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Preface

The purpose of writing this book has been to give a systematic account of major

concepts andmethodologies of data-drivenmodels and to present a unified framework

that makes the subject more accessible and applicable to researchers and practitioners.

The book is structured to integrate important theories and applications on data-driven

models and to use them in a wide range of problems in the field of water resources and

environmental engineering. The presented models are useful for various applications,

namely, hydrological forecasting, flood analysis, water quality monitoring, quantita-

tive and qualitative modeling of water resources, regionalizing climatic data, and

general function approximation. This book addresses the issue of data-driven

modeling in two contexts. Theoretical background of the models and techniques is

presented and discussed in a comparative manner, briefly. Also the source files of

relative programs demonstrating how to use the explained models are presented with

practical advice on how to advance them. The programs have been developed within

the unified platform of MATLAB. The proposed models are applied in various

illustrative examples as well as several workshops. The focus of the book remains a

straightforward presentation of explainedmodels by discussing in detail the necessary

components and briefly touching on the more advanced components.

The book is served as a practical guide to the main audience of graduate students

and researchers in water resources engineering, environmental engineering, agri-

cultural engineering, and natural resources engineering. This book may also be

adapted for use as a senior undergraduate and graduate textbook by selective choice

of topics. Alternatively, it may also be used as a resource for practicing engineers,

consulting engineers, and others involved in water resources and environmental

engineering.

The book contains eight chapters; except first and last, each was developed in

two parts of theory and practice to achieve the aim of the book.

Chapter 1 lays the foundation for the entire book with a brief review on different

types of models that could be used for modeling water resources and environmental

problems as well as the process of model selection for a specific problem. Further-

more, the general approach of using data-driven models is reviewed in this chapter.
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Chapter 2 presents discrete and continues probability distribution functions. Since

one of the most applicable fields of distribution functions is frequency analysis,

dealing with this issue is also presented in this chapter. The hypothetical tests on

the average and variance of one and two populations are reviewed in the chapter.

Furthermore, two famous tests of chi-square and Kolmogorov–Smirnov are presented
to decide on the best distribution function for a specific random variable. Each of the

above calculations is supported by related commands provided in MATLAB.

Chapter 3 presents models for point and interval estimation of dependent variables

using different regression methods. Multiple linear regression model, conventional

nonlinear regression models, logistic regression model, and K-nearest neighbor

nonparametric model are presented in different sections of this chapter. Each

model is supported by related commands and programs provided in MATLAB.

Chapter 4 focuses on methods of time series analysis and modeling. Preprocessing

of time series before being used through modeling containing assessment of different

components is discussed in this chapter. Autoregressive (AR), autoregressive moving

average (ARMA), autoregressive integrated moving average (ARIMA), and

autoregressivemoving averagewith eXogenous data (ARMAX)models are presented

and discussed in this chapter. A review on the multivariate analysis of time series

modeling is added. Two major applications of time series modeling, namely, fore-

casting and synthetic data generation, are presented, supported by the related syntaxes

and programs in MATLAB.

Chapter 5 deals with the artificial neural networks (ANNs). It presents basic

definition on the “Components of an ANN,” “Training Algorithm,” and “Mapping

by ANNs.” The chapter also deals with the introduction of famous ANN models,

which are widely used in different fields. Theoretical background, network archi-

tecture, their training and simulation methods, as well as the codes necessary for

applying the networks are presented in this section. After presenting each network

sample, applications are discussed in different illustrative examples. In this chapter,

static and dynamic networks and also statistical networks are those which are

described and modeled in MATLAB.

Chapter 6 presents the concept of support vector machine (SVM) to analyze data

and recognize patterns, required for classification and regression analysis. Two

applications of SVMs including classification and regression are discussed in this

chapter, and examples on using SVM for both mentioned purposes are presented.

Examples and models of SVM are presented in MATLAB.

Chapter 7 is concerned with the fuzzy logic. Basic information in fuzzy logic,

fuzzy clustering, fuzzy inference systems, and fuzzy regression are the main sub-

jects presented in this chapter. Obviously, the related MATLAB commands are

presented to support the models reviewed in this chapter.

Chapter 8 begins with a summary on the characteristics of the models presented

in the previous chapters. The models are compared based on different criteria to

give the readers ideas on how to take advantages of the models’ strengths and avoid

their weaknesses through the hybrid models and multi-model data fusion approach.

The chapter continues with the examples of hybrid models and general techniques

of multi-model data fusion.
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The book also contains an appendix that helps readers to use MATLAB.
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Chapter 1

Introduction

Abstract Problems involving the process of water resources and environmental

management such as simulation of natural events, warning of natural disasters, and

impact analysis of development scenarios are of significant importance in case of

the changing environment. Considering the complexity of natural phenomena as

well as our limited knowledge of mathematical modeling, this might be a challeng-

ing problem. Recently, development of data-driven models has improved the

application of specific tools to be used through the complex process of real-world

modeling. Soft computing and statistical models are two common groups of data-

driven models that could be employed to solve water resources and environmental

problems. Data-driven models are among mathematical models, which use exper-

imental data to analyze real-world phenomena. In contrast to physical models, they

do not need a specific laboratory setup so are significantly cheaper. Also, in contrast

to the analytical models, data-driven models can be used for the problems where we

do not have enough knowledge about the intrinsic complexity of the phenomena.

This chapter presents a brief review of different types of models that could be used

for modeling water resources and environmental problems, reviews the process of

model selection for a specific problem, and investigates the general approach of

using data-driven models. The advanced stage of developing a model is discussed

in the last section.

Keywords Data-driven models • Model selection • Type of models • Type of data

• Decision support systems

1.1 Introduction

Modeling a system is one of the most significant challenges in the field of water

resources and environmental engineering. That rise as a result of either physical

complexity of a natural phenomenon or the time-consuming process of analyzing

different components of a system. Data-driven models have been found as very

S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Water Resources
and Environmental Engineering, Water Science and Technology Library 67,

DOI 10.1007/978-94-007-7506-0_1, © Springer Science+Business Media Dordrecht 2014
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powerful tools to help overcoming those challenges by presenting opportunities to

build basic models from the observed patterns as well as accelerating the response of

decision-makers in facing with the real-world problems. Since they are able to map

causal factors and consequent outcomes of an event without the need for a deep

understanding of the physical process surrounding the occurrence of an event, these

models have become popular among water resources and environmental engineers.

Also, as recent progresses in soft computing have enriched the collection of data-

driven techniques by presenting new models as well as enhancing the classic ones,

continuity of such popularity is expected.

Data-driven models, as it is understood by its name, refer to a wide range of

models that simulate a system by the data experienced in the real life of that system.

They include different categories generally divided into statistical and soft computing

(also known as artificial-intelligent) models. Data-driven models are often inexpen-

sive, accurate, precise, and more importantly flexible, which make them able to

handle a wide range of real-world systems with different degrees of complexity

based on our level of knowledge and understanding about a system. As far as the

statistical type of them is concerned, these models could be considered among the

very primary models in the life of modern engineering. However, they could be

categorized as brand new models with regard to soft computing type. Data-driven

modeling could be defined as a solution defined by the paradigm of “engineering

thinking and judgment” to the world of modeling to deal with the problems, which

are considered too complex by our knowledge of mathematical equations. Data-

driven models have been brought up to their present form by the ideas and applica-

tions from different fields of engineering.

As complexity of a system increases, efficiency of offered models by data-driven

methods rises in modeling the system. For systems with little complexity, analytical

models based on mathematical equations provide precise descriptions, but for the

ones with significant complexity, data-driven models are more useful to define the

patterns within the behavior of the system.

Data-driven models can be applied in a wide range of problems including simu-

lation of natural phenomena, synthetic data generation, forecasting and warning of

extreme events, developing decision-making rules, and many others. Generally, the

purpose of data-driven modeling includes but is not limited to:

• Data classification and clustering

• Function approximation

• Forecasting

• Data generation

• General simulation

As far as problems in the field of water resources and environmental engineering

are concerned, application of data-driven models may include:

• Water quality simulation and prediction

• Extreme value prediction with emphasis on floods and droughts

2 1 Introduction



• Modeling water balance concerning different components of a hydrological

system

• Extending the length of hydroclimatological data from the historical ones

• Estimating censored data

The inexpensive process of developing data-driven models makes them a good

choice as either the main tool for modeling a system or an alternative for the

baseline model to be compared with the results obtained by analytical and physical

models to validate them or to provide useful data and information to enhance them.

There has been an increasing interest on the data-driven modeling in the field of

water resources and environmental engineering during the recent decade. Figure 1.1

demonstrates the trend of the number of articles published in the selected data-driven

techniques including artificial neural networks (ANNs), fuzzy modeling, regression

models, and data fusion in the field of water resources and environmental engineering

in the period of 1990–2010. However, the presented statistic might not represent the

actual number of researches in those fields; their relative changes demonstrate the fact

of an increasing demand on the application of those models. The figure shows a

considerable ascending trend in all classic and modern techniques.

This introductory chapter starts with a section discussing different types of

models and their complexity. The chapter continues by presenting criteria to select

a model. Despite the difference in the type of data-driven models, they all follow a

general approach of modeling, which is presented in another section of this chapter.

The chapter ends by a discussion on the next level of developing computing tools

that could be imagined in the field of modeling and simulation.

Fig. 1.1 Number of articles published in the selected data-driven techniques (Google Scholar)
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1.2 Types of Models

The term “model” refers to a wide variety of programs, softwares, and tools used to

represent a real-world system in order to predict its behavior and response to the

changing factors approximately. In spite of the wide number, models are divided into

two main categories: physical and mathematical models. Data-driven models are

classified among the latter category. Figure 1.2 shows a proposed framework for

different types of models, specifically those which could be used in the field of water

resources and environmental field. As the figure depicts, a mathematical model is in

turn divided into three types of data-driven, conceptual, and analytical models. The

next expressions present a brief description of shown models in Fig. 1.2.

1.2.1 Physical Model

A physical model is a smaller or larger physical copy of a system. The geometry of

the model and the object it represents are often similar in the sense that one is a

rescaling of the other.

1.2.2 Mathematical Model

A mathematical model is based on mathematical logic and equations, which benefits

from mathematical knowledge to simulate a system in an explicit or implicit manner.

It is presented in the forms of analytical, conceptual, and data-driven models.

1.2.3 Analytical Model

An analytical model is a model that represents a system by mathematical equations

explicitly. These models are applied in cases that are not too complex comparing to

our knowledge of mathematics. Models developed for porous media and ground-

water environment are examples of this kind of model.

1.2.4 Data-Driven Model

Data-driven models also known as experimental models refer to a kind of models

which benefit input and output data of a system to find out specific patterns to be

generalized for a broader range of data. Statistical models and artificial-intelligent

models are two famous types classified in this category.
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1.2.5 Conceptual Model

A conceptual model in water resources and environmental engineering is a model

that benefits from the physical definition of a system partially in cases that we do

not have adequate knowledge of mathematical equation to represent the system by

an analytical model. A conceptual model uses a combination of both analytical and

data-driven model approaches in a way to employ the benefits of both to simulate a

system.

Based on the presented definition, different types of mathematical models could

be classified by the complexity of a system as well as our mathematical knowledge,

as shown in Fig. 1.3.

Data-driven models as the focus of this book are divided into two general forms

of statistical models and soft computing models defined as follows.
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1.2.5.1 Statistical Model

The definition of a statistical model is tied to the definition of a stochastic process.

A stochastic process includes both random and deterministic variables. Deterministic

variables are dealt with mathematical models. Meanwhile, a random variable is

represented by the theory of probability and a probabilistic model. A probabilistic

model is a probability distribution function proposed as generating data. To simulate

a stochastic process, statistical models, which benefit from both mathematics and

probability theory, are used to model stochastic variables. These models could be

parametric or nonparametric. The former has variable parameters, such as the mean

and variance in a normal distribution. The latter has a distribution function without

parameters, such as nearest neighborhood modeling, and only loosely confined by

assumptions.

1.2.5.2 Soft Computing Model

Fuzzy logic, neuro-computing, and genetic algorithms may be viewed as the

principal constituents of what might be called soft computing. Unlike the traditional

hard computing, soft computing accommodates the imprecision of the real world by

the rules obtained from the biological concepts.

1.3 Spatiotemporal Complexity of a Model

Regardless to the type of a model, it could be classified by its complexity in a spatial

and temporal manner. The significance of dynamic change of natural phenomena

related to water resources and global environment along with the need to asses them

in a regional manner make these characteristics of great importance for a modeler.

Even though, a fully developed dynamic and distributed model is considered as a

very powerful tool in the field of water resources and environmental engineering,

the limitation of data, the level of our expectation from the model, as well as the

complicated and time-consuming process of modeling might prevent application of

such a model in every problem we deal with. The following expressions define

different types of models from the spatiotemporal complexity aspect.

1.3.1 Spatial Complexity

From the spatial complexity aspect, a model is categorized as lumped, distributed,

and semi-distributed model. Variables in water resources and environmental engi-

neering are usually defined within a specific spatial boundary such as watersheds,

basins, provinces, and rivers. A lumped model is used in cases that the spatial

variation of this variable within that boundary is not of interest of the modeler.
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For instance, a model benefits from the average precipitation in a basin. In contrast, in

some cases we need a model to be highly sensitive to the location where a variable

is collected, generated, or developed through the process of modeling. This case

needs a model to be considered as a distributed model within the boundary of the

system. A model with the capability of interpolating/extrapolating of rainfall in each

location of a watershed is considered as a distributed model. A semi-distributed

model is a model which is not sensitive to each location of a region but considers

variation within subdistricts of the region and acts like a lumped model within them.

A hydrological model which gets different parameters for different subbasins of a

river basin but follows the rules and equations of a lumped model within them is

known as a semi-distributed model. Figure 1.4 shows schematically the difference

between three lumped, distributed, and semi-distributed models. The figure shows the

boundaries where the spatial variability of the model’s parameters is concerned.

1.3.2 Temporal Complexity

Data-driven models can be either static or dynamic. Static simulation models are

based on the current state of a system and assume a constant balance between

parameters with no predicted changing. In contrast, dynamic simulation models

rely on the detailed assumptions regarding changes in existing parameters by chang-

ing the state of a system. A rainfall forecasting model is considered as a dynamic

model if its parameters change as it receives new precipitation data in its application

time line. In contrast, it may be considered as a static model in case its parameters rely

on the historical data with no plan to be changed in the time horizon of its application.

1.4 Model Selection

Model selection is the task of selecting a model from a set of candidate models via

number of logical criteria. Undoubtedly among given candidate models of similar

accuracy and precision, the simplest model is most likely to be chosen but still they

need to be examined closely. Different criteria might be used in the process of

selecting a model as follows.

Fig. 1.4 (From left)
Examples of lumped, semi-

distributed, and distributed

model
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1.4.1 Purpose of Application

Obviously, the purpose of modeling, such as research task, designing, and operat-

ing, is an important criterion to select a model. Actually, the purpose of modeling

determines required complexity, developing time, challenging issues, and run time

expected from a model, implicitly.

1.4.2 Accuracy and Precision

Accuracy is determined by a comparison between a real variable and its estimated

expected value obtained by a model. An accurate model is the one that provides

estimated variables close to those of observed in real world. Precision is defined

as the possible or probable estimated interval of a model’s estimated variable.

A precise model is a model that prevents a wide estimation interval through the

process of estimation. While the accuracy of a model is measured by the expected

value of its estimated output, the precision of a model is represented by the

probable/possible range that the estimated variable of the model might have. The

most preferred model is the one which is both accurate and precise.

Figure 1.5 represents different schematic combinations of accuracy and preci-

sion of a model. Figure 1.5a represents a model which is accurate but not precise.

Figure 1.5b represents a model which is neither precise nor accurate. Figure 1.5c is

a model which is precise but not accurate, and finally Fig. 1.5d represents a model

which is both accurate and precise.
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Fig. 1.5 Examples of different models based on precision and accuracy (a) Accurate but not
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1.4.3 Availability of Data

Data availability determines the details a model can handle. A very complex model

could be completely useless in a case study that the necessary data is not provided in

a proper manner. There must be a balance between the details expected from a

model with the data which is available for it. Obviously none of them must prevent

us modeling a system. It is worth notifying that the availability of data does not only

deal with the diversity of applied variables but the records an individual data might

have in different times and locations. Some models are unable to process multivar-

iate data and some might need a minimum record of data to perform appropriately.

That is why the availability of data must be checked before selecting a model.

1.4.4 Type of Data

Many of the data-driven models have been developed to deal with specific type of

data. This might limit their application in the field of water resources and environ-

mental engineering. Models such as ARMA and ARIMA have been developed to

deal with the time series data where a model such as static multilayer perceptron has

been specifically developed for event-based data and is not able to model the

temporal structure of a time series. Models such as probabilistic neural networks

usually use discrete data to classify a set of input variables, and models such as

fuzzy inference systems can consider descriptive data. The following represents a

brief description of different types of data that might help selecting an appropriate

model for a specific application.

1.4.4.1 Descriptive and Numerical Data

Data can be descriptive (like “high” or “low”) or numerical (numbers). In the field

of water resources and environmental engineering, both descriptive and numerical

data could be used. Linguistic variables such as “low consumption,” “high quality,”

and “poor data” are examples of descriptive data in these fields. The use of

numerical data is preferred for a wide range of data-driven models and matches

better to their techniques. However, developments in the application of fuzzy logic

in engineering have spurred the use of descriptive data beside the numerical ones.

1.4.4.2 Discrete and Continuous Data

The numerical data can be discrete or continuous. Discrete data is counted, and

continuous data is measured. Discrete data can only take certain values (Fig. 1.6a).
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Examples of discrete data are number of floods during water years, duration of

drought events, number of rainy days, etc.

Continuous data makes up the rest of numerical data. This is a type of data that is

usually associated with some sort of physical measurement (Fig. 1.6b). Examples of

continuous data are air temperature, rainfall depth, streamflow, total dissolved

solids, etc.

1.4.4.3 Spatial Data

Spatial data also known as geospatial data or geographic information identifies the

geographic location of features and boundaries on earth, such as natural or

constructed features. Spatial data is usually stored as coordinates and topology

and can be mapped (Fig. 1.6c). Examples of spatial data are water quality in

different locations of a river or different locations of a water table. Rainfall

recorded in different stations of a basin is another example of spatial data.

Fig. 1.6 Example of discrete (a) Discrete data (b) Continuous data (c) Spatial data (d) Time series
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1.4.4.4 Time Series Data

Time series data are quantities that represent or trace the values taken by a variable

over a period such as a month, quarter, or year. Time series data occur wherever

the same measurements are recorded on a regular basis (Fig. 1.6d). Examples of

time series data are daily and monthly rainfall data, inflow to a reservoir, etc.

1.5 General Approach to Develop a Data-Driven Model

In spite of differences among the details needed for specific data-driven models,

they all follow a general approach, which is presented in this section. Different

steps of this approach are shown and numbered in Fig. 1.7.

1.5.1 Conceptualization

The term conceptualization refers to the process that brings a concept in mind to the

objects and variables which is dealt with by a model. In terms of software engineer-

ing, this step tends to a conceptual model. It should be notified that the term

“conceptual model” presented here differs from what has been described in Sect. 1.2.

1.5.2 Model Calibration

After the conceptualization stage, data is preprocessed to be ready for the model.

Rescaling the input data and re-dimensioning them are two common processes,

which are usually followed up through preprocessing. Different input data usually

have different orders which need to be rescaled to prevent loosing the value of a

certain variable. Furthermore, many data-driven models are sensitive to the dimen-

sion of input/output data set especially in problems with limited data which need

few parameters to be calibrated in a robust manner. After preprocessing, calibra-
tion, which in some models is also called training, becomes the process of calcu-

lating the parameters of a model.

1.5.3 Model Validation

Validation is referred to a process in which a model is evaluated based on a new set

of data that are not used in the calibration process. This process represents a

microscale of the environment in which a model is applied in a real case. If the

result of validation is not satisfactory, a change in the processes of initial steps

should be performed to improve the performance of the final model.
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1.5.4 Presenting the Results

Developed model is used to simulate different states of the system. The results can

be shown by different types of tables, charts, and plots through postprocessing. The

use of the model is verified through its long-term application in real case studies.
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Fig. 1.7 General approach for development of a data-driven model
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1.6 Beyond Developing a Model

A model is developed to help solving a specific problem; however, in cases that we

need to frequently face a generic problem and finding appropriate responses based

on the current spatial and temporal state of a system, it is preferred to improve a

model to a software. A software is actually a trade version of one or several models

in which a designed graphical user interface makes a user-friendly tool for general

structured problems.

Decision-making is one of the most significant challenges in the field of water

resources and environmental engineering because of either the complexity around a

problem or the unpredicted impacts of a decision. This challenge might be a result

of multidisciplinary problems, which may put some contrasting objectives in a

competition that no compromising is allowed. To overcome this challenge, new

technologies have presented powerful tools to increase efficiency and accuracy of

decisions and to accelerate the responses in facing with the real-world problems.

Decision support systems (DSSs), which are more than a software, are one of the

most efficient tools, with distinctive ability approval in the enormous engineering

contexts.

Generally, the decision-making procedure includes three main steps, namely,

data gathering, recognition of alternatives to solve a specific problem, and, finally,

selection of the best alternative. This procedure may be followed by two different

approaches. In the first approach, well-known mathematical formulation and deci-

sion rules are used algorithmically in different steps of solving a specific problem.

Problems that are likely to be solved by this approach are usually called structured

problems. These kinds of problems could be possibly solved manually by the use of

computer softwares, where no human judgment is needed. In contrast, in some

problems, usually called unstructured problems, no decision rules and algorithmic

procedure are defined and are dependent considerably to the human judgment to be

solved. Decision support systems could be called as the second approach and have

been developed to be used in solving the latter.

Decision support systems are set of models developed for the sake of data

analysis to help a precise judgment (Little 1970). Little (1970) declared that a

decision support system is a simple, robust, controllable, and flexible system

containing appropriate subsystems as well as user interfaces. Bonczek

et al. (1981) have defined DSSs as computer systems including three interactive

components of user interface, a knowledge system, and a problem-processing
system. Technology developments have changed slightly the definition of such

systems in both holistic and detailed manner. Watkins and McKinney (1995) have

defined a DSS as a computer system which uses analytical models to help decision-

makers in defining and organizing various alternatives and analyzing their impacts

to choose the most appropriate alternatives. In a general definition, the architecture

of DSS consists of three components, namely, database, model base, and user

interface, as shown in Fig. 1.8.
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DSSs usually are developed for certain groups of decision-makers. This needs a

specific design such that the decision-maker could define new alternatives and more

importantly change an existing alternative to analyze that using the models embed-

ded in the system. Since the delay in responding by the system is considered as an

index of inefficiency, an interactive user interface, easy change of input parameters,

and quick, understandable, and managed output are considered as characteristics

of a DSS.
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Chapter 2

Basic Statistics

Abstract A stochastic variable is a combination of two components of deterministic

variable, D, and random variable, ε. While D could be modeled by a range of

mathematical models, ε is described by the probability theory using probability

distribution function (pdf). Regarding the type of a random variable which might

be discrete or continuous, it is defined by two types of discrete and continuous

pdfs. Discrete distribution functions of Bernoulli, binomial, and Poisson are reviewed
in this chapter along with the continuous distribution functions of exponential,
uniform, normal, and extreme value. One of the most applicable fields of distribution

functions is frequency analysis which is discussed in another section of this chapter.

As far as the statistical analysis of real problems is concerned, hypothetical tests are

widely used for deciding on either the parameters of one or several populations or the

type of a distribution function which better fits the data. The hypothetical tests follow

a general approach while that approach should be adapted for specific problems by

defining appropriate statistical and critical values. The tests on the statistical param-

eters of populations are reviewed in this chapter. Furthermore, two famous tests of

chi-square and Kolmogorov–Smirnov are presented to decide on the best distribution
function for a specific random variable. Each of the above calculations is supported

by the related commands and programs provided in MATLAB.

Keywords Probability distribution function • Frequency analysis • Hypothesis test

• Distribution fitting

2.1 Introduction

Stochastic process is a frequently used term in the technical speaking of the field of

water resources and environmental engineering. What is exactly called a stochastic

process? A stochastic process is a process that deals with both random and deter-

ministic variables. Suppose a stochastic process presented by vector of variables,

X. X, is considered as a combination of D and ε. D is a component which could be

S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Water Resources
and Environmental Engineering, Water Science and Technology Library 67,

DOI 10.1007/978-94-007-7506-0_2, © Springer Science+Business Media Dordrecht 2014
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modeled by a range of analytical, conceptual, or data-driven models, known as

“deterministic variable.” ε is a component which could not be analyzed by any

model at all, known as “random variable.” It could just be defined by the proba-

bility theory with the use of distribution functions.

By the above definition, how is a rainfall data categorized? Is it a random,

deterministic, or stochastic variable? Actually, definition of rainfall depends on

our knowledge and ability to define the rainfall process and its modeling. Certainly,

we cannot consider rainfall as a deterministic variable as it is still beyond our skills

to be 100 % sure of what we report as predicted or forecasted rainfall. It could be

considered as a random variable when we talk about rainfall estimation for long-

term return periods (say a storm with 50-year return period). Meanwhile it could be

considered as a stochastic variable in short-term rainfall estimation since applica-

tion of short-term forecasting tools has made it possible to have estimates of rainfall

variable in short lead times, even though the errors of forecasting variable force us

to be always uncertain about some fraction of our estimate. Obtained results by

tossing a coin or a dice are examples of random variables as we have no control or

knowledge to decide about the result before tossing up.

The scope of this chapter is to deal with the random term of a stochastic variable, ε.
While the deterministic and stochastic variables are modeled by a range of models, a

random variable is not modeled but it is defined and expressed by probability
distribution function. The uncertainty within a process is actually synonymous to

the contribution of D and ε to the process X. The uncertainty increases if the random
term (ε) plays amore significant role thanD through the process and vice versa. In fact,

in a process that the portion of ε is considerably more than the deterministic term, it is

useless to try modeling it by data-driven models or any other mathematical type of

models. The probability theory becomes the solution for such cases. It should be

notified that describing the random term by using the probability theory is also useful

to be applied in processes that involve a weal term of random variable. The analyzed

random term is representative of the uncertainty of the process and helps risk-based

decision-making.

Two major goals are followed up by presenting this chapter. First is to use the

basic statistics for preprocessing and postprocessing and in short for better prepa-

ration and reporting a set of data. Since the basic concepts of regression models,

time series analysis, and statistical neural networks have originated from the basic

statistics, the second goal of this chapter is to prepare readers to study the next

chapters.

This chapter begins with basic statistical definitions, which is followed by a

review on the most famous discrete and continuous probability distribution func-

tions. Frequency analysis is another section of this chapter, which is completely

related to the application of pdfs. The most applicable statistical tests are presented

in the next section dealing with two types of tests, those which deal with the

statistical parameters of samples and those which deal with the selection of the

type of pdfs. Finally the chapter ends with a workshop. At a glance, the structure of
the contents of this chapter is reviewed in Fig. 2.1.
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2.2 Basic Definitions

A random variable consists of a range of values, which are associated with a certain

probability of occurrence. For instance, the number of rainy days in November is a

discrete random variable, which has the values from 1 to 30, where the days near to

the end of November have higher probability of occurrence in comparison to the

days of the first half of November. The value of rainfall in November is an example

of continuous variables ranging from 0 to 15 mm, where values close to 10 might

have higher probability of occurrence. To describe a random variable, it is usual to

demonstrate its range of probable values, X, in a horizontal axis and the associated

probability of occurrence, f(x), at the vertical axis. This typical figure as shown in

Fig. 2.2a is called probability distribution function. In many problems, it is pre-

ferred to deal with the probability of a group of variables instead of a specific

variable. Therefore, another type of probability distribution function is developed

based on the integration of the probabilities associated to the values less than or

Basic Definitions

Probability Distribution Functions

Testing the Parameters Distribution Fitting

Hypothetical Tests

Frequency Analysis

 

Fig. 2.1 Structure of the contents of this chapter
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equal to a specific value of x0. This function is called cumulative distribution

function (CDF) (Fig. 2.2b). The discrete form of this function is obtained as

F X ¼ x0ð Þ ¼
Xx0
�1

f Xð ÞΔx (2.1)

where f(x) is the probability distribution function. A continuous CDF for a given

value x0 is calculated by the following relation:

F X ¼ x0ð Þ ¼
Zx0
�1

f Xð Þdx (2.2)

It is usual to define a random variable X by the parameters that precisely

represent the entire data as well as its probability distribution function. Statistics
involves the study of data sets like X by describing its statistical parameters. A

population includes each element from the set of observations that can be made.

The term “population” is used in statistics to represent all possible measurements or

outcomes that are of interest to us in a particular study. The term “sample” refers to
a portion of the population that is representative of the population from which it was
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Fig. 2.2 Examples of discrete pdf (a) and CDF (b) as well as continuous pdf (c) and CDF (d)
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selected. A sample consists only of observations drawn from the population.

A measurable characteristic of a population, such as a mean or standard deviation,

is called a parameter; but a measurable characteristic of a sample is called a

statistic.

The mean and the median are summary measures used to describe the most

“typical” value in a set of variables. Mean and median are usually referred as

measures of central tendency. The mean of a sample or a population is computed by

adding all of the observations and dividing by the number of observations. To find

the median, we arrange the observations in order from smallest to largest value. If

there is an odd number of an observation, the median is the middle value. If there is

an even number of observations, the median is the average of the two middle values.

Let us assume X as a vector of n random continuous numbers, X ¼ {x1,x2, . . .,xn},
and f(X) as its probability distribution function. The mean of this variable is

obtained as

x ¼
Z1
�1

xf Xð Þdx (2.3)

Considering a uniform distribution function for X (where all values are associ-

ated with the same probability of 1/n), the mean is obtained by

x ¼ 1

n

Xn
i¼1

xi (2.4)

It should be notified that the mean of a population is denoted by the symbol μ;
but the mean of a sample is denoted by the symbol x , and both are obtained by a

similar formulation.

In MATLAB, the following commands are used to calculate the mean of matrix

X (MATLAB 2006):

M¼mean(X,dim)

dim ¼ 1 returns the mean of each column, and dim ¼ 2 returns the mean of

each row of the matrix.

In case of using a vector instead of a matrix, the command is summarized to

M¼mean(X)

The following command is used to calculate the median of matrix X:

M¼median (X,dim)
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Summary measures could be used to describe the amount of variability or spread

in a set of data. The most common measures of variability are the range, variance,

and standard deviation. The range is the difference between the largest and smallest

values in a set of values. In a population, variance is the average squared deviation

from the population mean, as defined by the following formula:

σ2 ¼

XN
i¼1

xi � xð Þ2

N
(2.5)

Observations from a sample can be used to estimate the variance of a population.

For this purpose, sample variance is defined by slightly different formula and uses a

slightly different notation:

S2 ¼

Xn
i¼1

xi � xð Þ2

n� 1
(2.6)

The standard deviation is the square root of the variance. Thus, the standard

deviation of a sample is

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � xð Þ2

n� 1

vuuut
(2.7)

In MATLAB, variance and standard deviation of matrix X are obtained by the

following commands:

V¼var (X,w,dim)
S¼std (X,w,dim)

w ¼ 0 uses n � 1, and w ¼ 1 uses n in Eq. (2.5). On the other hand, w ¼ 0 is

used to calculate the variance and standard deviation for a sample, and w ¼ 1 is

used to calculate the variance and standard deviation for a population.

dim plays the role as described before.

Mode is a number in a vector which has the maximum frequency among the

others. In MATLAB it is calculated by the following command:

Mo¼mode (X,dim)
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Range is a static that represents the difference between maximum value and

minimum value among a data set and is calculated as follows:

R¼range (X,dim)

Other popular parameters of a random variable are skewness and kurtosis, which
are obtained as

Skewness ¼
XN
i¼1

xi � xð Þ3
S3

(2.8)

and

Kurtosis ¼
XN
i¼1

X xi � xð Þ4
S4

(2.9)

Those statistics are calculated by MATLAB using the following commands:

Sk¼ Skewness (x,flag,dim)
K¼ Kurtosis (x,flag,dim)

flag ¼ 0 is used to correct the calculation for a sample from a population.

Otherwise flag ¼ 1 is used to calculate the above parameters for a population.

Example 2.1: Summary Statistics

For the monthly streamflow data given in Table 2.1, find a summary of statistics.

Table 2.1 Streamflow data for Example 2.1

1 2 3 4 5 6

1 220,158.2 176,491.7 441,836.0 35,907.4 48,308.1 1,243.1

2 222,924.4 170,472.1 440,202.6 36,856.1 48,070.5 1,243.7

3 219,749.8 176,723.9 441,400.6 35,981.0 48,464.2 1,242.8

4 222,537.8 170,488.0 436,882.5 37,278.8 48,493.9 1,243.4

5 222,924.4 170,472.1 440,202.6 36,856.1 48,246.0 1,243.7

6 215,977.3 171,496.7 430,090.5 36,414.4 48,079.4 1,235.0
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Solution
Mean of each column is calculated as follows:

M¼mean(X,1)

M ¼

1.0e+005 *

2.2071 1.7269 4.3844 0.3655 0.4828 0.0124

Mean of each row is calculated as follows:

M¼mean(X,2)

M ¼

1.0e+005 *

1.5399
1.5329
1.5393
1.5282
1.5332
1.5055

Standard deviation of each row is obtained as follows:

S¼std (X,0,2)

S ¼
1.0e+005 *

1.6504
1.6444
1.6483
1.6314
1.6442
1.6043
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Finally, Mode and Range of each column is obtained as

Mo¼mode (X,1)

Mo ¼

1.0e+005 *

2.2292 1.7047 4.4020 0.3686 0.4807 0.0124

and

R¼range (X,1)

R ¼

1.0e+004 *

0.6947 0.6252 1.1746 0.1371 0.0423 0.0009

2.3 Graphical Demonstration of Data

The first step to investigate and demonstrate a set of data is to display them in a

graphical form. Two most applicable graphical forms of data are histogram and

box plot. Graphical distribution is only used for a quick assessment of data. More

details about the data are obtained by calculating parameters and statistics defined

before.

2.3.1 Histogram

A histogram is a bar plot of frequency distribution that is organized in intervals or

classes. The histogram provides useful information about the data such as central

tendency, dispersion, and the general shape of the data distribution. An example of

a histogram is shown in Fig. 2.3.
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A histogram of data, Y, is plotted by the following syntax for number of bars

equal to nbins:

Hist(Y,nbins);

2.3.2 Box Plot

Assume that the elements in a data set are rank ordered from the smallest to the

largest. The values that divide a rank-ordered set of elements into 100 equal parts

are called percentiles. An element having a percentile rank of Pi would have a

greater value than i percent of all the elements in the set. Thus, the observation at

the 50th percentile would be denoted P50, and it would be greater than 50 % of the

observations in the set. An observation at the 50th percentile would correspond to

the median value in the set.

Quartiles divide a rank-ordered data set into four equal parts. The values that

divide each part are called the first, second, and third quartiles; and they are denoted

by Q1, Q2, and Q3, respectively. Q1 corresponds to P25, Q2 corresponds to P50, and

Q3 corresponds to P75. Q2 is the median value in the set.

A box plot, sometimes called a box and whisker plot, is a type of graph used to

display patterns of quantitative data. A box plot splits the data set into quartiles.

The body of the box plot consists of a box, which goes from the first quartile (Q1)

to the third quartile (Q3). Within the box, a vertical line is drawn at the Q2, the

median of the data set. Two horizontal lines, called whiskers, extend from the

front and back of the box (Fig. 2.4). The front whisker goes from Q1 to the

smallest non-outlier in the data set, and the back whisker goes from Q3 to the

largest non-outlier (Trauth 2008).

Fig. 2.3 An example of a

histogram
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A box plot of a vector or a matrix Y is plotted by the following syntax:

boxplot(Y);

2.4 Probability Distribution Functions

A probability distribution function assigns a probability to each of the probable

outcomes of a random variable. In statistics, the empirical distribution function, or

empirical CDF, is the cumulative distribution function associated with the empir-

ical measure of the sample. The empirical distribution function estimates the true

underlying CDF of the points in the sample. Instead, a theoretical distribution

function replaces the empirical measure of samples by a mathematical relation.

This enables us to generalize the frequency analysis over a certain and limited

sample data. Among the others, the following theoretical distribution functions are

the most famous ones, which are frequently used in the field of water resources and

environmental engineering:

2.4.1 Binomial Distribution

This distribution gives the discrete probability of x successes out of n trials, with

probability p of success in any given trial. The probability distribution function of

binomial distribution is

f xð Þ ¼ n
x

� �
pxqn�x (2.10)

Fig. 2.4 An example of a

box plot
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where

n
x

� �
¼ n!

x! n� xð Þ! (2.11)

In case of just one trial (n ¼ 1), binomial distribution changes to the well-known

Bernoulli distribution. Bernoulli distribution could be considered as the simplest

theoretical distribution function.

Example 2.2: Binomial Distribution

The probability of rainfall at each day of a month is 1/12. Calculate the

probability of observing only 4 rainy days in that month.

Solution
This is an example of a binomial distribution where n is the number of days in the

month, p is the probability of raining, and x is the number of rainy days.

f 4ð Þ ¼ 30

4

� �
1=12

4 11=12
26 ¼ 0:138 ¼ 13:8 %

The solution can also be obtained byMATLAB using the following syntax, where

x ¼ number of successes, n ¼ number of trials, and p ¼ probability of success:

y¼binopdf (x,n,p)

The above syntax for this example changes to

y¼binopdf (4,30,1/12)

Furthermore, the CDF values of binomial distribution can be obtained by the

following syntax:

y¼binocdf (x,n,p)

Using the graphical user interface for statistical distributions in MATLAB,

which is run by disttool, the following pdf and CDF for binomial distribution are

plotted, which are associated with Example 5.2 (Fig. 2.5).
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2.4.2 Poisson Distribution Function

When the number of trials increases and the probability of success (or failures in

most cases) decreases, the binomial distribution function approaches the Poisson

distribution. Poisson distribution usually describes the errors in a life time of a

system. Considering the system as the natural environment, the errors are in fact

droughts, floods, failures of the water structures, pollution hazard, etc. In those

cases p is actually the probability of the occurrence of the phenomenon, n is the

number of observations, and the parameter of the Poisson distribution is defined as

λ ¼ np.

Fig. 2.5 pdf (a) and CDF (b) of binomial distribution for Example 2.2
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The Poisson distribution function is presented as

f xð Þ ¼ e�λλx

x!
(2.12)

and its cumulative distribution function is

F xð Þ ¼
Xx
i�0

e�λλi

x!
(2.13)

Example 2.3: Poisson Distribution

Return period of a flood is 10 years. Calculate the probability of experiencing

such flood two times during the 4-year construction time of a bridge.

Solution
The parameter of the Poisson distribution is λ ¼ np ¼ 4 � 0.1 ¼ 0.4. The number

of failures, x, is equal to 2. This problem can be solved by the following syntax:

y¼ poisspdf (x,landa)

It is changed for this specific example as

y¼ poisspdf (2,0.4)

which results in almost probability of 0.054. By changing x to 1, the probability

is obtained as 3 %.

To calculate CDF values of Poisson distribution, the following syntax is used:

y¼ poisscdf (x,landa)

Using disttool, the following pdf and CDF of Poisson distribution are

plotted which are associated with the above problem (Fig. 2.6).
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2.4.3 Exponential Distribution Function

How much time will pass before a flood hazard occurs in a given region? How long

will it take before an agricultural farm receives a rainfall? How long will water

resources system work without breaking down? Questions like these are often

answered in a probabilistic manner using the exponential distribution. All of

these questions concern the time we need to wait before a given event occurs. If

this waiting time is unknown, it is often appropriate to think of it as a random

variable having an exponential distribution. Roughly speaking, the time we need to

wait before an event occurs has an exponential distribution if the probability that the

event occurs during a certain time interval is proportional to the length of that time

interval.

Fig. 2.6 pdf (a) and CDF (b) of Poisson distribution for Example 2.3
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The exponential distribution is related to the Poisson distribution. When the

event can occur more than once and the time elapsed between two successive

occurrences is exponentially distributed and independent of previous occurrences,

the number of occurrences of the event within a given unit of time has a Poisson

distribution. While Poisson distribution function is used to define the number of

failures (or errors) in a system, exponential distribution function is used to define

the time interval between two failures. Time is a continuous variable, so the

exponential distribution function becomes a continuous distribution function.

The exponential probability distribution function is calculated as

f xð Þ ¼ 1

μ
e�

x
μ (2.14)

where x is the time between two events, μ is the average waiting time between two

events. CDF of an exponential distribution is calculated as

F xð Þ ¼ 1� e�
x
μ (2.15)

Example 2.4: Exponential Distribution

During the construction of a bridge, calculate the risk of experiencing a flood

with the return period of 5 years, if the construction time lasts about 18 months.

What do you suggest to decrease the risk?

Solution
The parameter of exponential distribution, mu, for this problem is the average

waiting time between two floods, which is actually 5 years. x is 18 months or

1.5 years. The problem is solved by the following syntax. It should be notified that

any x less than or equal to 1.5 years might be considered equal to destruction of the

bridge. Therefore, CDF is used to find the probability of x less than or equal to 1.5.

CDF of exponential distribution is calculated as

Y ¼ expcdf(x,mu)

which is changed to

Y ¼ expcdf(1.5,5)

It results in y ¼ 0.26 as the risk of failure. To decrease this risk, we can either

reduce the construction time or increase the return period of design flood by

strengthening the construction site.
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The probability distribution function of exponential distribution can also be

calculated by

Y ¼ exppdf(x,mu)

Using disttool, the following pdf and CDF of exponential distribution are plotted

for Example 2.4 (Fig. 2.7).

Fig. 2.7 pdf (a) and CDF (b) of Poisson distribution for Example 2.4
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2.4.4 Uniform Distribution Function

A very simplified distribution function considers a uniform probability for each

random variable. If the random variables vary from minimum a to maximum b, then
the uniform probability will be as follows:

f xð Þ ¼ 1

b� a
for a � x � b (2.16)

The set of random variables of uniformly distributed will have the following

mean and variance:

E xð Þ ¼ aþ b

2
(2.17)

var xð Þ ¼ a� bð Þ2
12

(2.18)

Example 2.5: Uniform Distribution

Consider a basin that experiences snow precipitation during the winter with the

height between 5 and 10 mm. If the snow precipitation follows a uniform distribu-

tion, calculate mean and variance of the snow in the basin.

