−(I)(J)‖χIw

−1‖Lp′(J)

� |I|α−(I)−1‖χIw‖Lq−(I)(J)‖χIw
−1‖Lp′(J)

� B < ∞.

Thus, wp ∈ Ap(J), and so w−p′ ∈ Ap′(J). Hence, if we denote ν(E) := w−p′
(E),

there is a constant C > 1 such that for all subintervals I, I ′ ⊂ J , I ′ ⊂ I, where I ′

is one of the subintervals of I obtained by dividing I into two equal subintervals,

ν(I) � Cν(I ′). (6.1)
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Hence, if I, I ′ and I ′′ are dyadic subintervals of J such that I ′, I ′′ ⊂ I, |I ′| =
|I ′′| = |I|/2, then by (6.1),

ν(I) = ν(I ′) + ν(I ′′) � (1/C)ν(I) + ν(I ′′).

Finally,

ν(I) � C

C − 1
ν(I ′). �

6.2 Generalized Maximal Function and Potentials

This section is devoted to weighted criteria for fractional integrals with variable
parameter in Lp(·) spaces. In the case of the two-weight inequality we work under
the restriction that a certain power of the right-hand side weight satisfies the
reverse doubling condition.

6.2.1 Fractional Maximal Function

Here we derive weighted criteria for the operator Mα(·). It should be emphasized
that in the most cases we do not require the log-condition on exponents of spaces.

To formulate the statements of this section we need the definitions of the
classes RDC

(d)
(Rn) and RDC(Rn) (see Definitions 4.27 and 6.3, respectively); in

the proof we first establish two-weight criteria for the dyadic fractional maximal
operator with variable parameter,

(M
(d)
α(·)f)(x) := sup

Q�x
Q∈D(Rn)

1

|Q|1−α(x)/n

ˆ

Q

|f(y)|dy,

where D(Rn) is the dyadic grid in Rn, and then pass to the operator Mα(·).

A dyadic grid D(Rn) is a countable collection of cubes with the following
properties:

(i) Q ∈ D(Rn) ⇒ l(Q) = 2k for some k ∈ Z;

(ii) Q,P ∈ D(Rn) ⇒ Q ∩ P ∈ {∅, P,Q};
(iii) for each k ∈ Z the set Dk = {Q ∈ D(Rn) : l(Q) = 2k} forms a partition

of Rn.

Lemma 6.6 (Lerner [225]). There exist 2n shifted dyadic grids

Dβ := {2−k([0, 1)n +m+ (−1)kβ) : k ∈ Z,m ∈ Z
n}, β ∈ {0, 1/3}n,

such that for any given cube Q, there are a β and a Qβ ∈ Dβ with Q ⊂ Qβ and
l(Qβ) � 6l(Q).
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As a consequence of this lemma one has the pointwise estimate

Mα(·)f(x) � C
∑

β∈{0,1/3}n

M
(d),Dβ

α(·) f(x), (6.2)

where M
(d),Dβ

α(·) is the dyadic variable-parameter fractional maximal operator cor-

responding to the dyadic grid Dβ , and the constant C depends only on n and α.

Theorem 6.7. Let p be constant. Suppose that q and α are measurable functions
on Rn. Let 1 < p < q− � q(x) � q+ < ∞; 0 < α− � α(x) � α+ < n. Assume
also that σ ∈ RDC(Rn), where σ := w−p′

. Then the following conditions are
equivalent:

(i) ‖vMα(·)f‖Lq(·)(Rn) � c‖wf‖Lp(Rn); (6.3)

(ii) A := sup
Q⊂Rn

‖vχQ|Q|α(·)/n‖Lq(·)(Rn)‖w−1χQ‖Lp′(Rn) < ∞, (6.4)

where the supremum is take over all cubes Q ⊂ Rn.

Proof. First note that inequality (6.3) implies the condition σ(Q) < ∞ for every
Q. Indeed, if σ(Q) = ∞ for some Q, then by duality arguments there exists a
nonnegative function g ∈ Lp(Q) such that

´
Q

gw−1 = ∞. Let f = gw−1. Then it is

clear that ‖fw‖Lp(Q) = ‖g‖Lp(Q) < ∞. On the other hand,

‖vMα(·)(gw−1)‖Lq(·)(Rn) � ‖χQvMα(·)(gw−1)‖Lq(·)(Rn)

�
( ˆ

Q

gw−1

)
‖χQ|Q|α(·)/n−1‖Lq(·)(Rn) = ∞.

Hence, Mα(·) is not bounded unless v = 0 almost everywhere on Q.

Substituting now the functions fQ(x) = σ(x)χQ(x) in (6.3) we derive the
implication (i) ⇒ (ii).

Let us now show that (ii)⇒ (i). First we prove that (ii) implies the inequality

‖(vM (d)
α(·)f‖Lq(·)(Rn) � c‖wf‖Lp(Rn). (6.5)

Let f be a bounded nonnegative function with compact support. If we prove
the result for such f , then we can pass to arbitrary f ∈ Lp(Rn, w). Indeed, let
f ∈ Lp(Rn, w) and take the sequence fn = fχQ(0,kn)χ{f<jn}, where kn, jn →∞ as
n → ∞. Then fn → f in Lp(Rn, w) and also pointwise. Moreover, fn(x) � f(x).
On the other hand, Mα(·)fn is a Cauchy sequence in Lq(·)(Rn, v) because

‖Mα(·)fn − Mα(·)fm‖Lq(·)(Rn,v) = ‖v[Mα(·)fn − Mα(·)fm]‖Lq(·)(Rn)

� ‖v[Mα(·)(fn − fm)]‖Lq(·)(Rn)

� c‖w[fn − fm]‖Lp(Rn).
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Consequently, by the completeness of the space Lq(·)(Rn, v), there exists a function
g ∈ Lq(·)(Rn, v) such that

‖[Mα(·)fn]− g‖Lq(·)(Rn,v) −→ 0.

Thanks to the properties of the generalized Lebesgue spaces (see Section 3),

there is a subsequence Mα(·)fnk
which converges to g in L

q(·)
v (Rn) and also almost

everywhere. Since fnk
converges to f in Lp(Rn, w) and almost everywhere, this

leads to the inequality

‖vg‖Lq(·)(Rn) � c‖wf‖Lp(Rn), (6.6)

where c does not depend on f . Now we deal with the sequence fnk
. Since fnk

is
non-decreasing, we have that for fixed x ∈ Q

|Q|α(x)/n−1

ˆ

Q

f(t)dt = lim
k→∞

|Q|α(x)/n−1

ˆ

Q

fnk
(t)dt

� lim
k→∞

sup
Q�x

|Q|α(x)/n−1

ˆ

Q

fnk
(t)dt

= lim
k→∞

(Mα(·)fnk
)(x);

the last limit exists because of convergence a.e. to g. Hence

(Mα(·)f)(x) � lim
k→∞

(Mα(·)fnk
)(x) = g(x)

for almost all x. Finally, inequality (6.6) yields

‖vMα(·)f‖Lq(·)(Rn) � c‖wf‖Lp(Rn).

Now for every x ∈ Rn choose a dyadic cube Qx so that

|Qx|α(x)/n−1

ˆ

Qx

f >
1

2
(M

(d)
α(·)f)(x). (6.7)

Since f has compact support, for each x we can assume that Qx is a “maximal”
dyadic cube for which (6.7) holds. Further, for each Q ∈ D(Rn) introduce FQ as
the set of those x ∈ Q for which (6.7) holds for Q, and moreover, Q is “maximal”.

It is obvious that if we take arbitrary x ∈ R
n, then x ∈ FQ for some Q ∈

D(Rn). On the other hand, for each Q ∈ D(Rn) we have the set FQ, which might
be empty for some Q. It is also clear that FQ ⊂ Q and that FQ1 ∩ FQ2 = ∅ if
Q1 �= Q2. Let Dm := {Q ∈ D(Rn) : FQ �= ∅}.

Now let us take r so that p < r < q−. Then by Proposition 3.8 we have

‖vM (d)
α(·)f‖rLq(·)(Rn) = ‖[vM (d)

α(·)f ]
r‖Lq(·)/r(Rn) � sup

ˆ

Rn

(vM
(d)
α(·)f)

rh,
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where the supremum is taken over all functions h with ‖h‖L(q(·)/r)′ (Rn) � 1. Now
for such an h, by using Proposition 4.30 we find thatˆ

Rn

(vM
(d)
α(·)f)

rh =
∑

Q∈Dm

ˆ

FQ

[vM
(d)
α(·)f ]

rh

� c
∑

Q∈Dm

( ˆ
FQ

vr(x)|Q|(α(x)/n−1)rh(x)dx

)( ˆ
Q

f

)r

� c
∑

Q∈Dm

‖vr(·)|Q|(α(·)/n−1)r‖Lq(·)/r(Rn)‖h‖L(q(·)/r)′ (Rn)

( ˆ
Q

f

)r

� c
∑

Q∈Dm

‖vr(·)|Q|(α(·)/n−1)r‖Lq(·)/r(Rn)‖h‖L(q(·)/r)′ (Rn)

( ˆ
Q

f

)r

� cAr
∑

Q∈Dm

( ˆ
Q

σ

)−r/p′( ˆ
Q

f

)r

� cAr‖fw‖rLp(Rn).

Taking now the supremum with respect to h we see that (ii) ⇒ (6.5).

Now by applying inequality (6.2) we pass from M
(d)
α(·) to Mα(·). �

From the latter statement one derives a trace inequality criterion for Mα(·):

Corollary 6.8. Let Ω := Rn. Suppose that p ≡ const, 1 < p < q− � q(x) � q+ < ∞,
and 0 < α− � α(x) � α+ < n/p. Then the inequality

‖vMα(·)f‖Lq(·)(Ω) � ‖f‖Lp(Ω)

holds if and only if

sup
Q⊂Ω

‖vχQ|Q|
α(·)
n −1‖Lq(·)(Ω)|Q|1/p

′
< ∞,

where by Q we denote a cube in Rn.

The next statement is a restriction version of Theorem 6.7.

Corollary 6.9. Let n = 1 and let Ω := J be a bounded interval in R. Suppose that
α(·), p, and q(·) satisfy the conditions of Theorem 6.7 and that σ ∈ RDC(J),
where σ := w−p′

Then

‖vM (J)
α(·)f‖Lq(·)(J) � c‖wf‖Lp(J)

if and only if
sup
I⊂J

‖vχI |I|α(·)−1‖Lq(·)(J)‖χIw
−1‖Lp′(J) < ∞,

where the supremum is taken over all subintervals I of J .
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Proof. Sufficiency. For simplicity assume that J := [0, 1]. Introduce the following
one-sided maximal functions:

(M+
α(·)f)(x) = sup

h
0<h�1−x

1

h1−α(x)

x+hˆ

x

|f(t)|dt, x ∈ J,

(M−
α(·)f)(y) = sup

s
0<s�y

1

s1−α(y)

yˆ

y−s

|f(t)|dt, y ∈ J,

and their dyadic versions:

(M
+,(d)
α(·) f)(x) = sup

I

1

|I|1−α(x)

ˆ

I

|f(t)|dt,

(M
−,(d)
α(·) f)(y) = sup

S

1

|S|1−α(y)

ˆ

S

|f(t)|dt,

where the supremum is taken over all dyadic intervals I := [a, b) ⊆ J , S := [c, d) ⊆
J , x < a, y > d, 0 � a− x < b− a, 0 � y − d < d− c.

We show that there exists a positive constant c such that the inequality

(M+
α(·)f)(x) � c(M

+,(d)
α(·) f)(x) (6.8)

holds for all x ∈ [0, 1].

First observe that

(M+
α(·)f)(x) �

2α+−1

1− 2α+−1
(M̄+

α(·)f)(x), (6.9)

which can be checked immediately, where

(M̄+
α(·)f)(x) = sup

h
0<h�1−x

1

(h/2)1−α(x)

x+hˆ

x+h/2

|f(t)|dt, x ∈ J.

Further, it is also clear that

(M̄+
α(·)f)(x) � c(M̃+

α(·)f)(x), (6.10)

where

(M̃+
α(·))f(x) = sup

j∈Z

2j�1−x

1

2(j−1)(1−α(x))

x+2jˆ

x+2j−1

|f(t)|dt, x ∈ J.

Now let h = 2j for some integer j with 2j � 1− x and let I and I ′ be dyadic
intervals in J such that I∪I ′ is dyadic, |I| = |I ′| = 2j−1 and [x+h/2, x+h) ⊂ I∪I ′.
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Then
x+hˆ

x+h/2

|f | �
ˆ

I∪I′

|f | � c2j(1−α(x))(M
+,(d)
α(·) f)(x),

where c does not depend on j. Hence

(M̃+
α(·))f(x) � c(M

+,(d)
α(·) )f(x). (6.11)

If I ∪ I ′ is not dyadic, then we take I1 ∈ D(J) of length 2j containing I ′, and then

x+hˆ

x+h/2

|f | �
ˆ

I∪I1

|f | =
ˆ

I

|f |+
ˆ

I1

|f | � ch1−α(x)(M
+,(d)
α(·) f)(x)

with a positive constant c independent of j, which gives again (6.11). Combining
(6.9), (6.10), and (6.11), we arrive to (6.8).

An estimate similar to (6.11) holds also for the left-hand side maximal oper-
ators.

Recalling the argument used in the proof of Theorem 6.7 we find that the
inequality

‖vM+,(d)
α(·) f‖Lq(·)(J) � c‖wf‖Lp(J)

holds if

sup
a∈J,h>0

(a−h,a+h)⊆J

‖vχ(a−h,a)h
α(·)−1‖Lq(·)(J)‖w−1χ(a,a+h)‖Lp′(J) < ∞,

provided that σ ∈ RDC
(d)

(J).

Analogously,

‖vM−,(d)
α(·) f‖Lq(·)(J) � c‖wf‖Lp(J)

if
sup

a∈J,h>0
(a−h,a+h)⊆J

‖vχ(a,a+h)h
α(·)−1‖Lq(·)(J)‖w−1χ(a−h,a)‖Lp′(J) < ∞,

provided that σ ∈ RDC
(d)

(J).

Hence, the above-derived inequalities, the latter observations, and the in-
equality

(M
(J)
α(·)f)(x) � (M+

α(·)f)(x) + (M−
α(·)f)(x),

yield the sufficiency. Necessity follows in the standard way. �

Combining Corollary 6.9 and Lemma 6.5 we obtain the one-weight inequality

for M
(J)
α(·).
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Theorem 6.10. Let J be a bounded interval in R. Suppose that p = const, 1 <
p < q−(J) � q(x) � q+(J) < ∞, 0 < α−(J) � α(x) � α+(J) < 1/p, and
q(x) = p

1−α(x)p . Suppose also that α(·) ∈ P log(J). Then

‖ρM (J)
α(·)f‖Lq(·)(J) � c‖ρf‖Lp(J)

if and only if

sup
I⊂J

|I|α−(I)−1‖χIρ‖Lq(·)(J)‖χIρ
−1‖Lp′(J) < ∞,

where the supremum is taken over all subintervals I of J .

6.2.2 Fractional Integrals

Now we prove the trace inequality for the operator Iα(·).
Let us recall the following statement due to Adams [5] for the Riesz potential

Iα with constant parameter α.

Theorem 6.11. Let α, p, and q be constants such that 1 < p < q < ∞ and
0 < α < n/p. Then Iα is bounded from Lp(Rn) to Lq(Rn, v) if and only if

sup
Q;Q⊂Rn

vq(Q)|Q|q(α/n−1/p) < ∞,

where the supremum is taken over all cubes Q in Rn.

The next statement is a generalization of the previous result.

Theorem 6.12. Suppose that p = const and that q(·) and α(·) are defined on Rn and
satisfy the conditions 1 < p < q− � q(x) � q+ < ∞, 0 < α− � α(x) � α+ < n/p.
Then

‖vIα(·)f‖Lq(·)(Rn) � c‖f‖Lp(Rn) (6.12)

if and only if

B := sup
Q;Q⊂Rn

‖vχQ|Q|
α(·)
n −1‖Lq(·)(Rn)|Q|1/p

′
< ∞,

where the supremum is taken over all cubes Q in Rn.

Proof. Necessity follows easily by substituting fQ = χQ(x) in the inequality (6.12).
To prove sufficiency we apply the trace inequality for the fractional maximal op-
erator with variable parameter to obtain the similar result for Iα(·).

First we prove an inequality similar to that from Hedberg [131]. We argue
as in that paper. For simplicity assume that n = 1. Let β be a number such that
0 < β < α−. Then 0 < α(x) − β < α+ − β < 1/p. We have

Iα(·)f(x) =
ˆ

I(x,r)

f(y)

|x− y|1−α(x)
dy +

ˆ

R\I(x,r)

f(y)

|x− y|1−α(x)
dy := S1(x, r) + S2(x, r).
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Simple calculations show that

S1(x, r) � crβ(Mα(·)−βf)(x); S2(x, r) � crα(x)−1/p‖f‖Lp(R).

Taking r =
[
(Mα(·)−βf(x)

] 1
α(x)−1/p ‖f‖

1
β−α(x)+1/p

Lp(R) in these inequalities we find

that

(Iα(·)f)(x) � c
(
Mα(·)−βf(x)

) α(x)−1/p
α(x)−β−1/p ‖f‖

β−α(x)+1/p+1
β−α(x)+1/p

Lp(R) . (6.13)

Let us now assume ‖f‖Lp(R) � 1 and prove that

‖Iα(·)f‖Lq(·)(R,v) � C

if
B̄ := sup

I
‖χI |I|α(·)−1‖Lq(·)(R,v)|I|1/p

′
< ∞.

Using (6.13) and the inequality β − α(x) > β − α+ > −1/p we find that

ˆ

R

[
(Iα(·)f)(x)

]q(x)
vq(x)dx � c

ˆ

R

[
(Mα(·)−βf)(x)

] q(x)(α(x)−1/p)
α(x)−β−1/p

vq(x)dx. (6.14)

Next, denote q1(x) :=
q(x)(α(x)−1/p)
α(x)−β−1/p . Then it is easy to see that q1(x) > q(x).

From (6.14) it follows that

ˆ

R

[
(Iα(·)f)(x)

]q(x)
vq(x)dx � c

ˆ

R

[
(Mα(·)−βf)(x)

]q1(x)
vq(x)dx.

Further,

‖|I|α(x)−β−1χI‖Lq1(·)(R,v)|I|1/p
′
= ‖|I|α(x)−β−1/pχI‖Lq1(·)(R,v).

Besides, it is easy to see that

ˆ

I

|I|(α(x)−β−1/p)q1(x)vq(x)dx =

ˆ

I

|I|(α(x)−1/p)q(x)vq(x)dx � C

for all I because B̄ < ∞. In fact, by Corollary 6.8,

ˆ

R

[
Iα(·)f(x)

]q(x)
vq(x)dx � C

for all ‖f‖Lp(R) � 1 if B̄ < ∞. The latter fact implies that ‖Iα(·)f‖Lq(·)(R,v) � C

for f , ‖f‖Lp(R) � 1, provided that B̄ < ∞. �
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Theorem 6.12 yields the following generalization of Sobolev’s theorem (Sobolev
[348]).

Theorem 6.13. Let p be constant and let q(·), α(·) be defined on Rn. Suppose that
1 < p < q− � q(x) � q+ < ∞, and 0 < α− � α(x) � α+ < n/p. Then Iα(·) is
bounded from Lp(Rn) to Lq(·)(Rn) if and only if

sup
Q

‖χQ|Q|α(·)/n−1‖Lq(·)(Rn)|Q|1/p
′
< ∞,

where the supremum is taken over all cubes Q in Rn.

6.2.3 Diagonal Case

This section deals with the boundedness of fractional maximal functions with
variable parameter from Lp

w(R
n) to Lp

v(R
n) under the assumption that w satisfies

the doubling condition. In particular, the derived Sawyer-type criterion (Sawyer
[336]). As a corollary we have a transparent necessary and sufficient condition on
α(·) and v guaranteeing the trace inequality (when w = const) for Mα(·).

Theorem 6.14. Let 1 < p < ∞. Suppose that w ∈ DC(Rn). Then

‖vMα(·)f‖Lp(Rn) � c‖wf‖Lp(Rn)

if and only if there is a positive constant c such that for all cubes Q,

ˆ

Q

vp(x)
(
Mα(·)(w1−p′

χQ)
)p
dx � c

ˆ

Q

w1−p′
< ∞.

Proof. Since necessity is trivial, we will show sufficiency. In fact we will prove that
the inequality

‖vM (d)
α(·),uf‖Lp(Rn) � c‖f‖Lp

u(Rn) (6.15)

holds if ˆ

Q

vp(x)(Mα(·),uχQ)
pdx � c

ˆ

Q

u < ∞, (6.16)

where

(Mα(·),uf)(x) := sup
Q�x

1

|Q|1−α(x)/n

ˆ

Q

|f(y)|u(y)dy.

Let

(M
(d)
α(·),uf)(x) := sup

Q�x
Q∈D(Rn)

1

|Q|1−α(x)/n

ˆ

Q

|f(y)|u(y)dy.



6.2. Generalized Maximal Function and Potentials 367

Arguing as in the proof of Theorem 6.7, suppose that f is nonnegative, bounded,
and has compact support. For each x ∈ Rn, choose a dyadic cube Qx, Qx � x, so
that

|Qx|α(x)/n−1

ˆ

Qx

fw >
1

2
(M

(d)
α(·),uf)(x). (6.17)

Since f has compact support, for each x we can assume that Qx is a “maxi-
mal” dyadic cube satisfying (6.17). Further, for each Q ∈ D(Rn) introduce the set
FQ consisting of those x such that x ∈ Q and Q is “maximal” for which (6.17) is
valid. It is clear that if we take x ∈ Rn, then x ∈ FQ for some Q ∈ D(Rn). On the
other hand, for each Q ∈ D(Rn) we have the set FQ, which might be empty for
some Q. It is also obvious that FQ ⊂ Q and that FQ1 ∩ FQ2 = ∅ if Q1 �= Q2. Let
Dm := {Q ∈ Dm : FQ �= ∅}.

We haveˆ

Rn

vp(x)(M
(d)
α(·),uf)

p(x)dx

� 2p
∑

Q∈Dm

ˆ

FQ

v(x)

(
1

|Q|1−α(x)/n

ˆ

Q

fu

)p

dx

� c
∑

Q∈Dm

ˆ

FQ

vp(x)|Q|α(x)/n−1dx

( ˆ
Q

fu

)p

= c
∑

Q∈Dm

( ˆ
FQ

vp(x)|Q|α(x)/n−1dx

)
(u(Q))p

(
1

u(Q)

ˆ

Q

fu

)p

.

At the same time,∑
Q⊂Q′;Q,Q′∈D(Rn)

( ˆ
FQ

vp(x)|Q|α(x)/n−1dx

)
(u(Q))p

�
∑

Q⊂Q′;Q,Q′∈D(Rn)

ˆ

FQ

vp(x)|Q|α(x)/n−1(u(Q))pdx

�
∑

Q⊂Q′:Q,Q′∈D(Rn)

ˆ

FQ

(
Mα(·)(χQu)

)p
(x)vp(x)dx

� c

ˆ
⋃

Q⊂Q′ FQ

(
Mα(·)(χQu)

)p
(x)vp(x)dx

�
ˆ

FQ′

(
Mα(·)χQu)

)p
(x)vp(x)dx �

ˆ

Q′

(
Mα(·)(χQu)

)p
(x)vp(x)dx � c

ˆ

Q′

u.
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Here we used the fact that
⋃

Q⊂Q′ FQ ⊂ Q′. Proposition 4.25 shows that
(6.16) implies (6.15). Now we can pass to Mα(·),u in the same way as in the proof
of Theorem 6.7. �

From this statement we derive

Theorem 6.15. Let 1 < p < ∞. Then the inequality

‖vMα(·)‖Lp(Rn) � c‖f‖Lp(Rn)

holds if and only if

sup
Q

( ˆ
Q

vp(x)|Q|α(x)p
n dx

)1/p

|Q|−1/p < ∞.

6.2.4 Further Remarks

If we require that α(·) ∈ P log(J), where J is an open interval in R, then we

can obtain a Sawyer-type two-weight criterion for M
(J)
α(·) without any additional

restrictions on w. Namely the next statement holds.

Theorem 6.16. Let n = 1 and let Ω = J be a bounded interval. Suppose that
p = const and 1 < p < ∞. Assume that 0 < α− � α+ < 1 and α(·) ∈ P log(J).
Then the inequality

‖vM (J)
α(·)f‖Lp(J) � c‖wf‖Lp(J)

holds if and only if ˆ

I

vp(x)(M
(J)
α(·)σχI)(x)dx � c

ˆ

I

σ < ∞

for all I ⊆ J .

Proof. Since necessity is trivial, we show sufficiency. Without loss of generality we
assume that J is itself a dyadic interval and all dyadic intervals from D(J) are
contained in J . We begin again by dyadic maximal operator

(M
J,(d)
α(·) f)(x) := sup

I�x
I∈D(J)

1

|I|1−α(x)

ˆ

I

|f(y)|dy.

A key relation in the proof is

(M
J,(d)
α(·) f)(x) ≈ (M̄

J,(d)
α(·) f)(x), (6.18)

where

(M̄
J,(d)
α(·) f)(x) = sup

I�x
I∈D(J)

|I|α−(I)−1

ˆ

I

|f |.
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Relation (6.18) holds because of the condition α(·) ∈ P log(J). We can assume
that f is nonnegative and bounded. Let for k ∈ Z, {Ikj } be a family of “maximal”
dyadic intervals such that

|Ikj |α−(Ik
j )−1

ˆ

Ik
j

f > 2k.

For some k, such a family of intervals might be empty. Further, observe that

(i) {M J,(d)
α(·) f > 2k} =

⋃
Ikj ; if for k, the set {Ikj } of intervals is not empty

(ii) Ikj are non-overlapping for a fixed k.

Let us denote

Jk := {x ∈ J : 2k < (M̄
J,(d)
α(·) f)(x) � 2k+1}; Ek

j := Ikj \ {(M̄ J,(d)
α(·) f)(x) > 2k+1}.

We have
ˆ

J

v(x)(M
J,(d)
α(·) f)p(x)dx � c

∑
k,j

2kp
ˆ

Ek
j p

vp

� c

(
1

|Ikj |1−α−(Ik
j )

ˆ

Ik
j

σ

)p(
1

σ(Ikj )

ˆ

Ik
j

f

σ
σ

)p ˆ

Ek
j

vp

:=

ˆ

X

T (f/σ)pdω,

where X = N× Z, the measure ω on X is given by

ω(j, k) :=

ˆ

Ek
j

vp

(
1

|Ikj |1−α−(Ik
j )

ˆ

Ik
j

σ

)p

,

and the operator T is given by

(Tg)(j, k) =
1

σ(Ikj )

ˆ

Ik
j

gσ.

It is obvious that the operator T is bounded in L∞(X). Let us check that T
is of weak type (1, 1). Fix a bounded function g and a positive number λ. Let

Fλ = {(j, k) ∈ X : Tg(j, k) > λ}.
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Denote by Ii the maximal disjoint sub-collection of {Ikj : (j, k) ∈ Fλ}. Since

Ek
j ⊂ Ikj , using (6.18) we find that

ω(Fλ) :=
∑

(j,k)∈Fλ

ˆ

Ek
j

vp(x)dx

(
1

|Ikj |1−α−(Ik
j )

ˆ

Ik
j

σ

)p

�
∑

(j,k)∈Fλ

ˆ

Ek
j

(M
(J)
α(·)σχIk

j
)pvp(x)dx

�
∑
i

∑
Ik
j ⊂Ii

ˆ

Ek
j

(M
(J)
α(·)σχIk

j
)pvp(x)dx

� c
∑
i

ˆ

Ii

σ � c
1

λ

∑
i

ˆ

Ii

gσ � c
1

λ

ˆ

J

gσ.

Hence, T is of weak type (1, 1), so using the Marcinkiewicz interpolation we

obtain the desired result for M
J,(d)
α (·).

Now we can pass to the operator M
(J)
α(·) in the same manner as in the proof

of Theorem 6.7 (see also the proof of Theorem 4.31). �

6.3 Fractional Integral Operators on the
Upper Half-space

This section is devoted to two-weight estimates for fractional integrals defined on
the upper half-space,

(Mα(x,t)f)(x, t) = sup
Q�x

l(Q)>t>0

|Q|α(x,t)
n −1

ˆ

Q

|f(y)|dy,

(Iα(x,t)f)(x, t) =

ˆ

Rn

f(y)

(|x− y|+ t)n−α(x,t)
dy,

where (x, t) ∈ R
n+1
+ , Rn+1

+ := Rn× [0,∞). Here Q denotes a cube and l(Q) denotes

its side-length. Also, Q̂ denotes the set Q× [0, l(Q)].

To prove the main results of this section we need the following dyadic maximal
operator defined on the upper half-space:

M
(d)
α(x,t)f(x, t) = sup

Q�x

|Q|1/n>t>0
Q∈D(Rn)

1

|Q|1−α(x,t)
n

ˆ

Q

|f(y)|dy,
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where D(Rn) denotes the dyadic grid in Rn and the supremum is taken over all
cubes Q ∈ D(Rn) containing x.

It is easy to see that Lemma 6.6 implies the following estimate similar to
(6.2):

Mα(x,t)f(x, t) � C
∑

β∈{0,1/3}n

M
(d),Dβ

α(x,t) f(x, t), (6.19)

where M
(d),Dβ

α(x,t) are dyadic fractional maximal operators defined with respect to

dyadic grids Dβ .

6.3.1 Non-diagonal Case

In this section we derive criteria for two-weight and trace inequalities for gener-
alized fractional maximal functions and potentials on the half-space in the non-
diagonal case.

First we formulate the result for dyadic generalized fractional maximal func-
tions.

Theorem 6.17. Let p be constant, and let q(·) and α(·) be defined on Rn+1. Suppose
that 1 < p < q− � q+ < ∞, 0 < α− � α+ < n. Suppose also that w−p′ ∈
RDC

(d)
(Rn). Then M

(d)
α(x,t) is bounded from Lp(Rn, w) to Lq(·)(Rn+1

+ , v) if and

only if

A := sup
Q,Q∈D(Rn)

‖χQ̂(·)|Q|
α(·)
n −1v(·)‖Lq(·)(Rn+1

+ )‖w−1(·)χQ(·)‖Lp′(Rn) < ∞.

Proof. Sufficiency. Let f be a nonnegative bounded function with compact sup-
port. If we prove the result for such an f , then we can pass to an arbitrary
f ∈ Lp(Rn, w). Indeed, for f ∈ Lp(Rn, w), we take, for example, the sequence
fm = χQ(0,km)χ{f<jm}, where km, jm →∞ asm →∞. Then fm → f in Lp(Rn, w)

and also pointwise. It is clear that fm � f . On the other hand, {M (d)
α(x,t)fm} is a

Cauchy sequence in Lq(·)(Rn+1
+ , v). Indeed, this follows upon observing that

‖M (d)
α(x,t)fm1 − M

(d)
α(x,t)fm2‖Lq(·)(Rn+1

+ ,v) � ‖vM (d)
α(x,t)(fm1 − fm2)‖Lq(·)(Rn+1

+ )

� C‖w(fm1 − fm2)‖Lp(Rn) −→ 0

asm1,m2 →∞. Further, there is g ∈ Lq(·)(Rn+1
+ , v) such that M

(d)
α(x,t)fm converges

to g in Lq(·)(Rn+1
+ , v) and also pointwise. This leads to the inequality

‖vg‖Lq(·)(Rn+1
+ ) � c‖wf‖Lp(Rn), (6.20)
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where the constant c does not depend on f . Since {fmk
} is a non-decreasing

sequence, we have that, for all x ∈ Q and t < |Q| 1n ,

|Q|α(x,t)
n −1

ˆ

Q

f(y) dy = lim
k→∞

|Q|α(x,t)
n −1

ˆ

Q

fmk
(y) dy

� lim
k→∞

sup
Q�x

|Q| 1
n >t

|Q|α(x,t)
n −1

ˆ

Q

fmk
= lim

k→∞
(M

(d)
α(x,t)fmk

)(x, t).

Hence, since the last limit exists, we have

(M
(d)
α(x,t)f)(x, t) � lim

k→∞
(M

(d)
α(x,t)fmk

)(x, t) = g(x, t)

for a.e. (x, t) ∈ Rn+1. Finally, inequality (6.20) yields

‖vM (d)
α(x,t)f‖Lq(·)(Rn+1

+ ) � c‖wf‖Lp(Rn).

Let (x, t) ∈ R
n+1
+ . Then there is a dyadic cube Qx,t, such that Qx,t � x,

|Qx,t| 1n > t, and

|Qx,t|
α(x,t)

n −1

ˆ

Qx,t

|f | > 1

2
M (d)f(x, t). (6.21)

Since f is bounded and has compact support, we can assume that Qx,t is the

maximal cube containing x and such that |Qx,t| 1
n > t for which (6.21) holds. Let

us introduce the set

FQ :=
{
(x, t) ∈ R

n+1
+ , x ∈ Q, |Q| 1n > t, (6.21) holds for Q, and Q is maximal

}
.

Now observe that FQ ⊂ Q̂ and FQ1

⋂
FQ2 = ∅ if Q1 �= Q2. It is also obvious

that R
n+1
+ =

⋃
Q∈Dn

FQ, where Dn =
{
Q ∈ D(Rn) : FQ �= ∅}. Let us take a

constant r so that p < r < q−. Then

‖vM (d)
α(x,t)f‖rLq(·)(Rn+1

+ )
= ‖[vM (d)

α(x,t)f ]
r‖Lq(·)/r(Rn+1

+ )

� c sup
‖h‖

L
(
q(·)
r

)′ �1

ˆ

R
n+1
+

(
vM

(d)
α(x,t)f

)r
h.

Now for such an h, using the Hölder inequality for Lp(·) spaces and Proposi-
tion 4.30 we haveˆ

R
n+1
+

(
vM

(d)
α(·)f
)r

h =
∑

Q∈Dm

ˆ

FQ

[
vM

(d)
α(·)
]r
h
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� c
∑

Q∈Dm

( ˆ
FQ

vr(x, t)|Q|(α(x,t)
n −1)rh(x, t)dxdt

)( ˆ
Q

f

)r

� c
∑

Q∈Dm

‖vr(·)|Q|(α(x,t)
n −1)rχQ̂(·)‖L q(·)

r (Rn+1
+ )

‖h‖
L(

q(·)
r

)′ (Rn+1
+ )

( ˆ
Q

f

)r

= c
∑

Q∈Dm

‖v(·)|Q|(α(x,t)
n −1)χQ̂(·)‖Lq(·)(Rn+1

+ )‖h‖L(
q(·)
r

)′ (Rn+1
+ )

( ˆ
Q

f

)r

� cAr
∑

Q∈Dm

( ˆ
Q

w−p′
)−r

p′
( ˆ

Q

f

)r

� cAr‖fw‖rLp(Rn).

Taking the supremum over all h we get the desired result. To prove necessity
observe first that the two-weight inequality implies

´
Q

w−p′
< ∞ for all cubes.

Further, taking the test function f (Q) = χQw
−p′

and using the boundedness of

M
(d)
α(x,t) from Lp(Rn, w) to Lq(·)(Rn+1

+ , v) for f (Q), we conclude that A < ∞. �

Theorem 6.18. Let p, q(·) and α(·) satisfy the conditions of Theorem 6.17. Suppose
that w−p′ ∈ RDC(Rn). Then Mα(x,t) is bounded from the space Lp(Rn, w) to

Lq(·)(Rn+1
+ , v) if and only if

B := sup
Q

‖χQ̂(·)|Q|
α(·)
n −1v(·)‖Lq(·)(Rn+1

+ )‖w−1(·)χQ(·)‖Lp′(Rn) < ∞,

where the supremum is taken over all cubes Q ⊂ Rn.

Proof. Necessity follows in the same way as in the proof of Theorem 6.17. Suffi-
ciency is a consequence of estimate (6.19). �

Theorem 6.18 immediately implies the following statement.

Theorem 6.19. Let p, q(·), and α(·) satisfy the conditions of Theorem 6.17. Then
Mα(x,t) is bounded from from Lp(Rn) to Lq(·)(Rn+1

+ , v) if and only if

sup
Q

‖χQ̂(x, t) v(x, t)|Q|
α(x,t)

n −1‖Lq(x,t)(Rn+1
+ )|Q|

1
p′ < ∞, (6.22)

where the supremum is taken over all cubes Q in Rn.

Now we pass to the operator Iα(x,t). First we prove a Welland-type inequality
(see Welland [370]) for the operator Iα(x,t).
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Proposition 6.20. Let 0 < α−(Rn+1
+ ) � α+(R

n+1
+ ) < n, (x, t) ∈ R

n+1
+ . Suppose

that 0 < ε < min{α−(Rn+1
+ ), n−α+(R

n+1
+ )}. Then there exists a positive constant

Cε such that for all f ∈ Lloc(R
n) and all (x, t) ∈ Rn+1,

Iα(x,t)
(|f |)(x, t) � Cε

[(
Mα(x,t)−εf

)
(x, t)
(
Mα(x,t)+εf

)
(x, t)
] 1

2 .

Proposition 6.20 will be proved later.

Theorem 6.21. Let 1 < p < q−(Rn+1
+ ) � q+(R

n+1
+ ) < ∞, 0 < α−(Rn+1

+ ) �
α+(R

n+1
+ ) < n. Then Iα(x,t) is bounded from Lp(Rn) to Lq(·)(Rn+1

+ , v) if and only
if (6.22) holds.

Proof. Necessity follows from Theorem 6.19 using the estimate

Mα(x,t)f(x, t) � Cn,α Iα(x,t)f(x, t).

Let us prove the sufficiency. Let ‖f‖Lp(Rn) � 1. We will show that

I :=

ˆ

R
n+1
+

(
Iα(x,t)f

)q(x,t)
(x, t) v(x, t)dxdt � C

if ˆ

Q

v(x, t)|Q|α(x,t)
n − 1

p dx dt � C.

By Proposition 6.20,

I �
ˆ

R
n+1
+

v(x, t)
(
Mα(x,t)−εf

) q(x,t)
2 (x, t)

(
Mα(x,t)+εf

) q(x,t)
2 (x, t) dxdt

� c
∥∥(Mα(x,t)−εf

) q(x,t)
2
∥∥
L

P1(x,t)
v1

(Rn+1
+ )

∥∥(Mα(x,t)+εf
) q(x,t)

2
∥∥
L

P2(x,t)
v2

(Rn+1
+ )

,

where

P1(x, t) =
2q1(x, t)

q(x, t)
, P2(x, t) =

2q2(x, t)

q(x, t)
,

q1(x, t) = q(x, t)

n
p − α(x, t)

n
p − (α(x, t) + ε)

, q2(x, t) = q(x, t)

n
p − α(x, t)

n
p − (α(x, t) − ε)

,

v1(·, ·) =
(
v(·, ·))1/P1(·,·)

, v2(·, ·) =
(
v(·, ·))1/P2(·,·)

.
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Moreover, it is easy to see that

1

P1(x, t)
+

1

P2(x, t)
=

q(x, t)

2q1(x, t)
+

q(x, t)

2q2(x, t)

=
q(x, t)

2

[
1

q1(x, t)
+

1

q2(x, t)

]
=

q(x, t)

2q(x, t)

[ n
p − (α(x, t) + ε)

n
p − α(x, t)

+

n
p − (α(x, t) − ε)

n
p − α(x, t)

]
= 1.

Now observe that Theorem 6.19 yields

ˆ

R
n+1
+

(
Mα(x,t)−εf

) q(x,t)
2 P1(x,t)

(x, t) v
P1(x,t)
1 (x, t)dxdt

=

ˆ

R
n+1
+

(
Mα(x,t)−εf

)q1(x,t)
(x, t)v(x, t)dxdt � C

and ˆ

R
n+1
+

(
Mα(x,t)+εf

) q(x,t)
2 P2(x,t)

(x, t) v
P2(x,t)
2 dxdt

=

ˆ

R
n+1
+

(
Mα(x,t)+εf

)q2(x,t)
(x, t) v(x, t)dxdt � C.

Finally, we have that I � C if ‖f‖Lp(Rn,w) � 1. Here we have used the
obvious equalities

ˆ

Q̂

v(x, t) |Q|(α(x,t)
n − 1

p )q(x,t) dxdt =

ˆ

Q̂

v(x, t) |Q|(α(x,t)+ε
n − 1

p )q1(x,t)dxdt

=

ˆ

Q̂

v(x, t) |Q|(α(x,t)−ε
n − 1

p )q2(x,t)dxdt.

Now it remains to prove Proposition 6.20. �

Proof of Proposition 6.20. First we show that there exist positive constants C1

and C2 satisfying such that for every (x, t) ∈ R
n+1
+ there is a cube Q0 = Q(x, r0),

with l(Q0) � t, for which

C1|Q0| εn �
(
Mα(x,t)+εf

)
(x, t)(

Mα(x,t)−εf
)
(x, t)

� C2|Q0| ε
n . (6.23)
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To prove (6.23) we fix (x, t) ∈ R
n+1
+ . Then there is a cube Q1, l(Q1) > t, Q1 =

Q(x, r1), such that

Mα(x,t)+εf(x, t) � 2 |Q1|
α(x,t)

n + ε
n−1

ˆ

Q1

|f |.

Hence (
Mα(x,t)+εf

)
(x, t)(

Mα(x,t)−εf
)
(x, t)

� 2

|Q1|α(x,t)
n + ε

n−1
´
Q1

|f |

|Q1|α(x,t)
n − ε

n−1
´
Q1

|f |
= 2 |Q1| 2εn .

Further, there is a cube Q2, l(Q2) > t, Q2 = Q(x, r2), such that

Mα(x,t)−εf(x, t) � 2 |Q2|
α(x,t)

n − ε
n−1

ˆ

Q2

|f |.

Therefore,

(
Mα(x,t)+εf

)
(x, t)(

Mα(x,t)−εf
)
(x, t)

� 1

2

|Q2|α(x,t)
n +ε−1

´
Q2

|f |

|Q2|α(x,t)
n −ε−1

´
Q2

|f |
=

1

2
|Q2| 2εn .

Let

r0 := inf

{
r1 :

(
Mα(x,t)+εf

)
(x, t)(

Mα(x,t)−εf
)
(x, t)

� 2 |Q1| 2εn
}
.

If l(Q0) = t, then

1

2
|Q(x, r0)| 2εn � 1

2
|Q(x, r2)| 2εn �

(
Mα(x,t)+εf

)
(x, t)(

Mα(x,t)−εf
)
(x, t)

� 2 |Q(x, r1)| 2εn .

Hence

1√
2
|Q0| ε

n � 1√
2
|Q2| ε

n �
((

Mα(x,t)+εf
)
(x, t)(

Mα(x,t)−εf
)
(x, t)

) 1
2

�
√
2|Q1| εn .

Let l(Q0) > t. Then since

2

∣∣∣∣Q(x,
r0
2
)

∣∣∣∣ 2εn �
(
Mα(x,t)+εf

)
(x, t)(

Mα(x,t)−εf
)
(x, t)

,

we have

√
2

Cn,ε

∣∣Q(x, r0)
∣∣ εn =

√
2
∣∣Q(x,

r0
2
)
∣∣ εn �

[(
Mα(x,t)+εf

)
(x, t)(

Mα(x,t)−εf
)
(x, t)

] 1
2

�
√
2 |Q(x, r0)| ε

n ,

where the constant Cn,ε depends only on n and ε. Thus, (6.23) has been proved.
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Further, we have(
Iα(x,t)f

)
(x, t) �

ˆ

Q(x,r0−t)

|f(y)| (|x− y|+ t
)α(x,t)−n

dy

+

ˆ

Rn\Q(x,r0−t)

|f(y)|(|x− y|+ t
)α(x,t)−n

dy := I1(x, t) + I2(x, t),

where r0 is defined in (6.23). Let rk = 2kr0. We have

I2(x, t) =

∞∑
k=0

ˆ

Q(x,rk+1−t)\Q(x,rk−t)

|f(y)| (|x− y|+ t
)α(x,t)−n

dy

�
∞∑
k=0

( ˆ

Q(x,rk+1−t)\Q(x,rk−t)

|f(y)| dy
)
r
α(x,t)−n
k

� C

( ∞∑
k=0

2−kεr−ε
0

)(
Mα(x,t)+εf

)
(x, t)

� Cr−ε
0

(
Mα(x,t)+εf

)
(x, t)

� C
[(

Mα(x,t)+εf
)
(x, t)
(
Mα(x,t)−εf

)
(x, t)
] 1

2

.

In the last inequality we have used (6.23). Further, let rk = 2−kr0. Suppose that

m := sup
{
k : rk > t

}
.

It is clear that rm+1 < t. We have

I1(x, t) �
m−1∑
k=0

ˆ

Q(x,rk−t)\Q(x,rk+1−t)

|f(y)| (|x− y|+ t
)α(x,t)−n

dy

+

ˆ

Q(x,rm−t)

|f(y)|(|x− y|+ t
)α(x,t)−n

dy

�
(

m−1∑
k=0

(rk+1)
α(x,t)−n

ˆ

Q(x,rk−t)

|f |
)
+ tα(x,t)−n

ˆ

Q(x,rm−t)

|f(y)|dy

�
m−1∑
k=0

(rk+1)
α(x,t)−ε−n(rk+1)

ε

ˆ

Q(x,rk)

|f |+ (rm+1)
α(x,t)−1

ˆ

Q(x,rm)

|f |

=

m∑
k=0

(rk+1)
α(x,t)−ε−n(rk+1)

ε

ˆ

Q(x,rk)

|f |.
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Now observe that

rk+1 = 2−k−1r0 = C|Q(x, 2−kr0)| 1n = C |Q(x, rk)| 1n = C rk,

where the positive constant C depends only on n. Therefore, since α(x, t)−ε−n <
0, rk+1 < rk, rk > t, k = 0, 1, 2, · · · ,m, we have

I1(x, t) � c

m∑
k=0

(rk)
ε(rk)

α(x,t)−ε−n

ˆ

Q(x,rk)

|f | � c rε0
(
Mα(x,t)−εf

)
(x, t),

where the positive constant c depends only on n and ε. Using again (6.23), we
have

I1(x, t) � c
[(

Mα(x,t)+εf
)
(x, t)

(
Mα(x,t)−εf

)
(x, t)
] 1

2

.

Combining the estimates for I1(x, t) and I2(x, t), we obtain the desired result. �

6.3.2 Diagonal Case

In this section we study the boundedness of Mα(x,t) in the diagonal case. In partic-
ular, we establish a Sawyer-type criterion guaranteeing the two-weight inequality
for this operator in Lebesgue spaces with constant parameter.

Theorem 6.22. Let 1 < p < ∞. Suppose that 0 < α−(Rn+1
+ ) � α+(R

n+1
+ ) < n.

Then Mα(x,t) is bounded from Lp(Rn, w) to Lp(Rn+1
+ , v) if and only if there exists

a positive constant C such that for all cubes Q in Rn,

ˆ

Q̂

vp(x, t)
(
Mα(x,t)

(
w−p′

χQ

))p
dxdt � C

ˆ

Q

w−p′
< ∞.

Proof. Let us prove sufficiency. Let M
(d)
α(x,t) be the dyadic maximal function. De-

note

M
(d)
α(x,t),uf = M

(d)
α(x,t)(fu),

where u is a weight function. We will show that if

ˆ

Q̂

vp(x, t)
(
Mα(x,t),uχQ

)p
(x, t) dxdt � C

ˆ

Q

u < ∞,

then M
(d)
α(x,t),u is bounded from Lp(Rn, u

1
p ) to Lp(Rn+1

+ , v). In fact, the bounded-

ness of M
(d)
α(x,t),u from Lp(Rn, u

1
p ) to Lp(Rn+1

+ , v) is equivalent to the boundedness

of M
(d)
α(x,t) from Lp(Rn, w) to Lq(x,t)(Rn+1

+ , v), where u = w−p′
.
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Arguing as in the proof of Theorem 6.17, we assume that f � 0, f is bounded
and has compact support. Further, for every (x, t) ∈ R

n+1
+ , we choose a dyadic

cube Qx,t containing x, |Qx,t| 1
n > t, so that

|Qx,t|
α(x,t)

n −1

ˆ

Qx,t

fu >
1

2

(
M

(d)
α(x,t),u f

)
(x, t). (6.24)

We introduce the set

FQ :=
{
(x, t) : t < |Q| 1n , x ∈ Q and Q is maximal for which (6.24) holds

}
.

It is clear that FQ1

⋂
FQ2 = ∅ if Q1 �= Q2 and that Rn+1

+ =
⋃

Q∈Dm(Rn) FQ,

where Dm(Rn) =
{
Q : FQ �= ∅}. We have

S :=

ˆ

R
n+1
+

vp(x, t)
(
M

(d)
α(x,t),u f

)p
(x, t) dxdt

� 2p
ˆ

FQ

vp(x, t)

[
1

|Q|1−α(x,t)
n

ˆ

Q

fu

]p
dxdt

� 2p

( ˆ
FQ

vp(x, t)|Q|
(

α(x,t)
n −1

)
p dxdt

)( ˆ
Q

fu

)p

= C
∑

Q∈Dm(Rn)

( ˆ
FQ

vp(x, t)|Q|
(

α(x,t)
n −1

)
p dxdt

)(
u(Q)
)p( 1

u(Q)

ˆ

Q

fu

)p

.

Now observe that for Q′ ∈ Dm(Rn), the following inequalities hold:

∑
Q⊂Q′

Q,Q′∈Dm(Rn)

( ˆ
FQ

vp(x, t)|Q|
(

α(x,t)
n −1

)
p dxdt

)(
u(Q)
)p

�
∑
Q⊂Q′

Q,Q′∈Dm(Rn)

ˆ

FQ

vp(x, t)|Q|
(

α(x,t)
n −1

)
p(u(Q)

)p
dx dt

�
∑
Q⊂Q′

Q,Q′∈Dm(Rn)

ˆ

FQ

vp(x, t)
(
M

(d)
α(x,t) (χQu)

)p
(x, t) dxdt

�
ˆ

⋃
Q⊂Q′

FQ

(
Mα(x,t),u (χQ′)

)p
(x, t)vp(x, t) dxdt
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�
ˆ

Q′

(
Mα(x,t),u (χQ′ )

)p
(x, t)vp(x, t) dxdt � C

ˆ

Q′

u.

Applying Proposition 4.25 we find that

S � C

ˆ

Rn

fpu.

Arguing in much the same way as in the proof of Theorem 6.17 we can pass

from M
(d)
α(x,t) to Mα(x,t).

Necessity follows easily taking the test functions fQ = χQw
−p′

in the two-weight
inequality ˆ

R
n+1
+

vp(x, t)
(
Mα(x,t)fQ

)p
(x, t) dxdt � C

ˆ

Rn

|fQ(x)|pwp(x) dx

and observing that this inequality implies

SQ :=

ˆ

Q

w−p′
< ∞ (6.25)

for all cubes. Let us check that (6.25) holds. Assume, on the contrary, that SQ = ∞
for some cube Q in Rn. This means that

‖χQw
−1‖Lp′(Rn) = ∞.

By a duality argument, there exists a nonnegative function g ∈ Lp(Q), such
that ˆ

Q

gw−1 = ∞.

Let f = χQ g w−1. Thenˆ

Rn

|f |p wp =

ˆ

Q

gp < ∞.

On the other hand,ˆ

R
n+1
+

vp(x, t)
(
Mα(x,t)f

)p
(x, t)dxdt

�
( ˆ

Q̂

vp(x, t) |Q|α(x,t)
n −1dxdt

)( ˆ
Q

fQ

)p

= ∞,

which contradicts inequality (6.25). �
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6.4 Double Hardy Operator

In this section we derive two-weight criteria for the double Hardy operator

(H2f)(x, y) =

xˆ

0

yˆ

0

f(t, τ)dtdτ, (x, y) ∈ R
2
+ := R+ × R+

in variable exponent Lebesgue spaces.

