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Preface

We are very proud to present the latest addition to the Springer series Studies in
Mechanobiology, Tissue Engineering and Biomaterials. When we started this book,
we wanted to create a book that could serve as a starting point for graduate students
and researchers interested in the development of computational models of biolog-
ical processes, with a specific focus on how to deal with the inherent uncertainty.

We have managed to get a great international set of authors together, each
discussing on a particular aspect of the problem based on their own expertise and
research background.

All chapters start with a detailed theoretical description that serves the dual
purpose of introducing the technique and providing sufficient details (in the text or
by means of references to the literature) for all researchers to start using it them-
selves. Subsequently one or more examples illustrate how the technique can be used
in a practical setting. Chapters are ordered according to the order in which the
technique they describe appears in the development and implementation of new
models. Reading the book from start to finish will therefore provide new researchers
with a quite extensive tool set to get started for themselves. More experienced
researchers will find for specific techniques the latest developments and a discus-
sion of future developments.

This book is the end product of a lengthy process which has suffered from some
unforeseen delays. Yet the vision and drive always remained present amongst the
editors and authors. We are very happy with the end result and hope that readers
will enjoy the book as much as we’ve enjoyed putting it together.

Prof. Liesbet Geris
Prof. David Gomez-Cabrero
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Part I
Introduction



Chapter 1
An Introduction to Uncertainty
in the Development of Computational
Models of Biological Processes

Liesbet Geris and David Gomez-Cabrero

Abstract This chapter aims to provide an introduction to the different ways in
which uncertainty can be dealt with computationalmodelling of biological processes.
The first step is model establishment under uncertainty. Once models have been
established, data can further be used to select which of the proposed models best
meets the predefined criteria. Subsequently, parameter values can be optimized for
a specific model configuration. Sensitivity analyses allow to assess the influence of
the previous choices on the model output. Additionally, model adaptation permits to
focus on specific aspects of the model without losing its global predictive capacity.
Finally, predictions with the established models should also consider the effect of
uncertainty in the model development process.

1.1 Introduction

Computational modelling of biological processes is becoming a standard tool used
in biomedical research groups. The amount of examples showing the added value of
the computational modelling approach is increasing by the day [4, 10, 11], more so
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4 L. Geris and D. Gomez-Cabrero

if we include all Systems Medicine approaches [1]. One of the biggest challenges in
creating useful models is the way in which they deal with uncertainty—uncertainty
related to the experimental data but also to the modelling choices.

Uncertainty is defined in the Oxford dictionary as ‘the state of being uncertain’.
Uncertain in turn is defined as ‘not able to be relied on; not known or definite’.
Wikipedia defines Uncertainty as ‘a term used in subtly different ways in a number
of fields, including philosophy, physics, statistics, economics, finance, insurance,
psychology, sociology, engineering, and information science. It applies to predictions
of future events, to physical measurements that are already made, or to the unknown.
Uncertainty arises in partially observable and/or stochastic environments, as well as
due to ignorance and/or indolence’ [5]. Uncertainty in computational biomedicine

Fig. 1.1 Schematic overview of the model development life cycle with a specific attention to the
uncertainty in various forms: (i) establishment of a model under uncertainty, (ii) model selection
and parameter optimization, (iii) sensitivity analysis and model adaptation, (iv) model predictions
under uncertainty. Snapshot images have been taken from the following chapters in this volume
(starting upper left corner going clockwise; C: chapter; F: figure): C2, F1 [12]; C3, F2 [14]; C4, F1
[15]; C6, F4 [19]; C9, F3 [20]; C10, F5 [9]; C11, F5 [16]; C12, F1 [6]; C13, F16 [22]; C16, F3 [8];
C16, F3 [8]; C17, F3 [2]
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can come from the experimental observations but can also be connected to the model
itself either intrinsically (noise due variation in identically-regulated quantitieswithin
a single cell) or extrinsically (noise due variation in identically-regulated quantities
between different cell) [12]. Throughout this book various ways of dealing with
uncertainty are discussed. The structure of this chapter (and the whole book) follows
that of the model development life cycle, starting with model establishment over
parameter optimisation and model adaptation and ending with model prediction
(Fig. 1.1).

1.2 Model Establishment Under Uncertainty

In order to turn the ever increasingly available experimental (big) data into action-
able knowledge, mechanistic models are indispensable tools. They provide a concep-
tual and computational framework that allows for the interpretation and investigation
of the experimentally observed behaviour and overcomes some of the limitations of
classical statistical models in managing non-linear relations. Setting up these models
however poses several challenges related to both the experimental and the modelling
side.

Many experimental data sets tend to be noisy or incomplete and most often have
not been collected with the specific intention of creating a model. Additionally, over-
simplifications in model systems can obscure specific behaviours that have been
observed experimentally. These uncertainties have an influence on the establishment
of models. The chapter by Kirk et al. [12] provides an overview of the most prevalent
problems in model establishment related to uncertainty in data and models, and pro-
poses a number of strategies to tackle these problems. It furthermore discuss various
techniques that have been put forward over the years to reverse engineer mechanistic
models based on experimental data, each with their advantages and disadvantages.
The chapter by Kirk et al. [12] additionally discusses some of the most common
inverse techniques for this reverse engineering, including a more elaborate view on
statistical inference techniques (additional discussion can be found in the chapter by
Sunnåker and Stelling [20]). In the next chapter, Lagani et al. [14] go into detail on a
particular kind of statistical predictive models, namely the causal modelling. Com-
putational Causal Discovery allows discovering causal relations with a limited set of
interventions or manipulations. Causal modelling goes beyond traditional statistical
predictive modelling as it provides the capacity to predict the effects of actions and
interventions on a system, e.g., the effects of drug treatment, gene knock-out, or the
induction of a mutation in the genome. This is in contrast to non-causal predictive
modelling which is only valid when the system under study is observed under the
same experimental conditions it was derived from and is not otherwise manipulated.
Lagani et al. [14] review the definition of causality and the basic concepts and prin-
ciples of causal discovery, the nature of the underlying assumptions—particularly in
relation to the uncertainty in the available data, potential pitfalls when applying the
method, the most recent advances in the field and future directions. Both Kirk et al.
[12] and Lagani et al. [20] are data-driven approaches tomodelling under uncertainty.
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A radically different way to establish models under uncertainty is the use of
stochasticmodelling and simulation techniques—which is particularly relevantwhen
fluctuations become important. In Lejon and Samaey [15], the authors give a high-
level overview of stochasticmodelling techniques used for biological problems. They
show the effect of stochasticity at different scales and different levels of description
andprovide computationally reasonable solutions and algorithms for various problem
types. They pay particular attention to the equivalence between the stochastic process
that governs the evolution of individual agents and the deterministic behaviour of
the related probability distributions.

1.3 Model Selection and Parameter Optimisation

Once a number of potential models is established a choice needs to bemade onwhich
model and which parameters are the most appropriate to use given the experimental
data that is available and the context in which the model will be used. This means
that we need to understand the nature of the experimental data that is available to
feed the models. After data acquisition, the use of data-driven modelling approaches
allows to do a first processing of the data. Once a mechanistic model has been
established, parameter estimation and optimisation can be performed in a variety
of ways. Ultimately, when different modelling scenario’s remain possible, specific
tools can be used to determine which of these models is the most suitable, given the
available data, the context and the preference of the modeller.

Western blotting, flow cytometry, protein mass spectrometry, DNA microarrays
are just a few examples of a wide variety of experimental techniques frequently used
in wet labs to gather data. In order to be useful for quantitative dynamic models, data
needs to have a dimension of time as well as several perturbation experiments. The
chapter byBullinger-Schliemann [18] provides an introduction to various experimen-
tal techniques that are frequently used in the model development life cycle, paying
particular to the significance of single-cell versus population measurements. With
the increase in availability of large and structured datasets, there has been a need
to develop efficient data analysis techniques. Data-driven approaches, in contrast to
mechanistic approaches, do not make assumptions on the underlying mechanisms.
They are often used to process data to a more useful format and are particularly
helpful in identifying biomarkers in large datasets. Shah et al. [19] discuss a par-
ticular type of empirical models, namely the eigenvalue-based approaches. These
approaches, including singular value decomposition, principle component analysis,
and partial least squares regression, can identify important characteristics of big
datasets through decomposition and dimensionality reduction. The chapter further
discusses to way to deal with upscaling of these methods for understanding higher-
order datasets (through tensor decomposition).

In the previous sections we described methodologies aimed to generate models
from data; however data can also be gathered to define parameters in a model. When
dealing with mechanistic models, the assignment of values to the parameter in a
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model, i.e. the parameter estimation, is a crucial step. Depending on the type and
amount of data available, this can also be particularly time-consuming task. Over the
last years, building on computational and algorithmic developments, many new tools
have been developed to facilitate the parameter estimation step. A specific aspect of
the estimation process is the optimisation where the parameter space is determined
that provides the most interesting results. An overview of these estimation and meta-
heuristic optimisation techniques (simulated annealing, genetic algorithms, particle
swarm optimisation and others) can be found in Samuelson et al. [3]. As an alter-
native to these statistical-type parameter estimation methods, Tucker [21] describes
parameter estimation via set inversion and constraint propagation techniques (inter-
val methods). These techniques, based on set-valued computations combined with
branch and bound steps, allow to examine entire sets of parameters and thus com-
plete the global search within a finite number of steps. As the potential downside
of interval methods is their relatively low speed, the author additionally shows how
the method can be accelerated by set-valued constraint propagation, allowing for a
considerable improvement of its efficiency. Samuelson et al. [3] furthermore provide
concepts and tools that allow the modellers to select the appropriate methodology
for the specific scenario they are confronted with.

Once several models have been established, model assessment can help in iden-
tifying which model is the most appropriate for a given situation. Sunnåker and
Stelling [20] discuss the most commonly used methods for model assessment of
dynamical models, along with the underlying concepts and ideas. These methods
include the information theoretic (e.g. the Akaike and deviance information crite-
ria) and Bayesian approaches (e.g. posterior ratios for relative model probabilities
from Bayes factors and the approximate Bayesian information criterion) as well as
techniques such as cross-validation and bootstrapping. Bayesian model selection for
biological dynamical systems is further elaborated by Hug et al. [9], working with
the Bayes factor computed by Thermodynamic Integration. Fundamentally different
approaches tomodel selection (as compared toBayesian approaches) are also treated,
e.g. the minimum description length. All techniques are illustrated with examples
ranging from simple and sometimes analytically tractable problems, tomedium sized
models composed of ordinary differential equations. Information on how the most
important results can be derived is provided in [20], alongside with a discussion on
differences between methods [9, 20] and how these methods can be employed in
practice as there is no generally applicable method for model assessment that is valid
in all situations.

1.4 Sensitivity Analysis and Model Adaptation

Despite the techniques identified in the previous section, leading to the selection
of the optimal model populated with the optimal parameter set, the uncertainty in
the available data is often such that additional analyses of the parameter space and
even model adaptation might necessary. Again, a variety of techniques is available
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to study the parameter space. Some techniques focus on the general character of the
parameter space (e.g. sloppiness) for specific model types. Other techniques focus
on specific pre-defined ranges in parameter space assessing the importance of their
influence on the model results, i.e. sensitivity analyses. For over-parametrized or
vary complex models, various simplification and reduction techniques have been
developed to enable the understanding of the model’s underlying core dynamics
and a subsequent simplification of the model whilst maintaining its capability of
capturing those core dynamics.

Exploring the parameter space can be a very challenging task due to its high
dimension and complex structure. Mannakee et al. [16] have shown that there exists
a universal structure in the parameter space of models for nonlinear systems. More
specifically, these models are often sloppy, with strong parameter correlations and
an exponential range of parameter sensitivities all leading to good model behaviour.
In their chapter [16], the authors review the evidence for universal sloppiness and
its implications on parameter fitting and model prediction. They discuss how care-
ful experimental design can lead to optimisation of parameter inference or general
model behaviour (depending on the goals of the model and the modeller). They fur-
thermore discuss the potential of transforming parameters to alleviate sloppiness.
However, even when taking an information geometry perspective in order to have
a parametrization-independent perspective on modelling, sloppiness arises and a
deeper universal structure is revealed.

Rather than looking at the global parameter space, some methods specifically
focus on awell-defined area, starting from specific intervals for all parameters present
in the model (capturing the uncertainty of the parameters). ‘Design of Experiments’
(discussed by Van Schepdael et al. [22]) is a technique originally developed to opti-
mize physical experiments allowing to comprehensively determine the effect of para-
meters settings (individual parameters and their interactions) on the process with a
minimal amount of experimental runs. For computational models, the limits on the
specific parameter values that can be tested and the amount of runs that can be
executed are generally less stringent but the amount of parameters (and especially
their interactions) might be considerably higher than for physical experiments. The
design of experiment approach for computational models allows choosing a mini-
mum amount of parameter combinations that will result in a maximum amount of
information about the computational model. The chapter by Van Schepdael et al.
[22] explains several designs and analysis methodologies.

The aforementionedmethods all start from the fully developedmodel as derived in
Sects. 1.2 and 1.3. However, with computational models of biological processes con-
tinuously increasing in size and model complexity (in part due to the data explosion
in biology) it is increasingly difficult to obtain insights into what parts of a model
generate a specific read-out. This hampers the correct interpretation of the model
result and their use in e.g. the design of personalised therapies. The uncertainty in
model structure and model parameters is a further complication. A solution to this
dual problem of complexity and uncertainty is the systematic construction of simpli-
fiedmodels from complexmodels. In their chapter, Eriksson et al. [6] review different
methods for simplification and reduction of models with particular focus on recent
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developments such as the iterative “tearing, zooming and simplifying” approach.
This approach allows utilizing specific biological features such as modularity and
robustness.

To wrap up the part on sensitivity analysis and model adaptation, two elaborate
case studies are provided that investigate the sensitivity and effect of uncertainty on
model outcome in the context of neural fields and bone mechanics. Laing et al. [13]
discuss the introduction of randomly chosen “frozen” spatial noise to their modelling
system.The effect of inclusion of said noise on particularmodel outcomes, such as the
occurrence of specific activity in a particular neural field model, is investigated and
discussed. The second example is that ofMengoni et al. [17]who provide an overview
of computationalmechanicalmodelling of trabecular bone from a sensitivity analysis
perspective. The effect of model development choices on model results is reviewed
and analysed at different scales (from micro up to organ). As the focus is on models
generated starting from Computed Tomography images, particular attention goes
to the image processing effects, the mesh-related aspects and the computational
representation of the boundary conditions.

1.5 Model Predictions Under Uncertainty

With the model and its parameters all set, model predictions can be made that feed-
back to the experiments, closing the modelling life cycle. Model predictions will
assist in advancing knowledge of the system under study in various ways. One such
type of predictions is the identification of alternative explanations for and interpre-
tations of the existing experimental data. Another type is the discovery of specific
mechanisms in the simulation data. Both will lead to the formulation of additional
experiments that need to be executed in order to validate (or falsify) the model’s
observations.

Gomez-Cabrero et al. [8] start from a very specific pre-frontal cortex working
memory model and discuss issues related to non-uniqueness of parameter sets and
the existence of various alternative solutions that can explain one particular experi-
mental phenomenon. Using optimization techniques, they uncovered compensatory
mechanisms in a subset of the parameters in the model, leading to the identification
of hypothesis to be validated in dedicated experiments. On a more general note,
Cedersund [2] provides an overview of various types of predictions that can be
made—core predictions allowing to test the quality of the model or poorly deter-
mined predictions allowing to improve the overall well-determination of the model
parameters. Even predictions that will not be tested experimentally can provide inter-
esting insights into the studiedmodel. In amedical context, reliability and accuracy of
the predictions is important. Noteworthy is that this low degree of model uncertainty
does not necessarily imply a similarly low degree of uncertainty on the model para-
meters. Such well-determined predictions are then also amenable to incorporation in
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larger supermodels (e.g. models of individual organs connected into a multi-organ
model). Cedersund [2] subsequently provides an overview of the recent develop-
ments in the methods dealing with prediction uncertainty and discusses the price that
needs to be paid when bothering with prediction uncertainty.

1.6 Conclusion

This chapter has provided a brief overview of the model development life cycle with
a specific focus on uncertainty in the various stages: (i) establishment of a model
under uncertainty, (ii) model selection and parameter optimization, (iii) sensitivity
analysis and model adaptation, (iv) model predictions under uncertainty. Each of the
following chapters in this book elaborates in a detailed way one or more facets of this
development life cycle, with a specific attention to the incorporation of uncertainty
in data and modelling. Taken together, the information provided in this book should
allowmodellers to start form experimental data, work through the differentmodelling
life cycle steps and finally make predictions that can be verified experimentally. The
last chapter, Gomez-Cabrero and Geris [7], provides also an overview of nowadays
open challenges.
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Chapter 2
Reverse Engineering Under Uncertainty

Paul Kirk, Daniel Silk and Michael P.H. Stumpf

Abstract The increased availability of experimental data in systems biology and
systems medicine can only lead to better understanding of biological and disease
related processes, if we can place them in the context of mechanistic models. Such
models can serve as conceptual, but also computational frameworks in which we
can reason about, or predict the behaviour of e.g. molecular networks, or cellular
processes. Constructing such models, however, remains a formidable challenge: not
only are the data noisy and incomplete, but the models that are currently available
are hopelessly oversimplified. In this chapter we set out the problems and a list of
potential ways of tackling them. The essential premise is always to be aware of the
uncertainties inherent in the data and our models.

Keywords Inverse problems · Model selection · Extrinsic versus intrinsic noise ·
Model misspecification

2.1 Introduction

Reverse engineering the processes that govern the behaviour of biological systems is
one of the principal aims of systems biology [46]. From experimental data, we seek
to elucidate key aspects of the underlying mechanisms that give rise to observed
complex behaviour. We may initially have only very vague, perhaps even wrong,
ideas regarding these mechanisms, in which case our first aim may be to use the
data in order to generate testable hypotheses. Alternatively, we may have already
expressed our existing hypotheses as one or more mathematical models, in which
case we may wish to use the data in order to tune their parameters, or to choose
between them.

A defining feature of reverse engineering in a biological context is the variety
of ways in which we encounter uncertainty [11]. In addition to the usual challenges
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presented bymeasurement noise, wemust also contendwith the inherently stochastic
nature of biochemical and biophysical processes. Moreover, given the complexity
and interconnectedness of biological processes, we are currently only able to probe
incomplete portions of the systems of interest, which has obvious consequences for
the analysis [12]. While in vitro studies typically provide us with more control and
might even enable us to isolate a particular process, we are still faced with the prob-
lem of establishing whether this idealised environment can be representative of the
much more complex one that exists in vivo [33]. This combination of measurement
noise, incomplete observations, and inherently nonlinear and stochastic underlying
processes makes reverse engineering biological systems a particularly difficult task.

In this chapter,we discuss someof the challenges presented by reverse engineering
under uncertainty in a biological context. In Sect. 2.2, we provide a broad overview of
the inverse problem in systems biology, and consider the various ways in which this
problem is encountered in practice. We then consider manifestations of uncertainty
in Sect. 2.3, and ways in which we can try to cope with them when addressing the
inverse problem. In Sect. 2.4, we consider the consequences of uncertainty in the
context of modelling, and the potential limitations that uncertainty imposes on what
we are able to learn. We offer some final conclusions and advice in Sect. 2.5.

2.2 The Inverse Problem in Systems Biology

An inverse problem is one inwhichwe seek to reverse engineer details of a system (or
data-generating mechanism) from experimental observations or measurements [49].
Typically, thiswill involve inferring amodel or its parameters fromexperimental data.
In contrast, a forward problem is one inwhichwe have a fully specifiedmodel andwe
use it to make predictions or draw conclusions about its behaviour. There is clearly
an interplay between inverse and forward problems: a reverse engineered model can
subsequently be used for prediction, while a model whose predictions disagree with
novel experimental observations might form the basis for a new model. The inverse
problem has gained particular prominence in systems biology [22, 55, 58, 61], where
we often have access to large quantities of high-throughput data, but may initially
lack a deep understanding of how these measurements relate to one another, or what
they can tell us about the underlying biological processes [36].

The difficulty of the inverse problem is hard to overstate. Even for simple sys-
tems (in terms of the model) it presents formidable challenges and is vastly more
complicated than any associated forward problem.

2.2.1 The Different Types of Inverse Problems

We can consider three different, yet closely related, types of inverse problem: (i) we
do not have a model and need to reverse engineer one from the data; (ii) we have
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a model, the parameters of which need to be estimated/inferred from the data; and
(iii) we have a number of distinct candidate models (for which we may or may not
know the parameters) and we need to choose between them.

The first type of inverse problem has attracted a lot of attention in systems biol-
ogy, particularly in the context of network inference [22, 38, 39, 50, 57]. Network
inference approaches often proceed by first calculating measures of statistical depen-
dence between different biological entities (which form the nodes of the network),
and then identifying the pairs of entities between which there is a significant statisti-
cal dependence (these define the edges of the network). Some approaches take pains
to try to identify direct, causal relationships by eliminating conditional dependen-
cies. Network inference techniques typically have the advantage of being applicable
to large-scale problems (e.g. finding dependencies between the expression levels
of genes). The resulting network representations tend to be descriptive rather then
predictive, and hence network inference is often seen as a method for hypothesis
generation, which may be a first step toward developing more detailed mechanistic
models.

The second type of inverse problem describes the problem of estimating the para-
meters of a known (or assumed) model, which is sometimes known as model cal-
ibration. In addition to more heuristic methods [6], approaches such as maximum
likelihood estimation [56] andBayesian inference have gained traction in recent years
as ways in which to tackle model calibration problems. We consider these methods
in more detail in Sect. 2.2.2.

The third type of inverse problem refers tomodel selection. In this case, wewish to
choose the ‘best’ model(s) from a collection (and/or may wish to reject the ‘worst’).
Usually, our assessment of a model requires us to strike a balance between two crite-
ria: (i) quality of fit; and (ii) complexity. In the interests of parsimony (also known as
Occam’s razor), we ideally wish to maximise the former while minimising the latter,
and numerous approaches exist that seek to address this problem. Measures such as
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
do this by combining an assessment of quality of fit with a penalty on the number of
parameters (which is taken as a proxy formodel complexity). Alternatively, Bayesian
approaches usually focus on estimating the evidence (or marginal likelihood) for dif-
ferent models, and then compare these quantities via the calculation of Bayes factors.
Marginal likelihood estimation is typically challenging and computationally costly;
however, Bayesian approaches have the advantage of naturally embodying the prin-
ciple of Occam’s razor. These and other procedures for model selection are discussed
in more detail in [28, 47].

2.2.2 Statistical Inference Approaches

The general problem of fitting a model to data is often approached by considering
some function that quantifies the discrepancy (or, alternatively, agreement) between
themodel’s predictions and the observed data, and then tuning themodel’s parameters



18 P. Kirk et al.

in order to obtain a good fit. Examples of the kind of discrepancy function that
might be employed include quantitative distances such as sum of squares and sum
of absolute difference errors, or qualitative measures such as the eigenvalues or Lya-
punov spectrum of a dynamical system [3, 41]. The choice of discrepancy function is
usually based upon heuristic arguments, but is often important, affecting (for exam-
ple) the degree to which outliers influence the fit. A key problem when adopting
such a fitting approach is how to find the minimum of the discrepancy function, and
numerous optimisation strategies exist that can be applied for this purpose [7, 53].
Two further important considerations are: (i) the problem of local minima; and (ii)
over fitting. The first of these refers to the common problem of the optimisation
algorithm getting “stuck” in a local minimum, rather than identifying the parameters
that yield the true, global minimum. The second refers to the challenge of how to
avoid fitting the experimental noise [40], whichwill typically result in poor predictive
performance.

If our model is probabilistic, we will often be able to define a likelihood function
[10], L(θ) = p(D|θ,M), which scores parameters by assessing how likely the
observed data, D, would be under the assumption that those parameters θ (and
our model, M) are correct. In maximum likelihood (ML) estimation, we seek the
parameters that maximise this likelihood function. In order to improve numerical
stability, in practice we often work with the log likelihood function. Moreover, due
to theway inwhich optimisation routines are typically implemented,weoften think in
terms ofminimising the negative log likelihood, whichwe can consider as a particular
kind of discrepancy function that happens to have the advantage of having a formal
probabilistic grounding. The challenges of escaping local minima and avoiding over
fitting remain.

TheBayesian formalism [16, 45], provides a framework for performing parameter
inference, in which assessments of fit (as quantified by the likelihood function) are
combined with our prior belief regarding the parameter values. Here, “prior belief”
refers to the belief we have before observing the current dataset, and may have been
obtained on the basis of previous experiments (e.g. on related biological systems, or
in similar conditions). The Bayes rule provides us with a formal mathematical means
by which to update our prior belief in light of the observed data, in order to obtain
the posterior distribution. The posterior quantifies the uncertainty remaining in the
values of the parameters after having observed the data, and may be used to derive
credible regions for the parameter vector. More precisely, we have,

p(θ |D,M) = p(θ |M)p(D|θ,M)
∫
θ∈�

p(θ |M)p(D|θ,M)dθ
, (2.1)

where D is the dataset, θ is the vector of parameters that is to be inferred, and M
represents the model. In words, we have,

Posterior = Prior × Likelihood

Model evidence
. (2.2)
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In practice, elucidation of the posterior distribution is rarely possible analytically,
and hence we must resort to techniques for obtaining samples from the posterior,
such as Markov chain Monte Carlo (MCMC), sequential Monte Carlo (SMC),
or nested sampling [25, 42]. For some problems it may not even be possible
to write down the likelihood, in which case approximate likelihood techniques
and approaches such as approximate Bayesian computation might be appropriate
[52, 60].

2.2.3 Bypassing the Inverse Problem

It is usually impossible to measure all of the parameters or all of the components
of a biological system experimentally, and hence addressing the inverse problem
is an unavoidable reality. However, even if we were able to measure all of these
quantities, they would only be valid for the particular experimental and biological
conditions under which the measurements were taken; molecular reaction rates, for
example, depend on ambient temperature and pH values among many other things.
Given that these conditions are themselves subject to random fluctuations, modelling
the variation in these quantities is of vital importance if we wish to understand the
sources of uncertainty and variability in the system and in our data.

2.3 Manifestations of Uncertainty

One of the most significant challenges to be overcome when trying to reverse engi-
neer biological processes is the variety of sources of uncertainty that we must take
into account. In this section, we describe the various sources of noise that might
be important, and discuss strategies for coping with this noise when performing
inference.

2.3.1 Sources of Noise

There are many different sources of noise that have an impact on if and how we can
reverse engineer a given biological process. On the one hand, we have experimental
noise, which arises from imprecision and or inaccuracy in the measurement process.
On the other, we have the inherently stochastic nature of the underlying biological
system [4, 29, 51], which is a component of what we seek to reverse engineer. In the
context of cellular noise, this is often investigated in terms of intrinsic and extrinsic
sources.
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2.3.1.1 Experimental Noise

In the analysis of experimental error, a distinction is made between the precision
and accuracy of an observation [37]. Precision refers to the inherent error distribu-
tion associated with a particular type of experiment, and accuracy to the existence
of systematic errors in the experimental process. Contributions to the former will
vary for repeat observations and include, for example, random fluctuations in the
experimental conditions or behaviour of the experimental instruments. In contrast,
systematic errors remain unchanged for repeated experiments, and are caused by, for
example, imperfect calibration of experimental instruments. If the cause is known,
systematic errors should be explicitly modelled in order to avoid bias in any inferred
quantities. Otherwise, undetected systematic error can be viewed as a source model
misspecification which will be discussed more generally in Sect. 2.4.2.

2.3.1.2 Intrinsic Noise

Cellular behaviour is governed by the biochemical reactions that occur between
different molecular species within the cell. The timing of individual reactions is a
random quantity, which gives rise to the source of cellular stochasticity known as
intrinsic noise. Since each individual reaction only changes the numbers ofmolecules
of the reacting species by one or two, the effects of intrinsic noise are particularly
important when there are only low copy numbers of the molecular species of interest.

2.3.1.3 Extrinsic Noise

Extrinsic noise refers to variability in the physical and biological environment within
which the intrinsically noisy interactions take place. For example, a collection of
cells may vary in cellular volume, be at different stages of the cellular cycle, or have
different abundance of RNA polymerase and ribosomes; all of which may contribute
to variability in behaviour between cells and subsequent experimentalmeasurements.

2.3.2 Coping with Uncertainty in Inference

Having identified a variety of sources of noise,we nowdiscuss howwe should address
or capture these when performing parameter inference. The key question is how to
model each type of noise, so that we can either derive a likelihood function (and
hence adopt a maximum likelihood or Bayesian approach) or else find some other
(possibly simulation-based) method for inferring parameters. We consider strategies
for coping with each of the three types of noise identified in the previous section.
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2.3.2.1 Coping with Experimental Noise

Each source of randomexperimental uncertaintymay be categorised further as apply-
ing to either the inputs or outputs of an experiment. In the latter case themeasurement
error, ε, is typically assumed independent of both the parameters and known inputs,
(θ, u), and the true state of the system. The likelihood thus factorises into compo-
nents describing the uncertainty generated by the system and parameters, and by the
measurement process,

L(θ) = p(D|θ, u)

= p(D∗|θ, u)p(ε)

where D∗ is the error-free (i.e. absent of experimental noise) state of the system.
In the less commonly discussed case of uncertain inputs, the true state of the

observable is no longer independent of the uncertainty in question, and the likelihood
is obtained by integrating over possible values of u,

L(θ) = p(ε)

∫
p(D∗|θ, u)du. (2.3)

The integral in Eq.2.3 describes how the error propagates through the system for
particular values of θ , and often may only be approximately evaluated. A variety of
methods to do so exist, includingMonte Carlo approaches [35], Sigma point methods
[26], or Gaussian quadrature [43], the appropriateness of each of which is determined
by both the complexity of the system model, and the distribution, p(u).

Commonly the total experimental error is summarised as additive and Gaussian.
Such an approximation may be justified (as a consequence of the Central Limit theo-
rem) when the errors are the accumulation of large numbers of independent sources
of uncertainty. The Gaussian assumption is certainly computationally convenient.
For example, if all sources of uncertainty and the data itself are Gaussian distributed,
then calculation of the integral in Eq.2.3 may be undertaken with relative efficiency
(e.g. by using the unscented transform [27]). However, it is important to note that
the effects of input error (even when assumed Gaussian) on p(y) will almost cer-
tainly not be Gaussian in the presence of any non-linearity. Further, care must be
taken when measured quantities lie close to limiting boundaries (e.g. abundance or
concentration is strictly positive), as this can induce non-Gaussian effects upon the
error distribution. In these cases, more sophisticated and computationally expensive
Monte-Carlo based approaches are necessary for evaluating the likelihood.

2.3.2.2 Coping with Intrinsic Noise

Weassume that the available data comprise intrinsically noisymeasurements obtained
at discrete time points. While it is possible to derive exact Markov chain Monte
Carlo schemes for inference in such situations, their computational cost is usually
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prohibitively expensive.However, a number of approaches exist for simulating intrin-
sic fluctuations, and hence several simulation-based inference procedures have been
proposed. We refer the reader to [19, 59] for examples. At the heart of all of these
approaches is simulation using Gillespie’s stochastic simulation algorithm (SSA)
[18] (see also the top plots in Fig. 2.1 for example realisations). Given a chemical
reaction system with known rate constants and initial molecule numbers, the SSA
proceeds by using Monte Carlo techniques to simulate both the time until the next
reaction, and the next reaction to occur. A number of modifications exist in order
accelerate simulation using the SSA, including the Gibson-Bruck algorithm and the
τ -leap method [19, 59]. All of these simulation methods have in common that they
they provide exact realisations from the underlying (discrete state, continuous time)
stochastic kinetic model.

Alternative methods for parameter inference approximate the underlying stochas-
tic kinetic model in order to derive approximate likelihood functions. A popular
approach is to consider the continuous-state diffusion approximation of the true
process, which yields a stochastic differential equation (SDE) known as the chemi-
cal Langevin equation (CLE). An alternative continuous approximation is given by
the linear noise approximation (LNA) [20]. Additionally, several moment expansion
and moment closure approaches have been proposed as ways of approximating the
underlying model, some of which have also been used in order to allow parameter
estimation to be performed.

2.3.2.3 Coping with Extrinsic Noise

Extrinsic noise may be modelled by specifying a probability distribution, p(θ, x0),
over the parameters and initial conditions [4]. In Fig. 2.1 (right column), we illustrate
the effects of extrinsic noise on the oscillations in a model of p53 dynamics, where
the extrinsic noise enters themodel through fluctuations in just one of the parameters.
In this example, we have both intrinsic and extrinsic effects (see also Sect. 2.3.2.4).
In the absence of intrinsic stochasticity, extrinsic effects may be simulated in exactly
the same way as propagating input uncertainty (discussed in Sect. 2.4.2)—by propa-
gating p(θ, x0) through the model. The parameters of the extrinsic noise distribution
p(θ, x0), may also be the subject of inference given suitable data, such as multiple
measurements at single cell resolution.

2.3.2.4 Coping with Mixed Noise Sources

When intrinsic and extrinsic noise are both present, themodelling challenges aremore
substantial, both conceptually and computationally. The most common approach,
originating from [48], is to derive a framework under which each source of noise
may be considered separately, whilst other sources are held fixed. The theoretical
justification is made via the following decomposition of the stochasticity of cellular
products, x , as the direct sum of extrinsic and intrinsic (and experimental) contri-
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butions. Defining the extrinsic and intrinsic variables (or parameters) as E and I
respectively, the total law of variance gives us,

σ 2
x = σ 2〈x |E〉︸ ︷︷ ︸

Extrinsic

+〈σ 2〈x |E,I 〉|E 〉
︸ ︷︷ ︸

Intrinsic

+ 〈σ 2
x |E,I 〉︸ ︷︷ ︸

Experimental

(2.4)

where the angular brackets represent the expectation. The first term is the variance
of the mean values of x with E held fixed, and describes the portion of the total
uncertainty arising from extrinsic variability. The second term describes the intrinsic
contribution—the mean variance of x when sources of uncertainty other than E and
I are averaged out, and E is held fixed. The final term is that part of the total variance
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Fig. 2.1 We consider a model of oscillatory p53 dynamics [17]. The model comprises three
protein species (p53, precursor of Mdm2 and Mdm2) connected through a nonlinear feedback
loop. We take the parameters of the system (see [1] for details) to be [k1, k2, k3, k4, k5, k6, k7] =
[90, 0.002, 1.7, 1.1, 0.93, 0.96, 0.01], with initial conditions fixed at [p53, pre-mdm2, mdm2] =
[10, 20, 30] at time t = 0. In the top left, we show individual realisations of the number of p53
molecules over time, obtained using Gillespie’s stochastic simulation algorithm (SSA). Below this,
we have 3 plots showing the population mean (solid line) and a 1 standard deviation shaded region
for the 3 protein species (as indicated), obtained by averaging over many SSA runs. On the right,
we show the same 4 plots, but this time we illustrate the effects of extrinsic fluctuations by assuming
that the k4 parameter is drawn from a Gamma(12, 0.1) distribution (so that the mode is at k4 = 1.1).
While it is difficult to discern any difference from the individual SSA simulations (top plots), it is
clear from the plots of the population means that the effect of extrinsic noise in this case is stronger
dampening of the oscillations
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that is not explained by experimental or intrinsic sources, and which we attribute to
uncertainty in the measurement process.

This noise decomposition suggests the innovative dual-reporter experiments—
where the products of two genes, regulated by identical promoters are simultaneously
measured—in order to quantify intrinsic and extrinsic contributions. Furthermore,
it suggests that intrinsic, extrinsic and experimental uncertainty may be modelled
jointly by combining their separate strategies in hierarchical fashion. This is demon-
strated for intrinsic and extrinsic variability by Toni and Tidor [51], using the linear
noise approximation and the unscented transform respectively.

The total law of variance based approach, however, is only accurate when changes
in extrinsic variableswith time aremuch slower thanfluctuations in intrinsic variables
[23]. It turns out that inferring the contributions to total variance from extrinsic and
intrinsic sources is reliant upon the history of extrinsic fluctuations and not just their
present state. Even if all extrinsic variables can be measured accurately, Eq.2.4 will
introduce errors if the extrinsic variables cannot be assumed constant in time.

2.3.3 Quantifying Information and Knowledge

Given the variety of noise sources that may exist in the underlying processes that
generated the data, we may wonder exactly how much information can be extracted
from a given dataset. In the context of reverse engineering, our principal concern is
the degree to which we will be able to reconstruct the biological process of interest
from the available experimental observations. It is therefore useful to be able to
quantify the amount of information that our data contain about the parameters that
we seek to infer. In the Bayesian formalism, this is conceptually simple. Before we
conduct the experiment, the prior distribution describes the knowledge that we have
regarding the values of the unknown model parameters. The posterior distribution
serves the same role, but after observation of the data. The compression from prior to
posterior provides an information theoretic measure of the information gain provided
by the data. This compression can be quantified by calculating the Kullback-Leibler
divergence [9] between posterior and prior,

dK L (p(θ |D,M), p(θ |M)) =
∫

θ∈�

p(θ |D,M) log

(
p(θ |D,M)

p(θ |M)

)

dθ . (2.5)

Typically, it will not be possible to calculate this divergence analytically; however,
there are Monte Carlo methods that permit its estimation.
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2.4 Models in Biology and Confidence in Models

2.4.1 Data versus Reality

Despite the increasing range and power of experimental techniques, datasets continue
to represent low-dimensional snapshots of the complex cellular environment. It is
the task of reverse engineering to interpret the data and fill in the blanks—to explain
observed, and allow the prediction of unobserved properties of the real system. It
is clear that the quality, quantity, context and subject of experimental observations
determines both the inferences that may be drawn and the confidence we associate
with them. For example, larger datasets with higher signal to error ratios will in
general lead to greater accuracy and precision. However, in many cases the relative
utility of different experimental choices can be hard to foresee, e.g., which species
should be measured or perturbed (illustrated in Fig. 2.2 and more generally by Liepe
et al. [32]), and whether longitudinal datasets or time-point data should be generated
in order to reduce the uncertainty in parameter estimates [30].

Here it can be useful to close the loop between experiment and model, by ratio-
nally seeking experiments that maximise the expected information available for the
inference task at hand. This is known as experimental design, of which recent devel-
opments in the context of model calibration include the work of Liepe et al. [32]
that builds upon existing methods [2, 8, 24, 31, 34, 54], by utilising a sequen-
tial approximate Bayesian computation framework to choose the experiment that
maximises the expected mutual information between prior and posterior parameter
distributions. In so doing, they are able to optimally narrow the resulting poste-
rior parameter or predictive distributions, incorporate preliminary experimental data

(a) (b) (c)

Fig. 2.2 Some experiments aremore informative than others. a Schematic of a three variable system
of ordinary differential equations. Arrows represent interactions that are modelled by linear terms
with coefficients shown. Inference for k is performed independently for two timeseries datasets that
are generated by simulating the model with k = −0.1, and measuring the state of b the top variable
and c the middle variable for times t = 0.5, 1, 1.5, 2. The broadness of the resulting marginal
posterior distributions differ substantially, reflecting the different levels of information contained
within the datasets
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and provide sensitivity and robustness analyses. Design frameworks also exist for
model selection (e.g. [15]), where experiments are sought that maximally distinguish
the prior predictive distributions of the competing models.

Although experimental design offers a powerful auxiliary tool to statistical infer-
ence, care must be taken in interpreting the confidence associated with inferred mod-
els and parameters. For example, it is unsurprising that we assign high confidence
to the outcome of a model selection analysis given data from an optimally designed
experiment. When each of the models is subject to some level of misspecification,
such confidence may be misleading.

2.4.2 Models versus Reality

The complexity of cellular behaviour makes it inevitable that reverse (or forward)
engineered systems models will be subject to misspecification errors (when they
relate to the observation model, they are called systematic errors). These errors in
the model may remain undetected, or they may be introduced knowingly via model
reductions aimed at simplifying downstream analyses or at increasing interpretabil-
ity. In either case, such model uncertainty affects predictions and the outcomes of
statistical inferences. For example, inferred values for the physical parameters of a
‘wrong’ model will also be ‘wrong’ in order to compensate for misspecification (for
example, see Fig. 2.3). Indeed, strictly speaking, Bayesian inference is valid only
when a ‘true’ model is considered.

The effects of parameter and input uncertaintymay be quantified by assessing their
effect on the likelihood and posterior model predictions. For some classes of model

(a) (b)

Fig. 2.3 Inference using a ‘wrong’model. aAmisspecifiedmodel of a ‘true’ data generating system
are considered. The grey circle and dotted arrows represent a true variable and its interactions that
are absent from the wrong model. Fixing (e1, e2, e3) = (−0.1, 0.1, 0.5), and (k1, k2, k3, k4) =
(−0.1, 0.5, 0.5,−0.1) a timeseries of 10 data points is simulated from which the ki are inferred
using the incompletemodel. bMarginal posterior densities for the ki . Maximum a posteriori (MAP)
estimates do not coincide with the true parameter values (shown in red)
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a similar treatment of model uncertainty may be undertaken by capturing the range
of possible errors through parametric expansions, and examining the importance
of each (e.g. [44]). However more generally, and certainly for mechanistic models,
such an approach is undermined by the conceptual and computational difficulties
of specifying the complete space of model errors. However, a consideration of the
possible sources of model uncertainty may still suggest a collection of possible
models that are in reasonable agreement with the data. In this case, the propagation
of misspecification may be managed, to an extent, by conditioning upon the whole
collection, rather than just on the single best model. This is the basis of the model
averaging framework, where the best estimate of the state or parameter of the system,
θ , along with confidence intervals may be calculated from the averaged probability
under the various models,

p(θ |M1, ...,MN ) =
N∑

i=0

p(Mi |D)p(θ |Mi )

where p(Mi |D) is the posterior probability of model, Mi , given the data, D, and
p(θ |Mi ) is the posterior distribution for θ under model Mi . While each Mi is
still ‘wrong’, the averaged prediction of all ‘wrong’ models at least accounts for a
portion of model uncertainty. However the major drawback of averaging, rather than
selecting, is to diminish their physical interpretability.

2.4.3 What Can Be Learned from Data?

Frequentlywe find that parameters, ormore often combinations of parameters, can be
varied over orders of magnitude without changing the output of a system appreciably
[13]. This has major implications for the inverse problem of estimating parameters
from data, as large sub-regions in parameter-space may be commensurate with a
given dataset. The dependence (or lack thereof) of parameters with respect to data
is referred to as inferability, which in practice may be quantified as the variance
about the Maximum a posteriori (MAP) estimate. More formally, the Cramer-Rao
inequality [10] gives us a bound on the precision to which a parameter may be
estimated in terms of the likelihood,

σ 2
θ ≥ I−1(θ),

with I(θ) being the Fisher information matrix (FIM),

I(θ) = Eθ

[(
∂ log(p(D|θ))

∂θ

)2
]

,

and σ 2
θ , the covariance matrix of a vector-valued θ .
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The FIM is at the heart of much of statistical inference and can be interpreted as
the curvature of the likelihood surface around the maximal value of the likelihood
function. It can also be used as a means to consider robustness and sensitivity of
dynamical systems. The reason for this is that if a system is sensitive to variation
in a parameter, or a combination of parameters, then this means that changing the
parameter, e.g. from θ to θ +δ, will result in a noticeable change to the system output,
which in turn means that the likelihood will also be altered appreciably. Notice,
however, that inferability is a property of both system and data—it is possible that
further observations will render previously ‘sloppy’ [21] parameters inferable with
high certainty (see Fig. 2.2).

Often improved fits to data or better model predictions are interpreted as evidence
that more about the true system is being captured. However, it is easy to construct
counter-examples where improved data fitting and even predictive power (although
desirable in their own right) can be achieved by including more inaccuracies into
a misspecified model. It is crucial then not to interpret the physical meaning of
any model too assuredly, but instead use them as tools to generate hypotheses for
experimental testing (with the result, perhaps, of invalidating the model).

2.5 Conclusion

Reverse engineering is never easy, and probably even harder in biology than in the
physical sciences, where sound physical principles can constrain the search space
considerably.But oncewe accept that there is a point to applying quantitativemethods
andmathematical or computermodels in biology,we have to face up to the challenges
presented by inverse problems. There have been some arguments, perhaps most
notably from Sydney Brenner [5], stating that the inverse problem in molecular and
cellular biology is insurmountable and that we should use “the Cellmap”; how this
looks and where it would come from has thus far, sadly or unsurprisingly, been left
unspecified.

In order to make progress with the topic of this chapter we have to consider
two aspects of reverse engineering. First, problems where models can be tackled
by existing methods of reverse engineering. Here we consider only those that make
a meaningful and robust attempt at quantifying uncertainty as serious contenders,
which restricts us essentially to methods based on statistical and sound probabilistic
principles. For such systems it is easy to show that the inverse problem should be
tackled in preference of solving sets of forward problems, which rely on experimen-
tally measured parameter values, and which typically are associated with levels of
uncertainty that are, it appears, rarely propagated in forward analyses. The best we
can make out the elusive “Cellmap” appears to be a fully parameterized model for
the (cellular) system under consideration. Taking the predictions of such a system at
face-value ignores uncertainty and does not appear a sound way of making progress.

There are statistical procedures which are provably consistent as the amount of
data becomes infinite. This is clearly a situation far from reality but it seems advisable
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to use these techniques also in situations where data are rare. The alternative would
be to use an approach which is provably sub-optimal as data become perfect and
abundant in the hope that it does a good job on poor data.

The second set of problems is more interesting, and probably more widespread:
there are numerous systems (and models thereof) for which the inverse problem is
indeed insurmountable. Here simple solutions simply do not exist (and a “Cellmap”
is sadly lacking). Two obvious attempts at addressing such problems—each with its
own set of caveats—include partial inference and model reduction. While the details
of their respective applicability depend crucially on the specific problem, we can
make some general statements.

By partial or composite inference we mean a pragmatic approach that proceeds
by either breaking up the problem into sub-systems for which satisfactory inferential
solutions might exist, and then stitching the solutions for such subsystems together.
This has the disadvantage that any correlations or interdependencies among subsys-
tems are ignored. Nevertheless, techniques such as composite likelihood approaches
[14] can help to make progress in inference problems that are not amenable to a
comprehensive or holistic analysis. This will, we believe, continue to be a fruitful
area for computational statistics.

Model reduction, on the other hand, requires more domain expertise about the
system to be investigated. In the simplest case, it could be an effective model, which,
for example, ignores somemolecular species, if they exist only briefly and transiently.
It could also be a model that looks at lower dimensional spatial problems (although
this can be fraughtwith fundamental problems asmathematical solutions to problems
in 1D and 2D can be qualitatively different from solutions in 3D).

Either approach, individually or in combination, may be worthwhile exploring
in problems in systems biology (developmental biology seems to be replete with
problems that pose challenges to inferential techniques), and is preferable to an
analysis of corresponding forward problems for fixed parameters, which wouldmask
uncertainty.

In summary, recent years have shown the fundamental new insights that can result
from searching for or determining the origins of uncertainty in biological systems.
In some cases, it will turn out that uncertainty is merely a nuisance (e.g. if it enters
via the experimental procedure), whereas other types of uncertainty either reveal
exciting new biological mechanisms (e.g. extrinsic variability typically points to
aspects of a biological system that require further investigation), or are fundamental
and inalienable aspects of biomolecular dynamics.

Failure to account for uncertainty in the analysis of biological systems (and in
particular in reverse engineering tasks)will likely introduce bias andmask interesting
biology. On the other hand, uncertainty becomes easier to deal with once we know
where and how it arises.
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Chapter 3
Probabilistic Computational Causal
Discovery for Systems Biology

Vincenzo Lagani, Sofia Triantafillou, Gordon Ball,
Jesper Tegnér and Ioannis Tsamardinos

Abstract Discovering the causal mechanisms of biological systems is necessary to
design new drugs and therapies. Computational Causal Discovery (CD) is a field
that offers the potential to discover causal relations and causal models under certain
conditions with a limited set of interventions/manipulations. This chapter reviews
the basic concepts and principles of CD, the nature of the assumptions to enable it,
potential pitfalls in its application, and recent advances and directions. Importantly,
several success stories in molecular and systems biology are discussed in detail.

Keywords Causality · Causal graphical models · Bayesian networks · Systems
biology · Biological networks

3.1 Introduction

The winner of the 2011 ACM Turing Award—the Nobel Prize equivalent in
Computing—was Prof. Judea Pearl, a pioneer in probabilistic and causal reason-
ing. Among many other contributions, the theory of Causal Bayesian Networks that
he co-developed is now a standard tool for modeling, inducing, and reasoning with
probabilistic causality. Bayesian Networks are at the heart of numerous decision sup-
port and expert systems as well as the basis for machine learning algorithms. After
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several decades of heated debate about the possibility of causal discoverywithout—or
with a limited number of—controlled experiments, it seems that consensus converges
towards an affirmative answer.

Knowledge of causal relations is paramount in systems biology. Causal modelling
goes beyond traditional statistical predictivemodelling by allowing one to predict the
effects of actions and interventionson a system, e.g., the effects of treatingwith a drug,
knocking out a gene, or inducing a mutation in the genome. In contrast, non-causal,
predictive modelling is only valid when the system under study is observed under
the same experimental conditions and not otherwise manipulated. For example, gene
expressions A and B may be correlated: observing the expression levels of A allow
us to better predict the observed expression levels of B. But, it does not assure us that
A regulates B or the opposite. The difference between observing and intervening on a
system is essential for understanding causalmodelling. If A is the only regulator of B,
then the two genes are still correlated in a controlled experiment where A is activated
or suppressed; in contrast, the correlation disappears in a control experiment where
B is activated and suppressed at will by the experimenter, since the effect of A now
becomes irrelevant.

To establish causality, one traditionally needs to perform a manipulation (pertur-
bation, intervention) on the system [29]. In contrast, computational Causal Discovery
(CD) methods argue that given certain assumptions about the nature of causality one
can sometimes induce causal relations from observational data alone or a limited
number of manipulations/interventions. One can then analyse archived data, for-
going expensive, time-consuming, or even impossible experiments, and determine
certain aspects of the causal mechanisms. Exactly which aspects of the causal struc-
ture can be induced depends on the system under study and the available data. Given
the complexity of the cell, performing all the possible experiments to establish all
relations among every subset ofmolecular quantities, under all possible experimental
conditions, is impractical. CD may provide an alternative.

Causal models (not necessarily induced through Causal Discovery) are already
heavily employed in systems biology: biological pathways are a form of causal mod-
els that are indispensable in biological research. Pathways are manually assembled
from the literature,where relations are established by performing interventions.How-
ever, for the most part, such models are informal and have ambiguous semantics for
the edges: an edgemay imply a direct or indirect causation; amissing edgemay imply
lack of direct causation or a yet-to-be established relation. In addition, pathways are
largely qualitative; the strength and functional form of the causal relations is not
represented (some exceptions exist, such as well-characterized metabolic pathways
annotated with flux equations [100]). In contrast, models induced with CD methods
have specific formal causal semantics as well as quantitative information that enables
quantitative predictions.

In the rest of this chapter we present the basic concepts of CD, focusing on the
fundamental underlying assumptions and discussing its limitations and potential pit-
falls. We also present selected applications of CD in systems biology, demonstrating
the potential of this exciting field.
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3.2 The Nature of Causality

3.2.1 Definition of Causality

We use the notation A → B to denote our belief that “A causally affects B” (or,
“A causes B” for brevity). But, what exactly does this mean and how should it
be interpreted? Most of CD employs a probabilistic notion of causality. A and B
should denote two well-specified variables (interchangeably: measurable quantities,
features) which are measured on a population of objects, such as two protein concen-
trations in human T-cells.We consider simultaneousmeasurements of these variables
in a random sample of the population, from which we can estimate their joint prob-
ability distribution. Thus, for the purposes of this chapter, the data are assumed
cross-sectional: snapshots of the state of a cell without regard for the time of mea-
surement.

A → B denotes the fact that if an experimenter intervenes and changes the values
of A, the distribution of B will also change. This statement is inherently probabilistic:
Average-Cigarettes-Smoked-Per-Day causally affects Presence-Of-Cancer-by-Age-
60 because the distribution of Presence-Of-Cancer-by-Age-60 changes and the peo-
ple with value “Yes” become more prevalent. To a single individual, that means that
the probability of her getting cancer increases. Yet, causality as presently defined is
still deceptively simplistic. A may be causally affecting B only in a given context,
e.g., in the presence of another protein C . Thus, a better definition is probably that
A → B if there is conceivable intervention involving only A, and a context of some
other variables that are held constant, such that the distribution of B changes (rel-
ative to the distribution of B when the context is the same but A is not intervened
upon). The “intervention” may be just a thought experiment, technically impossible
with present technology. Yet, it has to be theoretically plausible. For example, the
statement Cancer → Protein is arguably undefined: we cannot intervene on the state
of the cell to make it cancerous without affecting anything else in the cell. Such
semantically vacuous statements often arise when variables that refer to different
abstraction levels are modeled together. In this case Cancer, a quantity that refers to
the cell as a whole, and the concentration of a protein are defined on a different time
and spatial scale.

Finally, notice that the concept of causation is required to define “intervention”,
used in the definition of causation; our definition is recursive! To break the vicious
cycle, notice that intervention requires defining causality from outside the system
(the experimenter) to within the system; causality as defined regards causal effects
within the system. In other words, given that we understand what it means for an
experimenter to intervene in a population of cells, we can define the causal relations
among molecular cell quantities. We can proceed with using causality in an opera-
tional way, the same way humanity is doing statistics while still arguing about the
philosophical issues of the semantics of probabilities.
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3.2.2 Direct Causation

We’ll need to distinguish between direct and indirect causality.We’ll say A is directly
causally affecting B relative to variables in the set O, if A remains a cause of B even
when all other modeled variables’ values are held fixed. Direct causation is relative
tothe observedvariables.Ahormonemaydirectly causally affect a genewhennothing
else is observed, but indirectly affect it when the status of cell membrane receptors
are observed.

3.2.3 Quantitative Causality

Relations A → B are qualitative and useful for human inspection and visualization
in the form of networks. But, quantitative relations are necessary tomake quantitative
predictions. If there are two or more direct causes of B (A → B and C → B), then
in general we cannot consider the relations independently. This is necessary because
A and C jointly determine the values of B. In general, we can model the values of
B with the structural equation:

B = f (Pa(B), U )

where Pa(B) are the direct causes of B (or parents of B) and U represents all
other non-modeled causes. If A and C are the only parents, then B = f (A, C, U ).
The difference from a non-structural equation is the special role of the left-hand-side:
the value of B is set (determined) by the values of PAB and U and not vice versa:
B cannot be moved to the right-hand-side. This special role of the left-hand-side is
equivalent to dictating that if we intervene on the values of the right-hand-side, the
left-hand-sidemay change, but not the other way round. The structural equation is not
symmetrical. Also notice that the equation is deterministic! However, the presence
of unknown values of U introduces uncertainty into the equation and induces a
probability distribution of the values of B. The form of function f is important. A
few examples follow, where I(•) is the indicator function taking values 1 when the
argument holds and 0 otherwise:

• B = a · A + b + ε, B’s concentration always increases with the same rate as A
increases. This is an example of a linear relation (strictly speaking, if b �= 0 it is
called an affine function). The term ε = ∑

i∈U Ui is the effect of all unmeasured
causes of B; it is not measurement noise.

• B = a · I (A > 100 and C > 100) + b + ε, B’s concentration follows a baseline
of b, and level a + b when both A and C are larger than 100. Thus, in order to
discover this relation one must observe or impose values of A and C larger than
100.

• B = a ·(A−100)2+b+ε, B’s concentration decreases as A increases if A < 100,
and increases as A increases if A > 100. The rate of increase or decrease of B (as
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A takes different values) is 2a A (the derivative of the equation) and thus it is not
constant but depends on the values of A.

Linear relations are perhaps the easiest to discover, step functions (as in the second
example) require observing the system in a suitable range of the parameters, and
non-linear functions (as in the last example) require more sophisticated modeling
approaches.

3.2.4 Necessary/Sufficient/Contributory Causes

Similarly to the distinction between necessary and sufficient conditions in logic,
causes are also distinguished among necessary and sufficient, with the additional
category of contributory causes:

• Necessary: a necessary cause is such that the effect will always imply the cause,
but the cause does not imply the effect. For example, passing some course implies
that you sat the examination, but sitting the examination does not imply that you
will pass.

• Sufficient: a sufficient cause is such that the cause always implies the effect, but
the effect does not imply the cause. For example, burning hydrogen and oxygen
will always result in water, but the presence of water does not imply combustion.

• Contributory: a contributory cause is any other cause whichmay result in an effect,
but of itself is neither necessary nor sufficient. For example, an intoxicated driver
may result in a crash, but intoxication does not imply a certain crash, and neither
does a crash always imply the driver was intoxicated.

The majority of cases for which causal analysis is useful concern contributory
causes. Single necessary causes are usually relatively easy to identify: these are the
“low-hanging fruit” for which experiment and intuition will readily recover causality
without recourse to causal analysis. Conversely, a collection of mildly contributory
causes is a harder problem to identify, and one for which causal methods applied to
large datasets prove useful.

3.3 Basics of Causal Discovery Algorithms

3.3.1 Causal Graphical Models

Agraphical representation is a usefulway of quickly seeing the structure of a complex
system. Intuitively, a set of causal relationships A → B can be readily represented as
a graphwhere nodes represent quantities and directed edges represent causal relation-
ships. Particularly, the formalism of Probabilistic Graphical Models (PGM) helps us
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define, in a more principled way, the mathematical characteristics of causal models.
Wewill mainly consider the Causal BayesianNetwork (CBN) andBayesianNetwork
(BN) frameworks, as these are some of the most known and widely employed PGMs.

3.3.2 Causal Bayesian Networks

A CBN consists of a graph G = {V, E} and a parameterization θ. The set V of
nodes represents the observed (modeled) quantities (a.k.a. variables), while E is a
set of directed edges A → B indicating direct1 causal relationships (where A is the
“cause” and B is the “effect”). The graph must consist only of directed edges and
contain no cycles (Directed Acyclic Graph, DAG). For any node A, any node that
can be reached by following directed edges is a descendant (effect), and any node
from which A can be reached is an ancestor (cause). The direct causes of a node
are named parents, while its directed effects are named children. A directed path
consists of a sequence of nodes where each node, except the first one, is the direct
effect of its predecessor in the sequence. An undirected path is a sequence of nodes
where each pair of subsequent nodes is connected by an edge without regard to the
direction of the edge. Whenever an undirected path {A → C ← B} exists with two
incoming edges into C , the node C is called collider on this path.

The parameterization θ defines the joint probability distribution of data generated
by a systemwith the causal structure of the network. The parameterization quantifies
the functional form of the causal relations among the variables. Adding a parame-
terization allows us to express whether relationships are linear or not, the effect size
of each interaction, and in general to make quantitative inferences. For a discrete
joint distribution (all variables being discrete) there is one parameter θi for each
combination of values of the variables:

P(V1 = vi1 , . . . , Vn = vin ) = θi (3.1)

A major assumption of the CBN framework is the Causal Markov Condition: each
node of V is independent of its non-descendants (non-effects) given its parents (direct
causes). In other words, the Causal Markov Condition asserts that indirect causes or
confounded quantities do not provide additional information for a variable, once the
values of the direct causes are known. Notice that, effects of V may provide addi-
tional information, even when all direct causes of V are known. The Causal Markov
Condition allows us to connect the causal structure (network) with the distribution
parameters. By the chain rule in probabilities we obtain:

P(V1 = vi1 , . . . , Vn = vin ) = �
j

P
(
Vj = vi j

∣
∣V1 = vi1 , . . . , Vj−1 = vi j−1) (3.2)

1Direct causation is defined in the context of all other modeled variables, i.e., a causal relation
mediated by none of the observed variables.
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Let’s assume without loss of generality that each variable in the equation above is
listed after its parents, i.e., if i < j , then Vj cannot be a parent of Vi (in other words,
we assume the variables are topologically sorted). Notice that this is always possible
for DAGs. By using the Causal Markov Condition in the above equation, we obtain:

P(V1 = vi1 , . . . , Vn = vin ) = �
j

P
(
Vj = vi j

∣
∣Pa(Vj ) = paq j ) (3.3)

That is, due to the Markov Condition for each variable Vj , all the variables in the
conditioning part have disappeared except the parents of Vj , denoted with Pa(Vj ).
The quantity paq j denotes the joint combination of values of the parents of variable
Vj . The causal structure now dictates the form of the joint probability distribution,
by entering the equation in the form of the parent sets Pa(V ) for each variable and
imposing a factorization of the joint distribution. Employing Eq. (3.1) to represent
an arbitrary distribution with n binary variables requires 2n − 1 parameters θi to
be specified. However, using Eq. (3.3), we only need to represent the distributions
P(Vj = vi j |Pa(Vj ) = paq j ) for each variable. If a causal system is sparse, e.g.,
each variable has at most 3 parents, then we need (2−1) ·23 parameters for each such
conditional distribution. So, in total, we need at most n · (k − 1) · k p, where n is the
number of variables, k the maximum number of values of each variables, and p the
maximum number of parents of a variable: knowledge of the structure of the causal
network, assuming it is sparse, allows an exponential reduction in the number of
distribution parameters required, and hence the dimension of the parameter space.

CBNs also assume Causal Sufficiency, which corresponds to asserting that there
are no external variables which are causes of two or more variables within the model.
These common causes are called confounders. The Causal Sufficiency assump-
tion implies that the following sub-graph is not present in the causal system under
study: X ← L → Y , where X and Y are modeled, and L is unobserved and not

Fig. 3.1 A simple graphical
model depicting the
(supposed) causal
relationships among
smoking, genetic
background, cancer and
Prostate-Specific Antigen
(PSA). The parameterization
of the distribution associated
with this network is
described in the text

Prostate 

Cancer

Smoking
Genetic

Background

PSA



40 V. Lagani et al.

modeled. A truly causally sufficient model is in practice hard to construct, especially
in molecular biology where hundreds of thousands of molecular quantities may be
confounding factors. Causal Sufficiency is one of the most restrictive assumptions
of causal discovery. Fortunately, there exist more advanced generalizations of CBNs
that admit latent confounding variables (see Sect. 3.6).

Let’s employ an example in order to better explain the concepts above. Figure3.1
portrays the DAG of a small CBN. In this example, the probability of developing
Prostate Cancer is influenced by both Genetic Background [94] and Smoking [48],
while the presence of prostate cancer increases the probability of deregulation in
the expression of the Prostate-Specific Antigen (PSA, [50]). Let’s suppose that all
variables are binary, which means each variable can assume a value in the set {1, 0}.
Regarding the semantics of the values, “1” means, respectively, deregulated for PSA,
harmful for Genetic Background, yes for Smoking and present for Prostate Cancer.
In each variable the value “0” negates the meaning of value “1”. We can now para-
meterize this simple model as follows:

P(Smoking = 1) = πSmoking

P(Genetic Background = 1) = πGenetics

P(Prostrate Cancer = 1|Smoke, Genetics) = a1 ·Smoke+a2 ·Genetics+a0
P(P S A = 1|Prostate Cancer) = a4 · prostrate Cancer + a3

In this parameterization, having a harmful genetic background and being a smoker
are modelled as random events, whose respective probabilities are πSmoking and
πGenetics . Coefficients a0, a1, a2 quantify the extent to which Smoking and Genetic
Background affect the probability of developing cancer, while a3, a4 quantify how
Prostate Cancer changes the probability of PSA being deregulated.

Notice that all causal relationships are probabilistic (non-deterministic), i.e.,
Smoking and Genetic Background increase the probability of developing Prostate
Cancer, while the presence of cancer may deregulate PSA expression. The proba-
bilistic nature of the model is due to the existence of a number of factors Ui , i ∈ U
(e.g., physical activity, diet, medications, etc.) which influence the model’s quanti-
ties but are not measured. However, recall that the Causal Sufficiency assumption
requires that no external factor simultaneously influences two or more elements of
the model; this means that each variable can be affected by multiple Ui , but each Ui

can affect only one variable.

3.3.2.1 Inference in Causal Bayesian Networks

If the CBN is known (this includes both the structure and the parameterization), any
probabilistic inference is possible. In particular, any predictive or diagnostic query
of the form “what is the probability Vi will take/has taken value j given that we
observed certain values for other variables” is possible. Without loss of generality
let’s assume we observed V1 = v1, . . ., Vk = vk and we would like to compute the
conditional probability that Vk+1 = vk+1:
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P(Vk+1 = vk+1|V1 = v1, . . . , Vk = vk) = P(V1 = v1, . . . , Vk = vk, Vk+1 = vk+1)

P(V1 = v1, . . . , Vk = vk)

= �Vk+2,...,Vn P(V1 = v1, . . . , Vk = vk, Vk+1 = vk+1, . . . , Vn = vn)

�Vk+1,...,Vn P(V1 = v1, . . . , Vk = vk, Vk+1 = vk+1, . . . , Vn = vn)
(3.4)

where each index vi runs on all values in the domain of variable Vi . Each term in the
sums is computed by Eq. (3.3). Let’s resume the example presented in Fig. 3.1, and
assume that a specific patient has a deregulated PSA, is a smoker, and his Genetic
Background is not harmful. A clinician may be interested in assessing the probability
that the patient has Prostate Cancer, which can be evaluated by applying in turn
Eqs. (3.3) and (3.4):

P(Cancer = 1|Smoke = 1, P S A = 1Genetics = 0)

= P(Cancer = 1, Smoke = 1, P S A = 1, Genetics = 0)

�pc=0,1 P(Cancer = pc, Smoke = 1, P S A = 1, Genetics = 0)

= P(Genetics = 0) · P(Smoke = 1) · P(Cancer = 1|Smoke = 1, Genetics = 0) · P(P S A = 1|Cancer = 1)

�pc=0,1 P(Genetics = 0) · P(Smoke = 1) · P(Cancer = pc|Smoke = 1, Genetics = 0) · P(P S A = 1|Cancer = pc)

= (a1 · 1 + a2 · 0 + a0) · (a4 · 1 + a3)

(a1 · 1 + a2 · 0 + a0) · (a4 · 1 + a3) + [1 − (a1 · 1 + a2 · 0 + a0)] · a3

Assuming that Smoke sensibly increases the probability of cancer (a1 = 0.2, a0 =
0.01) and that PSA has a high sensitivity (a4 = 0.9, a3 = 0.1), the patient has a
high probability (0.727) of having Prostate Cancer. A similar inference would have
also been possible in the case information regarding Genetic Background was not
available, though the sums would have contained more terms (the number of terms
grows exponentially with the number of unobserved variables). In general, inference
is in the worst case an NP-complete problem, however efficient exact or approximate
algorithms do exist [71]. Thus, a CBN can predict/diagnose any variable or set of
variables given the values of any other set of variables. It is like having trained an
exponential number of predictive models, one for each variable subset as predictors.
This is a key factor that hasmadeCBNs popular in (clinical) decision support systems
where one may have a varying and limited number of observations for each patient.

The graph of a CBN can also provide all the (conditional) independencies implied
by the Causal Markov Condition. If faithfulness is assumed (see Sect. 3.4.1 for a def-
inition of faithfulness) the graph can also provide all (conditional) dependencies. In
other words, by examining the graph, one can determine which variables are con-
ditionally or unconditionally correlated. The property that connects the topology of
graphical/causal structure with the concept of conditional (in)dependence is called
d-separation; two sets of variables A, B (such that A �= B) are conditionally inde-
pendent given a third set C ⊆ V \ {A, B} if and only if they are d-separated by C in
G. Formally, d-separation is defined as follows: A, B are said to be d-separated given
a third set C if there is no undirected path U such that (i) every collider in U has a
descendent inC and (ii) no other nodes inC is inU . Intuitively, we can think about d-
separation as a criterion that tells us if the “flowof information” between twovariables
A and B is interrupted or not. For example, variables Smoking and PSA in Fig. 3.1 are
d-connected when conditioned on the empty set (the “flow” of information can
freely transfer from Smoking to PSA through the node Prostate Cancer), but they are
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d-separated when we condition on Prostate Cancer, since knowing its value makes
the information provided by Smoking superfluous in order to predict PSA. On the
other hand, Smoking and Genetic Background are d-separated in absence of a condi-
tioning set, but they becomed-connectedwhen conditioning onProstate Cancer,PSA
or both. In fact, in the latter casewe condition on all the colliders (or their descendants)
in the undirected path between Smoking and Genetic Background. Note that Smoking
and Genetic Background are independent, but knowing both the values of Smoking
and Prostate Cancer gives us some information on the value of Genetic Background,
and thus the two variables are not independent anymore. Hereafter we will denote
with dep(A, B|C) the presence of a conditional dependency between variables A
and B given the set C, while indep(A, B|C) will denote independence.

Finally, CBNs can make inferences unique to causal models: they can predict the
effects of interventions/manipulations/changes in experimental conditions. Given a
CBN we can determine the effect of knocking out a gene, the effect of administering
a drug, or the effect of changing any quantity modeled in the network. Conceptually,
such inferences are straightforward. The effect of the experimenter on the system
that sets the values of a variable Vk to v, removes the effect of any other variable
to Vk . This is modeled by removing all incoming causal edges to Vk and setting
P(Vk = v) = 1 and P(Vk = v′) = 0, for v �= v′ in the conditional probabilities
associated with the graph. The edge removal is called graph surgery; in the resulting
graph Vk will have no parents. The new joint probability distribution can now be
computed with Eq. (3.4), and hence any probabilistic query about the effect of the
intervention can also be computed. Interventions that deterministically set the values
of some specific variables are called hard interventions. When interventions have
a chance of not being effective, they are called soft interventions. In this case, the
intervention does not completely remove the causal effect of all other quantities, and
thus, a different treatment is necessary where the probability of effective intervention
is also modeled. In addition, when an intervention is not specific to a quantity but
may affect other quantities too, the intervention is called a fat-hand intervention and
also requires different modeling techniques [25].

The main reason for causal modeling and discovery is exactly to enable the pre-
diction of the effect of our actions onto the system. Causal models are the only
types of models that enable such inferences. Statistical causal models, such as CBNs
perform such inferences without modeling the underlying physical phenomena and
mechanisms of causality, while othermodels such asOrdinaryDifferential Equations
directly model these mechanisms.

3.3.2.2 Dropping the Causal Semantics: Bayesian Networks

It is rarely the case that a CBN can be constructed completely from prior knowledge.
Typically, suchmodels have to be learnt from data by algorithms that make numerous
assumptions (see Sect. 3.4.1 for a discussion). In cases when the causal assumptions
are not to be trusted, and the structure or parameters of the CBN is also not trusted,
one may still use the Bayesian Network framework without the causal semantics.
Similarly toCBNs,BNs consist of aDAGand aparameterization, but do notmake any
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causal claims or causal predictions. The Causal Markov Condition can be substituted
with the Markov Condition: each node is independent of its non-descendant given
its parents. Note the substitution of “direct causes” with “parents”, since in BNs the
term “cause” does not make sense anymore.

An edge X → Y in a BN should be interpreted strictly from a probabilistic
viewpoint: the edge denotes that X provides unique information for Y (possibly
given some other variables) and vice versa. The direction of the edges should also
not be interpreted causally; the direction is only employed to combine edges into
paths and determine implied probabilistic dependencies and independencies from
the network with the d-separation criterion. All probabilistic inferences possible
with CBNs are also possible with BNs, except for causal inferences: if the causal
semantics are dropped, one is not entitled to employ a BN to predict the effect of
manipulations into the system. BNs may predict our future observations based on
past observations, but not the effects of our actions.

Notice that, Bayesian Networks are only loosely related to some other Bayesian
statistical approaches in this volume, for example Bayesian model selection (See
Chapters [37, 49, 101]). Bayesian Networks treat probability in a “Bayesian” way,
i.e., to represent measures of belief (in contrast to the frequentist interpretation of
probabilities). They also make heavy use of the Bayesian Theorem to make infer-
ences. Both of these characteristics justify the term Bayesian. Bayesian model selec-
tion also treats probabilities asmeasure of belief; in particular, Bayesianmodel selec-
tion uses probability distribution on the set of possible models to express the a priori
belief on their validity (typically, favoring simpler models). However, Bayesian Net-
works serve to model and make inferences about joint distributions, while Bayesian
model selection aims to select the statistical model that achieve the best trade-off
between fitting the data and abiding to the prior beliefs.

3.4 Causal Discovery Approaches

Themain goal ofCausalDiscovery algorithms is reconstructing the network of causal
mechanisms underlying a given system, given a dataset D. The dataset D is usually
composed of a set of n observations measured over m variables. Such causal learning
algorithms have already proven useful to biologists as shown below in Sect. 3.5.

Unfortunately, reconstructing aCausalModel fromdata is not an easy task. Several
algorithms have been proposed in the last few decades, and all of them consist of two
stages: firstly, an appropriate causal graph is found, and secondly aparameterization is
estimated in accordance with the graph structure.While the second stage is relatively
straightforward (given a suitable assumption about the functional form of the causal
relationships), identifying the correct causal graph has proven to be NP-hard [14].
So far, two main approaches have been developed for reconstructing the graphs of
Causal Models, namely the Constraint-based and the Score-based (also known as
Search-and-Score) approach. The basic principles of the two main approaches for
learning CBN are the following:
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• Score-based: first introduced in [78], these methods are based on a score func-
tion S(G|D) measuring the fit of the graph to the data, while at the same time
favoring simpler structures. A prototypical score function is the Bayesian infor-
mation Criterion (BIC), defined as B I C(G|D) = |θ| · ln(n) − 2 · log (L(G|D)),
where log (L(G|D)) is the log-likelihood of the graph given the data, and |θ| is the
number of model parameters [93]. The score function is usually combined with
a search-heuristic that explores the space of possible graphs. A typical heuristic
is the greedy one: start with the empty graph (no edges) and then add, reverse or
delete the edge that maximally increases the score of the network (i.e., the fit to
the data) at each step.

• Constraint-based: this approach relies on estimating some of the conditional
(in)dependencies in the data distribution P from the data D through perform-
ing hypothesis tests of conditional independence. Typically, for discrete variables
the X2 or the G2 tests are employed [63], while for continuous variables testing
the partial linear correlation are employed based on the Fisher z-transformation
[28]. The results of the hypothesis tests constrain the graph to reconstruct: in the
resulting graph G, two variables X, Y should be d-connected given Z if and only
if indep(X; Y |Z) in the data. In fact, it can be proven (assuming faithfulness, as
defined in Sect. 3.4.1) that two variables are connected by an edge if and only if
there is no set of variables Z , such that indep(X; Y |Z). Constraint-based methods
usually start with a fully connected, undirected graph and progressively remove
edges whenever a new conditional independency is discovered [98].

Typically for a given dataset there will be multiple solutions (i.e., networks) that
are Markov equivalent, i.e., they imply the same set of conditional independencies
and thus cannot be distinguished based on testing independencies on the data. Under
typical scoring functions, these networks receive equivalent scores. Intuitively, each
such network provides an equally good causal explanation for the data. The issue of
Markov Equivalence in learning causal structures is a point that an analyst should
keep in mind. The set of equivalent networks has some invariant characteristics, e.g.,
edges and directions upon which all solutions agree, and some variant characteristics
upon which different solutions disagree. Even when all causal assumptions hold, the
analyst is warranted to make claims only about the invariant characteristics. For-
tunately, for CBNs the representation of the set of equivalent networks is compact:
they can be represented with another type of network called the Completed Partially
DAG (CPDAG) or essential graph [13] and the invariant characteristics can be iden-
tified from this graph. Particularly, CPDAGs contain two types of edges, directed and
undirected. The first type represents arcs that are similarly (invariantly) oriented in
all Markov Equivalent solutions, while the latter represents edges whose orientation
varies among equivalent networks. Inmore complicated causal formalisms discussed
in Sect. 3.6, the set of equivalent solutions cannot be compactly represented. See also
Chapters [37, 49, 101] for further discussions onmodel identifiability and (Bayesian)
model selection.

Causal Discovery algorithms can also be used for variable selection, i.e., iden-
tifying the smallest subset of quantities that can provide the optimal prediction or
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diagnosis for an outcome variable of interest T (this is equivalent to molecular signa-
ture identification). Under certain conditions, the set of variables optimally predicting
the value of an outcome or molecular quantity T is what is called theMarkov Blanket
of T : the set of direct causes, direct effects, and direct causes of direct effects [108].
Algorithms that can identify the Markov Blanket of T from data without knowledge
of the underlying CBN exist and have proved to be some of the most effective signa-
ture identification algorithms from biological data [3]. Importantly, these theoretical
results connect molecular signatures for prediction or diagnosis with the causal
structure of the system under study: the most predictive quantities have a specific
causal interpretation.

3.4.1 A Discussion on Some Typical Causal Discovery
Assumptions and Practical Issues

We now focus in more detail on the most common assumptions of typical causal
discovery algorithms and discuss their implication in the context of causal discovery
in biological systems.

(Causal) Markov Condition: in a DAG G each node is independent from any non-
descendant (non-effect) given its parent (direct causes). This condition formalizes our
“common belief” about how Causality operates, i.e., indirect causes or confounded
effects do not provide additional information, once the direct causes are known. For
example, in the network X ← W → Y → Q → R, we expect that once we know Y
(the direct cause of Q), neither X (a confounded variable) nor W (an indirect cause)
provide additional information for Q. Notice that, observing the effect R of Q still
provides additional information for the value of Q. Interestingly, while the Causal
Markov Condition is (explicitly or implicitly) accepted and employed “all the time
in laboratory, medical and engineering setting” ([98], p. 38), whether it holds in the
sub-atomic systems studied by quantum physics it is still under debate [70]. This
assumption is what allows the algorithms to discover direct causal relations and drop
edges from the causal network being reconstructed. While relatively uncontested in
practice, the Causal Markov Condition may appear to be violated due to measurement
error (see below).

Acyclicity: CBN and other PGMs assume that no node in the graph can be a
cause of itself, either directly or through other variables. CBNs are not able to repre-
sent feedback loops, and in some biological applications this limitation can be quite
restrictive. However, some approaches have been developed that do not require this
assumption [41]. Typically, formalisms that admit the presence of feedback cycles
assume only linear relations. In the presence of both non-linear relations and feed-
back chaotic phenomena may arise that significantly complicate the problem and
the applicable algorithms. Thus, one must substitute one assumption for the other to
make causal discovery possible.
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Fig. 3.2 Simple example of
a feed-forward network X Y

Z

Causal sufficiency: no pair of nodes shares a common, unmeasured cause. In
statistical terms, we assume that there are no latent confounders that may introduce
correlations that are not explained by the measured variables. Specifically, consider
the network X ← L → Y . Because L is a confounder of X and Y , we expect the
latter pair of variables to be correlated (dependent). If L is not observed, it is not
modeled in the network. There are only two networks with variables X and Y that
entail a dependency and fit the data: X → Y and X ← Y . Both of them are Markov
equivalent and correctly represent the data distribution. But, their causal semantics
are wrong: X does not cause Y nor vice versa. The network with the correct causal
semantics is “X (no edge) Y ”. There is no way to correctly simultaneously represent
both the probabilistic semantics and the causal semantics of the network without
admitting new, unobserved variables in the network. Causal Sufficiency is one of the
most restrictive assumptions in CBNs particularly for systems biology where there
are millions of possible molecular quantities that may be confounding the observed
quantities. For this reason some PGM frameworks have been recently developed
(e.g., Maximal Ancestral Graphs [85]) that generalize CBNs to admit and reason
over the presence of hidden confounders.

Faithfulness: a distribution P is faithful to a DAG G if it entails all and only the
conditional independences implied by G. This assumption turns out to be important
particularly for the efficiency of Causal Discovery algorithms, in order to search
and identify all solution networks. One interpretation of faithfulness is that the set
of conditional independencies is stable under infinitesimal perturbations of the data
distribution [79]. For example, consider the following feed-forward gene network
(Fig. 3.2):

X regulates Y both directly as well as indirectly through Z . The two paths for
regulating Y may be competing with each other: X up-regulating Y directly, X up-
regulating Z which in turn down-regulates Y . If the causal effects of each regulation
are just so finely tuned it is possible that the association between X and Y completely
disappears even though X causes Y . Such fine tuning of the parameters of the dis-
tribution seems unlikely (and it is infinitely unlikely under certain assumptions, see
[98], p. 66) and leads to independences that are unstable: they become dependencies
if the parameters of the distribution are slightly perturbed. Faithfulness dictates that
this fine tuning is not present in the data distribution. Thus, whenever X causes Y
in a network directly or indirectly or through multiple causal paths, we assume the
variables are dependent.

Faithfulness seems innocent at first glance, but there are several pitfalls. First, in
practice a distribution may be faithful but “close to unfaithfulness”; in the example
above, the association between X and Y may not disappear completely but may be
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too small to be detected with typical sample sizes. Second, while fine-tuning of the
parameters seems unlikely to occur by chance, there is evidence that natural selec-
tion leads to systems which may be unfaithful; in particular, the presence of negative
feedback cycles may lead to associations that disappear [22]. Deterministic relations
also violate faithfulness! It seems that randomness (i.e., natural occurring pertur-
bations) is required to allow causal discovery, which is philosophically intriguing
to say the least. For example, consider the network X → Y → Z , where X and
Y are deterministically related, e.g., they always have equal values. In that case, X
provides for Z the same information as Y and so indep(Y ; Z |X) holds which is not
entailed by the Markov Condition. There are algorithms that do not assume faithful-
ness for learning CBNs [54]. However, simultaneously dropping the acyclicity and
faithfulness assumptions requires sophisticated theory and algorithms [41].

There are some additional assumptions that are often not declared explicitly, but
that should be carefully taken into consideration:

No measurement error: the variables are measured without error. This is a subtle
assumption that is required to learn CBNs, often not realized by practitioners who
apply these techniques. In other words, to allow causal discovery we need to assume
that the variance of the measurements of a variable X stems from our uncertainty
about (marginalizing over) all other causes of X , and is not due to measurement
error. Consider the effect of measurement error: let’s assume we measure X ′ =
X + eX, Y ′ = Y+ eY, Z ′ = Z + eZ, where the last terms are the measurement noise
terms. Let’s assume the true structure is X → Y → Z . Thus, based on the Causal
Markov Condition we expect that indep(X; Z |Y ). However, we observe the noisy
versions of the variables, so what we test instead is indep(X ′; Z ′|Y ′). If the variance
of eY is larger than eX , it may turn out that X ′ does provide additional information
for Z ′ given Y ′. This is equivalent to the Causal Markov Condition being violated. A
more relaxed assumption is that all error terms have the same variance, which would
lead to noisy versions of the variables that still maintain the same independencies as
the true, underlying network involving only the original variables.This observation is
particularly important for measurements by biotechnologies that do have significant
measurement error, such as micro-array gene expression data,where gene expression
may have very different variance of measurement errors.

Effect of data transformations (discretization, averaging): as above, this issue
regards the connection between the actual quantities that we are modeling and the
quantities measured and contained in the data. For example, it is common for a prac-
titioner to discretize the data before applying a causal discovery method. However,
depending on the discretization, the set of dependencies and independencies in the
transformed data distribution may be changed compared to the original [61, 68].
Again, this may appear as a violation of the Causal Markov Condition on the trans-
formed data. Another important case of potentially harmful transformation is that of
averaging. Averaging takes place in almost every mass-throughput technology. For
example, in micro-array gene expression data one tries to induce causal relations and
networks among gene expressions in a single cell, e.g., that X → Y . However, what
is measured in the data are the average expressions X̄ and Ȳ of X and Y in millions
of cells. The independencies of a network is X → Y → Z defined on the single-cell
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quantities X, Y, Z are not necessarily the same as the independencies on the averages
X̄ , Ȳ , and Z̄ [15]. This observation favors causal discovery from single cell data (or
in general, measurements that are not averaged) versus other biotechnologies.

No selection bias and case-control studies: A basic assumption for causal discov-
ery is that the samples are not selected for inclusion in the data based on an effect
of the modeled variables. Let’s consider the case where two genes X, Y regulate the
size of the cell Z : when both genes are high the cell is larger with high probability.
In addition, we assume the two genes to be independent from each other. Thus, the
true network is X → Z ← Y . Now, let’s imagine that a researcher measures these
genes in a collection of cells including mostly in large cells (perhaps because small
cells are harder to detect and isolate given the available equipment). In the selected
population whenever X is high, Y is also high with large probability: the two gene
expressions are correlated in the selected population. This correlation is an artifact
of the data sampling and not present in the general cell population. Cytometry data
is a particular type of data with possible selection bias as an effect of the gating
process and classification to different cell types. Another striking example of selec-
tion bias is case-control data. In case-control studies, half the samples (cases) have
been selected for inclusion based on the effect (disease) of the modeled variables.
In the previous example, let us change the semantics of Z to being the presence or
absence of a disease and X, Y two independent causes of disease. In all cases of dis-
ease, when X is high, Y is high with high probability, so they appear correlated even
though they are not correlated in the general (unselected) population. Epidemiolo-
gists try to alleviate these spurious correlations by matching cases and controls based
on some of the variables (age, gender, race, etc.). If cases and controls are matched
in the example above, the spurious association between X and Y would disappear.
However, matching cannot be achieved at a molecular level for every variable (e.g.,
gene expression) that is modeled and so one has to be particularly careful with causal
discovery in case-control data. Some methods for learning causal networks [7] try
to account for selection bias introduced by unmatched case-control study design.

It should also be noted that standard Causal Discovery algorithms assume that
samples are independent and identically distributed (i.i.d.) and that they are all
measured under the same experimental conditions and at same the point in time
(cross-sectional data). Other algorithms exist for dealing with other types of data and
information, e.g., data measured under different experimental conditions [19, 51],
in different points in time [30] or for co-analyzing data in the context of prior causal
knowledge [8].

Finally, practical issues also determine the success of causal discovery:
Statistical errors: statistical errors in the results of the conditional independence

tests, or equivalently statistical fluctuations in the score of networks to the data may
result in learning networks or relations that are wrong. In fact, in a large network it is
almost certain that some parts of the networkwill be erroneously induced. Robustness
against statistical errors and sample sizes depends on the learning method. Employ-
ing the most appropriate hypothesis testing procedure or scoring function for the
given data is paramount. Inappropriate tests or score functions may introduce sys-
tematic reasoning errors. For example, if functional relations are non-linear but linear
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hypothesis tests are used, some conditional (in)dependencies may not be detectable
even with large sample sizes. Methods for assessing the reliability of each feature of
the network (e.g., presence of an edge or an edge direction) do exist and should be
employed. Some of them employ bootstrapping, i.e., learning with resampled data.
However, notice that bootstrapping provides the confidence given by the method for
a given feature (e.g. edge in the network); bootstrapping does not provide an absolute
confidence for the feature. For example, if a method systematically reports a false
edge because it employs inappropriate tests for the specific data, bootstrapping will
also return high confidence on this edge.

Non-linear relations: non-linear relations in continuous data present particular
problems to causal discovery. For example, consider the case when two quantities do
not interact, unless a third quantity is present in a sufficient concentration. If the data
do not contain samples where this third quantity is indeed in high concentration, the
causal relation will be undetected. Equivalently, for discrete data, a correlation may
be present only for specific values of the variables that never appear in the dataset
and hence will not be detected by any algorithm.

3.5 Causal Discovery in Systems Biology: Success Stories

Despite the philosophical, theoretical, and algorithmic problemsdescribed above,CD
can work when applied with care, and assumptions, technicalities and limitations are
duly taken into consideration. The following success stories from systems biology
provide evidence for this.

3.5.1 Inferring Causal Relationships Among Genotype
and Quantitative Traits

In recent years, computational methods have been introduced for identifying causal
relationships among genetic characteristics and quantitative traits in observational
data. These methods were named differently by their respective authors, e.g.,
Likelihood-based Causality Model Selection (LCMS, [91]) or Trigger (Transcrip-
tional Regulation Inference from Genetics of Gene ExpRession, [12]). For simplic-
ity, hereafter we will collectively refer to all these methods as Causal Quantitative
Trait Loci (CQTL) algorithms.

Specifically,CQTLsmethods attempt to reconstruct the causal interactionbetween
a genome marker L and two quantitative traits, namely T1 and T2, all measured in
the same segregating population. Each quantitative trait can represent the expression
value of a given gene, a quantitative phenotype, or any other continuousmeasurement
on the population of interest. CQTL’s cornerstone assumption is that a statistical
association between the genetic marker L and the traits of interest must denote a
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Fig. 3.3 Possible Causal Models among a genetic marker L and two quantitative traits T1 and T2
given that the Mendelian Randomization assumptions hold and that all quantities are associated
with each other. The node H represents one or more hidden confounders

causal effect of L on the associated trait. This assumption is justified by the the-
ory developed in the context of Mendelian Randomization [23, 47]. In a nutshell,
Mendelian Randomization methods assume that the random re-composition of the
genome during conception can be considered equivalent, from a statistical point of
view, to the randomization procedures performed during Randomized Control Trials
(RCTs). Consequently, any statistical association between the genetic information
and the traits/phenotype of interested cannot be affected by latent confounders, i.e.,
must denote a causal association.2 All Quantitative Trait Loci (QTL) studies [66] are
based on Mendelian Randomization and its assumptions.

Thus, given that (a) the Mendelian Randomization assumptions hold (i.e., T1 and
T2 cannot cause L), (b) the Causal Markov and Faithfulness conditions hold as well,
and (c) L , T1 and T2 are found in the data all statistically associated with each other
(i.e., the following dependencies hold: dep(L , T1|∅), dep(L , T2|∅), dep(T1, T2|∅)),
then only a very restricted number of causal structures (see Fig. 3.3) are admissible.
Each causal model is represented as a CBN, where the node H represents one or
more unknown, latent confounders.

Canwe further screen out themodels presented in Fig. 3.3 and identify the unique,
actual causal structure that generated the data at hand? Using the d-separation

2Linkage disequilibrium, pleiotropic effects and other factors can invalidate the Mendelian Ran-
domization approach; these issues are better explained later in the text.
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criterion above and assuming faithfulness, if L and T2 are not statistically asso-
ciated given T1 (i.e., indep(L , T2|T1) holds), then the true causal model must be
L → T1 → T2.

In more detail, each model where L and T2 are connected through a direct edge is
incompatible with indep(L , T2|T1), since T1 cannot d-separate T2 and L . This leaves
models (1), (7) and (8) as the only possible candidates. In the two latter models, T1 is
a collider in the path L → T1 ← H → T2, and thus conditioning on T1 makes L and
T2 dependent. Thus, the single causal model in agreement with all the assumptions
and (in)dependencies encoded in the data is model (1).

Similarly, indep(L , T1|T2) holds only when the true underlying causal model is
L → T2 → T1.

Thus, the causal relationships among a genetic marker and two quantitative traits
can be identified, in principle, by assessing whether a limited number of condi-
tional (in)dependencies hold in the data. Particularly, studies focusing on large pan-
els of genomics markers/quantitative traits (e.g., GenomeWide Association Studies)
can opportunistically apply CQTL methods on each possible triplet of the form
{L , T1, T2}, and potentially discover a large number of causal relationships.

The first theoretically-sound algorithm able to identify, under a well-defined set
of assumptions, causal triplets L → T1 → T2 where L is known to be “uncaused”
was introduced by Cooper in 1997 [18].3 The first applications of CQTL methods in
biology appeared only a decade later: the work presented in Schadt et al. [91] was
one of the first studies demonstrating CQTLs effectiveness on a specific biological
problem.

Particularly, Schadt and co-authors investigated the causal relationships between
a genome-wide panel ofmarkers (L), transcript abundance levels in the liver (T1) and
obesity-related traits (T2) in mice. They referred to model (1) and (2) in Fig. 3.3 as
Direct Causal model andReactive Causal model, respectively, while all other models
were collectively indicated as the Independent Causal model. Amodel selection pro-
cedure, namelyLCMS (Likelihood-basedCausalityModel Selection),was employed
for identifying the most plausible causal model for each triplet {genomic marker,
transcript abundance level, obesity related trait}. The LCMS procedure belongs to
the class of Search-and-Score algorithms, and employs the Akaike Information Cri-
terion (AIC, [1]) as the score metric: AI C = 2k − 2ln(L), where k is the number of
parameters of each model and ln (L) its log-likelihood.

Chen and co-authors [12] developed a Constraint-based CQTL algorithm. Partic-
ularly, they demonstrated the Causal Equivalence Theorem, i.e., if the Faithfulness
and Causal Markov Condition hold, then:

The causal relationship L → T1 → T2 exists and there are no hidden vari-
ables causal for both T1 and T2 if and only if the following three conditions hold:
dep(L , T1|∅), dep(L , T2|∅), and indep(L , T2|T1).4

3Statistical algorithms for identifying and quantifying mediation effects were known even earlier
[58, 97]. However, these algorithms usually assume some particular (linear) distributional model
and “fell short of providing a general, causally defensible measure of mediation” [80].
4Notably, the “Causal Equivalence Theorem” is identical to the LCD procedure presented in [18].
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The authors employ the Causal Equivalence Theorem in order to derive a method,
namely Trigger, which provides probability values p̂1,2 and p̂2,1 for the causal struc-
tures L → T1 → T2 and L → T1 → T2, respectively.

More recently, Millstein and co-authors have proposed another Constraint-based
CQTL algorithm, the Causal Inference Test (CIT, [67]), which evaluates a larger
set of (conditional) dependencies and independencies than Trigger. Particularly, the
following conditions must be satisfied for accepting the Direct Causal Model:

CIT Condition 1: L and T2 are associated
CIT Condition 2: L and T1 are associated given T2
CIT Condition 3: T1 is associated with T2 given L
CIT Condition 4: L is independent from T2 given T1

A p-value for each of the four CIT conditions can be calculated by applying a suitable
statistical test of (conditional) dependency, while the maximum among the four p-
values, namely pDC M , is employed as a global statistic for assessing if the four
conditions can be jointly accepted. A global p-value pRC M for the Reactive Causal
model L → T2 → T1 can be derived in a similar way.

Once pDC M and pRC M have been provided, the CIT procedure applies the fol-
lowing rules to distinguish among the possible causal models:

1. If pDC M < α and pRC M > α, then the Direct Causal Model is accepted
2. If pDC M > α and pRC M < α, then the Reactive Causal Model is accepted
3. If pDC M > α and pRC M < α, then the Independent Causal Model is accepted
4. If pDC M < α and pRC M > α, then no call is made

where α is a threshold for accepting statistical significance (e.g.,α = 0.05). Interest-
ingly, CIT does not distinguish among the Independent Causal Model and the case
when L is not associated with T1 or T2.

CQTL methods have been applied in several studies in order to shade light on
specific biological problems. The spread of CQTLmethods has also been boosted by
the availability of free, open source implementations, whose most notable examples
are the R package cit (implementing the CIT method), the Network Edge Orienting
(NEO) software [4], that implements a score-based CQTLs method, and the R pack-
age qtlnet, that implements a CQTL algorithm able to take in account and exploit
complex correlation structures among multiple traits/phenotypes [72].

A recent example of a successful CQTL study has been presented by Gutierrez-
Arcelus et al. [32]: the interaction between DNA sequence, DNA methylation and
gene expression was investigated with the CIT method in fibroblasts, T-cells and
lymphoblastoid cells extracted from the umbilical cord of 204 babies. This study
showed that, when the two alleles of a gene are not equally expressed in a given type
of cell, gene expression is mainly regulated by DNA sequence variation, with little
or no influence by DNA methylation.

Liu et al. [55] employed the CITmethod for disentangling the causal relationships
among genome, DNAmethylation and Rheumatoid Arthritis. By using the CIT algo-
rithm, the authors found 535 genome—arthritis causal interactions that are mediated
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by methylation, out of the initially 4016 initially considered associations between
genome markers and the rheumatoid arthritis phenotype.

Some controversial CQTL results have been reported in another publication [44].
In this work the authors studied the genome characteristics and expression profile of
leukocyte cells from 284 Moroccan individuals. By applying a basic CQTL method,
it came out that the SNP rs11987927 seems to trans-regulate the expression of the
ZNF71 gene which, in turn, regulates back the transcript abundance of the MYOM2
gene, i.e. the gene where rs11987927 is located. The authors were not able to show
whether this counterintuitive result is trustworthy or is instead due to measurement
errors [88] or to other causes (e.g. the presence of feedback cycles).

This last example reminds us that the CQTL approach has, obviously, some lim-
itations. Particularly, the limitations affecting Mendelian Randomization [74] affect
as well all CQTL studies. Mendelian Randomization assumes that the choice of the
mating partner is not affected by the genome. Population stratification is another
possible source of bias for Mendelian Randomization and CQTL studies. It can be
the case that allelic frequencies and phenotype distributions vary similarly across
different populations, even in absence of any causal relations. Consequently, artifi-
cial genome-phenotype associations could be detected if the population under study
is composed by different sub-populations. Biological redundancy and adaptation to
unfavorable genetically-determined phenotypes can hide genome-phenotype causal
interactions. Markers that are physically close to each other on the genome tend to
be highly associated (a phenomenon known as linkage-disequilibrium) and these
associations can lead to the false identification of causal markers that are merely
close to the real cause of the phenotype. Highly co-linear (associated, correlated)
quantities are close to determinism and violations of Faithfulness (see Sect. 3.4.1
above). Genomic markers can have pleiotropic effects, i.e., simultaneously affecting
several traits. If the effect of the pleiotropic marker on each trait is small, it may be
necessary to jointly consider all the traits in order to detect the marker-traits causal
associations. Furthermore, genomic modifications driven by reverse transcription [9]
may ingenerate cases where the observed genomic profiles are actually influenced by
the traits under study. Finally, to the best of our knowledge, all CQTLmethods devel-
oped so far assume that all genomemarkers follow the same genomic model (usually
the additive or co-dominant one), even if assuming the wrong genomic model can
lead to a decrease of statistical power [5]. Methodological approaches have been
proposed in order to mitigate the effect of some of these limitations, particularly in
order to detect causal markers in condition of strong linkage disequilibrium [73] and
pleiotropic effects [115].

