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Preface

We are very proud to present the latest addition to the Springer series Studies in
Mechanobiology, Tissue Engineering and Biomaterials. When we started this book,
we wanted to create a book that could serve as a starting point for graduate students
and researchers interested in the development of computational models of biolog-
ical processes, with a specific focus on how to deal with the inherent uncertainty.

We have managed to get a great international set of authors together, each
discussing on a particular aspect of the problem based on their own expertise and
research background.

All chapters start with a detailed theoretical description that serves the dual
purpose of introducing the technique and providing sufficient details (in the text or
by means of references to the literature) for all researchers to start using it them-
selves. Subsequently one or more examples illustrate how the technique can be used
in a practical setting. Chapters are ordered according to the order in which the
technique they describe appears in the development and implementation of new
models. Reading the book from start to finish will therefore provide new researchers
with a quite extensive tool set to get started for themselves. More experienced
researchers will find for specific techniques the latest developments and a discus-
sion of future developments.

This book is the end product of a lengthy process which has suffered from some
unforeseen delays. Yet the vision and drive always remained present amongst the
editors and authors. We are very happy with the end result and hope that readers
will enjoy the book as much as we’ve enjoyed putting it together.

Prof. Liesbet Geris
Prof. David Gomez-Cabrero
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Introduction



Chapter 1

An Introduction to Uncertainty

in the Development of Computational
Models of Biological Processes

Liesbet Geris and David Gomez-Cabrero

Abstract This chapter aims to provide an introduction to the different ways in
which uncertainty can be dealt with computational modelling of biological processes.
The first step is model establishment under uncertainty. Once models have been
established, data can further be used to select which of the proposed models best
meets the predefined criteria. Subsequently, parameter values can be optimized for
a specific model configuration. Sensitivity analyses allow to assess the influence of
the previous choices on the model output. Additionally, model adaptation permits to
focus on specific aspects of the model without losing its global predictive capacity.
Finally, predictions with the established models should also consider the effect of
uncertainty in the model development process.

1.1 Introduction

Computational modelling of biological processes is becoming a standard tool used
in biomedical research groups. The amount of examples showing the added value of
the computational modelling approach is increasing by the day [4, 10, 11], more so
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L. Geris and D. Gomez-Cabrero

if we include all Systems Medicine approaches [1]. One of the biggest challenges in
creating useful models is the way in which they deal with uncertainty—uncertainty
related to the experimental data but also to the modelling choices.

Uncertainty is defined in the Oxford dictionary as ‘the state of being uncertain’.
Uncertain in turn is defined as ‘not able to be relied on; not known or definite’.
Wikipedia defines Uncertainty as ‘a term used in subtly different ways in a number
of fields, including philosophy, physics, statistics, economics, finance, insurance,
psychology, sociology, engineering, and information science. It applies to predictions
of future events, to physical measurements that are already made, or to the unknown.
Uncertainty arises in partially observable and/or stochastic environments, as well as
due to ignorance and/or indolence’ [5]. Uncertainty in computational biomedicine

N
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Fig. 1.1 Schematic overview of the model development life cycle with a specific attention to the
uncertainty in various forms: (i) establishment of a model under uncertainty, (ii) model selection
and parameter optimization, (iii) sensitivity analysis and model adaptation, (iv) model predictions
under uncertainty. Snapshot images have been taken from the following chapters in this volume
(starting upper left corner going clockwise; C: chapter; F: figure): C2, F1 [12]; C3, F2 [14]; C4, F1
[15]; C6, F4 [19]; C9, F3 [20]; C10, F5 [9]; C11, F5 [16]; C12, F1 [6]; C13, F16 [22]; C16, F3 [8];
C16, F3 [8]; C17, F3 [2]
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can come from the experimental observations but can also be connected to the model
itself either intrinsically (noise due variation in identically-regulated quantities within
a single cell) or extrinsically (noise due variation in identically-regulated quantities
between different cell) [12]. Throughout this book various ways of dealing with
uncertainty are discussed. The structure of this chapter (and the whole book) follows
that of the model development life cycle, starting with model establishment over
parameter optimisation and model adaptation and ending with model prediction
(Fig.1.1).

1.2 Model Establishment Under Uncertainty

In order to turn the ever increasingly available experimental (big) data into action-
able knowledge, mechanistic models are indispensable tools. They provide a concep-
tual and computational framework that allows for the interpretation and investigation
of the experimentally observed behaviour and overcomes some of the limitations of
classical statistical models in managing non-linear relations. Setting up these models
however poses several challenges related to both the experimental and the modelling
side.

Many experimental data sets tend to be noisy or incomplete and most often have
not been collected with the specific intention of creating a model. Additionally, over-
simplifications in model systems can obscure specific behaviours that have been
observed experimentally. These uncertainties have an influence on the establishment
of models. The chapter by Kirk et al. [12] provides an overview of the most prevalent
problems in model establishment related to uncertainty in data and models, and pro-
poses a number of strategies to tackle these problems. It furthermore discuss various
techniques that have been put forward over the years to reverse engineer mechanistic
models based on experimental data, each with their advantages and disadvantages.
The chapter by Kirk et al. [12] additionally discusses some of the most common
inverse techniques for this reverse engineering, including a more elaborate view on
statistical inference techniques (additional discussion can be found in the chapter by
Sunnaker and Stelling [20]). In the next chapter, Lagani et al. [14] go into detail on a
particular kind of statistical predictive models, namely the causal modelling. Com-
putational Causal Discovery allows discovering causal relations with a limited set of
interventions or manipulations. Causal modelling goes beyond traditional statistical
predictive modelling as it provides the capacity to predict the effects of actions and
interventions on a system, e.g., the effects of drug treatment, gene knock-out, or the
induction of a mutation in the genome. This is in contrast to non-causal predictive
modelling which is only valid when the system under study is observed under the
same experimental conditions it was derived from and is not otherwise manipulated.
Lagani et al. [14] review the definition of causality and the basic concepts and prin-
ciples of causal discovery, the nature of the underlying assumptions—particularly in
relation to the uncertainty in the available data, potential pitfalls when applying the
method, the most recent advances in the field and future directions. Both Kirk et al.
[12] and Lagani et al. [20] are data-driven approaches to modelling under uncertainty.
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A radically different way to establish models under uncertainty is the use of
stochastic modelling and simulation techniques—which is particularly relevant when
fluctuations become important. In Lejon and Samaey [15], the authors give a high-
level overview of stochastic modelling techniques used for biological problems. They
show the effect of stochasticity at different scales and different levels of description
and provide computationally reasonable solutions and algorithms for various problem
types. They pay particular attention to the equivalence between the stochastic process
that governs the evolution of individual agents and the deterministic behaviour of
the related probability distributions.

1.3 Model Selection and Parameter Optimisation

Once a number of potential models is established a choice needs to be made on which
model and which parameters are the most appropriate to use given the experimental
data that is available and the context in which the model will be used. This means
that we need to understand the nature of the experimental data that is available to
feed the models. After data acquisition, the use of data-driven modelling approaches
allows to do a first processing of the data. Once a mechanistic model has been
established, parameter estimation and optimisation can be performed in a variety
of ways. Ultimately, when different modelling scenario’s remain possible, specific
tools can be used to determine which of these models is the most suitable, given the
available data, the context and the preference of the modeller.

Western blotting, flow cytometry, protein mass spectrometry, DNA microarrays
are just a few examples of a wide variety of experimental techniques frequently used
in wet labs to gather data. In order to be useful for quantitative dynamic models, data
needs to have a dimension of time as well as several perturbation experiments. The
chapter by Bullinger-Schliemann [ 18] provides an introduction to various experimen-
tal techniques that are frequently used in the model development life cycle, paying
particular to the significance of single-cell versus population measurements. With
the increase in availability of large and structured datasets, there has been a need
to develop efficient data analysis techniques. Data-driven approaches, in contrast to
mechanistic approaches, do not make assumptions on the underlying mechanisms.
They are often used to process data to a more useful format and are particularly
helpful in identifying biomarkers in large datasets. Shah et al. [19] discuss a par-
ticular type of empirical models, namely the eigenvalue-based approaches. These
approaches, including singular value decomposition, principle component analysis,
and partial least squares regression, can identify important characteristics of big
datasets through decomposition and dimensionality reduction. The chapter further
discusses to way to deal with upscaling of these methods for understanding higher-
order datasets (through tensor decomposition).

In the previous sections we described methodologies aimed to generate models
from data; however data can also be gathered to define parameters in a model. When
dealing with mechanistic models, the assignment of values to the parameter in a
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model, i.e. the parameter estimation, is a crucial step. Depending on the type and
amount of data available, this can also be particularly time-consuming task. Over the
last years, building on computational and algorithmic developments, many new tools
have been developed to facilitate the parameter estimation step. A specific aspect of
the estimation process is the optimisation where the parameter space is determined
that provides the most interesting results. An overview of these estimation and meta-
heuristic optimisation techniques (simulated annealing, genetic algorithms, particle
swarm optimisation and others) can be found in Samuelson et al. [3]. As an alter-
native to these statistical-type parameter estimation methods, Tucker [21] describes
parameter estimation via set inversion and constraint propagation techniques (inter-
val methods). These techniques, based on set-valued computations combined with
branch and bound steps, allow to examine entire sets of parameters and thus com-
plete the global search within a finite number of steps. As the potential downside
of interval methods is their relatively low speed, the author additionally shows how
the method can be accelerated by set-valued constraint propagation, allowing for a
considerable improvement of its efficiency. Samuelson et al. [3] furthermore provide
concepts and tools that allow the modellers to select the appropriate methodology
for the specific scenario they are confronted with.

Once several models have been established, model assessment can help in iden-
tifying which model is the most appropriate for a given situation. Sunnaker and
Stelling [20] discuss the most commonly used methods for model assessment of
dynamical models, along with the underlying concepts and ideas. These methods
include the information theoretic (e.g. the Akaike and deviance information crite-
ria) and Bayesian approaches (e.g. posterior ratios for relative model probabilities
from Bayes factors and the approximate Bayesian information criterion) as well as
techniques such as cross-validation and bootstrapping. Bayesian model selection for
biological dynamical systems is further elaborated by Hug et al. [9], working with
the Bayes factor computed by Thermodynamic Integration. Fundamentally different
approaches to model selection (as compared to Bayesian approaches) are also treated,
e.g. the minimum description length. All techniques are illustrated with examples
ranging from simple and sometimes analytically tractable problems, to medium sized
models composed of ordinary differential equations. Information on how the most
important results can be derived is provided in [20], alongside with a discussion on
differences between methods [9, 20] and how these methods can be employed in
practice as there is no generally applicable method for model assessment that is valid
in all situations.

1.4 Sensitivity Analysis and Model Adaptation

Despite the techniques identified in the previous section, leading to the selection
of the optimal model populated with the optimal parameter set, the uncertainty in
the available data is often such that additional analyses of the parameter space and
even model adaptation might necessary. Again, a variety of techniques is available
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to study the parameter space. Some techniques focus on the general character of the
parameter space (e.g. sloppiness) for specific model types. Other techniques focus
on specific pre-defined ranges in parameter space assessing the importance of their
influence on the model results, i.e. sensitivity analyses. For over-parametrized or
vary complex models, various simplification and reduction techniques have been
developed to enable the understanding of the model’s underlying core dynamics
and a subsequent simplification of the model whilst maintaining its capability of
capturing those core dynamics.

Exploring the parameter space can be a very challenging task due to its high
dimension and complex structure. Mannakee et al. [16] have shown that there exists
a universal structure in the parameter space of models for nonlinear systems. More
specifically, these models are often sloppy, with strong parameter correlations and
an exponential range of parameter sensitivities all leading to good model behaviour.
In their chapter [16], the authors review the evidence for universal sloppiness and
its implications on parameter fitting and model prediction. They discuss how care-
ful experimental design can lead to optimisation of parameter inference or general
model behaviour (depending on the goals of the model and the modeller). They fur-
thermore discuss the potential of transforming parameters to alleviate sloppiness.
However, even when taking an information geometry perspective in order to have
a parametrization-independent perspective on modelling, sloppiness arises and a
deeper universal structure is revealed.

Rather than looking at the global parameter space, some methods specifically
focus on a well-defined area, starting from specific intervals for all parameters present
in the model (capturing the uncertainty of the parameters). ‘Design of Experiments’
(discussed by Van Schepdael et al. [22]) is a technique originally developed to opti-
mize physical experiments allowing to comprehensively determine the effect of para-
meters settings (individual parameters and their interactions) on the process with a
minimal amount of experimental runs. For computational models, the limits on the
specific parameter values that can be tested and the amount of runs that can be
executed are generally less stringent but the amount of parameters (and especially
their interactions) might be considerably higher than for physical experiments. The
design of experiment approach for computational models allows choosing a mini-
mum amount of parameter combinations that will result in a maximum amount of
information about the computational model. The chapter by Van Schepdael et al.
[22] explains several designs and analysis methodologies.

The aforementioned methods all start from the fully developed model as derived in
Sects. 1.2 and 1.3. However, with computational models of biological processes con-
tinuously increasing in size and model complexity (in part due to the data explosion
in biology) it is increasingly difficult to obtain insights into what parts of a model
generate a specific read-out. This hampers the correct interpretation of the model
result and their use in e.g. the design of personalised therapies. The uncertainty in
model structure and model parameters is a further complication. A solution to this
dual problem of complexity and uncertainty is the systematic construction of simpli-
fied models from complex models. In their chapter, Eriksson et al. [6] review different
methods for simplification and reduction of models with particular focus on recent
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developments such as the iterative “tearing, zooming and simplifying” approach.
This approach allows utilizing specific biological features such as modularity and
robustness.

To wrap up the part on sensitivity analysis and model adaptation, two elaborate
case studies are provided that investigate the sensitivity and effect of uncertainty on
model outcome in the context of neural fields and bone mechanics. Laing et al. [13]
discuss the introduction of randomly chosen “frozen” spatial noise to their modelling
system. The effect of inclusion of said noise on particular model outcomes, such as the
occurrence of specific activity in a particular neural field model, is investigated and
discussed. The second example is that of Mengoni et al. [17] who provide an overview
of computational mechanical modelling of trabecular bone from a sensitivity analysis
perspective. The effect of model development choices on model results is reviewed
and analysed at different scales (from micro up to organ). As the focus is on models
generated starting from Computed Tomography images, particular attention goes
to the image processing effects, the mesh-related aspects and the computational
representation of the boundary conditions.

1.5 Model Predictions Under Uncertainty

With the model and its parameters all set, model predictions can be made that feed-
back to the experiments, closing the modelling life cycle. Model predictions will
assist in advancing knowledge of the system under study in various ways. One such
type of predictions is the identification of alternative explanations for and interpre-
tations of the existing experimental data. Another type is the discovery of specific
mechanisms in the simulation data. Both will lead to the formulation of additional
experiments that need to be executed in order to validate (or falsify) the model’s
observations.

Gomez-Cabrero et al. [8] start from a very specific pre-frontal cortex working
memory model and discuss issues related to non-uniqueness of parameter sets and
the existence of various alternative solutions that can explain one particular experi-
mental phenomenon. Using optimization techniques, they uncovered compensatory
mechanisms in a subset of the parameters in the model, leading to the identification
of hypothesis to be validated in dedicated experiments. On a more general note,
Cedersund [2] provides an overview of various types of predictions that can be
made—core predictions allowing to test the quality of the model or poorly deter-
mined predictions allowing to improve the overall well-determination of the model
parameters. Even predictions that will not be tested experimentally can provide inter-
esting insights into the studied model. In a medical context, reliability and accuracy of
the predictions is important. Noteworthy is that this low degree of model uncertainty
does not necessarily imply a similarly low degree of uncertainty on the model para-
meters. Such well-determined predictions are then also amenable to incorporation in
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larger supermodels (e.g. models of individual organs connected into a multi-organ
model). Cedersund [2] subsequently provides an overview of the recent develop-
ments in the methods dealing with prediction uncertainty and discusses the price that
needs to be paid when bothering with prediction uncertainty.

1.6 Conclusion

This chapter has provided a brief overview of the model development life cycle with
a specific focus on uncertainty in the various stages: (i) establishment of a model
under uncertainty, (ii) model selection and parameter optimization, (iii) sensitivity
analysis and model adaptation, (iv) model predictions under uncertainty. Each of the
following chapters in this book elaborates in a detailed way one or more facets of this
development life cycle, with a specific attention to the incorporation of uncertainty
in data and modelling. Taken together, the information provided in this book should
allow modellers to start form experimental data, work through the different modelling
life cycle steps and finally make predictions that can be verified experimentally. The
last chapter, Gomez-Cabrero and Geris [7], provides also an overview of nowadays
open challenges.
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Chapter 2
Reverse Engineering Under Uncertainty

Paul Kirk, Daniel Silk and Michael P.H. Stumpf

Abstract The increased availability of experimental data in systems biology and
systems medicine can only lead to better understanding of biological and disease
related processes, if we can place them in the context of mechanistic models. Such
models can serve as conceptual, but also computational frameworks in which we
can reason about, or predict the behaviour of e.g. molecular networks, or cellular
processes. Constructing such models, however, remains a formidable challenge: not
only are the data noisy and incomplete, but the models that are currently available
are hopelessly oversimplified. In this chapter we set out the problems and a list of
potential ways of tackling them. The essential premise is always to be aware of the
uncertainties inherent in the data and our models.

Keywords Inverse problems - Model selection - Extrinsic versus intrinsic noise *
Model misspecification

2.1 Introduction

Reverse engineering the processes that govern the behaviour of biological systems is
one of the principal aims of systems biology [46]. From experimental data, we seek
to elucidate key aspects of the underlying mechanisms that give rise to observed
complex behaviour. We may initially have only very vague, perhaps even wrong,
ideas regarding these mechanisms, in which case our first aim may be to use the
data in order to generate testable hypotheses. Alternatively, we may have already
expressed our existing hypotheses as one or more mathematical models, in which
case we may wish to use the data in order to tune their parameters, or to choose
between them.

A defining feature of reverse engineering in a biological context is the variety
of ways in which we encounter uncertainty [11]. In addition to the usual challenges
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presented by measurement noise, we must also contend with the inherently stochastic
nature of biochemical and biophysical processes. Moreover, given the complexity
and interconnectedness of biological processes, we are currently only able to probe
incomplete portions of the systems of interest, which has obvious consequences for
the analysis [12]. While in vitro studies typically provide us with more control and
might even enable us to isolate a particular process, we are still faced with the prob-
lem of establishing whether this idealised environment can be representative of the
much more complex one that exists in vivo [33]. This combination of measurement
noise, incomplete observations, and inherently nonlinear and stochastic underlying
processes makes reverse engineering biological systems a particularly difficult task.

In this chapter, we discuss some of the challenges presented by reverse engineering
under uncertainty in a biological context. In Sect. 2.2, we provide a broad overview of
the inverse problem in systems biology, and consider the various ways in which this
problem is encountered in practice. We then consider manifestations of uncertainty
in Sect.2.3, and ways in which we can try to cope with them when addressing the
inverse problem. In Sect.2.4, we consider the consequences of uncertainty in the
context of modelling, and the potential limitations that uncertainty imposes on what
we are able to learn. We offer some final conclusions and advice in Sect.2.5.

2.2 The Inverse Problem in Systems Biology

An inverse problem is one in which we seek to reverse engineer details of a system (or
data-generating mechanism) from experimental observations or measurements [49].
Typically, this will involve inferring a model or its parameters from experimental data.
In contrast, a forward problem is one in which we have a fully specified model and we
use it to make predictions or draw conclusions about its behaviour. There is clearly
an interplay between inverse and forward problems: a reverse engineered model can
subsequently be used for prediction, while a model whose predictions disagree with
novel experimental observations might form the basis for a new model. The inverse
problem has gained particular prominence in systems biology [22, 55, 58, 61], where
we often have access to large quantities of high-throughput data, but may initially
lack a deep understanding of how these measurements relate to one another, or what
they can tell us about the underlying biological processes [36].

The difficulty of the inverse problem is hard to overstate. Even for simple sys-
tems (in terms of the model) it presents formidable challenges and is vastly more
complicated than any associated forward problem.

2.2.1 The Different Types of Inverse Problems

We can consider three different, yet closely related, types of inverse problem: (i) we
do not have a model and need to reverse engineer one from the data; (ii) we have
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a model, the parameters of which need to be estimated/inferred from the data; and
(iii) we have a number of distinct candidate models (for which we may or may not
know the parameters) and we need to choose between them.

The first type of inverse problem has attracted a lot of attention in systems biol-
ogy, particularly in the context of network inference [22, 38, 39, 50, 57]. Network
inference approaches often proceed by first calculating measures of statistical depen-
dence between different biological entities (which form the nodes of the network),
and then identifying the pairs of entities between which there is a significant statisti-
cal dependence (these define the edges of the network). Some approaches take pains
to try to identify direct, causal relationships by eliminating conditional dependen-
cies. Network inference techniques typically have the advantage of being applicable
to large-scale problems (e.g. finding dependencies between the expression levels
of genes). The resulting network representations tend to be descriptive rather then
predictive, and hence network inference is often seen as a method for hypothesis
generation, which may be a first step toward developing more detailed mechanistic
models.

The second type of inverse problem describes the problem of estimating the para-
meters of a known (or assumed) model, which is sometimes known as model cal-
ibration. In addition to more heuristic methods [6], approaches such as maximum
likelihood estimation [56] and Bayesian inference have gained traction in recent years
as ways in which to tackle model calibration problems. We consider these methods
in more detail in Sect.2.2.2.

The third type of inverse problem refers to model selection. In this case, we wish to
choose the ‘best’ model(s) from a collection (and/or may wish to reject the ‘worst’).
Usually, our assessment of a model requires us to strike a balance between two crite-
ria: (i) quality of fit; and (ii) complexity. In the interests of parsimony (also known as
Occam’s razor), we ideally wish to maximise the former while minimising the latter,
and numerous approaches exist that seek to address this problem. Measures such as
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
do this by combining an assessment of quality of fit with a penalty on the number of
parameters (which is taken as a proxy for model complexity). Alternatively, Bayesian
approaches usually focus on estimating the evidence (or marginal likelihood) for dif-
ferent models, and then compare these quantities via the calculation of Bayes factors.
Marginal likelihood estimation is typically challenging and computationally costly;
however, Bayesian approaches have the advantage of naturally embodying the prin-
ciple of Occam’s razor. These and other procedures for model selection are discussed
in more detail in [28, 47].

2.2.2 Statistical Inference Approaches

The general problem of fitting a model to data is often approached by considering
some function that quantifies the discrepancy (or, alternatively, agreement) between
the model’s predictions and the observed data, and then tuning the model’s parameters
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in order to obtain a good fit. Examples of the kind of discrepancy function that
might be employed include quantitative distances such as sum of squares and sum
of absolute difference errors, or qualitative measures such as the eigenvalues or Lya-
punov spectrum of a dynamical system [3, 41]. The choice of discrepancy function is
usually based upon heuristic arguments, but is often important, affecting (for exam-
ple) the degree to which outliers influence the fit. A key problem when adopting
such a fitting approach is how to find the minimum of the discrepancy function, and
numerous optimisation strategies exist that can be applied for this purpose [7, 53].
Two further important considerations are: (i) the problem of local minima; and (ii)
over fitting. The first of these refers to the common problem of the optimisation
algorithm getting “stuck” in a local minimum, rather than identifying the parameters
that yield the true, global minimum. The second refers to the challenge of how to
avoid fitting the experimental noise [40], which will typically result in poor predictive
performance.

If our model is probabilistic, we will often be able to define a likelihood function
[10], L(@) = p(D|#, M), which scores parameters by assessing how likely the
observed data, D, would be under the assumption that those parameters 6 (and
our model, M) are correct. In maximum likelihood (ML) estimation, we seek the
parameters that maximise this likelihood function. In order to improve numerical
stability, in practice we often work with the log likelihood function. Moreover, due
to the way in which optimisation routines are typically implemented, we often think in
terms of minimising the negative log likelihood, which we can consider as a particular
kind of discrepancy function that happens to have the advantage of having a formal
probabilistic grounding. The challenges of escaping local minima and avoiding over
fitting remain.

The Bayesian formalism [16, 45], provides a framework for performing parameter
inference, in which assessments of fit (as quantified by the likelihood function) are
combined with our prior belief regarding the parameter values. Here, “prior belief”
refers to the belief we have before observing the current dataset, and may have been
obtained on the basis of previous experiments (e.g. on related biological systems, or
in similar conditions). The Bayes rule provides us with a formal mathematical means
by which to update our prior belief in light of the observed data, in order to obtain
the posterior distribution. The posterior quantifies the uncertainty remaining in the
values of the parameters after having observed the data, and may be used to derive
credible regions for the parameter vector. More precisely, we have,

p@O|M)p(D]6, M)

0|D, M) = ’
re ) Joco POIM)p(DIO, M)db
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where D is the dataset, 6 is the vector of parameters that is to be inferred, and M
represents the model. In words, we have,
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In practice, elucidation of the posterior distribution is rarely possible analytically,
and hence we must resort to techniques for obtaining samples from the posterior,
such as Markov chain Monte Carlo (MCMC), sequential Monte Carlo (SMC),
or nested sampling [25, 42]. For some problems it may not even be possible
to write down the likelihood, in which case approximate likelihood techniques
and approaches such as approximate Bayesian computation might be appropriate
[52, 60].

2.2.3 Bypassing the Inverse Problem

It is usually impossible to measure all of the parameters or all of the components
of a biological system experimentally, and hence addressing the inverse problem
is an unavoidable reality. However, even if we were able to measure all of these
quantities, they would only be valid for the particular experimental and biological
conditions under which the measurements were taken; molecular reaction rates, for
example, depend on ambient temperature and pH values among many other things.
Given that these conditions are themselves subject to random fluctuations, modelling
the variation in these quantities is of vital importance if we wish to understand the
sources of uncertainty and variability in the system and in our data.

2.3 Manifestations of Uncertainty

One of the most significant challenges to be overcome when trying to reverse engi-
neer biological processes is the variety of sources of uncertainty that we must take
into account. In this section, we describe the various sources of noise that might
be important, and discuss strategies for coping with this noise when performing
inference.

2.3.1 Sources of Noise

There are many different sources of noise that have an impact on if and how we can
reverse engineer a given biological process. On the one hand, we have experimental
noise, which arises from imprecision and or inaccuracy in the measurement process.
On the other, we have the inherently stochastic nature of the underlying biological
system [4, 29, 51], which is a component of what we seek to reverse engineer. In the
context of cellular noise, this is often investigated in terms of intrinsic and extrinsic
sources.
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2.3.1.1 Experimental Noise

In the analysis of experimental error, a distinction is made between the precision
and accuracy of an observation [37]. Precision refers to the inherent error distribu-
tion associated with a particular type of experiment, and accuracy to the existence
of systematic errors in the experimental process. Contributions to the former will
vary for repeat observations and include, for example, random fluctuations in the
experimental conditions or behaviour of the experimental instruments. In contrast,
systematic errors remain unchanged for repeated experiments, and are caused by, for
example, imperfect calibration of experimental instruments. If the cause is known,
systematic errors should be explicitly modelled in order to avoid bias in any inferred
quantities. Otherwise, undetected systematic error can be viewed as a source model
misspecification which will be discussed more generally in Sect.2.4.2.

2.3.1.2 Intrinsic Noise

Cellular behaviour is governed by the biochemical reactions that occur between
different molecular species within the cell. The timing of individual reactions is a
random quantity, which gives rise to the source of cellular stochasticity known as
intrinsic noise. Since each individual reaction only changes the numbers of molecules
of the reacting species by one or two, the effects of intrinsic noise are particularly
important when there are only low copy numbers of the molecular species of interest.

2.3.1.3 Extrinsic Noise

Extrinsic noise refers to variability in the physical and biological environment within
which the intrinsically noisy interactions take place. For example, a collection of
cells may vary in cellular volume, be at different stages of the cellular cycle, or have
different abundance of RNA polymerase and ribosomes; all of which may contribute
to variability in behaviour between cells and subsequent experimental measurements.