Solution
Themean and variance of the snow are 7.5 and 2.08, respectively, as calculated below:

E xð Þ ¼ 10þ 5

2
¼ 7:5

and

var xð Þ ¼ 10� 5ð Þ2
12

¼ 2:08

2.4.5 Normal Distribution Function

A normal distribution is often used as a first approximation to describe random

variables that cluster around a single mean value. The normal distribution is
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considered the most prominent probability distribution in statistics. A normally

distributed variable has a symmetric distribution about its mean. The normal distri-

bution is defined by the following relation:

f xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p exp
�1

2

x� μ

σ

� �2� �
(2.19)

and its cumulative distribution function is

F xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p
Zx
�1

exp
�1

2

y� μ

σ

� �2� �
dy (2.20)

The parameters of a normal distribution function are actually the mean and

standard deviation of data, μ and σ. There are numerous normal distribution functions

due to the change of μ and σ. Among the others, the normal distribution with

μ ¼ 0 and σ ¼ 1 is called normal standard distribution, which is represented as

f xð Þ ¼ 1ffiffiffiffiffi
2π

p exp � z2

2

� �
(2.21)

where z is a set of random variables with μ ¼ 0 and σ ¼ 1. The importance of this

distribution is that every normal variable can be represented by the normal standard

distribution if it is standardized by the following transformation:

Z ¼ X � μ

σ
(2.22)

where X is the original data with mean and standard deviation of μ and σ, respec-
tively. Z is the normal standard data with mean and standard deviation equal to

0 and 1, respectively.

It should be notified that quantities that grow exponentially, such as maximum

river discharges, are often skewed to the right and hence may be better described by

other distributions, such as the lognormal distribution or the Pareto distribution.

Example 2.6: Normal Distribution Function

For a river with the annual data given in Table 2.2, find the answers of the

following questions. The annual average of the river is 1,115 and its standard

deviation is 255 million cubic meters.

1. What is the probability of experiencing an annual streamflow less than 1,000

MCM?
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2. What is the chance of experiencing a streamflow between 1,200 and 900?

3. What is the probability of experiencing an extreme streamflow volume more

than 1,500 or less than 700 MCM? (Table 2.2)

Solution
First, the mean and standard deviation of the data are calculated as follows:

mu¼mean(X)

mu ¼

1115

and

sigma¼std(X,0)

sigma ¼

255.3963

Answer 1.

y¼normcdf (1000, mu, sigma)

y ¼

0.3191

Table 2.2 Annual streamflow

data for Example 2.6
Year Streamflow data

2001 1,300

2002 1,600

2003 1,500

2004 1,100

2005 900

2006 770

2007 950

2008 850

2009 980

2010 1,230

2011 1,050

2012 1,150
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Answer 2.

y¼normcdf (1200, mu, sigma)-normcdf(900,mu,sigma)

y ¼

0.4463

Answer 3.

y¼(1-normcdf (1500, mu, sigma))+normcdf(700,mu,
sigma)

y ¼

0.1025

The normal distribution associated to Example 2.6 is shown in Fig. 2.8.

Fig. 2.8 CDF of normal distribution for Example 2.6
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2.4.6 Lognormal Distribution Function

Lognormal distribution gives the opportunity to fit the normal distribution on the

data, which are not originally normal. The simple idea here is to transform the

original data to normal variables by applying logarithm function on them. The

probability distribution function and cumulative distribution function of this distri-

bution are obtained as follows:

f xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p
x
exp

�1

2

lnx� μ

σ

� �2
 !

(2.23)

and

F xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p
Zx
�1

1

y
exp

�1

2

ln yð Þ � μ

σ

� �2
 !

dy (2.24)

2.5 Frequency Analysis

Frequency analysis refers to a process that tries to find the probability of occurrence

of a specific variable among the others, by the use of historical records. It also refers

to the process which determines a specific value of a variable, which is associated

to a predetermined probability. Frequency analysis has a widespread field of

application in designing of water resources and environmental variables. A relation

that is generally used for frequency analysis is

xT ¼ x � KSX (2.25)

where x and SX ¼ average and standard deviation of sample data; xT ¼ specific

value of the original data with T return period; and K ¼ a parameter that is a

function of T and the probability distribution function that better fits the data.

Example 2.7: Frequency Analysis

Statistical analysis demonstrates that the average and standard deviation of the

maximum annual discharge in a river is 16,421 and 1,352 cubic meters per second

(cms), respectively. Calculate the maximum annual discharge associated with the

1,000-year return period.
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Solution
A discharge with 1,000-year return period is a discharge which the probability of

occurrence such a discharge and greater than that each year is less than 0.001.

On the other hand, the cumulative probability of a discharge greater than a

1,000-year discharge is more than 0.999. Using the extreme value distribution

(which is usually used for extreme data), the answer will be a discharge of

19,034 cm as shown in Fig. 2.9.

2.6 Hypothetical Tests

Many decisions in the field of engineering involve a choice from two alternatives. For

example, the major considerations between two development plans involve a series

of decisions as to whether to avoid construction of a dam or change its operational

rule. In this case sample information could be used to help decision-making process.

The information may involve samples of water quality before and after developing

the new dam. The observation of such samples is viewed as tests. These tests are

analyzed to see whether the assumption of “constant average water quality” before

and after the development plan is correct. If the average value of water quality

changes statistically before and after development of the dam, it is concluded that

the development plan impacts the water quality. The assumption of “constant average

water quality” is refereed as hypothesis. The process which helps decision-makers to

decide based on the “assumption” and “tests” is called “hypothesis testing.”

Fig. 2.9 Distribution used for Example 2.7
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Regardless of the type of the decision-making problem, the process of

“hypothesis testing” follows a general algorithm which is described as follows:

• Chose a null hypothesis, H0. Null hypothesis usually represents no change from

the natural variation in the parameter of the test. For example, the null hypoth-

esis is “no change in the average of water quality of the river.”

• Chose an alternative hypothesis, H1. The alternative hypothesis is any hypoth-

esis that is different from H0. For example, the alternative hypothesis in the

above example is “the average of water quality of the river worsens in compar-

ison to its natural value.”

• Choose a significance level, α.
α is the error of rejecting H0 when it is true. Every statistical test is concluded in

association with a specific significance level. Often, researchers choose signif-

icance levels equal to 0.01, 0.05, or 0.10, but any value between 0 and 1 can

be used.

• Calculate a “test statistic” using sample data.

The “test statistic” is changed by the type of the problem. It will be presented for

typical problems in the next expressions.

• Calculate “critical values” obtained from the well-known statistical tables.

The “critical value” is usually a specific value of a probability distribution function.

• Compare computed test statistic with the critical values.

• If the test statistic falls within the critical limits, then accept H0, otherwise, reject

H0 and accept H1.

2.6.1 Testing the Parameters

A statistical hypothesis is usually an assumption about a population parameter.

This assumption may or may not be true. Hypothesis testing refers to the formal

procedures used by statisticians to accept or reject statistical hypotheses. The best

way to determine whether a statistical hypothesis is true would be to examine the

entire population. Since that is often impractical, researchers typically examine a

random sample from the population. If sample data are not consistent with the

statistical hypothesis, the hypothesis is rejected.

2.6.1.1 Testing the Population Mean

In real problems, there might be different questions regarding the average of one or

two data sets. In case of dealing with a single sample of a statistical set (population)

with a specific number of members, we might test whether the average of the

population set is equal to a known value or whether the average of a set is equal to

the mathematical average of the sample of data. The procedure for these tests is

based on the general procedure which was described before:

• The null hypothesis is H0 : μ ¼ μ0.
• The alternative hypothesis is H1 : μ 6¼ μ0 or H1 : μ > μ0 or H1 : μ < μ0.
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• The test statistic is z ¼ X�μ0
σ=
ffiffi
n

p .

• The critical value is obtained from the table of normal standard distribution

function.

The following command performs hypothesis test of the null hypothesis that data

in the vector X is a random sample from a normal distribution with mean m and

standard deviation sigma, against the alternative that the mean is not m. The result
of the test is returned in h. h ¼ 1 indicates a rejection of the null hypothesis at the

alpha% significance level. h ¼ 0 indicates a failure to reject the null hypothesis at

the alpha% significance level.

h ¼ ztest(X,m,sigma,alpha,tail,dim)

“dim” is used to perform the test for a column (¼1) or a row (¼2) of a specific

matrix.

The alternative hypothesis may be two-tailed as

H1 : μ 6¼ μ0

In this case the tail in the above syntax is assigned as both. This case refers to the
reject and accept regions as demonstrated in Fig. 2.10a.

The alternative hypothesis may be one-tailed as

H1 : μ > μ0

Z1–a /2    Za /2

accept
rejectreject

a

aZ

accept
reject

Z1–a

accept
reject

b c

Fig. 2.10 “Reject” and “accept” regions for testing the population mean of single sample in case

of known variance (a) Two-tailed hypothesis (b) One-tailed hypothesis (right) (c) One-tailed

hypothesis (left)
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or

H1 : μ < μ0

In this case, the tail in the above syntax is assigned as “right” or “left” for

μ > μ0 and μ < μ0, respectively. This case refers to the “reject” and “accept”
regions as demonstrated in Fig. 2.10b, c.

X can be a matrix or an n-dimensional array. For matrices, the above test

performs separate tests along each column of X and returns a vector of results if

dim is 1.

If the variance of the population set is an unknown value, normal distribution is

replaced by t distribution, test statistic is replaced by X�μ0
Ŝ =
ffiffi
n

p , and the following syntax

is used to run the test:

h ¼ ttest(X,m,alpha,tail,dim)

Example 2.8: Testing the Mean for One Sample

Long-term mean rainfall in a region has been 230 mm based on the 50-year

recorded data. The recorded rainfall in the last 8 years is reported in Table 2.3. Can

we conclude that the mean rainfall value has decreased in recent years?

We use the following command to test the mean for one sample:

h ¼ ttest(X,230,0.05,’left’)

which results in h ¼ 0. It means the assumption that the average of data is

230 mm could not be rejected considering 5 % significance level.

Table 2.3 Rainfall data for

Example 2.9
No. Rainfall (mm)

1 210

2 213

3 280

4 250

5 230

6 200

7 215

8 2,118
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In case of dealing with a two-sample statistical set (population), we might test

whether the average of two population sets is equal to a known value, or whether

the average of two sets is equal to the mathematical average of two samples.

The procedure for these tests is as follows:

The null hypothesis is H0 : μ1 ¼ μ2.
The alternative hypothesis is H1 : μ1 6¼ μ2 or H1 : μ1 > μ2 or H1 : μ1 < μ2.

The test statistic is
X 1�X 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ12=n1ð Þþ σ22=n2ð Þ
p .

If the variance of the population sets is an unknown value, normal distribution is

replaced by t distribution, test statistic is replaced by
X 1�X 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21=n1ð Þþ S22=n2ð Þp , and the

following syntax is used to run the test:

h ¼ ttest2(x,y,alpha,tail)

Example 2.9: Testing the Mean for Two Samples

Table 2.4 shows two sets ofmeasured total dissolved solids in a river station before

development of a surface reservoir upstream of the station (X) and after that (Y).
Test the possible increasing of TDS after the development.

Solution
We use the following command to test the mean for two samples:

h ¼ ttest2(X,Y,0.05,’both’)

Table 2.4 The TDS data

of Example 2.10
No. X Y

1 130 141

2 135 132

3 140 145

4 128 120

5 145 133

6 130 122

7 125 128

8 127 129

9 129 135

10 130 133
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It results in h ¼ 0.0, which means we cannot reject the null hypothesis, which

means no significant difference exists between the mean of two data sets.

Table 2.5 shows the summary of the tests used for testing the mean.

2.6.1.2 Testing the Population Variance

The following command performs a test by the null hypothesis that data in the

vector X are a random sample with standard deviation σ0, against the alternative that
the variance is not σ0. The result of the test is returned in h. h ¼ 1 indicates a

rejection of the null hypothesis at the alpha% significance level. h ¼ 0 indicates a

failure to reject the null hypothesis at the alpha% significance level.

h ¼ vartest(X,V,alpha,tail)

The alternative hypothesis may be two-tailed as

H1 : σ 6¼ σ0

In this case, the tail in the above syntax is assigned as both. This case refers to
the reject and accept areas as demonstrated in Fig. 2.11a.

The alternative hypothesis may be one-tailed as

H1 : σ
2 > σ0

2

or

H1 : σ
2 < σ0

2

Table 2.5 Null hypothesis, assumptions, and test statistic for testing the mean

Null hypothesis Assumption Test statistic MATLAB command

μ ¼ μ0 σ2 is known X�μ0
σ=
ffiffi
n

p ztest

μ ¼ μ0 σ2 is unknown X�μ0
Ŝ =
ffiffi
n

p ttest

μ1 ¼ μ2 σ1
2, σ2

2 are known X 1�X 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12=n1ð Þþ σ22=n2ð Þ

p ztest2

μ1 ¼ μ2 σ1
2 and σ2

2 are unknown X 1�X 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21=n1ð Þþ S22=n2ð Þp ttest2
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In this case, the tail in the above syntax is assigned as right or left for σ2 > σ0
2

and σ2 > σ20, respectively. These cases refer to the reject and accept regions as

demonstrated in Fig. 2.11b, c.

In case of dealing with a two-sample statistical set (population), the following test

is performed to test whether the variance of two X and Y sets is equal. Table 2.6 shows

the null hypothesis, assumption, and test statistic for testing the population variance.

h ¼ vartest2(X,Y,alpha,tail)

Example 2.10: Testing the Variance for Two Samples

Test whether the variance of X and Y data sets presented in Table 2.4 is equal.

2X ,n−1α

rejectaccept

2X ,n−1α

rejectaccept accept

2X ,n−11−α

2
,n−11−αX

re
je

ct

re
je

ct

a

b c

Fig. 2.11 “Reject” and “accept” regions for testing the population variance of a single sample

(a) Two-tailed hypothesis (b) One-tailed hypothesis (right) (c) One-tailed hypothesis (left)

Table 2.6 Null hypothesis,

assumptions, and test statistic

for testing the variance

Null hypothesis Assumption Test statistic

σ2 ¼ σ0
2 μ is known n�1ð ÞS2

σ2
0

vartest

σ1
2 ¼ σ2

2 μ1 and μ2 are known
F0 ¼ S21

S22
or

F0 ¼ S22
S21

vartest2
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Solution
The following command is used:

h ¼ vartest2(X,Y,0.05,’both’)

It results in h ¼ 1. It means that in 5 % significance level, the hypothesis of

equivalent variances is rejected.

2.6.2 Distribution Fitting

Distribution fitting is referred to as a process of finding a theoretical distribution

that better fits the experimental distribution of data. The benefit of using a theoret-

ical distribution instead of an experimental one is to apply it through the frequency

analysis and similar statistical modeling. Two famous tests are used for this

purpose, namely, chi-square test and Kolmogorov–Smirnov test. Chi-square test

follows the general approach of statistical test as described before. The idea of both

tests is to calculate the difference between theoretical and experimental frequency

of different classes of data. This difference is used as the test statistic. This statistic

is then compared with a critical value which is obtained for each test, specifically.

The test statistic of chi-square test is calculated as

χ
_2 ¼

XK
k¼1

yk � ŷ kð Þ2
ŷ k

(2.26)

where K ¼ number of classes where the data are grouped in, yk ¼ experimental

frequency of the data in kth class, and ŷ k ¼ theoretical frequency of the data in kth
class obtained from the theoretical pdf under the test. The test statistic is actually a

chi-square random variable which is compared with the critical value of χ
_2 from its

theoretical distribution.

The test statistic for Kolmogorov–Smirnov test involves

D ¼ max F xð Þ � F̂ xð Þ�� ���
(2.27)

where F(x) and F̂ xð Þ are the cumulative probability of data (X) classes from

the experimental and theoretical cumulative distribution function, respectively. The
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basic idea supporting both tests is to calculate the difference between the experimen-

tal distribution of data and the theoretical distribution function of the test. The

chi-square test deals with the pdf of distributions, where the Kolmogorov–Smirnov

uses the cumulative distribution functions as demonstrated in Fig. 2.12.

Example 2.11: Distribution Fitting

Test whether the drought index observed in a region follows a standard normal

distribution (Table 2.7).

Solution
The following command performs a Kolmogorov–Smirnov test to compare the

values in the data vector X with a standard normal distribution. The null hypothesis

for the Kolmogorov–Smirnov test is that X has a standard normal distribution. The

alternative hypothesis that X does not have that distribution. The result h is 1 if the

hypothesis that X has a standard normal distribution is rejected. H is 0 if that

hypothesis cannot be rejected. The hypothesis is rejected if the test is significant

at the 5 % level.

X

X

(X )F

(X )F̂

(X )f

(X )f̂

a

b

Fig. 2.12 The difference

between an experimental

and a theoretical

distribution as the basic idea

of chi-square (a) and

Kolmogorov–Smirnov

(b) tests. In the figure,

the dashed line shows
the experimental

distribution and the other

line shows the theoretical

distribution
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h ¼ kstest(X)

The following command performs a chi-square goodness-of-fit test of the data in

the vectorX against the normal distribution with mean and variance estimated fromX:

h ¼ chi2gof(X)

The result obtained by both test is h ¼ 0.

2.7 Summary

A stochastic variable is considered as a combination of two components: determin-

istic variable, D, and random variable, ε. While D could be modeled by a range of

mathematical models, ε is described by a probabilistic term, known as probability

distribution function (pdf). Regarding the type of a random variable which might be

discrete or continuous, it is defined by two types of discrete and continuous

pdfs. Discrete distribution functions of Bernoulli, binomial, and Poisson have

been reviewed along with the continuous distribution functions of exponential,
uniform, and normal distributions.

Bernoulli and binomial distributions are used to define the number of successes

(or failures) among limited number of trials. Poisson distribution is used to define

number of failures when number of trials increases to a number that could not be

handled by binomial distribution. The waiting time between two events is described

by exponential distribution. Uniform distribution is used when the probability of

random variables is considered uniform. A normal distribution is often used as a

first approximation to describe real-valued random variables that cluster around a

single mean value.

Table 2.7 Drought index

data for Example 2.11
No. X No. X

1 �3.2 11 3.2

2 0.9 12 1.2

3 1.2 13 1.4

4 �1.5 14 �2.1

5 1.5 15 �0.5

6 1.24 16 0.2

7 1.3 17 �0.3

8 1.5 18 0.5

9 �0.5 19 �2.1

10 �1 20 �1.3
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One of the most applicable fields of distribution functions is frequency analysis.

Frequency analysis refers to a process that tries to find the probability of occurrence

of a specific variable among the other values of that variable, via the usage of

historical records. It also refers to the process which determines a specific value of a

variable associated to a predetermined probability.

As far as the statistical analysis of real problems is concerned, hypothetical tests

are widely used for deciding on either the parameters of one or several populations

or the type of a distribution function that better fits the data. The hypothetical tests

follow a general approach while that approach should be adapted for specific

problems by defining appropriate statistic and critical values. The tests on the

average and variance of one and two populations were reviewed in the chapter.

Furthermore, two famous tests of chi-square and Kolmogorov–Smirnov were

presented to decide on the best distribution function for a specific random variable.
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Chapter 3

Regression-Based Models

Abstract Regression analysis aims to study the relationship between one variable,

usually called the dependent variable, and several other variables, often called the

independent variables. These models are among the most popular data-driven

models for their easy application and very well-known techniques. Regression

models range from linear to nonlinear and parametric to nonparametric models.

In the field of water resources and environmental engineering, regression analysis is

widely used for prediction, forecasting, estimation of missing data, and, in general,

interpolation and extrapolation of data. This chapter presents models for point and

interval estimation of dependent variables using different regression methods.

Multiple linear regression model, conventional nonlinear regression models,

K-nearest neighbor nonparametric model, and logistic regression model are

presented in different sections of this chapter. Each model is supported by related

commands and programs provided in MATLAB.

Keywords Linear regression • Nonlinear regression • Nonparametric regression

• K-nearest neighbor regression • Logistic regression

3.1 Introduction

The aim of regression analysis is to study the relationship between one variable,

usually called the dependent variable, and several other variables, called the

independent variables often. The independent variables are related to the dependent

variable by a parametric or nonparametric function, called the regression function.

The regression function involves a set of unknown parameters, which we seek to

find in a modeling process. Regression modeling is particularly valuable when the

dependent variable is costly or difficult to measure or in some cases impossible to

measure. Regression analysis helps one understand how the typical value of the

dependent variable changes when any one of the independent variables is varied,

while the other independent variables are held fixed.

S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Water Resources
and Environmental Engineering, Water Science and Technology Library 67,

DOI 10.1007/978-94-007-7506-0_3, © Springer Science+Business Media Dordrecht 2014
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In the field of water resources and environmental engineering, regression analysis is

widely used for prediction, forecasting, estimation of missing and censored data, and,

in general, interpolation and extrapolation of data. Regression analysis is also used to

understand which among the independent variables are related to the dependent

variable and to explore the forms of these relationships. Examples of regression-based

models in the field of water resources and environmental engineering are presented

in Table 3.1.

In this chapter, Sect. 3.1 discusses linear regression methods, one of the

most famous data-driven models and includes point and interval estimation of a

dependent variable by independent variables. Section 3.2 discusses nonlinear

regression models along with the examples of their application in water resources

and environmental engineering. Section 3.3 is concerned with a procedure called

nonparametric regression. The famous K-nearest neighbor method is presented in

this section. Another nonlinear model, called logistic regression, comes in Sect. 3.4.

Finally, the chapter ends with a workshop (Fig. 3.1).

3.2 Linear Regression

Linear regression, the most famous data-driven method, is used to model a linear

relationship between a continuous dependent variable Y and one or more independent

variables X. Most applications of regression aim to identify what variables are

associated with Y, to postulate what causes Y, to predict future observations of Y, or
to assess control over a process or system. Generally, explanatory or “causal” models

are based on data obtained from well-controlled experiments, quality control models,

and observations.

Table 3.1 A summary on the

application of regression

models in water resources and

environmental engineering

Field of the study Researchers

Urban water management Adamowski et al. (2012)

Water quality Abaurrea et al. (2011)

Hydroclimatology Hu et al. (2011)

Hydroclimatology Muluye (2011)

Groundwater Ozdemir (2011)

Storm water management Tran et al. (2009)

Hydrometry Petersen-Øverleir (2006)

Groundwater Cooley and Christensen (2006)

Hydrology Regonda et al. (2006)

Hydrology Mehrotra and Sharma (2006)

Climatology Gangopadhyay et al. (2005)

Water quality Qian et al. (2005)

Reservoir planning Adeloye et al. (2003)

Climatology Sokol (2003)

Climatology Rajagopalan and Lall (1999)

Hydrology Demetracopoulo (1994)

Sediment estimation Crawford (1991)
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If x and y denote the two variables under consideration, then a scatter diagram

shows the location of the points (x,y) as demonstrated in Fig. 3.2. If all points lie

near a line, then correlation is called linear (Fig. 3.2a, b). If y tends to increase

as x increases, then correlation is called positive (Fig. 3.2a). If y tends to decrease as
x increases, then correlation is called negative (Fig. 3.2b). If all points seem to

lie near a curve, then correlation is called nonlinear (Fig. 3.2c). The correlation

between X and Y is measured by correlation coefficient which is a number in the

range of [�1,1] representing different forms of the correlation shown in Fig. 3.2.

The strength of the linear relationship between two variables is measured by the

simple correlation coefficient. Correlation coefficient between n observations of

X and Y is calculated as

R X; Yð Þ ¼ Cov X; Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov X;Xð Þ � Cov Y; Yð Þp (3.1)

where

Cov X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
x� xð Þ y� yð Þ

s
(3.2)

and n is the number of observations of X and Y values.

Linear Regression

Nonlinear Regression

Logistic RegressionNonparametric regression

Fig. 3.1 The general structure of contents presented in this chapter
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The correlation coefficient is calculated by the following syntax:

R¼corrcoef(X)

where X is a n � m matrix; n is the number of observation; and m is the number

of variables. R is a m � m matrix containing the correlation between each pairs of

variables. It is to be notified that the small value of the above correlation coefficient

does not necessarily mean that two variables are independent. As an example two

correlated data of X and Y which are related by function Y ¼ sin(2πX) are shown in
Fig. 3.3. The data shown in this figure are completely correlated; however, the

correlation coefficient results in 0 for those specific data. It demonstrates that the

correlation coefficient only represents linear correlation and might not be much

trusted in case of nonlinear relationship between two sets of data.

The simplest regression function is presented as

y ¼ β0 þ β1x (3.3)

where y is the dependent variable, x is the independent variable, and a and b are the
parameters of the model. The above equation seems too simple to be applied in

many water resources and environmental cases; however, it is still one of the most

popular data-driven models because of two reasons: the well-known and easy

methods to calculate the unknown parameters of the equation and the role of this

x

y

x

y

x

y

x

y

a b

c d

Fig. 3.2 Different types of correlation between Y and X. (a) Positive linear correlation

(b) negative linear correlation (c) nonlinear correlation (d) no correlation
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basic model as a baseline for comparing the skill of other models. The process of

calculating the parameters of the model shown in Eq. 3.3 is simplified as follows.

The aim of linear regression modeling for a set of input/output data is to fit a line in

a way that the sum of absolute errors of fitting for n observations (as shown in

Fig. 3.4) is minimized.

It means that the following value should be minimized:

S2 ¼
Xn
i¼1

ε2i ¼
Xn
i¼1

yi � β0 � β1xið Þ2 (3.4)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
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0.8

1

0 2 431 65 8 97

Fig. 3.3 An example of two correlated data with R ¼ 0 (the x axis contains and y axis contains)

5ε

8ε
15ε

20ε

x

yFig. 3.4 Samples of errors

in linear regression fitting
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In the above equation β0 and β1 are the parameters of the model. Solving the

following equations gives the best parameters, which minimize S2:

∂S2

∂β0
¼ 0 and

∂S2

∂β1
¼ 0 (3.5)

The equations result in

�2
Xn
i¼1

yi � β
_

0 � β
_

1xi

� �
¼ 0 (3.6)

and

�2
Xn
i¼1

yi � β
_

0 � β
_

1xi

� �
xi ¼ 0 (3.7)

which gives

β1 ¼
n
X

xy�
X

x
X

y

n
X

x2 �
X

x
� �2

(3.8)

and

β0 ¼ y � β1x (3.9)

where y and x are the average of observed y and x over n observations, respectively.
Multiple linear regression (MLR) is a multivariate method of linear regression

which is actually an extended version of Eq. 3.3 presenting as

y ¼ β0 þ β1x1 þ β2x2 þ � � � þ βmxm (3.10)

for a case of m independent variables.

3.2.1 Point and Interval Estimation

The dependent variable in a regression model may be estimated in a deterministic or

probabilistic sense. A deterministic estimation is a point estimate of a variable,

while a probabilistic estimation specifies a probability distribution function for the

dependent variable. The estimation probability is a numerical measure of the degree

of certitude about the occurrence of an event, conditional on all information utilized

in the estimation process. The probabilistic estimation is also known as interval

estimation because it usually offers a range of probable estimated variables.
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In case that the correlation coefficient between two sets of variables is less than

one (which almost occurs in all real-world cases related to the fields of water

resources and environmental engineering), the estimation of dependent variable

involves errors. These estimation errors could be represented in forms of interval

estimation instead of the conventional point estimation. In such cases, the deter-

ministic equation of 3.3 is changed to the stochastic form of

y ¼ β0 þ β1xþ e (3.11)

where e is the estimation error.

According to Fig. 3.5, the output of a linear regression model can be presented

by a distribution function. The expected value of the estimation is in fact the

average value of this distribution which is resulted by Eq. 3.11.

μy ¼ β0 þ β1x (3.12)

The interval estimation is then calculated as a function of variance of the

independent and dependent variables, the covariance between them, and of course

the significant level to determine the crisp boundaries of the interval. The interval

estimation of y by the use of Eq. 3.11 in case that x ¼ x0 is obtained as

β0 þ β1x∘ð Þ � tcð Þα=2Se
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ n x∘ � xð Þ2

Sxx

s
(3.13)

where (tc)α/2 is the critical value at significance level of α and degree of freedom

v ¼ n � 1 obtained by t-student distribution function and

Sxx ¼ n
X

x2 �
X

x
� �2

(3.14)

5ε

8ε
15ε

x

y

yμ Upper 
Bound

Lower 
Bound

Fig. 3.5 The schematic of a

probability distribution

function of dependent

variable in a linear

regression model
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Syy ¼ n
X

y2 �
X

y
� �2

(3.15)

Sxy ¼ n
X

xy�
X

x
X

y (3.16)

and

S2e ¼
SxxSyy � Sxy

� �2
n n� 2ð ÞSxx (3.17)

Also the confidence limits for regression coefficients can be obtained as

β0 � tcð Þα=2Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx þ nX

� �2
nSxx

s
(3.18)

and

β1 � tcð Þα=2Se
ffiffiffiffiffiffi
n

Sxx

r
(3.19)

In MATLAB parameters of a linear regression are obtained by the following

syntax where betahat is the regression parameter:

betahat¼X\Y;

where X and Y are the set of independent and dependent variables, respectively.

In case of interval estimation, the above command changes to the following

form:

[betahat,Ibeta,res,Ires,stats] ¼ regress(Y,X,alpha);

Ibeta is the range of parameters for a multiple linear regression equation. Res and
Ires represent the residuals and the interval of residuals, respectively, and finally

stats is a vector containing some important statistics including the regression

coefficient which appears as the first variable of this vector. To run the command,

except X and Y matrices, we need to introduce alpha. Alpha is the significant level

for calculating the parameters of regression.

Any dependent variable, Y, corresponding to the given X is calculated by the

obtained regression parameters using the following syntax:

Yestimate¼X*betahat
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The intervals of the residuals of the regression fitting (also called the error of the

model) could be displayed in MATLAB by the following command:

rcoplot(res,Ires);

The statistically suspicions outliers are also highlighted in the plot by the “red”

color.

Example 3.1: Interpolation of Water Quality Values

Water quality of a river as a function of distance from the upstream of river is

tabulated as follows. Use a linear regression model to interpolate total dissolved
solution (TDS) at different locations of the river in Table 3.2.

Solution
First, we divide the data into two sets of “calibration” and “validation.” First 15 data

are used for calibration and the rest are used for validation.

X1¼[ones(size(Xcal,1),1), Xcal];
beta¼X1\Ycal;
for i¼1:size(Ycal,1); Yhatcal(i,1) ¼ sum(beta’.*[1,
Xcal(i,:)]); end;
RMSEcal¼sqrt(sum((Ycal-Yhatcal).^2)/size(Ycal,1))
X2¼[ones(size(Xtest,1),1), Xtest];
for i¼1:size(Ytest,1); Yhattest(i,1) ¼ sum(beta’.*[1,
Xtest(i,:)]); end;
RMSEtest¼sqrt(sum((Ytest-Yhattest).^2)/
size (Ytest,1))

Table 3.2 Data presented

for Example 3.1
Distance TDS Distance TDS

10 105 110 233

20 137 120 235

30 188 130 238

40 198 140 244

50 200 150 246

60 202 160 250

70 210 170 253

80 208 180 255

90 218 190 255

100 233 200 260
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Please note that a column of unit variables is added to the input matrix to use the

regression form of TDS ¼ β0 + β1 Dist, where TDS ¼ total dissolved solids and

Dist ¼ distance from the upstream of the river.

The parameters of the equation are obtained as β0 ¼ 143.59 and β1 ¼ 0.784.

Root mean square error (RMSE) for calibration data set is obtained as 17.71, where
RMSE for validation data set is 31.21. RMSE is a common statistic to measure the

skill of a regression model. The formulation of calculating this statistic is written in

the last sentence of the program of Example 3.1.

Example 3.2: Interval Estimation of Water Quality Values

Solve Example 3.1 in a probabilistic manner and calculate the probable range of

TDS at the distance of 125 km from the upstream.

Solution
The following program is used to solve this example considering an additional

column of ones for Xcal:

alpha¼0.05;
[betahat,Ibeta,res,Ires,stats]¼. . .
regress(Ycal,Xcal,alpha);
Yint¼[1 125]*Ibeta;
Yestimate¼[1 125]*betahat

The results would be an interval of [188.6 294.7]. The expected value of the

estimation is 241.6.

3.2.2 Preprocessing of Data

Before developing a regression model, the input data might be prepared before

being introduced to the model. The following common processes are usually

applied for this purpose:

3.2.2.1 Standardizing

Standardizing helps rescaling the input values to a similar scale. The following

command standardizes the inputs to fall in the range [�1,1]. This preprocessing
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task helps modeling process by bringing all inputs to a standard range which makes

them comparable easily.

[P,PS] ¼ mapminmax(x1)

where PS contains the process setting and P is the transformed input. The

transformed matrix could be reversed to the original vector by the following command:

x1_again ¼ mapminmax(’reverse’,P,PS)

3.2.2.2 Normalizing

The following command normalizes a vector to have zero mean and unity variance,

which is another way to rescale the inputs:

[P,PS] ¼ mapstd(x1)

The transformed matrix could be reversed to the original vector by the following

command:

x1_again ¼ mapstd(’reverse’,P,PS);

3.2.2.3 Principal Component Analysis

The principal component analysis (PCA) detects linear dependencies between

variables and replaces groups of correlated variables by new uncorrelated variables,

called the principal components (PCs).

The xy coordinate system can be replaced by a new orthogonal coordinate system,

where the first axis passes through the long axis of the data scatter and the new origin

is the bivariate mean. This new reference frame has the advantage that the first axis

can be used to describe most of the variance, while the second axis contributes only a

little. Originally, two axes were needed to describe the data set prior to the transfor-

mation. Therefore, it is possible to reduce the data dimension by dropping the second

axis without losing much information in case of significantly correlation.

Suppose that we have p vectors of correlated vectors, Xi. Principal components

are linear combination of those p vectors using different parameters for each

component. For p vectors we will have p principal components; however, the

value of each principal component is different from the others in terms of their

contribution to the total information of the data (Fig. 3.6).
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p principal components are calculated as

PC1 ¼ Y1 ¼ a11X1 þ a12X2 þ . . . a1pXp

PC2 ¼ Y2 ¼ a21X1 þ a22X2 þ . . . a2pXp

⋮
PCp ¼ Yp ¼ ap1X1 þ an2X2 þ . . . appXp

(3.20)

The first principal component contains the greatest variance, the second highest

variance, and so forth. All PCs together contain the full variance of the data set. The
variance is concentrated in the first few PCs, which explains most of the informa-

tion content of the data set. The last PCs are generally ignored to reduce the data

dimension.

The following command calculates principal components of an input matrix.

Furthermore, the command enables omitting the PCs that contribute to the value of
the whole data less than the specific value of “maxfrac.” “maxfrac” is between

0 and 1, representing 0–100 % of the value of the whole data.

It should be notified that it is usual to standardize the data before being used

through the process of principal component analysis as follows:

[pn,ps1] ¼ mapstd(P)
[ptrans,ps] ¼ processpca(pn,maxfrac);

Example 3.3: Principal Components Analysis

Calculate the principal components of the 3-dimentional data shown in Table 3.3.

Y1=a11X1+a12X2X2

X1

X2

X1

Y2=a21X1+a22X2

Fig. 3.6 An example of principal component analysis for a two-dimensional data
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Solution
First, to examine the correlation between the three vectors, the matrix of correlation

coefficient is calculated using the following command:

R¼corrcoef(P)

where P is the 10 by 3 matrix as presented.

The data results in the following coefficients, which demonstrates a significant

correlation between them:

R ¼

1.0000 0.9124 1.0000
0.9124 1.0000 0.9124
1.0000 0.9124 1.0000

The data turns into its principal components by the following commands. Note

that the data should be transposed before being used through the calculation

of PCA.

P¼P’;
[pn,ps1] ¼ mapstd(P)
[ptrans,ps2] ¼ processpca(pn,0.1);

The third principal component is omitted because it contains less than 10 % of

the information within the entire data.

Table 3.3 Data presented

for Example 3.3
P1 P2 P3

40 14 66

45 11 71

70 17 96

30 9 56

23 12.3 49

42 14.2 68

12 10 38

34 13.4 60

56 17 82

98 23 124
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The correlation coefficient between two remaining principal components (the

first and the second one) would be as follows which demonstrates that they are

independent:

R ¼

1.0000 0.0000
0.0000 1.0000

3.3 Nonlinear Regression

Nonlinear regression is a term that is used for a wide range of regression models

which all present a nonlinear relationship between input and output data. Different

mathematical functions are applied in the field of nonlinear regression, ranging

from sinusoidal function to exponential and power ones. Table 3.4 shows a list of

regression functions that could be used as nonlinear regression models in

MATLAB. x and y represent independent and dependent variables, respectively.

The others are the parameters of the model.

Two commands could be used to make the application of nonlinear regression

possible:

cftool

presenting a tool for curve fitting and

Table 3.4 Conventional

nonlinear regression functions
Model Equation

Exponential y ¼ aebx + cedx

Fourier y ¼ a0 þ a1 cos x � wð Þ þ b1 sin x � wð Þþ
� � �an cos x � wð Þ þ bn sin x � wð Þ

Gaussian y ¼ a1e
x�b1ð Þ=c1½ �2 þ � � � þ ane

x�bnð Þ=cn½ �2

Polynomial y ¼ a1x
n + a2x

n � 1 + � � � + anx + a0
Power y ¼ axb + c

Sin function y ¼ a1 sin(b1x + c1) + � � � + an sin(bnx + cn)

Weibull y ¼ abxb�1e �a�xbð Þ
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sftool

presenting a tool for surface fitting. An example of nonlinear regression fitting is

presented in the following example.

Example 3.4: Nonlinear Regression Modeling

Fit a nonlinear equation to solve the problem of Example 3.1.

Solution
We chose a power equation to fit the data as follows:

y ¼ f xð Þ ¼ axb þ c

Fitting the equation on the calibration data set (first 15 data) results in the

following parameters:

a ¼ �498.9

b ¼ �0.2821

c ¼ 364.3

The equation is fitted on the data with a high correlation coefficient of

R ¼ 0.9829 (Fig. 3.7).

Fig. 3.7 The power equation fitted to the data of Example 3.4
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Changing the equation to an exponential form of y ¼ f(x) ¼ aebx + cedxwith the
fitted parameters of

a ¼ 186.6

b ¼ 0.001894

c ¼ �182

d ¼ �0.07209

will result in the correlation coefficient of 0.9836 which is a little bit higher than

what is obtained by the previous equation. Figure 3.8 shows the fitted equation on

the calibration data.

The skill of both models could be tested on the validation data set.

In addition touse the curve and surfacefitting tools, specificnonlinear functions could

be applied to pairs of input/output data by the use of the command line. For example,

polynomial function of order n can be fitted to the data by the following syntax:

[p] ¼ polyfit(X,Y,n);

where n is the order of the model and p contains the parameters of

y ¼ a1x
n + a2x

n � 1 + � � � + anx + a0.

Fig. 3.8 The exponential equation fitted to the data of Example 3.4
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Example 3.5: Polynomial Regression

Fit a polynomial equation of order 2 to the data of Example 3.1.

Solution
The following short program is used to fit a quadratic equation to the data. To get a

summary report, the fitting errors are tabulated at the end of the program

(Table 3.5).

n¼2;
[p] ¼ polyfit(X,Y,n);
Yhat ¼ polyval(p,X);
table ¼ [X Y Yhat Y-Yhat]

Table 3.5 Estimated

variables and errors in

Example 3.5

X Y Estimated Y Error

10.0 105.0 135.4 �30.4

20.0 137.0 149.5 �12.5

30.0 188.0 162.7 25.3

40.0 198.0 175.0 23.0

50.0 200.0 186.4 13.6

60.0 202.0 196.9 5.1

70.0 210.0 206.6 3.4

80.0 208.0 215.3 �7.3

90.0 218.0 223.1 �5.1

100.0 233.0 230.1 2.9

110.0 233.0 236.1 �3.1

120.0 235.0 241.3 �6.3

130.0 238.0 245.6 �7.6

140.0 244.0 249.0 �5.0

150.0 246.0 251.5 �5.5

160.0 250.0 253.1 �3.1

170.0 253.0 253.8 �0.8

180.0 255.0 253.6 1.4

190.0 255.0 252.5 2.5

200.0 260.0 250.5 9.5
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3.4 Nonparametric Regression

The recognition of the nonlinearity of the underlying dynamics of stochastic

processes, gains in computational capability, and the availability of large data

sets have spurred the growth of nonparametric methods. Nonparametric estimation

of probability densities and regression functions is pursued through weighted local

averages of the dependent variable. This is the foundation for nearest neighbor

methods. K-nearest neighbor (K-NN) methods use the similarity (neighborhood)

between observations of predictors and similar sets of historical observations

(successors) to obtain the best estimate for a dependent variable (Karlsson and

Yakowitz 1987; Lall and Sharma 1996).

Nonparametric regression is a form of regression analysis in which the predictor

does not take a predetermined form but is constructed according to information

derived from the data. Nonparametric regression requires larger sample sizes than

regression based on parametric models because the data must supply the model

structure as well as the model estimates. The K-NN method imposes a metric on the

predictors to find the set of K past nearest neighbors for the current condition in

which the nearest neighbors have the lowest distance. The distance between the

current and historical condition could be calculated by the Euclidian (Karlsson and

Yakowitz 1987) or Mahalanobis distance (Yates et al. 2003) between current and

historical predictors.

The algorithmic procedure of a K-NN regression is summarized in Fig. 3.9 and is

presented as follows:

• Determine the vector of current m independent variables also known as pre-

dictors, Xr ¼ {x1r, x2r, x3r . . . xmr}, associated with the dependent variable, Yr.
• Determine the matrix of n � m predictors containing n vectors of already

observed predictors, Xt ¼ {x1t, x2t, x3t . . . xmt}; t ¼ 1, 2, . . ., n.
• Calculate n distances between current predictor and the observed predictors, Δrt.

• Select K sets of predictors/dependent variables (Xk, Yk), which have the lowest

values of Δrt. Those sets are known as the K-nearest neighbors.
• Calculate a kernel function associated with each K-nearest neighbor as

f k Δrkð Þ ¼ 1=ΔrkXK
k¼1

1=Δrk

(3.21)

Obviously,
XK
k¼1

f k Δrkð Þ ¼ 1.

