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1. INTRODUCTION 

1.1 Macro- and microapproach 

Geomechanics represents that field of mechanics that deals with geomaterials. 
Geomaterials form a class of materials which are the result of geological activity. 
They consist of soils, weak rocks and rocks. Geomechanics is one of the 
branches of the mechanics of particulate materials, i.e., of materials consisting 
of solid, mutually contacting particles (Feda, 1982a). Since particulate materials 
are solid materials, geomechanics is a discipline of the mechanics of solids. 

Mechanics of solids may, according to the method of investigation, be divided 
into macromechanics, mesomechanics and micromechanics. The macromecha-
nical approach deals with materials as they appear to the human senses. The 
macromechanical approach is, therefore, more often called the phenomenologi-
cal approach and macromechanics, alternatively, phenomenological mechanics. 
Materials are assumed to be continuous, the common definitions of stress and 
strain may be applied and a high degree of mathematization of the whole 
discipline results (continuum mechanics). The physical nature of the materials, 
i.e., their structure and the changes thereof in a deformation process, are not 
subjected to a close scrutiny. The material seems to represent a "black box" and 
Qnly the relations of its input (e.g., load) and output (e.g., strain) data are 
investigated. The effect of structure in these relations will be modelled indirectly, 
by means of internal variables, internal time (endochronic theory), etc. These 
models are, as a rule, not physically (structurally) interpreted. Mechanical 
rheological models fall into this category. 

Micromechanics endeavours to deduce the phenomenological (engineering) 
behaviour of materials from the physical ideas about their structure at the 
atomic or molecular levels. 

Mesomechanics makes use of the mathematical procedures of macromecha-
nics applied to a material composed of continuous parts with different proper-
ties. 

The phenomenological approach of mechanics of solids, to respect its practi-
cal significance also referred to as the engineering approach, is commonly used 
also in geomechanics. The latter is, however, an interdisciplinary field of mecha-
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Introduction 

nies. To treat geomaterials consisting of solid (grains, particles, and clusters 
thereof, etc.), liquid (pore water) and gaseous (pore air) phases, one has to add 
to the laws of mechanics of solids some of those of mechanics of fluids. The 
second interdisciplinary relation of geomechanics is directed towards geology. 
Geomaterials being geologic materials, it is necessary when studying their 
origin, composition, natural occurrence, etc., to take the geological, and espe-
cially engineering geological knowledge of different processes, etc. into account. 
The necessity of extending his knowledge in these directions makes the task of 
a geomechanician rather hard. 

The phenomenological approach of geomechanics cannot, however, be identi-
fied with that of continuum mechanics, based on a naive immediate perception 
of a continuous material with the naked eye. Individual grains of sand or clods 
of clay may be distinguished with the naked eye, and in the case of rocks, one 
cannot refrain from the temptation to account for the kinematic and static 
behaviour of individual blocks. The lack of a pure phenomenological approach 
in geomechanics was proved just at the time of the laying down of the foundati-
ons of soil mechanics by Terzaghi. His famous principle of effective stress is, in 
a sense, a mesomechanical principle. 

The micromechanical approach also found its way into geomechanics many 
years ago. The study of thixotropy, or, generally, of the behaviour of a clay-water 
system and the application of the rate-process theory to explain the strength and 
time-dependent deformation of geomaterials are examples. If both approaches, 
meso- and micromechanical, are called structural approaches (since they reflect 
the material's structure) then it is clear enough that the study of the mechanical 
behaviour of geomaterials from the structural standpoint is an absolute necessi-
ty. Only such an approach, i.e., the structural interpretation of the mechanical 
behaviour of geomaterials, may be expected to give a proper understanding of 
any constitutive relation of whatever geomaterial, such as is necessary for its 
correct application. In addition, it is able to form a reasonable basis for the inter-
and extrapolation of any mechanical property (especially in the direction of the 
time and stress axes). In such a frame, the effect of different state parameters 
(e.g., of stress, water content, porosity, temperature, etc.) may be properly 
appreciated. Such an approach should, therefore, represent the background of 
the rheological theories, time-behaviour analyses, etc. of geomaterials and, 
consequently, it is applied in the present book. 

In addition, there is one more fundamental reason for a micromechanical or, 
generally, structural approach. Deducing the phenomenological behaviour from 
the interaction of the material elements enables the boundary conditions to be 
omitted in the first instance and only accounted for later on. The phenomenolo-
gical approach is, on the contrary, bounded by the routine experiments to fulfil 
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Aim of rheological investigations 

the laws of model similarity. Although a structural approach imposes more 
effort upon any investigator than the phenomenological one, it is the only way 
how to find, e.g., a creep-resistant alloy, i.e., to determine how to invade the 
structure of a material with the aim of changing it to the selected quality. 

1.2 Aim of rheological investigations 

Any material subjected to a constant load will, in the course of time, deform. 
The magnitude of the time-dependent deformation differs according to the 
strength of the material structure. With geomaterials, the structure is usually 
defined by the dimensions, composition and fabric of the structural units (grains, 
clusters of particles, etc.), by their geometrical arrangement, by the magnitude 
and shape of pores, by the state of internal stress and by the nature of the bonds 
in and between the structural units. Compared with other materials, the structu-
re of geomaterials is weak and, at the common engineering loads, undergoes 
significant transformations. 

Rheology investigates the relations between stress, strain and time, i.e., it 
strives to formulate so-called rheological constitutive relations for different 
materials, geomaterials incluted Constitutive relations reflect the fundamental 
features of the mechanical behaviour of the material in question. In addition to 
the constitutive relations, rheology deals with the applications of these relations 
to the solution of different problems, defined by the boundary or initial conditi-
ons. They usually take the form of deformation problems (e.g., long-term 
settlement of a structure), less often of questions of stability (e.g., long-term 
stability of a slope). 

Rheology was constituted as a scientific discipline at the beginning of this 
century

2
. Soil rheology may be subdivided into two branches. The first one, 

better termed "rheology of clayey pastes and suspensions", treats the rheology 
of concentrated clayey suspensions for industrial purpose (ceramics, borehole 
slurry casing, etc.). Its foundation is connected with Bingham's (1916) research 
work. It will not be dealt with in the following text. 

1
 With a good deal of oversimplification (the behaviour is time independent if the period of 
observation is considerably shorter than the relaxation time of a Maxwell body), one may deduce 
for soils that they deform time-independently if tested for a period shorter than one day. 
2
 Interest in rheology has been roused by experiments with silk by Weber and with glass fibers by 
Kohlrausch (in 1835 and 1863, respectively). Their results were theoretically generalized by Boltz-
mann in 1874. The first differential equation for the description of rheological behaviour was 
proposed in 1867 by Maxwell; the rheology of gelatine was investigated in 1889 by Schwedoff; 
Philips experimented with metallic wires in 1905 and Andrade in 1910; rheological models were 
proposed by Poynting and Thompson in 1902 (for references see Feda, 1972). 
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The second branch concerns investigations on the rheological behaviour of 
soils (cohesionless soil included, contrary to the first direction of research where 
it is omitted) and other geomaterials. In contrast to the first technologically 
oriented direction of research, it accounts for the specific properties of particula-
te materials (e.g., the principle of effective stress) and deals with both disturbed 
and undisturbed geomaterials under different states of stress. The founder of this 
line of research was Terzaghi (1923) (his theory of primary consolidation) 
followed, about ten years later, by Buisman (1936), Cox (1936) and Gray (1936) 
(the long-term settlement, the so-called secondary consolidation). 

In the realm of geomaterials, there are three principal rheological tasks. The 
development of deformation in the course of time is called creep. The opposite 
of the phenomenon of creep is relaxation, i.e., a drop, in the course of time, in 
the stress in a material strained to a particular value, and maintained constant 
with time. Creep and relaxation thus form two aspects of the same phenomenon 
—the time-dependent softening (sometimes called recovery) of the structure of 
the material, and the course of relaxation may, therefore, be deduced from that 
of creep. Further, because creep is easier to investigate experimentally and is 
more important from the engineering standpoint, the author prefers to concen-
trate on this topic. The third subject in any treatment of the rheology of 
geomaterials is their long-term strength, which may differ considerably from 
that of the short-term strength. Creep and relaxation have to be taken into 
account when investigating deformation problems, i.e., when selecting the servi-
ce load (the group of the deformation limit states), the long-term strength is 
relevant to the solution of stability problems (the group of the bearing-capacity 
or stability limit states). 

Both creep and relaxation represent special forms of the stress-strain-time 
relations of geomaterials. The fundamental condition that makes it possible to 
define creep, i.e., the load on the tested material does not change with time, has 
to be formulated more accurately in geomechanics. In this field, creep is the 
time-dependent progress of deformation under constant effective stress. It is 
therefore not possible to include under the term "creep" those processes occur-
ring at constant total, but variable effective stresses, e.g., primary (hydrodyna-
mic) consolidation. However, during primary consolidation, which is a time-
dependent process of squeezing the pore-water out of the sample, viscous 
deformations of the soil skeleton may take place. 

Creep is technically important. The creep component of settlement, called 
secondary consolidation (compression), may represent tens of per cent of the 
total settlement. Owing to creep of heterogeneous geomaterials, a stress redistri-
bution occurs with a subsequent drop in the value of the safety factor. Creep 
deformations of slopes reach measurable magnitudes capable of significantly 
increasing the earth pressures on retaining walls if situated in their toe. In design 
of permanent earth anchors, creep should be taken into account, similarly to the 
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Creep and the accuracy of its prediction 

case of earth dams provided with rigid sealing shields, etc. It is important to find 
that even during the loading of a soft foundation soil beneath embankments 
undrained conditions do not take place (Sekiguchi et al., 1988). 

The research into the laws governing creep strives for a prognosis of the 
time-dependent deformation under different boundary conditions. Such an 
effort, if successful, will profoundly affect the economy of the design of foundati-
ons, of the various constructional elements interacting with the foundation soil, 
and of earth structures. 

1.3 Creep and the accuracy of its prediction 

The theoretical significance of creep resides in the fact that the two-dimensio-
nal (stress-strain) picture of the mechanical behaviour of geomaterials is supple-
mented by the third dimension, time. This generalization itself represents pro-
gress in understanding the laws governing the mechanical behaviour of soils and 
other particulate materials. In addition, it affords deeper insight into and an 
explanation of some aspects of "two-dimensionality", i.e., of time-independent 
behaviour which is always an idealization (sometimes rather excessive) of real 
behaviour. 

Current theories of creep can be classified into simple and complex ones. The 
degree of their complexity depends on the nature of the material in question, i.e., 
on its structure. For simpler, sufficiently strong structures, the use of plain, 
relatively exact linear viscoelastic theory is usually accepted (e.g., concrete, 
Hansen, 1960). The elastic-viscoelastic analogy is its consequence, termed by 
different authors the correspondence principle, the Volterra-Rabotnov principle 
or the Volterra principle. Elastic and viscous bodies are, as a matter of fact, ideal 
materials. Their behaviour under an applied stress depends only on that applied 
stress and not on the previous history of stress or deformation in time, i.e., they 
are materials without memory. 

If mechanisms involving irreversible structural changes are more intensively 
engaged in the process of creep, such a theoretical generalization will gradually 
become questionable. The irreversible structural changes will become reflected 
in the memory of such materials. Materials with a completely defined, describab-
le structure (such as polymers and metals - see e.g. Dorn, 1961) are, in such 
a case, more compatible with a theoretical generalization than, e.g., soils. 

The description of soil structure at the structural level (micromechanical 
description) only is practically impossible — it has to be supplemented by 
analysis of structural effects at the phenomenological level. 

The reasonable level of the theoretical (mathematical) generalization may be 
judged for different materials according to the reliability of the reproduction of 
the creep. The creep component of deformation of identical specimens (e.g., 
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metallic specimens from the same melt) differs by up to 20 % (Rabotnov, 1966; 
similar deviations may be detected with an aluminium alloy at about 300 °C 
- Shanley, 1961). Values of the same order are indicated for identical specimens 
of concrete (Hansen, 1960) and for reconstituted soil specimens of the same 
composition (Kharkhuta and Ievlev, 1961). Still greater dispersion can be expec-
ted with undisturbed rock and soil samples, owing to the natural nonhomogene-
ity of their structure. Materials with more reliably defined and reproducible 
structures (e.g., polymers) exhibit a considerably reduced dispersion of creep 
deformation (Ilavsky, 1979, indicates, e.g., ± 5 % ) . The mechanics of polymers 
has, therefore, enabled the development of the most complex creep theory, 
namely the Green-Rivlin theory of multiple integrals. 

The experimental accuracy of confirming any theoretical prediction plays an 
important role, as shown above, affecting the nature of the creep theory applied. 
Since it results from the material structure, one may conclude, following Rabot-
nov (1966), that there is no unique theory suitable for all materials. As with the 
theory of plasticity, the individuality of the theories reflects the structural 
individuality of different materials. 

Different structural effects emerging during the creep of different materials 
support such a concept. The relationship between the strength of materials and 
the logarithm of time can be, e.g., of a bilinear nature. This is explained by 
Rabotnov (1966) by a dual mechanism of the failure of structure: either by grain 
break or by a fracture spreading along the grain boundaries. Kharkhuta and 
Ievlev (1961) report a similar bilinear dependence of both deformation and 
relaxation stress on the logarithm of time for remoulded recompacted soils. The 
break occurs between 0.5 and 10 hours after the beginning of the test

3
. 

The most significant and general among these phenomena is, perhaps, the 
wavy course (undulation, rippling) of the creep deformation-time curve, caused 
by structural effects. The author terms this the structural perturbation of the 
creep curve and it is interpreted by him as a display of periodical structural 
collapse (break-down), followed by a temporary structural hardening. It may, 
therefore, be termed a step-wise adaptation of the material structure to the time 
of loading (or, with time-independent behaviour, to the increase of load, e.g., the 
yield-point type of deformation with no creep component - e.g., Lubahn, 1961 
- Fig. 1.1). Such structural perturbations can be found not only with soils and 
rocks (in the text that follows there are ample examples of such behaviour) but 
also with many other materials. They were probably first described by Andrade 
(1910) who called them "copper quakes" (he experimented with a copper wire 
- see Fig. 1.2) and, subsequently, also by other investigators, e.g. by Conrad 
(1961a) and Lubahn (1961)- Fig. 1.3a,b (the effect of the periodic grain bounda-
ry migration). 

3
 For explanation see Section 9.3. 
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Creep and the accuracy of its prediction 

Due to all these structural effects, and particularly due to structural perturbati-
ons, the theoretical prediction may, for materials with more complex structure, 
delimit only the interval into which the values of the creep deformation will, with 
the chosen degree of confidence, fall. The structurally conditioned deviations 
from the mean creep deformation amount to values comparable with the disper-
sion of the average creep deformation of identical samples. One should, therefo-
re, not be surprised if a prediction of experimental creep deformation with an 
accuracy of 30 % is not discarded as a serious disagreement between the theory 
and the experiment (Badalyan and Meschyan, 1975; Hansen, 1960, accepts an 
average difference between the prediction and experiment—for concrete samples 
—of 1 2 % to 16%) . 

lbs 1 

ζ 
< 
er 
π-
ιο 

Fig. 1.1. Yield-point type of deformation (steel, constant temperature - Lubahn, 1961). 

ζ 
ο 

COPPER QUAKE 
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Fig. 1.2. "Copper quakes" of a copper wire (constant load and temperature - Andrade, 1910) - the 
record of a clockwork-driven drum. 
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Introduction 

1.4 Limitations of rheological theories 

In rheology, one may often meet with sophisticated constitutive relations 
based, in the last instance, on the results of unconfined compression and tension 
tests. This may perhaps be advocated in the case of the rheology of metals, 
plastics or polymers where, in practice, uniaxial states of stress prevail. With 
geomaterials, a triaxial state of stress is, as a rule, typical. This enables different 
stress- and strain-paths in the principal stress space to take place. The mechani-
cal behaviour of geomaterials is path-sensitive. Any extrapolation beyond the 
experimental range is, therefore, rather delicate and, consequently, any generali-
zation has to be made with the outmost care. 

a ) b ) 

Fig. 1.3. Structural perturbation of the creep curve of a polycrystalline metal: a - Conrad (1961a); 
b - Lubahn (1961). 

The above circumstances, i.e., the existence of structural perturbations of 
creep curves and the path-sensitivity or, generally, the liability of the structure 
of geomaterials to the effect of many state-variables, explain why, in the case of 
creep, theory does not hold such a dominant position as with ideal (elastic, 
viscous) materials. The predictive capacity of the theory of creep is comparable 
with the model or empirical procedures. The so-called empirical procedures may, 
however, represent a way of identifying not only the usual constitutive (material) 
parameters, but also the constitutive (material) functions, e.g., the creep kernel. 

In spite of these facts, a theory as to how the fields of stress and strain develop 
in time is necessary, even if its results may often be interpreted only qualitatively. 
Creep belongs to the rare processes always demanding an extrapolation, since 
the duration of experiments cannot ever correspond with in-situ conditions. 
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Only a theory appropriate for different types of geomaterials (soils and rocks) 
may make possible the extrapolation beyond the experimental limits. To impro-
ve its predictive capacity, an inverse (back- ) analysis should be applied. Compa-
ring the measured and calculated behaviour of a soil (rock) massif one may 
critically estimate the suitability of the constitutive relations used and of their 
parameters. If confronted with the input values, one may find the reasons for 
eventual deviations and be able to propose such measures that will result in 
a more reliable prognosis in the future. 

Even such a complex and demanding approach—mutual comparisons of the 
theory, laboratory and field experiments (real structures included)—does not 
mean a definite answer to the question of rheological behaviour of geomaterials. 
Any inverse analysis is marked by the deficiencies of the theory used. Data on 
the physical behaviour of geomaterials received are, therefore, burdened by some 
imperfections, stemming from the theory. They may, therefore, be called only 
pragmatic data, reliable on condition that they are combined with the respective 
calculation method. The progress in the rheological theories can be measured by 
decreasing the gap between the physical and pragmatically deduced parameters. 

Considerable progress in this direction has been made by the outstanding 
monographs on rheology by Suklje (1969), Vyalov (1978) and Keedwell (1984), 
as well as by two international conferences on rheology in soil mechanics 
(Grenoble, 1964; Coventry, 1988). 

1.5 Conception of the book 

The above treatment of the problems involved with creep and rheological 
theories generally underlines the necessity of gathering further data on the creep 
of soils and rocks of different kinds. This book represents such an endeavour. It 
is the revised, enlarged and updated English version of the Czech original (Feda, 
1983). 

The Introduction attempts to incorporate creep of geomaterials within the 
broader context of mechanics of solids and presents the basic definitions of creep 
and stress relaxation. After a short glimpse of the history of rheology, the 
accuracy of creep prediction is dealt with. The need for combined experimental 
and theoretical endeavour is stressed, but this need not suffice, owing to the 
structural effects, to yield a prognosis of an accuracy comparable with other 
materials (metals, polymers), since the structure of geomaterials, whose reflecti-
on is the constitutive behaviour, is more complex and less accessible to quantita-
tive analysis. 

Section 2 offers some examples of the rheological behaviour of geomaterials. 
They document the necessity of respecting, in the deformation analysis of many 
structures, the time-dependent component of displacement and thus provide the 
arguments for research into the creep laws of geomaterials. 
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Introduction 

Sections 3 and 4 represent the necessary background for the physical under-
standing of the mechanical behaviour of geomaterials, which is conceived as an 
external expression of the internal, structural, changes. For the author's analysis 
of creep, where the accent is laid on the physical explanation of a specific 
behaviour, both Sections are of the utmost importance. Different components of 
structure are illustrated by examples of the experimentally recorded behaviour 
of different geomaterials. The structure of the soils tested by the author, with the 
results amply quoted in the following Sections, is also dealt with. 

Materials of the same composition but of different state behave differently. 
Structural changes accompanying the variations of the state of geomaterials are 
described. They are both physical, direct (porosity, water content, temperature) 
and mechanical, indirect (stress, strain, time), as exemplified in Section 4. The 
pivotal term "physically isomorphous behaviour" is introduced. 

In Section 5, the basic features of time-independent (elastic, plastic) and 
time-dependent (viscous) behaviour are discussed, mostly in classical termino-
logy. A distinction between reversible and elastic deformations is introduced and 
different conceptions of the plasticity of geomaterials are commented on. The 
author does not conceal that his preference is for those which are better physical-
ly based. 

The obstacles encountered in creep experimentation are treated in Section 6, 
particulary with respect to the author's experimental program. The importance 
of respecting or eliminating parasitic effects is emphasized, the ring-shear appa-
ratus used by the author is described and an evaluation of experimental results 
is referred to. In the following Sections, the author endeavours to confront his 
experimental results with some current conceptions of soil rheology, subjecting 
them thereby to critical examination and, if necessary, showing their limitations. 

Section 7 presents the macrorheological (phenomenological) approach which 
is employed by the author when evaluating his experimental results into a form 
that is fitted for engineering use (creep kernel in the hereditary theory of creep). 

Section 8 is dominated by a critical review of rate-process theory. Based on his 
experiments, the author points out its advantages and limitations and a possible 
generalization suggested by his experimental results. 

Three important rheological problems, those of secondary compression, long-
term strength and creep, are primarily treated in Sections 9, 10 and 11. The 
author uses his experiments as a background in finally deducing simple pheno-
menological relations for volumetric and distortional creep in the materials 
tested. These relations can be used to define the dynamic (time-dependent) 
plastic potential surface and can be exploited in the numerical analysis of 
boundary-value problems. 

Section 12, written by Marta Dolezalovâ
4
, deals with the numerical solution 

(FEM) of rheological problems using, among others, the above constitutive 
relations as applied to the design of a dam and an underground tunnel. 
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Conception of the book 

The concluding Section 13 briefly considers the generality of the proposed 
constitutive relations and suggests that their use is at present more practical than 
a preferable but still not sufficiently mature approach based on dynamic plastic 
(viscoplastic) potential surfaces. 

Sincere thanks are due to Ing. Jan Bohâc for his many useful and constructive 
comments on the manuscript. 

It is a pleasure to thank reviewers Professor Ing. Pavol Peter, DrSc , and 
Professor Ing. Jifi Simek, DrSc , for their valuable comments and the editors 
Marie Moravcovâ and Ing. Ivanka Nagyovâ for the careful attention paid to 
editing the book. 

In the following text, a positive sign is used for pressure and compression 
deformation, following the common convention of geomechanics. 

4
 Ing. Marta Dolezalovä, CSc , Institute of Geotechnics of the Czechoslovak Academy of Sciences, 
V Holesovickâch 41, 182 09 Praha 8, Czechoslovakia. 
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LIST OF SYMBOLS 

General: 

prime ' effective stress, effective parameter 
dot " rate (time derivative) 
bar" mean value 
e subscript or superscript indicating element; 

base of natural logarithm (e = 2.718 ...) 
ln,log natural and decadic logarithm 
V volume 
x, y, ζ cartesian coordinates 
0 superscript or subscript indicating initial 

state 
2D, 3D two-dimensional, three-dimensional 
Δ increment 

fat printing of symbols denotes tensor, vector or matrix (Section 

subscript: 

a axial 
c consolidation 
d distortional 
f failure; final 
/ / = 1, 2, 3, ... η 
ij tensor 
max, min maximum, minimum 
η normal 
oct octahedral 
r residual; radial 
t tangential; time-dependent 
u undrained 
ν volumetric 
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List of symbols 

rheological term (Section 12) 
elastic 
plastic, irreversible 
reversible 
transpose 

superscript: 

c 
e 

Ρ 
r 
Τ 

Special: 

a, b, A, a various parameters, coefficients, constants (with different sub-
scripts: a, a0> al9 a2, adl, a d 2, flvl, a v 2, a b d, a b v, αά9 αν; è, 6 0, bl9 b2, 
bd9 bv, èbd, obv; A, A0)9 nodal displacement vector 

ä, b, c, 3,J, g parameters of the creep law 
Ac contact area 
A matrix relating nodal displacements to the shape function para-

meters 
number of bonds per cm

2 

matrix relating strains to nodal displacements 
cohesion; Dirac's parameter 
undrained strength 
coefficient of consolidation 
creep kernel 
creep compliance 
matrix of incremental creep components 
Hooke's law parameters 
compression index 
secondary compression index 
effective grain size 
grain size (average, maximum) 
diameter 
creep kernel in a general form 
elasticity matrix 
void ratio 
principal strain ratios 
Young's modulus 
deformation modulus of block and cylindrical samples 
deformation modulus (general, initial, unloading) 
deformation moduli (maximum, minimum) 
oedometric deformation modulus 
Maxwell's and Hooke's deformation moduli 
loading test moduli (loading, reloading); secant deformation 
moduli 

Β 
Β 
c, cf 

CJt), Ct(t) 
C(t) 

c 
Cj, C2 

Ces 

^50' ^max 

D 

D 
e 

ijkl 

eT e3 

E
deP

 E
p>

 E
un\ 

F Ρ 
max' min 

^oed 

Ey E2 
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List of symbols 

fy(
a
ij) yield function (locus) 

F contact force 
Ftj functional of stress 
Ftf Ft normal and shear components of the contact force 
F nodal force vector 
g{o^ plastic potential 
G shear modulus 
Gjj functional of strain 
h Planck's constant 
hd drainage path 
//, Ht Hookean material (/ = 1,2...); height of the dam 
HQ Heaviside's function 
HQ hardening parameter 
Hv H2 creep rate ratio 
/ octahedral shear stress level, relative shear stress level 
/ n inclination 
IA index of colloidal activity 
/p index of plasticity 
Iy Iγ 1° invariants of the stress (strain) tensors 
re JE τε 

Ja

2, J° invariants of the stress (strain) deviators 
τε τε J

 2>
 J
 3 

k Boltzmann's constant 
kc compression parameter 
fccal coefficient of the calculation confidence 
k( deformation parameter 
^ s spring constant 
Κ, K( Kelvin's material (/ = 1,2,...); stress increment ratio 
Κ stiffness matrix 
K0 at rest stress ratio 
L matrix relating strains to parameters a 
m exponent 
rad, m v creep parameters 
Μ, M- Maxwell's material (/ = 1, 2, ...) 

« d, « v, creep kernel exponents 
nl9 n2 

n0 initial porosity 
Ν Newtonian material 
7VZ number of grains (/ = 1,2,...) 
OCR overconsolidation ratio 
Pkt> Pks number of contacts (i = 1,2,...), number of sliding contacts 
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List of symbols 

Pu total number of contacts 

Λ Pi, Pe 
potentional energy of deformation (total, internal, external) 

p B Boltzmann's probability 
P matrix of incremental creep components; equivalent nodal for-

ce vector 
r
>

 r
0.05 coefficient of correlation (total, at the 0.05 probability level) 

R, R universal gas constant; residual force vector 
s standard deviation; tensile stress level 
s
i torsional (shear) displacement 

shear force acting on each flow unit 
S entropy 

sr 
degree of saturation 

t, tt time; thickness of triangle 
?
f time to failure (total rupture life) 

?
fc remaining creep failure life 

'r' 'c('c;')> 'rs time of relaxation; retardation 

*01> *02 "· different time periods 

*1 unit time 
absolute temperature 
time factor 

τ transformation matrix 
u pore-water pressure; displacement in cartesian coordinates 
u shape function vector 

U0; U activation energy; experimental activation energy 

uc 
average degree of consolidation 

V coefficient of variability; displacement in cartesian coordinates 
V Saint-Venant's material 
w water content 
WL, Wp liquid and plastic limit 
w, Wc, WT deformation work (total, isotropic consolidation, triaxial com-

pression) 
Ζ standard rheological model 
oc, ttf, a time at which stress changes; shape function parameters; prin-

cipal angle; shape function parameter vector 
distortional and volumetric creep structural parameters 

β, β, inclination of the contact plane; principal angle 

7, 71 shear strain; principal angle 

u r» y w 
unit weight of dry soil, solid particles, water 
calculated and measured distortional creep strain rate 

δ Dirac's function; horizontal displacement of the energy curve; 
modulus ratio at failure 

ô
iJ Kronecker's delta 
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List of symbols 

ε normal strain 
εί strain of the rheological element (i = 1, 2, ...) 
ε

Η
 Hertzian reversible strain 

e v c, ä vm calculated and measured volumetric creep strain rate 
ε strain tensor, strain vector (Section 12) 
εχ > ε2> ε3 principal strains 
ε0 strain parameter 
θ Lode's angle; parameter 
λ distance between equilibrium positions of flow units 
μ, μσ, μ ν, μσί coefficient of (dynamic) shear, normal and volumetric viscosity 
ν Poisson's ratio 
vt, vp, v m ax Poisson's ratio (tangential, initial, maximum) 
νσ Lode parameter 
ρ mass density with water content w 
σ normal stress 
<7a strength of F-element 
σ{ tensile strength 
σί stress in the rheological element i(i = 1, 2, ...) 
<7is isotropic stress 
σχ tensile strength 
σΗ stress of the //-element 
Σ stress tensor, stress vector (Section 12) 
σλ> σ2> σ 3 principal stresses 
σγ yield stress 
<7,0, ση stress at time /0, t{ 
σ
οΐ '

 σ
οι different loads 

Δσ 0/ stress increments (/ = 1, 2, ...) 
τ, τι shear stress (i = 1, 2, ...) 
r f shear strength 
τ 0, xt initial and relaxed shear stress 
φ angle of intergranular friction; shear strength angle 
φ{, φΤ peak and residual angle of internal friction 
ω angle (parameter of the general K-element); area 

of the triangle 
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2. EXAMPLES OF THE RHEOLOGICAL 
BEHAVIOUR OF GEOMATERIALS 

The extent and, consequently, the significance of the rheological behaviour of 
soils and rocks may be documented by some examples of field measurements of 
time-displacement relationships. The examples quoted, ranging from different 
structures to natural slopes, show the necessity, in many cases, of accounting for 
the creep behaviour of soils and rocks. 

2.1 Settlement of structures 

Fig. 2.1 presents the time-settlement curves of two buildings: No. 1 in Dudince 
(Slovakia) and No. 2 in Prague (Bohemia). Their time scales are different: in the 
first case, the measurements took a little more than 5 years (starting in February 
1972), in the second case about 40 years (from January 1913). 

Fig. 2.1. Time-settlement relation of two buildings with shallow foundations (Feda, 1981). 
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Examples of the rheological behaviour of geomaterials 
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Fig. 2.2. Settlement of a silo in Rijeka (Nonveiller, 1963). 

Building No. 1 consists of a concrete skeleton on foundation strips about two 
meters wide. These lie, at a foundation depth of 2.3 m, on a 1.7 m-thick gravelly 
cushion (crushed stone), followed downwards by a layer of plastic organic clays 
about 4 m thick (oedometer compression modulus about 4.2 MPa), and still 
deeper by a layer of sand and gravel (4.5 m thick) covering stiff tuffitic clays. The 
excessive settlement (more than 14 cm) results from compression of the layer of 
plastic organic (alluvial) clays. The initial convex bend of the time-settlement 
curve suggests that lateral displacement of the foundation soil beneath the 
foundation strips also took place (foundation pressure 0.25 MPa, safety factor 
for subsoil failure about 1.9 - Feda, 1981). The settlement curve is marked by 
structural perturbations (dashed line in Fig. 2.1). 

Building No. 2, on the embankment of the Vltava river, was founded on 
a foundation mat (foundation pressure about 0.12 MPa, safety factor for subsoil 
failure 3.7). This is the second half of a building, the first part being underpiled. 
Piling had to be adandoned owing to the excessive noise generated. The two 
parts are divided by a dilatation clearly showing the difference in the settlement 
of shallow and pile foundations. 

Beneath the mat, there is about 1.5 m of fill on more than 5 m of muddy and 
clayey alluvial sediments, followed by 6 m of sandy gravel, underlain by Ordovi-
cian shales. The compressibility of the foundation soil is unknown (in 1913, no 
laboratory and field tests were carried out). 

Fig. 2.1 shows that after the end-of-construction period, i.e., after the full 
loading of the foundation soil, about 66 % (Dudince) and 40 % (Prague) of the 



Settlement of structures 

total settlement took place. If the time-dependent component of settlement were 
neglected, the forecasted settlement would be very inaccurate. For the Prague 
building, the settlement has not become stabilized even after 40 years of measu-
rements. 

The total settlements of both buildings (12 and 14.5 cm) surpass the usual 
allowable values. In spite of this, both structures were undamaged — settlement 
differences (nonuniform components of settlement) remained within the allo-
wable range. 

Considerable settlement of the above two buildings should have been expected 
because the competent layer of their foundation soil—plastic organic alluvial 
clay—is highly compressible. 

On the contrary, the large settlement of a silo in Rijeka (Nonveiller, 1963), 
founded on a cohesionless soil layer, was to a large extent unexpected (Fig. 2.2). 
Individual rigid blocks of this silo rest on a rockfill layer, covering an about 10 
m-thick layer of fine loose to medium dense sand and it is in this sandy layer that 
the seat of settlement is situated. About 1/3 of it consists of broken shells. 
Oedometer tests revealed a considerable time-lag in the compression of this sand 
(Nonveiller, 1963). In addition, breakage of shell remnants may also have 
contributed to the high compression. 

The large values of settlement depicted in Fig. 2.2 are, for silos, tolerable 
owing to their rigid construction. Typically, their live load is time-variable and 

00 

TIME 

Fig. 2.3. Time-settlement behaviour of two chimneys—thermal power plant, Tisovâ (Skopek, 1985). 
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Examples of the rheological behaviour of geomaterials 

2.2 Dam displacements 

More than 30 years ago, a concrete gravity dam, about 35 m high, was built 
at Zermanice (Moravia). Founded on relatively weak Cretaceous shales (flysch), 
its horizontal stability was increased by placing a fill on its downstream face (Fig. 
2.4a). The highest concrete blocks of this dam are situated in the bed of the river 
Lucina where the shale is the weakest. Through many years of constant surveil-
lance, an inclination of these dam blocks has been revealed. This inclination 
proceeds at a roughly constant rate and is of maximum value in the central part 
of the dam, crossing the original river bed. Downstream inclination has been 
confirmed by three independent methods of measurement (Fig. 2.4b; Feda and 
Stëpânsky, 1986). 

Shales in the foundations were to some extent remoulded by the process of 
bulging induced by the weight of the right-hand valley slope (covered by heavy 
volcanic rocks). In addition, they were also somewhat disturbed by the building 
activity itself, especially by initially high grouting pressures. 

A similar time-dependent inclination to that recorded in Fig. 2.4 has been 
observed also with other dams in flysch (e.g., Bicaz dam, Roumania). 

Interesting long-term records of the crest settlement rates of a number of 
Tasmanian dams have recently been published by Parkin (1985); Fig. 2.5 repro-
duces some of them. Striking is the linearity (on a logarithmic scale) of the 
time-settlement rate relationships. The gradient of this straight line is commonly 
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this creates some dynamic impulses, not dissimilar to vibrations. For such 
a live-load oscillation, Bjerrum (1964) concluded that the rate of settlement was 
constant through a considerable time interval. This is indeed the case in Fig. 2.2. 

Fig. 2.3 shows the settlement of two chimneys (about 100 m high) of a thermal 
power plant in Western Bohemia (Skopek, 1985). Their circular foundation slabs 
(dia. about 24 m) lie at a depth of 3 m on a 3 m-thick sandy and gravelly cushion. 
Deeper, there is another layer of 2 m of sand and gravel, covering a thick layer 
of Tertiary sandy clay with bituminous coal seams. 

The time-dependent component of settlement amounts to about 60 % of the 
total settlement. A long interval of the constant rate-of-settlement seems to 
indicate the important effect of oscillating wind pressures. 

Chimney I settles nonuniformly, leaning more in the direction 1-3 than 2-4. 
Its relative inclination of 0.001 may still be accepted. The settlement of chimney 
IV is exceptionally uniform, amounting to about 8 cm. 

About 16 years after the erection of the chimneys, a coal mine was opened in 
their vicinity (at a distance of about 100 m). The lowering of the groundwater 
table caused by the open coal mine induced an increase of the settlement rate, 
clearly marked on the settlement curves in Fig. 2.3. 



Dam displacements 
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Fig. 2.4. Time dependence of the inclination of the concrete Zermanice dam (Feda and Stépânsky, 
1986). 
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Fig. 2.5. Crest settlement rate for three Tasmanian dams (Parkin, 1985). 
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Examples of the rheological behaviour of geomaterials 

2.3 Slope displacements 

Slow movements of natural slopes represent an extreme example of the creep 
behaviour of soils and rocks. They are products of natural processes moulding 
the Earth's relief without the intervention of human factors. The rate of such 
displacements equals fractions of mm/year; their measurement is, therefore, 
rather demanding. 

Fig. 2.6 depicts the results of measurements of the relative displacement of the 
peripheral wall of Spis castle, Slovakia (near its gate) and of the travertine rock 
forming its foundations (Kostak, 1984). The travertine on which the Spis castle 
has been built forms the cap of a hill consisting of a flysch series (alternating 

• 1 + 

TIME { YEARS ) 

Fig. 2.6. Time-displacement relationship—Spis castle (Kostak, 1984). 

layers of sandstone and shale). Owing to the weight of the travertine, weak rocks 
under its base are squeezed out, causing fissuration and decay of the travertine 
into blocks (for more detailed information, see Nemcok, 1982 - his fig. 143, 
p. 219). 

Three orthogonal components of the displacement in Fig. 2.6 are: χ - the 
change in the fissure (gap) width; y - the relative shear displacement in the 
horizontal and ζ - in the vertical planes. The measuring device (a target gauge 
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equal to — 1 , Wilmot dam being an exception. Both faced and zoned dams 
behave in a similar manner. The Serpentine and Rowallan dams are built of 
rockfill consisting of metamorphic or volcanic rocks (quartzite, dolerite, schist), 
Wilmot dam of sedimentary rocks (hard greywacke). Increased damping of 
settlement in the latter case may, perhaps, be ascribed to the composition 
(greater amount of grain breakage). 

After more than 12 years since the end-of-construction, the crest is still setling 
at a measurable value of about 0.5 to 2mm/year. 



Slope displacements 

based on a moiré effect - Kostak, 1984) installed on the surface in the atmosphe-
re sensitively recorded its temperature changes throughout the year (their maxi-
mum difference equaled about 30 °C). This temperature effect is especially 
clearly reflected by the x-value. After correcting for the temperature effect, the 
rate of opening of the fissure is equal to about 0.1 mm/year, the same as the rate 
of the rise ζ of the peripheral wall. 

Fig. 2.7. Time-displacement relationship—block field Vefka Studna (Kostak, 1984). 

Measurements in deep shafts do not reveal any temperature effects; Fig. 2.7 
shows such an example. The measuring device was inserted into a fissure 
between two andésite blocks. They form a part of a block field on a slope (Vefka 
Studna, Slovakia) composed of Upper Paleogene tuffitic claystones (see Ne-
mcok, 1982 - his fig. 130, p. 188). The measurements record a slow movement of 
block type. According to the results, the width of the fissure between blocks 
increases (x - the rate of displacement gradually decreases from 0.6 to-
0.3 mm/year), the lower block rises (z = 0.12 to 0.14 mm/year) and blocks 
rotate clockwise (y = 0.07 to 0.1 mm/year). Some movements take place, as may 
be seen, at a constant rate [y, z), another becomes slower (x). Extremely slow 
recorded magnitudes make the use of a long-term stable measuring device 
indispensable. 
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Examples of the rheological behaviour of geomaterials 

Fig. 2.8. Time-settlement curve of Takabayama landslide (Saito, 1979). 
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The measurement of slope movements enables the prognosis of a slope failure 
to be reliably performed. Fig. 2.8a is an example of a recorded slope displace-
ment. The time-displacement curve is not smooth, but displays some irregulari-
ties, probably due to structural perturbations. If the time-displacement curve is 
replaced by a hyperbola, its asymptote indicates the rupture life of the slope. Its 
prediction is possible by means of the correlation in Fig. 2.8b (Saito and Uezawa, 
1961; Saito, 1979; more general is the method suggested by Kawamura, 1985). 
This correlation is based on both laboratory and field experiments. If the creep 
enters the stage of a steady strain rate (so-called secondary creep), then with the 
help of the correlation in Fig. 2.8b the time to rupture i f may be calculated. The 
same correlation is approximately valid if the minimum strain rate is selected as 
the starting point ( i fc indicates the time interval between the commencement of 
the secondary creep, or of the minimum strain rate, and the moment of the slope 
failure). 

Two important conclusions can be drawn from the above procedure: 
— If the slope displacement arrives at a constant rate of strain interval, the 

slope will fail. Secondary creep is not a stable process but it precedes the failure. 
It is a warning that slope rupture is imminent. 

— The higher the rate of secondary creep, the shorter the time-to-failure rf. 
This means that the accuracy of forecasting the time-to-failure is better if it is 
based on the displacement rate measured immediately before the failure (Saito, 
1979, indicates one day or one hour, or even a fraction thereof, if one is 
forecasting a failure several days or the day previous to failure, respectively). 



Slope displacements 

Fig. 2.8b shows that the course of the strain rate is more irregular immediately 
before failure occurs. Acceleration, i.e., increase of the displacement velocity, 
follows from the second Newton law if the resultant force—the active force 
minus the resistance (shearing strength) of the geomaterial in question—is more 
or less constant. If the active (gravity) force diminishes (e.g., if raining stops or 
some dewatering takes place) or the resistance increases, the rate of displacement 
drops and the slope's stability is renewed. 

Any prognosis of a slope failure has, therefore, to be based on the understan-
ding of the forces causing the slope to move. Without such knowledge, any 
extrapolation may be false. Structural interpretation of the soil (rock) behaviour 
is clearly quite necessary. 

Usually, the resistance of the material decreases with the slope movement 
from its peak to the residual (ultimate) value. If the slope movement stops 
temporarily, the residual strength increases. In addition, the mobilization of the 
shear resistance of geomaterials occurs under the condition of either constant or 
variable volumetric strain, depending on the state of stress, which varies during 
the slope movement. It is therefore by no means simple to forecast the relevant 
mechanism of the strength mobilization in an actual case. 

Structural perturbations (serration) of the creep curve make it difficult to find 
a reliable interval of the secondary creep, as is documented in Fig. 2.9 (Kwan, 1971). 
In particular, this takes place with highly structured geomaterials, such as fissured 
clays with widely variable (undrained) strengths. This is the case in Fig. 2.9. 
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Fig. 2.9. Time-displacement curve of a vertical cut in clay at Welland (Kwan, 1971). 
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Examples of the rheological behaviour of geomaterials 

2.4 Conclusion 

As illustrated by the preceding examples, creep deformations are mostly of 
such a magnitude that they cannot be neglected. They often continue for tens 
of years and to foresee them, an extrapolation of laboratory test results is 
needed, based on some plausible theory. This requires a structural interpretation 
of the mechanical behaviour of the geomaterial in question. 

There are some cases where the prognosis of the time-dependent component 
of displacement is of vital importance. A geomechanician is, for instance, forced 
to analyse the time-dependent inclination of a dam, as depicted in Fig. 2.4, to 
be able to decide whether, after some time, it will become stabilized or that the 
inclination will proceed until failure takes place. In the latter case, some adequa-
te measures should be proposed to stop this fatal development. 

The forecasting of the time of occurrence of a slide is more common and in 
Japan it has become a routine procedure (Japanese National Railways - Saito, 
1971). If a constant rate of displacement is reached, the danger of a slide is 
imminent. Unfortunately, it is not always easy to indicate this stage of the 
movement owing to the serrated creep curve (Fig. 2.9) and the uncertain progno-
sis of the time variability of the active force and resistance. 

A warning example of unsuccessful forecasting is the sliding of the slope of 
Mount Toe into the Vaiont reservoir in 1963 that cost more than 2 000 human 
lives. A stage of secondary creep (1 to 2 mm/day - Myslivec, 1970; Voight et al., 
1988) was not deemed to be the sign of incipient failure. This tragic experience 
affirms how important is further progress in the study of the rheology of 
geomaterials. 
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3. STRUCTURE A N D TEXTURE OF SOILS 

3.1 Introduction 

The mechanical behaviour of all materials, including geomaterials, as 
recorded at the phenomenological (engineering) level, reflects their structure. 
The description and analysis of the principal structural features of geomate-
rials is, therefore, able to yield a key to the understanding of their rheological 
behaviour in experiments and to its prediction in other than experimental 
conditions. 

The study of the structure of geomaterials or of particulate materials in 
general is a subject in the structural mechanics of particulate materials. It is 
confronted with the following principal tasks (Feda, 1985): 

— To explain the phenomenological (quasicontinuum) behaviour of particu-
late materials as a reflection of their structural changes in the course of a defor-
mation process. 

— To deduce the classical phenomenological constitutive relations on the 
basis of the mechanical interaction of structural units.

1 

— To ascertain, by way of parametric studies, the relative effects of the 
individual structural components (of fabric, bonding, internal stresses, etc.) on 
the mechanical behaviour of particulate materials. 

— To predict such a phenomenological behaviour which is incompatible 
with the current phenomenological principles or where those principles 
cannot be applied, e.g., in the case of stress paths and stress levels that are 
not experimentally reproducible owing to their complexity or magnitude or 
the impossibility of maintaining the geometrical and time scales. Some 
experimental results cannot be understood within the frame of a purely 
phenomenological approach. 

1
 Quoting Freudenthal (1955): "...The unifying principles by which the apparently complex pheno-

menological behaviour of real materials can be interpreted in terms of a few concepts, are the laws 
governing the formation of matter from particles and larger structural elements at different levels 
of aggregation..." 
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The first three problems belong to the interpretational role of structural 
mechanics, the fourth one surpasses this role (e.g., the explanation of the 
behaviour of collapsible soils such as loess, the occurrence of negative creep, 
etc.)

2
. 

The increasing interest in structural mechanics of particulate materials as 
shown by the increase in the international activity in this field of research (two 
U.S. - Japan Seminars on the Mechanics of Granular Materials - Sendai, 1978 
and New York, 1982, IUTAM Symposium on the Deformation and Failure of 
Granular Materials, Delft, 1982, Int. Conf. "Powders and grains", Clermont-
Ferrand, 1989). The structural approach, common for centuries in physics (the 
periodical system of elements was probably the first successful attempt to deduce 
the properties of materials from their composition at the atomic level) is gradu-
ally gaining ground in investigating complex information systems (e.g., molecu-
lar biology) and has in many cases become indispensable (e.g., in the mechanics 
of composite materials). 

Such an approach is by no means a novelty in the field of particulate mecha-
nics. First attempts of this kind may be recorded as early as 250 years ago 
(Boulet, Couplet). Terzaghi's fundamental work in soil mechanics renewed the 
activity in this field. Terzaghi himself explained the high compressibility of clays 
by the shape of their particles and modelled it by mixing sand with mica 
(remember also Gilboy's, 1928, experiments). The compression fabric induced 
by the directional load was also correctly identified by him (Redlich et al., 1929, 
p. 344)

3
. 

The third, contemporary wave of interest in the structural approach follows 
from the appreciation of the fruitfulness of endeavours in this direction of 
research that is shared by the whole of modern science and from the vast 
horizons opened by new effective investigational methods based on the use of 
computers. 

In Table 3.1, the development of the structural conceptions in soil mechanics 
is briefly outlined. 

