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To Ottilie



Preface

This book has been primarily written for the student of mathematics who is in the
second year or the early part of the third year of an undergraduate course. It will
also be very useful for students of engineering and physical sciences for whom
Laplace transforms continue to be an extremely useful tool. The book demands no
more than an elementary knowledge of calculus and linear algebra of the type
found in many first year mathematics modules for applied subjects. For mathe-
matics majors and specialists, it is not the mathematics that will be challenging but
the applications to the real world. The author is in the privileged position of having
spent ten or so years outside mathematics in an engineering environment where the
Laplace transform is used in anger to solve real problems, as well as spending
rather more years within mathematics where accuracy and logic are of primary
importance. This book is written unashamedly from the point of view of the
applied mathematician.

The Laplace transform has a rather strange place in mathematics. There is no
doubt that it is a topic worthy of study by applied mathematicians who have one
eye on the wealth of applications; indeed it is often called Operational Calculus.
However, because it can be thought of as specialist, it is often absent from the core
of mathematics degrees, turning up as a topic in the second half of the second year
when it comes in handy as a tool for solving certain breeds of differential equation.
On the other hand, students of engineering (particularly the electrical and control
variety) often meet Laplace transforms early in the first year and use them to solve
engineering problems. It is for this kind of application that software packages
(MATLAB�, for example) have been developed. These students are not expected
to understand the theoretical basis of Laplace transforms. What I have attempted
here is a mathematical look at the Laplace transform that demands no more of the
reader than a knowledge of elementary calculus. The Laplace transform is seen in
its typical guise as a handy tool for solving practical mathematical problems but, in
addition, it is also seen as a particularly good vehicle for exhibiting fundamental
ideas such as a mapping, linearity, an operator, a kernel and an image. These basic
principals are covered in the first three chapters of the book. Alongside the Laplace
transform, we develop the notion of Fourier series from first principals. Again no
more than a working knowledge of trigonometry and elementary calculus is
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required from the student. Fourier series can be introduced via linear spaces, and
exhibit properties such as orthogonality, linear independence and completeness
which are so central to much of mathematics. This pure mathematics would be out
of place in a text such as this, but Appendix C contains much of the background for
those interested. In Chapter 4, Fourier series are introduced with an eye on the
practical applications. Nevertheless it is still useful for the student to have
encountered the notion of a vector space before tackling this chapter. Chapter 5
uses both Laplace transforms and Fourier series to solve partial differential
equations. In Chapter 6, Fourier Transforms are discussed in their own right, and
the link between these, Laplace transforms and Fourier series, is established.
Finally, complex variable methods are introduced and used in the last chapter.
Enough basic complex variable theory to understand the inversion of Laplace
transforms is given here, but in order for Chapter 7 to be fully appreciated, the
student will already need to have a working knowledge of complex variable theory
before embarking on it. There are plenty of sophisticated software packages
around these days, many of which will carry out Laplace transform integrals, the
inverse, Fourier series and Fourier transforms. In solving real-life problems, the
student will of course use one or more of these. However, this text introduces the
basics; as necessary as a knowledge of arithmetic is to the proper use of a
calculator.

At every age there are complaints from teachers that students in some respects
fall short of the calibre once attained. In this present era, those who teach math-
ematics in higher education complain long and hard about the lack of stamina
amongst today’s students. If a problem does not come out in a few lines, the
majority give up. I suppose the main cause of this is the computer/video age in
which we live, in which amazing eye-catching images are available at the touch of
a button. However, another contributory factor must be the decrease in the time
devoted to algebraic manipulation, manipulating fractions etc. in mathematics in
the 11–16 age range. Fortunately, the impact of this on the teaching of Laplace
transforms and Fourier series is perhaps less than its impact in other areas of
mathematics. (One thinks of mechanics and differential equations as areas where it
will be greater.) Having said all this, the student is certainly encouraged to make
use of good computer algebra packages (e.g. MAPLE�, MATHEMATICA�,
DERIVE�, MACSYMA�) where appropriate. Of course, it is dangerous to rely
totally on such software in much the same way as the existence of a good spell
checker is no excuse for giving up the knowledge of being able to spell, but a good
computer algebra package can facilitate factorisation, evaluation of expressions,
performing long winded but otherwise routine calculus and algebra. The proviso is
always that students must understand what they are doing before using packages
as even modern day computers can still be extraordinarily dumb!

In writing this book, the author has made use of many previous works on the
subject as well as unpublished lecture notes and examples. It is very difficult to
know the precise source of examples especially when one has taught the material
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to students for some years, but the major sources can be found in the bibliography.
I thank an anonymous referee for making many helpful suggestions. It is also a
great pleasure to thank my daughter Ottilie whose familiarity and expertise with
certain software was much appreciated and it is she who has produced many of the
diagrams. The text itself has been produced using LATEX.

January 1999 Phil Dyke
Professor of Applied Mathematics

University of Plymouth
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Preface to the Second Edition

Twelve years have elapsed since the first edition of this book, but a subject like
Laplace transforms does not date. All of the book remains as relevant as it was at
the turn of the millennium. I have taken the opportunity to correct annoying typing
errors and other misprints. I would like to take this opportunity to thank everyone
who has told me of the mistakes, especially those in the 1999 edition many of
which owed a lot to the distraction of my duties as Head of School as well as my
inexperience with LATEX. Here are the changes made; I have added a section on
generalising Fourier series to the end of Chap. 4 and made slight alterations to
Chap. 6 due to the presence of a new Chap. 7 on Wavelets and Signal Processing.
The changes have developed both out of using the book as material for a
second-year module in Mathematical Methods to year two undergraduate mathe-
maticians for the past 6 years, and the increasing importance of digital signal
processing. The end of the chapter exercises particularly those in the early chapters
have undergone the equivalent of a good road test and have been improved
accordingly. I have also lengthened Appendix B, the table of Laplace transforms,
which looked thin in the first edition.

The biggest change from the first edition is of course the inclusion of the extra
chapter. Although wavelets date from the early 1980s, their use only blossomed in
the 1990s and did not form part of the typical undergraduate curriculum at the time
of the first edition. Indeed the texts on wavelets I have quoted here in the bibli-
ography are securely at graduate level, there are no others. What I have done is to
introduce the idea of a wavelet (which is a pulse in time, zero outside a short
range) and use Fourier methods to analyse it. The concepts involved sit nicely in a
book at this level if treated as an application of Fourier series and transforms.
I have not gone on to cover discrete transforms as this would move too far into
signal processing and require statistical concepts that would be out of place
to include here. The new chapter has been placed between Fourier Transforms
(Chap. 6) and Complex Variables and Laplace Transforms (now Chap. 8).

In revising the rest of the book, I have made small additions but no subtractions,
so the total length has increased a little.

Finally a word about software. I have resisted the inclusion of pseudocode or
specific insets in MATLAB or MAPLE, even though the temptation was strong in
relation to the new material on wavelets which owes its popularity largely to its
widespread use in signal processing software. It remains my view that not only do
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these date quickly, but at this level the underlying principles covered here are best
done without such embellishments. I use MAPLE and it is updated every year; it is
now easy to use it in a cut and paste way, without code, to apply to Fourier series
problems. It is a little more difficult (but not prohibitively so) to use cut and paste
methods for Laplace and Fourier transforms calculations. Most students use
software tools without fuss these days; so to overdo the specific references to
software in a mathematics text now is a bit like making too many specific
references to pencil and paper 50 years ago.

October 2013 Phil Dyke
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Chapter 1
The Laplace Transform

1.1 Introduction

As a discipline, mathematics encompasses a vast range of subjects. In pure math-
ematics an important concept is the idea of an axiomatic system whereby axioms
are proposed and theorems are proved by invoking these axioms logically. These
activities are often of little interest to the applied mathematician to whom the pure
mathematics of algebraic structures will seem like tinkering with axioms for hours
in order to prove the obvious. To the engineer, this kind of pure mathematics is even
more of an anathema. The value of knowing about such structures lies in the abil-
ity to generalise the “obvious” to other areas. These generalisations are notoriously
unpredictable and are often very surprising. Indeed, many say that there is no such
thing as non-applicable mathematics, just mathematics whose application has yet to
be found.

The Laplace transform expresses the conflict between pure and appliedmathemat-
ics splendidly. There is a temptation to begin a book such as this on linear algebra
outlining the theorems and properties of normed spaces. This would indeed pro-
vide a sound basis for future results. However most applied mathematicians and all
engineers would probably turn off. On the other hand, engineering texts present the
Laplace transform as a toolkit of results with little attention being paid to the underly-
ing mathematical structure, regions of validity or restrictions.What has been decided
here is to give a brief introduction to the underlying pure mathematical structures,
enough it is hoped for the pure mathematician to appreciate what kind of creature the
Laplace transform is, whilst emphasising applications and giving plenty of examples.
The point of view from which this book is written is therefore definitely that of the
applied mathematician. However, pure mathematical asides, some of which can be
quite extensive, will occur. It remains the view of this author that Laplace transforms
only come alive when they are used to solve real problems. Those who strongly
disagree with this will find pure mathematics textbooks on integral transforms much
more to their liking.

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 1
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_1,
© Springer-Verlag London 2014



2 1 The Laplace Transform

Themain area of pure mathematics needed to understand the fundamental proper-
ties of Laplace transforms is analysis and, to a lesser extent the normed vector space.
Analysis, in particular integration, is needed from the start as it governs the existence
conditions for the Laplace transform itself; however as is soon apparent, calculations
involving Laplace transforms can take place without explicit knowledge of analysis.
Normed vector spaces and associated linear algebra put the Laplace transform on a
firm theoretical footing, but can be left until a little later in a book aimed at second
year undergraduate mathematics students.

1.2 The Laplace Transform

The definition of the Laplace transform could hardly be more straightforward. Given
a suitable function F(t) the Laplace transform, written f (s) is defined by

f (s) =
∫ ∞

0
F(t)e−st dt.

This bald statementmay satisfymost engineers, but notmathematicians. Thequestion
of what constitutes a “suitable function” will now be addressed. The integral on the
right has infinite range and hence is what is called an improper integral. This too
needs careful handling. The notationL{F(t)} is used to denote the Laplace transform
of the function F(t).

Another way of looking at the Laplace transform is as a mapping from points in
the t domain to points in the s domain. Pictorially, Fig. 1.1 indicates this mapping
process.

The time domain t will contain all those functions F(t)whose Laplace transform
exists, whereas the frequency domain s contains all the images L{F(t)}. Another
aspect of Laplace transforms that needs mentioning at this stage is that the variable
s often has to take complex values. This means that f (s) is a function of a complex
variable, which in turn places restrictions on the (real) function F(t) given that the
improper integral must converge. Much of the analysis involved in dealing with the
image of the function F(t) in the s plane is therefore complex analysis which may
be quite new to some readers.

As has been said earlier, engineers are quite happy to use Laplace transforms to
help solve a variety of problemswithout questioning the convergence of the improper
integrals. This goes for some applied mathematicians too. The argument seems to
be on the lines that if it gives what looks a reasonable answer, then fine. In our
view, this takes the engineer’s maxim “if it ain’t broke, don’t fix it” too far. This
is primarily a mathematics textbook, therefore in this opening chapter we shall be
more mathematically explicit than is customary in books on Laplace transforms. In
Chap.4 there is some more pure mathematics when Fourier series are introduced.
That is there for similar reasons. One mathematical question that ought to be asked
concerns uniqueness. Given a function F(t), its Laplace transform is surely unique
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Fig. 1.1 The Laplace Trans-
form as a mapping

from the well defined nature of the improper integral. However, is it possible for two
different functions to have the sameLaplace transform?Toput the question a different
but equivalent way, is there a function N (t), not identically zero, whose Laplace
transform is zero? For this function, called a null function, could be added to any
suitable function and the Laplace transformwould remain unchanged. Null functions
do exist, but as long as we restrict ourselves to piecewise continuous functions this
ceases to be a problem. Here is the definition of piecewise continuous:

Definition 1.1 If an interval [0, t0] say can be partitioned into a finite number of
subintervals [0, t1], [t1, t2], [t2, t3], . . . , [tn, t0] with 0, t1, t2, . . . , tn, t0 an increasing
sequence of times and such that a given function f (t) is continuous in each of these
subintervals but not necessarily at the end points themselves, then f (t) is piecewise
continuous in the interval [0, t0].
Only functions that differ at a finite number of points have the same Laplace trans-
form. If F1(t) = F(t) except at a finite number of points where they differ by finite
values then L{F1(t)} = L{F(t)}. We mention this again in the next chapter when
the inverse Laplace transform is defined.

In this section, we shall examine the conditions for the existence of the Laplace
transform in more detail than is usual. In engineering texts, the simple definition
followed by an explanation of exponential order is all that is required. Those that are
satisfied with this can virtually skip the next few paragraphs and go on study the ele-
mentary properties, Sect. 1.3. However, some may need to know enough background
in terms of the integrals, and so we devote a little space to some fundamentals. We
will need to introduce improper integrals, but let us first define the Riemann integral.
It is the integral we know and love, and is defined in terms of limits of sums. The
strict definition runs as follows:-

Let F(x) be a function which is defined and is bounded in the interval a ≤ x ≤ b
and suppose that m and M are respectively the lower and upper bounds of F(x) in
this interval (written [a, b] see Appendix C). Take a set of points

x0 = a, x1, x2, . . . , xr−1, xr , . . . , xn = b

and write δr = xr − xr−1. Let Mr ,mr be the bounds of F(x) in the subinterval
(xr−1, xr ) and form the sums
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S =
n∑

r=1

Mrδr

s =
n∑

r=1

mrδr .

These are called respectively the upper and lower Riemann sums corresponding to
the mode of subdivision. It is certainly clear that S ≥ s. There are a variety of ways
that can be used to partition the interval (a, b) and each way will have (in general)
different Mr and mr leading to different S and s. Let M be the minimum of all
possible Mr and m be the maximum of all possible mr A lower bound or supremum
for the set S is therefore M(b − a) and an upper bound or infimum for the set s is
m(b − a). These bounds are of course rough. There are exact bounds for S and s,
call them J and I respectively. If I = J , F(x) is said to be Riemann integrable in
(a, b) and the value of the integral is I or J and is denoted by

I = J =
∫ b

a
F(x)dx .

For the purist it turns out that the Riemann integral is not quite general enough,
and the Stieltjes integral is actually required. However, we will not use this concept
which belongs securely in specialist final stage or graduate texts.

The improper integral is defined in the obvious way by taking the limit:

lim
R→∞

∫ R

a
F(x)dx =

∫ ∞

a
F(x)dx

provided F(x) is continuous in the interval a ≤ x ≤ R for every R, and the limit
on the left exists. The parameter x is defined to take the increasing values from a
to ∞. The lower limit a is normally 0 in the context of Laplace transforms. The
condition |F(x)| ≤ Meαx is termed “F(x) is of exponential order” and is, speaking
loosely, quite aweak condition. All polynomial functions and (of course) exponential
functions of the type ekx (k constant) are included as well as bounded functions.
Excluded functions are those that have singularities such as ln(x) or 1/(x − 1) and
functions that have a growth rate more rapid than exponential, for example ex2 .
Functions that have a finite number of finite discontinuities are also included. These
have a special role in the theory of Laplace transforms so we will not dwell on them
here: suffice to say that a function such as

F(x) =
{
1 2n < x < 2n + 1
0 2n + 1 < x < 2n + 2 where n = 0, 1, . . .

is one example. However, the function
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F(x) =
{
1 x rational
0 x irrational

is excluded because although all the discontinuities are finite, there are infinitely
many of them.

We shall now follow standard practice and use t (time) instead of x as the dummy
variable.

1.3 Elementary Properties

The Laplace transform has many interesting and useful properties, the most funda-
mental of which is linearity. It is linearity that enables us to add results together to
deduce other more complicated ones and is so basic that we state it as a theorem and
prove it first.

Theorem 1.1 (Linearity) If F1(t) and F2(t) are two functions whose Laplace trans-
form exists, then

L{aF1(t) + bF2(t)} = aL{F1(t)} + bL{F2(t)}

where a and b are arbitrary constants.

Proof

L{aF1(t) + bF2(t)} =
∫ ∞

0
(aF1 + bF2)e

−st dt

=
∫ ∞

0

(
aF1e−st + bF2e−st) dt

= ∗ − a
∫ ∞

0
F1e−st dt + b

∫ ∞

0
F2e−st dt

= aL{F1(t)} + bL{F2(t)}

where we have assumed that

|F1| ≤ M1eα1t and |F2| ≤ M2eα2t

so that

|aF1 + bF2| ≤ |a||F1| + |b||F2|
≤ (|a|M1 + |b|M2)e

α3t

where α3 = max{α1,α2}. This proves the theorem.
�
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Here we shall concentrate on those properties of the Laplace transform that do
not involve the calculus. The first of these takes the form of another theorem because
of its generality.

Theorem 1.2 (First Shift Theorem) If it is possible to choose constants M and α
such that |F(t)| ≤ Meαt , that is F(t) is of exponential order, then

L{e−bt F(t)} = f (s + b)

provided b ≤ α. (In practice if F(t) is of exponential order then the constant α can
be chosen such that this inequality holds.)

Proof The proof is straightforward and runs as follows:-

L{e−bt F(t)} = lim
T →∞

∫ T

0
e−st e−bt F(t)dt

=
∫ ∞

0
e−st e−bt F(t)dt (as the limit exists)

=
∫ ∞

0
e−(s+b)t F(t)dt

= f (s + b).

This establishes the theorem. �

We shall make considerable use of this once we have established a few elementary
Laplace transforms. This we shall now proceed to do.

Example 1.1 Find the Laplace transform of the function F(t) = t .

Solution Using the definition of Laplace transform,

L(t) = lim
T →∞

∫ T

0
te−st dt.

Now, we have that

∫ T

0
te−st dt =

[
− t

s
e−st

]T

0
−

∫ T

0
−1

s
e−st dt

= −T

s
e−sT +

[
− 1

s2
e−st

]T

0

= −T

s
e−sT − 1

s2
e−sT + 1

s2
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this last expression tends to
1

s2
as T → ∞.

Hence we have the result

L(t) = 1

s2
.

We can use this result to generalise as follows:
Corollary

L(tn) = n!
sn+1 , n a positive integer.

Proof The proof is straightforward:

L(tn) =
∫ ∞

0
tne−st dt this time taking the limit straight away

=
[
− tn

s
e−st

]∞

0
+

∫ ∞

0

ntn−1

s
e−st dt

= n

s
L(tn−1).

If we put n = 2 in this recurrence relation we obtain

L(t2) = 2

s
L(t) = 2

s3
.

If we assume

L(tn) = n!
sn+1

then

L(tn+1) = n + 1

s

n!
sn+1 = (n + 1)!

sn+2 .

This establishes that

L(tn) = n!
sn+1

by induction.
�

Example 1.2 Find the Laplace transform of L{teat } and deduce the value of
L{tneat }, where a is a real constant and n a positive integer.

Solution Using the first shift theorem with b = −a gives

L{F(t)eat } = f (s − a)

so with
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F(t) = t and f = 1

s2

we get

L{teat } = 1

(s − a)2
.

Using F(t) = tn the formula

L{tneat } = n!
(s − a)n+1

follows.
Later, we shall generalise this formula further, extending to the case where n is

not an integer.
Wemove on to consider the Laplace transform of trigonometric functions. Specif-

ically, we shall calculate L{sin t} and L{cos t}. It is unfortunate, but the Laplace
transform of the other common trigonometric functions tan, cot, csc and sec do not
exist as they all have singularities for finite t . The condition that the function F(t)
has to be of exponential order is not obeyed by any of these singular trigonometric
functions as can be seen, for example, by noting that

|e−at tan t | → ∞ as t → π/2

and

|e−at cot t | → ∞ as t → 0

for all values of the constant a. Similarly neither csc nor sec are of exponential order.
In order to find the Laplace transformof sin t and cos t it is best to determineL(eit )

where i = √
(−1). The function eit is complex valued, but it is both continuous

and bounded for all t so its Laplace transform certainly exists. Taking the Laplace
transform,

L(eit ) =
∫ ∞

0
e−st eit dt

=
∫ ∞

0
et (i−s)dt

=
⎡

e(i−s)t

i − s

⎢∞

0

= 1

s − i

= s

s2 + 1
+ i

1

s2 + 1
.
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Now,

L(eit ) = L(cos t + i sin t)

= L(cos t) + iL(sin t).

Equating real and imaginary parts gives the two results

L(cos t) = s

s2 + 1

and

L(sin t) = 1

s2 + 1
.

The linearity property has been used here, and will be used in future without further
comment.

Given that the restriction on the type of function one can Laplace transform is
weak, i.e. it has to be of exponential order and have at most a finite number of finite
jumps, one can find the Laplace transform of any polynomial, any combination of
polynomial with sinusoidal functions and combinations of these with exponentials
(provided the exponential functions grow at a rate ≤ eat where a is a constant). We
can therefore approach the problem of calculating the Laplace transform of power
series. It is possible to take the Laplace transform of a power series term by term
as long as the series uniformly converges to a piecewise continuous function. We
shall investigate this further later; meanwhile let us look at the Laplace transform of
functions that are not even continuous.

Functions that are not continuous occur naturally in branches of electrical and
control engineering, and in the software industry. One only has to think of switches
to realise how widespread discontinuous functions are throughout electronics and
computing.

Example 1.3 Find the Laplace transform of the function represented by F(t) where

F(t) =
⎧⎨
⎩

t 0 ≤ t < t0
2t0 − t t0 ≤ t ≤ 2t0
0 t > 2t0.

Solution This function is of the “saw-tooth” variety that is quite common in electrical
engineering. There is no question that it is of exponential order and that

∫ ∞

0
e−st F(t)dt

exists and is well defined. F(t) is continuous but not differentiable. This is not
troublesome. Carrying out the calculation is a little messy and the details can be
checked using MAPLE.
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L(F(t)) =
∫ ∞

0
e−st F(t)dt

=
∫ t0

0
te−st dt +

∫ 2t0

t0
(2t0 − t)e−st dt

=
[
− t

s
e−st

]t0

0
+

∫ t0

0

1

s
e−st dt +

[
−2t0 − t

s
e−st

]2t0

t0

−
∫ 2t0

t0

1

s
e−st dt

= − t0
s

e−st0 − 1

s2
⎦
e−st ]t0

0 + t0
s

e−st0 + 1

s2
⎦
e−st ]2t0

t0

= 1

s2
⎦
e−st0 − 1

] + 1

s2

[
e−2st0 − e−st0

]

= 1

s2

[
1 − 2e−st0 + e−2st0

]

= 1

s2
⎦
1 − e−st0

]2

= 4

s2
e−st0 sinh2(

1

2
st0).

Abit laterwe shall investigate inmore detail the properties of discontinuous functions
such as the Heaviside unit step function. As an introduction to this, let us do the
following example.

Example 1.4 Determine the Laplace transform of the step function F(t) defined by

F(t) =
{
0 0 ≤ t < t0
a t ≥ t0.

Solution F(t) itself is bounded, so there is no question that it is also of exponential
order. The Laplace transform of F(t) is therefore

L(F(t)) =
∫ ∞

0
e−st F(t)dt

=
∫ ∞

t0
ae−st dt

=
[
−a

s
e−st

]∞
t0

= a

s
e−st0 .

Here is another useful general result; we state it as a theorem.

Theorem 1.3 If L(F(t)) = f (s) then L(t F(t)) = − d

ds
f (s)

and in general L(tn F(t)) = (−1)n dn

dsn
f (s).
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Proof Let us start with the definition of Laplace transform

L(F(t)) =
∫ ∞

0
e−st F(t)dt

and differentiate this with respect to s to give

d f

ds
= d

ds

∫ ∞

0
e−st F(t)dt

=
∫ ∞

0
−te−st F(t)dt

assuming absolute convergence to justify interchangingdifferentiation and (improper)
integration. Hence

L(t F(t)) = − d

ds
f (s).

One can now see how to progress by induction. Assume the result holds for n, so
that

L(tn F(t)) = (−1)n dn

dsn
f (s)

and differentiate both sides with respect to s (assuming all appropriate convergence
properties) to give

∫ ∞

0
−tn+1e−st F(t)dt = (−1)n dn+1

dsn+1 f (s)

or ∫ ∞

0
tn+1e−st F(t)dt = (−1)n+1 dn+1

dsn+1 f (s).

So

L(tn+1F(t)) = (−1)n+1 dn+1

dsn+1 f (s)

which establishes the result by induction. �

Example 1.5 Determine the Laplace transform of the function t sin t .

Solution To evaluate this Laplace transform we use Theorem 1.3 with f (t) = sin t .
This gives

L{t sin t} = − d

ds

{
1

1 + s2

}
= 2s

(1 + s2)2

which is the required result.
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1.4 Exercises

1. For each of the following functions, determine which has a Laplace transform. If
it exists, find it; if it does not, say briefly why.

(a) ln t , (b) e3t , (c) et2 , (d) e1/t , (e) 1/t ,

(f) f (t) =
{
1 if t is even
0 if t is odd.

2. Determine from first principles the Laplace transform of the following functions:-

(a) ekt , (b) t2, (c) cosh(t).

3. Find the Laplace transforms of the following functions:-

(a) t2e−3t , (b) 4t + 6e4t , (c) e−4t sin(5t).

4. Find the Laplace transform of the function F(t), where F(t) is given by

F(t) =
⎧⎨
⎩

t 0 ≤ t < 1
2 − t 1 ≤ t < 2
0 otherwise.

5. Use the property of Theorem 1.3 to determine the following Laplace transforms

(a) te2t , (b) t cos(t), (c) t2 cos(t).

6. Find the Laplace transforms of the following functions:-

(a) sin(ωt + φ), (b) e5t cosh(6t).

7. If G(at + b) = F(t) determine the Laplace transform of G in terms of L{F} =
f̄ (s) and a finite integral.

8. Prove the following change of scale result:-

L{F(at)} = 1

a
f
( s

a

)
.

Hence evaluate the Laplace transforms of the two functions

(a) t cos(6t), (b) t2 cos(7t).



Chapter 2
Further Properties of the Laplace Transform

2.1 Real Functions

Sometimes, a function F(t) represents a natural or engineering process that has
no obvious starting value. Statisticians call this a time series. Although we shall
not be considering F(t) as stochastic, it is nevertheless worth introducing a way of
“switching on” a function. Let us start by finding the Laplace transform of a step
function the name of which pays homage to the pioneering electrical engineer Oliver
Heaviside (1850–1925). The formal definition runs as follows.

Definition 2.1 Heaviside’s unit step function, or simply the unit step function, is
defined as

H(t) =
{
0 t < 0
1 t ∞ 0.

Since H(t) is precisely the same as 1 for t > 0, the Laplace transform of H(t)must
be the same as the Laplace transform of 1, i.e. 1/s. The switching on of an arbitrary
function is achieved simply by multiplying it by the standard function H(t), so if
F(t) is given by the function shown in Fig. 2.1 and we multiply this function by the
Heaviside unit step function H(t) to obtain H(t)F(t), Fig. 2.2 results. Sometimes it
is necessary to define what is called the two sided Laplace transform

∫ ≤

−≤
e−st F(t)dt

which makes a great deal of mathematical sense. However the additional problems
that arise by allowing negative values of t are severe and limit the use of the two
sided Laplace transform. For this reason, the two sided transformwill not be pursued
here.

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 13
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_2,
© Springer-Verlag London 2014
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Fig. 2.1 F(t), a function with no well defined starting value

Fig. 2.2 H(t)F(t), the function is now zero before t = 0

2.2 Derivative Property of the Laplace Transform

Suppose a differentiable function F(t) has Laplace transform f (s), we can find the
Laplace transform

L{F ≥(t)} =
∫ ≤

0
e−st F ≥(t)dt

of its derivative F ≥(t) through the following theorem.

Theorem 2.1

L{F ≥(t)} =
∫ ≤

0
e−st F ≥(t)dt = −F(0) + s f (s).
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Proof Integrating by parts once gives

L{F ≥(t)} = [
F(t)e−st ]≤

0 +
∫ ≤

0
se−st F(t)dt

= −F(0) + s f (s)

where F(0) is the value of F(t) at t = 0. �

This is an important result and lies behind future applications that involve solving
linear differential equations. The key property is that the transform of a derivative
F ≥(t) does not itself involve a derivative, only −F(0)+ s f (s) which is an algebraic
expression involving f (s). The downside is that the value F(0) is required. Effec-
tively, an integration has taken place and the constant of integration is F(0). Later,
this is exploited further through solving differential equations. Later still in this text,
partial differential equations are solved, and wavelets are introduced. Let us proceed
here by finding the Laplace transform of the second derivative of F(t).We also state
this in the form of a theorem.

Theorem 2.2 If F(t) is a twice differentiable function of t then

L{F ≥≥(t)} = s2 f (s) − s F(0) − F ≥(0).

Proof The proof is unremarkable and involves integrating by parts twice. Here are
the details.

L{F ≥≥(t)} =
∫ ≤

0
e−st F ≥≥(t)dt

= [
F ≥(t)e−st ]≤

0 +
∫ ≤

0
se−st F ≥(t)dt

= −F ≥(0) + [
s F(t)e−st ]≤

0 +
∫ ≤

0
s2e−st F(t)dt

= −F ≥(0) − s F(0) + s2 f (s)

= s2 f (s) − s F(0) − F ≥(0). �

The general result, proved by induction, is

L{F (n)(t)} = sn f (s) − sn−1F(0) − sn−2F ≥(0) − · · · − F (n−1)(0)

where n is a positive integer. Note the appearance of n constants on the right hand
side. This of course is the result of integrating this number of times.

This result, as we have said, has wide application so it is worth getting to know.
Consider the result
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L(sin(δt)) = δ

s2 + δ2 .

Now,
d

dt
(sin(δt)) = δ cos(δt)

so using the formula
L(F ≥(t)) = s f (s) − F(0)

with F(t) = sin(δt) we have

L{δ cos(δt)} = s
δ

s2 + δ2 − 0

so
L{cos(δt)} = s

s2 + δ2

another standard result.
Another appropriate quantity to find at this point is the determination of the value

of the Laplace transform of ∫ t

0
F(u)du.

First of all, the function F(t) must be integrable in such a way that

g(t) =
∫ t

0
F(u)du

is of exponential order. From this definition of g(t) it is immediately apparent that
g(0) = 0 and that g≥(t) = F(t). This latter result is called the fundamental theorem
of the calculus. We can now use the result

L{g≥(t)} = sg(s) − g(0)

to obtain
L{F(t)} = f (s) = sg(s)

where we have written L{g(t)} = g(s). Hence

g(s) = f (s)

s

which finally gives the result

L
(∫ t

0
F(u)du

)
= f (s)

s
.
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The following result is also useful and can be stated in the form of a theorem.

Theorem 2.3 If L(F(t)) = f (s) then L
{

F(t)

t

}
=

∫ ≤

s
f (u)du, assuming that

L
{

F(t)

t

}
→ 0 as s → ≤.

Proof Let G(t) be the function F(t)/t , so that F(t) = tG(t). Using the property

L{tG(t)} = − d

ds
L{G(t)}

we deduce that
f (s) = L{F(t)} = − d

ds
L

{
F(t)

t

}
.

Integrating both sides of this with respect to s from s to ≤ gives

∫ ≤

s
f (u)du =

⎡
−L

{
F(t)

t

}⎢≤

s
= L

{
F(t)

t

} ⎧⎧⎧
s

= L
{

F(t)

t

}

since
L

{
F(t)

t

}
→ 0 as s → ≤

which completes the proof. �
The function

Si(t) =
∫ t

0

sin u

u
du

defines the Sine Integral function which occurs in the study of optics. The formula
for its Laplace transform can now be easily derived as follows.

Let F(t) = sin t in the result

L
(

F(t)

t

)
=

∫ ≤

s
f (u)du

to give

L
(
sin t

t

)
=

∫ ≤

s

du

1 + u2

=
⎨
tan−1(u)

⎩≤
s

= α

2
− tan−1(s)

= tan−1
(
1

s

)
.
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We now use the result

L
(∫ t

0
F(u)du

)
= f (s)

s

to deduce that

L
(∫ t

0

sin u

u
du

)
= L{Si(t)} = 1

s
tan−1

(
1

s

)
.

2.3 Heaviside’s Unit Step Function

As promised earlier, we devote this section to exploring some properties of Heav-
iside’s unit step function H(t). The Laplace transform of H(t) has already been
shown to be the same as the Laplace transform of 1, i.e. 1/s. The Laplace transform
of H(t − t0), t0 > 0, is a little more enlightening:

L{H(t − t0)} =
∫ ≤

0
H(t − t0)e

−st dt.

Now, since H(t − t0) = 0 for t < t0 this Laplace transform is

L{H(t − t0)} =
∫ ≤

t0
e−st dt =

⎡
−e−st

s

⎢≤

t0

= e−st0

s
.

This result is generalised through the following theorem.

Theorem 2.4 (Second Shift Theorem) If F(t) is a function of exponential order in
t then

L{H(t − t0)F(t − t0)} = e−st0 f (s)

where f (s) is the Laplace transform of F(t).

Proof This result is proved by direct integration.

L{H(t − t0)F(t − t0)} =
∫ ≤

0
H(t − t0)F(t − t0)e

−st dt

=
∫ ≤

t0
F(t − t0)e

−st dt (by definition of H )

=
∫ ≤

0
F(u)e−s(u+t0)du (writing u = t − t0)

= e−st0 f (s).

This establishes the theorem. �
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The only condition on F(t) is that it is a function that is of exponential order which
means of course that it is free from singularities for t > t0. The principal use of this
theorem is that it enables us to determine the Laplace transform of a function that is
switched on at time t = t0. Here is a straightforward example.

Example 2.1 Determine the Laplace transform of the sine function switched on at
time t = 3.

Solution The sine function required that starts at t = 3 is S(t) where

S(t) =
{
sin t t ∞ 3
0 t < 3.

We can use the Heaviside step function to write

S(t) = H(t − 3) sin t.

The second shift theorem can then be used by utilising the summation formula

sin t = sin(t − 3 + 3) = sin(t − 3) cos(3) + cos(t − 3) sin(3)

so

L{S(t)} = L{H(t − 3) sin(t − 3)} cos(3) + L{H(t − 3) cos(t − 3)} sin(3).

This may seem a strange step to take, but in order to use the second shift theorem it is
essential to get the arguments of both the Heaviside function and the target function
in the question the same; in this case (t −3).We can now use the second shift theorem
directly to give

L{S(t)} = e−3s cos(3)
1

s2 + 1
+ e−3s sin(3)

s

s2 + 1

or
L{S(t)} = (cos 3 + s sin 3)e−3s/(s2 + 1).

2.4 Inverse Laplace Transform

Virtually all operations have inverses. Addition has subtraction, multiplication has
division, differentiation has integration. The Laplace transform is no exception, and
we can define the Inverse Laplace transform as follows.

Definition 2.2 If F(t) has the Laplace transform f (s), that is

L{F(t)} = f (s)
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then the inverse Laplace transform is defined by

L−1{ f (s)} = F(t)

and is unique apart from null functions.

Perhaps the most important property of the inverse transform to establish is its
linearity. We state this as a theorem.

Theorem 2.5 The inverse Laplace transform is linear, i.e.

L−1{a f1(s) + b f2(s)} = aL−1{ f1(s)} + bL−1{ f2(s)}.

Proof Linearity is easily established as follows. Since theLaplace transform is linear,
we have for suitably well behaved functions F1(t) and F2(t):

L{aF1(t) + bF2(t)} = aL{F1(t)} + bL{F2(t)} = a f1(s) + b f2(s).

Taking the inverse Laplace transform of this expression gives

aF1(t) + bF2(t) = L−1{a f1(s) + b f2(s)}

which is the same as

aL−1{ f1(s)} + bL−1{ f2(s)} = L−1{a f1(s) + b f2(s)}

and this has established linearity of L−1{ f (s)}. �

Another important property is uniqueness. It has been mentioned that the Laplace
transform was indeed unique apart from null functions (functions whose Laplace
transform is zero). It follows immediately that the inverse Laplace transform is also
unique apart from the possible addition of null functions. These take the form of
isolated values and can be discounted for all practical purposes.

As is quite common with inverse operations there is no systematic method of
determining inverseLaplace transforms.The calculus provides a goodexamplewhere
there are plenty of systematic rules for differentiation: the product rule, the quotient
rule, the chain rule. However by contrast there are no systematic rules for the inverse
operation, integration. If we have an integral to find, we may try substitution or
integration by parts, but there is no guarantee of success. Indeed, the integral may
not be possible to express in terms of elementary functions. Derivatives that exist
can always be found by using the rules; this is not so for integrals. The situation
regarding the Laplace transform is not quite the same in that it may not be possible
to find L{F(t)} explicitly because it is an integral. There is certainly no guarantee of
being able to find L−1{ f (s)} and we have to devise various methods of trying so to
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do. For example, given an arbitrary function of s there is no guarantee whatsoever
that a function of t can be found that is its inverse Laplace transform. One necessary
condition for example is that the function of s must tend to zero as s → ≤. When
we are certain that a function of s has arisen from a Laplace transform, there are
techniques and theorems that can help us invert it. Partial fractions simplify rational
functions and can help identify standard forms (the exponential and trigonometric
functions for example), then there are the shift theorems which we have just met
which extend further the repertoire of standard forms. Engineering texts spend a
considerable amount of space building up a library of specific inverse Laplace trans-
forms and to ways of extending these via the calculus. To a certain extent we need to
do this too. Therefore we next do some reasonably elementary examples. Note that
in Appendix B there is a list of some inverse Laplace transforms.

Example 2.2 Use partial fractions to determine

L−1
{

a

s2 − a2

}

Solution Noting that
a

s2 − a2 = 1

2

⎡
1

s − a
− 1

s + a

⎢

gives straight away that

L−1
{

a

s2 − a2

}
= 1

2
(eat − e−at ) = sinh(at).

The first shift theorem has been used on each of the functions 1/(s −a) and 1/(s +a)
together with the standard result L−1{1/s} = 1. Here is another example.

Example 2.3 Determine the value of

L−1
{

s2

(s + 3)3

}
.

Solution Noting the standard partial fraction decomposition

s2

(s + 3)3
= 1

s + 3
− 6

(s + 3)2
+ 9

(s + 3)3

we use the first shift theorem on each of the three terms in turn to give

L−1
{

s2

(s + 3)3

}
= L−1 1

s + 3
− L−1 6

(s + 3)2
+ L−1 9

(s + 3)3

= e−3t − 6te−3t + 9

2
t2e−3t
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where we have used the linearity property of the L−1 operator. Finally, we do the
following four-in-one example to hone our skills.

Example 2.4 Determine the following inverse Laplace transforms

(a) L−1 (s + 3)

s(s − 1)(s + 2)
; (b) L−1 (s − 1)

s2 + 2s − 8
; (c) L−1 3s + 7

s2 − 2s + 5
; (d) L−1 e−7s

(s + 3)3
.

Solution All of these problems are tackled in a similar way, by decomposing the
expression into partial fractions, using shift theorems, then identifying the simplified
expressions with various standard forms.

(a) Using partial fraction decomposition and not dwelling on the detail we get

s + 3

s(s − 1)(s + 2)
= − 3

2s
+ 4

3(s − 1)
+ 1

6(s + 2)
.

Hence, operating on both sides with the inverse Laplace transform operator gives

L−1 s + 3

s(s − 1)(s + 2)
= −L−1 3

2s
+ L−1 4

3(s − 1)
+ L−1 1

6(s + 2)

= −3

2
L−1 1

s
+ 4

3
L−1 1

s − 1
+ 1

6
L−1 1

s + 2

using the linearity property of L−1 once more. Finally, using the standard forms,
we get

L−1
{

s + 3

s(s − 1)(s + 2)

}
= −3

2
+ 4

3
et + 1

6
e−2t .

(b) The expression
s − 1

s2 + 2s − 8

is factorised to
s − 1

(s + 4)(s − 2)

which, using partial fractions is

1

6(s − 2)
+ 5

6(s + 4)
.

Therefore, taking inverse Laplace transforms gives

L−1 s − 1

s2 + 2s − 8
= 1

6
e2t + 5

6
e−4t .
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(c) The denominator of the rational function

3s + 7

s2 − 2s + 5

does not factorise. In this case we use completing the square and standard trigono-
metric forms as follows:

3s + 7

s2 − 2s + 5
= 3s + 7

(s − 1)2 + 4
= 3(s − 1) + 10

(s − 1)2 + 4
.

So

L−1 3s + 7

s2 − 2s + 5
= 3L−1 (s − 1)

(s − 1)2 + 4
+ 5L−1 2

(s − 1)2 + 4

= 3et cos(2t) + 5et sin(2t).

Again, the first shift theorem has been used.
(d) The final inverse Laplace transform is slightly different. The expression

e−7s

(s − 3)3

contains an exponential in the numerator, therefore it is expected that the second
shift theorem will have to be used. There is a little “fiddling” that needs to take place
here. First of all, note that

L−1 1

(s − 3)3
= 1

2
t2e3t

using the first shift theorem. So

L−1 e−7s

(s − 3)3
=

{ 1
2 (t − 7)2e3(t−7) t > 7
0 0 ∗ t ∗ 7.

Of course, this can succinctly be expressed using the Heaviside unit step function as

1

2
H(t − 7)(t − 7)2e3(t−7).

We shall get more practice at this kind of inversion exercise, but you should try your
hand at a few of the exercises at the end.
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2.5 Limiting Theorems

In many branches of mathematics there is a necessity to solve differential equa-
tions. Later chapters give details of how some of these equations can be solved by
using Laplace transform techniques. Unfortunately, it is sometimes the case that it
is not possible to invert f (s) to retrieve the desired solution to the original problem.
Numerical inversion techniques are possible and these can be found in some software
packages, especially those used by control engineers. Insight into the behaviour of
the solution can be deduced without actually solving the differential equation by
examining the asymptotic character of f (s) for small s or large s. In fact, it is often
very useful to determine this asymptotic behaviour without solving the equation,
even when exact solutions are available as these solutions are often complex and
difficult to obtain let alone interpret. In this section two theorems that help us to find
this asymptotic behaviour are investigated.

Theorem 2.6 (Initial Value) If the indicated limits exist then

lim
t→0

F(t) = lim
s→≤ s f (s).

(The left hand side is F(0) of course, or F(0+) if limt→0 F(t) is not unique.)

Proof We have already established that

L{F ≥(t)} = s f (s) − F(0). (2.1)

However, if F ≥(t) obeys the usual criteria for the existence of the Laplace transform,
that is F ≥(t) is of exponential order and is piecewise continuous, then

⎧⎧⎧⎧
∫ ≤

0
e−st F ≥(t)dt

⎧⎧⎧⎧ ∗
∫ ≤

0
|e−st F ≥(t)|dt

∗
∫ ≤

0
e−st eMt dt

= − 1

M − s
→ 0 as s → ≤.

Thus letting s → ≤ in Eq. (2.1) yields the result. �

Theorem 2.7 (Final Value) If the limits indicated exist, then

lim
t→≤ F(t) = lim

s→0
s f (s).

Proof Again we start with the formula for the Laplace transform of the derivative
of F(t)
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L{F ≥(t)} =
∫ ≤

0
e−st F ≥(t)dt = s f (s) − F(0) (2.2)

this time writing the integral out explicitly. The limit of the integral as s → 0 is

lim
s→0

∫ ≤

0
e−st F ≥(t)dt = lim

s→0
lim

T →≤

∫ T

0
e−st F ≥(t)dt

= lim
s→0

lim
T →≤{e−sT F(T ) − F(0)}

= lim
T →≤ F(T ) − F(0)

= lim
t→≤ F(t) − F(0).

Thus we have, using Eq. (2.2),

lim
t→≤ F(t) − F(0) = lim

s→0
s f (s) − F(0)

from which, on cancellation of −F(0), the theorem follows. �

Since the improper integral converges independently of the value of s and all limits
exist (a priori assumption), it is therefore correct to have assumed that the order of
the two processes (taking the limit and performing the integral) can be exchanged.
(This has in fact been demonstrated explicitly in this proof.)

Suppose that the function F(t) can be expressed as a power series as follows

F(t) = a0 + a1t + a2t2 + · · · + antn + · · · .

If we assume that the Laplace transform of F(t) exists, F(t) is of exponential order
and is piecewise continuous. If, further, we assume that the power series for F(t) is
absolutely and uniformly convergent the Laplace transform can be applied term by
term

L{F(t)} = f (s) = L{a0 + a1t + a2t2 + · · · + antn + · · · }
= a0L{1} + a1L{t} + a2L{t2} + · · · + anL{tn} + · · ·

provided the transformed series is convergent. Using the standard form

L{tn} = n!
sn+1

the right hand side becomes

a0
s

+ a1
s2

+ 2a2
s3

+ · · · + n!an

sn+1 + · · · .
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Hence

f (s) = a0
s

+ a1
s2

+ 2a2
s3

+ · · · + n!an

sn+1 + · · · .

Example 2.5 Demonstrate the initial and final value theorems using the function
F(t) = e−t . Expand e−t as a power series, evaluate term by term and confirm the
legitimacy of term by term evaluation.

Solution

L{e−t } = 1

s + 1

lim
t→0

F(t) = F(0) = e−0 = 1

lim
s→≤ s f (s) = lim

s→≤
s

s + 1
= 1.

This confirms the initial value theorem. The final value theorem is also confirmed as
follows:-

lim
t→≤ F(t) = lim

t→≤ e−t = 0

lim
s→0

s f (s) = lim
s→0

s

s + 1
= 0.

The power series expansion for e−t is

e−t = 1 − t + t2

2! − t3

3! + · · · + (−1)n tn

n!
L{e−t } = 1

s
− 1

s2
+ 1

s3
− · · · + (−1)n

sn+1

= 1

s

(
1 + 1

s

)−1

= 1

s + 1
.

Hence the term by term evaluation of the power series expansion for e−t gives the
right answer. This is not a proof of the series expansion method of course, merely a
verification that the method gives the right answer in this instance.

2.6 The Impulse Function

There is a whole class of “functions” that, strictly, are not functions at all. In order
to be a function, an expression has to be defined for all values of the variable in the
specified range.When this is not so, then the expression is not a function because it is
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not well defined. It may not seem at all sensible for us to bother with such creatures,
in that if a function is not defined at a certain point then what use is it? However, if
a “function” instead of being well defined possesses some global property, then it
indeed does turn out to be worth considering such pathological objects. Of course,
having taken the decision to consider such objects, strictly there needs to be a whole
new mathematical language constructed to deal with them. Notions such as adding
them together, multiplying them, performing operations such as integration cannot
be done without preliminary mathematics. The general consideration of this kind of
object forms the study of generalised functions (see Jones 1966 or Lighthill 1970)
which is outside the scope of this text. For our purposes we introduce the first such
function which occurred naturally in the field of electrical engineering and is the so
called impulse function. It is sometimes called Dirac’s π function after the pioneering
theoretical physicist P.A.M. Dirac (1902–1984). It has the following definition which
involves its integral. This has not been defined properly, but if we write the definition
first we can then comment on the integral.

Definition 2.3 The Dirac-π function π(t) is defined as having the following
properties

π(t) = 0 √t , t ⇒= 0 (2.3)∫ ≤

−≤
h(t)π(t)dt = h(0) (2.4)

for any function h(t) continuous in (−≤,≤).

We shall see in the next paragraph that the Dirac-π function can be thought of as the
limiting case of a top hat function of unit area as it becomes infinitesimally thin but
infinitely tall, i.e. the following limit

π(t) = lim
T →≤ Tp(t)

where

Tp(t) =
⎦

0 t ∗ −1/T
1
2T −1/T < t < 1/T
0 t ∞ 1/T .

The integral in the definition can then be written as follows:

∫ ≤

−≤
h(t) lim

T →≤ Tp(t)dt = lim
T →≤

∫ ≤

−≤
h(t)Tp(t)dt

provided the limits can be exchanged which of course depends on the behaviour of
the function h(t) but this can be so chosen to fulfil our needs. The integral inside
the limit exists, being the product of continuous functions, and its value is the area
under the curve h(t)Tp(t). This area will approach the value h(0) as T → ≤ by
the following argument. For sufficiently large values of T , the interval [−1/T, 1/T ]
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will be small enough for the value of h(t) not to differ very much from its value at
the origin. In this case we can write h(t) = h(0)+ ω(t) where |ω(t)| is in some sense
small and tends to zero as T → ≤. The integral thus can be seen to tend to h(0) as
T → ≤ and the property is established.

Returning to the definition of π(t) strictly, the first condition is redundant; only
the second is necessary, but it is very convenient to retain it. Now as we have said,
π(t) is not a true function because it has not been defined for t = 0. π(0) has no
value. Equivalent conditions to Eq. (2.4) are:-

∫ ≤

0−
h(t)π(t)dt = h(0)

and ∫ 0+

−≤
h(t)π(t)dt = h(0).

These follow from a similar argument as before using a limiting definition of π(t) in
terms of the top hat function. In this section, wherever the integral of a π function (or
later related “derivatives”) occurs it will be assumed to involve this kind of limiting
process. The details of taking the limit will however be omitted.

Let us now look at a more visual approach. As we have seen algebraically in
the last paragraph π(t) is sometimes called the impulse function because it can be
thought of as the shape of Fig. 2.3, the top hat function if we let T → ≤. Of course
there are many shapes that will behave like π(t) in some limit. The top hat function
is one of the simplest to state and visualise. The crucial property is that the area
under this top hat function is unity for all values of T , so letting T → ≤ preserves
this property. Diagrammatically, the Dirac-π or impulse function is represented by
an arrow as in Fig. 2.4 where the length of the arrow is unity. Using Eq. (2.4) with
h ≡ 1 we see that ∫ ≤

−≤
π(t)dt = 1

which is consistent with the area under π(t) being unity.
We now ask ourselves what is the Laplace transform of π(t)? Does it exist? We

suspect that it might be 1 for Eq. (2.4) with h(t) = e−st , a perfectly valid choice of
h(t) gives ∫ ≤

−≤
π(t)e−st dt =

∫ ≤

0−
π(t)e−st dt = 1.

However, we progress with care. This is good advice when dealing with generalised
functions. Let us take the Laplace transform of the top hat function Tp(t) defined
mathematically by

Tp(t) =
⎦

0 t ∗ −1/T
1
2T −1/T < t < 1/T
0 t ∞ 1/T .
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Fig. 2.3 The “top hat” function

Fig. 2.4 The Dirac-π function

The calculation proceeds as follows:-

L{Tp(t)} =
∫ ≤

0
Tp(t)e

−st dt

=
∫ 1/T

0

1

2
T e−st dt

=
⎡
− T

2s
e−st

⎢1/T

0

=
⎡

T

2s
− T

2s
e−s/T

⎢
.
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As T → ≤,

e−s/T ≈ 1 − s

T
+ O

(
1

T 2

)

hence
T

2s
− T

2s
e−s/T ≈ 1

2
+ O

(
1

T

)

which → 1
2 as T → ≤.

In Laplace transform theory it is usual to define the impulse function π(t) such
that

L{π(t)} = 1.

This means reducing the width of the top hat function so that it lies between 0
and 1/T (not −1/T and 1/T ) and increasing the height from 1

2T to T in order
to preserve unit area. Clearly the difficulty arises because the impulse function is
centred on t = 0 which is precisely the lower limit of the integral in the definition of
the Laplace transform. Using 0- as the lower limit of the integral overcomes many
of the difficulties.

The function π(t − t0) represents an impulse that is centred on the time t = t0. It
can be considered to be the limit of the function K (t) where K (t) is the displaced
top hat function defined by

K (t) =
⎦

0 t ∗ t0 − 1/2T
1
2T t0 − 1/2T < t < t0 + 1/2T
0 t ∞ t0 + 1/2T

as T → ≤. The definition of the delta function can be used to deduce that
∫ ≤

−≤
h(t)π(t − t0)dt = h(t0)

and that, provided t0 > 0
L{π(t − t0)} = e−st0 .

Letting t0 → 0 leads to
L{π(t)} = 1

a correct result. Another interesting result can be deduced almost at once and
expresses mathematically the property of π(t) to pick out a particular function value,
known to engineers as the filtering property. Since

∫ ≤

−≤
h(t)π(t − t0)dt = h(t0)
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with h(t) = e−st f (t) and t0 = a ∞ 0 we deduce that

L{π(t − a) f (t)} = e−as f (a).

Mathematically, the impulse function has additional interest in that it enables
insight to be gained into the properties of discontinuous functions. From a practical
point of view too there are a number of real phenomena that are closely approximated
by the delta function. The sharp blow from a hammer, the discharge of a capacitor
or even the sound of the bark of a dog are all in some sense impulses. All of this
provides motivation for the study of the delta function.

One property that is particularly useful in the context of Laplace transforms is the
value of the integral ∫ t

−≤
π(u − u0)du.

This has the value 0 if u0 > t and the value 1 if u0 < t . Thus we can write

∫ t

−≤
π(u − u0)du =

{
0 0 < u0
1 t > u0

or ∫ t

−≤
π(u − u0)du = H(t − u0)

where H is Heaviside’s unit step function. If we were allowed to differentiate this
result, or to put it more formally to use the fundamental theorem of the calculus (on
functions one of which is not really a function, a second which is not even continuous
let alone differentiable) then one could write that “π(u − u0) = H ≥(u − u0)” or
state that “the impulse function is the derivative of the Heaviside unit step function”.
Before the pure mathematicians send out lynching parties, let us examine these loose
notions. Everywhere except where u = u0 the statement is equivalent to stating that
the derivative of unity is zero, which is obviously true. The additional information
in the albeit loose statement in quotation marks is a quantification of the nature of
the unit jump in H(u − u0). We know the gradient there is infinite, but the nature of
it is embodied in the second integral condition in the definition of the delta function,
Eq. (2.4). The subject of generalised functions is introduced through this concept
and the interested reader is directed towards the texts by Jones and Lighthill. All that
will be noted here is that it is possible to define a whole string of derivatives π≥(t),
π≥≥(t), etc. where all these derivatives are zero everywhere except at t = 0. The key
to keeping rigorous here is the property

∫ ≤

−≤
h(t)π(t)dt = h(0).

The “derivatives” have analogous properties, viz.
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∫ ≤

−≤
h(t)π≥(t)dt = −h≥(0)

and in general ∫ ≤

−≤
h(t)π(n)(t)dt = (−1)nh(n)(0).

Of course, the function h(t) will have to be appropriately differentiable. Now the
Laplace transform of this nth derivative of the Dirac delta function is required. It can
be easily deduced that

∫ ≤

−≤
e−stπ(n)(t)dt =

∫ ≤

0−
e−stπ(n)(t)dt = sn .

Notice that for all these generalised functions, the condition for the validity of the
initial value theorem is violated, and the final value theorem although perfectly valid
is entirely useless. It is time to do a few examples.

Example 2.6 Determine the inverse Laplace transform

L−1
{

s2

s2 + 1

}

and interpret the F(t) obtained.

Solution Writing
s2

s2 + 1
= 1 − 1

s2 + 1

and using the linearity property of the inverse Laplace transform gives

L−1
{

s2

s2 + 1

}
= L−1{1} − L−1

{
1

s2 + 1

}

= π(t) − sin t.

This function is sinusoidal with a unit impulse at t = 0.
Note the direct use of the inverse L−1{1} = π(t). This arises straight away from

our definition of L. It is quite possible for other definitions of Laplace transform
to give the value 1

2 for L{π(t)} (for example). This may worry those readers of
a pure mathematical bent. However, as long as there is consistency in the defini-
tions of the delta function and the Laplace transform and hence its inverse, then no
inconsistencies arise. The example given above will always yield the same answer

L−1
{

s2

s2 + 1

}
= π(t) − sin t . The small variations possible in the definition of the

Laplace transform around t = 0 do not change this. Our definition, viz.
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L{F(t)} =
∫ ≤

0−
e−st F(t)dt

remains the most usual.

Example 2.7 Find the value of L−1
{

s3

s2 + 1

}
.

Solution Using a similar technique to the previous example we first see that

s3

s2 + 1
= s − s

s2 + 1

so taking inverse Laplace transforms using the linearity property once more yields

L−1
{

s3

s2 + 1

}
= L−1{s} − L−1

{
s

s2 + 1

}

= π≥(t) − cos t

where π≥(t) is the first derivative of the Dirac-π function which was defined earlier.
Notice that the first derivative formula:

L{F ≥(t)} = s f (s) − F(0)

with F ≥(t) = π≥(t) − cos t gives

L{π≥(t) − cos t} = s3

s2 + 1
− F(0)

which is indeed the above result apart from the troublesome F(0). F(0) is of course
not defined. Care indeed is required if standard Laplace transform results are to be
applied to problems containing generalised functions.When in doubt, the best advice
is to use limit definitions of π(t) and the like, and follow the mathematics through
carefully, especially the swapping of integrals and limits. The little book by Lighthill
is full of excellent practical advice.

2.7 Periodic Functions

We begin with a very straightforward definition that should be familiar to everyone:

Definition 2.4 If F(t) is a function that obeys the rule

F(t) = F(t + φ )

for some real φ for all values of t then F(t) is called a periodic function with period φ .
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Periodic functions play a very important role in many branches of engineering and
applied science, particularly physics. One only has to think of springs or alternating
current present in household electricity to realise their prevalence. Here, a theorem
on the Laplace transform of periodic functions is introduced, proved and used in
some illustrative examples.

Theorem 2.8 Let F(t) have period T > 0 so that F(t) = F(t + T ). Then

L{F(t)} =
∫ T
0 e−st F(t)dt

1 − e−sT
.

Proof Like many proofs of properties of Laplace transforms, this one begins with
its definition then evaluates the integral by using the periodicity of F(t)

L{F(t)} =
∫ ≤

0
e−st F(t)dt

=
∫ T

0
e−st F(t)dt +

∫ 2T

T
e−st F(t)dt

+
∫ 3T

2T
e−st F(t)dt + · · · +

∫ nT

(n−1)T
e−st F(t)dt + · · ·

provided the series on the right hand side is convergent. This is assured since the
function F(t) satisfies the condition for the existence of its Laplace transform by
construction. Consider the integral

∫ nT

(n−1)T
e−st F(t)dt

and substitute u = t − (n − 1)T . Since F has period T this leads to

∫ nT

(n−1)T
e−st F(t)dt = e−s(n−1)T

∫ T

0
e−su F(u)du n = 1, 2, . . .

which gives

∫ ≤

0
e−st F(t)dt = (1 + e−sT + e−2sT + · · · )

∫ T

0
e−st F(t)dt

=
∫ T
0 e−st F(t)dt

1 − e−sT

on summing the geometric progression. This proves the result. �
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Here is an example of using this theorem.

Example 2.8 A rectified sine wave is defined by the expression

F(t) =
{
sin t 0 < t < α
− sin t α < t < 2α

F(t) = F(t + 2α)

determine L {F(t)}.

SolutionThegraph of F(t) is shown inFig. 2.5. The function F(t) actually has period
α, but it is easier to carry out the calculation as if the period was 2α. Additionally
we can check the answer by using the theorem with T = α. With T = 2α we have
from Theorem 2.8,

L{F(t)} =
∫ 2α
0 e−st F(t)dt

1 − e−sT

where the integral in the numerator is evaluated by splitting into two as follows:-

∫ 2α

0
e−st F(t)dt =

∫ α

0
e−st sin tdt +

∫ 2α

α
e−st (− sin t)dt.

Now, writing �{} to denote the imaginary part of the function in the brace we have

∫ α

0
e−st sin tdt = �

{∫ α

0
e−st+i t dt

}

= �
⎡

1

i − s
e−st+i t

⎢α

0

= �
{

1

i − s
(e−sα+iα − 1)

}

= �
{

1

s − i
(1 + e−sα)

}
.

So ∫ α

0
e−st sin tdt = 1 + e−αs

1 + s2
.

