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PREFACE

Scheduling theory is an important branch of operations research. Problems studied within

the framework of that theory have numerous applications in various fields of human

activity. As an independent discipline scheduling theory appeared in the middle of the

fifties, and has attracted the attention of researchers in many countries. In the Soviet

Union, research in this direction has been mainly related to production scheduling,

especially to the development of automated systems for production control.

In 1975 Nauka ("Science") Publishers, Moscow, issued two books providing systematic

descriptions of scheduling theory. The first one was the Russian translation of the

classical book Theory of Scheduling by American mathematicians R. W. Conway, W. L. Maxwell

and L. W. Miller. The other one was the book Introduction to Scheduling Theory by Soviet

mathematicians V. S. Tanaev and V. V. Shkurba. These books well complement each other. Both.

books well represent major results known by that time, contain an exhaustive bibliography

on the subject. Thus, the books, as well as the Russian translation of Computer and

Job-Shop Scheduling Theory edited by E. G. Coffman, Jr., (Nauka, 1984) have contributed to

the development of scheduling theory in the Soviet Union.

Many different models, the large number of new results make it difficult for the

researchers who work in related fields to follow the fast development of scheduling theory

and to master new methods and approaches quickly.

Bibliography on scheduling theory includes more than 1,500 titles. Unfortunately, many

of papers and some of the books originally published in Russian are practically unknown

for the Western specialists.

In the early eighties a group of Byelorussian mathematicians made an attempt to give an

up-to-date description of standard scheduling theory. As a result, two books appeared:

Scheduling Theory. Single-Stage Systems by V. S. Tanaev, V. S. Gordon and Y. M. Shafransky

( auka, 1984) and Scheduling Theory. Multi-Stage Systems by V. S. Tanaev, Y. N. Sotskov

and V. A. Strusevich (Nauka, 1989). These two books cover two different major problem

vii



viii

areas of scheduling theory and can be considered as a tWl'-volume monograph that provides a

systematic and comprehensive exposition of the subject.

The authors are grateful to Kluwer Academic Publishers for creating the opportunity to

publish the English translations of these two books. We are indebted to M. Hazewinkel,

J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys and W. Szwarc for their supporting the

idea of translating the books into English.

The first of the books proposed to the reader is devoted to the problems of finding

optimal schedules for systems consisting either of a single machine or of several parallel

machines. The book describes in detail the most important statements and algorithms which

contain typical scheduling ideas and approaches~ Some propositions are accompanied only

with schematic proofs. Besides that, each chapter of the book presents a bibliographic

review containing all necessary references. Some major results are grouped into three

tables given in Introduction, thus creating a visual guideline.

In the process of preparing this book for publication a number of small errors and

misprints were observed. These have been revised without special mention. To present the

results not reflected in the Russian edition, a list of additional references has been

included and corresponding amendments have been made to the bibliographic sections and to

the tables given in Introduction. The references to the additional list are marked in the

text by "*". The list mainly contains the papers and books that appeared after 1983.

This translation also includes a specially written Appendix that presents a review of

approximation algorithms.

It should be noted that Russian and English scheduling terminologies are not quite

stable and may differ from each other. There are also some notational differences.

However, those are not significant and will not create difficulties for the reader.

It has been a pleasure to cooperate with Dr. D. J. Lamer and his colleagues from

Kluwer Academic Publishers. We are also grateful to V. A. Strusevich for his assistance in

preparing this translation.

We hope this book will be of interest for different groups of readers working in

applied mathematics, production planning, flexible manufacturing systems and related

areas, and will contribute to the further development of scheduling theory as well as to

expanding spheres of its possible applications.

v. S. Tanaev

V. S. Gordon

Y. M. Shafransky



INTRODUCTION

Scheduling theory studies the problems of optimal distribution and sequencing of the

jobs of a finite set to be processed on either a deterministic single machine or in a

multi-machine system under different assumptions on the nature of this processing.

Machine tools, railway lines, classrooms, computers, etc., may be treated as

"machines". Workpieces, trains, student teams, computer programs, etc., may be

interpreted as "jobs". Since the nature of "machines" and "jobs" is, in fact,

immaterial, those can be numbered by the integers I, 2, ... , M and by I, 2, ... , n,

respectively. In what follows, we formulate scheduling problems in terms of the jobs of a

set N {I, 2, ... , n} to be processed in a system consisting of M machines I, 2, ... , M.

As a rule, each job i E N is given a set d i
) ~ {I, 2, ... , M} of machines such that

each of the machines in this set either mayor must process this job. If each job i is

allowed to be processed on any machine L E dil, then the processing system is called a

single-stage system (consisting either of one machine or of several parallel machines).

In multi - stage systems, the processing of job i involves Ii stages. Each job i E N at a

stage ], 1 ~ ] ~ Ii' is associated with some set Qj i) ~ d i) of machines, so that job i at

stage] may be processed on a machine L E Qjil, but on at most one machine at a time. In
any case, it is assumed that any machine can process at most one job at a time.

If Ii = I ~ 2, Qy) = Qj, i = I, 2, ... , n, Qjl n Qh = 0, 1 ~ ]1 ~ ]2 ~ I, then a

processing system is a flow-type system with parallel machines. For a job shop system, we

have IQji) I = I, i = I, 2, ... , n, ] = I, 2, ... , Ii' In a flow shop system (without

parallel machines), the machines are normally numbered so that each job is first processed

on machine I, then on machine 2, and so on, until it is processed on machine I = M. Of
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some interest are open shop systems and mixed shop systems with non-fixed processing

routes of all or some jobs.

This book concentrates on single-stage processing systems in which:

(i) Q(i) = {I, 2, ... , M}, i = 1, 2, ... , n, i.e. a machine can process any job of

set Nj

(ii) each job can be processed on at most one machine at a time, and each machine can

process at most one job at a time.

For each i E N, the release date di ~ 0 is given (a time at which job i becomes

available for processing).

The processing time tiL> 0 of a job i E N on a machine L, 1 ~ L ~ M, is known in

advance. If tiL = aLti, I = 1, 2, ... , n, L = 1, 2, ... , M, machine L is said to have a

processing speed equal to l/aL' If aL = 1, L = 1, 2, ... , M, the machines are called

identical.

Depending on the nature of the processing system, preemption in the processing of a job

mayor may not be allowed. Allowing preemption implies that the processing of a job may be

interrupted and resumed at a later time on any of the machines. Preemptions may be allowed

either at some specific times or at arbitrary times. As a rule, it is assumed that

preemption does not involve additional expenses, and their number is finite.

Processing the jobs can be described by a family s = {sIlt), s2(t), ... , sM(t)} of

piecewise-constant left-semicontinuous functions sL = sL(t), L = 1, 2, , M, each being

defined over the interval 0 ~ t < 00 and assuming the values 0, 1, , n. If sL(t') =

i "" 0, then at time ( machine L processes job i. If sdt') = 0, then at time ( machine L

is idle.

Since a job cannot be processed on two or more machines at a time, the condition

sL(t') = i "" ° implies that sH(t') "" i for all 1 ~ H "" L ~ M. Since di is the release date

for a job i, i = 1, 2, ... , n, it follows that sdt) "" i, L = 1, 2, ... , M, for all t < di.

If tiL is the total length of time intervals where the function sdt) has the value i,
M

then the relations E (tiL/tiLl = 1, i = 1, 2, ... , n, hold. For example, if the machines
L=l

are identical, then the total length of all time intervals in which all functions sL(t),

L = 1, 2, ... , M, have the same value i must be equal to t i .

A family s of functions with the described properties is called a schedule for

processing the jobs of set N in a system consisting of M parallel machines.

Figure 1.1 presents the diagram of a schedule s(t) for single-machine processing of the

jobs of set N = {I, 2, 3, 4}. Here d1 = 0, d2 = 2, d3 = d. = 3, t} = 4, t2 = 1, t3 = t. =

2.
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If a system consists of two or more machines, the diagrams of functions sdt) are

normally combined as in Fig. 1.2. Here M = 3, the machines are identical, N = {1, 2, 3, 4,

5}j d l = d2 = d3 = 0, d4 = 1, ds = 2j t l = 1, t2 = t3 = 3, t4 = t s = 2. Machine
processes job 1 in the time interval (0, 1] and job 5 in the interval (3, 4]. Machine 2

processes job 2 in the time intervals (0, 1] and (3, 5], and job 4 in the interval (1, 3].

Machine 3 processes job 3 in (0, 3] and job 5 in (4, 5].

Machine 3

Machine 2

Machine 1

5

H

Fig. 1.2

A schedule s = {Sl(t), s2(t), ... , sM(t)} is said to be preemptive if there exist an i,

~ i ~ n, both Land H, 1 ~ L op H ~ M, and times t' and tN, 0 ~ t' < t < t N < 00, such

that at least one of the following conditions holds:

(1) SL(t') sdt") = i, but sLit) op ij

(2) sLit') SH(tN) = i.

Here, if sLit'+8) 'F i for a sufficiently small 8 > 0, then the processing of job i on

machine L is interrupted at time ( and may be resumed on another machine at the same

time.

The non-preemptive processing of jobs satisfies the following condition. A job is

processed on at most one machine at a time. If the processing of some job i on a machine L

starts at time t?, then the job is processed only on machine L and is completed at time

t i = t? +tiL' It is obvious that, in this case, the schedule is completely determined by
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distributing the jobs over the machines and assigning the starting time t~ to each job i.

If in job processing preemption is allowed, then an individual job can be processed "part

by part", not necessarily on the same machine. Thus, for the schedule in Fig. 1.2,

preemption in processing job 2 and job 5 is allowed. Processing job 2 on machine 2 is

interrupted at t = 1 is resumed on the same machine at t = 3. Processing job 5 on

machine 1 is interrupted at t = 4, and is resumed on machine 3 at the same time. The

schedule in Fig. 1.1 allows preemption in processing jobs 1 and 4. In the time interval

(7, 8J the machine is idle.

In practical applications, the numbers d i and tiL are rational, and may be considered

to be integers by choosing an appropriate scale. In this case, we can restrict our

consideration to a class of schedules in which preemption occurs only at integer times. It

is assumed that, for each job, the starting and the resumption times are also integers.

Such schedules are specified by an M-dimensional vector with components 0, 1, ... , n

determined for each unit length time interval. If, for some unit time interval, the Lth

component of the vector is i of' 0, then in this interval machine L processes job i.

Otherwise, machine L is idle.

If preemption is allowed at arbitrary times, assuming that the number of preemptions is

finite, it is natural to assume that the duration of the continuous processing of a job is

also finite.

In addition to forbidding preemption, a schedule must satisfy other requirements which

follow from the formulation of a particular problem. Thus, for each job i, a due date Di

may be given, by which it is either necessary or desirable to complete processing this

job. A schedule in which all jobs meet their due dates is called feasible with respect to

the due dates. In a general case, such a schedule need not exist.

Situations in which some restrictions are introduced on the possible job processing

sequence are also quite common. If, according to the problem formulation, the processing

of a job j may start only after another job i is completed, then a schedule s must satisfy

the condition: if SL(t') = i for some 1 ::; L ::; M and some t' > 0,. then sH(t) of' j for all

1 ::; H ::; M and t ::; t'. Situations of this type are usually described by specifying some

precedence relation --. over the set N of jobs such that the notation i --+ j implies that

the processing of job i must be completed before the processing of job j can start. In

this case, the schedule is said to be feasible with respect to precedence relation defined

over N.

The processing of jobs may involve the consumption or usage of some additional

resources. A typical situation of this type can be described as follows. There are q types
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of resources which are used in job processing. At time t, there are Rk(t), k 1, 2, ... ,

q, units of resource of type k available. The processing of job i at time requires

rjk(t), i = 1, 2, ... , n, k = 1, 2, ... , q, units of resource of type k. If at time t only
I

the jobs ii, iz, ... , i1 are processed, then the inequality E rj .k(t) $ Rk(t) must hold
j=l }

for all k, 1 $ k $ q. A schedule s in which the above resource constraints are satisfied

at any time t 2 0 is called feasible with respect to resources.

Schedules which meet restrictions connected with machine setups, jon grouping, etc.,

are also of practical interest. In such situations, a schedule is feasible if it satisfies

all requirements which follow from the formulation of a particular problem.

It should be noted that constructing a feasible schedule or even checking whether such

a schedule exists is frequently a far from trivial problem. At the same time, in many

situations constructing feasible schedules does not involve any special difficulties, and

then the problem of choosing the best (in a certain sense) schedule arises.

In scheduling theory, the quality of a schedule is normally estimated in the following

way. A schedule s is associated with the vector t(s) = (tds), t 2(s), ... , tn(s)) of the

job completion times. Here t j( s) denotes the largest value of t such that there exists a

L E {1, 2, ... , M} for which sL(t) = i. A real-valued function F(x) = F(xl' Xz, ... , xn ) is

specified, non-decreasing with respect to each of its n arguments. The quality of schedule

s is characterized by the value of this function evaluated at x = t(s). Among any two

schedules, that with a smaller value of F(x) is considered to be the better one. The

schedule with the smallest value of F(x) (among all feasible schedules) is called an

optimal schedule.

A function F(x) is normally determined by associating each job i with some

non-decreasing function, called a cost function 'Pj(t), which specifies a "penalty" to be

"paid" for having this job completed by time t. The quality of a schedule is

characterized by the total or the maximal cost that must be paid for processing the jobs

according to a schedule s, i.e. FE(s) = E 'Pj(tj(s)) or Fmax(s) = max{'Pj(tj(s)) liE N}.
ieN

In particular, if 'Pj(t) = t, i = 1, 2, ... , n, then Fmax(s) = max{tj(s)li E N} is the

makespan (or the maximal completion time). In this case, Fmax(s) is denoted by tmax(s),

and a schedule s with the smallest value of tmax(s) is called a time-optimal schedule.

If 'Pj(t) = t-Dj, then Fmax(s) is denoted by Lmax(s). We have Lmax(s) = max{Lj(s)I
i EN}, where Lj(s) = tj(s) - D j is the lateness of job i with respect to the due date D j •

If 'Pj(t) = max{O, t-Dj}, then Fmaxls) is denoted by zmax(s). We have zmax(s) =

max{zj(s) liE N}, where Zj(s) = max{O, tj(s) -Dj } is the tardiness of job i with respect to
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the due date D;. In this case, FE(S) = E zitS) is the total tardiness.
iEN

Introduction

If 'P;(t) = sign(max{O, t-D;}), then FE(s) = E 1';(s), where 1';(s) = sign(z;(s)), is the
teN

number of late jobs (with respect to their due dates).

Each job i may also be given the number O<i representing the "weight" of the job, and

we consider the weighted sum of job completion times E O<iti(S) (or the weighted total
ieN

flow time), the weighted total tardiness E O<iZ;(S), and the weighted number of late jobs
ieN

E O<;1';(s).
ieN

The described optimality criteria reflect an intention to complete each job as soon as

possible. Under these conditions, we may restrict our search to a class of schedules which

do not allow unnecessary idle times. If preemption is either forbidden or allowed only at

integer times, this class contains a finite number of schedules.

In fact, let s be a non-preemptive schedule in which the jobs are processed on a single

machine according to the sequence 7f = (ii' i2, ... , in) where 7f is a permutation of the

elements of set N. The starting time t? .(s) of a job i j satisfies the inequality t?(s) ~
J J

max{t; (s), di .}, while the completion time of this job is tits) = t~ .(s) Hi, j = 1,
J-I J J J J

2, ... , nj t;o(s) = O. Consider a schedule s', in which the jobs are processed according to

the same sequence 7f, and t? .(s') = max{li . (s'), dil, t; .(s') = t~ .(s') H;., j = 1,
J J-l J J J J

2, ... , n, t; (s') = O. It is easy to check that Ii .(s') ~ t;(s), j = 1, 2, ... , n, and,
o J J

since function F(s) is non-decreasing, it follows that F(I(s')) ~ F(t(s)). The schedule s'

is uniquely specified by the permutation 7f, and, hence, the search for an optimal schedule

can be restricted to the consideration of at most n! schedules.

Similarly, let s be a non-preemptive schedule for processing the jobs on M parallel

machines in which a machine L processes the jobs of set NL according to the sequence

7fL = (it, i~, ... , i~L)' L = 1, 2, ... , M. Here Nt U N2 U ... U NM = N, NH n NR = 0,
1 ~ H t' R ~ M, and it is not necessary that NL t' 0. Consider the schedule s', in which the

starting time of a job i1 is t?L = max{ti . L, d; .d, and its completion time is
J J-I J

t, L = t?L +t; .L, j = 1, 2, ... , nL, Ii L = 0, L = 1, 2, ... , M. It is evident that
J J J 0

F(t(s')) ~ F(t(s)). The schedule s· is uniquely specified by: (i) a partition of set N

into subsets N I , N2 , ... , NM (some of them may be empty), and (ii) permutations of the

elements of these sets. Therefore, the search for an optimal schedule can be restricted to

considering at most n! [M +~-IJ schedules, where [~J denotes a binomial coefficient. If the

machines are identical, then the number of schedules under consideration is M! times

lower.
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If interruptions in job processing are allowed only at integer time moments, then, as

mentioned above, a schedule is uniquely specified by an M-dimensional vector with

components 0, 1, ... , n associated with each unit time interval. Here, it suffices to

consider the time interval (called a planning interval) between min{dili E N} and max{dil

i E N}+ E max{tiLIL = 1, 2, ... , M}. Denoting the length of the planning interval by T, we
ieN

can conclude that the search for an optimal schedule can be restricted to considering at

most [n~1JT schedules.
If interruptions are allowed at arbitrary times, then, in general, an optimal schedule

need not be found in a finite set of schedules. However, under certain conditions, a

finite set of schedules containing at least one optimal schedule can be determined in this

case as well.

Similar considerations can be given to various types of feasible schedules.

Therefore, as a rule, an optimal schedule can be found by enumerating a finite set of

feasible variants. The main difficulty is that the number of such variants is usually

extremely large (e.g., already 10! = 3 628 800), and this increases exponentially with the

problem dimension. Research in scheduling theory concentrates on reducing that enumeration

as much as possible, and on finding an optimal schedule requiring the least computational

effort.

If the volume of calculations is limited by some polynomial of the length of the

problem input, the problem is said to belong to the class of polynomially solvable

problems. The corresponding algorithms are called polynomial-time ones. On the other hand,

so-called NP-hard problems are known for which polynomial-time algorithms are unlikely to

exist.

This book presents the state-of-the-art in research on single-stage scheduling systems.

Chapter 1 contains some auxiliary information. In Section 1, some facts from combinatorial

analysis and graph theory are given which will be useful for further consideration.

Section 2 gives a description of a specific data representation using so-called 2-3-trees.

Section 3 introduces the main concepts of computational complexity of combinatorial

optimization problems and their solution algorithms.

Chapter 2 describes computationally effective algorithms for finding optimal schedules.

Section 1 establishes sufficient conditions for the existence of optimal schedules without

preemption at times different from di, i = 1, 2, ... , n. Section 2 presents the necessary

and sufficient conditions for the existence of schedules that are feasible with respect to
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the given due dates Di , i = 1, 2, ... , n, and describes algorithms for finding such

schedules. The problem of minimizing the maximal cost Fmax(s) for single-machine

processing is considered in Section 3. Section 4 studies effective algorithms for finding

optimal schedules for a number of problems of minimizing the total cost F17(S) for

single-machine processing. Sections 5 and 6 consider the problem of finding time-optimal

schedules for processing a partially ordered set of jobs in a system consisting of

identical parallel machines. Section 7 describes algorithms for finding deadline-feasible

schedules for processing a partially ordered set of jobs with equal processing times on

parallel machines. The problems of minimizing the maximal lateness for identical parallel

machines are presented in Section 8. In Section 9, the problems of minimizing the total

and the maximal costs for unrelated parallel machines are discussed.

Chapter 3 is devoted to the problems of minimizing the so-called priority-generating

functions over permutations of elements of an ordered finite set N. Many scheduling

problems are naturally formulated in terms of minimizing priority-generating functions.

Such examples are given in Section 1. This section also introduces the concept of a

priority-generating function. Section 2 describes transformations of graph G, which is the

reduction graph of a precedence relation defined over set N. These transformations provide

a basis for the algorithms for minimizing the priority-generating functions discussed in

subsequent sections. Sections 3 and 4 study the cases when G is a tree-like graph and a

series-parallel graph, respectively. The situation when G is an arbitrary graph is

considered in Sections 5 and 6. Section 7 introduces the concept of the so-called

1-priority-generating function and discusses the methods for minimizing such functions.

In Chapter 4, a number of scheduling problems are proved to be NP-hard. Most of these

problems are shown to be NP-hard in the strong sense.

Each chapter is accompanied by a bibliographic review. The review given in Chapter 4 is

supplemented with information on enumeration methods used for solving NP-hard problems.

The interested reader can find some additional information on results in scheduling theory

as well as on the methods for finding optimal and near-optimal schedules in a number of

surveys [20, 24, 25, 37-39, 61, 65, 92, 95, 182, 208, 211, 243, 281, 314, 325, 340, 341,

347,374,377,382,384,7*, 10*, 11*,66*,78*, 114*, 117*-119*] and monographs [12, 78,

89, 110, 115, 118, 120, 122, 126, 127, 143, 144, 158, 162, 185, 192, 193, 239, 345, 368,

38*). An extensive list of references in scheduling theory is given in the classified

bibliography [303J.

In order to facilitate the search for information on any particular problem in which

the reader could be interested, the tables provided below contain data on most of the
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problems discussed in this book. Only some problems mainly described in Chapter 3 are

omitted.

Polynomially solvable problems are given in Table I.l; Table 1.2 contains NP-hard

problems. Table 1.3 presents information on approximation algorithms for solving NP-hard

problems discussed in Appendix.

The first five columns of each table give problem descriptions using appropriate

notation. The last column contains references either to the corresponding sections of this

book (Tables I.l and 1.2) or to the cited literature (Table 1.3).

The first column gives the number of machines.

The second column describes two parameters: "processing time" and "release dates".

The "processing time" parameter may have the following values:

"t;" - corresponds to the situation in which all machines are identical;

"aHt;" - the processing system consists of machines of different speeds (uniform

machines);

"tiH" - the machines are unrelated parallel;

"t i = t" - the machines are identical, the processing times for all jobs are the same

(and equal to t);

"tiH = aH" - the machines operate at different speeds, the processing times of each

job on a machine H are the same (and equal to aH);

"t i E {cl , cz,.", CIY - the machines are identical, job processing times may have

only the values in the indicated set;

"[ tiN]" - the processing times are integers.

The "release date" parameter is either equal to "d i = 0" or to "d;" depending on

whether the release dates are the same. If the release dates are integers, the notation

"[diJ" is used.

The third column contains the values of three parameters: "preemption", "precedence",

and "resources".

The "preemption" parameter is equal either to "Pr" or to "[PrJ" depending on whether

preemption is allowed at arbitrary or only at integer times. If none of these values is

indicated, then preemption is forbidden.

Depending on the type of the reduction graph of precedence relation _ defined over set

N of jobs, the "precedence" parameter may have one of the following values:

"G" - the reduction graph of relation _ is an arbitrary circuit-free graph;

"w-SP" - the reduction graph is an w-series-parallel graph;

"SP" - is a series-parallel graph;
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"T" - is a tree;

"7+" - is a forest of outtrees;

"7-" - is a forest of intrees;

"c" - each connected component of the reduction graph is a chain.
If none of these values is indicated, then the set N is not ordered.

The "resource" parameter has the value Rs( q) only if there are resource constraints

and the number of resource types is q.

In the fourth column, additional conditions are given. For example, the notation

"D j = D" implies that all due dates are the same (and equal to D); the notation "t; =

GCD(dj )" implies that processing times are the same for all jobs and coincide with the

greatest common divisor of the release dates d; i = 1, 2, ... , n; the notation "rjk E {cl ,

C2"." C,}" says that r;k may have only the values in the indicated set. The notation

"(d;t, tit, Di'~, Dr;+)" implies that the jobs of set IV can be numbered in such a way that

d; S; d;+I' t; S; t;+" D; S; Dj +l , Dr; 2: Dri+l' i = 1, 2, ... , n-l. The notation "'P;t" has a

similar meaning, and here 'P; S; 'Pj+l implies that 'P;(t) S; 'Pi+l(t) for all t from the

planning interval. The notation "[D;l" indicates that due dates are integers. The

notation "M = M(N, D)" implies that the number of machines M is a variable that is

dependent on the set IV of jobs and the common due date D.

Most of the problems presented in the tables involve minimizing a function whose form

is indicated in the fifth column. Symbols F P9 and F'-P9 denote priority-generating and 1

priority- generating functions, respectively. Some problems are to find a schedule that is

feasible with respect to deadlines (the notation is "Ii S; D;"). Some problems involve

minimizing a certain function over a set of schedules that are feasible with respect to

deadlines Dj • In this case, the function notation is supplemented with "I; S; D;". If the

problem requ ires that inequalities 1;(s) S; Dj must hold only for i E Q c IV, the previous

notation accompanied by the condition "i E Q".

The sixth column of Table I.1 gives estimates of the running times for solution

algorithms (accurate up to a constant factor). Here the notation "LP" implies that the

corresponding scheduling problem is reduced to a linear programming problem. The asterisk

(*) in Table 1.1 indicates problems in which allowing preemption does not reduce an

optimal value of the objective function.

In Table 1.2, the asterisk (*) marks NP-hard problems for which pseudopolynomial

algorithms are known, and (**) indicates NP-hard problems for which pseudopolynomial

algorithms are unknown, but NP-hardness in the strong sense is not established.

Table 1.3 contains information on polynomial-time approximation algorithms presenting
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the estimate of the running time of an algorithm (if known) in column 6, and the

performance guarantee (column 7). In column 6 of this table we use the notation "P(', .)"

to stress that the running time of an algorithm polynomially depends on the mentioned

parameters. As a rule, column 7 provides the bound on the relative error of an obtained

solution Ll = IFO - F* I/ IF* I, where FO is the value of the objective function for an

approximate solution, and F* is the optimal value.

In Tables 1.1 and 1.3, as well as elsewhere throughout the book, all logarithms are

taken to the base 2 (unless stated otherwise).

In the tables, the following notation is used:

tmax = max{tilll i E N, H = 1, 2, , M}j

tmin = min{tiHli E N, H = 1,2, , M}j

t r: = I: t i - for a single machine or identical parallel machines;
ieN

The values Dmax> Dmi", ClImax etc., are defined analogously.

Estimates of the running time of algorithms given in the tables are valid, assuming

that the precedence relation defined over the set of jobs (if the relation is not empty)

is represented by its reduction graph. Note that transformation of an arbitrary circuit

free graph into its transitive closure or into the reduction graph requires at most O(n3 )

time [7], where n is the number of vertices of a graph.

As a rule, no special cases of the problems considered are included in Table 1.1 unless

simpler solution algorithms are known for them. A special case of a problem A is such a

problem B that the set of all inputs of problem A contains all inputs of problem B as a

subset. For example, the problem of minimizing a function F(s) is a special case of the

problem of minimizing F(s) over the set of all schedules, satisfying the additional

constraint ti(s) S; Di , i = 1, 2, ... , n. To see this, it suffices to take Di = W, where W

is a sufficiently large number.

Some polynomial-time solvable problems are not included in Table 1.1 due to other

reasons. It is easy to check that a schedule minimizing Lmax(s) simultaneously provides

the minimum to functions zmax(s) and max{cp(ti(s) - Di ) liE N}, where cp(x) is a non-decreasing

function for x > O. Therefore, if Table 1.1 contains the problem with the objective

function Lmax(s), then the problems with the objective functions zmax(s) and

max{cp(ti(s)-Di)li E N} are omitted.

Table 1.2 includes only "minimal" NP-hard problems, Le., problems whose special cases

are either polynomially solvable or have not been proved NP-hard. It is obvious that

a problem with an NP-hard special case is NP-hard itself.
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Table I.1

Number Processing Preemption,
Section

of times 1 precedence Additional Objective Running
of the

machi- release and resource conditions function time

dates constraints
book

nes

t i ; di=O t i~Di nlogn Ch. 2; 2 . 5 ( • )

t i ; d i Pr li'5.Di nlogn Ch. 2; 2 . 5

t i j d i (d;t,Dd) li'5.Di nlogn Ch. 2; 2. 5 ( • )

t i ; d i Pr i G li'5.Di n 2 Ch. 2;3 .7

t i=t j d i G ti'5.Di nlogn Ch. 2; 10. 1

t i ; d i=O G maxlopi (t i) n 2 Ch. 2; 3 . 2 ( • )

t i i d i=O "d max,,; ( t;) nlogn Ch. 2;3. 3 ( • )

t 1=1; d i Lmax n Ch. 2 ; 10. 2

t 1=1; d i=O G Lmax n Ch. 2; 10.2

t i ; d i=O Lmax nlogn Ch. 2; 3 . 3 ( • )

t i ; d i=O T Lmax nlogn Ch. 3 j 8 I 3 ( * )

t i ; d ;=0 SP Lmax nlogn Ch . 3 ; 8 , 4 ( • )

t i ; d i Dj=D Lmax nlogn Ch.2;3.4

t i j d i G D;=D Lmax n 2 Ch. 2 ; 3 . 4

t i ; d ;=0 SP ,,( t 1 + t 2)= max nlogn Ch . 3 ; 8 , 4 ( • )

,,( t I ) +,,( t 2) ; {,,( t;) +
,,( t ) ~ 0, t > 0 13;1

t i i d i=O SP ,,( t 1+ t 2)= max nlogn Ch . 3 ; 8 , 4 ( • )

,,( t Il,,( t 2) ;
{o<;,,(t;) I

,,( t) ~ 1, t > 0

t i=t i d i G lmax' nlogn Ch. 2; 10.1

'i'5.Di

t i ; d i Pr Lmax nlogn Ch. 2; 10.1

t i=t; di G Lmax Ch. 2 j 10.1

( to be cont tnued)
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Table 1.1

Number Processing Preemption,
Section

of times, precedence Additiona.l Objective Running
of the

machi- release and resource conditions function time
book

nes dates constraints

[ t j 1; [d;l G

max'l'; (t j) n 2 Ch.2j3. 5,3.6

1 ;=GCD( dj) max'l'j ( I;) n 2 Ch. 2 i 3 . 8 ( *)

max nlogn Ch. 2; 3 . 8 ( *)

'I' j ( t j -d; )

tiE (-00,00) t max nlogn Ch. 3; 1,4

tie (-00,00) t max n 4 Ch. 3 j 1 , 5 I 6

F pg nlogn Ch. 3; 1 , 3 ( * )

F pg nlogn Ch. 3 j 1 1 4 ( • )

F pg n 4 Ch .3; 1 , 5, 6 ( * )

F I-pg nlogn Ch. 3; 7 ( * )

['I'(lj) nlogn Ch.3;7(*)

[exj I j nlogn Ch. 3; 1 , 4 ( * )

[ex;lj n 4 Ch. 3 j 1 , 5,6 (.)

[ Clci x nlogn Ch. 3 j 1 ,4 ( • )

e xp( -yl;)

E Ot:i x n 4 Ch . 3 ; 1 , 5 , 6 ( * )

exp( -y t j )

['1'(1;) nlogn Ch. 2j4.6

['1'(1;), n 2 Ch. 2;10.1

t iSDi

['I';(lj) , n 3 Ch . 2 ; 4 . 5 ( * )

t i <Di

[Uj nlogn Ch . 2 ; 4 . 3 a ( * )

EUj Ch. 2 j 10. 2

( 10 be continued)

Pr

SP

w -SP

SP

SP

w-SP

w-SP

sp

w-SP

T

t j=1 ; (d;l

t i ; d ;=0

t i ; d i=O

t i j d ;=0
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Table I.L

Number Processing Preemption,
of times I precedence Additiona.l Objective Running

Section

of thernachi- rei e a. s e and resource conditions function time

dates constra.ints
book

ne.

t i j d i (dit,Dd) LUi nlogn Ch. 2; 10.2

n 2 Ch. 2;4.3c(*)

t i j d i=O ( t i t,"'i ~) EaiUi nlogn Ch. 2;4.3b(*)

t i ; d 1=0 ( td''''i~' Lexi U i, nlogn Ch. 2; 4 . 4 ( * )

ieN\Q) t i$Di, ieQ

t i ; d i (dit, td, I:>:li:i U i nlogn Ch . 2 ; 4 . 3 d ( * )

Di t, "'i~)

t i j d i ( dit,Dit''''i-l- Eexj ui nlogn Ch . 2 ; 4 . 3 e ( * )

t i ~d i + 1 - d i )

t i j d i ( d i =d i-I + t , 1:0:; ui nlogn Ch . 2 ; 4 . 3 f ( * )

Dd,"'d,
2 (n- i) t.s t i:S

2 (n- i) t + t)

t i j d i (d i t ,Di t, LUi, n 2 Ch. 2 i 10.2

ieN\Q) t i:SDi' ieQ

t i ; d i (dit,Dit, ECXiUi I nlogn Ch. 2 ; 10.2

tit ''''i -l-) t isDi 1 teQ

t i ; d i (dd,Dd, LaiUj I nlogn Ch. 2; 10.2

():i~,tiSdi+l- t i'S.Di I ieQ

d i)

t i=l; [di 1 LZ i nlogn Ch. 2 j 10.2

t ;=1 j d i=O G t iSDi n 2 Ch. 2;7.3

t i=1 j di G Di=D t iSDi n 2 Ch. 2; 7 . 3

t i~1 ; [d;l G t iSDi n 3 Ch. 2 j 10.1

t i=1 j d i=O Rs (q) Di=D t i'S:.Di qn 2 + Ch. 2; 10_ I
n 5 / 2

t iH=aHi Rs ( 1) Di=D t i$Di nlogn Ch. 2 j 10. 1

( to b. continued)
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Table 1.1

Number Processing Preemption,
Section

of time s , precedence Additiona.l Objective Running
of the

machi- release and resource conditions Cunct ion time
book

nes dates constra.ints

ClHtiidi=O Pr jG t i~Di n 2 Ch. 2;10.1

aHt i i d i PriG Dj=D ti:!:Di n 2 Ch. 2 j 10.1

aHt i j d i Pr ;G t i$Di n 3 Ch. 2; 10.1

t i=1 ; d i=O G t max n 2 Ch . 2 ; 5 . 4 , 5 .

t i=1 j d 1=0 G t max Ch. 2;10.

tie { 1 1 2} ; T- t max nlogn Ch. 2;10.2

di=O

tie { 1 13} ; T- i max n 2 Iogn Ch. 2 ; lO . 2

d 1=0

t i=1 j d i=O G t max ' n 2 10gn Ch. 2 ; 7 . 3

t iSDi

t j=1 ; [d;l G t max ' n 3 10gn Ch. 2; 10. t,

7. 3
tisDi

t i=1 j d 1=0 G L max n 2 Ch.2;8.2

t j=I; [dj 1 G L max n 3 10gn Ch. 2; 10.1

t i=1 i d i G t max n 2 Ch. 2;8.4,8.2

t 1=1 ; d i=O R s ( q) t max qn 2 + Ch. 2 j 10.1
n 5 / 2

t i ; d 1=0 Pr jG t max n 2 Ch. 2;6.3-6.6

t iH=ClHi R s ( 1) t max nlogn Ch. 2; 10. 1

di=O

aHtijdi=O Pr ;G t max n 2 Ch. 2; 10. 1

ant i; di=O Pr ;G Lmax n 2 Ch. 2; 10. 1

aHt i ; d i PriG t max n 2 Ch. 2; 10 . 1

( to be contInued)
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Table r .1

Number Processing Preemption,
01 times, precedence Additional Objective Running

Section

machi- release and conditions function
01 the

resource time
dates c on s t r a i n t s

book
nes

af/t;;[d;j [ Pr ) [t;l.[afll. L max n 3mi n Ch. 2; 10.1

[D; J (n
2

/af/'
log

log afl+

log

lmax}

aHt i; di PrjG L max n 6 Ch. 2; 10. I

aHli;di=O Pr Eu; n 4 Ch. 2; 10.1

M t ;=1; [d j J t i5Di nJogn Ch. 2; 10. I

M t i=t ; d i t i5:Di n 3 1ogn Ch. 2; 10. 1

M t i=1 j d 1=0 T+ D;=D t iSoDi n Ch. 2; 5 .

M t i=1 j d i=O T- D;=D t i ~Di Ch. 2; 5 . 2 , 5. 3

M t i=1 j d i=O T- t iSDi nlogn Ch. 2 j 7 . 2

M t i=1 i d i T+ Di=D t i5:.Di nlogn Ch. 2;1. 2 , 7 . 3

M t i ; d i=O Pr Dj=D t is.Di n Ch. 2;2.6

M t i j d i=O Pr t iSDi nlogn Ch. 2; 2 .

M t i ; d i Pr D;=D t iSDi nlogn Ch. 2;2.7,2.8

nM Ch. 2; 10. 1

M t i ; d i Pr t iSDi n 3 Ch. 2; 2 . 3

M t i j d i=O Pr;T+ D;=D t iSDi n 2 Ch. 2;6. 5-6.7

nlogM Ch. 2; 10. I

M t i ; d i=O Pr;T- Di=D t i:5.Di n 2 Ch. 2;6.5-6.7

nlogM Cit. 2; 10 , 6 . 7

M t i ; d i=O Pr;T- t iSDi n 2 Ch. 2; 10.1

M t i j d i Pr;T+ D;=D t iSDi n 2 Ch. 2; 10. I

M t iH=aHi R s( I) r j e (0, I} ; t i5Di n 3 Ch. 2; 10. I

d i=O Dj=D

( to be continued)
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Table I.1

Number Processing Preemption,
Sect ion

of t irnes I precedence Additiona.l Objective Running
of the

machi- release and resource conditions function time
book

nes da.tes constra.ints

M aHt i j di=O Pr D;=D t i~Di n+MlogM Ch. 2 j 10.1

M aHt i i d i Pr D;=D t iSDi nlogn+Mn Ch. 2 i 10. 1

M aHtijdi=O Pr t i ~Di nlogn+Mn Ch. 2; 10.

M aRt i j d i Pr ti'5Di M 2 n 4 +n S Ch. 2; 10.

M t iHi di=O Pr t iSDi LP Ch. 2 ; 10. 1

M t iHi di Pr D;=D ti'5.Di LP Ch. 2 j 10. 1

M t ;=1; [d;] [D; J ti'5Di Ch. 2; 10.2

M t i=1 i d i=O T+ t max Ch.2;5. 2.5. J

M t i=1 ; d i=O T- t max Ch.2;5. 2 , 5. J

M t ;=1; [d;] t maxI nlogn Ch. 2 j 10.1

ti'S.Di

M t i=t i d i Lmax n 3 10g 2 n Ch. 2 j 10.1

M t i=1 i d i=O max'Pi(ti) oJ Ch.2j9.4

M t 1=1 j d i=O T- Lmax nlogn Ch.2;8.2

M t i=1 i d i T+ t max nlogn Ch.2;8. 2 I 8 . 4

M t i ; d 1=0 Pr t max Ch.2j6.2

M t i i d i Pr t max 0 2 Ch. 2 i 10, 8 . 4

oM Ch. 2 i 10 . 1

M t i ; d 1=0 Pr Lmax 0
2 Ch. 2; 10.1

oM Ch . 2 ; 10 , 8 . 4

M [ t; J ; [d; J Pr [D; I L max n 3 max{n 2 , Ch.2;8.J
10gn+log

(min}

( to be cont inued)



18 Introduction

Table 1.1

Number Processing Preemption,

of times, pr e cedence Additional Objective
Section

Runnjng

machi- release and condi t ions
of the

resource function time

dates cons traints
book

nes

,If t i ; d i=O PrjT+ t max n 2 Ch. 2;6.3-6.7

nlog,lf Ch. 2 j 10. 1

,If t i i d i=O Pr;T- t max n 2 Ch. 2;6.3-6.7

nlog,lf Ch. 2; 10 I 6 .7

,If t i ; d 1=0 Pr;T- L max n 2 Ch. 2; 10. 1

,If t i ; d i Pr;T+ t max n 2 Ch. 2; 10,8 . 4

,If t iH=aH; di=O max'Pi ( t i) n 3 Ch. 2; 9 . 4

,If t iH=aH; di=O Rs( 1 ) r i E {O, I } t max n 3 Ch. 2; 10. 1

,If t iH=aHi di=O E"'i l ; nJogn Ch. 2 ; 10. 2

,If liH=aHjdi=O !;O:iUi nlogn Ch. 2; 10.

,If tiH=aHjdi=O Ezf nlogn Ch. 2; 10.

,If liH=aHjdi=O EI L; 1p nlogn Ch. 2;10.2

,If tiH=aHjdi=O E\?(t; ) n+MlogM Ch. 2;10.2

,If tiH=aH;di Eli Mn 2M+ 1 Ch. 2; 10.

,If t iH=aHi d i=O max \?( til n 2 Ch. 2; 10. 2

,If t iH=aHj d i=O L max nlogn Ch. 2 j 10. 2

,If tiH=aHjd i 'max nlogn Ch. 2; 9. 3

,If liH=aH;di=O max ex i Z i ( logn/m+ Ch. 2 ; 10. 2

logO:max)

nlogn

,If t iH=aH; dj Pr t dis t i DC t L max tn 2 Ch. 2 ; 10. 2
machine

speeds aH

,If aH1ijdi=O Pr t max n+MlogM Ch. 2; 10. 1

,If aNt i ; d i Pr t max Mnlogn+ Ch. 2; 10. 1
,lf2 n

( to be continued)
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Table 1.1

Number Processing Preemption,
Section

of times I precedence Additiona.l Objective Running
of the

machi- rei e a. s e and resource conditions (unction time
book

nes da.tes constraints

M aHtijdi=O Pr L max Mnlogn+ Ch. 2 j 10.1

M 2 n

M "HI i ; [d i) Pr ["HI, [I i J, L max (n 2+10g Ch. 2; 10.1

[Oi J ( 11;+

Dmax ) -
nlog"H)x

(M
2 n 4 +n 5

)

M t iHi di Pr t max LP Ch. 2;9 .6,9.7

M t iHi d ;=0 Pr L max LP Ch. 2 i 9 . 7

M t i=1 ; d i=O [0; J LQiUi nlogn Ch. 2 j 9 . S

M t i j d i=O E'; nlogn Ch. 2;9. 3 ( • )

M t iH=aHi E'I';(';) n 3 Ch. 2 j 9 . 4

d i=O

M aHti;di=O EI; nlogn Ch. 2; 10.1

M aHtijdi=O Pr E'; nlogn+Mn Ch.2jl0.1

M QHtijdi=O Pr ( l;f, "';./.) E"'i l ; nlogn+Mn Ch. 2; 10. 1

M aHtijdi=O Pr EUi n3M- 3 Ch. 2 j 10.1

M t iH; d i=O Eli n 3 Ch. 2;9.2
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Table 1.2

Number Processing Preemption,

of times, precedence Additional Objective
Section

of tbemachi- re lease and resource conditions (unction

dates constraints
book

nes

t i ; di t i~Di Ch.4; 4. 8,6

t i j d i L max Ch. 4 j 1 . I,

1.5, 6

t i ; d i zmax Ch. 4 j 1 .9,6

t i j d i [Ui Ch. 4 j I .9,6

t i ; d 1=0 Di'2:.Di [Ui' tiSDi Ch.4;6

t i j d 1=0 Di=D Eo: 1 tti Ch.4; 1.1,
1 . 6 ( • )

t i i d i=O Pr Di=D Eai ui Ch. 4 j 1 . 9 ( .)

t i ; d i [ti Ch. 4; 2. 1 , 2 . 5

t i ; di Pr [tt ,ti~Di Ch. 4 j 6

t i ; d i Di=D [Zi Ch.4;2. 14

t i ; di=O [Zi Ch. 4; 6 ( • )

t i ; d i=O Pr [Zi Ch .4 ; 6 ( * )

t 1=1; d i=O C [Zi Ch. 4 ; 6

[,;];di=O (Pr I;C [zi Ch. 4 j 6

t i=1 ; d i=O Pr ;C [zi Ch. 4 ; 6

t i ; d i=O [min(Zi,'d Ch .4 ; 6 ( * )

t i ; d i Pr ["'iti Ch. 4 j 2 . 1 , 2.

t i j d i Pr Di=D Lcqzi Ch. 4 ; 2. 14

t i=1 j d i C ["'iti Ch. 4 ; 2 . 1 , 2.7

[ ';I; (d i I [Pr I;C ["'jti Ch. 4;2. 15

t i=1 ; d i C Di=D LQiZi Ch. 4 ; 2. 14

( 'j I ; [d;] (Pr J;C Dj=D LcqZi Ch. 4 j 2 . 15

('0 be cont inued)
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Table 1.2

Number Processing
oft imes,

machi- release

nes dates

t i j d i=O

Preemption,
precedence

and resource

constraints

Pr

Pr

Pr

Additional

conditions

D;=D

D;=D

Objective

funct ion

E"';t;

21

Section

of the

book

Ch . 4 ; 2. 1 , 2 .

Ch.4 ; 2. 14

Ch.4 ; 6 ( •• )

Ch. 4 ; 6 ( •• )

Ch . 4 ; 2 . 1 , 2 . 6

[ ,; I ; d ;=0

c

[Prj ;C

C E,,; Ch.4;2.1,

2. 10

[ ,; I ; d ;=0 [Pr J;C

t 1=1 j d i=O PrjG

t 1=1 j d i=O G

[ ,; I ; d ;=0 [Prj ;G

t 1=1 j d i=O Pr jG

t 1=1; d i=O G

[1;];d;=O [Pr I;G

t 1=1; di=O Pr jG

t 1=1 j di=O G

[ ,; J ; d ;~O [Pr l;G

E,,;

O::i e {..\,.\+l,..\+2}, 1:0 1t i

Ae { 0 I ±1 I ±2 I ••• }

O::i e {A,..\+l,A+2} 1 LOiti
Ae{0,±I,±2, ... j

CtiE{A,..\+l, A+2}, I:C):iti
>.e { 0 I ± 1 1 ±2 I ••• }

Di=D, LO:i%i

ocie{..\,>'+l,A+2},

Di=D, EO:i%i

CXiE{>",A+l,..\+2},

Ae{O,±t,±2, ... }

Ch. 4 ; 2 . 15

Ch.4;2.14

Ch . 4 ; 4 . 1 , 4 .

Ch.4 ; 4 . 7

Ch.4;4.7

Ch . 4 j 5. 1 , 5. 2

Ch . 4 ; 5 . 5

Ch.4;5.5

Ch.4;5.5

Ch.4;5.5

(to be continued)



aiE {O, I I [ai I i Ch. 4; 5 . 1 I 5.4

ajE {O, 1 I [OCjtj Ch. 4 j 5 . 5

eriE {O, I} [exiti Ch. 4 is. 5

OJ=O;ajE{O,11 LQj Z i Ch. 4 j 5 . 5

Di=O;aiE{O,11 [01i zi Ch. 4 ; 5 . 5

Di=D;oj E{ 0 II} Eexi Z i Ch. 4 j 5 . 5

Dj=D<t£ [IIi-Oj I Ch. 4;6(**)

Di=D [ai/Ii-Oil Ch .4 ; 6 ( •• )

( to be contInued)
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Table 1.2

Number Process ing Preemption,
of times I precedence

rnachi- Ie lease and resource

nes da.tes constraints

t i=l; di=O Pr ;G

tiE { 1 , 2 I; G

d i=O

tiE { 1 , 2 I; PriG

d i=O

tiE { I ,21; G

di=O

t j E{I, 2 I; PrjG

dj=O

t j E {O, 1 I ; G

di=O

[ t i); d i=O [Pr I;G

t j E {O, 1 I ; Pr jG

di=O

tie {O I II; G

di=O

[ t i J ; d j=O [Pr J;G

tiE {O. I} ; PrjG

dj=O

t i=1 j dj=O G

[ tilidi=O [Pr I;G

t i=1 ; d 1=0 Pr ;G

t i=1 j d i=O G

[t;J;dj=O [Pr] ;G

t i=1 j d j=O Pr jG

t i ; d i=O

t i ; d j=O

Additional Objective

conditions function

Di=D, LOi Z i

0i e {.\, A+l,>'+2} I

AE { 0 I ± 1 I ± 2 I ••• }

Di=D

Introduction

Section

of the

book

Ch . 4 j 5 . 5

Ch . 4 ; 5. I , 5 . 3

Ch . 4 ; S. 5

Ch . 4 ; 5 . 1 I 5 . 3

Ch . 4 j S. 5

Ch. 4 ; 5. 1 I 5. -4

Ch. 4 ; 5 . 5

Ch.4;5.

Ch. 4 j 5 . 5

Ch. 4 is. 5

Ch.4 is. 5
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Table 1.2

Number Processing Preemption,
Section

of times 1 precedence Additional Objective
of tbe

machi- release and resource conditions funet ion
book

nes dates con s t r a i n t s

t i ; di=O Di=D t iSDi Cb.4;4 .8 (*)

t iH=aHi di=O R s( q ) Rk=l,rik e {O,1}; ti'S.Di Cb.4;6

Di=D

t i j di=O C Di=D t is.Di Cb.4;6

t iHi d i=O Pr;T- Di=D t i'S.Di Cb.4;6

t iHi d i=O Pr;T+ Di=D tiS.Di Cb.4;6

tie {I, 2} ; G Di=D t iSDi Cb.4;4 .8

d 1=0

'i e{ t P Ip;'O}, T- Di=D t iSDi Ch.4 ; 6 ( * * )

t > 1 i d i=O

tie {t P Ip;'O}, T+ Di=D tiSDi Cb.4;6(**)
t> 1; d 1=0

t i=1 ; di=O C ;Rs (I) R 1=l,ri e {O,l}; ti:5Di Ch . 4 ; 4 . 8

Di=D

[ til; d i~O [Pr J ;C;Rs( I) R 1=I,ri e {o,1}; tisDi Cb.4;4.8

Di=D

t i ; d 1=0 t max Cb.4; I . I,
I . 2 ( * )

t i j di=O C t max Ch. 4;6

t ie{ t P Ip;'O}, T- t max Cb .4 ; 6 ( * *)
t > 1; d 1=0

tie { t P I p;,O} , T+ t max Cb.4 ; 6 (**)
t > 1; di=O

t iHi d i=O Pr;T- t max Cb. 4;6

t iHi d i=O Pr;T+ t max Cb. 4;6

t i ; d i=O Di=D zmax Cb. 4 ; 1 .9 (*)

t i ; d i=O C Dj=D zmax Cb. 4;6

t i ; d i=O Di=D L max Ch. 4 ; 1 . 9 ( * )

( to be cont lnued)
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Table 1.2

Number Processing Preemption,

01 time s, pr e cedence Additiona.l Objective
Section

machi- release and
01 the

resource conditions function
dates constraints

book
nes

t i j d i=O C Dj=D Lmax Ch. 4;6

'iH=aH;di=O R. ( q ) Rk=ltrike{O,l} t max Ch. 4 ; 6

tiH=aHjdi=O R. ( q) Rk=l,rjk e {O,1} Lmax Ch. 4 j 6

Dj=D

t iH=aH;di=O R. ( q) Rk~l,rjke{O, I}; zmax Ch.4;6

Dj~D

t iHi di=O Pr ;7- Di=D Lmax Ch. 4 j 6

t iHi d i=O Pr ;7- Dj=D Zmax Ch. 4 i 6

t iHi d .=0 Pr ;7+ Dj~D Lmax Ch. 4 ; 6

t iHi d .=0 Pr ;7+ Dj~D Zmax Ch. 4 j 6

t j e {I, 2} ; G t max Ch. 4 j 4 . 1,4.3

dj=O

tie { 1 I 2} ; G Dj=D Lmax Ch.4;4.7

dj=O

tje{tPlp~O}, 7- Di=D Lmax Ch . 4 ; 6 ( * * )

t> 1 i d i=O

tje{tPlp~O}, 7+ Dj=D Lmax Ch.4;6(**}

t >1; d i=O

t j e {I, 2} ; G Dj=D zmax Ch . 4 ; 4 . 7

di=O

tje{tPlp~O}, 7- Dj=D Zmax Ch . 4 ; 6 ( * *)

t> lid i=O

tje{tPlp~O}, 7+ Dj=D Zmax Ch. 4 ; 6 ( * *)

t> 1 i d i =0

t i=1 ; d i=O C ;R. (I) R.=l,Ti E {O,I} t max Ch. 4;2. 1 J 2. 12

[t;l;dj=O [Pr J ;C ;R. (I) R t =l,ri e {O,I} t max Ch. 4 i 2. 15

t i=1 i d i=O C ;R. ( I) R t =l, rie{O, I} L max Ch. 4; 2 . 14

Dj=D

( to be cont inued)
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Number Processing

oft imes I

machi- release

nes dates

Pre emp t jon I

pr e cedenc e
and resource

cons traints

Additional
conditions

Objective

function

Section

of the

book

It j J ; dj=O I Pr J ;C; R s ( 1) R 1= 1 , r i e { 0, 1 }

Di=D

L max Ch.4 ; 2 . 15

t i=1 j d i=O C;R s (I} R.=l,riE{Oll}; zmax Ch.4;2.14
Dj=D

[ til; di=O IPr I ;C;Rs( I} R.=l,ri e {O,l}i Zmax Ch. 4; 2. 15

Dj=D

t i j di=O Di=D LZj Ch. 4 ; 1. 9 ( • )

t i ; di=O C Di=D LZj Ch. 4 j 6

t i ; d i Pr Dj=D LZj Ch.4;6

t i j d 1=0 Dj=D I;ui Ch. 4 j 1 . 9 ( • )

t i ; d 1=0 C Dj=D LUi Ch. 4;6

t i j d i Pr LUi Ch. 4 j 6

t i j d i=O L"'j'j Ch.4; 1. I,

1.4 (.)

t i ; d 1=0 Pr L"'i'i Ch. 4 j 1 .9 (.)

t i j d i=O Pr Dj=D L"'i Zj Ch. 4 ; 6 ( • )

t i ; d 1=0 C I;'i Ch. 4 ; 6

t i ; d 1=0 Pr;T- L'j Ch. 4 ; 6

t i ; d i=O Pr;T+ I;'i Ch. 4 ; 6

t i ; d i Pr I;'i Ch. 4 ; 6

t i ; d i=O Pr;T- Dj=D LZj Ch. 4 j 6

t i ; di=O Pr;T+ Dj=D LZi Ch. 4 ; 6

t iH=aHi di=O Rs( q ) Rk=l, rjke(O, I}; I;Zi Ch. 4 ; 6
Dj=D

( to be continued)
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Table 1.2

Number Processing Preemption,
of time s, precedence Add it i ana I Objec t i ve

Section

machi- release and condi t ions
of the

resource f une t jon

dates constraints
book

nes

t iH=aH; d i=O R. (q) Rk=I,Tike{O,l}; EUj Ch.4;6

Dj=D

tiH=aH;di=O R. (q) Rk=I, Tike{O, I} Elj Ch. 4 ; 6

t j e { I , 2} ; G Dj=D EXj Ch. 4 ; 4 . 7

di=O

Ije{IPlp~O}, T- Dj=D EXj Ch . 4 ; 6 ( •• )

t > 1 j d i=O

tje{tPlp~O}, T+ Dj~D EZj Ch.4 ; 6 ( • * )
t > 1; di=O

t j e { I , 2} ; G Dj=D EUj Ch.4;4.7

di=O

tje{tPlp~O}, T- Dj=D EUj Ch . 4 ; 6 ( •• )

t> 1; d 1=0

'je{,Plp~O}, T+ Dj~D EUj Ch . 4 ; 6 ( •• )

t>ljdi=O

I je{ I ,2}; G Elj Ch . 4 i 4 . I I 4 . 4

di=O

t i=1 ; d i=O C; R. ( 1) R1=I,Tje{O, I} EZj Ch.4;2.14

Di=D

[ t j I ; d j=O [ Pr J ;C; R. ( 1 ) Rt=I,Tie{O,I} EZj Ch . 4 j 2. 15

Dj=D

t i=1 ; d i=O C ;R.( 1) R t =l,Ti e {O,l} EUj Ch. 4 i 2. 14

Dj=D

[ t j 1 ; d j=O [ Pr J ;C; R s ( 1 ) Rt=I, Tje{O,l} EUj Ch. 4 j 2. 15

Dj-D

t i=1 ; d i=O C; Rs ( I) Rt=l,TiE{O,l} Elj Ch.4 j 2. 1,2. 13

[ t j J ; dj~O [Pr);C;Rs(l) R,=l,rje{O,1} Elj Ch. 4 i 2 . 15

t i ; d i=O t max Elj Ch. 4; 1 . 1,

1 . 3 ( • )

( to be cant Inued)
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Table 1.2

Number Processing Pre emp t ion,
Section

of times I precedence Additional Objective
of the

machi- release and resource conditions function
book

nes dates constraints

t i j d i=O Di=D zmax Ez; Ch. 4 ; 1 . 9 ( •• )

t i j d i=O D;=D L max EL; Ch. 4 ; 1. 9 ( •• )

t i=1 ; d i=O Rs( 1) D;=D t i'5.Di Ch.4 ; 4 . 8

[ t; J ; d ;=0 [PT J ;Rs ( 1) D;=D t i'5.Di Ch. 4 ; 4 .

t i=1 j di=O Rs (q) Rk=l,T;k e {O,1}; t iSDi Ch. 4;6

D;=D

It; I ; d ;=0 I PT J ; R s (q) Rk=I,T;k e {O,1}; t i'5.Di Ch.4;6

D;=D

t 1=1; d i=O Rs ( 1) 'max Ch. 4 ; 2. 1 , 2. 3

[ t; ] ; d ;=0 [PT I; Rs( 1) t max Ch. 4 ; 2 . 15

t i=1 ; d i=O Rs(q) Rk=l, T;ke{O, 1} t max Ch. 4 j 6

[ t; J ; d ;=0 [ PT I ; R s ( q) Rk=l, Tike{O, I} t max Ch. 4 ; 6

t i=1 j d 1=0 Rs ( 1) Di~D L max Ch. 4 j 2. 14

[t;J;d;=O I PT J ;Rs( 1) Di=D Lmax Ch. 4; 2. 15

t i=1 ; d i=O Rs ( q) Rk=l, Tike{O, I} L max Ch. 4 i 6

D;=D

[ t; ] ; d i~O I PT I ; R s ( q ) Rk=l, TikE{O,l} L max Ch.4;6

D;=D

t i=1 ; d 1=0 Rs (1) D;=D zmax Ch.4j2.14

It; I ; d ;=0 I PT J ;Rs( 1) Di=D zmax Ch.4;2. 15

t 1=1 j d i=O Rs ( q) Rk=I,Tik e {O,I}; zmax Ch.4;6

Di=D

[ t i J ; d i~O [PT I ; R s ( q) Rk=l, Tike{O, I}; zmax Ch.4;6

Di=D

t 1=1; di=O Rs ( 1) Di=D EZi Ch. 4 ; 2. 14

( to be cont Inued)
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Table 1.2

Number Processing Preempt i on I

of times I precedence Addi t ional Objective
Section

of themachi- release and resource conditions function

dates
booknes e onst r a in t s

[ t; J ; d ;~O [Pr); .1'.( 1) Di=D Ez; Ch. 4 i 2 . 15

t i=1 ; d 1=0 .I' .(q) Rk=l,Tike{O,l}; Ez; Ch. 4 j 6

Di=D

[ t; ) ; d ;=0 [ Pr]; R. ( q) Rk=l,r;ke{O, If; Ez; Ch.4j6

D;=D

t i=1 j d i=O .1'.( I) D;=D Eu; Ch. 4j2. 14

[ t; 1; d ;=0 [Pr); R. ( 1) D;~D Eu; Ch. 4;2. 15

t i= 1; d i=O Rs(q) Rk=l,r;k e {O, II; Eu; Ch. 4 i 6

D;~D

[t;l;d;=O [Pr];R.( q) Rk=l,rike{O,l}; Eu; Ch.4j6

D;=D

t 1=1; di=O .1'.( I) El; Ch. 4;2. 1 I 2. 4

[ t; ) ; d ;=0 [Pr]; .1'.( 1) El; Ch. 4;2. 15

t 1=1; d i=O .I' .(q) Rk=l, r;ke{O, I I El; Ch. 4 ; 6

[ t i ] ; d ;=0 [Pr];R.( q) Rk=l,r;ke{O, II [I; Ch. 4;6

M t 1=1; d ,=0 T+ t i5.Di Ch. 4 i 4 . 8

M [ t; J ; d ;=0 [ Pr];T+ t iSDi Ch. 4 j 4 • 8

M t i=1 ; d i T- D;=D t iSDi Ch. 4 j 6

M [ t; ) ; [d; ) [ Pr];T- Di=D t i5.Dj Ch. 4 j 6

M t i=1 ; d i=O T Di=D t i'!fDi Ch. 4 ; 6

M [ t; ] ; d ;=0 [ Prj] D;=D t i5.0i Ch. 4 ; 6

M t i e{ 1, t} j T- D;~D t iSDi Ch. 4 ; 6

di=O

M tie {I It} j T+ D;=D t i'5.Di Ch.4j6

di=O

( to be cont inued)
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Table 1.2

Number Processing Preempt i on I

Section
of times 1 precedence Additional Db j e c t i ve

of lhe
machi- release and resource conditions funct ion

book
nes dates canst r aints

M t i=1 i d i=O Pr;G Dj=D 'i'5Di Ch.4;6

M t i i d i=O t max Ch. 4 ;6

M t i=l; di T- t max Ch. 4 ; 6

M [ I j J ; (d j J [PrJ ;T- t max Ch. 4 i 6

M t i ; d i=O Dj=D Lmax Ch. 4 ; 6

M t ;=1 j d i=O T+ L max Ch. 4 j 3 . 1 , 3.

M ( tiJidi=O I Pr);T+ Lmax Ch. 4 ; 3 . 4

M t i=l; di T- Dj=D Lmax Ch. 4 i 6

M [ I j 1 ; (d j J [PrJ ;T- Dj=D Lmax Ch. 4 ; 6

M t i=1 ; d i=O T Dj=D Lmax Ch. 4 ; 6

M [ til j d i=O [ PrJ;T Dj=D Lmax Ch. 4 ; 6

M tie {I I I}; T- Dj=D Lmax Ch. 4 j 6

di=O

M IjE(i,t}; T+ Dj=D L max Ch.4;6

di=O

M t i j d .,;=0 Dj=D zmax Ch. 4 j 6

M t i=1 ; d i=O T+ zmax Ch .4 ; 3 . 4

M [ I j J ; d j=O (PrJ ;T+ zmax Ch. 4 i 3 . 4

M t i=1 ; d i=O T Dj~D zmax Ch. 4 j 6

M [ I j J ; d j=O (PrJ ;T Dj=D zmax Ch. 4 ; 6

M t i e{ I, I} ; T- Dj=D zmax Ch. 4 i 6

di=O

M tie {I, I}; T+ Dj~D zmax Ch.4;6

di=~

( 10 b. cont inued)
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Table 1.2

Number Processing Preempt i on I

Sectiono! times I precedence Additional Objective
rnachi-

o! the
release and resource conditions function

book
nes dates constra.ints

M t i=1 ; d i 7- D;=D Zmax Ch. 4 i 6

M [ t; J ; [d; J [PrJ ;7- D;=D Zmax Ch. 4 i 6

M t i=1 j d i=O 7 'max Ch. 4 ; 6

M [ t i ] j d ;=0 [ PrJ;7 t max Ch. 4 ; 6

M tie {I, I}; 7- t max Ch. 4 ; 6

di=O

M I; e{ 1 , t}; 7+ t max Ch.4j6

di=O

M t 1=1; d i=O PriG t max Ch. 4 ; 6

M t.i=l;di=O PriG D;~D L max Ch. 4 i 6

M t i=1 ; d i=O PriG D;=D zmax Ch. 4 ; 6

M t i ; di=O Di=D Ez; Ch. 4 ; 6

M t .,:=1 j d ;=0 7+ Ez; Ch. 4 ; 3 . 4

M [ t; J ; d ;=0 [ Pr);T+ Ez; Ch. 4 ; 3 .

M t i=1 ; d i 7- Di=D Ez; Ch. 4 ; 6

M [liJ;[diJ [Pr J ;7- Di=D Ez; Ch. 4;6

M t i j d i=O D;=D Eu; Ch. 4 ; 6

M t i ; d i=O Pr Eu; Ch .4 ; 6 ( •• )

M t iHi d i=O Pr Eu; Ch. 4 j 6

M t i=1 ; d i=O 7+ Eu; Ch. 4;3.4

M [ t; J ; d ;=0 [PrJ ;T+ Eu; Ch .4 ; 3 . 4

M t i=1 ; d i 7- Di=D Eu; Ch. 4;6

M [ I; ) ; [d; J [PrJ ;7- Di=D EUi Ch. 4 ; 6

M t 1=1 ; d i=O 7 Dj=D Ez; Ch. 4 ; 6

( to be cont inued)
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Table 1.2

Number Processing Preempt ion l

Section
of times, precedence Additiona.l Objec t j ve

of the
rnachi- re lease and resource conditions funet ion

book
nes dates constraints

M [ t; J ; d ;=0 [PrJ ;T D;=D Ez; Ch.4;6

M t; e {I, t}; T- D;=D Ez; Ch.4;6

di=O

M tie {I, t}; T+ D;=D Ez; Ch.4j6

di=O

M t i=1 ; d i=O PriG D;=D Ez; Ch. 4;6

M t i=1 ; d i=O T D;=D Eu; Ch. 4;6

M [ t; J ; d ;=0 [ Pr);T D;=D Eu; Ch. 4 ; 6

M tie {I, t} j T- D;=D Eu; Ch. 4 j 6

d;=O

M t; e{ I, t}; T+ D;=D Eu; Ch.4 ; 6

di=O

M t 1=1; d i=O PriG Di=D Eu; Ch. 4 ; 6

M t i=1 j di=O G El; Ch. 4 ; 4 . 1.4.6

M [ t; J ; d ;=0 G El; Ch. 4 ; 4 • 7

M t i ; d i=O machine speeds.j, El; Ch. 4 ; 6 ( * * )

M t i ; di=O ma.chine speeds.j, Ez; Ch .4 ; 6 ( * * )
D;=D

M t i ; d 1=0 M Ch. 4 ; 6 ( * * )E« E (X; )x
j=1 ieN j

E t; )
i eN]

M t i ; d i=O M~M(N,D) M i ti5.D Ch.4; I . I,
1.7;6
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Table 1.3

Num- Proces- Preemp- See-
ber 5 j ng t ion; re- Add i t i - Ob j ec- Running Pe r (0 rmance t ion
of time s; source and anal tive of
ma- release precedence condi- (noe- time guarantee the
chi- dates constra- t ion 5 t j on book

in t s

t i i d i L max n 2 10gn (FO_F')/(F'+ A. [0

Dmax ) < mi n { 1/2,

t maxI t E' 1-

2t m i n l t Ef

t i ; d i Lmax n 2 10gn (FO_F') I(F'+ A. 10

D max ) < 1/3

t i ; d i=O 'max n ~ ~ I I I I A.

t i=aHi G 'max n 2 ~ ~ 1 - min {a 11 A.5

di=O a2f!max{al,a2f

t iHi d ;=0 t max ~ ~ [ I 2 A.6

t iHi d ;=0 t max nlogn ~ ~ 0/5-1)/2 A.6

M t i ; d ;=0 t max n ~ ~ 1 11M A.2

,If t i i d i=O t max nlogn ~ ~ I I 3 - II (3M) A.2

,If t i i d i=O t max nlogn+ ~ ~ p + [12 k A.

knlogM r'M2/1 3 ,M~3

p= 3/17,Me{4,5,

6.7f

[15 ,M~8

M t i ; d i=O t max nlogn+ ~ ~ I 1 I 6 I + l/2 k A.2

knlogM

klogk
1 I k +1/2 kAI t i ; d i =0 'max (kn) ~ A.2

AI t i ; d j=O t max nlogn ~ ~ 37/160 A.2

AI t i ; d 1=0 t max n(M 4 + 10 8 n ) ~ ~ 35/192 A.

M t i ; d i=O t max nlogn FO_F* ~ ( 1- A.

I/M)tmax

( to be continued)
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Table 1.3

oces- Preemp- See-

ing t ion; re- Add it i- Objec- Running Pe r formance t ion

i mes j S Duree and anal t i ve 01

lease precedence condi- Cuoe- time guarantee the

ates constra- t ions t ion book

in t s

- FO_F'i d i t max nlogn " (2- A.2

I/M)l max

-
; d i t max nlogn ~<m in { ( 2M- I) / M, A.2

(2M- 1 ) Imax / ILl

-
n 2

i d i=O G t max ~ " 1 - 1 /M A.3

T- -
F O- F *; d i=O t max nlogn " ( 1 - A.3

I/M)l max

T- -
j d i=O t max nlogn ~ " 1 - 2/ (M+ 1 ) A. 3

T+
-

; d i=O t max nlogn ~ " 1 - 2/ (M+ 1 ) A. 3

-
d i=O C t max nlogn ~ " 2 / 3 A.3

-
l' G t max A.3

0 ~ "
{ 1 /3, M=2

1 - t /M, M~3

-
{I, G t max r/3' 1=2

A.3

di=O ~ " 1/2-1/(2t),

t ~3

-
n 2I, G t max ~ " 1 - 2/M A.3

0

-
n 2di=O Pr ;G t max ~ " 1 - 2/M A. 3

-
l/; t max nlogM { (V5- 1 ) / 2 , M=2

A.4

0 ~<

v'2M-2/2,M~3

-
l/; t max .:::l:5a ma x famin - A.4

0 1/( am i n I:(al/)-I)

-
~"vM -1+O(M 1 / 4 )l/; t max nlogM A.4

0

M t.i Q

di=

M ti

M ii j

M tj=

di=

M t i

M t i

M t i

M it

M t i

M t i

nes

Num- P r

ber
01

ma- r e

ch i- d

(to be continued)
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Table 1.3

Introduction

Num- Proces- Preemp- See-
ber sing t ion; r e- Additi- Objec- Running Performance t ion

01 times; source and anal t i ve 01

ma- re lease precedence condi- Cunc- time guarantee the

chi- dates constra.- t ion s t ion book
nes in t s

-
.II t i aH; t max nlogn

{( v17- 3) /4, .11=2
A.4

di=O Ll<

1 - 2/ (.11+ 1 ) , M~ 3

-
LlSl-2/(M+l).II t i aH; t max nlogn A.4

di=O

-
.II t iaH; t max nlogn LlS7/12 A.4

di=O

-
.II t i uH; t max nlogn+ rr;i'-, )/ H

A.4

d;=O knlogM
1 / 2 k , .11=3
1 / 2 - 1 / ( 2M) +

LlS 1 / 2 k, Me { 4 , 5 }

2/S+I/2k,.II~6

-
LlSI- 1/M+l/2 k.II t i UHj t max nlogn+ A.4

di=O knlog.ll

-
LlS 1 / 2.II t iaH; t max nlogn+M A.4

di=O

-
.II t i uH; uM< 1; t max nlogM

Ll<{ (Y5-1) /2,.11=2
A.4

d;=O uH=l,

H"M 2 - 4/(.11+1) ,.II~3

- fv17-3)/4 ,.11=2.II t i aH; uM< 1; t max nlogn A.4

di=O uH=l, LlS 1 / 2 - 1 / ( 2M) ,

H".11 M~3

-
.II t iaHi uM< 1 ; t max nlogn+ l'VO-') IH 'I'~

A.4

di=O aH=l, knlogM
.11=2

H".11 LlS (v17_ 3 ) / 4

+ 1 /2 k, .II~ 3

- fv17- 3 )/4.II t i all; uM< 1 ; t max nlogn+ A.4

di=O uH=l, knlog.ll ~:S + 1 / 2 k I M= 2

H".11
V2-1+1/2k,.II~3

(to be continued)
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Num- Proces- Preemp- See-

ber sing t ion; r e- Add it i- Objec- Running Performance t ion

01 times j source and anal t i ve 01

ma- release precedence condi- f unc- time guarantee the

chi- dates constra- t ion s t ion book

nes in t s

-
Ll5(v'17- 3 )/4+I/Zk

M t i aH; aM> 1 ; t max nlogn+ A.4

di=O aH=I, knlogM

H"M

-
M t i all; aH=l , t max nlogn r'"'·''' A.4

di=O H"M (ZaM) ,aM<I/Z;

( ZMaM+I-4aM)/

Ll:s (2 aM + 1) I

aMEII/Z,I];

l/aM+I/(MaM+

I -aM) ,aM>1

-
n Z MM t i aHi G t max E (aH) -I

A.5

di=O
Ll5 I - I /

H=1

-
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CHAPTER 1

ELEMENTS OF GRAPH THEORY AND

COMPUTATIONAL COMPLEXITY OF ALGORITHMS

This chapter is of auxiliary nature. It contains a number of facts from various areas

of modern discrete mathematics. This information is widely used in further consideration.

Section 1 presents basic concepts of binary relations theory and graph theory. Various

graph representations are discussed, and "effective" techniques for implementing some

operations on graphs are described.

Section 2 considers a specific data structure, called balanced 2-3 trees. This

structure is widely used in constructing fast algorithms for solving various problems

discussed in Chapters 2 and 3.

The main concepts of the theory of the polynomial reducibility of discrete problems and

the computational complexity of algorithms are introduced in Section 3. It should be noted

that, unlike the first two sections, understanding Section 3 requires some preliminary

background. The material in this section is used mainly in Chapter 4. To be able to follow

the rest of the book it suffices to be aware of the concept of the running time of an

algorithm.

1. Sets, Orders, Graphs

This section presents some facts from set theory and graph theory which are used in

further considerations. We assume that the reader is familiar with such concepts as a set,

a subset, union, intersection, difference of sets, etc.

1.1. In the following, only finite sets (i.e. the sets with a finite number of

elements) are considered.

40
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The Cartesian product of two non-empty sets X and Y (notation: XxY) is the set of all

ordered pairs (x, y) such that x E X, Y E Y. A subset V (;; XxY is called a binary relation

between X and Y. A subset V ~ XxX is called a binary relation over X. We write xVy if and

only if (x, y) E V. The binary relation V-I is the inverse of V: (x, y) E V-I if and only

if (y, x) E V.

A binary relation V defined over set X is:

(i) Transitive if for any x, y, z in X, such that xVy and yVz, the relation xVz

holds.

(ii) Reflexive if for any x E X the relation xVx holds;

(iii) Antireflexive if the relation xVx does not hold for any x E X;

(iv) Symmetric if for any x, y in X, such that xVy, the relation yVx holds;

(v) Asymmetric if for any x, y of X at least one of the relations xVy or yVx does not

hold;

(vi) Antisymmetric if for any x, y of X such that if xVy and yVx hold simultaneously,

it follows that x = y.

(vii) Total if for any x, y, in X, x oF y, at least, one of the relations xVy and yVx

holds.

A transitive relation defined over set X is called a pseudo-order relation (or

a pseudo-order). In this case, set X is said to be pseudo-ordered.

A transitive and reflexive relation defined over set X is called a quasi-order relation

(or a quasi-order). In this case, set X is said to be quasi-ordered.

A transitive and antireflexive relation defined over set X is called a strict order

relation (or a strict order). In this case, set X is said to be strictly ordered.

A transitive, reflexive and antisymmetric relation defined over set X is called a

non-strict order relation (or a non-strict order). In this case, set X is said to be

non-strictly ordered.

A (pseudo-, quasi-, strictly, or non-strictly ordered) set X is called total if the

binary relation defined over it is total.

A strictly ordered set X is said to be linearly ordered if the order is total.

Otherwise, an ordered set X is called partially ordered.

Let X be a set of n-dimensional vectors x = (XI' X2,"" xn ), where Xi are real

numbers. We define the relation <: over set X as follows: for x, y E X, x <: y, if Xi <: Yi,

i = 1, 2, ... , n.

1.2. The pair consisting of a set X and a binary relation V defined over X is called a
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directed graph (notation: G = (X, V)). The elements of set X are called vertices of graph

G, while the pairs (x, y) E V are called arcs. For an arc (x, y), the vertex x is its

beginning, and the vertex y is its end. In this case, an arc (x, y) is said to leave the

vertex x and to enter the vertex y. An arc (x, x) is called a loop.

If f) is a set of non-ordered pairs of the elements of set X, then the pair G = (X, f))

is called a non-directed graph. In this case, the pairs (x, y) E f) are called edges of

graph G.
A graph G= (X, f)) is called a complete graph if (x, y) E f) for all x, y E X, x l' y.

Along with the notation G = (X, V) for directed graphs and G= (X, f)) for non-directed

graphs, we use the notation C = (X, V) in the formulation of statements which hold for
both directed and non-directed graphs.

If (x, y) E V, the vertices x and yare said to be adjacent, and the arc (edge) (x, y)

is said to be incident to the vertices x and y.

Two graphs C = (X, V) and C· = (X', V') are called isomorphic if there exists a one

to-one mapping rp of the set X into the set X' such that (x, y) E V if and only if (rp(x)),

rp(y)) E V', where rp( x) and rp( y) are the images of the elements x and y in mapping rp. In

this case, mapping rp is called an isomorphism of graph C onto graph C'.
A graph C' = (,X', V') is called a subgraph of a graph G = (X, V) if X' <;; X and

(x, y) E V' implies that (x, y) E V. If, for any x, y E X', it follows from (x, y) E V
that (x, y) E V', then G' is called an induced subgraph.

A route in a graph C = (X, V) is a sequence of vertices x,, x2 , ... , Xr such that either

(xb xk+tl E V or (xk+l' Xk) E V, k = 1, 2, ... , r -1. In this case, the vertices XI and Xr

are said to be connected by a route. A path in a directed graph G = (X, V) is a sequence of

arcs of the form (x" X2), (X2, x3), .. ·, (xr _ l , xr), or, equivalently, a route Xl> X2'"''

Xr such that (xb xk+tl E V, k = 1, 2, ... , r-l. Here x, is the beginning and Xr is the end

of the path. The number r is called the length of a path. In what follows, by a "path" is

meant a simple path, i.e., a path in which all vertices are distinct. A circuit is a path

where x, = xr'

In a directed graph G, a vertex x is called a predecessor of a vertex y, if there is a

path from x to y in G. In this case, vertex y is called a successor of vertex x. If G

contains a circuit, then the same vertex x may be a predecessor and a successor of some

vertex y at the same time. A vertex x of the directed graph G = (X, V) is called a direct

predecessor of a vertex y if (x, y) E V and G has no path from x to y without the arc

(x, y). In this case, vertex y is called a direct successor of vertex x. Let BG(x) (or

AG(x), respectively) denote the set of all predecessors (successors) of vertex x in graph



Elements of Graph Theory and Computational Complexity 43

G. The set of all direct predecessors (direct successors) of vertex x is denoted by B8(x)

(or by AS(x)). Sometimes, if no confusion arises, the index G is omitted.

A connected component of a graph G= (X, [}) is its induced subgraph such that, if it

contains a vertex x, it does not contain a vertex which is not connected with x by a

route. The connected components of a graph Gdetermine a partition of set X into subsets.
The graph consisting of a single connected component is called connected.

The number of arcs (edges) incident to a vertex in a graph is the degree of a vertex.

If a graph is directed, then the number of arcs leaving (entering) a vertex is called the

outdegree (the indegree, respectively) of this vertex.

A vertex of a directed graph is called: (i) initial, if its indegree is zero;

(ii) terminal or a leaf, if its outdegree is equal to zero; or (iii) isolated, if its

degree is zero. The vertices which are not terminal are called intermediate. The adjacency

matrix of a graph G= (X, U) is a square (O,l)-matrix Ilmijll of order IXI such that mij = 1

if and only if (xi' Xj) E U.

1.3. In what follows, we mainly consider directed circuit-free graphs.

The vertices of any circuit-free graph G = (X, U) can be distributed by ranks (levels).

The first rank includes all initial vertices. Eliminating the vertices of the first rank

from the graph (together with the incident arcs) yields some subgraph. If this subgraph is

not empty, assign the set of all its initial vertices to the second rank of the original

graph. The procedure is repeated until each vertex of the original graph is given a rank.

If the graph is given by its adjacency matrix, then distributing of its vertices by ranks

can be implemented in at most O( IXl z) time. l
The height of a vertex of a circuit-free directed graph is the length of the longest

path from x to a leaf. The height of a terminal vertex is 1.

A chain C = (Xl' xz,"" xn) is a directed graph G = (X, U) such that X = {Xl' X z,""

Xn }, U = {(Xl' XZ), (Xz, X3)"'" (Xn _l , xn )}. The vertex Xl is the beginning and Xn is

the end of chain C. In a chain C, a vertex X is said to be on the left of a vertex y if

the path from Xl to X is shorter than that from Xl to y.

The chain C = (Xo, Xl' XZ,"" Xn ) is said to be obtained from a chain C = (Xl'

Xz,"" xn) by joining the vertex Xo from the left. The operation of joining a vertex from

the right is defined similarly. If Cl = (Xl' Xz,"" Xr ), Cz = (Yl' Yz,"" Ys) are such

Here and throughout the book O(f(x» denotes a function g(x) for whkh there exists a

9 (x)
constant C such that 1 i m sup -- = C.

x..., f( x)
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chains that the sets of their vertices do not intersect, then (CI , Cz) denotes the chain

C = (XI' Xz,···, Xn YI, yz,···, Ys)·

A graph is called an outtree (denoted by Tt) if it is connected, has a single initial

vertex (called a root), and any other vertex has exactly one direct predecessor.

A subtree with a root X of an outtree T t is a subgraph of the graph Tt induced by the

vertex X and by all its successors. For a vertex X of an outtree T+, the subtrees with
the roots that are the direct successors of vertex X are called subtrees of vertex x.

A graph is called an intree (denoted by T-) if the opposite orientation of all its arcs

gives an outtree. A subtree with a root x of an intree T-, as well as subtrees of a vertex

x of an intree T- are defined analogously.

By definition, an isolated vertex is an outtree and an intree at the same time.

A graph T will be called a tree-like graph (or a forest) if each of its connected

components is either an outtree or an intree).

An arc (x, y) of a graph is transitive if in this graph there is a path which goes from

vertex x to vertex y and does not contain the arc (x, y). A graph G is transitive if, for

any of its vertices x, y such that x E BG(y), graph G contains arc (x, y). The transitive

graph G = (X, 0) is called a transitive closure of a graph G = (X, V) if V ~ 0 and any arc

(x, y) E OW is transitive.

A graph G = (X, V) is called a parallel composition of graphs GI = (XI' Yd and

Gz = (Xz, Y z ) such that XI n X z = 0, if X = XI U X z and V = V\ U Vz. This is denoted by

G = G\pGz.

A graph G = (X, V) is a series composition of graphs GI = (Xl> VJl and Gz = (Xz, Vz )

such that XI n X z = O, if X = XI U Xz and V = VI U Vz U X; x Xi, where Xi is the set of
all terminal vertices of the graph GI and Xi is the set of all initial vertices of the
graph Gz. This is denoted by G = GlsGZ•

A graph G is said to be obtained by implementing parallel or series composition of

graphs GI and Gz if G = GIPGZ or G = GlsGZ, respectively.

Let G' denote the graph obtained from a graph G by the successive removal of all

transitive arcs of G. A graph G is called series-parallel if the graph G' can be obtained

by successive implementation of series and parallel compositions of single-vertex graphs

d i
) = (Xi' O), xi E X, i = 1, 2, ... , IXI· A single-vertex graph is series-parallel by

definition. It can be easily seen that any tree-like graph is series-parallel.

A graph G is called decomposable if the graph G' can be represented as a series or

parallel composition of two graphs. If otherwise, G is called non-decomposable. Let the

graphs CI , Gz,... , Gm be such that the graph G can be obtained from them by successive
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implementation of m -1 operations of series and parallel composition. Then these graphs are

called decomposition components of G, and a so-called decomposition tree of the graph G

can be constructed which shows how G can be obtained from Gl , G2, ... , Gm by successive

implementation of composition operations.

A decomposition tree T(G) of a graph G is a binary outtree (each intermediate vertex

has exactly two direct successors) with m terminal vertices. The graphs Gl , G2 , ... , Gm are

associated with the terminal vertices. The intermediate vertices called operational, and

these are associated with the indices (s or p) of the operations of series or parallel

composition, respectively. A decomposition tree T(G) of a graph G is defined iteratively.

Suppose that either G = GiSG2 or G = GipG2, and the trees T(Gi) and T(G2) have been

constructed. Then construct a new vertex 0 to be the direct predecessor of the roots of

the trees T(Gi) and T(G2). The vertex 0 is given the index s (if G = GisG2) or p (if

G = GipG2). The vertex 0 is now the root of the constructed tree T(G). If either Gi or G2

is a non-decomposable graph, its decomposition tree is assumed to consist of a single

vertex associated with the corresponding graph Gi or G2, respectively.

Since the operation of series composition is not commutative (G{sG2 # G2sG{), the

method of representing a tree T(G) should be specified. We assume that tree T(G) is

embedded in the plane such that the vertices of one rank, and only these, are placed at

the same horizontal level. The root of the tree T(G{) is assumed to be on the right of the

root of the tree T(G2) with respect to the observer located at the operational vertex O.

Note that any decomposition tree with m terminal vertices has exactly m-1 operational

vertices. This can be easily proved by induction with respect to m.

In what follows, we do not distinguish between the terminal vertices of a tree T(G) and

the corresponding decomposition components of graph G, since no confusion arises.

Let us consider the procedure for reconstructing the graph G by its decomposition tree

T(G). Find, in T(G), an operation vertex 0 adjacent to two terminal vertices Gi and G2.

Remove the vertices Gi and G2 with the incident arcs from T(G), and associate the vertex 0

either with G{sG2 or with GipG2 depending on what operational index is assigned to the

vertex O. The resulting decomposition tree T( G) of graph G has one terminal vertex less

than the previous one. Repeat the described procedure until the decomposition tree is

found that consists of a single vertex. The graph corresponding to this vertex is,

in fact, the graph G.

In the following, a decomposition tree T(G) of a graph G is not distinguished from a

decomposition tree of the graph Gt. It is obvious that the graph reconstructed by the tree

T(G) can differ from the graph G by the transitive arcs. If G = Gt, then G is uniquely
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reconstructed by T(C).

A decomposition tree T(C) of a graph C is called complete if non-decomposable graphs

correspond to all its terminal vertices.

The definition of a series-parallel graph implies that single-vertex graphs (any of

which can be just considered as an element of set X) correspond to the terminal vertices

of its complete decomposition tree. Note that the construction of the complete

decomposition tree of a series-parallel graph C requires at most O( IX [2) time (see, e.g.,
[429, 430]).

Figure 1.1 gives an example of series-parallel graph C and its complete decomposition

tree T(C).

1.4. Let a binary relation V' ~ XxX be specified over the set X. The directed graph

C' = (X, V') is called the graph of this relation. If V' is a transitive relation, then

the graph C = (X, V) obtained from the graph C' after elimination of all its transitive

arcs is called a reduction graph of the relation V'.

If V' is a strict order relation, then the graph C' has neither a loop nor a circuit.

If V' is a non-strict order relation, then the graph C' has no circuit but contains loops

(x, x) for all x E X. The graph C' of a quasi-order includes loops (x, x) for all x E X

and may have circuits. The graph C' of a pseudo-order may contain circuits and loops

(x, x) but not necessarily for all x E X. In any case, the graph C' is transitively

closed, i.e., for a path from a vertex x to a vertex y, it also contains the arc (x, y).

Let a total pseudo-order relation ='? be defined over set X. An element X O E X is called

a minimal element of set X (with respect to ='?), if the relation x ='? XO holds for any

x E X. An element XO E X is a maximal element of X, if X O ='? x holds for any x E X.

If C is the reduction graph of a total pseudo-order relation and XO is a minimal (or a
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maximal) element of set X with respect to =*, then, for any vertex x E X, G contains a

path from x to XO (or from XO to x). It is clear that the same element XO E X may be

minimal and maximal at the same time. In particular, if G is a circuit, then any element

x E X is both minimal and maximal.

Let a strict order relation -+ be defined over set X, and G = (X, V) be the reduction

'graph of this relation. It is obvious that, if x - y, then G contains a path from the

vertex x to the vertex y. If (x, y) E V, then we use notation x )-+ y. In this case, we

have x _ y and no Z E X exists such that x _ z and z - y. If none of the relations

x -+ y and y _ x holds (Le., there is neither path from x to y nor from y to x in G),

then we write x - y and call the elements x and y incomparable.

In what follows, the notation x --2 y, x ~ y, and x £ y is frequently used along with
x _ y, x )-+ y, and x - y, respectively. Here, the index G shows that the graph G is the

reduction graph of the relation -.

It is clear that y E Adx) if and only if x - y, and y E BG(x) if and only if y - x.

Similarly, y E AS(x) if and only if x ~ y, and y E BS(x) if and only if y ~ x. We use

the notation EG(x) to denote the set of all those y E X for which x £ y. If no confusion

arises, the index G is omitted.

If a graph G is given by its adjacency matriX, then finding the set Adx) (or the set

BG(x)) requires at most O( IX 1
2
) time. To see this, observe that to obtain the set AG(x)

(or the set BG(x)), it is sufficient to make at most IXI steps. In the first step, direct
successors (or direct predecessors) of the vertex x are to be found. In any subsequent

step, all direct successors (or direct predecessors) of each vertex determined in the

previous step are to be found. In order to find all direct successors (or direct

predecessors) of a vertex, it is necessary to find all unit entries in the corresponding

row (or column) of the adjacency matrix. Finding the unit entries requires O( IX I) time.
An element XO E X is called a minimal element of set X (with respect to _) if there is

no x E X such that XO _ x. An element XO E X is a maximal element of set X if there is no

x E X such that x _ xO. In the graph G, the terminal vertices correspond to the minimal

elements, while the initial vertices correspond to the maximal elements. It is evident

that the element corresponding to an isolated vertex of the graph G is both minimal and

maximal. We denote the set of all minimal (maximal) elements of set X by X- (or X+,

respectively) .

In many situations, it is convenient to represent the reduction graph G = (X, V) of a

strict order relation - by the lists of predecessors and/or successors of its vertices.

In particular, this representation allows us to find the set of all minimal (maximal)



48 Chapter 1

elements of set X with respect to -. in at most O( IX I) time. Removing a certain minimal
(maximal) element from X also requires at most O( IXI) time.

If graph G is given by the list of predecessors, then its vertices are numbered by the

integers 1, 2, ... , lXI, and two one-dimensional arrays QB and 5B are constructed. The

array QB contains IXI elements, its kth element equal bk shows how many direct

IXI
predecessors the vertex k has. The array 5B consists of E b, elements, and its positions

1=1

k-l
E b,+2, ... ,

1=1

k
E b, contain the numbers of direct predecessors of the vertex k

1=1

taken in an arbitrary order.

If a graph G is given by the list of successors, the arrays QA and 5 A are constructed.

The kth position of the array QA is equal to the number ak = IAS(k) I, while the positions
k-l k-l k
E a,+ I, E a,+2, ... , Ea, of the array 5A contain the numbers of the direct successors of

1=1 1=1 1=1

the vertex k.

For finding the set of all minimal (maximal) elements of set X, it suffices to know

array QA (or QB). An element k is minimal (maximal) if and only if the kth position of

array QA (or of array QB) contains zero.

Let the elements of X (as well as vertices of G) be numbered by the integers 1, 2, ... ,

IXI, and an element k be a minimal element of set X. To remove this element from X

(maintaining the adopted representation form of the remaining subset), it suffices to know

the arrays QB and 5B as well as the array Qk In this case, find the set of all direct
k-l k-l k

predecessors of a kth element by scanning the positions E b,+1, E b, +2, ... , E b, of
1=1 1=1 1=1

the array 5B , and, for each found element j, decrease the number aj located in the jth

position of the array QA by 1. Mark the element k, for example, by placing the number (-1)

in the kth position of the array QA- Removing a certain maximal element from set X can be

implemented in a similar way; in this case, it suffices to know the arrays QB, QA, and 5A-

lt is evident that removing a minimal (maximal) element from X followed by an

appropriate correction of the array QA requires at most O( IX I) time.
Note that, if graph G is an outtree (or an intree ), it can be represented only by the

array QA (or the array QB). To see this, suppose that the elements of set X are numbered

in the following way. The root of a tree is given the number 1. Let G contain r v vertices

of the vth rank. Then the vertices of the second rank are numbered by 2, 3, ... , rz+1. The
vertices of the third rank are numbered by rz+2, r z+3, ... , rz+r3+1, all successors of the

vertex 2 being numbered first, followed by all successors of the vertex 3, and so on. The

vertices of the other ranks are successively numbered in a similar way. In such a
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numbering, the direct successors of a vertex k (if it is not terminal) are the vertices
k-I k-I k

with the numbers E al+2, E a/+3, ... , E al+ 1, and a direct predecessor of this vertex is
1=1 1=1 1=1

r -1 r-1

a vertex with the number r such that E al +2 S k sEa/+1.
1=1 1=1

For an intree, the numbering can be implemented similarly. It starts from the root

followed by numbering all of vertices with the height equal to two, then the vertices with

the height three are numbered, and so on. In this case, the direct predecessors of a
k-I k-I

vertex k (if it is not initial) are the vertices with the numbers E bl +2, E bl +3, ... ,
/=1 1=1

k
E bl +1, and its direct successor is a vertex with the number r that

1=1

T -I

E bl +2 S k S
/=1

T

E bl +1.
1=1

An outtree (an intree ) can also be represented by a single array 5 B (or SA) because

each vertex different form the root has exactly one direct predecessor (or direct

successor). It is not necessary to use a special numbering of the vertices. Such

representation, however, does not suit for finding a minimal (in the case of an intree) or

a maximal (in the case of an outtree) element of set X.