• The unknown Yr is finally calculated as

Yr ¼
XK
j¼1

f k Δrkð Þ � Yk (3.22)
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The distance function is usually calculated by a Euclidean distance or a

Mahalanobis distance. A Euclidean distance between ith and jth predictors is

calculated as

Δij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1i � x1j
� �2 þ x2i � x2j

� �2 þ � � � þ xmi � xmj
� �2q

(3.23)

where m is the dimension of the predictors. The Mahalanobis distance uses the

following equation:

Δij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi � Xj

� �
C�1
t Xi � Xj

� �Tq
(3.24)

where C is the covariance matrix between X and Y.
Mahalanobis distance is a distance measure introduced byMahalanobis in 1936

(Mahalanobis 1936). It is based on correlations between variables by which differ-

ent patterns can be identified and analyzed. It differs from Euclidean distance in that

it takes into account the correlations of the data set and is scale invariant.

Lall and Sharma (1996) suggested that instead of the kernel function of

f k Δrkð Þ ¼ 1=ΔrkXK
k¼1

1=Δrk

,

Recorded 
Predictors

Recorded 
Dependent 
Variables

Current 
Predictors

Estimated 
Variable

Distance Function 

K-Nearest Neighbors

Kernel Function

Fig. 3.9 The schematic of K-NN algorithm
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the following function could be used:

f k jð Þ ¼ 1=jXK
j¼1

1=j

(3.25)

where j is the order of the neighbors after sorting them in an ascending order.

Neighbors with higher distance get higher orders and the lower contribution to the

final output.

Example 3.6: An Illustrative Example of Using K-NN Regression

Table 3.6 shows dependent variable y which is related to the input x by the

simple equation of y ¼ x2. Use the K-NN method to estimate the output associated

to x ¼ 6.

Solution
Table 3.7 shows the procedure for applying K-NN to solve the problem. Column 1

demonstrates the distance between the current predictor, x ¼ 6, and the observed

predictors. Column 2 sorts the recorded data according to the distance of their

predictors to the current predictor. Column 3 shows the dependent variables

associated to the neighbors. Column 4 demonstrates the inverse of distances.

Four nearest records are considered as the neighbors. Column 5 demonstrates

Table 3.6 Data presented for

Example 3.6
X y

2 4

3 9

4 16

5 25

7 49

8 64

6 ?

Table 3.7 Solution table for

Example 3.6
1 2 3 4 5

6 � 2 ¼ 4 1 49 1.000 0.333 16.33

6 � 3 ¼ 3 1 25 1.000 0.333 8.33

6 � 4 ¼ 2 2 64 0.500 0.167 10.66

6 � 5 ¼ 1 2 16 0.500 0.167 2.66

7 � 6 ¼ 1 3 9 Sum ¼ 38

8 � 6 ¼ 2 4 4
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the kernel functions. And finally column 6 shows the contribution of each

recorded data to the unknown variable. The final results are in fact a summation

of these contributions.

It should be notified that the result of 38 is associated to 4 number of neighbors

(K ¼ 4). Changing this parameter might change the final result.

The advantages of using a K-NN regression are:

• It follows a simple algorithm.

• It does not need any specific assumption.

• It is used for both linear and nonlinear problems.

The K-NN has some limitations including:

• It is basically an interpolation algorithm which might result in significant errors

in case of extreme value estimation.

• K-NN is considered as a nonparametric approach. It means that K-NN does not

use any parametric distribution. However, there are still some parameters that

might affect the skill of a K-NN model. Most important parameters are the

weights Euclidean distance and, most importantly, the number of contributing

neighbors, K.

The following examples present an approach for determining the appropriate

parameters for a specific problem:

Example 3.7: Development of a K-NN Regression Model

Develop a K-NN regression model and find the dependent variable associated to

x ¼ 6 using the data of Table 3.8.

Solution
The following program finds the best weights for the predictors and the best number

of neighbors for a certain data to be used in K-NN method. Then, it calculates the

Table 3.8 Data presented for

Example 3.7
X Y

2 4

3 9

4 16

5 25

7 49

8 64

6 ?

3.4 Nonparametric Regression 69



results of K-NN regression by those parameters. The following comments should be

considered before using the program:

• The program has been developed for 1- and 2-dimentional inputs and

1-dimentional dependent variable.

• Input and dependent variables are introduced by X and Y matrices, respectively.

• The program asks the number of observations of X and Y and calculates the best

weights (Best_W) and the best number of neighbors (Best_K) in a way to

calculate the minimum estimation error for X and Y matrices.

• The program calculates the estimated dependent variable associated to a specific

“current state of predictors,” which should be introduced by a certain matrix by

the user.

It should be notified that at each calculation only one observation is introduced

as the current state of predictors. The program does not work for a current predictor

which is similar to the ones in the Xmatrix, because the similar inputs are supposed

to give the results equal to what has already been observed in Y matrix.

% K-NN regression for 1- and 2- dimensional input vari-
ables and
% 1-dimensional dependent variable

X¼X; % Input Variables
Y¼Y; % Dependent Variables

%% Calculating the best "K" in K-NN regression
%The inputs to the Program are X and Y matrices
Nom¼input(’Enter number of time steps¼’);
f¼0;
for n¼1:Nom

Xtest¼X(n,:);
Ytest¼Y(n);
for m ¼1:1:Nom-1

if m<n
B(m,:)¼ X(m,:);
YB(m,1)¼ Y(m);

else
B(m,:)¼ X(m+1,:);
YB(m,1)¼ Y(m+1);

end
end

% The calculation starts with k¼2

(continued)
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for k¼2:Nom-1
for W_1¼0:0.1:1.0

W(1)¼ W_1;
if size(X,2)¼¼ 1

W(1)¼ 1;
f¼4*(n-1)+ k-1;

else
W(2)¼ 1-W(1);
f¼f+1;

end
d¼zeros(n-1,1);
result¼0;
finalresults¼0;
for j¼1:Nom-1

d(j,1)¼ sqrt(sum((W.*(B(j,:)-Xtest).^2)));
end
[sortedd firstindex]¼sort(d,1,’ascend’);
sumd¼sum(1./sortedd(1:k));
prob¼(1./sortedd(1:k))./sumd;
result(1:k)¼YB(firstindex(1:k)).*prob(1:k);
finalresults(k)¼sum(result);

error(k,f)¼abs((finalresults(k)-Ytest)/Ytest)
*100;

Table(f,1)¼k;
Table(f,2:size(X,2)+1)¼W(:);
Table(f,size(X,2)+2)¼error(k,f);

end
end

end
Table2¼sortrows(Table);

w¼0;
for k¼2:Nom-1

for W_1¼0:0.1:1.0
W(1)¼W_1;

if size(X,2)¼¼2
W(2)¼1-W(1);
w¼w+1;

else
W(1)¼1;
w¼k-1;

end

(continued)
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meanerror(w+(k-2)*(11*size(X,2)-11),1)¼k;
meanerror(w+(k-2)*(11*size(X,2)-11),2:size(X,2)+1)¼
W(1:size(X,2));

meanerror(w+(k-2)*(11*size(X,2)-11),size(X,2)
+2)¼. . .

mean(Table2(1+(k-2)*(Nom*(11*size(X,2)-11))+. . .
(w-1)*Nom:(k-2)*(Nom*(11*size(X,2)-11))+(w)*Nom,
size(X,2)+2));

end
w¼0;

end
leasterror¼ min(meanerror(:,size(X,2)+2));

g¼0;
for g¼1:(Nom-2)*((11*size(X,2)-11)-(size(X,2)-2))

if meanerror(g,size(X,2)+2)¼¼leasterror
Final(1,size(X,2)+2)¼fprintf(’Least Error’);
Final(1,1)¼meanerror(g,1);

Final(1,2:size(X,2)+1)¼meanerror(g,2:size(X,2)
+1);

Final(1,size(X,2)+2)¼meanerror(g,size(X,2)+2);
Best_K ¼ Final(1,1)
if size(X,2)¼¼2
Best_W¼Final(1,2:size(X,2)+1)
end
LeastError¼Final(1,size(X,2)+2)

end
end

%% KNN calculation%%
k¼Best_K;
if size(X,2)¼¼2

W¼Best_W;
else

W¼1;
end

current¼input(’Enterthecurrentstateofpredictors¼’);
Nom¼input(’Enter number of time steps¼’);
%% Calculating drh%%
d¼zeros(Nom,1);

(continued)
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for j¼1:Nom
d(j)¼sqrt(sum((W.*(X(j,:)-current).^2)));

end

%% Sorting drh in an ascending order%%
[sortedd firstindex]¼sort(d,1,’ascend’);
sumd¼sum(1./sortedd(1:k));
prob¼(1./sortedd(1:k))./sumd;
%% Calculating Yr%%
result¼zeros(k,1);
result(1:k)¼Y(firstindex(1:k)).*prob(1:k);
finalresult¼sum(result)

To use the above program, the following matrices need to be set:

X ¼ input data

Y ¼ recorded dependent data

P ¼ current state of predictors ¼ 6

Number of time steps ¼ 6

Then the results will be:

Best_K ¼ 2 ¼ best number of neighbors

Final result ¼ dependent variable associated to the current predictor ¼ 37

3.5 Logistic Regression

Logistic regression is a class of regression models which deals with the propor-

tion data. In case that the dependent variable is a probability of an event

(a number between 0 and 1), use of a linear regression function may lead to

inappropriate results mostly beyond the acceptable range of [0,1]. Suppose that

we need to set up a regression model to estimate the flood condition based on the

observed and forecast rainfall. The occurrence of a flood event is in fact a binary

variable that could occur when the rainfall exceeds a threshold. The following

diagram shows an illustrative example for this case. If we consider p as the

probability of flood occurrence, the relationship between p and a linear function

in form of p ¼ f(x) is not a good choice at all to fit the data as demonstrated in

Fig. 3.10.
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To solve the problem, the linear regression function of p ¼ f(x) is changed to the

linear regression function of log p
1�p

� �
¼ f xð Þ or

log
p

1� p

� �
¼ b1 þ b2x (3.26)

Equation 3.26 is called a logistic regression which outperforms conventional

linear regressions in two ways:

• It better fits on proportion or binary data.

• It avoids huge errors and out of range variables in extreme value estimation.

Example 3.8: Forecasting the Probability of Flooding

The following table shows the data related to the long-term records of rainfall

depth and flood events in a region. The first column shows the different values of

rainfall depth; meanwhile, the second column presents the number of observation of

that rainfall in the historical records of the region. Finally, the third column shows

the number of flood events that have occurred associated to the rainfall events.

Develop a logistic regression to estimate the probability of flood occurrence

associated to the rainfall forecast (Table 3.9).

Solution
First, we plot rainfall versus the probability of flood occurrence (Fig. 3.11).
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Fig. 3.10 An example of fitting a linear function to a binary data which does not result in

appropriate estimation (the x axis contains rainfall values and the y axis contains probability of

flooding)
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rainfall ¼ [210 230 250 270 290 310 330 350 370 390 410
430]’;

flood ¼ [1 2 0 3 8 8 14 17 19 15 17 21]’;

observation ¼ [48 42 31 34 31 21 23 23 21 16 17 21]’;

plot(rainfall,flood./observation,’x’)

Fig. 3.11 Rainfall (x axis) versus the probability of flood occurrence (y axis)

Table 3.9 Data presented for Example 3.8

Depth of rainfall Number of observation Number of flood events that occurred

210 48 1

230 42 2

250 31 0

279 34 3

290 31 8

310 21 8

330 23 14

350 23 17

370 21 19

390 16 15

410 17 17

430 21 21
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Now rainfall versus log p
1�p

� �
is plotted by the following commands (Fig. 3.12):

padj ¼ (flood+.5) ./ (observation+1);
plot(rainfall,log(padj./(1-padj)),’x’)

A logistic regression is fitted to the data by the following syntax:

b ¼ glmfit(rainfall,[flood observation],’binomial’)

which results in the following parameters of the model and the final equation:

b ¼

-13.3801
0.0418

and log p
1�p

� �
¼ �13:3801þ 0:0418x

Fig. 3.12 Rainfall (x axis) versus log p
1�p

� �
(y axis), where p is the probability of flooding
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Using “glmval,” any output associated with any specific input is obtained by the

derived regression model. For instance, considering the same inputs of this example,

the estimated outputs are calculated and plotted as shown in Table 3.10 and Fig. 3.13:

x ¼ 210:10:450;
y ¼ glmval(b,x,’logit’);
plot(rainfall,flood./observation,’x’,x,y,’r-’)

Table 3.10 Results obtained

by solution of Example 3.8
Probability of flood occurrence Estimated flood probability

0.02 0.01

0.05 0.02

0.00 0.05

0.09 0.11

0.26 0.22

0.38 0.40

0.61 0.60

0.74 0.78

0.90 0.89

0.94 0.95

1.00 0.98

1.00 0.99

Fig. 3.13 Logistic regression curve fitted to data of Example 3.8
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3.6 Summary

Four types of regression models, which are frequently used in the field of water

resources and environmental engineering, have been reviewed in this chapter,

namely, linear regression, nonlinear regression, nonparametric K-nearest neighbor-
hood regression, and logistic regression models. As it is understood by their names,

linear and nonlinear regression models are suitable for approximately linear and

nonlinear systems, respectively. The K-NN regression model can be used either in a

linear or nonlinear system. However, it is conventionally used in nonlinear prob-

lems. Logistic regression is a type of regression model employed in case of

applying proportion or binary data. The estimated variable in a regression model

could be produced either by point estimation or by interval estimation. The

approach of interval estimation by multiple linear regressions has been reviewed

in the chapter. Highlights in the characteristics of the regression models and their

area of application are reviewed in Table 3.11.

It should be notified that regression-based models are comparable with those

soft-computing models such as artificial neural networks, support vector machines,

and fuzzy inference systems that are going to be discussed in the next chapters.

Workshop

Table 3.12 shows the recharge and discharge of an aquifer as well as its water

table changes. The volume of the aquifer is a function of recharge and discharge

components. We need to develop a general water balance model for the entire

aquifer to predict the expected changes of the storage volume. Data of 11 years are

considered for the model calibration and 3 years’ data are considered for model

validation as shown in Tables 3.12 and 3.13.

Solution

• Fitting a Linear Regression

Table 3.11 A review on the highlights and applicable areas of regression models presented in

Chapter 3

Model Highlights Applicable area

Multiple linear

regression

Uses a very efficient structure Linear problems

Nonlinear

regression

Better fits to a data with specific well-known

parametric nonlinear curve

Nonlinear problems

K-nearest

neighborhood

Uses a simple but very efficient structure Linear and nonlinear

problemsIs not suitable for extrapolation

Logistic

regression

Transforms a linear equation to an exponential

curve to fit a set of S-shape data

Binary or proportional

problems
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The following syntax is used to apply a liner regression model to the calibration

data set:

[betahat,Ibeta,res,Ires,stats] ¼ regress(Y,X,0.05);

Please note that to get better results, it is common to add a column of ones to the

input data for using the equation of WT ¼ β0 + β1 � R + β2 � D where WT, R,
and D are water table level, recharge, and discharge, respectively.

Using the input data of

X ¼
1.0000 433.5000 27.0000
1.0000 273.1000 31.4000
1.0000 201.8000 33.8000
1.0000 235.5000 38.0000
1.0000 281.8000 33.8000
1.0000 275.0000 35.0000
1.0000 277.9000 33.8000
1.0000 324.6000 37.0000
1.0000 284.0000 33.8000
1.0000 224.7000 38.0000
1.0000 113.5000 39.0000

Table 3.12 The workshop data used for calibration

No. Recharge (R) Discharge (D) Change of the water table level (WT)

1 433.5 27.0 0.04

2 273.1 31.4 0.00

3 201.8 33.8 1.08

4 235.5 38.0 4.47

5 281.8 33.8 3.16

6 275.0 35.0 3.19

7 277.9 33.8 2.98

8 324.6 37.0 3.15

9 284.0 33.8 2.97

10 224.7 38.0 5.31

11 113.5 39.0 7.42

Table 3.13 The workshop data used for validation

No. Recharge (R) Discharge (D) Change of the water table level (WT)

1 375.82 29.32 1.56

2 163.42 33.82 2.13

3 124.16 35.12 6.01
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results in the following parameters:

betahat ¼

-14.5232
-0.0020
0.5235

Using the syntax of

rcoplot(res,Ires)

the following informative plot of Fig. 3.14 is reflects the estimation errors.

The estimated values could be obtained by the following syntax:

Yestimate¼X*betahat

Fig. 3.14 Residual plot for the linear regression fitted to the calibration data set of workshop
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which results in

Yestimate ¼

-1.2356
1.3809
2.7765
4.9093
2.6203
3.2617
2.6279
4.2118
2.6160
4.9304
5.6710

The validation results are also obtained by the above syntax using the data of

Table 3.13.

Xval ¼

1.0000 375.8200 29.3200
1.0000 163.4200 33.8200
1.0000 124.1600 35.1200

which results in

Yval ¼

0.0915
2.8619
3.6191

The correlation coefficient of the validation data using the linear regression is

about 0.75, where the absolute error of estimation, which is obtained as the average

of the absolute value of “(actual dependent variable – estimated dependent vari-

able)/actual dependent variable” in percent, is 56.1.

• Fitting a Nonlinear Regression

Using the following syntax

sftool
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two nonlinear equations ofWT ¼ β0 þ β1 �
ffiffiffi
R

p þ β2 � D3 are fitted to the data

which results in the following parameters:

WT ¼ �1:771� 0:1033�
ffiffiffi
R

p
þ 0:0001531� D3

The correlation coefficient between the actual dependent variable and the esti-

mated variable is 0.902.

The results for three validation data is obtained as

0.08535
2.830832
3.709869

The correlation coefficient of the validation data using the nonlinear regression

is about 0.77, where the absolute error of estimation is 55.2.

• Fitting a K-NN Regression

The best number of neighbors is obtained as K ¼ 10. The weight for the first

variable is obtained as 1 and the weight for the second variable is obtained as 0.

The results for the validation data is obtained as

2.44
3.577
5.506

The correlation coefficient of the validation data using the K-NN regression is

about 0.97, where the absolute error of estimation is 44.2.
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Chapter 4

Time Series Modeling

Abstract Modeling of time series involves dealing with the important temporal

dimension, which represents and processes sequential inputs. Many statistical-

based methods are used to model and forecast time series data such as

autoregressive (AR) and autoregressive moving average (ARMA) models, auto-

regressive integrated moving average (ARIMA) model, and autoregressive moving

average with exogenous (ARMAX) data. Time series modeling involves techniques

that relate time series data as dependent variables to the predictors, which all are a

function of time. Many examples of time series data exist in the field of water

resources and environmental engineering, including streamflow data, rainfall data,

and time series of total dissolved solids in a river. This variety makes the applica-

tion of time series very interesting in those fields. Two major applications are

usually followed up by the time series modeling: forecasting and synthetic data

generation. This chapter reviews the basic mathematical representation as well

as the applicable fields of the well-known time series models. In addition to the

time series analysis, different models and applications are presented by different

programs developed in MATLAB.

Keywords Time series analysis • Time series modeling • AR models • ARMA

• ARMAX • Multivariate models

4.1 Introduction

A time series is a sequence of data, which are ordered in time. If observations are

made on some phenomenon throughout time, it is most sensible to display the data

in the order in which they arose, particularly since successive observations will

probably be dependent. It is usual to plot the series value X on the vertical axis and

time t on the horizontal axis to present a time series. Time plays the role of

independent variable for the dependent variables of time series data. Such data

might be continuous, where we have an observation at every instant of time, e.g., air

S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Water Resources
and Environmental Engineering, Water Science and Technology Library 67,
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temperature, river discharge, and groundwater level. They could be discrete, where

we have an observation at some specific times, e.g., flood and drought events.

Time series data are assigned by the time of occurrence, X ¼ {X1, X2, . . . , Xt}.

There are two characteristics that change a vector of data into a time series:

1. The importance of temporal order of data that prevents any changes in the index

of the variables

2. Correlation between data of a time series that enables development of mathe-

matical models over the data

Time series modeling involves techniques that relate time series data as depen-

dent variables to the predictors, which all are a function of time. Many examples of

time series data exist in the field of water resources and environmental engineering,

including streamflow data, rainfall data, and time series of total dissolved solids in a

river. It makes the application of time series very interesting in the above-

mentioned fields. Samples of researches that have applied time series techniques

and models are presented in Table 4.1.

Two major applications are usually followed up by the time series modeling:

• Forecasting

• Synthetic data generation

Forecasting is the process of making statements about events whose actual

outcomes have not yet been observed. A commonplace example might be estima-

tion for some variable of interest at some specified future date. Synthetic data

generation is any production of data applicable to a given situation that are not

obtained by direct measurement.

Table 4.1 A summary review on the application of time series modeling in water resources and

environmental engineering

Field of the study Researchers Summary

Water quality Abaurrea et al. (2011) Trend analysis of water quality time

series

Hydroclimatology Şen (2011) Trend analysis of data

Hydrology Shao and Li (2011) Trend analysis for seasonal time series

Surface reservoir Song et al. (2011) Trend analysis of inflow to the reservoir

Hydrology Cong et al. (2009) Trend analysis

Hydrology Hamed (2009a, b) Trend analysis

Irrigation and drainage Landeras et al. (2009) Forecasting evapotranspiration data

Hydroclimatology Bayazit and Önöz

(2007)

Trend analysis

Hydrology Mohammadi

et al. (2006)

Parameter estimation of an ARMA

model

Hydrology Yue and Pilon (2004) Time series tests

Water quality Darken et al. (2002) Serial correlation analysis

Hydrodynamics and water

quality

Sun and Koch (2001) Analysis and forecasting

of salinity data

Hydroclimatology Burlando et al. (1993) Forecasting of short-term rainfall
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The applications of time series analysis and models expected to respond the

following typical questions:

– How could we detect an increasing or decreasing trend in a time series?

– How could we detect a significant change in the long-term average of a time series?

– What would be the next streamflow data in near future, in case of considering a

persistency within the correlation structure of the data?

– For designing purposes, how can we generate different realizations from an

original long-term recorded data?

This chapter contains two major topics as shown in Fig. 4.1: “time series

analysis” and “time series modeling.” Time series analysis deals with components

of a time series data as well as the common tests for time series which are usually

applied to investigate their behavior before developing a model. Those tests might

be useful to determine the appropriate approach for modeling a time series. The

next topic, time series modeling, discusses time series models and how to apply

them into the time series data. The topic includes models such as ARMA, ARIMA,

and ARMAX. The application of the fitted models in time series forecasting,

synthetic data generation, and multivariate modeling of time series are other

addressed subjects. The chapter ends with a workshop.

Time Series Modeling

Components of a Time Series

Introduction

Time Series Analysis

Tests for Time series

Types of the Models
Order of the Models

Parameters of the Models
Simulation and Validation

Fig. 4.1 Structure of the contents of this chapter
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4.2 Time Series Analysis

4.2.1 Components of a Time Series

To better define the components of a time series and analyze its behavior, some

technical terms are explained before going through the next sections.

4.2.1.1 Periodicity

A function which output contains values that repeat periodically. In terms of time

series modeling, the periodicity could be presented by the following relationship:

Pt ¼ aCos 2πt=Tð Þ þ b Sin 2πt=Tð Þ (4.1)

where Pt ¼ periodical time series data, t ¼ time as the independent variable of the

equation which is the dynamic input of the equation, and T ¼ return period of a

whole cycle of time series which along with a and b are the parameters of the

model. Periodicity is usually discovered in seasonal time series such as seasonal

rainfall and air temperature data. So, this term might be frequently used in modeling

of water resources and environmental systems.

4.2.1.2 Trend

A particular ascending or decreasing direction in the time series data. The linear

trend is presented by the following equation:

Trt ¼ atþ b (4.2)

where Trt ¼ linear trend, t ¼ time as the independent variable of the equation, and

a and b are ¼parameters of the model. The detection of trend in time series of

natural variables has become of more significance in recent decades due to the

climate change phenomena.

4.2.1.3 Random Variable

A random variable is a variable whose value is subject to variations due to chance. As

opposed to other mathematical variables, a random variable conceptually does not

have a single, fixed value; rather, it can take on a set of probable different values, each

with an associated probability. The interpretation of a random variable depends on

the interpretation of its probability distribution function. This term is the major reason

that makes the process of time series modeling a stochastic process.
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4.2.1.4 Normal Standard Random Variable

A random variable with the normal standard distribution function.

4.2.1.5 Stochastic Time Series

A stochastic time series, Zt, is presented in the general form of

Zt ¼ Dt þ εt (4.3)

where Dt is a deterministic regression-based mathematical function and εt is the

normal standard random variable.

4.2.1.6 Time Series Modeling

Modeling a real-world stochastic time series, Xt, which might be a combination of

the following terms:

Xt ¼ Pt þ Trt þ Zt (4.4)

where Pt ¼ deterministic periodic term, Trt ¼ deterministic linear or nonlinear

trend, and Zt ¼ stochastic term as discussed in Eq. (4.3).

4.2.1.7 Annual and Seasonal Time Series

The term annual time series refers to those types of time series which are

presented in annual time intervals. Seasonal time series are those types of time

series which are repeated periodically, usually in monthly and seasonal return

periods. A seasonal effect is a systematic and calendar-related effect. Seasonal

adjustment is the process of estimating and then removing the seasonal behavior

from a time series.

4.2.1.8 Jump

A sudden significant change observed in the long-term average of a time series.

A time series with jump is not stationary type I since its average is not constant in

the entire length of the time series. Figure 4.2 shows a time series which includes a

jump in time 25. It is to be notified that the fluctuation seen in time 13 or others

except 25 is not considered as a “jump” because no significant difference in the

average of data exists before and after that time.
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Figure 4.3a demonstrates an example of a time series data. This data is in fact a

combination of four major components including a periodic fluctuation as Pt ¼ 0.9

Cos(2πt/12) + Sin(2πt/12) shown in Fig. 4.3b, a linear ascending trend as

Trt ¼ 0.09t + 0.02 shown in Fig. 4.3c, a correlated data as xt ¼ 0.9xt � 1 shown

in Fig. 4.3d, and finally random variables shown in Fig. 4.3e.

The data shown in Fig. 4.3 are tabulated in Table 4.2 for more details.

4.2.2 Tests for Time Series

Preprocessing of a time series involves exploring periodicity, trend, and correlation

between the data. This section presents two tests for a time series, namely,

Mann–Kendall test of trend and Kruskal and Wallis test of jump.

The general procedure for the tests presented in this chapter is summarized by

the following algorithmic steps:

• Chose a null hypothesis, H0.

• Chose an alternative hypothesis, H1.

• Choose a significance level, α (usually 0.05).

• Compute a test statistic using sample data.

• Compute critical values which are usually obtained from the statistical tables.

• Compare the computed test statistic with the critical values.

• If computed statistic lies within the critical limits, then accept H0, otherwise,

reject H0 and accept H1.
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Fig. 4.2 A time series with a jump
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Fig. 4.3 Different components of a time series (a): periodic term (b), linear trend (c), regressive

model (d), and random variables (e)
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Fig. 4.3 (continued)

Table 4.2 An example of a time series and its components

No. Original time series Periodic term Linear trend Autocorrelated data Random variables

1 2.070912 1.279312 0.11 0.9 �0.2184

2 2.158174 1.316174 0.2 0.81 �0.168

3 1.695917 1.000716 0.29 0.729 �0.3238

4 1.191884 0.417384 0.38 0.6561 �0.2616

5 1.358166 �0.27768 0.47 0.59049 0.575352

6 0.323111 �0.89841 0.56 0.531441 0.130076

7 0 �1.27865 0.65 0.478297 0.150351

8 0.401971 �1.31662 0.74 0.430467 0.548119

9 0 �1.00215 0.83 0.38742 �0.21527

10 0.808361 �0.41942 0.92 0.348678 �0.0409

11 1.502811 0.275579 1.01 0.313811 �0.09658

12 2.406922 0.89681 1.1 0.28243 0.127683

13 2.84731 1.27798 1.19 0.254187 0.125143

14 2.479871 1.317055 1.28 0.228768 �0.34595

15 2.567446 1.003576 1.37 0.205891 �0.01202

(continued)

92 4 Time Series Modeling



4.2.2.1 Mann–Kendall Test of Trend

Mann–Kendall test has been presented by Mann (1945) and extended by Kendall

(1975). This test is applied to check whether a time series contains an increasing or

a decreasing trend. If a time series contains a trend, its trend component should be

modeled in the process of time series modeling.Mann–Kendall test uses the general
predefined procedure of the hypothesis test presented before. Every hypothesis

test requires the analyst to state a null hypothesis and an alternative hypothesis.

The hypotheses are stated in such a way that they are mutually exclusive. That is, if

one is true, the other must be false, and vice versa. For a Mann–Kendall test of
trend, the hypotheses take the following form:

Null hypothesis, H0: time series has no trend.

Alternative hypothesis, H1: time series has either an increasing or a decreasing

trend.

Test statistic: the test statistic, Z, is obtained as follows:

First, for a time series, Xi, S is calculated as

S ¼
Xn�1

k¼1

Xn
j¼kþ1

sgn xj � xk
� �

(4.5)

where

sgn xð Þ ¼
þ1 if xj � xk

� �
> 0

0 if xj � xk
� � ¼ 0

�1 if xj � xk
� �

< 0

8<
: (4.6)

In case that the data is independent and uniformly distributed, the average

of S is

E Sð Þ ¼ 0 (4.7)

Table 4.2 (continued)

No. Original time series Periodic term Linear trend Autocorrelated data Random variables

16 2.000806 0.421455 1.46 0.185302 �0.06595

17 1.694373 �0.27348 1.55 0.166772 0.251083

18 1.332189 �0.89521 1.64 0.150095 0.437306

19 1.031486 �1.27731 1.73 0.135085 0.443709

20 0.278625 �1.31749 1.82 0.121577 �0.34546

21 1.045361 �1.005 1.91 0.109419 0.030944

22 1.189341 �0.42349 2 0.098477 �0.48565

23 2.004612 0.271383 2.09 0.088629 �0.4454

24 3.150638 0.893611 2.18 0.079766 �0.00274
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and its variance will be

Var Sð Þ ¼
n n� 1ð Þ 2nþ 5ð Þ �

Xm
i¼1

ti ti � 1ð Þ 2ti þ 5ð Þ

18
(4.8)

In the above equation, n is the number of data and m is the number of ties. Each

tie is a set of similar consequent data in a time series where number of data in each

of them is t.
Finally, the statistic of this test, Z, is computed as

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S > 0

0 if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S < 0

8>>>>><
>>>>>:

(4.9)

Critical values: Mann–Kendall is a two-tailed test, which means that the test

statistic should be compared by a critical value from the table of normal standard

distribution, Zα/2, as shown in Fig. 4.4. In case that Zα/2 � Z � Z1 � α/2, the null

hypothesis is accepted by α percent of error. In case that the null hypothesis is

rejected, the time series of Xi is considered to have either an increasing trend if S is

positive or a decreasing trend if S is negative.

Za/2 Z1−a/2

acceptance 
arearejection

area rejection 
area

Fig. 4.4 The area of acceptance and rejection of null hypothesis in Mann–Kendall test
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The following program applies Mann–Kendall test for a time series Xi:

%% the program for Mann-Kendall test

sizeN¼size(x)
N¼input(’please enter N’);

%% calculation of S

S¼0;
for k¼1:N-1

sumation(k)¼0;
num(k)¼1;
for l¼k+1:N
D¼sign(x(l)-x(k));
if D¼¼0

num(k)¼num(k)+1;
end
sumation(k)¼sumation(k)+D;
end
S¼S+sumation(k);

end

%% calculation of number of ties

m¼0;
for t¼1:N-1

if num(t)>1
m¼m+1;
tie(m)¼num(t);
A¼x(t);
for r¼t+1:N-1

if x(r)¼¼A
num(r)¼1;

end
end

end
end

%% calculation of variance

sumtie¼0;
for j¼1:m

(continued)
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p¼tie(j)*(tie(j)-1)*(2*tie(j)+5)/18;
sumtie¼sumtie+p;

end
var¼N*(N-1)*(2*N+5)/18-sumtie;

%% calculation of Z and comparison with ns Z

if S>0
Z¼(S-1)/(var^0.5);

elseif S¼¼0
Z¼0;

else
Z¼(S+1)/(var^0.5);

end
alpha¼input(’please enter alpha’);
prob¼1-alpha/2;
Zstandard¼norminv(prob,0,1);
if abs(Z)<Zstandard

fprintf(’with probability of %f percent\n this time
series has NO significant TREND\n’,(1-alpha)*100);
else if S>0

fprintf(’with probability of %f percent\n this time
series has an UPWARD TREND\n’,(1-alpha)*100);

else
fprintf(’with probability of %f percent\n this time

series has a DOWNWARD TREND\n’,(1-alpha)*100);
end

end
xx¼x(1:N);
t¼1:N;
plot(t,xx),title(’time series x’),xlabel(’t’),ylabel
(’x’),grid;

Table 4.3 shows variables and parameters used in the program, which might be

changed due to the change of the problem.

Example 4.1: Testing Trend in a Time Series

Test the possible trend in the two standardized rainfall time series recorded in a

station and generated by synthetic data as presented in Table 4.4.

Mann–Kendall test is run for both time series with N ¼ 24, alpha ¼ 0.05, and

x as the name of time series. The test demonstrates that the first time series has no

significant trend and the second one has an increasing trend.
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4.2.2.2 Kruskal and Wallis Test of Jump

This test has been presented by Kruskal andWallis in 1952 to check whether a time

series contains a jump (Kruskal and Wallis 1952). In case of a jump, a time series is

usually divided in two sets of data before and after the time of observation the jump.
Jump occurs when land use change or interbasin water transfer causes significant

changes to the natural water yield of a river. In those cases detecting a jump

prevents misleading about the real potential of a river.

Table 4.3 Input data needed

for the presented

Mann–Kendall program

Variable/

parameter Description

x Name of the matrix of the specific time series

N Number of data in the time series

alpha Selected level of significance

Table 4.4 Data presented for

Example 4.1
No. First time series Second time series

1 �0.55 0.11

2 �0.42 0.2

3 �0.81 0.29

4 �0.65 0.38

5 1.44 0.47

6 0.33 0.56

7 �0.75 0.65

8 1.37 0.74

9 �1.71 0.83

10 �0.10 0.92

11 �0.24 1.01

12 0.32 1.1

13 0.31 1.19

14 �0.86 1.28

15 �0.03 1.37

16 �0.16 1.46

17 0.63 1.55

18 1.09 1.64

19 1.11 1.73

20 �0.86 1.82

21 0.08 1.91

22 �1.21 2

23 �1.11 2.09

24 �0.01 2.18
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The following specific definitions are used through the procedure of this test:

H0: No jump is observed in the time series.

H1: The time series contains a jump.

Test statistic: the statistic of this test is H, which is calculated as follows.

A time series Xi is divided into k groups of data where each group j contains nj
data. Each jump divides the time series into two groups. The order of data within

each group (rij) is calculated and Rj is obtained as

Rj ¼
Xnj
i¼1

rij j ¼ 1, 2, . . . , k (4.10)

Similar data get similar orders. The statistic of this test isH, which is calculated as

H ¼ 12

N N þ 1ð Þ
Xk
j¼1

R2
j

nj

 !
� 3 N þ 1ð Þ (4.11)

where N ¼
Xk
j¼1

nj and

Critical values: The above statistic will have a chi-square distribution with

k � 1 degree of freedom (k is the number of data). In case that H � X2
α;ðk�1Þ, the

null hypothesis is accepted (Fig. 4.5).

The following program applies Kruskal–Wallis test for a time series Xi:

% Kruscal-Wallis test of JUMP

sizeN¼size(x)
N¼input(’please enter N’);

(continued)

2X a, k−1

Rejection
area

Acceptance
area

Fig. 4.5 The area of

acceptance and rejection of

null hypothesis in

Kruskal–Wallis test
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% calculation of R(x)¼ rank of any x
y¼sort(x);
grade(1)¼ 1;
for i ¼ 2:N

if y(i)>y(i-1)
grade(i)¼ grade(i-1)+1;

else
grade(i)¼ grade(i-1);

end
end
for i ¼ 1:N

for j ¼ 1:N
if x(i)¼¼ y(j)

R(i)¼ grade(j);
end

end
end
% determining the jumping-point with drawing plot
t ¼ 1:N;
plot(t,x),title(’time series x’),xlabel(’t’),ylabel
(’X(t)’),grid;
pause

% calculation of H and comparison with chi2 distribution

k ¼ input(’please enter k¼number of groups’);
step(1)¼ 0;
for j ¼ 2:k+1

step(j)¼ input(’please enter step(j)¼t at the end of
group j’);

% step(j)¼ t at the end of group j
end
sumation ¼ 0;
for j ¼ 2:k+1

sumR ¼ 0;
for l ¼ step(j-1)+1:step(j)

sumR ¼ sumR+R(l);
end
s¼sumR^2/(step(j)-step(j-1));
sumation¼sumation+s;

end
H ¼(12/(N*(N+1)))*sumation-3*(N+1);

(continued)
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alpha ¼ input(’please enter alpha’);
p ¼ 1-alpha;
dof ¼ k-1;
Hjchi2 ¼ chi2inv(p,dof);
if H<Hjchi2

fprintf(’with probability of %f percent\n this time
series has NO significant JUMP\n’,p*100);
else

fprintf(’with probability of %f percent\n this time
series HAS significant JUMP\n’,p*100);
end

Table 4.5 demonstrates variables and parameters used in the program, which

might be changed due to the change of the problem.

Example 4.2: Test of Jump in a Time Series

Investigate the existence of jump in the following time series which represents

inflow to a reservoir (Table 4.6).

Solution
Time Series 1

Selecting N ¼ 48 and k ¼ 3, time series is divided to three groups of data from

1 to 14, 15 to 34, and 35 to 48. The groups are defined by entering 14, 34, and 48 as

different S( j) values, which is asked by the program. As it is demonstrated by the

output of the program, time series 1 has no significant jump in the significance level

of 0.05 (Fig. 4.6).

Time Series 2

Selecting N ¼ 48 and k ¼ 2, time series is divided to two groups of data from

1 to 23 and 24 to 48. The groups are defined by entering 23 and 48 as different S( j)
values, which is asked by the program. As it is demonstrated by the output of the

program, time series 2 has a jump in the significance level of 0.05 (Fig. 4.6).

Table 4.5 Input data needed for the presented test of Jump program

Variable/parameter Description

x Name of the time series of a specific problem

k Number of groups

N Number of data in the time series of the problem

Step( j) Time step when the last data of group j has been recorded

alpha Significance level
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4.3 Time Series Models

Time series analysis accounts for the fact that data points taken over time may have

an internal structure (such as autocorrelation, trend, or seasonal variation) that

should be modeled. This section will give a brief overview of some of the more

widely used techniques which are used for time series modeling.

The process of time series modeling consists of four major steps of

• Model selection

• Selection of the order of models

• Determining the model parameters

• Simulation and validation

which are defined as follows:

4.3.1 Model Selection

The characteristics of a time series determine which model fits better to reflect its

variation. Different models such as autoregressive (AR), auto Regressive moving

Table 4.6 Data presented for

Example 4.2
No. Series 1 Series 2 No. Series 1 Series 2

1 1,765.0 1.74 26 2,834.6 �0.79

2 3,212.0 1.91 27 2,492.6 �1.49

3 2,341.0 1.21 28 2,972.4 �1.90

4 2,141.5 0.80 29 2,946.2 �0.48

5 2,341.0 2.22 30 3,106.6 �2.18

6 2,280.0 0.52 31 4,994.0 �3.61

7 2,946.2 �0.91 32 3,128.0 �1.67

8 1,722.3 1.22 33 2,929.2 �4.20

9 2,345.0 �1.50 34 1,752.3 �1.95

10 1,316.9 0.75 35 5,964.4 �1.34

11 2,679.5 1.36 36 2,946.2 �0.10

12 3,249.0 2.60 37 3,476.3 0.34

13 3,208.7 3.04 38 5,291.3 �1.20

14 3,014.3 1.96 39 4,023.6 �0.15

15 5,681.5 2.55 40 2,854.0 �0.80

16 3,473.5 1.90 41 3,983.3 �0.63

17 5,463.0 2.07 42 1,757.0 �0.71

18 3,368.5 1.99 43 1,103.5 �1.00

19 5,425.2 1.70 44 847.5 �2.94

20 2,511.8 �0.24 45 3,212.0 �1.61

21 2,770.8 1.09 46 2,236.6 �1.40

22 2,137.1 0.46 47 2,341.8 �1.00

23 5,226.6 1.34 48 2,112.6 1.20

24 3,573.2 3.15 49

25 2,888.5 �0.96 50
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Fig. 4.6 Time series of Example 4.2
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average (ARMA), and autoregressive integrated moving average (ARIMA) can be

considered as alternatives of a time series model.

4.3.2 Order of Models

Each of the above models represents a wide range of variants with different orders.

In addition to the type of the model, the order of the model should be determined

too. For example, an ARMA model is the general term for an ARMA( p,q) model.

The values of p and q determine the exact order of the extended equation that an

ARMA model is representing. The order of the model usually determines the short-

term and long-term memory within a time series.

4.3.3 Determining the Model Parameters

Different parameters of the model are calculated in this step. The number of

parameters that a model might have is related to both its type and its order.

4.3.4 Simulation and Validation

The aim of time series modeling is to simulate the variation of time series for

generating and/or forecasting data. After data simulation, the skill of each selected

model should be evaluated using different criteria.

4.3.5 Types of Time Series Models

4.3.5.1 Autoregressive, AR( p), Models

Since the 1960s, autoregressive models have been widely used in water resources

engineering. The basis for AR models is the Markov chain, which relates to the time

series where every individual data is correlatedwith its past and future data. AMarkov
chain is a mathematical system that undergoes transitions from one state to another,

between a finite or countable number of possible states (Salas et al. 1980).

The basic idea for an autoregressive model comes from the idea of a linear

regression model as Y ¼ β1X + β0 + ε, where Y is the dependent variable, X is the

independent variable, and ε is a random number. In case of time series modeling,

the dependent and independent variables come from a similar data. It means that

both of them refer to an original time series. Here, the difference between indepen-

dent and dependent variables comes from the difference between the time of

occurrence of each data or in fact the index of data. Since the value of data in a
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time series depends on the time of recording the data, the following equation could

be an alternative of the above linear equation:

Xt ¼
Xk
i¼1

φiXt�i þ εt (4.12)

In the above model X ¼ the time series data, k ¼ lag time between the current

variable and the recorded past data, and φi ¼ parameters of the linear regression.