It should be emphasized that from the results for the two-weight problem
derived in this section, as a corollary, we deduce trace inequality criteria for the
double Hardy operator when the exponent of the Lebesgue space on the right-hand
side of the inequality is constant. Another remarkable corollary is that, unlike the
case of the strong Hardy–Littlewood maximal operator (see Section 6.5), there
exists a variable exponent p(x) for which the double average operator is bounded
in Lp(·).

In 1984 Sawyer [333] found a characterization of the two-weight inequality
for H2 in terms of three independent conditions in the classical Lebesgue spaces.
Namely, he proved the following statement:

Theorem 6.23. Let p and q be constants satisfying the condition 1 < p � q < ∞.
Suppose that v and w are weight functions on R2

+. Then

‖H2f‖Lq
v(R2

+) � C‖f‖Lp
w(R2

+)

holds for all positive and measurable functions f on R2
+ if and only if the following

three conditions hold simultaneously:

sup
y1,y2>0

( ∞̂

y1

∞̂

y2

v(x1, x2)dx1dx2

)1/q( y1ˆ

0

y2ˆ

0

w(x1, x2)
1−p′

dx1dx2

)1/p′

< ∞, (6.26)

sup
y1,y2>0

(
y1´
0

y2´
0

(
x1´
0

x2´
0

w(t1, t2)
1−p′

dt1dt2

)q

v(x1,x2)dx1dx2

)1/q

(
y1´
0

y2´
0

w(x1, x2)1−p′dx1dx2

)1/p
:= A2 < ∞,

and

sup
y1,y2>0

( ∞́

y1

∞́

y2

(∞́

x1

∞́

x2

v (t1,t2) dt1dt2

)p′

w(x1, x2)
1−p′

dx1dx2

)1/p′

(∞́

y1

∞́

y2

v(x1,x2)dx1dx2

)1/q′ = A3 < ∞.

The following statements give two-weight criteria written as a single condition
when the weight on the right-hand side is a product of two univariate weights (see
Meskhi [254], Kokilashvili, Meskhi, and Persson [201, Chap. 1]).
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Theorem 6.24. Let p and q be constants such that 1 < p � q < ∞ and let w(x, y) =
w1(x)w2(y). Then the operator H2 is bounded from Lp

w(R
2
+) to Lq

v(R
2
+) (1 < p �

q < ∞) if and only if condition (6.26) is fulfilled.

First we prove the following lemma:

Lemma 6.25. Let p be a constant satisfying the condition 1 < p < ∞. Suppose that
0 < b � ∞. Let ρ be an almost everywhere positive function on [0, b). Then there
is a positive constant c such that for all f ∈ Lp([0, b), ρ), f � 0, the inequality

bˆ

0

(
1

λ([0, x])

xˆ

0

f(t)dt

)p

λ(x)dx � C

bˆ

0

(f(x)ρ(x))pdx

holds, where λ(x) = ρ−p′
(x) and λ([0, x]) :=

x́

0

λ(t)dt.

Proof. In view of Theorem 3.23, it is enough to verify that the condition

sup
0<t<b

( bˆ

t

λ([0, x])−pλ(x)dx

)( tˆ

0

λ(x)dx

)p−1

< ∞

is satisfied.

To do this, observe that

bˆ

t

λ([0, x])−pλ(x)dx =

bˆ

t

( xˆ

0

λ(τ)dτ

)−p

λ(x)dx

=
1

1− p

bˆ

t

d

( xˆ

0

λ(τ)dτ

)1−p

dx

=
1

p− 1

[( tˆ

0

λ(τ)dτ

)1−p

−
( bˆ

0

λ(τ)dτ

)1−p]

� 1

p− 1

( tˆ

0

λ(τ)dτ

)1−p

. �

To formulate the next theorem we introduce the notation:

J∞
ab := [a,∞)× [b,∞), J0

ab := [0, a)× [0, b).

Theorem 6.26. Let p be constant and let the exponent q be defined on R2
+. Suppose

that 1 < p � q− � q+ < ∞. Suppose that v and w are weights on R
2
+ with
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w(x, y) = w1(x)w2(y) for some univariate weights w1 and w2. Then H2 is bounded
from Lp(R2

+, w) to Lq(·)(R2
+, v) if and only if

B := sup
a,b>0

‖v(χJ∞
ab
)‖Lq(·)(R2

+)‖w−1χJ0
ab
‖Lp′(R2

+) < ∞.

Proof. Necessity follows in the standard way by choosing the test function

f(x, y) = w−p′
(x, y)χ[0,a]×[0,b](x, y), a, b > 0,

in the two-weight inequality.

Sufficiency. Suppose that f � 0 and ‖f‖Lp
w(R2) � 1. Let {xk} and {yj} be se-

quences of positive numbers chosen so that

xkˆ

0

w−p′
1 = 2k,

yjˆ

0

w−p′
2 = 2j. (6.27)

Without loss of generality assume that
∞́

0

w−p′
1 =

∞́

0

w−p′
2 = ∞. Then [0,∞) =⋃

k[xk, xk+1) =
⋃

j [yj , yj+1). Hence, R
2
+ =
⋃

k,j

(
Ek × Fj

)
, where

Ek := [xk, xk+1), Fj := [yj, yj+1).

It is easy to see that (6.27) implies

ˆ

Ek

w−p′
1 = 2k,

ˆ

Fj

w−p′
2 = 2j. (6.28)

Let us choose r so that p � r � q−. Then

‖v(H2f)‖rLq(·)(R2
+) = ‖[v(H2f)]

r‖Lq(·)/r(R2
+)

� c sup
‖h‖

L(q(·)/r)′ �1

¨

R2

(v(x, y))r(H2f(x, y))
rh(x, y)dxdy.

Let

σ1(E) :=

ˆ

E

w−p′
1 , σ2(E) :=

ˆ

E

w−p′
2

for a measurable set E ⊂ R.
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Observe that due to (6.27) and (6.28) the following chain of inequalities holds:

¨

R2
+

(v(x, y))r(H2f)
r(x, y)h(x, y)dxdy

�
∑
k,j

[ ¨
Ek×Fj

vr(x, y)h(x, y)dxdy

][ xk+1ˆ

0

yj+1ˆ

0

f

]r

� c
∑
k,j

‖vr‖Lq(·)/r(Ek×Fj)‖h‖L(q(·)/r)′ (R2
+)

[ xk+1ˆ

0

yj+1ˆ

0

f

]r

� c
∑
k,j

‖v‖rLq(·)(Ek×Fj)

[ xk+1ˆ

0

yj+1ˆ

0

f

]r

� cBr
∑
k,j

‖w−1
1 ‖−r

Lp′([0,xk))
‖w−1

2 ‖−r
Lp′([0,yj))

[ xk+1ˆ

0

yj+1ˆ

0

f

]r

= cBr
∑
k,j

[ xk+2ˆ

xk+1

yj+2ˆ

yj+1

(w1(x)w2(y))
−p′

dxdy

] r
p

·
[

1

σ1(Ek)σ2(Fj)

xk+1ˆ

0

yj+1ˆ

0

f

]r

� cBr
∑
k,j

[ xk+2ˆ

xk+1

yj+2ˆ

yj+1

[w1(x)w2(y)]
−p′
[

1

σ1([0, x])σ2([0, y])

xˆ

0

yˆ

0

f

]p
dxdy

]r/p

� cBr

[¨
R2

+

[w1(x)w2(y)]
−p′
[

1

σ1([0, x])σ2([0, y])

xˆ

0

yˆ

0

f

]p
dxdy

]r/p
=: S.

By using Lemma 6.25 twice we conclude that

S � cBr

[ ¨
R2

+

[f(x, y)]p(w(x, y))pdxdy

] r/p
� c. �

The next statement is the special case of the two-weight inequality for w ≡ 1.

Corollary 6.27. Let p and q be as in Theorem 6.26. Let v be an a.e. positive function
on R2

+. Then H2 is bounded from Lp(R2
+) to Lq(·)(R2

+, v) if and only if

sup
a,b>0

‖vχJ∞
ab
‖Lq(·)(R2

+)(ab)
1
p′ < ∞.
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Corollary 6.28. Let 1 < p− � q− � q+ < ∞ with p+ < ∞. Let v and w be a.e.
positive functions on R2 with w(x, y) = w1(x)w2(y). Suppose that p ∈ P̃(R2

+). If

sup
a,b>0

∥∥vχJ∞
ab

∥∥
Lq(·)(R2

+)

∥∥w−1χJ0
ab

∥∥
L(p−)′ (R2

+)
< ∞, (6.29)

then H2 is bounded from Lp(·)(R2
+, w) to Lq(·)(R2

+, v).

The proof of Corollary 6.28 follows immediately from Remark 3.19 and The-
orem 6.26.

Corollary 6.29. Let 1 < p− � q− � q+ < ∞ with p+ < ∞. Suppose that the limit
p(∞) := limx→∞ p(x) exists and equals p−, and that p ∈ P∞(R2

+). Suppose also
that the weight function w satisfies the condition w(x, y) = w2(x)w2(y). If (6.29)
holds, then H2 is bounded from Lp(·)(R2, w) to Lq(·)(R2, v).

Let us now discuss the operator H2 on a bounded rectangle

J := [0, a0]× [0, b0].

It is convenient to use also the notation:

J1
ab := [a, a0]× [b, b0].

Recall that by J0
ab we denote a rectangle [0, a)× [0, b).

The arguments used in the proof of Theorem 6.26 enable us to formulate the
next statement:

Theorem 6.30. Let 1 < p−(J) � q−(J) � q+(J) < ∞ with p+(J) < ∞. Suppose
that v and w are a.e. positive functions on J with w(x, y) = w1(x)w2(y) for some
univariate weights w1 and w2. If

sup
0<a�a0

0<b�b0

‖vχJ1
ab
‖Lq(·)(R2

+)‖w−1χJ0
ab
‖
L(p−(J))′ (R2

+)
< ∞,

then H2 is bounded from Lp(·)(J,w) to Lq(·)(J, v).

Corollary 6.31. There is non-constant exponent p on [0, 2]2 such that the double
average operator

(Af)(x, y) =
1

xy

xˆ

0

yˆ

0

f(t, τ)dtdτ

is bounded in Lp(·,·)([0, 2]2).

Proof. Let p be defined by

p(x, y) =

{
3, if (x, y) ∈ [1, 2]2,

2, if (x, y) ∈ [0, 2]2\[1, 2]2.
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It is clear that p(0, 0) = p− = 2 and that

sup
0<a,b�2

‖(xy)−1χ[a,2]×[b,2](x, y)‖Lp(·,·)(R2
+)(ab)

1
p′(0,0) < ∞.

Theorem 6.30 completes the proof. �

6.5 Strong Fractional Maximal Functions in
Lp(·) Spaces. Unweighted Case

In Kopaliani [209] it was shown that the Hardy–Littlewood strong maximal oper-
ator is bounded in Lp(·) if and only if p is constant. We prove that a similar result
is valid for fractional maximal functions; however, the situation in the case of the
strong fractional maximal function of variable order and of the multiple Hardy
operator (see Section 6.4 for the latter one) is completely different.

Let(
M S

αf
)
(x, y) = sup

R�(x,y)

|R|α−1

¨

R

|f(t, τ)|dtdτ, (x, y) ∈ R
2, 0 < α < 1,

be the strong fractional maximal function, where the supremum is taken over all
rectangles R ⊂ R2 containing (x, y).

Theorem 6.32. Let p be a measurable function on R2 satisfying the condition 1 <
p− � p+ < ∞. Suppose that α is a constant such that 0 < α < 1

p−
. We set

q(x) = p(x)
1−α·p(x) . Then M S

α is bounded from Lp(·)(R2) to Lq(·)(R2) if and only if
p ≡ const.

Proof. Sufficiency can be obtained easily by using twice the Lp(R) → Lq(R)
boundedness for the one-dimensional fractional maximal operator

(Mαf)(x) = sup
I�x
I⊂R

1

|I|1−α

ˆ

I

|f(t)|dt, 0 < α < 1.

Necessity. We follow Kopaliani [209], who proved the theorem for α = 0.
First we observe that if M S

α is bounded from Lp(·)(R2) to Lq(·)(R2), then

sup
R

AR := sup
R

1

|R|1−α
‖χR‖Lq(·)‖χR‖Lp′(·) < ∞,

where the supremum is taken over all rectangles R in R
2.

Indeed, let ‖f‖Lp(·)(R2) � 1. Then for every rectangle R we have

c � ‖M S
αf‖Lq(·)(R2) � ‖M S

αf‖Lq(·)(R) � ‖χR‖Lq(·) |R|α−1

¨

R

|f(t, τ)|dtdτ.
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Taking now the supremum with respect to f , ‖f‖Lp(·) � 1, we find that

|R|α−1‖χR‖Lq(·)‖χR‖Lp′(·) � c

for all R ⊂ R2.

Further, suppose the contrary: p is not constant, i.e., inf
R2

p(t) < sup
R2

p(t). By

using the Luzin theorem we can conclude that there is a family of pairwise disjoint
sets {Fi} with the following properties:

(i) |R2\ ∪j Fj | = 0;

(ii) the functions p : Fi → R are continuous;

(iii) for every fixed i, all points of Fi are points of density with respect to the
basis consisting of all open rectangles in R2.

Indeed, let us represent R2 as R2 =
⋃

j Qj, where {Qj} is a family of pairwise
disjoint semi-open unit squares. Let us fixed j. Suppose that εk is a sequence
converging to 0. By using the Luzin theorem step by step, we obtain a family of
pairwise disjoint sets F j

k in Qj such that |Qj \ (
⋃

k F
j
k )| = 0 and p is continuous

on F j
k . Removing now sets of measure zero from F j

k we can assume that all points
of F i

k are points of density with respect to open rectangles.

Further, we can find a pair of points of the type ((x0, y1), (x0, y2)) or of
type ((x1, y0), (x2, y0)) in

⋃
Fi such that p(x0, y1) �= p(x0, y2) or p(x1, y0) �=

p(x2, y0). Without loss of generality, assume that this pair is ((x0, y1), (x0, y2)),
with (x0, y1) ∈ F1, (x0, y2) ∈ F2 and y1 < y2.

Let 0 < ε < 1 be a fixed number. Then there is a number δ > 0 such that
for any rectangles Q1 � (x0, y1) and Q2 � (x0, y2) with diameters less than δ, we
have

|Q1 ∩ F1| > (1 − ε)|Q1|, |Q2 ∩ F2| > (1− ε)|Q2|, (6.30)

p1 = sup
Q1∩F1

p(x, y) < c1 < c2 < inf
Q2∩F2

p(x, y) = p2, (6.31)

where c1 and c2 are some positive constants.

Let Q1,τ and Q2,τ be rectangles with properties (6.30) and (6.31). Suppose
that Q1,τ := (x0 − τ, x0 + τ) × (a, b) and Q2,τ := (x0 − τ, x0 + τ) × (c, d), where
a < b < c < d.

Observe now that the following embeddings hold:

Lq(·)(Q2,τ ) ↪→ Lq2(Q2,τ ), Lp′(·)(Q1,τ ) ↪→ L(p1)
′
(Q1,τ ), (6.32)

where q2 = infQ2∩F2 q = p2

1−αp2
, (pQ1)

′ = p1

p1−1 . Recall that (see Lemma 4.17)

the norms of the embedding operators in (6.32) do not exceed 2τ(d − c) + 1 and
2τ(b − a) + 1, respectively. Further, by using (6.30) and (6.31) we have for the
rectangle Qτ := (x0 − τ, x0 + τ) × (a, d),

sup
R

AR � 1

|Qτ |1−α
‖χQτ ‖Lq(·)‖χQτ ‖Lp′(·)



388 Chapter 6. Two-weight Inequalities for Fractional Maximal Functions

� 1

[2τ(d− a)]1−α
‖χQ2,τ∩F2‖Lq(·)‖χQ1,τ∩F1‖Lp′(·)

� C

[2τ(d− a)]1−α
[2τ(d− c)]

1
q2 [2τ(b − a)]1−

1
p1

= Cτ
α−1+ 1

q2
+1− 1

p1 = Cτ
α−

[
1
p1

− 1
q2

]
.

The last expression tends to 0 as τ → 0 because α− 1
p1

+ 1
q2

= α− 1
p1

+ 1
p2
−α < 0

and the constant C does not depend on τ and ε for small τ and ε (recall also that
a, b, c, and d are fixed). This contradicts the condition supR AR < ∞. �

6.6 Two-weight Estimates for Strong Fractional
Maximal Functions

Recall that by the symbol D(R) (or simply D) we denote the set of all dyadic
intervals in R (see Section 4.1.3 for the definition and relevant statements).

Let(
M S

α(x),β(y)f
)
(x, y) = sup

I�x
J�y

|I|α(x)−1|J |β(y)−1

¨

I×J

|f(t, τ)|dtdτ, (x, y) ∈ R
2,

be the strong fractional maximal operator with variable parameters α and β, where
α and β are measurable functions on R satisfying the conditions 0 < α− � α+ < 1,
0 < β− � β+ < 1, and the supremum is taken over all intervals I and J containing
x and y, respectively.

Together with the operator M S
α(·),β(·) we are interested in the dyadic strong

fractional maximal operator(
M

S,(d)
α(x),β(y)f

)
(x, y) = sup

I�x
J�y

I,J∈D(R)

|I|α(x)−1|J |β(y)−1

¨

I×J

|f(t, τ)|dtdτ, (x, y) ∈ R
2.

(6.33)

Taking into account Lemma 6.6 we conclude that the following estimate
holds: (

M S
α(x),β(y)f

)
(x, y) � C

∑
β1,β2

(
M

S,(d),Dβ1 ,Dβ2

α(x),β(y) f
)
(x, y), (6.34)

where

M
S,(d),Dβ1 ,Dβ2

α(x),β(y) f(x, y) = sup
I�x
J�y

I∈Dβ1 ,J∈Dβ2

|I|α(x)−1|J |β(y)−1

¨

I×J

|f(t, τ)|dtdτ (6.35)

is the strong dyadic variable-parameter fractional maximal operator corresponding
to the dyadic grids Dβ1 and Dβ2 in R, β1, β2 ∈ {0, 1/3} (see Lemma 6.6).
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6.6.1 Formulation of Results

We start with the Fefferman–Stein-type inequality.

Theorem 6.33. Let p, q, α, and β be defined on R2 and satisfy the condition
1 < p− � p+ < q− � q+ < ∞, and let 1

p− − 1
q+

< α− � α+ < 1
p− , 1

p− − 1
q+

<

β− � β+ < 1
p−

. Then there is a positive constant c such that

‖(M S
α(x),β(y)f)v‖Lq(·,·)(R2) � c‖f(M̃α(x),β(y)v)‖Lp(·,·)(R2),

where(
M̃α(x),β(y)v

)
(x, y) := max

{(
M̃

(1)
α(x),β(y)v

)
(x, y), (M̃

(2)
α(x),β(x)v)(x, y)

}
,(

M̃
(1)
α(x),β(y)v

)
(x, y) := sup

I�x
J�y

|I × J |− 1
p− ‖v(x, y)|I|α(x)|J |β(y)‖Lq(x,y)(I×J),

(
M̃

(2)
α(x),β(y)v

)
(x, y) := sup

I�x
J�y

|I × J |− 1
p+ ‖v(x, y)|I|α(x)|J |β(y)‖Lq(x,y)(I×J).

Corollary 6.34. Let p be constant and let q, α, and β be measurable functions
on R2. Suppose that 1 < p < q− � q+ < ∞, 1

p − 1
q+

< α− � α+ < 1
p , and

1
p − 1

q−
< β− � β+ < 1

p . Then

‖(M S
α(x),β(y)f)v‖Lq(·,·)(R2) � c‖f(M̃α(x),β(y)v)‖Lp(R2).

Corollary 6.35 (Trace inequality). Let p, q, α, and β satisfy the conditions of
Theorem 6.33. Suppose that for the weight function v, the condition

sup
I,J⊂R

‖|I|α(x)|J |β(y)v(x, y)‖Lq(·,·)(I×J)|I × J |− 1
pI×J < ∞,

holds, where

pI×J =

{
p−, if |I||J | � 1,

p+, if |I||J | > 1.

Then M S
α(·),β(·) is bounded from Lp(·,·)(R2) to Lq(·,·)(R2, v).

Theorem 6.36 (Criteria for the trace inequality). Let p, q, α, and β satisfy the
conditions of Corollary 6.34. Suppose that 1

p − 1
q+

< α− � α+ < 1
p and 1

p −
1
q+

< β− � β+ < 1
p . Then M S

α(·),β(·) is bounded from Lp(R2) to Lq(·,·)(R2, v) if

and only if

sup
I,J⊂R

‖|I|α(x)|J |β(y)v(x, y)‖Lq(·,·)(I×J)|I × J |− 1
p < ∞,

where the supremum is taken over all intervals I and J in R.
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Theorem 6.37. Let p be constant and let 1 < p < q− � q+ < ∞. Suppose that
0 < α− � α+ < 1 and 0 < β− � β+ < 1. Let v and w be weight functions on
R2 and let w be of product type, i.e., w(x, y) = w1(x)w2(y). Then M S

a(·),β(·) is

bounded from Lp(R2, w) to Lq(·,·)(R2, v) if and only if

sup
I,J⊂R2

(|I||J |)−1‖v(x, y)|I|α(x)|J |β(y)‖Lq(·,·)(I×J)‖w−1‖Lp′(I×J) < +∞,

provided that w−p′
1 , w−p′

2 ∈ RDC(R).

Corollary 6.38. Let p, q, α, β satisfy the conditions 1 < p− < q− � q+ < ∞, p+ <

∞, 0 < α− � α+ < 1, and 0 < β− � β+ < 1. Assume that p ∈ P̃(R2). Assume
also that v and w are weight functions on R

2 and that w(x, y) = w1(x)w2(y) with

w
−(p−)′

1 , w
−(p−)′

2 ∈ RDC(R). If

sup
I,J⊂R2

(|I||J |)−1‖v(x, y)|I|α(x)|J |β(y)‖Lq(·,·)(I×J)‖w−1‖
L(p−)′ (I×J)

< +∞, (6.36)

then M S
α(·),β(·) is bounded from Lp(·,·)(R2, w) to Lq(·,·)(R2, v).

Corollary 6.39. Let 1 < p− < q− � q+ < ∞, p+ < ∞, 0 < α− � α+ < 1 and
let 0 < β− � β+ < 1. Suppose that p(∞) := lim

x→∞ p(x) exists and is equal to p−.

Let p ∈ P∞(R2). Assume that v and w are weights on R2 and that w(x, y) =

w1(x)w2(y) with w
−(p−)′

1 , w
−(p−)′

2 ∈ RDC(R). Then condition (6.36) guarantees
the boundedness of M S

α(·),β(·) from Lp(·,·)(R2, w) to Lq(·,·)(R2, v).

6.6.2 Proofs

Proof of Theorem 6.33. Recall that the dyadic strong fractional maximal operator

M
S,(d)
α(·),β(·) is defined by (6.33). Without loss of generality we can assume that f is

nonnegative, bounded, and has compact support.

It is obvious that for (x, y) ∈ R2, there are dyadic intervals I � x, J � y such
that

2

|I|1−α(x)|J |1−β(y)

¨

I×J

|f(t, τ)|dtdτ > (M
S,(d)
α(x),β(y)f)(x, y). (6.37)

Let us introduce the set:

FI,J = {(x, y) ∈ R
2 : x ∈ I, y ∈ J and (6.37) holds for I and J}.

Observe that R
2 =
⋃

I,J∈D(R) FI,J and FI,J ⊂ I × J (it may happen that

FI1,J1 ∩ FI2,J2 �= ∅ for some different couples of dyadic intervals (I1, J1), (I2, J2)).
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Let us take a number r so that p+ < r < q−. Then we have∥∥∥v(M S,(d)
α(x),β(y)f

)∥∥∥r
Lq(·,·)(R2)

=
∥∥∥[v(M S,(d)

α(·),β(·)f
)]r∥∥∥

Lq(·,·)/r(R2)

� c sup
‖h‖

L(q(·,·)/r)′ (R2)
�1

( ¨
R2

h
[
v
(
M

S,(d)
α(·),β(·)f

)]r)
.

Suppose that ‖fM̃α(·),β(·)v‖Lp(·,·)(R2) � 1. Further, arguing as above, we find
that for h satisfying the condition ‖h‖L(q(·,·)/r)′ (R2) � 1,

¨

R2

h
[
v
(
M

S,(d)
α(·),β(·)f

)]r
�
∑

I,J∈D(R)

¨

FI,J

h
[
v
(
M

S,(d)
α(·),β(·)f

)]r

� c
∑

I,J∈D(R)

( ¨
I×J

vr(x, y)(|I|α(x)|J |β(y))rh(x, y)dxdy
)(

1

|I||J |
¨

I×J

|f(t, τ)|dtdτ
)r

� c
∑

I,J∈D(R)

‖(v(·, ·)|I|α(·)|J |β(·))r‖
L

q(·,·)
r (I×J)

× ‖h‖
L

(
q(·,·)

r

)′
(I×J)

(
1

|I||J |
¨

I×J

|f(t, τ)|dtdτ
)r

� c
∑

I,J∈D(R)

‖(v(·, ·)|I|α(·)|J |β(·))r‖
L

q(·,·)
r (I×J)

(
1

|I||J |
¨

I×J

|f(t, τ)|dtdτ
)r

� c

[ ∑
I,J∈D(R)

‖(v(·, ·)|I|α(·)|J |β(·))r‖
L

q(·,·)
r (I×J)

(
1

|I||J |
¨

I×J

|f1(t, τ)|dtdτ
)r

+
∑

I,J∈D(R)

‖(v(·, ·)|I|α(·)|J |β(·))r‖
L

q(·,·)
r (I×J)

(
1

|I||J |
¨

I×J

|f2(t, τ)|dtdτ
)r]

=: c[S1 + S2],

where f1 = fχ{fM̃α(·),β(·)v�1}, f2 = f − f1.

Let us estimate S1 and S2 separately. Using Proposition 4.30 (with ρ ≡ 1)
and the Minkowski inequality, we have that

S1 =
∑

I,J∈D(R)

(|I||J |)−
r

(p−)′

( ¨
I×J

|f1|(|I||J |)−
1

p− ‖v(·, ·)|I|α(·)|J |β(·)‖Lq(·,·)(I×J)

)r

�
∑

I∈D(R)

|I|−
r

(p−)′
∑

J∈D(R)

|J |−
r

(p−)′

( ˆ
J

( ˆ
I

|f1|
(
M̃

(1)
α(·),β(·)v

)))r
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� c
∑

I∈D(R)

|I|−
r

(p−)′

( ˆ
R

( ˆ
I

|f1|[M̃ (1)
α(·),β(·)v]

)p−) r
p−

� c
∑

I∈D(R)

|I|−
r

(p−)′

( ˆ
I

( ˆ
R

|f1|p− [M̃
(1)
α(·),β(·)v]

p−

) 1
p−
)r

� c

( ¨
R2

|f1|p−
[
M̃

(1)
α(·),β(·)v

]p−

) r
p−

� c

( ¨
R2

[
f(x, y)(M̃

(1)
α(x),β(y)v)(x, y)

]p(x,y)
dxdy

) r
p−

� c.

Similar arguments show that

S2 � c

( ¨
R2

[f(x, y)(M̃
(2)
α(x),β(y)v)(x, y)]

p(x,y)dxdy

) r
p+

� c.

Thus, we established the desired estimate for the dyadic fractional maximal
function.

Now we pass from M
S,(d)
α(·),β(·) to M S

α(·),β(·) by using inequality (6.34). �

Proof of Corollary 6.35. This statement will be proved if we show that

(M̃α(x),β(y)v)(x, y) � c

in Theorem 6.33. Indeed, if the condition

A := sup
I,J⊂R

‖|I|α(x)|J |β(y)v(x, y)‖Lq(·,·)(I×J)

(|I||J |)− 1
pI×J < ∞

is satisfied, then

‖|I|α(x)|J |β(y)v(x, y)‖Lq(·,·)(I×J)

(|I||J |)− 1
p+ � A < ∞

and

‖|I|α(x)|J |β(y)v(x, y)‖Lq(·,·)(I×J)

(|I||J |)− 1
p− � A < ∞. �

Proof of Theorem 6.37. Sufficiency. We use the notation of the proof of Theorem
6.33. First we construct the sets FI×J .

Take r so that p < r < q− and observe that∥∥∥v(M S,(d)
α(·),β(·)f)

∥∥∥r
Lq(·,·)(R2)

� c sup
‖h‖

L(q(·,·)/r)′ (R2)
�1

( ¨
R2

h[vM
S,(d)
α(·),β(·)f ]

r

)
.
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Let ‖f‖Lp
w(R2) � 1. Then for h such that ‖h‖L(q(·,·)/r)′ (R2) � 1, we find that

S :=

¨

R2

h[vM
S,(d)
α(·),β(·)f ]

r �
∑

I,J∈D(R)

¨

FI,J

h[vM
S,(d)
α(·),β(·)f ]

r

� c
∑

I,J∈D(R)

( ¨
I×J

vr(x, y)(|I||α(x)|J |β(y))rh(x, y)dxdy
)(

1

|I||J |
¨

I×J

|f(t, τ)|dtdτ
)r

� c
∑

I,J∈D(R)

‖(v(x, y)|I|α(x)|J |β(y))r‖Lq(x,y)/r(I×J)‖h‖L(q(·,·)/r)′ (I×J)

×
(

1

|I||J |
¨

I×J

|f(t, τ)|dtdτ
)r

= c
∑

I,J∈D(R)

‖v(x, y)|I|α(x)|J |β(y)‖rLq(x,y)(I×J)

(
1

|I||J |
¨

I×J

|f(t, τ)|dtdτ
)r

� c
∑

I,J∈D(R)

( ˆ
I

w−p′
1

)− r/p′( ˆ
J

w−p′
2

)−r/p′( ¨
I×J

|f(t, τ)|dtdτ
)r

.

Applying Proposition 4.30 we derive the following estimates:

S � c
∑

J∈D(R)

( ˆ
J

w−p′
2

)− r/p′( ˆ
R

w1(t)

( ˆ
J

|f(t, τ)|dτ
)p

dt

) r/p

� c
∑

J∈D(R)

( ˆ
J

w−p′
2

)− r/p′( ˆ
J

( ˆ
R

wp
1(t)|f(t, τ)|pdt

)1/p

dτ

)r

� c

(¨
R2

|f(t, τ)|pwp(t, τ)dtdτ

)r/p

� c.

Thus, we established the desired inequality for the dyadic fractional maximal
function.

Applying (6.34), we can pass to the fractional maximal function M S
α(·),β(·).

Necessity follows easily by taking appropriate test functions in the two-weight
inequality. We omit the details. �

Proof of Corollary 6.38. The assertion is a direct consequence of Theorem 6.37
and the fact that the condition p ∈ P̃(R2) implies the inequality

‖fw‖Lp−(R2) � c‖fw‖Lp(·)(R2). �

Corollary 6.39 follows from Corollary 6.38 and the fact: p ∈ P∞(R2) ⇒ p ∈
P̃(R2) provided that p(∞) exists and p− = p(∞).
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6.7 Comments to Chapter 6

Some properties of integral operators on the half-space in unweighted variable exponent
Lebesgue spaces were investigated in Diening and Růžička [65, 66].

For the trace inequality for potential operators with constant parameter in classi-
cal Lebesgue spaces we refer to Adams [6] (see also Genebashvili [103], Edmunds, Koki-
lashvili, and Meskhi [76]: Chapter 6 and references cited therein for an SHT).

The original inequality of Fefferman–Stein type for the fractional maximal operator
Mα defined with respect to cubes is due, for the classical Lebesgue spaces, to E.T. Sawyer.

The characterization of the trace inequality in variable exponent Lebesgue spaces
for fractional maximal functions defined on R

n was derived by Kopaliani [210].

Theorem 6.24 was obtained in Meskhi [254] (see also the monograph by Kokilashvili,
Meskhi, and Persson [201, Chap. 1]). It should be emphasized that in the PhD thesis
of Ushakova [362] the author answered the question in the case when q < p. Earlier,
A. Wedestig in her PhD thesis Wedestig [369] derived two-weight criteria for H2 to be
bounded from Lp(R+, w) to Lq(R+, v), where p and q are constants (1 < p � q < ∞) and
w is a product of two one-dimensional weights, but under different (non-Muckenhoupt)
type conditions.

Analogs of the results of Section 6.6 for the classical Lebesgue spaces were derived
in Kokilashvili and Meskhi [182] (see also the monograph by Kokilashvili, Meskhi, and
Persson [201, Chap. 4]).

In the proof of Theorem 6.12 we established a pointwise inequality similar to that
from Hedberg [131]. In our case we have the fractional maximal operator on the right-
hand side.

The analogs of Proposition 6.20 for the Riesz potentials on the upper half-space
with constant α was proved in Genebashvili [103]. The trace inequality for fractional
integrals defined on the upper half-space was proved in Adams [6] (see also Genebashvili
[103], Edmunds, Kokilashvili, and Meskhi [76, Chap. 6] for similar statement on spaces
of homogeneous type).

This chapter is based on the papers by Kokilashvili and Meskhi [179, 185] and Asif,
Kokilashvili, and Meskhi [23].



Chapter 7

Description of the Range of Potentials,
and Hypersingular Integrals

In this chapter we give a complete characterization of the range Iα[Lp(·)(Rn)]
in terms of the convergence of hypersingular integrals of order α. The proof is
based, in particular, on the results on denseness in Lp(·)(Rn) of Schwartz functions
orthogonal to polynomials, and the inversion of the Riesz potential operator by
means of hypersingular integrals.

This enables us also to give a characterization of the variable exponent Bessel
potential space and study connections of the Riesz and Bessel potentials with
variable exponent Sobolev spaces.

Finally, we give a characterization of the variable exponent Bessel potential
space via the rate of convergence of the Poisson semigroup.

7.1 Preliminaries on Higher-order

Hypersingular Integrals

A typical hypersingular integral has the form

D
αf(x) :=

1

dn,�(α)

ˆ

Rn

(
Δ�

yf
)
(x)

|y|n+α
dy, α > 0, (7.1)

where Δ�
yf denotes the finite difference of order � ∈ N and step y ∈ Rn of the

function f and dn,�(α) is a certain normalizing constant, which is chosen so that
the construction in (7.1) does not depend on �, see Samko [322, Chap. 3] for details.

The finite difference will be mainly taken in a non-centred form

Δ�
yf(x) = (I − τy)

�f(x) =

�∑
j=0

(−1)j
(
�

j

)
f(x− jy) (7.2)
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where τyf(x) = f(x − y). It is well known that the integral (7.1) exists, for each
x ∈ Rn, as absolutely convergent integral if � > α, and, for instance, f ∈ S (Rn).

Following Samko [322], we shall consider both a centred difference and a
non-centred one in the construction of the hypersingular integral. However, when
we write Δm

h without any specification, we mean a non-centred difference. The
important fact here is that the order � should be chosen according to the following
rule (as stated in Samko [322, p. 65]), which will be always assumed in the sequel:

1) in the case of a non-centred difference we take � > 2
[
α
2

]
, with the obligatory

choice � = α when α is an odd integer;

2) in the case of a centered difference we take � even and � > α > 0.

In general, the integral in (7.1) may be divergent, and hence it needs to be
properly defined. We interpret hypersingular operators as

D
α := lim

ε→0
D

α
ε ,

where Dα
�,ε denotes the truncated hypersingular operator

D
α
�,εf(x) :=

1

dn,�(α)

ˆ

|y|>ε

(
Δ�

yf
)
(x)

|y|n+α
dy , ε > 0. (7.3)

Dα is also called the Riesz fractional derivative, since it can be interpreted
as a positive fractional power (−Δ)

α
2 of the minus Laplacian.

In what follows, the limit above is always taken in the sense of convergence
in the Lp(·)(Rn)-norm.

Note that the Riesz derivative Dα with the appropriate choice of the normal-
izing constant dn,�(α) does not depend, under the rule 1)–2) for the choice of the
order � of the difference, on the value of �. This is why we may omit the parameter
� in the notation Dα. We refer to Samko, Kilbas, and Marichev [331] for details.

An important property of hypersingular integrals is that they provide a con-
struction for operators inverse to fractional operators.

7.2 Denseness of the Lizorkin Test Functions Space

in Lp(·)(Rn)

Recall that C∞
0 (Rn) denotes the class of all C∞-functions on Rn with compact

support and S (Rn) is the Schwartz class of all infinitely differentiable functions
which decrease rapidly at infinity. For an integrable function g,

Fg(ξ) = ĝ(ξ) :=

ˆ
Rn

eiξxg(x) dx, ξ ∈ R
n, (7.4)
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stands for its Fourier transform. The inverse Fourier transform of g is given by

F−1g(ξ) = g̃(ξ) := (2π)−n

ˆ
Rn

e−iξxg(x) dx, ξ ∈ R
n.

The class C∞
0 (Rn) is dense in Lp(·)(Rn), as shown in Kováčik and Rákosńık [213].

However, both the test function spaces C∞
0 (Rn) and S (Rn) are not invariant

under the Riesz potential operator (cf. Samko [322, Chap. 2 and 3]). A class with
the required property is the Lizorkin test functions space Φ(Rn) defined via Fourier
transform as

Φ(Rn) = {ϕ ∈ S (Rn) : (Djϕ̂)(0) = 0, |j| = 0, 1, 2, . . .}

where Dj stands for the usual derivative of the multi-index j = (j1, . . . , jn). It is
known (Samko [322]) that the Lizorkin space Φ(Rn) is invariant with under the
Riesz potential operator Iα and Iα [Φ(Rn)] = Φ(Rn), 0 < α < n. For further
purposes we need to prove that Φ(Rn) is dense in Lp(·)(Rn). In the proof below
we mainly follow the arguments in Samko [322, pp. 41–42].

Let k ∈ S (Rn), kN (y) := N−nk(y/N), N ∈ N, and let

kN ∗ f(x) =
ˆ

Rn

k(y) f(x−Ny) dy.

In connection with Lemma 7.1 observe that functions k ∈ S (Rn) obviously have
an integrable radial majorant: sup|y|>|x| |k(y)| ∈ L1(Rn).

Lemma 7.1. Let sup|y|>|x| |k(y)| ∈ L1(Rn) and p ∈ Plog
∞ (Rn). Then ‖kN ∗ f‖p(·) �

C ‖f‖p(·) where C > 0 does not depend on N and f and ‖kN ∗ f‖p(·) → 0 as

N →∞ for f ∈ Lp(·).

Proof. The uniform boundedness follows from Theorem 1.5. Since C∞
0 (Rn) is dense

in Lp(·)(Rn) (Kováčik and Rákosńık [213]), it is sufficient to check the conver-
gence for f in this class. Indeed, for δ > 0 there exists ϕδ ∈ C∞

0 (Rn), such that
‖f − ϕδ‖p(·) < δ and then for all N ∈ N, ‖kN ∗ f‖p(·) � ‖kN ∗ (f − ϕδ)‖p(·) +
‖kN ∗ ϕδ‖p(·) � C δ + ‖kN ∗ ϕδ‖p(·). To justify the passage to the limit for f ∈
C∞

0 (Rn), we observe that ‖kN ∗ f‖p(·) � ‖kN ∗ f‖p + ‖kN ∗ f‖p for such f and

then we can proceed as in the case of constant exponents (see Samko [322, p. 42])
via the inequality ‖kN ∗ f‖p � ‖kN ∗ f‖2 ‖kN ∗ f‖r for constant exponents p and
r > 1 such that p lies between 2 and r. �

Theorem 7.2. The Lizorkin test functions space Φ(Rn) is dense in Lp(·)(Rn), if
p ∈ Plog

∞ (Rn).

Proof. Since S (Rn) is dense in Lp(·), it suffices to approximate each element in
S (Rn) by elements in Φ(Rn), in the norm of Lp(·)(Rn). Let f ∈ S (Rn) and
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μ ∈ C∞([0,∞)) be such that μ(r) ≡ 1 for r � 2, μ(r) ≡ 0 for 0 � r � 1, and
0 � μ(r) � 1. We put

ψN (x) := μ(N |x|)(F−1f)(x), x ∈ R
n, N ∈ N.

Then ψN ∈ Ψ(Rn), since ψN ∈ S (Rn) and ψN (x) ≡ 0 as |x| � 1/N . Let us define
fN := FψN ∈ Φ(Rn). With the notation v(·) := μ(| · |), vN (·) := v(N ·), we have

f(x)− (2π)−n

ˆ

Rn

F [1 − v](y)f(x−Ny)dy

= f(x)− (2π)−n

ˆ

Rn

F [1− vN ](z)f(x− z)dz

= f(x)− (2π)−nF
(
(2π)n[1− vN ] ·F−1f

)
(x)

= fN (x).

Then we can denote k(y) = (2π)−nF [1− v](y) ∈ S (Rn) and apply Lemma 7.1 to
obtain

lim
N→∞

‖f − fN‖p(·) = lim
N→∞

‖kN ∗ f‖p(·) = 0. �

7.3 Inversion of the Riesz Potential Operator
on the Space Lp(·)(Rn)

Let

kα(x) :=
1

γn(α)
|x|α−n,

be the Riesz kernel of order α, 0 < α < n, with the known normalizing constant

γn(α) = 2απn/2Γ(α/2)
Γ((n−α)/2) . We use the functions k�,α and K�,α, which are standard

tools in the theory of hypersingular integrals (see Samko [322]):

k�,α(x) :=
(
Δ�

e1kα
)
(x) =

1

γn(α)

�∑
r=0

(−1)r
(
�

r

)
|x− r e1|α−n,

where e1 = (1, 0, . . . , 0), and

K�,α(x) :=
1

dn,�(α)|x|n
ˆ

|y|<|x|

k�,α(y) dy.

It is known (Samko [322, p. 68]) that

|K�,α(x)| � C

{ |x|α−n , |x| � 1

|x|α−n−�∗ , |x| > 1
(7.5)
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where �∗ = �+ 1 if � is odd and �∗ = � otherwise, and

F (Dα
ε f)(x) = K̂�,α(εx)|x|αf̂(x), f ∈ C∞

0 (Rn), (7.6)

where K̂�,α(x) is the Fourier transform of the function K�,α(x). It is also known
that ˆ

Rn

K�,α(x) dx = 1. (7.7)

Remark 7.3. It is not hard to see that the truncated operator Dα
�,ε, given by (7.3),

is well defined on the space Lp(·)(Rn) and is bounded in this space, if p ∈ P∞(Rn),
because Dα

�,ε has the structure Dα
�,εf = cf + k ∗ f , where c = c(ε) is a constant

and the convolution k ∗ f is covered for instance by Theorem 1.14.

Theorem 7.4 (Inversion theorem). Let p ∈ P(Rn) and p+ < n
α . Then there hold

the uniform estimate ∥∥Dα
�,εI

αϕ
∥∥
p(·) � C ‖ϕ‖p(·) , (7.8)

and the inversion formula

D
αIαϕ = ϕ, (7.9)

for ϕ ∈ Lp(·)(Rn), where the hypersingular operator D
α is taken in the sense of

convergence in Lp(·)(Rn)-norm.

Proof. In view of (7.6) and (7.7), the truncated hypersingular operator composed
with the Riesz potential operator reduces to the identity approximation:

D
α
�,εI

αϕ(x) = Kε
�,α ∗ ϕ(x), ε > 0, (7.10)

where Kε
�,α(x) = ε−nK�,α (x/ ε), which is valid for ϕ ∈ Lp(Rn) with constant

p < n
α and consequently for ϕ ∈ Lp(·))(Rn) since Lp(·))(Rn) ⊂ Lp−(Rn)+Lp+(Rn).

By (7.5), the kernel K�,α(x) has an integrable radial majorant. It is also known that´
Rn

K�,α(x) dx = 1 (which is a consequence of the choice of normalizing constants)

and then the application of Theorem 1.5 and Corollary 1.6 concludes the proof.
�

Remark 7.5. Under the assumptions of Theorem 7.4, the inversion formula (7.9)
holds also with the hypersingular integral interpreted in the sense of almost ev-
erywhere convergence:

lim
ε→0

D
α
�,εI

αϕ(x) = ϕ(x),

for almost all x ∈ Rn, by Corollary 1.6.

7.3. of the Riesz Potential Operator on the SpaceInversion Lp(·)(Rn)
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7.4 Characterization of the Space of Riesz and
Bessel Potentials of Functions in Lp(·)(Rn)

In this section we give an exact characterization of the spaces Iα[Lp(·)(Rn)] and
Bα[Lp(·)(Rn)] of Riesz and Bessel potentials of functions in variable exponent
Lebesgue spaces in terms of convergence of hypersingular integrals. As a conse-
quence of this characterization, we describe a relation between the spaces of Riesz
or Bessel potentials and variable exponent Sobolev spaces Wm,p(·)(Rn).

7.4.1 Preliminaries

By W0(R
n) we denote the class of Fourier transforms of integrable functions and

Φ′(Rn) will stand for the topological dual of the Lizorkin space Φ(Rn). Two el-
ements of S ′(Rn) differing by a polynomial are indistinguishable as elements of
Φ′(Rn) (see Samko [322, Sec. 2.2]).

We define the space of Riesz potentials with densities in Lp(·) in a natural
way as

Iα[Lp(·)] = {f : f = Iαϕ, ϕ ∈ Lp(·)}, 0 < α < n,

where

Iαf(x) =
1

γn(α)

ˆ

Rn

f(y)

|x− y|n−α
dy.

The normalizing constant γn(α) is chosen in the usual way so that

Iαf = F−1|ξ|−αFf

on nice functions. The explicit expression for this constant can be found in Samko
[322, p. 37].

The Bessel potential of order α > 0 of a density ϕ is defined by

Bαϕ(x) =

ˆ

Rn

Gα(x− y)ϕ(y) dy, (7.11)

where as is known the Bessel kernel Gα is defined via its Fourier transform:

Ĝα(x) = (1 + |x|2)−α/2, x ∈ R
n, α > 0.

It is known that

Gα(x) = c(α)

∞̂

0

e−
π|x|2

t − t
4π t

α−n
2

dt

t
, x ∈ R

n,

where c(α) is a certain constant (see, for instance Stein [351, Sec. V.3.1]), so that
Gα is a nonnegative, radially decreasing function. Moreover, Gα is integrable with
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‖Gα‖1 = Ĝα(0) = 1, and it can also be represented by means of the McDonald
function:

Gα(x) = c(α, n) |x|α−n
2 Kn−α

2
(|x|). (7.12)

For convenience, we also admit the notation B0ϕ = ϕ.

7.4.2 Characterization of the Riesz Potentials on Lp(·)-Spaces

Theorem 7.6. Let 0 < α < n, 1 < p− � p+ < n
α , and let f be a locally integrable

function. Let also p ∈ Plog
∞ (Rn). Then f ∈ Iα[Lp(·)], if and only if f ∈ Lq(·)(Rn)

with 1
q(·) = 1

p(·) − α
n , and there exists the Riesz derivative Dαf (in the sense of

convergence in Lp(·)(Rn)).

Proof. The “only if” part is immediate: the statement f ∈ Iα[Lp(·)] =⇒ f ∈ Lq(·)

follows from Theorem 2.51, and as f = Iαϕ for some ϕ ∈ Lp(·), we have D
αf =

limε→0 D
α
ε I

αϕ = ϕ ∈ Lp(·)(Rn) by Theorem 7.4.

Conversely, let f ∈ Lq(·)(Rn) and suppose that its Riesz derivative Dαf exists.
Our aim is to prove that f = IαDαf and hence that f ∈ Iα[Lp(·)(Rn)]. Both f
and IαDαf can be regarded as elements of Φ′. Let us show that they coincide in
this sense. Let φ ∈ Φ. For (IαDαf, φ) :=

´
Rn IαDαf(x)φ(x) dx, Fubini’s theorem

shows that

(IαDαf, φ) =

ˆ

Rn

D
αf(y)

( ˆ
Rn

φ(x)

|x− y|n−α
dx

)
dy,

the application of Fubini’s theorem being justified by the fact that |φ(y)| � c(1 +
|y|)−N with an arbitrary large N , and it may be shown that Iα(|φ|)(x) is bounded
and Iα(|φ|)(x) � c

(1+|x|)n−α , see for instance Lemma 1.38 in Samko [322]. Then

Ip′(·)(Iα(|φ|)) � c

ˆ

Rn

dx

(1 + |x|)(n−α)p′(x) < ∞

because infx∈Rn(n− α)p′(x) > n, so that

ˆ

Rn

|Dαf(y)| Iα(|φ|)(y) dy � c ‖Dαf‖p(·) ‖Iα(|φ|)‖p′(·) < ∞

by the Hölder inequality. Notice that the convergence in the Lp(·)-norm implies
weak convergence in Φ′ (note that Iαφ ∈ Φ). Hence

(IαDαf, φ) = lim
ε→0

ˆ

Rn

( ˆ
|z|>ε

(Δ�
zf)(y)

dn,�(α) |z|n+α
dz

)
Iαφ(y) dy
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= lim
ε→0

ˆ

|z|>ε

( ˆ
Rn

∑�
k=0(−1)k

(
�
k

)
f(u) Iαφ(u+ kz)

dn,�(α) |z|n+α
du

)
dz

= lim
ε→0

ˆ

Rn

f(u)

( ˆ
|z|>ε

(Δ�
−zI

αφ)(u)

dn,�(α) |z|n+α
dz

)
du

= lim
ε→0

ˆ

Rn

f(u) Dα
ε I

αφ(u) du.

Consequently,

(IαDαf, φ) =

ˆ

Rn

f(u)φ(u) du,

thanks to the Lebesgue theorem and the fact that φ ∈ Φ =⇒ Dα
ε I

αφ ∈ Lq′(·)(Rn)
and ‖Dα

ε I
αφ‖Lp(·) � C < ∞ by (7.8).

To finish the proof, we observe that since both f and IαDαf are tempered
distributions, we can write IαDαf = f + P , where P is a polynomial. Therefore
f + P ∈ Lq(·)(Rn), which implies P ∈ Lq(·)(Rn). Thus we should have P ≡ 0,
which means IαDαf(x) = f(x) almost everywhere. �

The next theorem provides another characterization of Riesz potentials.

Theorem 7.7. In Theorem 7.6 one can replace the requirement for the Riesz deriva-
tive of f to exist in the sense of convergence in Lp(·)(Rn) by the following uniform
boundedness condition:

‖Dα
ε f‖p(·) � C (7.13)

for all ε > 0.

Proof. If f = Iαϕ, ϕ ∈ Lp(·), then (7.13) is immediate by (7.8).

Conversely, if supε>0 ‖Dα
ε f‖p(·) < ∞, then there exists a subsequence

{Dα
εk
f}

k∈N
, which converges weakly in Lp(·)(Rn) since this space is reflexive when

1 < p− � p+ < ∞. Let us denote its limit by g ∈ Lp(·), and let φ ∈ Φ. As in the
proof of Theorem 7.6, we haveˆ

Rn

Iαg(x) φ(x) dx =

ˆ

Rn

g(y) Iαφ(y) dy = lim
k→+∞

ˆ

Rn

D
α
εkf(y) I

αφ(y) dy

= lim
k→+∞

ˆ

Rn

f(z) (Dα
εkI

αφ)(z) dz =

ˆ

Rn

f(z) φ(z) dz.

The second equality follows from the weak convergence in Lp(·)(Rn) since Iαφ ∈
Lp′(·)(Rn), and the last one from the convergence of Dα

εkI
αφ to φ in Lq′(·)(Rn)

by the inversion theorem and from the fact that f ∈ (Lq′(·))′ = Lq(·). Hence, as
in the proof of Theorem 7.6, one arrives at f = Iαg with g ∈ Lp(·)(Rn), so that
f ∈ Iα[Lp(·)]. �
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7.5 Function Spaces Defined by Fractional
Derivatives in Lp(·)(Rn)

Hypersingular integrals can also be used to construct function spaces of fractional
smoothness.