Similarly, ∫ 2α

α
e−st sin tdt = −e−2αs + e−αs

1 + s2
.

Hence we deduce that
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Fig. 2.5 The graph of F(t)

L{F(t)} = (1 + e−αs)2

(1 + s2)(1 − e−2αs)

= 1 + e−αs

(1 + s2)(1 − e−αs)
.

This is precisely the answer that would have been obtained if Theorem 2.8 had been
applied to the function

F(t) = sin t 0 < t < α F(t) = F(t + α).

We can therefore have some confidence in our answer.

2.8 Exercises

1. If F(t) = cos(at), use the derivative formula to re-establish the Laplace trans-
form of sin(at).

2. Use Theorem 2.1 with

F(t) =
∫ t

0

sin u

u
du

to establish the result.
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L
{
sin(at)

t

}
= tan−1

{a

s

}
.

3. Prove that

L
{∫ t

0

∫ v

0
F(u)dudv

}
= f (s)

s2
.

4. Find

L
{∫ t

0

cos(au) − cos(bu)

u
du

}
.

5. Determine

L
{
2 sin t sinh t

t

}
.

6. Prove that if f̄ (s) indicates the Laplace transform of a piecewise continuous
function f (t) then

lim
s→≤ f̄ (s) = 0.

7. Determine the following inverse Laplace transforms by using partial fractions

(a)
2(2s + 7)

(s + 4)(s + 2)
, s > −2 (b)

s + 9

s2 − 9
,

(c)
s2 + 2k2

s(s2 + 4k2)
, (d)

1

s(s + 3)2
,

(e)
1

(s − 2)2(s + 3)3
.

8. Verify the initial value theorem, for the two functions
(a) 2 + cos t and
(b) (4 + t)2.

9. Verify the final value theorem, for the two functions
(a) 3 + e−t and
(b) t3e−t .

10. Given that

L{sin(√t)} = k

s3/2
e−1/4s

use sin x ∼ x near x = 0 to determine the value of the constant k. (You will
need the table of standard transforms Appendix B.)

11. By using a power series expansion, determine (in series form) the Laplace trans-
forms of sin (t2) and cos (t2).

12. P(s) and Q(s) are polynomials, the degree of P(s) is less than that of Q(s)
which is n. Use partial fractions to prove the result
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L−1
{

P(s)

Q(s)

}
=

n∑
k=1

P(βk)

Q≥(βk)
eβk t

where βk are the n distinct zeros of Q(s).
13. Find the following Laplace transforms:

(a)
H(t − a)

(b)

f1 =
{

t + 1 0 ∗ t ∗ 2
3 t > 2

(c)

f2 =
{

t + 1 0 ∗ t ∗ 2
6 t > 2

(d) the derivative of f1(t).
14. Find the Laplace transform of the triangular wave function:

F(t) =
{

t 0 ∗ t < c
2c − t c ∗ t < 2c

F(t + 2c) = F(t).

15. Find the Laplace transform of the generally placed top hat function:

F(t) =
{ 1

h a ∗ t < a + h
0 otherwise

.

Hence deduce the Laplace transform of the Dirac-π function π(t − a) where
a > 0 is a real constant.



Chapter 3
Convolution and the Solution of Ordinary
Differential Equations

3.1 Introduction

It is assumed from the outset that students will have some familiarity with ordinary
differential equations (ODEs), but there is a brief résumé given in Sect. 3.3. The other
central and probably new idea is that of the convolution integral and this is introduced
fully in Sect. 3.2. Of course it is possible to solve some kinds of differential equation
without using convolution as is obvious from the last chapter, but mastery of the
convolution theorem greatly extends the power of Laplace transforms to solve ODEs.
In fact, familiarity with the convolution operation is necessary for the understanding
of many other topics such as the solution of partial differential equations (PDEs) and
those that are outside the scope of this book such as the use of Green’s functions for
forming the general solution of various types of boundary value problem (BVP).

3.2 Convolution

The definition of convolution is straightforward.

Definition 3.1 The convolution of two given functions f (t) and g(t) is written f ∞g
and is defined by the integral

f ∞ g =
∫ t

0
f (δ )g(t − δ )dδ .

The only condition that is necessary to impose on the functions f and g is that their
behaviour be such that the integral on the right exists. Piecewise continuity of both
in the interval [0, t] is certainly sufficient. The following definition of piecewise
continuity is repeated here for convenience.

Definition 3.2 If an interval [0, t0] say can be partitioned into a finite number of
subintervals [0, t1], [t1, t2], [t2, t3], . . . , [tn, t0] with 0, t1, t2, . . . , tn, t0 an increasing

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 39
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_3,
© Springer-Verlag London 2014
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sequence of times and such that a given function f (t) is continuous in each of these
subintervals but not necessarily at the end points themselves, then f (t) is piecewise
continuous in the interval [0, t0].
It is easy to prove the following theorem

Theorem 3.1 (Symmetry) f ∞ g = g ∞ f .

It is left as an exercise to the student to prove this.
Probably the most important theorem concerning the use of Laplace transforms

and convolution is introduced now. It is called the convolution theorem and enables
one, amongst other things, to deduce the inverse Laplace transform of an expression
provided it can be expressed in the form of a product of functions, each inverse
Laplace transform of which is known. Thus, in a loose sense, the inverse Laplace
transform is equivalent to integration by parts, although unlike integration by parts,
there is no integration left to do on the right hand side.

Theorem 3.2 (Convolution) If f (t) and g(t) are two functions of exponential order
(so that their Laplace transforms exist), and writing L{ f } = f̄ (s) and L{g} = ḡ(s)
as the two Laplace transforms then L−1{ f̄ ḡ} = f ∞ g where ∞ is the convolution
operator introduced above.

Proof In order to prove this theorem, we in fact show that

f̄ ḡ = L{ f (t) ∞ g(t)}

by direct integration of the right hand side. In turn, this involves its interpretation in
terms of a repeated integral. Now,

L{ f (t) ∞ g(t)} =
∫ ≤

0
e−st

∫ t

0
f (δ )g(t − δ )dδdt

using the definition of the Laplace transform. The domain of this repeated integral
takes the form of a wedge in the t, δ plane. This wedge (infinite wedge) is displayed
in Fig. 3.1. Trivial rewriting of this double integral to facilitate changing the order of
integration gives

L{ f (t) ∞ g(t)} =
∫ ≤

0

∫ t

0
e−st f (δ )g(t − δ )dδdt

and thus integrating with respect to t first (horizontally first instead of vertically in
Fig. 3.1) gives

L{ f (t) ∞ g(t)} =
∫ ≤

0

∫ ≤

δ
e−st f (δ )g(t − δ )dtdδ

=
∫ ≤

0
f (δ )

{∫ ≤

δ
e−stg(t − δ )dt

}
dδ .
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Fig. 3.1 The domain of the
repeated integral

Implement the change of variable u = t − δ in the inner integral so that it becomes

∫ ≤

δ
e−stg(t − δ )dt =

∫ ≤

0
e−s(u+δ )g(u)du

= e−st
∫ ≤

0
e−sug(u)du

= e−sδ ḡ(s).

Thus we have

L{ f (t) ∞ g(t)} =
∫ ≤

0
f (δ )e−sδ ḡ(s)dδ

= ḡ(s) f̄ (s)

= f̄ (s)ḡ(s).

Hence
f (t) ∞ g(t) = L−1{ f̄ ḡ}.

This establishes the theorem. �
This particular result is sometimes referred to as Borel’s Theorem, and the convolu-
tion referred to as Faltung. These names are found in older books and some present
day engineering texts. Before going on to use this theorem, let us do an example or
two on calculating convolutions to get a feel of how the operation works.

Example 3.1 Find the value of cos t ∞ sin t .

Solution Using the definition of convolution we have

cos t ∞ sin t =
∫ t

0
cos(δ ) sin(t − δ )dδ .
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To evaluate this we could of course resort to computer algebra: alternatively we use
the identity

sin(A) cos(B) = 1

2
[sin(A + B) + sin(A − B)].

This identity is engraved on the brains of those who passed exams before the advent
of formula sheets. Evaluating the integral by hand thus progresses as follows. Let
A = t − δ and B = δ in this trigonometric formula to obtain

sin(t − δ ) cos(δ ) = 1

2
[sin t + sin(t − 2δ )]

whence,

cos t ∞ sin t =
∫ t

0
cos δ sin(t − δ )dδ

= 1

2

∫ t

0
[sin t + sin(t − 2δ )]dδ

= 1

2
sin t [δ ]t0 + 1

4
[cos(t − 2δ )]t0

= 1

2
t sin t + 1

4
[cos(−t) − cos t]

= 1

2
t sin t.

Let us try another example.

Example 3.2 Find the value of sin t ∞ t2.

Solution We progress as before by using the definition

sin t ∞ t2 =
∫ t

0
(sin δ )(t − δ )2dδ .

It is up to us to choose the order as from Theorem 3.2 f ∞ g = g ∞ f . Of course
we choose the order that gives the easier integral to evaluate. In fact there is little
to choose in this present example, but it is a point worth watching in future. This
integral is evaluated by integration by parts. Here are the details.

sin t ∞ t2 =
∫ t

0
(sin δ )(t − δ )2dδ

=
[
−(t − δ )2 cos δ

]t

0
−

∫ t

0
2(t − δ ) cos δdδ

= t2 − 2

{
[(t − δ ) sin δ ]t0 −

∫ t

0
sin δdδ

}



3.2 Convolution 43

= t2 − 2
{
0 + [− cos δ ]t0

}
= t2 + 2 cos t − 2.

Of course the integration can be done by computer algebra.
Both of these examples provide typical evaluations of convolution integrals. Con-

volution integrals occur inmany different branches of engineering, particularly when
signals are being processed. However, we shall only be concerned with their appli-
cation to the evaluation of the inverse Laplace transform. Therefore without further
ado, let us do a couple of these examples.

Example 3.3 Find the following inverse Laplace transforms:

(a) L−1
{

s

(s2 + 1)2

}
,

(b) L−1
{

1

s3(s2 + 1)

}
.

Solution (a) We cannot evaluate this inverse Laplace transform in any direct fashion.
However we do know the standard forms

L−1
{

s

(s2 + 1)

}
= cos t and L−1

{
1

(s2 + 1)

}
= sin t.

Hence
L{cos t}L{sin t} = s

(s2 + 1)2

and so using the convolution theorem, and Example 3.1

L−1
{

s

(s2 + 1)2

}
= cos t ∞ sin t = 1

2
t sin t.

(b) Proceeding similarlywith this inverse Laplace transform,we identify the standard
forms:-

L−1
{
1

s3

}
= 1

2
t2 and L−1

{
1

(s2 + 1)

}
= sin t.

Thus

L{t2}L{sin t} = 2

s3(s2 + 1)

and so

L−1
{

1

s3(s2 + 1)

}
= 1

2
t2 ∞ sin t.
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This convolution has been found in Example 3.2, hence the inverse Laplace transform
is

L−1
{

1

s3(s2 + 1)

}
= 1

2
(t2 + 2 cos t − 2).

In this case there is an alternative approach as the expression

1

s3(s2 + 1)

can be decomposed into partial fractions and the inverse Laplace transform evaluated
by that method.

In a sense, the last example was “cooked” in that the required convolutions just
happened to be those already evaluated. Nevertheless the power of the convolution
integral is clearly demonstrated. In the kind of examples met here there is usually
little doubt that the functions meet the conditions necessary for the existence of
the Laplace transform. In the real world, the functions may be time series, have
discontinuities or exhibit a stochastic character that makes formal checking of these
conditions awkward. It remains important to do this checking however: that is the
role of mathematics. Note that the product of two functions that are of exponential
order is also of exponential order and the integral of this product is of exponential
order too.

The next step is to use the convolution theorem on more complicated results. To
do this requires the derivation of the “well known” integral

∫ ≤

0
e−t2dt = 1

2

≥
α.

Example 3.4 Use a suitable double integral to evaluate the improper integral

∫ ≤

0
e−t2dt.

Solution Consider the double integral

∫ ∫
S

e−(x2+y2)d S

where S is the quarter disc x → 0, y → 0, x2 + y2 ∗ a2. Converting to polar
co-ordinates (R, π) this integral becomes

∫ a

0

∫ α
2

0
e−R2

Rdπd R
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where R2 = x2 + y2, R cos π = x, R sin π = y so that d S = Rdπd R. Evaluating
this integral we obtain

I = α

2

∫ a

0
Re−R2

d R = α

2

[
−1

2
e−R2

]a

0
= α

4

{
1 − e−a2

}
.

As a √ ≤, I √ α
4 .

We now consider the double integral

Ik =
∫ k

0

∫ k

0
e−(x2+y2)dxdy.

The domain of this integral is a square of side k. Now

Ik =
{∫ k

0
e−x2dx

} {∫ k

0
e−y2dy

}
=

{∫ k

0
e−x2dx

}2

A glance at Fig. 3.2 will show that

Ia/
≥
2 < I < Ia .

However, we can see that

Ik √
{∫ ≤

0
e−x2dx

}2

as k √ ≤. Hence if we let a √ ≤ in the inequality

Ia/
≥
2 < I < Ia

we deduce that

I √
{∫ ≤

0
e−x2dx

}2

as a √ ≤. Therefore {∫ ≤

0
e−x2dx

}2

= α

4

or ∫ ≤

0
e−x2dx =

≥
α

2

as required. This formula plays a central role in statistics, being one half of the
area under the bell shaped curve usually associated with the normal distribution. In
this text, its frequent appearance in solutions to problems involving diffusion and
conduction is more relevant.
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Fig. 3.2 The domains of the
repeated integrals

Let us use this integral to find the Laplace transform of 1/
≥

t . From the definition
of Laplace transform, it is necessary to evaluate the integral

L
{

1≥
t

}
=

∫ ≤

0

e−st

≥
t

dt

provided we can be sure it exists. The behaviour of the integrand at ≤ is not in
question, and the potential problem at the origin disappears once it is realised that
1/

≥
t itself is integrable in any finite interval that contains the origin. We can there-

fore proceed to evaluate it. This is achieved through the substitution st = u2. The
conversion to the variable u results in

∫ ≤

0

e−st

≥
t

dt =
∫ ≤

0

e−u2

s

≥
s

u
2udu = 2≥

s

∫ ≤

0
e−u2du =

√
α

s
.

We have therefore established the Laplace transform result:

L
{

1≥
t

}
=

√
α

s

and, perhaps more importantly, the inverse

L−1
{

1≥
s

}
= 1≥

αt
.

These results havewide application. Their usewith the convolution theoremopens
up a whole new class of functions on which the Laplace transform and its inverse
can operate. The next example is typical.
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Example 3.5 Determine

L−1
{

1≥
s(s − 1)

}
.

Solution The only sensible way to proceed using our present knowledge is to use
the results

L−1
{

1≥
s

}
= 1≥

αt

and (by the shifting property)

L−1
{

1

s − 1

}
= et .

Whence, using the convolution theorem

L−1
{

1≥
s(s − 1)

}
=

∫ t

0

1≥
αδ

e(t−δ )dδ

= et

≥
α

∫ t

0

e−δ

≥
δ

dδ .

The last integral is similar to that evaluated in determining the Laplace transform of
1/

≥
t except for the upper limit. It is tackled using the same transformation, only this

time we keep careful track of the upper limit. Therefore, substitute δ = u2 to obtain

∫ t

0

e−δ

≥
δ

dδ = 2
∫ ≥

t

0
e−u2du.

Now, this integral is well known from the definition of the Error function, erf(x).

Definition 3.3 The Error Function erf(x) is defined by

er f (x) = 2≥
α

∫ x

0
e−t2dt.

It is related to the area under the normal distribution curve in statistics. The factor
of 2/

≥
α is there to ensure that the total area is unity as is required by probability

theory. Returning to Laplace transforms, it is thus possible to express the solution as
follows:-

L−1
{

1≥
s(s − 1)

}
= eterf{≥t}.

The function 1 − erf(x) is called the complementary error function and is written
erfc(x). It follows immediately that
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erfc(x) = 2≥
α

∫ ≤

x
e−t2dt and erf(x) + erfc(x) = 1.

It is in fact the complementary error function rather than the error function itself that
emerges from solving the differential equations related to diffusion problems. These
problems are met explicitly in Chap. 5, but here we solve the problem of finding the
Laplace transform of the function

t−3/2 exp

{
−k2

4t

}

where k is a constant representing the diffusion called the diffusion coefficient. Here
it can be thought of as an unspecified constant.

Example 3.6 Determine

L
{

t−3/2 exp

{
−k2

4t

}}
.

Solution We start as always by writing the Laplace transform explicitly in terms
of the integral definition, and it looks daunting. To evaluate it does require some
convoluted algebra. As with all algebraic manipulation these days, the option is
there to use computer algebra, although existing systems would find this hard. In any
case, the derivation of this particular formula by hand does help in the understanding
of its subsequent use. So, we start with

L
{

t−3/2 exp

{
−k2

4t

}}
=

∫ ≤

0
e−k2/4t e−st t−3/2dt.

First of all, let us substitute u = k/2
≥

t . This is done so that a term e−u2 appears in
the integrand. Much other stuff appears too of course and we now sort this out:

du = −k

4
t−3/2dt

which eliminates the t−3/2 term. The limits swap round, then swap back again once
the negative sign from the du term is taken into account. Thus we obtain

∫ ≤

0
e−k2/4t e−st t−3/2dt = 4

k

∫ ≤

0
e−u2e−sk/4u2du

and this completes the first stage. We now strive to get the integral on the right into
error function form. (Computer algebra systems need leading by the nose through
this kind of algebra.) First of all we complete the square
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u2 + sk2

4u2 =
{

u − k
≥

s

2u

}2

+ k
≥

s.

The unsquared term is independent of u; this is important. The integral can thus be
written: ∫ ≤

0
e−k2/4t e−st t−3/2dt = 4

k
e−k

≥
s
∫ ≤

0
e
−

(
u− k

≥
s

2u

)2
du.

This completes the second stage. The third and perhaps most bizarre stage of evalu-
ating this integral involves consideration and manipulation of the integral

∫ ≤

0
e−(u− a

u )
2
du, where a = k

≥
s

2
.

If we let v = a/u in this integral, then since

(
u − a

u

)2 =
(
v − a

v

)2

but du = −adv/v2 we obtain the unexpected result

∫ ≤

0
e−(u− a

u )
2
du =

∫ ≤

0

a

u2 e−(u− a
u )

2
du.

Theminus sign cancelswith the exchange in limits as before, and the dummyvariable
v has been replaced by u. We can use this result to deduce immediately that

∫ ≤

0

(
1 + a

u2

)
e−(u− a

u )
2
du = 2

∫ ≤

0
e−(u− a

u )
2
du.

In the left hand integral, we substitute ω = u − a/u so that dω = (1 + a/u2)du. In
this way, we regain our friend from Example 3.4, apart from the lower limit which
is −≤ rather than 0. Finally therefore

∫ ≤

0

(
1 + a

u2

)
e−(u− a

u )
2
du =

∫ ≤

−≤
e−ω2

dω

= 2
∫ ≤

0
e−ω2

dω

= ≥
α.

Hence we have deduced that
∫ ≤

0
e−(u− a

u )
2
du = 1

2

≥
α
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and is independent of the constant a. Using these results, a summary of the calculation
of the required Laplace transform is

L
{

t−3/2 exp

{
−k2

4t

}}
= 4

k
e−k

≥
s
∫ ≤

0
e(u− k

≥
s

2u )2du.

= 4

k
e−k

≥
s 1

2

≥
α

= 2
≥

α

k
e−k

≥
s .

Taking the inverse Laplace transform of this result gives the equally useful formula

L−1
{

e−k
≥

s
}

= k

2
≥

αt3
e−k2/4t .

As mentioned earlier, this Laplace transform occurs in diffusion and conduction
problems. In particular for the applied mathematician, it enables the estimation of
possible time scales for the diffusion of pollutant from a point source. Let us do one
more example using the result just derived.

Example 3.7 Use the convolution theorem to find

L−1

{
e−k

≥
s

s

}
.

Solution We note the result just derived, namely

L−1
{

e−k
≥

s
}

= k

2
≥

αt3
e−k2/4t .

together with the standard result

L−1
{
1

s

}
= 1

to deduce that

L−1

{
e−k

≥
s

s

}
= k

2
≥

αt3
e−k2/4t ∞ 1

= k

2
≥

α

∫ t

0
δ−3/2e−k2/4δ dδ .

We evaluate this integral by the (by now familiar) trick of substituting u2 = k2/4δ .
This means that
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2udu = − k2

4δ2
dδ

and the limits transform from δ = 0 and δ = t tou = ≤ andu = k/2
≥

t respectively.
They swap round due to the negative sign in the expression for du so we obtain

k

2
≥

α

∫ t

0
δ−3/2e−k2/4δ dδ = 2≥

α

∫ ≤

k/2
≥

t
e−u2du

= erfc

(
k

2
≥

t

)
.

Hence we have the result

L−1

{
e−k

≥
s

s

}
= erfc

(
k

2
≥

t

)

which is also of some significance in the modelling of diffusion. An alternative
derivation of this result not using convolution is possible using a result from Chap. 2,
viz.

L−1
{

f̄ (s)

s

}
=

∫ t

0
f (u)du.

This formula can be regarded as a special case of the convolution theorem. We shall
make further use of the convolution theorem in this kind of problem in Chap. 6. In
the remainder of this chapter we shall apply the results of Chap. 2 to the solution
of ordinary differential equations (ODEs). This also makes use of the convolution
theorem both as an alternative to using partial fractions but more importantly to
enable general solutions to be written down explicitly even where the right hand side
of the ODE is a general function.

3.3 Ordinary Differential Equations

At the outset we stress that all the functions in this section will be assumed to be
appropriately differentiable. For the examples in this section which are algebraically
explicit this is obvious, but outside this section and indeed outside this text care needs
to be taken to ensure that this remains the case. It is of course a stricter criterion
than that needed for the existence of the Laplace transform (that the function be
of exponential order) so using the Laplace transform as a tool for solving ordinary
differential equations is usually not a problem. On the other hand, using differential
equations to establish results for Laplace transforms is certainly to be avoided as
this automatically imposes the strict condition of differentiability on the functions in
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them. It is perhaps the premier aim of mathematics to remove restrictions and widen
the class of functions that obey theorems and results, not the other way round.

Most of youwill be familiar to a greater or lesser extentwith differential equations:
however for completeness a résumé is now given of the basic essentials. A differential
equation is an equationwhere the unknown is in the formof a derivative. Operating on
a derivative with the Laplace transform can eliminate the derivative, replacing each
differentiation with a multiple of s. It should not be surprising therefore that Laplace
transforms are a handy tool for solving certain types of differential equation. Before
going into detail, let us review some of the general terminology met in discussing
differential equations.

The order of an ordinary differential equation is the highest derivative attained
by the unknown. Thus the equation

(
dy

dx

)3

+ y = sin x

is a first order equation. The equation

d2y

dx2
+

(
dy

dx

)4

+ ln x = 0

is, on the other hand a second order equation. The equation

(
d3y

dx3

)4

+
(

dy

dx

)7

+ y8 = 0

is of third order. Such exotic equations will not (cannot) be solved using Laplace
transforms. Instead we shall be restricted to solving first and second order equa-
tions which are linear. Linearity has already been met in the context of the Laplace
transform. The linearity property is defined by

L{φy1 + βy2} = φL{y1} + βL{y2}.

In a linear differential equation, the dependent variable obeys this linearity property.
We shall only be considering linear differential equations here (Laplace transforms
being linear themselves are only useful for solving linear differential equations). Dif-
ferential equations that cannot be solved are those containing powers of the unknown
or expressions such as tan(y), ey . Thus we will solve first and second order linear
differential equations. Although this seems rather restrictive, it does account for
nearly all those linear ODEs found in real life situations. The word ordinary denotes
that there is only differentiation with respect to a single independent variable so that
the solution is the required function of this variable. If the number of variables is two
or more, the differential equation becomes a partial differential equation (PDE) and
these are considered later in Chap. 5.
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The Laplace transform of a derivative was found easily by direct integration by
parts. The two useful results that will be used extensively here are

L{ f ⇒(t)} = s f̄ (s) − f (0)

and

L{ f ⇒⇒(t)} = s2 f̄ (s) − s f (0) − f ⇒(0)

where the primedenotes differentiationwith respect to t .Note that the right hand sides
of both of these expressions involve knowledge of f (t) at t = 0. This is important.
Also, the order of the derivative determines howmany arbitrary constants the solution
contains. There is one arbitrary constant for each integration, so a first orderODEwill
have one arbitrary constant, a second order ODE two arbitrary constants, etc. There
are complications over uniqueness with differential equations that are not linear, but
fortunately this does not concern us here. We know that the Laplace transform is a
linear operator; it is not easily applied to non-linear problems.

Upon taking Laplace transforms of a linear ODE, the derivatives themselves dis-
appear, transforming into the Laplace transform of the function multiplied by s (for
a first derivative) or s2 (for a second derivative). Moreover, the correct number of
constants also appear in the form of f (0) (for a first order ODE) and f (0) and f ⇒(0)
(for a second order ODE). Some texts conclude therefore that Laplace transforms can
be used only to solve initial value problems, that is problems where enough infor-
mation is known at the start to solve it. This is not strictly true. Whilst it remains the
case that initial value problems are best suited to this method of solution, two point
boundary value problems can be solved by transforming the equation, and retaining
f (0) and f ⇒(0) (or the first only) as unknowns. These unknowns are then found
algebraically by the substitution of the given boundary conditions and the solving
of the resulting differential equation. We shall, however almost always be solving
ODEs with initial conditions (but see Example 3.9). From a physical standpoint this
is entirely reasonable. The Laplace transform is a mapping from t space to s space
and t almost always corresponds to time. For problems involving time, the situation
is known now and the equation(s) are solved in order to determine what is going on
later. This is indeed the classical initial value problem. We are now ready to try a
few examples.

Example 3.8 Solve the first order differential equation

dx

dt
+ 3x = 0 where x(0) = 1.

Solution Note that we have abandoned f (t) for the more usual x(t), but this should
be regarded as a trivial change of dummy variable. This rather simple differential
equation can in fact be solved by a variety of methods. Of course we use Laplace
transforms, but it is useful to check the answer by solving again using separation
of variables or integrating factor methods as these will be familiar to most students.
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Taking Laplace transforms leads to

L
{

dx

dt

}
+ 3L{x} = 0

which implies

sx̄(s) − x(0) + 3x̄(s) = 0

using the standard overbar to denote Laplace transform. Since x(0) = 1, solving for
x̄(s) gives

x̄(s) = 1

s + 3

whence

x(t) = L−1
{

1

s + 3

}
= e−3t

using the standard form. That this is indeed the solution is easily checked.
Let us look at the same equation, but with a different boundary condition.

Example 3.9 Solve the first order differential equation

dx

dt
+ 3x = 0 where x(1) = 1.

Solution Proceeding as before, we now cannot insert the value of x(0) so we arrive
at the solution

x(t) = L−1
{

x(0)

s + 3

}
= x(0)e−3t .

We now use the boundary condition we do have to give

x(1) = x(0)e−3 = 1

which implies
x(0) = e3

and the solution is
x(t) = e3(1−t).

Here is a slightly more challenging problem.

Example 3.10 Solve the differential equation

dx

dt
+ 3x = cos 3t given x(0) = 0.



3.3 Ordinary Differential Equations 55

Solution Taking the Laplace transform (we have already done this in Example 3.8
for the left hand side) we obtain

sx̄(s) − x(0) + 3x̄(s) = s

s2 + 9

using standard forms. With the zero initial condition solving this for x̄(s) yields

x̄(s) = s

(s + 3)(s2 + 9)
.

This solution is in the form of the product of two known Laplace transforms. Thus
we invert either using partial fractions or the convolution theorem: we choose the
latter. First of all note the standard forms

L−1
{

1

s + 3

}
= e−3t and L−1

{
s

s2 + 9

}
= cos(3t).

Using the convolution theorem yields:

x(t) = L−1
{

1

s + 3

s

s2 + 9

}
=

∫ t

0
e−3(t−δ ) cos(3δ )dδ .

(The equally valid choice of

∫ t

0
e−3δ cos (3(t − δ )) dδ

could have been made, but as a general rule it is better to arrange the order of the
convolution so that the (t − δ ) is in an exponential if you have one.) The integral is
straightforward to evaluate using integration by parts or computer algebra. The gory
details are omitted here. The result is

∫ t

0
e−3δ cos(3δ )dδ = 1

6
(e3t cos(3t) + e3t sin(3t) − 1).

Thus we have

x(t) = e−3t
∫ t

0
e−3δ cos(3δ )dδ

= 1

6
(cos(3t) + sin(3t)) − 1

6
e−3t .

This solution could have been obtained by partial fractions which is algebraically
simpler. It is also possible to solve the original ODE by complementary func-
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tion/particular integral techniques or to use integrating factor methods. The choice
is yours. In the next example there is a clear winner. It is also possible to get a
closed form answer using integrating factor techniques, but using Laplace trans-
forms together with the convolution theorem is our choice here.

Example 3.11 Find the general solution to the differential equation

dx

dt
+ 3x = f (t) where x(0) = 0,

and f (t) is of exponential order (which is sufficient for the method of solution used
to be valid).

Solution It is compulsory to use convolution here as the right hand side is an arbitrary
function. The Laplace transform of the equation leads directly to

x(t) = L−1
{

f̄ (s)

s + 3

}

=
∫ t

0
e−3(t−δ ) f (δ )dδ

so that

x(t) = e−3t
∫ t

0
e3δ f (δ )dδ .

The function f (t) is of course free to be assigned. In engineering and other applied
subjects, f (t) is made to take exotic forms; the discrete numbers corresponding to
the output of laboratory measurements perhaps or even a time series with a stochastic
(probabilistic) nature. However, here f (t) must comply with our basic definition of
a function. The ability to solve this kind of differential equation even with the def-
inition of function met here has important practical consequences for the engineer
and applied scientist. The function f (t) is termed input and the term x(t) output. To
get from one to the other needs a transfer function. In the last example, the function
1/(s + 3) written in terms of the transform variable s is this transfer function. This
is the language of systems analysis, and such concepts also form the cornerstone of
control engineering. They are also vital ingredients to branches of electrical engineer-
ing and the machine dynamics side of mechanical engineering. In mathematics, the
procedure for writing the solution to a non-homogeneous differential equation (that
is one with a non-zero right hand side) in terms of the solution of the corresponding
homogeneous differential equation involves the development of the complementary
function and particular solution. Complementary functions and particular solutions
are standard concepts in solving second order ordinary differential equations, the
subject of the next section.
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3.3.1 Second Order Differential Equations

Let us now do a few examples to see howLaplace transforms are used to solve second
order ordinary differential equations. The technique is no different from solving first
order ODEs, but finding the inverse Laplace transform is often more challenging.
Let us start by finding the solution to a homogeneous second order ODE that will be
familiar to most of you who know about oscillations.

Example 3.12 Use Laplace transforms to solve the equation

d2x

dt2
+ x = 0 with x(0) = 1, x ⇒(0) = 0.

Solution Taking the Laplace transform of this equation using the usual notation gives

s2 x̄(s) − sx(0) − x ⇒(0) + x̄(s) = 0.

With x(0) = 1 and x ⇒(0) = 0 we obtain

x̄(s) = s

s2 + 1
.

This is a standard form which inverts to x(t) = cos t . That this is the correct solution
to this simple harmonic motion problem is easy to check.

Why not try changing the initial condition to y(0) = 0 and y⇒(0) = 1 which
should lead to y(t) = sin t? We are now ready to build on this result and solve the
inhomogeneous problem that follows.

Example 3.13 Find the solution to the differential equation

d2x

dt2
+ x = t with x(0) = 1, x ⇒(0) = 0.

Solution Apart from the trivial change of variable, we follow the last example and
take Laplace transforms to obtain

s2 x̄(s) − sx(0) − x ⇒(0) + x̄ = L{t} = 1

s2
.

With start conditions x(0) = 1 and x ⇒(0) = 0 this gives

x̄(s)(s2 + 1) − s = 1

s2

so x̄(s) = s

s2 + 1
+ 1

s2(s2 + 1)
.
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Taking the inverse Laplace transform thus gives:

x = L−1
{

s

s2 + 1

}
+ L−1

{
1

s2(s2 + 1)

}

= cos t +
∫ t

0
(t − δ ) sin(δ )dδ

using the convolution theorem. Integrating by parts (omitting the details) gives

x = cos t − sin t + t.

The first two terms are the complementary function and the third the particular
integral. The whole is easily checked to be the correct solution. It is up to the reader
to decide whether this approach to solving this particular differential equation is any
easier than the alternatives. The Laplace transform method provides the solution of
the differential equationwith a general right hand side in a simple and straightforward
manner.

However, instead of restricting attention to this particular second order differential
equation, let us consider the more general equation

a
d2x

dt2
+ b

dx

dt
+ cx = f (t) (t → 0)

where a, b and c are constants. We will not solve this equation, but discuss it in the
context of applications.

In engineering texts these constants are given names that have engineering signif-
icance. Although this text is primarily for a mathematical audience, it is nevertheless
useful to run through these terms. In mechanics, a is the mass, b is the damping
constant (diagrammatically represented by a dashpot), c is the spring constant (or
stiffness) and x itself is the displacement of the mass. In electrical circuits, a is the
inductance, b is the resistance, c is the reciprocal of the capacitance sometimes called
the reactance and x (replaced by q) is the charge, the rate of change of which with
respect to time is the more familiar electric current. Some of these names will be
encountered later when we do applied examples. The right-hand side is called the
forcing or excitation. In terms of systems engineering, f (t) is the system input, and
x(t) is the system output. Since a, b and c are all constant the system described by
the equation is termed linear and time invariant. It will seem very odd to a mathe-
matician to describe a system governed by a time-dependent differential equation as
“time invariant” but this is standard engineering terminology.

Taking the Laplace transform of this general second order differential equation,
assuming all the appropriate conditions hold of course, yields

a(s2 x̄(s) − sx(0) − x ⇒(0)) + b(sx̄(s) − x(0)) + cx̄(s) = f̄ (s).
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It is normally not a problem to assume that x̄(s) and f̄ (s) are of exponential order,
but just occasionally when problems have a stochastic or numerical input, care needs
to be taken. Making x̄(s) the subject of this equation gives

x̄(s) = f̄ (s) + (as + b)x(0) + ax ⇒(0)
as2 + bs + c

.

Hence, in theory, x(t) can be found by taking inverse Laplace transform. The simplest
case to consider is when x(0) and x ⇒(0) are both zero. The output is then free from
any embellishments that might be there because of special start conditions. In this
special case,

x̄(s) = 1

as2 + bs + c
f̄ (s).

This equation is starkly in the form “response = transfer function × input” which
makes it very clear why Laplace transforms are highly regarded by engineers. The
formula for x̄(s) can be inverted using the convolution theorem and examples of this
can be found later. First however let us solve a few simpler second order differential
equations explicitly.

Example 3.14 Use Laplace transform techniques to find the solution to the second
order differential equation

d2x

dt2
+ 5

dx

dt
+ 6x = 2e−t t → 0,

subject to the conditions x = 1 and x ⇒ = 0 at t = 0.

Solution Taking the Laplace transform of this equation we obtain using the usual
overbar notation,

s2 x̄(s) − sx(0) − x ⇒(0) + 5(sx̄(s) − x(0)) + 6x̄(s) = L{e−t } = 2

s + 1

where the standard Laplace transform

L{eat } = 1

s − a

for any constant a has been used. Inserting the initial conditions x = 1 and x ⇒ = 0
at t = 0 and rearranging the formula as an equation for x̄(s) gives

(s2 + 5s + 6)x̄(s) = 2

s + 1
+ s + 5.

Factorising gives
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x̄(s) = 2

(s + 1)(s + 2)(s + 3)
+ s + 5

(s + 2)(s + 3)
.

There are many ways of inverting this expression, the easiest being to use the partial
fraction method. Doing this but omitting the details gives:

x̄(s) = 1

s + 1
+ 1

s + 2
− 1

s + 3
.

This inverts immediately to

x(t) = e−t + e−2t − e−3t (t → 0).

The first term is the particular integral (or particular solution) and the last two terms
the complementary function. The whole solution is overdamped and therefore non-
oscillatory: this is undeniably the easiest case to solve as it involves very little algebra.
However, it is also physically the least interesting as the solution dies away to zero
very quickly. It does serve to demonstrate the power of the Laplace transform tech-
nique to solve this kind of ordinary differential equation.

An obvious question to ask at this juncture is how is it known whether a particular
inverse Laplace transform can be found? We know of course that it is obtainable in
principle, but this is a practical question. In Chap. 8 we derive a general form for
the inverse that helps to answer this question. Only a brief and informal answer can
be given at this stage. As long as the function f̄ (s) has a finite number of finite
isolated singularities then inversion can go ahead. If f̄ (s) does not tend to zero for
large |s| generalised functions are to be expected, and if f̄ (s) has a square root or a
more elaborate multi-valued nature then direct inversion is made more complicated,
although there is no formal difficulty. In this case, error functions, Bessel functions
and the like usually feature in the solution. Most of the time, solving second order
linear differential equations is straightforward and involves no more than elementary
transcendental functions (exponential and trigonometric functions).

The next problem is more interesting from a physical point of view.

Example 3.15 Use Laplace transforms to solve the following ordinary differential
equation

d2x

dt2
+ 6

dx

dt
+ 9x = sin t (t → 0),

subject to x(0) = 0 and x ⇒(0) = 0.

Solution With no right hand side, and with zero initial conditions, x(t) = 0 would
result. However with the sinusoidal forcing, the solution turns out to be quite inter-
esting. The formal way of tackling the problem is the same as for any second order
differential equation with constant coefficients. Thus the mathematics follows that
of the last example. Taking Laplace transforms, the equation becomes
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s2 x̄(s) − sx(0) − x ⇒(0) + 6sx̄(s) − 6x(0) + 9x̄(s) = 1

s2 + 1

this time not lingering over the standard form (for L{sin(t)}). With the boundary
conditions inserted and a little tidying this becomes

x̄(s) = 1

s2 + 1
· 1

(s + 3)2
.

Once again either partial fractions or convolution can be used. Convolution is our
choice this time. Note that

L{sin t} = 1

s2 + 1
and L{te−3t } = 1

(s + 3)2

so

L−1
{

1

(s2 + 1)(s + 3)2

}
=

∫ t

0
δe−3δ sin(t − δ )dδ .

This integral yields to integration by parts several times (or computer algebra, once).
The result follows from application of the formula:

∫ t

0
δe−3δ sin(t − δ )dδ = − 1

10

∫ t

0
e−3δ cos(t − δ )dδ

+ 3

10

∫ t

0
e−3δ sin(t − δ )dδ + 1

10
te−3t .

However we omit the details. The result is

x(t) = L−1
{

1

(s2 + 1)(s + 3)2

}

=
∫ t

0
δe−3δ sin(t − δ )dδ

= e−3t

50
(5t + 3) − 3

50
cos t + 2

25
sin t.

The first term is the particular solution (called the transient response by engineers
since it dies away for large times), and the final two terms the complementary function
(rather misleadingly called the steady state response by engineers since it persists. Of
course there is nothing steady about it). After a “long time” has elapsed, the response
is harmonic at the same frequency as the forcing frequency. The “long time” is in
fact in practice quite short as is apparent from the graph of the output x(t) which
is displayed in Fig. 3.3. The graph is indistinguishable from a sinusoid after about



62 3 Convolution and the Solution of Ordinary Differential Equations

Fig. 3.3 The graph of x(t)

t = 0.5. However the amplitude and phase of the resulting oscillations are different.
In fact, the combination

− 3

50
cos t + 2

25
sin t = 1

10
sin(t − ψ)

puts the steady state into amplitude and phase form. 1
10 is the amplitude and ψ is

the phase (cos(ψ) = 4
5 , sin(ψ) = 3

5 for this solution). It is the fact that the response
frequency is the same as the forcing frequency that is important in practical applica-
tions.

There is very little more to be said in terms of mathematics about the solution
to second order differential equations with constant coefficients. The solutions are
oscillatory, decaying, amixture of the two, oscillatory and growing or simply growing
exponentially. The forcing excites the response and if the response is at the same
frequency as the natural frequency of the differential equation, resonance occurs.
This leads to enhanced amplitudes at these frequencies. If there is no damping, then
resonance leads to infinite amplitude response. Further details about the properties
of the solution of second order differential equations with constant coefficients can
be found in specialist books on differential equations and would be out of place here.
What follows are examples where the power of the Laplace transform technique is
clearly demonstrated in terms of solving practical engineering problems. It is at the
very applied end of applied mathematics.

In the following example, a problem in electrical circuits is solved. As mentioned
in the preamble to Example 3.14 the constants in a linear differential equation can
be given significance in terms of the basic elements of an electrical circuit: resistors,
capacitors and inductors. Resistors have resistance R measured in ohms, capacitors
have capacitance C measured in farads, and inductors have inductance L measured
in henrys. A current j flows through the circuit and the current is related to the charge
q by

j = dq

dt
.
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Fig. 3.4 The simple circuit

The laws obeyed by a (passive) electrical circuit are:

1. Ohm’s law whereby the voltage drop across a resistor is R j .
2. The voltage drop across an inductor is

L
d j

dt
.

3. The voltage drop across a capacitor is

q

C
.

Hence in terms of q the voltage drops are respectively

R
dq

dt
, L

d2q

dt2
and

q

C

which enables the circuit laws (Kirchhoff’s Laws) to be expressed in terms of dif-
ferential equations of second order with constant coefficients (L , R and 1/C). The
forcing function (input) on the right hand side is supplied by a voltage source, e.g. a
battery. Here is a typical example.

Example 3.16 Find the differential equation obeyed by the charge for the simple
circuit shown in Fig.3.4, and solve it by the use of Laplace transforms given j =
0, q = 0 at t = 0.

Solution The current is j and the charge is q, so the voltage drop across the three
devices are

2
d j

dt
= 2

d2q

dt2
, 16 j = 16

dq

dt
, and

q

0.002
= 50q.
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Fig. 3.5 The solution q(t);
q(0) = 0 although true, is not
shown due to the fine scale on
the q axis

This must be equal to 300 (the voltage output of the battery), hence

2
d2q

dt2
+ 16

dq

dt
+ 50q = 300.

So, solving this by division by two and taking the Laplace transform results in

s2q̄(s) − sq(0) − q ⇒(0) + 8sq̄(s) − 8q(0) + 25q̄(s) = 150

s
.

Imposing the initial conditions gives the following equation for q̄(s), the Laplace
transform of q(t):

q̄(s) = 150

s(s2 + 8s + 25)
= 150

s((s + 4)2 + 9)
.

This can be decomposed by using partial fractions or the convolution theorem. The
former is easier. This gives:

q̄(s) = 6

s
− 6(s + 4)

((s + 4)2 + 9)
− 24

((s + 4)2 + 9)
.

The right hand side is now a standard form, so inversion gives:

q(t) = 6 − 6e−4t cos(3t) − 8e−4t sin(3t).

This solution is displayed in Fig. 3.5. It can be seen that the oscillations are completely
swamped by the exponential decay term. In fact, the current is the derivative of this
which is:-

j = 50e−4t sin(3t)
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Fig. 3.6 The variation of
current with time

and this is shown in Fig. 3.6 as decaying to zero very quickly. This is obviously not
typical, as demonstrated by the next example. Here, we have a sinusoidal voltage
source which might be thought of as mimicking the production of an alternating
current.

Example 3.17 Solve the same problem as in the previous example except that the
battery is replaced by the oscillatory voltage source 100 sin(3t).

Solution The differential equation is derived as before, except for the different right
hand side. The equation is

2
d2q

dt2
+ 16

dq

dt
+ 50q = 100 sin(3t).

Taking the Laplace transform of this using the zero initial conditions q(0) =
0, q ⇒(0) = 0 proceeds as before, and the equation for the Laplace transform of
q(t) (q̄(s)) is

q̄(s) = 150

(s2 + 9)((s + 4)2 + 9)
.

Note the appearance of the Laplace transform of 100 sin(3t) here. The choice is to
either use partial fractions or convolution to invert, this time we use convolution, and
this operation by its very nature recreates 100 sin(3t) under an integral sign “con-
voluted” with the complementary function of the differential equation. Recognising
the two standard forms:-

L−1
{

1

s2 + 9

}
= 1

3
sin(3t) and L−1

{
1

(s + 4)2 + 9

}
= 1

3
e−4t sin(3t),

gives immediately

q(t) = 50

3

∫ t

0
e−4(t−δ ) sin (3(t − δ )) sin(3δ )dδ .
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Fig. 3.7 The variation of
current with time

Using integration by parts but omitting the details gives

j = dq(t)

dt
= 75

52
(2 cos(3t) + 3 sin(3t)) − 25

52
e−4t (17 sin(3t) + 6 cos(3t)).

What this solution tells the electrical engineer is that the response quickly becomes
sinusoidal at the same frequency as the forcing function but with smaller amplitude
and different phase. This is backed up by glancing at Fig. 3.7 which displays this
solution. The behaviour of this solution is very similar to that of the mechanical
engineering example, Example 3.20, that we will soon meet and demonstrates beau-
tifully themerits of amathematical treatment of the basic equations of engineering. A
mathematical treatment enables analogies to be drawn between seemingly disparate
branches of engineering.

3.3.2 Simultaneous Differential Equations

In the same way that Laplace transforms convert a single differential equation into
a single algebraic equation, so they can also convert a pair of differential equations
into simultaneous algebraic equations. The differential equations we solve are all
linear, so a pair of linear differential equations will convert into a pair of simultane-
ous linear algebraic equations familiar from school. Of course, these equations will
contain s, the transform variable as a parameter. These expressions in s can get quite
complicated. This is particularly so if the forcing functions on the right-hand side
lead to algebraically involved functions of s. Comments on the ability or otherwise of
inverting these expressions remain the same as for a single differential equation. They
are more complicated, but still routine. Let us start with a straightforward example.
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Example 3.18 Solve the simultaneous differential equations

dx

dt
= 2x − 3y,

dy

dt
= y − 2x,

where x(0) = 8 and y(0) = 3.

Solution Taking Laplace transforms and inserting the boundary conditions straight
away gives:-

sx̄(s) − 8 = 2x̄(s) − 3ȳ(s)

s ȳ(s) − 3 = ȳ(s) − 2x̄(s).

Whence, rearranging we solve:-

(s − 2)x̄ + 3ȳ = 8

and 2x̄ + (s − 1)ȳ = 3

by the usual means. Using Cramer’s rule or eliminating by hand gives the solutions

x̄(s) = 8s − 17

s2 − 3s − 4
, ȳ(s) = 3s − 22

s2 − 3s − 4
.

To invert these we factorise and decompose into partial fractions to give

x̄(s) = 5

s + 1
+ 3

s − 4

ȳ(s) = 5

s + 1
− 2

s − 4
.

These invert easily and we obtain the solution

x(t) = 5e−t + 3e4t

y(t) = 5e−t − 2e4t .

Even if one or both of these equations were second order, the solution method by
Laplace transforms remains the same. The following example hints at how involved
the algebra can get, even in the most innocent looking pair of equations.

Example 3.19 Solve the simultaneous differential equations

d2x

dt2
+ dy

dt
+ 3x = 15e−t

d2y

dt2
− 4

dx

dt
+ 3y = 15 sin(2t)
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where x = 35, x ⇒ = −48, y = 27 and y⇒ = −55 at time t = 0.

Solution Taking Laplace transforms of both equations as before, retaining the stan-
dard notation for the transformed variable gives

s2 x̄ − 35s + 48 + s ȳ − 27 + 3x̄ = 15

s + 1

and s2 ȳ − 27s + 55 − 4(sx̄ − 35) + 3ȳ = 30

s2 + 4
.

Solving for x̄ and ȳ is indeed messy but routine. We do one step to group the terms
together as follows:

(s2 + 3)x̄ + s ȳ = 35s − 21 + 15

s + 1

−4sx̄ + (s2 + 3)ȳ = 27s − 195 + 30

s2 + 4
.

This time, this author has used a computer algebra package to solve these two equa-
tions. A partial fraction routine has also been used. The result is

x̄(s) = 30s

s2 + 1
− 45

s2 + 9
+ 3

s + 1
+ 2s

s2 + 4

and ȳ(s) = 30s

s2 + 9
− 60

s2 + 1
− 3

s + 1
+ 2

s2 + 4
.

Inverting using standard forms gives

x(t) = 30 cos t − 15 sin(3t) + 3e−t + 2 cos(2t)

y(t) = 30 cos(3t) − 60 sin t − 3e−t + sin(2t).

The last two terms on the right-hand side of the expression for both x and y resemble
the forcing terms whilst the first two are in a sense the “complementary function”
for the system. The motion is quite a complex one and is displayed as Fig. 3.8

Having looked at the application of Laplace transforms to electrical circuits, now
let us apply them to mechanical systems. Again it is emphasised that there is no new
mathematics here; it is however new applied mathematics.

In mechanical systems, we use Newton’s second law to determine the motion of
a mass which is subject to a number of forces. The kind of system best suited to
Laplace transforms are the mass-spring-damper systems. Newton’s second law is of
the form

F = m
d2x

dt2

where F is the force, m is the mass and x the displacement. The components of the
system that also act on the mass m are a spring and a damper. Both of these give rise
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Fig. 3.8 The solutions x(t) and y(t)

Fig. 3.9 The forces due to a a damper and b a spring

to changes in displacement according to the following rules (see Fig. 3.9). A damper
produces a force proportional to the net speed of the mass but always opposes the
motion, i.e. c(ẏ − ẋ) where c is a constant and the dot denotes differentiation with
respect to t . A spring produces a force which is proportional to displacement. Here,
springswill bewell behaved and assumed to obeyHooke’s Law. This force is k(y−x)
where k is a constant sometimes called the stiffness by mechanical engineers. To put
flesh on these bones, let us solve a typical mass spring damping problem. Choosing to
consider twomasses gives us the opportunity to look at an application of simultaneous
differential equations.

Example 3.20 Figure3.10 displays a mechanical system. Find the equations of
motion, and solve them given that the system is initially at rest with x = 1 and
y = 2.

SolutionApplyingNewton’s Second Law ofMotion successively to eachmass using
Hooke’s Law (there are no dampers) gives:-

m1 ẍ = k2(y − x) − k1x

m2 ÿ = −k3x − k2(y − x).
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Fig. 3.10 A simple mechanical system

With the values for the constantsm1,m2, k1, k2 and k3 given in Fig. 3.10, the following
differential equations are obtained:-

ẍ + 3x − 2y = 0

2 ÿ + 4y − 2x = 0.

The mechanics (thankfully for most) is now over, and we take the Laplace transform
of both equations to give:-

(s2 + 3)x̄ − 2 ȳ = sx(0) + ẋ(0)

−x̄ + (s2 + 2)ȳ = sy(0) + ẏ(0).

The right hand side involves the initial conditions which are: x(0) = 1, y(0) = 2,
ẋ(0) = 0 and ẏ(0) = 0. Solving these equations (by computer algebra or by hand)
gives, for ȳ,

ȳ(s) = 2s3 + 5s

(s2 + 4)(s2 + 1)
= s

s2 + 1
+ s

s2 + 4

and inverting gives
y(t) = cos t + cos(2t).

Rather than finding x̄ and inverting, it is easier to substitute for y and its second
derivative ÿ in the equation

x = ÿ + 2y.

This finds x directly as
x(t) = cos t − 2 cos(2t).

The solution is displayed as Fig. 3.11. It is possible and mechanically desirable
to form the combinations
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Fig. 3.11 A simple mechani-
cal system solved

1

3
(y − x) = cos(2t) and

1

3
(x + 2y) = cos t

as these isolate the two frequencies and help in the understanding of the subsequent
motion which at first sight can seem quite complex. This introduces the concept
of normal modes which are outside the scope of this text, but very important to
mechanical engineers as well as anyone else interested in the behaviour of oscillating
systems.

3.4 Using Step and Impulse Functions

In Sect. 2.3 some properties of Heaviside’s unit step function were explored. In this
section we extend this exploration to problems that involve differential equations.
As a reminder the step function H(t) is defined as

H(t) =
{
0 t < 0
1 t → 0

and a function f (t) which is switched on at time t0 is represented simply as
f (t − t0)H(t − t0). The second shift theorem, Theorem 2.4, implies that the Laplace
transform of this is given by

L{ f (t − t0)H(t − t0)} = e−st0 f̄ (s).

Another useful result derived earlier is

L{γ(t − a) f (t)} = e−as f (a)

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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Fig. 3.12 The beam and its
load W (x)

where γ(t − a) is the Dirac −γ or impulse function centred at t = a. The properties
of the γ function as required in this text are outlined in Sect. 2.6. Let us use these
properties to solve an engineering problem. This next example is quite extensive;
more of a case study. It involves concepts usually found in mechanics texts, although
it is certainly possible to solve the differential equation that is obtained abstractly
and without recourse to mechanics: much would be missed in terms of realising the
practical applications of Laplace transforms. Nevertheless this example can certainly
be omitted from a first reading, and discarded entirely by those with no interest in
applications to engineering.

Example 3.21 The equation governing the bending of beams is of the form

k
d4y

dx4
= −W (x)

where k is a constant called the flexural rigidity (the product of Young’s modulus
and length in fact, but this is not important here), and W (x) is the transverse force
per unit length along the beam. The layout is indicated in Fig.3.12. Use Laplace
transforms (in x) to solve this problem and discuss the case of a point load.

Solution There are several aspects to this problem that need a comment here. The
mathematics comes down to solving an ordinary differential equation which is fourth
order but easy enough to solve. In fact, only the fourth derivative of y(x) is present,
so in normal circumstances one might expect direct integration (four times) to be
possible. That it is not is due principally to the form W (x) usually takes. There is also
that the beam is of finite length l. In order to use Laplace transforms the domain is
extended so that x ≡ [0,≤) and the Heaviside step function is utilised. To progress
in a step by step fashion let us consider the cantilever problem first where the beam
is held at one end. Even here there are conditions imposed at the free end. However,
we can take Laplace transforms in the usual way to eliminate the x derivatives. We
define the Laplace transform in x as

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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ȳ(s) =
∫ ≤

0
e−xs y(x)dx

where remember we have extended the domain to≤. In transformed coordinates the
equation for the beam becomes:-

k(s4 ȳ(s) − s3y(0) − s2y⇒(0) − sy⇒⇒(0) − y⇒⇒⇒(0)) = −W (s).

Thus,

ȳ(s) = −W (s)

ks4
+ y(0)

s
+ y⇒(0)

s2
+ y⇒⇒(0)

s3
+ y⇒⇒⇒(0)

s4

and the solution can be found by inversion. It is at this point that the engineer would
be happy, but the mathematician should be pausing for thought. The beam may be
long, but it is not infinite. This being the case, is it legitimate to define the Laplace
transform in x as has been done here?What needs to be done is some tidying up using
Heaviside’s step function. If we replace y(x) by the combination y(x)[1− H(x − l)]
then this latter function will certainly fulfil the necessary and sufficient conditions
for the existence of the Laplace transform provided y(x) is piecewise continuous.
One therefore interprets ȳ(s) as

ȳ(s) =
∫ ≤

0
y(x)[1 − H(x − l)]e−xsdx

and inversion using the above equation for ȳ(s) follows once the forcing is known.
In general, the convolution theorem is particularly useful here as W (x)may take the
form of data (from a strain gauge perhaps) or have a stochastic character. Using the
convolution theorem, we have

L−1

{
W (s)

s4

}
= 1

6

∫ x

0
(x − ξ)3W (ξ)dξ.

The solution to the problem is therefore

y(x)[1 − H(x − l)] = − 1

6k

∫ x

0
(x − ξ)3W (ξ)dξ

+ y(0) + xy⇒(0) + 1

2
x2y⇒⇒(0) + 1

6
x3y⇒⇒⇒(0).

If the beam is freely supported at both ends, this is mechanics code for the following
four boundary conditions

y = 0 at x = 0, l (no displacement at the ends)
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and

y⇒⇒ = 0 at x = 0, l (no force at the ends).

This enables the four constants of integration to be found. Straightforwardly,
y(0) = 0 and y⇒⇒(0) = 0 so

y(x)[1 − H(x − l)] = − 1

6k

∫ x

0
(x − ξ)3W (ξ)dξ + xy⇒(0) + 1

6
x3y⇒⇒⇒(0).

The application of boundary conditions at x = l is less easy. One method would be
to differentiate the above expression with respect to x twice, but it is unclear how to
apply this to the product on the left, particularly at x = l. The following procedure
is recommended. Put u(x) = y⇒⇒(x) and the original differential equation, now in
terms of u(x) becomes

k
d2u

dx2
= −W (x)

with solution (obtained by using Laplace transforms as before) given by

u(x)[1 − H(x − l)] = −1

k

∫ x

0
(x − ξ)W (ξ)dξ + u(0) + xu⇒(0).

Hence the following expression for y⇒⇒(x) has been derived

y⇒⇒(x)[1 − H(x − l)] = −1

6

∫ x

0
(x − ξ)W (ξ)dξ + y⇒⇒(0) + xy⇒⇒⇒(0).

This is in fact the result that would have been obtained by differentiating the expres-
sion for y(x) twice ignoring derivatives of [1 − H(x − l)]. Applying the boundary
conditions at x = l (y(l) = y⇒⇒(l) = 0) now gives the results

y⇒⇒⇒(0) = 1

kl

∫ l

0
(l − ξ)W (ξ)dξ

and

y⇒(0) = 1

6kl

∫ l

0
(l − ξ)3W (ξ)dξ − l

6k

∫ l

0
(l − ξ)W (ξ)dξ.

This provides the general solution to the problem in terms of integrals

y(x)[1 − H(x − l)] = − 1

6k

∫ x

0
(x − ξ)3W (ξ)dξ

+ 1

6kl

∫ l

0
x(l − ξ)(ξ2 − 2lξ + x2)W (ξ)dξ.
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Fig. 3.13 The displacement
of the beam y(x) with W = 1
and k = 1. The length l
equals 3

It is now possible to insert any loading function into this expression and calculate
the displacement caused. In particular, let us choose the values l = 3, k = 1 and
consider a uniform loading of unit magnitude W = constant = 1. The integrals are
easily calculated in this simple case and the resulting displacement is

y(x) = − x4

24
+ x3

4
− 9x

8

which is shown in Fig. 3.13.
We now consider a more realistic loading, that of a point load located at x = l/3

(one third of theway along the bar). It is now the point at which the laws ofmechanics
need to be applied in order to translate this into a specific form forW (x). This however
is not a mechanics text, therefore it is quite likely that you are not familiar with
enough of these laws to follow the derivation. For those with mechanics knowledge,
we assume that the weight of the beam is concentrated at its mid-point (x = l/2) and
that the beam itself is static so that there is no turning about the free end at x = l. If
the point load has magnitude P , then the expression for W (x) is

W (x) = W

l
H(x) + Pγ

(
x − 1

3
l

)
−

(
1

2
W + 2

3
P

)
γ(x).

From a mathematical point of view, the interesting point here is the presence of the
Dirac-γ function on the right hand side whichmeans that integrals have to be handled
with some care. For this reason, and in order to present a different way of solving the
problem but still using Laplace transforms we go back to the fourth order ordinary
differential equation for y(x) and take Laplace transforms. The Laplace transform
of the right hand side (W (x)) is
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W (s) = W

ls
+ Pe− 1

3 sl −
(
1

2
W + 2

3
P

)
.

The boundary conditions are y = 0 at x = 0, l (no displacement at the ends) and
y⇒⇒(0) = 0 at x = 0, l (no forces at the ends). This gives

ȳ(s) = 1

k

[
W

ls5
+ P

s4
e− 1

3 ls − 1

s4

(
1

2
W + 2

3
P

)]
+ y⇒(0)

s2
+ y⇒⇒⇒(0)

s4
.