This equation is known as the autoregressive model.

The term
Xk
i¼1

φiXt � i represents the deterministic component of the stochastic

variable, X, and εt is the random component of it. The random term of the above

equation is considered as a standard normal random variable. For the compatibility

of the random and deterministic components of the above equation, X should be

transformed to a normal standard variable by the following procedure:

Yt ¼ g Xtð Þ (4.13)

where g is a transformation function, which transforms a data of specific distribu-

tion to the data of normal distribution. The normalized data is then standardized by

Zt ¼ Yt � μ

σ
(4.14)

where μ and σ ¼ the average and standard deviation of Yt time series, respectively.

One of the alternatives for the “g” transformation function is the Box–Cox function
(Box and Cox 1964) as

Yt ¼
Xtð Þλ � 1

λ
if λ 6¼ 0

log Xtð Þ if λ ¼ 0

8><
>: (4.15)

where λ ¼ the parameter of the transformation.

The optimum λ parameter for a specific time series (data) can be obtained by the

following syntax:

[Y, lambda] ¼ boxcox(data)

The normal standard variable is then calculated by

Z¼(Y-mean(Y))/std(Y)
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And Eq. (4.12) is applied to Z time series as

Zt ¼
Xp
i¼1

φiZt�i þ εt (4.16)

Similar to the well-known linear regression models, a correlation coefficient can

be used to represent how correlated the data of a time series are. The following

equation shows the formulation of this correlation coefficient:

ρk ¼

XN�k

t¼1

Zt � μð Þ Ztþk � μð Þ

XN
t¼1

Zt � μð Þ2
(4.17)

where Zt ¼ the time series data, N ¼ number of time series data, k ¼ lag time

between data, and μ ¼ mean of the time series data.

The above coefficient, which shows the correlation between the data of a time

series, is known as the autocorrelation function (ACF). In contrast to the ordinary

correlation coefficient, the autocorrelation function gets different values for differ-

ent lag time, k. So, to better represent the autocorrelation function of a time series,

different ρk values are plotted versus different lag times, k. This plot, which is known
as “correlogram,” is usually used to define the correlation between time series data

and consequently the order of the model (which is going to be discussed in the next

section). A schematic of a correlogram is shown in Fig. 4.7. Significant values of ρ
could help choosing the appropriate parameters for the time series of Eq. (4.16).

4.3.5.2 Autoregressive Moving Average, ARMA( p,q), Model

The experience of applying AR( p) models to the real-world data might result in

significant simulation errors. The reason for this is related to the fact that the

occurrence of Zt in the current time is only considered as a function of its previous

k

kρ

Fig. 4.7 Schematic of a

correlogram
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values. It is a fact that the effect of other predictors are neglected in the conven-

tional AR( p). Suppose that we are modeling the streamflow of a river by an AR( p)
model. Obviously, the streamflow is a function of the base flow, snow budget, soil

moisture, etc., which are not considered in the AR model at all. A solution to

mitigate this shortcoming of the AR models is to consider the error term, εt, as a
representative of all other predictors except the persistency of the time series data.

The AR( p) model assumes that the stochastic variable Zt is consisted in the form

of a deterministic term as
Xp
i¼1

φiZt � i and a random term as εt . εt can be considered

as a stochastic variable instead of a random variable. The stochastic variable, εt, can
be then represented by an autoregressive model itself as

εt ¼
Xq
j¼1

θjεt�j þ ζt (4.18)

where θj ¼ parameters of the model and ζ ¼ random variable or the error of the

model. The above model is known as the moving average model of order q, MA(q).
Now, after subtracting the modeled error from Eq. (4.16), the AR model can be

extended to the following form:

Zt ¼
Xp
i¼1

φiZt�i � εt ¼
Xp
i¼1

φiZt�i �
Xq
j¼1

θjεt�j þ ζt (4.19)

The above equation is known as the autoregressive moving average of orders

p and q, ARMA( p,q).

4.3.5.3 Autoregressive Integrated Moving Average,

ARIMA(p,d,q), Model

An autoregressive integrated moving average (ARIMA) model is a generalization

of an autoregressive moving average (ARMA) model. These models are fitted to

time series data either to better understand the data or to predict future points in the

series (forecasting). They are applied in some cases where data are not stationary

type I and an initial differencing step (corresponding to the “integrated” part of the

model) can be applied to remove the trend of the data.

The model is generally referred to as an ARIMA( p,d,q) model where p, d, and q
are nonnegative integers that refer to the order of the autoregressive, integrated, and

moving average parts of the model, respectively. p and q refer to the order of

ARMA model and d refers to the order of differencing.

A linear trend in a time series, Tt, can be represented by Tt ¼ at + b where t is
the time step and a and b are the constant parameters. The trend is changed to a

constant term by a first derivation of Tt over t. An alternative for the derivation is the

gradient of ΔTΔt or in case of constant time interval, ΔT. As an example, the first order

(U ) and second order difference (W ) of time series Z are represented as

106 4 Time Series Modeling



Ut ¼ Zt � Zt�1

Wt ¼ Ut � Ut�1
(4.20)

The general equation of an ARIMA ( p,d,q) model is then represented as

Vt ¼
Xp
i¼1

φiVt�i �
Xq
j¼1

θjεt�j þ ζt (4.21)

where Vt is resulted by the dth difference of the original Zt data through the

preprocessing operation.

Example 4.3: The Difference Operator

Table 4.7 shows a time series with a linear trend. Use a difference operator to

make the data ready for modeling.

Solution
The first order difference of the data is shown in Table 4.8.

Table 4.7 Data presented for

Example 4.3
Row Data

1 10

2 11

3 17

4 18

5 20

6 25

7 24

8 27

9 25

10 32

Table 4.8 Results obtained

by differencing of time series

presented in Example 7.3

t Zt Ut

1 10

2 11 1

3 17 6

4 18 1

5 20 2

6 25 5

7 24 �1

8 27 3

9 25 �2

10 32 7
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And Fig. 4.8 shows the original time series as well as the differenced one which

is actually a stationary data. It is to be notified that if the differenced data is still

nonstationary, a higher order of differencing is necessary to process the data.

4.3.5.4 Autoregressive Moving Average Model with Exogenous,

ARMAX, Inputs Model

To consider the effect of an external predictor except the persistence between data,

an improved model of ARMA, named ARMAX (AutoRegressive Moving Average

with eXogenous inputs), has been developed. In general, the ARMAX( p,q,b) model

might be expected to simulate very well the behavior of systems whose input–output

characteristics are approximately linear. The notation ARMAX( p,q,b) refers to the

model with p autoregressive terms, qmoving average terms, and b exogenous inputs
terms. This model contains the AR( p) and MA(q) models and a linear combination

of the last b terms of a known and external time series, Xt. It is given by

Zt ¼
Xp
i¼1

φiZt�i �
Xq
j¼1

θjεt�j þ
Xb
l¼1

γiXt�l þ ζt (4.22)

where Zt ¼ the dependent variable, Xt ¼ the exogenous input, εt ¼ the previous

error of model, φ, θ, and γ ¼ parameters of the model, p, q, and b ¼ orders of the

model, and finally ζt ¼ modeling error.

4.3.5.5 Multivariate Time Series Modeling

Multivariate time series analysis is used when one wants to model and explain the

interactions and co-movements among a group of time series variables. In many
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Fig. 4.8 Original and differenced time series of Example 4.3
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problems of water resources and environmental engineering, it is essential to model

two or more time series, simultaneously. It is because of the correlation between

multiple variables. Examples of this type of modeling are dealing with the rainfall

data of adjacent stations, rainfall and streamflow in a basin, pollutant variables

measured along with a river, etc.

In multivariate modeling of time series, each component has autocovariances

and autocorrelations, but there is also a cross-correlation between them which

should be dealt with by the following equation:

ρijk ¼

Xn�k

1

Zi
t � Z

i
� �

Zj
tþk � Z

j
� �

Xn
1

Zi
t � Z

i
� �Xn

1

Zj
t � Z

j
� � (4.23)

where Zit ¼ ith time series, Z
i ¼ the long-term average of the ith time series, and

n ¼ number of data in time series.

Figure 4.9 presents the structure of 1-lag correlation between two different time

series.

The multivariate form of an AR(1) is

Zt ¼ A1Zt�1 þ Bεt (4.24)

where Zt is an (n � 1) vector, containing elements of n different time series, zi
t
. The

extended form of Eq. (4.25) would then be

t

t

11

1
ρ

12
0ρ12

0ρ

22

1
ρ

12
1ρ 21

1ρ

1
tZ

2
tZ

Fig. 4.9 The structure of

autocorrelation and cross-

correlation between two

time series
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z1t
z2t
⋮
znt

2
664

3
775 ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

⋮ ⋮ ⋮ ⋮
an1 an2 . . . ann

2
664

3
775

z1t�1

z1t�1

⋮
z1t�1

2
664

3
775

þ
b11 b12 . . . b1n

b21 b22 . . . b2n

⋮ ⋮ ⋮ ⋮
bn1 bn2 . . . bnn

2
664

3
775

ε1t
ε2t
⋮
εnt

2
664

3
775 (4.25)

4.3.6 Order of Time Series Models

4.3.6.1 Order of AR( p) Models

Suppose that the best-fitted model on a normal standard time series is presented as

Zt ¼
Xp
i¼1

φiZt�i þ εt (4.26)

or

Zt ¼ φ1Zt�1 þ φ2Zt�2 þ � � � þ φpZt�p þ εt (4.27)

where Zt is the normal standard data of the original time series of Xt which is

obtained as Zt ¼ Yt�μ
σ , where μ and σ are the average and standard deviation of Yt

normal time series. Equation (4.26) could be rewritten as

Yt � μ

σ
¼
Xp
i¼1

φi

Yt�i � μ

σ

� �
þ εt (4.28)

The term Yt�k�μ
σ is multiplied to both sides of the above equations.

Yt�k � μð Þ Yt � μð Þ
σ2

	 

¼
Xp
i¼1

φi

Yt�k � μð Þ Yt�i � μð Þ
σ2

	 

þ εt (4.29)

Taking the expected value of each term of the above equation, the following

equation resulted which is known as the Yule–Walker equation (Yule 1927;

Walker 1931):

ρk ¼
XP
i¼1

φiρk�i k > 0 (4.30)
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or

ρk ¼ φ1ρk�1 þ φ2ρk�2 þ � � � þ φpρk�p k > 0 (4.31)

The above equation can be used to derive parameters of an AR( p) model

substituting different values for p and k. For instance, for k ¼ 1 and p ¼ 1, the

following equation is derived:

ρ1 ¼ φ1 (4.32)

and for p ¼ 2 and k ¼ 1

ρ1 ¼ φ1= 1� φ2ð Þ (4.33)

Among p numbers of φ, the pth parameter, φp, of an AR( p) is of more

significance among the others. According to Eq. (4.31), the extent of the model

is limited to the number of φ s. Obviously, φ parameters close to zero means

that the correlation between that lag of time series is not significant. The order

of an AR model is then limited to p. This is demonstrated by plotting

partial autocorrelation (PAC) function, which is actually a plot of φp s versus

different values of p. The following syntax is used to plot PACF for a time

series:

parcorr(Z,Lag)

where Z is the time series and Lag is the lag time.

Example 4.4: Partial Autocorrelation Function

For the time series shown in Table 4.9, plot PACF and decide about the order of

AR( p) model.

Solution
The PACF is plotted using the command of

parcorr(Z,Lag)

which results in the partial autocorrelation function shown in Fig. 4.10.

As it is obvious by the plot, PACF is almost zero from lag 2 to lag 8. Please

note that the significant values of PACF from lag 9 later on might be a random
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phenomenon and does not mean any real correlation between data. As a result

the optimum lag for an AR model to be fitted on the data is 1. It should be

notified that the maximum lag time that the PACF could be drawn here is

24 (number of data, 1).

Fig. 4.10 Partial autocorrelation function for the time series of Example 4.4

Table 4.9 Data presented

for Example 4.4
No. Time series data No. Time series data

1 119.1 14 97.0

2 107.1 15 87.3

3 96.4 16 78.6

4 101.0 17 87.0

5 90.9 18 78.3

6 81.8 19 110.0

7 73.6 20 65.0

8 66.3 21 65.0

9 59.6 22 58.5

10 122.0 23 52.6

11 109.8 24 47.4

12 98.8 25 78.0

13 88.9
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4.3.6.2 Order of MA(q) Models

From a procedure almost similar to deriving the Yule–Walker equation, order of an

MA model is related to the autocorrelation coefficients which are obtained and

plotted by the following command:

autocorr(Z,Lag)

ρ parameters close to zeromean that the correlation between that lag of residuals is

not significant. The order of an MA model is then limited to significant values of ρ.
This is demonstrated by plotting autocorrelation (AC) function, which is actually a

plot of ρ s versus different values of q.

Example 4.5: Order of an MA(q) Model

For the normal standard time series shown in Table 4.10, decide on the order of

the moving average model that might fit the data.

Solution
The autocorrelation of the above data is presented as follows (Fig. 4.11).

As it is obvious by the plot, ACF is almost zero from lag 3 later on. It is

concluded that the best model for the data is MA(2).

Table 4.10 Data presented

for Example 4.5
No. Time series data

1 1.83390

2 0.932676

3 1.158646

4 0.521661

5 0.150655

6 0.045185

7 0.349916

8 0.184503

9 0.56011

10 �1.06535
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4.3.6.3 Order of ARMA( p,q) Models

Like AR and MA models, autocorrelation and partial autocorrelation functions

can be used to determine the orders of an ARMA( p,q) model. The characteristic

behavior of ACF and PACF based on Salas et al. (1980) is summarized as

follows:

• For an ARMA( p,q) model, the autocorrelation function (ACF) is infinite in

extent and the function is irregular in first q � p lags then consists of damped

exponentials and/or damped waves.

• For an ARMA( p,q) model, the partial autocorrelation function (ACF) is infinite

in extent and the function is irregular in first p � q lags then consists of damped

exponentials and/or damped waves.

• For an AR( p) model, the partial autocorrelation function (PACF) is finite in

extent with peaks at lags 1 through p then cuts off.

• For an AR( p) model, the autocorrelation function (ACF) is infinite in extent

consisting of damped exponentials and/or damped waves.

• For an MA(q) model, the partial autocorrelation function (PACF) is infinite in

extent consisting of damped exponentials and/or damped waves.

• For an MA(q) model, the autocorrelation function (ACF) is finite in extent with

peaks at lags 1 through q then cuts off.

Fig. 4.11 Autocorrelation function for time series of Example 4.5
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Example 4.6: Order of an ARMA(p,q) Model

For the time series shown in Table 4.11, decide on the type and order of the

model.

Solution
By plotting both ACF and PACF as presented in Figs. 4.12 and 4.13, we can

decide on the type and order of the model. The plots demonstrate that an ARMA

model is more suitable for the data since none of the plots have been cut off at

a specific lag. Furthermore, the correlation by lag 2 is more significant than

the others in both plots. So, ARMA(2,2) and lower orders are selected for the

time series.

Table 4.11 Data presented

for Example 4.6
Time Data Time Data

1 1,765.0 26 2,834.6

2 3,212.0 27 2,492.6

3 2,341.0 28 2,972.4

4 2,141.5 29 2,946.2

5 2,341.0 30 3,106.6

6 2,280.0 31 4,994.0

7 2,946.2 32 3,128.0

8 1,722.3 33 2,929.2

9 2,345.0 34 1,752.3

10 1,316.9 35 5,964.4

11 2,679.5 36 2,946.2

12 3,249.0 37 3,476.3

13 3,208.7 38 5,291.3

14 3,014.3 39 4,023.6

15 5,681.5 40 2,854.0

16 3,473.5 41 3,983.3

17 5,463.0 42 1,757.0

18 3,368.5 43 1,103.5

19 5,425.2 44 847.5

20 2,511.8 45 3,212.0

21 2,770.8 46 2,236.6

22 2,137.1 47 2,341.8

23 5,226.6 48 2,112.6

24 3,573.2 49 2,871.6

25 2,888.5 50 2,543.9
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Fig. 4.13 PACF for the time series of Example 4.6

Fig. 4.12 ACF for the time series of Example 4.6
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4.3.7 Determining Parameters of the Time Series Models

4.3.7.1 ARMAX Models

To determine the parameters of AR, ARMA, and ARMAX models in MATLAB,

we need to consider the following general equation of ARMAX as follows to use

armax command:

Zt �
Xna
i¼1

φiZt�i ¼
Xnb
l¼1

γiXt�l�nk �
Xnc
j¼1

θjεt�j þ ξt (4.34)

m ¼ armax(Z,[na nb nc nk]);

In the armax command, Z is a two-column matrix containing the dependent

variable in the first column and the exogenous variable in its second column. In

case of modeling by AR and ARMA models, Z contains only one column of

dependent variable. na, nb, nc, and nk are the orders and lags of the model as

presented in Eq. (4.34). It is to be notified that in case of AR and ARMA models,

nb and nk are removed from the command. Finally m contains the parameters of

the model. It should be notified that the parameters of an ARIMA model are also

obtained by the above-mentioned command. The difference is only in the

preprocessing of time series which needs to be differenced before being used

through the ARIMA model.

Example 4.7: Parameters of an ARMAX Model

Determine the parameters of an ARMA(1,2) and ARMAX(1,2,3) for the data

shown in Table 4.12.

For ARMAX(1,2) we consider one-column matrix Z containing the original data

and the parameters as

na¼1;
nc¼2;

The command is

m ¼ armax(Z,[na nc]);

and the parameters will then be
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A(q) ¼ 1 - 1.022 q^-1

C(q) ¼ 1 - 0.9515 q^-1 + 0.01017 q^-2

It means that φ1, θ1, and θ2 are equal to �1.022, �0.9515, and 0.01017,

respectively.

For ARMAX(1,2,3) we consider Z as a two-column matrix containing the

dependent variable in the first column and the exogenous variable in its second

column and

na¼1;
nb¼3;
nc¼2;
nk¼0;

Table 4.12 Time series

presented for Example 4.7
Time Z X

1 17.65 18

2 32.12 30

3 23.41 28

4 21.42 22

5 23.41 22

6 22.8 31

7 29.46 32

8 17.22 33

9 23.45 34

10 13.17 35

11 26.8 36

12 27 27

13 32.09 38

14 30.14 39

15 56.82 40

16 34.74 41

17 44 43

18 33.69 42

19 54.25 50

20 25.12 45

21 27.71 43

22 21.37 44

23 52.27 24

24 35.73 49

25 28.89 50
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The command is

m ¼ armax(Z,[na nb nc nk]);

and the parameters will be

A(q) ¼ 1 - 0.6448 q^-1

B(q) ¼ 0.06291 + 0.1542 q^-1 + 0.1035 q^-2

C(q) ¼ 1 - 0.831 q^-1 - 0.1171 q^-2

It should be notified that transforming data to a normal standard series is

necessary at the beginning of modeling in case of synthetic data generation.

4.3.7.2 Multivariate AR Models

The key factor in parameter estimation of a multivariate AR model is to calculate

the correlation matrix, M, which is defined as follows:

Mk ¼
ρ11k ρ12k � � � ρ1nk
ρ21k ρ22k � � � ρ21k
⋮ � � �
ρn1k ρn2k � � � ρnnk

2
664

3
775 (4.35)

where ρijk ¼ the correlation coefficient as defined in equation 4.23.

For a MAR(1) model in form of

Zt ¼ A1Zt�1 þ Bεt (4.36)

the matrix A is obtained by the following multivariate form of Yule–Walker

equation (Salas et al. 1980):

Mk ¼ A1Mk�1 k > 0 (4.37)

or

Mk ¼ Ak
1
M0 k > 0 (4.38)
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which gives

Â1 ¼ M̂1M̂
�1

0 k > 0 (4.39)

B matrix is obtained by solving the following equation:

B̂B̂
T ¼ M̂0 � Â1M̂

T

1
(4.40)

The multivariate AR(2) model is presented as

Zt ¼ A1Zt�1 þ A2Zt�2 þ Bεt (4.41)

The parameters of a multivariate AR(2) model are obtained as follows:

Â1 ¼ M̂1 � M̂2M̂
�1

0 M̂
T

1

h i
M̂0 � M̂1M̂

�1

0 M̂
T

1

h i�1

(4.42)

Â2 ¼ M̂2 � M̂1M̂
�1

0 M̂1

h i
M̂0 � M̂

T

1 M̂
�1

0 M̂1

h i�1

(4.43)

B̂ B̂
T ¼ M̂0 � Â1M̂

T

1 þ Â2M̂
T

2

h i
(4.44)

4.3.8 Simulation and Validation

As it was described in the introduction of this chapter, two major applications are

aimed by the time series modeling: forecasting and synthetic data generation. Fore-

casting is the process of making statements about events whose actual outcomes have

not yet been observed. Synthetic data generation is any production of data applicable

to a given situation that are not obtained by direct measurement. Usually forecast data

are used for operation of water resources and environmental systems, where synthetic

generated data are used for simulation of such systems for designing purposes.

There are two main differences between forecasting and data generation:

1. Data generation has a long-term time horizon (say 5 years to 100 years), whereas

forecasting is usually applied for a short-term time horizon (say 1 month,

3 months, and maximum 1 year).

2. Forecast data refers to a specific time, but a generated data may refer to any time

within a long time interval.

Even though there are models that outperform ARMA models in forecasting,

ARMA is still one of the top choices of modelers for synthetic data generation.

4.3.8.1 Forecasting

The algorithmic procedure of forecasting by an ARMA or ARIMA model is

presented in Fig. 4.14. As it is shown in the figure, the procedure contains six

major steps which are presented as follows:
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2. Determine the order of
ARMA(p,q) model,

p and q

3. Determine p+q
parameters of the model

4. Consider t as the time
of observing the last

recorded data

5.1. Use equation
4.46 to forecast one-
step-ahead data, Zt+1

5.2. Use equation
4.47 to forecast one-
step-ahead data, Zt+1

Is t=L ?

6. Back transform data

1. Preprocess the time
series

5. Is
forecast

lead time,
L <=q ?

YN

Y

N
t=t+1

Fig. 4.14 The algorithm

of forecasting by time series

models
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1. Preprocessing: Normalize and standardize n numbers of recorded data at the

beginning of the procedure. In case of applying ARIMA model, the data should

be differenced by a specific order. The order of differencing depends on the

order that the data is nonstationary.

2. Order of the model: Plot ACF and PACF to decide on the appropriate range for

the orders of the model.

3. Parameters of the model: Fit a model of ARMA( p,q) or ARIMA( p,d,q) to the

above-transformed data and determine their parameters.

4. Setting up the forecasting model: The following general equation is set up based

on the type and order of the model as well as the calculated parameters. The

general relation for time series forecasting is

Utþ1 ¼
Xp
i¼1

φiUt �
Xq
j¼1

θjεtþ1�j (4.45)

U in the above equation refers to either normal standard data or the

differenced normal standard data. It is to be notified that t in the equation refers

to the time of observing the last recorded data. The εt values prior to t are
actually the errors of modeling in the previous steps. The random number of the

ARMA equation has been omitted from the equation since the forecasting model

relied only on the deterministic term of a time series.

5. Use the correct equation: Considering the lead time of forecasting as L, if L � q
the following equation is used for forecasting. It is because in case of no

information about the future random variables, we use their expected value

which is in fact zero.

Utþ1 ¼
Xp
i¼1

φiUt �
Xq
j¼1

θjεtþ1�j (4.46)

If L > q the forecasting equation changes to the following:

Utþ1 ¼
Xp
i¼1

φiUt (4.47)

6. Back-transform data: The forecasted data should be back-transformed to the real

values.

For a time series forecasting by model m, the following syntax is used:

Zp ¼ predict(m,Z,L);

where m is the selected model, Zp is the forecasted series, and L is the lead time

of forecasting.
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4.3.8.2 Synthetic Data Generation

The algorithmic procedure of synthetic data generation by an ARMA model is

presented in Fig. 4.15. It is to be notified that an ARIMA model is not applicable to

the data generation purposes, because the differencing step of ARIMA makes it

necessary to deal with the exact time location of a data to be integrated with its

previous variable. This is in contrast with the idea of data generation in which no

specific time is considered for a generated data. The procedure of data generation is

summarized as follows:

1. Preprocessing: At the beginning of the procedure, normalize and standardize

n numbers of recorded data.

2. Order of the model: Plot ACF and PACF to decide on the appropriate range for

the orders of the model.

3. Parameters of the model: Fit a model of ARMA( p,q) to the above-transformed

data and determine their parameters.

4. Random number generation: If you wish to generate m numbers of synthetic

data, generate 50–100 + m numbers of normal standard random variables

with average zero and standard deviation equal to the standard deviation of

the basic model errors. The first 50–100 random numbers are used to warm up

the model and to reduce the effect of initial choices for the process of data

generation.

5. Setting up the model: The following general equation is set up based on the type

and order of the model as well as the calculated parameters.

Ztþ1 ¼
Xp
i¼1

φiZt �
Xq
j¼1

θjεtþ1�j þ ζtþ1 (4.48)

It is to be notified that t in the equation refers to the time of observing the last

recorded data.

6. Data generation: Calculate the first synthetic data by Eq. (4.48). The calculation

of Zt + 1 continues to the time horizon of 50–100 + m, where m ¼ number of

desired synthetic data. At each iteration, Zt and εt are replaced recursively by

Zt + 1 and εt + 1 of the previous iteration.

7. Omitting the warm-up data: The first 50–100 generated data which were used as

warm up are omitted in this stage.

8. Back-transform data: The generated data are back-transformed to the real values.

The role of lead time in time series forecasting and data generation is shown in

Fig. 4.16. As it is shown in Fig. 4.16a, two different relations are used for time

series forecasting before the lead time of t + q and after that. The role of lead time

in synthetic data generation is shown in Fig. 4.16b. As it is shown in the figure,

considering the current time as t, data generated in the range of 50 + t to 100 + t
is omitted from the final data and the set of data after that is considered as the

final data.
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2. Determine the order of
ARMA(p,q) model,

p and q

3. Determine p+q
parameters of the model

4. Generate 50~100+T
values of normal standard

random numbers

7. Omit the first 50~100
generated data

6. Generate one-step-
ahead data, Zt+1

5. consider t as the time of
observing the last

recorded data

Is
t+1=50~100+T

t=t+1

8. Back transform data

1. Preprocess the time
series

Y

N

Fig. 4.15 The algorithm of

synthetic data generation by

time series models
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4.3.8.3 Validation of the Models

The validation of ARMAXmodels could be tested by the Akaike Information Criterion

(AIC) which has been suggested by Akaike (1974) using the following relation:

AIC ¼ Nln σ2ε þ 2 pþ qð Þ (4.49)

where N ¼ number of time series data, σ2ε ¼ variance of the error of the model, and

p and q ¼ the orders of the model. AIC considers two criteria to decide on a

validation of a model, the minimum error (first sentence of Eq. (4.49)), and

parsimony of the parameters (second sentence of Eq. (4.49)). Obviously the

model with less AIC is preferred. To obtain the value of this test for a given

model, m, the following syntax is used:

test¼aic(m);

4.4 Summary

Modeling a stochastic time series, Xt ¼ Pt + Trt + Zt, includes dealing with at least
three terms of Pt as a deterministic periodic term, Trt as a deterministic linear or

nonlinear trend, and Zt as a stochastic term. Preprocessing of a time series involves

Time= q+t
Time= t

Time= t Time=50~100+t

Time Axis

Time Axis

1 2 3

1 2 3

Time Axis

a

b

Fig. 4.16 The role of time intervals in time series forecasting and data generation (a) Forecasting

(b) Data generation
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exploring periodicity, trend, and correlation between the data of a time series.

Furthermore, a time series might have a sudden significant change in its long-

term average which is known as “jump.” A time series should be stationary type I by

removing jump as well as Pt and Trt before being processed through the component

of Zt. Two tests were presented for a time series, namely, Mann–Kendall test of
trend and Kruskal and Wallis test of jump.

Two major applications are aimed by the time series modeling: forecasting and

synthetic data generation. Forecasting is the process of making statements about

events whose actual outcomes have not yet been observed. Synthetic data genera-

tion is any production of data applicable to a given situation that are not obtained by

direct measurement. Usually forecasted data are used for operation of water

resources and environmental systems, where synthetic generated data are used for

simulation of such systems for the designing purposes.

Time series analysis accounts for the fact that data points taken over timemay have

an internal structure (such as autocorrelation, trend, or seasonal variation) that should

be dealt with. The process of time series modeling consists of four major steps:

• Model selection among the range of ARMA ( p,q), ARIMA(p,d,q), and

ARMAX( p,q,b) models

• Selection of the order of models among the autocorrelation, partial autocorrela-

tion, and cross-correlation orders

• Determination of the parameters of the models such as φ and θ parameters

• Simulation and validation for data generation and forecasting

The basis for autoregressive, AR(p), models is the Markov chain, which relates to

the time series where every individual data is corrected with its past and future data.

AMarkov chain is a mathematical system that undergoes transitions from one state to

another, between a finite and countable number of possible states. The experience of

applying AR(p) models within the real-world data might result in significant errors.

The reason for the magnitude of the unacceptable error is related to the fact that the

occurrence of Zt in the current time is considered only as a function of its previous

values. It is a fact that the effect of other predictors is neglected in the conventional

AR(p). A solution to mitigate this shortcoming of the AR models is to consider the

error term of the model, εt, as a representative of all other predictors except the

persistency of the time series data. This idea improves an AR model to an ARMA

model. An autoregressive integrated moving average (ARIMA) model is a general-

ization of an autoregressive moving average (ARMA) model. They are applied in

cases where data show evidence of non-stationarity, where an initial differencing step

can be applied to remove the non-stationarity. To consider the effect of an external

predictor except the persistence between data, an improved model of ARMA,

ARMAX (AutoRegressive Moving Average with eXogenous inputs) has been devel-

oped. In general, the ARMAX(p,q,b) model might be expected to simulate very well

the behavior of systems whose input–output characteristics are approximately linear.

Multivariate time series analysis is used when one wants to model and explain the

interactions and co-movements among a group of time series variables. In many

problems of water resources and environmental engineering, it is essential to model
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two or more time series simultaneously due to the correlation between multiple

variables. The validation of the group of ARMA and ARMAX models can be tested

by the Akaike Information Criterion (AIC). Table 4.13 demonstrates a summary of

the characteristics and applicable areas of the models.

It is to be notified that time series modeling is not limited to the models presented

in this chapter. Actually, regression-based models as presented in Chap. 3, espe-

cially K-NN model, as well as dynamic artificial neural networks as will be

presented in Chap. 6 also could be used for this purpose. What were presented in

this chapter were actually the basic stochastic time series models used especially for

synthetic data generation.

Workshop

Figure 4.17 shows the schematic of a two-reservoir system of surface water

resources which supplies potable water needs as well as agricultural demands. For

the purpose of modeling the reliability of the system, we need to extend 50 years

annual data of inflow to the reservoirs. Furthermore, for the operation of the

system, a model is needed to forecast 1-year ahead data. This workshop reviews

the application of time series techniques to deal with the explained purposes

(Table 4.14).

Step 0. Preprocessing of the Data

First, we investigate trend and jump in the time series of rivers 1 and 2. The

Mann–Kendall and Kruskal–Wallis tests demonstrate that no trend and jump exist

in both time series. Also, since the time series is not a seasonal time series, no

periodicity is considered for the time series (Fig. 4.18).

Table 4.13 Summary of the classic time series models

Model Basic correlation analysis Applicable areas

Autoregressive AR( p)
model

Partial autocorrelation function Synthetic data generation,

forecasting

Autoregressive moving

average ARMA( p,q)
model

Autocorrelation function and

partial autocorrelation

function

Synthetic data generation,

forecasting

Autoregressive integrated

moving average

ARIMA( p,d,q) model

Autocorrelation function and

partial autocorrelation

function

Forecasting of time series with

slight trend

Autoregressive–moving

average model with

exogenous inputs

ARMAX( p,q,b)

Cross-correlation function,

autocorrelation function,

and partial autocorrelation

function

Synthetic data generation and

forecasting getting benefit of

time series of an additional

predictor

Multivariate autoregressive,

MAR model

Cross-correlation function and

partial autocorrelation

function

Synthetic data generation and

forecasting
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Agricultural Site

CITY 1
City 2

Fig. 4.17 Schematic of the

study area of the workshop

Table 4.14 Time series

presented for the workshop
Year 1 2 Year 1 2

1 5,605.6 1,765.0 26 12,231.8 2,834.6

2 7,865.0 3,212.0 27 4,967.2 2,492.6

3 8,765.0 2,341.0 28 9,876.0 2,972.4

4 9,876.0 2,141.5 29 6,271.2 2,946.2

5 10,234.0 2,341.0 30 10,739.6 3,106.6

6 8,976.0 2,280.0 31 12,768.0 4,994.0

7 8,965.0 2,946.2 32 5,761.0 3,128.0

8 6,727.7 1,722.3 33 6,075.5 2,929.2

9 9,876.0 2,345.0 34 5,509.8 1,752.3

10 8,296.4 1,316.9 35 15,160.5 5,964.4

11 9,136.0 2,679.5 36 7,221.5 2,946.2

12 10,234.0 3,249.0 37 16,461.2 3,476.3

13 11,143.0 3,208.7 38 15,033.8 5,291.3

14 7,167.4 3,014.3 39 8,112.1 4,023.6

15 14,969.9 5,681.5 40 7,415.2 2,854.0

16 6,145.0 3,473.5 41 13,888.0 3,983.3

17 14,230.0 5,463.0 42 6,780.0 1,757.0

18 8,018.1 3,368.5 43 6,578.0 1,103.5

19 12,302.7 5,425.2 44 6,547.0 847.5

20 4,893.1 2,511.8 45 7,860.0 3,212.0

21 9,543.1 2,770.8 46 9,240.6 2,236.6

22 4,734.6 2,137.1 47 8,254.0 2,341.8

23 11,770.8 5,226.6 48 8,970.0 2,112.6

24 10,953.7 3,573.2 49 6,720.0 2,871.6

25 9,358.8 2,888.5 50 7,890.0 2,543.9
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Fig. 4.18 Time series presented for the workshop
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Each time series is normalized using Box–Cox transformation as follows:

[Y, lambda] ¼ boxcox(data)

The results of lambda for each river are obtained as

Lambda for river 1 ¼ �0.1379

Lambda for river 2 ¼ 0.3074

The time series are standardized then by the following syntax:

Z¼(Y-mean(Y))/std(Y);

The transformed time series which are now normal standard are presented in

Table 4.15. The time series are now ready to be used through the modeling

process.

Table 4.15 Normal standard

time series of the workshop
Year Z1 Z2 Year Z1 Z2

1 �1.3946 �1.1608 26 1.0752 �0.0445

2 �0.2900 0.2782 27 �1.8017 �0.3637

3 0.0527 �0.5150 28 0.4243 0.0766

4 0.4243 �0.7247 29 �1.0229 0.0539

5 0.5340 �0.5150 30 0.6816 0.1908

6 0.1273 �0.5777 31 1.2035 1.5219

7 0.1234 0.0539 32 �1.3035 0.2087

8 �0.7930 �1.2142 33 �1.1274 0.0391

9 0.4243 �0.5109 34 �1.4523 �1.1766

10 �0.1204 �1.7738 35 1.7094 2.0719

11 0.1825 �0.1857 36 �0.5636 0.0539

12 0.5340 0.3083 37 1.9476 0.4888

13 0.7939 0.2755 38 1.6849 1.6977

14 �0.5878 0.1126 39 �0.1916 0.8919

15 1.6725 1.9184 40 �0.4784 �0.0272

16 �1.0898 0.4866 41 1.4526 0.8636

17 1.5242 1.7962 42 �0.7678 �1.1707

18 �0.2286 0.4043 43 �0.8664 �2.1180

19 1.0925 1.7747 44 �0.8819 �2.5983

20 �1.8528 �0.3450 45 �0.2920 0.2782

21 0.3181 �0.1019 46 0.2180 �0.6231

22 �1.9651 �0.7295 47 �0.1366 �0.5141

23 0.9597 1.6601 48 0.1252 �0.7562

24 0.7418 0.5632 49 �0.7968 �0.0116

25 0.2575 0.0033 50 �0.2799 �0.3140
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Step 1. Determining the Order of Time Series Models

(A) Univariate Approach
Autocorrelation function (ACF) and partial autocorrelation function (PACF)

by lag 15 are plotted for Z1 and Z2 normal standard time series using the

following syntaxes:

Lag¼15;
autocorr(Z1,Lag)
autocorr(Z2,Lag)
parcorr(Z1,Lag)
parcorr(Z2,Lag)

The results are presented in (Figs. 4.19 and 4.20):

The plots demonstrate that the range of acceptable orders of an ARMA

model for Z1 is ARMA(1,3) and for Z2 time series is ARMA(2,2).

(B) Multivariate Approach
Cross-correlation between two time series is calculated by the following

syntax for lag time 15, which results in the following function:

crosscorr(Z1,Z2,15)

The result shown in Fig. 4.21 demonstrates that the data of two stations are

significantly correlated in lag 0. It means that using a multivariate model is

preferred in this problem.

Step 2. Determining the Parameters of the Models

The following program finds the best orders of an ARMA( p,q) model for

a time series based on the AIC. Please note that the following program

searches the best model among the range of ARMA(2,2) which includes AR

(1), MA(1), ARMA(1,1), ARMA (2,1), ARMA(1,2), and ARMA(2,2). The

program could be easily extended to higher orders of models by changing

pvec and qvec.
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Fig. 4.19 Autocorrelation function for time series Z1 (a) and Z2 (b)
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Fig. 4.20 Partial autocorrelation function for time series Z1 (a) and Z2 (b)
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%%program to determine the orders of an ARMA model >>

pvec¼[0,1,2]; % orders of AR
qvec¼[0,1,2]; % orders of MA

%% pvec and qvec are the orders of AR and MA,
%% respectively, which are going to be tested trough
%% the program

%% parameters and variables which are used in the
%% program are presented here

np¼length(pvec);
nq¼length(qvec);
aicsave¼-99*ones(np,nq);
fpesave¼-99*ones(np,nq);
minaic¼1e+6;

(continued)

Fig. 4.21 Cross-correlation function for time series Z1 and Z2
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%% loop to test different models
%% using Akaike Information Criteria (AIC)

for pp¼1:np
p¼pvec(pp);
for qq¼1:nq

q¼qvec(qq);
if p+q ~¼0

orders¼[p q];
m¼armax(Z,orders);

% m is a structure, which contains the parameters
% associated with a specific order

aicsave(pp,qq)¼aic(m);

%% aicsave, saves the AIC associated with the
%% model, m.

fpesave(pp,qq)¼fpe(m);
if aicsave(pp,qq) < minaic

minaic¼aicsave(pp,qq); % save the min
pbest¼p;
qbest¼q;
mbest¼m;

%% finally, mbest saves the structure of the
%% model with minimum AIC among the others

end
end

end
end

Table 4.16 demonstrates variables and parameters which could be changed due

to the change of the problem.

Table 4.16 Parameters and

variable used in the program

of the workshop

Variable/parameter Description

Pvec Order of the AR model

qvect Order of the MA model

Z1 Name of the time series
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Using the above program, the following results are obtained for each time series:

Time series

Z1 Z2

Model ARMA(1,1) ARMA(2,1)

φ parameters �0.7523 �0.581 and 0.4148

θ parameters �0.5352 �0.9204

Step 3. Time Series Forecasting

Now we can forecast the streamflow of rivers L-step ahead by the following

syntax:

Zp ¼ predict(m,Z,L);

It should be notified that m in the above command refers to the best time series

model fitted to the time series. Using the command, one can have the estimation of

forecast variables only for the length of the given vector, Z. To forecast data in the

lead time beyond the time of last recorded data, one can add L values at the end of

vector Z. The values might be considered all equal to the average of the data.

As another alternative Eqs. (4.46) and (4.47) could be used for forecasting.

Step 4. Synthetic Data Generation

Equation (4.48) could be used through the described process to generate

synthetic data. As the process needs normal random numbers, the following syntax

could be used to generate r*q matrix of random numbers if mu and sigma are

considered as 0 and 1, respectively.

R ¼ normrnd(mu,sigma,r,q)
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Chapter 5

Artificial Neural Networks

Abstract Artificial neural network as the most famous artificial intelligence

models are a collection of neurons with specific architecture formed based on the

relationship between neurons in different layers. Neuron is a mathematical unit, and

an artificial neural network that consists of neurons is a complex and nonlinear

system. Artificial neural networks (ANNs) may have different architectures which

result in different types of ANNs. A static ANN known as a multilayer perceptron

(MLP) is the most applied ANN in different fields of engineering. This type of ANN

is presented in this chapter and details on its calibration and validation are discussed.

Furthermore, dynamic ANNs improved to consider the temporal dimension of data

through the modeling process is presented. In this chapter, dynamic ANNs including

input delay networks, recurrent networks, and a combination of both are discussed

in details. Statistical neural networks, namely, radial basis estimator, generalized

neural network, and probabilistic neural network, which are all developed based on a

statistical-based estimation, are the third type of ANNs presented in this chapter.

How to deal with calibration and validation of all models by MATLAB codes and

commands are discussed. Application of the models in function approximation and

data classification are presented through different examples.

Keywords Artificial neural networks • Dynamics neural networks • Statistical

neural networks • Radial basis function • Probabilistic neural network

5.1 Introduction

Artificial neural networks (ANNs) are models based on the structure of the human

brain and are used for complicated problems of pattern recognition, clustering,

classification, and simulation. It has been proven that ANNs are universal

function approximators that are capable of mapping any complicated nonlinear

function. ANNs are able to intelligently learn those functions through a training

process. The capability of ANNs for mapping a set of input/output data with an

S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Water Resources
and Environmental Engineering, Water Science and Technology Library 67,

DOI 10.1007/978-94-007-7506-0_5, © Springer Science+Business Media Dordrecht 2014
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acceptable range of error makes them useful tools for natural processes modeling.

In the recent years, artificial neural networks have been widely studied and

applied in the field of water resources and environmental engineering. Similar

to most of the data-driven models, ANNs do not generate parametric relationship

between the independent and dependent variables. Instead, they provide a rela-

tionship between input and output data through a training process to approximate

any continuous functions with a specific accuracy. The ANN approach is an

effective and efficient way to model data-dependent problems in situations

where the explicit knowledge of the internal physical subprocess either is not

required or it is not still discovered.