7.5.1 Definitions

Similarly to the case of constant exponents (see for instance Samko [322]), let us
consider the space

Lp(·),α(Rn) = {f ∈ Lp(·)(Rn) : D
αf ∈ Lp(·)(Rn)}, α > 0, (7.14)

where the fractional derivative Dαf is treated in the usual way as convergent in
the Lp(·)-norm. Note that this space does not depend on the order of the finite
differences used in Dαf . It is a Banach space with respect to the norm

‖f |Lp(·),α‖ := ‖f‖p(·) + ‖Dαf‖p(·).

These spaces will be shown to coincide with the spaces of Bessel potentials.
They are connected with the space of Riesz potentials as stated in the following
result.

Theorem 7.8. Let p ∈ Plog
∞ (Rn), 0 < α < n and 1 < p− � p+ < n

α . Then

Lp(·),α(Rn) = Lp(·)(Rn) ∩ Iα[Lp(·)(Rn)].

Proof. By Theorem 7.6 we only need to prove the embedding Lp(·),α(Rn) ⊆
Lp(·) ∩ Iα[Lp(·)(Rn)]. So, let f ∈ Lp(·),α(Rn). As in the proof of Theorem 7.6
(but here under the assumption that f ∈ Lp(·) replacing f ∈ Lq(·)), we have
f(x) = IαDαf(x) almost everywhere, so that f ∈ Iα[Lp(·)(Rn)]. �
Remark 7.9. Theorem 7.8 also holds if one takes centred differences (everything in
the proof of Theorem 7.6 works in a similar way). Therefore, the space Lp(·),α(Rn)
does not depend on the type of finite differences used to construct the derivative
Dα, at least when p+ < n

α .

7.5.2 Denseness of C∞
0 in Lp(·),α(Rn)

In order to prove that functions f ∈ Lp(·),α(Rn) can be approximated by C∞
0 -

functions, we need a preliminary denseness result. By W p(·),∞(Rn) we denote the
Sobolev space of all functions in Lp(·)(Rn) for which all their (weak) derivatives
are also in Lp(·)(Rn).

Lemma 7.10. Let p∈P(Rn). The set C∞(Rn)∩W p(·),∞(Rn) is dense in Lp(·),α(Rn),
if p ∈ P(Rn).
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Proof. Step 1: Let us show that C∞(Rn)∩W p(·),∞(Rn) ⊆ Lp(·),α(Rn), which is not
obvious in the case of variable exponents. For f ∈ C∞ ∩W p(·),∞(Rn) we already
know that ˆ

|y|>ε

(Δ�
yf)(x)

|y|n+α
dy ∈ Lp(·)(Rn) (7.15)

for any ε > 0, by Remark 7.3. Now we show that also∥∥∥∥∥
ˆ

|y|�δ

(Δ�
yf)(x)

|y|n+α
dy

∥∥∥∥∥
p(·)

−→ 0 as δ −→ 0. (7.16)

To this end, we use the representation

(Δ�
yf)(x) = r

∑
|j|=r

�∑
k=1

yj

j!
(−1)r−kkr

(
�

k

) 1ˆ

0

(1− t)r−1(Djf)(x− kty) dt, (7.17)

(see Samko [322, formula (3.31)]) with the choice � � r > α. Hence,

ˆ

|y|�δ

(Δ�
yf)(x)

|y|n+α
dy =

∑
|j|=r

�∑
k=1

cr,j,k

1ˆ

0

(1− t)r−1

( ˆ

|y|�δ

yj

|y|n+α
(Djf)(x− kty) dy

)
dt.

The change of variables y → δz yields

ˆ

|y|�δ

(Δ�
yf)(x)

|y|n+α
dy = δr−α

∑
|j|=r

�∑
k=1

cr,j,k

1ˆ

0

(1− t)r−1

(
1

kδtn
Kj

( ·
kδt

)
∗Djf

)
(x) dt,

where Kj is given by

Kj(z) =
zj

|z|n+α
when |z| � 1, and Kj(z) = 0 otherwise.

Since |j| = r > α, the kernel Kj has a decreasing radial integrable majorant, so
Theorem 1.5 is applicable and we have∣∣∣∣∣
ˆ

|y|�δ

(Δ�
yf)(x)

|y|n+α
dy

∣∣∣∣∣ � δr−α
∑
|j|=r

�∑
k=1

|cr,j,k|
1ˆ

0

(1− t)r−1 c M (Djf)(x) dt, (7.18)

where c > 0 is independent of k, δ and t. Hence,

Ip(·)

( ˆ

|y|�δ

(Δ�
yf)(x)

|y|n+α
dy

)
� c δ(r−α)p−

∑
|j|=r

Ip(·)(M (Djf)) −→ 0 as δ −→ 0.

(7.19)
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To arrive at (7.16), it remains to refer to the boundedness of the maximal
operator M and recall that the norm convergence is equivalent to the modular
convergence, see Theorem 1.1.

From (7.15) and (7.18) we see that the integral
´
Rn

(Δ	
yf)(x)

|y|n+α dy converges for all

x and defines a function belonging to Lp(·)(Rn). Moreover, by (7.19), it coincides
with the Riesz derivative:∥∥∥∥∥
ˆ

Rn

(Δ�
yf)(x)

|y|n+α
dy −

ˆ

|y|>ε

(Δ�
yf)(x)

|y|n+α
dy

∥∥∥∥∥
p(·)
=

∥∥∥∥∥
ˆ

|y|�ε

(Δ�
yf)(x)

|y|n+α
dy

∥∥∥∥∥
p(·)
−→ 0 as ε −→ 0,

so that Dαf ∈ Lp(·)(Rn).

Step 2: We use the standard approximation by means of mollifiers (as in the case
of constant p, see Samko [322], Lemma 7.14). Let ϕ ∈ C∞

0 be nonnegative, with
supp ϕ ⊂ B(0, 1) and

´
Rn ϕ(x) dx = 1. Put ϕm(x) := mn ϕ(mx), m ∈ N. Then

ϕm ∈ C∞
0 and supp ϕm ⊂ B(0, 1/m). Given f ∈ Lp(·),α(Rn), we define

fm(x) := ϕm ∗ f(x) =
ˆ

Rn

ϕ(y) f
(
x− y

m

)
dy.

Then fm ∈ C∞(Rn). Moreover fm ∈ Lp(·)(Rn) and Djfm = Dj(ϕm) ∗ f ∈
Lp(·)(Rn) by Theorem 1.5. In the case of fractional derivatives we have Dα

ε fm =
(Dα

ε f)m for each ε > 0 and m ∈ N, i.e.,

D
α
ε (ϕm ∗ f) = ϕm ∗ Dα

ε f,

which can be easily proved by Fubini’s theorem. Hence

D
αfm = lim

ε→0
(ϕm ∗ Dα

ε f) = ϕm ∗ Dαf = (Dαf)m,

where the second equality follows from the continuity of the mollifier in Lp(·)(Rn).
In particular, we have Dαfm ∈ Lp(·)(Rn).

It remains to show that the functions fm approximate f in the Lp(·),α(Rn)-
norm. Certainly, ‖f − fm‖p(·) → 0 as m → ∞, by Corollary 1.6. By arguments
similar to those above we have

‖Dα(f − fm)‖p(·) = ‖Dαf − D
αfm‖p(·) = ‖Dαf − (Dαf)m‖p(·) → 0

as m →∞, since Dαf ∈ Lp(·)(Rn). �

Theorem 7.11. Let p ∈ P(Rn) and 1 < p− � p+ < n
α . Then the set C∞

0 (Rn) is

dense in Lp(·),α(Rn).



406 Chapter 7. Description of the Range of Potentials

Proof. By Lemma 7.10, it suffices to show that every function f ∈ C∞(Rn) ∩
W p(·),∞(Rn) may be approximated by C∞

0 -functions in Lp(·),α(Rn)-norm. To this
end, we use smooth truncation: choose μ ∈ C∞

0 (Rn) such that μ(x) = 1 for |x| � 1,
suppμ ⊂ B(0, 2), and 0 � μ(x) � 1 for all x. Define

μm(x) := μ
( x
m

)
, x ∈ R

n, m ∈ N.

We are to show that the truncations μmfm converge to f in Lp(·),α(Rn).

The passage to the limit lim
m→∞ ‖f−μmf‖p(·) = 0 ⇐⇒ lim

m→∞ Ip(·)(f−μmf) = 0

is obvious. To show that also Ip(·)(Dα(f − μmf)) → 0 as m →∞, by Remark 7.9
we may consider centred differences in the fractional derivative (under the choice
� > α with � even). For brevity we denote νm = 1− μm and write

D
α(νmf)(x) =

1

dn,�(α)

�∑
k=0

(
�

k

) ˆ
Rn

(Δk
yνm)(x + �

2y) (Δ
�−k
y f)(x+ ( �2 − k)y)

|y|n+α
dy

=:
1

dn,�(α)

�∑
k=0

(
�

k

)
Am,kf(x).

To show that Ip(·)(Am,kf) → 0 as m →∞, for k = 0, 1, . . . , �, we separately treat
the cases k = 0, k = � and 1 � k � �− 1.

The case k = 0: we have

Am,0f(x) = dn,�(α) νm(x)Dαf(x) +Bmf(x), (7.20)

where

Bmf(x) =

ˆ

Rn

[νm(x+ �
2y)− νm(x)](Δ�

yf)(x + �
2y)

|y|n+α
dy

=

ˆ

Rn

[μm(x) − μm(x+ �
2y)](Δ

�
yf)(x + �

2y)

|y|n+α
dy.

The convergence of the first term in (7.20) is clear. We split the second one as

Bmf(x) =

ˆ

|y|�1

(· · · ) dy +
ˆ

|y|>1

(· · · ) dy := B0
mf(x) +B1

mf(x).

For B0
mf , by the Taylor formula with the remainder in the integral form, we have

μm

(
x+

�

2
y

)
− μm(x) =

�

2m

n∑
j=1

yj

1ˆ

0

∂μ

∂xj

(
x+ �t

2 y

m

)
dt.
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Hence ∣∣∣∣μm

(
x+

�

2
y

)
− μm(x)

∣∣∣∣ � c

m
|y|, (7.21)

where c > 0 does not depend on x, y, and m.

As in the proof of Lemma 7.10, we can estimate B0
mf in terms of the convo-

lution of the derivatives of f with a “nice” kernel, keeping Theorem 1.6 in mind.
Taking (7.21) and (7.17) into account, we get

|B0
mf(x)| � c

m

∑
|j|=r

�∑
ν= 	

2

[ 	
2νˆ

0

(1 − t)r−1

(
1

(−θν(t))n
K

( ·
−θν(t)

)
∗ |Djf |

)
(x) dt

+

1ˆ
	
2ν

(1− t)r−1

(
1

θν(t)n
K

( ·
θν(t)

)
∗ |Djf |

)
(x) dt

]
(7.22)

+
c

m

∑
|j|=r

	
2−1∑
ν=1

1ˆ

0

(1− t)r−1

(
1

(−θν(t))n
K

( ·
−θν(t)

)
∗ |Djf |

)
(x) dt,

where K is defined by

K(z) = |z|r+1−n−α if |z| < 1, and K(z) = 0 otherwise,

θν(t) = νt − �
2 , and r was chosen so that r > α − 1. Therefore, by Theorem 1.6,

we have

Ip(·)(B0
mf) � c

m

∑
|j|=r

Ip(·)
[
M (|Djf |)] −→ 0 as m −→∞.

For the term B1
mf we may proceed as follows. Since μ is infinitely differen-

tiable and compactly supported, it satisfies the Hölder continuity condition. Hence,
for an arbitrary ε ∈ (0, 1], there exists c = cε > 0 not depending on x and y, such
that ∣∣∣∣μm

(
x+

�

2
y

)
− μm(x)

∣∣∣∣ � c

mε
|y|ε.

When α > 1, we may proceed as previously by considering r < α < �.
Putting all these things together, one estimates B1

mf(x) as in (7.22), with the
corresponding kernel K given by

K(y) =
|y|r

|y|n+α−ε
when |y| > 1, and K(y) = 0 otherwise.

Under the choice 0 < ε < min(1, α − r), the kernel K has an integrable radial
decreasing majorant, so that we can apply Theorem 1.5 and obtain that

Ip(·)(B1
mf) � c

mε

∑
|j|=r

Ip(·)(|Djf |) −→ 0 as m −→∞.
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In the case 0 < α � 1 we can take � = 2, so that

|B1
mf(x)| � c

mε

( ˆ

|y|>1

|f(x+ y)|
|y|n+α−ε

dy +

ˆ

|y|>1

|f(x)|
|y|n+α−ε

dy +

ˆ

|y|>1

|f(x− y)|
|y|n+α−ε

dy

)
.

Each term can be treated by using arguments similar to those above, but now
with the choice 0 < ε < α.

The case k = �: let

Am,�f(x) =

ˆ

Rn

(Δ�
yνm)(x+ �

2y) f(x− �
2y)

|y|n+α
dy =

ˆ

|y|�1

(· · · ) dy +

ˆ

|y|>1

(· · · ) dy

=: B0
m,�f(x) +B1

m,�f(x).

Notice that (Δ�
yνm)(z) = −(Δ�

yμm)(z) = −(Δ�
y
m
μ)
(

z
m

)
. By (7.17),∣∣∣∣(Δ�

yνm)

(
x+

�

2
y

)∣∣∣∣ =
∣∣∣∣∣(Δ�

y
m
μ)

(
x+ �

2y

m

)∣∣∣∣∣ � c

( |y|
m

)r ∑
|j|=r

‖Djμ‖∞ � c

mr
|y|r

(with � � r > α). Hence,

|B0
m,�f(x)| �

c

mr
(K ∗ |f |)(x)

where K is now given by

K(y) =
1

|y|n+α−r
if |y| � �

2
, and K(y) = 0 otherwise.

Since r > α, the kernel K satisfies the assumptions of Theorem 1.5. As above, we
conclude that ‖B0

m,�f‖p(·) → 0 as m →∞.

As far as the term B1
m,�f is concerned, when α > 1 we may choose � > α > r

and proceed in a similar way as in the case k = 0 above. When 0 < α � 1 we may
take � = 2 and get

|B1
m,�f(x)| �

ˆ

|y|>1

∣∣∣(Δ2
y
m
μ
) (

x+y
m

)∣∣∣ |f(x− y)|
|y|n+α

dy

=

ˆ

|y|>1

∣∣μ (x+y
m

)− 2μ
(
x
m

)
+ μ
(
x−y
m

)∣∣ |f(x− y)|
|y|n+α

dy

�
ˆ

|y|>1

∣∣μ (x+y
m

)− μ
(
x
m

)∣∣ |f(x− y)|
|y|n+α

dy +

ˆ

|y|>1

∣∣μ (x−y
m

)− μ
(
x
m

)∣∣ |f(x− y)|
|y|n+α

dy

� c

mε

ˆ

|y|>1

|y|ε |f(x− y)|
|y|n+α

dy
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for any ε ∈ (0, 1] (and c > 0 independent of m). Thus we arrive at the desired
conclusion by taking ε < α.

The case k ∈ {1, 2, . . . , �− 1}: as in the previous case, we have

Am,kf(x) =

ˆ

Rn

(Δk
yνm)(x + �

2y) (Δ
�−k
y f)(x+ ( �2 − k)y)

|y|n+α
dy

=

ˆ

|y|�1

(· · · ) dy +

ˆ

|y|>1

(· · · ) dy =: B0
m,kf(x) +B1

m,kf(x).

We can estimate the term B0
m,kf by noticing that∣∣∣∣(Δk

yνm)(x+
�

2
y)

∣∣∣∣ � c

( |y|
m

)k

and then proceeding as above with an appropriate choice of r.

For the term B1
m,k we first consider the case α > 1. Since

(
k
l

)
=
(

k
k−l

)
, for

l = 0, 1, . . . , k, we can write

(Δk
y
m
μ)

(
x+ �

2y

m

)
=

k−1
2∑

l=0

(
k

l

)[
μ

(
x+ �

2y

m
− l

y

m

)
− μ

(
x+ �

2y

m
− (k − l)

y

m

)]

if k is odd. When k is even, we can also represent our finite difference as the sum
of the first-order differences of two appropriate terms, since

∑k
l=0(−1)l

(
k
l

)
= 0. In

both situations we may again make use of the Hölder continuity (of order ε) of the
function μ. Finally, we shall arrive at the desired estimate by using arguments as
above, but under the assumption 0 < ε < min(1, α− 1). The case 0 < α � 1 can
be easily solved by taking � = 2. So, we have k = �− k = 1 and hence

|B1
m,kf(x)| �

ˆ

|y|>1

∣∣∣(Δ1
y
m
μ)
(
x+y
m

)∣∣∣ |(Δ1
yf)(x)|

|y|n+α
dy

�
ˆ

|y|>1

(
|y|
m

)ε
|f(x)|

|y|n+α
dy +

ˆ

|y|>1

(
|y|
m

)ε
|f(x− y)|

|y|n+α
dy,

so that we can proceed as in the previous cases. �
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7.6 Bessel Potentials Space of Functions in Lp(·)(Rn)

and its Characterization

The main aim of this section is to describe the range of the Bessel potential opera-
tor on Lp(·) in terms of convergence of hypersingular integrals. This is known in the
case of constant p, see Samko [322, Sec. 7.2], or Samko, Kilbas, and Marichev [331,
Sec. 27.3], and references therein. Here we consider the case 0 < α < n, p+ < n

α .

7.6.1 Basic Properties

Theorem 7.12. If p ∈ P(Rn), then the Bessel potential operator Bα is bounded in
Lp(·)(Rn).

Proof. For f ∈ Lp(·) we have ‖Bαf‖p(·) = ‖Gα ∗ f‖p(·) � c ‖f‖p(·), in view of
(7.11), (7.12), and the assertion follows Theorem 1.5. �

We define the space of Bessel potentials with Lp(·)-densities as the range of
the Bessel potential operator

Bα[Lp(·)(Rn)] = {f : f = Bαϕ, ϕ ∈ Lp(·)}, α � 0.

The space Bα[Lp(·)(Rn)] is well defined whenever 1 � p− � p+ � ∞ and, by
Theorem 7.12, is embedded into Lp(·)(Rn), when the maximal operator is bounded
in Lp(·). This is a Banach space endowed with the norm

‖f‖Bα[Lp(·)] := ‖ϕ‖p(·),

where ϕ is the density from (7.11). This space may be also called Liouville space
of fractional smoothness, as Theorem 7.19, proved in the sequel, shows.

Theorem 7.13. If p ∈ P(Rn) and α > γ � 0, then Bα[Lp(·)(Rn)] ↪→ Bγ [Lp(·)(Rn)].

Proof. The proof follows immediately from the properties of the Bessel kernel
and the boundedness of the Bessel potential operator: if f = Bαϕ with some
ϕ ∈ Lp(·)(Rn), then f = Bγ(Bα−γϕ) so that ‖f‖Bγ [Lp(·)] = ‖Bα−γϕ)‖p(·) �
c ‖ϕ‖p(·) = c ‖f‖Bα[Lp(·)]. �

7.6.2 Characterization of the Space Bα[Lp(·)(Rn)] via
Hypersingular Integrals

The comparison of the ranges of the Bessel and Riesz potential operators is natu-
rally made via the convolution type operator whose Fourier transform is the ratio
of the Fourier transforms of the Riesz and Bessel kernels. This operator is the sum
of the identity operator and a convolution operator with a radial integrable kernel.
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Keeping in mind the application of Theorem 1.5, we have to show more, namely
that this kernel has an integrable decreasing majorant.

We have to show the existence of integrable decreasing majorants for two
important kernels gα and hα, defined in (7.23) and (7.24) below. This will require
substantial efforts.

Let gα and hα be the functions defined via the following Fourier transforms:

|x|α
(1 + |x|2)α

2
= 1 + ĝα(x), α > 0, x ∈ R

n, (7.23)

(1 + |x|2)α
2

1 + |x|α = 1 + ĥα(x), α > 0, x ∈ R
n. (7.24)

It is known that gα and hα are integrable (see, for example, Lemma 1.25 in Samko
[322]). Observe that

1 + |x|α
(1 + |x|2)α

2
= Ĝα(x) + ĝα(x) + 1.

The following two lemmas are crucial for our purposes.

Lemma 7.14. The function gα defined in (7.23) has an integrable and radially
decreasing majorant.

Lemma 7.15. The kernel hα given by (7.24) admits the bounds

|hα(x)| � c

|x|n−a
as |x| < 1, a = min{1, α} (7.25)

and
|hα(x)| � c

|x|n+α
as |x| � 1. (7.26)

where c > 0 is a constant not depending on x.

The proof of these lemmas, rather technical, is postponed till Subsection
7.6.3.

Before we formulate the main result of this section, we need to prove the
following two statements.

Theorem 7.16. Let 0 < α < n and p ∈ P(Rn) with 1 < p− � p+ < n/α. Then
every ϕ ∈ Lp(·),α(Rn) can be represented as

ϕ = Bα(I + Uα)(ϕ+ D
αϕ), (7.27)

where I is the identity operator and Uα is the convolution operator with kernel hα.

Proof. Identity (7.27) holds for functions ϕ ∈ C∞
0 . This follows immediately from

equality (7.24) (cf. Samko [322, (7.39)]). The set C∞
0 is dense in Lp(·),α(Rn) by

Theorem 7.11, which allows us to write (7.27) for all functions in Lp(·),α(Rn). To
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this end, we observe that both operators,Bα and Uα, are bounded in Lp(·)(Rn): the
boundedness of Bα was proved in Theorem 7.12, while the convolution operator
Uα is bounded by Lemma 7.15. �
Theorem 7.17. Let 0 < α < n and let p a measurable function with 1 < p− �
p+ < n/α. Then

Bαψ = Iα(I +Kα)ψ, (7.28)

for all ψ ∈ Lp− +Lp+ , where I is the identity operator and Kα is the convolution

operator with the kernel gα bounded in Lp(·)(Rn) when p ∈ Plog
∞ (Rn).

Proof. Representation (7.28) holds for ψ in classical Lebesgue spaces (see, for
instance, Samko [322, (7.38)]). By the Sobolev theorem and Lemma 7.14, both Bα

and Iα(I + Kα) are bounded from Lp− to Lq(p−) and from Lp+ to Lq(p+), with
1

q(p±) =
1
p±

− α
n . Then (7.28) extends to functions ψ ∈ Lp− + Lp+ .

The boundedness of the operator Kα in Lp(·)(Rn) follows by Lemma 7.14
combined with Theorem 1.5. �
Corollary 7.18. Let 0 < α < n and p ∈ Plog

∞ (Rn) with 1 < p− � p+ < n/α. Then

‖Bαf‖q(·) � c ‖f‖p(·) ,
1

q(x)
=

1

p(x)
− α

n
.

Proof. Use (7.28), the boundedness of the operator Kα in Lp(·)(Rn), and Theorem
2.51. �
Theorem 7.19. Let 0 < α < n. If 1 < p− � p+ < n/α and p ∈ Plog∞ (Rn), then
Bα[Lp(·)(Rn)] = Lp(·),α(Rn) with equivalent norms:

c1 ‖f‖Lp(·),α(Rn) � ‖f‖Bα[Lp(·)] � c2 ‖f‖Lp(·),α(Rn).

Proof. Assume first that f ∈ Bα[Lp(·)(Rn)]. Then f ∈ Lp(·)(Rn) by Theorem 7.12.
It remains to show that the Riesz derivative of f also belongs to Lp(·)(Rn). Since
f = Bαϕ for some ϕ ∈ Lp(·), and since Lp(·) ⊂ Lp− + Lp+ , Theorem 7.17 yields
the representation

Bαϕ = Iα(I +Kα)ϕ.

Since the operator Kα is bounded in Lp(·)(Rn) by Theorem 7.17, we obtain that
f ∈ Iα[Lp(·)(Rn)]. Applying Theorem 7.6, we deduce that the Riesz derivative
Dαf exists in the sense of convergence in Lp(·)(Rn). Therefore, f ∈ Lp(·),α(Rn).
Moreover,

‖f‖Lp(·),α(Rn) = ‖Bαϕ‖p(·) + ‖DαBαϕ‖p(·)
= ‖Bαϕ‖p(·) + ‖DαIα(I +Kα)ϕ‖p(·)
= ‖Bαϕ‖p(·) + ‖(I +Kα)ϕ‖p(·)
� c ‖ϕ‖p(·) = c ‖f‖Bα[Lp(·)(Rn)],
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where the third equality follows from the inversion Theorem 7.4 and the inequality
from Theorem 7.12 and the boundedness of Kα.

Conversely, suppose that f ∈ Lp(·),α(Rn). Then, by Theorem 7.16,

f = Bα(I + Uα)(f + D
αf).

Now using Lemma 7.15 and Theorem 1.5, we conclude that f ∈ Bα[Lp(·)] and
‖f‖Bα[Lp(·)] = ‖(I +Uα)(f +Dαf)‖p(·) � c (‖f‖p(·)+ ‖Dαf‖p(·)) = c ‖f‖Lp(·),α(Rn).

�

Corollary 7.20. Let 0 < α < n, 1 < p− � p+ < n/α, and p ∈ Plog
∞ (Rn). Then

C∞
0 (Rn) is dense in Bα[Lp(·)(Rn)].

Proof. Apply Theorem 7.11. �

7.6.3 Proof of Lemmas 7.14 and 7.15

Proof of Lemma 7.14. With the notation ρ = (1+ |x|2)1/2 we have |x|α
(1+|x|2)α

2
−1 =

(1− ρ−2)α/2 − 1. Taking the binomial series expansion we get

(1− ρ−2)
α
2 − 1 =

∞∑
k=0

(
α/2

k

)(−ρ−2
)k − 1 =

∞∑
k=1

(−1)k
(
α/2

k

)
ρ−2k, ρ > 1.

Hence, for each x �= 0,

|x|α
(1 + |x|2)α

2
− 1 =

∞∑
k=1

(−1)k
(
α/2

k

)
Ĝ2k(x) :=

∞∑
k=1

c(α, k) Ĝ2k(x),

where G2k is the Bessel kernel of order 2k, so that

gα(x) =

∞∑
k=1

c(α, k)G2k(x), x ∈ R
n.

The function mα(x) :=
∑∞

k=1 |c(α, k)|G2k(x) defines a radial decreasing majorant
of gα. It is integrable:

‖mα‖1 �
∞∑
k=1

∣∣∣∣(α/2k
)∣∣∣∣ < ∞,

since
∣∣∣(α/2k )∣∣∣ � c

k1+α/2 as k → ∞ (cf. Samko, Kilbas, and Marichev [331, p. 14]).

�

Proof of Lemma 7.15. Step 1 (proof of (7.25)): The function ĥα may be repre-
sented as a finite sum of Fourier transforms of Bessel kernels plus an integrable
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function. To show this, we denote t = 1
1+|x|2 , so that ĥα(x) =

1
tβ+(1−t)β − 1 with

β = α
2 . We have

1

tβ + (1− t)β
− 1 =

1

(1− t)β
· 1

1 +
(

t
1−t

)β − 1 =
1

(1− t)β

∞∑
k=0

(−1)k
(

t

1− t

)kβ

− 1

where the series converges if t < 1
2 ⇐⇒ |x| > 1. Since t

1−t =
1

|x|2 , we get

ĥα(x) =
(1 + |x|2)α

2

|x|α
∞∑
k=0

(−1)k

|x|αk − 1, |x| > 1.

For each natural number N , we can write

ĥα(x) =
(
1 + |x|2)α2 N∑

k=0

(−1)k

|x|α(k+1)
− 1 +AN (x), |x| > 1, (7.29)

where

|AN (x)| =
∣∣∣∣∣ (1 + |x|2)α

2

|x|α
∞∑

k=N+1

(−1)k

|x|αk
∣∣∣∣∣ � (1 + |x|2)α

2

|x|2α
1

|x|αN � 2α

|x|αN . (7.30)

Now it remains to express the powers 1
|x|α(k+1) in terms of the powers 1√

1+|x|2 .

We observe that for any γ > 0, denoting ρ =
√
1 + |x|2, we have

1

|x|γ = ρ−γ

(
1− 1

ρ2

)−γ/2

= ρ−γ

(
M∑
j=0

(−1)j
(−γ/2

j

)
ρ−2j + φM (ρ)

)
, (7.31)

where M ∈ N and φM (ρ) =
∑∞

j=M+1(−1)j
(−γ/2

j

)
ρ−2j converges absolutely for

ρ > 1 ⇐⇒ x �= 0. Obviously∣∣∣∣φM (ρ)

ργ

∣∣∣∣ � c

∞∑
j=M+1

1

j1−
γ
2

1

ρ2j+γ
� c

ρM+1

∞∑
j=M+1

1

j1−
γ
2

1

2
j+γ
2

,

where we took into account that |x| > 1 ⇐⇒ ρ �
√
2. Hence

∣∣∣φM (ρ)
ργ

∣∣∣ � c1
ρM+1 �

c2
ρM . Then from (7.31) one has

1

|x|γ =

M∑
j=0

(−1)j
(−γ/2

j

)
(1 + |x|2)j+γ/2

+Bγ
M (x), (7.32)

where

|Bγ
M (x)| � C

|x|2M as |x| > 1. (7.33)
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Substituting (7.32) into (7.29) (with γ = α(k+1)), and takingM = N , we arrive at

ĥα(x) =
∑
k,j=0
k+j 
=0

(−1)k+j
(−α(k+1)/2

j

)
(1 + |x|2)j+αk

+ rN (x), (7.34)

where the function

rN (x) = AN (x) +
(
1 + |x|2)α2 N∑

k=0

B
α(k+1)
N (x)

satisfies for all |x| > 1 the estimate |rN (x)| � c
|x|μ , μ = N min(2, α), according

to (7.30) and (7.33). Hence, we only have to choose N > n
min(2,α) to ensure the

integrability of rN at infinity.

The above estimates were given for |x| > 1, but the representation (7.34)
itself remains valid for all x ∈ Rn, upon defining rN as

rN (x) := ĥα(x)−
∑

k,j=0 k+j 
=0

c(k, j) Ĝ2j+αk(x), N >
n

min(2, α)
, x ∈ R

n,

where Ĝ2j+αk are Bessel kernels and c(k, j) := (−1)k+j
(−α(k+1)/2

j

)
. Then rN ∈

W0. In particular, rN is a bounded continuous function. Also, rN is integrable at
infinity in view of the estimate above and hence, rN ∈ W0 ∩ L1. Consequently,
also F−1rN ∈ W0 ∩ L1. Thus, F−1rN is a bounded continuous function too. So

|hα(x)| �
∑
k,j=0
k+j 
=0

|c(k, j)| |G2j+αk(x)| + |F−1rN (x)|

�
∑
k,j=0
k+j 
=0

|c(k, j)| |G2j+αk(x)| + C.

We know that G2j+αk ∼ 1
|x|n−2j−αk for |x| < 1, when 2j + αk < nm so that

G2j+αk � c
|x|n−min(1,α) in this case. Thus, we arrive at (7.25) with a = min(1, α).

When 2j + αk > n, we have the same estimate, since G2j+αk(x) is bounded
at the origin in this case. For the case 2j + αk = n we have the logarithmic
behavior G2j+αk(x) ∼ ln (1/|x|) ,� 1

|x|n−a for any a ∈ (0, n). The proof of (7.25)

is completed.

Step 2 (proof of (7.26)): To obtain (7.26), we transform the Bochner formula for
the Fourier transform of radial functions via integration by parts and arrive at the
formula

F−1ĥα(x) =
c

|x|n2 +m−1

∞̂

0

ψ(m)
α (t) t

n
2 Jn

2 +m−1(t|x|) dt, x �= 0, (7.35)
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where ψα(t) =
(1+t2)

α
2

1+tα and m is arbitrary such that m > 1 + n
2 (the latter

condition on m guarantees the convergence of the integral at infinity).

We omit the justification of the representation (7.35): the details may be
found in the paper Almeida and Samko [13, p. 138]. To deduce the inequal-

ity (7.26) from (7.35), observe that
∣∣ψ(m)

α (t)
∣∣ � c

tm as t � 1 and
∣∣ψ(m)

α (t)
∣∣ �

c
(
tα−m + tm−2[m2 ]

)
as t < 1. Therefore,

c

|x|ν+m−1

1ˆ

0

|ψ(m)
α | tν |Jν+m−1(t|x|)| dt � c

|x|ν+m−1

1ˆ

0

tα−m+ν |Jν+m−1(t|x|)| dt

� c

|x|n+α

|x|ˆ

0

tα−m+ν |Jν+m−1(t)| dt � c

|x|n+α

∞̂

0

tα−m+ν |Jν+m−1(t)| dt

=
c1

|x|n+α

if m > 1 + ν + α, which guarantees the convergence of F−1ĥα at infinity. The
proof is complete. �

7.7 Connection of the Riesz and Bessel Potentials
with the Sobolev Variable Exponent Spaces

The identification of the spaces of Bessel potentials of integer smoothness with
Sobolev spaces is a well-known result within the setting of the classical Lebesgue
spaces. The result is due to A. Calderón and states that

Bm[Lp(Rn)] = Wm,p(Rn),

if m ∈ N0 and 1 < p < ∞, with equivalent norms, and can be found, for instance,
in Stein [351, Sec. V.3.3–4].

In this section we extend this to the variable exponent setting.

7.7.1 Coincidence with Variable Exponent Sobolev Spaces
for α ∈ N

The key point is the following characterization:

Theorem 7.21. Let p ∈ P(Rn) and α � 1. Then f ∈ Bα[Lp(·)(Rn)], if and only if
f ∈ Bα−1[Lp(·)(Rn)] and ∂f

∂xj
∈ Bα−1[Lp(·)(Rn)] for every j = 1, . . . , n. Further-

more, there exist positive constants c1 and c2 such that

c1 ‖f‖Bα[Lp(·)] � ‖f‖Bα−1[Lp(·)] +

n∑
j=1

∥∥∥∥ ∂f∂xj

∥∥∥∥
Bα−1[Lp(·)]

� c2 ‖f‖Bα[Lp(·)]. (7.36)
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Proof. Suppose first that f = Bαϕ, ϕ ∈ Lp(·). Then for each j = 1, 2, . . . , n, we
have

∂f

∂xj
= Bα−1[−Rj(I +K1)ϕ], (7.37)

where

Rjg(x) = lim
ε→0

cn

ˆ

|y|>ε

yj
|y|n+1

f(x− y) dy

are the Riesz transforms and K1 is the convolution operator whose kernel is g1,
given by (7.23) with α = 1. This identity, obvious in Fourier transforms, is known
to be valid for ϕ ∈ Lp when p is constant, see Stein [351, p. 136]. Then it is also
valid for variable p(·), since Lp(·) ⊂ Lp+ + Lp− . The right-hand side inequality
in (7.36) follows from (7.37) by the mapping properties of the Bessel potential
operator on spaces Lp(·)(Rn).

The proof of the left-hand side inequality follows the known scheme for con-
stant p. However, we need to refine the connection with the Riesz transforms and
the derivatives, in order to overcome the difficulties associated to the convolution
operators in the variable exponent setting. Assume that both f and ∂f

∂xj
belong to

Bα−1[Lp(·)(Rn)] so that f = Bα−1ϕ, with ϕ ∈ Lp(·)(Rn) and ∂f
∂xj

= Bα−1
(

∂ϕ
∂xj

)
,

where ∂ϕ
∂xj exist in the weak sense and belong to Lp(·)(Rn). Thus ϕ ∈ W 1,p(·)(Rn).

By the denseness of C∞
0 (Rn) in W 1,p(·)(Rn), proved in Theorem 7.27, there exists

a sequence of C∞
0 -functions {ϕk}k∈N such that limk→∞ ϕk = ϕ and limk→∞ ∂ϕk

∂xj
=

∂ϕ
∂xj

in Lp(·), j = 1, 2, . . . , n. Since B1 maps S onto itself, then, for each k, there

exists ψk ∈ S such that ϕk = B1ψk. Since

1 = (1 + |x|2)−1/2(1 + ĥ1(x))(1 + |x|), x ∈ R
n,

as follows from (7.24) (with α = 1), we arrive at the identity

ψk = (I + U1)

(
ϕk +

n∑
j=1

Rj

(
∂ϕk

∂xj

))
,

where U1 is the convolution operator as in Theorem 7.16. Thanks to the bound-
edness of the involved operators it is not difficult to see that

‖f‖Bα[Lp(·)] � C

(
‖f‖Bα−1[Lp(·)] +

n∑
j=1

∥∥∥∥ ∂f∂xj

∥∥∥∥
Bα−1[Lp(·)]

)
,

which completes the proof. �
Corollary 7.22. Let p(·) be as in Theorem 7.21 and let m ∈ N0. Then

Bm[Lp(·)] = Wm,p(·)(Rn),

up to norm equivalence.
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The theorem below provides a connection of the spaces of Riesz potentials
with the Sobolev spaces. It partially extends the facts known for constant p (see,
for instance, Samko [322, p. 181]) to the variable exponent setting.

Theorem 7.23. Let m ∈ N, 0 < α < min(m,n) and p ∈ Plog∞ (Rn) with 1 < p− �
p+ < n/α. Then

Wm,p(·) ⊂ Lp(·) ∩ Iα[Lp(·)(Rn)] (7.38)

and Wm,p(·) = Lp(·) ∩ Im[Lp(·)(Rn)] when 0 < m < n.

Proof. We first prove that Wm,p(·) = Lp(·) ∩ Im[Lp(·)(Rn)]. Let f ∈ Wm,p(·).
By Corollary 7.22 and Theorems 7.13 and 7.19, not only f ∈ Lp(·)(Rn), but
also Dmf ∈ Lp(·)(Rn). On the other hand, the Sobolev theorem states that
f ∈ Lq(·)(Rn), with the Sobolev exponent q(·). Then by Theorem 7.6 one con-
cludes that f is a Riesz potential. Conversely, if f ∈ Im[Lp(·)(Rn)] then the ap-
plication of Theorem 7.6 shows that Dmf exists in Lp(·)(Rn), which implies that
f ∈ Lm,p(·)(Rn). As above, one gets f ∈ Wm,p(·)(Rn).

The embedding (7.38) can be proved by similar arguments upon observing
that we have Bm[Lp(·)(Rn)] ↪→ Bα[Lp(·)(Rn)] when m > α. �

7.7.2 Denseness of C∞
0 -Functions in W 1,p(·)(Rn)

Let K(x) be a measurable function with support in the ball B(0, R) of a radius
R < ∞, and let Kε(x) =

1
εnK
(
x
ε

)
and

Kεf(x) =

ˆ
Ω

Kε(x− y)f(y)dy,

where Ω is a bounded domain in Rn. We define also the larger domain

ΩR = {x ∈ R
n : dist (x,Ω) � R} ⊇ Ω .

Let p(x) be now a function defined in ΩR such that

1 � p(x) � p+ < ∞ , x ∈ ΩR . (7.39)

The following theorem is a consequence of (1.17) when p− > 1; for p+ � 1
it is contained in Theorem 1.5. We give the proof of Theorem 7.24 obtained in
because of its importance for our purposes. Since we admit the case p− = 1, we
have unbounded conjugate exponents, so we recall that for unbounded exponents
p(x) the norm is defined by (1.9).

Theorem 7.24. Let K ∈ Lp′
+(B(0, R)) and p ∈ P log(B(0, R)) satisfy (7.39). Then

‖Kεf‖Lp(·)(ΩR) � c‖f‖Lp(·)(Ω),

where c does not depend on ε.
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Proof. We assume that ‖f‖p(·) � 1 and have to show that

Ip(·) (Kεf) :=

ˆ

ΩR

|Kεf(x)|p(·)dx � c,

with c > 0 not depending on ε. By the Hölder inequality it is easy to see that
|Kεf(x)| � c for all x ∈ ΩR and ε � ε(0), with c = c(ε(0)) in this case. So it suffices
to consider 0 < ε � ε(0) for some choice of ε(0). Let

ΩR =

N⋃
k=1

ωk
R

be any partition of ΩR into small sets ωk
R comparable with ε: diam ωk

R � ε,
k = 1, 2, . . . , N , with N = N(ε). We represent the modular Ip(·) (Kεf) as

Ip(·) (Kεf) =
N∑

k=1

ˆ

ωk
R

∣∣∣∣∣
ˆ

Ω

Kε(x − y)f (y)dy

∣∣∣∣∣
p(x)−pk+pk

dx ,

with pk = infx∈Ωk
R
p(x) � infx∈ωk

R
p(x), where the larger sets Ωk

R ⊃ ωk
R will be

chosen later, comparable with ε: diam Ωk
R � mε,m > 1.

We shall prove the uniform estimate

Ak(x, ε) :=

∣∣∣∣∣
ˆ

Ω

Kε(x − y)f (y)dy

∣∣∣∣∣
p(x)−pk

� c , x ∈ ωk
R, (7.40)

where c > 0 does not depend on x ∈ ωk
R, k, and ε ∈ (0, ε(0)) with some ε(0) > 0.

To this end, we first obtain the estimate

Ak(x, ε) � c1 ε−n[p(x)−pk] , x ∈ ΩR. (7.41)

To get (7.41), we consider separately the cases p′+ = ∞ and p′+ < ∞. Let p′+ = ∞.
Then

Ak(x, ε) �
(
M

εn

ˆ

Ω

χB(x,εR)(y)|f(y)|dy
)p(x)−pk

,

where M = supB(0,R) |K(x)|, whence by the Hölder inequality

Ak(x, ε) �
(
2M

εn
‖χB(x,εR)‖p′(·)

)p(x)−pk

.

We have ‖χB(x,εR)‖p′(·) = 1+‖χB(x,εR)‖(p′) � 1+(εn|B(x,R)|)
1

p′− � 2 assuming

that 0 < ε � |B(0, R)|− 1
n := ε

(0)
1 . Then we arrive at (7.41) with c1 = (4M)p+−p−

if 4M � 1, and c1 = 1 otherwise.
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Let p′+ < ∞. By the Hölder inequality, we obtain the estimate Ak(x, ε) �(
2‖Kε(x − y)‖p′(·)

)p(x)−pk . Clearly,

‖Kε(x− y)‖(p′) �
1

εn

( ˆ

Ω\Ω∞(p′)

∣∣∣∣K(§ − †
ε

)∣∣∣∣p′(y)

dy

)θ

,

where θ = 1
p′
+
or θ = 1

p′−
, depending on whether the last integral in the parentheses

is less or greater than 1, respectively. Hence,

‖Kε(x − y)‖(p′) �
1

εn

( ˆ

|y|<R,x−εy∈Ω\Ω∞(p′)

|K(y)|p′(x−εy) dy

)θ

� 1

εn

[
|B(0, R)| +

ˆ

|y|<R,|K(y)|�1

|K(y)|p′
+ dy

]θ

� 1

εn

[
|B(0, R)| + ‖K‖p

′
+

p′
+

]θ
� c2ε

−n,

where c2 = max{c
1

p′
+

3 , c
1

p′−
3 }, c3 = |B(0, R)|+ ‖K‖p

′
+

p′
+
. This establishes (7.41) in the

case p′+ < ∞, with c1 = (c2k)
p+−p− if c2 > 1, and c1 = 1 otherwise.

Now that (7.41) has been proved, we observe now that p(x) − pk = |p(x) −
p(ξk)| � A

ln 1
|x−ξk|

, where x ∈ ωk
R, ξk ∈ Ωk

R. Evidently, |x − ξk| � diam Ωk
R � mε.

Therefore, p(x)− pk � A
ln 1

mε

under the assumption that 0 < ε � 1
2m =: ε

(0)
2 . Then

Ak(x, ε) � c1ε
− A

ln 1
mε � C , x ∈ ωk

R,

with C not depending on x, for 0 < ε � ε
(0)
3 := 1

m2 . Therefore, we have the

uniform estimate (7.40) for 0 < ε � ε(0), ε(0) = min1�k�3 ε
(0)
k . By (7.40),

Ip(·) (Kεf) � c

N∑
k=1

ˆ

ωk
R

∣∣∣∣∣
ˆ

Ω

Kε(x − y)f (y)dy

∣∣∣∣∣
pk

dx ,

where pk are constants so that

Ip(·) (Kεf) � c

N∑
k=1

{ ˆ

|y|<εR

|Kε(y)| dy
( ˆ

ωk
R

|f(x − y)|pk dx

) 1/pk
}pk

,

by the usual Minkowski inequality. Hence,

Ip(·) (Kεf) � c

N∑
k=1

{ ˆ

|y|<R

|K(y)| dy
( ˆ

x+εy∈ωk
R

|f(x )|pk dx

) 1/pk
}pk

,
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where the domains of integration with respect to x are embedded, for each ε, into
the sets

⋃
y∈B(0,εR)

{
x : x+ y ∈ ωk

R

}
which already do not depend on y. Now, we

take these sets to be the previously undetermined sets. Then Ωk
R ⊃ ωk

R and it is
easily seen that diam Ωk

R � (1 + 2R)ε, so that diam Ωk
R � mε, as required.

Consequently,

Ip(·) (Kεf) � c

N∑
k=1

{ ˆ

|y|<R

|K(y)| dy
}pk ˆ

Ωk
R

|f(x )|pk dx

� c

{ ˆ

|y|<R

|K(y)| dy
}θ N∑

k=1

ˆ

Ωk
R∩Ω

|f(x )|pk dx,

where θ = p+ if
´
|y|<R |K(y)|dy � 1, and θ = p− otherwise. Since diam Ωk

R � mε,

the covering {ωk = Ωk
R ∩ Ω}Nk=1 has a finite multiplicity (i.e., each point x ∈ Ω

belongs simultaneously to only a finite number n0 of the sets ωk, n0 � 1+(1+2R)n

in this case). Therefore,

Ip(·) (Kεf) � c5

ˆ

Ω

|f(x )|p̃(x) dx

where p̃(x) = max
j

pj � p(x), the maximum being taken with respect to all the

sets ωj containing x. Then Ip(·) (Kεf) � c5‖f‖θ1p̃(·) with θ1 = inf p̃(x) if ‖f‖p̃(·) � 1,

and θ1 = sup p̃(x) otherwise, θ1 < p+. Applying the embedding Theorem 2.2, we
arrive at the final estimate Ip(·) (Kεf) � c6‖f‖θ1p(·) � c6. �

Theorem 7.25. Let p and K satisfy the same assumptions as in Theorem 7.24 and´
B(0,R)

K(y)dy = 1. Then

lim
ε→0

‖Kεf − f‖Lp(·)(ΩR) = 0

for f ∈ Lp(·)(Ω).

Proof. By Theorem 7.24, the operators Kε are uniformly bounded from Lp(·)(Ω)
to Lp(·)(ΩR). Then, by the Banach–Steinhaus theorem, it suffices to verify the
convergence for a dense set in Lp(·)(Ω), for instance, for the characteristic functions
χE(x) of bounded measurable sets E ⊂ Ω (their denseness in Lp(·)(Ω) follows from
Theorem 2.3, since Ω is bounded). We have

Kε(χE)− χE =

ˆ

B(0,R)

K(y) [χE(x− εy)− χE(x)] dy.
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Hence

‖Kε(χE)− χE‖p+ �
ˆ

B(0,R)

|K(y)| ‖χE(· − εy)− χE(x)‖p+
dy −→ 0

as ε → 0 by the Lebesgue dominated convergence theorem and the p+-mean
continuity of functions in Lp+(Ω) with a constant p+. Then also ‖Kε(χE) −
χE‖p → 0, by the embedding Theorem 2.2. �
Corollary 7.26. Let p satisfy the assumptions of Theorem 7.24. Then

lim
ε→0

‖fε − f‖Lp(·)(Ω) = 0,

where

fε(x) =
1

εn|B(0, 1)|
ˆ

y∈Ω,|y−x|<ε

f(y)dy

is the Steklov mean of the function f .

In the case m < n and p+ < m
n the following theorem follows also from

Corollary 7.20 on the denseness of smooth functions in variable exponent Bessel
potentials spaces and the coincidence of those spaces with Sobolev spaces (Corol-
lary 7.22).

Theorem 7.27. Let p ∈ P log(Rn) and 1 � p(x) � p+ < ∞. Then C∞
0 (Rn) is dense

in Wm,p(x)(Rn),m = 1, 2, . . .

Proof. The proof follows from Theorem 7.25 in two steps.

1. Let f ∈ Wm,p(·)(Rn) and μ ∈ C∞
0 (R+) be a smooth step-function such that

μ(r) ≡ 1 for 0 � r � 1, μ(r) ≡ 0 for r � 2, and 0 � μ(r) � 1. The functions

fN(x) : = μ
(

|x|
N

)
f(x) belong toWm,p(·)(Rn) for everyN ∈ R+ and have compact

support in B(0, 2N). They approximate f(x) in Wm,p(·)(Rn). Indeed, denoting

νN(x) = 1− μ
(

|x|
N

)
, and using the Leibniz formula for differentiation, we have

‖f − fN‖Wm,p(·) =
∑

|j|�m

‖Dj(νNf)‖p �
∑

|j|�m

∑
0�k�j

ck‖Dk(νN )Dj−kf‖p

�
∑

|j|�m

‖νNDjf‖p + c
∑

|j|�m

∑
0<k�j

‖Dk(νN )Dj−kf‖p

�
∑

|j|�m

‖νNDjf‖p + c
∑

|j|�m

∑
0<k�j

1

N |k| ‖Dj−kf‖p −→ 0

as N → 0.

2. By the step 1, we may consider f ∈ Wm,p(·) with compact support. Then we
take K ∈ C∞

0 (Rn) with support in B(0, 1) and such that
´
|y|<1

K(†)�† = ∞ and
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arrange the approximation fε = Kεf . Then, evidently, fε ∈ C∞
0 (Rn). Indeed, for

any multiindex j we have

Djfε(x) =
1

εn+|j|

ˆ

|y|<1

(DjK)

(
x− y

ε

)
f (y)dy ∈ C∞(Rn)

and fε(x) has compact support because fε(x) ≡ 0 if |x| > 1 + λ, where λ =
supx∈supp f |x|, and supp stands for the support of f(x). We have

‖fε(x)− f‖Wm,p(·) �
∑

|j|�m

‖Djf −Kε(D
jf)‖Lp(·)(Rn)

=
∑

|j|�m

‖Djf −Kε(D
jf)‖Lp(·)(Ω1)

where Ω1 = {x : dist (x,Ω) � 1}, Ω = supp f(x). It suffices to apply Theorem
7.25. �

7.8 Characterization of the Variable Exponent Bessel

Potential Space via the Rate of Convergence
of the Poisson Semigroup

In this section we give a characterization of the variable Bessel potential space
Bα
[
Lp(·)(Rn)

]
in terms of the rate of convergence of the Poisson semigroup

Ptf(x) =

ˆ

Rn

P (x− y, t)f(y) dy, (7.42)

where

P (x, t) =
cn t

(|x|2 + t2)
n+1
2

, cn = Γ

(
n+ 1

2

)/
π

n+1
2 .

We show that the existence of the Riesz fractional derivative Dαf in the space
Lp(·)(Rn) is equivalent to the existence of the limit 1

tα (I − Pt)
αf . In the pre-

limiting case p+ < n
α we show that the Bessel potential space is characterized by

the condition ‖(I − Pt)
αf‖p(·) � Ctα.

Such results for constant p, including the equality

lim
t→0
(Lp)

1

tα
(I − Pt)

αf = D
αf (7.43)

may be found in Theorem B in Samko [315], where the simultaneous existence of
the left- and right-hand sides in (7.43) and their coincidence was proved under
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the assumption that f and Dαf may belong to Lr(Rn) and Lp(Rn) with different
p and r. In the case p = r this was proved in Rubin [304], where the case of the
Weierstrass semigroup was also considered. Relations of the type (7.43) go back to
the formula (−A)αf = limh→0

1
tα (I −Tt)

αf for fractional powers of the generator
of a semigroup Tt in a Banach space, see, e.g., Westphal [371].