Despite these limitations, CQTL studies have proven to be able to identify actual
casual relationships in a number of different biological context. The main factors
enabling CQTL effectiveness are:
Incorporation of prior, biological knowledge: the (apparently) innocuous infor-
mation that “nothing causes L” is actually pivotal in order to dramatically reduce the
number of possible causal models. This means that CQTL methods explore a very
small space of possible models thanks to the adoption of Mendelian Randomization
assumptions.
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Opportunistic approach: CQTL methods are usually applied on a large number
of triplets, and whenever a Direct or Reversal causal model cannot be identified,
they forgo making a decision. Therefore, the CQTL approach can be thought of as
“explorative analysis”, useful for discovering novel causal associations which can
be subsequently experimentally validated.
“Local” causal discovery: a number of difficulties arise when Causal Discovery
methods are applied with the intent to learn a complete network of all direct causal
relations, i.e., the CBN among all quantities in the data. Errors in statistical infer-
ences can “propagate”, and erroneously orientate edges even in distant regions of the
reconstructed network. Conversely, the CQTL approach focuses on a small system
formed by solely three quantities, and thus they do not suffer of the issues arising
when large networks are induced.
Causal Sufficiency is not assumed: the CQTL approach is “robust” with respect
to the presence of latent confounders: no unmeasured variable can affect the asso-
ciation between L and any of the two traits (given the Mendelian Randomization
assumption), while if the two traits are both affected by the same latent confounder
then the CQTL algorithm will simply forgo making a decision.
Computational feasibility: CQTLalgorithms require performing a relatively limited
number of statistical (conditional) association tests. Efficient implementations of
CQTL algorithm can be easily realized, and CQTL can be applied on hundreds of
thousands of triplets in a reasonable time.

Future developments for CQTL methods seem to move in the direction of data
integration for network reconstruction. The CIT algorithm was originally proposed
as a method for reconstructing causal interaction networks. The QTLnet algorithm
[72] tries to reconstruct the interaction network among genomemarkers andmultiple
traits. Cai et al. [10] have developed a Structural Equation Model method, namely
the Sparsity-aware Maximum Likelihood (SML) algorithm, for reconstructing gene
regulatory networks by exploiting genetic perturbations. Finally, in a recent review
[90], the author points out that causal triplets provided by CQTL methods can be
used for deriving priors for (Causal) Bayesian Network reconstruction algorithms.

3.5.2 Reconstructing Protein Signaling Pathways

Co-ordination of complex cellular activities requires a well-orchestrated propaga-
tion of information. In living organisms, this information is transmitted across cells
through chemical signals which enter the cell and cause a cascade of chemical, spa-
tial and physical modifications of intracellular compounds. This procedure is broadly
described with the term cell signaling, and a cascade of responses to a certain extra-
cellular stimulus is generally called a signaling pathway, though many argue that
presenting a signaling pathway as an isolated set of responses to a specific stimulus
may be too simplistic.
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Such pathways are typically reconstructed by manually synthesizing pathway
components. Each pathway component is discovered through the aggregation of
several studies examining the relationship in question under different experimental
designs.

Signaling pathways are usually represented as graphs, where the nodes represent
participating compounds and the edges represent direct causal links. Different shapes
and colors are used to denote different types of participating molecules, and different
edges are used to discriminate different types of causal influence.

Bayesian networks, being able to capture both causal and probabilistic relations
in multivariate systems, seem fitting to model and quantify signaling pathways. In
a ground-breaking paper published in 2005, Sachs et al. [89] applied a Bayesian
network learning algorithm to reconstruct a known signaling pathway in T-cells.

The authors used multi-parameter flow cytometry data measuring 11 phosphory-
lated proteins and phospholipids – all known participants in T-cell signaling – under
9 different experimental conditions in naïve cd4+ T-cells. A score-based algorithm
for learning Bayesian networks from a mixture of observational and experimental
data [19] was then employed to infer the causal structure and the joint probability
distribution of the measured variables.

Each experimental condition included a general or target-specific stimulatory
condition, sometimes coupled with a target-specific inhibitor. In total, 5 activators
and 5 inhibitors were used. All perturbations were modeled as “ideal” interventions
[79] (i.e., hard interventions, not fat hand interventions), where the concentrations
of the target molecules are set solely by the manipulation procedure (i.e. the selected
inhibitor/activator completely determines the value of the target variable).

The data were discretized into 3 bins, representing “low”, “basal” and “high”
concentration values, using an algorithm designed to preserve the joint distribution
of the variables [33] before being used with the BN learning algorithm. To ensure
statistical robustness, the algorithmic process was repeated 500 times with random
initial graphs. The output model included only edges present in more than 85% of
the resulting graphs.

The returned network consists of 17 edges and is impressively similar to a con-
sensus signaling pathway manually curated from the literature. Out of the 17 edges
identified, 15 edges represent causal links that are well-established in the literature
and 2 represent causal links that are not well-established but have been reported at
least once. The algorithm failed to discover 3 edges that were expected based on
the literature review. However, were they included, these edges would create feed-
back cycles, which cannot be modeled with Bayesian networks. The causal direction
of identified edges was correct, with the exception of a single arc that was found
reversed (Fig. 3.4).

To further evaluate the validity of the predicted relations, the authors performed
an experiment to test one of the causal links that was found by the algorithm but
was not sufficiently backed up by the literature. Specifically, the model included
a direct causal link from Erk to Akt, a connection previously reported only in
colon cancer cells [31, 114]. The model entails that a perturbation of Erk will influ-
ence the abundance of Akt, while it will have no effect in the abundance of PKA.
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Fig. 3.4 Network inferred from flow cytometry data. The network is a consensus average of 500
high-scoring networks. Only edges present in more than 85% of the networks are included. Out of
17 edges, 15 are well established in the literature and 2 are reported but not well established. One
of the edges is found reversed. The resulting network missed three edges that were expected based
on the literature review. Figure from [89]

The authors validated this by inhibiting Erk with a suitable siRNA. True to the
model’s prediction, Akt activity was reduced (p < 9.4× 10−5), while PKA activity
remained uninfluenced (p < 0.28).

Despite the impressively accurate pathway reconstruction and the experimental
validation of a previously unknown predicted arc, to the best of our knowledge,
this paper remains the only case study of Bayesian network learning for automatic
network reconstruction. To understand the reasons automatic causal discovery is
still sparsely used in bioinformatics, let us discuss the main factors enabling causal
discovery in flow cytometry data:
Network perturbations. An important factor in the success of this method is the
inclusion of network perturbations, which are particularly important for correctly
identifying the directionality of arcs. To test the significance of including experimen-
tal data sets, the authors test the algorithm on a data set consisting of 1200 samples
measured without intervention. The resulting network contains only 8 out of the 18
expected edges (compared to 15 when the complete data set is used). In addition,
all identified edges are undirected, demonstrating the significance of experiments in
identifying causal relations. Nevertheless, we do note that the set of perturbations is
still quite limited compared to the full set of experiments required to fully generate
the structure without the use of CBN methodology.
Large sample size. Bayesian network learning methods require large sample sizes,
while typical experimental designs in molecular biology are usually limited to pro-
ducing just enough samples to ensure the technical soundness of the procedure. Flow
cytometry, measuring the abundance of proteins in single cells, results in hundreds
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(a)

(b) (c)

Fig. 3.5 Networks inferred from: a A data set consisting from observations alone. b A data set
consisting of 420 randomly selected samples from the original data set. c A data set consisting of
420 data points, each of which is an average of 20 randomly selected samples from the original data
set. In all three cases, the resulting network is far less accurate compared to the one resulting from
the complete data set. We can therefore infer that the inclusion of experiments, the large sample size
and the lack of averaging effects are crucial for accurate network reconstruction. Figure from [89]

of data points in each experiment, enabling the detection of causal relations in noisy
multivariate data. The authors show the importance of large sample sizes by applying
the same algorithmic procedure on a truncated version of the original data consisting
of 420 randomly selected samples. The resulting network is shown in Fig. 3.5b. It
consists of 14 edges, out of which only 8 are expected and only 1 is reported.
Single cell measurements. A key obstacle in applying Bayesian networks in mole-
cular biology data is that the measurements are usually averages of quantities in cell
tissues. Using averaged measurements for Bayesian network learning is known to
be problematic [15], since the correlation structure of measured quantities may not
be preserved. Flow cytometry measurements are single cell measurements, and are
therefore suitable for this type of inference. To illustrate this point, the authors sim-
ulate a western blot data set over the same variables by selecting at random 20 data
points at a time and averaging them, creating a data set of 420 samples in total. The
resulting network, shown in Fig. 3.5c, displays a further decline in accuracy: Out of
16 edges, only 6 belong to the expected ones.
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Causal sufficiency. In this work, the authors aim to provide a proof-of-concept
of the use of Bayesian network in analyzing multivariate flow-cytometry data by
reconstructing a well-studied pathway inmammalian T-cells. In doing so, the authors
pick 11 compounds in the cell that are not confounded (in the context of the set
of measured compounds), thus satisfying one of the most difficult assumptions of
Bayesian networks, that of causal sufficiency. While the authors do not test how
decisive this factor is for the success of the method, it is well known that violation of
the causal sufficiency assumption causes errors that propagate through the network.
Over the past few years, there has been a growing body of work on causal models
for causally insufficient systems, some of which are discussed in Sect. 3.6. However,
thesemodels are for themost part developed anddisseminated in themachine learning
community, and remain fairly unknown in the field of molecular biology.

Overall, several attractive features of the flow cytometry technology render it
an ideal test-bed for causal Bayesian network learning. Compared to other high-
throughput molecular biology techniques, flow cytometry data have vast sample
sizes, do not suffer the unwelcome effects of averaging, and samples can easily
be perturbed with in-vitro, close-to-ideal interventions. Unfortunately, flow cytom-
etry technology can only measure up to approximately 20 variables simultaneously,
limited by the number of distinguishable fluorescents. This number prevents themea-
surement of all variables participating in known pathways, let alone the numerous
cellular compounds for novel pathways. However, the recently developed technique
of mass cytometry, where antibodies are tagged with rare isotopes instead of flu-
orescents, allows measuring up to 30 variables, with a theoretical limit of circa 60
variables [75]. Moreover, the demonstration of the problematic effects of using aver-
aged data along with the development of novel technologies has resulted in growing
availability of single-cell genomic data [83, 111], promising a bright future for auto-
matic causal discovery in Bioinformatics.

3.5.3 Estimating Causal Effects in High-Dimensional,
Observational Data: The Intervention Calculus
when the DAG Is Absent Approach

Identifying cause-effect relationships is one of the main goals of Causal Discovery
methods. However, in some cases assessingwhether a causal relationship holds is not
sufficient, and one also desires to quantify the size of the causal effect. For example,
once it has been established that a gene regulates a particular protein, it may also
be relevant to know what variation should be expected in the level of the protein’s
abundance (effect) for a given variation in the level of the expression of the gene
(cause).

Estimating the size of a causal effect is not a trivial task, although it becomes
feasible when the true causal structure is known. Pearl [78] proposed a technique,
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named “do-calculus”,5 which, given a DAG and a suitable parameterization, allows
estimating the magnitude of the causal effect between any pair of variables X, Y
modeled in the DAG. Unfortunately, in almost all biology-related, real-world prob-
lems the actual underlying causal structure is not known, and its reconstruction is
often prohibitive, as discussed in Sect. 3.4.

Recently, Maathuis and co-authors [56] proposed a method for estimating a lower
bound on the size of the causal effect between two quantities by using a worst-
case analysis. Their method, namely IDA (Intervention calculus when the DAG is
Absent), has at least two appealing features: (a) it is able to estimate causal effects’
lower bounds solely on the basis of observational data, i.e., without requiring data
from experimental perturbations, and (b) can scale up to high-dimensional settings
involving thousands of variables.

The basic idea underlying the IDA algorithm is the following: first, let’s assume
that the underlying causal mechanism that has generated the data can be represented
as a DAG, and that no latent confounders are present (i.e., we assume causal suffi-
ciency). Then, the size of the causal effect X → Y between any pair of quantities
included in the data can be estimated with the following steps:

1. Identify the CPDAG P that best fits the distribution of the data at hand. Recall
from Sect. 3.4 that a CPDAG is a compact representation of the set of DAGs
that are Markov equivalent, i.e., the set of DAGs that cannot be distinguished
among each other solely on the basis of the available (observational) data. P can
be identified by applying any suitable Causal Discovery method, e.g., the PC
algorithm [98].

2. Calculate the effect size E S(X → Y ) for the causal relationship X → Y sep-
arately for each DAG represented by P . The minimum absolute value among
these effect sizes is the lower bound for the effect size of the causal relationship
X → Y .

The apparent simplicity of the IDA algorithm hides an insidious technical issue:
the number of DAGs included in P can become intractable even in the case of small
systems (e.g., a few tens of measured quantities). For this reason, IDA exploits some
sophisticated theoretical results in order to avoid a complete enumeration of the
DAGs included in P , while ensuring the correctness of the final results. Moreover,
IDA assumes that the data follow amultivariate normal distribution. This assumption
is not strictly necessary for the general soundness of the algorithm, but leads to a great
simplification of the calculations, since multivariate normality implies linearity of
the causal effects. Under the multivariate normal distribution assumption the effect
size ES of the causal relationship X → Y does not depend by the specific value of
X and can be expressed as:

E S(X → Y ) = E (Y |do(X = x + 1)) − E (Y |do(X = x))

5Explaining the details of the do-calculus is beyond the scope of this chapter. Interested readers can
refer to Pearl’s original publication.
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(a) (b)

(c)

Fig. 3.6 Graphical representationof IDAoperation.aExample causal network involvingfivenodes.
Causal effects are assumed to be linear,withweights specified on each edge.bCPDAGreconstructed
by the PC algorithm from 1000 samples simulated from the example causal network. Undirected
edges denote arcs that are reversible. c DAGs corresponding to the reconstructed CPDAG. For each
DAG the effect size of the causal relationship 1 → 5 is reported, as calculated with the do-calculus.
The minimum among these values (0.235) is a lower bound of the real effect size. All simulations
were performed with the R package pcalg [46]

where E (Y |do(X = x)), in the language of the do-calculus, represents the expected
value of the random continuous variable Y if the value of X is forcefully set, through
an external intervention, to a fixed value x over the whole population. If all quantities
are scaled in order to have zero mean and unitary standard deviation, E S(X → Y )

would represent the expected variation of Y for a variation of X equal to its standard
deviation.

It should also be noted that IDA can be considered a conservative algorithm,
performing a “worst case scenario” analysis, since it returns the minimum absolute
value among the calculated size effects. Figure3.6 shows a graphical representation
of the operation of IDA.6

Themain drawback of the IDA algorithm is that it is based on a set of assumptions
that are unlikely to hold in real settings, particularly Causal Sufficiency and multi-
variate normality. Overall, it is not well understood how the results of the algorithm
may change whenever one or more of these assumptions is violated.

6An implementation of the IDA algorithm is available in the R package pcalg [46].
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Despite these limitations, IDA has proved to be effective in identifying and quanti-
fying causal relationships from observational data. In a subsequent, ground-breaking
publication [57],Maathuis and co-authors applied IDA on two different sets of obser-
vational data: a compendium of expression profiles of Saccharomyces Cerevisiae,
and the set of simulated gene expression data from the DREAM4 competition In Sil-
ico Network Challenge [60] For both sets of data, m “true” causal relationships were
estimated and quantified through gene knock-out experiments, while q “predicted”
causal relationships were obtained by applying the IDA algorithm on the observa-
tional data. For both the Saccharomyces Cerevisiae and the DREAM4 data the sets
of true and predicted causal effects had an overlap statistically significantly larger
than the one that can be expected by random guessing. The overlap was statistically
significant for different values of q and m. Moreover, when contrasted against two
state-of-the-art correlation-based algorithms, (the Lasso and Elastic Net regressions
[116]), the IDA algorithm largely outperformed both methods in correctly ranking
putative causal relationships; in fact, the correlation-based algorithms’ predictions
were only as good as random guessing. The importance of these results was high-
lighted in an editorial in the same issue of Nature Methods [11].

An additional application of the IDA algorithm on another real-world problem
was also reported [45]. In this work the researchers employed a slightly modified
version of IDA (able to deal with binary variables) in order to identify the factors
causally influencing the level of general health perception in a sample of spinal cord
injury patients. The results of the study confirmed, once more, the capability of IDA
in identifying and quantifying causal relationships from observational data.

The factors enabling effective causal discovery with the IDA approach are the
following:
Worst case analysis: IDA provides a “worst-case” estimation of the causal effects.
This means that only causal relationships strongly supported by the data will be
retrieved.
Opportunistic approach: similarly to the CQTL algorithms, IDA is an explorative
analysis whose main scope is identifying novel causal relationships, rather than
confirming existing ones.
Ranking of putative causal associations: causal associations discovered by IDA
are associated with their respective effect size. This means that researchers can rank
the putative causal relationships provided by the IDA algorithm according to their
estimated effect sizes, and eventually retain/experimentally validate only the top
ones.

Finally, it is worth noting that some extensions of IDA were recently published.
Le and co-authors presented a version of IDA modified to detect and quantify
microRNA/mRNA causal relationships [53]. The Causal Stability Ranking (CStaR)
method [99] employs the IDA algorithm and a re-sampling based stability selection
method [65] to identify, out of a list of possible candidates, the factors that causally
influence a given outcome.
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3.6 Future Directions

In the previous sections,we presented some introductory concepts related to causality
and causal discovery. We also briefly presented (Causal) Bayesian networks, which
are one of the main tools for causal discovery without randomized control experi-
ments. Finally, we discussed some of the most prominent and successful applications
of causal discovery in the field of molecular biology. Despite years of research in the
field of causal discovery and the increasing availability of public data, the applica-
tions remain limited and are often contrived examples rather than methods of global
applicability. In this section, we explain some of the reasons thereof, and discuss
recent developments in causal discovery that may help tackle some of the problems
in applied causal discovery, and present some future directions for a unified, robust
and integrative approach in causal discovery.
Admitting Latent Confounding Factors: The theory ofBayesian networks relies on
the assumption of causal sufficiency, i.e. that no two variables included in the model
shares an unobserved common cause (latent confounder). In most real scenarios, this
assumption is somewhat arbitrary, since the possibility of a latent confounder can
rarely be excluded [87]. The presence of latent confounders is a common source
of error in the output of Bayesian network learning algorithms, and an even more
common source of criticism and mistrust for causal discovery.

Over the past few years, however, several causal models that do not rely on the
assumption of causal discovery have been developed. Semi Markov causal models
(SMCMs, [103]) are causal models that implicitly model hidden confounders using
bi-directed edges. Like Bayesian networks, SMCMs consist of a joint probability
distribution over a set of variables and a causal graph over the same set of variables.
The graph is an acyclic directed mixed graph, where nodes represent variables and
edges represent causal relations: A directed edge (→) denotes a direct causal relation
(in the context of variables included in the model), while a bi-directed edge (↔)

denotes that the variables in question share a latent common cause. Two variables can
share both a directed and a bi-directed edge. Under the causal Markov condition and
faithfulness, conditional (in)dependencies entailed in the distribution correspond to
graph properties of the graph according to the criterion of m-separation, an extension
of d-separation in BNs. While obtaining a parameterization of a mixed graph is
possible for discrete variables [27, 86] there exists no algorithm that can reverse-
engineer a semi-Markov causal model from data.

Maximal ancestral graphs (MAGs, [85]) constitute a different approach in mod-
eling causality in causally insufficient systems. Maximal ancestral graphs are ances-
tral mixed graphs, meaning they contain no directed or almost directed cycles: An
almost directed cycle occurs when A ↔ B and there exists a directed path from A
to B. Every pair of variables A, B in an ancestral graph is joined by at most one
edge. The orientation of this edge represents (non) causal ancestry: A bi-directed
edge A ↔ B denotes that A does not cause B and B does not cause A, but (under the
faithfulness assumption) the two share a latent confounder. A directed edge A → B
denotes causal ancestry: A is a causal ancestor of B. Thus, if A causes B (not
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Fig. 3.7 Causal insufficiency. a A causal Bayesian network over variables A, B, C, D, L. b The
semi-Markov causalmodel over the (causally insufficient) set of variables,A,B,C,D. cThemaximal
ancestral graph over the same variables

necessarily directly in the context of causal variables) and the two are also con-
founded, there is an edge A → B in the corresponding MAG. Figure3.7 illustrates
an example of a marginal SMCM andMAG for the same underlying causal Bayesian
network. Some features of a MAG are not identifiable from the joint probability dis-
tribution alone. Classes ofMAGs that correspond to the same probability distribution
form a Markov equivalence class. The FCI algorithm [98, 112] is a constraint-based
algorithm that can learn all the invariant features of Markov equivalent MAGs from
passive observational data. The algorithm is shown to be sound and complete.
Admitting Feedback Cycles: Another long debated assumption of causal Bayesian
networks is acyclicity; i.e., the lack of feedback loops in the system under study.
While some may argue that causal processes are acyclic over time, in many practical
settings we only have cross-sectional, non-temporal data, hopefully having reached
equilibrium. Particularly in molecular biology feedback is a well-known regulatory
mechanism and thus, acyclicity a problematic assumption.

To address this shortcoming of causal Bayesian networks, several approaches
have been introduced, most of which resort to the parametric assumption of lin-
earity. Richardson and Spirtes are the authors of the first general constraint-based
algorithm for learning linear cyclic models, the Cyclic Causal Discovery algorithm
[84]. The algorithm however is not complete. Schmidt andMurphy present a method
for learning discrete cyclic models [92], but their method heavily relies on experi-
mental data. Moreover, the authors present no theoretical results for their algorithms
completeness and identifiability status. Itani et al. introduce generalized Bayesian
networks [96], an extension of Bayesian networks for cyclic systems with discrete
variables, and present a learning algorithm. The method relies on experimental data
to both identify data and to apply BN learning algorithms in data where the cycles are
broken by perturbations. All of the methods above employ the assumption of causal
sufficiency. Hyttinen et al. present a method for learning linear cyclic model from
a series of experiments in causally insufficient systems [41], along with sufficient
and necessary conditions for identifiability. Unfortunately, this method also relies on
linearity, which is generally known not to hold in biological systems.
Local and Opportunistic Learning: Given the limitations, difficulties, and pitfalls
of CD, learning complete large networksmay degrade quality of learning and present
large computational demands. Local Causal Discovery takes a different approach.
There are at least two types of causal discovery. The first, pioneered by Cooper
and colleagues attempts to identify (all) marginal graphs (i.e., representing the
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distribution of a subset of the variables) of some special interest. For example, in [18]
all triplets leading to a CBN of the form L → T1 → T2 when L is known not to have
any causes within the system under study are identified. As discussed in Sect. 3.5.1
this work preceded the CQTL studies and was re-discovered independently later.
This is the smallest graph that postulates a new causal relation T1 → T2 without
assuming Causal Sufficiency, due to the prior knowledge that nothing causes L (we
do not consider L → T1 or L → T2 as new interesting causal postulates since if
nothing causes L and L is correlated with T1 or T2 then the causal relation should
hold trivially). When prior knowledge is not available, the smallest marginal graph
that postulates a causal relationship without assuming Causal Sufficiency is called a
Y-structure and is of the form X → Q ← Z,Q → W. If this CBN is induced from
the data, then Q → W even if Causal Sufficiency is violated (the CBN of course
also claims X → Q but this may not be the case if Causal Sufficiency is violated).
Algorithms to identify Y-structures appeared in [59]. Another type of Local Causal
Discovery is the reconstruction of focused regions of the underlying causal graph
around a variable of interest, e.g., a specific gene, without the need to reconstruct the
complete network. The first such method was [62], later receiving more attention in
[81, 110]. Such local CD algorithms are closely related to variable selection as the
Markov Blanket of a variable is the part of the network relevant for variable selection
[3]. The difference between the two types of local causal discovery is that the first
learns marginal networks, while the second learns sub-networks. For example, if the
true network is X → Y → Z → W , and nothing causes X , then the method by
Cooper [18] will return 3 triplets: X → Y → W,X → Z → W , and X → Y → W
corresponding tomarginalizing (treating as latent) one variable at a time. Themethod
learning regions in [110] with target Z will return the network Y → Z → W (if
the region is restricted to be only the nodes adjacent to Z). The latter is a sub-graph
of the original graph (in general, local discovery may not orient the same edges as
global discovery). Local Causal Discovery forgoes learning complete networks to
save computational time or to make more robust inferences with fewer assumptions.
We also use the term opportunistic learning to denote all methods that perform a reli-
ability, confidence, robustness estimation of findings and focus only on the findings
for which the method is confident on. The CQTL methods presented above heavily
use these ideas.
Integrative Causal Analysis: in recent years, the proliferation of publicly-available,
on-line data repositories allow the possibility of co-analyzing large amounts of data
and information. This is particularly evident in some fields, for example System
Biology, where on-line data repositories are well-established [2, 6] and researchers
are encouraged to share their raw data along with their results and findings. Typi-
cally, however, data from different studies cannot be pooled together naively and be
jointly analyzed, even when all studies examine the same biological system. Any dif-
ference in recording conventions, study design or experimental procedures requires
sophisticated statistical approaches in order to be addressed. A non-exhaustive list of
approaches that attempt to address these issues includesMeta-Analysis [76], Transfer
Learning [77], Statistical Matching (also called Data Fusion) [24] and Batch-Effect
removal [52]. Each of these approaches is characterized by its own scope, advantages
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and weaknesses. In general the integrative analysis of heterogeneous datasets is still
an open problem and a field of active research.

Integrative analysis from a causal perspective takes a specific form. The key obser-
vation in this approach is that all data measuring the same biological system stem
from a single causal mechanism. Each study maybe measuring different quantities,
under different experimental conditions or sampling methodologies, yet there should
exist a causal model that can produce all these datasets. Thus, to co-analyze a collec-
tion of datasets coming from heterogeneous studies one searches for a causal model
(or all causal models) that simultaneously fit and can explain all data. Over the past
few years, several methods for extending causal analysis to the integrative analysis of
heterogeneous datasets have been introduced. We collectively refer to these methods
as Integrative Causal Analysis (INCA). A major advantage of INCA is that it can
model the effect of interventions, e.g. the knock-out of a gene in one dataset and
treatment with a hormone in a second one, to enable the co-analysis of datasets over
different experimental conditions.

INCAmethods can address different types of heterogeneity. Several INCAworks
have focused on the problem of overlapping variable sets, i.e., co-analyzing data sets
that have only a subset of the included variables in common. In this setting the scope
of the analysis is usually to infer information regarding the causal mechanism defined
over the union of all measured variables. A first pioneering work was published in
2002 by Danks [20], who proposed a two-stage approach consisting in separately
learning a Bayesian Network from each study and then using a set of rules for
extracting information about the underlying causal structure. Successive methods
generally follow a similar two-stage approach, but usemore expressive causalmodels
in the first stage (e.g. MAGs) and employ more sophisticated rules that are able deal
with conflicts arising from inconsistencies among the models [17, 21, 104, 106].

Studies often differ because they were conducted under different experimental
conditions. In this setting, naively pooling data from different studies together can
lead to the creation of spurious correlations or to the disappearance of present asso-
ciations among the measured variables [51]. Several works propose modifications
of Search-and-Score and Constraint-based algorithms able to deal with mixtures
of observational and experimental data. Cooper and Yoo [19] propose a Bayesian
score able to incorporate information about the different experimental settings, while
Hauser andBühlmann [34] investigate the concept ofMarkovEquivalence in the pres-
ence of experimental interventions and propose a learning algorithm on that basis.
Eaton and Murphy [25] model interventions as special nodes of the network, and
proposed an algorithm that attempts to infer the actual effects of each intervention
directly from the data. Constraint–based algorithms for mixtures of experimental
data are proposed in [16, 102], but they are limited to specific experimental settings.
Sufficient conditions for checking conditional (in)dependencies in data coming from
different experiments were proposed in [26, 51]. Other approaches assume specific
functional forms for all interactions among variables [39, 41]. These approaches
are even able to deal with hidden confounders, but their application is limited by
their strict assumptions regarding functional forms among variables. Finally, some
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algorithms first learn a provisional causal structure from observational data, and then
employ experimental information in order to refine the learned model [35, 64].

A particular type of heterogeneity is obtained when the same information is
recordedwith different encodings, for example smoking informationmaybe recorded
as a binary (yes/no) or a continuous variable (number of packets a day).When a direct
conversion is not possible, more sophisticated approaches must be employed [107].

Recent developments in Integrative Causal Analysis focus on co-addressing mul-
tiple sources of heterogeneity at the same time: several works attempt to integrate
datameasured over overlapping variable sets and in different experimental conditions
[40, 42, 43, 105].

One of the main, unresolved issues in the INCA field is the efficacy of the current
methods on real data. While significant efforts have been spent on laying down
the theoretical foundations of this field, several algorithmic and methodological
improvements are necessary before applying these methods on real data analysis
tasks. A first attempt in applying INCA methods on real-world, large datasets has
produced evidence that INCA methods can actually provide meaningful results and
even outperform current statistical methods [109]. Bridging the gap between theory
and practice is crucial for the future of integrative causal analysis.
CD Based on Functional-Form Analysis: So far we have mainly discussed causal
discovery methods based on the analysis of conditional (in)dependencies. These
methods query the joint probability distribution for (in)dependencies either directly
(constraint-based methods) or indirectly (search-and-score methods) to identify all
causal structure that fit the data. Recently, a different approach on causal discovery
has been developed, one that is based on the exploiting possible asymmetries of causal
relations. The methods assume Causal Sufficiency and acyclicity, thus if X and Y
are correlated, either X → Y or Y → X . Expressed as structural equations, either
X = f (Y, ε) or Y = f (X, ε), where the disturbance term ε is the effect of all other
factors. It turns out that one can distinguish between the two possibilities if either ε
is non-Gaussian, or f is non-linear [36]. While the assumptions of linear relations
and Gaussian residual term ε is probably the most common set of assumptions in
statistics, it turns out that any departure from these assumptions allows the discovery
of the directionality of causation!

A specific case follows. Assume that X and Y are variables and X causes Y in a
linear manner, thus Y = βY X X + εY , where εY follows a non-Gaussian distribution.
Also assume that we have obtained a set of measurements of both X and Y and
we want to identify the causal structure of the variables. By assuming linearity,
additive disturbance terms ε, and causal sufficiency, we can fit both models using
simple linear regression, and obtain estimates for botĥβXY and̂βY X . Based on these
estimates, we can then calculate the disturbances εX and εY for both models. These
disturbances will be independent with each other if the fittedmodel is the correct one,
and dependent if the fitted model is the reverse one. A graphical depiction of this
principle for uniform distributions of disturbances is shown in Fig. 3.8. LiNGAM
[95] automates this procedure, inferring a unique causal model from observational
data. LiNGAM is limited to linear relations, but this assumption has been relaxed in
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Fig. 3.8 The key idea for LiNGAM and similar algorithms: true structural equation Y = βYX X+
εY, where εY follows a uniform distribution. a Regression with Y as the dependent variable (true
model). b Regression with X as the dependent variable (reverse model). c Estimated ε̂Y versus ε̂X
based on the model shown in (a). The disturbances are and independent. d Estimated ε̂Y versus ε̂X
based on the model shown in (b). The disturbances are dependent. Figure from [38]

a subsequent body of work [36, 82, 113] to include non-linear relations. However
learning such relations requires non-linear optimization techniques and appropriate
independence measures [69].

This class of methods is more powerful than traditional causal discovery methods,
in the sense that with the functional form assumptions (e.g., linear relations, additive
disturbances, non-Gaussian disturbances) causal models are fully identifiable (no
statistical indistinguishability). Moreover, the methods also work under unfaithful-
ness. On the other hand, all methods in this category require large sample sizes and
rely on some kind of parametric assumption, and have been shown to be unreliable
when this assumption is violated. Nevertheless, these ideas add a new direction and
dimension to the way we think about, treat, model, and induce causality and could
soon lead to practical results.

3.7 Discussion

Inducing causal models or relations from data is necessary to fully understand bio-
logical mechanisms and design new drugs and therapies. Traditional means for such
inferences rely on performing interventional experiments. CausalDiscoverymethods
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attempt tomake such inferences from observational data alone or with a limited set of
such interventions by making assumptions that connect the notion of causality with
quantities estimable from the data. The analyst should be aware and conscious of the
explicit and implicit assumptions employed by the tools and algorithms that are used
and whether they are appropriate for the type of biological data at hand. Despite the
inherent theoretical and practical difficulties of the task, there are several successful
applications of Causal Discovery methods in systems biology that demonstrate the
potential of the field. In addition, recent theoretical and algorithmic breakthroughs
promise to further improve the successful application of causal discovery on systems
biology.
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Chapter 4
Stochastic Modeling and Simulation Methods
for Biological Processes: Overview

Annelies Lejon and Giovanni Samaey

Abstract The use of stochasticmodeling and simulation techniques iswidespread in
computational biology when fluctuations become important. In this chapter, we give
a high-level overview of stochastic modeling techniques for biological problems,
focussing on some common individual-based modeling and simulation methods.
We pay particular attention to the equivalence between the stochastic process that
governs the evolution of individual agents and the deterministic behaviour of the
involved probability distributions, and we discuss numerical methods that exploit
this relation for variance reduction purposes. The discussion will be illustrated using
examples involving intracellular chemical reactions, bacterial chemotaxis and tumor
growth, showing the effects of stochasticity at different scales and different levels of
description.

Keywords Stochasticity · Stochastic differential equations · Velocity-jump
processes · Asymptotic variance reduction

4.1 Introduction

Stochastic effects are ubiquitous in biological systems, at multiple scales. At an
intracellular level, for instance, gene regulatory networks often exhibit different
metastable states. Since the number of molecules in a cell is not very high, signif-
icant fluctuations in concentrations can occur, triggering transitions between these
metastable states [20, 28]. At a cellular level, individual cells can be modeled as
agents that interact with each other and with their environment.

Stochasticity can then be introduced to account for differences between individ-
ual cells or to incorporate the coarse-grained effect of phenomena that occur at more
microscopic scales directly at the cellular level. (An example of the latter would be
the use of a Brownianmotion tomodel the net effect of a large number of collisions of
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a largemoleculewith surrounding—but not explicitlymodeled—solventmolecules.)
Such an approach has been followed in many settings, including the applications that
will be considered as illustrative examples in this chapter: bacterial chemotaxis (see,
e.g., [5, 15] and references therein) and tumor growth (see, e.g., [43] for a recent
review and references). At a population level, one usually models the evolution of
cell densities via partial differential equations (PDEs) of reaction-advection-diffusion
type. At this level, one can introduce, for instance, stochastic parameters and geome-
tries to account for differences between individuals, resulting in PDEswith stochastic
coefficients [22].

Despite the stochastic nature of the time evolution, one is usually interested in
deterministic quantities, such as the mean switching time between metastable states
or the expected behaviour of a large population of cells or individuals. Addition-
ally, one may also be interested in deviations with respect to this mean behaviour,
requiring information on higher order statistics or on the complete probability dis-
tribution of possible states of the system. While, in principle, the time evolution of
these probability distributions can be modeled using deterministic evolution laws,
the associated computational cost is usually prohibitive due to the high dimension-
ality of the resulting equations. One therefore needs to resort to some form of Monte
Carlo simulation of the stochastic process [7].

In this chapter, we discuss stochastic individual-based modeling techniques and
show the equivalence with deterministic techniques for modeling the involved proba-
bility distributions. In Sect. 4.2, we introduce stochastic models for chemically react-
ing systems with low number of molecules (as would occur in modeling intracellular
dynamics). We discuss both the time-discrete and time-continuous case, and show
how these models relate to classical mean-field equations for the evolution of con-
centrations. In Sect. 4.3, we consider advection-diffusion processes, as they occur,
for instance, in agent-based models for bacterial chemotaxis and tumor growth. We
briefly describe cellular automata and Markov jump processes, before giving a more
detailed discussion of stochastic differential equations (SDEs). We show the relation
between an SDE for an individual particle and an advection-diffusion equation (the
Fokker–Planck equation) for the population density. In Sect. 4.4,we turn tomore real-
istic microscopic processes, and relate these to kinetic theory and Boltzmann-type
equations. For each of the described modeling techniques, we discuss the mathemat-
ical formulation of the stochastic process as well as practical simulation algorithms.
In Sect. 4.5, we discuss Monte Carlo simulation using these stochastic processes.
We show how to compute confidence intervals for the obtained results and introduce
numerical algorithms that can yield results with significantly reduced variance.

We illustrate the introduced concepts for two specific applications: bacterial
chemotaxis (Sect. 4.6) and tumor growth (Sect. 4.7). For each of these applications,
we discuss in detail the modeled processes and introduce a dedicated simulation
technique.

We conclude this introduction with a few remarks on topics that will not be
treated in this chapter. First, we will not discuss uncertainty propagation resulting
from uncertainty in parameters or geometries. For a mathematical and algorithmic
introduction to this topic, we refer to [22]. Second, in many applications, one may
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have, besides the mathematical model, some observation data available. Two ques-
tions can then be posed: (i) does the data provide sufficient support to validate the
model; and (ii) can one use the data to estimate unknown parameters in the model?
These topics form the subject of intense current research, and we refer to [51] for an
introduction.

4.2 Stochastic Modeling of Chemical Reactions

In this section, we provide an individual-based description of chemically reacting
systems. For concreteness, we start from the following system of chemical reactions,
as introduced by Schlögl [46],

2A
k1
�
k2

3A, ∅ k3
�
k4

A, (4.1)

in which the rate constants ki (1 ≤ i ≤ 4) indicate that the probability for two
randomly chosen molecules of type A to react according to reaction i in any time
interval [t, t + dt) is given by ki dt .

In Sect. 4.2.1, we discuss discrete-time simulation. It will appear that the cor-
responding algorithm introduces a time discretization error, and at the same time
is also very inefficient. We therefore turn to continuous-time simulation algorithms
in Sect. 4.2.2. Next, in Sect. 4.2.3, we introduce the chemical master equation, a
deterministic system of equations for the probability of finding a given number of
molecules at any given time. From this master equation, we can obtain information
on the mean behaviour of the system and on fluctuations. We conclude in Sect. 4.2.4
with a numerical illustration on the Schlögl model. The exposition in this section is
based on [17].

4.2.1 Discrete-Time Simulation

Let us denote by A(t) the number of molecules of type A in the system at time t ≥ 0,
and assume as initial condition A(0) = A0. We are interested in an approximate
solution Ak ≈ A(tk), with tk = k�t and �t > 0 a small time step. (The symbol
k that indicates the discrete time instance is added as a superscript for notational
consistency throughout the chapter.)

At time t = tk , the probability of reaction 1 (with rate k1) taking place in (t, t+�t)
is approximately given by

αk
1�t = Ak(Ak − 1)k1�t, (4.2)
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withαk
1 the propensity function, since k1�t is the probability of two randomly chosen

molecules of type A to react according to reaction 1, and Ak(Ak −1) is the number of
pairs of molecules that can be randomly chosen. (Note that this is an approximation
due to the fact that we have replaced the infinitesimal interval of length dt by a finite
interval of length �t .) Similarly, the propensity functions for the other reactions can
be seen to be

αk
2 = Ak(Ak − 1)(Ak − 2)k2, αk

3 = k3, αk
4 = Akk4. (4.3)

To take a time step from time tk to tk+1, one needs to decide for each reaction
whether or not it has occurred during the time step. This can be done using the
following algorithm:

Algorithm 1 (Time-discrete simulation of Schlögl’s model) Given the concentration
Ak at time tk , we compute Ak+1 at time tk+1 as follows:

1. For each reaction i :

• Compute the propensity αk
i using (4.2) or (4.3);

• Generate an independent random number rk
i from the uniform distribution on

the interval (0, 1);
• Decide that reaction i has occurred during the time interval if rk

i ≤ αk
i �t

(else, the reaction has not occurred);

2. Compute Ak+1 by applying all reactions that occurred during the time step (for
instance, if only reaction 1 occurred, we have Ak+1 = Ak + 1).

A simulation is then performed by repeating the above time step over the time
interval of interest. The algorithm can easily be generalized to systems with multiple
species and any number I of possible reactions.

There are two problems when using the above algorithm, which will both be dealt
with when switching to continuous-time simulation in Sect. 4.2.2. First, Algorithm 1
introduces a time discretization error since it replaces an infinitesimal time interval
of length dt by a finite interval of length �t . This error manifests itself in two
ways. First, we neglect the (non-zero) probability that two reactions of the same type
occur within the time step of size �t . Moreover, every reaction event influences the
propensity function of other reactions, since the propensity functions depend on the
state of the system. As a consequence, there will be an error in the used reaction
probabilities when multiple reactions are performed during a single time step.

To limit the impact of these time discretization errors, �t should be chosen fairly
small. A common guideline is to choose �t such that the probability of having
a reaction is less than 1% per time step. However, this implies that 99% of the
time steps are taken just to conclude that nothing happened! This is detrimental to
computational efficiency, which is the second problem with the above algorithm.
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4.2.2 Continuous-Time Simulation

Instead of taking discrete time steps of fixed size�t from t to t +�t , and calculating
the probability that a reaction takes place in that time interval [t, t+�t), a continuous-
time simulation computes the (random) time increment τ until the next reaction takes
place by sampling from the corresponding probability distribution. Afterwards, a
second random number is generated to decide which reaction occurred.

Let us first characterize the relevant probability distribution for τ . Consider a
system with one reaction with propensity α1(t). (Recall that the propensity is time-
dependent due to the time-dependence of the concentrations of the present species.)
Further, denote as f1(t, s)ds the probability, at time t , that the next reaction occurs
in the time interval [t + s, t + s + ds], and denote the probability that no reaction
occurs in the interval [t, t + s] as g1(t, s). We then have

f1(t, s)ds = g1(t, s)α1(t + s)ds = g1(t, s)α1(t)ds, (4.4)

in which we used the fact that α1(t + s) = α1(t) in the absence of reactions,
and independence of individual reaction events. (Then, the probability that the first
reaction occurs in the time interval [t + s, t + s + ds] is given by the product of the
probabilityα1(t +s)ds that there is a reaction in that time interval and the probability
g1(t, s) that no reaction occurred earlier.)

The two quantities f1(t, s) and g1(t, s) are, as for now, unknown. We derive a
differential equation for g1(t, s). We start by observing that the probability of not
having a reaction in the time interval [t, t +s+ds] can bewritten as the product of the
probability of not having a reaction in the time interval [t, t + s] and the probability
of not having a reaction in the time interval [t + s, t + s + ds], i.e.,

g1(t, s + ds) = g1(t, s)(1 − α1(t)ds), (4.5)

from which we obtain

g1(t, s + ds) − g1(t, s)

ds
= −α1(t)g1(t, s). (4.6)

Given that g(t, 0) = 1 (zero probability of having the reaction exactly at time t), we
obtain

g1(t, s) = exp(−α1(t)s), (4.7)

and hence, using (4.4), the probability that the first reaction occurs in the infinitesimal
interval t + s is given by

f1(t, s)ds = α1(t) exp(−α1(t)s)ds, s ≥ 0. (4.8)
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The corresponding cumulative distribution is given as

F1(t, τ ) =
∫ τ

0
f1(t, s)ds = 1 − exp(−α1(t)τ ), τ ≥ 0. (4.9)

(Note that we have F1(t, 0) = 0 and limτ→∞ F1(t, τ ) = 1.)
Now that we know the probability distribution f1(t, s), we are ready to generate

a random time increment τ1(t), sampled from f1(t, s), which we denote as τ1(t) ∼
f1(t, s). Using the transformation method for the generation of random numbers
[7], the increment τ1(t) until the next event of reaction 1 can be computed from a
uniformly distributed random number θ̃1 in (0, 1) via

τ1 = F−1(t, θ̃1) = − 1

α1(t)
log(1 − θ̃1), or τ1 = − 1

α1(t)
log(θ1), (4.10)

with θ1 also a uniformly distributed random number in (0, 1) and F−1(t, θ) the
inverse of the cumulative density F(t, s) with respect to s, treating t as a parameter.

Remark 1 (Markov property) The probability distribution f1(t, s) is called the expo-
nential distribution with rate α1(t). Its main property is that it is memoryless, which
implies that the evolution is completely determined by the current state (and no
information from the past is required). In particular, this implies that, to determine
when the next reaction will occur, it is irrelevant how long the system is already in
its current state. Mathematically, this can be seen by checking that, for any positive
T and τ , we have

Pr(τ1(t) > T ) = Pr(τ1(t) > τ + T |τ1(t) > τ ), (4.11)

i.e., the probability that the next reaction will not occur within a time interval of
length T from the current time, does not depend on the amount of time τ that the
system is already in the current state.

If multiple reactions can occur in the system (as is the case for the Schlögl model
(4.1)), a naive way of proceeding is to generate the next reaction time for each of the
reactions and only select the reaction that occurs first, after which the system clock
is updated and the procedure is repeated. With I possible reactions, this requires
the generation of I exponentially distributed random numbers (independent of the
number of species in the system) to choose a single reaction. This algorithm can be
made much more efficient by making use of the following theorem:

Theorem 2 (Exponential distributions) Consider I exponential distributions fi (t, s)
with rates αi (t), and consider an independent set of random numbers τi (t), each sam-
pled from the corresponding distribution fi (t, s). Let τ (t) be the minimum of these,
τ (t) = mini τi (t). Then, the probability distribution for τ (t) is an exponential dis-
tribution with rate α(t) = ∑

i αi (t). Moreover, the probability that τ (t) = τi (t) (the
probability that the i-th reaction occurs first) is given by αi (t)/α(t).
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Using this theorem, only two random numbers need to be generated per time step:
one to determine the time increment until the next reaction, and one to choose the
next reaction. This gives rise to the following classical algorithm, due to Gillespie
[23], which is immediately written for a system consisting of I reactions:

Algorithm 2 (Stochastic simulation algorithm (SSA) for chemically reacting sys-
tems) Given the concentration Ak at time tk , we compute Ak+1 at time tk+1 as
follows:

1. For each reaction i , compute the propensity αk
i = αi (tk), and compute the total

propensity αk = ∑
i αk

i ;
2. Generate a uniformly distributed random number θk in (0, 1), and compute the

time increment until the next reaction occurs as τ k = − 1
αk log(θ

k),

3. Generate a uniformly distributed random number yk in (0, 1) and select the reac-
tion i for which ∑

j≤i−1

αk
i /α

k ≤ y <
∑

j≤i

αk
i /α

k;

4. Compute Ak+1 by applying the selected reaction i (for instance, if reaction 1 was
selected, we have Ak+1 = Ak + 1).

Again, the algorithm can easily be generalized to systems with multiple species.
We refer to [26] for more details and variants. Here, we only state the main conver-
gence result: the stochastic simulation algorithm (SSA) is exact, in the sense that is
does not contain any time discretization error.

Remark 3 (Acceleration of SSA) While this method is significantly faster than the
time-discrete Algorithm 1 without introducing a time discretization error, the result-
ing algorithm can still be computationally prohibitive, especially in situations with
many chemical reactions with disparate time scales. Consider for instance a system
with a fast, reversible reaction and an irreversible but very slow reaction. In such
a system, most of the time steps will select the fast reversible reaction, resulting in
very small time steps that go back and forth along the fast reaction. More sophisti-
cated algorithms, tailored to these situations, have been developed. These include,
for instance, the τ -leaping method [9, 25], the slow-scale stochastic simulation algo-
rithm [8], and R-leaping [3]. Note, however, that such methods accelerate simulation
at the expense of re-introducing a (small) time-discretization error.

4.2.3 Population-Level Dynamics and Mean-Field
Approximation

In general, repeated simulation of a stochastic process for a chemically reacting sys-
tem yields different results for each stochastic realization. The precise results depend
on the generated sequence of random numbers. Usually, one is not interested in the
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detailed behaviour of such an individual realization, but in quantitative statements
on the mean behaviour and on fluctuations.

In this section, we first derive the chemical master equation, which gives a com-
plete description of the (time-dependent) probability distribution of possible states
for the system. Afterwards, we discuss the potential and limitations of using this
equation to derive information on the statistics of the process.

In the previous sections, we denoted by the random variable A(t) the number
of molecules of type A at time t . Here, we define the deterministic quantity pn(t),
which represents the probability that the system contains exactly n molecules of type
A at time t , i.e.,

pn(t) = Pr(A(t) = n).

In the incremental time interval [t, t +dt), the state can only change by ±1, since all
reactions either create or destroy one molecule of type A. We can use the definition
of the reactions (4.1) to compute pn(t + dt),

pn(t + dt)

= pn(t) + {[k1(n − 1)(n − 2) + k3] pn−1(t)dt + [k2(n + 1)n(n − 1) + k4(n + 1)]pn+1(t)dt}
︸ ︷︷ ︸

gain

− {[k1n(n − 1) + k3] + [k2n(n − 1)(n − 2) + k4n]} pn(t)dt
︸ ︷︷ ︸

loss

, (4.12)

in which we recognize

• a gain term that expresses the sum of (i) the probability that the system contains
n − 1 molecules at time t and a molecule is produced during the time increment;
and (ii) the probability that the system contains n + 1 molecules at time t and a
molecule is destroyed during the time increment;

• a loss term that expresses the probability that the system contained n molecules at
time t and a molecule is either created or destroyed during the time increment.

Reordering the terms,we get an (infinite-dimensional) systemof ordinary differential
equations, the chemical master equation:

ṗn(t) = [k1(n − 1)(n − 2) + k3] pn−1(t) + [k2(n + 1)n(n − 1) + k4(n + 1)]pn+1(t)

− [k1n(n − 1) + k3 + k2n(n − 1)(n − 2) + k4n] pn(t), n ≥ 0, (4.13)

in which, formally, p−1(t) = 0.
The chemical master equation is equivalent to the stochastic description, but of

limited practical use due to its infinite-dimensional nature. However, it can be used
as a starting point to obtain information on the statistics of the stochastic process.
In general, we denote the expectation of a function of the number of molecules,
f (n), by
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F(t) := E [ f (A(t))] =
∞∑

n=0

f (n)pn(t), (4.14)

which amounts to a weighted average of f , weighted by the probability density for
n.

Let us consider the mean behaviour. The expected number of molecules of type
A in the system at any given time is given by the (deterministic) quantity

M(t) := E [A(t)] =
∞∑

n=0

npn(t). (4.15)

To obtain an ordinary differential equation for the evolution of M(t), we start from
(4.13), and write

Ṁ(t) =
∞∑

n=0

n ṗn(t). (4.16)

Using (4.13), we get

Ṁ(t) =
∞∑

n=0

n ṗn(t)

=
∞∑

n=0

n {[k1(n − 1)(n − 2) + k3] pn−1(t) + [k2(n + 1)n(n − 1) + k4(n + 1)]pn+1(t)

− [k1n(n − 1) + k3 + k2n(n − 1)(n − 2) + k4n] pn(t)} .

We regroup the terms per reaction. We first consider reaction 3, for which we have

∞∑

n=0

k3n (pn−1(t) − pn(t)) = k3

∞∑

n=0

((n + 1)pn(t) − npn(t))

= k3

∞∑

n=0

pn(t) = k3. (4.17)

Next, consider reaction 4. Here, we have

∞∑

n=0

k4n ((n + 1)pn+1(t) − npn(t)) = k4

∞∑

n=0

(
(n − 1)npn(t) − n2 pn(t)

)

= −k4

∞∑

n=0

npn(t) = −k4M(t). (4.18)
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Similarly, we obtain for the reactions 1 and 2,

∞∑

n=0

k1n ((n − 1)(n − 2)pn−1(t) − n(n − 1)pn(t)) = k1

∞∑

n=0

n(n − 1)pn(t), (4.19)

∞∑

n=0

k2n ((n + 1)n(n − 1)pn+1(t) − n(n − 1)(n − 2)pn(t)) = −k2

∞∑

n=0

n(n − 1)(n − 2)pn(t),

(4.20)

resulting in the equation

Ṁ(t) = k3 − k4M(t) + k1

∞∑

n=0

n(n − 1)pn(t) − k2

∞∑

n=0

n(n − 1)(n − 2)pn(t). (4.21)

We notice immediately that the evolution of the mean M(t) does not only depend
on the mean itself, but also on higher-order statistics of the distribution, such as the
second moment

E

[
A(t)2

]
=

∞∑

n=0

n2 pn(t).

We can proceed similarly to derive an evolution equation for the variance

V (t) = E

[
(A(t) − M(t))2

]
. (4.22)

However,we should expect evenhigher ordermoments to appear in the corresponding
righthand side, leading to an infinite cascade. If we want to obtain an evolution law
in terms of only the mean number of molecules M(t), we will therefore be obliged
to resort to an approximation.

Let us now take a more detailed look into the fluctuations around the mean, as
measured by the variance V (t). We are specifically interested in systems with large
numbers of molecules, for which we assume a mean-field approximation to hold.
We therefore introduce a characteristic number of molecules per unit volume N , and
look at the concentrations a(t) = A(t)/N and ρ(t) = M(t)/N . Then, the variance
can be written as

V (t) = 1

N 2E

[
(a(t) − ρ(t))2

]
. (4.23)

We conclude that fluctuations around the mean concentration become negligible
as the number of molecules per unit volume N tends to infinity. In that limit, the
quantized concentration n/N approaches a continuous variable a, and the probability
distribution (pn(t))∞n=0 approaches a continuous probability distribution p(a, t), a ∈
[0,∞). The fact that the fluctuations vanish in that limit implies that p(a, t) =
δM(t)(a), i.e., the concentration a(t) = M(t) almost surely. (We note that the above,
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Fig. 4.1 Simulation of the Schlögl model (4.1): number of molecules as a function of time for
a single realization of the stochastic simulation, using Algorithm 2 (solid) and the corresponding
mean-field approximation (dashed). Left short time-scale; right long time-scale. Parameter values
are in the text

rather heuristic, reasoning can be turned into a rigorous mathematical theory, see,
e.g., [24].)

Using the above reasoning in the limit when N tends to infinity, one can derive
from Eq. (4.21) the mean-field approximation for ρ(t) as

ρ̇ = k3 − k4ρ + k1ρ
2 − k2ρ

3. (4.24)

From the above derivation, one concludes that stochastic modeling of chemical
reactions is mainly useful when the number of molecules present is not too large. In
that case, results can deviate from the mean-field approximation for two reasons: (i)
stochastic fluctuations around the mean can become important; and (ii) due to the
present nonlinearities, the ensemble average of a large number of systems with a low
number of molecules does not necessarily follow the mean-field behaviour (Fig. 4.1).

4.2.4 Numerical Simulations for the Schlögl Model

Let us now consider system (4.1) with (non-dimensionalized) reaction rates k1 =
0.18, k2 = 2.5 × 10−4, k3 = 2200 and k4 = 37.5. We simulate one realization of a
stochastic simulation using Algorithm 2, as well as a forward Euler simulation of the
mean field Eq. (4.24) with time step �t = 5× 10−3. As an initial condition, we take
A(0) = 0. For the chosen parameter values, Eq. (4.24) has two stable steady state,
A1 = 100 and A2 = 400, and an unstable steady state Au = 220. Thus, the Schlögl
model represents a bistable system. Figure4.1 shows the results. The mean-field
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equation converges to one of the two stable equilibria, depending solely on the initial
condition. When A(0) ∈ [0, Au], the solution converges to A1; when A(0) > Au the
solution converges to A2. On short time-scales (left figure), the stochastic simulation
fluctuates around the stable equilibrium of the mean-field equation. However, over
long time scales (right figure), we notice that the fluctuations cause the system to
occasionally switch between the two steady states. Such occasional switches are
called rare events, and they occur when large fluctuations can occur; for instance,
in gene regulatory networks [20, 28]. If one is interested in quantities such as mean
switching times, one cannot use a mean-field approximation and needs to resort to
stochastic simulation.We refer to [52] for theoretical and computational work related
to stochastic simulation of rare events.

4.3 Stochastic Modeling of Advection-Diffusion Processes

In the previous section, all systemswere assumed to be well mixed, such that only the
temporal evolution of concentrations needed to be considered. In many processes,
however, interesting dynamics arises from spatial heterogeneity. In a biological con-
text, one can, for instance, think of bacterial chemotaxis, tumor growth, or bone
tissue engineering. In this section, we give an overview of individual-based model-
ing techniques for biological systems consisting of moving individuals that are able
to reproduce and die.

In Sect. 4.3.1, we consider the positions of the individuals to be discrete (on a
lattice). We briefly discuss cellular automata and Markov jump processes, and give
references to the corresponding literature. In Sect. 4.3.2, we introduce Brownian
motion and stochastic differential equations (SDEs), which are used for space/time
continuous modeling of random motion. Subsequently, in Sect. 4.3.3, we discuss
the equivalence between the SDE for an individual particle and the (deterministic)
Fokker–Planck equation that describes the evolution of the particle density.

4.3.1 Discrete-Space Modeling

Several techniques exist for the discrete stochastic modeling of biological particles.
We briefly discuss cellular automata and Markov jump processes.

Cellular automata In cellular automata, one considers space to be discretized as a
grid, say �(x) = {xn}N

n=0 in one space dimension. The state is then given as the
number of particles Ak

n at each grid location xn at each discrete moment in time
tk . (Clearly, one can incorporate the presence of particles of multiple types.) The
cellular automaton then defines an evolution law that determines the state Ak+1 =(

Ak+1
n

)N
n=0 at time tk+1 from the state Ak . This evolution law can contain reactions

with associated rates, as in the time-discrete schemes in Sect. 4.2.1. Movement on
the grid can be modeled using hops, which can be seen as a reaction event (with an
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associated reaction rate) in which a particle moves from one lattice site to another.
Then, the algorithmic structure that resulted in Algorithm 1 can be reused to model
advection-diffusion processes [17].

One particularly appealing feature of cellular automata is their modeling flexi-
bility: in defining the evolution laws, any set of rules can be allowed. One can, for
instance, change the rules depending on the number of neighbors, or let the evolution
of individual particles depend on some internal state variable (see also Sect. 4.4). We
refer to [21, 33, 39] for a number of cellular automata models in the context of tumor
growth, and to [12, 31] for examples in bone tissue engineering.

Markov jump processes When keeping a discrete state space, but allowing time to
be continuous, one ends up with a Markov jump process. Consider a particle with
position X (t) that is allow to reside on any position in the lattice�(x). Given that the
current position Xk = xn at time tk , we can introduce a propensityαk

n,m , 1 ≤ m ≤ N ,
such that αk

n,mdt represents the probability that the particle moves from xn to xm in
the infinitesimal time interval [t, t + dt). Then, such a movement can be added to
the table of reactions in Algorithm 2, and the same algorithm can be used.

4.3.2 Stochastic Differential Equations (SDEs)

When space and time are allowed to be continuous, the correspondingmodel becomes
an SDE. In this section, we start from a definition of Brownianmotion (Sect. 4.3.2.1).
We then proceed to the construction of general SDEs in the Itô sense (Sect. 4.3.2.2)
and discuss numerical methods (Sect. 4.3.2.3). We conclude in Sect. 4.3.2.4 with a
numerical example that illustrates the results. The exposition is partly based on [29].

4.3.2.1 Brownian Motion

A scalar standard Brownianmotion essentially describes an unbiased randomwalk in
one space dimension. (Generalizations to multiple space dimensions are, of course,
straightforward.) Thedescription is phenomenological.Wedefine aBrownianmotion
as a random variable W (t), continuous in time t ∈ [0, T ], that satisfies the following
conditions:

1. W (0) = 0 (with probability 1);
2. For 0 ≤ s ≤ t ≤ T , the increment W (t)− W (s) is a normally distributed random

variable with mean 0 and variance t − s, i.e., W (t) − W (s) ∼ √
t − s N (0, 1),

where N (0, 1) denotes a standard normally distributed random variable (with
mean 0 and variance 1);

3. For 0 ≤ s ≤ t ≤ u ≤ v ≤ T are independent.

There are several ways of justifying this definition. One way is to start by defining
a grid �(x) = {−N�x, . . . , 0, . . . , N�x} and letting a particle move one grid cell
to the left or to the right (each with probability 1/2) in each time step of size �t ,
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Fig. 4.2 Realizations of Brownian motion: W (t) as a function of time, using (4.25) with �t =
5 × 10−2

starting at position X (t0) = 0 at time t0 = 0. When choosing �x2 = �t and taking
the limit of �t → 0, we obtain the standard Brownian motion.

To visualize realizations of Brownian motion, we consider time-discretized
Brownian paths, generated as W k ≈ W (tk), with tk = k�t via time-stepping,

W k+1 = W k + √
�tξk, ξk ∼ N (0, 1), (4.25)

where the random numbers ξk are independent and identically distributed (i.i.d.). In
Fig. 4.2, we show 10 realizations of a Brownian motion with �t = 5 × 10−2.

The figure illustrates some properties of Brownian motion. A proper definition of
the probability spaces generated byBrownianmotion is out of the scope of the present
chapter. Let us just suffice by stating that, whenwritingE [·], we imply themeanwith
respect to all possible Brownian paths W (t). It can be proved (see, e.g., [11]) that
the expected value of a Brownian motion E [W (t)] = 0 for any t ∈ [0, T ]. This is
easily seen intuitively, as the Brownian increments do not have a preferred direction.
Moreover, we observe that E

[
W (t)2

] = t . Both properties can easily be proved in
the time-discrete setting of Eq. (4.25) by using the basic rules of probability on the
normal random variables ξk . A final property is that Brownian motion is nowhere
differentiable with probability 1. This can be understood by realizing that

Var

[
W (t + �t) − W (t)

�t

]

= 1

�t2
Var [W (t + �t) − W (t)] = 1

�t
. (4.26)

Note that, whileE[W (t +�t)] = E[W (t)] = 0, we haveE [|W (t + �t) − W (t)|] =
O(�t1/2), which is proportional to the standard deviation.
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4.3.2.2 Itô Stochastic Differential Equations

Often, the evolution of the position X (t) of a particle is composed of a deterministic
(mean) component, supplemented with a stochastic (fluctuating) part, modeled using
a stochastic differential equation of the form

d X (t) = a(X (t))dt + b(X (t))dW (t), X (0) = X0, (4.27)

in which a is called the drift coefficient, b is the diffusion coefficient, W (t) is a
Brownian motion and X0 is the initial condition. For instance, one can consider the
particle to model the position of a bacterium that is biasing its random motion to
favor directions that are in line with the gradient of a chemoattractant. Then, the
drift coefficient a(X (t))models a preferred direction, whereas the second term takes
into account the randomness of the motion. The diffusion coefficient b(X (t)) then
defines, at the position X (t), how strongly the evolution is affected by the Brownian
motion W (t).

Under mild assumptions on a and b, the stochastic differential equation (SDE)
(4.27) has exactly one solution per Brownian path W (t). To obtain this solution, one
first needs to make sense of Eq. (4.27), something that will turn out to be nontrivial.
Consider a classical solution,

X (t) = X0 +
∫ t

0
a(X (s))ds +

∫ t

0
b(X (s))dW (s). (4.28)

The first integral is a well-defined integral with respect to time; the second integral,
however, is not well-defined and we need to be specific about its meaning.

Consider the integral to be defined via a Riemann sum using subintervals
[tk, tk+1], with tk = k�t and 0 ≤ k ≤ K , K�t = t ,

∫ t

0
b(X (s))dW (s) = lim

�→0

K∑

k=1

b(X (sk))�W k, (4.29)

in which �W k = W (tk+1) − W (tk) and sk ∈ [tk, tk+1]. It is now easy to see, using
only standard rules of probability, that the choice of sk has a significant influence on
the value of the integral. (This is due to the fact that W (s) does not have bounded
variations, which is related to (4.26).) The most common interpretation (the Itô
interpretation) is obtained by choosing sk = tk , i.e., a left-point rule. In that case,
we have

E

[∫ t

0
b(X (s))dW (s)

]

= lim
�→0

K−1∑

k=0

E

[
b(X (tk))�W k

]

= lim
�→0

K−1∑

k=0

E

[
b(X (sk))

]
E

[
�W k

]
= 0,
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where the first equality is due to the definition of the Itô integral and the linearity of
the expectation, the second equality is due to independence of b(X (tk)) and �W k ,
and the last equality is due to the definition of Brownian motion.

A second popular interpretation (the Stratonovich interpretation) of (4.29) is
obtained when choosing sk = (tk + tk+1)/2. It is clear that the above reasoning
then can no longer be used, as b(X (sk)) cannot be independent of �W k . The result-
ing stochastic integral will then, in general, take a different value. We denote the
Stratonovic integral as ∫ t

0
b(X (s)) ◦ dW (s)

and compute, as an example,

E

[∫ t

0
W (s) ◦ dW (s)

]

= lim
�→0

K−1∑

k=0

E

[
W ((tk + tk+1)/2)�W k

]
.

To compute this integral, we need to evaluate W ((tk + tk+1)/2). It can be shown that
this quantity is statistically equivalent to the quantity

W (tk) + W (tk+1)

2
+ �Zk,

in which �Zk ∼ N (0,�t/4) and independent of W (tk) and W (tk+1). We can thus
replace W ((tk + tk+1)/2 by this alternative in computing the expectation, and we
obtain

E

[∫ t

0
W (s) ◦ dW (s)

]

= lim
�→0

K−1∑

k=0

(

E

[(
W (tk) + W (tk+1)

2

)

�Wk

]

+ E

[
�Zk�W k

])

.

Since�Zk and�W k are independent, the second term is zero, and we continue with
only the first term:

E

[∫ t

0
W (s) ◦ dW (s)

]

= lim
�→0

K−1∑

k=0

E

[(
W (tk) + W (tk+1)

2

)
(

W (tk+1) − W (tk)
)
]

= lim
�→0

1

2

K−1∑

k=0

E

[(
W (tk+1)

)2 −
(

W (tk)
)2

]

= 1

2
(W (t))2 ,

which is clearly different from the corresponding Itô integral (which is zero). For
more details, we refer to [29] and references therein. In this chapter, we will always
work with the Itô interpretation.

If W (t) does not have bounded variations, then neither does X (t). Consequently,
also X (t) will be nowhere differentiable (with probability 1). In particular, we have
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E [|X (t + �t) − X (t)|] = O(�t1/2).

Remark 4 (Further reading)Wehave deliberately kept the introduction onSDEsvery
brief. For more information, we refer the interested reader to the excellent books [19,
34].

Remark 5 (Reproduction and death) Tomodel individuals that are also able to repro-
duce and die, one needs to add a (potentially stochastic) process that determines for
each individual the moment at which it reproduces (and thus generates an additional
individual) or dies (and is therefore removed from the system). To this end, one can,
for instance, use the Markov processes that were discussed in Sect. 4.2 in the context
of chemical reactions. Section4.7 will contain additional modeling techniques that
are of a more mechanistic nature.

4.3.2.3 Euler-Maruyama Method

Once an SDE model is obtained for a specific problem, a (numerical) solution
needs to be computed. The most straightforward way to discretize an SDE of the
type (4.27) is by using the stochastic extension of the forward Euler method, called
Euler-Maruyama,

Xk+1 = Xk + a(Xk)�t + b(Xk)�W k, (4.30)

in which �t is the time step, and �W k is sampled from a normal distribution with
zero mean and variance �t , i.e., �W k ∼ N (0,�t). The scheme can equivalently be
written as

Xk+1 = Xk + a(Xk)�t + b(Xk)
√

�tξk, (4.31)

with ξk ∼ N (0, 1).
For a deterministic system, the convergence behaviour of the forward Euler

method can be derived is a straightforward manner: given the numerical solution
X K ≈ X (t K ), the error X K − X (t K ) can be bounded as

∣
∣
∣X K − X (t K )

∣
∣
∣ ≤ C�t,

where K and �t are varied simultaneously such that K�t = t∗.
In the SDE case, this is no longer true. In fact, since both the numerical solution

X K and the exact solution X (t K ) are random, only statistical statements can be
made about the numerical error. One can immediately come up with two different
definitions. We can define the strong error at time t K as

eK
�t = E

[∣∣
∣X K − X (t K )

∣
∣
∣
]
, (4.32)
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i.e., the expectation of the absolute value of the error on individual trajectories. Since
it measures the “mean of the error”, averaged over all possible Brownian motions,
the strong error gives an indication on the size of the error on an individual trajectory
(defined by the Brownian path that generated it). Alternatively, one can define the
weak error as

E K
�t =

∣
∣
∣E

[
X K

]
− E

[
X (t K )

]∣∣
∣ , (4.33)

or, more generally, for an arbitrary function f in an appropriate function class,

E K
�t [ f ] =

∣
∣
∣E

[
f (X K )

]
− E

[
f (X (t K ))

]∣∣
∣ , (4.34)

i.e., the error in the expectation of the function f when computed using time-
discretized trajectories.

In general, these types of error are not the same, and also the order of convergence
(as a function of �t) differs. For the Euler-Maruyama method, we have

eK
�t ≤ C�t1/2, E K

�t ≤ C�t, (4.35)

i.e., the Euler-Maryama method has a strong order 1/2 and a weak order 1. Proving
these orders would lead us too far. In this chapter, we simply illustrate this result
numerically (see Sect. 4.3.2.4).

Remark 6 (Stability) The order of convergence of the Euler-Maruyamamethod only
gives information on the asymptotic behavior of the error as �t tends to zero. In
practice, one will always take a finite time step. In that case, one needs the time step
to be such that the Euler-Maruymama method is stable, i.e., loosely speaking, one
needs to ensure that the numerical solution does not blow up for the chosen value
of �t when the exact solution remains bounded. While stability of time integration
is a relatively straightforward concept for deterministic ODEs [27], this is no longer
true for SDEs. As for convergence, multiple definitions of stability exist, see, e.g.,
[29, 32] for more details.

Remark 7 (Higher-order methods) Due to the presence of stochastic integrals, the
definition of higher-order methods for SDEs is far more complicated than for ODEs.
We refer to [32] for details.

4.3.2.4 Numerical Example: Geometric Brownian Motion

To illustrate the most important concepts in the previous sections, we perform
some numerical experiments on a simple linear SDE, namely a geometric Brownian
motion,

d X (t) = λX (t)dt + μX (t)dW (t), (4.36)
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Fig. 4.3 Simulations of a geometric Brownian motion (4.36). Top left a single trajectory using the
Euler-Maruyamamethod (4.31)with time step�t = 1/28 (solid), compared to the exact solution for
the same Brownian path (dashed); Top right four individual trajectories (dashed) and the empirical
average of M = 1000 trajectories; Bottom left strong error of Euler-Maruyama as a function of �t
(solid), compared to the predicted strong order 1/2 (dashed); Bottom right weak error of Euler-
Maruyama as a function of�t (solid), compared to the predicted weak order 1 (dashed). Remaining
parameters are in the text

which we discretize with the Euler-Maruyama method (4.31) with time step �t . For
this SDE, an exact solution is known analytically (given the Brownian path W (t)),
and given by

X (t) = X0 exp
((

λ − μ2/2
)

t + μW (t)
)

. (4.37)

In our experiments, we choose λ = 2, μ = 1 and X (0) = X0 = 1 with probability
1. The example is based on [29], in which also Matlab code can be found.

We first compare, for a single realization of W (t), the exact solution X (t) with

the numerical solution
(
Xk

)K
k=0, with Xk obtained via Euler-Maruyama (4.31) with

time step �t = 1/25 on the time interval t ∈ [0, 1] (hence K�t = 1). The results
are shown in Fig. 4.3, top left. We clearly see a discretization error.

To quantify this discretization error, we repeat the simulation for M = 1000 real-
izations of the Brownian path, (Wm(t))M

m=1, resulting in M trajectories (Xm(t))M
m=1,

and compute an approximation to the strong and weak errors (4.32) and (4.33) as



94 A. Lejon and G. Samaey

êK
�t = ÊM

[∣∣
∣X K − X (t K )

∣
∣
∣
]

= 1

M

M∑

m=1

∣
∣
∣X K

m − Xm(t K )

∣
∣
∣ , (4.38)

Ê K
�t = ÊM

[
X K

]
− Ê

[
X (t K )

]
= 1

M

∣
∣
∣
∣
∣

M∑

m=1

(
X K

m − Xm(t K )
)
∣
∣
∣
∣
∣
. (4.39)

To achieve this, we first generate Brownian paths with time step �t = 1/29, and
subsequently use these Brownian paths to perform Euler-Maruyama simulations
with time step R�t , R = 1, 2, 4, 8, 16. The results are shown in Fig. 4.3, bottom.
We clearly observe the predicted theoretical strong order 1/2 and weak order 1.

Remark 8 (Statistical error) The estimates (4.38) and (4.39) contain statistical error
due to the finite number M of realizations. The problem and method parameters
have been chosen such that this statistical error is negligible with respect to the time
discretization error.

Finally, we look at the evolution of F(t) := E[X (t)] as a function of time. Being
the expectation of the (time-dependent) random variable X (t), F(t) is a deterministic
function of time. Figure4.3 shows that F(t) (unlike X (t)) is a smooth, differentiable
function of time. This observation will be elaborated in the next section.

4.3.3 Population-Level Dynamics and Fokker-Planck
Equation

Usually, one is not interested in the detailed stochastic behaviour of a single individual
(cell, bacterium), but rather in the evolution of a large population of such cells.
One then has given an initial density ρ0(x) of individuals as a function of space
x ∈ D ⊂ R, with D the domain. We interpret ρ0(x) as a probability density (this
can always be done with a proper normalization), i.e., for an individual particle with
position X0 at time t = 0, we have

Pr(x ≤ X0 < x + dx) = ρ0(x)dx .

Note that lowercase x represents a possible position in the domain D, whereas upper-
case X denotes the (random) position of an individual cell.

Each of the individuals behaves according to (4.27), generating a path X (t). The
question then becomes: defining the time-dependent density ρ(x, t) as

Pr(x ≤ X (t) < x + dx) = ρ(x, t)dx,
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can one obtain a corresponding evolution equation for ρ(x, t)? In this section, wewill
show that ρ(x, t) satisfies a advection-diffusion partial differential equation (PDE),
the Fokker-Planck equation. We perform the derivation only for a pure Brownian
motion, after which we simply state the result for the general SDE (4.27). Our
exposition closely follows [11].

In the pure diffusion case, we start from a (scaled) Brownian motion,

d X (t) = bdW (t), (4.40)

with a constant scaling parameter b > 0.
Given the probability densityρ(x, t) at time t , we canwrite the densityρ(x, t+�t)

at time t + �t as

ρ(x, t + �t) =
∫ ∞

−∞
ρ(x + y, t) · ψ(x, y,�t)dy, (4.41)

where the transition probability kernel ψ(x, y,�t) is the probability of ending up
at position x at time t + �t , given that one started at position x + y at time t , i.e.,

ψ(x, y,�t) = Pr(X (t + �t) ∈ [x, x + dx]|X (t) ∈ [x + y, x + y + dx]) (4.42)

Eq. (4.41) states that the probability of finding a particle at position x at time t + �t
is equal to the probability of finding the particle at position x + y at time t , multiplied
by the probability of moving from x + y to x during the time step of size�t , and this
integrated over every possible value of y (i.e., integrated over every possible position
x + y at time t).

Remark 9 (Notation) It may seem odd to introduce the auxiliary variable y, instead
of simply integrating over all possible original positions z = x + y. This is done
because we intend to make a Taylor expansion of ρ(x + y, t) around ρ(x, t).

Let us nowobtain an expression forψ(x, y,�t).Weknow that−y is the increment
that was generated to move from x + y to x . This increment is normally distributed
with mean 0 and variance b2�t , and therefore,

ψ(x, y,�t) = 1

b
√
2π�t

exp

(

− y2

2b2�t

)

. (4.43)

Now, we are ready to expand Eq. (4.41) by performing a Taylor expansion of
ρ(x + y, t) around ρ(x, t),

ρ(x + y, t) = ρ(x, t) + y∂xρ(x, t) + y2

2
∂xxρ(x, t) + h.o.t. (4.44)
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in which h.o.t. stands for “higher order terms”. This leads to

ρ(x, t + �t) =
∫ ∞

−∞
ρ(x, t)ψ(x, y,�t)dy +

∫ ∞

−∞
y∂xρ(x, t)ψ(x, y,�t)dy

+
∫ ∞

−∞
y2

2
∂xxρ(x, t)ψ(x, y,�t)dy + h.o.t.

= ρ(x, t)
∫ ∞

−∞
ψ(x, y,�t)dy

︸ ︷︷ ︸
I1

+ ∂xρ(x, t)
∫ ∞

−∞
yψ(x, y,�t)dy

︸ ︷︷ ︸
I2

+ 1

2
∂xxρ(x, t)

∫ ∞

−∞
y2ψ(x, y,�t)dy

︸ ︷︷ ︸
I3

+ h.o.t.. (4.45)

We will now separately look into each of the terms I1,2,3. First, we have

I1 = 1, (4.46)

since ψ(x, y,�t) is independent of x and a probability density for y. Next, we have

I2 = 0, (4.47)

since y is an odd function and ψ(x, y,�t) is even. Finally, we obtain

I3 = Var [y] = b2�t, (4.48)

in whichVar [y] is to be interpreted as the variance of y with respect to the probability
density ψ. This leads to

ρ(x, t + �t) = ρ(x, t) + b2

2
�t∂xxρ(x, t) + h.o.t., (4.49)

which is a time-discretized version of the diffusion equation. Taking the limit of
�t → 0, we obtain the desired result:

∂tρ(x, t) = b2

2
∂xxρ(x, t). (4.50)

Thus, the density evolves according to the diffusion equation. This is to be
expected, as the particles have no preferred direction andwill therefore spread evenly.
This derivation explains why the Brownian motion is also called a diffusion process.

In the more general case of the SDE (4.27), the drift term will introduce a system-
atic bias in the motion of individual particles, resulting in an advective behaviour of
the density ρ(x, t). It can be shown that, in that case, the density ρ(x, t) satisfies the
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advection-diffusion equation

∂tρ(x, t) + ∂x (a(x)ρ(x, t)) = 1

2
∂xx

(
(b(x))2 ρ(x, t)

)
. (4.51)

We refer to [19, 34] for details.

4.4 More Realistic Microscopic Processes

Whereas stochastic differential equations are useful to describe a wide range of sto-
chastic processes in biological applications, they remain in essence phenomenologi-
cal, and thus descriptive.Even if thesemodels havepredictive power, it is often impos-
sible to use such models for a detailed understanding of the mechanism that generate
the dynamics. In this section, we therefore discuss more mechanistic velocity-jump
processes and their relation to bacterial chemotaxis. The section follows the same
structure as that of the previous sections: we first discuss the stochastic individual-
based model (Sect. 4.4.1), after which we continue with an equivalent continuum
description (Sect. 4.4.2). In Sect. 4.4.3, we relate the resulting stochastic processes
with the SDEs of Sect. 4.3.2, and we conclude with some bibliographical remarks
on generalizations in Sect. 4.4.4.

4.4.1 Velocity-Jump Processes for Bacterial Chemotaxis

Generally, the motion of flagellated bacteria consists of a sequence of run phases,
during which a bacterium moves in a straight line at constant speed. The bacterium
changes direction in a tumble phase, which is typically much shorter than the run
phase and acts as a reorientation. Hence, the motion of an individual bacterium
can be modeled as a velocity-jump process. To bias movement towards regions
with high concentration of chemoattractant, the bacterium adjusts its turning rate
to increase, resp. decrease, the chance of tumbling when moving in an unfavorable,
resp. favorable, direction [2, 50]. The velocity-jumpmodels described here are based
on [15] and [44, 45].

We consider bacteria that are sensitive to the concentration of a chemoattractant
S(x) ≥ 0 for x ∈ R

d , where x is the present position of the bacterium. While we
do not consider time dependence of chemoattractant via production or consumption
by the bacteria, a generalization to this situation is straightforward, at least for the
definition of the models and the numerical method. Bacteria move with a constant
speed v (run), and change direction at random instances in time (tumble), in an
attempt to move towards regions with high chemoattractant concentrations.
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The position of an individual bacterium is given by X (t), its velocity is

dXc(t)

dt
= εVc(t), Vc(t) ∈ V = S

d−1,

with Sd−1 the unit sphere inRd . Hence, Vc(t) represents the direction and the scaling
parameter ε > 0 represents the size of the velocity. (The reason for the introduction
of the subscript c will become clear in Sect. 4.6.) The velocity of each bacterium
is switched at random jump times (T k

c )k≥1 that are generated via a Poisson process
with a time dependent turning rate λε

c(x, v) that depends on the bacterium’s current
position and velocity. The new velocity at time T k

c is generated at random according
to a centered probability distributionM(dv) with

∫
vM(dv) = 0, typically

M(dv) = σSd−1(dv),

where σSd−1 is the uniform distribution on the unit sphere.
The turning rate is assumed to satisfy

0 < λmin ≤ λε
c(x, v) ≤ λmax, (4.52)

as well as, for small values of ε,

λε
c(x, v) := λ0 − ε AT

ε (x)v + O(ε2). (4.53)

Typically, λε
c(x, v) is a function of ∇S(x), so that the model (4.53) may describe a

large bacterium that is able to directly sense chemoattractant gradients. When the
turning rate (4.53) is proportional to∇S(x)v, it can be interpreted as follows: the rate
at which a bacterium will change its velocity direction depends on the alignment of
the velocity with the gradient of the chemoattractant concentration ∇S(x), resulting
in a transport towards areas with higher chemoattractant concentrations.

The resulting stochastic process can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXc(t)

dt
= εVc(t),

∫ T k+1
c

T k
c

λε
c(Xc(t), Vc(t))dt = θk+1,

Vc(t) = Vk for t ∈ [T k
c , T k+1

c ] ,

(4.54)

with initial condition X (0),V(0) ∈ R
d . In (4.54),

(
θk
)

k≥1 denote i.i.d. random

variables with normalized exponential distribution, and
(Vk

)
k≥1 denote i.i.d. random

variables with distribution M(dv).
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4.4.2 Population-Level Dynamics and Kinetic Equations

At the population level, there are two main differences with respect to the Fokker-
Planck Eq. (4.51) for SDEs. First, the stochastic process is written in terms of posi-
tions x and velocities v, implying that the density of interest will be a density
pc(x, v, t) in position-velocity phase space. Second, the stochastic process is dis-
continuous in the velocity component, which will result in a “collision operator” that
models the discontinuous velocity changes probabilistically.

The resulting evolution equation for the density pc(x, v, t) turns out to be a
Boltzmann equation with BGK-type collision operator,

∂t pc + εv · ∇x pc = (
R(λε

c p) − λε
c pc

)
, (4.55)

where

R(pc) :=
∫

V

pc(·, v, ·)M(dv)

is the operator integrating velocities with respect toM, and λε
c is defined as in (4.53).

We will not derive this equation here, but instead refer the interested reader to [18]
for the derivation of master equations associated to Markov jump processes. Here,
we suffice by pointing out that the advection termmodels the effect of the velocity on
positions, and the righthand side models the effect of the random velocity changes.

4.4.3 Coarse-Graining and Approximate Macroscopic
Descriptions

The explicit modeling of these individual velocity changes is necessary to have a bio-
logically relevant mechanistic description of bacterial motion. In general, however,
one is not really interested in the detailed phase-space distribution pc(x, v, t), but
rather in the the position density ρc(x, t) = R(pc(x, v, t)), and this for (at least) two
reasons: (i) it is usually impossible to obtain experimental data on the velocity distrib-
ution of the bacteria; and (ii) the bacteria typically travel only a microscopic distance
between velocity changes, such that the observedmacroscopicmotion is the averaged
effect on long time scales of a large number of velocity changes. One can expect the
position density ρc(x, t) to satisfy a partial differential equation advection-diffusion
type, such as (4.51). The velocity-jump process (4.54) and the advection-diffusion
SDE (4.27) are therefore related.

To consider the behaviour of Eq. (4.55) on long time scales and for small bacterial
velocities, we let ε tend to 0 and introduce the rescaled time t̄ = tε2. (Then, when
t̄ is O(1), this corresponds to a physical time t that is O(1/ε2).) In that case, the
position density ρc(x, t) satisfies the advection-diffusion PDE
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∂t̄ρc = 1

λ0
divx (D∇xρc − D A0(x)ρc) , (4.56)

in which the diffusion matrix is given by the covariance of the Maxwellian distribu-
tion,

D =
∫

Sd−1
v ⊗ vM(dv) ∈ R

d×d . (4.57)

We refer to [35] for justifications of this result based on Hilbert expansions. The
result implies that the position density obtained via (4.56) and via (4.55) are the
same in the limit when ε tends to 0.

Additionally, it is shown in [45] that the position Xc(t̄) of an individual trajectory
generated by the stochastic process (4.54) converges to a trajectory of the SDE

dXc(t̄) = D A0(Xc(t̄))

λ0 dt̄ +
(
2D

λ0

)1/2

dW (t̄), (4.58)

where t̄ �→ Wt̄ is a standard Brownian motion, as ε tends to zero. (Note that this
second result implies the convergence of the position densities to a solution of (4.56),
but not vice versa.)

4.4.4 Further Comments and Remarks

The main modeling limitation of the models discussed so far is that they deal with
non-interacting particles, i.e., every individual follows its own stochastic path, inde-
pendently of all other individuals present. Many generalizations exist to introduce
interactions between particles, either as two-particle collision operators, via long-
range interactions or via interactions of individual particles with the position density.
Giving an overview of all these generalizations would lead too far. We refer to the
two excellent books [49] and [40] and references therein.

4.5 Monte Carlo Simulation and Variance Reduction

4.5.1 The Need for Monte Carlo Simulation

In most situations, we are interested in the evolution of a large population of individ-
uals (cells, bacteria). To simulate this evolution, two courses of action are possible:

• a (stochastic) Monte Carlo simulation of an ensemble of M realizations of the
stochastic process (such as (4.27) or (4.54)), from which information on the pop-
ulation density can be obtained using histograms or kernel density estimation
[47, 48];
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• A deterministic (grid-based) simulation of the corresponding PDE (such as (4.51)
or (4.55)).

Both options have advantages and drawbacks. The clear drawback of a Monte
Carlo simulation is the appearance of statistical error on the obtained population
density, which is absent in a deterministic simulation—the variance on the obtained
result being of the order of O(1/

√
M) [7]. The drawback of a grid-based simulation

is that the computational cost of mesh refinement depends crucially on the number of
dimensions of the PDE. Considering a system of particles in 3 spatial dimensions, the
kinetic equation (4.55) is a 6-dimensional PDE. Doubling the number of mesh points
in each spatial dimension already increases the total number of unknowns by a factor
of 26, even if one can still take the same time step. In contrast, the computational
cost of refining a Monte Carlo simulation is independent of the dimension of the
problem: one can simply augment the number M of simulated particles.

In more realistic applications, the computational complexity of the PDE-based
description can be even higher, due to several reasons. When particles also have
internal state, the dimension of the kinetic equation (4.55) increases even further (see
Sect. 4.6). Moreover, if the particles are interacting, the collision operator becomes
non-local, requiring the evaluation of an integral over velocity space at each spatial
mesh point. The situation becomes even more difficult when particles experience
long-range interactions.

4.5.2 Variance Reduction Techniques

Because of the problems associated with simulating high-dimensional PDEs, Monte
Carlo simulation is a viable alternative, provided one can control the variance of
the simulation. As a consequence, there exists a large literature on variance reduc-
tion techniques. The most popular techniques can roughly be categorized in two
classes: importance sampling and the use of a control variate. These techniques are
well-established in the computation of integrals with respect to a known probability
distribution, see [7] and references therein.

In importance sampling, the key idea is to adaptively sample the density of interest
using weighted particles, such that more particles are placed (with correspondingly
lower weights) in regions in which the variance is expected to be higher. Goal is to
obtain a variance that is evenly distributed over the computational domain. With a
control variate, the key idea is to compute an approximation to the quantity of interest
deterministically based on the solution of a related but simpler problem, for instance
analytically or by numerically solving a PDE of lower dimension. One then uses
the Monte Carlo only to sample the correction with respect to the deterministically
computed quantity.

Several research groups are currently working along these lines to develop hybrid
Monte Carlo/PDEmethods.We refer to [13, 14] and related papers and to [1, 42] and
related papers in the context of the Boltzmann equation, and to [4] for an example in
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the context of radiation transport. We have developed a strategy based on a control
variate [44] that will be detailed for bacterial chemotaxis in Sect. 4.6. A related
method that we are currently developing for tumor growth will be discussed in
Sect. 4.7.

4.6 Application 1: Bacterial Chemotaxis

As a first application, we return to bacterial chemotaxis, which was also used in
Sect. 4.4.1. Sincemany species are unable to sense chemoattractant gradients reliably
due to their small size, adjustment of their turning rate to bias motion in favorable
directions is often done via an intracellular mechanism that allows the bacterium
to retain information on the history of the chemoattractant concentrations along its
path [6]. The resulting model, which will be called the “internal state” or “fine-scale”
model in this text, can be formulated as a velocity-jump process, combined with an
ordinary differential equation (ODE) that describes the evolution of an internal state
that incorporates this memory effect [16]. The probability density distribution of the
velocity-jump process evolves according to a kinetic equation, in which the internal
variables appear as additional dimensions. A direct deterministic simulation of this
equation is therefore prohibitively expensive, and one needs to resort to a stochastic
particle method.

Unfortunately, a direct fine-scale simulation using stochastic particles presents a
large statistical variance, even in the diffusive asymptotic regime when ε is small. In
that regime, the bacterial density of the fine-scale model is known explicitly to satisfy
a Keller-Segel advection-diffusion equation. Consequently, it is difficult to assess
accurately how the solutions of the fine-scale model differ from their advection-
diffusion limit in intermediate regimes.

In this section, we discuss a numerical method to simulate individual-based mod-
els for chemotaxis of bacteria with internal dynamics with reduced variance, intro-
duced in [44]. The variance reduction is based on a coupling technique (control
variate): the main idea is to simultaneously simulate, using the same random num-
bers, a simpler, “coarse” process where the internal dynamics is replaced by a direct
“gradient sensing” mechanism (see [2, 38, 41] for references on such gradient sens-
ing models). The probability density of the latter satisfies a kinetic equation without
the additional dimensions of the internal state, and converges to a similar advection-
diffusion limit as the model with internal state, see e.g. [10, 35, 37, 45]. The precise
coarse model will be (4.54) with a suitable choice for Aε(x) in (4.53) (see later),
such that the coarse and fine-scale model have exactly the same advection-diffusion
limit.

We first discuss the fine-scale model with internal dynamics in Sect. 4.6.1. The
model is a simplification (for expository purposes) of the more general model in
[44, 45]. We describe the variance reduction technique in detail in Sect. 4.6.3. Some
numerical results are given in Sect. 4.6.4. A detailed analysis of the method can be
found in [44].
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4.6.1 Bacterial Chemotaxis with Internal State

Weagain consider bacteria that are sensitive to the concentration of a chemoattractant
S(x) ≥ 0 for x ∈ R

d . As in Sect. 4.4.1, the bacteria follow a velocity-jump process
in which X (t) is the position of an individual bacterium, and the normalized velocity
is given by

dX (t)

dt
= εV (t), V (t) ∈ V = S

d−1,

with S
d−1 the unit sphere in R

d . Hence, V (t) represents the direction and the
parameter ε represents the size of the velocity. The difference with respect to the
process (4.54) with direct gradient sensing is in the definition of the turning rate.
As in [15], the turning rate is made to depend upon an internal state y ∈ Y ⊂ R

of each individual bacterium, which models the memory of the bacterium and is
subject to an evolution mechanism attracted by the chemoattractant concentration
S(x). (The model in [44, 45] is more general and can take into account multiple
chemoattractants and higher-dimensional internal states.)

The internal state adapts to the local chemoattractant concentration through an
ODE,

dY (t)

dt
= Fε(Y (t), S(X (t)), (4.59)

which is required to have a unique fixed point y∗ = S(x∗) for every fixed value
x∗ ∈ R

d . We also introduce the deviations from equilibrium Z(t) = S(X (t))−Y (t).
The velocity of each bacterium is switched at random jump times (T k)k≥1 that

are generated via a Poisson process with a time dependent rate given by λ(Z(t)),
where z �→ λ(z) is a smooth function satisfying

0 < λmin ≤ λ (z) ≤ λmax, (4.60)

as well as (for small values of z),

λ(z) = λ0 − bz + cλO
(|z|γ) , (4.61)

with b ∈ R, γ ≥ 2. As before, the new velocity at time T k is generated at ran-
dom according to a centered probability distribution M(dv) with

∫
vM(dv) = 0,

typically
M(dv) = σSd−1(dv),

where σSd−1 is the uniform distribution on the unit sphere.
The resulting fine-scale stochastic evolution of a bacterium is then described by

the following differential velocity-jump equation,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX (t)

dt
= εV (t),

dY (t)

dt
= Fε(Y (t), S(X (t))),

∫ T k+1

T k
λ(Z(t))dt = θk+1, with Z(t) := S(X (t)) − Y (t),

V (t) = Vk for t ∈ [T k, T k+1) ,

(4.62)

with initial condition X (0) ∈ R
d , Y (0) ∈ R and T 0 = 0. In (4.62),

(
θk
)

k≥1 denote

i.i.d. random variables with normalized exponential distribution, and
(Vk

)
k≥1 denote

i.i.d. random variables with distributionM(dv).
In the numerical experiments, we will use a specific example, adapted from [15].

For the internal dynamics (4.59), we choose a linear equation

dy

dt
= S(x) − y

τ
= z

τ
. (4.63)

For the turning rate z �→ λ(z), we choose the following nonlinear strictly decreasing
smooth function

λ(z) = 2λ0

(
1

2
− 1

π
arctan

( π

2λ0 z
))

. (4.64)

The probability distribution density of the fine-scale process with internal state at
time t with respect to the measure dx M(dv) dy is denoted as p(x, v, y, t), suppress-
ing the dependence on ε for notational convenience, and evolves according to the
Kolmogorov forward evolution equation (or master equation). In the present context,
the latter is the following kinetic equation

∂t p + εv · ∇x p + divy (Fε(x, y)p) = λ (S(x) − y) (R(p) − p) , (4.65)

where

R(p) :=
∫

V

p(·, v, ·)M(dv)

is again the operator integrating velocities with respect toM.

4.6.2 Relation Between Fine-Scale and Coarse Process

In [45], it is shown, using probabilistic arguments, that, in the limit ε → 0, both
the equation for the coarse process (4.55) and the equation for the process with
internal state (4.65) converge to an advection-diffusion limit on diffusive time scales.
Convergence is to be understood pathwise, i.e., in the sense of individual trajectories.

For the coarse process, this result has already been stated, see Sect. 4.4.3.
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In the same way, a standard probabilistic diffusion approximation argument can
be used to derive the pathwise diffusive limit of the process with internal state (4.62),
see [45]. For ε → 0, the process t̄ �→ X ε(t̄), solution of (4.62), converges
towards an advection-diffusion process, satisfying the stochastic differential equation
(SDE) (4.58), where A0 originates from

A0(x) = b lim
ε→0

τ

λ0τ + 1
∇S(x), (4.66)

in which b, τ , and λ0 were introduced in (4.61)–(4.63) as parameters of the process
with internal state. Again, the diffusion matrix D is given by the covariance of the
Maxwellian distribution (4.57).

Introducing the bacterial density of the process with internal state as

ρ(x, t) =
∫

Y

∫

V

p(x, v, y, t)M(dv)dy, (4.67)

this implies that the evolution of ρ converges to (4.56) on diffusive time scales in the
limit of ε → 0.

4.6.3 Asymptotic Variance Reduction

As discussed in Sect. 4.5, obtaining the position density of bacteria by solving the
kinetic equation (4.65) over diffusive time scales can be cumbersome, due to the
additional dimensions associated with the internal state. The alternative is to use
to stochastic particles. However, a particle-based simulation of Eq. (4.65) is subject
to a large statistical variance of the order O(M−1/2), where M is the number of
simulated particles. Additionally, the asymptotic analysis shows that the position
bacterial density approaches an advection-diffusion limit (4.56) when ε → 0; more-
over, this advection-diffusion limit is shared with a simpler, coarse model without
internal dynamics. Consequently, to accurately assess the deviations of the process
with internal state (4.62) as compared to its advection-diffusion limit (for small but
non-vanishing (intermediate) values of ε), the required number of particles needs
to increase substantially with decreasing ε, which may become prohibitive from a
computational point of view.

The idea that will be discussed here is to construct a hybrid method, based on the
principle of control variates, that couples the process with internal dynamics with
the coarse process, which is simulated simultaneously using a grid-based method.
The stochastic particles are then only used to perform a Monte Carlo simulation of
the deviations of the model with internal state with respect to the coarse model.

To explain the method, let us first assume that we are able to compute the exact
solution of the kinetic equation for the coarse process, (4.55), with infinite precision
in space and time. From now on, we will refer to (4.55) as the control process as it
is used as a control variate. (This explains the addition of the subscript c.)
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The algorithm of asymptotic variance reduction is based on a coupling between an
ensemble of realizations evolving according to the process with internal state (4.62),
denoted as

{Xm(t), Vm(t), Ym(t)}M
m=1 ,

and an ensemble of realization of the control process (4.54), denoted as

{
Xm,c(t), Vm,c(t)

}M
m=1 .

We denote the empirical measure of the particles with internal state in position-
velocity space as

μM
t̄ (x, v) = 1

M

M∑

m=1

δXm (t̄/ε2),Vm (t̄/ε2),

and, correspondingly, the empirical measure of the control particles as

μM,c
t̄ = 1

M

M∑

m=1

δXm,c(t̄/ε2),V m,c(t̄/ε2),

with δx,v the Dirac delta centered at (x, v). (These empirical measures can be inter-
preted as a discrete particle approximation to the phase-space density of the bacteria.)

A coupling between the two ensembles is obtained by ensuring that both sim-
ulations use the same random numbers (θk)k≥1 and (Vk)k≥0, which results in a
strong correlation between (Xm(t), Vm(t)) and (Xm,c(t), Vm,c(t)) for each realiza-
tion. Simultaneously, the kinetic equation for the control process (4.55) is also solved
using a deterministic method (which, for now, is assumed to be exact). We formally
denote the corresponding semi-group evolution (a formal description of the exact
solution) as

et̄ Lc , with Lc(pc) = −εv · ∇x pc + (
R(λε

c pc) − λε
c pc

)
.

Besides the two particle measures μM
t̄ and μM,c

t̄ , we denote by μM
t̄ the variance

reduced measure, which will be defined by the algorithm below. Since, with increas-
ing diffusive time, the variance of the algorithm increases due to a loss of coupling
between the particleswith internal state and the control particles, the variance reduced
algorithm will also make use of a reinitialization time step δtri , which is defined on
the diffusive time scale. The corresponding time instances are denoted as t̄� = �δtri

on the diffusive time scale, or equivalently, on the original time scale as t� = �δtri/ε
2.