Application of the artificial neural networks in the field of water resources and

environmental engineering has grown fast in the recent decade. The number of

articles published in the subject of ANNs in water resources and environmental

engineering has a significant increasing trend in the last two decades. ANN has been

of interest in the contests such as rainfall–runoff modeling, streamflow forecasting,

and groundwater modeling. Table 5.1 shows a summary review on the fields that

various researchers have found the application of ANNs useful.

This chapter is structured as shown in the chart of Fig. 5.1. After the “Introduc-
tion,” basic definition is presented containing “Components of an ANN,” “Training
Algorithm,” and “Mapping by ANNs.” Obviously, the section put stress on the

“mapping functions” capability of ANNs. The next section deals with the introduc-
tion of famous ANN models, which are widely used in different subjects. Theoret-

ical background, networks architecture, their training and simulation methods, as

well as the codes necessary for applying the networks are presented in this section.

After presenting each network sample, applications are discussed in different

illustrative examples. Static and dynamic networks, as well as statistical networks,

are those which are described in that section. Finally, the chapter ends with a

workshop.

Table 5.1 A summary review on the application of ANNs in water resources and environmental

engineering

Field of the study Researchers

Evapotranspiration modeling Trajkovic et al. (2003), Kisi and Y{ld{r{m (2007)

Flood forecasting Toth et al. (2000)

Hydrological prediction Thirumalaiah and Deo (2000), Anmala et al. (2000)

Impacts of climate change on

water supply

Elgaali and Garcia (2007)

Rainfall–runoff modeling Garbrecht (2006)

Surface reservoir modeling Chandramouli and Raman (2001), Neelakantan and

Pundarikanthan (2000)

Water quality modeling Schmid and Koskiaho (2006), Suen and Eheart (2003), Milot

et al. (2002)
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5.2 Basic Definitions

5.2.1 Components of an ANN

5.2.1.1 Neuron

The first big step toward neural networks was made in 1943 by McCulloch and Pitts

in an article entitled “A logical calculus of the ideas immanent in nervous activity”

(Anderson and Rosenfeld 1988). They were the first to present a mathematical

model of the biological neuron as the basic switching element of the brain. This

article laid the foundation for the construction of artificial neural networks. The

“artificial neuron” is the basic unit of an artificial neural network, which is in turn a

surrogate of the biological neuron. It is necessary to understand the computational

capabilities of this processing unit as a prerequisite for understanding the function

of a network of such units. A biological neuron consists of four major parts, namely,

soma, dendrite, axon, and synapse as shown in Fig. 5.2.

The cell body of the neuron (soma) can store small electrical charges, similarly to a

battery. This storage is loaded by incoming electrical impulses from other neurons and

through dendrites (Ertel and Black 2011). The more electric impulse comes in, the

higher the voltage. If the voltage exceeds a certain threshold, the neuron will fire. This

means that it unloads its store, in that it sends a spike over the axon and the synapses.

The electrical current divides and reaches many other neurons over the synapses,

whichmagnify the current and the same process takes place. The idea of developing an

artificial neuron uses the same process by considering neuron as a unit that acts two

Basic Definition

Mapping by ANN

Components of an ANN

Training Algorithm

Types of ANNs

Workshop

MLP

RBNIDNN

TDNN

RNN

TDRNN GRNN PNN

Fig. 5.1 The structure of this chapter
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roles of combining the inputs that come in (X) and comparing the combined inputs

with a specific threshold (θ) to determine appropriate output (Fig. 5.3).

Like synapses that control the magnitude of each single input, the inputs to an

artificial neuron could be weighted by a weight matrix. For a mathematical reason,

which is described in the next section, an artificial neuron usually gets benefit from

an additional unit input with a weight known as bias. A comparison between the

components of a neural cell and an artificial neuron is demonstrated in Table 5.2.

The mathematical relation of the functional process of an artificial neuron is

defined as

I ¼ W � X þ b

Y ¼ 1 if I � θ
0 if I < θ

�
(5.1)

where X ¼ inputs, W ¼ weight matrix, b ¼ bias, I ¼ sum of the weighted inputs,

θ ¼ threshold, and finally Y ¼ output. The whole processing unit described above is

called perceptron.

∑ θ
x1

x2

xm

Y

w1

w2

wm

1 b
Fig. 5.3 Schematic of an

artificial neuron

Fig. 5.2 Schematic of a biological neuron
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5.2.1.2 Multilayer Perceptron

A single neuron is insufficient for solving many practical problems, mathemati-

cally. So a network of perceptrons is frequently used in parallel and series which is

called neural network. The following example shows how the number of neurons

could improve the ability of a network in solving practical problems.

Example 5.1: Clustering by ANNs

To cluster the climatic situation of the coming season of a basin as a wet or dry

condition, the predicted values of averaged precipitation (P) and air temperature (T)
are used. Several observed historical values of dry and wet years according to the

associated Ps and Ts are drawn in Fig. 5.4a. How could a neuron be used for this

clustering problem?

Solution
As it is demonstrated by Fig. 5.4a, dry and wet years are separable by a line.

Suppose that the equation of the line is

w1Pþ w2T þ b ¼ 0

Table 5.2 Comparison

between the components of a

biological neuron and an

artificial neuron

Neural cell Artificial neuron

Soma Neuron

Dendrite Input

Synapse Weights

Axon Output

D

D

D
D

D
D

D

D

D

D D

D

D
D

D
D

D
D

W

W
W

W

W

W

W

W

W

W

W

W
W

W
W

W
W

W

W

W

W
W

W

WD

D
D

D

W

W

W

P

T

P

D

D

D
D

D
D

D

D

D

D D

D

D
D

DD

D
D

W

W
W

W

W

W

W

W

W

W

W

W
W

W
W

W
W

W

W

W

W
W

W

WD

D
D

D

W

W

W

N N

N
N

N

N
N

N

N

NN

N
N

N

N
N N

T

a b

Fig. 5.4 Historical values of dry, wet, and normal years (shown by D, W, and N, respectively)
associated with averaged precipitation and air temperature (a) Dry and wet years (b) Dry, wet, and

normal years
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Those (P, T ) points, which lay in the left side of the line, result in w1P + w2T +

b > 0 and represent a dry cluster. Those points which lay in the right side of the line

result in w1P + w2T + b < 0 and represent a wet season. Let us consider 1 and 0 as

representatives of dry and wet years, respectively. So, the neuron that fits this

problem is considered aswhere the mathematical expression of the neuron is

Y ¼ dry ¼ 1 if I � 0

wet ¼ 0 if I < 0

�

where I ¼ w1P + w2T + b
The perceptron is now ready to cluster each new values of (P, T) as dry or wet

clusters.

Now, it is desired to extend the system to be able to cluster input data to three

clusters of dry, wet, and normal seasons (Fig. 5.4b). Obviously it is not possible to

divide the decision space to three clusters by a single line. However, it would be

easy to separate those three clusters by the use of two different lines as shown in the

figure. It is understood by the part one of this example that each neuron represents a

specific line in two-dimensional decision space. Therefore, two neurons are needed

to divide the decision space of Fig. 5.4b appropriately. Let us use 0, 1, and 2 for wet,

normal, and dry clusters, respectively. The perceptron will then be (Fig. 5.6) where

each neuron in the first layer represents a drawn line in Fig. 5.4b. In case that a

(P, T ) point lies in the dry zone, the output of both neurons will be 1. The final

neuron collects the output of these neurons as I ¼ f(I), which results in 2, the

representative of the dry cluster. When (P, T ) lies in the wet zone, the output of both
neurons is 0 and the final neuron reports 0 as the representative of a wet cluster.

In case that a point lies in the normal zone, the output of one neuron is 0 where the

output of the other neuron is equal to 1. The final report would be 1 which is the

representative of the normal cluster.

It may be concluded that each neuron in the hidden layer represents a line, a

page, or a hyper page in the decision space, regarding to the dimension of the input

vector. Obviously, for a more complex problem, which needs a nonlinear mapping,

more neurons are needed to set up the appropriate ANN.

The way neurons are connected determines how computations proceed and

constitutes an important early design decision by a neural network developer.

The most famous neural network is one that includes layers of parallel

perceptrons which is known as multilayer perceptron or feedforward network.

Feedforward network is a subclass of networks in which a connection is allowed
from a node in a layer only to nodes in the next layer, as shown in Fig. 5.5. These

networks are succinctly described by a sequence of numbers indicating the

number of nodes in each layer. The layers between input and output layers are

called hidden layers. For instance, the network shown in Fig. 5.7 is a 3-2-1
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feedforward network; it contains three nodes in the input layer (layer 0), two

nodes in the first hidden layer (layer 1), and one node in the output layer (layer 2).

It should be noted that the three input nodes are not actually considered as

neurons because they do not play a functional role.

5.2.1.3 Transfer Functions

As demonstrated in Example 5.1, the threshold value in the second half of a neuron

could be replaced by a mathematical function to generalize the range of outputs that

a neuron could produce. Actually, for computational purposes the function of a

neuron could be generalized to any mathematical function that is called transfer

function. A transfer function relates a particular input to an output as shown in the

following figure (Fig. 5.8).

P

T

YI = f(I )

w11

w22

w
12w 21

b1

b2

1

1

∑ 0

∑ 0

0
1

1

1

Fig. 5.6 Proposed neuron

for part two of Example 5.1

x1

x2

x3

y

Fig. 5.7 A three-layer

3-2-1 feedforward network

also known as a multilayer

perceptron

P

T

∑

w
1

w 2

b
1

0

Fig. 5.5 Proposed neuron

for part one of Example 5.1
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Table 5.3 shows a list of transfer functions that are usually used within the

artificial neurons. Details on the role of those functions are discussed in the next

sections where different networks are introduced.

Example 5.2: Dimension of Weight and Bias Matrices

It is needed to map a 3-dimensional input to a 2-dimensional output by a three-

layer ANN with four neurons in the hidden layer. What would be the dimension of

the weight and bias matrices?

Solution
The architecture of the network is shown in the following figure.

The weighted input in the hidden layer is obtained as

I4�1 ¼ IW
0
3�4 � X3�1 þ IB4�1

Table 5.3 Examples of transfer functions

Name Function Graphs

Linear f(x) ¼ x

Symmetric–saturating–linear

f xð Þ ¼
δ x � θ
x �θ � x � θ
�δ x � �θ

8<
:

Log sigmoid f xð Þ ¼ 1
1þe�αx α > 0

Tangent sigmoid f xð Þ ¼ 2
1þe�αx

� �
� 1 α > 0

Radial basis f xð Þ ¼ e�x2=σ2

∑ θ f (I )
Fig. 5.8 Generalizing the

function of a neuron
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where

X ¼
x1
x2
x3

" #
; IW ¼

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

2
4

3
5; and IB ¼

b1
b2
b3
b4

2
664

3
775

and xi¼ the ith input, wij¼ the weight of the link from the ith input to the jth hidden
neuron, and bj ¼ the bias of the jth hidden neuron.

The input to the output layer is obtained as

Io2�1 ¼ W
0o
4�2F Ið Þ4�1 þ Bo

2�1

where

Wo ¼
wo
11 wo

12

wo
21 wo

22

wo
31 wo

32

wo
41 wo

42

2
664

3
775; Bo ¼ bo1

bo2

� �

and F ¼ the transfer function of the hidden layer.

Finally, the output matrix is obtained as

Y2�1 ¼ G Ioð Þ2�1

where G ¼ transfer function of the last layer and Y ¼ y1
y2

� �

x1

x2

x3

y1

y2

Fig. 5.9 Network of

Example 5.2
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5.2.2 Training Algorithm

The weights and biases are parameters of a network that should be fixed before

using an ANN. Weight and bias matrices of an ANN could be obtained by either

supervised or unsupervised approaches. Training is an expression, which is usually

termed to the supervised approach for determining weights and biases of a network.

The supervised training of an ANN could be obtained by the well-known delta rule.
The delta rule is expressed as

w
new lð Þ
ij ¼ w

old lð Þ
ij þ η � ∂ep

∂w lð Þ
ij

 !
(5.2)

where

E ¼ 1

n

Xn
p¼1

ep (5.3)

ep ¼ tp � yp
� �2

(5.4)

and n ¼ the number of pairs of data, E ¼ the average error of estimation,

w
ðlÞ
ij ¼ the weight of link between the ith neuron to the jth neuron in the lth layer, tp

and yp¼ the target output and simulated output, respectively, and η¼ learning rate,

the value of which is selected between 0 and 1 experimentally.

To apply the delta rule into the training process of an ANN, backpropagation

(BP) algorithm is widely used. The BP algorithm changes the mathematical expres-

sion of the delta rule to the computational relations, which could be applied through an

iterative procedure. The backpropagation algorithm, also called the generalized delta

rule, provides a way to calculate the gradient of the error function efficiently using the

chain rule of differentiation (Bose and Liang 1996). In this algorithm, network weights

are moved along the negative of the gradient of the performance function through each

iteration (which is usually called epoch) in the steepest descent direction.

For a particular weight in the lth hidden layer, the chain rule gives

∂ep

∂w lð Þ
ij

¼ ∂ep

∂I lð Þ
pj

:
∂I lð Þ

pj

∂w lð Þ
ij

(5.5)

meanwhile

∂I lð Þ
pj

∂w lð Þ
ij

¼ ∂

∂w lð Þ
ij

X
k

w
lð Þ
ij y

l�1ð Þ
pi

 !
¼ y

l�1ð Þ
pi (5.6)

and
∂ep
∂I lð Þ

pj

is defined as � δpj. Therefore,
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�∂ep

∂w lð Þ
ij

¼ δ lð Þ
pj y

l�1ð Þ
pi (5.7)

and Eq. (5.2) is rewritten as

w
new lð Þ
ij ¼ w

new lð Þ
ij þ ηδ lð Þ

pj y
l�1ð Þ
pi (5.8)

The chain rule is used again to define δðlÞpj for the last layer

δ lð Þ
pj ¼ �∂ep

∂I lð Þ
pj

¼ �∂ep

∂y lð Þ
pj

:
∂y lð Þ

pj

∂I lð Þ
pj

¼ �∂ep

∂y lð Þ
pj

:f
0
j Ipj
� �

(5.9)

where

∂ep

∂y lð Þ
pj

¼ �2 tpj � ypj

� �
(5.10)

Therefore, for the last layer,

δ lð Þ
pj ¼ tpj � ypj

� �
f
0
J j Ipj
� �

(5.11)

It should be notified that 2 could be eliminated by defining appropriate error

function.

To define δðlÞpj for the hidden layers, the following relations are used:

∂ep

∂y lð Þ
pj

¼
X
k

∂ep

∂I lþ1ð Þ
pk

:
∂I lþ1ð Þ

pk

∂y lð Þ
pj

¼ �
X
k

δ lþ1ð Þ
pk w

lþ1ð Þ
jk (5.12)

δ lð Þ
pj ¼

X
δ lþ1ð Þ
pk w

lþ1ð Þ
jk :f

0
I
lð Þ
pj

� �
(5.13)

Using Eqs. (5.8), (5.11), and (5.13), the backpropagation algorithm is presented

as follows:

1. Weights and biases are initialized as wold
ij .

2. The output signals are generated applying input vectors (Fig. 5.10a)

y1pj ¼ gj[∑wijxpi] for the first layer.

y
lð Þ
pj ¼ f j

X
wl

ij
y l�1ð Þ
pi

h i
for the hidden layers.
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3. The output signals of the last layer are compared with the targets to determine

δðlÞpj using Eq. (5.11) (Fig. 5.10b).

δpj ¼ tpj � ypj

� �
f
0
j Ipj
� �

4. The error, δpj, is backpropagated through the output layers using Eq. (5.13)

(that is why the algorithm is called backpropagation) (as shown in Fig. 5.10c).

δ lð Þ
pj ¼

X
k

δ lþ1ð Þ
pj w

lþ1ð Þ
jk

 !
f
0
j Ilpj

� �

5. Using the results of steps 3 and 4, the weights are updated in the last and hidden

layers as

wnew
ij ¼ wold

ij + ηδpjy
ðl�1Þ
pi for the last layer.

w
newðlÞ
ij ¼ w

oldðlÞ
ij + ηδðlÞpj y

ðl�1Þ
pi for the hidden layer.

The above algorithm is continued until the desired criteria of network training

are satisfied. Each iteration consisting the four latter steps of the BP algorithm is

called epoch. The criteria for stopping the training procedure might be the number

of epochs, minimum desired value of performance function, run time of the process,

and the criteria known as stopped training, which is defined in the next section.

x1

x2

x3

a

x1

x2

x3

b

x1

x2

x3

c

Fig. 5.10 The algorithmic steps of the BP algorithm (a) Feed forward simulation (b) Error

estimation (c) Back propagation
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After training, the network is ready to simulate the outputs associated with the

specific input vectors using the final derived weights and biases.

ANNs could be trained by either batch training or incremental training. In the

batch training, weights and biases are only updated after all the inputs and targets are

presented. In the incremental training the weights and biases are updated after each

input is presented. In this case, the inputs and targets are presented as sequences,

which are generally used in dynamic networks. In the adaptive calibration (training),

there is no need to have a significant amount of data and the only essential data are the

most recent ones observed before the time of simulation.

5.2.3 Mapping by ANNs

Function approximation is one of the most applicable uses of ANNs. The need for

function approximations arises in many branches of applied mathematics and

engineering in particular. In general, a function approximation problem asks us to

select a function among a well-defined class that closely matches (“approximates”)

a target function in a task-specific way.

One can distinguish two major classes of function approximation problems:

First, for known target functions approximation theory is the branch of numerical

analysis that investigates how certain known functions (e.g., exponential functions)

can be approximated by a specific class of functions (e.g., polynomials function)

that often have desirable properties (inexpensive computation, continuity, integral

and limit values, etc.). Second, in the target function, instead of an explicit formula

only a set of points of the form (x, g(x)) is provided.
The application of an ANN as a function approximator can be divided to five

steps as follows:

1. Data preprocessing

2. Selecting network architecture

3. Network training

4. Simulation

5. Postprocessing

Different algorithms and methods could be used at each step of the above process.

Selection of a specific algorithm and method depends on the specific characteristics

of a problem. This section discusses the frequent methods used in the mapping

process by ANNs as well as the MATLAB codes developed for those purposes.

5.2.3.1 Data Preprocessing

After selecting appropriate predictors, which are actually the inputs of a mapping

problem, they might be prepared before being introduced to a network. Three

common processes are usually applied for this purpose as follows:
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Standardizing

Standardizing helps rescaling the input values to a uniformed scale. The following

command standardizes the inputs to fall in the range [�1,1]:

[y1,PS] ¼ mapminmax(x1)

where PS contains the process setting parameters. The transformed matrix could

be reversed to the original vector by the following command:

x1_again ¼ mapminmax(’reverse’,y1,PS)

Normalizing

The following command normalizes a vector to have zero mean and unity variance,

which is another way to rescale the inputs:

[y1,PS] ¼ mapstd(x1)

The transformed matrix could be reversed to the original vector by the following

command:

x1_again ¼ mapstd(’reverse’,y1,PS);

Principal Component Analysis

As described in Chap. 3, the principal component analysis (PCA) detects linear

dependencies between variables and replaces groups of correlated variables by new

uncorrelated variables, the principal components (PCs). The use of PCs instead of

the original input improves the mapping process by making inputs to be indepen-

dent from each other and to reduce the dimension of the input vectors in case that

there is a dependency between them. PCA decreases the dimension of input data by

eliminating those principal components that have less contribution to the total

variation in the data set. The following command extracts principal components

from the input vector and eliminates those principal components that contribute less

than d% to the total variation in the data set:

[y1,ps] ¼ processpca(x1,d);

152 5 Artificial Neural Networks

http://dx.doi.org/10.1007/978-94-007-7506-0_3


The transformed matrix is reversed to the original vector by the following

command:

x1_again ¼ processpca(’reverse’,y1,ps)

Before training networks, the data is usually divided into three subsets. The first

subset is the training set, which is used for computing the gradient and updating the

network weights and biases. The second subset is the validation set. The error on the

validation set is monitored during the training process. The validation error normally

decreases during the initial phase of training, as does the training set error. However,

when the network begins to overfit the data, the error on the validation set typically

begins to rise. The network weights and biases are saved at the minimum of the

validation set error. This technique is discussed in more detail in the next pages.

The third subset is the test set. The test set error is used neither in training nor in

validation. It is used to compare different models. It is also useful to plot the test set

error during the training process. If the error on the test set reaches a minimum at a

significantly different iteration number than the validation set error, this might

indicate a poor division of the data set.

The following command divides targets into three sets using random indices:

[trainInd,valInd,testInd] ¼
dividerand(Q,trainRatio,valRatio,testRatio)

The following command divides targets into three sets using blocks of indices:

[trainInd,valInd,testInd] ¼
divideblock(Q,trainRatio,valRatio,testRatio)

The following command divides targets into three sets using specified indices:

[trainInd,valInd,testInd] ¼
divideind(Q,trainRatio,valRatio,testRatio)

The default ratios for all three commands are 0.7, 0.15, and 0.15 for training,

validation, and test sets, respectively. Furthermore, using the following command,

all targets are assigned as training set:

[trainInd,valInd,testInd] ¼ dividetrain(Input)
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5.2.3.2 Selecting Network Architecture

A network architecture includes number of hidden layers, number of hidden neurons,

specific transfer functions, the flow of data (straight or recurrent), and the way

neurons are connected (say fully connected). There are well-known networks with

specific architecture which are widely used in the field of water resources and

environmental engineering. Multilayer perceptron (MLP), recurrent neural networks,

time-delay neural networks, radial basis function networks, generalized regression

neural networks, and probabilistic neural networks are examples of the well-known

architectures. Those networks are presented in the next sections of this chapter.

5.2.3.3 Network Training

As far as the function mapping is concerned, training is defined as the process of

calibrating the network using pairs of input/output. Artificial neural networks may

suffer from the underfitting and overfitting during the training procedure (Coulibaly

et al. 2000). These two factors tend to decrease the ability of the network in the

generalization performance. Increasing the number of epochs in the training pro-

cedure results in decreasing the underfitting of the network, but if the number of

epochs is greater than a specific number, overfitting may occur. The number of

epochs is optimally determined by comparing the error in the training and testing

procedure of the model. The optimal number of epochs is the number which causes

the minimum validation error (Fig. 5.11).

The following command is used to train a network by specific “inputs” and

“targets”:

[net,tr]¼ train(net,inputs,targets);
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Fig. 5.11 Selection

of optimum epoch based

on the network performance

in data training and testing
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5.2.3.4 Network Simulation

Simulation is actually the final aim of applying the networks. The general syntax for

simulation a network is

a ¼ net (inputs);

5.2.3.5 Postprocessing

Postprocessing includes all the tests we apply to validate the results of a specific

network as well as to describe and analyze the final performance of the network.

It also involves presenting ideas that might improve the performance of a network.

Three statistics are used for comparison of the results. The root-mean-square

error (RMSE) is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i
obsi � forið Þ2

q
n

(5.14)

where obsi ¼ ith observed data, esti ¼ ith estimated variable, and n ¼ number of

observed values. Percent volume error (% VE) is defined as

%VE ¼

Xn
i¼1

obsi � esti

obsi












n
(5.15)

The %VE statistic measures the absolute relative bias error of estimated values.

The final statistic is the correlation (CORR) which measures the linear correlation

coefficient between the observed and forecast data.

In case that the criteria is not satisfying, one can follow up some changes such as

changing the number of hidden layers, changing the number of hidden neurons,

changing the transfer functions, and of course changing the initial weights and biases.

5.3 Types of Artificial Neural Networks

5.3.1 Multilayer Perceptron

Multilayer feedforward network uses supervised training procedure that consists of

providing input/output examples to the network and minimizing the error function

E, which is expressed as follows:

E ¼ 1

n

Xn
p¼1

yp � ŷ p

� �2
(5.16)
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where n ¼ number of input/output data sets and ŷ p and yp¼ observed and simulated

output of the pth set, respectively. In a three-layer network with m neurons in the

hidden layer, this procedure is done by utilizing the following equations:

Ipj ¼
XN
i¼1

wjixpi þ wjo (5.17)

where Ipj ¼ weighted inputs into the jth hidden unit, N ¼ total number of input

nodes, wji ¼ the weight from input unit i to the hidden unit j, xpi ¼ the value of the

ith input of the pth set, wj0 ¼ bias for neuron j, and g ¼ the transition function. g is
considered as a sigmoid function as follows:

g Ipj
� � ¼ 1

1þ e�Ipj
(5.18)

The output unit is then calculated as

ŷ pj ¼ g Ipk
� �

(5.19)

Ipj ¼
Xq
j¼1

wkjg Ipj
� �þ wko (5.20)

where m ¼ number of hidden units, wkj ¼ weight connecting the hidden node j to
the output k, wko ¼ bias for neuron k, and ŷ pj ¼ the kth estimated output for pth set.

The weights in the training process are updated through each iteration in the

steepest descent direction as described by BP algorithm. An example of architec-

ture of an MLP has been shown in Figs. 5.9 and 5.10.

Hornick et al. (1989) theoretically proved that three-layer perceptrons with a

sigmoid activation function are universal approximators, which means that they can

be trained to approximate any mapping between the inputs and outputs.

The architecture of an MLP with specific “inputs” and “targets” is determined

and set up by

net ¼ feedforwardnet([S1 S2 . . . SM]);
net ¼ configure(net,inputs,targets);

where SM ¼ number of neurons in theMth hidden layer. The architecture of the

network is viewed by

view(net)
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It should be noted that the size of the input and output layers is fixed by the

problem formulation. There is no systematic approach to select the number of

neurons in the hidden layer. The number of neurons in the hidden layer, which

produce the dependent values with more accuracy, might be selected through

validation of different network architectures.

The network is trained by Levenberg–Marquardt (trainlm) as default using the

following command:

[net,tr] ¼ train(net,Inputs,Targets);

The quasi-Newton backpropagation method, trainbfg, and Bayesian regulation

backpropagation, trainbr, are other options which could be used for network

training.

Minimum gradient magnitude, maximum training time, minimum performance

value, maximum number of validation increases, and maximum number of training

epochs (iterations) could be fixed by the following command, respectively:

net.trainParam.min_grad¼1e-10;
net.trainParam.time¼60;
net.trainParam.goal¼1e-5;
net.trainParam.max_fail¼6;
net.trainParam.epochs¼1000;

max_fail refers to the times validation performance has increased since the last

time it is decreased.

The initial weight and bias matrices of an MLP could also be fixed by the

following commands, which present an example for a 2-2-1 network:

net.IW{1}¼[0.5 0.5; 0.5 0.5];
net.LW{2,1}¼[0.5 0.5];
net.b{1}¼[0.5;0.5];
net.b{2}¼[0.5];

If the network is not accurate, it could be initialized randomly by the following

command to be trained again:

net ¼ init(net);

As described before, changing the number of hidden neurons, the training

functions, and of course adding additional data for the network training is more

likely to produce a network that generalizes better.
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Example 5.3: Mapping Mathematical Functions

Investigate the performance of MLP in mapping linear, quadratic, and sinusoidal

functions.

Solution
The following program is used to determine the best number of hidden neurons for a

three-layer network to map sinusoidal function.

Considering the function of T ¼ sin(2πP/12), 30 values of P and T are given in

Table 5.4:

The following program is used to map the sinusoidal function based on 30 data

for supervising. The same program could be applied for other types of functions

in case of using input/target pairs of data associated to those functions. This

program fields the best number of hidden neurons from 1 to 8, which better fits

the data.

Table 5.4 Data provided for Example 5.3

P T P T P T P T P T P T

1 0.50 6 0 11 �0.50 16 0.87 21 �1.00 26 0.87

2 0.87 7 �0.50 12 0.00 17 0.50 22 �0.87 27 1.00

3 1.00 8 �0.87 13 0.50 18 0.00 23 �0.50 28 0.87

4 0.87 9 �1.00 14 0.87 19 �0.50 24 0.00 29 0.50

5 0.50 10 �0.87 15 1.00 20 �0.87 25 0.50 30 0.00

Table 5.5 Parameters and variables used for the program of Example 5.3

Variable/

parameter Description

AE(S) Averaged simulation error associated with each “number of hidden neurons” (S)

bestnet The net with the minimum error recognized by the best number of hidden

neurons

E 1*30 matrix of simulation error

Emin 1*30 matrix of minimum simulation error (in percent) obtained by “bestnet”

nn The maximum number of hidden neurons which is considered for the network

through the program

P 1*30 matrix of input data from 1 to 30

Sbest Number of hidden neurons associated with the minimum averaged simulation

error

T 1*30 matrix of output data obtained by the selected function in association with

input P

Y 1*30 matrix of simulated output of input P obtained by MLP

Ysim Simulated outputs obtained by “bestnet”
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nn¼8;
minAE¼10E6;
U¼-99*ones(nn);
AE¼U(1,:);

for S¼1:nn
net ¼ newff(P,T,S);
net.trainParam.epochs ¼ 1000;
net ¼ train(net,P,T);
Y ¼ sim(net,P);
E¼abs(Y-T);
AE(S)¼mean(E);

if AE(S)< minAE
minAE¼AE(S);
Sbest¼S;
bestnet¼net;

end;
end;

Ysim¼sim(bestnet,P);
Emin¼(T-Ysim);

for SS¼1:30
Emin(SS)¼Emin(SS)/T(SS)*100;

end

x¼1:1:nn;
y¼AE;
plot(x,y);
xlabel(’number of hidden neurons’);
ylabel(’averaged error’);

Table 5.5 demonstrates variables and parameters used in the program.

Figure 5.12 demonstrates the plot of “number of hidden neurons” versus aver-

aged simulation error. According to the averaged error of simulation, the best

3-layer MLP is obtained as 1-7-1 network.

The detailed result of mapping sinusoidal function is presented here. The

weights and biases of the network are shown by the commands

IW¼bestnet.IW;
IB¼bestnet.b{1};
WO¼bestnet.LW{2,1};
BO¼bestnet.b{2};
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which result in the following matrices:

IW ¼

�7:68
�5:90
6:52

�8:19
10:13
5:59

�9:94

2
666666664

3
777777775
; IB ¼

7:34
3:43

� 1:17
� 2:56
1:67
3:65

�10:09

2
666666664

3
777777775
; Wo ¼

1:00
�1:38
�1:32
�0:78
0:54

�1:39
�0:97

2
666666664

3
777777775
; Bo ¼ �0:61½ �

Finally the simulated results are shown in Table 5.6.

The performance of the network could also be shown by

plotperf(tr)

Fig. 5.12 Number of hidden neurons versus the averaged error in Example 5.3

Table 5.6 The simulation results of Example 5.3

P Ysim P Ysim P Ysim P Ysim P Ysim P Ysim

1 0.50 6 0 11 �0.50 16 0.87 21 �1.00 26 0.86

2 0.95 7 �0.50 12 0.00 17 0.53 22 �0.87 27 0.99

3 1.04 8 �0.86 13 0.50 18 0.00 23 �0.51 28 0.87

4 0.87 9 �1.00 14 0.89 19 �0.54 24 0.00 29 0.50

5 0.50 10 �0.87 15 1.00 20 �0.90 25 0.52 30 0.00
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Please note that due to the random selection of the initial weights and biases in
this example, the results might change at each run of the program. In case of
considering similar initial weights, the results remain constant at each run.

Example 5.4: Using Cross-Validation Approach in Network Training

For the input data given in Table 5.7, find the best number of neurons between

2 and 3 in a three-layer MLP that fits the following data.

Solution
The following program uses a cross-validation approach to assess the performance

of a 2-2-1 MLP in mapping data. In the cross-validation approach, once each pair of

input/output is omitted from the n observation of the data and the other n-1 pairs of
data are used to estimate the omitted one. This is repeated n times changing the

omitted pair of data and the averaged simulation error for all n pairs of data are

considered as the indicator of the real performance of the network.

%<<<<<<<<<<<<< Pre-processing >>>>>>>>>>>>>>
[pn,ps1] ¼ mapstd(P);
[ptrans,ps2] ¼ processpca(pn,0.02);
PC¼ptrans;
%<<<<<<<<<<<<< Pre-processing >>>>>>>>>>>>>>
for n¼1:1:20

%<<Generation of data sets for cross validation>>

(continued)

Table 5.7 Data presented for

Example 5.4
P1 P2 T P1 P2 T

24 110 487 42 28 320

26 75 351 48 18 300

32 105 483 105 45 389

35 65 329 58 22 340

45 25 350 120 18 311

50 20 300 20 100 439

100 40 359 30 80 379

54 20 320 32 105 483

123 16 309 60 25 320

30 70 339 110 18 291
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Ptest¼[PC(1,n);PC(2,n)];
Ttest¼T(n);
for m¼1:1:19
if m<n
B(1,m)¼ PC(1,m);
B(2,m)¼PC(2,m);
TB(m)¼T(m);
else
B(1,m)¼PC(1,m+1);
B(2,m)¼PC(2,m+1);
TB(m)¼T(m+1);

end
end

%<<<<<Network architecture and configuration >>>>>
net ¼ newff(B,TB,[2],
{’tansig’,’purelin’},’trainlm’,. . .
’learngdm’,’mse’,
{’fixunknowns’,’removeconstantrows’,’mapminmax’}. . .
,{’removeconstantrows’,’mapminmax’},’divideblock’);
%<<<<< Initial weights and biases >>>>>>

net.IW{1}¼[0.5 0.5; 0.5 0.5];
net.LW{2,1}¼[0.5 0.5];
net.b{1}¼[0.5;0.5];
net.b{2}¼[0.5];

%<<<<<<<<<<<<< Training >>>>>>>>>>>>>>
net.trainParam.epochs ¼ 1000;
net ¼ train(net,B,TB);

%<<<<<<<<<<<<< Simulation >>>>>>>>>>>>>>
Y ¼ sim(net,Ptest);
S(n)¼Y;

%<<<<<<<<<<<<< Post-processing >>>>>>>>>>>>>>
E(n)¼abs(Y-Ttest);

end

%<<<<<<<<<<<<< Averaged network error
>>>>>>>>>>>>>>

AE¼mean(E);
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To assess the 2-3-1 network, only the following two changes are made in the

network architecture and initial weights and biases:

newff(B,TB,[3],{’tansig’,’purelin’},’trainlm’,. . .

’learngdm’,’mse’,{’fixunknowns’,’removecon-
stantrows’,

’mapminmax’}. . .

and

net.IW{1}¼[0.5 0.5; 0.5 0.5;0.5 0.5];
net.LW{2,1}¼[0.5 0.5 0.5];
net.b{1}¼[0.5;0.5;0.5];
net.b{2}¼[0.5];

Table 5.8 demonstrates variables and parameters used in the program.

Obviously, 2-3-1 network outperforms 2-2-1. Figure 5.13 demonstrates the

observed versus simulated data by two networks.

5.3.2 Dynamic Neural Networks

Static neural networks such as multilayer perceptron network (MLP) only process

input patterns that are spatial in nature, i.e., input patterns that can be arranged

along one or more spatial axes such as a vector or an array. In many tasks, the input

pattern comprises one or more temporal signals, as in speech recognition, time

Table 5.8 Parameters and variables used in Example 5.4

Variable/parameter Description

B Input matrix for calibration

E Matrix of simulation error

P Matrix of input data

PC Principal components of the standardized data

Ptest Input matrix for validation

T Target matrix

TB Target matrix for calibration

Ttest Target matrix for validation

Y Simulated outputs
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series prediction, and signal filtering (Bose and Liang 1996). Tapped delay lines

(TDLs) and recurrent (feedback) connections are two components, which could

be assigned for static networks in order to design temporal neural networks.

The networks, which apply either a TDL or recurrent connections, are referred to

as dynamic neural networks.

A tapped delay line (TDL) consists of several time-delay operators, which are

arranged in an incremental order. A typical TDL is shown in Fig. 5.14. As shown in

this figure, a time-delay operator, D, is a memory box, which receives an input

signal at each time step and saves it along one time step. After passing one time

interval, the operator results the signal as an output. As shown in Fig. 5.9, the input

signal enters from the left and passes through N – 1 delays. The output of a TDL is

an N-dimensional vector, made up of the input signal at the current time and the
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biasFig. 5.14 Schematic

of a tapped delay line
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Fig. 5.13 Results obtained for Example 5.4
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previous input signal. Tapped delay lines explicitly represent a temporal process.

Replacing the internal connection weights in an MLP network by the tapped delay

lines results in a network called time-delay neural network (TDNN) (Waibel

et al. 1989; Atiya and Parlos 1992; Wan 1993).

Another component for involving initial and past states of a system is recurrent

(feedback) connection. This connection recurs from either the output layer or the

hidden layer back to a context unit and after one time step returns to the input layer.

A context unit consists of several time-delay operators, which represent dimension

of time implicitly by its effects on the processing. It is in contrast to a TDL

component, which explicitly considers temporal processing. Attaching recurrent

connections (context unit) to an MLP network results the recurrent neural network

(RNN). There are different models of RNN, depending on the architecture of the

recurrent connections: the Jordan RNN (Jordan 1986), which has feedback connec-

tions from the output layer to input layer; Elman RNN (Elman 1990) which has

feedback connections form hidden layer to input layer.

Because dynamic networks have memory, they can be trained to learn sequential

or time-varying patterns. In dynamic networks, the output depends not only on the

current input to the network but also on the previous inputs, outputs, or states of the

network. Although dynamic networks can be trained using the same gradient-based

algorithms that are used for static networks, the performance of the algorithms on

dynamic networks can be quite different, and the gradient must be computed in a

more complex way.

Some of the recent developments to take into account the temporal characteris-

tics into the neural networks are creating a spatial representation of temporal pattern

by considering a sliding window of input sequences (Hsu et al. 1995; Jain

et al. 1999; Coulibaly et al. 2000), putting time delays (tapped delay lines) into

the neurons or their connections (Waibel et al. 1989; Wan 1993; Sajikumar and

Thandaveswara 1999; Karamouz et al. 2004), employing recurrent connections

(Jordan 1986; Elman 1990), and using combination of the above-mentioned

methods (Coulibaly et al. 2001).

5.3.2.1 Input Delay Neural Network

The most straightforward dynamic network is called the input delay neural network

(IDNN) also known as focused time-delay neural network (FTDNN). This network

consists of an MLP with a tapped delay line at the input layer as shown in Fig. 5.14.

Figure 5.15 illustrates a two-layer IDNN.

The FTDNN network is created using timedelaynet command. This command is

similar to the feedforwardnet command, with the additional input of the tapped

delay line vector.

ftdnn_net ¼ timedelaynet([0:D],[S1 S2 . . . SM]);
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where D is the maximum time delay for the input series.

ANNs can be trained either statically or adaptively. In order to model time

series, the adaptive (recursive) training method is an appropriate alternative. The

recursive (also called online) training allows the recalibration and training of the

model as soon as new observations become available. This dynamic adaptability

enables the model parameters to be adjusted to the properties of an ongoing event

by capturing the characteristics of the current situation (Toth et al. 2000). Subse-

quently, it could fully utilize the capacity of the neural networks for time series

modeling.
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Fig. 5.15 Schematic of an IDNN
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Example 5.5: Time Series Modeling

The annual inflow to a reservoir is tabulated in Table 5.9. Use an IDNN to

forecast one-step-ahead inflow to the reservoir.

Solution
The following program is used for this example.

First the numerical array is changed to cell array.

x ¼ num2cell(P);

ftdnn_net ¼ timedelaynet([1:2],10);
ftdnn_net.trainParam.epochs ¼ 3000;
ftdnn_net.divideFcn ¼ ’’;
P ¼ x(3:end);
T ¼ x(3:end);
Pi¼x(1:2);
ftdnn_net ¼ train(ftdnn_net,P,T,Pi);
Y ¼ ftdnn_net(P,Pi);
e ¼ gsubtract(Y,T);
rmse ¼ sqrt(mse(e));

Table 5.9 The inflow data

for Example 5.5
Year Inflow Year Inflow Year Inflow Year Inflow

1957 1,440.8 1972 1,461.1 1987 1,524.4 2002 1,451.9

1958 1,442.6 1973 1,581.4 1988 1,466.2 2003 1,456.3

1959 1,365.2 1974 1,459.8 1989 1,460.9 2004 1,450.0

1960 1,406.9 1975 1,526.0 1990 1,424.6 2005 1,475.1

1961 1,365.1 1976 1,434.6 1991 1,559.1 2006 1,465.7

1962 1,413.2 1977 1,443.8 1992 1,464.4

1963 1,435.4 1978 1,424.7 1993 1,482.2

1964 1,397.6 1979 1,523.7 1994 1,540.8

1965 1,390.0 1980 1,472.3 1995 1,501.6

1966 1,386.7 1981 1,451.5 1996 1,465.5

1967 1,430.9 1982 1,450.8 1997 1,502.3

1968 1,692.7 1983 1,441.0 1998 1,432.7

1969 1,449.7 1984 1,457.2 1999 1,413.0

1970 1,444.5 1985 1,457.4 2000 1,405.9

1971 1,530.1 1986 1,463.5 2001 1,442.9
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Because the network has a tapped delay line with a maximum delay of 2, the
prediction is begun by the (2 + 1)th value of the time series. It is also needed to load

the tapped delay line with the 2 initial values of the time series (contained in the

variable Pi). Notice that the input to the network is the same as the target. Because

the network has a minimum delay of one time step, this means that a one-step-ahead

prediction is performed.

Table 5.10 demonstrates the variables and parameters used in the program.

The predicted time series (series 2) versus actual series (series 1) is shown in

Fig. 5.16.

5.3.2.2 Time-Delay Neural Network

The IDNN had the tapped delay line memory only at the input to the first layer of

the MLP network. The tapped delay lines could be considered throughout the

hidden layers of the network, which is called distributed TDNN. Figure 5.17

shows a general two-layer distributed TDNN.
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Fig. 5.16 The results of Example 5.5

Table 5.10 Variables and

parameters used in the

program of Example 5.5

Variable/parameter Description

E Series of prediction error

P Array of the inflow to the reservoir

RSME Root-mean-square error of prediction

X Cell array of the inflow to the reservoir

Y One-step-ahead predicted time series
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The outputs of each layer are obtained as

y1j tð Þ ¼ F
XD1

d1¼0

Xm
i¼1

w1
i, j,dpi,dþ1 tð Þ þ b1j

 !
1 � j � S1 (5.21)

y2k tð Þ ¼ G
XD2

d2¼0

XS1
j¼1

w2
j,k,d2

y1j,d2 tð Þ þ b2k

 !
1 � k � S2 (5.22)
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Fig. 5.17 Schematic of a time-delay neural network
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where y2k(t) and y2k(t) ¼ output from the first and the second layers, respectively;

F and G ¼ transfer function of the first and the second layers, respectively;

w and b ¼ weights and biases, respectively; S1 and S2 ¼ number of neurons in

the first and second layers, respectively; D1 and D2 ¼ time delay in the first and the

second layers, respectively; and p ¼ input data.