Although expected, the validity of (7.43) in the variable exponent setting was
not easy to establish, in particular because the apparatus of the Wiener algebra
of Fourier transforms of integrable function, based on the Young theorem, is not
applicable. Another natural approach, based on Fourier multipliers, is used in this
section. However, because of the specific behavior of the Bessel functions appearing
when the Mikhlin–Hörmander theorem is used, this approach also encountered
essential difficulties, see Sections 7.8.4 and 7.8.5.

7.8.1 More on Fourier p(x)-Multipliers

Fourier multipliers for variable exponent Lebesgue spaces were studied in Section
2.8.2. The following theorem is nothing else but an adjustment of the Mikhlin type
Theorem 2.96 to the case of radial multipliers m(x) = M(|x|).
Theorem 7.28. Let the function M(r) be continuously differentiable up to order
n− 1 and have nth derivative for r ∈ (0,∞). If∣∣∣∣rk dk

drk
M(r)

∣∣∣∣ � C < ∞, k = 0, 1, . . . , n. (7.44)

then m(x) = M(|x|) is a Fourier p(·)-multiplier in Lp(·)(Rn).

Note that (7.44) is equivalent to∣∣∣∣∣
(
r
d

dr

)k

M(r)

∣∣∣∣∣ � C < ∞, k = 0, 1, . . . , n, (7.45)

since
(
r d
dr

)k
=

k∑
j=1

Ck,jr
j dj

drj with constant Ck,j (note that Ck,1 = Ck,k = 1).

Lemma 7.29. Let the function m satisfy the Mikhlin condition (2.216). Then the
function mε(x) := m(εx) satisfies (2.216) uniformly in ε, with the same con-
stant C.

The proof is obvious, since Dαm(ε·)(ξ) = ε|α|(Dαm)(εξ).

We need the following lemma on approximations of the identity. Note that
in this lemma no restriction is imposed on the kernel of the approximation itself.
The assumptions are imposed only on its Fourier transform: it should satisfy the
Mikhlin multiplier condition.



7.8. Characterization via the Poisson Semigroup 425

Lemma 7.30. Suppose that the function m satisfies the Mikhlin condition (2.216).
If limε→0 m(εx) = 1 for almost all x ∈ Rn and p ∈ Plog

∞ (Rn), then

lim
ε→0

‖Tεf − f‖p(·) = 0 (7.46)

for all f ∈ Lp(·)(Rn), where Tε is the operator generated by the multiplier m(εx).

Proof. By Lemma 7.29 and Theorem 2.96, the family of operators {Tε} is uni-
formly bounded in Lp(·)(Rn). Therefore, it suffices to check (7.46) on a dense
set in Lp(·)(Rn), for instance for f ∈ Lp−(Rn) ∩ Lp+(Rn), and then to use the
inequality ‖f‖p(·) � ‖f‖p− + ‖f‖p+ . �

Since we will also deal with Fourier p(·)-multipliers which do not satisfy the
Mikhlin condition (2.216), we need the following lemma.

Lemma 7.31. Let m(x) = M(x)+φ(x), where M(x) satisfies the Mikhlin condition

(2.216) and the radial non-increasing majorant Φ̃(x) := sup|y|�|x| |Φ(y)| of Φ(x) :=
F−1φ(x) is integrable on Rn. Then m(x) is a Fourier p(·)-multiplier in Lp(·)(Rn)
whenever p(·) ∈ M(Rn).

Proof. This follows from Theorems 7.28 and 1.5. �

7.8.2 On Finite Differences

Besides finite differences (7.2) of integer order, one can also consider differences of
fractional order α,

Δα
hf(x) = (I − τh)

αf(x) =

∞∑
j=0

(−1)j
(
α

j

)
f(x− jh), α > 0,

where the series converges absolutely and uniformly for each α > 0 and every
bounded function f , which follows from the fact that

c(α) :=
∞∑
k=0

∣∣∣∣(αk
)∣∣∣∣ < ∞,

see for instance Samko, Kilbas, and Marichev [331, Sec. 20.1], for properties of
fractional order differences. In a similar way tone introduces a generalized differ-
ence of fractional order α, with the translation operator replaced by any semigroup
of operators. We will use the Poisson semigroup (7.42), so that

(I − Pt)
αf(x) =

∞∑
k=0

(−1)k
(
α

k

)
Pktf(x).
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By Theorem 1.5, the operators Ptf are uniformly bounded in the space Lp(·)(Rn)
if p ∈ P log

∞ (Ω), so that

‖(I − Pt)
αf‖p(·) � C c(α)‖f‖p(·), (7.47)

for p ∈ P log
∞ (Ω), where C is the constant from the uniform estimate ‖Ptf‖p(·) �

C‖f‖p(·).

7.8.3 More on the Function K�,α(x)

Recall that the composition Dα
�,εI

α of the truncated fractional Riesz differenti-
ation operator Dα

�,ε with the Riesz fractional integration operator reduces to the
approximation of identity with the kernelK�,α(x), see (7.10). Its Fourier transform

K̂�,α(x) is given explicitly by

K̂�,α(x) = c

ˆ

|y|>|x|

sin�(y1)

|y|n+α
dy =: w(|x|),

where c = (2i)	

dn,	(α)
and we denoted K̂�,α(x) simply as w(|x|) for brevity, so that

w(|x|) = c

∞̂

|x|

V (ρ)

ρ1+α
dρ, where V (ρ) =

ˆ

Sn−1

sin�(ρσ1) dσ. (7.48)

Lemma 7.32. The following formula is valid:

V (ρ) = λ+

	
2−1∑
i=0

Ci
Jν−1(�iρ)

(�iρ)ν−1
, (7.49)

where � = 2, 4, 6, . . ., Jν−1(r) is the Bessel function of the first kind, ν = n
2 ,

�i = �− 2i and λ and Ci are constants:

λ =
4π

n
2 Γ
(
�+1
2

)
�Γ
(
�
2

)
Γ
(
n
2

) , Ci = (−1)
	
2−i(2π)

n
2 21−�

(
�

i

)
. (7.50)

Proof. Formula (7.49) is a consequence of the Catalan formula

ˆ

Sn−1

sin�(ρσ1) dσ = |Sn−2|
1ˆ

−1

sin�(ρt)(1 − t2)
n−3
2 dt,

(see, e.g., Samko [322, p. 13]), the Fourier expansion

sin� t =
1

2�−1

	
2−1∑
i=0

(−1)
	
2−i

(
�

i

)
cos
(
(� − 2i)t

)
+

1

2�

(
�

�/2

)
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of the function sin� t with even � (see, e.g., Prudnikov, Brychkov, and Marichev
[283, App. I.1.9]), and the Poisson formula

Jν(ρ) =
(ρ/2)ν

Γ
(
1
2

)
Γ
(
ν + 1

2

) 1ˆ

−1

cos(ρt)
(
1− t2

)ν− 1
2 dt, ν > −1

2
,

for the Bessel function. The values in (7.50) are obtained by direct calculations,
using properties of the Gamma function. �

Following Samko [315] (see also Samko [322, p. 214]), we use the functions

A(x) =
(1− e−|x|)α

|x|αw(|x|) and B(x) =
1

A(x)
, x ∈ R

n,

related to the Fourier transform of K̂�,α(x), which will play a central role in our
proofs below. It is known that these functions belong to the Wiener algebra:

A,B ∈ W(Rn). (7.51)

The proof of this fact for A may be found in in Samko [322, Lem. 7.49]. For B
it then follows immediately by the Wiener 1/f -theorem, since min |A(x)| > 0.
However, (7.51) is not so efficient as in the case of constant p, so in the sequel
we will prove that the functions A(x) and B(x) are multipliers in Lp(·)(Rn), see
Theorem 7.39.

Since A and B are radial, we find it convenient to also use the notation

A(r) =
(1− e−r)α

rαw(r)
and B(r) = rαw(r)

(1− e−r)α
.

First we need some technical but crucial lemmas.

7.8.4 Crucial Lemmas

Lemma 7.33. The function B(r) has the following structure at infinity:

B(r) = λ

α
+

1

rν

	
2−1∑
i=0

Ci

�νi
Jν−2(�ir) +O

(
1

rν+
3
2

)
, r −→∞ (7.52)

where λ and Ci are the constants from (7.50).

Proof. By (7.48) and (7.49), we have that

rαw(r) =
λ

α
+ rα

	
2−1∑
i=0

Ci

∞̂

r

Jν−1(�it)

t1+α(�it)ν−1
dt. (7.53)
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Thanks to the well-known differentiation formula Jν(t)
tν−1 = − d

dt

[
Jν−1(t)
tν−1

]
for the

Bessel functions, integration by parts yields the relation

∞̂

r

Jν(t)

tβ
dt =

Jν−1(r)

rβ
+ (ν − β − 1)

∞̂

r

Jν−1(t)

tβ+1
dt,

for r > 0 and β > − 1
2 . Applying twice this formula, we transform (7.53) to

rαw(r) =
λ

α
+

	
2−1∑
i=0

Ci

�νi

[
Jν−2(�ir)

rν
− 2 + α

�i

Jν−3(�ir)

rν+1

]

+ (α+ 2)(α+ 4)

	
2−1∑
i=0

rα

�i

∞̂

r

Jν−3(�it)

tα+ν+2
dt, 0 < r < ∞,

whence (7.52) follows, since B(r) = rαw(r) +O(e−r) as r →∞. �

Corollary 7.34. The function B(r) is non-vanishing: infr∈R+ |B(r)| > 0.

Proof. The function B(r) is continuous in (0,∞) and |B(r)| > 0 for all r ∈ (0,∞).
Also B(0) = 1 by (7.7) and B(∞) = λ

α �= 0 by (7.52). �

Lemma 7.35. It holds that

∞̂

0

f(t)tνJν−1(rt) dt =
(−1)m

rm

m∑
k=1

ck,m

∞̂

0

f (k)(t)tν+k−mJν+m−1(rt) dt, (7.54)

where m � 1 if

f(t)tνJν(t)
∣∣∞
0

= 0 (7.55)

and

f (k)(t)tν+k−jJν+j(t)
∣∣∞
0

= 0, (7.56)

for k = 1, 2, . . . , j and j = 1, 2, . . . ,m− 1, the latter condition for the derivatives
of f appearing in the case m � 2.

Proof. A relation of type (7.54) is known in the form

∞̂

0

f(t)tνJν−1(t|x|) dt = (−1)m

|x|m
∞̂

0

f 〈m〉(t)tν+mJν+m−1(t|x|) dt, (7.57)

under the conditions

f 〈j〉(t)tν+jJν+j(t)
∣∣∣∞
0

= 0, j = 0, 1, 2, . . . ,m− 1, (7.58)
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where one denotes f 〈m〉(t) =
(
1
t

d
dt

)m
f(t), see formula (8.133) in Samko [315].

Then (7.54) follows from (7.57) if one observes that
(
1
t

d
dt

)m
f(t) =

m∑
k=1

ck,m
f(k)(t)
t2m−k ,

where ck,m are constants. �
Lemma 7.36. The function A(r) has the following structure at infinity:

A(r) =
α

λ
+

C

rν

	
2−1∑
i=0

ci
�νi

Jν−2(�ir) + h(r) +m(r)

=: C(r) +m(r),

(7.59)

where m(r) satisfies the Mikhlin condition and h(r) = O
(

1

rν+3
2

)
.

Proof. We have
1

rαw(r)
=

α

λ
+

1− α
λ r

αw(r)

rαw(r)
.

By the asymptotics of Lemma 7.33 and the fact that rαw(r) > C �= 0 for suffi-
ciently large r,

1

rαw(r)
=

α

λ
−
(α
λ

)2 1

rν

	
2−1∑
i=0

ci
�νi

Jν−2(�ir) +
s(r)

rαw(r)

− α

λ

1

rν

	
2−1∑
i=0

ci
�νi

Jν−2(�ir)

[
1

rαw(r)
− α

λ

]
,

where

s(r) = −α(α+ 2)

λ

(
(α + 4)

	
2−1∑
i=0

rα

�i

∞̂

r

Jν−3(�it)

tα+ν+2
dt−

	
2−1∑
i=0

Ci

�νi

Jν−3(�ir)

rν+1

)
. (7.60)

Applying the same procedure to the factor
[

1
rαw1(r) − α

λ

]
, we obtain

1

rαw(r)
=

α

λ
−
(α
λ

)2 1

rν

	
2−1∑
i=0

ci
�νi

Jν−2(�ir) + h(r)+

−
(α
λ

)2 1

rn+αw(r)

	
2−1∑
i=0

ci
�νi

Jν−2(�ir)

	
2−1∑
i=0

ci
�νi

Jν−2(�ir)︸ ︷︷ ︸
:=m(r)

,
(7.61)

where

h(r) = s(r)

(
1

rαw(r)
− α

λrα+νw(r)

	
2−1∑
i=0

Ci

�νi
Jν−2(�ir)

)
. (7.62)
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To see that m(r) satisfies the Mikhlin condition is a matter of direct calculations.
To obtain (7.59), we just need to use (7.60), (7.61), (7.62), and the fact that
A(r) = 1

rαw(r) +O(e−r). �

Lemma 7.37. The derivatives B(k)(r) have the following structure at infinity:

B(k)(r) =
c

rk
+

1

rν

	
2−1∑
i=0

ciJν−2(�ir) +O

(
1

rν+
1
2

)
, r −→ ∞, (7.63)

where c and ci are constants.

Proof. By the Leibniz formula, it suffices to show that the derivatives [rαw(r)](k)

have the same asymptotics at infinity as in (7.63). We have

[rαw(r)]
(k)

= ck,0r
α−kw(r) +

k∑
j=1

ck,jr
α+j−kw(j)(r)

From (7.48) we have w′(r) = −c V (r)
r1+α , so that

[rαw(r)]
(k)

= ck,0r
α−kw(r) − c

k−1∑
j=0

ck,j+1r
α+j+1−k dj

drj

(
V (r)

r1+α

)
.

Hence

[rαw(r)]
(k)

= ck,0r
α−kw(r) +

k−1∑
i=0

ck,ir
i−kV (i)(r). (7.64)

We use the relation (
d

dr

)i

=

[ i2 ]∑
s=0

ci,sr
i−2sDi−s, D =

d

rdr

and transform (7.64) to [rαw(r)]
(k)

= ck,0r
α−kw(r)+

k−1∑
s=0

ck,sr
2s−kDsV (r), keeping

in mind formula (7.49). Then using (7.49) and the formula

Ds

[
Jν(r)

rν

]
= (−1)s

Jν+s(r)

rν+s
,

easy transformations yield

[rαw(r)]
(k)

= crα−kw(r) + c1r
−k +

k−1∑
s=0

r−ν−s

	
2−1∑
i=0

cs,iJν+k−s−2(�ir)

for 0 < r < ∞. Now in view of (7.52), after some calculations we arrive at
(7.63). �
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Lemma 7.38. The derivatives C(k)(r) have the following structure at infinity:

C(k)(r) =
c

rk
+

1

rν

	
2−1∑
i=0

ciJν−2(�ir) +O

(
1

rν+
1
2

)
, r −→∞ (7.65)

where c, ci are constants and C(r) is given in (7.59).

Proof. Since dk

drk
[C(r)− h(r)] = O

(
1

rν+1
2

)
, we just need to take care of the

asymptotic of h(r). By (7.62), we have h(r) = s(r)v(r) 1
rαw(r) , where v(r) =

1− α
λrν

∑ 	
2−1
i=0

Ci

�i
Jν−2(�ir). Further, since

s(k)(r) = O

(
1

rν+
3
2

)
, v(k)(r) =

{
O(1) , if k = 0,

O
(

1

rν+1
2

)
, if k = 1, . . . , n

and (
1

rαw(r)

)(k)

=
c

rk
+

1

rν

	
2−1∑
i=0

ciJν−2(�ir) +O

(
1

rν+
1
2

)
, (7.66)

we arrive at (7.65). To obtain (7.66), we differentiate the quotient and use the
asymptotics. �

7.8.5 A(x) and B(x) are Fourier p(·)-Multipliers

Establishing the following theorem turned out to be the principal difficulty in
extending the result (7.43) to variable exponents.

Theorem 7.39. The functions A(x) and B(x) are Fourier p(·)-multipliers, for p ∈
Plog
∞ (Rn).

Proof. When we verify that A(|x|) and B(|x|) are p(·)-Fourier multipliers, we split
these functions into terms covered by different means, some by the Mikhlin con-
dition, others via the approximation of identity by establishing properties of the
corresponding kernels. Under this approach, the result for 1

B(r) does not follow

automatically from that for B(r) and we have to treat both. Since B(r) and A(r)
have similar behavior at the origin and infinity, we give all the details for B(r) and
mention only principal points for the similar proof in the case of A(r).

We need to use the properties of B(r) near the origin and infinity in different
ways. To this end, we make use of a partition of unity 1 ≡ μ1(r) + μ2(r) + μ3(r),
μi ∈ C∞, i = 1, 2, 3, where

μ1(r) =

{
1 if 0 � x < ε,
0 if x � ε+ δ,

μ3(r) =

{
0, if 0 � x < N − δ,
1, if x � N,
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with supp μ1 = [0, ε+ δ], supp μ3 = [N − δ,∞), and represent B(r) as

B(r) =
(
1− e−r

r

)−α

w(r)μ1(r) + B(r)μ2(r) + (1− e−r)−α rαw(r)μ3(r)

=: B1(r) + B2(r) + B3(r).

(7.67)

The function B2(r) vanishing in neighbourhoods of the origin and of infinity,
is infinitely differentiable, and so it is a Fourier multiplier in Lp(·)(Rn). There-
fore, we only have to take care of the multipliers B1(r) and B3(r) supported in
neighbourhoods of the origin and of infinity, respectively.

For B1(r) we will apply the Mikhlin criterion for the spaces Lp(·)(Rn). The
case of the multiplier B3(r) proved to be more difficult. In the case n = 1 it is
easily covered by means of the Mikhlin criterion, while for n � 2 we use another
approach. Namely, we show that the kernel b3(|x|), corresponding to the multiplier

B3(r) − B3(∞) = μ3(r)B(r) − B(∞),

has an integrable radial non-increasing majorant, which will ensure that B3(r) is
a multiplier. However, we will need to appeal to special features of the behavior of
the Bessel functions at infinity and to information on some of integrals of Bessel
functions.

The proof of Theorem 7.39 follows from the study of the multipliers B1(r)
and B3(r) given below. �
Lemma 7.40. The function B1(r) satisfies the Mikhlin condition (7.44).

Proof. We have to check condition (7.44) only near the origin. The function(
r

1−e−r

)α
is infinitely differentiable on any finite interval [0, N ] and thereby satis-

fies conditions (7.44) on every neighbourhood of the origin. Thus, to estimate

rk dk

drkB1(r), we only need to show the boundedness of
∣∣rkw(k)(r)

∣∣ as r → 0.

By the equivalence (7.44)⇐⇒(7.45), we may estimate
(
r d
dr

)j
w(r). Since w′(r) =

−cr−1−αV (r) by (7.48), we only have to prove the estimates∣∣∣∣∣
(
r
d

dr

)j

G(r)

∣∣∣∣∣ � C < ∞, j = 1, 2, . . . , n− 1, for 0 < r < ε, (7.68)

where G(r) = r−α
´

Sn−1

sin�(rσ1) dσ. We represent G(r) as

G(r) = r�−αF (r), F (r) :=

ˆ

Sn−1

s(rσ1)σ
�
1 dσ,

where s(t) =
(
sin t
t

)�
. Since s(t) is an analytic function, F (r) is an analytic function

in r. Then estimate (7.68) becomes obvious because �− α > 0. �
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We will further treat separately the cases n = 1 and n � 2.

In the case n = 1 we just have to show that B(r) and rB′(r) are bounded on
[0,∞]. The boundedness of B3(r) is evident on any subinterval (N,N1), N1 > N ,
and it suffices to note that there exist the finite value B(∞), see the proof of
Corollary 7.34. To show that rB′

3(r) is bounded, it suffices to check that r[rαw(r)]′

is bounded for large r. From (7.48) we have r[rαw(r)]′ = rαw(r) − c sin� r, which
is bounded.

The case n � 2 is treated by means of the following lemma.

Lemma 7.41. Let n � 2. The kernel b3(r) vanishes at infinity faster than any
power and admits the estimate

|b3(r)| � C

r
n−1

2 (1 + r)m
, 0 < r < ∞, (7.69)

where m = 1, 2, 3, . . . is arbitrarily large, and C = C(m) does not depend on r.

Proof. 1) Estimation as r → 0. By the Fourier inversion formula for radial func-
tions,

b3(r) =
(2π)−ν

rν−1

∞̂

0

tνJν−1(rt)[B3(t)− B3(∞)] dt, ν =
n

2
. (7.70)

This implies that

|b3(r)| � (2π)−ν

rν−1

N̂

N−δ

tν |Jν−1(rt)[B3(t)− B(∞)]| dt

+

∣∣∣∣∣ (2π)−ν

rν−1

∞̂

N

tνJν−1(rt)[B(t)− B(∞)] dt

∣∣∣∣∣.
Using the asymptotics obtained in (7.52), we get

|b3(r)| � c

rν−1/2
+

	
2−1∑
i=0

ci
rν−1

∣∣∣∣∣
∞̂

N

Jν−1(rt)Jν−2(�it) dt

∣∣∣∣∣+ c

rν−1

∞̂

N

tν |Jν−1(rt)| dt

tν+
3
2

,

where ci are constants. Since |Jν−1(t)| � ctν−1

(t+ 1)ν−1+ 1
2

, the last term is easily

estimated:

c

rν−1

∞̂

N

tν |Jν−1(rt)| dt

tν+
3
2

� c

rν−
1
2

∞̂

N

tν−1(
t+ 1

r

)ν− 1
2

dt

t
3
2

� c

rν−
1
2

.
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Thus

|b3(r)| � c

rν−
1
2

+

	
2−1∑
i=0

ci
rν−1

∣∣∣∣∣
∞̂

N

Jν−1(rt)Jν−2(�it) dt

∣∣∣∣∣
as r → 0. It is known that the integral

´∞
0

Jν−1(rt)Jν−2(�it) dt converges when

n � 2; it is equal to zero, if n > 2, and to − 1
�i
, if n = 2, see Gradshtein and Ryzhik

[110, formula 6.512.3] (use also the fact that Jν−2(r) = J−1(r) = −J1(r) if n = 2).
Then

|b3(r)| � c

rν−
1
2

+

	
2−1∑
i=0

ci
rν−1

∣∣∣∣∣
N̂

0

Jν−1(rt)Jν−2(�it) dt

∣∣∣∣∣ � c

rν−
1
2

,

which proves (7.69) as r → 0.

2) Estimation as r →∞. Since the integral in (7.70) is not absolutely convergent
for large t, it is not easy to treat the case r →∞ starting from the representation
(7.70). So we transform this representation, by interpreting the integral in (7.70)
as a regularization:

b3(r) = lim
ε→0

(2π)−ν

rν−1

∞̂

0

e−εttνJν−1(rt)[B3(t)− B3(∞)] dt, (7.71)

and before passing to the limit in (7.71), we apply formula (7.54) with the function
f(t) = e−εt[B3(t)−B3(∞)]. Then conditions (7.55) and (7.56) (or see the conditions
(7.58)) are satisfied, so that formula (7.54) is applicable and after easy passage to
the limit we obtain

b3(r) =
(−1)m(2π)−ν

rν+m−1

m∑
k=1

cm,k

∞̂

0

tν+k−mJν+m−1(rt)B(k)
3 (t) dt (7.72)

for every m � 1. The last representation already allows to obtain the estimation
as r →∞. From (7.72) we get

|b3(r)| � c

rν+m−1

N̂

N−δ

tν |Jν+m−1(rt)B(m)(t)| dt

+
c

rν+m−1

∣∣∣∣∣
∞̂

N

tνJν+m−1(rt)B(m)(t) dt

∣∣∣∣∣
+

m−1∑
k=1

ck
rν+m−1

∞̂

N

tν+k−m
∣∣∣Jν+m−1(rt)B(k)(t)

∣∣∣ dt.
(7.73)
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The function B(m)(t) is bounded on [N − δ,N ], so that the estimation of the first
term is obvious. Since |Jν+m−1(rt)| � c√

rt
and |B(k)(t)| � ct−ξ, ξ = min{k, ν +

1/2}, see (7.63), the last sum in (7.73) is estimated by cr
3
2−ν−m.

To estimate the second term, we use the asymptotics (7.63) again and obtain

|b3(r)| � 1

rν+m− 3
2

(
c+

	
2−1∑
i=1

ci

∣∣∣∣∣
∞̂

N

Jν+m−1(rt)Jν−2(�it) dt

∣∣∣∣∣
)
. (7.74)

It is known that the last integral converges when ν + m
2 > 1 and

∞̂

0

Jν+m−1(rt)Jν−2(�it) dt =
γ

rν−1
, r > �i,

where γ = �ν−2
i

Γ(ν−1+m
2 )

Γ(ν−1)Γ(1+m
2 )

is a constant, see Gradshtein and Ryzhik [110, for-

mula 6.512.1]. Then from (7.74) we get (7.69).

Finally, for the function A(r), we only note that the splitting is similar to
that in (7.67):

A(r) = A1(r) +A2(r) +m(r) + C(r), (7.75)

where supp Ai(r) = supp μi and supp m(r) = supp μ3.

Here

Ai, i = 1, 2 satisfy Mikhlin’s condition,

while for a3 = F−1C with C(|x|) the estimate

|a3(r)| � C

r
n−1

2 (1 + r)m
, 0 < r < ∞, (7.76)

similar to (7.69), also holds.

The statement for Ai, i = 1, 2 is obvious; the proof for a3, prepared by
Lemmas 7.36 and 7.38, is similar to that of Lemma 7.41 �

7.8.6 Main Theorems

Theorem 7.42. Let f ∈ Lp(·)(Rn), where p ∈ P
log
∞ (Rn). The limits

lim
ε→0+

1

εα
(I − Pε)

αf and lim
ε→0+

D
α
ε f

exist in Lp(·)(Rn) simultaneously and coincide.
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Proof. Assume that the limit ϕ := limε→0+ Dα
ε f exists in Lp(·)(Rn). We express

1
εα (I − Pε)

αf via ϕε(x) := Dα
ε f(x) in “averaging” terms:

1

εα
(I − Pε)

αf(x) = cϕε(x) +
1

εn

ˆ

Rn

a

(
x− y

ε

)
ϕε(y) dy, (7.77)

where a(x) is the inverse Fourier transform of the function A(x) − A(∞), c =
A(∞), so that a ∈ L1(Rn) by (7.51) and

c+

ˆ

Rn

a(y) dy = 1. (7.78)

Representation (7.77)–(7.78) is verified via Fourier transforms

F

(
1

εα
(I − Pε)

αf

)
(x) = A(εx)F (Dα

ε f)(x) (7.79)

and is obviously valid for f ∈ C∞
0 (Rn). Then (7.77) holds for f ∈ Lp(·)(Rn) by

the continuity of the operators in the left-hand and right-hand sides of (7.77)
in Lp(·)(Rn); for the left-hand side see (7.47), while the boundedness of the con-
volution operator in the right-hand side follows from the fact that the Fourier
transform of its kernel is a Fourier p(·)-multiplier by Theorem 7.39. From (7.79)
we have ∥∥∥∥ 1

εα
(I − Pε)

αf − ϕ

∥∥∥∥
p(·)

� C‖ϕε − ϕ‖p(·) + ‖Tεϕ− ϕ‖p(·) (7.80)

where Tε is the operator generated by the multiplier A(ε·). The first term in the
right-hand side of (7.80) tends to zero by the definition of ϕ. For the second one
we have

‖Tεϕ− ϕ‖p(·) � ‖TMϕ− ϕ‖p(·) + ‖Taϕ‖p(·) =: I1 + I2,

where TM is the operator given by the multiplier M(ε·) := A1(ε·)+A2(ε·)+m(ε·),
with the terms from (7.75). SinceM satisfies the Mikhlin condition andM(εx) → 1
as ε → 0 for almost all x ∈ Rn, we have I1 → 0 as ε → 0 by Lemma 7.30.

For I2 we observe that

Taϕ(x) = −C(∞) [(a3)ε ∗ ϕ(x) − ϕ(x)]

where (a3)ε(x) =
1
εn a
(
x
ε

)
is the dilation of the kernel a3(x) = F−1[C(·)−A(∞)](x)

and then I2 → 0 as ε → 0 by (7.76) and Corollary 1.6.

Suppose now that limε→0+
1
εα (I − Pε)

αf exists in Lp(·)(Rn). By (7.79), we
have

F (Dα
ε f)(x) = B(εx)F

(
(I − Pε)

αf

εα

)
(x) (7.81)

for f ∈ C∞
0 (Rn), where B(x) = 1/A(x). Since B(x) is also a Fourier multi-

plier by Theorem 7.39, the arguments are the same as in the above passage from
limε→0 D

α
ε f to limε→0+

1
εα (I − Pε)

αf . �
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Corollary 7.43. Let α > 0 and p ∈ Plog∞ (Rn). An equivalent characterization of the
space Lα,p(·)(Rn) is given by

Lα,p(·)(Rn) =

{
f ∈ Lp(·)(Rn) : lim

ε→0+

1

εα
(I − Pε)

αf ∈ Lp(·)(Rn)

}
.

Proof. The proof is immediate by the definition (7.14) of the space Lα,p(·)(Rn).
�

Theorem 7.44. Let 0 < α < n, p ∈ Plog
∞ (Rn), and 1 < p− � p+ < n/α. A function

f ∈ Lp(·)(Rn) belongs to Lα,p(·)(Rn) if and only if

‖(I − Pε)
αf‖p(·) � Cεα, (7.82)

where C does not depend on ε. If (7.82) is fulfilled, then D
αf ∈ Lp(·)(Rn), and

(7.82) is also valid in the form

‖(I − Pε)
αf‖p(·) � C‖Dαf‖p(·)εα,

where C does not depend on f and ε.

Proof. The “only if” part of Theorem 7.44 is a consequence of Theorem 7.42. To
prove the “if” part, suppose that (7.82) holds. From (7.81) we obtain that

‖Dα
ε f‖p(·) � C

∥∥∥∥ 1

εα
(I − Pε)

αf

∥∥∥∥
p(·)

� C,

since A(εx) is a uniform Fourier multiplier in Lp(·)(Rn) by Lemma 7.29. To finish
the proof, it remains to refer to Theorems 7.7 and 7.6. �
Theorem 7.45. Let 0 < α < n, 1 < p− � p+ < n/α and p ∈ Plog

∞ (Rn). The
variable exponent Bessel potential space Bα[Lp(·)(Rn)] is the subspace in Lp(·)(Rn)
of functions f for which the limit limε→0+

1
εα (I − Pε)

αf exists.

Proof. Apply Theorems 7.42 and 7.19. �

7.9 Comments to Chapter 7

Comments to Section 7.1

In the case of constant exponents, there are many papers on application of hypersingular
integrals in function spaces and also in problems of inversion of potential type operators.
We refer to the books by Samko [322] and Samko, Kilbas, and Marichev [331], where
further references and historical remarks may be found. The realization of the Riesz
derivative F−1|ξ|αFf in the form of a hypersingular integral first appeared in Stein
[350] in the case 0 < α < 2. The general case α > 0 was considered in Lizorkin [230],
including anisotropic hypersingular integrals.
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Comments to Section 7.2

Section 7.2 is based on the paper Almeida [11]. In the case of constant p the denseness of
the Lizorkin space Φ was proved in Lizorkin [229], see also an alternative proof in Samko
[322, pp. 40–41].

Comments to Section 7.3

In Section 7.3 we follow the paper Almeida [11]. In the case of constant p results around
the contents of this section may be found in Samko [322].

Comments to Section 7.4

Section 7.4 is based on the paper Almeida and Samko [13]; for results of this section in
the case of constant p see Samko [322]. In particular, versions of Theorems 7.6 and 7.7 in
the case when p is constant, see Samko [322, Thms. 7.9 and 7.11]. For similar weighted
results in the case of constant p see Nogin [273].

Comments to Sections 7.5, 7.6 and 7.7

In Sections 7.5, 7.6 and 7.7 we follow the paper Almeida and Samko [14], see also Almeida
and Rafeiro [12]. Theorem 7.19 in the case of constant p, 1 < p < ∞, is due to Stein
[350] when 0 < α < 1 and Lizorkin [227] in the general case 0 < α < ∞, see also the
presentation of the proof for constant p in Samko [322, p. 186].

Comments to Section 7.8

Section 7.8 is based on the paper Rafeiro and Samko [299]. Such results for constant p
are known also in a more general setting, we refer to Samko [315] and Samko [322], where
other references on similar or close results may be found.

The statement of Lemma 7.30 is well known in the case of constant p ∈ (1,∞), see
Samko [315, Lem. 12], being valid in this case for an arbitrary Fourier p-multiplier m.



Chapter 8

More on Hypersingular Integrals and
Embeddings into Hölder Spaces

In this chapter we present results on hypersingular operators of order α < 1 acting
on some Sobolev type variable exponent spaces, where the underlying space is a
quasimetric measure space. The proofs are based on some pointwise estimations
of differences of Sobolev functions. These estimates lead also to embeddings of
variable exponent Haj�lasz–Sobolev spaces into variable order Hölder spaces.

In the Euclidean case we prove denseness of C∞
0 -functions in W 1,p(·)(Rn).

Note that in this chapter we consider quasimetric measure spaces with sym-
metric distance: d(x, y) = d(y, x).

8.1 Preliminaries on Hypersingular Integrals

Recall that a hypersingular integral (7.1) in the case of order α ∈ (0, 1) reduces to

D
αf(x) = c(α)

ˆ

Rn

f(x)− f(y)

|x− y|n+α
dy,

with the normalizing constant c(α) = 2αΓ
(
1 + α

2

)
Γ
(
n+α
2

)
sin απ

2 π−1−n
2 , cho-

sen so that Dαf = F−1|ξ|αFf , where F is the Fourier transform (7.4). This
construction is also known as the Riesz fractional derivative of f .

We will also consider the restriction of Dαf to an arbitrary domain in R
n.

The obtained formula may be considered as a multidimensional analogue of the
Marchaud formula for fractional derivatives of functions of one variable, see Samko,
Kilbas, and Marichev [331, Sec. 13.1].

Let now Ω be a domain in Rn and f(x) a function on Ω. We introduce the
fractional Riesz type derivative D

α
Ωf(x) of f as a restriction onto Ω of the Riesz

© Springer International Publishing Switzerland 2016 
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derivative of the zero extension of f to the whole space Rn. Namely, let

EΩf(x) =
{

f(x), x ∈ Ω,
0, x ∈ Rn\Ω, =: f̃(x).

Then, for 0 < α < 1, we define Dα
Ωf as

D
α
Ωf(x) : = rΩD

αEΩf(x), x ∈ Ω,

where rΩ stands for the operator of restriction to Ω.

Recall that the cone property of a domain Ω, used in the lemma below, means
that for every x ∈ Ω there exists a finite cone Cx centred at the point x, contained
in Ω and congruent to a finite cone of fixed aperture centred at the origin (by Cx

being finite, we mean that Cx is the intersection of a cone with a fixed ball centred
at the same point), see for instance, Kufner, John, and Fuč́ık [220, p. 300].

Lemma 8.1. The expression of Dα
Ωf in intrinsic terms with respect to Ω is

D
α
Ωf(x) = c(α)

[
aΩ(x)f(x) +

ˆ

Ω

f(x)− f(y)

|x− y|n+α
dy

]
, x ∈ Ω, (8.1)

where

aΩ(x) =

ˆ

Rn\Ω

|x− y|−n−α dy � c1
[δ(x)]α

,

with c1 = 1
α |Sn−1|. If the exterior Rn\Ω has the cone property, then there exists a

constant c2 > 0 such that aΩ(x) � c2
[δ(x)]α .

Proof. We have

D
α
Ωf(x) = c(α)

ˆ

Rn

f(x)− f̃(x− y)

|y|n+α
dy, x ∈ Ω.

Splitting the integration as
´
Ω

+
´

Rn\Ω
, we arrive at (8.1).

For x ∈ Ω, we haveˆ

Rn\Ω

dy

|x− y|n+α
�

ˆ

y∈R
n

|x−y|�δ(x)

dy

|x− y|n+α
=

ˆ

y∈R
n

|y|>δ(x)

dy

|y|n+α
.

Passing to polar coordinates, we arrive at the claimed upper bound of aΩ(x). To
obtain the lower bound, we choose a boundary point x0 ∈ ∂Ω (depending on x and
not necessarily unique) for which |x−x0| = δ(x). Then |x−y| � |x−x0|+ |x0−y|
and have

aΩ(x) �
ˆ

Rn\Ω

dy

[|x0 − y|+ δ(x)]n+α
.
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Since Rn\Ω has the cone property, there exists a finite cone ΓΩ(x0, θ) with vertex
at x0 and fixed aperture θ(= arctg r

|z0| ) > 0, such that ΓΩ(x0, θ) ⊂ Rn\Ω. Then
ˆ

Rn\Ω

dy

[|x0 − y|+ δ(x)]n+α
�

ˆ

B(x0,δ(x))∩ΓΩ(x0,θ)

dy

[|x0 − y|+ δ(x)]n+α
.

After translation to the origin and passing to polar coordinates, we obtain

aΩ(x) �
δ(x)ˆ

0

ρn−1dρ

[ρ+ δ(x)]n+α

ˆ

Sn−1∩ΓΩ(0,θ)

dσ =
c2

[δ(x)]α
,

where c2 = C(Ω)
1́

0

tn−1dt
(t+1)n+α , and C(Ω) = |Sn−1 ∩ Γθ(0)|. �

In what follows, the convergence of the integral in (8.1) is interpreted asˆ

Ω

f(x)− f(y)

|x− y|n+α
dy = lim

ε→0

ˆ

y∈Ω
|y−x|>ε

f(x)− f(y)

|x− y|n+α
dy, x ∈ Ω

with the limit taken in this or other sense.

8.2 Embeddings of Variable Sobolev Spaces into
Hölder Spaces: the Euclidean Case

We prove embedding theorems of variable exponent Sobolev spaces into vari-
able Hölder spaces. One of the main results is given for Sobolev type spaces on
quasimetric measure spaces, where the usual gradient is replaced by the so-called
Haj�lasz–Sobolev gradient. However, we will start with the usual setting in the
Euclidean case because in this case we can obtain more precise estimates.

As in the classic case, the Sobolev space Wm,p(·)(Ω) of variable exponent is
defined as the space of functions f ∈ Lp(·)(Rn) which have all the distributional
derivatives Djf ∈ Lp(·)(Ω), 0 � |j| � m. Let

‖f‖Wm,p(·) =
∑

|j|�m

‖Djf‖p(·) .

8.2.1 Hölder Spaces of Variable Order

Let BC(Ω) be the class of bounded continuous functions on an open set Ω. For a
measurable function α : Ω → (0, 1] and f ∈ BC(Ω), let

[f ]α(·) := sup
x,x+h∈Ω
0<|h|�1

|f(x+ h)− f(x)|
|h|α(x) .
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By Hα(·)(Ω) we denote the space of all functions f in BC(Ω) for which [f ]α(·)
is finite. Hα(·)(Ω) is a Banach space with respect to the norm

‖f‖Hα(·)(Ω) = ‖f‖L∞(Ω) + [f ]α(·).

8.2.2 Pointwise Inequalities for Sobolev Functions

It is known that in Sobolev spaces the oscillation of a function can be estimated
in terms of the fractional maximal function of its gradient; see for instance Bo-
jarski and Haj�lasz [30], Haj�lasz [115], Hardy [122], Kinnunen and Martio [168],
where such estimates of the oscillation were used to derive properties of functions
in Sobolev spaces within the classical setting. We extend this to the case of vari-
able exponents and start by recalling the mentioned estimates of oscillation in
Theorem 8.4.

Lemma 8.2 (Gilbarg and Trudinger [105, Lem. 7.16]). Let B be a ball in Rn. If
g ∈ W 1,1(B), then

|g(x)− gB| � c(n)

ˆ

B

|∇g(z)|
|x− z|n−1

dz

almost everywhere in B, where gB := 1
|B|
´
B

g(z) dz.

In the next lemma we compare the potential operator of order α with the
fractional maximal function of smaller order λ < α, see the definition of the latter
in (2.124).

Lemma 8.3. Let Ω ⊂ Rn be a bounded open set, 0 < α � n and 0 � λ < α. Then
there exists c > 0, not depending on f , x and λ, such that

ˆ

Ω

|f(z)| dz
|x− z|n−α

� c

α− λ
(diam Ω)α−λ Mλf(x), (8.2)

for almost all x ∈ Ω and every f ∈ L1(Ω), and λ may depend on x.

Proof. Let � = diam Ω. We have

ˆ

Ω

|f(z)| dz
|x− z|n−α

=

∞∑
j=0

ˆ

Ω∩(B(x, 	

2j
)\B(x, 	

2j+1 ))

|f(z)| dz
|x− z|n−α

�
∞∑
j=0

(
2j+1

�

)n−α ˆ

Ω∩B(x, 	

2j
)

|f(z)| dz � c(n)
∞∑
j=0

(
2j

�

)λ−α

Mλf(x),

from which (8.2) follows. �
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Theorem 8.4. Let Ω be a bounded open set with Lipschitz boundary, or let Ω = Rn.
Then for every f ∈ W 1,1

loc (Ω) and almost all x, y ∈ Ω,

|f(x)− f(y)| � c

[ |x− y|1−λ

1− λ
Mλ(|∇f |)(x) + |x− y|1−μ

1− μ
Mμ(|∇f |)(y)

]
, (8.3)

where λ, μ ∈ [0, 1) and the constant c > 0 does not depend on f, x, y, λ, μ and Ω,
and it is admitted that λ and μ may depend on x and y.

Proof. For bounded domains estimate (8.3) can be proved as in Haj�lasz and Martio
[118, Lem. 4]. For Ω = R

n the argument is similar: we observe that for all x, y ∈
Rn, x �= y, there exists a ball Bx,y containing these points such that diam (Bx,y) �
2 |x−y|. Then we write |f(x)−f(y)| � |f(x)−fBx,y |+|f(y)−fBx,y | and it remains
to make use of Lemma 8.2 and afterwards Lemma 8.3 with α = 1. �

8.2.3 Embedding Theorems for Haj�lasz–Sobolev spaces

The main statement of this section is Theorem 8.5, which shows that functions in
W 1,p(·)(Ω) are Hölder continuous for all x, where p(x) > n.

We will use the following statement, in which

Πp := {x ∈ Ω : p(x) > n}.

Theorem 8.5. Let Ω be a bounded open set with Lipschitz boundary and suppose
that p ∈ P log(Ω) and has a non-empty set Πp. If f ∈ W 1,p(x)(Ω), then

|f(x) − f(y)| � C(x, y) ‖|∇f |‖p(·) |x− y|1− n
min[p(x),p(y)] (8.4)

for all x, y ∈ Πp such that |x− y| � 1, where C(x, y) = c
min[p(x),p(y)]−n , with c > 0

not depending on f, x and y.

Proof. We apply (8.3) with λ = n/p(x), μ = n/p(y) ∈ (0, 1) and get

|f(x)− f(y)| � c |x− y|1− n
min[p(x),p(y)]

min[p(x) − n, p(y)− n]

[
M n

p(x)
(|∇f |)(x) + M n

p(y)
(|∇f |)(y)

]
.

By (2.100),

M n
p(x)

f(x) � c ‖f‖p(·), x ∈ Πp. (8.5)

Then (8.4) immediately follows from the last estimate. �

Remark 8.6. Let Ω be a subset in Πp. Under the assumption that infx∈Ω p(x) > n,
one may take a constant in (8.4) not depending on x, y ∈ Ω.
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Corollary 8.7. Let Ω be a bounded open set with Lipschitz boundary and p satisfy
the assumptions of Theorem 8.5. If f ∈ W 1,p(·)(Ω), then the estimate (8.4) may
be written in the form

|f(x)− f(x+ h)| � c

min[p(x), p(x + h)]− n
‖|∇f |‖p(·) |h|1−

n
p(x) , (8.6)

where x, x+ h ∈ Πp and |h| � 1, with c > 0 not depending on x, h, and f .

Proof. It suffices to recall that |x − y| n
p(x) ≈ |x − y| n

p(y) for x and y running a
bounded set. �

Theorem 8.5 suggests that functions in W 1,p(·)(Ω) admit a Hölder continuous
representative of variable order.

Theorem 8.8. Let Ω be a bounded open set with Lipschitz boundary and suppose
that p ∈ P log(Ω). If infx∈Ω p(x) > n, then

W 1,p(·)(Ω) ↪−→ H1− n
p(·) (Ω), (8.7)

where “ ↪→” means continuous embedding.

Proof. Let us prove first that

W 1,p(·)(Ω) ↪−→ L∞(Ω). (8.8)

Fix x ∈ Ω and let Bx be a ball containing x. By Lemma 8.2, estimate (8.2) with
α = 1 and λ = n/p(x), and inequality (8.5), we have

|f(x) − fBx | � c diam (Bx)
1− n

p(x) M n
p(x)

(|∇f |)(x) � c diam (Bx)
1− n

p(x) ‖|∇f |‖p(·),
where it is assumed that f = 0 beyond Ω. We take Bx such that |Bx| = 1 and
by the Hölder inequality we have |fBx | � c(p) ‖f‖p(·). We get |f(x)| � |f(x) −
fBx | + |fBx | � C(p) ‖f‖W 1,p(·) , which implies (8.8). The embedding (8.7) follows
then from (8.6) and (8.8). �

When the exponent is constant, p(·) ≡ p > n, we recover the classical Sobolev
embedding.

8.2.4 Extension to Higher Smoothness

The embedding (8.7) easily extends to higher smoothness. For constant exponents
p such embeddings are well known and can be found, for instance, in Adams and
Fournier [8].

The corresponding embedding for constant p in the undercritical case, i.e.,
when p < n

k , is known in the Euclidean setting for domains with sufficiently smooth
boundary (for instance on domains with Lipschitz boundary).

For the whole Euclidean space Rn, the embedding in the undercritical case
for variable exponents is given by the following theorem.
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Theorem 8.9. Let k ∈ N with 1 � k < n. If p ∈ Plog(Rn) and p+ < n
k , then

W k,p(·)(Rn) ↪−→ Lq(·)(Rn), (8.9)

where 1
p′(x) =

1
p(x) − k

n , x ∈ Rn.

Proof. It suffices to use Corollaries 7.22 and 7.18. �

If Ω ⊂ Rn is an open bounded set with Lipschitz boundary, then there exists
a bounded linear extension operator E : W k,p(·)(Ω) → W k,p̃(·)(Rn), such that
Ef(x) = f(x) almost everywhere in Ω, for all f ∈ W k,p(·)(Ω). The exponent p̃(·)
is an extension of p(·) to the whole Rn preserving the original bounds and the
continuity modulus of p(·). All the details of this construction in the case k = 1
can be found in Diening [61, Thm. 4.2 and Cor. 4.3], and Edmunds and Rákosńık
[74, Thm. 4.1], or in Diening, Harjulehto, Hästö, and Růžička [69]; constructions
for k �= 1 follow the same way, since the Hestenes method is known to work well
with higher derivatives as well. As a consequence, the embedding (8.9) holds also
for bounded open sets Ω with Lipschitz boundary, namely if p ∈ Plog(Ω) and
1 < p− � p+ < n

k , then

W k,p(·)(Ω) ↪−→ Lq(·)(Ω),
1

q(x)
=

1

p(x)
− k

n
, x ∈ Ω. (8.10)

Our interest now concerns the overcritical case p− > n
k .

Theorem 8.10. Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary. If
p ∈ Plog(Ω) and (k − 1)p+ < n < kp−, then

W k,p(·)(Ω) ↪−→ Hk− n
p(·) (Ω). (8.11)

Proof. As in the case of constant exponents, the proof can be reduced to the
case k = 1: by (8.10), we have W k,p(·)(Ω) ↪→ W k−1,p(·)(Ω) ↪→ Lq(·)(Ω), where
1

q(x) = 1
p(·) − k−1

n , x ∈ Ω. Thus we also get W k,p(·)(Ω) ↪→ W 1,q(·)(Ω). It remains to

observe that W 1,q(·)(Ω) ↪→ H1− n
q(·) (Ω), since n

q−
= n

p−
− k + 1 < 1 and 1− n

q(x) =

k − n
p(·) . �

Remark 8.11. Since we consider Hölder spaces of orders less than 1, in Theorem
8.10 we in fact have the restriction k < p+

p+−p−
. To avoid this restriction one should

make use Hölder spaces of higher order, which we do not touch upon here. Observe
that the condition (k − 1)p+ < n of Theorem 8.10 may be omitted, but then we
should just assume that (k − 1)p+ �= n and then the embedding (8.11) holds in

the form W k,p(·)(Ω) ↪→ H{k− n
p(·)}(Ω), where

{
k − n

p(·)
}

stands for the fractional

part of k − n
p(·) .
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Corollary 8.12. Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary. Let
also p(·) satisfy the log-condition with p− > n

k , k > 1. Then

W k,p(·)(Ω) ↪−→ Hλ(·)(Ω),

for any function λ(·) ∈ L∞(Ω) such that λ(x) � k − n
p(·) and λ− > 0, λ+ < 1.

8.3 Embeddings into Hölder Function Spaces on
Quasimetric Measure Spaces

8.3.1 Variable Exponent Hölder Spaces on Quasimetric Spaces

Recall that a space of homogeneous type is a triple (X, d, μ), where X is a non-
empty set, d : X × X → R is a quasimetric on X , and μ is a nonnegative Borel
measure such that the doubling condition

μB(x, 2r) � Cμ μB(x, r), Cμ > 1, (8.12)

holds for all x ∈ X and 0 < r < diam (X). By iteration of the condition (8.12) it
can be shown that there exists a positive constant C such that

μB(x, �)

μB(y, r)
� C
(�
r

)N
, N = log2 Cμ, (8.13)

for all the balls B(x, �) and B(y, r) with 0 < r � � and y ∈ B(x, r). Recall that
from (8.13) there follows the lower Ahlfors condition

μB(x, r) � c0 r
N , x ∈ X, 0 < r � diam X, (8.14)

in the case where X is bounded.

Let p : X → [1,∞) be a μ-measurable function. In this section we assume
that 1 < p− � p(·) � p+ < ∞, x ∈ X .

We deal with Hölder spaces Hλ(·) of variable order. We say that a bounded
function f belongs to Hλ(·)(X), if there exists c > 0 such that

|f(x)− f(y)| � c d(x, y)max{λ(x),λ(y)} (8.15)

for every x, y ∈ X , where λ is a μ-measurable function on X taking values in (0, 1].
Hλ(·)(X) is a Banach space with respect to the norm

‖f‖Hλ(·)(X) = ‖f‖L∞(Ω) + [f ]λ(·),

where
[f ]λ(·) := sup

0<d(x,y)�1

|f(x)− f(y)|d(x, y)−max{λ(x),λ(y)}.

Observe that Hλ(·)(X) ↪→ Hβ(·)(X) for 0 < β(x) � λ(x) � 1, since λ(x) �
β(x) =⇒ max {λ(x), λ(y)} � max {β(x), β(y)}.

For more general definitions of Hölder spaces on quasimetric measure spaces
we refer to Nakai [269].
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8.3.2 Variable Exponent Haj�lasz–Sobolev Spaces

Let 1 < p− � p+ < ∞. We say that a function f ∈ Lp(·)(X) belongs to the Haj�lasz–
Sobolev space M1,p(·)(X), if there exists a nonnegative function g ∈ Lp(·)(X) such
that

|f(x)− f(y)| � d(x, y) [g(x) + g(y)] (8.16)

μ-almost everywhere in X . In this case, g is called a generalized gradient of f .
M1,p(·)(X) is a Banach space with respect to the norm

‖f‖1,p(·) = ‖f‖M1,p(·)(X) := ‖f‖p(·) + inf ‖g‖p(·),

where the infimum is taken over all generalized gradients of f .