Starting from an initial probability measure μ0 at time t = 0, we sample μ0 to
obtain the ensemble {Xm(t), Vm(t), Ym(t)}M

m=1, corresponding to μM
0 , and then set

μM,c
0 := μM

0 , i.e., Xm,c(0) = Xm(0) and Vm,c(0) = Vm(0) for all m = 1, . . . , M .
Furthermore, we set the variance reduced estimator as μM

0 := μ0 = E(μM
0 ). We then

use the following algorithm to advance from t̄� to t̄�+1, (see also Fig. 4.4):
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Fig. 4.4 A schematic description of Algorithm 3. The dashed line represent the evolution of M
bacteria with internal state. The dotted line represent the coupled evolution of M bacteria with
gradient sensing, subject to regular reinitializations. The dashed-dotted line is computed according
to a deterministic method simulating the density of the model with gradient sensing, and subject
to regular reinitializations. The solid line is the variance reduced simulation of the internal state
dynamics, and is computed by adding the difference between the particle computation with internal
state, and the particle simulation with gradient sensing to the deterministic gradient sensing simu-
lation. At each reinitialization step, the two simulations (deterministic and particles) of the gradient
sensing dynamics are reinitialized to the values of their internal state simulation counterpart (as
represented by the arrows)

Algorithm 3 At time t�, we have that the particle measure μM,c
t̄�

= μM
t̄�
, and the

variance reduced measure is given by μM
t̄�
. To advance from time t̄� to t̄�+1, we

perform the following steps :

• Evolve the particles {Xm(t), Vm(t), Ym(t)}M
m=1 from t� to t�+1, according to (4.62);

• Evolve the particles
{

Xm,c(t), Vm,c(t)
}M

m=1 according to (4.54), using the same
random numbers as for the process with internal state;

• Compute the variance reduced evolution

μM
t̄�+1 = μM

t̄� e
δtri /ε

2Lc +
(

μM
t̄�+1 − μM,c

t̄�+1−

)

. (4.68)

(Note that this implies that we start the deterministic simulation for this time step
from μM

t̄�
.)

• Reinitialize the control particles by setting
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Xm,c(t
�+1) = Xm(t�+1), Vm,c(t

�+1) = Vm(t�+1), m = 1, . . . , M,

i.e., we set the state of the control particles to be identical to the state of the particles
with internal state.

In (4.68), we use the symbol t̄�+1− to emphasize that the involved particle positions
and velocities are those obtained before the reinitialization. An easy computation
shows that the algorithm is unbiased in the sense that for any � ≥ 0,

E

[
μM

t̄�

]
= E

[
μM

t̄�

]
,

since the particles with internal dynamics are unaffected by the reinitialization, and,
additionally,

E

[
μM,c

t̄�+1

]
= E

[
μM

t̄� e
δtri /ε

2Lc
]
.

Moreover, the variance is controlled by the coupling between the two processes.
Indeed, using the independence of the random numbers between two steps of Algo-
rithm 3, and introducing ϕ as a position and velocity dependent test function, we get
(see [44]),

stdev(μM
t̄� (ϕ)) ≤ C

ε

M
, (4.69)

where in the last line, C is independent of �, ε, and M .

Remark 10 (Sharpness of the variance estimate) In some generic situations, we can
argue that the statistical error in Algorithm 3 coming from the coupling is “sharp”
with respect to the order in ε. This means that the difference between the probability
distribution of the model with internal state and the probability distribution of the
model with gradient sensing is of the same order. This would imply that, with the
asymptotic variance reduction technique, one is able to reliably assess the true devi-
ation of the process with internal variables from the control process using a number
of particles M that is independent of ε.

Remark 11 (Effect of time discretization) The analysis in [44] reveals that the vari-
ance reduction is asymptotic, in the sense that the variance vanishes in the diffusion
limit. To ensure this asymptotic variance reduction during actual simulations, one
needs to ensure that the time discretization preserves the diffusion limits of the time-
continuous process. An appropriate time discretization is highly non-trivial, and is
discussed in [44].

4.6.4 Numerical Results

To illustrate the algorithm, we consider a simulation of the density of an ensemble
of particles, with and without variance reduction. We restrict ourselves to one space
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dimension, with domain x ∈ [0, 20] and periodic boundary conditions. In this case,
the kinetic equation corresponding to the control process reduces to the system

⎧
⎪⎨

⎪⎩

∂t p+
c + ε∂x p+

c = −λc(x,+1)

2
p+

c + λc(x,−1)

2
p−

c

∂t p−
c − ε∂x p−

c = λc(x,+1)

2
p+

c − λc(x,−1)

2
p−

c

. (4.70)

of two PDEs, which is straightforward to simulate using finite differences.
We fix the chemoattractant concentration field as

S(x) = α
(
exp

(
−β (x − ξ)2

)
+ exp

(
−β (x − η)2

))
, (4.71)

with parameters α = 2, β = 1, ξ = 7.5 and η = 12.5. For the internal dynamics,
the model ((4.63–4.64), (4.53–4.66)) is used. The parameters are ε = 0.5, λ0 = 1,
τ = 1, δt = 0.1.

All simulations are performed with M = 5000 particles. The initial positions are
uniformly distributed in the interval x ∈ [13, 15]; the initial velocities are chosen
uniformly, i.e., each particle has an equal probability of having an initial velocity of
±ε. The initial condition for the internal variable is chosen to be in local equilibrium,
i.e., Ym(0) = S(Xm(0)). The initial positions and velocities of the control particles
are chosen to be identical.

We discretize the continuum description (4.70) on a mesh with �x = 0.1 using a
third-order upwind-biased scheme, and perform time integration using the standard
fourth order Runge–Kutta method with time step δtpde = 10−1. The initial position
density is given as

ρ(x, 0) =
{
0.25, x ∈ [13, 15],
0, otherwise.

(4.72)

Simulation without variance reductionFirst,we simulate both stochastic processes
up to time t̄ = 50 (t = 50/ε2) and estimate the density of each of these processes
ρ̂M (x, t̄), resp. ρ̂M

c (x, t̄), without variance reduction. The density is obtained via
binning in a histogram, in which the grid points of the deterministic simulation are
the centers of the bins. Figure4.5 (left) shows the results for a single realization. We
see that, given the fluctuations on the obtained density, it is impossible to conclude
on differences between the two models. This observation is confirmed by computing
the average density of both processes over 100 realizations. The mean densities are
shown in Fig. 4.5 (right), which also reveals that the mean density of the control
process is within the 95% confidence interval of the process with internal state.
Both figures also show the density that is computed using the continuum description,
which coincides with the mean of the density of the control particles.

Simulation with variance reduction Next, we compare the variance reduced esti-
mation (4.68) with the density of the control PDE. We reinitialize the control par-
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Fig. 4.5 Bacterial density as a function of space at t = 50/ε2 without variance reduction. Left one
realization. Right mean over 100 realizations and 95% confidence interval. The solid line is the
estimated density from a particle simulation using the process with internal state; the dashed line
is estimated from a particle simulation using the control process. Both used M = 5000 particles.
The dotted line is the density obtained from the deterministic PDE (4.70)
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Fig. 4.6 Bacterial density as a function of space at t = 50/ε2 with variance reduction and reini-
tialization. Left variance reduced density estimation of one realization with M = 5000 particles
(solid) and density obtained from a deterministic solution for the control process (4.70) (dashed).
Right mean over 100 realization and 95% confidence interval (solid) and density obtained from a
deterministic solution for the control process (4.70) (dashed)

ticles after each coarse-scale step, i.e., each k steps of the particle scheme, where
kδt = δtpde, (here k = 1). The results are shown in Fig. 4.6. We see that, using
this reinitialization, the difference between the behaviour of the two processes is
visually clear from one realization (left figure). Also, the resulting variance is such
that the density of the control PDE is no longer within the 95% confidence inter-
val of the variance reduced density estimation (right figure). We see that there is a
significant difference between both models: the density corresponding to the control
process is more peaked, indicating that bacteria that follow the control process are
more sensitive to sudden changes in chemoattractant gradient. This difference can be
interpreted from the fact that the bacteria with internal state do not adjust themselves
instantaneously to their environment, but instead with a time constant τ .
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4.7 Application 2: Tumor Growth

As a second application, we turn to tumor growth, which is a complex biological
phenomenon consisting of processes on different scales. On the cellular level, one has
to track the random motion of the cells, as well as cell division and cell death (apop-
tosis). As before, we deal with random motion by means of a velocity-jump process,
in which we additionally ensure that the concentration of cells in a certain volume
remains restricted. To achieve this, the spatial evolution of the individuals will be
coupled through the local cell density. Cell division and apoptosis are modeled by
means of two extra (intracellular) variables (a cell cycle variable φ and an apoptosis
variable z), which in turn depend on intracellular and environmental concentrations
of a number of chemical compounds (described via reaction diffusion equations).
The resulting fine-scale model therefore consists of a velocity-jump process, supple-
mented with a set of ODEs describing the (sub)-cellular state of the individual cells
and a set of reaction-diffusion PDEs describing the environment.

As for bacterial chemotaxis, it is possible to equivalentlywrite thefine-scalemodel
as a kinetic equation for each cell type p that then models the phase space density
pp(x, v,φ, z, t). However, a direct simulation of this fine-scale kinetic model is
again not feasible because of the high-dimensional character of the resulting system,
while a stochastic particle discretization is significantly influenced by Monte Carlo
noise. Therefore, we propose a tailored variance reduction technique. The key point
is to simulate the kinetic description of a simpler control model that only contains
the motion of the cells and to couple this deterministic simulation with a stochastic
agent-based simulation to obtain information on cell divisions and apoptosis.

We first give a detailed overview of the different layers of the model in Sect. 4.7.1.
This model is similar to the model (4.62) used to describe bacterial chemotaxis, and
reproduces the features of the cellular automatonmodel proposed byOwen et al. [39].
We describe the variance reduction algorithm in Sect. 4.7.2. Finally, we illustrate the
technique with some numerical experiments in Sect. 4.7.3.

4.7.1 Model

The model consists of two main components: an agent-based model, describing the
individual cellular motion and internal processes attached to each cell (cell cycle and
apoptosis) and the environment, modeled by a set of reaction diffusion equations.
We start by giving an overview of the model structure and notations that will be
used throughout the section (Sect. 4.7.1.1), after which we describe the agent-based
model (Sect. 4.7.1.2) and the evolution laws for the environment (Sect. 4.7.1.3).

4.7.1.1 Overview and Notation

We consider three types of cells, indexed by 1 ≤ p ≤ P = 3: normal cells (p = 1),
cancer cells (p = 2), and endothelial cells (that build up blood vessels, p = 3). For
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each of these cell types, we consider an ensemble of Mp(t) cells, characterized by
their positions Xm,p(t), velocities Vm,p(t), cell cycle phase �m,p(t), and remaining
internal state variables Zm,p(t), for 1 ≤ m ≤ Mp(t) and 1 ≤ p ≤ P . (The time
dependence of the number of particles is due to the fact that cells divide and die.)
In the numerical experiments in this chapter, blood vessel growth is not taken into
consideration. We thus only consider normal cells and cancer cells.

To keep a consistent notation throughout the section, we introduce the following
convention. If, at a moment t = t∗, the cell with index m∗ in population p divides,
we set

Mp(t
∗) = Mp(t

∗−) + 1, (4.73)

in which the symbol t∗− is used to emphasize that the involved number of cells is
meant to be taken just before the division. Simultaneously, we introduce a new cell
as specified below (see Eq.4.79). When a cell undergoes apoptosis, it is removed
from the simulation. To avoid cumbersome renumbering of the cells in the text, we
associate a weight wm,p(t) to each of the cells. If the cell is alive, the corresponding
weight is one; upon apoptosis, it becomes zero. The active number of cells is therefore

M̄p(t) =
Mp(t)∑

m=1

wm,p(t). (4.74)

Given the positions of these cells, the empirical cell number density is then
obtained as

ρp(x, t) =
Mp(t)∑

m=1

wm,p(t)δXm,p(t). (4.75)

The agent-based cellular model is coupled with the environment, consisting of
oxygen and vascular endothelial growth factor (VEGF). We denote by C(x, t) the
concentration of oxygen and by G(x, t) the concentration of VEGF; both fields
evolve according to PDEs in which the cell number density (4.75) appears. The
different behaviour for different cell types originates both from different intracellular
mechanisms and from the cell-type dependency of the coefficients in the agent-based
model, see below. A table containing the parameter values for all cell types is given
in Table4.1.

4.7.1.2 Agent-Based Model

Motion Cellular motion is composed of two components: random motion, which
will be modeled by means of a velocity jump process, and deterministic chemo-
tactic motion towards high VEGF concentrations. The deterministic term also con-
tains a volume factor, restricting motion towards regions where the number density
ρp(Xm,p(t), t) is higher than a threshold value ρmax,p
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dX p(t)

dt
= εVp(t) + ε2χp∇G(X p(t), t)

(

1 − ρp(X (t), t

ρmax,p

)

, (4.76)

Vp(t) = Vk
p for t ∈ [T k

p , T k+1
p ], Vk

p ∈ V = V ∗
p S

d−1, (4.77)

in which 0 < ε � 1 and χp is the cell-type dependent chemotactic sensitivity. In this
chapter, we choose the same velocity V ∗

p for all cell types. Similar to the bacterial
chemotaxis case, the velocities Vk

p are sampled from the uniform distribution

Mp(dv) = σV ∗
pS

d−1(dv),

on the sphere V ∗
p S

d−1, and the jump times T k
p are generated from a Poisson process

with constant rate λp,

∫ T k+1
p

T k
p

λpdt = λp(T
k+1
p − T k

p ) = θk+1
p ,

where θk+1
p are i.i.d. random numbers, sampled from a normalized exponential dis-

tribution. During the numerical experiments, we choose λp = 1, independent of
the cell type. In the bacterial chemotaxis case, bacteria possessed internal dynamics

Table 4.1 Parameter values related to the populations

Parameter Normal population Cancer population Endothelial cells

χ 0.0 0.0 0.33333

ρmax 0.1 0.2 0.1

ε 3.536 × 10−4 3.536 × 10−4 –

Cφ 399.96 186.64 –

Tmin 1.8 × 105 9.6 × 104 –

zhigh 0.8 – –

zlow 0.08 – –

nthr 0.75 – –

c1 3.3333 × 10−5 – –

c2 1.6667 × 10−4 – –

c3 3.3333 × 10−5 – –

c4 3.3333 × 10−5 – –

c5 1.6667 × 10−4 – –

J5 0.04 – –

CVEGF 0.01 – –

Cp53 0.01 – –

A – 1 –

B – 1 –
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to bias their chemotactic motion. In the tumor model, internal dynamics governs
cell division and cell death (apoptosis). (Hence, the time-dependent number of cells
Mp(t).) Let us now look at these intracellular mechanisms (Table 4.1)

Cell Cycle Dynamics Cells evolve according to a cell cycle, and division occurs as
soon as this cycle is completed. In our model, this is represented by a cell phase cycle
variable�p(t) that is zero at cell birth. The cell cycle is completed when�p(t) = 1.
The cell cycle speed depends on the local oxygen concentration C(X p(t), t) that
is observed by the cell as it is simultaneously moving through space and evolving
through the cycle. The higher the oxygen concentration, the faster the cycle proceeds,
while the cell cycle is put on hold once the oxygen concentration is approaching zero.
This behaviour is modeled by means of the following ODE,

d�p(t)

dt
= C(X p(t), t)

τmin,p(Cφ,p + C(X p(t), t))
, (4.78)

in which we introduce the cell-type dependent parameters Cφ,p and τmin,p, the min-
imal time needed for a cell to complete one cell cycle. From Table4.1, we see that
cancer cells are able to proceed twice as fast as normal cells during the cell cycle in
a given environment.

If, for the cellwith indexm∗ in population p, at time t = t∗, we obtain�p(t∗) ≥ 1,
we introduce a new cell in the simulation. We adjust Mp(t) according to (4.73) and
set �m∗,p(t) = 0. The new cell inherits the complete state from the cell that divides:

X Mp(t),p(t
∗) = Xm∗,p(t

∗), VMp(t),p(t
∗) = Vm∗,p(t

∗),
�Mp(t),p(t

∗) = �m∗,p(t
∗), Z Mp(t),p(t

∗) = Zm∗,p(t
∗).

(4.79)

More details on this cell cycle model can be found in [39] and its supplementary
material.

Remaining Internal State Variables To account for apoptosis, we introduce a sec-
ond sub-cellular model, consistent with [39],

dZ p(t)

dt
= Fp(X p(t), Z p(t)),

for the internal state Z p(t) ∈ R
q , in which q may depend on the cell type. This

internal dynamics follows a different mechanism, depending on the cell type. For the
normal tissue (p = 1), the variable Z1(t) contains two components, namely the p53
concentration Z1,1(t) and the intracellular VEGF concentration Z1,2(t). The former
can be seen as an estimator for the number of mutations that a cell has undergone
during its lifetime. The latter models the process that allows cells to store VEGF
during hypoxic conditions and release it once this intracellular concentration has
reached a certain threshold level.
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dZ1,1(t)

dt
= c1 − c2

C(X1(t), t)

C p53 + C(X1(t), t)
Z1,1(t), (4.80)

dZ1,2(t)

dt
= c3 − c4

Z1,1(t)Z1,2(t)

J5 + Z1,2(t)
+ c5

C(X1(t), t)

CVEGF + C(X1, t)
Z1,2(t), (4.81)

where ci , 1 ≤ i ≤ 5, Cp53, J5, and CVEGF are parameters of which the value can be
found in Table4.1. As soon as oxygen is available, the second term in (4.80) ensures
exponential decay of Z1,1(t); the first term in (4.80) models linear growth of Z1,1(t),
an effect that is only dominant in the absence of oxygen. A cell undergoes apoptosis if
Z1,1(t) reaches a threshold value γapt(ρ1(X1(t), t)) that depends on the local density
of normal cells. The threshold value is lower in case of a harsh environment (with
low cell number density), i.e.,

γapt(ρ) =
{

zhigh if ρ ≤ ρthr

zlow else
.

See Table4.1 for parameter values.
The internal dynamics of tumor cells does not depend on the p53 concentration,

since this mechanism to regulate the normal cell cycle does not function properly
anymore in a tumor. Cancer cells are able to go into a quiescent state when expressed
to hypoxic circumstances, meaning that they don’t consume any nutrients. However,
the maximal duration of this quiescent state is limited, which implies that cancer
cells will also undergo apoptosis when the hypoxia holds too long. On the other
hand, cancer cells have the ability to recover quickly once oxygen becomes available
again. This mechanism can be modeled by the following equation:

dZ2(t)

dt
= A H(Cthreshold − C(X2(t), t))

︸ ︷︷ ︸
Linear increase during hypoxia

− B Z2(t) H(C(X2(t), t) − Cthreshold)︸ ︷︷ ︸
Exponential decay if C(X2(t),t)>Cthreshold

,

(4.82)

where A, B are constants (see Table4.1) and H is the Heaviside function. The first
termmodels the reaction to a hypoxic state, i.e., when the local oxygen concentration
C(X2(t), t) drops below the threshold level Cthreshold. During this hypoxic period,
the internal variable Z2(t) increases linearly as a function of time. On the other hand,
the second term describes the recovery of the cancer cells if the environment is not
hypoxic anymore, which is captured by the exponential decay term of Z2(t). Cancer
cells die as soon as Z2(t) ≥ 1, corresponding to γapt = 1.

Complete Agent-Based Model Combining all components described above, we
end up with the following set of differential equations governing the behaviour of an
individual cell:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX p(t)

dt
= εVp(t) + ε2χp∇G(X p(t), t)

(

1 − ρp(X p(t), t)

ρmax

)

,
(

T k+1 − T k
)

λp = θk+1
p ,

Vp(t) = Vk
p for t ∈ [T k

p , T k+1
p ) ,

d�p(t)

dt
= C(X p(t), t)

τmin,p(Cφ,p + C(X p(t), t))
,

dZ p(t)

dt
= Fp(Z p(t), t),

(4.83)

combined with the division rule (4.79) and the rule that adjusts the weights wm,p(t)
upon apoptosis.

Coarse (population-Level) Description As in Sect. 4.4.2, we again have a kinetic
equation of the phase space density pp(x, v, z,φ, t), which becomes quite compli-
cated due to the cell cycle and apoptosis that govern cell division and cell death.
Ideally, a coarse-grained model would be written in terms of the cell number density
ρp(x, t). We expect to obtain a reaction-advection-diffusion equation. However, due
to the modeling detail for the cell cycle and apoptosis, it is unrealistic to expect one
can write the reaction term as a closed-form function of ρp(x, t). When ignoring the
intracellular dynamics (and therefore considering a system with constant number of
cells) and using a diffusive scaling t̄ = tε2 [36], one can obtain an advection-diffusion
equation where no reactions (cell divisions, cell deaths) are taken into account [30]:

∂t̄ρp(x, t̄) = Dp∇2ρp(x, t̄)−χp∇·
[

ρp(x, t̄)

(

1 − ρp(x, t̄)

ρmax

)

∇G(x, t)

]

, (4.84)

in which Dp = ∫
V

v ⊗ vM(dv).
In the variance reduction algorithm, we will also consider the kinetic number

density,

Np(x, v, t) =
∫ ∫

pp(x, v, z,φ, t)dzdφ =
Mp(t)∑

m=1

wm,p(t)δXm,p(t),Vm,p(t), (4.85)

which counts the number of particles with a position x and velocity v at time t ,
regardless of their internal state.

4.7.1.3 Environment

The cellular environment consists of two diffusible components regulating the behav-
ior of the cells in various ways: oxygen C(x, t) and VEGF concentration G(x, t).
Oxygen is evidently important for the cells to proceed through the cell cycle and
survive, see Eqs. (4.78) and (4.80). The local oxygen concentration is determined
from the following advection-diffusion equation:
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Table 4.2 Parameter values reaction diffusion equations

Parameter Oxygen VEGF

D 2.4167 × 10−9 1.6667 × 10−11

ψ 6 1.6667 × 10−9

δ 0 1.667e − 4

knormal −0.2167 0.01

kcancer −0.2167 0.01

∂t C(x, t) = DC∇2C(x, t)
︸ ︷︷ ︸

diffusion

+ ψCρv(x, t)(Cblood(x) − C(x, t))
︸ ︷︷ ︸

exchange with blood

− C(x, t)
P∑

p=1

kC,pρp(x, t)

︸ ︷︷ ︸
consumption by cells

,

(4.86)
where DC is the diffusion coefficient, ψC denotes the permeability of the oxygen
through the vessels, ρv(x, t) describes the surface area occupied by blood vessels at
position x , and Cblood(x) defines the oxygen concentration in a blood vessel located
at position x . In general the blood vessel concentration ρv(x, t) is computed from the
agent-based evolution of endothelial cells. In this paper, we present numerical tests
for a casewhere ρv(x, t) ≡ ρv(x) is fixed during the simulation, and no vessel growth
is incorporated. We choose ρv(x) = 1 in grid cells where blood vessels are present.
During the experiments we have taken Cblood(x, t) = 400 at vessel locations and
zero elsewhere. The last term in Eq. (4.86) reflects the fact that all cell types consume
oxygen with a cell specific rate kC,p. Recall that the cell number density ρp(x, t) is
defined via Eq. (4.75).

A similar approach is used to describe the local concentration of VEGF, which
is responsible for the growth of new blood vessels. This is especially important for
larger tumors, since endothelial cells will grow towards regions with higher VEGF
concentrations. Initially, the tumor can benefit from the existing vasculature, but
when the tumor occupies a larger volume, the oxygen supply does not suffice and
the cells are obliged to use their ability to ask for new vessels by secreting VEGF.
Endothelial cells – the building blocks of blood vessels– can then react and move
chemotactically towards the hypoxic regions. The corresponding reaction diffusion
equation for VEGF reads:

∂t G(x, t) = DG∇2G(x, t)
︸ ︷︷ ︸

diffusion

−ψGρv(x, t)G(x, t)
︸ ︷︷ ︸
exchange with blood

+
P∑

p=1

kG,pρp(x, t)

︸ ︷︷ ︸
production

− δG G(x, t)
︸ ︷︷ ︸

decay

.

(4.87)
In contrast to oxygen, the VEGF concentration is assumed to be zero in the blood
and the growth factors contained in the tissue is degrading with rate δG when time
evolves (Table4.2).
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Because the diffusible components equilibrate much faster than the individual
cells, we adopt a steady state approximation, which implies that ∂t G(x, t) and
∂t C(x, t) are set to zero. Then, a time step of the agent-based model is performed
first, after which the steady state equations for C(x, t) and G(x, t) are solved.

4.7.2 Variance Reduction

In this section, we propose an variance reduction algorithm similar to the technique
used for bacterial chemotaxis. The main differences are due to the fact that (i) the
tumor model is not conservative; and (ii) the internal dynamics only relates to cell
division and apoptosis and not to advection-diffusion behaviour.

Again, the algorithm conceptually relies on the combination of three simulations:
a stochastic simulation with the full fine-scale model, as well as with a coarse,
approximation, combined with a deterministic, grid-based simulation of the coarse
model. The full fine-scale model uses Mp(t) particles with state variables

{Xm,p(t), Vm,p(t),�m,p(t), Zm,p(t)}Mp(t)
m=1 . (4.88)

As the coarse agent-based model, we conceptually consider an agent-based model in
which the internal state has been suppressed and only position and velocity remain:

{Xc
m,p(t), V c

m,p(t)}Mp(t)
m=1 .

Since no internal dynamics is present, cells cannot divide or die. (In practice, we will
use the results obtained from the full fine-scale model, in which we neglect apoptosis
and cell division, see later.) The only dynamics is motion, which can be modeled
with a kinetic equation for the phase space density N c

p(x, v, t),

∂t N c
p + εv · ∇x N c

p = λ
(

R(N c
p) − λN c

p

)
, (4.89)

see also (4.55). We again call this coarse approximation the control process. (Recall
that the kinetic number density for the original process is denoted as Np(x, v, t),
see (4.85).) We also introduce the formal semigroup notation

et̄ Lc
p , with Lc

p(N c
p) = −(εv + ε2χ∇G(x, t)) · ∇x N c

p +
(
λ(R(N c

p) − N c
p)
)

(4.90)
that represents the exact solution of the kinetic equation (4.89). In practice, this exact
solution will be approximated by a deterministic simulation on a grid.

It should be clear that the advection-diffusion behaviour in both agent-basedmod-
els is identical. Thus, the only difference between the two models occurs when cells
divide or die. Assuming no reactions take place, the three processes thus have the
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same expectation. This observation leads to the following variance reduction algo-
rithm. As an initial condition, we start from Mp(0) particles sampled from the kinetic

probability densities μ
Mp(0)
p,0 (x, v), resulting in the number density Np(x, v, 0). For

each particle, we choose a given internal state, for instance�m,p(0) = Zm,p(0) = 0,
1 ≤ m ≤ Mp(0), 1 ≤ p ≤ P . (These internal states could also be sampled from an
appropriate probability distribution.)Additionally,we introduce the variance reduced
measure N̄ (x, v, t), which we initialize as N̄p(x, v, 0) = Np(x, v, 0). We denote
the time step δt and the discrete time instances t� = �δt , � = 0, 1, . . .

Algorithm 4 (Variance reduction for tumor growth) We advance the variance
reduced kinetic number density N̄ (x, v, t) from time t� to t�+1 as follows:

• Evolve the particle states (4.88) from t� to t�+1 using the agent-basedmodel (4.83).
• Compute the kinetic number density for the stochastic fine-scale model using
(4.85), as well as the kinetic number density for the coarse process as

N c
p(x, v, t�+1) =

Mp(t�)∑

m=1

wm,p(t
�)δXm,p(t�+1),Vm,p(t�+1), (4.91)

i.e.,we compute the kinetic number density for the control process basedonparticle
positions and velocities at time t�+1, taking into account only the particles that
were present in the simulation at time t�.

• Evolve the control kinetic number density N c
p(x, v, t) using a grid-based method

based on (4.90) and add the reactions (the difference in kinetic number density
due to cell division and apoptosis)

N̄p(x, v, t�+1) := N̄p(x, v, t�) eδt/ε2Lc + Np(x, v, t�+1) − N c
p(x, v, t�+1),

(4.92)

Again, in the absence of discretization errors in the grid-based method, we have

E

[
N̄p(x, v, t�+1

]
= E

[
Np(x, v, t�+1

]
,

since N̄p(x, v, t�) = N c
p(x, v, t�) and E

[
N c

p(x, v, t�) eδt/ε2Lc
]

= E

[
N c

p(x, v, t�+1)
]
.

Moreover, we expect the variance of N̄p to be significantly lower than that of Np,
since all randomness due to random motion has been removed and only the location
of the reactions remains random.

4.7.3 Numerical Experiments

In this section, we illustrate both the model and the variance reduction algorithm by
means of some numerical experiments. First, we initialize a normal tissue consisting
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Fig. 4.7 Evolution of normal cell population (black) with small tumor (gray). Left initial state
(1600 normal cells and 20 cancer cells). Right result after 490 steps

of 1600 cells, with initial positions sampled from the uniform distribution on the
domain [0.3, 0.6] × [0.3, 0.6]. The initial velocities are sampled from the uniform
distribution on the sphere, and the internal state variables �(0) = 0.0, Z(0) = 0 for
every particle. We initialize a small tumor, containing 20 cells, with initial positions
samples from a uniform distribution in [0.445, 0.455] × [0.445, 0.455], also with
initial velocities sampled from the uniform distribution on the sphere with radius
V ∗

p = 3.5×10−6, and the internal state variables�(0) = Z(0) = 0 for every particle.
In the following numerical experiments, we adopt a static vasculature, consisting of
two straight vertical vessels at x = 0.4 and at x = 0.8 to be specific. The first agent-
based experiment was performed in a non-scaled way with discretization parameters
δt = 1.8× 103s and �x = 4× 10−5m for the agent-based model.We use reflective
boundary conditions. In Fig. 4.7, we show the evolution of both cell populations. On
the left, one can observe the initial configuration, while on the right hand side, we see
the resulting configuration after 490 steps. Apart from the fact that cells performed a
random walk, a significant amount of the normal tissue died because of the presence
of the tumor.

In a second experiment, we illustrate the performance of the variance reduction
algorithm as it was explained in Sect. 4.7.2 in a similar setting as the previous experi-
ment but on a diffusive scale, i.e. the normal tissue containing 2500 cells is uniformly
distributed on the square [0.2, 0.8]× [0.2, 0.8] and a small tumor originally consist-
ing of 20 cells is also uniformly distributedwithin the area [0.39, 0.41]×[0.39, 0.41].
Furthermore, the scaled cellular velocity was chosen V̄ � = √

2/2 and we modified
the minimal cell cycle durations (Tmin,cancer = 9.6×103s, Tmin,normal = 1.8×104s)
to demonstrate the performance of the algorithm in an extreme (not biologically real-
istic) settingwhere cells are able to divide very quickly.As in the bacterial chemotaxis
application, the coarse equation ismodeled on a diffusive timescale, wherewe choose
δt̄ = 0.8ε2 = 1 × 10−7,�x̄ = 2 × 10−2 as mesh parameters to simulate the deter-
ministic kinetic equation (4.89) needed to apply the variance reduction algorithm. To
simulate this, a second order central finite volume scheme was adopted to discretize
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Fig. 4.8 Illustration variance reduction algorithm for tumor growth: Mean cell distribution (first
column) and variance (2nd column) for normal and cancer population after 5000 timesteps. The
first two rows show the results without applying the variance reduction algorithm, which can be
compared with the results displayed in the last two rows where the variance reduction algorithm
was applied

the spatial derivative in the kinetic equation (4.89) and a first order forward Euler
scheme for the time derivative.

The mean normal and cancer cell distribution and there variance with and with-
out applying the variance reduction algorithm are displayed. Furthermore the mean
oxygen distribution and the corresponding mean reaction field are also shown next to
the variance. First, we observe that variance on the normal cell distributed has been
reduced significantly for both cell populations by applying Algorithm 4. Addition-
ally, one can observe a clear correlation with the oxygen field.The latter is a logical
consequence from the fact that the progress of the cell cycle is closely related to
the local oxygen concentration along the track, meaning that a cell is more likely to
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divide in oxygen rich environments. Moreover, the variance is almost eliminated in
the other regions (Fig. 4.8).

In this section, the parameters used in the numerical experiments are listed. They
are based on the parameters used in [39]. One can find them in the supplementary
material corresponding to [39].

4.8 Conclusions

Wegave abroadoverviewof the use of stochasticmodeling and simulation techniques
is computational biology, focussing on some common individual-basedmodeling and
simulation methods. We payed particular attention to the equivalence between the
stochastic process that governs the evolution of individual agents and the determin-
istic behaviour of the involved probability distributions, and we discussed numerical
methods that exploit this relation for variance reduction purposes. Using examples
involving intracellular chemical reactions, bacterial chemotaxis and tumor growth,
we showed the effects of stochasticity at different scales and different levels of
description.

A main focus of the chapter was the design of dedicated simulation algorithms.
Two main computational bottlenecks arise. The first is related to the time-scale sep-
aration between the fast processes (that determine the maximal time step that is
allowed) and slow processes (that determine the time scale over which the simu-
lation needs to be performed). The second is related to noise that appears in the
simulation and that requires dedicated variance reduction techniques. These prob-
lems are not completely solved, and stochastic simulation therefore remains an active
research topic.
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Chapter 5
The Experimental Side of Parameter
Estimation
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Abstract The development of mathematical models is an iterative process. One
of its key steps is the acquisition of experimental data. For developing quantitative
and dynamical models, this data needs to contain time-courses as well as several
perturbation experiments. This article gives an overview of and an introduction into
various experimental techniques frequently used during the process of developing
dynamical models of biological signalling networks. Among others, the article dis-
cusses western blotting, enzyme assays, flow cytometry, protein mass spectrometry,
DNA microarrays and different fluorescent microscopy techniques and stresses the
significance of single-cell versus population measurements.
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5.1 Overview

Estimating parameters of a dynamical system not only requires suitable mathematical
methods. Also needed is experimental data. This is in particular the case for para-
metrising quantitative, dynamical models. While some parameters can be observed in
a steady-state, for example the steady-state protein concentrations, other parameters
are only visible during transient perturbations. In the model of TNF-induced pro- and
anti-apoptotic signalling [45] illustrated in (Fig. 5.1) whose states are concentrations
of proteins and mRNA’s, roughly half of the flows are zero in the absence of TNF,
as of the 106 reactions, only 52 are non-zero: 30 turnover reactions and 22 reactions
linked to the shuttling between cytoplasm and nucleus of the transcription factor
nuclear factor kappa B (NF-κB).

Obtaining quantitative, dynamical mathematical models and calibrating their
parameters thus requires high quality, high resolution data using both time-courses
and multiple perturbations/stimulation. This is particularly challenging in heteroge-
neous cell populations, see also Chap. 4 by Lejon and Samaey.

Throughout this book chapter, two papers will serve as core examples illustrat-
ing the experimental aspects of parameter estimation of dynamical models, as both
combine experiments with modelling. The first one is the already mentioned TNF-
induced pro- and anti-apoptotic signalling [45]. The other is [40], which studies how
the pseudo-phosphatase STYX regulates ERK signalling and affects cell migration
and differentiation in HeLa and PC12 cells, respectively. All three biological ques-
tions are experimentally studied in mammalian cells. The TNF signalling is studied in
KYM-1 cells, a human rhabdomyosarcoma derived cell line. The well defined human
carcinoma cell line HeLa is used for elucidating how spatio-temporally ERK1 and
ERK2 signalling regulates cell migration, while PC12 cells, a catecholaminergic
cell line from the rat, serves as biological model for elucidating cell differentiation.
Additionally, several other papers will illustrate specific experimental techniques.

In the following, we will give an introductory overview into several experimental
techniques to illustrate the challenges of parameter estimation of biological signalling
models, see also Chap. 11 by Mannekee et al. In particular, Sect. 5.2 presents assays
for quantifying proteins or enzyme activity and cell counting, Sect. 5.4 discusses
various microscopy techniques yielding quantitative and time series data. High-
throughput techniques are the topic of Sect. 5.3 (mass spectroscopy), and Sect. 5.5
(genomics) as well as Chap. 12 by Eriksson et al. The chapter concludes with a
discussion section.

http://dx.doi.org/10.1007/978-3-319-21296-8_4
http://dx.doi.org/10.1007/978-3-319-21296-8_11
http://dx.doi.org/10.1007/978-3-319-21296-8_12
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Fig. 5.1 Sketch of TNF-induced pro- and anti-apoptotic signalling [45] consisting of 43 proteins
and protein complexes and 4 mRNA. There are 70 irreversible and 18 reversible reactions, totalling
106 kinetic parameters to be estimated. The process of modelling: Acquisition of experimental
data, model development, model simulation and model analysis is depicted around the sketch of
the signalling pathway. Figure reprinted from [44]

5.2 Assays

Assays are experimental techniques measuring quantitatively the amount or the func-
tional activity of an analyte. For modelling cell signalling, two assays are common:
enzyme assays and cell counting.

5.2.1 Gel Electrophoresis

Polyacrylamide gel based methods are a classical and popular way of resolving
proteins and other macromolecules such as mRNA. Neglecting the technicalities,
cellular extracts are placed onto a gel where the individual types of proteins’ travelling
speed depends on their mass or their charge. The identification of specific proteins
is then achieved via antibodies.
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(a) (b)

Fig. 5.2 Western blot experiment. Immunodetection of protein bands was performed on an Odyssey
infrared imaging system 2.1.12. Markers of known molecular weight are in the outer lanes with
antibodies in red, while the proteins of interest are tagged by a green antibody. a Rabbit polyclonal
antibody directed against IκBα (41 kDa) and as secondary IRDye-conjugated antibody IRDye
800 CW goat anti-rabbit IgG. b The protein actin serves as load control. It is detected on the same
membrane as a, which was stripped of its antibodies before polyclonal goat antibody for actin
(43 kDa) and, as secondary IRDye conjugated antibody IRDye 800 CW donkey anti-goat. a and
b Combining the binding specificities of the antibody and the molecular weight of the protein of
interest allows for localising its band. a IκBα is the light grey lane earmarked by the black and
white arrows, see also Fig. 5.4. b Actin is the dark grey lane. Reprinted from [44]

5.2.2 Western Blotting

After gel electrophoresis for separating proteins, most often according to their mole-
cular weight, the resolving proteins are transferred by semi-dry electro blotting onto a
nitrocellulose membrane using a prestained protein marker with known broad range
of the molecular weight. Figure 5.2 shows exemplarily such an experiment where
prestained protein markers with the broad range (6–175 kDa) were used. To detect a
particular protein, the western blot membrane is incubated with a specific antibody.
This antibody can also consist of two antibodies when first a primary antibody for
the protein of interest is incubated with the membrane before a secondary antibody
recognising this tag is added. The (secondary) antibody can be detected, via their
fluorophore or some other source of light or radiation.

Each column in Fig. 5.2 corresponds to a different probe of equal amounts of
protein, while the rows corresponds to proteins of different molecular weight as
heavier proteins do not travel as far. The lane of the protein of interest can be found
by comparison with marker proteins of similar molecular weight. Membranes can
be stripped from antibodies and then reprobed with other antibodies of interest,
thus allowing several quantifications on a single membrane, thus under identical
experimental conditions.

There is a large variety of (commercially) available antibodies. These can be so
specific, as to discriminate between phosphorylated and unphosphorylated protein,
see the example in Fig. 5.3.

As several samples can be placed side-by-side onto a gel, thus a single gel exper-
iment can quantify molecules from cells in different experimental conditions or
harvested at different time points. For example, Fig. 5.4 shows a western blot exper-
iment, also called immunoblotting, of IκBα, P-IκBα and NF-κB time samples after



5 The Experimental Side of Parameter Estimation 131

Fig. 5.3 Time series experiment comparing the response of ERK in starved cells to serum under
two conditions: knockdown of STYX via siRNA (right) and the control (left) [40]. a Western
blot, where ERK and its activated form, the double phosphorylated ppERK as well as tubulin as
control are shown. In the gel, the three bands could be localised using three specific antibodies.
b Densitometric quantification of three experiments, in which band and background intensity were
obtained and subtracted. See [40] for the details. Figure reprinted from [40]

Fig. 5.4 Illustration of time series measurements using western blot. The proteins IκBα, P-IκBα

and NF-κB as well as actin and lamin A serving as loading control have been sampled every few
minutes following a stimulation with TNF. a Western blot data, b Quantification based on the blot
intensities using the Odyssey software, LI-COR Biosciences (squares, connected by a dashed line)
and the simulation of the mathematical model [45] (solid line). a and b based on [44]

stimulation with TNF (Fig. 5.2). In the first two cases, the protein actin is used as
loading control as it is not affected by the TNF stimulation. For the western blot
detecting NF-κB in the nucleus, lamin A is the control protein of choice.
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5.2.2.1 Quantification

Even though western blotting is commonly used, its quantification is challenging
and often not properly performed [19]. The quantitative results of western blotting
dependent on antibody (binding) properties, exposure time, gel quality among others,
and requires the mapping of each band to some number, the so-called densitometry.
This can be done by scanning the gel directly using a CCD camera or via the inter-
mediate step of an X-ray film. Finally, the scanned bands are quantified using image
analysis, see e.g. [29], where the integrated intensity of each band corresponds to
the signal value. This has for example been applied to obtain the numerical values
shown in Fig. 5.4b from the experimental data Fig. 5.4a. This quantification has mul-
tiple pitfalls. In general, CCD cameras are preferable as they have a larger dynamic
range than films [55]. However, the gel itself can already be saturated due to a too
large amount of proteins [55]. Additionally, the values need to be normalised using
a common reference, although that introduces noise and opinions differ on how to
do it [17], and the result depends on properties of the antibody that may not be fully
known [2].

Due to the high variability induced by the experimental steps, it is very difficult to
obtain really quantitative results, in particular between individual runs. Usuallyonly
signals on the same blot can be compared. However, it is possible to run several gels
(at the same time), then cut the band of interest and transfer them in one go onto the
same membrane. This technique is called multi-strip western blotting [3].

5.2.3 Electrophoretic Mobility Shift Assays

Electrophoretic mobility shift assays quantify how much of a certain (mixture of)
protein binds to a chosen DNA or RNA. As the protein-DNA (or protein-RNA)
complex is heavier, it travels at lower speed on the gel, thus leading to a shift of
the band compared to a control experiment. Due to their high binding specificity,
radioactive markers are usually used for the labelling of specific oligonucleotides with
one protein binding site. Due to environmental as well as health and safety concerns,
these experiments are usually performed in relatively low number. Figure 5.5 shows
blots proportional to the amount of NF-κB in the nucleus, under different stimulations
and at various time points.

5.2.4 Enzyme Assay

Enzyme assays measure the enzymatic activity by quantifying the consumption of
an enzyme’s substrate. This consumption can be measured continuously over time,
or only at temporal samples. If the enzyme amount is constant small compared to the
substrate amount, the substrate will be consumed linearly over time. Figure 5.6 shows
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Fig. 5.5 Electrophoretic mobility shift assays of nuclear NF-κB after 1 and 10 ng ml−1 TNF for
30 min pulse or continuous stimulation, at several time points (top row), with Oct-1 as loading
control. Figure reprinted from [45]
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Fig. 5.6 a Caspase-3 activity assay for continuous stimulation of 1 ng ml−1 TNF (solid lines)
measured 4–8 h post stimulus. Control experiments without TNF (magenta) and with the caspase
inhibitor Z-VAD-fmk (dashed lines). b Quantification of the slopes of the caspase activity assay
in A, where the bars show the spread of second and third quartile. In green the corresponding
simulation of the model [45]. Figure reprinted from [45]

continuous measurements of the activity of caspase-3 for samples taken at different
time points post stimulation. From these measurements, the actual enzymatic activity
needs to be inferred and corresponds to the slope of the measured curves.

As can be seen from the experimentally obtained curves in Fig. 5.6a, several
measurement points are needed to be certain to ignore transient effects as visible
here in the first 15 min, or saturations not visible here due to exhaustion of the
substrate or to more complex effects. Figure 5.6b shows the statistics of the slopes
at each time point, where the average background activity, measured via the control,
has been subtracted.

5.2.5 Cell Counting

The number of cells is a useful marker when studying cell proliferation or viability.
The distinction between living and dead cells can be made via dyes that are absorbed
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(a) (b)

(c) (d)

Fig. 5.7 Experimentally obtained dynamic cell viability dose-responses. a–d Cell viability over
time for 10 different TNF concentrations (0–100 ng ml−1 TNF) and 0–11 h post stimulus, including
error bars from three independent experiments. a Continuous stimulations (solid lines), 30 min pulse
stimulations (dashed lines). b–d Three-dimensional view of the data of a with surfaces connecting
the measured data points. b Continuous (red) and 30 min pulse (blue) stimulations. c Continuous
stimulation only, d 30 min pulse stimulation only. c–d The isoclines (lines connecting points of
same cell viability) are shown projected onto the 0 % planes. Figures a, c and d reprinted from [45],
b from [44]

only by dead cells, by MTT assay where living cells convert a substrate into a dye
or other similar techniques. The amount of dye can then be quantified as a measure
for the number of cells. Figure 5.7 shows the quantification of cytotoxicity assays for
different doses of TNF, sampled at various time points.

For adherent cells, the distinction can also be made by measuring their electric
impedance, which is different for living and dead cells. All the impedance-based cell
analysers use the fact that cells have an electrical insulating membrane. Cells are
placed in plate wells equipped with electrodes on the bottom. Since cells are insu-
lators, the more they fix on electrodes the more they decrease the current exchange
area, thus increasing the well impedance. The measured impedance signal is affected
by the number of cells, the extent to which cells adhere to plate and the cell morphol-
ogy. The raw impedance is finally converted to a dimensionless cell index variable
to correct for well variations. Figure 5.8 shows cell index profiles of MDA-MB-231
cells exposed to various concentrations of nanoparticles.
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Fig. 5.8 Cell profiles of
MDA-MB-231 cells exposed
to various concentrations of
nanoparticles. Blue curves
show the cell proliferation in
the absence of nanomaterials
while the purple and red
plots (high concentration of
nanoparticles) exhibit their
time-resolved cytotoxic
effects. Figure reprinted
from [7]
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For proliferating cells, care needs to be taken if the toxic effect occurs on a similar
time scale to the time scale of the cell cycle. Then, the measurement is a combination
of cell proliferation and death.

5.2.6 Flow Cytometry

In flow cytometry, cells are passed one by one at high speed in front of an optical
sensor, at rates of up to several ten thousand cells per second. This technique can
be used to measure cell size, DNA content (useful for determining the cell cycle

Fig. 5.9 Flow cytometry measurement of TNF receptor 1 in KYM-1 cells with approximation
(dashed line). The horizontal axis is a relative intensity of the fluorescent signal in arbitrary unit.
The vertical axis is the number of events per bin of fluorescence. This histogram has been obtained
measuring 10,000 cells. Figure reprinted from [45, supplemental information]
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(a) (b)

Fig. 5.10 Flow cytometry measurements counting TNF receptor 1 on the cell membrane, at different
time points after blocking protein production with CHX. a Histograms, one colour per time point,
each one similar to the histogram in (Fig. 5.9). b Quantification of the experimental data in a,
normalised by the initial condition (blue squares) and approximated exponential decay (red). Figure
reprinted from [45, supplemental information]

phase), and the amount of proteins labelled with a fluorescent marker. For example,
(Fig. 5.9) shows the measurement of TNF receptor 1 on KYM-1 cells. Thus, it can
be seen as a high-speed imaging without spatial resolution.

Certain flow cytometers are combined with a microscope thus measuring not
only the overall fluorescence intensity, but also its spatial distribution in each cell.
Another variation is fluorescence-activated cell sorting (FACS) where the cells are
sorted according the measurement of the flow cytometer, for example into cells with
a fluorescent marker and those without.

Flow cytometry can be used to obtain time course data. As an example, the num-
ber of TNF receptor 1 was measured at several time points post stimulation with
cycloheximide (CHX), a protein biosynthesis inhibitor, see Fig. 5.10. Figure 5.10a
shows the distribution of the receptor number across the population of cells, one
colour corresponds to a specific time sample. The temporal evolution of the mean
values is plotted as squares in Fig. 5.10b. This allowed for estimating the degradation
rate of this protein.

5.3 Protein Mass Spectrometry and Metabolic Flux Analysis

In protein mass spectrometry, proteins are first separated according to their mass
using electrophoresis or chromatography. The proteins in the mass range of interest
are then digested into peptides, whose abundance is then measured by mass analysis.
Using bioinformatics approaches, the protein abundance is then calculated.

Mass spectrometry equipment is in itself very expensive, but individual experi-
ments can also be costly, in particular for the labelling using isotopes, e.g. using of a
heavy carbon (13C) on one probe and a lighter one (12C) on the other. This labelling
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Fig. 5.11 Mass spectrometry measurements of the amino acid alanine in young rice plants grown
under light cycles of 13 h light and 11 h dark, illustrated by the black–white bar on top. The con-
centration of alanine was measured in two experiments. Depicted are here their average (diamonds)
and the respective standard error of the mean (error bars). Figure reprinted from [43]

allows for comparing in two samples the abundance of particular proteins, as the
same protein will have a different weight in each sample. Label-free experiments are
cheaper, but the quantification is of lower quality [47]. Thus, label-free mass spec-
trometry experiments would permit taking a higher number of temporal samples, at
the price of a reduced quality of the quantification.

As example, the circadian variations of the central metabolism of rice plants was
studied in [43], where 69 metabolites were measured with mass spectrometry every
hour during a 24 h cycle. Each experiment was repeated once, just the strict minimum
for calculating standard deviations. The time course of alanine is shown in Fig. 5.11.

Using substrates with standard carbon 12C replaced at least in part by 13C results
in slightly heavier metabolites. This difference can be seen in mass spectrometry
experiments. In combination with a model of the stoichiometry, this mass spectrom-
etry data can be used to estimate the fluxes of metabolites. Such experiments, called
metabolic flux analysis, can not only be done at steady-state, but also in tempo-
ral sample after a stimulation. This is called instationary 13C-based metabolic flux
analysis [63], and sampling times of 4 s are possible [26]. These flux measurement
combined with concentration measurements are very useful for determining kinetic
parameters. Often, Metabolic Flux Analysis is visualised by varying the width of the
arrows in diagrams of the metabolism, with larger arrows corresponding to larger
flows, see e.g. Fig. 5.12.

5.4 Microscopy

Microscopy-based experiments offer the possibility of measuring the presence of
molecules in single cell. This is achieved via the addition of a fluorescent dye that
reacts with the molecule of interest allows for an indirect measure of that molecules
concentration. This is for example employed for intracellular calcium (Ca2+), or for
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Fig. 5.12 Metabolic fluxes
as estimated from 13C mass
spectrometry and a
stoichiometric model of the
extended central metabolism
[22]. The upper value
represents the net flux (in
direction of the arrow), the
lower value (on blue
background) the backward
flux. Figure reprinted from
[22]

caspase-3 as shown in Fig. 5.17. The dye can also be directly incorporated into the
protein of interest using genetic engineering techniques, as for example to observe
the translocation of NF-κB from the cytoplasm to the nucleus (Fig. 5.14). For optical
microscopy, the spatial resolution is approx. 200–300 nm, which can be improved
using so-called super-resolution techniques microscopy [5].

For detecting the localisation of a protein of interest, two or more fluorophores
are simultaneously employed. Common are the staining of a compartment by using
markers specific for e.g. the nucleus, mitochondria or the cell membrane with one of
the fluorophores. Then the microscopy measurements aim at quantifying how much
of the protein of interest is in the selected compartment and how much outside. As
example, a red staining of the nucleus is combined with a green one for the protein
STYX, allowing to compare its localisation in the unstimulated and stimulated case,
see Fig. 5.13.

Such multiple staining can also be used for arbitrary proteins, thus measuring
protein–protein interactions, for example to observe when second messenger mole-
cules bind to a specific receptor.

Classical microscopy can poorly detect the vertical localisation of the samples.
To overcome this, the reflection from outside the focal plane need to be eliminated,
as is for example achieved by confocal microscopes. There, the images correspond
to virtual slices of approx. 0.5–1 nm. Using piezo actuators, the focal plane can
be moved vertically. This enables the scanning of several images over the vertical
axis, thus giving 3D images. A better resolution in the vertical space, compared to
confocal microscopy, as well as deeper scanning within a tissue can be obtained via



5 The Experimental Side of Parameter Estimation 139

Fig. 5.13 Localisation of
STYX tagged by the yellow
fluorescent protein, YFP,
(green) in the unstimulated,
i.e. serum-starved case (top
row) and serum-stimulated
(bottom row) [40]. The
nuclei have been stained in
red (Alexa Fluor 647). An
overlay of the images on one
row allows for quantifying
how much STYX is in the
nucleus, and how much is in
other cell compartments.
Figure reprinted from [40]

two photon microscopy [33], at the price of more expensive equipment and slower
image acquisition.

For a more detailed overview of microscopy techniques than this section,
see e.g. [52].

5.4.1 Live Cell Imaging

Microscopy allows for obtaining time series measurements in a natural cell culture
environment. This so-called live cell imaging can for example be used to observe
translocation of secondary signalling molecules into the nucleus. Figure 5.14 shows
NF-κB marked by GFP, allowing to measure not only the total amount per cell, but
also its localisation. The translocation of NF-κB from the cytoplasm to the nucleus
and back is clearly visible by comparing Fig. 5.14a–c.

5.4.2 Photobleaching

A challenge in live cell fluorescence imaging is photobleaching, i.e. the reduction
of the fluorescence over time due to photochemical destruction of the fluorophore.
This can be reduced by lowering the light intensity at the price of higher noise,
and by lowering the sampling rate. Fast sampling rates, as for example 1 Hz in [39],
require additional measurements to estimate the time frame of interest, as a prolonged
stimulation of the fluorophore would result in its bleaching and thus in a decreasing
signal intensity, see e.g. Fig. 5.15.

Photobleaching can also be utilised on purpose. In fluorescence recovery after
photobleaching (FRAP), the fluorophores in the region of interest (ROI) are turned
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(b)

(e)

(c) (d)(a)

Fig. 5.14 Single cell fluorescence measurements of GFP-marked NF-κB. Fluorescence live cell
imaging of single cells with continuous stimulation of 10 ng ml−1 TNF. a–d Microscopy images
of three cells at different time points post stimulation. e Quantification of the fluorescence signal
in the nucleus relative to the cytoplasm for 14 individual cells. The thick black dashed line shows
their average. Figure reprinted from [44]

Fig. 5.15 Fluorescent microscopy at relatively high sampling rates. At first, the GFP tagged
cytochrome-c is mostly localised inside the mitochondria of the HeLa cells. Several minutes after
stimulation with apoptotic agents, the permeabilisation of the membrane of individual mitochondria
occurs within about half a minute. However, the individual mitochondria do not permeabilise simul-
taneously. a Fluorescent microscopy images, b quantification of the intensity of the fluorescence in
the mitochondria in the two regions d1 and d2 shown in the top left image. Reprinted by permission
from Macmillan Publishers Ltd: Cell Death and Differentiation [39], copyright 2009
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Fig. 5.16 Dynamical measurements induced by photobleaching in the cytoplasm. HeLa cells were
transfected with cDNA encoding GFP-ERK2. Between t = −20 s and t = 0 s, the cytosole was
bleached. The recovery of the fluorescence could then be observed, as exemplified at t = 60 s.
Figure reprinted from [40]

off by prolonged excitation. Then, time-lapse microscopy reveals how fluorophores
from the neighbourhood can move into the ROI, or are newly expressed. Thus,
FRAP experiments allow for the estimation of kinetic parameters involved in dif-
fusion, active transport or expression rates. See Fig. 5.16 for an example. Similar
are fluorescence loss in photobleaching (FLIP) experiments, where the ROI is a
non-bleached region and the decrease of fluorescence is measured, see e.g. [52].

5.4.3 Förster Resonance Energy Transfer

Förster resonance energy transfer (FRET), often called fluorescence resonance
energy transfer, is useful for measuring the amount of two fluorophores that are
close to each other. The stimulation of the fluorophore with higher energy (lower
wavelength) can lead to an energy transfer to the fluorophore of higher wavelength.
For example, the transfer from CFP (cyan, 480 nm) to YFP (yellow, 535 nm) is pos-
sible if donor and acceptor are within a few nanometres [35]. FRET can be used
to observe protein–protein binding by marking each type of protein with one fluo-
rophore. It can also serve to make visible the activity of protease: a probe linking two
fluorophores sends a FRET signal as long as it is intact, but not any more after having
been cut by its protease. For example, Fig. 5.17 shows FRET activity of a caspase-3
substrate containing a cyan (CFP) and a yellow (YFP) fluorophore. The FRET from
cyan to yellow sharply diminishes in individual cells within a few minutes between
2 and 7 h post stimulation with TNF. This corresponds to a cell-to cell variability of
when caspase-3 gets activated.

5.4.4 Microinjection

In fluorecence microscropy, the fluorophore is usually added externally on an anti-
body, via transfection or via genetic modification. In microinjection, the fluorescent
protein or dye is injected directly into the cells with a micropipette. The injected
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(a) (b)

Fig. 5.17 Förster resonance energy transfer (FRET) at the example of a caspase-3 FRET probe
[44]. a Microscopy images of cells in standard illumination (bright field, top left), cyan illumination
and observation (top right), yellow illumination and observation (bottom left) and cyan illumination
and yellow observation (bottom right). b Quantification of the FRET signal over time, normalised
by its initial value. Each line corresponds to the FRET intensity integrated over an individual cell.
Figure reprinted from [44]

amount cannot be fully controlled as it depends on the resistance in the cell. There-
fore, the injected solution is colourised with an additional dye, thus allowing for an
indirect quantification. Now the cells can be followed over time and a dose-response
relation measured. Microinjection is therefore useful for quantitative perturbation
experiments in various fields such as cell signalling, development and neurobiology.

Calcium propagation was one of the first systems in which microinjection experi-
ments [42] were utilised in the development of mathematical models, see for example
[51, 61]. Other systems where microinjection experiments where used are transport
across the cell membrane [4] and apoptosis signalling, see [45] and Fig. 5.18, which
measures the dependence of the time of death on the injected amount of caspase-3 in
KYM-1 cells.

5.4.5 Tissue Visualisation

The development of quantitative mathematical models on the tissue scale as for
example modelling of in vivo tumor growth [53] requires appropriate experimen-
tal techniques to quantify localisation, differentiation and death of cells. Different
imaging approaches can be utilised for obtaining quantitative data in tissues with
spatial resoloution. For example, 3D confocal microscopy already presented above
can be used at appropriate resolution to quantify cell migration [9], possible is also
the utilisation of biomarkers, for example of proliferation or apoptosis, as in [58].
A key limitation is that light is the resticted penetration of light in tissues. This issue
can partly be overcome using dynamic contrast-enhanced computed tomography,
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Fig. 5.18 Time of death versus the amount of microinjected activated caspase-3. Single cells
were microinjected with a mixture of caspase-3 and FITC-Dextran dye to quantify the relative
microinjected amount in relative fluorescence units (RFU). a–d A number of cells where the injected
green FITC-Dextran dye is visible. The microscopy images are taken at 00:04:36 a, 00:14:36
b, 00:30:36 c and 01:30:36 d after the microinjection. Morphological changes corresponding to
cell death are already visible 14 min after injection of caspase-3. e For each single cell, a star
represents the time to death (development of morphological signs of apoptosis) estimated from
time lapse video versus the integrated initial FITC-Dextran fluorescence intensity. The colour of
the stars differentiate data from three individual experiments. Cells that survived for more than
3 h were classified as survivors (infinite time to death). The solid curve shows the corresponding
model simulation, superimposed by box-plots for the spread in the simulated cell population. f The
percentage of dying cells as a function of fluorescence intensity is shown on the left, with the colour
code shown on the right. Figure based on [44]
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as used in [31] for quantifying thioacetamide-induced acute liver injury in rats. Such
imaging approaches will help developing quantitative, not only phenomenological
models of spatial phenomena on the tissue scale.

5.5 Genomics

High-throughput experimental techniques have revolutionised biology by signifi-
cantly speeding up biological experiments. This is particularly the case in genome
sequencing, which has seen in the past decades simultaneously a massive speed
increase and cost reduction [37]. To illustrate this, genomics papers now compare
routinely full genomes of different organisms [37] and a clinical usage of individual
genome sequencing is almost within reach due to high-throughput sequencing, also
called next-generation sequencing. For dynamical modelling, sequencing is useful
in providing information on which proteins can be found in a cell type, though their
amount and usually their chemical properties cannot be directly determined from the
sequencing.

Due to DNA amplification techniques and cell sorting capabilities, it is possible to
use a single cell as raw material for the sequencing [65]. For cells with high mutation
rates like cancer cells or populations of heterogeneous cells, single cell sequencing
could be informative for modelling by uncovering which proteins and even protein
domains actually vary within the population. This small size of required DNA mate-
rial is not only an advantage as contaminations by human DNA has been found in
every sixth database of genome sequences of non-primates [27]. Contamination of
human DNA is more difficult to spot, even though this is of high interest not only
for biological and medical research, but also in forensic DNA analysis.

There is a distinct advantage of mRNA sequencing. Unlike microarrays, quan-
titative polymerase chain reaction (qPCR), or western blots for that matter, RNA
sequencing allows to compare the mRNA levels of one gene to another. Usually the
values obtained from mRNA sequencing are normalized to the entire RNA content
of the sample (called the library).

5.5.1 DNA Microarrays

The deciphering of the genome combined with microprinting capabilities has made
possible the fabrication of DNA microarray chips that can measure the expression
of a number of genes, up to the full genome. This data is rarely useful for estimating
kinetic parameters [11]. The main reason for this is that the cost per experiment is
still so high that only few time points can reasonably be obtained. For example, the
dynamic response of 3429 genes was measured at seven time points in response to
oxidative stress [12], 12 time points for 5003 genes in oestrogen-induced signalling
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Fig. 5.19 Gene expression levels measured by DNA microchips of butterfly genes (vertical axis)
in 32 different spatial or temporal samples (horizontal axis) [16]. This figures shows 14 genes (out
of 8000) involved in melanin synthesis. A two colour microarray hybridisation was used such that
a green spot corresponds to a lower level of mRNA compared to the control, while red stands for a
higher one, see scale on the right. Figure reprinted from [16]

[66], or 32 samples from butterflies were taken to measure the expression of 8000
genes [16], see Fig. 5.19.

5.5.2 Synthetic Biology

A direct consequence of the advances in genomics is synthetic biology, which aims
at building novel, “engineered” systems using biological parts. The first examples
were merely proof of concepts, building switches, clocks or logic elements. Synthetic
biology examples have become more elaborate, targetting a wide area of applica-
tions such as sensing, production of macromolecules and therapeutics [25]. Synthetic
biology can also be utilised as an experimental technique for unravelling complex
dynamical systems such as clocks [21], or gaining a deeper understanding in sig-
nalling modules such as the MAP kinase [15]. As depicted in Fig. 5.20, signalling
modules are not only modelled mathematically, but also build synthetically. With
extra markers or tuning knobs, this makes more advanced experiments possible. In
other words, synthetic biology allows for a “proof by construction”.

5.6 Discussion

The previous sections presented several experimental techniques frequently used
for identifying models in systems biology and computational models of biological
processes in general, see also Chap. 9 by Sunnaker et al. While each has its own
advantages and disadvantages, there are a few global issues that affect most of them.

http://dx.doi.org/10.1007/978-3-319-21296-8_9
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Fig. 5.20 Synthetic biology
approach to studying system
properties of a signalling
modules such as the MAP
kinase system. The system is
build as a synthetic biology
module and modelled
mathematically. Then, the
influence of inputs signals
and regulatory factors can be
studied experimentally,
serving in validating and
improving the mathematical
model as well as in gaining a
deeper understanding of the
system. Reprinted by
permission from Elsevier
Inc.: Cell [34], copyright
2011

Among these are the heterogeneity in a population of cells, the concentration ranges
of macromolecules and practical identifiability, all discussed below.

5.6.1 Single Cell versus Population Measurements
in Heterogeneous Populations

The experimental techniques presented in Sects. 5.2 and 5.3 inherently measure the
average of approx. 1 × 104–1 × 106 cells. This is fine if the cells are not only
identical, but also synchronous. If not, population measurements are misleading.
Two comprehensible examples are oscillatory and switch-like systems, see Fig. 5.21.
While the average of sinusoidals is almost constant, Fig. 5.21a, the average of steps
is a smooth transition (Fig. 5.21b). In both cases, the single cell and the average
correspond to fundamentally different behaviours. The same phenomenon can be
observed in Figs. 5.14e and 5.17b, which show single cell data as well as a calculated
average.

Cell-to-cell heterogeneity requires on the experimental side single cell measure-
ments as for example those discussed in Sect. 5.4. On the modelling side, appropriate
model structures are needed to enable the comparison of experimental data and sim-
ulations both on the single cell level as well as on the cell population level.

The identification of a single cell model directly from population measurements
can be misleading as oscillations or quick, step-like responses might not be visi-
ble in the averaging measurement. One possible model structure that enables the
merging of single cell and cell population data are cell ensemble models [20], as
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Fig. 5.21 Illustration of single cell versus population measurements. a Oscillatory cell responses
are represented by sinusoidals. 10 sinusoidal samples with identical frequency and random phase
shift (colour lines). The population measurement corresponds to an average, here the average of
100 such sinusoidals (thick black line), which is again a sinusoidal with the same frequency, but
with significantly smaller amplitude. b Switching phenomena can be represented by steps, whose
rise time varies from cell to cell. 10 steps with random rise time between 0 and 1 (colour lines).
The population measure is represented by the average of 100 such steps (thick black line). The
population average is a smooth transition from low to high, in contrast to the step-wise switching
of individual cells

depicted in Fig. 5.22. A cell ensemble model is an ensemble of single cell models.
The individual cell models can for example be obtained by estimating the parameters
of a nominal model and distributing some or all of the kinetic parameters across the
ensemble, e.g. using log-normal distributions. Such a log-normal distribution was for
example measured for TNF receptor 1 in (Fig. 5.9). Thus, assuming homogeneous
degradation rates, the production rates are then also log-normally distributed.

The cell ensemble model of TNF-induced signalling [45] is able to produce both
single cell and cell population responses as illustrated by the oscillating response of
NF-κB and the step-like one of caspase-3 in Fig. 5.23.

Heterogeneous cell populations are naturally present in tissues, due to cells of
different type, age or environmental condition. This is for example the case of



148 M. Schliemann-Bullinger et al.

Fig. 5.22 Illustration of single cell and population experiments together with the corresponding
model simulations. While some experiments yield single cell data (top left part), others give average
measurements over the population (lower left). To reproduce this in simulation, single cell models
are generated and simulated (top right). The simulations can then be combined to obtain averages,
i.e. simulation of the population. Both on the single cell and on the cell population level can model
and experiments be compared [45]. Figure reprinted from [44]
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Fig. 5.23 Illustration of single cell and population model simulations. The simulated responses to
TNF of the proteins NF-κB a and caspase-3 b in individual cells of the cell population model in
[45] (grey lines). The calculated population average is shown in red
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bone remodelling in biomechanics [36], in neuroscience where the neuronal energy
metabolism relies on astrocytes [62] or in embryogenesis [60].

5.6.2 Amounts of Proteins

Abundance measurements show that proteins concentrations span six orders of mag-
nitude in S. cerevisiae [18] and seven orders of magnitude in human cells [6]. Cov-
ering this full dynamic range is very difficult, in particular by a single experimental
technique. In particular, low abundant and only transiently abundant proteins or
molecules are very difficult to quantify experimentally.

Fluorescent tags can be added to an intracellular protein by modifying its genome
or by adding a vector containing this modified genome. In the latter case, two dif-
ferent versions of the protein exist: the original one as well as the one with the tag.
This needs to be taken into account when estimating concentrations, for example by
modelling this transfection step [50]. Furthermore, the number of vectors per cell
can significantly vary across the population, thus resulting in a heterogeneity. Addi-
tionally, care needs to be taken that the modification does not significantly alter the
protein’s functionality or that the overexpression alters the qualitative behaviour.

5.6.3 Practical Identifiability

Identification of kinetic parameters requires that they impact on the measured signals.
In systems biology models, quite a few systems are insensitive to a large number of
their parameters, see e.g. [14]. This is for example the case in models that are on pur-
pose close to bifurcation points, as for example to achieve input dependent switching
delays [59]. Therefore, the process of developing a mathematical model will usually
iterate between experiments, modelling and model analysis. The latter often con-
tains parameter sensitivity analyses, see also Chap. 13 by van Schepdael et al. and
Chap. 15 by Mengoni et al. Even though the link between sensitivity and identifiabil-
ity seems obvious, they are not exactly antonymous [13]. Thus, additional parameter
identifiability analyses are necessary for designing optimal experiments [38].

5.6.4 Databases

There is a quickly growing number of databases providing useful information for
developing quantitative, dynamical models. The largest database of models is Bio-
models [8], with approx. 550 manually curated models. Values of kinetic parameters
can be found in SABIO-RK, a curated database with information on biochemical
reactions, their kinetic rate equations with parameters and experimental conditions

http://dx.doi.org/10.1007/978-3-319-21296-8_13
http://dx.doi.org/10.1007/978-3-319-21296-8_15
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[41], see also [64], or in KENDA (Kinetic ENzyme DAta), an extension to the
BRENDA database, which provides an additional overview on functional kinetic
data of enzymes [23], see also [46].

The decay rates of almost 20,000 mRNAs was experimentally measured and can
be queried in [30], see also [48]. In mammalian cells, mRNA have a much faster
turnover, as their life times are in the order of minutes, compared to hours or days
for proteins.

Other databases possibly useful in this context are the ADME Database with
data on interactions of substances with drug metabolising enzymes and with drug
transporters [1] , and the NIST Chemical Kinetics Database [32], which lists kinetic
parameters of more than 38,000 thermal gas-phase chemical reactions.

5.7 Summary and Outlook

Dynamic phenomena require time series measurements. This chapter has presented
several experimental methodologies for acquiring such data in intracellular signalling
systems. These range from biochemical characterisation such as western blot and
enzyme assays over flow cytometry and DNA microarrays to microscopy imaging.

Protein–protein interaction data can help inferring the model structure of signal
transduction pathways [54]. High throughput experiments such as DNA microar-
rays, RNA sequencing and proteomics (mass spectroscopy) can also give a global
overview of what is changing in a few different conditions or time points. Then,
one can move on by focussing on these changes and generate better quality, higher
resolution and dynamic data for mathematical modelling and parameter estimation.
These experiments can also serve in calibrating kinetic parameters playing a role in
steady-states.

Mass spectrometry and DNA microarray are starting to be used for measuring
multiple time points, as shown by some examples (Figs. 5.11 and 5.19). Flow cytom-
etry has some aspects of a high-throughput technology and is regularly employed for
quantifying kinetic parameters as this technique can easily and relatively cheaply be
used to measure several temporal samples, with sampling rates of up to 40 wells per
minute [10].

Most experiments for modelling signalling networks rely on low throughput tech-
nologies such as assays, gels and microscopy in order to achieve the required data
resolution and quality. The advancement of automation in biological and pharma-
cological laboratories, as for example in high-throughput screening, will lower the
effort and increase the reliability of time series measurements.

Microscale experimental setups will permit for improved single cell experiment
by manipulating cells, see e.g [24, 28, 49]. New developments also permit to down-
scale experiments like qPCR [57], or improve spatial configuration of cells or an
organism as e.g. in [56, 67]. Further advances are to be expected due to the increased
employment of robotics, control and data processing in biological experiments.
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Chapter 6
Statistical Data Analysis and Modeling

Millie Shah, Zeinab Chitforoushzadeh and Kevin A. Janes

Abstract The availability of large structured datasets has prompted the need for
efficient data analysis and modeling techniques. In systems biology, data-driven
modeling approaches create models of complex cellular systems without making
assumptions about the underlying mechanisms. In this chapter, we will discuss
eigenvalue-based approaches, which identify important characteristics (information)
of big datasets through decomposition and dimensionality reduction. We intend to
address singular value decomposition (SVD), principle component analysis (PCA),
and partial least squares regression (PLSR) approaches for data-driven modeling. In
multi-linear systems (that share characteristics such as time points, measurements,
etc.), tensor decomposition becomes particularly important for understanding higher-
order datasets. Therefore, wewill also discuss how to scale up thesemethods to tensor
decomposition using an example dealing with host-cell responses to viral infection.

Keywords Data-driven modeling · Statistical modeling · Eigenvalue-based
approaches · Singular value decomposition (SVD) · Principal component analysis
(PCA) · Partial least squares regression (PLSR)

6.1 Introduction

A recurring uncertainty in biology is themolecular underpinnings of an observed cel-
lular or tissue-level phenomenon.With sufficient knowledge about the relevant mole-
cular mechanisms, it is now possible tomodel large systems of biochemical reactions
accurately by simulation [1–3, 48]. However, even for well-studied pathways such as
receptor tyrosine kinases [55], these hypothesis drivenmodels, including ODE (ordi-
nary differential equation)/PDE (partial differential equation) and stochastic models,
quickly uncover gaps in our understanding [43]. Often, the phenomenon of interest
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is so poorly characterized that we only really have a sense of the pathways that are
important and a rudimentary rule set for how they could interact [3, 46].

In these circumstances, it can be advantageous to pursue statistical models that
do not prescribe mechanisms but allow the data to define the system of interest
[23, 25]. In statistical modeling, one must first collect a systematic dataset that has
been designed to capture as many relevant variations and covariations as possible
among genes, proteins, and cellular phenotypes [2, 16, 31]. Although not absolutely
required, it is strongly recommended that the statistical approach be chosen concep-
tually before the data acquisition. Each class of models has its own set of strengths
and weaknesses [23], and ideally the dataset should be tailored to exploit a model’s
strengths and avoid its weaknesses. Bayesian modeling [21, 50] is most effective for
inferring the network structure of the phenomena being studied while techniques like
partial least squares are ideal for predicting new behaviors [23]. Statistical models
may be “mechanism free”, but it is possible to guide models toward identifying new
mechanisms by selecting the right biomolecular measurements and designing the
experiments appropriately [25, 53].

With current technologies in molecular biology, any laboratory can now generate
datasets that are highly multivariate [31]. Statistical modeling serves as a powerful
way to extract as much information as possible from these often expensive and
difficult-to-conceptualize datasets. The resulting patterns and relationships identified
by statistical models are not always apparent when analyzing the full spectrum of
the dataset, as it often contains measurements not significant to the system. Thus,
the class of statistical models that we will discuss in this chapter center around those
that build simplified representations of data to give a clearer picture of possible
mechanisms underlying the system.

Usually, in modern biological datasets, we havemanymore variables per observa-
tion than observations of each variable. These “short and fat” data tables (ormatrices)
are inherently underconstrained; in frequentist statistics, it is equivalent to having
fewer than zero degrees of freedom.Consequently,many of the dimensions are redun-
dant with one another, in that they can be expressed as linear combinations of other
variables. This redundancy allows the data matrix to be “reduced” in interesting and
useful ways, depending on the type of statistical model and the overall goals of the
study.

Here, we will review three main categories of statistical models that reduce the
dimensions of multivariate datasets. We begin with singular value decomposition
(SVD), which draws on the concept of eigenvalues and eigenvectors to decompose
a matrix according to its eigenvalue spectrum. Then, we will discuss principal com-
ponents analysis (PCA), which is conceptually akin to SVD but yields a factorized
model that is more directly interpretable with respect to the starting dataset. Finally,
we will link reduced dimensions to the concept of predictive statistical modeling
through partial least squares regression (PLSR). As case studies, we include more
modern implementations of SVD, PCA and PLSR, including tensor decomposition
of data cubes or hypercubes, in anticipation for the types of structured datasets that
will be forthcoming in molecular and cellular biology.
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6.2 Singular Value Decomposition

Before going into detail about SVD computation, it is important to introduce some
basic concepts from vector and matrix algebra. Most datasets can be organized as
matrices with the rows indicating experimental observation, such as treatments and
time points and the columns indicating variables, such as enzymatic activity and
phosphoprotein levels.

One way to simplify multidimensional data is to focus on parts of the data that
show the most variation. Linear algebra serves this purpose by finding orthogonal or
linearly independent vectors in the data matrix. Since orthogonal vectors have zero
projections into one another, they can act as latent variables onto which the data can
be mapped [28]. Orthogonal vectors of a data matrix can be identified by calculating
eigenvectors. The nonzero eigenvector (x) of matrix A satisfies the equation:

Ax = λx (6.1)

where A is a square matrix and λ is a scalar called an “eigenvalue”.
An eigenvector can serve as a new dimension along which the data can be pro-

jected. By definition, matrix A is an n× n square matrix. However, typical biological
datasets have fewer observations than variables and thus are rarely square matrices
with full rank. One way to solve this problem is by factorizing the data matrix using
singular value decomposition.

6.2.1 Mathematical Framework

6.2.1.1 Singular Value Decomposition

Suppose that we define an m×n data matrix A that can be broken down into the
product of three other matrices U, S, and V. This factorization results in the following
equation:

Am×n = Um×l Sl×l V
T

l×n (6.2)

where U is an m × l left-singular matrix, S is a square l × l diagonal matrix, V is
an l × n right matrix, and U and VT are orthogonal matrices. The diagonal entries
in S are the singular values of A (square roots of non-zero eigenvalues of U and
VT) descending in magnitude from top left to bottom right, the columns in VT are
right-singular vectors and the columns in U are left-singular vectors [4] (Fig. 6.1).
Once singular vectors are extracted, the significant ones can be determined and used
for visualizing the data.
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Fig. 6.1 SVD Decomposition Schematic. Decomposition of the yeast elutriation data from Spell-
man et al. [49] into a left singular-value matrix, a square matrix of eigenvalues (four eigenvalues
shown), and a right singular-value matrix

6.2.2 Application of SVD to Gene Expression Data Analysis

Gene expression data is a good candidate for singular value decomposition based
analysis due to the inherent noise in the measurements that makes the detection of
small signals rather difficult. Alter et al. performed SVD analysis on the budding
yeast elutriation gene microarray data published in [49]. The elutriation dataset used
by Alter et al. contained 5,981 genes (n=5,981 genes) captured over the course
of one yeast cell cycle (fourteen time points; m=14). The dataset can be tabulated
to an n×m matrix with each row reflecting the expression of a single gene in 14
different time points (14-arrays) and each column showing the expression of n-genes
in a single array (timepoint). SVD transforms this dataset from an n × m space to
a reduced l-eigengenes × l-eigenarrays subspace where l= [min m, n] (Fig. 6.1).
The diagonals in the l × l matrix ε are eigenvalues here called “eigenexpression
levels” [εl] which can be used to calculate “fractions of eigenexpression” for the lth
eigenvalue from the equation below:

pl = ε21∑l
k=1 ε2k

(6.3)

Alter et al. used fractions of eigenexpression as a mean to infer the significance
of eigengenes and their corresponding eigenarrays (singular vectors). Once the sig-
nificance of singular values (SVs) was determined, the relationship between these
mathematical concepts and biological processes or cellular states, in this case cell
cycle, were investigated. To this end, the authors visualized individual singular val-
ues by plotting the expression level of each eigengene over time. Since the authors
were interested in gene programs involved in a specific cellular state, they filtered
out the first singular vector because it followed a steady state expression pattern.
The next three SVs showed biologically meaningful oscillations during cell cycle.
The oscillations of the second and fourth SVs at early time points corresponded to
a transient response to elutriation. Thus SVD naturally decomposed the dynamical
patterns of gene expression in the yeast cell cycle.
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6.3 Principal Components Analysis

Following SVD, principal components analysis (PCA) can be used to compress a
dataset to relevant measurements that approximate the data. Both computational and
visual analysis is often hard to do in higher order datasets as each measurement
(observation) constitutes its own dimension in space and the value of each sample
(variable) constitutes a point in each of these dimensions. By transforming the data
using PCA, we can identify important relationships in the data.

First, eigenvalues and eigenvectors are derived from the data covariance matrix
[22, 29]. These eigenvectors make up an orthogonal basis set, or set of linearly
independent vectors that, when combined, can describe the data. The eigenvectors
paired with the smallest eigenvalues are eliminated to yield a compressed basis set.
This basis set of eigenvectors is then used to generate a transformed data matrix,
the dimensions of which are called latent dimensions or principle components (PCs)
[22, 29, 45]. A principal component is by analogy a singular vector in SVD.

A latent dimension is a new dimension created to capture the majority of informa-
tion in multiple the original dimensions [40]. Mathematically, a principle component
is a linear combination of the original data dimensions, weights for which are deter-
mined by themagnitude of the eigenvector corresponding to that principle component
[26, 29]. The eigenvector paired with the largest eigenvalue defines the first princi-
pal component and captures the greatest amount of variance in the data [29, 45]. In
this component, the original dimensions with the most variance in variable data will
have the largest weighting. Because the PCs are orthogonal, the second principal
component will point in a direction perpendicular to the first component and cap-
ture the majority of the leftover variance. This iteration continues for all subsequent
PCs. Thus, the transformed dataset is usually only made up of a handful of latent
dimensions because they can capture the majority of the data variance eliminating
any statistical noise from subsequent PCs. This filtering makes relevant relationships
between samples more readily apparent.

Further, one can create predictive models with latent dimensions by searching
for relationships between PCs using principal components regression (PCR). This
method utilizes established regression techniques to find the relationship between
several variables (predictor variables) and dependent variables not included in the
predictors [26]. PCR uses the first few principal components to simplify the analy-
sis of many variables to linear or multilinear regression between the components
(predictors) and the desired measurements [26, 29]. Resulting coefficients of the
PCs, fitted using least-squares approaches, can be decomposed to regression coef-
ficients of each of the original variables in the component. The variable with the
largest magnitude coefficient is the most correlated to the desired dependent variable
while the sign of the coefficient indicates positive or negative correlation [26]. In this
way, decomposition by PCR can be used to extract relationships between different
variables in the dataset.

Thus, PCA and PCR can be used not only to generate hypotheses about sam-
ple relationships but also to generate data-driven predictions. PCA is often used to
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analyze DNA (or cDNA) microarrays by clustering observational data to expose rel-
evant coregulations of genes or relevant similarities or disparities between cellular
samples such as different cancer tumors [12, 20, 42].

6.3.1 Mathematical Framework

6.3.1.1 Principal Component Analysis (PCA)

First, the dataset should be mean-centered so that the mean of each variable across
all observations is zero. This adjustment greatly simplifies the covariance matrix
calculation as well as eigenvector determination. For centering, the means of each
variable (column) should be subtracted from each observation of that variable (row)
in an element-wise manner as shown in Eq. (6.4).

[
M1,1 M1,2
M2,1 M2,2

]

−
[

M1 M2

M1 M2

]

=
[

A1,1 A1,2
A2,1 A2,2

]

(6.4)

Here M is a representative 2 × 2 data matrix and another matrix of the same size,
containing themeans of each sample (columns), is subtracted to generate the adjusted
data matrix A. Notice that the mean of all columns should now be zero.

Now the covariance matrix of the dataset can be found from A. While in SVD
the original dataset was used for decomposition, in PCA the chief interest is in the
covariance of the data not the absolute magnitude [40]. Thus, the sample covariance
matrix is used for decomposition as shown in Eq. (6.5).

C =
⎡

⎢
⎣

cov(1, 1) . . . cov(1, N )
...

. . .
...

cov(M, 1) . . . cov(M, N )

⎤

⎥
⎦ = 1

N − 1

N∑

i=1

(Ai − A)(Ai − A)T (6.5)

which simplifies to C = AAT /(N − 1).
Here C is a symmetric sample covariancematrix, where the elements of thematrix

are the covariances of each observation (row) with every other variable dimension,
M denotes the number of observations, and N is the number of variables (columns)
in A. Because A is mean-centered (A = 0), this equation simplifies to AAT/(N − 1).
Using this notation, we can find the eigenvectors of C by decomposing it into a
diagonal matrix D [47].

We can rewrite Eq. (6.2) as,
C = V DV T (6.6)

such that the columns ofVare the eigenvectors ofAwhich correspond to the eigenval-
ues in the diagonal matrix D. Here, eigenvalues correspond to the contribution of that
eigenvector to the reconstruction of C from the decomposition. For the covariance
matrix, small eigenvalues correspond to eigenvectors that contain a small amount of
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the variance in the data. Thus, columns corresponding to low-magnitude eigenvalues
can be eliminated from V to yield a compressed eigenvector matrix (B) that will
make up the basis set of the data A [47].

Multiplying the compressed eigenvector matrix B with A transforms the adjusted
data into principle component space as given by Eq. (6.7).

P = BT A (6.7)

Here P is the approximated data matrix where the rows correspond to latent dimen-
sions or principle components and the columns correspond to samples. The elements
of the matrix are the values of samples in each component. As previously mentioned,
the eigenvectors are ordered from greatest corresponding eigenvalue to smallest.
Therefore, the first principle component (first eigenvector) accounts for the most
variance in the data. If P is composed of three or fewer principal components, the
sample values can be plotted in a 2D or 3D fashion to group covarying samples.

Implementation of this method and example plots will be discussed later in the
context of host-cell responses to viral infection [27].

6.3.1.2 Principal Component Regression (PCR) Using
Total Least Squares

After the principal components have been defined, there may be instances in which
knowing the relationship between principle components or principle components
and an independent observation dimension are useful. Linear or planar orthogonal
regression techniques can be used to determine these relationships [26, 29, 45]. In
this section we focus on total least squares regression (TLSR).

As opposed to ordinary least squares regression, TLSR aims to minimize the per-
pendicular residual error from the regression fit [45]. This is an important distinction
as it implies variance or measurement error in all the dimensions. Measurement inac-
curacies create uncertainty or associated variance in the position of each data point
in principal component space. Therefore, regression models should take this into
account when minimizing residual error to create an unbiased fit. For PCA, all the
observation dimensions used to create latent dimensions are subject to measurement
error or variance [45].

First, appropriate PCs must be chosen as predictor variables. In most cases choos-
ing the first one or two principle components is the most relevant [26, 29]. However
this is not always the case and a more in-depth discussion of choosing appropriate
PCs can be found in Jolliffe [29].
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Fig. 6.2 TSLR Orthogonal
Residual Schematic. TLSR
uses orthogonal residuals
(red—ri ) to fit a regression
line to data (o) displayed in
PC space. For color figure
please refer to online version
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Once predictor variables have been chosen, iterative computational optimiza-
tion algorithms, in environments like Matlab, can be used to identify the best-fit
line or plane. In general these computational methods attempt to minimize Eq. (6.8)
(Fig. 6.2).

E =
N∑

i=1

|r2i | (6.8)

where E is the residual error and ri is the orthogonal distance of a data point (o) from
the regression. The schematic Fig. 6.2 illustrates the orthogonal distance (r_i) of a
representative data point (o) from the linear regression line.

While PCA is an unsupervised decomposition method that does not take into
account the inherent variance between variables, it can extract valuable information
from multidimensional datasets. This information can be used to generate simplified
regression models by using the principal components themselves as predictors rather
than the original observations.

6.3.2 Application of PCA: Decomposition
of Experimental Data

In this section we will use data published in [27] quantifying host-cell viral infection
responses to demonstrate the utility of multidimensional decomposition in systems
modeling.
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6.3.2.1 Biological Introduction

Viral myocarditis including heart failure and dilated cardiomyopathy are most com-
monly attributed to coxsackievirus B3 (CVB3) infection of cardiomyocytes. Acute
infections cause host-cell damage and viral progeny release. These progeny then
infect neighboring cells and advance tissue damage until the immune system can
clear the infection.

CVB3 induced myocarditis is the most common cause of heart failure in young
adults, children, and immunocompromised patients. The only late-stage treatment
available in these cases is heart transplantation suggesting that once the virus has
begun to successfully replicate in host-cells, there is little that can be done other than
remove the diseased tissue. Thus, early-stage treatments remain the best hope for
reducing tissue damage.

However, no successful treatment currently exists because initial host-cell
responses to infection are poorly understood. CVB3 must interact with several host-
cell intracellular components to replicate successfully [54]. Such interactions include
degrading certain machinery while taking over others, suggesting that numerous cel-
lular signaling pathways are disrupted [15]. Treatments developed to recover normal
function of these pathways before viral progeny are released remain the best hope
for attenuation of disease severity.

6.3.2.2 Experimental Measurements and Generated Data

Because host-cell signaling consists of highly connected networks of proteins, per-
turbations in these pathways must be studied simultaneously to truly understand, at
a systems level, how CVB3 affects the host. To accomplish this, Jensen et al. [27]
surveyed several kinase activities in response to viral infection. The activities of eight
canonical stress and inflammatory response kinases were quantified by phosphopro-
tein abundance in a phopho (p)-ELISA format. Each of these measurements was
made in response to five different CVB3 viral doses (MOI) at several time points.
In addition, six host-cell responses were quantified in a parallel experimental set-up.
The resulting datasets form tensor structures (three-dimensional matrices) as shown
in Fig. 6.3.

To draw parallels between the temporal patterns of kinase activation and cellular
output, the data can be plotted in several 2D plots and then visually compared to each
other. An example of this method is displayed in Fig. 6.4.

From visual inspection we can see that the data does not have correlated or simple
activation patterns with respect to time orMOI. Some of the kinases show an increase
then decrease in activation with time like Hsp27, ATF2, AKT, GSK3 and p38. Others
have more complex bimodal temporal patterns like CREB, ERK, and IκBα. Further,
some kinases show increased activation with respect to MOI that decreases after a
certain MOI threshold is reached (Akt and IκBα, Fig. 6.4) while others show less
generalizable patterns. Additionally, while the cellular outputs all show increases
in expression (VP1), activation (casp-8, casp-9, casp-3), or abundance (RVP, Death)
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with respect to bothMOI and time, their relationship to the kinases cannot be inferred.
Taken as a system, there is no simpleway to explain the relationships betweenkinases,
cellular outputs, time, and MOI using this type of data processing.

6.3.2.3 Tensor Decomposition

In such cases, tensor decomposition can illuminate important correlations in the data.
Higher order data structures can be decomposed and modeled with either of two
generalized SVD and PCAmethods. Tucker decomposition [52] and CANDCOMP/
PARAFAC (CP) [10, 32] are established methods that were first developed in the
fields of psychometrics and chemometrics.

CP expresses an N-mode data tensor as a sum of rank one tensors, while Tucker
decomposition factorizes the data into a core tensor and N-corresponding matrices
[8, 32]. Thus, for a three mode tensor, CP factorizes the data into a sum of rank one
tensors expressed as the outer product (⊗) of vectors from three matrices (A, B, and
C) (Eq.6.9, Fig. 6.5a). This operation is also known as the Khatri-Rao product of A,
B, and C. Tucker decomposition yields one core tensor W) and three matrices (A,
B, and C) (Eq.6.10, Fig. 6.5b). In both cases, the matrices A, B, and C correspond
to mode 1, 2, and 3 respectively and contain the loadings or eigenvectors that define
each principal component within that mode.

X P×Q×R =
N∑

n=1

an ⊗ bn ⊗ cn (6.9)

where N is the number of components or rank one tensors being used to approxi-
mate the data tensor X and an, bn, and cn are the vectors corresponding to the nth
component.
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Fig. 6.4 Visualization of host-cell response data. Heat map visualization of phosphoprotein signals
(a) and cell response data (b) given 5 different viral doses (MOIs) measured at 6 (a) or 3 (b) time
points post-infection. Data are reprinted from Jensen et al. [27]

X P×Q×R =
P∑

p=1

Q∑

q=1

R∑

r=1

gpqr ap ⊗ bq ⊗ cr (6.10)

where gpqr is an element in the core tensor G and ap, bq, and cr are column vectors
from the matrices A, B, and C.

It is important to note these generalized methods differ from PCA in that they
usually result in unique solutions. In two-way PCA, the PCs can be rotated in space
and still maintain the amount of variance captured by changing the scaling within
the PCs. This is not true for higher order PCA as rotation will cause a loss of fit
[8]. Consequently, CP and Tucker models differing in the number of components
calculated must be done iteratively; each component cannot be found serially. In
this way, CP and Tucker decomposition expand on the concepts of bilinear PCA
to model important covariations in the data while maintaining the information-rich
tensor structure.

To apply these methods to our CVB3 host-cell kinase signaling dataset (Fig. 6.3a)
we must first mean center and standardize our tensor [8]. We want to center along
the first mode or the observation mode, which, in this case, is the MOI dimension.
It follows then that our variables are the different kinases (mode 2) through time
(mode 3). Just as in bilinear PCAmean centering along the first mode gives us a zero
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decomposition using experimental phosphoprotein data structure from Fig. 6.4. The data matrix
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b, c denote vectors, and uppercase letters A, B, C denote matrices. For color figure please refer to
online version

offset to calculate the variances in phosphosignal of each phosphoprotein. Next,
standardization, or scaling by the standard deviation, in modes 2 (phosphoprotein)
and 3 (time) allows us to compare these variances between phosphoproteins, time
points, and MOIs.

Nowwe can decompose this adjusted tensor using the PARAFAC (CP) algorithm.
Unique solutions or sets of principal components (A, B, and C) are fit using an
alternating least squares (ALS) approach [8]. In short, this algorithmuses the adjusted
data and an initial guess forB andC (mode2 and3principal components respectively)
to fit A by least squares regression. This is then repeated for each matrix A, B, and
C until a convergence condition is reached.

As mentioned before, these steps have to be repeated for models with differing
numbers of components. To determine the optimal number of components for the
model, several different numbers of components can be surveyed, each followed by
inspection of certain fit and stability metrics. These metrics include percent variance
of the original dataset captured, sum-of-squared residuals between the model and
original data, crossvalidation or leave-one-out stability analysis, and concordance



6 Statistical Data Analysis and Modeling 167

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mode 2 and 3 Loadings in PC1 and PC2

PC1

P
C

2

ERK

p38

0.17 hrs

24hrs

Fig. 6.6 Visualization of phophoprotein activity in principal component space. Phosphoprotein
(mode 2, black) and time post-infection (mode 3, purple) loadings are mapped in principal com-
ponent space to show clusters with similar loadings in each PC. Loadings and PCs were generated
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with the Tucker core tensor [40]. The last of these utilizes the idea that PARAFAC
will yield the same answer as Tucker decomposition with a core tensor of ones on
the superdiagonal and zeros elsewhere [9]. Thus, 100% concordance means the A,
B, and C matrices are the best possible fit of the data and do not need to be scaled
by a non-superidentical core matrix.

After mean centering and standardizing the host-cell phosphoprotein dataset, a
two compartment PARAFAC model can be generated which captures 80% of the
variance in the original data. Two components were considered optimal as larger
models did not meet concordance requirements and smaller models did not capture
as much variance. To interpret this simplified model, we can visualize both the
kinase and time loadings in PC1 and PC2 (Fig. 6.6). The magnitudes of the loadings
indicate the amount it contributes to the respective principal component. The greater
the magnitude of the loading, the greater contribution that variable has to the model
generated from the Khatri-Rao product of the principal components.

Thus, when interpreting Fig. 6.6, we want to focus on clusters that lie far from
zero on at least one PC, because those signaling proteins and times that lie close
to the origin have little to no influence on the model. As labeled in the figure, the
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PARAFAC model exposes two interesting clusters: (1) ERK and time 0.17h and
(2) p38 and time 24h. This suggests that p38 signaling is responsible for most the
variance associated withMOI at later time points while ERK signaling is responsible
for most of the variance associated with MOIs at early time points. Biologically,
we can now hypothesize that the ERK and p38 pathways are relaying the most
information about CVB3mediated viral infection at early and late times respectively
[27]. How the viral genome interacts with these pathways would still need to be
studied in carefully designed experiments that isolate the role of these pathways in
vitro or in vivo. However, this demonstrates the ability of higher order decomposition
techniques to uncover new hypothesis that lead to more targeted systems-biology
studies.

6.3.3 Partial Least Squares Regression (PLSR)

As mentioned in the previous section with data matrices, PCA defines principal
components that are optimized to capture the overall variance in the data matrix A.
However, this does not mean that the resulting principal components are optimally
interpretable, nor that they are the best regressors for predicting another data matrix.
In such circumstances, it is preferred to rotate the leading principal components [28],
which is easily achieved in two dimensions with the following linear operator:

[
cosθ −sinθ
sinθ cosθ

]

(6.11)

(Similar operators can be defined for rotations in three dimensions.) A key point
is that this “subspace rotation” does not affect the overall variance captured by the
PCAmodel, because the solution is rotationally degenerate. Rather, it rebalances the
variance among the retained principal components. Subspace rotation is commonly
employed when building statistical models of biological processes [5, 22].

For statisticalmodeling of signal transduction, PLSRhas provedwidely useful and
informative. Successful models have been built to link signaling to cell death [22, 34,
38, 39, 41], cell-cycle progression [39, 51], proliferation [7, 36, 37], and cytokine
secretion [30, 34, 36]. More-recent theoretical work has suggested that, because
of the fundamental chemical-reaction kinetics of biochemical networks, PLSR is
virtually guaranteed to reduce a signaling circuit down to a handful of principal
components for follow-on analysis [13]. Of course, there are caveats about framing
a proper X → Y hypothesis [25], but it is reassuring to know that the approach is
fundamentally sound and highly versatile. Consequently, PLSR has entered into the
standard curricula for many systems-biology courses [33].
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6.3.4 Mathematical Framework

For regression modeling within high-dimensional datasets, there is a more effective
way of identifying correlated principal components than PCR followed by subspace
rotation. In partial least squares regression (PLSR), principal components are identi-
fied numerically that maximize the covariance between an independent data matrix
(X) and a dependent data matrix (Y ). (Note the distinction from PCA, which simply
maximizes capture of the overall variance of a single data matrix.) Computationally,
PLSR arrives at a covariance model by jointly factorizing X and Y as follows:

X = T PT (6.12)

Y = U QT (6.13)

where T and U are scores vectors and P and Q are loading matrices.
The regression between X and Y is linear between the “scores vectors” of the

independent and dependent matrices:

U = T B (6.14)

Thus Y = T B QT (6.15)

The simplest protocol for building a PLSR model is by using the nonlinear iterative
partial least squares (NIPALS) algorithm. In this algorithm, a row from Y is randomly
chosen as the first guess for a scores vector (u), and then X is projected onto u to
define the first guess at a “loadings vector” p. Here, the exchange of scores vectors
(using u with X and t with Y ) is critical for linking the two matrices together and
building a PLSR model that maximizes the covariance between X and Y [17]. The
first iteration of the loadings vector is then normalized and projected onto X to
define a provisional t , which is subsequently projected onto Y to calculate the first
iteration of its loadings vector, q. This loadings vector is normalized to unit length
as done previously for p, and then the normalized q is projected onto Y to define
the second iteration of u. This process continues until u converges to a fixed value
within a specified tolerance. Software for building PLSR models is readily available
in MATLAB, R, as well as independent commercial platforms [25].