1.5. Let X = {XI' x z,... , x m }. A permutation of the length r of the elements of set X

is an ordered sequence of r elements of this set. We suppose that r S m and there is no

repetition in a permutation. If r = m, a permutation of the elements of set X is called

complete. If r < m, a permutation is partial.

A symbolic expression for this construction is 1fT = (Xii' Xiz"'" Xi) or 1fT = ([1],

[2], ... , [r]), where Xi
k
or [k] is the element located at the kth position from the left

in permutation 1fT , If the nature of the elements of set X is immaterial, it is often more

convenient to deal with the numbers of elements rather than with the elements themselves.

In this case, 1fr = (iI' iz,... , i r ), where 1fr is a permutation of the length r of elements

of the set {l, 2, ... , m}.

Sometimes, a permutation of the elements of set X' ~ X is denoted by 1fx'. The length of

this permutation is equal to IX'I. If 1f = 1fx', then {1f} denotes the set X', i.e., {1f} = X'.

If 1f' = (Xii' Xi
z
"'" Xi

p
)' 1f" = (Xjl' Xjz'"'' Xjq) are permutations of the set X

elements and {1f'} n {1f"} = 0, then 1f = (1f', 1f") denotes the permutation (XiI' Xi
Z
'"''

Xip' Xh' Xjz"'" Xjq)'

Let a strict order relation _ be defined over a set X, and G = (X, U) be the reduction

graph of this relation. A permutation 1f = (xi , Xi , ... , Xi ) is called feasible with
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respect to the relation -- or, equivalently, with respect to the graph G, if for all k and

I, 1 <;; k, I <;; r, the condition Xi
k

__ Xii implies that k < I.

2. Balanced 2-3-Trees

The material presented in this section can be used to develop effective algorithms for

solving a wide range of discrete optimization problems including scheduling problems.

The data structure described below allows the implementation of a number of operations

on a totally pseudo-ordered finite set X in at most O( log IX I) time. Such operations
include, in particular, finding a minimal (or a maximal) element of set X with respect to

a defined pseudo-order, deleting an element from X, and finding the union of subsets of

set X.

2.1. An outtree is called a 2-3-tree if either two or three arcs leave from each of

its non-terminal vertices. An outtree is balanced if all paths from the root to terminal

vertices are of equal length. The height of a tree is the height of its root.

Let us estimate the height of a balanced 2 - 3 - tree. Any 2-3-tree with m terminal

vertices has at most m -1 intermediate vertices. In fact, the maximal number of

intermediate vertices is attained if each intermediate vertex has exactly two leaving

arcs. In this case, the number of intermediate vertices is equal to m -1, which can be

easily verified by induction with respect to m.

The given definitions imply that there must be at least 2
k

-
1
vertices of rank k in a

balanced 2-3-tree. Let m be the number of the terminal vertices, and q denote the number

of the ranks of a balanced 2-3-tree. Then 2m -1 is the maximal number of the vertices and

2m -1 ~ t 2k - 1 = 2q -1, which yields q <;; log2m. Therefore, the height of a balanced
k=l

2-3-tree does not exceed 1+ logm.

2.2. Let a total pseudo-order relation ~ be specified over a set X = {XI' X2,"" xm}.

Let (X', ~) denote a subset X' c X such that the pseudo-order defined over set X is

maintained over X'.

Let Tb(X) denote a balanced 2-3-tree with m terminal vertices, each of which is in

one-to-one correspondence with an element of set X. Thus, the terminal vertices of tree

Tb(X) may be assumed to be numbered by the integers from 1 to m. In what follows, we do

not distinguish between the elements of set X and the terminal vertices of Tb(X). The
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intermediate vertices of tree Tb(X) are assumed to be numbered by the integers in the set

{m+l, m+2, ... , 2m-I}.

An intermediate vertex v of tree Tb(X) is connected by paths with some terminal

vertices. The set of all such terminal vertices is denoted by Xv' Assign two labels Vmin

and Vmax to vertex v, where Vmin is the number of one of the minimal elements of the set

(Xv, ==?), and vmax is the number of one of the maximal elements of this set.

A balanced 2-3-tree Tb(X) can be conveniently represented by a table (see Table 2.1)

consisting of five rows and at most 2m -1 columns. The first row of the table contains the

numbers of the vertices of 2-3-tree Tb(X). The kth cell of the second row contains the

number of the direct predecessor of vertex k. In the kth cell of the third and fourth

rows, the labels k min and kmax> respectively, are shown. The numbers of direct successors

of vertex k (there are at most three such vertices) are written in the kth cell of the

fifth row. Table 2.1 corresponds to the situation in which m = 7 (the procedure for

constructing a balanced 2-3-tree is considered later).

Ta b 1e 2. 1

I The number 1 2 3 4 5 6 7 8 9 10 11

of a vertex

II The number of 8 8 9 9 10 10 10 11 11 11

d i r ec t predecessor

1 4 7 7
III The label vmin

IV The la.bel v max 1 3 6 3

V The number of 1 3 5 8

d ire c t successors 2 4 6 9

7 10

It is obvious that a balanced 2-3-tree can be specified by filling the first and second

rows of the table. The fifth row is an auxiliary one, and this is used for labeling the

vertices as well as for implementing some operations on 2-3-trees.

2.3. Given a set X, the following procedure for constructing a tree Tb(X) can be

applied. We split this procedure into several stages. The number of the stages is equal to

the height of Tb(X) minus 1. At the first stage, the first m cells of the second row of

the table are filled in. Put the number m+ 1 in cells 1 and 2, fill cells 3 and 4 with the

number m+2, and so on. If m is even, put the number m+m/2 in cell m. If m is odd, fill

cell m (as well as cells m-2 and m-l) with the number m+(m-l)/2.
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Let LxJ denote the largest integer not exceeding x. At the second stage, the cells from

m+ 1 up to m+ Lm/2Jare filled. Put the number m+ Lm/2J + 1 in cells m+l and m+2, fill cells

m+3 and m+4 with the number m+ Lm/2J +2, and so on. If the number of cells filled at the

second stage is odd, the last three cells contain the same number. At the last stage of

this process, there are either two or three cells to be filled. At this stage, the number

placed in the cells of the second row is the number of the root of the tree. As can be

easily seen, the table obtained this way uniquely specifies a balanced 2-3-tree (with no

labels).

Tables 2.2 and 2.3 give examples of filling the first two rows for m = 11 and

m = 8, respectively. The dotted lines separate the stages. In the first example, the root

of the tree is vertex 19, while in the second example, the root is vertex 15.

Table 2.2

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

:- - --
II 12 12 13 13 14 14 15 15 16 16 16 17 17 18 18 18 19 19

Table 2.3

I 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15

-
II 9 9 10 10 II II 12 12 13 13 14 14 15 15

The fifth row of the table can be filled simultaneously with the second row: while a

number I is placed in the kth cell of the second row, the number k is placed in the lth

cell of the fifth row. The first m cells of the fifth row of the table representing a tree

Tb(X) are, obviously, empty.

The labeling of the intermediate vertices of a balanced 2-3-tree is implemented level

by level starting from the level q-l (here q is the height of the tree). At the (q-l)th

level, 1 S; I S; q-l, take the number of an arbitrary minimal (or maximal) element of the

set (X', ==?) as the label vm;n (respectively, v max ) for each vertex v. Here, for I = 1, we

have X' = Xv, while for I <: 2 set X' is the set of the elements whose numbers are the

minimal (or maximal) labels of the direct successors of vertex v. Since IX' I S; 3, at most
two comparisons are required for finding label Vm;n (or v max )' For finding all direct

successors of a vertex v, the fifth row of the table can be used.

It is obvious that the vertices m+l, m+2, ... , m+ Lm/2J belong to the (q-l)th level, the

vertices m+ Lm/2J +1, "', m+ Lm/2J + Lm/4J belong to the (q-2)th level, etc.
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As can easily be seen, the implementation of this procedure for constructing the tree

Tb(X) and labeling its vertices requires at most O(m) time.

Table 2.1 gives a balanced 2-3-tree for the set X = {1, 2, 3, 4, 5, 6, 7} assuming that

the relation ==* is defined over this set in the following way (here we write (Xi, Xj)

instead of Xi ==* Xj): (1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 1), (2, 4), (2, 5),

(2, 6), (2, 7), (3, 1), (3, 2), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7),

(5, 7), (6, 5), (6, 7).

Note that, in general, a totally pseudo-ordered set may contain more than one minimal

and more than one maximal element. This implies that the values of the labels Vrnin and

vmax are not uniquely specified. For example, in the eighth cells of the third and fourth

rows of Table 2.1 (or in any of them), the number 2 could be placed.

For finding either a minimal or a maximal element of set (X, ==*) represented by the

tree Tb(X), it suffices to check either the label V:!.in or v:!"'x of the root va.

2.4. We now consider the procedure for finding the union of two subsets of the X,

provided that each of them is represented by a balanced 2-3-tree. Let Xl' X2 be non-empty

subsets of a set X such that Xl n X2 = 0, IXII = mh IX2 1 = m2, and Tb(XIl and Tb(X2) be

balanced 2-3-trees of the heights ql and q2 representing these sets. Without loss of

generality, we may assume that ql ;:: q2' To find the union of sets Xl and X2 represented by

the trees Tb(XIl and Tb(X2), we construct the tree Tb(Xl U X2).

If ql = q2' then for constructing Tb(Xl U X2) it suffices to introduce a new vertex VO

and make the roots of Tb(Xtl and Tb(X2) direct successors of va. The constructed tree is a

balanced 2-3-tree with the root vO. It is not difficult to find the labels V:!.in and v:!"'x

by the corresponding labels of the roots of the trees Tb(Xtl and Tb(X2).

If ql > q2' then find in Tb(Xtl a vertex v of the height q2+ 1. If v has only two direct

successors, make the root of the tree Tb(X2 ) its third successor. In the obtained balanced

2-3-tree, recalculate the labels of the vertex v and of all its predecessors (there are at

most logml of them). If the chosen vertex v has three direct successors, take one of them,

say, vertex v', and remove the arc (v, v') from Tb(Xtl. As a result, we obtain two

balanced 2-3-trees: what is left from Tb(XIl (let us denote this tree by Tb(X;)) and the

subtree with the root v'. Unite the latter tree and the tree T b(X2 ) (their heights are

equal) and denote the resulting tree by Tb(Xi). The labels are not recalculated until the

union of Tb(Xtl and Tb(X2) is found. Note that the height of Tb(Xi) is equal to q2+1.

Attempt to unite the trees Tb(X;) and Tb(Xi) in the way described. If ql > q2 +1, then the
direct predecessor of vertex v in Tb(X;) can be chosen as a vertex of the height q2+2.
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There may be at most 10gml such "attempts" to unite the trees. When Tb(X1 U Xz) is

constructed, find the new labels of vertex v and those of all its predecessors, as well as

the labels of the new vertices. The total number of labels to be recalculated does not

exceed O(logmJl.

2.5. We now consider how to implement the described process of constructing Tb(X1 U Xz )

followed by correcting the labels assuming that a balanced 2-3-tree is represented by the

table. The implementation of this process in at most O(logmJl time requires that both

trees Tb(Xtl and Tb(XZ ) are represented by a common table, and that the numbers of the

roots of these trees are known.

Let v(l) and v(Z) be the roots of the trees Tb(Xtl and Tb(XZ), respectively. We assume

that both trees are represented by a common table having 2m -1 columns. Without loss of

generality, we may assume that the empty columns of the table are at the right-hand side,

and m' is the number of the first of them.

The heights ql and qz of the trees Tb(Xtl and Tb(XZ ) can be determined by finding a

path from the root of a tree to some of its terminal vertices, which can easily be done

using the fifth row of the table. Therefore, finding ql and qz requires at most O(10gmJl

time.

If ql = qz, then for constructing Tb(X I U Xz) it suffices to place the number m' in

cells v(l) and v(Z) of the second row, to put the numbers v(l) and v(Z) in cell m' of the

fifth row, and then to fill the cells m' of the third and fourth rows as usual.

If ql > qz, then using the fifth row (moving from the root of the tree Tb(Xtl), find a

vertex v of height qz +1. If in cell v of the fifth row there are two numbers, place the

number v(Z) in this cell as the third one. Then correct the labels of vertex v and those

of all its predecessors. If the chosen cell of the fifth row contains three numbers, then

remove one of them and place it along with the number v(Z) in cell m' of the fifth row.

Put the number m' in cell v(Z) of the second row, and replace the number m' by v in the

cell corresponding to the removed vertex. Keep the labels unchanged. Taking m' as the root

of the second tree (the root of the first tree is v(l»), attempt to unite these trees. The

direct predecessor of vertex v (to be found in cell v of the second row) can be taken as a

vertex of the first tree having the height qz +2.
While constructing the tree Tb(X I U Xz), store the numbers of the vertices whose labels

are to be either defined or corrected. Note that such vertices are the vertex v, all its

predecessors, as well as the new vertices added to the second tree. The process of

constructing labels starts from the vertex with the minimal number.
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It can be easily seen that the described method of implementing the procedure for

finding the union of two balanced 2-3-trees followed by an appropriate correction of the

labels requires at most O(logmtl time.

2.6. Let us consider the procedure for deleting an element from a set X represented by

a balanced 2-3-tree Tb(X). Let \0 E X be the element to be deleted. The procedure for

deleting x jo from X constructs a balanced 2-3-tree Tb(X\\o).

In the tree Tb(X), let v9 denote the predecessor of the vertex iO corresponding to the
element \0 such that the path from v9 to iO has the length 1+1. If q is the height of the

tree Tb(X), then V~_l is the root of this tree.

If the vertex v~ (i.e., the direct predecessor of the vertex iO) has three direct

successors, then for constructing the tree Tb(X\Xjo) it suffices to delete the vertex iO

from the tree Tb(X) (along with the arc (v~, iO)) and to correct the labels of the

vertices v~, vg, .. _, V~_l'

If the tree Tb(X) is given by the table, this can be implemented as follows. Remove the

number iO from cell v~ of the fifth row of the table and the number v~ from the cell iO of

the second row. Determine the new labels of the vertices v~, vg, ... , V~_l' It is clear

that, in this case, the deletion of an element from the set X requires at most O(logm)

time, where m = IXI.
Suppose that v~ has only two direct successors, iO and t. Then the tree T(l), arising

from Tb(X) after the vertex iO has been deleted, is no longer a 2-3-tree (in this tree,

the vertex v~ has only one direct successor). Thus, additional transformations are

required to obtain Tb(X\Xjo)' In this case, correcting the labels starts only after these

transformations are completed.

In the tree T(l), find a direct successor of the vertex vg, say, vertex v'. If v has

three direct successors, make one of them (say, vertex in) a direct successor of the

vertex v~ after the arc (v', in) is removed. It is evident that the resulting tree is a

balanced 2-3-tree. Correct the labels of the vertices v', v~, vg, ... , V~_l'

If v' has two direct successors, make i' a direct successor of the vertex v' and delete

the vertex v~ from the tree. If, in the constructed tree T(2), the vertex vg has two

direct successors, then T(2) is the desired tree Tb(X\Xjo), and we only have to correct

the labels of the vertices v', vg, ... , V~_l' If otherwise, then T(2) is not a balanced

2-3-tree, and the vertex vg is the only its intermediate vertex having one direct

successor. Transform T(2) in a similar way as for tree T(l). The only difference is that

now the vertex vg acts as the vertex vg, the vertex vg acts as v~, and the vertex v' acts
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as the vertex i' (some direct successor v
n

of the vertex v~ plays the role of the vertex

v'). If, in the tree T(J) obtained from T(2) by these transformations, the vertex v~ has

only one direct successor, transform T(J) in a similar way, and so on. It may turn out

that a tree is obtained with the root having only one direct successor. In this case, the

root is deleted and the vertex Vg_2 becomes the new root.
The implementation of this procedure for deleting an element requires storing the

vertices such that their direct successors have been changed by the described

transformations. There are at most q such vertices and their predecessors. Thus, the

procedure for deleting an element can be implemented in at most O(logm) time.

2.7. A permutation 1r = (Xii' Xi
2
,"" Xi

m
) of the elements of a totally pseudo-ordered

set X is called non-increasing (or non-decreasing) with respect to ==* if, for any v and 11,

v = 1, 2, ... , m, 11 = 1, 2, ... , m, the condition v < 11 implies that Xiv ==* XiI' (or

XiI' ==* Xi)'

We present the procedure for constructing a monotone (either non-increasing or

non-decreasing) with respect to ==* permutation of the elements of set X. There is

one-to-one correspondence between the permutations of the elements of set X and the

permutations of their numbers. Therefore, we may talk about non-increasing or

non-decreasing (with respect to a total pseudo-order defined over set X) permutations of

the numbers of the elements of set X .

To find a non-increasing permutation (il> i2 , ... , im ) of the numbers of the elements of

set X it suffices to know a balanced 2-3-tree Tb(X) in which each intermediate vertex v is

given only one label Vmax ' Define i l to be equal to the number of the element of set X

that is the label of the root of tree Tb(X). Remove i l from tree Tb(X) and, without

transforming the resulting tree '[il) into a balanced 2-3-tree, find the new labels of its

vertices. Define i 2 to be equal to the number of the element of set X that is the label of

the root of tree T(l), and so on.

Since the height of the tree Tb(X) does not exceed l+logm, to find a non-increasing

permutation of the elements of set X requires at most O(mlogm) time.

A non-decreasing permutation of the numbers of the elements of set X can be found in a

similar way using a balanced 2-3-tree in which each intermediate vertex v is given one

label Vmin'

2.8. It may be that solving a problem does not require finding a maximal (a minimal)

element of a pseudo-ordered set X, but involves application one of the following
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procedures: given x', x" E X, find a maximal element of the set Xl = {x E XIx' =* x} or a

minimal element of the set X2 = {x E XIx =* x"}. To implement these procedures in O(logm)

time, we need to modify the data structure under consideration.

A balanced 2-3-tree is called ordered if for any two of its vertices v and v' of the

same rank either Vmax <== V';'in or Vmin =* v';'ax holds. For constructing an ordered balanced

2-3-tree it suffices to find a non-decreasing (or non-increasing) permutation of the

elements of set X and then to use the procedure described in Section 2.3. The latter

procedure has to be implemented in such a way as if the elements of X were renumbered

according to this permutation.

It is obvious that the construction of an ordered balanced 2-3-tree requires O( logm)

time.

The search for a maximal element of the set Xl using the ordered tree Tb(X) is executed

as follows (here we assume that the relation x' =* x' does not hold, since otherwise, x'

is the desired element). Find a direct successor of the root, say, vertex v(il, such that

v~l~ <== x' and v~H =* x' (or v~H = x'). Then, find a direct successor of the vertex

v(i), say, vertex V(2), which satisfies analogous conditions, and so on, until the desired

element of set Xl is found. At some step in the described procedure, it may turn out that

the required vertex does not exist. In this case, among the vertices to be considered at

this step, there exists a vertex v' such that v';'in = x'. If the number of vertices under

consideration is two, and these are v' and v", then v';'~x is the desired element. If the

number of the vertices under consideration is equal to three, and these are v', v", and

v"', then two cases are possible: (1) either v';'~x <== x' and v';'~; <== v';'in, or v';'~x <== x'

and v';';~ =* x'; (2) either v';'~x <=ox' and v';'~x <=ov';';~, or v';'~; <=ox' and v';';n =* x'. In

the first case, the desired element is v';'~x> while in the second case, the desired element

is v~~~.

A minimal element of the set X2 can be found in a similar way.

It is easy to verify that the described procedure for finding a maximal element of the

set Xl or a minimal element of the set X2 requires O(logm) time.

For X' c X, let Tb(X') be an ordered balanced 2-3-tree. We present the procedure for

constructing an ordered tree Tb(X' u xo), where Xo E X\X'.

1. Find a maximal element x' of the set X" = {x E X'I x <== Xo}.

2. If the direct predecessor v of the vertex x' has two direct successors, then make xo

the third successor. Correct the labels of the vertex v and of all of its predecessors in

the usual way.

3. If v has three direct successors x', x" and x"', then find a non-decreasing
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permutation of the elements xo, x', x" and x"'. Make the vertices corresponding to the

first two elements of the permutation direct successors of the vertex v (if they are not)

and correct the labels of v. Introduce a new vertex va, and make the vertices

corresponding to the last two elements of the permutation direct successors of vo. If the

direct predecessor v' of the vertex v has two direct successors, make Vo the third one and

correct the labels. If v' has three direct successors, find a permutation 1l' of these

successors and of the vertex Vo such that v';';~ ==> v';'~x for any vertices v" and v'" with

v" being on the left of v'" in 1l'. Then the procedure is similar to the case of the

elements x', x", x'" and xo. It may be that X" = 0. In this case, take the vertex Vmin

as the vertex x' where;:; is the root of the tree Tb(X'j.

The procedure for constructing an ordered tree Tb(X' U xo) can be implemented in at

most O( log IX' I) time.
Finally, we present the procedure for constructing an ordered tree Tb(X\xo) where

XO E X. If the direct predecessor of the vertex xO has three direct successors, then for

constructing Tb(X\xo) it suffices to delete from Tb(X) the vertex XO together with the

entering arc and to correct the labels. If the number of the direct successors is equal to

two, we can follow the procedure for deleting an element from a set described in

Section 2.6, keeping the tree ordered whenever one of the direct successors of a vertex is

"transferred" to another vertex.

Sometimes, the relation ==> is defined over a set X by associating each element Xi E X

with a real number C<i' Here Xi ==> Xj if and only if C<i ~ C<j (in other situations if and

only if C<i ~ C<j)' In this case, the problem arises of finding a minimal element of the set

X' = {Xi E X IC<j ~ f3} or that of finding a maximal element of the set X" = {Xi E X I
C<i ~ f3}. Here f3 is a given real number and, in the general case, f3 need not belong to the

set {C<l' C<2"'" C<m}' For solving such problems it is also convenient to use an ordered

balanced 2-3-tree assigning the corresponding C<j along with the labels to intermediate

vertices of the tree.

3, Polynomial Reducibility of Discrete Problems.

Complexity of Algorithms

The theory of polynomial reducibility is of great importance for understanding the

nature of those difficulties which arise in solving a wide range of discrete (both

extremal and decision) problems. Many decision problems which have been traditionally
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considered as hard (e.g., the problem of determining whether a graph is Hamiltonian, the

problem of the existence of a complete subgraph (a clique) with a prescribed number of

vertices in a given graph, etc.) are, in fact, closely related. The existence or

non-existence of an efficient algorithm for solving at least one of these so-called

NP-complete problems implies the existence (or non-existence) of such an algorithm for all

other problems. Here, an algorithm is said to be efficient if its running time is bounded

by a polynomial of the input length of the problem.

A similar situation also occurs for many extremal problems (belonging to the class of

so-called NP-hard problems). The existence of an efficient algorithm for solving at least

one of the NP-hard problems implies the existence of such an algorithm for any NP-hard

problem. The traveling salesman problem is an example of an NP-hard problem.

3.1. To introduce the concepts of an algorithm and that of its time complexity

formally, we need a certain computation model. A so-called Turing machine serves as a

convenient model of this type. We start with some auxiliary definitions.

An alphabet is an arbitrary finite set of characters called letters. A word in this

alphabet is a finite non-empty sequence of the letters. The length of a word is the number

of letters it includes (each letter is counted as many times as it appears in a word).

A deterministic Turing machine (DIM) consists of a tape, a control device, and a

read-write head.

The tape is divided into cells and is potentially infinite from both sides. The cells

are numbered ... , -2, -1, 0, 1, 2, .... Any cell can be in one of the states, each of

which is in one-to-one correspondence with a letter of the alphabet cr (called an external

alphabet). The total number of states is finite. The letter Co E cr is called blank symbol.

At any time, the control device is in one of the states (number of which is finite),

each denoted by a letter of the inner alphabet Q and called an inner machine state. Note

that cr n Q = 0. Two special states are distinguished: the initial state denoted by qo, and

the final state denoted by qf'

The read-write head of the machine can move along the tape and scan exactly one of its

cells at a time. The head can read a symbol in the cell and, if necessary, replace it by

another.

As a rule, an input alphabet :D is defined as a proper subset of cr. In particular,
Co lo! :D.

One step of a DIM consists of performing all or some of the actions listed below,

depending on the control device state and the state of the tape cell being scanned:
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(1) change the inner state of the machine;

(2) change the state of the cell being scannedj

(3) move the read-write head one cell to the left (L) or one cell to the right (R), or

leave it at its current place (5).

In what follows, we do not distinguish between the state of a tape cell (or the state

of the control device) and the corresponding letter of alphabet (1; (or of alphabet Il).

As a mathematical object, a DTM is determined by a string of the form (D, (1;, Il, 8, co,

'la, qf)' Here, 8 is the mapping of some non-empty subset of the set Dx(1; (which does not

contain pairs of the form (qf,c;) for ci E (1;) to the set Dx<&x{L, R, 5}. The mapping 6 is

called the transition function.

A state of a DTM is determined by:

(a) the sequence Cj, Ci , ... , ci of the states of all tape cells, c i E (1;, r = 1,
I Z P r

2, ... , p, (all the cells on the left of the cell having the state Ci
1
and on the right of

the cell having the state Ci
p
are empty and are omitted from the sequence, Ci1 'F co,

Ci
p
'F co);

(b) the inner state qED of the control device at a given time;

(c) the state Ci
k
of the cell being scannedj

At a time, a state of a DTM is uniquely determined by a description which is a word

ci ci ...qci ",Ci in alphabet (1; u D. Here, the symbol qED precedes the symbol denoting
1 Z k p

the state of the cell being scanned at this time. The state of a DTM determined by the

description of the form ci ci ...q"'i ",ci is called final (the control device is in the
1 Z J~k P

final state qf)' The machine stops if it reaches the final state.

Each step of a DMT can be considered as a transition of the machine from one state to

another that is uniquely determined by the transition function 6. It is assumed that the

machine can be driven to any prescribed state.

A DTM can be used for processing words written in alphabet D. Let c,CZ",cn be a word

written in that alphabet. Drive the machine to the state determined by the description

qoc1CZ",cm and let it start processing. If, after some finite number of steps, the

control device reaches the state qf' the machine stops. In this case, the DTM is said to

accept the initial word. The result of processing the initial word is the word obtained

from the description of the DTM in the final state, the characters Co and qf being

deleted.

If, after some steps, the machine reaches a state c;c2···q'ck···c~ where q' 'F qf and

the pair q'ck does not belong to the domain of 6, then the machine also stops. In this

case, however, the result is not determined, and the machine does not accept the initial
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word. Situations are possible in which the machine, having started in a certain state,

never stops. In this case, the result of processing is not determined either.

A non-deterministic Turing machine (NDTM) is specified by a string of the form (U, G:,

:D, ,1, Co, '10' 'If) where the symbols U, G:, :D, Co, '10' 'If have the same meaning as for a

DTM. The difference is in the transition function ,1 being the mapping of some non-empty

subset of the set UxG: (which does not contain pairs of the form (qf,c;j, ci E G:) to a set

of subsets of the set UxG:x{L, R, S}.

As in the case of a DMT, a state of a NDTM is determined by the sequence of all states

of the cells, the inner state of the control device at a given time, and the state of the

cell being scanned.

The main difference between a non-deterministic Turing machine and a deterministic one

is that one step of a NDTM may change the given state of the machine to any of several

possible states, while, for a DTM, the number of possible new states is at most one.

Therefore, having started operating in the same initial state twice, a NDTM may come to

some final state at one time, and to another final state at another time, or it may never

stop.

A NDTM is said to accept a word a if there exists a finite sequence of machine steps

which drives the machine to a final state from the initial state determined by the

description 'loa. If there is no such a sequence, the machine does not accept this word.

Let a given DTM accept a word a. The number t(a) of steps of the machine required to

reach the final state is called the running time of a DTM for processing word a.

If a NDTM accepts a word a, then, in general, there exist several sequences which drive

the machine from a state 'loa to a final state.

The running time of a NDTM processing a word a is the length of the shortest sequence

of machine steps which drives it from the state 'loa to a final state. The running time of

a NDTM is also denoted by t(a).

The function T(n) is called the time complexity of a Turing machine (either

deterministic or non-deterministic) if T(n) = max{t(a)la E An}, where An is the set of all

words of the length n this machine accepts. If the time complexity T(n) of a Turing machine

does not exceed some polynomial of n, then this machine is said to have a polynomial-time

complexity.

Note that a DMT is very similar to modern computers (e.g., a transition function of a

DMT can be viewed as a computer program). On the other hand, a non-deterministic machine

is an absolutely abstract concept. The concept of the running time of a NDTM is also

abstract. The latter concept can be given a convenient and visual interpretation by using
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a so-called "oracle" machine. For any feasible word, an oracle "knows" the shortest

sequence of steps driving the machine to a final state. Before making a step, the machine

applies to the oracle, which indicates in which of the states possible at this step the

machine comes. If the NOTM does not accept the word to be processed, the oracle "lies",

i.e., it indicates any of the possible states randomly. Under such an interpretation,

determination of the running time of a NOTM is similar to that of a OTM, assuming that the

oracle answer time is zero. We stress once again: both the NOTM and the oracle are

abstract objects. The oracle can be considered as some unknown program. Being connected to

the NOTM, the oracle changes it into a deterministic machine. The main difficulty is that,

as a rulP., we either fail to build an oracle for a NOTM or this is a very complicated

program of a low speed.

3.2. A language in a given alphabet is a non-empty set of words of this alphabet.

A language A is called feasible for a given Turing machine (either deterministic or

non-deterministic) if the machine accepts any word of language A. If the machine accepts

those and only those words that belong to language A, the machine is said to recognize

language A.

The class P is the set of all languages for each of which there is a recognizing DTM

of a polynomial-time complexity. The set of all languages for each of which there exists a

recognizing NOTM of a polynomial-time complexity is called the class NP.

Since a deterministic machine can be viewed as a special case of a non-deterministic

machine, it follows that P ~ NP. However, whether P is a proper subset of NP or P = NP, is

still an open question. Note that the conjecture that the classes P and NP do not coincide

is quite popular.

For a deterministic Turing machine M, let M(a) denote the result of processing by

machine M a word a written in the input alphabet of this machine. If M does not accept the

word a, then M(a) is not determined.

A language AD is called polynomially reducible l to a language A if there exists a

deterministic Turing machine M which satisfies the following conditions. The machine M is

of a polynomial-time complexity and processes the words written in the alphabet of language

AD into the words written in the alphabet of language A so that a E AD if and only if

1
The presented definition of polynomial reducibility corresponds to the one given by

R. M. Karp [74); another definition given by S. A. Cook [82) is more general; however, for

our purposes the presented definition is sufficient.
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M(a) E A.

The definition requires the existence of a DTM which recognizes some language A' such

that AD c A'. The result of processing the words which do not belong to A' is not

determined.

It is evident that the relation of polynomial reducibility defined over a set of

languages is transitive.

A language A is NP-complete if A E NP and any language in NP is polynomially red.ucible

to A.

Theorem 3,1. If a language AD is polynomially reducible to a language A and A E P, then

AD E P.

Proof. A deterministic Turing machine M that recognizes language AD can be constructed

by implementing a series composition of the DTM MI , which reduces AD to A, and the DTM M z,

which recognizes language A. A word aD written in the alphabet of language AD after

processing by MI either becomes a word a written in the alphabet of language A or the

result of this processing is not determined. In the latter case, it is clear that a <t AD.

m the former case, the word a is an input for Mz. If Mz accepts a, then the definition of

polynomial reducibility implies that aD E AD. Otherwise, aD <t AD. The time complexity of

the constructed machine M does not exceed the polynomial pt(n)+Pz(n+Pt(n)). Here,

polynomials PI and pz are the time complexity functions of the machines MI and Mz,

respectively, and n+ PI(n) is an upper bound on the maximal possible length of the result

of processing a word of the length n by machine MI' This proves the theorem.

It follows from Theorem 3.1 that the existence of a recognizing DTM of a polynomial

time complexity for some NP-complete language implies the existence of such a machine for

any language in the class NP.

3,3, In what follows, we concentrate on decision and extremal combinatorial problems.

A decision problem is a problem of recognizing properties of a certain object, to which

the answer "yes" is to be given if and only if the object has these properties.

An extremal combinatorial problem can be introduced as follows. A function F(x),

x E X', is defined over a finite set X'. Given a subset X of set X, find an element xD

either such that F(xD) = min{F(x) Ix E X} (a minimization problem) or such that F(xD)

max{F(x) Ix E X} (a maximization problem).

Decision problems of recognizing properties of objects and language recognition

problems are closely related. We may encode all possible inputs of a decision problem using
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the words in an appropriate alphabet and consider the initial problem as a problem of

recognizing the language consisting of all words corresponding to the answer "yes".

A decision problem belongs to the class P (or NP) if the associated language belongs to

P (or NP, respectively).

Let us consider two alphabets: binary B = {O, 1, -, [, ], (, ), ,} and unary U = {1, 

[, ], (, ), ,}. To encode the inputs of a decision problem, we use the words specified in

one of the alphabet B or U and determined in the following way.

In alphabet B:

(1) a word that is an integer k is a binary representation of k (if k is negative, then

the sign "-" is used);

(2) if A is a word that represents an integer k, then the word [A] is used as the name,

e.g., this can be used as the number of a vertex of a graph or the number of a job;

(3) if AI. Az,... , Am are the words that represent objects AI' Az,... , Am' then the

word (AI' Az,... , Am) represents the sequence (AI> Az,.. ·, Am).

In alphabet U, the words used for encoding the problem inputs are determined in a

similar way as in alphabet B, the only difference being that now an integer k is

represented not in the binary but in the unary form, i.e. k is represented by the word

11 ...1 consisting of k unit digits.

A decision problem is said to be defined in alphabet B (in alphabet U) if the

associated language is determined in alphabet B (in alphabet U, respectively).

A decision problem B is called NP-hard if any problem A E NP defined in alphabet B is

polynomially reducible to it.

A problem B is NP-complete if it is NP-hard and B E NP.

The usage of Turing machine as a formal model for an intuitive concept of an algorithm

has a number of advantages for introducing the definitions and proving the statements.

However, in what follows, we talk about algorithms (either deterministic or non

deterministic) implying any possible formalization of this concept (the Turing machines,

normal Markovian algorithms or programs written in an algorithmic language).

The concept of an elementary operation depends on the way in which the concept of an

algorithm is formalized. for a Turing machine, this is a machine step; for the algorithms

designed to be run on a computer, elementary operations are such computer operations as

addition, multiplication, comparison of two numbers, writing or reading a number with a

known address, etc.

The time complexity of an algorithm is a function of the problem input length defined

similarly to the time complexity of a Turing machine. The differences are as follows.
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First, we use the concept of an elementary operation rather than that of a machine step.

Second, now the final state of an algorithm is either a situation when the answer "yes"

is obtained (in the case of a decision problem) or an element XO E X delivering an

extremum to the objective function is found (in the case of an extremal problem).

An algorithm is called polynomial-time if its time complexity does not exceed some

polynomial of the length of the problem input encoded in the alphabet B.

The concept of the NP-hardness, defined for decision problems, can also be used for

the extremal combinatorial problems.

Associate an extremal problem B with the following decision problem B': determine

whether there exists an element x' in a given set X such that F(x') ;<; y (or F(x') ~ y in

the case of a problem of maximization) for a given real number y. It is clear that, if XO

is a solution of problem B, then an element x' E X such that F(x') ;<; y exists if and only

if F(xO) ;<; y.

Hence, we may talk about polynomial reducibility of a decision problem B' to the

corresponding extremal problem B. Similarly, due to the transitivity of the polynomial

reducibility relation, we may talk about the polynomial reducibility of an arbitrary

decision problem A to a given extremal problem B via reducibility of A to the decision

problem B'.

An extremal problem B is called NP-hard if any decision problem A E NP defined in

alphabet B reduces to it in polynomial time. To prove the NP-hardness of an extremal

problem, it suffices to prove the NP-hardness of the corresponding decision problem.

It is obvious that the existence of a polynomial-time algorithm for solving a NP-hard

problem implies that each problem of class NP (including each NP-complete problem) is

solvable in polynomial time.

The fact that a problem belongs to the class of NP-hard problems is one of its most

important characteristics. Assuming that the P 'F NP conjecture is correct, the existence

of a polynomial-time algorithm for solving any NP-hard problem becomes impossible.

Therefore, the NP-hardness of a problem is one of strong arguments to justify such

approaches as the design of approximation or heuristic algorithms, applying enumeration

schemes (such as the branch-and-bound method), as well as studying special cases of a

problem.

3.4. While the problems can be divided into NP-hard and polynomially solvable (Le.,

having polynomial-time algorithms for their solution), the NP-hard problems, in turn, can

be subdivided into NP-hard in the strong sense problems and those having
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pseudopolynomial-time solution algorithms.

The concept of NP-hardness in the strong sense is of great importance in complexity

analysis of a large number of problems. First, to prove that a problem B is NP-hard in the

strong sense, it suffices to construct a so-called pseudopolynomial (rather than

polynomial) reduction of an NP-hard (in the strong sense) problem A to problem B. Second,

the fact that a problem is NP-hard in the strong sense is the evidence [56] that no fast

E-approximation algorithm exists for its solution (unless P = NP).

Let b be an input of a decision problem B. This input can be encoded either in alphabet

i3 or in alphabet U. If all inputs of problem B are encoded in alphabet i3 (or alphabet U),

the problem is said to be determined in alphabet i3 (or alphabet U, respectively). It is

clear that the length of input b depends on the alphabet used. Let Li3 (b) (or L
U

(b)) denote

the length of the input b in alphabet i3 (or alphabet U).

An algorithm for solving problem B is said to be pseudopolynomial-time if, for an input

b of the problem, its running time does not exceed some polynomial of LU(b}. Note that any

polynomial-time algorithm is also pseudopolynomial-time.

For a problem B and a polynomial p, let Bp denote such a subproblem of problem B that

for any of its inputs b the inequality LU(b) ., p(L
i3

(b)) holds. Note that the only

difference between a subproblem and the original problem is that, for a subproblem, the

set of all inputs is a subset of the set of all inputs of the original problem.

It is obvious that any pseudopolynomial-time algorithm for solving problem B is a

polynomial-time algorithm for solving problem Bp . Therefore, unless P = NP, neither a

polynomial-time nor a pseudopolynomial-time algorithm for solving problem B exists if

problem Bp is NP-hard.

A decision problem B is called NP-hard in the strong sense if there exists such a

polynomial p that a problem Bp is NP-hard. If in this case, B E NP, then problem B is

NP-complete in the strong sense.

An extremal combinatorial problem is called NP-hard in the strong sense if the

corresponding decision problem is NP-hard in the strong sense.

To prove the NP-hardness of a decision problem B, it suffices (due to the transitivity

of the polynomial reducibility relation) to show that some NP-hard problem AO determined in

alphabet i3 is polynomially reducible to it. A problem AO used for proving the NP-hardness

of other problems is called standard. A similar approach is used to prove the NP-hardness

in the strong sense.

An input of a decision problem determined either in alphabet i3 or in alphabet U can be

considered as a word in the corresponding alphabet (i3 or U, respectively). If cf> is a
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word-processing algorithm, then <I>( a) stands for the result of word a processed by this

algorithm.

A problem A is said to be pseudopolynomially reducible to a problem B if a

deterministic algorithm <I> exists for processing the inputs of problem A into the inputs of

problem B such that

(1) the answer "yes" corresponds to an input a of the problem A if and only if the

answer "yes" corresponds to the input <I>(a);

(2) the running time of algorithm <I> does not exceed some polynomial of LU(a)j

(3) there exist such polynomials p' and p" that for any input of problem A the

relation p'(LU(a)) ~ LU(<I>(a)) and p"(L:e(<I>(a))) ~ L:e(a) hold.

Theorem 3.2. Let a problem A be NP-hard in the strong sense. If there is

pseudopolynomial reduction of problem A to problem B, then the problem B is NP-hard in the

strong sense.

Proof. Since problem A is NP-hard in the strong sense, it follows that there exists a

polynomial p such that the problem Ap is NP-hard. We may assume that p has only positive

coefficients. Otherwise, a polynomial Po with positive coefficients exists such that for

any non-negative x the relation Po(x) ~ p(x) holds, and problem Ap is a subproblem of

problem A
po

'

Let <I> be an algorithm which implements the pseudopolynomial reduction of problem A to

problem B, while p' and p" be polynomials from the definition of the pseudopolynomial

reduction. As above, we may assume that the coefficients p' and p" are positive. We show

that there exist both a polynomial q and a subproblem Bq of the problem B such that:

(1) for any input b of problem Bp the relation LU(b) s; q(L:e(b)) holds; and (2) problem Ap

is polynomially reducible to Bq. Define q(x) = p'(p(p"(x))). For each input a of problem

Ap, find input <I>(a) of problem B, and let Bq denote the subproblem of problem B determined

by all such inputs <I>(a). For all <I>(a), where a is an input of problem Ap , the relation

LU(<I>(a)) s; q(L:e(<I>(a))) holds. In fact, the definition of the polynomials p' and p"

implies that

It is obvious that algorithm <I> implements pseudopolynomial reduction of problem Ap to

problem Bq , however, for any input a of problem Ap the relation LU(a) s; p(L:e(a)) holds.

Therefore, this reduction is polynomial.

Thus, problem Bq is NP-hard and problem B is NP-hard in the strong sense which proves

the theorem.
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If an NP-hard decision problem B is such that for any of its inputs b and some

polynomial p the relation LU(b) ~ p(L-e(b)) holds, then problem B is NP-hard in the strong

sense.

Corollary 3.1. Let a problem A be NP-hard in the strong sense. If A is polynomially

reducible to a problem il, and there exists a polynomial p' such that for any input a of

problem A the relation p'(LU(a)) ~ LU(<p(a)) holds where <P is an algorithm which implements

the reduction A to B, then problem B is NP-hard in the strong sense.

In fact, the running time of algorithm <P is bounded by a polynomial p of L-e(a), and,

hence, by a polynomial of LU(a). Therefore, <P also implements the pseudopolynomial

reduction of A to B (p can be taken as the polynomial pool.
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monographs by Knuth [77] and Reingold et al. [133].

In presenting the topics discussed in Section 3, the authors have mainly followed the

monographs by Mal'tsev [106], Garey and Johnson [56], as well as the monograph [7]. The

interested reader may find relevant information on history of this question in [56]

(Sections 1.4, 1.5, 5.2). Theorem 3.1 is due to Karp [74], while Theorem 3.2 is given by

Garey and Johnson [275].



CHAPTER 2

POLYNOMIALLY SOLVABLE PROBLEMS

This chapter discusses sequencing and scheduling problems for which efficient algorithms

are known, i.e., the algorithms whose running time is bounded by a polynomial function of

the problem input length.

The first eight sections consider systems with a single machine or several identical

machines. Section 9 studies systems with uniform and unrelated parallel machines.

In Section 1, sufficient conditions are established for the existence of optimal

schedules with no preemption at times different from the release dates. Section 2 presents

the necessary and sufficient conditions for the existence of the schedules that are

feasible with respect to given deadlines, and describes the algorithms for finding these

schedules. It is assumed that the set of jobs is not ordered and that preemption is

allowed.

The single-machine scheduling problem of minimizing the maximum cost (the minimax

criterion) is considered in Section 3, and Section 4 studies the problem of minimizing the

total cost (the minisum criterion) for job processing. Note that a number of polynomialiy

solvable special cases of the latter problem are described in Chapter 3.

Sections 5 and 6 provide results for the problem of finding a time-optimal schedule for

parallel machine processing the jobs of an ordered set, assuming that either the reduction

graph of precedence relation is tree-like, or that the number of machines is equal to 2.

In Section 5, the processing times for all jobs are assumed to be equal and preemption is

forbidden, while in Section 6 the processing times are arbitrary but preemption is

allowed. Section 6 also considers the case in which no precedence relation is defined over

the set of jobs. Section 7 describes algorithms for finding a multi-processor schedule that

is feasible with respect to the deadlines under precedence constraints, provided that the

69
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processing times are equal. Again, it is supposed that either the reduction graph of a

precedence relation is tree-like or that the number of machines is equal to two. The

problem of minimizing the maximal lateness for parallel identical machines is studied in

Section 8.

Section 9 is devoted to the problems of minimizing the total and the maximal cost for

parallel (either uniform or unrelated) machine processing.

1. Preemption

In this section, sufficient conditions are established for the existence of optimal

schedules with no preemption at times different from the release dates.

1.1. The jobs of a set N = {I, 2, ... , n} are processed on M parallel identical machines.

The release date of a job i E N is dj C 0, its processing time is t i > O. The processing

of each job may be interrupted and resumed at a later time on any available machine. It is

supposed that preemption does not involve time or any other expenses, and the total length

of time intervals in which a job i is processed is equal to ti'

A partial order __ is defined over set N to determine the sequencing constraints for job

processing. Let G denote the reduction graph of relation __.

A schedule S = sU) = {SI(t), S2(t), ... , SMU)} that is feasible with respect to the

defined precedence relation must satisfy the following conditions: if i __ j and

sLW) = i for some L, then SHU) ~ j for all t < t' and for all 1 ~ H ~ M. In particular,

it follows that if, for some L, H, and Q, which need not to be distinct, and some

t' < (' < t"', the relations SLW) = SHU"') = i and sQW') = j hold, then neither

i __ j nor j -- i is possible, i.e., i - j.

Since preemption is allowed, it follows that there may exist 1 ~ i ~ n, 1 ~ L ~ H ~ M,

and 0 ~ t' < tOO < t'" < 00 such that at least one of the following conditions holds:

(1) SLW) = sLW") = i but sdt") ~ i; (2) sdt') = SHU") = i. If, in this case,

SLW+8) ~ j for any sufficiently small 8 > 0, then the processing of job i is interrupted

at time t'. The preemption of the job i at time t' allows the resumption of the processing

of this job at the same time on another machine.

In what follows, it is assumed that the number of preemptions in the processing of each

job is finite and, hence, the number of the break-points of each of the functions sLU),

L = 1, 2, ... , M, is finite as well.

The quality of a schedule s is characterized by the value of a real function
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F(x) = F(Xl, Xz,· .. , xn ) evaluated at x = t(s), where tis) (ids), tz(s), ... , tn(s)) is

the vector of the completion times of the jobs in schedule s. It is obvious that tj(s) is

the largest value of t such that there exists aLE {I, 2, ... , M} for which sLIt) = i. A

feasible (with respect to _) schedule with the smallest value of F(x) is called an optimal

schedule.

1.2. In a general case, an optimal schedule is a preemptive one. We present sufficient

conditions for the existence of optimal schedules for single-machine processing with no

preemption at times different from d j , i = 1, 2, ... , n.

Theorem 1.1. If M = 1 and F(x) is a non-decreasing (for x > 0) function, then there

exists an optimal schedule without preemption at times different from dj, i = 1, 2, ... , n.

Proof. To prove the theorem, it suffices to show that for any feasible (with respect

to -) schedule s there exists a feasible schedule s* with no preemption at times

different from d;, i = 1, 2, ... , n, and such that F(t(s*)) $ F(t(s)).

1. Let d(1) < d( 2) <...< d( v) be the sequence of pairwise distinct values of d j, i = 1,

2, ... , n. Let the time intervals (dO), d(Z)], (d(Z), d(3)], ... , (d(v), 00) be denoted by

{31, {3z, .. ·, (3v, respectively.

We introduce the following operations of transforming a schedule.

Operation 01(t', t", I), 0 $ t' < t" < I. Denote Ll = t" -t'o Define s'(t) = s(t+L1) in

the interval (t', I-Ll]; s'(t) = S(t-(/-t")) in the interval (/-Ll, Il, and s'(t) = s(t) in

the remaining intervals. If s' is a schedule, then this is said to be obtained from

schedule s as a result of applying operation 0 1(t', t", t).

Operation Oz(i, j, t', t", I), 0 $ t' < t" < I, i, j E N, i #'- j, is used when sIt) = i

in the interval (t', nand s( t) = j at some t > t. Let (t(1), t(Z)j be one of the

intervals in which sIt) = j, t < t(l) < t(Z). If t(Z)_t(1) ~ t"-t', then define s'(t) = j
in the interval (t', t'1, s'(t) in the interval (t(tl, t(I)+(t" -t')], and

s'(t) = sIt) in the rest of the intervals. If t(Z)_t(t) < t"-t', then transform s into s

by setting s(t) = j in the interval (t', t'+t(Z)-t(l)j, sIt) i in the interval

(t(1), t(Z)], and s(t) = s(t) in the rest of the intervals. Taking s as s and choosing the

interval (t'+t(Z) - t(I), t"J as (t', t"J, repeat the transformations described above

until either sIt) = j in (t', t"] or sIt) #'- j for all t > I. Denote the resulting
function s(t) by s'(t). If s' is a schedule, then this is said to be obtained from

schedule s as a result of applying operation Oz(i, j, t', t", I).
2. Without loss of generality, we may consider only such schedules s for which the
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condition s(t') = s(t") = k 'I' 0, where (, t" E f3h 1 $; $; v, and ( < t", implies

that s(t) = k for all ( $; t $; t".

In fact, if s(t) k in the subintervals (ti, t~J and (ti', t~'J of interval f3h where

t~ < ti' but s(t) 'I' k for t, t~ < t $; ti', then applying operation 0l(ti, t~, t~') to

schedule s gives a new schedule s' with s'(t) = k in the interval (ti' - (t~ - til, t~l The

schedule s· is, obviously, feasible with respect to and t(s') $; t(s), therefore,

F(t(s')) $; F(t(s)).

3. If in some interval f3h I < v, the processing of m ?: 2 jobs is interrupted (with

resumption in subsequent intervals), then schedule s can be transformed into schedule s',

having at least the same quality and being feasible with respect to -, such that, in s',

the processing of at most m - 1 jobs is interrupted in the interval under consideration.

Let the processing of jobs i and j be interrupted in the interval 13/, I < v, and

s(t) = i in the interval (ti, t~J c f3h while s(t) = j in the interval (ti', t~'] c 13/.

Due to Item 2 of this proof, it follows that s(t) = i for some t > d(l+l) and s(t) = j for

some t > d(l+I). Suppose, for example, that ti(s) > tj(s).

If ti ?: t~', we apply operation 02(i, j, ti, t~, d(l+l)) to schedule s and obtain a new

schedule s' in which either the processing of job j is completed in the interval 131 (Le.,

tj(s') $; d(l+l») or job i is not processed in this interval. Schedule s' is feasible with

respect to _ and F(t(s')) $; F(t(s)).

If t~ $; ti', then applying operation 0l(ti, t~, t~') to schedule s gives a feasible

(with respect to _) schedule s with F(t(s)) $; F(t(s)), satisfying the conditions of the

previous case.

4. If in the interval 13/, I < v, there is only one job j processed with preemption (the

processing of j is resumed in some subsequent interval), then schedule s can be

transformed into a new feasible (with respect to _) schedule s' with F(t(s')) $; F(t(s)),

either with no preemption in the interval 13/ or with a preemption at time d(l+l).

Suppose that s(t) j in the interval (ti, t~J c f3h t~ < d(l+l), and s(t) = j at some

t > d(l+I).

If either S(d(l+l») = 0 or the processing of some job is completed at time d(l+ll, then

applying operation 0l(ti, t~, d(l+l») to schedule s gives the desired schedule s'.

Let s(t) = i in the interval (ti', t~l, ti' < d(l+l) < t~'. If ti(S) = t~', then apply

operation 0l(ti, t~, t~') to schedule s. If Ij(S) > t~', two cases are possible: either

ti(s) < tj(s) or ti(S) > Ij(s). In the former case, apply operation 0l(ti, t~, t~') to

schedule s, and, if t~'-(t~-ti) < d(l+l), then apply operation 02(1, i, t~'-(t~-ti),

d(l+l), t~') to the obtained schedule. In the latter case, . apply operation
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Ol(t;, tz, t;') to schedule s, and operation Oz(i, j, t;', d(I+l), tz') to the resulting
schedule. In any case, we obtain the desired schedule s'.

5. Since the number of preemptions is finite, we conclude that after a finite number of

the described transformation steps the original schedule s can be transformed into a

schedule s* which either is non-preemptive or in this schedule preemptions happen only at

times d(l), I = 2, 3, .. , v. ote that the intervals f31 should be considered one after

another, moving from left to right.

Each of the obtained schedules is feasible with respect to -+ and has at least the same

quality as the original one. This proves the theorem.

The theorem gives an exact upper bound (equal to v-I where v is the number of distinct

release dates d;, i = 1, 2, ... , n) on the smallest number of preemptions in an optimal

single-machine schedule.

We give an example in which an optimal schedule has exactly v-I preemptions and there

is no optimal schedule having fewer preemptions.

Define M = 1, n = 3, d, = 0, dz = 1, d3 = 2, t, = tz = t3 = 2, F(x) = XI +5xz+20x3. In the

case under consideration, there exists the unique optimal schedule presented in Fig. 1.1.

s*
3

f------1
z ~ ~ z
H H
Ii' . i 1

H

Fig. ,.,

In this schedule, the processing of job 1 is interrupted at time t = dz = 1, while the
processing of job 2 is interrupted at time t = d3 = 2. The processing of these jobs is
resumed at times t = 5 and t = 4, respectively.

Corollary. If d; = d, i = 1, 2, ... , n, then for M = I and a non-decreasing function F(x),

there exists a non-preemptive optimal schedule.

1.3, Now we consider the multi-machine case.

Let us introduce the concept of an e-quasi-concave function of n variables.

A function F(x), x (xll Xz, ... , xn ) is called concave if for any vectors
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x(J), X(2) E En and a number A, 0 ::; A ::; 1, the following inequality

Chapter 2

(1.1)

holds. Here ~ is the set of all n-dimensional vectors.

A function F(x) is quasi - concave if for any vectors X(I), X(2) E ~ and a number A,

o ::; A ::; 1, the inequality

(1.2)

holds.

Let E'ii be the set of all n-dimensional vectors e, whose components are the numbers 0, 1,
and -1.

A function F(x) is e-quasi-concave if for any vectors x(l) E ~, e E E~, and any numbers

ex and A, ex > 0, 0 ::; A ::; 1, inequality (1.2) holds where X(2) = x(l) +exe.

By definition, a concave function is quasi-concave, and a quasi-concave one is

e-quasi-concave as well. As can be easily seen, there exist e-quasi-concave functions which

are not quasi-concave, and quasi-concave functions which are not concave.

Note that, since function F(x) characterizes the quality of a schedule, it suffices to

demand that it should possess some required properties on some subset of En, rather than on

the entire set. In particular, it suffices to consider vectors x > 0 which do not contain

more than M equal components.

Theorem 1.2. If M ? 2, d; = d, i = 1, 2, ... , n, G = (N, 0) and F(x) is a non-decreasing

e-quasi-concave function (for x > 0), then there exists an optimal non-preemptive

schedule.

Proof. To prove the theorem, it suffices to show that for any schedule s there exists a

non-preemptive schedule s* such that F(t:(s*)) ::; F(t:(s)).

1. Without loss of generality, assume d = O. Let us introduce the following operations of
schedule transformation.

Operation O,(Q, R, n, 1 ::; Q i' R ::; M, ( ? O. The schedule s'(t) = {s;(t), s:i(t), ... ,

sM(t)} is said to be obtained from schedule s by applying operation O,(Q, R, n if

si.(t) = s[(t) for all 0 5 t < 00 and all L i' Q, R; sQ(t) = sQ(t) and si:(t) = SK(t) in the

interval [0, t']; sQ(t) = SK(t) and si:(t) = sQ(t) for all ( < t < 00. This operation

interchanges the machines Q and R starting at time t'. Since the machines are identical,

it follows that F(t:(s')) = F(t:(s)).

Operation 02(Q, t', fa), 1 ::; Q ::; M, t' ~ 0, a > O. This operation either increases or

reduces the idle time on some machine Q by a specific value a. Applying this operation to



Polynomially Solvable Problems 75

schedule S yields the family of functions s'(t) = {silt), s~(t), ... , s';'(t)} where si,(t)

sL(t) for all 0 :s; t < 00 and all L * Qj s6(t) = sQ(t) in the interval [0, tl, s6(t) = 0 in
the interval (t', t'+a] and s6(t) = sQ(t-a) for all t'+a < t < 00 if a is positive; s6(t) =

sQ(t) in the interval [0, t' -a] and s6(t) = sQ(t+a) for all t' -a < t < 00 if a is negative.

If s' is a schedule, then F(t(s')) :s; F("t(s)) for a negative a.

Operation 03(Q, R, t', t", a), 1 :s; Q, R :s; M, t" 2: 0, t' 2: a > O. Consider a family of

functions s'(t) = {silt), s~(t), ... , s';'(t)}, where si.(t) = sL(t) for all 0 <:; t < 00 and all

L * Q, Rj s6(t) = sQ(t) in the interval [0, t' -a], and s6(t) = sQ(t+a) for all

t'-a < t < ooj sil(t) = sR(t) in the interval [0, t'1; sil(t) = sQ(t+t'-t"-a) in the

interval (t", t"+a] and sil(t) = sR(t-a) for all t"+a < t < 00. If Q = Rand t' :s; t",

define s6(t) sQ(t) in the intervals [0, t'-aJ and (t"+a, (0), s6(t) = sQ(t+a) in the

interval (t'-a, t'1 and s6(t) = sQ(t+t'-t"-a) in the interval (t", t"+a]. If s' is a

schedule, this is said to be obtained from schedule s by applying operation

03(Q, R, t', t", a).

Operation 04(Q, t', t", t), 1 :s; Q :s; M, 0 :s; t' < t" < t. Denote ,1 = t" - t'. Define

si.(t) = sL(t) for all 1 :s; L * Q :s; M and for all 0 :s; t < 00; s6(t) = sQ(t+,1) in the interval

(t', t-,1j, s6(t) = sQ(t-(t-t")) in the interval (t-,1, t] and s'(t) = s(t) in the

remaining intervals. If s' is a schedule, this is said to be obtained from schedule s by

applying operation 04(Q, t', t", t).
2. Without loss of generality, we may consider only such schedules s for which either

SL(t) * 0 in some interval [0, TLl and sdt) = 0 for t > TL, or sdt) = 0 for all t 2: 0,

L = 1, 2, ... , M.

Take, for example, SR(t') = 0 and sR(t) * 0 for some t > t' 2: O. Since schedule s has a

finite number of preemptions, it follows that both Rand t' can be chosen such that t' is

the largest possible. Suppose that sL(t') = l/L and sL(t'+8) = !J.L, L = 1, 2, ... , M. The

values of l/L and !J.L need not to be different. Choose a positive 8 such that sdt'+8tl = !J.L

for all 0 < 81 :s; 8, L = 1, 2, ... , M.

If there is such a Q, 1 :s; Q :s; M, that l/Q * 0 and !J.Q = 0, apply operation 01(R, Q, t') to

schedule s to obtain a new schedule s'.

If all l/L = 0, L = 1, 2, ... , M, then choose the largest a such that sL(t) = 0 in the
interval (t' - a, tl for all L = 1, 2, ... , M. Apply operation 02(R, t', -a) to schedule s

to obtain a new schedule s'.

If none of the mentioned situations takes place, then there exists a H, 1 :s; H :s; M, such

that !J.H * 0 and !J.H * l/L for all L = 1, 2, ... , M. In particular, it may happen that H = R.

Apply operation 01(R, H, t') to schedule s, and operation 02(R, t', -(t' -a)) to the
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obtained schedule where a is the largest value such that sdt) l' JJ./f in the interval

(t' -a, t) for all L = 1, 2, ... , M. Denote the resulting schedule by s'.

In any case, the idle time on machine R is reduced without increasing the idle times of

the other machines. Since t(s') :s; t(s) and F(x) is a non-decreasing function, it follows

that F(t(s')) :s; F(t(s)). By repeating similar arguments finitely many times, we come to

the desired conclusion.

3. Let schedule s allow preemptions only at time t = t(ll, and at this moment the

processing of v :s; M jobs kl , k2 , ... , kv is interrupted. A job kj is processed for tj time

units on a machine Qj, and then for ti' time units on a machine Rj . If Qj = Rj , then we

have sQ(t(l)+8) l' kj for a sufficiently small 8 > O. Let .dj denote the length of the time
J

interval between time t(1) and the time at which the processing of job k j is resumed.

Define .dj* = min{.dj ll :s; j :s; v}.

Suppose that Qj' = Rj ,. Apply operation O.(Qj" t(1)-tj., t(1), t(1)+.dj*) to schedule s.

As a result, schedule s' with t(s') :s; t(s) is obtained.

Suppose now that Qj* l' Rj*. If .dj* = 0, then by applying operation 01(Rj ., Qj" t(l)) to

schedule s we obtain schedule s' with t(s') = t(s).

If .dj • > 0, then apply operation 03(Rj " Qj" t(I)+.dj.+tj';, t(l), ti';) to schedule s.

The resulting family of functions s(1) is a schedule, because there is no preemption in

schedule s for t > t(I). If F(t(s(l))) :s; F(t(s)), denote s(1) by s'.

Suppose that F(t'(s(1»)) > F(t(s)). If, in schedule s, the processing of at least one of

the jobs kl , k2, ... , kv is resumed on machine Qj" then let e denote the length of the time
interval between t(l) and the time at which the processing of the first of these jobs is

resumed. It is clear that e 2 .dj , and sQ,(t) l' kj for all t(l) < t :s; t(l)+e and all
J

1 :s; j :s; v. If sQ.,(t) l' k j for all t > t(1) and all 1 :s; j :s; v, then define e = W, where W
J

is a sufficiently large number. Denote e' = min{e, ti'}' Apply operation 03(Qj" Rj "

t(l) -tj,+e', t(l)+.dj*, e') to schedule s. The resulting family of functions S(2) is a

schedule. The vectors t(s(l)) and t(S(2») are connected with the vector t(s) by the

relation t(s(l») = t(s)+etj'; and t(s(2») = t(s)-ee' for some vector e E Po. Since function
F(x) is e-quasi-concave and F(t(s(l»)) > F(t(s)) by assumption, it follows that

F(t(S(2»)) :s; F(t(s)).

If e 2 ti" then denote S(2) by s'. If e < ti', apply operation O.(Qj', t(l) - ti', t(l) - e,

t(l)) to schedule S(2) to obtain a schedule S(3) with t(s(3)) :s; t(s(2»). Let

spl(t(l») = s631(t(1) +8) for any sufficiently small 8 > O. Apply operation 01(Qj" L,
J

t(l)) to schedule S(3). Denote the resulting schedule by s'.

Thus, in any case, we are able to find a schedule s' which has at least the same quality



Polynomially Solvable Problems 77

as the original schedule s, and also allows preemptions only at time t = t(I). However, at

this time, the processing of at most v-I jobs is interrupted Therefore, there is also a

non-preemptive schedule having at least the same quality as the original schedule s.

4. To complete the proof, it suffices to show that if, in schedule s, preemptions happen

only at times t(1), t(Z), t(u), then there exists a schedule s' which allows

preemptions only at times t(l), t(Z), .. , t(U-I), and F(t(s')) :s F(t(s)).

Schedule s satisfies the conditions of the previous item for t > t(u-l). Therefore, we

may define t(U-I) = 0 and use the above considerations. As a result, we obtain a schedule

which has no preemption at t > t(U-l), coincides with the original schedule at t ::; t(U-l),

and has at least the same quality. This proves the theorem.

The proof of Theorem 1.2 immediately implies the existence of a schedule s*(t) = {s7(t),

s;(t), ... , s~(t)} which has the mentioned properties and also the property that either

s~(t) oF 0 in some interval (d, TLl and s~(t) = 0 for t > T L , or s~(t) = 0 for all t ;e: d,

L = 1, 2, ... , M.

Note that if at least one of the conditions of this theorem is violated, then, in

general, the search for an optimal schedule may not be restricted to non-preemptive

schedules. Below, we present the corresponding examples.

Machine 2

Machine 1

(a)

Machine 2

Machine 1

Machine 2

Machine 1

(c)

Fig. 1. Z

1 : Z

(b)

(a) The values of d; are different. Define M = 2; n = 3; d l = 0; dz = 1, d3 = 2; t l = 3;
t z = t 3 = 2; F(x l , xz, X3) = XI +2xz+3x3 . In the case under consideration, for any

non-preemptive schedule s we have F(t(s)) ;e: 24. On the other hand, for the schedule "5

shown in Fig. 1.2a, we have F(t("5)) = 22. In this schedule, the processing of job 1 is

interrupted at time t = d3 = 2 to be resumed on the other machine at time t = 3.
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(b) The set of jobs is ordered, i.e., G l' (N, 0). Define M = 2; n = 4; di = 0, i = 1, 2,

3,4; t1 = t2 = t3 = 1, t4 = 2, F(xh X2' X3' X4) = 2(XI+X2+x3)+x4, and assume that 1 __ 2

and 1 __ 3. In this case, F(t(s)) = 14 corresponds to the best non-preemptive schedule s.

An optimal schedule s* with F(t(s*)) = 13 is shown in Fig. 1.2b. In this schedule, the

processing of job 4 is interrupted at time t = I to be resumed on the same machine at time

= 2.

(c) Function F(x) is not e-quasi-concave. Let M = 2; n = 3; di = 0; i = 1, 2, 3;
t l = t2 = t3 = 2; F(Xh X2, X3) = x~+x~+x~. In this case, F(x) is non-decreasing in the

positive octant but it is not an e-quasi-concave function.

In fact, for x(l) = (0, 1, 2), e = (0, 1, -1), c< = 1 and>. = 1/2, we have X(2) = (0, 2,
1) and F(>.x(t)+(l->.)x(2») = F(O, 3/2, 3/2) = 9/2 < min{F(O, 1, 2), F(O, 2, I)} = 5. One of

the optimal schedules is shown in Fig. 1.2c, where the processing of job 2 is interrupted

at time t = 1 to be resumed on the other machine at time t = 2. The value of F(x)

corresponding to this schedule is 22, while for all non-preemptive schedules we have

F(x) ~ 24.

2. Deadline-Feasible Schedules

In this section, the necessary and sufficient conditions are established for the

existence of a schedule for processing n jobs on M parallel identical machines in which

each job is completed by the corresponding deadline. Algorithms for constructing such

schedules are given. Preemption in the processing of any job is allowed.

2.1. The jobs of a set N = {I, 2, ... , n} are processed on parallel identical machines.

The release date of a job i E N is di ~ 0, its processing time is equal to ti > O. The

deadline Di ~ di+ti, by which a job i must be completed, is known. In practical

applications, the values di, ti and Di, i = 1, 2, ... , n, are rational and can be

considered to be integers by choosing an appropriate scale. It is assumed that preemption

does not consume time and that the number of preemptions is finite.

A schedule s in which all jobs are completed by the corresponding deadlines, i.e.,

ti(s) ~ Di, i = 1, 2, ... , n, is called feasible (with respect to deadlines). Here ti(s) is

the completion time of job i in a schedule s.

We present the necessary and sufficient conditions for the existence of feasible

schedules, and show how to find them (if such schedules exist).
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2.2. If set N of jobs can be divided into two subsets N1 and Nz such that

max{D;li E NIl $ min{d;!i E Nz}, then a feasible schedule for processing the jobs of set N

exists if and only if feasible schedules exist for processing the jobs of each subset N]

and Nz. In what follows, it is supposed that such a situation does not arise.

Let e, < ez < ... < ep+" P $ 2n-1, be a set of all pairwise distinct values of d; and

Di , i = 1, 2, ... , n, Ek = (ek, ek+d and L1k = ek+l-eb k = 1, 2, ... , p. Let n(k). denote

the number of all jobs i E N such that Ek ~ (d;, D;].

Suppose that there exists such a I, $ 1 $ p, and such job i E N that n(l) $ M and

E1 ~ (d j , Dj ]. It is obvious that job i can be processed in the time interval E1 on any

machine without affecting the processing of the other jobs. If .11 <': tj , then delete job i
from set N. If .11 < tj , reduce the processing time of job i by .1/. Perform these

operations for all i E N, such that E/ ~ (d j , Dj ]. As a result, we obtain a new set N' of

jobs and new processing times of the jobs in this set.

For each i E N' such that D; <': e/+ ll we reduce the deadline D; by .1" and for each

i E N' such that d i 2 e/+ 1, we also reduce its release date d; by .1/.

As can be easily seen, a feasible schedule for processing the jobs of set N exists if

and only if there exists a feasible schedule for processing the jobs of set N' (with di ,

t;, D; changed as described above). Taking set N' as N, we can repeat the above arguments

until either N' = 0 is obtained, or n(k) > M for all k.

In the former case, we conclude that a feasible schedule s does exist, and the described

procedure is, in fact, a procedure for finding such a schedule. In each step, we analyze

an interval E1 = (e" e/+d with n(l) $ M and the set N/ = {ii, i2"'" in(l)} of jobs

which can be processed in this interval. Since INil n(l) $ M, it follows that, for

.1/ $ tjL' we may define sL(t) = iL in the interval E" while for .1/ > th we define

sdt) iL in the interval (e" e,+th] and sL(t) = 0 in the interval (e/+th' e/+d,

L = 1, 2, ... , n(l). If n(l) < M, then sL(t) = 0 in the interval E" L = n(l) +1,
n(l)+2, ... , M. In this case, a feasible schedule is found in O(nz) time.

In the latter case, we come to the problem of a smaller dimension where n( k) > M for all

intervals Ek .

2.3. Associate the set of time intervals {Ell Ez,... , Ep }, the set of jobs {I, 2, ... , n}

and the sequence ti, i = 1, 2, ... , n, with a network r (see Fig. 2.1) containing the
source vertex xo, the sink vertex z, and the intermediate vertices x" x 2, ••• , xp , Y"

Yz,···, Yn' A vertex Xk corresponds to interval Eb a vertex Y; corresponds to job i.
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Connect vertices Xk and Yi by the arc of the capacity c(xk, yi! = Llk if and only if

Ek ~ (di, Ddj connect vertices Xo and Xk by the arc' of the capacity c(xo, xk) = MLlk; and

connect vertices Yi and z by the arc of the capacity C(Yi, z) = ti , k = 1, 2, ... , p,

i = 1, 2, ... , n. The arcs (xo, xk), k = 1, 2, ... , p, are called the input arcs, while the

arcs (Yi, z), i = 1, 2, ... , n, are called the output arcs of the network. Note that the

network r can be constructed in at most O(n2 ) time.

I,

gf~

N4, f
:c. -,

/'14. 4.

Fig. 2.1

Each deadline-feasible schedule s deteN1lines the flow f which saturates the output arcs

of the network r. In fact, let Tik(s) be the total processing time of job i in the

interval Ek in schedule s, i = 1, 2, ... , n, k = 1, 2, ... , p. It is obvious that

p
Tik(s) $ Llk holds for all i and k; the inequality I: Tik(s) = ti holds for any i E N, the

k=l
n

inequality I: Tik(S) $ MLlk holds for any interval Ek> and, besides, the equality
t=1

p n n
I: I: T ik( s) = I: ti holds.

k=l i=1 i=1
n

Define f(xo, Xk) = I: Tik(S) for each arc (xo, xd, define f(Xk, Yi) = Tik(s) for each
i=1

arc (xk> Yi), and define f(Yi' z) = Ii for each arc (Yi' z). Note that the value of

function f corresponding to any arc does not exceed its capacity, and, moreover, for each
output arc of the network, this is equal to the capacity. Besides, for any intermediate

vertex v, the sum of the values of function f over all arcs entering v is equal to the sum

of its values over all arcs leaving v. The sum of the values of function f over all input
n

arcs of the network and the sum over all output arcs are both equal to I: Ii' Therefore,
i=1

n
function f is a flow (with the value of I: til which saturates the output arcs of the

i=l
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network r.
On the other hand, each flow f which saturates the output arcs of the network r

determines a deadline-feasible schedule. In this case, the flow along an arc (xb Yi) is

interpreted as the total processing time of job i in interval Ek . Note that
p n
E f(xk, Yi) = ti and E f(xb y;) ~ Ml1k· Given a flow along the arcs

k=l i=l

(Xk, Yi), i = 1, 2, ... , n, for each vertex Xk, a schedule for the interval Ek can be

constructed. This can be done by the following algorithm called the packing algorithm.

Let the jobs of a set N have to be processed in a time interval E = (e', en]. The jobs

are processed on M parallel identical machines. The processing time of a job i E N is Ti,

the conditions Ti ~ 11 hold for all i E N, and, moreover, E Ti ~ MI1, where 11 = en -e'.
ieN

Let 1f = (iI' i2 , ... , ifNI) denote an arbitrary permutation of the elements of set N.
Define a function O'(t) in the interval (e', e' +MI1], assuming that O'(t) = i l in the

k-I k
interval (e', e'+Ti

l
), O'(t) = ik in the interval (e'+ ETi., e'+ ET;.J, k 2, 3, ... ,

j=1 J j=1 J

INI, and set O'(t) = 0 in the interval (e'+ E Ti, e'+MI1] if E Ti < MI1. A schedule
teN teN

s(t) = {s](t), s2(t), ... , sM(t)} for processing the jobs of set N in interval E is said to

be constructed by the packing algorithm if in this interval sL(t) = 0'(t+(L-1)11), L = 1,

2, ... , M.

It is clear that such a schedule in interval E can be found in at most O( INI) time. In

this schedule, the number of preemptions does not exceed M - 1.

Having constructed the schedule for each interval Ek by the packing algorithm and having

"concatenated" the schedules for the intervals EI , E2 , ... , Ep , we obtain a deadline

feasible schedule for the jobs of set N. Finding such schedules requires no more than

O(np) time, i.e., at most O(n2) time. The resulting schedule has at most n(p-1)+(M-1)p

preemptions. In fact, while constructing a schedule for each interval Ek , we obtain at

most M- 1 preemptions, while "concatenating" the resulting schedules involves at most

n( p - 1) preemptions.

Finding a maximal flow in a network with n vertices requires O(nJ ) time [2]. If the
n

value of the resulting flow in the network r is E ti, then there is a deadline-feasible
i=1

schedule which can be found in at most O(n2) time and which has at most n(p -1) + (M -1)p

preemptions. Otherwise, a feasible schedule does not exist.

2.4. We now establish the necessary and sufficient conditions for the existence of

deadline-feasible schedules.
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For N ~ N, let E(N) denote the set of the numbers of all intervals Ek , each obeying the

condition Ek ~ (d;, D;J at least for one i E N, and let n(k) denote the number of all jobs

i E N such that Ek ~ (d;, D;J.

Due to the saturation theorem [15J, a flow, which saturates the output arcs of the

network r, exists if and only if the inequalities

L t; $; L L1k min{M, n(k)}
;eN keE(N)

hold for all N ~ N.

Thus, the following statement holds.

(2.1)

Theorem 2.1. A deadline-feasible schedule exists if and only if inequalities (2.1) hold

for all N ~ N.

Since t; $; D;-d; for all i E N, the subsets N ~ N which contain at least two elements

should be considered. The total number of inequalities (2.1) is equal to 2n _ (n+l).

We show that the inequalities (2.1) hold for all N ~ N if they hold for some specially

chosen subsets N~ N.

Let us choose an arbitrary subset N ~ N. Represent E(N) as E(N) E(l) u £i. Z), where

£i.1) n E(Z) = 0, E(l) = {v, v+l, ... , Jl}, 1 $; v $; Jl $; p, £i. Z) = {k E E(N) Ik ~ Jl+2}. Suppose

that £i.Z) #' 0. Then set N can be divided into two non-empty disjoint subsets Nl and Nz so

that E(Ntl = £i.l) and E(Nz) = £i. Z). In fact, if there is such an i E N that

E(i) n E(l) #' 0 and E(i) n E(Z) #' 0 then, due to the definition of E(i), we obtain

Jl+l ~ E(N). As can be easily seen, if inequality (2.1) holds for N = N, and N = Nz, then

it also holds for N = N.
Therefore, the inequalities (2.1) hold for all N ~ N if and only if they hold for all

N ~ N satisfying the condition: there exist such v and Jl that 1 $; v $; Jl $; p and E(N) = {v,

v+ 1, ... , Jl}.

The following procedure can be used for finding the required sets N. Choose arbitrary v

and Jl, 1 $ v $; Jl $ p. Define c = {v, v+l, ... , Jl}. Find the set N' of all i E N for which

E(i) ~ c. If E(N') = c, then define Nv !-, = N'. In this case, the pair v, Jl is called

essential. Let Nv!-' denote the set of all proper subsets N" of the set Nv!-' satisfying the

condition E(N") = c. The set N v !-, and all subsets in Nv !-, are the desired sets N. Applying
this procedure to all pairs v, Jl, 1 $; v $; Jl $; p, we find all sets N for which inequalities
(2.1) should be verified.

If the values of M, di , ti , Di , i = 1, 2, ... , n, are such that for all essential pairs

v, Jl the inequalities (2.1) hold for any N E Nv!-, if they hold for N = Nv !-" then we say
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that the regularity condition holds. In this case, the number of inequalities (2.1) to be

verified does not exceed n(n+ 1)/2. In fact, if a pair v, Il. is essential, then ev E {d"

d2, ... , dn } and e!'+, E {D" D2 , ... , Dn }. The largest number of essential pairs is obtained

if all d j and Di , i = 1, 2, ... , n, are different. By numbering the jobs in increasing

order of Di , we come to the conclusion that for any essential pair v, Il. where ev = di ,

e!'+, = Dj the inequality i :<:; j holds.

2.5. Let us consider the case M = 1. In this case, inequality (2.1) can be written in

the form

(2.2)

for all N c;:; N.

Let the jobs be numbered in non-decreasing order of the deadlines. Let LVI: denote the set

of all jobs i E N for which d j ~ dk and Di :<:; D,.

Since, in the case under consideration, the regularity condition holds, it follows that

inequalities (2.2) hold for all N c;:; N if and only if

L t i :<:; D,-dk

i eNk
(2.3)

for all 1 :<:; k :<:; I :<:; n.

It can easily be shown that inequalities (2.3) for all 1 :<:; k :<:; I :<:; n can be verified in

at most O(n2 ) time.

Note that if d j :<:; di +" i = 1, 2, ... , n-1, then (2.3) can be written in the form,
Lt j :<:; D,-dk (2.4)

i=k

for all 1 :<:; k :<:; I :<:; n.

If d j ~ d j +1, i = 1, 2, ... , n-1, then inequalities (2.3) hold for all 1 :<:; k:<:; :<:; n, if

and only if

k

L t j :<:; Dk-dk, k = 1, 2, ... , n.
i=1

If d j = d, i = 1, 2, ... , n, then (2.5) becomes

k

L t j :<:; Dk-d, k = 1, 2, ... ,n.
1=1

(2.5)

(2.6)

We describe an O(nlogn) algorithm for finding a feasible schedule s. The algorithm

extends the known rule of job processing in non-decreasing order of deadlines (the EDD
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rule) to the case of different release dates, i.e., according to the algorithm, the

available job which has the smallest deadline, is selected to start processing.

Let {d(l), d(2), ... , d(v)} be a set of all distinct values of d; and d(l) < d(2) < ... <

d(v) < d(v+l) = W, where W is a sufficiently large number.

In the first step, define T = d(l), No = {iii E N, d; d(I)} and s(t) 0 for

o $ t $ d(l).

In each step, we have a certain time T (suppose that d(U-l) $ T < d(u), 2 $ u $ v+1) and

some set No of jobs. Choose a job j E No with the smallest number (i.e., with the earliest

deadline). Define s(t) = j for all T < t $ min{d(u), T+t j }, and, if T+tj < d(u) and

INol = 1, define s(t) = 0 for all T+tj < t $ d(u).

If T+tj > d(u), then add to No all jobs i E N with di = d(u) and redefine t j to become

equal to tj-(d(u)-T). If either T+tj < d(u) and INol = 1, or T+tj = dIu), then delete

job j from No and add all jobs i E N with di = d(u). In any case, define T = d(u). If

T+t j < d(u) and INol > 1, then delete job j from No and set T equal to T+tj'

As a result, we obtain a new time T, a new set No, and go to the next step. The schedule

s is constructed when No = 0.

We show that if there exists a feasible schedule, then the schedule s found by the

described algorithm is feasible. It suffices to show that if s is not a feasible schedule,

then at least one of inequalities (2.3) is violated.

Let I be a job with the smallest number for which the deadline is violated in the

schedule s, i.e., t;(s) $ D;, i = 1, 2, ... , 1-1, and t/(s) > D/. Set t' = tl(s). Let r be

the number of a step of the algorithm, in which s(t') = I is obtained, and T r be the value

of T at which we enter step r.

Define t" = max{tlt < Tn S(t) O}. It is easy to check that t" = di for some E N

and d i $ dl .

If all jobs chosen to be processed in the first r - 1 steps have numbers less than I, then

define t = t".

Let p, p < r, be a step of the algorithm with the largest number, in which a job r such
that r > I is chosen for processing. If T P is the value of T we enter step p, then

dl <': d(q+l) (where d(q) $ Tp < d(q+I») and s(t) i' i holds in the interval (d(q+I), t'] if

d; < d(q+I). In fact, if there exists a job I" with din < d(q+l) which is processed in

this interval, then I" > r (otherwise, job I" rather than r would have been chosen in
step pl. This, however, contradicts the fact that p is the last step before step r such

that a job with the number larger than I is chosen to be processed. Define t = max{ t",

d(q+I)}.
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Let k be a job with the smallest number, for which d k = t. It is clear that k $ l.

In the interval (dk , t'] only such jobs are processed, for which d j ~ dk and i $ I, i.e.

Di $ D1• Therefore,

dk + L t j ;:: t' > D,
ieNL

and hence, for jobs k and I, inequality (2.3) is violated.

We show that the running time of the described algorithm for finding a feasible schedule

is O(nlogn). Sort the jobs in non-decreasing order of dj (this requires O(nlogn) time, see

Section 2.7 of Chapter 1). Find the set No of all jobs i E N with di = d(l). Define a

binary relation =* over set N, assuming that i =* j if and only if i < j. It is clear that

relation =* is a total strict order and, hence, a total pseudo-order. In the first step of

the algorithm, we represent the set No <:;; N ordered according to relation =* as a balanced

2-3-tree (this takes O(n) time; see Section 2.3 of Chapter 1).

The number of steps of the algorithm does not exceed 2n -1 because, in each step, either

processing of some job is completed or a new job ready for processing is added to the set

No·

In each step, choosing job j E No with the smallest number (Le., finding a maximal with

respect to =* element of set No) takes a constant time (in fact, one elementary operation

is required; see Section 2 of Chapter 1). Either deleting a job from No or adding a new

job to No requires O(logn) time. Changing the processing time of job j is equivalent to

deleting job j from No followed by inserting job j with a new processing time to No. This

also requires at most O(logn) time.

Hence, it follows that the total running time required for finding a schedule s does not

exceed O(nlogn).

Remark 1. If d; $ d i +ll then schedule s is non-preemptive. Therefore, conditions (2.4)

and (2.6) are necessary and sufficient for the existence of a single-machine deadline

feasible non- preemptive schedule.

Remark 2. A feasible schedule for a partially ordered set of jobs (as before, M = 1 and

preemption is allowed) can be found by an O(n2 ) algorithm described in Sections 3.6 and

3.7 of this chapter.

2.6. Let M ;:: 1, d; = d, Di = D, i = 1, 2, ... , n. As before, it is assumed that t; $ D-d,

i = 1, 2, ... , n.

Inequalities (2.1) can be written as

Lt j $ (D-d) rnin{M, INI}, N <:;; N.
ieN
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Since, in this case, the regularity condition is satisfied, it follows that a feasible

schedule exists if and only if
n

L t; ~ (D-d)M.
1=1

(2.7)

It is obvious that verifying this inequality takes at most O(n) time. If a feasible

schedule exists, it can be found by the packing algorithm applied to the set N of jobs in

the time interval (d, DJ (see Section 2.3). This also takes O(n) time. In the resulting

schedule, the number of preemptions does not exceed M - I.

2.7. We now consider the case M ~ 1, assuming that either Di = D or d; = d, i = 1,

2, ... , n. These situations are equivalent, since a feasible schedule for processing jobs

with parameters d j and D; = D exists if and only if there is a feasible schedule for

processing jobs with parameters d; = d and D; = D+d - d j •

In what follows, without loss of generality, we consider the case M ~ 1, d i = 0, i 1,

2, ... , n. It is again assumed that t i ~ Dj , i = 1, 2, ... , n.

Let the jobs be numbered in non-decreasing order of Dj • For tv s;; N, assume that tv = {ii'

i2 , ... , i,l, where i j < i k if j < k. Inequality (2.1) can be written in the form
I

Ltj.~Djmin{I,M} + (D j -Dj ) min{I-1, M} +... +
j = 1) 1 2 1 (2.8)

+ (Di,_l-Di,_2) min{2, M} + (Dj1-D;,_l)'

Since t; ~ D;, i = 1, 2, ... , n, it follows that inequality (2.8) holds for any set tv
with Itv I = I ~ M. If Itv I = I > M, then inequality (2.8) can be written in the form

I I

L t j ~ L Di · (2.9)
j=l ] j~I_M+IJ

This inequality holds if and only if

i 1 -M+l I 1

L t k + L t;. ~ L Dj •

k= I j=l -M+2 ] j=l -M+ 1 ]

Thus, a feasible schedule exists if and only if

i 1 M M

L tk + L t; ~ LDi (2.10)
k~l j=2) j=l)

holds for all tv = {ii' i 2, ... , iM } s;; N. The total number of these inequalities is [~).

In this case, the regularity condition may be, in general, violated. In fact, consider

the intervals Ek = (Dk_l> Dkl of the length .dk = Dk-Dk- 1, k = 1, 2, ... , n, where Do = 0,

and the case of .dk = 0 is included. For each essential pair lJ, J.L, we have lJ = 1 and
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J.l E {1, 2, ... , n}. Therefore, the set Nvp. is of the form NIp. = {1, 2, ... , J.l},

J.l = 1, 2, ... , n, and for each N" E Nvp., we have J.l EN". Let M = 2, t l = t3 = 1, tz = 2,
t4 = 5, DI = 1, Dz = 2, D3 = 4, D4 = 5. A direct verification shows that inequality (2.1)
holds for Nll = {1}, N12 = {1, 2}, NI3 = {1, 2, 3}, Nl4 = {1, 2, 3, 4}, but this does not
hold for N" = {1, 2, 4} <;; N 14 •

We show that the regularity condition holds if t j = t, i = 1, 2, ... , n. If N NIp.

{1, 2, ... , J.l}, J.l > M, then inequality (2.9) can be written as
p.

J.lt S L Dk · (2.11)
k=1' -M+ I

p. , -
E Dk S E Dj • Hence, inequality (2.9) also holds for N = N".

k=p j=' -M+ 1 J

Thus, a feasible schedule for M ~ 1, di = 0, t j = t < Dl , i = 1, 2, ... , n, exists if and

only if inequalities (2.11) hold for all J.l > M. The number of these inequalities is n-M.

Suppose that this inequality holds for all J.l > M. Choose an arbitrary J.l and an arbitrary

set N" = {iI' iz,.··, i,} E NIp., I > M, il < iz < ... < i, = J.l. Let a job i'_M+I have the
1"

number p. Define J.l' = p +M-1. Since i,_M+l ~ 1- M+1, we have J.l' ~ 1 and It S J.l't S E Dk =
k=p.' -M+l

2.8. Let, as before, M ~ 1, di = 0, ti S Dj , i = 1, 2, ... , n. We describe an O(nlogn)

algorithm for finding a feasible schedule. This algorithm is a natural generalization of

the packing algorithm.

Let D(J) < D(Z) < ... < D(v) be all pairwise distinct values of Di . Let N u denote the

set of all jobs i E N with Dj = D(u), u = 1, 2, ... , v. Define Til) = 0, L = 1, 2, ... , M.

The algorithm consists of v steps. In each step u, u = 1, 2, ... , v, we are given D(u),

Ti
u

), L = 1, 2, ... , M, and a job set Nu' A step of the algorithm involves INul iterations,

at each of which one job i E Nu is assigned for processing.

At the first iteration of step u, define D = D(u), TL = Tiu), e5L = D- TL, L 1, 2, ... ,

M, N = Nu ' At each iteration of this step, take an arbitrary job i E N.
(a) If t j > e5L, L = 1, 2, ... , M, then, as shown below, there is no feasible schedule.

(b) If tj S e5L for all machines L for which e5L 1" 0, then define sp(t) = i in the

interval (T p, Tp+t;]. Here P is a machine with the smallest e5p 1" ° (if there are several
of them, take any). Modify T p and e5p, assuming them to be equal to Tp+t j and e5p -t j,

respectively.

(c) Suppose that the conditions in (a) and (b) do not hold. Let P be a machine with the

largest e5p such that ti ~ e5p. If ti > e5p, assume that Q is a machine with the smallest e5Q
such that tj < e5Q. If there are several machines which satisfy the above conditions, take
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any of them as P or Q. Define sp(t) = I in the interval (Tp, OJ, and, if t; > 8p , then

define sQ{t) = i in the interval (TQ, TQ+t;-8p J. Modify Tp and 8p, setting them to be

equal to 0 and 0, respectively. Modify TQ and 8Q, setting them to be equal to TQ+t;-8p

and 8Q+8p -t;, respectively.

Delete job i from N, proceed to the next iteration, and so on, until N = 0 is obtained.

In that case, go to the next step u+ 1, assuming Tlu+
,
) = TL , L = 1, 2, ... , M. Having

performed step v, define sL{t) = °for t > T1V
+I) , L = 1, 2, ... , M.

Note that if conditions (b) and (c) hold for each iteration of this algorithm, we obtain

a feasible schedule s. Otherwise, the algorithm stops as soon as, at some iteration,

conditions (a) hold.

We show that the running time of this algorithm is O(nlogn).

Each iteration is associated with a set R of all pairwise distinct values of TL

considered at that iteration. Since, for any T' and Too in R, either T' < TOO or Too < T'

holds, it follows that set R is ordered by the relation < and can be represented as a

balanced 2-3-tree (see Section 2 of Chapter 1). Each T E R is associated with a terminal

vertex (a leaf) of the balanced 2-3-tree and with a list of numbers L of the machines for

which TL = T. At the first iteration of the first step, we have R = {T} where T = O. This

value of T corresponds to the tree consisting of a single vertex, and to the list {I,

2, ... , M} of machines.

At each iteration, the search for the cases, in which either t; > 8L = 0 - TL holds for

all L = 1, 2, ... , M, or t; S O-TL holds for all L such that O-TL i' 0, reduces to finding

either the smallest element T' the set R or the largest element TOO such that TOO < O. (We

may take any machine in the list corresponding to the value of Too as machine P). If none

of these cases takes place, it is required to find machines P and Q. To do that, it

suffices to find the smallest element 'f E R such that t; ~ D- T, and, if t; > D - 'f, the

largest element t E R such that t; < D - t. All these operations can be implemented in
O(logM) time (see Section 2.8 of Chapter 1).

The modification of the value Tp reduces to deleting the number P from the list of

machines corresponding to 'f, and, if the obtained list is empty, to deleting the element 'f

from R.

Let a modified value of Tp be equal to 'f'. If 'f' E R, then the number P should be added

to the list of machines corresponding to 'f'. If set R does not contain 'f', then 'f' should

be inserted into R, and the list {P} of machines corresponding to 'f' should be formed. The

value of TQ is modified in the same way. These operations also require O(logM) time.

Since the total number of iterations is n, finding a schedule stakes O(nlogM) time (if
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the jobs are pre-sorted in non-decreasing order of their deadlines). Taking into account

the running time required to sort the jobs in non-decreasing order of Dj , we conclude that

the time complexity of the algorithm is O(nlogn+ nlogM) or, equivalently, O(nlogn), due to

M < n.

2.9. We show that if a feasible schedule does exist, then the algorithm described in

Section 2.8 finds such a schedule s. In other words, if the algorithm does not find a

schedule (i.e., at some iteration t j > bL , L = 1, 2, ... , M, holds for the chosen job i),

then there is no feasible schedule.