Our aim now is to estimate the differences f(x) − f(y) via the fractional
sharp maximal function

M �
α(·)f(x) = sup

r>0

r−α(x)

μB(x, r)

ˆ

B(x,r)

|f(y)− fB(x,r)| dμ(y)

of variable order α(·), where α : X → (0,∞).

Lemma 8.13. Let X satisfy the doubling condition (8.12) and f be a locally inte-
grable function on X. If 0 < α− � α(x) � α+ < ∞ and 0 < β− � β(x) �
β+ < ∞, then

|f(x)− f(y)| � C(μ, α, β)
[
d(x, y)α(x)M �

α(·)f(x) + d(x, y)β(y)M �
β(·)f(y)

]
(8.17)

μ-almost everywhere.

Proof. The proof is carried out by arguments similar to those for the classical case
in Haj�lasz and Kinnunen [117]. For a Lebesgue point x we have

|f(x)− fB(x,r)| �
∞∑
j=0

∣∣fB(x,2−(j+1)r) − fB(x,2−jr)

∣∣
�

∞∑
j=0

1

μB
(
x, 2−(j+1)r

) ˆ

B(x,2−jr)

|f(z)− fB(x,2−jr)|dμ(z).

Hence, by the doubling condition (8.12) we get

|f(x)− fB(x,r)| � cμ

∞∑
j=0

1

μB(x, 2−jr)

ˆ

B(x,2−jr)

∣∣f(z)− fB(x,2−jr)

∣∣ dμ(z)
� cμ c(α) r

α(x) M �
α(·)f(x), (8.18)
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where c(α) :=
∞∑
j=0

2−jα− = 2α−
2α−−1 . On the other hand, a similar technique also

yields

|f(y)− fB(x,r)| � |f(y)− fB(y,2r)|+ |fB(x,r) − fB(y,2r)| � c(μ, β) rβ(y) M �
β(·)f(y)

when y ∈ B(x, r). Thus, if x �= y we take r = 2d(x, y), write

|f(x)− f(y)| � ∣∣f(x)− fB(x,2d(x,y))

∣∣+ ∣∣f(y)− fB(x,2d(x,y))

∣∣
and use the above estimates. �

Having in mind applications to the embedding given below in (8.23), we
wish to estimate the oscillation of a Haj�lasz–Sobolev function also in terms of the
variable order fractional maximal function

Mα(·)f(x) = sup
r>0

rα(x)

μB(x, r)

ˆ

B(x,r)

|f(y)| dμ(y),

of the gradient.

Lemma 8.14. Let X satisfy the doubling condition (8.12) and let f ∈ M1,p(·)(X)
and g ∈ Lp(·)(X) be a generalized gradient of f . If 0 � α+ < 1, 0 � β+ < 1, then

|f(x)− f(y)| � C(μ, α, β)
[
d(x, y)1−α(x)Mα(·)g(x) + d(x, y)1−β(y)Mβ(·)g(y)

]
(8.19)

μ-almost everywhere.

Proof. Taking into account (8.17), it suffices to show the estimate

M �
1−λ(·)g(x) � cMλ(·)g(x), 0 � λ(x) < 1. (8.20)

This follows from the Poincaré-type inequalityˆ

B(x,r)

|f(z)− fB(x,r)| dμ(z) � c r

ˆ

B(x,r)

g(z) dμ(z), x ∈ X, r > 0,

valid for every f ∈ M1,p(·)(X) and its generalized gradient g and proved just by
integrating both sides of the inequality |f(y) − f(z)| � d(y, z) [g(y) + g(z)] over
the ball B(x, r), first with respect to y, and then to z. �

8.3.3 Embeddings of Variable Exponent Haj�lasz–Sobolev Spaces

Estimate (8.19) suggests that a function f ∈ M1,p(·)(X) is Hölder continuous (after
a modification on a set of zero measure) if the fractional maximal function of the
gradient is bounded. As we will see below, this is the case when the exponent p(·)
takes values greater than the “dimension”. First we need some auxiliary lemmas.
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Lemma 8.15. Let X be bounded and μ satisfy condition (8.14). Suppose that p(·)
satisfies the log-condition. If f ∈ Lp(·)(X), then

M N
p(x)

f(x) � c ‖f‖p(·), (8.21)

where N > 0 is the exponent from (8.14) and c > 0 is independent of x and f .

Proof. Let x ∈ X and r > 0. By the Hölder inequality, we have

r
N

p(x)

μB(x, r)

ˆ

B(x,r)

|f(y)| dμ(y) � 2 r
N

p(x)

μB(x, r)
‖f‖p(·)

∥∥χB(x,r)

∥∥
p′(·) .

From this, we easily arrive at (8.21) by using Lemma 2.57 and the assumption
(8.14). �
Theorem 8.16. Let X be bounded and let μ be doubling. Suppose also that p(·)
satisfies the log-condition and p− > N . If f ∈ M1,p(·)(X) and g is a generalized
gradient of f , then there exists C > 0 such that

|f(x)− f(y)| � C ‖g‖p(·) d(x, y)1−
N

max{p(·),p(y)} (8.22)

for every x, y ∈ X with d(x, y) � 1.

Proof. After redefining f on a set of zero measure, we use (8.19) with α(x) = N
p(x)

and β(y) = N
p(y) , and get

|f(x)− f(y)| � C(μ,N, p) d(x, y)1−
N

min{p(·),p(y)}
[
M N

p(x)
g(x) + M N

p(x)
g(y)
]

for all x, y ∈ X . Hence we arrive at (8.22) taking into account (8.21). �

Theorem 8.17. Let the set X be bounded and the measure μ be doubling. If p(·)
satisfies log-condition and p− > N , then

M1,p(·)(X) ↪−→ H1− N
p(x) (X). (8.23)

Proof. Let x ∈ X and r0 > 0. Recalling (8.18), we use (8.20) and get∣∣f(x)− fB(x,r0)

∣∣ � c r
1−N/p(·)
0 M �

1−N/p(·)f(x)

� c r
1−N/p(·)
0 MN/p(·)g(x) � c r

1−N/p(·)
0 ‖g‖p(·),

where in the last inequality we took estimate (8.21) into account. On the other
hand, the Hölder inequality (cf. proof of Lemma 8.15) yields∣∣fB(x,r0)

∣∣ � c r
− N

p(x)

0 ‖f‖p(·).
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Hence, choosing appropriately r0 as r0 = min{1, diam (X)}, we obtain

‖f‖L∞ � c ‖f‖1,p(·). (8.24)

It remains to show that f is Hölder continuous. To this end, we apply inequality
(8.22) and get

|f(x)− f(y)|
d(x, y)max{1− N

p(x) ,1− N
p(y)} � c ‖g‖p(·) d(x, y)

N
max{p(·),p(y)}− N

min{p(·),p(y)}

for every x, y ∈ X , x �= y, with d(x, y) � 1. Since p(·) satisfies the log-condition,

then d(x, y)
N

max{p(·),p(y)} ∼ d(x, y)
N

min{p(·),p(y)} . Consequently, [f ]1− N
p(x)

� c ‖g‖p(·),
from which the embedding (8.23) follows, thanks also to (8.24). �

8.3.4 Hypersingular Integrals in Variable Exponent
Haj�lasz–Sobolev Spaces

Let the measure μ satisfy the growth condition

μ (B (x, r)) � Krn. (8.25)

Let Ω be a bounded open set in X . Similarly to (2.115) and (2.116), we can
consider two forms of hypersingular integrals:

Dα(·)f(x) =
ˆ

Ω

f(x)− f(y)

[d(x, y)]n+α(x)
dμ(y), x ∈ Ω,

where n > 0 is from (8.25), and

Dα(·)f(x) =
ˆ

Ω

f(x)− f(y)

μB(x, d(x, y))[d(x, y)]α(x)
dμ(y), x ∈ Ω. (8.26)

We admit variable orders α = α(x), 0 < α(x) < 1, x ∈ Ω.

The Case of the Operator Dα(·)

Recall that the assumption that the measure μ has order of growth 1−α(x), used
in Theorem 8.18, and defined in Section 2.5.3, is fulfilled if μ satisfies the halving
condition (2.126) with cμ(x) = 2α(x)−1.

Theorem 8.18. Let the measure μ be doubling and satisfy the upper Ahlfors condi-
tion (8.25). Let 0 < α− � α(x) � α+ < 1 and p ∈ Plog(Ω) satisfy the assumption

sup
x∈Ω

p(·)[1 − α(x)] < n. (8.27)
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If the measure μ has order of growth 1− α(x), then the operator Dα(·) is bounded

from M1,p(·)(Ω) into Lq(·)(Ω) with 1
q(x) =

1
p(·)− λ(x)

n , where λ(·) is any nonnegative

function satisfying the log-condition and such that

sup
x∈Ω

[λ(x) + α(x)] < 1. (8.28)

Proof. By Lemma 8.14 and the log-condition for λ(·), we have∣∣∣Dα(·)f(x)
∣∣∣ � ˆ

Ω

|f(x) − f(y)|
[d(x, y)]n+α(x)

dμ(y) � c

ˆ

Ω

Mλ(·)g(x) + Mλ(·)g(y)
[d(x, y)]n+α(x)+λ(x)−1

dμ(y)

for μ-almost all x ∈ Ω. Note that λ+ < 1 in view of (8.28) and condition α− > 0.

Put β(x) = 1 − α(x) − λ(x). Then 0 < 1 − (α + λ)+ � β(x) < 1 − α−. We
have ∣∣∣Dα(·)f(x)

∣∣∣ � c

ˆ

Ω

Mλ(·)g(x)
[d(x, y)]n−β(x)

dμ(y) + c

ˆ

Ω

Mλ(·)g(y)
[d(x, y)]n−β(x)

dμ(y).

The fractional integral
´
Ω[d(x, y)]

β(x)−ndμ(y) of a constant is a bounded
function, since β− > 0. This follows from the estimate (11.57) which is valid for
any measure μ with the growth condition. Therefore,∣∣∣Dα(·)f(x)

∣∣∣ � cMλ(·)g(x) + c Iβ(·)n

[
Mλ(·)g

]
(x),

where I
β(·)
n is the fractional operator of type (2.115). Hence∥∥∥Dα(·)f

∥∥∥
q(·)

� c
∥∥Mλ(·)g

∥∥
q(·) + c

∥∥∥Iβ(·)n

[
Mλ(·)g

]∥∥∥
q(·)

.

In view of the conditions β− > 0 and β+ < n
q+

, the operator I
β(·)
n is bounded

in the space Lq(·)(Ω) by Theorem 2.58. Therefore,∥∥Dα(·)f
∥∥
q(·) � c

∥∥Mλ(·)g
∥∥
q(·) .

Then by Theorem 2.61 we have∥∥Dα(·)f
∥∥
q(·) � c ‖g‖p(·) � c ‖f‖1,p(·),

that theorem being applicable since supx∈Ω λ(x)p(·) � supx∈Ω [1 − α(x)]p(·) < n,
according to (8.28) and (8.27). Note also that from the condition (8.28) it follows
that the growth of order 1− α(x) implies that of order λ(x).

Thus the boundedness ofDα(·) fromM1,p(·)(Ω) into Lq(·)(Ω) has been proved.
�

For constant exponents the following statement holds.

Corollary 8.19. Let α and μ be as in Theorem 8.18 and 1 < p < n
1−α . Then

‖Dαf‖q � c ‖f‖M1,p for any exponent q such that p � q < np
n−(1−α)p .
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The estimate of Lemma 8.16 allows us also to derive the following conclusion
on the pointwise convergence of the hypersingular integral.

Theorem 8.20. Let α and μ be as in Theorem 8.18 and p ∈ Plog(Ω). Then the
hypersingular integral Dα(·), with 0 < α− � α(x) < 1, x ∈ Ω, of functions in
M1,p(·)(Ω) converges at μ-almost all those points x ∈ Ω where p(·)(1− α(x)) > n.

Proof. The pointwise convergence of the hypersingular integral is an immediate
consequence of (8.22). Observe that the assumption p(·)(1 − α(x)) > n implies
p− > n. �

The Case of the Operator Dα(·)

A similar result for the other type of hypersingular integral (8.26) of Haj�lasz–
Sobolev functions is obtained when the difference N − n between the dimensions
N and n is not large.

Theorem 8.21. Let the measure μ be doubling and satisfy the upper Ahlfors condi-
tion (8.25). Let also 0 < α− � α(x) � α+ < 1 and suppose that N − n < 1− α+.
Let also p ∈ Plog(Ω) satisfy the assumption

sup
x∈Ω

p(·)[1− α(x)] < N.

If the measure μ has order of growth 1− α(x), then the operator Dα(·) is bounded
from M1,p(·)(Ω) into Lq(·)(Ω), with

1

q(x)
=

1

p(·) −
λ(x)

N
,

where λ(·) satisfies the log-condition and is such that

λ− > 0 and sup
x∈Ω

[λ(x) + α(x)] < 1− (N − n).

Proof. We make use of (8.19) and the log-condition on λ(·) and arrive at∣∣∣Dα(·)f(x)
∣∣∣ � cMλ(·)g(x)

ˆ

Ω

[d(x, y)]β(x)

μB(x, d(x, y))
dμ(y) + c Iβ(·)

[
Mλ(·)g

]
(x),

where β(x) = 1− α(x)− λ(x) and Iβ(·) is the fractional operator of type (2.116).
Since μ is doubling, we get

ˆ

Ω

[d(x, y)]β(x)

μB(x, d(x, y))
dμ(y) � C

ˆ

Ω

dμ(y)

[d(x, y)]N−β(x)
.

The latter fractional integral is a bounded function. This can be checked through
the standard dyadic decomposition of B(x, r) for some r > 0, where we use the
upper Ahlfors bound (8.25) and the condition β− > N −n. The proof can now be
completed following similar steps of the proof of Theorem 8.18. �
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In the case of constant exponents α and p, we have the following result.

Corollary 8.22. Let α and μ be as in Theorem 8.21 and 1 − α < N < n + 1 − α.
If 1 < p < N

1−α , then ‖Dαf‖Lq(Ω) � c ‖f‖M1,p for any exponent q such that

p < q < Np
N−(1−α)p+(N−n)p .

As in the case of the operator Dα, we can also derive conditions on the
μ-almost everywhere convergence of hypersingular integrals of the form (8.26).

Theorem 8.23. Let α and μ be as in Theorem 8.21 and p ∈ Plog(Ω). Then the
hypersingular integral Dα(·), with 0 < α− � α(x) < 1, x ∈ Ω, of functions in
M1,p(·)(Ω) converges μ-almost everywhere at all points x where

1− α(x) − N

p(x)
> N − n.

8.4 Comments to Chapter 8

Comments to Section 8.1

For the theory of hypersingular integrals, we refer to Samko [322] and Samko, Kilbas,
and Marichev [331], where historical references are also provided. Lemma 8.1 was proved
in Rafeiro and Samko [296].

Comments to Section 8.2

The presentation in Sections 7.7.2, 8.2.2, and 8.2.3–8.2.4 follows the papers of Samko
[320] and Almeida and Samko [14, 15].

Variable exponent Sobolev spaces were introduced in Kováčik and Rákosńık [213],
though they are particular cases of general Sobolev spaces based on Musielak–Orlicz
function spaces. We refer to studies of variable exponent Sobolev spaces in Fan, Shen,
and Zhao [87], Fan [85], and related papers of Fan [83, 86] and references therein.

The failure of denseness of smooth functions in variable exponent Sobolev spaces
for all variable exponents p ∈ P was discovered in Zhikov [375]. The denseness for log-
continuous exponents was proved in Samko [320]. The proof of denseness of smooth func-
tions in variable exponent Sobolev spaces was also given in Zhikov [380]. For the denseness
in a more general case of weighted variable exponent spaces we refer to Surnachev [356]
and Zhikov and Surnachev [381]. Note that in Zhikov and Surnachev [381] weights not
necessarily requiring the boundedness of the maximal operator were admitted.

Hölder spaces Hα(·)(Ω) of variable order appeared in Karapetyants and Ginzburg
[147], Ross and Samko [303], where mapping properties of Riemann–Liouville fractional
integrals in such spaces were studied, see also Almeida and Samko [15], Ginzburg and
Karapetyants [106].

Embedding (8.10) was proved in Diening [61] (Corollary 5.3) in the case k = 1,
which in its turn generalizes a former result from Edmunds and Rákosńık [74] formulated
for Lipschitz continuous exponents. Embedding (8.10) was also proved in Fan, Shen, and
Zhao [87] with the assumption that p(·) is Lipschitz continuous and the cone condition
for Ω holds.
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Comments to Section 8.3

Section 8.3 is based on the paper of Almeida and Samko [16].

For constant exponents p(·) ≡ p, the spaces M1,p defined by (8.16) were first
introduced in Haj�lasz [116] as a generalization of the classical Sobolev spaces W 1,p to
the general setting of the quasimetric measure spaces. IfX = Ω is a bounded domain with
Lipschitz boundary (or Ω = R

n), endowed with the Euclidean distance and the Lebesgue
measure, then M1,p(Ω) coincides with W 1,p(Ω). Recall that the oscillation of a Sobolev
function may be estimated by the maximal function of its gradient. In other words, every
function f ∈ W 1,p(Ω) satisfies (8.16) by taking M (|∇f |) as a generalized gradient (see,
for instance, Bojarski and Haj�lasz [30], Haj�lasz and Martio [118], Kinnunen and Martio
[168], for details and applications, and Almeida and Samko [14] where this property was
also discussed for variable exponents). Haj�lasz–Sobolev spaces with variable exponent
have been considered in Harjulehto, Hästö, and Pere [126], Harjulehto, Hästö, and Latvala
[125]. In Harjulehto, Hästö, and Pere [126] it was shown thatM1,p(·)(Rn) = W 1,p(·)(Rn) if
the maximal operator is bounded in Lp(·)(Rn), which generalizes the result from Haj�lasz
[116] for constant p.

For constant α = β the inequality (8.17) was proved in Haj�lasz and Kinnunen [117,
Lem. 3.6], which in its turn generalizes Theorem 2.7 in DeVore and Sharpley [60], given
in the Euclidean setting.

Lemma 8.14 is an adaptation of Corollary 3.10 from Haj�lasz and Kinnunen [117]
to variable exponents; the pointwise inequality (8.19) for variable exponents has been
discussed in the Euclidean case in Almeida and Samko [14, Prop. 3.3].

The statement of Theorem 8.17 was proved in Almeida and Samko [14] within
the frameworks of the Euclidean domains with Lipschitz boundary. Hölder functions
on metric measure spaces were considered, for instance, in Gatto [99], Gatto, Segovia,
and Vagi [102], Maćıas and Segovia [234, 234] for constant orders λ. For Hölder spaces
of variable order λ(x) in the general setting of quasimetric measure spaces we refer to
Samko, Samko, and Vakulov [312, 314] and Rafeiro and Samko [300]; in the last reference
Hölder spaces were considered in the frameworks of Campanato spaces.

See also Ginzburg and Karapetyants [106], Karapetyants and Ginzburg [148], Kara-
petyants and Ginzburg [147], and Ross and Samko [303] in the one-dimensional Euclidean
case, and Vakulov [363, 364, 366, 365], Samko and Vakulov [311] in the case of functions
on the unit sphere S

n−1 in R
n.

The symmetric definition (8.15) was suggested in Ross and Samko [303] (in the
one-dimensional case).

Variable-order hypersingular integrals were studied in Samko [316]. Hypersingular
integrals of constant order on quasimetric measure spaces were considered in Gatto [99]
and Gatto, Segovia, and Vagi [102] within the frameworks of Lipschitz (Hölder) function
spaces.

Theorem 8.18 in the Euclidean case was proved in Almeida and Samko [14].

We refer also to a recent paper Gaczkoswki and Gorka [94] for further results on
variable Haj�lasz–Sobolev spaces on compact metric spaces.



Chapter 9

More on Compactness

In this chapter we present in Section 9.1 two general compactness results conve-
nient for applications. One is the so-called dominated compactness theorem for
integral operators. We give it in a general context of Banach Function Spaces
(BFS) in the well-known sense (see Bennett and Sharpley [27])and recall that
Lp(·)(Ω) is a BFS, as verified in Edmunds, Lang, and Nekvinda [75].

The other compactness result is a consequence of the general unilateral com-
pactness under interpolation theorems of ???(Krasnosel’skii theorem).

We conclude this chapter by an application of the above, in Section 9.2, to
compactness of convolution type operators with coefficients weakly vanishing at
infinity.

9.1 Two General Results on Compactness of Operators

9.1.1 Dominated Compactness Theorem

For classical Lebesgue spaces Lp(Ω), |Ω| < ∞ with a constant p ∈ (1,∞) one
has a compactness that goes back to Krasnosel’skii, see Krasnosel’skii, Zabreiko,
Pustyl’nik, and Sobolevskii [215]. It states that the compactness in Lp of an integral
operator with a positive kernel yields that of the operator with a smaller kernel. In
the following theorem we present, following Rafeiro and Samko [297], an extension
of such a property to the general setting of BFS, from which the statement for
variable exponent spaces follows as a corollary.

Preliminaries on Banach Function Spaces

Let (Ω, μ) be a measure space and M(Ω, μ) the space of measurable functions
on Ω.

Definition 9.1 (Bennett and Sharpley [27]). A normed linear space

X = (X, ‖ · ‖X) = (X(Ω, μ), ‖ · ‖X)
© Springer International Publishing Switzerland 2016 
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of functions f : Ω → R1 is called a Banach function space (BFS) if the following
conditions are satisfied:

(A1) the norm ‖f‖X (0 � ‖f‖X � ∞) is defined for all f ∈ M(Ω, μ);

(A2) ‖f‖X = 0 if and only if f(x) = 0 μ-a.e. on Ω;

(A3) ‖f‖X = ‖|f |‖X for all f ∈ X;

(A4) if E ⊂ Ω with μ(E) < ∞, then ‖χE‖X < ∞;

(A5) if fn ∈M(Ω, μ) and 0 � fn ↑ f μ-a.e. on Ω, then ‖fn‖X ↑ ‖f‖X;
(A6) (strong Fatou property) given E ⊂ Ω with μ(E) < ∞, there exists a

positive constant CE such that
´
E |f(x)|dμ(x) � CE‖f‖X.

In what follows, it will be always assumed that μ(Ω) < ∞. The property of
BFS given in Lemma 9.2 is known, see Bennett and Sharpley [27, pp. 4 and 6].

Lemma 9.2. Let X be a BFS with μ(Ω) < ∞. Then strong convergence implies
convergence in measure.

Definition 9.3. We say that a function f ∈ X possesses absolutely continuous norm,
if limμ(D)→0 ‖PDf‖ = 0, where

PDf(x) =

{
f(x), x ∈ D,
0, x /∈ D.

By Xa we denote the set of all f ∈ X which have absolutely continuous norm.
If Xa = X, then we say that the space X has absolutely continuous norm.

Lemma 9.4 (Bennett and Sharpley [27, p. 16]). The set Xa is a closed subspace
of X.

Definition 9.5 (Bennett and Sharpley [27]). We define the associate space X′ of a
Banach function space X as the set of all measurable functions g ∈M(Ω, μ) such
that the norm

‖g‖X′ = sup

{ˆ
Ω

|fg|dμ : f ∈ X, ‖f‖X � 1

}
< ∞.

Lemma 9.6 (Bennett and Sharpley [27]). The dual Banach space X∗ of a Banach
function space X is isometrically isomorphic to the associate space X′ if and only
if Xa = X.

Definition 9.7. A family X of functions in the space X is said to have equi-absolutely
continuous norms, if for any ε > 0 there exists δ(ε) > 0 such that μ(D) < δ(ε)
implies ‖PDf‖X < ε for all f ∈ X .

Definition 9.8. A bounded linear operator T : X → Y is compact in measure if the
image {Tun} of any bounded sequence {un} of X contains a Cauchy subsequence
with respect to measure, i.e., if ‖un‖X � C, then there exists a subsequence {unk

}
such that ∀ε > 0, ∀δ > 0, there exists an N(ε, δ) such that μY

({s ∈ Ω : |Tunk
(s)−

Tumk
(s)| > ε}) < δ for all nk,mk > N(ε, δ).
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The following theorem is a kind of version of the known statements from Lux-
emburg and Zaanen [232] and Krasnosel’skii, Zabreiko, Pustyl’nik, and Sobolevskii
[216], see also Bennett and Sharpley [27, p. 311]; the proof of the presented version
may be found in Rafeiro and Samko [297].

Theorem 9.9. Let X and Y be Banach function spaces and T a bounded linear
operator from Y into Xa. T is compact if and only if it is compact in measure and
the set {Tf : ‖f‖Y � 1} has equi-absolutely continuous norms.

Theorem 9.10. Let X and Y be Banach function spaces and T be a bounded linear
operator acting from Y to Xa. T is compact if and only if it is compact in measure
and

lim
μ(D)→0

‖PDT ‖Y→X = 0. (9.1)

Proof. “If” part. By (9.1), the range of the operator T on each ball has equi-
absolutely continuous norms. Then the result follows from Theorem 9.9. “Only
if” part. By Theorem 9.9, T is compact in measure. Suppose, to the contrary, that
(9.1) is not valid. Then there exist a sequence {fn} of functions with ‖fn‖Y � 1
and a sequence of sets Dn with measure converging to zero as n → ∞, such that
‖PDnTfn‖X � ε0 > 0, ∀n ∈ N, which contradicts the equi-absolutely continuity of
the norms of the elements {Tf : ‖f‖Y � 1}. �

Regular Integral Operators and Dominated Compactness Theorem in BFS

We consider linear integral operators

Kf(x) =

ˆ

Ω

K(x, y)f(y)dμ(y),

where it is always assumed that the kernel K(x, y) is measurable and integrable
in y on Ω for almost all x ∈ Ω. In the sequel in this section we follow some ideas
from the book Krasnosel’skii, Zabreiko, Pustyl’nik, and Sobolevskii [216].

Definition 9.11. An operator K acting from a space X into a Banach function
space Y is called a regular linear integral operator from X to Y, if the operator |K|
defined by

|K|f(x) :=
ˆ

Ω

|K(x, y)|f(y)dμ(y)

is bounded from X to Y.

Definition 9.12. Let Ψ be a linear subspace of the space X∗. A sequence {xn} ∈ X
is called Ψ-weakly convergent, if, for each ψ ∈ Ψ, the sequence {ψ(xn)} converges.

Lemma 9.13. Let Ψ be a linear subspace of X∗. If Ψ is separable, then X is Ψ-weakly
compact.
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Proof. We wish to prove that given {fn} with ‖fn‖ � 1, there exists a subsequence
{fnk

} such that {ψ(fnk
)} is a Cauchy sequence, where ψ ∈ Ψ. Such a subsequence

may be constructed inductively, exploiting the fact that Ψ is separable, so that it
has a countable dense set

Φ = {ϕ1, ϕ2, ϕ3, . . . , ϕn, . . .}.

First, we note that given a linear functional ψ ∈ X∗ and a sequence {fn} in the
unit ball of X, there exists a subsequence {fnk

} such that {ψ(fnk
)} is convergent.

(Just note that {ψ(fnk
)} is a bounded set of R1 and use the Bolzano–Weierstrass

theorem). Then from {fn} we can extract {f1
n} such that {ϕ1(f

1
n)} converges. From

{f1
n} we extract a subsequence {f2

n} such that {ϕ2(f
2
n)} converges and similarly,

we can find {fk
n}, a subsequence of {fk−1

n }, such that {ϕk(f
k
n)} converges, ad

infinitum; by the Cantor diagonal process we choose the subsequence {κn}, i.e.,
{κn} = {fn

n}. Note that, for any ϕk ∈ Φ, {ϕk(κn)} is convergent.

Finally, given ε > 0 choose from Φ an appropriate ϕN such that ‖ψ−ϕN‖ <
ε/3, and an appropriateM such that n,m > M implies |ϕN (κn)−ϕN(κm)| < ε/3.
Then we have: |ψ(κn) − ψ(κm)| � |ψ(κn) − ϕN (κn)| + |ϕN (κn) − ϕN (κm)| +
|ϕN (κm)− ψ(κm)| < 2‖ψ − ϕN‖+ ε/3 < ε. �

Corollary 9.14. The space L∞(Ω, μ) is L1-weakly compact.

Proof. Indeed, it suffices to note that L1(Ω, μ), a subspace of (L∞)∗(Ω, μ), is
separable. �

Theorem 9.15. Any regular linear integral operator K acting from L∞ into a space
Xa is compact.

Proof. Let u(x) =

ˆ
Ω

|K(x, y)|dμ(y). Then u ∈ Xa, since K acts from L∞ into Xa.

Therefore, |K|f(x) � u(x)‖f‖∞ for all f ∈ L∞. By the properties of the norm, we
obtain ‖PDK‖L∞→X � ‖PDu‖X, thus proving that

lim
μ(D)→0

‖PDK‖L∞→X = 0. (9.2)

For almost all x ∈ Ω, the map f �→ Fx(f) =
´
Ω

K(x, y)f(y)dμ(y) is a con-

tinuous linear functional on L∞ for those x for which u(x) is finite. Since L∞ is
L1-weakly compact by Corollary 9.14, from each bounded sequence {fn} in L∞

one can extract a subsequence {fnk
} such that Fx(fnk

) converges for almost all
x ∈ Ω, i.e., the sequence of numbers Kfnk

(x) converges, which implies that K

transforms each ball in L∞ into a set of functions compact in measure. By (9.2)
and the compactness in measure, the result follows from Theorem 9.10. �

Theorem 9.16. Suppose X = Xa. Then any regular linear integral operator K acting
from a space X into L1 is compact.
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Proof. By the Schauder theorem on the compactness of the dual operator, see for
instance Yosida [374], the required compactness is equivalent to the compactness
of the operator K∗ from L∞ to X∗ = X′. According to Theorem 9.15, it suffices to
check that the operator K∗ acts boundedly from L∞ to (X′)a. The latter holds if
the operator K is bounded from [(X′)a]∗ to L1, which in turn is guaranteed by the
assumption of the theorem, since it is known that [(X′)a]∗ = (X′)′, see Bennett and
Sharpley [27, p. 23, Cor. 4.2], and X′′ = X, see Bennett and Sharpley [27, p. 10,
Thm. 2.7]. �

Theorem 9.17. Let X = Xa. Any regular linear integral operator K acting from a
space X into a space Ya is compact in measure.

Proof. This follows from the fact that K acts from Xa into L1. Then by Theorem
9.16, the operator is compact and therefore, it is compact in measure. �

Let

K0f(x) =

ˆ

Ω

K0(x, y)f(y)dμ(y), K0(x, y) � 0.

In the case
|K(x, y)| � K0(x, y), (x, y) ∈ Ω× Ω, (9.3)

we say that the operator K0 is a majorant of the operator K.

Theorem 9.18. Let X = Xa. Let condition (9.3) be fulfilled and suppose that the
operator K0 acts from a space X into a space Ya and is compact. Then K is also
a compact operator acting from X into Ya.

Proof. We have

lim
μ(D)→0

‖PDK‖X→Y = lim
μ(D)→0

sup
‖f‖X�1

‖PDKf‖Y

� lim
μ(D)→0

sup
‖f‖X�1

‖PDK0(|f |)‖Y � lim
μ(D)→0

‖PDK0‖X→Y = 0.

Then the operator K is compact in measure by Theorem 9.17. Therefore, its
compactness follows from Theorem 9.10. �

Corollary 9.19. The statement of Theorem 9.18 is valid for the function space
X = Lp(·)(Ω, �), if p is a bounded exponent with p− � 1 and

‖�‖p(·) < ∞, ‖�−1‖p′(·) < ∞. (9.4)

Proof. It suffices to note that conditions (9.4) are equivalent to the embeddings
L∞(Ω) ⊂ Lp(·)(Ω, �) ⊂ L1(Ω) under which Lp(·)(Ω, �) is a BFS, while condition
1 � p− � p+ < ∞ ensures that the dual and associate spaces coincide, see Bennett
and Sharpley [27, Thm. 2.5], and thereby this space has an absolutely continuous
norm. �
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9.1.2 Compactness under Interpolation Theorem

For the spaces Lp(·)(Ω) with the interpolation spaces realized directly as Lpθ(·)(Ω),
1

pθ(x)
= θ

p1(x)
+ 1−θ

p2(x)
, θ ∈ (0, 1), the following unilateral interpolation of the prop-

erty of compactness is valid. We omit its proof, which may be found in Rabinovich
and Samko [292], where it was derived from results of Persson [279].

Theorem 9.20. Let Ω ⊆ Rn be an open set and let the variable exponents pj : Ω →
[1,∞), j = 1, 2, satisfy the condition

1 < p− � p(x) � p+ < ∞, x ∈ Ω.

Let a linear operator A defined on Lp1(·)(Ω) ∪ Lp2(·)(Ω) be bounded in the spaces
Lpj(·)(Ω), j = 1, 2. If it is compact in the space Lp1(·)(Ω), then it is also compact
in every space Lpθ(·)(Ω), where

1

pθ (x)
=

θ

p1 (x)
+

1− θ

p2 (x)
, θ ∈ (0, 1].

In applications it is convenient to use the following statement.

Theorem 9.21. Let Ω ⊆ Rn and let there be given a function p : Ω → [1,∞), p(x)
such that 1 � p− � p(x) � p+ < ∞, and a number p0 ∈ (1,∞), if p− > 1, and
p0 = 1, if p− = 1. There exists function q : Ω → [1,∞) with the similar property
1 � q− � q(x) � q+ < ∞ and a number θ ∈ [0, 1) such that Lp(·)(Ω) is an
intermediate space between Lp0 (Ω) and Lq(·)(Ω) corresponding to the interpolation
parameter θ. Moreover, q(x) may be chosen so that q− > 1 when p− > 1.

Proof. The interpolating equality 1
p(x) =

θ
p0

+ 1−θ
q(x) gives the expression for q:

q(x) =
p0(1− θ)p(x)

p0 − θp(x)
,

so that we have only to take care about the choice of θ ∈ (0, 1) so that the
conditions q− > 1 and q+ < ∞ are fulfilled. This gives the restriction

θ ∈ (0, θ0), θ0 = min

{
1,

p0
p+

,
p′0
p′−

}
,

(with
p′
0

p′
−

interpreted as 1 in the case p0 = p− = 1), which is always possible. �

The importance for applications of the above statement, combined with the
compactness interpolation theorem, is obvious: it suffices to know that an operator
is compact in Lp0 to conclude that if it is bounded in variable exponent spaces, it
is also compact in such spaces.
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9.1.3 Compactness of an Integral Operator with Integrable
Almost Decreasing Radial Dominant Majorant of the
Kernel in the Case |Ω| < ∞

In this section we study the compactness of integral operators

Kf(x) =

ˆ

Ω

K(x, y)f(y) dy, (9.5)

over an open set Ω of a bounded measure, |Ω| < ∞, whose kernel K(x, y) is
dominated by a difference kernel, i.e.,

|K(x, y)| � A(|x− y|). (9.6)

It is well known that in the case p(x) ≡ p = const, operators of the form

Kf(x) =

ˆ

Ω

k(x− y)f(y) dy

over a set Ω with |Ω| < ∞ are compact in Lp(Ω), 1 � p < ∞, for any integrable
kernel k(x) (this follows from the simple fact that a kernel k ∈ L1(Ω) can be
approximated in L1-norm by bounded kernels).

In the case of variable p(x) this is no longer valid for arbitrary integrable
kernels; convolutions with such kernels are even unbounded in general. However,
one may ask whether the compactness still holds in the situation where Stein’s
pointwise estimate

|Kf(x)| � ‖A‖1Mf(x),

of type (1.17) holds.

The requirement for A to be decreasing may be slightly weakened to almost
decreasing. The constant

Cf = sup
t2�t1

f(t1)

f(t2)

is sometimes called the coefficient of almost decrease of f .

In the sequel, when saying that the kernel k(x) has a radial integrable almost
decreasing majorant A, we mean that |k(x)| � A(|x|), where A(|x|) ∈ L1(Rn) and
A(r) is an almost decreasing function

The results on compactness in weighted variable exponent spaces we prove
in Section 9.1.3 are based on obtaining a version of Stein’s estimate, see Lemma
9.23.

Non-weighted Case

In the non-weighted case, the following compactness theorem for integral operators
(9.5) is an immediate consequence of the interpolation Theorems 9.20 and 9.21.
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Theorem 9.22. Let |Ω| < ∞, 1 � p− � p+ < ∞. An integral operator of form
(9.5) with radial decreasing integrable majorant A(|x|) of its kernel is compact in
the space Lp(·)(Ω), if the maximal operator is bounded in this space.

In the next subsection we use another approach, not based on the interpola-
tion theorem, which allows us to cover the weighted case, at the least for a certain
class of integral operators.

Weighted Case

We assume that the majorant A in (9.6) is integrable:

ˆ

B(0,R)

A(|x|) dx < ∞, R = 2diam Ω,

and almost decreasing.

We split the operator K in the standard way:

Kf(x) =

ˆ

|x−y|<ε

K(x, y)f(y) dy +

ˆ

|x−y|>ε

K(x, y)f(y) dy

=: Kεf(x) + Tεf(x).

(9.7)

The following lemma is crucial for our purposes. In this lemma, in particular,
we give a new proof of the pointwise Stein estimate |Kf(x)| � ‖A‖1M f(x) known
in this form for radially decreasing majorants A.

Lemma 9.23. Let (9.6) be satisfied and let A be almost decreasing. Then the point-
wise estimate

|Kεf(x)| � a(ε)M f(x), x ∈ Ω,

holds, where

a(ε) = (CA)2
ˆ

B(0,ε)

A(|x|) dx −→ 0 as ε → 0 (9.8)

and CA is the coefficient of the almost decrease of the function A. In the case
Ω = R

n we also have

|Kf(x)| � (CA)2‖A‖1M f(x), x ∈ R
n. (9.9)

Proof. To prove (1.44), we use the decomposition

|Kεf(x)| �
∞∑
k=0

ˆ

λ−k−1ε<|y−x|<λ−kε

A(|x − y|)|f(y)| dy
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with an arbitrary λ > 1. Then after standard estimations we obtain (1.44) with

a(ε) = CA

∣∣Sn−1
∣∣

n

∞∑
k=0

A(λ−kε)(λ−kε)n. (9.10)

To arrive at (9.8), we estimate the integral
´

B(0,ε)

A(|y|) dy as follows:

ˆ

B(0,ε)

A(|y|) dy =
∞∑
k=0

ˆ

λ−k−1ε<|y|<λ−kε

A(|y|) dy

� 1

CA

∞∑
k=0

A(λ−k−1ε)

ˆ

λ−k−1ε<|y|<λ−kε

dy

which after easy calculations yields

ˆ

B(0,ε)

A(|y|) dy � λn − 1

CA

∣∣Sn−1
∣∣

n

[ ∞∑
k=0

A(λ−kε)(λ−kε)n −A(ε)εn

]
.

Then by (9.10)

a(ε) � (CA)2
(

1

λn − 1
+ 1

) ˆ

B(0,ε)

A(|y|) dy.

Since the left-hand side of (1.44) does not depend on λ > 1, we may pass to the
limit as λ →∞, which yields the validity of (1.44)–(9.9). �

Observe that the kernel of the operator Tε in the representation (9.7) is a
bounded function for each ε > 0. Therefore, from Lemma 9.23 we immediately
arrive at the following statement.

Theorem 9.24. An integral operator with radial almost decreasing integrable dom-
inant A(|x|) of its kernel is compact in a Banach function space X = X(Ω) with
|Ω| < ∞, if

1. the maximal operator is bounded in X;

2. integral operators with bounded kernel are compact in X.

In the case where X is a Banach function space with absolutely continuous norm,
assumption 2 may be omitted.

Proof. The compactness of the operator K under the assumptions 1 and 2 is
obvious in view of representation (9.7) and estimate (1.44). The fact that one can
drop assumption 2 follows from Theorem 9.18, since the integral operator with
constant kernel is one-dimensional and consequently compact in every Banach
function space. �
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Corollary 9.25. Let |Ω| < ∞, 1 � p− � p+ < ∞ and the weight � satisfy condition
(9.4). An integral operator with radial almost decreasing integrable majorant A(|x|)
of its kernel is compact in the space Lp(·)(Ω, �), if the maximal operator is bounded
in this space.

Proof. It suffices to note that Lp(·)(Ω, �) is a Banach function space with absolute
norm, under the conditions (9.4). �

9.2 The Case Ω = R
n: Compactness of

Convolution-type Operators with
Coefficients Vanishing at Infinity

Definition 9.26. A function a(x)∈L∞(Rn) is said to belong to the classBsup
0 (Rn), if

lim
N→∞

sup
|x|>N

|a(x)| = 0.

The following statement is known (see Karapetyants and Samko [151, p. 39]
and references therein) and is of importance in application to the Fredholmness
theory of convolution type equations, see Karapetyants and Samko [151, Sec. 3].

Theorem 9.27. An operator of the form

(Tf)(x) = a(x)

ˆ

Rn

k(x− y)b(y)f(y) dy , x ∈ R
n, (9.11)

where k ∈ L1(Rn) and a, b ∈ L∞(Rn), is compact in Lp(Rn), 1 � p � ∞, when
either a ∈ Bsup

0 or b ∈ Bsup
0 .

Then from Theorems 9.27 and 9.20–9.21 we derive at the following statement.

Theorem 9.28. Let the kernel k(x) have a radial integrable almost decreasing ma-
jorant, and let a, b ∈ L∞(Rn). Under the condition 1 � p− � p+ < ∞, operators
T of the form (9.11) are compact in the space Lp(·)(Rn), if

i) the maximal operator M is bounded in the space Lq(·)(Rn) with any q(·) such
that 1

q(x) =
λ

p(x) − c, where λ ∈ (1,∞), c ∈ (0,∞) and λ
c � p−,

ii) whenever one of the conditions a ∈ Bsup
0 or b ∈ Bsup

0 is satisfied.
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9.3 Comments to Chapter 9

Comments to Section 9.1

In Section 9.1 we follow the papers of Samko [325] and Rafeiro and Samko [297].

The fact that one can unilaterally interpolate the compactness property of operators
in Lp-spaces, presented in Theorem 9.20 for variable exponents p = p(x), in the case of
constant p goes back to the original paper of Krasnosel’skii [214], see also the book by
Krasnosel’skii, Zabreiko, Pustyl’nik, and Sobolevskii [216]. After Krasnosel’skii [214] an
extension to the case of general Banach space setting was a matter of study in a series
of papers, we refer for instance to Cobos, Kühn, and Schonbek [45], Hayakawa [130],
Lions and Peetre [226], and Persson [279], where such an extension was made under
some hypotheses on the space, which were finally removed in Cwikel [56].

For the dominated compactness theorem in the case of constant p we refer to the
book by Krasnosel’skii, Zabreiko, Pustyl’nik, and Sobolevskii [216].

Comments to Section 9.2

In Section 9.2 we follow the paper Samko [325]. For constant p, Theorem 9.27 can be
found in Karapetyants and Samko [151, p. 39], see also Karapetyants and Samko [151]
for historical references concerning such compactness statements.



Chapter 10

Applications to Singular
Integral Equations

We give an application of the weighted results obtained in Theorem 2.45 with
power weights to the theory of Fredholm solvability of singular integral equations
(10.1) with piecewise continuous coefficients. As is well known to researches in
this field, to investigate such equations in a specific function space, it is important
to know precise necessary and sufficient conditions for a weighted singular oper-
ator to be bounded in that space. Once such conditions are available, to obtain
the criterion of Fredholmness, one can follow the known scheme of investigation
of singular integral operators in already studied situations, for example in the
spaces Lp(Γ), p = const. This scheme may be rewritten in terms of an arbitrary
Banach space of functions defined on Γ, subject to some natural axioms. We do
this in Section 10.1.3. As a model of the scheme to follow, we use the Gakhov–
Muskhelishvili–Khvedelidze–Gohberg–Krupnik scheme of investigation of singular
operators with piece-wise continuous coefficients.

At the next step we pass to more general operators, including pseudodif-
ferential operators (PDO). We start with a generalization of our previous results
on the boundedness of singular integral type operators in the spaces Lp(·)(Rn, w)
with power type weight w, to a more general class of operators, from which in
Section 10.2.4 we derive the boundedness of PDO of Hörmander class S0

1,0 in such
spaces. This enables us to study Fredholm properties of PDO of the Hörmander
class OPSm

1,0, and also obtain an information about their essential spectra.

After that, in Section 10.3 we return to singular integral equations, this time
on composed Carleson curves oscillating near nodes, via Mellin PDO, and describe
their Fredholm theory.

© Springer International Publishing Switzerland 2016 
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10.1 Singular Integral Equations with Piecewise
Continuous Coefficients

For singular integral equations with piecewise continuous coefficients we prove a
Fredholmness criterion and an index formula in the spaces Lp(·)(Γ) on a finite
closed Carleson curves Γ without whirling points. The obtained criterion shows
that Fredholmness in this space and the index depend on values of the function
p(t) at the discontinuity points of the coefficients of the operator, but not on the
values of p(t) at points of their continuity.

10.1.1 Introduction

The singular integral operators under consideration have the form

Aϕ(t) : = u(t)ϕ(t) +
v(t)

πi

ˆ

Γ

ϕ(τ) dτ

τ − t
= f(t), t ∈ Γ, (10.1)

or in short
A = aP+ + bP−, a = u+ v, b = u− v,

where P± = 1
2 (I±S) are the projectors, generated by the singular integral operator

Sϕ(t) =
1

πi

ˆ

Γ

ϕ(τ) dτ

τ − t
.

The coefficients u and v are assumed to be piecewise continuous and Γ is a finite
closed curve in the complex plane.

The main statement on Fredholmness of the operator A is given in Theorem
10.4, where the curve Γ is assumed to be a Carleson curve without whirling points.
In fact, we prove a more general statement on Fredholmness of the operator A
in an abstract Banach space of functions on Γ, satisfying some natural axioms.
This statement, as already mentioned above, appears as a result of an abstract
Banach space reformulation of the Gohberg–Krupnik scheme of investigation of
singular operators with piecewise continuous coefficients. For the completeness
of the presentation and the reader’s convenience we give this reformulation with
proofs in Section 10.1.3.

The theorem on Fredholmness of the operator A in the spaces Lp(·)(Γ) is
obtained as a corollary to that abstract Banach space scheme, see Section 10.1.4.

By Γ we denote a finite closed rectifiable Jordan curve on the complex plane;
� is its length, D+ denotes the interior of the curve Γ and D− its exterior.

Recall that the space Lp(·)(Γ) on a rectifiable simple curve Γ is defined in the
usual way via the modular (2.4). We always assume that

1 < p− � p(t) � p+ < ∞, t ∈ Γ. (10.2)
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We shall deal with weighted spaces Lp(·)(Γ, �) =
{
f : �f ∈ Lp(·)(Γ)

}
.

Theorem 10.1. Let Γ be a finite Jordan curve and � a weight. The set C∞(Γ)
(and even the set of rational functions on Γ) is dense in Lp(·)(Γ, �) under the
assumptions that 1 � p(t) � p+ < ∞, t ∈ Γ and [�(t)]p(t) ∈ L1(Γ).

We do not dwell details of the proof, but recall that approximability upon
nice functions was already stated in the Euclidean case in Theorem 2.3. As regards
the possibility to approximate by rational functions, it suffices to refer to the
known fact that any function f ∈ C(Γ) can be approximated in C(Γ) by rational
functions, on any Jordan curve Γ (Mergelyan’s Theorem, see for instance, Gaier
[95, p. 169]).

In this section we will work with the weights

�(t) =

m∏
k=1

|t− tk|βk

where tk ∈ Γ, k = 1, 2, . . . ,m.

10.1.2 Statement of the Main Result for the Spaces Lp(·)(Γ)

By PC(Γ) we denote the class of piecewise continuous functions on Γ with a finite
number of jumps and by IndX A the index of the Fredholm operator A in a Banach
space X .

Let a(t) ∈ PC(Γ) and let t1, t2, . . . , tm be the points of discontinuity of a(t).

Definition 10.2. Following the well-known definition for the case of constant p
(Gohberg and Krupnik [109, p. 63]), we say that a function a(t) ∈ PC(Γ) is
p(·)-non-singular, if

inf
t∈Γ

|a(t)| > 0

and at all the points of discontinuity of a(t) the following condition is satisfied:

arg
a(tk − 0)

a(tk + 0)
�= 2π

p(tk)
( mod 2π), k = 1, 2, . . . ,m.

For a non-vanishing function a(t) ∈ PC(Γ) we denote

θ(tk) =
1

2π

tk+1−0ˆ

tk+0

d arg a(t). (10.3)

Definition 10.3. Let a(t) ∈ PC(Γ) be a p(·)-non-singular function. The integer

indp(·) a =

n∑
k=1

[
θ(tk)− 1

2π
arg

a(tk − 0)

a(tk + 0)

]
,
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where the values of 1
2π arg a(tk−0)

a(tk+0) are chosen in the interval

− 1

p′(tk)
<

1

2π
arg

a(tk − 0)

a(tk + 0)
<

1

p(tk)
,

is called the p(·)-index of the function a.

It is known that indp(·) a is the same as the Gohberg–Krupnik p-index defined
as the winding number of the curve, obtained from the image a(Γ) of the curve Γ
by supplementing it at its discontinuities by the corresponding circular arcs in the
well-known way, but with the difference that now the angle of the arc is defined
by the exponent p(tk) varying from one discontinuity point to another. We refer
to Gohberg and Krupnik [109, pp. 63–64], for the notion of p-index in the case
where p is constant; to see that the two numbers coincide, use for instance Lemma
2.7 from Karapetyants and Samko [151].

Theorem 10.4. Let Γ be a closed Carleson curve, p ∈ Plog(Γ), and a, b ∈ PC(Γ)
with the jump points of a and b not coinciding with whirling points of Γ. The
operator A = aP+ + bP− is Fredholm in the space Lp(·)(Γ) if and only if

inf
t∈Γ

|a(t)| �= 0, inf
t∈Γ

|b(t)| �= 0

and the function a(t)
b(t) is p(·)-non-singular. Under these conditions,

IndLp(·) A = − indp(·)
a

b
.

Theorem 10.4 is proved in Section 10.1.4 as a corollary of a more general
statement.

From Theorem 10.4 it follows that the essential spectrum of the operator
aP+ + P− with a ∈ PC(Γ) in the space Lp(·)(Γ) (the set of points λ in the
complex plane for which the operator λI−(aP++P−) is not Fredholm) is described
similarly to the case of constant p, as the union of the image a(Γ) and the circular
arcs νp(tk)(a(tk − 0), a(tk + 0)), connecting the points a(tk − 0) and a(tk + 0) and

with the angle 2π
p(tk)

depending on the point tk.

Remark 10.5. The restriction that the coefficients have no jumps at whirling points
imposed in Theorem 10.4 and also in Theorem 10.11 is essential in this scheme
since for power weights we use the equivalence |(t − t−)a)| ≈ |t − t0|Re a, which
does not hold when t0 is a whirling point and Im a �= 0.

10.1.3 Singular Integral Operators in Banach Function Spaces X(Γ)

The theory of singular integral equations with is well known, for example, in the
Lebesgue weighted spaces Lp(Γ, �) and in ?? The Fredholm solvability properties of
singular equations in the case of PC(Γ)-coefficients and, for instance, on Lyapunov
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curves, well known for the space Lp(Γ) with constant p (see for example Gohberg
and Krupnik [109]) and some other spaces of integrable functions, do not depend
much on the choice of the function space.