2.3.2 Coping with Uncertainty in Inference

Having identified a variety of sources of noise, we now discuss how we should address
or capture these when performing parameter inference. The key question is how to
model each type of noise, so that we can either derive a likelihood function (and
hence adopt a maximum likelihood or Bayesian approach) or else find some other
(possibly simulation-based) method for inferring parameters. We consider strategies
for coping with each of the three types of noise identified in the previous section.
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2.3.2.1 Coping with Experimental Noise

Each source of random experimental uncertainty may be categorised further as apply-
ing to either the inputs or outputs of an experiment. In the latter case the measurement
error, €, is typically assumed independent of both the parameters and known inputs,
(6, u), and the true state of the system. The likelihood thus factorises into compo-
nents describing the uncertainty generated by the system and parameters, and by the
measurement process,

L©) = p(DI|0, u)
= p(D*|0, u)p(e)

where D* is the error-free (i.e. absent of experimental noise) state of the system.

In the less commonly discussed case of uncertain inputs, the true state of the
observable is no longer independent of the uncertainty in question, and the likelihood
is obtained by integrating over possible values of u,

L) = p(e)/p(D*|0, u)du. (2.3)

The integral in Eq.2.3 describes how the error propagates through the system for
particular values of 6, and often may only be approximately evaluated. A variety of
methods to do so exist, including Monte Carlo approaches [35], Sigma point methods
[26], or Gaussian quadrature [43], the appropriateness of each of which is determined
by both the complexity of the system model, and the distribution, p(u).

Commonly the total experimental error is summarised as additive and Gaussian.
Such an approximation may be justified (as a consequence of the Central Limit theo-
rem) when the errors are the accumulation of large numbers of independent sources
of uncertainty. The Gaussian assumption is certainly computationally convenient.
For example, if all sources of uncertainty and the data itself are Gaussian distributed,
then calculation of the integral in Eq. 2.3 may be undertaken with relative efficiency
(e.g. by using the unscented transform [27]). However, it is important to note that
the effects of input error (even when assumed Gaussian) on p(y) will almost cer-
tainly not be Gaussian in the presence of any non-linearity. Further, care must be
taken when measured quantities lie close to limiting boundaries (e.g. abundance or
concentration is strictly positive), as this can induce non-Gaussian effects upon the
error distribution. In these cases, more sophisticated and computationally expensive
Monte-Carlo based approaches are necessary for evaluating the likelihood.

2.3.2.2 Coping with Intrinsic Noise

We assume that the available data comprise intrinsically noisy measurements obtained
at discrete time points. While it is possible to derive exact Markov chain Monte
Carlo schemes for inference in such situations, their computational cost is usually
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prohibitively expensive. However, a number of approaches exist for simulating intrin-
sic fluctuations, and hence several simulation-based inference procedures have been
proposed. We refer the reader to [19, 59] for examples. At the heart of all of these
approaches is simulation using Gillespie’s stochastic simulation algorithm (SSA)
[18] (see also the top plots in Fig.2.1 for example realisations). Given a chemical
reaction system with known rate constants and initial molecule numbers, the SSA
proceeds by using Monte Carlo techniques to simulate both the time until the next
reaction, and the next reaction to occur. A number of modifications exist in order
accelerate simulation using the SSA, including the Gibson-Bruck algorithm and the
t-leap method [19, 59]. All of these simulation methods have in common that they
they provide exact realisations from the underlying (discrete state, continuous time)
stochastic kinetic model.

Alternative methods for parameter inference approximate the underlying stochas-
tic kinetic model in order to derive approximate likelihood functions. A popular
approach is to consider the continuous-state diffusion approximation of the true
process, which yields a stochastic differential equation (SDE) known as the chemi-
cal Langevin equation (CLE). An alternative continuous approximation is given by
the linear noise approximation (LNA) [20]. Additionally, several moment expansion
and moment closure approaches have been proposed as ways of approximating the
underlying model, some of which have also been used in order to allow parameter
estimation to be performed.

2.3.2.3 Coping with Extrinsic Noise

Extrinsic noise may be modelled by specifying a probability distribution, p(6, xo),
over the parameters and initial conditions [4]. In Fig. 2.1 (right column), we illustrate
the effects of extrinsic noise on the oscillations in a model of p53 dynamics, where
the extrinsic noise enters the model through fluctuations in just one of the parameters.
In this example, we have both intrinsic and extrinsic effects (see also Sect.2.3.2.4).
In the absence of intrinsic stochasticity, extrinsic effects may be simulated in exactly
the same way as propagating input uncertainty (discussed in Sect.2.4.2)—by propa-
gating p(6, xo) through the model. The parameters of the extrinsic noise distribution
p(8, x0), may also be the subject of inference given suitable data, such as multiple
measurements at single cell resolution.

2.3.2.4 Coping with Mixed Noise Sources

When intrinsic and extrinsic noise are both present, the modelling challenges are more
substantial, both conceptually and computationally. The most common approach,
originating from [48], is to derive a framework under which each source of noise
may be considered separately, whilst other sources are held fixed. The theoretical
justification is made via the following decomposition of the stochasticity of cellular
products, x, as the direct sum of extrinsic and intrinsic (and experimental) contri-
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butions. Defining the extrinsic and intrinsic variables (or parameters) as E and [/
respectively, the total law of variance gives us,

2 _ 2 2 2
0y = () T {04 EnE) T (0%E 1) 24)
—— — ——
Extrinsic Intrinsic Experimental

where the angular brackets represent the expectation. The first term is the variance
of the mean values of x with E held fixed, and describes the portion of the total
uncertainty arising from extrinsic variability. The second term describes the intrinsic
contribution—the mean variance of x when sources of uncertainty other than E and
I are averaged out, and E is held fixed. The final term is that part of the total variance
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Fig. 2.1 We consider a model of oscillatory p53 dynamics [17]. The model comprises three
protein species (p53, precursor of Mdm2 and Mdm2) connected through a nonlinear feedback
loop. We take the parameters of the system (see [1] for details) to be [ky, k2, k3, k4, ks, ke, k7] =
[90,0.002, 1.7, 1.1, 0.93, 0.96, 0.01], with initial conditions fixed at [p53, pre-mdm2, mdm?2] =
[10, 20, 30] at time ¢ = 0. In the fop left, we show individual realisations of the number of p53
molecules over time, obtained using Gillespie’s stochastic simulation algorithm (SSA). Below this,
we have 3 plots showing the population mean (solid line) and a 1 standard deviation shaded region
for the 3 protein species (as indicated), obtained by averaging over many SSA runs. On the right,
we show the same 4 plots, but this time we illustrate the effects of extrinsic fluctuations by assuming
that the k4 parameter is drawn from a Gamma(12, 0.1) distribution (so that the mode is at k4 = 1.1).
While it is difficult to discern any difference from the individual SSA simulations (top plots), it is
clear from the plots of the population means that the effect of extrinsic noise in this case is stronger
dampening of the oscillations
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that is not explained by experimental or intrinsic sources, and which we attribute to
uncertainty in the measurement process.

This noise decomposition suggests the innovative dual-reporter experiments—
where the products of two genes, regulated by identical promoters are simultaneously
measured—in order to quantify intrinsic and extrinsic contributions. Furthermore,
it suggests that intrinsic, extrinsic and experimental uncertainty may be modelled
jointly by combining their separate strategies in hierarchical fashion. This is demon-
strated for intrinsic and extrinsic variability by Toni and Tidor [51], using the linear
noise approximation and the unscented transform respectively.

The total law of variance based approach, however, is only accurate when changes
in extrinsic variables with time are much slower than fluctuations in intrinsic variables
[23]. It turns out that inferring the contributions to total variance from extrinsic and
intrinsic sources is reliant upon the history of extrinsic fluctuations and not just their
present state. Even if all extrinsic variables can be measured accurately, Eq.2.4 will
introduce errors if the extrinsic variables cannot be assumed constant in time.

2.3.3 Quantifying Information and Knowledge

Given the variety of noise sources that may exist in the underlying processes that
generated the data, we may wonder exactly how much information can be extracted
from a given dataset. In the context of reverse engineering, our principal concern is
the degree to which we will be able to reconstruct the biological process of interest
from the available experimental observations. It is therefore useful to be able to
quantify the amount of information that our data contain about the parameters that
we seek to infer. In the Bayesian formalism, this is conceptually simple. Before we
conduct the experiment, the prior distribution describes the knowledge that we have
regarding the values of the unknown model parameters. The posterior distribution
serves the same role, but after observation of the data. The compression from prior to
posterior provides an information theoretic measure of the information gain provided
by the data. This compression can be quantified by calculating the Kullback-Leibler
divergence [9] between posterior and prior,

p@|D, M)

dgr (p@|D, M), p(0|M)) = / p(O|M)

fc

p®|D, M)log( )do. 2.5)
®

Typically, it will not be possible to calculate this divergence analytically; however,
there are Monte Carlo methods that permit its estimation.
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2.4 Models in Biology and Confidence in Models

2.4.1 Data versus Reality

Despite the increasing range and power of experimental techniques, datasets continue
to represent low-dimensional snapshots of the complex cellular environment. It is
the task of reverse engineering to interpret the data and fill in the blanks—to explain
observed, and allow the prediction of unobserved properties of the real system. It
is clear that the quality, quantity, context and subject of experimental observations
determines both the inferences that may be drawn and the confidence we associate
with them. For example, larger datasets with higher signal to error ratios will in
general lead to greater accuracy and precision. However, in many cases the relative
utility of different experimental choices can be hard to foresee, e.g., which species
should be measured or perturbed (illustrated in Fig. 2.2 and more generally by Liepe
et al. [32]), and whether longitudinal datasets or time-point data should be generated
in order to reduce the uncertainty in parameter estimates [30].

Here it can be useful to close the loop between experiment and model, by ratio-
nally seeking experiments that maximise the expected information available for the
inference task at hand. This is known as experimental design, of which recent devel-
opments in the context of model calibration include the work of Liepe et al. [32]
that builds upon existing methods [2, 8, 24, 31, 34, 54], by utilising a sequen-
tial approximate Bayesian computation framework to choose the experiment that
maximises the expected mutual information between prior and posterior parameter
distributions. In so doing, they are able to optimally narrow the resulting poste-
rior parameter or predictive distributions, incorporate preliminary experimental data
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Fig.2.2 Some experiments are more informative than others. a Schematic of a three variable system
of ordinary differential equations. Arrows represent interactions that are modelled by linear terms
with coefficients shown. Inference for & is performed independently for two timeseries datasets that
are generated by simulating the model with k = —0.1, and measuring the state of b the top variable
and c¢ the middle variable for times t = 0.5, 1, 1.5, 2. The broadness of the resulting marginal
posterior distributions differ substantially, reflecting the different levels of information contained
within the datasets
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and provide sensitivity and robustness analyses. Design frameworks also exist for
model selection (e.g. [15]), where experiments are sought that maximally distinguish
the prior predictive distributions of the competing models.

Although experimental design offers a powerful auxiliary tool to statistical infer-
ence, care must be taken in interpreting the confidence associated with inferred mod-
els and parameters. For example, it is unsurprising that we assign high confidence
to the outcome of a model selection analysis given data from an optimally designed
experiment. When each of the models is subject to some level of misspecification,
such confidence may be misleading.

2.4.2 Models versus Reality

The complexity of cellular behaviour makes it inevitable that reverse (or forward)
engineered systems models will be subject to misspecification errors (when they
relate to the observation model, they are called systematic errors). These errors in
the model may remain undetected, or they may be introduced knowingly via model
reductions aimed at simplifying downstream analyses or at increasing interpretabil-
ity. In either case, such model uncertainty affects predictions and the outcomes of
statistical inferences. For example, inferred values for the physical parameters of a
‘wrong’ model will also be ‘wrong’ in order to compensate for misspecification (for
example, see Fig.2.3). Indeed, strictly speaking, Bayesian inference is valid only
when a ‘true’ model is considered.

The effects of parameter and input uncertainty may be quantified by assessing their
effect on the likelihood and posterior model predictions. For some classes of model
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Fig.2.3 Inference usinga ‘wrong’ model. a A misspecified model of a ‘true’ data generating system
are considered. The grey circle and dotted arrows represent a true variable and its interactions that
are absent from the wrong model. Fixing (e1, €2, ¢3) = (—0.1,0.1,0.5), and (k1, k2, k3, kg) =
(—0.1,0.5,0.5, —0.1) a timeseries of 10 data points is simulated from which the k; are inferred
using the incomplete model. b Marginal posterior densities for the k;. Maximum a posteriori (MAP)
estimates do not coincide with the true parameter values (shown in red)
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a similar treatment of model uncertainty may be undertaken by capturing the range
of possible errors through parametric expansions, and examining the importance
of each (e.g. [44]). However more generally, and certainly for mechanistic models,
such an approach is undermined by the conceptual and computational difficulties
of specifying the complete space of model errors. However, a consideration of the
possible sources of model uncertainty may still suggest a collection of possible
models that are in reasonable agreement with the data. In this case, the propagation
of misspecification may be managed, to an extent, by conditioning upon the whole
collection, rather than just on the single best model. This is the basis of the model
averaging framework, where the best estimate of the state or parameter of the system,
0, along with confidence intervals may be calculated from the averaged probability
under the various models,

N
pOIMi, ... M) = D p(M;|D)p(B| M)
i=0

where p(M;|D) is the posterior probability of model, M;, given the data, D, and
p(6|M;) is the posterior distribution for 6 under model M;. While each M; is
still ‘wrong’, the averaged prediction of all ‘wrong’ models at least accounts for a
portion of model uncertainty. However the major drawback of averaging, rather than
selecting, is to diminish their physical interpretability.

2.4.3 What Can Be Learned from Data?

Frequently we find that parameters, or more often combinations of parameters, can be
varied over orders of magnitude without changing the output of a system appreciably
[13]. This has major implications for the inverse problem of estimating parameters
from data, as large sub-regions in parameter-space may be commensurate with a
given dataset. The dependence (or lack thereof) of parameters with respect to data
is referred to as inferability, which in practice may be quantified as the variance
about the Maximum a posteriori (MAP) estimate. More formally, the Cramer-Rao
inequality [10] gives us a bound on the precision to which a parameter may be
estimated in terms of the likelihood,

ol > I71),

with Z(0) being the Fisher information matrix (FIM),

91 D|0)\>
(6) = Eg [(—Og(g’; | ))) ]

and (792, the covariance matrix of a vector-valued 6.
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The FIM is at the heart of much of statistical inference and can be interpreted as
the curvature of the likelihood surface around the maximal value of the likelihood
function. It can also be used as a means to consider robustness and sensitivity of
dynamical systems. The reason for this is that if a system is sensitive to variation
in a parameter, or a combination of parameters, then this means that changing the
parameter, e.g. from 6 to @ 4§, will result in a noticeable change to the system output,
which in turn means that the likelihood will also be altered appreciably. Notice,
however, that inferability is a property of both system and data—it is possible that
further observations will render previously ‘sloppy’ [21] parameters inferable with
high certainty (see Fig.2.2).

Often improved fits to data or better model predictions are interpreted as evidence
that more about the true system is being captured. However, it is easy to construct
counter-examples where improved data fitting and even predictive power (although
desirable in their own right) can be achieved by including more inaccuracies into
a misspecified model. It is crucial then not to interpret the physical meaning of
any model too assuredly, but instead use them as tools to generate hypotheses for
experimental testing (with the result, perhaps, of invalidating the model).

2.5 Conclusion

Reverse engineering is never easy, and probably even harder in biology than in the
physical sciences, where sound physical principles can constrain the search space
considerably. But once we accept that there is a point to applying quantitative methods
and mathematical or computer models in biology, we have to face up to the challenges
presented by inverse problems. There have been some arguments, perhaps most
notably from Sydney Brenner [5], stating that the inverse problem in molecular and
cellular biology is insurmountable and that we should use “the CELLMAP”’; how this
looks and where it would come from has thus far, sadly or unsurprisingly, been left
unspecified.

In order to make progress with the topic of this chapter we have to consider
two aspects of reverse engineering. First, problems where models can be tackled
by existing methods of reverse engineering. Here we consider only those that make
a meaningful and robust attempt at quantifying uncertainty as serious contenders,
which restricts us essentially to methods based on statistical and sound probabilistic
principles. For such systems it is easy to show that the inverse problem should be
tackled in preference of solving sets of forward problems, which rely on experimen-
tally measured parameter values, and which typically are associated with levels of
uncertainty that are, it appears, rarely propagated in forward analyses. The best we
can make out the elusive “CELLMAP” appears to be a fully parameterized model for
the (cellular) system under consideration. Taking the predictions of such a system at
face-value ignores uncertainty and does not appear a sound way of making progress.

There are statistical procedures which are provably consistent as the amount of
data becomes infinite. This is clearly a situation far from reality but it seems advisable
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to use these techniques also in situations where data are rare. The alternative would
be to use an approach which is provably sub-optimal as data become perfect and
abundant in the hope that it does a good job on poor data.

The second set of problems is more interesting, and probably more widespread:
there are numerous systems (and models thereof) for which the inverse problem is
indeed insurmountable. Here simple solutions simply do not exist (and a “CELLMAP”
is sadly lacking). Two obvious attempts at addressing such problems—each with its
own set of caveats—include partial inference and model reduction. While the details
of their respective applicability depend crucially on the specific problem, we can
make some general statements.

By partial or composite inference we mean a pragmatic approach that proceeds
by either breaking up the problem into sub-systems for which satisfactory inferential
solutions might exist, and then stitching the solutions for such subsystems together.
This has the disadvantage that any correlations or interdependencies among subsys-
tems are ignored. Nevertheless, techniques such as composite likelihood approaches
[14] can help to make progress in inference problems that are not amenable to a
comprehensive or holistic analysis. This will, we believe, continue to be a fruitful
area for computational statistics.

Model reduction, on the other hand, requires more domain expertise about the
system to be investigated. In the simplest case, it could be an effective model, which,
for example, ignores some molecular species, if they exist only briefly and transiently.
It could also be a model that looks at lower dimensional spatial problems (although
this can be fraught with fundamental problems as mathematical solutions to problems
in 1D and 2D can be qualitatively different from solutions in 3D).

Either approach, individually or in combination, may be worthwhile exploring
in problems in systems biology (developmental biology seems to be replete with
problems that pose challenges to inferential techniques), and is preferable to an
analysis of corresponding forward problems for fixed parameters, which would mask
uncertainty.

In summary, recent years have shown the fundamental new insights that can result
from searching for or determining the origins of uncertainty in biological systems.
In some cases, it will turn out that uncertainty is merely a nuisance (e.g. if it enters
via the experimental procedure), whereas other types of uncertainty either reveal
exciting new biological mechanisms (e.g. extrinsic variability typically points to
aspects of a biological system that require further investigation), or are fundamental
and inalienable aspects of biomolecular dynamics.

Failure to account for uncertainty in the analysis of biological systems (and in
particular in reverse engineering tasks) will likely introduce bias and mask interesting
biology. On the other hand, uncertainty becomes easier to deal with once we know
where and how it arises.
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Chapter 3
Probabilistic Computational Causal
Discovery for Systems Biology

Vincenzo Lagani, Sofia Triantafillou, Gordon Ball,
Jesper Tegnér and Ioannis Tsamardinos

Abstract Discovering the causal mechanisms of biological systems is necessary to
design new drugs and therapies. Computational Causal Discovery (CD) is a field
that offers the potential to discover causal relations and causal models under certain
conditions with a limited set of interventions/manipulations. This chapter reviews
the basic concepts and principles of CD, the nature of the assumptions to enable it,
potential pitfalls in its application, and recent advances and directions. Importantly,
several success stories in molecular and systems biology are discussed in detail.

Keywords Causality - Causal graphical models - Bayesian networks - Systems
biology - Biological networks

3.1 Introduction

The winner of the 2011 ACM Turing Award—the Nobel Prize equivalent in
Computing—was Prof. Judea Pearl, a pioneer in probabilistic and causal reason-
ing. Among many other contributions, the theory of Causal Bayesian Networks that
he co-developed is now a standard tool for modeling, inducing, and reasoning with
probabilistic causality. Bayesian Networks are at the heart of numerous decision sup-
port and expert systems as well as the basis for machine learning algorithms. After

Vincenzo Lagani, Sofia Triantafillou and Gordon Ball have contributed equally to this work.

V. Lagani - S. Triantafillou - I. Tsamardinos
Institute of Computer Science, Foundation for Research and Technology - Hellas,
N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

G. Ball - J. Tegnér
Unit of Computational Medicine, Karolinska Institutet, Center for Molecular Medicine,
Karolinska University Hospital, L8:05, SE-171 76 Stockholm, Sweden

S. Triantafillou - I. Tsamardinos (B<)

Computer Science Department, University of Crete,
Voutes Campus, GR-700 13 Heraklion, Crete, Greece
e-mail: tsamard.it@gmail.com

© Springer International Publishing Switzerland 2016 33
L. Geris and D. Gomez-Cabrero (eds.), Uncertainty in Biology,

Studies in Mechanobiology, Tissue Engineering and Biomaterials 17,

DOI 10.1007/978-3-319-21296-8_3



34 V. Lagani et al.

several decades of heated debate about the possibility of causal discovery without—or
with a limited number of—controlled experiments, it seems that consensus converges
towards an affirmative answer.

Knowledge of causal relations is paramount in systems biology. Causal modelling
goes beyond traditional statistical predictive modelling by allowing one to predict the
effects of actions and interventions on a system, e.g., the effects of treating with a drug,
knocking out a gene, or inducing a mutation in the genome. In contrast, non-causal,
predictive modelling is only valid when the system under study is observed under
the same experimental conditions and not otherwise manipulated. For example, gene
expressions A and B may be correlated: observing the expression levels of A allow
us to better predict the observed expression levels of B. But, it does not assure us that
A regulates B or the opposite. The difference between observing and intervening on a
system is essential for understanding causal modelling. If A is the only regulator of B,
then the two genes are still correlated in a controlled experiment where A is activated
or suppressed; in contrast, the correlation disappears in a control experiment where
B is activated and suppressed at will by the experimenter, since the effect of A now
becomes irrelevant.

To establish causality, one traditionally needs to perform a manipulation (pertur-
bation, intervention) on the system [29]. In contrast, computational Causal Discovery
(CD) methods argue that given certain assumptions about the nature of causality one
can sometimes induce causal relations from observational data alone or a limited
number of manipulations/interventions. One can then analyse archived data, for-
going expensive, time-consuming, or even impossible experiments, and determine
certain aspects of the causal mechanisms. Exactly which aspects of the causal struc-
ture can be induced depends on the system under study and the available data. Given
the complexity of the cell, performing all the possible experiments to establish all
relations among every subset of molecular quantities, under all possible experimental
conditions, is impractical. CD may provide an alternative.

Causal models (not necessarily induced through Causal Discovery) are already
heavily employed in systems biology: biological pathways are a form of causal mod-
els that are indispensable in biological research. Pathways are manually assembled
from the literature, where relations are established by performing interventions. How-
ever, for the most part, such models are informal and have ambiguous semantics for
the edges: an edge may imply a direct or indirect causation; a missing edge may imply
lack of direct causation or a yet-to-be established relation. In addition, pathways are
largely qualitative; the strength and functional form of the causal relations is not
represented (some exceptions exist, such as well-characterized metabolic pathways
annotated with flux equations [100]). In contrast, models induced with CD methods
have specific formal causal semantics as well as quantitative information that enables
quantitative predictions.

In the rest of this chapter we present the basic concepts of CD, focusing on the
fundamental underlying assumptions and discussing its limitations and potential pit-
falls. We also present selected applications of CD in systems biology, demonstrating
the potential of this exciting field.
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3.2 The Nature of Causality

3.2.1 Definition of Causality

We use the notation A — B to denote our belief that “A causally affects B” (or,
“A causes B” for brevity). But, what exactly does this mean and how should it
be interpreted? Most of CD employs a probabilistic notion of causality. A and B
should denote two well-specified variables (interchangeably: measurable quantities,
features) which are measured on a population of objects, such as two protein concen-
trations in human T-cells. We consider simultaneous measurements of these variables
in a random sample of the population, from which we can estimate their joint prob-
ability distribution. Thus, for the purposes of this chapter, the data are assumed
cross-sectional: snapshots of the state of a cell without regard for the time of mea-
surement.

A — B denotes the fact that if an experimenter intervenes and changes the values
of A, the distribution of B will also change. This statement is inherently probabilistic:
Average-Cigarettes-Smoked-Per-Day causally affects Presence-Of-Cancer-by-Age-
60 because the distribution of Presence-Of-Cancer-by-Age-60 changes and the peo-
ple with value “Yes” become more prevalent. To a single individual, that means that
the probability of her getting cancer increases. Yet, causality as presently defined is
still deceptively simplistic. A may be causally affecting B only in a given context,
e.g., in the presence of another protein C. Thus, a better definition is probably that
A — B if there is conceivable intervention involving only A, and a context of some
other variables that are held constant, such that the distribution of B changes (rel-
ative to the distribution of B when the context is the same but A is not intervened
upon). The “intervention” may be just a thought experiment, technically impossible
with present technology. Yet, it has to be theoretically plausible. For example, the
statement Cancer — Protein is arguably undefined: we cannot intervene on the state
of the cell to make it cancerous without affecting anything else in the cell. Such
semantically vacuous statements often arise when variables that refer to different
abstraction levels are modeled together. In this case Cancer, a quantity that refers to
the cell as a whole, and the concentration of a protein are defined on a different time
and spatial scale.

Finally, notice that the concept of causation is required to define “intervention”,
used in the definition of causation; our definition is recursive! To break the vicious
cycle, notice that intervention requires defining causality from outside the system
(the experimenter) to within the system; causality as defined regards causal effects
within the system. In other words, given that we understand what it means for an
experimenter to intervene in a population of cells, we can define the causal relations
among molecular cell quantities. We can proceed with using causality in an opera-
tional way, the same way humanity is doing statistics while still arguing about the
philosophical issues of the semantics of probabilities.
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3.2.2 Direct Causation

We’ll need to distinguish between direct and indirect causality. We’ll say A is directly
causally affecting B relative to variables in the set O, if A remains a cause of B even
when all other modeled variables’ values are held fixed. Direct causation is relative
tothe observed variables. A hormone may directly causally affect a gene when nothing
else is observed, but indirectly affect it when the status of cell membrane receptors
are observed.

3.2.3 Quantitative Causality

Relations A — B are qualitative and useful for human inspection and visualization
in the form of networks. But, quantitative relations are necessary to make quantitative
predictions. If there are two or more direct causes of B (A — B and C — B), then
in general we cannot consider the relations independently. This is necessary because
A and C jointly determine the values of B. In general, we can model the values of
B with the structural equation:

B = f(Pa(B),U)

where Pa(B) are the direct causes of B (or parents of B) and U represents all
other non-modeled causes. If A and C are the only parents, then B = f(A, C, U).
The difference from a non-structural equation is the special role of the left-hand-side:
the value of B is set (determined) by the values of PAp and U and not vice versa:
B cannot be moved to the right-hand-side. This special role of the left-hand-side is
equivalent to dictating that if we intervene on the values of the right-hand-side, the
left-hand-side may change, but not the other way round. The structural equation is not
symmetrical. Also notice that the equation is deterministic! However, the presence
of unknown values of U introduces uncertainty into the equation and induces a
probability distribution of the values of B. The form of function f is important. A
few examples follow, where /(o) is the indicator function taking values 1 when the
argument holds and 0 otherwise:

e B=a-A+ b+ ¢, B’s concentration always increases with the same rate as A
increases. This is an example of a linear relation (strictly speaking, if b # 0 it is
called an affine function). The term € = >", _;; U; is the effect of all unmeasured
causes of B; it is not measurement noise.

e B=a-I(A>100and C > 100) + b + ¢, B’s concentration follows a baseline
of b, and level a 4+ b when both A and C are larger than 100. Thus, in order to
discover this relation one must observe or impose values of A and C larger than
100.

e B =a-(A—100)2+b+e, B’s concentration decreases as A increases if A < 100,
and increases as A increases if A > 100. The rate of increase or decrease of B (as
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A takes different values) is 2a A (the derivative of the equation) and thus it is not
constant but depends on the values of A.

Linear relations are perhaps the easiest to discover, step functions (as in the second
example) require observing the system in a suitable range of the parameters, and
non-linear functions (as in the last example) require more sophisticated modeling
approaches.