6.3.5 Application of PLSR: Modeling Tensor Data Sets

In the previously discussed example from [27], two datasets were generated, a phos-
phoprotein signal tensor and a cell response tensor (Fig. 6.3). Unlike PCA, PLSR is
a powerful technique that can help identify relationships between these two tensors
and point to kinases that dictate viral infection responses in cardiomyocytes.
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As mentioned previously, PLSR generates principal components that capture the
maximal variances in both an input tensor and an output tensor. In this way, PLSR
is a supervised decomposition and regression method that can be used as a pre-
dictive model. In this example, the predictor dataset is the signaling activity tensor
(Fig. 6.6a) and the dependent data is the cellular response tensor (Fig. 6.3b). Note that
the dimensions of the tensor datasets do not have to be equal except in mode 1 (obser-
vations). Before attempting PLSR, the tensor must be centered and standardized as
described for the PARAFAC model.

Once each dataset is adjusted, a crossvalidated PLSR model can be developed
by using a NIPALS algorithm to solve Eqs. 6.12 and 6.13 [6]. These equations are
essentially the same as those for the PARAFACmodel; the difference is that NIPALS
solves them simultaneously, until a convergence criterion is met.

The four-component solution captures 89% of the variance in the predictor tensor
and 91% variance in the output tensor. The resulting model can accurately predict
all cellular outputs as shown in Fig. 6.7. To visualize the significant players in this
multi-component model, we must choose which principal component combinations
to look at. In general, we want to look at PCs that capture the most variance in the
data, which are usually PC1 and PC2. However, in this case, PC3 and PC4 captured
substantial amounts of non-redundant variance in the data. By analyzing Fig. 6.8 in a
similar fashion to Fig. 6.6, we find that p38, Hsp27, CREB, GSK3B, and Akt cluster
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with four of the six cellular outputs (caspase 3 activation, viral progeny release, VP1
expression, and cell death).

We can then hypothesize that these signaling proteins are influential in deciding
cellular responses to CVB3 infection and could be potential treatment targets to
attenuate subsequent tissue damage. By utilizing the powerful extraction capabilities
of tensor decomposition and PLSR modeling we have effectively eliminated half the
potential targets we started with. We could eliminate more by looking at other PCs
and isolating those that correlate with early time points. This example illustrates
the utility of different tensor decomposition and modeling techniques that result in
rational experiment design invaluable to systems biologists struggling to understand
and manipulate immensely complex cellular networks.

6.4 Concluding Remarks

Will the age-old methods of SVD, PCA, and PLSR become obsolete in the midst of
this new era of biomedical Big Data? We have many reasons to think not. First, the
statisticalmodels introduced in this chapter are among the simplest linearmethods for
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reducing complex datasets. Invoking Occam’s razor, these models should be proved
to be insufficient beforemore-complicated alternatives are sought. Simplemodels are
more-easily interpretable—by generating principal components that can be imme-
diately mapped back onto the primary data, the models stay grounded in what they
were derived from. Statistical models therefore avoid the pitfalls of machine-learning
approaches, such as support-vector machines and neural networks, which can make
remarkable predictions but leave the user confused about how the predictions were
made [35, 44].

Second, the iterative methods for PCA and PLSR are very scalable to large
datasets, because they do not require calculating the covariance matrix as with older
implementations of SVD. To circumvent problems interpreting PCs with many vari-
ables, there are sparse variants that use different constraints to generate PCs with
more-limited mixtures of the original variables [56]. The computational simplic-
ity allows model stability be easily assessed by standard numerical methods such as
cross validation, bootstrapping, and permutation [14]. Statistical models thus provide
a direct indication of their uncertainty based upon the data provided, which stands
in contrast to physico-chemical models where uncertainty can be more cryptic [18].

Last and most important, even if the methods here are eventually supplanted by
superior alternatives, they nonetheless serve as an important entry point for those
interested in statistical modeling. Biologists are already accustomed to looking at
their results—statistical models provide a more-formal way of inspecting complex
data and illustrating the power of computation in real terms [24]. Just as it is difficult
to imagine life now without a computer or a smartphone, biological research will
soon become unfathomable without the aid of statistical models.
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Chapter 7
Optimization in Biology Parameter
Estimation and the Associated Optimization
Problem

Gunnar Cedersund, Oscar Samuelsson, Gordon Ball, Jesper Tegnér
and David Gomez-Cabrero

Abstract Parameter estimation—the assignment of values to the parameters in a
model—is an important and time-consuming task in computational biology. Recent
computational and algorithmic developments have provided novel tools to improve
this estimation step. One of these improvements concerns the optimization step,
where the parameter space is explored to find interesting regions. In this chapter we
review the parameter estimation problem, with a special emphasis on the associated
optimization methods. In relation to this, we also provide concepts and tools to help
you select the appropriate methodology for a specific scenario.

Keywords Parameter estimation · Optimization · Heuristic · Fitness function

7.1 Introduction

Mathematical models have been part of biological research for more than half a cen-
tury. One of the starting points for this development was the now classical model for
the action potential in an axon, developed by Hodgkin and Huxley [27, HHM]. HHM
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Fig. 7.1 Schematic of the basic Hodgkin-Huxley model (HHM) of a neuron. The figure depicts
the basic components of HHM models that represent the biophysical characteristics of cell mem-
branes. In the model Capacitance (Cm) represents the lipid bilayer. Nonlinear (gn) and linear (gL)
conductances represent voltage-gated and leak ion channels respectively. Batteries (E) represent
the electrochemical gradients driving the flow of ions. Current sources (Ip) represent ion pumps and
exchangers. Figure obtained from Wikimedia, under Creative Commons CC0 1.0 Universal Public
Domain Dedication. Author: Krishnavedala

explains these action potentials using a set of coupled nonlinear ordinary differen-
tial equations (ODEs), which are associated to membrane channels with specific
time-and voltage-dependent properties (Fig. 7.1). The HHM is of major relevance
because (i) it was the culmination and integration of a large number of experiments
[17, 52]where themodel provided amechanistically unified vision of the system; and
because (ii) HHM generated specific predictions that were subsequently validated
using new single-channel recording techniques [26]. For these reasons, Hodgkin and
Huxley were awarded the Nobel Prize in 1963, the first Nobel Prize in physiology
awarded for the development of a mathematical model. An illuminating account of
the development of both experiments and model is available in [26].

However, those early successes by Hodgkin and Huxley were possible because
they could bypass one of the biggest hurdles in most current biological modeling:
the simultaneous determination of all the values of the parameters in the model from
systems-level data. These parameters that need to be estimated appear in the ODEs,
and in the case of HHM, these parameters could be experimentally characterized
from initial targeted experiments. In other words, their only problem was that of
forward simulation, which was possible even in the pre-computer era. For most other
biological models, parameters cannot be determined directly in specific experiments,
but instead need to be estimated simultaneously from systems-wide data. Particularly,
one needs to search the space that is spanned by the unknown parameters in the
model, in order to characterize which parts of the parameter space are consistent
with experimental data and prior knowledge. This task of determining parameters
from data is known as parameter estimation, and a key step in this task is to optimize
the agreement between model and data. In other words, optimization research enters
as a natural component in research on parameter estimation for biological models
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[2, 22, 23, 36]. This optimization step is not trivial, and there are a wide variety of
methods to choose from.

In this chapter, we will describe the basics of the parameter estimation problem,
look in depth at the associated optimization problem, and at the available tools to
solve it. In Sect. 7.2, the parameter estimation problem is introduced using an intuitive
example and in Sect. 7.3, the problem is treated from amoremathematical viewpoint.
Section7.4 describes several meta-heuristic optimization approaches and Sect. 7.5
compares these approaches and provides useful inputs for selecting among them.
Finally, Sect. 7.6 provides a closing overview of the chapter and provides links to
open challenges, most of which are discussed in other chapters of this book.

7.2 The Parameter Estimation Problem

Let us start by introducing the parameter estimation problem from an intuitive point
of view, through a specific biological model. The example is formulated as an ODE
model, which is the most widespread formalism in systems biology [10, 31, 37, 48].
An ODE model can be formulated in state-space form, which is a mathematically
well explored representation [1, 6], written as:

x́(t) = f (x(t) , u(t) , P) (7.1)

y(t) = h(x(t) , u(t) , P) (7.2)

where x(t) are the states, x́ are the time-derivate of the states, f and h are smooth
nonlinear functions, are the parameters, and u(t) and y(t) are input and output signals,
respectively. All symbols are vectors.

Let us now consider the specific model in Fig. 7.2. This figure depicts an
interaction-graph for a simple model of the insulin signaling network, taken from
[43]. As can be seen, the model describes how insulin binds to the insulin receptor
(IR), which thus becomes phosphorylated (IRp), and able to phosphorylate the pro-
tein IRS, which phosphorylates the protein PKB, which finally stimulates transport
of Glut4 to the membrane, which together with Glut1 transports glucose into the
cell. There is a straightforward approach to go from an interaction-graph to a state-
space formulation [50], and the full ODEs are given in [43]. A short summary of this
process is as follows. The states correspond to the concentrations (or, alternatively,
the amounts) of the different molecules, i.e. [IR], [IRSp], etc. The concentrations are
affected by the reactions, and the rate of these reactions is the first thing that needs
to be defined. In this model, mass-action kinetics are assumed, which means that the
rates are given by the product of the concentrations of the substrates and the regu-
lators multiplied by an unknown rate constant [3]. The unknown rate constants are
called kinetic rate constants, here denoted ki, and they thus regulate the speed of each
individual reaction. It is often these rate constants that need to be determined from
experimental data. These rates are summed together to form the ODEs, so that rates
corresponding to ingoing reactions appear with a plus sign, and rates corresponding
to outgoing reactions appear with a minus sign. In other words, the ODE for [IRS]
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Fig. 7.2 A schematic description of an insulin-signaling network. The input and output signals
are the concentrations of insulin, and the measurements of the phosphorylated proteins, IRp, IRSp
etc. This schematic description is referred to as an interaction-graph, and it corresponds one-to-one
with the ODEs, as is described for instance in [43], which also is the paper from which this model
is taken

is given by:

[IŔS] = d[IRS]
dt

= x́IRS = k2b[IRSp](t) − k2f [IRS][IRp](t) (7.3)

In the model specification, each parameter pi (usually, but not always, corresponding
to some rate constant kj) is specified to have values in a specified range. This range
is here defined by lb below and ub above

lb,i < Pi < ub,i (7.4)

These boundaries are referred to as box-constraints. The box-constraints should
include all physically possible parameter values. If the range of physiologically likely
parameters is unknown, a box-constraint would still be required in order to restrict
the parameter space. Many physiologically relevant models are at least bounded by
0 below, and the time-scale of the observed dynamics can often give a suggestion for
an upper bound as well. The box-constrained parameter spacemay also be referred to
as the search space, and a parameter set is a point in the (box-constrained) parameter
space.
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The parameter estimation problem is to find those parameter sets that both are
biologically feasible and that display a satisfactory agreement with experimental
observations. An experimental observation may refer to any set of values that are
available from experimental measurements. One example is a so-called perturbation
experiment, where a cell is perturbed from steady-state, and where the transient
response of the system is observed. In the insulin example above, insulin is such a
perturbation, i.e. the levels of all the states are assumed to be in steady-state before the
perturbation, and one then follows how the signaling intermediates ([IRp], [IRSp],
etc.) are changing over time. Such perturbation experiments can also be done in other
systems, e.g. gene regulatory networks. In gene regulatory networks the availability
of perturbation experiments is growing as several technological advances [39] have
allowed the generalization of gene perturbation screens of the systems. One such
example is RNA interference experiments, which are being used as a tool for both
association discovery and for validation purposes [53].

The agreement between model and data can be of two types: qualitative and
quantitative. A qualitative agreement can often be assessed by mere inspection and
reasoning. For instance, the initial response to an insulin stimulation is that [IRp]
and [IRSp] goes up. Another qualitative observation may be that the system oscil-
lates, i.e. that it changes periodically up and down over time. In these two cases,
the model will qualitatively agree with the data if it goes up in response to insulin,
or if it oscillates, respectively. However, experimental data that have been collected
often contains fundamentally more information than that: it usually contains quanti-
tative information. Such quantitative information is typically measured as the aver-
age deviation from the data points (Eq. 7.5 below). Loosely, parameters that give
an acceptable agreement with the data are called feasible, and other parameters are
referred to as infeasible. Whereas the question of whether or not simulations for a
specification parameter agree qualitatively with data can be assessed bymere inspec-
tion, the quantitative agreement requires a more formal treatment. This parameter
characterization—which simulations agree, andwhich do not agree,with the data—is
the task of parameter estimation.

Originally parameter estimationwas done “by hand”, by combining physiological
knowledge with reasoning and manual tests. Such an approach is time-consuming,
requires expert knowledge on the exact role of each parameter, and is therefore infea-
sible for most biological models. With the invention and development of computers,
this estimation “by hand” could be replaced by more exhaustive searches in the para-
meter space, since computers allow for thousands or millions of parameter sets to
be tested. This development of computers has gone hand-in-hand with the devel-
opments in the field of optimization. More specifically, the application of methods
from the field of optimization has been essential for the exploration of extremely
large parameter spaces. This is the case, since the task of covering large parame-
ter spaces seldom can be solved by “brute-force” approaches, even with the rapid
advances in computer power. Let us therefore now turn to a more formal treatment
of these concepts, using the language of mathematical optimization.
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7.3 The Optimization Problem in Parameter Estimation

In Sect. 7.2, we learned that parameter estimation is concerned with the search for
feasible parameter sets in the box-constrained parameter space, and that “feasible”
measures the agreement between our experimental observations and the model sim-
ulations, either qualitatively or quantitatively. Now the challenge is to transform the
concepts “feasible” and “agreement” into mathematical terms.

Let us start by considering a specific set of data and simulation possibilities,
again taken from insulin signaling [5]. The example is depicted in Fig. 7.3. The data
reflects the amount of IRSp, and at time t=0 the system (isolated fat cells) have been
stimulated with 100nM insulin. The collected data points are depicted in blue, where
the error bars depict the uncertainties (top to bottom reflects 2 standard deviations,
2σ ). As can be seen, these data have a big uncertainty, but one can nevertheless see
certain features clearly. First, the system responds by going up, but then around one
t=1min, the response decreases, and from somewhere between 5 and 10min and
onwards, the system has settled at an intermediate steady-state level. Now, when a
model tries to mimic these data, there are two aspects that can be taken into account.
First, one may capture the presence of the overshoot (that the response goes up and
then down), and this is captured by the blue but not the green line. Second, one may
capture the quantitative features of the data, e.g. the location of the final steady state.
This steady-state is, conversely, captured by the green but not the blue line. These
two lines correspond to simulations with the studied model, done using different
parameter values, and this example illustrates that quantitative and qualitative aspects

Fig. 7.3 Example of data and model simulations. This example is also from insulin signaling, as
described in [5]. In blue you see the data pointswith uncertainty, and the other lines show simulations
for different parameters values: one that is qualitatively wrong but quantitatively right (green), one
with the opposite problem (blue), and one from a feasible parameter (red). A cost function is formed
by summing together the normed and squared residuals, as described in Eq. (7.5)
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do not always coincide. The task is therefore, to decide upon how to quantify the
features (quantitative or qualitative) that are important in the data, and then optimize
this quantification, to find the best parameters (red line).

In other words, we need an automatic way to evaluate how “feasible” a parameter
set is. Let us start by denoting the experimental data point at time tk with y(tk). Sim-
ilarly, let ŷ(tk|P) denote the simulated data point, at time tk and using the parameters
P. Now, we are interested in the differences between these two values, the so called
residuals r(tk) = y(tk) − ŷ(tk |P) . In general, the larger the residuals, the worse the
model, so we are interested in the average size of the residuals. However, we want
them to be always positive (since it does not matter if the model is above or below
the data). Furthermore, if the data point is highly uncertain (there is a big σ(tk)), that
residual should be less important, when taking the average. All of these requirements
are met by studying the following cost function

V (P) =
N∑

k=1

(
y (tk) − ŷ (tk |P)

)2

σ (tk)2
(7.5)

As can be seen the residuals have been squared (to make the residual always posi-
tive), normalizedwith the standard deviation of themeasurement uncertainty (divided
with σ ), and then summed together (giving the average size, considering all resid-
uals). This cost function is the most common choice, and it is usually denoted the
chi-square cost function. Independently of which cost function, V (P), that is used,
the final parameters are in the end defined by

P̂ = argmin
P

V (P) (7.6)

Let us now consider a general optimization problem, and see if we have succeeded
with the reformulation of the parameter estimation problem. In mathematical opti-
mization, the problem is defined by three elements: (a) the objective function—in
our case the evaluation function described in (5); (b) a set of decision variables that
can vary during the search—in our case the parameters P; and (c) the constraints
that limit the value of the decision variables or the relations between them—in our
case the box constraints (4). The problem we have described is thus a mathematical
optimization problem. More specifically, our problem is a continuous optimization
problem, because the decision variables are all real numbers. A systems biology
oriented description of optimization is available at [2].

Let us now consider a complication of this general scenario that often happens:
additional constraints. Such constraints may stem from prior knowledge, not con-
tained in the data. Consider for instance a system that contains the variables C and
D, where expert knowledge assures us that D cannot be more than twice the value
of C at any time. Then this extra information should be added to the problem set-
ting. The information can be added to the system in two ways. The first way is to
include the information as a constraint in the objective function (in the same way the
boxed-parameter space defines inequalities):
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D (p, t) < 2C (p, t)∀t (7.7)

The second way (which we favor here, as it is easier to integrate with the heuristic
methodologies shown in the next section) is to construct a new objective function
Vtot (P) that is the weighted combination of the normal “data-based” objective func-
tion V (P) (e.g. that in Eq. (7.5)) and a new one, eval2(P)

Vtot (P) =V (P) + w · eval2 (P) (7.8)

eval2 (p) =
N∑

k=1

dist (C, D, P, tk) (7.9)

dist (C, D, P, t) =
{

(2C (p, t) − D (p, t))
0

if (2C (p, t) > D (p, t))
otherwise

(7.10)

As can be seen, eval2(P) will be zero if the relation based on expert knowledge
between C and D is fulfilled by the simulation, and if the constrain is violated,
eval2(P)will growwith the size of the violation. The parameter describes theweight-
ing between the two sources of knowledge: the experimental data (V (P)) and the
expert knowledge (eval2(P)). These kind of ad hoc expansions of the cost function
can be used to incorporate also other types of knowledge, or preferences regarding
how the data should behave. In the example in Fig. 7.3, one could for instance decide
that the model should have an overshoot. One could then add a similar punishment
as eval2 in (8) to such simulations that do not produce such an overshoot.

An alternative approach to a weighted combination of different elements in a cost
function is to compute Pareto Optimal (PO) solutions. Considering two evaluations
functions, A and B, a PO solution is such that there is no other solution with better
evaluation for both A and B simultaneously. The study of Pareto Optimal is an active
field in multi-objective optimization but we do not consider it further in this chapter.
Relevant examples of multi-objective optimization in biology can be found in [8, 57,
58].

Finally, optimization has been used in the study of many different types of biolog-
ical systems, and the details of the formulations may differ from setting to setting.
Common examples include flux balance analysis [51], metabolic engineering, sig-
naling pathways [43, 54], reverse engineering [24], and stochastic modelling [60].
However, a common feature, usually appearing in biological systems is that there
are many local optima. This means that global optimization algorithms should be
used to search the parameter space. Such global methods are usually described using
meta-heuristics.
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7.4 Meta-Heuristics: A Tool for Optimization

7.4.1 Introduction to Meta-Heuristics

The term meta-heuristics is a composition of the Greek words meta (beyond) and
heureskin (to find) or heuristic (rules of thumb). Meta-heuristics combine basic
heuristic methods in higher-level frameworks to efficiently explore the box con-
strained objective function to be optimized. Introductions to meta-heuristics can be
found at [19].

Meta-heuristics require little or no information about the problem to be solved,
and they are sometimes referred to as black-box optimization methods. Interestingly,
the same meta-heuristic algorithm can usually be applied to a wide range of differ-
ent problems. Meta-heuristics do not make explicit use of Hessians or gradients as
opposed to gradient descentmethods, and can therefore be used also on discontinuous
problems. More importantly, most parameter estimation problems are multi-modal,
i.e., they contain several optima; hence, traditional gradient-based local search meth-
ods usually fail at locating the global optimum in such problems. In the search for
the global optimum, one is therefore directed to use global optimization methods
where one alternative is to use meta-heuristic methods.

Within the area of global optimization there are two different approaches, deter-
ministic and stochastic methods, and they differ in their ability to guarantee conver-
gence towards the global optimum. The deterministic methods can in theory provide
a level of assurance of finding the global optimum. However, the computational time
often increases exponentially with problem size, which often makes it impossible to
locate the global optimum in a reasonable time. The stochastic methods, including
meta-heuristics, use random components to locate the vicinity of the optimum. The
trade-off is that one cannot guarantee the identification of the global optimum. How-
ever, the computational cost is significantly lower for stochastic methods compared
to deterministic methods and this is an important advantage in large problems.

Many different meta-heuristic methods exist and in this chapter only a few of
the most common methods are described. It should also be noted that the way of
implementing the algorithms can differ widely, and here, only the pseudo-code is
shown in order to illustrate the basic structure of the algorithms. Let us now turn to
the specific algorithms.

7.4.2 Simulated Annealing

Simulated annealing was originally developed for solving combinatorial optimiza-
tion problems [35]. However, the scope of use for the algorithm has grown and it
is currently used in various optimization areas for numerous types of optimization
problems. The algorithm resembles the internal energy of atoms at different temper-
ature levels. The analogy is as follows. At a high temperature, multiple states for the
atoms are possible and a random state is adopted. A reduced temperature restricts
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the number of possible states to ultimately converge to a single state at the absolute
zero temperature. Finally, if the atoms are allowed to equilibrate at each temperature
level, the final state is also the optimal state in terms of energy. In optimization, the
energy function, which describes the states of the atoms, is replaced by the objec-
tive function V (P) as described in [35]. Thus, a state of the atoms is replaced by a
parameter vector in the search space.

In practice, the search space may be explored by a geometrical figure, e.g. a
simplex. In a D-dimensional search space, a simplex is a hyper-triangle with D+1
vertexes, where each vertex consists of a parameter vector. The simplex is pro-
grammed to update the parameter vector (vertex) with the worst objective function
value with a better one. The updating procedure of the simplex is iterated, which
results in a simplex that deforms and moves across the search space. At high temper-
atures, the simplex performs more or less a random search. However, the probability
to include a parameter vector with higher cost than those already included in the
simplex becomes smaller as the temperature decreases. Thus, at low temperatures,
the simplex performs a local search.

To be able to guarantee convergence to the optimal parameter vector, an impracti-
cally slow cooling scheme must be used [55]. In practice, pre-defined faster cooling
schemes are used, which do not guarantee global convergence. In this chapter, a
slightly modified Simulated annealing procedure based on the Nelder-Mead Down-
hill Simplex algorithm (NMDS) is shown, for which a description can be found in
[46]. The modification makes it possible to search for several optima simultaneously
by using several simplexes, see “Algorithm 4” on page 27 in [44].

In thismodified version, the starting point for each simplex is found by a clustering
technique, whichmakes sure that the simplexes are started with a sufficient Euclidian
distance between them. The temperature is decreased after a specified number of
iterations for each one of the simplexes. The magnitude of the temperature decrease
is set by a reduction factor which reduces the temperature in a step-wise manner. As
the temperature reaches the defined end temperature it is set to zero, and no uphill
moves are allowed. This is similar to a local search. A short pseudo-code description
is given in Fig. 7.4, to illustrate the algorithm. For further information, see [44].

7.4.3 Scatter Search

The meta-heuristic method Scatter search was originally introduced by Glover in the
late 1970s [18]. Scatter search involves strategic combinations of parameter vectors
to generate improved parameter vectors.

As originally proposed in [18], the core of Scatter search is theReference Set (Ref-
Set) which contains a limited number of promising parameter vectors. The number
of parameter vectors, denoted R_s, in the RefSet is an option specified by the user.
Different heuristic methods interact with the RefSet during the search. Most scat-
ter search implementations follow the five step template, originally described by
Glover. These five steps, or sub-methods, are: Diversification Generation Method,
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Fig. 7.4 Pseudo-code: simulated annealing

Improvement Method, Reference Set Update Method, Subset Generation Method, and
a Solution Combination Method. The methods will be briefly explained in the way
they are implemented in SSm (Scatter Search for Matlab). For a detailed description,
the reader is referred to the original description of SSm [15].

• Diversification Generation Method generates a set d consisting of Dp diverse
trial parameter vectors. The parameter values for the Dp parameter vectors with
D parameters are selected from ND cells, where the rows are N intervals for
each parameter and the D columns are the different parameters. The intervals for
each parameter are defined by dividing the region between the lower and upper
boundaries in N intervals. Thus, all parameters haveN intervals regardless of range
between lower and upper boundary. Since the Dp parameters in d are selected from
all of the ND cells, one can be certain that the trial parameter vectors are diverse.
The probability probp+1

i,n of choosing a new parameter vector p + 1 with one of
its parameters in one of the N intervals is inversely proportional to the number of
previous parameters in the specific interval, i.e.,

probp+1
i,n =

1
fi

∑N
k=1

1
fk

(7.16)



188 G. Cedersund et al.

where fi is the number of previous values of parameter i in the interval n. When the
boundaries of one or several parameters are of different orders of magnitude, the
intervals can be defined according to a logarithmic distribution providing a spread
of the Dp parameter vectors across the entire search space.

• Improvement Method is optional to include in a Scatter Search design but is nor-
mally required to obtain high quality parameter vectors (in terms of cost function
value). One option is to use the local search method Dynamic hill climbing [41] as
an improvement method. The improvement method can be restricted by activating
a merit filter which ensures that no local search is performed from a worse initial
point than previously found.

• Reference Set Update Method updates the R_s parameter vectors according to
quality and diversity. The first half of the RefSet is updated with high quality
parameter vectors (low cost function value) which are selected from theDp diverse
parameter vectors such that

V
(
Pj

) ≤ V
(
Pj+1

) ≤, . . . ,≤ V
(
PRs

)
(7.17)

where V (Pj) is the cost function value for one of the R_s parameter vectors j.
In order to obtain a RefSet with both parameter vectors with low cost and para-
meter vectors which are spread in the search space, the second half of the Ref-
Set contains spread or diverse parameter vectors. Diversity is measured either
by the spread in the parameter vectors in terms of Euclidian distance, or by the
spread in the parameter vectors in terms of direction. For further information, see
pages 57–60 in [14].

• Subset Generation Method creates a combination of parameter vectors and in this
case, pairs of all P1, P2, . . . , PRs parameter vectors.

• Solution Combination Method explores the distance between all paired parameter
vectors to find new parameter vectors. Different approaches exist on how to do
the search, but in this implementation only linear or hyper-rectangle searches are
used [14]

How the different methods are combined in a basic search is shown in the pseudo-
code, in Fig. 7.5. It should be pointed out that it is the way of implementing the
five methods that decides the sophistication of the algorithm rather than the specific
methods [14].

7.4.4 Genetic Algorithms

While many bio-researchers rely on computational methodologies for the analysis
of large data-sets, it is interesting to observe how many methodologies have been
designed in the recent decades by considering the principles observed in biolog-
ical systems. For instance, machine-learning applications have used neurons as a
reference to develop neural network classifiers [4, 30]. A second example, Genetic
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Fig. 7.5 Pseudo-code: scatter search

Algorithms (GA), arguably the most well-known optimization procedure inspired
by biology, is based in the studies of DNA sequence evolution [20] (pseudo-code in
Fig. 7.6). GA mimics the process of natural selection in order to find quality solu-
tions in optimization problems. Briefly, GA mimics the natural selection process
by considering an initial population of solutions (that can be generated randomly)
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Fig. 7.6 Pseudo-code: genetic algorithm

and iterating over the population in a survival-of-the-fittest approach. The iterations
make use of the following three elements:
Selection Criteria periodically the population of solutions is evaluated, and those that
score poorly are discarded. A selection criterion, based on the evaluation function,
is used to make the decision. Random discards or weight-based discards are also
considered as options.
Genetic Operators solutions in a population will be used to generate new solutions
that will be added to the population pool. The new solutions are generated through
“cross-over” (using two solutions and generating a novel, “child” solution from them)
and “mutation” (modifications of a solution). There aremanyways to combine cross-
over and mutations to generate new solutions. Once a new solution is generated it
will also be evaluated and added to the pool of solutions.
Termination Criteria it is necessary to define when the algorithm will stop search-
ing for new solutions. Termination criteria usually considered are (i) number n of
iterations without improvement of a solution, (ii) finding a solution that reaches a
lower boundary, (iii) maximum number of iterations, (iv) maximum running time or
(v) a combination of any of the criteria (i)–(iv).

GA, asmany othermeta-heuristic algorithms, faces the challenge of setting a good
trade-off between exploration and local optimization. Exploring is necessary when
finding optimal solutions and it can be stressed by (a) including selection criteria
that do not consider uniquely “best evaluated” solutions but enforce a heterogeneity
in the solution pool; a second option, among others, is to (b) consider mutations
that may lower or increase the evaluation score of a solution. The burden with high
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heterogeneity is that the computational time required in the search will increase dra-
matically; for this reason it is important to limit exploration, and for this reason local
optimization may help guide the search more rapidly. Importantly, “naïve GA” has
been shown to have a premature convergence that prevents a global optimization
[28]. Interestingly, there are hybrid methodologies combining GA with local opti-
mum search exploiting the properties of GA without limiting its exploring ability
[11, 25, 40].

It is worth considering that GA was originally conceived to solve discrete (or
integer-based) optimization problems [28]. In the context of parameter estimation,
binary representations of parameter values may solve the problem of representing
parameter sets containing real numbers, but this option will also increase the number
of solutions to investigate. Finally, GAs have developed into a wider area of opti-
mization algorithms known as Evolutionary computation (EC) that are able to deal
with continuous values [12].

7.4.5 Particle Swarm Optimization

EC algorithms find solutions through continuous optimization of a population of
solutions. Within this setting Particle Swarm Optimization (PSO) is amongst the
most well-known algorithms [32, 33] other relevant representatives are Ant Colony
Optimization [13] or Genetic Programming [34].

Given a real parameter space, PSO first places a set of particles (agents) randomly
in the parameter space, assigning them a random initial velocity. Every particle
receives a fitness-score (the cost, V(P), delivered by the objective function) associated
to the parameter set visited; those values are stored. Additionally the parameter set
with the globally best fitness-score is also stored in GBest. Particle positions are
updated iteratively based on a (randomly) weighted combination of: (1) the inertia
of the particle, (2) a vector pointing from the present particle position to the best
known position and (3) a vector pointing from the present particle position towards
GBest. In this way particles share information of the best areas to search (social
knowledge) but they also keep their best-visited solutions (cognitive knowledge).
The iterative movement of particle i is explained by the following two equations:

vel (i) = σvel (i) + r1 ∗ c1 (pos (i) − best (i)) + r2 ∗ c2 (pos (i) − GBest)
(7.18)

pos (i) = pos (i) + χvel (i) (7.19)

pos(i) and vel(i) respectively denote the current position and the current velocity of
particle i. The symbols c1 and c2 are integer non-negative values, named cognitive
and social respectively, r1, r2 are real values drawn from [0,1], sigma and χ are
non-negative real values, named inertia weight and constriction factor, respectively.
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Fig. 7.7 Pseudo-code: particle Swarm optimization

PSO has become a widely used methodology mainly because it is easy to imple-
ment, it is flexible and can be applied to most continuous-based problems [45] and
requires little fine-tuning (few parameters to adjust) [33]. The caveat of PSO is that
it is mainly limited to continuous problems (despite discrete to continuous mapping
approaches [47]). The pseudo-code for PSO is found in Fig. 7.7.

7.5 Performance of Meta-Heuristics

Defining the difference between good and bad performance is essential when com-
paring algorithms. In accordance to the introduction, several parameter sets can give
the same model output. Depending on the search purpose, different criteria for the
performance exist. Denoting by a run the “completion of the selected optimization



7 Optimization in Biology Parameter Estimation … 193

algorithm”, four possible criteria (among many others) to evaluate meta-heuristics
are:

(1) BS: Given n runs, with limited time x, what is the quality of the best solution
found in all the runs, i.e. what is the best cost found? BS provides a measure
of how good is an algorithm searching for good solutions; however if the best
solution is found once in 100 runs, that would require running the algorithm
many times in order to find such a good solution.

(2) BSa: Given n runs, with limited time x, what is the average quality (average
cost) of the solutions found, when pooling the best solution per run. BSa is
useful when we may require algorithms that do not provide the best solutions
(or lower BS) but on average perform better.

(3) BSff: similar to BS but instead of fixing to a limited time x, the run is fixed to a
maximum number of objective-function evaluations.

(4) BSaff: similar to BSa but instead of fixing to a limited time x, the run is fixed to
a maximum number of objective-function evaluations.

Several studies have approached the comparison of methodologies in different opti-
mization problems. Unfortunately, there is no perfect optimization algorithm; given
a performance evaluation, for each optimization methodology there is always a class
of problems where the methodology will be worse than for other methodologies.
That is, there is no method that will be optimal for all problems. This is a direct con-
sequence of the No-Free-Lunch theorems presented in [59]. However, for making
a selection among possible optimization algorithms, we recommend to follow two
pieces of advice:

• Hybrid version while there is no “best-ever” algorithm for all types of optimiza-
tion problems, it has been observed that hybrid methodologies, those combining
ideas/methods from several optimization methodologies, tend to work robustly in
all optimization problems. We recommend the implementation of hybrid versions.

• Widely used We can observe that there exist several optimization methods that
are continuously implemented in parameter-fitting tools. For instance Neurofitter
[56], developed to find parameter sets that able to reproduce experimental data
in neuronal models, includes Random search, Particle Swarm Optimization,
Evolution strategies, Multi-Start Local Optimization and combinations of them.
Similarly, COPASI [29], an open source package that allows the generation and
simulation of biological processes, includes Evolutionary Strategy, Genetic Algo-
rithm(s), Particle Swarm Optimization, Random Search, and Simulated Anneal-
ing. This may reflect (1) the flexibility of those methods, (2) the low complexity
to implement them, but also (3) that there are many successful examples of their
applications.
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7.6 Conclusions

The present chapter has provided a brief introduction to the field of optimization and
its applications in the challenge of parameter estimation in biology.We have provided
introductory explanations to some of themost widely used concepts and optimization
algorithms. The focus of this chapter has been on meta-heuristic methods, within the
field of stochastic global optimization. The benefit of these methods is that they
can work on any optimization problem, and that they can deal with multi-modal
systems: systems with multiple local optima. An outstanding question remains what
algorithms are best in a specific situation. Herein, we have not really taken a stand
on this issue, but nevertheless provide some tools and concepts that may be useful
when comparing methods in different situations.

There aremany implementations of thesemethods, and there are alsomanyways to
implement models. Some of these model-formulation alternatives are standardized
markup languages, such as SBML [9] and CellML [16], and some of these also
have resources for parameter estimation. For instance, fitMatlabCellML has been
developed for CellML. Similarly, sloppyCell [42], COPASI, and SBtoolbox [49]
have been developed for SBML. However, for independent development and testing
of these methods, it will always remain a tractable alternative to work with your own
implementations of these algorithms.

In the following chapters, optimization tools are used to find parameter sets [38],
and modified optimization algorithms are also used to generate a pool of “good-
quality parameter sets”, used for prediction uncertainty analysis [7, 21]. These
slightly different settings will put new demands on future developments of opti-
mization algorithms. All in all, it is therefore plausible that the development and
evaluation of optimization algorithms will remain an important part of modelling in
biology for the foreseeable future.
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Chapter 8
Interval Methods

Warwick Tucker

Abstract We describe a modern approach to parameter estimation, based on set-
valued computations combined with a branch and bound step. This allows us to
examine entire sets of parameters, and thus to exhaust the global search within a
finite number of steps. In addition, we show that the method can be accelerated by
set-valued constraint propagation, which allows great improvement of its efficiency.
To illustrate the applicability of our method we apply it to some networks of bio-
chemical reactions modeled by a generic class of ODEs called Generalized Mass
Action Models (GMAs).

Keywords Interval arithmetic ·Set-valuedmethods ·Directed rounding ·Parameter
estimation

8.1 Introduction

Interval methods [1, 11, 14, 17] refers to a framework designed to make numerical
computations mathematically rigorous. This requires taking both rounding and dis-
cretization errors into account. The underlying arithmetic is set-valued; the size of
the sets correspond to the current uncertainty in the computation at hand. Rather than
computing approximations to sought quantities, the aim is to compute enclosures of
the same. Today, the field has reached a high level of maturity, and the techniques
have been used in solving many hard problems in mathematics in fields such as
dynamical systems, control theory, and optimization.
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8.2 Interval Arithmetic

Here, we will briefly describe the fundamentals of interval analysis, which provides
a simple way to extend real-valued computations to set-valued ones. For a concise
reference on this topic, see e.g. [1, 11, 12].

Let IR denote the set of closed intervals. For any element a ∈ IR, we adopt the
notation a = [a, a]. Thus “a ∈ a” means “the point a belongs to the interval a”. If
� is one of the operators +,−,×,÷, we define the arithmetic on elements of IR by

a � b = {a � b : a ∈ a, b ∈ b}, (8.1)

except that a ÷ b is undefined if 0 ∈ b. Working exclusively with closed intervals,
we can describe the resulting interval in terms of the endpoints of the operands:

a + b = [a + b, a + b]
a − b = [a − b, a − b] (8.2)

a × b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)]
a ÷ b = a × [1/b, 1/b], if 0 /∈ b.

When computing with finite precision, directed rounding must also be taken into
account (see e.g. [11, 12]). It follows from (8.1)—or from (8.2)—that addition and
multiplication are both associative and commutative: for a, b, c ∈ IR, we have

a + (b + c) = (a + b) + c; a + b = b + a,

a × (b × c) = (a × b) × c; a × b = b × a.

Also, it is clear that the elements [0, 0] and [1, 1] are the unique neutral elements with
respect to addition and multiplication, respectively. Note, however, that in general
an element in IR has no additive or multiplicative inverse. For example, we have
[1, 2] − [1, 2] = [−1, 1] �= [0, 0], and [1, 2] ÷ [1, 2] = [ 12 , 2] �= [1, 1]. As a
consequence of the arithmetic rules, the distributive law does not always hold. As an
example, we have

[−1, 1]([−1, 0] + [3, 4]) = [−1, 1][2, 4] = [−4, 4],

whereas

[−1, 1][−1, 0] + [−1, 1][3, 4] = [−1, 1] + [−4, 4] = [−5, 5].

This unusual property is important to keep in mind when representing functions as
part of an interval calculation. Interval arithmetic satisfies a weaker rule than the
distributive law, which we shall refer to as sub-distributivity:
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a(b + c) ⊆ ab + ac. (8.3)

This is a set theoretical property that illustrates one of the fundamental differences
between real- and interval arithmetic. A key feature of interval arithmetic is that it is
inclusion monotonic, i.e., if a ⊆ x , and b ⊆ y , then

a � b ⊆ x � y, (8.4)

where we demand that 0 /∈ y for division. This property is what allows us to model
real quantities with a finite amount of information, as described in the next section.

8.3 Set-Valued Numerical Methods

One of the main reasons for passing to the interval realm is that we want a simple
way of enclosing the range R( f ; D) = { f (x) : x ∈ D} of a real-valued function
f : D → R. Except for the most trivial cases, mathematics provides few tools to
describe this set.

We begin by extending the real functions to interval functions. By this, we mean
functions that take and return intervals rather than real numbers. Interval arithmetic
(8.2) provides the theory of extending rational functions, i.e., functions on the form
f (x) = p(x)/q(x), where p and q are polynomials. Simply substituting all occur-
rences of the real variable x with the interval variable x (and the real arithmetic
operators with their interval counterparts) produces a rational interval function F(x),
called the natural interval extension of f . As long as no singularities are encountered,
we have the inclusion

R( f ; x) ⊆ F(x), (8.5)

by property (8.4).

Example 1 Let f (x) = 7/(3 + x), and consider the domain x ∈ [0, 100]. By the
inclusion property (8.5), we have the following range enclosure:

R
(

f ; [0, 100]) ⊆ F
([0, 100]) = 7

3 + [0, 100] = 7

[3, 103] =
[

7

103
,
7

3

]

.

In this particular case, the enclosure is sharp, i.e., we have R( f ; [0, 100]) =
F([0, 100]).

In fact, this type of range enclosure can be achieved for any reasonable function,
e.g. ex = [ex , ex ] and soon.Theonly propertywedemand from the interval extension
of a function f is that R( f ; x) ⊆ F(x).
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Higher-dimensional functions f : Rn → R can be extended to an interval function
F : IRn → IR in a similar manner. The function argument is then an interval-vector
x = (x1, . . . , xn), which we also refer to as a box.

Example 2 Consider f (x1, x2) = x1ex2−x1 , on thedomain (x1, x2) ∈ ([0, 1], [3, 4]).
By the inclusion property (8.5), we have the following range enclosure:

R
(

f ; ([0, 1], [3, 4])) ⊆ F
([0, 1], [3, 4])

= [0, 1]e[3,4]−[0,1] = [0, 1]e[2,4] = [0, 1][e2, e4] = [0, e4],

which again happens to be sharp.

Interval analysis can be extended to an exception-free system by redefining the
interval extension process.Without going into details, this makes all operations well-
defined (including division by zero), see [23]. This extension is very useful in some
situations where e.g. logarithms of sets containing negative numbers are repeatedly
encountered.

There exist several open source programming packages for interval analysis
[2, 4, 15], as well as commercial products such as [5, 7].

8.4 Interval Bisection

As a simple illustration of the powers of interval analysis, we will study the bisection
method. This is a well-known algorithm for locating a zero of a continuous function.
To be precise, let f be continuous on [a, b], and suppose that f (a) f (b) < 0. Then,
by the Intermediate Value Theorem, f has at least one root ζ ∈ (a, b). The bisection
method proceeds as follows: Initially, we set a0 = a and b0 = b. At stage k,
we compute the midpoint ck = (ak + bk)/2. Now there are three possibilities. If
f (ck) = 0, then we can set ζ = ck , and terminate the search. If f (ak) f (ck) < 0,
we set ak+1 = ak and bk+1 = ck . If f (ak) f (ck) > 0, we set ak+1 = ck and
bk+1 = bk . The search is guaranteed to converge to a zero of f since we have
|ak − bk | = 2−k |a0 − b0|.

There are, however, several flaws with the bisection method, when used as a zero-
finding algorithm. One is the problem of finding points a and b satisfying the starting
condition f (a) f (b) < 0. A second problem occurs when f has several zeros within
the search domain. Suppose that f has N simple zeros ζ1 < ζ2 < · · · < ζN in [a, b].
Then the bisection method will find the even-labeled zeros with probability zero,
whilst the odd-labeled zeros are located with uniform probability, see [3].

The interval bisection methods deals elegantly with both problems. Instead of
aiming directly at finding a zero of f , it discards subsets of [a, b] on which f is
guaranteed to be non-zero. Such subsets are called inconsistent, and are removed
from the search as early as possible. By using 8.5, it follows that 0 /∈ F(x) ⇒
0 /∈ R( f ; x). Therefore, the strategy of the interval version bisection scheme is to
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Fig. 8.1 A recursive implementation of the interval-valued bisection method

recursively bisect the search space, retaining only those subintervals x i satisfying
0 ∈ F(x i ). Such intervals are called indefinite, since they may contain zeros of f .
Once a indefinite subinterval has reached a width smaller than the tolerance tol, it
is sent to the output. A C++ implementation of the interval-valued bisection method
is presented in Fig. 8.1. When the search has been exhausted, we are left with a
collection of indefinite intervals x1, . . . , x M whose union contains all zeros of f
within [a, b]:

S = {ζ ∈ [a, b] : f (ζ ) = 0} ⊆
M⋃

i=1

x i = S.

Of course, the set S will overestimate S. We can, however, expect a very good
agreement between S and S, as long as the tolerance tol is kept reasonably small.

8.5 Set-Inversion

In the set-valued framework it makes a lot of sense to extend the concept of solving
equations of the form f (x) = y to include solving for inclusions f (x) ∈ y , wherey is
a given set. This is a very natural problem formulation in the presence of uncertainties;
think of y as representing noisy data with error bounds.

If y is a set with non-empty interior, we should expect the solution set S to share
this property. Therefore, we should be able to approximate the solution set both from
the inside and the outside. In other words, we would like to compute two sets S and
S that satisfy

S ⊆ S ⊆ S.

S andS are called the inner andouter approximations ofS, respectively.Bymeasuring
the size of their difference S \ S we can obtain reliable information about how close
we are to the solution set S.
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Fig. 8.2 An outer
approximation S of the
solution set S (shaded). All
rectangles of width greater
than 10−2 belong to the inner
approximation S
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Given a partition P(X) of the domain X, the outer approximation S contains all
partition elements whose interval image has nonempty intersection with the range
y . The inner approximation contains all partition elements whose interval image is
contained in the range y . In other words, we have

S = {x ∈ P(X) : F(x) ⊆ y} S = {x ∈ P(X) : F(x) ∩ y �= ∅}.

Example 3 Consider the nonlinear function

f (x) = sin x1 + sin x2 + 2

5
(x21 + x22 ),

and suppose we want to find the set

S = {x ∈ [−5,+5]2 : f (x) ∈ [−0.5, 0.5]}.

By a simple bisection procedure, we adaptively partition the domainX = [−5, 5]2
into subrectangles, and discard rectangles x such that F(x) ∩ [−0.5, 0.5] = ∅. The
remaining rectangles are classified according to whether they belong to S and/or S.
Note that, as soon as a subrectangle is determined to belong to S, it undergoes no fur-
ther bisection. Only subrectangles whose interval images intersect ∂S are subdivided.
This is illustrated in Fig. 8.2, where we used a stopping tolerance of 10−2.

8.6 Parameter Estimation

The ability to solve nonlinear inclusions has great practical applications for parameter
estimation. Given a finitely parameterizedmodel function f (x; p) = y together with
a set of uncertain data (x1, y1), . . . , (xn, yn) and a search space P, the task is to solve
for the set

S = {p ∈ P : f (xi ; p) ∈ y i , i = 1, . . . , n}.
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This can be done by computing inner and outer approximations of S, exactly as
described above. The inner and outer approximations then become:

S = {p ∈ P(P) : f (xi ; p) ⊆ y i for all i = 1, . . . , n},
S = {p ∈ P(P) : f (xi ; p) ∩ y i �= ∅ for all i = 1, . . . , n}.

Rather than assigning probability densities to model uncertainties, set-inversion
methods use compact sets of numbers, e.g., intervals as its basic elements. This
results in a less complex approach than the Bayesian one, as only boundedness of
the errors is assumed—no prior information about probability distributions enter
the computations. The ability to compute with entire sets of parameters means that
any given search space can be (recursively) subdivided into smaller subsets—each
of which can be examined independently of the others. The fact that the subsets
form a partition of the original search space means that we can perform a global
search: every single parameter is accounted for. This subdivision process is known
as a branch-and-bound (BaB) method.

BaB search algorithms are deterministic global search algorithms that repeatedly
partition (branch) the search space, and discard (bound) inconsistent parts. Set-valued
computations allows safe identification of parameter sets that contain only inconsis-
tent values and of those that contain only consistent values. Parameter regions that
are not identified as consistent or inconsistent are called indefinite. Only the latter
type are retained for further subdivision.We illustrate this procedure in the following
example.

Example 4 Consider the model function f (x; p1, p2) = 5e−p1x − 1 × 10−6e−p2x

depending on two parameters p1 and p2. We generate data at the nine sites xi =
5(i − 1), i = 1, . . . , 9 for the parameter values p� = (0.11,−0.32) with 90%
relative noise added:

yi = f (xi ; p�
1, p�

2), y i = yi (1 + [−0.9,+0.9]), i = 1, . . . , 9.

This set-valued data is illustrated in Fig. 8.3a. Starting with the search space P =([0,+100], [−100, 0]), and using a stopping tolerance (the maximal side length of
a parameter box) of 10−2, we arrive at the inner and outer approximations illustrated
in Fig. 8.3b.

While BaB methods work well for problems of low dimension, they are not
practical for high-dimensional searches: the number of subsets grows large even
for a small depth of the recursive subdivision process. To overcome this problem,
constraint propagation (CP) techniques are used to shrink (or even entirely delete)
subsets of the partition. CP-techniques use detailed structural information about the
model function and data in order to propagate information between the parameter
space and the data sets. Thismakes it possible to detectmathematical inconsistencies,
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Fig. 8.3 a The set-valued data generated from the model function. b The corresponding set of
consistent (green) and indefinite (red) parameters

which in turn can be used to shave of portions of parameters or data in an automated
fashion. Combined with a BaB search, this produces a set-inversion method suited
for large problems, see e.g. [9, 19, 20].

8.7 Constraint Propagation

The basic idea behind constraint propagation is to view a single equation y = f (x)

as a set of constraints that must be satisfied by the solution(s) of the original equation.
Viewed as set-valued functions, these constraints often act as contractors, i.e., prop-
agating the original search domain through the constraints often produces a smaller
domain.

Example 5 As a first example, consider the equation y = x31 + x2, which can be
recast as x1 = 3

√
y − x2 and x2 = y − x31 . Given a search domain (x1, x2), we

can impose the constraints x1 ∈ x1 ∩ 3
√

y − x2 and x2 ∈ x2 ∩ (y − x3
1) on all

solutions. Taking y = 2, and looking for a solution with (x1, x2) ∈ ([0, 1], [0, 1]),
the constraints produce

x1 ∈ x1 ∩ 3√y − x2 = [0, 1] ∩ 3
√
2 − [0, 1] = [0, 1] ∩ 3

√[1, 2] = [0, 1] ∩ [1, 3√2] = {1}
x2 ∈ x2 ∩ (y − x31) = [0, 1] ∩ (2 − [0, 1]3) = [0, 1] ∩ (2 − [0, 1]) = [0, 1] ∩ [1, 2] = {1}

which actually happens to give the (unique) solution within the domain.

In general, we are not so fortunate as in this example, but the constraints do often
contract the components of the search domain.

Example 6 As a second example, consider the equation y = x1ex2 , which can be
recast as x1 = y/ex2 and x2 = log (y/x1). Given a search domain (x1, x2), we can
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impose the constraints x1 ∈ x1 ∩ (y/ex2) and x2 ∈ x2 ∩ log (y/x1) on all solutions.
Taking y = 1, and looking for a solution with (x1, x2) ∈ ([0, 2], [−1000, 0]), the
constraints produce

x1 ∈ x1 ∩ (y/ex2 ) = [0, 2] ∩ (1/[e−1000, 1]) = [0, 2] ∩ [1, e1000] = [1, 2]
x2 ∈ x2 ∩ log (y/x1) = [−1000, 0] ∩ log (1/[1, 2]) = [−1000, 0] ∩ [log 1

2 , 0] = [log 1
2 , 0].

This pass through the constraints contracted the domain by a factor ≈ 2885, and
happens to produce the smallest rectangle containing all solutions within the given
domain.

In both examples, we have explicitly recast the equations into their inverse opera-
tions; in general this is not practical. Fortunately, the inversion of basic functions can
easily be automated with a programming language supporting operator overloading.
By iterating the contractions, in combination with a partitioning scheme, the solu-
tion set is rapidly obtained. Furthermore, if we somewhere in the process encounter
an empty intersection, then we have proved that no solution exists within the given
domain. For a thorough treatment of constraint propagation techniques, see [8] and
references therein.

8.8 Examples

In this section we present two examples taken from modeling and simulation of bio-
chemical systems. Both examples havemodel functions that are solutions to ordinary
differential equations, and are as such not explicit. We overcome this complication
by approximating the time-derivative ẋ by a suitable linear combination of the com-
ponents of x . There are many ways to do this, resulting in different approximation
schemes such as finite differences, collocation methods etc. We opt for a spline
approach which works well when the data is not too noisy.

8.8.1 Example: A Generalized Mass Action Model

A generalized mass action model is a system of ordinary differential equations on
the form

ẋi =
Ni∑

j=1

ai j

d∏

k=1

x
gi jk
k (i = 1, . . . , d). (8.6)

Each variable xi (which assumes only positive values) represents the concentration
of some reactant, and ẋi denotes the time derivative of xi . The parameters ai j are
known as rate constants, whereas the parameters gi jk are referred to as the kinetic
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(a) (b)

Fig. 8.4 a A branched pathway with feedback inhibitions. b The corresponding GMA-system

orders. The interactions corresponding to the system are usually summarized in the
form of a network. We first consider the GMA-system presented in Fig. 8.4.

Here, the topology is assumed to be known, i.e., we know which parameters
appear as non-zero quantities in the differential equation. Furthermore, we also use
information regarding dependencies. More precisely, we know that the second term
of the first component matches the first term of the second component, and that the
third term of the first component matches the first term of the third component. Thus,
all in all, we are to determine the values of 13 distinct parameters, arranged in two
5-dimensional problems, and one 3-dimensional problem.

For the computations, we used 10 sets of initial conditions, and each trajectory
was sampled at 20 points in time. The search region for each kinetic order gi j and rate
constant ai was formed by embedding each true parameter value in an interval with a
radius proportional to the modulus of the true value, e.g., ai = [(1−ρ)ai , (1+ρ)ai ].
The scaling factor ρ took values in {0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0}. The stopping
tolerance was set to 1 × 10−4 for the second and third component of the GMA-
system. This produced parameter enclosures no wider than 4.61×10−4. These were
then inserted into the first component of the GMA-system, after which the remaining
three parameters were solved for using the tolerance 1× 10−3. This setup produced
the correct parameter values rounded to three significant digits.

In Table8.1, we present the timings for the estimation, as well as the number of
parameter boxes examined during the search.

We were surprised to note that the solution to the 3-dimensional subproblem
(estimating the three leading parameters of the first component) was immediate. By
this, we mean that the search only required one single pass through the constraints
before satisfying the stopping tolerance. This resembles the situation presented in
Example 5, illustrating the potential strength of using constraints as contraction
mappings.

Table 8.1 The computational effort for the GMA-system

Relative radius (%) 0 10 50 100 200 300 400 500

CPU time (s) 0.02 3.99 5.08 5.68 6.88 8.50 10.77 13.63

Examined boxes 3 827 1067 1185 1463 1835 2341 3063
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Fig. 8.5 a A branched
pathway with activations and
inhibitions. b The
corresponding S-system

x1

x2

x3

x4 ẋ1 = 12x−0.8
3 −10x0.51

ẋ2 = 8x0.51 −3x0.752

ẋ3 = 3x0.752 −5x0.53 x0.24

ẋ4 = 2x0.51 −6x0.84 .

(a) (b)

8.8.2 Example: An S-System

S-systems are a special class of GMAs having two terms per component; one corre-
sponding to the production, and one corresponding to the degradation of the reactant.

An S-system can be considered as a condensed version of a GMA-system,
obtained by aggregating individual reactions into the net processes of synthesis and
degradation—see [16, 21] for a detailed account of this procedure. In particular, such
a system consists of a system of ordinary differential equations of the form

ẋi = αi

d∏

k=1

xgik
k − βi

d∏

k=1

xhik
k (i = 1, . . . , d),

with non-negative rate constants αi and βi and real-valued kinetic orders gi j and hi j .
Our second examplewas described in [22], and falls into the category of S-systems

(Fig. 8.5). Again, the topology is assumed to be known, i.e., we know which para-
meters appear as non-zero quantities in the differential equation. Contrary to the
previous example, however, we no longer use any information regarding dependen-
cies. That is, we do not use the fact that the second term of the second component
matches the first term of the third component, and so on. Thus, all in all, we are
to determine the values of 17 distinct parameters, arranged in three 4-dimensional
problems, and one 5-dimensional problem.

For the computations, we used 5 sets of initial conditions, and each trajectory was
sampled at 20 points in time. The search region for each kinetic order gi j and rate
constant ai was formed by embedding each true parameter value in an interval with a
radius proportional to the modulus of the true value, e.g., ai = [(1−ρ)ai , (1+ρ)ai ].
The scaling factor ρ took values in {0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0}. The stopping
tolerance was set to 1 × 10−3, which in all cases produced the correct parameter
values rounded to three significant digits. In Table8.2, we present the timings for the
estimation, as well as the number of parameter boxes examined during the search.

Table 8.2 The computational effort for the S-system

Relative radius (%) 0 10 50 100 200 300 400 500

Time (in s) 0.00 2.22 2.94 3.24 3.55 3.83 4.03 4.36

Examined boxes 4 734 988 1072 1190 1292 1376 1494
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In [18, 22], the search region for each of the kinetic orders gi j was set to [−1,+1],
whereas the rate constants αi were sought for within the domain [0, 20]. Using
the same data set and stopping tolerance as above required a total running time
of 4.09 s, assuming the correct topology, but using no prior information regarding
dependencies. During the search a total of 1364 parameter boxes were examined. The
estimated parameter values were, again, correct to at least three significant digits.

8.9 Discussion

Parameter estimation via set inversion and constraint propagation techniques differ
in a fundamental way from the main-stream statistical-type parameter estimation
methods in that we solve the problem by a pruning scheme based on a contraction
principle, rather than recasting the estimation as a global minimization problem.
This has several advantages: first, it is well-known that global minimization is an
intractable problem, in the sense that numerical solutions often converge to a local,
rather than a global, minimum, and there is no way of telling the two cases apart.
Second, the quantity to be minimized is often chosen to be a (weighted) least-square
error. This procedure distorts the search landscape, andmay producemany seemingly
good fits to the data. The set-valued methods described here simply contract/discard
entire portions of the parameter space under scrutiny, according to their consistency
with the underlying data, avoiding the problems mentioned above.

The limitation of intervalmethods is that they often are time-consuming compared
to traditional numerical methods. This is perhaps not surprising considering that
mathematical statements require more information—and therfore more processing
of the available data—compared to local numerical solvers.
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Chapter 9
Model Extension and Model Selection

Mikael Sunnåker and Joerg Stelling

Abstract In this chapterweare concernedwith the topic of construction, assessment,
and selection of models in general, and of biochemical models in particular. Standard
approaches to model construction and (automated) generation of candidate models
are first discussed. We then present the most commonly used methods for model
assessment, as well as the underlying concepts and ideas. In particular we focus on
the information theoretic and Bayesian approaches to model selection. Information
theoretic methods for model selection include the Akaike information criterion and
the more recent deviance information criterion. Bayesian approaches include the
computation of posterior ratios for relative model probabilities from Bayes factors
as well as the approximate Bayesian information criterion. We also briefly discuss
other methods such as cross-validation and bootstrapping techniques, and the the-
oretically appealing approach of minimum description length. We sketch how the
most important results can be derived, emphasize distinctions between the methods,
and discuss how model inference methods are employed in practice. We conclude
that there is no generally applicable method for model assessment: a suitable choice
depends on the specific inference problem, and to some extent also on the subjective
preferences of the modeler.
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9.1 Introduction

Quantitative dynamical models constitute powerful tools for the detailed analysis
of biochemical phenomena; this analysis may not be possible with more coarse-
grained modeling strategies such as Boolean or Bayesian models. Examples of
such phenomena include ultrasensitivity, multi-stability (bifurcations and hystere-
sis effects), oscillations, and signal amplification. The main purpose of constructing
a biochemical model may in principle be to infer the correct structure of the modeled
system, or to accurately predict the system response. However, accurate predictions
require that the model incorporates the relevant system components, which can in
turn only be inferred based on quantitative experimental observations of sufficient
number and quality.

The inference of models that constitute valid representations of a given system is
therefore one of the most important goals of computational systems biology (see also
[31]). To infer a model wemust be able to assess howwell it represents the biological
system, which requires a formal method for model assessment. Such methods are
commonly based on an evaluation of the descriptive or predictive ability of the
model, given a set of experimental data. The goal of the inference process is that
the model should constitute the best possible representation of the studied system,
for a given set of constraints. However, it may be difficult to check if this has been
achieved in practice, or how far away we are from this goal. We therefore commonly
contend ourselves with evaluating the relative quality of a predefined set of models.
In a general scenario, therefore, we are concerned with close interactions between
experimental and computational analysis using a set of mathematical models, with
the (possible) aim of identifying the model that best represents the observed behavior
of our biological system under study; this implies an iterative cycle as illustrated in
Fig. 9.1.

This chapter serves as a guide for how to approach model inference from a the-
oretical and computational perspective. To make the chapter self-contained and to
give the reader a head-start on the topic, we start with some basic notions and a brief
discussion of the general model selection setting. We then discuss principles for how
to convert verbal hypotheses about system mechanisms, which are usually available
at the initial stages of a project, into a set of hypothetical mathematical models. This
is followed by a discussion of different approaches and methods, as well as their
most important technical aspects, for the assessment and selection of hypothetical
models.

9.2 The Basic Setting

Before discussing the available methods for assessment and automated construc-
tion of biochemical models we will introduce some basic concepts that are useful.
The components represented by a biochemical model are usually chemical species
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Fig. 9.1 Illustration of the ideal inference process for biochemical models. Given an initial set
of data, a set of models, and an inference method, the models are assessed and compared. If
the conclusions are ambiguous it may be necessary to produce additional experimental data,
and the iterative process of experiments, data analysis, and model assessment is then continued
until the results are satisfactory

(e.g., metabolites, proteins, transcripts) that may exist in different states (due to
post-translational modifications, complex formations, etc.). The model represents
the biochemical system by state variables that capture species abundances, and by
the interactions between the state variables. The presence or absence of molecular
interactions, referred to as biochemical reactions, defines the network structure and,
in particular, the reaction stoichiometries. However, to simulate the time evolution
of a model we also need to define the forms of the reaction terms. The reaction terms
are typically parameterized (for example, when using enzyme kinetics to describe
reaction rates), and the particular parameter values may strongly influence model
predictions. The identification of representative reaction terms and parameter val-
ues requires experimental data containing information about the modelled entities.
Importantly, the experimental data incorporated in the inference process must unam-
biguously correspond to model quantities, for example to certain combinations of
the state variables.

The ingredients in the process of model assessment and selection are (see also
Fig. 9.2):
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Fig. 9.2 Steps of the typical model assessment process. The three necessary initial components
in the inference process are given encased in the dashed oval on top. The set of candidate models
is then assessed, and the quantities of interest are analyzed. If the results are conclusive, or if no
further (informative) experiments are feasible, the inference process comes to an end. Otherwise
model predictions of unobserved model quantities are used to design informative experiments,
and additional data is produced. We then iteratively follow the steps defined in the green boxes to
incorporate, analyze, and generate new data until the outcome is satisfactory, or until no additional
experiments are feasible

• A set of m ≥ 1 testable dynamical modelsM (the model class), corresponding to
a set of m hypotheses.

• A set of experimental dataY , which takes the form of observations of one or more
system entities over time (see also [45]).

• An inference method, that is, a formal procedure to draw conclusions about if a
model constitutes a satisfactory system representation.

With these components at hand, we can assign a performance score to each of the
models for the specified inference method and the available experimental data. Sys-
tem properties of interest, which are represented by the different models, may for
example be the existence of hypothetical reactions, and the affinities or maximal
velocities of reactions. There are two common scenarios resulting from the com-
parison of model behavior and experimental data. First, none of the models may
reflect the system behavior accurately enough, for example, based on statistical tests
of model fit. This indicates that important biochemical mechanisms are missing in
the current set of hypotheses (models), and that the model class should be extended
by new hypotheses. Note that it is a critical (and largely open) problem how to
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incorporate such model extensions systematically. Second, the evidence from data
may not provide conclusive support for one of the models, implying that we have a
set of alternative hypotheses that can explain the data. In such cases we may investi-
gate if the high-scoring models share certain properties, which are then assumed to
well reflect the underlying system. If we are interested in model predictions, we may
simulate more than one model and compute weighted predictions by employing the
model scores. Another option, in particular if we want to find conclusive support for
a single model, is to producemore experimental data. Ideally, computational analysis
and data generation are then performed in an iterative fashion until the results are
conclusive (see Fig. 9.1).

Example: Suppose that the number of transport proteins of a nutrient into a
cell is unknown, and that we would like to use modeling to determine this
number. The analysis is based on extra- and intracellular measurements of
the nutrient. We first create a core model with well-established intracellular
chemical species and reactions, and then a set of m = 10 extended models that
each incorporates a different number (1–10) of transport reactions. To assess
the models we decide to use the method of least squares in combination with a
term that penalizes for the number of transport reactions (parameters). It turns
out that the model with five transport reactions performs better than the models
with fewer reactions, but that all models with at least five reactions can equally
well explain the data. To discriminate between the remaining six models (with
5–10 reactions) we would need to collect more experimental data.

9.3 The Process of Inference in Biochemistry

9.3.1 Well Posed Modeling Problems

The purpose of a (biochemical) model should be to solve a well-posed problem,
which may for example be a topology identification or prediction problem. A prob-
lem is well-posed in the sense of Hadamard if a unique solution to the problem exists
such that the solution depends continuously on the data and parameters. The prob-
lem should be formulated in such a way that the investigator is in principle able to
reach a conclusion by answering a sufficiently large number of questions with dis-
tinct alternatives (or equivalently with enough information). Examples of well posed
problems in biochemistry are of the type: “is there a reaction between the chemical
species X and Y?” and “will the average cytosolic concentration of metabolite Z
reach above a given threshold upon addition of nutrients to a cell culture?”, whereas
common examples of ill-posed problems are: “how does pathway P work?” and
“what happens to metabolite Z upon nutrient addition?”. For an ill-posed problem
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it is arbitrary, and depending on the subjective interpretation of the researcher, if a
model is considered useful for solving the problem. An investigator should therefore
strive to reformulate ill-posed problems, which are particularly common in the early
stages of a project, into well-posed problems. The well-posed problems above give
a hint to the areas of use of biochemical modelling. In general, biochemical models
are tools that are used to infer the inner workings of systems from observational data,
or to describe and predict the evolution of systems.

It is also important to define the scope of the model, since this may strongly influ-
ence the choice of modeling strategy. By the scope of the model, for example, we
refer to the considered time span of the experiments, the granularity of the system
representation (e.g., regarding the level of molecular resolution), and the type of sys-
tem interventions covered (e.g., environmental or genetic conditions). It is important
to discuss and communicate the model scope to all collaborators involved in the
project–otherwise parts of the generated experimental data may not be useful.

9.3.2 Construction of Candidate Models

The initial step of the model construction process is to formulate, potentially
still vague, ideas about solutions to the problem of interest as a set of (verbal)
hypotheses. The set of hypotheses takes the form of a hypothesis class with m
elements: H = {H1, H2, . . . , Hm}. In the next step we reformulate the set of
hypotheses into a set of mathematical descriptions that form a candidate model
class: M = {M1, M2, . . . , Mm}. Following the general guidelines proposed by
Johnson et al. [28], there are in principle three steps in the conversionprocess between
hypotheses and models:

• Specify the state variables of the model (e.g., chemical species in biochemical
models).

• Specify the formof the interactions between variables (e.g., biochemical reactions)
as well as the response variables (corresponding to experimental measurements).

• Define an error structure of the model (e.g., the form of the measurement noise).

Note that there should be a one-to-one mapping from a hypothesis to a model (i.e., a
hypothesis should not be equally well described by two or more models), otherwise
the hypothesis must be refined [28]. The selection of candidate hypotheses, and
the corresponding candidate models to be evaluated, is an important process that
should be done carefully. In fact, the difficulty to generate a suitable set of candidate
models has commonly been criticized as a drawback of model selection methods by
advocates of alternative approaches. For example, Steidl [50] argued that hypothesis
testing is more informative than model selection for the analysis of ecological data
when insufficient information is available to formulate strong candidate models,
which generated some controversy in the literature [47, 49].
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Here we focus on dynamical biochemical models in the form of systems of ordi-
nary differential equations (ODEs). The ODEs of a model Mi ∈ M can be speci-
fied by:

dx(t)

dt
= f (x(t), θ , u(t)) (9.1)

with (in general) a nonlinear function f , the state variables x(t) ∈ R
n , the parame-

ters θ ∈ R
d+, and the inputs u(t) ∈ R

q . In biochemical models, the state variables
typically represent the concentrations of chemical species, the parameters are for
example used to specify the rates of reactions, and the inputs may for example rep-
resent the addition of a chemical compound to a cell culture. Note that the modeling
target quantities Q, which is the set of all available and potential types of experimen-
tal measurements to be used in the inference process, must have a clear interpretation
and must be computable for each model inM . We define a response function y ∈ Q
that relates the model components to experimental observations:

yk = h(xk) + ek, ek ∼ N (0, Sk), (9.2)

where the (potentially non-linear) function h maps system states to observables,
the subscript k = 1, . . . , N denotes observational time point tk , yk ∈ R

m , and
where we assume that the measurement noise ek ∈ R

m is Gaussian distributed with
covariance matrix Sk ∈ R

m×m . In some cases it may be more appropriate to use
a non-Gaussian measurement noise, although Gaussian distributions are commonly
employed in practice (mainly for convenience reasons). In the following, we will
omit the response function in the model definitions, since it is usually identical
for all candidate models. Also, let the following observational data be available:
Y = [Y1, Y2, . . . , YN ], where Yk ∈ R

m .
The parts (components and interactions) of the biochemical models can be (opera-

tionally) divided into two categories: parts that are considered to be well-established
and parts that are hypothetical. Typically we are interested in assessing the plausibil-
ity of the hypothetical parts, given the well-established core mechanisms. A model
with only well-established, and no hypothetical mechanisms is referred to as the core

model Mc:
{

dxc(t)
dt = f c(xc(t), θc, uc(t)) . The model class M comprises models

that are constructed by combining the core model with a subset of the hypothetical
model parts. The parts of model Mi may be decomposed into:

Mi :
{

dxi (t)

dt
= f i (xi (t), θ i , ui (t)) = fc(xc(t), θc, uc(t)) + f̃ i (xi (t), θ i , ui (t)) ,

(9.3)
where x̃i , θ̃ i , and ũi are components inmodel Mi , but not in Mc, so that: xi = {xc, x̃i },
θ i = {θc, θ̃ i }, and ui = {uc, ũi }. Also note that f̃ i has the same arguments as f i

in Eq. (9.3), since f̃ i may incorporate components of the core model. A number of
m +1 unique candidate models can be constructed if the hypothetical model parts are
mutually exclusive, namely the core model and models M1, M2, . . . , Mm as defined
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in Eq. (9.3). However, if the hypothetical model parts are not mutually exclusive, a

number of:
∑m

k=0

(
m
k

)

= 2m unique candidate models can be constructed of the

form:

Mα(Λ):
⎧
⎨

⎩
dxΛ(t)

dt
= fc(xc(t), θc, uc(t)) +

∑

j=Λ

f̃ j (x j (t), θ j , u j (t)) (9.4)

where Λ ⊆ {1, 2, . . . , m}, α(Λ) maps the subset Λ to a specific integer between
1 and 2m , and M = {M1, M2, . . . , M2m }. The approach to combine a core model
with a subset of hypothetical model extensions is commonly referred to as ensemble
modeling [34]; for a recent application of ensemble modeling see [63].

9.3.2.1 Automated Construction of Dynamical Biochemical Models

The large effort required tomanually construct a singlemodel, the high computational
cost connected to the evaluation of each model, and the potential combinatorial
explosion in the number of hypothetical models make it difficult to cover a large part
of the hypothesis space. Unfortunately, there is no generally accepted step-by-step
strategy for model development, so the modeler must rely on experience and prior
knowledge instead [14]. A sensible characterization of complex systems will most
likely always necessitate a great deal of detective work and use of expert knowledge
from the problem domain [53]. However, some recent approaches partially automate
the model construction process, either by model reduction or by model extension.

To automate the generation of candidate models, one can start from a large model
where parts are not necessary to explain the data. An interesting approach in this
direction was proposed by Raue et al. [41]. This method is based on the computation
of “profile likelihoods”, for which one of the model parameters is evaluated at a num-
ber of predefined values, and the rest of the parameters are optimized conditioned on
the fixed parameter. This results in a confidence region for the evaluated parameter,
and the parameter may then be eliminated if it is not significantly different from
zero. However, this approach entails high computational costs because it requires a
large number of optimizations to generate candidate models. To our knowledge this
procedure has also not yet been tested in practice, but it was discussed as a poten-
tial model reduction approach [41]. A systematic heuristic approach for identifying
reduced models based on exploring the parameter space has recently been proposed
[52]. The effects of parameter elimination, or “evaporating parameters”, for gradient
based optimization methods have been discussed by Transtrum et al. [56]. A method
for the abstraction of detailed genetic regulatory network models was proposed by
Kuwahara [35]. This method operates around a predefined set of model parame-
ter values and applies different model reduction techniques (e.g., Michaelis-Menten
approximation, dimerization reduction, and elimination of irrelevant nodes) to speed
up stochastic simulations.
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Alternatively, model extension approaches can be employed to generate candidate
models. A recent method for automatic model extension by Schmidt et al. [37] uses
a brute force approach based on symbolic regression (also see [3]) to search the com-
bined space of model equations and parameter values with a genetic programming
algorithm. Unfortunately, brute force approaches are often computationally expen-
sive due to a combinatorial explosion in the number of terms to be evaluated, and
as a consequence of high-dimensional parameter spaces. In addition, it may be diffi-
cult to interpret the resulting equations in terms of system components, and system
constraints (e.g., mass balances of components) may be violated.

An interesting recent approach to automated model construction is that of [33],
where stochastic model extensions are incorporated into models to represent uncer-
tainties in model topologies (‘system noise’). By introducing stochastic terms, one
obtains models of the form:

Ms :
{

dx(t)

dt
= f (x(t), θ , u(t)) + G(x(t), θ , σ ), (9.5)

whereG(x(t), θ , σ ) is a stochastic term, andσ is a nuisance parameter. The additional
term can also be thought of as an extension to the structure of the ODE model in
Eq. (9.1) [17]. Kristensen et al. proposed to let Eq. (9.5) take the form of a set of
stochastic differential equations (SDEs) [33]. Equation (9.5) is then rewritten in
differential form with G(x(t), θ , σ )dt = σdω:

Msde : {dx(t) = f (x(t), θ , u(t)) dt + σdω (9.6)

By inferring the form of the additional stochastic term (that is, by estimation of
σ ) it may be possible to identify missing deterministic model parts. However, the
incorporation of this term may also improve the estimates of θ and of other model
components. A big challenge in SDE based model development is to automatize
parts of the procedure. Similar tools for model diagnostics and improvements that
are not based on SDEs have also been proposed [29], but those cannot be used to
pinpoint model structure misspecifications [33].

9.3.2.2 Model Averaging and Model Expansion

There is no such thing as a correct, or true, model in the sense that the model captures
every detail of the studied system. In fact, a model with this property would by
definition not be a model, but equivalent to the system itself. A good model is useful
because only characteristic features of the system, which have a significant impact
on the model predictions, are incorporated. If the predictive power is of primary
concern, it is therefore possible to average over candidate models, assuming that by
averaging one will focus on the common, characteristic features.
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Model averaging is a natural operation in the Bayesian setting. The posterior
probability of a model Mi , among a set of models M = {M1, M2, . . . , Mm} and
given a set of experimental data Y , can be quantified by Bayes’ theorem as:

p(Mi |Y ) = p(Y |Mi )p(Mi )

p(Y )
= p(Y |Mi )p(Mi )∑m

i=1 p(Y |Mi )p(Mi )
(9.7)

Equation (9.7) gives the posterior model probability in the simple case that Mi is
not a parameterized model [30]. However, if Mi is a parameterized model we can
integrate over the parameter space to compute:

p(Mi |Y ) = p(Mi )

p(Y )
p(Y |Mi ) = p(Mi )

p(Y )

∫

Θ

p(Y |Mi , θ)p(θ |Mi )dθ (9.8)

Note that p(Y ) is a constant that disappears when we compute the posterior ratio
between models for model selection (see Sect. 9.4.4), and it is commonly omitted
from Eq. (9.8). To compute p(Mi |Y ) we therefore need to define the prior model
probability p(Mi ), the prior distribution of the model parameters p(θ |Mi ), and the
likelihood function p(Y |Mi , θ).

We will now show how uncertainty can be incorporated in the model structure
with arguments similar to those of Draper [17]. The inherent uncertainty in themodel
structure results in a model on the form: M = (θ , S, Mc), where Mc are fixed (core)
parts of the model, θ ∈ Θ are model parameters, and S ∈ � are nuisance parameters.
Since Mc is fixed we will omit it in the following so that: M = (θ , S). This gives
us the following (continuous) set of models: M ′ = (Θ,�). The distribution for a
target quantity x ∈ Q(M ′) can then be computed as:

p(x|Y ) =
∫

M ′
p(x|Y , M)p(M |Y )d M

=
∫

�

∫

Θ

p(x|Y , θ , S)p(θ , S|Y )dθdS

∝
∫

�

∫

Θ

p(x|Y , θ , S)p(Y |θ , S)p(θ , S)dθdS (9.9)

Equation (9.9) can be used to compute statistical moments, for example the expected
value of x, for a continuous set of models. However, for most practical applications,
the integrals in Eq. (9.9) cannot be solved analytically; we will discuss numerical
approximations in Sect. 9.6.
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For a finite set of fixed model structures, M = {M1, . . . , Mm}, Eq. (9.9) takes the
form:

p(x|Y ) =
m∑

i=1

∫

Θ

p(x|Y , θi , Mi )p(θi , Mi |Y )dθi ∝
m∑

i=1

∫

Θ

p(x|Y , θi , Mi )p(Y |θi , Mi )p(θi , Mi )dθi (9.10)

Equation (9.10) shows how to compute the weighted (with posterior p(M |Y ))
expected value of x.

The posterior distribution of x can be used to compute statistical properties of
interest. For example, the first moment of x, given model M , can be estimated as:

E[x] =
∫

x p(x|Y )dx =
∫

x
(

p(Y |x)

p(Y )

)

p(x)dx (9.11)

where E[x] denotes the expected value of x (first moment). We can now compute a
Monte Carlo estimate IN of the integral in Eq. (9.11) by drawing N � 1 independent
samples of xi , i = 1, . . . , N from the prior distribution p(x):

IN =
N∑

i=1

xi wi (9.12)

where wi = p(Y |xi )∑N
i=1 p(Y |xi )

[43]. Also note that it is straight-forward to use a parameter

prior distribution instead of a prior distribution over x, since there is a one-to-one
mapping between the state variables and the parameters (in a deterministic model,
θi unambiguously maps to xi ).

Note that Eq. (9.10) is more commonly used in practical applications than
Eq. (9.9); a finite set of distinct models is commonly the preferred choice in bio-
chemical modeling. However, applications for which a continuous spectrum of mod-
els is at hand include the SDE models discussed in the previous section [33], and the
nonlinear mixed effects models in [4].

9.4 Methods for Model Assessment and Model Selection

In this section wewill review themost common computational approaches andmeth-
ods for the assessment of, and selection between, (biochemical) models. We will in
particular focus on the conceptual ideas and the connections between the approaches
commonly used in the domain of dynamical (ODE) models. Most model selection
methods that are not commonly used for dynamical models, such as minimum mes-
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Table 9.1 Properties of some of the most common model selection methods

Method Approach Parameter points Non-nested Large N

Likelihood ratio
test

HT Single No Yes

AIC IT Single Yes Yes

DIC/BPIC IT Multiple Yes No

Bayes factors Bayesian Multiple Yes No

BIC Bayesian Single Yes Yes

Cross validation Prediction N/A Yes N/A

Abbreviations: AIC Akaike information criterion. DIC Deviance information criterion. BIC
Bayesian information criterion. BPIC Bayesian predictive information criterion. HT Hypothesis
testing. IT Information theoretic. Approach refers to the ideas underlying the method. Parameter
points refers to if the conclusions are drawn from one (optimal) parameter point (see also [9]), or
from an ensemble of parameter points.Non-nested refers to if themethodworks also for comparison
of models that are not nested. Large N refers to if the method is only justified asymptotically in the
limit of a large number of data points

sage length [13] and methods employing the Vapnik-Chervonenkis dimension [24],
will therefore be omitted. For a more general discussion of issues commonly encoun-
tered in the modeling and inference process we refer the reader to [53].

The available approaches to model assessment can be assigned to two broad
categories, depending on how they relate models and data. The prediction based
approach evaluates the predictive power of the model after dividing the available
data into two sets; a training set and a test set. Alternatively, in the likelihood based
approach the data is not divided, but instead all available data is used in the assessment
of eachmodel. The correspondingmethods are either based on a comparison between
the assessed model and the data generating model (assumed to belong to the class of
consideredmodels), or betweenmodels within a pre-defined set of candidate models.
Table9.1 shows the key properties of the methods discussed here. For other reviews
on the topic of model selection in computational biology see [6, 32, 61]. Note that
he choice of model assessment approach is to some extent subjective. However, for a
correct use of the approaches it is necessary to understand the underlying reasoning
and assumptions. The steps of the typical model assessment process are summarized
in Fig. 9.2.

Prediction Based Approaches

A straight-forward approach to investigate the predictive ability of a model is to
divide the available data into two sets, namely one set of training data and one set of
test data. The training data is used to calibrate the model parameters, and the test data
is used to assess the predictive ability of the model. Note that this is different from
the likelihood based approaches discussed later in this chapter, for which all data is
used in the model assessment; this may be advantagous in situations for which few
experimental observations are available.
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Cross-validation can be used to estimate the expected prediction error, which then
serves as a measure of the predictive ability of the model. The idea behind K-fold
cross validation is to divide the N available data into K ≤ N equally sized parts,
and to use all parts but one to train the model and the remaining part for model
assessment. Let Y k denote all data in part k and Y −k denote all experimental data
except for those in part k = 1, . . . , K . Let ŷ(Y −k) be the prediction of y for a model
that has been calibrated on Y −k . An estimate of the expected prediction error, ε, is
then:

ε = 1

N

K∑

k=1

N/K∑

i=1

L(Y j , ŷ j (Y
−k)), j = (k − 1)

(
N

K

)

+ i, (9.13)

where Y j is the j th experimental observation and L(Y, ŷ(Y −k)) is a loss function
for measuring errors (squared or absolute errors are commonly used) [24]. It is not
immediately clear how large K should be. If we let K = N (leave-one-out cross
validation) the error estimation is as accurate as possible (for K < N the errormay be
overestimated), but unfortunately this approach may be computationally expensive
depending on the application [24]. It is therefore common to choose a K < N in
practice. For a given set of models, it is reasonable to select the model with the lowest
expected prediction error. For a biochemical application of cross-validation, see the
work by Kuepfer et al. [34] where 5-fold cross-validation was used to identify a
predictive subset of models among the 18 models in the original hypothesis class.

The idea behind bootstrapping is to estimate the statistical accuracy of a quantity
of interest by re-sampling B times from a set of data with replacement. In a fashion
similar to that of cross-validation, the expected prediction error for a model can be
computed as a leave-one-out bootstrap estimate (for each sample of size N ):

ε = 1

N

N∑

i=1

1

|Ci |
∑

j∈Ci

L(Yi , ŷ j
i ), (9.14)

where Ci are the indices of the bootstrap samples that do not contain observation i
(|Ci | is the number of such samples), and ŷ j

i is the prediction of Yi with the model
trained on samples corresponding to bootstrap sample index j [18, 27]. Leave-
one-out bootstrapping can be considered as a smoothed version of leave-one-out
cross-validation, since for each i we average over multiple predictions made on the
bootstrap samples in Ci [27]. At the same time, a bootstrap sample of size N con-
tains only ≈ 0.632N distinct observations on average [27], resulting in a prediction
error that tends to be overestimated. As for cross-validation, we select the model
with the lowest expected prediction error from a given set of models, according to
Eq. (9.14). However, in the commonly data-deprived domain of dynamical modeling
in biochemistry it is difficult to find applications for which bootstrapping is used for
model selection.
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Another recent prediction based model validation strategy, which is rooted in
information theory andparticularly useful formodel selection in clustering, is approx-
imation set coding [5]. However, although biological applications have been reported
[11], we are not aware of applications in the domain of dynamical models.

9.4.1 Hypothesis Testing: The Likelihood Ratio Test

Traditional hypothesis testing only evaluates evidence against a model, typically by
integrating over the distribution of “possible experimental outcomes” and computing
p-values (with the null hypothesis that the data was generated from the evaluated
model). Correspondingly, p-values represent the probabilities of observing results at
least as extreme as the experimental data, given that the model has the same data
generating characteristics as the system. However, this may lead to situations in
which all available models are rejected, which was expressed by Kass and Raferty
[30] in the following statement: “There has not been as single date in the history of
the law of gravitation when a modern significance test would not have rejected all
laws and left us with no law.”

A commonly used approach for comparing two models is the likelihood ratio test.
Assume that a model M1 with d1 free parameters is nested in amodel M2 with d2 free
parameters. By nested we mean that M2 can be transformed into M1 by imposing
restrictions on a subset of the parameters in M1 (e.g., by eliminating the parameters).
Note that the fit of the more general model M2 will always be at least as good as
that of the nested model M1. We can then test whether the null hypothesis H0 that
M1 best fits the data should be rejected in favor of the alternative hypothesis H1 that
M2 best explains the data. Assuming Gaussian measurement noise, the test statistic
takes the form:

R ≡ −2 log

(
p(y|θ̂1, M1)

p(y|θ̂2, M2)

)

∼ χ2
d2−d1, (9.15)

where θ̂1 and θ̂2 are maximum likelihood estimates, and χ2
d2−d1

is the chi-squared
distribution with d2 − d1 degrees of freedom. Note that evidence against H0 gives
a small likelihood ratio (large R). An asymptotic (with the number of observations)
rejection region for H0 can therefore be computed from the 1−α quantileχ2

1−α,d2−d1
.

As a disadvantage of the likelihood ratio test, it requires that themodels are nested,
and it may also be clumsy for multiple nested models [32]. Hence it has been argued
that the likelihood ratio test may not be “the optimal strategy for model selection”
[40]. However, the likelihood ratio test, in combination with bootstrapping for non-
nested models, was for example used by Muller et al. [39] in a two step process
to analyze experimental data for the JAK-STAT signaling pathway. This analysis
revealed that a cycling mechanism must be incorporated in the model to explain the
data, as well as a delay mechanism for the nuclear entry of STAT5.



9 Model Extension and Model Selection 227

Fig. 9.3 The conceptual difference between the information theoretic and Bayesian approaches to
model selection. Left The information theoretic approaches are based on a measure of the distance
indicated by the black lines (from the marginal likelihoods) of each hypothetical model (M1−5)
to the best possible model (M∗). For example, model M2 is most predictive since the distance to
M∗ is the shortest. Right Bayesian approaches are instead based on mutual comparisons between
the hypothetical models (ratio of marginal likelihoods), indicated by the green lines, but M∗ is not
directly considered (color online)

9.4.2 Likelihood Based Approaches: The Information
Theoretic versus the Bayesian Approach

There are also likelihood based methods for model assessment that can be applied to
non-nested models. These methods simultaneously evaluate evidence both against
and in favor of models [55]. The methods are also capable of weighing and rank-
ing models, which enables model averaging for robust parameter estimations and
predictions [28] (see also Sect. 9.3.2.2). There are in principle two main directions
among the most popular approaches to model assessment; the information theoretic
approach and the Bayesian approach. The conceptual difference between the two
approaches is illustrated in Fig. 9.3.

The information theoretic approach assesses the information loss by using an
approximatemodel Mi to analyzeY instead of the data generatingmodel (or process)
M∗. The information in the data, given a model M and parameters θ , is given by
− ln(p(y = Y |θ , M)), which results in the information difference:

Δ(θi , Mi ) = ln

(
1

p(Y |θi , Mi )

)

− ln

(
1

p(Y |θ∗, M∗)

)

, (9.16)

where we assume that the correct model M∗ belongs to the class of parameter-
ized models with correct parameterization θ∗. Akaike [1] showed that the expected
Δ(θi , Mi ), under certain assumptions, may be estimated from the parameter set that
maximizes the likelihood function (given a set of data) for model Mi . This results
in a model evaluation criterion that is commonly referred to as the Akaike infor-
mation criterion (AIC). Other criteria that originate from Eq. (9.16) are the deviance
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information criterion (DIC) and the related Bayesian predictive information criterion
(BPIC),which require an integration over the parameter space of the evaluatedmodel.
We will discuss the information-theoretic criteria for model assessment in greater
detail below. For a nice review about model selection using information theoretic
approaches see also [6].

The Bayesian approach for assessment and selection of models (see also [25]) is
to compute the posterior ratio in support for two models Mi and M j as:

p(Mi |Y )

p(M j |Y )
= p(Y |Mi )

p(Y |M j )

p(Mi )

p(M j )
≡ Bi, j

p(Mi )

p(M j )
, (9.17)

where Bi, j as defined in Eq. (9.17) is conventionally referred to as the Bayes factor.
We also discuss an approximation of the Bayes factor, referred to as the Bayesian
information criterion (BIC) below. At the moment there are high expectations on the
Bayesian approach for applications in biochemical modeling, which are reflected
in the statement by Wilkinson [61]: “Experience from closely related disciplines
suggests that fully Bayesian approaches will turn out to provide the most satisfactory
solutions to the complex statistical inference problems which lie at the heart of
computational systems biology.”

9.4.3 Information Theoretic Approaches

9.4.3.1 Akaike Information Criterion

Assume that we want to assess the performance of a set of m models M =
{M1, M2, . . . , Mm}. The expected difference in information resulting from using
a model Mi ∈ M and parameters θi , instead of the data generating model M∗ and
parameters θ∗, is:

I (θi , Mi ) ≡ DK L [p(y|θ∗, M∗)||p(y|θi , Mi )] = E∗[Δ(θi , Mi )], (9.18)

whereE∗ denotes the expectationunder p(y|θ∗, M∗), and DK L denotes theKullback-
Leibler divergence. However, computing this quantity is not straight-forward in prac-
tice, mainly because the data generating model is unknown. We will now discuss
the principles for how the expression of the Kullback-Leibler information may be
approximated as suggested by Akaike [1] (see also [16]). Our discussion is similar
to that by Cavanaugh [8].

We first multiply the expression in Eq. (9.18) with 2 (which is convenient for
Gaussian likelihood functions):

2I (θi , Mi ) = 2E∗
[

ln
p(y|θ∗, M∗)

p(y|θi , Mi )

]

= 2E∗[ln p(y|θ∗, M∗)] + E∗[−2 ln p(y|θi , Mi )].
(9.19)

We note that the first term in Eq. (9.19) is independent of the evaluated model and
parameter (Mi and θi ) andwill be the same for allmodels inM . Formodel assessment
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we therefore only need to focus on the second term,which is a substitute for I (θi , Mi ).
For the substitute term we have that:

d(θi , Mi ) ≡ E∗[−2 ln p(y|θi , Mi )] =
∫ ∞

−∞
−2 (ln p(y|θi , Mi )) p(y|θ∗, M∗)dy,

(9.20)
which cannot be directly computed due to the unknown density p(y|θ∗, M∗). How-
ever, Akaikes’ main achievement was to show that −2 ln p(y|θ̂i , Mi ) can under cer-
tain conditions be employed as a biased estimator for d(θi , Mi ), where θ̂ is the
optimum of the likelihood function. To see this we can use the exact formulation
(note that the terms on the right and left hand side cancel):

E
θ̂
[d(θi , Mi )] =E

θ̂
[−2p(y|θ̂i , Mi )] + (E

θ̂
[−2 ln p(y|M∗, θ∗)] − E

θ̂
[−2p(y|θ̂i , Mi )])

︸ ︷︷ ︸
T1

+ (E
θ̂
[d(θi , Mi )] − E

θ̂
[−2 ln p(y|M∗, θ∗)])

︸ ︷︷ ︸
T2

. (9.21)

where E
θ̂
denotes the expectation with respect to the distribution for θ̂(y). Taylor

expansions of T1 (around θ̂i ) and T2 (around θ∗) as defined in Eq. (9.21) to the second
terms result in quadratic forms that both asymptotically converge to d (within the
first order of approximation; for a detailed derivation see [1, 8, 16]). For a given set
of data Y , the Akaike information criterion (AIC) is then an unbiased estimator of
Eq. (9.21):

AIC(θi , Mi ) ≡ −2p(Y |θ̂i , Mi ) + 2d. (9.22)

where θ̂i is the maximum likelihood estimate of θi given Y . Note that we only need
the optimum of the likelihood function (θ̂i ) to compute the AIC for a givenmodel and
a set of experimental data. Thismakes the criterion easy to handle and has contributed
to its popularity.

In situations with small data sample sizes, a correction to the AIC was suggested,
which is commonly referred to as the corrected Akaike information criterion (cAIC)
[6, 26, 51]. For linear models the correction takes the form:

cAIC = AIC + 2d(d + 1)

(N − d − 1)
(9.23)

where we note that cAIC = AIC when N → ∞. However, the AIC is more uni-
versally applicable than the cAIC, which is only justified for certain model classes
(e.g., for linear regression) [8].
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The (corrected)AIC can also be used to compute (Akaike)weights for the different
models, which can be interpreted as probabilities for each model to be the best within
the set of candidate models [60]. Let cAICmin denote the cAIC for the model that
best fits the data (that is, it has the smallest cAIC among the evaluated models). Now
let δi be the difference between the cAIC for model Mi and cAICmin. We can then
compute Akaike weights, that is, the relative weight of model Mi among the models
inM for a uniform model prior, as in [6]:

wi = p(Mi |Y ) = li∑m
j=1 l j

, (9.24)

where li = e− 1
2 δi .

The AIC and the related cAIC appear to be some of the most commonly used
criteria for model ranking in the literature. The cAIC was for example used by
Turkheimer et al. [57] in combination with Akaike weights to compare three models
of [11C]flumazenil kinetics in the brain for positron emission tomography data. In
a recent example, Pezze et al. [15] used the AIC to compare three models of the
mammalian target of rapamycin (TOR) pathway to study the unknown regulation of
mTORC2 and its relation to the TSC1-TSC2 complex. These three models all turned
out to be incompatible with the data, leading to the (manual) construction of a fourth
model.

9.4.3.2 Deviance Information Criterion

Another model selection criterion based on information theory is the deviance infor-
mation criterion (DIC) as proposed by Spiegelhalter et al. [48]. This criterion takes
the form:

DIC = 2D̄ − D(θ̄) (9.25)

with

D̄ ≡ Eθ |Y [D(θ)] (9.26)

and

D(θ̄) ≡ D(Eθ |Y [θ ]), (9.27)

where Eθ |Y denotes the expectation w.r.t. the posterior distribution p(θ |Y ), and

D(θ) = −2 ln[p(y|θ)] + C(y) (9.28)

where C(y) is a function of the data only (and not the parameters).
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Note that this criterion is appropriate for sampling based methods, since it is
straight-forward to compute D̄(θ) and D(θ̄) from parameter samples. However, the
DIC ismuch less frequently used in the systemsbiology literature than theAIC,which
may be due to its recent introduction, but also likely results from the popularity of
optimization based methods. The DIC has been criticized for the assumption that the
true model belongs to the class of parameterized models, and that the observational
data is used twice in the inference process [2]. Ando et al. [2] therefore proposed the
Bayesian predictive information criterion to circumvent these issues in situations for
which the sample size is large.

9.4.4 Bayesian Approach: Bayes Factors and BIC

The posterior ratio between models Mi and M j , given experimental data, can be
computed from the Bayes factor Bi, j as defined in Eq. (9.17). However, for parame-
terized models the computation of Bi, j requires integration over the parameter space
of the two models according to:

Bi, j = p(Y |Mi )

p(Y |M j )
=

∫
Θi

p(Y |θ , Mi )p(θ |Mi )dθ
∫
Θ j

p(Y |θ , M j )p(θ |M j )dθ
, (9.29)

and we discuss strategies for the direct computation of such integrals in Sect. 9.6.
However, all known sampling strategies share the unfortunate property that the com-
putational cost is high and grows with the dimension of the sampled parameter space.