This can be inverted easily using standard forms, together with the second shift
theorem for the exponential term to give:-

y(x)[1 − H(x − l)] = −1

k

[
W

24l
x4 + 1

6
P

(
x − 1

3
l

)3

− 1

6

(
1

2
W + 2

3
P

)
x3

]

+ y⇒(0)x + 1

6
y⇒⇒⇒(0)x3.

Differentiating twice gives

y⇒⇒(x) = −1

k

[
1

2l
W x2 + P

(
x − 1

3
l

)
−

(
1

2
W + 2

3
P

)
x

]
+ y⇒⇒⇒(0)x, 0 ∗ x ∗ l.

This is zero at x = l, whence y⇒⇒⇒(0) = 0. The boundary condition y(l) = 0 is
messier to apply as it is unnatural for Laplace transforms. It gives

y⇒(0) = − l2

k

(
1

24
W + 5

81
P

)

so the solution valid for 0 ∗ x ∗ l is

y(x) = −W

k

(
1

24l
x4 − 1

12
x3 + 1

24
l2x

)
− P

k

(
5

81
l2x − 1

9
x3

)

− P

6k

(
x − 1

3
l

)3

H

(
x − 1

3
l

)
.

This solution is illustrated in Fig. 3.14. Other applications to problems that give rise
to partial differential equations will have to wait until Chap.5.
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Fig. 3.14 The displacement
of the beam y(x) with W =
1, k = 1 and P = 1. The
length l equals 3

3.5 Integral Equations

An integral equation is, as the name implies, an equation inwhich the unknownoccurs
in the form of an integral. The Laplace transform proves very useful in solving
many types of integral equation, especially when the integral takes the form of a
convolution. Here are some typical integral equations:

∫ b

a
K (x, y)σ(y)dy = f (x)

where K and f are known. A more general equation is:

A(x)σ(x) − ω

∫ b

a
K (x, y)σ(y)dy = f (x)

and an even more general equation would be:

∫ b

a
K (x, y,σ(y))dy = f (x).

In these equations, K is called the kernel of the integral equation. The general theory
of how to solve integral equations is outside the scope of this text, and we shall
content ourselves with solving a few special types particularly suited to solution
using Laplace transforms. The last very general integral equation is non-linear and
is in general very difficult to solve. The second type is called a Fredholm integral
equation of the third kind. If A(x) = 1, this equation becomes
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σ(x) − ω

∫ b

a
K (x, y)σ(y)dy = f (x)

which is the Fredholm integral equation of the second kind. In integral equations,
x is the independent variable, so a and b can depend on it. The Fredholm integral
equation covers the case where a and b are constant, in the cases where a or b (or
both) depend on x the integral equation is called a Volterra integral equation. One
particular case, b = x , is particularly amenable to solution using Laplace transforms.
The following example illustrates this.

Example 3.22 Solve the integral equation

σ(x) − ω

∫ x

0
ex−yσ(y)dy = f (x)

where f (x) is a general function of x.

Solution The integral is in the form of a convolution; it is in fact ωex ∞ σ(x) where
* denotes the convolution operation. The integral can thus be written

σ(x) − ωex ∞ σ(x) = f (x).

Taking the Laplace transform of this equation and utilising the convolution theorem
gives

σ̄ − ω
σ̄

s − 1
= f̄

where σ̄ = Lσ and f̄ = L f . Solving for σ̄ gives

σ̄

(
s − 1 − ω

s − 1

)
= f̄

σ̄ = s − 1

s − (1 + ω)
f̄ = f̄ + ω f̄

s − (1 + ω)
.

So inverting gives

σ = f + ω f ∞ e(1+ω)x

and

σ(x) = f (x) + ω

∫ x

0
f (y)e(1+ω)(x−y)dy.

This is the solution of the integral equation.
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The solution of integral equations of these types usually involves advanced meth-
ods including complex variable techniques. These can only be understood after the
methods of Chap. 8 have been introduced and are the subject of more advanced texts
(e.g. Hochstadt (1989)).

3.6 Exercises

1. Given suitably well behaved functions f, g and h establish the following prop-
erties of the convolution f ∞ g where

f ∞ g =
∫ t

0
f (δ )g(t − δ )dδ .

(a) f ∞ g = g ∞ f , (b) f ∞ (g ∞ h) = ( f ∞ g) ∞ h,
(c) determine f −1 such that f ∞ f −1 = 1, stating any extra properties f
must possess in order for the inverse f −1 to exist.

2. Use the convolution theorem to establish

L−1
{

f̄ (s)

s

}
=

∫ t

0
f (δ )dδ .

3. Find the following convolutions

(a) t ∞ cos t , (b) t ∞ t , (c) sin t ∞ sin t , (d) et ∞ t , (e) et ∞ cos t .

4. (a) Show that

lim
x√0

(
erf(x)

x

)
= 2≥

α
.

(b) Show that

L{t−1/2erf
≥

t} = 2≥
αs

tan−1
(

1≥
s

)
.

5. Solve the following differential equations by using Laplace transforms:
(a)

dx

dt
+ 3x = e2t , x(0) = 1,

(b)
dx

dt
+ 3x = sin t, x(α) = 1,
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(c)
d2x

dt2
+ 4

dx

dt
+ 5x = 8 sin t, x(0) = x ⇒(0) = 0,

(d)
d2x

dt2
− 3

dx

dt
− 2x = 6, x(0) = x ⇒(0) = 1,

(e)
d2y

dt2
+ y = 3 sin(2t), y(0) = 3, y⇒(0) = 1.

6. Solve the following pairs of simultaneous differential equations by usingLaplace
transforms:
(a)

dx

dt
− 2x − dy

dt
− y = 6e3t

2
dx

dt
− 3x + dy

dt
− 3y = 6e3t

subject to x(0) = 3, and y(0) = 0.
(b)

4
dx

dt
+ 6x + y = 2 sin(2t)

d2x

dt2
+ x − dy

dt
= 3e−2t

subject to x(0) = 2, x ⇒(0) = −2, (eliminate y).
(c)

d2x

dt2
− x + 5

dy

dt
= t

d2y

dt2
− 4y − 2

dx

dt
= −2

subject to x(0) = 0, x ⇒(0) = 0, y(0) = 1 and y⇒(0) = 0.
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7. Demonstrate the phenomenon of resonance by solving the equation:

d2x

dt2
+ k2x = A sin t

subject to x(0) = x0, x ⇒(0) = v0 then showing that the solution is unbounded
as t √ ≤ for particular values of k.

8. Assuming that the air resistance is proportional to speed, the motion of a particle
in air is governed by the equation:

w

g

d2x

dt2
+ b

dx

dt
= w.

If at t = 0, x = 0 and

v = dx

dt
= v0

show that the solution is

x = gt

a
+ (av0 − g)(1 − e−at )

a2

where a = bg/w. Deduce the terminal speed of the particle.
9. Determine the algebraic systemof equations obeyedby the transformed electrical

variables j̄1, j̄2, j̄3 and q̄3 given the electrical circuit equations

j1 = j2 + j3

R1 j1 + L2
d j2
dt

= E sin(ωt)

R1 j1 + R3 j3 + 1

C
q3 = E sin(ωt)

j3 = dq3
dt

where, as usual, the overbar denotes the Laplace transform.
10. Solve the loaded beam problem expressed by the equation

k
d4y

dx4
= w0

c
[c − x + (x − c)H(x − c)] for 0 < x < 2c

subject to the boundary conditions y(0) = 0, y⇒(0) = 0, y⇒⇒(2c) = 0 and
y⇒⇒⇒(2c) = 0. H(x) is the Heaviside unit step function. Find the bending moment
ky⇒⇒ at the point x = 1

2c.
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11. Solve the integral equation

σ(t) = t2 +
∫ t

0
σ(y) sin(t − y)dy.



Chapter 4
Fourier Series

4.1 Introduction

Before getting to Fourier series proper, we need to discuss the context. To understand
why Fourier series are so useful, one uses the properties of an inner product space
and that trigonometric functions are an example of one. It is the properties of the
inner product space, coupled with the analytically familiar properties of the sine and
cosine functions that give Fourier series their usefulness and power.

The basic assumption behind Fourier series is that any given function can be
expressed in terms of a series of sine and cosine functions, and that once found the
series is unique. Stated coldly with no preliminaries this sounds preposterous, but to
those familiar with the theory of linear spaces it is not. All that is required is that the
sine and cosine functions are a basis for the linear space of functions to which the
given function belongs. Some details are given in Appendix C. Those who have a
background knowledge of linear algebra sufficient to absorb this appendix should be
able to understand the following two theorems which are essential to Fourier series.
They are given without proof and may be ignored by those willing to accept the
results that depend on them. The first result is Bessel’s inequality. It is conveniently
stated as a theorem.

Theorem 4.1 (Bessel’s Inequality) If

{e1, e2, . . . , en, . . .}

is an orthonormal basis for the linear space V , then for each a ∞ V the series

≤∑
r=1

|≥a, en→|2

converges. In addition, the inequality

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 83
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_4,
© Springer-Verlag London 2014
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≤∑
r=1

|≥a, en→|2 ∗ ||a||2

holds.

An important consequence of Bessel’s inequality is the Riemann–Lebesgue
lemma. This is also stated as a theorem:-

Theorem 4.2 (Riemann–Lebesgue) Let {e1, e2, . . .} be an orthonormal basis of
infinite dimension for the inner product space V . Then, for any a ∞ V

lim
n√≤≥a, en→ = 0.

This theorem in fact follows directly from Bessel’s inequality as the nth term of
the series on the right of Bessel’s inequality must tend to zero as n tends to ≤.

Although some familiarity with analysis is certainly a prerequisite here, there
is merit in emphasising the two concepts of pointwise convergence and uniform
convergence. It will be out of place to go into proofs, but the difference is particu-
larly important to the study of Fourier series as we shall see later. Here are the two
definitions.

Definition 4.1 (Pointwise Convergence) Let

{ f0, f1, . . . , fm, . . .}

be a sequence of functions defined on the closed interval [a, b]. We say that the
sequence { f0, f1, . . . , fm, . . .} converges pointwise to f on [a, b] if for each x ∞
[a, b] and δ > 0 there exists a natural number N (δ, x) such that

| fm(x) − f (x)| < δ

for all m ⇒ N (δ, x).

Definition 4.2 (Uniform Convergence) Let

{ f0, f1, . . . , fm, . . .}

be a sequence of functions defined on the closed interval [a, b]. We say that the
sequence { f0, f1, . . . , fm, . . .} converges uniformly to f on [a, b] if for each δ > 0
there exists a natural number N (δ) such that

| fm(x) − f (x)| < δ

for all m ⇒ N (δ) and for all x ∞ [a, b].
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It is the difference and not the similarity of these two definitions that is important.
All uniformly convergent sequences are pointwise convergent, but not vice versa.
This is because N in the definition of pointwise convergence depends on x ; in the
definition uniform convergence it does not which makes uniform convergence a
global rather than a local property. The N in the definition of uniform convergence
will do for any x in [a, b].

Armed with these definitions and assuming a familiarity with linear spaces, we
will eventually go ahead and find the Fourier series for a few well known functions.
We need a few more preliminaries before we can do this.

4.2 Definition of a Fourier Series

As we have said, Fourier series consist of a series of sine and cosine functions.
We have also emphasised that the theory of linear spaces can be used to show that it
possible to represent any periodic function to any desired degree of accuracy provided
the function is periodic and piecewise continuous. To start, it is easiest to focus on
functions that are defined in the closed interval [−α,α]. These functions will be
piecewise continuous and they will possess one sided limits at −α and α. So, using
mathematical notation, we have f : [−α,α] √ C. The restriction to this interval
will be lifted later, but periodicity will always be essential.

It also turns out that the points at which f is discontinuous need not be points at
which f is defined uniquely. As an example of what is meant, Fig. 4.1 shows three
possible values of the function

fa =
{
0 t < 1
1 t > 1

at t = 1. These are fa(1) = 0, fa(1) = 1 and fa(1) = 1/2, and, although we do
need to be consistent in order to satisfy the need for fa(t) to be well defined, in theory
it does not matter exactly where fa(1) is. However, Fig. 4.1c is the right choice for
Fourier series; the following theorem due to Dirichlet tells us why.

Theorem 4.3 If f is a member of the space of piecewise continuous functions which
are 2α periodic on the closed interval [−α,α] and which has both left and right
derivatives at each x ∞ [−α,α], then for each x ∞ [−α,α] the Fourier series of f
converges to the value

f (x−) + f (x+)
2

.

At both end points, x = ±α, the series converges to

f (α−) + f ((−α)+)
2

.
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Fig. 4.1 a fa(1) = 0,
b fa(1) = 1, c fa(1) = 1/2

The proof of this is beyond the scope of this book, but some comments are usefully
made. If x is a point at which the function f is continuous, then

f (x−) + f (x+)
2

= f (x)

and the theorem is certainly eminently plausible as any right hand side other than
f (x) for this mean of left and right sided limits would be preposterous. It is still
however difficult to prove rigorously. At other points, including the end points, the
theorem gives the useful result that at points of discontinuity the value of the Fourier
series for f takes the mean of the one sided limits of f itself at the discontinuous
point. Given that the Fourier series is a continuous function (assuming the series to
be uniformly convergent) representing f at this point of discontinuity this is the best



4.2 Definition of a Fourier Series 87

that we can expect. Dirichlet’s theorem is not therefore surprising. The formal proof
of the theorem can be found in graduate texts such as Pinkus and Zafrany (1997)
and depends on careful application of the Riemann–Lebesgue lemma and Bessel’s
inequality. Since f is periodic of period 2α, f (α) = f (−α) and the last part of the
theorem is seen to be nothing special, merely a re-statement that the Fourier series
takes the mean of the one sided limits of f at discontinuous points.

We now state the basic theorem that enables piecewise continuous functions to be
able to be expressed as Fourier series. The linear space notation is that used earlier
(see Appendix C) to which you are referred for more details.

Theorem 4.4 The sequence of functions

{
1≡
2
, sin(x), cos(x), sin(2x), cos(2x), . . .

}

form an infinite orthonormal sequence in the space of all piecewise continuous func-
tions on the interval [−α,α] where the inner product ≥ f, g→ is defined by

≥ f, g→ = 1

α

∫ α

−α
f ḡdx

the overbar denoting complex conjugate.

Proof First we have to establish that ≥ f, g→ is indeed an inner product over the space
of all piecewise continuous functions on the interval [−α,α]. The integral

∫ α

−α
f ḡdx

certainly exists. As f and ḡ are piecewise continuous, so is the product f ḡ and
hence it is (Riemann) integrable. From elementary properties of integration it is easy
to deduce that the space of all piecewise continuous functions is indeed an inner
product space. There are no surprises. 0 and 1 are the additive and multiplicative
identities, − f is the additive inverse and the rules of algebra ensure associativity,
distributivity and commutativity. We do, however spend some time establishing that
the set {

1≡
2
, sin(x), cos(x), sin(2x), cos(2x), . . .

}

is orthonormal. To do this, it will be sufficient to show that

〈
1≡
2
,

1≡
2

〉
= 1, ≥sin(nx), sin(nx)→ = 1,

≥cos(nx), cos(nx)→ = 1,

〈
1≡
2
, sin(nx)

〉
= 0,
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〈
1≡
2
, cos(nx)

〉
= 0, ≥cos(mx), sin(nx)→ = 0,

≥cos(mx), sin(nx)→ = 0, ≥sin(mx), sin(nx)→ = 0,

withm ≈= n; m, n = 1, 2, . . .. Time spent on this is timewell spent as orthonormality
lies behind most of the important properties of Fourier series. For this, we do not use
short cuts.

〈
1≡
2
,

1≡
2

〉
= 1

α

∫ α

−α

1

2
dx = 1 trivially

≥sin(nx), sin(nx)→ = 1

α

∫ α

−α
sin2(nx)dx

= 1

2α

∫ α

−α
(1 − cos(2nx))dx = 1 for all n

≥cos(nx), cos(nx)→ = 1

α

∫ α

−α
cos2(nx)dx

= 1

2α

∫ α

−α
(1 + cos(2nx))dx = 1 for all n

〈
1≡
2
, cos(nx)

〉
= 1

α

∫ α

−α

1≡
2
cos(nx)dx

= 1

α
≡
2

[
1

n
sin(nx)

⎡α

−α

= 0 for all n

〈
1≡
2
, sin(nx)

〉
= 1

α

∫ α

−α

1≡
2
sin(nx)dx

= 1

α
≡
2

[
−1

n
cos(nx)

⎡α

−α

= 1

nα
≡
2

⎢
(−1)n − (−1)n⎧ = 0 for all n

≥cos(mx), sin(nx)→ = 1

α

∫ α

−α
cos(mx) sin(nx)dx

= 1

2α

∫ α

−α
(sin((m + n)x) + sin((m − n)x)) dx

= 1

2α

[
−cos((m + n)x)

m + n
− cos((m − n)x)

m − n

⎡α

−α

= 0, (m ≈= n)

since the function in the square bracket is the same at both −α and α. If m = n,
sin((m − n)x) = 0 but otherwise the arguments go through unchanged and
≥cos(mx), sin(mx)→ = 0, m, n = 1, 2 . . .. Now
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≥cos(mx), cos(nx)→ = 1

α

∫ α

−α
cos(mx) cos(nx)dx

= 1

2α

∫ α

−α
(cos((m + n)x) + cos((m − n)x)) dx

= 1

2α

[
sin((m + n)x)

m + n
+ sin((m − n)x)

m − n

⎡α

−α

as m ≈= n

= 0 as all functions are zero at both limits.

Finally,

≥sin(mx), sin(nx)→ = 1

α

∫ α

−α
sin(mx) sin(nx)dx

= 1

2α

∫ α

−α
(cos((m − n)x) − cos((m + n)x)) dx

= 0 similarly to the previous result.

Hence the theorem is firmly established. �

We have in the above theorem shown that the sequence

{
1≡
2
, sin(x), cos(x), sin(2x), cos(2x), . . .

}

is orthogonal. It is in fact also true that this sequence forms a basis (an orthonormal
basis) for the spaceof piecewise continuous functions in the interval [−α,α]. This and
other aspects of the theory of linear spaces, an outline of which is given in Appendix
C. All this thus ensures that an arbitrary element of the linear space of piecewise
continuous functions can be expressed as a linear combination of the elements of
this sequence, i.e.

f (x) ∼ a0≡
2

+ a1 cos(x) + a2 cos(2x) + · · · + an cos(nx) + · · ·
+ b1 sin(x) + b2 sin(2x) + · · · + bn sin(nx) + · · ·

so

f (x) ∼ a0≡
2

+
≤∑

n=1

(an cos(nx) + bn sin(nx)) − α < x < α (4.1)

with the tilde being interpreted as follows. At points of discontinuity, the left hand
side is the mean of the two one sided limits as dictated by Dirichlet’s theorem. At
points where the function is continuous, the right-hand side converges to f (x) and
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the tilde means equals. This is the “standard” Fourier series expansion for f (x) in
the range −α < x < α. Since the right hand side is composed entirely of periodic
functions, period 2α, it is necessary that

f (x) = f (x + 2Nα) N = 0,±1,±2, . . . .

The authors of engineering texts are happy to start with Eq. 4.1, then by multiplying
through by sin(nx) (say) and integrating term by term between −α and α, all but the
bn on the right disappears. This gives

bn = 1

α

∫ α

−α
f (x) sin(nx)dx .

Similarly

an = 1

α

∫ α

−α
f (x) cos(nx)dx .

Of course, this gives the correct results, but questions about the legality or otherwise
of dealingwith andmanipulating infinite series remain. In the context of linear spaces
we can immediately write

f (x) = (a0, a1, b1, . . . , an, bn, . . .)

is a vector expressed in terms of the orthonormal basis

e = (e0, eπ1 , eω1 , . . . , eπn , eωn , . . .)

e0 = 1≡
2
, eπn = cos(nx), eωn = sin(nx),

so

≥ f, eπn → = 1

α

∫ α

−α
f (x) cos(nx)dx

and

≥ f, eωn → = 1

α

∫ α

−α
f (x) sin(nx)dx .

The series

f =
≤∑

k=0

≥ f, ek→ek
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where ek, k = 0, . . . . . . is a renumbering of the basis vectors. This is the standard
expansion of f in terms of the orthonormal basis and is the Fourier series for f .
Invoking the linear space theory therefore helps us understand how it is possible to
express any function piecewise continuous in [−α,α] as the series expansion (4.1),

f (x) ∼ a0≡
2

+
≤∑

n=1

(an cos(nx) + bn sin(nx)) − α < x < α

where

an = 1

α

∫ α

−α
f (x) cos(nx)dx,

and

bn = 1

α

∫ α

−α
f (x) sin(nx)dx, n = 0, 1, 2, . . . .

and remembering to interpret correctly the left-hand side at discontinuities to be in
line with Dirichlet’s theorem. It is also now clear why a0 is multiplied by 1/

≡
2 for

together with e0 it enables a uniform definition of an , but it is not convenient and
using 1≡

2
a0 as the constant term is almost never done in practise. Students need to

remember this when doing calculations. It is a common source of error. Books differ
as to where the factor goes. Some use a0 with the factor 1/2 in a separate integral
for a0. We use 1

2a0 as the constant term (so e0 = 1 now), and the practical Fourier
series is:

f (x) ∼ a0
2

+
≤∑

n=1

(an cos(nx) + bn sin(nx)) − α < x < α

where

an = 1

α

∫ α

−α
f (x) cos(nx)dx,

and

bn = 1

α

∫ α

−α
f (x) sin(nx)dx, n = 0, 1, 2, . . . .

We are now ready to do some practical examples. There is good news for those
who perhaps are a little impatient with all this theory. It is not at all necessary to
understand about linear space theory in order to calculate Fourier series. The earlier
theory gives the framework in which Fourier series operate as well as enabling us
to give decisive answers to key questions that can arise in awkward or controversial
cases, for example if the existence or uniqueness of a particular Fourier series is in
question. The first example is not controversial.
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Example 4.1 Determine the Fourier series for the function

f (x) = 2x + 1 − α < x < α

f (x) = f (x + 2α) x ∞ R

where Theorem 4.3 applies at the end points.

Solution As f (x) is obviously piecewise continuous in [−α,α], in fact the only
discontinuities occurring at the end points, we simply use the formulae

an = 1

α

∫ α

−α
f (x) cos(nx)dx,

and

bn = 1

α

∫ α

−α
f (x) sin(nx)dx

to determine the Fourier coefficients. Now,

an = 1

α

∫ α

−α
(2x + 1) cos(nx)dx

= 1

α

[
(2x + 1)

n
sin(nx)

⎡α

−α

− 1

α

∫ α

−α

2

n
sin(nx)dx (n ≈= 0)

= 0 + 1

α

2

n2 [cos(nx)]α−α = 0

since cos(nα) = (−1)n . If n = 0 then

a0 = 1

α

∫ α

−α
(2x + 1)dx

= 1

α

⎨
x2 + x

⎩α

−α
= 2

bn = 1

α

∫ α

−α
(2x + 1) sin(nx)dx

= 1

α

[
− (2x + 1)

n
cos(nx)

⎡α

−α

+ 1

α

∫ α

−α

2

n
cos(nx)dx

= 1

α

[
− (2α + 1)

n
+ (−2α + 1)

n

⎡
(−1)n

= −4

n
(−1)n .
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Hence

f (x) ∼ 1 − 4
≤∑

n=1

(−1)n

n
sin(nx), −α < x < α.

From this series, we can deduce the Fourier series for x as follows:-

we have 2x + 1 ∼ 1 − 4
≤∑

n=1

(−1)n

n
sin(nx), x ∞ [−α,α]

so

x ∼ 2
≤∑

n=1

(−1)n+1

n
sin(nx)

gives the Fourier series for x in [−α,α].
Thus the Fourier series for the general straight line y = mx + c in [−α,α] must

be

y ∼ c − 2m
≤∑

n=1

(−1)n

n
sin(nx).

The explanation for the lack of cosine terms in these Fourier series follows later after
the discussion of even and odd functions. Here is a slightly more involved example.

Example 4.2 Find the Fourier series for the function

f (x) = ex , −α < x < α

f (x + 2α) = f (x), x ∞ R

where Theorem 4.3 applies at the end points.

Solution This problem is best tackled by using the power of complex numbers. We
start with the two standard formulae:

an = 1

α

∫ α

−α
ex cos(nx)dx

and

bn = 1

α

∫ α

−α
ex sin(nx)dx

and form the sum an + ibn where i = ≡−1. The integration is then quite straight-
forward
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an + ibn = 1

α

∫ α

−α
ex+inx dx

= 1

α(1 + in)
[ex+inx ]α−α

= 1

α(1 + in)
[e(1+in)α − e−(1+in)α]

= (−1)n

α(1 + in)
(eα − e−α) since einα = (−1)n

= 2(−1)n sinh α

α(1 + n2)
(1 − in).

Hence, taking real and imaginary parts we obtain

an = (−1)n 2 sinh(α)

α(1 + n2)
, bn = −2n(−1)n sinh(α)

α(1 + n2)
.

In this example a0 is given by

a0 = 2

α
sinh(α),

hence giving the Fourier series as

f (x) = sinh(α)

α
+ 2

α
sinh(α)

≤∑
n=1

(−1)n

1 + n2 (cos(nx) − n sin(nx)), −α < x < α.

Let us take this opportunity to make use of this series to find the values of some
infinite series. The above series is certainly valid for x = 0 so inserting this value
into both sides of the above equation and noting that f (0)(= e0) = 1 gives

1 = sinh(α)

α
+ 2

α
sinh(α)

≤∑
n=1

(−1)n

1 + n2 .

Thus

≤∑
n=1

(−1)n

1 + n2 = α

2
cosech (α) − 1

2

and

≤∑
n=−≤

(−1)n

1 + n2 = 2
≤∑

n=1

(−1)n

1 + n2 + 1 = αcosech (α).
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Further, there is the opportunity here to use Dirichlet’s theorem. Putting x = α into
the Fourier series for ex is not strictly legal. However, Dirichlet’s theorem states that
the value of the series at this discontinuity is the mean of the one sided limits either

side which is
1

2
(e−α + eα) = cosh α. The Fourier series evaluated at x = α is

sinh(α)

α
+ 2

α
sinh(α)

≤∑
n=1

1

1 + n2

as cos(nα) = (−1)n and sin(nα) = 0 for all integers n. The value of f (x) at x = α
is taken to be that dictated by Dirichlet’s theorem, viz. cosh(α). We therefore equate
these expressions and deduce the series

≤∑
n=1

1

1 + n2 = α

2
coth (α) − 1

2

and

≤∑
n=−≤

1

1 + n2 = 2
≤∑

n=1

1

1 + n2 + 1 = αcoth (α).

Having seen the general method of finding Fourier series, we are ready to remove
the restriction that all functions have to be of period 2α and defined in the range
[−α,α].Themost straightforwardway of generalising to Fourier series of any period
is to effect the transformation x √ 2αx/ l where l is assigned by us. Thus if x ∞
[−α,α], αx/ l ∞ [−l, l]. Since cos(αx/ l) and sin(αx/ l) have period 2l the Fourier
series valid in [−l, l] takes the form

f (x) ∼ 1

2
a0 +

≤∑
n=1

⎦
an cos

⎦nαx

l

)
+ bn sin

⎦nαx

l

))
, −l < x < l,

where

an = 1

l

∫ l

−l
f (x) cos

⎦nαx

l

)
dx (4.2)

and

bn = 1

l

∫ l

−l
f (x) sin

⎦nαx

l

)
dx . (4.3)

The examples of finding this kind of Fourier series are not remarkable, they just
contain (in general) messier algebra. Here is just one example.
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Example 4.3 Determine the Fourier Series of the function

f (x) = |x |, −3 ∗ x ∗ 3,

f (x) = f (x + 6).

Solution The function f (x) = |x | is continuous, therefore we can use Eqs. 4.2 and
4.3 to generate the Fourier coefficients. First of all

a0 = 1

3

∫ 3

−3
|x |dx = 3.

Secondly,

an = 1

3

∫ 3

−3
|x | cos

⎦nαx

3

)
dx

= 1

3

∫ 3

0
x cos

⎦nαx

3

)
dx

= 2

3

[
3x

nα
sin

⎦nαx

3

)⎡3
0
− 2

3

∫ 3

0

3

nα
sin

⎦nαx

3

)
dx

= 0 + 2

nα

[
3

nα
cos

⎦nαx

3

)⎡3
0

so an = 6

(nα)2
[−1 + (−1)n].

This is zero if n is even and −12/(nα)2 if n is odd. Hence

a2k+1 = − 12

(2k + 1)2α2 , k = 0, 1, 2, . . .

Similarly,

bn = 1

3

∫ 3

−3
|x | sin

⎦nαx

3

)
dx

= −1

3

∫ 0

−3
x sin

⎦nαx

3

)
dx + 1

3

∫ 3

0
x sin

⎦nαx

3

)
dx

= 0 for all n.

Hence

f (x) = 3

2
− 12

α2

≤∑
n=0

1

(2n − 1)2
cos

[
2n − 1

3
αx

⎡
, 0 ∗ x ∗ 3,
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note the equality; f (x) is continuous on [0, 3] hence there is no discontinuity at the
end points and no need to invoke Dirichlet’s theorem.

4.3 Odd and Even Functions

This topic is often met at a very elementary level at schools in the context of how
graphs of functions look on the page in terms of symmetries. However, here we give
formal definitions and, more importantly, see how the identification of oddness or
evenness in functions literally halves the amount of work required in finding the
Fourier series.

Definition 4.3 A function f (x) is termed even with respect to the value a if

f (a + x) = f (a − x)

for all values of x.

Definition 4.4 A function f (x) is termed odd with respect to the value a if

f (a + x) = − f (a − x)

for all values of x.

The usual expressions “ f (x) is an even function” and “ f (x) is an odd function”
means that a = 0 has been assumed. i.e. f (x) = f (−x)means f is an even function
and f (x) = − f (−x) means f is an odd function. Well known even functions are:-

|x |, x2, cos(x).

Well known odd functions are

x, sin(x), tan(x).

An even function of x , plotted on the (x, y) plane, is symmetrical about the y axis.
An odd function of x drawn on the same axes is anti-symmetric (see Fig. 4.2).

The important consequence of the essential properties of these functions is that
the Fourier series of an even function has to consist entirely of even functions and
therefore has no sine terms. Similarly, the Fourier series of an odd function must
consist entirely of odd functions, i.e. only sine terms.

Hence, given

f (x) = 1

2
a0 +

≤∑
n=1

(an cos(nx) + bn sin(nx)) − α < x < α
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Fig. 4.2 a An even function, b an odd function

if f (x) is even for all x then bn = 0 for all n. If f (x) is odd for all x then an = 0
for all n. We have already had one example of this. The function x is odd, and the
Fourier series found after Example 4.1 is

x = 2
≤∑

n=1

(−1)n+1

n
sin(nx), −α < x < α

which has no even terms.

Example 4.4 Determine the Fourier series for the function

f (x) = x2

f (x) = f (x + 2α), −α ∗ x ∗ α.

SolutionSince x2 = (−x)2, f (x) is an even function. Thus theFourier series consists
solely of even functions which means bn = 0 for all n. We therefore compute the
an’s as follows

a0 = 1

α

∫ α

−α
x2dx

= 1

3

1

α
[x3]α−α = 2

3
α2

also an = 1

α

∫ α

−α
x2 cos(nx)dx (n ≈= 0)

= 1

α

[
x2

n
sin(nx)

⎡α

−α

− 1

α

∫ α

−α

2x

n
sin(nx)dx

= 0 + 1

α

[
2x

n2 cos(nx)

⎡α

−α

− 2

αn

∫ α

−α

cos(nx)

n
dx

= 4

n2 (−1)n
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so

f (x) = α2

3
+ 4

≤∑
n=1

(−1)n

n2 cos nx − α ∗ x < α.

This last example leads to some further insights.
If we let x = 0 in the Fourier series just obtained, the right-hand side is

α2

3
+ 4

≤∑
n=1

(−1)n

n2

hence

0 = α2

3
+ 4

(
−1 + 1

22
− 1

32
+ · · ·

)

so

1 − 1

22
+ 1

32
− · · · = α2

12
.

This is interesting in itself as this series is not easy to sum. However it is also possible
to put x = α and obtain

α2 = α2

3
+ 4

≤∑
n=1

1

n2

i.e. ≤∑
n=1

1

n2 = α2

6
.

Note that even periodic functions are continuous, whereas odd periodic functions
are, using Dirichlet’s theorem, zero at the end points. We shall utilise the properties
of odd and even functions from time to time usually in order to simplify matters and
reduce the algebra. Another tool that helps in this respect is the complex form of the
Fourier series which is derived next.

4.4 Complex Fourier Series

Given that a Fourier series has the general form

f (x) ∼ 1

2
a0 +

≤∑
n=1

(an cos(nx) + bn sin(nx)), −α < x < α, (4.4)
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we can write

cos(nx) = 1

2
(einx + e−inx )

and

sin(nx) = 1

2i
(einx − e−inx ).

If these equations are inserted into Eq. 4.4 then we obtain

f (x) ∼
≤∑

n=−≤
cneinx

where

cn = 1

2
(an − ibn), c−n = 1

2
(an + ibn), c0 = 1

2
a0, n = 1, 2, . . . .

Using the integrals for an and bn we get

cn = 1

2α

∫ α

−α
f (x)e−inx dx and c−n = 1

2α

∫ α

−α
f (x)einx dx .

This is called the complex form of the Fourier series and can be useful for the
computation of certain types of Fourier series. More importantly perhaps, it enables
the step to Fourier transforms to be made which not only unites this section and its
subject, Fourier series, to the Laplace transforms that have already met, but leads
naturally to applications to the field of signal processing which is of great interest to
many electrical engineers.

Example 4.5 Find the Fourier series for the function

f (t) = t2 + t, −α ∗ t ∗ α,

f (t) = f (t + 2α).

Solution We could go ahead and find the Fourier series in the usual way. However
it is far easier to use the complex form but in a tailor-made way as follows. Given

an = 1

α

∫ α

−α
f (t) cos(nt)dt

and

bn = 1

α

∫ α

−α
f (t) sin(nt)dt
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we define

dn = 1

α

∫ α

−α
f (t)eint dt = an + ibn

so that

dn = 1

α

∫ α

−α
(t2 + t)eint dt

= 1

α

[
t2 + t

in
eint

⎡α

−α

− 1

α

∫ α

−α

2t + 1

in
eint dt

= 1

α

[
t2 + t

in
eint − 2t + 1

(in)2
eint + 2

(in)3
eint

⎡α

−α

= 1

α

[
α2 + α

in
− α2 − α

in
+ 2α + 1

n2 − −2α + 1

n2

⎡
(−1)n

= (−1)n
(

4

n2 + 2

in

)

so

an = 4

n2 (−1)n, bn = 2

n
(−1)n+1

and

a0 = 1

α

∫ α

−α
(t2 + t)dt = 2

3
α2.

These can be checked by direct computation. The Fourier series is thus, assuming
convergence of the right hand side,

f (t) ∼ 1

3
α2 +

≤∑
n=1

(−1)n
(
4 cos(nt)

n2 − 2 sin(nt)

n

)
−α < t < α.

We shall use this last example to make a point that should be obvious at least with
hindsight. In Example 4.1 we deduced the result

f (x) = 2x + 1 ∼ 1 − 4
≤∑

n=1

(−1)n

n
sin(nx), −α ∗ x ∗ α.

The right hand side is pointwise convergent for all x ∞ [−α,α]. It is therefore legal
(see Sect. 4.6) to integrate the above Fourier series term by term indefinitely. The left
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hand side becomes ∫ t

0
(2x + 1)dx = t2 + t.

The right hand side becomes

t − 4
≤∑

n=1

(−1)n

n2 cos(nt).

This result may seem to contradict the Fourier series just obtained, viz.

t2 + t ∼ 1

3
α2 +

≤∑
n=1

(−1)n
(
4 cos(nt)

n2 − 2 sin(nt)

n

)

as the right hand sides are not the same. There is no contradiction however as

t − 4
≤∑

n=1

(−1)n

n2 cos(nt)

is not a Fourier series due to the presence of the isolated t at the beginning.
From a practical point of view, it is useful to know just how many terms of a

Fourier series need to be calculated before a reasonable approximation to the periodic
function is obtained. The answer of course depends on the specific function, but to
get an idea of the approximation process, consider the function

f (t) = t + 2 0 ∗ t ∗ 2 with f (t) = f (t + 2)

which formally has the Fourier series

f (t) = 3 − 2

α

≤∑
n=1

sin(αt)

n
.

The sequence formed by the first seven partial sums of this Fourier series are shown
superimposed in Fig. 4.3. In this instance, it can be seen that there is quite a rapid
convergence to the “saw-tooth” function f (t) = t + 2. Problems arise where there
are rapid changes of gradient (at the corners) and in trying to approximate a vertical
line via trigonometric series (which brings us back to Dirichlet’s theorem). The
overshoots at corners (Gibbs phenomenon) and other problems (e.g. aliasing) are
treated in depth in specialist texts, but see the end of Sect. 7.6 for a bit more on
this. Here we concentrate on finding the series itself and now move on to some
refinements.

http://dx.doi.org/10.1007/978-1-4471-6395-4_7
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Fig. 4.3 Thefirst sevenpartial
sums of the Fourier series for
the function f (t) = t + 2,
0 ∗ t ∗ 2, f (t) = f (t + 2)
drawn in the range 0 ∗ t ∗ 8

4.5 Half Range Series

There is absolutely no problem explaining half range series in terms of the normed
linear space theory of Sect. 4.1. However, we shall postpone this until half range
series have been explained and developed in terms of even and odd functions. This
is entirely natural, at least for the applied mathematician.

Half range series are, as the name implies, series defined over half of the normal
range. That is, for standard trigonometric Fourier series the function f (x) is defined
only in [0,α] instead of [−α,α]. The value that f (x) takes in the other half of the
interval, [−α, 0] is free to be defined. If we take

f (x) = f (−x)

that is f (x) is even, then the Fourier series for f (x) can be entirely expressed in
terms of even functions, i.e cosine terms. If on the other hand

f (x) = − f (−x)

then f (x) is an odd function and the Fourier series is correspondingly odd and
consists only of sine terms. We are not defining the same function as two different
Fourier series, for f (x) is different, at least over half the range (see Fig. 4.4). We are
now ready to derive the half range series in detail. First of all, let us determine the
cosine series. Suppose

f (x) = f (x + 2α), −α ∗ x ∗ α

and, additionally, f (x) = f (−x) so that f (x) is an even function. Since the formulae

an = 1

α

∫ α

−α
f (x) cos(nx)dx
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Fig. 4.4 a f (x) is an even function (cosine series), b f (x) is an odd function (sine series)

and

bn = 1

α

∫ α

−α
f (x) sin(nx)dx

have already been derived, we impose the condition that f (x) is even. It is then easy
to see that

an = 2

α

∫ α

0
f (x) cos nxdx

and bn = 0. For odd functions, the formulae for an and bn are an = 0 and

bn = 2

α

∫ α

0
f (x) sin(nx)dx .

The following example brings these formulae to life.

Example 4.6 Determine the half range sine and cosine series for the function

f (t) = t2 + t, 0 ∗ t ∗ α.

Solution We have previously determined that, for f (t) = t2 + t

an = 4(−1)n

n2 , bn = 2

n
(−1)n .

For this function, the graph is displayed in Fig. 4.5. If we wish f (t) to be even, then
f (t) = f (−t) and so

an = 2

α

∫ α

0
(t2 + t) cos(nt)dt, bn = 0.

On the other hand, if we wish f (t) to be odd, we require f (t) = − f (−t), where
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Fig. 4.5 The graph f (t) =
t2 + t, shown for the entire
range −α ∗ t ∗ α to empha-
sise that it might be periodic
but it is neither odd nor even

b′
n = 2

α

∫ α

0
(t2 + t) sin(nt)dt, a′

n = 0.

Both of these series can be calculated quickly using the same trick as used to deter-
mine the whole Fourier series, namely, let

k = an + ib′
n = 2

α

∫ α

0
(t2 + t)eint dt.

We evaluate this carefully using integration by parts and show the details.

k = 2

α

∫ α

0
(t2 + t)eint dt

= 2

α

[
t2 + t

in
eint

⎡α

0
− 2

α

∫ α

0

2t + 1

in
eint dt

= 2

α

[
t2 + t

in
eint − 2t + 1

(in)2
eint + 2

(in)3
eint

⎡α

0

= 2

α

[
−α2 + α

in
+ 2α + 1

n2 + 2i

n3

⎡
(−1)n

− 2

α

[
− 1

n2 + 2i

n3

⎡

from which

an = 2

α

[
2α + 1

n2 (−1)n + 1

n2

⎡

and

b′
n = 2

α

[
− (α2 + α)

n
(−1)n + 2

n3 ((−1)n − 1)

⎡
.
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The constant term 1
2a0 is given by

a0 = 2

α

∫ α

0
(t2 + t)dt

= 2

α

[
1

3
t3 + 1

2
t2

⎡α

0

= 2

[
α2

3
+ α

2

⎡

so the constant term in the Fourier series (a0/2) is

[
α2

3
+ α

2

⎡
.

Therefore we have deduced the following two series: the even series for t2 + t :-

[
α2

3
+ α

2

⎡
+ 2

α

≤∑
n=1

[
2α + 1

n2 (−1)n + 1

n2

⎡
cos(nt), x ∞ (0,α)

and the odd series for t2 + t

2

α

≤∑
n=1

[
(α2 + α)

n
(−1)n+1 + 2

n3 ((−1)n − 1)

⎡
sin(nt), x ∞ (0,α).

They are pictured in Fig. 4.6. To frame this in terms of the theory of linear spaces,
the originally chosen set of basis functions

1≡
2
, cos(x), sin(x), cos(2x), sin(2x), . . .

is no longer a basis in the halved interval [0,α]. However the sequences
1≡
2
, cos(x), cos(2x), . . .

and

sin(x), sin(2x), sin(3x) . . .

are, separately, both bases. Half range series are thus legitimate.
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Fig. 4.6 The function f (t)
displayed both as an even
function and as an odd func-
tion

4.6 Properties of Fourier Series

In this section we shall be concerned with the integration and differentiation of
Fourier series. Intuitively, it is the differentiation of Fourier series that poses more
problems than integration. This is because differentiating cos(nx) or sin(nx) with
respect to x gives −n sin(nx) or n cos(nx) which for large n are both larger in
magnitude than the original terms. Integration on the other hand gives sin(nx)/n or
− cos(nx)/n, both smaller in magnitude. For those familiar with numerical analysis
this comes as no surprise as numerical differentiation always needs more care than
numerical integration which by comparison is safe. The following theorem covers
the differentiation of Fourier series.

Theorem 4.5 If f is continuous on [−α,α] and piecewise differentiable in (−α,α)
which means that the derivative f ′ is piecewise continuous on [−α,α], and if f (x)
has the Fourier series

f (x) ∼ 1

2
a0 +

≤∑
n=1

{an cos(nx) + bn sin(nx)}

then the Fourier series of the derivative of f (x) is given by

f ′(x) ∼
≤∑

n=1

{−nan sin(nx) + nbn cos(nx)}.

The proof of this theorem follows standard analysis and is not given here. The
integration of a Fourier series poses less of a problem and can virtually always take
place. The conditions for a function f (x) to possess a Fourier series are similar to
those required for integrability (piecewise continuity is sufficient), therefore inte-
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grating term by term can occur. A minor problem arises because the result is not
necessarily another Fourier series. A term linear in x is produced by integrating the
constant term whenever this is not zero. Formally, the following theorem covers the
integration of Fourier series. It is not proved either, although a related more general
result is derived a little later as a precursor to Parseval’s theorem.

Theorem 4.6 If f is piecewise continuous on the interval [−α,α] and has the
Fourier series

f (x) ∼ 1

2
a0 +

≤∑
n=1

{an cos(nx) + bn sin(nx)}

then for each x ∞ [−α,α],
∫ x

−α
f (t)dt = a0(x + α)

2
+

≤∑
n=1

[
an

n
sin(nx) − bn

n
(cos(nx) − cos(nα))

⎡

and the function on the right converges uniformly to the function on the left.

Let us discuss the details of differentiating and integrating Fourier series via the
three series for the functions x3, x2 and x in the range [−α,α]. Formally, these
three functions can be rendered periodic of period 2α by demanding that for each,
f (x) = f (x +2α) and using Theorem 4.3 at the end points. The three Fourier series
themselves can be derived using Eq.4.4 and are

x3 ∼
≤∑

n=1

(−1)n 2

n3 (6 − α2n2) sin(nx)

x2 ∼ α2

3
+

≤∑
n=1

4(−1)n

n2 cos(nx)

x ∼
≤∑

n=1

2

n
(−1)n+1 sin(nx)

all valid for −α < x < α. We state without proof the following facts about these
three series. The series for x2 is uniformly convergent. Neither the series for x nor
that for x3 are uniformly convergent. All the series are pointwise convergent. It is
therefore legal to differentiate the series for x2 but not either of the other two. All
the series can be integrated. Let us perform the operations and verify these claims.
It is certainly true that the term by term differentiation of the series

x2 ∼ α2

3
+

≤∑
n=1

4(−1)n

n2 cos(nx)
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gives

2x ∼
≤∑

n=1

4

n
(−1)n+1 sin(nx)

which is the same as the Fourier series for x apart from the trivial factor of 2.
Integrating a Fourier series term by term leads to the generation of an arbitrary
constant. This can only be evaluated by the insertion of a particular value of x . To
see how this works, let us integrate the series for x2 term by term. The result is

x3

3
∼ α2

3
x + A +

≤∑
n=1

4

n3 (−1)n sin(nx)

where A is an arbitrary constant. Putting x = 0 gives A = 0 and inserting the Fourier
series for x in place of the x on the right hand side regains the Fourier series for x3

already given. This integration of Fourier series is not always productive. Integrating
the series for x term by term is not useful as there is no easy way of evaluating the
arbitrary constant that is generated (unless one happens to know the value of some
obscure series). Note also that blindly (and illegally) differentiating the series for x3

or x term by term give nonsense in both cases.
Let us now derive a more general result involving the integration of Fourier

series. Suppose F(t) is piecewise differentiable in the interval (−α,α) and therefore
continuous on the interval [−α,α]. Let F(t) be represented by the Fourier series

F(t) ∼ A0

2
+

≤∑
n=1

(An cos(nt) + Bn sin(nt)) , −α < t < α,

and the usual periodicity
F(t) = F(t + 2α).

Now suppose that we can define another function G(x) through the relationship

∫ t

−α
G(x)dx = 1

2
a0t + F(t).

We then set ourselves the task of determining the Fourier series for G(x). Using that
F(t) has a full range Fourier series we have

An = 1

α

∫ α

−α
F(t) cos(nt)dt, and Bn = 1

α

∫ α

−α
F(t) sin(nt)dt.

By the fundamental theorem of the calculus we have that

F ′(t) = G(t) − 1

2
a0.
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Now, evaluating the integral for An by parts once gives

An = − 1

nα

∫ α

−α
F ′(t) sin(nt)dt,

and similarly,

Bn = − 1

nα

∫ α

−α
F ′(t) cos(nt)dt.

Hence, writing the Fourier series for G(x) as

G(x) = a0
2

+
≤∑

n=1

(an cos(nx) + bn sin(nx)) , −α < x < α,

and comparing with

G(t) = 1

2
a0 + F ′(t)

gives

An = −bn

n
and Bn = an

n
.

We now need to consider the values of the Fourier series for F(t) at the end points
t = −α and t = α. With

t = α, F(α) = −a0α

2
+

∫ α

−α
G(x)dx

and with
t = −α, F(−α) = a0α

2
.

Since F(t) is periodic of period 2α we have

F(−α) = F(α) = 1

2
a0α.

Also

F(t) ∼ A0

2
+

≤∑
n=1

(
−bn

n
cos(nt) + an

n
sin(nt)

)
.

Putting t = α is legitimate in the limit as there is no jump discontinuity at this point
(piecewise differentiability), and gives

1

2
a0α = 1

2
A0 −

≤∑
n=1

bn

n
cos(nα) = 1

2
A0 −

≤∑
n=1

(−1)n bn

n
.
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We need to relate A0 to a0 and the bn terms. To do this, we use the new form of F(t)
namely

F(t) ∼ 1

2
a0α +

≤∑
n=1

1

n

[
bn

⎢
(−1)n − cos(nt)

⎧ + an sin(nt)
]

which is written in terms of the Fourier coefficients of G(t), the integral of F(t). To
determine the form of this integral we note that

∫ t

−α
G(x)dx = 1

2
a0t + F(t)

= 1

2
a0(α + t) +

≤∑
n=1

1

n

[
bn(−1)n − bn cos(nt) + an sin(nt)

]

Also

∫ φ

−α
G(x)dx = 1

2
a0(α + φ) +

≤∑
n=1

1

n

[
bn(−1)n − bn cos(nφ) + an sin(nφ)

]

so subtracting gives

∫ t

φ
G(x)dx = 1

2
a0(t−φ)+

≤∑
n=1

1

n
[bn (cos(nφ) − cos(nt)) + an (sin(nt) − sin(nφ))]

which tells us the form of the integral of a Fourier series. Here is an example where
the ability to integrate a Fourier series term by term proves particularly useful.

Example 4.7 Use the Fourier series

x2 = α2

3
+ 4

≤∑
n=1

(−1)n

n2 cos(nx)

to deduce the value of the series

≤∑
k=1

(−1)k−1

(2k − 1)3
.

Solution Utilising the result just derived on the integration of Fourier series, we put
φ = 0 and t = α/2 so we can write

∫ α
2

0
x2dx = α2

3

⎦α

2
− 0

)
+ 4

≤∑
n=1

1

n

[
(−1)n

n2 sin
⎦nα

2

)⎡
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so
α3

24
= α3

6
+ 4

≤∑
n=1

(−1)n

n3 sin
⎦nα

2

)
.

Now, since sin(nα/2) takes the values 0, 1, 0,−1, . . . for n = 0, 1, 2, . . . we imme-
diately deduce that

≤∑
n=1

(−1)n

n3 sin
⎦nα

2

)
= −

≤∑
k=1

(−1)k−1

(2k − 1)3

which gives
≤∑

n=1

(−1)n

n3 sin
⎦nα

2

)
= 1

4

(
α3

6
− α3

24

)
= α3

32
.

Whence, putting n = 2k − 1 gives the result

≤∑
k=1

(−1)k−1

(2k − 1)3
= α3

32
.

The following theorem can now be deduced.

Theorem 4.7 If f (t) and g(t) are continuous in (−α,α) and provided

∫ α

−α
| f (t)|2dt < ≤ and

∫ α

−α
|g(t)|2dt < ≤,

if an, bn are the Fourier coefficients of f (t) and πn, ωn those of g(t), then

∫ α

−α
f (t)g(t)dt = 1

2
αa0π0 + α

≤∑
n=1

(πnan + ωnbn).

Proof Since

f (t) ∼ a0
2

+
≤∑

n=1

(an cos(nt) + bn sin(nt))

and

g(t) ∼ π0

2
+

≤∑
n=1

(πn cos(nt) + ωn sin(nt))

we can write
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f (t)g(t) ∼ 1

2
a0g(t) +

≤∑
n=1

(ang(t) cos(nt) + bng(t) sin(nt)) .

Integrating this series from −α to α gives

∫ α

−α
f (t)g(t)dt = 1

2
a0

∫ α

−α
g(t)dt

+
≤∑

n=1

{
an

∫ α

−α
g(t) cos(nt)dt + bn

∫ α

−α
g(t) sin(nt)dt

}

provided the Fourier series for f (t) is uniformly convergent, enabling the summa-
tion and integration operations to be interchanged. This follows from the Cauchy–
Schwarz inequality since

∫ α

−α
| f (t)g(t)|dt ∗

(∫ α

−α
| f (t)|2dt

)1/2 (∫ α

−α
|g(t)|2dt

)1/2

< ≤.

However, we know that

1

α

∫ α

−α
g(t) cos(nt)dt = πn

1

α

∫ α

−α
g(t) sin(nt)dt = ωn

and that

π0 = 1

α

∫ α

−α
g(t)dt

so this implies

∫ α

−α
f (t)g(t)dt = 1

2
αa0π0 + α

≤∑
n=1

(πnan + ωnbn)

as required. �

If we put f (t) = g(t) in the above result, the following important theorem im-
mediately follows.

Theorem 4.8 (Parseval) If f (t) is continuous in the range (−α,α), is square inte-

grable (i.e.
∫ α

−α
[ f (t)]2dt < ≤) and has Fourier coefficients an, bn then
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∫ α

−α
[ f (t)]2dt = 2αa2

0 + α

≤∑
n=1

(a2
n + b2n).

Proof This is immediate from Theorem 4.7 by putting

f (t) = g(t)

�

This is a useful result for mathematicians, but perhaps its most helpful attribute
lies in its interpretation. The left hand side represents the mean square value of f (t)
(once it is divided by 2α). It can therefore be thought of in terms of energy if f (t)
represents a signal. What Parseval’s theorem states therefore is that the energy of a
signal expressed as a waveform is proportional to the sum of the squares of its Fourier
coefficients. For now, let us content ourselves with a mathematical consequence of
the theorem.

Example 4.8 Given the Fourier series

t2 = α2

3
+ 4

≤∑
n=1

(−1)n

n2 cos(nt)

deduce the value of
≤∑

n=1

1

n4 .

Solution Applying Parseval’s theorem to this series, the left hand side becomes

∫ α

−α
(t2)2dt = 2

5
α5.

The right hand side becomes

α

(
α2

3

)2

+ α

≤∑
n=1

16

n4 .

Equating these leads to
2

5
α5 = 2

9
α5 + α

≤∑
n=1

16

n4

or

16
≤∑

n=1

1

n4 = α4
(
2

5
− 2

9

)
.
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Hence ≤∑
n=1

1

n4 = α4

90
.

4.7 Generalised Fourier Series

To finish off this chapter, let us generalise. Instead of using specific trigonometric
functions, we can use any functions provided as a set they form a basis and are orthog-
onal. Call the functions βn(t) where n is an integer. Then the piecewise continuous
function f (t) can be expressed as the generalised Fourier series:

f (t) =
≤∑

n=1

knβn(t). (4.5)

The coefficients kn are retrieved using the orthogonality of the basis functions βn(t)
through the integral

∫ t1

t0
f (t)βn(t)dt =

≤∑
m=1

km

∫ t1

t0
βm(t)βn(t)dt

and of course the orthogonality of the basis functions βn(t) means that

∫ t1

t0
βm(t)βn(t)dt = ψm,nγn

where ψm,n is the Kronecker delta and γn is there as the orthogonal functions βn are
not orthonormal. [For those aware of Cartesian tensors, the summation convention
does not apply here; the right hand side is not equal to γm] Putting m = n gives

γn =
∫ t1

t0
β2

n(t)dt.

As a reminder, Kronecker’s delta is defined as follows:

ψm,n =
{
0 m ≈= n
1 m = n

.

Being careful to change the dummy variable from n to m in the generalised Fourier
series, Eq. 4.5, first the coefficients kn are given in terms of n by
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kn = 1

γn

∫ t1

t0
f (t)βn(t)dt.

In all of the above [t0, t1] is the interval overwhich the functionsβn(t) are orthogonal.
The function f (t) is expressible as a generalised Fourier series for values of t that
lie inside this interval. Typically the interval is [0, 2L] but L can be infinite. Let us
return to how to choose specific function setsβn(t). Choosing the basic trigonometric
functions sine and cosine that are the backbone of Fourier series certainly is a good
choice as their properties are familiar.We have already established the criteria needed
in terms of forming a basis and orthogonality in terms of linear spaces. The set

{
1≡
2
, sin(x), cos(x), sin(2x), cos(2x), . . .

}

certainly forms a basis (this one’s orthonormal) for all periodic piecewise continuous
functions on [−α,α]. The one we use

{e0, e1, e2, . . .} =
{
1

2
, sin(x), cos(x), sin(2x), cos(2x), . . .

}

fails to be orthonormal because using the inner product of Theorem 4.4 e0 = 1/2
and ≥e0, e0→ = 1

2 ≈= 1 , but this is a trivial failure, only there because users of Fourier
series like to avoid square roots. All the important orthogonality conditions are valid.
The real question is what makes sine and cosine so special, and are there other bases
that would do as well? To lead us to the answer, note that the second order differential
equation

d2x

dt2
+ n2x = 0

has general solution
x = A cos(nt) + B sin(nt).

If we consider a more general second order differential equation that contains a
parameter that can take integer values, then we could label one solution of this
equation βn(t). On the other hand there’s no earthly reason why βn(t) needs to
satisfy a differential equation provided there is a basis for all piecewise continuous
functions. The reason we pick solutions of differential equations is that these turn out
to be a guaranteed source of bases. Solutions of second order differential equations
that have a parameter associated with them that can be an integer almost always
can be used to generate the linear space for all piecewise continuous functions.
The mathematics behind this was done in the 19th century by such luminaries as
J. C. F. Sturm (1803–1855) and J. Liouville (1808–1882). Such pure mathematics is
however beyond the scope of this text. Let us merely state a couple of these second
order differential equations as examples of specific choices for βn(t). Perhaps the
best known examples are Legendre’s equation
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(1 − t2)
d2Pn

dt2
− 2t

d Pn

dt
+ n(n + 1)Pn = 0, n = 0, 1, . . .

and Bessel’s equation

t2
d2 Jn

dt2
+ t

d Jn

dt
+ (t2 − n2)Jn = 0 n = 0, 1 . . .

The generalised series are termed Fourier-Legendre and Fourier-Bessel series respec-
tively. All the worries about convergence etc. are allayed as these special functions
as they are called are all appropriately well behaved. The Fourier Legendre series is

f (t) =
≤∑

n=1

kn Pn(t)

with

∫ 1

−1
Pm(t)Pn(t)dt = 2

2m + 1
ψm,n

so

kn = 2n + 1

2

∫ 1

−1
Pn(t) f (t)dt.

The Fourier-Bessel series is a bit different as the series is based on where the zeros of
the Bessel function are rather than the order of the Bessel function itself. These in turn
depend on the order parameter n. For this reason we call the Bessel function Jr (t)
so that n is free to be our dummy variable. Suppose the zeros of Jr (t) are labelled
πn, n = 1, 2, 3, . . . so that Jr (πn) = 0 for all integers n. TheFourier-Bessel equation
is then

f (t) =
≤∑

n=1

kn Jr (tπn).

The orthogonality condition is also a bit different. First of all

∫ 1

0
t f (t)Jr (tπn)dt =

≤∑
n=1

km

∫ 1

0
t Jr (tπn)Jr (tπm)dt

and the condition itself is

∫ 1

0
t Jr (tπn)Jr (tπm)dt = 1

2
ψm,n[Jr+1(πm)]2

so that
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∫ 1

0
t f (t)Jr (tπn)dt = 1

2
kn[Jr+1(πn)]2

with

kn = 2

[Jr+1(πn)]2
∫ 1

0
t f (t)Jr (tπn)dt.

The extra t under the integral sign is called a weight function. Let’s leave these
specific special series here as knowledge of the properties of Pn(t) and Jr (tπn) are
required.

Before doing an example based on a different special function it is worth stating
the generalised version of Parseval’s theorem

∫ t1

t0
f 2(t)dt =

≤∑
n=1

γk2n .

Example 4.9 Use the equation

d

dt

[
te−t d Ln

dt

⎡
+ ne−t Ln = 0

to show that Lm(t), Ln(t); m, n = 0, 1, 2, 3 . . . obey the orthogonality relation

∫ ≤

0
e−t Lm(t)Ln(t)dt = 0

(Ln(t) is a Laguerre function, and the differential equation

t
d2y

dt2
+ (1 − t)

dy

dt
+ ny = 0

is called Laguerre’s differential equation.)