3.2.4 Necessary/Sufficient/Contributory Causes

Similarly to the distinction between necessary and sufficient conditions in logic,
causes are also distinguished among necessary and sufficient, with the additional
category of contributory causes:

e Necessary: a necessary cause is such that the effect will always imply the cause,
but the cause does not imply the effect. For example, passing some course implies
that you sat the examination, but sitting the examination does not imply that you
will pass.

e Sufficient: a sufficient cause is such that the cause always implies the effect, but
the effect does not imply the cause. For example, burning hydrogen and oxygen
will always result in water, but the presence of water does not imply combustion.

e Contributory: a contributory cause is any other cause which may result in an effect,
but of itself is neither necessary nor sufficient. For example, an intoxicated driver
may result in a crash, but intoxication does not imply a certain crash, and neither
does a crash always imply the driver was intoxicated.

The majority of cases for which causal analysis is useful concern contributory
causes. Single necessary causes are usually relatively easy to identify: these are the
“low-hanging fruit” for which experiment and intuition will readily recover causality
without recourse to causal analysis. Conversely, a collection of mildly contributory
causes is a harder problem to identify, and one for which causal methods applied to
large datasets prove useful.

3.3 Basics of Causal Discovery Algorithms

3.3.1 Causal Graphical Models

A graphical representation is a useful way of quickly seeing the structure of acomplex
system. Intuitively, a set of causal relationships A — B can be readily represented as
a graph where nodes represent quantities and directed edges represent causal relation-
ships. Particularly, the formalism of Probabilistic Graphical Models (PGM) helps us
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define, in a more principled way, the mathematical characteristics of causal models.
We will mainly consider the Causal Bayesian Network (CBN) and Bayesian Network
(BN) frameworks, as these are some of the most known and widely employed PGMs.

3.3.2 Causal Bayesian Networks

A CBN consists of a graph G = {V; E} and a parameterization 8. The set V of
nodes represents the observed (modeled) quantities (a.k.a. variables), while E is a
set of directed edges A — B indicating direct' causal relationships (where A is the
“cause” and B is the “effect”). The graph must consist only of directed edges and
contain no cycles (Directed Acyclic Graph, DAG). For any node A, any node that
can be reached by following directed edges is a descendant (effect), and any node
from which A can be reached is an ancestor (cause). The direct causes of a node
are named parents, while its directed effects are named children. A directed path
consists of a sequence of nodes where each node, except the first one, is the direct
effect of its predecessor in the sequence. An undirected path is a sequence of nodes
where each pair of subsequent nodes is connected by an edge without regard to the
direction of the edge. Whenever an undirected path {A — C <— B} exists with two
incoming edges into C, the node C is called collider on this path.

The parameterization 6 defines the joint probability distribution of data generated
by a system with the causal structure of the network. The parameterization quantifies
the functional form of the causal relations among the variables. Adding a parame-
terization allows us to express whether relationships are linear or not, the effect size
of each interaction, and in general to make quantitative inferences. For a discrete
joint distribution (all variables being discrete) there is one parameter 6; for each
combination of values of the variables:

PVi=vi,....Vy=v;) =6 (3.1

A major assumption of the CBN framework is the Causal Markov Condition: each
node of Vis independent of its non-descendants (non-effects) given its parents (direct
causes). In other words, the Causal Markov Condition asserts that indirect causes or
confounded quantities do not provide additional information for a variable, once the
values of the direct causes are known. Notice that, effects of V may provide addi-
tional information, even when all direct causes of V are known. The Causal Markov
Condition allows us to connect the causal structure (network) with the distribution
parameters. By the chain rule in probabilities we obtain:

PWVi=viy,....,Vu=v) = HP(V/ ZV,'].|V1 =Vij,..., Vi :vijfl) (3.2)
J

IDirect causation is defined in the context of all other modeled variables, i.e., a causal relation
mediated by none of the observed variables.
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Let’s assume without loss of generality that each variable in the equation above is
listed after its parents, i.e., if i < j, then V; cannot be a parent of V; (in other words,
we assume the variables are topologically sorted). Notice that this is always possible
for DAGs. By using the Causal Markov Condition in the above equation, we obtain:

P(Vi=vij,.... Vo =vi,) =1 P (V; = vi;|Pa(V)) = pay;) (3.3)
J

That is, due to the Markov Condition for each variable V;, all the variables in the
conditioning part have disappeared except the parents of V;, denoted with Pa(V;).
The quantity pa,; denotes the joint combination of values of the parents of variable
V. The causal structure now dictates the form of the joint probability distribution,
by entering the equation in the form of the parent sets Pa (V') for each variable and
imposing a factorization of the joint distribution. Employing Eq. (3.1) to represent
an arbitrary distribution with n binary variables requires 2" — 1 parameters 6; to
be specified. However, using Eq.(3.3), we only need to represent the distributions
PV = Vi |[Pa(V;) = payj) for each variable. If a causal system is sparse, e.g.,
each variable has at most 3 parents, then we need (2 — 1) -23 parameters for each such
conditional distribution. So, in total, we need at most n - (k — 1) - k”, where n is the
number of variables, k the maximum number of values of each variables, and p the
maximum number of parents of a variable: knowledge of the structure of the causal
network, assuming it is sparse, allows an exponential reduction in the number of
distribution parameters required, and hence the dimension of the parameter space.
CBNss also assume Causal Sufficiency, which corresponds to asserting that there
are no external variables which are causes of two or more variables within the model.
These common causes are called confounders. The Causal Sufficiency assump-
tion implies that the following sub-graph is not present in the causal system under
study: X < L — Y, where X and Y are modeled, and L is unobserved and not

Fig. 3.1 A simple graphical
model depicting the
(supposed) causal
relationships among
smoking, genetic
background, cancer and
Prostate-Specific Antigen
(PSA). The parameterization
of the distribution associated
with this network is
described in the text

Genetic

Background

Prostate
Cancer

PSA



40 V. Lagani et al.

modeled. A truly causally sufficient model is in practice hard to construct, especially
in molecular biology where hundreds of thousands of molecular quantities may be
confounding factors. Causal Sufficiency is one of the most restrictive assumptions
of causal discovery. Fortunately, there exist more advanced generalizations of CBNs
that admit latent confounding variables (see Sect. 3.6).

Let’s employ an example in order to better explain the concepts above. Figure 3.1
portrays the DAG of a small CBN. In this example, the probability of developing
Prostate Cancer is influenced by both Genetic Background [94] and Smoking [48],
while the presence of prostate cancer increases the probability of deregulation in
the expression of the Prostate-Specific Antigen (PSA, [50]). Let’s suppose that all
variables are binary, which means each variable can assume a value in the set {1, 0}.
Regarding the semantics of the values, “1” means, respectively, deregulated for PSA,
harmful for Genetic Background, yes for Smoking and present for Prostate Cancer.
In each variable the value “0” negates the meaning of value “1”. We can now para-
meterize this simple model as follows:

P(Smoking = 1) = Tgmoking

P(Genetic Background = 1) = TGenetics

P(Prostrate Cancer = 1|Smoke, Genetics) = ay-Smoke+a>-Genetics+ag
P(PSA = 1|Prostate Cancer) = a4 - prostrate Cancer + a3

In this parameterization, having a harmful genetic background and being a smoker
are modelled as random events, whose respective probabilities are mgyoking and
TGenetics- Coefficients ag, ay, ax quantify the extent to which Smoking and Genetic
Background affect the probability of developing cancer, while a3, a4 quantify how
Prostate Cancer changes the probability of PSA being deregulated.

Notice that all causal relationships are probabilistic (non-deterministic), i.e.,
Smoking and Genetic Background increase the probability of developing Prostate
Cancer, while the presence of cancer may deregulate PSA expression. The proba-
bilistic nature of the model is due to the existence of a number of factors U;,i € U
(e.g., physical activity, diet, medications, etc.) which influence the model’s quanti-
ties but are not measured. However, recall that the Causal Sufficiency assumption
requires that no external factor simultaneously influences two or more elements of
the model; this means that each variable can be affected by multiple U;, but each U;
can affect only one variable.

3.3.2.1 Inference in Causal Bayesian Networks

If the CBN is known (this includes both the structure and the parameterization), any
probabilistic inference is possible. In particular, any predictive or diagnostic query
of the form “what is the probability V; will take/has taken value j given that we
observed certain values for other variables” is possible. Without loss of generality
let’s assume we observed Vi = vy, ..., Vx = v and we would like to compute the
conditional probability that Vi1 = vi41:
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PVi=vi,..., Vi = vk, Vis1 = V1)
PVipi =vipilVi=vr, ..., Vik=w) =
PVi=vi,...,Vie =)
X v, PVi=v o Ve =, Ve = vk, - Ve = ) 3.4)
Vst Va PV =1, o, Ve = v, Vit = Vi1, o, Ve = vp) '

where each index v; runs on all values in the domain of variable V;. Each term in the
sums is computed by Eq. (3.3). Let’s resume the example presented in Fig.3.1, and
assume that a specific patient has a deregulated PSA, is a smoker, and his Genetic
Background is not harmful. A clinician may be interested in assessing the probability
that the patient has Prostate Cancer, which can be evaluated by applying in turn
Egs.(3.3) and (3.4):

P(Cancer = 1|Smoke =1, PSA = 1Genetics = 0)
P(Cancer =1, Smoke =1, PSA =1, Genetics = 0)
= ,ec0.1 P(Cancer = pc, Smoke = 1, PSA = 1, Genetics = 0)
P(Genetics = 0) - P(Smoke = 1) - P(Cancer = 1|Smoke = 1, Genetics = 0) - P(PSA = 1|Cancer = 1)
X pe=0,1P(Genetics = 0) - P(Smoke = 1) - P(Cancer = pc|Smoke = 1, Genetics = 0) - P(PSA = 1|Cancer = pc)
(a1 -14+az-0+ap) - (ag - 1 +az)
(ar-14+a-0+ap)-(as-1+az)+[1—(a1-1+ar-0+ao)l-a3

Assuming that Smoke sensibly increases the probability of cancer (a; = 0.2, a9 =
0.01) and that PSA has a high sensitivity (a4 = 0.9, a3 = 0.1), the patient has a
high probability (0.727) of having Prostate Cancer. A similar inference would have
also been possible in the case information regarding Genetic Background was not
available, though the sums would have contained more terms (the number of terms
grows exponentially with the number of unobserved variables). In general, inference
is in the worst case an NP-complete problem, however efficient exact or approximate
algorithms do exist [71]. Thus, a CBN can predict/diagnose any variable or set of
variables given the values of any other set of variables. It is like having trained an
exponential number of predictive models, one for each variable subset as predictors.
This is a key factor that has made CBN's popular in (clinical) decision support systems
where one may have a varying and limited number of observations for each patient.

The graph of a CBN can also provide all the (conditional) independencies implied
by the Causal Markov Condition. If faithfulness is assumed (see Sect. 3.4.1 for a def-
inition of faithfulness) the graph can also provide all (conditional) dependencies. In
other words, by examining the graph, one can determine which variables are con-
ditionally or unconditionally correlated. The property that connects the topology of
graphical/causal structure with the concept of conditional (in)dependence is called
d-separation; two sets of variables A, B (such that A # B) are conditionally inde-
pendent given a third set C C V' \ {A, B} if and only if they are d-separated by C in
G. Formally, d-separation is defined as follows: A, B are said to be d-separated given
a third set C if there is no undirected path U such that (i) every collider in U has a
descendent in C and (ii) no other nodes in C is in U . Intuitively, we can think about d-
separation as a criterion that tells us if the “flow of information” between two variables
A and B is interrupted or not. For example, variables Smoking and PSA in Fig.3.1 are
d-connected when conditioned on the empty set (the “flow” of information can
freely transfer from Smoking to PSA through the node Prostate Cancer), but they are
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d-separated when we condition on Prostate Cancer, since knowing its value makes
the information provided by Smoking superfluous in order to predict PSA. On the
other hand, Smoking and Genetic Background are d-separated in absence of a condi-
tioning set, but they become d-connected when conditioning on Prostate Cancer, PSA
or both. In fact, in the latter case we condition on all the colliders (or their descendants)
in the undirected path between Smoking and Genetic Background. Note that Smoking
and Genetic Background are independent, but knowing both the values of Smoking
and Prostate Cancer gives us some information on the value of Genetic Background,
and thus the two variables are not independent anymore. Hereafter we will denote
with dep(A, B|C) the presence of a conditional dependency between variables A
and B given the set C, while indep(A, B|C) will denote independence.

Finally, CBNs can make inferences unique to causal models: they can predict the
effects of interventions/manipulations/changes in experimental conditions. Given a
CBN we can determine the effect of knocking out a gene, the effect of administering
adrug, or the effect of changing any quantity modeled in the network. Conceptually,
such inferences are straightforward. The effect of the experimenter on the system
that sets the values of a variable Vi to v, removes the effect of any other variable
to Vi. This is modeled by removing all incoming causal edges to Vj and setting
P(Vy =v) = 1land P(Vy = V) = 0, for v # V in the conditional probabilities
associated with the graph. The edge removal is called graph surgery; in the resulting
graph V} will have no parents. The new joint probability distribution can now be
computed with Eq.(3.4), and hence any probabilistic query about the effect of the
intervention can also be computed. Interventions that deterministically set the values
of some specific variables are called hard interventions. When interventions have
a chance of not being effective, they are called soft interventions. In this case, the
intervention does not completely remove the causal effect of all other quantities, and
thus, a different treatment is necessary where the probability of effective intervention
is also modeled. In addition, when an intervention is not specific to a quantity but
may affect other quantities too, the intervention is called a fat-hand intervention and
also requires different modeling techniques [25].

The main reason for causal modeling and discovery is exactly to enable the pre-
diction of the effect of our actions onto the system. Causal models are the only
types of models that enable such inferences. Statistical causal models, such as CBNs
perform such inferences without modeling the underlying physical phenomena and
mechanisms of causality, while other models such as Ordinary Differential Equations
directly model these mechanisms.

3.3.2.2 Dropping the Causal Semantics: Bayesian Networks

It is rarely the case that a CBN can be constructed completely from prior knowledge.
Typically, such models have to be learnt from data by algorithms that make numerous
assumptions (see Sect.3.4.1 for a discussion). In cases when the causal assumptions
are not to be trusted, and the structure or parameters of the CBN is also not trusted,
one may still use the Bayesian Network framework without the causal semantics.
Similarly to CBNs, BNs consist of a DAG and a parameterization, but do not make any
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causal claims or causal predictions. The Causal Markov Condition can be substituted
with the Markov Condition: each node is independent of its non-descendant given
its parents. Note the substitution of “direct causes” with “parents”, since in BNs the
term “cause” does not make sense anymore.

An edge X — Y in a BN should be interpreted strictly from a probabilistic
viewpoint: the edge denotes that X provides unique information for Y (possibly
given some other variables) and vice versa. The direction of the edges should also
not be interpreted causally; the direction is only employed to combine edges into
paths and determine implied probabilistic dependencies and independencies from
the network with the d-separation criterion. All probabilistic inferences possible
with CBNs are also possible with BNs, except for causal inferences: if the causal
semantics are dropped, one is not entitled to employ a BN to predict the effect of
manipulations into the system. BNs may predict our future observations based on
past observations, but not the effects of our actions.

Notice that, Bayesian Networks are only loosely related to some other Bayesian
statistical approaches in this volume, for example Bayesian model selection (See
Chapters [37, 49, 101]). Bayesian Networks treat probability in a “Bayesian” way,
i.e., to represent measures of belief (in contrast to the frequentist interpretation of
probabilities). They also make heavy use of the Bayesian Theorem to make infer-
ences. Both of these characteristics justify the term Bayesian. Bayesian model selec-
tion also treats probabilities as measure of belief; in particular, Bayesian model selec-
tion uses probability distribution on the set of possible models to express the a priori
belief on their validity (typically, favoring simpler models). However, Bayesian Net-
works serve to model and make inferences about joint distributions, while Bayesian
model selection aims to select the statistical model that achieve the best trade-off
between fitting the data and abiding to the prior beliefs.

3.4 Causal Discovery Approaches

The main goal of Causal Discovery algorithms is reconstructing the network of causal
mechanisms underlying a given system, given a dataset D. The dataset D is usually
composed of a set of n observations measured over m variables. Such causal learning
algorithms have already proven useful to biologists as shown below in Sect.3.5.

Unfortunately, reconstructing a Causal Model from data is not an easy task. Several
algorithms have been proposed in the last few decades, and all of them consist of two
stages: firstly, an appropriate causal graph is found, and secondly a parameterization is
estimated in accordance with the graph structure. While the second stage is relatively
straightforward (given a suitable assumption about the functional form of the causal
relationships), identifying the correct causal graph has proven to be NP-hard [14].
So far, two main approaches have been developed for reconstructing the graphs of
Causal Models, namely the Constraint-based and the Score-based (also known as
Search-and-Score) approach. The basic principles of the two main approaches for
learning CBN are the following:
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e Score-based: first introduced in [78], these methods are based on a score func-
tion S(G|D) measuring the fit of the graph to the data, while at the same time
favoring simpler structures. A prototypical score function is the Bayesian infor-
mation Criterion (BIC), defined as BIC(G|D) = |0| - In(n) — 2 - log (L(G|D)),
where log (L(G|D)) is the log-likelihood of the graph given the data, and | 8| is the
number of model parameters [93]. The score function is usually combined with
a search-heuristic that explores the space of possible graphs. A typical heuristic
is the greedy one: start with the empty graph (no edges) and then add, reverse or
delete the edge that maximally increases the score of the network (i.e., the fit to
the data) at each step.

e Constraint-based: this approach relies on estimating some of the conditional
(in)dependencies in the data distribution P from the data D through perform-
ing hypothesis tests of conditional independence. Typically, for discrete variables
the X2 or the G? tests are employed [63], while for continuous variables testing
the partial linear correlation are employed based on the Fisher z-transformation
[28]. The results of the hypothesis tests constrain the graph to reconstruct: in the
resulting graph G, two variables X, Y should be d-connected given Z if and only
if indep(X; Y|Z) in the data. In fact, it can be proven (assuming faithfulness, as
defined in Sect.3.4.1) that two variables are connected by an edge if and only if
there is no set of variables Z, such thatindep(X; Y |Z). Constraint-based methods
usually start with a fully connected, undirected graph and progressively remove
edges whenever a new conditional independency is discovered [98].

Typically for a given dataset there will be multiple solutions (i.e., networks) that
are Markov equivalent, i.e., they imply the same set of conditional independencies
and thus cannot be distinguished based on testing independencies on the data. Under
typical scoring functions, these networks receive equivalent scores. Intuitively, each
such network provides an equally good causal explanation for the data. The issue of
Markov Equivalence in learning causal structures is a point that an analyst should
keep in mind. The set of equivalent networks has some invariant characteristics, e.g.,
edges and directions upon which all solutions agree, and some variant characteristics
upon which different solutions disagree. Even when all causal assumptions hold, the
analyst is warranted to make claims only about the invariant characteristics. For-
tunately, for CBNs the representation of the set of equivalent networks is compact:
they can be represented with another type of network called the Completed Partially
DAG (CPDAG) or essential graph [13] and the invariant characteristics can be iden-
tified from this graph. Particularly, CPDAGs contain two types of edges, directed and
undirected. The first type represents arcs that are similarly (invariantly) oriented in
all Markov Equivalent solutions, while the latter represents edges whose orientation
varies among equivalent networks. In more complicated causal formalisms discussed
in Sect. 3.6, the set of equivalent solutions cannot be compactly represented. See also
Chapters [37, 49, 101] for further discussions on model identifiability and (Bayesian)
model selection.

Causal Discovery algorithms can also be used for variable selection, i.e., iden-
tifying the smallest subset of quantities that can provide the optimal prediction or
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diagnosis for an outcome variable of interest T (this is equivalent to molecular signa-
ture identification). Under certain conditions, the set of variables optimally predicting
the value of an outcome or molecular quantity 7 is what is called the Markov Blanket
of T': the set of direct causes, direct effects, and direct causes of direct effects [108].
Algorithms that can identify the Markov Blanket of 7 from data without knowledge
of the underlying CBN exist and have proved to be some of the most effective signa-
ture identification algorithms from biological data [3]. Importantly, these theoretical
results connect molecular signatures for prediction or diagnosis with the causal
structure of the system under study: the most predictive quantities have a specific
causal interpretation.

3.4.1 A Discussion on Some Typical Causal Discovery
Assumptions and Practical Issues

We now focus in more detail on the most common assumptions of typical causal
discovery algorithms and discuss their implication in the context of causal discovery
in biological systems.

(Causal) Markov Condition: in a DAG G each node is independent from any non-
descendant (non-effect) given its parent (direct causes). This condition formalizes our
“common belief” about how Causality operates, i.e., indirect causes or confounded
effects do not provide additional information, once the direct causes are known. For
example, in the network X < W — Y — QO — R, we expect that once we know Y
(the direct cause of Q), neither X (a confounded variable) nor W (an indirect cause)
provide additional information for Q. Notice that, observing the effect R of Q still
provides additional information for the value of Q. Interestingly, while the Causal
Markov Condition is (explicitly or implicitly) accepted and employed “all the time
in laboratory, medical and engineering setting” ([98], p. 38), whether it holds in the
sub-atomic systems studied by quantum physics it is still under debate [70]. This
assumption is what allows the algorithms to discover direct causal relations and drop
edges from the causal network being reconstructed. While relatively uncontested in
practice, the Causal Markov Condition may appear to be violated due to measurement
error (see below).

Acyclicity: CBN and other PGMs assume that no node in the graph can be a
cause of itself, either directly or through other variables. CBNs are not able to repre-
sent feedback loops, and in some biological applications this limitation can be quite
restrictive. However, some approaches have been developed that do not require this
assumption [41]. Typically, formalisms that admit the presence of feedback cycles
assume only linear relations. In the presence of both non-linear relations and feed-
back chaotic phenomena may arise that significantly complicate the problem and
the applicable algorithms. Thus, one must substitute one assumption for the other to
make causal discovery possible.
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Fig. 3.2 Simple example of
a feed-forward network

Causal sufficiency: no pair of nodes shares a common, unmeasured cause. In
statistical terms, we assume that there are no latent confounders that may introduce
correlations that are not explained by the measured variables. Specifically, consider
the network X < L — Y. Because L is a confounder of X and Y, we expect the
latter pair of variables to be correlated (dependent). If L is not observed, it is not
modeled in the network. There are only two networks with variables X and Y that
entail a dependency and fit the data: X — Y and X < Y. Both of them are Markov
equivalent and correctly represent the data distribution. But, their causal semantics
are wrong: X does not cause Y nor vice versa. The network with the correct causal
semantics is “X (no edge) Y. There is no way to correctly simultaneously represent
both the probabilistic semantics and the causal semantics of the network without
admitting new, unobserved variables in the network. Causal Sufficiency is one of the
most restrictive assumptions in CBNs particularly for systems biology where there
are millions of possible molecular quantities that may be confounding the observed
quantities. For this reason some PGM frameworks have been recently developed
(e.g., Maximal Ancestral Graphs [85]) that generalize CBNs to admit and reason
over the presence of hidden confounders.

Faithfulness: a distribution P is faithful to a DAG G if it entails all and only the
conditional independences implied by G. This assumption turns out to be important
particularly for the efficiency of Causal Discovery algorithms, in order to search
and identify all solution networks. One interpretation of faithfulness is that the set
of conditional independencies is stable under infinitesimal perturbations of the data
distribution [79]. For example, consider the following feed-forward gene network
(Fig.3.2):

X regulates Y both directly as well as indirectly through Z. The two paths for
regulating ¥ may be competing with each other: X up-regulating Y directly, X up-
regulating Z which in turn down-regulates Y. If the causal effects of each regulation
are just so finely tuned it is possible that the association between X and ¥ completely
disappears even though X causes Y. Such fine tuning of the parameters of the dis-
tribution seems unlikely (and it is infinitely unlikely under certain assumptions, see
[98], p. 66) and leads to independences that are unstable: they become dependencies
if the parameters of the distribution are slightly perturbed. Faithfulness dictates that
this fine tuning is not present in the data distribution. Thus, whenever X causes Y
in a network directly or indirectly or through multiple causal paths, we assume the
variables are dependent.

Faithfulness seems innocent at first glance, but there are several pitfalls. First, in
practice a distribution may be faithful but “close to unfaithfulness”; in the example
above, the association between X and Y may not disappear completely but may be
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too small to be detected with typical sample sizes. Second, while fine-tuning of the
parameters seems unlikely to occur by chance, there is evidence that natural selec-
tion leads to systems which may be unfaithful; in particular, the presence of negative
feedback cycles may lead to associations that disappear [22]. Deterministic relations
also violate faithfulness! It seems that randomness (i.e., natural occurring pertur-
bations) is required to allow causal discovery, which is philosophically intriguing
to say the least. For example, consider the network X — Y — Z, where X and
Y are deterministically related, e.g., they always have equal values. In that case, X
provides for Z the same information as Y and so indep(Y; Z|X) holds which is not
entailed by the Markov Condition. There are algorithms that do not assume faithful-
ness for learning CBNs [54]. However, simultaneously dropping the acyclicity and
faithfulness assumptions requires sophisticated theory and algorithms [41].

There are some additional assumptions that are often not declared explicitly, but
that should be carefully taken into consideration:

No measurement error: the variables are measured without error. This is a subtle
assumption that is required to learn CBNs, often not realized by practitioners who
apply these techniques. In other words, to allow causal discovery we need to assume
that the variance of the measurements of a variable X stems from our uncertainty
about (marginalizing over) all other causes of X, and is not due to measurement
error. Consider the effect of measurement error: let’s assume we measure X' =
X +ex,Y =Y +ey, Z' = Z + ez, where the last terms are the measurement noise
terms. Let’s assume the true structure is X — Y — Z. Thus, based on the Causal
Markov Condition we expect that indep(X; Z|Y). However, we observe the noisy
versions of the variables, so what we test instead is indep(X’; Z'|Y”). If the variance
of ey is larger than ey, it may turn out that X’ does provide additional information
for Z’ given Y’. This is equivalent to the Causal Markov Condition being violated. A
more relaxed assumption is that all error terms have the same variance, which would
lead to noisy versions of the variables that still maintain the same independencies as
the true, underlying network involving only the original variables. This observation is
particularly important for measurements by biotechnologies that do have significant
measurement error, such as micro-array gene expression data, where gene expression
may have very different variance of measurement errors.

Effect of data transformations (discretization, averaging): as above, this issue
regards the connection between the actual quantities that we are modeling and the
quantities measured and contained in the data. For example, it is common for a prac-
titioner to discretize the data before applying a causal discovery method. However,
depending on the discretization, the set of dependencies and independencies in the
transformed data distribution may be changed compared to the original [61, 68].
Again, this may appear as a violation of the Causal Markov Condition on the trans-
formed data. Another important case of potentially harmful transformation is that of
averaging. Averaging takes place in almost every mass-throughput technology. For
example, in micro-array gene expression data one tries to induce causal relations and
networks among gene expressions in a single cell, e.g., that X — Y. However, what
is measured in the data are the average expressions X and Y of X and Y in millions
of cells. The independencies of a network is X — Y — Z defined on the single-cell
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quantities X, Y, Z are not necessarily the same as the independencies on the averages
X, Y, and Z [15]. This observation favors causal discovery from single cell data (or
in general, measurements that are not averaged) versus other biotechnologies.