The distributed TDNN network is created by the distdelaynet function. The only
difference between the distdelaynet function and the timedelaynet function is that

the first input argument is a cell array that contains the tapped delays to be used in

each layer.

The time-delay neural network is created using the following command:

d1 ¼ 0:D1;
d2 ¼ 0:D2;
dtdnn_net ¼ distdelaynet({d1,d2},[S1 S2 . . . SM]);

where DM is the maximum delay considered for the Mth layer.

Example 5.6: Time Series Modeling by TDNN

Solve Example 5.5 by a TDNN network.

Solution
The approach is the same as Example 5.6. The program is changed to the following

form:

x¼num2cell(P);

d1¼1:2;
d2¼1:2;
P ¼ x(3:end);
T ¼ x(3:end);
Pi¼x(1:2);
dtdnn_net ¼ distdelaynet({d1,d2},9);
dtdnn_net ¼ train(dtdnn_net,P,T,Pi);
Y ¼ sim(dtdnn_net,P,Pi);
e ¼ gsubtract(Y,T);
rmse ¼ sqrt(mse(e));
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5.3.2.3 Layer-Recurrent Network

A layer-recurrent network contains a feedback loop, with a single delay, around

each layer of the network except for the last layer (Fig. 5.18). The first version of

this network was introduced by Elman (1990). The newlrn command develops an

Elman network as

lrn_net ¼ newlrn(P,T,S);

where S ¼ number of neurons in the hidden layer.

5.3.2.4 The Nonlinear Autoregressive Network with Exogenous Inputs

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent

dynamic network, with feedback connections enclosing several layers of the net-

work. The NARX model is based on the linear ARX model, which has been

described in time series modeling (Chap. 3).

In a NARX network, the output is fed back to the input of the feedforward neural

network as shown in Fig. 5.19. This output could be considered as either the estimated

output or the actual output. Using the actual output has two advantages. The first is that

the input to the feedforward network is more accurate. The second is that the resulting

network has a purely feedforward architecture, and static backpropagation can be used

for training. The syntax of developing a NARX model is

d1 ¼ [1:D1];
d2 ¼ [1:D2];
narx_net ¼ narxnet(d1,d2,S);
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Fig. 5.18 Schematic of a layer-recurrent network
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whereD1 andD2 ¼ time delay of the input and output connections, respectively,

and S ¼ number of hidden neurons.

To convert the network to use the feedback of the simulated output instead the

actual output, the following command is used:

narx_net_closed ¼ closeloop(narx_net);
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Fig. 5.19 Schematic of a TDRNN
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Example 5.7: Rainfall–Runoff Modeling (Flood Prediction)

Table 5.11 shows a 4-h excess rainfall as well as a 1.5-h excess rainfall and the

consequent flood hydrographs. Set up a network to predict flood hydrograph of 2-h

storm in the region (Table 5.12, Figs. 5.20 and 5.21).

Solution
It is assumed that the flood hydrograph (yp) of excess rainfall, R, could be simulated

by the following function:

yp tð Þ ¼ f R tð Þ,R t� 1ð Þ, yp t� 1ð Þ½ �

After training NARX, to map the above function, a closed loop version of

NARX is used for prediction of flood values ŷp tð Þ according to the following

function:

ŷp tð Þ ¼ f R tð Þ,R t� 1ð Þ, ŷp t� 1ð Þ½ �

Table 5.11 The calibration data in Example 5.7

Time (0.5 h) Rainfall (mm) Hydrograph (cm) Time (0.5 h) Rainfall (mm) Hydrograph (cm)

1 12.7 5.7 17 0 0.0

2 19.0 23.8 18 0 0.0

3 25.4 67.5 19 0 0.0

4 38.1 132.9 20 50.8 22.9

5 63.5 214.5 21 76.2 95.4

6 50.8 307.0 22 25.4 235.7

7 31.7 403.8 23 0 371.3

8 25.4 446.3 24 0 361.7

9 0 396.8 25 0 220.5

10 0 297.2 26 0 101.3

11 0 191.7 27 0 60.7

12 0 105.6 28 0 43.8

13 0 54.0 29 0 22.4

14 0 30.3 30 0 4.9

15 0 13.9 31 0 0.0

16 0 4.9 32 0 0.0

Table 5.12 The validation

data in Example 5.7
Time (0.5 h) Rainfall (mm)

1 26.9

2 49.0

3 62.2

4 46.0
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The following program is developed for this purpose:

R¼num2cell(R);
F¼num2cell(F);
RR¼num2cell(RR);

%<<<<< Trainng >>>>>
d1 ¼ [0:1];
d2 ¼ [1:1];
narx_net ¼ narxnet(d1,d2,9);
narx_net.trainparam.epochs¼3000;

(continued)
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Fig. 5.20 Rainfall data in Example 5.7

Fig. 5.21 Hydrograph data in Example 5.7
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narx_net.trainParam.min_grad ¼ 1e-10;
[p,Pi,Ai,t] ¼ preparets(narx_net,R,{},F);
narx_net ¼ train(narx_net,p,t,Pi);
yp ¼ sim(narx_net,p,Pi);
e ¼ cell2mat(yp)-cell2mat(t);
plot(e)

%<<<<<< Prediction >>>>>
narx_net_closed ¼ closeloop(narx_net);
[pp,PPi] ¼ preparets(narx_net_closed,RR);
ypp ¼ sim(narx_net_closed,pp,PPi);

with the following variables and parameters (Table 5.13).

Figure 5.22 shows the predicted (red line) versus the observed hydrograph (blue line).

Table 5.13 Variables and parameters used in the program of Example 5.7

Variable/

parameter Description

E Simulation error for the observed hydrographs

F 1*32 matrix of the observed flood hydrograph values as shown in the table

R 1*32 matrix of observed rainfall hyetograph values as shown in the table

RR 1*12 matrix of the rainfall hyetograph values with unknown consequent flood.

The rainfall values after the fourth time interval are considered as zero

Yp Simulated observed hydrographs

Ypp Simulated unknown hydrograph

0

50

100

150

200

250

300

350

400

450

0 2 4 6
Time (0.5 hr)

8 10 12

Q
 (M

CM
)

Fig. 5.22 The results of hydrograph simulation in Example 5.7
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5.3.3 Statistical Neural Networks

5.3.3.1 Radial Basis Function

Radial basis function (RBF) is the basis for radial basis networks, which are in turn

the basis for series of networks known as statistical neural networks. Statistical

neural networks are referred to as the networks which in contrast to the conven-

tional neural networks use regression-based methods and are not inspired by the

biological neural system (Picton 2000). An RBF network uses the similarity

between observations of predictors and similar sets of historical observations

(successors) to obtain the best estimate for a dependent variable. An RBF is a

three-layer network, with only one hidden layer (Fig. 5.23). The number of neurons

in the hidden layer is equal to the number of historical observation of predictors

(successors). In fact, each neuron in the hidden layer represents a pair of historical

observation of predictors/dependants. The output of each neuron is actually the

contribution of the historical observation in estimating the real-time event.

A typical RBF neuron is shown in Fig. 5.13. As it is shown in this figure, RBF

uses a Gaussian performance function. The input to this function is the Euclidian

distance between each input to the neuron and the specified vector of the same size

of the input. The Gaussian function uses the following relation:

f Xr; bð Þ ¼ e�I2

I ¼ Xr � Xbk k � 0:8326=h (5.23)

*0.8326/h]2
Xr− Xbf (Xr , Xb) = e −[

x1r

x2r

x3r

x1r

x2r

x3r

Yr

x1b

x2b

x3b

LW

Bias

Fig. 5.23 Schematic

of an RBF network
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where Xr ¼ network input with unknown output, Xb ¼ observed inputs in time or

location b, and h ¼ spread. The output of the function approaches 0 to 1, when

kXr � Xbk approaches a large value to 0, respectively. The value of the output

between those limits depends on h, which is also known as spread.
The general form of calculating a dependent variable (Yr) by predictor Xr is then

Yr ¼ LW � f Xr;Xbð Þ þ Bias (5.24)

where LW and Bias ¼ weight matrix of connections from the hidden layer to the

output layer and biasmatrix of the output layer, respectively.When anRBF network is

developed, LW and bias matrices are calculated by solving the system of equations of

Tb ¼ LW * f(Xr,b) + Bias where Tb is the target associated with the bth observation.
For a set of input/outputs, X and Y, an RBF is set up as

net ¼ newrbe(P,T,h);

In contrast to the MLP network, there is no need to train RBF. Actually RBF is

ready to simulate while it is set up. The network is used for simulation by the

following command:

Ysim ¼ sim(net,Psim);

Example 5.8: Spatial Interpolation

Table 5.14 and Fig. 5.24 show the coordinates of measuring rainfall stations at a

field. Use the recorded annual rainfall data to estimate rainfall at non-measuring

locations shown in Fig. 5.24.

The annual rainfall in this example is considered as a function of the coordinates.

Therefore, the input/output data would be the coordinates and rainfall depth,

respectively:

P ¼ [3 4 5 6 7 2 1 0 9 10 10 0 9 1; 2 4 1 7 8 9 1 2 4 5 0 9 10 7];
T¼[300 350 250 500 500 50 20 150 400 400 10 50 70 20];

The question is “what is the best spread for interpolation of rainfall in the field?”
We use a try-and-error approach to examine different values of spread starting from
0.1 ending to 6 with 0.1 incremental steps. It should be noted that since the radial

basis network plays the role of an exact estimator function, the application of

different spread values within the calibration set results in a similar averaged
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error of approximately zero. Therefore, to examine the performance of the network

in a practical manner, the approach of cross-validation is used. In this approach,

each pair of input/output is omitted from the n observation of data set once and the

other n � 1 pairs of data are used to estimate the omitted one. This iteration is

repeated n times and the averaged simulation error for all n pairs of data is

considered as the indicator of the real performance of the network.

The following algorithmic steps use the described approach to find out which

spread (h) minimizes the average error of spatial rainfall estimation (Fig. 5.25).

Table 5.14 The information

of the stations in Example 5.8
Stations Longitude Latitude Annual rainfall

A 3 2 300

B 4 4 350

C 5 1 250

D 6 7 500

E 7 8 500

F 2 9 50

G 1 1 20

H 0 2 150

I 9 4 400

J 10 5 400

K 10 0 10

L 0 9 50

M 9 10 70

N 1 7 20

X1 2 2 ?

X2 2 7 ?

X3 8 3 ?
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Fig. 5.24 Location of the measuring stations (blue circles) and non-measuring points (red circles)
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Consider input matrix as the location of
rainfall stations, P2*14 , and target matrix as

the annual rainfall values, R1*14

Generate n sets of input/output matrices for
cross validation

Assume “spread” as 0.0 (h=0.0)

evaluate the performance of the network with
the specific h in simulation of the ith target

using the the ith set of input/output matrices

is i=n ?

i=1

i=i+1

h=h+0.1

store the simulation error for the i th set

Min-error = average error
Is the average error <

Min-error=1e6

Calculate the average error of all n sets

is h=hmax ?

hbest=h

N

Y

Y

N

Report hbest and Min-error

N

Y

Fig. 5.25 Presented algorithm for solving Example 5.8
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The program corresponding to the above algorithm is presented as follows:

minAE¼1e+6;

for h¼0.1:0.1:3
for n¼1:1:14

TestP¼[P(1,n);P(2,n)];
TestT¼[T(n)];
for m¼1:1:13
if m<n
B(1,m)¼ P(1,m);
B(2,m)¼P(2,m);
TB(m)¼T(m);
else

B(1,m)¼P(1,m+1);
B(2,m)¼P(2,m+1);
TB(m)¼T(m+1);

end
end

net ¼ newrbe(B,TB,h);
Y ¼ sim(net,TestP);
E(n)¼abs(Y-TestT);

end
AE ¼ mean(E);
j¼int32(h*10)
Error(j)¼AE;
if AE < minAE
minAE¼AE;
hbest¼h;
end

end;
h ¼ 0.1:.1:3;
plot(h,A);
xlabel(‘spread’);
ylabel(‘error’);

The description of the notation is demonstrated by Table 5.15.

Using the above program, the best spread is obtained as 1.6 which results in an

average error of almost 121 mm (Fig. 5.26). Using this value of spread, the estimated

rainfall in locations X1, X2, and X3 are 193, 356, and 87 mm, respectively.
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5.3.3.2 Generalized Regression Neural Network

A generalized regression neural network (GRNN) is a variant of the radial basis

function (RBF) network. GRNN is a universal approximator for smooth functions,

which is able to solve any smooth function approximation problem given enough

data. The GRNN considers every experienced pair of data as a possible class which

is probably to happen regarding to the observation of specific conditions.

Figure 5.27 shows the architecture of a GRNN. GRNN is a three-layer network

where in contrast to the MLP, the number of neurons in its hidden layer could be

Table 5.15 Variables and parameters used in the program of Example 5.8

Variable/parameter Description

AE Averaged error of interpolation associated with the specific spread (h)

B 2*13 matrix of coordinates for calibration

H Spread of the network

Hbest The best spread for interpolating rainfall in the field

TB 1*13 matrix of recorded annual rainfall for calibration

P 2*14 matrix of coordinates

T 1*14 matrix of recorded annual rainfall

TestP 2*1 matrix of coordinates for validation

TestT 1*1 matrix of recorded annual rainfall for validation

Fig. 5.26 The error of simulation versus values of spread in Example 5.8
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understood easily as it is equal to the number of observed data. Also like the most of

networks, the number of neurons in the input and output layers of GRNN is equal to

the dimension of input and output vectors, respectively. A GRNN uses the same

equations as the RBF network in its first layer; however, it uses the following

equation to calculate an output:

Yr ¼ 1Xn
b¼1

f Xr; bð Þ

Xn
b¼1

f Xr; bð Þ � Tb½ � (5.25)

where Tb ¼ target associated with the bth observation and n ¼ number of obser-

vations. In fact, the weights of the output layer are considered as target values.

Example 5.9: Spatial Interpolation by GRNN

Solve the previous example by the use of generalized regression neural network.

Solution
The algorithm and program which used in this example are as the same as what

was presented in the previous example with just a change in the network configu-

ration as

net ¼ newgrnn(B,TB,h);

Using the above program, the best spread is obtained as 0.1 which results in an

average error of 65 mm (Fig. 5.28).

x1

x2

x3
∑  f (xr , b)

Yr

Tb

Fig. 5.27 Schematic

of generalized regression

neural network
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5.3.3.3 Probabilistic Neural Network

Probabilistic neural networks can be used for classification problems. The archi-

tecture of this network is similar to that of RBF network. When an input is

presented, the first layer computes distances from the input vector to the calibration

input vectors and produces a vector of probabilities as f(Xr,Xb). In the last layer, a

compete transfer function on the output picks the maximum of these probabilities.

The architecture for this network is shown in Fig. 5.29.

The command for using a probabilistic neural network is presented here:

net ¼ newpnn(P,T,spread)

with the same variables presented before.

Example 5.10: Modeling Water Quality Index

The class of water quality in a region based on the nitrate (NO3) and chlorine

(Cl) are tabulated as follows. These classes have been obtained by the CCMEWater

Fig. 5.28 The error of simulation versus values of spread in Example 5.9
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Quality Index (CCME 2001). We need to set up a network to classify water quality

in this region by the use of NO3 and Cl as inputs (Table 5.16).

Solution
Thirty pairs are considered as calibration data set and the remaining 14 data are

used for network validation.

Please note that the indices (targets) should be converted to vectors by the

following command:

T ¼ ind2vec(Tc)

The vector has a dimension of m*n, where m ¼ number of indices and n is

number of observations. The simulated vector is then converted to indices by

Tc ¼ vec2ind(T)

x1

x2

x3

Yr

Competitive
Neuron

Fig. 5.29 Schematic of probabilistic neural network
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Table 5.16 The water quality data used for Example 5.10

Cl(mg/l) No3(mg/l) CCME-WQI Number of class Class

41 44.8 100 5 Excellent

14 10 100 5 Excellent

40 17.7 100 5 Excellent

88 104 46.53 2 Marginal

88 134.5 41.13 1 Poor

74 80.1 52.98 2 Marginal

68 11.4 100 5 Excellent

126 28.8 100 5 Excellent

38 16.2 100 5 Excellent

146 21.6 100 5 Excellent

245 25.5 100 5 Excellent

350 62 59.63 2 Marginal

500 19.5 61.92 2 Marginal

63 53.4 62.88 2 Marginal

48 65.2 58.38 2 Marginal

74 42 100 5 Excellent

52 57.6 61.4 2 Marginal

74 58.6 61.05 2 Marginal

59 55 61.41 2 Marginal

60 71 56.13 2 Marginal

102 141 40.28 1 Poor

186 1.5 100 5 Excellent

70 7.1 100 5 Excellent

96 81 52.69 2 Marginal

188 38 100 5 Excellent

84 47.6 64.41 3 Fair

70 47.2 64.48 3 Fair

114 67.5 57.5 2 Marginal

76 79.5 53.13 2 Marginal

72 29.6 100 5 Excellent

105 75.8 54.5 2 Marginal

82 143.6 39.94 1 Poor

174 134.5 41.13 1 Poor

82 58.4 61.05 2 Marginal

98 27.4 100 5 Excellent

70.2 47 64.53 3 Fair

59.4 45.8 64.61 3 Fair

72 59 60.88 2 Marginal

64.8 72.5 55.63 2 Marginal

37.8 35.8 100 5 Excellent

75.7 86.5 51.02 2 Marginal

64 68 57.33 2 Marginal

44.6 25.1 100 5 Excellent

62 70.8 56.3 2 Marginal
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To employ PNN, first it is needed to find out what is the best spread for a specific
classification. The following program uses cross-validation to select the best

spread:

minAE¼10000;

for h¼2:2:30
for n¼1:1:30

TestP¼[P(1,n);P(2,n)];
TestT¼[T(n)];
for m¼1:1:29
if m<n
B(1,m)¼ P(1,m);
B(2,m)¼P(2,m);
TB(m)¼T(m);
else

B(1,m)¼P(1,m+1);
B(2,m)¼P(2,m+1);
TB(m)¼T(m+1);

end
end

TT ¼ ind2vec(TB);
net ¼ newpnn(B,TT,h);
Y ¼ sim(net,TestP);
Yc ¼ vec2ind(Y);
E(n)¼abs(Yc-TestT);

end
AE ¼ mean(E);
j¼int32(h)
Error(j)¼AE;
if AE < minAE
minAE¼AE;
hbest¼h;
end

end;
Ytest ¼ sim(net,Ptest);
Yctest ¼ vec2ind(Ytest);

The description of the variables and parameters is demonstrated by Table 5.17.

The best spread for classification is obtained as 14. The validation results are

presented in Table 5.18.
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5.4 Summary

The chapter presented and discussed different types of models, namely, multilayer

perceptron which is categorized as static networks, dynamic neural networks, and

statistical neural networks. Each category contains different networks which are

briefly presented as follows.

Multilayer feedforward network uses supervised training procedure that consists

of providing input/output examples to the network and minimizing the error

function. This is the most widely used network in different fields of water resources

and environmental engineering. Static neural networks such as multilayer

perceptron network (MLP) only process input patterns that are spatial in nature,

i.e., input patterns that can be arranged along one or more spatial axes such as a

vector or an array. In many tasks, the input pattern comprises one or more temporal

signals, as in time series prediction. Tapped delay lines (TDLs) and recurrent

(feedback) connections are two components, which could be assigned for static

Table 5.17 Variables and parameters used in the program of Example 5.10

Variable/parameter Description

AE Averaged error of classification

B 2*29 matrix of pollutants for calibration

h Spread of the network

hbest The best spread for classification

TB 1*29 matrix of water quality class for calibration

P 2*30 matrix of pollutants

Ptest 2*14 matrix of pollutants for test

T 1*30 matrix of water quality class

TestP 2*1 matrix of pollutants for validation

TestT 1*1 matrix of water quality class for validation

Yctest Simulated index of the water quality class

Ytest Simulated vector of the water quality class

Table 5.18 The results

of Example 5.10
Actual class Simulated class Actual class Simulated class

2 2 2 2

1 1 2 2

1 1 5 5

2 2 2 2

5 5 2 2

3 2 5 5

3 2 2 2
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networks in order to design temporal neural networks. The networks, which apply

either a TDL or recurrent connections, are referred to as dynamic neural networks.

The IDNN had the tapped delay line memory only at the input to the first layer of

the MLP network. The tapped delay lines could be considered throughout the

hidden layers of the network, which is called distributed TDNN. A layer-recurrent

network contains a feedback loop, with a single delay, around each layer of the

network except for the last layer.

The nonlinear autoregressive network with exogenous inputs (NARX) is a

recurrent dynamic network, with feedback connections enclosing several layers

of the network. The NARX model is based on the linear ARX model, which has

been described in time series modeling.

Radial basis function (RBF) is the basis for radial basis networks, which are in

turn the basis for series of networks known as statistical neural networks. Statistical

neural networks are referred to as the networks which in contrast to the conven-

tional neural networks use regression-based methods and are not inspired by the

biological neural system. An RBF network uses the similarity between observations

of predictors and similar sets of historical observations (successors) to obtain the

best estimate for a dependent variable. An RBF is a three-layer network, with only

one hidden layer.

A generalized regression neural network (GRNN) is a variant of the radial basis

function (RBF) network. GRNN is a universal approximator for smooth functions,

which is able to solve any smooth function approximation problem given enough

data. The GRNN considers every experienced pair of data as a possible class which

is probably to happen regarding to the observation of specific conditions.

GRNN is a three-layer network where in contrast to the MLP, the number of

neurons in its hidden layer could be understood easily as it is equal to the number of

observed data. Also like the most of networks, the number of neurons in the input

and output layers of GRNN is equal to the dimension of input and output vectors,

respectively. A GRNN uses the same equations as the RBF network in its first layer;

however, it uses the following equation to calculate an output.

Probabilistic neural networks can be used for classification problems. The

architecture of this network is similar to that of RBF network. When an input is

presented, the first layer computes distances from the input vector to the calibration

input vectors and produces a vector of probabilities. In the last layer, a compete
transfer function on the output picks the maximum of these probabilities and

produces 1 for the class associated with the calibration vector input with maximum

probability and 0 for the other classes.

Workshop

Zayandeh-rud River is the main surface resource for irrigation and domestic

demands in the central part of Iran, especially the Isfahan metropolitan area. As
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water demands increase in Isfahan, water withdrawals from the river increase and it is

critical that climate variability is incorporated into water resources-related decision-

making. Zayandeh-rud reservoir (Fig. 5.30), with 1,470 million cubic meters volume,

controls streamflow upstream of Isfahan city. This workshop aims to set up an

appropriate model based on ANNs to forecast winter inflow (inflow from January

to March) to Zayandeh-rud reservoir. Data of 30-year period from 1971 to 2002 are

used in this workshop. The predictors of the winter inflow include “October to

December streamflow,” “averaged Southern Oscillation Index (SOI) from October

to December,” and “rainfall from October to December” (Table 5.19).

Solution
This workshop uses a combination of ANN-based models instead of relying on an

individual network. The main idea of the approach of this case is to apply different

networks, each trained to perform better in specific conditions. Actually, a network

is trained to simulate dry conditions (below average streamflow) and another is

trained for wet seasons (below average streamflow). To switch between these two

networks in real-time forecasting, a classifying network (say PNN) could be applied

to decide if a condition is likely to be either a dry or a wet season. This approach is

summarized in the following diagram (Fig. 5.31).

Fig. 5.30 Map of Zayandh-rud basin

5.4 Summary 189



The following program is provided to train an MLP for dry or wet seasons.

The difference between this MLP and a conventional MLP is actually in the

“performance function.” Where a conventional MLP uses the well-known

performance function of
Xn

p¼1
yp � ŷ p

� �2
, the following modified MLP usesXn

p¼1
yp � ŷ p

� �2 � 1:2 31�pð Þ which is applied through the commands used in

Table 5.19 Predictors and streamflow data of the workshop

Year

Predictor 1 Predictor 2 Predictor 3 Dependant variable

October to

December

streamflow

Averaged SOI from

October to December

October to

December rainfall

January to March

streamflow

1971 181.37 13.60 472.50 –

1972 112.91 �9.77 281.70 187.43

1973 136.15 18.27 184.50 346.06

1974 146.79 6.47 394.00 201.75

1975 241.02 18.00 356.00 223.89

1976 368.61 �0.07 231.00 376.61

1977 210.26 �12.30 637.00 293.98

1978 150.44 �2.47 163.00 449.25

1979 210.85 �1.93 245.10 302.30

1980 189.13 �3.50 128.70 228.88

1981 208.71 1.70 237.00 359.68

1982 156.69 �24.23 445.00 207.64

1983 130.35 4.47 227.00 207.03

1984 121.48 0.30 337.00 193.94

1985 193.93 �2.27 416.00 188.46

1986 230.64 �4.33 613.00 168.35

1987 200.10 �6.07 414.00 412.90

1988 191.19 18.57 553.00 489.07

1989 127.92 3.67 630.00 278.49

1990 159.57 �3.70 70.00 346.09

1991 184.65 �12.27 554.00 198.91

1992 290.65 �7.90 451.00 220.49

1993 397.95 �6.83 361.00 478.63

1994 123.48 �12.87 1,041.00 330.08

1995 130.89 1.07 99.50 323.51

1996 104.09 3.67 116.00 197.57

1997 111.51 �15.93 315.00 133.38

1998 118.04 11.50 98.00 296.57

1999 81.66 7.27 385.00 180.56

2000 119.30 14.00 380.00 139.65

2001 137.06 2.23 350.00 151.39

2002 – – – 324.80
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section “Network Training” of the program. To stress on dry seasons, the pairs of

input/target are sorted in an ascending order of targets and vice versa:

nn¼20;
minAE¼10E6;
U¼-99*ones(nn);
AE¼U(1,:);
%
%<<<<< Pre-Processing:>>>>>
%<<<<< Standardize data and transform them to
principal
%components >>>>>
%
[pn,ps1] ¼ mapstd(P);
[ptrans,ps2] ¼ processpca(pn,0.2);
Input¼ptrans;
%
%<<<<< divide Inputs to train and validation sets
>>>>>
%
[trai-Ind,valind,testInd]¼divideblock
(Input,0.8,0.2,0.0);

(continued)

ANN for dry
season modeling

ANN for wet
season modeling

seasonal
streamflow
forecasting

Use PNN for
classifying wet or

dry seasons

seasonal
streamflow
predictors

wet seasondry season

Fig. 5.31 The algorithm

of the proposed method

5.4 Summary 191



for S¼1:nn
%
%<<<<< Network Architecture:
%Three-layer MLP with S hidden neurons >>>>>
%
net ¼ feedforwardnet([S]);
net ¼ configure(net,Input,T);
%
%<<<<< Network Training >>>>>
%
net ¼ init(net);
ind ¼ 1:31;
ew ¼ 1.2.^(31-ind);
net.trainParam.epochs ¼ 1000;
net.trainParam.goal ¼ 1e-5;
[net,tr]¼train(net,Input,T,{},{},ew);
%
%<<<<< Simulation >>>>>
%
a¼net(Input);
%
%<<<<< Post-Processing >>>>>
%
E¼abs(a-T);
AE(S)¼mean(E);

if AE(S)<minAE
minAE¼AE(S);
Sbest¼S;
bestnet¼net;

end

end;

Tsim¼bestnet(Input);
plot(Input,T,’o’,Input,Tsim,’x’)

Comparison of the simulation obtained by the dry season model by what is

obtained by a conventional MLP model is shown in the following figure (Fig. 5.32).

Also, comparison of the simulation obtained by the wet season model by what is

obtained by a conventional MLP model is shown in Fig. 5.33.

A PNN program, similar to what is presented in Example 5.10, could be

employed to classify dry ad wet conditions.
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Chapter 6

Support Vector Machines

Abstract Classifying data is a common task in data-driven modeling. Using

support vector machines, we can separate classes of data by a hyperplane. A support

vector machine (SVM) is a concept for a set of related supervised learning methods

that analyze data and recognize patterns, used for classification and regression

analysis. The formulation of SVM uses the structural risk minimization principle,

which has been shown to be superior to the traditional empirical risk minimization

principle used by conventional neural networks. This chapter presents principles

of classification and regression analysis by support vector machines, briefly. Also

related MATLAB programs are presented.

Keywords Support vector machines • Classification • Kernel function

• Regression

6.1 Introduction

Classifying data is a common task in data-driven modeling. Using support vector

machines, we can separate classes of data by a hyperplane. A support vector

machine (SVM) is a concept for a set of related supervised learning methods that

analyze data and recognize patterns, used for classification and regression analysis.

Support vector machine was developed by Vapnik in 1995 (Vapnik 1995). The

formulation of SVM uses the structural risk minimization principle, which has been

shown to be superior to the traditional empirical risk minimization principle used

by conventional neural networks (Burges 1998). In what follows, the application of

SVM will be introduced, briefly (Fig. 6.1).

S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Water Resources
and Environmental Engineering, Water Science and Technology Library 67,

DOI 10.1007/978-94-007-7506-0_6, © Springer Science+Business Media Dordrecht 2014
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6.2 Support Vector Machines for Classification

As it was presented in Chap. 5, models such as artificial neural network divide the

decision space by a line, a plane, or a hyperplane as it is presented in Fig. 6.1. The

difference between SVM and other classifiers is to divide the decision space in a

way that the risk of classification is minimized. It means that two classes have

maximum distance from both lines. As it is demonstrated in Fig. 6.1 a, classifier line
might be inappropriate to divide a two-dimensional space into two classes (line a in
Fig. 6.1). Line b shown in Fig. 6.2 divides the space in a proper manner; however, it

has a high risk of misclassification in case of adding new data points. Among the

others, line c divides the space with the associated risk which is minimized as

possible. Line b represents a classifier line obtained by neural networks where line

c may represent a classifier line resulted by SVM.
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Fig. 6.1 Different
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There are many hyperplanes that might classify the data. One reasonable choice

as the best hyperplane is the one that represents the largest separation, or margin,

between the two classes. So SVM chooses the hyperplane so that the distance from

it to the nearest data point on each side is maximized. If such a hyperplane exists, it

is known as the maximum-margin hyperplane, and the defined linear classifier is

known as a maximum-margin classifier or, equivalently, the perceptron of optimal

stability.

To describe the algorithm of SVM, let us consider a two-dimensional classifi-

cation problem which is divided by a line as shown in Fig. 6.2. The equation of this

line is written as

WTX þ b ¼ 0 (6.1)

where X is the variables in the decision space andW and b are the parameters of the

classifier.

In contrast to the artificial neural networks, SVM considers a margin for a

classifier line as shown in Fig. 6.3b. Let us define the equations of the marginal

lines as

WTX þ b ¼ 1 (6.2)

and

WTX þ b ¼ �1 (6.3)

We know that the distance of a line from the origin is obtained by |b|/kWk.
Therefore, the distance between the upper marginal line and the classifier line

of Fig. 6.2 is obtained as

Fig. 6.3 Plot of the

classification results

in Example 6.1
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d ¼ b� 1j j
Wk k � bj j

Wk k
����

���� ¼ 1

Wk k (6.4)

So the width of the margin is

D ¼ 2d ¼ 2

Wk k (6.5)

The objective function of SVM method becomes maximizing 2/kWk or its

equivalent form of

Min L ¼ 1

2
WTW (6.6)

Subject to the following constraints,

if y ¼ 1 then WTX þ b � 1

if y ¼ �1 then WTX þ b � �1
(6.7)

In the above constraints, y is representative of each class. Two above constraints
can be combined to the form of

Minimize L ¼ 1

2
WTW (6.8)

Subject to

y WTX þ b
� �� 1 � 0 (6.9)

The above optimization problem is used for the approach of “hard margin”

where a solid border is considered for the support vectors. We can also make the

support vectors more flexible by accepting an error of ξ for each of the border lines.
So, the optimization becomes

Minimize
1

2
WTW þ C

Xn
i¼1

ξi i ¼ 1, . . . , n (6.10)

Subject to : yi W
TX þ b

� � � 1� ξi, 8i∈ 1; . . . ; nf g
ξi � 0, 8i∈ 1; . . . ; nf g (6.11)

where n is the number of observation data.

The objective function of Eq. 6.8 could be changed to the following form

inserting the constraints into the objective function:

Minimize L ¼ 1

2
WTW �

X
i

αi y WTX þ b
� �� 1

� �
i ¼ 1, . . . , n (6.12)
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where α is the multiplier of the constraint when it is inserted in the objective

function.

The above equation is the primal problem of SVM method. “b” and “W” can be

omitted from the equation taking derivations of L.

dL

dW
¼ 0 ) W �

X
i

αiyixi ) W ¼
X

αiyixi

dL

db
¼ 0 )

X
i

αiyi ¼ 0

8>>><
>>>:

(6.13)

The dual problem is then obtained as follows, inserting the equivalents

of b and W:

Maximize LD ¼ � 1

2

X
i

X
j

αiαjyiyjx
T
i
xj þ

X
i

αi i ¼ 1, . . . , n (6.14)

Subject to
X
i

αiyi ¼ 0 αi � 0 (6.15)

The decision space variables (X) could be mapped to a higher dimensional space

using function ϕ. Applying this transformation, the dual problem becomes

Maximize
Xn
i¼1

αi � 1

2

Xn
i, j¼1

αiαjyiyj:k xi; xj
� �

Subject to : αi � 0, 8i∈ 1; . . . ; nf gXn
i¼1

αiyi ¼ 0

(6.16)

where

k xi; xj
� � ¼ ϕ xið Þ:ϕ xj

� �� �
(6.17)

is called the kernel function.
The kernel functions commonly used in SVM’s formulations are:

Linear:

k xixj
� � ¼ xTi xj (6.18)

Polynomial:

k xixj
� � ¼ γ xTi xj þ r

� �d
, γ > 0 (6.19)
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Radial basis function (RBF):

k xixj
� � ¼ exp �γ xi � xj

�� ��2� 	
, γ > 0 (6.20)

Sigmoid:

k xixj
� � ¼ tanh γ xTi xj þ r

� �
: (6.21)

where, γ, r, and d are kernel parameters.

Example 6.1: Linear Classification by SVM

Classify the data of Table 6.1.

Solution

n¼numel(y);

ClassA¼find(y¼¼1);
ClassB¼find(y¼¼-1);

%% Development of SVM

%% Parameter C
C¼10;

(continued)

Table 6.1 Data presented

for Example 6.1
Class A Class B

7 15 9.1 10.6

16.3 13.4 6.7 7.3

9.7 20.5 10.3 11.4

11 17.1 10.6 13.2

17.6 19.5 7.7 8.6

16.1 18.7 9.9 6.8

10.4 17.9 10.7 7.1

14.7 18.4 9.6 9.2

9.9 17.8 11.5 11.4

18.1 13.7 8.8 11.6

17.5 13.1 9.7 12.6

11.8 13.8 10.2 11.3

16.9 15.6 10.1 7.6

14.9 22.2 9.8 10

14.8 13.2 8.3 9.7
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H¼zeros(n,n);
for i¼1:n
for j¼i:n

H(i,j)¼y(i)*y(j)*x(:,i)’*x(:,j);
H(j,i)¼H(i,j);

end
end

f¼-ones(n,1);

Aeq¼y;
beq¼0;
lb¼zeros(n,1);
ub¼C*ones(n,1);
Alg¼’interior-point-convex’;
options¼optimset(’Algorithm’,Alg,. . .
’Display’,’off’,. . .
’MaxIter’,20);

alpha¼quadprog(H,f,[],[],Aeq,beq,lb,ub,[],
options)’;

AlmostZero¼(abs(alpha)<max(abs(alpha))/1e5);
alpha(AlmostZero)¼0;

S¼find(alpha>0 & alpha<C);

w¼0;
for i¼S

w¼w+alpha(i)*y(i)*x(:,i);
end

b¼mean(y(S)-w’*x(:,S));

%% Plot

Line¼@(x1,x2) w(1)*x1+w(2)*x2+b;
LineA¼@(x1,x2) w(1)*x1+w(2)*x2+b+1;
LineB¼@(x1,x2) w(1)*x1+w(2)*x2+b-1;

(continued)
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figure;
plot(x(1,ClassA),x(2,ClassA),’ro’);
hold on;
plot(x(1,ClassB),x(2,ClassB),’bs’);
plot(x(1,S),x(2,S),’ko’,’MarkerSize’,12);
x1min¼min(x(1,:));
x1max¼max(x(1,:));
x2min¼min(x(2,:));
x2max¼max(x(2,:));

handle¼ezplot(Line,[x1min x1max x2min x2max]);
set(handle,’Color’,’k’,’LineWidth’,2);

handleA¼ezplot(LineA,[x1min x1max x2min x2max]);
set
(handleA,’Color’,’k’,’LineWidth’,1,’LineStyle’,’,:’);

handleB¼ezplot(LineB,[x1min x1max x2min x2max]);
set
(handleB,’Color’,’k’,’LineWidth’,1,’LineStyle’,’:’);

legend(’Class A’,’Class B’);

the result is shown in Fig. 6.3.

Example 6.2: Nonlinear Classification by SVM

First we need to save the following function in the address where MATLAB is

running. The following commands could be copied to an m.file then be saved in the
address:

function f¼MySVRFunc(X,alpha,y,x,Kernel)

n¼numel(alpha);

f¼0;
for i¼1:n

f¼f+alpha(i)*y(i)*Kernel(x(:,i),X);
end
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Then the program is run as follows. The result is shown in Fig. 6.4.

%% create data

m¼20;
rA¼unifrnd(0,1,1,m);
rB¼unifrnd(1,2,1,m);
r¼[rA rB];
theta¼unifrnd(0,2*pi,1,2*m);
x(1,:)¼r.*cos(theta);
x(2,:)¼r.*sin(theta);
y(1:m)¼1;
y(m+1:2*m)¼-1;
ClassA¼find(y¼¼1);
ClassB¼find(y¼¼-1);
n¼numel(y);

%% Develop SVM

C¼250;

sigma¼0.9;

Kernel¼@(xi,xj) exp(-1/(2*sigma^2)*norm(xi-xj)^2);
H¼zeros(n,n);
for i¼1:n

(continued)

Fig. 6.4 Plot of the

classification results

in Example 6.2
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for j¼i:n
H(i,j)¼y(i)*y(j)*Kernel(x(:,i),x(:,j));
H(j,i)¼H(i,j);

end
end

f¼-ones(n,1);
Aeq¼y;
beq¼0;
lb¼zeros(n,1);
ub¼C*ones(n,1);
Alg{1}¼’trust-region-reflective’;
Alg{2}¼’interior-point-convex’;
Alg{3}¼’active-set’;
options¼optimset(’Algorithm’,Alg{2},. . .
’Display’,’off’,. . .
’MaxIter’,20);

alpha¼quadprog(H,f,[],[],Aeq,beq,lb,ub,[],
options)’;
AlmostZero¼(abs(alpha)<max(abs(alpha))/1e5);
alpha(AlmostZero)¼0;
S¼find(alpha>0 & alpha<C);
b¼0;

b¼0;
for i¼S

b¼b+y(i)-MySVRFunc(x(:,i),alpha(S),y(S),x(:,S),
Kernel);
end
b¼b/numel(S);

%% Plot

Curve¼@(x1,x2)MySVRFunc([x1;x2],alpha(S),y(S),x(:,
S),Kernel)+b;
CurveA¼@(x1,x2)MySVRFunc([x1;x2],alpha(S),y(S),x(:,
S),Kernel)+b+1;
CurveB¼@(x1,x2)MySVRFunc([x1; x2],alpha(S),y(S),x
(:,S),Kernel)+b-1;

figure;
plot(x(1,ClassA),x(2,ClassA),’ro’);

(continued)
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hold on;
plot(x(1,ClassB),x(2,ClassB),’bs’);
plot(x(1,S),x(2,S),’ko’,’MarkerSize’,12);
x1min¼min(x(1,:));
x1max¼max(x(1,:));
x2min¼min(x(2,:));
x2max¼max(x(2,:));

handle¼ezplot(Curve,[x1min x1max x2min x2max]);
set(handle,’Color’,’k’,’LineWidth’,2);

handleA¼ezplot(CurveA,[x1min x1max x2min x2max]);
set
(handleA,’Color’,’k’,’LineWidth’,1,’LineStyle’,’:’);

handleB¼ezplot(CurveB,[x1min x1max x2min x2max]);
set
(handleB,’Color’,’k’,’LineWidth’,1,’LineStyle’,’:’);
legend(’Class A’,’Class B’);

When one deals with more than two classes, an appropriate multiclass method is

needed. A number of possible methods for this purpose are as follows (Chapelle

et al. 1999):

• Modifying the design of the SVM to incorporate the multiclass learning directly

in the quadratic solving algorithm

• Combining several binary classifiers with two methods:

– “One against one” which applies pair comparisons between classes

– “One against the others” which compares a given class with all the other classes

According to a comparison study (Weston and Watkins 1998), the accuracy of

these methods is almost the same.

6.3 Support Vector Machines for Regression

The basic difference between the application of SVM for regression (SVR) and the

application of SVM for classification is that in SVR y is considered as a real number

instead of a binary number. It means that
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WTX + b in Eqs. 6.1, 6.2, and 6.3 is considered equal to Y or

WTX þ b ¼ Y (6.22)

where

Y∈R

Here the goal of modeling will be obtaining the parameters of Eq. 6.14 in a way

that the estimated Y be approximately equal to the target values of T for

n observation data, when an error less than ε (ε ¼ |Y � T|) is allowed and more

than that gets penalty in the objective function.

Like the nonlinear SVM, a mapping of X could be used in Eq. 6.22, which

enables using the presented kernel function through the SVR to improve it as a

nonlinear regression method.

WTϕ Xð Þ þ b ¼ Y (6.23)

Example 6.3: Linear Regression Modeling by SVR

Develop a linear regression model by SVR.