Solution Start with the two equations

d

dt

[
te−t d Ln

dt

⎡
+ ne−t Ln = 0

and
d

dt

[
te−t d Lm

dt

⎡
+ me−t Lm = 0

take Lm times the first minus Ln times the second and the solution follows after
integration by parts. Here are some details; first of all we get:
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Lm
d

dt

[
te−t d Ln

dt

⎡
− Ln

d

dt

[
te−t d Lm

dt

⎡
− (m − n)e−t Lm Ln = 0.

Now integrate this between 0 and ≤. The first two terms are evaluated as follows

[
Lmte−t d Ln

dt
− Lnte−t d Lm

dt

⎡≤

0
−

∫ ≤

0

[
d Lm

dt
te−t d Ln

dt
− d Ln

dt
te−t d Lm

dt

⎡
dt.

This is zero as the first integrated part vanishes at both limits (Ln is a polynomial so
e−t Ln tends to zero as t √ ≤), and the integrand on the second part is zero. Hence

∫ ≤

0
e−t Lm(t)Ln(t)dt = 0

provided m ≈= n. If m = n the integral is non-zero and not unity. So Lm and Ln are
orthogonal but not orthonormal, this is quite typical.

Note the presence of e−t in the integrand. It is theweight function for the Laguerre
functions. The last example provides an introduction to Sturm-Liouville theorywhich
uses the orthogonality of the solutions to homogeneous ordinary differential equa-
tions to findmore general solutions to non-homogeneous differential equations when
put in the form of an eigenvalue problem (see texts on Ordinary Differential Equa-
tions, for example King, Billingham and Otto (2003)).

A final word on generalised Fourier series. If a function f (t) is expressed as a
generalised Fourier series it does not have to be periodic. The range dictated by the
orthogonality condition, for example [−1, 1] for the Fourier-Legendre series or [0, 1]
for the Fourier-Bessel series tells you the interval over which the function f (t) has
to be defined, but there is no implied periodicity as there is for Fourier series. The
periodicity of these is solely due to the periodicity of sine and cosine. There can be
a pattern in the generalised series due to the properties of the particular orthogonal
function, one example of this is displayed through the function f (t) in exercise 16
below. In this exercise, f (t) is not periodic but f (ln t) is periodic.

4.8 Exercises

1. Use the Riemann–Lebesgue lemma to show that

lim
m√≤

∫ α

0
g(t) sin

(
m + 1

2

)
tdt = 0,

where g(t) is piecewise continuous on the interval [0,α].
2. f (t) is defined by
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f (t) =
⎫
⎬

t 0 ∗ t ∗ 1
2α

1
2α

1
2α ∗ t ∗ α

α − 1
2 t α ∗ t ∗ 2α.

Sketch the graph of f (t) and determine a Fourier series assuming f (t) = f (t +
2α).

3. Determine the Fourier series for f (x) = H(x), the Heaviside unit step function,
in the range [−α,α], f (x) = f (x + 2α). Hence find the value of the series

1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · · .

4. Find the Fourier series of the function

f (x) =
{
sin( 12 x) 0 ∗ x ∗ α

− sin( 12 x) α < x ∗ 2α

with f (x) = f (x + 2α).
5. Determine theFourier series for the function f (x) = 1−x2, f (x) = f (x+2α).

Suggest possible values of f (x) at x = α.
6. Deduce that the Fourier series for the function f (x) = eax , −α < x < α, a a

real number is

sinh(αa)

α

⎭
1

a
+ 2

≤∑
n=1

(−1)n

a2 + n2 (a cos(nx) − n sin(nx))

}
.

Hence find the values of the four series:

≤∑
n=1

(−1)n

a2 + n2 ,

≤∑
n=−≤

(−1)n

a2 + n2 ,

≤∑
n=1

1

a2 + n2 ,

≤∑
n=−≤

1

a2 + n2 .

7. If

f (t) =
{−t + et − α ∗ t < 0

t + et 0 ∗ t < α

where f (t) = f (t +2α), sketch the graph of f (t) for−4α ∗ t ∗ 4α and obtain
a Fourier series expansion for f (t).

8. Find the Fourier series expansion of the function f (t) where

f (t) =
{

α2 − α < t < 0
(t − α)2 0 ∗ t < α

and f (t) = f (t + 2α). Hence determine the values of the series
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≤∑
n=1

1

n2 and
≤∑

n=1

(−1)n+1

n2 .

9. Determine the two Fourier half-range series for the function f (t) defined in
Exercise 8, and sketch the graphs of the function in both cases over the range
[−2α ∗ t ∗ 2α].

10. Given the half range sine series

t (α − t) = 8

α

≤∑
n=1

sin(2n − 1)t

(2n − 1)3
, 0 ∗ t ∗ α

use Parseval’s Theorem to deduce the value of the series
≤∑

n=1

1

(2n − 1)6
.

Hence deduce the value of the series
≤∑

n=1

1

n6 .

11. Deduce that the Fourier series for the function f (x) = x4, −α < x < α, is

x4 ∼ α4

5
+

≤∑
n=1

8(−1)n

n4 (α2n2 − 6) cos(nx).

Explain why this series contains no sine terms. Use this series to find the value
of the series ≤∑

n=1

(−1)n+1

n4

given that
≤∑

n=1

(−1)n+1

n2 = α2

12
.

Assuming (correctly) that this Fourier series is uniformly convergent, use it to
derive the Fourier series for x3 over the range −α < x < α.

12. Given the Fourier series

x ∼
≤∑

n=1

2

n
(−1)n+1 sin(nx), −α < x < α,

integrate term by term to obtain the Fourier series for x2, evaluating the constant
of integration by integrating both sides over the range [−α,α]. Use the same
integration technique on the Fourier series for x4 given in the last exercise to
deduce the Fourier series for x5 over the range −α < x < α.

13. In an electrical circuit, the voltage is given by the “top-hat” function



122 4 Fourier Series

V (t) =
{
40 0 < t < 2
0 2 < t < 5.

Obtain the first five terms of the complex Fourier series for V (t).
14. Show that the functions Pn(t) that satisfy the ordinary differential equation

(1 − t2)
d2Pn

dt2
− 2t

d Pn

dt
+ n(n + 1)Pn = 0, n = 0, 1, . . .

are orthogonal in the interval [−1, 1], where the inner product is defined by

≥p, q→ =
∫ 1

−1
pqdt.

15. Show that y = βn(t) = sin(n ln t) is a solution to the ordinary differential
equation [

t
d

dt

(
t
dy

dt

)⎡
+ n2y = 0.

Hence show that the functions βn(t), n = 1, 2, . . . are orthogonal in the range
[1, eα] with weight function 1/t .

16. Suppose g(x) = g(x + L) is a periodic piecewise continuous function defined
for real variable x . Define x = ln t and let g(x) = g(ln t) = f (t) have a half
range Fourier series

g(x) =
≤∑

n=1

bn sin(nx)

over the range [0,α]. Using this half range series, find the generalised Fourier
series for the function:

f (t) =
{
1 1 ∗ t < eα

0 otherwise

based on the generalised series βn(x) introduced in exercise 15.



Chapter 5
Partial Differential Equations

5.1 Introduction

In previous chapters, we have explained how ordinary differential equations can be
solved using Laplace transforms. In Chap.4, Fourier series were introduced, and
the important property that any reasonable function can be expressed as a Fourier
series derived. In this chapter, these ideas are brought together, and the solution
of certain types of partial differential equation using both Laplace transforms and
Fourier series are explored. The study of the solution of partial differential equations
(abbreviated PDEs) is a vast topic that it is neither possible nor appropriate to cover in
a single chapter. There are many excellent texts (Weinberger (1965), Sneddon (1957)
and Williams (1980) to name but three) that have become standard. Here we shall
only be interested in certain types of PDE that are amenable to solution by Laplace
transform.

Of course, to start with we will have to assume you know something about partial
derivatives. If a function depends on more than one variable, then it is in general
possible to differentiate it with respect to one of them provided all the others are held
constant while doing so. Thus, for example, a function of three variables f (x, y, z)
(if differentiable in all three) will have three derivatives written

∂ f

∂x
,
∂ f

∂y
, and

∂ f

∂z
.

The three definitions are straightforward and, hopefully familiar.

∂ f

∂x
= lim

�x∞0

{
f (x + �x, y, z) − f (x, y, z)

�x

}

y and z are held constant,

∂ f

∂y
= lim

�y∞0

{
f (x, y + �y, z) − f (x, y, z)

�y

}

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 123
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_5,
© Springer-Verlag London 2014
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x and z are held constant, and

∂ f

∂z
= lim

�z∞0

{
f (x, y, z + �z) − f (x, y, z)

�z

}

x and y are held constant. If all this is deeply unfamiliar, mysterious and a little
terrifying, then a week or two with an elementary text on partial differentiation is
recommended. It is an easy task to perform: simply differentiate with respect to one
of the variables whilst holding the others constant. Also, it is easy to deduce that all
the normal rules of differentiation apply as long it is remembered which variables
are constant and which is the one to which the function is being differentiated. One
example makes all this clear.

Example 5.1 Find all first order partial derivatives of the functions (a) x2yz, and
(b) x sin(x + yz).

Solution (a) The partial derivatives are as follows:-

∂

∂x
(x2yz) = 2xyz

∂

∂y
(x2yz) = x2z

and
∂

∂z
(x2yz) = x2y.

(b) The partial derivatives are as follows:-

∂

∂x
(x sin(x + yz)) = sin(x + yz) + x cos(x + yz)

which needs the product rule,

∂

∂y
(x sin(x + yz)) = xz cos(x + yz)

and
∂

∂z
(x sin(x + yz)) = xy cos(x + yz)

which do not.
There are chain rules for determining partial derivatives when f is a function of

u, v and w which in turn are functions of x, y and z

u = u(x, y, z), v = v(x, y, z) and w = w(x, y, z).



5.1 Introduction 125

This is direct extension of the “function of a function” rule for single variable
differentiation. There are other new features such as the Jacobian. We shall not
pursue these here; instead the interested reader is referred to specialist texts such as
Weinberger (1965) or Zauderer (1989).

5.2 Classification of Partial Differential Equations

In this book,wewill principally be concernedwith those partial differential equations
that can be solved using Laplace transforms, perhaps with the aid of Fourier series.
Thus we will eventually concentrate on second order PDEs of a particular type.
However, in order to place these in context, we need to quickly review (or introduce
for those readers new to this subject) the three different generic types of second order
PDE.

The general second order PDE can be written

a1
∂2φ

∂x2
+ b1

∂2φ

∂x∂y
+ c1

∂2φ

∂y2
+ d1

∂φ

∂x
+ e1

∂φ

∂y
+ f1φ = g1 (5.1)

where a1, b1, c1, d1, e1, f1 and g1 are suitably well behaved functions of x and y.
However, this is not a convenient form of the PDE for φ. By judicious use of Tay-
lor’s theorem and simple co-ordinate transformations it can be shown (e.g. Williams
(1980), Chap. 3) that there are three basic types of linear second order partial differ-
ential equation. These standard types of PDE are termed hyperbolic, parabolic and
elliptic following geometric analogies and are referred to as canonical forms. A crisp
notation we introduce at this point is the suffix derivative notation whereby

φx = ∂φ

∂x

φy = ∂φ

∂y
, etc.

φxx = ∂2φ

∂x2

φyy = ∂2φ

∂y2

φxy = ∂2φ

∂x∂y
, etc.

This notation is very useful when writing large complicated expressions that involve
partial derivatives. We use it now for writing down the three canonical forms of
second order partial differential equations
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hyperbolic a2φxy + b2φx + c2φy + f2φ = g2

elliptic a3(φxx + φyy) + b3φx + c3φy + f3φ = g3

parabolic a4φxx + b4φx + c4φy + f4φ = g4.

In these equations the a’s, b’s, c’s, f ’s and g’s are functions of the variables x, y.
Laplace transforms are useful in solving parabolic and some hyperbolic PDEs. They
are not in general useful for solving elliptic PDEs.

Let us now turn to some practical examples in order to see how partial differential
equations are solved. The commonest hyperbolic equation is the one dimensional
wave equation. This takes the form

1

c2
∂2u

∂t2
= ∂2u

∂x2

where c is a constant called the celerity or wave speed. This equation can be used
to describe waves travelling along a string, in which case u will represent the dis-
placement of the string from equilibrium, x is distance along the string’s equilibrium
position, and t is time. As anyone who is familiar with string instruments will know,
u takes the form of a wave. The derivation of this equation is not straightforward,
but rests on the assumption that the displacement of the string from equilibrium is
small. This means that x is virtually the distance along the string. If we think of the
solution in (x, t) space, then the lines x ± ct = constant assume particular impor-
tance. They are called characteristics and the general solution to the wave equation
has the general form

u = f (x − ct) + g(x + ct)

where f and g are arbitrary functions. If we expand f and g as Fourier series over
the interval [0, L] in which the string exists (for example between the bridge and the
top (machine head) end of the fingerboard in a guitar) then it is immediate that u can
be thought of as an infinite superposition of sinusoidal waves:-

u(x, t) =
≤∑

n=0

an cos[n(x − ct)] + bn sin[n(x − ct)]

+
≤∑

m=0

a≥
m cos[m(x + ct)] + b≥

m sin[m(x + ct)] + a0→
2

+ a≥
0→
2
.

If the boundary conditions are appropriate to a musical instrument, i.e. u = 0 at
x = 0, L (all t) then this provides a good visual form of a Fourier series.

Although it is possible to use the Laplace transform to solve such wave problems,
this is rarely done as there are more natural methods and procedures that utilise the
wave-like properties of the solutions but are outside the scope of this text. (What
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we are talking about here is the method of characteristics—see e.g. Williams (1980)
Chap.3.)

There is one particularly widely occurring elliptic partial differential equation
which is mentioned here but cannot in general be solved using Laplace transform
techniques. This is Laplace’s equation which, in its two dimensional form is

∂2φ

∂x2
+ ∂2φ

∂y2
= 0.

Functions φ that satisfy this equation are called harmonic and possess interesting
mathematical properties. Perhaps the most important of these is the following. A
function φ(x, y) which is harmonic in a domain D ∗ R

2 has its maximum and
minimum values on ∂D, the border of D, and not inside D itself. Laplace’s equation
occurs naturally in the fields of hydrodynamics, electromagnetic theory and elasticity
when steady state problems are being solved in twodimensions. Examples include the
analysis of standing water waves, the distribution of heat over a flat surface very far
from the source a long time after the source has been switched on, and the vibrations
of a membrane. Many of these problems are approximations to parabolic or wave
problems that can be solved using Laplace transforms. There are books devoted to
the solutions of Laplace’s equation, and the only reason its solution is mentioned here
is because the properties associated with harmonic functions are useful in providing
checks to solutions of parabolic or hyperbolic equations in some limiting cases. Let
us without further ado go on to discuss parabolic equations.

The most widely occurring parabolic equation is called the heat conduction equa-
tion. In its simplest one dimensional form (using the two variables t (time) and x
(distance)) it is written

∂φ

∂t
= κ

∂2φ

∂x2
.

This equation describes the manner in which heat φ(x, t) is conducted along a bar
made of a homogeneous substance located along the x axis. The thermal conductivity
(or thermal diffusivity) of the bar is a positive constant that has been labelled κ. One
scenario is that the bar is cold (at room temperature say) and that heat has been
applied to a point on the bar. The solution to this equation then describes the manner
in which heat is subsequently distributed along the bar. Another possibility is that
a severe form of heat, perhaps using a blowtorch, is applied to one point of the bar
for a very short time then withdrawn. The solution of the heat conduction equation
then shows how this heat gets conducted away from the site of the flame. A third
possibility is that the rod is melting, and the equation is describing the way that the
interface between themelted and unmelted rod is travelling away from the heat source
that is causing the melting. Solving the heat conduction equation would predict the
subsequent heat distribution, including the speed of travel of this interface. Each of
these problems is what is called an initial value problem and this is precisely the
kind of PDE that can be solved using Laplace transforms. The bulk of the rest of
this chapter is indeed devoted to solving these. One more piece of “housekeeping”
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is required however, that is the use of Fourier series in enabling boundary conditions
to be satisfied. This in turn requires knowledge of the technique of separation of
variables. This is probably revision, but in case it is not, the next section is devoted
to it.

5.3 Separation of Variables

The technique of separating the variables will certainly be a familiar method for
solving ordinary differential equations in the cases where the two variables can be
isolated to occur exclusively on either side of the equality sign. In partial differential
equations, the situation is slightly more complicated. It can be applied to Laplace’s
equation and to the wave equation, both of which were met in the last section.
However, here we solve the heat conduction equation.

We consider the problem of solving the heat conduction equation together with
the boundary conditions as specified below:

∂φ

∂t
= κ

∂2φ

∂x2
, x ∗ [0, L]

φ(x, 0) = f (x) at time t = 0

φ(0, t) = φ(L , t) = 0 for all time.

The fundamental assumption for separating variables is to let

φ(x, t) = T (t)X (x)

so that the heat conduction equation becomes

T ≥ X = κT X ≥≥

where prime denotes the derivative with respect to t or x . Dividing by XT we obtain

T ≥

T
= κ

X ≥≥

X
.

The next step is crucial to understand. The left hand side is a function of t only, and
the right hand side is a function of x only. As t and x are independent variables, these
must be equal to the same constant. This constant is called the separation constant.
It is wise to look ahead a little here. As the equation describes the very real situation
of heat conduction, we should look for solutions that will decay as time progresses.
This means that T is likely to decrease with time which in turn leads us to designate
the separation constant as negative. Let it be −α2, so

T ≥

T
= −α2 giving T (t) = T0e−α2t , t √ 0,
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and
X ≥≥

X
= −α2

κ
giving X (x) = a≥ cos

(
αx→

κ

)
+ b≥ sin

(
αx→

κ

)
.

Whence the solution is

φ(x, t) = e−α2t
(

a cos

(
αx→

κ

)
+ b sin

(
αx→

κ

))
.

At time t = 0, φ(x, 0) = f (x) which is some prescribed function of x (the initial
temperature distribution along a bar x ∗ [0, L] perhaps) then we would seem to
require that

f (x) = a cos

(
αx→

κ

)
+ b sin

(
αx→

κ

)

which in general is not possible. However, we can now use the separation constant
to our advantage. Recall that in Chap.4 it was possible for any piecewise continuous
function f (x), x ∗ [0, L] to be expressed as a series of trigonometric functions. In
particular we can express f (x) by

f (x) ⇒
≤∑

n=1

bn sin

(
αn x→

κ

)
,

writing α = αn to emphasise its n dependence. Further, if we set

αn→
κ

= nπ

L
, n = integer

then the boundary conditions at x = 0 and x = L are both satisfied. Here we have
expressed the function f (x) as a half range Fourier sine series which is consistent
with the given boundary conditions. Half range cosine series or full range series can
also be used of course depending on the problem.

Here, this leads to the complete solution of this particular problem in terms of the
series

φ(x, t) =
≤∑

n=1

bne−(n2π2κ/L2)t sin
(nπx

L

)
,

where

bn = 2

L

⎡ L

0
f (x) sin

(nπx

L

)
dx .

The solution can be justified as correct using the following arguments. First of all the
heat conduction equation is linear which means that we can superpose the separable
solutions in the form of a series to obtain another solution provided the series is
convergent. This convergence is established easily since the Fourier series itself is
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Fig. 5.1 The initial distrib-
ution of φ(x, t) drawn as an
odd function

pointwise convergent by construction, and the multiplying factor e−(n2π2κ/L2)t is
always less than or equal to one. The φ(x, t) obtained is thus the solution to the heat
conduction equation. Here is a specific example.

Example 5.2 Determine the solution to the boundary value problem:

∂φ

∂t
= κ

∂2φ

∂x2
, x ∗ [0, 2]

φ(x, 0) = x + (2 − 2x)H(x − 1) at time t = 0

φ(0, t) = φ(2, t) = 0 for all time

where H(x) is Heaviside’s unit step function (see Chap.2, Sect. 2.3).

Solution The form of the function φ(x, 0) is displayed in Fig. 5.1. This function is
expressed as a Fourier sine series by the methods outlined in Chap. 4. This is in order
to make automatic the satisfying of the boundary conditions. The Fourier sine series
is not derived in detail as this belongs in Chap.4. The result is

x + (2 − 2x)H(x − 1) ⇒
≤∑

n=1

8(−1)n−1

π2(2n − 1)2
sin

(nπx

2

)
.

The solution to this particular boundary value problem is therefore

φ(x, t) =
≤∑

n=1

8(−1)n−1

π2(2n − 1)2
e−(n2π2κ/L2)t sin

(nπx

2

)
.

There is much more on solving PDEs using separation of variables in specialist texts
such as Zauderer (1989). We shall not dwell further on the method for its own sake,
but move on to solve PDEs using Laplace transforms which itself often requires use
of separation of variables.

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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5.4 Using Laplace Transforms to Solve PDEs

We now turn to solving the heat conduction equation using Laplace transforms. The
symbol t invariably denotes time in this equation and the fact that time runs from
now (t = 0) to infinity neatly coincides with the range of the Laplace transform.
Remembering that

L{φ≥} =
⎡ ≤

0
e−st dφ

dt
dt = sφ̄(s) − φ(0)

where overbar (as usual) denotes the Laplace transform (i.e. L(φ) = φ̄) gives us the
means of turning the PDE

∂φ

∂t
= κ

∂2φ

∂x2

into the ODE

sφ̄(s) − φ(0) = κ
d2φ̄

dx2
.

We have of course assumed that

L
{
κ

∂2φ

∂x2

}
=

⎡ ≤

0
κ

∂2φ

∂x2
e−st dt = κ

d2

dx2

⎡ ≤

0
φe−st dt = κ

d2φ̄

dx2

which demands a continuous second order partial derivative with respect to x and
an improper integral with respect to t which are well defined for all values of x so
that the legality of interchanging differentiation and integration (sometimes called
Leibniz’ Rule) is ensured. Rather than continue in general terms, having seen how
the Laplace transform can be applied to a PDE let us do an example.

Example 5.3 Solve the heat conduction equation

∂φ

∂t
= ∂2φ

∂x2

in the region t > 0, x > 0 with boundary conditions φ(x, 0) = 0 x > 0
(initial condition), φ(0, t) = 1, t > 0 (temperature held constant at the origin)
and limx∞≤ φ(x, t) = 0 (the temperature a long way from the origin remains at its
initial value). [For an alternative physical interpretation of this, see the end of the
solution.]

Solution Taking the Laplace transform (in t of course) gives

sφ̄ − φ(0) = d2φ̄

dx2

or
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sφ̄ = d2φ̄

dx2

since φ(x, 0) = 0. This is an ODE with constant coefficients (not dependent on x ;
the presence of s does not affect this argument as there are no s derivatives) with
solution

φ̄(x, s) = Ae−x
→

s + Bex
→

s .

Now, since limx∞≤ φ(x, t) = 0 and

φ̄(x, s) =
⎡ ≤

0
φ(x, t)e−st dt

we have that φ̄(x, s) ∞ 0 as x ∞ ≤, hence B = 0. Thus

φ̄(x, s) = Ae−x
→

s .

Letting x = 0 in the Laplace transform of φ gives

φ̄(0, s) =
⎡ ≤

0
φ(0, t)e−st dt =

⎡ ≤

0
e−st dt = 1

s

given that φ(0, t) = 1 for all t . Notice that the “for all t” is crucial as the Laplace
transform has integrated through all positive values of t . Inserting this boundary
condition for φ̄ gives

A = 1

s

whence the solution for φ̄ is

φ̄(x, s) = e−x
→

s

s
.

Inverting this using a table of standard forms, Appendix B or Example 3.7, gives

φ(x, t) = erfc

(
1

2
xt−1/2

)
.

Another physical interpretation of this solution runs as follows. Suppose there is a
viscous fluid occupying the region x > 0 with a flat plate on the plane x = 0. (Think
of the plate as vertical to eliminate the effects of gravity.) The above expression for
φ is the solution to jerking the plate in its own plane so that a velocity near the plate
is generated. Viscosity takes on the role of conductivity here, the value is taken as
unity in the above example. φ is the fluid speed dependent on time t and vertical
distance from the plate x .
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Most of you will realise at once that using Laplace transforms to solve this kind
of PDE is not a problem apart perhaps from evaluating the inverse Laplace trans-
form. There is a general formula for the inverse Laplace transform and we meet this
informally in the next chapter and more formally in Chap.8. You will also see that
the solution

φ(x, t) = erfc

(
1

2
xt−1/2

)

is in no way expressible in variable separable form. This particular problem is not
amenable to solution using separation of variables because of the particular boundary
conditions. There is a method of solution whereby we set ξ = xt−1/2 and transform
the equation φt = φxx from (x, t) space into ξ space. This is called using a similarity
variable. Further details can be found inmore specialised texts, for example Zauderer
(1989).

Onemore subject that is essential to consider theoretically but not discussed here is
uniqueness. The heat conduction equation has a unique solution provided boundary
conditions are given at t = 0 (initial condition) together with values of φ (or its
derivative with respect to x) at x = 0 and another value (x = a say) for all t . The
proof of this is straightforward and makes use of contradiction. This is quite typical
of uniqueness proofs, and the details can be found in, for example, Williams (1980)
pp. 195–199. Although the proof of uniqueness is a side issue for a book on Laplace
transforms and Fourier series, it is always important. Once a solution to a boundary
value problem like the heat conduction in a bar has been found, it is vital to be sure
that it is the only one. Problems that do not have a unique solution are called ill
posed and they are not dealt with in this text. In the last twenty years, a great deal
of attention has been focused on non-linear problems. These do not have a unique
solution (in general) but are as far as we know accurate descriptions of real problems.

So far in this chapter we have discussed the solution of evolutionary partial dif-
ferential equations, typically the heat conduction equation where initial conditions
dictate the behaviour of the solution. Laplace transforms can also be used to solve
second order hyperbolic equations typified by the wave equation. Let us see how this
is done. The one-dimensional wave equation may be written

∂2φ

∂t2
= c2

∂2φ

∂x2

where c is a constant called the celerity or wave speed, x is the displacement and t of
course is time. The kind of problem that can be solved is that for which conditions
at time t = 0 are specified. This does not cover all wave problems and may not
even be considered to be typical of wave problems, but although problems for which
conditions at two different times are given can be solved using Laplace transforms
(see Chap.3) alternative solution methods (e.g. using characteristics) are usually
better. As before, the technique is to take the Laplace transform of the equation with
respect to time, noting that this time there is a second derivative to deal with. Defining
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φ̄ = L{φ}

and using

L
{

∂2φ

∂t2

}
= s2φ̄ − sφ(0) − φ≥(0)

the wave equation transforms into the following ordinary differential equation
for φ̄:-

s2φ̄ − sφ(0) − φ≥(0) = c2
d2φ̄

dx2
.

The solution to this equation is conveniently written in terms of hyperbolic functions
since the x boundary conditions are almost always prescribed at two finite values of
x . If the problem is in an infinite half space, for example the vibration of a very long
beam fixed at one end (a cantilever), the complementary function Aesx/c + Be−sx/c

can be useful. As with the heat conduction equation, rather than pursuing the general
problem, let us solve a specific example.

Example 5.4 A beam of length a initially at rest has one end fixed at x = 0 with the
other end free to move at x = a. Assuming that the beam only moves longitudinally
(in the x direction) and is subject to a constant force E D along its length where E is
the Young’s modulus of the beam and D is the displacement per unit length, find the
longitudinal displacement of the beam at any subsequent time. Find also the motion
of the free end at x = a.

Solution The first part of this problem has been done already in that the Laplace
transform of the one dimensional wave equation is

s2φ̄ − sφ(0) − φ≥(0) = c2
d2φ̄

dx2

where φ(x, t) is now the displacement, φ̄ its Laplace transform and we have assumed
that the beam is perfectly elastic, hence actually obeying the one dimensional wave
equation. The additional information we have available is that the beam is initially
at rest, x = 0 is fixed for all time and that the other end at x = a is free. These are
translated into mathematics as follows:-

φ(x, 0) = 0,
∂φ

∂t
(x, 0) = 0 (beam is initially at rest)

together with
φ(0, t) = 0 (x = 0 fixed for all time)

and
∂φ(a, t)

∂x
= D ≡t (the end at x = a is free).
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Hence
d2φ̄

dx2
= s2

c2
φ̄

the solution of which can be written

φ̄(x, s) = k1 cosh
( sx

c

)
+ k2 sinh

( sx

c

)
.

In order to find k1 and k2, we use the x boundary condition. If φ(0, t) = 0 then,
taking the Laplace transform, φ̄(0, s) = 0 so k1 = 0. Hence

φ̄(x, s) = k2 sinh
( sx

c

)
and

dφ̄

dx
= sk2

c
cosh

( sx

c

)
.

We have that
∂φ

∂x
= D at x = a for all t.

The Laplace transform of this is

dφ̄

dx
= D

s
at x = a.

Hence
D

s
= sk2

c
cosh

( sa

c

)

from which

k2 = Dc

s2 cosh( sa
c )

.

Hence the solution to the ODE for φ̄ is

φ̄ = Dc sinh
⎢ sx

c

⎧
s2 cosh

⎢ sa
c

⎧

and is completely determined.
The remaining problem, and it is a significant one, is that of inverting this Laplace

transform to obtain the solution φ(x, t). Many would use the inversion formula of
Chap.8, but as this is not available to us, we scan the table of standard Laplace
transforms (Appendix B) and find the result

L−1
{

sinh(sx)

s2 cosh(sa)

}
= x + 8a

π2

≤∑
n=1

(−1)n

(2n − 1)2
sin

(
(2n − 1)πx

2a

)
cos

(
(2n − 1)πt

2a

)

and deduce that
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φ(x, t) = Dx + 8aD

π2

≤∑
n=1

(−1)n

(2n − 1)2
sin

(
(2n − 1)πx

2a

)
cos

(
(2n − 1)πt

2a

)
.

It is not until we meet the general inversion formula in Chap.8 that we are able to
see how such formulae are derived using complex analysis.

Example 5.5 Starting with the linear Rossby wave equation

≈2ψt + βψx = 0

determine the long term response of an initially quiescent ocean if the variations in
the y direction are much smaller than those in the x direction.

Solution The linear Rossby wave equation takes the form

≈2ψt + βψx = 0.

Take Laplace transforms (in t) using:

L{ψ} = ψ̄ L{ψt } = sψ̄ − ψ(x, 0)

giving:
s≈2ψ̄ + βψ̄x = ≈2ψ(x, 0).

Initially we can assume that the streamfunction ψ(x, 0) = ψ0 a constant. Thus the
Rossby wave equation becomes:

s

⎨
∂2ψ̄

∂x2
+ ∂2ψ̄

∂y2

⎩
+ β

∂ψ̄

∂x
= 0.

In order to solve this we try a solution of the form:

ψ̄ = q(x)eiky so that
∂2ψ̄

∂y2
= −k2ψ̄

and the Rossby wave partial differential equation leads to the following ordinary
differential equation for q.

sq ≥≥ + βq ≥ − sk2q = 0.

This is an equation with constant coefficients (s is considered a constant as it is
not the object of differentiation in this problem). Thus we take the normal route of
assuming a solution in the form q = exp (λx) to get a quadratic for λ which is:

sλ2 + βλ − sk2 = 0
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whence

λ = −β ± ⎦
β2 + 4s2k2

2s
.

This entire problem arises from considering the onset of the monsoon over an infinite
Indian Ocean, hence the initial response of the ocean is less important than the
response for large times. Thus we expand these two solutions for λ in power series
in s and consider small values of s (corresponding to large time). Hence

q ⇒ e−βx/s and q ⇒ e−sxk2/β .

The simplest case is to consider no variation in y so set k = 0. The boundary condition
ψ = ψ0 (a constant) transforms to ψ̄ = ψ0/s. Thus

ψ̄(x, s) = 1

s
e−βx/s .

We have the standard form, see Appendix B:

L−1
(

e−a/s

sn+1

)
=

(
t

a

)n/2

Jn(2
→

at)

where Jn is the Bessel function of the first kind of integer order n, so put a = βx
and n = 0 and take inverse Laplace transforms to obtain

ψ(x, t) = ψ0 J0(2
⎦

βxt).

This is the basic solution. Changing the time origin from 0 to t0 and recognising that
ψ = ψ0 is another trivial solution leads to the “well known” oceanographic solution
to the problem of modelling the onset of the Somali current:

ψ(x, t) = ψ0[1 − J0(2
⎦

βx(t − t0))].

So that at time t = t0 the streamfunction ψ is a constant but after the wind has blown
for a while, it is given by the above function. The solution represents a northerly flow
that gradually narrows. This is shown from the relationship between streamfunction
and v the northerly flowing current.

5.5 Boundary Conditions and Asymptotics

A partial differential equation together with enough boundary conditions to ensure
the existence of a unique solution is called a boundary value problem, sometimes
abbreviated to BVP. Parabolic and hyperbolic equations of the type suited to solution
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using Laplace transforms are defined over a semi infinite domain. In two dimensional
Cartesian co-ordinates, this domainwill take the form of a semi infinite strip shown in
Fig. 5.2. Since one of the variables is almost always time, the problem has conditions
given at time t = 0 and the solution once found is valid for all subsequent times,
theoretically to time t = ≤. Indeed, this is the main reason why Laplace transforms
are so useful for these types of problems. Thus, in transformed space, the boundary
condition at t = 0 and the behaviour of the solution as t ∞ ≤ get swept up in
the Laplace transform and appear explicitly in the transformed equations, whereas
the conditions on the other variable (x say) which form the two infinite sides of
the rectangular domain of Fig. 5.2 get transformed into two boundary conditions
that are the end points of a two point boundary value problem (one dimensional) in
x . The Laplace transform variable s becomes passive because no derivatives with
respect to s are present. If there are three variables (or perhaps more) and one of
them is time-like in that conditions are prescribed at t = 0 and the domain extends
for arbitrarily large time, then similar arguments prevail. However, the situation is a
little more complicated in that the transformed boundary value problem has only had
its dimension reduced by one. That is, a three dimensional heat conduction equation
which takes the form

∂φ

∂t
= κ≈2φ

where

≈2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2

which is in effect a four dimensional equation involving time together with three
space dimensions, is transformed into a Poisson like equation:-

κ≈2φ̄(x, y, z, s) = sφ̄(x, y, z, s) − φ(x, y, z, 0)

where, as usual, L{φ(x, y, z, t)} = φ̄(x, y, z, s).
It remains difficult in general to determine the inverse Laplace transform, so

various properties of the Laplace transform are invoked as an alternative to complete
inversion. One device is particularly useful and amounts to using a special case of
Watson’s lemma, a well known result in asymptotic analysis. If for small values of
t, φ(x, y, z, t) has a power series expansion of the form

φ(x, y, z, t) =
≤∑

n=0

an(x, y, z)tk+n

and |φ|e−ct is bounded for some k and c, then the result of Chap.2 following the Final
Value Theorem (Theorem 2.7) can be invoked and we can deduce that as s ∞ ≤
the Laplace transform of φ, φ̄ has an equivalent asymptotic expansion
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Fig. 5.2 The domain

φ̄(x, y, z, s) =
≤∑

n=0

an(x, y, z)
�(n + k + 1)

sn+k+1 .

Now asymptotic expansions are not necessarily convergent series; however the first
few terms do give a good approximation to the function φ̄(x, y, z, s). What we have
here is an approximation to the transform of φ that relates the form for large s to
the behaviour of the original variable φ for small t . Note that this is consistent with
the initial value theorem (Theorem 2.6). It is sometimes the case that each series is
absolutely convergent. A term by term evaluation can then be justified. However,
often the most interesting and useful applications of asymptotic analysis take place
when the series are not convergent. The classical text by Copson (1967) remains
definitive. The serious use of these results demands a working knowledge of com-
plex variable theory, in particular of poles of complex functions and residue theory.
These are not dealt with until Chap.8 so examples involving complex variables are
postponed until then. Here is a reasonably straightforward example using asymptotic
series, just to get the idea.

Example 5.6 Find an approximation to the solution of the partial differential equa-
tion

∂φ

∂t
= c2

∂2φ

∂x2

for small times where φ(x, 0) = cos(x), by using an asymptotic series.

Solution It is possible to solve this BVP exactly, but let us take Laplace transforms
to obtain

sφ̄ − cos(x) = c2
d2φ̄

dx2

then try an asymptotic series of the form
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φ̄(x, s) =
≤∑

n=0

bn(x)

sn+k+1

valid far enough away from the singularities of φ̄ in s space. (This is only true
provided φ̄ does not have branch points. See Sect. 8.4 for more about branch points.)
Equating coefficients of 1/sn yields straight away that k = 0, then we get

b0 = cos(x); b1 = c2
d2b0
dx2

; b2 = c2
d2b1
dx2

; . . .

and hence

b1 = −c2 cos(x), b2 = c4 cos(x), b3 = −c6 cos(x) etc.

This yields

φ̄(x, s) = cos(x)

≤∑
n=0

(−1)nc2n

sn+2 .

Provided we have s > c > 0, term by term inversion is allowable here as the series
will then converge for all values of x . It is uniformly but not absolutely convergent.
This results in

φ(x, t) = cos(x)

≤∑
n=0

(−1)nc2ntn

n!

which is immediately recognised as

φ(x, t) = cos(x)e−c2t

a solution that could have been obtained directly using separation of variables. As
is obvious from this last example, we are hampered in the kind of problem that can
be solved because we have yet to gain experience of the use of complex variables.
Fourier transforms are also a handy tool for solving certain types of BVP, and these
are the subject of the next chapter. So finally in this chapter, a word about other
methods of solving partial differential equations.

In the years since the development of the workstation and desk top microcom-
puter, there has been a revolution in the methods used by engineers and applied
scientists in industry who need to solve boundary value problems. In real situations,
these problems are governed by equations that are far more complicated than those
covered here. Analytical methods can only give a first approximation to the solu-
tion of such problems and these methods have been surpassed by numerical methods
based on finite difference and finite element approximations to the partial differential
equations. However, it is still essential to retain knowledge of analytical methods,
as these give insight as to the general behaviour in a way that a numerical solution

http://dx.doi.org/10.1007/978-1-4471-6395-4_8
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will never do, and because analytical methods actually can lead to an increase in
efficiency in the numerical method eventually employed to solve the real problem.
For example, an analytical method may be able to tell where a solution changes
rapidly even though the solution itself cannot be obtained in closed form and this
helps to design the numerical procedure, perhaps even suggesting alternative meth-
ods (adaptive gridding) but more likely helping to decide on co-ordinate systems and
step lengths. The role of mathematics has thus changed in emphasis from provid-
ing direct solutions to real problems to giving insight into the underlying properties
of the solutions. As far as this chapter is concerned, future applications of Laplace
transforms to partial differential equations are met briefly in Chap.8, but much of
the applications are too advanced for this book and belong in specialist texts on the
subject, e.g. Weinberger (1965).

5.6 Exercises

1. Using separation of variables, solve the boundary value problem:

∂φ

∂t
= κ

∂2φ

∂x2
, x ∗

[
0,

π

4

]

φ(x, 0) = x
(π

4
− x

)
at time t = 0

φ(0, t) = φ
(π

4
, t

)
= 0 for all time,

using the methods of Chap. 4 to determine the Fourier series representation of the

function x
(π

4
− x

)
.

2. The function φ(x, t) satisfies the PDE

a
∂2φ

∂x2
− b

∂φ

∂x
− ∂φ

∂t
= 0

with x > 0, a > 0, b > 0 and boundary conditions φ(x, 0) = 0 for all x ,
φ(0, t) = 1 for all t and φ ∞ 0 as x ∞ ≤, t > 0. Use Laplace transforms to
find φ̄, the Laplace transform of φ. (Do not attempt to invert it.)

3. Use Laplace transforms to solve again the BVP of Exercise 1 but this time in the
form

φ(x, t) = −x2 + π

4
x − 2κt + 2κL−1



sinh(π

4 − x)
√

s
κ

s2 sinh(π
4 )

√
s
κ

⎫⎬
⎭

+ 2κL−1




sinh(x
√

s
κ )

s2 sinh(π
4

√
s
κ )

⎫⎬
⎭ .
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Use the table of Laplace transforms to invert this expression. Explain any differ-
ences between this solution and the answer to Exercise 1.

4. Solve the PDE
∂2φ

∂x2
= ∂φ

∂y

with boundary conditions φ(x, 0) = 0, φ(0, y) = 1, y > 0 and

lim
x∞≤ φ(x, y) = 0.

5. Suppose that u(x, t) satisfies the equation of telegraphy

1

c2
∂2u

∂t2
− k

c2
∂u

∂t
+ 1

4

k2

c2
u = ∂2u

∂x2
.

Find the equation satisfied by φ = ue−kt/2, and hence use Laplace transforms
(in t) to determine the solution for which

u(x, 0) = cos(mx),
∂u

∂t
(x, 0) = 0 and u(0, t) = ekt/2.

6. The function u(x, t) satisfies the BVP

ut − c2uxx = 0, x > 0, t > 0, u(0, t) = f (t), u(x, 0) = 0

where f (t) is piecewise continuous and of exponential order. (The suffix deriv-
ative notation has been used.) Find the solution of this BVP by using Laplace
transforms together with the convolution theorem. Determine the explicit solu-
tion in the special case where f (t) = δ(t), where δ(t) is the Dirac δ function.

7. A semi-infinite solid occupying the region x > 0 has its initial temperature set
to zero. A constant heat flux is applied to the face at x = 0, so that Tx (0, t) =
−α where T is the temperature field and α is a constant. Assuming linear heat
conduction, find the temperature at any point x (x > 0) of the bar and show that
the temperature at the face at time t is given by

α

√
κ

πt

where κ is the thermal conductivity of the bar.
8. Use asymptotic series to provide an approximate solution to the wave equation

∂2u

∂t2
= c2

∂2u

∂x2

valid for small values of t with
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u(x, 0) = 0,
∂u

∂t
(x, 0) = cos(x).

9. Repeat the last exercise, but using instead the boundary conditions

u(x, 0) = cos(x),
∂u

∂t
(x, 0) = 0.



Chapter 6
Fourier Transforms

6.1 Introduction

It is not until a little later in this chapter that we define the Fourier transform; it is
appropriate to arrive at it through the mathematics of the previous chapters. There
are two ways of approaching the subject of Fourier transforms, both ways are open
to us. One way is to carry on directly from Chap.4 and define Fourier transforms in
terms of the mathematics of linear spaces by carefully increasing the period of the
function f (x). This would lead to the Fourier series we defined in Chap.4 becoming,
in the limit of infinite period, an integral. This integral leads directly to the Fourier
transform. On the other hand, the Fourier transform can be straightforwardly defined
as an example of an integral transform and its properties compared and in many
cases contrasted with those of the Laplace transform. It is this second approach that
is favoured here, with the first more puremathematical approach outlined towards the
endofSect. 6.2.This choice is arbitrary, but it is felt that themore “handson” approach
should dominate here. Having said this, texts that concentrate on computational
aspects such as the FFT (Fast Fourier Transform), on time series analysis and on
other branches of applied statistics sometimes do prefer the more pure approach in
order to emphasise precision. Also, there is in the next chapter an introduction to
wavelets. Wavelets are particularly suited to the analysis of time series and so this
gives us another reason for us to favour the second approach here and leave the
relation between wavelets and Fourier series to the next chapter.

6.2 Deriving the Fourier Transform

Definition 6.1 Let f be a function defined for all x ∞ R with values in C. The
Fourier transform is a mapping F : R ≤ C defined by

F(ω) =
∫ ≥

−≥
f (x)e−iωx dx .

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 145
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_6,
© Springer-Verlag London 2014
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Of course, for some f (x) the integral on the right does not exist. We shall spend
some time discussing this a little later. There can be what amounts to trivial differ-
ences between definitions involving factors of 2π or

→
2π. Although this is of little

consequence mathematically, it is important to stick to the definition whichever ver-
sion is chosen. In engineering or medicine where x is often time, and ω frequency,
factors of 2π or

→
2π can make a lot of difference.

If F(ω) is defined by the integral above, then it can be shown that

f (x) = 1

2π

∫ ≥

−≥
F(ω)eiωx dω.

This is the inverse Fourier transform. It is instructive to consider F(ω) as a complex
valued function of the form

F(ω) = A(ω)eiφ(ω)

where A(ω) and φ(ω) are real functions of the real variable ω. F is thus a complex
valued function of a real variable ω. Some readers will recognise F(ω) as a spectrum
function, hence the letters A and φ which represent the amplitude and phase of F
respectively. We shall not dwell on this here however. If we merely substitute for
F(ω) we obtain

f (x) = 1

2π

∫ ≥

−≥
A(ω)eiωx+iφ(ω)dω.

We shall return to this later when discussing the relationship between Fourier trans-
forms and Fourier series. Let us now consider what functions permit Fourier trans-
forms. A glance at the definition tells us that we cannot for example calculate the
Fourier transform of polynomials or even constants due to the oscillatory nature of
the kernel. This is a feature that might seem to render the Fourier transform useless.
It is certainly a difficulty, but one that is more or less completely solved by extending
what is meant by an integrable function through the use of generalised functions.
These were introduced in Sect. 2.6, and it turns out that the Fourier transform of a
constant is closely related to the Dirac δ function defined in Sect. 2.6. The impulse
function is a representative of this class of functions andwemetmany of its properties
in Chap.2. In that chapter, mention was also made of the use of the impulse function
in many applications, especially in electrical engineering and signal processing. The
general mathematics of generalised functions is outside the scope of this text, but
more of its properties will be met later in this chapter.

If we write the function to be transformed in the form e−kx f (x) then the Fourier
transform is the integral ∫ ≥

−≥
e−iωx e−kx f (x)dx

straight from the definition. In this form, the Fourier transform can be related to the
Laplace transform. First of all, write

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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Fk(ω) =
∫ ≥

0
e−(k+iω)x f (x)dx

then Fk(ω)will exist provided the function f (x) is of exponential order (seeChap.1).
Note too that the bottom limit has become 0. This reflects that the variable x is usually
time.The inverse of Fk(ω) is straightforward tofindonce it is realised that the function
f (x) can be defined as identically zero for x < 0. Whence we have

1

2π

∫ ≥

−≥
eiωx Fk(ω)dω =

{
0 x < 0
e−kx f (x) x ∗ 0.

An alternative way of expressing this inverse is in the form

1

2π

∫ ≥

−≥
e(k+iω)x Fk(ω)dω =

{
0 x < 0
f (x) x ∗ 0.

In this formula, and in the one above for Fk(ω), the complex number k + iω occurs
naturally. This is a variable, and therefore a complex variable and it corresponds to
s the Laplace transform variable defined in Chap. 1. Now, the integral on the left of
the last equation is not meaningful if we are to regard k + iω = s as the variable. As
k is not varying, we can simply write

ds = idω

and s will take the values k − i≥ and k + i≥ at the limits ω = −≥ and ω = ≥
respectively. The left-hand integral is now, when written as an integral in s,

1

2πi

∫ k+i≥

k−i≥
esx F(s)ds

where F(s) = Fk(ω) is now a complex valued function of the complex variable s.
Although there is nothing illegal in theway thevariable changes havebeenundertaken
in the above manipulations, it does amount to a rather cartoon derivation. A more
rigorous derivation of this integral is given in Chap. 8 after complex variables have
been properly introduced. The formula

f (x) = 1

2πi

∫ k+i≥

k−i≥
esx F(s)ds

is indeed the general form of the inverse Laplace transform, given F(s) = L{ f (x)}.
We now approach the definition of Fourier transforms from a different viewpoint.

In Chap.4, Fourier series were discussed at some length. As a summary for present
purposes, if f (x) is a periodic function, and for simplicity let us take the period as
being 2π (otherwise in all that follows replace x by lx/2π where l is the period) then
f (x) can be expressed as the Fourier series
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f (x) √ a0
2

+
≥∑

n=1

(an cos(nx) + bn sin(nx))

where

an = 1

π

∫ π

−π
f (x) cos(nx)dx, n = 0, 1, 2, . . .

and

bn = 1

π

∫ π

−π
f (x) sin(nx)dx n = 0, 1, 2, . . . .

These have been derived in Chap. 4 and follow from the orthogonality properties of
sine and cosine. The factor 1

2 in the constant term enables an to be expressed as the
integral shown without n = 0 being an exception. It is merely a convenience, and as
with factors of 2π in the definition of Fourier transform, the definition of a Fourier
series can have these trivial differences. The task now is to see how Fourier series can
be used to generate not only the Fourier transform but also its inverse. The first step
is to convert sine and cosine into exponential form; this will re-derive the complex
form of the Fourier series first done in Chap.4. Such a re-derivation is necessary
because of the slight change in definition of Fourier series involving the a0 term. So
we start with the standard formulae

cos(nx) = 1

2
(einx + e−inx )

and

sin(nx) = 1

2i
(einx − e−inx ).

Some algebra of an elementary nature is required before the Fourier series as given
above is converted into the complex form

f (x) =
≥∑

n=−≥
cneinx

where

cn = 1

2π

∫ π

−π
f (x)e−inx dx .

The complex numbers cn are related to the real numbers an and bn by the simple
formulae

cn = 1

2
(an − ibn), c−n = cn, n = 0, 1, 2, . . .

and it is assumed that b0 = 0. The overbar denotes complex conjugate. There are
several methods that enable one to move from this statement of complex Fourier
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Fig. 6.1 The function f (t)
and its periodic clone g(t)

series to Fourier transforms. The method adopted here is hopefully easy to follow
as it is essentially visual. First of all consider a function g(t) which has period
T . (We have converted from x to t as the period is T and no longer 2π. It is the
transformation x ≤ 2πt/T ). Figure6.1 gives some insight into what we are trying
to do here. The functions f (t) and g(t) coincide precisely in the interval [− T

2 , T
2 ],

but not necessarily outside this range. Algebraically we can write

g(t) =



f (t) |t | < 1
2T

f (t − nT ) 1
2 (2n − 1)T < |t | < 1

2 (2n + 1)T

where n is an integer. Since g(t) is periodic, it possesses a Fourier series which, using
the complex form just derived, can be written

g(t) =
≥∑

n=−≥
Gneinω0t

where Gn is given by

Gn = 1

T

∫ T/2

−T/2
g(t)e−inω0t dt

and ω0 = 2π/T is the frequency. Again, this is obtained straightforwardly from the
previous results in x by writing

x = 2πt

T
= ω0t.
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We now combine these results to give

g(t) =
≥∑

n=−≥

[
1

T

∫ T/2

−T/2
g(t)e−inω0t dt

⎡
einω0t .

The next step is the important one. Note that

nω0 = 2πn

T

and that the difference in frequency between successive terms is ω0. As we need this
to get smaller and smaller, let ω0 = �ω and nω0 = ωn which is to remain finite as
n ≤ ≥ and ω0 ≤ 0 together. The integral for Gn can thus be re-written

G =
∫ T/2

−T/2
g(t)e−iωn t dt.

Having set everything up, we are now in a position to let T ≤ ≥, the mathematical
equivalent of lighting the blue touchpaper. Looking at Fig. 6.1 this means that the
functions f (t) and g(t) coincide, and

g(t) = lim
T ≤≥

≥∑
n=−≥

Geiωn t �ω

2π

= 1

2π

∫ ≥

−≥
Geiωt dω

with

G(ω) =
∫ ≥

−≥
g(t)e−iωt dt.

We have let T ≤ ≥, replaced �ω by the differential dω and ωn by the variable ω.
All this certainly lies within the definition of the improper Riemann integral given
in Chap.1. We thus have

G(ω) =
∫ ≥

−≥
g(t)e−iωt dt

with

g(t) = 1

2π

∫ ≥

−≥
G(ω)eiωt dω.

This coincides precisely with the definition of Fourier transform given at the begin-
ning of this chapter, right down to where the factor of 2π occurs. As has already
been said, this positioning of the factor 2π is somewhat arbitrary, but it important to
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be consistent, and where it is here gives the most convenient progression to Laplace
transforms as indicated earlier in this section and in Chap.8.

In getting the Fourier transform pair (as g and G are called) we have lifted the
restriction that g(t) be a periodic function. We have done this at a price however
in that the improper Riemann integrals must be convergent. As we have already
stated, unfortunately this is not the case for a wide class of functions including
elementary functions such as sine, cosine, and even the constant function. However
this serious problem is overcome through the development of generalised functions
such as Dirac’s δ function (see Chap.2) and also through wavelets that are introduced
in the next chapter.

6.3 Basic Properties of the Fourier Transform

There are as many properties of the Fourier transform as there are of the Laplace
transform. These involve shift theorems, transforming derivatives, etc. but they are
not so widely used simply due to the restrictions on the class of functions that can
be transformed. Most of the applications lie in the fields of electrical and electronic
engineering which are full of the jumpy and impulse like functions to which Fourier
transforms are particularly suited. Here is a simple and quite typical example.

Example 6.1 Calculate the Fourier transform of the “top hat" or rectangular pulse
function defined as follows:-

f (t) =
{

A |t | ⇒ T
0 |t | > T

where A is a constant (amplitude of the pulse) and T is a second constant (width of
the pulse).

Solution Evaluation of the integral is quite straightforward and the details are as
follows

F(ω) =
∫ ≥

−≥
f (t)e−iωt dt

=
∫ T

−T
Ae−iωt dt

=
[
− A

iω
e−iωt

⎡T

−T

F(ω) = 2A

ω
sin(ωT ).
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Fig. 6.2 The square wave function f (t), and its Fourier transform F(ω)

Mathematically this is routine and rather uninteresting. However the graphs of f (t)
and F(ω) are displayed side by side in Fig. 6.2, and it is worth a little discussion.

The relationship between f (t) and F(ω) is that between a function of time ( f (t))
and the frequencies that this function (called a signal by engineers) contains, F(ω).

The subject of spectral analysis is a large one and sections of it are devoted to the
relationship between a spectrum (often called a power spectrum) of a signal and the
signal itself. This subject has been particularly fast growing since the days of the
first satellite launch and the advent of satellite, then cable, and now digital television
ensures its continuing growth. During much of the remainder of this chapter this
kind of application will be hinted at, but a full account is of course not possible. The
complex nature of F(ω) is not a problem. Most time series are not symmetric, so the
modulus of F(ω) (A(ω)) carries the frequency information.

A more typical-looking signal is shown on the left in Fig. 6.3. Signals do not have
a known functional form, and so their Fourier transforms cannot be determined in
closed form either. However some general characteristics are depicted on the right
hand side of this figure. Only the modulus can be drawn in this form as the Fourier
transform is in general a complex quantity. The kind of shape |F(ω)| has is also
fairly typical. High frequencies are absent as this would imply a rapidly oscillating
signal; similarly very low frequencies are also absent as this would imply that the
signal very rarely crossed the t axis. Thus the graph of |F(ω)| lies entirely between
ω = 0 and a finite value. Of course, any positive variation is theoretically possible
between these limits, but the single maximum is most common. There is a little more
to be said about these ideas in Sect. 6.5 when windowing is discussed, and in the next
chapter.

Sometimes it is inconvenient to deal with explicitly complex quantities, and the
Fourier transform is expressed in real and imaginary form as follows. If

F(ω) =
∫ ≥

−≥
f (t)e−iωt dt

then

Fc(ω) =
∫ ≥

0
f (t) cos(ωt)dt
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Fig. 6.3 A typical wave form f (t) and the amplitude of its Fourier transform |F(ω)| = A(ω)

is the Fourier cosine transform, and

Fs(ω) =
∫ ≥

0
f (t) sin(ωt)dt

is the Fourier sine transform.We note that the bottom limits in both the Fourier cosine
and sine transform are zero rather than −≥. This is in keeping with the notion that
in practical applications t corresponds to time. Once more we warn that differences
from these definitions involving positioning of the factor π are not uncommon. From
the above definition it is easily deduced that

F(ω) =
∫ ≥

0
[ f (t) + f (−t)] cos(ωt)dt − i

∫ ≥

0
[ f (t) − f (−t)] sin(ωt)dt

so if f is an odd function [ f (t) = − f (−t)], F(ω) is pure imaginary, and if f is an
even function [ f (t) = f (−t)], F(ω) is real. We also note that if the bottom limit
on each of the Fourier sine and cosine transforms remained at −≥ as in some texts,
then the Fourier sine transform of an even function is zero as is the Fourier cosine
transform of an odd function. This gives another good reason for the zero bottom
limits for these transforms. Now let us examine some of the more common properties
of Fourier transforms, starting with the inverses of the sine and cosine transforms.
These are unsurprising: if

Fc(ω) =
∫ ≥

0
f (t) cos(ωt)dt

then

f (t) = 2

π

∫ ≥

0
Fc(ω) cos(ωt)dω

and if

Fs(ω) =
∫ ≥

0
f (t) sin(ωt)dt
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then

f (t) = 2

π

∫ ≥

0
Fs(ω) sin(ωt)dω.

The proof of these is left as an exercise for the reader. The first property of these
transformswe shall examine is their ability to evaluate certain improper real integrals
in closed form. Most of these integrals are challenging to evaluate by other means
(although readers familiar with the residue calculus also found in summary form in
Chap.8 should be able to do them). The following example illustrates this.

Example 6.2 By considering the Fourier cosine and sine transforms of the function
f (t) = e−at , a a constant, evaluate the two integrals

∫ ≥

0

cos(kx)

a2 + x2
dx and

∫ ≥

0

x sin(kx)

a2 + x2
dx .

Solution First of all note that the cosine and sine transforms can be conveniently
combined to give

Fc(ω) + i Fs(ω) =
∫ ≥

0
e(−a+iω)t dt

=
[

1

−a + iω
e(−a+iω)t

⎡≥

0

= 1

a − iω
= a + iω

a2 + ω2

whence
Fc(ω) = a

a2 + ω2 and Fs(ω) = ω

a2 + ω2 .

Using the formula given for the inverse transforms gives

2

π

∫ ≥

0

a

a2 + ω2 cos(ωt)dω = e−at

and
2

π

∫ ≥

0

ω

a2 + ω2 sin(ωt)dω = e−at .

Changing variables ω to x , t to k thus gives the results

∫ ≥

0

cos(kx)

a2 + x2
dx = π

2a
e−ak

and ∫ ≥

0

x sin(kx)

a2 + x2
dx = π

2
e−ak .
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Laplace transforms are extremely useful for finding the solution to differential equa-
tions. Fourier transforms can also be so used; however the restrictions on the class of
functions allowed is usually prohibitive. Assuming that the improper integrals exist,
which requires that f ≤ 0 as t ≤ ±≥, let us start with the definition of the Fourier
transform

F(ω) =
∫ ≥

−≥
f (x)e−iωx dx .

Since both limits are infinite, and the above conditions on f hold, we have that the
Fourier transform of f ≡(t), the first derivative of f (t), is straightforwardly iωF(ω)

using integration by parts. In general

∫ ≥

−≥
dn f

dtn
e−iωt dt = (iω)n F(ω).

The other principal disadvantage of using Fourier transform is the presence of i in the
transform of odd derivatives and the difficulty in dealing with boundary conditions.
Fourier sine and cosine transforms are particularly useful however, for dealing with
second order derivatives. The results

∫ ≥

0

d2 f

dt2
cos(ωt)dt = −ω2Fc(ω) − f ≡(0)

and ∫ ≥

0

d2 f

dt2
sin(ωt)dt = −ω2Fs(ω) + ω f (0)

can be easily derived. These results are difficult to apply to solve differential equations
of simple harmonic motion type because the restrictions imposed on f (t) are usually
incompatible with the character of the solution. In fact, even when the solution is
compatible, solving using Fourier transforms is often impractical.

Fourier transforms do however play an important role in solving partial differential
equations as will be shown in the next section. Before doing this, we need to square
up to some problems involving infinity. One of the common mathematical problems
is coping with operations like integrating and differentiating when there are infinities
around. When the infinity occurs in the limit of an integral, and there are questions
as to whether the integral converges then we need to be particularly careful. This is
certainly the case with Fourier transforms of all types; it is less of a problem with
Laplace transforms. The following theorem is crucial to this point.