Let s(i) be some feasible schedule for processing the jobs of set N, and let N(i) be a

set of jobs processed according to this schedule in the interval (0, D(i)l. It is clear

that NI ~ N(I).

Note that t j ::; D(il, i E N I , and the first step of the algorithm under consideration is,

essentially, the packing algorithm applied to the set N1 of jobs in the interval (0, D(1)]

(see Section 2.3). If N(i) 1" N I , then choose all jobs i E N(i) such that, in the schedule

s, they are processed within the interval (0, D(i)] for ti < t j time units (it is obvious

that each i '" Nd. Define the processing times of these jobs to be equal to ti, and apply

the packing algorithm to the set N(i) in the interval (0, D(i)l. Here, a permutation which

starts with all jobs of set N I can be chosen as permutation 11: of the elements of set N(I).

Denote the resulting schedule for the jobs of set N(l) in the interval (0, D(i)j by 5'(1).

By defining S(2)(t) = 5'(i)(t) in the interval (0, 1)<1)] and S(2)(t) = S(I)(t) beyond this

interval, we obtain a feasible schedule S(2). It is clear that S(2) is such a feasible

schedule that si
2
)(t) = sLIt) for 0 ::; t ::; Ti

2
), L = 1, 2, ... , M, where T12) are the values

of TL , L = 1, 2, ... , M, obtained after the first step of the algorithm.

Let stu) denote a feasible schedule such that stu)(t) = sL(t) for 0 ::; t ::; Tiu), L = 1,

2, ... , M, where Ti
u

) are the values of TL, L = 1, 2, ... , M, obtained after the (u-1)th

step of the algorithm. We show that, in this case, we may pass from the schedule s(u) to a

feasible schedule S(U+l) such that: (1) slu+l)(t) sLIt) for 0 ::; t ::; Tiu+1
);

(2) slu+I\t) = slu\t) for t > D(u), L = 1, 2, ... , M. It is evident that siU+l)(t) =
slU)(t) for 0 ::; t ::; Tlu), L = 1, 2, ... , M.

As shown below, in order to prove this, it suffices to prove the following Statement A:

If there is a schedule s for processing the jobs of some set N such that the conditions
sLIt) = 0 are satisfied for all t ::; TL ::; D and all t > D, L = 1, 2, ... , M, then the

schedule s for processing the jobs of this set, constructed by the procedure to be
performed in each step of the algorithm, also satisfies the above conditions.
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If Statement A holds then we can pass from the schedule s(u) to the schedule S(U+l) in

the following way. Let N denote the set of all those i E N for which there exist such L

and t, 1 ~ L ~ M, Tl
u

) < t ~ D(u), that slu)(t) = i. It is obvious that Nu S;; N. If N #' Nu

and a job i E N\Nu is processed in the interval (0, D(u)j for ti ~ t i time units, then

choose ti and D(u) as the processing times and the deadlines, respectively, for all

i E A'\N... Apply the procedure performed at each step of the algorithm to the set N,
choosing the jobs of set Nu first.

Now, we proceed to a direct proof of Statement A. The proof is by induction with respect

to the number n of jobs in N. The statement holds for n = 1. Suppose that it is valid for

all n, 1 ~ n < l, and show that the statement also holds for n = l.

Without loss of generality, assume that TL ~ TL+!, L = 1, 2, ... , M-1. Represent the

interval (T,II, D] as a family of subintervals of length ,1 such that schedule s is

non-preemptive within these subintervals and each time TL, 8L #' 0, is the beginning of

some subinterval (this can be done because s has a finite number of preemptions). Let the
obtained time intervals of length ,1 be numbered by the integers 1, 2, ... , q, starting with

the interval (T,lf, T M+,1]. An interval with the number 0< is of the form (T,11+ (0< -1),1, T,If +a<L\J.
Let i be the job chosen at the first iteration of the algorithm for finding schedule s.
The existence of the schedule s implies that there is a machine L for which t i ~ 8L. If,

in schedule s, job i is processed on two machines (P and Q), then Q = P+ 1. Let ( and ('

be the completion times of job i on machines P and P+1, respectively. If i is not

processed on machine P+1, then define (' = TP+!.

Let us transform schedule s (see Fig. 2.2a) to a new schedule s' (see Fig. 2.2b) in the

following way. If in a time interval 0< (of length ,1) with TM+o<L\ > T p we have that

sKU) = i, K #' P, then define sp(t) = sKU) and sKU) = sp(t) in the interval 0<.

If SK(t) = i in the interval 0< with TM+0<,1 ~ T p, and V is a machine with the smallest

number for which Tv < T,If+o<<1, then define sv(t) = sK(t) and sK(t) = Sy(t) in the interval

0<. In other cases, define si(t) = sLtt), L = 1, 2, ... , M. It is easy to verify that s' is

a schedule.

The time TL is called the ready time of machine L. This machine is said to be ready in

the interval 0< if TL < TM +0<,1.

Let us introduce two operations for transforming schedule s' into a new schedule su.

Operation 0 1(0<, (3) is applied when the same number of machines are ready in the intervals

with numbers 0< and (3 (0< < (3) (for example, intervals 7 and 8, or 15 and 16 in Fig. 2.2b).

This operation interchanges these intervals: si'(t) = si(t+«(3-o<)L\) and si'(t+«(3-o<)<1) =

sift) for T M+(o<-l)L\ < t ~ TM+o<L\ and si'(t) = sat) for other values of t, L = 1, 2, ... , M.
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It is easy to verify that s" is a schedule.
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Operation O2(01, (3, R, Z) (where 01, {3 are the numbers of intervals, 01 < {3, while R, Z are

the numbers of machines, such that TM+OILl ~ TR < TM+ (3Ll) is applied when a different number

of machines are ready in the intervals 01 and (3, and the relation silt) = I holds in the

interval 01, while si.(t) l' i holds in the interval {3, L = 1, 2, ... , Mj for example, in

Fig. 2.2b, one may choose 01 = 1, {3 = 5, Z =M, R=P+1 or 01 = 4, (3 = 9, Z =P+1, R= P. In

this case, there exists a machine V such that sv(t) = k holds in the interval {3 where
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either k = 0 or kEN and silt) t" k for L = 1, 2, ... , M in the interval 01. Operation

02(01, (3, R, Z) is performed in two stages. Define sz(t) k in the interval 01 and

Sy(t) = i in the interval (3 without changing schedule s' in other cases: si(t) = si(t).

Then define Sy'(t) = si?(t) and si?'(t) = Sy(t) in the interval (3 without changing the

schedule s in other cases: si.'(t) = si.(t). As a result of performing operation

02(01, (3, R, Z), we obtain schedule s" in which the job i is processed on machine R in the

interval (3, i.e., the processing of job i is transferred from machine Z (interval (1) to

machine R (interval (3).

Suppose that the intervals for processing job i in schedules sand s do not coincide.
Then one of the following cases is possible.

Case 1. t j < 8p. In this case, P = 1. Apply operation 02(01, (3, 1, Z) to s' (and again

denote the obtained schedule by s') whenever there exist intervals 01, (3 and a machine Z,

1 < Z ~ M, such that TM+ (3L!. > TI and sz(t) = i in the interval 01, while s;(t) t" i in the

interval (3. As a result, we obtain the schedule s' such that si(t) t" i for L t" 1. Whenever

there are intervals 01 and (3 such that TI < TM+OIL!. ~ TI Hj < TM +(3L!. ~ D, and s{( t) t" i in the

interval 01, while s;(t) = i in the interval (3, apply operation °1(01, (3) to s' and again

denote the obtained schedule by s'. As a result, we obtain schedule s' such that s;(t) = i

in the interval (TI , TI H;].

Case 2. t j ~ 8p. Whenever there are intervals 01, (3 and a machine Z, P < Z ~ M, such that

TM+ (3L!. > Tp, and sz(t) = i in the interval 01, while sp(t) t" i in the interval (3, apply

operation 02(01, (3, P, Z) to s' and again denote the obtained schedule by s'. As a result,

we obtain schedule s' such that sp(t) = i in the interval (Tp, D]. Whenever there are

intervals 01, (3 and a machine Z, P+l < Z ~ M, such that TP+l < T M+(3L!. ~ T p, and sz(t) = i in

the interval 01, while SP+l(t) t" i in the interval (3, apply operation 02(01, (3, P, Z) to s'

and again denote the obtained schedule by s'. As a result, we obtain schedule s' such that

si(t) t" i for L > P+1. Note that t; < 6p+1 = D-Tp+(Tp-Tp+Jl. Finally, when there are

intervals 01 and (3 such that TP+I < T M+OIL!. ~ TP+I +tj -6p < T M+ (3L!. ~ T p, and SP+l(t) t" i in the

interval 01, while sP+I(t) = i in the interval (3, apply operation 01(01, (3) to s' and again

denote the obtained schedule by s'. As a result, we obtain a schedule s' such that

sP+l(t) = i in the interval (Tp+ll T p+I Hj-8p ] and spit) = i in the interval (Tp , D]. Note

that it follows from t; < 6p+1 = D-Tp+1 that T p+1+t;-6p = T p+1+tj -D+Tp < Tp.

In both cases, we obtain a schedule s' such that the intervals for processing job ill

this schedule coincide with the intervals for processing this job in schedule s.
By defining Tp = t', TP+l = t" and temporarily disregarding job i, we come to the case

of 1-1 jobs (with the new values of TLJ. Taking into account the inductive assumption, we
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conclude that schedule s for processing the jobs of set iV, which is constructed according
to the procedure to be performed in each step of the algorithm, is in fact the desired

one. This completes the proof of Statement A.

Remark. The maximal number of preemptions in processing the jobs in the schedule

found by the algorithm described in Section 2.8 is n - l.

It can be easily seen that the first job in the schedule is processed with no

preemption, while the processing of each subsequent job can be interrupted at most once.

The maximum number of preemptions can be reduced to n-2 by constructing a schedule for

the first n - 1 jobs by the above algorithm, and by assigning the last job to be processed

on the machine with the smallest value of TL'

3. Single Machine. Maximal Cost

In this section, the problem of minimizing the maximal cost for scheduling n jobs on a

single machine is considered. Various assumptions are made with regard to the release

dates, the due dates, cost functions, and other parameters.

3.1. The jobs of a set N = {I, 2, ... , n} are processed on a single machine. Preemption

in processing any job is allowed. A job i E N is available not earlier than the release

time di ~ 0, its processing time is t i > 0, and the due date is Di ~ 0. A precedence

relation -+ is defined over set N which describes a feasible order of job processing. The

reduction graph of that relation is denoted by G = (N, U). Each job i E N is associated

with a non-decreasing real function 'Pi(t) which represents the cost for having job i

completed at time t.

It is required to find a feasible (with respect to --->0) schedule s* which minimizes the

function

max{'Pi(ti(S)) liE N} (3.1)

over all schedules s feasible with respect to --->0 where ti(s) is the completion time of job

i in schedule s.

3.2. Suppose that d j = 0, i = 1, 2, ... , n. In this case, the search for an optimal

schedule s* can be restricted to considering the class of schedules according to which

each job is processed without preemption (see Section 1 of this chapter). Each of these
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schedules is specified by a permutation 71 = (ii' i2, ... , in) of the elements of N

(feasible with respect to --, i.e., the relation i v il' implies that v < J.I.). Let the set

of all feasible permutations be denoted by Pn(G).

It is required to find a permutation 71* in the set Pn(G) with the smallest value of the

function

maX{'Pi(ti(71))Ii EN}, (3.2)

where ti(71) is the completion time of job i if the jobs are processed according to the
k

sequence 71, i.e., t i (71) = 1: t i .. Such a permutation 71* is called optimal.
k j=l ]

Let Q- denote the set of all minimal (with respect to the order relation -- defined over

N) elements of a set Q ~ N.

Theorem 3.1. in the case di = 0, i = 1, 2, ... , n, a permutation 71

such that ik E J" for k = 1, 2, ... , n, where h = {ii' i 2 , .. ·, ik }, and

(3.3)

is optimal.

Proof. Permutation 71 is feasible because, if otherwise, there exist indices k and j,

k > j, such that i k __ i j and, therefore, ik ric J".
Let 71* = (i7, i;, ... , i~) be an optimal permutation. We show that 71* can be transformed

into 71 without increasing the value of function (3.2). Suppose that for some k, 1 $. k $. n,

the relations i~ oF ik and ij ij hold for all j > k. It suffices to show that

Fmax{71') = Fmax(71*), where 71' (0', ik> ik+l , ... , in) and 0' is the sequence (i7, i;, ...,
i~) without the element ik . It is obvious that 7[' E Pn(G). Since {ii' i2 , .. ·,id = {i7,

i;, ... , i~}, it follows from (3.3) that

'Pik(tik(71')) = 'Pik[t t i ;] $. 'Pi:[t t i ;] = 'Pi:(ti:(71*)) $. Fmax(71*).
]=1 ]=1

Since ti~(71') $. tio(71*) for ij E {O'}, ti~(71') = tio(71*) for j > k and all functions
J J J J

'Pi(t) are non-decreasing, we conclude that 'Pi(ti(71')) $. 'Pi(ti(71*)) $. Fmax(71*) for all

i E N, i oF ik. Therefore, Fmax(71') $. Fmax(71*), but since 71* is an optimal permutation, we

have Fmax(71') = Fmax(71*). This proves the theorem.

Theorem 3.1 immediately implies an algorithm for finding an optimal permutation in n

steps.

Define J n
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E ti ·
ieJn

Similarly, define Jn-l = Jn\{in}· Find such an in _t E J~_l that 'Pin_1(Tn-d
min{'P,(Tn_tlll E J~_d, where T n_t = E t i , and so on.

ieJ n-l

Repeating this process, we eventually find a required optimal sequence 11"* (it, i2 , ... ,

in)'

The running time of the algorithm is O(n2 ). In each step, finding a minimal (with

respect to __) element of a set and deleting one of them from that set requires O(n) time

(see Section 1.4 of Chapter 1). Thus, the total time for these operations in all n steps

does not exceed O(n2 ). In each step r = n-k+l, r = 1, 2, ... , n, of the algorithm, at most

k values of the cost functions have to be computed and at most k - 1 comparisons of these

values have to be performed. Therefore, the total number of cost function evaluations does

not exceed n( n +1) /2, while the total number of their comparisons does not exceed n( n - 1) /2.

Hence, the algorithm requires at most O(n2 ) time (provided that computing a cost function

value takes a constant time).

3.3. We consider some special cases of the problem of minimizing the maximal cost,

assuming, as before, that di = 0, i = 1, 2, ... , n.

Let the cost functions 'Pi(t) be such that for any lI, J1. E N, either 'Pv(t) ~ 'P1'(t) hold

for all t E (0, T] or 'Pv(t) ~ 'P1'(t) hold for all t E (0, TJ. Here T = E t i . Let the jobs
ieN

be numbered in such a way that 'P.(t) ~ 'P2(t) ~ ... ~ 'Pn(t) for all t E (0, T].

In the case under consideration, in a step r = n - k +1 , r = 1, 2, ... , n, of the algorithm

for finding an optimal permutation, it suffices to take an element of the set J~ with the

largest number as the element i k • In this case, the running time of the algorithm is still

O(n2 ), but computation of the cost function values is not required. If G = (N, 0), then

the permutation 11"* = (1, 2, ... , n) is optimal. In this case, an optimal permutation is

found by numbering the jobs in at most O(nlogn) time.

These are some examples of the cost functions that have the described property:

(a) 'Pi(t) 'P(t)+O<i, i = 1, 2, ... , n; (b) 'Pi(t) = O<i'P(t), O<i > 0, i = l, 2, ... , n,

'P(t) ~ 0, t E (0, T]; (c) 'Pi(t) = <p(t+o<;), i = 1, 2, ... , n. Here <p is a non-decreasing

function defined over the interval (0, T]. In each of these cases, the jobs should be

numbered in non-increasing order of O<i'

If the due dates Di , i = 1, 2, ... , n, are given, then non-decreasing functions of

the lateness L; = t; - Di are normally used as the cost functions. If, in this case

<Pitt) = <p(t-Di ), i = 1, 2, ... , n, and 'P is a non-decreasing function, then the cost

functions belong to the type (c), and the jobs should be numbered in non-decreasing order
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of the due dates.

Therefore, if G = (N, 0) and D I S D2 S ... S Dm then the permutation 1f* = (1, 2, ... , n)

is optimal for the problem of:

- minimizing the maximal lateness (the case of 'Pi(t) = t-D;);

- minimizing the maximal tardiness (the case of 'Pi(t) = max{t-Di, O});

- finding a schedule without late jobs (the case of 'Pi(t) = sgn(max{t-D;, O})).

3.4. Let di ~ 0, 'Pi(t) = 'P(t-Di ), i = I, 2, ... , n, w.here'P is a non-decreasing function.

Preemption in processing each job is forbidden.

It is clear that a permutation 1f* E Pn(G) which minimizes the maximal lateness

Lmax(1f) = max{ti(1f) -Di liE N} also minimizes the maximal cost Fmax (1f) = max{'P(ti(1f) -D j ) I
i EN}. Consider two situations. In the first, the jobs have the parameters di, ti , Di and

are processed according to the sequence 1f' = (ii' i2 , ... , in), while in the second

situation, the jobs have the parameters d;', ti , D;' and are processed according to the
sequence 1f" = (im in-b'''' itJ. Let us find sufficient conditions for the maximal
latenesses to be equal in both cases.

It can be easily shown (for example, by induction with respect to I) that, in the first

situation, the completion time of a job i, is li,(1f') = max{li1_1(1f'), di,} +ti, =,
max{di + E t i Ik = 1, 2, ... , I}, where Ii (1f') O. Hence, in the first situation, the

k j=k) 0

I
maximal lateness is L';'ax = max{di

k
+j~/ij - Dill 1 s k sis n}. Similarly, in the second

,
situation, the maximal lateness is L';'~x = max{di; +j~/ij - D;~ 11 s k sis n}-

If the equality d~-D~ = d~'-D~' holds for any v and fl., 1 s v, fl. s n, then

L:aax = L:n~x'

Thus, if di = C - Di' and Di = C - di', i = 1, 2, ... , n, then in both cases, the maximal

latenesses are the same. Here C is an arbitrary constant.

In a number of cases, this observation allows the solution procedure for the problem

with di = 0, i = 1, 2, ... , n, to be extended to problems with d j ~ 0, i = 1, 2, ... , n.

In fact, consider the following Problem A. Let di = d;' ~ 0, Di = Di' = D,

<Pi(t) = <p(t-Di ), i = 1, 2, ... , n, where <p(x) is a non-decreasing function. Preemption in

job processing is forbidden. A precedence relation -+ with the reduction graph G is

defined over the set N = {I, 2, ... , n} of jobs.

It is required to find a,permutation 1f in the set Pn(G) of permutations (feasible with

respect to -+) which minimizes the function
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(3.4 )

Note that a special case of Problem A (D i = 0, I = 1, 2, ... , n, 'P(t) t) is the problem

of finding a time-optimal schedule.

Let us consider Problem B of minimizing function (3.4) over the set Pn(C'), provided

that di = d; = 0, Di = D; = D - d;', i = 1, 2, ... , n, and C' is the reduction graph of the

precedence relation ===> defined over the set N which is inverse to the order ~ (i.e.

1/ ===> P. if and only if p. ~ 1/).

Since for C = D the relations d; = C- D;' and Dj = C - d;', i = 1, 2, ... , n, hold, we

conclude that, if 1r(B)=(i" i z,... , in) is a solution of Problem B, then 1r(A) = (in>

in-I"", ill is a solution of Problem A. In particular, if C = (N, 0), then it follows

from the previous item of this section, that processing the jobs in non-decreasing order

of their due dates solves Problem B. Therefore, to solve Problem A, it suffices to process

the jobs in non-decreasing order of their release dates.

3.5. We now consider the problem of minimizing the maximal cost for processing n jobs on

a single machine assuming that the release dates are different, the values of t i and d i ,

i = 1, 2, ... , n, are rational and can be regarded as integers by choosing an appropriate

scale. Preemption is allowed. It is assumed that the cost functions 'Pi(t) are arbitrary

non-decreasing functions. The precedence relation ~ is defined over set N = {I, 2, ... , n}

of jobs. We look for an optimal schedule in the class of schedules that are feasible with

respect to ~.

Let the unit length time intervals starting at t = 0 be numbered by the integers

1, 2, .... Due to Theorem 1.1 (see Section 1 of this chapter), there exists an optimal

schedule which is either non-preemptive or preemptions happen only at the release dates.

Thus, it suffices to consider the schedules s(t) such that s(t) = const in each unit time

interval. In other words, in order to specify a schedule, it suffices to assign (obeying

certain conditions) one of the numbers 0, 1, 2, ... , n to each unit interval.

Let B°(i) denote the set of all direct predecessors of i in N (i.e., all those kEN for

which k ~ i and there is no j such that k ~ j and j ~ i). Define d i = d i if SO(i) = 0,
and, otherwise, define d i = max{d i , max{dk+tklk E B°(i)}. It is clear that the processing

of job i cannot start before (fi'

Let the jobs be numbered so that d, S dz S ... S (In' Define Ni = {k IkE N, k ~ i}. Let

T(s) denotes the makespan (i.e., the maximum completion time) for schedule s. The maximal

cost Fmax(s) for schedule s is calculated by formula (3.1).
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Lemma 3.1. There exists a schedule s* which minimizes both T( s) and Fmax( s) such that

T(s*) = max{;t;+ Ltkli E N}
keNj

Proof. Note that max{d;+ E tkli E N} is the time before which the processing of all jobs
keN j

of set N cannot be completed. Therefore, if, for some schedule s, the equality
T(s) = d;+ E tk is obtained for a certain i E N, then s is a schedule with the smallest

keN i

T(s).

Let s' be a schedule with the smallest value of FmaxIs). If s'(t) 'F 0 holds for all unit

intervals with the numbers d l + I, d l +2, ... , T(s'), then s' is the desired schedule s*.

Suppose that for some of the above intervals sOrt) = 0 holds. Among these intervals
choose the one with the largest number T. If there is such a job i E N that d; = r and the

processing of all jobs 1, 2, ... , i-I is completed before the time r, then T(s') =

d; + E tk and s' is the desired schedule s* Otherwise, schedule s' can be transformed into
keNi

the schedule SOO such that s'(t) = SOO(t) in the unit intervals with the numbers 1, 2, ... ,

r-l and SOO(t) 'F 0 in the interval r. Moreover, T(sOO) $ T(s') and Fmax(sOO) = Fmax(s').

In fact, if there is no such i E N that d; = r, then we may define SOO(t) = s'(t) in all

intervals except rand r+ 1, while defining SOO(t) = s'(t+ 1) in the interval rand

SOO(t) = 0 in the interval r+ I. Suppose that d; = r for some i E N and there is such a job

j that dj < r and the processing of job j is completed in the interval with the number

r' > T. If there are several such jobs, then the one with the smallest number may be

chosen as job j. Define SOO(t) = s'(t) in all intervals besides rand r', while defining

SOO(t) = j in the interval rand SOO(t) = 0 in the interval r'.

It is clear that, in any case, schedule SOO is feasible, and, besides, T(sOO) $ T(s')

and Fmax(sOO) = Fmax(s').

Repeating these considerations finitely many times, we either conclude that s' is a

desired schedule s* or obtain a schedule SO such that Fmax(so) = Fmax(s'), sO(t) 'F 0 in

the intervals with the numbers r, r+ 1, ... , T(s') -1 and sO(t) = 0 in the interval with the

number T(s') and in the subsequent intervals, i.e. T(so) < T(s'). This proves the lemma.

It follows from Lemma 3.1 that the search for a schedule which minimizes function

Fmax(s) can be restricted to considering the class of time-optimal schedules. A schedule

s* which minimizes both T(s) and FmaxIs) is called optimal.

For an optimal schedule, the makespan is equal to

T = max{d;+ L tkli E N} (3.5)
keNj
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Let l denote the largest i E N for which the maximum is achieved in (3.5). Suppose that

u E N, and
tpu(T) = min{tp;(T) liE N'}. (3.6)

For a time-optimal schedule, the makespan for the jobs of set N\u is given by

1" = maX{d; + Ltkli E N\U} (3.7)
keN; \u

Along with the initial problem, consider the following reduced scheduling problem. If

tu ~ T - 1", delete job u from set N. If tu > T - 1", then job u is given a new processing

time equal to t~ = tu- (1' - 1") and a new cost function \O~(t) = -W, where W is a sufficiently

large number. Leave the parameters of other jobs unchanged. Let s' be an optimal (i.e.

minimizing both T(s) and Fmax(s)) schedule for the reduced problem. We show that

T(s') = 1".

In fact, if tu :0; 1'- 1", then T(s') = T by definition. Let tu > 1'- T. We have

1" = l' - (1' - 1") = d, + E tk+tu - (1' - T) = d,+ Etk+t~. It is obvious that T(s') ~ T. If
keN,\u keN,\u

T(s') = dj + E tk+t~ > 1" for some j ~ u, then by adding l' - 1" to both sides of this
keN j\u

inequality, we obtain dj + E t k > 1', which contradicts (3.5). If 1'(8') = dj + E tk > 1" for
keNj keN

j

some j > u, then dj + E tk > 1", which contradicts (3.7). Therefore, 1'(s') = 1".
keN j\u

Theorem 3.2. Let s' be an optimal schedule for the reduced problem and Tn = max{du,

1"}. Then a schedule s such that s(t) = u in the interval (Tn, TJ and s(t) = s'(t) in

other intervals is an optimal one for the initial problem.

Proof. We show that among optimal schedules for the initial problem there exists a

schedule 5 such that s(t) = u in the interval (Tn, TJ.

Suppose that 1" :0; du, Le., for any job i E N\u the inequality d;+ ~ t k :0; du holds.
keN;\u

Hence, du = du and d;+ E tk :0; du+tu for any i E N, Le., l' = du+tu' Therefore, for any
keNi

schedule s such that T(s) = 1', we have s(t) = u in the interval (dm TJ.

Suppose that 1" > duo Consider a schedule s optimal for the initial problem and such
that s(t) oF u in the unit interval with the number q, q > T', and s(t) u in the

intervals with the numbers q+ 1, q+2, ... , T. The case q = T is also possible.

Note that tu ~ 1'-1", since otherwise 1"+tu < 1', which contradicts (3.5) due to the

inequality du < 1". Therefore, there exists an interval with the number p, p < q, in which

s(t) = u. Here, p can be chosen in such a way that s(t) oF u in the intervals p+l, p+2, ... ,

q-l.
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Since the maximum in (3.5) is attained at I ~ u we have sIt) oF 0 in the interval (dl! T]

and, hence, in the interval (p+ 1, q] as well. Among the jobs processed in the time

interval (p+ 1, q] choose the job with the smallest number v. Note that dv < p, otherwise

dv+ [t k > T'. Let job v be completed at time r. It is clear that p < r ~ q.
keN v\u

We construct a schedule OS by defining OS (t) = v in the interval p, OS (t) = u in the
interval with the number r and OS (t) = 8(t) in other intervals. This schedule is feasible,

and, besides, T( OS ) = T(s) and Fmax( OS) ~ Fmax(s) because 'Pu(T) ~ 'Pv(T).

Repeating these considerations finitely many times, we obtain an optimal schedule 5 such

that 5(t) = u in the intervals q, q+ 1, ... , T. Thus, this is a desired schedule S.

The schedule s determines a schedule S' for the reduced problem (by defining s'(t) = 0

in the interval (T, TJ and s'(t) = s(t) in other intervals). If s' is an optimal schedule

for the reduced problem, then for schedule s for the initial problem such that sIt) = u in

the interval (TOO, T] and s(t) = s'(t) in other intervals, the following holds:

Fmax(s) = max{Fmax(s'), 'Pu(T)} ~ max{Fmax(s'), 'Pu(T)} = Fmax(s). This proves the theorem.

3.6. An algorithm for finding an optimal schedule s* follows directly from Theorem 3.2.

In each step, calculate T by formula (3.5), find job I with the largest number among the

jobs for which the maximum is attained in (3.5), and job u E Nj for which (3.6) holds.

Find T by formula (3.7) and compute T' = max{du, T}. Define s*(t) = u in the interval
(TOO, T] and formulate the following reduced problem: if t u ~ T - T, then delete u from N,

if tu > T - T, then define the cost function 'Pu(t) = -IV in the interval (0, Tl and set the
processing time of job u to be equal to tu - (T - T). Co to the next step, and so on, until

N = 0 is obtained. Define s*(t) = 0 in all intervals for which s*(t) is not yet

determined.

It is clear that schedule s* is found in a finite number of steps. Moreover, as shown

below, the number of steps in the algorithm is at most 2n-1.

We now show that the running time of the algorithm for finding an optimal schedule s* is

O(n2 ).

For each i E N, finding the set BO(i) and computing d; requires at most O(n) time. Thus,

for all i E N, this takes O(n2 ) time.

It is clear that, in each step of the algorithm, computing T, T, Too and finding job I

takes O(n) time. Finding set Nj, as well as finding and deleting job u E Nj can be done in

O(n) time (s-ee Section 1.4 of Chapter 1), provided that the computation of the cost

function value requires a constant time.

We now show that the number of steps in the algorithm is at most 2n -1. First, we show
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that, if, in schedule s*, preemption happens at time t', then t' = di for some i E N.

Consider an arbitrary step r of the algorithm. Let N be a set of jobs to be considered

in this step, and let Ir and Ur be the jobs I and U found in this step. Assume that T and

T' are calculated by formulas (3.5) and (3.7), respectively. It is obvious that in the

interval (d,r, T) only the jobs of the set Nlr are processed. If t
Ur
$ T - T', then job ur

is processed in the time interval (T - t
ur

, T] with no preemption. Let t
Ur

> T - T' and j be

the job with the smallest number for which dj + E t k = T' holds. Then dj = d j , since,
keN j\u

otherwise, dk+tk = d j for some k E SOU), k < j, and dk+ E t; = r. Note that du < d j
ieN

k
r

(otherwise, it follows from T'+tu > T that dj + E tk > T, which contradicts (3.5)) and,
r tEN

j
hence, Ur ~ Nj . It is evident that in the interval (d j , r] only the jobs of set N j are

processed. Therefore, the processing of job Ur is interrupted.

We show that this interruption takes place at time dj . In fact, in step r, define

'Pu (t) = -W in the interval (0, T'] and, therefore, the inequality
T

(3.8)

holds for all i E N'r\Nj . Having performed a certain number of steps of the algorithm

(Le., having found a schedule for processing the jobs of set Nj in the interval

(dj , Tl), we obtain the reduced problem for which the set iii of the jobs still to be
processed coincides with N\Nj . In the next step, we obtain T = dj . Taking into account

(3.8) and the fact that in the interval (dz, dj ] only the jobs of set N'T\Nj can be

processed, we conclude that, in this step, job Ur is chosen as job u, i.e. s*(t) = u
T
in

the interval with the number dj . Thus, the processing of job U is interrupted at time dj .

Any job processed with preemption in schedule s* can be given similar consideration.

Thus, if, in schedule s*, there is a preemption at time t', then t' = d; for some i E N

and, hence, the total number of preemptions does not exceed n - 1. Since job n is processed

with no preemption, it follows that the number of steps in the algorithm is at most

2(n-1)+1 = 2n-1.

Thus, the running time of the algorithm for finding schedule s* is O(n2 ).

3.7. We now consider some special cases of the problem of minimizing the maximal cost.

Let the cost functions 'P;(t) be such that for any v, J.l E N, either 'Pv(t) $ 'PJl(t) holds for

all t E (0, T] or 'Pv(t) ~ 'PJl(t) holds for all t E (0, T], where T is computed by formula

(3.5). Examples of the cost functions having this property are given in Section 3.3.

In this case, the running time of the algorithm is still O(n2 ) but computation the cost

functions in each step of the algorithm is not required. To see this, associate each job
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E N with an integer J(i) (called the job index) so that the relation I"v(t) ::; I"/,(t),

t E (0, T] implies J(v) ::; J(Il). In each step of the algorithm, finding a job u E N1 for
which (3.6) holds reduces to finding the job with the smallest index in the set N1. This
can be done in at most O(n) time.

One of the functions that has the required property is I";(t) = sign(max{t-D;, O}) (see

Section 3.3). Therefore, the proposed algorithm can be used for finding a schedule for a

partially ordered set of jobs that is feasible with respect to deadlines.

d;H; ::; £lith i = 1, 2, ... , n-l.

have T = dn - rt1 +tn - rt1 , r =

(c) Schedule s* is non-preemptive if I";(t) I"(t-dil, i = 1, 2, ... , n, and I" is a

non-decreasing function. In fact, in this case, in each step, the Job with the

highest number is chosen as job u. Suppose that, in some step, r = dj + E t k holds for
keN j\u

some j E N. Then r H u ::; T (otherwise, T'+tu = dj + E tk > T which contradicts (3.5)).
keNj

Note that due to Lemma 3.1, the smallest value of T(s) corresponds to schedule s*,

therefore a time-optimal non-preemptive schedule can be obtained, for example, by setting

I";(t) = t-d;, i = 1, 2, ... , n.

If a precedence relation ---+ is not specified over set N, then d; = d;, i = 1, 2, ... , n,

and I";(t) = I"(t-d;) is a function of the flow time of job i. Thus, the smallest value of

the maximal job flow time and, therefore, of any non-decreasing function of this time is

achieved when the jobs are processed with no preemption according to the sequence (1,

2, ... , n). Recall that, in this case, we have dr S dz S ... S dn .
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This section considers a number of polynomially solvable single-machine scheduling

problems to minimize the total cost.

4.1. The jobs of set N = {I, 2, ... , n} are processed on a single machine. The release

date of a job i E N is d; ;:: 0, its processing time is t i > 0, and its due date is Di ;:: O.

Preemption in the processing of any job is allowed. Each job i E N is associated with a

cost function 'P;{t) that is non--<lecreasing (in the planning interval

It is required to find a schedule s* for processing the jobs of set N which minimizes

the function
n

FE{s) = L'P;{ti{S))
i=l

(4.1)

Here tits) is the completion time of a job i in schedule s. The schedule s* is called

optimal.

In the following, we consider the problems of finding optimal schedules if

(a) 'Pi{t) = Cl<;u;(t), where u;(t) 0 if t $ Di, Ui{t) = 1 if t > D;; Cl<i > 0, i = 1,
2, ... , nj it is assumed that d; and Di are related in the following way: if dv < dl" then

Dv $ DI" 1 $ v, J1 $ nj this problem is usually called the problem of minimizing the

weighted number of late jobsj

(b) 'Pi(t) are arbitrary (non-decreasing) functions, d; and D; are integers, and t; 1,

i = 1, 2, ... , nj

(c) 'P;{t) = 'P(t)+P;, I = 1, 2, ... , n, where 'P(t) is a non-decreasing function.

Note that the situation in which the jobs are simultaneously available (i.e., d; = 0,

i = 1, 2, ... , n) and (non-decreasing) cost functions belong to exactly one of the

following classes: (I) 'Pi{t) = Cl<it+Pi, (2) 'Pi{t) = Cl<iexP(yt)+P;, and (3) 'P;(t) = 'P(t)+P; is

considered in Chapter 3.

4.2. Consider the first of the problems mentioned above. Let d; and D; be such that for

all 1 $ v, J1 $ n, the condition dv < dl' implies Dv $ Dw Let the jobs be numbered in such

a way that the inequalities dl $ dz $ ... $ dn and D1 $ Dz $ ... $ Dn hold.

A schedule s with no late jobs exists if and only if the inequalities
I

L t; $ D,-dk (4.2)
i=k

for any 1 $ k $ I $ n (see Section 2.5 of this chapter).
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For a non-preemptive schedule determined by a permutation 1f

completion time of a job i j , j = 1, 2, ... , n, is given by

Chapter 2

(4.4)

t;.(1f) = max{di ., t i (1f)}+t;., ti (1f) = O. (4.3)
) ) )-1 ) 0

For N' ,;; N, let rr;" denote a permutation of the elements of N' in which the jobs are

sorted in numerical order. If the jobs are processed according to the sequence rr;, = (1,

2, ... , n), then it follows from (4.3) that

t/(rr;,) = max {dk + itt;11 5. k 5. I}

for all I = 1, 2, ... , n.

Comparing (4.2) and (4.4), we come to the following conclusion,

A schedule s with no late jobs exists if and only if for the sequence rr;, the

inequalities t,(rr;,) 5. D, hold for all I = 1, 2, ... , n.

Therefore, if in the sequence rr;, at least one of the due dates is violated, then there

is no schedule (either preemptive or non-preemptive) without late jobs.

Let s be some schedule for processing the jobs of set N, and R be a set of late jobs,

i.e., jobs which are completed after their due dates in schedule s. Let R' denote a set of

late jobs assuming that the jobs are processed according to the sequence (rr;,'R' 1fR) where

1fR is an arbitrary permutation of the elements of R.

We show that R' s;; R. Let us find a schedule 5 for processing the jobs of the set N\R

assuming s(t) = 0, if s(t) E R and, otherwise, setting s(t) = s(t). It is obvious that in

schedule 5, all jobs of set N\R are completed by their due dates. Therefore, there are no

late jobs if the jobs are processed according to the sequence rr;,'R' i.e. R' ,;; R.

Let 'Pi(t) = O';u;(t), where u;(t) = 0 if t 5. Di , u;(t) = 1 if t > Di ; 0'; > 0, i 1,

2, ... , n. If R is the set of late jobs schedule s, then FE(S) = L O'i'
ieR

If s* is an optimal schedule and R* is the set of late jobs in this schedule, then a

schedule 5 determined by the permutation (rr;"R*' 1l'R*) is also optimal for any sequence 1l'R*

of the elements of set R*.

In fact, if R is a set of late jobs in schedule 5, then R ,;; R* and FE( 5) = L O'i 5.
ieR

L 0'; = FE(s*).
i eR*

Thus, in the case under consideration, to find an optimal schedule, it suffices to find

a set R* s;; N with the smallest value of f( R) = L 0'; such that the processing of the jobs
ieR

of set N\R* in numerical order does not imply violation of the due dates. Such a set R* is

called optimal. In general, there may be several such sets: R7, R;, ... , R:. Denote
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H* = {R~, R;, ... , R:}.

In the following, along with the original problem of finding a set R*, we consider the

reduced problems derived from the original one by removing a certain subset of jobs.

Let R c R; E H* and 7?* be an optimal set for the reduced problem obtained from the

original one by removing the set R of jobs. Then the set R' = R u 7?* is optimal for the

original problem, i.e. R' E H*. In fact, none of the jobs in set N\R' is late if they are

processed according to the sequence rr:.\R', and

f(R') = f(R)+f(R*) :'0 f(R)+f(R;\R) = f(R;).

Let 1T = (it, i z,... , i k), and T(1T) denote the completion time of job ikl assuming that

the jobs of the set {ii' i z,... , i k} are processed according to the sequence 1T. Let 1T\iv,

1 :5 v :5 k, denote the permutation obtained from 1T by removing an element iv, i.e., Let

1T\iv, 1 :'0 v :'0 k, denote the permutation obtained from 1T by deleting an element iv, i.e.,

1T\iv = (ii' i 2,···, iV-I, iv+l , .. ·, ik ). Similarly, 1T\N' is the permutation obtained from

1T by deleting the elements of a set N' ~ {1T} = {ii' i2, ... , i k}.

Theorem 4.1. Let rr= (1, 2, ... , n), tj(rr) :'0 Dj , j = 1, 2, ... , k -1, tk(rr) > Dk and

1T = (1, 2, ... , k). If there exists such a fl, 1 :'0 fl :'0 k, that T(1T\fl) :'0 T(1T\V) and Oil' :'0 Oiv

for all 1 :'0 v :'0 k, then there exists such an optimal set R* that fl E R*.
Proof. Note that in the case under consideration, any optimal set R* E H* contains at

least one job v, 1 :'0 v :'0 k.

We prove the theorem by induction with respect to the number of jobs n. It is obvious

that for n = 1 the theorem holds. Suppose that the theorem holds n :'0 no. We show that this

also holds for n = no+1.
1. Let H* = {R~, R;, ... , R:}. In each of the sets R7, choose the job with the highest

number B/. Define B = max{Bd 1 :'0 I :5 v}.

(a) Suppose that k < B. Delete the job B from set N. If the conditions of the theorem

hold for the original problem, then they still hold for the obtained reduced problem.

Since, in the reduced problem, we have n = no, it follows that there exists an optimal set

which contains job fl. Adding job B to this set, we obtain the desired optimal set R*.
(b) Let k = n. In this case, job n is the only late job in the sequence 1T = (I, 2, ... ,

n). We have T(1T\fl) :'0 T(1T\n) = t n _d1T) :5 Dn - 1 :5 Dn . Since Oil' :'0 Oiv for all 1 :'0 v :'0 n, we may

define R* = {ttl.

2. In what follows, we assume that B :'0 k < n.

Denote Zj(1TN') = max{O, t j (1TN') -Dj }, where j E N" ~ N. Define z(rr)
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k ::; j ::; n}.

Since, in the case under consideration, any optimal set R* is contained in {rr}, we have

T{rr) - T{rr\R*) z z(rr). On the other hand, if T{rr) - T(rr\R) z z{rr) for some set R ~ {rr} and

1: Qj = 1: Qi, then R E H*.
ieR ieR*

(a) Let k ::; n-2. Formulate a new problem obtained by deleting the jobs k+l, k+2, ... , n

from set N, followed by adding a new job k + 1 with dk+t = db Dk+t = T{rr), tk+t = z(rr) and
Qk+1 = lV, where lV is a sufficiently large number. Let N denote the obtained set of jobs.

It is obvious that, for any R* E H*, no job of the set N\R* is late if these jobs are

processed according to the sequence ~\R•. If R* is an optimal set for the new problem,

then 1:_ Qj = 1: Qi· Since Qk+t = lV, it follows that R* ~ {rr}. We have that
i eR* i eR*

tk+l{~\R*) = T(rr\R*)+tk+l = T(rr\R*l+z(rr) ::; Dk+1 = T(rr)

holds. Therefore, T(rr) - T(rr\R*) > z(rr). Thus, R* is an optimal set for the original

problem.

For the new problem, we have IWI = k+l::; n-l = no. If the theorem conditions hold for

the original problem, then they still hold for the new problem. By induction, there exists

a set R* which contains J1..

(b) Let k = n-l and zn_drr) z zn(rr). We have T(rr\J1.) ::; T{rr\{n-l))::; Dn- 2 ::; Dn_1 and

T(rr) = Dn _t +zn_t(rr). Hence, T(rr) - T(rr\J1.) z zn_,(rr) = z(rr). Therefore, we may set
R*={J1.}.

(c) Suppose that k = n-l and Zn_t(rr) < zn(rr). Let R* be some optimal set which does

not contain J1., and let y be a job in R* with the lowest number. Denote R = R*\y. To prove

the theorem, it suffices to show that the set R = R u J1. is optimal.

Since Q" ::; Q-y, we have 1: Qj ::; 1: Qj. Therefore the set R is optimal if T{rr\R) ::; Dn _t
ieR ieR*

and T{rr\R) ::; Dn . Since T(rr\J1.) ::; T{1T\{n-l)) ::; Dn _2 ::; Dn _ t and J1. E R, we have

T{1T\R) ::; Dn - t . It is obvious that T{rr\R*) ::; Dn . Therefore, we have only to show that

(4.5)

We show that, in the case under consideration, the inequality T(1T\J1.) ::; T(1T\Y) implies

(4.6)

(4.7)

which, in turn, implies

T{rr\{J1., r}) ::; T(rr\{y, r})

for any r E R.
Inequality (4.6) follows from the inequality T(rr\J1.) ::; T{1T\Y) and from the obvious
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relation T(if\v) = max{T(1T\V), dn } +tn valid for any v E {1T}.

If R = 0, then (4.6) gives (4.5), and the theorem is proved. Therefore, in the

following, we assume that R ~ 0 and, < k.

Let us prove that inequality (4.7) holds. We introduce the following notation:

,1(ir\i) = T(rr)-T(rr\i) and ,1(rr\i\i) = T(rr\i)-T(rr\{i, i}), i, i E {1T}. Define

b; = t;_drr)-d; for i 2, 3, ... , n, b~ = t;_l(rr\r)-d; for i ;:: r+2, and

b~+[ = tr_1(rr\r)-dr+1.

Note that b; > 0 for all i ;:: ,+ I (otherwise, deleting , from 1T does not affect the

completion times of jobs n-I and n and, hence" <t R*). The inequality T(1T\J.L) $ T(1T\(n-I))

implies that b; ;:: bn _1 and, therefore, b; > 0 for all i ;:: J.L+ l.

It is clear that

,1(rr\J.L) = min{ti"' min{b;iJ.L+I $ i $ n}},

,1(rr\,) = min{t" min{8;1,+1 $ i $ n}}.

It follows from (4.6) that

(4.8)

Note that b~ > 0 (otherwise, , <t R*) and b; > b~ for i ;:: r+l. Also, observe that br ;::

8~+u since

Suppose that r > max{y, J.L}. Then

,1(rr\r\J.L) = min{ti"' min{b;iJ.L+I $ i $ r-I}, min{b~lr+1 $ i $ n}},

,1(1r\r\,) = min{t" min{b;i,+1 sis r-I}, min{b~lr+1 sis n}}.

Denote a = min{ti"' min{b;IJ.L+I sis r-I}}, b = min{t" min{b;I,+1 sis r-I}},

e = min{b; Irs i $ n}, d = min{b~ Ir+ 1$ i $ n}. Then ,1(rr\J.L) =min{a, e}, ,1(rr\,) =min{b,
e}, ,1(rr\r\J.L) = min{a, d}, ,1(rr\r\Y) = min{b, d}.

Inequality (4.8) can be written as

min{a, e} ;:: min{b, e}. (4.9)

The inequalities b; > b~, i ;:: r+ I, and br ;:: b~+l imply e ;:: d. We show that, in this

case, the inequality

min{a, d} ;:: min{b, d}. (4.10)

holds. If e S a, then min{a, d} = d. If e > a, then it follows from (4.9) that a ;:: b,

hence (4.10) holds.

Inequality (4.10) implies ,1(rr\r\J.L) ;:: ,1(ir\r\,) and, therefore, relation (4.7) holds.
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Suppose that y < r < J1.. In this case

Chapter 2

Ll(rr\r\J1.) = min{tl" min{8~1J1.+1 ::; i ::; n}},

Ll(1T\r\t) = min{t-y, min{8;ly+1 ::; i ::; r-I}, min{8~lr+I ::; i ::; n}}.

Denote A = tl" B = min{t"Y' min{0;jy+1 ::; i ::; r-I}}, C = min{8;1J1.+l ::; i s n},

D = min{o;lr+I sis J1.}, E = on C = min{o~IJ1.+I::; i::; n}, D' = min{0~lr+1::; i::; J1.}.

Then

Ll(rr\J1.) = min{A, C}, Ll(rr\y) = min{B, E, D, C},

Ll(rr\r\J1.) = min{A, C}, Ll(rr\r\t) = min{B, D', C}.

Inequality (4.8) can be written as

min {A, C} ~ min{B, E, D, C}. (4.11)

It follows from OJ > o~, i ~ r + 1, that D > D' and C > C, while or ~ O~+l implies

E ~ D'.

We show that it follows from (4.11) that

min{A, C} ~ min{B, D', C}. (4.12)

In fact, if C S A, then C ~ min{B, D', C}. Otherwise, min{A, C} = A = min{A, C} ~

min{B, E, D, C} ~ min{B, D', C}.

Inequality (4.12) implies Ll(rr\r\J1.) ~ Ll(rr\r\y) and, therefore, relation (4.7) holds.

We now pass to the direct proof of relation (4.5). Delete job r from the set N. It is

obvious that set R*\r is optimal for the obtained reduced problem. Since IR* I ~ 2, we have

zn(n;\r) > O. If job n is the only late job, then Item (Ib) of this proof implies R* = {J1.,

r}. Suppose that zn-,(n;\r) > O. Inequality (4.7) implies T(n;\r\J1.) ::; T(n;\r\Y). It

follows from the latter inequality (see (4.6) and (4.7» that T(n;\r\{J1., r,}) ::; T(n;\r\{y,

r,}), where r t E R\r. The last inequality can be written as

Repeating similar considerations finitely many times, we conclude that relation (4.5)

holds. The theorem is proved.

Corollary 4.1. Let R c R* E H*, n;\R = (i" i2,· .. , ik, ... , ir), t;.(n;\R) ::; Dj , j = 1,
} }

2, ... , k-l, tjk(n;\R) > D;k and 7r = (ill i2 , .. ·, ik )· If there exists a J1., 1 S J1. S k, such

that T(7r\il') ::; T(7r\i v ) and O!j ::; O!j for all 1 ::; 1/ ::; k, then there exists a set R* E H*
I' v

such that R U il' ~ R*.

This statement directly follows from Theorem 4.1 and the above remark on the relation
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between optimal solutions of the original and reduced problems.
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4.3. In a general case, the search for an optimal set R* involves a large number of

variants. In enumerative solution methods, applying Corollary 4.1 can frequently reduce

this search. In this section, several special cases of the problem are considered for

which the set R* can be found as a result of systematic application of Corollary 4.1.

In these cases, the algorithm for finding the set R* is as follows. It is assumed, as

before, that for all 1 S v, J.l S n the condition dv < dp implies Dv S Dw Let the jobs be

numbered in such a way that the inequalities d l S d2 S ... S dn and DI S D2 S ... S Dn

hold. Define R = 0. In each step, find the first late job ik, provided that the jobs are

processed according to the sequence rr;\R = (i., i 2 , ... , iT)' If there are no late jobs,

then R* = R, otherwise, define 1f = (iI' i2, .. ·, ik ). In the situations considered below,

in each step of the algorithm a job i p can be found such that T(1f\ip ) s T(1f\iv) and

Qi S Qi for all 1 s v s k. Find this job, redefine R to be equal to R U i p and go toI' v
the next step. It is obvious that the number of steps in the algorithm is at most n. We

show that the running time of the algorithm is at most O(n2 ).

Numbering the jobs in such a way that the inequalities dl S d2 S

... s Dn hold (or verifying that this numbering is impossible) takes O(nlogn) time (see

Section 2.1 of Chapter 1).

In each step, the procedure for finding the job ik can be implemented as follows. Let u

and v be numbers of the jobs ik and iI" respectively, and a be a subsequence of 1f found in

the previous step. Let rr;\R = (ii' i 2 , ... , iT)' Compute ti.(rr;\R) for i j 2': u+l by formula
)

(4.3), assuming t i (rr;\R) = T(a\v) for i j = u+ 1 (in the first step, assume u = 0 and
)-1

tio(rr;\R) = 0). Comparing ti(rr;\R) and Di , i j 2': u+1, choose the first job, for which the
) )

inequality ti(rr;\R) > Di holds, as the job ik. It is obvious that finding jobs ik (in
) )

all steps of the algorithm) requires at most O(n) time.

Consider the procedure of choosing the job ill such that T(1f\i p ) s T(1f\iv) holds for all

1 S v s k. If k = 1, then ill = ik • If k > 1, the job i p can be found in k iterations. At

the first iteration, define p = iI' form two dummy sequences a l and a{, and define

T(a l ) = T(a{) = O. At iteration I, I = 2, 3, ... , k, define al = (ai-I' ir) and ai = (ai-I,

ii-d· Compute T(ar) = max{T(al_d, dil } +til ,and T(ai) = max{T(ai-d, d il _l
} +ti1_t' If

T(ar) > T(ai), set p equal to ill the sequence al equal to ai, and the value of T(ar)

equal to T(ai). It is clear that job p found after the kth iteration satisfies the

condition T(1f\p) s T(1f\iv ) for all 1 s v s k. Define i p = p. It is easy to verify that

finding job ii' in each step takes at most O(k) time, or at most O(n) time.
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Thus, in the case under consideration, finding an optimal set R* requires at most O(nz)

time.

(a) Consider the problem on minimizing the number of late jobs with the same release

dates. In this case, d, = dz = ... = dn = 0, "'I = "'2 = ... = "'n = 1.
Let the jobs be numbered in non-decreasing order of their due dates: DI ::; Dz ::; ... ::; Dn.

Since T(7r\iv ) = T(7r) - t iv ' 1 ::; v ::; k, it follows that the job i E {7r} with the longest

processing time t i has to be chosen as iV'

Example. Let N = {I, 2, 3, 4, 5, 6}, d i

and Di are given in Table 4.1.

Table 4 I

0, "'i 1, i 1, 2, ... , 6; the values of ti

The set R, the sequence tr:v\R = (ill iz,... , ir ) and the values of t ;.(tr:v\R) and Di .,
] ]

j = 1, 2, ... , r, for each step of the algorithm are shown in Table 4.2. This table also

contains the values of ik , 7r = (iI' iz,... , ik ) and ill obtained in each step. Note that,

in the second step, either job 3 or job 5 can be chosen as iJl' Here, we have chosen

ill = 3.

We have R* = {I, 3}. The schedules defined by the permutations 7r7 (2, 4, 5, 6, 1, 3)

and 7r; = (2, 4, 6, 3, 1) are optimal. There are two late jobs.
Table 4.2

Step

R o I , 3

;.N \ R= ( iI' i 2 • ... I i r ) 1 2 3

ti .1;N\R) 4 5 8 '0 13 I'
]

Di
j

1 5 6

i k

2 3 4 5

1 01 6 9 10

5 6 7 7 8

2 4 5 6

1 3 6 7

5 7 7 8

rr=( ii, i 2, ... I i k) ( I , 2, 3 ) I z , 3 , • , 5 )

In the case under consideration, finding an optimal set R* can be implemented in at most

O(nlogn) time by using balanced 2-3-trees for data representation (see Section 2 of

Chapter 1). Define the total pseudo-order ==> over set N in the following way: i ==> j if
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and only if t j ~ tj . In each step of the algorithm an ordered set {1r} is represented as a

balanced 2-3-tree. Then finding job i p (which is a maximal element with respect to =)

takes constant time; in fact, one elementary operation is required. Deleting job il' from

{1r} takes O(logn) time. Therefore, finding job i p in all steps of the algorithm requires

at most O(nlogn) time.

We show that constructing balanced 2-3-trees in all steps of the algorithm can be done

in at most O(nlogn) time. In the first step, constructing the tree takes O(n) time. Let u

be the number of job ik and N° be a set {1r}\il' found in some step of the algorithm. In the

next step, finding the set {1r} involves including jobs u+l, u+2, ... , v into set N°, where

v is the number of the job ik in this step. Obtaining the balanced 2-3-tree corresponding

to the set {1r} from the tree for the set N' can be done in O(njlogn) time, where nj = v-u.

Thus, representing the sets {1r} by the balanced 2-3-trees in all steps of the algorithm

requires at most O(nlogn) time.

(b) Suppose that d; = 0, i = 1, 2, ... , n, and, for any 1 s; i, j s; n, the condition

t; < t j implies 01; ~ OIj' Let the jobs be numbered in non-decreasing order of their due

dates, i.e., D, s; D2 s; ... s; Dn-

Since T(1r\iv ) = T(1r) - t jv ' 1 S; lJ S; k, it follows that the job i E {1r} with the longest

processing time t; and the smallest weight OIj has to be chosen as the job ill' In this

case, finding an optimal set requires at most O(nlogn) time.

(c) Consider the problem on minimizing the number of late jobs with different release

dates. As before, assume that the jobs are numbered in such a way that d1 S; d2 S; ... S; dn

and D, S; D2 S; ... S; Dn .

Since, in this case 01, = 012 = ... = OIn = I, it follows that for finding the job il' it
suffices to compute T(1r\iv) for all 1 S; lJ S; k and to choose the job with the smallest of

these values.

Example. Let N = {t, 2, 3, 4, 5, 6}, 01;

D; are given in Table 4.3.

Table 4.3

1, i 1, 2, ... , 6. The values of ti , d i and

; , 2 3 4 5 6

'j
, 2 2 3 2 ,

d; , 2 3 3 4 7

D; 3 4 5 7 8 9
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(1) Define R = 0. The sequence 7rZ\R = (ii' i2 , ... , iT) = (1, 2, 3, 4, 5, 6). To find the
job ik, compute td7rZ\R) by formula (4.3) and compare it with Di .: t l (7rZ\R) = 2 < D1,
-~ )--+ . }
t 2 (7l'N\R) = 4 = D2 , t 3(7l'N\R) = 6 > D3. Thus, Ik = 3 and 71' = (1, 2, 3).

For finding the job iI" we use the procedure described above when analyzing the running

time for constructing an optimal set R*. At the first iteration, we have p = 1,

171 = a; = (0), T(aJl = T(ai) = O. At the second iteration, 172 = (2), a; = (1), T(a2 ) = 4
and T(a;) = 2. Since T(a2 ) > T(a;), define p = 2, 172 = a; = (1) and T(a2 ) = T(a;) = 2. At
the third iteration 173 = (1, 3), a:i = (1, 2); T(a3) = 5 and T(a:il = 4. Since

T(a3) > T(a:i), define p = 3, 173 = a:i = (1, 2), T(a3) = T(a:i) = 4. Define il' = P = 3 and
R = {3}.

(2) We have R = {3}, 7rZ\R = (1, 2, 4, 5, 6), ik = 5, 1f = (1, 2, 4, 5) and il' = 4. Define
R = {3, 4}.
(3) If the jobs are processed according to the sequence 7rZ\R = (1, 2, 5, 6), there are

no late jobs. Therefore, R* = {3, 4} and the schedules specified by the permutations

1f; = (1, 2, 5, 6, 3, 4) and 1f; = (1, 2, 5, 6, 4, 3) are optimal. The number of late jobs

is 2.

(d) Suppose that the jobs can be numbered so that dl ., d2 .,

... ., Dm t l ., t2 ., ... ., tm ""I ;:: ""2 ;:: ... ;:: ""n'

In this case, while finding an optimal set R*, the job ik can be chosen as il" In fact,

""i
k

., ""i
v
and T(1f\ik ) ., T(1f) - t ik ., T(1f) - t iv ., T(rr\iv ), 1 ., v ., k-1.

As shown above, finding the jobs i k in all steps of the algorithm can be done in O(n)

time. Therefore, in the case under consideration, finding an optimal set requires at most

O(nlogn) time.

(el Suppose that the jobs can be numbered in such a way that d, ., d2 ., ... ., dm

D1 ., D2 ., ... ., Dm ""I ;:: ""2;:: ... ;:: ""n and ti" di+l-di , i = 1,2, ... , n-1.

In this case, T(rr\ik ) ., T(rr) - t ik , T(rr\ivl = T(rr) and ""ik ., ""iv' 1 ., v ., k -1. Therefore,

job ik can be taken as il" Finding an optimal set requires O(nlogn) time.

(f) Suppose that the jobs can be numbered so that D1 ., D2 ., ... ., Dm ""I ., ""2 .,

... ., ""m di = d;_I+t, 2(n-i)t ., t, ., 2(n-i)t+t, i = 1, 2, ... , n, do = 0, t > O.

In this case, we have

T(7l'\id = T(7l') - (til - t) ., T(rr) - (2(n-idt - t),

T(7l'\iv ) = T(rr)-t i ;:: T(rr)-(2(n-iv )t+t), 2., v ., k.
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Since il ~ i v -1, we have T( 7l"\i 1)

2 ~ v ~ k, it follows that the job i l

O(nlogn) time,

~ T(7l"\iv) for all 2 ~ v ~ k, Since ex; ~ ex; ,
1 v

can be chosen as iI" Finding an optimal set takes

4.4. Consider the problem of minimizing the total cost that differs from the problem

considered in Section 4.2 in the following: (I) d; = 0, i = 1, 2,.,., n, and (2) the jobs

of a given set Q S;; N must be completed before their corresponding due dates.

The cost functions are of the form 'P;(t) = exjU;(t), where u;(t) = 0, if t ~ D; and

Uj(t) = 1, if t > D;; ex; > 0, i ~ Q. It is required to find a schedule s* with the lowest

total cost, provided that jobs of set Q do not violate their due dates. Such a schedule is

called optimal.

Let the jobs be numbered in non-decreasing order of their due dates, If R* is a set of

late jobs in schedule s*, then, similarly to Section 4.2, a schedule s determined by a
permutation (rr;\R*, 7l"R*) is optimal for any sequence 7l"R* of the jobs of R*. Thus, the

problem reduces to finding such a set R* of jobs such that (a) R* S;; N\Q; (b) jobs of the

set N\R* processed in numerical order do not violate their due dates, and (c) for any set

R satisfying the conditions (a) and (b), the lowest value of f(R) = E ex; corresponds to
ieR

the set R*. The set R* is called optimal for the problem under consideration.

j
Let Q = {qll qz,"" qp}, where ql < qz < ... < qp' If E tq > Dq , for some 1 ~ j ~ p,

1=1 1 J

J
then the problem has no solution. Then, we assume that E tq ~ Dq , for j = 1, 2, ... , p.

1=1 1 J

way. Define D; = Dj for each job i,

job i, qj_1 ~ i ~ qj-1, where j = p,

Let us modify the job due dates in the following

qp ~ i ~ n. Define D; = min{D;, Dq - tq ,} for each
J J

p-1, ... , 1 and qo = 1.

Let us consider the reduced problem obtained from the original one by removing the jobs

of set Q, followed by making corresponding changes to the due dates for the remaining

jobs. Assign the due date Di to a job i E N° = N\Q in the following way. Define Di = V;

- j
for each job i, i < qt, Define Di = Dj - E tq for each job i, qj < i < qj+1l where

1=1 I
1 ~ j ~ p and qp+1 = n+ 1.

j
It can be easily shown that the condition E tq ~ Dq " j = I, ... ,p, implies that Di ~ °

1=1 1 J

for all i E N°, We show that, for the reduced problem, the relation D~ ~ D~ holds for

v < f-l. To do this, it suffices to show that D~ ~ D~, provided that job v directly precedes

job f-l in the sequence rr;..
Suppose that qj < v < f-l < qj+I' 1 ~ j ~ p. Then it follows from Dv ~ DI' that Dv ~ DI"
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and this implies D~ ::; D~. It is easy to verify that for 1 ::; v < J.l < ql' D~ ::; D~ as well.

Suppose that v < qj < J.l < qj+I' 1 ::; j ::; p. If j = 1, then D~ = Dy = min{Dy , Dql -tqJ.

If p > 1, then D~ = min{Dy , Dq -tq , Dq -tq -tq }. If p = 1, then D~ = min{Dy , Dq -t }.
I I 2 I 2 I ql

On the other hand, D~ = DI'-tql . If p > 1, then D~ = min{DI'-tql , Dq2-tql-tq/ If p = 1,
then D~ = DI' - tql . Since Dql ::; DI" we have D~ ::; D~.

If j > 1, then

{

j - 1

D~ = min Dy - L tq/,
1=1

If p = j, then

j j + 1 }
Dq - "tql , D -" t .J f..J qj+1 f..J q/

1=1 1=1

On the other hand,
J

D~ = DI' - Ltq(
1=1

If p > j, then

{

J j+1 }

D,: = min D" - " tq/, D -" tq .
~ ~ 1:-1 qj+l 1:-1 /

If p = j, then

j

D~ = DI'- Ltq(
1=1

Since Dq . ::; DI" we have D~ ::; D~.
J

Similarly, we can show that D~ ::; D~ for v < qj, qk < J.l < qk+l, 1 ::; j < k ::; p.

Since for the reduced problem, the inequality 0 ::; D~ ::; D~ holds for any jobs v, J.l EN',

v < J.l, it follows that this problem belongs to the class of problems considered in

Sections 4.2 and 4.3. In particular, if for the reduced problem the condition t y < tl'

implies ocy 2 ocl' for any v, J.l EN', then an optimal set can be found in O(n1ogn') time,

where n' = IN'I (see Item (b) of Section 4.3).

Theorem. 4.2. A set R' optimal for a reduced problem is optimal for the original

problem.

Proof. Let R* be an optimal set for the original problem. It is obvious that R* £; N'.
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To prove the theorem, it suffices to show that (a) ti(ii;'\R*) s 0i for all i E N'\R*,

and (b) ti(ii;\R') S 0i for all i E N\R'. In fact, relation (a) implies E OIi S E OIi,
ieR' ieR*

while the latter inequality and (b) imply optimality of the R' for the original problem.

(1) First, we prove that relation (a) holds. For any i E N\R* the inequality

ti(ii;\R*) S 0i holds, while for i, qj-l S i < qj -1, j 1, 2, ... , p,
k

ti(ii;\R*) S 0qk - E tql , j S k s p, is valid. Hence, ti(ii;\R*) S Vi, i E N\R*.
1=1

For a job i, i s ql-1, we have ti(ii;'\R*) = ti(ii;\R*) S Vi = Oi. For a job i,

qj < i < qj+l, we have that

j j

ti(ii;'\R*) = ti(ii;\R*) - L tql S Vi - L tql = 0i
I~I 1=1

holds. Therefore, ti(ii;v*) S 0i for all i E N,\R*.

(2) Now we prove that relation (b) also holds. The inequality ti(ii;v') S 0i holds for

any i E N,\R'. Therefore, for i EN', i < q" we have ti(ii;\R') = ti(ii;'\R') S 0i =

'Oi S 0i, while for i EN', qj > i > qj+1, j = 1, 2, ... , p, we have that

j j

ti(ii;\R') = ti(ii;v') + Ltq, S Oi+ Ltq, = 'OJ S 0i
1=1 1=1

holds.

We show that t q.(1i;\R') S Oq, j 1, 2, ... , p. If qj < i for all i EN', then
J J

j

tq(ii;\R') = L tq, S Oq.
J 1 = 1 J

Otherwise, let ~ be a job in N' with the largest number for which ~ < qj holds. Then

j j

tq/ii;\R') = t~(ii;'\R')+ Ltql S 0i+ Ltq(
1=1 1=1

If ( < qk for all k = 1, 2, ... , p, then 0i = D~ and
j j j

tq(ii;\R') S 'O~+ L tql S Oq.- L tq,+ L tql = Oq.
J 1=1 J 1=1 1=1 J

i-I j J i-I j

t q/1i;\R') S T\ - L tql + L tql S Oqj - L tql - L tql + L tq, = Oq{
1=1 1=1 1=1 1=1 1=1

Thus, we obtain ti(ii;\R') S 0i for all i E N\R'. The theorem is proved.

4,5. We now consider the problem of finding a schedule s* which minimizes (4.1),

provided that di are integers, t i = 1 and 'Pi(t),i = 1, 2, ... , n, are non-decreasing
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functions. Such a schedule is called optimal.

Since all t j = 1 and there exists an optimal schedule with no preemption at times

different from d j (see Section I of Chapter 2), there exists an optimal non-preemptive

schedule. A non-preemptive schedule s is specified the sequence 7r = (iI' i2, ... , in) of

jobs. In this case, the completion time for job i j is t j .(7r) = max{d j , tj (7r)}+I,
) } }-I

j = 1, 2, ... , n, where t io (7r) = O.
Let the jobs be numbered in non-decreasing order of d j • Without loss of generality,

assume d l = O. Let s be a schedule specified by the permutation :;r;. = (1, 2, ... , n), such

that s(t) #' 0 in the time intervals (ai' btl, (a2' b2J, ... , (ak' bkl, 0 = a l < bl < a2 <

b2 < ... < ak < bk> and s(t) = 0 outside these intervals. Let Nv denote the set of jobs

processed in an interval (av, bv], v = 1, 2, ... , k.

We show that there exists an optimal non-preemptive schedule 5 such that 5(t) E N v in

the interval (a v , bv ], v = 1, 2, ... , k, and 5(t) = 0 outside these intervals.

Let s* be an optimal non-preemptive schedule such that s*(t) #' 0 in the time intervals

(ai, bi], (az, bz],· .. , (ai, bi]' ai < bi < az < bz < ... < ai < bi, and s*(t) = 0 outside

these intervals. Let N~ denote the set of jobs processed in an interval (a~, b~], JJ- = 1,

2, ... , l.

Let the unit length time intervals starting from d 0 be numbered by the integers 1,

2, .... An interval B is of the form (B-1, B].

If a l < ai and s*(t) = 1 in an interval B, then construct a new schedule by defining

s'(t) = 1 in the interval 1, s'(t) = 0 in the interval 0 and s'(t) = s*(t) in other

intervals. It is obvious that FE(S') = FE(s*).

If a l = ai, then bi $ bl' If bi = bl, then Ni = NI . If bi < bl' then N; c N1 and s* can

be transformed into a schedule s" by defining s"(t) = j E N\\Ni in the interval (bi,

bi+1], s"(t) = 0 in the interval O' and s"(t) = s*(t) in other intervals. Here B' is an

interval such that s*(t) = j. It is obvious that FE(s") = FE(s*).

Repeating these considerations, we conclude that in a finite number of steps schedule s*

can be transformed into the desired schedule 5.

Thus, in the case under consideration, the problem of finding an optimal schedule is

decomposed into k subproblems of finding optimal schedules for the sets NI , N2,... , Nk of

jobs. For each subproblem v, all jobs of the set Nv are started and completed in the time

interval (av, bv], where av = min {d;j i E Nv}, bv = av +nv, nv = INv I, provided that these
jobs are processed according to the sequence:;r;. (I.e., in non-decreasing order of d j ).

v

We show that finding an optimal schedule for a set Nv of jobs reduces to solving a nvxnv

assignment problem. Without loss of generality, we assume that nv = n, av = d1 = 0,
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bv = n. Let Cie = 'Pi(lJ) for 8 = di +l, di +2, ... , n, and C,e = W for 8 = 1, 2, ... , di , where

W is a sufficiently large number. Introduce a variable Xie equal to 1 if job i is

processed in interval 8j otherwise, its value is O. We have
n n

minimize L L ciexie
i=1 e=1

subject to

(4.13)

n

L xie = 1, i
e=1

1, 2, ... , n, (4.14)

n

L xie = 1, 8 = 1, 2, ... , n.
i=l

(4.15)

Conditions (4.14) imply that each job i is processed in some unit interval IJ, 1 :<; 8 :<; n.

Conditions (4.15) imply that one of the jobs is processed in each unit length interval.

Assume that 'Pi(8) can be computed in a constant time (in fact, computing 'Pi(lJ) can be

viewed as an elementary operation). Then preparing the input for the assignment problem

(4.13)-(4.15) takes at most O(nz) time. Since an assignment problem can be solved in at

most O(n3 ) time (see, e.g., [58]), the original problem of finding an optimal schedule can

be solved in O(n3 ) time.

Remark 1. If the considered problem is supplemented with the condition that the

processing of each job i must be completed by the deadline Di , then in constructing the

assignment problem it suffices to define cie = 'Pi(lJ) for 8 = di +l, di +2, ... , Di and

Cie = W for 8 = 1, 2, ... , di and IJ = Di +1, Di +2, ... , n, where W is a sufficiently large

number.

Remark 2. Consider the following problem of minimizing the cumulative processing cost.

The jobs of the set N are processed on a single machine. For a job i E N, the release date

is di, its processing time is tij di and t i being integers. Each job is associated with a

non-decreasing function 7/!i(8), where 8 is the number of a unit length time interval.

Preemption is allowed at integer times. If a job i is processed in unit length time
'i

intervals IJI> 8z,.. ·, 8t ., then its processing cost is E 7/!i(8k ). It is required to find a
t k=l

schedule for which the cumulative cost for processing all jobs is minimal. This problem

reduces to the the one of minimizing the total cost considered above. In fact, each job i

can be considered as t i jobs of unit length, i(l), i(Zl, ... , i(li) Define d(jl = d i , let,
the cost function 'PiU)(t) be equal to 1/';(8) for t E (8-1, 8J, i E N, j = 1, 2, ... , t i .

4.6. To conclude this section, we consider the problem of minimizing the total cost for
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a single machine, provided that the cost functions are \OJ(t) = \O(t)+b j , i = 1, 2, ... , n,

where \O(t) is a non-decreasing function. It is again assumed that the release date of a

job i is d j ~ 0, its processing time is t j > 0, i = 1, 2, ... , n, and preemption is

allowed.

In the situation under consideration, there exists an optimal schedule with no

preemptions at times different from d j , i = 1, 2, ... , n (see Section 10f Chapter 2). We

show that it can be found by the so-called SIT ("shortest processing time") rule extended

to the case of different release dates.

The algorithm for constructing an optimal schedule can be described as follows. The

decision to start (or to resume) the processing of a job is taken either when a new job is

released or when the previous job is completed.

Let {d(l), d(2J, ... , d(v)} be a set of all pairwise-distinct values of d j , and

d(l) <d(2) < ... < d(v) < d(v+l) = W, where W is a sufficiently large number.

In the first step, define T = d(I), No = {il i E N, d j = d(1)} and s(t) = 0 for
o :0; t :0; d(1). In each step, there is a certain time T (e.g., assume d(u-I) :0; T < dIu),

2:0; u :0; v+1) and some set No of jobs. In set No, find a job I with the shortest processing

time, i.e., t, = min{t;ji E No}. Define s(t) = I for all T < t :0; min{d(u), T+t,}, and, if

T+t, < dIu) and INol = 1, define s(t) = 0 for all T+t, < t :0; dIu).

If r+t, > dIu), then add all jobs i E N with d j = dIu) to No, and let t, be equal to

t/-(d(u)-r). If either (a) r+t, < d(u) and INol = lor (b) r+t/ = dIu), then delete job I

from No and add all jobs i E N with d j = dIu). In any case, define r = dIu). If

r+t/ < dIu) and INol > 1, then delete job I from No and set r to be equal to T+t/. As a

result, we obtain a new time r and a new set No. Go to the next step. The scheduling is

completed when No = 0.

We show that the resulting schedule is the desired optimal schedule. The proof is by

induction with respect to the number v of different release dates.

Let v = 1, i.e., the release dates for all jobs are the same (without loss of

generality, assume that d j = d = 0, i = 1, 2, ... , n). In this case, there exists an

optimal non-preemptive schedule (see Section 1 of Chapter 2) that is specified by the

sequence rr* (ii' i2,···, in) of jobs. The completion time of a job ik is
k

tjk(rr*) = 2: t j • In the schedule constructed by the described algorithm, let the jobs be
p~l p

processed according to the sequence rr = (iI' i2"'" in)' It is clear that t jk :0; tjk+l ,

k = 1, 2, ... , n-l. If t iv > till +
1

and 7f = (i l ) iz , ... , iV_II iv +1, iv ) iv+2 ,"" in), then

tjk(iT) = tik(rr*) for k = 1, 2, ... , v-1 and k = v+2, v+3, ... , n, ti)iT) = tiv+l(rr*) and
tjv+l(iT) < ti)rr*). Since \O(t) is a non-decreasing function, it follows that the schedule
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determined by the sequence fi is also optimal. Repeating these considerations finitely many

times, we conclude that the sequence 11" determines an optimal schedule.

Suppose that this statement holds for v = V. We show that this also holds for v = V +l.

Let 05* be an optimal schedule. Without loss of generality, we may assume that it belongs

to the class of schedules with no preemption at times different from d(i), i = 1, 2, ... , v.

Let 05 be a schedule constructed by the algorithm described above.

If the total processing time of jobs with release dates equal to d(l) do riot exceed

d(2)-d(l) or s(t) = s*(t) in the interval (d{1), d(2)l, then by the induction assumption

we have Fz;(s) = Fz;(s*). In the following, it is assumed that s*(t) oF 0 in the interval

(d{1), d(2»).

Suppose that s(t) = s*(t) for all d(1) $ t $ T, s(t) = i for all T < t $ min{d(2),

THi}, s*(t) = j for all T < t $ min{d(2), T+tj } and t j > ti'

(1) Let THi ~ d(2). Find all time intervals in which either s*(t) = i or s*(t) = j. It

is clear that the total length of these intervals is ti+tj . Find a schedule 05° by setting

sOrt) = i or sO(t) = j in these intervals in such a way that the condition S°(tl) = i and

sO(t2) = j implies t1 < t2. In other intervals, define sO(t) = s*(t). Since ti < t j , we

obtain Fz;(so) = Fz;(s*). In the interval (d{1), d(2)J, we have sO(t) = s(t).

(2) Let T+t i < d(2). Find a new schedule s by setting s(t) = i in the interval (T, THil,

sit) = j in all intervals for which s*(t) = i, and s(t) = s*(t) in other intervals. Since

t j > ti' we obtain Fz;(s) = Fz;(s*).

Suppose that T+t j < d(2). Let by t the largest value of t E (d(I), d(2)J, for which

s(t) = j.

If t > THiHj , then find a schedule 5 by setting 5(t) = s(tHj-ti ) in the interval

(THi' t-(tj-t;)], 5(t) = j in the interval (t-(trt;), tj and 5(t) = s(t) in other

intervals. Again, we have Fz;(5) = Fz;(s).

If t = T+t j , then find a schedule 5 by setting 5 (t) = s(tHj-t;) in the interval (THi,

d(2)_(t j -ti )], 5(t) = j in the interval (d(2)_(t j -ti ), d(2)j and 5(t) = s(t) in other

intervals. It is clear that Fz;( 5 ) = Fz;( s).

If S(d(2») = k oF j and s(t) = k for some t > d(2l, then select all time intervals in

which either 5 (t) = j or 5 (t) = k. The total length of these intervals is equal to tjHk'

Find a schedule 05' by setting either s'(t) = j or s'(t) = k in the selected intervals in

such a way that the conditions s'(td = j and s'(t2) = k imply either (a) t l < t2 if

t j $ tk or (b) t l > t2 if t j > tk. For other intervals, define s'(t) = 5 (t). It can be

easily shown Fz;(s') = Fz;( s ).
In any case, we obtain a new optimal schedule which coincides with the schedule 05 in the
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interval (d(I), r+tiJ and has no preemption before the time d(2).

Repeating similar considerations finitely many times, we come to an optimal schedule 8

such that 8(t) = s(t) in the interval (d(I), d(2)]. Due to the inductive assumption, we

conclude that the schedule constructed by the described algorithm is optimal.

To implement some procedures of the described algorithm, we can represent the data using

the balanced 2-3-trees. In this case, an optimal schedule can be found in at most O(nlogn)

time.

Define a total pseudo-order ==? over the set N in the following way: i ==? j if and only

if t i $ t j . In the first step of the algorithm, represent the ordered set No ~ N as a

balanced 2-3-tree. This can be done in O(n) time (see Section 2.3 of Chapter 1).

The number of steps of the algorithm is at most 2n-1 since, in each step, at least one

of the following situations is occurs: (a) some job is completed; (b) a new job is added

to the set No. In each step, finding a job I E No with the shortest processing time (i.e.,

finding an element of the set No that is maximal with respect to ==?) requires one

elementary operation. Deleting job I from No or adding a new job to No takes at most

O(logn) time (see Section 2 of Chapter 1). Changing the processing time of the job I is

equivalent to deleting I from No, followed by adding I with a new processing time to No

(here we consider that the relation ==? is defined for a new element and any i E N, i ~ I).

This also takes at most O(logn) time. Hence, an optimal schedule can be found in at most

O(nlogn) time.

Example. Consider the problem of minimizing the total flow time for single-machine

processing. This problem is a special case of the problem of minimizing the total cost

(for <p(t) = t and bi = 0, i = 1, 2, ... , n) discussed in this section. Let n = 7, and the
processing times ti and the release dates di are given in Table 4.4.

Table 4.4

i 1 2 3 4 5 6 7

Ii 4 2 2 1 3 I I

di I I 4 7 7 II 15

We have d(I) = 1, d(2) = 4, d(3) = 7, d(4) = 11, d(5) = 15. Define d(6) = W, where W

is a sufficiently large number. The value of r and the set No for each step of the

algorithm are given in Table 4.5. This table also presents job I E No with the shortest

processing time, the values of s(t), and new value of t, obtained in this step (if the
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processing time of job 1 is changed in this step). The resulting schedule is presented in

Fig. 4.1.

Ta b 1 e 4. 5

Step T NO s ( , ) New tl

.,2 .!l(t)=O,O;Sl$lj S

s(t)=2,l<t:53
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1,5
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II 5,6
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s( t )=6, 11<t:::;12

.( 1)=5, 12<1~14;
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Fig. 4.1
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5. Identical Machines. Maximal Completion Time.

Equal Processing Times

Chapter 2

In this section we consider the problem of finding a time-optimal schedule for identical

parallel machines and a partially ordered set of jobs with equal processing times,

assuming that either the reduction graph of a precedence relation is tree-like or that

there are two machines.

5.1. The jobs of a set N = {I, 2, ... , n} are processed on M parallel identical machines.

All jobs have the same release dates (Le., d j = 0, i = 1, 2, ... , n) and equal processing

times. Without loss of generality, we assume tj = 1, i = 1, 2, ... , n, where tj is the

processing time of a job i. Preemption is forbidden. A precedence relation -+ is defined

over set N to determine a feasible job processing sequence. Let the reduction graph of

this relation be denoted by G. Let tj(s) be the completion time of a job i in schedule s.

It is required to find a feasible (with respect to -+) schedule s* for processing the jobs

of set N which minimizes the makespan (i.e., the maximal completion time of all jobs):

T(s) = max(tj(s) liE N}. (5.1)

The value T(s) is called the length of schedule s, and schedule s* is called a (time-)

optimal schedule.

Let the unit length time intervals starting at t = 0 be numbered by the integers 1,

2, .... An interval with the number B is of the form (B-1, B]. In what follows, we do not

distinguish between a job and the corresponding vertex of graph G. As before, N- and N+

denote the sets of all minimal and maximal (with respect to -+) elements of set N. For a

job i, let AO(i) denote the set of its direct successors, and let 8°(i) denote the set of

its direct predecessors. In graph G, h(i) denotes the height of a vertex i.

5.2. Let each connected component of the reduction graph G be an intree.

We describe an algorithm for finding a schedule that is feasible with respect to -+,

called the h-algorithm. A schedule found by this algorithm is called an h-schedule. We

show that an h-schedule is an optimal one.

The number of steps in the h-algorithm is equal to the length of an h-schedule. A step B

consists of at most M +1 iterations. At each of these iterations (except the last one), a
job is assigned to be processed in the unit time interval B. At the last iteration, the
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transition to the next step is performed. The total number of iterations is T(s) +n -1,

where T( s) is the length of an h-schedule.

First, define SL(t) = 0 for L = 1, 2, ... , M, ;:: 0 and consider all jobs of set N to be

unmarked. Set () = 1.

In each step (), the following iterations are to be performed. Find a machine H such that

SJl(()) = O. Choose a job j with the largest height h(j) among unmarked jobs of set N+.

Define sJl(t) = j in the interval (), mark job j, and go to the next iteration. If either we

fail to find machine H or all jobs of N+ have been marked, then delete the marked jobs

from N. If N '#' 0, increase () by 1 and go to the next step. If N = 0, then the h-schedule

s(t) = {SI(t), sz(t), ... , SM(t)} is constructed.

Let the vertices of graph G (i.e., the jobs of set N) be numbered as described in the

case of an intree in Section 1.4 of Chapter 1. Then, at each iteration of the h-algorithm,

the job with the highest number among the unmarked jobs of the set N+ can be chosen as the

job j.

Let A be the Jist of the jobs of set N sorted in decreasing order of their numbering. At

each iteration of the h-algorithm, choose the first unmarked element of list A belonging

to set N+ as the job j. The resulting schedule is called a A-schedule (schedules of this

type are also called list schedules). It is clear that a A-schedule found according to the

Jist A = (n, n-1, ... , 2, 1) is, at the same time, an h-schedule.

Example. Let M = 3, N = {1, 2, ... , 12}, ti = 1, d; = 0, i = 1, 2, ... , 12, and the

reduction graph of the precedence relation defined over N is shown in Fig. 5.1a.

10 11 1 z

-~I/- 8 /-

10 6

Machine 3
11 ! ! !

,.:::("\,/ Machine 2

1 z! ! 7 ! 4 !
Machine 1

! ! ! ! !

(a)
(b)

Fig. 5.1

The vertices of this graph are numbered according to Section 1.4 of Chapter 1.

We now construct the corresponding A-schedule. First, assume SL(t) = 0 for L = 1, 2, 3,

;:: O. The value of (), the set N+ for each step of the algorithm, as well as the set of

marked jobs (by the beginning of an iteration), the machine H and the job j for each

iteration are given in Table 5.1. This table also contains the values of sJl(t) obtained at
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each iteration. The resulting A-schedule is presented in Fig. 5.1b. Here T(s) = 5.

Table 5.1

Step 0 I 2

N+ 3, 5, 6, 9, 10, ", 1 2 3, 5, 6, 8, 9

It era t ion 1 2 3 4 I 2 3 4

Marked jobs - 12 11, 12 10, 11 , 12 - 9 8, 9 6,8,9

H 1 2 3 - 1 2 3 -

j 12 11 10 9 8 6

The value of '1 ( t)~ '2 ( t ) = '3 ( t )= '1 ( ,)= '2 ( t )= '3 ( t ) =

'H( t) for =12 =11 =10 =9 =8 =6

8-1<t$8

Step 0

2, 4

It era t ion

Marked jobs

H

5, 7 3,5,7 2, 4

The value

'H( t) fo r

8-I<tsO

of 'I(t)~ '2(')~ '3(')=

~7 =5 =3

'l(t)~ '2(')=

=4 =2

We show that finding a A-schedule takes at most O(n) time. It is assumed that the

vertices of the graph G are numbered as in Section 1.4 of Chapter 1, and the graph G is

represented in the following way. There are two one-dimensional arrays QB and S,4,. each

consisting of n elements. The number bk written in the kth position of the array QB shows

how many direct predecessors vertex k has, while the direct successor of vertex k is

placed in the kth position of the array S,4,'

The array QB is to be changed at each iteration. Let N( B) denote the set of the jobs

assigned to be processed in step B of the h-algorithm. Let no be an element of the set

N(B) with the smallest number. It is obvious that the set N(l) consists of the first M
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elements in the list A, which correspond to the zero elements of the array QB' If there

are less than M such elements, they all compose the set N( 1).

At each iteration of step B, choose the element of the set N(B) with the largest number

as the job j and delete it from N(B) (which corresponds to marking the job j). Find the

direct successor i of the job j in the position j of the array SA and decrease the ith
element of the array QB by 1 (which corresponds to deleting j from G). If the ith element

of the array QB happens to be zero and i > no, insert the job i into the set N( B+1). If,

when entering the next step B+1, we have IN( B+1) I < M, then scan the list A starting with

the element with the number no - 1, and insert the elements of that list, which correspond

to the zero elements of the array QB, into the set N(B+l) (trying to make that set

consist of M jobs, if possible). It is clear that if the data are represented in the

way described, then finding the schedule requires at most O(n) time.

5.3. As mentioned above, a A-schedule is, at the same time, an h-schedule.

Theorem 5.1. If the reduction graph G of the precedence relation -+ defined over set N

is an intree, then an h-schedule is a time-optimal schedule for processing the jobs of set

N.

Proof. Suppose that the theorem does not hold. Then for the given number of machines M

there exists the smallest (with respect to the cardinality) set N such that an h-schedule

s is not time-optimal. Let IN I = n, T( s) = T and T* be the length of the optimal scheduie

for processing the jobs of set N. It follows that T > T*.

Let r be the terminal vertex of the graph G. For any schedule s of the length T, only

job r is processed in the interval T. Hence, it follows that if sdt) ~ 0, L = 1, 2, ... ,

M, in the time interval (0, T-2], and sH(t) ~ 0 for some H, 1 :<; H :<; M, in the interval

T - 1, then schedule s is optimal (in this case, the jobs of set N\r cannot be processed

within less than T -1 time units).

Let No denote set N+ obtained by the step B, B = 1, 2, ... , T, of the h-algorithm. Since

s is not optimal, there exists a machine H such that sH(t) = 0 in some interval B', where

B' :<; T - 2. Therefore, at the last iteration of step B' all jobs of the set No, are marked,

and INo,1 < M. Since G is an intree, it follows that INo'+11 :<; INo,1 < M. Hence, in the

interval B'+1 (and, therefore, in the interval T - 2) at least one machine is idle.

Note that, for schedule s, job r is processed in the interval T, while all jobs processed

in the interval T -1 belong to the set BO(r). Among the jobs processed in the interval T - 2

there is a job which does not belong to the set BO(r) (otherwise, there would not be an
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idle machine in the interval T - 2). Therefore, there is a job r" processed in the interval

T - 2, such that r" E BO(r') holds for some r' E BO(r).

Let R = r U BO(r). It is clear that by defining si(t) = 0 if sdt) = i, i E R, and

si(t) = sdt) in other cases, we obtain an h-schedule s' for processing the jobs of set

N' = N\R. In this case, T(s') = T - 2, and the height of each job is two units less than

that for the initial problem.

The reduction graph G' of the relation -+ which corresponds to the set N' can be

transformed into a tree by adding a new vertex ;: and connecting the terminal vertices of

the graph G' with ;: by the arcs leaving these vertices.

We can obtain an h-schedule s" for processing the jobs of set N" = N' u r from the

schedule s' by setting s{'(t) = ;: and si'(t) = si(t) for L = 2, 3, ... , M in the interval

T -1 and si'(t) = si(t), L = 1, 2, ... , M, in other intervals. It is clear that T(s") = T-l

and IN"I $ n-l.

An optimal schedule s* for the jobs of set N has the length T*. Defining SL(t) = 0 if

s~(t) = i, i E R (except the case L = 1 and T*-2 < t $ T*-I), s,(t) = r in the interval

T*-1 and sdt) = s~(t) in other cases, L = 1, 2, ... , M, we obtain a schedule s for

processing the jobs of set N" having the length T* -1 < T -1. Therefore, the h-schedule s"

for processing the jobs of set N" where IN"I $ n-l is not optimal. We have corne to a

contradiction. This proves the theorem.

Corollary 5.1. If each of the connected components of the graph G is an intree, then an

h-schedule is a time-optimal schedule for processing the jobs of set N.

Proof. Let us add a new job r to the set N and assume that i -+ r for all i E N. The

reduction graph of the relation -+ specified on the set N uris an intree. Construct an

h-schedule s' for processing the set N u r. Due to theorem 5.1 this schedule is optimal.

In schedule s', the job r is processed last, say, in the time interval T. The jobs of set

N are processed in the intervals 1, 2, ... , T-1. Defining sdt) = 0 in the interval T and

sJ)t) = si(t), L = I, 2, ... , M, in other intervals, we obtain an h-schedule s for

processing the jobs of set N. This schedule is optimal, because otherwise schedule s'

would not be optimal. This proves the corollary.

Suppose that each connected component of the graph G is an outtree. Reverse the

orientation of each arc of this graph. As a result, we obtain the graph G' such that each

of its components is an intree. It is clear that the graph G' is the reduction graph of

the precedence relation which is the inverse of the initial one. Using the graph G', find

an h-schedule s'. Having found schedule s' (and, hence, having found its length T(s')),
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find a schedule s, by setting sL(t) silt) for t > T(s') and sdt) = si(t+T(s')-2e+l),

L = 1, 2, ... , M, for e -1 < t ::; e, e = 1, 2, ... , T(s'). The schedule s is called an

h-schedule. The lengths of schedules sand s' are equal, and the feasibility of s' with

respect to the graph G' implies the feasibility of s with respect to G (and vice versa).

Thus, the following statement follows.

Corollary 5,2. If each connected component of the graph G is an outtree, then an

h-schedule is a time-optimal schedule for processing the jobs of set N.

5.4. We now consider the case when the reduction graph G of the precedence relation --+

defined over N is an arbitrary circuit-free directed graph, but the number of machines

M = 2.

Let v = (VI' V2,... , vk) and Il (Ill' 1l2"'" Iltl be sequences of integers, and k,

~ O. If k = 0, the sequence V is empty. Sequence v is said to be lexicographically

smaller than sequence Il if: (1) there is such i, 1 ::; i ::; k, that for all j, 1 ::; j < i,

Vj = Ilj and Vi < Ili hold or (2) Vj = Ilj , j = 1, 2, ... , k, and k ::; I.

Let the vertices of the graph G be numbered in the following way. Assign number 1 to one

of the terminal vertices. Let numbers 1, 2, ... , j -1 be assigned and Q be a set of such

non-numbered vertices which have no non-numbered successors. For each vertex i E Q,

construct a sequence a(i) of all its direct successors (i.e., the jobs of a set AO(i)),

taking the elements in decreasing numerical order. Assign the number j to one of the jobs

i E Q with the lexicographically smallest sequence a(i).

Renumbering the vertices of the graph G in the described way requires at most 0(n2 )

time. Tn fact, suppose that the vertices of the graph G are numbered arbitrarily and G is

given by its adjacency matrix. Find all terminal vertices of the graph, and make the list

QA of n elements such that the number IAO(i) I is placed in the ith position. It is obvious
that this requires at most 0(n2 ) time. We show how to change the current vertex numbering

into the one described above.