In this subsection we show in explicit form what properties of a given function
spaceX(Γ) guarantee that the result on Fredholmness may be formulated in terms
similar to those used in Theorem 10.4, i.e., in terms of X-non-singular functions
and X-index, appropriately defined.

Observe that the idea of taking the bounds for the weight functions (used in
Axioms 1 and 2) as the base for formulating The Fredholmness criterion is well
known in the theory of singular integral operators, see Spitkovsky [349], Böttcher
and Karlovich [33], Böttcher and Karlovich [32, Chap. 2], and Karlovich [152].
In the context of Carleson curves and general weights this idea led to the notion
of the so-called indicator set of the space at the point t0 ∈ Γ, see Böttcher and
Karlovich [32, p. 72]. We show that it is possible to axiomatize this idea so that
the Gohberg–Krupnik approach, known for Lp(Γ, �)-spaces on Lyapunov curves,
may be made to work for an arbitrary Banach function space under two natural
axioms.

Banach Function Spaces, Suitable for Singular Integral Operators

Let X = X(Γ) be any Banach space of functions on a closed simple Jordan recti-
fiable curve Γ satisfying the following assumptions

C(Γ) ⊂ X(Γ) ⊂ L1(Γ), (10.4)

for any a ∈ L∞(Γ), ‖a f‖X � ‖a‖∞ · ‖f‖X for all F ∈ X(Γ), (10.5)

the operator S is bounded in X(Γ), (10.6)

C∞(Γ) is dense in X(Γ). (10.7)

Assumptions (10.4)–(10.7) will be used to formulate the statement on Fred-
holmness in the case of continuous coefficients. For the case of piecewise coefficients
we shall also need the following Axioms 1 and 2.

AXIOM 1. For the space X(Γ) there exist two functions α and β, with values
0 < α(t) < 1, 0 < β(t) < 1, for all t ∈ Γ, such that the operator

|t− t0|γ(t0)S|t− t0|−γ(t0)I, t0 ∈ Γ,

is bounded in the space X(Γ) for all γ(t0) such that

−α(t0) < γ(t0) < 1− β(t0)

and is unbounded in X(Γ) if γ(t0) /∈ (−α(t0), 1 − β(t0)).

The functions α(t) and β(t) will be called index functions of the space X(Γ).
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In the case X(Γ) = Lp(·)(Γ, �) = {f : |t− t0|μf(t) ∈ Lp(·)(Γ)} we have

α(t) = β(t) =
1

p(t)
+

{
μ, t = t0,
0, t �= t0,

(10.8)

which follows from Theorem 2.45.

Let X(Γ, |t− t0|γ) = {f : |t− t0|γf(t) ∈ X(Γ)}.
AXIOM 2. For any γ < 1− β(t0) one has the embedding X(Γ, |t− t0|γ) ⊂ L1(Γ)
and C∞(Γ) is dense in X(Γ, |t− t0|γ), for any t0 ∈ Γ.

Lemma 10.6. Let X(Γ) satisfy conditions (10.4)–(10.5) and t1, t2, . . . , tm ∈ Γ.
Then

m∏
k=1

|t− tk|γk ∈ X(Γ) (10.9)

for all γk > −αk, k = 1, 2, . . . ,m.

Proof. Let first m = 1. If γ1 � 0, the inclusion (10.9) is obvious because of the
embedding C(Γ) ⊂ X(Γ). Let γ1 � 0. Since 1 ∈ X(Γ), from Axiom 1 it follows that
|t− t1|γ1S (|τ − t1|−γ1) (t) ∈ X(Γ). As −γ1 � 0, S (|τ − t1|−γ1) (t) is a continuous
function non-vanishing at the point y = t1, as is known. Then |t − t1|γ1 ∈ X(Γ),
thanks to property (10.5).

The case m > 1 reduces to the case m = 1 by unsing a partition of unity on

Γ: 1 ≡
m∑
j=1

ωj(t), with ωj(t) ∈ C∞(Γ) and ωj(t) ≡ 0 in a small neighbourhood of

the point tj . Then
m∏

k=1

|t− tk|γk =

m∑
j=1

|t− tj |γjaj(t) (10.10)

with aj(t) ∈ C∞(Γ), so that
m∏

k=1

|t − tk|γk ∈ X in view of the case n = 1 and

(10.5). �

Let now

X(Γ, �) = {f : �(t)f(t) ∈ X(Γ)}, �(t) =

m∏
k=1

|t−tk|γk , t1, . . . , tm ∈ Γ. (10.11)

Lemma 10.7. Let X(Γ) be a Banach function space satisfying conditions (10.4)–
(10.5) and Axioms 1 and 2. Then the space X(Γ, �) satisfies conditions (10.4)–
(10.5) as well, provided that

−α(tk) < γk < 1− β(tk), k = 1, . . . ,m.



10.1. Singular Integral Equations with Piecewise Continuous Coefficients 473

Proof. To verify properties (10.4)–(10.5) for the space X(Γ, �), we observe that � ·
C(Γ) ⊂ X(Γ) by Lemma 10.6, which means that C(Γ) ⊂ X(Γ, �). The embedding
X(Γ, �) ⊂ L1(Γ) is easily derived from Axiom 2 (use a partition of unity).

Property (10.5) forX(Γ, �) obviously follows from its validity forX(Γ). Prop-
erty (10.6) is in fact postulated in Axiom 1, the passage from the single weight
|t − tk|γk to the weight �(t) in (10.11) being justified by the standard use of
a partition of unity, as in (10.10). Finally, property (10.5) is also in fact pos-
tulated in Axiom 1, since the space X(Γ, �) is the algebraic sum of the spaces
X(Γ, |t− tk|γk), k = 1, 2, . . . ,m. �

X-Non-Singular Functions and X-Index of a PC-Function

Here we present an abstract Banach space reformulation of the notions of p-non-
singularity and p-index Gohberg and Krupnik [109]. A development of these no-
tions in the context of Carleson curves, related to the notion of the indicator
set, may be found in Böttcher and Karlovich [32, Prop. 7.3 and Thm. 7.4]. For a
function a ∈ PC(Γ) we put, as usual,

a(t) =
1

2πi
ln

a(t− 0)

a(t+ 0)

and

ω(t) =

m∏
k=1

(t− z0)
γ(tk)
k (10.12)

where z0 ∈ D+, tk are the points of discontinuity of a, and ωk(z) = (z − z0)
γ(tk)
k

are univalent analytic functions in the complex plane with a cut from z0 to infinity
passing through the point tk ∈ Γ. The function

a1(t) =
a(t)

ω(t)
(10.13)

is continuous on Γ independently of the choice of

Re a(tk) =
1

2π
arg

a(tk − 0)

a(tk + 0)
.

Following Definitions 10.2 and 10.3, we introduce the following notions.

Definition 10.8. Let X(Γ) be a Banach function space satisfying Axiom 1. A
function a ∈ PC(Γ) is called X-non-singular if inf

t∈Γ
|a(t)| > 0 and

1

2π
arg

a(tk − 0)

a(tk + 0)
/∈ [α(tk), β(tk)] + Z

where [· · · ] +Z stands for the set of
⋃

ξ∈[··· ]
{ξ, ξ ± 1, ξ± 2, . . . }, and α(t) and β(t)

are the index functions of the space X .
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Definition 10.9. Let X(Γ) satisfy Axiom 1 and a ∈ PC(Γ) be X-non-singular. The
integer

indX a =

m∑
k=1

[θ(tk)− Re a(tk)] ,

where θ(tk) are the increments (10.3) and Re a(tk) are chosen in the interval

β(tk)− 1 < Re a(tk) < α(tk), (10.14)

will be referred to as X-index of the function a.

Theorem 10.10. Let X(Γ) be any Banach function space satisfying assumptions
(10.4)–(10.7). The operator A = aP+ + bP− with a, b ∈ C(Γ) is Fredholm in the
space X if and only if a(t) �= 0, b(t) �= 0 for all t ∈ Γ. In this case IndX A = indX

(b/a) =: κ.

Proof. The proof is completely standard and follows the well-known arguments,
but we sketch the proofs for completeness.

1st step (compactness of the commutators aS − SaI, a ∈ C(Γ) in X(Γ)). It is
known that any function a(t) continuous on Γ can be approximated in C(Γ) by a
rational function r(t), see the reference after Theorem 10.1. Therefore, since the
singular integral operator S is bounded in X(Γ) by assumption (10.6), we deduce
that the commutator aS − SaI is approximated in the operator norm in X by
the commutator rS −SrI, which is finite-dimensional operator, and consequently
compact in X(Γ). Therefore, aS − SaI is compact.

2nd step (sufficiency). By compactness of the commutators, we have that (aP++
bP−)(bP+ + aP−) = ab I + T , where T is a compact operator, so the operator
aP+ + bP− has a regularizer. Consequently, it is Fredholm.

3rd step (the operator Aκ = P+ + tκP−). Let 0 ∈ D+. The operator Aκ is right
invertible in X(Γ), if κ � 0, and left invertible if κ � 0 and has the deficiency
numbers αX(Aκ) = κ and βX(Aκ) = 0 if κ � 0 and αX(Aκ) = 0 and βX(Aκ) =
|κ| if κ � 0. Indeed, the operator Aκ is Fredholm in X(Γ) by the sufficiency part
(the previous step). The one-sided invertibility follows from the relations

AκA−κ = I, if κ � 0, A−κAκ = I, if κ � 0

well known on spaces of “nice” functions and valid on X(Γ) by (10.6)–(10.7). To
obtain the information on the deficiency numbers in the space X(Γ), we observe
that Hλ(Γ) ⊂ C(Γ) ⊂ X(Γ) by (10.4) and that αHλ(Aκ) = κ in case κ � 0
(Muskhelishvili [266]). Therefore, αX(Aκ) � κ. Since X(Γ) ⊂ L1(Γ), we also have
αX(Aκ) � κ. The case κ � 0 is treated similarly.

4th step (the operator N = (t − λ)P+ + P−). The operator N is invertible in
X(Γ), if λ ∈ D−, and is Fredholm with IndX N = −1, if λ ∈ D+. Indeed, the
invertibility in the case when λ ∈ D− is checked directly: N1N = NN1 = I, where
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N1 = 1
t−λP++P−, thanks to the conditions (10.6)–(10.7). The case when λ ∈ D+

follows from the 3rd step, (t− λ)P+ + P− = (t− λ)
[
P+ + (t− λ)−1P−

]
.

5th step (necessity). Suppose that a(t0) = 0 for some t0 ∈ Γ and the operator A is
Fredholm. By the compactness of the commutators aS − SaI (1st step), we have
the relations

aP+ + bP− = (P+ + bP−)(aP+ + P−) + T1 = (aP+ + P−)(P+ + bP−) + T2,

where T1 and T2 are compact operators in X(Γ). So aP+ + P− is Fredholm and
a(t0) = 0. We can approximate the function a in C(Γ) by rational functions aε such
that aε(t0) = 0. Then the operators aεP++P− with ε small enough are Fredholm.
To arrive at a contradiction, we follow Gohberg and Krupnik [108, p. 174], and
represent aε as aε(t) = (t− t0)s(t). Then

aεP+ + P− = (sP+ + P−)[(t− t0)P+ + P−] = [(t− t0)P+ + P−](sP+ + P−) + T,

where T is a compact operator. Therefore, the operator (t − t0)P+ + P− has a
regularizer and is a Fredholm operator, which is impossible in view of the statement
of the 4th step and the known property of stability of the index of Fredholm
operators.

6th step (index formula). As in Gohberg and Krupnik [108, p. 103], we approximate

the function c(t) = a(t)
b(t) by a rational function r(t) so that

c(t) = r(t)[1 +m(t)] with max
t∈Γ

|m(t)| < 1

‖P+‖X . (10.15)

Let r(t) = t−κ χ+(t)
χ−(t) be the factorization of the function r(t). Since ‖m‖C(Γ) < 1,

we have ind(1 +m) = 0 and then ind r = ind c = −κ.

In the case κ � 0, there holds the representation

A = bχ−(I +mP+)

(
1

χ+
P+ +

1

χ−
P−

)
(t−κP+ + P−), (10.16)

with reference to conditions (10.6)–(10.7). The operator I + mP− is invertible
since ‖mP+‖X < 1 by (10.15) and (10.6). Since the operator 1

χ+
P++ 1

χ−
P− is also

obviously invertible in X , from (10.16) we obtain IndX A = indX(t−κP+)+P− =
κ according to the statement at the 3rd step. �
Theorem 10.11. Let X(Γ) be any Banach function space satisfying assumptions
(10.4)–(10.7) and Axioms 1 and 2 and let a, b ∈ PC(Γ) have no jumps at possible
whirling points of Γ. Then the operator A = aP+ + bP− with a, b ∈ PC(Γ) is
Fredholm in the space X if

inf
t∈Γ

|a(t)| �= 0, inf
t∈Γ

|b(t)| �= 0 (10.17)
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and

the function
a(t)

b(t)
is X − nonsingular. (10.18)

In this case,

IndX A = − indX
a

b
. (10.19)

Condition (10.17) is also necessary for the operator A to be Fredholm in X. If
the index functions α(t) and β(t) of the space X coincide at the points tk of
discontinuity of the coefficients a(t), b(t):

α(tk) = β(tk), k = 1, 2, . . . ,m,

then condition (10.18) is necessary as well.

Proof. Because of condition (10.17) we may assume that b(t) ≡ 1 (the necessity of
(10.17) for both a and b simultaneously is shown similarly to the case b(t) ≡ 1).

Sufficiency. Let

ω(t) =
ω+(t)

ω−(t)
, ω+(t) =

n∏
k=1

(z − tk)
a(tk), ω−(t) =

n∏
k=1

(
z − tk
z − z0

)a(tk)

be the well-known factorization of the function (10.12). Recall that Rea(tk) are
chosen according to (10.14). We make use of the well-known representation

aP+ + P− =
1

ω− (a1P+ + P−)ω−(ωP+ + P−), (10.20)

where a1 is the function (10.13), see for instance, Karapetyants and Samko [151,
p. 22]. The function a1 is in C(Γ) by the choice of the values a(tk). Relation (10.20)
which holds, for instance, in the case of “nice” functions, extendeds to the space
X(Γ) by condition (10.7), since both operators ωP+ +P− and 1

ω− (a1P+ +P−)ω−

are bounded in X(Γ), the former by condition (10.6) and the latter by Lemma
10.7. The operator 1

ω− (a1P+ + P−)ω− is Fredholm in X(Γ) by Theorem 10.10,
and Lemma 10.7 and its index in X(Γ) is equal to ind a1 which is nothing else but
indX a. Thus (10.19) is obtained.

It remains to show that the operator ωP++P− is invertible in the spaceX(Γ)
thanks to the choice (10.14). This is checked in the familiar way: N(ωP+ +P−) =
(ωP++P−)N , where N = 1

ω−
(
1
ωP+ + P−

)
ω−. The operator K is bounded under

the choice (10.14) in the space X(Γ) by Lemma 10.7.

Necessity. Let A be Fredholm in X(Γ). We first assume that a(tk ± 0) �= 0, k =
1, 2, . . . , n. We have to show that a(t) �= 0 for all other points and that the required
conditions on the jumps are satisfied.

1st step (reduction to a simpler operator). Since a(tk ± 0) �= 0, the function ω(t)

is well defined and the function a1(t) = a(t)
ω(t) is continuous. As the commutators



10.1. Singular Integral Equations with Piecewise Continuous Coefficients 477

aS−SaI, a ∈ C(Γ), are compact in X(Γ) (see the 1st step in the proof of Theorem
10.10), we have

A = (ωP+ + P−)(a1P+ + P−) + T. (10.21)

From the Fredholmness of the operator A, we conclude by a theorem of Yood
(see, e.g., Karapetyants and Samko [151, p. 4, Property 1.11]) that ωP+ +P− is a
Φ−-operator.

2nd step (necessity of the conditions on jumps for the operator ωP+ + P−). The
following lemma reformulates a statement well known for example for Lp(Γ, �)-
spaces for the case of the abstract spaces X(Γ).

Lemma 10.12. Let a(tk ± 0) �= 0, k = 1, 2, . . . , n and let the space X(Γ) satisfy
conditions (10.4)–(10.7) and Axioms 1 and 2 and let α(tk) = β(tk), k = 1, 2, . . . , n.
The operator Ψ = ωP+ + P− with ω defined in (10.12), is a Φ+- or Φ−-operator
in the space X(Γ) if and only if

Re γk �= α(tk) (mod 1) for all k = 1, 2, . . . , n. (10.22)

Proof. By the sufficiency part of Theorem 10.11, condition (10.22) is sufficient. To
prove its necessity, suppose that Re γk = α(tk)+ r for some r = 0,±1,±2, . . . and
for some k, say k = 1, but that the operator Ψ is a Φ+- or Φ−-operator. Let first
Re γk �= αk (mod 1) for all other k = 2, 3, . . . , n. We put Ψ±ε = ω±εP++P−, ε >
0, where ω±ε = (t − z0)

±ε
1 ω(t). This new function has the new exponents γ±ε

1 =
γ1 ± ε. We choose ε small enough, so that Re γ1 ± ε− α1 is not an integer. Then,
by the sufficiency part of Theorem 10.11, Ψε and Ψ−ε are Fredholm operators in
the space X(Γ, �). The calculation of the index by formula (10.19) gives

IndX [(t− z0)
νP+ + P−] = [α(t1)− Re ν] when Re ν �= α(t1) +m,

where m = 0,±1,±2, . . . and [· · · ] on the right-hand side stands for the integer
part of a number. Then

IndX Ψε−IndX Ψ−ε = [Re a(t1)+ε−α(t1)]− [Re a(t1)−ε−α(t1)] = [ε]− [−ε] = 1.
(10.23)

On the other hand, ‖Ψ±ε−Ψ‖X � c sup
t∈Γ

|(t− z0)
±ε − 1| � c1ε, which contradicts

(10.23) by the stability theorem for Φ±-operators in Banach spaces.

This proves the lemma for the case k = 1. If (10.22) is violated for several k =
n1, . . . , nm, the argument is similar: the operators Ψ±ε must then be introduced
for the functions ω±ε(t) =

∏m
i=1(t− z0)

±ε
i ω(t). �

3rd step (necessity of the conditions for the operator N). Since P+ + ωP− is a
Φ−-operator (see the 1st step), by Lemma 10.12, conditions (10.22) are satisfied.
Consequently, by the sufficiency part of our theorem, P+ + ωP− is a Fredholm
operator in the space X(Γ). As is well known, if any two of the linear operators
A, B, and AB are Fredholm then the third one is Fredholm as well (see, e.g.,
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Karapetyants and Samko [151, p. 4, Property 1.12]). Therefore, from (10.21) we
conclude that the operator a1P+ + P− is Fredholm in X(Γ). Then by Theorem
10.10, a1(t) �= 0 and consequently a(t) �= 0, t ∈ Γ.

4th step. (removing the assumptions a(tk ± 0) �= 0, b(tk ± 0) �= 0). Suppose that
some of the numbers a(tk±0) are equal to zero and the operator A is Fredholm in
X(Γ). There exist a complex number ε with arbitrarily small modulus and a point
t0 close to tk such that a(tk±0)+ε �= 0, but a(t0)+ε = 0. Let Aε = (a+ε)P++P−.
Clearly, ‖Aε − A‖ = ‖εI‖ = ε. Therefore, by the stability theorem for Fredholm
operators, the operator Aε is Fredholm for sufficiently small ε. This contradicts
the preceding step. �

10.1.4 Proof of Theorem 10.4

Proof. To show that the statements of Theorem 10.4 may be obtained from The-
orem 10.11 as a particular case, we have to verify that under the assumptions of
Theorem 10.4 Lp(·)(Γ) is a space of type X(Γ). To this end, we have to check
conditions (10.4)–(10.7) and Axioms 1 and 2 of Section 10.1.3.

Condition (10.4) is obvious by assumption (10.2).

Condition (10.5) is evident.

Condition (10.6) follows from Theorem 2.45.

Condition (10.7), that is, denseness of C∞(Γ) in Lp(·)(Γ), follows
from Theorem 10.1.

The validity of Axiom 1 for the space X(Γ) = Lp(·)(Γ) follows from Theorem 2.45
according to (10.8). The embedding Lp(·)(Γ, |t − t0|γ) ⊂ L1(Γ) for γ < 1 − β(t0),
required by Axiom 2, is also obvious. Finally, the denseness of C∞(Γ) in the spaces
X(Γ, |t− t0|γ) for t0 ∈ Γ follows as a particular case from Theorem 10.1. �
Remark 10.13. Following the same scheme, it is not difficult to prove that the
operator A = aP+ + bP− with a, b ∈ PC(Γ) has the same solvability proper-
ties in the spaces with variable exponent as in the spaces with constant p, that
is, dimkerA = κ = indp(·) a, dim cokerA = 0, if κ � 0, and dimkerA = 0,
dim cokerA = |κ|, if κ � 0.

We also note that, based on (10.8), one can also easily obtain a similar
corollary from Theorem 10.11 for the case of the weighted spaces Lp(·)(Γ, �) with
the power weight fixed at a finite number of points on Γ.

10.2 Boundedness and Fredholmness of Pseudodiffer-
ential Operators in Variable Exponent Spaces

In Section 10.2.5 we obtain a necessary and sufficient condition for PDO with
slowly oscillating symbols to be Fredholm in the spaces Lp(·)(Rn), and in Section
10.2.6 we study Fredholmness of PDO with analytical symbols in weighted spaces
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H
s,p(·)
w (Rn) with constant smoothness s, variable p(·)-exponent, and exponential

weights w. These results rely on the study of a class of singular type operators on
Section 10.2.1.

10.2.1 Boundedness in Lp(·)(Rn, w) of Singular
Integral-type Operators

Formulation of the Main Result

We consider operators of the form

Af(x) =

ˆ

Rn

k(x, x− y)f(y)dy (10.24)

with k(x, z) ∈ C1(Rn × (Rn\{0})), and assume that the following conditions are
satisfied:

λ1(A) := sup
|α|=1

sup
x,z∈Rn×Rn

|z|n+1 |∂α
x k(x, z)| < ∞, (10.25)

λ2(A) := sup
|β|=1

sup
x,z∈Rn×Rn

|z|n+1
∣∣∂β

z k(x, z)
∣∣ < ∞, (10.26)

and the operator A is of weak (1,1) type:

|{x ∈ R
n : |Af(x)| > t}| � ν(A)

t

ˆ

Rn

|f(x)| dx. (10.27)

Theorem 10.14. Every operator A satisfying the conditions (10.25)–(10.27) is
bounded in the weighted space Lp(·)(Rn, �) for the exponents p and weights � sat-
isfying assumptions of Theorem 2.35, and

‖A‖Lp(·)(Rn,
) � c(n, p, �) [λ1(A) + λ2(A) + ν(A)] , (10.28)

where the constant c(n, p, �) depends only on n, the exponent p(·), and the weight �.

The proof of Theorem 10.14 in this section, for reader’s convenience, is di-
vided below into several steps. First, however, we formulate some corollaries.

Corollary 10.15. Theorem 10.14 is valid for every PDO A ∈ OPS0(Rn).

Corollary 10.16. An operator A satisfying the conditions (10.25)–(10.27) is bound-
ed in the weighted space Lp(·)(Rn, �), with the estimate (10.28), in each of the
cases:

I. p ∈ Plog
∞ (Rn), � ≡ 1;

II. p ∈ Plog(Rn), p is constant at infinity, and � is the weight (2.29), with the
conditions

− n

p(xk)
< βk <

n

p′(xk)
, k = 1, . . . , n,
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and

− n

p∞
< β +

m∑
k=1

βk <
n

p′∞
.

To derive Corollary 10.16 from Theorem 10.14, we only have to verify that as-

sumptions of Theorem 2.35 are satisfied, which is the case because p(·)
s ∈ P log(Rn)

and the exponents sβk of the weight ws automatically satisfy the conditions
− 1

p(xk)

s

< sβk < 1
p′(xk)

s

(and similarly for the exponent β at infinity).

The Crucial Step: the Pointwise Estimate

In the proof of Theorem 10.14, we use the technique of pointwise estimation of
the sharp maximal operator of the sth power, 0 < s < 1, of the singular integral
operator via the maximal operator, see Theorem 2.31. In this subsection we show
that this technique is also applicable for singular integral operators (10.24). We
emphasize that now the explicit dependence of the arising constant on the kernel
of the operator is important, see (10.29).

Theorem 10.17. For any operator A of form (10.24) with the kernel k(x, z) satis-
fying conditions (10.25)–(10.27), the following pointwise estimate is valid:

M � (|Af |s) (x) � C[M f(x)]s, 0 < s < 1, (10.29)

where the constant C > 0 has the form C = c(n, s)[λ1(A) + λ2(A) + ν(A)] with
c(n, s) depending only on n and s.

Theorem 10.17 is proved in Section 10.2.1.

Regularity of the Kernel

To prove Theorem 10.17, we need some auxiliary statements and the following
notion of regularity of the kernel.

Definition 10.18. Let r > 0 and x0 ∈ Rn. We say that a kernel k(x, z) satisfies
the regularity property (D1), if

|k(u, u− x)− k(v, v − x)| � D1r

|x− x0|n+1
(10.30)

for all u, v, x ∈ Rn such that

|u− x0| < r, |v − x| < r, |x− x0| > 4r,

where D1 > 0 does not depend on u, v, x, x0.

Let

Hr,x0(x) =
1

|B(x0, r)|2|
ˆ

B(x0,r)

ˆ

B(x0,r)

|k(u, u− x)− k(v, v − x)| dudv. (10.31)
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Definition 10.19. A kernel k(x, z) is said to have the regularity property (D2), if
for any locally integrable function f (such that M f(x0) < ∞)

sup
r>0

ˆ

B(x0,4r)

|f(x)|Hr,x0(x)dx � D2M f(x0), (10.32)

where D2 > 0 does not depend on f and x0.

Lemma 10.20.

I. Let the kernel k(x,z)∈C1(Rn×Rn\{0}) satisfy assumptions (10.25)–(10.26).
Then k(x, z) has the regularity property (D1) with the constant

D1 = 22n+3 [λ1(A) + λ2(A)] .

II. Any kernel k(x, z) with regularity property (D1) satisfies also property (D2)

with the constant D2 = 2n+1

2n−1D1.

Proof. I. By the mean value theorem we have k(u, u−x)−k(v, v−x) = [∂xk(ξ, η)+
∂zk(ξ, η)](v − u), where ξ = u+ θ(v− u), η = u− x+ θ(v− x). By (10.25), we get

|k(u, u− x) − k(v, v − x)| � [λ1(A) + λ2(A)]
2r

|η|n+1
.

We have |η| � |u−x|−θ|v−u| � |x−x0|−|u−x0|−2r � |x−x0|−3r � 1
4 |x−x0|.

Therefore, |k(u, u−x)−k(v, v−x)| � C1r
|x−x0|n+1 with C1 = 22n+3 [λ1(A) + λ2(A)],

which gives (10.30) and proves the first part of the lemma.

II. Let k(x, z) have property (D1). By the definition of this property, we
obtain Hr,x0(x) � D1r

|x−x0|n+1 when |x− x0| > 4r. Then

sup
r>0

ˆ

|x−x0|>4r

|f(x)|Hr,x0(x)dx � D1 sup
r>0

∞∑
k=0

ˆ

2kr<|x−x0|<2k+1r

r|f(x)|
|x− x0|n+1

dx.

Hence,

sup
r>0

ˆ

|x−x0|>4r

|f(x)|Hr,x0(x)dx � D1 sup
r>0

∞∑
k=0

1

2nk−1

1

(2k+1r)n

ˆ

|x−x0|<2k+1r

|f(x)|dx

� 2D1M f(x0)

∞∑
k=0

1

2nk
� 2n+1

2n − 1
D1M f(x0). �

Corollary 10.21. Every kernel k(x, z) ∈ C1(Rn×Rn\{0}) with properties (10.25)–
(10.26) has the regularity property (D2).
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On the Kolmogorov Inequality

The following lemma on the validity of the Kolmogorov inequality for sublinear
operators A of weak (1,1) type is well known, see Duoandikoetxea [70, p. 102]

(To see that the constant in (10.33) may be taken in the form νs(A)
1−s , it suffices to

check the proof in Duoandikoetxea [70]; the interested reader can find details in
the Appendix to the paper by Rabinovich and Samko [292].)

Lemma 10.22. Let A be a sublinear operator of weak type (1, 1) and let E ⊂ Rn be
a measurable set in Rn. Then the Kolmogorov inequality

ˆ

E

|Af(x)|sdx � [ν(A)]s

1− s
|E|1−s‖f‖s1, 0 < s < 1, (10.33)

is valid, where ν(A) is the constant from the weak estimate (10.27).

Proof of Theorem 10.17

Fix a point x = x0. As is well known, for any real-valued function g on Rn and a
ball B(x0, r),

1

|B(x0, r)|
ˆ

B(x0,r)

|g(y)− gB(x0)|dy � 2

|B(x0, r)|
ˆ

B(x0,r)

|g(y)− c|dy

for any constant c (which may be taken dependent of x0 and r). Hence, for any
decomposition of g as g = g1 + g2 we have

1

|B(x0, r)|
ˆ

B(x0,r)

|g(y)− gB(x0)|dy

� 2

|B(x0, r)|
ˆ

B(x0,r)

|g1(y)− c1|dy +
2

|B(x0, r)|
ˆ

B(x0,r)

|g2(y)− c2|dy
(10.34)

for any constants c1 and c2.

To prove estimate (10.29), we split g = Af as Af = Af1 + Af2 with f =
f1+f2, where f1 = f ·χB(x0,4r) and f2 = f ·χR1\B(x0,4r) Then according to (10.34)
we have

M � (|Af |s) (x) = 1

|B(x0, r)|
ˆ

B(x0,r)

||Af(y)|s − (|Af |s)B(x0)| dy

� 2

|B(x0, r)|
ˆ

B(x0,r)

||Af1(y)|s − c1| dy + 2

|B(x0, r)|
ˆ

B(x0,r)

||Af2(y)|s − c2| dy.
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We now choose c1 = 0 and c2 = [(|Af2|)B(x0)]
s
=
[

1
|B(x0,r)|

´
B(x0,r)

|Af2(y)| dy
]s
.

Then, since ||a|s − |bs|| � |a− b|s, we have

M � (|Af |s) (x0)

� c

|B(x0, r)|
ˆ

B(x0,r)

∣∣∣∣Af1(y)∣∣∣∣sdy + c

|B(x0, r)|
ˆ

B(x0,r)

∣∣∣|Af2(y)| − c
1
s
2

∣∣∣s dy
=: c(I1 + I2).

Estimation of I1. Since the operator A is of weak (1,1) type, from (10.33) we obtain

I
1/s
1 � ν(A)

(1− s)
1
s

1

|B(x0, r)|
ˆ

B(x0,4r)

|f1(y)|dy � 4nν(A)

(1− s)
1
s

M f(x0).

Estimation of I2. By Jensen’s inequality and Fubini’s theorem, after easy estima-
tions, we get

I
1/s
2 � 1

|B(x0, r)|
ˆ

B(x0,r)

∣∣∣∣∣(Af2)(y)− 1

|B(x0, r)|
ˆ

B(x0,r)

(Af2)(ξ)dξ

∣∣∣∣∣dy
�

ˆ

R1\B(x0,4r)

|f(x)|Hr,x0(x)dx,

where Hr,x0(x) was defined in (10.31). By Corollary 10.21, the kernel k(x, z) has

property D2. Therefore, according to (10.32), I
1
s
2 � D2M f(x0), which completes

the proof.

Proof of Theorem 10.14

Let 0 < s < 1. Since ‖Af‖Lp(·)(Rn,w) = ‖|Af |s‖ 1/s

L
p(·)
s (Rn,ws)

, Theorem 2.33 yields

‖Af‖Lp(·)(Rn,w) � C0

∥∥M �(|Af |s)∥∥ 1
s

L
p(·)
s (Rn,ws)

,

where C0 is the constant from (2.73), so it does not depend on the choice of the
operator A.

Therefore, by Theorem 10.17,

‖Af‖Lp(·)(Rn,w) � C0C
1
s ‖(M f)s‖ 1

s

L
p(·)
s (Rn,ws)

= C0C
1
s ‖M f‖Lp(·)(Rn,w) .

It remains to apply Theorems 1.20 and 2.26 to obtain

‖Af‖Lp(·)(Rn,w) � c‖f‖Lp(·)(Rn,w)

where the constant c has the form c = c(n, s, p, w)[λ1(A) + λ2(A) + ν(A)], with
c(n, s, p, w) not depending on the operator A.
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10.2.2 On Calculus of PDO on R
n

In this section we recall some definitions and basic facts for PDO. As usual, S (Rn)
will stand for the space of L. Schwartz’s space test functions, with the topology
defined by the semi-norms

|ϕ|m = sup
x∈Rn

(1 + |x|)m
∑

|α|�m

|∂αϕ(x)| , m ∈ N ∪ {0},

and S ′(Rn) for the dual space of distributions. We use the standard notation

〈ξ〉 = (1 + |ξ|2)1/2.
Definition 10.23. A function a belongs to the Hörmander class Sm

1,0, if

a ∈ C∞ (
R

n
x × R

n
ξ

)
and

|a|r,t =
∑

|α|�r,|β|�t

sup
Rn×Rn

∣∣∂α
ξ ∂

β
xa(x, ξ)

∣∣ 〈ξ〉−m+|α|
< ∞ (10.35)

for all integers r and t.

Similarly, Sm
1,0,0 denotes the class of double symbols a ∈ C∞(Rn

x ×R
n
y ×R

n
ξ )

satisfying the estimates

|a|r,t,l =
∑

|α|�r,|β|�t,|γ|�l

sup
Rn×Rn×Rn

∣∣∂α
ξ ∂

β
x∂

γ
y a(x, y, ξ)

∣∣ 〈ξ〉−m
< ∞.

With a symbol a we associate the pseudodifferential operator defined on the space
S (Rn) by the formula

Au(x) = Opd(a)u(x) = (2π)
−n
ˆ

Rn

dξ

ˆ

Rn

a(x, y, ξ)u(y)ei(x−y,ξ)dy,

and we denote the class of such operators by OPSm
1,0,0. In the case of symbols

a = a(x, ξ) not depending on y we write Op(a)u(x) instead of Opd(a)u(x).

By Hs(Rn) we denote the Sobolev space of fractional order defined by the
norm ‖u‖Hs(Rn) = ‖〈D〉s u‖L2(Rn) , where 〈D〉s = Op(〈ξ〉s).
Theorem 10.24. Let Op(a) ∈ OPSm

1,0. Then

(i) Op(a) is continuous in S (Rn) and for every l1 ∈ N∪{0} there exists l2, r, t ∈
N ∪ {0} such that

|Op(a)ϕ|l1 � C |a|r,t |ϕ|l2 ,
where the constant C does not depend on a.

(ii) Op(a) is bounded from Hs(Rn) to Hs−m(Rn) and

‖Op(a)‖Hs(Rn)→Hs−m(Rn) � C |a|r,t ,
with some C > 0 and r, t ∈ N not depending on a.



10.2. Pseudodifferential Operators 485

Theorem 10.25. Let A = Op(a) ∈ OPSm
1,0. Then

Au(x) =

ˆ

Rn

kA(x, z)u(x− z)dz, u ∈ S (Rn),

where
kA(x, z) = F−1

ξ→za(x, ξ).

(F−1
ξ→z is the inverse Fourier transform in the sense of distributions.)

The kernel kA(x, z) ∈ C∞(Rn × Rn\0), and satisfies∣∣∂β
x∂

α
z kA(x, z)

∣∣ � Cα,β,N(a) |z|−n−m−|α|−N , z �= 0, (10.36)

for all the multi-indices α, β, and all N � 0 so that n +m + |α| + N > 0, where
Cα,β,N(a) depends on the finite set of the semi-norms |a|mr,t of the symbol a.

10.2.3 Operators with Slowly Oscillating Symbols

Below we present (without proof) some facts on the calculus of PDO with slowly
oscillating symbols, following Rabinovich [288]; see also Rabinovich, Roch, and
Silbermann [294, Chap. 4].

Definition 10.26. A symbol a is called slowly oscillating at infinity if a ∈ Sm
1,0, and∣∣∂α

ξ ∂
β
xa(x, ξ)

∣∣ � Cαβ(x) 〈ξ〉m−|α|
,

where limx→∞ Cαβ(x) = 0 for every α and β �= 0. We denote by SOm the class
of slowly oscillating symbols, and by SOm

0 the subclass in SOm of symbols such
that the limx→∞ Cαβ(x) = 0 for every α and β. We use the notations OPSOm,
OPSOm

0 for the classes of operators with symbols in SOm, SOm
0 , respectively.

A double symbol a ∈ Sm
1,0,0 is called slowly oscillating, if for every compact

set K ⊂ Rn,
sup
y∈K

∣∣∂α
ξ ∂

β
x∂

γ
y a(x, x+ y, ξ)

∣∣ � CK
αβγ(x) 〈ξ〉m ,

where limx→∞ CK
αβγ(x) = 0 for every α and |β + γ| �= 0. We denote by SOm

d the
class of slowly oscillating double symbols, and by OPSOm

d the corresponding class
of PDO.

Theorem 10.27.

(i) Let A = Op(a) ∈ OPSOm1 , B = Op(b) ∈ OPSOm2 . Then

AB ∈ OPSOm1+m2 , and AB = Op(a)Op(b) + Op(t(x, ξ)),

where t(x, ξ) ∈ SOm1+m2−1
0 .

(ii) Let A = Opd(a) ∈ OPSOm
d (Rn). Then

A = Op(a(x, x, ξ)) + Op(t(x, ξ)),

where t(x, ξ) ∈ SOm−1
0 .
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10.2.4 Boundedness of PDO in Hs,p(·)(Rn)

Sobolev type spaces W s,p(·) of integer order s ∈ N and their generalizations, Bessel
potential spaces, have been studied in Section 7.4. Within the frameworks of PDO,
we use the notation Hs,p(·) (Rn), s ∈ R, for the space defined as the closure of
S (Rn) with respect to the norm

‖u‖Hs,p(·)(Rn) = ‖〈D〉s u‖Lp(·)(Rn) ,

where 〈D〉s = F−1 〈ξ〉s F . In the case s > 0 we have the coincidence

Hs,p(·) (Rn) = Bs[Lp(·)(Rn)]

with the space of Bessel potentials.

We use the results of Section 10.2.1 to prove the boundedness of PDO in the
space Hs,p(·)(Rn). As a corollary of those results and the formulas for composition
of PDO, we obtain boundedness of PDO of the class OPSm

1,0 from Hs,p(·)(Rn)

to Hs−m,p(·)(Rn), and of the class OPS0
δ,δ, 0 � δ < 1 in Lebesgue space with

constant p, 1 < p < ∞.

We start with the boundedness of PDO in variable exponent Lebesgue spaces.
For the boundedness of PDO of the class OPS0

δ,δ, 0 � δ < 1 in the case of constant
p, 1 < p < ∞, we refer to Stein [352] and references therein.

Theorem 10.28. Let p ∈ Plog∞ (Rn). Then the operator A = Op(a)
(∈ OPS0

1,0

)
is

bounded in the space Lp(·)(Rn), and

‖A‖Lp(·)(Rn)→Lp(·)(Rn) � c(n, p) [λ1(A) + λ2(A) + ν(A)] , (10.37)

where the constant c(n, p) depends only on n and the exponent p(x). The constants
λ1(A), λ2(A), ν(A) are defined by formulas (10.25)–(10.27), and they depend on
the finite set of the semi-norms |a|r,t of the symbol a.

Proof. To apply Theorem 10.14, we have to check that the PDO A = Op(a) ∈
OPS0

1,0 satisfies the conditions (10.25)–(10.27). We obtain estimate (10.25), if in
(10.36) we take |α| = 1, β = 0, N = 1, and we obtain estimate (10.26) if in (10.36)
we take α = 0, |β| = 1, N = 0. It is well known that a pseudodifferential operator
A = Op (a) ∈ OPS0

1,0 is of weak (1, 1) type (see for instance Stein [352, pp. 16–23
and p. 250]), hence condition (10.27) holds as well.

One can check that λ1(A), λ2(A), ν(A) depend on the finite set of the con-
stants Cα,β,0(a). This implies that there exist L ∈ N and a constant

κ = κ

({
|a|r,t
}
r�L,t�L

)
such that

‖A‖Lp(·)(Rn)→Lp(·)(Rn) � c(n, p, w)κ

({
|a|r,t
}
r�L,t�L

)
. �
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Theorem 10.29. Let p ∈ Plog∞ (Rn). Then the operator A = Op(a)
(∈ OPSm

1,0

)
is

bounded from the space Hs,p(·) (Rn) to the space Hs−m,p(·) (Rn), and

‖A‖Hs,p(·)(Rn)→Hs−m,p(·)(Rn) � c(n, p, s,m) [λ1(A) + λ2(A) + ν(A)] , (10.38)

where the constant c(n, p, s,m) depends only on n, the exponent p, the order m of
the operator, and the order s of the space. The constants λ1(A), λ2(A), ν(A) are
defined by formulas (10.25)–(10.27).

Proof. By the definition of the space Hs,p(·) (Rn) we obtain

‖A‖Hs,p(·)(Rn)→Hs−m,p(·)(Rn) =
∥∥〈D〉s−m A 〈D〉−s∥∥

Lp(·)(Rn)→Lp(·)(Rn)
.

We have 〈D〉s−m
A 〈D〉−s ∈ OPS0

1,0, so that this operator is bounded in Lp(·)(Rn)

by Theorem 10.28. Hence A : Hs,p(·) (Rn) → Hs−m,p(·) (Rn) is bounded and esti-
mate (10.38) holds. �

10.2.5 Fredholmness of PDO in Lp(·)(Rn) and Hs,p(·)(Rn)

Sufficient Conditions of Fredholmness in Lp(·)(Rn)

Theorem 10.30. Let p ∈ Plog
∞ (Rn). Then an operator A = Op(a) ∈ OPSO0 is a

Fredholm operator in Lp(·) (Rn), if

lim
R→∞

inf
|x|+|ξ|�R

|a (x, ξ)| > 0. (10.39)

Proof. Let ϕ ∈ C∞
0 (Rn × Rn), and ϕ (x, ξ) = 1 if |x| + |ξ| � 1, and ϕ (x, ξ) = 0

if |x| + |ξ| � 2. We set ϕR (x, ξ) = ϕ (x/R, ξ/R), ψR = 1 − ϕR. Condition (10.39)
implies that there exists an R > 0 such that bR(x, ξ) := ψR(x, ξ)a

−1 (x, ξ) ∈ SO0.
Then, applying Theorem 10.27 we obtain that

Op (bR)Op(a) = Op (ψR + t) = I +Op (ϕR + t)

where ϕR+t ∈ SO−1
0 . As is known, operators in OPSO−1

0 are compact in L2 (Rn).
Since Lp(·)(Rn) is an intermediate space between L2 (Rn) and some Lq(·)(Rn) with
q also in P

log
∞ (Rn) and operators in OPSO−1

0 are bounded in Lq(·)(Rn), then by
Theorem 9.20, they are compact in Lp(·)(Rn). Thus Op (ϕR + t) is compact in
Lp(·)(Rn), and Op (bR) is a left regularizer of Op(a) in Lp(·)(Rn). In the same way
one can prove that Op (bR) is a right regularizer of Op(a). �

Necessary Conditions of the Fredholmness in Lp(·)(Rn)

One can check that the two conditions:

1) there exists a constant C > 0 such that for every point x ∈ Rn

lim
R→∞

inf
|ξ|>R

|a(x, ξ)| > C > 0, (10.40)
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2) lim
R→∞

inf
|x|>R,ξ∈Rn

|a(x, ξ)| > 0, (10.41)

imply condition (10.39).

We will refer to condition (10.40) as uniform ellipticity of Op(a), and to
condition (10.41) as ellipticity at infinity. In two following subsections we show
that both conditions are necessary for Fredholmness.

Remark 10.31. As stated in Theorems 10.32 and 10.35, the proof of the necessity
of the above conditions does not use local log- or decay conditions for p(x).

Uniform Ellipticity

We first show that the condition (10.40) is necessary for the Fredholmness of an
operator Op(a) ∈ OPSO0 in Lp(·)(Rn).

Theorem 10.32. Let p : Rn → [1,∞) be a measurable bounded exponent and Op(a)(∈ OPSO0
)
be a Fredholm operator in Lp(·)(Rn). Then condition (10.40) is sat-

isfied.

Proof. Fredholmness of Op(a) implies the priory estimate

‖Op (a)u‖Lp(·)(Rn) � C ‖u‖Lp(·)(Rn) − ‖Tu‖Lp(·)(Rn) , (10.42)

where C > 0 does not depend on u, and T is a compact operator on Lp(·)(Rn).
Let ‖u‖Lp(·)(Rn) = 1 and um(x) = ei(hm,x)u(x), so that ‖um‖Lp(·)(Rn) = 1 and
the sequence um converges weakly to 0 as hm → ∞. Indeed, linear functionals
on Lp(·)(Rn) have the form f(u) =

´
Rn

f(x)u(x)dx, with f ∈ Lp′(·)(Rn), where by

the denseness of S (Rn) in Lp(·)(Rn), we can take f, u ∈ S (Rn). Then by the

Parseval equality f(um) =
´
Rn

f̄(x)ei(hm,x)u(x)dx = (2π)
n ´
Rn

f̂(ξ)û(ξ + hm)dξ → 0

as m →∞.

Let Uhu(x) = ei(x,h)u(x). The operator Uh is isometric in Lp(·)(Rn) and for
a PDO Op(a) we have

U−1
h Op(a)Uh = Op(a(x, ξ + h)).

Hence inequality (10.42) implies that

‖Op(a(x, ξ + hm))u‖Lp(·)(Rn) � C − ‖Tum‖Lp(·)(Rn) ,

where ‖Tum‖Lp(·)(Rn) → 0 thanks to the compactness of T . Hence, for every

function u with ‖u‖Lp(·)(Rn) = 1 there exists m0 such that for m > m0

‖Op (a(x, ξ + hm))u‖Lp(·)(Rn) �
C

2
> 0. (10.43)
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It is known that

Op(a) ∈ OPSO0 =⇒ lim
m→∞ ‖Op(a(x, ξ + hm)− a(x, hm)ϕ)‖L2(Rn)→L2(Rn) = 0

(10.44)
for ϕ ∈ C∞

0 (Rn), 0 � ϕ(x) � 1, see for instance, Rabinovich [288, pp. 51–55].

Since ϕ is bounded, by Theorem 10.28 we have

‖Op (a(x, ξ + hm)− a(x, hm)ϕ)‖Lq(·)→Lq(·) � C,

with C > 0 independent of m. Then by the interpolation Theorem 2.1,

lim
m→∞ ‖Op(a(x, ξ + hm)− a(x, hm)ϕ)‖Lp(·)→Lp(·) = 0.

Hence (10.43) and (10.44) imply that for u ∈ C∞
0 (Rn) with ‖u‖Lp(·)(Rn) = 1 there

exists an m0 such that ‖a(x, hm)u‖Lp(·)(Rn) � C
4 > 0. for m > m0. Choose a

function u ∈ C∞
0 (Rn) : ‖u‖Lp(·)(Rn) = 1 with support in a neighbourhood of the

point x0 ∈ Rn such that supx∈supp u |a(x, hm)− a(x0, hm)| < ε uniformly with
respect to m. Consequently,

‖(a(x, hm)− a(x0, hm))u‖Lp(·)(Rn) < ε

for sufficiently large m > m0 and then

|a(x0, hm)| = ‖a(x0, hm)u‖Lp(·)(Rn) � ‖a(x, hm)u‖Lp(·)(Rn) − ε =
C

4
− ε > 0.

Thus we proved that if Op(a) is a Fredholm operator in Lp(·)(Rn), then there exists
a constant C1 > 0 such that for every x0 ∈ Rn and every sequence hm →∞,

|a(x0, hm)| � C1 > 0 (10.45)

for large m. This in fact completes the proof, because if (10.40) does not hold,
then for arbitrary ε > 0 there exist an x0 and a sequence hm → ∞ such that
limm→∞ |a(x0, hm)| < ε, which contradicts (10.45). �

Ellipticity at Infinity

In Theorem 10.35 we show that the condition (10.41) is also necessary for the
Fredholmness of PDO in Lp(·)(Rn). We first need two auxiliary lemmas. By Vh we
denote the shift operator Vhu(x) = u(x − h), x ∈ Rn, h ∈ Rn; Ṙn stands for the
compactification of Rn by the unique point at infinity.

Lemma 10.33. Let p ∈ C(Ṙn) and 1 < p− � p+ < ∞. Let hm ∈ Rn → ∞ and
let wm ∈ C (Rn) be a sequence converging in the sup-norm on Rn to a function
w ∈ C(Rn) such that

|wm (x) | � C

〈x〉n , |w(x)| � C

〈x〉n , (10.46)
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for every m ∈ N and some constant C > 0. Then

lim
m→∞ ‖Vhmwm‖Lp(·)(Rn) = ‖w‖Lp(∞)(Rn) . (10.47)

Proof. Let λ > 0. We consider the modulars

Fm(λ) =

ˆ

Rn

∣∣∣∣Vhmwm(x)

λ

∣∣∣∣p(x) dx, F∞(λ) =

ˆ

Rn

∣∣∣∣w(x)λ

∣∣∣∣p(∞)

dx,

and wish to show that the limit

lim
m→∞Fm (λ) = F∞ (λ) (10.48)

exists uniformly in λ on every segment [a, b] , 0 < a < b < ∞.

Let

F 1
m,R (λ) =

ˆ

|x|�R

∣∣∣∣wm(x)

λ

∣∣∣∣p(x+hm)

dx, and F 2
∞,R (λ) =

ˆ

|x|�R

∣∣∣∣w(x)λ

∣∣∣∣p(∞)

dx.

By condition (10.46), for a given ε > 0 we can find R0 > 0 such that

F 1
m,R0

(λ) < ε (10.49)

uniformly in m, and
F 2
∞,R0

(λ) < ε. (10.50)

Let BR = {x ∈ Rn : |x| < R} and Mε =
{
x ∈ B̄R0 : supm |wm (x)| � ε

}
,M

′
ε =

B̄R0\Mε. Then

I1 (λ,m) :=

ˆ

Mε

∣∣∣∣wm (x)

λ

∣∣∣∣p(x+hm)

dx � εp−

a
|Mε| � Cε, (10.51)

I2 (λ) :=

ˆ

Mε

∣∣∣∣w (x)

λ

∣∣∣∣p(∞)

dx � ε

a
|Mε| = Cε, (10.52)

uniformly in λ ∈ [a, b]. Let now

I3 (λ,m) :=

ˆ

M ′
ε

∣∣∣∣wm (x)

λ

∣∣∣∣p(x+hm)

dx. (10.53)

It is clear that we can pass to the limit as m → ∞ under the sign of the integral
in (10.53). Then we obtain that uniformly in λ ∈ [a, b]

lim
m→∞ I3 (λ,m) =

ˆ

M ′
ε

∣∣∣∣w (x)

λ

∣∣∣∣p(∞)

dx. (10.54)

Now (10.49), (10.50), (10.51), (10.52), and (10.54) yield (10.48).
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Let N ∪∞ be a compactification of N by the point ∞, with the topology on
N ∪∞ introduced so that it is discrete on N and the sets UR = {j ∈ N : j > R},
R > 0 form the fundamental system of neighbourhoods of the point ∞. From
(10.48) it follows that F : R+ × (N ∪∞) → R+ is a continuous function.

By the definition of the norm in Lp(·)(Rn) we have

‖Vhmwm‖Lp(·)(Rn) = inf {λ > 0 : Fm(λ) � 1} .