Theorem 6.1 (Lebesgue Dominated Convergence Theorem) Let

fh, h ∞ R

be a family of piecewise continuous functions. If

1. There exists a function g such that | fh(x)| ⇒ g(x) ≈x ∞ R and all h ∞ R.
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2. ∫ ≥

−≥
g(x)dx < ≥.

3.
lim
h≤0

fh(x) = f (x) for every x ∞ R

then

lim
h≤0

∫ ≥

−≥
fh(x)dx =

∫ ≥

−≥
f (x)dx .

This theorem essentially tidies up where it is allowable to exchange the processes
of taking limits and infinite integration. To see how important and perhaps counter
intuitive this theorem is, consider the following simple example. Take a rectangular
pulse or “top hat” function defined by

fn(x) =
{
1 n ⇒ x ⇒ n + 1
0 otherwise.

Let f (x) = 0 so that it is true that lim
n≤≥ fn(x) = f (x) for all x ∞ R. However by

direct integration it is obvious that

lim
h≤0

∫ ≥

−≥
fn(x)dx = 1 �= 0 =

∫ ≥

−≥
lim

n≤≥ fn(x)dx .

Thus the theorem does not hold for this function, and the reason is that the function
g(x) does not exist. In fact the improper nature of the integrals is incidental.

The proof of the Lebesgue Dominated Convergence Theorem involves classical
analysis and is beyond the scope of this book. Suffice it to say that the function g(x)

which is integrable over (−≥,≥) “dominates” the functions fh(x), and without it
the limit and integral signs cannot be interchanged. As far as we are concerned, the
following theorem is closer to home.

Denote by G{R} the family of functions defined on R with values in C which
are piecewise continuous and absolutely integrable. These are essentially the Fourier
transforms as defined in the beginning of Sect. 6.2. For each f ∞ G{R} the Fourier
transform of f is defined for all ω ∞ R by

F(ω) =
∫ ≥

−≥
f (x)e−iωx dx

as in Sect. 6.2. That G{R} is a linear space over C is easy to verify. We now state the
theorem.

Theorem 6.2 For each f ∞ G{R},
1. F(ω) is defined for all ω ∞ R.
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2. F is a continuous function on R.
3. lim

ω±≥ F(ω) = 0.

Proof To prove this theorem, we first need to use the previous Lebesgue Dominated
Convergence Theorem. This was in fact the principal reason for stating it! We know
that |eiωx | = 1, hence

∫ ≥

−≥
| f (x)e−iωx |dx =

∫ ≥

−≥
| f (x)|dx < ≥.

Thuswe have proved the first statement of the theorem; F(ω) is well defined for every
real ω. This follows since the above equation tells us that f (x)e−iωx is absolutely
integrable on R for each real ω. In addition, f (x)e−iωx is piecewise continuous and
so belongs to G{R}.

To prove that F(ω) is continuous is a little more technical. Consider the difference

F(ω + h) − F(ω) =
∫ ≥

−≥
[ f (x)e−iω(x+h) − f (x)e−iωx ]dx

so

F(ω + h) − F(ω) =
∫ ≥

−≥
f (x)e−iωx [e−iωh − 1]dx .

If we let
fh(x) = f (x)e−iωx [e−iωh − 1]

to correspond to the fh(x) in the Lebesgue Dominated Convergence Theorem, we
easily show that

lim
h≤0

fh(x) = 0 for every x ∞ R.

Also, we have that

| fh(x)| = | f (x)||e−iωx ||e−iωh − 1| ⇒ 2| f (x)|.

Now, the function g(x) = 2| f (x)| satisfies the conditions of the function g(x) in the
Lebesgue Dominated Convergence Theorem, hence

lim
h≤0

∫ ≥

−≥
fh(x)dx = 0

whence
lim
h≤0

[F(ω + h) − F(ω)] = 0

which is just the condition that the function F(ω) is continuous at every point of R.

The last part of the theorem
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lim
ω≤±≥ F(ω) = 0

follows from the Riemann–Lebesgue lemma (see Theorem 4.2) since

F(ω) =
∫ ≥

−≥
f (x)e−iωx dx =

∫ ≥

−≥
f (x) cos(ωx)dx − i

∫ ≥

−≥
f (x) sin(ωx)dx,

lim
ω≤±≥ F(ω) = 0

is equivalent to

lim
ω≤±≥

∫ ≥

−≥
f (x) cos(ωx)dx = 0

and

lim
ω≤±≥

∫ ≥

−≥
f (x) sin(ωx)dx = 0

together. These two results are immediate from the Riemann–Lebesgue lemma (see
Exercise 5 in Sect. 6.6). This completes the proof. �

The next result, also stated in the form of a theorem, expresses a scaling property.
There is no Laplace transform equivalent due to the presence of zero in the lower
limit of the integral in this case, but see Exercise 7 in Chap.1.

Theorem 6.3 Let f (x) ∞ G{R} and a, b ∞ R , a �= 0 and denote the Fourier
transform of f by F( f ) so

F( f ) =
∫ ≥

−≥
f (x)e−iωx dx .

Let g(x) = f (ax + b). Then

F(g) = 1

|a|eiωb/aF( f )
⎢ω

a

⎧
.

Proof As is usual with this kind of proof, the technique is simply to evaluate the
Fourier transform using its definition. Doing this, we obtain

F(g(ω)) =
∫ ≥

−≥
f (ax + b)e−iωx dx .

Now simply substitute t = ax + b to obtain, if a > 0

F(g(ω)) = 1

a

∫ ≥

−≥
f (t)e−iω(t−b)/adt

and if a < 0
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F(g(ω)) = −1

a

∫ ≥

−≥
f (t)e−iω(t−b)/adt.

So, putting these results together we obtain

F(g(ω)) = 1

|a|eiωb/aF( f )
⎢ω

a

⎧

as required. �

The proofs of other properties follow along similar lines, but as been mentioned
several times already the Fourier transform applies to a restricted set of functions
with a correspondingly smaller number of applications.

6.4 Fourier Transforms and Partial Differential Equations

In Chap.5, two types of partial differential equation, parabolic and hyperbolic, were
solved using Laplace transforms. It was noted that Laplace transforms were not
suited to the solution of elliptic partial differential equations. Recall the reason for
this. Laplace transforms are ideal for solving initial value problems, but elliptic
PDEs usually do not involve time and their solution does not yield evolutionary
functions. Perhaps the simplest elliptic PDE is Laplace’s equation (∇2φ = 0) which,
together with φ or its normal derivative given at the boundary gives a boundary
value problem. The solutions are neither periodic nor are they initial value problems.
Fourier transforms as defined so far require that variables tend to zero at ±≥ and
these are often natural assumptions for elliptic equations. There are also two new
features that will now be introduced before problems are solved. First of all, partial
differential equations such as ∇2φ = 0 involve identical derivatives in x , y and,
for three dimensional ∇2, z too. It is logical therefore to treat them all in the same
way. This leads to having to define two and three dimensional Fourier transforms.
Consider the function φ(x, y), then let

φ̂(k, y) =
∫ ≥

−≥
φ(x, y)eikx dx

and

φF (k, l) =
∫ ≥

−≥
φ̂(k, y)eilydy

so that

φF (k, l) =
∫ ≥

−≥

∫ ≥

−≥
φ(x, y)ei(kx+ly)dxdy
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becomes a double Fourier transform. In order for these transforms to exist, φ must
tend to zero uniformly for (x, y) being a large distance from the origin, i.e. as⎨

x2 + y2 becomes very large. The three dimensional Fourier transform is defined
analogously as follows:-

φF (k, l, m) =
∫ ≥

−≥

∫ ≥

−≥

∫ ≥

−≥
φ(x, y, z)ei(kx+ly+mz)dxdydz.

With all these infinities around, the restrictions on φF are severe and applications
are therefore limited. The frequency ω has been replaced by a three dimensional
space (k, l, m) called phase space. However, the kind of problem that gives rise to
Laplace’s equation does fit this restriction, for example the behaviour of membranes,
water or electromagnetic potential when subject to a point disturbance. For this kind
of problem, the variable φ dies away to zero the further it is from the disturbance,
therefore there is a good chance that the above infinite double or triple integral could
exist. More useful for practical purposes however are problems in the finite domain
and it is these that can be tackled usefullywith amodification of theFourier transform.
The unnatural part of the Fourier transform is the imposition of conditions at infinity,
and themodifications hinted at above have to dowith replacing these by conditions at
finite values. We therefore introduce the finite Fourier transform (not to be confused
with the FFT—Fast Fourier transform). This is introduced in one dimension for
clarity; the finite Fourier transforms for two and three dimensions follow almost at
once. If x is restricted to lie between say a and b, then the appropriate Fourier type
transformation would be ∫ b

a
φ(x)e−ikx dx .

This would then be applied to a problem in engineering or applied science where
a ⇒ x ⇒ b. The two-dimensional version could be applied to a rectangle

a ⇒ x ⇒ b, c ⇒ y ⇒ d

and is defined by ∫ d

c

∫ b

a
φ(x, y)e−ikx−ilydxdy.

Apart from the positive aspect of eliminating problems of convergence for (x, y)

very far from the origin, the finite Fourier transform unfortunately brings a host of
negative aspects too. The first difficulty lies with the boundary conditions that have
to be satisfied which unfortunately are now no longer infinitely far away. They can
and do have considerable influence on the solution. One way to deal with this could
be to cover the entire plane with rectangles with φ(x, y) being doubly periodic, i.e.

φ(x, y) = φ(x + N (b − a), y + M(d − c)), M, N integers
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then revert to the original infinite range Fourier transform. However, this brings
problems of convergence and leads to having to deal with generalised functions. We
shall not pursue this kind of finite Fourier transform further here; but for a slightly
different approach, see the next section. There seems to be a reverting to Fourier
series here, after all the transform was obtained by a limiting process from series,
and at first sight, all we seem to have done is reverse the process. A closer scrutiny
reveals crucial differences, for example the presence of the factor 1/2π (or in general
1/ l where l is the period) in front of the integrals for the Fourier series coefficients
an and bn . Much of the care and attention given to the process of letting the limit
become infinite involved dealingwith the zero that this factor produces. Finite Fourier
transforms do not have this factor. We return to some more of these differences in
the next section, meanwhile let us do an example.

Example 6.3 Find the solution to the two-dimensional Laplace equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0, y > 0,

with

∂φ

∂x
and φ ≤ 0 as

⎩
x2 + y2 ≤ ≥, φ(x, 0) = 1 |x | ⇒ 1 φ(x, 0) = 0, |x | > 1.

Use Fourier transforms in x.

Solution Let

φ̄(k, y) =
∫ ≥

−≥
φ(x, y)e−ikx dx

then

∫ ≥

−≥
∂2

∂y2
e−ikx dx = ∂2

∂y2

⎦∫ ≥

−≥
φe−ikx dx

)

= ∂2φ̄

∂y2
.

Also ∫ ≥

−≥
∂2φ

∂x2
e−ikx dx

can be integrated by parts as follows

∫ ≥

−≥
∂2φ

∂x2
e−ikx dx =

[
∂φ

∂x
e−ikx

⎡≥

−≥
+ ik

∫ ≥

−≥
∂φ

∂x
e−ikx dx
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= ik
[
φe−ikx

]≥
−≥ − k2

∫ ≥

−≥
φe−ikx dx

= −k2φ̄.

Wehaveused the conditions that bothφ and its x derivative decay to zero as x ≤ ±≥.
Hence if we take the Fourier transform of the Laplace equation in the question,

∫ ≥

−≥

⎦
∂2φ

∂x2
+ ∂2φ

∂y2

)
e−ikx dx = 0

or
∂2φ̄

∂y2
− k2φ̄ = 0.

As φ̄ ≤ 0 for large y, the (allowable) solution is

φ̄ = Ce−|k|y .

Now, we can apply the condition on y = 0

φ̄(k, 0) =
∫ ≥

−≥
φ(x, 0)e−ikx dx

=
∫ 1

−1
e−ikx dx

= eik − e−ik

ik

= 2 sin(k)

k

whence

C = 2 sin(k)

k

and

φ̄ = 2 sin(k)

k
e−|k|y .

In order to invert this, we need the Fourier transform equivalent of the Convolution
theorem (see Chap.3). To see how this works for Fourier transforms, consider the
convolution of the two general functions f and g

F ∼ G =
∫ ≥

−≥
f (τ )g(t − τ )dτ =

∫ ≥

−≥

∫ ≥

−≥
f (τ )G(x)e−i x(t−τ )dτdx

=
∫ ≥

−≥
G(x)e−i xt

∫ ≥

−≥
f (τ )eixτ dτdx
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= 1

2π

∫ ≥

−≥
G(x)F(x)e−i xt dx

= 1

2π
F(FG).

Now, the Fourier transform of e−|k|y is

y

k2 + ω2

and that of φ(x, 0) is
2 sin(k)

k
,

hence by the convolution theorem,

φ(x, y) = 1

π
y
∫ 1

−1

dτ

(x − τ )2 + y2

= 1

π
y

⎦
tan−1

⎦
x − 1

y

)
+ tan−1

⎦
x + 1

y

))

is the required solution.

6.5 Windowing

There is no doubt that the most prolific application of Fourier transforms lies in the
field of the processing of signals. An in depth analysis is out of place here, but some
discussion is helpful as an introduction to the subject of wavelets that follows in
the next chapter. To start with, we return to the complex form of the Fourier series
and revisit explicitly the close connections between Fourier series and finite Fourier
transforms. From Chap.4 (and Sect. 6.2)

f (x) =
≥∑

n=−≥
cneinx

with

cn = 1

2π

∫ π

−π
f (x)e−inx dx .

Thus 2πcn is the finite Fourier transform of f (x) over the interval [−π,π] and the
“inverse” is the Fourier series for f (x). If cn is given as a sequence, then f (x) is
easily found. (In practice, the sequence cn consists of but a few terms.) The resulting
f (x) is of course periodic as it is the sum of terms of the type cneinx for various n.
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Hence the finite Fourier transform of this type of periodic function is a sequence of
numbers, usually four or five at most. It is only a short step from this theoretical
treatment of finite Fourier transforms to the analysis of periodic signals of the type
viewed on cathode ray oscilloscopes. A simple illustrative example follows.

Example 6.4 Consider the simple “top hat” function f (x) defined by

f (x) =
{
1 x ∞ [0,π]
0 otherwise.

Find its finite Fourier transform and finite Fourier sine transform.

Solution The finite Fourier transform of this function is simply

∫ π

0
e−inx dx =

[
−e−inx

in

⎡π

0

= 1

in
(1 − e−inπ)

which can be written in a number of ways:-

1

in
(1 − (−1)n); − 2i

(2k + 1)
; 2 sin( nπ

2 )

n
einπ/2.

The finite sine transform is a more natural object to find: it is

∫ π

0
sin(nx)dx = 1

n
(1 − (−1)n) = 2

2k + 1
, n, k integers.

Let us use this example to illustrate the transition from finite Fourier transforms to
Fourier transforms proper. The inverse finite Fourier transform of the function f (x)

as defined in Example 6.4 is the Fourier series

f (x) = 1

2π

≥∑
−≥

1 − (−1)n

in
einx 0 ⇒ x ⇒ π.

However, although f (x) is only defined in the interval [0,π], the Fourier series is
periodic, period 2π. It therefore represents a square wave shown in Fig. 6.4.

Of course, x ∞ [0,π] so f (x) is represented as a “window” to borrow a phrase
from time series and signal analysis. If we write x = πt/ l, then let l ≤ ≥: we
regain the transformation that took us from Fourier series to Fourier transforms
proper, Sect. 6.2. However, what we have in Fig. 6.5 is a typical signal. The Fourier
transform of this signal taken as a whole of course does not exist as conditions
at ±≥ are not satisfied. In the case of an actual signal therefore, the use of the
Fourier transform is made possible by restricting attention to a window, that is a finite
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Fig. 6.4 The square wave

range of t . This gives rise to a series (Fourier series) representation of the Fourier
transform of the signal. This series has a period which is dictated by the (usually
artificially generated) width of the window. The Fourier coefficients give important
information on the frequencies present in the original signal. This is the fundamental
reason for using these methods to examine signals from such diverse applications as
medicine, engineering and seismology. Mathematically, the way forward is through
the introduction of the Dirac δ function as follows. We have that

F{δ(t − t0)} =
∫ ≥

−≥
δ(t − t0)e

−iωt dt = e−iωt0

and the inverse result implies that

F{e−i t0t } = 2πδ(ω − ω0).

Whence we can find the Fourier transform of a given Fourier series (written in
complex exponential form) by term by term evaluation provided such operations are
legal in terms of defining the Dirac δ as the limiting case of an infinitely tall but
infinitesimally thin rectangular pulse of unit area (see Sect. 2.6).

f (t) √
≥∑

n=−≥
Fneinω0t

so that

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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F{ f (t)} √ F
{ ≥∑

n=−≥
Fneinω0t

}

=
≥∑

n=−≥
FnF{einω0t }

which implies

F{ f (t)} √ 2π
≥∑

n=−≥
Fnδ(ω − nω0).

Now, suppose we let

f (t) =
≥∑

n=−≥
δ(t − nT )

that is f (t) is an infinite train of equally spaced Dirac δ functions (called a Shah
function by electrical and electronic engineers), then f (t) is certainly periodic (of
period T ). Of course it is not piecewise continuous, but if we follow the limiting
processes through carefully, we can find a Fourier series representation of f (t) as

f (t) √
≥∑

n=−≥
Fne−inω0t

where ω0 = 2π/T , with

Fn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt

= 1

T

∫ T/2

−T/2
δ(t)e−inω0t dt

= 1

T

for all n. Hence we have the result that

F{ f (t)} = 2π
≥∑

n=−≥

1

T
δ(ω − nω0)

= ω0

≥∑
n=−≥

δ(ω − nω0).

Which means that the Fourier transform of an infinite string of equally spaced Dirac
δ functions (Shah function) is another string of equally spaced Dirac δ functions:
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F
{ ≥∑

n=−≥
δ(t − nT )

}
= ω0

≥∑
n=−≥

δ(ω − nω0).

It is this result that is used extensively by engineers and statisticians when analysing
signals using sampling. Mathematically, it is of interest to note that with T =
2π (ω0 = 1) we have found an invariant under Fourier transformation.

If f (t) and F(ω) are a Fourier transform pair, then the quantity

E =
∫ ≥

−≥
| f (t)|2dt

is called the total energy. This expression is an obvious carry over from f (t) rep-
resenting a time series. (Attempts at dimensional analysis are fruitless due to the
presence of a dimensional one on the right hand side. This is annoying to physicists
and engineers, very annoying!) The quantity |F(ω)|2 is called the energy spectral
density and the graph of this against ω is called the energy spectrum and remains a
very useful guide as to how the signal f (t) can be thought of in terms of its decompo-
sition into frequencies. The energy spectrum of sin(kt) for example is a single spike
in ω space corresponding to the frequency 2π/k. The constant energy spectrum
where all frequencies are present in equal measure corresponds to the “white noise”
signal characterised by a hiss when rendered audible. The two quantities | f (t)|2 and
energy spectral density are connected by the transform version of Parseval’s theorem
(sometimes called Rayleigh’s theorem, or Plancherel’s identity). See Theorem 4.8
for the series version.

Theorem 6.4 (Parseval’s, for transforms) If f (t) has a Fourier transform F(ω)

and ∫ ≥

−≥
| f (t)|2dt < ≥

then ∫ ≥

−≥
| f (t)|2dt = 1

2π

∫ ≥

−≥
|F(ω)|2dω.

Proof The proof is straightforward:-

∫ ≥

−≥
f (t) f ∼(t)dt =

∫ ≥

−≥
f (t)

1

2π

∫ ≥

−≥
F(ω)eiωt dωdt

= 1

2π

∫ ≥

−≥
F(ω)

∫ ≥

−≥
f (t)eiωt dtdω

= 1

2π

∫ ≥

−≥
F(ω)(F(ω))∼dω

= 1

2π

∫ ≥

−≥
|F(ω)|2dω
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where f ∼ is the complex conjugate of f (t). The exchange of integral signs is justified
as long as their values remain finite. �

Most of the applications of this theorem lie squarely in the field of signal process-
ing, but here is a simple example using the definition of energy spectral density.

Example 6.5 Determine the energy spectral densities for the following functions:

(i)

f (t) =
{

A |t | < T
0 otherwise

This is the same function as in Example 6.2.
(ii)

f (t) =
{

e−at t ∗ 0
0 t < 0.

Solution The energy spectral density |F(ω)|2 is found from f (t) by first finding its
Fourier transform. Both calculations are essentially routine.

(i)

F(ω) =
∫ ≥

−≥
f (t)eiωt dt

= A
∫ T

−T
eiωt dt

= A

iω

[
eiωt

]T

−T

= A

iω
[eiωT − e−iωT ] = 2A sin(ωt)

ω

as already found in Example 6.2. So we have that

|F(ω)|2 = 4A2 sin2(ωT )

ω2 .

(ii)

F(ω) =
∫ ≥

0
e−at e−iωt dt

=
[
−e(−a−iω)t

a + iω

⎫≥

0

= a − iω

a2 + ω2 .
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Fig. 6.5 A time series

Hence

|F(ω)|2 = a − iω

a2 + ω2 .
a + iω

a2 + ω2 = 1

a2 + ω2 .

There is another aspect of signal processing that ought to be mentioned. Most signals
are not deterministic and have to be analysed by using statistical techniques such as
sampling. It is by sampling that a time serieswhich is given in the form of an analogue
signal (a wiggly line as in Fig. 6.5) is transformed into a digital one (usually a series
of zeros and ones).

The Fourier transform is a means by which a signal can be broken down into
component frequencies, from t space to ω space. This cannot be done directly since
time series do not conveniently obey the conditions at ±≥ that enable the Fourier
transform to exist formally. The autocovariance function is the convolution of f with
itself and is a measure of the agreement (or correlation) between two parts of the
signal time t apart. It turns out that the autocovariance function of the time series
is, however well behaved at infinity and it is usually this function that is subject to
spectral decomposition either directly (analogue) or via sampling (digital). Digital
time series analysis is now a very important subject due to the omnipresent (digital)
computer. Indeed all television is nowdigital as aremobile communications.We shall
not pursue practical implimentation of digital signal analysis further here. What we
hope to have achieved is an appreciation of the importance of Fourier transforms and
Fourier series to the subject.

Let us finish this chapter by doing an example which demonstrates a slightly
different way of illustrating the relationship between finite and standard Fourier
transforms.

The electrical engineering fraternity define the window function by W (x) where
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Fig. 6.6 The window function W (x)

W (x) =

⎬⎬⎬⎬
⎬⎬⎬⎬

0 |x | > 1
2

1
2 |x | = 1

2

1 |x | < 1
2 .

giving the picture of Fig. 6.6. This is almost the same as the “top hat” function defined
in the last example. Spot the subtle difference.

Use of this function in Fourier transforms immediately converts a Fourier trans-
form into a finite Fourier transform as follows

∫ ≥

−≥
W

⎭
x − 1

2 (b + a)

b − a

)
f (x)e−iωx dx =

∫ b

a
f (x)e−iωx dx .

It is easy to check that if

t = x − 1
2 (b + a)

b − a

then t > 1
2 corresponds to x > b and t < − 1

2 corresponds to x < a. What this
approach does is to move the work from inverting a finite Fourier transform in terms
of Fourier series to evaluating

1

2π

∫ ≥

−≥
FW (ω)eiωx dω

where FW (ω) is the Fourier transform of the “windowed” version of f (x). It will
come as no surprise to learn that the calculation of this integral is every bit as difficult
(or easy) as directly inverting the finite Fourier transform. The choice lies between
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working with Fourier series directly or working with FW (ω) which involves series
of generalised functions.

6.6 Exercises

1. Determine the Fourier transform of the function f (t) defined by

f (t) =



T + t − T ⇒ t < 0
T − t 0 ⇒ t < T
0 otherwise.

2. If f (t) = e−t2 , find its Fourier transform.
3. Show that ∫ ≥

0

sin(u)

u
du = π

2
.

4. Define

f (t) =
{

e−t t ∗ 0
0 t < 0

and show that

f (at) ∼ f (bt) = f (at) − f (bt)

b − a

where a and b are arbitrary real numbers. Hence also show that f (at)∼ f (at) =
t f (at) where ∼ is the Fourier transform version of the convolution operation
defined by

f (t) ∼ g(t) =
∫ ≥

−≥
f (τ )g(t − τ )dτ .

5. Consider the integral

g(x) =
∫ ≥

−≥
f (t)e−2πi xt dt

and, using the substitution u = t −1/2x , show that |g(x)| ≤ 0 hence providing
a simple illustration of the Riemann–Lebesgue lemma.

6. Derive Parseval’s formula:-
∫ ≥

−≥
f (t)G(i t)dt =

∫ ≥

−≥
F(i t)g(t)dt

where F and G are the Fourier transforms of f (t) and g(t) respectively and all
functions are assumed to be well enough behaved.
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7. Define f (t) = 1− t2, −1 < t < 1, zero otherwise, and g(t) = e−t , 0 ⇒ t <

≥, zero otherwise. Find the Fourier transforms of each of these functions and
hence deduce the value of the integral

∫ ≥

0

4e−t

t3
(t cosh(t) − sinh(t))dt

by using Parseval’s formula (see Exercise 6). Further, use Parseval’s theorem for
Fourier transforms, Theorem 6.9, to evaluate the integral

∫ ≥

0

(t cos(t) − sin(t))2

t6
dt

8. Consider the partial differential equation

ut = kuxx x > 0, t > 0

with boundary conditions u(x, 0) = g(x), u(0, t) = 0,where g(x) is a suitably
well behaved function of x . Take Laplace transforms in t to obtain an ordinary
differential equation, then take Fourier transforms in x to solve this in the form
of an improper integral.

9. The Helmholtz equation takes the form uxx + uyy + k2u = f (x, y)

−≥ < x, y < ≥. Assuming that the functions u(x, y) and f (x, y) have Fourier
transforms show that the solution to this equation can formally be written:-

u(x, y) = − 1

4π2

∫ ∫ ∫ ∫
e−i[λ(x−ξ)+μ(y−η)] f (ξ, η)

λ2 + μ2 − k2
dλdμdξdη,

where all the integrals are from −≥ to ≥. State carefully the conditions that
must be obeyed by the functions u(x, y) and f (ξ, η).

10. Use the window function W (x) defined in the last section to express the coef-
ficients (cn) in the complex form of the Fourier series for an arbitrary function
f (x) in terms of an integral between −≥ and ≥. Hence, using the inversion
formula for the Fourier transform find an integral for f (x). Compare this with
the Fourier series and the derivation of the transform in Sect. 6.2, noting the role
of periodicity and the window function.

11. The two series

Fk =
N−1∑
n=0

fne−ink�ωT ,

fn = 1

N

N−1∑
k=0

Fkeink�ωT
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where �ω = 2π/N T define the discrete Fourier transform and its inverse.
Outline how this is derived from continuous (standard) Fourier transforms by
considering the series fn as a sampled version of the time series f (t).

12. Using the definition in the previous exercise, determine the discrete Fourier
transform of the sequence {1, 2, 1} with T = 1.

13. Find the Fourier transform of the Dirac δ function δ(t −t0) for arbitrary t0. Hence
express δ(t) as the integral of an exponential.

14. Find, in terms of Dirac δ functions the Fourier transforms of cos(ω0t) and
sin(ω0t), where ω0 is a constant.



Chapter 7
Wavelets and Signal Processing

7.1 Introduction

In this chapter, more modern notions relevant to signal processing are introduced.
The Fourier series of Chap.4 and Fourier transform of Chap.6 are taken to the next
step, the idea being to use the power of transforming from time to frequency in order
to analyse what are in effect complicated functions of time called time series. We
shall only give an introduction to signal processing as there are very large tomes
devoted to the subject.

7.2 Wavelets

In Chap.6 we saw that one problem with Fourier transforms was convergence.
Straight from the definition of Fourier transform,many everyday functions simply do
not possess Fourier transforms as the integrals diverge. By extending the meaning of
integration to incorporate generalised functions some crucial elementary functions
were shown to possess Fourier transforms, but in the practical analysis of time series
this is not enough and something else needs to be done. There are two possibilities.
One trick used is to truncate the time series, that is, start the time series at say −T/2
and finish it at T/2 for some fixed usually large time T . Another is more subtle
and was introduced very briefly in the last chapter; define a different quantity called
the autocovariance (or its normalised version, autocorrelation) which is a measure
of agreement between the signal at a particular time and its value t seconds later,
defined mathematically as an integral very much like the convolution of the function
with itself over a large range of time divided by this time. This dies away as t ∞ −≤
and t ∞ ≤ straight from its definition, and it is easy to prove rigorously. The Fourier
transform of this is called the spectral density (or power spectral density) and it is
this that is used to analyse signals. Considering both alternatives, it is the first of
these that is relevant to the study of wavelets, and is what we concentrate on first

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 175
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_7,
© Springer-Verlag London 2014
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Fig. 7.1 A single heartbeat
shown using an electrocardio-
graph (or ECG)

in this chapter. More will then be said on the second of these approaches. However,
not much of practical value can be done without the introduction of statistical and
probabilistic concepts. These are out of place in a text on Laplace transforms and
Fourier series and the interested reader is directed towards specialist books on sig-
nal processing for technicalities beyond those done here. The next few sections will
principally be concerned with functions that are zero outside a range of values of t .
The easiest way to think of a wavelet is as a pulse of the type seen when the heart is
monitored on an ECG (electrocardiogram) see Fig. 7.1. This figure shows the four
different pulses labelled P, Q, R, S and T that comprise the typical heartbeat. The
point being that the whole beat though complex is constrained to lie within a short
time interval. Mathematically, perhaps the sinc function is the idealised wavelet:

sinc(t) = sin(t)

t

(truncated to lie between±2π say, shown in Fig. 7.2) but there are plenty of others. If
t is replaced by πt the function is sometimes called the Shannon function. The idea
now is to proceed formally and from this idea of a single pulse of a specific shape,
find a linear space so that in the same way as in Fourier series, a general signal can
be generated from a basis of pulse functions. Appendix C will need to be consulted
by those less acquainted with such mathematical formalities.

7.3 Basis Functions

It is reasonable here to repeat some basic notions relevant to linear spaces first
encountered in Chap.4. The idea is that for a certain set of functions φk(t) it is
possible to express any arbitrary function f (t) as a linear combination

f (t) =
≤∑

k=−≤
ckφk(t)
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Fig. 7.2 The sinc function truncated at ±2π

where straight away we have assumed that the number of elements in the basis is
infinite, in fact a double infinity. The linear space is assumed to possess an inner
product of the type:

≥ f,φk→ =
∫ ≤

−≤
f (t)φk(t)dt

moreover the basis functions themselves will be assumed to obey an orthogonality
relationship:

≥φk,φl→ =
∫ ≤

−≤
φk(t)φl(t)dt = δk,l .

Here ck is a constant coefficient, δk,l is the Kronecker delta defined by:

δk,l =
{
1, k = l
0, k ∗= l

and finally all the functions φk(t) are presumed to belong to the set of all square
integrable functions that is:

∫ ≤

−≤
{ f (t)}2dt < ≤.
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The overbar denotes the complex conjugate. For the case of real functions it can of
course be ignored. In the above the basis functions are in fact orthonormal, but this
is not an essential requirement.

Perhaps the simplest way to generate a set of basis functions is to start with the
Haar function, named after a Hungarian mathematician Alfréd Haar (1885–1933)
who introduced it in 1910. This can be thought of as our old friend the Heaviside
step function (see Sect. 2.1) but restricted in the way of wavelets to lie between 0 and
1.However, some books insist that even themost basicHaar function should integrate
to zero, that is the area above the t axis is equal to the area below. However, here let
us stick to the simplest definition of the Haar characteristic function as follows:

χ[0,1)(t) =
{
1, 0 √ t < 1
0, otherwise

where the notation is as follows: χ( j,k) means that its value is 1 between j and k but
0 elsewhere. The usual set notation applies whereby a square bracket includes the
endpoint(s) whereas a parenthesis doesn’t. It is sometimes called a top hat function
as this is what the graph resembles. Now we define

φk(t) = χ[0,1)(t − k), k ⇒ Z

so that the orthogonality relationship:

≥φk,φl→ =
∫ ≤

−≤
χ[0,1)(t − j)χ[0,1)(t − k)dt = δ j,k

holds. When j ∗= k ( j, k ⇒ Z) there is no overlap between the top hats so the integral
is zero. If j = k the top hats precisely coincide and the area under the curve is unity.
Having established the orthogonality of this basis of Haar functions, we are able
to generate many others. From the main function we can define a whole family of
functions. The starting function is the father an associated functionwill be themother,
and there are functions derived from them called sons and daughters, textbooks
devoted to wavelets talk of sibling rivalry and so the family analogy continues. If the
father is the Haar function the associated Haar mother wavelet function is defined
by:

ψ(t) =



1, 0 √ t < 1
2−1, 1

2 √ t < 1
0, otherwise.

Both φ(t) and ψ(t), are shown in Fig. 7.3. The relation between the father wavelet
φ(t) and mother wavelet ψ(t) is

ψ(t) = φ(2t) − φ(2t − 1)

so the first generation of daughters are defined

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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Fig. 7.3 The φ(t) (above) and ψ(t) functions from which the father and mother wavelets arise

ψ1,0(t) = ψ(2t) = φ(4t) − φ(4t − 1), ψ1,1(t) = φ(2t − 1) = φ(4t − 2) − φ(4t − 3).

The second of these daughter wavelets is shown below: This terminology, swathed
as it is in family analogies seems quaint but it is now accepted as standard. From the
definitions, or directly from the figures, we have that:
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ψ(2t) = ψ1,0 =




1, 0 √ t <
1

4

−1,
1

4
√ t <

1

2

0, otherwise

and also

ψ(2t − 1) = ψ1,1 =




1,
1

2
√ t <

3

4

−1,
3

4
√ t < 1

0, otherwise.

Defined in this way, only the basic Haar function does not integrate to zero, all of
the rest of the family do.

Example 7.1 Using the Father, Mother, Daughter1 and −Daughter1 wavelets
defined above, is it possible to decompose the signals

g1(t) =




4, 0 √ t <
1

4

−6,
1

4
√ t <

1

2

3,
1

2
√ t √ 3

4

2,
3

4
√ t √ 1

0, otherwise

and

g2(t) =




4, 0 √ t <
1

4

4,
1

4
√ t <

1

2

3,
1

2
√ t √ 3

4

2,
3

4
√ t √ 1

0, otherwise

by expressing it as a linear combination of φ,ψ,ψ1,1,−ψ1,1? Give reasons for your
answers.
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Solution If we simply proceed to try and solve the vector equation:

aφ + bψ + cψ1,1 − dψ1,1 = (4,−6, 3, 2)T

we get the four simultaneous equations:

a + b = 4

a + b = −6

a − b + c − d = 3

a − b − c + d = 2

and we immediately see that the first two are inconsistent as 4 and −6 cannot be
equal. So the answer to the first part is, no, g1(t) cannot be expressed in terms of the
four wavelets φ,ψ,ψ1,0,ψ1,1. The second function gives the equation

aφ + bψ + cψ1,1 − dψ1,1 = (4, 4, 3, 2)T

and the four simultaneous equations

a + b = 4

a + b = 4

a − b + c − d = 3

a − b − c + d = 2.

This time the first two equations are identical and there is no inconsistency, so there
is a solution to the problem. However there are an infinity of them:

a = 3.25, b = 0.75, c = λ, d = 0.5 + λ

where λ can take any arbitrary value. Therefore yes g2(t) can be expressed in terms
of the four wavelets φ,ψ,ψ1,1,−ψ1,1 but not uniquely. Of course the problem here
is that the set φ,ψ,ψ1,1,−ψ1,1 does not constitute a basis for functions of the type
g1(t) or g2(t) and this example shows why we need to have a basis. We have also
assumed a mapping (bijective mapping) between g1(t) and the vector (4,−6, 3, 2)
similarly for g2(t) and (4, 4, 3, 2). This leads us nicely to the next section when all
these points are addressed (Fig. 7.4).

7.4 The Four Wavelet Case

One of the striking characteristics of wavelets that is also their prime usefulness is
their simple and limited range. Wavelets are zero outside a window, but can have
any value inside the window. For example to simulate the heartbeat pulse of Fig. 7.1
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Fig. 7.4 The daughter wavelet ψ1,1(t)

one would imagine wavelets with linear dependence on time (saw tooth) would be
required. Suppose for now the values are piecewise constant, and within that window
wavelets have at most four values. This means that identifying each wavelet with a
four vector is possible, and so we can address the difficulties encountered in Example
7.1. As hinted at there, this is done through a mapping. A mapping that is an isomor-
phism (or bijection). This collection of four vectors then can be subject to the mathe-
matics of vector spaceswhich brings out useful features and enables calculation. First
of all, split the interval [0, 1] into four equal parts: [0, 1/4], [1/4, 1/2], [1/2, 3/4]
and [3/4, 1] then identify the wavelet functions as follows:

φ ≡∞

⎡
⎢⎢⎧
1
1
1
1

⎨
⎩⎩⎦ ψ ≡∞

⎡
⎢⎢⎧

1
1

−1
−1

⎨
⎩⎩⎦ ψ1,0 ≡∞

⎡
⎢⎢⎧

1
−1
0
0

⎨
⎩⎩⎦ψ1,1 ≡∞

⎡
⎢⎢⎧

0
0
1

−1

⎨
⎩⎩⎦ .

In general, the function f (t) defined below corresponds to the four vector on the
right through a bijective mapping.
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f (t) =




a, 0 √ t <
1

4

b,
1

4
√ t <

1

2

c,
1

2
√ t <

3

4

d,
3

4
√ t < 1

0, otherwise

≡∞

⎡
⎢⎢⎧

a
b
c
d

⎨
⎩⎩⎦ .

Having identified this bijective mapping, the well known properties of the vector
space come to our aid in much the same way as they did in Fourier series. For
example the four unit vectors:

⎡
⎢⎢⎧
1
0
0
0

⎨
⎩⎩⎦ ,

⎡
⎢⎢⎧
0
1
0
0

⎨
⎩⎩⎦ ,

⎡
⎢⎢⎧
0
0
1
0

⎨
⎩⎩⎦ , and

⎡
⎢⎢⎧
0
0
0
1

⎨
⎩⎩⎦

are a basis for all four vectors ⎡
⎢⎢⎧

a
b
c
d

⎨
⎩⎩⎦ .

Thus any wavelet function f (t) can be generated by the four simple top hat functions
γi (t), i = 1, 2, 3, 4 where

φ2,0(t) =



1, 0 √ t <

1

4

0, otherwise,

φ2,1(t) =



1,

1

4
√ t <

1

2

0, otherwise,

φ2,2(t) =



1,

1

2
√ t <

3

4

0, otherwise,
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and

φ2,3(t) =



1,

3

4
√ t < 1

0, otherwise.

in much the same way as any periodic function can be generated by a combination
of sines and cosines. The functions φ2,0,φ2,1,φ2,2,φ2,3 are called the son wavelet
functions; this will be generalised later. As convenient as this may seem, it turns out
that the basis φ2,0,φ2,1,φ2,2,φ2,3 is not the only one used for the purposes of calcu-
lation. Instead it is usually best to use the ones introduced earlier through the Haar
mother wavelet function. We still start with the father, but then choose the mother,
daughter1 and daughter2 functions. So we have the basis φ(t),ψ(t),ψ1,0(t),ψ1,1(t)
which map to the four vectors

⎡
⎢⎢⎧
1
1
1
1

⎨
⎩⎩⎦ ,

⎡
⎢⎢⎧

1
1

−1
−1

⎨
⎩⎩⎦ ,

⎡
⎢⎢⎧

1
−1
0
0

⎨
⎩⎩⎦ , and

⎡
⎢⎢⎧

0
0
1

−1

⎨
⎩⎩⎦

respectively.
The most straightforward way of generalising this, is to focus on the division of

the interval [0, 1] by twos. The above example divided this interval into quarters; so
let us define 2 j piecewise constant wavelets and identify column j vectors as above.
This can be done by defining ψ j (t) as the mother wavelet through

ψ j (t) = 2 j/2ψ
(
2 j t

)
(7.1)

where j is an integer. The generalisation to the kth generation of daughter wavelets
are found through the formula:

ψ j,k(t) = 2 j/2ψ
(
2 j t − k

)
(7.2)

where 0 √ k √ 2 j − 1. This function has the value 1 in the interval [k2− j , (k +
1
2 )2

− j ] and the value −1 in the adjacent interval [(k + 1
2 )2

− j , (k + 1)2− j ]. It is zero
everywhere else, so has integral 0. They are also pair-wise orthogonal:

∫ ≤

−≤
ψ j,k(t)ψp,q(t)dt = δ j,pδk,q ,

the right hand side being the product of two Kronecker delta functions which is zero
unless j = p and k = q in which case it is one.

Then defining mother, daughters, grand-daughters, great grand-daughters etc.
depending on the values of j and k. There will be 2 j members of the basis
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corresponding to j generations. There is a strong correlation between computation
using wavelets defined like this and the Fast Fourier Transform or FFT (see the book
by Stéphane Mallet “A Wavelet Tour of signal processing: The Sparse Way”).

If f (t) represents a signal that can be interpreted in terms of a series of such
wavelets:

f (t) =
≤∑

j=−≤

≤∑
k=−≤

c jkψ j,k

then define an inner product through

≥ f,ψ j → =
∫ ≤

−≤
f (t)ψ j,k(t)dt

so that using the orthogonal properties of the basis, the function f (t) can be recovered
through

f (t) =
≤∑

j=−≤

≤∑
k=−≤

≥ f,ψ j,k→ψ j,k

which, if you unpick the notation, is a generalisation of a Fourier series and the
integrals that provide formulas for the coefficients.Here, the overbar has been omitted
as all variables and functions are assumed real valued. This is by no means the only
way to generalise the Haar wavelets and its generations, but it is one of the simplest.

Example 7.2 Define explicitly the next generation of wavelet functions, correspond-
ing to Father, Mother, Daughter1, Daughter2, Granddaughter1, Granddaughter2,
Granddaughter3 and Granddaughter4.

Solution The Father, Mother and Daughter wavelets will be the same, except of
course this generation will have functions isomorphic to vectors with eight (2 j+1 =
23 so j = 2) elements. By construction, the vectors that represent the eight wavelets
are:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

1
1
1
1
1
1
1
1

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

1
1
1
1

−1
−1
−1
−1

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

1
1

−1
−1
0
0
0
0

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

0
0
0
0
1
1

−1
−1

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

1
−1
0
0
0
0
0
0

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

0
0
1

−1
0
0
0
0

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

0
0
0
0
1

−1
0
0

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧

0
0
0
0
0
0
1

−1

⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎦

.

So the wavelet functions are φ(t),ψ(t),ψ0,1(t) and ψ1,1 together with the following
four granddaughter wavelets:
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ψ2,0 =




1, 0 √ t <
1

8

−1,
1

8
√ t <

1

4

0, otherwise

ψ2,1 =




1,
1

4
√ t <

3

8

−1,
3

8
√ t <

1

2

0, otherwise

ψ2,2 =




1,
1

2
√ t <

5

8

−1,
5

8
√ t <

3

4

0, otherwise

ψ2,3 =




1,
3

4
√ t <

7

8

−1,
7

8
√ t < 1

0, otherwise.

One can see at a glance that the eight column vectors have a zero scalar product
and so are orthogonal. This then tells us that the functions that they represent are
also orthogonal. This can be deduced by direct integration, though it takes a little
longer. The vectors are not orthonormal of course, but they can be rendered so upon
multiplication by the reciprocal of square root of the sum of the squares of each
component. So division by

≈
8,

≈
8, 2, 2,

≈
2,

≈
2,

≈
2, and

≈
2 respectively will give

a set of eight orthonormal vectors that represent the functions which form a basis for
all functions that are piecewise constant over the eight intervals [0, 1

8 ], [ 18 , 1
4 ], [ 14 , 3

8 ],
[ 38 , 1

2 ], [ 12 , 5
8 ], [ 58 , 3

4 ], [ 34 , 7
8 ] and [ 78 , 1]. All of these are of course special cases of

Eq. (7.2). You should verify this as an exercise.
With all this concentration on daughter wavelets, one can be forgiven asking

whetherwe should use sonwavelets. The generalisation of the sonwavelet is achieved
through the original Haar wavelet φ(t) through
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φ j,k(t) = φ(2 j t − k)

though these are not orthonormal so multiplication by the factor 2 j/2 can be done.
Whether one chooses daughter or son wavelets is called sibling rivalry, however the
daughter wavelets are usually preferred as they have zero mean.

7.5 Transforming Wavelets

There are many other kinds of wavelets, but the moment has arrived when we need
to find out what happens when we transform them. As a first example let us find the
Fourier transform of ψ(t). Recalling the definition of Fourier transform (Chap.6):

F(ω) =
∫ ≤

−≤
f (t)e−iωt dt

where the trivial change of variable x = t has been made as it is always the case
that transforms are performed in the time domain where wavelets are concerned. We
present this formally as an example:

Example 7.3 Find the Fourier transform of the mother wavelet function ψ(t).

Solution The definition of the mother wavelet ψ(t) was given earlier, and is:

ψ(t) =




1, 0 √ t <
1

2

−1,
1

2
√ t < 1

0, otherwise.

Thus

Fψ(ω) =
∫ ≤

−≤
ψ(t)e−iωt dt

=
∫ 1

2

0
e−iωt dt −

∫ 0

1
2

e−iωt dt

= − 1

iω
e−iωt

∣∣∣t= 1
2

t=0
+ 1

iω
e−iωt

∣∣∣t=1

t= 1
2

= 1

iω

[
1 − e−iω/2 + e−iω − e−iω/2

]

= 1

iω

(
1 − e−iω/2

)2
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= 1

iω

(
eiω/4 − e−iω/4

)2
e−iω/2

= 4i

ω
e−iω/2 sin2

(ω

4

)
.

It might worry some that this is explicitly a complex valued function. It should not.
The mother wavelet ψ(t) is neither even nor odd, therefore it will have a complex
valued Fourier transform. However it is true that for practical applications complex
valued functions of the wave frequency ω are a nuisance. Either we work with
Fourier sine or cosine transforms, or,more usually, symmetric functions that represent
practical aspects of the time series being represented by wavelets are used. These
are the auto-covariance and autocorrelation functions mentioned at the beginning of
the chapter. The auto-covariance of a given function (time series) f (t) is defined as
follows:

R f (τ ) =
∫ ≤

−≤
f (t) f (t − τ )dt.

The only difference between this and the autocorrelation is normalisation. The auto-
correlation is the normalised auto-covariance (= R f (τ )/|R f (τ )|). Let us spend a
little time with this auto-covariance function. The mathematical definition above is
straightforward enough, and we shall calculate it soon. Practically, it is a measure
of how much a signal f (t) agrees with itself (or correlates with itself) τ seconds
later. It is a maximum at τ = 0 as this agreement is exact then. It is also a symmetric
function. This is easy to show:

R f (−τ ) =
∫ ≤

−≤
f (t) f (t + τ )dt

changing the variable through u = t +τ gives dt = du and t = u −τ with the limits
staying at −≤ and ≤, so

R f (−τ ) =
∫ ≤

−≤
f (u − τ ) f (u)du = R f (τ )

from the definition, and the result is proved trivially. It is also the case that the Fourier
transform of the auto-variance has a practical meaning. We write

S f (ω) =
∫ ≤

−≤
R f (τ )e−iωτ dτ

and call S f (ω) the spectral density (or sometimes the power spectral density). The
spectral density gives the distribution of energy through the density spectrum of
the time series f (t). So a single frequency or sine wave would be a spike (Dirac-δ
function), whilst if S f (ω) = constant this would mean all frequencies have equal
energy in the signal, which electronic engineers call white noise. However this takes
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us outside the scope of an undergraduate mathematics text and firmly into signal
processing. Let us retreat and do some calculation.

Example 7.4 Determine the auto-covariance of the mother wavelet function, and
hence evaluate its Fourier transform.

Solution It is not wise to plunge straight into calculation here. The mother wavelet
ψ(t) is given by:

ψ(t) =



1, 0 √ t < 1
2−1, 1

2 √ t < 1
0, otherwise

and so is only non-zero inside the interval [0, 1]. Thismeans that the functionψ(t−τ )

is also zero outside the different interval [τ , 1 + τ ]. Thus should τ be less than −1
or greater than 1 the product ψ(t)ψ(t − τ ) will be identically zero because the
two intervals where they are non zero fail to overlap, which implies that Rψ(τ )

will also be zero outside the range [−1, 1]. Inside this range, the value of Rψ(τ ) is
calculated piecemeal. It will be done explicitly, even though symmetry (Rψ(τ ) is an
even function) could be invoked. It is better to use this as a check as the algebra can
be messy. For τ in the interval [−1,−1/2] we have

Rψ(τ ) =
∫ ≤

−≤
ψ(t)ψ(t − τ )dt =

∫ 1+τ

0
(−1)(1)dt = −1 − τ

since the overlap region in t space is from 0 to 1 + τ which of course is between 0
and 1/2 for this range of τ . The next range of τ is [−1/2, 0] which gives:

Rψ(τ ) =
∫ (1/2)+τ

0
(1)(1)dt +

∫ 1/2

(1/2)+τ
(−1)(1)dt +

∫ 1+τ

1/2
(−1)(−1)dt

= 1/2 + τ − (1/2 − 1/2 − τ ) + (1 + τ − 1/2) = 3τ + 1.

The third range for τ is [0, 1/2] and the calculation for Rψ(τ ) is:

Rψ(τ ) =
∫ 1/2

τ
(1)(1)dt +

∫ (1/2)+τ

1/2
(−1)(1)dt +

∫ 1

(1/2)+τ
(−1)(−1)dt

= 1/2 − τ − (τ + 1/2 − 1/2) + (1 − τ − 1/2) = 1 − 3τ .

Finally, the fourth and last non-zero range for τ is [1/2, 1] so the only non-zero
interval [1/2, τ ] giving

Rψ(τ ) =
∫ ≤

−≤
ψ(t)ψ(t − τ )dt =

∫ 1

τ
(−1)(1)dt = τ − 1.

Thus written in terms of τ the function Rψ(τ ) is
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Fig. 7.5 The auto-covariance
function for the mother
wavelet Rψ(τ )

Fig. 7.6 The spectral den-
sity function for the mother
wavelet Sψ(ω)

Rψ(τ ) =




−1 − τ , −1 √ τ √ − 1
2

1 + 3τ , − 1
2 < τ √ 0

1 − 3τ , 0 < τ √ 1
2

τ − 1, 1
2 < τ √ 1.
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This auto-covariance function is shown in Fig. 7.5; it is indeed as expected, an even
function.Now let us turn our attention tofinding its Fourier transform. So,we evaluate

Sψ =
∫ ≤

−≤
Rψ(τ )e−iωτ dτ

which using the definition of Rψ(τ ) just derived leads to

Sψ =
∫ 1/2

0
2(1 − 3τ ) cos(ωτ )dτ +

∫ 1

1/2
2(τ − 1) cos(ωτ )dτ

once the symmetry of Rψ(τ ) is utilised. Sψ is now real and can be evaluated either
by hand using integration by parts or by using software. The resulting expression is:

Sψ = 4

ω2

(
cos2

(
1

2
ω

⎫
− 2 cos

(
1

2
ω

⎫
+ 1

⎫

and this function is displayed in Fig. 7.6. It is symmetric, which is obvious from its
definition, but in practical terms asω is a frequency it is positive and only the part that
corresponds to positive values of ω is considered. S = 0 when ω = 0 which means
that there is no steady time independent part of the signal. This is certainly true for all
wavelets, because nowavelet persists outside a unit window. It is also true that S ∞ 0
as ω ∞ ≤. This implies that there is also no energy in the very short time scales
(high frequency). Although less obvious, it can also be deduced from the mother
wavelet that peak energy occurs around t = 1 corresponding to ω = (2 + 4N )π, N
an integer. In general, it is possible to look at the auto-covariance and spectral density
of a time series and deduce important information about the parent signal in terms
of dominant time scales and frequencies. Through this knowledge it is possible to
model the effects that caused the time series. This might be seismic effects (e.g.
earthquakes), engineering effects (e.g. vibrations or ocean waves) or medical signals
(e.g. heart rates or brain waves). This is the study of signal processing and those
interested in this are steered towards specialist texts such as Mallat’s book.

7.6 Wavelets and Fourier Series

Before proceeding with some wavelet specific results, let us look at their relation
with Fourier series. A feature of most time series (let’s call a typical one f (t)) is
that they start at −≤ and go on forever (to ≤); moreover they do not repeat or even
stay at zero for any stretch of time. This is dealt with by truncation, but another idea
would be not only to truncate the series to lie between 0 and 2π say, but instead of
having f (t) = 0 outside this range simply turn the series into a periodic function
f p(t) so that
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f p(t) =
≤∑

n=−≤
f (t + 2πn).

Defined above, f p(t) is certainly periodic and so possesses a Fourier series. Let’s
seek a complex Fourier series as outlined in Sect. 4.4.:

f p(t) =
≤∑

−≤
ckeikt

with the coefficients ck given by

ck = 1

2π

∫ 2π

0
f p(t)e

−ikt dt

= 1

2π

∫ 2π

0

≤∑
n=−≤

f (t + 2πn)e−ikt dt

= 1

2π

≤∑
n=−≤

∫ 2π

0
f (t + 2πn)e−ikt dt

= 1

2π

≤∑
n=−≤

∫ 2π(n+1)

2πn
f (ξ)e−ik(ξ−2πn)dξ

where the change of variable ξ = t +2πn has been used. As n starts at −≤ and runs
all the way through to ≤ the right hand side sums term by term to the integral

ck = 1

2π

∫ ≤

−≤
f (ξ)e−ikt dξ = 1

2π
f̂ (k)

provided of course that the sum exists. We can prove that the improper integral
converges as follows: we are are looking at only a portion of the time series f (t)
and repeating it every 2π. Hence in the integrand f (t) is multiplied by trigonometric
functions (e−ikt ) so by the Riemann Lebesgue lemma (Theorem 4.2) the integral
will converge. Here f̂ (k) is, by definition, the Fourier transform of f (t). Back in
Chap.4 k would have been thought to be an integer, however in terms of Chap.6, k is
a variable. If the above is slightly generalised from f (t) having period 2π to having
period T then we have

f p(t) =
≤∑

n=−≤
f (t + nT ) = 1

T

≤∑
k=−≤

f̂ (kω0)e
ikω0t .

This last equality is a special case of Poisson’s sum formula. It is usually generalised
through writing f(at) instead of f(t) but T = 2π once again, whence

http://dx.doi.org/10.1007/978-1-4471-6395-4_4
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≤∑
n=−≤

f (t + 2πan) = 1

2πa

≤∑
k=−≤

f̂

(
k

a

⎫
eikt/a . (7.3)

Poisson’s sum formula is simply a special Fourier series, but the Fourier coefficients
of this special complex Fourier series happen to be the Fourier transform of f (t)
the original full time series itself. Of course, the whole point originally was that the
Fourier transform of the time series f (t) was hard to find. However it is not difficult
to derive the following two formulas. They are actually easily obtained fromEq. (7.3)
by changing variables. Equations (7.3) and (7.4) (or (7.3) and (7.5)) look like finite
Fourier transforms and their inverse.

≤∑
k=−≤

f̂ (ω + 2πk) =
≤∑

k=−≤
f (k)e−ikω (7.4)

and ≤∑
k=−≤

f̂

(
ω + 2πk

a

⎫
=

≤∑
k=−≤

f (ak)e−ikω. (7.5)

If a = 1/(2π) in Eq. (7.3) it becomes the beautifully simple:

≤∑
n=−≤

f (t + n) =
≤∑

k=−≤
f̂ (2πk)e2πikt . (7.6)

Consider the special case of the Fourier transform of f (t) that gives

f̂ (2πk) = δ0,k where k ⇒ Z.

So if 0 is excluded, the Kronecker delta is always zero which means that the sum on
the right of Eq. (7.6) only has one non-zero term, leading to

≤∑
n=−≤

f (t + n) = 1.

The left hand side thus sums to one and is called a Partition of Unity. Functions that
when all added up equal one are (perhaps surprisingly) very useful. An example of
one is the Haar function:

B1(t) = χ[0,1)(t) =
{
1, 0 √ t < 1
0, otherwise

introduced earlier. The Fourier transform of this is:
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B̂1(ω) =
∫ 1

0
e−iωt dt = 1 − e−iω

iω

so that

B̂1(0) = lim
ω∞0

1 − e−iω

iω
= 1

and also
B̂1(2πk) = 0, k = ±1,±2 . . .

hence ≤∑
n=−≤

B1(t + n) ≡ 1.

The function B1(t) is called a first order B-Spline function.

Example 7.5 Calculate B2(t) = B1(t)∗ B1(t). Use the convolution theorem to find
its Fourier transform and hence generalise the result.

Solution Using direct integration, if 0 √ t √ 1 we have

B2(t) = B1 ∗ B1 =
∫ t

0
B1(τ )B1(t − τ )dτ =

∫ t

0
dτ = t

whereas if 0 √ t − τ √ 1 (which is t − 1 √ τ √ t) we have

B2(t) = B1 ∗ B1 =
∫ t

0
B1(τ )B1(t − τ )dτ =

∫ 1

t−1
dτ = 2 − t.

So B2 is a triangular pulse:

B2(t) =




t, 0 √ t √ 1

2 − t, 1 √ t √ 2

0, otherwise.

The Fourier transform can be easily found from the convolution theorem applied to
Fourier transforms, namely that the Fourier transform of a convolution is the product
of the two component Fourier transforms, so

B̂2 = [B̂1(ω)]2 =
(
1 − e−iω

iω

⎫2

.

B2(t) is called the second order B-spline. The nth order B-spline is found recursively
through the convolution

Bn(t) = Bn−1(t) ∗ B1(t)
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hence, taking Fourier transforms and successively putting n = 2, 3 and so on gives,
by induction,

B̂n(ω) =
(
1 − e−iω

iω

⎫n

.

The definition of B1(t) (it is the top hat function 1 between 0 and 1, zero elsewhere)
enables us to compute the convolution explicitly giving the simple integral

Bn(t) =
∫ 1

0
Bn−1(t − τ )dτ .

The principal applications ofwavelets is in signal processing, but this is not a textbook
on signal processing. However, sampling a time series is so central that it is useful
to have what may seem a short digression here, but it really is not as what follows
is securely applied mathematics. Suppose there is a time series f (t) that needs to
be analysed. To do so it is normal to sample it at some fixed period, call this period
h. Suppose also that attention is limited to analysing a specific range of frequencies
(called the bandwidth). Call this range of frequencies 2�. If h = π/� then this is the
largest value that h can have and still hope to recover the important features of the
original signals, it is called the Nyquist frequency. All this being said, let us apply
some of the previous mathematics to sampling a time series. First of all, sampling
is done on the wave frequency version of the signal which we shall assume is the
Fourier transform f̂ (ω) which is given by

f̂ (ω) =
∫ ≤

−≤
f (t)e−iωt dt.

Suppose that this integral can be approximated using say Simpson’s rule through:

F̂(ω) = h
≤∑

k=−≤
f (kh)e−ikωh ∼ f̂ (ω).

We can now use a version of the Poisson sum (Eq. 7.5) to write this as:

F̂(ω) =
≤∑

k=−≤
f̂

(
ωh + 2πk

h

⎫
= f̂ (ω) +

−1∑
k=−≤

f̂

(
ω + 2πk

h

⎫
+

≤∑
k=1

f̂

(
ω + 2πk

h

⎫
.