In some situations, Eq. (9.29) takes a significantly simpler form that can be derived
from the Bayesian information criterion (BIC) (see also [30]). Assume that the pos-
terior parameter distribution for model Mi is unimodal and approximately Gaussian
around the maximum θ̂ . This is often the case if the likelihood function is peaked
due to a large samples size [30]. Let:

l̃(θ) = ln[p(Y |θ , Mi )p(θ |Mi )], (9.30)

and approximate l̃ with a Taylor expansion around θ̂ up to the quadratic term:

l̃(θ) ≈ l̃(θ̂) + 1

2
(θ − θ̂)T Hl̃(θ̂)(θ − θ̂), (9.31)

where the first-order term of the expansion vanishes since θ̂ is an optimum, and Hl̃(θ̂)

is the Hessian matrix of l̃. We can now approximate the terms in Eq. (9.29) as:
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p(Y |Mi ) =
∫ ∞

−∞
el̃(θ)dθ ≈ el̃(θ̂)

∫ ∞

−∞
e
1
2 (θ−θ̂)T Hl̃ (θ̂)(θ−θ̂)dθ

= el̃(θ̂)

∫ ∞

−∞
e− 1

2 (θ−θ̂)T [NJ̄ (θ̂)](θ−θ̂)dθ

= p(Y |θ̂, Mi )p(θ̂ |Mi )(2π)d/2|NJ̄ (θ̂)|−1/2

= p(Y |θ̂, Mi )p(θ̂ |Mi )(2π)d/2N−d/2|J̄ (θ̂)|−1/2,

(9.32)

where J̄ = − 1
N Hl̃(θ̂). This is called Laplace’s method of approximation, and it

is commonly used in population studies of pharmacokinetic and pharmacodynamic
models (see for example [44]). Now if the parameter prior p(θ |Mi ) is noninformative
compared to the likelihood p(Y |θ , Mi ) in a region around θ̂ (e.g., a uniform prior),
it holds that [30]:

J̄ (θ̂) = − 1

N
Hl̃(θ̂) ≈ − 1

N
Hl p (θ̂) = 1

N
I (θ̂) = Ī (θ̂), (9.33)

where l p = ln[p(Y |θ , Mi )] and Ī (θ̂) is the average Fisher information matrix (per
datum). IfJ (θ̂) = I (θ̂) we have that (−2 is convenient for Gaussians):

−2 ln(p(Mi |Y )) ∼ −2 ln(p(Y |Mi )p(Mi )) =

− 2

(

ln(p(Y |θ̂ , Mi )) − d

2
ln(N ) + ln

(
(2π)d/2 p(θ̂ |Mi )p(Mi )

|Ī |1/2
))

,

(9.34)

where Eq. (9.32) was used in the last step. Note that the last term of Eq. (9.34) does
not grow with the sample size, so for N → ∞:

BIC ≡ −2 ln(p(Mi |Y )) ≈ −2 ln(p(Y |θ̂, Mi )) + d ln(N ). (9.35)

This quantity is commonly referred to as the Bayesian information criterion (BIC)
and used for model assessment. Note that the BIC is proportional to the AIC with
the factor 2 in the second term replaced by ln(N ) [24].

However, it has been reported that retention of the term − d
2 ln 2π in Eq. (9.34)

may improve the accuracy of the expression in practice [17]. This results in the
alternative criterion BICalt:

BICalt = −2 ln(p(Mi |Y )) ≈ −2 ln(p(Y |θ̂ , Mi )) + d ln(
N

2π
). (9.36)

Choosing the model with the smallest BIC corresponds to choosing the model
with the largest posterior probability [24]. However, it is also possible to quantify
the ratio of plausibility of two models in light of the experimental data with the BIC:
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ln

(
p(Mi |Y )

p(M j |Y )

)

= ln(p(Mi |Y )) − ln(p(M j |Y ))

≈ ln(p(Y |θ̂i , Mi ) − di

2
ln(N ) −

(

ln(p(Y |θ̂ j , M j ) − d j

2
ln(N )

)

= ln

(
p(Y |θ̂i , Mi )

p(Y |θ̂ j , M j )

)

− (di − d j )

2
ln(N ). (9.37)

Kass et al. [30] argued for the validity of this approximation as N → ∞.
Equations (9.35) and (9.37) tell us that we only need to identify the parameter

optima for the models to be assessed and compared. This simplifies the computa-
tions, but it does not solve the issues with large parameter spaces, despite contrary
arguments in the literature.

Bayes factors have been employed for a number of biochemical applications,
unlike theBIC that appears to be less frequently used in practice.Differentmethods to
compute the marginal likelihood, which requires integration of a (high-dimensional)
parameter space, have been investigated for synthetic data [38, 59]. Xu et al. [63]
used Bayes factors to compute the posterior probabilities of four models of the
extracellular signal-regulated kinase (ERK) pathway. This analysis suggested that
B-Raf is necessary to fully activate the pathway, and indicated the absence of a
mechanism for degradation of the bound epidermal growth factor receptor. In several
studies, approximate Bayesian computation (ABC) methods have been employed to
compute Bayes factors, see for example [19, 54, 55]. The ABC approach has the
advantage that the likelihood function does not need to be defined; the posterior
distributions are approximated from simulations instead. This may be an advantage
(or even necessary) for certain model selection applications [53].

9.5 Minimum Description Length

Minimum description length (MDL) constitutes a fundamentally different approach
to model selection; for an extensive introduction see the tutorial by Grünwald [23].
Themain idea behindMDL is to select the model that can compress the experimental
data the most, which requires the interpretation of probability distributions in terms
of code lengths.

The connection between model probabilities and code lengths can be illustrated
by letting model M j be represented by j = 1, . . . , m in binary representation. For
the example of four models, M1 is represented by 00, M2 by 10, M3 by 01, M4 by 11,
so that the number of bits needed to specify m models is L = log2(m). Now assume
that our model class takes the form M = {M1, M2, . . . , Mm}, and that each model
has the prior probability pi = 1/m, i = 1 . . . , m. Then L = log2(m) = −log(pi )

[23]. However, this principle also extends to continuous non-uniform probability
distributions and non-integer bits.
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In the crude two parts version of MDL, the goal is to minimize the sum of the
code lengths required to describe the model L(M) and the data when encoded with
the model L(D|M). Although the data term can be represented by the negative log-
likelihood of the data given themodel, little advice is offered on how to encode L(M).
However, a refined version of MDL was developed, which states that we should
select the model with minimal regret in the worst case sense (over the possible
observations). The regret roughly represents the additional information needed to
encode the data with M compared to an encoding with the optimal model in M
(after the data is observed). Shtarkov showed that this is uniquely achieved by a
normalized maximum likelihood distribution pnml [23, 46]. As a criterion for model
selection we can therefore use:

− log (pnml) = − log(p(y|θ̂ , M)) + COMP(M |y). (9.38)

where the termCOMP(M |y) can be regarded as ameasure of the number of hypothet-
ical data sequences that can be generated by the model. Interestingly, it was shown
by Rissanen [42] that for a model M with d parameters, and with encoding probabil-
ity distribution in the exponential family, the parametric complexity asymptotically
(with sample size) takes the form:

COMP(M |y) = d

2
log(

N

2π
) + log

∫

θ∈Θ

√|I (θ)|dθ , (9.39)

where I (θ) is the Fisher information matrix. If we compare Eqs. (9.38)–(9.39) to

(9.34) we see that BIC = −2 log(pnml) if we choose p(θ̂ |Mi ) =
√

|I (θ̂)|∫
θ∈Θ

√|I (θ)| in BIC
(apart from the term p(Mi ) in BIC). This is known as the (normalized) Jeffreys prior.
Finally, note that the model prior term p(Mi ) in the BIC is insignificant for N → ∞.

Perhaps because the resulting criterion for model evaluation is similar to that
of the BIC, although the underlying approach is very different, MDL has so far
received more attention for theoretical than for practical applications in the domain
of dynamical biochemical modeling.

9.6 Sampling Strategies for Numerical Integration

Model selection methods such as the AIC and the BIC are based on a single optimal
parameter point, which is convenient for practical applications. However, the relia-
bility of inference procedures based on a single optimal parameter point has been
questioned [62]. For example, ambiguity in parameter values translates into ambigu-
ity in model predictions and consequently affects the model assessment. Also, most
single parameter point methods are only asymptotically valid for a sufficiently large
number of experimental observations (the cAIC is an exception). For these reasons,
among others, methods based on parameter sampling are commonly considered as
advantageous for the analysis of biochemical systems.
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However, methods based on multiple parameter points are computationally con-
siderablymore demanding. For example, fromEq. (9.29) we see that the computation
of Bayes factors requires the evaluation of integrals over the parameter space:

p(Y |M) =
∫

Θ

p(Y |θ , M)p(θ |M)dθ ≡ I ∝
∫

Θ

p(θ |Y , M)dθ , (9.40)

where p(θ |M) is the prior, p(Y |θ , M) is the likelihood, and p(θ |Y , M) is the
posterior distribution. In general, it is not possible to find an analytic closed form
expression of the integral in Eq. (9.40), although exceptions exist [65]. It may also
be possible to find closed form approximations of the integral as in the derivation
of the BIC. However, to compute Bayes factors with limited available data, we
typically need to resort to numerical approximations by simulation. The simplest
way of approximating (9.40) would be to sample a large number of parameter points
directly from the prior. The integral in Eq. (9.40) can then be asymptotically (w.r.t.
the number of sampled parameter points N ) approximated as [59]:

p(Y |M) � 1

N

N∑

i=1

p(Y |θ (i), M) ≡ IN, θ (i) ∼ p(θ |M) (9.41)

It is also interesting to investigate how accurately IN approximates I with the number
of sampled points. From the central limit theorem we know that [43]:

lim
N→∞

√
N (IN − I) ∼ N (0, σ 2) (9.42)

where:

σ 2 =
∫

(p(Y |θ , M) − I )2 p(θ |M)dθ (9.43)

However, the high likelihood region of a biochemical model typically only consti-
tutes a small part of the parameter space, with a negligible likelihood for a vast major-
ity of the drawn parameter points. An accurate estimate of the integral in Eq. (9.40)
would therefore require a very large, or even intractable, number of sample points.
For this reason, algorithms have been developed that can be used to approximate
integrals in the form of Eq. (9.40) more efficiently.

One popular approach is to construct a Metropolis-Hastings Markov chain Monte
Carlo (MH-MCMC) chain. AMarkov chain in our setting corresponds to a sequence
of random draws of parameter points, for which each new draw θ

′ ∈ Θ is only
conditioned on the current point θ ∈ Θ , which makes the process “memoryless”.
Now define the probability of a transition from θ to θ

′
as P(θ → θ

′
), and assume

that the chain converges to a stationary target distribution p∗(θ) for which:

p∗(θ)P(θ → θ
′
) = p∗(θ ′

)P(θ
′ → θ). (9.44)
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We may then define that P(θ → θ
′
) = q(θ → θ

′
)α(θ → θ

′
), so that Eq. (9.44)

takes the form:

p(θ)q(θ → θ
′
)α(θ → θ

′
) = p(θ

′
)q(θ

′ → θ)α(θ
′ → θ) (9.45)

where q(θ → θ
′
) is a proposal distribution (used to draw the new point θ

′
), and

α(θ → θ
′
) ∈ [0, 1] is the probability to accept θ

′
. If we then define that α(θ

′ →
θ) = 1, we have that the acceptance probability for a transition from θ to θ ′ is:

α(θ → θ
′
) = min

[
p(θ

′
)q(θ

′ → θ)

p(θ)q(θ → θ
′
)
, 1

]

(9.46)

To run the Metropolis Hastings algorithm we first need to choose a starting point
(e.g., a random point in Θ), choose a proposal distribution (e.g., a Gaussian dis-
tribution) and a target distribution (e.g., p(Y |θ , M)), and then use Eq. (9.46) to
update the chain. If the i th proposed parameter point θ̂ (i) is accepted θ (i+1) = θ̂ (i),
and otherwise θ (i+1) = θ (i). In practice, Eq. (9.45) can only be satisfied after suf-
ficiently many points have been drawn and discarded in the initial “burn-in” phase
of the algorithm, and a measure such as the autocorrelation of the chain is used to
check if the target density is indeed stationary. For a more detailed introduction to
the Metropolis-Hastings method see [12], and for a nice intuitive explanation see
[61]. We generated artificial data for a model of degradation in Fig. 9.4a with the
only parameter k = 1, and the Metropolis Hastings algorithm was then applied with
a starting guess of k = 0.5. The Metropolis-Hastings algorithm was run for 104

(Fig. 9.4b), 105 (Fig. 9.4c), and 106 (Fig. 9.4d) steps, and the first 10% of the steps
were discarded. As can be seen in Fig. 9.4b–d a large number of steps is required to
compute a smooth and accurate posterior in this case. Potentially, the parameters of
the method could be tuned so that fewer steps are required.

Gibbs sampling is another common strategy when it is not possible to sample
directly from the joint parameter distribution (for an introduction see [7]). Probability
densities for individual parameters, conditioned on the other parameters, are instead
used to update one parameter at a time, making it suitable for Bayesian networks
applications. However, Gibbs sampling constitutes a special case of the Metropolis-
Hastings sampling [21]. Another popular approach to compute posterior distributions
is sequential Monte Carlo methods (particle filters), for which one data point is
incorporated at a time with a Bayesian updating equation (compare for example
to Kalman filters) [43]. For comparative studies of how commonly used sampling
methods perform for inference on artificial data, see the work by Milias-Argeitis
et al. [38] and Vyshemirsky et al. [59].

However, as the example in Fig. 9.4 demonstrates, accurate approximations may
involve (prohibitively) high numbers of samples even for very small biochemical
models. Two strategies have been proposed recently to deal with this problem. One
strategy to compute Eq. (9.40) is to identify the high-likelihood regions of the para-
meter space, assuming that the contribution to the integral from the other regions is
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Fig. 9.4 Posterior computation with the Metropolis-Hastings MCMC algorithm. We estimate the
rate constant k for a linear degradation model X (t) = X0e−kt , given the set of artificial data for
X (assuming a std of 10% of the data values) shown in (a) with artificial data: stars, and model
simulation with k = 1: solid line. b–d Posterior distributions for k for 104 steps (b), 105 steps (c),
and 106 steps (d) of the MH-MCMC method with the starting guess k = 0.5. A Gaussian proposal
distribution with a std of 0.1 was used to draw samples, and the first 10% of the samples were
considered “burn-in” samples and discarded

negligible, and then to sample uniformly in the high-likelihood regions. A two step
method based on this principle was proposed by Zamora-Sillero et al. [64]. Advanced
numerical methods to speed up the evaluation of probability densities in parameter
space are also being developed, such as those based on polynomial approximations
with adaptive sparse grids [22]. If a valid polynomial approximation of the likelihood
function is available it is trivial to compute the integral in Eq. (9.40).

9.7 Discussion

The construction and selection of a mathematical model as a compact and predictive
representation of a biochemical system is an active area of research that is likely only
in its infancy for biochemical applications. Actually, when browsing the literature
there are surprisingly few examples of comparisons between dynamical models of
biochemical systems. In the analysis of many biochemical systems a single candidate
model is assessed, which was already argued against by Chamberlain in 1890 [10].
As pointed out by Chamberlain, the construction of several models typically requires
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the researcher to think hard about alternative plausible explanations for the studied
phenomena. However, recently a number of approaches has become available for the
automatic construction of candidate models [20, 33, 52].

The most suitable method to assess a set of models depends on the structure of,
and relation between, the candidate models as well as the experimental data. The
likelihood ratio test is convenient for model discrimination, but it requires the can-
didate models to be nested, which is commonly not the case. Other criteria such as
the AIC and BIC are also easy to handle, since only the optimal parameter point is
required, but they are only asymptotically valid for large data sets. For small data
sets, the researcher is left with the corrected AIC (and DIC) among the informa-
tion theoretic approaches, and with the direct computation of posterior probabilities
from Bayes factors. In the computation of posterior probabilities the researcher will
commonly face issues such as the choice of the prior parameter distribution and the
curse-of-dimensionality in the integration over high-dimensional parameter spaces.
However, there are no available methods to avoid these issues, with a few exceptions
(e.g., the BIC does not require prior distributions to be defined). Advanced com-
putational methods for the integration of high-dimensional parameter spaces have
been proposed [22], but it remains to be demonstrated that they are applicable for
biochemical models.

We also note that (ad hoc) model selection criteria that do not fall under any of
the main categories are sometimes useful. For example, a by now classical model for
segmentation gene expression patterns in Drosophila was inferred by von Dassow
et al. [58] using a goodness-of-fit function for pattern matching with the goal to
resemble the judgment of an expert researcher. Lillacci et al. [36] used an extended
Kalmanfilter to estimate statisticalmoments of states and parameters simultaneously,
and used the overlap betweenmodel predictions and data aswell as aχ2 test as criteria
for model selection.

To accurately apply model selection methods it is important to understand the
concepts underlying the alternative methods, and to be able to judge when a certain
method is applicable and suitable. It is also important to understand the inherent
issues and limitations of the available methods. With this chapter we hope to provide
the reader with an overview of the current situation in this domain as well as an easily
accessible resource for the purpose of model selection in biochemical applications.
However, many of the discussed principles apply equally well in other domains of
science and engineering.
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Chapter 10
Bayesian Model Selection Methods
and Their Application to Biological
ODE Systems

Sabine Hug, Daniel Schmidl, Wei Bo Li, Matthias B. Greiter
and Fabian J. Theis

Abstract In this chapter, we focus on Bayesian model selection for biological
dynamical systems. We do not present an overview over existing methods, but show-
case their comparison and the application to ordinary differential equation (ODE)
systems, as well as the inference of the parameters in the ODE system. For this, our
method of choice is the Bayes factor, computed by Thermodynamic Integration. We
first present several model selection methods, both alternatives to the Bayes factor
as well as several methods for calculating the Bayes factor, foremost among them
said Thermodynamic Integration. As a simple example for the selection problem,
we resort to a choice between normal distributions, which is analytically tractable.
We apply our chosen method to a medium sized ODEmodel selection problem from
radiation science and demonstrate how predictions can be drawn from the model
selection results.
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10.1 Introduction

The last few years have seen a steady increase in the use of dynamical models as
powerful modeling tools for the modeling of biochemical systems such as signaling
pathways [3, 4, 15, 44]. However, tuning these dynamical models to fit and explain
the experimental data is a task that is far from trivial [23, 27, 38, 43]. The situation is
evenmore complicated if the structure of the interactionmechanisms in the dynamical
models itself is uncertain. Thenwe are facedwith the problemofmodel extension and
selection. In this chapter, we focus on the situation where a few (often hand curated
by the expert) models already exist and the question at hand is which of these models
best fits the data [24]. As there usually is no perfect model for a biological system,
this is then a choice which model performs best according to the applied quality
criteria. It is important to keep in mind that “Essentially, all models are wrong, but
some are useful.” [6]. The question should always be what we expect our model to
explain, and what knowledge can be gained from a fitted model. For this reason, we
focus in our contribution on giving two practical examples on how to apply model
selection methods and what insight might be gained from them.

Bayesian approaches are increasingly popular for model inference. They often
require Markov chain Monte Carlo (MCMC) sampling procedures, which only
now become feasible in larger systems due to the increase in computational power.
Bayesian approaches then approximate the full distribution of the system in oth-
erwise intractable systems. While this is computationally expensive, the gain is a
natural access to all the information contained in full parameter distributions like
confidence/credible regions or parameter correlations. For this reason we focus on
likelihood or sampling based methods. In general, methods based on single point
estimates are rather easy and computationally non-expensive to compute, however
the single points might be unrepresentative for the whole distribution. Our method of
choice for model selection is thus the Bayes factor, the quotient of the marginal like-
lihoods of the model. Since the marginal likelihood is a higher-dimensional integral,
it is typically intractable and we resort to approximative methods. We have found the
best performing method to be thermodynamic integration, a numerically stable if
computationally expensive sampling scheme for the Bayes factor.

In order to test the reliability of such a sampling scheme, we did model selection
on two simple models. We computed the Bayes Factor and the expected value in
the thermodynamic integration both analytically and numerically and compared our
results, finding a good agreement between the both values.

Next we present an application from radiation science, where two compartmental
models corresponding to linear ordinary differential equations (ODEs) are compared
basedonexperimental data.Wedemonstrate how to apply thermodynamic integration
in these systems of twelve and fifteen parameters, respectively. Furthermore we
showcase how predictions of divergent behavior can be drawn from the model.
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10.2 Likelihood Based Model Selection

Usually, a model fit depends on parameters, especially in ODE models, this is often
the case, see also [23]. Here the parameters are for example rate constants in the
ODE or initial conditions. The shape of the ODE solution changes depending on
these parameters. Quite a few rather easily accessible ways of doing model selection
are then based on the maximum likelihood estimates (MLE) of the parameters for
eachmodel. The likelihood p(Y|θ i , Mi ) is ameasure for the agreement between data
Y and model Mi , i = 1, . . . ,I parametrized with parameters θ i and was already
introduced in [43]. The parameter vector which maximizes the likelihood, i.e. the
agreement between model and data, is called the maximum likelihood estimate,
often written as θ̂ i . It can be seen as the single best point estimate.

As seen previously, an ODE model can usually be written as

dx(t)

dt
= f (x(t), θ , u(t)), (10.1)

with a (usually nonlinear) function f , the state variables x(t), the parameters θ and
the external inputs u(t). Often, not all state variables can be observed, so we have
to define a response function h that relates the state variables to the experimental
observables y = h(x) ∈ R

m . Considering that we only have noisy observations at
discrete time points, cf. also Chapter [38], we arrive at:

ỹn = h(xn) + εn, εn ∼ N (0,Σ), (10.2)

in which the subscript n = 1, . . . , N enumerates the time points tn at which the
measurement ỹn was taken. The measurement noise εn is in most cases assumed to
be normally distributed with covariance matrix Σ . We denote the collection of all
available experimental data by Y. We can then write down the general likelihood
explicitly:

p(Y|θ) =
N∏

n=1

1

(2π)m/2
√|Σ | exp

(

−1

2
(ỹn − y(tn))� Σ (ỹn − y(tn))

)

(10.3)

We now briefly repeat some definitions of likelihood based model selection meth-
ods from the previous chapter [43]. Based on the MLE, several model selection
criteria or tests have been proposed. Best known among them might be the Akaike
Information Criterion (AIC) [1]. It is defined as

AI C(θ̂ i ) = −2 log p(Y|θ̂ i , Mi ) + 2di , (10.4)

where di is the number of independently adjusted parameters of model Mi . The
preferred model is the one with the minimal value for the AIC. The AIC weighs
the goodness of fit, given by the loglikelihood value, with the associated number of
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parameters, preferring smaller models over large models. The AIC is asymptotically
efficient, but not consistent. Some care has to be taken concerning the conditions
under which the AIC is applicable, see also the preceding chapter [43].

Somehow closely related is the Bayesian Information Criterion (BIC) [42]. In
contrast to the AIC, it also takes into account the number of data points on which the
choice is based:

B I C(θ̂ i ) = −2 log p(Y|θ̂ i , Mi ) + di log(N ). (10.5)

Here, N is the number of data points in Y. Again, the model with the lowest BIC
value should be chosen. As with the AIC, the BIC is only a good approximation if
the models are identifiable and the number of data points is large, cf. [43].

Neither of the two criteria gives an absolute measure of how much one model is
“better” than another model.

While these two criteria are rather closely related, a very different, yet also MLE
based model choice method between two models is the likelihood ratio test (LRT)
[24]. This method requires the models to be nested, meaning that the smaller of
the models needs to be a special case of the larger model. The LRT is a hypothesis
test with the null hypothesis that the smaller model (without loss of generality from
now on model M1) is the true model that generated the data versus the alternative
hypothesis that the larger model M2 generated the data. As the models are nested,
the ratio of the logarithms of the maximum likelihood values is approximately χ2-
distributed, with degrees of freedom d1 and d2 corresponding to the numbers of
parameters in the two models:

− 2 log

(
p(Y|θ̂1, M1)

p(Y|θ̂2, M2)

)

∼ χ2
d2−d1 . (10.6)

For two nested models, the larger model always explains the data at least as well as

the smaller model, thus p(Y|θ̂1,M1)

p(Y|θ̂2,M2)
< 1. With the LRT, it is possible to determine

if the improvement is significant by deriving a p-value under the appropriate χ2-
distribution. Classical hypothesis testing then reveals if the null model can be rejected
at the desired significance level.

10.3 Bayesian Model Selection Methods

10.3.1 The Bayes Factor

The BIC already points towards Bayesian inference. Bayesian inference is widely
applied in systems biology in different forms, cf. [23, 27, 43]. Here, the likelihood
p(Y|θ) is complemented with prior information p(θ) available for the parameters to
yield the general posterior distribution p(θ |Y) of the parameters given the data:
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p(θ |Y) = p(Y|θ)p(θ)

p(Y)
(10.7)

An important quantity for the purpose of model selection is actually the marginal
likelihood p(Y) in the denominator of the posterior distribution.

With Bayes’ theorem once again, we get:

p(Mi |Y) = p(Y|Mi )p(Mi )∑
j p(Y|M j )p(M j )

, (10.8)

which is to compute the marginal likelihood p(Y|Mi ) for the desired model Mi , i =
1, . . . ,I . It is important to notice that the marginal likelihood is not straightforward
to compute, since it is a usually high-dimensional and analytically intractable integral:

p(Y|Mi ) =
∫

R
di

p(Y|θ i , Mi )p(θ i |Mi ) dθ i . (10.9)

This integral has to be approximated, usually with sampling based approaches. Nev-
ertheless, if we then want to compare two models M1 and M2, we can do so by
computing the ratio of the two marginal likelihoods, the so-called Bayes Factor

B12 = p(Y|M1)

p(Y|M2)
, (10.10)

in which a value of B12 greater than one indicates a preference for model M1 and a
value less than one one for model M2.

Jeffreys established a widely used interpretation of the Bayes factor in [22]. It is
based on a classification of the evidence in favor of model M1 in log10-half-scale
units as:

log10(B12) B12 Evidence in favor of model M1

0–0.5 1–3.2 Not worth more than a bare mention
0.5–1 3.2–10 Substantial
1.0–1.5 10–32.6 Strong
1.5–2.0 32.6–100 Very strong
2.0–∞ 100–∞ Decisive

This scale has become known as Jeffreys’ scale of evidence. While it certainly can
be challenged, it nevertheless is well established and widely used in the Bayesian
community. The Bayes factor offers certain advantages over the presented point-
based model selection methods, see also [43] for additional arguments. First, in
contrast to the likelihood ratio test, it provides evidence for either of the models,
since the Bayes factor in favor of model M2 can easily be interpreted by the same
Jeffreys’ scale by taking B21 = 1/B12. Secondly, it works for non-nested models.
Thirdly, point-based methods might not be appropriate in cases where the MLE is
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not representative for the whole distribution, e.g. for multimodal likelihoods, see
also Chap.6 of [31] for an example. Furthermore, by taking into consideration the
whole parameter space, the Bayes factor is more efficient in preventing overfitting
[32] than the other introduced methods.

10.3.2 Sampling Based Methods for Calculating Bayes Factors

As already mentioned, the crux is that the marginal likelihood is computed by inte-
grating over the whole parameter space, which is computationally costly and also
often not straightforward. Because of this, standard methods for computing Bayes
factors are mostly sampling based. This can be seen from the following relationship:

p(Y|Mi ) =
∫

R
di

p(Y|θ i , Mi )p(θ i |Mi ) dθ i = Ep(θ i |Mi ) [p(Y|θ i , Mi )] (10.11)

In this chapter we present the following methods for estimating marginal likeli-
hoods and thus Bayes factors:

Method Sample from Remarks
Prior arithmetic mean Prior Can be very efficient

Posterior harmonic mean Posterior Known variance issues
Chib’s method Posterior Basically point estimate

Thermodynamic integration Power posterior Numerically stable

The easiest approach for sampling any of the marginal likelihoods, here now simply
denoted p(Y|M), is the prior arithmetic mean. For this approach, a total of T samples
θ (1), θ (2), . . . , θ (T ) are drawn from the prior distribution p(θ). From Eq. (10.11) it
can then be inferred that

p(Y|M) = Ep(θ) [p(Y|θ, M)] ≈ 1

T

T∑

j=1

p(Y|θ ( j), M) (10.12)

The right hand side of this equation is known as the prior arithmetic mean estimate.
The strong law of large numbers (almost surely) guarantees convergence as the
sample number tends to infinity. However, in many practical applications, the prior
does not contain too much information about the actual shape of the posterior. Then
many samples might have very low likelihood values, thus a large number of samples
might be needed for accurate results, which will be demonstrated later in this chapter.

Slightly more involved is the approach by Newton and Raftery [35] called the
posterior harmonic mean. As the name already implies, for this approach samples
are not drawn from the prior, but from the posterior distribution directly. Usually, this
sampling is not directly possible anymore, but Markov chain Monte Carlo (MCMC)

http://dx.doi.org/10.1007/978-3-319-21296-8_6
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methods [37] have to be applied. Similarly to the prior arithmetic mean, we draw
a total of T samples θ (1), θ (2), . . . , θ (T ) from the posterior distribution p(θ |Y, M).
This then yields the following marginal likelihood approximation:

p(Y|M) ≈
⎛

⎝ 1

T

T∑

j=1

1

p(Y|θ ( j), M)

⎞

⎠

−1

(10.13)

The derivation can for example be found in [41]. However, already Neal [34] showed
that this estimate suffers from severe issues. Newton and Raftery [35] also proposed a
weighted combination of the prior arithmetic mean estimator and posterior harmonic
mean estimator called the stabilized harmonic mean estimator. This helps to reduce
the issues of the individual estimators.

Also often mentioned is Chib’s method, which is originally also a point-based
estimate. In [8], Chib and Jeliazkov show how to apply the method to the output of
a Metropolis-Hastings sampling algorithm. The basic idea is to rearrange Bayes’s
theorem:

log p(Y|M) = log p(Y|θ∗, M) + log p(θ∗|M) − log p(θ∗|Y, M) (10.14)

with a suitable θ∗, for example the Maximum Likelihood estimate. While this might
yield an easily computable result, it might suffer from the same issues as other
point-based estimates. Furthermore, the posterior probability p(θ∗|Y, M) is often not
readily available, since sampling and optimization are mostly based on “likelihood
times prior” instead of the posterior, ignoring the proportionality constant that is
actually the marginal likelihood at question here. For estimating the posterior value
at the chosen point estimate, Chib and Jeliazkov propose to use the output of a
Metropolis-Hastings sampler θ (1), . . . , θ (T ).

If q(θ , θ ′|Y) denotes the proposal density of the Metropolis-Hastings algorithm
for the transition from θ to θ ′, where the proposal density is allowed to depend
on the data Y, and α(θ , θ ′|Y) denotes the standard Metropolis-Hastings acceptance
probability of a move, then it can be shown that

p̂(θ∗|Y, M) = T −1 ∑S
s=1 α(θ (s), θ∗|Y)q(θ (s), θ∗|Y)

J−1
∑J

j=1 α(θ∗, θ ( j)|Y)
(10.15)

is a simulation-consistent estimate of the posterior value. Here, the θ (s) are samples
drawn from the posterior, while the θ ( j) are drawn from q(θ∗, ·|Y)with θ∗ fixed. This
can then be plugged into Eq. (10.14) to yield an estimate for the marginal likelihood.
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10.3.3 Thermodynamic Integration

Thermodynamic integration is a method for computing the Bayes factor also based
on MCMC sampling. While it is computationally costlier than the other methods,
it yields more robust and numerically stable results. Thermodynamic integration is
based on path sampling ideas [11], and was first discussed for marginal likelihoods
in the papers by [10, 28]. It has recently found increasing application in systems
biology [7, 9, 44].

Central to the method is the power posterior, a variant of the usual posterior of
the Bayesian setting,

pτ (θ |Y, M) = 1

pτ (Y)
p(Y|θ, M)τ p(θ) (10.16)

where τ ∈ [0, 1] is a so-called temperature parameter and pτ (Y) = ∫
Rd p(Y|θ, M)τ

p(θ)dθ is a normalization term necessary for making the power posterior a prob-
ability density. For τ = 0, we get pτ=0(Y) = 1, since this is the prior integrated
over θ and thus simply 1. The power posterior is then equal to the prior p(θ). For
τ = 1, we get pτ=1(Y) = p(Y|M), the marginal likelihood and thus the power
posterior is the regular posterior. Intuitively, a power posterior with a low value of τ

thus corresponds to a smoother distribution closer to the prior and allows for more
movement of the Markov chains through the parameter space, while a higher value
of τ corresponds to a distribution closer to the posterior, which might be e.g. spiky
due to the influence of the likelihood. The power posterior in total thus corresponds
to a smooth transition from the prior to the posterior, which can also be seen in
Fig. 10.1 with the example we will present later. We now derive an expression for the
log marginal likelihood with respect to the power posterior which can be evaluated
using MCMC methods. First we note that

Fig. 10.1 Visualization of the smooth transition from prior to posterior through the power posterior.
Shown is the power posterior of the two parameter model M2 introduced in a later section, for five
different temperatures
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d

dτ
log pτ (Y) = d

dτ
log

∫

Rd
p(Y|θ, M)τ p(θ)dθ (10.17)

= 1

pτ (Y)

∫

Rd

dp(Y|θ , M)τ

dτ
p(θ)dθ (10.18)

= 1

pτ (Y)

∫

Rd

dp(Y|θ , M)τ

dt

p(Y|θ, M)τ p(θ)

p(Y|θ , M)τ
dθ (10.19)

=
∫

Rd

d log p(Y|θ, M)τ

dτ

p(Y|θ, M)τ p(θ)

pτ (Y)
dθ (10.20)

=
∫

Rd
log p(Y|θ, M)

p(Y|θ , M)τ p(θ)

pτ (Y)
dθ (10.21)

= Epτ {log p(Y|θ, M)} (10.22)

Integrating both sides with respect to τ yields the thermodynamic integral,

∫ 1

0
Epτ {log p(Y|θ , M)}dτ =

∫ 1

0

d

dτ
log pτ (Y) (10.23)

= log pτ=1(Y) − pτ=0(Y) (10.24)

= log p(Y|M) (10.25)

The integral in Eq. (10.25) can be solved numerically by choosing a discretization
0 = τ0 < τ1 < · · · < τK−1 < τK = 1, then the numerical approximation is

log p(Y|M) ≈ 1

2

K−1∑

k=0

(τk+1 − τk)
(
Epτk+1

{log p(Y|θ, M)} + Epτk
{log p(Y|θ , M)})

(10.26)
The expectation for a specific τ can be obtained by Monte Carlo estimates,

Epτk
{log p(Y|θ, M)} ≈ 1

S

S∑

s=1

log p(Y|θ (s), M) (10.27)

where θ (s) denotes a sample drawn from pτk (θ |Y, M).
Thus we are able to compute the log marginal likelihood for our model. Doing

so for two models provides us with the possibility to calculate the Bayes Factor and
thus do model selection.
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We provide an algorithm in pseudo code for thermodynamic integration:

Algorithm 1: Thermodynamic integration for calculating marginal likelihoods
input : number of temperature steps K , power posterior pτ (θ |Y, M)

depending on the temperature τ , number of samples S, loglikelihood
log p(Y|θ, M)

output: log marginal likelihood log p(Y|M)

for k ← 1 to K do
τk ← ( k

K )5;
Draw S samples from pτk (·|Y, M) with a Metropolis-Hastings algorithm;

Approximate Epτk
{log p(Y|θ, M)} by 1

S

∑S
s=1 log p(Y|θ (s), M)

end
Set the log marginal likelihood to
log p(Y|M) =
1
2

∑K−1
k=0 (τk+1 − τk)

(
Epτk+1

{log p(Y|θ, M)} + Epτk
{log p(Y|θ, M)})

10.4 Comparison of Model Selection Methods on a Simple
Example

10.4.1 A Tractable Example for Model Selection

We now want to present an example where the Bayes factor could be computed
analytically and thus the error made by the presented approximations was accessible.
We have found this possible with a very simple model selection where we chose
between the following two models:

• Model M1: a normal distribution with expected value μ and standard deviation σ ,
with N data points drawn.

• Model M2: two normal distributions with expected values μ1 and μ2 = −μ1 and
standard deviation σ , with N1 data points drawn from the first normal distribution
and N2 drawn from the second.

Our data came from model M2, so that the analytical Bayes Factor and the results of
thermodynamic integration should both point towards model M2 significantly, since
this model selection problem was rather simple.

We drew N = 10 samples frommodel M2 in the following way to obtain the data
Y = (Y1, ..., YN )

• Y1, ..., YN1 ∼ N (μ1, σ
2) with N1 = 3 and μ1 = −2.

• YN1+1, ..., YN ∼ N (μ2, σ
2) with N2 = N − N1 = 7 and μ2 = 2.

and compared that to

• Y1, ..., YN ∼ N (μ, σ 2) with N = 10.
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Fig. 10.2 The two models
M1 (green) and M2 (purple,
correct model) and the data
(magenta dots) drawn from
model M2

Avisualization of the data canbe seen inFig. 10.2. Tomake the computation tractable,
we chose a fixed σ , to which we assigned the value σ = 2 in our implementation.
This left us with one free parameter, μ, for model M1 and two parameters μ1 and
μ2 for model M2.

In the following, we considered the following scenario: strong prior information
for the parameters is available in the form of Gaussian priors. We thus chose:

• μ ∼ N (0, σ 2)

• μ1 ∼ N (−2, σ 2)

• μ2 ∼ N (+2, σ 2)

10.4.2 Analytically Computing the Bayes Factor

The likelihoods we obtained for both models are given by

p(Y|M1, μ) =
(

1√
2πσ

)N

exp

(

− 1

2σ 2

(
N∑

n=1

(Yn − μ)2

))

(10.28)

and

p(Y|M2, μ1, μ2) =
(

1√
2πσ

)N

exp

⎛

⎝− 1

2σ 2

⎛

⎝
N1∑

n=1

(Yn − μ1)
2 +

N∑

n=N1+1

(Yn − μ2)
2

⎞

⎠

⎞

⎠

(10.29)

After some straightforward calculations (see Schmidl [41] for a detailed deriva-
tion) we found that the posterior distributions in our scenario (Gaussian priors) for
our two models were

• N
(

1
N+1

∑N
n=1 Yn, σ 2

N+1

)
for model M1
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• N

((
1

N1+1 (−2 + ∑N1
n=1 Yn)

1
N2+1 (+2 + ∑N2

n=1 Yn)

)

,

(
σ 2

N1+1 0

0 σ 2

N2+1

))

for model M2

In order to compute the Bayes Factor, we needed to compute the marginals
p(Y|σ, M1) and p(Y|σ, M2). We began with model M1 and thus p(Y|σ, M1):

p(Y|σ, M1) =
∫

R

p(Y|μ)p(μ) dμ

=
∫

R

(
N∏

n=1

N (Yn|μ, σ 2)

)

· N (μ|0, σ 2) dμ

=
∫

R

(
1√
2πσ

)N+1
exp

(

− 1
2σ 2

N∑

n=1

(Yn − μ)2 − 1
2σ 2 μ

2

)

dμ

=
∫

R

(
1√
2πσ

)N+1
exp

(

− 1
2σ 2

(
N∑

n=1

Y 2
n − 2μ

N∑

n=1

Yn + (N + 1)μ2

))

dμ

=
∫

R

(
1√
2πσ

)N+1
exp

(

− N+1
2σ 2

(
1

N+1

N∑

n=1

Y 2
n − 2μ N

N+1 Ȳ + μ2

))

dμ

=
∫

R

(
1√
2πσ

)N+1
exp

(

− N+1
2σ 2

(
1

N+1

N∑

n=1

Y 2
n − ( N

N+1 )
2Ȳ2

))

× exp

(

− N+1
2σ 2

(
N

N+1 Ȳ − μ
)2)

dμ

=
(

1√
2πσ

)N
1√

N+1
exp

(

− N+1
2σ 2

(
1

N+1

N∑

n=1

Y 2
n − ( N

N+1 Ȳ)2

))

where Ȳ = 1
N

∑N
n=1 Yn is the sample mean. In a very similar fashion, we could

also calculate p(Y|σ, M2) for Gaussian priors. For that, we introduced the notation
Ȳ1 = 1

N1

∑N1
n=1 Yn and Ȳ2 = 1

N2

∑N
n=N1+1 Yn :

p(Y|σ, M2) =
∫

R

∫

R

p(Y|μ1)p(μ1)p(Y|μ2)p(μ2) dμ1 dμ2

=
∫

R

∫

R

(
N1∏

n=1

N (Yn |μ1, σ
2)

)

· N (μ1| − 2, σ 2)

⎛

⎝
N∏

n=N1+1

N (Yn |μ2, σ
2)

⎞

⎠ · N (μ2| + 2, σ 2) dμ1 dμ2

=
∫

R

∫

R

(
1√
2πσ

)N+2
exp

(

− 1
2σ 2

( N∑

n=1

Y 2
n + 8 − 2(N1Ȳ1 − 2)μ1 − 2(N2Ȳ2 + 2)μ2

+ (N1 + 1)μ2
1 + (N2 + 1)μ2

2

))

dμ1 dμ2

=
(

1√
2πσ

)N
1√

N1+1
√

N2+1
exp

(

− 1
2σ 2

(
N∑

n=1

Y 2
n + 8 − (N1Ȳ1 − 2)2

N1 + 1
− (N2Ȳ2 + 2)2

N2 + 1

))
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Having obtained the marginals, we could now compute the Bayes Factor B21 in favor
of model M2:

B21 = p(Y|σ, M2)

p(Y|σ, M1)
(10.30)

=
√

N + 1√
N1 + 1

√
N2 + 1

exp

(

− 1

2σ 2

(
(N Ȳ)2

N + 1
− (N1Ȳ1 − 2)2

N1 + 1
− (N2Ȳ2 + 2)2

N2 + 1
+ 8

))

(10.31)

Since B21 only depends on the data Y and the standard deviation σ , which we fixed,
we could easily evaluate the Bayes Factor in our implementation.

10.4.3 Computational Results

All computations were performed in MATLAB 2013a. For the optimization based
criteria AIC, BIC and LRT, we used 10,000 runs of a local optimization routine in
MATLAB. Starting values were drawn uniformly random from the intervals [−5, 5]
for μ in M1 and from [−5, 0] and [0, 5] for μ1 and μ2 in M2, respectively, to find
the maximum likelihood estimates.

For the sampling based approaches (prior arithmetic mean, posterior harmonic
mean andChib’smethod),we drew100,000 samples each from the required densities.
For the prior, sampling was directly available. For the posterior, we sampled with
Haario’s Adaptive Metropolis Sampler [14]. Since Chib’s method is in our opinion
not tailored to accommodate adaptive sampling, we there chose a regularMetropolis-
Hastings algorithm.

For thermodynamic integration, we followed the recommendations of Calderhead
and Girolami [7] and chose a power law temperature schedule τk = (k/20)5 with
K = 20 temperature steps. For each temperature, we drew 5000 samples, yielding
also a total of 100,000 samples.

All sampling algorithms were initialized at the maximum likelihood estimates
found for the AIC/BIC/LRT approaches. For the sampling based approaches, we ran
the sampling 30 times on the same data to correct for randomness. This took less
than an hour on a standard desktop computer. These 30 runs yielded mean results for
the Bayes factor and the standard error.

The AIC for model M1 was 49.58, while the AIC for the correct model M2 was
40.74, thus the AIC made the correct choice in this simple example. For the BIC
we found that the value for model M1 is 49.88, while the value for model M2 was
41.35, also indicating a preference for the correct model. The likelihood ratio test
rejected the smaller model M1 with a p-value of 0.000956. For the sampling based
approaches, we found the following:
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Method Mean Bayes factor and standard error
TRUE 139.23
Thermodynamic integration 140.66 ± 0.13
Posterior harmonic mean 149.37 ± 1.85
Prior arithmetic mean 138.76 ± 0.03
Chib’s method 55.76 ± 0.01

For the Bayes factor, the analytical computation based on our drawn data showed
a true value of 139.23 for model M2 over M1, i.e. decisive preference for model M2.
All sampling based approaches also found a preference for this model.

The posterior harmonic mean estimate overestimated the Bayes factor rather sig-
nificantly, also the standard error is very large compared to the other estimation
methods. Combined, this indicated a rather bad approximation and reliability, which
is in agreement with the general issues of this sampling method. Chib’s method in
our case performed worst. While the Bayes factor was still very strong in favor of
model M2, it underestimated the true value by a factor of 2. This was mostly due to a
systematic underestimation of both log marginal likelihoods, e.g. for model M2, all
sampling resultswere<−21.4while the true valuewas log (p(Y|σ, M2)) = −20.12.
This seems to be a systematic issue, since the sampling passed Geweke’s conver-
gence criterion with all p-values larger than 0.98. Furthermore, the mean of the
samples for model M2 for example could be compared to the analytical posterior
distribution. We found that the sample means of −2.3007 and 2.1318 agree very
well with the analytical values −2.2994 and 2.1260. Also the sample covariance
matrix [0.9915,−0.0053;−0.0053, 0.4974] agreed verywell with the analytical one
[1, 0; 0, 0.5]. We conclude that Chib’s method seems to suffer from severe numerical
issues and should thus only be used very carefully.

The prior arithmetic mean and thermodynamic integration performed best with
mean Bayes factors of 138.76 and 140.66, respectively. The good performance of
the prior arithmetic mean was certainly due to the simplicity of the model selection
problem, as well as the goodness of the prior. To further illustrate this, consider the
following: let the prior information for the parameters have not the same σ as the
data, but a different σp. Then the marginal likelihoods and the Bayes factor change
accordingly. But more importantly, we can showcase the problems which might
occur with the prior arithmetic mean. For σp = σ , all samples drawn from the prior
have a non-zero likelihood value. However, if we increased σp to σp = 20 (i.e. if
we weakened the prior information), around 22% of the prior samples within both
models had a likelihood value of zero within the limits of computational accuracy.
Further increasing the hyper parameter for the prior to σp = 50 leads to an even
worse situation: now around 63% of the prior samples for model M1 and 77%
of prior samples for model M2 had a likelihood value of zero within the limits
of computational accuracy. We expect this situation to worsen in larger models with
more parameters due to Bellman’s curse of dimensionality [5]. Thus in larger models
a large number of samples might have to be drawn from the prior to ensure the
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statistical power of the estimator. Thermodynamic integration performed very well
in our scenario and also in the following largermodel andwe expect it to also perform
well in other applications.

10.5 Model Selection for a Whole-Body
Multi-compartmental Model

We now want to present a larger example for model selection in ODE systems,
previously published in Schmidl et al. [40]. The example compares a model with 12
parameters to one with 15 parameters on the basis of 16 data sets. It comes from
radiation protection where biokinetic ODE models are of crucial importance in dose
estimation and further risk analysis for humans exposed to radioactive substances.
More correctly, we examined the processing of zirconium in the human body after
intake by ingestion. The models in question provided limiting values of detrimental
effects and built the basis for applications in internal dosimetry, the prediction for
radioactive zirconium retention in various organs as well as retrospective dosimetry.

Mathematically, the models for zirconium processing are multi-compartmental
models, corresponding to linear ODE systems. In a compartmental model, all major
human organs are represented as separate compartments representing a kinetically
homogeneous amount of radionuclides [16, 21]. Transfer between these compart-
ments is governed by the law ofmass balance and described by time-constant transfer
rates, which are the parameters that have to be inferred to fit the model to the data.
Since this linear structure is rather straightforward, it can easily be interpreted, how-
ever, determining the exact interaction mechanisms is a challenging task. In the
present case, there exist two competing models as suggestions for these interaction
mechanisms. For the first time, in vivo experimental data with measurements in
humans from blood plasma and urine were now available. Applying thermodynamic
integration for the computation of Bayes factors, we could establish dominance of
one model over the other. Furthermore, the availability of samples from the posterior
distribution of the models allowed for the prediction of accretion in compartments
where no direct measurements were technically possible in humans.

The first model is well established in the community and was put forward by
the International Commission on Radiological Protection (ICRP) [16]. The transfer
rates for this model weremostly derived from animal data and yielded extensive prior
information for our inference. The Helmholtz Zentrum München (HMGU) recently
published another, physiologically more plausible biokinetic model [12]. It is the
first model based on measurement data in humans, taken in 16 investigations from
12 healthy human subjects. In vivo measurements were taken from blood plasma and
urine of up to 100days after ingestion by application of the double tracer technique.
More details on themeasurement process aswell as a global statistical uncertainty and
sensitivity analysis of this HMGUmodel can be found in the respective publications
[29, 30].
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Fig. 10.3 Models for zirconium processing. a ICRP model. This model contains eleven compart-
ments y1,…,y11 and 15 time-constant transfer rates x1,…,x8, x13,…,x19. b HMGU model. This
model contains ten compartments y1,…,y10 and twelve transfer rates x1,...,x12. In both models zir-
conium enters the body in the stomach compartment y9 and is processed through the system until it
reaches either one of the two final compartments urine, y7, or feces, y8. The colored compartments
y1 and y7 are corresponding to the ones where measurements are taken

10.5.1 Inference Setup

Thefirst of the two compartmentalmodels under examination herewas recommended
by the ICRP in [16, 17, 20] (Fig. 10.3a). The model contains eleven compartments,
which are linked through 15 transfer rates. Since zirconium is ingested, it enters the
body through the stomach compartment y9 and is processed until it reaches one of
the two final compartments urine, y7, or feces, y8. The HMGU model [12] differs
from this model: it contains only ten compartments and twelve transfer rates, since
the physiologically questionable distinction between the two bone compartments of
the ICRP model, trabecular bone surface and cortical bone surface, was abolished
in this model. Furthermore, most mass transfers are now mediated by the transfer
compartment representing the blood plasma instead of direct transfers, which is
physiologicallymore plausible. Tobetter represent that some rates are sharedbetween
the models, we use the notation x . Both models share eight transfer rates, which are
thus denoted x1, . . . , x8. The additional rates present in only one of the models then
have a unique index x9, . . . , x19, beginning with the HMGU model specific rates.
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Both compartmental models correspond to systems of coupled linear first-order
ordinary differential equations. For the time-dependent concentration y j (t) in com-
partment y j , the rate of change is given by

d

dt
y j (t) =

∑

α∈A +
y j

xα y[xα](t) −
∑

β∈A −
y j

xβ y j (t) (10.32)

For this, we introduce the setA +
y j
, containing all indices to transfer rates xα flowing

INTO compartment y j and the setA −
y j

containing all indices to transfer rates flowing
OUT of compartment y j . The compartment y[xα] is then the one connected to y j by
the transfer rate xα . We illustrate this by an example: consider the HMGU model.
Here we have A +

y5 = {8, 10}, y[x8] = y10 and y[x10] = y1. Initial concentrations
are needed for a unique solution of the ODEs, thus we choose y9(0) = 100% and
y j �=9(0) = 0%, since we assume that all zirconium is in the stomach compartment at
the start of the investigation. The detailed ODEs can be found in the supplementary
material of the original publication [40].

Zirconiumwas measured in plasma and urine through the double tracer technique
in 16 investigations [12, 13]. The raw data tracer concentrations were then normal-
ized to the respective investigation-specific tracer amount to yield 100% at t = 0 in
the stomach compartment y9. For the development of the model, the transfer com-
partment was taken to be identical with blood plasma, the measured concentrations
were then expressed as % per kg plasma. Absolute concentrations were obtained by
scaling with the total amount of plasma in the body [2]. The measurements in urine
correspond to an excretion rate in % per day.

10.5.2 Model Likelihoods

For each investigation z = 1, . . . , Z = 16, we found the likelihood by assuming
Gaussian noise on the ODE solution cxi (t) of the differential equation for any of
the two models M1 or M2 and some corresponding parameter vector xi , where
the model index i ∈ {1, 2}. Here, M1 is the HMGU model and M2 the ICRP
model. Corresponding to the notation in Fig. 10.3a, b, x1 = (x1, . . . , x12) and
x2 = (x1, . . . , x8, x13, . . . , x19). Then the data for investigation z was given by
the measurements in plasma and urine

Yz = (yz,1
1 , yz,2

1 , . . . , y
z,N b

z
1 , ẏz,1

7 , ẏz,2
7 , . . . , ẏ

z,N u
i

7 ) (10.33)

While yz,·
1 indicated measurements in plasma, i.e. in the transfer compartment y1,

ẏz,·
7 designatedmeasurements of the excretion rate in the urine compartment y7. There
are N b

z measurements in plasma and N u
z measurements in urine for investigation

z. Assuming normally distributed noise, the likelihood was then given for each
investigation z and for model i by
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p(Yz |xi , Mi ) =
N b

z∏

α=1

N

(

yz,α
1 |cb

xi (tα), σ b
z

)

︸ ︷︷ ︸
p(b)(Yz |xi ,Mi )

N u
z∏

β=1

N

(

ẏz,β
7 | d

dt
cu

xi (tβ), σ u
z

)

︸ ︷︷ ︸
p(u)(Yz |xi ,Mi )

.

Again cb
xi (tα) was the ODE solution for the parameter vector xi in the transfer com-

partment y1 at time point tα , corresponding to the measurement at yz,α
1 . Accordingly

d
dt cu

xi (tβ)was the derivative of the solution for the urine compartment y7 at time point

tβ , corresponding to the measurement ẏz,β
7 . The standard deviations of the normal

distributions for plasma, σ b
z , and for urine, σ u

z , were fitted for each investigation
separately by applying the simulated annealing algorithm [25] before starting the
MCMC sampling process. This error model corresponds to the combined strength
of all deviations from the “true” ODE solution, which include (possibly amongst
others) measurement error as well as natural internal fluctuations not considered by
an ODE approach. With these assumptions, both models were able to fit the data
in principle, justifying our ODE approach with additive normally distributed noise,
see also Fig. 10.5. It is however still important to account for biological variability
between the individual investigations, for which we accounted by fitting different σ b

z
and σ u

z for each investigation z and thus get investigation-specific likelihoods. This
lead to individual credible intervals for each parameter in each investigation in the
MCMC sampling procedure later on. In contrast to this individual treatment, it also
makes sense to consider the complete (i.e. concatenated) data. Then the likelihood
was given by pAL L(Y|xi , Mi ) = ∏16

z=1 p(Yz |xi , Mi ), with Y = {Y1, . . . , Y16} and
fitting investigation independent σ b and σ u .

For the calculation of the likelihood, the ODE had to be solved depending on xi .
Since the ODE is of first order, it can be reformulated as

dyxi (t)

dt
= A(xi ) · yxi (t), (10.34)

with yxi (t) the vector of all the compartments of model i and the time independent
matrix A(xi ) representing all the interactions between these compartments, depend-
ing on the transfer rate values xi . First order ODEs can then be solved analytically:

yxi (t) = eA(xi )t · yxi (t = 0). (10.35)

The matrix exponential eA(xi )t can be computed by eigenvalue decomposition using
e.g. MATLAB’s eig function.

This now enabled us to compute a Bayes factor for each investigation z

Bz
1,2 = p(Yz |M1)

p(Yz |M2)
. (10.36)
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as well as an overall Bayes factor

B1,2 = pAL L(Y|M1)

pAL L(Y|M2)
. (10.37)

10.5.3 Prior Information

Models for zirconium processing have been used for a few decades already, and quite
a large number of animal studies has been held. From these, comprehensive prior
information for both models could be curated. The priors for each single transfer
rate were given as triangular, normal or lognormal distributions with known hyper-
parameters. Of the eight transfers present in both models, only x8 had a different
distributions in the ICRP and HMGU model. Each univariate prior distribution was
truncated at zero. For details, we again refer to the original publication [40]. In con-
trast to the investigation specific Bayes factors, the prior information was naturally
the same for each investigation, since it represents information from a large number
of preceding examinations and was not specific to the present investigations.

10.5.4 Copula Based Monte Carlo Sampling

In order to be able to do model selection via thermodynamic integration, we needed
to be able to sample from the model, investigation and temperature specific dis-
tribution. For this we used a sophisticated MCMC method named copula-based
independence/random walk Metropolis-Hastings approach (CIMH) [39] with the
setup specified in [40]. As already mentioned, we used simulated annealing to find
the maximum a posteriori estimate and used this as starting point for the sampling,
enabling us to skip the burn-in phase. For this application, we chose to apply thinning
by the autocorrelation based Effective Sample Size (ESS) [33]. Though generally
not necessary, we used this as an additional quality insurance. The ESS corresponds
to the number of samples that are left if a Markov chain is thinned such that two
consecutive samples can be considered approximately independent. Our sampling
algorithm CIMH was able to provide a high ESS at simultaneously high acceptance
rates. From all required distributions we generated 30,000 proposals.

10.5.5 Model Selection Results and Discussion

Since the experimental data as basis for the model selection came from 16 inves-
tigations, one can ask if the models should be compared based on the complete
data, yielding one overall Bayes factor, or on each dataset separately, yielding 16
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Fig. 10.4 The experimental data: Plasma concentrations and excretion rate in urine for all 16
investigations on log–log-timescale

Bayes factors, which cannot be directly compared. When taking a closer look at the
data (Fig. 10.4), we saw that all investigations exhibit a pulse-like time course in the
plasma measurements, while the excretion rates in urine pointed more to an expo-
nential decay behavior. Despite these shared characteristics, the actual zirconium
tracer concentrations showed up to a 50-fold difference between maximum plasma
concentrations, i.e. for investigation 10 (1.616%) and 6 (0.033%).

This already suggested that the investigations should be treated separately, since
the differences in the concentrations propagate to differences in the transfer rates.
To verify this, we did a pairwise comparison of the posterior samples marginal
(corresponding to the temperature τ = 1) by the Kolmogorov-Smirnov test. Since
this test is univariate, we picked parameter x7 in the ICRP model as example, as
it directly affects the observed concentrations in plasma [30]. Except for one pair,
all obtained p-values were < 6 × 10−8. We took this as a strong indication that all
investigations should be treated separately.

However, for many applications of the models, reference values for an average
subject are needed. This is why we also included the Bayes factor for the complete
data in our analysis. The differences between the overall Bayes factor and the inves-
tigation specific ones can also be the basis for the study of influence factors like
gender or weight.

As already mentioned, the analysis was based on 30,000 proposals for every one
of the 30 temperature level in all 17 examined cases (one for each investigation and
one forY). From the 510 sampling runs of theHMGUmodel, we achieved an average
ESS of 5832± 405 (including one standard error), for the ICRP model 5808± 252.
This corresponded to high acceptance rates and a good capture of the power posterior
by the sampling procedure.

The obtained posterior samples yielded credible intervals for the parameters as
hand as well as an maximum a posteriori estimate based on the complete data,
which can be used if single parameter values for an average subject are required.
When propagating these posterior samples to the ODE solution, we saw (Fig. 10.5)
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Fig. 10.5 Posterior time courses: Shown are the sample median (solid line) and 90% credible
interval (CI, shaded area) drawn from the time courses based on the τ = 1 HMGU (purple) and
ICRP (green) MCMC samples for a the complete plasma data, b the excretion rate in urine over
time of the complete data, c as a single example the plasma data of investigation 15, and d the
corresponding urinary excretion rate over time of investigation 15 d, all plotted on a log–log scale.
The plasma plots were truncated at 1 × 10−5(%) and urine plots at 1 × 10−6(%/d). Note that
the median and CI represent only the uncertainty in the parameters, in contrast to measurement
uncertainty (not shown). Colored markers are the raw experimental data points. At each time
point the median and the 90% credible interval were computed pointwisely over all MCMC based
solutions

that both models were in principle able to fit the measurement data, justifying our
approach. While no rigorous model selection was possible merely from these fits,
especially the plasma data already hinted at a better suitability of the HMGUmodel.
In the urine data the difference between the two models was not as pronounced. We
want to point out that the credible intervals in Fig. 10.5 represent only the uncertainty
coming from the parameters, in contrast to the measurement uncertainties accounted
for by the noise parameters σ b

z and σ u
z , which are not shown.

For the actual model selection, we now compared the HMGU and ICRP models
based on both the complete data as well as the individual investigations, yielding 17
Bayes factors. We found that all Bayes factors favor the HMGU model, 14 out of 17
even decisively (Table10.1).

Since the time courses already indicated that theHMGUmodelmight bemore suit-
able since it fitted the plasma data better, we computed additional Bayes factors based
on either only the plasma or urine data. This corresponds to considering either only
”the plasma likelihood” p(b)(Yz |xi , Mi ) or ”the urine likelihood” p(u)(Yz |xi , Mi )

from Eq.10.33, where i = 1, 2 and z = 1, . . . , 16 and accordingly for the complete



264 S. Hug et al.

Table 10.1 Bayes factors for the HMGU versus the ICRP model (B A
1,2) for the individual inves-

tigations as well as for the complete data (ALL) and the according Bayes factors for the plasma
(B p

1,2) and urine (Bu
1,2) data

Inv. B A
1,2 B p

1,2 Bu
1,2

1 7.17 × 101 7.12 × 101 1.05

2 1.15 × 102 2.93 × 102 3.94 × 103

3 5.95 × 104 5.23 × 104 1.34

4 1.07 × 103 2.64 × 103 3.47 × 101

5 2.19 × 102 4.73 × 102 1.34 × 102

6 4.64 × 103 3.93 × 103 2.38 × 103

7 2.18 × 102 2.30 × 102 1.34 × 103

8 3.75 × 101 1.28 × 102 0.22

9 4.62 × 102 2.32 × 102 0.18

10 8.62 × 102 1.16 × 102 0.20

11 1.17 × 105 1.81 × 101 2.94 × 103

12 1.78 × 102 5.48 1.14 × 101

13 7.19 × 102 1.41 × 101 4.41

14 3.58 × 101 7.43 9.77

15 6.29 × 103 2.17 × 101 1.60 × 102

16 6.22 × 102 1.34 × 101 1.20 × 104

ALL 1.20 × 1011 3.43 × 104 4.73 × 107

Italic indicates a Bayes factor in favor of the HMGU model and bold a Bayes factor in favor of
the ICRP model. The HMGU model is favored substantially, when B·

1,2 > 3 and decisively, when
B·
1,2 > 100. Also, 1/B·

1,2 = B·
2,1

data. The Bayes factors support our theory that the plasma is fitted better by the
HMGU model: all 17 Bayes factors based on the plasma data favored the HMGU
model, in ten cases again decisively (Table10.1, 3rd column). For the urine data, the
situation was slightly more ambivalent, as here three investigations favor the ICRP
model (Table10.1, 4th column), but not decisively, while still eight Bayes factors
favor the HMGU model decisively. All in all, we asserted that all decisive Bayes
factors are in favor of the HMGU model, meaning that the ICRP model was deci-
sively rejected in the majority of cases. Thus we conclude that the HMGU model
is superior to the ICRP model for representing zirconium processing in the human
body, both on an individual level as well as for an average subject represented by the
complete data.

With this knowledge in mind, we now want to determine if this difference in the
quality of the models can be used to make useful and distinguishable predictions
of system behavior. In internal exposure monitoring, biokinetic models like the two
under scrutiny here are often used to predict the organ retention or daily excretion of
incorporated radionuclides [18], often in organs that are technically hard to measure.
The solution of the model in each compartment gives the organ retention function.
The organ doses are then directly computable from the integral of the radioactivity
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Fig. 10.6 Retention of zirconium in bones: Shown are the median (solid lines) as well as 90%
credible intervals (shaded areas) for the extrapolated retention of 95Zr in the bone compartment(s)
as predicted by the HMGU (purple) and ICRP (green) models, correcting for radioactive decay

of 95Zr in source organs over e.g. 50years with the inference results from our data
from the non-radioactive 98Zr.

We now want to compare the retention of 95Zr in the bone compartment as pre-
dicted by the two models. For this we computed the 90% credible intervals for
the time courses in the bone compartments, based on the posterior samples of the
complete data on a longer timescale. Figure10.6 immediately shows a significant
difference between the two models, with much lower accretion in the HMGUmodel,
where we added the two bone compartments of the ICRP model together. While
the inference was based on a stable isotope of zirconium, we now assume that the
radioactive 95Zr behaves the same, however now radioactive decay with half-life
64.032d [19] has to be taken into account. The reduction of retention in the HMGU
model could have significant effects on monitoring, for which at the moment the
ICRP model is used.

10.6 Conclusions

In this chapter, we have tried to advocate the use of Bayes factors for model selec-
tion. For this purpose, we have first demonstrated several different model selection
methods on a simple, analytically tractable example. We have found in this example



266 S. Hug et al.

that while likelihood based methods like the AIC also give correct results, the Bayes
factor is easier interpretable. For the calculation of the Bayes factor as such, we have
found that both our preferred method thermodynamic integration as well as the prior
arithmetic mean perform very well in our example. We have also shortly shown that
the prior arithmetic mean strongly depends on the quality of prior information. We
went on to demonstrate the computation of the Bayes factor with thermodynamic
integration on a real world example from radiation science.

In summary, we could show there that the newer HMGU model was unequiv-
ocally superior with 14 of 17 Bayes factors being decisive when compared to the
well-established ICRP model. Also, when restricting the data on plasma and urine
measurements only,we found that theHMGUmodelwas clearly favored.TheHMGU
model thus best covers human data. We found a significant difference between the
twomodels regarding the predicted accumulation of zirconium in bones,whichmight
be experimentally tested in animal studies in the future.

More generally, we believe that the presented methodology is suitable for any
ODE-based model selection task and that Bayes factors should be the method of
choice for doing model selection, a view that is also increasingly shared in the
current literature [9, 15, 24]. Especially tasks like the modeling of protein signaling,
gene regulation, or drug processing [26], nowadays frequently put forward in systems
biology [4, 36] or pharmacogenetics [45] could benefit from these approaches.
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Chapter 11
Sloppiness and the Geometry
of Parameter Space

Brian K. Mannakee, Aaron P. Ragsdale, Mark K. Transtrum
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Abstract When modeling complex biological systems, exploring parameter space
is critical, because parameter values are typically poorly known a priori. This explo-
ration can be challenging, because parameter space often has high dimension and
complex structure. Recent work, however, has revealed universal structure in para-
meter space of models for nonlinear systems. In particular, models are often sloppy,
with strong parameter correlations and an exponential range of parameter sensi-
tivities. Here we review the evidence for universal sloppiness and its implications
for parameter fitting, model prediction, and experimental design. In principle, one
can transform parameters to alleviate sloppiness, but a parameterization-independent
information geometry perspective reveals deeper universal structure. We thus also
review the recent insights offered by information geometry, particularly in regard to
sloppiness and numerical methods.
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11.1 Introduction

Mathematical models of cell-signaling, metabolic, and gene networks play a criti-
cal role in developing mechanistic understanding of these networks [45]. Building
models can be difficult, however, because such networks often have complex non-
linear dynamics and not all components may be known. In fact, important uses of
network models are to infer network structure [19] or choose between hypotheses
regarding network function [43]. (For more on the challenges in reverse engineering
biological networks, see Chap. 2 in this volume [42].) Even when the network is
well-known, however, modeling can still be difficult, because mechanistic models
typically depend upon a large number of kinetic parameters [29, 52]. Such parameters
are often unknown and are difficult to measure experimentally.

In this chapter, we review methods for exploring the spaces of model parameters
and data, and we review recent work on sloppiness, a general property of complex
nonlinear models. Sloppymodels have highly anisotropic parameter and data spaces,
with complex relationships between parameter values and model output. Sloppiness
results in several difficulties for modelers, including that numerical tools used to
estimate parameters can be slow, confidence intervals for parameter values andmodel
output can be large, and experiments to improve the model can be difficult to design.
We review recent work on how these challenges arise and how they can be overcome.

11.1.1 Parameter Space and Data Space

In amodelwith N parameters θ1, . . . , θN , the parameter space encompasses the set of
all possible values for each parameter. Most commonly, parameters are real numbers,
in which case the N-dimensional parameter space is a subspace of RN . A particular
realization of parameter values θ = [θ1, θ2, . . . , θN ] is a vector representing a single
point in parameter space. For biological models, in which parameters may have
different units and scales that differ by orders of magnitude, it is convenient to
consider logarithmic rather than absolute parameter values, so in this chapterwhenwe
speak of parameters and parameter space we are always referring to log-parameters.
One can think of the model as a function mapping points or regions in parameter
space to output values, or points in data space [18], and a general problem in systems
biology is to understand this mapping.

A complete description of this map is a useful mathematical tool. For instance,
once themapping is understood, it is easy to enumerate the possible outcomes amodel
can generate. Thus, given a model that matches experimental data, one can generate
hypotheses about other states the system might enter and perform experiments to
look for those states [61]. Additionally, estimating parameter values by fitting them
to data [40] employs the reverse map, in that the modeler seeks the point or region
in parameter space that maps to the point in data space closest to the measured data.
These maps are commonly constructed and analyzed using a cost function.

http://dx.doi.org/10.1007/978-3-319-21296-8_2
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11.1.2 Cost Functions

In the context of fitting models to data, the cost function measures the difference
between the model output for a given set of parameters and the data that is being
fit. As such, the cost function acts as a map between parameter space and data
space, structuring the parameter space in such a way that moves in parameter space
correspond to changes in model fit. This structure is often called the cost landscape,
and we will use these concepts, of maps and landscapes, interchangeably here. The
most common cost function used in data fitting, and the one we will focus on in
this chapter, is the least-squares cost function [62]. (For more on cost functions, see
Chap.7 in this volume [60]). Given amodel y(θ, t)with parameter vector θ we define
the least-squares cost function as

C(θ) ≡ 1

2

∑

s

∑

c

∑

Tc

[
ys,c(θ, t) − Ys,c(t)

σs,c,t

]2

= 1

2

∑

s

∑

c

∑

Tc

r2s,c,t (θ) = 1

2

M∑

m=1

r2m(θ) , (11.1)

which is half the squared difference over M data points collected for species s under
experimental conditions c at timepoints Tc, or the sumof squares of the M normalized
residuals r between model and data. Measurement uncertainty for each data point
is denoted σs,c,t . The sum over Tc can be replaced with an integral when fitting
continuous data. The best-fit parameter vector θ∗ occurs at the global minimum
of C .

Most commonly, the model residuals are assumed to be independent and nor-
mally distributed. The probability density that the model will produce the data given
parameters θ is then

P(Data|θ) =
∏

s

∏

c

∏

Tc

1√
2πσs,c,t

exp

[
−1

2

(
ys,c(θ, t) − Ys,c(t)

σs,c,t

)2
]

. (11.2)

In statistics, this probability density is called the likelihood of θ [12]. Taking the
negative logarithm of the likelihood function yields the least-squares cost function
C(θ) (Eq. 11.1). Thus, minimizing the cost function to find the best-fit parameters θ∗
is equivalent to maximizing the likelihood, so the best-fit parameter vector inherits
the statistical properties of the maximum likelihood estimator [26]. This statistical
connection, arising from the assumption of normally-distributed residuals, makes the
sum-of-squares cost function C(θ) particularly useful in describing the structure of
parameter space. Other assumptions about the distribution of residuals are, however,
possible and imply different cost functions. Note that much of what we discuss in
this chapter has only been shown for sums-of-squares cost functions.

http://dx.doi.org/10.1007/978-3-319-21296-8_7
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11.2 Multivariate Sensitivity Analysis

We use sensitivity analysis to explore parameter space, observing how model out-
put changes as model parameters vary. In systems biology, sensitivity analysis is
commonly used to quantify the uncertainty associated with both best-fit parameter
values, and newmodel predictions generated using those parameter values. However,
methods used in sensitivity analysis also provide additional useful information about
parameter space. In this chapter, we are particularly interested in the correlation struc-
ture of parameter space, i.e. the relationships among combinations of parameters.
Ultimately, we will define sloppiness in terms of these correlations. In this section,
we describe one local and three global methods of multivariate sensitivity analysis.
We then use an examplemodel to illustrate how sensitivity analysis reveals parameter
correlations and how those correlations affect the precision of parameter inference.

11.2.1 Local (The Hessian)

The sensitivity of the fit of the model y(θ, t) to a given data set is determined by
how quickly the cost function C(θ) increases away from the best-fit parameters θ∗.
A useful local perspective on the cost landscape is given by a quadratic expansion
of the cost function:

C(θ) ≈ C(θ∗) + ∇C(θ∗)(log θ∗ − log θ) + 1

2
(log θ∗ − log θ)ᵀH(log θ∗ − log θ) .

(11.3)

The gradient ∇C(θ∗) of the cost function is, by definition, zero at the best-fit para-
meters θ∗. The N × N Hessian matrix H is defined as

Hi, j ≡ ∂2C

∂ log θi ∂ log θ j

∣∣∣∣
θ=θ∗

. (11.4)

Because it involves second derivatives, the Hessian can be difficult to calculate. If the
residuals r are small at the best-fit (i.e., the fit to the data is good) then the Hessian
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can be well-approximated by H ≈ JᵀJ . The Jacobian matrix J is the M × N matrix
of partial derivatives of the residuals with respect to the parameters:

Jm,n = ∂rm

∂ log θn
. (11.5)

The first-derivatives in the Jacobian can be evaluated by finite differences or, for
ordinary-differential equation (ODE) models, by integrating sensitivity equations.

The Hessian describes the quadratic behavior of the cost function C near the point
θ∗, so analyzing theHessian corresponds to approximating the level curves ofC as N -
dimensional ellipsoids in parameter space (Fig. 11.1). The Hessian matrix is positive

Fig. 11.1 Local and global sensitivity analysis. a Local analysis around the best fit point (black
dot). Ellipses are curves of constant cost calculated from the Hessian matrix. Sensitivity in each
direction is proportional to the widths of the curves. b Scanning parameters along each axis around
the best fit point. c Latin Hypersquare scan with uniform priors. Every equal probability bin of
each parameter distribution is sampled exactly once. d Bayesian parameter vector ensemble for this
quadratic model.
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definite and symmetric, so it has real eigenvalues λ and eigenvectors v corresponding
to the principle axes of those ellipsoids. Additionally, the relationship between the
negative log-likelihood− log P(Data|θ) andC(θ) (Sect. 11.1.2) implies that inverting
theHessian inEq.11.4 gives an asymptotic approximation of the covariancematrix of
the parameters [22]. Thus, the covariance matrix has eigenvectors v and eigenvalues

λ−1, and the widths of the principle axes of the ellipsoids are proportional to λ− 1
2

(Fig. 11.1a).

11.2.2 Global

Local sensitivity analysis accurately measures model sensitivity when parameter
space is linear and smooth, so the cost minimum is well defined, but these conditions
are not guaranteed to hold in systems biology models. In particular, the relationship
between parameters may be nonlinear near the best fit, so the quadratic map imposed
by the Hessian may be a poor approximation to the actual cost surface. Figure11.2b
shows such a cost surface, in which strong nonlinearities cause the quadratic approx-
imation to overestimate the variability of the parameters. Moreover, some models
may have rough parameter spaces with multiple minima of similar model behavior
separated by ridges [25]. In such a landscape, local sensitivity analysis can be mis-
leading, because steep curvatures near a local minimum may obscure the true shape
of the parameter space.Globalmethods of sensitivity analysis address these problems
by sampling parameter space in a finite neighborhood around the best fit. Broadly,
such methods fall into two categories, scanning methods and Bayesian methods.

Scanning methods sample parameters without regard to the data and look for
correlations between locations in parameter space and the model behavior or value
of the cost function at those locations. Bayesian methods sample from the posterior
distribution of the parameters given the data and use those samples to make infer-
ences about the sensitivity of the model. The challenge in both cases is to generate
a sufficiently dense sample of the parameter space that valid inferences can be made
about the sensitivity of the model to parameter changes. Here we describe two para-
meter scanning and two Bayesian methods that are frequently used for multivariate
sensitivity analysis in biological modeling.

11.2.2.1 Parameter Scanning

One way to generate parameter sets is to simply scan the parameter space, varying
one parameter at a time in small intervals over a range of values (Fig. 11.1b). Only
in the unusual case where the principal axes of the model sensitivity line up with
the parameter axes will this method provide an accurate measure of the uncertainty
in parameter estimates, because it ignores correlations between parameters. Scan-
ning combinations of parameters to capture those correlations is, however, often
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prohibitive for large models, because the number of points needed to define a grid
in N dimensions grows exponentially with N .

Latin Hypercube Sampling (LHS), a generalization of the Latin Square experi-
mental design, is a method for sampling parameter space in such a way that correla-
tions between parameters can be uncovered.Marino et al. [50] describe an application
of LHS in the context of sensitivity analysis, in which each parameter is assigned
a probability distribution. These probability distributions incorporate prior informa-
tion about the range of values a parameter can take, are often normal or uniform,
and need not be the same for every parameter. Each of the probability distributions
is divided into B equal probability bins, and B parameter vectors are generated by
randomly sampling one bin from each parameter distribution without replacement,
keeping track of which bin each value came from. The result is a group of parame-
ter vectors such that each value for a given parameter was drawn from a different
part of its distribution (Fig. 11.1c). The cost function is evaluated for each of these
parameter sets and the correlation between costs and bins describes the sensitivity
of the model. Computing partial correlations among parameter combinations reveals
the correlation structure of the parameter space. While LHS is computationally effi-
cient due to the Latin Square randomization, its use in analyzing biological models
requires special care because nonlinearities in parameter space can render correlation
analysis inaccurate [50]. For other approaches to parameter scanning, see Chap.13
in this volume [77].

11.2.2.2 Bayesian Ensembles

Parameter scanning methods sample parameter vectors without regard to the data.
Thus, the resulting sample may contain many vectors that poorly fit the data and
add little to our understanding of the relevant distribution of parameters. Bayesian
approaches maximize information about the distribution of parameters around the
best fit by sampling densely in areas corresponding to good fits and sparsely else-
where. Bayesian Markov-chain Monte Carlo (MCMC) walks through parameter
space have been widely used in systems biology to construct ensembles of parame-
ter sets [9, 13, 14, 24, 27, 79], and flexible approximate Bayesian methods have
recently been developed. (For more on Bayesian approaches to sampling parameters
and choosing among models, see Chaps. 9 and 10 in this volume [38, 66].)

The goal of Bayesian MCMC is to sample from the posterior distribution
P(θ |Data) of parameter sets given the observed data. From Bayes’ rule:

P(θ |Data) = P(Data|θ) P(θ)

P(Data)
, (11.6)

where P(Data|θ) is the likelihood defined in Eq.11.2, P(θ) is the prior probabil-
ity of the parameters, and P(Data) is the evidence for the data. P(Data) is often

http://dx.doi.org/10.1007/978-3-319-21296-8_13
http://dx.doi.org/10.1007/978-3-319-21296-8_9
http://dx.doi.org/10.1007/978-3-319-21296-8_10
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difficult to calculate but is inmany cases an unimportant normalization, leading to the
proportionality:

P(θ |Data) ∝ P(θ) P(Data|θ) . (11.7)

This proportionality allows a relative posterior probability to be calculated for any
parameter set in terms of the likelihood and the prior. As we saw in Sect. 11.1.2, the
likelihood can itself often be calculated in terms of the least squares cost function.
The prior distribution reflects pre-existing knowledge of the distribution of parameter
values, often from other experiments or analogy with similar molecular parameters.
Early work focused on uniform priors [9, 13, 14], while more recent work employs
log-normal [24, 27, 32] or gamma [79] priors.

The Markov chain is usually started at the best-fit parameter set and allowed to
walk through parameter space sampling the posterior distribution of θ . At each step
of the walk theMetropolis-Hastings criterion [17] is applied, such that at the j th step
a new random vector θtest is generated and

θ j+1 =
{

θtest , with probability α

θ j , with probability 1 − α ,
(11.8)

where

α = min

{
1 ,

P(θtest|Data)
P(θ j |Data)

}
. (11.9)

Thewalk thus always acceptsmoves to parameter sets with higher posterior probabil-
ity and sometimes accepts moves to parameter sets with lower posterior probability.
This random walk generates an ensemble of parameter vectors that converges to the
posterior distribution [17]. Themarginal distributions for each parametermeasure the
sensitivity of the fit to changes in that parameter, integrating over changes in the other
parameters, and provide confidence intervals for the best-fit value. The covariance
matrix of the ensemble describes the correlation structure of the cost landscape.

11.2.2.3 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) allows sampling of approximate pos-
terior parameter distributions when the likelihood function is analytically or com-
putationally intractable. Both Markov-chain [11, 51] and Sequential Monte Carlo
(SMC) [64, 67] methods exist. The SMC method uses sequential importance sam-
pling [20] to shorten chain length by preventing the algorithm from getting stuck in
areas of low probability [67]. ABC has the advantage that it can be used to sample
the parameter space of stochastic models, in addition to deterministic models [67].

The main difference between ABC and likelihood-based MCMC is that at each
step, rather than evaluating the likelihood of θtest the algorithm instead generates
a new simulated data set Y ′

s,c(t) from ys,c(θtest, t) and computes a distance metric
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ρ(Ys,c(t) , Y ′
s,c(t)). Possible distance metrics include the euclidian distance, squared

distance, and total absolute deviation, among many others. At the j th step

θ j+1 =
{

θtest , with probability α ,

θ j , with probability 1 − α ,
(11.10)

where

α =
{
0 , ρ(Ys,c(t) , Y ′

s,c(t)) > ε

min
{
1 ,

P(θtest)
P(θ j )

}
, ρ(Ys,c(t) , Y ′

s,c(t)) ≤ ε ,
(11.11)

and ε is some small number chosen to bound the acceptable distance between sim-
ulated and real data. This chain generates a collection of parameter vectors drawn
from the joint distribution P(θ |ρ(Ys,c(t) , Y ′

s,c(t)) ≤ ε), which can be used in the
same way as the joint distribution generated from Bayesian MCMC. In the case of
a deterministic ODE model, choosing ρ to be the squared distance and performing
an ABC analysis with decreasing ε is equivalent to the maximum-likelihood method
used in Bayesian MCMC with a least-squares cost function [67].

11.2.3 Example: Robertson Model

To illustrate the concepts discussed in this section and throughout the chapter, we
followEydgahi et al. [24] and consider a set ofmass-action reactions among chemical
species A, B, and C originally formulated by Robertson [58]:

A
k1−−→ B , 2B

k2−−→ B + C , B + C
k3−−→ A + C . (11.12)

These reactions yield the nonlinear system of ODEs:

d [A]

dt
= k3 · [B] · [C] − k1 · [A] , (11.13)

d [B]

dt
= k1 · [A] − k2 · [B]2 − k3 · [B] · [C] , (11.14)

d [C]

dt
= k2 · [B]2 . (11.15)

As initial conditions, we took

[A0] = 1 , [B0] = [C0] = 0 . (11.16)
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Fig. 11.2 Data fitting for the Robertsonmodel. a Simulated data and best-fit trajectories.Error bars
correspond to one standard deviation. b Corresponding cost landscape showing best-fit parameters
(red point), and the confidence interval from the Jᵀ J approximation to the Hessian (blue ellipse).
One hundred samples from a Bayesian MCMC ensemble (white dots), and geodesic curves starting
at the best-fit (red lines) are also shown. Top and right panels show marginal distributions of k1 and
k3, respectively, inferred from the Hessian approximation (blue curve) and the Bayesian ensemble
(white histogram)
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We generated synthetic data points for [A], [B], and [C] by sampling every 8 time
units from the model with initial parameters

k1 = 0.04 , k2 = 3 × 107 , k3 = 10,000 , (11.17)

and adding normally-distributed noise to each data point with standard deviation
equal to 25% of the maximum value of the corresponding variable. We then fixed
k2 and used least-squares optimization to fit the synthetic data, estimating k1 and k3
(Fig. 11.2a).

We conducted sensitivity analysis using both the Hessian matrix (local) and an
ensemble of parameter sets sampled by Bayesian MCMC (global), using Sloppy-
Cell [55]. In both cases, we added log-normal priors that restricted k1 and k3 to
remain within three orders of magnitude of the initial values (Eq.11.17), with 95%
confidence. The quadratic approximation (Fig. 11.2b, blue ellipse) mimics the shape
of the cost landscape quite well in the vicinity of the best fit, but it overestimates
the variability in these two parameters, due to the strong nonlinearity in their rela-
tionship. The ensemble (Fig. 11.2b, white dots), on the other hand, captures the true
posterior distribution of parameters.

This example illustrates someof the difficulties encounteredwhenusingparameter
scanning methods for sensitivity analysis. A simple scan along each parameter axis
at the best fit value will dramatically underestimate the variability in the parameter
estimates, and the nonlinearities in the landscape will render the correlation analysis
used in LHS inaccurate.

11.3 Sloppiness

The topography of the cost landscape plays a critical role in modeling. For example,
the cost landscape of the Robertson model (Fig. 11.2b) is highly anisotropic, as
indicated by the eigenvalue spectrum in Fig. 11.3a(i). Near the best-fit, the parameter
combination k1/k3 is tightly constrained (corresponding to the large eigenvalue). By
contrast, the parameter combination k1 × k3 is loosely constrained (corresponding
to the small eigenvalue), so inferred values of k1 and k3 have large uncertainty. In
2003, Brown and Sethna noted similar behavior in a much more complex signaling
model [13, 14], leading to the discovery of sloppiness.

Brown and Sethna used a system of 15 nonlinear differential equations, involving
48 rate constant parameters, to model the activation of ERK1/2 by epidermal growth
factor (EGF) and neuronal growth factor (NGF) in PC12 cells [14]. They fit their
model to 68 data points tracking the time-course of activation of several proteins
in the system. When they analyzed the corresponding Hessian matrix, they found
a surprising regularity in the eigenvalue spectrum (Fig. 11.3a(iv)). The eigenvalues
spanned many orders of magnitude roughly evenly, a phenomenon they deemed
sloppiness. The large eigenvalues and corresponding eigenvectors defined stiff com-
binations of parameters that were tightly constrained, whereas the small eigenvalues
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Fig. 11.3 Sloppy parameter spaces, eigenvalues, and data space. a Eigenvalue spectra for several
sloppy models, illustrating different approaches to parameter and data space. i J ᵀ J eigenvalues of
the Robertson model and data described in Sect. 11.2.3. ii Principle components analysis (PCA)
eigenvalues of a Bayesian parameter ensemble for the Robertson model (inverted for comparison
with column i). iii PCA eigenvalues of the model manifold for the Robertson model (inverted and
rescaled so the largest eigenvalue matches the largest eigenvalue in column i). iv J ᵀ J eigenvalues
of the Brown and Sethna model for differentiation in PC12 cells [14] that was fit to 68 data points.
v PCA eigenvalues of a Bayesian parameter ensemble for the PC12 model [32], generated with
log-normal priors similar to Robertson model (inverted for comparison with column iv). vi J ᵀ J
eigenvalues for the PC12 model fit to continuous data on all molecular species in the model [32]
(rescaled so the largest eigenvalue matches the largest eigenvalue in column iv). b The sloppy
mapping between parameter and data space implies that spherical regions of parameter space map
to distorted sloppy regions in model space, and vice-versa [18]

and corresponding eigenvectors defined sloppy combinations that were loosely con-
strained.1 Moreover, a similar pattern of eigenvalues was found even when consid-
ering large amounts of perfectly-fit synthetic data on every species in the model
(Fig. 11.3a(vi)), suggesting that sloppiness was a property of the model itself, not
the particular data set. As illustrated in Fig. 11.3b, this sloppiness implies that large
volumes of parameter space canmap to a small volumes in data space, and vice-versa.

The importance of sloppiness to systems biology became more apparent in 2007,
when Gutenkunst et al. found sloppiness in a diverse set of sixteen other systems
biology models [32]. In a systematic survey of the BioModels database [48], Erguler
and Stumpf later found sloppiness in 180 systems biology models [23].

1Concurrent with Brown and Sethna’s work, Rand et al. independently noted an exponential spacing
of eigenvalues for several circadian clock models, although Rand et al. focused their analysis on
the stiffest few eigenvalues [57].
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Although similar in spirit, sloppiness differs from conventional conceptions of
robustness [46]. Typically, when a biological system is deemed robust it means
that a particular qualitative behavior is insensitive to a particular perturbation. That
perturbation may be a change in parameter values [78], temperature [56], or structure
of the system. Sloppiness, on the other hand, focuses on the quantitative behavior
of the model and its sensitivity to changes in combinations of parameters. A system
may be sloppy, but not be robust to changes in individual parameters. For example,
at the best-fit set of parameters, the Robertson model is robust to changes in k1 or
k3 that leave the stiff parameter combination k1/k3 unchanged, but it is fragile to
changes in either parameter individually.

Brown and Sethna’s discovery of sloppiness spawned a large body of literature
exploring its theoretical basis. Early work on the origins of sloppiness focused on
symmetries between parameter effects [76], but recent connections with information
geometry and interpolation theory have revealed a more general origin (Sect. 11.4.1).
Although it has been best-studied in the context of systems biology, sloppiness also
appears in non-biological models [30, 76], including classic statistical problems such
as fitting a sum of exponentials or polynomials to data [76]. In classic physics models
for magnetism and diffusion, sloppiness emerges when observations are restricted to
large length scales, somicroscopic details of the systemcease tomatter [49].A similar
phenomenon may be occurring in systems biology, where most experiments probe
the collective behavior of many interacting reactions. The ubiquity of sloppiness also
suggests that it may have implications for biological evolution [18].

In the remainder of this chapter, we focus on the practical implications of sloppi-
ness for modeling biological systems, through building predictive models, designing
experiments, and developing numerical methods.

11.3.1 Local and Global Perspectives

We have defined sloppiness in terms of the distribution of the eigenvalues of the
Hessian matrix. For nonlinear models, however, the Hessian depends on where in
parameter space it is evaluated, as exemplified by the curved basin of the Robertson
model (Fig. 11.2b). In the Robertson model and in the Brown and Sethna PC12
model [14], Hessian matrices calculated using multiple parameter sets from the
MCMC posterior distribution are all sloppy, with similar eigenvalue spectra but dif-
fering eigenvectors [30]. This suggests that the curved basins are everywhere locally
sloppy, but a more global perspective can be obtained from Principal Component
Analysis (PCA) of the MCMC parameter set ensemble.

PCA is the eigen-decomposition of the covariance matrix of a set of points in
space (here we focus on points in parameter space), and it has a broad range of
applications in statistics [1, 37]. (For more on PCA and other statistical models in
systems biology, see Chap.6 in this volume [63].) PCA is defined such that the first
principal component is the eigenvector with the largest eigenvalue, and it points in
the direction that accounts for the largest amount of variance in the positions of the

http://dx.doi.org/10.1007/978-3-319-21296-8_6
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points. The eigenvector with the second-largest eigenvalue points in the direction
that accounts for the second-largest amount of variance in positions of the points,
orthogonal to the previous direction, and soon.TheHessianmatrix and the covariance
matrix share eigenvectors (Sect. 11.2.1), so we can think of performing PCA on
an ensemble as the global analog to the local analysis of the Hessian matrix. The
eigenvalues of the Hessian are inversely related to those of the principal components,
and in Fig. 11.3a(ii, v) we take the inverse of the PCA eigenvalues for comparison.

Because the ensemble captures nonlinearities in the parameter space if they exist,
wemight wonder whether models with sloppyHessian eigenspectra also have sloppy
PCA eigenspectra. Figure11.3a(i, ii) shows the eigenvalues for the Robertson exam-
ple computed using the Hessian and by PCA, respectively. The similar spacing of
eigenvalues shows that the aspect ratio of the level curves of the cost manifold are
preserved, even as nonlinearities cause them to curve. Figure11.3a(iv, v) show cor-
responding Hessian and PCA spectra for the PC12 model [13], where the ensemble
in Fig. 11.3a(v) was generated with priors similar to those we used for our Robertson
model. The spectrum is truncated from below by the prior,2 and the largest eigenval-
ues are reduced due to nonlinearities in the parameter space that are better captured
by the ensemble. Although quantitative differences are evident in the eigenspectra
generated by the two methods, qualitatively they are both sloppy, spanning several
orders of magnitude with eigenvalues that are evenly spaced in the logarithm. In
addition to these empirical comparisons of Hessian and PCA eigenspectra, recent
work in information geometry (Sect. 11.4.1) also suggests that sloppiness is a global
property.

11.3.2 Predictive Modeling from Sloppy Systems

Because sloppiness appears universal in systems biology models, attempting to fit
individual parameters in such models is difficult and often uninformative. Even with
extensive time-series data, inferred values for individual parameters are often impre-
cise, because the model is insensitive to changes to most parameter combinations.
The common practice of reporting only the means and confidence intervals on indi-
vidual parameters should thus be avoided. On the other hand, because the model is
quite sensitive to changes in a few parameter combinations, with precise measure-
ment of time-series data it is often possible to tightly constrain model predictions,
despite large individual parameter uncertainties [32]. Moreover, in most cases pre-
cisely modeling and predicting system behavior is more compelling than precisely
inferring individual parameters.

2A log-normal prior that bounds a parameter θ to be, with ≈95% confidence, between θ0/F and
θ0 × F corresponds to an additional residual in the cost function (Eq. 11.1) of r = (log θ −
log θ0)/ log

√
F . Such a residual adds 1/(log

√
F)2 to the diagonal elements of the Hessian matrix,

bounding the eigenvalues from below. In our case, F = 103, so the eigenvalues must be greater
than ≈0.084.
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For the Robertson model (Sect. 11.2.3 and Fig. 11.2), the individual parameters
k1 and k3 are only loosely constrained by time-course data, so our inferred values
for these parameters, whether using the Hessian approximation or Bayesian MCMC
sampling, span many orders of magnitude, as shown by the top and right panels in
Fig. 11.2b.The cost landscapedoes showadistinct nonlinear canyonof parameter sets
that fit the data well (Fig. 11.2b), but this canyon does not align with any individual
parameter, so inferring individual parameters with high precision is difficult. On
the other hand, combinations of parameters perpendicular to the canyon are tightly
constrained.

Because predictions are often more important than individual parameter values,
we tested the ability of our synthetic time-course data in the Robertson model to
constrain a novel prediction. In particular, we added a new reaction to the model:

A + C
k4−−→ B , k4 = 1. (11.18)

We then predicted the time course of [C] in this four-reaction model by generat-
ing trajectories using the results of our data fit of the original three-reaction model
(Eq.11.12, Fig. 11.2).Whenwe generated a set of predictions assuming that we knew
k1 and k3 to high precision (95% confidence interval of ±50%), the prediction for
[C] was tightly constrained (Fig. 11.4a, b). If we instead knew k1 precisely, but k3
imprecisely, the prediction of [C]was uninformative (Fig. 11.4c, d), because the cor-
responding parameter ensemble includes parameter sets with high cost, rather than
exploring only the canyon. When we approximated the stiff and sloppy directions
using the Hessian, as in (Fig. 11.4e, f) and generated predictions from this set of para-
meter combinations, we recovered some constraint on the prediction uncertainties.

Fig. 11.4 Parameter inferences and prediction 95% confidence intervals for the Robertson model
(Sect. 11.2.3). a, b Assuming both parameters are measured to ± 50% precision. c, d Assuming k1
is measured to high precision, but k3 must be guessed to low precision (95% confidence interval
spanning three orders of magnitude). e, f Evaluating the prediction using samples from the Jᵀ J
approximation to theHessianmatrix. g,hEvaluating the prediction using samples from theBayesian
MCMC ensemble illustrated in Fig. 11.2b
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Taking points from the MCMC-generated ensemble constrained uncertainty even
further (Fig. 11.4g, h).

In the Robertson model, both the Hessian and Bayesian-ensemble approaches
constrained prediction uncertainty much better than a mixture of well- and poorly-
determined rate constants. However, the Hessian did not perform as well as Bayesian
MCMC, because the cost manifold is nonlinear; in other words, the canyon of well-
fitting parameter sets is curved. The Hessian approximates the stiff and sloppy direc-
tions at the best-fit parameters, but away from the best-fit parameters the stiff and
sloppy directions inferred fromHessian deviate from the true shape of the cost mani-
fold, so points outside the canyon are sampled. BayesianMCMCavoids this problem,
as there is no assumption of linearity of the cost manifold, so the sampling follows
the curve of parameter sets that both fit the data well and yield accurate predictions.
The Hessian approximation works well in the Robertson model, but it may fail in
more complex models with stronger nonlinearities in the cost landscape [24, 31].

11.3.3 Experimental Design

Motivated by the previous example of precise predictions from a sloppy model with-
out precise parameters, we turn to the design of informative experiments. Experi-
mental design is a large sub-field of systems biology, and many methods have been
developed for designing experiments andmodels to extract optimal information about
a quantity of interest [3, 15, 34, 44, 47]. In this section, we discuss several stud-
ies that directly address sloppiness. One identifies additional time-series data points
that improve system behavior prediction [15], and the others identify experimental
conditions that improve parameter inference [3, 34, 68].

11.3.3.1 Optimal Design for Prediction

As illustrated by the Robertson model in Fig. 11.4c, d, precisely measuring individ-
ual parameters in a complex model may not improve the predictive power of the
model. To overcome this difficulty, Casey et al. developed an approach for designing
experiments to improve the prediction of unmeasurable quantities and applied it to
a model of epidermal growth factor receptor (EGFR) activation [15].

In the EGFR network, Casey et al. were interested in predicting the dynamics
of the triple complex of Cool-1, Cdc42 and Cbl, each of which potentially disrupts
receptor down-regulation. The triple complex was not directly measurable, so they
relied on a complex systems biology model to predict its dynamics. Casey et al. fit
their model to existing experimental data to obtain best-fit parameter values θ∗ and
an ensemble of parameter sets that fit the data well, but they found that the predicted
trajectory for the triple complex had large uncertainty.

Given the large prediction uncertainty from the existing data, Casey et al. set out
to design a new experiment to minimize the variance of the prediction. Doing so
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required searching over the space of possible experiments and evaluating prediction
variance many times. Bayesian sampling (Sect. 11.2.2.2) is the preferred way to
estimate prediction variance, but it is computationally very expensive, so Casey et
al. used an approximation to the variance of their prediction p:

Var(p) ≈ ∂p

∂θ

∣∣∣∣
θ∗

(JᵀJ )−1 ∂p

∂θ

∣∣∣∣
θ∗

. (11.19)

Here (JᵀJ )−1, the inverse Fisher InformationMatrix (FIM), asymptotically approx-
imates the covariance of the parameters, and ∂p/∂θ is a linear approximation of the
model response to changes in the parameters [15].

Casey et al. employed a sequential experimental design tominimize the prediction
variance calculated via Eq.11.19. They first searched over experimental conditions,
measurable molecular species, and timepoints to find the single data point whose
addition most greatly reduced the prediction variance. This was computationally
feasible because adding a single data point to the collection of measurements is a
rank-one update of the Fisher Information Matrix [15]. Assuming that single data
point represented the optimal condition and species to measure, Casey et al. then
optimized over possible combinations of measured timepoints to design a complete
experiment.

Applying their computational analysis, Casey et al. carried out the experiment
they had designed. Adding the new data points to their model, they built a new
ensemble of parameter sets from which to make predictions. As desired, the new
ensemble dramatically reduced uncertainty in the predicted dynamics of the triple
complex. Uncertainties on individual parameter values, however, were not substan-
tially smaller. The sloppiness of the EGFRmodel allowed Casey et al.’s experimental
design to improve prediction precision without improving parameter precision, but
experimental design can also improve parameter precision.

11.3.3.2 Optimal Design for Parameter Inference

Fitting time-course data typically poorly constrains individual parameter values in
sloppy models, but careful experimental design can yield well-constrained parame-
ters. In a recent manuscript, Tönsing et al. argue that sloppiness can be generically
caused by autocorrelation and sparseness in the Jacobianmatrix (Eq. 11.5) of parame-
ter sensitivities for residuals between model and data [68]. Autocorrelation naturally
arises in time-course measurements, and sparseness arises because different predic-
tions may be sensitive to different parameters. Tönsing et al. further show using a
model and in silico experiments from theDREAM6challenge [52] that careful exper-
imental design can avoid autocorrelation and sparseness, minimizing sloppiness in
the resulting parameter inferences.