Solution
The following program fits a linear regression model to the x and t data as specified
in the program:

x¼linspace(0,10,40);
t¼-2*x+7+1*randn(size(x));
n¼numel(t);

%% Develop SVR

% epsilon
epsilon¼1;
C¼1;
H¼zeros(n,n);
for i¼1:n

(continued)
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for j¼i:n
H(i,j)¼x(:,i)’*x(:,j);
H(j,i)¼H(i,j);

end
end

% HH¼H
HH¼[ H -H

-H H];

f¼[-t’; t’]+epsilon;

Aeq¼[ones(1,n) -ones(1,n)];
beq¼0;
lb¼zeros(2*n,1);
ub¼C*ones(2*n,1);
options¼optimset(’Display’,’iter’,’MaxIter’,1000);
alpha¼quadprog(HH,f,[],[],Aeq,beq,lb,ub,[],
options);
alpha¼alpha’;
AlmostZero¼(abs(alpha)<max(abs(alpha))*1e-4);
alpha(AlmostZero)¼0;
alpha_plus¼alpha(1:n);
alpha_minus¼alpha(n+1:end);

eta¼alpha_plus-alpha_minus;

S¼find(alpha_plus+alpha_minus>0
&alpha_plus+alpha_minus<C);

w¼0;
for i¼1:n

w¼w+eta(i)*x(:,i);
end

b¼mean(t(S)-w’*x(:,S)-sign(eta(S))*epsilon);

%% Plot

(continued)
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figure;
plot(x,t,’o’);
hold on;
xmin¼min(x);
xmax¼max(x);
xx¼linspace(xmin,xmax,500);
yy¼w’*xx+b;
plot(xx,yy,’k’,’LineWidth’,2);
plot(xx,yy+epsilon,’r:’);
plot(xx,yy-epsilon,’r:’);
grid on;

The result is shown in Fig. 6.5.

Example 6.4: Nonlinear Regression Modeling by SVR

Develop a nonlinear regression by SVR using a kernel function.

Solution
First we need to save the following function in the address where MATLAB is

running. The following commands could be copied to anm.file then be saved in that
address:

Fig. 6.5 Plot of the

regression line in

Example 6.3
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function y¼MySVRFunc(x,eta,X,Kernel)

n¼numel(eta);
y¼0;

for i¼1:n
y¼y+eta(i)*Kernel(X(:,i),x);

end

end

Then the following program is run. The output is seen in Fig. 6.6.

x¼linspace(0,4*pi,40);
t¼sin(x).*exp(-0.2*x)+0.1*randn(size(x));
n¼numel(t);

%% Design SVR

epsilon¼0.15;
C¼1000;
sigma¼1;

Kernel¼@(xi,xj) exp(-1/(2*sigma^2)*norm(xi-xj)^2);

H¼zeros(n,n);
for i¼1:n

(continued)

Fig. 6.6 Plot of the

regression curve in

Example 6.4
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for j¼i:n
H(i,j)¼Kernel(x(:,i),x(:,j));
H(j,i)¼H(i,j);

end
end

HH¼[ H -H
-H H];

f¼[-t’; t’]+epsilon;

Aeq¼[ones(1,n) -ones(1,n)];
beq¼0;

lb¼zeros(2*n,1);
ub¼C*ones(2*n,1);

options¼optimset(’Display’,’iter’,’MaxIter’,1000);

alpha¼quadprog(HH,f,[],[],Aeq,beq,lb,ub,[],
options);

alpha¼alpha’;

AlmostZero¼(abs(alpha)<max(abs(alpha))*1e-4);

alpha(AlmostZero)¼0;

alpha_plus¼alpha(1:n);
alpha_minus¼alpha(n+1:end);

eta¼alpha_plus-alpha_minus;

S¼find(alpha_plus+alpha_minus>0
&alpha_plus+alpha_minus<C);

y¼zeros(size(t));
for i¼1:n

y(i)¼MySVRFunc(x(:,i),eta(S),x(:,S),Kernel);
end

b¼mean(t(S)-y(S)-sign(eta(S))*epsilon);

(continued)
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%% Plot

xmin¼min(x);
xmax¼max(x);
xx¼linspace(xmin,xmax,500);
yy¼zeros(size(xx));
for k¼1:numel(yy)
yy(k)¼MySVRFunc(xx(:,k),eta(S),x(:,S),Kernel)+b;
end

figure;
plot(x,t,’o’);
hold on;
plot(xx,yy,’k’,’LineWidth’,2);
plot(xx,yy+epsilon,’r:’);
plot(xx,yy-epsilon,’r:’);
grid on;
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Chapter 7

Fuzzy Models

Abstract While variables in mathematics usually take numerical values, in fuzzy

logic applications, the non-numeric linguistic variables are often used to facilitate

the expression of rules and facts. The idea of fuzzy logic is very suitable for

engineering application where a precise representation of the real world is sought.

In contrast to the statistical-based methods, fuzzy models do not need very strong

assumptions and requirements. As far as the engineering application of fuzzy logic

is concerned, two approaches are usually followed up: (1) developing fuzzy exten-

sions of the classic methods and models and (2) developing models, which are

basically originated by the fuzzy logic. Basic information in fuzzy logic, fuzzy

clustering, fuzzy inference systems, and fuzzy regression are the main subjects

which are presented in this chapter. Obviously, the related useful MATLAB

commands are presented and discussed to support the methods of applied modeling

of the presented subjects.

Keywords Fuzzy logic • Fuzzy C-means • Fuzzy inference systems • Adaptive

neuro-fuzzy inference system • Fuzzy regression

7.1 Introduction

Application of fuzzy logic in the engineering fields has increased significantly in

recent years. While variables in mathematics usually take numerical values, in

fuzzy logic applications, the non-numeric linguistic variables are often used to

facilitate the expression of rules and facts. A linguistic variable such as qualitymay

have a value such as appropriate or its antonym inappropriate. However, the great
utility of linguistic variables is that they can be modified via linguistic hedges

applied to primary terms. This general idea is very suitable for engineering appli-

cations where a precise representation of the real world is sought. A summary

review of the application of fuzzy logic in water resources and environmental

engineering contests is shown in Table 7.1.

S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Water Resources
and Environmental Engineering, Water Science and Technology Library 67,

DOI 10.1007/978-94-007-7506-0_7, © Springer Science+Business Media Dordrecht 2014
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As far as the engineering application of fuzzy logic is concerned, two types of

fuzzy models exist: (1) models that are in fact fuzzy extensions of the classic ones

and (2) models which are basically originated by the fuzzy logic. Fuzzy regression

is a model which is categorized in the first type of the mentioned models, and fuzzy

inference system is among the models of type two.

More generally, fuzzy logic, neuro-computing, and genetic algorithms may be

viewed as the principal constituents of what might be called soft computing. Unlike

the traditional, hard computing, soft computing accommodates the imprecision of

Table 7.1 A summary review on the application of fuzzy logic in water resources and

environmental engineering

Researcher(s) Field of the study Subject

Ren et al. (2013) Hydrology Monthly runoff forecasting with adaptive neuro-fuzzy

inference system and wavelet analysis

Wang and

Altunkaynak

(2012)

Hydrology A comparative assessment of rainfall–runoff modeling

between SWMM and fuzzy logic approach

Kucukmehmetoglu

et al. (2010)

Water resources

management

Coalition possibility of riparian countries via game

theory and fuzzy logic models

Shrestha and

Simonovic

(2010)

Hydrometry Fuzzy nonlinear regression approach to stage–discharge

analyses

Talei et al. (2010) Hydrology Evaluation of rainfall and discharge inputs used by

adaptive network-based fuzzy inference systems

(ANFIS) in rainfall–runoff modeling

Firat et al. (2009) Water consump-

tion prediction

Comparative analysis of fuzzy inference systems

for prediction of water consumption time series

Lee et al. (2009) Urban water

systems

Fuzzy logic modeling of risk assessment for a drinking-

water supply system

Moghaddamnia

et al. (2009)

Hydroclimatology Evaporation estimation, using artificial neural networks

and adaptive neuro-fuzzy inference system

techniques

Mathon

et al. (2008)

Groundwater Transmissivity and storage coefficient estimation by

coupling the Cooper–Jacob method and modified

fuzzy least-squares regression

Shu and Ouarda

(2008)

Hydrology Regional flood frequency analysis at un-gauged sites

using the adaptive neuro-fuzzy inference system

Casper et al. (2007) Hydrology Fuzzy logic-based rainfall–runoff modeling using soil

moisture measurements

Lohani et al. (2007) Sediment

estimation

Deriving stage–discharge–sediment concentration

relationships using fuzzy logic

Chang and Chang

(2006)

Reservoir

management

Adaptive neuro-fuzzy inference system for prediction

of water level in reservoirs

Terzi et al. (2006) Climatology Estimation of evaporation using ANFIS

Özelkan

et al. (1996)

Climatology Relationship between monthly atmospheric circulation

patterns and precipitation

Bardossy

et al. (1990)

Hydrology Application of fuzzy regression in hydrology
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the real world. Among various combinations of methodologies in soft computing,

the one that has highest visibility at this juncture is that of fuzzy logic and neuro-

computing, leading to neuro-fuzzy systems. Within fuzzy logic, such systems play a

particularly important role in the induction of rules from observations.

This chapter is structured as shown in the chart of Fig. 7.1. After “Introduction,”
some supportive information regarding the fuzzy sets is presented. The next section

deals with one of the application of fuzzy logics in the field of data clustering. The

well-known technique of fuzzy C-means is presented in this chapter. The chapter is

continued by the most well-known data-driven fuzzy model, fuzzy inference system.

Two techniques of Mamdani and Sugeno fuzzy inference systems are presented in

that section. An improved technique of fuzzy inference system by neuro-computing,

which is known as adaptive neuro-fuzzy inference system, is presented in the next

section. The final section of this chapter deals with a fuzzy version of linear

regression. Finally, the chapter ends with a workshop on the fuzzy systems.

Fig. 7.1 The structure of contents of this chapter
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7.2 Supportive Information

7.2.1 Fuzzy Numbers

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp,

clearly defined boundary. To understand what a fuzzy set is, first consider what is

meant by what we might call a classic set. A classic set usually deals with determi-

nistic and random variables as shown in Fig. 7.2. The presentation of variables in a

classic manner includes either a crisp value or the range of probable values with their

associated probabilities. A vast range of mathematical and statistical methods exist to

describe variables in a classic manner. In contrast, fuzzy sets describe vague concepts

(severity of a drought, hot weather, and benefit of water allocation). A fuzzy set

admits the possibility of partial membership in it (quality of water is poor, the weather

Fig. 7.2 Variables in

mathematics, statistics,

and fuzzy logic

216 7 Fuzzy Models



is rather hot). A fuzzy number is an extension of a regular number in the sense that it

does not refer to one single value but rather to a connected set of possible values,

where each possible value has its own weight between 0 and 1. This weight is called

the membership function.

The membership function is the basic idea in fuzzy set theory; its values measure

degrees to which objects satisfy imprecisely defined properties.

Fuzzy memberships represent similarities of objects to imprecisely defined

properties. Membership values determine how much fuzziness a fuzzy set contains.

The degree an object, x, belongs to a fuzzy set; eA is denoted by a membership

value between 0 and 1 known as μeA xð Þ. A membership function associated with a

given fuzzy set maps an input value to its appropriate membership value. Types of

conventional membership functions are listed in Table 7.2.

For instance, a triangular membership function with a and c as the feet of the

shape and b as the peak is developed by

y ¼ trimf(x,[a b c])

where x ¼ input vector and y ¼ μeA xð Þ¼ output vector in the range [0,1].μeA xð Þ is
related to the x values by the following relation:

μeA xð Þ ¼

0 if x < a
x� a

b� a
if a � x � b

c� x

c� b
if b � x � c

0 if x > c

8>>>>>><
>>>>>>:

(7.1)

Figure 7.3 shows a triangular fuzzy number obtained by the following com-

mands in MATLAB:

x¼0:1:20;
y¼trimf(x,[5 10 18]);
plot(x,y)
xlabel(’trimf, P¼[5 10 18]’)

Table 7.2 Conventional fuzzy membership function in fuzzy logic application

Type of fuzzy membership functions (MF) Syntax of the MFs in MATLAB

Triangular Trimf

Trapezoidal Trapmf

Gaussian Guassmf

Generalized bell Guass2mf

Sigmoidal Sigmf
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In a trapezoidal membership function, the membership value, μeA xð Þ, is obtained as

μeA xð Þ ¼

0 if x < a
x� a

b� a
if a � x � b

1 if b � x � c

d � x

d � c
if c � x � d

0 if x > d

8>>>>>>>>><
>>>>>>>>>:

(7.2)

Figure 7.4 shows a trapezoidal membership function obtained by the following

commands:

x¼0:1:20;
y¼trapmf(x,[5 10 15 18]);
plot(x,y)
xlabel(’trapmf, P¼[5 10 15 18]’)

The membership value, μeA xð Þ, by a Gaussian membership function is obtained by

μeA xð Þ ¼ e
� x�cð Þ2

2σ2 (7.3)

Fig. 7.3 An example of triangular fuzzy membership function
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An example of Gaussian membership function is presented in Fig. 7.5 which has

been obtained by the following commands:

x¼0:1:20;
sigma¼2;
average¼10;
y¼gaussmf(x,[sigma average]);
plot(x,y)
xlabel(’gaussmf, P¼[2 10]’)

7.2.2 Logical Operators

To combine two fuzzy numbers, AND, OR, and NOT operators exist in fuzzy logic,

usually defined as the minimum, maximum, and complement. It means that the

membership function of the output variable in case of combining two fuzzy

numbers would be the maximum/minimum membership function of them in case

of using AND/OR operators.

In case of using NOT operator, the membership function of the output variable

would be the complement of the single input variable. Table 7.3 shows an example

of combining two fuzzy variables by different operators.

Fig. 7.4 An example of trapezoidal fuzzy membership function
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7.3 Fuzzy Clustering

Clustering of numerical data forms the basis of many classification and system

modeling algorithms. The purpose of clustering is to identify natural groupings of

data from a large data set to produce a concise representation of a system’s

behavior. Clustering is a mathematical tool that attempts to discover structures or

certain patterns in a data set, where the objects inside each cluster show a certain

degree of similarity.

Hard clustering assigns each feature vector to one. Only one of the clusters with

a degree of membership is equal to one, and well-defined boundaries exist between

clusters. Fuzzy clustering allows each feature vector to belong to more than one

cluster with different membership degrees (between 0 and 1) and vague or fuzzy

boundaries between clusters. Fuzzy C-means (FCM) is a data clustering technique

wherein each data point belongs to a cluster to some degree that is specified by a

membership grade.

Table 7.3 Operators

in fuzzy logic
Operator

Membership values Result

μeA xð Þ ¼ 0:8 μeB xð Þ ¼ 0:3 μeC xð Þ
A AND B Min(0.8,0.3) 0.3

A OR B Max(0.8,0.3) 0.8

NOT A 1–0.8 0.2

Fig. 7.5 An example of Gaussian fuzzy membership function
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For xi data of size N and C number of clusters, considering cj as the center of each
cluster and uij as the coefficients of each xi for being in the clusters, the optimum

values of cj is obtained when the following objective function, J, is minimized:

Jm ¼
XN
i¼1

XC
j¼1

umij xi � cj
�� ��2 (7.4)

wherem is a parameter to control the weight which is given to each center of clusters.

To minimize the above function, the algorithmic procedure for applying fuzzy

C-means for data of size N presented by Bezdek et al. (1984) is as follows:

1. Choose C as the number of clusters (2 � C � N ).

2. Select parameter m and assign randomly to each point coefficients for being in the

clusters, umij (i ¼ 1, . . ., N; j ¼ 1, . . ., C). It should be noted that ∑ j=1
Cumij ¼ 1.

m controls how much weight is given to the closest center.

3. Determine the coordinate of each cluster by the following formula:

cj ¼
XN

i¼1
umij xiXN

i¼1
umij

(7.5)

4. Update umij values by the following relation:

cj ¼
XN

i¼1
umij xiXN

i¼1
umij

(7.6)

5. Considering ε as a small number, if jnew umij � umij j � ε, stop the procedure and

report cj values as the center of clusters. Otherwise repeat the procedure from

step 3, considering um
ij
¼ new umij .

In MATLAB, the following syntax is used to cluster a “data” set for a specific

number of clusters C:

[center,U,objFcn] ¼ fcm(data,C);

The output of the syntax would be the center of each C clusters, fuzzy partition

matrix for each individual data, U, and finally the value of the objective function at

the different iterations of the algorithm, objFcn.

Example 7.1: Illustrative Example of Fuzzy C-Means Clustering

Investigate the center of two clusters for the following data (Table 7.4).
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Solution
Using the following syntax:

[center,U,objFcn] ¼ fcm(data,2);

For two clusters the results would be

center ¼

17.4868
33.7956

and the partition matrix is given in matrix U. For example, the membership of

24.26 (the second number) to the first cluster is 0.66 where it is 0.33 as far as the

second cluster is concerned.

For three clusters we will have the following centers of clusters:

center ¼

15.6312
23.2027
35.7634

Example 7.2: Clustering of the Meteorological Data

Table 7.5 demonstrates rainfall and air temperature recorded in a meteorological

station. How the data could be divided if two specific clusters are considered to

cluster them.

Table 7.4 Data presented

for Example 7.1
Data Data

1 17.89 10 18.58

2 24.26 11 16.56

3 38.91 12 14.11

4 18.67 13 13.42

5 20.67 14 13.06

6 23.11 15 12.62

7 35.55 16 16.69

8 32.14 17 17.63

9 22.53 18 26.43
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Solution
The following commands find the centers of two clusters and plot the data

according to the cluster they belong:

[center, U, objfcn] ¼ fcm(data, 2);
maxU ¼ max(U);
index1 ¼ find(U(1, :) ¼¼ maxU);
index2 ¼ find(U(2, :) ¼¼ maxU);
line(data(index1,1), data(index1, 2), ’linestyle’,. . .

(continued)

Table 7.5 Data presented

for Example 7.2
Total rainfall Average air temperature

1 654 5

2 651 6.5

3 745 4.7

4 763 4.2

5 451 9.2

6 467 10.1

7 678 8.6

8 921 4.2

9 522 10.3

10 491 9.9

11 743 7.6

12 608 9.7

13 780 8.7

14 452 9.9

Fig. 7.6 Data clusters in Example 7.2
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’none’,’marker’, ’o’,’color’,’g’);
line(data(index2,1),data(index2,2),’linestyle’,. . .
’none’,’marker’, ’x’,’color’,’r’);
hold on
plot(center(1,1),center(1,2),’ko’, . . .
’markersize’,15,’LineWidth’,2)
plot(center(2,1),center(2,2),’kx’, . . .
’markersize’,15,’LineWidth’,2)

As reported by center matrix, the coordinates of the two clusters are (744.2, 6.3)

and (490.8, 9.8). The data are plotted in Fig. 7.6.

7.4 Fuzzy Inference System

Fuzzy inference system (FIS) is usually used for mapping a set of input/output data

in which there is no predetermined structure. FIS is presented as logical rules named

as if–then rules. The possibility logic of fuzzy systems is a useful tool for consid-

ering the vagueness in modeling real-world problems. What makes the use of FIS

more efficient than regression-based methods in some cases is to deal with the

vagueness in predictors and the nonlinear relationship between the predictors and

dependent variables. Furthermore, FIS can deal with both linguistic and quantita-

tive variables in the process of modeling. In contrast to the conventional data-driven

methods, which try to find a logical relationship between input and output variables

from the observed data, FIS gets benefit from both the concept of the problem and

the information within the observed data.

A fuzzy inference system is based on logical if–then rules. A fuzzy if–then rule

assumes the following form:

If x is in A then y is in B

where A and B are linguistic values defined by fuzzy sets on the ranges X and Y,
respectively. The “if” part of the rule (x is in A) is called the antecedent or premise,

while the “then” part of the rule (y is in B) is called the consequence or conclusion.
In general, the input to an if–then rule is a single value where the output is a fuzzy

set. This set could be defuzzified, assigning one value to the output set.

The following algorithmic steps define how to develop a fuzzy inference system

for a specific problem with known input and output variables:

1. Classify each variable to the desired classes getting benefit from the fuzzy

numbers. For instance a rainfall variable in the range of 0–100 mm could be

represented as three classes of “low rainfall,” “medium rainfall,” and “high
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rainfall” as presented in Fig. 7.7a. Another example is to classify the quality of

water resources for agricultural demand from the minimum 0 to the maximum

10 by the linguistic classes of very poor, poor, average, good, very good, and

excellent as shown in Fig. 7.7b. As shown in Fig. 7.7, every variable x could

have at least one membership value, m(x), between 0 and 1, which demonstrates

how that variable belongs to a specific class. Defining these fuzzy numbers helps

developing if–then rules in the next step.

2. Define if–then rules based on the concept of the problem by the use of defined fuzzy

numbers in the previous step. Examples of fuzzy rules could be presented as follows:

• If rainfall is low and air temperature is high, then a dry season occurs.

• If total dissolved solid (TDS) of the river is low and water temperature is

medium, then water quality is good for environmental needs.

• If air humidity is high and air temperature is low, then evapotranspiration

is low.

In a fuzzy inference system, the rules are derived based on the investigation of

a joint between input and output data. The fuzzy rules are derived based on the

frequency of the observation of variables in input and output data.

3. Combine if–then rules to complete the system to be used for modeling.

Two common methods of combining the rules are the methods of Mamdani
and Sugeno which are defined as follows:

• Mamdani inference system

0

b

a

25 50 75 100

0 2 4 6 8 10

excellentvery goodgoodaveragepoor
very 
poor

µ

µ
1

0

1

0

low medium high

x

M2(x)

M1(x)

M2(x)

M1(x)

Fig. 7.7 Examples of presenting different variables by fuzzy sets (a) Three membership functions

(b) Six membership functions
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Let us assume x ¼ {x1,x2, . . .,xK} as a vector of independent crisp values

and the fuzzy response of those values, y, is to be determined using fuzzy rules.

The degree of fulfillment of xk in the membership function of kth independent

value in rule i is defined asm(xk). The degree of fulfillment of the rule r is defined
as the minimum among the degrees of fulfillment of all inputs into the rule if

“AND” operator is applied to relate the independent values. It is also the

maximum among the degrees of fulfillment of all inputs into the rule if “OR”

operator is applied. The rule combination in Mamdani’s method is obtained by

superposition of the outputs of each rule. A graphical example of FIS using

Mamdani’s method is shown in Fig. 7.8.

The FIS shown in Fig. 7.8 consisted of three if–then rules. Two independent

variables (predictors) are considered in this system in order to estimate the

predicted value. For the simplicity, all membership functions are considered as

triangles. As shown in that figure, the observed values of x1 for the first predictor
and x2 for the second predictor activate rule 1 and rule 2. Each rule provides a

fuzzy set as the output variable, related to the minimum degree of fulfillment of

the predictors. The contribution of the output of each rule is related to the

minimum values of the degree of fulfillment of the predictors of that rule

y

and

and

and

Rule 1: If predictor I is low and predictor II is high then dependent variable is high

Rule 2: If predictor I is medium and predictor II is medium then dependent variable is medium

Rule 3: If predictor I is high and predictor II is low then dependent variable is low

M1(x1) M1(x2)

M2(x1)

x1
x2

2

Fig. 7.8 Example of Mamdani inference system
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when “AND” operator is used. The final answer is an aggregation of these

outputs, which represent a fuzzy variable and could be defuzzified to represent

the representative value of the estimated range of the dependent variable.

Defuzzification is the process of producing a quantifiable result in fuzzy

logic, given fuzzy sets and corresponding membership degrees. A common

defuzzification technique is the center of gravity. First, the results of the rules

must be added together. Now, if this triangle were to be cut in a straight

horizontal line somewhere between the top and the bottom, and the top portion

were to be removed, the remaining portion forms a trapezoid. All of these

trapezoids are then superimposed one upon another, forming a single geometric

shape. Then, the centroid of this shape, called the fuzzy centroid, is calculated.

The coordinate of the centroid is the defuzzified value.

• Sugeno inference system

The Sugeno inference system is similar to the Mamdani’s in terms of devel-

oping the fuzzy rules and calculating membership associated with each rule

according to the specific input variables and the “AND/OR” operators. Instead of

aggregating the fuzzy outputs of different rules, Sugeno considers a linear

regression model for each rule and aggregates the output of each model by

weighted averaging. For each fuzzy rule, i, an output in form of yi ¼ ∑ m
j ajxj + a0

is calculated when m is the number of inputs and a’s are the linear regression

parameters. In case of a FIS with N fuzzy rules, the final output will be

y ¼
XN

i¼1
Mi xð ÞyiXN

i¼1
Mi xð Þ

(7.7)

whereMi(x) is the calculated membership value associated with the ith fuzzy rule.
Figure 7.9 shows a Sugeno FIS for two inputs, one output and three fuzzy rules.

4. Calibrate the system.

The location of the center of gravity and the range defining the membership

functions of the fuzzy input/output variables in each rule affect the results of

modeling. The best value of these characteristics must be determined for each

rule after setting the shape of membership function. Determination of the two

mentioned characteristics in fuzzy rules is initially set by a first estimation on

engineering judgment and then is calibrated to satisfy the following criteria:

Minimum bias: It means that the rules are set to generate minimum point

estimation error. Bias is measured as y� ŷj j where y is the actual and ŷ is

the estimated value.

Minimum spread: It implies that the output fuzzy numbers of estimated value

must have the minimum range that is possible. Range of forecasted values is

defined as ŷ max � ŷ min where ŷ max is the upper bound and ŷ min is the lower

bound of the fuzzy estimated variable.

Maximum reliability: It implies the number of estimations where ŷ min < y <
ŷ max to the total number of the estimation values.
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Example 7.3: Estimation of Urban Water Consumption Per Capita

A survey has demonstrated that the consumption per capita in a specific month in

an urban region depends not only on the weather but also on the occurrence of

holidays. As a matter of fact, weather and the type of the day (in terms of being

considered as a weekday or a holiday) are considered as predictors of per capita use

of urban water. The recoded data shows that the range of water consumption value

in that month initiates from 177 l per capita per day and reaches 285 l per capita per

day. This is while the averaged air temperature during the month varies from 19� to
25� of centigrade. The survey results in the following if–then rules to predict daily

urban consumption in a specific day of the month in terms of the introduced

predictors and dependent variable:

• If it is not a holiday and weather is cool, then water consumption per capita is

normal.
• If it is not a holiday and weather is warm, then water consumption per capita is

high.
• If it is a holiday and weather is cool, then water consumption per capita is low.
• If it is a holiday andweather iswarm, thenwater consumption per capita is normal.

and

and

and

Rule 1: If predictor I is low and predictor II is high then dependent variable is high

Rule 2:If predictor I is medium and predictor II is medium then dependent variable is medium

Rule 3:If predictor I is high and predictor II is low then dependent variable is low

M1(x1) M1(x2)

M2(x2)

M2(x1)

x1 x2

2

y1=a0+a1x1+a2x2

y2=b0+b1x1+b2x2

y3=c0+c1x1+c2x2

å

å
= 3

3

i=1

i=1

Mi (x)

Mi (x)yi

y

Fig. 7.9 Example of Sugeno inference system
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• If it is a long holiday andweather is cool, thenwater consumption per capita is high.
• If it is a long holiday and weather is warm, then water consumption per capita is

very high.

Table 7.6 shows some quantitative records that could help calibrating the above

linguistic rules.

Develop a fuzzy inference system to model the urban water use due to the

variation of the predictors in the region.

Solution

1. Predictors and dependent variables are represented in form of fuzzy numbers as

suggested in Tables 7.7, 7.8, and 7.9.

2. To develop a fuzzy inference system within MATLAB, type the following

syntax in the command window to activate the FIS graphical user interface:

Fuzzy

A fuzzy interface system is developed by introducing the number of inputs

and outputs and a desired method between Mamdani and Sugeno. Figure 7.10

shows that for the current problem, a map of two to one is considered through the

Mamdani method:

Table 7.6 Quantitative

records for Example 7.3
Holiday Weather Water consumption

Long holiday 25 283

holiday 19 177

Week day 19 200

Table 7.7 Suggested fuzzy

numbers for the weekdays
Category Range Indicator

Not a holiday 0–1 0

Holiday 0–2 1

Long holiday 1–2 2

Table 7.8 Suggested fuzzy

numbers for air temperature
Category Range (�C) Indicator (�C)
Cool 16–23 19

Warm 20–29 25

Table 7.9 Suggested fuzzy numbers for water consumption per capita

Category Range (liter per day per person) Indicator (liter per day per person)

Low 160–200 170

Normal 180–220 200

High 200–260 230

Very high 260–330 280
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3. Fuzzy numbers are defined within each input and output boxes starting by double

clicking on them. For instance, the fuzzy numbers for the first input variable as

well as the output variable (urban water consumption, UWC) are shown in the

following figures (Figs. 7.11 and 7.12):

4. Develop the predefined if–then rules by the “rule editor” within the “edit” menu

(Fig. 7.13).

5. View the Mamdani fuzzy inference system based on the defined fuzzy numbers

and fuzzy rules within the “rule viewer” (Fig. 7.14).
6. The last but not the least step is to validate the system by experimenting different

input/output data sets. First of all the estimated output for the test data must be in

agreement with the fuzzy rules. Additionally they must provide the same results

as recorded by the observed data. In case that there is a deviation between the

calculated and observed data, the system could be tuned by changing the range

and/or indicators of fuzzy numbers as well as type of the membership functions.

7.5 Adaptive Neuro-Fuzzy Inference System

Adaptive neuro-fuzzy inference system (ANFIS) is a kind of neural network that is

based on Sugeno fuzzy inference system. Since it integrates both neural networks

and fuzzy logic principles, it has potential to capture the benefits of both in a single

framework. Its inference system corresponds to a set of fuzzy if–then rules that have
learning capability to approximate nonlinear functions.

Fig. 7.10 FIS editor in MATLAB
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Fig. 7.12 Fuzzy output variables for Example 7.3

Fig. 7.11 Fuzzy variables for the first input of Example 7.3
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ANFIS uses a hybrid learning algorithm to identify parameters of Sugeno-type
fuzzy inference systems. It applies a combination of the least-squares method and

the backpropagation gradient descent method (as discussed in Chap. 6) for training

FIS membership function parameters to emulate a given training data set.

Fig. 7.13 Editing rules in the FIS

Fig. 7.14 Fuzzy inference system for Example 7.3
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A set of following commands are used to develop an ANFIS:

Input and output (target) data are introduced as

trnData ¼ [X Y];

It is needed to select the number of membership functions (q), which is going to

be considered through the fuzzy inference system. Furthermore, the type of the

membership functions is selected in this step.

numMFs ¼ q;
mfType ¼ ’gbellmf’;

Different types of membership functions as introduced in Table 7.2 could be

used in the above syntax. Please note that in case of m-dimensional input and

n-dimensional output, the number of rules in the fuzzy inference system of ANFIS

would be m � n � q where q membership functions are considered.

The syntax in_fis collects the necessary inputs needed to set a fuzzy inference

system:

in_fis ¼ genfis1(trnData,numMFs,mfType);

Finally, out_fis trains ANFIS by the predefined inputs as well as the training

data set.

out_fis ¼ anfis(trnData,in_fis);

Since an ANFIS is trained, different outputs could be simulated associated to the

specific inputs of Z by the following syntax.

answer¼evalfis(Z,out_fis)

Example 7.4: Fuzzy Inference System Modeling

Table 7.10 shows illustrative data of two-dimensional input and one-dimensional

output. Develop an ANFIS to generalize the data. To validate the model, a separate

set of data is presented in another table (Table 7.11).
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Solution
The following commands are used to solve the problem:

trnData ¼ [X Y];
numMFs ¼ 2;
mfType ¼ ’gbellmf’;
in_fis ¼ genfis1(trnData,numMFs,mfType);
out_fis ¼ anfis(trnData,in_fis);
answer¼evalfis(X,out_fis)

It should be notified that X and Y are defined as input and dependent variables

which should be defined for both calibration and validation data, separately.

Tables 7.12, 7.13, and 7.14 demonstrate the results of simulation.

Table 7.10 Calibration data

set for Example 7.4
X1 X2 Ycal

24 110 10

26 75 20

32 105 30

35 65 40

45 25 50

50 20 60

100 40 70

54 20 80

123 16 90

30 70 45

42 28 55

48 18 66

105 45 70

58 22 78

120 18 89

20 100 9

30 80 45

32 105 30

60 25 82

110 18 86

Table 7.11 Validation data

set for Example 7.4
Z1 Z2 Y value

33 80 48

34 106 32

31 62 43

41 27 47

44 22 56

102 30 75

55 25 72
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7.6 Fuzzy Regression

Fuzzy regression is a type of regression model that uses possibility theory instead of

probability theory to estimate a dependent variable by one or more independent

variables. In a fuzzy regression, the dependent variable is presented by a fuzzy

number. It enables providing the possible range of estimated variable instead of

Table 7.13 Results for

validation data set
Y value Estimated Y value

48 48.69

32 30.39

43 31.06

47 45.66

56 54.61

75 79.42

72 73.63

Table 7.14 Summary results for calibration and validation data sets

Data set Linear correlation between actual and simulated Y Volume error (%)

Calibration 0.986 5.978

Validation 0.976 6.818

Table 7.12 Results for

calibration data set
Y Estimated Y

10 12.20

20 28.10

30 29.94

40 45.32

50 55.23

60 67.72

70 70.34

80 74.74

90 89.69

45 36.81

55 47.44

66 64.98

70 69.79

78 79.49

89 88.95

9 6.41

45 41.34

30 29.94

82 80.15

86 86.44
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solely one value. It is especially suitable for cases that vagueness should be

embedded in the final results of the model.

The general form of a multiple linear regression is

y ¼ a0 þ a1x1 þ � � � þ anxn (7.8)

The general form of a fuzzy linear regression is written as

eY ¼ eA0 þ eA1x1 þ eA2x2 þ � � � þ eAnxn (7.9)

where the parameters and the output of the model are both fuzzy numbers instead of

the classic ones. The fuzzy parameters (coefficients) of the model could be

represented by a triangular membership function with the center of pi and the

spread of ci as shown in Fig. 7.15.

In this case, the membership of each number, ai in range of pi � ci � ai � pi + ci,
is obtained as

μeAi

aið Þ ¼ 1� pi � aij j
ci

; pi � ci � ai � pi þ ci

0; otherwise

8<
: (7.10)

The results of multiplying the fuzzy coefficients by the input variables give a

fuzzy number as output:

eY ¼ p0; c0ð Þ þ p1; c1ð Þx1 þ p2; c2ð Þx2 þ � � � þ pn; cnð Þxn (7.11)

Figure 7.16 shows the fuzzy number of the output where the membership of each

output value is calculated by Eq. 7.12.

μeY yð Þ ¼
1�

y� p0 �
Xn

i¼1
pixi

��� ���
c0 þ

Xn

i¼1
ci xij j

; xi 6¼ 0

1; xi ¼ 0, y ¼ 0

0; xi ¼ 0, y 6¼ 0

8>>>>>><
>>>>>>:

(7.12)

μ

1

0
pi +cipi −ci pi

Fig. 7.15 The typical fuzzy

parameter of a fuzzy linear

regression

236 7 Fuzzy Models



One of the most popular fuzzy regression methods uses the assumption that the

membership of each output variable should be greater than the specific value of h or

μeY j

yj

� �
� h (7.13)

as shown in Fig. 7.16.

In fact we try to find the regression parameters in a way that the output is limited

to the following ranges:

p0 þ
Xn
i¼1

pixij � 1� hð Þ c0 þ
Xn
i¼1

cixij

" #
� yj (7.14)

p0 þ
Xn
i¼1

pixij þ 1� hð Þ c0 þ
Xn
i¼1

cixij

" #
� yj (7.15)

These equations could be the constraints of an optimization problem where the

objective function is to minimize the spread of the outputs. The objective function

is presented as

minimize : mc0 þ
Xm
j¼1

Xn
i¼1

ci xij
�� �� (7.16)

The procedure of fuzzy regression modeling using the optimization problem

with the objective function of Eq. 7.16 and constraints of Eqs. 7.14 and 7.15 is

demonstrated in the following example.

Example 7.5: Fuzzy Regression Model for Discharge Estimation

μ

∑+
n

i=1

xijpip0 ∑+
n

i=1

xijcic0∑−
n

i=1

xijcic0

1

0

h

Fig. 7.16 The typical fuzzy output of a fuzzy linear regression
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Use a fuzzy regression to model annual discharge of a basin to its annual rainfall

as recorded in Table 7.15.

Solution
The following plot shows the input variable versus the dependent variable (Fig. 7.17).

As demonstrated by the data, the fuzzy regression contains one variable of six

records, so the parameters of the model are

n ¼ number of input variables ¼ 1

m ¼ number of observations ¼ 6

unknown variables ¼ c0 and p0 as well as c1 and p1

The objective function of fuzzy regression is

minimize : 6c0 þ
X6
j¼1

X1
i¼1

ci xij
�� �� (7.17)

or in extended form

minimize : 6c0 þ c1x11 þ c1x12 þ c1x13 þ c1x14 þ c1x15 þ c1x16 (7.18)

Considering h ¼ 0.7, the constraints are

0

50

100

150

200

250

300

50 70 90 110 130 150 170

Fig. 7.17 Plot of rainfall (the x axis) versus discharge (the y axis) in Example 7.5

Table 7.15 Data presented

for Example 7.5
Year 1 2 3 4 5 6

Rainfall 60 80 100 120 140 160

Discharge 100 120 130 160 230 240
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p0 þ
X1
i¼1

pixij � 1� 0:7ð Þ c0 þ
X1
i¼1

cixij

" #
� yj (7.19)

and

p0 þ
X1
i¼1

pixij þ 1� 0:7ð Þ c0 þ
X1
i¼1

cixij

" #
� yj (7.20)

which tends to

p0 þ p1x11 � 0:3c0 � 0:3c1x11 � y1
p0 þ p1x12 � 0:3c0 � 0:3c1x12 � y2
p0 þ p1x13 � 0:3c0 � 0:3c1x13 � y3
p0 þ p1x14 � 0:3c0 � 0:3c1x14 � y4
p0 þ p1x15 � 0:3c0 � 0:3c1x15 � y5
p0 þ p1x16 � 0:3c0 � 0:3c1x16 � y6

(7.21)

and

p0 þ p1x11 þ 0:3c0 þ 0:3c1x11 � y1
p0 þ p1x12 þ 0:3c0 þ 0:3c1x12 � y2
p0 þ p1x13 þ 0:3c0 þ 0:3c1x13 � y3
p0 þ p1x14 þ 0:3c0 þ 0:3c1x14 � y4
p0 þ p1x15 þ 0:3c0 þ 0:3c1x15 � y5
p0 þ p1x16 þ 0:3c0 þ 0:3c1x16 � y6

(7.22)

The following command solves the above linear optimization problem, where

f ¼ objective function, A ¼ matrix of coefficients of inequity equations, and B ¼
matrix of the right-hand limit of the inequity equations. x contains the unknown

variables of the objective function:

x¼linprog(f,A,B);

f is a [2 � (n + 1), 1] matrix containing the coefficient of the objective function.

The first half of the elements of the matrix contains 0 as p parameter does not appear

in the objective function. The next element is equal tom, and the n remainder values

are in fact ∑ j=1
mxij. For the present exercise, f would be inequity equations

0

0

6

660

2
664

3
775

A is a [2 � m, (n + 3)]matrix containing the coefficients of the constraints. The first

half of the elements of the matrix presents the coefficients of the equations set of 7.21
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and the second half presents the coefficients of the equation set of 7.22. The first column

of the matrix contains 1 in the first half and �1 in the second half, the second column

contains xij values in its first half and� xij in its second half, the third column contains

� (1 � h), and the first half of the fourth column later on contains � (1 � h)xij
duplicating in the second half of the column. For the present example, the Amatrix is

A ¼

þ1 60 �0:3 �18

þ1 80 �0:3 �24

þ1 100 �0:3 �30

þ1 120 �0:3 �36

þ1 140 �0:3 �42

þ1 160 �0:3 �48

�1 �60 �0:3 �18

�1 �80 �0:3 �24

�1 �100 �0:3 �30

�1 �120 �0:3 �36

�1 �140 �0:3 �42

�1 �160 �0:3 �48

2
6666666666666666664

3
7777777777777777775

B is the right-hand limit of the inequity equations. It is a [2 � m, 1] matrix

containing yj values for the first half and � yj for the second half of the matrix.

For the present exercise, the B matrix would be

B ¼

100

120

130

160

230

240

�100

�120

�130

�160

�230

�240

2
6666666666666666664

3
7777777777777777775

Executing the x¼linprog(f,A,B) command will result in the following

answers:

x ¼
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-8.7500
1.5625

37.5000
0.2083

which means

p0; c0ð Þ ¼ �8:75, 37:5ð Þ

and
p1; c1ð Þ ¼ 1:56; 0:2ð Þ

Changing h to 0.3, the A matrix and results will be

A ¼

þ1 60 �0:7 �42

þ1 80 �0:7 �56

þ1 100 �0:7 �70

þ1 120 �0:7 �84

þ1 140 �0:7 �98

þ1 160 �0:7 �112

�1 �60 �0:7 �42

�1 �80 �0:7 �56

�1 �100 �0:7 �70

�1 �120 �0:7 �84

�1 �140 �0:7 �98

�1 �160 �0:7 �112

2
6666666666666666664

3
7777777777777777775

and

x ¼

-8.7500
1.5625

16.0714
0.0893

which means

p0; c0ð Þ ¼ �8:75, 16:07ð Þ

and
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p1; c1ð Þ ¼ 1:56; 0:09ð Þ

For h ¼ 0.1, the A matrix and results will be

A ¼

þ1 60 �0:9 �54

þ1 80 �0:9 �72

þ1 100 �0:9 �90

þ1 120 �0:9 �108

þ1 140 �0:9 �126

þ1 160 �0:9 �144

�1 �60 �0:9 �54

�1 �80 �0:9 �72

�1 �100 �0:9 �90

�1 �120 �0:9 �108

�1 �140 �0:9 �126

�1 �160 �0:9 �144

2
6666666666666666664

3
7777777777777777775

x ¼

-8.7500
1.5625

12.5000
0.0694

and finally for h ¼ 0.0, the results are

x ¼

-8.7500
1.5625

11.2500
0.0625

Table 7.16 shows different results for Example 7.5 obtained by different

values of h.
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The maximum and minimum estimations obtained by h ¼ 0.0 are actually

obtained by lower and upper bounds of data as shown in Fig. 7.18.