Before proceeding with a futher analysis of the phenomenological vs. struc-
tural approach relation, it is necessary to define the terms "structure" and 

2
 Mogami (1978) believes only in the interpretative role of the structural mechanics in writing: 
"...such studies would be rather philosophical and the mechanics directly applicable to practical 
problems could hardly be expected... (it) is important...in getting a sound understanding of the 
granular materials..." 
3
 He proposed a program for the structural mechanics of particulate materials by writing (Redlich 
et al., 1929, p. 344): "...Es würde sich auch in der Geologie and Geomorphologie empfehlen, die 
etwas mystische und häufig irreführende Formel 'Kolloidwirkung' durch die Ergebnisse physika-
lisch-mechanischer Analyse zu ersetzen und sich stets dem einfachen Mechanismus zu vergegenwär-
tigen, durch die anscheinend so fremdartige Kolloidwirkung zustande kommt. Dadurch könnte so 
manches Vorurteil aus dem Gebiet dieser beiden Wissenschaften ausgemerzt werden..." 
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"texture" as used by the author. There is no common agreement as to the 
meaning of these terms. The geological terminology (texture = size, shape and 
proportion of soil particles and aggregates and their interaction; structure = 
= spatial arrangement of textural elements) is used by geomechanicians only 
exceptionally (Holtz and Kovacs, 1981, p. 25: "... the texture of a soil is its 
appearance or 'feel' and it depends on the relative sizes and shapes of the 
particles as well as the range or distribution of those sizes") and they mostly 
dispense with texture. Scott (1963, p. 18) uses the term "structure or fabric" for 
the description of "the geometrical interrelationships among soil particles with 
respect to the local and general degree of orientation of the grains or platelets 
and the distribution of the angles of contact between the particles". For Mitchell 
(1976, p. 135), the term "structure" has "the broader meaning of the combined 
effects of fabric, composition and interparticle forces". By "macrofabric" he 
understands "stratification, fissuring, voids and large-scale inhomogeneities". 

TABLE 3.1 

History of structural conceptions in soil mechanics 

1925-1935 Mechanistic conceptions: principle of effective stresses, 
clay = sand + mica 
(Terzaghi, 1925; Gilboy, 1928; Casagrande, 1932) 

1950-1960 Colloid-chemical conception: electrical double-layer, long-range forces be-
tween' particles 
(Lambe, 1953, 1958; Bolt, 1956; Rebinder, 1958; Denisov, 1951) 

1965- Synthesis: aggregate structure of clays, micro- and macrofabric, short-
-range forces between particles 
(Morgenstern, 1969; Tchalenko, 1967; Barden, 1971; Young, 1973; Vialov 
et al., 1973; Collins and McGown, 1974) 

Rowe (1972) takes the term "fabric" "to refer to the size, shape and arrangement 
of the solid particles, the organic inclusions and the associated voids. The term 
'structure' indicates the element of fabric dealing with the arrangement of 
a particular size range. Thus, clay particle arrangements constitute 'structure' 
whereas the arrangement of particle groups, for example in layers having diffe-
rent particle sizes, falls under 'fabric' ". According to McGown et al. (1980) "soil 
fabric may be taken to be the nature, form and arrangement of units of soil 
materials and voids". 

The above lack of uniqueness enables the author to make use of his own 
definition. This should cover all the principal features of the structural elements 
of geomaterials responsible for their mechanical behaviour. 

Before describing a soil or rock profile or massif, one must divide it into its 
principal structural elements, i.e., into the regions where the variation of the 
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Introduction 

structural parameters may be taken to be statistically insignificant. A massif of 
flysch rocks consisting of shales with intercalated sandstones cannot be, for 
example, described as a whole -since the structure of both the participating rocks 
is radically different. The principal features of the studied profile will be called 
its texture (or macrofabric). It may be formed by layers, laminations, pockets, 
inclusions or, on a more refined scale, by the same material, say clay, but with 
sharply differing water content, mineralogical composition, porosity, etc. Accor-
ding to these textural features, the profile will be subdivided into more or less 
homogeneous parts whose structure can be characterized by simple terms. This 
is expressed by the scheme in Fig. 3.1. 
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Fig. 3.2. Pleistocene soil profile (Prague-Dejvice): φ - loose calcareous collapsible loess (see Section 
3.7.3); @ - uncalcified loess loam (redeposited loess); (3) - medium to coarse grained colluvial 
deposits of solifluction; ® - coarse sand and gravel, fluvial sediments of a Pleistocene terrace; 
© - ditto, with prevailing gravel; (6) - slightly humus loam; ® - fossil soil profile; w- natural water 

content; vvP, wL - plastic and liquid limits; du - effective grain diameter. 

Fig. 3.2 illustrates the above procedure (a lot of similar examples may be found 
in the literature). It represents a Pleistocene soil profile from Prague (Feda, 
1966) whose principal components differ by their grain sizes (Fig. 3.3). This 
variation is also reflected in the values of the water content. The effective 
grain-size diameter du (Fig. 3.2) indicates the grain diameter of an ideal granular 
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soil (all grains of the same diameter) agreeing with the actual soil in the specific 
grain surface. In such a way, the granulometrical curve can be reduced to a single 
parameter du describing the variability of the soil texture. The structure of each 
soil layer (numbered 1 to 7) differs as shown by the different gradation (steep-
ness) of the grain-size curves and by the range of the grain diameters. The poorer 
the gradation (e.g., 1 - loess) the more selective the sedimentation process 
(wind-blown loess, solifluction sediments 2 and 3, intensive fluvial deposition of 
gravel materials 4 and 5). There is a connection between the gradation and 
collapsibility of the soil and its geological history. 

Fig. 3.4 depicts another example of a complex texture resulting from the 
intensive tropical weathering of schist and gneiss. The upper part of the soil 
profile is horizontally layered, the lower part consists of inclined schist layers, 
erratically injected by gneiss bodies, creating pockets. Highly weathered schist 
and gneiss differ in their mineralogical composition and sensitivity to water. 

Smaller textural units can be distinguished on a finer, mesotextural scale (e.g., 
Fig. 6.9). 

The above examples visualize a discontinuous, nonhomogeneous texture. 
There are other, to the naked eye seemingly homogeneous textures whose 
macrofabric causes, e.g., a different permeability in the horizontal and vertical 
directions so that the coefficient of consolidation is anisotropic (typically 13 to 
28 times greater for the horizontal than for the vertical drainage - Clough and 
Benoit, 1985). Many examples of such textural effects are presented by Rowe 
(1972). 

Fig. 3.5 represents an example of another textural effect. With the increase of 
volume of a tested specimen of Strahov claystone, its unit weight decreases to 
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Fig. 3.3. Grain-size curves of soils in Fig. 3.2. 
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some asymptotic value (15.32 kN/m
3
)

4
. Strahov claystone contains different 

planes of weaknesses, fissures and macropores. The volume of the specimen has 
to be large enough to represent all these textural features. It is statistically 
significant of the claystone texture only if it is greater than about 30 cm

3
. 

TRIAL PIT SK 3 

WESTERN 

G.W. 

Fig. 3.4. Residual soil profile - highly weathered schist and gneiss (Feda, 1962): φ - gray-yellowish 
loam with traces of roots and holes of animal origin; © - reddish clay with red speckles (latosol), 
small amount of pisoliths (iron-oxide concretions), increasing with depth; (3) - moorum (weak 
friable and vesicular concretionary latérite), great amount of pisoliths, red colour; ® - brownish 
schist, laminated, friable; ® - yellowish to brownish weathered gneiss with kaolinitized feldspar, 

friable (®, © - the deformation modulus about 6 MPa). 
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Fig. 3.5. Unit weight dependence on the volume of undisturbed Strahov (Prague) claystone (porosi-
ty 38.8-40.9 %; wL = 40.3 %; index of plasticity IP = 9.1 %; index of colloid activity IA = 0.45; 

natural water content w = 18.2 to 23.9 % - see Section 3.7.7). 
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3.2 Mathematical and physical modelling of constitutive relations 

In a formal manner, an experimental stress-strain-time relationship may be 
mathematically described by numerous sets of different phenomenological con-
stitutive relations (Feda, 1990a). Such a plurality of mathematical models of 
constitutive equations results from the fact that all experimental data describing 
the constitutive behaviour of particulate materials are necessarily limited. They 
are bounded by the current experimental technique and even this will often not 
completely be exploited. 

Formally, the mathematical description need not be physically representative 
in an experimental situation other than the one forming the basis for the 
mathematical deduction in question. Such a state of affairs is quite common in 
physics where new ingenious experiments force current theories to be revised. 
With the increase in experimental data, the original mathematical relation will 
be becoming more and more physically suited. 

Weak points of a formal mathematical analogy of two processes may be 
exemplified by the consolidation of a water-saturated clayey layer with a drained 
surface and loaded by a foundation. Modelling the rheological behaviour of clay 
by, e.g., a Kelvin body, the time-settlement curve can be obtained (Section 7.2). 
If both upper and bottom surfaces of the clayey layer are drained, the rate of 
settlement increases and, consequently, the coefficient of viscosity of the Newton 
element in the Kelvin body will drop. Different boundary conditions are, in this 
case, mathematically modelled by changing the mechanical properties of the 
deforming body. On the other hand, a physically sound model of the hydrodyna-
mic theory of (primary) consolidation correctly reflects the reality: the material, 
clay, does not change, only the boundary conditions will vary. 

4
 Such a unit weight corresponds, according to Franklin et al. (1973), to a content of organic matter 
of about 10 %. This roughly accords with Strahov claystone. 
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After analysing the texture of geomaterials, there is another point to be 
mentioned before going on to the structural analysis. What is the motivation for 
getting some insight into the structure of geomaterials when treating their 
rheological constitutive equations? The importance of structure in the mechani-
cal behaviour of soil can be clearly demonstrated in the case of sensitive clays. 
If undisturbed, they can sustain a load in unconfined compression of 15 kN 
(Scandinavian quick clay) to 110 kN (Leda clay), but after being remoulded at 
the same water content they flow like a dense liquid (see photos in Mitchell, 
1976, p. 198 and Holtz and Kovacs, 1981, p. 40). Even if not on such a drastic 
scale, the fundamental importace of the structure of all soils in their mechanical 
behaviour is evident. 



Mathematical and physical modelling of constitutive relations 

In the mechanics of particulate materials, there exists a series of formal 
mathematical relations describing some aspects of the real behaviour of those 
materials but failing to be physically correct. Hertz, for instance, derived a for-
mula for the displacement of two elastic spheres in contact which, according to 
the experimental evidence, approximately governs also the volumetric deforma-
tion of hydrostatically loaded granular materials. Their stress-volumetric strain 
relation is, therefore, mathematically analogous to the Hertz law. From the 
physical standpoint, however, the two processes, the real and the Hertzian, 
mutually differ. Hertz's law assumes fixed contacts of spheres. Deformations of 
granular materials are, at least partially, irreversible and some contacts are, 
consequently, sliding contacts. 

The preceding deliberations suggest that any constitutive relation should be 
plausibly interprétable on the structural level. Analyses of overidealized structu-
ral models are useful as parametric studies. They may be valuable, like many 
parametric studies, but their direct application to the reality often produces 
serious misunderstandings. 

The structural study of geomaterials in the following text, although short and 
incomplete in view of the goal of the present publication (more about structure 
in Feda, 1982a) is, in the light of the above arguments, useful and indispensable. 

The principal components of the structure (Fig. 3.1) will be treated separately 
in the following text, in spite of the fact that they are mutually interconnected. 
In addition, the relation between the phenomenological behaviour and structure 
acts in both directions. The knowledge of structure enables the estimation of the 
phenomenological behaviour to be performed. On the other hand, the phenome-
nological behaviour reveals the principal structural features of the tested mate-
rial. Being so mutually related, it is at least disputable whether the structure can 
be thoroughly investigated without studying its phenomenological response. To 
express, for instance, the angle of intergranular friction of individual grains of 
a granular material numerically requires a statistical analysis based on its 
phenomenological manifestations. 

Fig. 3.6. Two-dimensional model of an angular granular material, subjected to shear deformation 
(grain dia. 5 mm). 
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(3.1) 

Fig. 3.7. Two-dimensional model of a particulate material composed of round discs (dia. 5 mm): 
a - loose to medium dense; b - dense. 
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3.3 Structural units 

Structural units consist of aggregates (clusters) of elementary particles (gra-
ins) which, in the studied interval of the deformation process, act as a whole. 
They are, generally, not stable throughout this process but vary in size and/or 
shape (e.g., grain crushing). They are therefore dynamic by nature. Their struc-
tural response depends on their size, shape and composition. 

Fig. 3.6 represents a two-dimensional model of an angular granular medium 
(individual grains of a triangular shape) before (Fig. 3.6a) and after shear 
deformation (Fig. 3.6b). The deformation is concentrated in the boundaries of 
grain clusters which retain the original density of the medium. These clusters are 
of two types: linear (chainlike) in the lower left-hand corner and circular in the 
opposite corner (Fig. 3.6b). The deformation of the medium results from the 
sliding and rotation of the structural units and reflects the boundary conditions, 
i.e., the nature and the magnitude of the shear displacement. Such models of 
granular materials may be subjected to sophisticated numerical analyses (e.g., 
Cundall and Strack, 1983). 

Fig. 3.7 presents another two-dimensional model of a particulate material. 
This model consists of rotund discs — grains in loose to medium (Fig. 3.8a) and 
dense states (Fig. 3.8b). The state of such a monodispersive (all grains of equal 
diameter) array are described by a matrix of state 

N\ N*2 N\ ··· JVj, 

Pkl Pk2 Pk3 "' Pkn 



Structural units 

This matrix means that in the i-th state, Nx grains have a number of contacts 
equal to / ? k l, etc. As may be observed in Fig. 3.7a, there are small clusters of 
grains with the same number of contacts up to the maximum of 6. The high 
porosity of the model (24.3 % as compared with the theoretical maximum of 
21.5 % for the mean number of 4 contacts of each disc) results from the 
macropores separating these clusters (domains). The distribution of the number 
of contacts is symmetrical—the medium is statistically homogeneous (Fig. 3.8a). 
On the other hand, a dense medium (Fig. 3.8b) is statistically nonhomogeneous 
because of the asymmetrical distribution of pki. For pkl = pk2 = ... = 6, the 
porosity should amount to 9.3 %, but its real value equals 16.8 %. This discre-
pancy reflects some disturbances in the geometrical arrangement of the array. 
Such a nonhomogeneous medium consists of a dense continuous skeleton 
surrounded by regions of lower density. One may easily imagine the ideally dense 
skeleton taking over the bearing function in the initial phases of loading. Then 
the medium will behave as an ideally dense one. Subsequent deformation will, 
however, destroy this dense skeleton and the mechanical response will gradually 
grow softer. 

The general pattern of the mechanical behaviour of granular materials will 
qualitatively follow the above models. With increasing load and deformation, 
some structural units disintegrate (cataclastic stage of deformation) and others 

NUMBER OF CONTACTS 
LOOSE TO MEDIUM DENSE 

NUMBER OF CONTACTS 
DENSE 

NUMBER OF CONTACTS 

EZZ3 4 - MEAN VALUE 
CZZ3 < A 

EZZ3 5 ~ 
EZZ1 < 5 

MEAN VALUE 

a ) b ) 

Fig. 3.8. Density variations of the model in Fig. 3.7. 
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are born. The growth of deformation follows from two structural mechanisms 
—(intergranular) sliding (intact structural units) and (intragranular) disintegra-
tion (crushing, breakage of structural units, grains, particles). They are simulta-
neous, with one or the other mechanisms temporarily dominating. 

Fig. 3.9 give some idea about the crushing of structural units of natural 
cohesive materials. It depicts the residuum after a hydrometer analysis of 
Strahov claystone: Fig. 3.9a - the equivalent grain-size range is 0.1 to 0.25 mm, 
Fig. 3.9b - 0.25 to 0.5 mm. About 20 % to 30 % of the first fraction are quartz 

Fig. 3.9. Pseudograins of Strahov claystone after a hydrometer analysis (grain dia: a - 0.1 to 
0.25 mm; b - 0.25 to 0.5 mm); grains can be easily crushed (c). 

grains, the rest and the whole 0.25 to 0.5 mm fraction is formed by clusters of 
smaller particles cemented together in a water-resistant manner (by iron com-
pounds). Slight pressure suffices to crush them completely (Fig. 3.9c). One may 
assume that such a crushing action takes place at higher loads and deformations. 

The extent of crushing of granular materials can easily be detected by compa-
ring the grain-size curves before and after the analysed deformation process; Fig. 
3.10 shows such an example. It concerns Landstejn eluvial sand before and after 
a routine triaxial drained test of an isotropically consolidated specimen (CID 
test). The consolidation cell pressure was rather elevated - 10 MPa. This sand 
is a residuum of highly decomposed Landstejn granite and about 60 % of it 
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consists, like the parent rock, of a coarse-grained feldspar. The intensive chemi-
cal weathering of feldspar grains rendered them weak and friable. Such a sand 
may be used as a suitable model of cataclastic deformation—crushing of sand 
grains occurs intensively even at moderately elevated stresses (Feda, 1977). 

The greatest amount of crushing occurred, according to Fig. 3.10, in the 
grain-size range from 4 to 7 mm. This is to be explained as a proof that the 
largest grains are, from the statistical standpoint, the weakest ones. The process 
of grain crushing can be generally viewed as a process of the adaptation of sand 
to the higher contact pressures of its grains. The grain-size curve changes in such 
a manner that the sand structure becomes more stable by the more favourable 
redistribution of contact stresses. 
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Fig. 3.10. The amount of grain crushing of Landstejn sand (see Section 3.7.2) after a standard 
CID-test with a cell pressure of 10 MPa. 

This process of adaptation results, in Fig. 3.11, in the shifting of the grain-size 
curve and changing of its shape from a to b. In such a way, the sand gradation 
improved. Since the grains of poorly graded coarser materials will be broken 
more easily, some experiments were performed with 4 to 7 mm fraction of 
Landstejn sand. Fig. 3.11 shows their results. As can be seen, even isotropic 
pressure slightly modifies the granulometry. As expected, the gradation gradual-
ly improves with the rising cell pressure from 0.1 to 0.5 till 1 to 2 MPa - the 
grain-size curves 2, 3 and 4. The effect of the axial strain at a constant o\ is more 
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Fig. 3 . 1 1 . Grain-size curves of 4 to 7 mm fraction of sandy residual soil of Landstejn granite: 
1- before a triaxial test; H - modification of original grain-size curve following consolidation by 
isotropic cell pressure σ[ — 1 MPa; 2 - after a CID triaxial test at σ'τ = 0.1 MPa (axial strain 
ea = 24 %) and 0.5 MPa (ε3 = 7.25 %, Fig. 3.12, curve 2); 3 - after a triaxial test at a'r = 0.5 MPa 
(ea = 24 %, Fig. 3.12, curve 3) and σ[ = 1 MPa (ea = 23.5 % ) ; 4 - σ[ = 2 MPa (ea about 20 % ) ; 
a - original sample with grains < 7 mm; b - same sample after a CID-test at σ'τ = 10 MPa 

(fia = 24 % ) . 

Fig. 3.13 (Marsal et al., 1965) shows that the extent of grain crushing depends, 
in addition to the gradation and grain-size range of the material and, presumab-
ly, the angularity of its grains, also on the unit weight. Grains break easily for 
lower density. This is to be expected because grains of loose materials have 
smaller numbers of contacts distributed over the grain surfaces less uniformly. 
At the same stress level they are more stressed and more easily broken. 
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peculiar. Different axial strains £a = 7.25 % and 24 % at the same and constant 
σ\ = 0.5 MPa significantly modified the grain-size curve of the 4 to 7 mm 
fraction of Landstejn sand (Fig. 3.11, Nos. 2 and 3). Fig. 3.12 shows this effect 
of grinding: the volumetric strain of both specimens has a steadily decreasing 
tendency (Fig. 3.12, the same numbering as in Fig. 3.11). The same Fig. 3.12 
depicts, for comparison, the stress-strain curves of the original sand with grains 
< 7 mm (Fig. 3.12, No. 1 - two tests). The increase of the intensity of grain 
crushing makes the stress-strain curve flatter, so that the peak and residual stress 
difference coincide. The effect of the grain crushing on the material's behaviour 
is evident. Poorly graded material is increasingly contractant as if made more 
loose by grain breakage. 



Structural units 

The present analysis has so far shown that: 
— Before starting a structural analysis of any geomaterial, its main textural 

features should be specified and on the basis thereof the medium should be 
subdivided into structurally homogeneous regions. 

— Any geomaterial consists of structural units differing as to their size, 
composition and shape. These parameters are of dynamic nature. During a de-
formation process, they change depending on the boundary conditions and the 
stress-, strain- and (presumably) time levels. 

— Structural units consist of clusters of grains or particles which are their 
primitive forms. 

— The structure of geomaterials adapts itself to the stress-, strain- and time 
level of the deformation process by sliding and breakage of structural units, 
aiming in this way at a structurally more stable regrouping. After exhausting all 
possibilities of reconfiguration, failure occurs. 

— Extremely dense (or loose) media may, in the range of lower stress- and 
strain-levels, show an anomalous behaviour. 
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Fig. 3.12. Course of a drained CID triaxial test of water-saturated sandy eluvium of Landstejn 
granite (Landstejn sand). 
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The breakage of (primitive) structural units—grains—can be most easily 
identified with granular materials by means of their grain-size curve. Feldspar 
and limestone grains are weaker than quartz. When crushing takes place, 
contractancy prevails over dilatancy and the material seems to decrease its 
density. 

With cohesive geomaterials, aggregates of particles (pseudograins) can be 
revealed crushing of which has an effect similar to that with granular materials. 
The variety of their structural units is, however, much greater. Structural units 
of rocks are bouned by the planes (surfaces) of weakness (cracks, fissures, joints, 
etc.). 

kN/m
3
. 

ίο-) 1 1 1 1 1 μ 
0 20 AO % 60 

EXTENT OF GRAIN CRUSHING 

Fig. 3.13. The effect of unit weight on the extent of grain crushing of different sands and gravels 
(Marsal et al., 1965, their fig. 76). 

The implications of these findings for the rheological behaviour of geomate-
rials are evident: the higher the deformability and compressibility, i.e., the higher 
the amount of sliding and crushing of structural units, the more intensive the 
effect of time on the mechanical behaviour of those materials. 

Following the above analysis, the deformation of particulate materials con-
sists of two principal components: ε

Η
 - Hertzian reversible strain, and e

p 

- irreversible (plastic) strain: 

ε = ε
Η
 + ε

ρ
 . (3.2) 

Reversible Hertzian strain ε
Η
 results from the deformation of structural units 

which do not mutually displace, i.e., with fixed contacts. The irreversible strain 
ε

ρ
 is the consequence of either the displacement of structural units (sliding 

contacts) or their breakage (cataclastic deformation). Disintegration of structu-
ral units may be described by the growth of the number of sliding contacts (if 
its product participates in the bearing function of the material) or by its decline 
(increase of the effective porosity). Owing to the irreversible strain component, 
some dissipation of the deformation energy will take place. Such an irreversible 
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change of the mechanical into thermal energy within the deforming specimen 
increases the internal entropy of the system. According to the Boltzmann 
principle (Feda, 1971a), 

S = k In P B , (3.3) 

where S- entropy, k - parameter (a constant), PB - the probability of the state 
of the system. Then 

d P B 
dS = k — , 3.4 

Ρ 

if dS - the increase of the internal entropy of the system. It can be expressed as 

dS = σ de
p
 , (3.5) 

if σ and ε
ρ
 mean generally some stress and strain systems. There are two extreme 

states of a particulate material: either all contacts are fixed, i.e., the number of 
sliding contacts pks equals zero, or all contacts pkt are sliding, i.e. pkt = pks. The 
probability of a state of particulate material in the course of a deformation 
process can then be aptly defined by 

PB = . (3.6) 
Pkt 

In the first case, for />ks-> 0, PB -> 1, in the second case, if pks -> pkv PB 

= 0. The destruction of structural units may be modelled by the gradual 
increase of pks. Combining eqns. (3.4), (3.5) and (3.6), 

σ ά εΡ = k
 | d P k sl

 , (3.7) 
Pkt - Pks 

where the increment in the number of sliding contacts figures as an absolute 
value. Using eqn. (3.7), both the principal irreversible deformation processes of 
particulate materials can be accounted for: 

a) If only sliding of structural units occurs (e.g. sand at a low stress level), 
then pks -+ 0 for uniaxial (oedometric) and isotropic compression and in the final 
stage of the deformation process 

a de
p
 0 => d£

p
 = 0 . (3.8) 
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This signifies that either the compression curve is bounded by an asymptote 
and can be analytically expressed, for instance, by a hyperbola, or only Hertzian 
reversible strain ε

Η
 φ 0 and a logarithmic curve or a parabola may be represen-

tative for the compression curve. 
b) If the deformation process is cataclastic, then pks -> pkt and 

σ de
p
 oo => de

p
 -» oo . (3.9) 

In such a case, a total structural collapse will take place in the form of 
a phenomenological failure. In the case of a confined compression and/or at 
a lower stress level, where the structure may recover, local (partial) structural 
collapse will occur and the stress-strain-time relation will display periodical 
bifurcations (singularities where the compression curve ceases to be smooth). 
Such may be the behaviour in the case of a mere sliding if the specimen is not 
confined by kinematic (oedometer) or dynamic (anisotropic consolidation) 
boundary conditions and it often manifests some structural inhomogeneities. 

Another way of expressing the double nature of the irreversible deformations 
of particulate materials is shown in Fig. 3.14. Let it be assumed that two 
structural units with a common tangential contact plane transmit a contact force 
F with the inclination β to the normal of that contact plane (Fig. 3.14a). If β = 
= φ (φ - the angle of intergranular friction), sliding starts. If β < φ = const 
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h-
to 

STRENGTH 

STRAIN 6 

c ) 

3' 6 

Fig. 3.14. Scheme of the origin of deformation due to sliding and disintegration of structural units. 
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and the value of F rises, a point can be reached where F equals the strength of 
structural units in contact and a cataclastic deformation takes place. There are 
different possibilities of how the angles β and φ can be distributed in a sample 
of particulate material (Fig. 3.14b). Either all values of β and φ are the same 
—their distribution function degenerates into an abscissa 1 (β) and 4 (φ); or 
there is a probability of any value of β or φ being the same within certain limits 
—rectangular distribution 2 or 5; or the distribution is statistically homogene-
ous as in Fig. 3.7a and can be approximated by a triangle 3 or 6 (Fig. 3.14b). 
In the course of loading the distribution graph of β shifts to the right in Fig. 
3.14b, the similar graph of φ is, however, in a fixed position. When both 
diagrams, of β and φ respectively, start to share some common area (3' + 6, 
dotted) sliding will occur whose magnitude will be some function of this com-
mon area. If for instance the simplest distributions 1 and 4 of β and φ are 
assumed and if ε

Η
 = 0 in eqn. (3.2), then the material will behave in an ideal 

rigid-plastic manner (Fig. 3.14c). 
The above analysis can easily be extended to cover also cataclastic deformati-

ons. If β = const and F increases, the respective distribution diagrams in Fig. 
3.14 for F will move to the right until touching the diagrams of the contact 
strength of the structural unit. Then, the cataclastic deformation will emerge. 

Both procedures elucidating the source of irreversible deformations of parti-
culate materials could be quantified if the form of the interdependence of σ, pks 

and ε
ρ
 in the first case or σ, β and φ (or σ, F and of contact strength respectively) 

could be discovered
 5

. In addition, when sliding or crushing start some redistri-
bution of contact forces, their values, structural units etc. should be accounted 
for. One way to circumvent these problems is to speculate about the interdepen-
dence of the tangential deformation modulus Et and stress σ, e.g., in the case of 
a confined compression and sliding of structural units. 
An assumption 

Et = kca
m
 (3.10) 

which, for m > 0 and σ oo yields Et -> oo, may be found appropriate in 
many cases of structural hardening. Experience shows that for flat and elongated 
particles m = 1 is suitable, for spherical particles m = 0.5 - the first case 
represents typically clay, the second one sand. Then 

— = Κ
σ
 ' (3.11) 

de 

5
 The application of the slip theory, as adapted for soils by Calladine (1971, 1973), offers a plausible 
possibility of accounting for both plastic and elastic effects (see Section 5.4.5). 
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and 

Τε
 = ( 3

'
1 2) 

in the first (m = 1) and the second (0 < m < 1) cases. Solving eqns. (3.11) and 
(3.12) 

1 σ 
ε = ε 0 + — In — (m = 1) (3.13) 

and 

ε = ε0 - ( m < l ) (3.14) 

(σ0 = unit pressure for which ε = ε0; kc - a parameter). These are the 
well-known equations of oedometer compressibility curves. Their drawback is 
that not only for σ -» oo ε -> oo, but also for σ -> 0 ε -> — oo (eqn. 3.13), 
in both cases 2st = 0 for σ -+ 0 (see eqns. 3.11 and 3.12), i.e., the compression 
curve is in its origin tangent to the ε-axis. If, more generally, 

Et = ^
 + b(j)>

 , (3.15a) 

so that for σ -> 0 Et -> a and if σ -> oo, Et -> oo, then 

ε = — - — , (3.156) 
a + bo 

with ε = 0 for σ = 0 and ε -+ l/b for σ ^ oo. This may be the case if ε
Η
 = 

= 0. 
If m < 0 in eqn. (3.10), then for σ oo £ t 0 which can model the ideal 

cataclastic deformation. Eqn. (3.14) is equally valid for this case if m < 0. 
For real materials, a combination of sliding and cataclastic deformation is to 

be expected. Elastic behaviour - m = 0 - cannot be assumed except for cemented 
particulate materials before the destruction of their cementation (brittle) bonds. 
In this interval, however, such materials cannot properly be called particulate 
— they represent porous continuous media. 
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To illustrate the preceding deliberations, Fig. 3.15 depicts a complex oedomet-
ric compression curve recorded for two undisturbed specimens of a collapsible 
loess (Sedlec, Prague; its grain-size curve coincides approximately with No. 1 in 
Fig. 3.3). It is composed of three parts: 

section 0 — 1 : 

e a = 2.28<7°
0 8 9

, (ea in % , a a in MPa) (3.16) 

i.e. 

' a = 4 3 . 8 6 σ Γ ( 3' 1 7 ) 

(ea as a decadic number) and hence 

Et = 492.80<7a

)-91
 (£ t in MPa) . (3.18) 

AXIAL STRESS (0ED0METER) tfa 

0 (ζ\ 1 MPa 2 

Fig. 3.15. Uniaxial (oedometer) compression curve of undisturbed loess (Sedlec, Prague - see 
Section 3.7.3)-mean of two specimens (w = 10.1 and 10.4 %, initial porosity n0 = 48.6 and 49.5 %, 
degree of s a t u r a t i o n ^ = 28.7 and 28.4 %, wL = 36.3 %, IP = 15.8 %, / A = 1.32, C a C 0 3 content 

8.4 %—mean values). 
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According to eqn. (3.12), m = 0.91. The compression interval 0 - 1 is an 
interval with prevailing sliding and the effect of the considerable amount of clay 
fraction (flat and elongated structural units) yields a value of m near to 1. 

section 2 — 3: 

σ\ = 1.607ea - 3.289 , (3.19) 

i.e. 

Et = (in MPa) . (3.20) 

In this case, m = — 1 and the compression is dominated by its cataclastic 
phase. In the intermediate stage 

section 1 — 2: 

e a = ε0 (0.816 + 0.654aa), ε 0 = 1.87 % (3.21) 

and 

Et = 81.77 MPa = const (3.22) 

(in all these cases Et = E o e d) . This value roughly corresponds to Fig. 3.34b where 
Et = 76.1 MPa - hence the totality of compression curves of this loess may 
phenomenologically be taken to be linear. Although eqn. (3.21) is linear and 
according to eqn. (3.22) Et = const, it would be false to deduce that within this 
range loess behaves elastically. A correct structural interpretation suggessts that 
in this compression phase the sliding and cataclastic deformations are nearly in 
equilibrium - Fig. 3.16, before the cataclastic compression prevails (stage 2-3). 

0 ÖQ 

Fig. 3.16. "Pseudoelastic" stress-strain relation as a sum of two structural deformation mechanisms. 
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A simple calculation shows that in the interval of linearity (σΆ = 0.5 to 1.5 MPa) 
about 70 % of the axial strain e a results from sliding (eqn. 3.16) and about 30 % 
from the disintegration of structural units (eqn. 3.19). The convex compression 
range 2-3 evidently has a limited validity in the case of confined and isotropic 
compression—at still higher load it will turn into a concave curve. If the linear 
behaviour in Fig. 3.16 should be called "elastic", then cataclastic deformation 
would represent a "hypoelastic" behaviour and sliding a "hyperplastic" one. 

According to eqn. (3.10), exponent m governing also the law of variability of 
the tangential deformation modulus Et through the uniaxial (oedometric) com-
pression varies in the range 0 < m ^ 1 if the sliding of structural units forms 
the prevailing structural mechanism. Typical values of m were indicated to be 
m = 0.5 for sandy and m = 1 for clayey materials. The last value in eqns. (3.11) 
and (3.13) indicates physically isomorphous behaviour (see Section 4.3). 

LEGEND : 

1 - WEATHERED MICA SCHIST 
2 - WEATHERED GRANITE-GNEISS 

OH 1 1 1 1 1 1 — I 1 1 h -
0 0.2 0.4 0.6 0.8 1 

COMPRESSIBILITY EXPONENT m 

Fig. 3.17. Variation of exponent m (governing the value of the tangential deformation modulus 
during uniaxial compression) for sandy (schist) and clayey (gneiss) materials—products of 

weathering. 

Fig. 3.17 shows the experimental results for two residual soils — products of 
intensive weathering of schist and gneiss (Fig. 3.4). For decomposed schist, 
which is more sandy, the mean value of m = 0.4 and for decomposed gneiss 
—more clayey—the mean value of m = 0.65, in accordance with what might be 
expected. 
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Fig. 3.18. Particle orientation produced by oedometric compression of undisturbed and remoulded 
samples of Leda clay (Quigley and Thompson, 1966). 
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For the weathered Cretaceous shale (flysch) in the subsoil of Zermanice dam 
(see Section 2.2) the following relation has been derived on the basis of field 
measurements 

ea = 1.45σ°·75, (ea in % , a a in M P a ) , (3.23) 

similar to eqn. (3.16) and describing prevalently sliding structural deformations 
(settlements). Using this relation 

Et = 91.95σ°
25
 . (3.24) 

In agreement with the previous analysis and with Fig. 3.17, weak rock 
becomes compressed—as could be expected—nearly linearly. 



Fabric 

3.4 Fabric 

The geometrical arrangement of structural units and voids will be dealt with 
under this heading (for a more detailed analysis see McGown et al., 1980). 

As far as pores are concerned, they are of different sizes and shapes (see, e.g., 
Fig. 3.7a). Their shapes correspond to the form of structural units and to the 
deformation history (elongated pores accompany shear strains). Large pores are 
less stable and they break down when the material is loaded (macroporous 
loess), but as a result of disintegration of structural units the amount of fine and 
very fine pores increases (Feda, 1982, p. 78). The first phenomenon agrees with 
the Griffith theory—the critical pressure for failure decreases with increase of 
the half-length of a fissure (macropore). 

It is well known that under a directional load (e.g., uniaxial loading in an 
oedometer) alignment of flat and/or elongated particles takes place perpendicu-
lar to the direction of load. Fig. 3.18 presents an example of such a process. With 
increase of the consolidation pressure, the particles of both samples, undistur-
bed and remoulded, become increasingly oriented. One can conclude that the 
smaller the tangential deformation modulus (the steeper the compression curve), 
the greater is the gradient of alignment. This demonstrates the close relation 
between the freedom of structural units to move and their geometrical arrange-
ment. 

With granular materials it is the geometrical arrangement of contact planes 
which takes over the role of the alignment of particles. Soil strives in this way 
to adapt itself to the acting load by increasing its structural stability. This forces 
the orientation of contact planes to be perpendicular to the directional load. 

1*0.5 + RELATIVE DENSITY 
LU 

5 0 % 

SYMBOLS : 

VIBRATED MOIST 

DITTO DRY 

TAMPED MOIST 

PLUVIATED DRY 

1 — 
6 2 3 4 5 

FORMATION FACTOR 

Fig. 3.19. Relationship between the cyclic stress ratio and formation factor (Monterey N o . Ο sand 

- Mulilis et al., 1977). 
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Rather recently, the effect of different preparations of (laboratory) specimens 
on their fabric and, consequently, strength, has become familiar. As Fig. 3.19 
shows, the identical relative density does not suffice in defining the structural 
resistance of sand — another (formation) factor is needed (the formation factor 
equals the ratio of the conductivity of the electrolyte to that of the sand 
saturated with this electrolyte). The significance of this phenomenon varies with 
different sands and it expresses the effect of the orientation of contacts between 
sand grains and of packing (Mulilis et al., 1977). 

DENSITY 

1.6 1.7 1.8g/cm 
1 1 1 

LEGEND : 

I 1 SHEAR ALONG PLANE OF 

— I 1 1 1 1 1 
50 60 70 80 90 1 0 0 % 

RELATIVE DENSITY 

Fig. 3.20. Effect of shear direction on the strength of samples of crushed basalt prepared by pouring 
into a shear box (Mitchell, 1976). 

In a similar way, Fig. 3.20 proves the effect of the geometrical anisotropy 
stemming from the sample preparation on the strength of granular soils. The 
fabric clearly plays an important role, having a considerable impact on the 
mechanical behaviour of geomaterials. 

It is no simple task to disclose the fabric of a soil. In a broad sense, one may 
distinguish between isotropic and anisotropic fabrics. When subjected to the 
isotropic stress state, the deformation response of soils, depending on their 
fabric, is also either isotropic or anisotropic. 
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Fig. 3.21 represents a series of samples of cemented Sedlec loess. After the 
initial phase of compression where the strain ratio ejea increases (most probably 
owing to the bedding effect of the top and bottom bases of the cylindrical 
specimens), the fabric of looser specimens tends to change from anisotropic to 
isotropic, that of denser samples (with less kinematic freedom) remains aniso-
tropic (K0 deformation resembling the oedometric one). It is speculated that the 
described phenomenon is prevalently conditioned by the anisotropic cementati-
on by calcium carbonate by which the tested loess is either horizontally or 
vertically reinforced. 
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Fig. 3.21. Deformation response o f a series of triaxial specimens subjected to the isotropic stress 
state (Sedlec loess). 

A much simpler way to load the specimen hydrostatically is to make use of its 
neutral (pore-water) pressure. By desiccating water-saturated samples, tension is 
induced in their pore water, acting as if the sample were hydrostatically loaded 
externally. The sample shrinks until the pore-water capacity to withstand its 
tension fails. Shrinkage is, therefore, a volumetric deformation of a sample 
loaded by an effective hydrostatic stress of internal origin. The phenomenon is 
linked with the fact that the amount of the surface energy is greater with dry 
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than with wetted solid particle surfaces and, by the principle of minimum 
potential energy, a wetted surface is thus to be preferred. 

In Fig. 3.22, the results of a series of shrinkage tests are presented. Shrinking 
in the horizontal and vertical directions was measured on rather flat cylindrical 
specimens (6.7 cm dia., 4 cm height). The curve of 100 % saturation is also 
drawn. 

In all common shrinkage tests (Nos. la, 2 and 3) a clearly defined shrinkage 
limit was exhibited. This means that the compression of the specimens almost 
ceased because of the sudden drop in the effective hydrostatic pressure. One can 
explain this by the tension being large enough to overcome the strength of the 
pore water. With samples lb and lc of Branany bentonite, consolidated in an 
oedometer, the shrinkage limit is either absent or much less distinct. This effect 
can be caused by a different air content: relatively high in ordinary specimens 
prepared as a slurry (a water content of near the liquid limit wL in Sokolov clay 
and Cerny VÛ1 loess) or in a soft plastic state (Branany bentonite) and much 
smaller with the initially uniaxially compressed specimens lb and lc (the pore-
water pressure developed by compression acted as a back-pressure). After the 
cavitation of pore water started, the degree of saturation quickly decreased, as 
shown in Fig. 3.22. 

WATER CONTENT 

Fig. 3.22. Linear shrinkage (vertical and horizontal) of loess and two clays - remoulded samples 
(Feda, 1964). 
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Samples la and 3 display an almost isotropic behaviour, the deformation 
(shrinkage) of Sokolov clay is anisotropic. Even for this clay, the εν/εΆ ratio in the 
final stage of deformation equals 2.4 which is much less than in the case of loess 
in Fig. 3.21. 

In addition to the fact that there is practically no shrinkage limit, the oedomet-
rically precompressed samples display another peculiarity: their shrinkage cur-
ves are of a step-wise nature (to some extent also with loess - No. 3). This 
irregularity may, perhaps, be explained by the existence of internal (locked-in) 
stresses resulting from the uniaxial (oedometric) loading and relieved by the 
hydrostatic loading. The most radical change of the type of stressing, from 
unixial to isotropic, exists at the beginning of shrinkage tests where the maxi-
mum deviation between horizontal and vertical shrinkage can also be observed. 
After this initial section, both specimens deform in the incremental sense iso-
tropically—their horizontal and vertical shrinkage curves are nearly parallel. 
The experience of uniaxial loading does not seem to penetrate deeply into the 
"memory" of samples, perhaps due to a relatively short time of consolidation 
(about 1 month). 

Hence, the anisotropy of the fabric of Sokolov clay is the only one identified 
in Fig. 3.22. The possible explanation lies in the dispersive structure of Sokolov 
clay, also affected by the high content of moulding water. The state of a slurry 
enables long-range forces to come into play and to order the particles into 
roughly parallel structural units. These particles are of a high colloidal activity 
(7A = 1.87) and owing to the large amount of montmorillonite, are easily 
dispersable into small and movable structural units. 

3.5 Bonding 

Particulate materials consist of structural units in mutual contact. Structural 
units are composed of elementary particles (grains), their clusters, etc. holding 
together. By destroying these internal bonds, structural units disintegrate, and 
their size, shape and possibly also their composition (if their elements are of 
different composition) will change. Such destruction, crushing and break-down 
of structural units has been the topic of the preceding Section 3.4. In the present 
Section, external bonds will be treated. 

The external bonds can be classified into reversible and irreversible types. The 
reversible bonds are either frictional (granular materials) or cohesive (the effect 
of short- and long-range forces between the structural units and the effect of 
capillary forces). If destroyed (and if sliding of structural units commences), they 
can easily be restored to form the next stable structural configuration. In this 
new position they are of different magnitude as compared to the original state 
(change in the value of contact forces and of the angle of intergranular friction 
—it generally varies over the surface of structural units, grains, etc.—and in the 
pore sizes). 
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The irreversible (brittle) or cementation bonds result from the previous histo-
ry of the particulate material in question. In the case of geomaterials, it is the 
geological history which could not be duplicated during and after the occurrence 
of the deformation process of geomaterial. If destroyed, therefore, these bonds 
cannot be renewed and the material adopts some new geometrical arrangement 
of its structure. Some geomaterials are metastable and in losing their brittle 
bonds the structure becomes unstable. 

The intensity of structural bonding depends on the number of contacts (loose 
vs. dense sand), on the state of stress (isotropic vs. anisotropic, stress level 
- β and F i n Fig. 3.14) and on the angle of intergranular friction [φ in Fig. 3.14). 
These factors affect the strength of granular geomaterials and their resistance to 
deformation. In the second case, the fabric of a granular material (the contact 
planes) tends to adapt to the loading conditions and to modifiy the frictional 
bonds in such a manner that they will be able to face the same loading conditions 
without failing (the transfer from sliding to fixed contacts). 

An example of such behaviour is given in Fig. 3.23 (confined oedometric 
compression). After the first loading cycle, when 

Fig. 3.23. Oedometric compressibility of loose Zbraslav sand (n0 = 4 6 % ; see Section 3.7.1), 
subjected to 3 cycles of loading-unloading. 
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i.e., the irreversible compression εζ = e a — ε[ strongly prevails over the reversible 
ε\ compression (m in eqn. 3.10 equals about 0.5), one may observe that: 

— For repeated loading cycles the uniaxial compression is drastically reduced 
to less than 1/4 of its virgin value. 

— The axial deformation turns out to be mostly of a reversible nature. 
— The axial deformation is (almost) completely reversible if the overconsoli-

dation ratio (the ratio of the maximum past load to the present load) OCR ^ 2. 
— The reversible part of the compression curve (OCR > 2) is nonlinear. 
In addition, the compression curve acquires a more or less linear form for 

OCR < 2. This phenomenon is thought to be the combined effect of the internal 
stresses, induced by the confined compression where the principal stress axis 
rotates from the vertical position to the horizontal and vice versa, and of change 
in the fabric and size of grain clusters (the quartz grains of alluvial Zbraslav sand 

1 1 1 

35 40 45 o /o 

IN IT IAL POROSITY n 0 

Fig. 3.24. Reversibility of oedometric compression of Zbraslav sand of different initial porosity. 
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68 

do not break down in the experimental range). The linear compression curves do 
not guarantee the reversibility of deformation. The linear course is the result of 
a complex deformation process and it cannot be simply explained by assuming 
it to be a consequence of an "elastic" behaviour. 

In the same range of oedometric load, the influence of the sand density on the 
reversibility of axial compression has been investigated. The higher the density, 
the more pronounced is the reversibility of axial strain (Fig. 3.24). If extrapola-
ted, the linear relationship in Fig. 3.24 yields n0 = 13.8 % for the complete 
reversibility. This unrealistic value of the initial porosity n0 suggests that even in 
their densest state granular materials do not compress reversibly (the oedometric 
confinement accents the reversibility of compression). The increase in the 
reversibility of deformation in Fig. 3.24 with the decrease of n0 can be explained 
by the increase in the number of contacts. The load is then more uniformly 
distributed, the contact forces are smaller and the frictional bonding more 
stable. 

The axial compression of sand in an oedometer equals its volumetric compres-
sion and it always represents a decrease of the volume. If subjected to shear, sand 
will also display a negative volumetric strain, i.e., dilatancy (volume increase). 
When cyclically loaded by shear, the reversibility of the sand's dilatancy can be 
tested. As represented in Fig. 3.25, this reversibility depends, as may be expected, 
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on the density of sand and for high shear stress levels this reversibility reaches 
a considerable magnitude. For small stress levels, contractancy (volumetric 
compression) takes the place of dilatancy. Both contractancy and dilatancy 
induced by shear stressing must be differed from contraction and dilation, 
products of the first invariant of the stress tensor. 

Shear cycles enabling the recording of the reversibility of dilatancy may be 
taken as a repeatedly applied shear stress of changing sign. The product of such 
a loading is irreversible in both directions and its description by the s

T
Jea ratio 

is, therefore, structurally not correct. Reversible deformations of geomaterials 
are, in the majority of cases (e.g., with the exception of oedometric loading), also 
irreversible but of an opposite sense

6
. 

AXIAL LOAD tfQ ( OEDOMETER } 

χ 
< 

Fig. 3,26. Effect of stepwise loading of loose Zbraslav sand in an oedometer (n0 = 43.3 % ) — 
Kamenov and Feda (1981). 

If a load is applied in a stepwise manner, the sudden adaptation of the sand 
structure takes on the form of a local structural collapse. The greater the load 
steps the more abrupt the deformation—the sign of the structural collapse— 
Fig. 3.26. The looser the sample, the more pronounced the collapse because of 
the weaker frictional bonds. 

There is no difference between the bonding of granular and cohesive materials 
if the latter are in the form of a powder mixed with a nonpolar liquid - Fig. 3.27. 
It is the polarity of water molecules which forms the reason why clayey "grains" 
are "dissolved" and why the solid-liquid interphase on the huge specific surface 
of the solid phase is born. The potential energy of the system will thus be 
decreased by decreasing the specific surface energy of the solid-air interphase 
(compare the energy needed for crushing dry and water-saturated rock). 