Let Q be a queue of vertices ready to be assigned new numbers (these vertices are either
terminal or the new numbers have been assigned to all of their successors). At the

beginning, Q consists of all terminal vertices of a graph. Form the list L consisting of

vertices which have not been given new numbers but which have direct successors with new

numbers. Each vertex appears in the list L at most once. Initially, the list L is empty.

The algorithm for renumbering the vertices consists of n steps, each corresponding to

the assignment of a new number to some vertex. In each step, assign the next number to the



128 Chapter 2

first element in the queue Q. Suppose that this element is q. Delete q from Q. Adjust the

list L in the following way. Using the adjacency matrix, for each element i in the list L

verify whether i belongs to the set BO(q). If i E BO(q), mark this element in the list L

and in the adjacency matrix. Form a sequence L' consisting of two parts. In the first

part, arrange arbitrarily the elements of the set BO(q) which are not included in L (to do

this, scan the column q of the adjacency matrix and remove the marks from this matrix). In

the second part, arrange the marked elements of the list L (in the same order as in the

list L). Change the list L by deleting the marked elements and adding the sequence L' to

the rear of L. It is easy to check that, in each step, constructing the list L takes O(n)

time. In the list L, the elements i are arranged in lexicographically increasing order of

the sequences a(i). Here a(i) denotes the decreasing sequence of the numbers of those

direct successors of a job i which have been given new numbers (up to the step under

consideration); in particular, a(i) = a(i) if all direct successors of a job i have been

given new numbers. The described arrangement of the list L does not require the sequences

a(i) to be obtained as such.

For each job j E BO(q), reduce the number in the jth position of the list QA by one.

Scanning the list L from the front to the rear, choose such elements i that 0 is placed in

the ith position of the list QA, delete them from L and add them to Q. Having performed
this procedure for all jobs of the list L, we obtain a new list L, a new queue Q and go to

the next step. It is obvious that the running time of each step in the algorithm is at

most O(n) and, hence, numbering all vertices of the graph takes at most O(n2 ) time.

Example. Let the reduction graph of a precedence relation defined over set N be shown in

Fig. 5.2, and the initial numbering of its vertices is given by the letters A, B, ... , J.

'~Z'
A(f) 8(2) C(J~

Fig. 5.2
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D=6 GHI GIH GIH [GHH]= JGlIl
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J=7 GIll

G=8 IH

I~9 Ii

10 H=10
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The set of terminal vertices is {A, B, C}, and the Jist QA is of the form (0, 0, 0, 2,

1, 2, 3, 3, 2, 1). Initially Q= (A, B, C) and L = (0). For each step of the algorithm of

obtaining the new numbering of the vertices, Table 5.2 gives the new number of a vertex q,

set 8°(q), sequence L' where the marked elements of the list L are underlined, list L

(after being corrected as well as at the end of a step). This table also contains the new

values of the elements of the list QA obtained at the end of a step and the queue Q. The
number in position p in the list QA is denoted by [p], p = A, 8, ... , J. The new numbers of

vertices are shown in Fig. 5.2 (in parentheses).

5.5. We describe an algorithm for finding a schedule that is feasible with respect to -+

which is called (by analogy with Section 5.2) a A-schedule. Then we show that a A-schedule

is a time-optimal schedule in the case of two machines.

Suppose that the vertices of the graph G are numbered by the integers 1, 2, ... , n as

described in Section 5.4, and that A = (n, n-l, ... , 1).

The number of steps in the algorithm for constructing the A-schedule s is equal to the
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length T(s) of the schedule. In a step B, B = 1, 2, ... , T(s), a schedule in the interval B

is to be constructed, and the jobs assigned to be processed in this interval are deleted

from set N. For step B, let i and j be the jobs with the largest numbers in the sets N+

and N+\i, respectively. In the interval B, define s\(t) = i, and, if IN+ I > 1, define

S2(t) = j, otherwise, define S2(t) = o. Delete i from set N. If IN+ I > 1, then delete j as

well. If N '" 0, increase B by 1 and go to the next step. If N = 0, define Sl(t)

S2(t) = 0 for t > B. As a result, we obtain the A-schedule s(t) = {Sl(t), 52(t)}.

Finding the set N+ and deleting elements i and j from N requires at most O(n) time in

each step of the algorithm (see Section 1.4 of Chapter 1). Therefore, the running time of

the algorithm is at most O(n2).

Example. Let M = 2, N = {1, 2, ... , l7}, t i = 1, d j = 0, i = 1, 2, ... , 17, and the
reduction graph G of precedence relation defined over N is given in Fig. 5.3a. The jobs

are numbered by the algorithm described in Section 5.4. Note that the subgraph of the

graph G induced by the set of vertices {1, 2, ... , 1O} coincides with the graph considered

in Section 5.4.

II

(a)

Machine 2

16 11

I I I I
Machine 1

( b)

Fig. 5.3
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For each step (j of the algorithm, Table 5.3 gives the set N\ the numbers of jobs i and

j, as well as the obtained values of Sl(t) and S2(t). The constructed A-schedule is shown

in Fig. 5.3b.

Table 5.3

Step 0 I 2 3 4 5 6 7 8 9

+ 15. 16 , 17 7 I 15 14 9 I 13 11 I 12 8,10 4 , 5 , 6 1 1 2 , 4 1 , 3
N

i 17 15 14 13 12 10 6 4 3

j 16 7 - 9 II 8 5 2 I

s 1 ( t) for 8-1<t'58 17 15 14 13 12 10 6 4 3

s 2 ( t ) for 8 - 1 < t s.8 16 7 0 9 II 8 5 2 I

5.6. We now prove the following statement:

Theorem 5.2. A A-schedule is a time-optimal schedule for the two-machine processing of

the jobs of set N.

Proof. Let s denote the A-schedule found by the algorithm described in Section 5.5.

Suppose that, in schedule s, a job kEN is processed in the time interval 6k . Note that

if the job i is processed on the first machine and 6; ~ 6b then i > k. In fact, let

6; = (j and let No denote the set N+ obtained in the step (j of the algorithm. If kENo,

then i > k according to the procedure of constructing the A-schedule. If k ~ No, then

there exists a job I E No such that I - k. According to the procedure of A-scheduling, we

have i > I, and the numbering of the vertices implies that for any I and k such that

1_ k, I > k holds. Hence, i > k.

If sL(t) = 0 in the interval (j, machine L is said to processed a dummy job 0 in this

interval. Let iV be the set N of jobs with the dummy job 0 included.

Define the jobs Po, PI>"" Pm Pv E N, V = 0, 1, ... , u, rO, r l , , r u , rv E iV, V = 0,

1, ... , u, and the sets of jobs Po, PI"'" Pu, Pv c N, V = 0, 1, , u, in the following

way.

Let Po and ro be jobs processed in schedule s in the time interval T( s) on the first and

the second machine, respectively. Note that Po > roo Suppose that Pv-I, Pv-2,"" Po and

rv_I, rv _2,"" ro have been defined. Let rv denote such a job of the set iV that

rv < PV-I> 6,v < 6pv_I and there is no such job k E iV that 6,v ~ 6k < 6
PV

_
I
and k < Pv-I'

It is clear that the job rv is processed on the second machine (if the job i is processed
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on the first machine and ti; < ti
PV

_
1
' then i > Pv-d. Let Pv denote the job processed on

the first machine in the interval tirv (thus, tipv = tir) Suppose that the jobs Pu,

Pu-t> .. ·, Po and r u , r u _ I ,"" ro have been defined, and there is no job rU+ I (Le. either

tipu = 1 or k > Pu for all k such that tik < tipu )' For all v, 0 :5 v :5 u, define

Pv = {k E Nltipv+! < tik < tip) U Pv' Define also Pu = {k E Nltik < tip) U Pu'

The values Pv, rv and Pv, v = 0, 1, ... , u, for the schedule in Fig. 5.3b are shown in

Fig. 5.4.

Macltine 2

Machine I

p;l
16 !r3=7

L ..
17 13

II

12 10

p~l

s I r 1=2

I
ro=l

Fig. 5.4

We show that k -+ k' for all k E Pv and k' E Pv-I, V = 1, 2, ... , u.

First, we show that Pv -+ k' for all k' E Pv- I ' By definition of the job rv, for that

job the inequality rv < Pv-I holds, and k' ~ Pv-I holds for all k' E Pv- I . Consequently,

rv < k'. Let N denote the set N+ obtained by the step tir . The definition of a A-schedule
v

implies that rv is the job with the largest number in the set N\pv. Hence, for any

k' E PV- 1 it follows that k'~ N. Thus, Pr -+ k'.

Let k i' Pv' First, assume that k E P~. The definition of the set Pv implies that k > Pv'

Let a(k) and a(pv) be the sequences of all direct successors of the jobs k and Pv,

respectively, sorted in decreasing numerical order. The inequality k > Pv implies that

a(pvl is lexicographically smaller than the sequence a(k).

We show that the first IP~_II elements of the sequence a(pvl are jobs of the set P~-l'

In fact, for any k' E PV- 1 the inequality k' > Pv-l holds, and for any j such that

8j ~ ti
PV

_
I
the inequality Pv-I > j holds. Hence, the elements of set Pv-I have the largest

numbers among all the jobs processed after the interval 8pv' Since Pv -+ k' for all

k' E Pv-I, we have Pv ~ 8°(1) for all I E P~-t> and the first IP~-t1 elements of the
sequence a(pvl are the elements of set P~_I'

If the sequence a(pv) is lexicographically smaller than a(k), the condition k E 8°(1) is
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satisfied for any I E P~-I' Le., k -. k' for any k' E PV - 1'

Finally, if k 1" pv and k ~ P~, then k -- j for some j E P~, which implies k -. k' for

any k' E PV- 1'

Now, it can be easily shown that the A-schedule is optimal. For any k E Pv and k' E Pv~

where u ;:: v > v' ;:: 0, k -. k' holds, i.e., all jobs of the set Pv must be completed before

the jobs of the set Pv ' start. Each of the sets Pv , v = 0, 1'00" u, contains an odd

number of jobs. Let Pv include 2nv-1 jobs. Evidently, it takes at least nv time units to

process all jobs of set Pv, and for any schedule s (feasible with respect to -.) for

processing the jobs of set N, T(s);:: Env holds. Since T(s) = Env holds for schedule s,
v=Q v=o

this schedule is optimal. This proves the theorem.

Remark. As can be seen from the example below, in general, a A-schedule need not be

optimal if M 1" 2.

Let N = {l, 2, ... , 11}, M = 3, t; = 1, d; = 0, i = 1, 2'00" 11, and the reduction
graph G of the relation -. defined over set N be shown in Fig. 5.5. The jobs of set N are

numbered as described in Section 5.4.

Figure 5.6a presents the A-schedule s constructed by the algorithm described in Section

5.5, while Fig. 5.6b shows an optimal schedule s*. We have T(s*) = 4, T(s) = 5.

Fig. 5.5.

4

Machine 3 H Machine 3

10, 5 10:

Machine 2 Machine 2

1 1 ~ 8 11 i
Machine 1 Machine I

(a)
Fig. 5.6

(b)
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6. Identical Machines. Maximal Completion Time. Preemption

Chapter 2

In this section we consider the problem of finding a time-optimal preemptive schedule

for processing n jobs on M parallel identical machines. Polynomial algorithms are given

for the cases: (a) the set of jobs is not ordered; (b) the reduction graph of the

precedence relation is tree-like; (c) M = 2 and the reduction graph is arbitrary. In the

last two cases the job processing times are assumed to be commensurable.

6.1. The jobs of a set N = {I, 2, ... , n} are processed on M parallel identical machines.

The processing time of a job i E N is ti > O. All jobs have the same release dates.

Without loss of generality, we assume that the release date is d = O. Preemption is

allowed. It is assumed that preemptions do not consume time, and that their number is

finite.

The precedence relation --+ is defined over set N to specify a possible order of job

processing. The reduction graph of this relation is denoted by G = (N, U). If ti(s) is the

completion time of the job i in a schedule s, then T(s) = max{ti(s)li E N} is, evidently,

the maximal completion time for schedule s (the length of schedule s). It is required to

find a time-optimal schedule s*, i.e., a schedule which is the shortest among all feasible

(with respect to --+) schedules.

6.2. Suppose that the set of jobs is not ordered, i.e., G = (N, 0). Recall that

Section 2.3 of this chapter described the following packing algorithm for finding a

schedule for processing the jobs of set N = {I, 2, ... , n} on M parallel identical machines

in the interval (e', e"] subject to ti S ~ for all i E Nand E ti S M~ (here
ieN

~ = e"-e').

Let Jr = (it> iz,.'" in) be an arbitrary permutation of the elements of set N. In the

interval (e', e'+M~], define the function <7(t) assuming <7(t) i1 in the interval
k - 1 k

(e', e'+t i ], <7(t) = ik in the interval (e' + E ti ., e'+ E ti .], k 2, 3, ... , n, and, if
1 j=1 J j=1 J

E t i < M~, then <7(t) = 0 in the interval (e'+ E ti' e'+M~]. A schedule s(t) = {SI(t),
ieN ieN

sz(t), ... , SM(t)} for processing the jobs of set N is said to be found by the packing

algorithm if sL(t) = <7(t+(L-1)~) in the interval (e', e"] and sdt) = 0, L = 1, 2, ... , M,

outside this interval.

The running time for finding schedule s(t) is at most O(n), and the number of

preemptions in the resulting schedule is at most M-1.
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If the length T* of an optimal schedule is known, then the schedule s* can be found by

applying the packing algorithm in the interval (0, T*]. It is clear that the value of T*

cannot be less than TO = max{max{t;j i EN}, .E t;/M}. On the other hand, the packing
.eN

algorithm applied to the interval (0, TO] finds a schedule for processing the jobs of set

N with the length TO Thus, T* = TO.

We show that M -1 (the maximal number of preemptions for the schedule obtained by the

packing algorithm) is a tight lower bound on the number of preemptions in an optimal

schedule. In other words, there exists an instance of the problem under consideration such

that any optimal schedule contains at least M -1 preemptions.

Let N = {1, 2, ... , M+1} and ti = M for all i E N. The packing algorithm finds an optimal

schedule of length M +1 without idle machines in the interval (0, M+ 1]. It is obvious that
any optimal schedule does not allow idle time in this interval. Suppose that there exists

an optimal schedule s with a number of preemptions less than M - 1. Then at least two

machines (say, machines K and L) process the jobs without preemption. Furthermore, these

machines process some jobs k and I in the interval (0, M] without preemption. Therefore,

there are times t and ( such that M s t < ( s M+1, and in the interval (t, t'], machine
K processes some job i, while machine L processes job j. In the interval (t, t'], the

other M -2 machines can process only the jobs of set N\{i, j, k, I}, i.e., at most M-3

jobs. Thus, in the interval (t, t'], at least one machine is idle, and schedule s cannot
be optimal.

6.3. Let the precedence relation -+ be defined over set N of jobs, and G = (N, U) be the

reduction graph of this relation. Each vertex i of graph G is given the weight t i (i.e.,

the processing time of job i).

In the following, we do not distinguish between a job i E N and the corresponding vertex

of graph G. Since no misunderstanding arises, the concepts of the processing time t i of

job i and the weight t i of vertex i are considered to be equivalent. We also use, for

example, the expression "a schedule for the graph G" (instead of "a schedule that is

feasible with respect to -+ for processing the jobs of set N").

Throughout this section, it is assumed that all t i are commensurable, Le., there is a

real number w such that t i = liW, where I; are natural numbers, i = 1, 2, ... , n.

Let us consider the graph Gw = (Nw, Uw) obtained from G by replacing each vertex i E N

by the chain of I; vertices ii, i 2 , ... , i'i' (i j _l , ij ) E Uw, j = 2, 3, ... , Ii' In this

case, we replace all arcs entering a vertex i of graph G by the arcs entering the vertex

i l in graph Gw , and the arcs leaving a vertex i, by the arcs leaving i, . in Gw . Notice.
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that all jobs of set Nw have equal processing times w.

1 2 II 12 13 2 1 2 2
~ • ~. ~. I • Je

3~4 3~41 42 43 44
~ . '. Je Je Je
(a) (b)

III 112 121 122 132 2 11 2 12 221 2 22
• Je '. Je '. Je Je I. -.

311 ~41 412 421 422 431 432 441 4422 I• ). J • '. '. '. J. I. '. J.
(c)

Fig. 6.1

In turn, each vertex of graph Gw can be represented as a chain of p vertices of eqilal

weight wlp. Let Gw / p denote the resulting graph. The graphs Gw and Gw / p corresponding to

the graph G in Fig. 6.1a are shown in Figs. 6.1b and 6.1c. Here t 1 = 7.5, t 2 = 5,

t3 = 2.5, t4 = 10, w = 2.5, and p = 2.
It is easy to see that non-preemptive schedules for each of the graphs Gw or Gw/ p are

(in general, preemptive) schedules for the graph G.

For a graph G, let T*(G) and f*(G) be the lengths of non-preemptive and preemptive

optimal schedules, respectively.

Theorem 6.1. For p = 1, 2, ... the relation

T*(G) ~ T*(Gw/ p ) ~ T*(G) Hip

holds where the value of c depends only on nand w.

Proof. Let s be a preemptive optimal schedule for graph G, and TI < T 2 <...< T m denote

the sequence of time moments at which at least one job is completed in this schedule.

Assume TO = O. For a k, 1 ~ k ~ m, consider the time interval [k = (Tk_l, TkJ. It is

obvious that all jobs processed in this interval are incomparable (with respect to _).

Suppose that the jobs processed in the interval h are ii, i2"'" ink' Let 81 denote the

total processing time of job il in this interval. Regarding it as a job with the
processing time 8[, I = 1, 2, ... , nk, find a schedule for processing the jobs ii, i2"'"

ink in the interval [k by the packing algorithm. Let s· be the schedule obtained by the

packing algorithm applied to all intervals h, k = 1, 2, ... , m. [t is clear that T(s') =

T(s).

For schedule s', let us call a time interval (t', t"] the assignment interval if in

this interval si.(t) = const, L = 1, 2, ... , M, and there exist both Hand Q, 1 ~ H ~ Q ~ M,

such that silU') "" sil(t'+8) and sQ(t") "" sQU"+8) for a sufficiently small 8 > 0 (i.e.,
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at times t' and t" another job is assigned to be processed). Since in schedule s' the

processing of a job is interrupted at most twice in an interval I k (or at most once if the

completion time of a job is Tk), there are at most 2n assignment intervals in an interval

lk'

Since there are no restrictions on the times of possible preemptions, the length of

subintervals of the processing of each job in the schedule s' need not be a multiple of

w/p. Let us increase (if necessarily) the length of each assignment interval so that it

becomes a multiple of w/p. The length of each interval h increases by at most 2nw/p,

while the length of the whole "schedule" increases by at most 2nzw/p. Here, we use the

quotation marks to point out that the processing of each job i may take longer than is

actually necessary (more than the processing time til. We call this new "schedule" an
extended schedule.

If t; = l;w, then job i is processed in the extended schedule at least within liP

subintervals of the length w/p. Let ii, i z,"" il;p be the vertices of the graph Gw / p

which correspond to job i. Let us find a (non-preemptive) schedule s for the graph Gw / p

such that the jobs ii, iz,... , i'i P are processed in the first liP intervals in which

job i is processed in the extended schedule. In the remaining intervals of processing

job i the relation SL(t) = 0 holds for all appropriate L. We have T(s) :s T(s')+2nzw/p.

It is obvious that T*(Gw / p ) :s T(s) and, hence, T*(Gw / p ) :s r*(G)+2n zw/p.

An optimal non-preemptive schedule for the graph Gw / p is some schedule, presumably a

preemptive one, for the graph G. Hence, r*(G) :s T*(Gw / p )' This proves the theorem.

This theorem allows us to approximate with any desired accuracy (by choosing an

appropriate p) an optimal preemptive schedule for G using an optimal non-preemptive

schedule for Gw / p with equal weights of vertices.

6.4. We now introduce the concept of a schedule for the machine-sharing processing of

jobs.

Consider a system of M parallel identical machines as a processing system which uses

total power M. Assume that at any time some power a(i), 0 :s ali) :s 1, can be used in the
processing of a job i. In this case, the total power to be used at each time cannot exceed

M.

In the situation under consideration, a machine can process more than one job at a time

and uses some portion of its power for each job (machine sharing). A job i is processed in

a time interval (t', t'1 if and only if at each time t E (t', t'1 non-zero power is to

be used in the for processing of this job. It is assumed that the processing of each job i
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can be defined by specifying a finite number of time intervals such that the power to be

used in each interval for processing job i is constant.

Let 61, 6z,... , 6/ be the lengths of all time intervals in which a job i E N is

processed, and c<!(i), c<z(i), ... , c</(i) be portions of power to be used in the processing
I

job i in these intervals. Then the relation [C<k(i),\ = t i holds.
k=!

Without going into formalities, a machine-sharing schedule Sex is a sequence of time

intervals such that for each of them a set N' ~ N of jobs together with portions of power

to be used in this interval for processing each job of the set N' are indicated. In

particular, the case N' = (1) is possible.

It is assumed that the number of mentioned intervals is finite, the total power to be

spent in each interval does not exceed M, and assigning the new portions of power happens

at the left end of an interval. In the schedule Sm preemption is allowed in processing

each job, and precedence constraints must be satisfied (if i -+ j, then in schedule Sex the

processing of job j starts only after job i is completed).

As usually, for a schedule Sm the length T(sex) denotes the time taken to process all

jobs. Since the jobs are processed since the time t = 0, T(sex) is in fact the completion

time of the last job. A schedule s~ of the shortest length is called optimal (or

time-optimal) schedule.

Z
5
3

Z t
5-
3

Z
4
3

! I Z
3- 4 4- 4-
3 3 3

!
3
3

(b)

!
Z
3

ex(Z)=4/7
ex( Z) I/Z

lex(! )=1
ex(3 )~4/7

ex( 6 )=11
ex( 3) -I/Z

ex( 4 )=6/7 ex(5)=3/4

(c)

Fig, 6.2

For the graph G shown Fig. 6.2a, one of the schedules Sex is given in Fig. 6.2b. Here
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M = 2. The sequence of intervals (0, 1], (1, 3~J, (3~, 4iJ, (4i, 5iJ, and (5i, 00)
corresponds to this schedule. In the interval (0, 1] job 1 is processed, and the power

allocated for its processing in this interval is 0«1) = 1. In the interval (1, 3;J, jobs 2,

3 and 4 are processed, and here 0«2) = 0«3) = ~, 0«4) = ~. In each interval, the total
7 7

power to be used does not exceed M = 2. Job 2 is processed in the intervals (1, 3i J and
(3 ~, 4': J . for this job, we have ~ X 2 ~ + ~ X 1~ = 2. Similar relations also hold for the
3 3 7 3 2 3

other jobs. The precedence constraints in job processing defined by the graph G are

satisfied. Processing is non-preemptive. The value of T(s",) = 5':.
3

Let S", denote the set of all machine-sharing schedules s"" while S denote the set of all

schedules s (in the usual sense) for processing the jobs of set N. In both cases,

preemption is allowed. Since each schedule s E S is at the same time a machine-sharing

schedule (the case o«i) = 1 for all i EN), we have S c S",.

We show that any schedule s'" E S", may be transformed into a schedule s E S such that

T(s) :s; T(s",), and this takes at most O(n2 ) time.

Let TO = 0 and 1', < 1'2 <...< T m be the times moments at which at least one job is

completed in schedule s"'. for a k, I :s; k :s; m, let us consider the interval I k = (Tk_l, TkJ

and the set Nk of jobs processed in s'" in this interval. It is obvious that the jobs of

set Nk are incomparable (with respect to --).

Let Yl, Y2,"" Y, be the lengths of the subintervals for processing a job j E Nk in the

interval I k, and the amounts of power to be used in the processing of job j in these
I

subintervals be O<l(j), 0<2(j), ... , o<,(j), respectively. The value Llj = .E o<;(j)Yi may be
1=1

considered as an ordinary processing time of job j in the interval I k' Since O<i(j) :s; 1, we

have Llj :s; Tk+l - Tk' At any time, the total power does not exceed M, therefore, E Llj :s;
jeN

M(Tk+l-Tkl. Hence, we can construct a schedule s E S for processing the jobs of set Nk in

the interval I k by the packing algorithm. By "concatenating" the schedules for the

intervals I k , k = 1, 2, ... , m, we obtain the schedule s such that T(s) :s; T(s",). Since the

running time of the packing algorithm is O(n), it takes at most O(n2 ) time to transform a

given schedule s'" into a schedule s.

The schedule s found by the packing algorithm from the schedule s"" presented in

fig. 6.2b, is given in fig. 6.2c.

6.5. As follows from Section 6.4, the problem of finding a (time-) optimal schedule

s* E S reduces to the problem of finding an optimal machine-sharing schedule s~ E S",. In

this case T(s*) = T(s~), and finding s* from a known s~ requires at most O(n2 ) time.
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Let us describe an O(n2) algorithm for finding a schedule So< E So< and show that the

schedule So< is optimal at least when (1) the graph G is tree-like; (2) the graph G is

arbitrary but M = 2.

Let the weight of a vertex i of graph G be equal to the processing time t i of job i. The

weighted length of a path in graph G is the sum of weights of the vertices in this path.

Find the weighted lengths of all paths from a vertex i to the terminal vertices of graph

G. The largest of the found values is called the weighted height If(i) of vertex i. If

t i = t, i E N, then If(i) = th(i) where h(i) is the height of vertex i in graph G.

As before, N+ denotes the set of all maximal (with respect to -+) elements of set N. Let

us divide the set N+ into subsets N;, N;, ... , N~ of vertices with equal weighted heights,

and order these subsets in decreasing values of If(NZ), where If(NZ) is the weighted height

of the vertices in set NZ, k = 1, 2, ... , u.
Let m be the largest integer for which the relation

m

L INZI :-::; M (6.1)
k~\

holds. If IN; I > M, assume m = O.

We now describe the algorithm for finding a schedule sO<.

In the first step, set !.. = O. In each step, find the time t > t and assign the jobs of

the set N+ for processing in the time interval (!.., t) according to the following rule.

Each job i of the set UNZ is given power o«i) = 1. If E INZ I < M, then the remaining
k=\ k=\

m
power a = M - E INZ I is equally distributed between the jobs in the set N~+\, i.e., for

k=\
each i E N~+I the equality o«i) = alb holds where b = IN~+\I. For the other jobs define
o«i) = O. It is clear that a and b are integers and a < b.

Note that jf m = u, then o«i) = 1 for all i E N+. If m = 0, i.e., IN;I > M, then a = M

and o«i) = M/IN;I for all jobs i EN;.

Let us introduce a parameter T, 0 < T < 00, and define t: = t;-o«i)T provided that a

(constant) power is to be used for processing job i in the interval (!..' !.. +T]. It is

natural to interpret t: as the total processing time (for o«i) = 0) or the remaining

processing time (for o«i) > 0) of job i in the interval (!..+T, (0). If in the interval (!..'
!.. +T) we have o«i) = 0< for all i E NZ, then define IfT(NZ) = If(NZ)-O<T.

Let t denote the smallest value of !.. +T for which at least one of the following events

occurs: (1) t: = 0 for some i E N+; (2) either 1fT(N~) = 1fT(N~+d or 1fT(N~+d = f{T (N~+2)'

Finding t does not involve essential difficulties.
In fact, if m = u, i.e., if N~+\ = 0, then t = t +A where
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A = min{t;\i E kQINk}

and at time t event 1 occurs.

If m = 0, then t = ! +min{B, C}, where

B = min{btdali E N~+I}' C = b[H(N~+d-N(N~dJ/a.
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In this case, at time t either event 1 happens (if B < C), or event 2 (if B > C) occurs,

or both events take place simultaneously (if B = C).

If 0 < m < u and a = 0, then t = ! +min{A, D} where

D = b{H(N~)-H(N~+I)]/(b-a).

In this case, at time t either event 1 happens (if A < D) or event 2 happens (if A > D),

or both events take place simultaneously (if A = D).

Finally, if 0 < m < u, a > 0, then t = ! +min{A, B, C, D}. Here, event 1 takes place if

min{A, B, C, D} is equal either to A or to B, and event 2 occurs if min{A, B, C, D} is

equal either to C or to D.

Using the found value of t, we obtain the new processing times ti equal to t~ for

T = t - t and remove from N (i.e., from graph G) all jobs (vertices) with zero processing

times.

Again, denote the obtained set of jobs and the graph by Nand G, respectively, let t be

equal to the found value of t, and go to the next step of the algorithm. Finding a

schedule Sc< is completed when the current set N is empty.

Example. Let M = 3 and the graph G be a tree (see Fig. 6.3a).

c«6)=3/4
c« 3 )=1 / 2

c«7)~1 c« 2 )=1
c« 4 ) 1 / 2

c« 8 )=1
c« 7 ) 3/4

c« 5 )=1 c« 3 ) = I

c« 8 ) 3/4

c« 9 )=1 c«9)=3/4 c« 6 )=1 c«4)=1 c« I )=1 I
(a)

Fig. 6.3

(b)

5
9
6

5
10
6

I
12
3

5
12
6

The values of ti , i = 1, 2, ... , 9, are given in Table 6.1. Here w = 1/2.
For each step of the algorithm, Table 6.2 gives the set N+ = N; U N~ u ...u N~, the value

of m, the heights H(N~), H(N~+d, and H(N~+2)' the amount of power a«i) to be spent, as

well as time t and the current values of t;. At time t = 1/2, event 2 occurs (here T = 1/2,
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N + N+ { } N+ N+ T + liT +m = 1 = 7,8,9, m+1 = 2 = {6}, H (Nm) = 10 2 - 2 = 10, H (Nm+l) = 10 and, hence,
H

T
(N~) = H

T
(N~+tl). At time moments 9 ~, 12.!. , and 12 ~ event 1 occurs. At time 10 ~ , events 1

6 5 6 6

and 2 take place. The resulting schedule So< is shown in Fig. 6.3b. We have T(so<) = 12~.
6

Tab I e 6. 1

i 1 2 3 4 5 6 7 8 9

1 1 1 1 1
Ii 2 1 - 2 2 1 8 7- 7- 7-

2 2 2 2

Ta b 1 e 6.2

N+=

uN~

H(N

H(N

H(N

0« i

New

of

Step 1 2 3 4 5

Ntu {7,8,9}u {6,7,8,9}u {5,6}u{3,4} { 2 , 3 , 4 } {I}
u. , .N~ u{6}u{3,4} u{3,4}

1 0 1 1 1

ri;) 1 1
10- - 3 2 22

~+ 1)
1

10 10 2- - -
2

~+2)
1 I
2- 2- - - -
2 2

) 0« 7 )=o« 8)= 0« 6 )=o« 7)= 0« 5 )=o« 6 )=1, 0« 2 )=o« 3)= 0« 1 )=1

=0«9)=1 =0«8)=0«9)= 0«3)=0«4)=1/2 =0«4)=1

=3/4

1 5 5 1 5
- 9- (event I) 10- 12- 12-
2 6 6 3 6

(event 2 ) (events 1 and 2 ) (event 1) (event I)

1
values t 7 =t 8 =t9=7 l6=1 I l3=t4=1 2, t5=t6=0 12=13=14=0 11=0

Ii t 7 =t 8 =t 9 =0

6.6. We show that finding schedule So< takes at most O(n2 ) time.

The total number of steps in the described algorithm for finding So< is finite and is at

most O(n). In fact, while running this algorithm, event 1 may happen at most n times (as a

result of this event, at least one element is deleted from set N). Event 2 may also take

place at most n times (as a result of which the weighted heights of some vertices of graph

G become equal, these being reduced by the same value in subsequent steps).

The height of each vertex can be found by numbering the vertices as described in Section
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5.4 of this chapter (this takes O(nz) time), followed by computing H(i) for i = 1, 2, ...

by the formula H(i) = t;+max{H(j) Ij E AO(i)}, where AO(i) is the set of the direct

successors of vertex i. It is clear that finding the heights of vertices requires at most

O(nZ ) time.

Finding the set N+ can be implemented in at most O(n) time (see Section 1.4 of Chapter

1). Define the total pseudo-order =- over set N, assuming i =- j if and ·only if

H(i) ;:: H(j). Using a balanced 2-3-tree (see Section 2 of Chapter 1) to represent the set

N+, sort the jobs in this set in non-increasing order of H(i) (this takes at most

O(nrlognr ) time, where nr is the number of elements added to set N+ in step r). In each

step, finding the value of m by formula (6.1) and the sets UN~, N~+[, N~+z takes at most
k=l

O(n) time. It is clear that, in each step, computation of the values of t, the new values

of ti and f/(i) also takes at most O(n) time. Deleting an element from N and finding new

elements of set N+ can be done in at most O(n) time (see Section 1.4 of Chapter 1).

Thus, each step r of the algorithm takes at most O(n) +O(nrlognr ) time. Since the number

of steps does not exceed O(n), and O(n1lognd +O(nzlognz) + ... +O(nrlognr )+ ... does

not exceed O(nlogn), schedule S'" can be found in at most O(nz) time.

6.7. We show that in the case when graph G is an intree, the schedule S'" obtained by the

algorithm described in Section 6.5 is a time-optimaL schedule.

For the case when G is an arbitrary circuit-free graph and M = 2, the proof is similar.

The scheme of the proof is as follows. Given an initial intree T- with the weights of

vertices t; = Liw, where L; are natural numbers, i = 1, 2, ... , n, and w is a real number,

for any natural p one can construct a tree T;"/p such that each vertex i of T- is replaced

by a chain consisting of pL; vertices of equal weight wlp. For T;"/p, an optimal

non-preemptive schedule can be found by the h-algorithm described in Section 5.2 of this

chapter. Denote the resulting h-schedule by s~/p, and its length by T*(T;"/p)' Furthermore,

we show that there exists a natural number z such that T*(T;"/pz) = T(s",) for any natural

p. Hence, Theorem 6.1 implies that T*(T- = T(s",), i.e., S'" is an optimal schedule.

We give the proof in five steps.

1. Let t(r) denote time t and G(r) = (N(r), vCr») denote graph G obtained after

performing r steps of the algorithm for finding schedule S"'. Let t\r) be the weights of

the vertices of G(r).

We show that (a) t(r) = p(r)w, where per) is a rational number; (b) t\r) = L\r)w(r) for

all i E N(r), where L\r) are natural numbers, and w(r) = y(r)w, where y(r) is a rational

number.



144 Chapter 2

us represent q\l) as q\l) = 1\I)q(1), where

numbers q\l), i = 1, 2, ... , n{J). Denote

W(I) = y{J)w, 1\1) is natural and y{J) is

We restrict our consideration to the case r = 1. The statement (a) directly follows from

the description of the algorithm for finding schedule set" Let us prove statement (b). As a
result of performing the first step of the algorithm, the value of t i is decreased either

m + +
by p(1)w, if i E U N k , or by (ajb)p(1)w if i E Nm+l , while for the remaining i E N the

k=1
values of t i do not change. Hence, for any i E N(l) the relation t\l) = PiW holds, where

Pi is a rational number, i.e. t\l) = (q;/vi)w where qj and vi are natural numbers. Define

v(1) = v1v2' 'vn(1) where n(1) is the number of elements of set N{J). Then
(I)

qiV," 'Vi_IVi+I" 'Vn(l) qi
t;l) = '-- W = --w,

v{1) v(l)

where q\l) and v(1) are natural numbers. Let

q{J) is the greatest common divisor of the

y(l) q(l)jv(1). Then tI') 1\')W(I), where

rational.

h e ll) .
2. We show that there exists a natural number y such t at w/py eXists for all natural

numbers p.

The graph e~};", can be defined for each natural number p if wjpy = W(I) jp(l) for some

natural p(1). Since t(l) = p(1)w, we have t(1) = (c(1)jd(l»)W, where C(I) and d(l) are

natural numbers. Let ali) be an amount of power assigned to job i E N in the first step of

the algorithm for finding schedule S"'. If, in this case, N~+I t" 0, then for i E N~+I we

have ali) = ajb.

Define y = bd(l)V(I). Then wjpy = wjbd(1)pV(l) = w(1)jbd(l)pq(l) and p(l) = bd(1)pq(l).

If N~+I = 0, then define y = d(I)V(I). We have wjpy = wjd(l)pV(I) = w(1) jd(1)pq(1) and

p(l) = d(l) jpq(l). Note that here for the proof it would be sufficient to define y = v(l)

in both cases (then p(l) = pq(1»). However, below we use the values of y presented above.

3. Let T(I) be a tree obtained from T- as a result of the first step of the algorithm

for finding schedule S"', t\l) = l\l)W(1) be weights of the vertices of the tree T{J), and

t(I) = (c(I)/d(l))w, where w(l) = y(l)w, yCI) = q(1)/V(I), 1\'), c(l), d(l), q(Il, vel)

are natural numbers.

We have t(l) = (c(I)/d(1»)w = (c(l)py/d(l»)(w/py), where y is a natural number defined

in the previous item of the proof. Let us construct an optimal non-preemptive schedule

s~/py for the tree T:"/py using the h-algorithm described in Section 5.2 of this chapter.

While finding schedule s~/py, we regard T;"/py to be a tree with unit weights of all

vertices assuming that w/py is taken as a time unit. Let T' be a tree obtained from T;"/py

as a result of performing c(l)pyjd(l) steps of the h-algorithm (i.e. the one obtained at

time t(I»).
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We show that r is isomorphic to the tree T~/~y, To prove this we assume that in the

first step of the algorithm for finding schedule SOIl the set N~+] is not empty (if

N~+I = 0 the proof is similar).
- ( I)

It is obvious that r is a subtree of the tree T w/py, and Tw/py is isomorphic to a

subtree of the tree T:V/py-

Let ~i = {iI' i2,··., il} be the set of the vertices of the tree T:V/ py derived from

vertex i of the tree T-. If, in the graph T~/~Y' there is a vertex which corresponds to

the vertex ij, denote it by ij. Let ( denote the set of vertices ij. Define ~;. = {ii'

i2,... , il} n N', where N' is the set of vertices of the graph r.
To prove isomorphism of r and T~/~ it suffices to show that I~;I I~;'I for all

i E N.
m

In schedule S"', the amount of power to be used in the processing of a job i E U N~ in
k=1

the interval (0, t(l)] is a«i) = 1. Hence, by time t(l) the processing time of such a job

decreases by t(l) = (c(1)/d(1»)w = (c(1)py/d(1»)(w/py). Therefore, ~; contains c(l)py/d(l)

elements less than ~i' Defining y = bd(l)v(l), we obtain I~;I I~il-bc(l)pv(l) for

m +
i E UNk ·

k=1
The amount of power assigned for the processing of each job i E N~+I in the interval (0,

t(l)] is a<(i) = alb, and the processing time of such a job by the time t(l) decreases by

a«i)t(l) = (ac(1)/(bd(1»))w = (ac(l)py/(bd(l)))w/py. Therefore, I~;I = l~il-ac(l)pv(1) for

i E N~+l'

The rest of the jobs i E N are not processed in the interval (0, t(l)] in schedule S"'.

Therefore, for each of them we have I~;I = I{;j.
We show that similar relations hold for ~;'. Let NI , N2 , ••• , Nu be such subsets of the

vertices of the tree T:V/py that ~i ~ Nk if and only if i E N~, k = 1, 2, ... , u. While

performing the h-algorithm, the vertices are removed from Nk as the corresponding jobs are

processed. Since all vertices of the tree T:V/ py have the weight w/py, the jobs are

completed at discrete times: w/py, 2w/py, 3w/py, etc. The interval (0, t(l)] includes

t(I)/(W/py) = bc(l)pv(l) intervals of the length w/py. It is easy to check that according
m

to the h-algorithm exactly one job of each set {i ~ U Nk and one job of each of a sets
. k=1

~i ~ Nm+] are processed in each of these intervals (and in each interval, a vertices with

the largest heights are chosen from b sets ~i ~ Nm+d. The jobs of the other sets ~i'

i E N, are not processed in the interval (0, t(J)]. Note that abc(l)pv(l) /b = ac(l)pv(l)

jobs of each set ~i ~ Nm+] are processed.

Consequently, if i E DNZ (i.e., ~i ~ DNk ), then at time t(l), ~;' contains bc(l)pv(l)
k=1 k=1
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vertices fewer than ~i, i.e., I~i'l = I~d -bc(t)pv(J). If i E N~+l (i.e. ~i \; Nm+d, then

I~i'l = l~il-ac(l)pv(I). For the remaining jobs i E N, I~;'I = I~d holds. Comparing ICI
and I~i1 yields ICI = I~i1 for all i E N.

4. We show that there exists a natural number z such that T*(T~/pz) = T(s",) for any

natural p. Here T*(T~/pzl is the length of an optimal schedule s:/pz found by the

h-algorithm applied to the graph T~/pr> and T(s",) is the length of schedule S"'.

We prove this statement by induction with respect to the number of events 1 and 2 that

take place while finding schedule S"'. Note that the number of events 1 and 2 is finite,

and the weights of the vertices of the graph obtained after either event 1 and 2 happens

remain commensurable (according to step 1 of this proof). It is obvious that if only one

event 1 or 2 takes place, then this is event 1, which happens at time T(s",). In this case,

the tree T- consists of a single vertex, and any natural number can act as z.

Let the statement be valid if at most J.L -1 events 1 or 2 take place, and suppose that J.L

events 1 or 2 take place while finding schedule S"'. Assume, as before, that the first of

these events occur at time t(t), and let the weights of the vertices i of the tree T(I)

(obtained from T- at time t(t) while finding schedule s",} be equal to t\l) = N)W('),

where W(I) = (q(l)jv(t»)w and 1\1), q(l) and v(t) are natural numbers. Denote by s' the

schedule for r<J) found by the algorithm described in Section 6.5. Then we have

(6.2)

It is clear that, while finding schedule s', at most J.L - 1 events 1 or 2 take place, and

using the inductive assumption, a natural number z' can be found such that

T*(T(!L ,,) = T(s') for p' = 1, 2, ... , where T*(T(!1) ,,) is the length of a non-
w /p z w /p z

preemptive optimal schedule found by the h-algorithm applied to graph T( !l) '"
w /p z

If this holds for any natural p', then it also holds for p' = q(t), 2q(I), ... . Defining

p' = pq(t) and taking into account that W(I) = (q(l)jV(I»)W, we obtain

T*(T( I) (I) ,) = T(s'}, p = 1, 2, ...
w/pv z

(6.3)

Let y be defined as in step 2 of this proof, and let z be the smallest common multiple

for y and V(I)Z'. Then step 3 of this proof implies that T~}~z is the tree obtained from

Tw/pz at time t(l) while finding s:/pz by the h-algorithm. Hence, it follows that

T*(T- ) - t(l) +T*(T( I)} - 1 2w/pz - w/pz , P - , , ...

From (6.3) and (6.4), we obtain

T*(T~/pz) = t(I)+T(s'), p = 1, 2, ...

(6.4)

(6.5)
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Finally, it follows from (6.2) and (6.5) that

T*(T;"/pz) = T(so.), p = 1, 2, ...
5. Thus, there exists a natural number z such that T*(T;"/pz) = T(so<) for all p. Theorem

6.1 implies that r*(T-) = T(so<), i.e., So< is an optimal schedule.

A machine-sharing schedule So< can be transformed into a preemptive schedule s* without
-*sharing the machines such that T(s*) ~ T(so<)' Therefore, T(s*) = T (T-). As shown above,

at most O(n2 ) time is required for finding So< and transforming it into s*.

Remark 1. Let graph C = (N, U) be a forest such that each connected component is an

intree. Add a new vertex j with tj = w to set N, and include the arcs, leaving the roots

of all trees and entering the vertex j, into the set U. The resulting graph CIs,

evidently, an intree. If s* is an time-optimal schedule for C', then the schedule s such
that sL(t) = s2(t), if s2(t) #- j, and SL(t) = 0, otherwise, L = 1, 2, ... , M, is optimal

for C. The relation T(s) = T(s*)-w holds.

Remark 2. Let graph C = (N, U) be a forest such that each connected component is an

outtT·ee. Denote by C
n

the graph obtained from C by inverting the orientation of all its

arcs. Let s* be an optimal schedule for C
n

and T(s*) = T. Denote s' the set of M

piecewise-constant functions {s{(t), s:Z(t), ... , sM(t)} such that silt) = sl(t), L 1,

2, ... , M, if t is not a point of discontinuity of a function sl(t). At the points t of

discontinuity of a function s2(t), define si.(t) = si.(t+<5) for a sufficiently small <5 > 0

(i.e., unlike s2(t), the functions si.(t) are right-semicontinuous rather than

left-semicontinuous). Then, defining sdt) = silT-t) for t E (0, T] and SL(t) = 0 for

t > T, L = 1, 2, ... , M, we obtain schedule s which is optimal for the original graph C.

7. Identical Machines. Due Dates. Equal Processing Times

This section studies the problems of finding a deadline-feasible schedules for parallel

identical machines and partially ordered sets of jobs with equal processing times. It is

assumed that either the reduction graph of a precedence relation is an intree or the number

of machines is two. The algorithms presented in this section can also be used for finding

time-optimal schedules (along with the algorithms described in Section 5 of this chapter).

7.1. The jobs of a set N = {I, 2, ... , n} are processed on M parallel identical machines.
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Their release dates are the same di = d = 0, i = 1, 2, ... , n. The processing times t i are

equal. Without loss of generality, we assume that t i = 1, i = 1, 2, ... , n. For each job i,

a deadline Dj is specified by which this job must be completed.

Preemption in the processing of each job is forbidden. A precedence relation __ is

defined over set N to describe a possible sequence of job processing. Let G denote the

reduction graph of this relation --. In what follows, we do not distinguish between a job

i E N and the corresponding vertex of graph G.

As before, N- and N+ denote the sets of all minimal and maximal (with respect to __ )

elements of set N, B(i) and A(i) are the sets of all jobs j such that j -- i and i __ j

hold, respectively; i )-+ k is used to denote that job k is a direct successor of job i.

It is required to find a schedule s that is feasible with respect to __ for processing

the jobs of set N such that tj(s) ~ Dj, i = 1, 2, ... , n. Here ti(s) is the completion time

of job i in schedule s. Such a schedule is called deadline-feasible.

Similar to Section 5 of this chapter, we introduce the useful concept of a A-schedule.

Assign numbers 1, 2, ... to unit length time intervals, starting at t = O. The interval B

is of the form (B-1, B]. Let us introduce the list A = (ii' iz,... , in) of jobs (i.e., a

permutation of jobs) and determine the schedule specified by the list A in the following

way.

To start with, assume B = 1, sdt) = 0 for L = 1, 2, ... , M, t 2: 0 and assume that all

elements of the list A are unmarked. In each step, the following operations are to be

made.

Find a machine If with the smallest number such that sH(B) = O. Find the first unmarked

job j in the list A which belongs to the set N+. Mark job j, define sH(t) = j in the

interval B and go to the next step. If we fail to find either machine If or job j, remove

the marked jobs from the list A and set N; go to the next step, having increased B by 1. A

desired schedule is found when the list A (and, hence, set N) becomes empty.

A schedule constructed by this algorithm is called a A-schedule.

One elementary operation is required to verify whether an element of the list A belongs

to the set N+ (assuming that the graph is given by a list of predecessors, see Section 1.4

of Chapter 1). Deleting each maximal (with respect to __) element from set N requires at

most O(n) time (see Section 1.4 of Chapter 1). Hence, finding a A-schedule takes at most

O(nz ) time.

Example A. Let N = {I, 2, ... , Il}, M = 2, t j = 1, d j = 0, i = 1, 2, ... , 11; and let the
graph G be given in Fig. 7.1a, A = (1, 2, ... , 11). The corresponding A-schedule is given
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in Fig. 7.1b.

:Itr Machine 2

Machine 1

8./ ') "".
10. II.

(a)

Fig. 7. I

II
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Example B. Let N = {I, 2, ... , 1O}, M 3, t i = 1, d; = 0, i = 1, 2, ... , 10, and the
graph G be as given in Fig. 7.2a, A = (1, 2, ... , 10). The corresponding A-schedule is

given in Fig. 7.2b.
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Fi g. 7. 2

If the list A = (iI, i2, ... , in) has the property that for any job kEN all jobs of the

set B(k) are on the left of k in the list A, and the graph G is an in tree, then a

A-schedule can be found in at most O(n) time in the following way.

First, define sLlt) = 0 for L = 1, 2, ... , M, t ~ O. Introduce the variables e5(k), k = 1,

2, ... , n, n(9), 9 = 1, 2, ... , n, and .,.,. The value of variable e5(k) is one unit greater

than the largest number of a unit time interval to which a job of the set B(k) is assigned

for processing. A variable n(9) says how many jobs are assigned for processing in the

interval 9. The variable .,., is equal to the smallest value of 9 such that n( 9) < M. Start

with 8(k) = .,., = 1, k = 1, 2, ... , n, and n(9) = 0, 9 = 1, 2, ... , n.

For each k = i j , from j = 1 to j = n, perform the following. Define 8 = max{e5(k), .,.,}.
Let H be a machine with the smallest number, for which sH(8) = O. Define sH(t) = k in the

interval 8. Increase n( 8) by 1, and if n(8) = M is obtained, then assume .,., = 8 + 1. Let

k )-+ I. Define the value of e5(l) to be equal to max{e5(l), 8+1}.

It is easy to verify that the schedule obtained this way is a A-schedule and this can be
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found in most O(n) time. Note that for any kEN, finding the job such that k )-+ I

requires just one elementary operation if the graph G is given by the array SA (see

Section 1.4 of Chapter 1). Since, in the described procedure, any job is assigned for

processing as early as possible, and each job has at most one direct successor, we obtain

n(B) = M for B = 1, 2, ... , 1) -1 and n(B) < M for other B.

Example. The described process for finding a A-schedule under the conditions of

Example B is shown in Table 7.1. First, define SL(t) = 0 for L = 1, 2, 3, t ~ 0; 1) = 1,
8(k) = 1, k = 1, 2, ... , 10, n(B) = 0, B = 1, 2, ... , 10. For each k from 1 to 10, Table 7.1

gives the values of 1), 8(k), B, the number H of a machine assigned for processing job k in

the interval B. Besides, the value of n(B) obtained after assigning job k for processing,

the number of the job I such that k )-+ I, and a new value of 8(1) are shown.

Ta b 1 e 7. 1

k 1 2 3 4 5 6 7 8 9 10

~ 1 1 1 1 I 2 2 2 3 3

6 ( k ) 1 2 3 1 1 1 4 1 2 5

9 1 2 3 1 1 2 4 2 3 5

If 1 1 1 2 3 2 1 3 2 1

n( 9) 1 1 1 2 3 2 1 3 2 1

I 2 3 7 7 9 9 10 10 10 -

6 ( I ) 2 3 4 4 2 2 5 5 5 -

7.2. Let us consider the problem of finding a deadline-feasible schedule, assuming that

the graph G is an intree. Recall that d; = 0 and ti = 1, i = 1, 2, ... , n.

If i ~ j, then the processing of i and j without violating the deadlines would require

job i to be completed not later that by time Dj -1. Therefore, the deadline for the job i

can be set equal to min{D;, Dj-l}. Using this fact, the following algorithm may be

proposed for modifying the deadlines.

The algorithm consists of n steps. In the first step, define D; = Dr for the root r of

the tree. In each subsequent step, choose a job i that the value of Di has not yet

determined, but Dj has been determined for its direct successor j. Define Di =

min{D;, Dj-l}.

finding the new deadlines Di requires at most O(n) time (if, for example, the graph G is

given by the list of predecessors using the arrays QB and SB; see Section 1.4 of Chapter
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1).

It is easy to verify that the schedule is feasible with respect to modified deadlines Dj

if and only if it is feasible with respect to the initial deadlines D;.

In fact, since Di ~ Di , i = 1, 2, ... , n, the schedule that is feasible with respect to

Di is also feasible with respect to D;. Assume that the schedule s is feasible with

respect to D; but this is not feasible with respect to Dj. Without loss of generality, we

may assume that in schedule s each job is processed in a single unit length time interval

of the form (B-1, B]. Among the jobs for which the modified deadlines are violated, choose

a job k processed in a unit time interval with the largest number B. It follows that

Die < B ~ Dk . If k >- j, then Die = Dj-1. Since schedule s is feasible with respect to -.,

job j is processed in the interval 0 ~ B+ 1. Job k has been chosen so that 0 ~ Dj. Thus, we

obtain a contradiction in that both 8+1 ~ 0 ~ Dj and 8 > Die = Dj-I hold.

Thus, in speaking about a schedule that is feasible with respect to deadlines, we need

not specify whether these deadlines are the original or modified ones.

Theorem 7.1. A deadline-feasible schedule exists if and only if a )..-schedule

corresponding to the list).. = (ii' i2 , ... , in), where Di
j
~ Djj+I' j = 1, 2, ... , n-l, is

deadline-feasible.

Proof. Let ).. = (ii' i2 , ... , in), Dj. ~ Dj , j = I, 2, ... , n-I, and assume that a
] ]+1

)..-schedule s is not deadline-feasible. Among the jobs for which the modified deadlines are

violated, choose a job i processed in a unit time interval with the smallest number B. We

have 8 > Dj ~ LDjJ. Here Lxj is the largest integer which does not exceed x. For schedule

s, let 0, 0 ~ LDij, be an interval with the largest number where fewer than M jobs with

the deadlines D; ~ Di are processed.

If the interval 0 does not exist, then the theorem is proved because there are at least

MLDiJ + 1 jobs which must be completed by time Di, and, hence, there is no feasible

schedule.

Suppose that the interval 0 exists. We show that this assumption results in a

contradiction. The way in which )..-schedule s has been found implies that the following

conditions hold for this schedule: (a) there is a job k, k -. i, which is processed in the

interval 0 (otherwise, i should have been processed in the interval D); (b) if Dj ~ Di and

job j is processed in the interval with the number larger than 0, then there exists such a

job I that is processed in the interval 0 and I -. j (otherwise, j should have been

processed in the interval D). Consider two cases: 0 = LDiJ and 0 < LDiJ.
If 0 = LDij, then job k is completed at time LDij < B. Since k ---+ i, the procedure for
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finding the modified deadlines implies that Di. $ Di-1 < LDiJ. Hence, for job k, a modified
deadline is violated, and we obtain the contradiction to the choice of job i.

Let 8 < LDiJ. Then, in the interval 8+ 1, M jobs j with deadlines Dj $ Di are processed.
For each of these jobs there exists a job I, I ~ j, which is processed in the interval 8.

It follows from the procedure for modifying the deadlines that Di $ Dj-1 $ Di-1 < LDiJ.
Since at most M -1 such jobs I can be processed in the interval 8, at least two jobs have

the same predecessor. This is impossible for an intree. The obtained contradiction proves

the theorem.

Thus, if G is an intree, d j = 0 and t j = 1, i = 1, 2, ... , n, then for finding a

deadline-feasible schedule (if such a schedule exists) it suffices: (a) to compute the

modified deadlines Di (this takes at most O(n) time); (b) to obtain the list ,\ of jobs

sorted in non-decreasing order of Di (this can be done in O(nlogn) time, see Section 2.7

of Chapter 1); (c) to find a A-schedule (this requires at most O(n) time since for all

kEN the jobs of the set B(k) are on the left of a job k in the list A). Thus, in at most

O(nlogn) time either a deadline-feasible schedule is found or we conclude that no such

schedule exists.

Example. Under the conditions of Example B, let the values of deadlines Dj for the jobs

be as given in Table 7.2. The obtained modified deadlines Di are also given in the table.
Table 7.2

j 1 2 3 4 5 6 7 8 9 10

Dj 6 5 6 4 9 8 7 3 2 8

Di 4 5 6 4 1 1 7 3 2 8

The list A of jobs sorted in non-decreasing order of Di is of the form: A = (5, 6, 9, 8,

1, 4, 2, 3, 7, 10). The corresponding A-schedule is given in Fig. 7.3. This schedule is

feasible with respect to the deadlines.

Machine 3 I I

! !
Machine 2

! !
10

Machine 1
! ! ! ! ! !

6

Fig. 7.3
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In conclusion, note that if all deadlines are equal, i.e., Di = D, i = 1, 2, ... , n, then

the procedure of modifying the deadlines yields D; = D- (hi-I), where hi is the height of a

vertex i in graph G. In this case, the list A of the jobs sorted in non-decreasing order of

the modified deadlines coincides with the list of jobs ordered in non-increasing order of

the heights, and is independent of D. If D is taken as the shortest deadline for which

there exists a feasible schedule s, then this schedule is, evidently, a time-optimal

schedule. Therefore, in the case under consideration (G is an intree, di = 0, t; = 1,

i = 1, 2, ... , n), a time-optimal schedule is the A-schedule corresponding to the list A

with the jobs sorted in non-increasing order of the heights. If the vertices of the intree

are numbered as in Section 1.4 of Chapter 1 (i.e., the root has number 1; then all

vertices with a height of two are numbered; after them the vertices with a height of three

are numbered, and so on), then the list A is of the form: A = (n, n -1, ... , 2, 1). This is

consistent with the result obtained in Section 5.2 of this chapter.

Example. Under the conditions of Example B, the list A of jobs sorted in non-increasing

order of the heights is A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The corresponding A-schedule

given in Fig. 7.2b is a time-optimal schedule.

7.3. Suppose that the reduction graph G of a precedence relation defined over set N is

an arbitrary directed circuit-free graph, but the number of machines is M = 2. As before,

it is assumed that di = 0 and t i = 1, i = 1, 2, ... , n.

Note that if, for some job i, there are k jobs of the set A(i) whose deadlines do not

exceed D, then the processing of job i in any deadline-feasible schedule must be completed

by no later than D - rkj21, where rx1 is the smallest integer greater than or equal to x.

Therefore, we may define the deadline for job i equal to min{D;, D- rkj21}. Using this

fact, the following algorithm for modifying the deadlines can be offered.

Start with the modified deadline Dj = Dj for all j E N-. In each step, choose a job

i E N for which the modified deadline has not yet been determined but for all jobs of the

set A(i) modified deadlines have been computed. Let D(!), D(2l , ... , D(I) be the sequence

of all distinct modified deadlines corresponding to the jobs of A(i), and g(i, D(kl)

denote the number of elements of the set A(i) whose modified deadlines do not exceed D(kl,

k = 1, 2, ... , l. Define D; = min{Di , min{])<kl- r~g(i, ])<k»)lll S; k s; I}.

Example. Under the conditions of Example A, let the values of the original deadlines be

given in Table 7.3.
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Ta b 1 e 7. 3

Chapter 2

i 1 2 3 4 S 6 7 8 9 10 11

Dj 2 3 8 9 8 7 S 6 10 7 7

The results of the computation of the modified deadlines are shown in Table 7.4. For

each step in the algorithm, we give: job i for which the modified deadline is being

calculated; the set A(i); the set D(I), D(2), ... , D(l) of all different values of Dj for

j E A(i); the number g(i, D(k)) of the elements of the set A(i) whose modified deadlines

do not exceed D(k), k = I, 2, ... , I. The initial deadline D j and the obtained modified

deadline Dj are also presented. For example, for job i = 2, the modified deadline is equal

to 2, since this job corresponds to 9 elements of the set A(i) whose modified deadlines do

not exceed 7.

Table 7.4

Step 1 2 3 4 S 6 7 8 9 10 11

j 6 8 11 11 3 9 1 S 7 4 2

A( i) 0 0 0 0 {6 } { 10, 11 } {3, 6} {9, 10, { 8 , 9 , {7, 8,9, {3, 4,

II} 10, I I } 10, I 1} ... ,11 }

D( 1) ;D( 2);. . , - - - - 7 7 6;7 6;7 6 j 7 5; 6 ; 7 4 ; 5 ; 6 j 7

D( 1)

g( j, D( 1»; - - - - I 2 1 ; 2 1 ; 3 2;4 1 j 3 j 5 1 j 3 j 6 ; 9

... ; g( i ,D( 1»

Di 7 6 7 7 8 10 2 8 S 9 3

Di 7 6 7 7 6 6 2 S S 4 2

We show that modifying the deadlines can be done in at most O(n2
) time if the relation

__ is in a transitively closed form. The algorithm for constructing the transitive closure

C' of a graph C is described in [260] (the running time is O(n
1og7

)) and in [5J (the

running time is O(n3 jlogn)).

Suppose that relation __ is given by the graph C', defined by the adjacency matrix R.

Recall that graph C' contains an arc (i, j) if and only if i -- j, The sum of the elements

of the ith row of matrix R is equal to Cj = IA(i) I, i = I, 2, ... , n.

For each row i of matrix R, form a list L(i) to contain the modified deadlines of the

jobs in set A(i) keeping them sorted in non-increasing order of their values. Initially,

all lists L(i) are empty.
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If Cj = 0, then i E N-. Note that finding the set N- requires at most O(n2 ) time. Define

Dj = Dj for all i E N-.

Define a total pseudo-order == over the set N-, assuming i == j if Dj ~ Dj. Let us

represent the set N- as a balanced 2-3-tree T (this takes at most O(n) time; see Section

2.3 of Chapter 1).

In T, choose a maximal (with respect to ==) element j (this element has the largest

value of the modified deadline). Delete j from T (this takes at most O(logn) time, see

Section 2.6 of Chapter 1). Insert the value of Dj at the end of the lists L(i) for those

rows i which contain 1 in column j. Reduce by 1 the values of Cj corresponding to these

rows. Note that, for each maximal element j in T all these transformations require at most

O(n) time.

If, for some i, we obtain Cj = 0, then this implies that for all jobs in the set A(i)

the modified deadlines have been computed. In this case, the list L( i) contains all

modified deadlines for the jobs in the set A(i) in non-increasing order of their values.

It is easy to verify that, given a list L(i), the modified deadline Dj for job i can be

computed in at most O(n) time. Having computed Di, insert element i into the current

2-3-tree T (this takes at most O(logn) time).

Choose the next maximal with respect to == element in T, and so on, until all

modified deadlines are found.

It is easy to check that the total running time required for computing the modified

deadlines for all jobs is at most O(n2 ).

We show now that a schedule is feasible with respect to the modified deadlines if and

only if it is feasible with respect to the original deadlines.

Since Di ::; Dj , i = 1, 2, ... , n, a schedule that is feasible with respect to Dj is also

feasible with respect to Dj • Suppose that a schedule s is feasible with respect to Dj but

is not feasible with respect to Di. Without loss of generality, we may assume that in

schedule s each job is processed in a single unit time interval of the form (8 - 1, 8].

Among the jobs for which the modified deadlines are violated, choose a job i to be

processed in the unit time interval with the largest number 8. It follows that Dj < 8 ::;

Dj •

The procedure for finding the modified deadlines implies that there exists number

g(i, D') of jobs in the set A(i) whose modified deadlines do not exceed D' such that Di =

D' - r~ g(i, D'n holds. Since all jobs in the set A(i) are processed without violating the
2

deadlines and each of them is processed in a unit time interval with numbers larger than

e, g(i, D') jobs should be processed in the interval (8+1, D']. However, Di < e,
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therefore, D' - f) < r~ g(i, D'Jl and, hence, in the interval (f) +I, Dl in schedule s more

than two jobs should be processed in some unit time interval. We have come to a

contradiction.

Thus, in speaking about a schedule that is feasible with respect to deadlines, we need

not specify whether these deadlines are the original or modified ones,

Theorem 7.2. A deadline-feasible schedule exists if and only if a A-schedule

corresponding to the list A = (ii' i2, ... , in) where Dii .,; Dii+l' j = I, 2, ... , n-I, is

feasible.

Proof. Let A = (iI, i2,···, in), Dii .,; Dii +!, j = I, 2, ... , n -I, and suppose that the
A-schedule s is not feasible with respect to the deadlines. Among the jobs for which the

modified deadlines are violated, choose a job i processed in a unit time interval with the

smallest number f). We have f) > Di ~ LDij.
lote that if j -+ I, then Di < Di. The procedure for finding a A-schedule implies that

in each unit length time interval with a number less than f), at least one job, whose

deadline does not exceed Di, is processed. Let us consider two cases.
Case 1. Suppose there exist unit time intervals with numbers less than f) such that only

one of the jobs processed in each of these intervals has a modified deadline less than or

equal to Di. Let 6 be an interval with the largest number among these intervals, and let k
be the job such that Di< .,; Di processed in the interval 6. Then in each of the unit
intervals 6+ I, 6+2, ... , f)-I two jobs are processed whose deadlines do not exceed Di. The
number of these jobs including the job i is 2( f) - 6} -1. For each of these jobs, job k is a

predecessor (otherwise, in a A-schedule one of these 2( f) - 6} -I jobs should have been

processed in the interval 6). Thus, for job k there exist at least 2(1I-6}-1 jobs in the

set A(k) whose modified deadlines do not exceed Di. Therefore, for the modified deadline
of job k the relation Di< .,; Di - r(2( 11- 6) -I )/21 = Di -II +6 should hold. Since f) > Di, we have
Di< < 6. Thus, for job k, the modified deadline is violated, which contradicts the way in

which job i has been chosen.

Case 2. Suppose that, in schedule s, in each of the intervals I, 2" ... , f) -I two jobs

are processed whose modified deadlines do not exceed Di. Then there are at least 211- 1 jobs
whose deadlines do not exceed Di. Therefore, if a schedule, that is feasible with respect

to the modified deadlines, exists then 2LDij ~ 211-1. Since II > LDij, we have II ~ LDij +1
and 2f) - 2 ~ 2LDiJ , which implies 28 -1 > 2LDiJ· Therefore, a schedule that is feasible with

respect to the deadlines does not exist. This proves the theorem.
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Thus, if M = 2, di = 0, t; = 1, i = I, 2, ... , n, and the precedence relation -- is given

in the transitively closed form, then for finding a deadline-feasible schedule (if this

exists) it suffices: (a) to compute the modified deadlines Di (this takes at most O(n2 )

time); (b) to form the list A of the jobs sorted in non-decreasing order of Di (this
requires at most O(nlogn) time, see Section 2.7 of Chapter 1); (c) to find a A-schedule

(this can be done in at most O(n2 ) time). Thus, in at most O(n2 ) time either a

deadline-feasible schedule is found or we conclude that no such schedule exists.

Example. For the set of jobs of the previous example, the list A is A = (1, 2, 4, 5, 7,

3, 8, 9, 6, 10, 11), and a deadline-feasible schedule is shown in Fig. 7.4.

It is easy to verify that if all original deadlines are the same, i.e., Di = D, i = I,

2, ... , n, then the list A of jobs (sorted in non-decreasing order of the modified

deadlines) does not depend on D and is only determined by the form of graph C.

Machine 2

Machine 1

10

iii i"
Fig. 7. '1

Consequently, a time-optimal schedule for a partially ordered set of jobs with equal

(unit) processing times to be processed on two parallel identical machines can be

constructed (in at most O(n2 ) time) by defining all original deadlines be the same (for

example, Di = n, i = 1, 2, ... , n), followed by using the described algorithm for a

deadline-feasible schedule.

Remark 1. The algorithm for finding a feasible schedule described in Section 7.3 can

also be applied when the release dates d i are different, and all deadlines are the same

(D; = D, i = 1, 2, ... , n). Change the orientation of each arc of the graph C' of the

precedence relation __. As a result, we obtain a graph C' which is the reduction graph of
the precedence relation that the inverse of the original one. Define di = 0, Di = D - di ,

i = 1, 2, ... , n. Let s be a schedule that is feasible with respect to the deadlines Di ,

and T(s) = max{t;(s) liE N} be the length of this schedule. Then the desired schedule s

can be obtained by defining sL(t) = sdt) for t > T(s) and sL(t) = sL(t+T(s)-20+1), L = 1,

2, ... , M, for 0-1 < t ::; 0, 0 = I, 2, ... , T(s).
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A similar approach can be used for an arbitrary number of machines, provided that graph

G is an outtree, the release dates are different, and all deadlines are the same.

Remark 2. The algorithm given in Sections 7.2 and 7.3 can be used to find a

deadline-feasible schedule having the length not greater than a given number D. To do

this, it suffices to define the original deadlines that exceed D to be equal to D. A

time-optimal schedule (among the deadline-feasible ones) can be obtained by choosing an

appropriate (integer) value of D in the interval [nlM, n} by the binary search method [7J.

In this case, the above algorithms are applied at most O(logn) times.

8. Identical Machines. Maximum Lateness

This section considers the problem of finding a job processing schedule for parallel

identical machines to minimize the maximum lateness. In the case of a partially ordered

set of jobs, the processing times are assumed to be equal, the release dates are the same,

and no preemption is allowed. It is also assumed that either the reduction graph of the

precedence relation is an intree, or the number of machines is two. In the case of a

non-ordered set of jobs, their release dates may be different, and preemption is allowed.

8.1. The jobs of a set N = {l, 2, ... , n} are processed on M parallel identical machines.

The release date of the job i E N is di <: 0, its processing time is t; > 0, and its due

date is D; <: 0. A precedence relation __ is defined over set N to determine a possible

sequence for job processing. Let G = (N, U) denote the reduction graph of this relation.

The schedule S is feasible with respect to __ if for any i, j E N such that i __ j the

relation sH(t') = i, 1 $ H $ M, implies sL(t) '" j, L = 1, 2, ... , M, for all t $ t'.

A schedule s* that is feasible with respect to -- is called optimal if it minimizes the

function

(8.1)

where Lj(s) = tj(s) -Di is the lateness of job i, tj(s) is the completion time of job i in

a schedule s.

The value L* = Lmax(s*) is called the optimal value of the maximum lateness.

The following general observation can be made before proceeding to a description of the

algorithms for optimal scheduling.

For any schedule s that is feasible with respect to --, the inequalities tits) $
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D;+Lmax(s) and L* s Lmax(s) hold. Hence, there is no schedule 5 that is feasible with

respect to ~ such that t;(s) s D;+T for T < L*, i = 1, 2, ... , n. Thus, the problem of

finding an optimal schedule reduces to one of finding the smallest value of T for which

there exists a schedule that is feasible both with respect to ~ and with respect to the

modified deadlines D; = Di+T. This schedule is a desired optimal schedule 5*, and L* is

equal to the obtained value of T.

In this section, the following cases of optimal scheduling are considered:

(a) d; = 0, t; = 1, i = 1, 2, ... , n, no preemption is allowed, and the graph G is an

intree;

(b) d; = 0, t i = 1, i = 1, 2, ... , n, no preemption is allowed, and M = 2;

(c) dj , t i and D; are integers, i = 1, 2, ... , n, G = (N, 0), and preemption is allowed.

8.2. Let us consider cases (a) and (b). If the value of L* is known, then for finding an

optimal schedule we may use the algorithm for finding schedules that are feasible both

with respect to ~ and with respect to the deadlines equal to D;+L* (see Sections 7.2 and

7.3 of this chapter). Each of these algorithms has the property such that for any 6 ~ °
and the deadlines equal to D;+L*+6, the same schedule is found. In fact, changing each

deadline by the same value does not change the list A and, hence, the corresponding

A-schedule.

Thus, for finding an optimal schedule in cases (a) and (b) it suffices to choose the

values of D; +W as the deadlines, where W is a sufficiently large number, and to use the

corresponding algorithms from Section 7. Recall that the running time of the first

algorithm (to be applied in case (a)) is O(nlogn), while that of the second one (to be

applied in case (b)) is O(n2 ).

8.3. Let us consider case (c). A solution to the problem under consideration can be

found by choosing trial values of T and verifying whether there exists a schedule s which

is feasible with respect to the deadlines equal to D;+T. If such a schedule does exist,

then the current value of T is called feasible. Starting with some infeasible value of T,

increase T until the smallest feasible value of T is obtained. Due to the observation made

in Section 8.1, this value of T is L*.

In the case under consideration, scheduling without violating the deadlines can be done

by using a network flow model (see Section 2.3 of this chapter). For each trial value of

T, a flow network model is to be constructed in the following way. Let {e l , e2,··., e2n}

(where e, S e2 S...S e2n) be a set of values of d; and D;+T, i = 1, 2, ... , n, and let
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Ek = (ekJ ek+lJ, k = 1, 2, ... , 2n-1. If d j = Dj+T for some i and j, then e with a smaller

subscript corresponds to d j • The network r contains the source xo, connected with the

vertices Xk, k = 1, 2, ... , 2n-l (corresponding to the intervals Ek ), by the arcs of a

capacity M(ek+\ - ek), and the sink z, where the arcs of a capacity t j enter from the

vertices yj, i = 1, 2, ... , n (corresponding to the jobs i). An arc (xk, Yj) of the

capacity ek+l - ek is present if and only if d; ::; ek and ek+l ::; Dj +To A trial value of T is

feasible if and only if the value of a maximal flow in the network is e = Et j (i.e., the
. i=l

arcs entering the sink are saturated). Recall that finding a maximal flow requires at most

O(n3
) time, while the subsequent construction of a schedule that is feasible with respect

to the deadlines Dj+T (if it does exist) takes at most O(n2 ) time (see Section 2.3 of this

chapter).

It is clear that the structure of the network r depends on T. The value of T is called

critical if such i and j exist that Dj+T = dj . The structure of the network remains the

same for all T between two successive critical values.

The value of T = L* is to be found in two stages.

At the first stage, find To, the largest infeasible critical value of T. Since there are

at most n2 critical values, finding TO by the binary search method [7] involves

verification of at most logn2 (i.e., at most O(logn)) values of T, and this can be done in

at most O(n310gn) time.

At the second stage, perform the following procedure for T = Tv beginning with /I = O.
Find the maximal flow value and the total capacity of a minimum cut of the network

corresponding to TV" Let Rv be a cut with the total minimum capacity ev ' If ev < e, then
increase the value of Tv so that the capacity of the cut Rv becomes equal to e. Denote the
obtained value of T by T v+l and repeat the procedure. As a result, the increasing sequence

of Tv is obtained. The process terminates at a step r for which er = e and, hence, T r is

the smallest feasible value of T, i.e., T r = L*.

We show that, at the second stage, the number of steps does not exceed O(min{n2 , logn +
logtmax}), where tmax = max{t;ji EN}.

Verify how the capacity ev of the cut Rv of the network corresponding to an infeasible

value of Tv changes when Tv increases by ry > O. An interval Ek = (ekJ €k+t1 is said to

belong to class 1 if ek = dj and €k+l = D) +Tv; to class 2 if ek = Dj +Tv and €k+l = dj ; to

class 3 in all other cases. When Tv increases by ry, the capacity of the arc leaving a

vertex Xk increases by ry if Ek belongs to class 1, decreases by ry if Ek belongs to

class 2, and remains unchanged if Ek belongs to class 3. The situation is similar for the

arcs (xo, xk), but here the capacity is changed by Mry. It is obvious that the total
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capacity of the cut Rv changes by YvTJ, where Yv is an integer. Since TO is the largest

infeasible critical value of T, the value of the total capacity of the cut Rv should grow

with Tv, Le. Yv ~ 1.

Making the transition from Tv to TV +1l define TJ = f(e-ev)/Yvl and TV +I = Tv+TJ· Here fxl
is the smallest integer greater than or equal to x.

Consider how the capacities of the network cuts change when making the transition from

Tv to TV+l' The pair (e', y) corresponds to each cut where e' is the total capacity of the

cut, and y is an integer such that the total capacity of the cut changes by Y1] when Tv

increases by 1]. When making the transition from Tv to Tv+I' the values of y for the cuts

remain unchanged but the values of e' may change. If y ~ yv' then the total cut capacity

grows up to a value which is not less than e. Hence, it follows that YV+l < Yv, V = 1,

2, ... , r - 1. It is easy to check that Yo does not exceed O( n2 ). Since Y v are integers and

Yv ~ 1, it follows that the number of steps r is at most 0(n2 ).

Now we give a more accurate estimation of the number of steps. For all cuts

corresponding to the pairs (e', y) such that e' < e, the inequality Y > 0 holds. In fact,

since TO is the largest infeasible critical value of T and Tv> TO, it follows that if Tv

increases by some value r(, then the capacities of all cuts become not less than e. Since
the values of y do not change while making the transition from Tv to Tv+I' we conclude

that e' < e implies y > O.

Let cv be the number of all possible (e', y) pairs such that e' ,,; e for T = Tv' Since

the number of all possible pairs such that e v < e',,; e and 0,,; y,,; Yv is (e-ev)(Yv+1), it

follows that cv ~ (e-ev)(Yv+1).

While making the transition from Tv to TV +1l the capacity e'such that e-(e-ev)Y/Yv";

e' < e of each cut with y < Yv increases to the value not less than e. Therefore, having

made the transition from Tv to Tv+1 we obtain that the number of possible pairs (e', y)

such that e' ,,; e becomes equal to e - (e - evlY /yv - e v for each y, 0 ,,; y < y V" Moreover, for

all y we obtain

-r -I

C - (0 e)y e-ev f y _ (0 ° )(y Yv- 1)
v+1 - \.7- II 1I - -- i.J - O-Ov II - -2--

Y v -r=O

Hence, it follows that

cv+1 < (e-ev )(Yv+ 1 ) = L
Cv - 2(e-ev)(Yv+1) 2

Thus, in each step, the number of possible pairs (y, e') such that e' ,,; e is reduced at

least twice. Taking into account that y does not exceed 0(n2 ), we conclude that the number

of steps is at most 0(log(n2e)), i.e., this does not exceed O(logn + logtmax ) , where
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tmax = max{td i EN}. Thus, the number of steps at the second stage is at most O(min{n2,

logn + logtmax})'

Therefore, in case (c), the total running time required for optimal scheduling is at

most O(n3min{nZ, logn + logtmax })'

8.4. We show that the problem of minimizing the makespan with arbitrary d; reduces to

that of minimizing the maximum lateness for d; = 0, i = 1, 2, ... , n.

Consider two scheduling problems of minimizing the value of Lmax{s). In the first, the

jobs have the parameters di = 0, ti, Di, i = 1, 2, ... , n, and the precedence relation

is defined over set N. In the second problem, the jobs have the parameters di', ti',

Di', where di' = D-Di, ti' = ti, Di' = D, D = max{Dili EN}, and the precedence relation

===} is defined over set N being reverse to -+ (i.e., i ===} j if and only if j -+ i). These

problems are called conjugate.

Let s' be an optimal schedule for the first problem and Lmax(s') = C. Denote by 8 the

set of M piecewise-constant functions {8dt), 82(t), ... , 8M(t)} such that sdt) = si.(t),

L = 1, 2, ... , M, if t is not a discontinuity point of the function s1.(t). At a

discontinuity point t of the function s1.(t), define 8L(t) = 8L(t+8) for a sufficiently

small 8 > 0 (so that unlike s1.(t), the functions 8dt) are right-semicontinuous rather than

left-semicontinuous). Defining s1.'(t) = 8dD+C-t) for t E (0, D+Ll and s1.'(t) = 0 for
t > D+C, L = 1, 2, ... , M, we obtain a feasible schedule s" for the second problem. It is

easy to verify that Lmax{s") = max{t;(s") - D;'[ i E N} = C, and s" is an optimal schedule

for the second problem. Since D;' = D , i = 1, 2, ... , n, it follows that schedule s" is

also time-optimal schedule.

Therefore, to solve the problem of finding a time-optimal schedule with arbitrary d; it

suffices to solve its conjugate problem of finding a schedule minimizing Lmax(s) for

di = 0, Di = D-d;, D = max{ddi EN}, i = 1,2,... , n.

Notice that the smallest maximal tar'diness corresponds to the schedule to which the

smallest Lmax(s) corresponds. In fact, the maximal tardiness zmax(s) = max{O, max{Lj(s) I
i E N}} coincides with Lmax(s) for Lmax(s) ~ O. It is clear that this remark also applies

to the function F{s) = max{cp(L;(s)) liE N} where cp is any non-decreasing function. Thus,

the algorithms described here can be used to find a schedule with the smallest zmax(s) or

max{cp(L;{s)) liE N}.
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This section studies a number of polynomially solvable problems of minimizing either the

total or the maximal cost of processing jobs on uniform and unrelated parallel machines.

In particular, the problems to minimize the makespan are considered.

9.1. The jobs of a set N = {I, 2, ... , n} are processed on M parallel machines. All jobs

have the same release dates di = 0, i = 1, 2, ... , n. The processing time of a job i on a

machine L is tiL> O. Each job i is associated with a non-decreasing cost function 'Pi(t).

To minimize the total cost, it is required to find a schedule s* for processing the jobs

set N such that the function

n

FE(s) = L 'Pi(ti(S))
i=l

(9.1)

accepts the smallest value.

To minimize the maximal cost, it is required to find a schedule s* for processing the

jobs of set N such that the function

Fmax(s) = max {'Pi(ti(S)) liE N} (9.2)

accepts the smallest value.

Here ti(s) denotes the completion time of a job in a schedule s. For each of the

problems, schedule s* is called optimal.

If preemption in processing each job is forbidden, the schedule is specified by

partitioning set N into subsets NI , Nz,... , NM (some of them may be empty) and by

determining the sequence for processing the jobs of each set NL on the corresponding

machine L, L = 1, 2, ... , M.

In what follows, we consider the following problems of minimizing the total cost,

assuming that preemption is forbidden:

(a) 'Pi(t) = t, i = 1, 2, ... , n;

(b) 'Pi(t) = t, tiL = aLti, t i > 0, aL> 0, i = 1, 2, ... , n; L = 1, 2, ... , M;

(c) 'Pi(t) is a non-decreasing function; tiL = aL, aL > 0, i = 1, 2, ... , n, L 1,

2, ... , M;

(d) 'Pi(t) = O<iUi(t), tiL = 1, i = 1, 2, ... , n, L = 1, 2, ... , M (here ui(t) 0 if

t :s; Di , ui(t) = 1 if t > Di ; O<i > 0, Di ~ 0 is the due date of a job i; Di , i = 1, 2, ... ,
n, are integers).

We also consider the following problems of minimizing the maximal cost:
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(a) 'Pi(t) is a non-decreasing function, tiL aL, aL > 0, i 1, 2, ... , n, L = 1,

2, ... , .101, and preemption is forbidden;

(b) 'Pi(t) = t, i = 1, 2, ... , n;

(c) 'Pi(t) = t-Di , i = 1, 2, ... , n.

To conclude this section, we consider a natural generalization of the total cost

minimization problems when machine ready times and machine-usage cost functions are

involved.

9.2. Let us consider the first of the mentioned problems. It is required to find a

schedule s* which minimizes the function E ti(s*).
ieN

Let s be some schedule such that a job i is processed on a machine L and this machine

processes k -1 jobs, 1 ~ k ~ n, after job i. Then the processing time tiL contributes (as a

summand) to the value of t i , and to the values of t j for all k-l jobs j processed on

machine L after job i. The sum E ti(s) may be represented as ktiL plus the terms
ieN

independent of tiL. If job i is the last to be processed on machine L, then the factor at

tiL is equal to 1; if this job is the one before last, then the factor is 2, and so on.

Let us introduce a variable Xif,k equal to 1 if job i is processed on machine L which

processes k -1 jobs after i. Otherwise, XiLk = o. Then the problem under consideration may
be formulated as the following transportation problem:

n M n

L L L ktiLxiLk ---+ min
i=l L=l k=l

subject to

(9.3)

1, 1, 2, ... , n 1 (9.4)

n

LxiLk ~ 1, L = 1, 2, ... , .101, k = 1, 2, ... , n,
i=l

XiLk ~ 0, i = 1, 2, ... , n, L = 1, 2, ... , .101, k = 1, 2, ... , n.

(9.5)

(9.6)

Condition (9.4) implies that each job i should be processed by one of the machines and

occupies a certain position in the sequence of jobs corresponding to this machine.

Condition (9.5) implies that in the sequence of jobs corresponding to any machine, each

position is occupied by at most one job.

The formulated problem can be reduced to that discussed in [57J, and can be solved in

O(n3 ) time.
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9.3. Let the processing time of a job i on a machine L be tiL = aLti where aL > 0,

t; > 0, i = 1, 2, ... , n, L = 1, 2, ... , M, i.e., a machine L has the processing speed 1/aL'

As before, it is required to find a schedule that minimizes the total flow time E li(8).
ieN

Consider the following problem. Let 11" = (iI, i2,.·., in) be some permutation of the

elements of set {1, 2, ... , n}. Given two n-dimensional vectors 0' = (0'1' 0'2'"'' O'n) and

f3 = (f31' f32"'" f3n) with real components, define
n

[(11") = ~>kf3ik
k=1

It is required to find a permutation 11"* of the elements of set {1, 2, ... , n} which

minimizes [(11"). Without loss of generality, assume that the components of vectors 0' and f3

are numbered in such a way that 0'1 ~ 0'2 ~ ...~ O'n-

Consider a permutation 11"' which differs from 11" in that the elements ik and i k+1 are

interchanged. We have

If f3i
k

:<;; f3i
k
+

l
, then this difference is non-negative. Thus, by sorting the values f31 in

non-decreasing order we obtain the desired permutation 11"* = (i;, i;, ... , i~). Here

f3iZ :<;; f3iZ+
1
for all k = 1, 2, ... , n-1.

Thereby, the function 1(11") reaches its smallest value if smaller f3i
k
's correspond to

larger O'k'S.

Let us return to the scheduling problem under consideration. Without loss of generality,

assume that the jobs are numbered so that t, ~ t2 ~ ...~ tn' Let us construct a (Mxn)

matrix A = II O'Lk II , assuming O'Lk = kaL, i.e.

A

aM 2aM naM

Sort the elements of matrix A in non-decreasing order and denote by f3 j the jth element

of the obtained sequence, so that f31 :<;; f32 :<;; ... :<;; f3Mn'

Associate an element f3i of matrix A with job i E N. If f3i = O'Lk, then job i is processed

on machine L and occupies the kth place from the end in the sequence of jobs on that

machine. Note that if an element O'Lk? k > 1, corresponds to job i, then for any O'Lb

k' < k, there exists a corresponding job j E N (because O'Lk' < O'Lk)' As a result, the

sequences of jobs to be processed on each of the machines are obtained. Thus, some

non-preemptive schedule 8 is found. This schedule is optimal due to the considerations
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used above (in minimizing the function f(7r)).

Numbering the jobs so that t l ~ tz ~ ...~ tn takes O(nlogn) time (see Section 2.7 of

Chapter 1).

Let us estimate the running time required for finding the elements fJ" fJz, ... , fJn of

matrix A. Sort the elements a" az, ... , aM in non-decreasing order: ail :0; ai
z
:0; ..• :0; aiM'

This takes at most O(MlogM) time. Note that the set B = {fJ1, fJz, ... , fJn} can include at

most n (first) elements of row it of matrix A, at most nj2 (first) elements of row i z, and

so on, at most njM (first) elements of row iM• Thus, the search for the elements of set B

M
is restricted to at most n+nj2 +nj3 +... +njM = nSM elements of matrix A where SM = E ~

k~l k

is a partial sum of the harmonic series. Let C denote the set of these elements. It is

known that partial sums of the harmonic series grow as InM or, equivalently, as 10gM.

Represent set C as a balanced 2-3-tree. This can be done in at most O(nlogM) time (see

Section 2.3 of Chapter 1). Finding the elements fJl, fJz, ... , fJn using the constructed
2-3-tree, takes at most O(nlog(nlogM)) time.

Assuming that M < n, the running time required for finding an optimal schedule is at

most O(nlogn).

If the machines are identical (which is the case when all aL are equal), the schedule s*

found by the described method is essentially a schedule constructed by the well-known SPT

rule (shortest processing time): at a moment when a machine becomes idle, the job with the

shortest processing time among available jobs is chosen and is assigned to be processed on

that machine. Scheduling by the SPT rule also takes O(nlogn) time.

9.4. Let tiL = aL, i = 1, 2, ... , n, L = 1, 2, ... , M, and the cost functions be

non-decreasing. Then the problem of finding a schedule with the smallest value of function

(9.1) reduces to the following transportation problem.

Let us introduce a variable XiLk which equals 1 if job i is processed on machine Land

occupies the kth place in the sequence of jobs processed on that machine. Otherwise,

XiLk = O. Denote ciLk = 'Pi(kaL), i = 1, 2, ... , n, L = 1, 2, ... , M, k = 1, 2, ... , n.
It is required to minimize

11 M 11

L L LCiLkXiLk
i=1 L=l k=l

subject to

(9.7)
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M n

L L XiLk = 1, i
L= 1 k= I

1, 2, ... , n, (9.8)

n

LxiLk ::; 1, L = 1, 2, ... , M, k = 1, 2, ... , n,
i=1

XiLk ~ 0, i = 1, 2, ... , n, L = 1, 2, ... , M, k = 1, 2, ... , n.

(9.9)

(9.10)

Condition (9.8) implies that each job is processed on one of the machines and occupies a

certain position in the sequence of jobs processed on that machine. Condition (9.9)

implies that for any machine, in the sequence of jobs processed on that machine, each

position is occupied by at most one job.

Problem (9.7)-(9.10) is similar to problem (9.3)-(9.6) and its solution can be obtained

in at most O(n3 ) time. Moreover, the problem of minimizing the maximal cost can be solved

in a similar way if tiL = aL, i = 1, 2, ... , n, L = 1, 2, ... , M, but with function (9.7)

changed to max{ciLkXiLkli = 1, 2, ... , n, L = 1,2, ... , M, k = 1,2,... , n}.

9.5. Let tiL = 1, i = 1, 2, ... , n, L = 1, 2, ... , M, and the cost functions be of the

form 'Pi(t) = OIiui(t), where ui(t) = 0 if t ::; Di and ui(t) = 1 if t > Di; OIi > 0, i = 1,

2, ... , n. Here the due date Di of a job i is an integer. It is required to find a schedule

which minimizes function (9.1) (Problem f).

Besides, consider Problem f f which differs from Problem r in that all processing times
are equal to IjM and the jobs are processed on a single machine.

A schedule s for processing the jobs on M parallel machines is said to have no

unjustified machine idle time if either sdt) = 0 in the interval (0, 00), or sL(t) #' 0 in

the interval (0, t'] and sdt) = 0 for t > t', L = 1, 2, ... , M. Similarly, in the case of

a single machine, a schedule s' does not involve unjustified machine idle time if

sOrt) #' 0 in the interval (0, .E ti] and sOrt) = 0 outside this interval.
,eN

Let Sand S' be sets of all non-preemptive schedules with no unjustified idle time for

Problems I and II, respectively. It is clear that there exist optimal schedules for

Problems I and II in sets Sand S', respectively.

Schedules sand s' for problems r and II are called conjugate if for each unit interval
({I-I, {ll, (I = 1, 2, ... , there holds sOrt) = sL({I) for all t E ({I-l+(L-l)jM, {I-t+LjM]

(and, vice versa, sdt) = s'({I-l+LjM) for all t E ({I-I, (ll, L = 1, 2, ... , M).

It is easy to check that (a) if schedule s' belongs to So, then the conjugate schedule s

belongs to S (generally speaking, the opposite is not true); (b) the values of function

(9.1) coincide for conjugate schedules for Problems I and II .
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Therefore, to find an optimal schedule for Problem T, it suffices to find an optimal

schedule s*' E S' for Problem TT and to construct the conjugate schedule. The O(nlogn)

algorithm for finding an optimal schedule s*' E S' for Problem II is given in Section

4.3(b) of this chapter.

Example. Consider the following Problem I: M = 3, n = 10, the values of D; and O/j, i = 1,
2, ... , 10, are given in Table 9.1.

Tab I e 9. 1

; I 2 3 4 5 6 7 8 9 10

Dj I I I 2 2 2 2 3 3 4

"'; 5 4 6 2 3 4 5 I 3 2

An optimal schedule s*' for the corresponding Problem II is shown in Fig.9.1a. The

conjugate schedule s*, which is optimal for Problem I, is shown in Fig.9.1b. Here Fds*) =

Fz;(s*') = 2.

10

10

(a)

Machine 3

Machine 2

Machine 1

10

(b)

Fig. 9.1

9.6. Now we consider the problem of minimizing the maximal cost. Suppose that lOi(t) = t,

i = 1, 2, ... , n, and for each job preemption is allowed.

For a schedule s, let T;L denote the total length of time intervals in which job i is
M

processed on machine L. The relation E (T;dtiLl = 1, i = 1, 2, ... , n, must hold. Denote
L=l

T = max{t;(s) liE N}.

It is easy to verify that the values of T and TiL form a feasible solution for the

following linear programming problem:
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T-min

subject to
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(9.11)

M TiL

L-t-= 1, i
L=1 ,L

M

LTiL ~ T, i
L=1

1, 2, ... , n,

1, 2, ... , n,

(9.12)

(9.13)

n

LTiL ~ T, L = 1, 2, ... , M,
i=l

TiL ~ 0, i = 1, 2, ... , n, L = 1, 2, ... , M.

(9.14)

(9.15)

On the other hand, if T and TiL' i = 1, 2, ... , n, L = 1, 2, ... , M, is a solution of

problem (9.11}-(9.15) and there is a schedule s where the total length of intervals for

processing job i on machine L is TiL, and max{ti(s) liE N} = T, then this schedule is a

desired optimal schedule. We now show that the schedule s does exist and outline a method

for finding s. Also, we show that finding this schedule takes polynomial time. Then the

existence of a polynomial-time algorithm for solving a linear programming problem [166]

implies the existence of such an algorithm for the problem under consideration.