No selection bias and case-control studies: A basic assumption for causal discov-
ery is that the samples are not selected for inclusion in the data based on an effect
of the modeled variables. Let’s consider the case where two genes X, Y regulate the
size of the cell Z: when both genes are high the cell is larger with high probability.
In addition, we assume the two genes to be independent from each other. Thus, the
true network is X — Z <« Y. Now, let’s imagine that a researcher measures these
genes in a collection of cells including mostly in large cells (perhaps because small
cells are harder to detect and isolate given the available equipment). In the selected
population whenever X is high, Y is also high with large probability: the two gene
expressions are correlated in the selected population. This correlation is an artifact
of the data sampling and not present in the general cell population. Cytometry data
is a particular type of data with possible selection bias as an effect of the gating
process and classification to different cell types. Another striking example of selec-
tion bias is case-control data. In case-control studies, half the samples (cases) have
been selected for inclusion based on the effect (disease) of the modeled variables.
In the previous example, let us change the semantics of Z to being the presence or
absence of a disease and X, Y two independent causes of disease. In all cases of dis-
ease, when X is high, Y is high with high probability, so they appear correlated even
though they are not correlated in the general (unselected) population. Epidemiolo-
gists try to alleviate these spurious correlations by matching cases and controls based
on some of the variables (age, gender, race, etc.). If cases and controls are matched
in the example above, the spurious association between X and Y would disappear.
However, matching cannot be achieved at a molecular level for every variable (e.g.,
gene expression) that is modeled and so one has to be particularly careful with causal
discovery in case-control data. Some methods for learning causal networks [7] try
to account for selection bias introduced by unmatched case-control study design.

It should also be noted that standard Causal Discovery algorithms assume that
samples are independent and identically distributed (i.i.d.) and that they are all
measured under the same experimental conditions and at same the point in time
(cross-sectional data). Other algorithms exist for dealing with other types of data and
information, e.g., data measured under different experimental conditions [19, 51],
in different points in time [30] or for co-analyzing data in the context of prior causal
knowledge [8].

Finally, practical issues also determine the success of causal discovery:

Statistical errors: statistical errors in the results of the conditional independence
tests, or equivalently statistical fluctuations in the score of networks to the data may
result in learning networks or relations that are wrong. In fact, in a large network it is
almost certain that some parts of the network will be erroneously induced. Robustness
against statistical errors and sample sizes depends on the learning method. Employ-
ing the most appropriate hypothesis testing procedure or scoring function for the
given data is paramount. Inappropriate tests or score functions may introduce sys-
tematic reasoning errors. For example, if functional relations are non-linear but linear
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hypothesis tests are used, some conditional (in)dependencies may not be detectable
even with large sample sizes. Methods for assessing the reliability of each feature of
the network (e.g., presence of an edge or an edge direction) do exist and should be
employed. Some of them employ bootstrapping, i.e., learning with resampled data.
However, notice that bootstrapping provides the confidence given by the method for
a given feature (e.g. edge in the network); bootstrapping does not provide an absolute
confidence for the feature. For example, if a method systematically reports a false
edge because it employs inappropriate tests for the specific data, bootstrapping will
also return high confidence on this edge.

Non-linear relations: non-linear relations in continuous data present particular
problems to causal discovery. For example, consider the case when two quantities do
not interact, unless a third quantity is present in a sufficient concentration. If the data
do not contain samples where this third quantity is indeed in high concentration, the
causal relation will be undetected. Equivalently, for discrete data, a correlation may
be present only for specific values of the variables that never appear in the dataset
and hence will not be detected by any algorithm.

3.5 Causal Discovery in Systems Biology: Success Stories

Despite the philosophical, theoretical, and algorithmic problems described above, CD
can work when applied with care, and assumptions, technicalities and limitations are
duly taken into consideration. The following success stories from systems biology
provide evidence for this.

3.5.1 Inferring Causal Relationships Among Genotype
and Quantitative Traits

In recent years, computational methods have been introduced for identifying causal
relationships among genetic characteristics and quantitative traits in observational
data. These methods were named differently by their respective authors, e.g.,
Likelihood-based Causality Model Selection (LCMS, [91]) or Trigger (Transcrip-
tional Regulation Inference from Genetics of Gene ExpRession, [12]). For simplic-
ity, hereafter we will collectively refer to all these methods as Causal Quantitative
Trait Loci (CQTL) algorithms.

Specifically, CQTLs methods attempt to reconstruct the causal interaction between
a genome marker L and two quantitative traits, namely 77 and 73, all measured in
the same segregating population. Each quantitative trait can represent the expression
value of a given gene, a quantitative phenotype, or any other continuous measurement
on the population of interest. CQTL’s cornerstone assumption is that a statistical
association between the genetic marker L and the traits of interest must denote a
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Fig. 3.3 Possible Causal Models among a genetic marker L and two quantitative traits 7/ and 72
given that the Mendelian Randomization assumptions hold and that all quantities are associated
with each other. The node H represents one or more hidden confounders

causal effect of L on the associated trait. This assumption is justified by the the-
ory developed in the context of Mendelian Randomization [23, 47]. In a nutshell,
Mendelian Randomization methods assume that the random re-composition of the
genome during conception can be considered equivalent, from a statistical point of
view, to the randomization procedures performed during Randomized Control Trials
(RCTs). Consequently, any statistical association between the genetic information
and the traits/phenotype of interested cannot be affected by latent confounders, i.e.,
must denote a causal association.z All Quantitative Trait Loci (QTL) studies [66] are
based on Mendelian Randomization and its assumptions.

Thus, given that (a) the Mendelian Randomization assumptions hold (i.e., 7} and
T, cannot cause L), (b) the Causal Markov and Faithfulness conditions hold as well,
and (¢) L, T1 and T, are found in the data all statistically associated with each other
(i.e., the following dependencies hold: dep (L, T1|9), dep(L, T>|9), dep(Ty, T»|9)),
then only a very restricted number of causal structures (see Fig. 3.3) are admissible.
Each causal model is represented as a CBN, where the node H represents one or
more unknown, latent confounders.

Can we further screen out the models presented in Fig. 3.3 and identify the unique,
actual causal structure that generated the data at hand? Using the d-separation

2Linkage disequilibrium, pleiotropic effects and other factors can invalidate the Mendelian Ran-
domization approach; these issues are better explained later in the text.
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criterion above and assuming faithfulness, if L and 7> are not statistically asso-
ciated given Ty (i.e., indep(L, T»|T1) holds), then the true causal model must be
L—>T — T,

In more detail, each model where L and 73 are connected through a direct edge is
incompatible with indep(L, T>|T1), since T} cannot d-separate 7> and L. This leaves
models (1), (7) and (8) as the only possible candidates. In the two latter models, 77 is
acolliderin the path L — T1 <— H — T3, and thus conditioning on 77 makes L and
T, dependent. Thus, the single causal model in agreement with all the assumptions
and (in)dependencies encoded in the data is model (1).

Similarly, indep(L, T1|T2) holds only when the true underlying causal model is
L— T —T.

Thus, the causal relationships among a genetic marker and two quantitative traits
can be identified, in principle, by assessing whether a limited number of condi-
tional (in)dependencies hold in the data. Particularly, studies focusing on large pan-
els of genomics markers/quantitative traits (e.g., Genome Wide Association Studies)
can opportunistically apply CQTL methods on each possible triplet of the form
{L, Ty, T»}, and potentially discover a large number of causal relationships.

The first theoretically-sound algorithm able to identify, under a well-defined set
of assumptions, causal triplets L — 77 — 71> where L is known to be “uncaused”
was introduced by Cooper in 1997 [18].% The first applications of CQTL methods in
biology appeared only a decade later: the work presented in Schadt et al. [91] was
one of the first studies demonstrating CQTLs effectiveness on a specific biological
problem.

Particularly, Schadt and co-authors investigated the causal relationships between
a genome-wide panel of markers (L), transcript abundance levels in the liver (77) and
obesity-related traits (77) in mice. They referred to model (1) and (2) in Fig.3.3 as
Direct Causal model and Reactive Causal model, respectively, while all other models
were collectively indicated as the Independent Causal model. A model selection pro-
cedure, namely LCMS (Likelihood-based Causality Model Selection), was employed
for identifying the most plausible causal model for each triplet {genomic marker,
transcript abundance level, obesity related trait}. The LCMS procedure belongs to
the class of Search-and-Score algorithms, and employs the Akaike Information Cri-
terion (AIC, [1]) as the score metric: AIC = 2k — 2In(L), where k is the number of
parameters of each model and In (L) its log-likelihood.

Chen and co-authors [12] developed a Constraint-based CQTL algorithm. Partic-
ularly, they demonstrated the Causal Equivalence Theorem, i.e., if the Faithfulness
and Causal Markov Condition hold, then:

The causal relationship L — Ty — T, exists and there are no hidden vari-
ables causal for both Ty and T, if and only if the following three conditions hold:
dep(L, Ti|0), dep(L, T>|®), and indep(L, T»|T7).*

3Statistical algorithms for identifying and quantifying mediation effects were known even earlier
[58, 97]. However, these algorithms usually assume some particular (linear) distributional model
and “fell short of providing a general, causally defensible measure of mediation” [80].

“Notably, the “Causal Equivalence Theorem” is identical to the LCD procedure presented in [18].
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The authors employ the Causal Equivalence Theorem in order to derive a method,
namely Trigger, which provides probability values p; » and p, 1 for the causal struc-
tures L — 71 — T» and L — T} — T, respectively.

More recently, Millstein and co-authors have proposed another Constraint-based
CQTL algorithm, the Causal Inference Test (CIT, [67]), which evaluates a larger
set of (conditional) dependencies and independencies than Trigger. Particularly, the
following conditions must be satisfied for accepting the Direct Causal Model:

CIT Condition 1: L and T, are associated

CIT Condition 2: L and T are associated given 7
CIT Condition 3: T is associated with 7, given L
CIT Condition 4: L is independent from 7> given T

A p-value for each of the four CIT conditions can be calculated by applying a suitable
statistical test of (conditional) dependency, while the maximum among the four p-
values, namely ppcu, is employed as a global statistic for assessing if the four
conditions can be jointly accepted. A global p-value prc s for the Reactive Causal
model L — T» — Tj can be derived in a similar way.

Once ppcy and prcy have been provided, the CIT procedure applies the fol-
lowing rules to distinguish among the possible causal models:

1. If ppcym < aand prey > «, then the Direct Causal Model is accepted

2. If ppcm > aand prepm < «, then the Reactive Causal Model is accepted

3. If ppcm > aand prey < «, then the Independent Causal Model is accepted
4. If ppcm < aand prcy > «, then no call is made

where « is a threshold for accepting statistical significance (e.g., o = 0.05). Interest-
ingly, CIT does not distinguish among the Independent Causal Model and the case
when L is not associated with 77 or 75.

CQTL methods have been applied in several studies in order to shade light on
specific biological problems. The spread of CQTL methods has also been boosted by
the availability of free, open source implementations, whose most notable examples
are the R package cit (implementing the CIT method), the Network Edge Orienting
(NEO) software [4], that implements a score-based CQTLs method, and the R pack-
age gtinet, that implements a CQTL algorithm able to take in account and exploit
complex correlation structures among multiple traits/phenotypes [72].

A recent example of a successful CQTL study has been presented by Gutierrez-
Arcelus et al. [32]: the interaction between DNA sequence, DNA methylation and
gene expression was investigated with the CIT method in fibroblasts, T-cells and
lymphoblastoid cells extracted from the umbilical cord of 204 babies. This study
showed that, when the two alleles of a gene are not equally expressed in a given type
of cell, gene expression is mainly regulated by DNA sequence variation, with little
or no influence by DNA methylation.

Liuetal. [55] employed the CIT method for disentangling the causal relationships
among genome, DNA methylation and Rheumatoid Arthritis. By using the CIT algo-
rithm, the authors found 535 genome—arthritis causal interactions that are mediated
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by methylation, out of the initially 4016 initially considered associations between
genome markers and the rheumatoid arthritis phenotype.

Some controversial CQTL results have been reported in another publication [44].
In this work the authors studied the genome characteristics and expression profile of
leukocyte cells from 284 Moroccan individuals. By applying a basic CQTL method,
it came out that the SNP rs11987927 seems to trans-regulate the expression of the
ZNF71 gene which, in turn, regulates back the transcript abundance of the MYOM2
gene, i.e. the gene where rs11987927 is located. The authors were not able to show
whether this counterintuitive result is trustworthy or is instead due to measurement
errors [88] or to other causes (e.g. the presence of feedback cycles).

This last example reminds us that the CQTL approach has, obviously, some lim-
itations. Particularly, the limitations affecting Mendelian Randomization [74] affect
as well all CQTL studies. Mendelian Randomization assumes that the choice of the
mating partner is not affected by the genome. Population stratification is another
possible source of bias for Mendelian Randomization and CQTL studies. It can be
the case that allelic frequencies and phenotype distributions vary similarly across
different populations, even in absence of any causal relations. Consequently, artifi-
cial genome-phenotype associations could be detected if the population under study
is composed by different sub-populations. Biological redundancy and adaptation to
unfavorable genetically-determined phenotypes can hide genome-phenotype causal
interactions. Markers that are physically close to each other on the genome tend to
be highly associated (a phenomenon known as linkage-disequilibrium) and these
associations can lead to the false identification of causal markers that are merely
close to the real cause of the phenotype. Highly co-linear (associated, correlated)
quantities are close to determinism and violations of Faithfulness (see Sect.3.4.1
above). Genomic markers can have pleiotropic effects, i.e., simultaneously affecting
several traits. If the effect of the pleiotropic marker on each trait is small, it may be
necessary to jointly consider all the traits in order to detect the marker-traits causal
associations. Furthermore, genomic modifications driven by reverse transcription [9]
may ingenerate cases where the observed genomic profiles are actually influenced by
the traits under study. Finally, to the best of our knowledge, all CQTL methods devel-
oped so far assume that all genome markers follow the same genomic model (usually
the additive or co-dominant one), even if assuming the wrong genomic model can
lead to a decrease of statistical power [5]. Methodological approaches have been
proposed in order to mitigate the effect of some of these limitations, particularly in
order to detect causal markers in condition of strong linkage disequilibrium [73] and
pleiotropic effects [115].

Despite these limitations, CQTL studies have proven to be able to identify actual

casual relationships in a number of different biological context. The main factors
enabling CQTL effectiveness are:
Incorporation of prior, biological knowledge: the (apparently) innocuous infor-
mation that “nothing causes L” is actually pivotal in order to dramatically reduce the
number of possible causal models. This means that CQTL methods explore a very
small space of possible models thanks to the adoption of Mendelian Randomization
assumptions.
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Opportunistic approach: CQTL methods are usually applied on a large number
of triplets, and whenever a Direct or Reversal causal model cannot be identified,
they forgo making a decision. Therefore, the CQTL approach can be thought of as
“explorative analysis”, useful for discovering novel causal associations which can
be subsequently experimentally validated.

“Local” causal discovery: a number of difficulties arise when Causal Discovery
methods are applied with the intent to learn a complete network of all direct causal
relations, i.e., the CBN among all quantities in the data. Errors in statistical infer-
ences can “propagate”, and erroneously orientate edges even in distant regions of the
reconstructed network. Conversely, the CQTL approach focuses on a small system
formed by solely three quantities, and thus they do not suffer of the issues arising
when large networks are induced.

Causal Sufficiency is not assumed: the CQTL approach is “robust” with respect
to the presence of latent confounders: no unmeasured variable can affect the asso-
ciation between L and any of the two traits (given the Mendelian Randomization
assumption), while if the two traits are both affected by the same latent confounder
then the CQTL algorithm will simply forgo making a decision.

Computational feasibility: CQTL algorithms require performing arelatively limited
number of statistical (conditional) association tests. Efficient implementations of
CQTL algorithm can be easily realized, and CQTL can be applied on hundreds of
thousands of triplets in a reasonable time.

Future developments for CQTL methods seem to move in the direction of data
integration for network reconstruction. The CIT algorithm was originally proposed
as a method for reconstructing causal interaction networks. The QTLnet algorithm
[72] tries to reconstruct the interaction network among genome markers and multiple
traits. Cai et al. [10] have developed a Structural Equation Model method, namely
the Sparsity-aware Maximum Likelihood (SML) algorithm, for reconstructing gene
regulatory networks by exploiting genetic perturbations. Finally, in a recent review
[90], the author points out that causal triplets provided by CQTL methods can be
used for deriving priors for (Causal) Bayesian Network reconstruction algorithms.

3.5.2 Reconstructing Protein Signaling Pathways

Co-ordination of complex cellular activities requires a well-orchestrated propaga-
tion of information. In living organisms, this information is transmitted across cells
through chemical signals which enter the cell and cause a cascade of chemical, spa-
tial and physical modifications of intracellular compounds. This procedure is broadly
described with the term cell signaling, and a cascade of responses to a certain extra-
cellular stimulus is generally called a signaling pathway, though many argue that
presenting a signaling pathway as an isolated set of responses to a specific stimulus
may be too simplistic.
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Such pathways are typically reconstructed by manually synthesizing pathway
components. Each pathway component is discovered through the aggregation of
several studies examining the relationship in question under different experimental
designs.

Signaling pathways are usually represented as graphs, where the nodes represent
participating compounds and the edges represent direct causal links. Different shapes
and colors are used to denote different types of participating molecules, and different
edges are used to discriminate different types of causal influence.

Bayesian networks, being able to capture both causal and probabilistic relations
in multivariate systems, seem fitting to model and quantify signaling pathways. In
a ground-breaking paper published in 2005, Sachs et al. [89] applied a Bayesian
network learning algorithm to reconstruct a known signaling pathway in T-cells.

The authors used multi-parameter flow cytometry data measuring 11 phosphory-
lated proteins and phospholipids — all known participants in T-cell signaling — under
9 different experimental conditions in naive cd4+ T-cells. A score-based algorithm
for learning Bayesian networks from a mixture of observational and experimental
data [19] was then employed to infer the causal structure and the joint probability
distribution of the measured variables.

Each experimental condition included a general or target-specific stimulatory
condition, sometimes coupled with a target-specific inhibitor. In total, 5 activators
and 5 inhibitors were used. All perturbations were modeled as “ideal” interventions
[79] (i.e., hard interventions, not fat hand interventions), where the concentrations
of the target molecules are set solely by the manipulation procedure (i.e. the selected
inhibitor/activator completely determines the value of the target variable).

The data were discretized into 3 bins, representing “low”, “basal” and “high”
concentration values, using an algorithm designed to preserve the joint distribution
of the variables [33] before being used with the BN learning algorithm. To ensure
statistical robustness, the algorithmic process was repeated 500 times with random
initial graphs. The output model included only edges present in more than 85 % of
the resulting graphs.

The returned network consists of 17 edges and is impressively similar to a con-
sensus signaling pathway manually curated from the literature. Out of the 17 edges
identified, 15 edges represent causal links that are well-established in the literature
and 2 represent causal links that are not well-established but have been reported at
least once. The algorithm failed to discover 3 edges that were expected based on
the literature review. However, were they included, these edges would create feed-
back cycles, which cannot be modeled with Bayesian networks. The causal direction
of identified edges was correct, with the exception of a single arc that was found
reversed (Fig.3.4).

To further evaluate the validity of the predicted relations, the authors performed
an experiment to test one of the causal links that was found by the algorithm but
was not sufficiently backed up by the literature. Specifically, the model included
a direct causal link from Erk to Akt, a connection previously reported only in
colon cancer cells [31, 114]. The model entails that a perturbation of Erk will influ-
ence the abundance of Akt, while it will have no effect in the abundance of PKA.
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Fig. 3.4 Network inferred from flow cytometry data. The network is a consensus average of 500
high-scoring networks. Only edges present in more than 85 % of the networks are included. Out of
17 edges, 15 are well established in the literature and 2 are reported but not well established. One
of the edges is found reversed. The resulting network missed three edges that were expected based
on the literature review. Figure from [89]

The authors validated this by inhibiting Erk with a suitable siRNA. True to the
model’s prediction, Akt activity was reduced (p < 9.4 x 1072), while PKA activity
remained uninfluenced (p < 0.28).

Despite the impressively accurate pathway reconstruction and the experimental
validation of a previously unknown predicted arc, to the best of our knowledge,
this paper remains the only case study of Bayesian network learning for automatic
network reconstruction. To understand the reasons automatic causal discovery is
still sparsely used in bioinformatics, let us discuss the main factors enabling causal
discovery in flow cytometry data:

Network perturbations. An important factor in the success of this method is the
inclusion of network perturbations, which are particularly important for correctly
identifying the directionality of arcs. To test the significance of including experimen-
tal data sets, the authors test the algorithm on a data set consisting of 1200 samples
measured without intervention. The resulting network contains only 8 out of the 18
expected edges (compared to 15 when the complete data set is used). In addition,
all identified edges are undirected, demonstrating the significance of experiments in
identifying causal relations. Nevertheless, we do note that the set of perturbations is
still quite limited compared to the full set of experiments required to fully generate
the structure without the use of CBN methodology.

Large sample size. Bayesian network learning methods require large sample sizes,
while typical experimental designs in molecular biology are usually limited to pro-
ducing just enough samples to ensure the technical soundness of the procedure. Flow
cytometry, measuring the abundance of proteins in single cells, results in hundreds
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Fig. 3.5 Networks inferred from: a A data set consisting from observations alone. b A data set
consisting of 420 randomly selected samples from the original data set. ¢ A data set consisting of
420 data points, each of which is an average of 20 randomly selected samples from the original data
set. In all three cases, the resulting network is far less accurate compared to the one resulting from
the complete data set. We can therefore infer that the inclusion of experiments, the large sample size
and the lack of averaging effects are crucial for accurate network reconstruction. Figure from [89]

of data points in each experiment, enabling the detection of causal relations in noisy
multivariate data. The authors show the importance of large sample sizes by applying
the same algorithmic procedure on a truncated version of the original data consisting
of 420 randomly selected samples. The resulting network is shown in Fig.3.5b. It
consists of 14 edges, out of which only 8 are expected and only 1 is reported.
Single cell measurements. A key obstacle in applying Bayesian networks in mole-
cular biology data is that the measurements are usually averages of quantities in cell
tissues. Using averaged measurements for Bayesian network learning is known to
be problematic [15], since the correlation structure of measured quantities may not
be preserved. Flow cytometry measurements are single cell measurements, and are
therefore suitable for this type of inference. To illustrate this point, the authors sim-
ulate a western blot data set over the same variables by selecting at random 20 data
points at a time and averaging them, creating a data set of 420 samples in total. The
resulting network, shown in Fig. 3.5¢, displays a further decline in accuracy: Out of
16 edges, only 6 belong to the expected ones.
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Causal sufficiency. In this work, the authors aim to provide a proof-of-concept
of the use of Bayesian network in analyzing multivariate flow-cytometry data by
reconstructing a well-studied pathway in mammalian T-cells. In doing so, the authors
pick 11 compounds in the cell that are not confounded (in the context of the set
of measured compounds), thus satisfying one of the most difficult assumptions of
Bayesian networks, that of causal sufficiency. While the authors do not test how
decisive this factor is for the success of the method, it is well known that violation of
the causal sufficiency assumption causes errors that propagate through the network.
Over the past few years, there has been a growing body of work on causal models
for causally insufficient systems, some of which are discussed in Sect. 3.6. However,
these models are for the most part developed and disseminated in the machine learning
community, and remain fairly unknown in the field of molecular biology.

Overall, several attractive features of the flow cytometry technology render it
an ideal test-bed for causal Bayesian network learning. Compared to other high-
throughput molecular biology techniques, flow cytometry data have vast sample
sizes, do not suffer the unwelcome effects of averaging, and samples can easily
be perturbed with in-vitro, close-to-ideal interventions. Unfortunately, flow cytom-
etry technology can only measure up to approximately 20 variables simultaneously,
limited by the number of distinguishable fluorescents. This number prevents the mea-
surement of all variables participating in known pathways, let alone the numerous
cellular compounds for novel pathways. However, the recently developed technique
of mass cytometry, where antibodies are tagged with rare isotopes instead of flu-
orescents, allows measuring up to 30 variables, with a theoretical limit of circa 60
variables [75]. Moreover, the demonstration of the problematic effects of using aver-
aged data along with the development of novel technologies has resulted in growing
availability of single-cell genomic data [83, 111], promising a bright future for auto-
matic causal discovery in Bioinformatics.

3.5.3 Estimating Causal Effects in High-Dimensional,
Observational Data: The Intervention Calculus
when the DAG Is Absent Approach

Identifying cause-effect relationships is one of the main goals of Causal Discovery
methods. However, in some cases assessing whether a causal relationship holds is not
sufficient, and one also desires to quantify the size of the causal effect. For example,
once it has been established that a gene regulates a particular protein, it may also
be relevant to know what variation should be expected in the level of the protein’s
abundance (effect) for a given variation in the level of the expression of the gene
(cause).

Estimating the size of a causal effect is not a trivial task, although it becomes
feasible when the true causal structure is known. Pearl [78] proposed a technique,
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named “do-calculus”,> which, given a DAG and a suitable parameterization, allows
estimating the magnitude of the causal effect between any pair of variables X, Y
modeled in the DAG. Unfortunately, in almost all biology-related, real-world prob-
lems the actual underlying causal structure is not known, and its reconstruction is
often prohibitive, as discussed in Sect. 3.4.

Recently, Maathuis and co-authors [56] proposed a method for estimating a lower
bound on the size of the causal effect between two quantities by using a worst-
case analysis. Their method, namely /DA (Intervention calculus when the DAG is
Absent), has at least two appealing features: (a) it is able to estimate causal effects’
lower bounds solely on the basis of observational data, i.e., without requiring data
from experimental perturbations, and (b) can scale up to high-dimensional settings
involving thousands of variables.

The basic idea underlying the IDA algorithm is the following: first, let’s assume
that the underlying causal mechanism that has generated the data can be represented
as a DAG, and that no latent confounders are present (i.e., we assume causal suffi-
ciency). Then, the size of the causal effect X — Y between any pair of quantities
included in the data can be estimated with the following steps:

1. Identify the CPDAG P that best fits the distribution of the data at hand. Recall
from Sect.3.4 that a CPDAG is a compact representation of the set of DAGs
that are Markov equivalent, i.e., the set of DAGs that cannot be distinguished
among each other solely on the basis of the available (observational) data. P can
be identified by applying any suitable Causal Discovery method, e.g., the PC
algorithm [98].

2. Calculate the effect size ES(X — Y) for the causal relationship X — Y sep-
arately for each DAG represented by P. The minimum absolute value among
these effect sizes is the lower bound for the effect size of the causal relationship
X —>Y.

The apparent simplicity of the IDA algorithm hides an insidious technical issue:
the number of DAGs included in P can become intractable even in the case of small
systems (e.g., a few tens of measured quantities). For this reason, IDA exploits some
sophisticated theoretical results in order to avoid a complete enumeration of the
DAGs included in P, while ensuring the correctness of the final results. Moreover,
IDA assumes that the data follow a multivariate normal distribution. This assumption
is not strictly necessary for the general soundness of the algorithm, but leads to a great
simplification of the calculations, since multivariate normality implies linearity of
the causal effects. Under the multivariate normal distribution assumption the effect
size ES of the causal relationship X — Y does not depend by the specific value of
X and can be expressed as:

ES(X = Y) = E (Y|do(X = x + 1)) — E (Y|do(X = x))

SExplaining the details of the do-calculus is beyond the scope of this chapter. Interested readers can
refer to Pearl’s original publication.



60 V. Lagani et al.

(a) (b) (D

0.249 (53 0.842

0.880  0.318

Bephp

ES(1->5)=0.984 ES(1->5)=0.984 ES(1->5)=0.235 ES(1->5)=0.751

Fig.3.6 Graphical representation of IDA operation. a Example causal network involving five nodes.
Causal effects are assumed to be linear, with weights specified on each edge. b CPDAG reconstructed
by the PC algorithm from 1000 samples simulated from the example causal network. Undirected
edges denote arcs that are reversible. ¢ DAGs corresponding to the reconstructed CPDAG. For each
DAG the effect size of the causal relationship 1 — 5 is reported, as calculated with the do-calculus.
The minimum among these values (0.235) is a lower bound of the real effect size. All simulations
were performed with the R package pcalg [46]

where E (Y|do(X = x)), in the language of the do-calculus, represents the expected
value of the random continuous variable Y if the value of X is forcefully set, through
an external intervention, to a fixed value x over the whole population. If all quantities
are scaled in order to have zero mean and unitary standard deviation, ES(X — Y)
would represent the expected variation of Y for a variation of X equal to its standard
deviation.

It should also be noted that IDA can be considered a conservative algorithm,
performing a “worst case scenario” analysis, since it returns the minimum absolute
value among the calculated size effects. Figure 3.6 shows a graphical representation
of the operation of IDA.®

The main drawback of the IDA algorithm is that it is based on a set of assumptions
that are unlikely to hold in real settings, particularly Causal Sufficiency and multi-
variate normality. Overall, it is not well understood how the results of the algorithm
may change whenever one or more of these assumptions is violated.