6
 This effect is exploited when compacting cohesionless materials by torsion repeated in the opposite 
sense (rotary tabletting presses). Such a "pseudoreversibility" takes place if the stress tensor rotates 
during loading and unloading. 
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Contemporary ideas about the mutual interaction of clay particles (their 
clusters) seem to indicate solid-to-solid contacts therein. This is evidenced by the 
scanning electron microscope, showing scratches on the surface of kaolinite 
particles as a results of shearing of wet clay particles (Matsui et al., 1980). In 
addition, the same conclusion may be arrived at from the acoustic emission of 
cohesive compacted soils and bentonite clay recorded in triaxial creep tests 
(Koerner et al., 1977). The mechanism of the origin and function of reversible 
cohesive bonds may be assumed to be roughly equal to that of granular soils 
(friction is the effect of the adhesion of solid particles, the adhesive theory of 
friction). 
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Fig. 3.27. Tensile strength of powdered clay mixed with nonpolar liquid (CC14) and water. 

More important because of their complexity from the engineering point of 
view are brittle bonds of (mostly) cohesive particulate materials—probably all 
of them in the natural state abound in these bonds. Serious discrepancies 
between laboratory and field behaviour can often be traced to the laboratory 
testing of remoulded soils void of natural brittle bonds. 

Particulate materials whose structural units are glued together by some 
cementing matter (calcium carbonate, iron compounds, clay coating in the case 
of sand, etc.) behave in the initial stage of a deformation process like porous 
(pseudocontinuous) solids. As soon as the brittle bonds begin to fail, the 
material starts to become particulate (i.e. to enter into a particulate state of 
matter where the bonding between structural units is much weaker than within 
them) and to manifest all the principal features of particulate materials (e.g., 
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internal friction, coupling of volumetric strain with shear stresses, the validity of 
the principle of effective stresses). The transition from a cemented into a particu-
late state (usually occurring progressively) marks the strength and deformation 
behaviour of those materials considerably. While for geomaterials with prevai-
ling reversible bonds, the terms elastic behaviour, reversible strain, etc. should, 
in view of the above discussion, be replaced by physically correct terminology 
"pseudoelasticity", "pseudoreversibility" etc., the materials with brittle bonding 
may actually behave more or less elastically through the initial phases of their 
stressing, straining, etc., when their brittle structural bonding is practically 
untouched and when it effectively restrains all structural units from mutual 
displacements. 

REVERSIBLE/TOTAL SHEAR STRAIN RATIO f
T
lf 

( RING SHEAR APPARATUS ) 

Fig. 3.28. Reversibility of shear strain recorded for undisturbed Strahov claystone in a ring-shear 
apparatus (normal stress σ'η — 0.5 MPa). 

Fig. 3.28 shows the shear-strain reversibility observed for undisturbed Strahov 
claystone. Since the material, although cemented, suffers from fissuration (Fig. 
3.5), the state of complete reversibility is confined to τ\τ{ -> 0. The S-shape of 
the experimental curve suggests that at medium values of τ/τΓ, the reversibility 
ratio fly is almost constant and near to 0.1. This means that the ratio of 
reversible to irreversible strain equals 1/9 and that both strains increase in this 
interval of the deformation process. The increase of the reversible shear strain 
should again be understood as the effect of the shear load acting in the opposite 
sense, i.e., it should be called pseudoreversibility. For elevated shear stress, the 
high value of the shear deformation dominates and in the regime of step-loading 
used, pseudoreversibility cannot be simulated. 
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In the study of brittle bonding, the investigation of the mechanical behaviour 
of natural loess, which is collapsible if wetted, is most instructive. This soil can 
be considered as the most suitable model of cemented geomaterials - similarly 
to an eluvial sand with breakable grains, such as Landstejn sand, which models 
the process of grain crushing extremely well. Some of the features of loess were 
already presented in Figs. 3.15 and 3.21. 

Fig. 3.29a shows the Möhr envelope of a collapsible loess. The common 
interpretation (dotted straight line) hides the fact that there are two stages in the 
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Fig. 3.29 Collapsible (cemented) undisturbed loess sample (Prague-Dejvice, Fig. 3.2, No. l) : a - its 
shear resistance (shear box); b - the frequency of brittle bond destruction; c - volumetric strain vs. 

shear strain recorded in a shear box (Feda, 1967). 
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behaviour of loess: the first one when loess is a cohesive soil owing to its brittle 
bonding, and the second when all brittle bonds are destroyed and it behaves like 
a cohesionless material. From the strength (Fig. 3.29a) and deformation (Fig. 
3.29c) measurements, the frequency curve in Fig. 3.29b has been derived. It 
presents a sort of a hidden (internal) parameter, not explicitly recorded but 
implicitly present7. A similar effect of structural break-down after the consolida-
tion load has been exceeded is visualized in the so-called pore-pressure stagnati-
on, successfully modelled numerically by Hsieh and Kavazanjian (1987, p. 169 
et seq.). The stagnation results from the subsequent structural stabilization. 
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Fig. 3.30. Oedometric and triaxial ÄQ-compression of a collapsible loess (tested by Ê . Â. Hamamd-

shiev) and Zbraslav sand. 

7
 This interpretation was made plausible by a series of tests with Zbraslav sand in a shear box. To 

describe a volumetric strain-shear strain relation similar to that in Fig. 3.29c, no special "disintegra-

tion" function o f the type in Fig. 3.29b was needed, although both relations (for loess and sand) were 

otherwise in complete analogy (Feda, 1971b). 
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Two stages in the behaviour of such a cemented particulate material are 
evident. A correct structural interpretation thereof also contributes to the 
accuracy of the description of its phenomenological behaviour. 

Fig. 3.30 compares the uniaxial (oedometer, KQ - triaxial test) compression of 
a collapsible loess and Zbraslav sand. Frictional bonds in the Zbraslav sand 
become mobilized gradually and a continuous curve results. For loess, two 
stages may be distinguished: the first, where brittle bonds considerably suppress 
the compressibility and ensure a low value of the Κ$ coefficient (K0 = 0.29; K0 

= a'Ja'^ for ετ = 0). In the second stage, where the brittle bonds fail, compres-
sion increases and KQ rises to K0 = 0.53. The transition from one deformation 
stage into another creates an effect not dissimilar to preconsolidation. This 
"pseudo-preconsolidation" stress (σ'^ = 0.35 MPa) may be called the structural 
strength of the material. 
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Fig. 3.31. Dependence of the intensity of structural collapse of loess on the dielectric constant of the 
wetting liquid. 

The brittle bonding can be weakened or even destroyed not only in the 
mechanical way just described (Fig. 3.29, 3.30 or the interval 2-3 of the compres-
sion curve in Fig. 3.15) but also by chemical agents, as was proved by Kenney 
et al. (1967). The simplest chemical agent is represented by water. It exerts 
a physicochemical effect: by penetrating into the cracks, fissures, joints, etc. of 
dry material it decreases their surface energy and, at the same time, their 
strength. This is valid also for cementation materials. If it is strong enough (low 
degree of saturation, generally Sr < 0.6), this adsorption effect is able to cause 
a structural collapse of loose loess (n0 > 40 % as a rule). 
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This well-known structural collapse (occurring also in a variety of other 
materials, e.g., in rockfill) is bound to the water saturation. Other liquids, with 
smaller polarity or dielectric constant, are less effective in lowering the surface 
energy of the cementing matter and their destructive effect is, therefore, milder 
(Fig. 3.31). As can be deduced from Fig. 3.29, the collapse of loess and other 
water-sensitive materials due to wetting will not occur if the cementation bonds 
are mechanically destroyed in advance and, consequently, the originally loose 
material is compacted. Fig. 3.32 shows that the critical load should exceed about 
0.6 MPa (for uniaxial compression). There is an evident similarity between loess 
and cemented Leda clay whose brittle bonds are destroyed by remoulding. 

0 0.2 0.4 0.6 0.8 1 MPa 

UNIAXIAL COMPRESSION O Q 
(OEDOMETER) 

Fig. 3.32. Ellcci of uniaxial load on the collapsibility of undisturbed loess when welled and on the 
destruction of cementation bonds of undisturbed Leda clay (Feda, 1982a, p. 393; 2 - Zur and 

Wiseman, 1973; Leda clay - based on Casagrande, 1932). 

The consequences of the existence of brittle bonds in the majority of geomate-
rials can again be studied using a collapsible loess as the model material - Feda 
(1988) (the collapsibility is inherent only in materials porous enough to be 
structurally unstable after the destruction of brittle bonds). Fig. 3.33 represents 
two sets of compression curves of Sedlec loess samples before and after wetting. 
The structural collapse is evident. At the same time, the roughly linear compres-
sion curve has changed into a logarithmic form, in full agreement with the 
analysis in Section 3.3. If the data are evaluated statistically (Fig. 3.34), the 
equations of the regression lines can be found and the dispersion around the 
mean line established (in this case ± 2 s, if s is the standard deviation). A good 
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measure of this dispersion is yielded by the coefficient of variability ν (the ratio 
of the standard deviation to the mean value in % ) : in the first case (Fig. 3.34a) 
ν = 8.3 %, in the second case ν = 42.1 % (for more details of the statistical 
analysis see Section 4.1 ). This qualitatively different behaviour, reflected in Fig. 
3.35, could be interpreted in the following way. Cementation of geomaterials 
produces complex structures since the brittle bonds vary both spatially and in 
quality (their strength). After this component of structure is annihilated, a sim-
ple structure originates (see e.g. Fig. 3.29a or the tendency to isotropy in Fig. 
3.21), less statistically variable and more deterministic. Fig. 3.36 proves that this 
is the general case: the higher the strength of geomaterial (in the case of loess 
in Figs. 3.33 and 3.34 the higher its deformation resistance), the greater its 
variability. Stronger structures are usually more variable if they are products of 
cementation (contrary to crystalline rocks where this need not be the case). 

A X I A L S T R E S S ÖQ ( O E D O M E T E R ) 

Fig. 3.33. Oedometric compression curves of Sedlec loess specimens, with natural water content and 
after wetting (water saturation). 
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Fig. 3.34. Regression lines of the set of loess specimens in Fig. 3.33. 
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Since the shear strain at failure increases with the normal stress σ'Ώ, a logical 
consequence of Fig. 3.29a is that at a certain strain the effective cohesion c' 
should drop to zero. Fig. 3.37 depicts, in accordance with Fig. 3.29, how the 
increase of strain adversely affects the value of cohesion. This important effect 
was reported by Schmertmann and Osterberg (1960) and it can also be ascribed 
to the brittle bonding of geomaterials. 
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Fig. 3.36. Variability of the long-term unconfined compression strength of different rocks (siltstones 
and sandstones - Houska, 1980). 

Following the above considerations, one can expect that any disturbance of 
a soil sample will tend to decrease its strength and deformation resistance. Figs. 
3.38 and 3.39 give support to this idea. According to Fig. 3.38, the specimens 
with elevated compression strengths were much more damaged during sampling 
and their deformation modulus dropped below that of weaker specimens. Fig. 
3.39 compares block (monolithic) and tube (cylindrical) samples, the former 
being less damaged by the sampling procedure. Their deformation modulus is 
about 1/3 higher than that of samples taken with a metallic cylinder. Compari-
son of tube and block samples of Sedlec loess (Feda, 1982b) showed that the 
mean porosity of block samples is somewhat higher than that of tube samples 
(47.1 % vs. 45.8 %) but this difference is statistically insignificant. The initial 
porosity of block samples exhibits, however, less variation (the coefficient of 
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Fig. 3.37. Effect of axial strain (triaxial apparatus) on the cohesion and angle of internal friction of 
undisturbed Kyjice clay (wL = 68.5 %, 7 P = 33.5 %, w = 38.7 %, IA = 0.9 - see Section 3.7.4) 

and of Zbraslav sand (constant-volume test, n0 = 39,2 % ) . 
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variability ν = 2.2 % vs. 5.4 % ) . The compression index of both series of 
samples after wetting is the same, but in the natural state the deformation 
modulus of block samples is more than 40 % higher than that of tube samples 
(mean values of the oedometric deformation moduli 76.1 MPa vs. 52.25 MPa). 

These examples make clear how difficult the reliable measurement of the 
mechanical properties of geomaterials with brittle structural bonds can be. 
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Fig. 3.39. Comparison of oedometer deformation moduli of block and tube (cylindrical) samples 
(extracted by means of a metallic cylinder) of highly weathered gneiss (Fig. 3.4 and 3.17). 

3.6 Internal stress 

Of the four components of structure the last one, the internal (residual) stress, 
is the most difficult to identify. Direct evidence of it can be obtained only in the 
most simple case: if a water-saturated compressible soil (e.g., a clay) is unloaded, 
a negative pore-water pressure will be measured. Hence, the definition of inter-
nal stress: it is a stress state reigning in an externally unloaded specimen. 

The effect of internal stress can be almost exclusively detected only by the 
analysis of the phenomenological behaviour of a soil (rock). Direct evidence like 
that for structural units (grain-size curve), fabric or bonding (scanning electron 
microscope) is, with the exception of X-ray methods, lacking. Also indirect 
evidence is rare; Fig. 3.40 depicts one such example. 
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A specimen of siltstone subjected to uniaxial loading in unconfined compres-
sion of long duration exhibited, when cyclically loaded and unloaded, common 
curves of primary creep (the rate of axial strain e a -* 0 for time oo) with 
slight undulations (see 7th loading step). Creep deformation seems to be rever-
sible (see 7th loading cycle). In the 9th loading cycle, after the interval of primary 
creep and the period of ten days of secondary creep (ea = const), during the 34th 
day of loading, the specimen began to expand. This stage of negative creep was 
ascribed by the investigator to the release of residual stresses (Fig. 3.40 - Price, 
1970: another phase of negative creep was observed, but only partially do-
cumented, at the 6th loading cycle). 

X 
LU 

Fig. 3.40. Anomalous expansion of a Coal Measure siltstone (of Carboniferous age) subjected to 
unconfined compression (Price, 1970). 

The rock specimen tested in Fig. 3.40 comes from a horizontally bedded 
sequence in a mine in southeast England. The bedding in the test sample was 
parallel to the axis of the cylindrical specimen, so that the residual stresses 
released could be related to the horizontal plane in the Earth's crust. Since the 
sample was extracted at a depth of 1 100 m and at the time of its deposition it 
had been at an estimated depth of 4 000 to 5 000 m, its OCR is equal to about 
3.6 to 4.5. A much higher OCR could be related to the stress release of the 
sample during its extraction, assuming that the structure changed. Stress corres-
ponding to OCR of about 4 cannot, however, be locked in the sample by some 
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type of irreversible structural bonding. If no tectonic stresses were accounted for, 
the gravitational loading at the depth of 4 000 to 5 000 m would be about 80 to 
100 MPa and assuming that for a soft sediment KQ = 1, this is the pressure 
releasing the negative creep in Fig. 3.40. Since another stress release has been 
recorded at 64 MPa, one can assume that a double cementation of the material 
tested occurred in geological times at two different stress levels. 

Based on Fig. 3.40 and the analysis thereof, the following comments may be 
made: 

— There is some structural mechanism enabling the deformation energy 
(latent stress) to be locked-in. The simplest one represents brittle (irreversible) 
bonding. Release of this energy results in a sharp change of the current structure. 
Since any stress state of long duration induces also some changes of the geomet-
ry of structure, internal (locked-in) stresses are bound to some specific fabric. 

— For the release of the latent deformation energy, the state of stress and its 
level should be virgin, i.e., that stress to which the sample does not become 
accustomed. Only such a stress will overcome the structural strength of the 
geomaterial. 

In the light of these findings, let us consider Fig. 3.22. In the tests l b and lc, 
the original state of stress was anisotropic with σ'Ά = 0.5 or 1.23 MPa and 
σ[ = 0.3 and 0.74 MPa, respectively (using Jaky's formula, K0 = 1 - sin φ\, and 
taking approximately φ\ = 23°). This anisotropic state of stress changed after 
unloading to isotropic (pore-water pressure Au). Accounting for Skempton's 
formula (Skempton, 1954) for water-saturated clay with an elastic skeleton (as 
a first approximation), 

Au = - (0.3 + 1/3 . 0.2) = 0.37σ' ί8 (3.26) 

and 

Au = - (1.23 + 1/3 · 0.49) = 1.39<r'is (3.27) 

in the first and the second cases, respectively. Comparing the resulting isotropic 
stress a[s with the original one, one can conclude that a virgin loading occurred 
in the horizontal direction and, consequently, a tendency to change the sample 
fabric orientation (the previous one being most stable for the vertical directional 
load). The strain steps on the shrinkage curves lb and lc in Fig. 3.22 seem, 
therefore, to be ascribable to the internal (residual) stresses. 

A similar behaviour seems to emerge in the case of K0 (ετ = 0) triaxial tests 
of Zbraslav sand (Feda, 1984a). The principal stress axis was originally vertical 
turning during unloading to horizontal. The sample structure became unstable 
which was expressed by some oscillation of the K0 - value and its general 
decrease (structural collapse) for QCR > 10 (medium dense sand). This is 
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suggested to be the sign of the release of strain energy locked-in during the 
preceding confined K0 - compression with the vertical directional load. 

These few examples serve as evidence of the profound influence of internal 
(residual) stresses on the mechanical behaviour of geomaterials. In some cases, 
they are even able to affect this behaviour qualitatively (e.g., the reversal from 
positive to negative creep). 

3.7 Structure of some tested soils 

In the preceding as well as in the following text, series of experiments (espe-
cially on creep) with several types of soils are referred to. In the light of the 
preceding sections, their structure will be described in some detail in order to 
render possible a structural interpretation of the phenomenological behaviour of 
these soils. 

Their grain-size curves are assembled in Fig. 3.41. 

SAND 

EQUIVALENT GRAIN SIZE IN mm 

Fig. 3.41. Grain-size curves of tested soils. 

3.7.1 Zbraslav sand 

This sand is of alluvial origin. Its grain-size distribution follows a log-normal 
frequency curve (Feda, 1982a). Grains consist mostly of quartz with very small 
amounts of mica and feldspar. If their diameter is smaller than 0.5 mm they are 
subangular, larger grains are subrounded and have a smooth surface. Depending 
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on the initial porosity (its range is from about 30 % to 45 % ) , the peak angle of 
internal friction equals 35° to 47°. 

Grains of this sand do not break to any appreciable extent under the experi-
mental conditions (up to σ'Ά = 2 MPa - grain-size curves before and after the 
tests differed by a statistically insignificant amount). Sand specimens were 
prepared either by compaction (if dry) or by vibration (if water saturated). Some 
experimental results with Zbraslav sand were already quoted in the preceding 
text - Figs. 3.23 - 3.26, 3.30 and 3.37. 

3.7.2 Landstejn sand 

This is a residuum of highly decomposed Landstejn granite. The parent rock 
consists of the following minerals: plagioclase (Na + Ca feldspar), microcline 
(K + Na feldspar) and quartz. Since the proportion of plagioclase nearly equals 
that of microcline, the granite can be called adamellite. The mineralogical 
composition of the rock eluvium—Landstejn sand—is consistent with the mine-
ralogy of the granite. About 60 % of Landstejn sand consists of coarse-grained 
feldspar, chemically attacked in the course of intensive weathering and therefore 
weak and friable. In the experiments, feldspar grains have been subjected to 
intensive crushing - Figs. 3.10, 3.11 and 3.12. 

The initial porosity of Landstejn sand varies between 24 % (for grains 
< 7 mm) and 44 % (4 to 7 mm fraction). The grains are angular. 

3.7.3 Loess 

Collapsible loess from two Prague localities has been used: Dejvice - Figs. 3.2, 
3.3 and 3.29 - and Sedlec - Figs. 3.15, 3.21, 3.33, 3.34 and 3.35. They are nearly 
identical (Dejvice: n0 = 41 .6-43 .5%, w = 14 .4-17%, wL = 
= 25.7-29.4 %, /p = 10.2-13.4%, J A = 1.2, S r = 0.56-0.6; Sedlec: n0 = 
= 43.8-49.5 %o, mean value 4 7 . 1 % ; w = 21 .2%, in the experiments 
3.7-31.2 %; wL = 35-37 %, mean value 36.3 %; / p = 14-16.9 %, mean value 
15.8 % ; C a C 0 3 content about 8.4 %, / A = 1.32, Sr = 0.63, in experiments 0.12 
to 0.93, mineralogical composition: mostly quartz, feldspar, mica and amphibo-
le, in the clay fraction about 50 % of illite, 30 % of kaolinite and 20 % of 
montmorillonite). 

The loess is of Middle-Pleistocene age (Mindel-Riss interglacial) and it is 
a wind-blown deposit. It can be classified (Casagrande's classification chart) as 
CL soil. 
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3.7.4 Kyjice clay 

It is an organic fissured clay of Upper-Tertiary age, with the admixture of 
bituminous coal in the form of hard pieces. If heated to 600° C, 21 % od the 
weight of the dry sample is lost. The specific gravity is 2.3 to 2.4. Basic properties 
of Kyjice and other clays and claystones are listed in Table 3.2. 

The content of organic matter is responsible for the difference between wL and 
Wp of the samples with natural water content and after drying at 105 °C. 
According to the value of 7 A, it is an illitic clay (with possible admixture of some 
kaolinite). The grain-size curve in Fig. 3.41 was obtained, as for all clayey soils, 
by hydrometer analysis. The Möhr envelope is bilinear, with a break at a'n = 
= 0.25 MPa: for lower values, the friction on the fissures prevails, for higher 
values the shear resistance of intact clay is mobilized. One test result with this 
clay is shown by Fig. 3.37. 

3.7.5 Sedlec kaolin 

This soil consists of 88 % of kaolinite and 9.2 % of other clay minerals (this 
agrees with IA = 0.44). For testing, the commercially available kaolin Sla was 
used. It is a chemically prepared natural kaolin from Sedlec near Karlovy Vary. 
It is a CH or CL clay, but owing to the chemical preparation it falls into the 
group of OH clays in Casagrande's classification chart. 

The structure of this kaolin is specific. It consits of large aggregates of 
elementary kaolinite particles which relatively easily disintegrate owing to the 
action of stress or strain. Such clusters of kaolinite particles are no exception 
with kaolin (see e.g., Feda, 1982a, Figs. 4.24 and 4.48) and may reach the size 
of a sand grain (up to 4 mm dia. - Mitchell, 1976, p. 35). Scanning electron 
micrographs in Fig. 9.11 confirm this conception. 

3.7.6 Dablice clay stone 

This is a representative of the Cenomanian claystones of the base of the Upper 
Cretaceous. The undisturbed sample was extracted at a depth of 7 m from 
a borehole situated in a flat region. One cannot, therefore, assume any previous 
slope movements affecting the claystone structure. During the trimming of the 
specimens, however, the sample partitioned into two parts separated by a smo-
oth shear surface. It was concluded that in the course of the dry boring the 
friction on the periphery of the claystone core surpassed its strength and it was 
pre-sheared along a torsional failure plane. This was affirmed by measuring its 
shear parameters: zero cohesion and low angle of internal friction suggest 
residual shear resistance (Tab. 3.2; Feda, 1983). 
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Dablice claystone is an inorganic weak rock of medium plasticity, CL accor-
ding to Casagrande's classification. It is stiff and water-saturated. As may be 
seen with the naked eye, the sample is diagenetically cemented by iron com-
pounds and even contains locally hard concretions of this material. The light-
-gray claystone is accordingly spotted by light limonitic stains. 

According to the mineralogical analysis (by A. Cymbâlnikovâ), it is a clayey 
siltstone whose fabric consists of regions with parallel arrangements of flakes of 
clay minerals. They are formed of kaolinite and montmorillonite, the former 
prevailing. Quartz, in the form of angular to subangular silty grains, represents 
up to 20 % and it comes from metamorphic rocks. 

For the hydrometer analysis the sample was boiled for about two hours. The 
fraction of grain size larger than 0.25 mm consisted of angular to subangular 
particles, 80 % of which were identified as rusty to brownish, water-resistant 
clusters (aggregates) of finer particles, easily breakable when dry. The rest of this 
grain-size range was composed of quartz. The 0.25-0.1 mm fraction consisted 
of quartz grains and only about 20 % of them were formed by clusters of finer 
clayey particles. 

Oâblice claystone is evidently built up of clusters of particles cemented 
together by water-resistant bonding material. Its grain-size curve in Fig. 3.41 is, 
owing to this cementation, shifted to the right. The relatively low index of colloid 
activity IA would correspond to that of the kaolinitic clay minerals. The 
montmorillonic component is suppressed, most probably by the cementation 
mentioned, and thus the dispersion (specific surface of particles) of the claystone 
is decreased. 

3.7.7 Strahov claystone 

Like Öablice claystone, this is also a Cenomanian claystone, already mentio-
ned in Figs. 3.5, 3.9 and 3.28. Samples in the form of two monolithic blocks were 
obtained from an adit just below the base of the Cenomanian sandstones at 
Strahov monastery (Prague). 

According to Casagrande's classification, this is a silty organic clay of low 
plasticity - ML to OL. Its heating loss (at about 600 °C) amounted to 
12.1-13.8 % - the organic content is therefore important. Locally in the undis-
turbed sample one can even find carbonated remnants of plants measuring some 
millimeters to centimeters. 

Strahov claystone was tested in both undisturbed and reconstituted states. In 
the latter case, dry claystone was powdered by grinding and the powder mixed 
with distilled water. After drying the liquid limit of the claystone dropped 
somewhat (Table 3.2) together with the plastic limit, as is typical for organic 
clays, but the drop was milder than with Kyjice clay. 
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Undisturbed claystone is stained by limonite and it often crumbles and falls 
into pieces. For the hydrometer analysis it was ground in a porcelain dish, sieved 
through a 0.5 mm mesh and mildly boiled in distilled water for about two hours. 
After the hydrometer analysis (water-glass was used as a stabilizer), the sediment 
was sifted and two grain-size fractions obtained - see Fig. 3.9. The 0.1-0.25 mm 

Fig. 3.42. Structure of Strahov claystone - undisturbed (a) and reconstituted (b, c), scanning electron 
photomicrographs by J. Kazda: a - magnification 1650 χ (picture width 50 μιη), b - perpendicular 
to the shear surface (upper right-hand corner - 300 χ magnified, picture width 280 μιη), c - shear 

surface, magnification 1500 χ (picture width 60 μιη). 
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fraction (Fig. 3.9a) consists of 20 % to 30 % of quartzy grains, the rest and 
practically all the grains of the 0.25-0.5 mm fraction (Fig. 3.9b) are clusters 
(aggregates) of finer particles cemented in a water-resistant manner. Such pseu-
dograins can easily be crushed by light pressure (Fig. 3.9c). 

From the grain-size analysis one may conclude that Strahov claystone is 
mostly composed of pseudograins, i.e., of clusters of elementary particles. Fine 
particles do not act individually, but by way of structural units measuring up to 
several hundreds of micrometers. They are cemented together by iron com-
pounds and they are therefore stable if submerged in water. The term claystone 
therefore seems to be correctly used in this case. 

Strahov claystone is of a dark-gray colour with rusty coatings of limonite. 
According to the mineralogical analysis (A. Cymbalnikova) it consists of illite 
and kaolinite, the former prevailing. In addition, finely dispersed quartz was 
identified and Si-, Ti- and Fe-oxides. The value of the index of colloid activity 
suggests the leading role of kaolinite, with the admixture of quartz. The effect 
of more active clay minerals seems to be suppressed by the aggregation of 
particles. 

~ 10 TO 100 jum 

Fig. 3.43. Scheme of the structural unit of Strahov claystone. 

In measuring the unit weight of claystone pieces of different size (by a paraffin 
method), one finds (Fig. 3.5) that Strahov claystone is dissected by different 
fissures and it contains macropores so that only pieces with volumes larger than 
about 30 cm

3
 (Section 3.1) are statistically representative for its unit weight. 

The fabric of Strahov claystone may be judged from the scanning electron 
micrographs (by J. Kazda). Fig. 3.42a affirms the aggregate structure. Its flat 
particles are oriented perpendicularly to the vertical geostatic pressure. They are 
arranged parallely into domains and terrace-like pseudograins, aggregates and 
structural units. Thus a dispersive open-domain structure originated whose 
structural unit is schematically depicted in Fig. 3.43. Since the sample was 
extracted near the surface of a slope, where some downward displacements 
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might take place, the regions of parallel oriented fabric are probably arranged 
in a kind of a mosaic, changing somewhat in the orientation. Limonite and 
organic matter bind structural units together, increasing their size. 

Both undisturbed and reconstituted Strahov claystone possess an open struc-
ture (the initial porosity near to 40 % ) . This is intensively compressed in and 
around a shear surface (Fig. 3.42b) which is about 30 μιη thick (shear fabric). 
Outside of the shear zone, the fabric retains its openness. In the shear surface 
itself (Fig. 3.42c), thick parallel flakes of the shear fabric are arranged in the form 
of tiles on a roof, marking the direction of shear (from the top ot the bottom 
in Fig. 3.42c). Shear surface depicted developed as the result of testing in the ring 
shear apparatus. 

According to the above description, both Strahov and Dablice claystone 
display approximately the same structure. It is clearly aggregated, with a disper-
sive domain substructure. The indices of colloid activity of both claystones 
coincide. Elementary particles are bound together by water-resistant brittle 
bonds. The main difference between both claystones resides in the organic 
matter, of which Strahov claystone contains a substantial amount, contrary to 
Dablice claystone. This is reflected in their specific and unit masses (Table 3.2). 

3.7.8 Conclusion 

The structural analysis of the soils tested points to the complexity of their 
structure. Zbraslav sand, with prevalently quartz grains, resisted the crushing of 
these grains during the deformation process in the experimental range. Its 
deformation resulted from the mutual sliding of grains and clusters of grains of 
varying sizes. 

The deformation mechanisms of other materials are more complicated. The 
existence of brittle bonding of their structural units (pseudograins) suggests that 
a double deformation mechanism will take place, the combination of sliding and 
of cataclastic displacements. Since the clusters of elementary particles are relati-
vely weak (see Fig. 3.9c), one can expect the cataclastic deformation to commen-
ce at relatively low stress levels, of the order of 0.1 MPa. Although deformation 
by sliding can produce both dilatancy and contractancy, cataclastic deformation 
results only in the contractancy (diminishing of the volume by shearing). 

It is to be expected that, owing to the different deformation mechanisms, the 
rheological behaviour of Zbraslav sand and of other materials (especially of 
claystones) will be rather different. 
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3.8 Changes of soil structure 

Higher structural units display poor stability during a deformation process. 
They disintegrate progressively and are subjected to degradation or new units 
may be formed. A stable configuration of structural units is that with the greatest 
number of contact forces normal to the contact planes. Such a configuration 
requires that the structural units should rotate during strain hardening. This 
rotation is the more difficult, the larger the structural units are. This fact explains 
the instability of larger structural units in the course of a deformation process, 
their disintegration, crushing of grains of granular materials under heavier 
loads, etc. In addition, brittle bonds are destroyed at some stage of deformation, 
locked-in energy may be released and in different regions of the specimen, the 
fabric may change into a compression or shear fabric. 

water flow 

changes of soil structure 

time loading 

disintegration 

weathering, 

shrinkage, 

swelling, etc. 

(effect of the stress and strain 

level) 

\ 
dynamics of structural units 

'growth 

„clay (flat, elon-

compression and shear fabric ' «
a t ed

 Prieles) 

sand ( spherical 

particles) 

elimination of coarse pores 

pore sise distribution. 

^increase of very fine pores 

destruction of brittle bonds 

release of stored strain energy 

Fig. 3.44. Schematic representation of main factors affecting the structure of geomaterials and the 
nature of the possible structural changes. 
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One can, therefore, a priori expect that the constitutive relations of geomaterials 
can differ considerably at various stages of the deformation process—the struc-
tural changes may profoundly affect the state of the geomaterial without any 
change of its composition. Creep may, for example, develop from the primary, 
transient stage (the creep rate έ -> 0 for time t oo) through the secondary stage 
(έ = const) to the tertiary stage (έ - •  oo for / -> oo). 

Fig. 3.44 shows, as a scheme, the principal factors affecting the structural 
changes of geomaterials (Feda, 1975). As a result, the original (initial, inherent, 
innate) structure is replaced by the induced (deformation) structure. Of conside-
rable practical importance is the question as to what type of structure, original 
or induced, the mechanical behaviour of a geomaterial will depend on. The 
answer is not simple. It depends on the intensity of structural changes and these 
again depend on the stress level, magnitude of deformation, etc. and on the 
resistance of the structure in question (its structural strength, etc.). Some exam-
ples are shown in Figs. 3.12, 3.18, 3.21, 3.29a, 3.30, 3.32 and 3.37. Original 
structure affects, as a rule, the deformation parameters and, for granular ma-
terials and rocks, also their strength parameters. The induced structure affects 
the strength parameters of cohesive soils of softer consistency and the residual 
(ultimate) strength, but there is no simple rule. In so many cases, a close scrutiny 
is required. 



4. STATE PARAMETERS OF SOILS 

The mechanical behaviour of a geomaterial depends on its state. The strength 
and compressibility of a plastic clay is clearly different from the same clay of 
hard consistency. A loose granular material contracts when sheared, a dense 
sample of the same material dilates, etc. The parameters governing the mechani-
cal behaviour, in these examples the water content and porosity, may be called 
the state parameters. 

The state of a geomaterial is defined by its structure and texture. The texture 
is of importance only on some rare occasions. The fissuration of a specimen, for 
instance, which is responsible for a scale effect (e.g., Fig. 3.5) ceases to be of 
importance to the mechanical behaviour at higher stress levels (e.g., Habib and 
Vouille, 1966). The effect of texture is mostly eliminated by dividing the massif 
into structural units which are texturally homogeneous. The texture will not be 
treated in the following text which concentrates on the structure as the principal 
factor of the state variability. 

It is to be logically expected that different states of a geomaterial are closely 
related to its differing structure. Structural changes, however, have to be of such 
an intensity that, from the statistical standpoint, they will significantly affect the 
mechanical behaviour of a geomaterial at the phenomenological level. 

Principal state parameters are: porosity (density), water content (consistency), 
stress (its level, degree of isotropy, stress path), strain, time and temperature. In 
the text that follows these are dealt with separately, but it should be remembered 
that many of them act in combination, e.g., water content and porosity (inducing 
a change of the degree of saturation). 

Some (direct) state parameters characterize the original structure of geomate-
rials (porosity, water content, plastic and liquid limits, etc.) since it is, as a rule, 
not possible to measure them in the course of the investigated deformation 
process. Other (indirect) state parameters intimately depend on this deformation 
process (strain). The third group refers both to the original and induced structu-
res (stress, time, temperature), the last-mentioned relationship sometimes preva-
iling (time, temperature). 
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4.1 Porosity 

This is a state parameter related to the original structure. One may well 
imagine the stress fields of porous continuous materials as being far from 
homogeneous. Different stress gradients, the sources of progressive failures at 
the higher stress levels, their intensity, distribution, etc. depend on the pore-size 
curve, the overall porosity and its homogeneity. To prove at least some of these 
assumptions, it is necessary to examine a series of samples of the same origin and 
of widely differing porosity. 

X 
Η MPa 

g 4 0 - -
cc 

0.2 0.6 1 1.4 1.8 2.2 

VOID RATIO e 

Fig. 4 . 1 . Variation of the unconfined compression strength of coral reef rocks with their void ratio 
(Deshmukh et al., 1985). 

Fig. 4.1 represents such a set of measurements. Owing to the different geomet-
ry of their skeletal systems, specimens of coral reef rocks (consisting of calcium 
carbonate) display high variability of porosity (the void ratio e = 0.3 to 2.2, i.e. 
the initial porosity n0 = 23.1 to 68.7 %) and strength (from about 4.5 to 35 
MPa). 

The condition of a different initial porosity with the same composition and 
water content is, for soils, most simply fulfilled by sand. Sand specimens must, 
however, be prepared by a single method (remember Fig. 3.19). In the tests 
analysed in the following, compaction in layers and vibration were used for dry 
and water-saturated specimens, respectively. 

The effect of the initial porosity on the reversibility of deformations was 
already demonstrated in Figs. 3.23, 3.24 and 3.25. Fig. 4.2 depicts the relation 
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ship between the failure stress ratio and initial porosity of dry Zbraslav sand 
(CID tests in a triaxial apparatus). For different cell pressures (testing range 
0.1-0.4 MPa), a mean regression line 

— = 9.720 0.142 8 n n (4.1) 

has been derived (n0 in % as is usual). The high coefficient of correlation (r = 
= 0.948 > r 0 0 5 = 0.433 if r 0 0 5 is the coefficient of correlation at the 0.05 
probability level) affirms that there is a close relationship between this stress 
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Fig. 4.2. Triaxial failure (peak) stress ratio of a series of triaxial tests of dry Zbraslav sand (specimens 
of 3.8 dia. and 7.6 cm height) as depending on the initial porosity. 

ratio and n0. If statistically analysed (see Appendix lb), all experimental values 
are found to be confined to a strip with a width of + 2s (s - standard deviation) 
parallel with the mean regression line (4.1 ) 

— = 9.72 ± 0.28 - 0.143n0 . (4.2) 

The value of the standard deviation in eqn. (4.2) (s = 0.14) was calculated by 
means of a projection of all measured values of σ'ΆΪ/σ'ή on the n0 = 0 axis. The 
value of the mean slope of the straight line (4.1) was thus retained (the same 
procedure was applied in Fig. 3.34, Section 3.5). Fig. 4.3a represents the frequen-
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cy distribution obtained in such a way. It is sufficiently near to the normal 
(Gauss-Laplace) distribution to make the common method of correlation analy-
sis acceptable. 
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Fig. 4.3. Frequency distributions of the measured values (Fig. 4.2) projected onto the nQ = 0 axis. 
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Fig. 4.4. Relationship between the failure stress ratio and the initial porosity of a series of specimens 
of dry Zbraslav sand in the direct shear box. 
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For the sake of orientation, the coefficient of variability ν is of great utility. It 
is defined for normal statistical distribution curves as the ratio of the standard 
deviation to the mean value of the measured quantity (in % ) . In the case of Fig. 
4.2, the mean value of the σ'^/σ'τΐ ratio is variable according to eqn. (4.1) which 
must be respected in the calculation formula. The mean computed value is then 
ν = 3.0 % which is a rather low value (as compared e.g., with ν = 8.3 and 
42.1 % for the compression of loess - Section 3.5). It corresponds to the average 
variation of the peak angle of internal friction (±1 .5 °), in the majority of cases 
being much smaller (±0.75 °). 

Fig. 4.4 shows the variation of the peak (failure) stress ratio calculated from 
the measured value of the peak angle of internal friction with the initial porosity 
for the same dry sand, but in a direct shear box. In this case, the experimental 
values are confined within a fan with its apex on the «0-axis. The regression 
straight line (see Apendix lc) 

— = 15.952 - 0.309 8 n 0 (4.3) 

(r = 0.959, r 0 05 = 0.368) represents the average experimental values. If compa-
red with the triaxial apparatus (Fig. 4.2), the peak stress ratio σ'ΛΪ/σ'ή is higher 
for dense specimens in shear box tests (+14.4 % for n0 = 33 %) and lower for 
loose sand ( — 21 % for n0 = 42 % ) . The existence of such a relation is well 
known. It indicates, among other things, that both testing apparatuses give 
similar results for medium dense sands and that there exists a good correlation, 
at least of the shear resistance, in both cases. 

If the experimental limits are statistically fixed, then all experimental values 
in Fig. 4.4 lie within the limits of ±1.755 from the mean experimental value 

-γ = 15.952 ± 1.6 - (0.31 ± 0.031) n0 . (4.4) 
σ
ή 

Taking into account that two parameters in eqn. (4.4) are variable, the average 
coefficient of variability ν = 5.7 % (its range is 5.6 to 5.7 % ) . This is almost twice 
the value measured in the triaxial apparatus (Fig. 4.2). For the variability of the 
slope of the straight lines (4.4) the common approach is to be accepted—there 
is only one value of the mean slope. Both the slope (Fig. 4.3c) and the intersecti-
on of the radially projected experimental values into the «0-axis (Fig. 4.3b) again 
vary approximately according to the normal law of distribution. 

In Fig. 4.5 there are three regression straight lines of water-saturated Zbraslav 
sand tested in a triaxial apparatus (for better differentiation, two of the three 
confidence strips are dotted). In all cases, the coefficient of correlation is high 
(r = 0.967 to 0.990) — dependence of the failure stress ratio on the initial 
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porosity of specimens is close. In all cases, the variation of the measured values 
projected on the «0-axis is also near to the normal distribution (Fig. 4.6). 

All specimens fall into three categories: 
1. Water-saturated specimens of 3.8 cm dia. and consolidated at a'rc = 

= 0.1 MPa. Their regression line is 

—- = 15.847 ± 0.366 - 0.297 7 n, 
< f 

ο (4.5) 

(mean value ±2s, ν = 3 .2%, Fig. 4.6a). 
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Fig. 4.5. Triaxial failure stress ratio for different initial porosities of water-saturated specimens of 
Zbraslav sand of two diameters (diameter/height ratio about 2). 

2. Water-saturated specimens of 3.8 cm dia. and σ' = 0.25 and 0.4 MPa: 

—•  = 10.855 ± 0.15 - 0.173 2 nn 
CT
rf 

(4.6) 

(mean value ± 2 s , ν = 1.6%, Fig. 4.6b). 
3. Water-saturated specimens of 10.2 cm dia. (as previously, height/dia. 

ratio about 2) and a'rc = 0.1 and 0.4 MPa: 

—•  = 13.905 ± 0.303 - 0.268 4 na (4.7) 

(mean value ±2s, ν = 3.5 %, Fig. 4.6c). 
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The mean value of eqn. (4.6) is drawn in Fig. 4.2. Comparing the test results 
in Fig. 4.5 both mutually and with those in Fig. 4.2, the following comments are 
useful: 

— Water saturation has no effect on the strength of tested Zbraslav sand 
(eqns. 4.6 and 4.1) - see Fig. 4.2, where mean regression lines for dry and 
water-saturated specimens coalesce. This conclusion accords with many other 
experiments of this kind and indicates the quartz grains of Zbraslav sand to be 
very rough (see Feda, 1982a, p. 98). 

Fig. 4.6. Variation of the measured values in Fig. 4.5 projected on the nQ — 0 axis:a - a'rc = 0.1 MPa 
(3.8 cm dia.), b - σ'το = 0.25 and 0.4 MPa (3.8 cm dia.), c - a'TC = 0.1 and 0.4 MPa (10.2 cm dia.); 

σ'κ - consolidation cell pressure. 

— Water-saturated specimens, consolidated at a low stress level {a'tc = 
= 0.1 MPa) and of small diameter are, especially in the dense range, considerab-
ly stronger. This can be explained with reference to Fig. 3.19: water-saturated 
specimens prepared by vibration are of maximum strength even if of the same 
density as dry specimens (tamping of dry sand approximately equals vibrating 
of dry specimens). This discrepancy is the result of different structures, i.e., of 
different fabric (more isotropic for vibrated specimens) and, possibly, of different 
system of contact forces (greater ß- Fig. 3.14a - in the compacted specimens). 
The resulting increase of the failure stress ratio is about 20 % (for n0 = 33 % ) . 

The maximum density of vibrated water-saturated specimens surpasses that 
of dry specimens. One may refer to Fig. 3.8 for an explanation. In vibrated 

m σ» r Ρ) ιο 
<*> pi O < 4 s i » i 

VARIATION OF Oa'f /o' i f FOR n 0 = 0 

a ) b ) c ) 
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specimens, a dense skeleton with a porosity higher than average was created 
(comparing eqns. 4.3 and 4.6, one arrives at the conclusion that such a skeleton 
would have a porosity of 26.2 % which is not impossible). The strength of such 
a skeleton is higher than is indicated by the mean porosity of the specimen, but 
for higher stress levels - a'rc > 0.1 MPa - it is destroyed before the failure stress 
ratio is achieved. In such a way, the porosity of the specimens becomes homoge-
neous and the specimens behave at this stress level in the manner prescribed by 
their average initial porosity. 

— According to Fig. 4.5 there is a scale effect in the range of medium dense 
to loose specimens (n0 > 35 % ) : the failure stress ratio of 10.2 cm dia. specimens 
is lower (by about 13 %) than the same ratio of 3.8 cm dia. specimens (compare 
eqns. 4.7 and 4.6 for n0 = 38 % ) . It is interesting to note that the slope of the 
regression lines of small specimens at a low stress level ( — 0.3) is about equal to 
the corresponding slope of large specimens ( — 0.27). Relative strengths of both 
series of specimens are, therefore, quite similar. This seems to indicate that 
besides the consolidation stress level, also the dimensions of the specimen 
influence the homogeneity of the initial porosity. 

— The homogeneity of water-saturated specimens is much higher, as far as the 
failure stress ratio is concerned, than that of dry specimens (the coefficient of 
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Fig. 4.7. Correlation of the triaxial stress ratio and initial porosity of dry triaxial specimens of 
Zbraslav sand. 
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variability of 3.1 % for the correlation 4.1 as compared with 1.6 % for the 
correlation 4.6). The confidence limits of the peak angle of internal friction of 
very homogeneous samples are, therefore, about ±0.75 °. 

Test results in Figs. 4.1, 4.2, 4.4 and 4.5 show that the strength of solid and 
granular geomaterials depends on their initial structure. Structural changes in 
the deformation process to which these geomaterials are subjected are not strong 
enough to affect their mechanical behaviour in the pre-peak and peak periods 
(although the dilatancy of dense and the contractancy of loose sand tend to 
diminish the difference in the porosity at failure). 

With cohesive soils, structural changes in the deformation process are more 
intensive (especially the changes in fabric and brittle bonding—their flat and 
elongated particles are more apt to change the geometry of the soil skeleton, as 
already indicated by the high value of m = 1 in the case of Ev eqn. 3.10). Very 
often, therefore, only the deformation parameters depend on the initial structu-
re, for the strength properties the effect of induced structure prevails, with the 
exception of stiff to hard soils. 

Contrary to the above examples emphasizing the importance of the original 
structure to the state of geomaterials, Fig. 4.7 demonstrates the opposite case. 
It depicts the variation of the residual stress ratio, related to the residual angle 
of internal friction (a characteristic of the post-peak behaviour when appreciable 
deformation has accumulated) with the initial porosity of dry Zbraslav sand 
(triaxial tests). The regression line (see Appendix la) 

^ = 3.339 + 0.007 n0 (4.8) 

does not correlate with the initial porosity (r = 0.103, r 0 0 5 = 0.433), at least not 
at the 5 % confidence level. The mean value of the residual stress ratio corres-
ponds to the residual angle of internal friction of φτ = 34.3 °. The coefficient of 
variability equals 4.15 %. 

The absence of any correlation with the original structure suggests that in the 
residual stage of a (triaxial) test the induced structure prevails completely. 
Specimens fall into several quasisolid parts, acting as structural units of large 
dimensions displacing mutually along the shear surfaces by which they are 
separated. 

Since by the state parameter "porosity" a characteristic of the original struc-
ture is understood, the behaviour of granular materials in the residual stage does 
not depend on its original structure. Combining eqns. (4.1) with (4.8) one 
concludes that σ'ΆΪ/σ'ή = σ'^σ'^ for n0 = 42.6 %. If the failure and residual stress 
ratios depend on the original and induced structures respectively, then the 
differences in both structures fade away for n0 ^ 42.6 %. In such a case, there 
is no post-peak drop in the stress ratio vs. axial strain diagram, which marks this 
new quality in the behaviour. 
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With some cohesive soils, a dependence of the residual angle of internal 
friction on the stress and strain level may be observed. In this case, these state 
parameters affect the extent of the development of shear fabric (i.e., of a charac-
teristic of induced structure) and this fact is, once more, the expression of the 
greater number of degrees of freedom of the structure of a material consisting 
of flat and/or elongated particles. 