Note that there exists the derivative d
dλFm (λ) and that d

dλFm (λ) < 0 for every
λ ∈ (0,∞) and m ∈ N ∪∞. Hence F (·,m) is a monotonically decreasing function
on (0,∞) for every fixed m ∈ N ∪∞. This implies that

‖Vhmwm‖Lp(·)(Rn) = inf {λ > 0 : Fm (λ) � 1} = λ(m)

where λ(m) is the unique solution of the equation Fm (λ) = 1. One can see that for
m = ∞ the equation F∞ (λ) = 1 has the unique solution λ(∞) = ‖w‖Lp(∞)(Rn).
Moreover

F ′
∞
(
‖w‖Lp(∞)(Rn)

)
�= 0.

Then by the Implicit Function Theorem we obtain that λ(m) is a continuous
function on N ∪∞. Consequently,

‖w‖Lp(∞)(Rn) = λ(∞) = lim
m→∞ λ(m) = lim

m→∞ ‖Vhmwm‖Lp(·)(Rn)

and we obtain equality (10.47). �
Lemma 10.34. Let A = Op(a) ∈ OPSO0 and take a sequence hm → ∞. Then
there exist a subsequence hmk

and a symbol ah ∈ OPS0
1,0, ah = ah(ξ), such that

for every function u ∈ C∞
0 (Rn),

lim
k→∞

V−hmk
AVhmk

u = Op(ah(ξ))u

in the topology of S (Rn).

Proof. We have
V−hmAVhm = Op(am),

where am(x, ξ) = a(x+ hm, ξ). In the topology of S (Rn),

lim
m→∞Op(a(x + hm, ξ)− a(hm, ξ))u = 0

for u ∈ C∞
0 (Rn), which may be verified by standard means, following, e.g., Rabi-

novich [288, pp. 52–55].

The sequence a(hm, ξ) is uniformly bounded and equi-continuous. Hence
by Arzelà–Ascoli Theorem there exists a subsequence a(hmk

, ξ) which converges
to a limit function ah(ξ) uniformly on compact sets in Rn. This implies that
Op (a(hmk

, ξ))u → Op (ah(ξ)) u in the space S (Rn), and it is easy to check that
ah ∈ S0

1,0. �
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Theorem 10.35. Let A = Op(a) ∈ OPSO0 and let A be a Fredholm operator in
Lp(·)(Rn), where p is as in Lemma 10.33. Then (10.41) holds.

Proof. From the Fredholmness of Op(a) there follows the a priori estimate

‖Op(a)u‖Lp(·)(Rn) � C ‖u‖Lp(·)(Rn) − ‖Tu‖Lp(·)(Rn)), (10.55)

where C > 0 and T is a compact operator.

Let ϕ ∈ C∞
0 (Rn) and ϕ(x) = 1 for x in a neighbourhood of the origin,

ϕR(x) = ϕ(x/R), ψR = 1 − ϕR. One can see that limR→∞ Ip(·)(ψRu) = 0 for
u ∈ S (Rn), which implies that limR→∞ ‖ψRu‖Lp(·)(Rn) = 0, i.e., the sequence

ψRI converges strongly in Lp(·)(Rn) to the 0 operator as R → ∞. Since T is a
compact operator,

lim
R→∞

‖TψRI‖Lp(·)(Rn)→Lp(·)(Rn) = 0. (10.56)

Formulas (10.55) and (10.56) show that there exist R0 such that for R > R0

‖Op(a)ψRu‖Lp(·)(Rn) � C/2 ‖ψRu‖Lp(·)(Rn)

for every function u ∈ Lp(·)(Rn). Let the sequence hm ∈ Rn tend to infinity, and
u ∈ C∞

0 (Rn). Then for fixed R > 0 there exists m � m0 such that ψRVhmu =
Vhmu. Thus, for m � m0,

‖Vhm (V−hm Op(a)Vhmu)‖Lp(·)(Rn) = ‖Op(a)ψRVhmu‖Lp(·)(Rn)

� C/2 ‖Vhmu‖Lp(·)(Rn) .

Let hmk
be the subsequence of hm defined in the proof of Lemma 10.34 and

let wk = V−hmk
Op(a)Vhmk

u = Op(a(x+ hmk
, ξ))u. Applying Lemma 10.34 we

deduce that wk → w = Op(ah)u in the space S (Rn). Hence we can use Lemma
10.33 and pass to the limit in the inequality∥∥Vhmk

wk

∥∥
Lp(·)(Rn)

� C/2
∥∥Vhmk

u
∥∥
Lp(·)(Rn)

,

and obtain that

‖Op(ah(ξ))u‖Lp(∞)(Rn) � C/2 ‖u‖Lp(∞)(Rn) .

Then for the adjoint operator we get∥∥(Op(ah(ξ)))
∗
u
∥∥
Lp′(∞)(Rn)

� C/2 ‖u‖Lp′(∞)(Rn) ,

Hence Op(ah(ξ)) : L
p(∞)(Rn) → Lp(∞)(Rn) is an invertible operator. As is known,

this implies (see for instance Simonenko [343], Simonenko [344], Simonenko and
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Min [346], Rabinovich [289])) the invertibility of Op(ah(ξ)) in Lp(Rn), p ∈ (1,∞),
in particular, in L2(Rn), and hence the condition

inf
ξ
|ah(ξ)| > 0. (10.57)

Thus we proved that for every sequence hm → ∞ there exist a subsequence hmk

and a limit symbol ah(ξ) ∈ S0
1,0 such that a(hmk

, ξ) converges to the limit function
ah(ξ), for which condition (10.57) holds uniformly with respect to ξ on compact
sets in R

n.

Suppose now that condition (10.41) is not satisfied. Then there exists a se-
quence (hm, ξm), hm →∞ such that

lim
m→∞ a(hm, ξm) = 0. (10.58)

Note that ξm cannot tend to infinity because in this case (10.58) contradicts con-
dition (10.40). Choose a subsequence (hmk

, ξmk
) of the sequence (hm, ξm) such

that a(hmk
, ξ) converges uniformly with respect to ξ on compact sets in R

n to
the limit function ah(ξ). Suppose that ξmk

→ ξ0 ∈ Rn. (In the contrary case we
can pass again to a subsequence.) Then ah(ξ0) = limk→∞ a(hmk

, ξmk
) = 0, which

contradicts to (10.57). �

Fredholmness of PDO in Hs,p(·)(Rn)

The corresponding result on Fredholmness of PDO in the spaces Hs,p(·)(Rn) is
given by the following theorem.

Theorem 10.36. Let p ∈ Ploc
∞ (Rn) and Op(a) ∈ OPSOm. Then

Op(a) : Hs,p(·)(Rn) → Hs−m,p(·)(Rn)

is a Fredholm operator if and only if

lim
R→∞

inf
|x|+|ξ|�R

∣∣∣a(x, ξ) 〈ξ〉−m
∣∣∣ > 0. (10.59)

The “only if” part holds with the assumption p ∈ Ploc(Rn) replaced by the weaker
one that p ∈ C(Ṙn) and 1 < p− � p+ < ∞.

Proof. The operator A : Hs,p(·)(Rn) → Hs−m,p(·)(Rn) is Fredholm if and only if
the operator B = 〈D〉s−m Op(a) 〈D〉−s is Fredholm in Lp(·)(Rn). The operator
B = Op(b) ∈ OPSO0 and we can apply Theorems 10.30, 10.32, and 10.35. From
Theorem 10.27 it follows that b(x, ξ) = a(x, ξ) 〈ξ〉−m

+ t(x, ξ), where t ∈ SO0
0 , so

that lim(x,ξ)→∞ t(x, ξ) = 0. Hence the condition limR→∞ inf |x|+|ξ|�R |b(x, ξ| > 0
is equivalent to (10.59). �
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10.2.6 Pseudodifferential Operators with Analytic Symbols
in the Space Hs,p(·)(Rn)

In this subsection we consider boundedness and Fredholmness of operators with

analytic symbols in weighted spaces H
s,p(·)
w (Rn). They are defined by the norm

‖u‖
H

s,p(·)
w (Rn)

= ‖wu‖Hs,p(·)(Rn) and we consider exponential weights w.

As a corollary of Fredholmness in weighted spaces we consider a Phragmén–
Lindelöf principle (see for instance Lacey, Sawyer, and Uriarte-Tuero [224, pp.

284–286]) for solutions of PDO with analytic symbols in H
s,p(·)
w (Rn).

Let B be an open convex domain in Rn containing the origin. Let Sm
1,0(B) be

the subclass of Sm
1,0(R

n
) consisting of the symbols a(x, ξ) that admit an analytic

extension with respect to the variable ξ to the tube domain Rn
ξ + iB, and such

that for all l1, l2 ∈ N∪0
|a|l1,l2,B = sup

x∈Rn,ξ∈Rn
ξ ,η∈B

〈ξ〉−m+|α| ∑
|α|�l1,|β|�l2

∣∣∂β
x∂

α
ξ a(x, ξ + iη)

∣∣ < ∞.

As above, with a symbol a ∈ Sm
1,0 (B) we associate the corresponding pseu-

dodifferential operator. The class of such PDO is denoted by OPSm
1,0 (B).

Definition 10.37. We denote by R(B) the class of positive weights w such that:

1) logw ∈ C∞(Rn), and

Nl(logw) = sup
x

∑
|β|�l

∣∣∂β∇ (logw(x))
∣∣ < ∞

for all l;

2) ∇ (logw(x)) ∈ B for every x ∈ Rn.

A weight w ∈ R(B) is called slowly oscillating if

3) limx→∞
∂∇(logw(x))

∂xj
= 0, j = 1, . . . , n.

We denote the class of slowly oscillating weights by Rsl(B).

Let

gw(x, y) =

1ˆ

0

(∇ logw)(x − t(x− y))dt.

It is easy to check that for all l1, l2 ∈ N0

sup
x,y

∑
|α|�l1,|β|�l2

∣∣∂α
x ∂

β
y gw(x, y)

∣∣ � C sup
x∈Rn,1�|β|�l1+l2

∣∣∂β logw(x)
∣∣ < ∞.

Moreover, condition 2) implies that gw(x, y) ∈ B for every (x, y) ∈ Rn × Rn.

The following statements are key results for the study of PDO in spaces with
exponential weights. The proof of Theorems 10.38 and 10.39 may be found in
Rabinovich, Roch, and Silbermann [294, pp. 243–247].
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Theorem 10.38. Let A = Op(a(x, ξ)) ∈ OPSm
1,0(R

n, B) and w ∈ R(B). Then
wOp(p)w−1 ∈ OPSm

1,0,0(R
n), and

wOp(a)w−1 = Opd(a(x, ξ + igw(x, y)).

Theorem 10.39. Let A = Op(a(x, ξ)) ∈ OPSOm(B) = OPSOm∩OPSm
1,0(B), and

w ∈ Rsl(B). Then

wAw−1I = Op(a(x, ξ + i∇ logw(x))) + Op(t(x, ξ)),

where t(x, ξ) ∈ SOm−1
0 (Rn).

Theorem 10.40. Let p ∈ Ploc∞ (Rn) and Op(a) ∈ OPSm
1,0(B), w(x) ∈ R(B). Then

Op(a) : Hs,p(·)
w (Rn) −→ Hs−m,p(·)

w (Rn)

is a bounded operator.

Proof. Apply Theorems 10.38 and 10.29. �

Theorem 10.41. Let p ∈ Ploc∞ (Rn), Op(a) ∈ OPSOm ∩ OPSm
1,0(B), and w ∈

Rsl(B). Then
Op(a) : Hs,p(·)

w (Rn) −→ Hs−m,p(·)
w (Rn)

is a Fredholm operator if and only if

lim
R→∞

inf
|x|+|ξ>R|

a(x, ξ + i∇ logw(x)) 〈ξ〉−m
> 0.

Proof. Apply Theorems 10.39, 10.30, and 10.35. �

Theorem 10.41 has the following important corollary, in which spess(A : X →
X) stands for the essential spectrum of a bounded operator A : X → X ( λ ∈ C

is said to be a point of the essential spectrum of A, if A − λI is not a Fredholm
operator).

Theorem 10.42. Let p ∈ Ploc
∞ (Rn) and Op(a) ∈ OPSO0 ∩ OPS0

1,0(R
n, B) be a

PDO uniformly elliptic at every point x ∈ Rn and w ∈ Rsl(B). Then the essential
spectrum of A is described by the formula

spess(Op(a)) =
⋃

h∈Ω(a,w)

{λ ∈ C : λ = ah(ξ + iwh), ξ ∈ Rn},

where Ω(a, w) is the set of all sequences hm →∞ such that the limit

ah(ξ + iwh) = lim
hm→∞

a(hm, ξ + i (∇ logw) (hm))

is uniform on every compact set in R
n.
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Theorem 10.42 shows that the essential spectrum of the considered PDO
does not depend on s, p, but it essentially depends on the weight w. Generally
speaking, the essential spectrum of Op(a) ∈ OPSO0 ∩ OPS0

1,0(R
n, B) acting in

H
s,p(·)
w (Rn) is a massive set in the complex plane C, and its massivity depends

on the oscillations of the symbol with respect to x, and the oscillations of the
characteristic ∇ (logw) of the weight w.

Theorem 10.43 (Phragmén–Lindelöf principle). Let p ∈ Ploc∞ (Rn). Let Op(a) ∈
OPSOm ∩ OPSm

1,0(B) be a PDO elliptic at every point x ∈ R
n, w ∈ Rsl(B),

limx→∞ w(x) = ∞. Let the domain B be symmetric with respect to the origin. Let

lim
R→∞

inf
|x|>R,ξ+iη∈Rn+iB

|a(x, ξ + iη)| 〈ξ〉−m > 0. (10.60)

Then

u ∈ H
s,p(·)
w−1 (Rn) and Op(a)u ∈ Hs−m,p(·)

w (Rn) =⇒ u ∈ Hs,p(·)
w (Rn).

Proof. In view of Theorem 10.39, the operator wθ Op(a)w−θI, θ ∈ [−1, 1] can be
written as

wθ Op(a)w−θI = Op(a(x, ξ + iθ∇ logw(x)) + Op(tθ(x, ξ)),

where tθ(x, ξ) belongs to SOm−1
0 (Rn). By Theorem 10.41 and condition (10.60),

wθ Op(a)w−θI : Hs,p(·)(Rn) → Hs−m,p(·)(Rn) is a Fredholm operator for all θ ∈
[−1, 1].

We will show that the index of wθ Op(a)w−θI does not depend on the pa-
rameter θ. Applying Theorem 10.24 we prove that the mapping [−1, 1] � θ �→
wθ Op(a)w−θI : Hs(Rn) → Hs−m(Rn) is continuous. Theorem 10.29 implies that
the family wθ Op(a)w−θI : Hs,p(·)(Rn) → Hs−m,p(·)(Rn) is uniformly bounded.
Hence in light of Theorem 2.1, the family

wθ Op(a)w−θI : Hs,p(·)(Rn) −→ Hs−m,p(·)(Rn)

is continuous. Hence,

Index (wθ Op(a)w−θI : Hs,p(·)(Rn) −→ Hs−m,p(·)(Rn))

does not depend on θ ∈ [−1, 1]. This yields that

Index (Op(a) : Hs,p(·)
w → Hs−m,p(·)

w ) = Index (Op(a) : H
s,p(·)
w−1 → H

s−m,p(·)
w−1 ).

Moreover, the condition limx→∞ w(x) = ∞ implies thatH
s,p(·)
w (Rn) ⊂ H

s,p(·)
w−1 (Rn),

and this embedding is dense. Then, as is known, we have the coincidence of the
kernels:

kerOp(a) : H
s,p(·)
w−1 (Rn) −→ H

s−m,p(·)
w−1 (Rn)
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and

kerOp(a) : Hs,p(·)
w (Rn) −→ Hs−m,p(·)

w (Rn)

(see Gohberg and Fel’dman [107, p. 308], on the coincidence of kernels in such

cases). Moreover, if the equation Op(a)u = f, where f ∈ H
s−m,p(·)
w (Rn) is solvable

in H
s,p(·)
w−1 (Rn), then u ∈ H

s,p(·)
w (Rn). �

10.3 Singular Integral Equations on Composite

Carleson Curves via Mellin PDO

10.3.1 Introduction

In the preceding section we proved the boundedness, in the variable exponent
Lebesgue spaces Lp(·)(Rn), of PDO of the class OPS0

1,0, and obtained necessary
and sufficient conditions for their Fredholm solvability in these spaces admitting
symbols slowly oscillating at infinity.

The main aim of this section is the Fredholm theory, in variable exponent
weighted spaces Lp(·)(Γ, w), of singular integral operators (SIOs) on composite
curves Γ with whirling points and with coefficients having slowly oscillating dis-
continuities. Applying results from the preceding section, we prove that singular
integral operators are bounded in Lp(·)(Γ, w) and they are local type operators
in the sense of Simonenko. Consequently, for the investigation of the Fredholm
property we can apply the local principle of reducing the study of the Fredholm
property of local type operators to the study of the local invertibility of their local
representatives, which are simpler operators than the original ones.

For the reader who is not familiar with this principle, we recall that for
instance, the investigation of the Fredholm property, in the space Lp(Γ), 1 < p <
∞, of the SIO

A = aI + bS,

where SΓ is the singular integral operator (2.77), the coefficients a and b are
continuous, and Γ is, say a Lyapunov curve, is known to be reducible to the inves-
tigation of local representatives at every point t0 ∈ Γ, which are operators of the
type At0 = a(t0)I + b(t0)SR. For At0 local invertibility in Lp(R) coincides with in-
vertibility, which is equivalent to the condition a(t0)±b(t0) �= 0. The investigation
of the Fredholm property of the operator A = aI + bS with piecewise continuous
coefficients on a simple Lyapunov curve Γ in the space Lp(Γ, w) with power weight
w, is reduced to the investigation of the local invertibility of the homogeneous op-
erators of the form aI + bSR acting in Lp(R), where a, b are piecewise constant
functions with the only discontinuities at the origin and at infinity. These oper-
ators are realized as Mellin convolutions and conditions for their invertibility are
given in the terms of the Mellin transform of the kernel.
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We extend here results known for the constant p to the case of variable ex-
ponent p(·). The local representatives of the SIO at the singular points t ∈ Γ
take the form of Mellin PDOs with a symbol depending on the curve, weight and
coefficients, and also on the values of p(·) at singular points t. Using results on
local invertibility of Mellin PDOs, we obtain necessary and sufficient conditions
for the local invertibility of SIOs at singular points of the curves, weights, and
coefficients. Finally, the application of the variable exponent version of Simonenko
local principle allows one to obtain necessary and sufficient conditions for Fred-
holmness in Lp(Γ, w).

The localization methods presented here can be applied to the study of the
Fredholm properties of multidimensional SIOs and PDOs on compact and non-
compact manifolds, and of boundary value problems in Sobolev and Besov spaces
connected with Lp(·). We do not touch upon this topics.

In Section 10.3.2 we consider PDOs in Lp(·)(R). The main result is a criterion
of local invertibility, at the point +∞, of PDOs with slowly oscillating symbols,
and a criterion of local invertibility of PDOs and SIOs at a point x0 ∈ R.

In Section 10.3.3 the results of Section 10.3.2 are reformulated for the Mellin
PDOs in Lp(·)(R+, dμ) with the Haar measure dμ = dr

r .

In Section 10.3.4 we apply the results of Sections 10.3.2 and 10.3.3 to obtain
the boundedness, local invertibility and Fredholmness of SIOs on composite Car-
leson curves, within the frameworks of Lp(·)(Γ, w) spaces with weights having a
finite set of oscillating singularities.

Finally, in Section 10.3.5 we give a comparison of the used class of oscillat-
ing weights with weights of Bari–Stechkin type. In particular, we show that our
assumption on the differentiability of weights near the nodes is not essential in
the sense that any function in the Bari–Stechkin class is equivalent to an N -times
differentiable function in this class, for any given finite N , the Matuszewska–Orlicz
indices coinciding under the equivalence, as is known. However, the conditions on
the weights in terms of the Simonenko indices are somewhat stricter than those
in terms of the Matuszewska–Orlicz indices, see Remark 10.90.

The main results of this section are:

1) A theorem on the boundedness of SIOs on composite Carleson curves Γ in
Lp(Γ, w) with weights having a finite set of oscillating singularities. The proof
is based on the local boundedness of Mellin PDOs in Lp(·)(R+, dμ) and an
admissible partition of unity on the curve Γ. The PDO approach demands
that near every node the curve is infinitely smooth. But in fact we use the
existence of only a finite number of derivatives.

2) A criterion for the local invertibility and Fredholmness of SIOs on slowly os-
cillating composite curves with piecewise continuous slowly oscillating coeffi-
cients, in the spaces Lp(·)(Γ, w) with weights slowly oscillating at the nodes.
The main tool is the Simonenko local principle and criteria for local invert-
ibility of Mellin PDOs in Lp(·)(R+,

dr
r ) at the point 0, and PDOs and SIOs

in Lp(·)(R) at the point x0 ∈ R.
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By B(X) we denote the space of all bounded operators in a Banach space
X ; C∞

0 (R) stands for the subspace of C∞(R) of functions with compact support,
and C∞

b (R) is the subspace of C∞(R) of functions bounded on R together with
all their derivatives.

Everywhere in this section, if not stated otherwise, we suppose that p ∈
Plog∞ (Rn).

10.3.2 Pseudodifferential Operators on R

Some Properties

We refer to Section 10.2.2 for the notions related to PDOs we use here. The
theorems formulated in this subsection are well known and may be found for
instance in Rabinovich, Roch, and Silbermann [294, Chap. 4].

Theorem 10.44. Let Op(a) ∈ OPS0
1,0. Then the operator Op(a) is bounded in

L2(R) and ‖Op(a)‖B(L2(R)) � C |a|2,2 , where C does not depend on a.

Theorem 10.45.

(i) Let aj ∈ S
mj

1,0 , j = 1, 2 and C = Op(a1)Op(a2). Then C ∈ OPSm1+m2
1,0 ,

C = Op(c), where

c(x, ξ) =
1

2π

¨

R2

a(x, ξ + η)b(x+ y, ξ)e−iy·ηdydη. (10.61)

Moreover
c(x, ξ) = a(x, ξ)b(x, ξ) + t(x, ξ), (10.62)

where t ∈ Sm1+m2−1
1,0 .

(ii) Let a ∈ Sm
1,0,0. Then Opd(a) ∈ OPSm

1,0, Opd(a) = OP(a�), where

a�(x, ξ) =
1

2π

¨

R2

a(x, x + y, ξ + η)e−iy·ηdydη. (10.63)

Moreover a�(x, ξ) = a(x, x, ξ) + t(x, ξ), where t ∈ Sm−1
1,0 .

We say that an operator Aτ is formally adjoint to A = Op(a) ∈ OPSm
1,0 if

(Aτu, v) = (u,Av) for all u, v ∈ S (Rn).

Theorem 10.46. Let a ∈ Sm
1,0 Then the operator Aτ formally adjoint to A = Op(a)

belongs to OPSm
1,0 and Aτ = Op(aτ ) with

aτ (x, ξ) =
1

2π

¨

R2

ā(x+ y, ξ + η)e−iy·ηdydη (10.64)

and aτ (x, ξ) = ā(x, ξ) + t(x, ξ), where t ∈ Sm−1
1,0 .
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Note that the integrals in (10.61), (10.63), and (10.64) are understood as
oscillatory.

Definition 10.47.

(i) We say that a symbol a ∈ S0
1,0 is slowly oscillating at +∞, if∣∣∂β

x∂
α
ξ a(x, ξ)

∣∣ � Cαβ(x) 〈ξ〉−α
, (10.65)

and limx→+∞ Cαβ(x) = 0 for all α ∈ N0 and β ∈ N. We denote this class by
SO+∞ and the corresponding class of PDOs by OPSO+∞.

(ii) We say that a double symbol a ∈ S0
1,0,0 is slowly oscillating at +∞, if∣∣∣∂β

x∂
γ
y ∂

α
ξ a(x, y, ξ)

∣∣∣ � Cαβγ(x, y) 〈ξ〉−α where limx→+∞ Cαβγ(x, y) = 0 uni-

formly in y for all α, γ ∈ N0 and β ∈ N, and limy→+∞ Cαβγ(x, y) = 0
uniformly in x for all α, β ∈ N0 and γ ∈ N. We denote this class by SO+∞,d

and the corresponding class of PDOs by OPSO+∞,d.

(iii) We say that a ∈ S̊+∞, if the coefficient Cαβ(x) (in 10.65) satisfies

lim
x→+∞Cαβ(x) = 0 for all α, β ∈ N0

and denote by OPS̊+∞ the corresponding class of PDOs.

Theorem 10.48.

(i) Let Op(aj) ∈ OPSO+∞, j = 1, 2 and B = Op(a1)Op(a2). Then B ∈
OPSO+∞ and B = Op(b) with

b(x, ξ) = a1(x, ξ)a2(x, ξ) + q(x, ξ), where q ∈ S̊+∞.

(ii) Let Opd(a) ∈ OPSO+∞,d. Then Opd(a) = Op(a�) ∈ OPSO+∞, where

a�(x, ξ) = a(x, x, ξ) + q(x, ξ), where q ∈ S̊+∞.

(iii) Let Op(a) ∈ OPSO+∞. Then the formal adjoint operator (Op(a))τ = Op(aτ )
is in OPSO+∞ with

aτ (x, ξ) = ā(x, x, ξ) + q(x, ξ), where q ∈ S̊m
+∞.

Pseudodifferential Operators on Lebesgue Spaces with Variable Exponent

Recall that, by Theorem 10.28, for Op(a) ∈ OPS0
1,0 there exists M > 0 and C > 0

not depending on a such that

‖Op(a)‖B(Lp(·)(R)) � C |a|M,M (10.66)

Theorem 10.45 and the boundedness (10.66) imply the following
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Corollary 10.49. Every operator Op(a) ∈ OPS0
1,0,0 is bounded in Lp(·)(R) and

there exist M > 0 and C > 0, not depending on A, such that ‖Op(a)‖B(Lp(·)(R)) �
C |a|M,M,M .

Theorem 10.50. Let χR = χ(R,+∞) and Q = Op(q) ∈ OPS̊+∞. Then

lim
R→+∞

‖χRQ‖B(Lp(·)(R)) = lim
R→+∞

‖QχRI‖B(Lp(·)(R)) = 0. (10.67)

Proof. Let ϕ ∈ C∞(R) be the real-valued function defined by

ϕ(x) =

{
1, x � 1,
0, x � 1/2,

and ϕR(x) = ϕ( x
R ), R > 0. Then ϕRQ = Op(ϕRq). Since q ∈ S̊+∞, we have

limR→∞ |ϕRq|l1,l2 = 0 for every l1, l2 ∈ N0. By the boundedness (10.66),

lim
R→∞

‖ϕRQ‖B(Lp(·)(R)) = 0.

Now we will prove that limR→+∞ ‖QϕRI‖B(Lp(·)(R)) = 0. We have

‖QϕRI‖B(Lp(·)(R)) = ‖ϕRQ
∗‖B(Lq(·)(R)) ,

where Q∗ ∈ OPS̊+∞ by statement (iii) of Proposition 10.48. Hence,

lim
R→∞

‖QϕRI‖B(Lp(·)(R)) = lim
R→∞

‖ϕRQ
∗‖B(Lq(·)(R)) = 0.

This yields (10.67), since ϕRχR = χR. �

Local Invertibility at +∞
Definition 10.51. We say that an operator A ∈ B(Lp(·)(R)) is locally invertible at
the point +∞, if there exist operators LR ,RR ∈ B(Lp(·)(R)) such that

LR AχRI = χRI, χRARR = χRI for all R > 0.

We use the notation
Vhu(x) = u(x− h)

for the translation operator. In what follows, if a is a symbol and h ∈ R, then
ah denotes the symbol shifted in x, that is, ah(x, ξ) = a(x + h, ξ). Note that
V−h Op(a)Vh = Op(ah).

Theorem 10.52. Let Op(a) ∈ OPSO̊+∞. Then

lim
m→∞ ‖V−hmOp(a)Vhmu‖Lp(·)(R) = 0

for every u ∈ C∞
0 (R) and every sequence hm → +∞.
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Proof. We have V−hm Op(a)Vhm = Op(ahm). Let ϕ ∈ C∞
0 (R) such that ϕu = u.

Hence V−hm Op(a)Vhmu = Opd(a
hmϕ)u. Applying formula (10.63) we obtain that

Opd(a
hmϕ) = Op(bm), where

bm(x, ξ) =
1

2π

¨

R2

a(x+ hm, ξ + η)ϕ(x + y)e−iy·ηdydη. (10.68)

By the definition of the oscillatory integral in (10.68),

lim
m→∞ sup

(x,ξ)∈R2

∣∣∂β
x∂

α
ξ bm(x, ξ)

∣∣ = 0

for all α, β ∈ N0. The boundedness (10.66) implies that

lim
m→∞ ‖Op(bm)‖B(Lp(·)(R)) = lim

m→∞ ‖Opd(ahmϕ)‖B(Lp(·)(R)) = 0,

whence the statement of the theorem follows. �
Theorem 10.53. Let Op(a) ∈ OPSO+∞. Then the operator

Op(a) : Lp(·)(R) →Lp(·)(R)

is locally invertible at the point +∞ if and only if

lim
x→+∞

inf
ξ∈R

|a(x, ξ)| > 0. (10.69)

Proof. First we prove that condition (10.69) is sufficient. Let ϕR be the function
from the proof of Theorem 10.52. Condition (10.69) implies that there exists an
R0 > 0 such that bR0 = ϕR0a

−1 ∈ SO+∞. Hence, by Theorem 10.48,

Op(bR0)Op(a) = ϕR0I +QR0 , (10.70)

where QR0 ∈ OPS̊+∞. Equality (10.70) implies that

Op(bR0)Op(a)χRI = (I +QR0χRI)χRI,

where R is such that ϕR0χR = χR. By Theorem 10.50 we can choose an R such
that ‖QχRI‖B(Lp(·)(R)) < 1. Hence

(I +QχRI)
−1 Op(bR)Op(a)χRI = χRI.

Thus the operator Op(a) is locally left invertible at the point +∞. In the same
way we prove that Op(a) is locally right invertible at the point +∞.

Conversely, let Op(a) : Lp(·)(R) → Lp(·)(R) be a locally invertible operator.
Then there exist C > 0 and R > 0 such that

‖Op(a)χRu‖Lp(·)(R) � C ‖χRu‖Lp(·)(R)
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for every u ∈ C∞
0 (R). Let hm ∈ R be a sequence tending to +∞. Then for a fixed

R > 0 there exists m0 > 0 such that χRVhmu = Vhmu for m � m0. Hence for
such m

‖Vhm (V−hm Op(a)Vhmu)‖Lp(·)(R) = ‖Op(a)χRVhmu‖Lp(·)(R) � C ‖Vhmu‖Lp(·)(R) .

Let hmk
be a subsequence of hm defined as in Lemma 10.34 and take wk =

V−hmk
Op(a)Vhmk

u = Op
(
ahmk

)
u. Applying Lemma 10.34, we obtain that wk →

w = Op(a(h))u in the space S(R). Then we can use Lemma 10.33 to pass to the

limit in the inequality
∥∥Vhmk

wk

∥∥
Lp(·)(R) � C

∥∥Vhmk
u
∥∥
Lp(·)(R), and obtain that∥∥Op(a(h))u

∥∥
Lp(+∞)(R)

� C ‖u‖Lp(+∞)(R) , (10.71)

where the symbol a(h) depends only on ξ. Estimate (10.71) implies the condition

inf
ξ∈R

∣∣a(h)(ξ)∣∣ > 0. (10.72)

Thus we proved that for every sequence hm → +∞ there exist a subsequence
hmk

and a limit symbol a(h) ∈ S0
1,0 such that the sequence a(hmk

, ξ) converges
uniformly on R to the limit function a(h)(ξ) for which condition (10.72) holds.

Suppose now that condition (10.69) is not satisfied. Then there exists a se-
quence (hm, ξm), hm → +∞, such that limm→∞ a(hm, ξm) = 0. Choose a sub-
sequence hmk

of the sequence hm such that a(hmk
, ξ) converges uniformly with

respect to ξ ∈ R to the limit function ah(ξ) for which condition (10.72) holds.
Then

lim
k→∞

a(hmk
, ξmk

) = 0 and lim
k→∞
∣∣a(hmk

, ξmk
)− a(h)(ξmk

)
∣∣ = 0,

which contradicts to (10.72). �

By OPS0
1,0(n) (OPSO+∞(n)) we denote the class of PDOs Op(a), where a

is a matrix with entries aij ∈ S0
1,0 (SO+∞). Theorem 10.53 is reformulated for the

matrix case as

Theorem 10.54. Let Op(a) ∈ OPSO+∞(n). Then Op(a) : L
p(·)
n (R) →L

p(·)
n (R) is

locally invertible at the point +∞ if and only if

lim
x→+∞

inf
ξ∈R

|det(a(x, ξ))| > 0.

Local Invertibility at the Point x0 ∈ R

Definition 10.55. We say that an operator A ∈ B(Lp(·)(R)) is locally invertible at
the point x0 ∈ R, if there exist an interval Iε(x0) = (x0− ε, x0 + ε ) and operators
Lx0,ε,Rx0,ε ∈ B(Lp(·)(R)) such that

Lx0,εAχ
x0
ε I = χx0

ε I, χx0
ε ARx0,ε = χx0

ε I,
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where χx0
ε = χIε(x0) is the characteristic function of Iε(x0). The operators

Lx0,ε(Rx0,ε) are called left (right) local inverse operators.

We consider the subclass S̃0
1,0 of symbols in S0

1,0 for which there exist func-
tions a± ∈ C∞

b (R) such that

lim
ξ→±∞

sup
x∈R

∣∣a(x, ξ)− a±(x)
∣∣ = 0.

Let Op(a) ∈ OPS̃0
1,0. Then we set

σx0(A) =
{
a+(x0), a

−(x0)
}

and call σx0(Op(a)) the local symbol of the operator Op(a) at the point x0 ∈ R.
Note that if Op(aj) ∈ OP S̃0

1,0, j = 1, 2, then

σx0(Op(a1)Op(a2)) = σx0(Op(a1))σx0(Op(a2)

=
{
a+1 (x0)a

+
2 (x0), a

−
1 (x0)a

−
1 (x0)

}
.

The PDO Op(a) ∈ OPS̃0
1,0 is called elliptic at the point x0, if the local symbol

σx0(Op(a)) is invertible, i.e., a±(x0) �= 0.

Theorem 10.56. Let t ∈ S0
1,0 and

lim
(x,ξ)→0

t(x, ξ) = 0. (10.73)

Then Op(t) is a compact operator in Lp(·)(R).

Proof. Condition (10.73) implies that Op(t) is compact in L2(R) (see Rabinovich
[288, Thm. 5.8.3]). We can find a function r ∈ Plog

∞ (Rn) such that Lp(·)(R) is
an intermediate space between L2(R) and Lr(·)(R). Hence Op(t) is a compact
operator in Lp(·)(R) by Theorem 9.21. �
Theorem 10.57. Let t ∈ S0

1,0 and limξ→∞ supx∈Rn |t(x, ξ)| = 0. Then

lim
ε→0

‖Op(t)χx0
ε I‖B(Lp(·)(R)) = lim

ε→0
‖χx0

ε Op(t)‖B(Lp(·)(R)) = 0 (10.74)

and

lim
ε→0

‖Op(t)ϕx0
ε I‖B(Lp(·)(R)) = lim

ε→0
‖ϕx0

ε Op(t)‖B(Lp(·)(R)) = 0. (10.75)

Proof. Fix ε0 > 0 and let 0 < ε < ε0. Then Op(t)χx0
ε I = Op(t)χx0

ε0 χ
x0
ε I. The op-

erator Op(t)χx0
ε0 I is compact by Proposition 10.56, and χx0

ε I → 0 if ε → 0 strongly

in Lp(·)(R). Hence limε→0 ‖Op(t)χx0
ε I‖B(Lp(·)(R)) = 0. Passing to the adjoint op-

erators and taking into account that the assumption limξ→∞ supx∈Rn |t(x, ξ)| = 0
of the theorem implies limξ→∞ supx∈Rn |tτ (x, ξ)| = 0, we obtain that

lim
ε→0

‖χx0
ε Op(t)‖B(Lp(·)(R)) =

∥∥(Op(t))
∗
χx0
ε I
∥∥
B(Lq(·)(R)) = 0.

Formula (10.75) follows from (10.74). �
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The following localization statement is a counterpart of Lemma 10.33 for a
finite point x0.

Theorem 10.58. Let p ∈ C(Ṙn) and 1 < p− � p+ < ∞, and let (τx0,δu)(x) =

δ−
1

p(x) u
(
x−x0

δ

)
, δ > 0. Then

lim
δ→0

‖τx0,δu‖Lp(·)(R) = ‖u‖Lp(x0)(R)

for every function u ∈ C∞
0 (R).

Proof. Fix a function u ∈ C∞
0 (R) and set

F (λ, δ) = I
p(·)
λ (τx0,δu) =

ˆ

R

∣∣∣∣∣u
(
x−x0

δ

)
λ

∣∣∣∣∣
p(x)

δ−1dx, λ > 0.

After the change of the variables x−x0

δ = y we get

F (λ, δ) =

ˆ

R

∣∣∣∣u (y)λ

∣∣∣∣p(x0+δy)

dy.

Passing to the limit in (10.3.2) as δ → 0, we obtain

lim
δ→0

F (λ, δ) =

ˆ

R

∣∣∣∣u (y)λ

∣∣∣∣p(x0)

dx := F (λ, 0),

where the convergence is uniform with respect to λ > 0 on every segment [a, b] ⊂ R.
Note that F : (0,+∞)×[0, 1] → R+ is a continuous function. Moreover, the partial
derivative F ′

λ (λ, δ) < 0 exists for every (λ, δ) ∈ (0,+∞)× [0, 1]. Hence, for every
fixed δ ∈ [0, 1], F (·, δ) is a monotonically decreasing function of λ on (0,∞). It
follows that

‖τx0,δu‖Lp(·)(R) = inf {λ > 0 : F (λ, δ) � 1} = λ(δ),

where λ(δ) is a solution of the equation F (λ, δ) = 1. One can see that for δ = 0
the equation F (λ, 0) = 1 has a unique solution λ(0) = ‖u‖Lp(x0)(R). Moreover,

F ′
λ

(
‖u‖Lp(x0)(R) , 0

)
�= 0.

Therefore, the Implicit Function Theorem yields a unique solution λ(δ) of the
equation F (λ, δ) = 1 for small δ, and λ(δ) is a continuous function in a neigh-
bourhood of the point 0.

Hence ‖u‖Lp(x0)(Rn) = λ(0) := limδ→0 λ(δ) = limδ→0 ‖τx0,δu‖Lp(·)(Rn) for

every function u ∈ C∞
0 (R). �
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Theorem 10.59. Let a ∈ S̃0
1,0. Then Op(a) : Lp(·)(R) → Lp(·)(R) is locally invertible

at a point x0 ∈ R if and only if Op(a) is an elliptic operator at x0.

Proof. First we prove that local ellipticity of Op(a) at the point x0 implies local
invertibility at this point. Let a0(x, ξ) = a+(x)θ(ξ) + a−(ξ)(1 − θ(ξ)), where θ is
the characteristic function of R+. Since a ∈ S̃0

1,0, we have

lim
R→+∞

sup
(x,ξ)∈R2

∣∣(a(x, ξ) − a0(x, ξ))ψR(ξ)
∣∣ = 0 (10.76)

and

lim
ε→0

sup
x

∣∣(a±(x)− a±(x0)
)
ϕx0
ε (x)

∣∣ = 0.

Hence,

lim
ε→0,R→+∞

sup
(x,ξ)∈R2

∣∣(a(x, ξ)− a0(x0, ξ))ϕ
x0
ε (x)ψR(ξ)

∣∣ = 0. (10.77)

In view of the ellipticity of Op(a) at the point x0 and relation (10.77), we obtain
that there exist ε0 and R0 such that the symbol b(x, ξ) = a−1(x, ξ)ϕx0

ε0 (x)ψR0 (ξ)

is in S0
1,0. Then Op(b)Op(a) = Op(ϕx0

ε0 ψR0) + Op(tε0,R0), where tε0,R0 ∈ S−1
1,0 by

(10.62). This implies that

Op(b)Op(a) = ϕx0
ε0 I + ϕx0

ε0 Op(φR0 ) + Op(tε0,R0). (10.78)

Choose ε > 0 such that χx0
ε ϕx0

ε0 = χx0
ε . Then from (10.78) we get

Op(b)Op(a)χx0
ε I = χx0

ε I +Qε,

where Qε = ϕx0
ε0 Op(φR0)χ

x0
ε I +Op(tε0,R0)χ

x0
ε I is a compact operator in Lp(·)(R),

by Theorem 10.56. Since we have the strong convergence χx0
ε I → 0 in Lp(·)(R),

we can choose ε′ > 0 small enough such that ‖Qεχ
x0

ε′ I‖ < 1. Hence

(I +Qεχ
x0

ε′ I)
−1 Op(b)Op(a)χx0

ε′ I = χx0

ε′ I.

Consequently, (I +Qεχ
x0

ε′ I)
−1 Op(b) is the left local inverse operator at the point

x0 ∈ R. In the same way we prove that there exists a right local inverse operator
at the point x0.

Now we prove that the local invertibility of A = Op(a) at the point x0 implies
the local ellipticity of Op(a) at this point. We denote

A0 = a+P+ + a−P−, Ax0 = a+(x0)P+ + a−(x0)P−,

where P± = 1
2 (I ± SR) and (SRu)(x) = 1

πi

´
R

u(y)dy
y−x . Note that the SIOs A0 and

Ax0 are bounded in Lp(·)(R), see, for instance, Theorem 2.35 or 2.96. By the
multiplicative inequality (see for instance, Shubin [341, p. 22] or Rabinovich [288,
Prop. 5.8.1]), (10.76) implies that

lim
R→+∞

sup
(x,ξ)∈R2

∣∣∂β
x∂

α
ξ ((a(x, ξ) − a0(x, ξ))ψR(ξ))

∣∣ = 0.
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By (10.66), for each η > 0 we can find an R0 > 0 such that

lim
R→∞

∥∥(A−A0)Op(ψR0)
∥∥
B(Lp(·)(R)) < η.

By the continuity of the coefficients a± at x0, for every η > 0 there exists an
ε0 > 0 such that for all ε ∈ (0, ε0)∥∥(A0 −Ax0)ϕx0

ε I
∥∥
B(Lp(·)(R)) < η.

Furthermore,∥∥(A−A0)ϕx0
ε I
∥∥
B(Lp(·)(R))

�
∥∥(A−A0)Op(ψR0)ϕ

x0
ε I
∥∥
B(Lp(·)(R)) +

∥∥(A−A0)Op(φR0)ϕ
x0
ε I
∥∥
B(Lp(·)(R)) ,

and∥∥(A−A0)Op(φR0 )ϕ
x0
ε I
∥∥
B(Lp(·)(R))

�
∥∥(A−A0)

∥∥
B(Lp(·)(R))‖Op(φR0 )ϕ

x0
ε I‖B(Lp(·)(R)) .

By Theorem 10.57, for small ε > 0 we have

‖Op(φR0)ϕ
x0
ε I‖B(Lp(·)(R)) <

η

‖(A−A0)‖B(Lp(·)(R))
.

Hence, ∥∥(A−A0)Op(φR0)ϕ
x0
ε I
∥∥
B(Lp(·)(R)) < η.

All these estimates yield that

‖(A−Ax0)ϕx0
ε I‖B(Lp(·)(R)) < 3η (10.79)

for small ε > 0. Let A be locally invertible at x0. Then there exist ε′ > 0 and
C > 0 such that

‖Aχx0

ε′ u‖Lp(·)(R) � C ‖χx0

ε′ u‖Lp(·)(R) (10.80)

for every u ∈ C∞
0 (R). Since χx0

ε′ ϕ
x0
ε = ϕx0

ε for ε > 0 small enough, (10.80) implies

‖Aϕx0
ε u‖Lp(·)(R) � C ‖ϕx0

ε u‖Lp(·)(R) , u ∈ C∞
0 (R). (10.81)

Let η = C
6 . Then (10.81) and (10.79) yield that

‖Ax0ϕx0
ε u‖Lp(·)(R) �

C

2
‖ϕx0

ε u‖Lp(·)(R) , u ∈ C∞
0 (R). (10.82)

We replace u in (10.82) by τx0,δu, where δ > 0. Then for δ small enough
ϕx0
ε (τx0,δu) = τx0,δu. Since Ax0 commutes with the operator τx0,δ, (10.82) shows

that

‖τx0,δA
x0u‖Lp(·)(R) �

C

2
‖τx0,δu‖Lp(·)(R) . (10.83)



508 Chapter 10. Applications to Singular Integral Equations

Passing to the limit as δ → 0 in (10.83) and applying Theorem 10.58, we obtain
the estimate

‖Ax0u‖Lp(x0)(R) �
C

2
‖u‖Lp(x0)(R) (10.84)

for every u ∈ C∞
0 (R). In the same way, from the estimate

‖A∗χx0
ε u‖Lq(·)(R) � C ‖χx0

ε u‖
L

q(·)
n (R)

, u ∈ C∞
0 (R) (10.85)

we obtain that

‖(Ax0)∗v‖Lq(x0)(R) �
C

2
‖v‖Lq(x0)(R) , v ∈ C∞

0 (R). (10.86)

Since C∞
0 (R) is dense in Lp(x0)(R), estimates (10.85) and (10.86) imply the

invertibility of Ax0 in Lp(x0)(R). It remains to note that the invertibility of the
SIO Ax0 in the space Lp(R) with constant p ∈ (1,∞) implies, as is well known,
the condition a±(x0) �= 0 (see for instance Simonenko and Min [346]). �
Theorem 10.60. Let A0 = a+P+ + a−P− be a SIO with coefficients a± ∈ L∞(R)
continuous at a point x0 ∈ R. Then A : Lp(·)(R) → Lp(·)(R) is locally invertible at
the point x0, if and only if a±(x0) �= 0.

Proof. By the continuity of a± at the point x0, for every η > 0 we can find an
ε > 0 such that ∥∥(A0 −Ax0

)
ϕx0
ε I
∥∥
B(Lp(·)(R)) < η. (10.87)

Let a±(x0) �= 0. From (10.87) we have

A0ϕx0
ε I = Ax0ϕx0

ε I + Tε, (10.88)

where ‖Tε‖ < η. The condition a±(x0) �= 0 implies that there exists the in-

verse operator (Ax0)
−1

= a+(x0)
−1P+ + a−(x0)

−1P−. Let η <
∥∥(Ax0

)−1∥∥. Then
there exists an ε′ such that ϕx0

ε χx0

ε′ = χx0

ε′ . From (10.88) it follows that (I +

Tεχ
x0

ε′ I)
−1 (Ax0)

−1
A0χx0

ε′ I = χx0

ε′ I. Hence there exists a left local inverse operator
for A0 at the point x0. In the same way we prove that there exists a right local
inverse operator.

Let A0 be a locally invertible operator at the point x0. Then (10.87) implies
that Ax0 is also locally invertible at x0. Hence for every u ∈ C∞

0 (R) estimate
(10.84) holds. As in the first part of the proof of Theorem 10.59, we obtain that
a±(x0) �= 0. �

10.3.3 Mellin Pseudodifferential Operators

Mellin PDOs are PDOs on the multiplicative group R+ with the invariant measure
dr/r. They are obtained from PDOs on R by means of the change of the variables:
R+ � r = e−x, x ∈ R. The main properties of Mellin PDOs easily follow from
those of PDOs on R.
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Main Property

In this subsection we reformulate the results of Section 10.3.2 for Mellin PDOs;
we refer to Rabinovich, Roch, and Silbermann [294, Chap. 4.5] for more details on
such PDOs.

Definition 10.61.

(i) We say that a matrix-function a = (aij)
n
i,j=1 belongs to E(n), if

aij ∈ C∞(R+×R) and

|a|l1,l2 = max
1�i,j�n

sup
(r,ξ)∈R+×R

∑
α�l1,β�l2

∣∣(r∂r)β∂α
ξ aij(r, ξ)

∣∣ 〈ξ〉β < ∞

for all l1, l2 ∈ N0.

(ii) We say that a matrix-function a = (aij)
n
i,j=1 belongs to Ed(n), if

aij ∈ C∞(R+ × R+×R)

and

|a|l1,l2,l3 =

max
1�i,j�n

sup
(r,ρ,ξ)∈R+×R+×R

∑
α�l1,β�l2,γ�l3

∣∣∣(r∂r)α(ρ∂ρ)γ∂β
ξ aij(r, ρ, ξ)

∣∣∣ 〈ξ〉β < ∞,

for all l1, l2, l3 ∈ N0.

(iii) Let a ∈ E(n). The operator

(Op(a)u)(r) = (2π)−1

ˆ

R

dξ

ˆ

R+

a(r, ξ) (rρ−1)iξu(ρ)ρ−1dρ, (10.89)

where u ∈ C∞
0 (R+,C

n), is called the Mellin pseudodifferential operator
(MPDO) with symbol a ∈ E(n). We denote by OPE(n) the class of all such
operators and by OPEd(n) the class of the double MPDO′s Opd(a) with
symbols a ∈ Ed(n) which are defined by formula (10.89) with the symbol a
of two variables replaced by the double symbol a of three variables.

(iv) We say that a matrix-function a (∈ E(n)) is slowly oscillating at the point
r = 0, and write a ∈ Esl(n), if

lim
r→+0

sup
ξ∈R

|(r∂r)β∂α
ξ aij(r, ξ)|〈ξ〉α = 0, (10.90)

for all α ∈ N0 and β ∈ N. By E0(n) we denote the set of matrix-functions
satisfying condition (10.90) for all α, β ∈ N0.

We say that the matrix-function a = (aij)
n
i,j=1 ∈ Ed(n) is slowly oscillating

at the point 0, and write a ∈ Esl,d(n) if
lim

r→+0
sup

(ρ,ξ)∈R+×R

|(r∂r)β(ρ∂ρ)γ∂α
ξ aij(r, ρ, ξ)|〈ξ〉α = 0
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for all β ∈ N and every γ, α ∈ N0, and

lim
ρ→+0

sup
(r,ξ)∈R+×R

|(r∂r)β(ρ∂ρ)γ∂α
ξ aij(r, ρ, ξ)|〈ξ〉α = 0

for all γ ∈ N and every β, α ∈ N0. The corresponding classes of Mellin PDOs
are denoted by OPEsl(n), OPEsl,d(n), OPE0(n).
By L2

n(R+, dμ) we denote the space of measurable Cn-valued functions u on

R+ with the norm ‖u‖L2
n(R+,dμ) =

(´
R+

‖u(r)‖2
Cn dμ

)1/2
. The proof of Theorems

10.62, 10.63, 10.64 and 10.67 can be found in Rabinovich, Roch, and Silbermann
[294, Chap. 4].

Theorem 10.62. Let A = Op(a) ∈ OP E(n). Then the operator A is bounded in
L2
n(R+, dμ) and there exists C > 0 not depending on A such that ‖A‖B(L2

n(R+,dμ)) �
C |a|2,2 .
Theorem 10.63.

(i) Let Op(a),Op(b) ∈ OP E(n). Then C = Op(a)Op(b) ∈ OPE(n), and C =
Op(c) with c(r, ξ) = 1

2π

´
R+

´
R
a(r, ξ + η)b(rρ, ξ)ρ−iηdρdη.

(ii) Let Opd(a) ∈ OPEd(n). Then Opd(a) ∈ OPE(n),Opd(a) = Op(a�) and
a�(r, ξ) = 1

2π

´ ´
R2

a(r, rρ, ξ + η)ρ−iηdρdη.

(iii) Let A = Op(a) ∈ OPE(n). Then the adjoint operator A∗ is in OPE(n), and
A∗ = Op(b), where b(r, ξ) = 1

2π

˜
R2 a

∗(rρ, ξ + η)ρ−iηdρdη, where a∗(r, ξ) is
the Hermite adjoint matrix to a(r, ξ).