Let T and T = IITd be a solution of problem (9.11)-(9.15). Define T = T. It follows

that

(9.16)

M
Call row i (column L) of matrix T dense if E TiL

L=1
T, respectively}. Let

V(T) be a subset of positive elements of matrix T that contains one element of each dense

row and each dense column, and at most one element of each remaining rows and columns.

Let 8 be the largest number satisfying the following conditions:

(a) 8 ~ TiL jf TiL E V(T} and TiL is an element of a dense row or dense column;
_ M

(b) 8 ~ TiL+T- E TiL if TiL E V(T} but row i is not dense;
L=\

(c) 8 ~ TiL+T- I TiL if TiL E V(T) but column L is not dense;
i=l_ M

(d) 8 ~ T - E TiL if V(T) does not contain elements of row i;
L=I

(e) 8 ~ T- I TiL if V(T} does not contain elements of the column L.
j=l

For example, let n = 4, M = 3, T = II and matrix T is of the form:
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3 1- 4 11

1- 0 0 4
T =

0 6 0 6
4 0 § 10

111010

Here, the sum of elements in a row (in a column) is written next to this row (column).

The first row and the first column are dense. the elements of the chosen set V(T) are

underlined. We have

5;4+11-10

6 ~ T12 = 4, 6 ~ T21 = 4;
3

6 ~ T21 +T- LTn = 4+11-4 11;
L=l

3

6 ~ T34 +T- LTn = 6+11-10 7;
L=l

4

6~T12+T- L Ti2
i=l

4

6 ~ T34 +T- LTi4 = 6+11-10 = 7;
i=l

3

6 ~ T- L T 3L = 11- 6 = 5;
L=J

Thus, in the case under consideration, 6 = 4.

A desired schedule s can be constructed as follows. Start with the interval (77, 77+6],

where 77 = 0, and define sdt) = TiL for each element TiL E V(T) in the interval (77,

77+min{TiL, 6}] and, if TiL < 6, define sdt) = 0 in the interval (77+TiL, 77+6J. If there

are no elements of the column L in the set V(T), then set sdt) = 0 in the interval (77,

77+ 6].

Define TiL = max{O, TiL-O} if TiL E V(T) and TiL'= TiL' otherwise. Let T' = T -0. As a

result, we obtain the matrix T' = II TiL II and the value of T' for which the relation

T' = max{max{JJTiLli = 1, 2, ... , n} maxttTiLIL = 1, 2, ... , M}}
holds.

Note that matrix T' has at least one positive element less than matrix T, or one dense

(with respect to T') row (or one dense column) more than T.

Denote T' by T, and T' by T. Define 77 be equal to 77+0. Find new V(T) and 6. Find schedule

s in the interval (T!, T!+6J as described above, and so on. The total number of steps is at
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most r+M +n, where r is the number of positive elements in the initial matrix T.

For the example under consideration, we obtain successively

171

T

T

J 0 4 7

0 0 0 0 T 7, 0 3,
0 !i 0 6

4 0 ~ 6

7 6 6

0 0 ± 4

0 0 0 0

0 J 0 3 '
T 4,0= 4.

± 0 0 4

4 3 4

The resulting schedule s is shown in Fig. 9.2.

In each step of the described scheduling procedure, set V(T) is to be found. We show

that for any matrix T (with non-negative elements) and for the number T satisfying

condition (9.16) there exists a set V(T).

Machine 3

Machine 2

Machine 1

6

Fig. 9.2

Consider the (n+M)x(n+M) square matrix

9 10 11

u

where T' denotes the transposed matrix T, f3 = IIf3ijll and Y = IIYiill are square matrices with

non-negative elements of the order nxn and MxM, respectively. The matrices f3 and yare

chosen in such a way that the sum of the elements in each row and each column of the

resulting matrix u is T. The matrix 01 = uJT is doubly stochastic, i.e., its elements OIij
n+M n+M

satisfy the following conditions: OIij :2: OjL OIij = 1, i = 1, 2, ... , n+M, .L OIij = 1,
)=1 1=1

j = 1, 2, ... , n+M.
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Therefore, the matrix 01 may be represented as

(n+M) !

01 = L WIP!> wI ~ 0,
1= I

(n+M) !

L WI = 1,
1= I

(9.17)

where {PI} is the set of all (n+M)x(n+M) permutation matrices (i.e., (0, I)-matrices with

a single non-zero element in each row and each column) [14].

It is easy to check that any matrix PI for which wI > 0 in expression (9.17) determines

some set V(r) and, hence, there exists at least one set V(r).

Finding a set V(r) reduces to obtaining the matrix U= IIUijl1 of the above form, followed
by solving the assignment problem:

l1+M n+M

L LaijXij ---+ min
i = 1 j= 1

subject to

1, i 1, 2, ... , n+M,

n+M

L Xij = 1, j = 1, 2, ... , n+M.
t= 1

time and the number of

n

if L f3ij = 0, i = 1, 2, ... , n; aij = W, i = n+I,
j=1

= 1, 2, ... , M, and aij = Uij in other cases, where W is a

Here aij = W, j = M+I, M+2, ... , n+M,
M

n+2, ... , n+M, if .L Yij = 0, j
t=1

sufficiently large number.

Since solving the assignment problem takes at most O( (n +M)3)

problems to be solved for finding s is at most r+M+n, an optimal schedule can be found in

polynomial time.

9.7. Suppose now that 'Pi(t) = t-Di , i = 1, 2, ... , n, and preemption is allowed.

In this case, the problem of finding the schedule s* with the smallest value of function

(9.2) is the problem of minimizing the maximal lateness Lmax(s) = max {Li(s) liE N}, where

Li(s) = ti(s) -Di is the lateness of the job i, and Di is the due date, i = 1, 2, ... , n.

Number the jobs in non-decreasing order of their due dates: D1 ;5; Dz ;5; ••. ;5; Dn. For a

schedule s, let r;1) denote the total length of time intervals in which machine L

processes job i in the interval (Dk-1+Lmax(s), Dk+Lmax(s)J. Here k = 1, 2, ... , n,

Do = -Lmax(s).

It is easy to verify that the values of Lmax(s) and r;1), k = 1, 2, ... , n, i = 1, 2, ... ,

n, L = 1, 2, ... , M, form a feasible solution of the following linear programming problem:
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subject to

M i T;1)
L L -t.-= 1, i 1,2, ... , n,

L=I k=1 .L

M

LT;l) :::; D1+Lmax(s), i 1, 2, ... , n,
L=I

M

LT;1) :::; Dk-Dk_l , i = k, k+1, ... , n, k = 2,3, ... , n,
L=]
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(9.18)

(9.19)

(9.20)

(9.21)

1,2, ... , M, (9.22)

n (k)LTiL :::; Dk -Dk_]. L = 1, 2, ... , M, k = 2, 3, ... , n,
i=k

T;1) ~ 0, i = 1, 2, ... , n, k = 1, 2, ... , n, L = 1, 2, ... , M.

(9.23)

(9.24)

On the other hand, given a solution of problem (9.18)-(9.24), we can find a schedule

with the smallest value of maximal lateness. To do this, the procedures described in

Section 9.6 can be used.

9.8. Let us consider a natural extension of the problem of minimizing the total cost for

processing n jobs on M parallel machines.

As before, assume that all jobs are available at time d = O. The processing time of

job i on machine L is tiL' i = 1, 2, ... , n, L = 1, 2, ... , M. No preemption is allowed.

It is assumed that machine L cannot start processing before time TL ~ O. A function

'Pidt) is associated with job i and machine L specifying the cost to be "paid" if job i

is processed on machine L and this processing is completed at time t. If machine L

completes processing of all assigned jobs at time t, then the cost equal to ipdt) has to

be "paid". All cost functions are non-decreasing.

It is required to find a schedule with the lowest total cost.

Below, this problem is studied under the following additional condition: each machine L

processes the assigned jobs according to the sequence of reverse numerical order (starting

at time Td. In this case, the schedule is evidently specified by partitioning set N into

subsets N], Nz, ... , NM (some of them may be empty).

Let us introduce the following auxiliary problem of optimal partitioning a finite set

into subsets.

Let Fm(N], Nz,"" NM ) be a real-valued function defined over the set of all partitions
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.II
of a set lV = {I, 2, ... , m} into subsets NI , Nz,... , NM• Here U NL = lV, and some NL may be

L=t
empty. It is assumed that functions Fm are defined for all m ~ 0 and have the following

property:

Fm+I(NI> Nz,···, NL_I , NL U {m+l}, NL+t,NL+Z'"'' NM)

= if17+
I
(Fm(Nt, Nz,.. ·, NL,.. ·, NM ), INLI),

where if17+1 a function non-decreasing with respect to its first argument, and INLI is the

cardinality of the set NL , L = 1, 2, ... , M, Fa = const.

Given m = n, it is required to find a partition of set N = {I, 2, ... , n} into subsets

N7, N;, ... , N~ with the smallest value of the function Fn(NI , Nz,... , NM ) .

.II
Let nl' nz, ... , nM be non-negative integers such that [nL = m.

L=1

Consider the functions t7+\nl, nz, ... , nM) = min{Fm+I(N l , Nz,... , NL_I> NL U{m+l},
NL+l , NL+Z"'" NM)I INHI = nH, H = 1, 2, ... , M}.

It can be shown that for any m ~ 0 and 1 S L s M the recurrent relation

nH+!>'''' nM) InH > 0, H = 1, 2, ... , M}, nL)

holds. This relation allows us to arrange the successive computation of all values of t7,
.II

m = 1, 2, ... , n, L = 1, 2, ... , M, [ nL = m.
L=1

If f~l(n7, n;, ... , n;,) is the smallest of the computed values of f~, then IN~I = n~,

H = 1, 2, ... , M, and n E N; . If a minimum of f~-'(n7, n;,... , n~ -I> n~ -1, n~ +1, ... ,
"'1 1 1 1

n;/) is attained at L = L2 , then n -1 E N~ , etc. As a result, the desired partition N7,z

N* N*' b' d Th" [M+n) . h O( .II) .z, ... , .II IS 0 tame. IS requlfes at most .II , I.e., no more t an n computatIOns

of the values of t7 for a fixed M.

We now consider some special cases of the original problem.

(al Let M

01(t) = 0z(t)

2, T 1 = T Z = 0, til = tiz = t i , 'Pi\(t) = 'Pdt)

O.

t, i 1, 2, ... , n,

Let Fm(NI , Nz) denote the total cost of processing the jobs of set lV = {I, 2, ... , m},

m S n, provided that machine 1 processes the jobs of set NI , and machine 2 processes the

jobs of set Nz, N 1 U Nz = lV. Since each machine processes the jobs in decreasing numerical

order starting at T = 0, we may add the job m+ 1 to the set NL, L E {I, 2}, thereby

increasing the total cost by the value of (I NL I+l)tm+t· In other words, for all m,
o s m < n, the relation
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holds.

A similar relation is also valid for Fm+l(N
"

Nz u {m+I}). Therefore, we may define

where L = 1, 2 and Fo = O.
Having solved the auxiliary problem with the functions 4>7+ 1 of the form shown above, we
obtain a desired partition of set N = {I, 2, ... , n} into subsets.

(b) Let M = 2, 'PiL(t) = t+ciL' rh = CY.Lt, CY.L > 0, i = I, 2, ... , n, L = I, 2.

As in the previous case, let Fm(N1, Nz) denote the total cost of processing the jobs of

set N1 on machine 1 and the jobs of set Nz on machine 2j N1 U Nz = N, N = {I, 2, ... , m},

m ~ n.

Let us add the job m+ 1 to the set NL, L = 1, 2. If NL 1" O, then the total cost changes

by ('L+tm+),L+cm+I,Ll+ INLltm+I,L+CY.Ltm+I,L' If NL = 0, then the total cost changes by
('L +tm+I,L +cm+I,Ll +CY.L('L +tm+"Ll·

Therefore, we may define

<l>7+ 1(Fm(N),Nz), INLI) = Fm(N),NZ) +(CY.L(3L +1)'L +(I NLI +CY.L +l)tm+I,L+cm+l,L,

where (3L = 1 if INDI = 0, Ih = 0 if INDI > OJ L = I, 2 and F0 = o.
(c) Let M 2': 2, 'PiL(t) = bLt+CiD, ih = CY.Lt, CY.D > 0, bL > 0, i = 1, 2, ... , n, L 1,

2, ... , M.

It is clear that in this case

<l>7+
I
(Fm(N

"
Nz,.. ·, NM),INLI)= Fm(N), Nz,"" NM)+(CY.L(3L+bLl'L

+(bLINLI +CY.L+bLltm+I,L+Cm+l,L,

where (3L = 1 if INLI = 0, (3L = 0 if INLI > OJ L = 1, 2, ... , M, 0 ~ m < n, Fo = O.
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deadline-feasible schedule provided that preemption is allowed and a job can be processed
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feasible schedule (and a time-optimal feasible schedule).
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arbitrary, the running time is O(M2n4 +ns) [353]. The case of M = 2 is considered in [338]
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The problems of the existence of feasible schedules are also considered by Revchuk [130]

(given "access windows" of machines) and by Lapko [85] (unlimited deterministic flows of

jobs).

Algorithms for minimizing the maximal cost for M = 1 and d j = 0, i = 1, 2, ... , n,

(Section 3.2) are proposed by Livshits [98] for a non-ordered set of jobs and by Lawler

[332] for a partially ordered set of jobs. Solutions to the problems of minimizing the

maximal lateness (Lmax ) and the maximal tardiness for d, = 0, i = 1, 2, ... , n, and G = (N,

0) (Section 3.3) is obtained by Jackson [304], and by Lawler and Moore [332, 342J for the

case of a partially ordered set of jobs. Lageweg et al. [326] reduce the non-preemptive

case of the problem of minimizing Lmax for Dj = D, d j ~ 0, i = 1, 2, ... , n, to the case of

the same release dates and different due dates (a special case of the problem discussed in

Section 3.4).

Gordon [42, 43] develops an algorithm for solving the problem of minimizing the maximal

cost for M = 1, d j ~ 0, i = 1, 2, ... , n, provided that preemption is allowed. An O(n2 )

algorithm for solving this problem given a partially ordered set of jobs (see Section 3.6)

is designed by Gordon and Tanaev [49] and independently by Baker et al. [194]; see also

[88]. A special case of this problem (that of minimizing Lmax ) is discussed in [87, 295,

326]. Lageweg et al. [326] give an algorithm for solving the problem of minimizing Lmax

for t j = 1, d j ~ 0, i = 1, 2, ... , n, provided that preemption is forbidden (a special case

of the problem considered in Section 3.8(a)). In [412J, the latter problem with equal

processing times is considered.

In [363], the problem of minimizing the maximal cost is considered, provided that the

processing times may be negative, while in [327, 409], it is assumed that the cost is

associated with both violating the due dates and starting processing before the time d j •

Theorem 4.1 is proved by Tanaev and Gordon [157J. The proof of a similar statement for a

special case (Olj = 1, i = 1, 2, ... , n) given by Kise et al. [316] contains an error

(Lemma 2 [316] is not valid). The solution procedure for the problem of minimizing the

number of late jobs (Section 4.3(a) and (b)) is offered by Moore (for d j = 0, i = 1, 2,

... , n) and Kise et al. Mine [316J (for agreeable d j and Dj ); see also [354]. The solution

to the problem studied in Section 4.3(b) is obtained by Gordon and Tanaev [45], as well as

by Lawler [334]. Sidney [407] proposes an algorithm for the problem considered in Section

4.4, assuming Olj = 1, i = 1, 2, ... , n.

Lawler [331J suggests reducing the problem of minimizing the total cost for t j = 1,

d j = 0, i = 1, 2, ... , n, to the assignment problem (see Section 4.5). In [424], this

reduction is extended to the situation where a single time variable resource system is
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considered instead of a single-machine system. The problems of minimizing the total cost

for single-machine processing when the cost is associated with the processing of a job in

each unit interval is discussed in [140, 179, 180, 181J. The case of 1O;(t) = Z;, t; = 1 is
considered in [384J.

The solution to the problem studied in Section 4.6 with 1O(t) +bi = t - Di , i = 1, 2, ... , n,

is proposed by Horn [295J. The case of 1O(t) = t is discussed by Baker [193]. In the case

d; = 0, i = 1, 2, ... , n, and under the additional condition of scheduling without

violating deadlines, this problem is considered in [36, 417J.

The problems of minimizing the total cost under additional constraints on usage of the

machine are studied in [8, 131J.

Polynomial-time algorithms for multicriteria single-machine problems, as well as

single-criteria problems with additional constraints such as processing without violating

the due dates are discussed in [30, 32, 69, 71, 159, 256, 272, 274, 291, 431, 434J.

The papers [84, 86, 161, 387, 428] are devoted to stochastic counterparts of the problem

of optimal single-machine processing. The problems of optimal scheduling with

non-monotonic objective functions are discussed in [250, 311, 358, 401J.

The algorithm for minimizing the makespan when M ~ 1, t; = 1, i = 1, 2, ... , n, and the

reduction graph of the precedence relation is a forest (Section 5.2) is proposed by Hu

[168J. In [11, 298], simpler proofs than that in [168] are given for the optimality of the

schedule obtained by this algorithm. The proof given in Section 5.3 is due to Sethi [404].

Other algorithms with the same running time are developed in [40, 240], see also [438]. The

0(n2 ) algorithm for solving the above problem for an arbitrary reduction graph of the

precedence relation and M = 2 (Sections 5.4-5.6) is proposed by Coffman and Graham [234].

(The graph in Fig. 5.4 is given in [4031, that in Fig. 5.7 is taken from [404]). Earlier,

an 0(n3
) algorithm was known [263, 264J. An 0(n2 ) algorithm by Garey and Johnson [272J also

solves this problem (see Section 7.3). In [271J, a polynomial-time algorithm is proposed

for solving the problem for G = (N, 0) with resource constraints, while [329J studies the

case of M ~ 2, d; ~ 0, G = (N, 0) under additional condition of processing without

violating the deadlines (d; are integers, i = 1, 2, ... , n).

The problem of finding a preemptive time-optimal schedule for M ~ 1, tiL = t i , d; = 0,
i = 1, 2, ... , n, L = 1, 2, ... , M, (Section 6) is solved by McNaughton [356J (G = (N, 0),

the running time is O(n)), by Muntz and Coffman [370, 369J (either graph G is tree-like or

M = 2, the running time is 0(n2 )). The algorithms the same running times but different

from those in [369, 370] and based on results obtained in [216, 272J are due to Lawler

[338] (if M = 2, the machines may have different speeds), see also [389, 390J. A more
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efficient algorithm (the running time is O(nlogM)) presented in [284] solves the problem

if the graph G is a forest of outtrees. The same paper also describes an O(nM) algorithm

for the case di 2: 0, i = 1, 2, ... , n, G = (N, 0). The proof of Theorem 6.1 is given by

Muntz and Coffman in [370], who also introduce the concept of a machine-sharing schedule.

In [125], minimizing the number of preemptions in a time-optimal schedule (G being an

intree) is considered.

The algorithms for finding a deadline-feasible schedule (given equal job processing

times) discussed in Section 7 are proposed in [216] for the case if G is an intree

(Section 7.2) and in [272] for M = 2 (Section 7.3). In both cases, it is assumed that

di = 0, i = 1, 2, ... , n. In [274], an O(n3 ) algorithm is given for solving the problem for

M = 2, ti = 1, di 2: 0, dj being integers, i = 1, 2, ... , n.

Minimizing Lmax for M > 1 is considered in [29, 216, 272, 274, 295, 324, 338, 339, 353,

396, 413, 414J. For the case of di = 0, ti = 1, i = 1, 2, ... , n, provided that preemption

is not allowed (Section 8.2) the problem is solved by Brucker et al. [216J (G is an

intree, the running time is O(nlogn)) and by Garey and Johnson [272] (G in an arbitrary

graph and M = 2; the running time is O(n2
)). For M = 2, di being integers, ti = 1, i = 1,

2, ... , n, and an arbitrary circuit-free graph G, the problem is solved in [274] (the

running time is O(n310gn)). For ti = t, dj 2: 0, i = 1, 2, ... , n, M > 1, an O(n310g2n)

algorithm is given in [414J. Horn [295] develops an O(n2 ) algorithm for solving the problem

for G = (N, 0), di = 0, M > 1, t i > 0, i = 1, 2, ... , n, preemption is allowed. The

algorithm (Section 8.3) for solving the problem for G = (N, 0), M > 1, provided that all

di and ti are integers and preemption is allowed, runs in O(n3 min{n2 , logn+log(max{til

i E N})) time and is proposed by Labetoulle et al. [324]. This algorithm can be extended to

the case of M = 2, tiL = aLti, i = 1, 2, ... , n, L = 1, 2, ... , M, [324]. For the case of

M > 1, tiL = aLti, i = 1, 2, ... , n, L = 1, 2, ... , M, preemption is allowed, an

O(Mnlogn + M2n ) algorithm is given in [324, 396J for di = 0, i = 1, 2, ... , n. Martel [353]

proposes a polynomial-time algorithm for arbitrary d j • In [338], Lawler extends the results

obtained for ti = 1, i = 1, 2, ... , n, to the case of arbitrary ti provided that preemption

is allowed (M > 1, di = 0, G is an intree, the running time is O(n2 )j M = 2, tjL = aLtj, G

is arbitrary, the running time is O(n2 ) or O(n6
) if di = ° or di 2: 0, respectively).

Reducing the problem of minimizing Lmax (for unrelated machines and preemptive processing)

to a linear programming problem (Section 9.7) is given in [339]. If a job is allowed to be

processed on several machines at a time, the problem is solved in [29] (for M identical

machines, d j 2: 0, i = 1, 2, ... , n, preemption is allowed, the running time is O(n4M)).

Reducing a scheduling problem with the objective function (9.1) ('Pj(t) = t, i = 1, 2, ... ,
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n) to the transportation problem (Section 9.2) is proposed by Horn [294] and Bruno et al.

[220]. An O(n3
) algorithm for solving the later problem is given in [219]; see also [218].

The algorithm for optimal (with respect to function (9.1)) scheduling for 'Pi(t) = t and

tiL = aLti , i = 1, 2, ... , n, L = 1, 2, ... , M, (Section 9.3) is proposed by Conway et al.

[78J, see also [218, 296].

Reducing the problem of minimizing the objective function (9.1) (tiL = aL, i = 1, 2, ... ,
n, L = 1, 2, ... , M) to the transportation problem (Section 9.4) is given in [290]. In a

special case of t i = 1, i = 1, 2, ... , n, L = 1, 2, ... , M, the solution is obtained by

Lawler [331].

An O(nlogn) algorithm for minimizing the weighted number of late jobs for t i = 1, i = 1,

2, ... , n, L = 1, 2, ... , M, (Section 9.5) is given in [334]. The same paper also considers

the case when the number of available machines is specified in each unit time interval.

The scheduling problems to minimize (9.1) for t,L = aLti , i = 1, 2, ... , n, L = 1, 2, ... ,
M, are considered in [282, 337] (preemption is allowed). In [282J, an O(nlogn+Mn)

algorithm is given for 'Pi(t) = OIiti' i = 1, 2, ... , n, assuming that the weights OIi and the

processing times ti are agreeable (t i < t j implies OIi ~ OIj)' The problem of minimizing the

number of late jobs if aL are time-dependent is considered in [337]. The proposed

algorithms run in O(n4 ) time for M = 2 and in O(n3M- 3 ) time for M ~ 3.

Reducing the scheduling problem with the objective function (9.2) to the transportation

problem (tiL = aL, i = 1, 2, ... , n, L = 1, 2, ... , M, no preemption is allowed) considered

in Section 9.4 is given in [290J. In the preemptive case, Lawler and Labetoulle [339]

reduce this problem for 'Pi(t) = t, i = 1, 2, ... , n, to a linear programming problem

(Section 9.6). The procedure for finding an optimal schedule from a solution of the linear

programming problem if based on the results of [285].

The algorithms for time-optimal preemptive scheduling on uniform parallel machines are

proposed in [297, 328, 338J (M = 2, an ordered set of jobs; the running time is O(n2 )), in

[286] (d i = 0, i = 1, 2, ... , n, the running time is O(n+MlogM)) and in [324, 396] (d i ~ 0,

i = 1, 2, ... , n, the running time is O(Mnlogn+M2n )).

The problems of finding schedules that are either time-optimal or feasible with respect

to deadlines under resource constraints are discussed in [105, 211, 271]. The algorithms

for finding time-optimal schedules are described in [271] (M = 2, t i = 1, i = 1, 2, ... , n,

q types of resources, the running time is O(qn2+n5{2)), in [211J (M = 2, tiL = aL, i 1,

2, , n, L = 1, 2, ... , M, q = 1, the running time is O(nlogn); and also, tiL = aL, 1,

2, , n, L = 1, 2, ... , M, q = 1 and one unit of the resource is required for the
processing of each job (the running time is O(n3 )). These algorithms can be used to find
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schedules that are feasible with respect to deadlines when Di = D, i = 1, 2, ... , n.

Polynomially solvable optimal scheduling problems with some constraints on the grouping

of the jobs are considered in (135, 136, 372].

Section 9.8 is based on paper [156] by Tanaev. A meaningful formulation of the problem

is given by Rothkopf [386]. Case (a) is considered in [357], and case (b) in [388J.

10.2. We now consider the main results which have not been reflected in the Russian

edition of the book.

An excellent survey of recent results in scheduling theory can be found in [115*].

Developments in some specific areas are reviewed in [7*, 10*, 11*, 12*, 38*, 66*, 70*,

114*, 117*-119*].

The following polynomial-time algorithms for solving traditional scheduling problems have

been developed recently.

Frederickson [50*] proposes an O(n) algorithm for minimizing the maximum lateness on a

single machine with ti = 1, di > 0, i = 1, 2, ... , n.

Garey et al. [57*] give an O(nlogn) algorithm for finding a feasible schedule with

respect to the given release dates d; and deadlines Di for the single machine problem

with ti = t, i = 1, 2, ... , n. The binary search over the possible values of Lmax yields a

polynomial-time algorithm for minimizing the maximum lateness.

Monma [130*] proposes a linear-time algorithm minimizing the maximum lateness on a

single machine under precedence constraints assuming that di = 0, ti = 1, i = 1, 2, ... , n.

Rinnooy Kan [324) describes an O(nlogn) procedure for the single machine problem to

minimize the total tardiness, provided that the release dates are integers and the

processing times are unit.

Lawler [112*] proposes an O(nlogn) algorithm for minimizing the number of late jobs on a

single machine if the release dates and due dates are similarly ordered.

Gordon and Baranova [8*, 68*J extend polynomially solvable cases of the minimum weighted

number of late jobs problem (see Sections 4.3-4.4) to cover the problem in which specified

jobs have to be completed on time and the release dates and due dates are similarly

ordered. This generalizes the results in [407) obtained for the case of di = 0, <Xi = 1,

i = 1, 2, ... , n.

Monma [130*] describes an O(n) algorithm for minimizing the number of late jobs on a

single machine in the case of d; = 0, t i = 1, i = 1, 2, , n.

Scheduling unit-length jobs with d i = 0, i = 1, 2, , n on uniform parallel machines

with a minisum or minimax criterion and arbitrary non-decreasing cost functions is
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considered in [39*], see also [115*]. The problem of minimizing the total cost is solved

in O(n3
) by reducing to the nxn weighted bipartite matching problem. The problem of

minimizing the maximal cost is solved in O(n2 ) time using a generalization of the

algorithm for the corresponding single-machine problem. The problems of minimizing E z; or
ieN

L17UlX are solved in O(nlogn) time by matching the kth smallest due date with t~in. Here

t~in < t~jn <... < t~in denote the n earliest possible completion times. These values can

be obtained in O(nlogM) time by arranging a priority queue with the completion times ai'

a2, ... , aM and then, in a general step, by removing the smallest completion time from the

queue and, if this time is kaL, inserting (k+ l)aL into the queue. A similar approach is

used for the problem of minimizing t max with different d; (matching the kth smallest

release date with t~in) as well as for that of minimizing E Oiit; (matching the kth
, ieN

largest weight with t~in). The problem of minimizing E Oi;llj is solved in O(nlogn) time
ieN

by scanning the n earliest possible completion times from the largest to the smallest.

Among unscheduled jobs which can be completed on time (if any), a job with the largest

weight is chosen to start processing.

McCormick and Pinedo [127*] generalize the O(nlogn+Mn) algorithm by Conzalez [282] for

the preemptive scheduling on uniform machines to minimize wt17UlX + E t; with an arbitrary
teN

weight w ~ O.

Federgruen and Croenevelt [48*] propose an O(tn3 ) algorithm for preemptive scheduling n

jobs with given release dates on M uniform parallel machines of t, t $ M, distinct speeds

to minimize Lmax '

Monma [130*] presents a linear-time algorithm for scheduling unit-length jobs on

parallel identical machines under precedence constraints of the form of an in tree, the

objective is Lmax ' Carey et al. [58*] show that this problem with the objective t 17Ulx can

be solved in polynomial time if the reduction graph is an opposing forest (the disjoint

union of an inforest and an outforest) and the number of machines is fixed (if the number

of machines is variable the problem is NP-hard). Mohring [129*) shows that the problem can

be solved in polynomial time by dynamic programming if the width of the reduction graph is

bounded.

Cabow and Tarjan [56*] propose a linear-time algorithm for minimizing t max on two

identical machines under arbitrary precedence constraints a.,suming that t; = 1, i = 1,

2, ... , n. If the reduction graph is a tree, the problem can be solved in O(nlogn) time for

t; E {I, 2} (134*] and in O(n210gn) time for t; E {I, 3} [43*).

Using results of symmetric functions study, Tanaev has found some properties which allow
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to describe a class of polynomially solvable scheduling problems [154*, 155*].

Below, we consider some extensions of the traditional scheduling problems that seem to

be of particular interest and lead to new efficient algorithms.

Hochbaum and Shamir [80*] consider the high multiplicity problems in which the jobs can

be partitioned into relatively few groups (or types), and in each group all the jobs are

identical, i.e. they have the same set of parameters (the due dates, the weights etc.). The

number of jobs of an individual type is called the multiplicity of that type: These

problems may also be interpreted as classical scheduling problems, with a different kind

of the objective. Each type is considered as a superjob of length equal to its

multiplicity and the goal is to arrange a preemptive scheduling of the superjobs. The

objective function takes into account the contribution of each unit (rather then that of a

superjob) to the total cost.

The running times of the algorithms described in [80*1 are polynomial with respect to the

number k of groups rather than in the total number of jobs. Polynomial algorithms are

proposed for the single-machine problem with Pi identical unit-time jobs of type i, i = 1,

2, ... , k, to minimize (1) the weighted number of late jobs (the running time is O(klogk);

preemptive solution); (2) the total weighted tardiness with agreeable weights (O(klogk));

(3) the maximum and total weighted completion time (O(klogk)); (4) the maximum weighted

lateness or tardiness (O(klog2k)); and (5) the total weighted tardiness (reduced to a

quadratic integer transportation model solvable in polynomial time; preemptive solution).

Batching and lot-sizing problems as combinations of sequencing and partitioning problems

have recently become of great interest. Batching is considered as the decision of whether

or not to schedule similar jobs contiguously. On the other hand, lot-sizing refers to the

decision on when and how to split a production lot of identical items into sublots. Recent

applications of these problems can be found in flexible manufacturing systems which provide

the possibility to economically process jobs in small batches. Batching of similar jobs is

mainly done to avoid set-up times or set-up costs. The review of the results concerning

this type of problems is recently given by Potts and Van Wassenhove [140*J. See also [2*,

24*,28*, 30*, 31*, 96*, 97*, 104*, 156*].

Using the approach of Lawler and Moore [342), Monma and Potts [131*] develop dynamic

programming algorithms for single machine batching problem to minimize the maximum

lateness, the total weighted completion time and the number or late jobs. In all this cases

this approach yields the algorithms that are polynomial with respect to the number of jobs,

but exponential with respect to the number of batches. Thus, the problems are efficiently

solvable even with sequence dependent setup times, assuming that the number of batches is



184 Chapter 2

fixed.

Coffman et al. [31*] describe an O(VTl')algorithm for the single machine scheduling to

minimize r: t i in the case of two types of batches, sequence independent setup times and
ieN

equal processing times in each batch.

Albers and Brucker [2*) propose an O(nlogn) algorithm for minimizing the total weighted

flow time r: Oliti on a single machine, assuming that the processing times of jobs are
ieN

equal, the setup times are both sequence and batch independent and the flow time of a job

is determined by the completion time of the last scheduled job in a batch (all jobs in a

batch are supposed to have the same flow time). They also give an O(n2 ) algorithm for the

problem with Oli = 1, i = 1, 2, ... , n, under arbitrary precedence constraints.

Cheng and Kahlbacher [28*], Cheng and Gordon [24*], Cheng, Gordon and Kovalyov [26*)

present polynomial-time algorithms for some batch delivery problems in which the jobs in

each batch have to delivered to the customer together, and the batch delivery cost is

included into the objective function.

Another popular research topic in the recent scheduling literature is the optimal due

date assignment and scheduling [6*, 16*-22*, 25*, 27*, 29*, 64*, 65*, 67*, 135*, 145*,

160*]. The due dates in these problems are not given in advance and have to be assigned

during decision making. Polynomial-algorithms for the optimal due date assignment and

scheduling are proposed for some single machine problems with minimax lateness [21*, 22*,

25*, 64*, 65*, 67*), minisum lateness [18*-20*, 135*, 144*, 160*], and minimal square

lateness objectives [16*]. Extensive surveys of scheduling research involving due-date

determination decision have been presented by Cheng and Gupta [27*] and Baker and Scudder

[7*).

Scheduling theory is one of the areas that are likely to benefit from advances in

parallel computers. Ribero [142*) and Kindervater and Lenstra [91*J present detailed

reviews of parallelism in combinatorial optimization, see also [90*, 66*]. The complexity

theory for parallel computation explains the speedups possible due to the introduction of

parallelism. Within the class P, this leads to a distinction between "very easy" problems

that are solvable in polylogarithmic parallel time, and "not so easy" ones for which a

speedup due to parallelism is unlikely (they are P-complete under log-space

transformations). Well-solvable problems belong to the class NC which contains all

problems solvable in polylog parallel time using only a polynomial number of processors.

We refer to Johnson [86*] and Cook [32*) for further details.

Scheduling problems of the class NC are considered by Dekel and Sahni [35*-37*), Gordon

[62*, 63*J, Helmbold and Mayr [78*, 79*J. Single machine problems with release dates to
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minimize a minimax objective (either preemption is allowed or the processing times are

unit) are considered in [36*, 62*, 63*J. Single machine problems to minimize either the

number of late jobs or the weighted number of late jobs (unit processing times) are

considered in [35*-37*]. Helmbold and Mayr [78*, 79*] study the problem of minimizing the

makespan I max for the jobs of unit length on two machines under precedence constraints. The

problems to minimize either I max (preemption is allowed) or Lmax (the release dates may be

different and the processing times are unit) for parallel identical machines are

considered in [35*-37*]. The problem of minimizing l max for parallel uniform machines

(preemption is allowed) is considered in [125*].



CHAPTER 3

PRIORITY-GENERATING FUNCTIONS.

ORDERED SETS OF JOBS

As mentioned in the previous chapters, a number of scheduling theory problems can be

formulated in terms of optimizing functions over sets of permutations of the elements of a

given finite set N. In particular, among such problems are those of finding optimal

single-machine schedules for a finite set of jobs, provided that preemption is not allowed

and that at most one job is processed at a time.

This chapter considers problems of optimizing functions over some subsets P of the set

P of all permutations of the elements of set N. Special classes of functions are

distinguished and methods for their optimization are described under various assumptions

on the structure of set P. Attention is paid to analyzing the situation where N is a

partially ordered set and P is a set of all permutations maintaining the order defined

over N.

The concept of a priority-generating function is introduced in Section 1. In that

section, a number of combinatorial extremal problems are presented which can be reduced to

optimizing a priority-generating function over an appropriate set P. Section 2 describes

specific transformations of graph G of reduction of a precedence relation defined over set

N. These transformations are the ba.sis of the methods for optimizing priority-genera.ting

functions over a set of permutations maintaining the order defined over N. Sections 3

and 4 consider the cases in which graph G is tree-like and series-parallel,

respectively. A general case is studied in Sections 5 and 6. In Section 7 the concept of a

I-priority-generating function is introduced, and methods for optimizing such functions

186
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are described.

1. Priority-Generating Functions

187

Let P be a set of all permutations 7fr = (ii' i 2 , ••• , ir), r = 0, 1, ... , n, of the

elements of a set N = {I, 2, ... , n}. Here r is the length of a permut.ation 7fT> {7fo} = 0.

l[ P <;; P, then let Q[P] denote a set of all those permutations ~q) E P, 7f(q) oF 7fo, for

which there exist permutations 7f E P and 7f(1), 7f(2) E P such that 7f = (7f(1), 7f(q), 7f(2»).

A function F(7f) is defined over a set P' <;; P. For P <;; P', let there exist a function

w(7f) defined over the set Q[P] and having the following property. For any permutations

7f' = (7f(1), 7f(a), 7f(b), 7f(2») and 7f" = (7f(l), 7f(b), 7f(a), 7f(2») belonging to P the

condition w(7f(a») ~ w(7f(b») implies that F(7f') $ F(7f"). In this case, F(7f) is called a

priority- generating function over set P, and w(7f) is called its priority function. The

value of w(7f) is called the priority of permutation 7f.

Note that if the function F(1T) is priority-generating over some set, it is also

priority-generating over any of its subsets.

Priority-generating functions play an important role in scheduling theory. Many

spectacular results are obtained while analyzing situations in which some

priority-generating function is to be optimized over a certain set P of permutations. As a

rule, a subset of the set Pn is chosen as P. Here Pn is a subset of P consisting of all

permutations of Phaving the length n.

In the following, we consider the problem of minimizing F(7f). To maximize F(7f), it is

enough to take -w(7f) as a priority function and to use an algorithm for minimizing F(7f).

We consider several problems which can be reduced to minimizing a priority-generating

function. The following notation is used throughout this section. For a real number Ai

associated with an element i E N denote A(7f) = I: Ai where 1T E P.
ieT1r}

1.1. The jobs of a set N = {I, 2, ... , n} are processed on a single machine starting at

time d = O. For each job i, the processing time t i > 0 and the function 'P;(t) of the cost
to be "paid" for having that job completed at time t are given. Preemption is not

allowed, and at most one job is processed at a time.

Let the function

F(7f) = t'Pik[tt;J (1.1)
k=l J=I

be defined over the set Pof permutations of the elements of set N, where 7f = (ii' i2 , ... ,
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(1.2)

i r ) E P and F(1ro) = O. It is required to find a feasible (in a certain sense) job

processing sequence (i.e., a permutation 1rn of P £:; Pn ), for which the total processing

cost F(1rn ) is minimal.

We introduce the function

<I>(1r, C) =kt'P;k[C+ jt/ij]

where C is a real number. It is obvious that F(1r) = <I>(1r, 0). We have

F(1r(l), 1r(a), 1r(b), 71'(2») = cf>(1r(l), O)+cf>(1r(a), t(1r(l»))+

+<I>(1r(b), t(1r(l), 1r(a»)) +<I>(1r(2), t(1r(l), 1r(a), 1r(b»));

,"

Since t(1r(l), 1r(a), 1r(b») = t(1r(I), 1r(b), 1r(a»), it follows that the inequality

F(1r(l), 1r(a), 1r(b), 1r(2») S; F(1r(l), 1r(b), 1r(a), 1r(2») holds if and only if

(1.3)

s; <I>(1r(b), t(1r(J)))+<I>(1r(a), t(1r(I), 1r(b»)).

We now consider some special cases of function (1.1).

(a) Let 'Pi(t) = OI.;t+/3;, where 01.;, (3; are real numbers, 1, 2, ... , n. Then relation

(1.3) reads OI.(1r(b»)t(1r(a») S; OI.(1r(a»)t(1r(b»). Since t; > 0, i = 1, 2, ... , n, we may define

w(1r(a») = OI.(1r(a»)/t(1r(a») and w(1r(b») = OI.(1r(b»)/t(1r(b»). Hence, if the cost functions are

linear, function (1.1) is priority-generating over set P and its priority function is

W(1r) = L01.;/ L t;.
;e (11" 1 ;e (11"1

(1.4)

(b) Let 'Pi(t) = OI.;exp(yt)+(3i' i = 1, 2, ... , n, y oF O. Then relation (1.3) reads

(exp(yt(1r(a»))-l)(F(1r(b))-(3(1r(b))) S; (exp(yt(1r(b»))-l)(F(1r(a))-(3(1r(a))). Since t; > 0,

i = 1, 2, ... , n, we may define w(1r(a») = (F(1r(a»)-(3(1r(a»))/(exp(yt(1r(a)))-l) and

w(1r(b») = (F(1r(b»)_(3(1r(b»))/(exp(yt(1r(b)))-l). Hence, for exponential cost functions

(with the same coefficient at the exponent), function (1.1) is priority-generating over

set Pwith the priority function

(1.5)

(c) Let 'Pi(t) = 'P(t), i = 1, 2, ... , n, where 'P(t) is a non-decreasing function for

t ;:: O. We show that in this case, function (1.2) is not, generally speaking, priority

generating over either P or Pn . In fact, let 'P(t) = t2/3, N = {I, 2, 3, 4, 5}, t1 = 10,
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(1.6)

t2 = 1, tJ = 2, t4 = 7, ts = 5. Assume that 71'(a) = (3, 4), 71'(b} = (5). If the priority

function w(7I') existed, then the relation of the form F(7I'(l}, 71'Ca), 71'Cb}, 71'(2») S; F(7I'(l),

71'(b}, 71'(a), 71'(2») would hold irrespective of what are chosen as permutations 71'(l), 71'(2).

However, in the situation under consideration, we have F( 1, 3, 4, 5, 2) = 602 < F( 1, 5, 3,

4, 2) = 605, F(2, 3, 4, 5, 1) = 320 > F(2, 5, 3, 4, 1) = 317.

1.2. The jobs of a set N = {I, 2, ... , n} are processed on a single machine starting at

time d = O. Preemption is not allowed, and at most one job is processed at a time. The

processing time of a job i depends on its starting time t~ and is equal to t i = C<it~ + l3i'

C<i > 0, l3i > 0, i = 1, 2, ... , n. It is required to find a job processing sequence 71'n E P ~

Pn which minimizes the total flow time.

Let the function
r

F(7I') = L tie 71' = (ii' i 2,· .. , ir) E P, F(7I'o) = 0
k=1

be defined over set P of permutations of the elements of set N.

It is clear that F(7I'n) is the total flow time of the jobs of set N processed according

to the sequence 71'n' We show that this function is priority-generating over set P with the
priority function

W(7I') = q,(7I')jF(7I'),

where

(1.7)

Let <I>(7I', C) denote the total flow time of the jobs of the set {71'} processed according

to the sequence 71', provided that the processing of the first job starts at time C, Le.,

t~1 = C. It is easy to verify that

<I>(7I',C) = F(7I') +CI1'(7I'). (1.8)

The relation F(7I'(1), 71'(a), 71'(b), 71'(2») s; F(7I'CI), 71'(b), 71'(a) , 71'(2)) holds if and only if

4>(7I'(a), F(7I'(1»))+'I>(7I'Cb), F(7I'(l), 71'(a»)) +'1>(71'(2), F(7I'(l), 71'Ca), 71'Cb»)) S; <I>(7I'Cb), F(7I'(1»))+

'I>(7I'(a), F(7I'(l}, 71'Cb»)) +'1>(71'(2), F(7I'(1), 71'(bl, 71'(a))). Due to relation (1.8), the later

inequality is equivalent to (1+11'(7I'C2»))(11'(7I'(a))F(7l'(b))-q,{1r(b))F(7I'(a))) ~ O. Since

11'(71'(2») > 0, it follows that (1.7) is the desired priority function.

1.3. We now consider the problem of minimizing a linear form over a set of
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permutations. Two vectors (OIl' 012"", an) and (,81, f32"'" f3n) with real components are

given. It is required to find such a permutation rrn = (i" i2, .•. , in) E P f::: f\ which
minimizes the function

r

F(rr) = LOIkf3ik
k=1

(1.9)

for r = n. Here rr = (i" i2 , ... , ir), F(rro) = O.
For some sets P f::: f\, fast algorithms for finding an optimal permutation are known

(e.g., when either P = f\ or P is the set of even (or odd) permutations). We show that, in

a general case, function (1.9) is not priority-generating over f\. Let rr(l) be a

permutation of length lJ, rr(a) = (iI' i2, .. ·, iq), rr(b) = (j" i2"'" is)' The relation

F(rr(I), rr(a), rr(b), rr(2») $ F(rr(1), rr(bl, rr(a), rr(2») holds if and only if
s q

L (Oivtqtk-Oivtklf3jk $ L (Oivtstk-Oivtk)f3jk' (1.10)
k=l k=1

It is obvious that inequality (1.10) depends on the length lJ of permutation rr(1), which

contradicts the definition of a priority-generating function.

We consider two special cases, in which function (1.9) can be proved to be

priority-generating.

(a) Let Oii = 0I1+{i-l)h, i = 1, 2, ... , n. In this case, relation (l.10) reads

qh 1: f3i $ sh 1: f3i' Hence, the priority function exists and is of the form
ie{ ,,(b)} ie{ ,,(a)}

w(rr) = ~ L f3i, (1.11)
ie {,,}

where r is the length of a permutation rr. Thus, in this case, function (1.9) is priority

generating over P.
(b) Let Oii = Oiihi-' , , = I, 2, ... , n, h > O. In this case, function (1.9) is also

priority-generating over P. In fact, relation (1.10)

w(rr)

s q k-l
Oij(h -I)k~/jkh and, hence, the priority function exists and is of the form

Oi I ~ f3. hk-1
T '-' I k ,1r = (ii' iZ, "" ir)'

h -I k= 1

(1.l2)

1.4. The function introduced below plays an important role in solving a number of

optimal sequencing problems, some of which are presented in Sections 1.5 and 1.6.

Suppose that each element i of set N is associated with two real numbers Oii and f3i' Let

the function
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(1.13)F(71) =maxtt<Xik +!JiuI1 $: U $: n} 71 = (ii' i2, ... , ir ), F(71o) = 0

be defined over set P.
We show that function (1.13) is priority-generating over P. For any permutations 71',

71" belonging to P and such that {711 n {71"} = 0, we have

F(71', 71") = max{F(71'), <X(71') +F(71")}.

Let us establish the conditions under which the inequality

(1.14)

F(71(1), 71(a) , 71(b), 71(2l) $: F(71(ll, 71(b), 71(a), 71(2») (1.15)

holds. Observe that, due to (1.14) the later inequality is equivalent to max{F(71(1),

<X(7111») +F(71(a), 711bl, 71(2»)} $: max{F(rr(I), <x(rr(1») +F(71(b), rr(a), rr(2»)}.

This inequality holds if F(71(al , 71(b), 71(2») $: F(71(b), 71(a) , rr(2»). Similarly, it can

be shown that the latter inequality holds if F(71(a), 71(b») $: F(71(b), 711a») or, due to

(1.14), if

max{F(711a), <X(711a») +F(711bl)} $: max{F(711bl, <X(711b») +F(71(a»)}.

Subtracting F(71(a»)+F(711bl ) from both sides of this inequality yields

(1.16)

To find a priority function, we need to prove the following auxiliary statement. Let x,

y, w, z, IV be real numbers, IV > max{ Ix I, Iy I, Iwi, Iz I}. Then the inequality
min{x, y} $: min{w, z}

holds if the following

(1.17)

(1.18)sgn(z-x)(lV-min{x, z}] ~ sgn(y-w)[IV-min{y, w}]

is true.

In fact, three cases are possible: (1) z-x > 0, y-w > 0; (2) z-x ~ 0, y-w $: 0;

(3) z-x < 0, y-w < O.

In case (1), inequality (1.18) reduces to the inequality x $: w. Thus, X$: wand x < z,

hence, inequality (1.17) holds satisfied for any y. In case (2), we have x $: z and y $: w.

If x $: y, then x $: min{w, z} and inequality (1.17) holds. If x > y, then y $: min{w, z},

and inequality (1.17) also holds. In case (3), inequality (1.18) reduces to y $: z, hence,

y $: min{w, z}, and inequality (1.17) holds. Thus, for inequality (1.16) and, hence, for

inequality (1.15) to be true, it is sufficient (but not necessary) that

sgn( -<X(71(a»))[1V - min{F(71(a»), F(rr(a») - <x(rr(al )}1 ~

~ sgn( -<X(711b»))[IV - min{F(rr(b»), F(71(b») - <X(71(bl)}],
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where W ~1: (Icvil + I~d).
1=1

Hence, function (1.13) is priority-generating over set P, and its priority function is
of the form

W(1r) = sgn(- L CV;) (w -F(1r)+max{o, L cv;}).
.e {".} ,e {rr}

(1.19)

1.5. At time d = 0, a number of requests enter a system which provides information

recording, storage, and output. Processing a request- i E N implies either recording t;

information units in storage (if t i > 0) or extracting t i information units from storage

(if t i < 0). It is required to choose such a sequence 1fn of some set P ~ Pn of feasible

sequences which minimizes the maximum information storage volume.

Let the function

F(1f) = max tttik l1 ~ u ~ r} (1.20)

be defined over set P, where 1f = (iI' i2, ... , i r ), F(1fo) = 0. For r = n, the quantity

F(1f)+C is equal to the maximum volume of information to be kept in storage at a time,

provided that the requests are processed according to the sequence 1f. Here C is the

storage volume at time d = 0.

Since function (1.20) is a special case of function (1.13) with CVi

is priority-generating over Pwith the priority function

w(1f) = sgn(- L ti) (W-F(1f)+max{o, _L ti}]
,e {".} ,e {rr}

where W ~ 1: 1t i I·
i=1

t; and ~; 0, it

( 1.21)

1.6. The jobs of a set N = {1, 2, ... , n} enter a two-machine processing system. A job

i E N enters the system at time di ~ 0, and is processed on the first machine during

tli > °time units and then on the second machine during t2i > °time units. Each machine
processes the jobs according to the same sequence with no preemption and at most one job

at a time. The processing a job i on the second machine may start no earlier than time

t~ + 6 i . Here t~ denotes the starting time of job i on the first machine, 6 i ~ 0. If

6i ~ t li , then job i cannot be processed simultaneously on both machines. If 6; < tli , the

simultaneous processing of job i on both machines is allowed. If 6i > t li , then at least

6; - t li time units must pass after the processing of job i on the first machine is

completed until this job can start on the second machine.

The release dates d; are assumed to satisfy the conditions
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di ~ d/+t ll , i = 1, 2, ... , n, 1 = 1, 2, ... , n, i l' I, (1.22)

while the values of 8i satisfy the conditions

8i e: tli-tzi , i = 1, 2, ... , n. (1.23)

1, 2, ... , n), then it is0, i

It follows from (1.23) that the makespan is determined by the completion times of all

jobs on the second machine.

For N' ~ N, IN'I = r, let F(1I") denote the smallest value of the makespan of the jobs of

set N', provided that these jobs are processed according to the sequence 11" = (ill iz,... ,

iT)' It is required to find a permutation 1I"n of some given set P ~ Pn which minimizes the

function F(1I"n)'

If the jobs enter the system simultaneously (i.e., di

easy to verify by induction with respect to r that

F(1I") = f tzi + max{ f(tli -tzi )+8; +tZi -tli 11 ~ u ~ r}.
'-' k '-' k k u u u

k=[ k=1

(1.24)

Assuming {)(i = tli-tz;, (3i = 8i+tzi -t li , we derive that the value of F(1I") differs from
T

that of function (1.13) only by the constant Ltzik' Hence, in the case di = 0, i = 1,
k=1

2, ... , n, function F(1I") is priority-generating over P, and its priority function is of the
form

(1.25 )

n
where W e: E (tli+tZi+8i)'

i=l

If the jobs do not enter the system simultaneously, then due to condition (1.22), we

have F(1I") = dil +A, where A is the right-hand side of relation (1.24). In this case,

function F(1I") is not, in general, priority-generating over P. In fact, let N = {1, 2, 3,

4}, t u = 6, t)Z = 4, t l3 = 1, t[4 = 6, tZ\ = 4, tzz = tZ3 = 2, tZ4 = 5, 81 = 6, 8z = 4,
83 = 1, 84 = 6, d[ = 2, dz = d3 = d4 = 1. It follows that F(l, 2, 3) = 16 < F(2, 1, 3) =
17, but F(l, 2, 4) = 23 > F(2, 1,4) = 22.

Divide set Pinto n pairwise disjoint non-empty subsets P(j), j = 1, 2, ... , n. Here

P(j) is the set of those and only those permutations 11" = (iI' iz,,,., iT) of P, in which
i) = j. Since for all permutations 11" E P(j), we have d;1 = dj , if follows that function

F(1I") is priority-generating over set P(j). Thus, if the jobs do not enter the system
simultaneously, function F(1I") is priority-generating over each subset P(j) of set P, but
is not priority-generating over P.
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1.7. Let G = (N, V) be a directed circuit-free graph. The number ti > 0 corresponds to

each vertex i E N, and the number Wij is associated with each arc (i, j) E V. The vertices

of the graph are located on the interval [0,.[ t i ] in the following way. Each vertex i
.eN

occupies the interval whose length is equal to t i , and the intervals corresponding to

different vertices must not intersect. Given such an allocation, the length of an arc (i,

j) E V is determined by the coordinate difference (Xj-Xi) of the right ends of the

intervals corresponding to the vertices j and i. The length of arc an (i, j) may appear to

be negative if the vertex j is located on the left of the vertex i. The vertices of graph

G have to be allocated in such a way that the length of each arc (i, j) E V is positive

and the total "weighted" length [Wij( x j - x;) is minimal.
(i, j)eU

It is obvious that the required allocation of the vertices of graph G is specified by a

permutation 7r = (iI' iz,... , in) of the elements of set N.

We show that the function

F(Trn ) = L Wij(Xj-Xi)
(i, j leU

is priority-generating over the set Pn'

Define Wij = 0 for all (i, j) ~ V. Then F(7rn ) =[ [Wij(Xj-Xi)
1 eN J eN

[[ WjiXj = [ ([ (WirWji))Xj' Thus, we have
leN JEN lEN leN

F(7rn ) = t [L (WUk -WiktlJXik '
k=l leN

(1.26)

[ [WX-
ieN jeN 1) J

(1.27)

Since Xi
k

=

with function

k

[ ti , defining ai =
p=l P

(1.1) with 'Pi(t) =

[ (WU-Wil) implies that function (1.26) coincides
leN

ait, i = 1, 2, ... , n. Hence, function (1.26) is

priority-generating over Pm and its priority function is of the form

W(7r) = L L (WU-Wil)/ L ti'
ie {rr} leN ie {rr}

(1.28)

1.8. This section gives an example of a function which is not priority-generating over

either the set P or the set Pm although, it appears to be priority-generating on some

special subset Pn of the set Pn'

The jobs of a set N = {I, 2, ... , n} starting at d = 0 are processed on a single
machine. The real number Wij corresponds to each ordered pair (i, j) of jobs. The

processing time of a job i is equal to ti' The jobs are processed without preemption and

at most one job at a time.

Let the function
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F(rr) = L Wi/ik(t ik - til)
l:$l< k:$;n

be defined over the set Pnwhere rr = (iI' iz,···, in) E Pm t i p

p

E t i ·
8=1 8
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(1.29)

Minimizing function (1.29) over the set Pn or over some subset Pn <;; Pn reflects a

desire to obtain a certain grouping of jobs and to reduce (or increase) the length of time

intervals between the processing of individual jobs. Usually, a set of permutations of Pn

that are feasible with respect to a given precedence relation over N is chosen as Pn .

We show that, in a general case, function (1.29) is not priority-generating over Pn .

Let N = {1, 2, 3, 4}, t i = 1, i = 1, 2, 3, 4, WIZ 10, w32 = 3, W34 = 1, and all
remaining numbers Wij are equal to zero. Assume that rr(a) = (1), rr(b) = (3), then F(2,

rr(a), rr(b), 4) = 1 < F(2, rr(b), rr(a), 4) = 2, F(rr(a), rr(b) , 2, 4) = 25 > F(rr(b), rr(a), 2,

4) = 19. Hence, in the case under consideration, a priority function w(rr) does not exist.

Let the numbers Wij satisfy the following condition: there exists a directed

circuit-free graph G = (N, V) such that Wij 1= 0 implies (i, j) E V. In this case, denote

function (1.29) by FG(rr). It is easy to note that in the above example the numbers Wij

satisfy that condition. Hence, the function FG(rr) is also not priority-generating over

Pn-
Let Pn(G) denote the set of all permutations that are feasible with respect to the

precedence relation defined over N and given by a graph G. Functions FG(rr) and (1.26)

coincide over Pn(G). Since function (1.26) is priority-generating over Pm it is also

priority-generating over Pn(G). Hence, it follows that the function FG(rr) is also

priority-generating over set Pn(G).

1.9. To conclude this section, note that in minimizing priority-generating functions

the values of w(rr) often have to be calculated, provided that the values of w(rr(1») and

w(rr(Z») have been calculated and that the permutation rr is of the form: rr = (rr(1), rr(Z»).

In this case, it is possible to reduce the volume of computations essentially by using

information obtained while computing w(rr(1») and W(1T(2»). We illustrate this by

considering several of the examples given above. Let rr(I), rr(2) E P, {rr(I)} n {rr(2)} = 0

and rr = (rr(!), rr(2»).

(a) For priority function (1.4) we have

(1.30)

(b) For exponential penalty functions under the conditions of Section 1.1,(b) we have

F( rr(1), rr(2») = F( rr(1») + exp(yt(1T(1») )(F( rr(2») -,8(1T(2»)) +,8(1T(2»). Hence,
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F(rr(l) - P( rr(l») +exp(yt ( rr( 1 )))(F( rr (2») _ p(rr(2»)

exp(y( t (rrO ») + t(rr(2»)))-1

Chapter 3

(1.31)

(c) For function (1.6), it follows from relation (1.8) that F(rr(ll, rr(2»)

F(rr(t») +F(rr(I»)w(rr(Z») +F(rr(Z»). Similarly, W(rr(t), rr(Z») = w(rr(l))+W(rr(t))W(rr(Z))+W(rr(Z)).
Hence, we obtain

w(rr(t), rr(Z») = W(rr(l»)+w(rr(I»)W(rr(Z))+w(rr ( Z»).

F(rr(I»)+F(rr(I»)Ii'(rr(Z»)+F(rr (Z»)

(d) For function (1.19), due to relation (1.14), we obtain

w(rr(t), rr(Z») = sgn( -Oi(rr(t»)-Oi(rr(Z»))[W -max{F(rr(l»),

Oi(rr(1»)+F(rr(Z»)} + max{O, 0i(rr(l»)+0i(rr(2»)})

where W ~ .E (IOid + IPil)·
leN

(1.32)

(1.33)

A similar expression for w(rr(I), rr(Z») can also be obtained in the remaining cases. In

any case, computing w(rr(1), rr(2») using information obtained while calculating w(rr(t») and

w(rr(2») involves performing a certain number of operations independent of the length of

the permutations rr(l) and rr(2). Thus, for the priority function determined by relation

(1.7), calculation of w(rr(t)) and w(rr(2») determines the values of w(rr(t»), F(rr(l)),

w(rr(2»), and F(rr(2)). The use of relation (1.31) allows us to obtain the value of w(rr(l),

rr(2») by performing just seven arithmetic operations.

2. Elimination Conditions

2.1. Let a precedence relation -+ be defined over set N = {It 2, , n} and e = (N, U)

be the reduction graph of this relation. A permutation rr = (iI' iz, , iT) E P is called

feasible (with respect to -+, or, equivalently, with respect to e), if the condition
i k -+ i1 implies k < l. Let p(e) denote the set of all feasible permutations, and Pn(e)

denote the set of all feasible permutations of the length n.

In the following, attention is paid to the developing of methods to optimize

priority-generating functions over a set of feasible permutations under various

assumptions on the precedence relation structure (i.e., on the form of graph e).

We introduce the following operations on directed circuit-free graphs r = (X, Y) with

no transitive arcs.
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The operation of identifying vertices x and y of a graph f = (X, Y) such that

(x, y) E Y involves replacing these two vertices by a single vertex followed by removing

the arc (x, y). In this case, all the arcs that enter or leave either x or yare replaced

by those that either enter or leave the new vertex, respectively. All transitive arcs are

removed from the obtained graph.

Suppose that a graph f = (X, Y) contains neither path from x to y nor from y to x.

The operation of including an arc (x, y) involves substituting the graph f for the graph

obtained from f' = (X, Y u (x, y)) by removing all its transitive arcs.

In the following, these operations are to be successively and repeatedly applied to

graph C = (N, V). While identifying two vertices i, j E N connected by the arc (j, i) E V,

the permutation (j, i) E fJ is associated with the new vertex. Let C' = (N', V') be a graph

obtained from C as a result of multiple applications of the operations of identifying

vertices and including arcs. If a permutation 11'(;') corresponds to vertex i' of this graph

and a permutation 11'(j') is associated with vertex j', and (j', i') E V', then after having

identified the vertices j' and i', the permutation 11' = (11'(j'), 11'(i')) corresponds to the

new vertex,

A permutation 11' = (ii' i2, ... , ir ) E fJ, corresponding to a vertex obtained as a result
of identifying vertices is called a composite element and is denoted by 11' = [ii' i2 , ... ,
i r ]. We do not distinguish between the vertices and the corresponding elements.

It is easy to verify that graph C' = (N', V') defines a strict order over set N' of

composite elements. To denote this order, the notation ~ is used, and if none of the

relations i ~ j and j ~ i holds for i, j EN', then i 5:: j is used. A permutation of the

elements of set N' that is feasible with respect to C' is at the same time a permutation

of the elements of set N that is feasible with respect to C.

Since a composite element is a permutation of set fJ, it is possible to define
priorities of composite elements. In what follows, we write w(il , i2 , ... , ir ) rather than

w[i l , i2 , .. ·, ir ]·

2.2. Example. Consider the graph C shown in Fig. 2.1a. Using the operation of

identifying vertices 3 and 4 yields the graph C; (see fig. 2.1b). The dashed line in this
figure shows the transitive arc that has been removed. The graph C~ in fig,2.1c is

obtained from the graph C; by including the arc (5, 7). Figures 2.1d and 2.1e show graphs
C3and C~ obtained from C~ by identifying the vertices 5 and 7 (the graph C3), followed by
identifying the vertices [3, 4] and [5, 7] (the graph C~). The elements [3, 4J, [5, 7] and

[3, 4, 5, 7] are composite. The permutations (1, 2, [3, 4], [5, 7], 6) = (1, 2, 3, 4, 5,
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7, 6), (1, [3, 4], 2, (5, 7], 6) = (1, 3, 4, 2, 5, 7, 6), (1, (3, 4], [5, 7J, 2, 6) = (1,
3, 4, 5, 7, 2, 6) form the set of all permutations of length n = 7 that are feasible with
respect to the graph G:i, while the set P7(G~) consists of two permutations (1, 2, [3, 4, 5,

7], 6) = (1, 2, 3, 4, 5, 7, 6) and (1, [3, 4, 5, 7], 2, 6) = (1, 3, 4, 5, 7, 2, 6),

(a)
(b)

~0~ ~0~
CD-IE:ill"" .... j-0 CD-IE:ill-IE:ill-0

"'0
(c)

( d)

~0~
o '([J,4,5,7J) ,0

( e )

Fig, 2, I

2.3. While solving the problems of optimizing the priority-generating functions over

the set Pn(G), the operations of identifying the vertices of graph G and including arcs to
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G reduce the search considerably. We now consider the conditions, under which the above

operations guarantee that a set po S;; Pn(G) containing at least one optimal permutation can

be found.

First, we prove the following widely used statement.

Lemma 2.1. Let a function F(7r) be priority-generating over a set P, and permutations

7r (7r(I), 7r(a) , 7r(2), IT(b), 7r(3»), IT' = (IT(I), IT(2), 7r(a), 7r(b), 7r(3») and 7r" = (7r(1),

7r(a), 7r(b), 7r(2), 7r(3») belong to P. If w(7r(a») $ w(IT(b»), then either F(7r') $ F(7r) or

F(IT") $ F(7r).

Proof. Two cases are possible: W(IT(2») ;>: w(IT(a») and W(IT(2») < w(IT(a»). The definition

of a priority-generating function implies that, in the first case, F(7r') $ F(7r), and in

the second F(IT") $ F(IT).

As above, the sets of those and only those elements j E N, for which i ~ j, j ~ i and

i S? j, are denoted by Ac(i), Bc(i), and fc(i), respectively. Similarly, Ag(i) and Bg(i)

denote the sets of those and only those elements j E N for which i ~ j and j ~ i,

respectively. Given s, tEN, denote Bc(s, t) = Bc(s)\(Bc(t) u t) and Ac(s, t) =

Ac(t)\(Ac(s) us).

Some of the above notations are shown schematically in Fig. 2.2 (the index G is

omitted): (a) BO(s) = t; (b) s - t, and (c) AO(t) = s.

(a) (b)

Fig. 2.2

(0)
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In the following, the functions F(1[) are priority-generating over set P(G).

Theorem 2.1. Let a function F(1[) be priority-generating over P(G), sg(s)

w(s) ~ w(i) for all i E Aa(s, t) U t.

Chapter 3

t and

(2.1)

Then, for any permutation 1[ = (... , t, 'ii, s, ... ) E P(G), there exists a permutation

1[0 = ( ... , t, s, ... ) E P(G) such that {1[} = {1[0} and F(1[o) ~ F(1[).

Proof. Since 1f is a feasible permutation, it follows that {'ii} may contain elements of

just two types: (1) i E Ads, t), and (2) I E Edt). Let i' be a type 1 element of {'ii}

nearest to s in 1[, and between iO and s in 1[ there is a permutation of the type 2 elements

denoted by 1[(1). for all elements I E {1[(I)}, the relation I - iO holds. In fact, I_i'

is impossible due to the feasibility of permutation 1[, while t - I would follow from

iO -,> I due to the transitivity of relation -, which is impossible since I E EG(t). It

follows from (2.1) that w(s) ~ w(i'). Therefore, due to Lemma 2.1, permutation 1[ can be

transformed into a feasible permutation 1[(1), by interchanging either 1[(1) and s or iO and

1[(1). Note that, in 1[(1), the element iO is placed immediately before the element sand

F(1[°) ~ F(1[). Since s - i' and w(s) ~ w(i'), permutation 1[(1) can be transformed into a

feasible permutation 1[(2) such that F(1[(2») ~ F(1[(I)) by interchanging iO and s.

Having applied the above procedure sufficiently many times, we can transform 1[(2) into

a feasible permutation 1[(3) such that F(1[(3») ~ F(1[(2») and between t and s in 1[(3) there

are no other elements besides, possibly, type 2 elements. In 1[(3), let the permutation of

elements located between t and s again be denoted by 1[(1). Relation (2.1) implies that

w(s) ~ w(t). Due to Lemma 2.1, 1[(3) can be transformed into a feasible permutation 1[0 such

that F(1[o) ~ F(1[(3») by interchanging either t and 1[(1) or 1[(1) and s. In permutation 1[0,

the element t is located immediately before the element s. This proves the theorem.

Theorem 2.2. Let a function F(1[) be priority-generating over P(G), s G t and

w(j) ~ w(i) for all j E BG(s, t) u sand i E AG(s, t) u t. (2.2)

Then, for any permutation 1[ = ( ... , t, 'ii, s, ... ) E P(G), there exists a permutation

1[0 = (... , s, t, ... ) E P(G) such that {1[} = {1[0} and F(1[o) ~ F(1[).

Proof. Since 1[ is a feasible permutation, it follows that {'ii} may contain elements only

of three types: (1) j E BG(s, t); (2) i E AG(s, t); (3) I E EG(s) n EG(t).

Let j' be a type 1 element of {1[} nearest to t in 1[, and iO be a type 2 element located

between t and j' in 1[ and be the nearest to j' among all such elements. If, in 1[, some

elements are located between iO and j', then these may be only of type 3. The permutation
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of the elements between i' and j' is denoted by rr(l). Since, due to (2.2), we have

w( i') $: wIn and for all I E {rr(l)} relations I - i' and I - j' hold, it follows that

permutation rr (due to Lemma 2.1) can be transformed into a feasible permutation rr(l) in

which the element i' is located immediately before the element j' and F(rr(l») $: F(rr). The

definitions of Bc(s, t) and AG(s, t) imply that if j is a type 1 element and i is a type 2

element, then either j __ i or j - i. Since rr is a feasible permutation, it follows that

i' - f. Hence, rr(l) can be transformed into a feasible permutation rr(2), in which the
element j' is located before the element i' and F(rr(2») $: F(rr(l»). Having applied the

described procedure sufficiently many times, we obtain a feasible permutation rr(3) such

that F( rr(3)) $: F( rr(2)), and there is no type 2 element between t and j'. If there is a

sequence of type 3 elements between them, then again denote it by rr(l). Since

w(t) $: wIn, by Lemma 2.1 we can obtain a feasible permutation, in which the element t is

located immediately before f. Taking into account that t - j', it is then possible to

obtain a feasible permutation rr(4) in which j' is located on the left of t and

F(rr(4») $: F(rr(3»). Similarly, in rr(4), it is possible to exclude all type 1 elements from

the permutation between t and s and to obtain a feasible permutation rr(5l, in which

between t and s there may exist only elements of types 2 and 3, and F(rr(5») $: F(rr(4»).

Let 7r(5) = ( ... , t, if, s, ... ) and iN be a type 2 element of {in nearest to s. Since

w(iN) $: w(s) and iN - S, by the same procedure as in the proof of Theorem 2.1, 7r(5) can

be transformed into a feasible permutation rr(6) such that the element s is located on the

left of element iN and F(rr(6») $: F(rr(5»). Similarly, in 7r(6), it is possible to exclude

all type 2 elements from the permutation between the elements sand t, and, by Lemma 2.1,

to obtain a permutation rr(7) such that the element t is located immediately before the

element sand F(rr(7)) $: F(rr(6»).

It is now clear that rr(7) can be transformed into the desired permutation 7r0. This

proves the theorem.

2-4. Theorems 2.1 and 2.2 are formulated regarding the original set N ordered by

relation --, or, equivalently, regarding the original graph G. It is easy to see that

these statements still hold for a set N', a graph G' and a relation ~. In the latter

case, the elements sand t are, in general, composite ones, i.e., they may be some

permutations of PIG).

In the proofs of Theorems 2.1 and 2.2, function F(7r) has been assumed to be priority

generating over PIG). In many scheduling problems, it is required to find a feasible

permutation of the length n, delivering an extremum to function F(rr). In such situations,
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it suffices to demand that function F(1I") is priority-generating over Pn(G), and to assume

that in these theorems the permutations 11", 1r0 belong to Pn(G).

Theorems 2.1 and 2.2 can be given a simple graph-theoretical interpretation. Satisfying

the conditions of these theorems guarantees that using the operation of identifying

vertices t and s (Theorem 2.1) or the operation of including arc (s, t) to graph G

(Theorem 2.2) enables one to obtain a new graph CO with the following properties:

Pn(CO) <:;:; Pn(G) and for any permutation 1r E Pn(G) there exists a permutation 11"0 E Pn(CO)

such that F(1I"°) :0; F(1r).

The operation of identifying vertices t and s satisfying the conditions of Theorem 2.1

is called a transformation I (the notation I-[t, sJ). The operation of including arc

(s, t) under the conditions of Theorem 2.2 is called a transformation II (the notation

II-(s, t)). If, in graph G, there exists a pair of vertices sand t satisfying either the

conditions of Theorem 2.1 or those of Theorem 2.2, then we say that transformation 1 or

t7'ansformation II, respectively, may be applied to graph G or that transformation

(I-[t, sl) or II-(s, t)) is feasible for graph G.

Corollary 2.1. If function F(1r) is priority-generating over Pn(G) and graph G' is

obtained from graph G by performing sequence of transformations I or I I, then

This directly follows from Theorems 2.1 and 2.2.

If graph G' is obtained from the graph G by performing a sequence L of transformations

and II, then L is said to transform graph G into graph G'. If a sequence L1 transforms

graph G into graph G' and a sequence L2 transforms graph G' into graph G", then the

sequence L = (L1, L2 ) transforms graph G into graph G" according to the scheme

G ---+ G' ---+ G". Finally, if in each of the transformations of the sequence L only such s

and t are involved for which {s} eN" {t} c NI , N1 <:;:; N, then sequence L is said to act on

set N1 .

3. Tree-like Order

Let a function F(1r) be priority-generating over Pn(G). This section considers the

problem of finding a permutation 1r~ E Pn(G) which minimizes F(1r), provided that G is

tree -like. A permutation 11"~ is called optimal.
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3.1. Let a graph G' = (N', U') be obtained from graph G = (N, U) by performing a

sequence of transformations I or II (see Section 2 of this chapter). If graph G' is a

chain, then it obviously specifies the only feasible permutation lI'n which is optimal due

to Corollary 2.1. For transforming the initial graph G into a chain G', the concept of an

w-chain is of great importance.

Construct a chain C = (ii' i z,... , iml, whose vertices are all or some elements of set

N'. Chain C is called an w-chain if the permutation (ii' iz, ... , im) is feasible with

respect to G', w(ik ) ~ w(ik+d, k = 1, 2, ... , m-l, and the equality w(ik ) = w(ik+l)

implies ik :?' ik+l' A chain consisting of one vertex is an w-chain by definition.

Lemma 3.1. If all connected components of graph G are w-chains, then there exists a

sequence of transformations II converting G into a single w-chain.

Proof. Assuming that the statement holds for all graphs G with at most I, I ~ 1,

connected components, we prove this is also true for a graph with 1+1 components.

Let C I = (ill iz, .. ·, iml ), Cz = Ull jz, .. ·, jm
z

) be connected components of graph G

and w(id ~ wUd. Since C I and Cz are w-chains, we have that w(id ~ WUk), k = 2, 3, ... ,

mz. Hence, transformation II-(il' jd can be applied to G. Note that in the case

w(id = wUd, any of the arcs (ii' jd or UI, id can be included in G. Then, compare

the values of w(iz) and wUd (here it is assumed that the arc (ii' jd is included in the

previous step). If w(iz) ~ wUd, then transformation II-(iz, jd can be applied to the

graph obtained from G as a result of the previous transformation; if w(iz) :<; wUd, then

transformation II-UI, iz) can be used. As a result of applying at most m l +mz-1 such

steps, a pair of w-chains C I and Cz is transformed into the single chain C = (i;, i;, ... ,
i';'l+mz)' By construction, the permutation (i;, i;, ... , i';'l+m) is feasible with respect to

G, the vertices in C are sorted in non-increasing order of the priorities of the

corresponding elements, and w(i,,) w(i"+I) only if i" and i"+l belong to different
initial chains. Thus, C is an w-chain, and the graph obtained from G by the described

transformations has I connected components. This proves the lemma.

Under the conditions of Lemma 3.1, in order to find a desired w-chain, i.e., an optimal

permutation 11'~, it suffices to sort the elements of set N (i.e., the vertices of graph G)

in non-increasing order of their priorities.

Lemma 3.2. If all connected components of graph G are chains, then there exists a

sequence of transformations I converting each chain into an w-chain.

Proof. Let C = (ii' iz,... , im) be a connected component of graph G, and



204 Chapter 3

W(ik) ::; w(ik+tl· Apply transformation I-[ik' ik+d to graph C. As a result, the chain C is

transformed to the chain C = (i;, i2,... , i';'_tl. If in C there are such vertices ii and

ii+l that w(ii) ::; w(ii+tl, then apply transformation I again. It is clear that, in order

to convert C into an w-chain, it suffices to apply transformation I at most m -1 times to

graph C. This proves the lemma.

3.2. We now consider the situation in which graph C is either an outtree or an intree.

Theorem 3.1. If the graph C is an outtree (an intree), then there exists a sequence of

transformations I and II converting C into an w-chain.

Proof. Let graph C = (N, V) be an outtree. The proof of the theorem is by induction

with respect to the number of pairs of non-comparable elements in N. If all elements in N

are pairwise comparable, then C is a chain and the theorem follows from Lemma 3.2.

Let the theorem hold for all outtrees C such that there exist at most m pairs of

non-comparable elements in set N, m ~ O. We show that the theorem also holds for any

outtree C containing m+ 1 pairs of non-comparable elements.

By assumption, N has at least one pair of non-comparable elements. Therefore, there

exists a vertex iO such that A°(i°) = {ii' iz,... , ill, I ~ 2, and for any vertex

i E A(io) the relation IA(io) I ::; 1 holds. A subgraph CO of the graph C induced by the set
A(io) of vertices consists of I connected components, each of which is a chain of the form

. .(k) .(k») 1 k I
(lk' 11 ,... , Jv

k
, ::; :0;.

Let sand t be vertices of graph Co. Since Ba(itl = Ba(iz) = ... = Ba(id = Ba(i°) U

iO, the conditions of Theorems 2.1 and 2.2 either are satisfied or not satisfied for the

graphs C and Co simultaneously. Hence, transformations I-[t, s] or II-(s, t) can be

applied to graph C if and only if these are feasible for graph CO.

Lemmas 3.2 and 3.1. imply the existence of a sequence L of transformations I, II

converting graph CO into an w-chain. Applying the sequence L to graph C yields a new graph

Co = (N', V') such that set N' contains at most m pairs of non-comparable elements (with

respect to the order defined by graph C"j. It is obvious that C' is an outtree.

The proof of the other part of the theorem (i.e., C is an intree) is essentially the

same, the only difference is that the symbols A and B must be interchanged. This remark

completes the proof.

3.3. Let C be a tree-like graph, and C1 = (NI , Vtl be one of its connected components

and s, t E N1 • It is obvious that any of transformations I-[t, s] or 1I-(s, t) can be
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applied to G if and only if it can be applied to Gl . This observation and Theorem 3.1

imply that there exists a sequence of transformations I and II that converts graph G into

a graph G' with each connected component being an w-chain. As follows from Lemma 3.1, to

transform graph G' into a single w-chain it suffices to sort its vertices in non

increasing order of the priorities of the corresponding elements. The obtained w-chain

specifies an optimal (due to Corollary 2.1 l permutation 1l'~ of the elements of set N.

Based on the proof of Theorem 3.1, it is easy to construct a procedure for transforming

the components of graph G (outtrees and intrees) into w-chains.

(a) Let G = (N, U) be an outtree, IN I = n. The procedure of transforming G into an

w-chain involves a sequence of transitions from one outtree to another, each time reducing

the number of vertices. Transformations are to be performed until a single-vertex graph is

obtained. In each step, the vertices of the current outtree are associated with some

w-chains. In the first step, the vertices of graph G are chosen as such chains.

Find, in G, a vertex iO (called a supporting vertex), with all direct successors being

terminal vertices. Let the w-chains Cl , C2 , ... , C/ correspond to these successors. Due to

Lemma 3.1, the chains Cl , C2, ... , C/ can be replaced by a single chain C~. To find C~, it

suffices to sort the vertices of the chains Cl , C2, ... , C, in non-increasing order of the

priorities of the corresponding elements. The chain C~ is called the union of the w-chains

Cl , C2, ... , C
"
while these w-chains are said to be united.

Insert the vertex iO into C~ from the left and transform the obtained chain C~' into an

w-chain. Let {ii' i2, .. , i v } be the set of vertices of chain C~. To transform C~' into an

w-chain it suffices to apply transformation 1 at most II times: if w(io) $ w(ikOl =

max{w(ikl Ik = 1, 2, ... , II}, unite iO and i ko into the composite element [in, ikol. Then

compare w(io, iko ) and max{w(ik) Ik = 1, 2, ... , II, k * ko}, and, if necessary, the next two

elements, and so on. Let Co denote the obtained w-chain.

Remove from G all successors of the vertex in, and associate the w-chain Co with iO In

the obtained tree G(l) there are at most n - 1 vertices.

Applying described transformations to G(l), we obtain some outtree G(2), and so on,

until a graph G(h) consisting of a single vertex is obtained. The chain corresponding to

this vertex is the desired w-chain.

(b) The procedure for converting an intree into an w-chain is essentially the same as

that for all outtree. In each step, a vertex iO is chosen as the supporting vertex if all

its direct predecessors have no predecessors in the tree obtained in the previous step. The

chain C~' is found by inserting the vertex iO into the w-chain C~ from the right. To

transform C~' into an w-chain Co, compare w(io) and w(ikol = min{w(ikl Ik = 1, 2, ... , II}.
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The composite element [iko ' iO] is to be formed, provided that w(iO) 2 w(iko )'

Chapter 3

3.4. To implement the procedure for transforming outtrees and intrees into w-chains it

is possible to use balanced 2-3-trees for data representation (see Section 2 of

Chapter 1). Such data representation allows finding an optimal permutation 11"~ in at most

O(nlogn) time.

Let a perfect pseudo-order relation =? be defined over set Q[Pn(G)] (see Section 1 of

this chapter) in the following way: 11"(1) =? 11"(2) for any two permutations 11"(1), 11"(2) E

Q[Pn(G)] if and only if W(1I"(1») 2 W(1I"(2)). It is easy to check that, in this case, the

relation =? is, in fact, a perfect quasi-order relation.

When implementing the procedure for transforming a tree (either an outtree or an

intree) into an w-chain, the w-chains appearing in this process are represented by

balanced 2-3-trees. All such 2-3-trees are represented by the same table. To refer to a

particular w-chain it suffices to refer to the number of the root of the corresponding

balanced 2-3-tree.

Any w-chain is specified by the permutation of the numbers of its vertices sorted in

non-increasing order of their priorities. Representing an w-chain by the balanced 2-3

tree, with the labels either vmin or V max corresponding to an intermediate vertex v, this

chain may be reconstructed in at most O(n' logn') time, where n' is the length of the

chain. The value of the priority function corresponding to a given label of a vertex v is

called the value of this label.

Consider the implementation of the procedure for transforming an outtree GI = (N I , Ud
into an w-chain. Without loss of generality, the vertices of GI can be assumed to be

numbered by the integers 1, 2, ... , n l , n l = INIl, in the following way. The root of GI has
number 1. If 01" denotes the number of vertices belonging to the vth rank of tree Gl , then

the second-rank vertices are numbered 2, 3, ... , 012+ 1; the third-rank vertices are numbered

012+2, 012+3, ... , 012+013+1, etc. While numbering the vertices of each current rank, the

direct successors of a vertex with a minimum number are given numbers first, followed by

the direct successors of a vertex having the next number, etc.

Graph Gl is represented by a table consisting of four rows and n l columns. The first

row contains the numbers of the vertices of GI . The kth cell of the second row contains

the number of the immediate predecessor of vertex k; while the kth cell of the fourth row

indicates the minimal and maximal numbers of the direct successors of the kth vertex. The

kth cell of the third row contains the number of the root of the balanced 2-3-tree

representing the w-chain corresponding to the kth vertex of the graph.
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In the following, a table representing either the graph Gl or the current graph G\s),

s s s h, is called Table 1; while a table representing the balanced 2-3-trees is called

Table 2. The columns nl +1, nl+2, ... , of the third and fourth rows of Table 2 contain the

labels and the values of the labels; the cells 1, 2, ... , n, of the third and/or the fourth

row, contain the values of w(rr(C)). Here C is the w-chain corresponding to a given vertex

of the graph Gl? and rr(C) is the feasible (with respect to the chain C) permutation of all

elements of the set N involved in C.

Note that the implementation of the procedure for transforming an outtree into an

w-chain does not require the third row of Table 2 to be filled, since, in this case, only

the label vmax is used. Similarly, the fourth row of Table 2 can be skipped in the case of

an intree.

In the first step of transforming Gl into an w-chain, each vertex of Gl is considered

as an w-chain; therefore, we start with Table 2 having only the first row filled (with the

numbers 1, 2, ... , 2n t -1).

The process of transforming graph Gl into an w-chain includes the implementation of the

following subroutines: find the next supporting vertex and the corresponding w-chains to

be united; unite several w-chains into a single w-chain; insert a supporting vertex into

an w-chain and transform the resulting chain into an w-chain; remove the chains united in

some step from the graph, and associate a chain Co with a supporting vertex in. The

implementation of these subroutines is considered below.

Let a supporting vertex iO be chosen, then using the cell iO of the fourth row of

Table 1, find the numbers iI, it + 1, ... , il +1 of terminal vertices which are direct

successors of vertex in. The cells iI' il +1, ... , il +1 of the third row of Table 1 contain

the numbers of the root of the balanced 2-3-trees representing the w-chains which

correspond to the vertices it, il + 1, ... , il +1. Let the found w-chains be united into the

w-chain C~, and let the chain C~' be found, which, in turn, is transformed into the

w-chain Co. Removing the vertices iI, il + 1, ... , il +1 from the current graph and replacing

the vertex iO by the vertex associated with the chain Co can be done in the following way.

Remove the contents of the cells it, it + 1, ... , il +1 in all four rows of Table 1, as well

as that of the cell iO of the fourth row; replace the content of the cell iO of the third

row by the number of the root of the balanced 2-3-tree representing the chain Co.

Thus, while transforming outtree Gt into an w-chain, all subroutines for finding the

w-chains to be united, removing the vertices corresponding to these chains from the

current graph, and associating a chain Co with a supporting vertex iO require at most

O(nIl time.
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The chosen way of numbering the vertices of graph G1 and removing the vertices from the

current graph allows a simple implementation of the search for the next supporting vertex.

In fact, the last filled cell of the first row of Table 1 contains the number of a

terminal vertex of the current graph c\'), and this vertex belongs to the last level of
G~') Hence, the immediate predecessor of this vertex (its number is given in the

corresponding cell of the second row) can be chosen as a supporting vertex. While

transforming G1 into an w-chain, the search for all supporting vertices takes at most

O(nd time.

Uniting two w-chains into a single w-chain can be done by uniting the corresponding

2-3-trees. As shown in Section 2 of Chapter 1, this takes at most O(iogn') time, where n'

is the largest length of the chains to be united. Hence, while transforming G1 into an

w-chain, uniting all the w-chains takes at most O(n1lognd time.

The vertex iO can be inserted into w-chain Co and the obtained chain Co' can be
transformed into an w-chain simultaneously. Let v be the root of the 2-3-tree representing

the chain Co' Compare w(io) and the value w(vmax ) of the label vmax' If w(io) :<; w(vmax ),

then the cell v of the fourth row of Table 2 contains the number of a vertex iko which is

the label vmax' Unite iO and iko into the composite element [in, iko }' For the chosen way

of representing the data, it is enough to know only the priority of the composite element.

Therefore, associate the value of w(io, ikO ) with the element in. To do this, replace the

content of the cell iO of the fourth row of Table 2 by w(iO, iko }' Remove the vertex iko
from the w-chain Co using the procedure for deleting an element from a set represented by
a balanced 2-3-tree (see Section 2.6 of Chapter 1). The composite element [in, ikol itself

is required only for finding the permutation 1f~, and is stored separately. Again, let v

denote the root of the balanced 2-3-tree representing the w-chain obtained from Co after
removing the vertex iko ' Compare the new value of w( vmax ) with the new value of w( iO)

(Le., compare the contents of the corresponding cells of the fourth row of Table 2). If

w(io) :<; w(vmax )' then a new composite element is to be formed. If w(io) > w(vmax ), then

the vertex iO is included in the 2-3-tree with the root v using the procedure for uniting

two sets represented by balanced 2-3-trees (see Sections 2.4 and 2.5 of Chapter 1).

Let n' be the length of Co; then forming each new composite element takes at most
O(logn') time, and inserting iO into the 2-3-tree with the root v also takes O(logn')

time. It is clear that while transforming Gl into an w-chain, new composite elements may

be formed at most n l -1 times, and the procedure for including iO to Co is to be performed
at most n l - 1 times as well. Hence, the running time of all procedures for including a

supporting vertex in an w-chain followed by transforming the resulting chain into an
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w-chain does not exceed O(n,lognd.

Having completed the transformation of G, into graph G~h) consisting of a single

vertex, the w-chain corresponding to d;h l has to be recovered using Table 2. This takes at

most O(n,lognd time.

Thus, the procedure for converting an outtree into an w-chain can be run in O(n,logn))

time.

While performing the procedure for transforming an intree G, = (N h Ud into an

w-chain, the vertices of the tree are numbered by the integers 1, 2, ... , nh starting with

the root. To do this, change the orientation of all arcs and number the vertices as in the

case of an outtree. The table representing an intree differs from that for an outtree by

the second and the fourth rows. Here, the second row contains the numbers of the direct

successors, while the fourth row contains minimal and maximal numbers of the direct

predecessors. A supporting vertex is chosen based on the last filled cell of the table

representing the current graph: the content of the corresponding cell of the second row is

the number of the supporting vertex. The procedure for transforming an intree into an

w-chain also requires at most O(n,lognd time.

Having transformed all connected components of a tree-like graph G = (N, U) into w

chains, the desired permutation 7f~ can be recovered in at most O(nlogn) time.

Thus, the running time of the algorithm for finding an optimal permutation in the case

of a tree-like graph G does not exceed O(nlogn). This estimate does not involve the time

required for calculating the priorities of composite elements. Note, however, that this

time is a constant for all priority-generating functions considered in Section 1 of this

chapter.

3.5. Example. Consider the problem of minimizing the information storage volume (see

Section 1.5 of this chapter), provided that tree-like precedence constraints are defined

over a set of requests.

Table 3.1

; , 2 3 4 5 6 7 8 9 , 0

Ii ' 0
, 5 20 5 -30 8 , 2 -22 6 8

The reduction graph G of precedence relation --+ is shown in Fig. 3.1, and the values of

the parameters t; are listed in Table 3.1. At time t = 0, the storage contains 100

information units.
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Fig. 3.1

Using formula (1.22), calculate the priorities of the elements of set N = {I, 2, ... ,

10} (assuming W = 140): w(l) = w(2) = w(3) = w(4) = w(6) = w(7) = w(9) = w(10) = -140,

w(5) = 170, w(8) = 162.
Let GI = (NI , Ud denote the connected component of G being an outtree, and G2 = (N2 ,

U2 ) denote the connected component being an intree; Nt = {I, 2, ... , 5}, N2 = {6, 7, ... ,
1O}. Transform GI into an w-chain. For the graph GI , construct Tables 1 (see Table 3.2)

and 2 (see Table 3.3).

Table 3.2

I The number of a vertex I 2 3 4 5

I I The number of the d i r ec t predecessor I I 1 I

III The number of the root of a 2-3-tree 1 2 3 4 5

IV The numbers of d i r ec 1 successors 2,5

Table 3.3

I The number of a vertex in

a balanced 2-3-tree 1 4 5 6 9

II The number of the d i Tee t

predecessor

II I Vmin ( the value of a I abe I)
IV V max (the value of a I a be I) ( - 140 ) ( - 140 ) ( 170 )

V The numbers of d j r e c t

successors

In Table 1, find a supporting vertex and a set of w-chains to be united in the first

step. Vertex 1 is taken as supporting, and 2, 3, 4, and 5 are the numbers of the roots of

the balanced 2-3-trees representing the chains to be united in this step. Table 3.4 (the

third row is omitted) represents Table 2 after completing the procedure for uniting

w-chains 2, 3, 4, and 5 into w-chain C;. The chain C; is represented by the balanced
2-3-tree with the root 8. Since w(l) < w(8max ) = w(5), form the composite element [1, 5].

After removing vertex 5 from the w-chain C;, the obtained w-chain is given by the balanced
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2-3-tree with the root 6, 6max = 2. Since w( 1, 5)

composite elements are required.

Table 3.4

130 > w(6max )

211

-140, no more new

I 1 2 3 4 5 6 7 8 9

II 6 6 7 7 8 8

IV 2 5 5

( - 1 40) ( - 1 4 0 ) ( - 140) ( - 14 0) ( 170) ( - 140 ) ( 170 ) ( 170)

V 2,3 4 , 5 6,7

Now, unite the balanced 2-3-tree with the root 6 and the balanced 2-3-tree representing

the element [1, 5]. Tables 1 and 2 obtained as a result of applying the above procedures

are given by Tables 3.5 and 3.6, respectively. The empty columns in Table 1 are omitted.

Table 3.5

II

III

IV

Table 3.6

I 1 2 3 4 5 6 7 8 9

II 6 6 7 8 8

IV 3 I I

( 140 ) ( - 1 40) ( - 1 40) (-140 ) ( -140 ) ( 130 ) ( 130 )

V 2,3 4 ,5 6,7

The graph Gi') obtained after performing the first step consists of a single vertex
associated with the w-chain C(Gd. This w-chain is represented by the balanced 2-3-tree

with the root 8. Recovering this chain yields: C(Gd = ([1, 5], 2, 3, 4).