In a more targeted study, Apgar et al. have shown [3] that carefully designed
complementary experiments can in principle tightly constrain all parameter values
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in the original Brown and Sethna sloppy model of EGF/NGF signaling in PC12
cells [13, 14]. Apgar et al. sought to design a set of experiments that would together
yield uncertainties on all 48 model parameter values of less than 10%, based on the
Hessian approximation. To do so, they considered 164,500 potential experimental
conditions, encompassing various levels of EGF and NGF stimulation and protein
overexpressionor knockdown.To avoid computationally challenging re-optimization
of parameter values, they assumed that each experiment would yield data that exactly
matched the model prediction. Their design processes employed a greedy algorithm
that, at each step, chose the experiment that constrained the most parameters to
within 10% that were not constrained by any earlier experiment. Remarkably, they
found that five carefully chosen experiments were enough to tightly constrain all
parameters [3]. It was essential that the experiments be chosen in a complementary
way; choosing random experiments or even the best individual experiments gave
much poorer results. The computational experiments that Apgar et al. considered
used continuously sampled species time courses, yielding effectivelymanymore data
points than typical experiments, which may account for much of the improvement
in parameter constraint [16]. Such dense measurements are, however, becoming
increasingly feasible, and even with fewer collected data points, tight constraint on
all parameters in the model are still possible [33].

Recently, Hagen et al. have relaxed many of the simplifying assumptions made
in Apgar et al.’s work [34]. Most importantly, they considered data at discrete points
along the trajectory with some assumed experimental error instead of continuous
measurements with zero error. As a result, they had to re-optimize parameters at each
stage of the experimental design, so each experiment was chosen on the basis of a
model with imperfect parameters. Nevertheless, they found that just six experiments
were needed to constrain all parameters to within 10% as assessed by the Hessian
approximation, confirming the previous results.

The experiments designed by Tönsing et al. [68], Apgar et al. [3], and Hagen
et al. [34] are complex, and to date they have not been carried out in the lab. This
work, however, demonstrates the power of experimental design and offers hope that
parameter values can indeed be precisely inferred even for sloppy models.

11.4 Information Geometry Perspective

To this point, we have reviewed work whose focus was analyzing the properties of
parameter space. However, we have seen it is often beneficial to focus on the model
predictions rather than the parameter values. Recent results focusing on data space
rather than parameter space have proven beneficial for understanding the properties
ofmodels and for advancing numerical techniques for exploring them.This approach,
usually known as information geometry since it combines information theory with
differential geometry, is a naturalmathematical language for exploring parameterized
models. As we have seen, in essence a model is a mathematical mapping from
parameters to predictions. This recognition leads to the interpretation of a model as
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a manifold embedded in the space of data. The approach is very general, applicable
to any parameterized statistical model (although we focus on least squares models
in this review) and has many deep connections to statistics [2, 4, 7, 41, 54]. Because
differential geometry is foreign to most biologists, much of the technical aspects
and insights of information geometry are not immediately accessible to much of
the systems biology community. In this section, we give a summary of recent results
without assuming a prior understanding of differential geometry, illustrating the types
of analyses that can be performed and providing references for further study.

To illustrate the approach for least-squares models, we return to the Robertson
model introduced in Sect. 11.2.3. This model has two parameters and was fit to
M = 15 data points. Any experimental realization of the data can be interpreted as a
single point in RM . Likewise, for any value of the parameters, the model predictions
are similarly a point in R

M . As the two model parameters k1 and k3 are varied
over their allowed ranges, the model sweeps out within the 15-dimensional data
space a two-dimensional surface known as the model manifold and denoted by M .
In general, for a model of N parameters fit to M data points, the model manifold
is the N -dimensional surface embedded in R

M constructed by varying the model
parameters over their physically allowed values.

Figure11.5d shows a three-dimensional projection of the high-dimensional data
space for theRobertsonmodel. Themanifoldwas calculated using a grid of parameter
values over the ranges shown in Fig. 11.2b. Model trajectories were sampled at the
equally-spaced timepoints for which data was simulated in Fig. 11.2a. The axes of
the visualization come from a principal component analysis (Fig. 11.5a–c) that was
performed for the resulting set of model trajectories.

The Robertson model manifold illustrates several features of the information
geometry perspective that make it a powerful tool for studying models that comple-
ments the approach of considering the cost surface in parameter space. First, there is
no information loss in the model manifold, i.e. the manifold is mathematically equiv-
alent to the model itself. In contrast the cost surface in parameter space condenses
the M numbers making up the prediction and data vectors into a single number.

Second and relatedly, information geometry separates the model, i.e. the manifold
embedded in data space, from the data to which it is being fit, i.e. a point in the data
space (blue star in Fig. 11.5). This is a useful abstraction which allows one to study
the properties of the model itself irrespective of what is experimentally observed.
The cost surface in parameter space will vary with the observed data. The best-fit
parameters correspond to the point onM nearest to the data (red point in Fig. 11.5).

Third, the set of points that constitute the model manifold are the same regardless
of how the model is parameterized. That is, the geometric properties of the model
are the same if a systems biology model is expressed in terms of reaction rates or
time constants, in bare or log-parameters. In fact, it will be unchanged if the model is
reparameterized in a complicated, highly nonlinear way. Because of this, the geomet-
ric perspective places the emphasis on model predictions rather than the parameters.
The parameters are not ignored completely, but act as coordinates on the manifold,
i.e. labels for specific predictions. The grid lines in Fig. 11.5d–g correspond to a
square grid in log-parameter space. In general, differential-geometric objects are
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Fig. 11.5 Modelmanifold evaluated over the parameter space shown in Fig.11.2b for theRobertson
model (Sect. 11.2.3). a–c First three principle components of model prediction variation over the
manifold. Colors identify species as in Fig. 11.2a. The first principle component, for example,
represents an increase in [C] and a decrease in [A] that is roughly constant over the sampled
timepoints. d Projection of the model manifold onto the first three principle components. Blue star
shows the data, and red dot shows the best-fit trajectory. Red lines correspond to the geodesics in
Fig. 11.2b. e–g Projections of the model manifold onto pairs of the first three principle components,
as in (d)

constructed in terms of derivatives of the predictions with respect to the parameters
in such a way that their relevant properties are the same for all possible parameteri-
zations. Indeed, differential geometry is generally concerned with the properties of
the manifold that are invariant under such reparameterizations.

A fourth and final point is that the language of differential geometry naturally
accommodates the potentially large dimensionality of both the data space and the
model manifold. Visualizations of both the cost surface and the model manifold are
limited to only a few dimensions, but the geometric properties of high-dimensional
spaces can be very different from those of the three-dimensional world in which
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our visualizations live. For example, the specific properties of sloppiness are closely
tied to the properties of high-dimensional manifolds. The mathematical formalism
of differential geometry, however, has no such limitation and provides a framework
within which the space can be systematically studied.

A particularly useful differential-geometric tool is a geodesic. A geodesic can be
understood qualitatively as the generalization of straight lines to curved surfaces,
i.e. the path connecting two points such that its image in data space is as close to
a straight line as possible. A perfectly straight line is generally impossible, since
the surface is typically curved for nonlinear models. The geodesic is constructed
numerically as the solution of a nonlinear differential equation involving first and
second derivatives of the model predictions with respect to the parameters. We refer
the reader to any introductory text in differential geometry for more details [39, 65].
Several geodesic paths on the model manifold are shown in Fig. 11.5d–g, and the
corresponding paths in parameter space are shown in Fig. 11.2b.

11.4.1 Models as Interpolation: Geometric Sloppiness

Geometry helps us understand the phenomenon of sloppiness. The observed univer-
sality of sloppiness across a wide range of models is perplexing; its ubiquity suggests
some deep connecting principle [32, 76]. However, two other observations suggest
otherwise. First, the hierarchy of Hessian eigenvalues can be transformed into any set
of positive values by reparameterizing the model. Although such parameterizations
might be unnatural from a human perspective, they are mathematically acceptable.
Perhaps sloppiness is a reflection of how we humans choose to parameterize models.
Is the human-preferred parameterization somehow perverse from a mathematical
perspective? Second, sloppiness can be reduced by an appropriate choice of experi-
ments [3, 34, 73]. Perhaps sloppiness is furthermore a reflection on what we choose
tomeasure and not intrinsic to the system itself. Geometric arguments reconcile these
apparently contradictory observations.

The key observation is that model manifolds are typically bounded, as is our
example manifold in Fig. 11.5d. Considering the cost landscape in Fig. 11.2b, notice
that away from the best fit, the cost surface plateaus, apparently approaching a lim-
iting value. In fact, the parameters can be taken to zero and infinity without the
cost becoming infinite, implying that the model manifold must be bounded. For
any specific model this can be checked numerically using differential geometry. By
numerically constructing geodesics, the manifold can be systematically explored to
identify boundaries in any direction. Furthermore, by calculating the length of these
geodesic paths in data space, one can measure the extent of the manifold in any
given direction and calculate its aspect ratio. In this way it was found that typical
sloppymodel manifolds are not only bounded, but exhibit a hierarchy of widths anal-
ogous to the hierarchy of Hessian eigenvalues [71, 72]. For example, PCA analysis
of the data space points used to construct the model manifold for our Robertson
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model (Fig. 11.5d) reveals an exponential hierarchy of eigenvalues (Fig. 11.3b(iii)).3

This result is similar to the previously noted observation that sloppiness is generally
reflected as a global property as measured by PCA analysis of a Bayesian ensemble
(see Fig. 11.3b(ii, v)). However, in the current context the anisotropy is a reflection
of an intrinsic property of the entire range of model predictions, rather than the
ensemble of parameter values consistent with an instance of data.

This empirical observation of a hierarchy of widths in data space can be explained
by applying interpolation theory [71]. Orthogonal geodesic paths identify cross sec-
tions of the model manifold. Geometrically, the cross section is formed by fixing
the model output along a few axes (the directions orthogonal to the geodesic) and
varying the output along others. Now consider a time series of model predictions
for which a handful of time points have been fixed and the intermediate time points
are allowed to vary. Although not fixed themselves, the values of intermediate time
points can often be approximated by interpolating the values of those that are fixed.
Therefore, the corresponding cross sections of the model manifold must be bounded
by the accuracy of the interpolations.

For one-dimensional time series, the above argument can be made formal using
theorems from interpolation theory [71]. In this case, cross sections become more
narrow by roughly a constant factor for each additional fixed output, provided that
the number of effective degrees of freedom probed by the model predictions is much
less than the number of parameters. Qualitatively, this is understood to mean that the
“complexity” of the data to be explained is much less than that of the model. In a
sense, the model is over parameterized. However, it is often unclear how to remove
the unnecessary parameters, because the stiff and sloppy parameter directions are
almost always combinations of the bare parameters [32].

This argument suggests that models can be understood as generalized interpola-
tion schemes and explains a number of observations. First, it explains why accurate
predictions can be made by sloppy models when parameters are largely uncon-
strained; the predictions are interpolating from the existing data. It also explains why
sloppiness disappears when complementary experiments are chosen; the number of
effective degrees of freedom probed by the model becomes comparable to the num-
ber of parameters. In this case, the model needs all of the parameters to explain the
data, resulting in tight bounds on their estimates.

The connection between manifold widths and the Hessian eigenvalues can be
understood by dimensional analysis. The square roots of Hessian eigenvalues have
units of data space distance per parameter space distance. If the parameters are
expressed in the natural units of the problem, for example by using log-parameters,
then we expect the eigenvalues to reflect the natural length scales of the manifold,
i.e. the manifold widths as observed. What is interesting about this argument is the
implication that the “natural” parameterization preferred by the human modeler is

3Note that this PCA was done on points sampled uniformly in parameter space, not data space, and
this non-uniformity may bias the resulting eigenvalue summary of the model manifold. We expect,
however, that this approach provides a good first approximation to the hierarchy of manifold widths
that would be found by geodesics.
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actually not perverse after all. Indeed, encoded in this natural parameterization is
useful information: the length of the model manifold along several principal axes.

11.4.2 Applications to Numerical Methods

One of the most useful applications of the differential geometry approach involves
the development and improvement of numerical methods for exploring parameter
space. We now discuss two such improvements: the geodesic acceleration correc-
tion to the Levenberg-Marquardt algorithm for least squares data fitting [71, 72]
and the Riemannian manifold sampling methods for Markov-Chain Monte Carlo
(MCMC) [28].

11.4.2.1 Data Fitting

Fitting multi-parameter models to data via least squares can be notoriously difficult.
One reason for this is that as algorithms approach the best fit they become agonizingly
slow. This is because the cost surface in the vicinity of the best fit consists of a long,
narrow canyon, as illustrated for the Robertson model in Fig. 11.2b. The algorithm
must navigate this canyon en route to the best fit. The greater the aspect ratio of the
canyon, the smaller the steps the algorithm must take. For many sloppy problems,
as we have seen, it is not unusual for the canyon to have aspect ratios of 1000:1 or
more, leading to very slow convergence rates.

A second reason that data fitting is difficult is that it is hard for the algorithm
to even find the canyon to begin with. Observe in Fig. 11.2b how the cost surface
plateaus away from the canyon. Because the cost surface is so flat, it is difficult for
the algorithm to know in which direction to move. One typically finds that the results
of a fitting algorithm are inconsistent, “converging” to wildly different parameter
values depending on the starting point. This is typically attributed to multi-modality,
or a rough cost surface with many local minima [25, 53, 59]. Closer inspection
and the understanding of bounded model manifolds refines this picture in a very
useful way. Specifically, the parameter values that result from failed runs of search
algorithms typically contain parameters approaching their physical limits, e.g. zero or
infinity. Geometrically, these points correspond to boundaries of themodel manifold.
The failure of search algorithms is due to them getting stuck in the boundaries of
the model manifold en route to the best fit, i.e. being lost on the plateau. It was
found that by adding weak, regularizing “prior” terms to the cost function that kept
the algorithm away from the limiting parameter value, algorithms were much more
successful at finding best fits [72]. These terms should be chosen in a way to force
the algorithm to search in the region of parameter space to which the model behavior
remains sensitive to changes in the parameters.

A second geometrically-inspired improvement to data fitting is an improvement
to the common Levenberg-Marquardt algorithm known as the geodesic acceleration
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correction [71, 72, 75]. The motivation for this algorithm is the observation that
model manifolds typically have surprisingly small curvatures. (This observation
had been noted by statisticians for several decades [5–8, 10, 36] and was finally
explained by the same interpolation arguments that explain why the model mani-
folds are often bounded [71, 72].) Since the manifolds are relatively flat, the ideal
path for an algorithm to follow is a geodesic, i.e. a straight line through data space.
Notice in Fig. 11.2b how the geodesic path naturally follows the curvature of the
canyon in parameter space. In the limit of small curvature, the second-order cor-
rection to the Levenberg-Marquardt algorithm reduces to the second-order term in
the geodesic equation, which can be easily approximated with little computational
cost compared to other aspects of the algorithm. The result is an algorithm that is
dramatically faster at finding best fits. An open source FORTRAN implementation
of this algorithm is available for download [69].

11.4.2.2 Bayesian Posterior Sampling

As discussed in Sect. 11.2.2.2, MCMC is a powerful technique for exploring parame-
ter space and sampling the Bayesian posterior distribution. One of the challenges to
effectively implementing this approach is the need to run the algorithm long enough
to gather independent samples of the posterior. For a cost landscape with long nar-
row canyons, the Markov chain needs to effectively diffuse along the length of the
long axes of the canyon for each sample. For the same reason that data fitting algo-
rithms become sluggish in the canyon, the MCMC method also becomes very slow,
requiring a very long chain before independent samples can be identified.

In order to alleviate this problem, it was suggested by Girolami and Calderhead
that convergence could be improved by taking steps uniform in data space rather than
parameter space [28]. Effectively, at each step of the chain, random parameter steps
are proposed as a multivatiate normal distribution with covariance chosen so that the
corresponding steps in data space have covariance given by the identity. In this way,
steps are preferentially aligned with the axis of the canyon, reducing the number of
iterations necessary to generate independent samples. For extremely sloppy models
with large aspect ratios in the canyons around their best fits, the improvement in
convergence rate can be dramatic.

11.4.2.3 Curvature and Beyond

There are many other instances where differential geometry has provided insights
and advancements in modeling and numerical methods. One of the most important
concepts in differential geometry, and one that is beyond the scope of this review,
is curvature. Measures of curvature have been used to quantify nonlinearity in mod-
els [5, 10, 36], measure kurtosis [35], and identify the global minimum in least-
squares data fitting problems [21].
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Information geometry has also led to a new approach to model reduction known
as the manifold boundary approximation method [74]. By numerically constructing
geodesics to the edge of the model manifold, limiting approximations are identified
in the model that can be used to remove sloppy parameter combinations. The net
result is a sequence of effective models of decreasing complexity. These reduced
models remain expressed in terms of the microscopic parameters, i.e., there are no
black boxes, and dramatically highlight the emergent control mechanisms that gov-
ern the system’s behavior. Differential geometry also provides insights into questions
of parameter identifiability, which combined with model reduction techniques, can
be powerful tools for constructing appropriate mathematical representations of bio-
logical systems [70].

Although a relatively undeveloped approach, information geometry has provided
a wealth of insight into modeling and the numerical methods for exploring model
behavior.Much of the strength of the approach lies in its generality. Indeed, very little
of what is summarized in this section is specific to systems biology. In this respect,
applying information geometry to systems biology, with its wide array of models,
is a compelling synthesis for the development of new theoretical and computational
methods that are likely to not only advance biological understanding, but also find
application in other complex systems.

11.5 Conclusion

Mechanistic models in systems biology typically possess a profusion of parameters,
and this poses great challenge for modelers. In particular, understanding the mul-
tivariate sensitivity of the model to changes in parameter values is critical. Local
and global analyses of sensitivity complement each other, and Bayesian methods are
particularly powerful for assessing statistical confidence in parameter inferences and
model predictions.

Analysis of many models in systems biology and other fields has revealed that
nonlinear least-squares models are typically sloppy. Sloppy models have parameter
sensitivity eigenvalues that span many decades roughly evenly and thus have highly
anisotropicmappings between parameter and data spaces. Consequently, it is difficult
to infer precise parameter values from data fits, but some predictions can nevertheless
be tightly constrained. Careful experimental design can improve the precision of
parameter inferences or model predictions, depending on the goals of the modeler.
Information geometry offers a useful parameterization-independent perspective on
modeling, and combining it with interpolation theory suggests that sloppiness arises
because even complex models are often acting as interpolating functions between
available data points. The information geometry perspective also suggests improved
algorithms for optimization and Markov-chain Monte Carlo that account for the
anisotropic and curved model and parameter spaces common in sloppy models.

Modelers have tackled a huge number of complex nonlinear systems in biology
and other fields, and each model is unique. The study of sloppiness has shown,
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however, that models of very different systems are nevertheless governed by shared
deep statistical properties. Study of sloppy models thus offers insight and tools for
not only systems biology, but also many other fields of science.

For readers who want hands-on experience with the methods and ideas discussed
here, code implementing our analyses of the Robertson model is bundled with the
SloppyCell software [55], available at: http://sloppycell.sourceforge.net.
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Chapter 12
Modeling and Model Simplification
to Facilitate Biological Insights
and Predictions

Olivia Eriksson and Jesper Tegnér

Abstract Mathematical dynamical models of intracellular signaling networks are
continuously increasing in size and model complexity due in large part to the data
explosion in biology. However, the sheer complexity of the relationship between
state-variables through numerous parameters constitutes a significant barrier against
obtaining insight into which parts of a model govern a certain read-out, and the
uncertainty in model structure and especially model parameters is here a further
complicating factor. To meet these two challenges of complexity and uncertainty,
systematic construction of simplified models from complex models is a central area
of investigation within systems biology as well as for personalized medicine. Model
complexity makes the task of deriving predictions difficult in general and in particu-
lar when different read-outs depend on combinations of parameters, since exhaustive
computer simulations are not sufficient for understanding nor feasible in practice.
Construction of simplifiedmodels is therefore an important complementary approach
to this end, while also facilitating the identifiability of over-parameterized models.
Within this chapter we discuss different methods for model simplification, and we
specifically summarize a recently developed simplification method based on an iter-
ative “tearing, zooming and simplifying” approach. We also look into the modeling
process in general. In the “tearing, zooming and simplifying” approach the original
model is divided into modules (tearing), the modules are considered as input-output
systems (zooming), which then are replaced by simplified transfer functions (sim-
plifying). The idea behind the simplification is to utilize biological features such as
modularity and robustness as well as abundance of typical dynamical behaviors in
biology such as switch-like responses. The methodology is illustrated using a rela-
tively complex model of the cell division cycle, where the resulting simplification
corresponds to a piecewise linear system with delay, facilitating an understanding of
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the underlying core dynamics and enabling the prediction of combinations of para-
meters that can change different model features like the size of the cell. Hence, the
existence of biological organization principles enables a simplified description of
intracellular dynamics.

Keywords Model simplification ·Model reduction · Data integration · Dynamical
models · Ordinary differential equations · Piecewise linear · Delay · Dynamical
modules · Switch-like dynamics · Model decomposition · Lumping · Timescale
separation · Sensitivity analysis · Identifiability · Tearing-zooming-simplifying

12.1 Introduction

The enormous increase in cellular experimental data of the last decades, resulting
from the sequencing of the human genome [76, 81], microarray techniques [63],
the FANTOM projects [43], 1000 genome project [74], ENCODE [75] and other
high-throughput methods such as proteomics and metabolomics, has provided us
with detailed lists on the constituents of the cell as well as their putative interactions.
This has however not yet enabled an understanding of the functionality of the cell on
the full genome-scale level. We have static descriptions on networks of interactions,
in the same way as we have road maps, but still we do not know much about traffic
flow [46]. In order to investigate and describe the dynamical behaviour of the huge
system that a cell constitutes, we do not only need experimental developments but
also improved computational and mathematical methods [9, 21].

The structure and dynamics of cellular networks are inherently complex, contain-
ing a large lattice of redundancy and intertwined feedback loops, where the interac-
tions can be described by detailed biochemical reactions. Imagine the complexity of
a single signaling pathway, such as the cell cycle, and then put together all possible
pathways of the cell and the resulting picture becomes overwhelming. There are
however simplifying circumstances in this complexity. Cells seem to have a modular
organization in space and time, with a sparse number of interactions between con-
stituents. Cells often display quite simple functions (e.g. on/off circuits) and have
a robust behaviour. The key idea of this chapter is that provided that we could use
these simple levels of regulation hidden in the mesh of details, then maybe we could
get a step closer to retrieving descriptions of the functionality of whole cells.

In order to give precise unambiguous descriptions, and quantitative predictions,
mathematically formalized relationships and parameters are needed [39, 77], and
dynamical cellular network models, describing the time evolution of e.g. protein
concentrations, are the focus of this chapter. A few examples of dynamical models
describing different cellular pathways and phenomena include [12, 33, 50, 77, 82].
The size of these models is, on the full genome-scale, quite modest, describing
only a small subset of the proteins or genes of the cell e.g. a signaling pathway or
regulatory module. However, although being relatively small models they display
large complexity, with intertwined feedback-loops and functional redundancy.
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A future vision, which is becoming increasingly realistic [42], is to construct
dynamical models of whole cells. One approach towards this goal is to combine
small mechanistically detailed models into larger and larger contexts. Such com-
bined models tend to have a large number of parameters and complicated rate laws.
Within the emerging complexity of these models it can be a difficult task to figure
out the functional relationships of the model constituents, e.g. which parts that are
essential for a certain read-out. It is therefore challenging to derive predictions on
important features without performing extensive brute-force computer simulations.
This problem becomes even more urgent as most models of biochemical systems
today are highly over-parameterized with respect to available in vivo data [65], i.e.
there exists a very large number of parameter combinations that give an equally good
agreement with the data.

One important tool to deal with larger systems is model simplification or reduc-
tion. Amodel simplification process can illuminate the dynamicalmechanism behind
certain behaviour of the system and identify functional relationships between vari-
ables that are not obvious from inspection of a largemodel. Furthermore, a simplified
model could remove over-parameterization and thereby generate an efficient descrip-
tion of the system with improved identifiability.

In this chapter we review different methods for simplifying complicated models
of intracellular signaling cascades.Wewill also discuss in detail an important biolog-
ical signaling cascade within the cell, namely the network regulating the cell cycle.
This well characterized biological system is a useful test case to develop a model
simplification process based on the identification, characterization and simplification
of dynamical modules, here resulting in a piecewise linear model with delay. Before
we go into model simplification and reduction in general and this specific example
in detail we will first discuss how intracellular models actually are constructed.

12.2 Data Integration, Experimental Setting and Model
Uncertainty

To develop models of intracellular networks data from different sources have to be
integrated. The direction of data integration is often described by a top–down or
bottom–up approach [10]. The top–down approach considers data from the whole
cell and by an iterative cycle between experiments andmodeling retrieves a better and
better model resolution of the system. In contrast the bottom–up approach considers
detailed descriptions of subparts of the cell and combine these into larger and larger
models. The first approach describes the systemmore phenomenologically while the
other line of investigation is geared towards a more mechanistic objective.

The genome sequencing projects [76, 81] and other high-throughput experimen-
tal techniques are examples of a top–down approach. Together with computational
methods within bioinformatics for combining and analyzing several sources of data
these experiments have provided us with a detailed parts-list of genes, proteins and
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other constituents within the cell. We will denote this type of data as genome-scale
data. During the last decades we have witnessed how these parts have been combined
to large static networks of possible interactions, e.g. protein–protein interaction [79],
transcriptional regulation [49] and metabolic reaction [20] networks, retrieved from
experiments or by computational methods. Finally the activity of the parts can also
be recorded by e.g. microarrays [63].

In contrast, bottom–up approaches depend on characterizing the interactions
between individual components of the system and then integrating them into a larger
reaction network [10]. Detailed kinetic and physiochemical properties of the interac-
tions are obtained from experiments, where the experimental setting differ from each
other in their level of simplification as compared to native conditions. At one end
there are test tube experiments with purified components in optimized conditions,
whereas at the other end experiments on living cells.Wewill denote these settings the
dissociated versus the embedded setting, respectively. An example of the dissociated
setting is the estimation of the parameters KM (the Michaelis Menten constant) and
kcat (catalytic rate) of an enzyme, using purified components (e.g. proteins) in a test
tube in optimized conditions for their function [1]. Examples of the embedded set-
ting include themonitoring of time-course data for protein interactionmarkers and/or
morphological cellular features obtained from the living system under perturbation
[62].

Data from several different dissociated characterizations has been combined, in
a bottom–up approach, to try to reconstruct the dynamical behavior of the larger
system. This has shown some success in the case of modeling of the glycolytic
pathway of unicellular organisms like Saccharomyces cerevisiae [66]. The efforts
to model this universally conserved pathway in this way began several years ago
using each enzymes own optimal conditions for its characterization (and thereby
different test tube conditions for different enzymes despite some of them sharing the
same intracellular environment). Just recently standardized conditions that resemble
the intracellular milieu has been used to characterize all enzymes in the pathway
resulting in a more accurate model [1]. While a similar dissociated characterization,
bottom–up, approach has been proposed for components of signaling cascades [41]
there has not been any systematic effort in this direction. Unlike glycolytic enzymes
in unicellular organisms, the components of intracellular signaling cascades have a
higher degree of compartmentalization and more interacting partners so that even an
approximate recreation of physiological conditions in vitro is far more demanding
[32]. Thus, there are relatively few interactions of signaling cascades characterized
with purified components in vitro. Besides the limited physiological relevance of the
experimental conditions used in these characterizations, most of the resulting esti-
mates correspond to steady state conditions and parameters, despite the fact that fast
transient signaling is occurring in many systems. While dissociated characterization
is appropriate for ranking the effects of mutations, as well as developing inhibitors
with pharmaceutical applications, and studying mechanisms of enzyme action, its
usefulness for modeling the dynamics of signaling pathways is limited. The para-
meter values estimated through dissociated characterization should be taken in most
cases as soft constrains [12]. The embedded characterization is becoming prevalent
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with the growing trend in the development of cell-based measurement methods. This
development is driven by progress in protein labelingwith genetically encodedmark-
ers which allows to track interactions and compartmentalization in real time [53],
high-resolution and two photon microscopy which makes it possible to track discrete
events in small cellular compartments with reduced photo damage [84] and high-
content high-throughput techniques which enables monitoring the effect of several
conditions on a few protein markers and second messengers in a single run [27].
Despite all this progress in data acquisition from cell-based experiments, the amount
of available phenotypic data is still far from sufficient for fully constraining themodel
so that every parameter is identified. More information about experimental data for
modeling can be found in [64].

12.3 Cellular Organization and Model Structure

There are different rationales driving modeling approaches. A predictive model is
mainly used to make predictions about the system while a descriptive model stores
knowledge. Within technical applications a predictive model often does not need to
have any structural similarities with the real system as long as it can anticipate the
behavior of the system, thus it is essentially viewed as a black-box with respect to
mechanisms. However, within biology, models are often of amore descriptive nature,
utilized to precisely collect knowledge about the system, and as a picture to discuss
around, even though the final goal may well be predictions. Biological models are
thus constructed to have a structural correspondence with the real system. Before
we go into details on different model formalisms and simplification methods in the
coming sections, we will here first discuss the structural and functional organization
of cellular networks.

As described above, high-throughput genome-scale experiments have provided
huge amounts of data concerning the cellular constituents, like genes and proteins,
which can be organized into different static networks. The topology of such net-
works has been analyzed by graph theoretical methods [7] and intriguing similarities
have been found between different biological systems. Numerous networks display
a power-law distribution in the number of connections (edges) a node can have, i.e.
most nodes have only a few edges to other nodes at the same time as there exist a
few nodes having a large number of edges, denoted hubs. Many networks have also
been found to have a relatively high clustering-coefficient, indicating the existence
of groups of highly interconnected nodes, topological modules. Cellular functions
have long been suggested to be carried out in a highly modular manner [7, 39,
78], where modular refers to a group of molecules, physically and/or functionally
linked together, which perform a distinct function. Most studies so far concern static
topological modules. Identifying topological modules is however a non-trivial task.
The fact that clustering and hubs coexist indicates that topological modules are not
independent and well isolated from each other, but rather that the network has a
hierarchical organization [7]. Since the cell is in fact a dynamical system, dynamical
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modules could have a closer correspondence to the functional or biological properties
of the system. Tyson et al [78] have reviewed a set of different dynamical circuits
typical for cellular networks.

There is one specific type of circuit behavior we would like to consider in a
bit more in detail here, namely, switch-like dynamics. This is a recurrent phenom-
enon in cellular networks and we will illustrate how to exploit this feature in the
‘tearing-zooming-simplifying’ example provided at the end of this chapter, effec-
tively defining a simplified model. Switch-like dynamics can been found in many
biological systems [6, 36, 38, 40], and is often modeled using a steep sigmoid func-
tion e.g. a Hill-function with a high Hill coefficient. Biologically, this can be due to
cooperative processes, positive feedback, or enzymes operating near saturation [28].
Two explanations have been suggested by James Ferrell as to why a steep sigmoid
input/output response should be useful for the cell [28]. The resting state of a cell
could be near the upstroke of the input-output curve, or it could be far away. In the
first case a small change in input can give a large change in output, an amplification
of the signal. In the second case the system would filter out small stimuli and allow
the cell to respond decisively to stimuli of a sufficient magnitude. The second case
could therefore support cellular robustness against noise.

12.4 Modeling Formalisms and Choice of Model Detail

An important part in the art of modeling is the decision of modeling formalism. This
choice is strongly influenced by the nature of the question and the data at hand, and
therefore the art in choosing a suitable abstraction or representation of the system at
hand. In order to give precise unambiguous descriptions, and quantitative predictions,
mathematically formalized relationships and parameters are often needed [39, 77].
In this section we will mainly focus on dynamical models, but in the interest of
completeness we will first briefly discuss static models.

12.4.1 Static Models

As described earlier, high-throughput techniques and computational methods have
produced an incredible quantity of biological interaction data. Data that is conve-
niently represented by large networks, or graphs. Such graphs consist of nodes,
representing e.g. genes, proteins or metabolites, connected by edges, representing
interactions or other relationships. These graphs can be directed as in the case of
gene-regulatory networks, where the product of one gene is regulating another gene
or undirected as is the case for protein–protein networks, when only a binding possi-
bility is recorded. Asmentioned earlier, the topology of different biological networks
have been analyzed by graph theoretical methods and similarities between different
types of networks have been discovered. It has, however, become increasingly clear
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that these static networks only describe interaction possibilities, and that not all of the
edges are active at a certain time and in a certain context (cellular location, external
signal) [35, 54]. The data of possible interactions therefore need to be combined with
node activity in order to approach a dynamical description of the cellular network.

12.4.2 Dynamical Models

Depending on the purpose of the modeling, the approximations that can be made on
the system, and the experimental data available, there are several different mathe-
matical formalisms to choose from when it comes to dynamical models of cellular
networks [13, 16]. Examples include Boolean models, non-linear ordinary differen-
tial equations, piecewise linear differential equations, partial differential equations,
delay differential equations, stochastic master equations and rule-based formalism.
We here describe ordinary differential equation (ODE) and piecewise linear (PL)
differential equation models in more detail, and also touch upon delayed differential
equation (DDE) models. We look at ODE models because this is the model formal-
ism most widely used within biochemical modeling, and DDE and PL differential
equation models since the simplified model in the example at the end of this chapter
is a PL model with delay. More information about modeling, and then especially
modeling under uncertainty, can be found in [45].

Non-linear ordinary differential equationsModeling cellular networks by ordi-
nary differential equations (ODE:s) uses non-negative, time-dependent variables to
describe e.g. the concentrations of proteins or other molecules. Interactions between
molecules correspond to functional or differential relations between the variables.
The concentrations are thus described by rate equations, describing the rate of pro-
duction of a component of the system as a function of this and other components of
the system. We use ẋ to denote time-derivative. The rate equations correspond to

ẋi = fi (x, u), 1 ≤ i ≤ n, (12.1)

where x = (x1, . . . , xn) ≥ 0 is a vector of protein or other molecule concentrations
internal to the system, u = (u1, . . . , um) is a vector of external input signals, e.g.
nutrients and fi a function.

The above formalism can be extended with discrete time-delays, xτ = (x(t −
τ1), . . . , x(t −τp)), where τi are positive constants, to deal with e.g. the time required
for transcription and translation. The system is thus transformed into a DDE model.

Piecewise linear differential equations Several cellular networks have been
modelled by piecewise linear differential equations, e.g. [17, 29, 30].We here follow
the notation of Gonçalves [31]. Piecewise linear systems (PLS) are constructed from
a set of affine linear systems,

ẋ = Aαx + Bα (12.2)
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where x ∈ R
n , Aα an n × n matrix, Bα an n × 1 input vector, and α is a switching

rule,

α(x) ∈ {1, . . . , M} (12.3)

which describes when to switch between the linear systems. The switching rule
depends on the present state x(t) andmight also depend on earlier states e.g. x(t −τ).
We denote a switching rule that only depends on the present state as memoryless.
A solution to (12.2)–(12.3) are functions (x, α), satisfying (12.2)–(12.3), where α is
piecewise constant. A switching time of a solution (x, α) is a time t where α(t) is
discontinuous. A trajectory switches at a time t if t is a switching time. Switching
occurs at switching surfaces in the state space of x. If the switching rule ismemoryless
and consists of linear inequalities, then these surfaces are hyperplanes of dimension
n − 1,

S j = {x|C j x + d j = 0} (12.4)

where C j is a 1 × n vector and j ∈ {1, . . . , N }. For a PLS let us define a partition
of the state space, where a separate linear system is used, as

Xi = {x|α(x) = i} (12.5)

for i = {1, . . . , M}. When the switching rule has no memory, Xi ∩ X j = ∅, i �= j ,
and in each partition the dynamics is given by the linear system ẋ = Ai x + Bi .
A phase portrait of a two dimensional piecewise linear system is displayed in
Fig. 12.1.

Switching rule with memory If the switching rule has a memory, i.e. it does
not only depend on x(t), but also earlier states, e.g. x(t − τ), then the intersection
of different Xi might not give the empty set. One example of this is given in [23],
where the switching rule not only depends on the present state but also on a past state
α = α(x(t), x(t − τ)). In [23], at each phase point x, one out of two linear systems
can be used, depending on the value of x(t − τ).

Fig. 12.1 A phase portrait
of a piecewise linear system
consisting of two linear
systems defined in X1 and
X2 respectively. The fixed
points x̂1 and x̂2 of the
respective linear systems are
also indicated. From [23]
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Fig. 12.2 Model detail is determined by system complexity. A single protein interaction can be
modelled in great detail using stochastic models. For larger and thus more complex biological
systems less detailed models are more informative. Dynamical models on a genome scale are not
yet feasible. Modified from [9]

12.4.2.1 Choice of Model Detail

As our focus shifts from modeling single pathways to increasingly complex cellu-
lar networks, the computational methodology and formalism used must be carefully
considered. Extrapolating the traditional ODE model used for modeling single path-
ways to whole-cell systems wouldmake themodel prohibitively complicated. This is
discussed in [9], where it is suggested that finding a “course-grained” level of model
description where the molecular details are left out when possible and focusing on
the system behaviour could be one strategy to solve this problem, see Fig. 12.2. This
theme is also elaborated by de Jong [16] who suggests that whole-cell models could
be organized in a hierarchical manner, based on the inherent modularity of the cell.
On different levels of abstraction different modeling formalisms could be used, thus
on a higher level a more “course-grained” formalism would be appropriate.

12.5 Model Simplification and Reduction

Model simplification and reduction in order to enable analysis is not a new con-
cept within biology. The most famous example is perhaps the Michaelis-Menten
equation were a separation in time-scales justifies a “quasi-steady-state” approxi-
mation. Throughout this chapter, we use the term model simplification as a more
loose description that a model is simplified in some sense, whereas the term model
reduction to describe simplifications where the number of degrees of freedom in the
model is reduced, while the model formalism remains the same.
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Which method to use when simplifying a particular full-scale model depends on
the objective of the simplification process and the equation structure of the full-scale
model. Before a model simplification process is performed it is useful to decide
on which features of the original model to be retained, in [68] named reduction
target and in [65] denoted as reference data. The simplified model must of course
be consistent with at least some aspect of the full-scale model. It can, however, in
most cases, by definition, not reproduce all possible dynamics of the full model
under all possible circumstances. This was investigated in [26], where it was found,
that reduced models that reproduced predictions of the full model for a particular
set of parameters loosed their predictive capacity when parameters were varied over
two-fold ranges.

One can note that the model simplification process, in the same way as ordinary
modeling, is an approach to essentially obtain insights on how the underlying system
works. Model simplification can therefore be seen as the “modeling of an already
existing model”. The proper approximations made during the model simplification
process could therefore be instrumental in learning about the underlying processes.
As was noted earlier, biological systems are sparse and seem to have a modular
structure [39], features that could aid a reduced model description.

There are a number of reducedmodels described for a variety of biological systems
and some early examples include [48, 67, 85]. Themodel reduction procedures often
include ad hoc components, which require that themodeler is intimately familiarwith
the dynamics of the original system. Attempts of more systematic model reduction
approaches have been performed e.g. [34, 47, 65, 68].However, also such approaches
are often only applicable to a small subset of biological systems of a particular
structure (e.g. systems having one ubiquitous variable) and/or dynamical behavior
(e.g. hopf bifurcation). Hence, there is a need for development of more general
methods that would enable systematic simplification and evaluation of complex non-
linear systems.

12.5.1 Model Simplification and Reduction Approaches

We here give examples of some approaches towards model simplification and reduc-
tion. This list is by no means exhaustive. A review can be found in [58]. Some
model simplification strategies include a first step of decomposing the system into
subsystems, whereas others remove or simplify individual parts (e.g. equations or
reactions) one-by-one. As described earlier there is also a difference between meth-
ods that remains within the same formalism andmethods that translate themodel into
a new formalism. Examples of the first case include lumping of variables, separation
of timescales, and removal of variables based on sensitivity analysis or identifiability,
whereas examples of the second case include boolean approximations, introduction
of explicit time delay, and hybrid approaches; as the simplified model described at
the end of this chapter, a delayed piecewise linear approximation of an ordinary
differential model.
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Module based model decomposition Cellular functions have, as was described
earlier, long been suggested to be carried out in amodularmanner [7, 39, 78], and dif-
ferent methodological approaches have tried to utilize this for model decomposition,
in order to retrievemodel subsystems that can be easier analyzed then the original sys-
tem. One example can be found in [60, 61] where the original system is divided into
subsystems or modules of low retroactivity. Loosely defined, retroactivity describes
the phenomenon in which a downstream event affects upstream reactions. This con-
cept emerged in the field of electric engineering. When the output of one electric
unit is connected as input to another electric unit, this can affect the first electric unit
retroactively, for example by draining electrons too fast [4]. A unit would be without
retroactive effects if both input and output are unidirectional. This means that the
behavior of the unit only depends on its input, and that ‘connecting’ it to another unit
does not change its input-output behavior. The behaviour of retroactive-free modules
can be studied uncoupled with the system and analyzed by systems theory’s tools.
Kinetic insulation is another concept related to modularity and a mechanism sug-
gested to increase “isolation” betweenmodules by the use of different timescales [18]
and segregate between different signals that are using common pathway components
[8].

Combining variables, or lumping refers to the process of reducing the number
of dimensions of a system by merging states (e.g. protein concentrations) together.
This approach is well suited for biological of the often occurring modular structure,
and as the remaining states can have a biological meaning, like sums of protein
concentrations. This can be illustrated by the following system

S −→I1 −→ P (12.6)

S −→I2 −→ P (12.7)

where S is a substrate that turns into P through two different intermediates I1 or I2.
The species I1 and I2 can be lumped together to the new pseudo-species I = I1+ I2,
resulting in

S −→ I −→ P. (12.8)

Lumping of variables leads to a simplification in terms of the number of states and
reactions of the systems but this might come to the cost of a higher complexity of
the remaining rate equations. A description of lumping procedures can also be found
in [58]. Lumping can be divided into two categories, in proper lumping each of the
species of the original model contributes only to one of the lumps of the reduced
model, whereas in improper lumping species can contribute to more than one lump.

The choice ofwhichvariables to be lumped together is often decidedon an intuitive
basis corresponding to an understanding of the specifics of the system. An example
of a more systematic method is the use of equivalent potentials [44, 68] used to
reduce neuron models. Here the special structure of these neuron models enabled the
design of an automated method. This method first uses a nonlinear transformation to
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the state variables, in order to find similarities between them. Finally, the variables
are sorted into groups based on these similarities. Next, each group is replaced by
a new variable approximating the function of the original state variables. In [72,
73] the back-translation properties of a reduction process for biochemical models
are emphasized, and they present a method based on lumping of clusters of fast
variables, where it is possible to map from reduced model variables and parameters
back to original model variables and parameters. A systematic method for proper
lumping of the systems state is also described in [19] which is based on a search
through all possible combinations of lumps. The combinatorial complexity of the
problem is bypassed through a heuristic, greedy algorithm.

Separation of timescales, is another method to reduce the complexity of mod-
els. As a rule, biological processes occur over a broad range of time-scales, from
milliseconds (e.g. phosphorylation reactions), minutes (e.g. transcription) to hours
(e.g. cell cycle), days and years, and the principle of time-scale separation has been
widely used within biology. One example is the quasi-steady-state approximation
(QSS), which is used within enzyme kinetics to derive the well known Michalis-
Menten equation. In QSS, the variables x are decomposed into two blocks x f , fast

variables and xs slow variables: d
dt

(
x f

xs

)

=
(

F f (x f , x)

Fs(x f , xs)

)

. The reactions includ-

ing the fast variable x f are approximated as to be instantaneous compared to the
reactions including the slow variable xs . For given fast species we can simply set
dx f
dt = 0, which results in an algebraic relation

F f (x f , xs) = 0.

If the functions F f is nice, the Implicit Function Theorem can be applied, that is,
there is a unique solution x f = G(xs). Substituting it into the original system yields
a lower dimension system dxs

dt = Fs(G(xs), xs). This means that we can study the
lower dimensional system on the slow manifold F f (x f , xs) = 0. The generalization
of this technique is difficult since it is no trivial task to divide variables into fast and
slow. There are also conditions that have to be satisfied for the method to work. In
[37] a nice extension to the QSS is described based on the zero-derivative principle.
For a more detailed description on timescale separation see [58] or [25].

Introduction of explicit time delay, is used in a few studies as a mean to simplify
biological models e.g. [22, 69]. Consecutive interactions in an ODE model often
give rise to a time delay in the system. In the above studies, intermediate variables
are removed and instead represented by an explicit delay, reducing the number of
variables, and turning the system into a system of delayed differential equations
(DDE). It can be noted that DDE systems, however, being infinite dimensional, are
in general harder to analyze than ODE systems.

Aside from model reduction, the question whether to use explicit delay or slow
intermediate variables, when modeling biological systems has been discussed [55].
Oscillations in biological systems are often assumed to be due to a delayed feedback
loop and the delay is often modeled by slow intermediary variables. This may have
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the consequence that processes such as transcription and translation are assumed
to be instantaneous. In [55] it is shown in a model of the oscillatory expression of
Hes1, p53 and NF-κB that no intermediate variables are needed to get oscillations if
an explicit transcriptional delay is introduced. This is a principally important result,
since it is preferable to include an anonymous delay in the system (that of course
could be due to an intermediate variable) than a variable that correspond to a protein
that might not exist. If a truly delayed process is modeled as instantaneous (even
though slow) this can result in erroneous parameter estimates.

Sensitivity analysis based methods A sensitivity analysis (SA) investigates how
the model output depends on the model parameters and can be performed through
a local SA, describing infinitesimal changes around a nominal point in parameter
space, or through a global SA, investigating larger parts of the parameter space, often
by statistical analysis. More information about sensitivity analysis can be found in
[80]. In model reduction SA is often used through two steps. First all parts (e.g.
terms, reactions, variables) of a model are ranked according to their influence on
the model output. In the next step parts that are considered to be unimportant for
the considered behaviour are removed (corresponding to low ranked parts) [11, 58].
This is not a trivial task, however, since individual parts can have a low sensitivity,
but combinations of parts can be crucial. Also for a local sensitivity analysis the
result depend on the nominal parameter value that the sensitivity analysis starts off
from. Therefore, an individual ranking list can only be considered as a guide. Also
notable is that the original model structure must be considered during the removal
of variables, so that the remaining model is biochemically consistent. One example
of model reduction based on SA can be found in [51], where SA together with flux
analysis and principal component analysis is used to reduce a model of epidermal
growth factor (EGF) mediated signaling and trafficking. SA is also used in [5] to
guide the order of removal of parameters in the model.

Identifiability. In [65] the concept of unidentifiability is used to reduce rate
expressions. The rationale is that an unidentifiable rate expression has more than
one parameter set that can describe data equally well and that simpler expressions
therefore could be used. In the systematic method of [65], the rate expressions have
to be in rational form, i.e. a fraction between two polynomials. The reduction is
next performed in a reaction-wise manner, so that the complexity of the individual
rate expressions is reduced, while the structure of the cellular network is conserved.
The reduction is performed in relation to a reference data set, corresponding to
in silico simulations of the original full-scale model, and parts of the reaction rates
that are unidentifiable with respect to this data are removed. By this method terms
of the reaction rates that are less important for the model behaviour, as represented
by the reference data, are removed. This procedure thereby identifies the function-
ally important interactions. Another important study exploits the profile likelihood
to detect structural and practical non-identifiabilities and suggests the use of this
methodology for model reduction [59]. We also refer to [45] where issues related to
identifiablity are discussed.
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Topological filtering and viable parameter spaces.Uncertainties inmodel struc-
ture often makes it necessary to evaluate more than one model topology, where dif-
ferent topologies correspond to different biological hypothesis (see also [70]). In a
recent study [71] a “supermodel” is constructed that incorporates all hypothetical
mechanisms concerning the underlying biological system. This includes the region
of the parameter space of this supermodel that is compatible with the experimental
data, called the viable space. The exploration of such a large multidimensional space
is done by a procedure that combines an initial coarse grained global sampling of the
viable space with a subsequent finer grained exploration [86]. This supermodel is
then reduced to a set of newmodels, with reduced topology, by an iterative procedure
where parameters are eliminated.

Another related study [5] is also based on the exploration of a parameter region
where the model yields some required output, here called admissible region. Based
on the shape of this region, parameters and variables are removed and lumped as
long as the dynamical behavior of some target species are preserved. The authors
further use sensitivity analysis as guidance for ordering the parameters during the
reduction procedure.

Change of modeling formalism. The decision on which modeling formalism to
use when describing a system, includes a decision on model detail [9, 16] and a
decision on which underlying processes that are important to include in a model. A
stochastic model representing all molecules of the system is more detailed than an
ODE model which assumes that molecular concentrations are sufficiently large in
order to be approximated with a continuous and deterministic description. An ODE
model in turn is more detailed than a boolean model. Therefore, as an example, can
a boolean model be seen as a reduction of a certain class of ODE models where the
variables can be described as being on or off. This technique was used by Albert and
co-workers to identify conditions for robustness in a large kinetic ODE model of
the Drosophila segmentation [2], and by Davidich and Bornholdt to reduce an ODE
model of the cell cycle [15]. Other ways to reduce model complexity by a change of
formalism is to transform a nonlinear ODE model to a piecewise linear ODE model
[22] or a hybrid model [34].

12.5.2 “Tearing, Zooming and Simplifying”—an Example
of a Model Simplification Procedure

We close this chapter by describing a specific example of a model simplification
procedure developed in [23]. The core concept is to utilize biological properties
such as modularity in order to identify a simplified description of the system and
secondly to develop this methodology using a well characterized biological system.
Hence, we start off from a medium sized non-linear ODE-model of the cell division
cycle which has been pioneered by the work of Tyson and Novak [57]. The method
effectively produces a smaller (in terms of variables and parameters) model in the
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mathematical form of a delayed piecewise linear (DPL) system. The fact that the
simplified model is piecewise linear facilitates the analysis and enables detailed
predictions on parameter relationships that regulate model output such as the cell
size. The tearing-zooming-simplifying approach consists of three steps:

1. tearing or subdividing the original model into subsystems (modules),
2. zooming out and characterizing the modules by input/output transfer functions
3. replacing the modules by simplified descriptions.

This is an iterative process where e.g. information from the second step can suggest
a new subdivision in the first step. This simplification method is akin to the system
theoretical approach to model large engineering systems by tearing and zooming,
see e.g. [14, 83] . The concept of zooming has also been used recently in [72, 73].

The variables of the cell cycle model correspond to protein concentrations, and
before we go into the details of the tearing-zooming-simplifying approach we will
first shortly describe the cell division cycle.

12.5.2.1 The Cell Division Cycle

Cells reproduce by duplicating their contents and then dividing into two.This process
contains two parts, the chromosomic cycle and the cytoplasmic cycle [3]. The chro-
mosomic cycle consists of the exact duplication of DNA, DNA synthesis, and the
subsequent separation of the two copies, mitosis. In parallel to this process, during
the cytoplasmic cycle, all other constituents are doubled in quantity, the cell grows
and thewhole cell is divided into two cells. There needs to be a coordination between,
and interactive control of, the chromosomic and cytoplasmic cycles. This is achieved
by the cell-cycle genes and proteins. Failure in regulation of the cell cycle can result
in uncontrolled cell growth and the initiation of cancer.

Severalmathematicalmodels have been constructed to account for this system e.g.
the pioneering work encoded in the experimentally constrained models of Novak and
Tyson [77], one of which [57] is used in this model simplification example. During
the eukaryotic cell cycle in fission yeast, the cell grows, DNA is replicated (S-phase),
and divided into two daughter cells (M-phase). Between the S-phase and theM-phase
there are also two gap-phases, referred to as G1 and G2.

12.5.2.2 Tearing or Subdividing the Original Model into Subsystems

The final goal of the simplification procedure is to find more or less isolated units
(modules), with a dynamical behavior that can be replaced by simpler descriptions.
Thefirst step in achieving this consists of dividing the originalmodel into subsystems,
based on the topology of the interactions. These potential modules—in the first
iteration—consists of a subset of original variables, and have a corresponding set
of coupled ODEs. It is important that the coupling between the ODEs within the
module is intact, and not torn apart by the subdivision. Therefore a graph describing
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Fig. 12.3 Graph describing the coupling between ODEs, and subdivision into modules (from [23]).
A node in this graph corresponds to a variable of the original model, and there is an edge from node
j to i if j directly affects i (i.e. is on the right hand side of a differential equation defining i). This
graph was used to divide the system into potential modules. a Full DPL-model, subdivision into
switching modules when M ≥ 0. b Small DPL-model, subdivision into switching modules when
M > 0.8. Some of the variables can be replaced by constant parameters (indicated by crosses),
when M > 0.8

the coupling structure of the ODEs is constructed, see Fig. 12.3. The graph illustrates
how the dynamics of different variables depend (directly) on other variables in the
model. Interestingly, this kind of graphical approach for decomposition was recently
utilized in a study on observability of biochemical systems [52].

Putative modules are chosen so that (i) each module has one output-variable,
and (ii) all nodes within the module are connected to the output by a connected
path. Some of the nodes within a module correspond to ODEs which depend on
variables coming from outside the module, denoted input-variables. In addition to
defining modules, the graph is also useful for representing the coupling relevant
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Fig. 12.4 Steady-state response and step function approximation. a The steady state response of
the output [SK ] (concentration of Starter Kinase) to the inputs M (Mass) and [M P F] (Mitosis
Promoting Factor). b The same function as in a but approximated by the step function Ssk . From
[23], for a colored version see the online version of the book

for elucidating dynamical motifs. In the case of the cell cycle model, the feedback
structure within the network and the central role of the protein complex [M P F] is
made more transparent by our procedures (Fig. 12.3).

12.5.2.3 Zooming Out and Characterizing the Module Dynamics
by Input/output Functions

In the next step the dynamical behavior of the potential modules is analyzed by
investigating the input/output relationship. This is performed for each module in
isolation by two complementary procedures. First by describing the steady-state
response of the output in response to different inputs (for an example see Fig. 12.4),
and secondly to consider the response time, i.e. the time it takes for the module to
reach steady state after a significant change of input.

Based on such a characterization and the additional constraint that we avoid mod-
ules to be overlapping, leads to the final modules being selected so that (including
the earlier defined criteria) (i) each module has one output-variable, (ii) all variables
within the module is connected to the output by a connected path, (iii) the modules
are non-overlapping, and (iv) the output has a switching input/output behaviour. By
switching input/output behaviour wemean a steep, sigmoid-like, response curve (e.g.
Fig. 12.4). Most of the variables in this cell cycle example have a dynamics based on
Michaelis-Menten or Hill kinetics, and modules can therefore readily be identified
which have a steep sigmoid almost step-like steady-state dependency on the input.

During this process we also remove variables for which the signal response curve
are constant or almost constant, by re-defining them into constant parameters. In the
cell cycle example this can be done since some of the variables are not “active” in
the regime we are interested in, i.e. when the cell mass is larger than 0.8 (M > 0.8).
In Fig. 12.3 the final modules are illustrated, and in Fig. 12.4 an example of a input-
output curve can be seen.
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12.5.2.4 Replacing the Modules by Simplified Descriptions

In the final step, the modules are replaced by step functions (Fig. 12.4) and a time
delay corresponding to the measured response time (for details see supplementary
material of [23]). This transforms the original system into a piecewise linear sys-
tem (with delay). Not all variables are included into modules, some are removed as
described in the previous section, and some become state-variables of the new sim-
plified system. It can be noted that it is not obvious that replacing the modules with
step functions would turn the remaining system into a DPL-model. This is possible in
this case due the special form of the remaining ODEs of the original model. Whether
this is true also for other models remains to be explored.

12.5.2.5 Elucidating the Core Dynamics by a Simplified Model
and Making Predictions

The simplified (DPL) model of the cell cycle emphasizes some important features
of the system. In the DPL-model, one normal division of the cell, corresponds to
the subsequent move between four linear subsystems (Fig. 12.5). Interestingly, these

Fig. 12.5 Numerical simulation of the of the DPL-model, showing the time evolution of the cell
mass (M), as well as the concentration of the protein complex [M P F] (Mitosis Promoting Factor).
During different parts of the cell division cycle, different linear systems are used, as indicated on
the time course of the variable [M P F](t) with green, red, blue and magenta. The linear systems
correspond to the four cell cycle phases G1, S/G2, M and EM, where EM is the ending of Mitosis.
Which linear system that is used at a certain time t depends on [M P F](t) and [M P F](t − τ) as
detailed in [24]. From [24]
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subsystems can in turn be directly mapped to different phases of the cell cycle (G1,
S/G2, Mitoses, and ending of Mitoses). This means that during each cell cycle phase
only one (linear) subsystem is active, corresponding to a subpart of the whole system,
and thus, to a subset of system parameters. Therefore, during that phase only a few
of the system parameters are “active”, and can influence the behavior of the cell. The
other parameters are “silent”, and can be changed without changing the behavior,
as long as they are changed back when it is their turn, i.e. when their linear system
is active. This also means that different parameters can only act as system-controls
during specific timings of the cell cycle, there is a separation in time between different
functional modules.

The change between linear system (and thus “active” system parameters), occurs
when the system trajectory (i.e. protein concentrations), passes certain thresholds
(phase space switching lines), either immediately or after a certain delay. Based on
the DPL model it can be calculated when this occurs, and which and how different
parameters can affect this. As an example, the switch between the G1 and the S/G2
phase is important for the final size of the cell, and by the DPL-model it can be
predicted how large the cell will be if there is a change in one or more of the model
parameters. It can also be predicted which parameters that can change the size of the
cell, and which combination should be most effective. Other mechanistic principles
can also be found, like the observation that the length of the G1 phase corresponds
to the time delay of one of the system modules. These predictions are qualitatively,
and semi-quantitatively verified in the original model.

The analysis of the DPL-model is based on the calculation of different impor-
tant dynamical features like stability, fixed points, switching thresholds, eigenvalues
and eigenvectors, and analytical conditions for these. The fact that the DPL-model
consists of linear systems enables this, even though the inclusion of delay is a com-
plicating factor. In the study presented in [23] it is shown that the dynamics of the
DPL-model very well could be approximated by the slow eigenvectors of the differ-
ent linear systems (Fig. 12.6), and this facilitated a proof on the global stability of
the system. Finally, a further interesting feature were observed in the original model
and explained in the simplified model [24]. The effect of different parameter pertur-
bations was explored through two different characteristics; an essential effect of a
perturbation made the system stop working (stop oscillating), whereas a modulatory

Fig. 12.6 Validation of the
simplified DPL-model as
well as the slow eigenvector
approximation. From [23],
for a colored version see the
online version of the book
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effect had a more minor but significant effect (change in cell size). It was noted that
several parameters with no modulatory effect whatsoever for smaller perturbations
could in fact be essential to the system, at larger perturbations.

12.5.2.6 What Is Lost by the Simplification?

Three important assumptions are made in the simplification process described above,
(i) variables have time to get sufficiently close to their steady-state before there is a
significant change of input, and (ii) that the transient behaviour is not important and
(iii) that the exact form of the steady-state is not critical for the system, for example,
a sigmoid function can be substituted by a step-function. If this is not the case then
the simplification will fail. One idea behind this is that biological systems appear
to be robust to many biochemical details [56, 82], and that this can be utilized to
retrieve simplified coarse-grained descriptions.

The simplification of the original model was performed in a nominal point in
the parameter space. In an extended investigation [24] it was analyzed how well the
simplified model reproduced the dynamical behavior of the original model for other
parameter values than the nominal point. It was noted that the models agreed well
for smaller parameter perturbation, but for larger there was a disagreement.

12.6 Conclusions

We have within this chapter described how the huge increase in experimental cel-
lular data of the last decades, and the following increase in the size and number of
dynamical models, has been followed by an increasing need for and development of
methods for model analysis through simplification. Since dynamical cellular mod-
els can consist of several hundreds of parameters, representing interactions between
large numbers of species, connected in a nonlinear way by intertwined feedback-
loops it is difficult to determine which parts of the models are important for different
output. Another complicating factor is the model uncertainty, both when it comes to
parameter values as well as topology. New experimental data are both qualitative,
e.g. describing existence of interactions between species, as well as quantitative, e.g.
describing interaction strength, but there is a mismatch between the amounts of qual-
itative versus quantitative data, resulting in not fully constrained or non-identifiable
models.

Model simplification and reduction has herein been presented as a method to meet
these challenges of complexity and identifiability of large-scale cellular models. The
idea is to retrieve a smaller or in someother sense simplermodel,with increased trans-
parency (easier to understand intuitively), increased identifiability and/or increased
predictability. It must also be possible tomap the parts of the simplifiedmodel back to
the biological entities or features of the original model, for predictions to be relevant.
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Other utilizations of simpler models, which are not discussed somuch in this chapter,
are reduced computational times, as well as ameans to comparemodels to each other.

Many different approaches have been taken towards simplification and reduction
of models. There are ‘horizontal’ approaches, working on the same scale or level in
the system hierarchy, for example lumping entities of the same kind together, like
proteins or reactions, or decomposing the system into subsystems and then simpli-
fying or analyzing these separately. Other ‘vertical’ approaches are approximating
features on other scales than the one considered; like approximating a stochastic
model by the average number of species to receive an ODEmodel; or approximating
continuous functions with discrete functions, when transforming an ODEmodel to a
Boolean or piecewise linearmodel; or the common themeof reducing variableswork-
ing on faster time-scales. The different approaches differ in methodology, where, for
example, horizontal approaches use model topology, sensitivity, identifiability, etc.,
vertical approaches often use approximations of different kinds, like averages.

It can also be noted that there is a difference between “local” and “global model
simplification” approaches, i.e. some approaches are performing the simplification
at a specific point in parameter space (e.g. time scale separation), whereas others are
taking into account the full (or parts of the full) admissible parameter space, i.e. the
parameter values for which the model output is consistent with experimental data
(e.g. methods based on identifiability).

Traditional means of analyzing nonlinear dynamical models, like bifurcation
analysis, do not suffice in order to understand these new large-scale models, rather
new approaches have to be taken. Here model simplification and reduction have an
important part to play.
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Chapter 13
Sensitivity Analysis by Design of Experiments

An Van Schepdael, Aurélie Carlier and Liesbet Geris

Abstract The design of experiments (DOE) is a valuable method for studying the
influence of one or more factors on the outcome of computer experiments. There
is no limit to the number of times a computer experiment can be run, but they are
often time-consuming. Moreover, the number of parameters in a computer model is
often very large and the range of variation for each of these parameters is often quite
extensive. The DOE provides the statistical tools necessary for choosing a minimum
amount of parameter combinations resulting in as much information as possible
about the computer model. In this chapter, several designs and analysing methods
are explained. At the end of the chapter, these designs and methods are applied to a
mechanobiological model describing tooth movement.

Keywords Design of experiments ·Sampling parameter space ·Sensitivity analysis

13.1 Introduction

The design of experiments (DOE) is a valuable method for studying the influence of
one or more factors on physical experiments (see tutorial [21]). Physical experiments
can often only be run a limited number of times and can be expensive and time-
consuming. Therefore, when performing a sensitivity analysis on a model with many
parameters, limiting the number of parameter combinations to be studied is very
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important. The basic problem of designing such experiments is decidingwhich factor
combinations to examine. The design of experiments (DOE)—introduced by Fisher
[7]—was developed for this purpose.

There is no limit to the number of times a computer experiment can be run, but they
are often time-consuming. Moreover, the number of parameters in a computer model
is oftenvery large and the rangeof variation for eachof these parameters is often larger
than in physical experiments. Although there are fundamental differences between
physical experiments and computer simulations, the techniques of DOE that were
originally developed for physical experimentation can also be used to investigate the
sensitivity of a computer model to its parameters with a minimum of computational
time.

13.2 Theory

Running a sensitivity analysis of a computer model using the DOE consists of three
steps. Firstly, a suitable design, meaning a number of parameter combinations for
which we will run the model, has to be set up. The purpose of this design is to get as
much information as possible about the influence of the relevant parameters on the
outcome of the model at minimal cost. In computer models, this cost is usually the
computational time, which is kept low by limiting the number of parameter combi-
nations that is studied. Next, simulations are run with these parameter combinations
and finally, the results are analysed and conclusions are drawn [26, 27].

13.2.1 Available Designs

A number of designs are available to conduct a sensitivity analysis [26, 27, 34]. This
section provides an overview of the different techniques that are most commonly
found in the biomedical literature.

13.2.1.1 OAT-Design

The simplest design is a one-at-a-time (OAT) analysis, where each parameter is varied
individually.A standardOAT-designuses a reference condition and then changes each
parameter individually to a higher and a lower value, while keeping other parameters
at the reference value. The difference between the outcome for the high and the low
value is then used as a measure of the influence of the parameter on the system.
The main advantage of this design is its simplicity and the fact that it only requires
2M experiments, with M being the number of parameters studied. It is however
impossible to study interactions between parameters, and the effect of the parameters
resulting from this analysis might be different when choosing a different reference
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condition [13]. The OAT analysis was used by Lacroix [19] and Geris et al. [9] to
assess the influence of the value and duration of the initial and boundary conditions
on the simulation results of a fracture healing model.

13.2.1.2 Factorial Designs

In factorial designs, the parameters are assigneddifferent values. In two-level designs,
two different levels, a high and a low level, are chosen. Several combinations of
parameter values are then compared, changing various parameters at the same time. In
a two-level full factorial design, all possible combinations are examined, requiring2M

experiments (see Fig. 13.1a). In three-level designs, requiring 3M runs, the outcome
of the model is also studied with parameters at an intermediate level (Fig. 13.1b). The
advantage is that the effect of each parameter can be studied, and that interactions
between the factors canbe examined. Furthermore, no reference condition is required,
giving the results more reliability. The main disadvantage is the computational cost
[26, 34]. The design requires 2M runs, which becomes very high when the model
contains many parameters. With 30 parameters, this would require 1.07× 109 runs.

In fractional factorial designs, not all of these 2M or 3M combinations are exam-
ined (Fig. 13.1c). In a two-level full fractional factorial design with six parameters,

(a) (b) (c)

x1

x2

(d) (e) (f)

Fig. 13.1 Schematical overview of different designs for two factors x1 and x2. a A two-level full
factorial design. b A three-level full factorial design. c A three-level fractional factorial design. d A
latin hypercube design with nine runs. The parameter space is divided into 92 = 81 cells, and one
cell on each row and column is chosen. e A latin hypercube design with nine runs. This example
shows that a LHD design is not necessarily space-filling. f A uniform design. Note that the factorial
designs used discrete values of the parameters, while the LHD and uniform designs spread out the
points in space
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only six out of 64 runs are used to estimate the main effects, and 15 are used to
estimate the two-factor interactions. The remaining runs are used to calculate higher
order interactions [27]. Fractional factorial designs are based on the principle that,
most likely, at some point the higher order interactions become negligible. It is thus
not necessary to examine all possible combinations of parameters, but it is sufficient
to choose a suitable set of combinations [27, 34]. By omitting several combinations
compared to the full factorial design, the amount of information gained from the
sensitivity analysis decreases. The number of runs remains however limited result-
ing in a significant computational gain. Depending upon the number of experiments,
several interactions will become indistinguishable. When using a minimum amount
of experiments, only the effect of each parameter separately, the main effects, can
be determined. When increasing the number of runs, two-factor interactions can be
examined. Generally speaking, few experiments worry about higher order interac-
tions. Fractional factorial designs are classified according to the level of information
they provide. A resolution III design is set up in such way that the main effects are
distinguishable, but may be affected by one or more two-factor interactions. These
must thus assumed to be zero in order for the results to be meaningful. In a reso-
lution IV design, the main effects can be distinguished from the other main effects
and the two-factor interactions, but the two-factor interactions are confounded with
each other [26, 27, 34]. A fractional factorial design is thus a trade-off between
computational cost and accuracy, and are most frequently used to identify a subset
of parameters that is most important and needs to be studied more extensively [27].
The main disadvantage is that the parameters are only studied at several levels and
the values are not spread out over the entire parameter space.

Several other factorial designs are possible; Plackett-Burman designs, Cotter
designs and mixed-level designs offer alternatives to standard fractional factorial
designs, each having its own specific advantages and disadvantages. Isaksson et al.
[12] determined, for example the most important cellular characteristics for fracture
healing using a resolution IV fractional factorial design. Such design was also used
byMalandrino et al. [23] to analyse the influence of sixmaterial properties on the dis-
placement, fluid pore pressure and velocity fields in the L3–L4 lumbar intervertebral
disc.

13.2.1.3 Taguchi’s Design

Taguchi’s design was originally developed to assist in quality improvement during
the development of a product or process. In a manufacturing process, for example,
there are control factors and noise factors. The latter cause a variability in the final
products and are usually uncontrollable. The goal of robust parameter design is to
find the levels of the control factors that are least influenced by the noise factors [26].
In the Taguchi parameter design methodology one orthogonal design is chosen for
the control factors (inner array) and one design is selected for the noise factors (outer
array).
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Taguchi’s methodology has received a lot of attention in statistical literature. His
philosophy was very original, but the implementation and technical nature of data
analysis has received some criticism. Firstly, it does not allow the estimation of
interaction terms. Secondly, some of the designs are empirically determined, but
are suboptimal compared to rigorous alternatives such as fractional factorial designs
[26]. Finally, if the Taguchi approach works and yields good results, it is still not
clear what caused the result because of the aliasing of critical interactions. In other
words, the problemmay be solved short-term, without gaining any long-term process
knowledge. Despite this criticism, Taguchi’s approach is often used in biomedical
literature because of its simplicity [2, 20, 41].

13.2.1.4 Space-Filling Designs

In space-filling designs, the parameter combinations are spread out over the entire
parameter space, enabling the design to capture more complex behaviour [36]. This
approach is particularly useful for deterministic or near deterministic systems, such
as computer simulations. To achieve an effective spreading of the parameters, several
sampling methods are available. One of the most used methods is latin hypercube
sampling (LHD). This method can be most easily explained by using the very simple
example of a 2D experimental region, representing a system with 2 parameters x1
and x2 (Fig. 13.1d). For a design with N runs, the region is divided into N equally
spaced rows and columns, creating N 2 cells. The points are then spread out, so
that each row and column contains exactly one point. The main advantage of this
method is that a latin hypercube design is computationally cheap to generate and
that it can deal with a high number of parameters [6, 36]. The main disadvantage
however, is that the design is not flexible with regard to adding or excluding runs.
By changing the number of runs, the condition that each row and column contains
exactly one point is no longer met. Furthermore, LHD is well suited for monotonic
functions, but might not be adequate for other systems [6]. Finally, LHD designs
are not necessarily space-filling (Fig. 13.1e). More elaborate algorithms which aim
at ensuring the space-filling property of latin-hypercube designs, are described by
Fang et al. [6].

Another method to achieve an effective spreading in space-filling designs is uni-
form sampling [5, 6]. In uniform designs, the parameters are spread out over space
as uniformly as possible (Fig. 13.1f). The higher the number of runs, the better the
spreading will be. Uniform designs are found to be efficient and robust, easy to
understand and convenient, but computationally very demanding. Although this is a
disadvantage, the fact that uniform designs cope well with the adding and removing
of parameter combinations to the designmakes them very useful in biomedical appli-
cations. For example, Carlier et al. [1] used a latin hypercube and uniform design
to determine the most influential parameters of a calcium model that describes the
effect of CaP biomaterials on the activity of osteogenic cells.
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13.2.2 Methods for Analysing the Results of a Design

Once a suitable design has been set up and computer simulations are run with the
different parameter combinations, the results have to be analysed. Depending on the
design and the goal of the analysis severalmethods are available. Analysis of variance
(ANOVA) is particularly suited for analysing the outcome of a (full or fractional)
factorial design, giving an indication of the importance of the investigated parameters.
For themore complex space-filling designs,Gaussian processes aremore appropriate,
as they not only determine the importance of a parameter but also give an estimate
of the exact effect of varying a particular parameter on the outcome of the model.
That way, more complex and non-linear effects can be revealed.

13.2.2.1 Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) can be used to investigate the result of a full or
fractional factorial design. Firstly, the total variation in the output is modelled by
calculating the total sum of squares of the deviation about the mean (SST ) [13].

SST =
N∑

i=1

[yi − ȳ]2 (13.1)

In this equation, N is the number of runs, yi the output for the i th run, and ȳ the
overall mean of the output. The influence of one parameter is determined by SSF :

SSF =
L∑

i=1

NF,i [ȳF,i − ȳ]2, (13.2)

where L is the number of levels used for each parameter, NF,i is the number of runs
at each level of each factor and ȳF,i is the mean output at each level of each factor.
The percentage of the total sum of square,

%T SS = [SSF/SST ] × 100% (13.3)

is a measure of importance for the parameter to the defined outcome [2].

13.2.2.2 Gaussian Process

Gaussian processes not only estimate the importance of individual parameters, but
also the influence of the parameters on the outcome of a model. Given the output
data tN = {ti }N

i=1 resulting from a combination XN = {xi }N
i=1 of input parameters,

determined in the set-up of the design, Gaussian processes are used to predict the
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output t∗ for a certain combination x∗ of input parameters [22]. To make this predic-
tion, the output data are studied (Fig. 13.2), and a function y(x) is searched, so that
y(xi ) approaches the measured data ti as closely as possible. In linear regression, the
function y(x) is assumed to be linear and usually least square methods are applied
to find the most likely result for y(x). This analysis method however implies that
assumptions have to be made regarding the form of the function, prior to analysing
the data.

A Gaussian process starts from the following posterior probability function:

P(y(x)|tN , XN ) = P(tN |y(x), XN )P(y(x))

P(tN |XN )
. (13.4)

The first factor on the right hand side of (13.4), P(tN |y(x), XN ), is the probability
of the measured data given the function y(x), and the second factor P(y(x)) is the
prior distribution on functions assumed by the model. In linear regression, this prior
specifies the form of the function (e.g.: y = ax +b) , and might put some restrictions
on the parameters (e.g.: a �= 0). The idea of Gaussian process modelling is to place
a prior P(y(x)) directly on the space of functions, without making assumptions on
the form of the function. Just as a Gaussian distribution is fully defined by the mean
and the covariance matrix, a Gaussian process is defined by a mean function and a
covariance function. The mean is thus a function μ(x), which is often assumed to
be the zero function, and the covariance is a function C(x, x′). The only restriction
on the covariance function is that it must be positive semi-definite. Several functions
have been usedwidely, and proven valuable in literature. To get a better grasp onwhat
exactly the covariance function represents and how a choice between the different
available functions has to bemade, an intuitive approach to developing the covariance
function is explained below. A fully detailed and more theoretical approach can be
found in Mackay [22].

Consider a system dependent upon one parameter x , with N parameter values xi ,
and a parametrisation of y(x) using a set of basis functions {φh(x)}H

h=1. The function

x1 x2 xNx*
x

t

t1

t2

t3

t*

y(x)

Fig. 13.2 Schematic representation of a Gaussian process on a system with output t , depending on
one parameter x . The system is analysed for parameter values {x1, x2, . . . , xN }, for which output
values {t1, t2, . . . , tN } are obtained. In order to find the output value t∗ resulting from parameter
value x∗, the Gaussian process searches for a function y(x) which can explain the output values
{t1, t2, . . . , tN } the best. t∗ is then found as t∗ = y(x∗)



334 A. Van Schepdael et al.

y(x) can then be written as:

y(x, w) =
H∑

h=1

whφh(x). (13.5)

As basis functions {φh(x)}, radial basis functions centred at fixed points {ch} are
chosen (Fig. 13.3).

φh(x) = e− [x−ch ]2
2r2 (13.6)

Using the input points {xi } and the H basis functions φh , an N × H matrix R can
be defined.

Rih = φh(xi ) (13.7)

For a certain set of parameters w, the function y(x) then has the values yN = {yi } at
the input points xi .

yi =
H∑

h=1

whφh(xi ) =
H∑

h=1

wh Rih (13.8)

In parametric regression methods, it is normally assumed that the prior distribution
of the parameters w is Gaussian with a zero mean.

P(w) ∼ N (0,σ2
wI) (13.9)

Fig. 13.3 Radial basis functions centred at ch = 10, used for the parametrisation of y(x). The
parameter r is a length scale defining the width of the basis function. A larger value of r results in
a wider basis function and a smoother approximation of the function y(x)
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In that case, yN , being a linear function of w is also Gaussian distributed with mean
zero and covariance matrix Q.

Q =
〈
yN yN

T
〉
= σ2

wRRT (13.10)

If each data point tn is assumed to differ by additive Gaussian noise of variance σ2
v

from the corresponding function value y(xi ), then:

P(t) ∼ N (0, Q + σ2
v I)

∼ N (0, C). (13.11)

Now the assumption is made that the radial basis functions are uniformly spaced,
that H → ∞ and that σ2

w = S/(ΔH), where ΔH is the number of base functions
per unit length of the x-axis. The summation over h then becomes an integral and
the (i, j) entry of Q equals:

Qi j =
√

πr2Se− [x j −xi ]2
4r2 . (13.12)

The covariance function C(x, x′) of the Gaussian process is thus related to the basis
functions chosen in the model. The parameter r is a length parameter describing
the width of the basis function. For a high value of r , the basis functions are wider,
implying a higher correlation of the values of y(x) at input points xi and x j , resulting
in a smoother function.

As mentioned before, several forms of the covariance function are possible. The
first one used is the Gaussian or squared exponential covariance function.

Qi j = σ2e−∑M
m=1 θm [xim−x jm ]2 = σ2

M∏

m=1

eθm [xim−x jm ]2 (13.13)

The summation in (13.13) is a result of the M-dimensional nature of the parameter
combinations, which has not been taken into account in the intuitive approach, but
is reintroduced here. The parameter 1/θm , corresponding to parameter m, is related
to the length scale r described above. A very large number of θm implies a short
length scale, indicating the function value will change significantly when changing
the parameter. A value of θm = 0 implies an infinite length scale, meaning y is a
constant function of that input.

The second form for the covariance function is the cubic correlation covariance
function. The covariance matrix is composed of the following elements:

Qi j = σ2
M∏

m=1

ρ(di jmθm), (13.14)
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where

di jm = xim − x jm (13.15)

ρ(dθ) =
⎧
⎨

⎩

1 − 6[dθ]2 + 6[|d|θ]3, |d| ≤ 1
2θ

2[1 − |d|θ]3, 1
2θ ≤ |d| ≤ 1

θ
0, 1

θ ≤ |d|.
(13.16)

Equation (13.16) shows that for a certain distance di jm between the points xim and
x jm the covariance function becomes zero, meaning that the values of the output
at these locations are not correlated. This allows the cubic covariance function to
capture variations on smaller length scales and include outliers in the model.

The regression process now consists of selecting the parameters {θm ,σ2,σ2
v }. This

is done by maximizing the following equation:

M = log p(tN |XN , {θm,σ2,σ2
v }) = −1

2
tN

T C−1tN − 1

2
log |C| − n

2
log 2π

(13.17)
It should be noted that Gaussian processes are not designed to actually find a

specific function y(x) that fits the data best. They are designed to make predictions
of the outcome for a new input point x∗, without specifying the actual function y(x)

that was used to reach that conclusion. For every input x∗, the result of the Gaussian
process will be a mean t̄∗ and a variance σ2

t̄∗ on the prediction. Using

C∗ = [C(x∗, x1) C(x∗, x2) · · · C(x∗, xN )] and C∗∗ = C(x∗, x∗), (13.18)

the mean and variance of t∗ become [3]:

P(t∗|tN ) ∼ N (t̄∗,σ2
t∗)

∼ N (C∗C−1tN , C∗∗ − C∗C−1CT∗ ). (13.19)

The results of a Gaussian process regression are usually visualised by plotting the
mean t̄∗ as a function of the different inputs xm and adding a confidence interval to
the graph, calculated by using the variance σ2

t∗ (Fig. 13.4).

13.2.3 Interpretation of the Results

After statistically processing the simulation outcomes with ANOVA or Gaussian
processes, the most influential parameters and possible interactions between para-
meters can be determined. Moreover, a biological interpretation of the predictions
might lead to a greater understanding of the modelled processes at hand. Remark,
however, that the results of the sensitivity analysis are valid within the chosen para-
meter as well as response space. Indeed, if the parameter ranges or the responses
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Fig. 13.4 Visualisation of the results of a Gaussian process. The horizontal axis shows the para-
meter value, the vertical axis shows the output value predicted by the Gaussian process. For every
parameter value, the predicted output has a mean (solid line) and a confidence interval (dashed line)

would be altered, different results could be obtained. Moreover, DOE is a statistical
tool implying that a larger number of runswill provide the statisticalmodel withmore
data thereby allowing more accurate predictions. It is instructive to test the statisti-
cal predictions by running the original model with the according parameter values
in order to test whether the examined region was correctly sampled. Finally, every
design and analysis method has its pros and cons. If little is known about possible
non-linearities, interactions and monotonicity of the model being studied, it might
be informative to compare the results of different designs and analysis methods.

13.3 Application to a Mechanobiological Model
of Tooth Movement

This section demonstrates the techniques described previously by applying them to
a mechanobiological model describing tooth movement. Progress in medicine and
higher expectation of quality of life have led to a higher demand for several dental and
medical treatments [33], making it more and more common for other medical condi-
tions needing to be taken into account by the orthodontist when planning orthodontic
treatment. During treatment, tooth displacement is achieved by applying orthodontic
forces to the tooth. Under the influence of these forces, the pressure side of the tooth
root will experience bone resorption while bone formation will take place on the ten-
sion side. The coordination of these two processes through cellular communication
results in permanent tooth displacement through the alveolar bone. Together with
experiments, computer models might lead to a better understanding of orthodontic
treatment and the pathologies affecting the outcome. The model analysed by DOE
in this section is a mechanobiological model using partial differential equations to
describe cell densities, growth factor concentrations and matrix densities occurring
during orthodontic toothmovement andwas presented previously by the authors [37].
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13.3.1 Model Equations

The mechanobiological model consists of a set of nine coupled non-linear partial
differential equations, of the taxis-diffusion-reaction (TDR) type. The equations
describe the concentration of various cells, growth factors, cytokines and matrix-
components. The periodontal ligament (PDL) consists of collagen fibres (mf ) and
contains a large amount of fibroblasts (cf ). The alveolar bone consists of mineral-
ized collagen, with mm representing the degree of mineralization of the collagen.
The bone has a small concentration of osteoblasts (cb) and osteoclasts (cl), con-
stantly remodelling and renewing the bone. To coordinate bone remodelling, osteo-
clasts, osteoblasts and fibroblasts communicate through the RANKL-RANK-OPG
signalling pathway. In the model, RANKL (gr = grb + gr f ) is produced by fibrob-
lasts (gr f ) and osteoblasts (grb), whileOPG (go) is produced by osteoblasts only. The
osteogenic differentiation of mesenchymal stem cells into osteoblasts is regulated
by active TGF-β (gb), also produced by osteoblasts and fibroblasts. Multinucleated
osteoclasts are formed through the fusion of hematopoietic stem cells, which are
present in the vascular matrix in the PDL and the bone.

Fibroblasts are modelled to respond to mechanical stretching by producing the
osteogenic growth factor TGF-β, along with other osteogenic factors of the TGF-
β superfamily [15, 25, 30, 39]. The upregulation of the TGF-β production results
in the appearance of a high number of osteoblasts in and around the PDL. This
leads to bone formation in the tension zones. Fibroblasts respond to compression
by upregulating the production of RANKL [14, 18, 28, 40]. This results in a higher
number of osteoclasts, which start resorbing the alveolar bone, making it possible for
the tooth to move. A schematic overview of the processes captured by the model can
be found in Fig. 13.5. More information concerning the biological assumptions made
in this model can be found in Van Schepdael et al. [37, 38] and amore comprehensive
overview of the biology of tooth movement can be found in Garant [8], Krishnan
and Davidovitch [17, 18] and Henneman et al. [11].

The specific equations for all nine variables are represented below.More informa-
tion on the parameters, equations and initial conditions can be found inVanSchepdael
et al. [37]. An overview of the origin and value of all parameters can be found in
Table13.1.

∂mc

∂t
= Pcs [1 − κcmc]cb︸ ︷︷ ︸

production by osteoblasts

+ Pcs f [1 − κc f mc]c f
︸ ︷︷ ︸
production by fibroblasts

(13.20)

∂mm

∂t
= Pms [1 − mm ]cb︸ ︷︷ ︸

mineralisation by osteoblasts

− Qmd cl H(mm)
︸ ︷︷ ︸

demineralisation by osteoclasts

(13.21)

∂cb

∂t
= Y11gb

H11 + gb
[1 − mm ]H(m̄m − mbt )

︸ ︷︷ ︸
differentiation from MSCs

+ Ab0mmcb[1 − αbcb]︸ ︷︷ ︸
proliferation

− dbcb︸︷︷︸
apoptosis

(13.22)
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Fibroblast

Osteoblast

Osteoclast

HSC

MSC
RANKL

RANK

OPG

TGF-

PDL

(a)

(b)

(c)

(d)

(e)

Fig. 13.5 Schematic overview of the most important cells and signalling pathways involved in
orthodontic tooth movement. a In homeostasis, the fibroblast is the most abundant cell in the PDL,
while osteoclasts and osteoblasts are present in the alveolar bone. Osteoblasts are derived from
MSC’s, which differentiate under the influence of TGF-β. Osteoclasts are derived from HSC’s,
which express RANK on their membranes. When RANK binds to RANKL, HSC’s are stimulated
to fuse into multinucleated osteoclasts. OPG is a soluble decoy operator that also binds to RANKL,
thus preventing the formation of osteoclasts. b, c In response to tension, fibroblasts express TGF-β.
As a response, MSC’s differentiate into osteoblasts, which start forming new bone. d, e In response
to compression, fibroblasts express RANKL, stimulating osteoclast formation. Osteoclasts attach
to the bone surface and bone resorption starts

∂cl

∂t
= Y2gr︸︷︷︸

fusion from HSCs

− [D2 + H2gb]dl0cl︸ ︷︷ ︸
apoptosis

− ∇ · [Cmhcl∇mm ]︸ ︷︷ ︸
attachment to bone matrix

(13.23)

∂c f

∂t
= A f 0

[
1 + A f s |S|] mcc f [1 − α f c f ]

︸ ︷︷ ︸
proliferation

− d f mmc f
︸ ︷︷ ︸
apoptosis

+ Φ∇ · [
D f ∇c f

]

︸ ︷︷ ︸
diffusion

(13.24)

∂gb

∂t
= Ggb[1 − αggb]cb

︸ ︷︷ ︸
production by osteoblasts

+ Egb[S · H(S)]c f
︸ ︷︷ ︸
production by fibroblasts

− dgbgb
︸ ︷︷ ︸

denaturation

+ ∇ · [
Dgb∇gb

]

︸ ︷︷ ︸
binding to OPG

(13.25)
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Table 13.1 Overview of the parameters of the mechanobiological model, their value, unit and
origin

Parameter Value Unit Origin

Pms 3.42 × 10−5 mlcells−1 day−1 From steady state
conditions

Qmd 3.6 × 10−5 mlcells−1 day−1 (1)

Pcs 2 × 10−7 gcells−1 day−1 (1)

κc 13.55 mlg−1 (1)

Pcs f 2 × 10−8 gcells−1 day−1 (1)

κc f 10 mlg−1 (1)

Ab0 0.54 day−1 (1) and stability analysis

αb 2 × 10−5 mlcells−1 (1) and stability analysis

db 0.18 day−1 (1)

Y11 3.27 × 108 cellsml−1 day−1 (1)

H11 10 ngml−1 (1)

mbt 0.3 [–] Estimated

Cmh 3.06 × 10−2 mm2 day−1 Estimated

Y2 551.6 cells ng−1 day−1 (2)

dl0 0.7 day−1 Using life span of
osteoclast

D f 0.25 mm2 day−1 (1)

A f 0 1.06 mlg−1 day−1 (1)

A f s 10 [–] Estimated

α f 1 × 10−6 mlcells−1 (1)

d f 0.11 day−1 From steady state
conditions

Dgb 6.13 × 10−2 mm2 day−1 (1)

Ggb 6.03 × 10−5 ngcells−1 day−1 (1)

αg 0.1 mlng−1 (3), (4)

Egb 1 × 10−4 ngcells−1 day−1 Estimated

dgb 100 day−1 (1)

Prs 3440 ngml−1 day−1 (2)

R1 9.15 × 10−5 ngcells−1 (2)

dgr 10.05 day−1 (2)

B1r 2.5 × 10−3 mlng−1 day−1 (2)

B1o 1.67 × 10−3 mlng−1 day−1 (2)

Egr f 1 × 10−3 ngcells−1 day−1 Estimated

(continued)
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Table 13.1 (continued)

Parameter Value Unit Origin

Dgo 4.58 × 10−2 mm2 day−1 Using molecular
weight of OPG

Pos 6.83 × 10−3 ngcells−1 day−1 (2)

κo 8.3 × 10−8 mlng−1 (2)

dgo 35 day−1 (2)

D2 248.5 [–] From H2

H2 48.6 mlng−1 (2)

(1)Derived fromGeris et al. [10]. (2)Derived fromPivonka et al. [31]. (3)Derived fromPfeilschifter
et al. [29] (4) Derived from Sandberg et al. [35]

∂grb

∂t
= Prs

[

1 − grb

R1cb

]

︸ ︷︷ ︸
production by fibroblasts

− dgr grb
︸ ︷︷ ︸

denaturation

− B1r grbgo︸ ︷︷ ︸
binding to OPG

(13.26)

∂gr f

∂t
= Egr f [[H(S) − 1]S]c f

︸ ︷︷ ︸
production by fibroblasts

− dgr gr f
︸ ︷︷ ︸

denaturation

− B1r gr f go
︸ ︷︷ ︸

binding to OPG

+∇ ·
[

D f

c f
gr f ∇c f

]

︸ ︷︷ ︸
moving with fibroblasts

− d f mm gr f
︸ ︷︷ ︸

apoptosis of fibroblasts

(13.27)

∂go

∂t
= Pos [1 − κogo]cb︸ ︷︷ ︸

production by osteoblasts

− dgogo
︸ ︷︷ ︸

denaturation

− B1ogr go︸ ︷︷ ︸
binding to RANKL

+ ∇ · [
Dgo∇go

]

︸ ︷︷ ︸
diffusion

(13.28)

The numerical simulations were performed on a domain that consists of two
rectangular parts that represent small sections of the tooth root as shown in Fig. 13.6,
and are located about halfway between the tooth crown and the tooth apex.

Table13.2 shows the initial values of all variables in the PDL and the bone. To
prevent the appearance of numerical instabilities, continuous initial conditions were
used to model the boundary between PDL and alveolar bone. To simulate an abrupt,
but continuous, transition from PDL to alveolar bone, the following function was
used.

ci (t = 0) = c0i,bone − c0i,P DL

π
arctan(D · [x − xS]) + c0i,bone − c0i,P DL

2
+ c0i,P DL

(13.29)
The parameter D is dependent upon the desired steepness of the function, xS is the
x-coordinate of the boundary between PDL and alveolar bone, and c0i,bone and c0i,P DL
are the initial conditions of the variable in the alveolar bone and the PDL.

The model parameters and variables were non-dimensionalised for the numer-
ical calculations. A typical length scale during orthodontic tooth movement is the
thickness of the periodontal ligament, L0 = 0.2mm [32] and a typical time scale of
T0 = 1 day was chosen. A representative concentration of collagen content in the
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u

(a)

f

(b)

f

(c)

Fig. 13.6 Schematic representation of the model domain. a The model domain consists of two
rectangular parts that are located on the left and the right side of the tooth root. For the simulations,
a horizontal translation u is applied to the root. The left part of the domain will thus experience
bone formation, the right part experiences bone resorption. b Detail of the formation side of the
model domain at the start of force application. c Detail of the formation side of the model domain
at the end of the simulation. Due to bone formation, more alveolar bone is now present, and the
PDL has shifted to the right

Table 13.2 Initial conditions applied to the model domain. The initial values and units of all
variables in the PDL, the alveolar bone and the root are shown

PDL Alveolar bone Root Unit

mm 0 0.9 0 [–]

mc 1 0.075 0 gml−1

cb 0 3.2 × 104 0 cells ml−1

cl 0 2.3 × 103 0 cellsml−1

c f 1 × 106 0 0 cellsml−1

gb 0 2 × 10−2 0 ngml−1

grb 0 2.9 0 ngml−1

gr f 0 0 0 ngml−1

go 0 6.2 0 ngml−1

tissue is m0 = 0.1 g/ml [10]. Typical growth factor concentrations are in the
order of magnitude of g0 = 100 ng/ml, and a non-dimensionalisation value of
c0 = 106 cells/ml was used for the cell densities [10]. All results and parameter
values are presented in their undimensionalised value, unless mentioned otherwise.
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13.3.2 Model Analysis

The complexity of the biological processes occurring during orthodontic toothmove-
ment results in a high number of parameters in the mechanobiological model. When
performing numerical analysis using such models, it is important to study the behav-
iour of the model, and its parameters, more closely. That way, stability, numerical
accuracy and convergence can be ensured (see also [16]).

The model described in the previous section depends upon 37 parameters,
although not all of these are independent. To make good predictions, all the parame-
ters have to be determined as accurately as possible, which is not an easy task (see
also [24]). Some of the parameters do not represent physical processes and cannot
be measured. Others represent a combination of several processes, making it more
difficult to measure them experimentally. Some of the parameter values are based on
experimental values, but although some experiments were conducted in vivo, most
of the estimations are based on in vitro experimental results.

A sensitivity analysis can be used to determine the importance of the parameters,
as well as important interactions between them. Secondly, a sensitivity analysis can
also be used to simplify themodel by eliminating insignificant model parameters (see
also [4]). Finally, if unexpected behaviour of themodel surfaces during the sensitivity
analysis, this behaviour can be studied more closely and corrected if necessary.

Since a space-filling design for the full model would be computationally very
demanding and very difficult to interpret, a fractional factorial design was performed
first to estimate the importance of the parameters. The results were analysed using
ANOVA analysis.

Themost important parameters were then studiedmore closely using space-filling
designs. As will be explained in Sect. 13.3.2.1, some of the parameter combinations
will create instabilities in the mechanobiological model or predict physically impos-
sible situations and have to be excluded from the analysis. Furthermore, the tooth
model is highly non-linear. Therefore, latin hypercube designs are probably not the
best choice for the analysis, while the fact that uniform designs cope well with the
adding and removing of parameter combinations makes them a very good choice to
examine the tooth model.

Three different uniform designs were performed: one containing the ten most
important parameters, one containing the 12 parameters that were most important
to the equilibrium conditions in the PDL and the bone, and one containing the 12
parameters that had the highest influence on bone formation and resorption. The
results of all uniformdesignswere analysed using aGaussian processwith aGaussian
and a cubic covariance function. The designswere generated and analysed using JMP
(SAS Institute Inc., Cary, North Carolina, USA).
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13.3.2.1 Sensitivity Analysis Using a Fractional Factorial Design

A two-level fractional factorial design was used to identify the most important para-
meters of the model. Of the 37 parameters of the model, 28 were studied, as shown in
Table13.3. All parameters describing matrix densities at which matrix productions
stops (κc, κc f ), growth factor concentrations at which growth factor production
stops (αg ,κo) or cell concentrations at which cell proliferation is halted (αb, α f ),
were excluded from the analysis, since they do not have a specific physiological
meaning and influence the model in a very predictable way [13]. The parameter
B1o, describing the reaction rate of OPG and RANKL, is related to B1r and varied
accordingly.

The parameters were investigated at two levels, a high and a low level (see
Table13.3), using a resolution IV array with 64 runs. The use of a resolution IV
array guarantees that themain effects will not be confoundedwith two-factor interac-
tions, while limiting the number or runs required for the analysis. For each parameter
combination, the model was run three times, once in steady state conditions, once
modelling bone formation and once modelling bone resorption. To assess the results
obtained from the study, several output variables were studied.

During steady state, the concentrations of nine variables in both the alveolar
bone and the PDL were measured. To assess the ability of the model to represent
a meaningful situation, a variable Real was introduced, shown by (13.30). All 18
variables (nine in the alveolar bone, nine in the PDL), were assigned a boolean
parameter γi which is zero or one. The value γi = 1 was given when a predicted
concentration approaches the expected concentration (e.g.mm(bone) = 0.7), γi = 0
was assigned to a predicted concentration which is not realistic (e.g. mm(bone) =
0). Secondly, when one of the steady states has a positive eigenvalue, the boolean
parameter γ was set to γ = 0, for two stable steady states, γ was equal to one.

Real = γ + ∑18
i=1 γi

19
(13.30)

A typical parameter combination for which the value of Real is small, is one for
which the predicted mineralization of the alveolar bone is equal to zero. The same
is true for parameter combinations for which one of the steady states is unstable or
for which the mineralization of the PDL is very high.

Next, the ability of the model to combine the alveolar bone and the PDL was also
studied. This was done by assessing the variable vSS which is the movement of the
boundary between bone and PDL. When vSS �= 0, the boundary between bone and
ligament will move, even when no orthodontic force is applied. In that case, it is
not possible to model co-existence of the alveolar bone and the PDL, which is not a
physiological situation.