4.2 Water content 

This state parameter is related to the original structure (the initial water 
content—in the case of undrained tests also the final water content). The 
importance of the physico-chemical activity of water was already mentioned 
(Figs. 3.27 and 3.31). If the initial water content affects the mechanical behaviour 
of geomaterials, then this behaviour depends on the initial structure. 

According to the well-known relation 

STe = —w (4.9) 

(Sr - degree of saturation, e - void ratio; ys, y w - unit weight of soil particles and 
water, w - water content), with a change of the water content either the void ratio 
e or the degree of saturation 5 r will vary. Variation of the water content w is 
usually combined with change in the degree of saturation. 

FINAL WATER CONTENT 

Fig. 4.8. Relationships between the radial deformation of flat clayey cylinders, loaded by different 
weights, and their water content. 
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In the preceding text, the effect of decrease of the water content was already 
described as leading to the shrinking of clayey soils and affecting their fabric 
(Fig. 3.22). The very pronounced (adsorption) effect of water was demonstrated 
in Figs. 3.33, 3.34 and 3.35. The increase of water content in collapsible loess in 
a metastable state, causing significant growth of its degree of saturation, trigge-
red the structural break-down. 

Fig. 4.8 presents the results of a simple test revealing the important effect of 
water content on the strength of cohesive soils (this is not the case with granular 
soils - see Figs. 4.2 and 4.5, with the exception of the range where the capillary 
forces play a role). A flat cylinder (2 cm dia., 1 cm height) of a powdered 
(Sokolov) clay mixed in different proportions with distilled water was loaded, 
after being inserted between two glass plates, by different weights (from 5 to 
50 kN). The increase of its diameter was measured after 20 seconds of loading. 
In Fig. 4.8 the range of the full saturation of specimens is marked. 

The effect of water content on the deformation of clayey cylinders is pronoun-
ced. The higher the load, the smaller the (critical) water content at which the 
deformation starts (Fig.4.8b). This value equals the abscissa of the load-strain 
diagram (Fig. 4.8a) on the strain axis. Both this abscissa and the shape of this 
diagram are variable depending on the water content. With its increase, the 
strength drops and the strain rises. Owing to the flatness of the tested cylinder, 
the shear stresses on its top and bottom faces are of importance. Their increase 
with the water content may explain the concave shape of the compression curve 
at w = 50 % (Fig. 4.8a). The effect of water on the strength and deformation 
properties of cohesive geomaterials is well documented by this simple test. 
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= 28.9 %, IA = 0.9, of Miocene age) mixed with distilled water in different proportions. 

103 



State parameters of soils 

The effect of the degree of saturation varying with the water content is shown 
in Fig. 4.9. Powdered illitic clay of Tertiary (Miocene) age was mixed in different 
proportions with distilled water and tested in the direct shear box. From the test 
results, total shear parameters were calculated. For ST -> 1 the peak angle of 
internal friction φΐ 0 (Fig. 4.9a). Since ST -> 1 for w -+ 30 % and y s/ y w = 2.7, 
eqn. (4.9) yields e -> 0.81 (nQ = 44.7 % ) . Although the value of Sr increases 
almost uniformly from 0 to 1 with the water content up to 30 %, the porosity 
varies strongly, increasing from w = 0 to 18 % (the decay of pseudograins), 
afterwards decreasing with a minimum of n0 = 45 % at w = 25 % to 30 % (the 
effect of growing compressibility), followed again by a monotonous increase (for 
Sr = 1 the void ratio increases - see eqn. 4.9 - proportionally to the water 
content). Thus, the effect of the water content is reflected via its influence on the 
strength of clayey pseudograins. Maximum cohesion corresponds to the mini-
mum porosity (Fig. 4.9b). The form of the Möhr envelopes also changes—it is 
more or less linear at w = 5 % and convex for w = 25 %. This convexity points 
to the important structural changes (crushing of pseudograins) at the higher 
load. 

The mechanism of the effect of water on the strength of clayey pseudograins 
just mentioned accords with that causing the drop in the strength of claystone 
with the rise of water content in Fig. 4.10. Such a relationship may generally be 
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found with rocks. Water reduces the surface energy of the solid-gaseous inter-
phase and, consequently, the crushing energy (roughly equal to the increase in 
the surface energy resulting from the newly formed fragments) also drops. 

Fig. 4.11 shows the effect of the water content on the shear resistance of stiff 
to hard and fissured Merkur clay. The higher the water content, the lower the 
peak shear resistance (Fig. 4.1 la), but the residual strength is not affected by the 
varying water content (Fig. 4.1 lb). The Mohr's envelopes are curvilinear in both 
cases. A bilinear approximation seems to be equally appropriate. This nonlinea-
rity suggests that with increasing σ'η significant structural changes of the clay 
take place. Owing to the fissuration, Merkur clay consists of angular fragments 
of relatively intact clay. With increasing normal stress, these intact fragments 
break up, the more easily the higher their water content. In the residual stage of 
tests, when the specimen is dissected by a continuous shear surface, only the 
unevenness of this surface matters. Since it decreases with the rise of σ'η, <pr 

decreases with increasing σ'η. At this stage of the deformation process, the water 
content loses its function of a state parameter—this is taken over by the stress 
level. This is a situation analogous to the residual behaviour of Zbraslav sand 
where the initial porosity also ceases to be a state parameter (Fig. 4.7). 

NORMAL STRESS 6^ 

Q) 

Fig. 4.11. Peak and residual strength envelopes of undisturbed (illitic) Merkur organic clay (wL = 
= 87 %, IP = 55.5 %, IA — 0.9) of Tertiary (Miocene) age; variable in situ overconsolidation ratio 

OCR, direct shear tests, two different natural water contents: w = 28.8 % and 38.9 %. 
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Fig. 4.12 depicts the effect of changes in water content (caused by the different 
depths of the groundwater level in the years 1958 and 1961) on the mechanical 
behaviour of highly weathered parent rocks (see Figs. 3.4 and 3.17), mica schist 
and gneiss. For higher water contents the frequency curves became bimodal 
(with two peaks). This is the consequence of the differing structure of these two 
geomaterials, weathered mica being more sandy, weathered gneiss more clayey 
(see also Fig. 3.17). Weathered mica is therefore less sensitive to variations of 
water content and remains almost unaffected by its value (the second peak on 
the curve 2 to the right in Fig. 4.12b and c corresponds to the peak of the curve 
7). Cohesion seems to be influenced by the capillary forces—it declines at higher 
water content in the case of the sandy product of weathering (Fig. 4.12a - first 
peak of the curve 2). 
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Fig. 4.12. Effect of different water contents on the effective shear parameters (direct shear box) and 
oedometric deformation modulus of weathered mica schist and gneiss (Feda, 1962). 

4.3 Stress and stress path 

Some of the effects of stress level were already quoted: with increase thereof 
sliding compression changes into cataclastic compression (Fig. 3.15), compressi-
on fabric develops (Fig. 3.18), and the isotropy of the stress state induces 
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a similar geometrical isotropy of the loess structure (Fig. 3.21). If subjected to 
a sudden load impulse, granular structure partially breaks down (Fig. 3.26). 
Increase of the shear stress level causes irreversible deformations to prevail (Fig. 
3.28). Owing to the increasing axial load the brittle structural bonds will decay, 
causing a decrease of the shear resistance (Fig. 3.29) and an increase of the 
compressibility (Fig. 3.30), the amount of the destruction of structural irrever-
sible bonding being characterized by a frequency curve (Fig. 3.32). 

In Fig. 3.15, a general oedometric compression curve was analysed. Fig. 4.13 
depicts an isotropic compression curve of Sedlec kaolin (triaxial apparatus). The 
magnitude of compression is expressed as the ratio of the initial (w0) and the 
final (wf) water contents. Using eqn. (4.9), one may deduce that 

(w in %). The full line in Fig. 4.13 yields the best approximation of experimental 
results. Its initial part is concave (up to ó'ô0 = 0.3 MPa), the final part convex 
(ó'ôï ^ 0.4 MPa). The concave part is described by the relation 

(4.10) 

,0.802 
rc 

(4.11) 

0 0.1 

CELL PRESSURE 6^ 

0.2 0.3 0Ë 0.5 0.6 MPa 

Î - ~ = 0.977 - 0.542 5 r c 

0.6 -f-
 0

 ( r = 0.976 ) 

Fig. 4.13. Isotropic compression curve of Sedlec kaolin in a triaxial apparatus. 
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(r = 0.96) and according to the preceding analysis, it represents the deformation 
resulting from the sliding of structural units (clusters of kaolinite particles). 
Following eqn. (4.10) one may get (if w0 = 45.73 % and y s/ y w = 2.683) 

ε ν = 0.224 8σ '£ 8 02 (4.12) 

and the volumetric deformation modulus Et is 

Et = 5 . 5 4 7 < 1 9 8 . (4.13) 

The low exponent m = 0.2 shows that the compression is not of the usual 
"clayey" type, but much more "granular". 

The cataclastic deformation that follows and changes the compression curve 
into a convex one (in analogy with Fig. 3.15) may be explained by the disintegra-
tion of the clusters of particles (according to Section 3.7.5 the aggregation of 
kaolinite particles causes the development of pseudograins of an appreciable size 
- see Fig. 9.11). 

If the structural interpretation of the compression curve in Fig. 4.13 were 
ignored, a linear relationship between the strain wf/w0 and stress a'rc could be 
assumed. Then 

— = 0.977 - 0.542a; c (4.14) 

(r = 0.976) with wf/w0 = 1 for aTC 0. From eqns. (4.14) and (4.10) 

ε ν = 0.013 + 0.299σ;ε (4.15) 

and volumetric deformation modulus 

Et = 3.346 MPa = const . (4.16) 

Even if this relation is accepted, it will not mean that an elastic compression 
takes place. As in Fig. 3.15, linearity is a result of the combination of sliding and 
cataclastic deformations. The reversibility of the elastic behaviour excludes any 
variation of the structure (or state) of Sedlec kaolin, contrary to the reality 
(otherwise w f would be equal to w0). 

Dividing the linear compression curve into two portions, a better agreement 
with the measured values will be arrived at. In such a case for a'rc ^ 0 . 3 MPa 

w f 

— = 0.995 - 0.681< c (r = 0.984) (4.17) 
w 0 
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and for σ'τ(> 0.4 MPa 

- ί = 1 - 0.576< c (r = 0.997) . (4.18) 
w o 

Both the above curves better fulfil the condition H>f/w0 -> 1 if a'TC -> 0. By 
means of eqn. (4.10) they may be com verted into 

e v = 0.003 + 0.375a; c (4.19) 

(Et = 2.66 MPa = const) and 

ε ν = 0.324< c (4.20) 

(w0 = 47.95 % and Et = 3.08 MPa = const). As can be seen, the differentiation 
of one linear compression curve into two radically decreases the respective 
tangential (volumetric) deformation modulus. 

Fig. 4.14 shows isotropic compression curves of two other fissured clays of 
Tertiary origin. The respective compression curves are linear. In the light of the 
previous analyses, one has to assume that this linearity results from mutual 
counterbalance of sliding and cataclastic deformations. Their physical mecha-
nism is in this case different from that with Sedlec kaolin. Instead of kaolinite 
particle clusters, Vysocany and Merkur clays consist of (angular), more or less 

Fig. 4.14. Isotropic compression curves of Vysocany (wL = 82 %, IP = 51.8 %, / A = 1.48) and 
of Merkur organic stiff fissured clays. 
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intact fragments of stiff clay which gradually become destroyed with the rising 
cell pressure and isotropic compression. 

For Vysocany clay there exist two experimental compression curves, one 
based on the water-content ratio wr/w0 and the other with the directly mesured 
volume strains. Ideally, they should agree. The first compression curve 

— = 1.003 - 0.291*4 (r = 0.99) (4.21) 

can be expressed by means of eqn. (4.10) in the form 

ε ν = 0.138< c - 0.001 (4.22) 

(Et = Ew = 7.23 MPa = const), according to the second compression curve 

ε ν = 0.123 + 17.736a;c (r = 0.998) (4.23) 

( ε νί η % ) , £ v ( = Et) = 5.64 MPa = const, i.e., only 78 % of Ey from eqn. (4.22). 
Assuming that the latter value of Ew is more probable, the higher value of Ew 

calculated from w f could most probably be distorted by the inaccurate measure-
ment of wf. This, however, would have to introduce some systematic error 
(multiplying w f by 1.28, Ew = 5.64 MPa is obtained), which does not seem to be 
the case. 

There is another probable explanation. The final water content w f of triaxial 
specimens of Vysocany clay was measured after complete unloading of individu-
al specimens. Eqn. (4.23) refers, therefore, to the irreversible (residual, plastic) 
volumetric strain ε^, eqn. (4.23) to its total value εν. Then 

e» 0.138 / χ 

- = = 0.778 = 77.8 % , 4.24 
ε ν 0.177 4 

i.e., only about 22 % of the volumetric strain is reversible. This would mean that 
for fissured clay and τ/ττ = 0, the curve in Fig. 3.28 would not pass through 
a point ε ν/ε ν = 1 on the horizontal axis (see Fig. 3.28 - dotted line), if such 
a conclusion could be applied also to shear strains. This may be physically 
interpreted as an initial irreversible deformation being necessary to mobilize the 
friction along fissures. 

For Merkur clay the isotropic compression follows the relation (Fig. 4.14) 

ε ν = 14.589<r;c (r = 0.989) (4.25) 

(εν in %, a'rc as formerly in MPa), i.e. Ey = 6.85 MPa = const. 
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The above analysis of isotropic compression indicates that the usual semilog-
arithmic dependence of the value of the volumetric strain on the isotropic 
pressure (i.e. m = 1 ) seems to be prevalently valid for soft to plastic remoulded 
(or, better, reconstituted) illitic clays (e.g., Cam-clay model). 

Fig. 4.15 represents the isotropic compression curve of St. Peter sand (Borg 
et al., 1960). This is a washed sand (Ordovician St. Peter formation of Illinois) 
with 99 % of well-rounded quartz grains. For such a granular soil, elevated 
pressures are needed to provoke grain crushing. As shown by Fig. 4.15, the 

HYDROSTATIC PRESSURE 

Fig. 4.15. Isotropic compression curves of St. Peter sand (Borg et al., 1960). 

compression curves consist of a series of concave curves interconnected by 
singular points (of bifurcation). They are far from being smooth. As suggested 
by the concavity, the sliding deformation mechanism prevails. In each of about 
three sections of the compression curve the state of the sand differs. The 
accumulated break-down of sandy grains in the preceding compression changed 
the grain-size curve substantially and, accordingly, the porosity, so that some-
what different material is compressed in the following loading. Combining 
different grain-size classes, one finds the most stable granulometric composition 
of the sand (Fig. 4.15, curve 2). The coarser grain fraction undergoes more 
intensive crushing—the same as with Landstejn sand (Fig. 3. 10). 

The compression curves in Fig. 4.15 could be linearized (dotted lines in Fig. 
4.15), but such linear curves do not pass through the origin. This is the consequ-
ence of the physically different processes of compression with an alternation of 
phases of stable (Ew increasing with the loading) and unstable (abrupt drop of 

111 



State parameters of soils 

112 

Ey) structures of the sand. The increased structural stability may be judged from 
the points of intersection of the extrapolated compression curve with the å í 

= 0 axis (Fig. 4.15 - points a, b). Up to the loads indicated by these points, the 
sand seems to behave like an ideally rigid body. 

If the compression curves in Figs. 4.15 and 4.13 are compared, there is 
a qualitative difference: with the sand, there are no convex compression lines. 
This could be explained by the different course of the grain-size degradation. 
With sand, after the grain breakage, the soil becomes better graded—its porosity 
is lower and remains of the crushing form a part of the soil skeleton. With 
cohesive soil, broken-down structural units cease to participate in the load 
transmission—the effective porosity thus increases and the final product is more 
compressible. 
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Fig. 4.16. Shear box tests of Zbraslav sand with constant volume of specimens. 

Figs. 4.16 and 4.17 present examples of the structural instability of Zbraslav 
sand at lower stress levels when there is no grain crushing (identical grain-size 
curves before and after testing). In both cases, constant-volume tests took place 
and the pore-water pressure recorded enabled the effective stresses to be calcula-
ted. In the course of testing there are, accordingly, no changes in the overall 
porosity (a correction for membrane penetration in the triaxial cell was applied). 
Following Fig. 4.16, in the initial phase of loading there is no strain hardening 
of loose Zbraslav sand, contrary to dense specimens. The loose soil skeleton 
collapses and a considerable part of its load (all load increments) is taken over 
by the pore-water pressure. Only after a considerable deformation of the speci-
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men is the bearing capacity of the skeleton renewed (with the open test system 
it is the stage of dilatancy). The constant-volume angle of internal friction equals 
the residual angle with a good approximation. The value of the consolidation 
normal stress in the shear box (a'nc = 0.16 and 0.46 MPa) does not seem to play 
any role. 

The behaviour of the sand skeleton in triaxial tests is more complicated. If the 
measure of its bearing capacity is represented by the effective axial stress of the 
specimen, then this capacity depends on the initial porosity and on the consoli-
dation cell pressure. The higher they are, the wider is the range of structural 
instability. This is evidently a combined product of those two state parameters. 
Structural softening can be either absolute—negative ó^-values—or relative, in 
the form of an interval of smaller intensity of strain hardening. Both effects are 
the combined effects of stress and strain. 
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7.6 cm height). 
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Fig. 4.18 shows an effect of the strain level on the shear resistance of sand, 
similar to Fig. 3.29a. The initial peak angle of internal friction (dotted in Fig. 
4.18) is much higher and for higher stress levels (ó'ç > 0.1 MPa) drops to a lower 
constant value. A similar relationship is presented in Fig. 4.19 (Vardoulakis and 
Drescher, 1985): for triaxial tests the angle of internal friction decreases for 
ó'ç 50 kPa, in the normal stress interval from 50 to 300 kPa it remains constant 
and finally decreases again owing to the effect of grain crushing. According to 
Fig. 4.2 the Möhr envelope of dry Zbraslav sand tested in a triaxial apparatus 
is linear (the failure stress ratio does not depend on the value of ó[Ã). On the other 
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Fig. 4.18. Mohr 's envelope o f dry Zbraslav sand (n0 — 40 % ) deduced from direct shear box tests. 
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Fig. 4.19. Variability o f the angle o f internal friction of a med nun-grained sand in a triaxial 
apparatus (Vardoulakis and Drescher, 1985). 



Stress and stress path 

hand, water-saturated specimens (Fig. 4.5, 3.8 cm dia.) show the same irregulari-
ty of the Möhr envelope as is depicted in Fig. 4.18. Phenomenologically, Mohr's 
envelope can be assumed to be curvilinear, but a physically correct, structurally 
based approach will take it as being composed of a series of straight lines, 
passing through the origin of the Möhr plane. 

These effects just described can be explained on the basis of Fig. 3.8b. Sand 
specimens consist of a dense bearing skeleton which, for lower normal stress 
levels governs the shear resistance but for higher stress becomes destroyed before 

CELL PRESSURE ff/c ( Μ Ρ α ) 

Fig. 4.20. Variability of the peak stress ratio (triaxial test) with the magnitude of the consolidation 
cell pressure (CID and CIU tests). 
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the peak shear stress is achieved. In the first case, the shear resistance correlates 
better with lower porosity than the mean one, the latter, on the other hand, 
determines this resistance in the second case. Although the mean porosity does 
not change, its local variability does, depending on the stress level

1
. 

Fig. 4.20 combines a series of triaxial test results of different soils showing that 
variability of the peak angle of internal friction with the consolidation stress 
level is a general phenomenon. This results in a curvilinear Möhr's envelope 
(Fig. 4.21) or, more correctly (according to the interpretation of Fig. 4.18), 
consisting of a fan of straight lines intersecting in the origin the Möhr plane 
(only a limited part of each of such straight line—its intersection with the 
phenomenological curvilinear envelope—is, however, a real part of it). 

The dependence of the peak stress ratio on the consolidation cell pressure in 
Fig. 4.20 causes the crushing of grains and structural units. The correlation 

— = 5.023 - 1.57 log a'rc (4.26) 

(a'TC in MPa) of Landstejn sand corresponds to the analysis of grain crushing in 
Fig. 3.10. Other tests with this material show (Fig. 4.20) that the effect of a'rc is 

ΜΡα I 

NORMAL STRESS 6n 

Fig. 4.21. Curvilinear Mohr's envelope of Landstejn water-saturated sand (Fig. 4.20, grain size < 
< 7 mm, CID tests). 

1
 Vardoulakis a Drescher (1985) prefer another explanation: elevated φ \ value is "a result of grain 

interlocking caused by microscopic asperities of the contact surface of the grains. The resistance 
against slip caused by these asperities presumably diminishes rapidly as the confining pressure 
increases". 
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smaller in the case of a constant volume testing. Strain participates, therefore, 
significantly in the grain crushing. For poorly graded sand (grain-size fraction 
4 to 7 mm—Fig. 4.20), the effect of stress level is more destructive. With fissured 
clays (Most, Vysocany) the intact fragments of clay are subjected to destruction 
in the course of a triaxial deformation process. Finally, in Sedlec kaolin this role 
is played by its pseudograins, clusters of clayey particles. The mechanism of 
cataclastic deformation is thus the same, its objects (structural units) differing to 
some extent. Although not experimentally evidenced by Fig. 4.20, there is no 

1 2 
NORMALIZED CELL PRESSURE oV'/cT^ 

Fig. 4.22. Stress paths of undrained triaxial specimens (CIU tests) of remoulded and water-satura-
ted Cerny Vûl loess (vvL = 33-36 %, IP = 12 %, IA — 1 to 1.3) with different overconsolidation 

ratios (OCR = 1.3 to 4; preconsolidation σ'κ = 0.4 MPa) - tests by B. Boucek. 
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doubt that the peak stress ratio of all soils presented will stabilize at some critical 
a'xc value (see e.g., Figs. 4.18 and 4.19). 

If overconsolidated, the specimens of geomaterials (soils) are structurally more 
stable. This is reflected by the increased reversibility of deformations (Fig. 3.23) and 
dilatancy. Fig. 4.22 presents an example of the triaxial stress paths (constant-volume 
tests) of overconsolidated remoulded loess. The higher the OCR value, the lower the 
pore-water pressure (i.e., the soil skeleton is less compressible). For the lower values 
of OCR = 1.3 and 2 only pore-water pressures were recorded, for the largest OCR 
= 4 for o'Jo'rc > 3.2 pore-water tensions took place. The value of the consolidation 
cell pressure σ' exerts a profound influence. 

NORMALIZED EFFECTIVE CELL PRESSURE ~ 

Fig. 4.23. Normalized triaxial stress paths of Sedlec kaolin. 
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The influence of the consolidation cell pressure on the behaviour of normally 
consolidated Sedlec kaolin was tested on a broader scale. Fig. 4.23 shows the 
triaxial normalized stress paths of water-saturated specimens of reconstituted 
Sedlec kaolin (CIU tests). The consolidation pressures a'rc ranged between 0.1 
and 0.58 MPa. The principal features of these stress paths may be summarized 
in the following manner: 

— Each stress path consists of several segments (e.g., for the specimen 1/8 
segment ab). Each of them characterizes one partial deformation process of the 
specimen in a more or less different state. 

— With rising consolidation pressure a'rc, the stress path becomes smoother 
(compare specimens 1/8 and 1/5). 

— In the course of deformation, either pore-water pressure increments (e.g., 
1/8 - ab, compression of the soil skeleton) or decrements (e.g., 1/8 - de, 
loosening of the soil skeleton) are recorded or, eventually, a constant volume 
deformation of the skeleton takes place (e.g., 1/8 - cd; in this case, the stress path 
is vertical). Since, as a rule, Δσ'οοί < 0 [σ'οα = (σ^ + 2σ^)/3] with only rare 
exceptions (in the final portions of the stress paths), volumetric deformations of 
the skeleton of kaolin are produced by dilatancy and contractancy, i.e., by the 
effects of stress anisotropy (this is exactly the case for Δ σ ^ = 0). 

— If Δσ'Ά = 0, the specimen goes into a metastable stage and its structure 
collapses for Δσ^ < 0 (e.g., 2/9 -Jg). The segment-like form of stress paths 
results from the periodical endeavour of the structure to adapt itself to the load 
increase. At the moment of the exhaustion of this adaptation ability, a relatively 
sudden change of the soil structure occurs (local structural collapse): the structu-
re abruptly takes on a more resistant alternative configuration. The specimen 1 /5 
is an exception—it had been collapsing almost since the beginning of loading. 

— The final section of all stress paths points to the dilatancy. This coincides 
with the origin of shear surfaces observed with all specimens. 

The common point of two neighbouring segments of stress paths is a singular 
point of (physical) bifurcation. It marks a change in the state of the tested 
specimen. 

According to this description, the stress paths in Fig. 4.23 faithfully reflect the 
initial structure of individual specimens and its changes in the course of the 
triaxial deformation process. Referring to Section 3.7.5 and to Fig. 9.11, the 
most acceptable explanation of these structural changes is the gradual disinteg-
ration of the clusters of kaolinite particles, accompanied by fabric changes

2
. The 

amount of disintegration increases with the σ^-value. One sign of this process 
is the general decrease of the overall inclination of the stress paths with increa-
sing <J;C. 

2
 Such degradation of structure, due to heavy traffic, is well known in agriculture. 
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Fig. 4.24. Relationship between the index of structure and the peak angle of internal friction of 
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Fig. 4.25. Strength envelope of Sedlec kaolin (CIU triaxial tests). 
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To express the structural changes mentioned, through each stress path (Fig. 
4.23 does not contain all stress paths), a smooth curve (an ideal stress path) was 
interpolated (e.g., 1/8 - the dotted curve). The larger the difference between the 
real and ideal stress paths (defined by the area between them up to the peak σ^), 
the more intensively the structure changes. If the ratio of this area for individual 
specimens to that of the first specimen (1/8) is calculated and is called the "index 
of structure", an interesting picture is obtained (Fig. 4.24): the angle of internal 
friction of the specimens correlates well with the index of structure. The smaller 
this index, the lower the value of φ\, similarly to the effect of grain crushing in 
Landstejn sand (Figs. 4.20 and 4.21). 

There exists a region where the index of structure remains practically con-
stant; in this region φ\ = 22.9 ° = const - see Fig. 4.25. The interpretation of 
the test results by the broken line 5 would be inappropriate (the same as with 
Fig. 4.21): the Möhr envelope of normally consolidated specimens of a clay 
should be linear and pass through the origin of the Möhr plane (Fig. 4.25 - the 
straight line 2; the dispersion of the peak stress difference at a'vc = 0.4 MPa - the 
straight line 3 - confirms this interpretation). The validity of the linear envelope 
is, evidently, confined (with the exception of the straight line 2) to the point of 
intersection with the line 5. 

/ / ^ c u = 0.171*0.129 l o g o V c 

o / / ^ c u = 0 3 7 2 < r r' c 

- f -

0.1 0.2 0.3 0.4 0.5 0.6 MPa 

CONSOLIDATION CELL PRESSURE <f{c 

Fig. 4.26. Undrained triaxial strength vs. consolidation cell pressure of Sedlec kaolin. 
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A similar picture is presented by the undrained strength in Fig. 4.26 which can 
only be formally interpreted by the broken line 1. One concludes that the change 
of the kaolin structure in the deformation process induced different states of the 
tested specimens which behaved mechanically in different ways. The only excep-
tion is the range of a'rc = 0.2 and 0.3 MPa, where a unique φ\ and a linear cu 

vs. a'TC relationship exist. 
The analysed series of tests of Sedlec kaolin enables a definition of the 

so-called isomorphous behaviour to be proposed (Feda, 1989a, 1990b). The 
mechanical behaviour of two materials is isomorphous if it can be described by 
the same dimensionless arguments

3
 (e.g. φ'^) and criterial functions (e.g., by the 

stress-strain relations in a dimensionless form) - Kozesnik (1983). The second 
condition represents a generalization of the first one. The (physically) isomor-
phous behaviour will only take place with a material undergoing the same 
specific structural changes in the course of the investigated deformation process 
(see Section 10.4). Elastic behaviour (Et = const and the deformations are 
completely reversible) is not isomorphous—within elastic limits the structure 
does not change. Soil deformation consisting of larger elastic constituent cannot 
be, therefore, physically isomorphous. 

The isomorphous behaviour is of great practical significance. Within its range, 
the mechanical behaviour of a material is described by dimensionless quantities 
irrespective of the changing experimental conditions—it is physically similar. 

LU 
Ο 
Ζ 
LU 

cc 
LU 

S: ί -

ο 5 10 15 °/o 

AXIAL STRAIN £ Q 

Fig. 4.27. Triaxial stress-strain relations of Sedlec kaolin. 

3
 Buckingham's (1914) or, better, Riabouchinski's (Buckingham, 1921) theorem. 
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Such is the behaviour of Sedlec kaolin if a'rc = 0.2 to 0.3 MPa (φ\ = const - Fig. 
4.25; cu/a'TC = const - Fig. 4.26). In this consolidation range, all stress paths 
group around the path 2/9 in Fig. 4.23. Stress-strain relations in a dimensionless 
form coincide (Fig. 4.27 - specimen 3/8 deviates somewhat and, since only its 
strength properies are physically similar, it may be called homomorphous). 

The isomorphous behaviour results from a specific strain-hardening process 
-strength, tangent deformation modulus, etc. increase linearly with the stress 
level. It cannot, therefore, be generally assumed for all particulate materials. 
Such behaviour cannot exist with soils formed by brittle structural bonds or if 
their structural units disintegrate and, accordingly, the value of their effective 
porosity is increased. Owing to sliding of their particles, a wider range of this 
physically isomorphous behaviour can occur with particulate materials under-
going densification in the investigated deformation process. Examples are loose 
alluvial sands or soft non-kaolinitic clays

4
 ("wet" clays in the terminology of the 

Cambridge school) within the common stress range or the range of elevated 
stresses of many soils (where φ\ -> φ\ or constant volume φ'). 

0 0.1 0.2 0.3 0Λ α5 0.6 MPa 

CELL PRESSURE <S'TC 

Fig. 4.28. Normalized triaxial deformation work of Sedlec kaolin. 

4
 Fortunately, the dominant clay mineral in the natural cohesive soils is illite (about 2/3), similarly 
to quartz - about 1/2 - in cohesionless soils - Mitchell (1976, p. 99). 
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An energetic interpretation of the ismorphous behaviour yields Fig. 4.28. The 
total normalized deformation work 

w
 / χ 

— = 0.079 + 0.069< c (4.27) 

(r = 0.79, a'TC in MPa) represents the sum of the normalized consolidation 
deformation work (because of linearity - Fig. 4.13 - it rises linearly with a'rc) and 
of the triaxial deformation work 

W 
— = 0.081 - 0.086<x;c (4.28) 

(r = 0.85, a'rc in MPa). 

The value of WT can be calculated assuming (in agreement with the experi-
ments) a hyperbolic stress-strain relation. The total deformation work is almost 
(within a few per cent) all irreversible

5
, i.e., it is spent on structural changes. If 

it is constant, as for σ'κ = 0.2 to 0.3 MPa, the structure becomes isomorphous 
(i.e., the specific, unit structural changes—deformation work for unity of a'TC 

—are equal). In the studied stress range it represents an exception from the 
linearity of W/a'K vs. g ' x q. 

The analysis of the triaxial behaviour of Sedlec kaolin has thus revealed that 
the most important state parameter was, in this case, the consolidation cell 
pressure a'rc. In these tests, the stress paths follow from the no-volume-change 
condition imposed upon the specimen. Stress paths can be explicitly chosen 
when testing drained specimens. This is the case in Figs. 4.29 and 4.30 (tests by 
Kurka, 1986). 

Two materials were tested - compacted loess and fuel ash. The direction of the 
selected stress paths is described by the ratio Aa'r/Aa'a, varying in the range 0 and 
+ 1. If Aa'JAa'a = — Vi, then Aa'oci = 0 and the stress path is situated in 
a deviatoric plane (a plane perpendicular to the diagonal of the principal stress 
space). 

The results of testing have been evaluated with respect to the peak angle of 
internal friction. According to Fig. 4.29b, the different stress paths used have not 
produced any pronounced effect on the Möhr envelope of the fuel ash. All 
strength values lie in a fan with its apex near the origin of the stress plane. The 
deviation from the mean correlation line is represented by ±s (i.e., one standard 
deviation). The coefficient of correlation is high (r = 0.998) and the coefficient 

5
 Assuming the isotropic consolidation to be only plastic and the initial deformation modulus of the 
triaxial compression to be the elastic modulus. 
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of variability ν = 3.6 % corresponds to that of Zbraslav sand (eqns. 4.1 to 4.7), 
although another definition of strength is applied. The peak angle of internal 
friction of all tests lies within the range of ± 2 ° . If any, then only slight effect 
of the consolidation pressure is expressed (compare open and full circles in Fig. 
4.29b, the dotted straight line a for the latter case). The highest stress levels seem 
to trigger some grain crushing. 

The test results of Cerny Vûl loess are similar (Fig. 4.30). All strength values 
are, in this case, also found within a fan with the value of deviation ±s. 

-i 1 1 1 1 1 f 1 — α ) 
0-3 0.4 0.5 0.6 0.7 0.8 0-9 1 

Fig. 4.29. Stress paths of Tfiskolupy fuel ash (grain sizes: 7 % < 0.01 mm, 60 % 0.01-0.2 mm, 
23 % 0.2-1 mm, 10 % 1-8 mm; n0 = 48 to 58 %)- t r iax ia l CADK0-tests by Kurka (1986); σ'κ = 0.2 

and 0.5 MPa. 
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Although the correlation coefficient is high enough (r = 0.979), the coefficient 
of variability is substantially higher than in the preceding case (t? = 9.3 %). The 
effect of the consolidation stress level is more suppressed (line a in Fig. 4.30). 
Owing to its greater variability, the peak angle of internal friction lies in the 
range + 4 ° . In both cases, the initial structure seems to be responsible for the 
strength of the specimens. 

Although, in both cases, there is no effect of the experimental stress paths on 
the triaxial shear resistance (in this respect, the specimens' behaviour is homo-
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Fig. 4.30. Stress paths of Cerny Vûl loess (laboratory compacted specimens) - triaxial CADKo-tests 
(ó'ê = 0.1 to 0.4 M P a ) by Kurka (1986). 



Stress and stress path 

morphous), there are great differences in the deformation behaviour - see Fig. 
4.31 for some selected stress paths. Notably characterized by very small defor-
mations is the stress path Ασ'τ/Ασ'Ά = + 1 , i.e., the stress path parallel to the 
stress-space diagonal, when the value of σ'^ decreases permanently and the 
specimens are of maximum preconsolidation (i.e. at failure, they are nearest to 
the origin of the principal stress space). This explains their "brittle" behaviour. 
The opposite is valid for the stress path Ασ[/Ασ'Ά = 0 - the behaviour is then 
very "ductile". Hence, the mechanical behaviour of specimens does not in any 

0.7+ 

Fig. 4.31. Stress-strain diagrams of fuel ash (Fig. 4.29) and Cerny Vùl loess (Fig. 4.30)—a couple 
of typical tests. 
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way resemble the isomorphous behaviour, since their overconsolidation ratio is 
highly variable in the course of the deformation process. Knowledge of the 
independence on the shear resistance of some materials on the selected set of 
stress paths can, however, be exploited for the solution of some stability pro-
blems. 

Specimens tested in the above test series possess the same initial porosity and 
water content (complete saturation). Specimens of saturated Zbraslav sand, but 
with different initial porosity, were tested to show the effect of the triaxial stress 
path Áó'ô/Áó'¢ = — Vi on the strength (CID triaxial tests). The results - Fig. 4.32 
- when compared with the standard CID tests Áó'ô/Áó'¢ = 0 (Fig. 4.5, the 

o 6-; = C O N S T ^ ^ ^ ^ ^ ^ ^ 

jr 3 - S Y M B O L S : 

00
 ο Ô ^ ct = 0.1 M P a 

oc 2 ·
 0Ë M Pa 

3 Ä 1 M P a 

< 
1 

0 + 1 I 1 Ç 1 1 1 1 
35 AO % 

INITIAL P O R O S I T Y n 0 

Fig. 4.32. Triaxial C I D tests of water-saturated Zbraslav sand with ó'^ = const (tests with ó'ô = 

= const - see Fig. 4.5, 3.8 cm dia., a'TC = 0.25 and 0.4 MPa) . 

mean regression line marked (J)), show a variable effect according to the magni-
tude of the initial porosity. From the qualitative standpoint, Mohr's envelope for 
óïá = c o n s

t tests is convex, contrary to the linear one for the standard tests. 
A detailed analysis of the test results (Feda, 1970a) leads to the conclusion that 
the volumetric strains in the a'oct = const tests are generally smaller (more 
pronounced effect of dilatancy, i.e., of negative volumetric strain). This differen-
ce decreases with the increase of the consolidation isotropic stress and initial 
porosity. For a'oct = const = 0.1 and 0.4 MPa, specimens seem to be denser 
than in reality. This is the same effect as in Fig. 4.5 for óÞ = 0.1 MPa (marked 
(D in Figs. 4.5 and 4.32). It seems, therefore, reasonable to apply the same 
hypothesis: the denser bearing skeleton of nonhomogeneous specimens formed 



Strain 

by vibration is more resistant to disintegration (and specimens are less inclined 
to the homogeneization) if the value of a'oct during testing increases (standard 
CID tests). The value of a'oct seems to be determinant for the integrity of this 
bearing core. Such a conclusion would point to the role played by the consolida-
tion cell pressure a'TC, already mentioned in the analysis of the behaviour of 
Sedlec kaolin (Fig. 4.23) and, to some extent, of fuel ash (Fig. 4.30). 

All the stress paths mentioned above are, qualitatively, of the same type: axial 
stress is greater than radial. In many cases, the fabric of soils is anisotropic with 
the vertical axis of isotropy. This is the effect of either a ^-consolidation 
(K0 < 1 ) or of laboratory preparation of samples (compaction in horizontal 
layers or the effect of gravity if vibration is applied). One may therefore expect 
a different behaviour of specimens if it depends on the initial structure and if the 
axial stress is smaller than the radial, e.g., if Ασ'τΙΑσ'Ά = + oo (triaxial extension 
test), Ασ'Ά = — 2Δσ^ (with Ασ[ positive), etc. In such cases, structural effects are 
much more pronounced owing to the rotation of the principal axis of stress and 
its deviation from the (vertical) axis of fabric anisotropy. For ideally isotropic 
structure, no effect of stress rotation should be observable. 

In such a case, one may recommend testing horizontally and vertically cut 
samples and to compare their test results. The effect of the fabric anisotropy 
depends on the "movability" of the structural units (on the consistency, density, 
etc. of soils) and on the stress level. If the induced fabric might prevail in the 
mechanical behaviour, the strength should be isotropic and only deformation 
parameters at low stress level may be anisotropic. 

4.4 Strain 

It is well known that the mechanical response, i.e., the state of soils, depends 
on the magnitude of their strain (Ishihara, 1981): for strain ε < 10~

5
, the 

response is elastic; for 10~
2
 > ε > 10"

5
, it is elastoplastic (ε = 1 0

_ 1
 approxima-

tely represents the failure strain); when ε > 10~
3
, the effects of load repetition 

and of loading rate come into play. Dilatancy and contractancy do not appear 
and pore pressure changes during undrained shear do not occur, except for 
strains greater than about 10~

3
. This value can be regarded as the threshold 

value of the major structural changes, and thus state of a soil is not affected up 
to ε > 10~

3
. 

The effect of strain as a state parameter is, in many cases, combined with the 
effect of stress σ (Section 4.3) and/or of time t (Section 4.5). It can be therefore 
separated if σ = const and / = const. The condition t = const is commonly 
fulfilled for rapid tests with granular materials. The second condition σ = const 
calls for that stage of the experiment, where the stress level is stable. This is often 
the residual stage of a shear test. 
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The effect of strain is well documented in Fig. 3.12, where both the above 
conditions are fulfilled. It is demonstrated that, in this case, with the rise of strain 
—at a constant stress and with negligible time effect—the amount of destruction 
of structural units (grains of Landstejn sand) substantially increased (Fig. 3.11 
- grain-size curves 2 3). Thus, the tested sand changed its state, since that 
parameter of structure characterized by the size of structural units underwent 
a considerable variation. 

Fig. 3.37 suggests that in this case the growth of strain affected structural 
bonds. Their partial destruction lowered the value of cohesion. This is an effect 
similar to collapsible loess in Fig. 3.29a. There, the combined stress and strain 
levels reduced the cohesion to zero and the soil thus became cohesionless. 

The third structural parameter, the soil fabric, is affected if the specimen is 
strained far beyond its peak stress and gets into the residual stage. In this phase 
of the deformation process, shear fabric prevails and the influence of the original 
fabric on the mechanical behaviour is lost. Such a case is depicted in Fig. 4.7. The 
residual angle of internal friction of dry Zbraslav sand (φτ = 34.3 °) does not 
depend on the initial porosity of specimens (the coefficient of correlation 
r = 0.103 < r 0 0 5 = 0.433). 

4.5 Time 

This state parameter is usually accompanied by another one, namely by 
strain. Its typical field is represented by creep and relaxation tests. 

Fig. 3.40 has shown a significant effect of time. In this experiment, at some 
characteristic stress and strain level, the release of internal stresses occurred and 
a negative creep resulted. 

The effect of time is, as a rule, not so drastic. Fig. 4.33 presents a creep curve 
(primary creep, since άγ/dt = γ -> 0 for t oo) of undisturbed Strahov 
claystone. The distortional (shear) creep curve seems to consist of a series of 
segments. Each of them describes the development of the shear strain in time for 
a somewhat structurally changed specimen (in analogy with Fig. 4.23). The same 
feature is revealed by the volumetric creep curve, where it is even more accentua-
ted owing to the higher accuracy of the deformation readings. The example of 
creep depicted in Fig. 4.33 is, however, an exception in the series of creep tests 
of Strahov claystone. Although the overall volumetric deformation is of the 
compression type (contractancy), in the course of testing, a relative increase of 
the specimen volume (dilatancy) has been observed—whereas usually only 
compression was detected with other tests. Since, however, the chosen specimen 
displays both dilatancy and contractancy, the effect of time is more pronounced. 

Similarly to the distortional creep curve, the volumetric creep curve is also 
stepwise. These steps cannot be assumed to be explained by the temperature 
effect because their frequency does not correspond to the daily oscillation of the 
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temperature (in a very narrow range of ± 1 °C). In Section 1, such undulations 
were called structural perturbations since they represent more or less significant, 
structurally motivated disturbances of the investigated deformation process. 
These irregularities, unfortunately, increase the deviations of the experimental 
points from the smooth analytical (e.g., logarithmic) creep curve. 

With cohesive soils, one can often record a difference between the short-term 
and long-term strengths. Cohesionless soils do not suffer from this effect of time 
(and strain). Fig. 4.4 shows a series of relaxation tests of dry Zbraslav sand 
(direct shear box). Full circles indicate the peak shear strength after a relaxation 
of the shear stress: the shear deformation of specimens was fixed at different 
shear-stress levels and the drop of the shear stress was recorded until its final 
value (Fig. 4.4). It is defined by the relaxed shear stress-strain curve—its peak 
value—which is still lower than the long-term strength because all time-depen-
dent shear deformation in such an experiment is excluded. According to Fig. 4.4, 
the difference between the long-term and short-term strengths of Zbraslav sand 
is negligible. 

In the case of cohesive soils, if the strength of solid structural units (particles 
and their clusters) and of structural bonds is assumed to follow a thermally 
activated process and, in addition, accounting for the time-induced increase of 
the shear deformation (creating an effect analogous to that in Fig. 3.37), the 
cohesion intercept decreases with time down to a very small value. Such an effect 
takes place with overconsolidated and cemented soils (especially fissured clays). 
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Fig. 4.33. Creep test of a specimen of undisturbed Strahov claystone in a ring-shear apparatus 
(σ'η = 0.111 MPa = const, τ = 0.085 MPa = const; after unloading τ = 0.022 5 MPa). 
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4.6 Temperature 

With geomaterials, temperature oscillations are not so great and their effect 
is, therefore, not so important as are the effects of stress and other state-parame-
ter variations. The study of temperature effects aims at the analysis of the 
theoretical deformation mechanism of geomaterials at the micromechanical 
level (the theory of creep as a thermally activated rate process and the applicati-
on of the rate-process theory to the strength of various materials). The field of 
application of the theoretical and experimental results in practice is related to 
those structures with exceptionally high temperature gradients (permafrost, 
power plants, liquified natural gas storage, etc.). 

Creep is a time-dependent deformation of a material occurring under a con-
stant load and temperature. Constant temperature conditions can, as a rule, be 
maintained only to a certain extent (temperature variations under experimental 
conditions are usually confined within the range of ± 1 °C or even less). The 
effect of temperature in such processes represents therefore a parasitic influence, 
which may distort the experimental results. What is considered as the practical 
range of the "constant-temperature condition" should be specified for different 
soils because the impact of temperature variations depends on the strength of 
the soil structure (Virdi and Keedwell, 1988, observed, e.g., higher temperature 
sensitivity at higher deviatoric stress). 

AXIAL STRESS (OEDOMETER) 

10 25 50 100 250 500 1000 kPa 
H 1 1 1 1 1 1 1 

Fig. 4.34. Compression curves of illite (oedometer) under different temperatures (Plum and Esrig, 
1969). 
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For soils in situ, the temperature fluctuations are small but their equilibrium 
value (say about 10 °C) is usually lower than in the laboratory (about 20 °C). The 
difference between the thermal regime in the laboratory and in the field has to 
be accounted for if it is important. Such a case is represented by Fig. 2.6. 
A clearly marked effect of temperature variations has been caused in this case 
by the installation of the measuring device on the surface, within the reach of 
atmospheric influences. 

The effect of heating on some soil properties is an extreme example of the 
temperature effects. The high temperatures used (e.g., 600 °C) doubtless produce 
a considerable transformation of the soil structure and of the soil state as 
compared with untreated soil (e.g., by heating it is possible to avoid the collapsi-
bility of loess). Such treatments are, however, often too expensive. 

A moderate increase of temperature tends, in general, to weaken the structural 
bonds, to increase the volume of the pore water and of the solid skeleton (in 
a closed system to increase the pore-water pressures) and to decrease the 
viscosity of the pore water. Hence, one can expect that a rise of temperature will 
cause a drop in the strength and growth of deformations 

Fig. 4.34 illustrates these general rules. With the temperature increase the 
compression of illite also increased, up to about a load of 250 kPa. Thence, both 
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Fig. 4.35. Effect of temperature changes on the oedometric compression of illite (Plum and Esrig, 
1969). 
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compression lines, the one at 24 °C and the other at 50 °C, are roughly parallel, 
i.e., the index of compressibility is identical. This can be explained by structural 
hardening in the range of stresses lower than 250 kPa. If stronger, the structure 
does not undergo further structural changes due to temperature variations in the 
experimental range. 

The compression curves in Fig. 4.34 are of a bilinear nature in the 
semilogarithmic representation. According to eqn. (3.11) they should be linear 
over the whole experimental range. Their bilinearity is to be ascribed to some 
structural change induced by the stress level and acting irrespectively of the 
temperature. 