Table 3.7

The initial number of a vertex

The new number of a vertex
10

I

Let us now convert G2 into an w-chain. Renumber the vertices of G2 according to
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Table 3.7.

For the graph G2 , construct Tables 1 (see Table 3.8) and 2 (see Table 3.9).

Table 3.8

I The number of a vertex 1 2 3 4 5

II The number of the d i r ec t successor I 1 3 3

III The number of the root of a 2-3-tree 1 2 3 4 5

IV The numbers of d j r ec t predecessors 2, 3 4,5

Table 3.9

I 1 2 3 4 5 6 7 8 9

II

III ( - 140 ) ( - [40 ) ( [62) ( - 140 ) ( - 140 )

V

In the first step, vertex 3 is supporting and the w-chains to be united are given by

the balanced 2-3-tree with the roots 4 and 5. Tables 3.10 and 3.11 correspond to Tables 1

and 2, respectively, after performing the first step of the procedure for transforming G2

into an w-chain (empty columns of Table 1 are omitted). While performing the first step:

the composite element [4, 5, 3J is formed, w(4, 5, 3) = 120.

Ta b I e 3. 10

I

II

III 1

IV 2,3

Ta b I e 3.11

I 1 2 3 4 5 9

II

III ( - 1 4 0 ) ( - 1 40) ( 120 )

V

In the second step, vertex 1 is supporting, and the w-chains to be united are

represented by the balanced 2-3-trees with the roots 2 and 4. Tables 3.12 and 3.13

correspond to Tables 1 and 2, respectively, after performing the second step. In this
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step, the composite element [2, 1] is formed, and w(2, 1) = -140. The graph C~2) obtained

after the two described steps of the procedure for transforming the graph C2 into an

w-chain consists of one vertex (C~2) is given by Table 3.12). Recovering the obtained

w-chain yields: C(C2 ) = ([4, 5, 3], [2, 1]). In the initial numbering, this chain is of

the form: C(C2 ) = ([7, 6, 8], [9, 10]).

Ta b Ie 3. 12

I

II

III

IV

Ta b 1 e 3. 13

I I 2 3 4 5 6 7 8 9

II 6 6 2

III (- 140) ( 120) ( - 140)

V 2,4

Thus, the graphs CI and C2 have been transformed into the w-chains C(Cd and C(C2 ),

respectively. Unite these chains into one w-chain C(C) by sorting the vertices of c(Cd

and C(Cz) in non-increasing order of the priorities of the corresponding composite

elements: C(C) = ([1, 5], [7, 6, 8], 2, 3, 4, [9, 10]). Thus, the permutation 11'70 = (1, 5,
7, 6, 8, 2, 3, 4, 9, 10) is optimal.

4. Series-Parallel Order

This section considers the situations in which the reduction graph C of a precedence

relation -+ either is series-parallel or may be converted into a series-parallel graph by

performing some sequence of transformations I and II.

The concept of a series-parallel graph, as well as related concepts such as a

decomposition tree T(C) of an arbitrary graph C, operations of a series (notation s) and

parallel (notation p) composition of graphs were introduced in Section 1 of Chapter 1.

That section also presented a scheme for constructing a tree T(C) and a procedure for

reconstructing graph C by its decomposition tree. Recall that graph C which can be given

either in the form of series (C = CIsCZ ) or parallel (C = CIPCZ) composition of two graphs
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CI and Cz, is called decomposable (in the opposite case, non-decomposable), and the graphs

CI and Cz are the decomposition components of graph C. If, in turn, graphs CI or Cz can be

presented in the form of either series or parallel composition of some graphs C3 and C4 ,

then the latter graphs are also called decomposition components of C. A decomposition

component of graph C corresponds to each terminal vertex in tree T( C), and the operations

of series or parallel composition are associated with intermediate vertices. The terminal

vertices of a complete decomposition tree correspond to non-decomposable graphs.

In the following, no distinction is made between terminal vertices of tree T(C) and the

corresponding decomposition components of graph C, as well as between the operational

vertices of T( C) and the corresponding composition operations.

4.1. Consider some properties of graphs and their decomposition trees, as well as the

relations between some operations over graph C = (N, U) and its decomposition components.

Lemma 4.1. Let CI = (NI , UIl be a decomposition component of a graph C. Then for any

elements iO, jO E NI and i E N\N1, exactly one pair of the following relations holds:

(1) i - iO, i - jO, or (2) i -+ iO, i -+ jO, or (3) iO -+ i, jO -+ i.

Proof. Since C I is a decomposition component of C, there must exist a decomposition

tree T(C) in which some terminal vertex corresponds to graph CI , while i is a vertex of

another graph Cz associated with another terminal vertex of tree T(C). In T(C), find an

operational vertex 0 1 of the highest rank such that there are paths from 0 1 to each vertex

CI and vertex Cz.

Implement the procedure for reconstructing graph C by T(C) up to the moment when the

vertex 0 1 happens to be adjacent to two terminal vertices C' and C". If i is a vertex of

C', then iO, jO are vertices of graph C". If i is a vertex of C", then iO, jO are

vertices of C'. In fact, otherwise (i.e., if i, iO, jO were vertices of exactly one of

these two graphs) there would exist an operational vertex 0z from which two paths go to

vertices CI and Cz, and whose rank is higher than that of Oil. If the operation of

parallel composition corresponds to vertex °1, then i - iO and i - jO. Let the operation

of series composition correspond to °1, If i is a vertex of graph C', then the definition

of operation of series composition implies that i -+ iO and i -+ jO. If i is a vertex of

C", then iO -+ i and jO -+ i. This proves the lemma.

Lemma 4.2. Let T(C) be a decomposition tree of graph C and CI = (N I , Ull be a terminal

vertex of T(C), iO, jO E NI , iO - jO. If C' and C; are the graphs obtained from C and CI
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by including the arc (io, /), then the tree T' obtained from T(G) by replacing the vertex

GI with the vertex G; is a decomposition tree of the graph G'.

Proof. Let GN

= (N, V
N

) be a graph such that T' is its decomposition tree. We show

that the graphs G' and GN coincide. Graph G is the reduction graph of the precedence

relation ~, therefore, graph G' is circuit-free; moreover, by construction, it has no

transitive arcs. Hence, G' can be considered as the reduction graph of some precedence

relation denoted by ~. Graph G; has no circuits and transitive arcs, and neither does

graph GN

• Hence, GN can be viewed as the reduction graph of some precedence relation

~'. To prove that the graphs G' and GN are the same, it suffices to show that for any

i, j E N the relation i ~ j holds if and only if the relation i ~' j holds.

Let i E N\NI , j E N. The relation i ~ j holds if and only if i ~ j. The sufficiency

is obvious. Suppose that i ~ j but i - j, Le., in G', there exists a path from vertex i

to vertex j but there is no such a path in graph G. Observe that G' differs from G by the

only arc (i0, jO). Hence, in G' a path from i to j must contain the arc (i0, jO), and for

the relation ~ defined by graph G the following two conditions must hold: i ~ iO and

I - ]0. By Lemma 4.1, the latter is impossible, since iO, ]0 are vertices of graph Gl, and

Gl is a decomposition component of graph G. Similarly, it can be proved that j ~ i if and

only if j ~ i.

Let i E NI and j E N. The relation i ~ j holds if and only if either i ~ j or i ~ iO

and jO ~ j. The sufficiency is obvious. If j E N\N I , then the necessity follows from the

previous considerations. If j E Nt> then, assuming that there is no path from i to j in G,

we derive that such a path in G' must contain the arc (io, jO). Similarly, j ~ i if and

only if either j ~ i or j -+ iO and jO ~ i.

Consider graph GN

• Let i E N\N1, j E N. The relation i ~' j (or j ~' i) holds if and

only if i ~ j (j ~ i, respectively). The sufficiency is obvious, and the necessity can

be proved in a similar way as in the case of graph G'. Analogously, for i E NI , j E N, the

relation i ~' j (j ~' i) holds if and only if either i ~ j (or j ~ i) or i ~ iO and

jO -+ j (or j -+ iO and jO ~ i, respectively).

Thus, i ~ j if and only if i ~' j. This proves the lemma.

Lemma 4.3. Let T(G) be a decomposition tree of a graph G, Gl = (N I , Vil be a terminal
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vertex of T(C), and iO, jO E Nt, jO )-+ iO. If C' and C; are the graphs obtained from C and

C1 by identifying the vertices jO and iO, then the tree T' obtained from T(C) by replacing

the vertex Ct by the vertex Ci is a decomposition tree of the graph C'.

Proof. Let i' denote the vertex obtained by identifying the vertices jO and iO. Assume

that C' = (N', V') and Ci = (Ni, Vi). Let Coo = (N', V") be a graph such that T' is its

decomposition tree. We show that the graphs C' and Coo coincide. The graphs C' and Coo are

circuit-free and do not contain transitive arcs; they therefore, define the precedence

relations ~ and ~', respectively. To prove that graphs C' and Coo are the same it

suffices to show that for any i, j E N, the relation i ~ j holds if and only if the

relation i ~' j holds.

Since graph C' is obtained from graph C by identifying vertices jO and iO, it follows

that, for any i, j E NV', the relation i ~ j is valid if and only if i ~ j. Moreover,

i ~ i' (or i' ~ i) holds for all i E N\i' if and only if either i ~ iO or i ~ jO (or

is either iO ~ i or ]0 ~ i).

Lemma 4.1 and the procedure for constructing T' imply that for any i E N\i' and

j E Ni, the relation i ~' j (j ~' i) holds if and only if i ~ j (or j ~ i). If j = i',

then i ~' i' (i' ~' i) if and only if either i ~ iO or i ~ jO (or if either iO ~ i or

jO ~ i). If i, j E N\Ni, then i ~. j if and only if i ~ j.

Thus, the relation i ~ j holds if and only if the relation i ~ j holds, i, j EN'.

This proves the lemma.

Lemma 4.4. Let Ct = (N I , Vil be a decomposition component of a graph C, and iO,

]0 E Nt· Transformation I-(j°, iO] or II-[iO, jO] can be applied to graph C if and only if

it can be applied to graph Ct.

Proof. The possibility of applying transformations I-(j°, iO) and II-[i°, jO] depends

on conditions (2.1) and (2.2), respectively (with s = iO and t = jO). Lemma 4.1 implies
that for any element i E N\N. exactly one of the following relations holds: i E E(io) n

E(j°), or i E B(i°) n B(j°), or i E A(io) n A(jO). In any case, i ~ A(iO, jO) and

i ~ B(i°, ]0), hence, conditions (2.1) and (2.2) are satisfied or not satisfied

simultaneously for graphs C and Ct. The lemma is proved.

Corollary 4.1. Let Gt = (Nt, Vil be a decomposition component of a graph C. A sequence
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L of transformations I and II acting on a set NI can be applied to graph G if and only

if it can be applied to graph GI ·

This statement directly follows from the last three lemmas.

Corollary 4.2. Let T(G) be a decomposition tree of a graph G, a graph GI = (N l , Vd
be a terminal vertex of T(G), L be a sequence of transformations I and II acting on the

set NI . If L transforms graphs G and Gl into graphs C' and Ci, respectively, then a

decomposition tree T(G') of graph G' can be obtained form T(C) by replacing the vertex Cl

by the vertex Ci.
This statement follows from Corollary 4.1 and from Lemmas 4.2 and 4.3.

Theorem 4.1. Let {Cl , C2 , ... , Cm} be a set of terminal vertices of a decomposition tree

T(C) of a graph C. If for each of the graphs Cll C2 , ... , Cm there exists a sequence of

transformations I and II which transforms a graph into a chain, then for graph C there

exists a sequence of transformations I and II which transforms G into an w-chain.

Proof. Let Lll L2 , ... , Lm be sequences of transformations I and n which transform the
graphs Cl , G2 , ... , Cm into chains CI , C2 , ... , Cm, respectively. Due to Lemma 3.2, Cl ,

C2, ... , Cm can be considered to be w-chains. Let C(1) denote the graph obtained from graph

G by applying the sequence L = (L l , L2 , ... , Lm ) of transformations I and II. The existence

of the graph C(1) is guaranteed by Corollary 4.1. As follows from Corollary 4.2, a tree T l

obtained from decomposition tree T(C) by replacing the vertices Cl , C2 , ... , Cm by vertices

Cl , C2 , ... , Cm is a decomposition tree of the graph 0 1).

Let us reconstruct graph OI) by its decomposition tree T ll while simultaneously making

some transformations of C(1). Let 0 be an operational vertex of tree T l adjacent to two

terminal vertices Cil and C12 ' Construct a decomposition tree Ti of the graph 0 1) by
removing the vertices C

II
and Cl2 from Tl and by replacing the vertex 0 by the vertex C'

where either C' = CIISCl2 if 0 is the operation of series composition, or C' = C
1I

PC/
2
if

o is the operation of parallel composition. Lemmas 3.1 and 3.2 imply that in any of these
cases there exists a sequence Li of transformations I and II which transforms graph C',

into some w-chain C. In fact, if C' = C//C'2' then C' is a chain; if C' = C/
I
PC/

2
' then

C' consists of two connected components, each of which is an w-chain. In the decomposition

tree Ti, replace the vertex C' by the vertex C and denote the constructed decomposition

tree by T 2. Due to Corollary 4.2, the tree T 2 is a decomposition tree of a graph C(2),

which is the result of applying the sequence Li of transformations to graph C(I).

The decomposition tree T 2 has m - 1 terminal vertices. Having applied the described
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procedure m-2 times, we obtain a graph G(m-l) and its decomposition tree T m_1. The tree

Tm-l has two terminal vertices associated with some w-chains. Performing the operation of

composition corresponding to the root of tree Tm-I results in a graph G". For graph G",

as well as for graph G', there exists a sequence L';'_I of transformations I and II which

transforms G" into an w-chain C".

It is obvious that the chain C' is obtained from graph G(I) as a result of performing

the sequence C = (L{, L;, ... , L';'_d of transformations I and II. Thus, the sequence

LO = (L, C) transforms graph G into an w-chain C'. This proves the theorem.

If graph G is series-parallel, then each terminal vertex of its complete decomposition

tree is a single-vertex graph; therefore, the following statement holds.

Corollary 4.3. For any series-parallel graph, there exists a sequence of

transformations I and I I which transforms the graph into an w-chain.

4.2. Based the Theorem 4.1, we now describe an algorithm for transforming a

series-parallel graph G into a chain, assuming that graph G is represented by its complete

decomposition tree.

The algorithm for transforming graph G into a chain consists of n -1 steps. In each

step, the algorithm passes from one series-parallel graph to another. In the first n - 2

steps, these graphs are represented by their decomposition trees, and as a result of

performing one step we pass to a tree having one terminal vertex less than the previous

one. Some w-chains correspond to the terminal vertices of decomposition trees. The

complete decomposition tree T(G) of the graph G is considered as the initial decomposition

tree T I . The vertices of graph G are terminal vertices of tree TI (recall that a

single-vertex chain is, at the same time, an w-chain).

Let Tr be a decomposition tree obtained after having performed the first r -1 steps,

:-; r :-; n -1. Tree Tr has n - r +1 terminal vertices. In Tn choose an operational vertex 0
adjacent to two terminal vertices C'l = (i" i2,· .. , ivl ) and C

'2
= (jl, ]2'"'' ]v

2
). By

analogy with Section 3 of this chapter, the vertex 0 is called supporting.

If 0 is the operation of parallel composition, then unite the chains C'I and C'2 into a

single w-chain C. To construct chain C, it suffices to sort the vertices of the w-chains

C'I and C'2 in non-increasing order of their priorities. If 0 is the operation of series

composition, then form the chain C (iI' i2,· .. , ivl , ]1' ]2'"'' ]v
2

). If

w(iv
l

) > w(jl)' the chain C is an w-chain (denote it by C). Otherwise, transform C to

the w-chain C as follows. Unite iVI and ]1 into the composite element i
O = [ivl , ]d. If
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w(iv -tl :0; w(io), then unite iv -I and iO into the composite element [ivl _l , iOJ again1 I

denoted by iO. If W(ivI-l) > w(io) and w(io) :0; w(j2), form the composite element ria, j2]

again denoted by iO. The transformation of C' into an w-chain results in the chain C which

has one of the following forms: C = (i0), C = (it> i2,.. ·, ik, iO), C = (io, j" ... , jv2),

C = (ii' i2,·.·, ik> iO, j" ... , jv2), where w(ik ) > w(io) and w(io) > w(jr).

Remove the vertices CII and C
l2
from the decomposition tree Tn and replace the

supporting vertex 0 by the vertex C. The resulting decomposition tree Tr +1 has n - r

terminal vertices, each of which is an w-chain. Performing n-2 steps yields a

decomposition tree Tn-I with two terminal vertices 0 1), C(2) and one operational vertex

O. If 0 is the operation of parallel composition, then sorting the vertices of the chains

C(I) and C(2) in non-increasing of their priorities yields a desired chain C. If 0 is an

operation of series composition, then a desired chain is C = (C(ll, C(2)). In the latter

case, the chain C, in turn, can be transformed, if necessary, into an w-chain by the

procedure described above.

4.3. When minImIzing a priority-generating function F(1I") over set Pn(G), the

constructed chain C specifies an optimal permutation 11":. We show that using balanced

2-3-tree to represent w-chains allows permutation 11": to be found in at most O(nlogn) time,

provided a series-parallel graph G is given by its complete decomposition tree T(G).

Define a perfect pseudo-order relation =* over set Q[Pn(G)] in a similar way to that

used in Section 3 of this chapter: 11"(1) =* 11"(2) for any 11"(1) and 11"(2) of Q[Pn(G)] if and

only if W(1I"(1)) 2: W(1I"(2)).

Let us number the vertices of the complete decomposition tree T(G) of graph G in the

following way. Remove all terminal vertices from T(G), and, in the resulting tree, number

the vertices by the integers n+ 1, n+2, ... , 2n -1 starting with the root, as in the case of

an ordinary outtree (see Section 3 of this chapter). The elements of set N = {I, 2, ... , n}

are associated with the terminal vertices of T(G)j therefore, these vertices may be

considered to be numbered by the integers 1, 2, ... , n.

The decomposition tree T( G) is represented by a table consisting of 5 rows and 2n - 1

columns. The first row of this table contains the numbers of the vertices of the tree T(G);

the kth cell of the second row contains the number of the direct predecessor of vertex k.

The kth cell of the third row contains the number of the root of the balanced 2-3-tree

representing the w-chain associated with the kth vertex of tree T(G). The fourth row

contains the numbers of direct successors. The kth cell of the fifth row contains an index

of the operation of composition (either s or p) corresponding to the kth operational vertex
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of the tree T(C).

In what follows, a table representing a decomposition tree is called Table 1, and a

table representing balanced 2-3-trees is called Table 2.

To start, place the integers 1, 2, ... , n into the first n cells of the third row of

Table 1; the cells n+l, n+2, ... , 2n-l of this row remain empty. The way of filling the

remainder rows of Table 1 is quite obvious. The cells of the third and fourth rows of

Table 2 contain the labels and their values (see Section 3 of this chapter).

Due to the chosen way of numbering the operational vertices of T(C), it follows that

the vertex numbered 2n - k can be taken as supporting in the kth step of the algorithm.

To run the algorithm, one has to be able to implement the following procedures: find

the next supporting vertex; remove two terminal vertices from the current decomposition

tree and associate an w-chain C with the current supporting vertex; unite two w-chains

into one w-chain (if the index p corresponds to the supporting vertex); transform a series

composition of two w-chains into a single w-chain if the index s corresponds to the

supporting vertex). The implementation of all these procedures except the last is

discussed in detail in Section 3 of this chapter, and in all n -1 steps of the algorithm

they can be implemented in at most O(nlogn) time. Consider the last procedure among those

mentioned above.

Let C - C C C - (.. .) C - (.. .) d (I) d (2)
- IS 2, 1 - Zl' %2,· .. , tv!, 2 - Jb J2,"" JV

2
,an v an v are

the roots of the balanced 2-3-trees representing the w-chains C[ and C2, respectively.

Compare w(iv) and w(jd (it is obvious that w(iv) = w(v~:~), w(jd = (v~~~)). If
I I

w(iv
l
) > w(jd, then C is an w-chain, and, in this case, it suffices to unite the

balanced 2-3-trees with the roots v(I) and V(2). If w(iv
l
) :0; w(jd, then unite iv[ and il

into the composite element [i v ., itl. To implement such uniting, it suffices to remove the
vertices i

V1
and i[ from the w-chains C[ and C2, to remove the contents of cells jl of the

third and fourth rows of Table 2, and to replace the contents of cells i
Vl
of these rows

by the value w(iv
1

, id. Let Ci and C~ be the chains obtained from CI and C2 by removing

the vertices i
Vl
and jl' respectively. Again, let v(I) and V(2) denote the roots of the

balanced 2-3-tree representing the chains Ci and C~.

Compare w(io) and w(v~:~) (here iO = [ivl , itl). If w(v~:~) :0; w(io), then form a new

composite element by uniting the element which is the label w(v~:~) and the element iO.

Otherwise, compare w(io) and w(v~~~). If w(io) s w(v~~), then unite iO and the element

which is the label v~~~ and go to further comparisons.

The process of forming the new composite elements is completed if one of the following

situations is achieved: (1) the composite element iO includes all vertices of the chains
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C1 and C2; (2) iO includes all vertices of C1 and w(io) > w(v~;~); or (3) iO includes all

vertices of C2 and w(v~:~) > w(io); (4) w(v~:~) > w(io) > w(v~;~). In the first case, the

element iO is the desired w-chain C. In the second and third cases, the element iO must be

inserted into the balanced 2-3-tree with the root V(2) or v(J), respectively. In the

fourth case, it is necessary to unite trees with the roots v(l) and V(2) and to inset the

element iO into the obtained balanced 2-3-tree.

Each of the procedures for removing a vertex from an w-chain represented by a balanced

2-3-tree and for uniting such trees takes at most O(nlogn) time. While transforming a

series-parallel graph G into a chain, new composite elements are to be formed at most n-1

times. Therefore, all procedures for transforming a series composition of two w-chains

into a single w-chain require at most O(nlogn) time.

Thus, the running time of the algorithm for finding an optimal permutation 7r~, provided

that graph G is series-parallel and is given by its complete decomposition tree T(G), does

not exceed O(nlogn). This estimate does not take into account the time required for

calculating the priorities of the composite elements to be formed. Note, however, that

this time is constant for all priority-generating functions analyzed in Section 1 of this

chapter.

4.4. Example. Consider the problem of minimizing the sum of linear penalty functions

(see Section 1.1(a) of this chapter), assuming that the precedence relation is defined

over the set of jobs, and its reduction graph is series-parallel.

The reduction graph G of the precedence relation and its decomposition tree T(G) are

shown in Fig. 4.1. The job parameters Q(i,

1

2/·~3

IXI
4 5

(3i and t i are listed in Table 4.1.

Fig. 4.1

Ta b I e 4. 1

i I 2 3 4 5

"'i 1 2 6 -20 12 8

{3i 5 8 16 - 1 7

Ii I 2 5 3 8
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Calculate the priorities of the elements of set N = {1, 2, 3, 4, 5} by formula (1.4):
w(l) = 12, w(2) = 3, w(3) = -4, w(4) = 4, w(5) = 1. Construct Table 1 (see Table 4.2) and
Table 2 (see Table 4.3).

Table 4.2

I The number or a ve r t ex 1 2 3 4 5 6 7 8 9

I I The number of the d ire c t predecessor 6 8 8 9 9 6 7 7

III The number or the roo t of a 2-3-tree 1 2 3 4 5

IV The numbers of d ire c t successors 1 ,7 8,9 2,3 4 , 5

V Index of the operat ion s s p p

Ta b 1e 4. 3

I 1 2 3 4 5 6 7 8 9

II

III ( 12) ( 3 ) ( - 4 ) ( 4 ) ( 1)

IV ( 12) (3) ( - 4 ) ( 4 ) ( 1)

V

In the first step, vertex 9 is chosen as supporting, and in the second step, vertex 8

is chosen as supporting. Tables 4.4 and 4.5 present Tables 1 and 2, respectively, after

two steps of the algorithm have been performed. The empty columns of Table 1 are omitted.

Table 4.4

I 1 6 7 8 9

II 6 6 7 7

III 1 6 7

IV 1 , 7 8 , 9

V s s

Table 4.5

I 1 2 3 4 5 6 7 8 9

II 6 6 7 7

III ( 12) (3) ( - 4 ) ( 4 ) ( 1) 3 ( - 4 ) 5 ( 1 )

IV ( 12) ( 3 ) ( - 4 ) ( 4 ) ( 1) 2(3) 4 ( 4 )

V 2,3 4,5

In the third step, vertex 7 is chosen as supporting. Tables 4.6 and 4.7 represent

Tables 1 and 2, respectively, after the third step has been performed. In the third step,

the composite element [3, 4, 5J is formed, w(3, 4, 5) = O. The number of an element of N



Priority-Generating Functions

occupying the first position in the composite element is used as iO•

Table 4.6

I

II

III

IV 1,7
V

Table 4.7

I I 2 3 4 5 6 7 8 9

II 1 6 6

III ( 12) ( 3 ) (0 ) 3 ( 0)

IV ( 12) ( 3 ) ( 0) 2 ( 3 )

V 2,3

223

Vertex 6 is supporting in the fourth (the last) step. Table 4.8 represents Table 2

after this step has been performed.

Table 4.8

I 1 2 3 4 5 6 7 8 9

I I 6 6 6

II I ( 12) (3 ) (0 ) 3 ( 0)

IV I ( 12)

V I ,2,3

In the fourth step, the w-chain C is constructed and is represented by the balanced

2-3-tree with root 6 (Table 4.8). Reconstructing this w-chain yields C = (1, 2, 3). Since

the composite element [3, 4, 5] is denoted by 3, we derive that C = (1, 2, [3, 4, 5]).

Thus, the permutation 1r; = (1, 2, 3, 4, 5) is optimal.

4.5. Let {G I , G2 , ... , Gm} be a set of terminal vertices of the complete decomposition

tree T(G) of a graph G, and, for each graph G; of this set there exists a sequence L; of

transformations which converts it into a series-parallel graph. Corollaries 4.1 and 4.2

imply that the sequence L = (L1, L2 , ... , Lm ) transforms graph G into a series-parallel

graph GO.

In this case, by applying transformations I and II graph G can be converted into a

chain.

In fact, construct the tree T(G) and transform the decomposition components Gi , i = 1,
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2, ... , m, of graph G into series-parallel graphs Gi, respectively. For each graph Gi,

construct its complete decomposition tree T(Gi). In the tree T(G), replace the vertices

Gi , i = 1, 2, ... , m, by the decomposition trees T(Gi) (this can be done by removing a

vertex Gi from T(G) followed by replacing the arc entering this vertex by the arc

entering the root of the tree T(Gi)). This yields the complete decomposition tree T(G') of

graph G'. Further, run the algorithm described in Section 4.3.

5, General Case

The problem of finding a permutation 11"~ that minimizes a priority-generating function

F(11") over the set Pn(G) in the case of an arbitrary graph G is NP-hard. This follows

directly from the fact that the problem of minimizing function (1.1) over Pn(G) (see

Section 1 of this chapter) is NP-hard in the case of linear penalties (see Section 5 of

Chapter 4).

Applying transformations I and II to a graph G allows a graph G' to be found such that

Pn{G') ~ Pn(G), and the set Pn(G') contains at least one optimal permutation. In some

cases, such as when the graph G is series-parallel, it is possible to find a sequence of

transformations [ and II which transforms G into a chain, thus yielding an optimal

permutation 11"~. In a general case, such a sequence may not exist and applying

transformations I and II only reduces the search for 11"~.

This section presents an algorithm for finding a sequence LO of transformations I and

II which converts a graph G into a so-called deadlock graph. The running time of this

algorithm does not exceed G(n'). In Section 6, the situations are analyzed in which a

deadlock graph obtained from G by performing a sequence LO of transformations I and II is

a chain.

5,1. A graph is called deadlock if neither of transformations I or II can be applied to

it. A sequence LO of transformations I and II which converts a graph G = (N, U) into a

deadlock graph is called a deadlock sequence for G.

To describe an algorithm for transforming the graph G into a deadlock graph CO, the

following notation is used: max A(i, j) = max{w(k) IkE A(i,j) u j}j min B(i, j) =

min{w(k) IkE B(i, j) u i}j M(G) = Ilmd and M(G) = Ilmd are the adjacency matrices of a
graph G and its transitive closure G, respectively.

The algorithm runs according to the following scheme.
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(a) Form a list of the elements of set N.

(b) 'Scanning the list, apply all possible transformations II to the graph. If no

transformation II can be applied to the current graph, return to the beginning of the list

and go to (c).

(c) Choosing the next element i in the current list, check whether transformation

I-[j, i], where j )--> i, can be applied to the current graph. If this transformation is

feasible, then it is performed. Modify the list, return to its beginning, and go to (b).

If transformation I-[j, i] is non-feasible for the current graph, then take the next

element in the list.

This process is completed when neither of transformations I or II can be applied to the

current graph, i.e., in performing (c) no transformation has been performed.

5.2. Let matrices M(G) and M(G) be given, and the priorities of the elements of set N

be calculated. The algorithm for converting G into a deadlock graph consists of two

stages: auxiliary and main.

At the auxiliary stage, the following procedures are to be performed.

(a) For each i E N, find the set BO(i). If the condition IBO(i) I = 1 is satisfied, then

compare w(i) and w(j), where j )--> i. If w(i) ;:: w(j), then find the set A(i, j) and compute

max A(i, j). If w(i) < w(j), then take the next element i E N.

(b) For each i E N, find all such j E E(i) that w(i) ;:: w(j). For these j, find the sets

B(i, j) and A(i, j) and compute min B(i, j) and max A(i, j).

For the auxiliary stage of the algorithm, the data representation is as follows.

Form a 3xn table (Table 1) and a 2xn2 table (Table 2).

The first row of Table 1 contains the values of w(i). The ith cell of the second row

contains the number of the element j if IBO(i) I = 1 and j )--> i. Otherwise (i.e., if

IBO(i) I "I' 1), this cell remains empty. If IBO(i) I 1, then the ith cell of the third row

contains the value of max A(i, j) where j )--> i. If IBO(i) I "I' 1, then the ith cell of the
third row remains empty.

Table 2 contains the values of min B(i, j) (the first row) and max A(i, j) (the second

row). These values are placed in the column numbered n(i-l)+j. It is obvious that the

cells of a column numbered by n(i-l)+i are always empty.

The main stage of this algorithm involves the following procedures.

(a) Arrange the list of the elements of set N by sorting them arbitrarily (e.g., in

non-decreasing order of their priorities).

(b) For each element i in the list, starting with the first, perform the following. For
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each j E E(i) check whether min B(i, j) ;:: max A(i, j). For all j E E(i) that satisfy this

condition, perform transformation II-(i, j), and take the next element in the list. If

either the inequality min B(i, j) < max A(i, j) holds for all j E E(i) or E(i) = 0, then

also take the next element in the list. If during the current scan of the list no

transformation II has been performed, go to (c).

(c) For each element i in the list, starting with the first, perform the following. If

IBO(i) I = 1 and the condition w(i) ;:: max A(i, j) is satisfied for j >-+ i, then perform

transformation I-[j, iJ. Remove the elements i and j from the list, insert the element [j,

iJ into the list, return to the beginning of the modified list, and go to (b). If,

otherwise, either IB°(i) I ". 1 or w(i) < max A(i, j), then take the next element in the

list.

This process is completed if while performing (c), no transformation I that is feasible

for the current graph is found.

We now estimate the running time of the algorithm and present some details of the

implementation of the procedures to be performed at the main and auxiliary stages.

For each element in the list, checking all conditions takes at most O(n) time.

Therefore, before performing the first transformation I or II all conditions can be

checked by scanning the list in at most O(n2 ) time. The list is to be scanned at most

n(n+3)/2 times. In fact, transformation I can be applied at most n-l times, while

transformation II can be applied at most n(n-l)/2 times since matrix M(G) contains at most

n(n-l)/2 non-zero entries (recall that G is a circuit-free graph), and as a result of

performing one transformation II, at least one new non-zero element is included in that

matrix. Moreover, n "failure" checks are possible while performing (b), and one such

check while performing (c).

Thus, while transforming G into a deadlock graph, all conditions can be checked in at

most O(n4 ) time.

Let us estimate the running time of the auxiliary-stage procedures described in

(a) and (b).

The set B°(i) can be found by matrix M(G): an element j E B°(i) if and only if mij = l.

Finding all elements i E N such that ISOli) I = 1 takes at most O(n2 ) time. For each i E N,

finding the set A(i, j) requires at most O(n) time. In fact, A(i, j) = A(j)\(A(i) u i)

and, hence, an element kEN belongs to the set A(i, j) if and only if both mjk = 1 and

mik = O. Computing max A(i, j) for all i E N such that IBO(i) I = 1 takes at most O(n2)

time. Thus, the procedure described in (a) can be implemented in at most O(n2 ) time.

For any i E N, the set E(i) can be found by matrix M(G) (an element j E E(i) if and
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only if mij = mji = 0) and this takes at most O(n) time. Finding the sets A(i, j) and

11(i, j) for a fixed pair of elements i, j requires at most O(n) time, and this amounts to

O(n3 ) time for all pairs. Thus, the procedure described in (b) requires at most O(n3 )

time.

We now consider the implementation of transformations I and II and estimate their

running times. Let G be a graph to which a transformation I or II is applied, and G' be

the graph obtained from G by this transformation.

The implementation of transformation I. Let IBO(i)1 1 and w(i) ~ max AG(i, il, where
j >- i. Replace each element of the ith row and ith column of the matrices M(G) and M(G)

by -1, which indicates that vertex i has been removed from the graph. Let M' denote the

matrix obtained from M(G). To construct the matrix M(G'), it is necessary to replace some

zeros in the row j of matrix M' by unities. If a vertex k is a direct successor of vertex

i in graph G but it is not a successor of vertex j in the graph with the adjacency matrix

M', then replace the kth element of the row j of matrix M' by unity. Since finding all

successors of vertex j by matrix M' requires at most O(n2
) time (see Section 1.4 of

Chapter 1) and each of the remained procedures takes at most O(n) time, we conclude that

matrices M(G') and M(G') can be found in at most O(n2 ) time.

In Table 1, replace the jth cell of the first row by w(j, i), and delete the contents

of all cells of the ith column. For all k E Ag(i), find the sets Bg'(k). If both relations

1Bg-(k) 1 = 1 and 1Bg(k) I 'F 1 hold, then compute max AG-(k, j), where j >- k, replace the

kth cell of the second row of Table 1 by the index j, and replace the kth cell of the

third row by max AG'(k, j). Since IAg(i) I < n, this procedure requires at most O(n2 ) time.

For each k E BG(j) U AG(j)\i and for all found sets A(k, I), B(k, I), A(l, k), 11(l, k),

compute max AG'(k, I), min 11G'(k, I), max AG'(l, k), min 11G'(l, k), and use these values

to replace the contents of the corresponding cells of Tables 1 and 2. To find the cell to

be corrected, it suffices to perform the following. In Table 1, check the contents of the

kth cell of the second row (if the cell is not empty it is to be corrected). Find those

cells of the second row which contain the number k (thereby, the numbers I of the cells

containing max AG(l, k) are found). In Table 2, scan the cells with the numbers of the

form n(k-1)+1 and n(I-1)+k, I = 1, 2, ... , n. If a cell is not empty, it is to be

corrected.

Since 1BG(j) U AG(j) I < n, and the total number of the sets A(k, I), B(k, I), A(I, k),

11(1, k) does not exceed 4(n-1), it follows that the latter procedure requires at most

O(n3 ) time. Transformation I is to be performed at most n-1 times; therefore, performing

all transformations I takes at most O(n4 ) time.
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The implementation of transformation II. Let i - i and min BG(i, i) ~ max AG(i, i).

Then, in the matrix M(G), define mij = 1, and, in the matrix M(G), define mkl = 1 for all
pairs k and I such that k E BG(i) u i, I E Adi) u i. Besides, if in the initial matrix

M(G) for some of the above pairs k, I the element mkl = 1, then in M(G) define mkl = 0 (in

this case, after the arc (i, i) has been included in the graph, the arc (k, I) becomes

transitive). This procedure takes at most O(n2 ) time.

For all k E BG(i, i) u i, and I E EGik), find the sets AG'(k, I) if w(k) ~ w(l) and

the sets AGil, k) if w(k) s; w(l). Compute max AGik, I) and max fieil, k) for all found

sets and use these values to replace the contents of the corresponding cells of Table 2.

For all k E AG(i, i) u i and I E EGik), find the sets BG'(k, I) if w(k) ~ w(l), and the

sets BG'(I, k) if w(k) $ w(l). Compute min BG'(k, I), min BG'(l, k) and correct Table 2.

Besides, for k E AG(i, i) u i such that IB~'(k)1 = I but IB~(k)1 oF- 1 and for such I that

I :i'k and w(k) ~ w(l), place the index I in the kth cell of the second row of Table 1i

find the sets AGik, I), compute max AGik, I), and place this value into the kth cell of

the third row of Table 1. If IB~'(j) I -F 1 and IBg(j) I = 1, delete the contents of cell I
of the second and third rows of Table 1.

The procedures for finding the sets mentioned above and for computing max AG'(k, I),

min BGik, I), max AGil, k), min BGil, k) require at most O(n2( IBG(i, i) I+ IAG(i, i) I))
time. On the other hand, as a result of performing transformation II-(i, i), at least

IBG(i, j)[ + IAG(i, j)[ +1 new unit entries are to be included in matrix M(G). Hence, the

addition of one new unit element to M(G) takes at most O(n2 ) time. Since the number of

unit entries in the matrix M(G) may not exceed n(n-1)j2, all transformations II can be

implemented in at most O(n4 ) time.

Thus, the running time of the algorithm for transforming a graph G into a deadlock

graph does not exceed O(n4
).

In the following, this algorithm is called the D-algorithm.

5.3. Example. Let the numbers 01, = 4, 012 = 2, 013 = 014 = 3, 015 = 1, 016 = 7, 017 = 5 be
associated with the elements of set N = {1, 2, 3, 4, 5, 6, 7}. The precedence relation -+

is defined over N, its reduction graph G being shown in Fig. 5.la. A priority-generating

function F(7f) is defined over set P and its priority function w(7f) is defined over set

Q[Pl = P as follows: w(7fT ) = }: OI;/r if 7fT oF- (2, 3) and w(2, 3) = 6.
ieT1r}

We use the D-algorithm to find a permutation 7f; that minimizes the function F(7f) over

set P7 (G).
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(a) (b)

Fig. 5.1

(c)

Construct matrices M(G) and M(G), and calculate the priorities of the elements of set

N:

M(G)

o 1 0 0 0 0 0
001 0 0 0 0
000 0 0 0 0
000 0 001
000 0 0 1 0
o 0 0 0 0 0 1
o 0 0 0 0 0 0

M(G)

o 100 0 0
001 0 0 0 0
o 0 0 0 0 0 0
o 0 0 000 1
o 0 0 0 0 1 1
o 0 0 0 0 0 1
o 0 0 0 0 0 0

w(l) = 4, w(2) = 2, w(3) = w(4) = 3, w(5) = 1, w(6) = 7, w(7) = 5.
Arrange the list 51 = (5, 2, 3, 4, 1, 7, 6) of the elements of set N by sorting them in

/'

non-decreasing order of their priorities. Transformation II-( 4, 2) is feasible for the

graph G. Having performed this, we obtain the graph G(I) (see Fig. 5.1b), for which no

transformations II can be applied. Transformation 1-[2, 3] is the first transformation

(with respect to the list 5d that is feasible for G(I). Having performed this

transformation, we obtain the graph G(2), for which only one transformation may be

applied; this transformation is 1-[5, 6]. It is easy to check that the resulting graph

G(3) (see Fig. 5.1c) is a deadlock graph. Thus, the sequence L1 = (II-( 4, 2), 1-[2, 3],

1-[5, 6]) converts G into the deadlock graph G(3) which is not a chain. Obviously,

P7(G(3») c P7(G), IP7 (G)1 = 105, IP7(G(3») I = 16.

Let us return to the initial graph G and arrange another list 52 = (6, 7, 1, 3, 4, 2,

5) of the elements of set N. In this list, the elements are sorted in non-increasing order

of their priorities. Transformation 1-[5, 6) is the first feasible transformation for the

graph G(I) with respect to the list 52 (here w(5, 6) = 4). Having performed the

transformation, we obtain the list 52 = (7, 1, [5, 6], 3, 4, 2) (we maintain the elements

sorted in non-increasing order of their priorities). Transformation II-(7, 2) is the first

transformation that is feasible with respect to the obtained list. The next feasible

transformation is II-([5, 6], 1), and then II-([5, 6], 4). We return to the beginning of

the list and conclude that transformation 1-[4, 7J is feasible (w(4, 7) = 4). The corrected
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list is of the form S2 = ([4, 7J, 1, [5, 6], 3, 2). Transformation II-([4, 7], 1) is the

next feasible one. The graph obtained after this transformation is a chain C = ([5, 6],

[4, 7], 1, 2, 3). Thus, the sequence L = (11-(4, 2), 1-[5, 6], 11-(7, 2), 11-([5, 6J, 1),
11-([5, 6], 4), 1-[4, 7J, 11-([4, 7], 1)) transforms the initial graph G to the chain C

and, hence, the permutation IT = (5, 6, 4, 7, 1, 2, 3) is the desired one.

5.4. The example considered above implies that, in general, several deadlock sequences

of transformations I and II exist for a graph G. Some of them may transform G into a

deadlock graph that is not a chain (sequence L, in the example above), while the others

may transform G into a chain (sequence L2 ). Obtaining this or that sequence depends on the

order in which the elements of set N are to be scanned, i.e., on the initial list of the

elements and on the way this list is corrected after performing each transformation I. In

a general case, a sequence of transformations I and II which transforms the initial graph

into a chain need not exist.

A priority function w(IT) is called auto-bounded if for any permutations

1l'(c), 1l'(d) of such Q[PJ that the permutation (IT(a), IT(b») belongs

w(1l'(c») ~ w(IT(a») ~ W(1l'(dl ) and w(1l'(c») ~ w(IT(b») ~ w(IT(d»), the

w(1l'(c») ~ w(IT(al, IT(b») ~ w(IT(d») holds, and, moreover, if w(IT(a») = w(IT(b»)

w(IT(a), IT(b») = c holds.

It is obvious that a function w(1l') is auto-bounded if the condition

IT(a), 1l'(b),

to Q[P],

condition

= c, then

(5.1)

holds for any permutations 1l'(a) , 1l'(b) of Q[P] such that (1l'(a), 1l'(b») E Q[PJ.

As shown below (see Section 6 of this chapter), the condition for a priority function

to be auto-bounded is sufficient for transforming a series-parallel graph G into a chain

by a sequence of transformations I and II which is deadlock for G. Note that, in the

example considered above, the function w(IT) is not auto-bounded, while the graph in

Fig. 5.1a is series-parallel.

Some other examples of priority-generating functions F(IT) with non-auto-bounded

priority functions can be given. For a set N = {I, 2, ... , n}, n 2: 4, let the numbers Oii

and fJi be ·associated with each element i E N. The set P consists of all permutations of

length f' 2: 4 being of the form IT = (1l", IT"), where {IT'} = {I, 2, 3}, {IT"} >; N\{IT'}. The

function F(1l') = max{ EOii +fJi 11 ~ u ~ r} is defined over set P, where 1l' = (i" i2, ... ,
k=l k u

iT)' r 2: 4. Let Oil = -1, 0i2 = 0i3 = 1, fJI = fJ2 = 1, fJ3 = 2, Oii 2: 5, fJi 2: 0, i = 4, 5, ... ,
n. Define the function w(1l') over the set Q[P] as follows: w(1l') = sgn (-. L 0i;J (W -F(IT)+

lET1I'"}
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max{O,. f, ai}) for all rr E Q[PJ different from the permutation (2, 3), and assume
lET1r}

w(2, 3) = W+ 1 where W ~ E(I ad + Il1i I). It follows from Section 1.4 of this chapter that
i=l

the function w(rr) is a priority function for F(rr). We have w(1) = W, w(2) = -W +1,

w(3) = -W +2, and thus w(1) > w(2), w(1) > w(3), but w(2, 3) > w(1), i.e., the function

w(rr) is not auto-bounded.

Note that, for a given priority-generating function F(rr), finding a priority function

which is not auto-bounded takes some effort. At the same time, all known priority

functions (see Section 1, Chapter 3) are auto-bounded.

Consider, for example, function (1.7). It is of the form w(rr) = lJJ(rr)/F(rr). Let rr(a),

rr(b) be permutations of Q[P] such that rr = (rr(a), rr(b») E Q[PJ and w(rr(a») ~ w(rr(b»).

We show that w(rr(a») ~ w(rr) ~ w(rr(b»). It follows from relation (1.31) (see Section 1.9

of this chapter) that

lJJ(rr(a») + IJJ( rr(a) )IJJ(rr(b») + lJJ(rr(b»)
w( rr) = ---'----'--'-~--'--'-----'--'-~-!.

F(rr(a») + F(rr(a) )1JJ(rr(b») +F(rr(b»)

Since F(rr(a») > 0, it follows from w(rr(a») ~ w(rr(b») that lJJ(rr(b») ~

F(1r(b»)IJJ(rr(a»)/F(rr(a») . Hence,

w(rr) ~ 1JJ(1r(a»)+IJJ(rr(a) ) 1JJ(1r(b))+F(rr(b) ) lJJ(rr(a»)/F(rr(a») = lJJ(rr(a»)/F(1r(a») = w(rr(a»).

F (1r(a»)+F(rr(a»)1JJ (rr(b»)+F(rr(b»)

On the other hand, lJJ(rr(a») > 0, therefore, F(rr(a») ~ lJJ(rr(a»)F(rr(b»)/IJJ(1r(b»). Hence,

w(rr) =

Thus, w(1r(a») ~ w(rr) ~ w(1r(b») and function (1.7) is auto-bounded.

Similarly, we may check that the other priority functions constructed in Sections

1.1-1.7 of this chapter are auto-bounded.

Theorem 5.1. If a function F(rr) is priority-generating over set P, then there exists

its auto - bounded priority function over the set Q[P).

Proof. To simplify the notation, we assume that all permutations rr for which the values

of F(rr) or w(1r) are calculated, belong to the set P or to the set Q[PJ, respectively. Let

w(rr) be a priority function for F(rr) and there exists such a permutation rr(1) = (rr(a),

rr(b») that w(rr(l)) > max{w(rr(a»), w(rr(b»)}. If rr(2) is such a permutation that

rr(1) n rr(2) = 0 and either max{w(rr(a»), w(rr(b»)} $ w(rr(2») < w(rr(1») or max{w(rr(a»),

w(rr(b»)} < W(1r(2») ~ w(1r(1»), then as follows from the definition of a priority-generating
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function, we have F(Tf(l), Tf(2)} $ F(Tf(2), Tf(l»)

Tf(b») $ F(Tf(a), Tf(b), Tf(2»). Hence, we obtain

Chapter 3

(5.2)

Define W'(Tf(I») = max{w(Tf(a»), w(Tf(b»)} and w'(Tf) = w(Tf} for all permutations Tf of Q[P]

different from Tf(J). Relation (5.2) implies that the constructed function w'(Tf) is a

priority function for F(Tf).

Similarly, if W(Tf(l») < min{w(Tf(a»), w(Tf(b»)}, ·define W'(Tf(I») = min {w(Tf(a»),

w(n(b»)}, and w'(n) = w(Tf) for Tf #' Tf(l). The constructed function w'(Tf) is, as w(Tf), a

priority function for F(Tf).

We construct a function w(Tf}, starting with unit length permutations, which satisfy

conditions (5.1). Define w'(i) = w(i) for all elements i E N. Let Tf = (i, j). Define

w'(Tf) = w(Tf} for all Tf satisfying the condition min{w'(i), w'(j)} $ w(Tf) $ max{w'(i),

w'(j)}. Then, for all Tf = (i, j) such that w(Tf) > max{w'(i}, w'(j}}, define w'(Tf} =

max{w'(i), w'(j)}. After this, for all Tf = (i, j) such that w(Tf) < min{w'(i), w'(j)},

define w'(Tf) = min{w'(i), w'(j)}.

Let a new priority function be constructed for all permutations of the length m,

2 $ m < n. We construct w'(Tf} for permutations of the length m+ 1 as follows. Define

w'(n) = w(Tf} if min{w'(Tf(a)}, w'(Tf(bl )} $ w(Tf) $ max{w'(n(a)}, w'(Tf(b l )} for all

permutations Tf(a), Tf(b) of Q[PJ such that Tf = (Tf(a), Tf(b»). Then find all permutations

Tfm+1 E Q[P] such that there exist permutations Tf(a), Tf(b) E Q[P] satisfying the conditions

Tf = (Tf(a), Tf(b»), w(Tf) > max{w'(Tf(a»), w'(Tf(b»)}. Define w'(Tf} = min{max{w'(Tf(al},
w'(Tf(b)}} I(Tf(a), Tf(bl} = Tf, w(Tf} > max{w'(Tf(a»), w'(Tf(b)}}}.

Now, for all Tfm +1 E Q[PJ such that there exist permutations Tf(al, Tf(b) E Q[PJ

satisfying the conditions Tf = (Tf(a), Tf(b»), w(Tf) < min{w'(Tf(al}, W'(Tf(b»)}, define

w'(Tf) = max{min{w'(Tf(al}, w'(Tf(b»)} I(Tf(al, Tf(bl ) = Tf, w(Tf) < min{w'(Tf(al ), w'(Tf(b»)}}.

The described process of constructing function w'(Tf) in fact can be implemented.

Suppose that function w'(Tf) satisfies condition (5.1) for all Tf" r $ m, and n = (Tf(al ,

Tf(b») is a permutation of the length m+ 1 such that w(Tf) > max{w'(Tf(a»), w'(Tf(b»)}. We show

that in this case, there are no permutations Tf(c), Tf(dl such that Tf = (Tf(c), Tf(d») and

w'(Tf) < min{w'(Tf(c)}, w'(Tf(d»)}, where w'(Tf} = max{w'(Tf(a»), w'(Tf(b»)}. Suppose that these

permutations exist. The following variants are possible:

1) w'(Tf(a l } ~ w'(Tf(bl}, w'(Tf(c») ~ w'(Tf(d l };

2) w'(Tf(a») ~ w'(Tf(b»), w'(Tf(c») < w'(Tf(d»);

3) w'(Tf(a») < w'(Tf(b»), w'(Tf(c») ~ w'(Tf(d»);
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4) w'(1I"(a») < w'(1I"(b1), w'(1I"(c1) < w'(1I"(d1)j

For the first variant, we have
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(5.3)

Let 1I"(c1 = (1I"(a1, if) then 1I"(b) = (if, 1I"(d»). Since condition (5.1) is satisfied for

function w'(1I") for all permutations of length r $ m, it follows from (5.3) that

w'(if) > w'(1I"(a l ). Hence, w'(1I"(b1) = w'(if, 1I"(d») > w'(1I"(a»), which contradicts the

conditions of first variant. Let 1I"(a) = (1I"(c), if) then 1I"(d) = (if, 1I"(b)). From (5.3), we

have w'(1I"(a1) < w'(1I"(c») and, hence, w'(1I"(a») <': w'(if). On the other hand,

w'(1I"(b») < w'(1I"(d»), therefore, w'(if) <': W'(1I"(d»). Thus, w'(1I"(a») <': w'(if) <': w'(1I"(d») which

contradicts (5.3).

For the third variant, we have

(5.4)

If 1I"(c) = (1I"(a), if) then 1I"(b) = (if, 1I"(d») and it follows from (5.4) that

w'(1I"(b1) <': w'(1I"(a1) and w(1I"(b1) <': w(if). Hence, w'(1I"(b») <': w'(1I"(c1), which contradicts

(5.4). Let 1I"(a) = (1I"(c) , if), 1I"(d1 = (if, 1I"(b»), then it follows from (5.4) that

w'(if) <': w'(1I"(d1) > w'(1I"(b1) and w'(1I"(a1) = w'(1I"(c1, if) > w'(1I"(b1), which contradicts the

conditions of the third variant.

Similarly, it can be shown that the conditions of the second and the fourth variants

also lead to a contradiction.

The above considerations imply that, given a function w(1I"), and manipulating as

described above, it is possible to construct a new priority function w'(1I") for a function

F(1I") which is auto-bounded. This proves the theorem.

It follows from the proof of Theorem 5.1 that for any function that is

priority-generating over a set P there exists its priority function defined over the set

Q[P] satisfying condition (5.1).

6, Convergence Conditions

It is shown in this section that if a priority function is auto-bounded, then any

deadlock sequence of transformations I and II transforms a series-parallel graph G into a

chain (see Theorem 6.3). Thereby, using the D-algorithm described in Section 5 of this

chapter guarantees that an optimal permutation can be found at least for series-parallel

graphs.
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Theorem 6.3 is proved by induction with respect to the number of vertices of graph C,

based on the fact that any series-parallel graph may be represented as a series or a

parallel composition of two graphs C1 and Cz, each of which is in turn series-parallel.

Besides, the proof uses the fact (established by Theorems 6.1 and 6.2) that any sequence

of transformations I and II which is deadlock for graph C transforms that graph into a

chain if and only if any sequences of transformations I and II which are deadlock for the

graphs C[ and Cz, respectively, transform C[ and Cz into chains.

To conclude this section, it is shown that using interdependence of graphs C and

priority functions it is possible to describe an essentially more general class of

situations for which the D-algorithm also guarantees that an optimal permutation will be

found.

6.1. Let L be some sequence of transformations I and II of a graph C. Let L(v) denote a

subsequence of sequence L consisting of the first v transformations, and C(v) denote the

graph obtained from the original graph C by sequence of transformations L(v).

A sequence L of transformations I and II is called feasible for graph C if the (v+ 1)th

transformation in the sequence L is feasible for graph C(v), v = 0, 1, ... , 1-1. Here I is

the number of transformations in the sequence Land C(O) = C.

A graph C is called reducible (with respect to a given priority function) if any

sequence of transformations I and II which is deadlock for C transforms it into a chain.

Theorem 6.1. Let C = C[sCz. Craph C is reducible if and only if graphs C1 and Cz are

reducible.

Proof. Necessity. Let there exist a sequence L[ of transformations I and II which

transforms graph C[ = (N" Ud into a deadlock graph C; = (N;, U;) which is not a chain.

We show that, in this case, there exists a sequence of transformations I and II which

transforms graph C = (N, U) into a deadlock graph which is not a chain either. Let

C~ = (N~, U~) denote a deadlock graph obtained from Cz as a result of applying some

sequence Lz of transformations I and II.

Suppose that graph C; cannot be represented as C; = C;'sC;", where C;" is a chain.

Construct a sequence L = (L1, Lz ). Due to Corollary 4.1 (see Section 4 of this chapter),

sequence L is feasible for graph C. Let C· denote a graph into which L transforms graph C.

It is easy to see that C' = C;sC~, and sequence L is deadlock for graph C.

Suppose now that C; = C;'sC;", where C;" is a chain of the maximal length. Then

C' = C;'sC~', where C~' = C;"sC~·. Let L3 denote a sequence of transformations that is
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deadlock for C~' (it is possible to show that L3 consists of transformations I only).

Construct a sequence L' = (L, L3 ). If L3 transforms C~' into a graph c~n, and L'

transforms graph C' into a graph cn, then C n
= C;'sc~n, where C;' is a deadlock graph

and is not a chain. Graph C;' cannot be represented as series composition of two graphs
such that the second of them is a chain. Hence, C

n

is a deadlock graph and L' is the

desired sequence.

Similar considerations can also be given if there is a sequence of transformations I

and II which transforms C2 into a deadlock graph that is not a chain.

Sufficiency. Suppose that there exists a sequence L which transforms C into a deadlock

graph C' that is not a chain. Since C = C[sC2 , it follows that graph C' can be represented

as C' = C;sC~, where C; = (N;, V;), and the composite elements of set N; are formed from

the elements of set N,. Suppose that C; is not a chain. We show that, in this case, there
exists a sequence LJ of transformations I and II that transforms graph C1 into a deadlock

graph that is not a chain.

If all elements of set N, are included into composite elements of set N;, then
transformations of sequence L can be divided into two groups: transformations acting on

set N, and transformations acting on set N2 . Having ordered transformations of the first

group in the same order as they appear in sequence L, we obtain sequence L, transforming

C[ into C;.

If some elements i E N, are included in composite elements of set N~, then this is

possible only when all arcs of the form (k, i) are included (as a result of applying

transformations II), where k is a terminal vertex of graph C1. It is easy to check that

all elements of set N~ are either of the form 71'(2), where {71'(2)} c N2 , or of the form

[71'(1), 71'(2)], where {7I'(I)} c N 1, {71'(2)} ~ N2 . Therefore, having removed from the sequence

L all transformations I which form the composite elements [71'(1), 71'(2)] as well as all

transformations acting on set N2 , we obtain a sequence L; which transforms graph C[ into

graph C;' = C;sc;n, where Gin is a chain. If L;' denotes a sequence which transforms
Gin into a deadlock graph, then it is obvious that L1 = (L;, L{') is the desired

sequence.

If C; is a chain, then C' may be represented as C' = C~sC~, where graph C~ = (N~, V~)

is not a chain and the composite elements of set N~ are formed from the elements of set

N 2 . In this case, using the considerations similar to those given above, it is possible to

prove the existence of a sequence of transformations I and II which transforms C2 into a

deadlock graph that is not a chain. This proves the theorem.
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6.2. We now consider the situation when C = ClPCZ and prove the statement similar to

Theorem 6.1. First, we prove several auxiliary statements.

Lemma 6.1. Let C' be a graph obtained from graph C by applying some sequence of

tr'ansformations I and II, and iO be a composite element corresponding to some vertex of

graph C'. If a priority function is auto-bounded, then w(rr(a)) ~ w(n(b») for any

permutations rr(a), rr(b) such that iO = [n(a), n(b)].

Proof. For I{iO} I = 2, the lemma is obvious. Suppose that the lemma holds for all

composite elements iO such that I{iO} I ~ m, m ~ 2. Let I{iO} I = m+ l. If iO is obtained by

transformation 1- [N°, nO), then w(n') ~ w(rrO). Let n° = [if, rr(b)], then rr(a) = (11", if).

Since I{rr O } I ~ m, we have w(if) ~ w(rr(b») and, since the priority function is auto

bounded, it follows that w(rr') ~ w(rr(b»). Hence, w(rr(a») ~ w(rr(b»). Let 11" = [rr(a), if],

rr(b) = (ii', 11'0), then w(rr(a») ~ w(if) and w(rr(a») ~ w(n'). Moreover, w(rr') ~ w(rrO),

therefore, w(rr(a») ~ w(rrO). Thus, w(rr(a») ~ w(n(b»). The lemma is proved.

Let N(v) be the set of vertices of a graph C(v) obtained from C by applying sequence

Ltv) of transformations I and II. If sequence L of transformations I and II transforms

graph C into a graph C', and i' is a composite element corresponding to some vertex of C',

then let {i'}(v) denote a set of all composite elements of set N(v) that are incorporated

into the element i'.

Let C I = (N J, VJl, Cz = (Nz, Vz) and C = C1PCZ' Transformation I-[i, j] or II-(i, j) is

said to be mixed if ({i} u {j}) n NJ of- 0 and ({i} u {j}) n Nz of- 0. Otherwise, a

transformation is called uniform. A composite element i such that {i} n NI of- 0 and

{i} n Nz of- 0 is called mixed. If {i} <;; Nl or {i} <;; Nz, then i is called a uniform

composite element.

Lemma 6.2. Let a sequence L of transformations T and II, in which all transformations I

are uniform, transform a graph C = C1PCZ into a graph C' = (N', V'), and a priority

function be auto-bounded. If i', j' are such elements of the set N' that i' ,9,' j' and

either {i'} <;; NI , {j'} <;; Nz or {i'} <;; Nz, {j'} <;; NI , then w(i) ~ w(j) for all

i E BG,(i') U i', j E AG~n u j'.

Proof. Without loss of generality, consider the case {i'} <;; NJ, {jl <;; Nz. The proof is

by induction with respect to the number <p(L) of mixed transformations in L. Assume that

II - (i0, jO) is the unique mixed transformation in L, {iO} <;; NI> jO <;; Nz, and this

transformation is placed in L in the (1/+ l)th position, 1/ ~ O. Then w(i) ~ w(j) for all

i E Ba<v)(i°) u iO and j E AG(v)(jO) u jO. Suppose that i' = [rr(a), iO, rr(b)], j' = [rr(c),
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jO, n(d»). The set {n(a)}(v) can be divided into two subsets. The first of these sets

contains elements of BC<V)(i°) (the priority of any of them is at least max{w(j) I
j E AC<v)(jO) u jO}}. The second set contains the composite elements i formed from the

elements of set N(v) and such that {i}(v) () BC<v)(iO) = 0, but {i}(v) <;; BG(HP)(i°) for

some p 2: 1. In the latter case, it is obvious that w(i) 2: w(io}. Since the priority

function is auto-bounded, it follows that w(11'(a), iO} 2: w(jO, ned»), and Lemma 6.1 implies

that w(11'(a), iO) ~ w(n(b») and w(n(c») ~ w(jO, ned»). Thus, w(n(a), iO, neb») 2: w(n(c),

jO, ned»).

Suppose that the lemma holds for all such sequences L that rp(L) ~ m, m 2: 1. We prove

that this also holds for rp(L) = m+ 1. Let in L the (m+ l)th mixed transformation occupy the

(v + 1}th place. By the induction assumption, the lemma holds for graph C( v). Let the

(v+l)th transformation in L be of the form II-(i°, jO), and assume {iO} <;; Nil jO <;; N2 •

Then it is obvious that min{w(i}li E Bc<v)(i°, jO) u iO} 2: max{w(j)1J E AG(v)(i°, jO) u

jO}. Let i <;; BC<v)(i°} () Bc<v)(jO) and either {i} c N1 or {i} c N2. Then the inequality

w(i} 2: max{w(j) [j E AG(v)(j°) U jO} follows either from the induction assumption (in the

former case) or from both the induction assumption and the inequality w(i) 2: w(io) (in the

latter case). Similarly, if j <;; AC<v)(i°) () AG(v)(j°}, then w(j) ~ min{w(i) [i E

BC<v)(iO} u iO}. Thus, min{w(i) [i E BC<v)(i°) U iO
} 2: max{w(j) [j E Ac<vJUO} U jO}.

If i' = [neal, iO, neb)], j' = [n(c), ]0, ned)], then, using the same argument as in

the case rp(L) = 1, it can be easily proved that the inequality min{w(i} liE BG~i') U

i'} 2: max{w(j) Ij E AG~j') U j'} holds. This proves the lemma.

Let iO be a mixed composite element. Let 1i'(l)(i0} (or 1i'(2)(i0)) denote a permutation

obtained from iO after removing all elements of N2 (or Nd.

Lemma 6,3, Let a sequence L of transformations I and II containing exactly one mixed

transformation I transform a graph C = C1PC2 into a graph C', and a priority function be

auto-bounded. If iO is a mixed composite element corresponding to some vertex of graph C',

then w(io) = w(1i'(I)(iO)) = w(1i'(2)(iO)}.

Proof. Suppose that the mixed transformation I occupies the (v+ l)th position in the

sequence L, and that this transformation is of the form 1- [i', j'J. Without loss of

generality, assume that {i'} <;; Nt, {j'} <;; N2. Due to Lemma 6.2, we have w(i') 2: w(j'). On

the other hand, w(i') ~ w(j') and, hence, w(i'} = w(j'). Since the priority function is

auto-bounded, it follows that w(i', j') = w(i') = w(j'). It is obvious that [i', j'J = iO,

i' = 1i'(I)(i0), j' = 1i'(2)(i0). The lemma is proved.
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Lemma 6.4. Let a sequence L of transformation I and II transform a graph C = C,pC2into

a graph C', and a priority function is auto-bounded. If iO is a mixed composite element

corresponding to some vertex of graph C', then w(i) ~ w(io) ~ w(j) for all i E BG~iO),

i E AG~iO).

Proof. The proof is by induction with respect to the number rp(L) of mixed

transformations I in sequence L. tor rp(L) = 1 the lemma follows from Lemmas 6.2 and 6.3.

Let the lemma hold for all sequences L such that rp(L) :-:; m, m ~ 1. We show that this

also holds for rp(L) = m+ 1. Suppose that the (m+ l)th mixed transformation I occupies the

(v+ l)th position in L, and that this transformation is of the form I - [i', iT Then L(v)

contains exactly m mixed transformations 1.

If i' is a mixed composite element, then by the induction assumption it follows that

min{w(i)li E BG(v)(i')} ~ w(i') ~ max{w(j) Ii E Aaev)(i'}} and, hence, w(i') ~ w(j'). The

latter inequality also holds if j' is a mixed composite element. On the other hand,

w(j') ~ w(i·). This and the fact that the priority function is auto-bounded imply that

w(i') = w(j') = w(io), where iO = [i', iT Thus, min{w(i) liE Baev+n(i°)} ~ w(iO) ~

max{w(j) Ii E AaeV+1)(iO)}, since Baev+,)(i°) = Baev)(i'), and AG(V+l)(iO) = Adv)(i')\j'.

Using arguments similar to those in the proof of Lemma 6.2, it is easy to show that

min{w(i) Ii EBG~iO)} ~ w(io) ~ max{w(j) Ii EAa~iO)}. It is also clear that the lemma holds

for all mixed elements iO obtained by mixed transformations I belonging to L(v).

Let i' and j' be uniform composite elements. Without loss of generality, assume that
G(k)

{i'} ~ N" and {n ~ N2 • tind such k, 0 :-:; k < v, that i - i for all i E {i'}(k) and

i E {j'}(k), and the (k+1)th transformation in the sequence L is of the form II-(i", F),
where i" E {i'}(k) and F E {n(k). Then, by induction with respect to k, it is not

difficult to show that w(i) ~ w(j) for all i E Bdk)(i") U i" and i E Aaek)(F) u r.
Using arguments similar to those in the proof of Lemma 6.2, it is easy to show that

w(i) ~ w(j) for all i E BG(v)(i') u i' and i E Aaev)(j') u j'. This implies (since

w(j') ~ w(i')) that w(i') = w(j') = w(io) and min{w(i) liE BdV+l)(iO)} ~ w(iO) ~

max{w(j) liE Adv+1)(i°)}. The lemma is proved.

Lemma 6.5. Let a sequence L of transformations I and II transform a graph G = C,pC2

into a graph G', and a priority function be auto-bounded. If iO is a mixed composite

element corresponding to some vertex of graph C', then w(io) = w(1i(I)(iO)) = w(1i(2)(iO
)).

Proof. The proof is by induction with respect to the number rp(L) of mixed

transformations I in the sequence L. If rp(L) = 1, then the lemma follows from Lemma 6.3.

Suppose that the lemma holds for all such sequences L that rp(L) :-:; m, m ~ 1. We prove
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this holds for <p(L) = m+1. Suppose that the (m+ l)th mixed transformation I occupies the

(v+ 1)th position in sequence L is of the form i - [i', il Then we may assume that all mixed
elements different from 7f = [i', n are obtained by applying the sequence L(v) of

transformations I and II, and the lemma holds due to the induction assumption.

Consider the composite element 7f = [i', iT If i' and i are uniform elements, then,
as in the case of the proof of Lemma 6.4, it is easy to show that w( i') = w(]'). Since

if(I)(i0) = i', if(2)(i0) = i and the priority function is auto-bounded, it follows. that

w(io) = w(if(l)(i0)) = w(1f(2)(iO)).

If i' (or]') is a mixed composite element then Lemma 6.4 implies that w(i') ~ w(j'),

since i E AG(v)(i'). Therefore, w(i') = w(j'). By the induction assumption, w(1f(l)(i')) =

W(1f(2)(i')) = w(i'), w(]') = W(if(I)(]')) = W(1f(2)(]')). Since w(i') = w(j'), we obtain

that w(io) = w(if(l)(i°)) = W(1f(2)(i0)). The lemma is proved.

The proof of Lemma 6.5 also implies the following statement.

Corollary 6,1. If the conditions of lemma 6.5 are satisfied and 1- [i, i] is a mixed

transformation of a sequence L, then w(i) = w(j).

Two feasible sequences LI and L2 of transformations I and II of graph C are called

equivalent if each of them transforms C into the same graph C'.

Let L be a feasible sequence of transformations I and II of graph C. Let L", (or L(3)
denote a seqilence obtained from L by deleting all mixed (or uniform) transformations.

Also, define L = (L"" L(3)'

Lemma 6.6. If a priority function is auto-bounded, then a sequence Lof transformations

and II is f easible for graph C and is equivalent to sequence L.

Proof. The proof is by induction with respect to the number <p(L) of mixed

transformations in L. If <p(L) = 1, then the mixed transformation is transformation II. In

this case, the lemma is obvious. Suppose that the lemma holds for all sequences L such

that <p(L) :s m, m ~ 1. We prove this holds for rp(L) = m+1.

Let I be the number of transformations in sequence L. If a mixed transformation

occupies the Ith POSitIOn in L, then the lemma holds. In fact, let L(I-I) transform graph

C into a graph C', then by the induction assumption, L(I-I) also transforms C to C', and

the same transformation occupies the last position in both Land L.
Let the last mixed transformation occupy the (v+ l)th position, v < 1-1, in L. If this

is transformation II, then it is obvious that L is equivalent to the sequence L" resulted

from L by transferring this transformation from the (v+ l)th to the Ith place. Suppose that
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a transformation I-[i', 11 occupies the (v+l)th position in L. Lemma 6.5 implies that

w(i') = w(j'J = w(i', j'J. Moreover, the element [i', 11 does not participate in
transformations occupying the positions v + 2, v + 3, ... , I in L (otherwise, at least one of

those transformations is mixed). Hence, in this case the sequences Land L' are

equivalent. The induction assumption implies that Land l are equivalent as well. The
lemma is proved.

Theorem 6.2. Let G = GI PG2 and a priority function be auto-bounded. Graph G is

reducible if and only if the graphs GI and G2 are reducible.

Proof. Necessity. Suppose that there exists a sequence L1 of transformations I and II

which transforms graph G1 = (N I , Vtl into a deadlock graph Gi = (Ni, Vi) that is not a

chain. We show that, in this case, there exists a sequence of transformations I and II

which transforms graph G = (N, V) into a deadlock graph that is not a chain.

Let G~ = (N~, V~) denote a graph obtained from G2 by applying an arbitrary deadlock

sequence L2 of transformations [ and II.

Let the sequence L = (L 1, L2 ) transform graph G into a graph G'. Then G' = GipG~. If

G' = (N', V') is a deadlock graph, then L is the desired sequence. If graph G' is not

deadlock, then Lemma 4.4 implies that none of transformations I can be applied to G'. Let

L3 denote a sequence of all transformations II which can be applied to G'. Any

transformation of the sequence L3 must be either of the form II - (i, j) or of the form

II - (j, i), where i E Ni, j E N~. Let sequence L3 transform graph G' into some graph

GN
= (N', VN).

If transformation 1- [in, jO) can be applied to graph GN

, then (i0, jO) E V''\V' and

w(io) = w(j°). In fact, w(io) ~ w(jO) since the arc (i0, jO) is formed as a result of

transformation II. On the other hand, since transformation 1- [in, jO] is feasible for G
N

,

we have w(i°} ~ w(j°}. Since the priority function is auto-bounded, it follows that

w(io, jO} = w(io) = w(j0). Therefore, none of transformations II can be applied to a graph

obtained from GN by transformation 1- [iO, JOJ. This also holds for a graph G'" obtained
from GN by applying all feasible transformations I. Thus, graph G'" is deadlock.

Besides, if s q,"t, then s' q, t', where s' and t' are such elements that {s} s;; {s'} and

{t} s;; {t'}. Since Gi is not a chain, there exist elements sand t in Ni such that s q,; t.

eN
Hence, s - t.

Sufficiency. Let there exist a sequence L of transformations I and II that transforms G

into a deadlock graph that is not a chain. We show that, in this case, there is a sequence
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of transformations which is deadlock for G1 (or for G2 ) and which transforms GI (or G2 )

into a graph that is not a chain.

Transform sequence L into the sequence l = (lm l{3) (see Lemma 6.6). Let 1- [i', j'] be

the first transformation in the sequence l{3 such that {i'} n N, #- 0 and {j'} n NI #- 0,

Suppose that this transformation occupies the (v+ I )th position, v 2': 1, in lp. The
definition of the (v+ l)th transformation in l{3 implies that either i' = ['j(I)(i'),

j(2)(i')] or i' = [j(2)(i'), j(l)(i')]. Similarly, either j' = [if(I)(j'), if(2)(j')] or

j' = [if(2)(j'), if(I)(j')).

Suppose that j' = [if(l)(j'), if(2)(j')]. In the sequence l~v), find such transformation

I-[iO, ]0] that {iO} £; {if(I)(i')}, {jO} £; {if(2)(i')}. It is clear (see the definition of

the (v+ l)th transformation) that iO = if(l)(i'). Due to Corollary 6.1, we have w(io) =

w(jo). Let transformation 1- (i0, ]0] occupy the position /11 in sequence l~v), and the

transformation which forms the element i' occupy the position /12' Delete the /1lth and /12th

transformations from l~v) and modify successively the transformations placed in the

positions /11 + 1, ... , /12 -1 in the following way. Let the current transformation to be

modified be of the form 1- [i", j"J, where {[in, jO]} £; {i"}, {j"} c {if(2)(i')}. Replace

this transformation by 1- [if(2)(i"), j''j. It is clear that i" = (i0, jO, j'n], where

{j"'} c {if(2l(i')}. Due to Lemma 6.5 and Corollary 6.1, we have w(i") w(if(2)(i")) =

w(iO, jO) = w(io) = w(j0) = w(j''). If the next transformation is of the form II-[i",

j"J, where {[in, jO]} £; {in} (or {[in, jO]} £; {j"}), then replace it by the pair of

transformations II-(io, j") and II-(if(2)(i"), j") (or by II_(i n
, in) and II_(i n

,

if(2)(j")), respectively).

If i' = [if(2)(i'), if(1)(i')], then the /1lth transformation in l~v) is of the form

I-[iO, jO], where iO £; {if(2)(i')} and jO = if(l)(i'). In this case, the transformations of
the form I_[in, j"J, where {in} c {if(2)(i')}, {[in, jO]} £; {j"} are replaced by those

of the form I-[i", if(2)(j")).

Similarly, we modify the part of the sequence l~v) related to constructing the element

j'.

Delete all transformations of the form II- [i, j], where either {i} £; {if(2)(i')} or

{i} £; {if(2)(j')}, and {j} £; {if(l)(j')}, from l~v), Note that if i' = [if(2)(i'), if(I)(i')],

then also delete the transformations of the form II-(i, j), where either {i} £; {if(ll(i')}

or {i} £; {if(I)(j')}, and {j} £; {if(2)(j')}.

Let r~v) denote the sequence obtained from l~v) in the described way. It is easy to

check that applying transformations of the sequence r~v) results in forming the composite

elements if(I)(i'), if(2)(i'), if(l)(j'), and if(2)(j'). Lemma 6.5 and Corollary 6.1 imply
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w(ir(l)(i')) = w(ir(Z)(i')) = w(i') = w(ir(i)(n) = w(ir(Z)(n) = w(n = w(i', f).

I h [-(V+l) I' -(v) -(v)n t e sequence {3 , rep ace Its subsequence L{3 by the sequence L{3 , and replace

the transformation in the (v+ l)th position by three transformations: 1- [ir(I)(i'),

ir(l)(nJ, I-[ir(Z)(i'), ir(Z)(nJ, and I-[T', :n, where T' = [ir(i)(i'), ir(i)(nJ, J'
[ir(Z)(i'), ir(Z)(nJ. It may happen that either ir(Z)(i') = 1l'o or ir(Z)(n = 1l'o, in which

case, the second of the above transformations is dropped. Let r~v+,) denote the resulting

sequence. In general, the number of transformations in r~V+') may be different from v+ 1.

Let the sequence Ie< transform graph G into graph G', and the sequence I~v+,) transform

graph G' into graph G". Then, by construction, the sequence r~v+,) is feasible for graph

G' and transforms that graph into the graph G'" which differs from G" only in that the

vertex, associated with the element [i', fI in G", is associated with the element [T',

J'J in G'''. In this case, the equality w(i', n = w(T', ],l holds.
In 1{3, replace its subsequence I~v+,) by the sequence r~V+l), and in the other

transformations of 1{3 replace the element [i', j'J by the element [T', fl. Let L{3 denote

the obtained sequence, In I, replace its subsequence 1{3 by the sequence r{3 and denote the

obtained result by r. It is obvious that, if I transforms graph G into a deadlock graph

G', then r transforms G into graph G", which is isomorphic to G'. Moreover, there exists

such an isomorphism that the priorities of the elements associated with the corresponding

vertices are equal. Hence, the graph G" is deadlock and is not a chain.

The sequence r contains one mixed transformation of the form 1- [i', flo where
{i'} n Nl f" 0 and {j'} n N, * 0 less than L. Using the described procedure sufficiently

many times, we obtain some sequence L' which has no mixed transformations of the above

form. Sequence L' transforms graph G into a deadlock graph G' that is not a chain. In a

similar way, we can pass from L' to a sequence L" which does not contain mixed

transformations of the form 1- [i', f1, where {i'} n Nz * 0 and {f} n Nz f" 0. The

sequence L" transforms G into a deadlock graph G" that is not a chain.

Transform L" into the sequence I"= (L;"", L;/) (similar to the way L in which has been

transformed into sequence I). Due to Lemma 6.6, sequence l" transforms graph G into graph

G".

In sequence l~', all transformations are either of the form I-[i', fI or of the form
II-(i', n, where either {i'} <;; N1, {j'} <;; Nz or {i'} <;; Nz, {j'} <;; N,. Lemma 6.5 and

Corollary 6.1 imply that the sequence l;",' transforms each of the graphs GI and Gz into

some deadlock graphs G; and Gz, respectively. If both of these graphs are chains (more

precisely, w-chains), then it is easy to check that any sequence of transformations I and

II which is deadlock for graph G;pG; must transform that graph into a chain, although, G"
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is not a chain. Hence, at least, one of deadlock graphs C; and C; is not a chain. Suppose

that C; is not a chain.

Having deleted all transformations acting on set Nz from l::,.·, we obtain a sequence
which transforms CI to C;. This proves the theorem.
Recall that in Theorem 6.1, unlike Theorem 6.2, a priority function need not be

auto-bounded.

Theorem 6.3. For an auto-bounded priority function, any series-parallel graph C is

reducible.

Proof. The proof is by induction with respect to the number n of vertices of graph C.

For n = 2 the theorem is obvious. Suppose that this holds for all n $ m, m 2: 2. Let

n = m+ 1. Since C is a series-parallel graph, it follows that either G = GlsGZ or

C = G1PCZ' where graphs GI = (NI , Vd, Gz = G(Nz, Vz) are series-parallel. Observe that

INII $ m, INzl $ m.
If C = G\sGz, then by the induction assumption graph C I is reducible. This also holds

for graph Cz. Theorem 6.1 implies that, in this case, any sequence of transformations I

and II which is deadlock for graph C transforms that graph into a chain. Similarly, if

G = CIPCZ, then the theorem follows from Theorem 6.2. The theorem is proved.

6.3. Theorem 6.3 implies that the D-algorithm guarantees that an optimal permutation can

be found for any auto-bounded priority function and any series - parallel graph G. At the

same time, it is easy to give examples in which graph G is not series-parallel but for some

specific priority function the D-algorithm transforms that graph into a chain. Imposing

certain constraints on a pair "priority function - graph G", we may describe more general

(compared with series-parallel graphs) classes of "solvable" situations. Consider one of

such classes.

Let the priority function w(1l') and graphs GI = (NI , VI), Gz = (Nz, Vz) be given such

that N I n Nz = 0 and N I U Nz = N. Consider the graph CO = (N, VOl, which is a subgraph of

the graph G' = (N, VI U Vz U N I X N z) such that VI U Vz ,;; VO and if (i, j) E N I X N z but

°i £ j, then w(i) > w(j). Graph G = (N, V) is called an w-series-composition of graphs GI

and Gz (the notation C = GlswGZ) if that graph can be constructed from the graph CO by

removing all its transitive arcs belonging to the set NI X Nz.

Graph G is said to be obtained as a result of the operation of an w - series composition

of graphs GI and Cz if G = ClswGZ'

Let G' denote the graph obtained from graph G as a result of the successive removal of
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all transitive arcs C.

The graph C is called an w-series-paral/el graph if the graph ct can be constructed by
successive application of the operations of w-series and parallel compositions of

single-vertex graphs C j = (i, 0), i = I, 2, ... , n. By definition, a single-vertex graph is

w-series-parallel.

It is easy to verify that for any priority function, any series-parallel graph is at

the same time w-series-parallel.

If the graphs Cl, Cz,"" Cm are such that graph C can be obtained from these graphs as

a result of the successive implementation of m -1 operations of w-series and parallel

composition, then these graphs are called components of an w - decomposition of graph C.

Lemma 6.7. Let C, = (Nl> UIl be a component of an w-decomposition of graph C and

iO, ]0 EN!. Transformation I - liD, iO] or 11- (io, jO) can be applied to graph C if and

only if it can be applied to graph C!'

Proof. If i l1' Nt, then, it is easy to check that exactly one of the following

situations may happen: (a) i - iO, i - ]0; (b) i -+ iO, i -+ jO; (c) iO -+ i, jO I;

(d) i -+ iO, i - jO and w(i) > w(j°); (e) i - iO, i -+ jO and w(i) > w(io); (f) iO i,

]0 - i and w(j°) > w(i); (g) i - iO, jO -+ i and w(io) > w(i). Hence, the lemma holds.

Lemma 6.8. Let a sequence of transformations II transform graph C into a graph C'. If

transformation II - (i0, ]0) can be applied to C, and w(io) > w(]O) then either iO S jO or

transformation II - (i0, jO) can be applied to C'.

Proof. The relation ]0 S iO may not be valid since iO !? ]0 and w(io) > w(]O).

Moreover, if I S iO and I !? iO, then the definition of transformation II implies that

w(l) ~ w(io). Similarly, if jO S I and jO !? I , then w(j°) ~ w(I). Therefore, the

relation min Ba(i°, jO) ~ max Aa(i0, jO) yields min Ba~io, ]0) ~ max Aa~io, jO) if

iO !?' jO Hence, transformation II - (i0, jO) is feasible for the graph C'. The lemma is

proved.

Theorem 6.4. For a given auto-bounded priority function w(1f), let a graph C be

w-series-parallel. Then the D-algorithm transforms C into a chain.

Proof. Let C = Cls",CZ = (N, U), C3 = ClsCZ = (N, U3 ) and an arc (i, j) E U3 but

(i, j) l1' U. Let CO = (N, VO) denote a graph resulting from C by applying all possible

transformations II. We show that (i, j) E VO.
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{(I. 2), (2, 4). (3, 4), (3, 5)}, is defined over set S. The

L a.lr, where IT = (iI, ;2"'" ir), is defined over the set
leTrr}

Suppose that iO E BG(i, j), w(iO) < w(i) and w(io) = min BG(i, j) < max AG(i, j). Then

transformation II - (i0, j) can be applied to graph G. In fact, min BG(i°, j) w(io) and

for any jO E AG(j) u j at least one of the following relations is valid: iO ~ jO or

°w(io) > w(j°). Hence, w(io) > max AG(i~ j). Lemma 6.8 implies that iO ~ j.

After the arc (i0, j) is included in the graph, all other arcs of the form (i', j),

where i' E BG(i, j) and w(i') < w(i), may also be included successively. Then

transformation II - (i, j) can be applied to the obtained graph. Lemma 6.8 guarantees that

all the above-mentioned arcs are in GO (CO is the transitive closure of graph CO).

Thus, if G = G1swG2, then for all pairs of the elements i, j such that the arc

°(i, j) E U3 but (i, j) ~ U, we have that the relation i ~ j is valid. It may therefore be

considered that graph GO is obtained from the graph G3 = GtsG2 as a result of applying
some sequence of transformations II.

Let G be an w-series-parallel graph, G1 be such a component of its w-decomposition that

G1 = G;swG;', and i be a vertex of the graph G;, j be a vertex of C;' and i - j. It

follows from the above that there exists a sequence of transformations II which transforms

°G1 into a graph G~ such that i ~ j. Transformation II - (i, j) can be applied to G1 if and

°only if it may be applied to G (see Lemma 6.7). This and Lemma 6.8 imply i ~ j.

Hence, the arcs which are included in graph G as a result of the implementation of all

feasible transformations II, supplement that graph up to a series-parallel graph, and

graph GO can be considered as a graph obtained from a series-parallel graph as a result of

applying some sequence of transformations II.

By implementing Step (c) of the D-algorithm, the graph GO can be transformed to some

deadlock graph G'. Theorem 6.3 implies that G' is a chain. The theorem is proved.

6.4, There exist situations in which graph G is not ",-series-parallel but the

D-algorithm transforms that graph into a chain. Consider the following example.

Let.v = {I. 2, 3, 4, 5} and the numbers at = 7, a2 = 4, a3 = 6. a. = 12. as = 10 be
associated with the elements of this set. The precedence relation with the reduction graph

G = (N, U). where U

priority function ""(iT)

P\7ro·
It is easy to check that G is not an ",-series-parallel graph. It is also easy to verify

that the sequence L = (II-(3. 2), 1-[2, 4J, 1-[3, 5], II-([3, 5], 1), 1-[1. [2, 4J]) is
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constructed by the D-algorithm and transforms the graph into the chain C = ([3, 5], [1, 2,

4J).

7. I-Priority-Generating Functions

So-called 1-priority-generating functions can be viewed as a natural extension of

priority-generating functions. In a number of cases, due to the properties of these

functions, efficient algorithms can be developed to optimize them.

7.1. Let P ~ P' ~ P, Q(1)[P] = N n Q[PJ and F{7r) be a function defined over set P'.

A function F(7[) is called 1-priority-generating over set P if there exists a function

w(l)(i) defined over set Q(l)[PJ and having the following property: for any elements j, 1

of Q(I)[Pj and for any permutations 7[' = (7[(1), j, I, 7[(2») and 7[" = (7[(1), I, j, 7[(2»)

belonging to P, the condition w(1)(j) ~ W(l)(l) implies F(7[') ;<; F(7[OO). Function w(l)(i)

is called a 1-priority function, and the value of w(1)(i) is called the priority of

element i.

It follows from the definition that any prior'ity-generating function over P IS at the

same time l-priority-generating over P. In general, the opposite need not hold.

We present some examples of functions which are 1-priority-generating over set P, but

not priority-generating over this set.

(a) Let F(7[) be function (1.1) (see Section 1 of this chapter), under the condition

that <p;(t) = <p(t)+fh Here <p(t) is a monotonic function. Defining 7[(a) = j, 7[(b) = I, and

using relation (1.3), we obtain

(7.1)

If <p(t) is a non-decreasing function, then to satisfy (7.1) it is sufficient that

t j ;<; t/. Define w(l)(i) = -t;. Then to satisfy the inequality F(1r(l), j, I, 1r(2») ;<;

F(1r(I), I, j, 7[(2») it is sufficient that W(l)(j) ~ w(I)(I). Hence, function (1.1) for

<p;(t) = <p(t)+fJ;, I = 1, 2, ... , n, where <p(t) is the non-decreasing function is

1-priority-generating over P and its 1-priority function is

w(l)(i) = -t i.

If <p(t) is a non-increasing function, then the 1-priority function is w(1)(i} = t i ·

Recall that, in the case under consideration, function (1.1) is not, in general,

priority-generating over P.
(b) In Section 1.4 it was shown that, in general, function (1.9) is not
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priority-generating over Pn . We show that this function (which is of the form

F(1r) = f: OIkPi, 11' = (iI' i2, .. ·, ir )) is 1-priority-generating over P for OIi+1 ~ OIi,
k=l k

i = 1, 2, ... , n -1. Defining 1r(a) = j, 1r(b) = in relation (1.10) we obtain

(OIv+2 -OIv+dPI $ (OIv+2 -OIv+dPj' Since OIi+l ~ OIi, i = 1, 2, ... , n-1, it follows that

is an 1-priority function for function (1.9).

(c) The jobs of a set N = {1, 2, ... , n} starting at time d = 0 are processed

successively and continuously on a single machine. The processing time of a job i depends

on its starting time t~ and is equal to t i = cp(t~)+ Pi' where cp(t) is a non-decreasing and

non-negative function for t ;e: 0, and Pi > 0, i = 1, 2, ... , n. It is required to find, in a

given set P ~ Pn , a sequence 1r~ of jobs which minimizes the total processing time.

Over set P, define the function
r

F(1r) = Lt ik , (7.2)
k=1

where 11' = (iI, i 2, ... , ir ) E P, F(1ro) = O. It is obvious that F(1rn ) represents the total

processing time of the jobs of set N processed according to the sequence 1rn .

We now establish the conditions under which the inequality F(1r(1), j, I, 11'(2») $

F(1r(I), I, j, 11'(2») holds. To satisfy this inequality it is sufficient that F(1r(1), j,

I) $ F(1r(I), I, j), which is equivalent to

(7.3)

Since cp(t) is a non-decreasing function, the last inequality holds if Pj $ P" Hence,
the function w(I)(i) = -Pi is an 1-priority function for F(1r), and F(1r) is 1-priority

generating over P.
We show that, in general, function F(1r) is not priority-generating over P. In fact, let

N = {I, 2, 3, 4}, PI = P2 = 1, P3 = 9, P4 = 4, \O(t) = t2
, 1r(a) = (2, 3), 1r(b) = 4.

Consider two variants: 11'(1) = 1, 11'(2) = 11'0 and 11'(1) = 11'(2) = 11'0' In the first case, we

have F(l, 2, 3, 4) = 464 < F(l, 4, 2, 3) = 471, while in the second case, we have F(2, 3,

4) = 134 > F(4, 2, 3) = 65.

(d) For the previous problem, let function \O(t) be non-decreasing, non-negative and

satisfy the condition Llt ~ ILlcp(t) I for t ;e: 0, where Llcp(t) = \O(£+Llt)-\O(t).

The condition Llt ;e: ILlcp(t) I implies that the inequality F(1r(l), j, I, 11'(2») $ F(1r(1), I,

j, 11'(2») holds if relation (7.3) holds. Since cp(t) is a non-increasing function,

inequality (7.3) holds if Pj ;e: Pl'
Thus, in this case, function (7.2) is 1-priority-generating with the 1-priority-
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function w(I)(i) = fJ;.

7.2. If a function F(1I") is I-priority-generating over set P, then for the search for an

optimal permutation 11"* over P (minimizing F(1I") over P), the following obvious procedure is

widely used. Let P(I, j) be a set of all permutations of P of the form (11"(1), I, j, 1I"(Z)),

for each of which in P there exists a permutation of the form (11"(1), j, I, 1I"(Z»). If

W(I)(j) ~ W(I)(l), then the set P\P(I, j) contains at least one optimal permutation.

Hence, while searching for 11"*, the set of permutations P(l, j) may be skipped.

In particular, this implies the following statement.

Theorem 7.1. If a function F(1I") is I-priority- generating over set Pm then the

permutation in which the elements are sorted in non-increasing order of their priorities

minimizes F(1I") over Pn .

In fact, let w(l)(ik ) = max{w(l)(i) liE N} and P(j) be a set of all permutations
I

11" = (iI' iz,... , in) E Pn such that i 1 = j. Then any permutation 11" that does not belong to

the set P(ik, ) belongs to some set P(l, i k1 ) and, hence, the set P(ik1 ) contains an

optimal permutation (minimizing F(1I") over Pn ). Similarly, an optimal permutation can be

found among those permutations of P(i
kl

), in which the second position is occupied by an

element i kz such that W(I)(ik
z

) = max{w(l)(i) liE N\ik1 }, etc.

As a result of this successive reduction of the search region, a permutation 11"*= (ik
1
,

ikz'"'' i k ) is obtained such that F(1I"*) ~ F(1I"), 11" E Pm and w(I)(ik ) ~ w(I)(ik . ),
n ] J+l

j = I, 2, ... , n-l.

7.3. To conclude this section, we consider a function which is not I-priority

generating over Pn but has an I-priority function over some special subset P c Pn.

Let N = N I U N z and N 1 n Nzl0' Associate real numbers aj and t j > 0 with each element

i E N. The function IO\1)(t) = ajt corresponds to each element i E N 1 and the function

IO\2)(t) = ajexp(yt), y oF 0, corresponds to each element i E Nz. Let the function

(7.4)

2 ifbe defined over set Pm where 11"

ik E Nz.