6 An implementation of the IDA algorithm is available in the R package pcalg [46].
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Despite these limitations, IDA has proved to be effective in identifying and quanti-
fying causal relationships from observational data. In a subsequent, ground-breaking
publication [57], Maathuis and co-authors applied IDA on two different sets of obser-
vational data: a compendium of expression profiles of Saccharomyces Cerevisiae,
and the set of simulated gene expression data from the DREAM4 competition In Sil-
ico Network Challenge [60] For both sets of data, m “true” causal relationships were
estimated and quantified through gene knock-out experiments, while g “predicted”
causal relationships were obtained by applying the IDA algorithm on the observa-
tional data. For both the Saccharomyces Cerevisiaec and the DREAM4 data the sets
of true and predicted causal effects had an overlap statistically significantly larger
than the one that can be expected by random guessing. The overlap was statistically
significant for different values of ¢ and m. Moreover, when contrasted against two
state-of-the-art correlation-based algorithms, (the Lasso and Elastic Net regressions
[116]), the IDA algorithm largely outperformed both methods in correctly ranking
putative causal relationships; in fact, the correlation-based algorithms’ predictions
were only as good as random guessing. The importance of these results was high-
lighted in an editorial in the same issue of Nature Methods [11].

An additional application of the IDA algorithm on another real-world problem
was also reported [45]. In this work the researchers employed a slightly modified
version of IDA (able to deal with binary variables) in order to identify the factors
causally influencing the level of general health perception in a sample of spinal cord
injury patients. The results of the study confirmed, once more, the capability of IDA
in identifying and quantifying causal relationships from observational data.

The factors enabling effective causal discovery with the IDA approach are the
following:

Worst case analysis: IDA provides a “worst-case” estimation of the causal effects.
This means that only causal relationships strongly supported by the data will be
retrieved.

Opportunistic approach: similarly to the CQTL algorithms, IDA is an explorative
analysis whose main scope is identifying novel causal relationships, rather than
confirming existing ones.

Ranking of putative causal associations: causal associations discovered by IDA
are associated with their respective effect size. This means that researchers can rank
the putative causal relationships provided by the IDA algorithm according to their
estimated effect sizes, and eventually retain/experimentally validate only the top
ones.

Finally, it is worth noting that some extensions of IDA were recently published.
Le and co-authors presented a version of IDA modified to detect and quantify
microRNA/mRNA causal relationships [53]. The Causal Stability Ranking (CS7aR)
method [99] employs the IDA algorithm and a re-sampling based stability selection
method [65] to identify, out of a list of possible candidates, the factors that causally
influence a given outcome.
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3.6 Future Directions

In the previous sections, we presented some introductory concepts related to causality
and causal discovery. We also briefly presented (Causal) Bayesian networks, which
are one of the main tools for causal discovery without randomized control experi-
ments. Finally, we discussed some of the most prominent and successful applications
of causal discovery in the field of molecular biology. Despite years of research in the
field of causal discovery and the increasing availability of public data, the applica-
tions remain limited and are often contrived examples rather than methods of global
applicability. In this section, we explain some of the reasons thereof, and discuss
recent developments in causal discovery that may help tackle some of the problems
in applied causal discovery, and present some future directions for a unified, robust
and integrative approach in causal discovery.

Admitting Latent Confounding Factors: The theory of Bayesian networks relies on
the assumption of causal sufficiency, i.e. that no two variables included in the model
shares an unobserved common cause (latent confounder). In most real scenarios, this
assumption is somewhat arbitrary, since the possibility of a latent confounder can
rarely be excluded [87]. The presence of latent confounders is a common source
of error in the output of Bayesian network learning algorithms, and an even more
common source of criticism and mistrust for causal discovery.

Over the past few years, however, several causal models that do not rely on the
assumption of causal discovery have been developed. Semi Markov causal models
(SMCMs, [103]) are causal models that implicitly model hidden confounders using
bi-directed edges. Like Bayesian networks, SMCMs consist of a joint probability
distribution over a set of variables and a causal graph over the same set of variables.
The graph is an acyclic directed mixed graph, where nodes represent variables and
edges represent causal relations: A directed edge (— ) denotes a direct causal relation
(in the context of variables included in the model), while a bi-directed edge (<)
denotes that the variables in question share a latent common cause. Two variables can
share both a directed and a bi-directed edge. Under the causal Markov condition and
faithfulness, conditional (in)dependencies entailed in the distribution correspond to
graph properties of the graph according to the criterion of m-separation, an extension
of d-separation in BNs. While obtaining a parameterization of a mixed graph is
possible for discrete variables [27, 86] there exists no algorithm that can reverse-
engineer a semi-Markov causal model from data.

Maximal ancestral graphs (MAGs, [85]) constitute a different approach in mod-
eling causality in causally insufficient systems. Maximal ancestral graphs are ances-
tral mixed graphs, meaning they contain no directed or almost directed cycles: An
almost directed cycle occurs when A <> B and there exists a directed path from A
to B. Every pair of variables A, B in an ancestral graph is joined by at most one
edge. The orientation of this edge represents (non) causal ancestry: A bi-directed
edge A < B denotes that A does not cause B and B does not cause A, but (under the
faithfulness assumption) the two share a latent confounder. A directed edge A — B
denotes causal ancestry: A is a causal ancestor of B. Thus, if A causes B (not
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Fig. 3.7 Causal insufficiency. a A causal Bayesian network over variables A, B, C, D, L. b The
semi-Markov causal model over the (causally insufficient) set of variables, A, B, C, D. ¢ The maximal
ancestral graph over the same variables

necessarily directly in the context of causal variables) and the two are also con-
founded, there is an edge A — B in the corresponding MAG. Figure 3.7 illustrates
an example of a marginal SMCM and MAG for the same underlying causal Bayesian
network. Some features of a MAG are not identifiable from the joint probability dis-
tribution alone. Classes of MAGs that correspond to the same probability distribution
form a Markov equivalence class. The FCI algorithm [98, 112] is a constraint-based
algorithm that can learn all the invariant features of Markov equivalent MAGs from
passive observational data. The algorithm is shown to be sound and complete.
Admitting Feedback Cycles: Another long debated assumption of causal Bayesian
networks is acyclicity; i.e., the lack of feedback loops in the system under study.
While some may argue that causal processes are acyclic over time, in many practical
settings we only have cross-sectional, non-temporal data, hopefully having reached
equilibrium. Particularly in molecular biology feedback is a well-known regulatory
mechanism and thus, acyclicity a problematic assumption.

To address this shortcoming of causal Bayesian networks, several approaches
have been introduced, most of which resort to the parametric assumption of lin-
earity. Richardson and Spirtes are the authors of the first general constraint-based
algorithm for learning linear cyclic models, the Cyclic Causal Discovery algorithm
[84]. The algorithm however is not complete. Schmidt and Murphy present a method
for learning discrete cyclic models [92], but their method heavily relies on experi-
mental data. Moreover, the authors present no theoretical results for their algorithms
completeness and identifiability status. Itani et al. introduce generalized Bayesian
networks [96], an extension of Bayesian networks for cyclic systems with discrete
variables, and present a learning algorithm. The method relies on experimental data
to both identify data and to apply BN learning algorithms in data where the cycles are
broken by perturbations. All of the methods above employ the assumption of causal
sufficiency. Hyttinen et al. present a method for learning linear cyclic model from
a series of experiments in causally insufficient systems [41], along with sufficient
and necessary conditions for identifiability. Unfortunately, this method also relies on
linearity, which is generally known not to hold in biological systems.

Local and Opportunistic Learning: Given the limitations, difficulties, and pitfalls
of CD, learning complete large networks may degrade quality of learning and present
large computational demands. Local Causal Discovery takes a different approach.
There are at least two types of causal discovery. The first, pioneered by Cooper
and colleagues attempts to identify (all) marginal graphs (i.e., representing the
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distribution of a subset of the variables) of some special interest. For example, in [18]
all triplets leading to a CBN of the form L — 77 — T, when L is known not to have
any causes within the system under study are identified. As discussed in Sect.3.5.1
this work preceded the CQTL studies and was re-discovered independently later.
This is the smallest graph that postulates a new causal relation 77 — T, without
assuming Causal Sufficiency, due to the prior knowledge that nothing causes L (we
do not consider L — T7 or L — 75 as new interesting causal postulates since if
nothing causes L and L is correlated with 77 or 75 then the causal relation should
hold trivially). When prior knowledge is not available, the smallest marginal graph
that postulates a causal relationship without assuming Causal Sufficiency is called a
Y-structure and is of the form X — Q <« Z, Q — W. If this CBN is induced from
the data, then Q — W even if Causal Sufficiency is violated (the CBN of course
also claims X — Q but this may not be the case if Causal Sufficiency is violated).
Algorithms to identify Y-structures appeared in [59]. Another type of Local Causal
Discovery is the reconstruction of focused regions of the underlying causal graph
around a variable of interest, e.g., a specific gene, without the need to reconstruct the
complete network. The first such method was [62], later receiving more attention in
[81, 110]. Such local CD algorithms are closely related to variable selection as the
Markov Blanket of a variable is the part of the network relevant for variable selection
[3]. The difference between the two types of local causal discovery is that the first
learns marginal networks, while the second learns sub-networks. For example, if the
true network is X — Y — Z — W, and nothing causes X, then the method by
Cooper [18] will return 3 triplets: X - ¥ > W, X - Z - W,and X - Y - W
corresponding to marginalizing (treating as latent) one variable at a time. The method
learning regions in [110] with target Z will return the network Y — Z — W (if
the region is restricted to be only the nodes adjacent to Z). The latter is a sub-graph
of the original graph (in general, local discovery may not orient the same edges as
global discovery). Local Causal Discovery forgoes learning complete networks to
save computational time or to make more robust inferences with fewer assumptions.
We also use the term opportunistic learning to denote all methods that perform a reli-
ability, confidence, robustness estimation of findings and focus only on the findings
for which the method is confident on. The CQTL methods presented above heavily
use these ideas.

Integrative Causal Analysis: in recent years, the proliferation of publicly-available,
on-line data repositories allow the possibility of co-analyzing large amounts of data
and information. This is particularly evident in some fields, for example System
Biology, where on-line data repositories are well-established [2, 6] and researchers
are encouraged to share their raw data along with their results and findings. Typi-
cally, however, data from different studies cannot be pooled together naively and be
jointly analyzed, even when all studies examine the same biological system. Any dif-
ference in recording conventions, study design or experimental procedures requires
sophisticated statistical approaches in order to be addressed. A non-exhaustive list of
approaches that attempt to address these issues includes Meta-Analysis [76], Transfer
Learning [77], Statistical Matching (also called Data Fusion) [24] and Batch-Effect
removal [52]. Each of these approaches is characterized by its own scope, advantages
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and weaknesses. In general the integrative analysis of heterogeneous datasets is still
an open problem and a field of active research.

Integrative analysis from a causal perspective takes a specific form. The key obser-
vation in this approach is that all data measuring the same biological system stem
from a single causal mechanism. Each study maybe measuring different quantities,
under different experimental conditions or sampling methodologies, yet there should
exist a causal model that can produce all these datasets. Thus, to co-analyze a collec-
tion of datasets coming from heterogeneous studies one searches for a causal model
(or all causal models) that simultaneously fit and can explain all data. Over the past
few years, several methods for extending causal analysis to the integrative analysis of
heterogeneous datasets have been introduced. We collectively refer to these methods
as Integrative Causal Analysis (INCA). A major advantage of INCA is that it can
model the effect of interventions, e.g. the knock-out of a gene in one dataset and
treatment with a hormone in a second one, to enable the co-analysis of datasets over
different experimental conditions.

INCA methods can address different types of heterogeneity. Several INCA works
have focused on the problem of overlapping variable sets, i.e., co-analyzing data sets
that have only a subset of the included variables in common. In this setting the scope
of the analysis is usually to infer information regarding the causal mechanism defined
over the union of all measured variables. A first pioneering work was published in
2002 by Danks [20], who proposed a two-stage approach consisting in separately
learning a Bayesian Network from each study and then using a set of rules for
extracting information about the underlying causal structure. Successive methods
generally follow a similar two-stage approach, but use more expressive causal models
in the first stage (e.g. MAGs) and employ more sophisticated rules that are able deal
with conflicts arising from inconsistencies among the models [17, 21, 104, 106].

Studies often differ because they were conducted under different experimental
conditions. In this setting, naively pooling data from different studies together can
lead to the creation of spurious correlations or to the disappearance of present asso-
ciations among the measured variables [51]. Several works propose modifications
of Search-and-Score and Constraint-based algorithms able to deal with mixtures
of observational and experimental data. Cooper and Yoo [19] propose a Bayesian
score able to incorporate information about the different experimental settings, while
Hauser and Biihlmann [34] investigate the concept of Markov Equivalence in the pres-
ence of experimental interventions and propose a learning algorithm on that basis.
Eaton and Murphy [25] model interventions as special nodes of the network, and
proposed an algorithm that attempts to infer the actual effects of each intervention
directly from the data. Constraint-based algorithms for mixtures of experimental
data are proposed in [16, 102], but they are limited to specific experimental settings.
Sufficient conditions for checking conditional (in)dependencies in data coming from
different experiments were proposed in [26, 51]. Other approaches assume specific
functional forms for all interactions among variables [39, 41]. These approaches
are even able to deal with hidden confounders, but their application is limited by
their strict assumptions regarding functional forms among variables. Finally, some
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algorithms first learn a provisional causal structure from observational data, and then
employ experimental information in order to refine the learned model [35, 64].

A particular type of heterogeneity is obtained when the same information is
recorded with different encodings, for example smoking information may be recorded
as a binary (yes/no) or a continuous variable (number of packets a day). When a direct
conversion is not possible, more sophisticated approaches must be employed [107].

Recent developments in Integrative Causal Analysis focus on co-addressing mul-
tiple sources of heterogeneity at the same time: several works attempt to integrate
data measured over overlapping variable sets and in different experimental conditions
[40, 42, 43, 105].

One of the main, unresolved issues in the INCA field is the efficacy of the current

methods on real data. While significant efforts have been spent on laying down
the theoretical foundations of this field, several algorithmic and methodological
improvements are necessary before applying these methods on real data analysis
tasks. A first attempt in applying INCA methods on real-world, large datasets has
produced evidence that INCA methods can actually provide meaningful results and
even outperform current statistical methods [109]. Bridging the gap between theory
and practice is crucial for the future of integrative causal analysis.
CD Based on Functional-Form Analysis: So far we have mainly discussed causal
discovery methods based on the analysis of conditional (in)dependencies. These
methods query the joint probability distribution for (in)dependencies either directly
(constraint-based methods) or indirectly (search-and-score methods) to identify all
causal structure that fit the data. Recently, a different approach on causal discovery
has been developed, one that is based on the exploiting possible asymmetries of causal
relations. The methods assume Causal Sufficiency and acyclicity, thus if X and Y
are correlated, either X — Y or ¥ — X. Expressed as structural equations, either
X =f,e)orY = f(X,¢), where the disturbance term ¢ is the effect of all other
factors. It turns out that one can distinguish between the two possibilities if either €
is non-Gaussian, or f is non-linear [36]. While the assumptions of linear relations
and Gaussian residual term ¢ is probably the most common set of assumptions in
statistics, it turns out that any departure from these assumptions allows the discovery
of the directionality of causation!

A specific case follows. Assume that X and Y are variables and X causes Y in a
linear manner, thus Y = By x X + ey, where ey follows a non-Gaussian distribution.
Also assume that we have obtained a set of measurements of both X and Y and
we want to identify the causal structure of the variables. By assuming linearity,
additive disturbance terms ¢, and causal sufficiency, we can fit both models using
simple linear regression, and obtain estimates for both@?and @; Based on these
estimates, we can then calculate the disturbances ex and ey for both models. These
disturbances will be independent with each other if the fitted model is the correct one,
and dependent if the fitted model is the reverse one. A graphical depiction of this
principle for uniform distributions of disturbances is shown in Fig.3.8. LINGAM
[95] automates this procedure, inferring a unique causal model from observational
data. LINGAM is limited to linear relations, but this assumption has been relaxed in
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Fig. 3.8 The key idea for LINGAM and similar algorithms: true structural equation Y = Byx X +
ey, where ey follows a uniform distribution. a Regression with Y as the dependent variable (true
model). b Regression with X as the dependent variable (reverse model). ¢ Estimated €y versus €y
based on the model shown in (a). The disturbances are and independent. d Estimated €y versus éx
based on the model shown in (b). The disturbances are dependent. Figure from [38]

a subsequent body of work [36, 82, 113] to include non-linear relations. However
learning such relations requires non-linear optimization techniques and appropriate
independence measures [69].

This class of methods is more powerful than traditional causal discovery methods,
in the sense that with the functional form assumptions (e.g., linear relations, additive
disturbances, non-Gaussian disturbances) causal models are fully identifiable (no
statistical indistinguishability). Moreover, the methods also work under unfaithful-
ness. On the other hand, all methods in this category require large sample sizes and
rely on some kind of parametric assumption, and have been shown to be unreliable
when this assumption is violated. Nevertheless, these ideas add a new direction and
dimension to the way we think about, treat, model, and induce causality and could
soon lead to practical results.

3.7 Discussion

Inducing causal models or relations from data is necessary to fully understand bio-
logical mechanisms and design new drugs and therapies. Traditional means for such
inferences rely on performing interventional experiments. Causal Discovery methods
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attempt to make such inferences from observational data alone or with a limited set of
such interventions by making assumptions that connect the notion of causality with
quantities estimable from the data. The analyst should be aware and conscious of the
explicit and implicit assumptions employed by the tools and algorithms that are used
and whether they are appropriate for the type of biological data at hand. Despite the
inherent theoretical and practical difficulties of the task, there are several successful
applications of Causal Discovery methods in systems biology that demonstrate the
potential of the field. In addition, recent theoretical and algorithmic breakthroughs
promise to further improve the successful application of causal discovery on systems
biology.
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Chapter 4
Stochastic Modeling and Simulation Methods
for Biological Processes: Overview

Annelies Lejon and Giovanni Samaey

Abstract The use of stochastic modeling and simulation techniques is widespread in
computational biology when fluctuations become important. In this chapter, we give
a high-level overview of stochastic modeling techniques for biological problems,
focussing on some common individual-based modeling and simulation methods.
We pay particular attention to the equivalence between the stochastic process that
governs the evolution of individual agents and the deterministic behaviour of the
involved probability distributions, and we discuss numerical methods that exploit
this relation for variance reduction purposes. The discussion will be illustrated using
examples involving intracellular chemical reactions, bacterial chemotaxis and tumor
growth, showing the effects of stochasticity at different scales and different levels of
description.

Keywords Stochasticity - Stochastic differential equations - Velocity-jump
processes *+ Asymptotic variance reduction

4.1 Introduction

Stochastic effects are ubiquitous in biological systems, at multiple scales. At an
intracellular level, for instance, gene regulatory networks often exhibit different
metastable states. Since the number of molecules in a cell is not very high, signif-
icant fluctuations in concentrations can occur, triggering transitions between these
metastable states [20, 28]. At a cellular level, individual cells can be modeled as
agents that interact with each other and with their environment.

Stochasticity can then be introduced to account for differences between individ-
ual cells or to incorporate the coarse-grained effect of phenomena that occur at more
microscopic scales directly at the cellular level. (An example of the latter would be
the use of a Brownian motion to model the net effect of a large number of collisions of
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alarge molecule with surrounding—but not explicitly modeled—solvent molecules.)
Such an approach has been followed in many settings, including the applications that
will be considered as illustrative examples in this chapter: bacterial chemotaxis (see,
e.g., [5, 15] and references therein) and tumor growth (see, e.g., [43] for a recent
review and references). At a population level, one usually models the evolution of
cell densities via partial differential equations (PDEs) of reaction-advection-diffusion
type. At this level, one can introduce, for instance, stochastic parameters and geome-
tries to account for differences between individuals, resulting in PDEs with stochastic
coefficients [22].

Despite the stochastic nature of the time evolution, one is usually interested in
deterministic quantities, such as the mean switching time between metastable states
or the expected behaviour of a large population of cells or individuals. Addition-
ally, one may also be interested in deviations with respect to this mean behaviour,
requiring information on higher order statistics or on the complete probability dis-
tribution of possible states of the system. While, in principle, the time evolution of
these probability distributions can be modeled using deterministic evolution laws,
the associated computational cost is usually prohibitive due to the high dimension-
ality of the resulting equations. One therefore needs to resort to some form of Monte
Carlo simulation of the stochastic process [7].

In this chapter, we discuss stochastic individual-based modeling techniques and
show the equivalence with deterministic techniques for modeling the involved proba-
bility distributions. In Sect. 4.2, we introduce stochastic models for chemically react-
ing systems with low number of molecules (as would occur in modeling intracellular
dynamics). We discuss both the time-discrete and time-continuous case, and show
how these models relate to classical mean-field equations for the evolution of con-
centrations. In Sect.4.3, we consider advection-diffusion processes, as they occur,
for instance, in agent-based models for bacterial chemotaxis and tumor growth. We
briefly describe cellular automata and Markov jump processes, before giving a more
detailed discussion of stochastic differential equations (SDEs). We show the relation
between an SDE for an individual particle and an advection-diffusion equation (the
Fokker—Planck equation) for the population density. In Sect. 4.4, we turn to more real-
istic microscopic processes, and relate these to kinetic theory and Boltzmann-type
equations. For each of the described modeling techniques, we discuss the mathemat-
ical formulation of the stochastic process as well as practical simulation algorithms.
In Sect.4.5, we discuss Monte Carlo simulation using these stochastic processes.
We show how to compute confidence intervals for the obtained results and introduce
numerical algorithms that can yield results with significantly reduced variance.

We illustrate the introduced concepts for two specific applications: bacterial
chemotaxis (Sect.4.6) and tumor growth (Sect.4.7). For each of these applications,
we discuss in detail the modeled processes and introduce a dedicated simulation
technique.

We conclude this introduction with a few remarks on topics that will not be
treated in this chapter. First, we will not discuss uncertainty propagation resulting
from uncertainty in parameters or geometries. For a mathematical and algorithmic
introduction to this topic, we refer to [22]. Second, in many applications, one may
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have, besides the mathematical model, some observation data available. Two ques-
tions can then be posed: (i) does the data provide sufficient support to validate the
model; and (ii) can one use the data to estimate unknown parameters in the model?
These topics form the subject of intense current research, and we refer to [51] for an
introduction.

4.2 Stochastic Modeling of Chemical Reactions

In this section, we provide an individual-based description of chemically reacting
systems. For concreteness, we start from the following system of chemical reactions,
as introduced by Schlogl [46],

ki k3
QA= 3A, = A, 4.1
ko ky

in which the rate constants k; (1 < i < 4) indicate that the probability for two
randomly chosen molecules of type A to react according to reaction i in any time
interval [¢, t + dt) is given by k;dt.

In Sect.4.2.1, we discuss discrete-time simulation. It will appear that the cor-
responding algorithm introduces a time discretization error, and at the same time
is also very inefficient. We therefore turn to continuous-time simulation algorithms
in Sect.4.2.2. Next, in Sect.4.2.3, we introduce the chemical master equation, a
deterministic system of equations for the probability of finding a given number of
molecules at any given time. From this master equation, we can obtain information
on the mean behaviour of the system and on fluctuations. We conclude in Sect.4.2.4
with a numerical illustration on the Schlogl model. The exposition in this section is
based on [17].

4.2.1 Discrete-Time Simulation

Let us denote by A(#) the number of molecules of type A in the system at time ¢ > 0,
and assume as initial condition A(0) = Ap. We are interested in an approximate
solution A¥ &~ A(¢*), with t* = kAt and At > 0 a small time step. (The symbol
k that indicates the discrete time instance is added as a superscript for notational
consistency throughout the chapter.)

Attimet = ¢¥, the probability of reaction 1 (with rate k1) taking place in (¢, £+ Ar)
is approximately given by

ok Ar = AR(AF — Dk A, (4.2)
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with o/f the propensity function, since k1 At is the probability of two randomly chosen
molecules of type A to react according to reaction 1, and A% (A* — 1) is the number of
pairs of molecules that can be randomly chosen. (Note that this is an approximation
due to the fact that we have replaced the infinitesimal interval of length d¢ by a finite
interval of length At¢.) Similarly, the propensity functions for the other reactions can
be seen to be

of = AF(AF — 1A% =2k, Ak =ks, ok = Atk (4.3)

To take a time step from time t* to t*+1, one needs to decide for each reaction
whether or not it has occurred during the time step. This can be done using the
following algorithm:

Algorithm 1 (7ime-discrete simulation of Schlogl’s model) Given the concentration
A¥ at time t*, we compute AK*! at time r**! as follows:

1. For each reaction i:

e Compute the propensity af using (4.2) or (4.3);

e Generate an independent random number rik from the uniform distribution on
the interval (0, 1);

e Decide that reaction i has occurred during the time interval if rik < afAt
(else, the reaction has not occurred);

2. Compute AK*1 by applying all reactions that occurred during the time step (for
instance, if only reaction 1 occurred, we have AL — Ak 4 1.

A simulation is then performed by repeating the above time step over the time
interval of interest. The algorithm can easily be generalized to systems with multiple
species and any number / of possible reactions.

There are two problems when using the above algorithm, which will both be dealt
with when switching to continuous-time simulation in Sect. 4.2.2. First, Algorithm 1
introduces a time discretization error since it replaces an infinitesimal time interval
of length dt by a finite interval of length Ar. This error manifests itself in two
ways. First, we neglect the (non-zero) probability that two reactions of the same type
occur within the time step of size At. Moreover, every reaction event influences the
propensity function of other reactions, since the propensity functions depend on the
state of the system. As a consequence, there will be an error in the used reaction
probabilities when multiple reactions are performed during a single time step.

To limit the impact of these time discretization errors, At should be chosen fairly
small. A common guideline is to choose At such that the probability of having
a reaction is less than 1 % per time step. However, this implies that 99 % of the
time steps are taken just to conclude that nothing happened! This is detrimental to
computational efficiency, which is the second problem with the above algorithm.
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4.2.2 Continuous-Time Simulation

Instead of taking discrete time steps of fixed size At from ¢ to ¢ + At, and calculating
the probability that a reaction takes place in that time interval [¢, #+ At), a continuous-
time simulation computes the (random) time increment 7 until the next reaction takes
place by sampling from the corresponding probability distribution. Afterwards, a
second random number is generated to decide which reaction occurred.

Let us first characterize the relevant probability distribution for 7. Consider a
system with one reaction with propensity «;(¢). (Recall that the propensity is time-
dependent due to the time-dependence of the concentrations of the present species.)
Further, denote as fi(z, s)ds the probability, at time ¢, that the next reaction occurs
in the time interval [¢ + s, f + s + ds], and denote the probability that no reaction
occurs in the interval [z,  + 5] as g1 (¢, s). We then have

fi1(t, s)ds = g1(t, s)a1(t + s)ds = g1(¢, s)a(t)ds, “4.4)

in which we used the fact that o (f + s) = «1(¢) in the absence of reactions,
and independence of individual reaction events. (Then, the probability that the first
reaction occurs in the time interval [t + s, t + s 4 ds] is given by the product of the
probability a1 (# 4 s)ds that there is a reaction in that time interval and the probability
g1(z, s) that no reaction occurred earlier.)

The two quantities fi(t, s) and g;(¢, s) are, as for now, unknown. We derive a
differential equation for gj (¢, s). We start by observing that the probability of not
having a reaction in the time interval [¢, 45 +ds] can be written as the product of the
probability of not having a reaction in the time interval [, ¢ + s] and the probability
of not having a reaction in the time interval [t + s, ¢ + s + ds], i.e.,

g1, s +ds) = g1(t, s)(1 — ay(t)ds), 4.5)

from which we obtain

gl(t’s+d;; _gl(t’S) = —Oé](t)gl(tvs)' (46)

Given that g(¢, 0) = 1 (zero probability of having the reaction exactly at time ), we
obtain

91(t, 5) = exp(—=a1(1)s), (4.7)

and hence, using (4.4), the probability that the first reaction occurs in the infinitesimal
interval ¢ + s is given by

fi(t, s)ds = aq(t) exp(—ay(t)s)ds, s> 0. 4.8)
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The corresponding cumulative distribution is given as

Fi(t,7) = /T fi(t,s)ds =1 —exp(—ai(t)7), 7=>0. (4.9)
0

(Note that we have F(f,0) = 0 and lim, o, F (¢, 7) = 1.)