This last equation tells us that the approximation F̂(ω) consists of f̂ (ω) itself plus
infinitely many copies of f̂ (ω) shifted by 2π/h along the ω-axis. So the question
arises how do we retrieve the original time series having only access to the approx-
imate frequency distribution. Suppose then that we just have F̂(ω) in this form, the
way to proceed is to isolate the original f̂ (ω) by windowing out the shadows through
a window function:
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Fig. 7.7 a (above) not enough
sampling b (below) too much
sampling. The vertical axis on
both graphs are |F̂(ω)|

Ŵ (ω) =
{
1, |ω| < �

0, otherwise.

Of course we must be sure that the images of f̂ (ω) do not overlap. It is also prudent
not to over sample, this causes large gaps between the shadow image which in itself
does not seem a problem, but can be expensive (why get more data than the minimum
required?).Both over andunder sampled time series frequencies are shown inFig. 7.7.
The other essential fact to enable the original series to be retrieved from the Fourier
transform f̂ (ω) is to ensure band limitation, and this has been done by defining the
bandwidth as 2�. The shape of f̂ (ω) can be anything of course, it has a Gaussian
shape in Fig. 7.7 merely as an illustration. To ensure there is only one image of f̂ (ω)

in the version we have, namely F̂(ω), we multiply it by a window so that all the
repeats are excluded so:

f̂ (ω) = F̂(ω)Ŵ (ω).
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Inverting this we have immediately

f (t) = F(t) ∗ W (t)

where Ŵ (ω) is defined above. From the beginning of the chapter, it’s inverse Fourier
transform W (t) is the sinc function:

W (t) = sin(�t)

πt
. (7.7)

We also use a result from Chap.6 (see Exercise 6.14), namely:

δ(t − kh) = 2π
∫ ≤

−≤
eiω(t−kh)dω.

We now derive a useful expression, starting from the inverse Fourier transform of
F(t), the approximation to the original time series f (t) obtained through the inverse
Fourier transform of the Simpson’s rule summation of the exact inverse Fourier
transform of f (t) (hope you’re keeping up). We have

F(t) = 1

2π

∫ ≤

−≤
F̂(ω)eiωt dω = h

2π

∫ ≤

−≤

≤∑
k=−≤

f (kh)e−ikhωeiωt dω.

Manipulation of the right hand side gives

F(t) = h

2π

≤∑
k=−≤

f (kh)

∫ ≤

−≤
eiω(t−kh)dω

= h
≤∑

k=−≤
f (kh)δ(t − kh) from the result above, see Exercise 6.14.

We now turn our attention to f (t) itself and use the result just obtained on the
convolution f (t) = F(t) ∗ W (t) to give

f (t) = h
≤∑

k=−≤
f (kh)

∫ ≤

−≤
δ(τ − kh)W (t − τ )dτ

= h
≤∑

k=−≤
f (kh)W (t − kh) using a property of the δ function

= h
≤∑

k=−≤
f (kh)

sin[�(t − kh)]
π(t − kh)

from Eq. (7.7)
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Fig. 7.8 The square wave.
The first 100 terms of
the Fourier series f (t) =
4
π

⎬100
n=1

sin{(2n−1)t}
2n−1 , and

Gibbs phenomena remains
clear

=
≤∑

k=−≤
f (kh)

sin(�t − kπ)

�t − kπ
using h = π/�.

This result is interesting. It tells us that f (t) is obtained exactly by the sum on the
right of the last equation. Not really a surprise as at the points where t = kh the
quotient sin[�(t − kh)]/[�(t − kh)] is exactly unity and it is zero at all other values
of k where t ∗= kh. Hence this is an interpolation formula for f (t), reconstructed
via the sinc function. Before returning to the central theme of this chapter, wavelets,
let us apply similar analysis to say a bit more about Gibbs phenomenon and aliasing
which were briefly mentioned in Chap.4 at the end of Sect. 4.4. Both of these arise
because a Fourier series is being truncated, but they can be quite pronounced even
if plenty of terms of the Fourier series are being summed. Gibbs phenomenon is a
particular nuisance when trying to represent square waves with Fourier series, see
Fig. 7.8, square waves have an abrupt discontinuity where the value of the series
jumps and at these jumps the truncated series overshoot and oscillates.

Before doing any mathematics it is useful to describe in words what both aliasing
and Gibbs phenomenon are. First of all aliasing. In the upper diagram of Fig. 7.7,
the front of one Gaussian image overlaps with the rear of the next one. This is
aliasing. It occurs in signal processing because insufficient samples are being taken.
Gibbs phenomenon is actually more interesting mathematically. It is the overshoot
and subsequent oscillation of the approximation to a periodic function by a truncated
Fourier series. Gibbs phenomenon is worst at discontinuities of the original function.
Let us derivewhat happenswhenwe truncate a Fourier series.Wekeep to the complex
form and define a truncated Fourier series as follows:

http://dx.doi.org/10.1007/978-1-4471-6395-4_4


7.6 Wavelets and Fourier Series 199

fN (t) =
N∑

k=−N

ckeikω0t

where f (t) has period T and N is an integer (usually large). The co-efficients ck are
given by

ck = 1

T

∫ T/2

−T/2
f (t)e−iω0t dt.

All this was covered in Chap.4. We substitute for ck back into the truncated Fourier
series to get

fN (t) =
N∑

k=−N

1

T

∫ T/2

−T/2
f (τ )e−ikω0τ eikω0t dτ

where the dummy variable τ is necessary as t is already in use. Changing the order
of summation and integration gives

fN (t) = 1

T

∫ T/2

−T/2
f (τ )

N∑
k=−N

eikω0(t−τ )dτ

= 1

T

∫ T/2

−T/2
f (τ )

sin
⎭⎭

N + 1
2

)
(t − τ )ω0

)
sin

⎭ 1
2 (t − τ ) ω0

) dτ .

The summation of the complex exponential series from −N to N is an exercise in
summing a geometric progression (write it as e−i N p × (1+ eip +· · ·+ e2i N p) where
p = (t − τ )ω0). What we have derived is an integral for the truncated function
(or signal) in terms of the real one but weighted by a function of the general form
sin(nt)/ sin( 12 t). This function is shown for n = 25 in Fig. 7.9. It has the value ±2n
at t = 2πk, k ⇒ Zwith a positive value at the origin and alternating every t = 2π . As
n ∞ ≤ this function resembles a series of positive and negative Dirac δ-functions.
A Shah or comb function but with teeth, width 2π apart, in alternating directions.

It is the function
sin

⎭⎭
N + 1

2

)
(t − τ )ω0

)
sin

⎭ 1
2 (t − τ ) ω0

) that is responsible for the spurious

oscillations around discontinuities. Nomatter how large N is, if f (t) is discontinuous
at some value then this function will oscillate. In fact the larger N the larger the
number of oscillations. However the larger N also the nearer the whole integral is
to the correct value of f (t). At values of t where f (t) is continuous this function
will then ensure fN (t) behaves like f (t). Very close to discontinuities of f (t) these
discontinuities will always be visible and the larger N the more rapid the oscillation.
This explains why taking very large values of N does not cure Gibbs phenomenon,
functions like this ratio of sinusoids simply do not act as very good interpolation
functions across jump discontinuities. For the rigorous proofs and more examples
you are referred to the excellent text by Pinkus and Zafrany (1997) (see also Chap.14
of the classic text Jeffries and Jeffries (1956)).
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Fig. 7.9 The function
sin(25t)/ sin(t/2) shows
typical behaviour

7.7 Localisation

What we really haven’t done yet is to exploit the essential feature of wavelets, their
limited time range. The real problem is that although Haar wavelets and the gener-
ations defined earlier in this chapter are zero outside the range [0, 1], their Fourier
transforms are not. They are concentrated and decay to zero for large ω, but they are
not identically zero for finite values of ω. In practical applications this is not accept-
able, however it is not possible to keep both the time and corresponding frequency
distributions confined to strict windows simultaneously. This can be proved. Looking
at the mathematics, the reason is clearly the presence of e−iωt in the integrand of
the Fourier integral. Although the integrals in the Fourier transforms are convergent,
they converge slowly and they oscillate while doing so. This is not a desirable fea-
ture for a wavelet representation of a signal. So we do the best we can. It turns out
that the best possible in terms of putting the whole of both the time function and
its Fourier transform inside a box in t − ω space is that both f (t) and its transform
f̂ (ω) are Gaussian. This is shown in Fig. 7.10. Recall from Exercise 6.2 that the

Fourier transform of e− 1
2 t2 is the almost identical function

≈
πe− 1

2ω2
in wave space.

So the Gaussian function seems to achieve this windowing effect most effectively.
The two Gaussian functions are displayed on each axis and most of the points where
both t and ω values non-zero lie inside this box. Not all of them of course as the
Gaussian functions only tend to the axes asymptotically. This is hard to see in the
diagram. Also more trivially in this figure the two Gaussian functions are centred at
t = 5,ω = 5 and both t and ω have been scaled by 1/

≈
2 for convenience.
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Fig. 7.10 The Heisenberg
box where the most of the
information lies in ω − t space

In order to be quantitative we need to define some terms. First of all define the
window function χ[−τ ,τ ). This is a top hat function lying between −τ and τ that
includes the value −τ but not the value τ . An example will be done using this
window function, however for a general function of time p(t), the following quantity
is defined:

μp = 1

||p(t)||2
∫ ≤

−≤
t |p(t)|2dt

where ||p(t)|| is the norm defined here as the positive square root of

||p(t)||2 =
∫ ≤

−≤
|p(t)|2dt.

This is called the centre of the function p(t). It is the mean of the absolute value
squared and often equals zero but in general is not. The root-mean-square (RMS)
�p is a measure of spread (like variance or standard deviation) and is defined by

�p = 1

||p(t)||
[∫ ≤

−≤
(t − μ)2|p(t)|2dt

]1/2
.

These two quantities are used for analysis of the representation of sampled time
series by wavelets. Let us do a computational example.

Example 7.6 Calculate the centre and RMS value for the general window function
χ[−τ ,τ ) defined by



202 7 Wavelets and Signal Processing

χ[−τ ,τ ) =
{
1, −τ √ t < τ
0, otherwise.

Find also the centre and RMS values of its Fourier transform.

Solution The norm of χ[−τ ,τ ) is given by the square root of the integral

∫ ≤

−≤
|χ[−τ ,τ )|2dt =

∫ τ

−τ
dt = 2τ .

So ||χ[−τ ,τ )|| = ≈
2τ . The centre, μχ is thus given by:

μχ = 1

||χ[−τ ,τ )||2
∫ ≤

−≤
t |χ[−τ ,τ )|2dt = 1

2τ

∫ τ

−τ
tdt = 0.

The RMS value of μχ is

�χ = 1

||χ[−τ ,τ )||
[∫ ≤

−≤
(t − μχ)2|χ[−τ ,τ )|2dt

]1/2
= 1≈

2τ

[∫ τ

−τ
t2dt

]1/2
= 1≈

2τ

√
2

3
τ3

which simplifies to
τ≈
3
.

The Fourier transform of χ[−τ ,τ ) is

χ̂(ω) =
∫ ≤

−≤
χ[−τ ,τ )(t)e

−iωt dt =
∫ τ

−τ
e−iωt dt =

[
e−iωt

−iω

]τ

−τ

which simplifies to

χ̂(ω) = 2 sin(ωτ )

ω
.

The norm in frequency space is ||χ̂(ω)|| where

||χ̂(ω)||2 =
∫ ≤

−≤
4
∣∣∣ sin

2 ωt

ω2

∣∣∣dω.

Using the standard integral ∫ ≤

0

sin2(x)

x2
dx = π

2

we see that ||χ̂(ω)|| = 2
≈

πτ . So, using the definition of centre,

μχ̂ = 1

||χ̂(ω)||2
∫ ≤

−≤
ω
∣∣∣4 sin

2 ωt

ω2

∣∣∣dω.
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Since the integrand is an odd function, and it is convergent, its value must be zero.
So μχ̂ = 0. Using the definition of RMS value we have

�χ̂ = 1

||χ̂(ω)||
[∫ ≤

−≤
ω2

∣∣∣2 sinωt

ω

∣∣∣2dω

]1/2

and since the integrand oscillates between 0 and 4 the improper integral is not con-
vergent. Thus in simple terms, �χ̂ = ≤.

In the above example, �χ�χ̂ is infinite. If we move away from this specific
example, in general, let us label the RMS in t space � f and the RMS in ω space
� f̂ . The product of these two quantities � f � f̂ has to obey the inequality

� f � f̂ ≥ 1

2
.

The inequality becomes an equality when f (t) is Gaussian (see Exercise 7.5). The
relation itself resembles Heisenberg’s uncertainty principle which will be familiar to
those who have studied quantummechanics. It has similar implications. For example
if one of� f or� f̂ is zero then the other has to be infinite. So if there is no uncertainty
at all in the value of say the sampled time series f (t) then the Fourier transform of
the sampled signal cannot be found. If both are finite, then the above inequality has to
hold.TheseRMSvalues indicate the variability of the signal and its Fourier transform,
so that the product can never be zeromeans that there has to be uncertainty in� f (the
signal or its sampled version) and � f̂ (the transform), and these uncertainties are
minimised if the product is 1/2. As we said above, this minimisation is attained if the
signal is Gaussian; in Fig. 7.10 it might look like the Gaussian pulses are completely
confined however the Gaussian distributions asymptote to both axes, so there are
always points outside the Heisenberg box where f (t) and f̂ (ω) are non-zero. For
distributions that are composed from wavelets, the transform will oscillate, but these
RMSvalueswill not as they are constructed to be positive. Unfortunately the integrals
are seldom analytically tractable. This next example involves a very straightforward
function, yet one integral in particular is very hard to evaluate.

Example 7.7 Determine the Fourier transform of the function

f (t) =



−1, −1 < t < − 1
2

1, 1
2 < t < 1

0, otherwise.

Hence find the values of μt ,�t ,μω,�ω .

Solution The Fourier transform is straightforward enough to find:
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f̂ (ω) =
∫ ≤

−≤
f (t)e−iωt dt

=
∫ − 1

2

−1
(−1)e−iωt dt +

∫ 1

1
2

e−iωt dt

= 2
∫ 1

1
2

cos(ωt)dt

= 2

ω

[
sinω − sin(

1

2
ω)

]
.

Next we need to find the two norms. || f (t)|| = 1 without problems, however

|| f̂ (ω)|| = 16
∫ ≤

0

1

ω2

∣∣∣ sinω − sin
1

2
ω
∣∣∣2dω

and this integral is non trivial to compute. MAPLE gives the answer π. For those who
want to try to compute the integral by hand, use sinω − sin 1

2ω = 2 sin 1
4ω cos 3

4ω
then rearrange the integrand so that it can be put in terms of known integrals such as

∫ ≤

0

sin2 x

x2
dx = π

2
.

Themore ambitious can trymore advancedmethods (see the next chapter; use residue
calculus, also see Weinberger (1965)). Now we can find the rest of the required
quantities μ f (t) = 0 by asymmetry,

� f (t) =
[∫ ≤

−≤
t2| f (t)|2dt

]1/2
=

√
7

12

following routine integration. Similarly f̂ (ω) = 0 also by asymmetry, and

� f̂ =
[

1

π2

∫ ≤

−≤

(
sinω − sin

1

2
ω

⎫2

dω

] 1
2

which is clearly infinite since the integrand remains finite for large ω so the integral
fails to converge. This also means that, as before � f � f̂ = ≤.

7.8 Short Time Fourier Transform

The next logical step is to define the Short-Time Fourier transform. This is done
as follows. First of all the function of t , f (t), is windowed by multiplying it by a
suitable time limited function b(t). We avoid calling the window functionw to avoid
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confusionwith frequencyω. One suchwindow function could be the top hat function,
say the wavelet χ[−τ ,τ ). Whatever choice, this defines the windowed version of the
original function fb(t)

fb(t) = f (t)b(t).

TheFourier transformof fb(t) is called the Short-TimeFourier transformabbreviated
STFT. To find the STFT we simply find the Fourier transform of this product and
make use of convolution. In practical use, the Gaussian shape or something similar
is used in place of the wavelet χ[−τ ,τ ). The application of this concept to the analysis
of time series will be left to specialist texts, however there are interesting generalities
worth including here. Suppose that the window is centred on a time t0 so that the
windowed function is f (t)b(t − t0). In general, the window function could have
complex values, but let us keep it simple so:

bt0,ω(t) = b(t − t0)e
iωt

whence the definition of STFT is

fG(t0,ω) =
∫ ≤

−≤
f (t)b(t − t0)e

−iωt dt =
∫ ≤

−≤
f (t)bt0,ω(t)dt (7.8)

where the overbar denotes the complex conjugate. In the notation for the STFT
fG replaces f̂ . For those familiar with differential equations the G is a nod in the
direction of Green’s functions, for more see the excellent classic text Weinberger
(1965). If the window function is real, then we get the expected STFT

fG(t0,ω) =
∫ ≤

−≤
fb(t)e

−iωt dt.

The window function satisfies the weak condition

b̂(0) =
∫ ≤

−≤
b(t)dt ∗= 0

simply by definition of a window. The definition of the left hand function is

b̂(ω) =
∫ ≤

−≤
b(t)e−iωt dt

the Fourier transform of b(t). Of course we could have labelled b̂, bG . The win-
dowing of the function f (t) by b(t) means that any frequency that corresponds to
a wavelength longer than the window cannot be adequately captured, so its Fourier
transform will not display frequencies that are very short. Windowing such as this is
called a smoothing filter or low pass filter. In common language in terms of sound,
they filter out hiss. Equation (7.8) can be written as an inner product of the form
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fG(t0,ω) = ≥ f (t), b(t − t0)e
iωt →.

The window function multiplied by the complex sinusoid bt0,ω = b(t − t0)eiωt

acts like a wave packet. The sinc function sin[ω(t − t0)]/[t − t0] is the simplest
manifestation of such a wave packet, see Fig. 7.2. The inverse formula for the STFT
is straightforward:

fb(t) = b(t − t0) f (t) = 1

2π

∫ ≤

−≤
fG(t0,ω)eiωt dω.

If this STFT is written sightly differently with t0 = τ :

fGb (τ , ξ) =
∫ ≤

−≤
f (t)bτ ,ξ(t)dt =

∫ ≤

−≤
f (t)b(t − τ )e−iξt dt =

∫ ≤

−≤
fb(t, τ )e−iξt dt

with

fb(τ , t) = 1

2π

∫ ≤

−≤
fGb (τ , ξ)eiξt dξ

and the original signal f (t) is recovered via the double integral:

f (t) = 1

2π||b(t)||
∫ ≤

−≤

∫ ≤

−≤
fGb (τ , ξ)bτ ,ξ(t)dξdτ

then we have a general windowed Fourier transform. This is only one step away
from being able to define the wavelet transform, based on a wavelet rather than a
windowed function. See Goswami and Chan (1999) for more details. We shall finish
this chapter with a specific example

Example 7.8 Let f (t) = sin(πt) and the window function b(t) be the simple sym-
metrical top hat function:

b(t) =
{
1, −1 √ t √ 1
0, otherwise

.

Determine the STFT fG

Solution Using the given window function b(t) we see immediately that

fb(t) =
{
sin(πt), −1 √ t √ 1
0, otherwise

.

whence

fG =
∫ 1

−1
sin(πt)e−iωt dt =

∫ 1

−1
{sin πt cosωt − i sin πt sinωt}dt.
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Some of the tedious integration is avoided by noticing that the first (real) term on the
right is an asymmetric function and so integrates to zero. The second term gives the
answer

fG(ω) = i

[
sin(π + ω)

π + ω
− sin(π − ω)

π − ω

]
.

The original function f (t) can be retrieved through the inversion formula

f (t) = 1

2π

∫ 1

−1

[
sin(π + ω)

π + ω
− sin(π − ω)

π − ω

]
sin(ωt)dω

but the integration is challenging.

7.9 Exercises

1. Using Father, Mother, Daughter1 and Daughter2 wavelets as a basis for all four
vectors,write down the formof the four vector [4, 8, 10, 14]T .Express the general
vector [a, b, c, d]T for arbitrary a, b, c and d in terms of this basis. (T denotes
transpose.)

2. Write down the 16 basis functions developed through the Haar wavelet and gen-
erations of daughters. Show that they are orthogonal and normalise them. Express
the vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T in terms of this basis.

3. Find the Fourier transform of the kth generation daughter wavelet ψ j,k(t) =
2 j/2ψ

⎭
2 j t − k

)
where j, k are integers and

ψ(t) =



1, 0 √ t < 1
2−1, 1

2 √ t < 1
0, otherwise.

4. Show that ∫ ≤

−≤
|ψ(t)|2dt =

∫ ≤

−≤
|ψ j,k(t)|2dt.

That is the norm of the mother wavelet is the same as that of all the daughter
wavelets. What is this value?

5. Show by direct computation that the function f (t) = e− 1
2 t2 and its Fourier

transform f̂ (ω) = ≈
2πe− 1

2ω2
give rise to equality� f � f̂ = 1

2 in the Heisenberg
inequality.

6. Repeat the calculation of the previous question using the function gα(t) =
1

2
≈

πα
e− 1

4α t2 and its Fourier transform ĝα(ω) = e−αω2
. Show that equality

of the Heisenberg inequality is preserved for all values of α. [The function



208 7 Wavelets and Signal Processing

gα(t) = 1
2
≈

πα
e− 1

4α t2 is used in the Gabor transform, a special case of the STFT
(Short Time Fourier transform)].

7. Show that the STFT is linear. Establish also the following two results:
(a) Writing f1(t) = f (t − t1) show that the STFT

f1Gb = e−iωt1 fGb (t0 − t1,ω)

(b) Writing f2(t) = f (t)eiω2t show that the STFT

f2Gb = fGb (b,ω − ω2).

These represent time shift and frequency shift respectively.
8. Let f (t) = sin(πt) and the window function b(t) be the function:

b(t) =


1 + t, −1 √ t < 0
1 − t, 0 √ t < 1
0, otherwise.

Determine the STFT fG .



Chapter 8
Complex Variables and Laplace Transforms

8.1 Introduction

The material in this chapter is written on the assumption that you have some famil-
iarity with complex variable theory (or complex analysis). That is we assume that
defining f (z)where z = x +iy, i = ∞−1, andwhere x and y are independent vari-
ables is not totally mysterious. In Laplace transforms, s can fruitfully be thought of
as a complex variable. Indeed parts of this book (Sect. 6.2 for example) have already
strayed into this territory.

For those for whom complex analysis is entirely new (rather unlikely if you have
got this far), there are many excellent books on the subject. Those by Priestley
(1985), Stewart and Tall (1983) or (more to my personal taste) Needham (1997) or
Osborne (1999) are recommended.We give a brief resumé of required results without
detailed proof. The principal reason for needing complex variable theory is to be able
to use and understand the proof of the formula for inverting the Laplace transform.
Section7.6 goes a little further than this, but not much. The complex analysis given
here is therefore by no means complete.

8.2 Rudiments of Complex Analysis

In this section we shall use z(= x + iy) as our complex variable. It will be assumed
that complex numbers, e.g. 2 + 3i are familiar, as are their representation on an
Argand diagram (Fig. 8.1). The quantity z = x + iy is different in that x and y are
both (real) variables, so z must be a complex variable. In this chapter we shall be
concerned with f (z), that is the properties of functions of a complex variable.

In general we are able to split f (z) into real and imaginary parts

f (z) = δ(x, y) + iα(x, y)

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 209
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4_8,
© Springer-Verlag London 2014

http://dx.doi.org/10.1007/978-1-4471-6395-4_6
http://dx.doi.org/10.1007/978-1-4471-6395-4_7
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Fig. 8.1 The Argand diagram

where δ and α are real functions of the two real variables x and y. For example

z2 = x2 − y2 + i(2xy)

sin(z) = sin(x) cosh(y) + i cos(x) sinh(y).

This is the reason that many results from two real variable calculus are useful in
complex analysis. However it does not by any means tell the whole story of the
power of complex analysis.

One astounding fact is that if f (z) is a function that is once differentiable with
respect to z, then it is also differentiable twice, three times, as many times as we like.
The function f (z) is then called a regular or analytic function. Such a concept is
absent in real analysis where differentiability to any specific order does not guarantee
further differentiability. If f (z) is regular then we can show that

πδ

πx
= −πα

πy
and

πδ

πy
= πα

πx
.

These are called the Cauchy–Riemann equations. Further, we can show that

≤2δ = 0, and ≤2α = 0

i.e. both δ and α are harmonic. We shall not prove any of these results.
Once a function of a single real variable is deemed many times differentiable

in a certain range (one dimensional domain), then one possibility is to express the
function as a power series. Power series play a central role in both real and complex
analysis. The power series of a function of a real variable about the point x = x0 is
the Taylor series. Truncated after n + 1 terms, this takes the form

f (x) = f (x0)+(x −x0) f ≥(x0)+ (x − x0)2

2! f ≥≥(x0)+· · ·+ (x − x0)n

n! f (n)(x0)+ Rn
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where

Rn = (x − x0)n+1

(n + 1)! f (n+1)(x0 + ω(x − x0)) (0 → ω → 1)

is the remainder. This series is valid in the range |x − x0| → r , r is called the
radius of convergence. The function f (x) is differentiable n + 1 times in the region
x0 − r → x → x0 + r .

This result carries through unchanged to complex variables

f (z) = f (z0)+ (z − z0) f ≥(z0)+ (z − z0)2

2! f ≥≥(z0)+· · ·+ (z − z0)n

n! f (n)(z0)+· · ·

but now of course f (z) is analytic in a disc |z − z0| < r . What follows, however
has no direct analogy in real variables. The next step is to consider functions that
are regular in an annular region r1 < |z − z0| < r2, or in the limit, a punctured disc
0 < |z − z0| < r2. In such a region, a complex function f (z) possesses a Laurent
series

f (z) =
∗∑

n=−∗
an(z − z0)

n .

The a0 + a1(z − z0) + a2(z − z0)2 + · · · part of the series is the “Taylor part” but
the ans cannot in general be expressed in terms of derivatives of f (z) evaluated at
z = z0 for the very good reason that f (z) is not analytic at z = z0 so such derivatives
are not defined. The rest of the Laurent series

· · · + a−2

(z − z0)2
+ a−1

(z − z0)

is called the principal part of the series and is usefully employed in helping to charac-
terise with some precision what happens to f (z) at z = z0. If a−1, a−2, . . . , a−n, . . .

are all zero, then f (z) is analytic at z = z0 and possesses a Taylor series. In this case,
a1 = f ≥(z0), a2 = 1

2! f ≥≥(z0) etc. This however is not always true. The last coefficient

of the principal part, a−1 the coefficient of
1

z − z0
, is termed the residue of f (z) at

z = z0 and has particular importance. Dealing with finding the ans (positive or neg-
ative n) in the Laurent series for f (z) takes us into the realm of complex integration.
This is because, in order to find an we manipulate the values f (z) has in the region
of validity of the Laurent series, i.e. in the annular region, to infer something about
an . To do this, a complex version of the mean value theorem for integrals is used
called Cauchy’s integral formulae. In general, these take the form

g(n)(z0) = n!
2φi

∫
C

g(z)

(z − z0)n+1 dz
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where we assume that g(z) is an analytic function of z everywhere inside C (even at
z = z0). (Integration in this form is formally defined in the next section.) The case
n = 1 gives insight, as the integral then assumes classic mean value form. Now if
we consider f (z), which is not analytic at z = z0, and let

f (z) = g(z)

(z − z0)n

where g(z) is analytic at z = z0, then we have said something about the behaviour
of f (z) at z = z0. f (z) has what is called a singularity at z = z0, and we have
specified this as a pole of order n. A consequence of g(z) being analytic and hence
possessing a Taylor series about z = z0 valid in |z − z0| = r is that the principal

part of f (z) has leading term
a−n

(z − z0)n
with a−n−1, a−n−2 etc. all equalling zero. A

pole of order n is therefore characterised by f (z) having n terms in its principal part.
If n = 1, f (z) has a simple pole (pole of order 1) at z = z0. If there are infinitely
many terms in the principal part of f (z), then f (z) is called an essential singularity
of f (z), and there are no Cauchy integral formulae. The foregoing theory is not valid
for such functions. It is also worth mentioning branch points at this stage, although
they do not feature for a while yet. A branch point of a function is a point at which
the function is many valued.

∞
z is a simple example, Ln(z) a more complicated one.

The ensuing theory is not valid for branch points.

8.3 Complex Integration

The integration of complex functions produces many surprising results, none of
which are even hinted at by the integration of a single real variable. Integration in
the complex z plane is a line integral. Most of the integrals we shall be concerned
with are integrals around closed contours.

Suppose p(t) is a complex valued function of the real variable t , with t √ [a, b]
which has real part pr (t) and imaginary part pi (t) both of which are piecewise
continuous on [a, b]. We can then integrate p(t) by writing

∫ b

a
p(t)dt =

∫ b

a
pr (t)dt + i

∫ b

a
pi (t)dt.

The integrals on the right are Riemann integrals. We can now move on to define
contour integration. It is possible to do this in terms of line integrals. However, line
integrals have not made an appearance in this book so we avoid them here. Instead
we introduce the idea of contours via the following set of simple definitions:

Definition 8.1 1. An arc C is a set of points {(x(t), y(t)) : t √ [a, b]} where x(t)
and y(t) are continuous functions of the real variable t . The arc is conveniently
described in terms of the complex valued function z of the real variable t where
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Fig. 8.2 The curve C in the
complex plane

z(t) = x(t) + iy(t).

2. An arc is simple if it does not cross itself. That is z(t1) = z(t2) ⇒ t1 = t2 for
all t1, t2 √ [a, b].

3. An arc is smooth if z≥(t) exists and is non-zero for t √ [a, b]. This ensures that
C has a continuously turning tangent.

4. A (simple) contour is an arc consisting of a finite number of (simple) smooth
arcs joined end to end. When only the initial and final values of z(t) coincide,
the contour is a (simple) closed contour.

Here, all contours will be assumed to be simple. It can be seen that as t varies, z(t)
describes a curve (contour) on the z-plane. t is a real parameter, the value of which
uniquely defines a point on the curve z(t) on the z-plane. The values t = a and t = b
give the end points. If they are the same as in Fig. 8.2 the contour is closed, and it
is closed contours that are of interest here. By convention, t increasing means that
the contour is described anti-clockwise. This comes from the parameter ω describing
the circle z(ω) = eiω = cos(ω) + i sin(ω) anti-clockwise as ω increases. Here is the
definition of integration which follows directly from this parametric description of
a curve.

Definition 8.2 Let C be a simple contour as defined above extending from the point
β = z(a) to ψ = z(b). Let a domain D be a subset of the complex plane and let the
curve C lie wholly within it. Define f (z) to be a piecewise continuous function on
C, that is f (z(t)) is piecewise continuous on the interval [a, b]. Then the contour
integral of f (z) along the contour C is

∫
C

f (z)dz =
∫ b

a
f (z)dz =

∫ b

a
f (z(t))z≥(t)dt.

In addition to f (z) being continuous at all points of a curve C (see Fig. 8.2) it will
be also be assumed to be of finite length (rectifiable).

An alternative definition following classic Riemann integration (see Chap.1) is
also possible.

http://dx.doi.org/10.1007/978-1-4471-6395-4_1
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The first result we need is Cauchy’s theorem which we now state.

Theorem 8.1 If f (z) is analytic in a domain D and on its (closed) boundary C then

∮
C

f (z)dz = 0

where the small circle within the integral sign denotes that the integral is around a
closed loop.

Proof There are several proofs of Cauchy’s theorem that place no reliance on the
analyticity of f (z) on C and only use analyticity of f (z) inside C. However these
proofs are rather involved and unenlightening except for those whose principal in-
terest is pure mathematics. The most straightforward proof makes use of Green’s
theorem in the plane which states that if P(x, y) and Q(x, y) are continuous and
have continuous derivatives in D and on C , then

∮
C

Pdx + Qdy =
∫ ∫

D

(
πQ

πx
− πP

πy

)
dxdy.

This is easily proved by direct integration of the right hand side. To apply this to
complex variables, consider f (z) = P(x, y) + i Q(x, y) and z = x + iy so

f (z)dz = (P(x, y) + i Q(x, y))(dx + idy)

= P(x, y)dx − Q(x, y)dy + i(P(x, y)dy + Q(x, y)dx)

and so
∮

C
f (z)dz =

∮
C
(P(x, y)dx − Q(x, y)dy) + i

∮
C
(P(x, y)dy + Q(x, y)dx).

Using Green’s theorem in the plane for both integrals gives

∮
C

f (z)dz =
∫ ∫

D

(
−πQ

πx
− πP

πy

)
dxdy + i

∫ ∫
D

(
πP

πx
− πQ

πy

)
dxdy.

Now the Cauchy–Riemann equations imply that if

f (z) = P(x, y) + i Q(x, y) then
πP

πx
= πQ

πy
, and

πP

πy
= −πQ

πx

which immediately gives ∮
C

f (z)dz = 0

as required. �
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Fig. 8.3 The indented contour

Cauchy’s theorem is so useful that pure mathematicians have spent much time
and effort reducing the conditions for its validity. It is valid if f (z) is analytic inside
and not necessarily on C (as has already been said). This means that it is possible to
extend it to regions that are semi-infinite (for example, a half plane). This is crucial
for a text on Laplace transforms. Let us look at another consequence of Cauchy’s
theorem.

Suppose f (z) is analytic inside a closed curve C except at the point z = z0 where
it is singular. Then ∮

C
f (z)dz

may or may not be zero. If we exclude the point z = z0 by drawing the contour C ≥
(see Fig. 8.3) where ∮

C ≥
=

∫
C

+
∫

AB
+

∫
B A

−
∫

γ

and γ is a small circle surrounding z = z0, then

∮
C ≥

f (z)dz = 0

as f (z) is analytic inside C ≥ by construction. Hence

∫
C

f (z)dz =
∫

γ
f (z)dz

since
∫

AB
f (z)dz +

∫
B A

f (z)dz = 0 as they are equal in magnitude but opposite in sign.
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In order to evaluate
∫

C f (z)dz therefore we need only to evaluate
∫
γ f (z)dz where

γ is a small circle surrounding the singularity (z = z0) of f (z). Now we apply
the theory of Laurent series introduced in the last section. In order to do this with
success, we restrict attention to the case where z = z0 is a pole. Inside γ, f (z) can
be represented by the Laurent series

a−n

(z − z0)n
+ · · · + a−2

(z − z0)2
+ a−1

(z − z0)
+ a0 +

∗∑
k=1

ak(z − z0)
k .

We can thus evaluate
∫
γ f (z)dz directly term by term. This is valid as the Laurent

series is uniformly convergent. A typical integral is thus

∫
γ
(z − z0)

kdz k ≡ −n, n any positive integer or zero.

On γ, z − z0 = ξeiω, 0 → ω < 2φ where ξ is the radius of the circle γ and
dz = iξeiωdω. Hence

∫
γ
(z − z0)

kdz =
∫ 2φ

0
iξk+1e(k+1)iωdω

=
[

iξk+1

i(k + 1)
ei(k+1)ω

]2φ
0

if k ≈= −1

= 0.

If k = −1 ∫
γ
(z − z0)

−1dz =
∫ 2φ

0

iξeiω

ξeiω
dω = 2φi.

Thus ∫
γ
(z − z0)

kdz =
{
0 k ≈= −1
2φi k = −1.

Hence ∫
γ

f (z)dz = 2φia−1

where a−1 is the coefficient of 1
z−z0

in the Laurent series of f (z) about the singularity
at z = z0 called the residue of f (z) at z = z0.We thus, courtesy of Cauchy’s theorem,
arrive at the residue theorem.

Theorem 8.2 (Residue Theorem) If f (z) is analytic within and on C except at
points z1, z2, . . . , zN that lie inside C where f (z) has poles then
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∮
C

f (z)dz = 2φi
N∑

k=1

(sum of residues of f (z) at z = zk).

Proof This result follows immediately on a straightforward generalisation of the
case just considered to the case of f (z) possessing N poles inside C . No further
elaboration is either necessary or given. �

If f (z) is a function whose only singularities are poles, it is called meromorphic.
Meromorphic functions when integrated around closed contours C that contain at
least one of the singularities of f (z) lead to simple integrals. Distorting these closed
contours into half or quarter planes leads to one of the most widespread of the
applications of the residue theorem, namely the evaluation of real but improper
integrals such as ∫ ∗

0

dx

1 + x4
or

∫ ∗

0

cos(φx)

a2 + x2
dx .

These are easily evaluated by residue calculus (i.e. application of the residue theo-

rem). The first by
∮

C

dz

1 + z4
where C is a semi-circle in the upper half plane whose

radius then tends to infinity and the second by considering
∮

C

eiφx

a2 + z2
dz over a

similar contour. We shall do these examples as illustrations, but point to books on
complex variables for further examples. It is the evaluation of contour integrals that
is a skill required for the interpretation of the inverse Laplace transform.

Example 8.1 Use suitable contours C to evaluate the two real integrals

(i)
∫ ∗

0

cos(φx)

a2 + x2
dx

(ii)
∫ ∗

0

dx

1 + x4
.

Solution

(i) For thefirst part,we choose the contourC shown inFig. 8.4, that is a semi-circular
contour on the upper half plane. We consider the integral

∮
C

eiφx

a2 + z2
dz.

Now,

∮
C

eiφz

a2 + z2
dz =

∫
�

eiφz

a2 + z2
dz +

∫ R

−R

eiφz

a2 + z2
dz
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where � denotes the curved portion of C . On �,

∣∣∣∣ eiφz

z2 + a2

∣∣∣∣ → 1

R2 + a2

hence

∣∣∣∣
∫

�

eiφx

a2 + z2
dz

∣∣∣∣ → 1

a2 + R2 × length of �

= φR

a2 + R2 → 0 as R → ∗.

Hence, as R → ∗
∮

C

eiφz

a2 + z2
dz →

∫ ∗

−∗
eiφx

a2 + x2
dx as on the real axis z = x .

Using the residue theorem

∮
C

eiφz

a2 + z2
dz = 2φi{residue at z = ia}.

The residue at z = ia is given by the simple formula

lim
z→z0

[(z − z0) f (z)] = a−1

where the evaluation of the limit usually involves L’Hôpital’s rule. Thus we have

lim
z→ia

(z − ia)eφi z

z2 + a2 = e−φa

2ai
.

Thus, letting R → ∗ gives

∫ ∗

−∗
eiφx

a2 + x2
dx = φ

a
e−φa .

Finally, note that

∫ ∗

−∗
eiφx

a2 + x2
dx =

∫ ∗

−∗
cos(φx)

a2 + x2
dx + i

∫ ∗

−∗
sin(φx)

a2 + x2
dx

and
∫ ∗

−∗
cos(φx)

a2 + x2
dx = 2

∫ ∗

0

cos(φx)

a2 + x2
dx .
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Thus, ∫ ∗

0

cos(φx)

a2 + x2
dx = 2φ

a
e−φa .

(ii) We could use a quarter circle (x > 0 and y > 0) for this problem as this only
requires the calculation of a single residue z = 1+i∞

2
. However, using the same

contour (Fig. 8.4) is in the end easier. The integral

∫
C

dz

1 + z4
= 2φi{sum of residues}.

The residues are at the two solutions of z4 +1 = 0 that lie inside C , i.e. z = 1+i∞
2

and z = −1+i∞
2

. With f (z) = 1
z4
, the two values of the residues calculated using

the same formula as before are −1−i
4
∞
2
and 1−i

4
∞
2
. Their sum is −i

2
∞
2
. Hence

∫
C

dz

1 + z4
= φ∞

2

on � (the curved part of C)

∣∣∣∣ 1

1 + z4

∣∣∣∣ <
1

R4 − 1
.

Hence ∣∣∣∣
∫

�

dz

1 + z4

∣∣∣∣ <
φR

R4 − 1
→ 0 as R → ∗.

Thus ∫ ∗

−∗
dx

1 + x4
= φ∞

2
.

Hence ∫ ∗

0

dx

1 + x4
= 1

2

∫ ∗

−∗
dx

1 + x4
= φ

2
∞
2
.

This is all we shall do on this large topic here. We need to move on and consider
branch points.

8.4 Branch Points

For the applications of complex variables required in this book, we need one further
important development. Functions such as square roots are double valued for real
variables. In complex variables, square roots and the like are called functions with
branch points.
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Fig. 8.4 The semi-circular contour C

Fig. 8.5 The mapping w = ∞
z

The function w = ∞
z has a branch point at z = 0. To see this and to get a feel

for the implications, write z = reiω and as ω varies from 0 to 2φ, z describes a circle
radius r in the z plane, only a semi circle radius

∞
r is described in the w plane.

In order for w to return to its original value, ω has to reach 4φ. Therefore there are
actually two planes superimposed upon one another in the z plane (ω varying from
0 to 4φ), under the mapping each point on the w plane can arise from one point
on (one of) the z planes. The two z planes are sometimes called Riemann sheets,
and the place where one sheet ends and the next one starts is marked by a cut from
z = 0 to z = ∗ and is typically the positive real axis (see Fig. 8.5). Perhaps a better
visualisation is given in Fig. 8.6 in which the vertical axis is the imaginary part of∞

z. It is clearly seen that a discontinuity develops along the negative real axis, hence

the cut. The function w = ∞
z has two sheets, whereas the function w = z

1
N (N a

positive integer) has N sheets and the function w = ln(z) has infinitely many sheets.
When a contour is defined for the purposes of integration, it is not permitted for

the contour to cross a cut. Figure8.7 shows a cut and a typical way in which crossing
it is avoided. In this contour, a complete circuit of the origin is desired but rendered
impossible because of the cut along the positive real axis. So we start at B just above
the real axis, go around the circle as far as C below B. Then along C D just below
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Fig. 8.6 A 3D visualisation of w = ∞
z. The horizontal axes are the Argand diagram and the

quantity �∞
z is displayed on the vertical axis. The cut along the negative real axis is clearly visible

Fig. 8.7 The keyhole contour

the real axis, around a small circle surrounding the origin as far as A then along and
just above the real axis to complete the circuit at B. In order for this contour (called
a key hole contour) to approach the desired circular contour, |AD| → 0, |BC | → 0
and the radius of the small circle surrounding the origin also tends to zero. In order
to see this process in operation let us do an example.
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Example 8.2 Find the value of the real integral

∫ ∗

0

xβ−1

1 + x
dx where 0 < β < 1 β a real constant.

Solution In order to find this integral, we evaluate the complex contour integral

∫
C

zβ−1

1 + z
dz

where C is the keyhole contour shown in Fig. 8.7.
Sometimes there is trouble because there is a singularity where the cut is usually

drawn. We shall meet this in the next example, but the positive real axis is free of
singularities in this example. The simple pole at z = −1 is inside C and the residue
is given by

lim
z→−1

(z + 1)
zβ−1

(z + 1)
= e(β−1)iφ.

Thus

∫
C

zβ−1

1 + z
dz =

∫
�

zβ−1

1 + z
dz +

∫
C D

zβ−1

1 + z
dz +

∫
γ

zβ−1

1 + z
dz +

∫
AB

zβ−1

1 + z
dz

= 2φie(β−1)iφ.

Each integral is taken in turn.
On �

z = Reiω, 0 → ω → 2φ, R >> 1,

∣∣∣∣ zβ−1

1 + z

∣∣∣∣ <
Rβ−1

R − 1
;

hence

∣∣∣∣
∫

C

zβ−1

1 + z
dz

∣∣∣∣ <
Rβ−1

R − 1
2φR → 0 as R → ∗ since β < 1.

On C D, z = xe2φi so

∫
C D

zβ−1

1 + z
dz =

∫ ξ

R

xβ−1

1 + x
e2φi(β−1)dx .

On γ

z = ξeiω, 0 → ω → 2φ, ξ << 1,
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so ∫
γ

zβ−1

1 + z
dz =

∫ 0

2φ

ξβ−1ei(β−1)ω

1 + ξeiω
iξeiωdω → 0 as ξ → 0 since β > 0.

Finally, on AB, z = x so

∫
AB

zβ−1

1 + z
dz =

∫ R

ξ

xβ−1

1 + x
dx .

Adding all four integrals gives, letting ξ → 0 and R → ∗,

∫ 0

∗
xβ−1

1 + x
e2φi(β−1)dx +

∫ ∗

0

xβ−1

1 + x
dx = 2φie(β−1)iφ.

Rearranging gives ∫ ∗

0

xβ−1

1 + x
dx = φ

sin(βφ)
.

This is only valid if 0 < β < 1, the integral is singular otherwise.
To gain experience with a different type of contour, here is a second example.

After this, we shall be ready to evaluate the so called Bromwich contour for the
inverse Laplace transform.

Example 8.3 Use a semi-circular contour in the upper half plane to evaluate

∫
C

ln z

z2 + a2 dz (a > 0) real and positive

and deduce the values of two real integrals.

Solution Figure8.8 shows the semi-circular contour. It is indented at the origin as

z = 0 is an essential singularity of the integrand
ln z

z2 + a2 . Thus

∫
C

ln z

z2 + a2 dz = 2φi{Residue at z = ia}

provided R is large enough and the radius of the small semi-circle γ → 0.
The residue at z = ia is given by

ln(ia)

2ia
= φ

4a
− i

ln(a)

2a
(a > 0)

so the right-hand side of the residue theorem becomes

φ ln(a)

a
+ i

φ2

2a
.
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Fig. 8.8 The indented semi-
circular contour C

On the semi-circular indent γ,

∫
γ

ln z

z2 + a2 dz =
∫ 0

φ

ln(ξeiω)iξeiω

ξ2e2iω + a2
dω → 0 as ξ → 0.

(This is because ξ ln ξ → 0 as ξ → 0.) Thus

∫
C

ln z

z2 + a2 dz = φ ln a

a
+ i

φ2

2a
.

Now, as we can see from Fig. 8.8,

∫
C

ln z

z2 + a2 dz =
∫

�

ln z

z2 + a2 dz+
∫

AB

ln z

z2 + a2 dz+
∫

γ

ln z

z2 + a2 dz+
∫

C D

ln z

z2 + a2 dz.

On �, z = Reiω, 0 → ω → φ, and

∣∣∣∣ ln z

z2 + a2

∣∣∣∣ → ln R

R2 − a2

so ∣∣∣∣
∫

�

ln z

z2 + a2 dz

∣∣∣∣ → φR ln R

R2 − a2 → 0 as R → ∗.

Thus letting R → ∗, the radius of γ → 0 and evaluating the straight line integrals
via z = x on C D and z = xeiφ on AB gives

∫
C

ln z

z2 + a2 dz =
∫ 0

∗
ln xeiφ

x2 + a2 eiφdx +
∫ ∗

0

ln x

x2 + a2 dx

= 2
∫ ∗

0

ln x

x2 + a2 dx + iφ
∫ ∗

0

dx

x2 + a2 .
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The integral is equal to
φ ln a

a
+ i

φ2

2a

so equating real and imaginary parts gives the two real integrals

∫ ∗

0

ln x

x2 + a2 dx = φ ln a

2a

and ∫ ∗

0

dx

x2 + a2 = φ

2a
.

The second integral is an easily evaluated arctan standard form.

8.5 The Inverse Laplace Transform

We are now ready to derive and use the formula for the inverse Laplace transform. It
is a surprise to engineers that the inverse of a transform so embedded in real variables
as the Laplace transform requires so deep a knowledge of complex variables for its
evaluation. It should not be so surprising having studied the last three chapters. We
state the inverse transform as a theorem.

Theorem 8.3 If the Laplace transform of F(t) exists, that is F(t) is of exponential
order and

f (s) =
∫ ∗

0
e−st F(t)dt

then

F(t) = lim
k→∗

{
1

2φi

∫ σ+ik

σ−ik
f (s)est ds

}
t > 0

where |F(t)| → eMt for some positive real number M and σ is another real number
such that σ > M.

Proof The proof of this has already been outlined in Sect. 6.2 of Chap.6. However,
we have now done enough formal complex variable theory to give a more complete
proof. The outline remains the same in that we define Fk(ω) as in that chapter, namely

Fk(ω) =
∫ ∗

0
e−(k+iω)x f (x)dx

and rewrite this in notation more suited to Laplace transforms, i.e. x becomes t ,
k + iω becomes s and the functions are renamed. f (x) becomes F(t) and Fk(ω)

becomes f (s). However, the mechanics of the proof follows as before with Eq.6.2.

http://dx.doi.org/10.1007/978-1-4471-6395-4_6
http://dx.doi.org/10.1007/978-1-4471-6395-4_6
http://dx.doi.org/10.1007/978-1-4471-6395-4_6
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Fig. 8.9 The Bromwich
contour

Using the new notation, these two equations convert to

f (s) =
∫ ∗

0
e−st F(t)dt

and
1

2φ

∫ ∗

−∗
est f (s)d{�(s)} =

{
0 t < 0
F(t) t > 0

where the integral on the left is a real integral. d{�(s)} = dω a real differential.
Converting this to a complex valued integral, formally done by recognising that
ds = id{�(s)}, gives the required formula, viz.

F(t) = 1

2φ

∫ s1

s0
est f (s)ds

where s0 and s1 represent the infinite limits (k − i∗, k + i∗ in the notation of
Chap.6). Now, however we can be more precise. The required behaviour of F(t)
means that the real part of s must be at least as large as σ, otherwise |F(t)| does not
→ 0 as t → ∗ on the straight line between s0 and s1. This line is parallel to the
imaginary axis. The theorem is thus formally established. �

The way of evaluating this integral is via a closed contour of the type shown in
Fig. 8.9. This contour, often called the Bromwich contour, consists of a portion of
a circle, radius R, together with a straight line segment connecting the two points
σ − i R and σ + i R. The real number σ must be selected so that all the singularities
of the function f (s) are to the left of this line. This follows from the conditions of
Theorem 8.3. The integral

http://dx.doi.org/10.1007/978-1-4471-6395-4_6
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∫
C

f (s)est ds

where C is the Bromwich contour is evaluated using Cauchy’s residue theorem,
perhaps with the addition of one or two cuts. The integral itself is the sum of the
integral over the curved portion, the integral along any cuts present and

∫ σ+i R

σ−i R
f (s)est ds

and the whole is 2φi times the sum of the residues of f (s)est inside C . The above
integral is made the subject of this formula, and as R → ∗ this integral becomes
F(t). In this way, F(t) is calculated. Let us do two examples to see how the process
operates.

Example 8.4 Use the Bromwich contour to find the value of

L−1
{

1

(s + 1)(s − 2)2

}
.

Solution It is quite easy to find this particular inverse Laplace transform using partial
fractions as in Chap. 2; however it serves as an illustration of the use of the contour
integral method. In the next example, there are no alternative direct methods.

Now, ∫
C

est

(s + 1)(s − 2)2
ds = 2φi{sum of residues}

where C is the Bromwich contour of Fig. 8.9. The residue at s = 1 is given by

lim
s→−1

(s + 1)
est

(s + 1)(s − 2)2
= 1

9
e−t .

The residue at s = 2 is given by

lim
s→2

d

ds

est

(s + 1)
=

[
(s + 1)test − est

(s + 1)2

]
s=2

= 1

9
(3te2t − e2t ).

Thus ∫
C

est

(s + 1)(s − 2)2
ds = 2φi

{
1

9
(e−t + 3te2t − e2t )

}
.

Now,

∫
C

est

(s + 1)(s − 2)2
ds =

∫
�

est

(s + 1)(s − 2)2
ds +

∫ σ+i R

σ−i R

est

(s + 1)(s − 2)2
ds

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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Fig. 8.10 The cut Bromwich
contour

and the first integral → 0 as the radius of the Bromwich contour → ∗. Thus

L−1
{

1

(s + 1)(s − 2)2

}
= 1

2φi

∫ σ+i∗

σ−i∗
est

(s + 1)(s − 2)2
ds = 1

9
(e−t +3te2t −e2t ).

A result easily confirmed by the use of partial fractions.

Example 8.5 Find

L−1

{
e−a

∞
s

s

}

where a is a real constant.

Solution The presence of e−a
∞

s means that the origin s = 0 is a branch point. It is
thus necessary to use the cut Bromwich contour C ≥ as shown in Fig. 8.10.

Now, ∫
C ≥

est−a
∞

s

s
ds = 0

by Cauchy’s theorem as there are no singularities of the integrand inside C ≥. We now
evaluate the contour integral by splitting it into its five parts:-

∫
C ≥

est−a
∞

s

s
ds =

∫
�

+
∫ σ+i R

σ−i R
+

∫
AB

+
∫

γ
+

∫
C D

= 0

and consider each bit in turn. The radius of the large circle � is R and the radius of
the small circle γ is ξ. On �, s = Reiω = R cos(ω) + i R sin(ω) and on the left hand
side of the s-plane cos ω < 0. This means that, on �,
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∣∣∣∣∣
est−a

∞
s

s

∣∣∣∣∣ =
∣∣∣∣∣
eRt cos(ω)−a

∞
R cos( 12 ω)

R

∣∣∣∣∣
and by the estimation lemma,

∫
�

→ 0 as R → ∗.

The second integral is the one required and we turn our attention to the third integral
along AB. On AB, s = xeiφ whence

est−a
∞

s

s
= −e−xt−ai

∞
x

x

whereas on C D s = −x so that

est−a
∞

s

s
= e−xt+ai

∞
x

x
.

This means that

∫
AB

+
∫

C D
=

∫ ξ

R

e−xt−ai
∞

x

x
dx +

∫ R

ξ

e−xt+ai
∞

x

x
dx .

It is the case that if the cut is really necessary, then integrals on either side of it never
cancel. The final integral to consider is that around γ. On γ s = ξeiω, −φ → ω < φ,
so that ∫

γ

e−st−a
∞

s

s
ds =

∫ −φ

φ

e−ξeiω t−a
∞

ξe
1
2 iω

ξeiω
iξeiωdω.

Now, as ξ → 0 ∫
γ

→
∫ −φ

φ
idω = −2φi.

Hence, letting R → ∗ and ξ → 0 gives

1

2φi

∫ σ+i∗

σ−i∗
est−a

∞
s

s
ds = 1 − 1

2φi

{∫ 0

∗
e−xt−ai

∞
x

x
dx +

∫ ∗

0

e−xt+ai
∞

x

x
dx

}

= 1 − 1

φ

∫ ∗

0

e−xt sin(a
∞

x)

x
dx .

As the left hand side is F(t), the required inverse is
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1 − 1

φ

∫ ∗

0

e−xt sin(a
∞

x)

x
dx .

This integral can be simplified (if that is the correct word) by the substitution x = u2

then using differentiation under the integral sign. Omitting the details, it is found that

1

φ

∫ ∗

0

e−xt sin(a
∞

x)

x
dx = erf

(
a

2
∞

t

)

where erf is the error function (see Chap.3). Hence

L−1

{
e−a

∞
s

s

}
= 1 − erf

(
a

2
∞

t

)
= erfc

(
a

2
∞

t

)

where

erfc(p) = 2∞
φ

∫ ∗

p
e−t2dt

is the complementary error function.

8.6 Using the Inversion Formula in Asymptotics

We saw in Chap.5 how it is possible to use asymptotic expansions in order to gain
information from a differential equation even if it was not possible to solve it in
closed form. Let us return to consider this kind of problem, now armed with the
complex inversion formula. It is often possible to approximate the inversion integral
using asymptotic analysis when exact inversion cannot be done. Although numer-
ical techniques are of course also applicable, asymptotic methods are often more
appropriate. After all, there is little point employing numerical methods at this late
stage when it would have probably been easier to use numerical techniques from
the outset on the original problem. Of course, by so doing all the insight gained by
adopting analytical methods would have been lost. Not wishing to lose this insight,
we press on with asymptotics. The following theorem embodies a particularly useful
asymptotic property for functions that have branch points.

Theorem 8.4 If f̄ (s) is O(1/|s|) as s → ∗, the singularity with largest real part
is at s = s1, and in some neighbourhood of s1

f̄ (s) = (s − s1)
k

∗∑
n=0

an(s − s1)
n − 1 < k < 0,

http://dx.doi.org/10.1007/978-1-4471-6395-4_3
http://dx.doi.org/10.1007/978-1-4471-6395-4_5
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Fig. 8.11 The contour C
distorted around the branch
point at s = s1

then

f (t) = − 1

φ
es1t sin(kφ)

∗∑
n=0

an(−1)n �(n + k + 1)

tn+k+1 as t → ∗.

Proof In this proof we shall assume that s = s1 is the only singularity and that it is
a branch point. This is acceptable as we are seeking to prove an asymptotic result
and as long as the singularities of f̄ (s) are isolated only the one with the largest real
part is of interest. If there is a tie, each singularity is considered and the contributions
from each may be added.When the Bromwich contour is used, and the function f̄ (s)
has branch points, it has to be distorted around these points and a typical distortion
is shown in Fig. 8.11 and the object is to approximate the integral

1

2φi

∫
C

est f̄ (s)ds.

On the lower Riemann sheet

s = s1 + xe−iφ

and on the upper Riemann sheet

s = s1 + xeiφ.

The method used to evaluate the integral is to invoke Watson’s lemma as follows

f (t) = 1

2φi

∫ 0

∗
e(s1−x)t f̄ (s1 + xe−iφ)e−iφdx + 1

2φi

∫ ∗
0

e(s1−x)t f̄ (s1 + xeiφ)eiφdx .
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These integrals combine to give

f (t) = − 1

2φi

∫ ∗

0
e(s1−x)t [ f̄ (s1 + xeiφ) − f̄ (s1 + xe−iφ)]dx .

Watson’s lemma is now used to expand the two functions in the square bracket in
powers of x . It really is just algebra, so only the essential steps are given.

Assume that f̄ (s) can be expressed in the manner indicated in the theorem so

f̄ (s1 + xeiφ) = (xeiφ)k
∗∑

n=0

an(xeiφ)n

and

f̄ (s1 + xe−iφ) = (xe−iφ)k
∗∑

n=0

an(xe−iφ)n .

These two expressions are subtracted so that as is typical, it is the e±ikφ terms that
prevent complete cancellation. Thus

f̄ (s1 + xeiφ) − f̄ (s1 + xe−iφ) = xk2i sin(kφ)

∗∑
n=0

an(−1)n xn .

We are now faced with the actual integration, so

1

2φi

∫ ∗

0
e(s1−x)t [ f̄ (s1 + xeiφ) − f̄ (s1 + xe−iφ)]dx

= sin(kφ)

φ

∫ ∗

0

∗∑
n=0

an(−1)n xn+ke(s1−x)t dx

= sin(kφ)

φ
es1t

∗∑
n=0

an(−1)n
∫ ∗

0
xn+ke−xt dx

provided exchanging summation and integral signs is valid. Now the integral defin-
ition of the gamma function

�(n) =
∫ ∗

0
un−1e−udu

comes to our aid to evaluate the integral that remains. Using the substitution u = xt ,
we have ∫ ∗

0
xn+ke−xt dx = 1

tn+k+1�{n + k + 1}.
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This then formally establishes the theorem, leaving only one or two niggly questions
over the legality of some of the steps. One common query is how is it justifiable to
integrate with respect to x as far as infinity when we are supposed to be “close to s1”
the branch point of f̄ (s)? It has to be remembered that this is an approximation valid
for large t , hence the major contribution will come from that part of the contour that
is near to x = 0. The presence of infinity in the limit of the integral is therefore
somewhat misleading. (For those familiar with boundary layers in fluid mechanics,
it is not uncommon for “infinity” to be as small as 0.2!) �

If the singularity at s = s1 is a pole, then the integral can be evaluated directly by
use of the residue theorem, giving

f (t) = 1

2φi

∫
C

est f̄ (s)ds

= Res1t

where R is the residue of f̄ (s) at s = s1. The following example illustrates the use
of this theorem to approximate the behaviour of the solution to a BVP for large y.

Example 8.6 Find the asymptotic behaviour as y → ∗ for fixed x of the solution
of the partial differential equation

π2δ

πy2
= π2δ

πx2
− δ, x > 0, y > 0,

such that

δ(x, 0) = πδ

πy
(x, 0) = 0, δ(0, y) = 1.