The integrals in the above formulas are understood in the oscillatory sense.

Theorem 10.64.

(i) Let Op(a),Op(b) ∈ OPEsl(n). Then Op(a)Op(b) = Op(c) ∈ OPEsl(n), where

c(r, ξ) = a(r, ξ)b(r, ξ) + q(r, ξ),

and q(r, ξ) ∈ E0(n).
(ii) Let Opd(a) ∈ OPEd,sl(n). Then Opd(a) = Op(a�) ∈ OPEsl(n), where

a�(r, ξ) = a(r, r, ξ) + q(r, ξ)

and q(r, ξ) ∈ E0(n).
(iii) Let Op(a) ∈ OPEsl(n) and act in L2(R+, dμ,C

n). Then the adjoint operator
Op(a)∗ = Op(b) ∈ OPEsl(n) and

b(r, ξ) = a∗(r, ξ) + q(r, ξ),

where a∗(r, ξ) is the Hermite adjoint matrix to a∗(r, ξ), and q ∈ E0(n).
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Definition 10.65. Let w = exp v, where v ∈ C∞(R+) is a real-valued function
satisfying the following two conditions:

sup
r∈R+

∣∣∣∣∣
(
r
d

dr

)k

v(r)

∣∣∣∣∣ < ∞ k ∈ N, (10.91)

and there exists an interval (c, d) � 0 such that

c < inf
r∈R+

κv(r) � sup
r∈R+

κv(r) < d, (10.92)

where κv = rv′. We say that w = ev is a weight of the class R(c, d), if conditions
(10.91) and (10.92) hold, and of a class Rsl(c, d), if w ∈ R(c, d) and

lim
r→0

rκ′
v(r) = 0. (10.93)

The weights in Rsl(c, d) are called slowly oscillating at the point 0.

Definition 10.66. We say that a symbol a defined on R+×R belongs to E(n, (c, d)),
if a admits an analytic extendsion with respect to the second variable ξ to the strip
Π = {ξ ∈ C : I(ξ) ∈ (c, d)} and sup(r,ξ+iη)∈R+×Π

∣∣(r∂r)β∂αaij(r, ξ + iη)
∣∣ < ∞

for all α, β ∈ N0. By OPE(n, (c, d)) we denote the corresponding class of Mellin
PDOs with analytic symbols.

The class OPEd(n, (c, d)) of Mellin PDOs with double symbols that are de-
fined on R+ × R+ × R and admit an analytic extension with respect to the third
variable to the strip Π is introduced in the obvious way.

Theorem 10.67.

(i) Let a ∈ E(n, (c, d)) and w = ev ∈ R(c, d). Then

wOp(a)w−1 = Opd(aw), (10.94)

where aw(r, ρ, ξ) = a(r, ρ, ξ + iϑv(r, ρ)) and

ϑv(r, ρ) =

1ˆ

0

κv(r
1−τρτ )dτ.

(Note that condition (10.92) yields that ϑv(r, ρ) ∈ (c, d) for all r, ρ ∈ R+.)

(ii) Let A = Op(a) ∈ OPEsl(n, (c, d)), w ∈ Rsl(c, d). Then wOp(a)w−1 ∈
OPEsl(n) and

wOp(a)w−1 = Op(ãw) + Op(q),

where ãw(r, ξ) = a(r, ξ + iκv(r)) and q ∈ E0(n).
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Mellin PDOs in the Spaces Lp(·)
n (R+, dμ)

Let L
p(·)
n (R+, dμ) be the variable exponent space with dμ(r) = dr/r.

Let p : R+ → (1,∞) be a measurable function satisfying the condition

1 < p−(R+) � p+(R+) < ∞ (10.95)

and the log-condition, which now is taken in the form

|p(r) − p(ρ)| � A

log(1/ log(r/ρ))
(10.96)

for all r, ρ ∈ R+ such that 1/
√
e � r/ρ � √

e, which may be interpreted as the
log-condition with respect to the metric d(r, ρ) = |log(r/ρ)|. We also assume that
the decay conditions at the origin and infinity hold in the corresponding form:

|p(r) − p(0)| � C

log (2 + | log r|) , r ∈ R+, and p(0) = p(∞). (10.97)

Note that the mapping R �x �→ expx ∈ R+ establishes an isomorphism of

the spaces L
p(·)
n (R+, dμ) and L

p̃(·)
n (R), where p(r) = p̃(log r), so that the conditions

(10.96) and (10.97) have their obvious source in the log- and decay conditions on
R, the coincidence p(0) = p(∞) corresponding to p̃(−∞) = p̃(∞).

Theorem 10.68. Let p satisfy conditions (10.95), (10.96) and (10.97). Then every

operator Op(a) ∈ OPE(n) (Opd(a) ∈ OPEd(n)) is bounded in L
p(·)
n (R+, dμ), and

there exist M > 0 such that

‖Op(a)‖B(L
p(·)
n (R+,dμ))

� C |a|M,M ,

(‖Opd(a)‖B(L
p(·)
n (R+,dμ))

� C |a|M,M,M ).

Proof. Let u be a measurable function on R with values in Cn. We set (Ψu)(r) =
u(− log r), r ∈ R+. It is evident that the mapping

Ψ : Lp̃(·)
n (R) −→Lp(·)

n (R+, dμ),

where p(r) = p̃(− log r), r ∈ R+, is a Banach space. This isomorphism induces an
isomorphism of spaces of operators

Ψ̃ : B(Lp(·)
n (R+, dμ)) −→ B(Lp̃(·)

n (R))

by the formula Ψ̃(A) = Ψ−1AΨ, A ∈ B(Lp(·)
n (R+, dμ)). Moreover Ψ̃(OPE(n)) =

OPS0
1,0(n). Hence Theorem 10.68 follows from the boundedness in (10.66) and

Corollary 10.49. �

The weighted spaces L
p(·)
n (R+, w, dμ) are defined by the norm

‖u‖
L

p(·)
n (R+,w,dμ)

= ‖wu‖
L

p(·)
n (R+,dμ)

.
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Theorem 10.69. Let Op(a) ∈ OPE(n, (c, d)), w = ev ∈ R(c, d). Then Op(a) is

bounded in L
p(·)
n (R+, w, dμ) and there exist constants M > 0, C > 0, not depending

of a, such that
‖Op(a)‖B(L

p(·)
n (R+,w,dμ))

� C |a|M,M |v|M , (10.98)

where |v|M =
∑M

k=1 supr∈R+

∣∣v(k)(r)∣∣.
Proof. The boundedness of A in L

p(·)
n (R+, w, dμ) is equivalent to the boundedness

of wAw−1 in L
p(·)
n (R+, dμ). Applying formula (10.94) and Theorem 10.68, we

obtain the estimate (10.98). �

Local Invertibility of Mellin PDOs

We say that an operator A acting in the space L
p(·)
n (R+, dμ) is locally invertible

in this space at the point 0, if there exists an R > 0 and operators LR,RR ∈
B(Lp(·)

n (R+, dμ)) such that

LRAχ[0,R]I = χ[0,R]I, χ[0,R]ARR = χ[0,R]I.

Theorem 10.70. An operator < Op(a) ∈ OPEsl(n) is locally invertible in the space

L
p(·)
n (R+, μ) at the point 0, if and only if limr→+0 infξ∈R |det a(r, ξ)| > 0.

Proof. A ∈ B(Lp(·)
n (R+, μ)) is locally invertible at the point 0, if and only if

ΨAΨ−1 ∈ B(Lp̃(·)
n (R)) is locally invertible at the point +∞. Moreover

Ψ̃(OPEsl(n)) = OPSO+∞(n).

Therefore, the assertion follows from Theorem 10.54. �

10.3.4 Singular Integral Operators on Some Classes
of Carleson Curves

Curves, Weights, Coefficients

We say that a complex-valued function a is in Cm(0, ε), ε > 0, if a ∈ Cm(0, ε) and

sup
r∈(0,ε)

∣∣∣∣∣
(
r
d

dr

)j

a(r)

∣∣∣∣∣ < ∞

for every j = 0, 1, . . . ,m the case m = ∞ being included. We say that a ∈ C̃m(0, ε)
if κa := r da

dr ∈ Cm(0, ε).

A function a is said to be slowly oscillating at the point 0, denoted also as
a ∈ Cm

sl (0, ε) if a ∈ Cm(0, ε), m � 1 and

lim
r→0

κa(r) = 0.
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By C̃m
sl (0, ε), m � 1, we denote the class of functions a ∈ C̃m(0, ε) such that

κa ∈ Cm
sl (0, ε). If a ∈ C̃m(0, ε), m � 1 we set

ϑa(r, ρ) =

1ˆ

0

κa(r
1−τρτ )dτ.

A set γ ⊂ C is called a simple locally Lyapunov arc, if there exists a homeo-
morphism ϕ : [0, 1] → γ such that ϕ ∈ C1((0, 1)), ϕ′(r) �= 0 for all r ∈ (0, 1), and
for every segment [a, b] ⊂ (0, 1) there exist C > 0 and α ∈ (0, 1] such that

|ϕ′(r) − ϕ′(ρ)| � C |r − ρ|α for all r, ρ ∈ [a, b].

The points ϕ(0) and ϕ(1) are called the endpoints of γ. We refer to a set Γ(⊂ C)

as a composite curve if Γ =
⋃K

k=1 Γk, where Γ1, . . . ,ΓK are oriented and rectifiable
simple locally Lyapunov arcs, each pair of which has at most endpoints in common.
A node of Γ is a point which is an endpoint of at least one of the arcs Γ1, . . . ,ΓK .
The set of all the nodes is denoted by F .

Let t0 ∈ F . We suppose that there exists an ε > 0 such that the subset
Γ(t0, ε) = {t ∈ Γ : |t0 − t| < ε} is of the form

Γ(t0, ε) = {t0} ∪ Γ1
t0 ∪ · · · ∪ Γ

n(t0)
t0 ,

where

Γj
t0 =
{
z ∈ C : z = t0 + reiϕt0,j(r) : r ∈ (0, ε), (j = 1, . . . , n(t0))

}
and ϕt0,j(r) = ψt0(r) + ψt0,j(r), with ψt0 , ψt0,1, . . . , ψt0,n(t0) real-valued functions

such that: ψt0 ∈ C̃∞(0, ε), ψt0,j ∈ C∞(0, ε), and

0 � m1 < ψt0,1(r) < M1 < m2 < ψt0,2(r) < M2 < · · ·
· · · < mnt0

< ψt0,nt0
(r) < Mnt0

< 2π

for all r ∈ (0, ε) with certain constants mj ,Mj. The function ψt0 defines the

rotation, and the functions ψt0,j define the oscillations of the curves Γj
t0 near the

node t0.

We assume that these conditions hold for every node, and we denote the class
of curves with this property by L. Since∣∣∣d(reiϕ(r))

∣∣∣ =√(1 + (rϕ′(r))2dr,

it easy to see that any Γ ∈ L is a Carleson curve.

In the case where in the above conditions we have ψt0 ∈ C̃∞
sl (0, ε), ψt0,j ∈

C∞
sl (0, ε) for every node t0 ∈ F , we say that the curve Γ is slowly oscillating at

every node. We denote the class of such curves by Lsl.
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For example, if

ϕt0,,j(r) = δt0 log r + μt0,j , j = 1, . . . , n(t0), r ∈ (0, ε),

with 0 � μt01 < μt02 < · · · < μt0nt0
< 2π, then the above conditions on the node

0 are fulfilled. Hereafter we will assume that Γ ∈ L and, for simplicity, that Γ is a
compact curve.

Let p : Γ → (1,∞) be a measurable function satisfying the local log-condition
on X = Γ\F . For t0 ∈ F we suppose that there exists an ε > 0 such that the
functions

pt0j(r) := p(t0 + reiϕt0 ,j(r)) = pt0(r), r ∈ (0, ε), (10.99)

do not depend on j when r ∈ (0, ε) and belong to C∞(0, ε) and satisfy the condi-
tions (10.95), (10.96), and (10.97). By (10.97), pt0 is a continuous function at the
origin and

lim
r→0

pt0(r) = pt0(0) = p(t0).

The weighted variable exponent Lebesgue space Lp(·)(Γ, w) is interpreted in the

text below as the space of functions f such that [w(x)]
1

p(x) f(x) ∈ Lp(·)(Γ). We
consider weights on R+ of the form

w = exp v,

where v is a real-valued function of the class C̃∞(0, ε). We denote this class of
weights by R0. Let κv = rv′,

κ
+
w = lim

r→0
κv(r) = lim

r→0

rw′(r)
w(r)

, (10.100)

and

κ
−
w = lim

r→0
κv(r) = lim

r→0

rw′(r)
w(r)

. (10.101)

By Rsl
0 we denote the class of weights w = exp v with v ∈ C̃∞

sl (0, ε).

Example 10.71. If v(r) = f(log(− log r)) log r, r ∈ (0, ε) and f ∈ C∞
b (R), then

w ∈ Rsl
0 . For instance, when f = sinx, we have κv(r) = cos(log(− log r)) +

sin(log(− log r)) =
√
2 cos
(
log(− log r) − π

2

)
and κ+

w =
√
2,κ−

w = −√2.

Theorem 10.72. Let w = ev ∈ R0 = R0(0, ε). Then for every δ > 0 there exists
an ε′ ∈ (0, ε) such that

w(ρ)rκ
+
w+δ � w(r) � w(ρ)rκ

−
w−δ (10.102)

for ρ, r ∈ (0, ε′).
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Proof. Let

ϑv(r, ρ) :=

1ˆ

0

κv(ρ
1−τ rτ )dτ =

1

ln(r/ρ)

rˆ

ρ

κv(t)

t
dt =

v(r) − v(ρ)

ln(r/ρ)
.

Then

w(r)w−1(ρ) = ev(r)−v(ρ) = eϑv(r,ρ)(log r−log ρ) =
(
rρ−1
)ϑv(r,ρ)

. (10.103)

For every δ > 0 we can find ε′ ∈ (0, ε) such that κ−
w − δ < ϑv(r, ρ) < κ+

w + δ for
all r, ρ ∈ (0, ε′), which together with (10.103) implies (10.102). �

In the following definition, for the weight w on the curve Γ, we assume that
for every point tj ∈ F there exists a neighbourhood Uj such that w and w−1

belong L∞
(
Γ\⋃tj∈F (Γ ∩ Uj)

)
.

Definition 10.73. We say that w ∈ RΓ, if for every point t0 ∈ F and for every
j ∈ {1, . . . , n(t0)} the function

wt0(r) = w(t0 + reiϕt0 ,j(r)) = evt0 (r), r ∈ (0, ε), (10.104)

does not depend on j and wt0 = evt0 ∈ R0. By Ap(·)(Γ) we denote the class of
weights in RΓ such that

− 1

p(t0)
< lim

r→0
κvt0

(r) � lim
r→0

κvt0
(r) < 1− 1

p(t0)
, (10.105)

for every node t0 ∈ F , and by Asl
p(·)(Γ) the class of weights in Ap(·)(Γ) such that

wt0 ∈ Rsl
0 for every node t0 ∈ F .

Theorem 10.74. If w ∈ Ap(·)(Γ), then w ∈ Lp(·)(Γ) and w−1 ∈ Lp′(·)(Γ).

Proof. First we prove that if t0 ∈ F , then there exists an ε > 0 such that w ∈
Lp(·)(Γ(t0, ε)). We will prove that

I
p(·)
Γ(t0,ε)

(w) =

ˆ

Γ(t0,ε)

w(t)p(t) |dt| < ∞.

Using the expressions (10.104) and (10.99) for the weight w and exponent p on
Γ(t0, ε), we obtain that

I
p(·)
Γ(t0,ε)

(w) =

nt0∑
j=1

ˆ

Γj
t0

w(t)p(t) |dt| =
nt0∑
j=1

εˆ

0

w
pt0 (r)
t0 (r)

√
1 + (rϕt0,j(r))

2dr.
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By Theorem 10.72, for every δ > 0 there exists an ε ∈ (0, 1) such that wt0(r) �
Cr

κ
−
wt0

−δ
, r ∈ (0, δ), where

κ
−
wt0

= lim
r→0

κvt0
(r) > − 1

p(t0)
.

Since pt0 is a continuous function and pt0(0) = p(t0), by the estimate (10.102) we
can find first a δ > 0 and then an ε > 0 such that

γt0 = inf
r∈(0,ε)

pt0(r)(κ
−
wt0

− δ) > −1,

which yields

w
pt0 (r)
t0 (r) � Cpt0 (r)r

(
κ

−
wt0

−δ
)
pt0 (r) = C1r

γt0 .

Hence I
p(·)
Γ(t0,ε)

(w) < ∞, because γt0 > −1. In the same way, applying the right-

hand side inequality from (10.105), we obtain that w−1 ∈ Lq(·)(Γ(t0, ε)) for some
small ε > 0, which suffices to complete the proof. �
Definition 10.75. A function a : Γ → C is said to be piecewise slowly oscillating
on Γ, if a ∈ C(Γ\F) and for each node t0 ∈ F we have

a(t0 + reiϕt0 ,j(r)) = at0,j(r), r ∈ (0, ε), j ∈ {1, . . . , n(t0)} ,
and at0,j ∈ C∞

sl (0, ε). We denote the class of piecewise slowly oscillating functions
by PSO(Γ).

Representation of a Singular Integral Operator at the Node as a Mellin PDO

Let Γ be a compact Carleson curve of the class L and w ∈ Ap(·)(Γ) a weight
satisfying the conditions formulated in Section 10.3.4.

For the point t0 ∈ F we introduce the mapping

Φt0 : Lp(·)(Γ(t0, ε), w) −→ L
pt0 (·)
n(t0)

((0, ε), dμ), (10.106)

where

(Φt0f) (r) =

⎛⎜⎜⎝
r

1
pt0

(r)wt0(r)f(t0 + reiϕt0,1(r))
...

r
1

pt0
(r)wt0(r)f(t0 + reiϕt0 ,n(t0)(r))

⎞⎟⎟⎠ = f̃(r), r ∈ (0, ε).

The inverse mapping Φ−1
t0 maps the vector-function

f̃ = (f̃1, . . . , f̃n(t0)) ∈ L
pt0(·)
n(t0)

((0, ε), dμ)

to the function f on the curve Γ(t0, ε) =
⋃n(t0)

j=1 Γt0j by the rule

f |Γt0j (t0 + reiϕt0,j(r)) = r
− 1

pt0
(r)w−1

t0 (r)f̃j(r).

Theorem 10.76. Φt0 is an isomorphism between the corresponding Banach spaces.
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Proof. We have

I
p(·)
Γ(t0,ε)

(f, w) =

ˆ

Γ(t0,ε)

|w(τ)f(τ)|p(τ) |dτ | =
n(t0)∑
j=1

ˆ

Γt0j

|w(τ)f(τ)|p(τ) |dτ | .

After the change of variables τ = t0 + reiϕt0,j(r) we obtain
ˆ

Γ(t0,ε)

|w(τ)f(τ)|p(τ) |dτ |

=

n(t0)∑
j=1

εˆ

0

∣∣w(t0 + reiϕt0,j(r))f(t0 + reiϕt0,j(r))
∣∣pt0 (r)

√
1 +
(
rϕ′

t0j
(r)
)2
dr

=

n(t0)∑
j=1

εˆ

0

∣∣r 1
pt0

(r)wt0(r)f(t0 + reiϕt0,j(r))
∣∣pt0 (r)

√
1 +
(
rϕ′

t0j
(r)
)2
dμ(r).

Since

0 < inf
(0,ε)

√
1 +
(
rϕ′

t0j
(r)
)2 � sup

(0,ε)

√
1 +
(
rϕ′

t0j
(r)
)2

< ∞, (10.107)

it follows that the modular
´

Γ(t0,ε)

|w(τ)f(τ)|p(τ) |dτ | is bounded if and only the

modulars

εˆ

0

|r
1

pt0
(r)wt0(r)f(t0 + reiϕt0,j(r))|pt0 (r)

√
1 +
(
rϕ′

t0j
(r)
)2
dμ(r)

are bounded for every j = 1, 2, . . . , n(t0). Hence the mapping

Φt0 : Lp(·)(Γ(t0, ε), w) −→ L
pt0(·)
n(t0) ((0, ε), dμ)

is bounded.

In the same way one can show that

Φ−1
t0 : L

pt0 (·)
n(t0)

((0, ε), dμ) −→ Lp(·)(Γ(t0, ε), w)

is bounded. Hence Φt0 is an isomorphism between the corresponding Banach
spaces. �

To formulate the main results, we need the following notation. Put εk = 1,
if t0 is the starting point of an oriented arc Γt0k and εk = −1, if t0 is its ending
point. Define

ν : [0, 2π)× (C\iZ) −→ C
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by

ν(δ, z) =

{
coth(πz), δ = 0
e(π−δ)z

sinh(πz) , δ ∈ (0, 2π).
(10.108)

Let φt0 be in C∞
0 (Γ(t0, ε)) and equal to 1 in a small neighbourhood of t0.

Theorem 10.77. Let Γ be a composite compact curve of the class L, and let p ∈
Plog(Γ) and w ∈ Ap(·)(Γ). Then for every point t0 ∈ F the operator

St0 := Φt0φt0Sφt0Φ
−1
t0 = Op(st0)

is a Mellin PDO of the class OPEd(n) with the double symbol st0 = (st0jk)
n(t0)
j,k=1

where

st0jk(r, ρ, ξ) =

⎧⎪⎨⎪⎩
Φ1, if j < k,

Φ2, if j = k,

Φ3, if j > k,

(10.109)

with

Φ1 = εkφ̃j,t0(r)φ̃k,t0 (ρ)
1 + iρϕ′

t0,k
(ρ)

1 + iϑψt0
(r, ρ)

× ν

⎛⎝2π + ψt0,j(r)− ψt0,k(ρ),
ξ + i

(
1

pt0 (r)
+ ϑvt0

(r, ρ)
)

1 + iϑψt0
(r, ρ)

⎞⎠ ,

Φ2 = φ̃j,t0(r)φ̃j,t0 (ρ)εk
1 + iρϕ′

t0,k
(ρ)

1 + iϑϕt0,k
(r, ρ)

ν

⎛⎝0, ξ + i
(

1
pt0 (r)

+ ϑvt0
(r, ρ)
)

1 + iϑψt0
(r, ρ)

⎞⎠ ,

Φ3 = εkφ̃jt0 (r)φ̃kt0 (ρ)
1 + iρϕ′

t0,k
(ρ)

1 + iϑψt0 ,k
(r, ρ)

× ν

(
ψt0,j(r) − ψt0,k(ρ),

ξ + i( 1
pt0 (r)

+ ϑvt0
(r, ρ))

1 + iϑψt0
(r, ρ)

)
,

and φ̃j,t0(r) = φt0(t0 + reiϕt0,j(r)).

We will not dwell upon the proof of Theorem 10.77. For constant p it was
proved first in Rabinovich [289, Prop. 3.4], with a more detailed proof presented
in Rabinovich, Roch, and Silbermann [294, Chap. 4.6]. The proof for the variable
exponents, with the use of Theorems 10.63, 10.64, and 10.67, repeats the proof for
the constant p.

Boundedness of the Singular Integral Operator in Lp(·)(Γ, w).

We already know that the operator S : Lp(·)(Γ, w) → Lp(·)(Γ, w) on a simple

Carleson curve and with weights of the form w(t) =
∏N

j=1 ωj(|t− tj |), where ωj
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may grow and have oscillations at the point 0, is bounded, but we cannot use
this result for composite Carleson curves. The following theorem, based on the
boundedness of the Mellin PDOs, concerns the case of composite curves.

We say that a nonnegative function φt0 ∈ C∞
0 (Γ(t0, ε)) is a smooth cut-off

function of a neighbourhood Γ(t0, ε) of the point t0, if there exists an ε′ < ε such
that φt0(t) = 1 for all t ∈ Γ(t0, ε

′).

Theorem 10.78. Let Γ be a composite compact curve of the class L, and let
p ∈ Plog(Γ) and w ∈ Ap(·)(Γ). Then S : Lp(·)(Γ, w) → Lp(·)(Γ, w) is a bounded
operator.

Proof. Let

N∑
k=0

φk(t) = 1, t ∈ Γ,

be a partition of unity on Γ, where N is the number of nodes on Γ, the function
φ0 ∈ C(Γ) has support away from the nodes, φj , j = 1, . . . , N , are smooth cut-off
functions such that supp φj contains only one node tj . Let the mapping (10.106) be
defined on supp φj , j = 1, . . . , N . It is clear that Γ∩ supp φ0 is a Lyapunov curve,
and w and w−1 belong L∞(supp φ0). Let ψj be another smooth cut-off function of
a neighbourhood of the point tj with supp ψj in a small neighbourhood of supp ϕj

and ψj(t) = 1 for t ∈ supp ϕj . Then

S =
N∑
j=0

ψjSΓϕjI +
N∑
j=0

(1− ψj)SϕjI.

The boundedness ϕ0Sψ0I : Lp(·)(Γ, w) → Lp(·)(Γ, w) follows from Theorem 2.45,
since ϕ0Sψ0I is defined on a simple Lyapunov part of Γ, and w and w−1 are
bounded on this part.

From Theorem 10.77 it follows that for every j = 1, . . . , N the operator
Stj := ΦtjψjSΓϕjΦ

−1
tj I is a Mellin PDO in OPEd(n(tj)) with a double symbol

defined by formulas (10.108) and (10.109). By Theorem 10.68, Stj is bounded

in L
ptj

(·)
n(tj)

(R+, dμ). Hence ψjSϕjI is a bounded operator in Lp(·)(Γ, w). Let us

consider the operator Kij = (1−ψj)SϕjI. Since supp (1−ψj)∩ supp ϕj = ∅, Kij

has a smooth kernel, and is bounded from L1(Γ) to L∞(Γ). By Theorem 10.74,
w ∈ Lp(·)(Γ) and w−1 ∈ Lq(·)(Γ). Applying the Hölder inequality for the space
Lp(·), we obtain that the map u �→ w−1u is a bounded operator from Lp(·)(Γ) to
L1(Γ). Since the operator Kij is bounded from L1(Γ) to L∞(Γ) and the operator
v �→ wv is bounded from L∞(Γ) to Lp(·)(Γ), we obtain that wKijw

−1I is a bounded
operator in the space Lp(·)(Γ). This concludes the proof. �
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The Fredholm Property of Singular Integral Operators in Lp(·)(Γ, w).

Local Invertibility

Similarly to Definition 10.55, we say that an operator A ∈ B(Lp(·)(Γ, w)) is locally
invertible at the point t0 ∈ Γ, if there exist a neighbourhood Ut0(⊂ Γ) of t0
and operators RUt0

, LUt0
∈ B(Lp(·)(Γ, w)) such that RUt0

AχUt0
I = χUt0

I and
ALUt0

χUt0
I = χUt0

I.

We set σ̃t0(S) = (s̃t0jk)
m
j,k, where

s̃t0jk(r, ξ) = st0jk(r, r, ξ)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εkν

(
2π + ψt

0
,j(r) − ψt0,k(r),

ξ+i( 1
p(t

0
)
+rv′

t0
(r))

1+irψ′
t
0
(r)

)
, j < k,

εkν

(
0,

ξ+i( 1
p(t

0
)
+rv′

t0
(r))

1+irψ′
t
0
(r)

)
, j = k,

ν

(
ψt0,j (r) − ψt0,k(r),

ξ+i( 1
p(t0)

+rv′
t0

(r))

1+irψ′
t
0
(r)

)
, j > k.

If a ∈ PSO(Γ) and t0 ∈ F , then we set

σ̃t0(aI)(r) =

⎛⎜⎜⎜⎝
at0,1(r)

at0,2(r)
. . .

at0,n(t0)(r)

⎞⎟⎟⎟⎠ .

Let

AΓ = aI + bS, a, b ∈ PSO(Γ). (10.110)

Then we define

σ̃t0(AΓ)(r, ξ) = σ̃t0(aI)(r) + σ̃t0(bI)(r)σ̃t0 (S)(r, ξ), r ∈ (0, ε), ξ ∈ R,

and

σ̃t0(AΓ) = {a(t0) + b(t0), a(t0)− b(t0)}
if t0 ∈ Γ\F .

In the following theorem we deal with the class Lsl of slowly oscillating curves
and the class Asl

p(·)(Γ) of weights slowly oscillating at every node of Γ.

Theorem 10.79. Let Γ ∈ Lsl, p ∈ Plog(Γ), w = exp v ∈ Asl
p(·)(Γ), and AΓ be an

operator of form (10.110) acting in Lp(·)(Γ, w). Then:

(i) AΓ is locally invertible at the point t0 ∈ F , if and only if

lim
r→0

inf
ξ∈R

∣∣det σ̃t0(AΓ)(r, ξ)
∣∣ > 0. (10.111)
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(ii) AΓ is locally invertible at the point t0 ∈ Γ\F , if and only if σ̃t0(AΓ) is
invertible, i.e.,

a(t0)± b(t0) �= 0. (10.112)

Proof. (i) Note that AΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w) is locally invertible at the point
t0 ∈ Γ, if and only if the operator

At0
Γ = Φt0φt0Aφt0Φ

−1
t0 : L

pt0 (·)
nt0

((0, ε), dr/r) → L
pt0 (·)
nt0

(0, ε), dr/r)

is locally invertible at the point 0, where At0
Γ is a Mellin PDO with double symbol

in the class OPEd(n(t0)) given by formulas (10.108) and (10.109). The condi-
tions Γ ∈ Lsl, w ∈ Asl

p(·)(Γ) and a, b ∈ PSO(Γ) and Theorem 10.77 imply that

At0
Γ ∈ OPEd,sl(n(t0)) (see, for instance, Rabinovich, Roch, and Silbermann [294,

Chap. 4.6.5]). From the statement (ii) of Theorem 10.62 it follows that the Mellin
symbol σ(At0

Γ ) of At0
Γ is of the form

σ(At0
Γ )(r, ξ) = σ̃t0(AΓ)(r, ξ) + qt0(r, ξ),

where qt0 = (qijt0)
n(t0)
i,j=1 and

lim
r→0

sup
ξ∈R

∣∣∣∂α
ξ (r∂r)

βqijt0(r, ξ)
∣∣∣ = 0

for all α, β ∈ N0. By Theorem 10.79, the condition (10.111) is necessary and
sufficient for the local invertibility of the Mellin PDO At0

Γ at the point 0. Hence
the condition (10.111) is necessary and sufficient for the local invertibility of AΓ :
Lp(·)(Γ, w) → Lp(·)(Γ, w) at the point t0 ∈ F .

Note that the local-invertibility condition in the spaces Lp(·)(Γ, w) depends
on the value p(·) only at the point t0.

(ii) Let t0 ∈ Γ\F . Then there exists a simple locally Lyapunov curve Γj ⊂ Γ
such that t0 ∈ int Γj , where ϕj : (0, 1) → int Γj is the parametrization of the
curve int Γj. Let ϕj(r0) = t0, and ϕ′

j(r0) = 1. Let ε > 0 be sufficiently small and

Γt0,ε
j = ϕj(It0,ε), It0,ε = (r0 − ε, r0 + ε). The restriction ϕt0,ε

j of the mapping ϕj

to It0,ε is a homeomorphism of It0,ε of Γt0,ε
j . Let

Φt0,ε
j : Lp(·)(Γt0,ε

j ) −→ Lp̃(·)(It0,ε),
with p̃(x) = p(ϕj(x)), be the isomorphism defined as

(Φt0,ε
j u)(x) = u(ϕt0,ε

j (x)),

and
(
Φt0,ε

j

)−1
: Lp̃(·)(It0,ε) → Lp(·)(Γt0,ε

j ) be the inverse mapping.

It is well known (see for instance Böttcher, Karlovich, and Rabinovich [34])
that

Φt0,ε
j χεSχε

(
Φt0,ε

j

)−1
= χ̃εSRχ̃εI + Tε, (10.113)
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where χε and χ̃ε are the characteristic functions of Γ
t0,ε
j and It0,ε, respectively, and

Tε is a compact operator in Lp(It0,ε) for every constant p ∈ (1,∞). Moreover it

follows from (10.113) and the boundedness of Φt0,ε
j χεSχε

(
Φt0,ε

j

)−1
and χ̃εSRχ̃εI

in Lp̃(·)(It0,ε) that Tε is also a bounded operator in Lp̃(·)(It0,ε).
By Theorem 9.21, Tε is a compact operator in Lp̃(·)(It0,ε).
Let φ ∈ C0((−1, 1)) and φ(0) = 1. We set

φδ(x) = φ

(
x− x0

δ

)
, φ̃δ(t) = φδ(ϕ

−1
j (t)) =: φ̃δ(t).

Then φδχε = φδ for sufficiently small δ > 0. Consequently, from (10.113) we obtain
that

Φt0,ε
j φδSφδ

(
Φt0,ε

j

)−1
= φ̃δSRφ̃δI + φ̃δTεφ̃δI.

The sequence φ̃δI converges strongly to 0 in Lp(·)(It0,ε) as δ → 0. Hence,

lim
δ→0

∥∥∥φ̃δTεφ̃δI
∥∥∥
B(Lp(·)(It0,ε))

= 0.

Therefore, AΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w) is locally invertible at the point t0,
if and only if the operator φ̃δA

t0
R
φ̃δI : Lp̃(·)(It0,ε) → Lp̃(·)(It0,ε), with At0

R
=

(a ◦ ϕt0,ε
j )I + (b ◦ ϕt0,ε

j )SR, is locally invertible at the point x0 = Φt0,ε
j (t0) ∈ R.

Applying Theorem 10.60, we obtain that φ̃δA
t0
R
φ̃δI is locally invertible at the point

x0 ∈ R, if and only if

(a ◦ ϕt0,ε
j )(r0)± (b ◦ ϕt0,ε

j )(r0) = a(t0)± b(t0) �= 0. �

Simonenko’s Local Principle in Lp(·)(X)

We prove here the Simonenko local principle in variable exponent Lebesgue spaces
Lp(·)(X) in the general setting where the underlying space X is a quasimetric
measure space, as introduced in (0.14). In this subsection we assume that X is a
Hausdorff compact space.

Definition 10.80. An operator A ∈ B(Lp(·)(X)) is called an operator of local type, if
for every two closed sets F1 and F2 such that F1 ∩F2 = ∅, the operator χF1AχF2I
is compact.

Definition 10.81. An operator A ∈ B(Lp(·)(X)) is said to be locally Fredholm at
the point x0 ∈ X , if there exist a neighbourhood U of the point x0 and operators
Lx0, Rx0 ∈ B(Lp(·)(X)) such that

Lx0AχUI = χUI + T1 and χUAR
x0 = χUI + T2,

where T1, T2 are compact operators in Lp(·)(X). If T1 = 0 and T2 = 0, A is said
to be locally invertible at the point x0.
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Remark 10.82. We say that the space X does not have discrete components, if
for every point x0 ∈ X there exists a sequence U1 ⊃ U2 ⊃ · · · ⊃ Uj ⊃ · · · of
neighbourhoods of the point x0 such that

lim
j→∞

μ(Uj) = 0. (10.114)

If X does not have discrete components, then local Fredholmness coincides with
local invertibility. Indeed, let Lx0AχUI = χUI + T1, and U ⊃ U1 ⊃ U2 ⊃ · · · ⊃
Uj ⊃ · · · , then

Lx0AχUj I = (I + T1χUjI)χUj I.

Condition (10.114) implies that the sequence χUjI converges strongly to 0 in

Lp(·)(X). Hence,
lim
j→∞
∥∥T1χUjI

∥∥
B(Lp(·)(X))

= 0.

It follows that the operators I+T1χUjI are invertible for sufficiently large j. Then
(I +T1χUjj

I)−1Lx0 is a left local inverse operator at x0. In the same way one can

prove the existence of a right local inverse operator.

The Simonenko principle for variable exponents reads as follows.

Theorem 10.83. Let A ∈ B(Lp(·)(X,μ)) be an operator of local type. Then A is a
Fredholm operator if and only if A is a locally Fredholm operator at every point
x ∈ X. If the space X does not have discrete components, we can replace local
Fredholmness by local invertibility.

The proof of Theorem 10.83 for variable p(·) repeats word by word the Si-
monenko proof for a constant p (see, for instance, Simonenko [345, pp. 21–24]).

Fredholmness of SIOs

Theorem 10.84. Let Γ be a composite compact curve of the class L, let p ∈ Plog(Γ)
and w ∈ Ap(·)(Γ). Then S : Lp(·)(Γ, w) → Lp(·)(Γ, w) is a local type operator in
the sense of Simonenko, i.e., for any closed sets F1, F2 ⊂ Γ such that F1 ∩F2 = ∅
the operator χF1SχF2I is compact in Lp(·)(Γ, w).

Proof. The operator χF1SχF2I has a kernel k ∈ C∞(Γ × Γ). Hence χF1SχF2I
: L1(Γ) → L∞(Γ) is a compact operator. Since u �→ w−1u is a bounded operator
from Lp(·)(Γ, w) in L1(Γ) and v �→ wv is a bounded operator from L∞(Γ) to
Lp(·)(Γ, w), the operator χF1SχF2I is compact in Lp(·)(Γ, w). �
Theorem 10.85. Let AΓ be an operator of the form (10.110) and let Γ and w satisfy
the assumptions of Theorem 10.79. Then

AΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w)

is a Fredholm operator, if and only if condition (10.111) holds for every point
t0 ∈ F and condition (10.112) holds for every point t0 ∈ Γ\F .
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Proof. Make use of Theorem 10.84, Theorem 10.83 and Theorem 10.79. �

Remark 10.86. If we freeze the variable exponent p(·) at the point t0, condition
(10.111) coincides with the known condition in the paper by Böttcher, Karlovich,
and Rabinovich [35] for the case of the constant Lebesgue exponent p ∈ (1,∞),
while condition (10.112) is classical and does not depend on p(·).

Index Formula

Let A = aI+bS, where a, b ∈ PSO(Γ) and Γ ∈ Lsl. Let A be a Fredholm operator
in Lp(·)(Γ, w), where w ∈ Asl

p(·)(Γ). Then the Fredholm index of A : Lp(·)(Γ, w) →
Lp(·)(Γ, w) is given by the formula

indexA = −
K∑
j=1

(2π)
−1

[
arg

a(t) + b(t)

a(t)− b(t)

]
t∈Γj

−
L∑

j=1

(2π)
−1

lim
r→0

[
arg det σ̃(Atj )(r, ξ)

]∞
ξ=−∞ .

(10.115)

In this formula, K is the number of the oriented and rectifiable simple smooth
arcs generating the composite curve Γ, and L is the number of nodes of Γ.

The proof of the index formula (10.115) uses the method of separation of
singularities, and is similar to that for the constant p, see for instance Böttcher,
Karlovich, and Rabinovich [35].

Remark 10.87. All the results of this chapter remain valid if we replace the classes
C∞(0, ε), C̃∞(0, ε), C∞

sl (0, ε), C̃∞
sl (0, ε) in the assumptions on the curve Γ and the

weights near nodes by the classes Cm(0, ε), C̃m(0, ε), Cm
sl (0, ε), C̃m

sl (0, ε), where m is
sufficiently large.

In relation to Remark 10.87, see also Definition 10.88 and Lemma 10.89 in
the next section.

10.3.5 Comparison of the Used Class of Oscillating Weights
with the Bari–Stechkin-type Weights

In this subsection we compare the class of weights w used in this chapter with the
Bari–Stechkin class of oscillating weights introduced in Section 2.2. In the proofs
in this section we follow some ideas of the paper Samko [310].

We say that two nonnegative functions f and g are equivalent, if

c1f(x) � g(x) � c2f(x), c1 > 0, c2 > 0.

Note that the Bari–Stechkin class is closed with respect to the equivalence of
functions.
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Simonenko-type Class S2

Let 0 < � < ∞. The indices

p(w) = inf
0<x��

xw′(x)
w(x)

, q(w) = sup
0<x��

xw′(x)
w(x)

which appeared in (10.100)–(10.101) are known as Simonenko indices, see Simo-
nenko [342], and it is known that

p(w) � m(w) � M(w) � q(w),

where m(w) and M(w) are the Matuszewska–Orlicz indices, see Maligranda [236,
Thm. 11.11]. The class of functions on (0, �) with finite Simonenko indices may
be called Simonenko class. We introduce a slight generalization of this notion,
inspired by conditions (10.91) and (10.93).

Definition 10.88. We say that a weight function w = ev(x) is in the Simonenko
type class SN , N = 1, 2, 3, . . . , if

sup
x∈(0,�)

∣∣∣∣∣
(
x
d

dx

)k

v(x)

∣∣∣∣∣ < ∞, k = 1, 2, . . . , N (10.116)

and

lim
x→0

(
x
d

dx

)2

v(x) = 0. (10.117)

Obviously, SN+1 ⊂ SN . We are mainly interested in the case N = 2. The
connection of this class with the Simonenko indices becomes clear, if we observe
that in terms of the weight w itself conditions (10.116)–(10.117) with N = 2 have
the form

sup
x∈(0,�)

∣∣∣∣xw′(x)
w(x)

∣∣∣∣ < ∞, sup
x∈(0,�)

∣∣∣∣x d

dx

xw′(x)
w(x)

∣∣∣∣ < ∞, (10.118)

and

lim
x→0

x
d

dx

(
xw′(x)
w(x)

)
= 0.

Lemma 10.89. Given a function w ∈ W ∩W , for every N = 1, 2, 3, . . . there exists
a function

wN ∈ CN ([0, �]) ∩ (W ∩W
)

equivalent to w, and such that v(x) = logwN (x) satisfies conditions (10.116). It
may be chosen as

wN (x) = xα

xˆ

0

w(t)
(
ln x

t

)N−1

t1+α
dt

with any α such that α < m(w).
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Proof. Let first N = 1. The proof of the equivalence w1(x) ≈ w(x) is direct,
resorting to the properties (2.12)–(2.13). By direct differentiation of w1(x) we
obtain

x
d

dx
w1(x) = αw1(x) + w(x). (10.119)

Then the first inequality in (10.118), corresponding to the case N = 1, holds
because w1 ≈ w. Note that w ∈ W ∩W =⇒ w1 ∈ W ∩W and that w and w1,
as equivalent functions, have equal Matuszewska–Orlicz indices, see Maligranda
[236, Thm. 11.4].

For N = 2 the statement is obtained by iteration of the procedure. Indeed,
by the already proved equivalence w1 ≈ w, we have

w(x) ≈ w1(x) ≈ xα

xˆ

0

w1(t)

t1+α
dt = xα

xˆ

0

w(s)ds

s1+α

xˆ

s

dt

t
= w2(x).

By direct differentiation we obtain

x
d

dx
w2(x) = αw2(x) + w1(x). (10.120)

Consequently,
xw′

2(x)

w2(x)
= α+

w1(x)

w2(x)
, (10.121)

whence the first inequality in (10.118) follows in view of the equivalence w1 ≈ w2.

Furthermore, differentiating (10.121) and using (10.120) and (10.121) we ob-

tain x d
dx

xw′
2(x)

w2(x)
= w

w2
−
(

w1

w2

)2
, whence the second inequality in (10.118) follows

in view of the equivalence w ≈ w1 ≈ w2.

ForN > 2 the statement is obtained by induction using (10.119) and (10.121). �
Remark 10.90. It is known that the interval defined by the Matuszewska–Orlicz
indices is in general narrower than that defined by the Simonenko indices, i.e.,

[m(w),M(w)] ⊆ [p(w), q(w)],

see Maligranda [236, Thm. 11.11]. Therefore, any function with finite Simonenko
indices, also has finite Matuszewska–Orlicz indices and consequently belongs to
the Bari–Stechkin class Φ.

10.4 Comments to Chapter 10

Comments to Section 10.1

Section 10.1 is based on the paper Kokilashvili and Samko [189].

The theory of singular integral equations on curves in the complex plane with
piece-wise continuous coefficients within the frameworks of the Gakhov–Muskhelishvili–
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Khvedelidze–Gohberg–Krupnik approach is presented in the books by Gakhov [96], Go-
hberg and Krupnik [108, 109] and Muskhelishvili [267].

The theory of singular integral operators in the case of constant p was intensively de-
veloped in the last decades and was generalized, in particular, by allowing general weights,
whirling points on curves, and weaker assumptions on discontinuity of coefficients, which
did lead to new effects, see Böttcher and Karlovich [33, 31, 32], Spitkovsky [349] and
references therein. We do not touch upon such generalizations in the Lp(·)-setting in this
book, but refer to some papers in that direction: Karlovich [153, 154, 155, 158, 159, 160],
Karlovich and Spitkovsky [162, 163].

We also refer to the papers Abramyan and Pilidi [2] and Pilidi [281], where approxi-
mate methods for singular integral equations in variable exponent spaces were developed.

Comments to Section 10.2

Section 10.2 is based on the paper by Rabinovich and Samko [292].

In Definition 10.18 we follow Duoandikoetxea [70] and Alvarez and Pérez [18].

The basics of the PDO theory used in Section 10.2 may be found in various books,
for instance in Kumano-go [221], Shubin [341], Stein [352], Taylor [358, 359]. In particular,
Theorem 10.25 may be found in Stein [352, p. 241].

Fredholmness of PDO of the class OPSm
1,0 acting in the Sobolev spaces Hs(Rn)

was established in Grushin [111]. Fredholmness of PDO of the class OPSm
0,0 in the spaces

Hs(Rn) was considered in Rabinovich [285], see also Rabinovich and Roch [291] and
Rabinovich, Roch, and Silbermann [294, Chapter 4], by means of the method of the
limit operators. Fredholmness and exponential estimates of solutions of general PDO in
spaces with exponential weights were considered in Rabinovich [286]. We refer also to
the paper Rabinovich [287], where operators of the class OPSm

1,0 with symbols slowly
oscillating at infinity were considered in weighted Hölder–Zygmund spaces. Results on
Fredholmness of operators in algebras of PDO in Lp(Rn) with constant p ∈ (1,∞),
with applications to one-dimensional singular integral operators on Carleson curves, were
obtained in Rabinovich [289, 290].

Comments to Section 10.3

Section 10.3 is based on the paper Rabinovich and Samko [293].

For Simonenko local type operators and the Simonenko local principle we refer to
Simonenko [343, 344], Simonenko and Min [346], and Simonenko [345].

In Rabinovich [289, 290], Böttcher, Karlovich, and Rabinovich [34, 35, 36], Rabi-
novich, Roch, and Silbermann [294], the Simonenko local method was applied to SIOs
on some composite Carleson curves with discontinuous coefficients acting on weighted
Lp-spaces, and in the paper Rabinovich, Samko, and Samko [295] for SIOs acting on
weighted Hölder spaces. In this case the local representatives are Mellin pseudodifferen-
tial operators with variable symbols. The structure of symbols of local representatives
(the local symbols) generates the appearance of the logarithmic double spirals and spiral
horns in the local spectra of SIOs.

For the local principle of Simonenko in the case of constant exponents we refer to
Simonenko [343, 344, 345], Simonenko and Min [346].
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exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math.
Scand., 116(1), 2015. To appear,
http://www.helsinki.fi/ pharjule/varsob/pdf/maximal-submitted.pdf.

[5] D.R. Adams. Traces of potentials arising from translation invariant opera-
tors. Ann. Scuola Norm. Sup. Pisa (3), 25:203–217, 1971.

[6] D.R. Adams. A trace inequality for generalized potentials. Studia Math.,
48:99–105, 1973.

[7] D.R. Adams and L.I. Hedberg. Function spaces and potential theory, volume
314 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag,
Berlin, 1996.

[8] R.A. Adams and J.J.F. Fournier. Sobolev spaces, volume 140 of Pure and
Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam,
second edition, 2003.
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[32] A. Böttcher and Yu. Karlovich. Toeplitz operators with PC symbols on
general Carleson Jordan curves with arbitrary Muckenhoupt weights. Trans.
Amer. Math. Soc., 351(8):3143–3196, 1999.
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[66] L. Diening and M. Růžička. Integral operators on the halfspace in generalized
Lebesgue spaces Lp(·). II. J. Math. Anal. Appl., 298(2):572–588, 2004.

[67] L. Diening and S. Samko. Hardy inequality in variable exponent Lebesgue
spaces. Fract. Calc. Appl. Anal., 10(1):1–18, 2007.
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[145] J.L. Journé. Calderón–Zygmund operators, pseudodifferential operators and
the Cauchy integral of Calderón, volume 994 of Lecture Notes in Mathemat-
ics. Springer-Verlag, Berlin, 1983.

[146] L.B. Kantorovich and G.P. Akilov. Functional Analysis in linear normed
spaces. Moscow, Izdat. Fiz.-mat. Literat., 1959.

[147] N.K. Karapetyants and A.I. Ginzburg. Fractional integrodifferentiation in
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[220] A. Kufner, O. John, and S. Fuč́ık. Function spaces. Noordhoff International
Publishing, Leyden; Academia, Prague, 1977.

[221] H. Kumano-go. Pseudodifferential operators. MIT Press, Cambridge, Mass.-
London, 1981.

[222] D.S. Kurtz. Littlewood–Paley and multiplier theorems on weighted Lp

spaces. Trans. Amer. Math. Soc., 259(1):235–254, 1980.

[223] D.S. Kurtz and R.L. Wheeden. Results on weighted norm inequalities for
multipliers. Trans. Amer. Math. Soc., 255:343–362, 1979.

[224] M. Lacey, E. Sawyer, and I. Uriarte-Tuero. Two weight inequalities for
discrete positive operators. http://arxiv.org/abs/0911.3437 [math.CA],
2010.

[225] A.K. Lerner. A simple proof of the A2 conjecture. Int. Math. Res. Not.
IMRN, 2013(14):3159–3170, 2013.

[226] J.L. Lions and J. Peetre. Sur une classe d’espaces d’interpolation. Publ.
Math. Inst. Hautes Études Sci., 19:5–68, 1964.

[227] P.I. Lizorkin. Generalized Liouville differentiation and the functional spaces
Lr
p(En). Imbedding theorems (Russian). Math. Sb., 60(3):325–353, 1963.

[228] P.I. Lizorkin. Multipliers of Fourier integrals in the spaces Lp, θ. Trudy Mat.
Inst. Steklov, 89:231–248, 1967. English transl. in Proc. Steklov Inst. Math.
89 (1967), 269-290.

http://arxiv.org/abs/0911.3437


544 Bibliography

[229] P.I. Lizorkin. Generalized Liouville differentiations and the multiplier
method in the theory of imbeddings of classes of differentiable functions
(Russian). Trudy Mat. Inst. Steklov, 105:89–167, 1969.

[230] P.I. Lizorkin. Multipliers of Fourier integrals and estimates of convolutions
in spaces with mixed norm. Applications. Izv. Akad. Nauk SSSR Ser. Mat.,
34:218–247, 1970.

[231] M. Lorente. A characterization of two weight norm inequalities for one-sided
operators of fractional type. Canad. J. Math., 49(5):1010–1033, 1997.

[232] W.A. J. Luxemburg and A.C. Zaanen. Compactness of integral operators in
Banach function spaces. Math. Ann., 149:150–180, 1962/1963.
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in generalized hölder spaces with variable characteristic. Math. Nachr., 284:
355–369, 2011.

[312] N. Samko, S. Samko, and B. Vakulov. Weighted sobolev theorem in Lebesgue
spaces with variable exponent. J. Math. Anal. Appl., 335:560–583, 2007.

[313] N. Samko, S. Samko, and B. Vakulov. Weighted sobolev theorem in Lebesgue
spaces with variable exponent; corrigendum. Armen. J. Math., 3(2):92–97,
2009.

[314] N. Samko, S. Samko, and B. Vakulov. Fractional integrals and hypersingular
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Hörmander, L. 237

Hunt, R.A. 121

Hytönen, T. P. 295

Izuki, M. 26, 127

Jain, P. 26

Jakimovski, A. 135

Johansson, M. 26

John, O. 440

John, R.T. 124
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