Now that we know the probability distribution f1(¢, s), we are ready to generate
a random time increment 71 (¢), sampled from fj (¢, s), which we denote as 71 (¢) ~
f1(z, s). Using the transformation method for the generation of random numbers
[7], the increment 7 (¢) until the next event of reaction 1 can be computed from a
uniformly distributed random number 51 in (0, 1) via

1 .
log(1—6;), or 7=-—

- 1
=F Y. 0)=—
m “=-75 0

log(61), (4.10)

with #; also a uniformly distributed random number in (0, 1) and F~'(z, ) the
inverse of the cumulative density F (¢, s) with respect to s, treating ¢ as a parameter.

Remark 1 (Markov property) The probability distribution fi (¢, s) is called the expo-
nential distribution with rate cvy (¢). Its main property is that it is memoryless, which
implies that the evolution is completely determined by the current state (and no
information from the past is required). In particular, this implies that, to determine
when the next reaction will occur, it is irrelevant how long the system is already in
its current state. Mathematically, this can be seen by checking that, for any positive
T and 7, we have

Pr(ri(t) > T) =Pr(r(t) > 7+ T|11(t) > 1), “4.11)

i.e., the probability that the next reaction will not occur within a time interval of
length T from the current time, does not depend on the amount of time 7 that the
system is already in the current state.

If multiple reactions can occur in the system (as is the case for the Schlogl model
(4.1)), anaive way of proceeding is to generate the next reaction time for each of the
reactions and only select the reaction that occurs first, after which the system clock
is updated and the procedure is repeated. With / possible reactions, this requires
the generation of / exponentially distributed random numbers (independent of the
number of species in the system) to choose a single reaction. This algorithm can be
made much more efficient by making use of the following theorem:

Theorem 2 (Exponential distributions) Consider I exponential distributions f;(t, s)
with rates «; (t), and consider an independent set of random numbers T; (t), each sam-
pled from the corresponding distribution f;(t, s). Let T(t) be the minimum of these,
7(t) = min; 7;(t). Then, the probability distribution for 7(t) is an exponential dis-
tribution with rate o (t) = Y, a;(t). Moreover, the probability that T(t) = 7;(t) (the
probability that the i-th reaction occurs first) is given by o; (t) /a(t).
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Using this theorem, only two random numbers need to be generated per time step:
one to determine the time increment until the next reaction, and one to choose the
next reaction. This gives rise to the following classical algorithm, due to Gillespie
[23], which is immediately written for a system consisting of / reactions:

Algorithm 2 (Stochastic simulation algorithm (SSA) for chemically reacting sys-
tems) Given the concentration Ak at time t*, we compute AL at time FH1 as
follows:

1. For each reaction i, compute the propensity af = o, (%), and compute the total
propensity of = > ozf?;
2. Generate a uniformly distributed random number 6% in (0, 1), and compute the

time increment until the next reaction occurs as 7% = —ﬁ log(Gk ),

3. Generate a uniformly distributed random number y¥ in (0, 1) and select the reac-

tion i for which
Z af/ak <y< Zaf/ak;

j=i—l1 J=i

4. Compute A¥*! by applying the selected reaction i (for instance, if reaction 1 was
selected, we have ATl = AK 4+ 1).

Again, the algorithm can easily be generalized to systems with multiple species.
We refer to [26] for more details and variants. Here, we only state the main conver-
gence result: the stochastic simulation algorithm (SSA) is exact, in the sense that is
does not contain any time discretization error.

Remark 3 (Acceleration of SSA) While this method is significantly faster than the
time-discrete Algorithm 1 without introducing a time discretization error, the result-
ing algorithm can still be computationally prohibitive, especially in situations with
many chemical reactions with disparate time scales. Consider for instance a system
with a fast, reversible reaction and an irreversible but very slow reaction. In such
a system, most of the time steps will select the fast reversible reaction, resulting in
very small time steps that go back and forth along the fast reaction. More sophisti-
cated algorithms, tailored to these situations, have been developed. These include,
for instance, the 7-leaping method [9, 25], the slow-scale stochastic simulation algo-
rithm [8], and R-leaping [3]. Note, however, that such methods accelerate simulation
at the expense of re-introducing a (small) time-discretization error.

4.2.3 Population-Level Dynamics and Mean-Field
Approximation

In general, repeated simulation of a stochastic process for a chemically reacting sys-
tem yields different results for each stochastic realization. The precise results depend
on the generated sequence of random numbers. Usually, one is not interested in the



82 A. Lejon and G. Samaey

detailed behaviour of such an individual realization, but in quantitative statements
on the mean behaviour and on fluctuations.

In this section, we first derive the chemical master equation, which gives a com-
plete description of the (time-dependent) probability distribution of possible states
for the system. Afterwards, we discuss the potential and limitations of using this
equation to derive information on the statistics of the process.

In the previous sections, we denoted by the random variable A(¢) the number
of molecules of type A at time ¢. Here, we define the deterministic quantity p,(¢),
which represents the probability that the system contains exactly n molecules of type
A at time ¢, i.e.,

pn(t) = Pr(A(1) = n).

In the incremental time interval [z, 4+ dt), the state can only change by =1, since all
reactions either create or destroy one molecule of type A. We can use the definition
of the reactions (4.1) to compute p, (¢t + dt),

pn(t +dt)
= pu(®) +{lk1(n — D(n — 2) + k3] pu—1()dt + [ko(n + Dn(n — 1) + ka(n + 1)1 ppy1(2)dt}
gain
—A{lkin(n — 1) + k3] + [kan(n — 1)(n — 2) + kan]} p, (1)dt, 4.12)

loss
in which we recognize

e a gain term that expresses the sum of (i) the probability that the system contains
n — 1 molecules at time ¢ and a molecule is produced during the time increment;
and (ii) the probability that the system contains n + 1 molecules at time ¢ and a
molecule is destroyed during the time increment;

e aloss term that expresses the probability that the system contained #» molecules at
time ¢ and a molecule is either created or destroyed during the time increment.

Reordering the terms, we get an (infinite-dimensional) system of ordinary differential
equations, the chemical master equation:

@) =[kin —1D)(n —2) + k3] pp—1(®) + [kp(n + Dn(n — 1) + ka(n + D]ppy1 (1)
—[kin(n — 1) + k3 + kpn(n — 1)(n — 2) + kqn] pp (), n>0, 4.13)

in which, formally, p_1 () = 0.

The chemical master equation is equivalent to the stochastic description, but of
limited practical use due to its infinite-dimensional nature. However, it can be used
as a starting point to obtain information on the statistics of the stochastic process.
In general, we denote the expectation of a function of the number of molecules,

f(n), by
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F(t) :=RELf(AO)] =D f)pa(t), (4.14)

n=0

which amounts to a weighted average of f, weighted by the probability density for
n.

Let us consider the mean behaviour. The expected number of molecules of type
A in the system at any given time is given by the (deterministic) quantity

M) =E[A@®)] = ann(t). (4.15)

n=0

To obtain an ordinary differential equation for the evolution of M (¢), we start from
(4.13), and write

M(t) = an,,(t). (4.16)

n=0
Using (4.13), we get
M) =" npu(t)
n=0
= Zn {lki(n — D(n —2) + k3] pp—1(t) + [ka(n + Dn(n — 1) + ka(n + D] ppy1(t)

n=0
—[kin(n — 1) + k3 + kan(n — 1)(n — 2) + kan] pp (1)} .

We regroup the terms per reaction. We first consider reaction 3, for which we have
o o
D kan (pa—1(t) = pa(®) = k3 D ((n + 1) pa(t) — npu (1))
n=0 n=0

=k3 D pult) = ks. (4.17)
n=0

Next, consider reaction 4. Here, we have

> kan (14 Dt (0 = npa() = ka Y, (1 = Dupa (1) = n? o 1))
n=0 n=0

= —k4 ann (1) = —kaM(1).  (4.18)
n=0
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Similarly, we obtain for the reactions 1 and 2,

o]

> kan (0= D = 2)pa1(t) = n(n = Dpa () =k1 D n(n = Dpa(1),  (4.19)

n=0 n=0

D> kan (0 + Dn(n = Dpuy1 (t) = n(n — D(n = 2)pa () = —ky D n(n — 1)(n = 2) p (1),
n=0 n=0

(4.20)

resulting in the equation

M) = ks — kaM (t) + k1 D_n(n = Dpa(t) — k2 D n(n— 1)(n = 2) pa(t). (4.21)

n=0 n=0

We notice immediately that the evolution of the mean M (#) does not only depend
on the mean itself, but also on higher-order statistics of the distribution, such as the
second moment

oo
E [A(t)z] = pa(t).
n=0
We can proceed similarly to derive an evolution equation for the variance

Vi) =E [(A(t) _ M(t))z] . (4.22)

However, we should expect even higher order moments to appear in the corresponding
righthand side, leading to an infinite cascade. If we want to obtain an evolution law
in terms of only the mean number of molecules M (¢), we will therefore be obliged
to resort to an approximation.

Let us now take a more detailed look into the fluctuations around the mean, as
measured by the variance V (¢). We are specifically interested in systems with large
numbers of molecules, for which we assume a mean-field approximation to hold.
We therefore introduce a characteristic number of molecules per unit volume N, and
look at the concentrations a(t) = A(t)/N and p(t) = M(t)/N. Then, the variance
can be written as

1
Vi = 5 [ @0 - p0))?]. 4.23)

We conclude that fluctuations around the mean concentration become negligible
as the number of molecules per unit volume N tends to infinity. In that limit, the
quantized concentration n/ N approaches a continuous variable a, and the probability
distribution (p, (t))52, approaches a continuous probability distribution p(a, t),a €
[0, 00). The fact that the fluctuations vanish in that limit implies that p(a,t) =
Om(r)(a), i.e., the concentration a(¢) = M (t) almost surely. (We note that the above,
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Fig. 4.1 Simulation of the Schlégl model (4.1): number of molecules as a function of time for
a single realization of the stochastic simulation, using Algorithm 2 (solid) and the corresponding
mean-field approximation (dashed). Left short time-scale; right long time-scale. Parameter values
are in the text

rather heuristic, reasoning can be turned into a rigorous mathematical theory, see,
e.g., [24].)

Using the above reasoning in the limit when N tends to infinity, one can derive
from Eq. (4.21) the mean-field approximation for p(¢) as

p=ks—kap+kip> —kap’. (4.24)

From the above derivation, one concludes that stochastic modeling of chemical
reactions is mainly useful when the number of molecules present is not too large. In
that case, results can deviate from the mean-field approximation for two reasons: (i)
stochastic fluctuations around the mean can become important; and (ii) due to the
present nonlinearities, the ensemble average of a large number of systems with a low
number of molecules does not necessarily follow the mean-field behaviour (Fig.4.1).

4.2.4 Numerical Simulations for the Schlogl Model

Let us now consider system (4.1) with (non-dimensionalized) reaction rates k| =
0.18, kp = 2.5 x 107%, k3 = 2200 and k4 = 37.5. We simulate one realization of a
stochastic simulation using Algorithm 2, as well as a forward Euler simulation of the
mean field Eq. (4.24) with time step A7 = 5 x 1073, As an initial condition, we take
A(0) = 0. For the chosen parameter values, Eq. (4.24) has two stable steady state,
A1 =100 and A; = 400, and an unstable steady state A, = 220. Thus, the Schlogl
model represents a bistable system. Figure4.1 shows the results. The mean-field
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equation converges to one of the two stable equilibria, depending solely on the initial
condition. When A(0) € [0, A,], the solution converges to A1; when A(0) > A, the
solution converges to A;. On short time-scales (left figure), the stochastic simulation
fluctuates around the stable equilibrium of the mean-field equation. However, over
long time scales (right figure), we notice that the fluctuations cause the system to
occasionally switch between the two steady states. Such occasional switches are
called rare events, and they occur when large fluctuations can occur; for instance,
in gene regulatory networks [20, 28]. If one is interested in quantities such as mean
switching times, one cannot use a mean-field approximation and needs to resort to
stochastic simulation. We refer to [52] for theoretical and computational work related
to stochastic simulation of rare events.

4.3 Stochastic Modeling of Advection-Diffusion Processes

In the previous section, all systems were assumed to be well mixed, such that only the
temporal evolution of concentrations needed to be considered. In many processes,
however, interesting dynamics arises from spatial heterogeneity. In a biological con-
text, one can, for instance, think of bacterial chemotaxis, tumor growth, or bone
tissue engineering. In this section, we give an overview of individual-based model-
ing techniques for biological systems consisting of moving individuals that are able
to reproduce and die.

In Sect.4.3.1, we consider the positions of the individuals to be discrete (on a
lattice). We briefly discuss cellular automata and Markov jump processes, and give
references to the corresponding literature. In Sect.4.3.2, we introduce Brownian
motion and stochastic differential equations (SDEs), which are used for space/time
continuous modeling of random motion. Subsequently, in Sect.4.3.3, we discuss
the equivalence between the SDE for an individual particle and the (deterministic)
Fokker—Planck equation that describes the evolution of the particle density.

4.3.1 Discrete-Space Modeling

Several techniques exist for the discrete stochastic modeling of biological particles.
We briefly discuss cellular automata and Markov jump processes.

Cellular automata In cellular automata, one considers space to be discretized as a
grid, say Il(x) = {xn},’lvzo in one space dimension. The state is then given as the
number of particles Aﬁ at each grid location x, at each discrete moment in time
1. (Clearly, one can incorporate the presence of particles of multiple types.) The
cellular automaton then defines an evolution law that determines the state A1 =
(Ak+ )2/:0 at time #**1 from the state A¥. This evolution law can contain reactions
with associated rates, as in the time-discrete schemes in Sect.4.2.1. Movement on

the grid can be modeled using sops, which can be seen as a reaction event (with an
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associated reaction rate) in which a particle moves from one lattice site to another.
Then, the algorithmic structure that resulted in Algorithm 1 can be reused to model
advection-diffusion processes [17].

One particularly appealing feature of cellular automata is their modeling flexi-
bility: in defining the evolution laws, any set of rules can be allowed. One can, for
instance, change the rules depending on the number of neighbors, or let the evolution
of individual particles depend on some internal state variable (see also Sect.4.4). We
referto [21, 33, 39] for a number of cellular automata models in the context of tumor
growth, and to [12, 31] for examples in bone tissue engineering.

Markov jump processes When keeping a discrete state space, but allowing time to
be continuous, one ends up with a Markov jump process. Consider a particle with
position X (¢) that is allow to reside on any position in the lattice IT(x). Given that the
current position X¥ = x,, at time ¥, we can introduce a propensity aﬁ’ w1l <m <N,
such that aﬁ’ At represents the probability that the particle moves from x, to x,, in
the infinitesimal time interval [z, t + dt). Then, such a movement can be added to

the table of reactions in Algorithm 2, and the same algorithm can be used.

4.3.2 Stochastic Differential Equations (SDEs)

When space and time are allowed to be continuous, the corresponding model becomes
an SDE. In this section, we start from a definition of Brownian motion (Sect.4.3.2.1).
We then proceed to the construction of general SDEs in the It sense (Sect.4.3.2.2)
and discuss numerical methods (Sect.4.3.2.3). We conclude in Sect.4.3.2.4 with a
numerical example that illustrates the results. The exposition is partly based on [29].

4.3.2.1 Brownian Motion

A scalar standard Brownian motion essentially describes an unbiased random walk in
one space dimension. (Generalizations to multiple space dimensions are, of course,
straightforward.) The description is phenomenological. We define a Brownian motion
as arandom variable W (¢), continuous in time ¢ € [0, T'], that satisfies the following
conditions:

1. W(0) = 0 (with probability 1);

2. For0 <s <t < T,the increment W(t) — W(s) is a normally distributed random
variable with mean 0 and variance ¢ — s, i.e., W(t) — W(s) ~ /t —sN(0, 1),
where N (0, 1) denotes a standard normally distributed random variable (with
mean 0 and variance 1);

3. For0 <s <t <u <wv < T are independent.

There are several ways of justifying this definition. One way is to start by defining
agrid [T(x) = {—NAx,...,0,..., NAx} and letting a particle move one grid cell
to the left or to the right (each with probability 1/2) in each time step of size At,
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Fig. 4.2 Realizations of Brownian motion: W () as a function of time, using (4.25) with At =
5% 1072

starting at position X (fp) = 0 at time 7y = 0. When choosing Ax? = Ar and taking
the limit of Ar — 0, we obtain the standard Brownian motion.

To visualize realizations of Brownian motion, we consider time-discretized
Brownian paths, generated as WX ~ W (¢*), with r* = kAt via time-stepping,

Wl = wk 4+ VAarek, &~ N, 1), (4.25)

where the random numbers &¥ are independent and identically distributed (i.i.d.). In
Fig. 4.2, we show 10 realizations of a Brownian motion with At =5 x 1072,

The figure illustrates some properties of Brownian motion. A proper definition of
the probability spaces generated by Brownian motion is out of the scope of the present
chapter. Let us just suffice by stating that, when writing [ [-], we imply the mean with
respect to all possible Brownian paths W (¢). It can be proved (see, e.g., [11]) that
the expected value of a Brownian motion E [W(¢)] = O for any ¢ € [0, T]. This is
easily seen intuitively, as the Brownian increments do not have a preferred direction.
Moreover, we observe that £ [W(t)z] = t. Both properties can easily be proved in
the time-discrete setting of Eq. (4.25) by using the basic rules of probability on the
normal random variables £X. A final property is that Brownian motion is nowhere
differentiable with probability 1. This can be understood by realizing that

Var [W(t + Af) — W(t)]

1 1
N = FVarlWa+An =Wl = . (420

ND

Note that, while E[W (1 + Ar)] = E[W(t)] = 0,wehave E [|W(t + At) — W(1)|] =
O(At'/?), which is proportional to the standard deviation.



4 Stochastic Modeling and Simulation Methods ... 89
4.3.2.2 1t6 Stochastic Differential Equations

Often, the evolution of the position X (¢) of a particle is composed of a deterministic
(mean) component, supplemented with a stochastic (fluctuating) part, modeled using
a stochastic differential equation of the form

dX(t) =a(X@))dt +b(X())dW (1), X(0) = Xop, (4.27)

in which a is called the drift coefficient, b is the diffusion coefficient, W(¢) is a
Brownian motion and X is the initial condition. For instance, one can consider the
particle to model the position of a bacterium that is biasing its random motion to
favor directions that are in line with the gradient of a chemoattractant. Then, the
drift coefficient a (X (¢)) models a preferred direction, whereas the second term takes
into account the randomness of the motion. The diffusion coefficient b(X (¢)) then
defines, at the position X (¢), how strongly the evolution is affected by the Brownian
motion W (¢).

Under mild assumptions on a and b, the stochastic differential equation (SDE)
(4.27) has exactly one solution per Brownian path W (¢). To obtain this solution, one
first needs to make sense of Eq.(4.27), something that will turn out to be nontrivial.
Consider a classical solution,

t t
X ()= Xo +/ a(X(s))ds +/ b(X (s5)dW(s). (4.28)
0 0

The first integral is a well-defined integral with respect to time; the second integral,
however, is not well-defined and we need to be specific about its meaning.

Consider the integral to be defined via a Riemann sum using subintervals
[k, 5 1], with i* = kArand 0 <k < K, KAr =1,

t K
T k k
/0 b(X(s)dW(s) = Ahinok;b(X(s NAWK, (4.29)

in which AWK = W (1) — W (%) and s* € [¢¥, t*F1]. It is now easy to see, using
only standard rules of probability, that the choice of s* has a significant influence on
the value of the integral. (This is due to the fact that W(s) does not have bounded
variations, which is related to (4.26).) The most common interpretation (the It6
interpretation) is obtained by choosing s* = t*, i.e., a left-point rule. In that case,
we have

; K—1

T k k

E[/O b(X(s))dW(s)} - AthOZOE[b(X(t NAW ]
K—1

= lim. OE[b(X(sk))]]E[AWk] =0,

~
i
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where the first equality is due to the definition of the It6 integral and the linearity of
the expectation, the second equality is due to independence of b(X (X)) and AWX,
and the last equality is due to the definition of Brownian motion.

A second popular interpretation (the Stratonovich interpretation) of (4.29) is
obtained when choosing s¥ = (t* + ¢¥+1)/2. 1t is clear that the above reasoning
then can no longer be used, as b(X (s%)) cannot be independent of A Wk . The result-
ing stochastic integral will then, in general, take a different value. We denote the
Stratonovic integral as

t
/ b(X(s)) odW(s)
0
and compute, as an example,
p K—1
E [/ W (s) odW(s)] — lim > E [W((tk n tk+1)/2)AWk] .
0 A—0
k=0
To compute this integral, we need to evaluate W (K 45+ /2). It can be shown that

this quantity is statistically equivalent to the quantity

W (t5) + Wk

AZF,
5 +

in which AZ¥ ~ N (0, Ar/4) and independent of W (¢*) and W (r**1). We can thus
replace W ((t* + tK*1)/2 by this alternative in computing the expectation, and we
obtain

' = W(t5) + W (k) P—
E[/O W(s) odW(s)] = ATOZS (IE [(f) AWk] +E[AZ AW ])

Since AZ¥ and AW* are independent, the second term is zero, and we continue with
only the first term:

t K-1 k k+1
IE[/ W(s)odW(s)j|= lim > E Weh T we) (W(tk+1)—W(tk))
0 A—0 o 2

K—1

= lim % z E |:(W(tk+1))2 B (W(zk))z] _ %(W(t))Z,
k=0

A—0

which is clearly different from the corresponding It integral (which is zero). For
more details, we refer to [29] and references therein. In this chapter, we will always
work with the Itd interpretation.

If W(#) does not have bounded variations, then neither does X (¢). Consequently,
also X (¢) will be nowhere differentiable (with probability 1). In particular, we have
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E[|X(t + At) — X(1)|]] = O(Ar'/?).

Remark 4 (Further reading) We have deliberately kept the introduction on SDEs very
brief. For more information, we refer the interested reader to the excellent books [19,
34].

Remark 5 (Reproduction and death) To model individuals that are also able to repro-
duce and die, one needs to add a (potentially stochastic) process that determines for
each individual the moment at which it reproduces (and thus generates an additional
individual) or dies (and is therefore removed from the system). To this end, one can,
for instance, use the Markov processes that were discussed in Sect. 4.2 in the context
of chemical reactions. Section4.7 will contain additional modeling techniques that
are of a more mechanistic nature.

4.3.2.3 Euler-Maruyama Method

Once an SDE model is obtained for a specific problem, a (numerical) solution
needs to be computed. The most straightforward way to discretize an SDE of the
type (4.27) is by using the stochastic extension of the forward Euler method, called
Euler-Maruyama,

X = X% 4 axbAar + b(xH AW, (4.30)

in which At is the time step, and AW* is sampled from a normal distribution with
zero mean and variance At, i.e., AWK ~ N (0, At). The scheme can equivalently be
written as

XM = XK 4 a(X*) At + b(XF)VArER, 4.31)

with & ~ N (0, 1).

For a deterministic system, the convergence behaviour of the forward Euler
method can be derived is a straightforward manner: given the numerical solution
XK ~ X (%), the error XX — X (¢X) can be bounded as

xX — x@®)| < car,

where K and At are varied simultaneously such that K At = ¢*.

In the SDE case, this is no longer true. In fact, since both the numerical solution
XX and the exact solution X (+X) are random, only statistical statements can be
made about the numerical error. One can immediately come up with two different
definitions. We can define the strong error at time tX as

K =]EHXK —X(tK)H, (4.32)
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i.e., the expectation of the absolute value of the error on individual trajectories. Since
it measures the “mean of the error”, averaged over all possible Brownian motions,
the strong error gives an indication on the size of the error on an individual trajectory
(defined by the Brownian path that generated it). Alternatively, one can define the
weak error as

X = [E[x¥]-E[x05)]], (4.33)

or, more generally, for an arbitrary function f in an appropriate function class,
E L= [E[rx®]-E[raxa®y]|. (4.34)

i.e., the error in the expectation of the function f when computed using time-
discretized trajectories.

In general, these types of error are not the same, and also the order of convergence
(as a function of At) differs. For the Euler-Maruyama method, we have

K, <car'?,  EX <car, (4.35)

i.e., the Euler-Maryama method has a strong order 1/2 and a weak order 1. Proving
these orders would lead us too far. In this chapter, we simply illustrate this result
numerically (see Sect.4.3.2.4).

Remark 6 (Stability) The order of convergence of the Euler-Maruyama method only
gives information on the asymptotic behavior of the error as Az tends to zero. In
practice, one will always take a finite time step. In that case, one needs the time step
to be such that the Euler-Maruymama method is stable, i.e., loosely speaking, one
needs to ensure that the numerical solution does not blow up for the chosen value
of At when the exact solution remains bounded. While stability of time integration
is a relatively straightforward concept for deterministic ODEs [27], this is no longer
true for SDEs. As for convergence, multiple definitions of stability exist, see, e.g.,
[29, 32] for more details.

Remark 7 (Higher-order methods) Due to the presence of stochastic integrals, the
definition of higher-order methods for SDEs is far more complicated than for ODEs.
We refer to [32] for details.

4.3.2.4 Numerical Example: Geometric Brownian Motion

To illustrate the most important concepts in the previous sections, we perform
some numerical experiments on a simple linear SDE, namely a geometric Brownian
motion,

dX () = AX(t)dt + puX ()dW (1), (4.36)
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Fig. 4.3 Simulations of a geometric Brownian motion (4.36). Top left a single trajectory using the
Euler-Maruyama method (4.31) with time step At = 1/28 (solid), compared to the exact solution for
the same Brownian path (dashed); Top right four individual trajectories (dashed) and the empirical
average of M = 1000 trajectories; Bottom left strong error of Euler-Maruyama as a function of At
(solid), compared to the predicted strong order 1/2 (dashed); Bottom right weak error of Euler-
Maruyama as a function of At (solid), compared to the predicted weak order 1 (dashed). Remaining
parameters are in the text

which we discretize with the Euler-Maruyama method (4.31) with time step A¢. For
this SDE, an exact solution is known analytically (given the Brownian path W (t)),
and given by

X (1) = Xoexp (()\ - ,ﬁ/z) t+ uW(t)) : (4.37)

In our experiments, we choose A = 2, u = 1 and X (0) = X = 1 with probability
1. The example is based on [29], in which also Matlab code can be found.

We first compare, for a single realization of W (¢), the exact solution X (t) with
the numerical solution (X k )fzo, with X¥ obtained via Euler-Maruyama (4.31) with
time step At = 1 /2> on the time interval ¢ € [0, 1] (hence K At = 1). The results
are shown in Fig. 4.3, top left. We clearly see a discretization error.

To quantify this discretization error, we repeat the simulation for M = 1000 real-
izations of the Brownian path, (W,,()) nnf: 1» resulting in M trajectories (X, (t))mﬁ"':1 ,
and compute an approximation to the strong and weak errors (4.32) and (4.33) as
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M
PR 1
K — By UXK —X(tK)H = > ‘x,{f — X, %), (4.38)

1

EX =1y, [XK] — & [X(tK)] =

i (X,{f — X (K ))‘ . (4.39)

m=1

To achieve this, we first generate Brownian paths with time step Az = 1/2°, and
subsequently use these Brownian paths to perform Euler-Maruyama simulations
with time step RAt, R = 1,2, 4,8, 16. The results are shown in Fig.4.3, bottom.
We clearly observe the predicted theoretical strong order 1/2 and weak order 1.

Remark 8 (Statistical error) The estimates (4.38) and (4.39) contain statistical error
due to the finite number M of realizations. The problem and method parameters
have been chosen such that this statistical error is negligible with respect to the time
discretization error.