7.7 Summary

After presenting basic information on the fuzzy logic, the chapter discussed three

major applications of fuzzy theory in the field of water resources and environmental

engineering. Fuzzy clustering, fuzzy inference system, and fuzzy regression are

three subjects discussed in the chapter.

Table 7.16 Different results for Example 7.5 according to different values of h

Actual dependent variable, Y Estimated Y Maximum estimation of Y Minimum estimation of Y

h ¼ 0.7

100 85 134.998 35.002

120 116.25 170.414 62.086

130 147.5 205.83 89.17

160 178.75 241.246 116.254

230 210 276.662 143.338

240 241.25 312.078 170.422

h ¼ 0.3

100 85 106.429 63.5706

120 116.25 139.465 93.0346

130 147.5 172.501 122.496

160 178.75 205.537 151.962

230 210 238.573 181.426

240 241.25 271.609 210.890

h ¼ 0.1

100 85 101.664 68.336

120 116.25 134.302 98.198

130 147.5 166.94 128.06

160 178.75 199.578 157.922

230 210 232.216 187.784

240 241.25 264.854 217.646

h ¼ 0.0

100 85 100 70

120 116.25 132.5 100

130 147.5 165 130

160 178.75 197.5 160

230 210 230 190

240 241.25 262.5 220

7.7 Summary 243



Fuzzy clustering allows each feature vector to belong to more than one cluster

with different membership degrees (between 0 and 1) and vague or fuzzy bound-

aries between clusters. Fuzzy C-means (FCM) is a data clustering technique

wherein each data point belongs to a cluster to some degree that is specified by a

membership grade.

Fuzzy inference system (FIS) is usually used for mapping a set of input/output

data in which there is no predetermined structure. FIS is presented as logical

rules named as if–then rules. The possibility logic of fuzzy systems is a useful tool

for considering the vagueness in modeling real-world problems. What makes the

use of FIS more efficient than regression-based methods in some cases is to

deal with the vagueness in predictors and the nonlinear relationship between

the predictors and dependent variables. Furthermore, FIS can deal with both

linguistic and quantitative variables in the process of modeling. In contrast to

the conventional data-driven methods, which try to find a logical relationship

between input and output variables from the observed data, FIS gets benefit

from both the concept of the problem and the information within the observed

data. Two types of Mamdani and Sugeno fuzzy inference systems were presented

in the chapter. Adaptive neuro-fuzzy inference system (ANFIS) is a kind of neural

network that is based on Sugeno fuzzy inference system. Since it integrates both

neural networks and fuzzy logic principles, it has potential to capture the benefits

of both in a single framework. Its inference system corresponds to a set of fuzzy

if–then rules that have learning capability to approximate nonlinear functions.

ANFIS uses a hybrid learning algorithm to identify parameters of Sugeno-type
fuzzy inference systems. It applies a combination of the least-squares method

and the backpropagation gradient descent method for training FIS membership

function parameters to emulate a given training data set.
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50 70 90 110 130 150 170

Fig. 7.18 Lower and upper regression estimation of Example 7.5 according to fuzzy regression by

h ¼ 0.0
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Fuzzy regression is a type of regression model that uses possibility theory

instead of probability theory to estimate a dependent variable by one or more

independent variables. In a fuzzy regression the dependent variable is presented

by a fuzzy number. It enables providing the possible range of estimated variable

instead of solely one value. It is especially suitable for cases that vagueness should

be embedded in the final results of the model.

Workshop

The following data shows the results of an optimization model for reservoir

operation, which shows optimum release of a reservoir during a drought in a

specific season. The inputs of the model include inflow to the reservoir as well as

the storage volume at the beginning of the month (in million cubic meters).

Derive an ANFIS model to generalize the operating rules for the reservoir

(Tables 7.17 and 7.18).

Solution
Before modeling the input/output data, a brief discussion on the concept of the

operation rule of this example is presented. The concept of optimum release of the

reservoir is in fact based on the well-known hedging rule for reservoir operation

during droughts. A two-point hedging rule defining the rules of this example is

demonstrated in Fig. 7.19. Sum of inflow to the reservoir and the storage volume is

considered as the drought index which activates three different rules due to the

Trigger 1 and Trigger 2.

Table 7.17 Calibration data set presented for the workshop

Inflow to the reservoir Storage volume at the beginning of the month Optimum release

50 50 100.0

176 90 161.5

150 60 143.0

130 100 149.6

190 120 170.0

230 100 170.0

200 120 170.0

80 80 126.5

50 40 90.0

60 89 122.9

Table 7.18 Validation data

set presented for the

workshop

Inflow Storage volume Optimum release

70 100 129.8

90 120 143

230 130 170

60 45 105
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The rules associated with the drought index (I + S) and drought triggers are

presented as follows:

R ¼ I þ S if I þ S � Trigger 1 ¼ 110

R ¼ 0:33 I þ Sð Þ þ 73:7 if Trigger 1 � I þ S � Trigger 2

R ¼ D ¼ 170 if I þ S � Trigger 2 ¼ 290

where R is the release from the reservoir in the specific season and D is the water

demand at the same time. The major difference between the hedging rule (HR) and

the conventional rules of reservoir operation is that the HR avoids full allocation of

water to the demands even in case that the available water is equal or more than the

demand. HR tries to save water to prevent the severe drought in near future. In fact

HR prefers less sever but longer droughts instead of short droughts with a high

severity.

The following commands show the short program developed to map 10 by

1 matrix of output, Y, by 10 by 2 matrix of inputs, X. Furthermore, 4 by 2 matrix

of Xval is considered for the model’s validation:

trnData ¼ [X Y];
numMFs ¼ 2;
mfType ¼ ’gbellmf’;
in_fis ¼ genfis1(trnData,numMFs,mfType);
out_fis ¼ anfis(trnData,in_fis);
answer¼evalfis(Xval,out_fis)

It should be notified that number of membership functions and their type could

be changed alternatively.

The results of calibration and validation are tabulated below. As demonstrated in

Table 7.19, ANFIS has performed as an exact estimator in calibration and has

produced minor errors in validation.

Trigger 1=110 Trigger 2=290

D=170

R

I+S

Fig. 7.19 A schematic

hedging rule for reservoir

operation during drought
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Now we would like to set up a fuzzy inference system based on the concept of

the reservoir operating rule as discussed by the hedging rule. As the output of each

rule is presented by a linear regression, the Sugeno-type FIS is an appropriate

system for setting up the model. Figures 7.20, 7.21, and 7.22 demonstrate different

steps of developing this system.

Table 7.19 Results obtained

by ANFIS in calibration and

validation

Actual release Estimated release

100.0 100.0

161.5 161.5

143.0 143.0

149.6 149.6

170.0 170.0

170.0 170.0

170.0 170.0

126.5 126.5

90.0 90.0

122.9 122.9

129.8 130.9

143 151.7

170 172.2

105 98.0

Fig. 7.20 Defining parameters and type of input membership functions
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Step 1: Introducing input fuzzy numbers

Step 2: Introducing the parameters and types of output membership functions as

defined by the hedging rules

Step 3: Developing and testing the fuzzy inference system

Fig. 7.21 Defining parameters and type of output membership functions
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Fig. 7.22 Sugeno-based fuzzy inference system for the workshop with examples of inputs less

than Trigger 1 (a), between Trigger 2 and Trigger 1 (b), and more than Trigger 2 (c)
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Chapter 8

Hybrid Models and Multi-model Data Fusion

Abstract The need for increased accuracy and precision in data-driven models has

motivated the researchers to develop innovative models. Hybrid models and multi-

model ensemble estimations are applied to increase accuracy and precision of

single models. To get an idea about how different models could be combined in a

way to increase each other’s abilities, the chapter begins with a summary on

the characteristics of the models presented in the previous chapters of the book.

The models are compared based on different criteria to give the readers ideas on

how to take advantages of the models’ strengths and avoid their weakness through

the hybrid models and multi-model data fusion approach. The chapter continues

with the examples of hybrid models and general techniques of multi-model data

fusion. The approach of multi-model data fusion contains an important process of

individual model generation which is going to be discussed in the last section of the

chapter.

Keywords Hybrid models • Multi-model data fusion • Stacking • Individual model

generation

8.1 Introduction

The need for increased accuracy and precision in data-driven models has motivated

the researchers to develop innovative models. Actually, hybrid models and multi-

model ensemble estimations are applied to meet these specifications and to inte-

grate strengths of single models. In other words, the main aim of developing hybrid

models is to integrate the advantages of two or more models in a way to improve the

capability of single ones. The hybrid model is usually a combination of models in

series. Conventionally, one model among the others is considered as the main

model, and the others play the role of preprocessing or postprocessing techniques.

Data fusion is an emerging area of research that covers a broad range of application

areas. The principal objective of data fusion is to provide a solution that either is
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more accurate or offers additional inferences more than those that could be obtained

through the use of individual data. Data fusion provides new modeling opportuni-

ties in the water resource and environmental fields. Model fusion might benefit

from the ability to combine information derived from multiple sources, such as

the individual outputs from different simulation models. Data fusion researches

are divided into two broad groups. The first takes the view that data fusion is the

amalgamation of raw information to produce an output, while the second makes use

of a more generalized view of data fusion in which both raw and processed

information can be fused into useful outputs including higher-level decision.

Recently, researchers such as See and Abrahart (2001), Abrahart and See (2002),

and Shu and Burn (2004) have used model fusion approaches in hydrological

engineering. See and Abrahart (2001) used data fusion approach for continuous

river-level forecasting where data fusion was the amalgamation of information

from multiple sensors and different data sources. Abrahart and See (2002) evalu-

ated six data fusion strategies and found that data fusion by an artificial neural

network (ANN) model provided the best solution. Shu and Burn (2004) applied

artificial neural network ensembles in pooled flood frequency analysis for estimat-

ing the index flood and the 10-year flood quintiles. The data fusion method was used

to combine individual ANN models in order to enhance the final estimation.

Figure 8.1 demonstrates the general structure of hybrid models as well as the

model fusion approach. As shown in the figure, different individual models in the

process of hybrid models contribute in different levels of the modeling process,

while, in a multi-model data fusion approach, all individual models might have a

chance to contribute in the final output.

The contents of this chapter are structured as presented in Fig. 8.2. As it is

demonstrated in the figure, the chapter begins with a summary on the characteristics

of the models presented in this book. The models are compared in that section based

on different criteria to give the readers ideas on how to take advantages of the

models’ strengths and avoid their weakness through the mentioned models.

The chapter continues with the examples of hybrid models and general techniques

Model 1Input Output 1 Model 2 Output 2 Model 3 Final
output

Model 1

Model 2

Model 3

Output 1

Output 2

Output 3

Model
Fusion

Final
output

Input

a

b

Fig. 8.1 Schematic algorithms of hybrid models (a) and multi-model data fusion (b) approaches
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of data fusion. The approach of multi-model data fusion contains an important

process of individual model generation which is going to be discussed in the last

section of the chapter.

8.2 Characteristics of the Models

There is no general stepwise algorithm for developing a hybrid model. The basic

ideas of hybrid models are usually originated by the experience and knowledge

of the modeler. Of course, the review of the well-known existing hybrid models

could also be very helpful for a modeler to develop his/her own hybrid model.

To understand better the idea of these models and getting ideas on how the

combined models could improve the capability of single ones, it may be useful to

review the characteristics of the most famous data-driven models.

To get an idea about how different models could be combined in a way to

increase each other’s abilities, a summary of the applicable fields where different

models could be applied is shown in Table 8.1. The applicable fields are considered

as event modeling (like the application of linear regression and MLP network as

Fig. 8.2 Structure of this chapter
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discussed in Chaps. 3 and 5), time series modeling (as discussed in Chap. 4), spatial

analysis, and the field of clustering/classification. Furthermore, the selected

strength and weakness of models are reviewed in Table 8.2.

For simplification, the following expression reviews the abbreviation of the

models, which have been reviewed in the previous:

ANFIS Adaptive neuro-fuzzy inference system

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average model

ARMAX Autoregressive moving average with eXogenous input

FCM Fuzzy C-means

FIS Fuzzy inference system

FR Fuzzy regression

GRNN Generalized regression neural network

IDNN Input delay neural network

K-NN K-nearest neighbor regression

MAR Multivariate autoregressive model

MLP Multilayer perceptron

MLR Multiple linear regression model

NLR Nonlinear regression model

PNN Probabilistic neural network

RBE Radial basis estimator

RNN Recurrent neural network

SVM Support vector machine

TDRNN Time-delay neural network

Table 8.1 Different fields of applications for data-driven models

Models Event modeling Time series modeling Spatial analysis Clustering/classification

ANFIS √ √
ARIMA √
ARMA √
ARMAX √
FCM √
FIS √ √
FR √ √
GRNN √ √ √
IDNN √ √
K-NN √ √ √ √
MAR √
MLP √ √ √
MLR √ √
NLR √ √
PNN √
RBE √ √
RNN √
SVM √ √
TDRNN √ √
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Table 8.2 Strengths and weaknesses of different models

Models Strengths Weaknesses

ANFIS Benefits from the physical concept

of a system by if-then rules

Needs adequate data to represent different

patterns and rules observed through the

life of a system

ARIMA Can be used for a time series

with a slight trend

Cannot be used for time series data generation

ARMA Can model the temporal

correlation between data

Cannot be used for a multivariable problem

ARMAX Considers an extra variable

except the information

within a time series

Can use only one variable as external variable

of modeling

FCM Is one of the best clustering methods Is only applicable to the field of clustering

FIS Can use descriptive data in

the modeling process

Does not use a systematic way for calibration

FR Provides outputs by the possibility

logic (fuzzy numbers), explicitly

Is not suitable for nonlinear problems

GRNN Offers a straightforward

nonparametric regression

Not much flexible for function approximation

as it contains only one parameter to be

calibrated

IDNN Can model time series by neural

network methods

Needs more complicated calibration

K-NN Could be used for both linear

and nonlinear problems

Cannot be used for extrapolation

Does not need any specific distribu-

tion to be applied in a case

Needs parameter calibration before being

applied

MAR Can model time series in a multivar-

iate manner

Becomes too complex in case of higher

order of the model

MLP Acts flexible in fitting on the data Does not have a straight forward calibration

algorithm

MLR Provides outputs in a probabilistic

manner, explicitly

Increases estimation error significantly in

case of increased nonlinearity in the

structure of the problem

NLR Suitable for nonlinear problems Needs real data to have the form of a

well-known mathematical function

PNN One of the best classification models Is applicable to the limited field of classification

RBE Can be used as a spatial model Is not much flexible for function approximation

as it contains only one parameter to be

calibrated

RNN Considers recurrent structures in the

process of modeling

Has calibration problems

SVM More robust than neural networks in

some cases

Some limitations in higher-order problems

TDRNN Considers both temporal and recur-

rent structures in the process

of modeling

Contains too many parameters to be calibrated

comparing to the other networks
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In addition to the applicable fields of a model, they all have specific characteristics

called their strengths and weaknesses. The ability or inability of modeling nonlinear

systems and multivariate systems and uncertainty of processes and descriptive

data are examples to determine the strengths and weaknesses of models. Furthermore,

the simplicity and easiness of calibration of models and also their complexity of

formulation are other important characteristics that increase or decrease the strengths

of a model. The most well-known strengths and weaknesses of data-driven models

are reviewed in Table 8.2.

The models presented in the previous chapters are categorized into seven

families of parametric regression models, nonparametric regression models,

autoregressive models, artificial neural networks, statistical artificial neural net-
works, support vector machines, and fuzzy models. In Table 8.3, these categories are
compared by four criteria of “simplicity of calibration,” “flexibility,” “generaliza-

tion,” and “applicable areas.” Simplicity of calibration is considered as a criterion

for preference of a specific model over the others in cases that they perform more

and less similar. Flexibility of a model refers to a criterion in which a model could

Table 8.3 Scores of different group of models based on the four different criteria

Models Criterion Score

Parametric regression models Simplicity of calibration • • •

Flexibility •

Generalization • •

Areas of application • •

Nonparametric regression models Simplicity of calibration • • • •

Flexibility • • •

Generalization • •

Areas of application • • • •

Autoregressive models Simplicity of calibration • • •

Flexibility •

Generalization • • • •

Areas of application •

Support vector machines Simplicity of calibration • • •

Flexibility • • •

Generalization • • • •

Areas of application • •

Artificial neural networks Simplicity of calibration •

Flexibility • • • •

Generalization • • •

Areas of application • • • •

Statistical ANNs Simplicity of calibration • • • •

Flexibility • • •

Generalization • •

Areas of application • • •

Fuzzy models Simplicity of calibration • •

Flexibility • • •

Generalization • • • •

Areas of application • • • •
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be calibrated in a flexible manner. On the other hand, a flexible model is the one that

can take different parameters in a way to be applied for different forms of observed

data. For instance, a model could be calibrated to perform better for either extreme

values of observed data or near-normal values of them. Generalization refers to

ability where they can perform both in extrapolation and interpolation as well as in

calibration and validation. Finally, the applicable field is considered as another

criterion for a family of models.

8.3 Examples of Hybrid Models

This section reviews three examples of developing hybrid models. The examples

explain how the characteristics of different models can combine to improve the

ability of individual ones.

Example 8.1: Nonlinear Fuzzy Modeling

Develop a hybrid model to estimate an unknown variable by a nonlinear

fuzzy model.

Solution
As described in Chap. 7, the presented fuzzy regression model can be used for

linear fuzzy estimation. Meanwhile, an MLP model can be employed for nonlinear

mapping function. So, we can combine these two models to estimate a variable in a

nonlinear fuzzy manner. The proposed structure of this hybrid model is shown in

Fig. 8.3. As it is demonstrated in the figure, the model has a feedforward architec-

ture in which input data are mapped to the estimated data considering target value.

The estimated data in combination with the real target data are considered as the

inputs of a fuzzy regression model. The final system uses the original input data,

X, and processes them to an estimated fuzzy output.

x1

x2

x3

ŷ fuzzy regression y~

Target

Fig. 8.3 A proposed hybrid model for nonlinear fuzzy estimation
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Example 8.2: Mapping Different States of a System

In many cases of modeling in the field of water resources and environmental

engineering, extreme value estimation is of most significance. The issue is that an

individual model is rarely found to be much flexible for modeling maximum,

minimum, and normal states. Develop a hybrid model to handle this issue.

Solution
Stepwise algorithm for developing such system is presented as follows:

Classify input/output data by m classes in which each class represents a specific

state of data (say extreme values and near normal). m is 3 in Fig. 8.4.

Develop m different ANN models to map each class of data. Obviously, each

individual ANN maps its associated set of data with less error than the other

models.

Then, the working system of the proposed hybrid model is set up as shown in

Fig. 8.4. As it is shown in the figure, each input data is classified by the PNN,

first. The class of input data determines the ANN model which is applied to

estimate the output associated to the input data.

ŷ

x1

x2

x3

ŷ

x1

x2

x3

ŷ

x1

x2

x3

x1

x2

x3

2
2

3
3

1
1

PNN

MLP 
Networks

Fig. 8.4 A proposed hybrid model for mapping different states of a system
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Example 8.3: Dynamic Spread for Statistical Networks

Develop a statistical neural network (say GRNN) with a dynamic spread (h)
according to changing different input variables. This will be a more flexible GRNN

than the conventional form as it improves the estimation process by changing the

spread parameter for different states of a problem.

Solution
The proposed hybrid model in this case is a combination of an MLP and a GRNN as

shown in Fig. 8.6. For n observed data, n values of h are obtained in a way to better
estimate each one the individual observations. The input observed data and the

associated h are used to train an MLP. In real cases, the system is developed as

shown in Fig. 8.5. The new input data are first introduced in the calibrated MLP to

calculate the appropriate spread (h). The same input data as well as the selected

h are introduced to the GRNN to estimate the final output.

8.4 Multi-model Data Fusion

A single data-driven model is represented by the following equation:

ŷ i ¼ f Xið Þ þ εi i ¼ 1, . . . , n (8.1)

h

x1 x1

x2

x3

x2

x3

ŷ

GRNN

MLP

Fig. 8.5 A proposed hybrid model for applying a dynamic spread for the well-known GRNNmodel
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where X ¼ vector of predictors, ŷ ¼ dependent variable, ε ¼ model error, and

n ¼ number of observed data. In the case of using multiple models to estimate y,
considering similar inputs, Eq. 8.1 is changed to the following matrix form:

Ŷ
� � ¼

ŷ i1

ŷ i2

⋮
ŷ im

2
664

3
775 ¼

f 1 Xið Þ
f 2 Xið Þ
⋮

f m Xið Þ

2
664

3
775þ

εi1
εi2
⋮
εim

2
664

3
775 i ¼ 1, . . . , n (8.2)

where m ¼ number of models used to estimate y and Ŷ
� � ¼matrix of estimations of

y provided by different individual models. Using the data fusion approach, Ŷ
� �

is

summed up to a unique estimation of ŷ . The following paragraphs describe some of

the general methods of data fusion. The model fusion techniques are divided into

two steps. The first step is to create individual ensemble members, and the second

step is the appropriate combination of outputs from the ensemble members to

provide a final output.

8.4.1 Simple and Weighted Averaging Method

Linear combination of the outputs of ensemble members is one of the most popular

approaches for combining different outputs. Via simple averaging or a weighted

average method that considers the relative performance of each model, a single

output can be created from the combination of the outputs resulted by a set of

models. Combining through simple averaging is defined as

ŷ i ¼ 1=m
Xm
j¼1

ŷ ij

 !
i ¼ 1, . . . , n (8.3)

Despite its simplicity, the simple averaging method suffers from the problem of

considering equal weighs for individual models. Obviously, the difference in the

reliability of individual models is not considered in the simple averaging approach

as all of them are assigned by similar weights. To overcome this shortcoming, the

model of weighted averaging also known as stackingmight be used. This method is

presented by the following function:

ŷ i ¼
Xm
j¼1

cjŷ ij i ¼ 1, . . . , n (8.4)

where c ¼ the weight of each individual models. Under “stacking” an additional

attempt is used to learn how to combine the models by tuning the c weights over the
calibration data. To derive c weights, Shu and Burn (2004) suggested minimizing

the following function over m models and n calibration data.
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w ¼
Xn
i¼1

yi �
Xm
j¼1

cjŷ ij

yi

2
66664

3
77775

2

ck > 0 (8.5)

The stacking method uses constant weights over the time period of the calibra-

tion data set that reduces the flexibility of the method in facing different states of a

system.

8.4.2 Relying on the User’s Experience

In this method, at each step of decision-making, instead of combining outputs of

different models, the result of just one model is selected, relying on the experience

of the last step. Obviously, this method is limited to cases of time series forecasting

where predictors are well correlated. Using this method is not recommended for

general function approximation.

8.4.3 Using Empirical Models

Empirical models, particularly artificial neural network (ANNs), are known as

powerful tools for function mapping. See and Abrahart (2001) have suggested the

use of ANNs as a data fusion method. The general form of this method is

ŷ i ¼ g Ŷ i

� �� �
Ŷ
� � ¼

ŷ i1

ŷ i2

⋮
ŷ im

2
664

3
775; i ¼ 1, . . . , n (8.6)

where g is a nonlinear function which maps outputs of different individual forecast

models to a single output of ŷ i using an ANN model. Like most empirical methods,

this method might suffer from the lack of statistical sense in the mechanism of data

processing.

8.4.4 Using Statistical Methods

Araghinejad et al. (2011) proposed a statistical method for data fusion based on the

concept of K-NN estimation algorithm which is presented as follows:
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1. Use m individual forecast models to produce n � m estimation, where n is the

number of observed data used for calibration.

2. Evaluate individual forecasting models in all n forecast experiences. Compute

the matrix of [A] ¼ [aij]n � m, where [aij] ¼ 1 if mth model results in the best

forecast during ith experience;

otherwise aij ¼ 0.

3. At the estimation time t, compute m forecasts of yt using m individual forecast

models and develop

Ŷ
� � ¼

ŷ i1

ŷ i2

⋮
ŷ

2
664

3
775

4. Compute F½ � ¼ A½ � � Ŷ
� � ¼

f 1
f 2
⋮
f n

2
664

3
775

5. Use a distance function to find the distance between present time predictors, [Xt],

and the historical predictors, [Xj]. Determine the nearest neighbors from n sets of
observed data, such that the smaller distance is assigned to the nearest neighbor.

6. Estimate the dependent variable by the following equation:

y r ¼
1Xk

i¼1

1=i

Xk
i¼1

1=ið Þf i (8.7)

where i ¼ the order of the nearest neighbors in which the nearest have the lowest

order (i ¼ 1 to K ), k ¼ number of nearest neighbors, and fi ¼ the magnitude of

nearest neighbor i.

One of the differences of this statistical model and the other ones is the use of

input data not only in the individual models but also in determining the parameters

of the model fusion method as shown in Fig. 8.6.

8.4.5 Individual Model Generation

Due to the flexible geometry of ANNs, they have been recognized as suitable

models to be used in the ensemble techniques. ANN ensembles offer a number

of advantages over a single ANN since they have the potential for improving

generalization. Cannon and Whitfield (2002) and Shu and Burn (2004) used ANN

ensembles in the hydrological context. Cannon and Whitfield (2002) used ANN

ensembles to predict changes in streamflow conditions in British Columbia,
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Canada, through a downscaling model. Shu and Burn (2004) applied artificial

neural network ensembles in pooled flood frequency analysis for estimating the

index flood and the 10-year flood quintiles. Recently, Araghinejad et al. (2011)

applied ANN individual models for estimation of hydrological variables in a

probabilistic manner.

Individual ANN models can be produced by the following approaches:

• Changing the objective function of an ANN

• Weighting the data in the calibration set

• Using different random numbers through the calibration of an ANN (say random

initial weights and biases)

• Using selective data as calibration data set
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Appendix

A. Basic Commands in MATLAB

A.1 Introduction

MATLAB is a numerical computing environment developed by MathWorks, for

matrix manipulations, plotting of functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with programs written in other

languages. The name of MATLAB, “MATrix LABoratory,” refers to the beginning

objective of developing it, which was a tool for dealing with matrix calculations.

To get started with the MATLAB, a brief review on the different sections of its

main page as presented in Fig. A.1 might be useful.

Typically the main page of MATLAB is consisted of seven sections which are

defined as follows:

1. Different menus are called from the menu bar as shown in section 1 of Fig. A.1

2. The icon shown in section 2 is used to create an m file (which is going to be

discussed later).

3. Section 3 demonstrates the address, where different files are restored or loaded.

4. Section 4 is the platform where different programs are recalled, and run, and the

process of calculation is reported. Small programs which are not going to be

stored could be written in this section.

5. Section 5 contains necessary information on the preprepared toolboxes of

MATLAB.

6. Section 6 stores and reports numerical input and output variables. It is actually a

spreadsheet within MATLAB.

7. In section 7 the commands are stored to save the history of the operation. Users

can call previous commands used from starting MATLAB.

MATLAB is a case-sensitive program which means it makes a difference if one

uses capital or small letters. This simple but very important rule should be considered

in programming by MATLAB. The variables could be one number or a matrix of
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various dimensions. To create a matrix, “space” or “,” is used to separate different

columns, where “;” or “enter” is used to separate rows. Examples are shown below.

b¼[3 4 5; 6 7 8]
b ¼

3 4 5
6 7 8

>> c¼[6,8,8
7,8,9]
c ¼

6 8 8
7 8 9

After introduction, basic information on different variables, operators, and

functions is presented. Next an introduction on the basic commands for program-

ming in MATLAB is reviewed. Finally, how to draw different plots is discussed.

A.2 Variables, Operators, and Functions

A.2.1 Predefined Variables

In MATLAB some names have been reserved for specific variables. Creation of a

new variable with the name of a predefined variable should be avoided. The list of

those variables is shown in Table A.1.

Fig. A.1 A typical main window of MATLAB
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A.2.2 Predefined Matrices

Like predefined variables, some names have been reserved for predefined matrices

which are presented as follows.

ones() makes a matrix with “one” elements.

a¼ones(2,3)
a¼

1 1 1
1 1 1

zeros() makes a matrix with “zero” elements.

>>a¼ zeros (1,2)
a¼

0 0

rand() makes a matrix with random variables as elements.

>>a¼rand(2,2)
a ¼

0.8147 0.1270
0.9058 0.9134

eye() makes a unit diagonal matrix.

>> a¼eye(2,2)
a ¼

1 0
0 1

diag( ) develops a diagonal matrix given a vector or obtains the diagonal elements

of a specific matrix. An example is presented below.

Table A.1 Predefined

variables in MATLAB
Name Variable

Inf 1
Eps 2.2204e-16

Pi 3.1416

NaN Undefined
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>> a¼[2 3 4] ;
>> b¼diag(a)
b ¼

2 0 0
0 3 0
0 0 4

>> c¼[ 3 4 5; 5 6 7; 7 8 9];
>> d¼diag(c)
d ¼

3
6
9

To call the element of a matrix, we need to mention its index. If we need to call

the entire column or the entire row, “:” is used as shown in the following examples:

>> a¼[2 3 4; 5 6 7; 7 8 9]
a ¼

2 3 4
5 6 7
7 8 9

>> a(2,3)
ans ¼

7

>> a(2)
ans ¼

5

>> a(:,2)
ans ¼

3
6
8

A.2.3 Basic Operators

Basic operators in MATLAB are shown in Table A.2.

The operators presented in Table A.2 are used for matrix calculation. In case of

applying them in an element by element basis, one can use a point before the

associated signs ( *. ، / . ، ^.).
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The following example shows how the basic operators are used in MATLAB:

Example A.1: Basic Operators

Create matrix S as the sum of matrices b and c, matrix Z as the element by

element multiplication of matrices b and c, and Zp as matrix Z with elements

powered by 2.

b ¼ 3 4 5

6 7 8

� �

c ¼ 6 8 8

7 8 9

� �

Solution

>>a¼2;
b¼[3 4 5; 6 7 8];
c¼[6 8 8; 7 8 9];
S¼b+c;

Z¼b.*c;

Zp¼z.^a;

Table A.2 Basic operators in

MATLAB
Operation Sign

Sum +

Difference �
Multiplication *

Division /

Power ^
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A.2.4 Conditional and Logical Operators

Conditional and logical operators are widely used in programming, which will be

presented in the next section. A list of these operators is shown in Table A.3.

A.3 Commands and Programming

A.3.1 Basic Commands

The following commands are the most basic comments used in MATLAB:

clc clears the command window page.

clear clears the contain of the workspace.

input asks the user to input a specific variable. For instance,

>>a¼input(’please enter a number:’)

which results in

please enter a number: 3
a ¼

3

We can also use the following syntax to get an input as a string:

>> a¼input(’please enter your name:’,’s’)

Table A.3 Conditional and

logical operators in

MATLAB

Operator Character

Greater than >

Less than <

Equal to ¼¼
Equal and greater than >¼
Equal and less than <¼
Unequal to ~¼
And &

Or |

Complement ~
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which results in

please enter your name: Roz
a ¼

Roz

disp displays the name or value of a variable. If the variable is between ’ ’, its name

will be displayed. Otherwise its value will be displayed.

>> a¼34;
>> disp (a)

34

>> disp(’hello’)
hello

>> disp (’a¼’); disp (a);
a¼

34

close closes plotted figures and plots.

A.3.2 m File

An m file is a file saved by extension m containing programs that can be run by

MATLAB. Actually it is not wise to write our programs in command window

because they could not be saved and used again. Creating an m file enables storing

and sharing our programs. The rules of programming in anm file are similar to those

of command window. Generally, the variables in the left side of an equation can be

named by the user, and those in the right hand of an equation should be either

introduced in previous commands or be predefined in MATLAB. Usually we use

several functions within an m file. A function may be predefined in MATLAB or be

created by the user as will be described in the next section.

The following are some comments that might be used through the programming

in an m file. It will be very useful to insert comments within an m file to describe

different section of a program. Avoiding comments might cause confusion in the

understanding of the content of a program even for the programmer himself.

Starting a line with % turns it to a comment, which does not appear during the

run of a program. It is better to save the m files in a specific address (preferably the

current folder). The user can then open the files by the open button in the menu bar.

Do not use negative sign (�) immediately after an equation. One may use paren-

thesis to use this sign in the programming.
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The following example demonstrates a simple m file.

Example A.2: A Simple m File

Write a program to calculate the area and perimeter of a rectangle by its length

and width.

Solution

%The program calculates the area and perimeter of a
rectangle
a¼ input(’Length of rectangle’);
b¼ input(’Width of rectangle’);
Area¼a*b;
perimeter¼ 2*(a+b);
disp (’Area¼’); disp(Area);
disp (’perimeter¼’); disp (perimeter);

The above program can be saved as “rectangle.m.”

A.3.3 Functions

Most of the functions we use in programming are actually predefined functions in

MATLAB. The general form of a function is as follows:

function (outputs) ¼ “name of the function” (inputs)

.

.

.

end

A function should be saved by the name of function. To execute a function one

can call the name of the function and its input variables. Also, to execute a function,

the following command can be used.

fval(’name of the function’, ’input 1’, ’input 2’, . . .)

Example A.3: Function Development

Write a function to calculate the area of a circle by its radius.
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Solution
The following function is developed as anm file and is saved in the “current folder”:

function [Area,Perimeter]¼func1(Radius)
Area¼(Radius^2)*pi;
disp(’Area¼’); disp(Area);
Perimeter ¼2*Radius*pi;
disp(’Perimeter¼’); disp(Perimeter);
end

Then by typing “func1(radius)”, the area and perimeter of the circle with the

specific radius is calculated.

Useful Predefined Functions

These are some useful predefined functions in MATLAB.

max( ) returns the maximum element of columns of a matrix.

>> a¼[1 2 3 4 5];
>> max(a)
ans ¼

5

min( ) returns the minimum element of columns of a matrix.

>> a¼[1 2 3 4 5];
>> min(a)
ans ¼

1

sum( ) returns the summation of columns of a matrix.

>> a¼[1 2 3 4 5];
>> sum(a)
ans ¼

15
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mean( ) returns the mean of elements of columns of a matrix.

>> a¼[1 2 3 4 5];
>> mean(a)
ans ¼

3

All the above functions return the output for each column. To apply the function

on all elements, we need to use the function twice. sum(sum(a)) and mean
(mean(a)) are two examples of that approach.

length( ) returns the number of elements in a vector. In case of a matrix of m � n,
the maximum values of m and n is returned.

>> a¼[ 7 5 4 3];
>> b¼length(a)

b ¼
4

>> c¼[ 7 5 5 6;5 4 4 3];
>> d¼length(c)

d ¼
4

abs( ) calculates the absolute value of the elements of columns of a matrix.

>> a¼[2 -3 4;4 -4 2];
>> b¼abs(a)
b ¼

2 3 4
4 4 2

size( ) returns number of rows and columns of a matrix.

>> a¼[2 3 4;5 6 7];
>> [m n]¼size(a)
m ¼

2
n ¼

3
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sqrt( ) calculates the square root of the elements of columns of a matrix.

>> a¼[2 4 9];
>> b¼sqrt(a)
b ¼

1.4142 2.0000 3.0000

find( ) finds location of specific values in a vector.

>> a¼[2 3 4 -4 5 6 0];
>> find(a<¼0)
ans ¼

4 7

sort( ) sorts elements of a vector from lowest to highest.

>> a¼[2 3 4 -4 5 6 0];
>> b¼sort(a)
b ¼

-4 0 2 3 4 5 6

Table A.4 shows the other famous predefined mathematical functions in

MATLAB.

If “a” is used before a mathematical function (say sin), it is changed to the

inverse function (asin). If “h” is used after a function, its hyperbolic will be

used (sinh).

Table A.4 Predefined

mathematical functions in

MATLAB

Symbols Function

exp( ) Exponential

log( ) Logarithm

log10( ) Logarithm to base 10

sign( ) Sign function

sin( ) Sinusoidal

cos( ) Cosine

tan( ) Tangent

cot( ) Cotangent
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A.3.4 Conditional Commands

If, switch, for, and while are categorized as conditional commands which are

described as follows:

if

The general form of an “if” command is as follows:

If condition 1
commands
else If condition 2
commands
else
end
end

An example of using “if” command is presented in Example A.4.

Example A.4: Using “if” Command

Develop a program to calculate the benefit of a company which is calculated

based on the sold products as follows.

Benefit ¼ 1,000 � number of products if sold products are less than 1,000

Benefit ¼ 700 � number of products if sold products are between 100 and 1,000

Benefit ¼ 1,200 � number of products if sold products are more than 1,000

Solution

n¼ input(’ Number of product’);
if n>1000

benefit¼n*1200 ;
else if 100<n<1000

benefit¼700*n;
else

benefit¼100 *n;
end

end
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Switch

Switch is used in cases where several conditions are used. General form of

switch is as follows:

switch name of the variable
case value of the variable
commands

case value of the variable
commands

otherwise

commands

end

Example A.5: Using Switch Command

Develop a program to get a and multiply it by 2 if a is equal to 2; multiply it by

20 if a is equal to 3; otherwise multiply it by 30. Store the result in b.

a¼3;
switch a

case 2
b¼a*10 ;

case 3
b¼a*20;

otherwise
b¼a*30;

end

for

The general structure of “for” loop is presented as follows:

for i¼a:b

body of loop

end

The above form is repeated for different values of i starting from a and ending

to b with steps equal to one. In case of changing the steps to c, i¼a:b is changed to

i¼a:c:b.
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Example A.6: Developing Loops by “for”

Develop a multiplication table.

Solution

for i¼1:9
for j¼1:9

a(i,j)¼j*i;
end

end

while

while is used when a loop continues until a condition is satisfied. The general

structure of “for” loop is presented as follows:

while “condition”

body of loop

end

Example A.7: Developing Loops by “while”

Write a program to add 1 to variable x until it is exceeds 10.

x¼0;
while x<10

x¼x+1;
end
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A.4 Plotting

A.4.1 Two-Dimensional Plot

A line or a two-dimensional curve in xy coordinate plane can be plotted by

Plot(x,y)

Also the color, type, and symbols of the plot can be determined by

plot(x,y,’om-’);

where “o” determines symbol, “m” determines color, and “�” determines type

of the plot.

Example A.8: Two-Dimensional Plot

Plot the function of y ¼ sinx in the range of X ¼ [1,10] (Fig. A.2).

Fig. A.2 Plot of Example A.8
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Solution

x¼0:0.1:10;
y¼sin(x);

plot(x,y,’om-’);

A.4.2 Commenting and Labeling a Plot

Labels, titles, text on the curve, and legend for a curve are provided by the

following commands:

xlabel (’ text’)

writes a text on x-axis.

ylabel (’ text ’)

writes a text on y-axis.

title (’ title’)

writes title of a curve.

text (x0,y0,’text on the curve’)

writes text on x0,y0 coordinate.

legend (’comment’,m)

provides a comment on the mth quarter of the page.
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A.4.3 Drawing Multiple Curves on a Plot

Using the following form of plot command, one can plot multiple curves on an

individual plot:

plot (x1,y1,’s’, x2,y2,’s’, x3,y3,’s’,. . .);

“s” demonstrates the characteristics of each curve.

Example A.9: Multiple Curves on a Plot

Plot sin and cosine functions in the range of [�π,π] (Fig. A.3).

Solution

x¼-pi:pi/10:pi;
y1¼sin(x);
y2¼cos(x);
plot(x,y1,’k-’,x,y2,’m–’);
xlabel ’X’;
ylabel ’Y’;

(continued)

Fig. A.3 Plot of Example A.9
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legend (’sin(x)’,’cos(x)’,2);
text (2,0.2,’y¼sin(x)’);
text(-2,0.2,’y¼cos(x)’);

A.4.4 Drawing Multiple Curves on a Page

To draw multiple plots on a page, the following command is used:

subplot(a,b,c)

where a is number of rows, b is number of columns, and c is the index of each

cell from top left.

Example A.10: Multiple Plots in a Page

Plot four curves of y ¼ cos(x), y ¼ cos(2x), y ¼ cos(3x), and y ¼ cos(4X) on a

page (Fig. A.4).

Fig. A.4 Plot of Example A.10
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Solution

x¼(-4:0.1:4);

y1¼cos(x);
y2¼cos(2*x);
y3¼cos(3*x);
y4¼cos(4*x);

subplot (2,2,1); plot(x,y1,’k.’);title ’y¼cos(x)’;
xlabel ’x’;ylabel ’y’;
subplot (2,2,2); plot(x,y2,’k.’);title ’y¼cos(2x)’;
xlabel ’x’;ylabel ’y’;
subplot (2,2,3); plot(x,y2,’k.’);title ’y¼cos(3x)’;
xlabel ’x’;ylabel ’y’;
subplot (2,2,4); plot(x,y2,’k.’);title ’y¼cos(4x)’;
xlabel ’x’;ylabel ’y’;

A.4.5 Drawing Logarithmic and Semilogarithmic Curves

Sometimes we need to plot semilogarithmic and logarithmic plots. In this case

semilogy and semilogx are used to plot curves which have logarithmic y-axis

and logarithmic x-axis, respectively. In case of plotting logarithmic plots, loglog
command is used.

Example A.11: Two-Dimensional Plot

For x ¼ 1:100 and y ¼ exp(x), plot a semilog (y-axis) and loglog plot (Fig. A.5).

Solution

x¼1:100;
y¼exp(x);
subplot(1,2,1); semilogy(x,y); xlabel ’x’; ylabel ’log
y’; title ’semilog’;
subplot(1,2,2); loglog(x,y); xlabel ’log x’; ylabel
’log y’; title ’loglog’;
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A.4.6 Three-Dimensional Plot

To plot a three-dimensional curve, plot3(x,y,z) is used as seen in

Example A.12.

Example A.12: Three-Dimensional Plot

Plot the following curve in range of t ¼ [�40,40] (Fig. A.6).

f x; y; zð Þ ¼
x ¼ sin tð Þ
y ¼ cos tð Þ
z ¼ sin tð Þ þ cos

�
t
�

8<
:

Fig. A.5 Plot of Example A.11

286 Appendix



Solution

t¼(-40:40);
x¼ cos(t);
y¼sin(t);
z¼sin(t)+cos(t);
plot3(x,y,z);
xlabel ’x’; ylabel ’y’;zlabel ’z’;title ’f(x,y,z)’;

Fig. A.6 Plot of Example A.12
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