We show that, in a general case, function (7.4) is not I-priority-generating over Pn .

Let N = {I, 2, 3}, NI = {I, 2}, Nz = {3}, a 1 = 1, az = 3, a 3 = Ifl6; tl = 5, tz = I,

t 3 = 4; Y = In2. Then F(2, 3, I) = 15 < F(3, 2, 1) = 26 but F(I, 2, 3) = 87 > F(I, 3, 2) =
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67.

Let Pn denote the set of all permutations of the form (11"(1), 11"(2)) and (11"(2), 11"(1)),

where {11"(v)} = Nv, v = 1, 2. Function (7.4) is I-priority-generating over set Pn. Using

the results of Section 1.1 of this chapter (see Items (a) and (b)), we may conclude that,

in the case under consideration, the function

{

Oid t ;
w(ll(i) =

Oi;exp( rt;)/( exp( rt;) -1)

is an I-priority function for F(11").
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The function of the form F(rr) = E !(ik)'f!k(il> iz,.. ·, ik) where rr = (ii' i z,.··, in)
k=1

is considered by Rau [381J. He shows that this function is 1-priority-generating under the

following conditions: (1) ((ik) > 0, k = 1, 2, ... , nj (2) 'Pk(i l , i z,... , ik-I, ik) =

'Pk(i{, i2,···, ik_l , ik), if {it, i z,···, ik_l} {ii, i2,···, ik_dj 3) there exist the
functions <I>, <I>I '" 1, <I>z, ... , <I>n ~ 0 such that 'Pk(il, i z,···, ik_l, ik)-'Pk+l(ii, i2,... ,
j, ... , i k_l , ik) <I>(j)<I>dil' i z,···, ik_l), if {il> i z,···, ik-d {ii, i2,···, ik_d·

The I-priority function is of the form <I>(i)/!(i).

Lawler and Sivazlian [343] consider the problem of minimizing the function

n ti k

F(rr) L f 'Pik(X)dx,
k=l t i

k
-ti

k

where rr
k

E t i · If 'Pi(x) = OI,<p(x)+(li and 'P(x) is a monotonic
1=1 1

n

function over the interval [0, E til, then F(rr) is a 1-priority-generating function. In
i=1

this case, the I-priority function is of the form w(I)(i) = OIi if 'P(x) is a non-decreasing

function and w(I)(i) = -OIi, if 'P(x) is a non-increasing function.

Kladov and Livshits [76] proved (in some other terms) that function (1.1) is

1-priority-generating (assuming that the functions 'Pi(x) are strictly increasing and

sufficiently smooth) if and only if either 'Pi(X) = OIiX+(li, i = 1, 2, ... , n, or 'Pi(x) =

OIiexp(yx) + (li, i = 1, 2, ... , n, or 'Pi(X) = 'P(x) + (li, i = 1, 2, ... , n. Zinder [68] shows

(under the same assumptions) that function (1.1) is priority-generating over set f\ if and
only if 'Pi(x) = OIix+(li, i = 1, 2, ... , n, or 'Pi(x) = OIiexP(yx)+(li, i = 1, 2, ... , n.

The issue of extending spheres of the effective use of the interchange technique is

discussed by Shkurba [184J, Burdyuk [18J, Livshits [99], Khenkin [167]; see also [398,

399].



CHAPTER 4

Np·HARD PROBLEMS

This chapter establishes the NP-hardiness of a number of scheduling problems. To prove

that a given Problem B is NP-hard, we use the following scheme. The decision Problem B'

corresponding to Problem B is formulated, and a Problem A is shown to be polynomially

reducible to B' where A is one of the standard problems, i.e., a decision problem known to

be NP-complete. If Problem A is NP-complete in the strong sense, then sometimes it is

shown to be pseudopolynomially reducible to Problem B'.

The following standard problems are chosen: the partition problem (Section 1), the

3-partition problem (Section 2), the vertex covering problem (Section 3), the clique

problem (Section 4) and the linear arrangement problem (Section 5).

For most of the problems proved to be NP-hard, polynomially solvable special cases are

presented.

Along with the usual notation such as t j for the processing time of a job i and Dj for

its due date, this chapter uses expressions of the form t(i) and D(i) to denote the same

parameters. Similarly, together with the notation dj , OIj, Lj , Zj, Uj etc., the notation

d(i), OI(i), L(i), z(i), u(i) is used.

L Reducibility of the Partition Problem

In this section, the partition problem is used as a standard problem for proving the

NP-hardness of some scheduling problems.

253
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The partition problem can be formulated as follows. Civen a set N° = {l, 2, ... , no},

each element i E NO is associated with a positive integer Yi such that 2: Yi = 2A, does
ieNo

there exist a partition of set NO into two subsets N? and Ng such that AI = A2? Here

Ak = 2: Yi for N~ c NO.
i eN£

In the binary alphabet, the input length of a partition problem belongs to the interval

[c1nology', c2nology"], where y' = min{y;ji E NO}, Y" = max{Yili E NO}, and CI S; C2 are

positive constants.

The partition problem is NP-complete but not in the strong sense (a pseudopolynomial

algorithm for solving this problem is known).

1.1. This section considers the following problems.

Problem 1.1 The jobs of a set N = {I, 2, ... , n} enter a system consisting of two

identical parallel machines at time d = O. A job i E N can be processed on any of the

machines during ti > 0 time units. Preemption is not allowed. It is required to find a

schedule s* which minimizes the function F( s) in the following cases:

(a) F(s) = tmax(s) = max{ti(s) Ij EN}, where ti(s) is the completion time of a job i in

a schedule s;

(b) F(s) = tmax(s) 2: ti(s);
ieN

(c) F(s) = 2: Oliti(S), where Oli is a non-negative real number associated with job
ieN

i E N.

Problem 1.2. A processing system consists of a single machine. A job i of a given set

N = {l, 2, ... , n} enters the system at time di ~ 0, its processing time is ti > O.

Preemption is not allowed. Each job i E N is associated with a non-negative number Oli and

the deadline Di ~ 0, by which it is desirable to complete processing. It is required to

find a schedule s* which minimizes the function F(s) in the following cases:

(a) F(s) = Lmax(s) = max{Li(s) Ii EN}, where Li(s) = ti(s)-Di ;

(b) F(s) = 2: Oliui(s), di = 0, i = 1, 2, ... , n; here ui(S) = 0 if titS) S; Di , and
ieN

Ui(S) = 1 if tits) > Di .

Problem 1.3. The jobs of a set N = {1, 2, ... , n} enter a system consisting of M S; n

identical parallel machines at time d = O. Each job i is processed during t i > 0 time

units on any machine with no preemption. It is required to find the smallest number M* of

machines which provides the completion of the processing of all jobs by a given deadline

D ~ max{tili EN}.

In the following, these problems are shown to be NP-hard.
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1.2. For Problem 1.1(a) the value of F(s) is specified by a distribution of the jobs

among the machines, i.e., by partitioning set N into two subsets N1 and N2 •

The following decision problem corresponds to Problem 1.1(a): determine whether there

exists a schedule sO for processing the jobs of set N such that lmax(So) :5 Y for

a given y.

The partition problem is reduced to this decision problem in polynomial time. In fact,

define n = no, t i = Y;, i = I, 2, ... , n, y = A. It is obvious that a schedule ;0 with
I max( so) :5 y exists if and only if for the partition problem there exists a partition of

set N° into two subsets N~ and N~ that AI = A2 , i.e., if and only if the partition problem

has a solution. The described reduction can be implemented in O(no) time.

Thus, Problem 1.1(a) is NP-hard.

Note that if preemption is allowed this problem can be solved in O(n) time for any

number M ~ 2 of processing machines (see Section 6.2 of Chapter 2).

1.3. Consider Problem 1.1(b). The corresponding decision problem is as follows:

determine whether there exists a schedule SO such that Imax(So) L I;(SO) :5 Y for a given
teN

y. We show that the partition problem reduces to the latter problem in polynomial time.

Define

n = 2no, t; = 2A+y;, tno+; = 2Ai, i = 1, 2, ... , no;
2 no

y = (:3 Ano(no+1)(no+2) + L (no-i+1)y;)A(no(no+I)+1).
i=O

We show that for the constructed problem a schedule sO exists if and only if there

exists a partition of set NO into subsets N~ and N~ such that AI = A2 •

It is clear that the value of F(s) is specified by both the distribution of the jobs

among the machines and the processing sequences for the jobs assigned to a machine.

We may consider only the situation in which each of the jobs i and i +no, i = I, 2, ... ,

no, occupies the ith position in the processing sequence either on the first or the second
n

machine. In fact, in any such a schedule s, the value E ti(s) attains its minimum equal
i=l

to ~Ano(no+1)(no+2)+ ;~:(no-i+ I )Yi (see Section 9.3 of Chapter 2). Moreover, it can be

easily verified that it is possible to transform any schedule s which does not satisfy the
above condition into a schedule s· which satisfies this condition and such that the

inequality tmax(s') :5 ImaAs) holds.

Since the given condition fixes the order of job processing, the only question that
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remains to be answered is which of the two machines a job is processed on. In this case,

the value of the function tmax(s) l: t;(s) is specified only by tmax(s). In turn, a
ieN

schedule SO with tmax(SO) :0; A(no(no+I)+l) exists if and only if the partition problem has a

solution.

The implementation of the described reduction of the partition problem to the decision

problem under consideration requires at most O(no) time.

Thereby, Problem 1.1(b) is thus NP-hard.

1.4. A schedule s in Problem 1.1(c) is specified by a pair of permutations rr(l) and

rr(2) which specify the processing sequence of the jobs of set N on each of the machines.

It is obvious that N = {rr(l)} u {rr(2)} and {rr(l)} n {rr(2)} = 0.
The corresponding decision problem is as follows: determine whether there exists a

schedule SO such that l: OI;t;(SO) :0; Y for a given number y. We show that the partition
ieN

problem reduces to this decision problem in polynomial time.

A2 1" 2Define n = no; t; = y;, 01; = y;, i = 1, 2, ... , n; y = + -2 /., y;.
i eND

Let a schedule s be defined by a pair of the permutations rrO) = (iI, i2,... , in,) and

rr(2) = (j" j2,"" jn/ Compute .l: OI;1j(s). Define N~ = {rr(l)}, N~ = {rr(2)}. It is clear
o oleN

that NI u N2 = N° and

Similarly, L OI;tj(S)
ieNg

A2 ·

if the

Hence,

\' 1 2 2 I\' 2
L. OI;1;(S) 2 (AI +A2) + 2 L. Yi'

ieN ieNo

Since A, +A2 = 2A, the value A~ +A~ attains its minimum equal to 2A2 at Al

Therefore, a schedule SO for which l: OI;I;(so) :0; A2+ -21 l: y~ exists if and only
ieN ieNO

partition problem has a solution. The described reduction can be implemented in O(no) time.

Thus, Problem 1.1(c) is NP-hard.

Note that if OIj = 1, i = 1, 2, ... , n, then this problem is solvable in O(nlogn) time

(see Section 9.3 of Chapter 2). Moreover, the corresponding algorithm is designed for

finding an optimal schedule in a more complex situation of M ~ 2 uniform machines.

1.5. We show that Problem 1.2(a) is NP-hard. The corresponding decision problem is as
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follows: determine whether there exists a schedule SO for single-machine processing of the

jobs of set N such that Lmaxiso) :::; y for a given y.

Let us describe a polynomial reduction of the partition problem to the formulated

decision problem.

Define n = no+lj t; y;, di 0, 0; 2A+l, i 1, 2, ... , no; t n A,

no+l; ti = yj, O<i = Yi, 0i = 2A, i = 1, 2, ... , no; tn = 2A, O<n = 2A,

A. It is clear that the described transformations can be done in at most

On = A+l; Y = O.

In Problem 1.2(a), a schedule is specified by a permutation IT = (i" i2,... , in) of the

elements of set N. Note that the starting time of a J'ob ik is to"k max{d t }
'k' 'k-I'

k = 2, 3, ... , n, t~ = d; .
1 I

Let a permutation IT be of the form IT = (IT(l), n, IT(2»). Define N~

N~= {IT(2)}. It is clear that N~ u N~ = N° Therefore,

max{max{A1, A} + 1- (A+ 1), max{AI> A} +1+A2 - (2A +I)}

max{max{At - A, O}, max{O, A - An

Hence, Lmax(s) :::; y = 0 if and only if there exists a partition of set N° into two

subsets N~ and N~ such that AI = A2 • The implementation of the described reduction

requires at most O(no) time. Thus, Problem 1.2(a) is NP-hard.

Note that if d; = 0, i = 1, 2, ... , n, Problem 1.2(a) can be solved in O(nlogn) time

(see Section 3.3 of Chapter 2). Besides, Problem 1.2 is polynomially solvable if d; = 0,

I = 1, 2, ... , n, and F(s) max{'Pi(ti(S))li EN}, where 'Pi(t) are non-decreasing

functions. Moreover, precedence constraints may be defined over set N, and an optimal

schedule must be feasible with respect to these constraints.

1.6. As in the previous problem, in Problem 1.2(b) a schedule s is determined by a

permutation IT of the elements of set N.

The decision problem corresponding to Problem 1.2( b) is as follows: determine whether

there exists a schedule SO such that E O<jUi(SO) :::; Y for a given y.
ieN

We show that the partition problem reduces to this decision problem in polynomial time.

Define n

On = 3A; Y

O(no) time.

A schedule SO such that E O<jUi(so) :::; A exists if and only if the partition problem has
ieN

a solution. In fact, let a permutation IT that specifies a schedule s be of the form
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rr = (rr(I), n, rr(Z»). Define N~ = {rr(I)}, N~ = {rr(Z)}. Then N~ u N~ = N° and E OijUi(S)
ieN

2Aun(s)+A z. It is easy to check that un(s) = ° if and only if At S; A. Therefore, if

permutation IT is such that AI > A, then E OiiUi(s) > A. If AI S; A, then E OiiUi(s) = Az
teN ieN

and, hence, the inequality E Oiiui(s) S; A holds if and only if AI = Az = A. Thus, Problem
iEN

1.2(b) is NP-hard.

Problem 1.2(b) can be solved in G(nlogn) time in the following situations (see Sections

4.3(a) and 4.3(b) of Chapter 2, respectively):

(1) Oii = 1, i = 1, 2, ... , n;
(2) for all i, j E N such that t i < t j the inequality Oii ~ Oij holds.

Also, note that if the jobs do not enter the processing system simultaneously (i.e.,

di ~ 0, i = 1, 2, ... , n), Problem 1.2(b), remaining NP-hard in a general case, can be

solved in G(nz) time when Oii = 1, i = I, 2, ... , n, and for all i, j E N such that di < dj ,

the inequality 0i S; OJ holds (see Item (c) of Section 4.3 of Chapter 2).

1.7. We show that Problem 1.3 is also NP-hard. The corresponding decision problem is as

follows: determine whether there exists a number MO such that MO S; y for a given y, and in

Problem 1.3 there exists a schedule S for which tmax(s) S; O.

We show that the partition problem reduces to the formulated decision problem in

polynomial time. Define n = no, t i = Yi, i = 1, 2, ... , nj 0 = Aj y = 2. It is obvious that
two machines can complete the processing of all n jobs by the deadline A if and only if

the partition problem has a solution. The implementation of this reduction takes G(no)

time.

Problem 1.3, being NP-hard in the non-preemptive case, becomes trivial if preemption is

allowed. It is easy to check that in latter case M* = I.E tdOl, where IXl is the smallest
I eN

integer such that x S; rxl·

1.8. Let F(XI' Xz,"" xn ) be a real function and S be some schedule for processing the

jobs of set N. Denote zits) = max{O, ti(S) -Oi} and zmax(s) = max{zi(s) liE N}.

Remark 1.1. Let A, B, C, and E be decision problems corresponding to the optimization

problems that differ only in their objectives Lmax(s), zmax(s), E zi(s) and E Ui(S),
teN ieN

respectively. Then there exist both polynomial and pseudopolynomial reductions of

Problem A to Problems B, C, and E.

To see this, let NO and N denote the sets of jobs in Problems A and B, respectively,

INO I = no' Let D~ be the due dates in Problem A. Verify whether there exists a schedule SO
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such that Lmax(sO) $ Yo for a given Yo' For Problem B, define N = NO, D; = D~ +Yo, i = 1,
2, ... , no, and y = O. It is easy to check that a schedule SO exists if and only if in

Problem B there exists a schedule S such that zmax(s) $ y. It is evident that the

described reduction is both polynomial and pseudopolynomial. Reductions of Problem A to

Problems C and E can be constructed in a similar way.

Remark 1.2. In Problem Q, let the objective function be of the form Fetl(s), t 2(s), ... ,

tn(s)), and Problems R and V differ from Problem Q only by the objective functions which

have the form F(LI(s), L2(s), ... , Ln(s)) and F(zl(s), Z2(S), ... , zn(s)), respectively.

Moreover, let in Problems R and V for all jobs i E N we have D; = D ;:: O. Then there exist

polynomial and pseudopolynomial reductions of Problem Q to Problems Rand V.

In fact, by defining D = 0, we obtain Li(s) = zits) = t;(s) for any schedule s, and,

hence, F(tl(s), t 2(s), ... , In(S)) = F(L,(s), L2(s), ... , Ln(s)) F(zl(s), Z2(S), ... ,

zn(s)).

The above considerations imply the following statement.

Remark 1.3. Suppose that in Problem Q (see Remark 1.2 above) we have F(t,(s), 12(S),

... , tn(s)) = tmax(s) and in Problems C and E (see Remark 1.1 above) we have D; = D ;:: 0

for all jobs i E N. Then there exist both polynomial and pseudopolynomial reductions of

Problem Q' to each Problem C or Problem E. Here Q' is the decision problem corresponding

to Problem Q.

Remark 1.4. Let Problem H be as follows. The jobs of a set N are processed on a single

machine. The jobs enter the system simultaneously and must be processed with no

preemption. A precedence relation with the reduction graph G is defined over set N. It is

required to determine whether there exists a schedule s (that is feasible with respect to

G) such that F(tl(s), t 2(s), ... , tn(s)) $ Y for a given y. Function F(xl , X 2,··., xn) is

assumed to be non-decreasing with respect to X; for X; > 0, i = 1, 2, ... , n.

If Problem ii is the preemptive counterpart of Problem H, then there exist both

polynomial and pseudopolynomial reductions of Problem H to Problem if.
In fact, if in Problem H a required schedule exists, then it may be also taken as the

desired one in Problem ii. On the other hand, Theorem 1.1 (see Section 1 of Chapter 2)
implies that for any feasible schedule s in Problem ft there exists a feasible schedule s'

in Problem H such that F(s') $ F(s).

Remark 1.5. Let Problem K be as follows. The jobs of a set N enter simultaneously the

processing system consisting of M ;:: 2 identical machines. Each job is processed with no

preemption. It is required to determine whether there exists a schedule s such that

F(s) $ y for a given y. The function F(x) is assumed to be e-quasiconcave for Xi > 0,
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i = 1, 2, ... , n, (see Section 1.3 of Chapter 2).

If Problem K is the preemptive counterpart of Problem K, then there exist both

polynomial and pseudopolynomial reductions of Problem K to Problem K. This follows
directly from Theorem 1.2 (see Section 1 of Chapter 2).

1.9. Due to Remarks 1.2 and 1.3, the NP-hardness of Problems 1.1(a) and 1.l.(b) imply

that Problem 1.1 is also NP-hard in the following cases:

(d) F(s) = zmax(s), D; = D, i = 1, 2, ... , n;

(e) F(s) = E zits), Dj = D, ! = 1, 2, ... , n;
ieN

(f) F(s) = E Uj(s), Dj = D, i
ieN

(g) F(s) = Lmax(s);

1, 2, .." n;

(h) F(s) = zmax(s) E z;(s), D; = D, i = 1, 2, ... , n;
ieN

(i) F(s) = Lmax(s) E L;(s), D; = D, i = 1, 2, ... , n.
ieN

It follows from Remark 1.1 and the NP-hardness of Problem 1.2(a) that Problem 1.2 is

also NP-hard in the following cases:

(c) F(s) = zmax(s);

(d) F(s) = E u;(s).
lEN

Remark 1.4 (or Remark 1.5) implies that Problem 1.2(b) (or Problem 1.1(c),

respectively) also remains NP-hard in the preemptive case.

2. Reducibility of the 3-Partition Problem

In this section, we prove some scheduling problems to be NP-hard using the 3-partition

problem as standard. Recall that the 3-partition problem is formulated as follows: given a

set NO = {I, 2, ... , 3no}, a positive integer 8, and a positive integer Yj associated with

i E N° such that 8/4 < Y; < 8/2 and E Y; = no8, does there exists a partition of set NO
i eNO

into no three-element subsets N~ such that E Y; = 8, j = 1, 2, ... , no?
i eNQ

}

The 3-partition problem is NP-complete in the strong sense. The length of its input

encoded in the unary alphabet is equal to O(8no), while for the binary alphabet the length

is O(nolog8).
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2.1. In this section, the following scheduling problems are considered.

Problem 2.1. The jobs of a set N = {1, 2, ... , n} enter the processing system consisting

of three identical parallel machines at time d = O. Each job may be processed on any of

the machines during one time unit. Preemption is not allowed. At any time, the processing

of a job i E N requires r; units of some resource. The total amount of the resource

available at each time is equal to R. It is required to find a schedule s* which minimizes

the function F(s) in the following cases:

(a) F(s) tmax(s) = max{t;(s) liE N}, where tits) is the completion time of job i in

schedule s;

(b) F(s) = E t;(s).
ieN

Problem 2.2. The jobs of a set N = {I, 2, ... , n} are to be processed on a single

machine. A job i E N becomes available not earlier than at time d; 2: 0, and its processing

time is t; > 0 time units. Unless stated otherwise, preemption is not allowed. Each job

i E N is associated with a number 01; 2: O. The due date D; 2: 0, by which it is desirable to

complete job i is given for each i E N. A precedence relation is defined over set N such

that each connected component of the reduction graph G = (N, U) is a chain. It is required

to find a schedule s* that is feasible with respect to G and minimizes the function F(s)

in the following cases:

(a) F(s) E tj(s), G = (N, 0);
ieN

(b) F(s) E OIjtj(S), G = (N, 0) and preemption is allowedj
ieN

(c) F(s) = E OI;t;(S), t; = 1, i = 1, 2, ... , n;
ieN

(d) F(s)

t;(s)-Dj };

(e) F(s)

E OIjZj(S), d j = 0, i = 1, 2, ... , n, G
ieN

E OI;Zj(S), d; = 0, t; = 1, i = 1, 2, ... , n;
ieN

(N, 0); here zitS) max{O,

(f) F(s) = E OI;l;(S)j d;=O, i = 1, 2, ... , n, G = (N, 0); a schedule s is assumed to be
ieN

feasible if tits) ~ D;, i = 1, 2, ... , nj

(g) F(s) = E OIjt;(s)j dj = 0, t; = 1, i = 1, 2, ... , nj as in case (f), a feasible
ieN

schedule s must satisfy the condition tits) ~ D;, i = 1, 2, ... , nj

(h) F(s) = E u;(s); d; = 0, t; = 1, i = 1, 2, ... , nj here Uj(s)
ieN

if titS) > D; and

U;(s) = 0, if tits) ~ Dj .

Problem 2.3. The jobs of a set N = {I, 2, ... , n} enter a processing system consisting

of two identical parallel machines at time d = O. A job i E N may be processed on any of

the machines, and this processing takes t j time units. Preemption is not allowed. A
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precedence relation is defined over set N such that each connected component of the

reduction graph C = (N, U) is an intree. It is required to find a schedule s* which is

feasible with respect to C and minimizes the function F(s) = E tj(s).
ieN

Problem 2.4. The jobs of a set N = {1, 2, ... , n} enter a processing system consisting

of two identical parallel machines at time d = O. A precedence relation is defined over

set N such that each connected component of the reduction graph C = (N, U) is a chain.

Each job i E N may be processed on any machine with no preemption. All processing times

are unit. At each time, the processing of a job i requires rj units of some resource, and

rj E {O, l}, i = 1, 2, ... , n. At each time no more than one unit of the resource is

available. It is required to find a schedule s* that is feasible with respect to C,

satisfies the resource constraints, and minimizes the function F(5) in the following

cases:

(a) F(s)

(b) F(s)

tm.As);

E tj(s).
ieN

2.2. We start by proving a statement that is useful for showing some scheduling

problems to be NP-hard.

Let us consider the following class of problems.

The jobs of a set N = {I, 2, ... , n} enter a single-machine processing system at time

d = O. The machine can process no more than one job at a time and must operate without

idle time. The processing time of a job; E N is equal to t j time units. Each job i E N is

associated with a non-decreasing function <pj( t) and the due date Dj 2: 0, by which it is

desirable to complete this job i. A precedence relation is defined over set N, and

C = (N, U) is its reduction graph. Moreover, a non-decreasing function <p(t) is given such

that <p(0) = O. It is required to find a schedule s* that is feasible with respect to C and

minimizes the function F(s) = [<p[<pj(t j (5))].
ieN

A graph C' is said to be obtained from graph C by substituting a chain C = (i;, ;;, ... ,

i;), r 2: 1, if C' may be obtained from C by replacing some its vertex i by the chain C so

that all arcs entering i (leaving i) are replaced by those entering i; (leaving i;,

respectively).

A graph C' is said to be obtained from graph C by substituting chains if C' is obtained

from C by replacing each of its vertices by some chain (specific for each vertex).

For an extremal problem H, let H' denote the corresponding decision problem.

Let A and B be the problems of the described class, and C and C' be the reduction
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graphs of the precedence relations defined over the sets of jobs of these problems,

respectively, and suppose that G' is obtained from G by substituting chains.

Lemma 2.L Suppose that in Problems A and B we have <Pi(t} = 01;1, 01; ~ 0, and that these

problems differ fr'om each other only in that in Problem A the processing times ti are

positive integers while in Problem B all processing times are unit. Moreover, suppose

that, if in Problem A we have 01; E {AI' Az,... , Ak}, then in Problem B we have 01; E {O, AI'

Az,... , Ak}. Also, assume that Problems C and E differ from Problems A and B,

respectively, in that in both C and E we have <Pi(t) = OIimax{O, t-Di}. Then there exists a

pseudopolynomial reduction of Problem A' to Problem B', as well as that of Problem C to

Problem E'.

Proof. Let us construct a pseudopolynomial reduction of Problem A' to Problem B'. For

Problem B', define set N' of jobs as follows. Associate each job i E N with t; jobs i(l),

i(Z), ... , /til, assuming t(i(k») = 1, k = 1, 2, ... , t;; OI(i(k») = 0, D(i(k») = E t;,
ieN

k = 1, 2, ... , t;-I; OI(i(li») = OIi, D(i(li») = Di. Define the precedence relation over the

set N' assuming that (a) i(li) ---+ P) if and only if i ---+ j and (b) irk) ---+ i(k+l) for

all i E N, k = 1, 2, ... , t; -1. Let the reduction graph of this relation be denoted by G'.

Note that graph G' is obtained from graph G by substituting chains.

Suppose that there exists a schedule s' for processing the jobs of set N which is

feasible with respect to G and such that E <p(OIit;(s'll ::; y. Then it is obvious that in
ieN

the constructed Problem B' there exists a schedule s" that is feasible with respect to G'

and such that L <p[OI(i(k))ti(k)(S")] ::; y.
;(k)eN

Suppose now that there exists a schedule s" for processing the jobs of set N' which is

feasible with respect to G' and satisfies the condition Y: <p[OI(i(k»)t.(k)(S")] ::; y.
;(k)eN' I

We show that this implies that there exists a schedule s' for processing the jobs of set N

that is feasible with respect to G and such that E <p(OI;t;( s')) ::; y.
ieN

Let there exist a job i E N such that in schedule s" the relation t;(k+I)(S")

t;(k)(S")+I+c holds for some k, 1 ::; k ::; ti -l, and c > 0. Transform s" into a schedule

s'" in which the processing of job ilk) starts c time units later than in schedule s",

and each of the jobs processed in schedule s" in the time interval (tp)(s"),

ti(k)(S")+cj is to be processed in s'" one time unit earlier. It is easy to verify that

s'" is feasible with respect to G' and
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Using the described transformations sufficiently many times (no more than t;), we can

transform s" into a schedule SO which is feasible with respect to G' and such that

and ti(k+l)(SO) = ti(k)(SO) + 1 for all i E N, k = 1, 2, ... , t; -1. Schedule sO specifies a

schedule s' for processing the jobs of set N that is feasible with respect to G and such

that E <P(OIiti(S')) = 1. <p[OI(i(k»)t(k)(So)] ~ y.
ieN i(k)eN" I

The described reduction can be implemented in 0 C.E ti) time. The input length of
.eN

Problem A' in the binary and unary alphabets is at most

clltl(IOgt,+IOgOli+IOgD;) + ,tllOgi) +C;,

and

C2[,tl(ti+OIi+Dil+n2] +C2'

respectively, while that of Problem B' is at most

C3 [itl(IOgOl;+ logDi) + ,tlIOg(til) +c),

and

C{tl(OIi+Di) + [,ttn ) +c~,
respectively. Here Cl' c2, c3, c., c{, C2, c), c~ are some constants, the first four being

positive.

The polynomials p'(x) = cx2 and p"(x) = c'x, where c and c' are some positive

constants can be taken as polynomials p' and p" (see the definition of pseudopolynomial

reduction in Chapter I). Thus, the described reduction of Problem A' to Problem B' is

pseudopolynomial.

A pseudopolynomial reduction of Problem C' to Problem E' can be constructed in a

similar way. The only difference is that instead of OI(i(k») = 0, k = 1, 2, ... , t;-I, we

now assume OI(i(k») = 01" k = 1, 2, ... , t.. ote that in any schedule S for processing the

jobs of set N' we have Z,(k)(S) = 0 for all i E Nand k = 1, 2, ... , t; -1. This proves the

lemma.

Remark 2.1. The above considerations imply that in Problem A' a schedule s' which is

feasible with respect to C and satisfies the conditions t;(s') ~ D; exists if and only if
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in the constructed Problem B' there exists schedule s" that is feasible with respect to

G' and such that t;<k)(S") S; Di(k), i = 1, 2, ... , n, k = 1, 2, ... , t j •

Corollary 2,1. If Problem A' (or Problem C) is NP-hard in the strong sense, then

Problem B (or Problem D, respectively) is NP-hard in the strong Sense as well.

This directly follows from Theorem 3.2 (see Section 3 of Chapter 1).

2.3, Since the 3-partition problem is NP-hard in the strong sense, it follows that, in

order to prove that any of the problems in Section 2.1 is NP-hard, it suffices to

construct a pseudopolynomial reduction of the 3-partition problem to the corresponding

decision problem.

The following decision problem corresponds to Problem 2.1(a): determine whether there

exists a schedule sO for processing the jobs of set N such that at most R resource units

are to be consumed at any time and tmax(so) S; y for a given y.

We now construct a polynomial reduction of the 3-partition problem to the formulated

decision problem.

Define n = 3no, rj = Yi, i = 1, 2, ... , n; R = ti, y = no'

Let the 3-partition problem have a solution. Then each of the subsets N~ forming a

partition of set N° specifies a triplet of jobs to be processed in the time interval [j -1,

jJ. These three jobs can be distributed over the machines arbitrarily. It is clear that in

schedule SO obtained this way, all jobs of set N are completed by time no and ti resource

units are to be consumed at any time.

On the other hand, if for the constructed scheduling decision problem there exists a

schedule SO such that tmax(sO) S; no, then this implies that exactly three jobs are

processed at any time. Each triplet of jobs processed in the time interval [j -1, j]

specifies a subset N~ of the required 3-partition of set NO.

It is easy to verify that the described reduction requires O(no) time, i.e., this

reduction is both polynomial and pseudopolynomial.

Since the 3-partition problem is NP-hard in the strong sense, it follows that Problem

2.1 (a) is NP- hard in the strong sense as well.

Note that if in Problem 2.1(a) the processing system consists of two machines, then the

corresponding problem is solvable in O(nlogn) time [211J.

2,4, The decision problem corresponding to Problem 2.1(b) is as follows: determine

whether there exists a schedule SO for processing the jobs of set N such that
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E £;(sO) s y for a given y.
ieN

Define n = 3no, r; = Yi, i = 1, 2, ... , n; R = t5, Y = ~no(no+1). It is easy to check

that the described transformation of the 3-partition problem into the formulated decision

problem takes at most O(no) time.

If the 3-partition problem has a solution, then a partition of set NO specifies a

partition of set N into no subsets each consisting of three jobs such that exactly t5

resource units are to be consumed at any time in the processing of each triplet of jobs.

If SO is a schedule in which in each time interval [i-I, il, i 1, 2, ... , no, the ith

- ° 3triplet of jobs is processed, then E t;(s ) = -2no(no+I).
ieN

Suppose that there exists a resource-feasible schedule SO such that E t;(sO) s
ieN

~no(no+I). It is easy to verify that the latter inequality implies that at each time

moment exactly three jobs are processed. Since E Yi = not5, we conclude that schedule SO
iEN

specifics a solution of the 3-partition problem. Thus, Problem 2.I(b) is NP-hard in the

strong sense.

2.5. The following decision problem corresponds to Problem 2.2( a): determine whether

there exists a schedule SO for processing the jobs of set N such that E £;(SO) s y for a
ieN

given y.

We now construct a pseudopolynomial reduction of the 3-partition problem to the

formulated decision problem.

Define n = 3no+(no+I)(no+t5)J Assume that set N contains jobs of two types: main and

auxiliary. The main jobs i have the parameters t; = Yi, d; = 0, i = 1, 2, ... , 3no. The set

of the auxiliary jobs J\k) consists of no + 1 groups with the parameters

t(J\k») = I/(no+t5)3, d(J\k») = (t5+I)(k-I), k = 1, 2, ... , no, / = 1, 2, ... , (no+t5)3;

t(J\no+l») = 1, d(J\no+l») = Tlo(t5+I), / = 1, 2, ... , (no+t5)3.

Define

y = 3( t5+ I)no(no+ 1)/2 + no(no + t5)3( 1+ 1/(no + t5)3)/2

+ (no-I)( t5+ 1)) + (2no(t5+ 1) + (no+ t5)3 + 1)( (no+t5f)/2.

If the 3-partition problem has a solution, then the processing of each of the auxiliary

jobs J\k) may be completed by time t = (k-I)(t5+1)+//(no+t5)3, k = 1, 2, ... , no, / = 1,

2, , (no+t5)3 and each of the jobs J\no+l) can be completed by time t = no(t5+1)+/, / = 1,

2, , (TlO+t5)3. This may be done in the manner shown in Fig. 2.1, where a shaded rectangle

corresponds to an auxiliary job, and a non-shaded rectangle represents a main job.



(no+b)3
L(no(b+1)+I) > y,

1=1
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Fig. 2. I

Let SO be a schedule corresponding to the situation in Fig. 2.1. In this schedule, each

triplet of the main jobs processed immediately after the kth group of auxiliary jobs is

completed at time t = k( b +1). Therefore, E,t;(SO) <:; ~(b+1)no(no +1), where N' denotes the
ieN

set of all main jobs. Hence,

3 no (no+6)3
L t;(so) <:;Z(b+1)no(no+1)+ L L((k-1)(b+l)

ieN k=l 1=1

(no+6)3
+lj(no+b)3)+ L (nO(b+1)+I) = y.

1=1

Suppose now that the 3-partition problem has no solution. Since y; are positive

integers and

(no+6)3
L t(Jlk») = 1, k = 1, 2, ... , no,

1=1

we conclude that in any schedule s either the processing of at least one group of

auxiliary jobs starts at least one time unit later than in the schedule shown in Fig. 2.1

or at least one main job is processed either after the (no+ l)th group of auxiliary jobs or

in the time interval between the processing of two jobs of this group. In any case, since
3

(no+b)3> 2(b+1)no(no+1), we have

no (no+b)3
L I;(S) > (no+W+ L L((k-1)(b+1)+ Ij(no+b)3)+

ieN k=l 1=1

Hence, a required schedule SO exists if and only if the 3-partition problem has a

solution. The described reduction can be implemented in at most O(no(no+b)3) time. Since

the 3-partition problem is NP-hard in the strong sense, we conclude that Problem 2.2(a) is

NP-hard in the strong sense as well.

If in Problem 2.2(a) we assume d; = 0, i = 1, 2, ... , n, then the problem reduces to one

of minimizing a priority-generating function over a set Pn of all permutations of the

elements of set N. In this case, the problem becomes solvable in O(nlogn) time (see

Section 7 of Chapter 3).

2.6. The following decision problem corresponds to Problem 2.2(b): determine whether
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there exists a (preemptive) schedule SO for processing the jobs of set N such that

E O'it,(so) ~ y for a given y.
i eN

Let us construct a polynomial reduction of the 3-partition problem to the formulated

decision problem.

Define n = 4no-lj d; = 0, t; = O'i = Ii, i = I, 2, ... , 3no; d i = (i-3no)(8+l)-1, t, = I,
0', = 8, i = 3no+l, 3no+2, ... , 4no-l; y = E 11Yk+8(8+2)no(no-I)/2.

t~l$k.s3no

First, we show that a schedule SO can be found in a class of schedules in which the

processing of each job starts at time d" i = 3no + I, 3no + 2, ... , 4no -1. If the condition

ti = I were substituted for ti = 0, i = 3no+l, 3no+2, ... ,4no-l, and the objective function
3no _

were F(s) E O';t,(s), then for any non-preemptive schedule s the equality
1=1

F(s) = E liYk would be valid. Let this sum be denoted by v. Besides, let N' denote
lSI;Sk:s.3n o

the set {I, 2, ... , 3no}, and Nk(s) denote a set of jobs in N' which are completed in

schedule s later than 3no+k, k = I, 2, ... , no-I. For a schedule s, the starting time of a

job 3no+k, k = I, 2, ... , no -I, is denoted by t~(s). It is easy to verify that
"0-1 no-1

L O'iti(S) = v + L L Ij + 8 L (t~(s)+I).
ieN k=' JeNk(s) k='

Suppose that in a schedule s some job i E N\N' starts at time di+T" where T1 ~ I and

there exists a job j E N' which starts at time di - Tz, where rz ~ 0 and is processed in the

time interval [d i , di+rd. Transform schedule s into a schedule s' in the following way.

Define t~(s') = d, if t~(s) = di+r" and either start processing job j at time d,+1 (if

T Z = 0) or interrupt processing job j (if rz > 0) resuming that processing at time d i +1.
It is obvious that F(s) - F(s') ~ T,8 - Ij > O. Hence, it follows that the search for schedule

SO can be restricted to consideration of such schedules s that t~(s) = d3no+b k = I,
2, ... , no - 1. Note that in any such a schedule we have

no-1 "0-1 nO-I

F(s) = v+8(8+l) Lk + L L Ij = v+J.L+ L L Ij'
k=l k=l jeNk(s) k=' jeNk(s)

where J.L = 8(8+ I)no( no -I )/2. Thus, for any schedule s from the described class, the value
no -1

of F(s) is determined by E E Yj-
k=l jeN k(s)

Suppose that there exists a partition of set NO into no of three-element subsets N~

such that E Ii = 8. Without loss of generality, we may assume that N~ = {3j - 2, 3j -I,
j eN']

3j}, j = 1, 2, ... , no' Then it is easy to see that for a schedule s' defined by the

permutation 7[' = (1,2,3, 3no+I, ... , 3j-2, 3j-l, 3j, 3no+j,···, 3no-5, 3no-4, 3no-3,

4no-l, 3no-2, 3no-l, 3no), each job i E NIN' starts at time d i and
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no -1

L Oiiti(S') = v+tt+ L 8(no-k) = v+tt+ 8no(no-l)/2 = y.
ieN k=l
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Suppose now that no required partition of set NO exists and that in a schedule s' the

processing of a job i E N\N' starts at a time di while the jobs of set N' are processed

according to a permutation 1r = (iI' iz, ... , i3no )' Then there must exist such an index k

that li
3k

_
Z
+li

3k
_

1
+li

3k
= f3 oF 8. Let k be the smallest index satisfying this condition. If

f3 < 8, then. r Ijlj = (no-k)8+(8-f3). If f3 > 8, then in schedule s' job i 3k is
JeNk(s')

processed with preemption and r Ij = (no-k)8+ (8 - (3)+li . On the other hand, for any
jeNk(s') 3k

j, j = 1, 2, ... , no-I, we derive that d3no+j = j(8+1)-1 and that in schedule s' only those

jobs of set N' may be completed by time d3no+j whose total processing time does not exceed

j(8+1)-I-(j-l) = j8. This implies that the inequality r Ii ~ (no-j)8 holds for any
ieN j(s')

j, j = 1, 2, ... , no-l.
no-l no

Thus, either F(s') ~ v+ tt+ r (no - j)8+ (8 - (3) or F(s') ~ v+ tt+ r (no - j)8+ li . In any
j=l j=1 3k

case, F(s') > y due to 0 < f3 - 8 < 1;3k'

The described reduction can be implemented in O(n~) time. This reduction is both

polynomial and pseudopolynomial. Thus, Problem 2.2(b) is NP-hard in the strong sense.

2.7. In this section, we construct a reduction of Problem 2.2(b) to Problem 2.2(c). Let

N' denote the set of jobs in Problem 2.2(c). This set is formed as follows. Each i E N is

associated with ti jobs i(l), i(2), ... , /'i) (without loss of generality, ti are assumed

here to be integers), define OI(i(k») = 0, k = 1, 2, ... , ti-1; 0I(/'i1) = OIi; t(i(k1) = 1,
d(i(k») = d;, k = 1, 2, ... , ti' The precedence relation ~ is defined over N' by its

reduction i(k) ~ i(k+l), k = 1, 2, ... , ti -l, i = 1, 2, ... , n.

Let s' be a schedule for processing the jobs of set N' determined by a permutation 1r of

the elements of set N'. It is obvious that any such a permutation that is feasible with

respect to graph G specifies a schedule s for processing the jobs of set N in Problem

2.2(b), and F(s) F'(s'), where F'(s') = f 0I(i(k»)t(k1(s'). On the other hand, a
i(kTeN ; I

schedule s for processing the jobs of set N specifies a permutation 1r of the elements of

N'.

The described reduction can be implemented in 0 c.r t;) time, so this reduction is
,eN

pseudopolynomial. Since Problem 2.2(b) is NP-hard in the strong sense, it follows that

Problem 2.2(c) is NP-hard in the strong sense as well.

Note that if G = (N, 0), Problem 2.2(c) is solvable in O(n3 ) time (see Section 4.5 of
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Chapter 2). The same algorithm (with the same running time) solves Problem 2.2, provided

that G = (N, O), t, = 1, i = 1, 2, ... , n, and F(s) = E 'Plt;(s)), where 'P;(x) are
ieN

non-decreasing functions for all i E N.

2.8. The following decision problem corresponds to Problem 2.2(d): determine whether

there exists a schedule sO for processing the jobs of set N such that E Q;z;(so) :5: y for
ieN

a given y.

We construct a polynomial reduction of the 3-partition problem to the formulated

decision problem.

The set N of jobs is formed as follows. Define n = 4no and assume that set N = {I,

2, , n} contains jobs of the following two types: /kJ k = 1, 2, ... , no, and J k, k = 1,
2, , 3no.

Define t(h) = a = 82n~, Q(Ik ) = 8(8+a)no(no+l)/2+1, D(Ik) = ak+8(k-l), k 1,

2, ... , no; t(h) = Q(h) = IkJ D(Jk ) = 0, k = I, 2, ... , 3no; y = 8(8+a)no(no+l)/2.

Let the 3-partition problem have a solution. Without loss of generality, it may be

assumed that ,3j-2+,3j-1 +,3j = 8 , j = 1, 2, ... , no' Consider a schedule SO determined by

the permutation 11'0 = (II' J), J 2, J 3, 12, J 4 , J s, J 6 , 13"", I no' J 3no- 2' J 3no- I' J 3no )'

It is easy to verify that t(h(sO)) = D(h), and t(J3j_Z(so)) < t(J3j_I (SO)) <

t(J3j(SO)) = aj+8j, j = 1, 2, ... , no' Here t(Ik(s)) and t(Jk(S)) denote the completion

times of jobs I k and J k in a schedule s, respectively. Since Q(J3j-Z) +Q(J3j_Jl +Q(J3j ) = 8,
j = I, 2, ... , no, we have

noLQ;z,(so) < L8(a+8)j = 8(a+8)no(no+I)/2 = y.
ieN k=l

Suppose now that there exists a schedule s' for processing the jobs of set N such that

E Q;z;(s') :5: y, Since 8 and Yk are positive integers and Q(h) > y, it follows that the
ieN

condition t(h(s')) :5: D(h), k = I, 2" .. , no, must be satisfied. In fact, if t(/k(S')) >

D(h) for some k, then z(h(s')) ~ 1 and E Q;z,(s') ~ y+L
ieN

Let Nk(s'), k = I, 2" .. , no, denote the set of all those jobs J j , j E {I, 2, ... , 3no},

which in schedule s' are completed after job h is completed; by definition, it is assumed

that Nno+l(s') = 0, Denote Ak = E Q(Jj ). Since t(Ik(s')) :5: ak+8(k-l) and
JjeNk(s' )

Q(Jj ) = t(J j ), it follows that the condition Ak ~ 8no-8(k-l) = 8(no-k+l) must be satisfied.

It is obvious that for any job J j processed in schedule s' after job h, the condition
t(Jj(s')) > ak holds. Therefore,

L Q;z;(s') >
ieN

no no
Lak(Ak-Ak+d = a LAk·

k=) k~1
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Suppose that there exists an index k' such that

Ak , = 8(no-k'+1)+1.

Then it follows that
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noLOI;Zj(S') > a8 L(no-k+1)+a = a8no(no+1)/2+a = y-c9no(no+1)/2+82n~ ~ y,
ieN k=l

which contradicts the definition of schedule s'.

Hence, Ak = 8(no-k+1) and Ak-Ak+1 = 8. Since OI(Jk ) = t(Jk ), k = 1, 2, ... , 3no; the

total processing time of jobs J j to be processed in schedule s' in the time interval

between the completion time of job I k and the starting time of job I k+1> k = 1, 2, ... ,

no -1, is equal to 8. Thus, in each of these intervals exactly three jobs J k must be

processed.

Thus, schedule s' specifies the desired 3-partition of set N° The implementation of

the described reduction requires O(no) time. This reduction is both polynomial and

pseudopolynomiaJ.

Hence, Problem 2.2( d) is NP-hard in the strong sense.

If ti = 1, i = 1, 2, ... , n, then Problem 2.2(d) is solvable in O(n3) time even when the

jobs do not enter the processing system simultaneously (see Section 4.5 of Chapter 2).

Problem 2.2(e) is NP-hard in the strong sense. This follows from Lemma 2.1 and the fact

that Problem 2.2(d) is NP-hard in the strong sense. If G = (N, 0), the algorithm mentioned

above also solves Problem 2.2(e).

2.9. The following decision problem corresponds to Problem 2.2(f): determine whether

there exists a schedule SO for processing the jobs of set N such that tj(SO) $ D i ,

i = 1, 2, ... , n, and E OI;tj(SO) $ Y for a given y.
ieN

We construct a polynomial reduction of the 3-partition problem to the formulated

decision problem.

The set N of jobs is formed as follows. Define n = 4no and assume that set N = {1,
2, , n} consists of jobs of two following types: h, k = 1, 2, ... , no, and J kl k = 1,

2, , 3no'

Define t(h) = a = 82n~, OI(h) 0, D(h) = ak+8(k-I), k = 1, 2, ... , no; t(h)

OI(h) = Ykl D(Jk ) = ano +8no, k = 1,2, ... , 3no; y = 8(8+a)no(no+1)/2.

The proof is similar to the one presented in Section 2.8.

Suppose that the 3-partition problem has a solution and Y3j-2+Y3j-l +Y3j = 8, j = 1,

2, ... , no' Then, for schedule sO determined by the permutation 11' = (II' J" J 2 , J 3 , 12 ,

J., J s, J 6 , 13,,,,, I no' .J3no-2' J 3no-" J 3no )' we have t(lk(SO)) = D(h)' k = 1, 2, ... ,
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- 0 - 0 no .
no, t(Jk(s )) ~ D(Jk), k = 1, 2, ... , 3no, [Oijt;(S) < [e5(a+e5)) = y.

ieN j=l

Suppose now that there exists a schedule s' for processing the jobs of set N such that

t(lk(S'j) ~ D(lk) and [Oijtj(S') ~ y. Introduce the numbers Ab k = 1, 2, ... , no, as in
ieN

Section 2.8. It then follows from t(lk(s')) ~ ak+e5(k-1) that Ak <: e5(no-k+1) and

_, no no
Oi;t;(S) > [ak(Ak-Ak+I ) = a [Ak.

k=I k=I

If an index k' that satisfies the condition Ak, <: 6(no-k+1)+1 exists, we obtain

[ Oijtj(S') > ae5no(no+1)j2+a <: y, which contradicts th'e definition of schedule s'. Hence,
ieN

Ak = e5(no-k+1), k = 1, 2, ... , no, and Ak-Ak+I = e5. Then it follows that schedule s'

specifies a required partition of set N°

The implementation of the described reduction takes O(no) times. Thus, Problem 2.2(f)

is NP-hard in the strong sense.

Note that if Oij = 1, i = 1, 2, ... , n, Problem 2.2(f) is solvable in O(n2 ) time [417,

36].

Problem 2.2(g) is NP-hard in the strong sense. This follows from Lemma 2.1 and from the

fact that Problem 2.2(f) is NP-hard in the strong sense.

2.10. The following decision problem corresponds to Problem 2.2(h): determine whether

there exists a schedule SO for processing the jobs of set N which is feasible with respect

to C and such that [Uj(so) ~ y for a given positive integer y. This decision problem is
ieN

called Problem 2.2(h').

To prove that Problem 2.2(h') is NP-hard, we introduce two auxiliary problems and prove

that these are NP-hard in the strong sense.

The first problem is called the 3-set exact covering problem and can be formulated as

follows. Given a finite set .110 = {1, 2, ... , 3mo} and a cover M= {.I1
"

.112,,,,, .11m } of this

set by its three-element subsets (m <: mol, does ill contain an exact cover of set .110, i.e.,
_ _ I

such a subset .11' = {Mj , Mj , ... , Mj } ~ .11 that I = mo and U Mj = .110?
1 2 I k~l k

We construct a polynomial reduction of the 3-partition problem to the 3-set exact

covering problem. Define .110 = N° A collection ill is formed as follows. Construct all
three-element subsets of set N° (their number is equal to GO)). For each such a subset,
calculate the sum of the corresponding y;'s. Those and only those subsets, for which this

sum is equal to e5 are to be included in collection M.
It is obvious that the 3-partition problem has a solution if and only if the



NP-Hard Problems 273

constructed collection Mcontains a 3-set exact cover of set MO
The implementation of this reduction takes at most O(n~) time. Thus, the 3-set exact

covering problem is NP-hard in the strong sense.

The second auxiliary problem to be discussed differs from Problem 2.2(h') in that the

job processing times are positive, integer and, generally speaking, different numbers.

This problem is called Problem 2.2(h"). We show that it is NP-hard in the strong sense.

We construct a polynomial reduction of the 3-set exact covering problem to Problem

2.2(h").

For Problem 2.2(h"), form the set N of jobs as follows. Associate each subset Mj E M,
j = 1, 2, ... , m, with job job J j (these jobs are called jobs of the first type). Associate

each element i E MO with as many jobs Ji,j as many times i can be found in the triplets of

set M: job J;,j corresponds to element i if and only if i E Mj E M. The jobs Ji,j are

called jobs of the second type.

The precedence relation is defined over the constructed set N as follows. Let Mj = {i,
i', i"}, where i < i' < i". Define J j -+ Ji,j, J;,j -+ Ji',j, J;',j -+ J;",j (here only

the reduction of the defined precedence relation is presented).

Define y = 3(m-mo)j t(Ji,j) = mi, D(Ji,j) = mo+mi(i+l)j2, t(Jj ) m+
m

m.1: .1: i, j = 1, 2, ... , m, i E Mj .
J=1 lEMj

It is clear that for any schedule s for processing the jobs of set N such that the

machine has no intermediate idle time, we have IlJ .(s) = 0, j = I, 2, ... ,rn.
) -

Suppose that the 3-set exact covering problem has a solution and M' = {M
jt
, Mj2 , ... ,

mo
Mj } ~ Mh such a subset that I = rno and U Mj = MO. Without loss of generality, assume

I _ k=1 k

that M = {Mil M2 ,· .. , Mmo }'

Consider a schedule sO specified by the permutation rro = (rrO), rr(2»), where rr(t) =

(J t , J 2,· .. , J mo' Jt,jt' J 2,j2"'" J3mo,hmo)' jk E {I, 2, ... , mo}, k = 1, 2, ... , 3mo,

and rr(2) is a permutation of the elements of set N\{rr(l)} that is feasible with respect to

G. It is easy to verify that sO is feasible with respect to G and such that

1: IlJ .(so) = 3(m-mo) = y.
J i, j eN t,}

Suppose now that there exists a schedule s' for processing the jobs of set N which is

feasible with respect to G and such that 1: IlJ(SO) (s ') :0; y. We show that, in this
.... J i , i eN I,}

case, M contains an exact cover of set MO.

In schedule s, a job J;,j is said to be processed with no tardiness if IlJ . .(s) O.
',)

First, we prove the following statement.
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If, in a schedule s feasible with respect to G, i jobs of the second type are processed

with no tardiness by time t = D(J; J)' then these are the jobs J I J" J 2 " ".. J ..
I , l' lJ2" l,Jj

The proof is by induction with respect to i. For i = 1 and i = 2, the statement
obviously holds.

Suppose that this holds for all i s; r, where r ~ 2. We show that the statement holds

for i = r+ 1.

Thus, in schedule s, r+ 1 jobs of the second type are processed with no tardiness by the

time t = D(Jr+',j) = m o+m(r+l)(r+2)/2. Then, in schedule s, at least r jobs of the second

type must be processed with no tardiness by tbe time t = D(Jr,j) = m o+mr(r+l)/2. In fact,

among the jobs of the second type, only the jobs Jk,j' k ~ r + 1, can be processed without

tardiness after D(Jr,j), while no more than one such a job may be processed in the time

interval [D(J r ,;), D(Jr+l,j)] (since t(Jk,j) ~ (r+l)m for k ~ r+l).

Due to the induction assumption, in schedule s, the jobs JI,i
l
' J 2,j2"'" Jr,jr must

be completed by the time t = D(Jr,j) and (since s is feasible with respect to G) at least

one job of the first type must be completed. The total processing time of all these jobs

is at least mr(r+l)/2+1. Therefore, in schedule s, processing the (r+l)th job of the

second type may start no earlier than time t = mr(r+ 1)/2+ 1 and must be completed by time

t = D(Jrtl,j)' The length of this time interval is mo+m(r+l)-l. Since m ~ mo and for

k ~ r+ 1 the inequality t(Jk,j) ~ m(r+l) holds, it follows that only job Jr+l,i
r
+
1
may be

processed in this time interval. This proves the required statement.

Schedule s' satisfies the condition E uJ "(s') s; y = 3(m-mo). Hence, in schedule
J . . eN l,]
" J

s', at least 3mo jobs of the second type are processed with no tardiness. Moreover, the

processing of these jobs must be completed by time t = max{D(Ji,j) I J;,j E N} = D(J3mo,i)'

The statement proved above implies that, in schedule s', the jobs JI,jl' J 2,j2"'"

J 3m j are processed with no tardiness. Each element Mj of set if is associated with
0' 3mo

exactly three different jobs of the second type, and a one-to-one correspondence exists

between the elements of set MO and the jobs J I J"' J 2 J" , ... , J 3m J" • Thus, the above
.... ~ I 1 ' 2 0' 3mo

jobs specify the desired 3-set exact cover M' ~ M of set MO

The implementation of the described reduction requires O(m) time. This reduction is

both polynomial and pseudopolynomial, and Problem 2.2(h") is, therefore, NP-hard in the

strong sense.

Problem 2.2(h') is NP-hard in the strong sense as well. This follows from Lemma 2.1 and

NP-hardness in the strong sense of Problem 2.2(h").

Thus, Problem 2.2(h) is NP-hard in the strong sense.

If G = (N, 0), Problem 2.2(h) is solvable in O(nlogn) time (see Section 4.3(b) of
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Chapter 2). That algorithm may be applied not only if the processing times of all jobs are

unit but also if these times are arbitrary.

2.11. Let us consider Problem 2.3. The corresponding decision problem is as follows:

determine whether there exists a schedule sO for processing the jobs of set N that is

feasible with respect to G and such that E ti(so) s y for a given y.
ieN

We construct a pseudopolynomial reduction of the 3-partition problem to this decision

problem.

Define n = 20n~e5+6no+2 and denote a = 4n~e5, b = 20n~e5. Set N = { 1, 2, .... , n} is

assumed to contain the jobs of two types: main and auxiliary. The main jobs are denoted by

i, i = 1, 2, ... , 3no, and have the parameters t i = ri' For the auxiliary jobs J I , define

t(Jzl-d = t(1zno+I+,) = a, I = 1, 2, ... , no+l; t(J,) = 1, 1= 3no+3, 3no+4, ... , 3no+2+b;

t(Jz,) = e5, I = 1, 2, ... , no' The precedence relation -+ is defined over the constructed

set N as follows: J
'
_1 -+ J/o I = 2, 3, ... , 2no+l, I = 3no+4, 3no+5, ... , 3no+2+b;

Jzno+I+1 -+ J ZI , I = 1, 2, ... , no; J Zno+I -+ J 3no+3; J 3no+z -+ J 3no+3; i -+ J3no+3' i = 1,
2, ... , 3no' A subgraph of the graph G = (N, U) of the reduction of the constructed

precedence relation induced by the set of all auxiliary jobs is shown in Fig. 2.2. Each

vertex in this figure is accompanied by the processing time of the corresponding job. It

is easy to check that G is an intree.

6 6 a 6 a 11
I.'---+<~....--->....>------;,>t.t-----+<)....--->,...>---+).. ). J. J.
~/JZ ~/J4 ~/J6 JZ:/J3nO+3

• • •••
J 2no + 2 1 2no + 3 J Zno + 4 J 3nO +

2

Fig. Z. Z

1
).) ...~

J 3nO+5 J3no+Z+b

Define
no + t nO

y = 2 L (al+e5(l-I)) + 4 L (a+e5)1 +
'~I 1=1

b

L ((no+l)a+noe5+I).
1=\

Without loss of generality, assume that the jobs J
"

I = 1, 2, ... , 2no+l, I = 3no+3,

3no+4, ... , 3no+2+b, are processed immediately one after another and that the completion

time of job J 3n
o

+Z+b determines the makespan. In fact, if there is no schedule s that is

feasible with respect to G satisfying the described conditions, then we have

L ti(S) ~
ieN

"0+ 1 nOL (al+e5(l-I)) + L (a+e5)1 +
1=1 1=1

b

L((no+l)a+noe5+1+1)
1=1
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no + 1 no
= y - L (al+6(l-1))-3 L (a+6)I+b > y.

1 =1 1 =1

Chapter 4

Therefore, we may assume that: (a) the jobs mentioned above are processed on the same

machine (e.g., on the first one)j (b) this machine does not process other jobsj

(c) the processing of a job J2no+I+1 is completed (on the second machine) by no later than

time t = a/+6(l-1), I = 1, 2, ... , no+l, and the processing of all main jobs is finished by
no later than time t = a( no +1) +6no. In the following, we consider only those schedules

which satisfy all the conditions introduced above.

Suppose that the 3-partition problem has a solution. Then the set of main jobs may be

partitioned into groups of three jobs each so that each triple of jobs may be processed on

the second machine simultaneously with the processing of one of the jobs J 21, 1 = 1, 2,

... , no, on the first machine. In any such schedule, the sum of the completion times of

those main jobs which are included in the same triple does not exceed 3(a+6)1. Hence, for

any such a schedule SO we have

no+l no b

L tMo) $ 2 L(a/+6(l-I)) + 4 L (a+6)1 + L((no+1)a+n06+1) = y.
teN 1=1 1=1 l =1

Suppose now that the 3-partition problem has no solution. In this case, in any schedule

s that is feasible with respect to G and satisfying the introduced conditions, there

exists at least one pair of indices II and 12 (II < 12) such that: (a) a group of main

jobs to be processed on the second machine immediately after the job J 2no+I+11 consists of

at most two jobs, and (b) a group of main jobs to be processed immediately after J2no+I+12

consists of at least four jobs. Note that the inequality II > 12 is impossible because,

should it hold, the processing of one of the jobs J 2n
o
+I+1 would be completed later than

time t = al+6(1-1).

Let NI and N2 denote the sets of jobs to be processed in schedule s on the first and

second machines, respectively. We have
no + I nob

L (al+6(l-1)) + L (a+e5)1 + L ((no+1)a+n0e5+I),
1=1 1 =1 1=1

no + 1 nO

L titS) > L al + 3 L (a+1)I-al,+ aI2 ~
ieN2 l=1 (=1

no + 1 nO

Lal + 3 L(a+l)l+a.
I~I 1 =1

The bound on E ti(s) is derived as follows. The completion times of the jobs
i eN2

J2no+I+I, I = 1, 2, ... , n o+1, are computed as if these jobs were processed immediately one

after another, and the completion times of the main jobs of the group to be processed

immediately after job J2no+1+1 were considered to be equal to (a+I).
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Since it may be assumed that no ~ 2, we have
no + 1 no

L ti(s) = L ti(s) + L ti(s»y - L 8(1-1) - 3 L(8-1)I+a
ieN ieN l ieN2 1=1 1=1

= y-8no(no+l)/2-3(8-1)nO(no+l)/2+a > y,
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Hence, a schedule SO feasible with respect to G and such that E ti(SO) ~ y exists if
ieN

and only if the 3-partition problem has a solution. The implementation of the described

reduction requires at most O(8n~) time. Since the 3-partition problem is NP-hard in the

strong sense, it follows that Problem 2.3 is NP-hard is the strong sense as well.

If G = (N, 0), Problem 2.3 can be solved in O(nlogn) time. This algorithm (see Section

9.3 of Chapter 2) is developed for solving a more general problem when a processing system

consists of M 2 2 uniform machines.

2.12. The decision problem corresponding to Problem 2.4(a) is as follows: determine

whether there exists a schedule sO that is feasible with respect to G, provided that at

each time moment no more than one resource unit is consumed and tmax(so) ~ y for a given

y.

We show that the 3-partition problem reduces to the described decision problem in

polynomial time.

Define n = 4n08. Assume that set N contains jobs of four types: II and Ii, I = 1, 2,

... , n08, and Ji,k and Ji,b i = I, 2, ... , 3no, k = 1, 2, ... , Yi' Define r(lzl

r(Ji,k) = 0 for all jobs II and Ji,b and r(li) = r(Ji,k) = 1, for all jobs Ii and Ji,k'

Define y = 2n08.

The precedence relation ---+ is defined over set N as follows (only the reduction of the

relation is given below):

I U- 1)6+1 IU-1)6+1+1,

I(j-l)6+1 ---+ I(j-l)6+1+l, l = 1, 2, ... , 8-1, j

1;6 ---+ I U- 1)6+1, j = 1, 2, ... , no;

1, 2, ... , no;

Ji,k ---+ Ji,k+l, Ji,k ---+ Ji,k+l' k = 1, 2, ... , Yi -1, i = 1, 2, ... , 3no;

Ji,"fi ---+ Ji,l, i = 1, 2, ... , 3no; I j6 ---+ 1;6+1> j = 1, 2, ... , no+l.

It is easy to verify that each element i E N° is associated with a chain of jobs

Ji,l ---+ J i,2 ---+ ... ---+ Ji,"fi ---+ Ji,l ---+ Ji,2 ---+ ... ---+ Ji,'Y i' and the reduction graph G

consists of 3no +1 chains, where 3no chains correspond to the elements of set N°, while the



278 Chapter 4

elements I{ and Ii, I = 1, 2, ... , noe5, correspond to the vertices of the (3no+ 1)th chain.

Suppose that the 3-partition has a solution and that N~ are the required three-element

subsets of set N° Then a schedule SO can be constructed as follows. All jobs I{ and Ii

are assigned to the first machine and are processed according to the sequence that is

feasible with respect to ~ (such a sequence is unique). Let N~ {iI' iz, i 3 }. Then the

jobs J i I' J; z,···, J;~., J; (, J i z, ... , J i ~ ,J,. (, J,. z, .. , J. are
l' l' I'll} 2' 2' 2' li2 3' 3" 131113

assigned to be processed on the second machine in the same time interval as the jobs Ii,

I = (j-l)e5+1, (j-1)8+2, ... , j8, and the jobs Jil'l' Jil'z,"" J11''"f;I' Jiz,l, Jiz'z,''''

r r r r in the same interval as the J'obs I{, I = (J'-1)8+1,12,''(12' 13 ,1) 13,2"'" 13,,13
,

(j -1)8+2, ... , j8. It is obvious that F(so) = 2n08 and that schedule SO is feasible with

respect to C and does not violate the resource constraints.

Suppose now that there exists a required schedule so. Without loss of generality, it

may be assumed that in schedule SO the first machine processes all jobs 110 Ii and only

those. In this case (since F(so) = 2n08), while job Ii is processed on the first machine,

the second machine must simultaneously process one of the jobs J;,k' Similarly, while I{

is processed on the first machine, the second machine processes some job Ji,k'

We show that, in schedule so, the sequence according to which the second machine

processes the jobs Ji,k and Ji,k' defines the desired partition of set N°. In fact, let

the jobs Ji",ll Ji ',21"" Ji ""., liN,I' Ji""z,"" JiN"., Jim,., Jim,z,""
1" 1'"

J i ON, '"f . , and only these, be processed on the second machine, while simultaneously the
I';;

jobs Ii, I = (j-1)8+1, (j-1)e5+2, ... , j8, are processed on the first machine. Then

Y;'+Yin+YiON = 8 and t, in, in. form one of the three-element groups of the desired

partition. On the other hand, suppose that the above condition is violated, i.e., there

exists such a jO that in the interval during which the jobs Ii, I = (j0 -1)8 + 1,

(j0 -1)8 + 2, ... , j08, are processed on the first machine, the second machine processes the

jobs J o , J.o ,... , J o , where v < Y.o (probably together with some other jobs), and
t,1 t,2 t ,v 1

does not process the job J.o . Let jO be the smallest such index. Then simultaneously
1 ,v+l

with the processing of the jobs 110 I = (j°-1)8+1, (j°-l)8+2, ... , j08, it is possible to

process at most 8 - v jobs J i k since J o ~ F o , and the job J.o has not yet been
, 1 'IiO 1 ,1 1 "iO

processed. This contradicts the fact that, in schedule so, each job I{ is simultaneously

processed with some job J i,k'

The implementation of the described reduction takes G(n08) time. Since the 3-partition

problem is NP-hard in the strong sense, we conclude that Problem 2.4(a) is also NP-hard in

the strong sense.

Note that if C (N, 0), Problem 2.4(a) is solvable in G(n3 ) time [211]. In this case,
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1, 2, ... , n;

the processing system may consist of M uniform machines operating at different speeds.

Problem 2.4(a) is solvable in O(n2 ) time if no resource constraints are imposed and the

reduction graph G is an arbitrary circuit-free graph (see Section 5.5 of Chapter 2).

2.13. The decision problem corresponding to Problem 2.4(b) is as follows: determine

whether there exists a schedule S° that is feasible with respect to G and satisfies the

resource constraints such that E t;(SO) ::; y for a given y.
ieN

To prove that the formulated problem is NP-hard, we use the reduction constructed in

Section 2.12. The only change required here is: y = 2n08(2n08+ 1).

If the desired partition of set N° into three-element subsets exists, then the schedule

constructed in Section 2.12 may be taken as s°. It is easy to verify that E t;(SO)
ieN

2n08(2n08+1).

Let us find a lower bound on E tits) for all schedules (including those that are not
ieN

feasible with respect to G and/or to the resource constraints) in which both machines have

no intermediate idle time. Let x denote the number of jobs to be processed on the first

machine. Then the second machine processes 4n08 - x jobs. It is easy to check that

m}n I tits) = min{x(x+l)/2+(4n08-x(4n08-x+l)/2!O ::; x ::; 4n08} = y,
ieN

where x = 2n08. Thus, for any schedule 5 (and therefore for any feasible schedule) we have

E titS) = y if and only if each machine processes 2n08 jobs and has no idle time.
ieN

Otherwise, E titS) > y.
ieN

Suppose that there exists a schedule S° that is feasible with respect to G and to the

resource constraints such that E ti(SO) y. Without loss of generality, the first
ieN

machine may be assumed to process jobs I, and Ii, I = 1, 2, ... , n08. Then the

considerations presented in Section 2.12 imply that the sequence in which the jobs are

processed on the second machine defines a desired partition of set N°.

Thus, Problem 2.4( b) is NP-hard in the strong sense.

2.14. Due to Remarks 1.2 and 1.3 (see Section 1.8 of this chapter), the fact that

Problems 2.1(a) and 2.4(a) are NP-hard in the strong sense implies that Problems 2.1 and

2.4 are NP-hard in the strong sense in the following cases:

(c) F(s) = Lmax(s);

(d) F(s) = zmax(s); Di = D, i
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(e) F(s) E Zi(s); Di = D, i = 1, 2, ... , n;
teN

Chapter 4

(f) F(s) = E Uj(S); Dj = D, i = 1, 2, ... , n.
teN

Similarly, Remark 1.2 and the fact that Problems 2.2(a)-(c) are NP-hard in the strong

sense imply that Problem 2.2 is NP-hard in the strong sense in the following cases;

(i) F(s) E zi(S); C = (N, 13); Dj = D, i = 1, 2, ... , n;
ieN

(j) F(s) E Oiizi(S); C = (N, 13); Dj = D, i = 1, 2, ... , n; and preemption is allowed;
ieN

(k) F(s) = E OijZj(S); t j = 1; Dj = D, i = 1, 2, ... , n.
ieN

Remark 1.4 implies that Problems 2.2(d), 2.2(e), 2.2(h) also remain NP-hard in the

strong sense if preemption is allowed.

2.15. Remark 2.2. Consider a class of problems for which all release times d j and

processing times t j are integers. Let Problems A and B of this class differ only in that

in Problem A either all t i = 1 or t j E {0,1} and no preemption is allowed, while in

Problem B the values of tj may be arbitrary integers and preemption is allowed only at

integer times. Then it is obvious that there exist both polynomial and pseudopolynomial

reductions of Problem A to Problem B.

This and the NP-hardness in the strong sense of Problems 2.1(a)-(f), 2.2(c), 2.2(e),

2.2(g), 2.2(h), 2.2(k), 2.4(a)-(f) imply that all these problems remain NP-hard in the

strong sense if the processing times are not unit but arbitrary integers, provided that

preemption is allowed only at integer times.

3. Reducibility of the Vertex Covering Problem

This section uses the vertex covering problem as a standard problem to prove the

NP-hardness of scheduling problems.

A non-directed graph r = (V, E) and a positive integer Yo are given. A set of vertices

W ~ V is called a vertex covering of graph r if each edge of set E is incident to at least

one vertex in W. Does there exist a vertex covering WO of graph r such that IWO I ~ Yo?

Let V = {I, 2, ... , v} and e = lEI. Then the input length of the vertex covering problem
under binary encoding is in the interval lct(v+e), cz(v+e)logv], while under unary

encoding this is in the interval [c3(v z +e), c.v(v+e)]. Here c l , Cz, C3, c. are constants

independent of v and e, 0 < c1 ~ CZ, 0 < C3 ~ c•.
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The vertex covering problem is NP-complete in the strong sense.
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3.1. This section studies the following problems.

Problem 3.1. The jobs of a set N = {1, 2, ... , n} enter a processing system consisting

of two identical parallel machines at time d = O. A job i E N can be processed on any

machine, and this takes t i time units. Preemption is not allowed. A precedence relation

with the reduction graph G = (N, U) is defined over set N. Each connected component of G

is an outtree. It is required to find a schedule s* for processing the jobs of set N that

is feasible with respect to G and minimizes the function F(s) = E ti(s), where ti(s) is
ieN

the completion time of job i in schedule s.

Problem 3.2. The jobs of a set N = {1, 2, ... , n} enter the processing system consisting

of M identical parallel machines, M ;:: 2, at time d = O. The processing time of a job i E N

is ti time units. No preemption is allowed. Each job i E N is given the due date Di ;:: 0 by

which it is desirable that processing is completed. A precedence relation is defined over

set N. Each connected component of the reduction graph G = (N, U) is an outtree. It is

required to find a schedule s* for processing the jobs of set N that is feasible with

respect to G and minimizes the function F(s) = Lmax(s) =max{ti(s) -Di liE N} provided that

t i = 1, i = 1, 2, ... , n.

We show that both formulated problems are NP-hard in the strong sense.

3.2. The following decision problem corresponds to Problem 3.1: determine whether there

exists a schedule SO for processing the jobs of set N that is feasible with respect to G

and such that E ti(SO) ~ y for a given y.
ieN

We show that the vertex covering problem reduces to the formulated decision problem in

polynomial time.

The set N of jobs is defined as follows. Each vertex j of graph r is associated with
the job Vj called a vertex job. Replace the edges of r by the arcs: an edge [jl, j2] E £

is replaced by the arc (jl, j2) if jl < j2 and by the arc (j2, jd if jl > j2' Let the

arcs be numbered by the integers from 1 to e. The arc with the number k, k = 1, 2, ... , e,

is associated with the job £kJ), corresponding to the starting vertex of the are, and with
the job £k2) corresponding to the terminal vertex of the arc. These jobs are called edge
jobs. Define the precedence relation ~ over the set of all vertex jobs and edge jobs as

follows: V j ~ £kl) (or Vj ~ £k2
») if and only if vertex j is the starting vertex (or the

terminal vertex) of the arc with the number k. Define t(Vj) = 1, i = 1, 2, ... , Vj
t(£k

l
)) = t(£k

2
») = 1+k, k = 1, 2, ... , e.
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Define a = 16(v+e+1)3, and introduce 3v+6e+2a+a(v+2e+a) auxiliary jobs of four types:

I n t(Jr ) = 1, r = 1, 2, ... , 2v+2e+a,

J;, t(J;) = 0.5, r = 1, 2, ... , v+2e+a,

L~I) and L~2), t(L~'») = t(L~2») = 1+ p, p = 1, 2, ... , e,

(r) (r)
lq , tU q ) = 1J2a, q = 1, 2, ... , a, r = 1, 2, ... , v+2e+a.

Define the precedence relation __ over the set of the auxiliary jobs in the following

way (only the reduction of this relation is given; see Fig. 3.1):

Jr_1 -- I n r = 2, 3, ... , 2yo, r = 2Yo+e+1, 2Yo+e+2, ... , 2v+e,

r = 2v+2e+1, 2v+2e+2, ... , 2v+2e+a;

J2r_ 1 ~ J;, r = 1, 2, ... , Yo;

J 2r- e+1 -- J;, r = yo+e+1, yo+e+2, ... , v+e;

J V+r _1 __ J;, r = v+2e+1, v+2e+2, ... , v+2e+a;

(I) (I). (I)
Lp -- J 2yO+P' Lp -- J yo+P' J2YO+p-l __ Lp , p = 1, 2, ... , e;

(2) (2). (2)
Lp -- J 2V+e+P' Lp -- JV+e+P' J 2V+e+p-1 -- Lp , p = 1, 2, ... , e;

J; __ l\r), r = 1, 2, ... , v+2e+a;

(r) (r)
Iq_1 -- lq , q = 2, 3, ... , a, r = 1, 2, ... , v+2e+a.

I IzaO
I
(,

Fig. 3.1

I
0]

I
0]

!
0]
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It is easy to verify that each connected component of the reduction graph G of the

constructed precedence relation is an outtree. Figure 3.1 displays a graph obtained from G

by removing all arcs of the form (Vj , Ell)) and (Vj, E12
»). The following notation is

used: 0\ - a vertex job; t:" - an edge job; • - a job .Ir ; • - a job .I;; 0 - a job L~I) or

L~2 ); 0 - a job l~r). Images of the jobs are accompanied by their corresponding processing

times.

Let set N = {I, 2, ... , n} consist of all vertex, edge and auxiliary jobs. Construct a

schedule SO for processing the jobs of set N in the following way. The jobs I n L~l) and

L~2), r = 1, 2, ... , 2v+2e+a, p = 1, 2, ... , e, and only these, are processed on the first

machine one after another with no intermediate idle time according to a sequence that is

feasible with respect to G (see Fig. 3.1). The remaining jobs are processed on the second

machine. For job .1;, let its immed iate predecessor (with respect to ---+) be completed on

the first machine at time T r . Assume that in schedule SO the processing of job J;, r = 1,

2, ... , v +2e +a, on the second machine starts at time Tr' Denote the corresponding
v+2 e +a

completion time by T;. It is obvious that T; =Tr +1/2. Denote T= E T;. Assume that in
r=l

schedule SO the processing of job li
r

), r = 1, 2, ... , v +2e +a, on the second machine starts

at time T; and all jobs l~r), q = 1, 2, ... , a, are processed by the second machine

immediately one after another according to a sequence that is feasible with respect to G.

In Fig. 3.1 the jobs placed in the same column are processed on the first machine (top

row) and on the second machine (all other rows) in the same time interval. The vertex jobs

and the edge jobs are processed on the second machine according to the sequence shown in

Fig. 3.1.

Let graph r contain such a vertex covering W that IWI ~ Yo' Then the sequence of

processing of the vertex jobs and the edge jobs may be chosen to make schedule SO feasible

with respect to G. In fact, let in the time interval [0, 2Yol the second machine process

the vertex jobs corresponding to the vertices of W. If IWI < Yo, then in this interval it

is possible to process Yo - IWI other vertex jobs. The definition of a vertex covering of
graph r and that of the precedence relation over the set of the vertex jobs and the edge
jobs imply that at time t = 2yo it is possible to start processing at least one of two

jobs Ell) and E12
) for each k = 1, 2, ... , e. These edge jobs are processed in the time

interval [2yo, 2Yo+2e+e(e+l)/2] according to the sequence shown in Fig. 3.1. The rest of

the vertex jobs are processed in the time interval [2Yo+2e+e(e+l)/2, 2v+2e+e(e+l)/2] and

the other edge jobs are processed in the interval [2v +2e +e( e+1 )/2, 2v +4e+ 2e( e +1 )/2].

Define
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Y = 2b+a(2v +e(e+5)) +a(a+ 1)/2 +(a+I)T+ (a+ l)(v+2e+a)/4,

where

Chapter 4

b = 2(v+2e)(2v+e(e+5)).

Observe that a > 2b.

Let us estimate the value of .E t;(so). The set {Jr> L~J), L~2)lr = I, 2, ... , 2v+2e+a,
.eN

p = I, 2, ... , e} of jobs is partitioned into five subsets Nh, h = I, 2, ... , 5, as shown in
Fig. 3.1. Set Nt contains 2yo jobs Jr> r = I, 2, ... , 2yo, each of the sets N2 and N4

contains 2e elements; set N3 consists of 2(v - Yo) jobs, and set Ns consists of a elements
4

Jr' In the expression E E t;(50), replace all t;(so) by 2v+e(e+5) which is equal to
h=l ieNh

the completion time of job J 2v+2. in schedule SO Then
4

I I t;(50) < 2(v+2e)(2v+e(e+5)) = b.
h=1 ieNh

It is not difficult to compute E t;(SO) = a(2v+e(e+5))+a(a+I)/2. Let N6 denote the
i eNs

set of the vertex and edge jobs, Nr denote the set of jobs J;, r = 1, 2, ... , v+2e+a, and

NB denote the set of all jobs I~r). It is clear that N = UNh , E t;(50) < b,
h=1 ieN6

E t;(SO) = T. It is also easy to check that E t;(so) = aT+(a+l)(v+2e+a)/4.
ieN7 leNs

Thus, if graph r has a vertex covering W such that IWI$; Yo, then E t;(SO) < y.
ieN

Suppose that the inequality IWI> Yo holds for any vertex covering W of graph r. Note
that for any schedule s that is feasible with respect to G the relations E t;(s) ~

i eNs

a(2v+e(e+5))+a(a+I)/2, E t;(S) ~ T, E t;(S) ~ aT+(a+l)(v+2e+a)/4 hold. Assume
ieN7 teNs

that in a schedule s, processing each job J; starts at time T r . Then, no more than Yo

vertex jobs may be completed by time t = 2yo. Since IWI> Y for any vertex covering W of

graph r, it follows that there exists at least one index k such that at time t = 2yo both

jobs Ei t ) and £i2) have at least one non-completed predecessor. Hence, in any schedule s

that is feasible with respect to G, at least one of the following situations arises: (a)

there exists such a k that the processing of job Jk starts no earlier than time t = Tk+ 1;

or (b) the processing of at least one of the edge jobs starts no earlier than time

t = 2v+e(e+5)+a-1. In any case, we have E titS) > E titS) +a ~ Y- 2b+a > y since
i eN ieNsuN 7uN

88
a> 2b.

Thus, a schedule SO that is feasible with respect to G and such that E I;(so) <; Y
ieN

exists if and only if there exists a vertex covering of graph r containing at most Yo
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vertices. The implementation of the described reduction requires at most O((v+e)6) time.

Hence, Problem 3.1 is NP-hard in the strong sense.

Note that, if G = (N, 0), Problem 3.1 is solvable in O(nlogn) time (see Section 9.3 of

Chapter 2).

3.3. The following decision problem corresponds to Problem 3.2: determine whether there

exists such a schedule sO that is feasible with respect to G such that Lmax(so) ~ y for a

given y.

We provide a polynomial reduction of the vertex covering problem to the formulated

decision problem.

Define M = (v+e)e+l, y = O.

The set N of jobs is defined as follows. Transform a non-directed graph r into the
directed one as in Section 3.2. Associate a vertex j of the constructed graph with the

vertex job Vj' j = 1, 2, ... , v. Associate the arc with the number k with two groups of
. (I) (2)

edge Jobs Ek,p and Ek,p, k = 1, 2, ... , e, p = 1, 2, ... , e+k. The first group of jobs

corresponds to the starting vertex of an arc, while the second group corresponds to the

terminal vertex of an arc. Besides, introduce two groups of auxiliary jobs: Qt~, Qk~~,

k = 1, 2, ... , e, q = 1, 2, ... , (v+e)k, and J~h), h = 1, 2, ... , 5e+4, r = 1, 2, ... , r(h),

where r(l) = M-yo, r(h) = M-e, h = 2, 3, ... , e+2, h = 2e+5, 2e+6, ... , 3e+5;

r(h) = M - ((v+e-l)(h - e- 2) +e), h = e +3, e+ 4, ... , 2e+2; "(2e+3) = M; r(2e +4) =M -v +Yo;

r(h) = M - 4e+h - 5, h = 3e+6, 3e+ 7, ... , 4e+ 4; r(h) = M - (v+e)(h - 4e- 4), h = 4e+5, 4e+6,

... , 5e+4. All introduced jobs form the set N = {I, 2, ... , n}.

Introduce the precedence relation - over the constructed set N as follows (only the

reduction of this relation is given): Vj - Et~ (or Vj - Ek~~) if and only if j is the

starting vertex (or the terminal vertex) of the arc with the number kj

Ek~~_, - Ek~~, Ek~~_, - Ek~~, p = 2, 3, ... , e+k, k = 1, 2, ... , ej
(I) (1) (2) (2)

Ek,e+k - Qk,q, Ek,e+k - Qk,q, q = 1, 2, ... , (v+e)k, k = 1, 2, ... , ej

J\h-I) _ J~h), h = 2, 3, ... , 5e+4, r = 1, 2, ... , r(h).

Each connected component of the reduction graph G of the constructed precedence

relation _ is an outtree. Figure 3.2a gives an example of graph r and Figure 3.2b shows
the corresponding graph G. The arcs (J\h- 1l , J~h)), h = 9, 10, 11, 12, r = 2, 3, ... , r(h),

(I) Q(I) . d E(2) Q(2)as well as (E1,3, 3,q) q = 1, 2, ... , 5, an (2,4' 4,q), q = 1, 2, ... , 10, are not shown

in Fig.3.2b. The following notation is used: 0 - a vertex jobj '" - an edge job; 0 - a job

Q(I) or Q(2) . • _ a J'ob J(h).
k,q k,q' r
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J,ll! J,12I J,(J1

1

•
2
~.

2
( a)

3'.
Chapter 4

. 0

~,
0

0

0

0

0 0

0 0

0 0

V,o--~(I} • 0 Q

Vo--~ 0 0

J £'{: E',~; E~~; [£~

(b)

Fig.3.2.

Define D(Vj ) = 2e+4, j = 1, 2, ... , v; D(Ei:~+k) = D(Ei~~+k) = 3etk+4, k = 1, 2, ... , e;

D(Et~) = D(Ei~~) = 4(etl), p = 1, 2, ... , etk-l, k = 1, 2, ... , e; D(Qi~~) = D(Qi~~)

4etkt4, q = 1, 2, ... , (vte)k, k = 1, 2, ... , e; D(J~h») = h, h = 1, 2, ... , 5et4, r = 1,

2, ... , r(h).

Let us establish the conditions under which there exists a schedule sO for processing

the jobs of the constructed set N that is feasible with respect to G and such that

Lmax(so) ~ O.

Since each job J~h) has exactly h-l predecessors and D(J~h») = h, it follows that if

Lmax(so) ~ 0 then each job J~h) starts at time t = h -1. The latest due date in the

formulated problem is equal to 5et4, while INI = (5et4)M. Therefore, if the inequality

Lmax(so) ~ 0 holds, then at each time the processing system must process exactly M jobs.

Let graph r have a vertex covering W such that IWI ~ Yo' Tn this case, it is possible

to construct a schedule SO that is feasible with respect to G and satisfies the required

conditions. Tn fact, in the time interval [0, I}, it is possible to process Yo vertex

jobs, among which there are IW I jobs corresponding to the vertex covering. Hence, at time
t = 1 at least one of two jobs Ei:~ and Ei~l may start processing, k = 1, 2, ... , e. Tn the
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time interval [2, 2e +1], it is possible to process e groups of edge jobs E~~~, p = 2,

3, ... , e+k, k = 1, 2, ... , e, where v = 1 or v = 2 depending on which of the two jobs Etl
or E~2l was processed in the time interval [1, 2]. Moreover, in the time interval

[1, 2e'+I], it is possible to process the jobs Qk~~, k = 1, 2, ... , e-l, q = 1, 2, ,

(v+e)k), where v is defined as in the previous case, and the jobs Q~~~, q = 1, 2, ,
(v+e)e) can be assigned to be processed in the interval [2e+l, 2e+2] for the same v. The

rest of the vertex jobs are processed in the time interval [2e+3, 2e+4], the rest of the

edge jobs are processed in the interval [2e+4, 4e+4], and the rest of the jobs Qt~ are

processed in increasing order of k in the interval [4e+4, 5e+4]. As mentioned, the

processing of each of the jobs J~h) starts at time t = h - 1. A typical structure of

schedule SO is shown schematically in Fig. 3.2b, where the jobs placed in the same row are

processed on the same machine and those placed in the same column are processed in the

same unit time interval.

It is not difficult to verify that Lmax(so) = O.
Suppose now that any vertex covering of graph r contains at least Yo+1 vertices.

In this case, for any schedule for processing the jobs of set N that is feasible with

respect to G, there exists at least one index k' such that both jobs Ek~~l and Ek~~l nave

at least one predecessor that is not completed by time t = 1. Therefore, in any schedule s

that is feasible with respect to G, at most M(2e+2)-yo jobs may be completed by time

t = 2e+2. In fact, the following cases are possible: (a) at time t = 1 less than e jobs

E~~l may start processing; (b) at a time t = 1 it is possible to start processing at least

e jobs E~~l but among them there is no such pair EtL E~~l that k < k' (for k'

mentioned above); (c) at time t = 1, it is possible to start processing at least e jobs

Ek~l and among them there is such a pair Ek~~.l' E~~~.l of jobs that k" < k'.

In case (a), at most M(2e+2)-(e+k')-(v+e)k'+(v-yo) jobs can be completed by time

t = 2e+ 2 in any feasible schedule. In case (b), at most M(2e+2) - (v+e)k'+(v -Yo) +(e - 2) jobs

can be completed. Consider case (c) in more detail. Unlike in schedule so, assume that

instead of one of the jobs EP~l' E~~~l it is possible to start processing a job E~~~.l

at time t = 1. Since for a fixed v the number of jobs Q~~\q is equal to k" and

k" < k', it follows that no more than M(2e+2) - (v+e)k' +(v+e)k"+(e -2) < M(2e+2) -Yo jobs

may be completed by time t = 2e+2. Hence, in the time interval [1, 2e+2] tnere exists a

unit subinterval in which less than M jobs are processed, i.e., one of the necessary

conditions for the existence of the required schedule is violated.

Thus, a schedule SO that is feasible with respect to G and such that Lmax(so) ;,; Y

exists if and only if graph r has a vertex covering containing at most Yo vertices.
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The implementation of the described reduction requires at most O( (v +e )e2 ) time.

Since the vertex covering problem is NP-hard in the strong sense, Problem 3.2 is

NP-hard in the strong sense as well.

Note that if each component of the graph G is an intree (not an outtree) Problem 3.2

becomes solvable in O(nlogn) time (see Section 8.2 of Chapter 8).

3.4. It follows from Remark 1.1 (see Section I of this chapter) and from the fact that

Problem 3.2 is NP-hard in the strong sense that this problem is also NP-hard in the strong

sense if the objective function F(s) = Lmax(s) is replaced by:

(a) F(s) = zmax(s);

(b)F(s) = E Zj(s);
ieN

(c)F(s) = E u;(s);
ieN

Due to Remark 2.2 (see Section 2 of this chapter) and the fact that Problems 3.2 and

3.2(a)-(c) are NP-hard in the strong sense, we conclude that these problems remain NP-hard

in the strong sense if the processing times are not unit but arbitrary integers, provided

that preemption is allowed only at integer times.

4. Reducibility of the Clique Problem

This section uses the clique problem as a standard decision problem for proving the

NP-hardness of some scheduling problems.

The clique problem is as follows. Given a non-directed graph f = (V, E) and a positive

integer Yo, does f contain such a complete subgraph (a clique) fO = (V0, EO) that

1V0 I $ Yo?
The input length of a clique problem in the binary alphabet is contained in the

interval [cdv+e), c2(v+e)logv], while the input length encoded in the unary alphabet

belongs to the interval [C3( v2 +e), C4V(V +e)J. Here v = IV I, e = IE I, and CI, C2, C3, C4

are constants independent of v and e (0 < c i $ C2, 0 < C3 $ c4 ).

The clique problem is NP-hard in the strong sense.

4.1. The section examines the following problems.

Problem 4.1. The jobs of a set N = {I, 2, ... , n} are processed on a single machine

starting at time d = O. All processing times are unit. No preemption is allowed. Each job

i E N is given the· due date Dj • A precedence relation with the reduction graph G is defined
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over set N. It is required to find a schedule s* for processing the jobs of set N that is

feasible with respect to C and minimizes the total tardiness F(s) = E z;(s), where
ieN

Zi(S) = max{O, t;(s)-D;} and titS) is the completion time of job i in schedule s.

Problem 4.2. The jobs of a set N = {l, 2, ... , n} enter the processing system consisting

of two identical parallel machines at time d = O. Any job i E N can be processed on any of

the machines. This takes t; E {I, 2} time units, and no preemption is allowed. A precedence

relation is defined over set N, and C is the reduction graph of that relation. It is

required to find a schedule 5* for processing the jobs of set N that is feasible with

respect to C and minimizes the function F(s) in the following cases:

(a) F(s) tmax(s) = max{t;(s) liE N};

(b) F(s) E t;(s).
ieN

Problem 4.3. The jobs of a set N = {J, 2, ... , n} enter a processing system consisting

of M identical parallel machines, 2 ~ M < n, at time moment d = O. All processing times

are unit. No preemption is allowed. A precedence relation with the reduction graph C is

defined over set N. It is required to find a schedule s* for processing the jobs of set N

that is feasible with respect to C and minimizes the function F(s) in the following cases:

(a) F(s) tmax(s);

(b) F(s) E titS).
ieN

In what follows, the formulated problems are shown to be NP-hard.

4.2. The following decision problem corresponds to Problem 4.1: determine whether there

exists such a schedule s° for processing the jobs of set N that is feasible with respect

to C and such that E z;(sO) ~ y for a given y.
ieN

We show that the clique problem reduces to the formulated decision problem in

polynomial time.

The set N of jobs is to be formed as follows. Associate each vertex j of graph r with
the vertex job Vj, j = 1, 2, ... , v. Associate each edge (j, k) of graph r with a group of v

edge jobs E}~t, r = 1, 2, ... , v.