Finally, we look at the evolution of F(¢) := E[ X (¢)] as a function of time. Being
the expectation of the (time-dependent) random variable X (¢), F (¢) is a deterministic
function of time. Figure 4.3 shows that F'(¢) (unlike X (¢)) is a smooth, differentiable
function of time. This observation will be elaborated in the next section.

4.3.3 Population-Level Dynamics and Fokker-Planck
Equation

Usually, one is not interested in the detailed stochastic behaviour of a single individual
(cell, bacterium), but rather in the evolution of a large population of such cells.
One then has given an initial density po(x) of individuals as a function of space
x € D C R, with D the domain. We interpret po(x) as a probability density (this
can always be done with a proper normalization), i.e., for an individual particle with
position Xg at time ¢ = 0, we have

Pr(x < Xo < x +dx) = po(x)dx.
Note that lowercase x represents a possible position in the domain D, whereas upper-
case X denotes the (random) position of an individual cell.
Each of the individuals behaves according to (4.27), generating a path X (). The

question then becomes: defining the time-dependent density p(x, t) as

Pr(x < X(¢t) < x +dx) = p(x, t)dx,
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can one obtain a corresponding evolution equation for p(x, ¢)? In this section, we will
show that p(x, t) satisfies a advection-diffusion partial differential equation (PDE),
the Fokker-Planck equation. We perform the derivation only for a pure Brownian
motion, after which we simply state the result for the general SDE (4.27). Our
exposition closely follows [11].

In the pure diffusion case, we start from a (scaled) Brownian motion,

dX(t) =bdW(t), (4.40)

with a constant scaling parameter b > 0.
Given the probability density p(x, ¢) attime ¢, we can write the density p(x, t+At)
at time ¢ 4+ At as

oo

plx,t+ At) = / px +y,1) - P(x,y, At)dy, 4.41)

where the transition probability kernel 1(x, y, At) is the probability of ending up
at position x at time ¢ + A¢, given that one started at position x + y at time ¢, i.e.,

W(x,y, At) = Pr(X(t + A1) € [x,x +dx]|X (1) € [x + y, x + y +dx]) (4.42)

Eq. (4.41) states that the probability of finding a particle at position x at time ¢ + At
is equal to the probability of finding the particle at position x + y at time ¢, multiplied
by the probability of moving from x + y to x during the time step of size At, and this
integrated over every possible value of y (i.e., integrated over every possible position
x + y attime 7).

Remark 9 (Notation) It may seem odd to introduce the auxiliary variable y, instead
of simply integrating over all possible original positions z = x + y. This is done
because we intend to make a Taylor expansion of p(x + y, ) around p(x, ?).

Letus now obtain an expression for ¢ (x, y, At). We know that —y is the increment
that was generated to move from x + y to x. This increment is normally distributed
with mean 0 and variance b2 At, and therefore,

2
Y ) . (4.43)

1
b2 At P ( 2b2 At

Now, we are ready to expand Eq.(4.41) by performing a Taylor expansion of
p(x + y, t) around p(x, t),

P(x, y, Ar) =

2
pUx +3.1) = plx. 1) + yOplr. 1) + S-Oerp(x. 1) + hout (4.44)
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in which h.o.t. stands for “higher order terms”. This leads to

oo oo

p(x, H(x, y, At)dy+/ yOrp(x, )(x, y, At)dy

—00

p(x,t + At) =/

—0o0

[ee) y2
+/ Tf)xxp(x,t)w(x,y,At)dy + h.o.t.

—00

=p(x,t)/ Px,y, Ady + 8xp(x,t)/ yY(x, y, At)dy

I 143

1 o0
+ 3 0up, D) / V4(x, v, ADdy + hodt. (4.45)
—00

I3
We will now separately look into each of the terms I 2 3. First, we have
I =1, (4.46)
since ¥ (x, y, At) is independent of x and a probability density for y. Next, we have
L =0, (4.47)
since y is an odd function and ¥ (x, y, At) is even. Finally, we obtain
Iz = Var[y] = b’ At, (4.48)

in which Var [y] is to be interpreted as the variance of y with respect to the probability
density 1. This leads to

b2
plx,t+ At) = p(x,t) + ?Ataxxp(x, t) +ho.t., (4.49)

which is a time-discretized version of the diffusion equation. Taking the limit of
At — 0, we obtain the desired result:

b2
Oip(x, 1) = Taxxp(x’ 7). (4.50)

Thus, the density evolves according to the diffusion equation. This is to be
expected, as the particles have no preferred direction and will therefore spread evenly.
This derivation explains why the Brownian motion is also called a diffusion process.

In the more general case of the SDE (4.27), the drift term will introduce a system-
atic bias in the motion of individual particles, resulting in an advective behaviour of
the density p(x, t). It can be shown that, in that case, the density p(x, ) satisfies the
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advection-diffusion equation

1
Oup(x. 1)+ 0; @)p(x. 1) = 500 (BN px. 1) . @5D)

We refer to [19, 34] for details.

4.4 More Realistic Microscopic Processes

Whereas stochastic differential equations are useful to describe a wide range of sto-
chastic processes in biological applications, they remain in essence phenomenologi-
cal, and thus descriptive. Even if these models have predictive power, it is often impos-
sible to use such models for a detailed understanding of the mechanism that generate
the dynamics. In this section, we therefore discuss more mechanistic velocity-jump
processes and their relation to bacterial chemotaxis. The section follows the same
structure as that of the previous sections: we first discuss the stochastic individual-
based model (Sect.4.4.1), after which we continue with an equivalent continuum
description (Sect.4.4.2). In Sect.4.4.3, we relate the resulting stochastic processes
with the SDEs of Sect.4.3.2, and we conclude with some bibliographical remarks
on generalizations in Sect.4.4.4.

4.4.1 Velocity-Jump Processes for Bacterial Chemotaxis

Generally, the motion of flagellated bacteria consists of a sequence of run phases,
during which a bacterium moves in a straight line at constant speed. The bacterium
changes direction in a tumble phase, which is typically much shorter than the run
phase and acts as a reorientation. Hence, the motion of an individual bacterium
can be modeled as a velocity-jump process. To bias movement towards regions
with high concentration of chemoattractant, the bacterium adjusts its turning rate
to increase, resp. decrease, the chance of tumbling when moving in an unfavorable,
resp. favorable, direction [2, 50]. The velocity-jump models described here are based
on [15] and [44, 45].

We consider bacteria that are sensitive to the concentration of a chemoattractant
S(x) > 0forx e R4, where x is the present position of the bacterium. While we
do not consider time dependence of chemoattractant via production or consumption
by the bacteria, a generalization to this situation is straightforward, at least for the
definition of the models and the numerical method. Bacteria move with a constant
speed v (run), and change direction at random instances in time (tumble), in an
attempt to move towards regions with high chemoattractant concentrations.
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The position of an individual bacterium is given by X (¢), its velocity is

dX(1)
dt

=eVo(t), Vo) eV=8%1,

with S?~! the unit sphere in R?. Hence, V,.(r) represents the direction and the scaling
parameter € > 0 represents the size of the velocity. (The reason for the introduction
of the subscript ¢ will become clear in Sect.4.6.) The velocity of each bacterium
is switched at random jump times (Tck)kzl that are generated via a Poisson process
with a time dependent turning rate A (x, v) that depends on the bacterium’s current
position and velocity. The new velocity at time Tck is generated at random according
to a centered probability distribution M (dv) with f v M(dv) = 0, typically

M(dv) = ogu-1(dv),

where og¢—1 is the uniform distribution on the unit sphere.
The turning rate is assumed to satisfy

0 < Amin < )\E(X, V) < Amax, (4.52)
as well as, for small values of ¢,
. 0 2
Ab(x,v) ==X —¢ AZ(x)v + 0(e). (4.53)

Typically, AL (x, v) is a function of V§(x), so that the model (4.53) may describe a
large bacterium that is able to directly sense chemoattractant gradients. When the
turning rate (4.53) is proportional to V.S(x)wv, it can be interpreted as follows: the rate
at which a bacterium will change its velocity direction depends on the alignment of
the velocity with the gradient of the chemoattractant concentration V.S(x), resulting
in a transport towards areas with higher chemoattractant concentrations.

The resulting stochastic process can be written as

dX.(1)
dr

Tk+1

/ C AKX (D), Ve(t))dt = 0k
Tk

c

= e‘/C(t)a

(4.54)

Ve(r) = V5 fort e [TF, T,

with initial condition X (0), V(0) € RY. In (4.54), (9") k1 denote i.i.d. random

variables with normalized exponential distribution, and (Vk) 4~ denote i.i.d. random
variables with distribution M (dv). -
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4.4.2 Population-Level Dynamics and Kinetic Equations

At the population level, there are two main differences with respect to the Fokker-
Planck Eq. (4.51) for SDEs. First, the stochastic process is written in terms of posi-
tions x and velocities v, implying that the density of interest will be a density
pc(x, v, t) in position-velocity phase space. Second, the stochastic process is dis-
continuous in the velocity component, which will result in a “collision operator” that
models the discontinuous velocity changes probabilistically.

The resulting evolution equation for the density p.(x, v, t) turns out to be a
Boltzmann equation with BGK-type collision operator,

O e+ €v-Vipe = (RALP) — Aipe) (4.55)

where

R(pc) :=/Vpc(-,v,~)M(dv)

is the operator integrating velocities with respect to M, and A is defined as in (4.53).
We will not derive this equation here, but instead refer the interested reader to [18]
for the derivation of master equations associated to Markov jump processes. Here,
we suffice by pointing out that the advection term models the effect of the velocity on
positions, and the righthand side models the effect of the random velocity changes.

4.4.3 Coarse-Graining and Approximate Macroscopic
Descriptions

The explicit modeling of these individual velocity changes is necessary to have a bio-
logically relevant mechanistic description of bacterial motion. In general, however,
one is not really interested in the detailed phase-space distribution p.(x, v, ¢), but
rather in the the position density p.(x, ) = R(p.(x, v, t)), and this for (at least) two
reasons: (i) it is usually impossible to obtain experimental data on the velocity distrib-
ution of the bacteria; and (ii) the bacteria typically travel only a microscopic distance
between velocity changes, such that the observed macroscopic motion is the averaged
effect on long time scales of a large number of velocity changes. One can expect the
position density p.(x, t) to satisfy a partial differential equation advection-diffusion
type, such as (4.51). The velocity-jump process (4.54) and the advection-diffusion
SDE (4.27) are therefore related.

To consider the behaviour of Eq. (4.55) on long time scales and for small bacterial
velocities, we let € tend to 0 and introduce the rescaled time 7 = €. (Then, when
f is O(1), this corresponds to a physical time ¢ that is 0(1/62).) In that case, the
position density p.(x, t) satisfies the advection-diffusion PDE
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.
Oipe = X divy (DVype — DAp(x)pc) , (4.56)

in which the diffusion matrix is given by the covariance of the Maxwellian distribu-
tion,

D:/ v ® v M(dv) € R4*, (4.57)
sd-1

We refer to [35] for justifications of this result based on Hilbert expansions. The
result implies that the position density obtained via (4.56) and via (4.55) are the
same in the limit when ¢ tends to 0.

Additionally, it is shown in [45] that the position X¢(f) of an individual trajectory
generated by the stochastic process (4.54) converges to a trajectory of the SDE

- 12
X, () = wdﬂ (2)\_10)) aw @), (4.58)

where ¢ +> Ws is a standard Brownian motion, as € tends to zero. (Note that this
second result implies the convergence of the position densities to a solution of (4.56),
but not vice versa.)

4.4.4 Further Comments and Remarks

The main modeling limitation of the models discussed so far is that they deal with
non-interacting particles, i.e., every individual follows its own stochastic path, inde-
pendently of all other individuals present. Many generalizations exist to introduce
interactions between particles, either as two-particle collision operators, via long-
range interactions or via interactions of individual particles with the position density.
Giving an overview of all these generalizations would lead too far. We refer to the
two excellent books [49] and [40] and references therein.

4.5 Monte Carlo Simulation and Variance Reduction

4.5.1 The Need for Monte Carlo Simulation

In most situations, we are interested in the evolution of a large population of individ-
uals (cells, bacteria). To simulate this evolution, two courses of action are possible:

e a (stochastic) Monte Carlo simulation of an ensemble of M realizations of the
stochastic process (such as (4.27) or (4.54)), from which information on the pop-
ulation density can be obtained using histograms or kernel density estimation
[47, 48];
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e A deterministic (grid-based) simulation of the corresponding PDE (such as (4.51)
or (4.55)).

Both options have advantages and drawbacks. The clear drawback of a Monte
Carlo simulation is the appearance of statistical error on the obtained population
density, which is absent in a deterministic simulation—the variance on the obtained
result being of the order of O(1/ VM ) [7]. The drawback of a grid-based simulation
is that the computational cost of mesh refinement depends crucially on the number of
dimensions of the PDE. Considering a system of particles in 3 spatial dimensions, the
kinetic equation (4.55) is a 6-dimensional PDE. Doubling the number of mesh points
in each spatial dimension already increases the total number of unknowns by a factor
of 2%, even if one can still take the same time step. In contrast, the computational
cost of refining a Monte Carlo simulation is independent of the dimension of the
problem: one can simply augment the number M of simulated particles.

In more realistic applications, the computational complexity of the PDE-based
description can be even higher, due to several reasons. When particles also have
internal state, the dimension of the kinetic equation (4.55) increases even further (see
Sect.4.6). Moreover, if the particles are interacting, the collision operator becomes
non-local, requiring the evaluation of an integral over velocity space at each spatial
mesh point. The situation becomes even more difficult when particles experience
long-range interactions.

4.5.2 Variance Reduction Techniques

Because of the problems associated with simulating high-dimensional PDEs, Monte
Carlo simulation is a viable alternative, provided one can control the variance of
the simulation. As a consequence, there exists a large literature on variance reduc-
tion techniques. The most popular techniques can roughly be categorized in two
classes: importance sampling and the use of a control variate. These techniques are
well-established in the computation of integrals with respect to a known probability
distribution, see [7] and references therein.

In importance sampling, the key idea is to adaptively sample the density of interest
using weighted particles, such that more particles are placed (with correspondingly
lower weights) in regions in which the variance is expected to be higher. Goal is to
obtain a variance that is evenly distributed over the computational domain. With a
control variate, the key idea is to compute an approximation to the quantity of interest
deterministically based on the solution of a related but simpler problem, for instance
analytically or by numerically solving a PDE of lower dimension. One then uses
the Monte Carlo only to sample the correction with respect to the deterministically
computed quantity.

Several research groups are currently working along these lines to develop hybrid
Monte Carlo/PDE methods. We refer to [ 13, 14] and related papers and to [1, 42] and
related papers in the context of the Boltzmann equation, and to [4] for an example in
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the context of radiation transport. We have developed a strategy based on a control
variate [44] that will be detailed for bacterial chemotaxis in Sect.4.6. A related
method that we are currently developing for tumor growth will be discussed in
Sect.4.7.

4.6 Application 1: Bacterial Chemotaxis

As a first application, we return to bacterial chemotaxis, which was also used in
Sect.4.4.1. Since many species are unable to sense chemoattractant gradients reliably
due to their small size, adjustment of their turning rate to bias motion in favorable
directions is often done via an intracellular mechanism that allows the bacterium
to retain information on the history of the chemoattractant concentrations along its
path [6]. The resulting model, which will be called the “internal state” or “fine-scale”
model in this text, can be formulated as a velocity-jump process, combined with an
ordinary differential equation (ODE) that describes the evolution of an internal state
that incorporates this memory effect [16]. The probability density distribution of the
velocity-jump process evolves according to a kinetic equation, in which the internal
variables appear as additional dimensions. A direct deterministic simulation of this
equation is therefore prohibitively expensive, and one needs to resort to a stochastic
particle method.

Unfortunately, a direct fine-scale simulation using stochastic particles presents a
large statistical variance, even in the diffusive asymptotic regime when € is small. In
that regime, the bacterial density of the fine-scale model is known explicitly to satisfy
a Keller-Segel advection-diffusion equation. Consequently, it is difficult to assess
accurately how the solutions of the fine-scale model differ from their advection-
diffusion limit in intermediate regimes.

In this section, we discuss a numerical method to simulate individual-based mod-
els for chemotaxis of bacteria with internal dynamics with reduced variance, intro-
duced in [44]. The variance reduction is based on a coupling technique (control
variate): the main idea is to simultaneously simulate, using the same random num-
bers, a simpler, “coarse” process where the internal dynamics is replaced by a direct
“gradient sensing” mechanism (see [2, 38, 41] for references on such gradient sens-
ing models). The probability density of the latter satisfies a kinetic equation without
the additional dimensions of the internal state, and converges to a similar advection-
diffusion limit as the model with internal state, see e.g. [10, 35, 37, 45]. The precise
coarse model will be (4.54) with a suitable choice for A.(x) in (4.53) (see later),
such that the coarse and fine-scale model have exactly the same advection-diffusion
limit.

We first discuss the fine-scale model with internal dynamics in Sect.4.6.1. The
model is a simplification (for expository purposes) of the more general model in
[44, 45]. We describe the variance reduction technique in detail in Sect.4.6.3. Some
numerical results are given in Sect.4.6.4. A detailed analysis of the method can be
found in [44].
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4.6.1 Bacterial Chemotaxis with Internal State

‘We again consider bacteria that are sensitive to the concentration of a chemoattractant
S(x) > 0 for x € R%. As in Sect.4.4.1, the bacteria follow a velocity-jump process
in which X (¢) is the position of an individual bacterium, and the normalized velocity
is given by

dX @)

5= V), V@)ev=s,

with S¢~1 the unit sphere in R¢. Hence, V (r) represents the direction and the
parameter € represents the size of the velocity. The difference with respect to the
process (4.54) with direct gradient sensing is in the definition of the turning rate.
As in [15], the turning rate is made to depend upon an internal state y € Y C R
of each individual bacterium, which models the memory of the bacterium and is
subject to an evolution mechanism attracted by the chemoattractant concentration
S(x). (The model in [44, 45] is more general and can take into account multiple
chemoattractants and higher-dimensional internal states.)

The internal state adapts to the local chemoattractant concentration through an
ODE,

dY (1)
dt

= F.(Y (1), S(X(1)), (4.59)

which is required to have a unique fixed point y* = S(x*) for every fixed value
x* € R?. We also introduce the deviations from equilibrium Z (1) = S(X (¢)) - Y (¢).

The velocity of each bacterium is switched at random jump times (Tk)kz 1 that
are generated via a Poisson process with a time dependent rate given by A(Z(z)),
where z — A(z) is a smooth function satisfying

0 < Amin < A (@) < Amax, (4.60)
as well as (for small values of z),
A@) = A0 — bz +¢,0 (I2]7), (4.61)

with b € R, v > 2. As before, the new velocity at time T* is generated at ran-
dom according to a centered probability distribution M (dv) with f v M(dv) =0,
typically

M(dv) = ogu-1(dv),

where ogs—1 is the uniform distribution on the unit sphere.
The resulting fine-scale stochastic evolution of a bacterium is then described by
the following differential velocity-jump equation,
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dx()
d[ - GV(I),
YO _ kv, sxa
dr, e ’ ’ (4.62)
/k ANZ(0)dr = 05T with Z(1) := S(X (1)) — Y (),
T
V() =VE fort e [Tk, TF),

with initial condition X (0) € R, Y (0) € R and T° = 0. In (4.62), (¢*), ., denote
1.i.d. random variables with normalized exponential distribution, and (Vk ) 4~ denote
1.1.d. random variables with distribution M (dv). -

In the numerical experiments, we will use a specific example, adapted from [15].

For the internal dynamics (4.59), we choose a linear equation

dy S -y _z

. 4.63
dt T T ( )

For the turning rate z — A(z), we choose the following nonlinear strictly decreasing

smooth function
T

A@) = 2Xo (% - % arctan (Nz)) : (4.64)

The probability distribution density of the fine-scale process with internal state at
time ¢ with respect to the measure dx M (dv) dy is denoted as p(x, v, y, t), suppress-
ing the dependence on e for notational convenience, and evolves according to the
Kolmogorov forward evolution equation (or master equation). In the present context,
the latter is the following kinetic equation

Orp +ev-Vip+ divy (Fe(x, y)p) = A(S(x) —y) (R(p) — p)» (4.65)
where

R(p) :=/Vp(~,v, ) M(dv)

is again the operator integrating velocities with respect to M.

4.6.2 Relation Between Fine-Scale and Coarse Process

In [45], it is shown, using probabilistic arguments, that, in the limit e — 0, both

the equation for the coarse process (4.55) and the equation for the process with

internal state (4.65) converge to an advection-diffusion limit on diffusive time scales.

Convergence is to be understood pathwise, i.e., in the sense of individual trajectories.
For the coarse process, this result has already been stated, see Sect.4.4.3.
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In the same way, a standard probabilistic diffusion approximation argument can
be used to derive the pathwise diffusive limit of the process with internal state (4.62),
see [45]. For ¢ — 0, the process f — X¢(f), solution of (4.62), converges
towards an advection-diffusion process, satisfying the stochastic differential equation
(SDE) (4.58), where Ag originates from

Ao(x) = b lim ———VS(x). (4.66)
e—0 1

A0+

in which b, 7, and A\° were introduced in (4.61)—(4.63) as parameters of the process
with internal state. Again, the diffusion matrix D is given by the covariance of the
Maxwellian distribution (4.57).

Introducing the bacterial density of the process with internal state as

p(x,t) =/ / p(x,v,y, ) M(dv)dy, (4.67)
Y JV

this implies that the evolution of p converges to (4.56) on diffusive time scales in the
limit of e — 0.

4.6.3 Asymptotic Variance Reduction

As discussed in Sect.4.5, obtaining the position density of bacteria by solving the
kinetic equation (4.65) over diffusive time scales can be cumbersome, due to the
additional dimensions associated with the internal state. The alternative is to use
to stochastic particles. However, a particle-based simulation of Eq. (4.65) is subject
to a large statistical variance of the order O(M -1/ 2), where M is the number of
simulated particles. Additionally, the asymptotic analysis shows that the position
bacterial density approaches an advection-diffusion limit (4.56) when e — 0; more-
over, this advection-diffusion limit is shared with a simpler, coarse model without
internal dynamics. Consequently, to accurately assess the deviations of the process
with internal state (4.62) as compared to its advection-diffusion limit (for small but
non-vanishing (intermediate) values of ¢), the required number of particles needs
to increase substantially with decreasing e, which may become prohibitive from a
computational point of view.

The idea that will be discussed here is to construct a hybrid method, based on the
principle of control variates, that couples the process with internal dynamics with
the coarse process, which is simulated simultaneously using a grid-based method.
The stochastic particles are then only used to perform a Monte Carlo simulation of
the deviations of the model with internal state with respect to the coarse model.

To explain the method, let us first assume that we are able to compute the exact
solution of the kinetic equation for the coarse process, (4.55), with infinite precision
in space and time. From now on, we will refer to (4.55) as the control process as it
is used as a control variate. (This explains the addition of the subscript c.)
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The algorithm of asymptotic variance reduction is based on a coupling between an
ensemble of realizations evolving according to the process with internal state (4.62),
denoted as

(X (8), Vi (£), Y (M,

and an ensemble of realization of the control process (4.54), denoted as

{Xone @), Vi e}

We denote the empirical measure of the particles with internal state in position-
velocity space as

M
1
M
py (X, v) = o7 2 OX, 1.V i/

m=1
and, correspondingly, the empirical measure of the control particles as

M

1
= M Z 5Xm,c(t_/52)qVm"c(t_/ez)’

m=1

M,c
r

with ¢, , the Dirac delta centered at (x, v). (These empirical measures can be inter-
preted as a discrete particle approximation to the phase-space density of the bacteria.)

A coupling between the two ensembles is obtained by ensuring that both sim-
ulations use the same random numbers (Qk)kzl and (Vk)kzo, which results in a
strong correlation between (X, (¢), Vi, (f)) and (Xp, ¢(t), Vi, () for each realiza-
tion. Simultaneously, the kinetic equation for the control process (4.55) is also solved
using a deterministic method (which, for now, is assumed to be exact). We formally
denote the corresponding semi-group evolution (a formal description of the exact
solution) as

e[_LC, with Lc(pc) = —€ev - Vipc + (R()\ipc) - AEPc) .

Besides the two particle measures ,uﬁ-” and ,u?/[ ‘., we denote by HZM the variance
reduced measure, which will be defined by the algorithm below. Since, with increas-
ing diffusive time, the variance of the algorithm increases due to a loss of coupling
between the particles with internal state and the control particles, the variance reduced
algorithm will also make use of a reinitialization time step 67,;, which is defined on
the diffusive time scale. The corresponding time instances are denoted as it = Zﬁri
on the diffusive time scale, or equivalently, on the original time scale as ¢ = £57,.; /€.

Starting from an initial probability measure i at time t = 0, we sample pp to
obtain the ensemble {X,,(t), V,, (1), Yy (t)}nﬂf: 1> corresponding to ug’l , and then set
ug[’c = ug’l, ie., Xp,c(0) = X,,(0) and V,, (0) = V,,(0) forallm =1,..., M.
Furthermore, we set the variance reduced estimator as ﬁg’l = o = E( ug’l ). We then
use the following algorithm to advance from 7* to 7*!, (see also Fig.4.4):
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Variance reduction with reinitialization
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Fig. 4.4 A schematic description of Algorithm 3. The dashed line represent the evolution of M
bacteria with internal state. The dotted line represent the coupled evolution of M bacteria with
gradient sensing, subject to regular reinitializations. The dashed-dotted line is computed according
to a deterministic method simulating the density of the model with gradient sensing, and subject
to regular reinitializations. The solid line is the variance reduced simulation of the internal state
dynamics, and is computed by adding the difference between the particle computation with internal
state, and the particle simulation with gradient sensing to the deterministic gradient sensing simu-
lation. At each reinitialization step, the two simulations (deterministic and particles) of the gradient
sensing dynamics are reinitialized to the values of their internal state simulation counterpart (as
represented by the arrows)

Algorithm 3 At time ¢, we have that the particle measure u?f € = ,u% , and the
variance reduced measure is given by ﬁ% . To advance from time 7¢ to 7¢+!

perform the following steps :

, We

e Evolve the particles { X, (¢), V;,, (¢), Y, (¢) },A,;Izl from ¢ to r*!, according to (4.62);

. M . .
e Evolve the particles {Xm,c(t), Vm,c(t)}m=1 according to (4.54), using the same
random numbers as for the process with internal state;
e Compute the variance reduced evolution

_ M 57 L.
Tt = e/ he 4 (uf—‘zﬂl - uf‘fﬁf) : (4.68)

(Note that this implies that we start the deterministic simulation for this time step
—M
from 7z .)
e Reinitialize the control particles by setting



108 A. Lejon and G. Samaey
X e = X, Vi o 6 = V6D, m=1,.... M,

i.e., we set the state of the control particles to be identical to the state of the particles
with internal state.

In (4.68), we use the symbol o emphasize that the involved particle positions
and velocities are those obtained before the reinitialization. An easy computation
shows that the algorithm is unbiased in the sense that for any £ > 0,

—M M
E [N;@ ] =E I:U['K ] )
since the particles with internal dynamics are unaffected by the reinitialization, and,

additionally, B
B[] =[]

Moreover, the variance is controlled by the coupling between the two processes.
Indeed, using the independence of the random numbers between two steps of Algo-
rithm 3, and introducing ¢ as a position and velocity dependent test function, we get
(see [44]),

—M €
stdev(i (¢)) = C—, (4.69)

where in the last line, C is independent of ¢, ¢, and M.

Remark 10 (Sharpness of the variance estimate) In some generic situations, we can
argue that the statistical error in Algorithm 3 coming from the coupling is “sharp”
with respect to the order in e. This means that the difference between the probability
distribution of the model with internal state and the probability distribution of the
model with gradient sensing is of the same order. This would imply that, with the
asymptotic variance reduction technique, one is able to reliably assess the true devi-
ation of the process with internal variables from the control process using a number
of particles M that is independent of e.

Remark 11 (Effect of time discretization) The analysis in [44] reveals that the vari-
ance reduction is asymptotic, in the sense that the variance vanishes in the diffusion
limit. To ensure this asymptotic variance reduction during actual simulations, one
needs to ensure that the time discretization preserves the diffusion limits of the time-
continuous process. An appropriate time discretization is highly non-trivial, and is
discussed in [44].