Solution Taking the Laplace transform of the given equation with respect to y using
the by now familiar notation leads to the following ODE for δ̄:

(1 + s2)δ̄ = d2δ̄

dx2

where the boundary conditions at y = 0 have already been utilised. At x = 0 we
require that δ = 1 for all y. This transforms to δ̄ = 1/s at x = 0 which thus gives
the solution

δ̄(x, s) = e−x
∞
1+s2

s
.

We have discarded the part of the complementary function ex
∞
1+s2 as it does not

tend to zero for large s and so cannot represent a function of s that can have arisen
from a Laplace transform (see Chap.2). The problem would be completely solved if
we could invert the Laplace transform

http://dx.doi.org/10.1007/978-1-4471-6395-4_2
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ū = 1

s
e−x

∞
1+s2

but alas this is not possible in closed form. The best we can do is to use Theorem 8.4
to find an approximation valid for large values of y. Now, ū has a simple pole at
s = 0 and two branch points at s = ±i . As the real part of all of these singularities
is the same, viz. zero, all three contribute to the leading term for large y. At s = 0
the residue is straightforwardly e−x . Near s = i the expansion

δ̄(x, s) = 1

i
[1 − (2i)1/2(s − i)1/2x + · · · ]

is valid. Near s = −i the expansion

δ̄(x, s) = −1

i
[1 − (−2i)1/2(s + i)1/2x + · · · ]

is valid. The value of δ(x, y), which is precisely the integral

δ(x, y) = 1

2φi

∫
C

esy δ̄(x, s)ds

is approximated by the following three terms; e−x from the pole at s = 0, and the
two contribution from the two branch points at s = ±i . Using Theorem 8.4 these are

u ∼ 1

φ
eiy sin

(
1

2
φ

)(
(2i)1/2

�{3/2}
y3/2

)
near s = i

and

u ∼ 1

φ
e−iy sin

(
−1

2
φ

)(
(−2i)1/2

�{3/2}
y3/2

)
near s = −i.

The sum of all these dominant terms is

u ∼ e−x + 21/2x

φ1/2y3/2
cos

(
y + φ

4

)
.

This is the behaviour of the solution δ(x, y) for large values of y.

Further examples of the use of asymptotics can be found in specialist texts on
partial differential equations, e.g. Williams (1980), Weinberger (1965). For more
about asymptotic expansions, especially the rigorous side, there is nothing to better
the classic text of Copson (1967).
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8.7 Exercises

1. The following functions all have simple poles. Find their location and determine
the residue at each pole.

(i)
1

1 + z
, (ii)

2z + 1

z2 − z − 2

(iii)
3z2 + 2

(z − 1)(z2 + 9)
(iv)

3 + 4z

z3 + 3z2 + 2z

(v)
cos(z)

z
(vi)

z

sin(z)

(vii)
ez

sin(z)
.

2. The following functions all have poles. Determine their location, order, and all
the residues.

(i)

(
z + 1

z − 1

)2

(ii)
1

(z2 + 1)2

(iii)
cos(z)

z3
(iv)

ez

sin2(z)
.

3. Use the residue theorem to evaluate the following integrals:
(i) ∫

C

2z

(z − 1)(z + 2)(z + i)
dz

where C is any contour that includes within it the points z = 1, z = 2 and
z = −i .
(ii) ∫

C

z4

(z − 1)3
dz

where C is any contour that encloses the point z = 1.
(iii) ∫ ∗

0

1

x6 + 1
dx .

(iv) ∫ ∗

0

cos(2φx)

x4 + x2 + 1
dx .

4. Use the indented semi-circular contour of Fig. 8.8 to evaluate the three real
integrals:
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(i)
∫ ∗
0

(ln x)2

x4 + 1
dx, (ii)

∫ ∗
0

ln x

x4 + 1
dx, (iii)

∫ ∗
0

xλ

x2 + 1
dx, −1 < λ < 1.

5. Determine the following inverse Laplace transforms:

(i) L−1
{

1

s
∞

s + 1

}
, (ii) L−1

{
1

1 + ∞
s + 1

}
,

(iii) L−1
{

1∞
s + 1

}
, (iv) L−1

{
1∞

s − 1

}
.

You may find that the integrals

∫ ∗

0

e−xt

(x + 1)
∞

x
dx = −φet [−1 + erf

∞
t]

and ∫ ∗

0

e−xt∞x

(x + 1)
dx =

√
φ

t
− φeterfc

∞
t

help the algebra.
6. Define the function ϕ(t) via the inverse Laplace transform

ϕ(t) = L−1
{
erf

(
1

s

)}
.

Show that

L{ϕ(t)} = 2∞
φs

sin

(
1∞
s

)
.

7. The zero order Bessel function can be defined by the series

J0(xt) =
∗∑

k=0

(−1)k( 12 x)2k t2k

(k!)2 .

Show that

L{J0(xt)} = 1

s

(
1 + x2

s2

)−1/2

.

8. Determine

L−1
{
cosh(x

∞
s)

s cosh(
∞

s)

}

by direct use of the Bromwich contour.
9. Use the Bromwich contour to show that
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L−1{e−s1/3} = 3

φ

∫ ∗

0
u2e−tu3− 1

2 u sin

(
u
∞
3

2

)
du.

10. The function δ(x, t) satisfies the partial differential equation

π2δ

πx2
− π2δ

πt2
+ δ = 0

with

δ(x, 0) = πδ

πt
(x, 0) = 0, δ(0, t) = t.

Use the asymptotic method of Sect. 8.6 to show that

δ(x, t) ∼ xet

∞
2φt3

as t → ∗

for fixed x .



Appendix A
Answers to Exercises

Solutions

Exercises 1.4

1. (a) ln t is singular at t = 0, hence one might assume that the Laplace transform
does not exist. However, for those familiar with the Gamma function consider the
result ∫ ∞

0
e−st t kdt = �(k + 1)

sk+1

which is standard and valid for non integer k. Differentiate this result with respect
to k to obtain

∫ ∞

0
e−st t k ln tdt = �≤(k + 1) − �(k + 1) ln s

sk+1 .

Let k = 0 in this result to obtain

∫ ∞

0
e−st ln tdt = �≤(1) − ln s

s
= −δ + ln s

s

where δ is the Euler-Mascheroni constant (= 0.5772156649 . . .). The right hand
side is the Laplace transform of ln t , so it does exist. The apparent singularity is

in fact removable. (c.f. The Laplace transform of t− 1
2 also exists and is a finite

quantity.)
(b)

L{e3t } =
∫ ∞

0
e3t e−st dt =

[
1

3 − s
e(3−s)t

]∞

0
= 1

s − 3
.

(c) et2 > |eMt | for any M for large enough t , hence the Laplace transform does
not exist (not of exponential order).

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 239
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4,
© Springer-Verlag London 2014
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(d) the Laplace transform does not exist (singular at t = 0).
(e) the Laplace transform does not exist (singular at t = 0).
(f) does not exist (infinite number of (finite) jumps), also not defined unless t is
an integer.

2. Using the definition of Laplace transform in each case, the integration is reason-
ably straightforward:

(a)
∫ ∞

0
ekt e−st dt = 1

s − k

as in part (b) of the previous question.
(b) Integrating by parts gives,

L{t2} =
∫ ∞

0
t2e−st dt =

[
− t2

s
e−st

]∞

0
+
∫ ∞

0

2t

s
e−st dt = 2

s

∫ ∞

0
te−st dt.

Integrating by parts again gives the result
2

s3
.

(c) Using the definition of cosh t gives

L{cosh t} = 1

2

{∫ ∞

0
et e−st dt +

∫ ∞

0
e−t e−st dt

}

= 1

2

{
1

s − 1
+ 1

s + 1

}
= s

s2 − 1
.

3. (a) This demands use of the first shift theorem, Theorem 1.2, which with b = 3
is

L{e−3t F(t)} = f (s + 3)

and with F(t) = t2, using part (b) of the last question gives the answer
2

(s + 3)3
.

(b) For this part, we use Theorem 1.1 (linearity) from which the answer

4

s2
+ 6

s − 4

follows at once.
(c) The first shift theorem with b = 4 and F(t) = sin(5t) gives

5

(s + 4)2 + 25
= 5

s2 + 8s + 41
.

4. When functions are defined in a piecewise fashion, the definition integral for the
Laplace transform is used and evaluated directly. For this problem we get
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L{F(t)} =
∫ ∞

0
e−st F(t)dt =

∫ 1

0
te−st dt +

∫ 2

1
(2 − t)e−st dt

which after integration by parts gives

1

s2
(1 − e−s)2.

5. Using Theorem 1.3 we get

(a) L{te2t } = − d

ds

1

(s − 2)
= 1

(s − 2)2

(b) L{t cos(t)} = − d

ds

s

1 + s2
= −1 + s2

(1 + s2)2

The last part demands differentiating twice,

(c) L{t2 cos(t)} = d2

ds2
s

1 + s2
= 2s3 − 6s

(1 + s2)3
.

6. These two examples are not difficult: the first has application to oscillating systems
and is evaluated directly, the second needs the first shift theorem with b = 5.

(a) L{sin(αt + π)} =
∫ ∞

0
e−st sin(αt + π)dt

and this integral is evaluated by integrating by parts twice using the following
trick. Let

I =
∫ ∞

0
e−st sin(αt + π)dt

then derive the formula

I =
[
−1

s
e−st sin(αt + π) − α

s2
e−st cos(αt + π)

]∞

0
− α2

s2
I

from which

I = s sin(π) + α cos(π)

s2 + α2 .

(b) L{e5t cosh(6t)} = s − 5

(s − 5)2 − 36
= s − 5

s2 − 10s − 11
.
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7. This problem illustrates the difficulty in deriving a linear translation plus scaling
property for Laplace transforms. The zero in the bottom limit is the culprit. Direct
integration yields:

L{G(t)} =
∫ ∞

0
e−st G(t)dt =

∫ ∞

−b/a
ae(u−b)s/a F(u)du

where we have made the substitution t = au + b so that G(t) = F(u). In terms
of f̄ (as) this is

ae−sb f̄ (as) + ae−sb
∫ 0

−b/a
e−ast F(t)dt.

8. The proof proceeds by using the definition as follows:

L{F(at)} =
∫ ∞

0
e−st F(at)dt =

∫ ∞

0
e−su/a F(u)du/a

which gives the result. Evaluation of the two Laplace transforms follows from
using the results of Exercise 5 alongside the change of scale result just derived
with, for (a) a = 6 and for (b) a = 7. The answers are

(a)
−36 + s2

(36 + s2)2
, (b)

2s(s2 − 147)

(s2 + 49)3
.

Exercises 2.8

1. If F(t) = cos(at) then F ≤(t) = −a sin(at). The derivative formula thus gives

L{−a sin(at)} = sL{cos(at)} − F(0).

Assuming we know that L{cos(at)} = s

s2 + a2 then, straightforwardly

L{−a sin(at)} = s
s

s2 + a2 − 1 = − a2

s2 + a2

i.e L{sin(at)} = a

s2 + a2 as expected.

2. Using Theorem 2.1 gives

L
{
sin t

t

}
= sL

{∫ t

0

sin u

u
du

}

In the text (after Theorem 2.3) we have derived that
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L
{∫ t

0

sin u

u
du

}
= 1

s
tan−1

{
1

s

}
,

in fact this calculation is that one in reverse. The result

L
{
sin t

t

}
= tan−1

{
1

s

}

is immediate. In order to derive the required result, the following manipulations
need to take place:

L
{
sin t

t

}
=
∫ ∞

0
e−st sin t

t
dt

and if we substitute ua = t the integral becomes

∫ ∞

0
e−asu sin(au)

u
du.

This is still equal to tan−1
{
1

s

}
. Writing p = as then gives the result. (p is a

dummy variable of course that can be re-labelled s.)
3. The calculation is as follows:

L
{∫ t

0
p(v)dv

}
= 1

s
L{p(v)}

so

L
{∫ t

0

∫ v

0
F(u)dudv

}
= 1

s
L
{∫ v

0
F(u)du

}
= 1

s2
f (s)

as required.
4. Using Theorem 2.3 we get

L
{∫ t

0

cos(au) − cos(bu)

u
du

}
= 1

s

∫ ∞

s

u

a2 + u2 − u

b2 + u2 du.

These integrals are standard “ln” and the result
1

s
ln

(
s2 + a2

s2 + b2

)
follows at once.

5. This transform is computed directly as follows

L
{
2 sin t sinh t

t

}
= L

{
et sin t

t

}
− L

{
e−t sin t

t

}
.

Using the first shift theorem (Theorem 1.2) and the result of Exercise 2 above
yields the result that the required Laplace transform is equal to
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tan−1
(

1

s − 1

)
− tan−1

(
1

s + 1

)
= tan−1

(
2

s2

)
.

(The identity tan−1(x) − tan−1(y) = tan−1
(

x − y

1 + xy

)
has been used.)

6. This follows straight from the definition of Laplace transform:

lim
s≥∞ f̄ (s) = lim

s≥∞

∫ ∞

0
e−st F(t)dt =

∫ ∞

0
lim

s≥∞ e−st F(t)dt = 0.

It also follows from thefinal value theorem(Theorem2.7) in that if lims≥∞ s f̄ (s)
is finite then by necessity lims≥∞ f̄ (s) = 0.

7. These problems are all reasonably straightforward

(a)
2(2s + 7)

(s + 4)(s + 2)
= 3

s + 2
+ 1

s + 4

and inverting each Laplace transform term by term gives the result 3e−2t + e−4t

(b) Similarly
s + 9

s2 − 9
= 2

s − 3
− 1

s + 3

and the result of inverting each term gives 2e3t − e−3t

(c)
s2 + 2k2

s(s2 + 4k2)
= 1

2

(
1

s
+ s

s2 + 4k2

)

and inverting gives the result

1

2
+ 1

2
cos(2kt) = cos2(kt).

(d)
1

s(s + 3)2
= 1

9s
− 1

9(s + 3)
− 1

3(s + 3)2

which inverts to
1

9
− 1

9
(3t + 1)e−3t .

(d) This last part is longer than the others. The partial fraction decomposition
is best done by computer algebra, although hand computation is possible. The
result is
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1

(s − 2)2(s + 3)3
= 1

125(s − 2)2
− 3

625(s − 2)
+ 1

25(s + 3)3
+ 2

125(s + 3)2

+ 3

625(s + 3)

and the inversion gives
e2t

625
(5t − 3) + e−3t

1250
(25t2 + 20t + 6).

8. (a) F(t) = 2 + cos(t) ≥ 3 as t ≥ 0, and as
2

s
+ s

s2 + 1
we also have that

s f (s) ≥ 2 + 1 = 3 as s ≥ ∞ hence verifying the initial value theorem.
(b) F(t) = (4 + t)2 ≥ 16 as t ≥ 0. In order to find the Laplace transform,
we expand and evaluate term by term so that s f (s) = 16 + 8/s + 2/s2 which
obviously also tends to 16 as s ≥ ∞ hence verifying the theorem once more.

9. (a) F(t) = 3 + e−t ≥ 3 as t ≥ ∞. f (s) = 3

s
+ 1

s + 1
so that s f (s) ≥ 3 as

s ≥ 0 as required by the final value theorem.
(b) With F(t) = t3e−t , we have f (s) = 6/(s + 1)4 and as F(t) ≥ 0 as t ≥ ∞
and s f (s) also tends to the limit 0 as s ≥ 0 the final value theorem is verified.

10. For small enough t , we have that

sin(
→

t) = →
t + O(t3/2)

and using the standard form (Appendix B):

L{t x−1} = �{x}
sx

with x = 3/2 gives

L{sin(→t)} = L{→t} + · · · = �{3/2}
s3/2

+ · · ·

and using that �{3/2} = (1/2)�{1/2} = →
ω/2 we deduce that

L{sin(→t)} =
→

ω

2s3/2
+ · · · .

Also, using the formula given,

k

s3/2
e− 1

4s = k

s3/2
+ · · · .

Comparing these series for large values of s, equating coefficients of s−3/2 gives

k =
→

ω

2
.
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11. Using the power series expansions for sin and cos gives

sin(t2) =
∞∑

n=0

(−1)n t4n+2

(2n + 1)!

and

cos(t2) =
∞∑

n=0

(−1)n t4n

2n! .

Taking the Laplace transform term by term gives

L{sin(t2)} =
∞∑

n=0

(−1)n (4n + 2)!
(2n + 1)!s4n+3

and

L{cos(t2)} =
∞∑

n=0

(−1)n (4n)!
(2n)!s4n+1 .

12. Given that Q(s) is a polynomial with n distinct zeros, we may write

P(s)

Q(s)
= A1

s − a1
+ A2

s − a2
+ · · · + Ak

s − ak
+ · · · + An

s − an

where the Aks are some real constants to be determined. Multiplying both sides
by s − ak then letting s ≥ ak gives

Ak = lim
s≥ak

P(s)

Q(s)
(s − ak) = P(ak) lim

s≥ak

(s − ak)

Q(s)
.

Using l’Hôpital’s rule now gives

Ak = P(ak)

Q≤(ak)

for all k = 1, 2, . . . , n. This is true for all k, thus we have established that

P(s)

Q(s)
= P(a1)

Q≤(a1)
1

(s − a1)
+ · · · + P(ak)

Q≤(ak)

1

(s − ak)
+ · · · P(an)

Q≤(an)

1

(s − an)
.

Taking the inverse Laplace transform gives the result

L−1
{

P(s)

Q(s)

}
=

n∑
k=1

P(ak)

Q≤(ak)
eak t

sometimes known as Heaviside’s expansion formula.
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13. All of the problems in this question are solved by evaluating the Laplace trans-
form explicitly.

(a) L{H(t − a)} =
∫ ∞

a
e−st dt = e−as

s
.

(b) L{ f1(t)} =
∫ 2

0
(t + 1)e−st dt +

∫ ∞

2
3e−st dt.

Evaluating the right-hand integrals gives the solution

1

s
+ 1

s2
(e−2s − 1).

(c) L{ f2(t)} =
∫ 2

0
(t + 1)e−st dt +

∫ ∞

2
6e−st dt.

Once again, evaluating gives

1

s
+ 3

s
e−2s + 1

s2
(e−2s − 1)

(d) As the function f1(t) is in fact continuous in the interval [0,∞) the formula
for the derivative of the Laplace transform (Theorem 2.1) can be used to give

the result
1

s
(e−2s − 1) at once. Alternatively, f1 can be differentiated (it is 1 −

H(t − 2)) and evaluated directly.
14. We use the formula for the Laplace transform of a periodic function Theorem 2.8

to give

L{F(t)} =
∫ 2c
0 e−st F(t)dt

(1 − e−2sc)
.

The numerator is evaluated directly:

∫ 2c

0
e−st F(t)dt =

∫ c

0
te−st dt +

∫ 2c

c
(2c − t)e−st dt

which after routine integration by parts simplifies to

1

s2
(e−sc − 1)2.

The Laplace transform is thus

L{F(t)} = 1

1 − e−2sc

1

s2
(e−sc − 1)2 = 1

s2
1 − e−sc

1 + e−sc
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which simplifies to
1

s2
tanh

(
1

2
sc

)
.

15. Evaluating the integral gives:

f (s) =
∫ ∞

0
e−st F(t)dt =

∫ a+h

a

e−st

h
dt = e−as

sh
(1 − e−sh)

so

f (s) = e−as

sh
(1 − e−sh).

If we let h ≥ 0 then F(t) ≥ φ(t − a) and we get

f (s) = e−sa

s
lim
h≥0

{
1 − e−sh

h

}
= e−sa

s
s = e−as

using L’Hôpital’s Rule, so

L{φ(t − a)} = e−as .

Exercises 3.6

1. (a) If we substitute u = t − β into the definition of convolution then

g ∗ f =
∫ t

0
g(β ) f (t − β )dβ

becomes

−
∫ 0

t
g(u − β ) f (u)du = g ∗ f.

(b)Associativity is provedby effecting the transformation (u, β ) ≥ (x, y)where
u = t − x − y, and β = y on the expression

f ∗ (g ∗ h) =
∫ t

0

∫ t−β

0
f (β )g(u)h(t − β − u)dudβ .

The area covered by the double integral does not change under this transforma-
tion, it remains the right-angled triangle with vertices (0, t), (0, 0) and (t, 0).
The calculation proceeds as follows:

dudβ = ψ(u, β )

ψ(x, y)
dxdy = −dxdy
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so that

f ∗ (g ∗ h) =
∫ t

0

∫ t−x

0
f (y)g(t − x − y)h(x)dydx

=
∫ t

0
h(x)

[∫ t−x

0
f (y)g(t − x − y)dy

]
dx

=
∫ t

0
h(x)[ f ∗ g](t − x)dx = h ∗ ( f ∗ g)

and this is ( f ∗ g) ∗ h by part (a) which establishes the result.
(c) Taking the Laplace transform of the expression f ∗ f −1 = 1 gives

L{ f } · L{ f −1} = 1

s

from which

L{ f −1} = 1

s f̄ (s)

using the usual notation ( f̄ (s) is the Laplace transform of f (t)). It must be the

case that
1

s f̄ (s)
≥ 0 as s ≥ ∞. The function f −1 is not uniquely defined.

Using the properties of the Dirac-φ function, we can also write

∫ t+

0
f (β )φ(t − β )dβ = f (t)

from which

f −1(t) = φ(t − β )

f (t)
.

Clearly, f (t) √= 0.
2. Since L{ f } = f̄ and L{1} = 1/s we have

L{ f ∗ 1} = f̄

s

so that, on inverting

L−1
{

f̄

s

}
= f ∗ 1 =

∫ t

0
f (β )dβ

as required.



250 Appendix A: Answers to Exercises

3. These convolution integrals are straightforward to evaluate:

(a) t ∗ cos t =
∫ t

0
(t − β ) cos βdβ

this is, using integration by parts

1 − cos t.

(b) t ∗ t =
∫ t

0
(t − β )βdβ = t3

6
.

(c) sin t ∗ sin t =
∫ t

0
sin(t − β ) sin βdβ = 1

2

∫ t

0
[cos(2β − t) − cos t]dβ

this is now straightforwardly

1

2
(sin t − t cos t).

(d) et ∗ t =
∫ t

0
et−β βdβ

which on integration by parts gives

−1 − t + e−t .

(e) et ∗ cos t =
∫ t

0
et−β cos βdβ .

Integration by parts twice yields the following equation

∫ t

0
et−β cos βdβ = [e−β sin β − e−β cos β

]t
0 −

∫ t

0
et−β cos βdβ

from which ∫ t

0
et−β cos βdβ = 1

2
(sin t − cos t + et ).

4. (a) This is proved by using l’Hôpital’s rule as follows

lim
x≥0

{
erf(x)

x

}
= lim

x≥0

1

x

2→
ω

∫ x

0
e−t2dt = 2→

ω

d

dx

∫ x

0
e−t2dt

and using Leibnitz’ rule (or differentiation under the integral sign) this is
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lim
x≥0

2→
ω

e−x2 = 2→
ω

as required.

(b) This part is tackled using power series expansions. First note that

e−x2 = 1 − x2 + x4

2! − x6

3! + · · · + (−1)n+1 x2n

n! + · · · .

Integrating term by term (uniformly convergent for all x) gives

∫ →
t

0
e−x2dx = t1/2 − t3/2

3
+ t5/2

5.2! − t7/2

7.3! + · · · + (−1)n+1 tn+1/2

(2n + 1) · n! + · · ·

from which

t−
1
2 erf(

→
t) = 2→

ω

(
1 − t

3
+ t2

5.2! − t3

7.3! + · · ·

+ (−1)n+1 tn

(2n + 1) · n! + · · ·
)

.

Taking the Laplace transform of this series term by term (again justified by the
uniform convergence of the series for all t) gives

L−1{t− 1
2 erf(

→
t)} = 2→

ω

(
1

s
− 1

3s2
+ 1

5s3
− 1

7s4
+ · · ·

+ (−1)n

(2n + 1)sn+1 + · · ·
)

and taking out a factor 1/
→

s leaves the arctan series for 1/
→

s. Hence we get
the required result:

L−1{t−1/2erf(
→

t)} = 2→
ωs

tan−1
(

1→
s

)
.

5. All of these differential equations are solved by taking Laplace transforms. Only
some of the more important steps are shown.
(a) The transformed equation is

sx̄(s) − x(0) + 3x̄(s) = 1

s − 2

from which, after partial fractions,
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x̄(s) = 1

s + 3
+ 1

(s − 2)(s + 3)
= 4/5

s + 3
+ 1/5

s − 2
.

Inverting gives

x(t) = 4

5
e−3t + 1

5
e2t .

(b) This equation has Laplace transform

(s + 3)x̄(s) − x(0) = 1

s2 + 1

from which

x̄(s) = x(0)

s + 3
− 1/10

s + 3
+ s/10 − 3/10

s2 + 1
.

The boundary condition x(ω) = 1 is not natural for Laplace transforms, however
inverting the above gives

x(t) =
(

x(0) − 1

10

)
e−3t − 1

10
cos(t) + 3

10
sin(t)

and this is 1 when x = ω, from which

x(0) − 1

10
= 9

10
e3ω

and the solution is

x(t) = 9

10
e3(ω−t) − 1

10
cos(t) + 3

10
sin(t).

(c) This equation is second order; the principle is the same but the algebra is
messier. The Laplace transform of the equation is

s2 x̄(s) + 4sx̄(s) + 5x̄(s) = 8

s2 + 1

and rearranging using partial fractions gives

x̄(s) = s + 2

(s + 2)2 + 1
+ 1

(s + 2)2 + 1
− s

s2 + 1
+ 1

s2 + 1
.

Taking the inverse then yields the result

x(t) = e−2t (cos t + sin t) + sin t − cos t.

(d) The Laplace transform of the equation is
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(s2 − 3s − 2)x̄(s) − s − 1 + 3 = 6

s

from which, after rearranging and using partial fractions,

x̄(s) = −3

s
+ 4(s − 3

2 )

(s − 3
2 )

2 − 17
4

− 5

(s − 3
2 )

2 − 17
4

which gives the solution

x(t) = −3 + 4e
3
2 t cosh

(
t

2

→
17

)
− 10→

17
e
3
2 t sinh

(
t

2

→
17

)
.

(e) This equation is solved in a similar way. The transformed equation is

s2 ȳ(s) − 3s + ȳ(s) − 1 = 6

s2 + 4

from which

ȳ(s) = − 2

s2 + 4
+ 3s + 3

s2 + 1

and inverting, the solution

y(t) = − sin(2t) + 3 cos t + 3 sin t

results.
6. Simultaneous ODEs are transformed into simultaneous algebraic equations and

the algebra to solve them is often horrid. For parts (a) and (c) the algebra can be
done by hand, for part (b) computer algebra is almost compulsory.
(a) The simultaneous equations in the transformed state after applying the bound-
ary conditions are

(s − 2)x̄(s) − (s + 1)ȳ(s) = 6

s − 3
+ 3

(2s − 3)x̄(s) + (s − 3)ȳ(s) = 6

s − 3
+ 6

from which we solve and rearrange to obtain

x̄(s) = 4

(s − 3)(s − 1)
+ 3s − 1

(s − 1)2

so that, using partial fractions
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x̄(s) = 2

s − 3
+ 1

s − 1
+ 2

(s − 1)2

giving, on inversion
x(t) = 2e3t + et + 2tet .

In order to find y(t) we eliminate dy/dt from the original pair of simultaneous
ODEs to give

y(t) = −3e3t − 5

4
x(t) + 3

4

dx

dt
.

Substituting for x(t) then gives

y(t) = −e3t + et − tet .

(b) This equation is most easily tackled by substituting the derivative of

y = −4
dx

dt
− 6x + 2 sin(2t)

into the second equation to give

5
d2

dx2
+ 6

dx

dt
+ x = 4 cos(2t) + 3e−2t .

The Laplace transform of this is then

5(s2 x̄(s) − sx(0) − x ≤(0)) + 6(sx̄(s) − x(0)) + x̄(s) = 4s

s2 + 4
+ 3

s + 2
.

After inserting the given boundary conditions and rearranging we are thus face
with inverting

x̄(s) = 10s + 2

5s2 + 6s + 1
+ 4s

(s2 + 4)(5s2 + 6s + 1)
+ 3

(s + 2)(5s2 + 6s + 1)
.

Using a partial fractions package gives

x̄(s) = 29

20(s + 1)
+ 1

3(s + 2)
+ 2225

1212(5s + 1)
− 4(19s − 24)

505(s2 + 4)

and inverting yields

x(t) = 1

3
e−2t + 29

20
e−t + 445

1212
e− 1

5 t − 76

505
cos(2t) + 48

505
sin(2t).

Substituting back for y(t) gives
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y(t) = 2

3
e2t − 29

10
e−t − 1157

606
e− 1

5 t + 72

505
cos(2t) + 118

505
sin(2t).

(c) This last problem is fully fourth order, but we do not change the line of
approach. The Laplace transform gives the simultaneous equations

(s2 − 1)x̄(s) + 5s ¯y(s) − 5 = 1

s2

−2sx̄(s) + (s2 − 4)ȳ(s) − s = −2

s

in which the boundary conditions have already been applied. Solving for ȳ(s)
gives

ȳ(s) = s4 + 7s2 + 4

s(s2 + 4)(s2 + 1)
= 1

s
− 2

3

s

s2 + 4
+ 2

3

s

s2 + 1

which inverts to the solution

y(t) = 1 − 2

3
cos(2t) + 2

3
cos t.

Substituting back into the second original equation gives

x(t) = −t − 5

3
sin t + 4

3
sin(2t).

7. Using Laplace transforms, the transform of x is given by

x̄(s) = A

(s2 + 1)(s2 + k2)
+ v0

(s2 + k2)
+ sx(0)

(s2 + k2)
.

If k √= 1 this inverts to

x(t) = A

k2 − 1

(
sin t − sin(kt)

k

)
+ v0

k
sin(kt) + x0 cos(kt).

If k = 1 there is a term (1 + s2)2 in the denominator, and the inversion can be
done using convolution. The result is

x(t) = A

2
(sin t − t cos t) + v0 sin t + x(0) cos t

and it can be seen that this tends to infinity as t ≥ ∞ due to the term t cos t .
This is called a secular term. It is not present in the solution for k √= 1 which is
purely oscillatory. The presence of a secular term denotes resonance.

8. Taking the Laplace transform of the equation, using the boundary conditions and
rearranging gives
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x̄(s) = sv0 + g

s2(s + a)

which after partial fractions becomes

x̄(s) = − 1
a2

(av0 − g)

s + a
+ − 1

a2
(av0 − g)s + g

a

s2
.

This inverts to the expression in the question. The speed

dx

dt
= g

a
− (av0 − g)

a
e−at .

As t ≥ ∞ this tends to g/a which is the required terminal speed.
9. The set of equations inmatrix form is determined by taking theLaplace transform

of each. The resulting algebraic set is expressed in matrix form as follows:

⎛
⎜⎜⎝

1 −1 −1 0
R1 sL2 0 0
R1 0 R3 1/C
0 0 1 −s

⎞
⎟⎟⎠

⎛
⎜⎜⎝

j̄1
j̄2
j̄3
q̄3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
L2 j2(0) + Eα/(α2 + s2)

Eα/(α2 + s2)
−q3(0)

⎞
⎟⎟⎠ .

10. The Laplace transform of this fourth order equation is

k(s4 ȳ(s) − s3y(0) − s2y≤(0) − sy≤≤(0) − y≤≤≤(0)) = α0

c

(
c

s
− 1

s2
+ e−as

s2

)

Using the boundary conditions is easy for those given at x = 0, the others give

y≤≤(0) − 2cy≤≤≤(0) + 5

6
α0c2 = 0 and y≤≤≤(0) = 1

2
α0c.

So y≤≤(0) = 1

6
α0c2 and the full solution is, on inversion

y(x) = 1

12
α0c2x2 − 1

12
α0cx3 + α0

120

[
5cx4 − x5 + (x − c)5H(x − c)

]

where 0 ⇒ x ⇒ 2c. Differentiating twice and putting x = c/2 gives

y≤≤(c/2) = 1

48
α0c2.

11. Taking the Laplace transform and using the convolution theorem gives

π̄(s) = 2

s3
+ π̄(s)

1

s2 + 1
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from which

π̄(s) = 2

s5
+ 2

s2
.

Inversion gives the solution

π(t) = t2 + 1

12
t4.

Exercises 4.7

1. The Riemann–Lebesgue lemma is stated as Theorem 4.2. As the constants bn in
a Fourier sine series for g(t) in [0,ω] are given by

bn = 2

ω

∫ ω

0
g(t) sin(nt)dt

and these sine functions form a basis for the linear space of piecewise continuous
functions in [0,ω] (with the usual inner product) of which g(t) is a member, the
Riemann–Lebesgue lemma thus immediately gives the result. More directly,
Parseval’s Theorem:

∫ ω

−ω
[g(t)]2dt = ωa2

0 + ω

∞∑
n=1

(a2
n + b2n)

yields the results

lim
n≥∞

∫ ω

−ω
g(t) cos(nt)dt = 0

lim
n≥∞

∫ ω

−ω
g(t) sin(nt)dt = 0

as the nth term of the series on the right has to tend to zero as n ≥ ∞. As g(t) is
piecewise continuous over the half range [0,ω] and is free to be defined as odd
over the full range [−ω,ω], the result follows.

2. The Fourier series is found using the formulae in Sect. 4.2. The calculation is
routine if lengthy and the answer is

f (t) = 5ω

16
− 2

ω

(
cos(t) + cos(3t)

32
+ cos(5t)

52
+ · · ·

)

− 2

ω

(
cos(2t)

22
+ cos(6t)

62
+ cos(10t)

102
· · ·
)

+ 1

ω

(
sin(t) − sin(3t)

32
+ sin(5t)

52
− sin(7t)

72
· · ·
)

.

http://dx.doi.org/10.1007/978-1-4471-6395-4_4
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Fig. A.1 The original function composed of straight line segments

This function is displayed in Fig.A.1.
3. The Fourier series for H(x) is found straightforwardly as

1

2
+ 2

ω

∞∑
n=1

sin(2n − 1)x

2n − 1
.

Put x = ω/2 and we get the series in the question and its sum:

1 − 1

3
+ 1

5
− 1

7
+ · · · = ω

4

a series attributed to the Scottish mathematician James Gregory (1638–1675).
4. The Fourier series has the value

f (x) ≡ − 8

ω

∞∑
n=1

n sin(2nx)

(2n + 1)(2n − 1)
.

5. This is another examplewhere the Fourier series is found straightforwardly using
integration by parts. The result is

1 − x2 ≡ 1

2

(
ω − ω3

3

)
− 4

∞∑
n=1

(−1)n

n2 cos(nx).

As the Fourier series is in fact continuous for this example there is no controversy,
at x = ω, f (x) = 1 − ω2.

6. Evaluating the integrals takes a little stamina this time.

bn = 1

ω

∫ ω

−ω
eax sin(nx)dx
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and integrating twice by parts gives

bn =
[
1

aω
sin(nx) − n

a2ω
cos(nx)

]ω

−ω

− n2

a2 bn

from which

bn = −2n sinh (aω(−1)n)

a2ω
, n = 1, 2, . . . .

Similarly,

an = 2a sinh (aω(−1)n)

a2ω
, n = 1, 2, . . . ,

and

a0 = 2 sinh(ωa)

ωa
.

This gives the series in the question. Putting x = 0 gives the equation

e0 = 1 = sinh(ωa)

ω

{
1

a
+ 2

∞∑
n=1

(−1)na

n2 + a2

}

from which ∞∑
n=1

(−1)n

n2 + a2 = 1

2a2 (aωcosech (aω) − 1).

Also, since
∞∑

−∞

(−1)n

n2 + a2 = 2
∞∑

n=1

(−1)n

n2 + a2 + 1

a2 ,

we get the result
∞∑

−∞

(−1)n

n2 + a2 = ω

a
cosech (aω).

Putting x = ω and using Dirichlet’s theorem (Theorem 4.3) we get

1

2
( f (ω) + f (−ω)) = cosh(aω) = sinh(ωa)

ω

{
1

a
+ 2

∞∑
n=1

a

n2 + a2

}

from which ∞∑
n=1

1

n2 + a2 = 1

2a2 (aωcoth (aω) − 1).
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Fig. A.2 The function f (t)

Also, since
∞∑

−∞

1

n2 + a2 = 2
∞∑

n=1

1

n2 + a2 + 1

a2

we get the result
∞∑

−∞

1

n2 + a2 = ω

a
coth (aω).

7. The graph is shown in Fig.A.2 and the Fourier series itself is given by

f (t) = 1

2
ω + 1

ω
sinh(ω)

+ 2

ω

∞∑
n=1

[
(−1)n − 1

n2 + (−1)n sinh(ω)

n2 + 1

]
cos(nt)

− 2

ω

∞∑
n=1

(−1)n

n2 + 1
sinh(ω) sin(nt).

8. The Fourier series expansion over the range [−ω,ω] is found by integration to
be

f (t) = 2

3
ω2 +

∞∑
n=1

[
2

n2 cos(nt) + (−1)n

n
ω sin(nt)

]
− 4

ω

∞∑
n=1

sin(2n − 1)t

(2n − 1)3

and Fig.A.3 gives a picture of it. The required series are found by first putting
t = 0 which gives
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ω2 = 2

3
ω2 + 2

∞∑
n=1

1

n2

from which ∞∑
n=1

1

n2 = ω2

6
.

Putting t = ω gives, using Dirichlet’s theorem (Theorem 4.3)

ω2

2
= 2

3
ω2 − 2

∞∑
n=1

(−1)n+1

n2

from which ∞∑
n=1

(−1)n+1

n2 = ω2

12
.

9. The sine series is given by the formula

an = 0 bn = 2

ω

∫ ω

0
(t − ω)2 sin(nt)dt

with the result

f (t) ≡ 8

ω

∞∑
k=1

sin(2k − 1)t

2k + 1
+ 2ω

∞∑
n=1

sin(nt)

n
.

This is shown in Fig.A.5. The cosine series is given by

bn = 0 an = 2

ω

∫ ω

0
(t − ω)2 cos(nt)dt

from which

f (t) ≡ −ω2

3
+ 4

∞∑
n=1

cos(nt)

n2

and this is pictured in Fig.A.4.
10. Parseval’s theorem (Theorem 4.8) is

∫ ω

−ω
[ f (t)]2dt = ωa2

0 + ω

∞∑
n=1

(a2
n + b2n).
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Fig. A.3 The function f (t) as a full Fourier series

Fig. A.4 The function f (t) as an even function

Fig. A.5 The function f (t) as an odd function
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Applying this to the Fourier series in the question is not straightforward, as we
need the version for sine series. This is easily derived as

∫ ω

0
[ f (t)]2dt = ω

2

∞∑
n=1

b2n .

The left hand side is ∫ ω

0
t2(ω − t)2dt = ω5

30
.

The right hand side is
32

ω

∞∑
n=1

1

(2n − 1)6

whence the result ∞∑
n=1

1

(2n − 1)6
= ω6

960
.

Noting that
∞∑

n=1

1

n6 =
∞∑

n=1

1

(2n − 1)6
+ 1

26

∞∑
n=1

1

n6

gives the result
∞∑

n=1

1

n6 = 64

63

ω6

960
= ω6

945
.

11. The Fourier series for the function x4 is found as usual by evaluating the integrals

an = 1

ω

∫ ω

−ω
x4 cos(nx)dx

and

bn = 1

ω

∫ ω

−ω
x4 sin(nx)dx .

However as x4 is an even function, bn = 0 and there are no sine terms. Evaluating
the integral for the cosine terms gives the series in the question. With x = 0, the
series becomes

0 = ω4

5
+ 8ω2

∞∑
n=1

(−1)n

n2 − 48
∞∑

n=1

(−1)n+1

n4
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and using the value of the second series (ω2)/12 gives

∞∑
n=1

(−1)n+1

n4 = 7ω4

15

1

48
= 7ω4

720
.

Differentiating term by term yields the Fourier series for x3 for −ω < x < ω as

x3 ≡
∞∑

n=1

(−1)n 2

n3 (6 − ω2n2) sin(nx).

12. Integrating the series

x ≡
∞∑

n=1

2

n
(−1)n+1 sin(nx)

term by term gives
x2

2
≡

∞∑
n=1

2

n2 (−1)n cos(nx) + A

where A is a constant of integration. Integrating both sides with respect to x
between the limits −ω and ω gives

ω3

3
= 2Aω.

Hence A = ω2/6 and the Fourier series for x2 is

x2 ≡ ω2

3
+

∞∑
n=1

4(−1)n

n2 cos(nx),

where −ω < x < ω. Starting with the Fourier series for x4 over the same range
and integrating term by term we get

x5

5
≡ ω4x

5
+

∞∑
n=1

8(−1)n

n5
(ω2n2 − 6) sin(nx) + B

where B is the constant of integration. This time setting x = 0 immediately
gives B = 0, but there is an x on the right-hand side that has to be expressed in
terms of a Fourier series. We thus use
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x ≡
∞∑

n=1

2

n
(−1)n+1 sin(nx)

to give the Fourier series for x5 in [−ω,ω] as

x5 ≡
∞∑

n=1

(−1)n
[
40ω2

n3 − 240

n5
− 2ω4

n

]
sin(nx).

13. Using the complex form of the Fourier series, we have that

V (t) =
∞∑

n=−∞
cne2nωi t/5.

The coefficients are given by the formula

cn = 1

5

∫ 5

0
V (t)e2inωt/5dt.

By direct calculation they are

c−4 = 5

ω

(
i + e7ωi/10

)

c−3 = 20

3ω

(
i − e9ωi/10

)

c−2 = 10

ω

(
i − eωi/10

)

c−1 = 20

ω

(
i + e3ωi/10

)

c0 = 16

c1 = 20

ω

(
−i − e7ωi/10

)

c2 = 10

ω

(
−i + e9ωi/10

)

c3 = 20

3ω

(
−i + eωi/10

)

c4 = 10

ω

(
−i − e3ωi/10

)
.

14. The differential equation can be written

d

dt

[
(1 − t2)

d Pn

dt

]
= −n(n + 1)Pn .
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This means that the integral can be manipulated using integration by parts as
follows:

∫ 1

−1
Pm Pndt = − 1

n(n + 1)

∫ 1

−1

d

dt

[
(1 − t2)

d Pn

dt

]
Pmdt

= − 1

n(n + 1)

[
(1 − t2)

d Pn

dt

d Pm

dt

]1
−1

+ 1

n(n + 1)

∫ 1

−1

d

dt

[
(1 − t2)

d Pm

dt

]
Pndt

= 1

n(n + 1)

[
(1 − t2)

d Pm

dt

d Pn

dt

]1
−1

+ m(m + 1)

n(n + 1)

∫ 1

−1
Pm Pndt

= m(m + 1)

n(n + 1)

∫ 1

−1
Pm Pndt,

all the integrated bits being zero. Therefore

∫ 1

−1
Pm Pndt = 0

unless m = n as required.
15. The first part is straightforward. Substituting y = sin(n ln t) into the equation

for y gives
dy

dt
= n

t
cos(n ln t), so t

dy

dt
= n cos(n ln t)

thus

t
d

dt

{
t
dy

dt

}
= −n2 sin(n ln t) = −n2y

as required. In order to do the next part we follow the last example in the chapter,
or the previous exercise and integrate the ordinary differential equation. Write
the ODE as:

d

dt

{
t
dπn

dt

}
+ n2

t
πn = 0 (A.1)

write it again substituting m for n:

d

dt

{
t
dπm

dt

}
+ m2

t
πm = 0 (A.2)

then form the combination πm× Eq. (A.1)−πn× Eq. (A.2) to obtain



Appendix A: Answers to Exercises 267

πm
d

dt

{
t
dπn

dt

}
− πn

d

dt

{
t
dπm

dt

}
+ n2 − m2

t
πmπn = 0

Integrating this between the two zeros (these are where ln t is 0 and ω so t = 1
and eω). The first pair of terms yield to integration by parts:

[
πm · t · dπn

dt
− πn · t · dπm

dt

]eω

0
−
∫ eω

0

dπm

dt
· t · dπn

dt
− dπn

dt
· t · dπm

dt
dt

and both of these are zero, the first term as it vanishes at both limits and in the
second the integrand is identically zero. Hence we have

∫ eω

1

n2 − m2

t
πmπndt = (m2 − n2)

∫ eω

1

πmπn

t
dt = 0

which implies orthogonality with weight function 1/t .
16. The half range Fourier series for g(x) is

∞∑
n=1

bn sin(nx)

where

bn = 2

ω

∫ ω

0
sin(nx)dx = 2

nω
[− cos(nx)]ω0 = 2

nω
[1 − (−1)n]

so b2k = 0 and b2k+1 = 4

(2k + 1)ω
So with x = ln t

f (t) = 4

ω

∞∑
k=0

1

4k + 1
sin{(2k + 1) ln t}

Exercises 5.6

1. Using the separation of variable technique with

π(x, t) =
∑

k

Xk(x)Tk(t)

gives the equations for Xk(x) and Tk(t) as

T ≤
k

Tk
= γX ≤≤

k

Xk
= −ξ2
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where−ξ2 is the separation constant. It is negative because Tk(t)must not grow
with t . In order to satisfy the boundary conditions we express x(ω/4 − x) as a
Fourier sine series in the interval 0 ⇒ x ⇒ ω/4 as follows

x(x − ω

4
) = 1

2ω

∞∑
k=1

1

(2k − 1)3
sin[4(2k − 1)x].

Now the function Xk(x) is identified as

Xk(x) = 1

2ω

1

(2k − 1)3
sin[4(2k − 1)x]

so that the equation obeyed by Xk(x) together with the boundary conditions
π(0, t) = π(ω/4, t) = 0 for all time are satisfied. Thus

ξ = 4(2k − 1)ω→
γ

.

Putting this expression for Xk(x) together with

Tk(t) = e−16(2k−1)2ω2t/γ

gives the solution

π(x, t) = 1

2ω

∞∑
k=1

1

(2k − 1)3
e−16(2k−1)2ω2t/γ sin[4(2k − 1)x].

2. The equation is

a
ψ2π

ψx2
− b

ψπ

ψx
− ψπ

ψt
= 0.

Taking the Laplace transform (in t) gives the ODE

aπ̄≤≤ − bπ̄≤ − sπ̄ = 0

after applying the boundary condition π(x, 0) = 0. Solving this and noting that

π(0, t) = 1 ≈ π̄(0, s) = 1

s
and π̄(x, s) ≥ 0 as x ≥ ∞

gives the solution

π̄ = 1

s
exp

{ x

2a
[b −

√
b2 + 4as]

}
.

3. Taking the Laplace transform of the heat conduction equation results in the ODE
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γ
d2π̄

dx2
− sπ̄ = −x

(ω

4
− x
)

.

Although this is a second order non-homogeneous ODE, it is amenable to stan-
dard complimentary function, particular integral techniques. The general solu-
tion is

π̄(x, s) = A cosh

(
x

√
s

γ

)
+ B sinh

(
x

√
s

γ

)
− x2

s
+ ωx

4s
− 2γ

s2
.

The inverse of this gives the expression in the question. If this inverse is evaluated
term by term using the series in Appendix A, the answer of Exercise 1 is not
regained immediately. However, if the factor 2γt is expressed as a Fourier series,
then the series solution is the same as that in Exercise 1.

4. Taking the Laplace transform in y gives the ODE

d2π̄

dx2
= sπ̄.

Solving this, and applying the boundary condition π(0, y) = 1which transforms
to

π̄(0, s) = 1

s

gives the solution

π̄(x, s) = 1

s
e−x

→
s

which inverts to

π(x, y) = erfc

{
x

2
→

y

}
.

5. Using the transformation suggested in the question gives the equation obeyed
by π(x, t) as

1

c2
ψ2π

ψt2
= ψ2π

ψx2
.

This is the standard wave equation. To solve this using Laplace transform tech-
niques, we transform in the variable t to obtain the equation

d2π̄

dx2
− s2

c2
π̄ = − s

c2
cos(mx).

The boundary conditions for π(x, t) are

π(x, 0) = cos(mx) and π≤(x, 0) = −k

2
π(x, 0) = −k

2
cos(mx).



270 Appendix A: Answers to Exercises

This last condition arises since

u≤(x, t) = k

2
ekt/2π(x, t) + ekt/2π≤(x, t).

Applying these conditions gives, after some algebra

π̄(x, s) =
[
1

s
− s − k

2

s2 + m2c2
cos(mx)

]
e− sx

c + s − k
2

s2 + m2c2
cos(mx).

Using the second shift theorem (Theorem 2.4) we invert this to obtain

u =

⎧⎪⎪⎨
⎪⎪⎩

ekt/2(1 − cos(mct − mx) cos(mx) + k
2mc sin(mct − mx) cos(mx)

+ cos(mct) cos(mx) − k
2mc sin(mct) cos(mx)) t > x/c

ekt/2(cos(mct) cos(mx) − k
2mc sin(mct) cos(mx)) t < x/c.

6. Taking the Laplace transform of the one dimensional heat conduction equation
gives

sū = c2ūxx

as u(x, 0) = 0. Solving this with the given boundary condition gives

ū(x, s) = f̄ (s)e−x
→

s/c.

Using the standard form

L−1{e−a
→

s} = a

2
→

ωt3
e−a2/4t

gives, using the convolution theorem

u = x

2

∫ t

0
f (β )

√
k

ω(t − β )3
e−x2/4k(t−β )dβ .

When f (t) = φ(t), u = x

2

√
k

ωt3
e−x2/4kt .

7. Assuming that the heat conduction equation applies gives that

ψT

ψt
= γ

ψ2T

ψx2

so that when transformed T̄ (x, s) obeys the equation
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sT̄ (x, s) − T (x, 0) = γ
d2T̄

dx2
(x, s).

Now, T (x, 0) = 0 so this equation has solution

T̄ (x, s) = T̄0e−x
→

s
γ

and since
dT̄

dx
(s, 0) = −ξ

s

T̄0 = ξ

√
γ

s

and the solution is using standard forms (or Chap. 3)

T (x, t) = ξ

√
γ

ωt
e−x2/4γt .

This gives, at x = 0 the desired form for T (0, t). Note that for non-zero x the
solution is not singular at t = 0.

8. Taking the Laplace transform of the wave equation given yields

s2ū − ψu

ψt
(x, 0) = c2

d2ū

dx2

so that substituting the series

ū =
∞∑

n=0

an(x)

sn+k+1 , k integer

as in Example 5.5 gives k = 1 all the odd powers are zero and

a0
s2

+ a2
s4

+ a6
s6

+ · · · − cos(x) = c2
(

a≤≤
0

s2
+ a≤≤

2

s4
+ a≤≤

6

s6
+ · · ·

)

so that

a0 = cos(x), a2 = c2a≤≤
0 = −c2 cos(x) a4 = c4 cos x etc.

Hence

ū(x, s) = cos(x)

(
1

s2
− c2

s4
+ c4

s6
− c6

s8
+ · · ·

)

which inverts term by term to

http://dx.doi.org/10.1007/978-1-4471-6395-4_3
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u(x, t) = cos x

(
t − c2t3

3! + c4t5

5! + · · ·
)

which in this case converges to the closed form solution

u = 1

c
cos x sin(ct).

9. For this problem we proceed similarly. Laplace transforms are taken and the
equation to solve this time is

s2ū − su(x, 0) = c2
d2ū

dx2
.

Once more substituting the series

ū =
∞∑

n=0

an(x)

sn+k+1 , k integer

gives this time

a0 + a1
s

+ a2
s2

+ · · · − cos x = c2
(

a≤≤
0 + a≤≤

1

s
+ a≤≤

2

s2
+ · · ·

)

so that

a0 = cos x, a1 = 0 a2 = c2a≤≤
0 = −c2 cos x a3 = 0 a4 = c4 cos x etc.

giving

ū(x, s) =
∞∑

n=0

c2n(−1)n cos x

s2n+1 .

Inverting term by term gives the answer

u(x, t) = cos x
∞∑

n=0

(−1)n c2nt2n

2n!

which in fact in this instance converges to the result

u = cos x cos(ct).



Appendix A: Answers to Exercises 273

Exercises 6.6

1. With the function f (t) as defined, simple integration reveals that

F(α) =
∫ 0

−T
(t + T )e−iαt dt +

∫ T

0
(T − t)e−iαt dt

= 2
∫ T

0
(T − t) cos(αt)dt

= 2

α

[
(T − t)

sin(αt)

α

]T

0
+ 2

α

∫ T

0
sin(αt)dt

= 2

α

[
−cos(αt)

α

]T

0

= 2(1 − cos(αT ))

α2

2. With f (t) = e−t2 the Fourier transform is

F(α) =
∫ ∞

−∞
e−t2e−iαt dt =

∫ ∞

−∞
e−(t− 1

2 iα)2e− 1
4α2

dt.

Now although there is a complex number ( 12 iα) in the integrand, the change
of variable u = t − 1

2 iα can still be made. The limits are actually changed to
−∞ − 1

2 iα and ∞ − 1
2 iα but this does not change its value so we have that

∫ ∞

−∞
e−(t− 1

2 iα)2dt = →
ω.

Hence
F(α) = →

ωe− 1
4α2

.

3. Consider the Fourier transform of the square wave, Example 6.1. The inverse
yields:

A

ω

∫ ∞

−∞
sin(αT )

α
eiαt dα = A

provided |t | ⇒ T . Let t = 0 and we get

1

ω

∫ ∞

−∞
sin(αT )

α
dα = 1

Putting T = 1 and spotting that the integrand is even gives the result.
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4. Using the definition of convolution given in the question, we have

f (at) ∗ f (bt) =
∫ ∞

−∞
f (a(t − β )) f (bβ )dβ .

= e−at
∫ ∞

0
f (bβ − aβ )dβ

= −e−at 1

b − a
[ f (bt − at) − 1]

= f (at) − f (bt)

b − a
.

As b ≥ a we have

f (at) ∗ f (at) = − lim
b≥a

f (bt) − f (at)

b − a

= − d

da
f (at) = −t f ≤(at) = t f (at).

5. With

g(x) =
∫ ∞

−∞
f (t)e−2ωi xt dt

let u = t − 1/2x , so that du = dt . This gives

e−2ωi xt = e−2ωi x(u+1/2x) = −e−2ωxu .

Adding these two versions of g(x) gives

|g(x)| =
∣∣∣∣12
∫ ∞

−∞
( f (u) − f (u + 1/2x))e−2ωi xudu

∣∣∣∣
⇒ 1

2

∫ ∞

−∞
| f (u) − f (u + 1/2x)|du

and as x ≥ ∞, the right hand side ≥ 0. Hence

∫ ∞

−∞
f (t) cos(2ωxt)dt ≥ 0 and

∫ ∞

−∞
f (t) sin(2ωxt)dt ≥ 0

which illustrates the Riemann–Lebesgue lemma.
6. First of all we note that

G(i t) =
∫ ∞

−∞
g(α)e−i2αt dα =

∫ ∞

−∞
g(α)eαt dα

therefore
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∫ ∞

−∞
f (t)G(i t)dt =

∫ ∞

−∞
f (t)

∫ ∞

−∞
g(α)eαt dαdt.

Assuming that the integrals are uniformly convergent so that their order can be
interchanged, the right hand side can be written

∫ ∞

−∞
g(α)

∫ ∞

−∞
f (t)eαt dtdα,

which is, straight away, in the required form

∫ ∞

−∞
g(α)F(iα)dα.

Changing the dummy variable from α to t completes the proof.
7. Putting f (t) = 1 − t2 where f (t) is zero outside the range −1 ⇒ t ⇒ 1 and

g(t) = e−t , 0 ⇒ t < ∞, we have

F(α) =
∫ 1

−1
(1 − t2)e−iαt dt

and

G(α) =
∫ ∞

0
e−t eiαt dt.

Evaluating these integrals (the first involves integrating by parts twice) gives

F(α) = 4

α3 (α cosα − sinα)

and

G(α) = 1

1 + iα
.

Thus, using Parseval’s formula from the previous question, the imaginary unit
disappears and we are left with

∫ 1

−1
(1 + t)dt =

∫ ∞

0

4e−t

t3
(t cosh t − sinh t) dt

from which the desired integral is 2. Using Parseval’s theorem

∫ ∞

−∞
| f (t)|2dt = 1

2ω

∫ ∞

−∞
|F(α)|2dα

we have that
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∫ 1

−1
(1 − t2)2dt = 1

2ω

∫ ∞

0

16 (t cos t − sin t)2

t6
dt.

Evaluating the integral on the left we get

∫ ∞

0

(t cos t − sin t)2

t6
dt = ω

15
.

8. The ordinary differential equation obeyed by the Laplace transform ū(x, s) is

d2ū(x, s)

dx2
− s

k
ū(x, s) = −g(x)

k
.

Taking the Fourier transform of this we obtain the solution

ū(x, s) = 1

2ω

∫ ∞

−∞
G(α)

s + α2k
eiαx dα

where

G(α) =
∫ ∞

−∞
g(x)e−iαx dx

is the Fourier transform of g(x). Now it is possible to write down the solution
by inverting ū(x, s) as the Laplace variable s only occurs in the denominator of
a simple fraction. Inverting using standard forms thus gives

u(x, t) = 1

2ω

∫ ∞

−∞
G(α)eiαe−α2kt dα.

It is possible by completing the square and using the kind of “tricks” seen in
Sect. 3.2 to convert this into the solution that can be obtained directly by Laplace
transforms and convolution, namely

u(x, t) = 1

2
→

ωt

∫ ∞

−∞
e−(x−β )2/4tg(β )dβ .

9. To convert the partial differential equation into the integral form is a straightfor-
ward application of the theory of Sect. 6.4. Taking Fourier transforms in x and
y using the notation

v(σ, y) =
∫ ∞

−∞
u(x, y)e−iσx dx

and

w(σ,μ) =
∫ ∞

−∞
v(σ, y)e−iμydy

http://dx.doi.org/10.1007/978-1-4471-6395-4_3
http://dx.doi.org/10.1007/978-1-4471-6395-4_6
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we obtain

−σ2w − μ2w + k2w =
∫ ∞

−∞

∫ ∞

−∞
f (ξ, η)e−σξe−μηdξdη.

Using the inverse Fourier transform gives the answer in the question. The condi-
tions are that for both u(x, y) and f (x, y) all first partial derivatives must vanish
at ±∞.

10. The Fourier series written in complex form is

f (x) ≡
∞∑

n=−∞
cneinx

where

cn = 1

2ω

∫ ω

−ω
f (x)e−inx dx .

Now it is straightforward to use the window function W (x) to write

cn = 1

2

∫ ∞

−∞
W

(
x − ω

2ω

)
f (x)e−inx dx .

11. The easiest way to see how discrete Fourier transforms are derived is to consider
a sampled time series as the original time series f (t)multiplied by a function that
picks out the discrete (sampled) values leaving all other values zero. This function
is related to the Shah function (train of Dirac-φ functions) is not necessarily (but
is usually) equally spaced. It is designed by using thewindow function W (x)met
in the last question. With such a function, taking the Fourier transform results in
the finite sum of the kind seen in the question. The inverse is a similar evaluation,
noting that because of the discrete nature of the function, there is a division by
the total number of data points.

12. Inserting the values {1, 2, 1} into the series of the previous question, N = 3 and
T = 1 so we get the three values

F0 = 1 + 2 + 1 = 4; F1 = 1 + 2e−2ωi/3 + e−4ωi/3 = e−2ωi/3;

and
F2 = 1 + 2e−4ωi/3 + e−8ωi/3 = e−4ωi/3.

13. Using the definition and essential property of the Dirac-φ function we have

F(α) =
∫ ∞

−∞
φ(t − t0)e

−iαt dt = e−iαt0

inverting this gives the required answer
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φ(t − t0) =
∫ ∞

−∞
e−iαt0eiαt dα =

∫ ∞

−∞
eiα(t−t0)dα.

whence the second result is

φ(t) = 1

2ω

∫ ∞

−∞
eiαt dα.