Fig. 4.35 also depicts the weakening effect of a rising temperature. Periodical 
heating and cooling shift the compression curve to the right, as if a preconsoli-
dation had taken place. Sudden temperature changes are accompanied by 
stepwise deformations suggesting some structural changes in the form of a local 
structural collapse. Their final effect is the strengthening of soil structure as 
a result of its periodical readjustment to the experimental conditions. Within 
these steps, the compression line is linear in the semilogarithmic representation. 

As already mentioned, lower strengths are associated with higher temperatu-
res. Samples of kaolinite, the test results of which are shown in Fig. 4.36, were 
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Fig. 4.36. Effect of temperature on the unconfined compression strength of isotropically consolida-
ted (at 23.9 °C = 75 °F) specimens of kaolinite (Sherif and Burrous, 1969). 
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prepared by isotropic (triaxial) consolidation at 23.9 °C (75 °F). Tested in 
unconfined compression they show a remarkable effect of temperature in the 
expected direction—weakening of specimen structure with the rise of temperatu-
re. According to the investigators, an increase of temperature may be modelled 
by an increase of water content. An increase of temperature of about 40 °C 
corresponds—according to the data in Fig. 4.36—to a rise in the water content 
of about 2 %. 

4.7 Conclusion 

From the above examples one can conclude that the effect of state parameters 
on the mechanical behaviour of soils is often the result of their combination. The 
effect of stress is frequently accompanied by strain effects or the influence of 
strain is combined with that of time. It is, therefore, sometimes difficult to decide 
which effect prevails. 

State parameters defining the original structure (the initial porosity and water 
content, the consolidation stress) usually participate more clearly in the soil 
behaviour. The other state parameters—strain, time and temperature—can be of 
great importance in special cases, with the exception of temperature whose 
variation in the majority of practical problems is small. 

Owing to the state parameters, the mechanical response of a soil (of a geoma-
terial), as tested on specimens of identical composition, may be very different, 
as if specimens of different soils were tested. This finding is of great importance 
when extrapolating beyond the experimental range, and when comparing the 
laboratory and field behaviour of soils. Such a comparison suffers from the 
disturbance (i.e., from the change of state parameters) of "undisturbed" samples 
induced, at least, by their being unloaded and reloaded. Sometimes, one falsely 
assumes a physically isomorphous behaviour of laboratory-prepared, reconsti-
tuted samples (clays consolidated isotropically from a slurry, compacted sands) 
and in situ soils of the same composition. The variability of the mechanical 
parameters in the field is often underestimated by laboratory testing and, 
frequently, the textural differences in the field conditions are neglected. 

The analyses of the structure, texture and state parameters of geomaterials in 
Sections 3 and 4 are presented with the aim of providing the reader with a serious 
physical background for the study of the mechanical time-dependent behaviour 
of geomaterials. 
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5. ELASTICITY, VISCOSITY A N D 
PLASTICITY 

5.1 Introduction 

The stress-strain-time (constitutive) behaviour of a real geomaterial may 
be represented qualitatively by the diagrams in Fig. 5.1a. These are obtained, 
if the strain ε is recorded for a constant effective stress σ' after time periods 
t v t2, ty> ... . 

For σ' = const the deformation (strain) increases with the time /. This process 
is called creep, as already mentioned in the preceding text. For a particular value 
of σ' (e.g. section 1-1 ' in Fig. 5.1a), the creep curve can be constructed (Fig. 
5.1b). This curve defines both the strain ε and its rate ε at different time intervals 
within the experimental limits. Using a curve-fitting procedure, it may, under 
certain circumstances, be extrapolated to cover the whole time period of practi-
cal interest. 

If another section, 2-2 ' in Fig. 5.1a, is unfolded, the course of the stress drop 
with time is visualized (Fig. 5.1c). This is called stress relaxation and investigati-
ons thereof, together with creep, form two principal tasks of rheology. 

Fig. 5.1. Qualitative representation of the stress-strain behaviour of real geomaterials: a) isochronic 
stress-strain diagrams (r,, t2, t3 - different time periods); b) creep curve (σ' for section / - / ' ) ; c) stress 

relaxation (for section 2-2'). 
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Peak stresses, marking the resistance of the geomaterial subjected to load, 
decrease with time, according to Fig. 5.1a, down to some lower limit, called the 
long-term resistance. The diminution of the strength in Fig. 5.1a follows a das-
hed curve. Its asymptote (A in Fig. 5.1a) corresponds to the long-term strength

1
. 

Its short-term value determines a standard stress-strain curve, say that marked 
tx in Fig. 5.1a, if tx is the duration of a standard experiment. The investigation 
of the long-term resistance of materials represents the third formidable task of 
rheology. 

c 

0
 TOTAL STRAIN 

Fig. 5.2. Isochronic stress-strain diagram for a loaded-unloaded geomaterial. 

Fig. 5.2 shows one of the isochronic stress-strain diagrams of Fig. 5.1a. After 
the branch of loading ODA let the specimen be unloaded (AB) and reloaded (BC 
in Fig. 5.2). Only a portion, the dotted area AFB of the total deformation energy 
(the area ODAF) will, as a rule, be recovered and a hysteresis loop (shaded in 
Fig. 5.2) will be formed. The total strain ε consists of a reversible (recoverable) 
part ε

τ
 and of an irreversible (plastic) part ε

ρ
. 

Both Figs. 5.1 and 5.2 represent, in a synoptical manner, the general stress-
strain-time behaviour of geomaterials. Such a complex behaviour may, in some 
cases, be simplified. Hard intact rocks, subjected to relatively low stress levels 
will almost exclusively show a reversible, time-independent behaviour. Soft clays 
will tend to behave irreversibly, plastically

2
. 

1
 Since the stress in Fig. 5. la corresponding to the section 1-1 ' exceeds the long-term strength, creep 

deformations in Fig. 5.1b will, in this particular case, lead to failure of the geomaterial. 
2
 The term "plasticity" has a double meaning, indicating either consistency of soils-plastic limit, 
index of plasticity - or the capacity of a geomaterial to display irreversible, permanent deformations 
- hence theory of plasticity, plastic flow, etc. These two meanings must not be interchanged. 
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In such particular instances, the constitutive behaviour of geomaterials can be 
radically simplified. On this line of abstraction a stage will be achieved where 
ideal materials will be endowed solely with one of the mechanically important 
properties — reversibility, plasticity or time-dependency. 

From the thermodynamical standpoint, ideal materials may be classified by 
their ability to absorb the deformation work. Ideally elastic material does not 
absorb any deformation work and all its deformations are, therefore, reversible, 
the material is conservative. Ideally viscous and ideally plastic materials absorb 
all their deformation work and undergo, consequently, only irreversible, plastic 
strain. They are dissipative media (energy is dissipated in the form of heat). 

The degree of energy dissipation is reflected in increase of the entropy and, 
therefore, in the state of the system (eqn. 3.3). The state of a geomaterial means 
its structure, and the dissipated deformation energy is spent in the structural 
changes. 

The property of an elastic, nondissipative material may be ascribed to the 
geomaterial, the structure of which will, in the interval of the behaviour investi-
gated, not be subjected to any permanent (irreversible, irrecoverable) change. It 
deforms either linearly or nonlinearly (e.g., gases, but there is a distinction 
between the elasticity of solids based on the potential energy of the internal 
structure, and the elasticity of gases, due to the kinetic energy of the ultimate 
particles; rubber-like elasticity is of the third kind - Reiner, 1985, p. 492). The 
most simple is the time-independent linear behaviour. Such ideal materials are 
symbolized by a spring and are called Hookean solids, H (Fig. 5.3a). The 
material is assumed to be deformed far below its strength limits (å < 10" 5 

according to Section 4.4). 
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Kig. 5.3. Schematic representation o f ideal materials: a) Hookean, b) Saint-Venant's, c) Newtonian. 
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Ideally viscous materials belong to the class of fluids. The structure of fluids 
lacks any geometrical arrangement on a long-range scale, being defined (or more 
or less regular) only on the short-range (molecular) scale

3
. The structure of 

water, for instance, is deemed to be best described by a random network model, 
i.e., as an irregular network of distorted hydrogen-bonded rings of water mole-
cules (Mitchell, 1976, p. 102). Thermally oscillating molecules of fluids change 
their fixed position the more easily the less viscous they are, the property of 
viscosity indicating the resistance to flow of a particular fluid (Goldstein, 1971, 
p. 150). The energy is dissipated by overcoming the resistance of molecules of 
fluid to the directed movement, i.e., to the flow. Ideal viscous fluid is usually 
modelled by a dashpot and called Newtonian fluid, Ν (Fig. 5.3c). As may be 
observed, for σ' = const, έ = const. There is no (time-independent) strength. 

Fig. 5.3b represents an ideally plastic (or rigid-plastic) solid (time-indepen-
dent stress-strain diagram OAB) called Saint-Venant's, F, and symbolized by 
a slider. Contrary to the diagram OB, depicting a plastic material with harde-
ning, K-material dissipates the deformation energy in pure shear (sliding). 
Physically, one may represent it by two blocks sliding one against the other, like 
two rigid rock pieces dissected by a shear surface or a soil specimen in the 
residual stage of testing, displacing along a stable shear plane with negligible 
recoverable deformations. Its initial structure is completely changed and out of 
the memory of the sample. 

The loss of memory characterizes one of the prominent feature of ideal 
materials; they forget all their previous history of straining, stressing, etc. This 
may be explained physically as the consequence of the structure being intact 
through all these processes (Hookean solids) or of such heavy structural changes 
that they completely erase all traces of the former mechanical history of the 
material (Saint-Venant's solids and Newtonian fluids). 

It is tacitly assumed that using different combinations of ideal materials, the 
real behaviour of geomaterials may be arrived at. Such is the philosophy of the 
popular method of mechanical rheological models. This principle, in a simple 
version, is the basis for Fig. 5.4 and, simultaneously, an attempt is made to 
somewhat broaden the class of ideal materials. 

Model 1 in Fig. 5.4, often called ideally plastic, but preferably, to distinguish 
it from the material OAB in Fig. 5.3b, ideally elastoplastic, behaves in such 
a manner that at the stress point a (up to this stress level the structure of the 
material is intact) the material starts to deform plastically and undergoes 
intensive structural alteration, accompanied by dissipation of deformation 

3
 According to Green: "...liquids have a molecular structure devoid of long-range order, but 
sufficiently closely packed to ensure that any molecule is in continual interaction with its neigh-
bours" (Reiner, 1958, p. 435). Long-range structural order of solids disappears completely at the 
critical temperature, when their fluidization starts. 
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• 

Fig. 5.4. Stress-strain curve of some ideal models of materials: 1 - perfectly plastic model, 
2 - perfectly locking model, 3 - perfectly fracturing model (Kafka, 1984a). 
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Fig. 5.5. Model of piecewise hardening and plastic flow of a geomaterial. 
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energy. Serially connected H and V materials model this behaviour (so-called 
Prandtl-body). The strength of the V material is equal to aa. 

After an ideally elastic phase, in model 2 (which is Prager's perfectly locking 
material) a perfect hardening process takes place: although stress increases, 
strain e a = const and άεε > ea = 0. To simulate such a behaviour by mechanical 
model a slider is needed with a restricted path of sliding, combined with a spring. 
First the spring is elastically compressed and complete compression thereof 
turns the model element into a rigid one. A series of such models may produce 
the stress-strain diagram depicted in Fig. 5.5. It consists of alternating stages of 



Elasticity 

perfect hardening (vertical broken lines) and of plastic flow (horizontal dashed 
lines). Instead by the interpolated line 1, one can better describe such a physical 
process by a stepwise stress-strain diagram. This is an iterpretation familiar from 
the preceding text, respecting the so-called structural perturbations, i.e., the 
periodical alternation of local structural collapse followed by structural harde-
ning. Singular points, "corners", are the points of bifurcation. 

Such a character of the deformation processes of geomaterials seems to be 
quite frequent (see e.g., Figs. 2.9, 3.22, 3.40, 4.23, 4.33, etc.) but it is often 
misinterpreted by a smooth mean line (dashed line 1 in Fig. 5.5). 

Model 3 in Fig. 5.4, called a perfectly fracturing model (Kafka, 1984a), 
simulates the behaviour of an elastic material which, at the stress point a, 
becomes homogeneously penetrated by microcracks. They change its structure 
and, consequently, the elastic response of the material in such a way that it 
retains its reversibility, but owing to the profoundly changed structure, the 
elastic parameters are altered (broken straight lines 4 in Fig. 5.4). 

To get back to the principal classification key of ideal materials, i.e., to the 
intensity of the dissipation of the deformation energy, it must be admitted that 
only ideal materials are perfectly dissipative and nondissipative. In real geoma-
terials, the degree of dissipation varies through the deformation process. It may 
decrease, as in a confined compression and cyclic loading aiming at the shake-
down, or increase, e.g., when failure becomes imminent. The degree of dissipati-
on shows the intensity of the structural changes of a geomaterial. These transfor-
mations need not be large for overconsolidated, cemented and repeatedly loaded 
geomaterials at comparatively low stress levels. 

5.2 Elasticity 

The ratio of reversible to total deformation is often defined in such a manner 
that the total deformation is measured under full loading of the specimen, and 
its reversible part when the specimen is completely unloaded. If this ratio equals 
1, the tested geomaterial is proclaimed to behave elastically. Examples of such 
tests are shown in Figs. 3.23, 3.24, 3.25 and 3.28 (Section 3.5). If the loading and 
unloading processes do not follow the same loading steps, the total strain need 
not be loading-step-invariant (Fig. 3.26) and the existence of a hysteresis loop 
like that in Fig. 5.2 cannot reliably be excluded. Such hysteresis is a sign of 
inelastic behaviour and, following the above definitions, of a change in the 
structure of the tested geomaterial. It is therefore recommendable to differentia-
te between elastic and reversible behaviour, the former being only a special case 
of the latter. 

Fig. 5.2 illustrates this idea. In the loading process ODA, the structure of 
a geomaterial may, at least theoretically, suffer such structural modifications 
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that, after unloading, total reversibility will take place (the unloading paths DO, 
AO in Fig. 5.2; the unloading paths 4 of a fully fractured model in Fig. 5.4), 
although, because of the hysteresis loop, the material does not behave elastically. 
(Amerasinghe and Kraft, 1983, suggested that, for overconsolidated clays, the 
final part of volumetric strain during rebound is partially irreversible, plastic). 

Another possibility of how an inelastic but reversible behaviour can occur 
suggests the existence of internal, locked-in stresses (Section 3.6). The alteration 
of the specimen structure when passing the loading branch OD (Fig. 5.2) may, 
for the load increment DE, release the locked-in stresses by way of breakage of 
brittle bonds and induce a negative strain increment (in a similar manner as in 
Fig. 3.40). As a result, a closed (negentropic) loading loop ODEO may exist, i.e., 
a reversible but inelastic behaviour develops. 

For the sake of simplicity, at this point reversibility will be identified with 
elasticity. 

Elasticity is not a quality of a geomaterial, but rather an expression of its state. 
It is, therefore, governed by the state parameters. Figs. 3.24 and 3.28 demonstra-
te the influence of the initial porosity (Section 4.1) and stress level (Section 4.3) 
on the elastic response; the effect of both these factors is displayed in Fig. 3.25. 
One may a priori arrive at the conclusion, that the stronger the structure, the 
more difficult it is for deformation energy to become dissipated. It is therefore 
to be expected that the most "elastic" geomaterials are those that are diageneti-
cally solidified, cemented, dense and fissureless in the low-stress interval. 
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Fig. 5.6. Reversibility of uniaxial (oedometer) deformation of a specimen of loose Zbraslav sand 
(initial porosity 46 %) subjected to cyclic loading. 
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Unless liquefaction occurs, when cyclically loaded, a geomaterial gradually 
hardens and becomes more elastic, until almost perfect reversibility takes place. 
Such an effect is depicted in Fig. 5.6 for loose dry Zbraslav sand. The combined 
effect of load duration and structure, that differs owing to different modes of 
compaction (static and kneading compaction), is shown in Fig. 5.7 for kaolinite. 
The much higher reversibility of deformations in the case of static compaction 
can be explained by the "much greater ability of the braced-box type of fabric 
that remains after static compaction to withstand stress without permanent 
deformations than is possible with the broken-down fabric associated with 
kneading compaction" (Mitchell, 1976, p. 243). Fig. 5.7 correctly reflects the fact 
that energy dissipation is promoted by increase of the time of testing. 

The nondissipative nature of an elastic structure, however, gives no indication 
of a quantitative relation between stress and strain. Assuming this relation to be 
represented by a power series and if all higher power terms are neglected, the 
linear Hooke law—a linear stress-strain relation—is obtained: 

σ = Εε (5.1) 

(σ, ε - stress, strain; Ε - Young's modulus). If a geomaterial is elastic but not 
homogeneous, i.e., it consists of several elastic regions with different elastic 
moduli E{ (i = 1, 2, 3...), then 
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Fig. 5.7. Ratio of recoverable to total strain for samples of kaolinite with different structures 
(Mitchell, 1976). 
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(the material is modelled by a parallel set of //-springs). According to eqn. (5.1) 

E = t Et. (5.3) 
ι = 1 

This means that the material is assumed to be quasihomogeneous with respect 
to its internal state of stress and its constitutive relation is accordingly simplified. 
If an internal redistribution of stresses occurs, the material is modelled by 
a series of //-springs, then 

η a « 1 
ε = V εί => ε· = — and ε = σ Υ — . (5.4) 

ί =
 1
 Ei «" = ι £. 

Then 

1 η 1 

ΐ
 = Σ 1 "Γ (5.5) 
Ε « = ι 

and the material is taken to be quasihomogeneous with respect to its internal 
deformation. Relations (5.2) and (5.4) indicate that a material consisting of 
different parts with varying deformation properties being characterized by its 
internal parameters or functions may exist. 

From the above deliberations one may deduce that if a constitutive behaviour 
may be described mathematically in different ways, the manner selected should 
be the simplest one of all with comparatively the same representativeness. The 
material is then considered to be quasihomogeneous, contrary to its actual 
nature. 

The Hooke law of linearity is often falsely held to be a proof of elastic 
behaviour. The analysis of Fig. 3.15 has already shown this assumption to be 
wrong. It may be the result of a counterbalance of two processes—of both 
sliding and breakage of structural units (Fig. 3.16)

4
. Anyway, the assumption of 

linearity greatly simplifies any analysis and it is, therefore, useful to test its 
applicability. Its field of occurrence seems to be the region of small strains and 
stresses. 

In Fig. 5.8, the linearity of the stress-strain diagrams of Sedlec kaolin near 
their origin (Fig. 4.27) is explored. First two load increments, / and 2, are 

4
 Quoting Jardine et al.'s research, Dyer et al. (1986) write: "...linear portion of a stress-strain curve 
might have no physical meaning...these curves should exhibit nonlinearities at least for strains 
exceeding 10~

3
 %" . This is the same strain level -ε < 10~

5
 - as is indicated in Section 4.4 for elastic 

behaviour. 
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considered and their secant deformation moduli Ex and E2 are evaluated. In 
addition, the tangent modulus En is also calculated. In the case of linearity, all 
three deformation moduli should be identical (Fig. 5.8a). The dispersion of 
individual Ex and E2 values seems to be random and their values equal 
17.17 MPa and 14.67 MPa, i.e., when the axial strain increases from £ a = 0.35 % 
to ea = 0.7 %, the mean secant deformation modulus drops to 85 % of its 
original initial value. Similarly, the tangent modulus El2 does not, it this range 
of deformation, adopt a constant value, but a tendency to increase with the 
growth of the consolidation cell pressure σ'ή is revealed (Fig. 5.8c). Test results 
with other soils are similar. The assumption of linearity for a broader strain 
range seems, therefore, to be acceptable only exceptionally. 

Various nonlinear stress-strain relations can be used. A prominent place 
among them is occupied by a hyperbolic relation of the form (for a triaxial test) 

a + bea 

(5.6) 

(S. Timoshenko was probably the first to propose it - see Vyalov, 1978, p. 108; 
it became increasingly popular in soil mechanics after the publication of a paper 

0
 AXIAL STRAIN Cc 

a) 

30 + 

MPa 
to 
- J 

a 20 + 
o 

ζ -

I 10 

cc 
ο 
u. 

/
 V

A \ 

I \ 
I 

'
 Ύ

 I 
MEAN Ε ι = Δ I 
'17.17 MP* I _ 
U a~0 .35Vo) WEA_N_E_2 = 

•  14.67 ΜΡαΔ , 
\ ( Î Q - 0 . 7 % ) . / 

\ / 

/ 0 \ 

I % » 

0.5 

AXIAL STRAIN CQ 

b) 

30 + 

MPa 
oo 
3 

g 20 + 
Σ 

Ο UJ 

I 10 + 
er. 
ο 
u. 
ui 

SYMBOLS : 

SPECIMEN No. 

CONSOLIDATION 
PRESSURE oYc 

MPa 

I 
(o) 
/ 
/ 

/ 

1/8 
2 /6 
3 /9 
2 / 9 
3 / 8 
1 /9 
A /9 
4 / 8 
1 /5 

MEAN E 12 

p̂̂ iT β.3 MPa 

Δ ( V 0 . 3 Î 0 . 
π Ι-

α 0.3 f 0.7%) 

Η 
0 0.5 MPa 
CONSOLIDATION CELL 
PRESSURE <Γ' r c

 c) 

0.1 
0.2 
0.2 
0.3 
0.3 
0.4 
0.4 
0.4 
0.58 

Fig. 5.8. Initial secant deformation moduli El9 E2 and tangent modulus El2 of Sedlec kaolin (triaxial 
CIU tests). 
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by Duncan and Chang, 1970). After transformation into a dimensionless form, 
hyperbolic triaxial stress-strain curves of Sedlec kaolin are depicted in Fig. 5.9 
by full lines. They agree well with the pre-peak stress-strain curve and only at 
the origin may some anomalies be observed. 

The value of parameter a relates to the initial deformation modulus /^(tangent 
to the stress-strain hyperbola at its origin): 

E, = - (5.7) 
a 

and the parameter b to the peak strength 

o-l 1 1 1 

ο 5 10 6 a 15 % 

AXIAL STRAIN ( T R I A X I A L ) 

Fig. 5.9. Hyperbolic representation of the triaxial stress-strain diagrams of Sedlec kaolin. 
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According to Fig. 5.9 (and a more detailed statistical analysis), all the triaxial 
stress-strain diagrams of Sedlec kaolin have one common value of Et 

Et = 73.80σ;ς . (5.9) 

This corresponds, in the experimental range of a'rc = 0.1 to 0.58 MPa, to the 
mean value of Ei = 23.6 MPa, somewhat higher than Ex in Fig. 5.8, but of 
comparable magnitude. The fact that Et increases with the consolidation pressu-
re a'rc points out the inelastic nature of this modulus

5
 (for ε < 1 0 "

5
 elastic 

modulus is operative). 
From eqn. (5.6) one may deduce the value of the tangent deformation mo-

dulus Et in the form 

Ex = Et (1 - kff , (5.10) 

if 

i = - S - (5.11) 
T
octf 

denotes the octahedral shear-stress level and the parameter ki = 0.7 to 1 (the 
ratio of the actual to the asymptotic value of strength). For Merkur clay (Fig. 
4.11) the following relations were deduced (Feda, 1984b; triaxial CIU tests; Et 

in MPa) 

Et = 92.3 (1 - i) (5.12) 

and 

E[ = 20.8 (1 - i ) , (5.13) 

5
 The relation (5.9) follows from the normalized Fig. 5.9, therefore, 0 <ς σ'η < oo. This suggests 
a physically isomorphous fs rvalue but in reality this isomorphism is not perfect. Eqn. (5.9) is 
a simplified form of a more accurate relation 

Ei = — a'rc (in M P a ) . 
1.23 + 0.055 a'TC 

Similarly for Vysocany clay (Fig. 4.14) 

103.1 
E, = 

0.13 + a'TC 

and for Merkur clay (Fig. 4.11) £, = 1 145.1 σ'κ. Comparing these values (say, for σ'κ = 0.1 MPa) 
one finds that, according to the magnitude (8.1 < 44.8 < 114.5, in MPa), the value of £, is the lowest 
for Sedlec kaolin (reconstituted sample) and the highest for Merkur clay (undisturbed sample, as 
Vysocany clay). 
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the former in total, the latter in effective stresses. The value of Ei = 92.3 MPa, 
if compared with Sedlec kaolin (eqn. 5.9), discloses an about fourfold smaller 
deformability of undisturbed Merkur clay than laboratory-prepared Sedlec 
kaolin. The difference in axial compressibility is greater than that in volumetric 
compressibility where it is only about twofold - Merkur clay being about twice 
as stiff (eqns. 4.19, 4.20 and 4.25). 

E{ should ideally equal the volumetric compression modulus Ey for isotropic 
loading, when i = 0 in eqn. (5.10). After comparing them, two differences can 
be disclosed: 

— The value of Et obtained from the hyperbolic transformation (eqn. 5.6) 
depends on a'TC, contrary to Ev (eqns. 4.15, 4.22, 4.23 and 4.25), though eqn. 
(4.13) suggests that this difference is, at least to some extent, also a product of 
the method of evaluation of the experimental data. 

— The value of Ep deduced from triaxial testing (eqns. 5.6, 5.13) is higher than 
Ev (e.g., for Merkur clay: 20.8 MPa vs. 6.85 MPa - see eqns. 5.13 and 4.25). 

Several factors may be responsible for such discrepancies: 
— Hyperbolic E{ represents an extrapolated value which need not be appro-

priate at the origin (Fig. 5.9). 
— The change of the loading from isotropic to anisotropic is accompanied by 

a specific coupling effect (isotropic stress -> anisotropic strain, as visualized by 
the corner in the plastic potential surface - see Fig. 5.15a), a twin to the effect 
of dilatancy. 

Relation (5.12) is a generalized version of eqn. (5.10). Parameter kt and 
exponent 2 of the latter are replaced by experimentally found values. 

Let it be assumed that the strength of the geomaterial is very high, as in the 
case of elastic materials of unlimited elastic capacity. Then 

7 = Κ - σ
τ)ΐ ->

 00 (5.14) 

and 

b -+ 0 . (5.15) 

Relation (5.6) degenerates into 

(5.16) 
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i.e., it will take over the form of the Hooke law (5.1), with 

(5.17) 

The hyperbolic relation (5.6), therefore, as one special case, also covers a linear 
stress-strain relationship. 

Since linearity may be accepted in the realm of geomaterials only as an 
exceptional case, one commonly applies relation (5.10) and the nonlinear stress-
-strain relation is replaced by a polygonal, incrementally linear one. Nonlinear 
elasticity is formally identical with the deformation theory of plasticity (for 
simple and active loading - Bezukhov, 1961 )

6
. 

Making the deformation modulus Ε (= Et) depedent on the stress level 
(whereby elasticity changes into hypoelasticity) and using the relation between 
elastic moduli, Young's Ε and shear G, common in elasticity (even for complex 
states of stress - Bezukhov, 1961, p. 140) 

(v - Poisson's ratio), one may deduce that the modulus G generally also depends 
on the stress state and, in addition, on its isotropy and anisotropy (similarly to 
E- eqns. 5.7, 5.9 and 5.10; according to Janbu the exponent of a'TC in eqn. 5.9 
may generally differ from one). To insure that a loading cycle will not produce 
any energy dissipation, some special stress-dependent forms (Dyer et al., 1986) 
for both moduli have to be chosen which are not guaranteed to be experimental-
ly obtained. But even if it were the case, the sole dependence of deformation 
moduli on the stress would prove that some structural changes occur in the 
deformation process, i.e., the deformation cannot be elastic (at least for 
ε » 10~

5
). The relations between the state of stress and deformation moduli 

Ε and G (or Poisson's ratio v, respectively) exclude, therefore, the constitutive 
behaviour being called pseudo- or quasielastic. It is of plastic nature, although 
this difference is irrelevant from the mathematical point of view. The difference 
is of physical significance: the plastic state suggests that not only 

6
 The deformation theory of plasticity is to be differentiated from the theory of incremental 
plasticity or plastic flow which is the subject of Section 5.4. If not otherwise stated, the term "plastic" 
will be used in the following text in the sense of "incremental plastic". 

The deformation theory of plasticity, formulated by Nâdai and Hencky and analysed in detail by 
Ilyushin, suffers from two limitations. First - the regions of loading and unloading have to be found 
out in advance and verified a posteriori; and secondly - neutral stress change induces a discontinu-
ous transition from the regions of loading to those of unloading (Olszak et al., 1964, p. 23). 

Ε 
(5.18) G = 

2(1 + ν) 
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irreversible deformations, but also residual stresses will occur if a geomaterial 
undergoes a process of loading and unloading. 

In nonlinear elasticity and deformation plasticity, the principal axes of stress 
and strain tensors agree (Bezukhov, 1961, p. 422). If an isotropic material is 
tested in a shear box (Fig. 5.10), its deformation response should be only in the 
form of shear strain (the coaxiality of stress and strain tensors means also the 
coaxiality of their increments). There is no coupling of the spherical strain tensor 
(volume strains) and deviatoric stress (shear stress), typical for geomaterials. To 
model such a behaviour, anisotropy has to be assumed (Feda, 1982a, p. 291). 

„ ELASTIC " „PLASTIC " 
RESPONSE RESPONSE 

Fig. 5 .10 . Soil response in a shear box according to elastic (or deformation plastic) and plastic 
(incremental plastic, plastic flow) theories. 

Usually, the only viable possibility is the assumption of transverse (cross-) 
anisotropy with only five parameters to be defined. Cross-anisotropy can be 
interpreted physically as the effect of a directional load in the formation phase 
of the structure of geomaterials. As a rule, such a directional load in soils is 
represented by gravity forces, but tectonic forces may also be decisive, especially 
in rocks. 

With cross-anisotropy, there exists an axis of symmetry (vertical in the case of 
formation by gravity forces) and the mechanical properties of a geomaterial are 
independent of rotation around this axis. 

Practical applications of cross-anisotropy are made difficult by the require-
ment of defining five parameters of the material. It is, therefore, of practical 
importance (as proposed by Graham and Houlsby, 1983) to limit them to three 
parameters which are measurable in the triaxial tests, by using some restrictive 
but reasonable assumptions. In addition to the bulk and shear moduli, a cross 
modulus is defined. The latter expresses the relationships between stress and 
shear strain and between shear stress and volumetric strain. These are the 
coupling relations that are absent in isotropic materials and typical for geomate-
rials. It is easy to understand that their introduction considerably improves 
predictions by the simplified cross-anisotropic model. This model offers another 

150 



Viscosity 

advantage in that it enables solutions to problems in such an anisotropic 
medium to be deduced from the solution to an equivalent problem in an 
isotropic medium (Lodge's transformation technique, well known in seepage 
analysis). 

If used for geomaterials, the theory of elasticity should, in order to repect the 
above analysis, be considerably distorted. It must be changed into a (nonlinear) 
deformation theory of plasticity of anisotropic materials, or at least of materials 
with simplified cross-anisotropy. The theory is, however, to be expected to yield 
a class of solutions lying in a band, the width of which depends on the accuracy 
of experimental data (Bezukhov, 1961, p. 154). This statement is valid in all 
generality for theories pertaining to geomaterials. 

5.3 Viscosity 

According to Newton's law, "the resistance which arises from the lack of 
slipperiness of the parts of the liquid is proportional to (the gradient of) the 
velocity with which the parts ... are separated" (Reiner, 1958, p. 450), i.e. 

τ = μγ (5.19) 

(if a fluid is subjected to simple shear τ) or 

σ = μσέ (5.20) 

(in the case of unconfined compression or tension) or (volumetric viscosity) 

^oct =
 3

 M > c t > (
5
·

2 1
) 

where μ, μσ and μ ν are (dynamic) coefficients of shear, normal and volumetric 
viscosity (measured in poises, 1 poise = 0.1 N s m "

2
) . Liquids are usually 

assumed to be volumetrically elastic, i.e., there is no time-dependent volumetric 
deformation. In such a case μ ν = oo. Using the common elasticity relations (μ 
interchanged with G, μσ with É) 

μσ = . (5.22) 
3μ ν + μ 

If μ ν oo, as postulated for Newtonian liquids, then (v = 1/2) 

μσ = 3μ . (5.23) 

If μ γ = μσβ (for ν = 0), then μ ν = μ, i.e., the coefficients of shear and 
volumetric viscosity in such a case (impossible for liquids) will be approximately 
equal. 
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The Newtonian viscosity of liquids is, as a rule, identified with the viscous 
behaviour of soils, although a distinction should be made between the viscous 
behaviour of structureless liquids and that of structured solids. Between these 
two classes of materials there are the structured non-Newtonian liquids, exhibi-
ting structural viscosity (Reiner, 1958, p. 494). In a very approximate manner, 
solids are considered to be a special kind of non-Newtonian (nonlinear Newto-
nian) liquids subjected to viscous flow after an initial threshold value (Bingham's 
limit) is exceeded. 

ο S T R E S S <s' 

Fig. 5 . 1 1 . Ostwald-curve with Bingham's threshold OA. 

Newtonian liquids possess a constant value of μ (eqn. 5.19), i.e., γ or ê = 
= const. This case corresponds to the secondary (constant strain rate) creep as 
is always the case when μ does not depend on time. For non-Newtonian liquids, 
a better model of solid behaviour, the value of the coefficient of viscosity is 
variable (so-callled Ostwald-curve). If the Bingham threshold is accounted for 
(this represents some plastic, time-independent strength of the material) a model 
behaviour as in Fig. 5.11 can be assumed. The value of μ at first increases (AB 
- softening stage), then decreases (JSC - hardening stage) to become sub-
sequently constant (complete disturbance of the original structure, "structure-
less", pseudo-Newtonian or stable behaviour). For soils, such a stage corres-
ponds to the residual phase of a deformation process. The soil structure then 
reached a state (shear fabric in the failure plane) which became invariant with 
further straining of the specimen. 

The mechanisms responsible for structural viscosity are analysed in detail by 
Reiner (1958, p. 531). 

Fig. 5.12 shows an exceptionally simple picture of the behaviour of a siltstone. 
Bingham's threshold strength equals about 32 MPa and the coefficient of 
viscosity (unconfined compression, accounting for eqn. 5:23) μ = 7 χ ΙΟ

20 

poises. In greater detail (broken line in Fig. 5.12), it seems that the tested 
siltstone hardened (phase BC in Fig. 5.11 ), i.e., the phase of softening (AB in Fig. 
5.11) is either missing or of a very limited extent. 
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The effect of temperature has been dealt with in Section 4.6. Commenting on 
Fig. 4.36, one state parameter—the temperature—has been replaced by another 
—the water content—and the same effect has been observed. Following such 
a procedure and replacing the water content on the horizontal axis by stress, Fig. 
4.8 can be used for comparison with Fig. 5.11 (strain εΓ, related to the time 
interval of 20 s—see Section 4.2—may be interpreted as a strain rate). The most 
complete curve in Fig. 4.8 (for 50 kN) accords completely with the curve of 
viscous flow in Fig. 5.11. The physical explanation of the measured relationship 
should be identical in both cases. Often only the first part of the Ostwald-curve 
is measured (the curve for the loads 5, 10 and 20 kN in Fig. 4.8; see e.g. 
Grechishchev's tests in Vyalov, 1978, p. 176) and a false conclusion about the 
power law, governing the viscosity curve is arrived at (Reiner, 1958, p. 495). 

-11 -1 
x10 s 

AO 60 

UNIAXIAL LOAD 

MPa 

Fig. 5.12. Rate of secondary creep of a siltstone (see Section 3.6, Fig. 3.40)—Price (1970). 

If faced with such a complex time-dependent behaviour as in Fig. 5.11, it is 
a difficult task to find a representative //-value. All data pertaining to the 
viscosity of geomaterials should, therefore, be taken with reservations (seconda-
ry creep when μ = const is limited to a particular time interval, i.e., μ should 
generally depend on time). 

In the first approximation, μ = 1 χ 10
10
 — 1 χ ΙΟ

14
 poises for soils (the lower 

value for soft consistency and short-term, quick slides), as compared with 0.01 
poise for water and 5.5 χ 10

13
 to 2 χ 10

14
 poises for ice; μ = 1 χ 10

15
 to 

1 χ 10
17
 poises for weak rocks, up to 1 χ 10

20
 poises for hard rocks and 

μ = 1 χ 10
20
 to 1 χ 10

25
 poises for geological processes (Vyalov, 1978, p. 114; 

Feda, 1982a, p. 352). 
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5.4 Plasticity 

5.4.1 Introduction 

A simple Saint-Venant's element describes the rigid-plastic behaviour OABF 
(Fig. 5.3b). It is possible to generalize it in the way depicted in Fig. 5.13. In this 
case, the slider consists of two wedges and if the angle ω = φ/29 then it reduces 
to the F-element whose strength depends on the pressure σΓ. This pressure is 
exerted by two horizontal helical springs. 

The strength of the F-element is defined by 

where φ is the shear strength angle. In the generalized version, two wedges will 
mutually displace if (<ra > στ) 

according to the condition of limit equilibrium of a Coulomb material. (The 
stresses a a, σΓ are assumed to represent principal stresses, the third principal 
stress, perpendicular to the plane of Fig. 5.13, does not enter into play, as in the 
ideal Coulomb material.) On account of the inclination of the shear surface, the 
deformation condition can be formulated (contrary to the F-element) as: 

(5.24) 

π φ 
ω = - + - , 

4 2 
(5.25) 

ε. "a (5.26) 
tg ω 

SHEAR SURFACE 

A 2 

A 2 

Fig. 5.13. Generalized Saint-Venant's element. 
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Let the first possibility of movement be assumed (Fig. 5.13, case 1) with an 

(5.27) 

initial condition = const. Then <xa increases until a a 0 when 

σ Λ 1 - sin <p0 

' a O 1 + sin <p0 

(the common Möhr - Coulomb failure condition for a cohesionless purely 
frictional material) and for some initial φ = <p0 sliding begins. Owing to sliding 
(compression) der > 0 and σΓ = + άσν If άστ = ks άετ (ks - spring 
constant), then 

στ 1 - sin φ0 

— = — (5.28) 
<7a 1 + sin <pQ 

and the sliding stops. If φ decreases continually with increasing strain e a, i.e., 
φ = φ(εΆ), then the vertical displacement will proceed and the stress-strain 
hardening diagram in Fig. 5.5 will be obtained, until cra = στ and φ = 0 (if 
φ = φ0 = const, a linear <ra vs. εΆ relationship will result). 

In the second case (Fig. 5.13, case 2), with <xa and εΆ increasing, σΓ decreases 
from some initial value and the ratio o" r/a a0 will also decrease, i.e. 

στ 1 - sin φ0 

— — (5.29) 
σΆθ 1 + sin φ0 

and φ has to increase to permit the sliding to proceed. In such a way, the same 
process of strain hardening will take place in both cases. Although the strain 
hardening function of φ, playing the role of an internal (hidden) variable, differs 
in both cases, the same effect is modelled. This example shows the possibility of 
a more or less free selection of so-called internal variables, which, consequently, 
have no direct relation to the physical reality. The only motivation for their 
selection is to fit an experimental curve. 

Accounting for the phenomenon just described, constitutive relations may 
generally be classified according to their susceptibility to physical interpretation. 
All such relations where time-dependence is excluded (i.e., the viscous effects are 
held to be of minor importance) may be considered to belong to the family of 
plasticity, although in some cases this is not explicitly admitted (strains are not 
always decomposed into elastic and plastic components). In generalizing the 
F-element, the deformation condition (5.26) has been introduced. For ω = 0, in 
the case of rigid-plastic behaviour, no such condition enters the solution which 
is therefore highly simplified. Rigid-plastic constitutive behaviour will, therefore, 
be dealt with first. 
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5.4.2 Rigid-plastic approach 

Combining partial differential equations of equilibrium with the Mohr-Cou-
lomb failure criterion, a set of partial differential equations of hyperbolic type 
is obtained which can be solved by the method of characteristics (see e.g., 
Dembicki, 1970). A rigid-plastic behaviour of the geomaterial is assumed. 

Kötter was the pioneer of this method, later elaborated in great detail by 
Sokolovskiy (1954). The method aims at the construction: 

— of a statically admissible stress field (satisfying the equilibrium conditions, 
stress boundary conditions and nowhere violating the yield criterion), defining 
the lower-bound theorem: for loads, inducing a statically admissible stress 
distribution, unconfined plastic flow will not occur at lower load, and 

— of a kinematically admissible velocity field (satisfying velocity boundary 
conditions and strain and velocity compatibility conditions), defining the upper-
-bound theorem: if a kinematically admissible velocity field can be found, then 
the load will be higher than or equal to the actual limit load. 
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Further, the condition of objectivity of constitutive relations should be menti-
oned as a helpful classification criterion. Let the classical soil-mechanics appro-
ach be called the model approach: the soil has been tested in such a way that the 
actual stress-strain paths were simulated. The stress-strain diagrams resulting 
from such tests can be used with certainty only in a specified model situation. 
For instance, settlement can be calculated using oedometer compression curves 
for sufficiently large loaded areas and sufficiently small thickness of the compres-
sible soil layer beneath a foundation. There seems to be no reason for rejecting 
such a conception of modelling the constitutive behaviour, if it is sensibly applied 
and accurate enough for the purpose in question. 

An objective constitutive relation has to fulfil the requirements of objectivity 
(coordinate and unit invariances and frame indifference - see e.g. Angles d'Au-
riac, 1970; Gudehus, 1984). In such a case, it can be applied to the solution of 
different boundary value problems. This generality is paid for by its complexity 
when applied. 

To sum up, plasticity problems are solved either by a limit state analysis (a 
combination of equilibrium and failure conditions - Section 5.4.2) or by the use 
of constitutive relations. In the first case, the output information is confined to 
the stability condition; in the second case, stress and strain fields are calculated. 

According to the above discussion, constitutive relations may be subdivided 
according to the model (Section 5.4.3) and the objective approach (Section 5.4.4 
to 5.4.6). In the last case mentioned, physically interprétable (Section 5.4.4 and 
5.4.5) and prevalently analytically based relations (Section 5.4.6) may be distin-
guished. 
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By a suitable choice of stress and velocity fields, the above two theorems thus 
enable the required collapse load to be bracketed as closely as seems necessary 
for the problem under consideration (Chen, 1975). The proof of limit theorems 
is based on the associated theory of plasticity (see Section 5.4.4; Chen, 1975, 
p. 40; Olszak et al., 1964, p. 156). 

Although the method is suited only to the calculation of the limit load, it is 
still in use (Pregl, 1985), especially in situations where application of the lower-
bound theorem (i.e., the case of statical determinancy) is sufficient, because the 
load computed satisfies the practical need (Tonnisen et al., 1985). 

5.4.3 Modelling of constitutive behaviour 

For simulating stress and strain paths, it is assumed that common soil-mecha-
nics apparatuses are used. In an oedometer, the uniaxial compression (A^-conso-
lidation) can be modelled, in a triaxial apparatus, in addition to ^-consolidat i-
on, the isotropic consolidation and axially symmetrical state of stress can also 
be applied. 

The solution is not straightforward. First, a guess has to be made as to the 
location of regions with particular stress and strain paths (based on a simplified 
solution or field measurements) and then the solution of the problem performed 
with the experimentally (in the laboratory) simulated paths. In case of necessity, 
one may turn to iteration. 

Examples of such analyses were published by Dolezalovä (1976) and Doleza-
lovâ and Hofeni (1982). Their indisputable advantage is that they are based on 
field experience as monitored, e.g., on earth dams, and they use simple routine 
soil-mechanics tests. The method has found, therefore, some followers (e.g., 
Veiga Pinto and Maranha Das Neves, 1985); however, its future does not seem 
to be promising. With the advent of complex, computer-aided constitutive 
relations referred to in the following text, different stress- and strain paths can 
be modelled mathematically, and usually the input data required are those 
extracted from a standard triaxial compression test (see e.g., Kolymbas, 1987). 

5.4.4 Plastic potential approach 

The application of (incremental) plasticity to soils, initiated by the Cambridge 
school (Roscoe and his coworkers), started a new phase in the evolution of 
stress-strain relations in soil mechanics. 

The theory of plasticity became attractive for several reasons. It can incorpo-
rate the principal features of the behaviour of geomaterials, like the stress-, 
strain- and path sensitivity and coupling of isotropic strain (stress) with aniso-
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tropic stress (strain), the first couple being called dilatancy and contractancy. 
The common assumption of the coaxiality of plastic strain increment and stress 
tensors (valid at least in the case of isotropic materials, with the exception of slip 
theory - see Section 5.4.5) results in a specific ideal "plastic" response (Fig. 
5.10): shear stress increment produces volume strain changes, positive (contrac-
tancy) or negative (dilatancy). This behaviour is contrasted by the "elastic" 
response. 

The principal features of the theory of plasticity can be visualized geometri-
cally. Soil plasticity may be based on the theoretical foundations of metal 
plasticity, established more than 50 years ago. Finally, soils exhibit a most 
general plastic behaviour and, therefore, the development of soil plasticity 
represents a challenge to many brilliant brains in the field of continuum mecha-
nics. 

The basic assumptions of soil plasticity are: 

àei} = del + <H > (5-3°) 

i.e., the increment (or rate, but the term "increment" should be preffered for soils 
- see Wroth, 1973) of (total) strain άε, consists of the increments of elastic de? 
and plastic dejj (irreversible) strains, and (for isotropic materials, see Olszak et 
a l , 1964, p. 25; Knets, 1971, p. 56) 

d £p = H0 ^ d / > e ) . (5.31) 
toy 

According to this equation, the plastic strain increment is directed normally 
to the plastic potential surface g(o^ = 0 and its value depends on the hardening 
parameter (function) H0 and on the current yield condition /γ(σ^). In writing 
eqn. (5.31) one tacitly assumes the existence of the plastic potential function and 
of the (experimentally uncontroversially) defined yield function fy(o^ The 
second condition refers also to eqn. (5.30): the total strain is composed of elastic 
and plastic parts, each being calculated in a separate manner. This presupposes 
that these components can be (experimentally) clearly distinguished one from 
another. 

As already referred to in Section 5.2, it is by no means simple to decompose 
the total deformation into its elastic (reversible) and plastic (irreversible) parts. 
This is usually done by assuming the elastic strain to correspond to the linear 
portion of the stress-strain diagram (Dyer et al., 1986) or the elastic moduli are 
determined by the initial slope of a hyperbolic fit to the experimental data (Lade 
and Lete Oner, 1984). These two procedures were described in the preceding text 
(Section 3.3 and 5.2, Figs. 3.15 and 5.8, eqns. 5.7 and 5.9) as at least doubtful. 
Other physically more sound methods should be developed (like Tanimoto et 
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al.'s method of acoustic emission - see Hashiguchi, 1984; Tanaka and Tanimoto, 
1988, found that by means of accoustic emission the magnitude of the dissipated 
deformation work can be measured). Otherwise, the physical background of the 
plasticity theory will become obscure. 

Referring to eqn. (5.31), different soil-plasticity theories may be formulated 
according to the form of the yield locus and the plastic potential surface and 
strain hardening parameter. The most simple variant assumes an associated flow 
rule, i.e., 

9{°v)
 Ξ

 ΛΚ) · (5-32) 

This is the basic postulate of the method of characteristics (Section 5.4.2), 
since it forms the basis of the proof of the variational theorems and of the 
uniqueness and existence of solutions. From the identity of g{o^ and / y ^ ) 
follows the Drucker definition of a stable material, for which the yield surface 
is convex, the plastic strain increment perpendicular to the yield surface (norma-
lity rule) and directed outwards from the yield surface (postulate of the maxi-
mum plastic work - Olszak et al., 1964, p. 29). Although these postulates must 
be regarded as sufficient to prove the uniqueness of the solution, they are not 
necessary, because in the case of g(aiJ) not being associated with /y(crzy), the 
solution may still be unique (see Dyer et al., 1986). It seems (see also the 
comments of Hashiguchi, 1984), that the principal difficulty in proving the 
validity of the associated flow rule lies in an unequivocal determination of the 
yield function which meets the formerly mentioned obstacles in the definition of 
elastic deformations. 