The precedence relation -+ is defined over the constructed set N as follows (only the

reduction of the relation is presented):

Vj -+ E}~t, and Vk -+ E}~t, (j, k) E E;

E(T-1) . (T) .
j,k -+ Ej,k' r = 2, 3, ... , v, (j, k) E E.

Define
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Y = (e - Yo(Yo -1 )/2)(v - Yo) + (e - Yo(Yo - 1)/2)( e - Yo(Yo - 1)/2 + 1)v/2;

D(Vj) = v+Yo(Yo-l)v/2, j = 1, 2, ... , v;

D(E~~k) = v+ve, (j, k) E E, r = I, 2, ... , v-1;
(v)

D(Ej,k) = Yo+Yo(Yo-1)v/2.

Chapter 4

Suppose that graph r contains a clique with at least Yo vertices. Then there exists a
clique f' = (V', E') such that IV'I = Yo' Consider a schedule SO for processing the jobs

of the constructed set N in which (a) in the time interval [0, Yo] exactly Yo vertex jobs

corresponding to the vertices of clique f' are processed; (b) in the time interval [Yo,

Yo+Yo(Yo -I )v/2] the jobs corresponding to the edges of f' (there are Yo(Yo-l )v/2 such

jobs) are processed according to a sequence that is feasible with respect to G (G is the

reduction graph of relation ~); (c) starting at time yo+yo(Yo-1)v/2 the remaining vertex

jobs are processed, and when these are completed, the remai.ning edge jobs are processed in

such a way that the jobs connected by an arc in G are processed with no intermediate idle

time. It is obvious that SO is feasible with respect to G, and E 2j(SO)
ieN

(e-yo(Yo-1)/2)(3v+ve-2Yo-Yo(Yo-1)v/2)/2 = y.
Suppose now that any clique in graph r contains at most Yo -1 vertices. Then, in any

schedule that is feasible with respect to G, at most yo(yo-1)/2-1 edge jobs E~~k can be

processed in the time interval [0, yo+yo(Yo-l)v/2). If, in some schedule s', all vertex

jobs are completed in the time interval [0, v+Yo(Yo-1)v/2), then E 2j(S') ~ E 2j(so)+1 ~
ieN ieN

y+ I. Let N1 denote a set of all vertex jobs, and N2 denote a set of all edge jobs EJ~k,

(j, k) E E. It is obvious that E 2j(S) = E 2j(S) for any schedule s. Hence, it
ieN ieN}uN2

follows that the search for a schedule s that satisfies the inequality E 2j(S) S Y may be
leN

restricted to considering the schedules in which the jobs E~~k, r = 1, 2, ... , v, (j and k

are fixed) are processed immediately one after another, and the processing of a vertex job

Vj starts at time t = 0, or immediately after the completion of some vertex job, or

immediately after the completion of some job E~~k. Suppose that in a schedule s" that is

feasible with respect to G a vertex job Vj' is processed outside the time interval [0,

v + Yo(Yo -1 )v/2] and processing starts after a job E~~;,k" is completed. Transform schedule

s" into a schedule s", in which (a) the starting time of Vj' is v time units earlier

than that in schedule s"; (b) the starting time of each of the jobs E~~;,k'" r 1,

2, ... , v, is delayed by one time unit; (c) the rest of the jobs are processed as in

schedule s". Since tv As") ~ v+yo(Yo-l)v/2+1, it is easy to verify that
J

L2j(S"') = L2j(s")+I-(tv ,(s")-v-Yo(Yo-1)v/2)
ieN ieN J



NP-Hard Problems

+ max{O, t v As")-2v-Yo(Yo-I)vj2} $ L Zi(S"),
] ieN

291

This implies that [z;(s') $ [z;(s) for all feasible schedules S in which less than v
ieN teN

vertex jobs are processed in the time interval [0, v+Yo(Yo-I)v/2]. Hence, when r does not
have a clique containing at least Yo vertices, the inequality [Zi(S) ~ y+I holds for any

teN
schedule S that is feasible with respect to G.

The implementation of the described reduction requires at most O(ve) time.

Thus, Problem 4.1 is NP-hard in the strong sense. Remark 1.4 (see Section of this

chapter) implies that Problem 4.1 also remains NP-hard in the strong sense in the

preemptive case.

Provided that G

Chapter 2).

(N, 0), the problem is solvable in O(n
3

) time (see Section 4.5 of

4.3. The following decision problem corresponds to Problem 4.2(a): determine whether

there exists a schedule SO for processing the jobs of set N that is feasible with respect

to G and such that tmax(so) $ Y for a given y.

We construct a polynomial reduction of the clique problem to the formulated decision

problem.

The set N of jobs is to be formed as follows. For graph r, associate each vertex j E V

with the vertex job Vj' Associate each edge (j, k) E E with the edge job Ej,k' Introduce

3v+2e auxiliary jobs denoted by Jr> r = 1, 2, ... , 3v+2e.

Denote a = 2(v + e) and define the precedence relation -+ over the constructed set N (only

the reduction of the relation is presented):

Vj -+ Ej,k and Vk -+ Ej,k for all (j, k) E E;

Jr _1 -+ I n r = 2, 3, , aj

Ja+r -+ J 2r> r = 1, 2, , Yo;

J 2r -+ Ja+r+l, r = 1, 2, ... , yo-I;

J a+Yo+r -+ J YO (YO+1)+2r> J Yo(Yo+l)+2(r-l) -+ Ja+Yo+r> r = 1, 2, ... , v-yo'

The subgraph of the reduction graph G of the constructed precedence relation -+ induced

by the set of all auxiliary jobs is shown in Fig. 4.1.

Fig.4.1.
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Define Y = 2(v+e)j t(Vj) 1, j 1, 2, ... , vi t(Ej,k) = 2 for all (j, k) E Ej

t(Jr ) = 1, r = 1, 2, ... , 3v+2e.

We show that, in the constructed decision problem, a schedule SO that is feasible with

respect to G and such that tmax(sO) $ Y exists if and only if graph r has a clique

containing at least Yo vertices.

It is easy to verify (see Fig. 4.1) that if the relation tmax(s) $ Y holds for a

schedule S that is feasible with respect to G, then in schedule s each job I n r 1,

2, ... , a, is processed in the time interval [r-l, r"J, each of the jobs Ja+n r = 1, 2, ... ,

Yo, is processed in the time interval [2r-2, 2r-l], and each of the jobs Ja+yo+r ' r = 1,

2, ... , v-Yo, is processed in the time interval [Yo(Yo+l)+2r-2, Yo(Yo+l)+2r-I]. Therefore,

in the following, we consider only those schedules that satisfy these conditions. Without

loss of generality, we may restrict our search to considering only the schedules s in

which the jobs I n r = 1, 2, ... , a, and only those, are processed on the first machine.

Since the total processing time of all vertex jobs, all edge jobs and the jobs Ja+n

r = 1, 2, ... , v, is equal to 2(v+e) = Y, it follows that the second machine has no idle
time in the lime interval [0, aJ. Hence, if the relation tmax(s) $ Y holds for a schedule

s that is feasible with respect to G, then exactly Yo -1 vertex jobs have to be completed

by time t = 2yo - 2, and v - Yo -1 vertex jobs have to be processed in the time interval

[Yo(Yo + 1) + 1, Yo(Yo - 1) + 2v - 2J. The length of the time interval between the completion time

of job Ja+yo and the starting time of job Ja+
Yo

+1 is equal to Yo(Yo-1) + 1. The number

Yo(Yo-1)+ 1 is odd, the number of the vertex jobs which are not yet assigned is equal to

two, the processing time of each edge job is equal to two time units. Hence, in the

interval in question only one of these jobs can be processed. Therefore, time left in this

time interval must be used to process Yo(Yo -1 )/2 edge jobs.

It is obvious that a schedule s in which Yo(Yo -1)/2 edge jobs are processed after Yo

vertex jobs are completed is feasible with respect to G if and only if graph r has a
clique containing at least Yo vertices.

If graph r contains such a clique, then a schedule SO that satisfies all of the above

conditions and such that in SO one vertex job is processed on the second machine in the

time interval [Yo(Yo -1) + 2v -1, Yo(Yo -1) + 2v J, and the remaining jobs are processed in the

interval [Yo(Yo-1)+2v, aJ, is feasible with respect to G and tmax(sO) = y.
Suppose that any clique in r contains at most Yo-1 vertices. In this case, at least one

of the introduced necessary conditions is violated for any schedule s that is feasible

with respect to G and, hence, t max( s) ~ y +l.
The implementation of the described reduction requires at most O(v+e) time.
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Thus, Problem 4.2(a) is NP-hard in the strong sense.

Note that if the condition t; E {1, 2} is replaced by the condition t; = 1, i = 1,

2, ... , n, then Problem 4.2(a) becomes solvable in polynomial time. The running time of the

corresponding algorithm is O(n2 ) (see Section 5.5 of Chapter 2).

4.4. The following decision problem corresponds to Problem 4.2(b): determine whether

there exists a schedule SO for processing the jobs of set N that is feasible with respect

to G and such that [t;(SO) ~ Y for a given y.
ieN

Let the decision problem constructed in Section 4.3 be called Problem A. To prove the

NP-hardness of Problem 4.2(b), we use Problem A. For Problem A, consider schedule so, and

denote the set of jobs processed on the first and second machines by N1 and N2,

respectively. Since E t;(SO) a(a+1)/2 and E t;(so) ~ E t;(SO), we have
ieN} ieNZ ieN}

E t;(SO) ~ a(a+1).
ieN

For the decision problem corresponding to Problem 4.2( b), form the set N' of jobs by

adding a(a+1) auxiliary jobs J;, t(J;) = 1, r = 1, 2, ... , a(a+1), to set N. Extend the

precedence relation defined over set N to set N' and complete its definition as follows:

J;_1 ~ J;, r = 2, 3, ... , a(a+1)j

J a ~ Jij Ej,k ~ Ji for all (j, k) E E.

Let the reduction graph of the precedence relation defined over N' be denoted by G'.

a( a+l)
Define y' = a(a+l)+ E (a+r). We show that a schedule s' for processing the jobs of

r=l

set N' that is feasible with respect to G' and such that [ t;(s') ~ y exists if and
ieN'

only if graph r has a clique containing at least Yo vertices.
Suppose that in Problem A there exists a schedule SO for processing the jobs of set N

that is feasible with respect to G and such that tma.(SO) ~ y = a. Construct a schedule s'

for processing the jobs of set N' as follows. All vertex jobs, edge jobs and auxiliary

jobs I n r = 1, 2, ... , 3v+2e, are processed in schedule s' as in schedule so, while the

auxiliary jobs J;, r = 1, 2, ... , a(a+l), are processed in the time interval [a, a(a+2)] on

any of the available machines in numerical order.

It is easy to check that schedule s' is feasible with respect to G' and
a( a +1)

L 7;(5') ~ a(a+l)/2+ L (a+r) = y'.
ieN r= 1

Suppose that for Problem A the relation tma.(s) ? a+1 is valid for any schedule 5 that

is feasible with respect to G. It is obvious that, in this case, in any schedule s" for
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processing the jobs of set N' that is feasible with respect to G', the starting time of job

J{ is not less than a+l, and
a( a +1)

I t;(s") ~ a(a+l)j2+ I (a+r+l) = y'-a(a+l)j2+a(a+l) > y'.
i eN' r= 1

For Problem A, a schedule SO that is feasible with respect to G and such that

tmax(so) ::; a exists if and only if graph r has a clique containing at least Yo vertices.

Therefore, a feasible schedule s· for processing the jobs of set N' for which

E t;(s')::; y' exists if and only if graph r contains a required clique.
ieN"

The implementation of the described reduction requires at most O((v+e)2) time.

Thus, Problem 4.2(b) is NP-hard in the strong sense.

If G = (N, 0), Problem 4.2(b) is solvable in polynomial time even in a more general

situation where t; are arbitrary positive numbers, the machines operate at different

speeds and their number is more than two (see Section 9.3 of Chapter 2). The corresponding

algorithm requires O(nlogn) time.

4.5. The decision problem corresponding to Problem 4.3(a) can be formulated as follows:

determine whether there exists such a schedule sO for processing the jobs of set N that is

feasible with respect G and such that tmax(sO) ::; y for a given y.

Define M = I+max{yo, v+Yo(yo-3)j2, e-yo(Yo-l)j2} and y = 3.

Form the set N of jobs in the following way. Associate each vertex j of graph r with
the vertex job Vj' Associate each edge (j, k) with the edge job Ej,k' Include also three

groups of auxiliary jobs: J~l>, r = 1, 2, ... , M -Yo; J~2), P = 1, 2, ... , M -v-Yo(yo-3)j2;
(3)

J q , q = 1, 2, ... , M-e+Yo(Yo-l)j2.

Define the precedence relation __ over the constructed set N by specifying its reduction

as follows:

Vj __ Ej,k and Vk -- Ej,k for all (j, k) E E;

J~l) __ J~2) for all rand p;

J~2) __ J~3) for all p and q.

The definition of the number of machines M implies that one of the three groups of

auxiliary jobs contains exactly one job.

If a schedule s that is feasible with respect to G satisfies the condition tmax(s) ::; 3,

then the following conditions hold:

(a) all jobs J~l), r = 1, 2, ... , M-yo, are processed during the time interval [0, I];

(b) all jobs J~2), p = 1, 2, ... , M-v-Yo(Yo-3)j2, are processed during the interval
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1, 2, ... , M - e +Yo(Yo -1)/2, are processed during the interval

[1, 2];

(c) all jobs J~3), q

[2, 3].

Therefore, the search for a schedules s that is feasible with respect to G and such that

tmaAs) ::; 3 can be restricted to considering the schedules for which:

(a) Yo vertex jobs are processed during the time interval [0, 1];

(b) e-Yo(Yo-1)/2 edge jobs are processed during the interval [2, 3];

(c) the remaining vertex jobs (their number is v-Yo) and the remaining edge jobs (their

number is Yo(Yo-1)/2) are processed during the interval [1, 2].

From considerations similar to those used in Sections 4.3 and 4.5, we derive that a

schedule sO that satisfies the above conditions is feasible if and only if graph r has a
clique containing at least Yo vertices. In this case, in schedule SO the vertex jobs

corresponding to the vertices of the clique are processed during the time interval [0, 1],

and the edge jobs corresponding to the edges of the clique are processed during the time

interval [1, 2].

The implementation of the described reduction requires at most O((v+e)2) time.

Thus, Problem 4.3(a) is NP-hard in the strong sense.

If M = 2, Problem 4.3(a) is solvable in O(n2 ) time (see Section 5.5 of Chapter 2).

4 .. The following decision problem corresponds to Problem 4.3(b): determine whether

there exists a schedule SO for processing the jobs of set N that is feasible with respect

to G and such that I: ti(so) ::; Y for a given y.
ieN

We show that the clique problem reduces to the formulated decision problem in polynomial

time. To do this, we use the decision problem described in Section 4.5. The only required

change is Y = 6M.

Suppose that in the constructed problem there exists a feasible schedule SO such that

tmax(so) = 3. Note that since each of the machines processes at most one job at a time, a

schedule s with tmax(sO) < 3 does not exist. It is easy to calculate that I: t,(so) = 6M.
ieN

If a schedule s is such that tmax(s) ~ 4, then it is obvious that I: ti(s) ~ 6M +1 > y.
ieN

As shown in Section 4.5, a schedule SO that is feasible with respect to G and such that

tmax(so) ::; 3 exists if and only if graph r has a clique containing at least Yo vertices.
Thus the required reduction is constructed.

If G = (N, 0), Problem 4.3(b) is solvable in O(nlogn) time. The corresponding algorithm

(see Section 9.3 of Chapter 2) solves the problem (provided that G = (N, 0)) even if the

processing times are arbitrary and the machines operate at different speeds.
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4.7. Denote L;(s) = tits) -D;, z;(s) = max{O, L;(s)}, u;(s) = sgn(z;(s)), where D;,

i = 1, 2, ... , n, are the due dates. Define Lmax(s) = max{Li(s} liE N}, zma,(s) =

max{z;(s} liE N}.

Due to Remarks 1.2 and 1.3 (see Section 1 of this chapter), the facts that Problem

4.2(a) and Problem 4.3(a) are NP-hard in the strong sense imply the following results.

Problem 4.2 is NP-hard in the strong sense in the following cases:

(c) F(s) = Lma,(s);

(d) F(s) = zmax(s); Di = D, i = 1, 2, , n;

(e) F(s) = [Zi(S}; Di = D, i = 1, 2, , n;
ieN

(f) F(s) = [ui(S); Di = D, i = 1, 2, ... , n.
ieN

Problem 4.3 is NP-hard in the strong sense in the following cases:

(c) F(s) = zmax(s); D; = D, i = 1, 2, , n;

(d) F(s) = [z;(s}; D; = D, i = 1, 2, , n;
ieN '

(e) F(s}= [ u;(s); D; = D, i = 1, 2, ... , n.
ieN

Remark 1.4 (see Section 1 of this chapter) implies that Problem 4.1 remains NP-hard in

the strong sense if preemption is allowed.

Due to Remark 2.2 (see Section 2 of this chapter), the facts that Problems 4.1 and

4.3(a)-(e} are NP-hard in the strong sense imply that these problems remain NP-hard in the

strong sense if the processing times are arbitrary integers are preemption is allowed only

at integer times.

4.8. If the due dates Di are assigned for jobs i E N, it is often required to find a

schedule s with no late jobs with respect to these due dates, i.e., a schedule such that

ti(s) $ Di for all i E N.

Remark 4.1. Let the only difference between decision Problems A and B be as follows. In

Problem A, it is required to check the existence of a schedule s' for processing the jobs

of set N such that Lma.(s') $ Y (or zma.(s') $ y} for a given y, while in Problem B it is

required to verify the existence of a schedule s" for processing the jobs of the same set

N that is feasible with respect to the given deadlines. Then there exist both polynomial

and pseudopolynomial reductions of Problem A to Problem B.

In fact, if D;, i E N, are the due dates in Problem A, then take D; Di+y as the

deadlines D; in Problem B. It is easy to verify that in Problem B, a schedule for

processing the jobs of set N that is feasible with respect to the deadlines D; exists if
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and only if in Problem A there exists such a schedule s' that Lmax(s') ~ y (or

zmax(s') ~ y).

This implies that each of the problems of the existence of a schedule that is feasible

with respect to the assigned deadlines corresponding to Problems 1.1(d), 1.2(a), 2.I(d),

2.4(d), 3.2, 4.2(d) and 4.3(c) is NP-hard in the strong sense except the first problem,

which is NP-hard but not in the strong sense.

Let in Problems 2.I(d), 2.4(d), 3.2, 4.3(c) the processing times are not unit but

arbitrary integers, and preemption is allowed only at integer times. Then, due to Remark

2.2 (see Section 2 of this chapter), the problems of the existence of a schedule that is

feasible with respect to the assigned deadlines, which correspond to the problems listed

above, are NP-hard in the strong sense.

5. Reducibility of the Linear Arrangement Problem

This section uses the linear arrangement problem as a standard problem. This problem

can be formulated as follows.

A non-directed graph r = (V, E) with no multiple edges or loops is given such that

IV I = v, IE I = e, and a positive integer Yo are given. The vertices of the graph are

arranged at integer points in the interval [0, v -I]. For a given arrangement, the length

of an edge (i, j) E E is defined as IXi - Xj I, where Xi and Xj are the coordinates of the

points at which the vertices i and j are arranged, respectively. It is required to

determine whether there exists an arrangement of the graph such that the total length of

the edges /, IXi - Xj I does not exceed Yo'
(i,J TeE

It is clear that a linear arrangement of graph r is specified by a permutation of the
vertices.

The input length of the formulated problem in the binary alphabet belongs to the

interval [cl(v+e), cz(v+e)logv], while that encoded in the unary alphabet belongs to the

interval [c3(v z+e), c4v(v2+e)], where c l , cz, C3, c. are constants independent of v and e,

o < c1 ~ cz, 0 < C3 ~ c•.

The linear arrangement problem is NP-complete in the strong sense.

5.1. This section examines the following scheduling problems.

Problem 5.1. A single machine processes the job of a set N = {I, 2, ... , n} available at

time d = O. The machine must operate with no idle time. The processing of each job i E N
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requires t i time units, and no preemption is allowed. Each job i E N is associated with

the re<j.1 number (the weight) ai' A precedence relation with the reduction graph G is

defined over the set N. It is required to find a schedule s" for processing the jobs of

set N that is feasible with respect to G and minimizes the function F(s) in the following

cases:

(a) F(s) = E aiti(s)j t, = 1, a, E {A, A+1, A+2}, i = 1, 2, ... , n, A E {O, ±1,
ieN

±2, ... }j here ti(s) is the completion time of job i in a schedule Sj

(b) F(s) = E t;(s), t i E {I, 2}, i = 1, 2, ... , nj
ieN

(c) F(s) = E ti(s), ti E {a, i}, i = 1, 2, ... , n;
ieN

(d) F(s) = E a;ti(s), ti = 1, ai E {O, I}, i = 1, 2, ... , n.
ieN

We show that these problems are NP-hard. Since in each of the above problems a schedule

s is specified by a permutation 1r of the elements of set N, along with the notation F(s)

and ti(s) we write F(rr) and ti(rr), respectively.

5.2. The following decision problem corresponds to Problem 5.1(a): determine whether

there exists a schedule SO for processing the jobs of set N that is feasible with respect

to G and such that E aiti(s) ~ Y for a given y.
ieN

We show that there exists a polynomial-time reduction of the linear arrangement problem

to the formulated decision problem.

We start by establishing the NP-hardness of Problem 5.1 in the case F(s)

and ai E {-I, 0, I}, i = I, 2, ... , n.

The set N of jobs is to be formed as follows. Associate each vertex j of graph r with
. (1) (2)

the vertex job Vj' Associate each edge (j, k) with the pair of edge Jobs Ej,k and Ej,k'
(1) (I)

Define the precedence relation -- over the constructed set N: Ej,k -- Vj, Ej,k -- Vkt
(2) (2) . f h rVj -- Ej,kt Vk __ Ej,k for all edges (j, k) 0 grap .

(1) (2)
Define y = Yov4 +(v4 +2e-l)ej t(Vj) = v\ a(Vj) = 0, j E V; t(Ej,kl = t(Ej,k) = 1,

a(E}~k) = -1, a(E}~k) = 1, (j, k) E E.

Let Problem A be the following decision problem: determine whether there exists a

schedule SO for processing the jobs of set N such that E a;ti(so) ~ y.
ieN

It is not difficult to check that, in Problem A, a feasible schedule is specified by a

permutation of the jobs. Since it is required to verify the existence of a schedule SO

that is feasible with respect to G and such that L a;ti(sO) <; y, the search can be
ieN

restricted to examining only those permutations in which there are no other vertex jobs
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between a job E;:k and the leftmost of the jobs Vi and Vk • In fact, we have O'(E;:k) = -1.

Therefore, moving job E;:k to the right and maintaining the sequence of the other jobs

will only decrease the value of the objective function. Similarly, since O'(E;~k) = 1, the

search can be restricted to considering only those permutations in which there are no

other vertex jobs between a job E;~k and the rightmost of the jobs Vi and Vk'

Besides, observe that preemption, if allowed at integer times, does not extend the

available possibilities, i.e., among the preemptive schedules there are no schedules with

a smaller value of the objective function, as compared with the best of the non-preemptive

schedules. In fact, consider a permutation 1f in which there is no vertex job between the

vertex jobs Vir and Vis If, in 1f, there is no edge job between Vir and Vi,' then an

interruption of the processing of Vir followed by the processing of Vi, does not change

the value of the objective function since O'(Vi ) = 0, j E V. Suppose that, in 1f, there is

at least one edge job E}~k, p E {1, 2}, between the jobs Vir and Vis Taking into account

that only those permutations which satisfy the restrictions presented above, are

considered, we derive that either Vir ---.,> E}~k (if p = 2) or E;~k ---.,> Vi, (if p = 1) must be

satisfied. Therefore, if the processing of job Vir is interrupted, job E;~k may start

either only later, as compared with the sequence 1f, if p = 2, or only earlier if p = 1. In

any case, the value of the objective function may only increase. If, in 1f, there are some

other vertex jobs between Vir and Vi,' then an interruption of the processing of Vir

followed by the processing of Vi, does not decrease the objective function value either.

Thus, consider the problem of finding a processing sequence for the jobs of set N.

Suppose that a permutation 1f is feasible with respect to graph G of the reduction of the

precedence relation defined over N. In 1f, fix the sequence 1f' formed by all vertex jobs.

The sequence 1f' specifies the sequence 1f" of the numbers of the vertices of graph r. Let
1f"(j) denote the position at which j is located in permutation 1f". If the jobs are

processed according to the sequence 1f, the completion time of job E}~k is denoted by

t(E;~k(7r)), p E {1, 2}.

It is easy to verify that for the permutations of the elements of set N that satisfy

all restrictions introduced above, the following inequalities

v4 min{1f"(j), 1f"(k)}-v4 +1 $; t(E;:k(1f)) $; v4 min{1f"(j), 1f"(k)}-v4 +2e-1,

v4 max{1f"(j), 1f"(k)}+2 $; t(E}~k(1f)) $; v4 max{1f"(j), 1f"(k)}+2e

hold.

Hence, we have

v4 (max{7f"(j), 1f"(k)} - min{7f"(j), 1f"(k)}) +v4 -2e+3
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s t(E)~k(rr)) - t(E):k(rr)) s V4 (max{rrN(j), rrN(k)}

- min{rrN(j), rr N(k)})+v4+2e-l,

which is equivalent to

Chapter 4

v4Irr(j) -rr(k) I+v4- 2e+3 s t(E)~k(rr)) - t(E):k(rr)):::; v4Irr(j) -rr(k) I+v4+2e-l.

. (I) (2)
Smce Q(Vj ) = 0, c>(Ej,k) = -1, Q(Ej,k) = 1 we have

L C>iti(rr) L (t(E)~k(rr)) - t(E)~k(rr)))
ieN (j,k)eE

and, hence,

v4 L IrrN(j)_rrN(k)1 +(v4-2e+3)e S Lc>;t;(rr)
(j,k)eE ;eN

S v4 L IrrN(j)_rrN(k)I +(v4+2e-l)e.
(j,k ) eE

For graph r, let there exist a linear arrangement (i.e. a permutation rrN) for which
the total length of the edges does not exceed Yo. Then, for any permutation rr of the

elements of N that is feasible with respect to G and satisfies the additional restrictions

we have

L c>;t;(rr) s v4Yo+(v 4 +2e-l)e = y.
ieN

If for any linear arrangement of the vertices of graph r the total length of the edges
is greater than Yo, then, for any permutation rr of the elements of N that is feasible with

respect to G, we have due to v4 > 4e2 that

L c>;ti(rr) ;:: v4(Yo+l)+v4e-2e2 +3e > y.
ieN

Thus, Problem A has a solution if and only if the linear arrangement problem has a

solution. Note that the implementation of the described reduction requires O(v+e) time.

Let us construct a polynomial transformation of Problem A to Problem 5.1(a), replacing

each vertex job Vj by a group of v4 jobs V)q), q = 1, 2, ... , v\ and setting t(V)q») = 1,
V(q) 4 . V· V(q) V(q+l) 4Q( j ) = 0, q = 1, 2, ... , v , J E , j __ j ,q = 1, 2, ... , v -l.

Due to the above remark on the preemptive schedules, it suffices to consider the
4

schedules in which the jobs V)I), V)2) V)v ) are processed immediately one after

another. Since c>(V)q)) = 0, we conclude that the constructed problem (let us denote it by

B) is equivalent to Problem A.

In Problem B, let us denote the set of jobs by N', Increase all Q;, i EN', by the

constant '\' = 1+.\ and examine how this changes the value of E Qit;(rr), Here rr is a
ieN'
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permutation of the elements of N'. Since IN'I = v5 +2e and all processing times are unit,

we have (assuming 01' = OIi +A')

L OIiti (1f) = L (OIj+,\')t j(1f) = L 0I;ti(1f)+A'(v5 +2e+1)(v5 +2e)f2.
ieN" ieN' teN'

Defining y = v4Yo+(v4 +2e-1)+A'(v5 +2e+1)(v5 +2e)f2, we obtain the problem equivalent

to Problem B.

The implementation of the described reduction of the linear arrangement problem to

Problem 5.1(a) requires O(v5 ) time.

Thus, Problem 5.1(a) is NP-hard in the strong sense.

Note that if graph G is series-parallel, Problem 5.1(a) is solvable in O(nlogn) time

(see Section 4 of Chapter 3). Chapter 3 describes some other polynomially solvable special

cases of Problem 5.1(a).

5.3. The following decision problem corresponds to Problem 5.1(b): determine whether

there exists a schedule SO for processing the jobs of set N that is feasible with respect

to G and such that E tj(so) ~ Y for a given y.
ieN

We show that the decision problem corresponding to Problem 5.1(a) with ,\ = 2 reduces to

the formulated decision problem in polynomial time.

In Problem 5.1(a), replace the condition t j = 1, i = 1, 2, ... , n, by the condition

t i = 4, i = 1, 2, ... , n. Such a replacement results in the problem equivalent to the

initial one if we choose y' = 4yo (here Yo is the constant in the initial problem) and

consider the problem of the existence of a schedule that is feasible with respect to G and

such that the value of the objective function does not exceed y'. It is easy to verify

that, for this problem, preemption, if allowed at integer times, does not extend the

available possibilities.

Let us make the following transformations in Problem 5.1(a) (assuming t i = 4). Replace

each job i such that OIj = 4 (let the number of such jobs be rIl, by a group of four jobs
i(1), i(2), i(3l, i(4), assuming OI;<q) = 1, t;<q) = 1, q = 1, 2, 3, 4; i(q) __ i(q+l),

q = 1, 2, 3. Replace each job j such that OIj = 3 (let the number of such jobs be r2 ), by a

group of three jobs j(1), j(2), /3), assuming 01 .(q) = 1, q = 1, 2, 3; t .(1) = 2,
] ]

t .(2) = t(3) = 1, /q) -+ j(q+J), q = 1, 2. Replace each job k such that OIk = 2 (let the
] ]

number of such jobs be r3), by a pair of jobs k(l) and k(2l, setting OI
k
(l) = OI

k
(2) = 1,

tk(l) = t
k
(2) = 2; k(l) -+ k(2). Besides, if in the original problem the relation i -+ j

holds, then replace it by the relation i(ql) __ /q2) for all the jobs of the groups by

which the jobs i and j have been replaced.
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Due to the above remark on preemptive schedules, the search can be restricted to

considering those schedules for processing the jobs of the constructed set N' in which the

jobs of each new group are processed immediately one after another.

Let S be a schedule in Problem 5.1(a) (with t; = 4) and s' be the corresponding

schedule for processing the jobs of set N' (each job of set N is replaced by the

corresponding group). It is easy to verify that

L ait;(s) = L tj(s')+6rl+3rz+2r3'
ieN jeN'

Define y y' - 6rl - 3rz - 2r3' It is obvious that a schedule SO for processing the jobs of

set N' that is feasible with respect to the precedence relation defined over N' and such

thatE tj(so) ~ y exists if and only if in Problem 5.1(a) with A = 2 and t i = 4, there
lEN'

exists a schedule s for processing the jobs of set N that is feasible with respect to G

and such that E ait;(s) ~ y' = 4yo·
ieN

The implementation of the described reduction requires O(n) time.

Thus, Problem 5.1(b) is NP-hard in the strong sense.

5.4. A proof of the NP-hardness of Problem 5.1(c) can be done in a similar way using

the following transformations. Define A = 1. Replace each job j E N such that a; = 3 by a

group of three jobs j(I), j(Z), P), assuming ai(q) = 1, q = 1, 2, 3; tp) = 1,
tp ) = tpJ = 0, j(q) _ j(q+l), q = 1, 2.
Replace each job j such that aj = 2 by a pair j<'), j(2), assuming ap) = a/Z) = 1,

t(l) = 1, t(Z) = 0, j<') _ j(Z).
] ]

The NP-hardness in the strong sense of Problem 5.1(d) follows from the NP-hardness in

the strong sense of Problem 5.1(b) and Lemma 2.1 (see Section 2 of this chapter).

5.5. Remark 1.2 (see Section 1 of this chapter) and the fact that Problems 5.1(a)-(d)

are NP-hard in the strong sense imply that Problem 5.1 is also NP-hard in the strong sense

in the following cases:

(e) F(s) E a;z;(s); t;
ieN

1, D; = D, Oi; E {A, A+l, A+2}, 1, 2, ... , n, A E {O,

±1, ±2, ... };

(f) F(s) E z;(s); t; E {I, 2}, D; = D, j = 1, 2, ... , n;
ieN

(g) F(s) E zitS); t i E {O, I}, D; = D, j = 1, 2, ... , n;
ieN

(h) F(s) E Oi;Z;(S); t; = 1, D; = D, Oii E {O, I}, j = 1, 2, ... , n.
ieN

Due to Remark 2.2 (see Section 2 of this chapter), the facts that Problem 5.1(a),
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5.1(d), 5.1(e), 5.1(h) are NP-hard in the strong sense imply that these problems are

NP-hard in the strong sense if the processing times are not unit but arbitrary integers,

provided that preemption is allowed only at integer times. Similarly, Problems 5.1(c) and

5.1(g) are NP-hard in the strong sense, so it follows that these problems remain NP-hard

in the strong sense if the condition t i E {O, I}, i = 1, 2, ... , n, is replaced by the

condition: t i are arbitrary integers, provided that preemption is allowed only at integer

times.

Remark 1.4 (see Section 1 of this chapter) implies that Problems 5.1(a)-(h) are also

NP-hard in the strong sense in the preemptive case.

6. Bibliographic Notes

The partition problem, the vertex covering problem and the clique problem have been

proved to be NP-complete by Karp [74]. A proof of the NP-completeness of clique problem

was earlier outlined by Cook [82]. The NP-completeness of the 3-partition problem has been

established by Garey and Johnson [271, 56]. The same authors together with Stockmeyer

[277] have proved the linear arrangement problem to be NP-complete.

In this section, we use a special notation for describing scheduling problems. The

five-field notation <XII <X21 <X31 <x4 1<Xs corresponds to the description of the problems given in

Table 1.2 of Introduction, where the fields <Xl> <X2 , <X3 , <X4 , <Xs correspond to the first

five columns Table 1.2, respectively. For example, the description 11 t i ; d; III t i :s D;

corresponds to the first line of Table 1.2.

Problems 1.1(a) (2It;; d; = 01 I Itmax ) and 1.1(c) (2Iti; d; = 01 I IL<X;t;) are proved

to be NP-hard by Livshits and Rublinetsky [100J, see also [220]. The NP-hardness of

Problem 1.l( b) (21 ti; di = 0 III tmaxLt,) is established by Lenstra [345 J. The NP-hardness

of Problem 1.2( a) (11 t i ; d; III Lmax ) is proved by Brucker et aI. [217]. The problem of

finding a schedule that is feasible with respect to the deadlines corresponding to Problem

1.2(a) is NP-hard in the strong sense (the 3-partition problem reduces to the latter

problem [56]). Hence, Problems 1.2(a), 1.2(c) (llti; dillizmax ) and 1.2(d) (lit;; dilllLu;)

are also NP-hard in the strong sense. The NP-hardness of Problem 1.2(b) (11 t;;

d i = 0 III L<Xiui) is independently proved in [74J and [100]. Note that earlier Lawler and

Moore [342] established that Problem 1.2(b) was equivalent to the well-known knapsack

problem (which is NP-hard [74]). The proof of the NP-hardness (in the ordinary sense) of

Problem 1.3 (M It;; di = 0 II M = M(N, D) IM; Ii :s D) belongs to Sahni [392]. In fact, Problem
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1.3 is NP-hard in the strong sense. To construct the reduction of the 3-partition problem

to that problem, it suffices to define n = 3no; t; = y;, i = 1, 2, ... , nj 0 = 6; y = no.

Problem 2.1(a) (31t; = 1; d; = OIRs(I)lltmax ) is shown to be NP-hard in the strong

sense by Garey and Johnson [271J. Blazewicz [209] asserts that Problem 2.1(b) (31t; = 1;

di = OIRs(I)II!:"ti ) is NP-hard (a proof is not given). Problem 2.2(a) (lit;; dilll!:"t;) is

proved to be NP-hard in the strong sense by Lenstra et al. [349], the same complexity

status for Problem 2.2(b) (lIt;; diIPrll[OIJ;) is determined by Labetoulle et al. [324J.

Lenstra and Rinnooy Kan [348] prove Problems 2.2(e) (1.lt; = 1; d; = 0IGII[OIiz;), 2.2(g)
(llti = 1; d; = OIClI[OIJ;; t; :'> 0;), and 2.2(h) (lit; = 1; d; = 0IG/I[u;) to be

NP-hard in the strong sense, and assert that Problem 2.2( c) (ll t; = 1; d;j G II [OI;t;) is of

the same complexity (a proof is not presented). Problem 2.2(d) (11 ti; d; = 0 III [OI;Z;) is
shown to be NP-hard in the strong sense by Lawler [335J and Lenstra et ai. [349]. The NP

hardness in the strong sense of Problem 2.2(f) (11 t;; d; = 0 III [OIJ;; t;:,> D;) is

established in [349]. Note that earlier these problems were proved to be NP-hard (in the

ordinary sense) in (l00] and [217], respectively. Problem 2.3 (21 t;; d; = 017-11 Eli) is

shown to be NP-hard in the strong sense by Sethi [405J. Blazewicz et al. [211] prove

Problems 2.4(a) (21ti = 1; d; = 0IG; Rs(I)lr; E {O, I} It max ) and 2.4(b) (21ti = 1;

di = 0 IG; Rs(l) Iri E {O, I} I[t;} to be NP-hard in the strong sense. That survey paper
examines the complexity of other scheduling problems under resource constraints. Let the

problem 31 t i = 1; d; = 0 IRs(q) IRk = 1, rik E {O, I} IF(s) be called Problem A. Here we are

given q types of resources, and Rk is the total amount of kth resource available at any

time, Rk = I, k = 1, 2, ... , q. At any time of its processing, a job i E N = {I, 2, ... , n}

consumes r;k E {O, 1} units of the kth resource. It is required to find a resource

feasible schedule s for processing the jobs of set N that minimizes the function F(s),

assuming that (a) F(s) = tmax(s) or (b) F(s) = [ t;(s). Problem B differs from Problem A
ieN

only in that here the processing system consists of two uniform parallel machines and the

processing time tiH of job i E N on machine H is equal to aH (Le., Problem B is

21t;H = aH; d; = 0IRs(q)IRk = l, rik E {O, 1}IF(s)). Remarks 1.2 and 1.3 (see Section 1)

imply that Problems A and B are also NP-hard in the strong sense in the following cases:

(c) F(s) = Lmax(s), (d) F(s) = zmax(s), (e) F(s) = E zits), and (f) F(s) = [ u;(s).
ieN ieN

In all these cases it is assumed that 0; = 0, i = 1, 2, ... , n. Remark 2.2 (see

Section 2) implies that Problems o4(a)-(f) remain NP-hard in the strong sense if the

processing times are not unit but arbitrary integers, provided that preemption is allowed

only at integer times. It follows from Remark 4.1 (see Section 4) that the problems of

finding a schedule that is feasible with respect to the deadlines corresponding to
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Problems A(d) and B(d) are also NP-hard in the strong sense.

The first proof of the NP-hardness in the strong sense of Problem 3.1 (2 [t;;

d; = 0 IT+ II ti;) was given by Sethi [405]; Section 3.2 presents a simpler proof. The first

attempt to prove that Problem 3.2 (M It; = 1; di = 0 IT+ II Lmax ) is NP-hard in the strong

sense was made by Brucker et al. [216J. The proof given in Section 3.3 is based on the

scheme proposed in [216]. As mentioned in Section 4.8, the NP-hardness in the strong sense

of Problem 3.2 implies that the corresponding problem of the existence of a schedule that

is feasible with respect to the deadlines is NP-hard in the strong sense as well.

Transform the latter problem in the following way. Replace the condition d i = 0, i = 1,

2, ... , n, by the condition d; ~ 0, i = 1, 2, ... , n (the jobs do not enter the processing

system simultaneously); replace the condition "each connected component of G is outtree"

condition by the condition "each connected component of G is intree", and introduce the

condition Di = D, i = 1, 2, ... , n. The obtained problem is, in fact, Mit; = 1; d;IT-1
D; = DIIi $ Di. Let us call it Problem H. It is easy to verify that Problem H is

equivalent to the original one (see [216]) and, hence, is NP-hard in the strong sense.

Thus, the problem of finding a time-optimal schedule under the conditions of Problem H is

also NP-hard in the strong sense. Due to Remarks 1.2 and 1.3, the NP-hardness in the

strong sense of Problem H for F(s) = Imax(s) implies that it is also NP-hard in the strong

sense in the following cases: F(s) = Lmax(s); F(s) = zma.(s), F(s) = E z;(s),
ieN

F(s) = E ui(s). In all the cases D; = D, i = 1, 2, ... , n. Remark 2.2 implies that the
ieN

above problems remain NP-hard in the strong sense if the processing times are not unit but

arbitrary integers, provided that preemption is allowed only at integer times.

Problems 4.1 (lit; = 1; d; = 0IGIIEz;) and 4.2(b) (2It; E {I, 2}; di = 0IGIIEti) are

proved to be NP-hard in the strong sense by Lenstra [345J. The same complexity status of

Problem 4.3(b) (Mit; = 1; d; = O[GIIEti) is established in [217] by Brucker et al. The

proof of the NP-hardness in the strong sense of Problems 4.2(a) (2It; E {I, 2};

d; = 0 IGil t max ) and 4.3(a) (M [t; = 1; d; = 0 [Gil t max ) is due to Ullman [425, 426]. Ullman

(427) also shows that Problem 4.3(a) remains to be NP-hard in the strong sense if

preemption is allowed. Remarks 1.2 and 1.3 imply that this problem (M Iti = 1; di = 0 [Pr;

Gil t max ) remains NP-hard in the strong sense if the objective function tmax(s) is replaced

by any of the following: zmax(s), Lmax(s), E z;(s), or E u;(s) (in all cases D; = D,
ieN ieN

i = 1, 2, ... , n). Due to Remark 4.1, the fact that the problem Mit; = 1; d; = 0IPr;

Gil zmax is NP-hard in the strong sense implies that the problem Mit; = 1; d; = 0 IPrj GI
D; = DIt i $ D; has the same complexity status.
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Lawler [336] proves Problem 5.1(a) (lit; = 1; d; = O[GIa:; E {A, A+1, A+2}, A E {O, il,

±2, ... } IEa:J;) to be NP-hard in the strong sense. The ideas developed in [336) are the

basis for the proof of the NP-hardness in the strong sense of Problems 5.1(b) (11 t; E {I,

2}; d; = 0IGIIEt;) and 5.1(c) (lit; E {O, I}; d, = 0IGIIEt;) presented in Sections 5.3 and

5.4, respectively. The NP-hardness in the strong sense of Problem 5.l(d) is proved by

Lenstra and Rinnooy Kan in [346J.

Lawler [112*J shows that the following problem 11 d; = 0 II Di 2: D;j Eu;, t; ::; Di is

NP-hard. Here the goal is to minimize the number of late jobs (with respect to their due

dates D;) under the condition that all jobs have to meet given the deadlines Di such that

Di 2: D;.

Du and Leung [41*J prove the NP-hardness of the problem 1Id;IPrIIEt;,t;::; D;. This

problem involves minimizing the total flow time on a single machine provided that

preemption is allowed, the jobs are not simultaneously available, and all jobs have to meet

the given deadlines D;.

A pseudopolynomial-time algorithm for Problem 2.2(d) for a:; = 1, i = 1, 2, ... , n,

(11 d; = 0 III Ez;) is due Lawler [335J. Du and Leung [44*) prove this problem to be NP-hard

in the ordinary sense, thus answering a question which was open for more than 15 years.

Yuan [161*J shows that Problem 2.2(d) with D; = D, i = 1, 2, ... , n, (lid; = 011

D; = DI Ea:;z;) is also NP-hard in the ordinary sense. Due to Remark 1.4 (see Section 1),

all these problems remain NP-hard if preemption is allowed (11 d; = 0 IPr II Ez; and
lid; = 0IPrID; = DIEa:;z;).

Leung and Young [122*J have improved results by Lenstra and Rinnooy Kan [348, 345J.

They have shown that the problem 11 t; = l;d; = 0 IC II Ez; is NP-hard in the strong sense.
This problem corresponds to Problem 2.2(e) if a:; = 1, i = 1, 2, ... , n, as well as to

Problem 4.1 in the case of chain-like precedence constraints. As follows from Remark 1.4,

this problem in the preemptive case (lit; = l;d; = 0IPr; CIIEz;) remains NP-hard in the

strong sense. In turn, Remark 2.2 implies that the latter problem remains NP-hard in the

strong sense if the processing times are arbitrary integers, provided that preemption is

allowed only at integer times (ll[t;);d; = 01 [P"J; CIIEz;).

As mentioned above, Problem 1.1(a) (21 t;;d; = 0 III t max ) is NP-hard only in the ordinary

sense. Du et al. [47*J have shown that this problem under chain-like precedence

constraints (2It;; d; = 0IClltmax ) becomes NP-hard in the strong sense. Remarks 1.2

and 1.3 imply that this problem remains NP-hard in the strong sense if the objective

function tmax(s) is replaced by any of the following: zmax(s), Lmax(s), E zits), or
ieN

E u;(s) (in all cases D; = D, i =1, 2, ... , n). Due to Remark 4.1, the fact that the
ieN
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problem 21 ti; di = 0 IC II zmax is NP-hard in the strong sense implies that the problem

2It;; d; = 0IClDi = Dlti $ D; has the same complexity status. The same applies to the

problem Mit;; d; = 01 I Itmax (and some related problems). The NP-hardness in the strong

sense of the latter problem is established by Garey and Johnson [275 J.

The problems to minimize the makespan on two unrelated machines under tree-like

precedence constraints ion the preemptive case (21 tiH; d j = 01 Prj 7-11 t max and 21 t;H;

di = 0 IPr'; 7+ II t max) are NP-hard in the strong sense. It is an unpublished result by

Lawler (see [115*]). Remark 1.2 implies that both these problems remain NP-hard in the

strong sense if the objective function tmax(s) is replaced by either zmax(s) or Lmax(s)

for Di = D, i =1, 2, ... , n. Remark 4.1 implies that the problems 21 tiN; di = 01 Prj 7-1

D; = Dlt; $ Di and 2!tiH; di = 0IPr'; 7+IDi = Dlti $ Di are also NP-hard in the strong

sense.

Du et al. [47*] have improved a result by Sethi [405]. They have proved that Problem

2.3 (2Iti; di = 017-II[ti ) and Problem 3.1 (2Iti; d; = 01T+IIEt;) are NP-hard in the

strong sense not only for intrees and outtrees but even for chains (21 t;; d; = °IC II [t;).

They have proved also that both Problem 2.3 and Problem 3.1 remain NP-hard in the strong

sense if preemption is allowed (21 ti; d; = °IPrj 7-11 [ti and 21 ti; di = 0 IPrj 7+ II [til·

It follows from Remark 1.2 that both latter problems remain NP-hard in the strong sense if

the objective is replaced by [zi for D; = D, i = 1, 2, ... , n.
ieN

The problem of minimizing the total flow time on two identical machines provided that

preemption is allowed and the jobs are not available simultaneously (2Iti; diIPrll[t;) is

NP-hard. This result is due to Du et al. [46*J. As shown in [45*J by Du et a!., this

problem remains NP-hard if the objective function [ti(s) is replaced by [u;(s)
ieN ieN

(2It;; diIPrll[ui)' As follows from Remark 1.2 (See Section 1), the problem also remains

NP-hard if the objective is [Zi, provided that Di = D, i = 1, 2, ... , n.
ieN

Garey et a!. [58*J have improved a result by Ullman [425, 426]. They have shown that

Problem 4.3(a) remains NP-hard in the strong sense even for tree-like precedence

constraints (M 1ti = 1; d; = 0 I7 II t max ). Note that the latter problem can be solved in

polynomial time for any fixed M. Problem 4.3(a) also remains NP-hard in the strong sense

for intrees and outtrees if t; E {I, t}, i = 1, 2, ... , n, (Mlt i E {I, t}; di = 017-lltmax

and Mlti E {I, t}; di = 017+lltmax )' This result is due to Du and Leung [42*]. Both latter

problems are NP-hard in the ordinary sense if M = 2 and t; E {tP: p ~ O} for any integer

t> 1 (2It; E {t P
: p ~ O}, t> 1; di = 0lrlltmax and 21t; E {tP

: p ~ O}, P > 1; di = °
17+lltmax) [42*]. Due to Remarks 1.2 and 1.3, all problems mentioned in this paragraph
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remain NP-hard (either in the strong or in the ordinary sense, respectively) if the

objective tmax(s) is replaced by one of the functions zmax(s), Lmax(s), [z;(s) or
ieN

[ u;(s) (in all cases D; = D, i = I, 2, ... , n). Due to Remark 2.2, the first of mentioned
ieN

problems and the problems obtained from it by the described replacements are NP-hard

in the strong sense if job processing times are arbitrary integers, provided that

preemption is allowed only at integer times (M I[til; d; = 0 I[Prj; Til tmax> M I [t;j;

d; = 01[Pr]; TID; = DILmax> MI[t;]; d; = 01[Pr]; TID; = Dlzmax> MI[t;]; d; = 0I[Pr];

TID; = DI[z; and MI[t;); d; = 0I[Pr]; TID j = DI[u;). Due to Remark 4.1, all problems

mentioned in this paragraph with the objective zmax(s) remain NP-hard (in the strong or in

the ordinary sense, respectively) if formulated as the problems of finding a schedule s

that feasible with respect to the deadlines (t;(s) ~ D;).

Lenstra et al. [120*J establish the NP-hardness in the strong sense of the problem of

minimizing the makespan on M unrelated machines if t;H may have only two values, i.e., if

t;H E {t, n where t < t', 2t l' t', and all jobs are simultaneously available

(Mlt jH E {t, n, t < t', 2t l' t'; d; = Ollltmax' Note that this problem is polynomially

solvable if either t;H = t or t;H E {1, 2}, i = 1, 2, ... , n, H = 1,2, ... , M [120*].

Lawler [114*] shows that minimizing the number of late jobs when scheduling n

independent jobs on M identical machines with preemption (M It;; d j = 0 IPr II [Uj) is an

NP-hard problem. It should be noted that for any fixed M this problem can be solved in

pseudopolynomial time [337]. If the machines are unrelated and the jobs have different

release times, then this problem (M It jH ; d; IPr II [u;) is NP-hard in the strong sense. The

latter result is obtained in [45*] by Du et al.

Problem 4.3(b) (Mit; =1; d j = 0IGII[t;) is solvable in polynomial time if G = (N, 0)

even if the jobs have different processing times [294, 219, 220]. However the latter

problem is NP-hard if the speeds of machines decrease over time (Mit;; dj = 01 Imachine

speed ~ I[til· This result is due to Meilijson and Tamir [128*]. If the speeds increase

then the problem is solvable in O(nlogn) time [128*J. It follows from Remark 1.2 that the

problem is NP-hard if the objective [t;(s) is replaced by [z;(s), provided that
ieN ieN

D; = D, i = 1, 2, ... , n.

Potts and Van Wassenhove [141*] consider the single-machine problem to minimize the

so-called late work [min{t j , zitS)}. They show that this problem (11 t;; d; = 0 I
ieN

II [ min{t;, z;}) is NP-hard in the ordinary sense. This problem is pseudopolynomially

solvable (see [77*) by Hariri et al.).

The problem of preemptive scheduling jobs with equal processing times and different
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release dates on M identical machines to minimize the weighted flow time (M It; = t;

d; IPr II [O'it;) is proved to be NP-hard by Leung and Young [123]. It follows from Remark 1.2

that this problem remains NP-hard if the objective function [O'Ji(S) is replaced by
ieN

[ O';z;(s), provided that Di = D, i = 1,2, ... , n, (Mit; = t; d;jPrID; = DI[O';z;).
ieN

Sin and Cheng [151*] established the NP-hardiness (in the ordinary sense) of the

following problem. Independent and simultaneously available jobs have to be scheduled on M

identical parallel machines without preemption. The objective is to minimize

M
[ {( [ 0';) [ til, where N j is the set of jobs assigned to machine j.

j=1 teNj teN j

The single-machine scheduling problem to minimize [ Oi; It j(s) - Dj I has been studied by
ieN

several authors. Garey et al. [59*] show this problem to be NP-hard if O'i = 1, i =1, 2, ... ,

n, (11 di = 0 III [I t; - Di I ). If the weights Oii are different but the jobs have a common due

date, i.e., Di = D, i = 1, 2, ... , n, (11 di = 0 II D; = DI [O'ilti - DiI) the problem is proved

to be NP-hard by Hall and Posner [74*, 75*]. In the latter case, the problem is

pseudopolynomially solvable and it is polynomially solvable if either t i = t or t i = O'i,
i = 1, 2, ... , n, (see [84*] by Hoogeven and van de Velde). The case in which O'i = 1 and

D; = D, i =1, 2, ... , n, is more complicated. Let the jobs be numbered in such a way that

t;+1 ;:: t; and define T = t n +t n-2 +tn- 4 +.... Then for D < T this problem (11 di = 0 II
D; = D < TI[lt;-D;I) is NP-hard (it is, of course, pseudopolynomially solvable). This

result has been independently obtained by Hall et al. [72*, 73*] and by Hoogeven and

van de Velde [84*]. If D 2: T then the problem is solvable in O(nlogn) time (see [87*] by

Kanet, [7*J by Baker and Scudder).

Kubiak [105*] has proved the NP-hardness of the single-machine scheduling problem to

minimize the completion time variance [ [ti(S) - ! [ titS)] 2 for simultaneously available
ieN nieN

jobs (lit;; di = 0lll[(t;- ~[t;)2). This problem is pseudopolynomially solvable (see [34*]

by De et al.).

Chand and Schneeberger [14*] have established the NP-hardness in the strong sense of

the single-machine scheduling problem to minimize [(D i - ti(s)) for simultaneously
ieN

available jobs, provided that tits) S Di. Moreover, this problem is NP-hard in the strong

sense if the condition D; S [ti , i = 1, 2, ... , n, is imposed or, equivalently, the
ieN

machine is not allowed to be idle (1\ ti; di = 0 II Di s Et;j [(D i - til, t i s Di )·
The statements presented in Sections 1.8 and 2.2 are based on the ideas expressed in

[349] and [348J, respectively.

Many enumerative methods have been developed for solving NP-hard scheduling problems.
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A general formalism of the optimization methods based upon the idea of successive

design, analysis and selection of variants is developed by Mikhalevich, Ermol'ev, Shkurba,

Shor et al. [112-118]. The dynamic programming method is detailed in monograph [12] by

Bellman. A significant development of the constructive approach was made by Moiseev and

his colleagues [119-122]. Some general schemes for solving discrete optimization problems

are proposed by Zhuravlev [62-64], Cherenin [170], Khachaturov [1651, Emelichev and Komlik

[60], Sergienko et al. [144J, Levin and Tanaev [89].

Formalizations and theoretical justifications of the branch-and-bound method have been

presented by Romanovsky [134], Ibaraki [299, 300], Kise [315], Kohler and Steiglitz [319],

Mitten [360], Roy [391], Tang and Wong [421], Baker [193J and some others. The surveys by

Korbut et al. [80], Balas and Guignard [200J, Lawler and Wood [344] contain extensive

bibliographies on these issues; see also [303].

Different modifications of a branch-and-bound algorithm for minimizing the sum of

(weighted) job completion times have been designed by Chandra [229J, Bianco and

Ricciardelli [206] (M = 1, dj ~ 0, i = 1, 2, ... , n); Potts [378] (M = 1, dj = 0, i = 1,
2, ... , n, precedence constraints); Elmaghraby and Park [253J, Baker and Merten [196J,

Barnes and Brennan [203J (M > 1, dj = 0, i = 1, 2, ... , n)j Bansal [202] (M = 1, di = 0,
additional condition: tj(s) ::; Di , i = 1, 2, ... , n)j see also [75, 103, 169, 171, 255, 437,

439]. In [4, 9, 73, 142, 201, 213, 215, 223, 230, 245, 257J applications of the

branch-and-bound method to finding time-optimal schedules are discussed. A number of

problems for single-stage processing systems are considered in [3, 6, 8, 23, 72, 101, 141,

145, 183, 191, 205, 214, 247, 292, 438).

Computational dynamic programming schemes for solving scheduling problems for

single-stage systems are described in [123, 156, 198, 222, 225, 320, 357, 402, 436J.

Graph-theoretical interpretations of scheduling problems and corresponding enumerative

methods have been developed by Sotskov [146-148], Grabovsky [287], Fernandez and Lang

[259J, Fung [265], Kohler [318J, Zak [66].

A number of situations in which the quality of schedules essentially depends on

organizing setup and transportation operations lead to a necessity of considering the

so-called traveling salesman problem and its various generalizations. The traveling

salesman problem is NP-hard (see, for example, [375]). The first branch-and-bound method

for solving this problem is due to Little et al. [102J (by the way, it is in this paper

that the method has got its present name). Bellman [13J describes a dynamic programming

approach to the traveling salesman problem. Different aspects of the traveling salesman

problem are discussed in [303J; a list of about 600 references is presented there.
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Problems of minimizing the (weighted) maximum lateness are considered by McMahon and

Florian [355], Dessouky and Larson [246J, earlier [227], Potts [378J; those of minimizing

the maximum tardiness are studied by Baker and Su [199], Tilquin [422J; those of minimizing

the total tardiness are examined by Schild and Fredman [398], Emmons [254J, Baker and

Martin [195J, Fisher [261], Root [385J, Peterson [376], Shwimer [406J, Srinivasan [418]

et al.

Many heuristic approaches and approximation methods have been developed for sojving

NP-hard scheduling problems.

Extensive experimental studies of comparisons of the efficiency of a number of

heuristic procedures for finding non-preemptive schedules that minimize the maximum

lateness have been made by Davis and Walters [242J (10 procedures, 1560 test problems;

M = 1, n = 5, 10, 15, 20, 25, 30), by Larson and Dessouky [330) (11 procedures, 1200 test

problems; M = 1, n = 20), and by De and Morton [244J (one procedure, 9900 test problems;

M = 2, 4, 8, n = 10, 20, 30, d; = 0, i = 1, 2, ... , n).

Information on approximation methods with worst-case bounds on their performance

guarantees can be found in Appendix and in Table 1.3 of Introduction to this book.

Problems of minimizing the total job processing cost for single-stage systems are

considered in [104, 132, 226, 373, 380, 383, 411, 423, 432J. Systems with "availability

windows" are studied in [16, 132, 262, 367).
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ApPROXIMATION ALGORITHMS

This Appendix presents a review of approximation algorithms with established worst-case

performance guarantees, not included into the Russian edition of the book. As a rule,

polynomial-time algorithms are discussed.

Given a (scheduling) problem, an algorithm <P is called an approximation algorithm if for

any instance of the problem it finds a feasible schedule s°. Schedule S° is called

approximate. Let FO and F* denote the values of the objective function F(s) for an

approximate (s°) and an optimal (5*) schedules, respectively. To estimate the quality of

an approximate schedule sO either IfO - F* I or L1 = IfO - F* I/ IF* I performance guarantee is
used. An algorithm <P is called an e-approximation algorithm if for any 10 > 0 and an

arbitrary problem instance it finds such a schedule s° that L1 ~ e. An e-approximation

algorithm is called fully polynomial if its running time is a polynomial in both 1/10 and

the problem instance length under the binary encoding.

We use the following notation:

tmax = max{td i EN};

tE = E ti (in the case of a single machine or parallel identical machines).
ieN

TH - the total processing time of the jobs assigned to machine H;

T - the running time of an algorithm.

All presented running times depending on M hold under the assumption that M is fixed.

As in Section 6 of Chapter 4, we use the five-field notation ""I "'21 "'31 "'41 "'5 to describe
a scheduling problem. The fields "''' "'2' "'3' "'4, "'s correspond to the five first columns

of Table 1.3 of Introduction. For brevity, some problem discussed below are given numbers.

One of the most popular approaches to developing approximation scheduling algorithms

for a (multi-processor) single-stage system is the list scheduling technique which is as

312
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follows. The jobs are scanned according to a certain sequence (the list). A job is chosen

from the list according to some rule and is assigned to a specific machine. Then this job

is either deleted from the list or marked.

The ways of forming the list, the rules of choosing and assigning a job may vary. As a

rule, the list is a job sequence formed in non-increasing or non-decreasing order of one

of job parameters, e.g., the processing times, the due dates, and etc. The identical job

sequence 1, 2, ... , n may also be taken as a list. The lists of this type are called

random.

The job to be assigned is usually the first one in the list among those ready for

processing. The job is ready if its release date allows it to be processed, if all its

predecessors are completed (in the case of precedence constraints) and so on. The first

available machine is usually taken to process the chosen job. In list scheduling

algorithms presented below, it is assumed that this rule for selecting the machine is

applied, unless stated otherwise.

In the following, instead of using the expression "the list scheduling algorithm where

the Jist is the job sequence sorted in non-increasing (or non-decreasing) order of the

parameter ai" we write "LSA(ai-l-)" or "LSA (ait)" respectively. For the random list, we

write "LSA(R)".

A.l. Problem A.l (M Iti;d j = 0 II M = M(N, D) IM; Ii $ D) is to find the smallest number of

machines sufficient for completing all jobs of set N = {I, 2, ... , n} by the deadline D.

This problem is also known as the bin - packing problem.

Given a schedule, the value D - THis called the time reserve of machine H. Two list

scheduling algorithms with a random list are offered by Garey et al. [270]. According to

the first one, the next job in the list is assigned to the machine with the smallest number

and sufficient time reserve. The second algorithm assigns the next job to the machine with

the smallest but sufficient time reserve. Both algorithms yield Ll $ 7/10+2/F* and

T = O(nlogMo) where MO is the number of machines found by the corresponding algorithm. The

bound on Ll is independently obtained by Garey et al. [269] and Sahni [393]. The first

algorithm is also shown to provide Ll $ 7/10+ I/F* (see [269]). Note that F* :2: ftdDl and
[269) gives instances of the problem such that Ll > 7/10-8/F*.

Algorithms which differ from the above ones only in the way of list constructing are

studied by Johnson et al. [308]. These algorithms are LSA(tj-l-). Both algorithms provide

Ll $ 2/9+4/F* and require T = O(nlogn). The first of them is often used as an auxiliary

algorithm for solving some other problems. We denote that algorithm by <Pl' These and
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related algorithms are also considered in [307] by Johnson.

A.2. Let the problem M Itij di = 0 III t max be called Problem A.2. This is the problem of

minimizing the makespan on M identical parallel machines for simultaneously available

jobs. One of the earliest papers on worst-case analysis of approximation algorithms is

[288] by Graham, and is devoted to Problem A.2. The bound L\ ~ I-11M is proved for LSA(R),

and this bound is tight, i.e., there are instances of Problem A.2 such that L\ = I-11M.

Let Pz be LSA (ti~) for solving Problem A.2. This algorithm is studied by Graham [289].

The guarantee L\ ~ 1/3 -113M is proved, and this bound is tight. Algorithm Pz runs in

T = O(nlogn) time and guarantees FO-F* ~ (l-l/M)tmax' The following a posteriori

guarantees are determined for Pz by Coffman and Sethi [236, 237]. Suppose a schedule SO is

found by </>z and tmax(So) = ti' for some job i'. Let H be a machine which processes job j'

in schedule SO and A be the total number of jobs assigned to H. Then f'O - F* ~ ti~ 1- 11M)

and L\ ~ (A-l)/A-l/(AM) for A ~ 3. It is claimed in [236, 237} that f'O = F* if A E {I, 2}.

However, Chen [15*J has recently proved that in fact for A = 2 the bound L\ ~ 1/3

1/(3(M -1)) holds, and this bound is tight. It is shown by Bakenrot [5*] that L\ -+ 0 as

n -+ 00. Algorithm Pz is proved to have the following property (see [40*J by Dobson). Let

v be such an integer that tmax < F*lv. Then L\ ~ 1/(v+2) and, moreover, L\ ~ min{1/(v+2),

(M -1 )/M(v+ I)} if v ~ 2. Note that L\ ~ I-11M for LSA(tit) (see [238] by Coffman and

Sethi).

Algorithm tf>z can also be applied to Problem A.3 (M Itijd;j II t max ), in which the jobs are

not simultaneously available. In this case, P z provides FO - F* ~ (2 -I/M)tmax (see [96J by

Livshitz). For LSA(dit) the bounds FO-F* < (2-1/M)t max and L\ < min{(2M-1)IM,

(2M-l)t maxltr;} hold (see [71*J by Gusfield).

The following algorithm, further denoted by </>3' is designed by Coffman et al. [233] for

solving Problem A.2. It works like this. Let Dj and Dz be such numbers that Dj ~ F* ~ Dz.

Given an arbitrary D E [D" Dz] solve Problem A.1 (Mlt i ; di = OIIM = M(N, D)IM; t i ~ D)

using algorithm PI' If MO is the resulting number of machines and M ~ MO, an approximate

solution of the original problem is obtained. Otherwise, the value of D should be

increased. The next value of D E [D I , Dz] may be chosen by binary search. After k steps

described, the algorithm generates a schedule such that L\ ~ P+ 1/2k . Here P = 1/7 if M = 2,

P = 2/3 if M = 3, P = 3/17 if M E {4, 5, 6, 7} and P = 11/50 if M ~ 8. Friesen [51*]

improves the latter value of p: p = 0.2 and obtains a lower bound L\ ~ 2/11. Algorithm P3

has T = O(nlogn+knlogM).

Friesen and Langston [54*] modify algorithm P3 and obtain 2/11 ~ L\ ~ 11/61 + 1/2k and
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T = O( nlogn + knlogM). It should be noted that here a constant substituted by "0" is "much

greater" than that for algorithm <1>3'

Hochbaum and Shmoys [82*] use the idea of algorithm <1>3 to provide another approximation

algorithm for Problem A.2. They replace algorithm <1>[ in the scheme of algorithm <1>3 by the

so-called dual approximation algorithm. Given a deadline 0 and a set of jobs to be

scheduled on parallel identical machines, a p-dual approximation algorithm (p > 1)

produces a schedule that uses minimal number of machines but for some machines H it is

allowed that 0 ~ T H ~ pO. The resulting algorithm [82*J yields Ll ~ 1/k+l/2k and

T = 0((kn)k
2

). Leung [121*] has reduced the running time of that algorithm to

O( (kn)kIOgk). For k = 5 and k = 6, Hochbaum and Shmoys have refined their approach to
obtain the algorithm with T = O(nlogn) and T = 0(n(M4+logn )) respectively.

A rather unusual O(n) algorithm for solving Problem A.2 for M = 2 is developed by

Kellerer and Kotov [89*]. The algorithm constructs a list where 9 first jobs have the

largest processing times and t[ ~ t 2 ~ ...~ t 9. The remaining jobs follow them in an

arbitrary order. The jobs are assigned to the machines in the following way. The current

job from the list is assigned to the machine with the largest current value of TH if the

total workload of this machine after such an assignment does not exceed 128/11, where

8 = O. 5tE' Otherwise, this job is assigned to the machine with the smallest current

workload. The stopping criteria are as follows. If for a machine H its current value T H

belongs to the interval [108/11, 128/11], then all remaining jobs are assigned to the

other machine. If the current job has been assigned to the machine with the smallest

current workload and the new workload of this machine is greater than 128/11, all the

remaining jobs are assigned to the other machine. This procedure of assigning the jobs

runs three times, and three schedules are constructed. For the first run, the job with the

largest processing time t[ is assigned to machine 1 and then all remaining jobs are

distributed in accordance with the above procedure. For the second and third runs, the

jobs with the processing times tIl t 5, t 6 and t[, t4, respectively, are assigned to

machine 1. The best of these three schedules is chosen as an approximate solution. It is

shown in [89*] that Ll ~ 1/11.

A.3. Problem AA (M Iti ; di = 0 IG II t max ) differs from Problem A.2 by imposing precedence

constraints. Most of list scheduling algorithms for solving that problem are based on the

concept of "height" hi of a vertex i in the reduction graph G. The height hi of a vertex

i is equal to the length of the longest path from i to a leaf (a terminal vertex) of G

(I.e., to a vertex with no successors). Here the length of a path is the sum of t j where j
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runs over all path vertices.

For an arbitrary graph G, LSA(R) is shown to provide ,1 :S: I-11M, and this bound is tight.

The algorithm LSA(h;~) also yields ,1 :S: I-11M. Both these algorithms run in T = O(n2 ) time

(see [288J by Graham).

If each connected component of G is an intree (the problem MIti; d; = 0 I7-11 t max ) then

algorithm LSA(hi~) guarantees Ff'-F*:S: (l-l/M)tmax and requires T = O(nlogn) (see [96J by

Livshitz and [313) by Kaufman). For this case Kunde [106*) gives another bound:

,1 :S: 1- 2/(M +1). This bound also holds (see [106*]) if each connected component of G is an
outtree (the problem M Iti; di = 0 I7+ II t max )· If each connected component of G is a chain

(the problem Mit;; di = 0 IGil t max ) then ,1 :S: 2/3 [106*J.

If ti = 1, i = 1, 2, ... , n, and G is an arbitrary graph (the problem (M Iti = 1;

di = 0IGlltmax ), let us call it Problem A.5), then LSA(hi~) runs in T = O(n2 ) time, while

,1 :S: 1/3 for M = 2 and ,1 :S: 1-1/(M -1) for M > 2, and this bound is tight at least for M = 3
(see [231] by Chen and Liu). Lam and Sethi [328) analyze the performance of the O(n2 )

algorithm by Coffman and Graham [234J (see Sections 5.4-5.6 of Chapter 2) applied to

Problem 5. They show that ,1 :S: I - 21M, and this bound is tight. It follows from the proof

of the NP-hardness of Problem A.5 (see Section 4.5 of Chapter 4) that, unless P = NP, there

exists no polynomial-time approximation algorithm with ,1 < 1/3. It is obvious that the

same applies to Problem A.4.

For Problem Mlti E {I, t}; d; = 0IGlltmax (here t is a part of the problem input) Goyal

[69*J proposes a generalization of the algorithm by Coffman and Graham [234] (that

algorithm solves Problem A.S for M = 2 exactly and runs in T = O(n2 ) time). This

generalized algorithm yields ,1 :S: 1/3 if t = 2 and ,1 :S: 1/2 -1/2t if t ? 3.

For Problem A.6 (M It;; d; = 0 IPrj Gil t max ) in which, unlike in Problem A.4, preemption

is allowed, Lam and Sethi [328J analyze the performance of the O(n2 ) algorithm by Muntz

and Coffman [369, 370) (see Section 6.5-6.6 of Chapter 2) and show that,1 :S: I-21M, and

this bound is tight.

A.4. Let us consider Problem A.7 (Mltiall; di = 01 I Itmax ) of minimizing the makespan on

uniform machines. Cho and Sahni [232) study LSA(R) in which the next job is assigned to

the first available machine. They prove that a generated schedule guarantees

,1 :S: (V5 -1)/2 if M = 2 and,1:S: V2M - 2/2 if M > 2. The latter bound is tight for M:s: 6, but

in general the worst known example gives,1 = L(log(3M - I)+1)/2J- 1. Liu and Liu [124*] show
,If

that ,1 :S: amaxlamin - I/(am;n [(allt l ). If all = I, H = I, 2, ... , M -I, aM < 1 (Problem A.8)
11=1

then ,1:s: (V5-1)/2 for M = 2 and,1:S: 2-4/(M+I) for M > 2 (see [232]). In all cases
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T = O(nlogM).

Jaffe [85*J generalizes the technique of [124*J and shows that a good result may be

obtained for Problem A.7 when using not all of the machines but only 1 fastest of them. If
k

a1 $ a2 $ ... $ aM then f'O/F* $ AM/A/+ada, + l/a,A/ where Ilk = 1: (aH)-1 and f'O is the value
H=l

of tmax(so) for a schedule SO obtained by LSA(R) applied to 1 fastest machines.

By minimizing the ratio f'O/F* over I, Jaffe derives an algorithm for which

L1 $ v'f.r -1 +O(Ml/4). This bound is tight up to a constant factor.
For LSA(ti~) with the next job to be assigned as described above, the following

guarantees for Problem A.7 are determined by Gonzalez et al. [283J: L1 $ (YIT -3)/4 if

M = 2 and L1 $ 1-2/(M+l) if M > 2, and for Problem A.8: L1:5 (YIT-3)/4 if M = 2 and

L1 $ 1/2-1/(2M) if M > 2. Besides, Morrison [133*J proves that L1:5 max{l, amax /(2amin)-I}

for Problem A.7. The same algorithm is studied by Liu and Liu [351) and the following

guarantees are obtained for Problem A.9 (MltiaH; d i = OllaH = 1, /I #' Mltmax ):

L1 $ (MaM+I-3aM)/2aM if aM < 1/2, L1 :5 (2MaM+I-4a~,)/(2aM+l) if 1/2 $ aM $ 1 and

L1 $ l/aM+l/(MaM+l-aM) if a,lf > 1. In all cases T = O(nlogn).

For LSA(ti~) with the next job to be assigned to that machine which would complete its

processing earlier, the bounds L1 $ 1- 2/(M + 1) and L1 :5 7/12 for Problem A.7 are obtained by

Gonzalez et al. [283J and by Dobson [40*], respectively. The instances of Problem A.7 are

known such that L1 = 13/25 for this algorithm. For Problem A.8, L1:5 (YIT - 3)/4 if M = 2 and

1/3 $ L1 $ 1/2 -1/(2M) if M > 2 [283]. In both cases T = O(nlogn).

Algorithm tPJ can also be applied for finding an approximate solution of Problem A.7.

If the machines are numbered in non-increasing order of aH, that algorithm yields

L1 $ (YIT - 3)/4 + 1/2k if M = 3 (see [110*J by Kunde and Steppat), L1 $ 1/2 - I /(2M) + 1/2k if

ME {4, 5} (see [107*, 108*J by Kunde and [153*J by Steppat) and L1 $ 2/5+ 1/2k if M 2: 6

(see [53*] by Friesen and Langston). An example is provided in [53*J such that L1 = 0.341.

For Problem A.8, it follows from [108*] by Kunde and [111*] by Langston and Liuwe that

L1:5 (V6 -2)/2+ 1/2k if M = 2 [108*] and L1:5 (YIT -3)/4+ 1/2k if M 2: 3 [108*,111*]. If the

machines are numbered in order of non-decreasing aH, algorithm tPJ yields L1 :5 I-I/M+ 1/2k

for Problem A.7, while for Problem A.8 the bounds L1:5 (YIT-3)/4+1/2k if M = 2 and

1/3:5 1/(2M)+V 8M2-8M+l :5 L1:5 V2'-I+I/2k if M > 2 hold [110*]. There exist such

examples (see [110*]) that L1 = 1/2 for Problem A.7. For the third case of Problem A.9

(aM> 1), Kunde et al. [109*J modify algorithm tPJ and obtain L1:5 (YIT-3)/4+1/2k
.

For Problem A.7 Hochbaum and Shmoys [83*J provide an O(nlogn+M) algorithm with L1

arbitrarily close to 1/2.
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A.5. Let the problem MltjaH; d j = 0IGlltmax be called Problem A.I0. It differs from

Problem A.7 by imposing precedence constraints. It follows from [352] by Liu and Liu that
M

LSA(R) yields L1 S; 1-1/ E (aHt l and T = O(nz).
H=I

For Problem A.lO with M = 2 and t; = 1 (tiff = afl), i = 1, 2, ... , n, Gabow [55*J

considers the algorithm which schedules the jobs as if the both machines were identical

(the problem 21t; = 1; d j = 0IGlltmax is polynomially solvable; see Section 5.4 of

Chapter 2). He establishes that L1 S; I-min{al' az}/max{al' az}.

For Problem A.11 (Mltiafl; d; = 0IPr; Glltmax ), which is a version of Problem A.I0 when

preemption is allowed, Horvath et al. [297) prove that the algorithm by Muntz and Coffman

mentioned in Section A.3 guarantees L1 S; V3M / 2 - 1 (here T = O( nZ)). The bound on L1

is known to be tight up to a constant factor. The algorithm for solving Problem A.11

proposed by Jaffe [306] provides L1 S; VfVI-I/2. There are examples in [306] for which the

bound VM - 1-1 is approached arbitrarily close. Rock and Schmidt [143*] offer the algorithm
(M- I l{Z

for solving the same problem and prove that L1 S; E max{aI!azfI_l, aZ/aZfI}+aI!aM-l if
fI~1

M {Z
M is odd, and L1 S; Emax{aI!azfI_ll az/azfI}-1 if M is even (here al S; az S; ... S; aM)'

fI~ I

This algorithm ignores M - 2 machines and schedules the jobs on two remaining machines. Note

that the problem is solvable in O(nz) time for M = 2 (see [297, 328]). The same guarantees

hold for the problem M ItiH = afl; dj = 0 IRs( 11II t max (see 143*]). The latter problem is

solvable in O(nlogn) time if M = 2 (see [211]).

A.6. Davis and Jaffe [241J consider Problem A.12 (Mlt;H; di = 01 I Itmax ) to minimize the

makespan on unrelated machines. They describe approximation algorithms with the following

parameters: L1 S; V6fVl +V3"/V8ii1'and T = O(Mnlogn), L1 S; 2VfVI-1 and T = O(Mnlogn),

L1 S; V'ifVl + I!V8ii1' and T = O(MM +Mnlogn). For the first of these algorithms they provide

examples such that L1 = (2M - VfVI-2-28l/(VfVI+8) for any sufficiently small 8 > O. For the

other two algorithms there are examples such that L1 = VfVI- 1.

An algorithm with L1 S; M -1 and T = O(Mn) for solving Problem A.12 is described by Ibarra

and Kim [302]. Here the next job and the machine for its processing are chosen so as to

minimize the makespan for the current partial schedule. Spinrad [152*] has studied this

algorithm and has constructed the examples of Problem A.12 such that L1 = 1+ (,\ - 1)(M - 2) /,\

for any ,\ 2: 1 (this implies that for those examples the value of L1 can be made very close

to M-1).

Potts [138*J suggests reducing Problem A.12 to an integer linear programming problem.
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Then a partial schedule is constructed by relaxing the integrity of variables. This

partial schedule is used to obtain the final schedule by enumerating all the possible

variants of assigning the unscheduled jobs. Note that there are no more than M such jobs

to be assigned. In this case T depends on n polynomially and on M exponentially while

L1 S (V5 -1)/2 if M = 2 and L1 S 1 if M > 2. For M = 2 the algorithm based on the same

approach gives L1 S 1/2 and T = O(n) [138*]. Lenstra et al. [120*] improve the algorithm

from [138*]. Their algorithm runs in polynomial time and satisfies L1 < 1. They also show

that checking whether there exists a feasible schedule with Imax(s) S 2 is an NP-complete

problem. This implies that there is no polynomial-time algorithm with L1 < 1/2 unless

P = NP.

For Problem A.12 with M = 2 another algorithm is suggested by Ibarra and Kim [302]. It
provides L1 S (V5 -1)/2 and runs in T = O(nlogn) time.

If precedence constraints are imposed (the problem MIt;H; d; = 0 IG II I max) the algorithm
with L1 S M-1 and T = O(Mn+n2 ) is described in [241] by Davis and Jaffe. The algorithm

assigns an available job to a machine that provides the smallest processing time for the

job. The bound on L1 is tight.

A.7. For Problem A.13 (Mit;; d; = 0IRs(q)lllmax ), Garey and Graham [268] show that

LSA(R) yields L1 S min{(M -1)/2, q+ 1- (2q+ 1)/M}. The algorithm runs in T = O(nlogn) time.

There is an example such that L1 = (M - 1)/2 - (M - q -1) /(2k) where k can be arbitrarily large.

If q = 1 and t; = 1, i = 1, 2, ... , n, in Problem A.13, then LSA(R) yields L1 <

17/10-12/5M+2/F* and T = O(nlogn), while LSA(ril~) gives L1 < 1-2/M+l/F* and requires

T = O(nlogn) (see [321) by Krause et al.). For LSA(R) and LSA(ril~)' there are examples in

[321] such that L1 ~ 17/10-137/(10Mll and L1 ~ 1-2/M+2/(MF*)-I/F*, respectively.

The problem Mit; = I; d; = 0IRs(q)lllmax is known to be solvable in O(qn2 +n5 / 2 ) time

if M = 2 [2721. For this problem, an algorithm with L1 S fM/21 based on the idea of

scheduling jobs on two machines only is given in [143*] by Rock and Schmidt. Recall that

the same idea is discussed in Section A.5. A similar approach can be also applied to the

problem Mit; = 1; d j = 0IRs(q)IIEI; yielding the same performance guarantee.

A.8. For the problem Mit;; d; = 0 IGj Rs(q) II I maXl LSA(R) gives L1 S M-1 and requires

T = O(n2 ) (see [267, 268J by Garey and Graham). This guarantee cannot be improved for

q = I because there is an example of the problem Mit;; d; = 0IG; Rs(I)lllmax such that

L1 = (M-l)/(1+M8) where 8 can be arbitrarily small.

Problem A.14 which differs from Mit; = 1; d; = °IG; Rs(q) II l max in that here each job
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needs at most one resource type (this may be described by the condition max{fij II ~ j ~

q
q} =E fij) is considered by Leung [350J. For this problem LSA(R) finds a schedule with

J~l

L1 ~ min{M-I, q+I-(q+I)/M}, and this bound is tight.

Problem A.15, which differs from MIt i ; di = 0 IG; Rs( 1) II t max in that here the resource

amount is distributed over machines in advance, is considered in [31OJ by Kafura and Shen.

LSA(R) is shown to provide L1 ~ M -1. If G = (N, 0), then L1 ~ 10gM for each of LSA(R),

LSA(tit), and LSA(rilt), while L1 ~ I-I/M for LSA(fil~)' If for the latter algorithm those

jobs with equal fil are sorted in non-increasing order of ti then L1 ~ 1/4 for M = 2 and

L1 :; I-I/(M -I) for M > 2. All the bounds given in [310J are tight.

A.9. In Problem A.16 (Mlt i = I; di = DIG; Rs(q)IM ~ nltmax ) the jobs with unit

processing times are to be scheduled on parallel identical machines to minimize the

makespan under precedence and resource constraints. Here, at any time job i needs rij

units of resource j, and the total amount of resource j available at a time does not

exceed Rj > 0, j E {I, 2, ... , q}. It is assumed that there are sufficiently many machines

available to process any number of jobs simultaneously. For this problem LSA(R) yields

L1 ~ q(I+F*)/2 and r = O(n2) (see [269] by Garey et al.). This bound is tight; [269J

provides an instance of Problem A.16 such that L1 ~ q(I+F*)/2-c5 for any c5 > O. If LSA(hi~)

is applied (here hi is the height of a vertex i in graph G, see Section A.3) then an

essentially better guarantee L1 ~ 17q/1O holds [269] and this is again tight. The same bound

holds for LSA(max{fijll:; j:; qH), and there is an example where L1 ~ Aq-c5-1 for any

sufficiently small c5 > 0 and 1.69 < ), < 1.7 (see [269]).

For a version of Problem A.16 in which each job needs at most one of q resource types
q

(i.e., max{rijll ~ j :; q} =E fiji, LSA(R) gives L1 ~ q, and this bound is tight (see
J~l

[350] by Leung).

If G = (N, 0) in Problem A.16, LSA(R) provides L1 ~ q-3/10+5/2F* and requires

r = O(nlogM), while LSA(max{rij II ~ j ~ qH) yields L1 ~ q- 2/3 and r =O(nq+nlogn) [269].

For these algorithms, [269J presents such examples that for any c5 > 0, L1 ~ q-3/10-c5 and

L1 ~ q_(q2+1)/(q2+ q)_c5, respectively. If both G = (N, 0) and q = 1, then L1 < 7/10+1/F*

for LSA(R) [269J. For the latter case, Krause et al. [321] propose an algorithm with r no

greater than O(n2 ) (the authors do not estimate the running time) such that L1 < 1/3+ I/F*;

they provide an example such that L1 tends to 1/3 as M tends to infinity.

For the problem Mit,; d i = 0IRs(q)IM ~ nltmaXl LSA(R) yields L1:; q and r = O(nlogM).
This result is due to Garey and Graham [268]. An example is given in [268J such that
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.1 = (q-q/l/)/(l+q/l/) where n = q(l/+l)+1.
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A.lO. To solve Problem A.17 (11 t;; d; III Lmax ), Schrage proposes the following algorithm

(1971, an unpublished result, see [379) by Potts). The job sequence according to which the

jobs are processed is formed in the following way. Let k (k $ n) first jobs in the

sequence be determined and t be the completion time of the last job among them. Then the

unscheduled jobs such that d; $ t are analyzed, if any, and the job with the minimum value
of D; is chosen (in case of a tie for D; the job with the maximal value of t; is taken).

If for all unscheduled jobs d; > t holds then the job with the minimum value of d; is

taken. The chosen job is placed at the (k +1)th position of the current sequence. This
algorithm is shown to guarantee (f'O-F*)/(F*+Dmax ) < 1-2tm;n/tr; (see [317) by Kise et

al.). Potts [379] offers a procedure of I steps (l $ n-1) for solving Problem A.17. While

moving to the next step, the original problem is transformed in a certain manner. In each

step, the sequence of jobs is constructed by Schrage's algorithm. It follows from the

above relation and (379) that (f'J-F*)/(F*+Dmax ) < min{I/2, tmax/tr;, 1-2tm;n/tr;} for the

procedure by Potts. For this procedure T = O(n210gn). Hall and Shmoys [76*] modify the

algorithm from [379J and obtain (f'J-F*)/(F*+Dmax ) < 1/3.

A.H. For Problem A.18 (Mit;; d;1I ILmax ), LSA(D;t) gives f'J-F* $ (2M-l)tmax/M while

T = O(nlogn) (see [71*] by Cusfield).

If d; = 0, i = 1,2, ... , n, then (f'J-F*)/(F*+Dmax ) $ l-l/M for the same algorithm (see

[126*) by Masuda et al.). In [126*J, the following LSA(t;+) is described to solve this

case of Problem A.18. The jobs are distributed over the machines according to the list and

those jobs assigned to the same machine are arranged in non-decreasing order of D;.

It is shown that (f'J-F*)/(F*+Dmax ) $ min{4/3 - 1/(3M) - Mtm;n/tr;, 1/3 - 1/(3M) 

M(Dmax-Dm;n)/tr;} and T = O(nlogn).

If t; = t, i = 1, 2, ... , n, in Problem A.18, then FO - F* < t for LSA(D;t) [71*],

although the latter problem is known to be solvable in O(n3Iog2n) time [413].

A.12. For the problem Mit;; d; = 0 III ~:;C,,;t;, Eastman et al. [249] prove that LSA(Q;/t;+l

yields .1 $ (M -1 )/2M and T = O(nlogn). Kawaguchi and Kyan [88*J improve this bound by

showing that .1 $ (VZ -1)/2.
Coffman and Labetoulle [235) show that LSA(t;t) for the problem Mit;; d; = 0 III Et;/tmax

guarantees.1 $ (M-1)/(M+1) while T = O(nlogn).

The problem Mit;; d; = 0 IIIEn is studied by Chandra and Wong (228). They prove that
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LSA(t;~) yields Ll :s; 1/24 and T = O(nlogn). On the other hand, there are examples for which

Ll ~ 1/36 -.: 1/36M.

A.13. In this section we concentrate on c:-approximation algorithms (fully polynomial, as

a rule).

Fully polynomial algorithms were first developed for the Boolean knapsack problem and

certain scheduling problems by Babat [3*, 4x
), Ibarra and Kim [301J, Sahni [393J. Later,

the necessary and sufficient conditions of the existence of those algorithms were

established for the problems of maximizing additive functions over so-called independence

systems (by Korte and Schrader [92*]) and for the class of problems including practically

all combinatorial optimization problems (by Paz and Moran [136*]). Rather general

techniques of designing c:-approximation algorithms for combinatorial problems have been

developed by Kovalyov and Shafransky [101*].

The problems lit;; d, = 01 I l[a;(l-u;) -+ max and lit;; d; = 0IT; D; = DII
[a;( 1- u;) -+ max are considered by Sahni [394J and Gens [60*], respectively, and

c:-approximation algorithms with T = O(n2 /c:) are offered.

The c:-approximation algorithms for the problems 11 t;; d; = 0 III [OI;U; and 11 t;; d; II
d; < d; ==> D; :s; Dj I[a;u; are presented by Gens and Levner [33, 61*J and by Kovalyov and
Shafransky [100*, 101*], respectively. Both algorithms require T = O(n2Iogn+n2/c:).

Hall and Shmoys [76*] propose two c:-approximation algorithms for Problem A.17 (lit;;

d;IIILmax ) (here (fO-F*)/(F*+Dmax ) :s; c:). The algorithms are not fully polynomial, the

running times are are O(n( 1/c:)16/<2+8/< +nlogn) and O(24 /«n/c:)3+4/<), respectively.

Lawler [113*) proposes an c:-approximation algorithm for the problem 11 tj; d; = 0 III [z;

with T = O(n7 /c:). Kovalyov [98J gives an improved algorithm with T = O(n6/c:+n61ogn).
The algorithm with T = O(n3Iogn+n3/c:) for the problem II t;; dj = 0 III [ajmin{t;, z;} is

proposed by Kovalyov et al. [99*J. For the case a; = 1, i = 1, 2, ... , n, Potts and Van

Wassenhove [139*) give the algorithm with T = O(n2 /c:).

The problems 2It;; d; = 01 I I/max and 2It;aH; d; = 01 I I/max formulated, however, in
somewhat different terms, are considered in [33, 93J by Gens and Levner. The algorithms

developed there require T = O(min{n/c:, n+ 1/c:2}) and T = O(min{n/c:, n+ 1/c:3}), respectively.

Salmi [393] offers the algorithm with T = O(n2M-I/c:M-I) for solving Problem A.2 (Mit;;

d; = 0 III/max)' This result has been improved by Kovalyov [93*) who has designed the
algorithm with T = O(nM/c:M- 1 ) for solving the problem Mit;; d; = 01 I I/max; TM :s; D.

Kovalyov [93*] offers the algorithm for solving the problem Mit;; d; = 0 III Lmax with

(Fo-F*)/(F*+Dmax ) :s; c: and T = O((n+log(I/c:))nM/c:M-1). The same paper describes an
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c:-approximation algorithm for the problem Mit;; di = O!!!tmax[O<jt j with T = O(nM/c:M).

For the problem 21 tj; d; = 0 III [O<jt i the algorithm designed by Sahni [393) requires

T = O(n2/c:).

The algorithms for the problem 2ltj; d; = 0110; = OJ[Zi developed by Kovalyov [95*,

100*J and for the problem 21 t;; dj = 0 III Lmax by Kovalyov and Shafransky (100*, 101*])

yield (fil-F*)/(F*+Omax) $ c: and run in T = O(n3/c:) and T = O((n/c:)(n+log(I/c:» time,

respectively.

An algorithm with T = O(nM/c:M ) for the problem Mit;; d; = 0 III [Tk is constructed by

Kovalyov [93*J.

A schedule SO is treated as an c:-approximate solution of problem M Iti; d j = 0 III tj $ OJ

if (tj(so) -Dj)/D; $ c:, i = 1, 2, ... , n. To find such a schedule the algorithm with

T = O(n,II/c:M- 1) is offered by Kovalyov in [93*, 100*] while for the case M = 2, the
algorithm with T = O(n/c:) is developed (see [100*, 101*J by Kovalyov and Shafransky).

For Problem A.7 (Mltia/{; d j = 01 I Itmax ) Horowitz and Sahni [296] give the algorithm with

T = O(n2M /c:M- 1 ). The algorithm with T = O(Mn3+1O /<2) for this problem is due to Hochbaum

and Shmoys [83*J.

The algorithm described in [296] by Horowitz and Sahni for the problem MItja/{;

d i = 0 III [O<jt j requires T = O(n2M-2/c:M-l). The algorithm offered by Kovalyov [93*) for the

problem Mit;; d; = 0 III [O<jt j runs in T = O(nM/c:M) time. It should be mentioned that

earlier Sahni [393J developed an c:-approximation algorithm for that problem with

T = O(n2M-l/c:M-l).

Lawler and Martel [116*] derive a fully polynomial algorithm for the problem 21 t;al/;

d j = °IPrll[o<;u;.

The algorithm for the problem 2It;l/; d j = 01 1Itmax with T = O(n2/c:) is offered by Sahni

[393).

De et aJ. [34*J propose an O(n3 /c:) algorithm for the problem 11 t;; d j = 0 III [(t;
1 - 2n [til .
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