4.6.4 Numerical Results

To illustrate the algorithm, we consider a simulation of the density of an ensemble
of particles, with and without variance reduction. We restrict ourselves to one space
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dimension, with domain x € [0, 20] and periodic boundary conditions. In this case,
the kinetic equation corresponding to the control process reduces to the system

e AD  Alx 1)

Opd + edrpl = - pl + Sy
4.70
. LA AD A -1 (70

al‘pc - eaxpc = Pec — Pc
2 2
of two PDEs, which is straightforward to simulate using finite differences.
We fix the chemoattractant concentration field as

sw =a(ep (A=) +ep(-Ba—n?)), @)

with parameters a = 2, § = 1, £ = 7.5 and = 12.5. For the internal dynamics,
the model ((4.63-4.64), (4.53—4.66)) is used. The parameters are ¢ = 0.5, \g = 1,
7=1,0t =0.1.

All simulations are performed with M = 5000 particles. The initial positions are
uniformly distributed in the interval x € [13, 15]; the initial velocities are chosen
uniformly, i.e., each particle has an equal probability of having an initial velocity of
=e. The initial condition for the internal variable is chosen to be in local equilibrium,
i.e., ¥, (0) = S(X,,(0)). The initial positions and velocities of the control particles
are chosen to be identical.

We discretize the continuum description (4.70) on a mesh with Ax = 0.1 using a
third-order upwind-biased scheme, and perform time integration using the standard
fourth order Runge—Kutta method with time step 7,4, = 10~!. The initial position
density is given as

S 0) = [0.25, x e [13,15], @7

0, otherwise.

Simulation without variance reduction First, we simulate both stochastic processes
up to time 7 = 50 (r = 50/€?) and estimate the density of each of these processes
oM (x, 1), resp. /32” (x, 1), without variance reduction. The density is obtained via
binning in a histogram, in which the grid points of the deterministic simulation are
the centers of the bins. Figure4.5 (left) shows the results for a single realization. We
see that, given the fluctuations on the obtained density, it is impossible to conclude
on differences between the two models. This observation is confirmed by computing
the average density of both processes over 100 realizations. The mean densities are
shown in Fig.4.5 (right), which also reveals that the mean density of the control
process is within the 95 % confidence interval of the process with internal state.
Both figures also show the density that is computed using the continuum description,
which coincides with the mean of the density of the control particles.

Simulation with variance reduction Next, we compare the variance reduced esti-
mation (4.68) with the density of the control PDE. We reinitialize the control par-
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0.3

fl(,:l% t*)7 ﬁc(m7 t*)

Fig. 4.5 Bacterial density as a function of space at r = 50/¢> without variance reduction. Left one
realization. Right mean over 100 realizations and 95 % confidence interval. The solid line is the
estimated density from a particle simulation using the process with internal state; the dashed line
is estimated from a particle simulation using the control process. Both used M = 5000 particles.
The dotted line is the density obtained from the deterministic PDE (4.70)

0.3

a(x, t*),nc(x, t*)

o 5 10 15 2

Fig. 4.6 Bacterial density as a function of space at r = 50/¢? with variance reduction and reini-
tialization. Left variance reduced density estimation of one realization with M = 5000 particles
(solid) and density obtained from a deterministic solution for the control process (4.70) (dashed).
Right mean over 100 realization and 95 % confidence interval (solid) and density obtained from a
deterministic solution for the control process (4.70) (dashed)

ticles after each coarse-scale step, i.e., each k steps of the particle scheme, where
kot = Otpge, (here k = 1). The results are shown in Fig.4.6. We see that, using
this reinitialization, the difference between the behaviour of the two processes is
visually clear from one realization (left figure). Also, the resulting variance is such
that the density of the control PDE is no longer within the 95 % confidence inter-
val of the variance reduced density estimation (right figure). We see that there is a
significant difference between both models: the density corresponding to the control
process is more peaked, indicating that bacteria that follow the control process are
more sensitive to sudden changes in chemoattractant gradient. This difference can be
interpreted from the fact that the bacteria with internal state do not adjust themselves
instantaneously to their environment, but instead with a time constant 7.
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4.7 Application 2: Tumor Growth

As a second application, we turn to tumor growth, which is a complex biological
phenomenon consisting of processes on different scales. On the cellular level, one has
to track the random motion of the cells, as well as cell division and cell death (apop-
tosis). As before, we deal with random motion by means of a velocity-jump process,
in which we additionally ensure that the concentration of cells in a certain volume
remains restricted. To achieve this, the spatial evolution of the individuals will be
coupled through the local cell density. Cell division and apoptosis are modeled by
means of two extra (intracellular) variables (a cell cycle variable ¢ and an apoptosis
variable z), which in turn depend on intracellular and environmental concentrations
of a number of chemical compounds (described via reaction diffusion equations).
The resulting fine-scale model therefore consists of a velocity-jump process, supple-
mented with a set of ODEs describing the (sub)-cellular state of the individual cells
and a set of reaction-diffusion PDEs describing the environment.

As for bacterial chemotaxis, it is possible to equivalently write the fine-scale model
as a kinetic equation for each cell type p that then models the phase space density
pp(x,v, ¢, z,t). However, a direct simulation of this fine-scale kinetic model is
again not feasible because of the high-dimensional character of the resulting system,
while a stochastic particle discretization is significantly influenced by Monte Carlo
noise. Therefore, we propose a tailored variance reduction technique. The key point
is to simulate the kinetic description of a simpler control model that only contains
the motion of the cells and to couple this deterministic simulation with a stochastic
agent-based simulation to obtain information on cell divisions and apoptosis.

We first give a detailed overview of the different layers of the model in Sect.4.7.1.
This model is similar to the model (4.62) used to describe bacterial chemotaxis, and
reproduces the features of the cellular automaton model proposed by Owen et al. [39].
We describe the variance reduction algorithm in Sect. 4.7.2. Finally, we illustrate the
technique with some numerical experiments in Sect.4.7.3.

4.7.1 Model

The model consists of two main components: an agent-based model, describing the
individual cellular motion and internal processes attached to each cell (cell cycle and
apoptosis) and the environment, modeled by a set of reaction diffusion equations.
We start by giving an overview of the model structure and notations that will be
used throughout the section (Sect.4.7.1.1), after which we describe the agent-based
model (Sect.4.7.1.2) and the evolution laws for the environment (Sect.4.7.1.3).

4.7.1.1 Overview and Notation

We consider three types of cells, indexed by 1 < p < P = 3: normal cells (p = 1),
cancer cells (p = 2), and endothelial cells (that build up blood vessels, p = 3). For
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each of these cell types, we consider an ensemble of M () cells, characterized by
their positions X, , (), velocities V,, ,(¢), cell cycle phase @, ,(f), and remaining
internal state variables Z,, ,(t), for 1 <m < Mp(t) and 1 < p < P. (The time
dependence of the number of particles is due to the fact that cells divide and die.)
In the numerical experiments in this chapter, blood vessel growth is not taken into
consideration. We thus only consider normal cells and cancer cells.

To keep a consistent notation throughout the section, we introduce the following
convention. If, at a moment ¢t = ¢*, the cell with index m* in population p divides,
we set

M,(™) = M,@t*) +1, (4.73)

in which the symbol #* is used to emphasize that the involved number of cells is
meant to be taken just before the division. Simultaneously, we introduce a new cell
as specified below (see Eq.4.79). When a cell undergoes apoptosis, it is removed
from the simulation. To avoid cumbersome renumbering of the cells in the text, we
associate a weight w, ,(¢) to each of the cells. If the cell is alive, the corresponding
weight is one; upon apoptosis, it becomes zero. The active number of cells is therefore

M (1)

Mp(t) = D" wp(1). (4.74)

m=1

Given the positions of these cells, the empirical cell number density is then

obtained as
My(t)

pp(x ) = D W p ()X, ) (4.75)

m=1

The agent-based cellular model is coupled with the environment, consisting of
oxygen and vascular endothelial growth factor (VEGF). We denote by C(x, t) the
concentration of oxygen and by G(x,t) the concentration of VEGF; both fields
evolve according to PDEs in which the cell number density (4.75) appears. The
different behaviour for different cell types originates both from different intracellular
mechanisms and from the cell-type dependency of the coefficients in the agent-based
model, see below. A table containing the parameter values for all cell types is given
in Table4.1.

4.7.1.2 Agent-Based Model

Motion Cellular motion is composed of two components: random motion, which
will be modeled by means of a velocity jump process, and deterministic chemo-
tactic motion towards high VEGF concentrations. The deterministic term also con-
tains a volume factor, restricting motion towards regions where the number density
pp (X, p(t), t) is higher than a threshold value pmax, p
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dX,(t X(@),t
p® _ V(1) + Exp VG (X (1), 1) (1 - M) , (4.76)
dr Pmax, p
Vp(t) =Vyfort e [Ty, T, VieV=vrsi™! 4.77)

inwhich 0 < € <« 1 and ¥, is the cell-type dependent chemotactic sensitivity. In this
chapter, we choose the same velocity V;; for all cell types. Similar to the bacterial

chemotaxis case, the velocities Vf, are sampled from the uniform distribution
Mp(dv) = O'Vl;de—l (dv),

on the sphere V;," S=1, and the jump times Tlf are generated from a Poisson process

with constant rate A,

T;C_H
_ k+1 ky _ pk+1
/Tk Apdt = A, (T — 78y = gkt

p

where 0’1‘,“'1 are i.i.d. random numbers, sampled from a normalized exponential dis-
tribution. During the numerical experiments, we choose A, = 1, independent of
the cell type. In the bacterial chemotaxis case, bacteria possessed internal dynamics

Table 4.1 Parameter values related to the populations

Parameter Normal population Cancer population Endothelial cells
% 0.0 0.0 0.33333
Pmax 0.1 0.2 0.1

€ 3.536 x 1074 3.536 x 10~ -

Cy 399.96 186.64 -

Tinin 1.8 x 10° 9.6 x 10* -

Zhigh 0.8 - _

Zlow 0.08 - _

Nihr 0.75 - _

] 3.3333 x 107 - -

o 1.6667 x 10~ - -

3 3.3333 x 1073 - -

c4 3.3333 x 107 - -

cs 1.6667 x 10~* - -

Js 0.04 - -
CVEGF 0.01 - —

Cps3 0.01 - _

A - 1 -

B - 1 -
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to bias their chemotactic motion. In the tumor model, internal dynamics governs
cell division and cell death (apoptosis). (Hence, the time-dependent number of cells
M, ().) Let us now look at these intracellular mechanisms (Table 4.1)

Cell Cycle Dynamics Cells evolve according to a cell cycle, and division occurs as
soon as this cycle is completed. In our model, this is represented by a cell phase cycle
variable ® () that is zero at cell birth. The cell cycle is completed when @, (1) = 1.
The cell cycle speed depends on the local oxygen concentration C(X,(¢), t) that
is observed by the cell as it is simultaneously moving through space and evolving
through the cycle. The higher the oxygen concentration, the faster the cycle proceeds,
while the cell cycle is put on hold once the oxygen concentration is approaching zero.
This behaviour is modeled by means of the following ODE,

4P, (1) _ C(X,(1), 1)
dr Tmin, p(Cg,p + C(Xp (1), 1))’

(4.78)

in which we introduce the cell-type dependent parameters Cy ;, and Tiin, p, the min-
imal time needed for a cell to complete one cell cycle. From Table4.1, we see that
cancer cells are able to proceed twice as fast as normal cells during the cell cycle in
a given environment.

If, for the cell with index m™* in population p, attime t = *, we obtain &, (t*) > 1,
we introduce a new cell in the simulation. We adjust M, (¢) according to (4.73) and
set @y, ,(¢) = 0. The new cell inherits the complete state from the cell that divides:

XM,,(t),p(t*) = Xm*,p(t*)a VM,,(I),p(t*) = Vm*,p(t*)a

. N . . 4.79)
@, (1), p (") = P p ("), Zy(r),p(t7) = Zppx, p(t7).

More details on this cell cycle model can be found in [39] and its supplementary
material.

Remaining Internal State Variables To account for apoptosis, we introduce a sec-
ond sub-cellular model, consistent with [39],

dZ,()
dr

= Fp(Xp(t)a Zp(t))y

for the internal state Z,(t) € R?, in which ¢ may depend on the cell type. This
internal dynamics follows a different mechanism, depending on the cell type. For the
normal tissue (p = 1), the variable Z1(¢) contains two components, namely the p53
concentration Z 1 (¢) and the intracellular VEGF concentration Z »(¢). The former
can be seen as an estimator for the number of mutations that a cell has undergone
during its lifetime. The latter models the process that allows cells to store VEGF
during hypoxic conditions and release it once this intracellular concentration has
reached a certain threshold level.
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dZi1() C(X1(),1)

— =] — Z11(), 4.80
dr a8 (T N N (4.80)

dZi,(t Z11M1)Z12(t C(X1(t),t
1,2(2) ey 1,10 Z12() o5 (X1(2), 1) Z1a(0), @.81)
dt Js+Z12(t) Cvecr + C(X1,1)

where ¢;, 1 <i <35, Cps3, J5, and Cyggr are parameters of which the value can be
found in Table4.1. As soon as oxygen is available, the second term in (4.80) ensures
exponential decay of Z; 1(¢); the first term in (4.80) models linear growth of Z1 1 (¢),
an effect that is only dominant in the absence of oxygen. A cell undergoes apoptosis if
Z1,1(¢) reaches a threshold value vp (01 (X1(2), 7)) that depends on the local density
of normal cells. The threshold value is lower in case of a harsh environment (with
low cell number density), i.e.,

Yapt (p) = [Zhigh if p < pr
Zlow else
See Table4.1 for parameter values.

The internal dynamics of tumor cells does not depend on the p53 concentration,
since this mechanism to regulate the normal cell cycle does not function properly
anymore in a tumor. Cancer cells are able to go into a quiescent state when expressed
to hypoxic circumstances, meaning that they don’t consume any nutrients. However,
the maximal duration of this quiescent state is limited, which implies that cancer
cells will also undergo apoptosis when the hypoxia holds too long. On the other
hand, cancer cells have the ability to recover quickly once oxygen becomes available
again. This mechanism can be modeled by the following equation:

dZ, (1)
ran A H(Cihreshold — C(X2(1), 1)) — B Z1(t) H(C(X2(2), 1) — Cihreshold),
Linear increase during hypoxia Exponential decay if C(X2(t),t)> Chreshold
(4.82)

where A, B are constants (see Table4.1) and H is the Heaviside function. The first
term models the reaction to a hypoxic state, i.e., when the local oxygen concentration
C(X»2(1), t) drops below the threshold level Cinreshold- During this hypoxic period,
the internal variable Z;(¢) increases linearly as a function of time. On the other hand,
the second term describes the recovery of the cancer cells if the environment is not
hypoxic anymore, which is captured by the exponential decay term of Z,(¢). Cancer
cells die as soon as Z>(¢) > 1, corresponding to vapt = 1.

Complete Agent-Based Model Combining all components described above, we
end up with the following set of differential equations governing the behaviour of an
individual cell:
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dx X, (0),
p® _ V(1) + 2 xp VG (X (1), 1) (1 — M) ,
dr Pmax
k+1 k k+1
(T = TF) A, = 057,
Vp(t) =V, fort € [Ty, T,;*) (4.83)
4, (1) _ C(Xp(0), 1)
dr Tmin,p(Co.p + C(Xp (), 1))’
dZ, @)

dt :F[)(Z[)(t)7t)a
combined with the division rule (4.79) and the rule that adjusts the weights w,_ ,(¢)
upon apoptosis.

Coarse (population-Level) Description As in Sect.4.4.2, we again have a kinetic
equation of the phase space density p,(x, v, z, ¢, t), which becomes quite compli-
cated due to the cell cycle and apoptosis that govern cell division and cell death.
Ideally, a coarse-grained model would be written in terms of the cell number density
pp(x,t). We expect to obtain a reaction-advection-diffusion equation. However, due
to the modeling detail for the cell cycle and apoptosis, it is unrealistic to expect one
can write the reaction term as a closed-form function of p, (x, ). When ignoring the
intracellular dynamics (and therefore considering a system with constant number of
cells) and using a diffusive scaling 7 = 7€ [36], one can obtain an advection-diffusion
equation where no reactions (cell divisions, cell deaths) are taken into account [30]:

_ pp(x’ t_)

Pmax

Oipp(x, 1) = D,,Vzp,,(x, f)—XpV-[pp(x, r) (1 ) VG(x, t)j| , (4.84)

in which D, = [, v ® vM(dv).

In the variance reduction algorithm, we will also consider the kinetic number
density,

My (1)

Np(x,v,1) = / / P 0.2, 6 0)dzdd = D W p(106%,, 1)V p1)e (485)

m=1

which counts the number of particles with a position x and velocity v at time f,
regardless of their internal state.

4.7.1.3 Environment

The cellular environment consists of two diffusible components regulating the behav-
ior of the cells in various ways: oxygen C(x, t) and VEGF concentration G(x, ?).
Oxygen is evidently important for the cells to proceed through the cell cycle and
survive, see Egs.(4.78) and (4.80). The local oxygen concentration is determined
from the following advection-diffusion equation:
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Table 4.2 Parameter values reaction diffusion equations

Parameter Oxygen VEGF

D 2.4167 x 1070 1.6667 x 1011
¥ 6 1.6667 x 1077
d 0 1.667¢ — 4
Kknormal —0.2167 0.01

kcancer —0.2167 0.01

,
0,C(x,1) = DVZC(x, 1) + e py(x, 1) (Cotood (¥) — C(x, 1) = C(x, 1) D ke ppp(x, 1),
p=I

diffusion exchange with blood

consumption by cells

(4.86)
where D¢ is the diffusion coefficient, )¢ denotes the permeability of the oxygen
through the vessels, p, (x, t) describes the surface area occupied by blood vessels at
position x, and Cpjood (x) defines the oxygen concentration in a blood vessel located
at position x. In general the blood vessel concentration p, (x, t) is computed from the
agent-based evolution of endothelial cells. In this paper, we present numerical tests
for a case where p, (x, ) = p, (x) is fixed during the simulation, and no vessel growth
is incorporated. We choose p,(x) = 1 in grid cells where blood vessels are present.
During the experiments we have taken Cpooq(x, #) = 400 at vessel locations and
zero elsewhere. The last term in Eq. (4.86) reflects the fact that all cell types consume
oxygen with a cell specific rate k¢, ,. Recall that the cell number density p, (x, 1) is
defined via Eq. (4.75).

A similar approach is used to describe the local concentration of VEGF, which
is responsible for the growth of new blood vessels. This is especially important for
larger tumors, since endothelial cells will grow towards regions with higher VEGF
concentrations. Initially, the tumor can benefit from the existing vasculature, but
when the tumor occupies a larger volume, the oxygen supply does not suffice and
the cells are obliged to use their ability to ask for new vessels by secreting VEGF.
Endothelial cells — the building blocks of blood vessels— can then react and move
chemotactically towards the hypoxic regions. The corresponding reaction diffusion
equation for VEGF reads:

P
6l‘G(-x’ t) = DGVZG(-X7 t) _/l/}GpU(xv t)G(-x7 t) + ZkG,ppp(xa t) - 5GG(-X7 t) .
—_—
diffusion exchange with blood p=1 decay

production
(4.87)
In contrast to oxygen, the VEGF concentration is assumed to be zero in the blood
and the growth factors contained in the tissue is degrading with rate G when time
evolves (Table4.2).



118 A. Lejon and G. Samaey

Because the diffusible components equilibrate much faster than the individual
cells, we adopt a steady state approximation, which implies that 0;G(x, t) and
0;C(x, 1) are set to zero. Then, a time step of the agent-based model is performed
first, after which the steady state equations for C(x, ¢) and G (x, t) are solved.

4.7.2 Variance Reduction

In this section, we propose an variance reduction algorithm similar to the technique
used for bacterial chemotaxis. The main differences are due to the fact that (i) the
tumor model is not conservative; and (ii) the internal dynamics only relates to cell
division and apoptosis and not to advection-diffusion behaviour.

Again, the algorithm conceptually relies on the combination of three simulations:
a stochastic simulation with the full fine-scale model, as well as with a coarse,
approximation, combined with a deterministic, grid-based simulation of the coarse
model. The full fine-scale model uses M, (¢) particles with state variables

X p (O, Vin (1), @ p (1), Zon p (O}, (4.88)

As the coarse agent-based model, we conceptually consider an agent-based model in
which the internal state has been suppressed and only position and velocity remain:

. . M (1)
(X p @), Vi , (O}, 21

Since no internal dynamics is present, cells cannot divide or die. (In practice, we will
use the results obtained from the full fine-scale model, in which we neglect apoptosis
and cell division, see later.) The only dynamics is motion, which can be modeled
with a kinetic equation for the phase space density N, (x, v, 1),

DN+ cv- VNG = A (R(N;) - AN;,) , (4.89)

see also (4.55). We again call this coarse approximation the control process. (Recall
that the kinetic number density for the original process is denoted as N, (x, v, 1),
see (4.85).) We also introduce the formal semigroup notation

e'Lr, with L;(N;) = —(ev + EXVG(x, 1)) - VxN; + (A(R(N;) - N;))
(4.90)
that represents the exact solution of the kinetic equation (4.89). In practice, this exact
solution will be approximated by a deterministic simulation on a grid.
It should be clear that the advection-diffusion behaviour in both agent-based mod-
els is identical. Thus, the only difference between the two models occurs when cells
divide or die. Assuming no reactions take place, the three processes thus have the
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same expectation. This observation leads to the following variance reduction algo-

rithm. As an initial condition, we start from M, (0) particles sampled from the kinetic

probability densities ug’(’)(o) (x, v), resulting in the number density N, (x, v, 0). For

each particle, we choose a given internal state, for instance ®@,, ,(0) = Z,, ,(0) =0,
1 <m < M,(0),1 < p < P.(These internal states could also be sampled from an
appropriate probability distribution.) Additionally, we introduce the variance reduced
measure N (x, v, t), which we initialize as N p(x,v,0) = Np(x,v,0). We denote
the time step d¢ and the discrete time instances tt=406t,0=0,1,...

Algorithm 4 (Variance reduction for tumor growth) We advance the variance
reduced kinetic number density N (x, v, ¢) from time % to r¢1! as follows:

e Evolve the particle states (4.88) from ¢ to rtH! using the agent-based model (4.83).
e Compute the kinetic number density for the stochastic fine-scale model using
(4.85), as well as the kinetic number density for the coarse process as

MY
NE(x v, 1 = Z wm,,,(#)axmvp(,w),Vm,p(tm), (4.91)

m=1

i.e., we compute the kinetic number density for the control process based on particle
positions and velocities at time r“*!, taking into account only the particles that
were present in the simulation at time #¢.

e Evolve the control kinetic number density N[C7 (x, v, t) using a grid-based method
based on (4.90) and add the reactions (the difference in kinetic number density
due to cell division and apoptosis)

Ny, v, 141 i= Np(r, v, 19 €798 4 N (0,01 = NG, v, 14D,
(4.92)

Again, in the absence of discretization errors in the grid-based method, we have

E [Np(x, v, t“l] =E [Np(x, v, t“l] ,

since Np()c, v, te) = N;(X, v, [Z) and E [N;;(x, v, 19 e‘S’/szc:I =K I:N.lc’(x’ v, [£+1):|_

Moreover, we expect the variance of N » to be significantly lower than that of N,
since all randomness due to random motion has been removed and only the location
of the reactions remains random.

4.7.3 Numerical Experiments

In this section, we illustrate both the model and the variance reduction algorithm by
means of some numerical experiments. First, we initialize a normal tissue consisting
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Fig. 4.7 Evolution of normal cell population (black) with small tumor (gray). Left initial state
(1600 normal cells and 20 cancer cells). Right result after 490 steps

of 1600 cells, with initial positions sampled from the uniform distribution on the
domain [0.3,0.6] x [0.3, 0.6]. The initial velocities are sampled from the uniform
distribution on the sphere, and the internal state variables ®(0) = 0.0, Z(0) = 0 for
every particle. We initialize a small tumor, containing 20 cells, with initial positions
samples from a uniform distribution in [0.445, 0.455] x [0.445, 0.455], also with
initial velocities sampled from the uniform distribution on the sphere with radius
V;‘ = 3.5% 107, and the internal state variables ® (0) = Z(0) = 0 for every particle.
In the following numerical experiments, we adopt a static vasculature, consisting of
two straight vertical vessels at x = 0.4 and at x = 0.8 to be specific. The first agent-
based experiment was performed in a non-scaled way with discretization parameters
6t = 1.8 x 103s and Ax = 4 x 10~ m for the agent-based model. We use reflective
boundary conditions. In Fig. 4.7, we show the evolution of both cell populations. On
the left, one can observe the initial configuration, while on the right hand side, we see
the resulting configuration after 490 steps. Apart from the fact that cells performed a
random walk, a significant amount of the normal tissue died because of the presence
of the tumor.

In a second experiment, we illustrate the performance of the variance reduction
algorithm as it was explained in Sect.4.7.2 in a similar setting as the previous experi-
ment but on a diffusive scale, i.e. the normal tissue containing 2500 cells is uniformly
distributed on the square [0.2, 0.8] x [0.2, 0.8] and a small tumor originally consist-
ing of 20 cells is also uniformly distributed within the area [0.39, 0.41] x[0.39, 0.41].
Furthermore, the scaled cellular velocity was chosen V=2 /2 and we modified
the minimal cell cycle durations (Tmin,cancer = 9.6 X 103, Tnin,normal = 1.8 X 10%s)
to demonstrate the performance of the algorithm in an extreme (not biologically real-
istic) setting where cells are able to divide very quickly. As in the bacterial chemotaxis
application, the coarse equation is modeled on a diffusive timescale, where we choose
0f =082 =1 x 1077, Ax =2 x 102 as mesh parameters to simulate the deter-
ministic kinetic equation (4.89) needed to apply the variance reduction algorithm. To
simulate this, a second order central finite volume scheme was adopted to discretize
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Fig. 4.8 Illustration variance reduction algorithm for tumor growth: Mean cell distribution (first
column) and variance (2nd column) for normal and cancer population after 5000 timesteps. The
first two rows show the results without applying the variance reduction algorithm, which can be
compared with the results displayed in the last two rows where the variance reduction algorithm
was applied

the spatial derivative in the kinetic equation (4.89) and a first order forward Euler
scheme for the time derivative.

The mean normal and cancer cell distribution and there variance with and with-
out applying the variance reduction algorithm are displayed. Furthermore the mean
oxygen distribution and the corresponding mean reaction field are also shown next to
the variance. First, we observe that variance on the normal cell distributed has been
reduced significantly for both cell populations by applying Algorithm 4. Addition-
ally, one can observe a clear correlation with the oxygen field.The latter is a logical
consequence from the fact that the progress of the cell cycle is closely related to
the local oxygen concentration along the track, meaning that a cell is more likely to
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divide in oxygen rich environments. Moreover, the variance is almost eliminated in
the other regions (Fig. 4.8).

In this section, the parameters used in the numerical experiments are listed. They
are based on the parameters used in [39]. One can find them in the supplementary
material corresponding to [39].

4.8 Conclusions

We gave abroad overview of the use of stochastic modeling and simulation techniques
is computational biology, focussing on some common individual-based modeling and
simulation methods. We payed particular attention to the equivalence between the
stochastic process that governs the evolution of individual agents and the determin-
istic behaviour of the involved probability distributions, and we discussed numerical
methods that exploit this relation for variance reduction purposes. Using examples
involving intracellular chemical reactions, bacterial chemotaxis and tumor growth,
we showed the effects of stochasticity at different scales and different levels of
description.

A main focus of the chapter was the design of dedicated simulation algorithms.
Two main computational bottlenecks arise. The first is related to the time-scale sep-
aration between the fast processes (that determine the maximal time step that is
allowed) and slow processes (that determine the time scale over which the simu-
lation needs to be performed). The second is related to noise that appears in the
simulation and that requires dedicated variance reduction techniques. These prob-
lems are not completely solved, and stochastic simulation therefore remains an active
research topic.
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