During bone formation, three variables were recorded: the speed of tooth move-
ment (vF ), the mineralization of the newly formed bone (mmnew) and the concen-
tration of TGF-β in the PDL (gbF ). During bone resorption, the speed of tooth
movement (vR) and the concentration of RANKL in the PDL (gr R) were monitored.
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Table 13.3 Non-dimensionalised parameter ranges used in the different designs of the sensitivity
analysis

Parameter FF U USS UM

Low High Low High Low High Low High

Pms 15 60 15 60 – – 15 60

Qmd 18 72 – – 18 72 18 72

Pcs 1 4 – – – – – –

Pcs f 0.1 0.4 – – – – 0.1 0.4

Ab0 0.25 1 – – – – 0.25 1

db 0.07 0.3 0.07 0.2 0.07 0.3 0.07 0.25

Y11 180 600 180 600 180 600 180 600

H11 0.05 0.2 0.05 0.2 0.05 0.2 – –

mbt 0.15 0.6 0.15 0.6 – – 0.15 0.4

Cmh 0.3 1.4 0.5 1.4 0.3 1.4 – –

Y2 0.02 0.1 – – 0.02 0.1 – –

dl0 0.35 1.5 – – – – – –

D f 3 9 – – – – – –

A f 0 0.05 0.2 – – 0.05 0.2 – –

A f s 5 20 – – 5 20 – –

d f 0.05 0.2 – – 0.05 0.2 – –

Dgb 0.6 3 – – – – – –

Ggb 0.3 1.2 0.5 1.2 0.3 1.2 – –

Egb 0.5 2 – – – – 0.5 2

dgb 50 200 50 200 50 200 50 150

Prs 15 70 – – – – – –

R1 0.5 2 – – 0.5 2 – –

dgr 5 20 5 20 – – 5 20

B1r 0.07 0.3 – – – – – –

Egr f 5 20 – – – – 5 20

Dgo 0.5 2 – – – – – –

Pos 40 120 – – – – – –

dgo 20 70 – – – – 20 70

For the fractional factorial design, the parameters are varied between a low and a high value, as can
be seen in the first column. For the other designs, several parameters were selected and varied over
approximately the same range. Highlighted numbers indicate ranges that have been corrected in
order to avoid non-physiological situations. FF: parameter ranges for the fractional factorial design
of Sect. 13.3.2.1. U parameter ranges for the uniform design of Sect. 13.3.2.2. USS: parameter
ranges for the uniform design on the equilibrium concentrations (Sect. 13.3.2.3). UM: parameter
ranges for the uniform design on bone formation and resorption (Sect. 13.3.2.4)

Steady State
The data were investigated using analysis of variance (ANOVA) and the percentage
of the total sum of square,%TSS, for each parameter and output variable can be found
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Table 13.4 Results of the fractional factorial design concerning the parameters Real and vSS

Real vSS Real vSS

Ab0 8.40 0.00 Egb 1.27 0.00

A f 0 0.03 0.00 Egr f 0.03 0.71

A f s 0.00 0.71 Ggb 4.38 5.87

B1r 0.65 0.00 H11 0.03 5.91

Cmh 3.14 0.00 mbt 0.03 5.87

db 24.93 0.00 Pcs 0.93 0.00

D f 1.27 0.72 Pcs f 0.03 0.70

d f 2.59 0.00 Pms 1.27 0.74

dgb 2.59 5.99 Pos 1.66 0.00

dgo 0.93 5.91 Prs 0.00 0.00

dgr 0.23 5.91 Qmd 4.38 0.00

Dgb 1.66 0.00 R1 0.93 5.95

Dgo 0.10 0.70 Y2 3.14 0.00

dl0 0.10 0.00 Y11 0.10 5.87

The percentage of total sum of squares (%TSS) is listed for each parameter and output variable

in Tables13.4 and 13.5. The parameters that most influenced the alveolar bone were
mostly related to the concentration of TGF-β. Both the production rate Ggb and the
degradation rate dgb have a high influence on many output variables. The same is
true for the parameter H11, related to the sensitivity of MSC’s to TGF-β. The rate at
which osteoclasts demineralize bone (Qmd ) and the haptotactic parameter Cmh also
seemed to influence the alveolar bone.

The periodontal ligamentwasmainly influenced by the proliferation and apoptosis
rate of the fibroblasts (A f 0 and d f ), the fusion and apoptosis of osteoclasts (Y2 and
dl0) and the production of TGF-β (Ggb). The artificial variable Real was most
influenced by parameters Ab0 and db, describing the proliferation and apoptosis of
osteoblasts. The influence of the parameters on vSS was limited.

Out of the 64 parameter combinations chosen for the screening design, 17 gave
results where the mineralizationmm in the alveolar bone was smaller than 0.1. In that
case, the modelled situation is assumed to be non-physiological, and no results were
obtained for bone formation and bone resorption. To prevent this in future analyses,
the parameter combinations in which this problem occurred were examined more
closely. Without making definite conclusions, the problem seemed to occur more
frequently for high values of Qmd , db and Y2 and for low values of Cmh and Ggb. In
future analyses care must be taken not to allow parameter combinations that promote
bone resorption too strongly, especially when the object is to study bone formation
or resorption.
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Bone Formation and Bone Resorption
The same process was applied to analyse the data concerning bone formation and
bone resorption. The percentage of the total sum of squares of the relevant output
variables can be found in Table13.6. As expected, the speed of bone formation was
mostly influenced by the parameter mbt , determining when a mesenchymal stem cell
is close enough to the bone to differentiate into an osteoblast. The mineralization
rate of collagen by osteoblasts also influenced the speed of bone formation. The

Table 13.6 Results of the fractional factorial design concerning bone formation and bone resorption
during orthodontic tooth movement

Formation Resorption

vF gbF mmnew vR gr R

Ab0 0.00 1.03 7.77 4.51 3.96

A f 0 0.01 0.05 0.25 0.70 0.03

A f s 0.33 0.53 0.45 0.42 3.11

B1r 0.00 0.09 1.51 0.56 0.05

Cmh 0.43 0.12 0.47 0.46 1.87

db 0.06 0.02 4.30 10.08 3.20

D f 0.66 0.13 0.08 0.07 0.21

d f 0.73 0.29 1.15 3.47 0.10

dgb 0.58 37.78 9.93 7.04 0.05

dgo 0.55 1.44 0.33 0.79 5.85

dgr 0.16 0.06 0.38 10.07 28.37

Dgb 0.11 0.30 0.11 0.13 0.45

Dgo 1.10 0.16 4.21 1.42 0.72

dl0 0.10 0.03 0.15 0.79 0.08

Egb 0.10 42.07 0.02 0.56 0.01

Egr f 2.17 0.05 0.38 5.94 23.76

Ggb 0.51 0.20 1.35 3.57 0.20

H11 0.41 0.63 0.64 2.97 0.80

mbt 63.24 0.23 36.30 1.38 3.92

Pcs 0.00 0.15 0.27 0.04 0.01

Pcs f 0.48 0.17 0.04 5.60 1.11

Pms 8.14 0.00 4.14 1.85 2.01

Pos 0.20 0.02 1.29 0.10 1.80

Prs 0.09 0.10 0.71 3.33 0.99

Qmd 0.68 0.33 6.41 3.17 0.13

R1 0.33 0.43 1.87 0.02 0.22

Y2 0.67 0.07 1.42 1.13 0.01

Y11 1.08 2.30 1.84 5.66 0.01

The percentage of total sum of squares (%TSS) is listed for each parameter and output variable. The
two most influential parameters for each output variable are highlighted
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concentration of TGF-β in the PDL during tooth movement was mainly influenced
by the production of TGF-β by fibroblasts (Egb) and the degradation rate dgb. This
degradation rate also influenced the mineralization of the newly formed bone, just
like the parameter mbt and the proliferation rate Ab0 of the alveolar bone.

The speed of bone resorption was mainly influenced by the degradation rate db

of osteoblasts and the denaturation rate dgr of RANKL, but many other parameters
also had an influence on bone resorption. The amount of RANKL in the PDL was
mainly influenced by the denaturation rate dgr of RANKL and the production rate
of RANKL by fibroblasts (Egr f ).

Preliminary Conclusions
Although the ANOVA process is able to identify the most important parameters in
the process, it gives no insight into the effect of these parameters on the outcome.
Furthermore, although some of the results are very straightforward, others need some
more explaining. The effect of TGF-β on alveolar bone and fibroblasts on the PDL
is quite clear, but the influence of the parameter Cmh on the alveolar bone is more
puzzling. In the following sections, the results of the fractional factorial design will
be used to set up several uniform designs, analysed using Gaussian processes, that
study the influence of these parameters more closely. That way, the exact effect of
the parameters can be investigated, and the interaction between parameters can be
studied.

13.3.2.2 Sensitivity Analysis Using a Uniform Design

To solve the questions that arose in the previous section, it was decided to look
more closely at the ten most influential parameters. Those parameters were chosen
by selecting every parameter for which %TSS > 10%. As the high influence of the
artificial parameter mbt on the speed of bone formation dominated the results, the
parameter Pms was added to this list. From this list, those parameters who influenced
several output variables or output variables with a large variation, represented by a
high value of SST , were chosen. The parameter ranges of db, Ggb and Cmh were lim-
ited to avoid non-physiological situations in which the mineralization of the alveolar
bone was too low (Table13.3).

The influence of the ten parameters was investigated as previously explained
using a uniform design with 100 runs. 100 parameter combinations were generated,
evenly spread out over the ten-dimensional parameter space. The uniformity of the
distribution can be checked using scatterplots and histograms (Fig. 13.7).

The results of a uniform process can no longer be analysed using ANOVA. Since
the parameter points are now spread out over the parameters space, the exact value
of the parameters has to be taken into account. A Gaussian process with a Gaussian
covariance function was therefore used. Afterwards, the results were compared to an
analysis using a Gaussian process with a cubic covariance function.
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included. b Scatterplot of all parameter combinations. The parameter combinations are spread out
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One remark concerning the results of the Gaussian process is that one should
take care when interpreting the predictions. When assessing the accuracy of the
predictions, two methods can be used. Firstly, looking at the value of the function
M , defined in (13.17), will give a good idea of the efficiency of the process. Secondly,
JMP plots the actual results, computed by your model, and compares these to the
results predicted by the Gaussian process. Figure13.8 illustrates this for the specific
examples of mineralization of the alveolar bone and the concentration of fibroblasts
in the PDL. As can be seen from this figure, the results for the mineralization of
the bone are predicted far more accurate than the results for the concentration of
fibroblasts. Since the horizontal axis plots the predicted value and the vertical axis
the actual value, all the points would be located on a 45-degree line in a perfect
model. A deviation from this line can have various causes. Firstly, because a more
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Fig. 13.8 Actual by predicted plot for the mineralization of the alveolar bone and the fibroblast
density in the PDL. The horizontal axis shows the value of the output predicted by the Gaussian
process, the vertical axis shows the actual output value of the mechanobiological model. a Actual
by predicted plot for the mineralization of the alveolar bone. b Actual by predicted plot for the
fibroblast density in the PDL
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sophisticated covariance function may be needed, but secondly, as is the case here,
because the variation in the output variable is so small the numerical errors become
too important. When interpreting the analysis, care should be taken only to include
those results with accurate predictions.

Steady State
The predictions for the most important output variables are summarized in Fig. 13.9.
From these results it can be seen that the mineralization rate Pms of the collagen
fibres by osteoblasts positively influences themineralization of both the alveolar bone
and the PDL, and has a negative influence on the amount of fibroblasts in the bone.
Increasing the apoptosis rate of osteoblastsdb decreases thenumber of osteoblasts and
the concentrations of RANKL and OPG, both produced by osteoblasts. Raising the
production rate Ggb of TGF-β by osteoblasts increases themineralization of the bone
and the TGF-β concentration while decreasing the number of osteoclasts. Increasing
the denaturation rate dgb has the exact opposite effect. From this uniform design, it
is now clear that increasing Cmh seems to favour bone formation by decreasing the
number of osteoclasts.

The variable vSS only becomes non-zero for low values of dgb, but this result
should be taken lightly, since out of 100 parameter combinations, the parameter was
non-zero for only two parameter combinations. The results also show that limiting the
parameter ranges ofdb,Ggb andCmh had its desired effect, keeping themineralization
in reasonable bounds. As a result, the output Real has a value of one over the entire
parameter space (results not shown).

Bone Formation and Bone Resorption
As was already shown in the ANOVA analysis, the main influence on the speed of
bone formation was the parameter mbt , although increasing the mineralization rate
also increased bone formation. As Fig. 13.10 shows, a value of mbt > 0.4 reduced
the speed of bone formation to zero. Decreasing the denaturation rate dgb greatly
increased the concentration of TGF-β in the PDL.

The concentration of RANKL is clearly influenced by the production rate Egr f

and the denaturation rate dgr , but the speed of bone resorption shows some complex
behaviour that will be looked at more closely in the next analysis. In summary, the
osteogenic parameters Pms and Ggb slow down bone resorption, while increasing
db, Egr f or dgb allowed bone to be resorbed faster.

The Effect of the Choice of the Covariance Function
In order to study the influence of the covariance function, the analysis was repeated
using a cubic covariance function.As discussed inSect. 13.2.2.2, the cubic covariance
function includes smaller length scale, allowing smaller features to be incorporated
in the results.
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The majority of the results for the cubic covariance function did not differ from
the results with the Gaussian covariance function. However, there were three major
differences. Firstly, when looking at the results concerning the parameter db (the
apoptosis rate of osteoblasts), θm becomes very large (θm > 50) for several output
variables. Since 1/θm represents the length scale of the modelled features, this means
that very small variations will be incorporated into the results. As can be seen from
Fig. 13.11 this does not change the general trend of the results. Since the parameter
db (and many others) represent a physical process, the small variations are most
likely due to numerical errors. Although non-linearities occur in nature, changing
one parameterwillmore than likely result in a smooth change of the outcomevariable.

Secondly, when studying the results for the speed of bone formation and the min-
eralization of the newly formed bone (Fig. 13.12), some highly non-linear behaviour
can be seen. Oncembt exceedsmbt = 0.4, the predicted results for themineralization
of the newly formed bone show a very erratic behaviour. Furthermore, the predicted
effect of H11 on the speed of bone formation shows similar variations. The cause of
this effect can be seen when looking at the marginal model plots for H11 and mbt ,
produced by JMP. These are plots that show the actual and the predicted values of
an output variable as a function of only one parameter, disregarding the influence
of other parameters. Figure13.13 shows the actual and predicted values of vF as a
function of these two parameters. There is an apparent split into two classes: one for
which the speed of bone formation is positive, and one for which it is zero. The latter
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class appears whenmbt > 0.4, regardless of the values of other parameters. Since the
cubic covariance function allows for very small length scales, the Gaussian process
attempts to include both classes into one model, when actually they represent very
different processes.

Finally, it should be noted that in general, the confidence intervals are much larger
when using the cubic covariance function, compared to the Gaussian covariance
function. This is particularly apparent in the case of the speed of bone formation. In
that case, the plot of the actual value versus the predicted value already indicates a
problemwhen using the cubic covariance function, while for theGaussian covariance
function the results were good (Fig. 13.14).

Preliminary Conclusions
From this uniform design, some preliminary conclusions can be drawn. Firstly, the
use of the cubic covariance function added little to the value of the analysis. On the
contrary, it introduced some errors and problems that did not appear when using the
Gaussian covariance function. Secondly, when setting up more designs, care should
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of bone formation. The actual results can be split up into two classes: one for which there is bone
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0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40

F

F

Gaussian

(a)

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40

F

F

Cubic

(b)

Fig. 13.14 Actual by predicted plot for the speed of bone formation, using the Gaussian and the
cubic covariance function. a Actual by predicted plot using the Gaussian covariance function. All
points are located quite close to the 45-degree line, indicating a good prediction. b Actual by
predicted plot using the cubic covariance function. In this case, the points are spread out, indicating
the predictions made by the sensitivity analysis for the speed of bone formation using the cubic
covariance function are less reliable

be taken with the parameter range of mbt . To avoid that the speed of bone formation
drops to zero, mbt should be kept smaller than 0.4.

This uniform design was implemented using the ten parameters which proved
to be most influential according to the ANOVA analysis of the fractional factorial
design explained in Sect. 13.3.2.1. However, the high number of output variables
complicated the analysis of the results. Furthermore, most of the output variables
were only influenced by one, or sometimes two, of the parameters. This implies that
the uniform design will not give any information on the interaction between different
parameters. For these reasons, it was decided to run two more uniform designs. The
first one studies the influence of 12 parameters on the steady states, the second one
looks more closely into the influence of 12 (different) parameters on bone formation
and bone resorption.
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13.3.2.3 Sensitivity Analysis on the Equilibrium Concentrations Using a
Uniform Design

A 12-parameter uniform design with 100 runs was set up. Using the fractional fac-
torial design described in Sect. 13.3.2.1, 12 parameters were chosen that influenced
the steady states the most. In Table13.5, the most important parameter was chosen
out of each column related to the steady state. This set of seven parameters was then
expanded with five parameters which were not included yet, but had a significant
influence on one or more outcome variables. Since no results for bone formation or
resorption will be calculated, and in order to study the influence of the parameters
over the entire parameter space, the parameter ranges were kept the same as in the
fractional factorial design.

Steady State
The parameters can be classified into two sets: those favouring bone formation and
those favouring bone resorption. The most significant results of the analysis are
shown in Fig. 13.15. Increasing the production rate of TGF-β (Ggb) increases the
mineralization of the bone, while decreasing the osteoclast concentration and the
number of fibroblasts in the bone. The apoptosis rate of osteoblasts (db), the decay
rate of TGF-β (dgb), the demineralization rate of the bone by osteoclasts (Qmd ), the
sensitivity of HSC’s to RANKL (Y2) and the maximum RANKL carrying capac-
ity of osteoblasts (R1) have the opposite effect. They decrease mineralization and
osteoblast concentration, while increasing the number of osteoclasts, resulting in a
lower mineralization of the bone. As in the previous uniform design, the haptotactic
parameter Cmh seemed to encourage bone formation by decreasing the number of
osteoclasts. Finally, increasing the proliferation rate of fibroblasts A f 0 increased the
density of the PDL and the concentration of fibroblasts, although the influence was
very small and confidence intervals quite large.

The analysis also shows a significant interaction between the parameters H11, Ggb

and dgb whenmodelling the concentrations of osteoblasts and TGF-β. When looking
at the results of the analysis more closely, it can be concluded that for low values of
H11 and dgb (Fig. 13.16), themodel ismore non-linear. The influence ofGgb becomes
more irregular and highly non-linear. The marginal model plots (Fig. 13.17) suggest
this might be related to the presence of two outliers, in which the concentrations of
osteoblasts and TGF-β are much higher then average.

These outliers are located in an area of the parameter space with a high sensitivity
of MSC’s to TGF-β, described by a low value of H11, combined with a long half-life
of TGF-β, expressed by the low value of dgb and an average to high production of
TGF-β by osteoblasts (Ggb). This particular combination results in a chain reaction
in which the concentration of osteoblasts will rise quickly, producing even more
TGF-β. The fact that the analysis predicts that the concentrations of osteoblasts will
return back to normal for high values ofGgb can be explained by the lack of parameter
combinations in that particular area of the parameter space. This was confirmed by
running the model with parameter combinations in that area of the parameter space.
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For the variable vSS no conclusions can be drawn, since, out of 100 runs, only three
values are non-zero. To prevent non-physiological situations in the next design, the
results for the variable Real were interpreted. It was concluded that the appearance
of such a situation was most likely with high values of db, dgb, Y2, Qmd and R1, all
parameters favouring bone resorption, or with low values of Ggb and Cmh .

The Effect of the Choice of the Covariance Function
The results of the uniform design were also analysed using a cubic covariance func-
tion. As before, results were generally very similar to the Gaussian covariance analy-
sis. One observed difference is the effect of the parameter dgb on the osteoblast con-
centration and the presence of TGF-β, OPG and RANKL in the bone. Figure13.18
shows the results obtained using the cubic covariance function, revealing a sharp
rise in osteoblast concentrations for small values of dgb. Using the Gaussian covari-
ance function, this rise is only seen to that extent when a low value of dgb is com-
bined with a low value of H11. The analysis with the cubic covariance function
predicts that the chain reaction leading to an alveolar bone with a high osteoblast and
TGF-β content occurs at low values of dgb, independent of the sensitivity ofMSC’s to
TGF-β, described by H11. To get a more detailed description of this phenomenon,
a more elaborate sensitivity analysis with more points in that region of parameter
space is needed.

13.3.2.4 Sensitivity Analysis on Bone Formation and Bone Resorption
Using a Uniform Design

A 12-parameter uniform design with 100 runs was used to assess the influence of
several parameters on toothmovement.Using the fractional factorial designdescribed
in Sect. 13.3.2.1, 12 parameters were chosen that influenced the processes of bone
formation and resorption during tooth movement the most. In Table13.5, the most
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important parameter was chosen out of each column. This set of seven parameters
was then expanded with five parameters which were not included yet, but had a
significant influence on one or more outcome variables.

To prevent the occurrence of non-physiological situations in which the mineral-
ization of the alveolar bone was too low, the parameter ranges of dgb and db were
limited. The upper limit of mbt was also changed to 0.4, in order to avoid situations
in which the speed of bone formation dropped to zero (see Sect. 13.3.2.2).

As expected, the speed of bone formation was mainly influenced by the parameter
mbt (Fig. 13.19), but also increased with increasing mineralization rate Pms . The
mineralization of the newly formed bone decreases when the decay rate of TGF-β
(dgb) is higher and the presence of TGF-β in the ligament was influenced by the
production rate Egb of TGF-β by fibroblasts and the parameter dgb.

The effect of the parameters on the resorption rate vR is less clear. Most para-
meters influence the resorption rate to some extent. Increasing the mineralization
rate Pms or the apoptosis rate dgr of RANKL slows down bone resorption during
tooth movement. Increasing the demineralization rate Qmd , the apoptosis rate db

of osteoblasts and dgb of TGF-β, or the production Egr f of RANKL by fibroblasts
speeds up bone resorption. As expected, the concentration of RANKL in the PDL
during bone resorption is determined by the parameters Egr f and dgr . Similar results
were obtained using the cubic covariance function.

13.3.3 Discussion

The design of experiments was used to determine the most important parameters of
the model, and to investigate their result on the outcome of the model. The sensitivity
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analysis started with a two-level fractional factorial design, followed by an ANOVA
analysis of the results. Several parameters where then selected for a more in-depth
analysis. Three different uniform designs were performed using these parameters, in
order to assess their influence on the alveolar bone, the PDL, and the speed of bone
formation and resorption.

The results of these analyses are summarized in Table13.7. During homeostasis,
bone resorption was shown to be promoted by the activity of osteoclasts (Qmd ) and
their sensitivity to RANKL (Y2). Increasing the decay constant used to model the
apoptosis of osteoblasts (db), or the denaturation rate of TGF-β (dgb) had similar
effects. The disappearance of both osteoblasts and TGF-β from the bone decreased
the bone mass. Increasing bone mass was mainly noted as a result of increasing the
production of TGF-β (Ggb) or the activity of osteoblasts (Pms).

Under normal conditions, the model has two separate steady states. The first one
represents thePDL,with a high concentration of fibroblasts andnomineralization, the
second one represents the alveolar bone, consisting of mineralized collagen fibres,
osteoblasts and osteoclasts. Changing the parameters usually resulted in a small,
continuous change of the steady states, preserving their main properties. Alveolar
bone and PDL remained recognisable as such. However, in some cases more abrupt
changes where noted.

Firstly, with several parameter combinations that promoted bone resorption, the
predicted mineralization of the alveolar bone dropped to zero. With those parameter
combinations, only one steady state was possible and the alveolar bone could not
be modelled. Secondly, when a high sensitivity of MSC’s to TGF-β was combined
with a high production and a long half-life of TGF-β, a chain reaction occurred. The
steady state representing the alveolar bone switched from bone containing a small
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Table 13.7 Summary of the
parameters that showed the
most influence on equilibrium
conditions and tooth
movement (TM), as indicated
by the sensitivity analysis

Parameter Influence

Qmd Promotes bone resorption

db Promotes bone resorption

Increases bone resorption
during TM

Y2 Promotes bone resorption

Ggb Promotes bone formation

dgb Promotes bone resorption

Increases TGF-β
concentration during TM

Increases mineralization
during TM

Increases bone resorption
during TM

Pms Promotes bone formation

Increases bone formation
during TM

Decreases bone resorption
during TM

mbt Decreases bone formation
during TM

Egb Increases TGF-β
concentration during TM

dgr Decreases bone resorption
during TM

Decreases RANKL
concentration during TM

Egr f Increases bone resorption
during TM

Increases RANKL
concentration during TM

amount of osteoblasts to bone containing large amounts of osteoblasts. Since the
parameter combinations at which the phenomenon occurred were located at the edge
of the parameter space investigated in this analysis, it did not pose any problems.
For the same reason, not much information of the phenomenon and its influences
on tooth movement was obtained. Performing a sensitivity analysis with a broader
parameter space will give a better insight in this chain reaction.

Concerning the parameter Cmh , describing the haptotaxis of osteoclasts, an unex-
pected effect was discovered. The modelling of haptotaxis of osteoclasts, attracting
them to the alveolar bone, was included in the model to mimic the function of osteo-
pontin and theworking of osteoclasts during bone resorption. The fact that increasing
Cmh seemed to favour bone formation during steady state was unexpected, and initi-
ated a closer investigation of this process. It was concluded that this effect was related
to the implementation of the continuous transition between the PDL and the alveolar
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bone during steady state, as described in equation (13.29). Due to this approach, the
mineralization in the alveolar bone is not constant, but increases slightly when mov-
ing away from the PDL. As a result, with higher values of Cmh , more osteoclasts will
migrate to the more mineralized part of the domain, where osteoclast apoptosis is
slightly higher due to the higher concentration of TGF-β. The number of osteoclasts
at the measuring point will thus decrease, resulting in a higher degree of mineral-
ization. It should be noted that, although the effect does occur, it is more subtle than
predicted by the sensitivity analysis.

Four parameters had a significant influence on bone formation during orthodon-
tic tooth movement. The activity of osteoblasts (Pms) increased bone formation,
while the parameter mbt had the opposite effect. The production and denaturation
of TGF-β had a very high influence on the TGF-β concentration in the PDL. The
same conclusion can be drawn for the concentration of RANKL in the PDL at the
resorption site during tooth movement. This concentration was mainly influenced by
the production and denaturation of RANKL. Decreasing the activity of osteoblasts
or decreasing their life span speeds up bone resorption during tooth movement, as
well as decreasing the half-life of TGF-β.

The results of all uniform designs were analysed using a Gaussian process with
both a Gaussian and a cubic covariance function. The general trend of the results
was the same, regardless of the applied covariance function. However, in some cases
the cubic covariance function picked up on numerical errors, while the Gaussian
covariance function was able to filter them out. On the other hand, when dealing
with outliers, the cubic covariance function had less problems incorporating them
into the analysis. When analysing the results of physical experiments outliers are
usually the result of measurement errors and random noise, and incorporating them
into the analysis should be avoided.When investigating computermodels, such errors
are not present, and outliers are indicators of abrupt changes in the outcome of the
model. As such, they should not be ignored, but instead be investigated more closely.

With the results of the sensitivity analysis, it was possible to identify the ten
parameters that had the highest influence on the outcome of the mechanobiological
model presented in this work. Most notable was the high influence of osteoblast
apoptosis and the half-life of TGF-β. When using experimental results to refine the
estimates of the parameters, these are the parameters that should be looked at first.

Some further observations were made that should be kept in mind when analysing
and developing the model further. Some parameter combinations promoted bone
resorption too strongly, resulting in a total loss of bone mass. Others resulted in a fast
occurrence of a large number of osteoblasts in the bone. The effect of the mechanical
stimulus on bone formation proved to be small, indicating a closer look into the
assumption that osteoblasts will only form close to bone could be useful.

Some unexpected results did occur, and were investigated closer. In most cases
valid explanations for the phenomenons were found, and no further actions were
necessary, in other cases, suggestions for further analysis could bemade. In summary,
the extensive sensitivity analysis resulted in a better understanding of model and its
parameters.
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13.4 Conclusions

The design of experiments is a valuable tool for studying a large variety of computer
models. Any type of model can be analysed using a DOE, as long as the experiment
can be easily repeated using different parameters. The designs are developed to get as
much information as possible at minimal cost, usually referring to the computational
time. Each design has its pros and cons and depending on the needs of the researcher
a suitable design is generated. Several statistical software packages provide support
for DOE.

As with all statistical tools, care has to be taken when interpreting the results of
a DOE, certainly with more complex models. Both the designs and the analysing
methods have it limitations. However, keeping those in mind, DOE is a great tool,
allowing the researcher to gain a better insight into their model and its behaviour
in parameter space. Moreover, the results of a DOE analysis can be a good starting
point for further model optimization (see [4]).
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Chapter 14
Waves in Spatially-Disordered
Neural Fields: A Case Study
in Uncertainty Quantification

Carlo R. Laing

Abstract Neural field models have been used for many years to model a variety
of macroscopic spatiotemporal patterns in the cortex. Most authors have considered
homogeneous domains, resulting in equations that are translationally invariant. How-
ever, there is an obvious need to better understand the dynamics of such neural field
models on heterogeneous domains. One way to include heterogeneity is through
the introduction of randomly-chosen “frozen” spatial noise to the system. In this
chapter we investigate the effects of including such noise on the speed of a moving
“bump” of activity in a particular neural field model. The spatial noise is parame-
terised by a large but finite number of random variables, and the effects of including
it can be determined in a computationally-efficient way using ideas from the field of
Uncertainty Quantification. To determine the average speed of a bump in this type of
heterogeneous domain involves evaluating a high-dimensional integral, and a variety
of methods are compared for doing this. We find that including heterogeneity of this
form in a variety of ways always slows down the moving bump.

Keywords Neural field · Uncertainty quantification · Pattern formation ·
Heterogeneity · Integration

14.1 Introduction

Neural field models have been used for many years as models of large-scale pattern
formation in the cortex [1, 8, 13, 16, 27, 29, 31, 35]. These models are typically
formulated as nonlocal partial differential equations in space and time where the
nonlocality arises via spatial integrals, meant to represent the influence of neurons at
many different spatial locations on the dynamics at a specific location [8, 13]. They
have been used tomodel a variety of neurophysiological phenomena such as working
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memory [31], orientation tuning in the visual cortex [4] and EEG rhythms [39].
Much of the analysis of patterns in these models has assumed that the domain is
homogeneous and thus the governing equations are translationally invariant. This
invariance allows one to, for example, choose the origin of space to simplify analysis.
When studying travelling waves, this invariance means that it is relatively easy to
construct “bumps” and fronts of activitywhichmovewith a constant speed. However,
the brain is far from homogeneous and it is of interest to understand how various
forms of heterogeneity affect the properties of moving waves in neural field models.

A number of authors have considered including heterogeneity in neural field
models by introducing spatially periodic modulation of various components of the
model such as connectivity [6, 24] and input currents [14]. This type of heterogeneity
is structured rather than random, but a number of other authors have considered the
effects of truly randomhetereogeneity, in either space, time, or both. For example, the
authors [5] considered the effects on the speed of a front of a spatially uniform firing
rate threshold which randomly fluctuated in time. They found that such fluctuations
always increased the average front speed. Coombes et al. [15] briefly considered a
variety of forms of heterogeneity such as adding “frozen” spatial noise, and driving
the systemwith temporal noise. Bressloff [7] adapted ideas from PDE theory to study
the effects of slowly modulated (in space) synaptic connectivity on the invasion and
extinction of activity in a neural field model. Several authors have very recently
considered the effects of additive spatio-temporal noise on the dynamics of a neural
field [10, 11, 23, 25].

In this chapter wewill use ideas from the relatively newfield of Uncertainty Quan-
tification (UQ) to investigate the effects of spatial heterogeneity on the dynamics of
moving “bumps” in a particular neural field model. Traditionally, numerical models
of physical phenomena have been solved under the assumption that both the initial
conditions and all values of relevant parameters are known exactly. However, recent
increases in computational power have meant that it is now possible to solve a model
where one or more parameters are not known exactly, but are known (or assumed) to
come from some distribution(s). For our purposes, UQ involves a systematic investi-
gation of the effects of this uncertainty in parameter values on quantities of interest.
The field of UQ is large and rapidly growing [33, 42, 45] and here we will only use
those aspects of it which are directly relevant.

14.2 Model and Analysis

The model we first consider is governed by the following equations:

∂u(x, t)

∂t
= −u(x, t) +

∫ 2π

0
G(x − y)F[u(y, t) − a(y, t) + h(y)]dy (14.1)

τ
∂a(x, t)

∂t
= Bu(x, t) − a(x, t) (14.2)
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where u(x, t) represents the average voltage of neurons at position x ∈ [0, 2π] at
time t , and a(x, t) represents the value of a slow variable at x and t which provides
negative feedback to the dynamics of u. Similar models have been studied elsewhere
[9, 15, 28, 30, 36]. Periodic boundary conditions are used, B and τ are positive
constants, and the firing rate function is given by

F[u] = 1

1 + e−20(u−0.4)
(14.3)

Note that F is bounded between 0 and 1 and is an increasing function. The function
h(y), to be specified below, provides the spatial heterogeneity to the system. We
choose the coupling function to be G(x) = 0.09+ 0.45 cos x ; note that this is even.
The physical interpretation of the model is that neurons with average voltage u fire
at a frequency F[u], and the strength of connections between neurons at position
x and those at position y is G(x − y). Summing (integrating) over all y gives the
nonlinear term in (14.1), and this is the influence of all other neurons on those at
position x . The variable a is driven up when u is high and down when u is low,
with a time-scale of τ . The way that a appears in (14.1) means that it acts a negative
feedback mechanism.

For suitable choices of parameters the system (14.1–14.2) is capable of supporting
travelling “bumps” of activity. See Fig. 14.1a. A bump is defined to be a state inwhich
one region of the domain is active, i.e. has F[u] ≈ 1, while the rest of the domain
is inactive, i.e. has F[u] ≈ 0. When h(y) is constant the bumps travel with constant
speed and profile, while if h(y) is not constant—but is sufficiently small—bumps
continue to travel, but with non-constant speed and profile. See Fig. 14.1b–d. Because
the domain has periodic boundary conditions, these modulated bumps are periodic in
time. Our goal is the determine, in a computationally-efficient manner, the expected
effects of making h(y) a random function of y, in a way to be explained below. In
particular we wish to answer the question: given that h(y) is randomly chosen from
some distribution of functions, what is the expected value of the average speed of
the resulting travelling bump (after transients have decayed)? As mentioned, we will
answer this using techniques from the field of uncertainty quantification [33, 41].
Here, the uncertainty arises because we do not exactly know h(y). This uncertainty
then affects the dynamics of the neural field model, making measurable quantities
such as the bump speed uncertain, i.e. have some distribution of values. Typically,
we would like to describe this distribution so that we can calculate, for example, its
mean.

The form of the coupling function G(x) allows us to write (14.1) as

∂u(x, t)

∂t
= −u(x, t) + 0.09

∫ 2π

0
F[u(y, t) − a(y, t) + h(y)] dy

+ 0.45 cos x
∫ 2π

0
F[u(y, t) − a(y, t) + h(y)] cos y dy

+ 0.45 sin x
∫ 2π

0
F[u(y, t) − a(y, t) + h(y)] sin y dy (14.4)
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Fig. 14.1 Travelling bumps of activity in the model (14.1–14.2) when (a) h(x) = 0 and (b) when
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14 Waves in Spatially-Disordered Neural Fields … 371

As noted [28], if we expand u(x, t) and a(x, t) in Fourier series in x we see that
terms of the form sin (nx) and cos (nx) for n > 1 will decay to zero, and since we
are not interested in transients we write

u(x, t) = u0(t) + uc(t) cos x + us(t) sin x (14.5)

and

a(x, t) = a0(t) + ac(t) cos x + as(t) sin x (14.6)

Substituting these expansions into (14.2) and (14.4)wefind that themodulated bumps
of interest are described by the six ordinary differential equations (ODEs)

du0

dt
= −u0 + 0.09

∫ 2π

0
F[u0 − a0 + (uc − ac) cos x + (us − as) sin x + h(x)] dx

(14.7)

duc

dt
= −uc + 0.45

∫ 2π

0
F[u0 − a0 + (uc − ac) cos x + (us − as) sin x + h(x)] cos x dx

(14.8)

dus

dt
= −us + 0.45

∫ 2π

0
F[u0 − a0 + (uc − ac) cos x + (us − as) sin x + h(x)] sin x dx

(14.9)

τ
da0

dt
= Bu0 − a0 (14.10)

τ
dac

dt
= Buc − ac (14.11)

τ
das

dt
= Bus − as (14.12)

We note that the number of ODEs above (six) is an immediate consequence of using
only a constant and cos x term in the coupling function G(x). Our coupling function
can be thought of as the truncation of the Fourier series of a general 2π-periodic
function. Including more terms in this truncation would lead to the system being
described by more ODEs, in the obvious way: each new harmonic would result in 4
more ODEs.

For a given h(x) we can find the average speed of the resulting bump by finding
the relevant periodic solution of (14.7–14.12). The average speed is then 2π (the size
of the domain) divided by the period of this orbit. However, numerically integrating
(14.7–14.12) is computationally costly, and since we are only interested in periodic
solutions of these ODEs we represent their solutions as truncated Fourier series in
time, i.e. we write

u0(t) = u0
0 +

M∑

i=1

[
u0

i cos (iωt) + u0
M+i sin (iωt)

]
(14.13)
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uc(t) = uc
0 +

M∑

i=1

[
uc

i cos (iωt) + uc
M+i sin (iωt)

]
(14.14)

us(t) = us
0 +

M∑

i=1

[
us

i cos (iωt) + us
M+i sin (iωt)

]
(14.15)

a0(t) = a0
0 +

M∑

i=1

[
a0

i cos (iωt) + a0
M+i sin (iωt)

]
(14.16)

ac(t) = ac
0 +

M∑

i=1

[
ac

i cos (iωt) + ac
M+i sin (iωt)

]
(14.17)

as(t) = as
0 +

M∑

i=1

[
as

i cos (iωt) + as
M+i sin (iωt)

]
(14.18)

where ω = 2π/T and T is the unknown period of the periodic orbit we wish to find.
We have

du0

dt
=

M∑

i=1

[
−iωu0

i sin (iωt) + iωu0
M+i cos (iωt)

]

and similarly for the other five functions. We are going to solve (14.7–14.12) by
collocation. To do that we impose that the functions given in (14.13–14.18) satisfy
the differential equations (14.7–14.12) at 2M+1 different times in the interval [0, T ].
Let these times be t j = jT/(2M + 1), j = 1, . . . 2M + 1. Then we have

0 = −u0(t j ) +
M∑

i=1

[
iωu0

i sin (iωt j ) − iωu0
M+i cos (iωt j )

]

+ 0.09
∫ 2π

0
F[u0(t j ) − a0(t j ) + (uc(t j ) − ac(t j )) cos x

+ (us(t j ) − as(t j )) sin x + h(x)] dx (14.19)

0 = −uc(t j ) +
M∑

i=1

[
iωuc

i sin (iωt j ) − iωuc
M+i cos (iωt j )

]

+ 0.45
∫ 2π

0
F[u0(t j ) − a0(t j ) + (uc(t j ) − ac(t j )) cos x

+ (us(t j ) − as(t j )) sin x + h(x)] cos x dx (14.20)
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0 = −us(t j ) +
M∑

i=1

[
iωus

i sin (iωt j ) − iωus
M+i cos (iωt j )

]

+ 0.45
∫ 2π

0
F[u0(t j ) − a0(t j ) + (uc(t j ) − ac(t j )) cos x

+ (us(t j ) − as(t j )) sin x + h(x)] sin x dx (14.21)

0 = Bu0(t j ) − a0(t j ) + τ

M∑

i=1

[
iωa0

i sin (iωt j ) − iωa0
M+i cos (iωt j )

]
(14.22)

0 = Buc(t j ) − ac(t j ) + τ

M∑

i=1

[
iωac

i sin (iωt j ) − iωac
M+i cos (iωt j )

]
(14.23)

0 = Bus(t j ) − as(t j ) + τ

M∑

i=1

[
iωas

i sin (iωt j ) − iωas
M+i cos (iωt j )

]
(14.24)

for j = 1, . . . 2M + 1. This gives us 12M + 6 equations: (14.19–14.24), but there
are 12M +7 unknowns (T being the last unknown). We also have freedom to choose
the origin of time, so to remove this degeneracy and obtain the correct number
of equations we add one more (largely arbitrary) condition to fix the phase of the
periodic orbit: uc(0) = 0, i.e.

uc
0 +

M∑

i=1

uc
i = 0. (14.25)

Equations (14.19–14.24) and (14.25) can be solved straightforwardly usingNewton’s
method, where the integral over x is evaluated using the trapezoidal rule.

We now turn to the representation of the frozen noise, h(x). We assume that it is
a uniform random field with mean zero and covariance

C(x, y) = σ

2b
exp

[
−π

4

(
x − y

b

)2
]

(14.26)

so that σ determines its “strength” and b is the characteristic correlation length. We
will represent h(x) by its Karhunen-Loève decomposition [20, 22, 33]. To do this
we need to find the eigenpairs of C , {λm, em(x)}∞m=1, defined by

∫ ∞

−∞
C(x, y)em(y) dy = λmem(x) (14.27)

and then order the eigenvalues (which are known to be positive and real): λ1 ≥
λ2 ≥ . . . 0 andnormalise the eigenfunctions (which are known to be orthogonal) [33].
The Karhunen-Loève decomposition of h is then
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h(x) =
∞∑

m=1

√
λmem(x)βm (14.28)

where the βm are pairwise independent random variables with mean zero taken
from the uniform distribution on [−1, 1]. We use a uniform random field rather than
the more common Gaussian random field, where the βm are normally-distributed,
because we want the random field h(x) to be bounded. The reason for this is that as
the amplitude of h(x) is increased, the moving bump seen in Fig. 14.1a can become
“pinned” by the heterogeneity [18, 37]. This type of pinned solution is far in phase
space from the original moving bump, and cannot be regarded as a small perturbation
from it, due to the nonlinear nature of the problem, so it is not appropriate to consider
such a solution. This is also the reason that we will only consider sufficiently small
values of σ below. Similar reasoning is used when a random field is constrained by
physical reasons to be strictly positive, for example [43].

To find the eigenpairs of C consider the function cos (my), where m ∈ N
+. This

is periodic on the domain [0, 2π] and we have

2b
∫ 2π

0
C(x, y) cos (my) dy = σ

∫ 2π

0
exp

[
−π

4

(
x − y

b

)2
]
cos (my) dy

(14.29)

= σ

∫ x

x−2π
exp

[
−π

4

( z

b

)2]
cos (m(x − z)) dz

(14.30)

Now if b is small relative to the domain size (2π), we can approximate this integral
by the infinite one:

2b
∫ 2π

0
C(x, y) cos (my) dy ≈ σ

∫ ∞

−∞
exp

[
−π

4

( z

b

)2]
cos (m(x − z)) dz

(14.31)

= σ cos (mx)
∫ ∞

−∞
exp

[
−π

4

( z

b

)2]
cos (mz) dz

+ σ sin (mx)
∫ ∞

−∞
exp

[
−π

4

( z

b

)2]
sin (mz) dz

(14.32)

= 2bσ cos (mx) exp

[−(mb)2

π

]
(14.33)

where we have used the fact that [38]

∫ ∞

−∞
exp

[
−π

4

( z

b

)2]
cos (mz) dz = 2b exp

[−(mb)2

π

]
(14.34)
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and that exp
[−(π/4)(z/b)2

]
sin (mz) is an odd function. Thus (keeping in mind the

approximations made above) a partial set of eigenvalues and eigenfunctions for C is

λ(1)
m = σ exp

[−(mb)2

π

]
; e(1)m (x) = cos (mx)√

π
(14.35)

for m = 1, 2 . . . . A similar argument shows that the remaining set of eigenvalues
and eigenfunctions is

λ(2)
m = σ exp

[−(mb)2

π

]
; e(2)m (x) = sin (mx)√

π
(14.36)

for m = 1, 2 . . . . Eigenpairs for other covariance functions can be found either
analytically or numerically [20, 22, 33, 43]. We truncate the series (14.28) to give a
finite-dimensional representation of the random field. We write

h(x) =
N∑

m=1

βm

√
λ
(1)
m e(1)m (x) +

N∑

m=1

βN+m

√
λ
(2)
m e(2)m (x) (14.37)

where the β1, . . .β2N are randomly chosen from the uniform distribution on [−1, 1].
The idea is now that for each realisation of the {βm} we can numerically solve

(14.19–14.24) and (14.25). One way to regard the solutions of these equations is
that they are given by 12M + 7 variables, u0

0, u0
1, . . . , as

2M , T , each of which is a
function of the 2N variables β1, . . . ,β2N . There are traditionally two different ways
to find these functions. The first is stochastic Galerkin [33, 41], where each of the
12M + 7 variables (for example, T ) is expanded in orthogonal polynomials of the
{βm}. This expansion is truncated and then all of the coefficients in this truncated
expansion are found by solving a very large set of coupled equations, often exploiting
the orthogonality of the polynomials. (The form of the polynomials is determined by
the probability density function of the random variables, the {βm}. [42, 44]) Once
the coefficients have been found, any quantity such as the expected value of, say
u0
0, can be found by integrating over the space of random variables. Unfortunately,

modifying code capable of solving (14.19–14.24) and (14.25) to find all coefficients
in the expansion just mentioned is non-trivial.

The other common alternative is referred to as stochastic collocation [33, 41],
which involves solving (14.19–14.24) and (14.25) at a number of different points
in the random parameter space, i.e. using different {βm}. We then have the value of
all variables u0

0, u0
1, . . . , as

2M , T at these different points and can use interpolation
to estimate the values of these variables at other points in the random parameter
space. If the values of {βm} at which (14.19–14.24) and (14.25) are solved are chosen
appropriately, the solutions of these equations at these points can be used to estimate,
for example, the expected value of u0

0 very accurately. This method is referred to as
“non-intrusive”, as it does not require modification of the code to solve (14.19–
14.24) and (14.25), just some decisions about the values of {βm} to use, and some
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been used. Parameters: σ = 0.00003, b = 1, N = 3, M = 6, B = 0.1, τ = 14

postprocessing of the results. This method is also trivially parallelisable and is the
one we use here.

Themainvariableweare interested in isT (β1, . . . ,β2N ), the periodof theperiodic
solution, an example of which is shown in Fig. 14.1. A typical distribution of T , for
10,000 randomly-chosen {βm}, is shown in Fig. 14.2. For these parameter values, the
period when σ = 0 is approximately 124.4007, and the presence of the spatial noise
always increases the period. To obtain the expected value of T (which we refer to
as T ) we need to average T (β1, . . . ,β2N ) over β1, . . .β2N . This average period will
itself be a function of parameters of interest such as the strength of the random field,
σ, and the correlation length b. Thus, knowing the distribution of the variables {βm},
we want to calculate the 2N -dimensional integral

1

22N

∫ 1

−1
· · ·

∫ 1

−1
T (β1, . . . ,β2N )dβ1 · · · dβ2N (14.38)

Note that having found T it is equally easy to find, for example, the variance of
T (β1, . . . ,β2N ):

VT = 1

22N

∫ 1

−1
· · ·

∫ 1

−1

[
T (β1, . . . ,β2N ) − T

]2
dβ1 · · · dβ2N (14.39)

We will evaluate these integrals in several different ways.
The integrals in (14.19–14.21) are over periodic domains, so the trapeziodal rule

which we use converges very quickly as the number of points used increases [40].We
use 275 points in x and assume that this is accurate enough.We also set M , the number
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of Fourier modes in time, to be M = 6, and do not consider varying this number
further. We will investigate varying N , which determines the number of modes used
to represent the random field h(x), and the number of points used to approximate
the integrals in (14.38). Note that the computational effort to evaluate (14.38) is
proportional to M (and to the number of points used to evaluate the integrals in
(14.19–14.21)) but grows extremely quickly with N , as this is proportional to the
dimension of the space to be integrated over.

14.3 Results

14.3.1 Convergence

We first show some results regarding convergence of three different schemes for
evaluating the integral (14.38). To be concrete we take b (the correlation length of the
random field) to be 1.We truncate the series (14.37) at N = 3. Typical realisations of
the h(x) are shown in Fig. 14.3 (top) and the average covariance of 1000 realisations
is shown in Fig. 14.3 (bottom). There is significant deviation between the theoretical
and actual covariances, and this is mostly due to approximations made in analytically
determining the eigenpairs of the covariance operator.

14.3.1.1 Monte Carlo

We wish to approximate the integral in (14.38). Firstly, consider Monte-Carlo inte-
gration. In this method we generate ν vectors K i , i = 1, . . . ν, each of length 2N ,
where each component of each vector is randomly and independently chosen from a
uniform distribution on [−1, 1]. We then approximate the 2N -dimensional integral
in (14.38) by the average

1

ν

ν∑

i=1

T (K i
1, . . . , K i

2N ) (14.40)

This method has the advantage that it is very simple, and will converge to the cor-
rect result as ν → ∞. Unfortunately, it is well-known that the error converges as
1/

√
ν [17]. The convergence of this method is demonstrated in Fig. 14.4

14.3.1.2 Gaussian Quadrature: Full Grids

Next we consider using Gaussian quadrature, forming a tensor product of one-di-
mensional rules [2, 32, 33] in order to approximate the integral in (14.38). One-
dimensional Gauss-Legendre quadrature involves approximating the integral
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1

2

∫ 1

−1
f (x)dx (14.41)

for sufficiently smooth functions f by the sum

N̂∑

j=1

w j f (x j ) (14.42)

where x j is the j th root of PN̂ , the N̂ th Legendre polynomial (normalised so that
PN̂ (1) = 1), and the weights w j are given by

w j = 1

(1 − x2j )
[

P ′̂
N
(x j )

]2 (14.43)

These rules can be used to approximate multi-dimensional integrals where the vari-
able in each direction is uniformly distributed, in the obvious way. Figure14.5 shows
the tensor product in two spatial dimensions, and weights, for N̂ = 10.
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For fixed N̂ we approximate the integral (14.38) by the multiple sum

N̂∑

j1=1

N̂∑

j2=1

· · ·
N̂∑

j2N =1

w j1w j2 . . . w j2N T (x j1 , . . . , x j2N ) (14.44)

There are a total of (N̂ )2N terms in this multiple sum, which grows rapidly as a
function of N̂ for moderate to large N—this is the curse of dimensionality. Results
using this method are shown in Fig. 14.4, where ν = (N̂ )2N . We see rapid conver-
gence, as expected from a spectral method such as this [40]. However, the curse of
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Fig. 14.6 Sparse tensor products in two spatial dimensions for (a)–(d): levels 2–5. The number of
points is, respectively, 5, 9, 17 and 33

dimensionality makes this method infeasible for many problems. For example, if
N = 5 and N̂ = 5, i.e. we use just five points in each of 10 random dimensions, we
have ν ≈ 107.

14.3.1.3 Gaussian Quadrature: Sparse Grids

The third method we consider involves the use of sparse tensor grids [3, 19, 21,
32]. Tensor products are still formed, as in Fig. 14.5, but many of the points are then
discarded, as they do not contribute significantly to the evaluation of the integral.
For a specific spatial dimension, different “levels” of grids, and thus accuracies, are
constructed. An example is shown in Fig. 14.6 for two spatial dimensions. (We use
the code associated with [21], available at http://www.sparse-grids.de/) We do not
present the general theory here but instead refer the reader to references above. For
a given level of accuracy, sparse grids use fewer points than full tensor grids, and
the advantage of using sparse grids as opposed to full increases as the dimension
of the space to be integrated over increases. Figure14.4 shows results from using
sparse grids. We see that this method is the most accurate of the three considered,
converging more rapidly than the full tensor product. We expect this advantage to
increase as N , the number of dimensions integrated over, increases.

http://www.sparse-grids.de/
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14.3.2 Varying Parameters

Having compared three common schemes for approximating the integral (14.38),
we now use the most accurate one (sparse tensor products) to investigate the effects
of varying parameters in the model. We first consider varying the “strength” of the
random field, σ. To obtain specific results we keep the correlation length b at b = 1
and set N = 6. We set the sparse grid level to be 5, which means using a total of
11,073 points in the approximation of (14.38). The results are shown in Fig. 14.7,
and we see that both the mean and standard deviation of the distribution of periods
increases almost linearly with σ.

In Fig. 14.8 we vary the correlation length b. Because the coefficients of the
random field h(x) decay more slowly as b is decreased, we need to keep a large
number of terms in the truncation (14.37) to accurately represent the field h(x),
i.e. we need to integrate over a high dimensional space. We set N = 50, which, for
the level we choose, gives 20,001 points in the approximation of (14.38). We see
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Fig. 14.8 Mean period, T (top) and standard deviation, s ≡ √
VT (bottom) as a function of random

field correlation length b. Parameters: σ = 3 × 10−6, N = 50

that for these parameter values and the truncations used, the standard deviation of
the distribution of periods decreases as b is increased, while the mean period shows
a non-monotonic dependence on b.

Note that for this type of high-dimensional integration, full tensor grids are impos-
sible to use. Even using sparse tensor grids, as above, is problematic, as the number
of points used still grows very rapidly with the level used, and a large amount of time
is spent actually calculating the grid points before they are used. However Monte
Carlo methods are still feasible, as are other extensions of Monte Carlo methods
such as Quasi-Monte Carlo (QMC) [12, 17, 26, 34]. QMC methods are similar to
Monte Carlo in that the integrand is evaluated at many points and then averaged,
but in QMC methods the points are not randomly chosen, but rather chosen in some
“optimal” way. Many variations exist, and rather than go into details here we show
in Fig. 14.9 a comparison between Monte Carlo and one particular QMC algorithm.
We see that QMC does better than Monte Carlo, at least for these parameter values.
The convergence rate for the error in the Monte Carlo method is known to scale as
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ν, and “randomised” QMC methods can be used to obtain error estimates for
these types of method [34].

Figure14.10 shows the same calculation as in the top panel of Fig. 14.8, but with
QMC. The results are essentially identical, and if errorbars were plotted in Fig. 14.10
they would be smaller than the markers shown.

14.4 Other Forms of Heterogeneity

In the model (14.1 and 14.2) we included the random field inside the nonlinear
function F , thinking of it as a spatial perturbation of the firing threshold. We now
show how several other forms of heterogeneity could be dealt with using the ideas
presented here.

14.4.1 Modulated Connectivity

Suppose that (14.1) was replaced by

∂u(x, t)

∂t
= −u(x, t) +

∫ 2π

0
G(x − y)[1 + h(y)]F[u(y, t) − a(y, t)]dy (14.45)

http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
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as in [6, 14], where we can think of the new connectivity, G(x − y)[1+ h(y)], as no
longer being a function of x − y only. The above analysis would go through, with
(14.10–14.12) being the same, but (14.7–14.9) being replaced by

du0

dt
= −u0 + 0.09

∫ 2π

0
[1 + h(x)]F[u0 − a0 + (uc − ac) cos x + (us − as) sin x] dx

(14.46)

duc

dt
= −uc + 0.45

∫ 2π

0
[1 + h(x)]F[u0 − a0 + (uc − ac) cos x + (us − as) sin x] cos x dx

(14.47)

dus

dt
= −us + 0.45

∫ 2π

0
[1 + h(x)]F[u0 − a0 + (uc − ac) cos x + (us − as) sin x] sin x dx

(14.48)

respectively,with a correspondingmodification of (14.19–14.21). Parametrisingh(x)
as in (14.37) we can find T (β1, . . . ,β2N ) by solving this new set of equations as
before, and this form of heterogeneity introduces no new complexity. Results are
shown in Fig. 14.11. We see that as above, both the mean period and its standard
deviation increase as σ is increased.
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14.4.2 Modulated Drive

Suppose instead that (14.1) was replaced by

∂u(x, t)

∂t
= −u(x, t) +

∫ 2π

0
G(x − y)F[u(y, t) − a(y, t)]dy + h(x) (14.49)

as originally proposed by Amari [1]. Using h(x) as in (14.37) and writing

u(x, t) = U 0(t) +
∞∑

i=1

[
U c

i (t) cos (i x) + U s
i (t) sin (i x)

]
(14.50)
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and

a(x, t) = A0(t) +
∞∑

i=1

[
Ac

i (t) cos (i x) + As
i (t) sin (i x)

]
(14.51)

we see that all U c
i (t),U s

i (t), Ac
i (t) and As

i (t) will decay to zero if i > N , so we can
truncate (14.50) and (14.51) at i = N . For 2 ≤ i ≤ N we have (after transients)

0 = −U c
i + βi

√
λ
(1)
i

π
and 0 = −U s

i + βN+i

√
λ
(2)
i

π
(14.52)

and

0 = BU c
i − Ac

i and 0 = BU s
i − As

i (14.53)

which can all be trivially solved. Now U 0,U c
1 ,U s

1 , A0, Ac
1 and As

1 satisfy

dU 0

dt
= −U 0 + 0.09

∫ 2π

0
F[u(x, t) − a(x, t)] dx (14.54)

dU c
1

dt
= −U c

1 + 0.45
∫ 2π

0
F[u(x, t) − a(x, t)] cos x dx + β1

√
λ
(1)
1

π
(14.55)

dU s
1

dt
= −U s

1 + 0.45
∫ 2π

0
F[u(x, t) − a(x, t)] sin x dx + βN+1

√
λ
(2)
1

π
(14.56)

τ
d A0

dt
= BU 0 − A0 (14.57)

τ
d Ac

1

dt
= BU c

1 − Ac
1 (14.58)

τ
d As

1

dt
= BU s

1 − As
1 (14.59)

This set of equations is no more complex than (14.7–14.12) and can be solved
the same way. The results of varying the random field strength σ are shown in
Fig. 14.12. Comparingwith Figs. 14.7 and 14.11we see qualitatively the same behav-
iour: increasing the heterogeneity both slows the bump and increases the width of
the distribution of periods.
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Fig. 14.12 Modulated Drive. Mean period, T (top) and standard deviation, s = √
VT (bottom) as

a function of random field strength σ. Parameters: b = 1, N = 6

14.5 Conclusion

In this chapter we have used ideas from the field of Uncertainty Quantification to
investigate the effects of spatial heterogeneity on the speed of a moving “bump”
of activity in a neural field model. Neural field models are intrinsically infinite-
dimensional, as is the spatially-extended “frozennoise” thatwe included in themodel.
In order to make computational progress we need to represent these processes in a
finite-dimensional way. The form of the coupling function G (constant plus cosine)
allowed us to exactly write the neural field dynamics (after transients) in the form of
six coupled ODEs (14.7–14.12), thus making the spatial part of the dynamics finite-
dimensional. Any other spatially-periodic coupling function could be represented
arbitrarily well by a finite number of similar spatial modes via a Fourier series,
resulting in a similar set of ODEs. These ODEs can be approximately solved in
any number of ways, but collocation, as used here, is very efficient. It should be
emphasised that the type of solution we were interested in, namely a moving bump,
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meant that we were interested in periodic solutions of these ODEs. If we were
interested in, for example, a moving front [5, 10], we would look for different sorts
of solutions. A specific example of such a front moving over a heterogeneous domain
is given in Sect. 4.1 of [15]. And as is standard, the noise process is approximated in
a finite-dimensional way by truncating the Karhunen-Loève decomposition (14.28).

Finding the expected value of a quantity (in this case, the period of a periodic
orbit) in a system with stochastic or uncertain parameters is equivalent to averag-
ing over a multi-dimensional space. For a small to moderate dimensions such an
integral can be performed using full or sparse tensor product grids [32], but for high-
dimensional integrals techniques such as Quasi-Monte Carlo [17] must be used. We
have demonstrated each of these methods and found several interesting results. For
the parameters studied, adding spatial noise to the system always slows the moving
bump. Also, varying the spatial scale of the noise shows a nonmonotonic response
of the bump’s speed (Figs. 14.8 and 14.10).

The results presented here are computationally intensive, and the field of uncer-
tainty quantification canonly benefit fromboth continuing increases in computational
power and continued theoretical advances.
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Chapter 15
In-Silico Models of Trabecular Bone:
A Sensitivity Analysis Perspective

Marlène Mengoni, Sebastien Sikora, Vinciane d’Otreppe,
Ruth Karen Wilcox and Alison Claire Jones

Abstract This chapter provides an overview from a sensitivity analysis perspective
of computational mechanical modeling of trabecular bone, where models are gener-
ated from Computed Tomography images. Specifically, the effect of model develop-
ment choices on the model results is systematically reviewed and analyzed for both
micro-Finite Element and continuum-Finite Element models. Particular emphasis
is placed on the image processing effects (thresholding, down-sampling, image to
material properties relationships), themesh-related aspects (mesh size, element type),
and the computational representation of the boundary conditions. Typical issues are
highlighted and recommendations are proposed with respect to various model appli-
cations, including global stiffness/strength and local failure stress/strain behavior.

Keywords Image-based FE models · Trabecular bone · Boundary conditions ·
Image processing · Numerical convergence

15.1 Introduction

Biological processes such as bone and soft tissue remodeling are triggered or influ-
enced by the local mechanical environment through the cells’ mechanotransduction
[9, 57]. An accurate model of that environment is therefore important to capture the
coupled mechano-biological response of biological tissues. In particular, this chapter
will focus on the structural modelling of trabecular bone, which is a driver in appli-
cations such as bone adaptation and repair [8, 41]. There is wide-spread interest
in replicating the behavior of trabecular bone within a computational environment.
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Fig. 15.1 Trabecular core of a deer antler (2.11mm cubic specimen): a 3D visualization obtained
from micro-CT images, b hexahedral micro-FE mesh (195,862 elements), and c hexahedral
continuum-FE mesh (27 elements)

The improvement of bone strength estimation is a key clinical driver, which would
enhance treatment of patients whose bones are weakened, such as those with osteo-
porosis. In parallel, researchers are developing detailed theoretical models of bone
structure, material properties and macroscopic behavior in order to better understand
its fracture mechanics and regeneration mechanisms.

The development of these patient-specific, highly detailed computermodels of tra-
becular bone has been made possible by high-resolution, bench-top imaging systems
such as micro-Computed Tomography (micro-CT) scanners. The three-dimensional
images generated by a micro-CT scanner can be processed to extract geometric
details at a macroscopic and microscopic level as well as maps of how the material
properties vary throughout the bone.

This chapter reviews two of the dominant approaches to image-based model-
ing of trabecular bone. These are micro-Finite Element (micro-FE) models, which
explicitly represent the micro-structure of the bone, and continuum-Finite Element
models, which use a continuous, inhomogeneous material property field to implicitly
represent that micro-structure (see Fig. 15.1).

Any theoretical representation of a physical system is built upon a series of
assumptions about the behavior of that system. Finite element models of trabecular
bone by necessity use boundary conditions and loading regimeswhich are either pure
assumption or approximations of experimental conditions [42]. In addition the geom-
etry, and in some cases the material properties, are derived from image data using
theoretical relationships, calibrated conversion values, or user-controlled processes.

This chapter is specifically concerned with the sensitivity of key trabecular bone
measures to the variation caused bymodeling assumptions and decisionsmade during
the derivation of geometries and material properties. Analysis of these sensitivities is
a fundamental part of the model development process [18]. Data from the literature is
reviewed and specific cases from the authors’ work are used to provide more detailed
examples.
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15.1.1 Micro-Finite Element Models

Trabecular bone models which fall into the category of micro-FE explicitly include
individual trabecular struts resolved as part of the three-dimensionalmodel geometry.
The element size within the mesh is small enough for several elements to span the
thickness of a typical trabecular strut. The marrow and blood within the bone are
generally excluded from the finite element mesh.

Due to the large number of elements and complex geometries,micro-FEmodels of
trabecular bone typically require a large amount of computing resource and are often
analyzed on high performance computers. With the advances in imaging techniques
as well as computational power, micro-FE models have emerged since the 1990s.
The high computational cost however generally restricts the size of samples which
are processed, a typical area or bone represented is (5–10mm)3 [50].

In some cases the trabecular bone within a micro-FE model may be assigned
homogeneous material property constants across all elements [55]. In other cases the
material properties are assigned on an element-by-element basis, using information
from a micro-CT image [5, 25].

In order to construct a subject-specific micro-FE model of trabecular bone a
three-dimensional image must be available with a resolution small enough to cap-
ture the trabecular geometry. Although bench-top micro-CT scanners can generate
sufficiently high-resolution images, they are limited to relatively small in vitro speci-
mens: a whole human vertebra can currently be scanned but generally not a complete
human femur. In vivo imaging is possible through the use of high resolution periph-
eral Quantitative Computed Tomography (HR-pQCT) which makes it possible to
capture trabecular level images of small peripheral human joints.

15.1.2 Continuum Finite Element Models

Continuum finite element models of trabecular bone use an element size which is too
large for individual trabeculae to be resolved. A single element will typically cover
an area which is large enough to contain several trabecular struts and the marrow
space between them. Since fewer elements are needed, whole bone models can be
analyzed at relatively low computational cost.

The trabecular structure within each element can be represented by a separate
material property definition, creating a continuous but inhomogeneous map of prop-
erties throughout the bone. The sophistication and accuracy of the element-specific
material models depends on both the source image and the modeling approach. In
many cases the material properties are isotropic [22]. However, information on tra-
becular directionality has been used to derive orthotropic material properties for each
element [37, 58].
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15.1.3 Trabecular Bone Modeling Applications

Both the micro- and the continuum-FE modeling methods are capable of replicating
apparent load-displacement behavior of trabecular bone, equivalent to the measure-
ments obtained from a materials testing machine. In the case of continuum-FE,
stiffness and strength of whole bones can be modeled [22, 27, 32, 44]. However, the
use of a relatively low mesh density, which does not capture individual trabecular
struts, limits the possible outputs to those at a macro level. Since micro-FE models
are capable of capturing deformation of individual trabecular members, their outputs
can include stress, strain and failure initiation within the microstructure.

The development of image-based computer modeling of bone has largely been
driven by the need to assess the integrity of bone in patients with a suspected fracture
risk. This may be to diagnose bone weakening conditions such as osteoporosis or
metastatic involvement, or to measure the effectiveness of on-going treatment [3, 24,
48]. Models designed for this purpose generally use continuum material properties
due to the low resolution of in vivo scanning. The apparent stiffness and strength
measurements taken from these models have been compared to traditional DEXA
scans in terms of reliability in predicting fracture [7].

The continuum-FE method has also been used in pre-clinical research setting
to compare the effect of treatment across a set of specimens [54]. High resolution
micro-CT source images may be available in the laboratory environment and can
enhance the accuracy of continuum-FE models while the computational cost of the
model solution remains low.

Where the high resolution imaging was available, micro-FE modeling has been
developed in order to analyze micro-mechanics and detailed damage mechanics of
trabecular bone [30, 36]. The ability to model deformation at the level of individ-
ual trabecular struts has led to the use of micro-FE as the mechanical driver for
bone remodeling prediction [41] where the local strain/strain energy field drives the
remodeling algorithm.

Initial development of the micro-FE method used images of in vitro specimens.
With the development of peripheral quantitative computed tomography (pQCT),
micro-FE has now been applied to in vivo studies [6, 49, 50].

15.1.4 Sensitivity Analysis

Sensitivity analysis is the process of establishing how sensitive the outputs of amodel
are to various inputs or settings [1]. This is done by varying the input within a range
considered reasonable or realistic, and measuring the effect on the model outputs
and on any conclusions drawn from model comparisons. A sensitivity test will give
information on how precise the value of a parameter should be but will not show
how accurate it is.
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For the trabecular bone models discussed in this chapter, the assumptions which
could introduce errors into the solution can be grouped as follows.

1. Digital representation: the accuracy with which the imaging modality represents
the real bone.

2. Geometry and mesh generation: the accuracy with which the source image is
segmented and the bone geometry is represented by the mesh.

3. Mesh quality: the numerical effect of element size, element shape and order of
integration.

4. Material model: the accuracy with which the material model represents the mate-
rial mechanical behavior.

5. Boundary conditions and constraints: the effect of assumptionsmade about behav-
ior at the model boundaries.

6. Loading regime: accuracy of representation of the load in the simulated scenario.

Both the geometry (2) and the material model (4) are central to the development
of a specimen-specific model and can be dependent on the source image.

In contrast, the boundary conditions (5) and loads (6) are usually independent of
the source image and aim to replicate some in vivo or in vitro scenario. This chapter
will review the effect of boundary condition choices but not that of loading cases.

The finite element solution depends in the mesh quality (3). A mesh sensitivity
analysis is one of the fundamental verification steps highlighted in any course on
finite element analysis. The choice of element type in any finite element model is
not always clear cut. In solid models, the common types are linear or higher order
elements of tetrahedral or hexahedral shape. There is often a balance between using
a higher order integration function, which in some cases will converge with fewer
elements but have more integration points (and hence a higher computational cost)
and a linear option where a larger number of elements may be needed to reach
convergence.

Sections15.2 and 15.3 give some details of the methodology employed for micro-
FE and continuum-FE respectively, along with evidence of sensitivity of key outputs
to the assumptions detailed above. Although the image resolution is mentioned in
the context of image segmentation, digital representation (1) is otherwise neglected.
The bonematerial model (4) is assumed throughout the chapter to follow an isotropic
Hookean elastic behavior. The effect of using a, possibly more accurate, nonlinear
and/or anisotropic material model is not considered in this work.

15.2 Micro-FE Models of Trabecular Bone

There are two main methods to create micro-FE meshes from images. The first
method requires a triangulation of the surface that first needs to be extracted from
the images [13, 35]. The triangulated surface can then be filled with tetrahedral
elements. The second one, referred to as the voxel-basedmethod, creates the elements
by converting the images voxels into hexahedral elements [47, 51]. This second



398 M. Mengoni et al.

method can be used either to directly create hexahedra from voxels or to create
hexahedral meshes that are mass-compensated [47]. Indeed, direct conversion of
voxels to hexahedra can lead to loss of connectivity. These disconnected elements
are not an active part of the model and are thus disregarded by any computation
method. This induces a loss of bone mass compared to the actual bone mass of the
specimen. The mass-compensated method accounts for this loss of connectivity and
adds mass by artificially thickening the remaining bone trabeculae.

The voxel-based method is straightforward; however, if not smoothed, it produces
jagged surfaces and edges, known as a staircase artifact, and thus is not accurate at
the boundaries.

The meshes produced by a surface extraction method are smoother than voxel-
based meshes; however, tetrahedral elements do not perform as well as hexahedral
elements of the same order from a computational point of view [10, 39, 46].

When used in a small strain analysis with uniform elastic properties, the voxel-
based meshes (using 8-noded elements) are particularly efficient as all elements are
the same (same fixed orientation and shape), allowing an elementary tangent operator
to represent the entire linear system [40, 52]. In this case, models with millions of
degrees-of-freedom can be resolved on standard desktop computers.

15.2.1 Sensitivity to Imaging and Material Property
Assignment

Before 3D CT images are converted into micro-FE models, they are usually bina-
rized by thresholding, segmenting marrow and bone. The threshold level and method
influence the results of micro-FE models as they influence the mesh and lose infor-
mation on the partial volume voxels (voxels representing both bone and marrow).
Another method of producing the micro-FE models is to directly convert the grey
level into equivalent mechanical properties, thus accounting in the model for both
bone and marrow (and partial volume voxels). The greyvalue to mechanical proper-
ties relationship thus influences the micro-FE results.

15.2.1.1 Sensitivity to the Threshold

The image threshold levels and the threshold method are two of the key points
affecting the model behavior. They determine whether a voxel is represented or not
as a solid element in the model. The threshold method thus has a direct influence
on the bone volume modeled, as well as on the trabecular thickness and trabecular
connection. Changes in these three parameters affect the apparent behavior of a
trabecular model, since a high bone mass sample will be stiffer than a low bone
mass one of the same size. Equally, local behavior will be affected. For example thin
trabeculae are more likely to fracture and unconnected trabeculae do not participate
in the weight bearing of the bone sample.
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Table 15.1 Deviation of structural parameters for a 0.5% increase in threshold level; data from
[20]

Deviation in Low volume fraction samples
(<0.15) (%)

High volume fraction samples
(>0.2) (%)

BV/TV 5 2

Tb.Th <3 <3

Computed apparent stiffness 9 3

Early on in the introduction ofmicro-FEmodels, the effect of the thresholdmethod
was analyzed. By comparing the behavior of human trabecular bone models at dif-
ferent image resolutions [47], it was shown that the use of a direct voxel conversion
produces good results for high resolution models but not for lower resolution ones
(with however a better apparent behavior representation than the local behavior one).
The use of a mass compensated method produces more accurate results on an appar-
ent point of view, however it compensates the loss of connectivity by a thickening
of the remaining structure and thus significantly changes the micro architecture, and
the local behavior.

The threshold level used for trabecular bone is also significant. Manual threshold-
ing by different users leads to different results. Even though there is a low inter-user
variability (0.5% difference in threshold value) to produce a “judged as optimal”
threshold [20], the change in structural parameters extracted within that variability
can be significant (see Table15.1). It has been shown [4] that visual thresholding usu-
ally under-estimates the bone volume. Due mainly to the difference in the thickness
of the trabeculae, the sensitivity of a visual threshold is lower for high volume frac-
tion samples [4]. It is likely that the error is systematic per user [20]. This systematic
error would therefore not be an issue for a comparative study performed by a single
user as differences between groups could be detected anyway. It cannot however
be blindly used to extract absolute quantitative mechanical parameters. Choosing a
threshold value that accounts for an experimentally measured BV/TV (e.g. measured
with Archimedes’ principle) would reduce the errors associated to manual threshold-
ing. However, such an experimental value can prove difficult to measure. Indeed, the
specimen whose density is measured using Archimedes’ principle needs to be com-
pletely immersed into distilled water, or another submersion liquid of known density,
and degassed to remove all trapped air [16]. The measured density thus depends on
the reliability of the degassing phase which is not easy to assess.

It should be pointed out that these different studies [4, 20, 47] did not account
for geometrical nonlinearities that could occur even at low apparent strains. Their
conclusions over the representation of mechanical parameters are thus valid only
under a small strain hypothesis.
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15.2.1.2 Sensitivity to the Relationship Used

Most micro-FEmodels of trabecular bone consider a homogeneous tissue-level bone
modulus. However, the tissue modulus is dependent on the mineralization and thus
can vary both within a trabecula and between struts [29]. Using a density-dependent
modulus can thus account for the mineral content but also for the partial volume
effects at the trabecular surfaces. This partial volume effect is caused by the error
in capturing the surface of the trabeculae. Depending on the threshold value, voxels
representing a mix of bone tissue and air or marrow can be considered as being
100% bone or 100% air/marrow. The material properties of those areas are thus
either over-estimated or under-estimated. Using material properties function of a
local greyscale rather than homogeneous values after thresholding can thus help to
reduce the sensitivity of the model to the threshold. With a non-linear relationship,
Homminga et al. [25] showed that using a greyscale-based modulus value for each
voxel instead of a homogeneous value reduces the mean deviation and the range of
deviation of the computed apparent elastic modulus from the experimental apparent
elastic modulus. Bourne et al. [5], proposed a linear relationship between the X-ray
attenuation and tissue modulus. This relationship assumes a modulus of 20 GPa for
a tissue of 1.1g/cc. Using different slopes for the linear relationship, they found a
slope of 1.4 most precisely predicted experimental modulus. They demonstrated the
apparent elastic modulus value for a homogeneous 20 GPa model was significantly
greater than for all types of inhomogeneous models. Following the same principle,
Harrison et al. [21] calibrated their linear relationship with micro-indentation tests.
Finally, a more complex relationship accounting for the mineral content of the bone
was proposed by Bourne et al. [5]. They defined a theoretical relationship relating
micro-CT mineral density to tissue density and elastic modulus. The derivation uses
prior knowledge of the bone constituents’ volume fractions and individual constituent
densities to calculate the volume and mass of each constituent within a voxel.

15.2.2 Sensitivity to the Finite Element Mesh

To perform a finite element analysis on processed images, the geometry they repre-
sent needs to be discretized into a finite element mesh. A finite number of geomet-
rically simple elements (such as hexahedra and tetrahedra) is used to represent the
potentially very complex geometry represented in the images. The mesh built on the
processed images is the next source of errors to which the results are very sensitive.
The element size needs to be appropriate so that the geometrical discretization is
accurate. However, a series of numerical errors occurs depending on the element
size, type, and integration method. The sensitivity of the results to these types of
errors is overviewed here.
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15.2.2.1 Sensitivity to the Finite Element Mesh Size

Early work on the influence of element size [31] showed that computing an apparent
stiffness with a linear model and a voxel-based mesh produced results which were
very sensitive to the mesh resolution. However, the image resolution those meshes
were built from (given the trabeculae are properly resolved) did not seem to play an
important role. Low density samples seemed more sensitive to the mesh resolution
than high density ones. Convergence studies for a fully linear model and a voxel-
based mesh [19] have shown that the element size should be less than one fourth
of the trabecular thickness. No convergence studies for meshes built on triangulated
surfaces of trabecular structures were however found in the literature. This gap is
partially covered hereafter.

Micro-CT images of the trabecular core of a bone antler [13] were used to analyze
several sensitivity aspects of micro-FE models. It consisted of a 2.11mm cubic spec-
imen (BV/TV of 10.88%), imaged at a cubic voxel size of 8.64 μm (see Fig. 15.1a).
Ten triangulation surface meshes obtained with a surface reconstruction algorithm
[13] were constructed at different resolutions (producing from 65,000 to 120,000 tri-
angles). Linear tetrahedral meshes built on those surface triangulations (i.e. meshes
with 130,000–290,000 elements) were used to analyze the effect of mesh size on a
finite strain model of compression tests. The material at trabecular level was consid-
ered as following an isotropic Hookean elastic behavior, described with a Young’s
modulus of 7.78 GPa [14], and a Poisson’s ratio of 0.3. The performance of those
meshes was evaluated by comparing the computed apparent stiffness (computed with
a linear regression at 0.2% compression), and the force level for 5% compression
tests in each direction. The finite strains micro-FEmodels were solved using the non-
linear object-oriented implicit software Metafor (LTAS-MN2L, University of Liège,
Belgium).

The coarser meshes show places (highlighted in red on Fig. 15.2) where only
one element spans across the trabecular thickness. The convergence study shows
(Fig. 15.3) that both the apparent stiffness and the maximal force decrease when
increasing the number of elements. The apparent stiffness decreases by 6.2% from
the coarser mesh to the finer ones, while the maximal force decreases by 10.4%.

15.2.2.2 Sensitivity to Type of Finite Element

The performance of a model is not only sensitive to the mesh resolution but also to
the shape of each element. Early studies on the subject [47] showed that for a fully
linear elastic model, there were no significant differences between the performances
of a mass-compensated linear hexahedral mesh and a tetrahedral one. As soon as
geometrical nonlinearities are included in a model, those conclusions may no longer
be valid. To analyze the element shape influence on a model performance, the bone
antler sample introducedpreviouslywasmeshedusing three different algorithms.The
first one used a surface-reconstruction algorithm as presented in Fig. 15.2 (we use
here the finest mesh from that study), thus producing a smooth tetrahedral mesh; the
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Fig. 15.2 Cut through antler meshes. Left 130,000 elements mesh, Right 290,000 elements mesh

Fig. 15.3 Convergence
study—normalized values
for compression tests in three
directions (color dots):
stiffness (dashed line) and
force (plain line) (color
online)

second one used a direct voxel conversion algorithm, thus producing a jagged hexa-
hedral mesh (see Fig. 15.1b); the third one used a direct voxel conversion followed
by a topology-preserving smoothing algorithm [12], producing a smooth hexahedral
mesh. Two meshes were produced using this last method, the first one involved one
smoothing iteration, the second one two smoothing iterations. The performance of
these four meshes was evaluated comparing the computed apparent stiffness (com-
puted with a linear regression at 0.2% compression), the maximal force level, and
the deformed micro-structure for 10% compression tests in each direction, using the
same material model as earlier.

Even though the smoothing algorithm preserves the initial topology as accurately
as possible, some shrinkage is inevitable. The bone volume represented by eachmesh
is slightly different (Table15.2). Smooth hexahedral meshes represent a smaller bone
volume than the voxel-basedmesh, the tetrahedral mesh represents however a similar
bone volume. The computed apparent stiffness slightly decreases with smoothing in
the hexahedral meshes. The computed force (Fig. 15.4) is equivalent for the three
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Table 15.2 Mesh type dependent parameters

Relative difference
(in % of the voxel
mesh value)

Smooth hexahedral
mesh (1 smoothing
iteration)

Smooth hexahedral
mesh (2 smoothing
iterations)

Tetrahedral mesh

Volume −4.32 −7.89 +0.75

Stiffness −3.71 (±1.72) −5.55 (±0.52) +39.63 (±7.05)

Fig. 15.4 Example of force versus applied engineering strain function of the element type

hexahedral meshes, slightly decreasing as the smoothing increases. The tetrahedral
mesh requires however a higher force to be applied, especially at large strains.

Finally, the deformation pattern between the hexahedral meshes shows only slight
differences while that of the tetrahedral mesh is completely different (Fig. 15.5). In
particular, direction of trabecular bending can be opposite.

It is thus clear that the choice of element shape for a given mesh resolution
influences not only the local behavior of the model but also its apparent behavior.
A thorough comparison with experimental data on both the apparent and local level
is needed to fully evaluate the best choice of element type. It should finally be pointed
out that the conclusions addressed here are only valid on a sample with low BV/TV
and considered as following an isotropic Hookean elastic behavior. Differences in
results for the force level or the deformation pattern may be different for other types
of material behavior more appropriate to model bone trabeculae at large strains.

For a given element shape and size, the chosen integration method will affect
the integration results. Geometrical discretization errors lead generally to softening
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Fig. 15.5 von Mises equivalent stress fields and values of the applied force at 10% applied engi-
neering strains

(due to an underestimation of the volume at the threshold and the meshing phases).
For hexahedral elements in a linear integration (8 integration points), there can be
a stiffening effect due to shear locking if elements happen to be submitted to pure
bending. In a finite element solution process the stress field, and all other secondary
fields, are computed accurately at the integration points, and reducing their number
reduces the accuracy of the stress field. A reduced integration (one integration point)
avoids shear-locking but degrades the computed stress field. Quadratic integration
(27 integration points) also avoids shear locking and does not degrade the secondary
fields (as the number of integration points increases). It thus can be used even at low
resolutions for accurate stress fields. The main disadvantages of a quadratic integra-
tion are the increase in computational cost and the increase in sensitivity in inaccurate
geometry (such as staircase artifacts). The opposite behavior between geometrical
discretization softening and integration stiffening explains [13]why 8-noded hexahe-
dra, using a sufficient resolution, are accurate concerning the computation of global
apparent values in small strains analysis. For a quadratic integration however, as
discretization errors are not compensated by integration errors, the computed appar-
ent values are less accurate than 8-noded hexahedra (even though both results are
strongly correlated).

15.2.2.3 Discussion

A number of studies have been performed on the analysis of hexahedral mesh perfor-
mances representing trabecular bone microstructure. However voxel-based meshes,
while straightforward to build, do not represent the trabecular surface accurately as
they produce jagged edges. Tetrahedral meshes allow the representation of smooth
surfaces more easily. There are few convergence studies on the performance of tetra-
hedral meshes representing trabecular microstructure. The current work illustrated
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that the mesh has to be fine enough in order for more than one element to span across
the trabecular thickness. However, drawing a definite conclusion on the number of
elements needed over the trabecular thickness is difficult. Indeed as all elements do
not have the same size, measuring the quality of the mesh by the ratio of the mean
edge length to the mean trabecular thickness is not representative of the mesh quality.
For the presented meshes, that ratio indeed varies from 3.04 to 3.47 when increas-
ing the number of elements. Looking at that ratio only would thus not highlight the
differences observed between meshes. Only a local inspection of the mesh can help
determine whether or not the mesh is fine enough.

Anothermethod for avoiding jagged surfaces is to smooth out voxel-basedmeshes,
thus obtaining smooth hexahedral meshes. This smoothing operation has to be done
with as little volume loss as possible. The performance of smooth hexahedral meshes
was compared to that of a voxel-based mesh and a tetrahedral mesh, showing dif-
ferences in computed force and stiffness. The stiffness and force decrease of the
hexahedral meshes can be explained by the proportional volume loss. The tetrahe-
dral mesh shows higher apparent stiffness and force that cannot be explained by the
small volume increase. The difference is most probably due to the numerical stiff-
ness of the linear tetrahedron. Indeed, the linear tetrahedron (1 integration point) is
known to be stiff while the hexahedra are here integrated on 8 nodes with selective
reduced integration to reduce shear-locking effects. The increased apparent stiffness
behavior of the tetrahedral model is therefore most likely to be a numerical artifact.
This numerical stiffness is less present in second (or higher) order tetrahedra. How-
ever, due to their simplicity and robustness, elements with linear shape functions
are often preferred for non-linear problems, particularly when these involve large
strains, frictional contact or material nonlinearities.

15.2.3 Sensitivity to Boundary Conditions

This section discusses the sensitivity of micro-FE models to the representation of
boundary conditions. Boundary conditions represent experimental loading and sup-
port conditions of the modeled specimens. When qualitatively comparing the per-
formance of several models, the applied boundary conditions might not be of impor-
tance to extract differences or similitudes between different groups as long as they
are applied in the same way for each group. When quantitatively comparing models
and experimental data, the accuracy of the boundary condition representation can be
of great importance.

Most experimental tests of trabecular structure are compression tests of cylindri-
cal samples. Representing the experimental setup in details can be considered. The
interaction between the bone sample and the experimental setup (the sample extrem-
ities can be embedded into end-caps) is however often unknown. The setup is thus
often simplified into a fixed end, on top of which lays the sample, and a moving one,
compressing it. The applied boundary conditions can allow either for the material to
move in the plane perpendicular to the loading direction (free boundary condition)
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or not (constrained boundary conditions). Several studies have shown the influence
of model choice on the results. The models are highly sensitive to the representation
of the gripped end by constrained or free boundary conditions. Apparent parameters
such as the apparent stiffness can show variations up to 40% [31], with a constrained
numerical setup stiffer than a free one. Note however that a compression experiment
with or without end-caps can show comparable deviations [28]. Using micro-FE
models coupled to an optimization method to compute the hard tissue modulus gives
however resultswhich are better correlated [26]when the samples are testedwith end-
caps and modeled with constrained BC’s, than tested without end-caps and modeled
with frictionless contact conditions or free moving boundaries. The difference may
be due to the fact that modeling a free moving boundary with frictionless behavior is
not fully representative of the experimental conditions as purely frictionless behav-
ior is not obtained. Approximating the boundary conditions usually leads to a higher
tissue modulus than representing the actual experimental setup [4]. The method used
to represent constrained or free boundary conditions can still be achieved in different
ways using for instance either nodal constraints or contact conditions.

To analyze the effect of boundary representations, the bone antler sample intro-
duced previously was compressed using eight different boundary setups (Fig. 15.6),
all representing a fixed bottom surface and a moving upper one. Four of those setups
had constrained boundary conditions at each end (Fig. 15.6a–d) and four had free
boundary conditions at each end (Fig. 15.6e–h). The constrained condition on the
fixed surface was represented either as a node constraint (cases a and b), for which
the surface nodes were pinned in 3D, or as a friction contact with a rigid plane (cases
c and d) using a friction coefficient of μ = 0.8. The constrained condition on the

Fig. 15.6 Different types of constrained (top row) and free (bottom row) boundary conditions for
a vertical displacement. Constraints in grey are applied to contact planes; constraints in black are
applied to surface nodes
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Table 15.3 Boundary conditions type dependent parameters (values in parentheses are the standard
deviations)

Relative difference in
stiffness (in % of the
“no contact” stiffness)

Contact on moving
side

Contact on pinned side Contact on both sides

Constrained type BC’s 51.3 (±19.4) 76.9 (±23.5) 86.8 (±15.4)

Free type BC’s 26.8 (±3.5) 34.5 (±10.5) 51.3 (±9.4)

moving surface was similarly represented either as a node constraint (cases a and c)
or as a contact condition (cases b and d). Similarly the free condition on the fixed
surface was represented either as a node constraint (cases e and f), for which the
nodes were pinned in the directions perpendicular to the compression, or as a fric-
tionless contact condition (cases g and h). The free condition on the moving surface
was either a node constraint (cases e and g) or a frictionless contact condition (cases
f and h). For the case where two frictionless contact conditions were used (case h)
the central node of the bottom surface was pinned to avoid rigid body motion.

As previously a compression of 5% was applied in a large strains framework
and the performance of each model was assessed comparing the computed apparent
stiffness and the maximal force reached. Exactly as constrained BC’s are stiffer than
free ones, contact BC’s are stiffer than node constraints, whether constrained or free
(Table15.3). The deviation in the force between the different free representations
stay proportional with the level of compression while the constrained representation
shows increasing deviation with compression (Fig. 15.7).

Fig. 15.7 Example of force
versus engineering strain
function of the BC type
(plain lines free BC’s,
dashed lines constrained
BC’s)
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The ability to move laterally while applying a compression allows the virtual
setup to be more compliant. The computed apparent stiffness and force decreases
with the increasing flexibility for the sample to move or expand laterally.

15.3 Continuum Level Models of Trabecular Bone

Finite element models of trabecular bone at the continuum level have existed for
many decades and have been used to investigate a range of clinical situations. Whilst
micro-FE models have become more prevalent for the simulation of small regions
of trabecular bone, the computational cost can be prohibitive, and whole bones and
joints are still routinely simulated at the continuum level. Advances in imaging
technologies such as CT and micro-CT have enabled more information to be derived
for the generation of such models, including both the geometry and the spatially
varying material properties.

15.3.1 Sensitivity to Imaging and Material Property
Assignment

Continuum-level finite element models of bones with inhomogeneous material prop-
erties based on the underlying bone density have become widely adopted, and have
been shown to provide better agreement with experimental data than those using
uniform properties [44]. The elastic modulus of elements representing the trabecu-
lar bone regions within these models are often assigned on an element-by-element
basis. Two approaches are commonly used to derive the elastic modulus values, as
illustrated in Fig. 15.8. In the first (the ‘greyscale’ approach), an average greyscale
is calculated from the voxels within the element volume, and the elastic modulus is
calculated as a function of this value.

In the second (the ‘segmentation’ or ‘BV/TV’ approach), the underlying image
is first segmented in order to calculate the bone volume fraction (BV/TV) and the
modulus is then calculated as a function of the BV/TV. The segmentation approach
allows extracting further information on the microstructure. In particular, informa-
tion about the anisotropic organization of trabeculae can be computed from the
segmented images. In that case, fabric tensor based orthotropic material properties
can be derived. Accounting for anisotropy showed it can improve the correlation of
bone morphology to bone strength for several anatomical sites [32, 37].
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Fig. 15.8 Example of two
different approaches for the
derivation of mechanical
properties from the
micro-CT image data. For
each element within the
model, the elastic modulus is
calculated based on either
the mean greyscale
(greyscale approach) or the
BV/TV (segmentation
approach) of that region

15.3.1.1 Sensitivity to the Methodology Used

In order to examine the sensitivity to the approach used, models from two previous
specimen-specific studies [45, 54] were examined using both methods. In total, ten
vertebral bodies (four human and six porcine)were imaged usingmicro-CT at a cubic
voxel size of 0.074 mm, and tested under axial compression. From the micro-CT
scans, two models were built of each specimen with the same element size of 1 mm.
In one model, the greyscale approach was used, with the modulus linearly related to
the mean greyscale of the voxels within the element. In the other, the segmentation
approach was used, by first segmenting the images with a species-specific threshold
(i.e. different for the human and porcine specimens). The elastic modulus was then
linearly related to BV/TV. In both cases, the relationship between the image data and
elastic modulus was optimized until the average error between the predicted stiffness
of the models and the experimental values was minimized. The resulting predictions
were compared to the experimental values and are shown in Fig. 15.9. The absolute
average errors in stiffness for the two sets of models compared to the experimental
results were then calculated. It was found that these errors were very similar for the
two methods (6.5% for BV/TV method and 8.3% for greyscale method). Since the
experimental error is likely to be of a similar order of magnitude to these errors,
the results suggest that there is no advantage in using one method over the other,
providing that the parameters used have been optimized.

15.3.1.2 Sensitivity to the Threshold for the Segmentation Method

As discussed in Sect. 15.2.1.1, the threshold selected to segment an image into tra-
becular bone and trabecular space will affect the thickness of the trabeculae and it
has been shown that the choice of threshold can have a considerable effect on the
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Fig. 15.9 Agreement between FE model predictions and experimental stiffness values for ten
porcine and human vertebrae modeled using element-specific material properties based on BV/TV
and mean greyscale data derived from the micro-CT image data of the specimens

Fig. 15.10 Predicted stiffness of four FE models of human vertebra [54] generated using the
segmentation method to assign element-specific elastic modulus values. For each specimen, the
predicted stiffness when two different threshold values were used to calculate the BV/TV is shown

calculated BV/TV values [38]. This then has a knock-on effect on the resulting FE
model stiffness, as is illustrated in Fig. 15.10 for the four models of cadaveric ver-
tebrae described above [54]. Here, two threshold values were selected to represent
extremes of the range likely to be picked ‘by eye’, and it was found that the predicted
stiffness varied by a mean of over 30%.
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15.3.1.3 Sensitivity to the Relationship Used

Whichever method is used to determine the elastic modulus or other material prop-
erties from the underlying image data, the relationship between the greyscale and
the property will have an effect on the final model. A number of different rela-
tionships have been used for both the BV/TV and the greyscale methods. Many of
these relationships originate from density-modulus equations derived from previous
experimental tests on trabecular bone specimens. The number of available equations
in the literature is large, and several studies have investigated the sensitivity of the
model outputs to the equation used, in many cases making direct comparisons with
experimental tests in order to determine the most suitable relationship (e.g. [2, 11,
17]). These studies have generally found that the FE model predictions of apparent
stiffness and local strain are highly sensitive to the equation adopted, which is unsur-
prising when the range of different equations in the literature is considered. However,
there is little consensus across the studies on a single ‘optimum’ equation and, even
within studies, different equations appear to fit different individual specimens better
(e.g. [2, 17]). Many of the equations used are based on a power-law relationship
between a measure of bone density (ρ) (ash density, apparent density, BV/TV etc.)
and elastic modulus (E):

E = aρb

The relationship derived byMorgan et al. [34] with a relatively low power (b = 1.49)
appears to commonly be amongst the closest when the resulting FE models are
compared to experimental data [11, 17]. In the study by Cong et al. [11], the authors
determined optimum values of a and b to best fit the stiffness predictions of the
FE models of femora to results obtained experimentally. They found an even lower
power (b = 1.16) obtained the best results from a power-law equation. In another
study [54], it was found that the value of the power had little effect on the performance
of an individual model of a spinal vertebra, providing the associated constant, a,was
optimized, as can be seen in Fig. 15.11.

The effect of the power will depend on the spread of the greyscale values within
the underlying images. Extremely bright and dark regions in the image, which may

Fig. 15.11 Load–
displacement curves for a
vertebral model generated
using different relationships.
Adapted from [54]
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be caused by artifacts, will dominate the model behavior with higher power terms
by causing regions of overly large or small modulus values. The low sensitivity seen
here makes a linear relationship a reasonable choice for this study. However the
sensitivity may be affected by bone density range within the specimen set.

15.3.1.4 Discussion

A number of different methods have been used to both extract information from
three dimensional image data sets and to derive finite element mechanical properties
from this information. Two common methods for extraction, described here as the
‘greyscale’ method and the ‘segmentation’ method appear to yield models with
relatively similar levels of accuracy. Both have their advantages and disadvantages.
The segmentation method is sensitive to threshold, which in turn is sensitive to the
scanner and settings used. Use of phantoms and/or automatic segmentation methods
could allow scans from different imaging systems to be used, but as yet, little work
has been undertaken to develop a robust framework for this process. The greyscale
method is dependent on both the scanner and its settings, aswell as thematerialwithin
the marrow space. The use of phantoms is common place to calibrate scanners and
relate the greyscale to the bone density. However, the greyscale of the trabecular
space will be very different for dry bone specimens compared to those where the
marrow is intact. So, whilst phantoms may get around some of the problems of using
different scanners, it is more difficult to take account of different materials within
the trabecular space.

Themodel predictions have been shown to be sensitive to the relationships used to
assign the properties from this image information. The literature is awash with differ-
ent equations and there is no clear consensus on an optimum choice. For applications
with a limited density range, it may be possible to use a simple linear relationship,
provided that the terms in the equation can be tuned for the specific species and type
of bone that is used.

15.3.2 Sensitivity to the Finite Element Mesh

15.3.2.1 Sensitivity to the Finite Element Mesh Size

Many factors affect the convergence behavior with respect to the elements size of
a finite element model, and the inhomogeneous properties, often coupled with a
complex geometry, add particular challenges to the analysis of bone. To isolate the
effects of material properties from those of the geometry, a study was undertaken
where six rectangular cores of bone were extracted from continuum-level models
of whole vertebrae and examined in isolation [27]. As the mesh density was altered
(Fig. 15.12), models where the bone properties were inhomogeneous, and based on
the underlying image greyscale, displayed less consistent convergence that those
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Fig. 15.12 A typical cuboid (12× 12× 32mm3) of trabecular bone meshed with three different
element sizes (Model 4 = 4mm3, Model 2 = 2mm3, Model 1 = 1mm3). Adapted from [27]

Table 15.4 Difference in predicted stiffness between homogenous and greyscale-based FEmodels
of trabecular bone cores generated with different element sizes (Model 4= 4mm,Model 2= 2mm,
Model 1 = 1mm)

Homogenous properties Greyscale-based properties

(Model 4-Model 2)/Model 2 (%) 6.3 5.5 (±4.3)

(Model 2-Model 1)/Model 1 (%) 0.030 3.8 (±2.5)

From [27]

where the properties were homogenous (Table15.4). This is not surprising, since
within the inhomogeneous greyscale-based models element size will alter not only
the number of degrees of freedom, but also the distribution of material properties.