14. Using the exponential forms of sine and cosine the Fourier transforms are imme-
diately

F{cos(α0t)} = 1

2
(φ(α − α0) + φ(α + α0))

F{sin(α0t)} = 1

2i
(φ(α − α0) − φ(α + α0)).

Exercises 7.9

1. The wavelets being considered are [1, 1, 1, 1]T , [1, 1,−1,−1]T , [1,−1, 0, 0]T

and [0, 0, 1,−1]T So we solve ξ times the first plus ϕ times the second plus δ
time the third plus φ times the fourth equals [4, 8, 10, 14]T which leads to

ξ + ϕ + δ = 4

ξ + ϕ − δ = 8

ξ − ϕ + φ = 10

ξ − ϕ − φ = 14.

Solving (easily by hand) gives ξ = 9,ϕ = −3, δ = 6 and φ = 12. When the
right hand side is [a, b, c, d]T the result is still easy to obtain by hand:

ξ = 1

4
(a + b + c + d)

ϕ = 1

4
(a + b − c − d)

δ = 1

2
(a + b)

φ = 1

2
(c + d)

2. The 16 basis functions are the columns of the matrix:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 −1 0 0 0 0 0 0 0
1 1 1 0 −1 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 −1 0 0 0 0 −1 0 0 0 0 0 0
1 1 −1 0 0 1 0 0 0 0 1 0 0 0 0 0
1 1 −1 0 0 1 0 0 0 0 −1 0 0 0 0 0
1 1 −1 0 0 −1 0 0 0 0 0 1 0 0 0 0
1 1 −1 0 0 −1 0 0 0 0 0 −1 0 0 0 0
1 −1 0 1 0 0 1 0 0 0 0 0 1 0 0 0
1 −1 0 1 0 0 1 0 0 0 0 0 −1 0 0 0
1 −1 0 1 0 0 −1 0 0 0 0 0 0 1 0 0
1 −1 0 1 0 0 −1 0 0 0 0 0 0 −1 0 0
1 −1 0 −1 0 0 0 1 0 0 0 0 0 0 1 0
1 −1 0 −1 0 0 0 1 0 0 0 0 0 0 −1 0
1 −1 0 −1 0 0 0 −1 0 0 0 0 0 0 0 1
1 −1 0 −1 0 0 0 −1 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This layout is useful for the next part of the question. It is quickly apparent that
each column is orthogonal to any other as the inner product is found bymultiply-
ing equivalent terms and adding up the whole 16. All of these sums are zero. The
vectors are not orthonormal. Finally the vector (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0)T can be put in terms of the basis functions as follows. Labelling the basis
vectors a, b, up to p, then forming 1

2 (a + b) we get a vector with 8 ones then
below this, 8 zeros. Adding this to the third column c and diving by 2 gives
a vector with 4 ones in the first four places and twelve zeros below that. The
calculation is 1

4 (a + b) + 1
2c. Now continuing in this fashion, add this vector to

the vector represented by column e and divide by two to give two ones in the
first two entries with 14 zeros below. The calculation is 1

8 (a + b) + 1
4c + 1

2e.
Finally add this to the vector represented by i and divide by 2 and we get
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T that achieves the required vector. The
calculation is

1

16
(a + b) + 1

8
c + 1

4
e + 1

2
i

3. Calculating the Fourier transform of ψ j,k(t) = 2 j/2ψ
(
2 j t − k

)
is a bit tricky.

Note that

ψ(t) =
⎧⎨
⎩
1 0 ⇒ t < 1

2−1 1
2 ⇒ t < 1

0 otherwise

so ψ
(
2 j t − k

)
is always either 1 −1 or 0. In fact

ψ
(
2 j t − k

)
=
⎧⎨
⎩
1 2 j k ⇒ t < (k + 1

2 )2
j

−1 (k + 1
2 )2

j ⇒ t < (k + 1)2 j

0 otherwise
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So, using the definition of Fourier transform:

ψ̂ j,k(α) =
∫ ∞

−∞
ψ j,k(t)e

−iαt dt = 2 j/2
∫ ∞

−∞
ψ
(
2 j t − k

)
e−iαt dt

then using the above definition of ψ
(
2 j t − k

)
we get

ψ̂ j,k(α) =
∫ ∞

−∞
2 j/2ψ

(
2 j t − k

)
e−iαt dt

= 2 j/2

[∫ (k+ 1
2 )2− j

k2− j
e−iαt dt −

∫ (k+1)2− j

(k+ 1
2 )2− j

e−iαt dt

]

= 2 j/2
[
−e−iαt

iα

∣∣∣(k+ 1
2 )2 j/2

k2 j/2
+ e−iαt

iα

∣∣∣(k+1)2 j/2

(k+ 1
2 )2 j/2

]

= 2 j/2 e−iαk2− j

iα

{
1 − 2e−iα(k+ 1

2 )2− j + e−iα(k+1)2− j
}

Some manipulation then gives

ψ̂ j,k(α) = −2( j+4)/2

iα
e−iα(k+ 1

2 )2− j
sin2

(α

4
2− j
)

which is the required Fourier transform.
4. Consider the general offspring (daughter) wavelet function

2 j/2ψ
(
2 j t − k

)

So that

∫ ∞

−∞
|2 j/2ψ

(
2 j t − k

)
|2dt = 2 j

∫ (k+1)2− j

k2− j
1dt = 2 j [(k +1)2− j −k2− j ] = 1.

This is independent of both j and k and so is the same as the mother wavelet
j = k = 0 and for all daughter wavelets. This proves the result. It has the value
1.

5. With f (t) = e− 1
2 t2 before we calculate either the centre μ f or the RMS value,

we need to find the norm || f (t)|| defined by

|| f (t)||2 =
∫ ∞

−∞
| f (t)|2dt =

∫ ∞

−∞
e−t2dt = →

ω

so || f (t)|| = ω1/4. The centre μ f is defined by
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μ f = 1

|| f (t)||2
∫ ∞

−∞
t |e− 1

2 t2 |2dt = ω−1/2
[
−1

2
e−t2

]∞

−∞
= 0

so the centre is zero, this should not be a surprise. It could be deduced at once
from the symmetry of f (t).

� f = 1

|| f (t)||
[∫ ∞

−∞
t2e−t2dt

]1/2

Using ∫ ∞

−∞
t2e−t2dt =

[
t · 1

2
e−t2

]∞

−∞
−
∫ ∞

−∞
1

2
e−t2dt = 1

2

→
ω

gives

� f = 1

ω1/4

√
1

2

→
ω = 1→

2

Given f̂ (α) = →
2ωe− 1

2α2
the calculation of the centreμ f̂ and� f̂ follows along

the same lines. This time || f̂ (α)||2 = 2ω
→

ω, the centre μ f̂ is of course once

again zero. The RMS � f̂ is once again 1→
2
as the factor 2ω cancels. Hence the

Heisenberg inequality becomes

� f · � f̂ = 1

2

that is, equality.
6. Repeating the details of the above calculation is not necessary. With

f (t) = 1

2
→

ξω
e− t2

4ξ

the norm is || f (t)|| where

|| f (t)||2 = 1

4ξω

∫ ∞

−∞
e− t2

2ξ dt = 1

2
→
2ξω

.

Thus the centre μ f = 0 as before but the RMS � f is given by

�2
f = 1

|| f (t)||2
∫ ∞

−∞
t2e− t2

2ξ dt = ξ.

Similarly, || f̂ (α)|| is given by
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|| f̂ (α)||2 =
∫ ∞

−∞
e−2ξα2

dα =
√

ω

2ξ

with μ f̂ = 0 and

�2
f̂

= 1

|| f̂ (α)||2
∫ ∞

−∞
α2e−2ξα2

dα = 1

4ξ
.

Thus giving

� f · � f̂ = 1

2

as before, independent of ξ.
7. Linearity is straightforward to show. Form the linear sum

ξ f1,G(t0,α) + ϕ f2,G(t0,α) = ξ

∫ ∞

−∞
f1(t)bt0,α(t)dt + ϕ

∫ ∞

−∞
f2(t)bt0,α(t)dt

The right hand side can be written
∫ ∞

−∞
(ξ f1(t) + ϕ f2)bt0,α(t)dt = fG(t0,α)

where
f (t) = ξ f1(t) + ϕ f2(t).

This establishes linearity.
(a) If f0 = f (t − t1) then

f1Gb (t1,α) =
∫ ∞

−∞
f (t − t1)b(t − t0)e

−iαt dt

Write t − t1 = β then dt = dβ and the right hand side is

=
∫ ∞

−∞
f (β )b(β + t1 − t0)e

−iαβ−iαt1dβ = e−iαt1 f1Gb (t0 − t1,α)

as required.
(b) With

f2 = f (t)eiα2t

we have

f2Gb (t0,α) =
∫ ∞

−∞
f2(t)e

iα2t b(t−t0)e
−iαt dt =

∫ ∞

−∞
f2(t)b(t−t0)e

i(α−α2)t dt
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and the right hand side is f2Gb (t0,α − α2) as required.
8. This follows example 7.9 in the text. The function fb(t) = f (t)b(t) and is given

by

fb(t) =
⎧⎨
⎩

(1 + t) sin(ωt) −1 ⇒ t < 0
(1 − t) sin(ωt) 0 ⇒ t < 1
0 otherwise

.

Thus

fG(1,α) =
∫ ∞

−∞
fb(t)e

−iαt dt =
∫ 0

−1
(1+ t) sin(ωt)e−iαt dt +

∫ 1

0
(1− t) sin(ωt)e−iαt dt

The two integrals on the right are combined by letting β = −t in the first to give

fG(1,α) = 2i
∫ 1

0
(1 − t) sin(ωt) sin(αt)dt.

This yields to integration by parts and the answer is:

fG(1,α) = 2i

[
1 − cos{(ω − α)t}

(ω − α)2
− 1 − cos{(ω + α)t}

(ω + α)2

]

Exercises 8.7

1. In all of these examples, the location of the pole is obvious, and the residue is
best found by use of the formula

lim
z≥a

(z − a) f (z)

where z = a is the location of the simple pole. In these answers, the location of
the pole is followed after the semicolon by its residue. Where there is more than
one pole, the answers are sequential, poles first followed by the corresponding
residues.

(i) z = −1; 1,

(ii) z = 1; −1,

(iii) z = 1, 3i,−3i; 1

2
,
5

12
(3 − i),

5

12
(3 + i),

(iv) z = 0,−2,−1; 3

2
,−5

2
, 1,

(v) z = 0; 1,

(vi) z = nω (−1)nnω, n integer,

(vii) z = nω; (−1)nenω, n integer.
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2. As in the first example, the location of the poles is straightforward. The methods
vary. For parts (i), (ii) and (iii) the formula for finding the residue at a pole of
order n is best, viz.

1

(n − 1)! limz≥a

d(n−1)

dz(n−1)
{(z − a)n f (z)}.

For part (iv) expanding both numerator and denominator as power series and
picking out the coefficient of 1/z works best. The answers are as follows

(i) z = 1, order 2res = 4

(ii) z = i, order 2res = −1

4
i

z = −i, order 2res = 1

4
i

(iii) z = 0, order 3res = −1

2
(iv) z = 0, order 2res = 1.

3. (i) Using the residue theorem, the integral is 2ωi times the sum of the residues
of the integrand at the three poles. The three residues are:

1

3
(1 − i) (at z = 1),

4

15
(−2 − i) (at z = −2),

1

5
(1 + 3i) (at z = −i).

The sum of these times 2ωi gives the result

−2ω

15
.

(ii) This time the residue (calculated easily using the formula) is 6, whence the
integral is 12ωi .
(iii) For this integral we use a semi circular contour on the upper half plane. By
the estimation lemma, the integral around the curved portion tends to zero as
the radius gets very large. Also the integral from −∞ to 0 along the real axis is
equal to the integral from 0 to ∞ since the integrand is even. Thus we have

2
∫ ∞

0

1

x6 + 1
dx = 2ωi(sum of residues at z = eωi/6, i, e5ωi/6)

from which we get the answer
ω

3
.

(iv) This integral is evaluated using the same contour, and similar arguments tell
us that
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2
∫ ∞

0

cos(2ωx)

x4 + x2 + 1
dx = 2ωi(sum of residues at z = eωi/3, e2ωi/3).

(Note that the complex function considered is
e2ωi z

z4 + z2 + 1
. Note also that the

poles of the integrand are those of z6 − 1 but excluding z = ±1.) The answer
is, after a little algebra

− ω

2
→
3

e−ω/
→
3.

4. Problems (i) and (ii) are done by using the function

f (z) = (ln(z))2

z4 + 1
.

Integrated around the indented semi circular contour of Fig. 8.8, there are poles
at z = (±1 ± i)/

→
2. Only those at (±1 + i)/

→
2 or z = eωi/4, e3ωi/4 are

inside the contour. Evaluating ∫
C ≤

f (z)dz

along all the parts of the contour gives the following contributions: those along
the curved bits eventually contribute nothing (the denominator gets very large in
absolutemagnitude as the radius of the big semi-circle≥ ∞, the integral around
the small circle ≥ 0 as its radius r ≥ 0 since r(ln r)2 ≥ 0.) The contributions
along the real axis are ∫ ∞

0

(ln x)2

x4 + 1
dx

along the positive real axis where z = x and

∫ ∞

0

(ln x + iω)2

x4 + 1
dx

along the negative real axis where z = xeiω so ln z = ln x + iω. The residue
theorem thus gives

2
∫ ∞

0

(ln x)2

x4 + 1
dx + 2ωi

∫ ∞

0

ln x

x4 + 1
dx − ω2

∫ ∞

0

1

x4 + 1
dx (A.3)

= 2ωi{sum of residues}.

The residue at z = a is given by

(ln a)2

4a3

http://dx.doi.org/10.1007/978-1-4471-6395-4_8
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using the formula for the residue of a simple pole. These sum to

− ω2

64
→
2
(8 − 10i).

Equating real and imaginary parts of Eq. (A.3) gives the answers

(i)
∫ ∞

0

(ln x)2

x4 + 1
dx = 3ω3

→
2

64
; (ii)

∫ ∞

0

ln x

x4 + 1
dx = −ω2

16

→
2

once the result ∫ ∞

0

1

x4 + 1
dx = ω

2
→
2

from Example 8.1(ii) is used.
(iii) The third integral also uses the indented semi circular contour of Fig. 8.8.
The contributions from the large and small semi circles are ultimately zero. There
is a pole at z = i which has residue eωσi/2/2i and the straight parts contribute

∫ ∞

0

xσ

1 + x2
dx

(positive real axis), and

−
∫ 0

∞
xσeσiω

1 + x2
dx

(negative real axis). Putting the contributions together yields

∫ ∞

0

xσ

1 + x2
dx + eσiω

∫ ∞

0

xσ

1 + x2
dx = ωeσiω/2

from which ∫ ∞

0

xσ

1 + x2
dx = ω

2 cos(σω
2 )

.

5. These inverse Laplace transforms are all evaluated form first principles using
the Bromwich contour, although it is possible to deduce some of them by using
previously derived results, for example if we assume that

L−1
{

1→
s

}
= 1→

ωt

then we can carry on using the first shift theorem and convolution. However,
we choose to use the Bromwich contour. The first two parts follow closely
Example 8.5, though none of the branch points in these problems is in the expo-

http://dx.doi.org/10.1007/978-1-4471-6395-4_8
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nential. The principle is the same.
(i) This Bromwich contour has a cut along the negative real axis from −1 to
−∞. It is shown as Fig.A.6. Hence

L−1
{

1

s
→

s + 1

}
= 1

2ωi

∫
Br

est

s
→

s + 1
ds.

The integral is thus split into the following parts

∫
C ≤

=
∫

Br
+
∫

�

+
∫

AB
+
∫

δ
+
∫

C D
= 2ωi(residue at s = 0)

where C ≤ is the whole contour, � is the outer curved part, AB is the straight
portion above the cut (�s > 0) δ is the small circle surrounding the branch point
s = −1 and C D is the straight portion below the cut (�s < 0). The residue is
one, the curved parts of the contour contribute nothing in the limit. The important
contributions come from the integrals along AB and C D. On AB we can put
s = xeiω − 1. This leads to the integral

∫
AB

=
∫ 0

∞
et (−x−1)

(−x − 1)i
→

x
dx

On C D we can put s = xe−iω − 1. The integrals do not cancel because of the
square root in the denominator (the reason the cut is there of course!). They in
fact exactly reinforce. So the integral is

∫
C D

=
∫ ∞

0

et (−x−1)

(−x − 1)(−i
→

x)
dx .

Hence ∫
C

=
∫

Br
−2
∫ 0

∞
e−t e−xt

i(x + 1)
→

x
dx = 2ωi.

Using the integral

∫ ∞

0

e−xt

(x + 1)
→

x
dx = −ωet [−1 + erf

→
t]

gives the answer that

L−1
{

1

s
→

s + 1

}
= 1

2ωi

∫
Br

est

s
→

s + 1
ds = erf

→
t .

(ii) This secondpart is tackled in a similarway.The contour is identical (Fig.A.6).
The important step is the correct parametrisation of the straight parts of the
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Fig. A.6 The cut Bromwich
contour

contour just above and just below the branch cut. This time the two integrals
along the cut are ∫

AB
= −

∫ 0

∞
e(−x−1)t

1 + i
→

x
dx

and ∫
C D

= −
∫ ∞

0

e(−x−1)t

1 − i
→

x
dx,

and the integrals combine to give

L−1
{

1

1 + →
s + 1

}
= 1

2ωi

∫ ∞

0

e−t e−xt2i
→

x

1 + x
dx

which gives the result
e−t

→
ωt

− erfc
→

t .

(iii) This inverse can be obtained from part (ii) by using the first shift theorem
(Theorem 1.2). The result is

L−1
{

1

1 + →
s

}
= 1→

ωt
− eterfc

→
t .

(iv) Finally this last part can be deduced by using the formula

1→
s + 1

− 1→
s − 1

= −2
1

s − 1
.
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The answer is

L−1
{

1→
s − 1

}
= 1→

ωt
+ et (1 + erf

→
t).

6. This problem is best tackled by use of power series, especially so as there is
no problem manipulating them as these exponential and related functions have
series that are uniformly convergent for all finite values of t and s, excluding
s = 0. The power series for the error function (obtained by integrating the
exponential series term by term) yields:

erf

(
1

s

)
= 2→

ω

∞∑
n=0

(−1)n

s2n+1(2n + 1)n! .

Taking the inverse Laplace transform using linearity and standard forms gives

π(t) = 2→
ω

∞∑
n=0

(−1)n

(2n + 1)n!
t2n

(2n)! .

After some tidying up, this implies that

π(
→

t) = 2→
ω

∞∑
n=0

(−1)ntn

(2n + 1)!n! .

Taking the Laplace transform of this series term by term gives

L
{
π(

→
t)
}

= 2→
ωs

∞∑
n=0

(−1)n (1/
→

s)2n+1

(2n + 1)!

which is

L
{
π(

→
t)
}

= 2→
ωs

sin

(
1→
s

)

as required.
7. This problem is tackled in a very similar way to the previous one. We simply

integrate the series term by term and have to recognise

∞∑
k=0

(−1)k(2k)!
(k!)2

( x

s

)2k

as the binomial series for (
1 + x2

s2

)−1/2

.
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Again, the series are uniformly convergent except for s = ±i x which must be
excluded alongside s = 0.

8. The integrand
cosh(x

→
s)

s cosh(
→

s)

has a singularity at the origin and wherever
→

s is an odd multiple of ω/2. The
presence of the square roots leads one to expect branch points, but in fact there
are only simple poles. There are however infinitely many of them at locations

s = −
(

n + 1

2

)2

ω2

and at the origin. The (uncut) Bromwich contour can thus be used; all the sin-
gularities are certainly to the left of the line s = σ in Fig. 8.9. The inverse is
thus

1

2ωi

∫
Br

est cosh(x
→

s)

s cosh(
→

s)
ds = sum of residues.

The residue at s = 0 is straightforwardly

lim
s≥0

(s − 0)

{
est cosh(x

→
s)

s cosh(
→

s)

}
= 1.

The residue at the other poles is also calculated using the formula, but the cal-
culation is messier, and the result is

4(−1)n

ω(2n − 1)
e−(n−1/2)2ω2t cos

(
n − 1

2

)
ωx .

Thus we have

L−1
{
cosh(x

→
s)

s cosh(
→

s)

}
= 1 + 4

ω

∞∑
n=1

(−1)n

2n − 1
e−(n− 1

2 )2ω2t cos

(
n − 1

2

)
ωx .

9. The Bromwich contour for the function

e−s
1
3

has a cut from the branch point at the origin.We can thus use the contour depicted
in Fig. 8.10. As the origin has been excluded the integrand

est−s
1
3

http://dx.doi.org/10.1007/978-1-4471-6395-4_8
http://dx.doi.org/10.1007/978-1-4471-6395-4_8
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has no singularities in the contour, so by Cauchy’s theorem the integral around
C ≤ is zero. As is usual, the two parts of the integral that are curved give zero
contribution as the outer radius of � gets larger and larger, and inner radius of
the circle δ gets smaller. This is because cos θ < 0 on the left of the imaginary
axis which means that the exponent in the integrand is negative on �, also on δ
the ds contributes a zero as the radius of the circle δ decreases. The remaining
contributions are ∫

AB
= −

∫ 0

∞
e−xt−x

1
3 eiω/3

dx

and ∫
C D

= −
∫ ∞

0
e−xt−x

1
3 e−iω/3

dx .

These combine to give

∫
AB

+
∫

C D
= −

∫ ∞

0
e−xt− 1

2 x
1
3 sin

(
x

1
3
→
3

2

)
dx .

Substituting x = u3 gives the result

L−1{e−s
1
3 } = 1

2ωi

∫
Br

est−s
1
3 ds = 3

ω

∫ ∞

0
u2e−u3t− 1

2 u sin

(
u
→
3

2

)
du.

10. Using Laplace transforms in t solving in the usual way gives the solution

π̄(x, s) = 1

s2
e−x

→
s2−1.

The singularity of π̄(x, s) with the largest real part is at s = 1. The others are at
s = −1, 0. Expanding π̄(x, s) about s = 1 gives

π̄(x, s) = 1 − x
→
2(s − 1)

1
2 + · · · .

In terms of Theorem 8.2 this means that k = 1/2 and a0 = −x
→
2. Hence the

leading term in the asymptotic expansion for π(x, t) for large t is

− 1

ω
et sin

(
1

2
ω

)(
−x

→
2
�(3/2)

t3/2

)

whence

π(x, t) ≡ xet

→
2ωt3

as required.
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Table of Laplace Transforms

In this table, t is a real variable, s is a complex variable and a and b are real constants.
In a few entries, the real variable x also appears.

f(s)(= ∫∞
0 e−st F(t)dt) F(t)

1

s
1

1

sn
, n = 1, 2, . . .

tn−1

(n − 1)! ,
1

sx
, x > 0,

t x−1

�(x)
,

1

s − a
eat

s

s2 + a2 cos(at)
a

s2 + a2 sin(at)
s

s2 − a2 cosh(at)
a

s2 − a2 sinh(at)

1

(s − a)(s − b)
a √= b

ebt − eat

b − a
s

(s − a)(s − b)
a √= b

bebt − aeat

b − a
1

(s2 + a2)2

sin(at) − at cos(at)

2a3

s

(s2 + a2)2

t sin(at)

2a
s2

(s2 + a2)2

sin(at) + at cos(at)

2a
s3

(s2 + a2)2
cos(at) − 1

2
at sin(at)

P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 293
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f(s)(= ∫∞
0 e−st F(t)dt) F(t)

1→
s + a + →

s + b

e−bt − e−at

2(b − a)
→

ωt3
e−a/s

→
s

cos 2
→

at→
ωt

e−a/s

s
→

s

sin 2
→

at→
ωa

e−a/s

sn+1

(
t

a

)n/2

Jn(2
→

at)

1 φ(t)
sn φ(n)(t)
e−as

s
H(t − a)

e−a
→

s

s
erfc

(
a

2
→

t

)

e−a
→

s a

2
→

ωt3
e−a2/4t

1

s
→

s + a

erf
→

at→
a

1→
s(s − a)

eaterf
→

at→
a

1→
s − a + b

eat
{

1→
ωt

− beb2terfc(b
→

t)

}

1→
s2 + a2

J0(at)

tan−1(a/s)
sin(at)

t
sinh(sx)

s sinh(sa)

x

a
+ 2

ω

∞∑
n=1

(−1)n

n
sin
(nωx

a

)
cos

(
nωt

a

)

sinh(sx)

s cosh(sa)

4

ω

∞∑
n=1

(−1)n

2n − 1
sin

(
(2n − 1)ωx

2a

)
sin

(
(2n − 1)ωt

2a

)

cosh(sx)

s cosh(sa)
1 + 4

ω

∞∑
n=1

(−1)n

2n − 1
cos

(
(2n − 1)ωx

2a

)
cos

(
(2n − 1)ωt

2a

)

cosh(sx)

s sinh(sa)

t

a
+ 2

ω

∞∑
n=1

(−1)n

n
cos
(nωx

a

)
sin

(
nωt

a

)

sinh(sx)

s2 cosh(sa)
x + 8a

ω2

∞∑
n=1

(−1)n

(2n − 1)2
cos

(
(2n − 1)ωx

2a

)
sin

(
(2n − 1)ωt

2a

)

sinh(x
→

s)

s sinh(a
→

s)

x

a
+ 2

ω

∞∑
n=1

(−1)n

n
e−n2ω2t/a2 sin

(nωx

a

)

cosh(x
→

s)

s cosh(a
→

s)
1 + 4

ω

∞∑
n=1

(−1)n

2n − 1
e−(2n−1)2ω2t/4a2 cos

(
(2n − 1)ωx

2a

)

sinh(x
→

s)

s2 sinh(a
→

s)

xt

a
+ 2a2

ω3

∞∑
n=1

(−1)n

n3 (1 − e−n2ω2t/a2 ) sin
(nωx

a

)

In the last four entries δ = 0.5772156 . . . is the Euler-Mascheroni constant. The
next four Laplace transforms are of periodic functions that are given diagrammati-
cally. The two column format is abandoned.
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f(s)(= ∫∞
0 e−st F(t)dt) F(t)

1

as2
tanh

(as

2

)
F(t) =

{
t/a 0 ⇒ t ⇒ a
2 − t/a a < t ⇒ 2a

F(t) = F(t + 2a)

1

s
tanh

(as

2

)
F(t) =

{
1 0 ⇒ t ⇒ a
−1 a < t ⇒ 2a

F(t) = F(t + 2a)

e−a/s

sn+1

(
t

a

)n/2

Jn(2
→

at)

ωa

a2 + s2
coth

(as

2

) ∣∣∣∣sin
(

ωt

a

)∣∣∣∣
ωa

(a2s2 + ω2)(1 − e−as)
F(t) =

{
sin( ωt

a ) 0 ⇒ t ⇒ a
0 a < t ⇒ 2a

}
F(t) = F(t + 2a)

1

as2
− e−as

s(1 − e−as)
F(t) = t/a, 0 ⇒ t ⇒ a F(t) = F(t + a)

ln

(
s + a

s + b

)
e−bt − e−at

t

ln

(
s2 + a2

s2 + b2

)
2(cos bt − cos at)

t
1

s3 + a3

eat/2

3a2

{→
3 sin

→
3at

2
− cos

→
3at

2
+ e−3at/2

}

s

s3 + a3

eat/2

3a2

{→
3 sin

→
3at

2
+ cos

→
3at

2
− e−3at/2

}

s2

s3 + a3

1

3

(
e−at + 2eat/2 cos

→
3at

2

)

1

s3 − a3

e−at/2

3a2

{
e3at/2 − →

3 sin

→
3at

2
− cos

→
3at

2

}

s

s3 − a3

e−at/2

3a2

{→
3 sin

→
3at

2
− cos

→
3at

2
+ e3at/2

}

s2

s3 − a3

1

3

(
eat + 2e−at/2 cos

→
3at

2

)

1

s4 + 4a4

1

4a3 (sin at cosh at − cos at sinh at)

s

s4 + 4a4

sin at sinh at

2a2

−δ + ln s

s
ln t

ω2

6s
+ (δ + ln s)2

s
ln2 t

ln s

s
−(ln t + δ)

ln2 s

s
−(ln t + δ)2 − 1

6
ω2
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Fig. B.1 The Laplace trans-
form of the above function,
the rectified sine wave
F(t) = | sin ( ωt

a

) | is given by

f (s) = ωa

a2s2 + ω2 coth
(as

2

)

Fig. B.2 The Laplace trans-
form of the above square
wave function is given by

f (s) = 1

s
tanh

(
1

2
as

)

Fig. B.3 The Laplace trans-
form of the above saw-
tooth function is given by

f (s) = 1

as2
− e−as

s(1 − e−as)
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Fig. B.4 The Laplace transform of the above saw-tooth function is given by f (s) =
1

as2
tanh

(
1

2
as

)

Fig. B.5 The Laplace transform of the above top hat function is given by f (s) = e−as

sh
(1 − e−sh).

Thus the Haar wavelet that corresponds to a = 0, h = 1 has the Laplace transform
1 − e−s

s



Appendix C
Linear Spaces

C.1 Linear Algebra

In this appendix, some fundamental concepts of linear algebra are given. The proofs
are largely omitted; students are directed to textbooks on linear algebra for these. For
this subject, we need to be precise in terms of the basic mathematical notions and
notations we use. Therefore we uncharacteristically employ a formal mathematical
style of prose. It is essential to be rigorous with the basic mathematics, but it is often
the case that an over formal treatment can obscure rather than enlighten. That is why
this material appears in an appendix rather than in the main body of the text.

A set of objects (called the elements of the set) is written as a sequence of (usually)
lower case letters in between braces:-

A = {a1, a2, a3, . . . , an}.

In discussing Fourier series, sets have infinitely many elements, so there is a row of
dots after an too. The symbol ∈ read as “belongs to” should be familiar to most. So
s ∈ S means that s is a member of the set S. Sometimes the alternative notation

S = {x | f (x)}

is used. The vertical line is read as “such that” so that f (x) describes some property
that x possess in order that s ∈ S. An example might be

S = {x |x ∈ R, |x | ⇒ 2}

so S is the set of real numbers that lie between −2 and +2.
The following notation is standard but is reiterated here for reference:

(a, b) denotes the open interval {x |a < x < b},
[a, b] denotes the closed interval {x |a ⇒ x ⇒ b},
[a, b) is the set {x |a ⇒ x < b},
and (a, b] is the set {x |a < x ⇒ b}.
P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 299
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6395-4,
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The last two are described as half closed or half open intervals and are reasonably
obvious extensions of the first two definitions. In Fourier series, ∞ is often involved
so the following intervals occur:-

(a,∞) = {x |a < x} [a,∞) = {x |a ⇒ x}
(−∞, a) = {x |x < a} (−∞, a] = {x |x ⇒ a}.

These are all obvious extensions.Where appropriate, use is alsomadeof the following
standard sets

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers

Z+ is the set of positive integers including zero: {0, 1, 2, 3, . . .}
R = {x |x is a real number} = (−∞,∞).

Sometimes (but very rarely) we might use the set of fractions or rationals Q:

Q =
{m

n
| m and n are integers , n √= 0

}
.

R+ is the set of positive real numbers

R+ = {x | x ∈ R, x ∼ 0}.

Finally the set of complex numbers C is defined by

C = {z = x + iy | x, y ∈ R, i = →−1}.

The standard notation

x = �{z}, the real part of z

y = �{z}, the imaginary part of z

has already been met in Chap.1.
Hopefully, all of this is familiar to most of you. We will need these to define the

particular normed spaces within which Fourier series operate. This we now proceed
to do. A vector space V is an algebraic structure that consists of elements (called
vectors) and two operations (called addition + and multiplication ×). The following
gives a list of properties obeyed by vectors a,b,c and scalars ξ,ϕ ∈ F where F is a
field (usually R or C).

1. a + b is also a vector (closure under addition).
2. (a + b) + c = a + (b + c) (associativity under addition).
3. There exists a zero vector denoted by 0 such that 0 + a = a + 0 = a ∀a ∈ V

(additive identity).

http://dx.doi.org/10.1007/978-1-4471-6395-4_1
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4. For every vector a ∈ V there is a vector −a (called “minus a” such that
a + (−a) = 0.

5. a + b = b + a for every a, b ∈ V (additive commutativity).
6. ξa ∈ V for every ξ ∈ F, a ∈ V (scalar multiplicity).
7. ξ(a + b) = ξa + ξb for every ξ ∈ F, a, b ∈ V (first distributive law).
8. (ξ + ϕ)a = ξa + ϕa for every ξ,ϕ ∈ F, a ∈ V (second distributive law).
9. For the unit scalar 1 of the field F , and every a ∈ V 1 · a = a (multiplicative

identity).

The set V whose elements obey the above nine properties over a field F is called
a vector space over F . The name linear space is also used in place of vector space
and is useful as the name “vector” conjures up mechanics to many and gives a
false impression in the present context. In the study of Fourier series, vectors are
in fact functions. The name linear space emphasises the linearity property which is
confirmed by the following definition and properties.

Definition C.1 If a1, a2, . . . , an ∈ V where V is a linear space over a field F and
if there exist scalars ξ1,ξ2, . . . ,ξn ∈ F such that

b = ξ1a1 + ξ2a2 + · · · + ξnan

(called a linear combination of the vectors a1, a2, . . . , an) then the collection of all
such b which are a linear combination of the vectors a1, a2, . . . , an is called the span
of a1, a2, . . . , an denoted by span {a1, a2, . . . , an}.

If this definition seems innocent, then the following one which depends on it is not.
It is one of the most crucial properties possibly in the whole of mathematics.

Definition C.2 (linear independence) If V is a linear (vector) space, the vectors
a1, a2, . . . , an ∈ V are said to be linearly independent if the equation

ξ1a1 + ξ2a2 + · · · + ξnan = 0

implies that all of the scalars are zero, i.e.

ξ1 = ξ2 = . . . = ξn = 0, (ξ1,ξ2, . . . ,ξn ∈ F).

Otherwise, ξ1,ξ2, . . . ,ξn are said to be linearly dependent.

Again, it is hoped that this is not a new concept. However, here is an example. Most
texts take examples from geometry, true vectors indeed. This is not appropriate here
so instead this example is algebraic.

Example C.1 Is the set S = {1, x, 2 + x, x2} with F = R linearly independent?

Solution The most general combination of 1, x, 2 + x, x2 is

y = ξ1 + ξ2x + ξ3(2 + x) + ξ4x2
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where x is a variable that can take any real value.
Now, y = 0 for all x does not imply ξ1 = ξ2 = ξ3 = ξ4 = 0, for if we

choose ξ1 + 2ξ2 = 0,ξ2 + ξ3 = 0 and ξ4 = 0 then y = 0. The combination
ξ1 = 1,ξ3 = − 1

2 ,ξ2 = 1
2 ,ξ4 = 0 will do. The set is therefore not linearly

independent.
On the other hand, the set {1, x, x2} is most definitely linearly independent as

ξ1 + ξ2x + ξ3x2 = 0 for all x ≈ ξ1 = ξ2 = ξ3 = 0.

It is possible to find many independent sets. One could choose {x, sin x, ln x} for
example: however sets like this are not very useful as they do not lead to any appli-
cations. The set {1, x, x2} spans all quadratic functions. Here is another definition
that we hope is familiar.

Definition C.3 A finite set of vectors a1, a2, . . . , an is said to be a basis for the
linear space V if the set of vectors a1, a2, . . . , an is linearly independent and V =
span{a1, a2, . . . , an} The natural number n is called the dimension of V and we
write n = dim(V ).

Example C.2 Let [a, b] (with a < b) denote the finite closed interval as already
defined. Let f be a continuous real valued function whose value at the point x of
[a, b] is f (x). Let C[a, b] denote the set of all such functions. Now, if we define
addition and scalar multiplication in the natural way, i.e. f1 + f2 is simply the value
of f1(x)+ f2(x) and similarly ξ f is the value of ξ f (x), then it is clear that C[a, b]
is a real vector space. In this case, it is clear that the set x, x2, x3, . . . , xn are all
members of C[a, b] for arbitrarily large n. It is therefore not possible for C[a, b] to
be finite dimensional.

Perhaps it is now a little clearer as to why the set {1, x, x2} is useful as this is a basis
for all quadratics, whereas {x, sin x, ln x} does not form a basis for any well known
space. Of course, there is usually an infinite choice of basis for any particular linear
space. For the quadratic functions the sets {1−x, 1+x, x2} or {1, 1−x2, 1+2x +x2}
will do just aswell. That we have these choices of bases is useful andwill be exploited
later.

Most books on elementary linear algebra are content to stop at this point and
consolidate the above definitions through examples and exercises. However, we need
a few more definitions and properties in order to meet the requirements of a Fourier
series.

Definition C.4 Let V be a real or complex linear space. (That is the field F over
which the space is defined is eitherR orC.) An inner product is an operation between
two elements of V which results in a scalar. This scalar is denoted by 〈a1, a2〉 and
has the following properties:-

1. For each a1 ∈ V, 〈a1, a1〉 is a non-negative real number, i.e.

〈a1, a1〉 ∼ 0.



Appendix C: Linear Spaces 303

2. For each a1 ∈ V, 〈a1, a1〉 = 0 if and only if a1 = 0.

3. For each a1, a2, a3 ∈ V and ξ1,ξ2 ∈ F

〈ξ1a1 + ξ2a2, a3〉 = ξ1〈a1, a3〉 + ξ2〈a2, a3〉.

4. For each a1, a2 ∈ V, 〈a1, a2〉 = 〈a2, a1〉
where the overbar in the last property denotes the complex conjugate. If F = R

ξ1,ξ2 are real, and Property 4 becomes obvious.

No doubt, students who are familiar with the geometry of vectors will be able to
identify the inner product 〈a1, a2〉 with a1.a2 the scalar product of the two vectors
a1 and a2. This is one useful example, but it is by no means essential to the present
text where most of the inner products take the form of integrals.

Inner products provide a rich source of properties that would be out of place to
dwell on or prove here. For example:

〈0, a〉 = 0 ∀ a ∈ V

and
〈ξa1,ξa2〉 = |ξ|2〈a1, a2〉.

Instead, we introduce two examples of inner product spaces.

1. If Cn is the vector space V , i.e. a typical element of V has the form a =
(a1, a2, . . . , an) where ar = xr + iyr , xr , yr ∈ R. The inner product 〈a, b〉
is defined by

〈a, b〉 = a1b1 + a2b2 + · · · + anbn,

the overbar denoting complex conjugate.
2. Nearer to our applications of inner products is the choice V = C[a, b] the linear

space of all continuous functions f defined on the closed interval [a, b].With the
usual summation of functions and multiplication by scalars this can be verified
to be a vector space over the field of complex numbers C

n . Given a pair of
continuous functions f, g we can define their inner product by

〈 f, g〉 =
∫ b

a
f (x)g(x)dx .

It is left to the reader to verify that this is indeed an inner product space satisfying
the correct properties in Definition C.4.

It is quite typical for linear spaces involving functions to be infinite dimensional.
In fact it is very unusual for it to be otherwise.

What has been done so far is to define a linear space and an inner product on
that space. It is nearly always true that we can define what is called a “norm” on
a linear space. The norm is independent of the inner product in theory, but there is
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almost always a connection in practice. The norm is a generalisation of the notion
of distance. If the linear space is simply two or three dimensional vectors, then the
norm can indeed be distance. It is however, even in this case possible to define others.
Here is the general definition of norm.

Definition C.5 Let V be a linear space. A norm on V is a function from V to R+
(non-negative real numbers), denoted by being placed between two vertical lines
|| · || which satisfies the following four criteria:-

1. For each a1 ∈ V, ||a1|| ∼ 0.
2. ||a1|| = 0 if and only if a1 = 0.
3. For each a1 ∈ V and ξ ∈ C

||ξa1|| = |ξ|||a1||.

4. For every a1, a2 ∈ V
||a1 + a2|| ⇒ ||a1|| + ||a2||.

(4 is the triangle inequality.)

For the vector space comprising the elements a = (a1, a2, . . . , an) where ar =
xr + iyr , xr , yr ∈ R, i.e. Cn met previously, the obvious norm is

||a|| = [|a1|2 + |a2|2 + |a3|2 + · · · + |an|2]1/2
= [〈a, a〉]1/2.

It is true in general that we can always define the norm || · || of a linear space equipped
with an inner product 〈., .〉 to be such that

||a|| = [〈a, a〉]1/2.

This norm is used in the next example. A linear space equipped with an inner product
is called an inner product space. The norm induced by the inner product, sometimes
called the natural norm for the function space C[a, b], is

|| f || =
[∫ b

a
| f |2dx

]1/2
.

For applications to Fourier series we are able to make || f || = 1 and we adjust ele-
ments of V , i.e. C[a, b] so that this is achieved. This process is called normalisation.
Linear spaces with special norms and other properties are the directions in which
this subject now naturally moves. The interested reader is directed towards books on
functional analysis.

We now establish an important inequality called the Cauchy–Schwarz inequality.
We state it in the form of a theorem and prove it.
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Theorem C.1 (Cauchy–Schwarz) Let V be a linear space with inner product 〈., .〉,
then for each a, b ∈ V we have:

|〈a, b〉|2 ⇒ ||a|| · ||b||.

Proof If 〈a, b〉 = 0 then the result is self evident. We therefore assume that 〈a, b〉 =
ξ √= 0, ξ may of course be complex. We start with the inequality

||a − σξb||2 ∼ 0

where σ is a real number. Now,

||a − σξb||2 = 〈a − σξb, a − σξb〉.

We use the properties of the inner product to expand the right hand side as follows:-

〈a − σξb, a − σξb〉 = 〈a, a〉 − σ〈ξb, a〉 − σ〈a,ξb〉 + σ2|ξ|2〈b, b〉 ∼ 0

so ||a||2 − σξ〈b, a〉 − σξ̄〈a, b〉 + σ2|ξ|2||b||2 ∼ 0

i.e. ||a||2 − σξξ̄ − σξ̄ξ + σ2|ξ|2||b||2 ∼ 0

so ||a||2 − 2σ|ξ|2 + σ2|ξ|2||b||2 ∼ 0.

This last expression is a quadratic in the real parameter σ, and it has to be positive
for all values of σ. The condition for the quadratic

aσ2 + bσ + c

to be non-negative is that b2 ⇒ 4ac and a > 0. With

a = |ξ|2||b||2, b = −2|ξ|2, c = ||a||2

the inequality b2 ⇒ 4ac is

4|ξ|4 ⇒ 4|ξ|2||a||2||b||2
or |ξ|2 ⇒ ||a||||b||

and since ξ = 〈a, b〉 the result follows. �

The following is an example that typifies the process of proving that something
is a norm.

Example C.3 Prove that ||a|| = →〈a.a〉 ∈ V is indeed a norm for the vector space
V with inner product 〈, 〉.
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Proof The proof comprises showing that
→〈a, a〉 satisfies the four properties of a

norm.

1. ||a|| ∼ 0 follows immediately from the definition of square roots.
2. If a = 0 ⇐≈ →〈a, a〉 = 0.
3.

||ξa|| = √〈ξa,ξa〉 =√
ξξ̄〈a, a〉 =

√
|ξ|2〈a, a〉 =

|ξ|√〈a, a〉 = |ξ|||a||.

4. This fourth property is the only one that takes a little effort to prove. Consider
||a + b||2. This is equal to

〈a + b, a + b〉 = 〈a, a〉 + 〈b, a〉 + 〈a, b〉 + 〈b, b〉
= ||a||2 + 〈a, b〉 + 〈a, b〉 + ||b||2.

The expression 〈a, b〉 + 〈a, b〉, being the sum of a number and its complex
conjugate, is real. In fact

|〈a, b〉 + 〈a, b〉| = |2�〈a, b〉|
⇒ 2|〈a, b〉|
⇒ 2||a|| · ||b||

using the Cauchy–Schwarz inequality. Thus

||a + b||2 = ||a||2 + 〈a, b〉 + 〈a, b〉 + ||b||2
⇒ ||a||2 + 2||a||||b|| + ||b||2
= (||a + b||)2.

Hence ||a+b|| ⇒ ||a||+||b||which establishes the triangle inequality, Property 4.
Hence ||a|| = →〈a, a〉 is a norm for V . �

An important property associated with linear spaces is orthogonality. It is a direct
analogy/generalisation of the geometric result a.b = 0, a √= 0, b √= 0 if a and b
represent directions that are at right angles (i.e. are orthogonal) to each other. This
idea leads to the following pair of definitions.

Definition C.6 Let V be an inner product space, and let a, b ∈ V . If 〈a, b〉 = 0
then vectors a and b are said to be orthogonal.



Appendix C: Linear Spaces 307

Definition C.7 Let V be a linear space, and let {a1, a2, . . . , an} be a sequence of
vectors, ar ∈ V, ar √= 0, r = 1, 2, . . . , n, and let 〈ai , a j 〉 = 0, i √= j, 0 ⇒
i, j ⇒ n. Then {a1, a2, . . . , an} is called an orthogonal set of vectors.

Further to these definitions, a vector a ∈ V for which ||a|| = 1 is called a unit
vector and if an orthogonal set of vectors consists of all unit vectors, the set is called
orthonormal.

It is also possible to let n ≥ ∞ and obtain an orthogonal set for an infinite
dimensional inner product space. We make use of this later in this chapter, but for
now let us look at an example.

Example C.4 Determine an orthonormal set of vectors for the linear space that
consists of all real linear functions:

{a + bx : a, b ∈ R 0 ⇒ x ⇒ 1}

using as inner product

〈 f, g〉 =
∫ 1

0
f gdx .

Solution The set {1, x} forms a basis, but it is not orthogonal. Let a + bx and c + dx
be two vectors. In order to be orthogonal we must have

〈a + bx, c + dx〉 =
∫ 1

0
(a + bx)(c + dx)dx = 0.

Performing the elementary integration gives the following condition on the constants
a, b, c, and d

ac + 1

2
(bc + ad) + 1

3
bd = 0.

In order to be orthonormal too we also need

||a + bx || = 1 and ||c + dx || = 1

and these give, additionally,

a2 + b2 = 1, c2 + d2 = 1.

There are four unknowns and three equations here, so we can make a convenient
choice. Let us set

a = −b = 1→
2

which gives
1→
2
(1 − x)
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as one vector. The first equation now gives 3c = −d from which

c = 1→
10

, d = − 3→
10

.

Hence the set {(1 − x)/
→
10, (1 − 3x)/

→
10} is a possible orthonormal one.

Of course there are infinitely many possible orthonormal sets, the above was one
simple choice. The next definition follows naturally.

Definition C.8 In an inner product space, an orthonormal set that is also a basis is
called an orthonormal basis.

This next example involves trigonometry which at last gets us close to discussing
Fourier series.

Example C.5 Show that {sin(x), cos(x)} is an orthogonal basis for the inner prod-
uct space V = {a sin(x) + b cos(x) | a, b ∈ R, 0 ⇒ x ⇒ ω} using as inner product

〈 f, g〉 =
∫ 1

0
f gdx, f, g ∈ V

and determine an orthonormal basis.

Solution V is two dimensional and the set {sin(x), cos(x)} is obviously a basis. We
merely need to check orthogonality. First of all,

〈sin(x), cos(x)〉 =
∫ ω

0
sin(x) cos(x)dx = 1

2

∫ ω

0
sin(2x)dx

=
[
−1

4
cos(2x)

]ω

0

= 0.

Hence orthogonality is established. Also,

〈sin(x), sin(x)〉 =
∫ ω

0
sin2(x)dx = ω

2

and

〈cos(x), cos(x)〉 =
∫ ω

0
cos2(x)dx = ω

2
.

Therefore {√
2

ω
sin(x),

√
2

ω
cos(x)

}

is an orthonormal basis.
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These two examples are reasonably simple, but for linear spaces of higher dimen-
sions it is by no means obvious how to generate an orthonormal basis. One way
of formally generating an orthonormal basis from an arbitrary basis is to use the
Gramm–Schmidt orthonormalisation process, and this is given later in this appendix

There are some further points that need to be aired before we get to discussing
Fourier series proper. These concern the properties of bases, especially regarding
linear spaces of infinite dimension. If the basis {a1, a2, . . . , an} spans the linear
space V , then any vector v ∈ V can be expressed as a linear combination of the basis
vectors in the form

v =
n∑

r=1

ξr ar .

This result follows from the linear independence of the basis vectors, and that they
span V .

If the basis is orthonormal, then a typical coefficient, ξk can be determined by
taking the inner product of the vector v with the corresponding basis vector ak as
follows

〈v, ak〉 =
n∑

r=1

ξr 〈ar , ak〉

=
n∑

r=1

ξrφkr

= ak

where φkr is the Kronecker delta:-

φkr =
{
1 r = k
0 r √= k

.

If we try to generalise this to the case n = ∞ there are some difficulties. They
are not insurmountable, but neither are they trivial. One extra need always arises
when the case n = ∞ is considered and that is convergence. It is this that prevents
the generalisation from being straightforward. The notion of completeness is also
important. It has the following definition:

Definition C.9 Let {e1, e2, . . . . . .} be an infinite orthonormal system in an inner
product space V . The system is complete in V if only the zero vector(u = 0) satisfies
the equation

〈u, en〉 = 0, n ∈ N

A complete inner product space whose basis has infinitely many elements is called a
Hilbert Space, the properties of which take us beyond the scope of this short appendix
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on linear algebra. The next step would be to move on to Bessel’s Inequality which
is stated but not proved in Chap. 4.

Here are a few more definitions that help when we have to deal with series of
vectors rather than series of scalars

Definition C.10 Let w1, w2, . . . , wn, . . . be an infinite sequence of vectors in a
normed linear space (e.g. an inner product space) W . We say that the sequence
converges in norm to the vector w ∈ W if

lim
n≥∞ ||w − wn|| = 0.

This means that for each ε > 0, there exists n > n(ε) such that ||w−wn|| < ε,∀n >

n(ε).

Definition C.11 Let a1, a2, . . . , an, . . . be an infinite sequence of vectors in the
normed linear space V . We say that the series

wn =
n∑

r=1

ξr ar

converges in norm to the vector w if ||w − wn|| ≥ 0 as n ≥ ∞. We then write

w =
∞∑

r=1

ξr ar .

There is logic in this definition as ||wn − w|| measures the distance between the
vectors w and wn and if this gets smaller there is a sense in which w converges to
wn .

Definition C.12 If {e1, e2, . . . , en . . .} is an infinite sequence of orthonormal vectors
in a linear space V we say that the system is closed in V if, for every a ∈ V we have

lim
n≥∞ ||a −

n∑
r=1

〈a, er 〉er || = 0.

There are many propositions that follow from these definitions, but for now we give
one more definition that is useful in the context of Fourier series.

Definition C.13 If {e1, e2, . . . , en . . .} is an infinite sequence of orthonormal vectors
in a linear space V of infinite dimension with an inner product, then we say that the
system is complete in V if only the zero vector a = 0 satisfies the equation

〈a, en〉 = 0, n ∈ N.

There are many more general results and theorems on linear spaces that are useful
to call on from within the study of Fourier series. However, in a book such as this a

http://dx.doi.org/10.1007/978-1-4471-6395-4_4
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judgement has to be made as when to stop the theory. Enough theory of linear spaces
has now been covered to enable Fourier series to be put in proper context. The reader
whowishes to knowmore about the puremathematics of particular spaces can enable
their thirst to be quenched bymany excellent texts on special spaces. (Banach Spaces
and Sobolev Spaces both have a special place in applied mathematics, so inputting
these names in the appropriate search engine should get results.)

C.2 Gramm–Schmidt Orthonormalisation Process

Even in an applied text such as this, it is important that we know formally how
to construct an orthonormal set of basis vectors from a given basis. The Gramm–
Schmidt process gives an infallible method of doing this. We state this process in the
form of a theorem and prove it.

Theorem C.2 Every finite dimensional inner product space has a basis consisting
of orthonormal vectors.

Proof Let {v1, v2, v3, . . . , vn} be a basis for the inner product space V . A second
equally valid basis can be constructed from this basis as follows

u1 = v1

u2 = v2 − (v2, u1)

||u1||2 u1

u3 = v3 − (v3, u2)

||u2||2 u2 − (v3, u1)

||u1||2 u1

...

un = vn − (vn, un−1)

||un−1||2 un−1 − · · · − (vn, u1)

||u1||2 u1

where uk √= 0 for all k = 1, 2, . . . , n. If this has not been seen before, it may seem a
cumbersome and rather odd construction; however, for every member of the new set
{u1, u2, u3, . . . , un} the terms consist of the corresponding member of the start basis
{v1, v2, v3, . . . , vn} fromwhich has been subtracted a series of terms. The coefficient
of u j in ui j < i is the inner product of vi with respect to u j divided by the length
of u j . The proof that the set {u1, u2, u3, . . . , un} is orthogonal follows the standard
induction method. It is so straightforward that it is left for the reader to complete.
We now need two further steps. First, we show that {u1, u2, u3, . . . , un} is a linearly
independent set. Consider the linear combination

ξ1u1 + ξ2u2 + · · · + ξnun = 0

and take the inner product of this with the vector uk to give the equation
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n∑
j=1

ξ j (u j , uk) = 0

from which we must have
ξk(uk, uk) = 0

so that ξk = 0 for all k. This establishes linear independence. Now the set
{w1, w2, w3, . . . , wn} where

wk = uk

||uk ||
is at the same time, linearly independent, orthogonal and each element is of unit
length. It is therefore the required orthonormal set of basis vectors for the inner
product space. The proof is therefore complete. �
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C
Cantilever, 134
Capacitor, 62
Cauchy’s integral formulae, 211
Cauchy’s theorem, 214

Cauchy–Riemann equations, 210, 214
Cauchy–Schwarz inequality, 304
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Centre, 201
Chain rule, 124
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simple, 213

Contour integral, 213, 217
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Convergence, uniform, 84
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E
Electrical circuits, 58
Electrical engineering, 146, 169
Electrocardiogram, 176
Energy spectral density, 168
Energy spectrum, 167
Error function, 47, 230
Essential singularity, 212, 223
Even functions, 97
Exponential order, 4, 142

F
Faltung, 41
Filtering property, 30
Final value theorem, 24, 26
First shift theorem, 6, 7
Forcing function, 66
Fourier cosine transform, 153, 155

inverse, 153
Fourier integral, 200
Fourier series, 126, 145, 147, 163, 191, 308,

311
basis functions, 106
complex form, 99, 148
cosine series, 105
differentiation of, 107
Fourier transform from, 149
general period, 95
integration of, 108
orthonormality, 88
piecewise continuity, 107
sine series, 105
truncated, 198

Fourier sine transform, 153, 155
inverse, 153

Fourier transform, 145, 161, 175, 187, 188,
192, 193, 200, 205

convolution theorem, 194
discrete, 173
fast, 145
finite, 160, 161, 163, 164
higher dimensional, 159
inverse, 197
Laplace transform from, 146
shift theorems, 151

Fourier transform pair, 151
Fourier-Bessel series, 117
Fourier-Legendre series, 117
Fredholm’s integral equation, 77
Frequency, 146, 160
Frequency space, 167, 169
Fundamental theorem of calculus, 16

G
Gamma function, 232
Gaussian function, 200, 205
Generalised functions, 31, 60, 146, 171
Gibbs phenomenon, 102, 198
Green’s theorem, 214

H
Haar function, 178, 180, 193
Haar wavelet, 178, 185, 200, 207, 297
Half-range series, 103
Harmonic function, 127, 210
Heat conduction equation, 127, 131, 138, 142
Heaviside step function, 178
Heaviside’s unit step function, 10, 13, 18, 23,

71
Heisenberg box, 203
Heisenberg’s uncertainty principle, 203
Hilbert space, 309

I
Ill-posed, 133
Improper integral, 2
Impulse function, 26, 146
Inductor, 62
Infinite dimension, 303, 309
Initial value problem, 53, 127
Initial value theorem, 24, 26
Inner product, 83, 303
Inner product space, 303, 304
Integral equations, 76
Intervals, 300
Inverse Laplace transform, 20, 22, 43, 133,

217, 225
complex inversion formula, 147
partial fractions, 21

Inversion formula, 225
Isolated singularity, 212

K
Keyhole contour, 220
Kirchhoff’s Laws, 63
Kronecker delta, 115, 177, 184, 309

L
Laplace transform, 1

and convolution, 40
complex inversion formula, 209
definition, 2
derivative property, 14
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limiting theorems, 23
of an integral, 16
of the Dirac φ function, 30
periodic functions, 33
second order odes, 57
two sided, 13

Laplace transform, linearity of, 5
Laplace’s equation, 127, 161, 162
Laurent series, 211, 216
Lebesgue dominated convergence theorem,

155, 157
Legendre’s equation, 116
Line integral, 212
Linear, 52
Linear independence, 301
Linear space, 156, 176, 301
Linearity, 20

for inverse Laplace transform, 20
for Laplace transforms, 5

Low pass filter, 205

M
Mass spring damper systems, 58
Mother wavelet, 178, 184, 187

N
Norm, 201, 303, 305
Null function, 3
Nyquist frequency, 195

O
Odd functions, 97
Order, 52
Order of a pole, 212
Ordinary differential equation, 51
Ordinary differential equations

order, 52
Orthogonal, 306
Orthogonal functions, 115
Orthonormal, 89, 116, 307
Oscillating systems, 71

P
Parseval’s formula, 171
Parseval’s theorem, 113, 167
Parseval’s theorem , generalised118
Partial derivative, 123, 124
Partial differential equation, 233

classification, 125
elliptic, 125

hyperbolic, 125
parabolic, 126
similarity solution, 133

Partial differential equations, 159
hyperbolic, 133

Partial fractions, 21
Periodic function, 34, 147
Phase, 146
Phase space, 160
Piecewise continuity, 39
Piecewise continuous, 25
Piecewise continuous functions, 9
Plancherel’s identity, 167
Poisson’s equation, 138
Poisson’s sum, 193
Pole, 212
Power series, 25, 210
Power spectral density, 175
Power spectrum, 152
Principal part, 211

R
Radius of convergence, 211
Rayleigh’s theorem, 167
Rectified sine wave, 35
Regular functions, 210
Residue, 211, 216, 222, 227, 234
Residue calculus, 217
Residue theorem, 139, 216, 218, 223, 233
Resistor, 62
Riemann integral, 87, 151
Riemann Lebesgue lemma, 158, 192
Riemann sheets, 220
Riemann–Lebesgue lemma, 84, 171
Root Mean Square, 201

S
Second shift theorem, 18, 19, 23
Separation constant, 128
Separation of variables, 128
Set theory, 299
Shah function, 166
Short-Time Fourier transform, 204
Signal processing, 146, 163, 195
Simple arc, 213
Simple harmonic motion, 155
Simple pole, 212
Simultaneous odes, 66
Sinc function, 197
Sine integral function, 17
Singularity, 212, 222
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Son wavelet, 178
Special functions, 117
Spectral density, 167, 175
Spectrum, 146
Standard sets, 300
Steady state, 61
Step function, 13
Suffix derivative notation, 123

T
Table of Laplace transforms, 293
Taylor series, 210
Time invariant systems, 58
Time series, 13, 169, 188, 193
Time series analysis, 145
Top hat function, 28, 151, 156, 164
Transfer function, 56
Transient, 61
Trigonometric functions, 8

U
Uniformly convergent, 25

V
Vector space, 2, 301, 305
Volterra integral equation, 78

W
Watson’s lemma, 138
Wave equation, 133
Wavelet, 181, 191, 205
Wavelet transform, 206
Wavelets, 145, 188, 195
Weight function, 118, 119
White noise, 167
Window, 170, 181, 205
Windowing, 163
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