Under triaxial (axially symmetrical) loading conditions, the principal stresses 
αχ > a2 = <J 35 if <ja = <7j and σ2 = c 3 = ov one can define octahedral shear 
and normal stresses as: 

(5.33) 

and 

*oct - i (*i + 2*3) · (5-34) 

Following the familiar relations (see e.g., Bezukhov, 1961) 

(5.35) 
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and 

* o ct = i η , ( 5 . 36 ) 

the octahedral shear and normal stresses and a o c t give the physical meaning 
of the second invariant of the stress deviator J% and of the first invariant of the 
stress tensor Ι

σ

ν 

«ι 

C O M P R E S S I O N 

S T R E S S P L A N E 

Fig. 5.14. Deviatoric plane in the principal stress space. 

In the perpendicular direction, the diagonal of the principal stress space is cut 
by the deviatoric (octahedral) plane characterized by the identical direction 
cosines 1/^/3. Its distance from the origin of the principal stress space (point 1 in 
Fig. 5.14) is equal to cro ct ^ /3 . In the deviatoric plane, the distance 1-2 (Fig. 5.14) 
equals r o c t ^/3 and the (Lode) angle Θ (for triaxial compression Θ = π/3, for 
triaxial extension 0 = 0) 

cos 3 0 = ^ — (5.37) 
2jf2 

( ^ 3 - third invariant of the stress deviator; instead of Θ in eqn. 5.37 the smaller 
angle Θ-π/6 will often be used, as in eqn. 12.35). The following relation is valid 

( 5 . 3 8 ) 
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if νσ is the Lode parameter 

which indicates the mode of the stress state (for triaxial compression and 
extension tests νσ = — 1 and +1) . Eqns. (5.35), (5.36) and (5.37) or (5.38) yield 
the physical interpretation of the principal stress invariants, but instead, one 
may use 

ρ = l\ß or l\ and q = 2>x0jjl or Jj\ σ 
2 ' 

In the triaxial compression plane (Fig. 5.14), the plastic potential and yield 
surfaces are usually expressed in ( r o c t, aoct) coordinates (or in /?, q coordinates). 
The corresponding incremental plastic strain axes are dy£c t/2 and de^ ct which 

SYMBOL ^ : NORMALITY 

Fig. 5.15. Examples of some plastic potential surfaces (see also Mroz, 1984 and Hashiguchi, 1984): 
a - Cam-clay ellipse and Granta gravel logarithmic curve: critical state model (Schofleld and Wroth, 
1968); CSL - critical state line; b - Roscoe-Hvorslev model (Houlsby et al., 1984); c - model with 
two yield surfaces (Lade and Mete Oner, 1984; Lade and Ducan, 1975; Vermeer, 1987; Griffiths et 
al., 1982; Bezuijen et al., 1982); d - the concept of combined hardening (Wilde, 1977, 1979; Nova 

and Wood, 1979). 
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have to be identified with the octahedral stress axes to depict the plastic strain 
increments in the same plane. 

Fig. 5.15 shows graphically some examples of the plastic potential and yield 
surfaces (they may or may not depend on the mode of the stress state, i.e., on 
νσ or Θ according to eqns. 5.37 or 5.39). The elliptical surface with the associated 
flow rule (de

p
 perpendicular to the yield = plastic potential surface) contains 

two characteristics points: on the critical-state line CSL, where de£ct = de
p
/3 = 

= 0, and on the r o c t = 0 axis where = 0. To the right of the CSL, the 
soil is contractant, to the left, it is dilatant. The logarithmic surface (usually 
applied to cohesionless soils, but also to overconsolidated clays - see e.g., Adachi 
and Oka, 1984a) has a corner (apex, vertex) on the r o c t = 0 axis

7
. 

I VOLUME 
-f INCREASE 

DISPLACEMENT 
VECTOR 

VOLUME 
DECREASE 

DISPLACEMENT 
VECTOR 

Fig. 5.16. Simple physical model of coupling between shear stress and volume deformation (dilatan-
cy (a) and between the volume decrease (e.g. by hydrostatic compression) and shear displacement 
(b) of a particulate material modelled by a cylindrical array (dotted - stable particles, broken circles 

- new positions). 

Such singular point presents some mathematical difficulties, but it seems to 
model an effect inverse to dilatancy (contractancy). It predicts the possibility of 
anisotropic shear deformations in the case of isotropic loading of a soil sample. 
Taking into account the inherent anisotropic nature of soils (and of geomaterials 
in general), produced by the preferential sliding of those grain (or structural 
unit) contacts whose contact strength is most easily mobilized on the chosen 
stress path, such an effect is physically to be admitted. It is indeed accepted for 
anisotropically (K0-) consolidated soils. 

7
 The transfer from a logarithmic to an elliptic surface occurs if in addition to deviatoric also 
volumetric deformation is made responsible for the dissipation of the deformation energy. 
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The simple physical model in Fig. 5.16 reveals the mechanism of coupling that 
is typical for particulate materials. Following Wilde's (1979) analysis, deviatoric 
deformation will appear after the initial stage of isotropic pressure and deforma-
tion, when this pressure surpasses a particular limit. It is not impossible to 
imagine the physical possibility of such a process: in its initial stage, the material 
is metastable and, if loading proceeds, it collapses at a particular load level (Fig. 
5.16b). 

Vertices in the plastic potential surfaces (in the case of an associated flow rule) 
mean that the direction of defj depends, to some extent, on the direction of dair 

They are typical for the slip theory of plasticity which seems to be of considerab-
le relevance for soils, albeit long ago rejected for metals (Hashiguchi, 1984). The 
plastic potential surface (called by them loading surface) with vertices separating 
the regular portions of the loading surface is used by Zaretskiy and Lombardo 
(1983). Their angular plastic potential surface undergoes a combined anisotro-
pic hardening (volumetric and deviatoric) which is described by means of 
Odquist's parameters. 

In order to improve the predictive capacity, simple single surface have been 
replaced by a combination of two and the associated flow rule by a nonassocia-
ted one. In Fig. 5.15b, the ellipse of the modified Cam-clay has been retained, 
together with the associated flow rule (Roscoe's surface). This forms a cap on 
the cone-shaped Hvorslev's surface, where the flow rule is nonassociated. In Fig. 
5.15c, two yield loci are suggested, one deviatoric (/*y)d ev and the other compressi-
ve {fy)com in the form of a (spherical) cap (Vermeer reduces it to a plane, 
perpendicular to the hydrostatic axis). The plastic flow rule is associated for the 
cap and nonassociated for the deviatoric yield (dashed curve in Fig. 5.15c). The 
shape of the surface ( / y) d ev depends on the value of the angle Θ (or on the 
magnitude of ν σ). In the deviatoric plane, it represents a rounded triangle (a 
transition between the Mohr-Coulomb hexagonal pyramid and von Mises' 
circular cone in the principal stress space). Bezuijen et al. (1982) proposed 
different submodels for the calculation of the plastic strain increment brought 
about by a stress increment. According to the position of the stress point after 
the stress increment, they use (Fig. 5.15c) the following: in the region 1 (which 
is the elastic region) - a nonlinear elastic model; in the region 2 - a nonlinear 
elastic model combined with a plastic deviatoric model; in the region 3 - a non-
linear elastic model combined with a purely compressive plastic model; in the 
region 4 - all submodels are used. 

Often, the relation between the plastic potential and yield surfaces depends on 
the type and loading history of the soils in question. Generally, normally 
consolidated (contractant) clays are endowed with the associated flow rule and 
dilatant soils (sands, overconsolidated clays) with a nonassociated flow rule (see 
e.g., Adachi and Oka, 1984a, b). 
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The existence or nonexistence of an elastic region is another distinction 
between different formulations of soil plasticity. Lade and Duncan (1977) calcu-
late the elastic and plastic strain increments separately, i.e., their plastic model 
does not contain any elastic region, contrary to Vermeer's or Molenkamp's 
models, or the models in Figs. 5.15a, b. The problem of how to discriminate the 
elastic from the plastic strain increments fades away, if the elastic domain shrinks 
to a point, as assumed by Mroz et al. (1979) who call it the "vanishing elastic 
domain". It is convenient not only from the computational but at the same time 
also from physical standpoints because, as mentioned previously, definitions of 
the elastic strain suffer from different inconsistencies. 

As far as hardening is concerned, the models in Fig. 5.15 make use of different 
isotropic hardening rules (Mroz, 1984). For the models in Fig. 5.15a and b, it is 
the density or volumetric hardening: the state variable is the irreversible void 
ratio or density or the value of aocV corresponding to the plastic volumetric 
strain (this may be used to normalize the yield surface into a dimensionless 
form). The models in Fig. 5.15c employ the concept of independent compaction 
hardening and shear hardening mechanisms, decomposing the plastic strains 
accordingly into two corresponding parts (e.g., Lade: plastic collapse strain 
increment and plastic expansive strain increment; hardening parameters are 
then plastic collapse and expansive works). Fig. 5.15d depicts the effect of the 
use of a combined hardening concept, the hardening function being composed 
of the deviatoric plastic strain and of the plastic void ratio as state variables. The 
CSL is no longer a line of de

p
 = 0, but the zero-dilatancy line 1 shifts below the 

CSL. 

All the above hardening proposals are based on the idea of an isotropic 
hardening rule. This may well correspond with laboratory conditions if the soil 
samples are isotropically consolidated and no anisotropy is induced in the 
process of loading. More often, when dealing with undisturbed soil samples, 
which are /^-consolidated, one has to assume anisotropic hardening. The axis 
of the yield surface, therefore, then has the corresponding ^-direct ion (Hashi-
guchi, 1984; Adachi and Oka, 1984a). There are some indications of the validity 
of the associated flow rule for soft clays in such a case (Dyer et al., 1986). Still 
more complex is the assumption of kinematic hardening which is able to 
describe the anisotropy of geomaterials acquired in the deformation process, 
cyclic loading included. 

On the general level, a hardening or softening function attempts to describe 
the variation of the state parameters determining the mechanical response of 
a material. Among the state parameters the most easily quantified are stress and 
strain, which are interrelated. A more general approach would require accoun-
ting also for the changes in such structural characteristics as fabric, size of 
structural units and bonding, which need not always be adequately expressed 
simply by the stress and strain characteristics (see the effect of water content in 
Feda, 1990c). 
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In the classical approach, like that of the Cambridge school, the yield surface 
fyfoij) acts as a sharp separation between the elastic and plastic domains. On the 
other hand, experiments have shown that even within the yield surface (i.e., in 
the elastic domain) considerable plastic deformations take place, especially in the 
case of overconsolidated soils. The elastic-plastic transition for these soils is 
smooth and the bend in the reloading stress-strain curve for OCR -> 1 much less 
sharp than predicted theoretically. Still much more significant is to account for 
the gradual accumulation of the plastic strains under cyclic loading that affect 
the build-up of pore-water pressure and, eventually, the study of the shake-down 
state of soils. 

The common yield surface, renamed consolidation (configuration for sands) 
or bounding surface (Dafalias, 1982; M r o z et al., 1979) or distinct-yield surface 
(Hashiguchi, 1984), represents the consolidation history of the soil (reflected in 
its initial structure) depending on both the volumetric and deviatoric plastic 
strains ( M r o z and Pietruszczak, 1984)

8
. By means of the consolidation surface, 

the memory of its peak stresses is implanted in the soil sample ( M r o z et al., 
1979). 

More generally, the consolidation (and associated plastic potential) surface 
characterizes the original structure of the material, its memory of the past 
deformation, diagenetic history, etc. 

For a stress point moving within the domain enclosed by the bounding 
surface, it is necessary to prescribe some measure (a tensor-valued internal 
variable) of its proximity to the bounding surface. Such a conception represents 
some generalization of the anisotropically and kinematically hardening soils in 
different versions of soil-plasticity theory. 

The rules governing the mechanical response of a material within the bounda-
ry surface may be formulated by means of M r o z ' s "field of hardening moduli" 
(these moduli can range from infinity on the yield surface enclosing the elastic 
domain to some prescribed value on the boundary surface), or by Dafalias' 
"radial mapping rule", by a translating, expanding, contracting and rotating 
yield locus delineating the elastic domain, which may shrink to a point ( M r o z 

et al., 1979) up to the "infinite surface model", where the site of loading surfaces 
increases from a point (vanishing elastic domain) to the boundary surface ( M r o z 

and Norris, 1982). 
The above description and analysis of the theory of soil plasticity seems to 

indicate that it has entered into the mature state. Highly refined and sophistica-
ted procedures are able to simulate practically any experimental situation, 
including the stiffness degradation during cyclic loading. There is a tendency to 

8
 It will generally depend also on the changes of structure imposed by the deformation process in 
question (see e.g., Adachi and Oka, 1984a). 
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reduce or completely annihilate the elastic stress-strain response, to treat soils 
with different structures (clays vs. sands) on the basis of the same concept 
(consolidation and configuration surfaces in the first and second cases, respecti-
vely) and to present the results most generally, respecting all three basic stress 
invariants (see e.g., Mroz and Pietruszczak, 1984). This is made possible by 
operating with different tensorial internal variables. Using such a procedure, the 
physical interpretation of the deformation process becomes somewhat clouded, 
but the associated flow rule can be applied indiscriminately (Mroz and Piet-
ruszczak, 1984). 

5.4.5 Other physically motivated concepts 

In this group of constitutive relations, two other familiar concepts should be 
mentioned: the endochronic theory and the slip theory. The latter belongs to the 
family of the statistical theories of plasticity (Knets, 1971, p. 103). 

The starting point of the endochronic theory is the assumption that the source 
of inelasticity in soils is the irreversible rearrangement of grain configurations, 
associated with deviatoric strains. The memory of the material (previous defor-
mation history) is measured on the intrinsic time scale (hence endochronic 
theory) which is the distance along a path ε

ρ
 which represents the measure of 

rearrangement (Valanis, 1982; Antal, 1987). A fourth-order symmetric positive 
definite tensor serves as its metric, expressing the material property. The distance 
between two adjacent strain states varies, therefore, even though the strain 
coordinates are equal. The functional relation between the stresses and the 
history of plastic strain represents hereditary integrals. The theory is supple-
mented with strain hardening and softening functions and, in this way, the 
volumetric and deviatoric hardening or softening is respected and, by means of 
a variable, contractancy-dilatancy effects are introduced. 

The theory met with serious difficulties for the case of cyclic loading since it 
predicted an open hysteresis loop in the first quadrant of the shear and uniaxial 
stress-strain space

9
. A correction coefficient and a three-way loading criterion 

were introduced to surmount this obstacle (the violation of the second law of 
thermodynamic and the unstable material behaviour evoked strictly negative 
reactions to this theory - Nemat-Nasser, 1984). This development causes the 
endochronic theory to become similar to the plasticity theory (Hashiguchi, 
1984). Cyclic instability calls for an admissibility condition, bounding the 
growth of the deformation energy (Mroz, 1984). 

9
 Valanis' (1982) opinion that the remedy lies in defining the intrinsic time in terms of the plastic 
strain tensor is contradicted by his analysis of triaxial test data showing the difference between total 
and plastic strains to be minute. 
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The endeavour of the endochronic theory to link the stress-strain relations of 
geomaterials with their structure failed. The description of the structure at some 
moment in a loading (unloading) process, if expressed by the length of the 
plastic deformation path, is oversimplified and the fourth-order tensor serving 
as the metric is physically obscure. The same plastic strain response can be 
obtained by very different structural mechanisms, such as sliding or cataclastic 
deformations. Their phenomenological characterization is inadmissibly simpli-
fied, if it is not based on a proper understanding of micromechanical mecha-
nisms on the structural level. 

In comparison with the endochronic theory, the slip theory is founded on the 
idea of a physically appropriate representation of the structure of geomaterials. 
A sample of geomaterial is assumed to be cross-cut by planes of weaknesses in 
random directions (model of a soil as an assemblage of polyhedral blocks 
- Calladine, 1971, 1973; Pande, 1985). Each cut possesses its own normal and 
shearing stiffness (if elastic behaviour is considered) or yield locus (associated 
flow rule and critical state model - see Fig. 5.15 - are assumed: Pande, 1985). 
In this way, both the elastic and plastic behaviour of geomaterials can be 
modelled. 

If the material is isotropic, then the directions of normals of the cutting planes 
are equi-spaced on the surface of a sphere. Otherwise, the anisotropy is model-
led. The distortions occur in the various cuts independently and the overall 
response of the material, its bulk strain, is found by direct addition of the 
separate effects of the cuts. This conception can be viewed to be a generalization 
of the Yamada and Ishihara (1984) model, where only three planes cutting the 
specimen are considered. 

Such a physical model may serve as an appropriate mathematical model of 
sliding deformation (see Section 3.3, Figs. 3.15 and 3.16), but it is hard to 
imagine its utility for modelling of cataclastic deformation. It describes the 
changes in the structural configuration only partially. 

Calladine's model clearly displays an analogy with the numerical experiment 
of a block of rock whose response to loading represents a combination of the 
responses of cracks (endowed with normal and shear stiffness) and of intact rock 
portions (see e.g., Rouvray and Goodman, 1972; Dolezalovâ, 1987). In addition, 
it is also related to the method of kinematic elements where the geomaterial is 
represented by rigid straight-line bounded elements separated by failure (sliding) 
lines (Gussmann, 1982, 1987). 

Calladine's analysis of oedometric unloading (Calladine, 1973) points to the 
fact that to explain the shape of the unloading curve (void ratio against the 
logarithm of load) it is necessary to assume an enhanced irreversible component 
of strain due to sliding on the cutting planes. The elastic behaviour seems to be 
confined to the region of an immediate change in the loading direction. As 
deformation (unloading) proceeds, increasing irreversible slips take place. This 
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10
 Plastic deformation affects only a part of the yield surface in the environment of the loading point. 

This forms a vertex of a cone-like distortion of the yield surface (singular or angular point). Koiter 
(1953) explained the origin of a singular point as the result of the intersection of two or more smooth 
yield surfaces acting independently. 
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accords with the distinction made in Sections 5.2 (and Fig. 5.2) and 3.5 between 
elasticity and reversibility. Also Pande's (1985) analysis indicates that the plastic 
strains take place on unloading (see also Amerasinghe and Kraft, 1983). 

The above observations show the slip theory to reflect some features of the 
mechanical behaviour of geomaterials remarkably well, in contrast to metals 
where it failed (Hashiguchi, 1984). Since the material hardens anisotropically 
and the elastic domain contains a corner, a coincidence of the directions of the 
stress increment and plastic-strain increment occurs

1 0
. Related to the slip theory 

is the theory of Zaretskiy and Lombardo (1983, p. 83) where similar effects are 
predicted and the loading surface is provided with corners. 

Pande's analysis leads to the interesting conclusion: since different cutting 
planes undergo different deformation histories, initially isotropic materials be-
come anisotropic due to plastic flow. This is the most significant advantage of 
the model suggested. Schematically, it may be represented by a series of elements 
each with a parallel dashpot and slider. 

5.4.6 Rate-type relations 

These relations are actually time-independent, therefore it is better to term 
them incremental relations. A typical rate-type stress-strain relation is that 
proposed (in the most simple and general version) by Kolymbas (1987), which 
will be described in some detail (see also Section 12.3.1). 

Kolymbas does not distinguish between elastic and plastic strains, the distinc-
tion between them being held to be artificial one. The deficiency of Hookean 
stress-strain relations is that they do not account for the variable stiffness typical 
for soils. One is therefore forced to adopt a hypoelastic stress-strain relation with 
stress-dependent stiffnesses. Further, it is necessary to differentiate between 
loading and unloading, since with the switch from one process to the other the 
stiffness of geomaterials differs. Finally, another term is inserted by Kolymbas 
into stress-strain relations found by trial and error and improving the predictive 
capacity of his rate-type relations. To respect the rotational invariance, a co-
rotational stress rate (Jaumann's derivative of the stress tensor) is used. 

The final relation may easily be applied to predict (for sand) the familiar 
stress-strain curves for triaxial, oedometric and simple shear loading and unloa-
ding, if three input parameters (initial tangent modulus E[9 the peak angle of 
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internal friction φΐ and the peak gradient of volumetric strain) are found from 
the results of a single triaxial compression test. This is an admirable achieve-
ment. 

The sensitivity to perturbations of stress and strain paths (e.g., with cyclic 
loading), similarly to the endochronic theory, is inherent in this relation as in any 
incrementally nonlinear one and calls for the application of an admissibility rule 
(Mroz, 1984). 

The proposed rate-type (incremental) relation has been tested not only for 
sands, but (with less satisfactory results) also for clay (Kolymbas, 1984). The 
relation is suitable for further development, e.g., by supplementing it with 
a structure tensor, by adding a parameter accounting for the variability of φΐ with 
the stress level and making the relation sensitive to the effect of a sudden change 
of the rate of loading (Kolymbas, 1987). In this way, by trying to cope with 
different structurally based phenomena in the behaviour of geomaterials, Ko-
lymbas increases the intricacy of his theory. It is, therefore, difficult to accept his 
objection to the elastoplastic relations that "the complex structure and the many 
auxiliary notions of elastoplastic formulation, such as yield surface, etc., hinder 
a direct insight into the modelled material behaviour" (Kolymbas, 1987). 

Hashiguchi (1984) classifies this approach as merely a polynomial expansion 
method which is, in his opinion, not particularly effective at present. Anyway, it 
is devoid of any physical interpretation and, therefore, diverges adversely from 
the principles stated in Section 3.2. Nevertheless, the principal physical facts 
about the geomaterial response are implicitly respected in applying the trial and 
error method for finding the most representative composition of the final version 
of the rate-type relation. Owing to this approach, the theory is not so transpa-
rent as the theory of soil plasticity. 

5.5 Concluding remarks 

Sections 5.2 to 5.4 contain an unpretentious and condensed analysis of some 
mathematical models, attempting to fit the mechanical behaviour of geomate-
rials. The result is not very encouraging. If the three ideal materials, elastic (//), 
viscous (TV) and plastic (V) would represent the vertices of a triangle, then the 
point—a characteristic of the real behaviour of a particular geomaterial—may 
lie somewhere within the triangle, approaching, according to the kind of the 
material in question, one vertex or another. Such a picture can, perhaps, be 
suggested only if an engineering accuracy is required. In reality, the point may 
be situated outside the mentioned triangular area or even below or above it. This 
does not seem to be simply a noetic problem. It may be generally agreed that 
before any endeavour to model any physical reality mathematically, one must 
know it in adequate detail. The extent of this knowledge depends on how 
elaborate the mathematical model should be. 
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One may quite generally state that the most serious obstacle to the further 
development of constitutive relations of geomaterials lies in the lack of reliable, 
noncontroversial experimental data. To illustrate this point, let us comment on 
some experimental results underlying the Grenoble workshop on constitutive 
relations (September, 1982): 

— Specimens of the same sand but prepared in different ways were compared. 
One series had been compacted by raining (Goldscheider, 1984, p. 12), another 
by tamping (Lanier and Stutz, 1984, p. 68). In this way, different sand structures 
were obtained and, consequently, different responses (see e.g., Fig. 3.19). In 
addition, parasitic effects (of membrane penetration) were either of the same 
order of magnitude as the measured strains (Goldscheider, 1984, p. 14) and 
severely distorted the test results (ibidem, p. 38, Λ^-test), or they were not 
corrected at all (Lanier and Stutz, 1984, p. 68). 

— Specimens deemed to be completely saturated were, in fact, not such 
(Houlsby et al., 1984, p. 110) and some displayed an inexplicable behaviour 
(Kuntsche, 1984, p. 77-78) which is difficult to attribute to random effects. 

— Similar tests could not yield comparable results, perhaps owing to the 
different experimental techniques (Houlsby et al., 1984, p. 118). 

— Careful critical evaluation of the test results, strictly on a statistical basis 
(which had not been done), is needed to be able to detect the actual physically 
motivated behaviour of geomaterials (for instance, is the deviation of the slope 
of two consolidation curves in fig. 10, Kuntsche, 1984, p. 75, sufficiently proved 
to justify the revision of a theory?). 

It should be remembered that to get a set of unambiguous experimental data 
from long-term tests is still much more difficult. In additition, only laboratory-
-prepared specimens of sand and clay are used for constitutive experiments and 
data on undisturbed soils, like those in Okamoto (1985a) are sparse. It is to be 
expected that, owing to the more complex structure, their behaviour will be far 
more intricate than that of samples reconstituted in the laboratory. This is not 
meant to reject bold endeavours such as the Grenoble workshop, but rather to 
see its results in the sober light. 

No wonder that many experimental results are suspect and that there is a call 
for commonly acceptable experimental output data (Dafalias et al., 1984) or 
even a proposal to create a data bank of correct and collectively approved 
experimental results for a variety of soils to form a baseline for constitutive 
modelling (Scott, 1984). 

In addition to a positive confrontation with the experiments, that are success-
ful at least in qualitative respect, each constitutive relation has to fulfill certain 
requirements. It should be objective, consistent, fulfil the conditions of continui-
ty and admissibility, lead to convergent solutions, etc. No more mathematics 
should be employed than is necessary to acount for the main features of the 
behaviour of geomaterials (the constitutive model should be "parsimonious", to 
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use Dafalias' term - Scott et al., 1984). Unfortunately, the less objectionable the 
constitutive model may be from the mathematical standpoint (e.g., Hookean 
behaviour), the worse its physical fitness. 

Gudehus (1979) tested some constitutive laws numerically to find out their 
unit response (the stress rate response to unit strain-rate increments). With 
respect to the requirement of sectorial continuity (Gudehus, 1984), i.e., of 
a continuous transition from one sector (of stress- or strain-rate directions) to 
another, elastoplastic constitutive laws are the best suited (their continuity being 
the consequence of the consistency condition of plasticity, independent of a flow 
rule), if different classes of constitutive relations are accounted for. Similar is the 
conclusion arrived at by Mroz (1980) in comparing hypoelasticity (rate-type 
theories) with plasticity (although they are equivalent for the loading process)

1 1
. 

Among the phenomenologically formulated constitutive relations, the theory of 
plasticity retains, in addition, a maximum of physical reality. 

The problem of the implementation and evaluation of parameters is a serious 
obstacle to the constitutive relations being objective, because their choice is to 
a considerable extent subjective (Scott et al., 1984). The only recommendable 
passage through this situation lies, probably, in the micromechanical (structural) 
approach (for instance, Nemat-Nasser, 1984, suggests characterizing the corres-
ponding basic constitutive structure by micro-modelling). 

Outstanding in this respect is the concept of the slip theory, as applied to soils. 
It gives a clear, although incomplete, picture of the deformation process on 
a structural level in a mathematically tractable manner and succeeds in reflecting 
both the elastic and plastic behaviour (using the plasticity approach on each 
cutting plane), deformation anisotropy, plastic straining in unloading, etc. 
Undoubtedly, the development and perfection of such an approach, although 
still in a distant future, seems to be promising. Without some physically clearly 
expressed ideas about the structural mechanisms of straining and stressing of 
geomaterials, not only is a sound basis of the constitutive relations lacking, but 
also the power of any constitutive theory for extrapolation beyond the experi-
mental data is greatly reduced. 

Since constitutive relations are the clue to a successful solution of every 
geomechanical problem, there is considerable international activity in this field. 
In recent years, two U.S.-Japan Seminars on the mechanics of granular ma-
terials have taken place (Sendai, 1978; New York, 1982), International conferen-
ce on micromechanics of granular media (Clermont-Ferrand, 1989) and one 
IUTAM Symposium (Deformation and failure of granular materials, Delft, 
1982) and two other symposia on constitutive modelling ("Stability and genera-

11
 In this choice the role of personal taste must, to some extent, be admitted. Some, being endowed 

with fantasy, may prefer a more "geometrical" approach, others a more logical one, to paraphrase 
Poincaré's familiar classification of mathematicians. 

171 



Elasticity, viscosity and plasticity 

lized stress-strain behaviour of soils", McGill University, Montreal, 1980; Inter-
national workshop on constitutive relations for soils, Grenoble, 1982) were 
organized. In addition, constitutive relations have been dealt with at many 
international conferences (the ISSMFE conferences included), particularly on 
numerical methods in geomechanics (the seventh one in 1991 in Cairns), on 
numerical models in geomechanics (the third one in 1989, Niagara Falls) and 
rheology in soil mechanics (the second one in Coventry, 1988). 

As the preceding text has shown, there is an implicit tendency towards 
convergence of individual classes of constitutive relations, respecting particular 
features of different geomaterials and, quite often, basing the stress-strain 
relations on a sound physical foundation. 

The combination of elastic, viscous and plastic effects leads to complex 
stress-strain-time relations (e.g., Adachi and Oka, 1984b; Zienkiewicz et al., 
1975; review of the recent developments in Sekiguchi, 1984) which are necessary 
to cope with the intricate nature of geomaterials. 

The dynamic (time-dependent) yield surface and the associative flow rule, as 
suggested by Akai et al. (1979), represents a straightforward procedure. Hsieh 
and Kavazanjian (1987) and Kavazanjian and Hsieh (1988) (see also Section 
12.3.1) adopted a quasistatic approach. The position (but not the shape) of the 
yield surface ( = plastic potential surface; they use the ellipse of the modified 
Cam-clay and a horizontal deviatoric yield surface within it accepting that 
plastic shear distortions take place within the Cam-clay surface) depends also 
on time (by the way of preconcolidation due to time-hardening, as follows from 
Taylor's and Bjerrum's theories of time-lines - Section 9.2). Creep affects the 
scaling of the total deformation (they apply different combinations of the 
Singh-Mitchell's, 1968 - eqn. 11.58 - deviatoric creep rule and of the logar-
ithmic uniaxial creep rule, i.e., that of secondary consolidation). According to 
Section 11.1, the shape of the dynamic plastic potential, however, also depends 
on time. 

It should be emphasized that extremely generalized constitutive laws are often 
superfluous when solving a clearly defined engineering problem. Zienkiewicz et 
al. (1975) have shown, that 

— the type of plasticity theory (associated or nonassociated) does not, as 
a rule, affect the collapse load; 

— it is a luxury to calculate the collapse load using plasticity theory, because 
the result agrees with the classical solutions; 

— on the other hand, calculated deformations are significantly sensitive to the 
plasticity theory applied and to its type. 

Desai et al. (1986) proposed the way of how the simple basic model (associati-
ve behaviour and isotropic hardening) can be progressively made more complex 
to cope with the geomaterials of increasing complexity of behaviour. 
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6.1 Introduction 

The task of experimental rheology is to provide the theory with the objective 
experimental results. Objective experimental results are such results that express 
the physical behaviour of geomaterials, free from the influence of the testing 
method and environmental factors. Since the experimental output reflects the 
true behaviour distorted by parasitic effects, these effects should be kept at the 
minimum and it should be possible to isolate them from the bulk of the 
experimental data. If the parasitic effects are of the same order of magnitude as 
the measured stress-strain response of the material, the method is wrong. 

Field tests, with the exclusion, perhaps, of consolidation tests (their expected 
accuracy is, however, only within an order of magnitude - Jamiolkowski et al., 
1985), are not suitable for creep experiments owing to the uncontrollable para-
sitic effects (mainly temperature variations) and poorly defined boundary condi-
tions. They will therefore not be dealt with in the following. More promising are 
back-analyses of full-scale structures which may be successfully used to verify 
theoretical predictions (see e.g. Fig. 2.8). Some of them will be used, when 
opportune, in the following text. 

Parasitic effects can be subdivided into two classes. To the first class belong 
such effects that change the state of the tested specimen. These are the water 
content and temperature. The other state parameters, stress, strain and time (see 
Section 4) are incorporated into the response functionals of geomaterials. 

The second class contains the effects referring to the apparatus. These are 
frictional effects (on the base of a triaxial specimen, circumferential friction in 
an oedometer or direct shear apparatus) and different stress and strain concen-
trations causing the stress (or strain) to be inhomogeneous, etc. 

Since the water content and temperature do not fluctuate much through 
standard tests taking up to one day, the first class of parasitic effects is typical 
for the rheological, long-term testing, the second one is general for all tests. 

All tests are carried out under special boundary conditions, kinematical, 
statical or combined. Their results, however, should be disclosed in general 
terms. For instance, in the case of an axial symmetry of stresses (in triaxial 
apparatus), the octahedral shear stress (eqn. 5.33) is related to the second 
invariant of the stress deviator by eqn. (5.35). 
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In addition to the question of how to exclude or, at least, of how to evaluate 
the parasitic effects, there is the problem of how to interpret the experimental 
results. All these problems will be dealt with shortly with respect to the tested 
soils (Section 3.7). 

6.2 Water content and temperature fluctuations 

According to Fig. 4.10, a change in the water content of a magnitude of 1 % 
has different consequences in the range of low and high water contents. In the 
first case (e.g., w = 5 % - 1 % ) , the unconfined compression strength increases 
by about 50 % (from 1.4 to 2.15 MPa); in the second case (e.g., w = 15 % -
- 1 % ) , the increase is only about 10 % (from 0.24 to 0.28 MPa). Further, 
according to Section 4.1, water saturation has no effect on the strength of 
Zbraslav sand (at least in the range of no grain breakage). 

H 

ο TIME 

Fig. 6.1. Possible effect of water content on the creep behaviour (7 - constant water content, 
2 - decreasing water content). 

The condition of a constant water content has different importance for 
different soils. It is not relevant to (clean) cohesionless soils (in the deformation 
process with no grain crushing). With cohesive soils, the most sensitive is the 
range of smaller water contents where the soil is unsaturated (the collapsibility 
of loess is usually confined to a degree of saturation lower than about 60 % 
- Section 3.5). 
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Fig. 6.1 shows, in a qualitative way, how the decrease of water content in the 
course of a creep test affects its result. If the water content is constant (Fig. 
6.1, 1), the specimen passes through the primary and secondary stages of creep 
and, let it be assumed, fails at the end of tertiary creep. A decrease of the water 
content (Fig. 6.1, 2) increases both the strength and deformation resistance of 
the specimen and, finally, only primary creep may take place. Due to water-
-content changes, the response of a soil alters and can differ even in a qualitative 
way. 

It is therefore necessary to explore the sensitivity of the tested soil to fluctuati-
ons of its water content to determine the criterion of its admissible value. The 
second alternative, and this was followed in the author's tests, is to saturate all 
the specimens with water during the rheological experiments (with the possible 
exception of sand). Each specimen being submerged in water during the whole 
period of testing, there are no water-content changes. The material response 
corresponds to complete saturation. When sensitive to water content, strength 
and deformation properties are thus recorded at the lower limit. 

Following Section 4.6, the increase of temperature increases the deformability 
of geomaterials, similarly to the increase of the water content. Fig. 6.2 depicts 
this effect. Temperature oscillations lead to a wavy course of the creep curve. It 
is not, in such a case, structurally motivated, being only a parasitic effect. Similar 
is the effect of the variation of the load; for instance, if the load is produced by 
a spring dynamometer of insufficient capacity (Fig. 6.3). 
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Fig. 6.2. Possible effect of temperature variations on the creep curve. 
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The opinions of various investigators are divided as to the allowable range of 
temperature oscillations when creep is being measured. Lo (1961) accepts about 
±0.5 °C, but in his experiments, temperature changes of up to 2 ° to 3 °C can 
be detected. Esu and Grisola (1977) allowed up to ±2.5 °C. Schiffman et al. 
(1966) consider temperature changes of ± 1 °C as negligible. Bishop and Loven-
bury (1969) mentioned that, occasionally, the temperature regulation failed 
during their experiments, but no correlation could be found of this occurring 
with significant changes in the creep rate. Campanella and Mitchell (1968) 
limited the temperature variations to about ±0 .3 °C. When measuring the 
secondary consolidation of peats, Najder (1972) fixed the allowable range of 

-t 
ο T I M E 

Fig. 6.3. Possible effect of the load variation (in the case of a spring or ring dynamometer of great 
rigidity) on the creep curve (i - constant load, 2 - variable load). 

temperature variation at ± 0.1 °C. Following his experiments, Meschyan takes 
the effect of temperature to be negligible in the case of primary creep (see Félix, 
1980a). For a temperature decrease from 21 °C to 14 °C, the rate of secondary 
creep dropped by 20 % (i.e., a change in the strain rate of 3 % for 1 °C); with 
the increase of temperature from 21 °C to 40 °C, an increase of the secondary 
creep rate by about 75 % occurred (i.e., for every 1 °C the strain rate increase 
by about 4 % ) . 

This range of opinions seems to be a consequence of the temperature effects 
being various for different soil structures and stress levels (Section 4.6). Smaller 
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temperature variations should be required for weak structures and high stress 
levels and, especially, for undrained testing where the temperature essentially 
affects the pore-water pressure. Henkel and Sowa (1963) indicate that for an 
oscillation amplitude of ± 2 °C, the variation of the pore-water pressure was 
0.21 ^ MPa. 

The effect of temperature on the creep rate can be evaluated theoretically 
using the rate-process theory (Section 8.2; Feda, 1982c). It predicts, in accordan-
ce with the preceding analysis, that the effect of temperature depends on the 
stress level and on the soil-structure strength: it increases for load increase and 
decreases for increasing structural resistance. If 18.5 ° ± 1.15 °C represents the 
mean experimental temperature and its variations in the author's tests, then the 
rate of creep will theoretically vary in the range ± 0.9 % from the mean value. 
This effect is probably higher than the actual one and can easily be neglected. 
For Osaka clay Murayama (1969) recorded no change of the strain rate if the 
temperature increased from 10 °C to 20 °C. 

If a specimen's creep rate were affected by the fluctuations of temperature, 
then the frequency of the creep rate changes should conform with the frequency 
of temperature variations, i.e., it should be 24 hours. The detection of such 
a relationship is the principal criterion for the admissible temperature range, 
since it relates directly to the tested soil. For the author's tests, the temperature 
variations of ± 1.15 °C fell within the allowable limits, because no such correlati-
on has been observed. 

Most creep tests in the laboratory are performed at room temperature, i.e., at 
about 20 °C. The mean average temperature of the foundation soil in regions of 
mild climate is essentially lower (e.g., 10 °C). Using the rate-process theory, one 
can calculate the ratio of the creep strain rates at 20 °C and 5 °C—it amounts 
to 1.124, i.e., for an increase of temperature from 5 °C to 20 °C, the creep rate 
will theoretically increase by about 12.4 % (this value is probably higher than 
that expected — see coincidence of laboratory and field data in Figs. 9.4, 9.16, 
9.17 and 10.14). The transition from one (experimental) temperature to another 
(in situ) can be modelled by the changes in the loading (increment or decrement 
of the experimental stress level) or time scale (its extension or reduction). The 
corresponding values may easily be computed if the analytical relation stress-
strain-time is known. Such a transformation is, however, admissible only if the 
creep regime does not change, e.g., within the transformation interval, the 
primary creep is retained. 

6.3 Choice of the apparatus 

Rheological properties are determined quantitatively in rheometers: for more 
liquid materials in various kinds of viscometers, for more solid materials by 
a tensile test (Reiner, 1958, p. 535). With the possible exception of the unconfined 
compression test, such tests do not suit geomaterials. 
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Jamiolkowski et al. (1985) refer to the oedometer, triaxial, plane strain, direct 
simple shear, true triaxial and torsional shear hollow-cylinder apparatuses as the 
most appropriate for the investigation of time effects. They mention experimen-
tal problems arising from membrane leakage, friction on the specimen's boun-
daries and temperature fluctuations, and point to the lack of experimental data 
for varying stress conditions. 

An ideal device for creep testing should enable the measurement of long-term 
deformations of specimens with constant effective stress tensor to be performed, 
with the selected stress anisotropy, ranging from the isotropic to failure stresses. 
Such a device should operate in an environment preserving a stable water 
content and temperature of the specimen and its isolation from shocks (especial-
ly in the case of sands). The shape of the specimen should be simple, so that 
trimming could be carried out easily and without any excessive peripheral 
disturbance thereof.-The mode of load application should ensure the homogene-
ity of stress and strain fields within the specimen. 

So-called " t rue" triaxial apparatuses providing cubic or prismatic specimens 
with a general state of stress conform close with the above conditions. They are, 
by no means, routine devices, and they are aimed at short-term testing. Creep 
experiments would require their reconstruction. They are not suitable to measu-
re the residual (ultimate) strength and creep on predisposed or preformed planes 
of reduced resistance. The inherent complexity of these apparatuses, often 
combined with the delicate electronic system of recording and controlling the 
measured quantities (which in the case of creep need not be too frequent), seems 
to be forbidding for tests taking weeks or even months. 

Further choice is represented by the common triaxial apparatus. Although the 
specimen's state of stress is axially symmetrical and not so general as in the 
former case, the apparatus is simple and so is the shape of the specimen. In the 
course of creep tests, the specimen's cross-section varies and the axial load 
should be adjusted (by some type of feedback) to retain the condition of 
constant effective stress (the common constant rate-of-deformation version must 
be replaced by a system of dead loading). Friction on the bases of specimens 
cannot be reduced in the usual way (rubber sheets lubricated with silicone 
vaseline) because this will not work for longer time periods, and the rubber 
membrane around specimens will, under such conditions, be permeable and 
a special arrangement needs be adopted (e.g., specimen surrounded by mercury). 
Residual strength and creep on the cutting planes with lowered strength (e.g., 
preformed failure surfaces) cannot be reliably measured. 

One triaxial creep test on a sample of Kyjice clay (Section 3.7.4) confirmed the 
above deficiencies and this testing method has been abandoned. 

In an oedometer (a kind of a triaxial apparatus imposing a A^-kinematic 
boundary condition on the specimen) it is easy to maintain a constant effective 
axial load because of the specimen's constant cross-section. Since, for a constant 
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axial load, K0 = const (irrespective of time - see also Jamiolkowski et al., 1985), 
the stress anisotropy during creep (in this case called secondary consolidation) 
cannot be controlled and the generality of the experimental procedure is thus 
limited. The oedometer can, therefore, be accepted only as a supplementary 
device in the investigation of creep. 

In the author's experimental program, the secondary consolidation has been 
measured in the oedometer only on Sedlec kaolin (see Section 3.7.5; a specimen 
of the original consistency of a slurry loaded by the axial stress σ = 0.05 MPa). 

In the direct shear box, the shear strength on presheared failure planes can be 
measured and often also the residual strength can be fixed (e.g., of sands; for 
cohesive soils, a multiple reversal procedure must be adhered to, resulting in the 
strength decrease - Bishop et., 1971). The state of stress is not clearly defined, 
deformations of the specimens are nonhomogeneous and the shear displacement 
to be disposed of is rather limited. Anyway, the failure stress ratios measured in 
the shear box and the triaxial apparatus (with better defined boundary stress 
conditions) coincide for medium dense Zbraslav sand (Fig. 4.2) and strength 
measurements in both apparatuses correlate well, at least for the sand tested: 
combining eqns. (4.1) and (4.3), one gets (index b - in the shear box, index t - in 
the triaxial apparatus) 

©.-"·©.-"*· , w ) 

A series of tests with Zbraslav sand (see Section 3.7.1) has been carried out in 
a shear box with inserted relaxation periods permitting to compare the values 
of short-term and long-term angles of internal friction. 

The bulk of creep experiments with claystones (Oâblice and Strahov - Sec-
tions 3.7.6 and 3.7.7) and clay (reconstituted Strahov claystone - Section 3.7.7) 
was performed in a torsional ring-shear apparatus of Hvorslev type. In this 
apparatus (Fig. 6.4), with constant vertical load (normal stress) and torsional 
load (shear stress), the advantages and deficiencies of the oedometer and the 
shear box are combined, for the price of sacrificing the simple shape of the 
specimen. This is of the form of a flat hollow cylinder, which complicates the 
trimming of undisturbed samples. Unlimited shear displacement favours the 
measurement of residual strength. 

The inclination of the vertical axis of the stress tensor through a shear 
deformation process is an advantage when compared with the triaxial appara-
tus, because it models the stress paths of the majority of the geomechanical 
boundary-value problems. Soils are, as a rule, anisotropic (Λ^-consolidation in 
situ) and the inclination of the stress axis, therefore, plays an important role in 
their mechanical response. 
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A series of comparative tests was performed in the torsional apparatus with 
Zbraslav sand to make possible the confrontation of the shear resistance recor-
ded in this aparatus with that in the shear box (and triaxial apparatus). 

The uniaxial straining of specimens in the torsional shear apparatus (the 
radial strain εΓ = 0) makes the volume strain measurements reliable and, the 
specimen's cross-section being constant, no adjusting of either the vertical or 
shear loads is necessary. With this type of apparatus, two questions have to be 
answered: what is the magnitude of the friction between the specimen and 
annular shear box (of brass) and how to disclose the state of stress of the 
specimen? 

The review of possible instruments for creep experiments could be continued. One 
may add, e.g., a triaxial torsional apparatus with the specimen in the form of a tall 
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Fig. 6.4. Torsional (ring) shear apparatus mostly used in the author's tests. 
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hollow cylinder, etc. The preceding conclusions, however, will not be reversed. 
Creep testing calls for long-term deformation measurements in sizable time 
intervals of a specimen subjected to a constant load. For such a task, easily 
handled apparatus seems to be preferable. The torsional shear apparatus meets 
this condition at the price of some parasitic effects (side friction) and lack of 
a clearly defined state of stress of the specimen. To determine whether or not an 
apparatus is disqualified for creep testing for these reasons one has to evaluate 
the relevancy of the parasitic effects to the test results and to calibrate the 
measurements by confronting them with the behaviour of identical samples in 
other apparatuses (oedometer, triaxial, shear box). 

To sum up, four apparatuses were used by the author: triaxial (specimen dia. 
3.8 cm, height 7.6 cm) and oedometer apparatuses (specimen dia. 12 cm) in 
a limited range; translational shear (box) apparatus (specimen dimensions 
6 x 6 cm, thickness about 2 cm) in a wider range, and torsional-shear apparatus 
(specimen's inner and outer dia. about 6 and 12 cm, its thickness about 2 to 
2.5 cm) most frequently. The triaxial, shear box and oedometer apparatuses are 
routine devices which need not be described. 

Fig. 6.4 depicts the torsional-shear apparatus used for creep experiments. By 
applying two weights, the specimen is subjected to a constant normal stress ση 

and constant shear stress τ. The shear stress is radially variable and is indicated, 
therefore, in the following text by its average value. 

In line with Bishop et al.'s (1971) analysis and assuming an improbably 
extreme nonuniformity in the distribution of normal and shear stresses (a 
parabola with its origin on the inner or outer periphery of the specimen), one 
can deduce the variation of the mean angle of internal friction of 17 ° in the 
range of +3 .5 ° and — 2 °. This would cause a gross error and a less favourable 
result than that of Bishop et al. (1971), whose specimens'dimensions were larger 
(inner and'outer dia. about 10 and 15 cm) than the author's. Such an analysis 
would, however, be unrealistic and unnecessarily pessimistic. Comparing the 
long-term peak and residual angles of Zbraslav sand measured in the torsional 
and translational shear apparatuses, one may conclude that they are practically 
identical (see Section 11, residual angle <pT = 33.05 ° and 32.83 ° in the torsional 
and shear box apparatuses, respectively; its value in the triaxial apparatus - see 
Fig. 4.7 - equals 34.33 °). One may therefore conclude that the theoretical radial 
nonuniformity of shear stresses in the torsional-shear apparatus has only negli-
gible practical effect. 