Zhao [56] decoupled these two effects by generating models of synthetic tra-
becular bone specimens based on micro-CT images in two different ways. In the
first method, the images were down-sampled to different resolutions using a method
incorporating partial volume effects. Then finite elementmodels were generatedwith
elements of the same size as the down-sampled images resolutions. In the second
method, the images were down-sampled to the coarsest level, and then finite element
models created from the images with varying mesh sizes, such that there were differ-
ent numbers of elements but the materials properties of each were based on the same
underlying greyscale grid (Fig. 15.13). Where this latter method was used, there was
a rapid convergence that remained as the element size decreased. However with the
first method, there was some evidence of convergence at larger element sizes (where
the element was much larger than the trabecular bone structure), but as the image
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Fig. 15.13 Example in 2D of two methods of generating FE models from images at different
element sizes. In Method 1, the underlying image is down-sampled, and the elements are assigned
properties based on the image greyscale at that down-sampled level. In Method 2, the images are
first down-sampled to the lowest resolution, then meshes of different sizes are used, such that the
properties are always based on the same down-sampled image. Adapted from [56]

Fig. 15.14 Results of mesh convergence tests using a Method 1 and b Method 2 for models
generated from images of a synthetic trabecular-like structure. Each line depicts the results of a
different image data set. In Method 2, as the element size is decreased, the elements become a
similar size to the trabeculae (∼1mm in this case) and eventually a second convergence occurs
once the model becomes a micro-FE model. From [56]

resolution neared that of the trabecular structure itself, there was instability, since
the elements were beginning to represent either trabecular space, or trabecular bone,
rather than an average of the two (Fig. 15.14).

In a study including both isotropic and orthotropic models of cylindrical samples
of deer antlers and other cellular materials, Mengoni et al. [33] decoupled the mesh
size effects from the region size from which the material properties are extracted.
The samples were meshed at a given fine resolution while the image-based material
properties were extracted on regions of different size, assigning the same set of
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properties to the underlying cluster of mesh elements. This method showed evidence
of convergence for decreasing size of element clusters, before reaching the element-
by-element level. For a given mesh size, while assigning material properties on an
element-by-element basis may be necessary for isotropic models where only the
modulus is evaluated from the image, for orthotropic models where fabric is also
evaluated, it is less necessary and a cluster approachmay be appropriate here because
more information is extracted from the images.

15.3.2.2 Sensitivity to Type of Finite Element

There are relatively few studies that have specifically analyzed the element type in
relation to continuum bone models. Ramos and Simoes [39] compared element type
and order for simplified and realistic geometry femur models with homogeneous
material properties. For the realistic model, the results for models with hexahedral
elements converged with a lower number of elements than for the tetrahedral models,
but there were some (<10%) differences between the first and second order con-
verged results. For the tetrahedral elements, there was little difference in the results
between the first and second order element types for the same number of elements.
Their general conclusion was that the type of element “did not evidence significant
differences”, however this will be very dependent on the nature of the problem and
level of accuracy required. In the case of bone models with inhomogeneous, image-
based material properties a change in element size will affect multiple aspects of the
model (Sect. 15.3.2.1) and convergence testing is not straight forward.

15.3.3 Sensitivity to Boundary Conditions

The sensitivity of ovine trabecular bone models to the representation of boundary
conditions replicating an experimental test were examined by Sikora [43]. Exper-
imental tests were undertaken in which trabecular cores (approximately 10mm in
diameter and 20mm in length) were extracted from ovine vertebrae, and set in del-
rin endcaps using a small quantity of polymethylmethacrylate (PMMA) cement, as
shown in Fig. 15.15a. The specimens were imaged using an HR-pQCT (XtremeCT,
Scanco Medical, Switzerland) with a voxel size of 0.041mm and converted to finite
element models with a 1mm mesh size using proprietary software (ScanIP v4.2,
Simpleware Ltd., UK). Four different methods of representing the boundary condi-
tions on the bone were investigated. For each case, four specimens were investigated
and the mean difference in predicted stiffness between the case representing the full
experimental set up (Fig. 15.15a) and the different simplifications (Fig. 15.15b–d)
were calculated.

The results are presented in Fig. 15.16. It can be seen that large relative differences
on the stiffness occur where the boundary conditions do not provide the lateral
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Bone

PMMA 
cement

Delrin
endcaps

(a)

(b) (c) (d)

Fig. 15.15 Schematics of FE models of a trabecular bone compression test representing a the
experimental set-up including the endcaps and PMMA cement, b a simplified version without the
PMMA cement, c only the bone and d the bone with additional boundary conditions preventing
lateral displacement (shown as grey lines). In all cases, the models were tied to rigid plates on the
top and bottom surfaces. Adapted from [43]
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Fig. 15.16 Results for a boundary condition sensitivity study [43] undertaken on four models under
the four different boundary conditions shown in Fig. 15.15. The absolute mean stiffness differences
(error bars show standard deviations) are shown for cases (b)–(d) compared to the reference case
(a). Mean solution times are also shown

constraint at the ends (case c). Similar results were also found by Zhao [56] using
synthetic bone specimens. Here, an investigation was also undertaken to examine
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the effects of different boundary conditions on a model similar to that shown in
Fig. 15.15c.

The representation of whole bone specimens is just as sensitive to loading condi-
tions, as was illustrated by Jones and Wilcox [27]. Here, specimen-specific models
of spinal vertebrae were constructed to replicate an experimental compression test
where the upper endplate was loaded via a steel ball, allowing it to tilt relative to
the lower endplate. The predictions of stiffness from the FE models was found to be
highly sensitive to the position at which the load was applied, with even deviations of
2mm in location causing nearly 20% change in the predicted stiffness. Such results
illustrate not only the importance of boundary conditions in an FE model, but that
this is also an issue with an experimental test, although it is often less apparent in
the laboratory because of the variation between specimens.

From these results, it is clear that boundary conditions are important and changes
in their implementation can cause substantial differences in model predictions. Even
known conditions in a laboratory test can be represented in different ways, and sim-
plifications can lead to substantial errors. The endcapped trabecular bone specimen
should be very ‘easy’ to model and the situation becomes worse if the ends of the
specimen are free to move laterally, as Zhao [56] showed, since the coefficient of
friction between the bone and the loading platen is usually unknown. Where there
are more unconstrained degrees of freedom, such as in the whole vertebra model,
then the location of the constraints can play a major role and the replication of an
experimental test becomes increasingly more difficult.

Boundary conditions are often appliedwithoutmuch justification, and these exam-
ples demonstrate that there is a need for thorough sensitivity tests since subtle changes
in their application can lead to quite different results.

15.4 Discussion

This chapter provided evidence on the sensitivity of trabecular bone model outputs
to the assumptions made during their construction, for micro-FE and continuum-FE
models.

The level of sensitivity to several aspects, such as image segmentation and mesh-
ing, depended on the density of the specimen considered and the amount of defor-
mation modeled. Model results were less sensitive to the assumptions made with
the presence of higher density bone within the source specimen or with a low strain
assumption during virtual testing. This is an important consideration when applying
established methods to a new site in the body or new disease state.
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15.4.1 Segmentation

Micro-FE predictions are sensitive to the threshold value used to segment the bone
from the source image as this process affects both the total bone volume and can
affect the connectivity within. Therefore changes to the threshold value will affect
both macro behavior and that at an individual trabecular level. This sensitivity is
more pronounced for low density bone specimens. The segmentation process also
affects outcomes in the case of continuum-FE models which are based on BV/TV
values. It is unclear whether one modeling approach provides a lower sensitivity
to the image segmentation process as the available tests are not easily comparable
(Sects. 15.2.1.1 and 15.3.2.1). In the absence of an ideal threshold value, the segmen-
tation of the micro-structure should be as consistent as possible between specimens.
The best chance of this consistency is through the use of phantoms, user training and
automation where possible.

15.4.2 Meshing

The choice of optimum element type for micro-FE models is dependent on the
intended application. For example, a direct conversion from image voxels to linear
hexahedral elements may be a good choice where a linear analysis is sufficient,
computational cost must be controlled and only macro level behavior is of interest.
The representation of bending behavior of individual trabecular struts remains a
challengewith each element shape and typeof integrationdeliveringdifferent benefits
and drawbacks (Sect. 15.2.2.3). Ultimately the choice for a particular project will
likely be driven by the level of accuracy required and the computational resources
available.

Regardless of what other sensitivity analyses are undertaken, a mesh convergence
test is recommended for any new model or different application of an existing model
[23]. However, the choice of element size for continuum-FE models is somewhat
arbitrary. This chapter has discussed how the underlying structure, represented by the
element-specific material properties, is captured at different resolutions depending
on the element size. The image to material property conversion formula is likely
dependent on the element size and therefore can be calibrated for a particular choice.
The effect of element size is therefore corrected for during that calibration process.
For lower resolution source images (such as traditional hospital grade QCT) the
image resolution may provide a logical cap for the mesh resolution.

The choice of element integration for the representation of macro behavior using
continuum-FE models requires the consideration of similar factors to the represen-
tation of micro behavior using micro-FE models. For example, care should be taken
when using linear elements with standard integration if there is large deformation or
bending, and a sensitivity test is always a useful check.
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15.4.3 Image-to-Material Properties Relationship

Applying suitable material properties to finite element models of bone is challenging
and there is currently no consensus on the optimalmethod.Although the use of source
images provides a method of applying a realistic distribution of those properties, that
distribution is reliant on the accuracy of the imaging modality and the choice of
conversion formula. Relationships between image greyscale, density and material
constants are sometimes derived from in vitro material tests, sometimes from theory
and sometimes calibrated in silico against experimental data. Regardless the resulting
material distribution is dependent on specimen preparation and scanner settings,
underlining the importance of calibration phantoms during the image capture. In
addition it is possible for any image to contain artifacts which will skew the greyscale
distribution. The higher the power law in either micro- or continuum-FE methods,
the greater the effect of those artifacts.

Aswell as allowing the analysis of local trabecular behavior, themicro-FEmethod
can produce useful results with average homogeneousmaterial properties. In contrast
the continuum-FEmethod requires the calibration of a conversion formula in order to
create thematerial propertymap. This calibration requires the use of image phantoms
and knowledge of the bone type, density, and specimen-preparation. The use of
segmented BV/TV values rather than average greyscale is one way to eliminate
some of the variability between cases.

15.4.4 Boundary Conditions

Sensitivity to boundary conditions is an issue for both micro- and continuum-FE
models of bone. The choice of boundary conditions has been shown to have one the
most significant effects on apparent stiffness values of all of the aspects studied in this
chapter. It is easier to match model boundary conditions to experimental boundary
conditions where the latter are more constrained. Matching frictional properties at
free boundaries is challenging as these are often unknown. It is necessary to take care
with the choice of boundary constraints: contact conditions, even when frictionless,
can constrain movement more than simple nodal constraints.

15.4.5 Looking Forward

Both micro- and continuum-FE modeling techniques have advantages which should
secure them a place in the virtual representation of trabecular bone for the foresee-
able future. Continuum-FE can capture the inhomogeneity of the micro-structure
sufficiently well to generate stiffness and strength predictions at a macro level, while
keeping computational cost low enough tomakewhole bonemodels possible. In con-
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trast the computational cost of micro-FE is high making it currently more suitable
for the analysis of local behavior in small samples.

Information from sensitivity testing is a crucial aspect to be considered alongside
experimental data on tissue properties and comparative validation studies, which
together provide the necessary confidence in model predictions. The majority of
the sensitivity tests reported for trabecular bone models consider overall stiffness as
the output of interest. This trend is reflected in the studies detailed in this chapter.
Establishing the accuracy of the overall stiffness prediction is a natural starting point
for the development of thesemechanicalmodels of bone and is therefore themostwell
documented. However, advances in model sophistication are allowing the prediction
of local behavior and the simulation of bone failure. These developments currently
outstrip the availability of relevant sensitivity information. Sensitivity data, which
quantifies the effect of key parameters on these alternative modeling outputs, will be
an important part of next stage of evolution in this research area.
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Chapter 16
Neuroswarm: A Methodology to Explore
the Constraints that Function Imposes
on Simulation Parameters in Large-Scale
Networks of Biological Neurons

David Gomez-Cabrero, Salva Ardid, Maria Cano-Colino,
Jesper Tegnér and Albert Compte

Abstract Candidate mechanisms of brain function can potentially be identified
using biologically detailed computational models. A critical question that arises
from the construction and analysis of such models is whether a particular set of
parameters is unique or whether multiple different solutions exist, each capable of
reproducing some relevant phenomenology. Addressing this issue is difficult, and
systematic procedures have been proposed only recently, targeting small systems
such as single neurons or small neural circuits [16] (Marder and Taylor, Nat Neu-
rosci 14:133–138, 2011), [1] (Achard and De Schutter, PLoS Comput Biol 2:e94,
2006). However, how to develop a methodology to address the problem of non-
uniqueness of parameters in large-scale biological networks is yet to be developed.
Here, we describe a computational strategy to explicitly approach this issue on large-
scale neural network models, which has been successfully applied to computational
models of workingmemory (WM) and selective attention [2] (Ardid, J Neurosci Off J
Soc Neurosci 30:2856–2870, 2010), [3] (Cano-Colino et al., Cereb Cortex 24:2449–
2463, 2014). To illustrate the approach, we show in this chapter how our strategy
applies to the problem of identifying different mechanisms underlying visuospatial
WM. We use a well-established biological neural circuit model in the literature [6]
(Compte et al., Cereb. Cortex 10:910–923, 2000) as a reference point, which we then

D. Gomez-Cabrero (B) · J. Tegnér
Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine,
Karolinska Institutet, Solna, Sweden
e-mail: david.gomezcabrero@ki.se

D. Gomez-Cabrero · S. Ardid · M. Cano-Colino · A. Compte
Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS),
Barcelona, Spain

S. Ardid
Center for Computational Neuroscience and Neural Technology (CompNet),
Department of Mathematics and Statistics, Boston University, Boston, USA

M. Cano-Colino
Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown,
Lisbon, Portugal

© Springer International Publishing Switzerland 2016
L. Geris and D. Gomez-Cabrero (eds.), Uncertainty in Biology,
Studies in Mechanobiology, Tissue Engineering and Biomaterials 17,
DOI 10.1007/978-3-319-21296-8_16

427



428 D. Gomez-Cabrero et al.

perturb by using the Swarm Optimization Algorithm. This algorithm explores the
space of biologically unconstrained parameters in the model under the constraint of
preserving a solution defined here as a network in which the activity of model neu-
rons mimics the properties of neurons in the dorsolateral prefrontal cortex (dlPFC) of
monkeys performing a visuospatial WM task [7] (Funahashi et al., J Neurophysiol
61:331–349, 1989). The results are: (1) identification of a set of model solutions,
composed of alternative and, in principle, feasible and sufficient mechanisms gener-
atingWM function in a cortical network. In particular, we found that the dynamics of
interneurons play a main role in distinguishing among potential circuit candidates.
Secondly we uncovered compensatory mechanisms in a subset of the parameters in
the model. In essence, the compensatory mechanisms we observe in the different
solutions are based on correlations between sets of parameters that shift the local
Excitatory/Inhibitory balance in opposite directions. In summary, our approach is
able to identify distinct mechanisms underlying a same function, as well as to pro-
pose a dynamic solution to the problem of fine-tuning. Our results from the proposed
workflowwould be strengthened by additional biological experiments aimed to refine
the validity of the results.

Keywords Prefrontal cortex · Workflow · Ensemble analysis · Working memory
model · Neuroscience · Computational biology

16.1 Introduction

A branch of Computational Biology makes use of mathematical modelling (such as
differential ordinary equation systems) to understand better the mechanisms of the
biological system of interest. In those cases, models are tools to test and generate
hypotheses, to then validate experimentally. But the use of models is not trivial and
requires robust methodologies of data analysis, model generation [14, 22], parame-
ter estimation [4, 23], and experimental design [27]. A particularly crucial decision
in this process is how complexity and uncertainty are being considered during the
modelling [11, 13, 15]. However, themajor challenge in using computational models
under uncertainty is the generation of relevant hypotheses that are not exclusively
dependent on choices duringmodelling (such as parameter selection). In this chapter,
we provide a methodology for robust hypothesis generation in the context of Neu-
roscience and under parameter uncertainty; relevant work in the book addressing
similar challenges are described in [5, 15].

Mechanistic aspects of brain function can be studied with the use of biologically
detailed computational models. Those models detail relations and/or interactions
between entities through mathematical formulations that depend on a set of parame-
ter values. The first major success in modelling was the classical model of Hodgkin
and Huxley ([10] HHM) of the action potential. HHM was developed to provide
a mechanistically unified system description by mathematically organizing exper-
imental observations. Interestingly, HHM not only described known facts but also
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allowed to generate predictions that only many years later, when technical develop-
ment allowed, were experimentally validated [9]. The success of the model started
what is known nowadays as computational biology. Typically, a general approach for
modelling-based studies has three phases: (1) the collection of relevant experimental
facts and expert knowledge to be considered, (2) the mathematical description of
the system, and (3) the fine-tuning of the parameters to reproduce the “expected”
behaviours.

A critical question that arises from that approach is to what extent conclusions
depend on particular simulation parameters (see [5, 15]). However, to demonstrate
whether a model is unique in reproducing some relevant phenomenology can be
a tall order. Interestingly, the questions when more than one solution (parameter
set) reproduce expected experimental behaviours (which we will term “solution”
parameter sets), uncovermanyother critical questions such as: (1) are those parameter
sets providing different biological mechanisms or predictions? [5], (2) do parameter
sets group into families of solutions or do they provide a continuum of solutions?
Following these questions [16] proposed the need to investigate in populations of
parameter sets in order to discover compensatory mechanisms in neurons or circuits.

In the context of single neurons and small neural networks this problem has
been addressed by constructing and analysing databases of models compatible with
biological function [1, 20, 21]. Small networks of three interconnected cells could
reproduce the rhythmic patterns of activity in the crustacean stomatogastric ganglion
for millions of different, disparate parameter combinations [21]. In the analysis of
a cerebellar Purkinje cell models authors found 20 different solution models (i.e.
parameter sets compatible with experimental data) [1]. Furthermore, by studying the
parameter landscape created by the good models it was found that the parameter
space of good models could be defined by a set of “loosely connected hyperplanes”
[1].

In the present chapter we present a computational strategy to explicitly explore,
group and characterize parameter-sets on large-scale neural network models. This
strategy is similar to that described in [16], but adapted to deal with the complexity
and computational cost of large-scale neural simulations. We applied this strategy to
study a specific cognitive function, visuospatial workingmemory, which can bemod-
elled with a biological neural network [6] that mimics the properties and dynamics
of neurons in the dorsolateral prefrontal cortex (PFC) of monkeys engaged in ocu-
lomotor delayed response tasks [7]. In such tasks, the monkey is required to retain
the location of a visual cue during a delay period between the cue stimulus and the
memory-guided saccadic response, and PFC neurons reflect this memorized infor-
mation through selective persistent activation in the delay period [7].

The typical experimental design is depicted in Fig. 16.1a. The trial starts with a
blank screen containing just a central cross on which the monkey fixates its gaze to
initiate the trial (“pre-stimulus”). While fixating, a stimulus cue appears briefly in
one of eight possible locations equidistant from the fixation point (“stimulus”). After
cue presentation a delay period of a few seconds follows during which the monkey
needs to remember the location of the previously presented cue (“delay period”). At
the end of the delay period, the fixation cross disappears and the monkey makes a
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(a)

(b) (c) (d)

Fig. 16.1 The experiment, the model and the simulation results explained. a Three stages of the
experiment. In a first stage there is no stimulus and a blank screen is observed. In a second Stage a
visual stimulus is briefly flashed in one of 8 possible locations; finally in a third stage the stimulus
disappears but it must be remembered during few seconds. The task consists in reporting the location
of the briefly flashed stimulus after a delay of a few seconds and it thus require memorising this
location. c Topology of the neuronal network used tomodel neural activity during this task. Neurons
have a 1-D ring topology, and their position in the ring is associated to the possible location of the
stimulus. There are two concentric rings, a ring of pyramidal (excitatory) neurons (in blue) and a ring
of interneurons (inhibitory neurons, in red). The position of the two rings denotes the selectivity
of excitatory and inhibitory neurons. Neurons are connected according to their relative angular
distance on the ring. b Spontaneous firing pattern of the neurons over time. A point denotes a given
neuron (y-axis) firing in a given time (x-axis). d Persistent firing pattern of the neurons associated
with the location of the presented stimulus

saccadic eye movement to the location where he remembers the cue was presented.
In experiments, PFC neurons show tuned persistent activity in the delay period of
this behavioural protocol [7]. This experimental design can also be simulated using
a network model of excitatory and inhibitory neurons [6]. By arranging neurons
according to spatial selectivity (Fig. 16.1c), connectivity parameters can be tuned
so that strong local excitation and strong global feedback inhibition combine to
produce neuronal responses in line with experimental data. Figure16.1b, d shows in
rastergrams the activity of model pyramidal neurons in one tuned network (see next
section) during the pre-stimulus and delay period epochs, respectively [6]. Notably,
activity in the pre-stimulus epoch appears uniform and at low firing rates, and we
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term this condition “spontaneous activity”, and network activity in the delay period
is tuned and sustained, and we call this “tuned persistent activity”.

The methodology proposed here is similar to the one described in [8], which was
used to analyse a computational model of atherosclerosis. We update the necessary
steps to apply it in Neuroscience, in particular for the analysis of the PFC model
(see also [2, 3]). Interestingly our approach is able to identify: (1) compensatory
mechanisms, (2) characteristics of inhibitory neurons firing patterns that allow the
grouping of solutions, and (3) significant opposite compensatory mechanisms in
some of the groups identified. Therefore, our computational approach that explores
the “solution space” identifies relevantmechanisms to be further tested by appropriate
experimental designs.

Section16.2 of the chapter presents a review of the PFC model. Section16.3
details how feasible parameter sets are searched. The following section, Sect. 16.4,
summarizes the integrative analysis of the parameter sets that are considered to
be correct based on the experimental data. The final section, Sect. 16.5, presents
the conclusions regarding the utility of the proposed approach and summarizes the
biological results associated to PFC.

16.2 PFC-Working Memory Model

We used the PFC network model described in [6]. We refer the reader to this pub-
lication for a thorough account of the computational model and we provide here
only a succinct description. The network contains 1,024 excitatory neurons and
256 inhibitory neurons modelled according to the leaky integrate-and-fire formalism
[24]. Model neurons are arranged according to their preferred cue directions in a ring
topology as shown in Fig. 16.1c and they are interconnected via conductance-based
synapses with dynamics consistent with AMPA, NMDA andGABAA receptor medi-
ated synaptic transmission in the cortex. Specifically, AMPA and GABAA synaptic
conductances jump instantaneously when a pre-synaptic spike occurs and decay
exponentially with time constant 2 ms for AMPA and 10 ms for GABAA.

NMDA conductances are voltage dependent and their dynamics are defined by a
rise time (set to 2 ms), a decay time (set to 100 ms) and a saturation term such that
they become insensitive to high presynaptic firing rates.

ds

dt
= − 1

τs
s + αs x(1 − s)

dx

dt
= − 1

τx
x +

∑

i

δ(t − ti )

While the parameters defining these time dynamics are relatively well constrained
by experimental data, the strength of the conductances are much more unconstrained
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(a) Parameter Description

(b) Structured connectivity of the model.

Fig. 16.2 Parameters selected to vary in the PFC-model. a Parameter names, description and lower
and upper bounds are included. (∗) cross- and isodirectional components of these connections were
equally strong (i.e. J+ = 1; in this case, the value of σ is irrelevant; see panel b). (∗∗) corrected
from [6]. b Structured connectivity of the model. The synaptic connection strength decreases with
the difference in the preferred cues of two neurons, with strong interactions between neighboring
neurons and weak interactions between more distant neurons

and need to be tuned to achieve the required function. We impose however a topo-
graphical constraint, so that the strength of synaptic conductances is a function of
the difference in the preferred cues of the presynaptic and postsynaptic neurons. We
specified this function to be a Gaussian, defined by three parameters (see Fig. 16.2b):
thewidthσ , the tuning parameter J+, and the overall strength g. It has been shown that
if excitatory connections among excitatory neurons are such that synaptic strength
decreases with the difference in the preferred cues of two neurons, with strong inter-
actions between neighbouring neurons and weak interactions between more distant
neurons, the network has regimes of operation compatible with working memory
physiology: tuned persistent delay period activity (Fig. 16.1d) bi-stable with a low-
rate, unstructured spontaneous activity (Fig. 16.1b).

For a given set of parameters the model is simulated for 5 s in repeated trials.
Some trials are run without any phasic external stimulation to test for the stability
of the spontaneous activity (Fig. 16.1b). In other trial simulations (persistent activity
trials), a stimulus is applied by transiently injecting current to a subset of neurons
after the first second of simulation. Every time a model is run a numerical seed is
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(a)

(b)

Fig. 16.3 Evaluation functions in plots. a Expected firing rate for spontaneous activity. The max-
imum firing rate is limited to 8 sp/s, but penalized if more than 5 sp/s. Also there is a penalty
for the fraction of pyramidal neurons that are silent. b Expected firing rate pattern for persistent
activity. The maximum firing rate is limited to 100 sp/s, and penalized if it is more than 80 sp/s.
The minimum firing rate is 10 sp/s, and penalized if it is less than 30 sp/s

randomly selected that controls the timing of nonspecific external Poisson spiking
activity that depolarizes the network neurons and set a general random background
activity in the network. The output of the model for a given random seed is the
timing of the spiking events for all the neurons included in the model (rastergram);
examples of rastergramswith the desired patterns of activity are presented in Fig. 16.1
for persistent activity (Fig. 16.1d) and for spontaneous activity trials (Fig. 16.1b).
The stationary patterns in these rastergrams can be summarized with firing rates
(measures in spikes per second) computed in a final 4 s window of the simulation.
Firing rate plots are shown in Fig. 16.3. For the same parameter set the rastergram
and firing rates may differ between different trial simulations depending on the initial
numerical seeds selected.
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16.3 Neuroswarm: A Tool to Explore the Parameter Space

While the network solution of Compte et al. [6] (Fig. 16.1b, d) had qualitative features
consistent with experimental data, some aspects of model function did not match
quantitatively: themodel displayed a largegapbetweenpersistent activity to preferred
and non-preferred stimuli (>20 sp/s) while experimentally this is a narrower gap
(<10 sp/s); themodel required averyprecise symmetry in the translationally invariant
connectivity; connectivity parameters required a significant degree of fine tuning; and
neuronal activity in the persistent state was more stable in the model than observed
experimentally. These discrepancies could mark fundamental flaws in the model or
some of them could be specific of the dynamical regime ensuing from our particular
choice of parameters and could be alleviated in a different parameter regime. Here,
we will design a protocol to address this question by exploring network behaviour
in very different parameter configurations. The model has over 100 parameters, and
we selected 16 that we considered to be unconstrained by experimental data and
relevant candidates to regulate the expected behaviour of the model. The name of the
parameters, their ranges and their lower and upper bounds are detailed in Fig. 16.2a;
Fig. 16.2a includes also the values originally considered in [6].

A likely hypothesis is that there is no unique but several combination of these
parameters that are able to produce network activity as in Fig. 16.1b, d, in qualitative
agreement with experimental data [7]. To test this hypothesis we need to find dif-
ferent parameter sets that are in agreement with the observed experimental results.
To this end, we need to define two major elements: (1) a method to evaluate the
correspondence of network function with the expected dynamics (Fig. 16.1b, d) for
each parameter set, and (2) a method to explore the parameter space to search effi-
ciently for parameter sets that match the required function optimally. In addition,
and considering the computational costs implicated in the exploration of this high-
dimensional parameter space, we designed a heuristic approach to extend the search
by exploring the linear relations between good candidate solutions. We termed our
implementation of this procedure “Neuroswarm” because it used a Particle Swarm
algorithm to search for optimal solutions, but it can be readily extended to other
optimization procedures. In the following we describe each of the steps involved.

16.3.1 Evaluating a Parameter Set

We defined a set of network activity properties expected from a “feasible” parameter
set, and we specified each such property in a mathematical fitness function of the
simulated network activity. Thus, after each simulation we could compute one fit-
ness value for each of the expected network activity properties so that we could then
compute a single evaluation value for each parameter set as a weighted sum of all
these fitness values. The overall evaluation function is a cornerstone in the search-
ing process as it defines the landscape and therefore it is largely associated to the
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difficulty of the search. Evaluations are designed to have linear components to allow
the optimization over gradients. Fitness functions were computed from the spiking
times of only excitatory neurons in each simulation where for every parameter set
we ran five simulations with different initial random seeds. The five fitness functions
that we employed were the following:

• FF1. Maximum firing rate in spontaneous activity: a maximum firing rate of
8 sp/s in spontaneous activity. A linear fitness function taking values from 0 to 1
starts penalizing maximum firing rates of 5 sp/s (penalization of 0) and penalizes
with a maximum value of 1 firing rates of 8 sp/s and above. We ran 5 different
network simulations with different random seeds and took the largest penalization
as fitness value here. See Fig. 16.3a.

• FF2.Percentage of silent neurons in spontaneous activity: the amount of excitatory
neurons being silent (firing rate of 0 sp/s) during spontaneous activity is penalized.
The fitness function takes the fraction of silent excitatory neurons. The maximum
fraction computed from5 simulations is taken as theFF2 evaluation. SeeFig. 16.3a.

• FF3. Maximum and minimum firing rate in persistent activity: for excitatory cells
targeted by the stimulus in persistent activity trials, the preferred peak firing rate
is in the range 30 sp/s to 80 sp/s. A linear fitness function starts penalizing max-
imum firing rates of 80 sp/s (penalization of 0) up to 100 sp/s (penalization of
1). Similarly, the linear fitness function starts penalizing minimum firing rates of
30 sp/s (penalization of 0) up to 10 sp/s (penalization of 1). See Fig. 16.3b. The
penalization is computed for 5 simulations and the maximum is selected.

• FF4. Asynchronous activity: parameter sets that generate extremely synchronized
activity patterns during spontaneous and/or persistent activity are also penalized.
For 5 simulations of each type we compute the average binary Pearson correlation
between all pairs of neurons computed over windows of 4 ms. The maximum
among the 5 values is selected as FF4. In Fig. 16.4 we provide examples of what
we consider asynchronous activity (upper panel) and synchronized activity (lower
panel).

• FF5. Homogeneity: we run five simulations with different random seed for each
of the two conditions of interest: spontaneous activity (Fig. 16.1b) and persistent
activity (Fig. 16.1d), and we penalize networks that did not provide stable results
across these five simulations in each case. The penalization is computed by sub-
tracting to 1 the average of the p-values computed from comparing the firing rate
distributions across pairs of simulations by the Kolmogorov-Smirnov test; a value
close to 0 denoted highly correlated distributions.

Finally, each fitness function had an associated weight to compute the total fitness
evaluation value (TFEV) as its weighted average. We found that it was necessary to
assign the highest weights to FF3 (5×103) and FF2 (103) fitness functions described
above in order to find satisfactory solutions; the weights assigned to other fitness
function were 102, 102 and 100, respectively for FF1, FF4 and FF5. Thus, for each
parameter set, 5 simulations were run in each condition (spontaneous activity and
persistent activity), one fitness value was obtained by evaluating the ensuing spik-
ing activity for each of 5 fitness function and this was all combined in one single
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Fig. 16.4 Asynchronous
versus Synchronized neuron
activity. Rastergrams
showing examples of what
we consider a asynchronous
and b synchronized activity

(a)

(b)

evaluation value (TFEV) that characterized how well activity for this parameter set
matched the required working memory function depicted in Fig. 16.1. The objective
was then to find those parameter sets that yielded the lowest TFEV.

16.3.2 Exploring the Parameter Space

We sampled the parameter space in order to find parameter sets which yielded sim-
ulations with stable spontaneous activity and tuned persistent activity as illustrated
in Fig. 16.1 (we denote these sets as feasible parameter sets, FPS). We assessed
network function for each parameter set using the fitness functions defined above.
Because of non-linearities both in the model and in the parameter set evaluation,
no exact algorithm can be used to find the parameters that minimize the evaluation
value. We used instead a heuristic algorithm to search for FPS: the Particle Swarm
Optimization Algorithm (PSO; [12]). As a black-box optimization algorithm, the
PSO can operate with any fitness function and it was originally designed to search
optimally in a hyperspace of real numbers [12]. More detailed description of the
algorithm is provided in [4] elsewhere in this volume. In brief, each model instan-
tiation defined by a particular choice of the values of 16 parameters (Fig. 16.2a)
represents one particle in a 16-dimensional space in the PSO. We run simulations
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for each network model (particle) and compute the TFEV value for that particle. By
working simultaneously with a large number of particles, PSO establishes parameter
updates that move all particles towards the particle with the best TFEV value, while
also attracting each particle towards its previous best evaluation. This optimization
process has been shown to be effective in several applications [19] and the authors
of this chapter have shown its usefulness in several cases in Neuroscience [2, 3].

Due to the high computational demands (in our equipment each network simula-
tion ran for approximately 15min and each iteration of the PSO algorithm required
500 simulations, for near 50 iterations in total), we executed all simulations in parallel
in a computational facility with 200 available CPUs and with a modified parallelised
code (Grid-SuperScalar technology at Barcelona Supercomputing Center—Centro
Nacional de Supercomputacion for which we adapted the code).

To sample among the FPS we ran PSO 31 times, in each run we considered 50
particles, with a maximum of 50 iterations. An earlier stop was considered if the
method was not finding a better-evaluated solution for more than 15 iterations. To
define the working FPS we (1) first selected for each PSO run the best evaluated
parameter set; then (2) we discarded 2 parameter sets because they were poorly
evaluated (PSO did not find good solutions). Finally (3) non-filtered best solutions
were used to define thresholds for the fitness functions (considering themaximum for
each fitness function). Those thresholds (defined as 110% of the maximum values)
were used to define the selection criteria that defined FPS from all the parameter
sets evaluated in all PSO runs; by doing this we were able to recover more than one
high-quality parameter set per PSO run. In the analysis, FPS denotes the original 29
parameter sets while rFPS denotes FPS extended with those high-quality recovered
parameter sets.

16.3.3 Increasing the Set of Solutions

Once we had FPS we sought to explore the relation between them by simulating net-
works (parameter sets) that interpolated between them. We designed an exploratory
greedy search of the parameter space. For each pair of the best solutions of the 31
PSOwe investigated 9 equidistant points in the linear path between them in parameter
space. We call these linearly interpolated parameter sets LIps. Figure16.5 shows an
example of themethodology, C1, C2 and C3 are the best solutions, the lines represent
the shortest path (line) in 16 dimensions between each pair; each cross represent a
new parameter set to be evaluated, a (un)filled cross denotes a (un)feasible model. By
using this procedure we can evaluate if different solutions form part of a large con-
tinuous region of solutions or else if they are separated by regions without solutions,
suggesting that they could constitute qualitatively different solutions.
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Fig. 16.5 Extending the solution space. All the linear paths between every pair of PSO’s best
solutions (FPS) are evaluated. For each linear path 9 equidistant points are evaluated. We observed
that no single path contained all parameter sets evaluation as good (see “Truncated straight line”).
In addition, a few possible new clusters of solutions were identified in some paths (see “Possible
new cluster”)

16.3.4 Testing the Allowed Range of Parameters

One concern in this whole procedure is that one needs to define beforehand an
allowed range for each of the parameters explored (see Fig. 16.2a), and this may
limit the capacity of the search algorithm to find the best solutions. We performed
one analysis to test this, and we iterated the procedure if we found that some of the
ranges needed to be expanded.We plotted the density functions of the FPS (Fig. 16.6,
black continuous), FPS extended with new solutions by linear paths (LIps, Fig. 16.6
black discontinuous), and the set of all parameter sets explored (Fig. 16.6, grey). By
analysing FPS density plots we can confirm that no parameter had a large number of
FPSs clustered at one of the imposed range limits, so that parameter boundaries did
not seem to be a limiting factor to find FPS. Interestingly, densities are in many cases
centred in the point equidistant between the lower and upper bound; we consider
two explanations for this observation: (a) it may reflect a bias generated by the range
definition (centred values are exploredmore often in random trajectories) and (b) this
may denote parameters that have no large effects on the network described by the
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Fig. 16.6 Ranges of parameter in good solutions. For each parameter we evaluated the density of
the values observed in all parameter sets evaluated (grey), FPS (black, continuous line), and rFPS
(black, discontinuous line)

parameter set. Importantly, despite the benefits of extending FPS by linear paths, we
consider that LIps reflect biases and have to be considered carefully when statistical
analysis in parameter space are conducted.

16.4 Results

We applied the procedure described above and we found 93 different networks that
could produce spatial working memory function as described in Fig. 16.1; 29 were
identified in FPS and the rest were included through linear path extension (LIps,
Fig. 16.5). We then analysed these solutions with the aim of identifying relevant
characteristics of the solutions and parameters associated to them.
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(a) (b)

(c) (d)

Fig. 16.7 Identification of solution grouping and compensatory mechanisms. a Shows the FPS’s
PCAwith all parameter sets evaluated plotted in gray in the plane of the 2 first principal components.
Red dots are FPS with two peaks in the firing rates of inhibitory neurons (see Fig. 16.7a, b) and blue
dots are FPS with one single peak in inhibitory neuron activity (blue, see Fig. 16.7c, d) . b Similar
to (a) but blue dots mark FPS where inhibitory neurons had activity centred around the stimulus
duringpersistent activity (Fig. 16.7a, d) and red dotsmarkFPS for peak inhibitory activity opposite to
stimulus location (Fig. 16.7b, c). c Identified Compensatory mechanism in FPS between GEE,NMDA
and J+EE. Black dots represent solutions in FPS, while grey dots represented discarded parameter sets
evaluated during the parameter search. d Opposite compensatory mechanism between GEE,NMDA

and σI1: solutions with inhibitory activity centred around the stimulus had a negative correlation
betweenGEE,NMDA andσII (ρ = −0.66, black dots), while this correlationwas positive for solutions
with inhibitory activity maximal 180◦ away from the stimulus (ρ = 0.69, red dots)

16.4.1 2-D Representation of FPS to Detect Structure
in the Solutions

We applied Principal Component Analysis (PCA) to the parameter sets explored
by our search algorithm (Fig. 16.7a). PCA analysis (see [4]) allowed dimensionality
reduction from the16parameters to the2first principal components (which accounted
for 33% of the variance). This bi-dimensional representation allowed us to identify
that many of the explored parameter sets clustered around the best solutions (FPS,
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Table 16.1 Principal component analysis of FPS

Parameter PC1 PC2 PC3

GEE,AMPA 0.31 −0.27 0.33

GEE,NMDA 0.35 −0.25 −0.35

GEI,AMPA 0.31 −0.02 −0.15

GEI,NMDA 0.03 0.16 −0.56

GIE 0.26 −0.37 0.02

GII −0.23 −0.06 −0.40

σEE −0.23 −0.05 −0.23

σEI −0.02 0.20 0.05

σIE 0.07 0.10 −0.10

σII 0.08 −0.08 0.27

J+EE −0.23 0.35 0.29

J+EI 0.42 0.16 0.04

J+IE 0.32 0.33 −0.21

J+II −0.19 −0.44 −0.02

gext,E 0.16 −0.27 −0.01

gext,I −0.33 −0.35 −0.08

shown in red or blue). We may consider this initial clustering to be a consequence of
the searching algorithm; however, from the observations during LIps computation
(Fig. 16.5) we observed that many linear combinations of FPSs were not considered
with quality enough to be part of the FPS; therefore we may conclude that FPS is
non-convex (but we cannot conclude anything about parameter connectivity in the
topological sense [18]).

The loadings of the 3 first PCA components (which accounted for 46% of the
variance) can be found in Table16.1. Careful inspection of these loadings could help
identify what parameters of our simulation were most informative in distinguishing
between the different FPS. We found that connectivity strengths, especially among
excitatory neurons, and the tuning strengths of all neuron connectivities were dis-
criminating factors between solutions, while the width of the connectivities did not
seem to differentiate them significantly.

16.4.2 Clustering Solutions in the Parameter Space

Next we aimed to identify if solutions that are close in parameter space were shar-
ing specific characteristics in their network activity. As a first exploratory approach
we considered the solutions as they were mapped on the 2-D PCA reduction.
We investigated the rastergrams and firing rates of excitatory and inhibitory neu-
rons. FPS are clearly separated into subgroups if we inspect the activity of inhibitory
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(a) (b)

(c) (d)

Fig. 16.8 Characterization of inhibitory rasters. Four types of inhibitory rastergrams are shown. In
each case, 5 simulations initiated with different random seeds are shown, both for tuned persistent
activity (PA 1–5 in the upper panels) and for spontaneous activity trials (SA 1–5 in the lower panels).
These four examples illustrate: a single peak of activity centred at 180◦; b single peak of activity
not centred at 180◦; c two peaks of activity, not centred at 180◦; and d two peaks of activity centred
at 180◦

neurons. We considered two characterizations of inhibitory rasters: (1) CvsNC: cen-
tred around the presented stimulus (180◦, Fig. 16.7a, d) or not centred (Fig. 16.8b, c);
and (2) 1vs2: 1 peak (Fig. 16.8a, b) or 2 peaks (Fig. 16.8c, d). In both characterizations
there is a separation between groups in the PCA, see Fig. 16.7a, b.

We identified with a Kruskal-Wallis test that J+EI was significantly different (after
multiple testing correction) in comparison CvsNC, while J+II changed significantly
in the 1vs2 comparison. Interestingly, J+EI and J

+
II were the most relevant parameters

in the first and second component of the PCA, respectively.
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Fig. 16.9 PFC model solutions are linearly unconnected, but new solutions are Inferred: example
of a novel cluster in the Linear Path between two FPS-B. The linear path (grey dashed line) between
two best solutions (A and B) from PSO is inspected at 9 interpolating points. The red points in the
line denote new feasible solutions. For A, B and 3 new solutions the rastergram and firing rates of
excitatory (left) and inhibitory (right) are shown. Rastergrams are provided for 5 simulations with
different seeds. Average firing rates over the delay period for excitatory and inhibtiory neurons are
plotted in the rightmost panels, each simulation with a different line to show diffusion of activity
in different trials

16.4.3 LIps Identifies Transition Between Solution Types

In LIps we extended FPS by investigating linear combinations of FPS parameter sets
(Fig. 16.5). Through this methodology we observed that a straight line of feasible
solutions connected no pair of solutions; therefore we validate the non-convexity of
FPS.

In LIps we identified novel clusters of high-quality parameter sets; importantly,
we found that in all cases the novel cluster firing rates are similar to those of one of
the pair of solutions that define the linear combination, possibly suggesting a non-
linear connection between them. Figure16.9 shows an example of a novel cluster.
We observe that in this case the characteristics of the behaviour of the novel cluster
are similar to those found in Solution B. However, we observe a gradual transforma-
tion that reduces the high bump diffusion observed in solution A to the non-existent
diffusion of solution B. We conclude that the study of the linear paths helps in the



444 D. Gomez-Cabrero et al.

identification of those parameters associated to specific characteristics. Interestingly,
the major differences between Solution A and Solution B are not occurring in pyra-
midal neurons but in inhibitory neurons.

16.4.4 Studying Compensatory Mechanisms

We were interested in observing whether there were compensatory mechanisms
between the parameters that may help to alleviate the fine-tuning problem bio-
logically. We measured this by computing Spearman non-parametric correlation
between the values of the parameter sets. We considered only parameter sets in
FPS, without including the linear combinations of those, to prevent introducing an
artificial bias. Table16.2 shows all correlations. Among them, we selected those that
were statistically significant, strong absolute correlations (| ρ | > 0.5). We found
three compensatory mechanisms of interest: (1) GEE,NMDA versus J+EE (ρ = −0.63,
Fig. 16.8c); (2) J+EI versus J

+
IE (ρ = 0.62, expected positive correlation); and (3) J+EI

versus gext,I(ρ = −0.53). These compensatory mechanisms can be interpreted as
addressing critical principles of network operation that sustain the required work-
ing memory function. Thus, the first of these compensations, relating negatively
the strength of GEE,NMDA and the tuning of excitatory connections J+EE, seems
to work to keep a sufficient level of excitation locally: if the strength of excita-
tory synapses is strong enough, local potentiation relative to other synapses is not
required andmay actually lead to unreasonably high firing rates. The second compen-
satory mechanism (positive relation between the tuning of excitatory-to-inhibitory
and inhibitory-to-excitatory connections) suggests a control of the spatial specificity
in the local excitation-inhibition loop. Finally, the third compensation addresses the
local excitation-inhibition balance: if inhibitory cells have high spontaneous activ-
ity (as a result of increased gext,I), local excitation from excitatory cells should be
reduced. These particular requirements for the operation of working memory net-
works have not been scrutinized in previous studies and suggest new avenues to study
the conditions for working memory operation in such networks.

Finally, we also searched for compensatory mechanisms that were opposite in
different sub-groups as defined by 1vs2 and/or CvsNC. We found one such oppo-
site compensatory mechanism relating GEE,NMDA and σ in the CvsNC classification
(Fig. 16.7d). Thus, for solutions in which inhibitory neurons presented a stable firing
pattern with maximal activity centred around the stimulus location (i.e. congruent
with maximal activity in excitatory neurons), these two parameters correlated nega-
tively, while they correlated positively for those solutions where inhibitory neurons
had activity profiles peaking at the same location as excitatory neurons (Fig. 16.7d).
This relationship is intriguing and suggests a different mechanistic link between
within population interactions (inhibition to inhibitory neurons, and excitation to
excitatory neurons) for each of these two network function organization (CvsNC).
This remains to be explored in depth in a future study.
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16.5 Conclusions

We show here that large-scale biological simulations of neural networks for specific
cognitive functions can be evaluated for generality using an optimization procedure
in their high-dimensional parameter space. Typically, these simulations are very
unconstrained and generality has been tested using mathematical simplifications
in mean field formulations. While this approach is indeed very general, the initial
assumptions on the simplifications to use may constrain the validity of the results to a
subset of possible solutions. Our computational workflow approach can classifywhat
parameters are more critical for the identified behaviour, and what compensatory or
synergistic associations between parameters are imposed by the required behaviours.
These relationships can guide simplifications for further mathematical analysis.

Our study provides two major conclusions arguing for the exploration of multiple
high-quality parameter sets (or solutions), which support and extend those shown
in Marder et al. [17]. First, to consider a single solution (such as a single set of
parameters fitting the expected data) provides limited insights on a given model:
are we sure that the conclusions observed in a single solution (parameter set) are
true for all feasible parameter sets? Secondly, the characterization of the set of
feasible parameter sets provides a deeper understanding of the model because it can
(a) characterize and enumerate the set of hypotheses that cannot be rejected based
on the present experimental and theoretical understanding of the phenomenon; (b)
identify specific experiments that can be most informative in distinguishing between
these pending alternative scenarios; and (c) provide insights about what parameters
of the models are critical, and could be used as targets for specific manipulations in
subsequent simulations.

We have made of use of the approach proposed in the present chapter in other
computational works [2, 3]; where this parameter exploration procedure was used
to confirm that a specific property observed in one model was general to the class of
possible models constrained by experimental and behavioural results. See also [5]
for other parameter exploration-based approaches to generate hypothesis.
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Chapter 17
Prediction Uncertainty Estimation Despite
Unidentifiability: An Overview
of Recent Developments

Gunnar Cedersund

Abstract One of the most important properties of a mathematical model is the
ability to make predictions: to predict that which has not yet been measured. Such
predictions can sometimes be obtained from a simple simulation, but that requires
that the parameters in the model are known from before. In biology, the parameters
are usually both not known from before and not identifiable, i.e. the parameter values
cannot be determined uniquely from available data. In such cases of unidentifiability,
the space of acceptable parameters is large, often infinite in certain directions. For
such large spaces, sampling-based approaches that try to characterize the entire space
have difficulties. Recently, a new type of alternative approaches that circumvent
this characterization problem has been proposed: where one only searches those
directions in the space of acceptable parameters that are relevant for the uncertainty
of a particular prediction. In this review chapter, these recently proposed methods
are compared and contrasted, both regarding theoretical properties, and regarding
user experience. The focus is on methods from the field of systems biology, but also
methods from biostatistics, pharmacodynamics, and biochemometrics are discussed.
The hope is that this reviewwill increase the usefulness and understanding of already
proposed methods, and thereby help foster a tradition where predictions only are
deemed interesting if their uncertainties have been determined.
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17.1 Introduction

Mathematical modelling has been a part of modern science already since its early
foundation. In those early days, different hypotheses concerning the movements
of the planets were incorporated in mathematical models, and the ability of these
hypotheses to describe available data and to produce reliable predictions were used
as the basis for choosing between the hypotheses. Those two components—rejections
and predictions—are still the two corner stones of mathematical modelling as it now
at last is getting more widely used also within biology (Fig. 17.1a). In this chapter we
will deal with the latter of these two components, predictions. More specifically, we

(a)

(b) (c) (d)

Fig. 17.1 a The two main steps of model-based data analysis: hypothesis testing and prediction
analysis. The first step has been dealt with in previous chapters (e.g. [26]), and leads to rejections
or tentative acceptances of models. The second step is dealt with in this chapter, and identified
predictions feeds back to the design of new experiments, or in general to new knowledge regarding
the original hypotheses. b–d If you know the uncertainty of the prediction, you can in before-hand
guarantee that the experiment will give you something, independently of the outcome. In (b), the
experiment is done to test themodel.Only if the experimental data (green) lieswithin the prediction’s
uncertainty tag (blue area) will the model be accepted. In (c), the experiment is done to further
determine the parameters: the more uncertain the prediction, the more the space of the acceptable
parameters will be constrained by the data. In (d), the experiment is done to distinguish between the
two models: independently of the experimental outcome, at the most one of the models will remain
non-rejected after the new data point has been collected. The main result reviewed in this chapter
regards how to go beyond characterization of all individual parameter trajectories (such as ŷ( p̂1)
and ŷ( p̂2) in (b)) to methods that only looks for those parameters that give extreme predictions
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will make an overview of recent advances in methods that allow us to produce useful
predictions also in biology: predictions that take into account the known uncertainties
in data and prior knowledge, and convert these to predictions with uncertainty tags
(Fig. 17.1b). Importantly, these newmethodswork andmay identify well-determined
predictions also in the case of unidentifiable parameters.

Several of the herein presented methods are only a few years old, and it is there-
fore important to emphasise how important a development these methods are. This
importance comes from the fact that the uncertainties in biology and medicine are
so much bigger than corresponding uncertainties within physics, and that the classi-
cal methods for generating predictions with uncertainty tags therefore no longer are
useful. These uncertainties are of at least two types: structural and parametrical. The
structural uncertainties are bigger in biology, because there aremore unknown details
that make up each hypothesis. In physics, traditional hypotheses have been about the
laws of nature, and e.g. whether these follow relativistic or Newtonian mechanics.
In contrast, in biology, a hypothesis is often concerning the structure of a part of a
biological network, andmost meaningful hypotheses regarding such a network are in
themselves containing many structural uncertainties. For instance, a hypothesis may
be that a certain type of feedback generates a specific behaviour, such as an overshoot
[4]. This hypothesis has many potential implementations, and is thus corresponding
to many sets of equations, e.g. corresponding to different assumptions regarding the
kinetic laws describing the involved reactions. The second type of uncertainty con-
cerns the values of the parameters. In other words, even if one has made all structural
decisions, e.g., concerning whether to use mass action or Michaelis-Menten rate law
expressions, the values of the kinetic parameters that are to be used in those rate
expression are still unknown. This again stands in stark contrast to the situation in
physics, where most parameters are natural constants, which can be determined once
and for all, and which already have been calculated prior to the modelling.

This second problem, that of uncertain parameters, is often referred to as uniden-
tifiability, and it has been extensively studied in the literature. Identifiability is often
considered to exist in two types: structural and practical. Structural identifiability has
to dowith the structure of the equations, and asks the questionwhether the parameters
in principle can be obtained from those equations, if measurement uncertainty and
unsufficient excitation not would be an issue. Although much beautiful theory has
been produced for structural identifiability examinations, e.g. based on differential
geometry [18, 25], this question is not too important for biological applications,
where measurement uncertainty and insufficient excitation often are major prob-
lems. Therefore, the second type, practical unidentifiability analysis, which takes
into account the specific data set at hand, is much more relevant. Much early analysis
of practical identifiability has been concerned with the eigenvalues of the Hessian
(i.e. the second-derivative) of the cost function. If the predicted output is linearly
dependent on the parameters, this Hessian can be proportional to the inverse of the
covariance matrix of the parameter uncertainties [17]. Unfortunately, for most bio-
logical problems, the assumption of linearity is not fulfilled, and the Hessian then
only gives a local measure of parameters, at a probably non-unique point in the para-
meter space. The result of such a Hessian-based analysis is therefore hard to use.
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For this reason, methods that make global assessments are more interest. There are
attempts to produce global versions of the Hessian approach (e.g. [24]), but these do
not solve the fundamental problem of linearity. A more promising approach, which
also is intuitive and easy to implement, is the method based on the profile of the
likelihood, simply called profile likelihood (PLH). This approach has been known
for decades [21], but has not been used within the systems biology community until
recently [23].

Several of the chapters in this book [11] have dealt with various ways to identify
and handle uncertainty (e.g. [14]), but this is the only one that exclusively deals with
predictions. Predictions are important to characterise, with uncertainty tags, for a
wide variety of reasons. First and most importantly, predictions are what feeds back
to the experiments, and therefore closes the experimental/theory loop (Fig. 17.1a),
which produces an ever-evolving understanding of the system. Here it should be
stated that both well-determined predictions (herein called core predictions) and
poorly determined predictions (herein called suggestions or beach statements) are of
interest: core predictions allow you to test the quality of the model (Fig. 17.1b), and
beach statements are important because measuring themwill produce a big improve-
ment in the overall well-determination of the parameters in the model (Fig. 17.1c).
Note that an important special case of the first usage occurs when you have two
different core predictions from two different models (Fig. 17.1d); then the experi-
ment ensures that at least one of the model structures will be rejected, independently
of the outcome of the experiment. Second, even those predictions that cannot, or
will not, directly be tested experimentally are interesting because they do provide
a deeper understanding of the studied model: what are the key properties that have
to be fulfilled in this system in order for it to produce the data, how is the model
actually producing the observed behaviour? Third, reliable predictions are useful in
a medical context. If some specific prediction of the model has been shown to be
useful as clinical markers, e.g. to correctly diagnose a patient, it is important that
that prediction is obtained with a correct degree of certainty. Fourth, well-determined
predictions in a model means that it is useful for interacting with other models, in a
supermodel. Say for instance that the first model describes the internal dynamics of a
specific organ, and that its input-output profile is well-determined from experimen-
tal data. Then this organ model can be used in a hierarchical model, incorporating
several organs and their cross-talk, even though some of the internal predictions in
the model may be uncertain [22]. Finally, note that prediction uncertainty is not the
same as parameter uncertainty: all parameters may be undetermined in the model,
even thoughmany well-determined predictions exists. For all these reasons, methods
that deals with prediction uncertainty, and that can handle the in biology common
situation of unidentiability, are of utmost importance.

All in all, to find predictions with uncertainty is therefore an important subject,
and it is therefore interesting to look at some of the recent developments that have
been done within the field. The rest of the chapter is structured as follows. First some
basic notations regarding ODEs are introduced. Second, the most straightforward
and simple approaches are introduced, which simply collects all found parameters
that seem acceptable. Third, the recent developments regarding methods based on
profiling the likelihood and modified optimization problems are introduced, and the



17 Prediction Uncertainty Estimation Despite Unidentifiability … 453

different variants are contrasted and discussed. These new methods are then also
compared to three other important related approaches: Bayesian methods, cluster
Newton, and neutral parameters. The chapter ends with a summary, and with a
discussion of what the price is of not bothering with prediction uncertainty.

17.2 Basic Notations

The followingpresentation is done in the frameworkof ordinarydifferential equations
(ODEs), but most concepts and methods hold equally well for all systems for which
there exists a predictor, and the ability to form a likelihood function. Now follow
quite a few notations. AnODE-basedmodel is henceforth described by the following
notations:

ẋ = f (x, px , u) (17.1a)

x(0) = x0 (17.1b)

ŷ = g(x, px , py, u) (17.1c)

where x are the states, usually describing the concentration or amount of various
substances; where ẋ represents the derivative of the states with respect to time, and
where f is the non-linear smooth function used to calculate these derivatives; where
px are the parameters used to calculate f , usually corresponding to kinetic rate
constants; where u is the input, which may depend on time, and which is usually
known and controlled by the experimentalist; where x(0) contains the values of
the states at time t = 0, and where these values are described by the parameters x0;
where ŷ are the simulatedmodel outputs corresponding to themeasured experimental
signals; where g is a smooth nonlinear function; and where py are parameters only
appearing in the measurement equations. Note that x , u and y may depend on t ,
but that the notation is dropped unless the time-dependence needs to be especially
stated, as in Eq. (17.1b). Note that at this stage there are three types of parameters,
with potentially unknown values, and that all unknown parameters are collected in
the parameter p, i.e. currently

p = (px , x0, py) (17.2)

Finally, the term parameter requires some further comments, since its usage opens
for two interpretations. In some cases, a parameter means a point in the parameter
space; in such cases the terms parameter point or parameter value will typically be
used. Similarly, to refer to an individual element pi in the parameter vector p, the
term individual parameter will typically be used.

The three equations (17.1) form a model structure, which is denotedM, and this
model structure is turned into a specific model, denotedM(p), if the parameters are
set to specific values. Now, assume that the N measurements are collected in a set Z ,
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Z = {y(ti )}N
t=1 (17.3)

where y(ti ), describes the measurement vector at time ti . Unless otherwise stated,
the null hypothesis is that the considered model structure is true, i.e. that

y(ti ) = ŷ(ti , p0) + ν ∀ i = 1...N (17.4)

where p0 denotes the“true” parameter values (which exists if the null hypothesis is
true), and where ν is a noisy signal that follows some distribution denoted D. In this
chapter, the term ‘explanation’ is used to describe a hypothesis that not only should
produce correct predictions mathematically, but also do this using mechanisms that
make sense biologically.

17.3 Simple Approaches to Identify Predictions
with Uncertainty

The underlying reasonwhy predictions are uncertain is that there aremany parameter
points that all correspond to an acceptable agreement with available data and prior
knowledge, and therefore must be considered as non-rejected. The formal decision
of whether a parameter is to be considered as rejected or not is taken using a cost
function, denoted V(p), and a cut-off, denoted δ (aspects of choosing V(p) and δ

are discussed in section “The cut-off level” below). In other words, if the set of
non-rejected parameters is denoted A, it can formally be defined as

A := {p : V (p) ≤ δ} (17.5)

where “:=”means that the left hand side is defined by the right hand side.With this set
A formally defined, a basic principle of identifying parameter uncertainties presents
itself: simply find the parameter points within A that gives a maximal and minimal
value of the considered prediction. This is the principle of frequentist approaches,
and it is contrasted to the Bayesian approaches later in this chapter. In themost simple
approaches, the search for maximal and minimal values of the considered prediction
within A is simplified to the search for maximal and minimal values within an
approximation of A (Step 1 in Fig. 17.2). This approximation can be obtained by
traversing A in different ways, and then saving the encountered parameter points.
In [4], this traversing was done using a modified optimization approach, which uses
multiple simplexes instead of one, to more fully cover the parameter space. Various
alternatives to ordinary optimization and parameter estimation approaches that can
be used for this are reviewed e.g. in [8]. Another approach sometimes used is based
on the conventional PLH [23]. As the profiles are traversed to search for parameter
uncertainties, the parameter points are saved, and then analysed with respect to the
considered prediction. However, the limitation of these approaches is that there is
no guarantee that the most extreme predictions have been found. In contrast, such a
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Fig. 17.2 The three main steps involved in prediction uncertainty assessments. a Step 1 is simply
to make a point-wise approximation of the true space of acceptable parameters, A. In Bayesian
approaches, this is the only step, and then the space is approximated so that the parameter points
are most dense where the most likely parameters are. b Step 2 lies at the heart of the most recent
developments, which primarily are in focus in this chapter. On has then picked a specific prediction,
probably because Step 1 judged it to be well-determined, and then does a targeted approximation
for that particular prediction. The most important things are to find the max and min values that the
prediction can obtain, while still remaining inA. c Step 3 is in the core prediction approach simply a
validation that the prediction rejection really holds, if the measured value lies outside the prediction
uncertainty. In PPL, this step also involves assessments of profiles. Figure adopted from [6]

guarantee is obtained, at least in principle, by the newly developed approaches which
modify the PLH to instead deal with prediction uncertainty, using various modified
optimization problems.

17.4 PLH-Inspired Methods Based on Modified
Optimization Problems

The now presented approach has recently been presented in different forms, based
on different theoretical traditions, but ending up in similar but not identical methods.
The following presentation is an attempt to bring these approaches together into a
joint description, where similarities and differences more easily can be highlighted.
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17.4.1 The Idea

Consider a specific prediction denoted z. This prediction can be anything that can be
calculated using the given model structure and a specific parameter point, p. In other
words, z must be a function that depends solely on the parameters, z = z(p), but it
can otherwise be anything of interest: e.g. a value of a state at a specific time-point,
a value of a reaction rate at a specific time point, a single parameter value, or some
other arbitrary function of these values, but that still depends on a given time point.
The property z can sometimes also be considered as an entire time-series, but here
we have encountered the first difference: that the property can only be a time-series
in one of the settings, that based on core predictions.

In fact, the basic idea behind the core-prediction based approach presented in
[7] was presented in the more general sense of z being a time-series. Nevertheless,
when the full 3-step implementation of the core prediction approach was presented
for specific examples in [6], the complications of studying a time-series was not
considered. The inclusion of time-series are mainly concerned with the issue of
dependencies and statistical interpretations of the results, and this whole issue is
further discussed in a separate section below, entitled “Dependencies and the handling
of predictions of time-series”. For now, we consider the more specific case of z being
a single scalar valued function of parameters and states at a given time point, and
consider the general idea as presented in [6]. This idea is given by the following
equation

�max
z = z(pmax) where (17.6a)

pmax = arg
p
max{z} subject to V (p) < δ (17.6b)

�min
z = z(pmin) where (17.6c)

pmin = arg
p
min{z} subject to V (p) < δ (17.6d)

where�max
z is the upper boundary of the prediction, and�min

z is the lower boundary.
In words, the idea behind this approach is thus simply the one already stated: to find
the maximal and minimal values of z that exists within A.

The basic idea behind the other approach is based on a theory known as prediction
profile likelihood (PPL). The concept of PPLwasfirstmentioned in 1956 [10], and the
concept of prediction profile likelihood was first introduced in 1979 [20]. Since then,
quite a few various alternatives to this approach have been introduced, as reviewed
e.g. in [2]. A first version that is relevant to this discussion was uploaded on the
public article database arXiv in [15], and then as a standard paper in [16]. The basic
idea behind PPL is to extend the data series Z with a new data point, z∗, which is
a measurement of the property z. Often the uncertainty of z∗ is zero, and then the
maximum likelihood approach simply boils down to maximizing the likelihood, or
minimizing the cost V(p), while fulfilling z(p) = z∗. This additional data point, z∗,
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then enters as an additional parameter, and one can fix this parameter to different
values, while optimizing over the others, as in a traditional PLH approach.

Let us now see how these two ideas may be implemented in practice.

17.4.2 The Stepping

The core-prediction approach is formally a standard, albeit difficult, constrained opti-
mization problem, and may therefore in principle be implemented using any method
that can deal with such problems. However, since many of the most commonly
used implementations of optimization algorithms cannot deal with such difficult
constraints, the following simple implementation was suggested in [6]:

1. Initiate w > 0, fincr > 1
2. p̂ = argp min VC (p), where VC (p) = V (p) + w · C(z(p))

3. if V (p) > δ, return z( p̂); else w = w · fincr, go to 2
4. Output: the maximum or minimum value that z can take while still agreeing with

data

where C(z) is chosen as a function that grows with z if you are seeking �min
z (e.g.

C(z) = z or C(z) = log(z)) and where C(z) is chosen as a diminishing function if
you are seeking �max

prop (e.g. C(z) = 1/z or C(z) = −z).
The central idea behind this little algorithm is that you increase the contribution

from the maximisation (or minimisation) of the new cost function C(·) compared
with the component from the old cost function V (p), until the maximisation (or
minimisation) cannot proceed without violating V (p) < δ; the optimised parameter
values where you stop would then in theory and for sufficiently small step-sizes,
fincr, lie at the border of the core prediction uncertainty, i.e. at �max

z (or �min
z ). In

other words, if there is an upper boundary for the prediction z, it is because that
property is observable (i.e. can be identified from data [6]), i.e. because there is a
tradeoff for the model between fitting to the data and maximizing that value.

In the other approach, based on PPL, one formulates a similar but not identical
constrained optimization problem as in (17.6)

p̂ = arg
p
min V (p) where z(p) = z∗ (17.7)

This constrained optimization problem corresponds to the case where the added data
point, z∗, has zero uncertainty. In practice they solve this equation by optimizing

p̂ = arg
p
min VC (p) where VC (p) = V (p) + η(z − z∗) (17.8)

where η is a Lagrange multiplier, which is increased until the resulting optimization
yields a sufficient fulfillment of the constraint z(p) = z∗. Once that fulfillment is
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achieved, z∗ is increased (or decreased) until the maximum (or minimum) border,
where V (p) = δ, has been reached.

There are some subtle but crucial differences between these two approaches to
the stepping. First, for the core predictions approach, the stepping is done with the
Lagrange multiplier w, which should lead to corresponding steps in the property
z(p). In contrast, in PPL, the stepping is done with z∗ directly, and steps in their
Lagrange multiplier η are only taken to make z(p) − z∗ closer to zero. On the plus
side for the core prediction approach, this difference means that the core prediction
approach only needs to perform one constrained optimization problems, whereas
the PPL approach solves many such problems. Since constrained optimizations are
highly difficult, this may be a big advantage, and something that opens up for usage
of more advanced global methods for the single constrained optimization problem
(17.6). Nevertheless, the difficulty of the many constrained optimizations in PPL
is relieved by the fact that they are similar, and that the end result of the previous
optimization, for a slightly different value of z∗, probably is a good start guess to the
new optimization, with the new value of z∗. However, in the experience of the author,
themost important difference between the two approaches to stepping is another: that
the core prediction approach seems to be more inviting to jumps between different
qualitative behaviours, which means that incremental changes in w not always lead
to incremental changes in z(p). For this reason, if one wants highly resolved profiles,
the PPL approach to stepping is probably to be preferred compared to the stepping
done in the simple algorithm solving Eq. (17.6). Note, however, that these methods
are rapidly evolving.

17.4.3 The Cut-Off Level

The cut-off level is another issue where there are similarities and differences between
the two approaches. In short, using the core prediction approach, one can use any cut-
off, which opens up for more pragmatic choices, but in PPL they use the same theory
as for the parametric PPL, which provides for a stronger theoretical underpinning,
but also makes the options fewer.

In other words, for the core prediction approach, one can use any choice of cost
function, and any reasoning behind the choice of δ. Nevertheless, the standard choice
for V (p) is the traditional least square

V (p) =
N∑

t=0

∑

i

(yi (t) − ŷi (t, p))2

σi (t)
+ additional terms (17.9)

where i sums over the different measurement signals, σ is the standard deviation of
the measurement noise, and the additional terms are optional. If the additional terms
are included, one no longer has the traditional least square, and its theoretically
sound properties. Nevertheless, often such additional terms are anyway warranted
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and useful to include, e.g. to aid the search, or to require subjectively important qual-
itative behaviours. The most common way to chose a cut-off between acceptable and
rejected costs is probably to use the above V (p) without additional terms, and then
use the inverse of the cumulative chi-square distribution, where the degrees of free-
dom equals the number of data points. This is often referred to as the chi-square test.
More advanced approaches compensates for the number of identifiable parameters,
uses empirical distributions from bootstrapping, or other principles altogether, such
as model discrimination or residual correlation-based tests. These cut-off methods,
and more, are reviewed in the same paper that published the first version of the core
prediction approach, [7].

For the PPL cut-off, the value is closely associated to the standard PLH approach.
This means two things. First, the cost function must be equal to the likelihood func-
tion, which is maximized as described in earlier chapters. This maximum likelihood
approach is the same as minimizing the chi-squre cost above (Eq. (17.9) without the
additional terms), under the assumption of additive and normally distributed mea-
surement noise. Second, the cut-off is chosen as a certain addition, δPPL to the cost
at the optimal parameters, V ( p̂). This addition, δPPL, is equal to the inverse of the
cumulative chi-square distribution for 1 degree of freedom.

17.4.4 Validation of the Obtained Boundaries

Both of the new approaches have a variation step, or a voluntary final step, which is
called something with the word validation in it, but again the two versions are only
related and not exactly the same.

For the core prediction approach, the validation step is simply a check that the
prior steps have not led to a misconclusion, and that the corresponding rejection
really holds true. In other words, Steps 1 and 2 (Fig. 17.2) have led to a prediction
with outer boundaries, and data values outside of these boundaries will probably
lead to a rejection. However, even if the experimentally measured data point would
lie outside of the obtained uncertainty, that is not a guarantee that the combined
dataset, including the original data and the new data point, would lead to a rejection
of the model, since that depends on the uncertainty of the new data point, and on
how far away from the rejection boundary the model was based on the original
data set. In other words, the question of whether the predicted rejection leads to an
ultimate rejection needs to be tested, or validated. This validation step, Step 3, thus
validates the rejction. This step was introduced already in [4], which also introduced
the concept of core predictions, and then the step followed directly on Step 1, which
made the validation even more important. Note that also here, the validation of a
predicted rejection is made using standard rejection methods, such as the chi-square
test, and that no new theory is needed.

For PPL, the validation step is more a variation of the original PPL. In this varia-
tion, the added data point z∗ has an uncertainty, and is thus added on an equal footing
to the other data points. In other words, no constrained optimization is needed to
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ensure that z(p) = z∗. One instead simply optimizes over the normal parameters,
obtains a cost, modifies z∗, does a new optimization, and repeats until an unaccept-
able agreement with the data is obtained. Note that this method of course has the
limitation that it depends on what the uncertainty of z∗ is assumed to be, and that
the assumed uncertainty may differ from the actual uncertainty of a subsequently
collected actual data point.

17.4.5 Dependencies and the Handling of Predictions
of Time-Series

A final important difference between the two approaches is that already hinted at:
how they relate to predictions of entire time-series.

In the core prediction approach, one can in principle expand the present framework
to account for timeseries using only a minor modification, but one need to be careful
about the interpretation of the results. The key modification that needs to be done is
to introduce a distance measure between two time-series, so that the time-series can
be projected down to a scalar, which can be added as a constraint. A standard way
to introduce such a distance measure is to take the difference between the two time-
series at each time point, and integrate over time. In other words, for two time-series
denoted d1 and d2 their distance, denoted D(d1, d2), is given by

D(d1, d2) :=
∫

d1(t) − d2(t)dt (17.10)

With these definitions in place, consider a specific predicted time-series z = d( p̂).
The max and min values of the uncertainty region around this time series is given
by the same algorithm as before, where C(p) is a growing function of D(d(p),z)
for finding �min

z , and a diminishing function for finding �min
z . Note that this is a

generalization of the original algorithm: if the time-series is collapsed to a single time-
point, the time-series approach finds the same boundaries as the original algorithm.
Note also that this time-series formulation was the first way this core prediction
approach was introduced, and that [6] therefore only presents an implementation
and testing of that approach, using a particular solution to the general constrained
optimization problem. We will now turn to the PPL viewpoint of this generalization,
and then discuss the differences in interpretations and possibilities.

When considering time-series in the PPL framework, statistics enters the picture
in anotherway,whichmakes thingsmore complicated. In PPL, the statisticalmeasure
enters in the calculation of the term δPPL, which for a single additional data point z∗
is calculated as the inverse of the cumulative chi-square distribution, with one degree
of freedom, and at the desired significance level. In other words, if the significance
level is 0.05, the cut-off is δ = V ( p̂)+ ∼ 3.8, and the prediction should lie within
the specified boundaries in 95% of the cases. In [15], they tested this claim, by
generating many artificial datasets, with different noise realizations, and saw that at
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least for the therein tested example, the fraction of successful prediction uncertainties
converges to a reasonable vicinity of the fraction predicted by the significance level.
This theory comes from the standard PLH approach, and depends on the assumption
that the individual parameters, pi , are uncorrelated, and that the new additional data
point is considered as such an individual parameter. This uncorrelation assumption
would have problems if one would switch from a single data point to an entire time-
series, comprising many or an infinite number of data points. This is the case because
if a datapoint at a specific time-point is predicted to be high, neighbouring datapoints
will also be predicted to be high. In other words, for time-series, the statistical basis
for PPL breaks down, and they can no longer predict the cut-off using that theory.
That problem does not disappear in the validation version of PPL.

Let us now compare to the statistical viewpoint of the core prediction approach. In
that approach, the cut-off is decided a priori, using any statisticalmeasure, such as the
chi-square value. Then, with this specification ofA in place, the remaining exercise
is to find the extreme predictions, the max and the min, that lie within this space,
and this is purely an optimization problem. In this viewpoint, there is no difference
between looking at the most extreme timeseries or the most extreme time-point,
because no assumptions of uncorrelation appears, as it does in the PPL approach.
However, one needs to keep that in mind when interpreting a predicted time-series:
it is the extreme time-series considered as a whole that is predicted. In other words,
other acceptable time-series may contain values at specific time-points that are more
extreme (higher or lower) than the most extreme time-series. This problem is to some
extent illustrated in Fig. 17.1c. Finally, note that if one wants to use the prediction for
rejections based on new data-points at various points in this predicted time-series,
the validation step in the core prediction approach ensures that the rejection holds
statistically: Step 3 is a standard rejection formulation, even though more than one
data point has been added. Therefore, no rejections will erroneously be done because
of this described problem with correlations.

17.5 Related Approaches

17.5.1 Bayesian Approaches

Themost important and state-of-the-art alternative to those presented herein are prob-
ably those developed in a Bayesian setting (reviewed in e.g. [14]). These theories
are in practice implemented usingMarkov ChainMonte Carlo (MCMC) simulations
[3, 12, 26, 29]. In this setting, one does not exclusively characterise A and ignores
the rest of the parameter space, but one instead gives all parameter points a probabil-
ity P(p|Z), which says how likely the parameter points are, given the available data.
These probabilities can then be used to calculate the corresponding probability of
generalmodel properties P(z|Z), which can then be combinedwith a cut-off to obtain
an uncertainty of the prediction, with a corresponding significance. However, despite



462 G. Cedersund

the conceptual appeal of this approach, and the existence of rather general methods,
there are important limitations. For instance, the method requires the specification
of a prior distribution of the parameter values, even if one has no prior knowledge on
these distributions; the choice of this prior will determine the outcome. The short-
coming of this assumption in terms of achieving conclusive statements is discussed
in the next section. The most important limitation, however, is that these methods
only converge if the system is identifiable, or only mildly unidentifiable; such limi-
tations do not apply to the herein presented approach. In cases of non-identifiability
it appears that an important difference between the two approaches is revealed. In
frequentist approaches such as those presented herein one considers the value of the
cost function (or likelihood), whereas in MCMC approaches one looks at the den-
sity, and in cases of unidentifiability these do not necessarily coincide. To sort out
what is the correct approach, likelihood or density, is an important task for future
research comparing and combining frequentist and Bayesian approaches. Finally,
just as Step 1 in the frequentist approaches, MCMC approaches suffer the problem
of the curse of dimensionality, since they try to approximate a multi-dimensional dis-
tribution using points. This problem is circumvented using PPL or Step 2 in the core
prediction approach. In fact, Step 2 is per definition better than MCMC at finding
extreme points, since you can always use the outcome of MCMC as a start guess for
the constrained optimization, which per definition will find something equally good
or better.

17.5.2 Other Related Approaches and the Relation
to Other Fields

A relatively extensive overview of related methods—such as interval analysis based
methods [13, 28], sloppy modelling [5, 19], etc.—is available in [6]. Nevertheless,
there are some important subsequent developments, and developments in other fields,
which are not mentioned therein. The most important such method is PPL, and it has
been described in detail above. One important neighboring research field is known
as pharmacokinetics. This is a field that has done modelling of biological systems
since the 70s, and they have a relatively well-developed methodological toolbox. For
instance, as mentioned above, the method known as profile likelihood (for parameter
uncertainty), has been used in the pharmacokinetics community for several decades,
but has only recently been discovered in the systems biology community. Similarly,
the problem of unidentifiability, and the need to consider multiple parameter sets, has
been described also within the pharmacokinetics community, andmethods have been
proposed to characterize such sets. One such method is cluster Newton [1], where
a cluster of parameter sets are considered together, used to approximate a surface,
and where this surface then is used in the optimization. However, although cluster
Newton has shown some strengths, e.g. regarding speed compared to certain other
approaches, cluster Newton should primarily be considered as a new alternative to



17 Prediction Uncertainty Estimation Despite Unidentifiability … 463

Step 1 (Fig. 17.2), and there does not yet seem to exist a correspondence to Step
2 in the pharmacokinetics community. Another important neighboring community
is known as chemometrics. Also they have now acknowledged the need to identify
the well-determined predictions, and to account for the effect of unidentifiability.
In the chemometrics community, the space of acceptable parameters is referred to
as “neutral parameters”, and there are recent papers (e.g. [27]), where they analyse
this space to find the well-determined properties (the core predictions). A recent and
related method to identify the well-determined properties has been published also
in the systems biology community [9]. This method starts by the identification of
subsets of parameters for which the so-called Hessian matrix has full rank, except
for one parameter. Within this subset, one can then numerically determine the inter-
relations among the parameters, from ordinary profile-likelihood plots. Finally, fits
of simple analytical expressions to these numerically determined interrelations can
semi-automatically give the expressions for the core predictions.

In summary, the field of handling unidentifiability is rapidly gaining in attention,
not only in the field of systems biology but in several other related fields. However,
there does not exist a correspondence to Step 2 in any other field; their methods are
still only based on various ways of approximating the space of acceptable parameters
(Step 1).

17.6 Summary and Discussion

In this chapter we have considered the important topic of obtaining predictions with
uncertainty. The focus has been on frequentist approaches, which considers the value
of the likelihood function, or someother cost function, as the primedecider ofwhether
a parameter is acceptable or not. This decision is determined by a cut-off value, δ,
and with this cut-off decided, the space of acceptable parameters A is defined. In
this chapter, two recently presented approaches to analyse this space have been
reviewed and contrasted: the core prediction approach, and PPL. In Step 1 of the
core prediction approach,A is approximated through a point cloud, and the extreme
values of the prediction z are approximated by the extreme values in this point-cloud.
In Step 2, these approximate boundaries are improved upon for a specific prediction,
by formulating the constrained optimization problem (17.6), which can be solved
directly using an optimization algorithm that can handle nonlinear constraints, or
by using the simple algorithm mentioned herein. As is shown in [6], Step 2 clearly
improves upon the boundaries for a complicated model for insulin signalling. In
the core-prediction approach, there is a final and optional Step 3, which validates
that the potential rejection suggested by a new experimental data point really holds.
In PPL, the new data point is added as a parameter, whereafter its uncertainty is
characterised using a normal PLH. If the added data point contains an uncertainty,
the PPL is referred to as validation PPL. The stepping and cut-off in PPL are different,
and these differences have been explained. For instance, it seems like the stepping
strategy described for PPL is more stable. Also, because of the differences in where
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and how the statistical considerations enters the picture, the extension to time-series
is handled differently in the two approaches. In the core prediction approach, Step 2
is merely an optimization exercise, and time-series can just as easily be optimized
for, as individual data points. However, even though potential rejections are checked
in Step 3 one should be careful with the interpretation, as it is only the time-series
as a whole that is extreme, not necessarily individual time-points. In contrast, for
PPL, time-series cannot be considered, since the theory behind the cut-off is based
on the independence of the parameters. Finally, even though this chapter provides a
merging of these two approaches, it will be an important challenge for future research
to alsomerge and relate thesemethodswith the three other related alternatives: cluster
Newton, Bayesian, and neutral parameters.

17.6.1 What Is the Price of Considering Predictions
Without Uncertainty?

To end this chapter, we want to remind the reader of the conceptual and epistemo-
logical breakthrough that it means to now have predictions with uncertainty, and
of the high price that is paid by not considering this uncertainty. For many years,
systems biology modelling has been done with guessed parameter values, or using
parameters from the literature that are not appropriate, or based on models based on
earlier guesses. If the parameters are wrong, and a single parameter point is consid-
ered, predictions from such a model is of limited, if any, interest. However, even if
the parameter point could be right, i.e. it is not unrealistic, it is still uncertain, and
only a single point in the space of acceptable parameter points. Since the size and
uncertainty of A typically is big in biology, this means that the resulting prediction
uncertainty (�min

z ,�max
z ) also could be big, and probably would be, at least for some

predictions. If one does not know which predictions are well-determined, and which
are not, one has to assume that all predictions are highly undetermined. Such undeter-
mined predictions can only make statements of the character “it could be like this, or
it could be in some other way”. Such statements are in [6] defined as suggestions, or
beach statements, and they are weak statements. However, if one knows that a certain
prediction must lie within certain narrow boundaries, that prediction is of the same
epistemological level as a rejection, since the prediction is an implicit rejection: if
the prediction is not sufficiently fulfilled when tested experimentally, the model will
be rejected. Since a rejection is the strongest epistemological statement available in
science, a core prediction is a statement that is final This finality holds since the outer
boundaries of a core prediction will not be refuted by the collection of more data as
long as that data do not show that previous data was erroneous. Core predictions are
therefore well-determined, and of the strongest possible epistemological character
[6]. Finally, even if one knows that a prediction is highly uncertain, i.e. that each
possible behaviour within that uncertainty just is a suggestion, that is still important
knowledge. One reason for that is that such highly uncertain predictions are those
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that most likely will be most beneficial to measure, if one wants to further determine
the parameters in the model. In that way, predictions with uncertainty, but not predic-
tions without uncertainty, feed back to the user in a powerful way, which allows you
to know both how the model works, what you know and what you guess, and which
allows you to close the experiment/modelling cycle in the most powerful way. When
you do a new experiment, you can know exactly why what the new data will provide:
a test of the entire model structure (Fig. 17.1b), a characterization of undetermined
aspects of the model (Fig. 17.1c), or a discrimination between two competing model
structures (Fig. 17.1d).
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Chapter 18
Computational Modeling Under Uncertainty:
Challenges and Opportunities

David Gomez-Cabrero, Jesper Tegnér and Liesbet Geris

Abstract Computational Biology has increasingly become an important tool for
biomedical and translational research. In particular, when generating novel hypothe-
sis despite fundamental uncertainties in data and mechanistic understanding of bio-
logical processes underpinning diseases.While in the present book,we have reviewed
the necessary background and existing novel methodologies that set the basis for
dealing with uncertainty, there are still many “grey”, or less well-defined, areas of
investigations offering both challenges and opportunities. This final chapter in the
book provides some reflections on those areas, namely: (1) the need for novel robust
mathematical and statisticalmethodologies to generate hypothesis under uncertainty;
(2) the challenge of aligning those methodologies in a context that requires larger
computational resources; (3) the accessibility of modeling tools for less mathemat-
ical literate researchers; and (4) the integration of models with—omics data and its
application in clinical environments.

Keywords Computationalmodeling ·Uncertainty ·Challenges ·HPC ·Hypothesis
generation

D. Gomez-Cabrero (B) · J. Tegnér
Unit of Computational Medicine, Department of Medicine, Karolinska Institutet,
Solna, Sweden
e-mail: david.gomezcabrero@ki.se

D. Gomez-Cabrero · J. Tegnér
Center for Molecular Medicine, Stockholm, Sweden

L. Geris
Biomechanics Research Unit, University of Liège, Chemin des Chevreuils 1 B52/3,
4000 Liège, Belgium
e-mail: liesbet.geris@ulg.ac.be

L. Geris
Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven,
Herestraat 49, Box 813, 3000 Leuven, Belgium

L. Geris
Biomechanics Section, KU Leuven, Celestijnenlaan 300 C, Box 2419,
3001 Leuven, Belgium

© Springer International Publishing Switzerland 2016
L. Geris and D. Gomez-Cabrero (eds.), Uncertainty in Biology,
Studies in Mechanobiology, Tissue Engineering and Biomaterials 17,
DOI 10.1007/978-3-319-21296-8_18

467



468 D. Gomez-Cabrero et al.

18.1 Introduction

There are two underlying rationales that motivate the chapters in this book. The
first, is the usefulness and necessity of mechanistic mathematical and computational
modeling in biomedical research. The usefulness has been widely shown in several
chapters (see for instance [31] by Lejon and Samaey, [26] by Hug et al.) and (for
instance) from classical groundbreaking works in neuron modeling (such as [23]).
The necessity of mechanistic modeling originates essentially from the limitations
w.r.t mechanistic understanding when solely using classical statistical analysis in the
analysis of complex systems [51].

The second rationale is that mechanistic modeling in biology needs to address
uncertainty in order to generate testable hypothesis. For instance in biology when a
transcript is profiled—either by PCR, array or RNA-seq—there are several sources
of variability to consider: technical, from the experimental procedure use, and bio-
logical, that is for instance when the same type of cell may react in different ways to
the same perturbation. At the cell level, one explanation for observed transcriptomics
biological variation is that the regulation is driven at several and different layers (e.g.
genetic and epigenetic regulation), but large parts of these regulatory mechanisms
are still only in part possible to decipher [3, 22, 27, 32]. Furthermore, the profiles
of those “other regulatory layers” are in most cases not available during modeling.
A second explanation for uncertainty is the stochastic nature of some biological
processes as shown in intra-cellular chemical reactions, gene expression [33] and
pharmacokinetics [12] among others. In both explanations, we need to clearly face
uncertainty during the modeling, in the parameters of the model and in the biological
processes when investigating model behaviors.

While the [16] by Geris and Gomez-Cabrero provides an overview, we find it
useful to close the book with a chapter that summarizes major existing challenges
and opportunities. We have identified four challenges that will be briefly discussed
in the different sections of this Chapter. First, (1) there is a need for methodological
development, (2) linking modeling and high-performance computing, (3) strengthen
the accessibility ofmodeling tools targeting non-specialists and, (4) integrating omics
and modeling tools for the benefit of personalized medicine. Additional challenges
for the future of computational biomedicine, especially with respect to the clinical
dimension, can be found in the Digital Patient Roadmap.1

18.2 The Need for Methodological Development

In the last decade, we have observed a shift in biological modeling analysis. In initial
attempts, mechanistic ordinary differential equation (ODE) models were generated
by defining a set of equations, and investigators manually fine-tuned the parameters.
The manual fine-tuning was conducted by exploring the parameter space “in the

1http://www.digital-patient.net/files/DP-Roadmap_FINAL_N.pdf.

http://www.digital-patient.net/files/DP-Roadmap_FINAL_N.pdf
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quest” of finding those parameters that agreed with experimental observed behav-
ior (we will denote them by “good quality parameter sets”). Eventually, the manual
search was made automatic by designing the fine-tuning problem as an optimiza-
tion problem as shown in [5] by Salmuelson et al. Furthermore, with the growth of
computational resources the parameter space of larger models became intractable
using theoretical analysis, it became clear that investigations of either exploring the
surrounding areas of good quality parameter sets (see [34] by Mannakee et al. and
[47] by Van Schepdael et al.) or by exploring the set of “good quality parameter sets”
([17] byGomez-Cabrero et al. and [7] by Cedersund) became important.We consider
that those types of methodologies are necessary and they are an active research field
in computational biology, however it still requires a coordinated effort to generate a
solid foundation for further development. We consider two major requirements:

(1) Rigorous definitions In order to develop useful methodologies and tools we
need to provide a robust answer to the following question: what is a useful output
from the analysis under uncertainty of a biological theoretical model? (QUES). In
[17] by Gomez-Cabrero et al. the answer proposed is (briefly) first the grouping and
secondly group characterization of good quality parameter sets. The idea is that by
exploring the “good quality parameter set” space it is possible to find competing
hypothesis (from the groups of “good quality parameter sets”) that could be tested at
the laboratory. However, given the exploratory nature of the proposed methodology
(that does not investigate all possible “good quality parameter sets” but a sample of
them by an optimization methodology) the robustness of the competing hypothesis
is not rigorously ensured. Reference [7] by Cedersund answers that the fundamental
outputs are the set of predictions that can be then tested back in the laboratory.
Furthermore [7] by Cedersund provides an initial classification of predictions: core
predictions (well-determined predictions that allow to test the quality of the model)
and suggestions (poorly determined predictions that may provide specific insights
that can be tested in order to improve the overall quality model). Both results and
proposals shown in [17, 34] by Gomez-Cabrero et al. and [7] by Cedersund represent
part of the initial efforts generated to provide a formal answer to QUES; however
we consider it necessary to develop further these efforts and work on generating a
consensus and robust formulation for answering QUES. Relevant material on the
topic can be found in [6, 9, 10, 18, 30, 46].

(2)Development of software tools that implement such methodologies so they
may become a standard The shift from manual search to automatic search started
during last decades of 20th century and actively continued during first decade of 21st
century. Several teams worked on those ideas and several tools were developed at
the same time; some of those tools aimed for specific areas such as Neuroscience
(Neurofitter, [45]) while some other tools were more generic such as COPASI [24].
Many of those tools are still available (and there are active research groups contin-
uously updating them) see [5] by Cedersund et al. for further detail. On one hand,
the generation of that many tools raised the awareness and use of those new method-
ologies; on the other hand it was clear that the wheel was reinvented many times.
When considering the generation of hypothesis under uncertainty we may argue
to be at the beginning of user-friendly method development. Yet no tool is able to
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perform automatically the analysis presented in [17] by Gomez-Cabrero et al. or
[7] by Cedersund; in those cases customized coding solutions were generated. We
consider it necessary to generate user-friendly solutions able to perform automat-
ically (or under human supervision) those analyses. However we also believe it is
necessary to generate coordinated working groups to avoid the generation of similar
tools simultaneously.

A final complementary development to those methodologies is the generation of
novel methodologies and (user-friendly) tools allowing automatic simplification and
reduction of models as shown in [14] by Eriksson et al., [44] by Tucker or through
Global Sensitivity Analysis [29, 39, 43].

18.3 Integration of Computational Modeling
with High-Performance Computing Techniques

Computational resources have been both the key and bottleneck for computational
modeling analysis. The automatic search for “good quality parameter sets” depended
on the availability of machines able to run hundreds or thousands of simulations in
brief periods of time. This was possible through medium sized (20+ cores) to large
sized (named supercomputers such as Mare Nostrum in the Barcelona Supercom-
puting Center (www.bsc.es, Spain) or SNIC solutions (www.snic.vr.se, Sweden)
machines; the former was mainly affordable by computational-oriented groups able
to invest funding in the resource while the latter were available through national pro-
grams that provided (and still provide) a number of hours-per-month upon request.
The first computational biology analysis competed for such computational resources
with theoretical physics or computational chemistry (among many others) simula-
tions, but at that time the required resources were minor compared to the rest of
research areas. Over the years, and with both the development of automatic fine-
tuning tools and larger models, the computational requirements grew and computa-
tional biology is starting to compete at a similar scale of requirements than the other
research domains. The present and coming future shows that the demand of compu-
tational requirements are still to grow for several reasons, among them: (i) possible
increased size of the models, (ii) increased amount of data to be considered (see later
the omics’ section for further details) and (iii) an increased amount of users (see for
instance the development of novel conferences such as HiCOMB, High Performance
Computational Biology from 2002 until nowadays). For this reason the long-term
resources are to be planned carefully in order to correctly asses the future needs of
Biological and Medical Sciences.2 We consider the following three aspects to be of
major relevance:

(1) High-Performance Computing (HPC) infrastructures There is a general
trend to avoid buying small-medium computational resources by every group and
invest better into large-scale resources or cloud-based solutions; see for instance the

2http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-agenda.pdf.

www.bsc.es
www.snic.vr.se
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-agenda.pdf
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action plan for theDigital Agenda for Europe.3 Small-medium sized solutions tend to
be expensive and, in many cases, sub-optimally used. While cloud-based solutions,
if prizes are competitive, may provide a cheaper solution that will optimally reflect
the needs and uses of different research groups in real-time. Furthermore, as pointed
out by Peter V Coveney,4 it is necessary to optimize the interoperability across large
infrastructures and it is necessary to harmonize mechanisms such as access, advance
reservation and urgent computing among others.

(2) Parallelization Both simulation and fine-tuning benefit from parallelization,
that is the possibility to run a process as separate parallel batches therefore reducing
the amount of time by using several CPUs simultaneously. Both optimization algo-
rithms and methodologies to integrate Partial Differential Equations benefit from
better and robust parallelizable algorithms. Interestingly, in the area of eScience (“the
application of computer technology to the undertaking of modern scientific investi-
gation, including the preparation, experimentation, data collection, results dissem-
ination, and long-term storage and accessibility of all materials generated through
the scientific process”, Shannon Bohle5) there is an effort to import to computational
biology those methods already developed for other areas where large-scale modeling
is actively used (such as Weather Forecast modeling). Among those efforts there is
the Swedish e-Science Research Center (http://www.e-science.se).

(3) Scalability Both for computational resources and parallelization need to con-
sider optimal scalability of the solutions developed, given that the number of users
and computational requirements is expected to grow over time [15, 21].

18.4 To Widen the Use and Applicability of Modeling
as a Tool for Non-specialists

Most of the chapters of this book have been written by statisticians, mathematicians,
and engineers with a strong mathematical background. This may represent the back-
ground requirements for method development in computational biology, however it
does not represent the requirements for using computational biology. Fortunately,
in the last twenty numerous biologists have been exposed to the necessary back-
ground to develop and analyze their own models. We consider that to make the use
of modeling in biomedicine it is important to make the necessary knowledge and
tools as accessible as possible; on this direction we consider that following points
are important.

(1) The necessary theoretical background When biologists decide to design
a model of their system under study, it is necessary for them to learn the basics

3https://ec.europa.eu/digital-agenda/en/pillar-v-research-and-innovation/action-53-financially-
support-joint-ict-research-infrastructures.
4http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-presa-6.pdf.
5http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-
be-managed/.

http://www.e-science.se
https://ec.europa.eu/digital-agenda/en/pillar-v-research-and-innovation/action-53-financially-support-joint-ict-research-infrastructures
https://ec.europa.eu/digital-agenda/en/pillar-v-research-and-innovation/action-53-financially-support-joint-ict-research-infrastructures
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-presa-6.pdf
http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-be-managed/
http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-be-managed/
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of mathematical modeling. General and specific knowledge of modeling will be
required depending on the system to investigate. The amounts of material (specially
books) addressing this knowledge have been growing in both quantity and user-
friendliness. Additionally, courses (such as Computational Biology in Cold Spring
Harbor, directed by Professor Gregory Smith6) are becoming more common. We
consider that it is necessary to continue this trend, but also that (i) courses where
biological-strong and mathematical-strong participants are both enlisted are to be
prioritized, because it allows exchanging of views and goals and creates a richer
learning environment [4]; and (ii) the development of on-line courses addressing this
topic needs to receive attention, so students may have introductory sessions without
the need to wait for face-2-face courses.

(2) Software environments We consider it necessary to enhance the user-
friendliness of existing (and novel tools) in order to enlist researchers in the use
of modeling. Existing tools have certainly shown an increase in accessibility and
friendliness, but any researcher with no experience will still need to invest large
amounts of time to get confident with them. In Ph.D. programs were modeling may
be a side project to investigate experimental results this situation may end in not
considering modeling as a research tool. We consider that our aim must be to make
“computational modeling” another accessible tool in the biologist tool-box, there-
fore improving user-friendliness is necessary. An example of generating a simulation
environment for medical researchers is [25], which is part of the results from the
European Project Synergy-COPD [19].

(3) Syllabus implementation When a clinician or a biologist may interact with
modelers or discover a model of interest, existing syllabus usually do not provide the
necessary background to understand them. We consider that initiatives such as Eras-
mus BioHealth Computing Program [4] andMedical ResearchMasters are initiatives
of value where future biological and medical researchers are set to interact with
modelers and computational biologists. This approaches enhances the visibility of
modeling in biology and biomedicine.

18.5 Forming Stronger Ties Between Omics Data
and Computational Biology

Following the Human Genome Project, array-based and Next-Generation Sequ-
encing-based technologies have pushed transcriptomics analysis to novel boundaries
[1, 35]. SNP profiling of thousands of individuals have allowed the identification of
genetic risk factors for many diseases such as Multiple Sclerosis [41] or Rheuma-
toid Arthritis [40], however the use of such information in Computational Models is
limited to say the least. A very important open question is then: how do we integrate
and omics-based knowledge into modeling?

6http://meetings.cshl.edu/courses/2014/c-comp14.shtml.

http://meetings.cshl.edu/courses/2014/c-comp14.shtml
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While omics-data is used in the generation of predictive models (such as patient
classification or risk prediction) and integrative approaches are being continuously
developed to improve such models [2, 11, 28, 38, 50] what we here refer to is the
use of omics data in the analysis of biological systems through mechanistic models.
Eventually those integrated mechanistic models may provide in the future relevant
information to be included in better prediction models making use of simulation
outputs. However, at the present time we focus on the challenge of creating models
that address the individual (personalized modeling). Lets consider for instance the
development of a immune system model of Multiple Sclerosis Progression such as
the one presented in [48]. If we gather information of DNA Methylation profiling
and/or SNP genotype for a given individual, the challenge is now howwe implement
such information so themodel is not anymore a genericmodel but individual specific.
There exist several attempts on this direction as those shown in Synergy-COPD [19]
and CombiMS, in the context of Systems Medicine and the Virtual Physiological
Human. In order for omics data to be routinely used in computational biomedicine
and, later on, in a clinical setting, a number of requirements need to be fulfilled, as
recently identified by [49]. These include (1) the ability to work with sensitive data,
(2) to work with complex and heterogeneous data (including non-textual informa-
tion), (3) toworkwith a distributed datamanagement under security and performance
constraints, (4) to define methods allowing for the integration of bioinformatics and
systems biology information with clinical observations on various length scales, and
finally (5) to define tools able to define the ‘physiological envelope’ of a patient (ref
white paper).

18.6 Conclusions

Wefind that Computational Biology is a crucial tool for biology and biomedicine, but
to enhance its practical applicability there is an urgent need to address the uncertainty
commonly observed in biological systems to ensure the uptake in the biological
and clinical communities. The present chapter reviews the needs and challenges in
computational biology, that are important to consider in the nearby development of
the field. We summarize those needs in four major aspects:

1. Robust definitions for the generation of useful predictions,
2. Development of novel and optimization of existing HPC resources that address

the state-of-the-art computational needs.
3. Development of user-friendly analysis tools and easily accessible computing

resources,
4. Development of models and tools that incorporate information on the different

omics widely profiled nowadays.

We hope that the reading of this book may motivate young and senior researchers to
follow and work on those challenges.
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