Time variation of the vertical strain of a specimen in the torsional apparatus 
is a measure of its volumetric creep, that of the shear (torsional) displacement 
of the deviatoric (distortional) creep, after reduction with respect to the speci-
men's thickness. 

Since the loading of specimens (realized in steps) has been controlled, the peak 
and residual strengths could not be accurately recorded. Thus, only their upper 
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(higher than the failure stress) and lower (the stress at the immediately preceding 
loading step) limits could be fixed. To determine these limits satisfactorily, 
sufficiently small loading steps have to be applied. 

The specimen is drained by the porous stones (Fig. 6.4) and is, therefore, 
effectively stressed, with the exception of up to 100 minutes after any loading 
change. Within this time interval, neutral pressures (which increase the strain 
rate) or tensions (decreasing the strain rate) may take place. The former effect 
(of primary consolidation, since dilatancy of cohesive materials, like that in Fig. 
4.33, was a pure exception) can be disclosed by estimating the inclination of the 
deformation curve in a log (strain rate) vs. log t diagram: it is initially linear with 
a slope of 0.5 before curving over into the creep region with a slope close to one 
(Parkin, 1985). 

To prevent any slip along the specimen-porous stone interface, four mutually 
perpendicular steel cutting edges (blades) were embedded in the upper and lower 
porous stones, penetrating the specimen to a depth of 4 mm. Thus only the 
middle part of the specimen (its thickness minus 8 mm) is sheared

1
, but the 

whole thickness of the specimen is compressed. 
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Fig. 6.5. Mode of the specimen's shear deformation as detected by the installed plastic wicks 

(specimen after testing in the torsional shear apparatus). 

The possible effect of such an arrangement on the stress distribution was not accounted for, as in 

the case of the apparatus of Bishop et al. (1971). 
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The assumption that the shear strain would be concentrated only in the 
middle part of the specimen was verified in the following way (Fig. 6.5). After 
being placed in the torsional shear apparatus, a specimen was provided with 
three holes (7 ,2 ,3 in Fig. 6.5) filled with a coloured material of plastic consisten-
cy (plastic wicks in Fig. 6.5), and sheared. The deformation of the wicks after 
shearing and cutting the specimen disclosed that the above assumption was 
correct (see especially wick No. 1). 

Vertical deformations of the specimen were measured by a dial gauge (with an 
accuracy of 0.001 mm - Fig. 6.4) and shear (torsional) displacements by both 
a dial gauge (accuracy 0.001 mm) and a deflectometer (accuracy 0.01 mm - Fig. 
6.4). The measured torsisonal displacement was recalculated, in order to express 
shear strains in the horizontal midplane of the specimen at its intersections with 
the vertical cylindrical surface of diameter (5.95 + 11.95)/2 = 8.95 cm. 

The relative displacement in the soil-shear box interface is accompanied by 
side friction. If the upper and lower parts of the ring box are in contact, a part 
of the normal load of the specimen is transmitted through the metallic, and 
practically incompressible, box and stress in the specimen's midplane is smaller 
than calculated. In the case of a gap between boxes, no load reduction takes 
place or, if filled by the soil, the difference between calculated and actual normal 
stress depends on the compressibility of the soil squeezed into the gap. 

The estimate of the parasitic frictional effects is based on a series of translatio-
nal (direct) shear box tests. Specimens of reconstituted Strahov claystone, about 
1 cm thick, were normally loaded after being placed on a smooth brass plate 
(simulating the surface of the torsional shear boxes), and sheared. Friction 
became mobilized at the displacement of about 0.75 mm and the friction angle 
was equal to 17.5 ° (Fig. 6.6). This value approximates the magnitude of the 
residual angle of internal friction of a soil with 7 P « 15 % (see table 3.2). Both 
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Fig. 6.6. Friction of a clay (reconstituted Strahov claystone) in contact with a brass plate. 
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mechanisms, that of external and that of residual friction, are closely related. 
One may assume that a value similar to 17.5 ° will apply also to undisturbed 
samples of tested claystones. 

Let it be assumed that the specimen's compression diminishes linearly from 
the upper to the bottom face and that the friction folows the stress-strain 
diagrams of the tests presented in Fig. 6.6. Then for the compressions of 0.25 mm 
and 1 mm, the skin friction amounts to 8.6 % and 11.2 % of the calculated σ'Ώ, 
respectively (Feda, 1978a). 

If the upper box rotates with respect to the lower one, then the real shear stress 
in the specimen's midplane is smaller than the computed value. At the moment 
of shear failure, this difference reaches about 6.7 %. The ratio of τ/σ'η, which is 
proportional to the shear stress level r/zf if the effective cohesion c' = 0, is 
affected by the parasitic friction in a much smaller measure; owing to friction, 
it decreases by about 2 % to 5 % at τ = r f and still less for τ < τ{. The effect 
of the parasitic friction is, consequently, small enough to be neglected if the ratio 
τ/σ'η is considered. The effect of the σ'η stress alone on the course of creep, as will 
be seen later in the text, was not detectable in the experimental range of stresses 
(max σ'η = 0.52 MPa). 

6.4 Evaluation of the experimental results 

To get an insight into creep behaviour, the following long-term tests were 
carried out: 

1. Sedlec kaolin (Section 3.7.5) was uniaxially loaded in an oedometer 
(σ'Λ = 0.05 MPa) in the initial consistency of a slurry and flooded with distilled 
water. Its creep (secondary consolidation at a constant temperature as defined 
in Section 6.2) was recorded for about 6 years. 

2. Kyjice clay (Section 3.7.4) was tested in a single triaxial test with sustai-
ned axial cell pressure (σ^ = 0.28 MPa, σ'τ = 0.09 MPa). The specimen displayed 
a tertiary creep behaviour. 

3. Zbraslav sand (Section 3.7.1), in the loose (n0 = 39 % to 41 %) and dense 
(*Ze = 31 % to 3 2 % ) states^ was subjected to loads < = 0.06, 0.21 and 0.31 MPa 
and sheared in the direct shear box with a constant rate of shear displacement of 
0.1 mm m i n

- 1
. At shear displacements of 1,2, 3, etc. mm the shearing was stopped 

and, for the constant shear deformation, the stress relaxation was measured until 
the shear stress became stable. The initial and final stresses, measured in such 
a way, make it possible to draw two stress-strain diagrams^ enabling the short-term 
and the long-term shear resistances to be defined. In the second case, a peak stress 
was found which, if the specimen was subjected to it, did not produce any 
increment of shear displacement of the specimen in the course of an unlimited time 
interval. Theoretically, this represents the lower bound of the long-term strength 
which will always surpass this value. 
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Six relaxation tests were arranged in such a manner. To sanction the operation 
of the torsional shear apparatus, the short-term peak strengths were compared 
(with a positive outcome) with the corresponding strengths recorded in a former 
series of standard shear box tests of the same sand (Fig. 4.4). 

With dry dense (n0 = 32 % to 33 %) and loose (n0 = 40 % to 43 %) sand, 
14 torsional shear tests were carried out at σ'η = 0.11, 0.31 and 0.52 MPa. 
Maintaining constant normal stress, a stepwise increasing torsional load was 
applied. At each loading step the time-dependences of the axial (volumetric) and 
torsional (deviatoric, distortional) strains were recorded. After one or more 
loading steps, the specimen was unloaded (in torsion) and its reversible deforma-
tion measured. The unloading was not complete, the shear stress having been 
lowered to only τ = 0.02 to 0.025 MPa, which was the weight of the steel parts 
of the loading system. 

In addition to the volumetric and distortional creep, also the long-term peak 
and residual shearing strengths were recorded. They were compared with the 
corresponding quantities measured in the direct shear box. Further, two effects 
were investigated: that of the relevance of the size of the torsional loading step 
(as a rule, 7 to 9 steps were applied at one normal load; for 5 experiments, the 
loading steps were extremely small—22 to 30 in number for one normal load 
—and specimens were not unloaded) and that of the influence of steel blades 
— one test was performed without these blades. 

4. Oâblice claystone (Section 3.7.6) underwent torsional tests at σ'η = 0.11, 
0.31 and 0.52 MPa. Single specimen was subjected to a multi-stage creep test, its 
individual stages differing in the magnitude of the a^-stress. For each σ^-loading 
step, the specimen was consolidated and subsequently loaded by torsional 
loading steps (with inserted unloading steps) and the volumetric and deviatoric 
creep was recorded. For the lowest normal load, the torsional stress increased 
stepwise until the growth of the shear-strain rate suggested failure to be immi-
nent. To prevent it, the specimen was unloaded (in torsion), loaded by the next 
σή-step and the test run again until the specimen failed at the largest a^-value. 
The number of torsional loading steps was 2, 6 and 5 for σ'Ώ = 0.11, 0.31 and 
0.52 MPa, respectively. 

Thus, one specimen yielded creep curves and long-term peak strength (but not 
the residual one) at three a^-values. By such an experimental procedure, a sub-
stantial reduction of the effect of the natural variability of the structure of tested 
specimens is guaranteed. 

It is necessary to elucidate whether the growing torsional displacement (its 
maximum values were 10.8 mm, 17.0 mm and 30.4 mm — the last one close to 
the imminent failure — at σ'η = 0.11, 0.31 and 0.52 MPa, respectively) did not 
considerably affect the structure and thus the mechanical response of the speci-
men at higher normal load levels. Referring to Section 3.7.6, the "undisturbed" 
sample of Dâblice claystone was presheared, the measured long-term "peak" 
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angle of shear resistance was actually its residual angle φτ = 17.6 ° - see Tab. 3.2. 
The recorded curves of volumetric and distortional creep are, in fact, creep 
characteristics of smooth shear failure planes. 

One relaxation test was carried out with Öablice claystone. At σ'η = 0.52 MPa, 
the shear displacement was kept at a constant value overnight and the drop in 
the shear stress recorded (Fig. 6.7). The test is similar to the test series on 
Zbraslav sand and the dashed curve in Fig. 6.7 determines the lower bound of 
the long-term shear strength of Dablice claystone. It amounts to about 94 % od 
the residual strength (0.16/0.171 = 0.936), i.e., in this case, the long-term and 
residual strengths coincide (remember that the long-term strength should be 
higher than 0.16 MPa - this is only its theoretical lower limit). 

5. With Strahov claystone (Section 3.7.7) and similar types of Cenomanian 
claystones, the long-term peak shear resistance becomes mobilized at a shear 
displacement of the order of about 5 to 10 mm (γ = 0.24 to 0.48). A multistage 
creep test is, therefore, not appropriate for such soils. For each normal load 
(σ'η = 0.11, 0.31 and 0.52 MPa), an individual specimen was used and loaded 
stepwise (at σ'η = const), with the inserted unloading (in torsion) stages. For 

SHEAR STRAIN f 

Fig. 6.7. Residual and relaxation stress-strain diagrams of Öablice claystone (σ'η = 0.52 MPa, γ 
= άγ/άί χ 100 = 0.076 % min"

1
) . 
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each shear-stress level, the courses of the volumetric and deviatoric creep were 
recorded and, in addition, the specimen's long-term and residual resistances for 
each normal stress level. 

Fig. 6.8 shows how the shear stress of specimens of Strahov claystone varied 
in the range of large distortional displacements. As a rule, to reach the residual 
stage, about 100 to 200 cm of shear displacement was needed. The variability of 
the structure of single specimens is demonstrated by the different nature of the 
stress-displacement curves. The irregular, wavy course of some curves (similar to 
those for rocks - see e.g., Byerlee, 1969) can be understood from studying the 
texture of the Cenomanian claystones used for the experiments. In some cases, 
the basic clayey mass was intercalated with hard fragments (of sandstones or 
concretions) which, doubtless, resisted the tendency of the specimen to smooth 
its failure surface. As evidence, Fig. 6.9 depicts the texture of the lower and upper 
bases of one specimen in the course of trimming. Samples with such accentuated 
mesotexture were avoided, but some hard constituents within the specimens 
could pass unnoticed. 

For the above method of experiments, a greater dispersion of the experimental 
results is to be expected owing to the natural (objective) fluctuation of the specimens' 
structure and texture, and to individual (subjective) deviations in the procedures of 
cutting and trimming single specimens. The same method applied to specimens of 
reconstituted Strahov claystone should produce statistically more uniform results, 
the natural differences between specimens' structure being avoided. 

STRAHOV CLAYSTONE 

UNDISTURBED on = 0.517 MPa 
<rn « 0.314 MPa 

RECONSTITUTED Ô"n s 0.517 MPa 
©7, « 0.314 MPa 
Ô^s 0.111 MPa 

5-10
3 β

/β (TORSIONAL) SHEAR STRAIN f 
—ι— 
50 150 200 250 

(TORSIONAL) SHEAR DISPLACEMENT 

100 300 cm 350 

Fig. 6.8. Variation of (torsional) shear stress with large (torsional) shear displacements of specimens 
of undisturbed and reconstituted Strahov claystone. 
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Altogether, the number of torsional loading steps amounted for undisturbed 
Strahov claystone to 6 (σ'η = 0.11 MPa), 7 (σ'η = 0.31 MPa) and 17 (σ'η = 
= 0.52 MPa); for reconstituted Strahov claystone to 7 (σ'η = 0.11 and 0.31 MPa) 
and 5 (σ'η = 0.52 MPa). Fig. 6.10 represents a typical experimental output. Each 
branch of the total stepwise creep curve was analysed separately, as if the test 
has been performed with a series of specimens, each loaded at the time 
t — 0. This method was selected for two reasons. Firstly, it simulates the loading 
process in situ, e.g., the settlement of a foundation subjected to a gradual 
increase of the load. Secondly, in limiting the number of specimens, it keeps the 
dispersion of the test results within resonable limits. 

The method of loading one specimen with σ'η = const and τ stepwise increas-
ing (α-method) should be compared with an alternative method where a series 
of specimens with σ'η = const is loaded, each with a different value of τ = const 
gradually increasing from one specimen to another (^-method). 

Let it be assumed that the mechanical response of all specimens under 
identical conditions form an ideally uniform population with zero dispersion. 
Evaluating the tests by the α-method, one neglects the strain as a state parame-

U P P E R B A S E 

Fig. 6.9. Mesotexture of some samples of Cenomanian claystones (Öablice claystone). 
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ter. The shear strain accumulates gradually with the increasing torsional load 
steps and each branch of the creep curve (e.g., ab in Fig. 6.10) is the creep 
response of a slightly different specimen whose structure has been modified by 
the preceding strain (e.g., by the compression of 0.55 mm and the shear displace-
ment of 1.45 mm, if the third loadstep in Fig. 6.10, starting at a, is considered). 
The amount of this structural modification depends on the sensitivity of the 
structure of the tested geomaterial to the strain, on the stress level and on the 
magnitude of strain. 

In using the 6-method, different specimens would be subjected to a relatively 
sudden torsional loading (e.g., in Fig. 6.10, the first one to τ = 0.108 MPa and 
the last one to τ = 0.186 MPa, which is about 1.72 times more than the first 
loading step). This may evoke the effect illustrated in Fig. 3.26: a major loading 
step can more easily bring the soil structure to the point of its collapse since it 
did not become "trained" by the preceding minor loading steps. 

Summing up, with the ^-method structural softening can occur owing to the 
accumulated strain, with the 6-method a similar effect may result from the 
growing magnitude of the loading steps. Both effects, apparently, often compen-
sate one another. According to Meschyan and Badalyan (1976), the effect of the 
loading method can, as a first approximation, be neglected. The experiments by 

0-1 1 1 1 1 1 1 ·—I e—— 
0 0.5 1 1.5 2 25 3 3,5*10

5
min 

TIME 

Fig. 6.10. Typical experimental results showing the curves of volumetric and distortional (deviato-
ric) creep for stepwise torsional loading of one specimen of undisturbed Strahov claystone at σ'η = 

= 0.31 MPa. 
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Félix (1980b) suggest a similar conclusion: if the loading time is much smaller 
than the duration of creep, there is no difference in the effect of loading by one 
or more loading steps. Negligible differences in the results of single- and multi-
ple-stage triaxial tests were also referred to by Okamoto (1985b) and Akai et al. 
(1981). 

The problem was explored by the present author by means of a series of tests 
with Zbraslav sand with extremely small shear loading steps. The results did not 
differ from the other tests with loading steps about three times as large. The 
requirement that the laboratory method must model the in-situ deformation 
process remains the principal criterion for the method of creep testing if the 
research aims at an engineering application, which is the most frequent case. 

Fig. 4.33 illustrates the undulation of the experimental creep curves due to 
structural perturbations. In the introductory Section 1 examples of similar 
effects with metals were described. They can also be found with other materials. 
Findley et al. (1976) published creep curves of Polyvinylchloride, polyurethane, 
paper laminate and polyethylene, showing structural perturbations (ibidem, 
their figs. 8.2a, 8.2b, 8.3b and 8.7a; simple tension or compression and a combi-
nation of torsion and tension were applied). They offer no comments on this 
phenomenon. Its depedence on the stress level excludes, however, the possibility 
that it results from parasitic effects. 

The most explored are, perhaps, the structural perturbations of creep curves 
of polymers. Different local maxima of creep curves (so-called secondary trans-
itions) are explained by different mechanisms acting on the structural level (e.g., 
local movements of lateral chains or of principal chains into equilibrium positi-
ons) and, analysing the viscoelastic behaviour on the phenomenological level, 
different structural information can be extracted (activation energy of trans-
itions, frictional coefficients of chains, the building of the polymer net, etc. 
- Ilavsky, 1976). Findley et al. (1976, p. 94) also mention that the creep com-
pliance of polymers depends on the structure. 

Structural perturbations of creep curves of soils are displayed by the experi-
mental data of many investigators (in the case of uniaxial compression - Lo, 
1961 and Suklje, 1969; for triaxial and uniaxial compression - Bishop and 
Lovenbury, 1969; for torsional loading - Ter-Stepanian, 1975, and others). Often 
it is not well understood that the structure of geomaterials is the source of these 
irregularities. Ershanov et al. (1970) present creep curves of clayey and silty 
shales and of coal exhibiting structural perturbations (e.g., their figs. 25 and 29). 
These perturbations increase with the growth of the porosity of tested geomate-
rials and do not reveal any sensitivity to earthquake or to variations of either 
temperature or humidity of the laboratory atmosphere. They strangely suggest 
that the impulse to the creep distortions stems from the fluctuation of atmosphe-
ric pressure which, according to their statement, is copied by creep curves. 
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The relationship between creep rate and time was selected as the principal 
form in which the experimental data are represented. The recorded creep curves 
were subjected to a derivative analysis. Besides its theoretical merits (see Section 
7.3), it accentuates all the irregularities of creep curves. 

Volumetric and distortional creep curves (εν vs. t, γ vs. t) have been drawn, 
their sharpest projections smoothed out, and portioned into time intervals 
within which the creep curve could be linearized. The creep rate for the midpoint 
of those time intervals has been defined by the slope of the tangent at these 
points. Alternatively, the slope has been calculated using two adjacent recorded 
values of the creep deformation (this procedure has been mainly used for 
Zbraslav sand). The graphical procedure was preferred to the calculation becau-
se it simplifies the course of creep curves and throws more light on their general 
shape. Comparison of both methods leads to the conclusion that they mostly 

T IME ( IN M I N . ) 

Fig. 6 . 1 1 . Distortional creep curve of a specimen of reconstituted Strahov claystone (σ'η = 0.11 
MPa, shear stress level τ/τΓ = 0.719, τ{- long-term shear resistance). 

differ in the initial parts of the derivative curves (Feda, 1979). Hence, one has to 
prefer the graphical procedure because it reproduces the great changes of the 
curvature of the creep curve in the initial region better. The same procedure is 
preferable in the concluding creep stage, where the calculations show excessive 
details and the graphic method again better reflects the principal tendency of 
creep curves. Thus, the graphical procedure has been suggested as better suited 
for the theoretical analysis. Though the structural perturbations are more 
frequent than graphically featured, they are, after all, respected in the theoretical 
analysis only globally. 
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192 

The derivative analysis of such a simple creep curve as is depicted in Fig. 6.11 
is uncomplicated and its derivative curve is represented in Fig. 6.12. All data are 
represented in a well-suited logarithmic scale (both time t and distortional shear 
strain rate ã are expressed in a dimensionless form). To find a representative 
linear regression line in Fig. 6.13 is more complex. If all experimental data are 
respected (1-2-3), there is no correlation between volumetric creep rate Ý í and 
time (the correlation cofficient r < r0 0 5) . In such a case, one cannot avoid some 
subjectivity invading the analysis. Assuming that the creep rate depends on time 
and that the creep rates for the final part of creep curve are less confident 
(recorded deformation is smaller than the former one), in order to reach a high 
coefficient of correlation one has to situate the relevant regression line (7-2 in 
Fig. 6.13) correctly. All the regression parameters statistically evaluated are 
listed in Appendix 2. 

T I M E : log ã ι t-| -1 M I N . 

2 3
 1

 4 5 
H ' ' H 

. s log £ = -1.019 -1.530 log 4 -

ù -5-· > \ ( r=0.978 > r Q 05 = 0.602 ) 

I \ 
ß - â » \ \ 
÷ > \ 

° \ 
ο \ 

S Y M B O L S : \ > 

ο E X P E R I M E N T \ 

L I N E A R R E G R E S S I O N V 

~ — * ρ / t<|=1min. o \ 
d

~ i 

Fig. 6.12. Graphical representation of the derivative analysis of creep curve in Fig. 6.11. 



Evaluation of the experimental results 

Fig. 6.13. Derivative curve of a specimen of undisturbed Strahov claystone (σ'η = 0.11 MPa. 
T / T F = 0.561). 

Fig. 6.14. Ideally parallel (dashed lines / , 2, 3, 4) and experimental (full lines 1, 2, 3, 4) positions of 
regression lines for different shear-stress levels τ/τ( (σ'η = const). 
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If all the regression curves were mutually parafllel, the correlation of the stress 
level (τ /τ^ (/ = 1, 2, 3, ...) vs. creep rate (γ, έ ν) would be equal, irrespective of 
the time interval (at b, c,Fig. 6.14, case A). Since this is not the case and the 
slope of experimental regression lines differs, the significance of the correlation 
varies for different time intervals (a, b, c,Fig. 6.14, case B). Fig. 6.15 illustrates 
the variability of the correlation coefficient of the relationship log (1 - z/zr) vs. 
log γ for various time intervals. This correlation commences to be significant 
(i.e., the correlation coefficient r > r 0 0 5) for t\tx > 10

2
 (for σ'η = 0.11 and 0.52 

MPa; for σ'η = 0.31 MPa, much sooner). Closest is the correlation at about t/tx 

= 10
3
. In analysing the experimental data (stress level vs. creep rate dependen-

ce), this time interval was therefore selected. For t/tx up to about 10
9
 this 

correlation remains significant, i.e., approximately for 16 hours < t < 
< 2 000 years, which fully suffices from the practical standpoint. 

Z i f 

0- ) 1 1 1 1 1 1 1 1 1 Ι -
Ο 2 A 6 8 10 

LOG ( t / t 1 ) , t-, = 1 m i n . 

Fig. 6.15. Dependence of the coefficient of correlation of log (1 — τ/τ{) vs. log γ on the time scale, 
i.e., on the time since the beginning of loading by the respective shear-loading step. 

The state of stress of a specimen in the torsional shear apparatus is determined 
by the torsional shear stress τ and normal stress σ'η (the same as in the direct 
shear box). For the rheological constitutive relations to be objective, the stresses 
τ and σ'η have to be replaced by stress invariants. 

Let it be assumed that there is a range where the shear resistance measured 
in the shear box (both direct and torsional) equals the triaxial shear resistance. 
Then both the cohesion c' and the peak angle of internal friction φ\ should be 
equal. For sand, this means the coincidence of φ\ - e.g. for Zbraslav sand 
(combining eqns. 4.2 and 4.4) this is the range of initial porosities n0 = 36.10 % 
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to 38.15 % (φ'{ = 41.1 ° to 36.8 °). Then applying the Mohr-Coulomb failure 
criterion to the axisymmetrical (triaxial) state of stress 

. , (σι - σζ)ϊ 
sin φ\ = . (6.2) 

(σ[ +

 σ'

3)

τ

 + 2c

'

 cotg φ\ 

According to eqns. (5.33) and (5.34) 

3 

(σ{ - <J3)f = —ρ τ Μ ΐ (6.3) 
V
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Hence 

<* = ; (σί + ff3)f - 7 (σι - σζ){ ^σΌ*=ί- (σ'ι + <̂)f - r~7i W (6·4) 
2 ο 2 2^/2 

Substituting into eqn. (6.2) 
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Eqn. (6.5) may be written in the form 

r- cos y f , / - sin y f 

W = V 2 ; :—; c + V 2
 ; : — ;

 σ
ο « · (6-6) 

3 — sin ψ{ 3 — sin <p\ 
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For the torsional (and direct) shear apparatus 

T f = c' + σ'η tg φ'{. (6.7) 

If 

cos φ'( = 1 (6.8) 
— sin φ\ 

and 

2 ^ 2 
sin ψ\ 

7 = tg φ'η 
(6.9) 

3 - sin φ\ 

then eqn. (6.7) describes the shear resistance in the octahedral plane and 

Let a deviation of ± 3 % in the equalities (6.8) and (6.9) be allowed. They are 
then valid within 6° ^ <p\^ 32°. For all soils with φ\ within the indicated range, 
the relation (6.7) may be generalized into (6.6), if the shear resistance is accoun-
ted for. If the measured values of φ\ and I? (Tab. 3.2) are represented in the 
correlation diagrams of the respective values for the triaxial apparatus (see e.g., 
Mitchell, 1976, his fig. 14.1; Holtz and Kovacs, 1981, their fig. 11.27), an 
agreement between triaxial and shear box φ\ will be revealed, in accord with the 
above analysis. 

For cohesionless soils (sands) only eqn. (6.9) is relevant. In the range of 
practically important values 30° ^ φ\ ^ 40°, maximum deviation of the triaxial 
and shear box <p\v$> less than 10 %. The former comparison of both angles based 
on eqns. (4.2) and (4.4) showed their coincidence in this interval of φ\ values of 
Zbraslav sand. Eqn. (6.7) with c' = 0 can, therefore, be represented also in this 
case in the form of eqn. (6.2). 

If σ'η = σ'Μ = const, then the assumption of isotropic elasticity will impose 
the condition that only the spherical part of the stress tensor produces volumet-
ric strain which excludes the dilatant-contractant behaviour of soils and is not 
tenable in this case. The elastic model of the soil behaviour should therefore be 
abandoned and replaced by a plastic one. This is supported by the plastic 
(irreversible) deformations being much larger (e.g., Fig. 6.10) than the reversible 
ones. 

Let the plastic potential surface be defined by the condition that for a stress 
point moving on it no plastic volume changes are generated (and let an associa-
ted flow rule be assumed). To fulfil this condition, the volume of the specimen 
should be constant (if all strains are only plastic) which, in the shear box, leads 

T
f =

 τ
ο*ΐ

 a nd
 < =

 σ
ο oct * (6.10) 
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to the energetic equation (Feda, 1982a, p. 296; φτ stands for constant-volume 
angle of internal friction) 

T d y
p
 + σ'ηάε* = σ'Λ tg Ψ ΐ d y

p (6.11) 

and hence to the plastic potential surface 

g{z, σ'η) = — + tg In — = 0 (6.12) 
< σ'ο 

(σ'0 - stress representing the isotropic hardening parameter). Let the same 
procedure be applied in the plane (a^c t, r o c t) or ( d y

p

c t/ 2 , de
p

c t) , i.e., for triaxial 
tests. In analogy to eqn. (6.11 ), the postulate of the constant energy of deforma-
tion requires 
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(^octr ~~ residual or constant-volume angle of internal friction in the octahed-
ral plane). 

Then 

d f
p
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and the normality condition yields 
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Combining eqns. (6.14) and (6.15) 

G{AU) = ^ + tg In ^ (6.16) 
^oct

 Σ
0 

(this is the logarithmic plastic potential in Fig. 5.15a). Since <pT = <poctr (<pT is the 
angle of friction along a failure surface; its value should not depend on the 
intermediate principal stress σ2 acting in the plane perpendicular to the failure 
plane; in addition, for the residual state of stress, de vr = 0; for Zbraslav sand, 
the equality—within about 1°—of triaxial and shear box <pr has been mentioned 
in Section 6.3), then once again 

τ
 =

 T
o c t

 a nd < = <a > (6·17) 
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in this case for the pre-peak behaviour of the soil. This assumption implies, as 
can be shown (see Zaretskiy and Lombardo, 1983), the acceptance of the von 
Mises failure theory (Feda, 1990c). 

One can therefore reasonably conclude that the generalization of the strength 
state of a specimen in the torsional shear apparatus may be realized by putting 
τ = r o c t and σ'η = <7^c t, which are related by eqns. (5.35) and (5.36) to the stress 
invariants I\ and J\. As in the triaxial apparatus, the effect of the stress mode 
(the angle θ or parameter ν σ) is not accounted for and, if necessary, it should be 
introduced by an additional appropriate hypothesis, e.g., concerning the shape 
of the strength surface in the octahedral plane (according to von Mises hypothe-
sis complying with eqn. 6.17, it should be a circle). 

From the strictly theoretical standpoint
2
, the above analyses and conclusion 

may seem to be rather empirical. However, until the crystallization of the new 
theoretical ideas into practically applicable results, there is hardly any other 
choice. The best solution seems to be to insert the results of the torsional shear 
apparatus as the input data of cutting planes of a slip theory (Section 5.4.5; also 
terms "multilaminate" and "microplane" theory are used). 

If the relations (6.10) and (6.17) have been accepted, i.e., if the torsional shear 
test has been assumed to represent a shear test in the octahedral plane, then the 
torsional shear strain γ and the volumetric ( = axial) strain ε ν can be transformed 
into the octahedral plane by the following relations, resulting from the compari-
son of eqns. (6.11) and (6.13) 

y ^ i ^ o c t
 a nd

 £ v ( = £a)
 £

oct> (
6
·

1 8
) 

where 

ι 
ÎW = I - e2f + (e2 - e3f + (ε, - ε , )

2
]

1
 ^ ( 6 > 1 9) 

(6.20) 

and 

«oct = i + *2 + «s) = H i (6-21) 

2
 According to Vardoulakis and Drescher (1985), for instance: "...failure is not a strict material 
property ... if failure has to be modelled mathematically, then only a correct bifurcation analysis 
could yield the desired result". 
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(I\ - the first invariant of the strain tensor, J2 - the second invariant of the strain 
deviator). Similarly to relations (5.35) and (5.36), relations (6.20) and (6.21) 
express strains (or, in the case of eqns. 5.35 and 5.36, stresses) recorded in the 
torsional-shear apparatus in the form of the principal invariants of the strain 
(stress) tensor, because 

J
2 =

 l
i ~ \

 l
f
 a nd J

2 =
 l

2 ~ \ · (
6

·
2 2

) 

Concluding this somewhat tentative analysis, the author proposes generali-
zing the state of stress (τ, σ'η) and strain (γ, ε ν = ea) in the torsional shear 
apparatus by using the following relations: 

* = ^gV^; < = hn; ^(orea) = U\; y = ~ v ^ . (6.23) 

In Section 12.3.2, when applying the experimental creep laws, use has been 
made of the ratios Hx and H2 (eqns. 12.29a and 12.29&) of the volumetric 
creep-strain rate (i.e., of the axial creep-strain rate in the ring-shear apparatus), 
of the distortional creep-strain rate (i.e., of the shear-strain rate in the same 
apparatus) and of the axial (oedometric) creep strain rate. The values of H{ and 
Η2 can be estimated from the experimental data (Feda, 1983, p. 136). Then, the 
value of the gradient of the creep-strain rates γ/έΆ measured in the ring-shear 
apparatus, may be generalized either into 

L = I^L (eqn. 6.18) or - = -^£L (6.24) 
2
^oct ^oct 

(eqns. 12.29a and 12.29Ä). 
The third possibility of disclosing the state of stress in the ring-shear appara-

tus uses the assumption σ2 = (σ{ + σ3)/2 (Feda, 1967; one may show that this 
assumption implies the validity of the Mohr-Coulomb failure criterion) and the 
same procedure as in the case of eqns. (6.23), i.e., the plastic-potential approach. 
Then σ'^Φ σ'η and one gets 

and 

(6.25) 

(6.26) 
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One can deduce that the generalization of γ/έΆ ranges, for φ\ = 17.6 ° to 31.6 ° 
(according to Table 3.2) and for τ/τ Γ = 0 to 1, between 

^ = (0.42 to 0.5) ^ . (6.27) 
£
a

 £
o c t 

If the last, most complicated method, seems to be the most realistic one, then the 
relations (6.18) and (6.24) represent approximately the upper and lower limits as 
bracketed in eqn. (6.27). 
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7. MACRORHEOLOGY 

7.1 Introduction 

Macrorheology attempts to describe rheological phenomena analytically by 
a macromechanical approach, as outlined in the introductory Section 1. 

Macrorheology can be subdivided into the method of (mechanical) rheologi-
cal models (the differential operator method of Findley et al., 1976) and the 
method of integral representation. 

In the first case, a rheological constitutive relation is constructed by combi-
ning the constitutive behaviour of different elementary rheological models, such 
as Hookean, Saint-Venant's and Newtonian as described in Section 5.1. It is 
tacitly assumed that the behaviour of a material is the product of a combined 
effect of ideal materials (to the three already mentioned, further special models 
such as those in Fig. 5.13 can be added). 

In the second case, the time-dependent strain (i.e., creep) is defined by a kernel 
(creep) function (the time-dependent stress, i.e., the stress relaxation, by a rela-
xation function), which is a memory (hereditary) function describing the stress-
history dependence of strain and vice versa (see e.g., Freudenthal and Geiringer, 
1958, p. 273). 

The method of rheological models continuously overlaps into the method of 
integral representation, if the rheological models are generalized into the form 
of spectral models. Within either method, both linear and nonlinear behaviour 
can be distinguished. The nonlinearity is usually considered to be the consequen-
ce of the structural changes occurring with time and time-induced strain, and 
with stress and stress-induced strain. The latter effect is disclosed by isochronic 
stress-strain relations. 

The method of rheological models endeavours to derive rheological constitu-
tive relations of a quasihomogeneous material from the constitutive behaviour 
of its constituents, formed by ideal materials. The structure of the material is, 
however, not represented because the extent of the intervention of individual 
constituents with specific structures is expressed only globally, by the magnitude 
of the constitutive parameters. The mathematical modelling of the structure of 
real materials proceeds further in this direction. The constitutive behaviour of 

201 



Macrorheology 

7.2 Method of rheological models 

The method can be developed into considerable detail, but only its principles 
will be presented here. 

Following Section 5, ideally elastic (Hookean) and ideally viscous (Newto-
nian) elements are characterized by the elementary constitutive relations 

σ = Εε (5.1) 

and 

σ = μσέ (5.20) 

(σ and ε can be replaced in eqns. 5.1 and 5.20 and in those which follow by other 
stress and strain components, tensors, etc.). The most simple combinations of 
the above expressions are 

σ
 à .  x 

i = - + - (7.1) 
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a quasihomogeneous material is formulated using constitutive equations of the 
constituents of the material, their volumetric share and nonnegative structural 
parameters, dependent on the microscopic composition of the modelled material 
(Kafka, 1984b). Particular solutions of this generally formulated problem are 
represented by Maxwell's (viscoelastic homogeneously stressed) and Kelvin's 
(viscoelastic homogeneously strained) materials - see Section 7.2. Macroscopic 
(phenomenological) experiments serve as the source of data for the derivation 
of the structural parameters. They are found by means of an inverse analysis of 
the creep curve for viscous materials (just as in the method of rheological 
models) and of the stress-strain diagram for elastoplastic materials. Internal 
microscopic stresses and strains can also be calculated. 

As far as geomaterials are concerned, the assumption in the method just 
described that the characteristic features of the microstructure do not alter 
through the deformation process, is at the least dubious. It may, perhaps, be 
valid only for brittle geomaterials. 

By its nature, the procedure described belongs to the field of mesorheology, 
and will not be dealt with in the following text. It forms a transition from the 
macrorheological to the microrheological approach. The latter is based on the 
behaviour of the atomic and molecular structures of the material and is treated 
in the following Section 8. 
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and 
σ = Εε + μσε (7.2) 

(as previously, the dot indicates time derivative). These are the (differential) 
constitutive relations of Maxwell's (eqn. 7.1) and Kelvin's (eqn. 7.2) materials. 
Generalizing the linear combination of σ, ε, à and έ in eqns. (7.1) and (7.2), one 
postulates, according to Hohemser and Prager (Reiner, 1958, p. 478), a general 
linear material by the relation 

a0 + α{σ + α2σ = b^ + b2è . (7.3) 

For a0 = a2 = b2 = 0 eqn. (7.3) reduces to the constitutive relation of a Hookean 
material, for a0 = a2 = bx = 0 to that of a Newtonian material, and for a2 = 
= bx = b2 = 0 it represents a Saint-Venant material. If a0 = bx = 0, then eqn. 
(7.3) = (7.1) and if a0 = a2 = 0, then eqn. (7.3) = (7.2). Using these relations, 
one ascribes physical meaning to the parameters a 0, ax, a2, bx and b2. 

The method is favoured for depicting the above mathematical relations in 
a graphical form, using the symbols of the elementary materials according to 
Fig. 5.3. The resulting models are only a geometrical picture of the material, 
devoid of any physical meaning. Such a visualization, however, serves well as an 
introduction into the poblems of rheology and enables the fundamental rheolo-
gical terms to be defined in a clear manner. 

"ihre 

c ) 

Fig. 7.1. Rheological model of Maxwell's material. 

203 



Macrorheology 

Fig. 7.1 depicts the rheological model of Maxwell's (M) material. Hookean 
(H) and Newtonian (N) materials are serially connected in a graphical form 
symbolized by Μ = Η—Ν. If Η and Ν are the individual members of a complex 
M-material combined in a series, then generally for such a combination the 
following relation is valid 

^ ί = Σ 4 (7.4) 
i = 1 

(each of Η-elements takes the same load, strain rates or deformations are additi-
ve). Then 

à σ . . 
i = - + - (7.1) 

In solving this linear nonhomogeneous equation, one gets (for the initial 
condition σ = σ 0 for t = 0) 

ε = ^ + ^ ί (7.5α) 
£ ßa 

or 

or 

and 

<x0 ( i + - ) (7.56) 

if E M = - ^ - (7.5c) 

σ0 exp ( ί 1 . (7.6) 

According to eqn. (7.5a), for t = const the isochronic stress-strain relations 
are linear with the deformation modulus EM decreasing, as indicated by eqn. 
(7.5c), for t -> oo to EM -> 0. 

The relation (7.6) can be expressed in the following form 

σ = <7 0exp ^ - , (7.7) 
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where 

tr = I (7-8) 

is called the relaxation time. The eqns. (7.5), (7.6) and (7.7) are graphically 
represented in Fig. 7.1. According to Fig. 7.1a, for σ0 = const the strain-time 
relation is linear, i.e., only secondary creep, impressed on the M-material by its 
iV-element, is modelled. If t -> oo, then ε -* oo, which is unrealistic. For ε0 = 
= const (έ = 0; Fig. 7.1b), stress relaxes with time following an exponential 
function (eqn. 7.6). For έ = const, a series of relaxation curves is obtained, 
similarly to a series of creep curves for different σ0 values (omitted in Fig. 7.1a). 

Solving eqn. (7.7), one gets 

' r = > (
7
·9) 

In (σο/σ) 

i.e., tr = t for σ = σ0/β ( e - the base of the natural logarithm, e = 2.718 28...). 
Relaxation time tr is the time at which the original value of σ = σ0 drops to its 
1/e-value (Fig. 7.1b). Alternatively, from eqn. (7.7) 

da 
σ = — 

di 

= a 0 ^ - ^ « p ( - i ) , (7.10) 

and for t = 0 

i.e., tr indicates the initial slope of the relaxation curve. For a constant rate of 
strain éi = const (i = 1, 2, 3, ...) - Fig. 7.1c - the stress-strain relationship is 
nonlinear with an asymptote for ε oo (then only the behaviour of the 
Newtonian material matters) and a common tangent at the origin. If έ oo, 
a linear elastic behaviour results (see e.g., Sobotka, 1981, p. 44), because the 
Newtonian material in this case is incompressible. 

Fig. 7.2 shows a rheological scheme of Kelvin's material. Hookean and 
Newtonian materials are in a parallel arrangement, symbolically H|N. For such 
an arrangement of individual elements 

η 
έ
ι =

 έ
2 = «3 = - = «„, σ = Υ <τ, (7.12) 

i = 1 
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(7.16) 

their loads are 

(7.13) 

(7.14) 

(7.15) 

(each of ^-elements has the same strain rate or deformation, 
additive). Then 

σ = Εε + μσε . 

Solving this equation, one arrives to the relation 

σοΓ ( E V 
ε = — 1 — exp t I 

El \ μσ )J 

or 

where the time of retardation 
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From eqn. (7.14) 

tc = —L—, (7.17) 

«o -
 ε 

i.e., the time of retardation tc is the time at which the strain increases to the 
(l-l/e)-fraction of the final creep strain ε0. Alternatively from eqn. (7.14) 

and for t — 0 

(7.18) 

(7.19) 

i.e., tc indicates the initial slope of the creep curve, which can be expressed 
(accounting for eqn. 7.16) as 

(7.20) 

Both the times of relaxation and retardation thus mark a time period when the 
relaxed stress or the creep deformation reach some characteristic value. They 
represent mixed mechanical (viscoelastic) parameters and a common property 
(identically defined, compare eqns. 7.8 and 7.16) of both M and Κ materials. 

Kelvin's material models primary creep, asymptotically approaching the 
value of ε0 (Fig. 7.2a) well and with an elastic after-effect: when unloaded, the 
material's strain reduces asymptotically to zero (which is the effect of the parallel 
arrangement of Η and Ν elements). Contrary to M material, Κ material is 
nondissipative. Owing to this difference, they are sometimes termed Maxwell's 
fluid (micromechanically represented by elastic structural units dispersed in 
a viscous fluid) and Kelvin's body (elastic skeleton with the pores filled by 
viscous fluid). 

If Kelvin's material is compressed using a constant rate of loading at = const 
(i = 1, 2, 3,...) - Fig. 7.2b - then the stress-strain relationship is nonlinear with 
an asymptote for ε -» oo (when the Hookean material dominates) and a vertical 
tangent at the origin (incompressibility for ε -» 0 due to the TV-element) - Sobot-
ka (1981, p. 42). With increasing <r, the compressibility of the Kelvin's element 
decreases (the effect of the TV-element). 
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For a periodic loading (Fig. 7.2c), the creep strain level gradually increases 
owing to the elastic after-effect, expressing the previous loading history. The 
portion 1-Γ (Fig. 7.2b) of the unfinished creep strain recovery represents, for the 
next loading step, an inherited creep strain or a strain retained in the memory 
of the material. The current creep strain contains, accordingly, a hereditary part. 

If the Maxwell material truly reflects the stress relaxation (at least in a qualita-
tive respect), then the Kelvin material depicts creep reasonably well. Real 
materials disclosing both the creep and relaxation phenomena should, conse-
quently, be modelled by some combination of M and Κ materials. Such is the 
Burgers' M-K model or the still more simple (called standard) rheological model 
Ζ = Η-K, which is shown in Fig. 7.3. 

The constitutive relation of the Ζ model has the form (Fig. 7.3 defines the 
symbols) 

W + (
£
H 1 +

 E
m) <* =

 E
mW +

 £
H 1

£
H 2

£
 · (

7
·

2 1
) 

Solving this equation one gets 

ε = fL + f L Ï i . ^ i . ^ t ) ] (7.22) 

(Fig. 7.3a) and 

σ = £
H 1 « 0 

_ E
2 

^ J l - e p f - Î ï L l Î e r Y l (7.23) 
HI +

 £
H 2 L \ μσ / J 

(Fig. 7.3b; for t = 0, σ = σ0 and e = ε 0). If t = const, then eqn. (7.23) yields 
a set of isochronic linear stress-strain diagrams (Fig. 7.3c). Transforming eqn. 
(7.21) into the form 

^ H l + ^ H 2 , . ρ /_ 
σ + σ = Ε Η2 ε + μ„ε Γ

7
·

2 4
) 

E
m

 E
m 

and designating Em = Ε0 and (ΕΗι Em)/(EHl + ΕΗ2) = Ε^ and tK = 
= μσ/(ΕΗΙ + ΕΗ2), one obtains from eqn. (7.24) 

σ + àtK = £ œ e + E0tJ . (7.25) 

If σ = const, then 

σ = Εο0ε + E0tJ , (7.26) 
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which coincides with eqn. (7.13) and in analogy with eqn. (7.14) 

(7.27) 

which can be written in the form 

(7.28) 

if for t -> 0, ε -» ε 0 = σ/Ε0, trs = tTC EJE^ and ε 00 = δ ί , 0 0 (see Vyalov, 1978, 
p. 209). This relation describes the creep curve in Fig. 7.3a in a simple form. 
According to Fig. 7.3c, the deformation modulus decreases considerably with 
time. If, e.g., EHl = Em, then for t -> oo, the decrease amounts to one half of 
the original value. 

c) 

Fig. 7.3. Rheological model of a standard (Poynting-Thompson's or Zener's) material. 
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Standard rheological material realistically represents both creep and relaxati-
on phenomena. Isochronic stress-strain curves of this material are also accep-
table (because of the existence of the non-zero value of Ε for t oo, contrary 
to Maxwell's material, where for / -> oo, EM 0) (Fig. 7.1c). 

The simple rheological models just described make it possible to draw attenti-
on to some of the general features of rheological models. Models of Κ and 
M materials are mutually related in that they consist of the same elementary 
models of H and Ν materials, in serial or parallel connections, respectively. 
M and Κ models can thus be called dually associated. The principle of duality 
states (Houska, 1977) that for every rheological model a dually related model 
exists where the serial and parallel arrangements of the first are replaced by 
reversed ones. Albeit the behaviour of dually associated rheological models 
differs, they share similar phenomena. M and Κ materials, for instance, are 
related by the occurrence of analogous times of relaxation and retardation. 

Another principle of importance is the principle of conversion (Houska, 
1977). It states that two rheological models can display the same mechanical 
behaviour although their composition is different. Their constitutive relations 
are, however, identical and one model can be replaced by another. To illustrate 
this principle, rheological models H-H \ Ν or Η-K can be converted into 
Η I (H-N) or Η | M, i.e., both the models H-M and Η \ M behave identically 
(e.g., Houska, 1977, p. 161 and 164). Reiner (1958, p. 471) calls the H \ M model 
Poynting-Thompson's model and Sobotka (1981, p. 46) the Zener model. 
According to the latter author, the Poynting-Thompson model consists of H-K 
(ibidem, p. 45) and the behaviour of both models, H \ M and Η-K, is indicated 
to be similar and not identical (ibidem, p. 46). Such a misunderstanding is the 
consequence of ignoring the principle of conversion. This principle makes it 
possible to reduce complex models to more simple ones, e.g. H-(H-N) \ H to 
H-H I Ν or N-(H-N) \ Ν to N-H \ N. 

Comparing eqns. (7.1), (7.2), (7.3), (7.13) and (7.26), one concludes that the 
differential constitutive equation could be written in the form 

da d
n
a de d

m
e / 

a + a0a + ax — + ... + a — = b0s + bt - + . . . + bm — (7.29) 
dr dt

n
 dt dt

m 

(a0 = 1, ax = μσ/Ε, bx = μσ, all other parameters equal to zero - Maxwell's 
material; a0 = 1, b0 = E, bx = μσ, all other parameters equal to zero - Kelvin's 
material; a0 = EHX + Em, ax = μσ, b0 = EmEm, bx = ΕΗΧ/μσ, all other 
parameters equal to zero - standard Ζ material, etc.). 

In trying to describe the behaviour of real materials better, the complexity of 
rheological models arises. The most simple form of generalized rheological 
models is represented by spectral models consisting of a serial or parallel 
arrangement of simpler models, usually of M and Κ materials. One obtains the 
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following combinations: ML-M2-M3... -MN; M1\M2 \ M3... \MN; KL-K2-K3 

... -KN; K{ I K2 I K3 ... \KN (i = 1, 2, 3, ..., η — single M or AT models). 
For a spectral model KX-K2-K3 ... -KN, one can derive 

exp I 1 

Vox 

ε = σο Σ - Η ι -' =1 £, L 

or, according to eqn. (7.16), 

V Γι f ' 

ε = σ0 2, — 1 - exp 

(7.30) 

(7.31) 

For η oo 

0 0 

= σ 0 J/(ic) ^1 - exp ( dtc. (7.32) 

The elastic compliance of the system (eqns. 7.30 and 7.31) is defined by discrete 
values of\/Ei or, eventually, of tJßaV If η oo, then the continuous retardation 
spectrum J[tc) indicates the part of the elastic compliance of the spectral model 
confined within the interval d/„ of the time of retardation. 

Similarly for MX \ M2 \ M 3 ... | M 0 

0 0 

σ = εη 

t 
f(tT) exp - - dtT 

t r 

(7.33) 

(for details see Findley et al., 1976, p. 68 et seq.; Goldstein, 1971, p. 183 et seq.) 
For the limit case of η oo, the differential constitutive relation (7.29) trans-
forms, according to eqns. (7.30) and (7.31), into an integral law of creep (eqn. 
7.32) or relaxation (eqn. 7.33). They are derived if an infinite number of rheologi-
cal models is assumed. Using an operator calculus, it is possible to derive directly 
an integral form of the differential constitutive relation (7.29) with a result 
analogous to eqns. (7.32) and (7.33) - Rabotnov (1966, p. 117). The integral 
expression coincides in form with the Boltzmann-Volterra theory of hereditary 
creep (Section 7.3) with the creep kernel consisting of a sum of exponential 
functions. 

The endeavour to increase the predictive capacity of viscoelastic rheological 
models by increasing their complexity improves their creep and relaxation 
behaviour, but the linearity of the isochronic stress-strain relations is inherent to 
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all such models and cannot be avoided. The concept of nonlinearity has therefo-
re been developed. 

Two kinds of nonlinearity can be distinguished: physical and geometrical. The 
latter one, the source of which are the large strains, will not be dealt with here. 
Physical nonlinearity is usually subdivided into magnitude, interaction and 
inter-mode nonlinearities (Lockett, 1974) or, in another terminology, into pa-
rametric, deformation and tensorial nonlinearities (Reiner, 1964; Sobotka, 1981, 
p. 17). The present author prefers to differentiate between isochronic, anisochro-
nic and tensorial nonlinearities. 

Fig. 7.4. Definitions of isochronic and anisochronic linearity. 

The meaning of the isochronic and anisochronic nonlinearity is elucidated by 
Fig. 7.4. In the case of an isochronic linearity the isochronic stress-strain 
diagrams are linear (Fig. 7.4a). Creep curves for different loads (σ 0 1, σ02, etc.) are 
all similar and reducible to a single nondimensional curve. Every viscoelastic 
rheological model implicitly implies isochronic linearity (see e.g., Fig. 7.3c). 
Mechanical parameters are only a function of time, like EM in eqn. (7.5c). 
Isochronic stress-strain diagrams in Fig. 5.1a are nonlinear. Nonlinearity means, 
in this case, that the magnitude of mechanical constitutive parameters is stress-
and time-dependent—hence parametric or magnitude nonlinearity. 

For anisochronic (interaction or deformational) linearity the principle of 
superposition of creep curves (Boltzmann's principle) is valid (Fig. 7.4b): 

ε = e0(t) + s01{t - tx) , (7.34) 
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where ε0(ή is the creep curve for and ε 0 1( / — tx) for atV Isochronic linearity 
could be obtained as a special case of anisochronic linearity for tx = 0. In both 
isochronic and anisochronic linearity, stress and time (t — tx) are excluded as 
state parameters (at least on a phenomenological level—if the creep curve is 
shifted to the origin for an interval (t — tx), its shape does not change). A more 
complex nonlinearity is to be expected if both stress and time are state parame-
ters and if on shifting the stress-strain relations in time, they cease to be similar 
(the respective transformation function is both time- and stress-dependent). 

Tensorial nonlinearity explains the second-order effects (Poynting's, Weissen-
berg's and Ronay's effects). They result from different cross-effects, which can 
best be described on the ground of the method of integral representation. 

The relevance of different nonlinear modes should be investigated for the 
material in question, because they are products of the material's structure. They 
can be apparent only for higher stresses, longer time intervals, etc. 

.Fig. 7.5. Isochronic nonlinearity modelled as an incremental linearity. 

The isochronic nonlinearity is the only one accessible to modelling by the 
method of rheological models. Either the nonlinearity is replaced by the incre-
mental linearity by means of V elements or the mechanical parameters of 
rheological models are held for being stress dependent (see e.g., Fig. 5.11 in the 
case of μσ). 

Fig. 7.5 presents an example of the first approach. The rheological model 
Η I N-H I V I Ν contains one V element of the strength of <xa. If σ < a a, the 
model is reduced to KX(EHX, μσΧ) material, for σ > <ra it expands to Kx-K2(Em> 
μσ2) material. 
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In the first case (eqn. 7.14) 

σ < σ' (7.35) 

in the second case 

σ > σ' 

(7.36) 

For σ = (Ta there is a sharp transition from the region of lower to that of higher 
compressibility (Fig. 7.5) and the isochronic stress-strain curves become bilinear. 
A model consisting of the numerous H \V\ Ν groups with different d a of the 
V elements can thus simulate the nonlinearity in the form of an incremental 
(multi-) linearity. The most simple is the bilinearity of Prandtl's material H-V 
in Fig. 5.4(1). The key role is played by the V element in blocking the H2 and 
N2 materials until σ = <7a. After surpassing this strength, the mechanical 
parameters of the model undergo a change, i.e., they become stress dependent. 

The phenomenon just described could be generalized if the strength of the 
V element depended on both the stress and time. In such a case, the V element 
could represent a brittle structural bond with its strength diminishing with time 
(as can be explained by the rate-process theory - see Section 8). Then the strain 
jumps from the lower creep curve to the upper one in Fig. 7.5. This is one 
possibility of physically modelling the occurrence of structural perturbations. 
Another one is the time-dependent stress redistribution within the geomaterial 
due to differing creep deformations of its constituents. If the load of the element 
V increases due to such a process, this element can fail although its resistance 
<7a has retained its full value. 

The stress dependence of the deformation modulus has been discussed in 
Sections 3.3 and 5.2. Relations like (3.14), (3.15), (5.6) and (5.10) can be used to 
define the nonlinear Hookean material. More often, the nonlinear behaviour of 
the Newtonian material (i.e., of the coefficient of viscosity) is introduced. One 
possibility of such a conception is offered by the (Eyring) rate-process theory 
(Joly, 1970), according to which the creep rate is related to the stress by the 
relation 

έ = - sinh (ασ) (7.37) 
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(a, b - parameters). This was an early proposal by A. Nadai (see Findley et al, 
1976) and used for soils, e.g., by Murayama and Shibata (1961 ) and by Christen-
sen and Wu (1964). 

If áó < 1, then 

sinh (áó) = áó (7.38) 

and 

b a
 / , ó = ìóå => ìó = - = const, ê = - ó , (7.39) 

a b 

which coincides with the behaviour of an ideal Newtonian liquid. If 

áó
 > 1

,
 then sinh (áó) = \ e"7 (7.40) 

and 

Iba 1 , x 

/ é ó = , i = - e"7 . 7.41 

e^ 26 
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Fig. 7.6. Stress-strain rate of a nonlinear viscous material. 
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Fig. 7.6a shows the nonlinear (eqn. 7.37) and linear (eqn 7.39) behaviour for 
a constant time interval; Fig. 7.6b shows its enlarged detail near the origin. The 
relation (7.37) indicates secondary creep in the range of both low and high 
stresses, since μσ does not depend on time. 

If Figs. 7.6 and 5.11 are compared, one may object that the relation (7.37) is 
not of general validity but that it is confined to the low-stress and -temperature 
region while for high temperature and/or stress μσ = const (see Section 5.3). 

More general would be the assumption, based on the notion of time as a state 
parameter (Section 4.5), that the coefficient of viscosity μσ is both stress- and 
time-dependent. Such an effect is indirectly simulated by the parallel connection 
of Hookean and linear Newtonian elements (Fig. 7.2) by means of the gradual 
concentration, with elapsed time, of stress in the Hookean element. Rewriting 
eqn. (7.13) to 

έ = - {σ - σ Η) , (7.42) 

where σΗ is the stress in the Η element, then 

σ = μ J , (7.43) 

if 

ßat = · (7.44) 

σ 

Then μσί varies from the initial value μσί = μσ to μσί - •  oo for σ -» σΗ (primary 
creep). Similarly, b in eqn. (7.27) should depend on time, if other than secondary 
creep were modelled. 

The method of rheological models is flexible in modelling different time effects 
and, in addition to the Ht Ν and V elements introduced, other special elements 
can be used (e.g., elements in Figs. 5.4, 5.5 and 5.13). In such a way, even complex 
mechanical behaviour may be fitted by a complicated rheological model. One is, 
however, forced to use different models for loading and unloading, for volumet-
ric and distortional creep and their cross-effects, etc. The dependence of the 
mechanical behaviour of geomaterials on the stress and strain paths (Section 1) 
has the consequence that for different paths different models must be used as if 
different materials were being dealt with. There are also other inconsistencies 
- e.g., the effect of time has been treated as a stress effect, etc. Rheological 
models are, therefore, not a visualization of the structural changes to which the 
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material is subjected in the deformation process, but rather they serve only for 
a formal description of its phenomenological behaviour. The validity of the 
principle of conversion is an additional proof of this conclusion. 

Thus, the main advantage of the rheological models is that they illustrate in 
a graphical, accessible form different constitutive relations and allow their 
transformation by changing the position of various rheological elements in the 
total scheme. Their application beyond the experimental range is not recommen-
dable. As a rule, a catalogue of rheological models is used (e.g., Houska, 1977) 
to find the model that corresponds to the experimental creep, relaxation or 
unloading curves, or to other recorded characteristics of the time-dependent 
behaviour. To overcome the above limitations of the uniaxial rheological models, 
some authors suggest replacing them by two-and three-dimensional rheological 
models, to which they ascribe also some structural meaning (Sobotka, 1981). 
Such models are still to a large extent approximate, but they have lost the 
transparency of uniaxial models. 

7.3 Method of integral representation 

If a load ó0 = const is applied periodically at the time intervals Ä/, the 
deformation of Kelvin material gradually increases (Fig. 7.2c). In generalizing 
this phenomenon, one can state that a linear viscoelastic material subjected to 
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the load σ 0 for a time interval At "remembers" that load in the form of a small 
strain Δε (1-1 ' in Fig. 7.2c). This strain decreases with a shorter time of 
application and a larger time elapsing after removal of the load (a fading 
memory effect). This is the Boltzmann superposition principle forming the 
foundation of the method of integral representation. 

Fig. 7.7 illustrates this principle. Let a specimen of a geomaterial be loaded 
by a stress increment Ασοι for a time period (t02 — t0l) = At. For a immaterial 

Δσ, 
ε = 

οι t - L 

exp 
01 

(7.45) 

(eqn. 7.15, σ0 = Δσ 0 1, t = t — i 0 1) . If unloading is treated as loading by-Aa0l, 
then for t > t 02 

Ε L 
t - t 

exp -
01 — 1 H- exp 

t - L 02 

Ασ{ 

ε = 
οι exp -

1
02 ~ hl t - t, 

exp -
02 (7.46) 

For a monotonous loading with a stepwise increasing load Δσ 0ι (Fig. 7.7) 

t - ί,·
Ν 

_ A Δσ0 |. " 
1 — exp I — (7.47) 

Eqn. (7.45) in the general form 

ε = Δ σ 01 C (t - ί 0 1) 

defines the creep compliance C [t — i 0 1) , in this case 

C ( i - ' o i ) = ^ [ l - e x p ( - ^ - ^ ) , 

(7.48) 

(7.49) 

which is a material property and a function of the time elapsed since the load 
application. Using eqn. (7.48), eqn. (7.47) can be transformed into 

a = t Δσ« C(t- t0i) HE (t - t0i), (7.50) 
i = 1 
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where the Heaviside function 

Ht (t - t0i) = 1 for t0i (7.51) 

and 

H
e (' - *<w) = 0 for t < t 0i . 

For a continuous increase of the load Ασ0, i.e., for = (t0i — t0̂  _ ^) 0 

t 

e = J C (t - a) Hc (t - a) da(a) , (7.52) 

ο 

where a — time when the load σ(α) is applied. No stressing and straining is 
assumed for t < 0, otherwise the lower limit of the integral should be - oo 
instead of 0. Since t ^ a, i / e( i -a ) = 1 and 

t 

e = | c ( i - a )d ( j ( a ) , (7.53) 

ο 

which is the Stiltjes integral, equivalent to 

t 

e = jc(t - a )<x(a)da , (7.54) 

ο 

if 

σ(α) = -Λ1. (7.55) 
da 

In the case of σ(α) = σ0 = const, applied at the time α = a 

t 

ε = | c (t - a) tfe (a - a) da . (7.56) 

ο 

Introducing Dirac's function δ(ί — α) defined by 

δ (t - a) = 0 for ί ^ α 

5 (f — a) oo for ί -» α (7-57) 
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and 

jô(t - a) dt = 1 , (7.58) 

b 

if b ^ a ^ c, then according to the definitions of the Heaviside and Dirac 
functions 

dHe (t - a) . , v / 

ô(t-a) = — ί = H e t - β . (7.59) 
d i 

The substitution of eqn. (7.59) into (7.56) gives 

t 

s = <70 J c (ί - a) (J (a - a) da . (7.60) 

ο 

Following the definition of the Dirac function, <$(a - a) = 0 for α φ a. Then the 
expression to the right of the integration symbol in eqn. (7.60), the integrand, 
equals zero everywhere, excepting α = a. For this value of a, C(t - a) = 
= C(t - a) and is independent of a. Acounting for eqn. (7.58), eqn. (7.60) can 
be given the form 

ε = a0C (ί - a) , (7.61) 

which agrees with eqn. (7.48). 
The procedure just described is used for the integration of the relation (7.54) 

and the likes. 
Integrating eqn. (7.48) per partes, one gets (Findley et al., 1976, p. 84) 

t 

ε = σ(ή C(0) - J C (t - α) σ(α) da , (7.62) 

ο 

with 

dC (t - a) 
C {t - a) = 

da 
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Eqn. (7.62) can be represented in the form 

t 

ε = ε0 + J C(t - α) σ(α) da , (7.63) 

ο 

where ε 0 = σ(ή C(0) and C(t - a) = - C(t - a). 
The relation (7.63) can be obtained directly, by solving eqn. (7.29) — see 

Rabotnov (1966, p. 118). The creep kernel C(t - a) then represents the sum of 
the finite number of exponential functions as shown by eqn. (7.37). Since the 
form of the function C(t - a) can differ from the exponential one, the integral 
representation of creep (eqns. 7.54 and 7.63) is more general than the differential 
representation. 

The relations (7.61) and (7.63) offer two alternatives as to how to analyse the 
experimental data. Since, as a rule, σ(ή = σ 0 = const, one can derive either 

— the creep compliance C(t) from the recorded time-strain curve, according 
to eqn. (7.61), where a = 0, 

— or the creep kernel (creep function) C(t) defined by eqn. (7.63), which in this 
case simplifies to 

έ = σ0 C(t) (7.64) 

(a similar relation could be derived for the relaxation function - see Feda, 1982c, 
p. 329). Experimental data are produced in the form of time-strain rate relation-
ships and, by means of eqn. (7.64), the creep kernel is calculated. This procedure 
has been adopted by the present author (Section 6.4). 

In place of the relations (7.54) and (7.62), which describe the time-strain 
dependence in the whole experimental time interval / <0, + oo>, the total strain 
can be decomposed into its time-dependent and time-independent components. 
The final relation formally agrees with eqn. (7.63); ε 0 represents the time-inde-
pendent constituent of strain. 

The integral representation just described forms the basis of the Boltz-
mann-Volterra theory of hereditary creep. As has already been referred to, 
a viscoelastic material "remembers" the stress σ(α) to which it has been sub-
jected for a time interval da in the form of a small strain decrement de, dimini-
shing with the increasing time after the interval of the stress aplication. The 
effect of the stress σ(α) is thus proportional to the time interval (t - a) and so also 
the rate of creep to C(t - a) which function embodies this effect. Hence the name 
"the theory of hereditary creep". 

The prominent feature of this theory is the independence of the time-deforma-
tion behaviour on the position of the time axis. What matters is only the 
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difference of the time t (at which the deformation is recorded) and α (when the 
load was applied). If the material properties underwent some changes in the 
course of time (as with aging materials) then the position of the time axis would 
be of importance and the creep kernel would depend on both mutually different 
time coordinates, i.e., C(/,a). 

The creep kernel is usually selected in a simple form. Abel's creep kernel 

C(t - a) = a (t - a ) "
n
 (7.65) 

is often favoured. Its exponent 0 < η < 1. Boltzmann's kernel η = 1 is a special 
case of Abel's kernel. Its discontinuities (ε oo and ε -> oo for t = 0, i.e., at 
the moment of load application) are not too important from the experimental 
standpoint because the value of ε at the moment of loading need not often be 
exactly recorded and the point t = 0 can be excluded from the description of 
the time-deformation relationship. If / is replaced by (t + tx) and t{ equals 
a small quantitiy (e.g., tx = 1 minute), then the first reliable measurements of 
créer) deformation are possible, as a rule, at about 100 minutes (after the 
attenuation of the effect of pore pressures - Section 6.3) and t equalling 100 or 
101 minutes then makes no difference. 

Ershanov et al. (1970) found that the value of η does not depend on the kind 
of rock (ibidem, p. 16), that Abel's kernel suits different stress states (ibidem, 
p. 148) and the exponent η = 0.7 is approximately constant for both field and 
laboratory measurements (ibidem, pp. 148 and 174; assuming for field measure-
ments η = 0.7, a in eqn. 7.65 has been found to correspond with the laboratory 
experiments where η = 0.7 has been evaluated). Ershanov et al. (1970, pp. 
85-96) quote creep testing of rocks by other investigators confirming the suitabi-
lity of the Abel kernel. Rabotnov (1966, p. 125) is of the opinion that η = 0.7 
can be valid for most materials. Bazant et al. (1975) obtained a value of 
η increasing with the drop in porosity and greater for isotropic than for anisotro-
pic structures (laboratory prepared kaolin). 

One can more generally assume that 0.7 ^ η ^ 1.3 (Mitchell, 1976, p. 329). 
For α = 0 and η = 1, eqns. (7.64) and (7.65) indicate that the creep follows 
a logarithmic law. Logarithmic creep was identified as early as in 1905 by Philips 
testing metal wires in tension

1
 and later by many other investigators for both 

volumetric and distortional creep of different soils (for references see Feda, 
1982c, p. 336). An example of such behaviour is represented by the time depen-
dence of the rate of settlement of Tasmanian,dams in Fig. 2.5 (Section 2.2). 

In general, Conrad (1961a) indicates that the value of η will decrease with 
increase in stress and temperature (the situation is more complex as the effect of 

1
 Andrade (1910) also mentioned that his experimental curves (lead, copper and "fuse" wires) fitted 

the logarithmic law quite well. 
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stress level depends on the type of the soil and whether distortional or volume-
tric creep is being investigated - see Fig. 8.15), logarithmic creep (n = 1) is 
typical for low-temperature behaviour, parabolic creep (0 < η < 1) for interme-
diate and high-temperature and steady-state (secondary) creep for high-tempe-
rature behaviour. 

Abel's creep kernel contains only two material parameters (a and n), one of 
them (w), moreover, ranging within narrow limits. An example of a more 
complex creep kernel is that of Kohlrausch, proposed in 1863 and recently used 
by Félix (1980b) for the description of the secondary consolidation of clays in 
the form 

where sf is the strain for (t - a) -» oo; a, b ( < 1) are parameters. The fact that 
none of the three parameters of this creep kernel (7.66) are even approximately 
constant (Meschyan has chosen b = 1) is a drawback thereof. Moreover, the 
identification of e f is not simple [Félix, 1980b, has taken it to be the strain for 
(t - a) 100 years, applying a logarithmic extrapolation formula, which is 
certainly not selfevident]. 

Taking into account the arguments in the introductory Section 1, it seems 
sensible to prefer in geomechanics the simple creep kernel (7.65), unless the 
prediction differs substantially from the experimental results. 

The integral representation of creep is more general and is better suited to 
treating experimental data. Contrary to the differential representation, it applies 
also to aging materials. The use of the time-temperature superposition principle 
(for thermorheologically simple materials) is also warranted (the effect of tempe-
rature on the time-dependent mechanical behaviour is equivalent to shrinking/ 
stretching of the real time for temperatures above/below the reference tempera-
ture - Findley et al., 1976, p. 105; see also Section 6.2; a suitable transformation 
rule has to be found). This principle may be stated more generally and of the 
three variables "temperature-time-stress (load)", each can be modelled by ano-
ther, complying with definite conditions (e.g., Feda, 1982c). 

In general, geomaterials conduct themselves physically nonlinearly and a ge-
neralization of the Boltzmann superposition principle (exactly valid only for 
viscoelastic, i.e., for linear materials) is needed. For & stress Δσ 0 applied at the 
time t = 0, one gets, accounting for nonlinearity, 

(terms of higher than the third order have been neglected to simplify the relation 
7.67; moreover, they are deemed unnecessary, since the relation is sufficiently 
representative). 

C(t - a) = e f [1 - exp (- a (t - a )
b
) ] , (7.66) 

ε0 = Ασ0 C{(t) + Ασ\ C2(t) + Δσ^ C3(t) ... (7.67) 
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Let an additional load (stress) Δσ 01 be applied at the time t = t v A strain εχ 

will follow and, in addition, the effect of this loading step will be emphasized by 
the cross effects of Δσ 0 on εχ and of Δσ 01 on ε0. For t > tx one obtains, taking 
into account all variations, the relation (Findley et a l , 1976, p. 132): 

ε = Ασ0 Cx(t) + ΑσΙ C2(t, ή + Ασ3

0 C 3(i, ί, ή + Ασ01 Cx(t - tx) + 

+ Ασ%ι C2(t - tï9t - tx) + Ασ3

οι C3(t - tx, t - tl91 - tx) + 

+ 2 Ασ0 Ασ01 C2(t, t — tx) + 3 ΑσΙ σοχ C3(f, ί, t — t{) + 

+ 3 Ασ0 ΑσΙχ C 3(i, t - tl91 - tx)... . (7.68) 

A similar procedure applies for Δσ 0 2, etc. After generalizing eqn. (7.68), one 
gets 

ε = £ Ασ0ί Cx{t - + Σ Σ
 Δ

%
 Δ

* ο ;
 c

2( ' " ^ ί ~ */) + 
ί = 0 ι' = 0 ; = 0 

+ Ση Σ η, Σ„ Δ
%

 Δ σ
ο, ·

 Δσ<* c3(t - ί,·, t - tj, t - tk) + 
i = 0 jί = 0 fc = 0 ' 

(7.69) 

If at the limit, stress a changes continuously, then 

ε = Cx(t — ocj) σ ^ ) ά<χχ + 

ο 
ί t 

+ J J c 2 ( < - a 1 , , - « 2 , ^ 1 ) , ( « 2 ) d a 1 d a 2 + 

0 ο 

ί ί ί 

ί 
0 0 0 

C 3(i — α ΐ9 ί — α2, ί — α3) σ(α2) <ί(α3) do^ da 2 da 3. . . . 

(7.70) 

One gets the same relation when starting with the most general functional 
definition of constitutive relations. For a simple material, the stress tensor atj 

depends on both the current deformation gradient and on those of all the 
previous times, i.e., on the érs of the material, which gives 

(7.71) 
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where Fy are functionals, differing for different combinations of i and j (in the 
case of anisotropy). They must conform to the requirement of the material's 
frame indifference (because e^- is not an objective measure of strain, with the 
exception of small displacement gradients, the classical theory of linear visco-
elasticity is objective only under particular conditions). After a series of assump-
tions and simplifications (their mathematical consequencies cannot be interpre-
ted simply at the physical level), one gets for creep strain (assuming small strains) 

MO = ο (7.72) 

(if for t < 0 the material has not been stressed or strained, otherwise — oo 
should replace 0). 

Expanding eqn. (7.72) into a series of multiple integrals following the Green-
-Rivlin theory, the relation (7.70) is obtained. The multiple integrals higher than 
of the third order are omitted. Such a truncated relation is assumed to be 
sufficiently general. Moreover, a theory of a still higher order lacks the experi-
mental means for its implementation. Lockett (1972, p. 66) confirms that under 
a set of particular assumptions (small displacement gradients, small rotations of 
material elements, etc.) the relation (7.70) simplifies to the classical linear theory, 
which under these circumstances, is accurate. 

For a general stress state, eqn. (7.70) gives (Findley et al., 1976, p. 139; 
Lockett, 1972, p. 65): 

t t t 

= j Wi +
 C

2 d«, + [c3 < % ) <f(«2) + 

0 0 0 

+ C 4 à(<x{) σ(α2) + C 5 (7(04) σ(α2) + C 6 σ^γ) σ(α2)> d(x{ d a 2 + 

+ 

t t t 

\ W {
Sij C? Ô

^
 &

^
 Ô

^
 + CS &

^
 &

^ ^ 
+ 

000 

+ 

+ C9 σ(*{) σ(α2) σ(α3) -h C 1 0 σ(α,) σ(α2) σ(α3) + Cn σ(αχ) <τ(α2) σ(α3) 

+
 C

1 2 * (
α
ι )

 à
^i) ά{<*3)\ da{ da 2 da 3 (7.73) 
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where - Kronecker's delta (δί} = 1 for i = δ^ = 0 for i φ j), 

Cx = Cfc - aj) for i = 1, 2 

C. = C,(i - a l 5 t - a 2) for i = 3, 4, 5, 6 

C, = C,(t - a 1? t - α2, î - a 3) for i = 7, 8, 9, 10, 11, 12 

σ = σ β σ σ à = à^à^  ̂ à à = 

σ σ = 0 · ^ · σ σ = σ ^ · σ σ σ = àipàpqoqi 

hj, p,q = l, 2, 3. 

Nonlinear theory of the third order thus requires 12 creep kernels, Cx to C 1 2, 
to be found (for the most simple case of an isotropic material and, as previously, 
no stressing and straining before t = 0). 

The relation (7.72) can be transformed for the linear theory into the form 

t 

fyW
 =

 - «)*«(«) d«> (7.74) 

ο 

where Dijkl are creep kernels for a general state of stress and anisotropy. 
Eqn. (7.73) is solved in a similar way to eqn. (7.54), see Findley et al. (1976, 

p. 176). For the uniaxial stress a one obtains 

εη(ή = F{a + ΐ1σ
λ
 + F3a

3
 , (7.75) 

with Fx = C, + C 2, F2 = C 3 + C 4 + C 5 + C 6, F 3 = C 7 + C 8 + C 9 + 
+ C 1 0 + C n + C 1 2. Owing to the sensitivity of eqn. (7.75) to the sign of σ, 
compression and extension need not produce the same effects. 

The standard uniaxial compression of soil in an oedometer corresponds in 
simplicity to the standard experiments in uniaxial compression and tension, 
common with solid continuous materials. For the stress relaxation under such 
conditions one gets 

ση(ή = Flen + F2e
2

22 + F3s\3 , (7.76) 

where Fl9 F2 and F3 are the relaxation functions. Both eqns. (7.75) and (7.76) 
mutually correspond the one to the other. 

The nonlinear theory just described pays for its generality by a great and often 
unbearable amount of experiments. According to Lockett (1972, pp. 82, 98,102), 
for the uniaxial stress experiment, 28 to 78 tests are needed (repeating each test 
5 to 10 times), and for a triaxial state of stress about 6 times as many. Such 
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a number of tests is hardly acceptable even for materials with reproducible 
structures, like polymers

2
. 

The structure of geomaterials, of different samples from even the same 
locality, can display a considerable variability and the population of undisturbed 
specimens is often far from being numerous enough to form a statistically 
homogeneous set. The implicit assumption of the theory just described, namely 
that the creep kernels do not depend on the stress and strain paths, is generally 
invalid for geomaterials. Thus, the number of tests in such cases is still much 
larger. 

One can thus understand why the multiple integral form of nonlinear rheology 
has been applied in geomechanics exclusively in the case of laboratory prepared, 
reconstituted samples and of unconfined compression testing which is atypical 
for geomechanical problems (tests analysed by Drescher, 1967; Adeyeri et al.„ 
1970; Krizek et al., 1971). These applications evidently copied the investigations 
in the field of continuum mechanics of solids with controlled structure (metals, 
polymers). 

The advantage of a general and exact theory of nonlinear rheological (creep) 
behaviour is lost if one is unable to determine the series of creep kernels 
experimentally at a satisfactory confidence level. Simpler single-integral theories 
have therefore been explored, built according to the theory of viscoelasticity 
(e.g., eqn. 7.54). 

Lockett (1974) reviewed such theories with the result that it is easier to model 
the isochronic and tensorial nonlinearity than the anisochronic one. According-
ly, it is simpler to model the time effects of a single-step loading than of one with 
two and more steps. 

Different single-integral theories have been proposed (Findley et a l , 1976): by 
Lianis (theory of materials with fading memory), BKZ theory (Bernstein, Kear-
sley and Zapas — theory of elastic fluids) or Schapery's (thermodynamically 
founded) theory. The most successful seems to be the prediction of nonlinear 
creep by the theory of Leaderman and Rabotnov (Lockett, 1974): 

(7.77) 

— 0 0 

(7.78) 

2
 Lockett (1972, p. 95) points to the futility of mathematical theories which do not consider the 
consequent experimental requirements. 
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In separating the effect of both variables (t and σ) in the. form f[x, y) = j[x)f[y) 
a far-reaching simplification has been attained. Thus, the assumption that the 
isochronic stress-strain curves are similar has been introduced. The source of the 
nonlinear behaviour, which, in the case of the multiple integral theory, are the 
creep kernels, has thus been transferred to the isochronic stress-strain curves, 
which thereby became nonlinear. A more general formulation of the relation 
(7.78) is possible if the stress σ 0 is normalized by the long-term resistance which 
is a function of time. 

7.4 Empirical relations 

Empirical time-strain relations are most commonly of the power-law type 

where ε 0 and εχ are generally nonlinear functions of stress, m is a constant, 
independent of stress and its mode, and tx represents a unit time. The time 
derivative of eqn. (7.79) is 

This relation fits well for the creep of polymers tested in simple tension, 
compression and torsion, and a combination of torsion with compression. 
Findley et al. (1976, p. 193) used it successfully to extrapolate the creep strain 
of Polyvinylchloride and polyethylene, measured during 2 000 hours, up to 
132 000 hours. The value of the exponent m equals 0.09 to 0.21 for various 
plastics, 0.22 for wood and 0.2 to 0.45 for different metals. 

The validity of empirical relations more complicated than (7.79) is conside-
rably restricted to a narrow range of materials. 

Combining eqns. (7.64) and (7.65) (for α = 0), one obtains the relation (7.80) 
with η = 1 - m. For η = 0.7, m = 0.3, which corresponds well with the usual 
value of m for metals (Findley et al., 1976)

3
. 

A power-law dependence of the creep rate on time according to eqn. (7.80) has 
been proposed for soils by Goldstein and Babitskaya (1959) and by Singh and 
Mitchell (1968), who suggested its general validity for different soils in various 
states. 

3
 Classical Andrade's (1910) experiments with metal wires recorded the value of m = 1/3, corres-
ponding to η = 2/3 in eqn. (7.65). 

(7.79) 

(7.80) 
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Comparing eqns. (7.80) and (7.64), one can conclude that the so-called 
empirical relations like (7.79) are only an experimentally based selection of the 
creep kernel or compliance in the sense of the integral method of creep represen-
tation. The term "empirical relations" is, therefore, not a fit identification of 
them. They are not opposed to the theoretical relations, but they define material 
functions forming a part of the theory. 

The rheological behaviour of geomaterials is governed by their innate structu-
re and its changes in the course of the rheological deformation process. The 
parameters of the rheological constitutive relations depend, consequently, on the 
state parameters (Section 4). The most prominent of these in the time-dependent 
deformation process are stress, strain and time. The relations analysed in the 
preceding text prefer to express the changes of the state by stress changes, i.e., 
by changes of the stress magnitude and its redistribution in time. Eqns. (7.42) 
to (7.44) can serve as examples. In reality, materials are altered and structural 
changes are produced, in addition to the stress variation, by the effects of time 
(time-hardening, aging) and strain (strain-hardening). 

The effect of different stress and strain histories has already been discussed in 
Section 6.4. Since the theory does not offer adequate ground for the time and 
strain effects being explicitly incorporated, they are evaluated on the basis of 
experimental data. Thus, different technical or approximate rheological theories 
have been formulated. The most familiar among them are the theories of 
time-hardening, strain-hardening and flow. They define creep by the following 
relations: 

a) the theory of time-hardening: 

ε = / (σ , t) ; 

b) the theory of flow: 

ε = f(a, σ, ή ; 

c) the theory of strain-hardening: 

i = ί(σ9 ε) . (7.83) 

If the respective functions are expressed in the form of a power-law, the 
analysis of these theories yields mutually corresponding results, which can be 
derived from the constitutive relation of a Maxwell material with a nonlinear 
Newtonian element (Sobotka, 1981, p. 111). The predictions of these theories 
differ only if the load is applied in two or more steps. An analysis of the 
differences has been carried out by Rabotnov (1966, p. 197) and Vyalov (1978, 
p. 236) for a two-step loading. Vyalov concludes, on the basis of Meschyan's 
experiments, that for soils the individual theories do not differ much and that 

(7.81) 

(7.82) 
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each of them can hopefully be used. The most suitable, from the practical point 
of view, seems to be the theory of strain-hardening and the linear or nonlinear 
theory of hereditary creep. 

Since the state parameters—stress, strain and time—are mutually interrelated 
(stress can vary only in time and it always produces strain), Vyalov's conclusion 
appears to be quite reasonable for all materials where none of the three state 
parameters mentioned takes a prominent position. 

The similarity between the creep curves of different materials suggests that 
two general mechanisms operate on the structural level: strain hardening and 
strain softening (recovery). The former increases the resistance to flow, the latter 
makes it decrease. Primary creep results from the prevalence of the first mecha-
nism, secondary creep from a balance of both, and tertiary creep from the 
preponderance of the second one (Conrad, 1961b; Schoeck, 1961a; see Section 
10.4). 
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8.1 Introduction 

The phenomenological behaviour of a geomaterial reflects its structure, or, in 
other words, its state, since the state of a geomaterial has been defined in 
Section 4 by its structure and texture. In analysing stress-strain-time relations 
one can, consequently, get an idea about the structural nature of materials. 

In the preceding text, many examples of exploiting this fact have been presen-
ted. Different features of the phenomenological behaviour have been explained, 
e.g., by the combination of sliding and crushing of structural units (Figs. 3.10 
to 3.14) reflected in the compressibility of soils (eqn. 3.10, Figs. 3.15 and 3.16), 
by the fabric undergoing severe changes through the deformation process (Fig. 
3.18), the effect of the composition of the pore liquid has been demonstrated 
(Figs. 3.27 and 3.31), etc. It has been experimentally documented how the 
compression curve reacts to the annihilation of cementation bonds (Figs. 3.33 
to 3.35), statistical approaches were introduced (eqn. 3.3), the important inter-
vention of stress as a state parameter was emphasized (Figs. 4.18 to 4.27), etc. 

All these examples prove the ability of the analysis of the phenomenological 
behaviour to point out some structural features of a tested material. Two 
components of structure (Fig. 3.1) are evidently prominent - fabric (with struc-
tural units included) and bonding. 

While the above investigations are directed from phenomenology to structure, 
another possibility, already mentioned in Section 3.2, exists - to explore the 
fruitfulness of the opposite way: to start with structural conceptions and to find 
their phenomenological materialization. 

Both conceptions represent a complementary effort to base the theory of 
constitutive relations on a structural foundation, and since both possess their 
weak points, they should be combined. That such a combination is of necessity 
has already been suggested, e.g., when analysing the effect of time and tempera-
ture, where the theory of thermally activated processes has been recalled (Secti-
ons 4.5, 4.6, 6.2 and 7.2). A strong point of the structural approach is its 
advantage in getting fundamental insight into the structural mechanism and in 
being liberated, to a considerable extent, from the boundary conditions imposed 
on any phenomenological testing arrangement (see Section 1). 
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One can differentiate, in principle, between two conceptions. The source of the 
first one is the consideration of the statistical (Boltzmann's) law governing the 
movement of so-called flow units ("l'unité cinétique" in French) and its pheno-
menological consequences. One comes to the conclusion that a wide class of 
deformation and strength problems is founded on the theory of thermally 
activated processes where the load (force, stress) plays only a secondary role in 
modifying the energy barriers. Since flow units are the central point of this 
theory, bonding is the most frequented structural parameter. 

The second approach, contrary to the first one - micromechanical, is rather 
mesomechanically based (see Section 1 ). Phenomenological behaviour is regar-
ded as a result of the mechanically activated process at the particle (structural 
unit) level where the load (force, stress) is primarily engaged. To analyse the 
effect of fabric on the stress-strain response of soils is the principal goal of the 
theory. 

In the following treatment, the micromechanical approach is more emphasi-
zed owing to its general applicability to liquids and solids. This important 
quality makes it possible to enrich our relatively narrow geomechanical expe-
rience by the corresponding ideas of the molecular theory of viscosity, creep and 
long-term strength of metals, polymers and other solids. 

The mesomechanical approach is specific for geomaterials, especially for 
granular materials. It is, however, possible to include in the mesomechanical 
theory also the slip theory, mentioned in Section 5.4.5. The typical feature of this 
conception is, namely, the same definition of stresses, strains, yield surfaces 
(ascribed to individual cuts in the case of slip theory), etc. as in continuum 
mechanics. 

8.2 Micromechanical approach 

About 50 years ago, Eyring and his coworkers developed a theory of absolute 
reaction rates, based on statistical mechanics, and applied at the atomic and 
molecular levels. It has been gradually acknowledged that the theory is apt for 
describing a wide spectrum of processes in which a time-dependent rearrange-
ment of matter occurs. Thus, the mechanism of viscosity (Joly, 1970) and the 
diffusion and deformation (creep included) of liquids and solids have been 
fittingly descibed and, finally, the theory has also been used to analyse failure of 
solids (Regel' et al., 1972). All these phenomena are treated as thermally activa-
ted processes. Thermally activated rate processes depend on the temperature by 
a factor exp(-U/kT), if U is the activation energy, Τ absolute temperature, k is 
Boltzmann's constant (eqn. 3.3) - Schoeck (1961b); Conrad (1961b). 

The fact that the creep curves of dissimilar materials are identical, is an 
indication of the ability of the rate-process theory to analyse this process 
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adequately on the atomic and molecular levels. The value of Abel's exponent 
η (eqn. 7.65) is such that it can describe the behaviour of different materials (n 
= 0 - Newtonian flow, η = 1 - logarithmic creep, 0 < η < 1 - parabolic creep, 
Section 7.3). It is claimed that, in general, two processes operate during creep: 
one increases the resistance to flow (strain-hardening), the other decreases it 
(recovery, strain-softening). Their being in balance results in a constant creep 
rate (secondary creep) - Conrad (1961b). 

3.2 3.3 1 3.4-10' 

Τ 

Fig. 8 . 1 . Strain rate as a function of 1/Γ for undisturbed San Francisco Bay mud (Mitchell et al., 
1968). 

Fig. 8.1 confirms that the creep of soils complies with the above definition of 
thermally activated processes. More than about 20 years ago, the first papers 
treating the creep of soils in such a manner appeared (e.g. Mitchell, 1964; 
Mitchell et al., 1968; Andersland and Douglas, 1970; Mitchell, 1976, etc.). At 
present, it is generally agreed that other than thermally activated processes, such 
as the quantum mechanical tunnelling effect, are limited to extremely low 
temperatures (Schoeck, 1961a). They are so rare (Andersland and Douglas, 
1970) that they can be neglected. 

Rate-process theory claims that atoms, molecules, etc., termed "flow units", 
are separated by energy barriers which fix their equilibrium positions, distingui-
shed by the minimum potential energy. To surmount these barriers requires the 
acquisition of a free energy of activation whose source is represented by the 
energy of thermal vibrations of the flow units, modified by various potentials, 
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θ Β' 

DISPLACEMENT 

Fig. 8.2. Representation of energy barriers in rate-process theory. 

shear force is applied (^u on each flow unit in Fig. 8.2), the original energy barrier 
becomes distorted (A' B' C) and the movement from A' to C over B' (from the 
left to the right in Fig. 8.2) is preferred, because crossing the barrier in this 
direction calls for an energy U < U0. The value of δ equals the elastic distortion 
of the material structure. The frequency of activation k! in the direction of the 
shear force s u, according to rate-process theory, then becomes 
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stemming mainly from the stress applied to them. After crossing a barrier, the 
flow unit occupies a "hole", formed by itself or by a defect in the crytalline lattice 
(e.g., vacancies; formation, movement, annihilation or rearrangement of disloca-
tions, etc. - Schoeck, 1961a). Thus, the deformation of liquids and solids may 
be viewed as a sequence of displacements of flow units, made possible by the 
presence of various defects in the structure of the materials. 

Fig. 8.2 serves as a visualization of the mechanism of a thermally activated 
process. A and C represent stable (equilibrium) positions of flow units in 
a distance of A; the height U0 of the energy barrier has to be surmounted if 
deformation is to result. In the absence of a directional potential, the barrier is 
crossed by the flow units in all directions and no deformation takes place. If a 
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The net frequency of activation in the direction of force gives the relation 

If the net specific rate of movement of the flow unit is multiplied by the distance 
λ and divided by the same distance, assuming it to approximate the distance 
between flow units normal to the direction of flow, one obtains (Andersland and 
Douglas, 1970) 

If the shear stress τ is distributed uniformly among Β flow units per unit area 
and if the number of flow units equals the number of bonds, then 

W - W = 2 — exp ( - — J sinh ( — ) 
h L V RTJA \2kTj 

(8.2) 

y = 2 — exp ( - J sinh ( —-—) 

H]_ V RT/J \2 kTJ 

(8.3) 

τ 
(8.4) 

Inserting this value into eqn. (8.3) yields 

γ = 2— exp 
h l \ RTJ 

sinh (8.5) 

suA < 2kT, (8.6) 

then 

(8.7) 

(see eqn. 7.38 and Fig. 7.6) and, using eqn. (8.4), 
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(this is Newtonian flow) and hence 

B h
 f

u
o\ 

(compare with eqns. 7.38 and 7.39). The relation (8.9) forms the foundation of 
the molecular theory of viscosity (Joly, 1970). 

If 

suX>2kT, (8.10) 

which is mostly the case for soils creep, then 

/ suÀ \ 1 suÀ 
sinh — = - exp — (8.11) 

\2kTj 2 2kT 

and eqn. (8.3) changes (with respect to eqn. 8.4) into 

γ = — exp ( - ) exp ( — - τ ) , (8.12) 
h \ RT/ \2BkT J 

which is the final form used for the study of the creep of soils (or of non-Newto-
nian flow - compare with eqn. 7.41). If 

l / 0 Νλ U , x 

- + τ = 8.13 
RT 2BRT RT 

(R = Nk, Ν is Avogadro's number 6.02 χ 10
2 3

), then, after substituting eqn. 
(8.13) into (8.12), one gets 

y = - r e x p ( - — ) (8.14) 
h \ RTJ 

and 

7 
d l n -

T U , x 

= - - 8.15 
1 R 

e-
T 
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(this is the plot in Fig. 8.1, if y is replaced by έ), where U is termed the 
experimental activation energy (in Fig. 8.1, U = 31.4 kcal m o l e

- 1
, which is 

a characteristic value for soils). Thus, the experimental activation energy is 
usually measured, provided that different temperatures reign in specimens of the 
same structure (i.e., of the same original structure and at identical strains, if the 
latter is considered to be the principal state parameter). 

Writing eqn. (8.12) in the form 

γ = C{t) exp (ccdzr-) , (8.16) 

where 

h V KT 

a d = (8.18) 
2BkT 

and τ Γ is the long-term (time-independent) strength, one can study the number 
of interparticle bonds (Mitchell, 1976). For this purpose, from eqn. (8.16) one 
gets 

In y = In C(t) + a d r f - (8.19) 

and the slope of the In γ vs. τ relation indicates the value of a d and thus the 
magnitude of λ/Β. 

The rate-process theory, embodied in eqn. (8.12) and its transformations, 
eqns. (8.15) and (8.19), has yielded a lot of interesting results of the first-class 
importance. Paraphrasing Mitchell (1976, pp. 296 and 298) one can assert that: 

— The activation energy of soils ranges mostly between 20 to 30 kcal/mole 
(water: 4 kcal/mole) and variations in water content, ionic form and pore fluid 
(as proved by Andersland and Douglas, 1970), consolidation pressure and void 
ratio have no significant effect upon this value. Its magnitude suggests that creep 
deformation results from solid-state diffusion of oxygen ions in the surface of 
silicate minerals (λ = 2.8 χ 1 0 ~

10
 m). Direct and independent evidence is also 

available of the solid-to-solid contacts in soils (scratches and acoustic emission 
- Matsui et al., 1980 - see Section 3.5). The same activation energy has been 
found for clays and sands. In clayey suspensions without a continuous structure 
of solids, the activation energy drops to that of water. In the boundary region 
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between clayey pastes and suspensions, heterogeneous bonding (primary valence 
bonds of oxygen and hydrogen bonding of water) exists. 

— Creep deformation is, therefore, not controlled by viscous flow of water 
and water is not responsible for the bonding of soils (with the decrease of water 
content, the number of bonds increases - Fig. 8.3; with increasing water content, 
one can expect an increase of deformation - Fig. 4.8 - and decrease of strength 
- Fig. 3.27; water does affect the nature of the solid skeleton of soils and the 
magnitude of structural units, as documented by Fig. 3.27 and by the adsorption 
effect mentioned in Section 3.5). 

Η 1 1 1 1 1 1 — 
0 10 20 30 AO 50 6 0 % 

WATER CONTENT 

Fig. 8.3. Number of bonds as a function of water content for remoulded illite (Mitchell, 1976). 

— The difference in the number of bonds (100 times as many bonds in dry clay 
as compared with wet clay) of the same quality correlates directly with the 
macroscopic strength. As affirmed by Fig. 8.4, this conclusion is quite general, 
irrespective of the type of consolidation, water content or consistency, and is 
valid for both dry sand and water-saturated clay. This is the proof of the 
rate-process theory treating the structure of different materials at atomic and 
molecular levels, where no distinction other than of their composition can be 
found. It is the same for all soils consisting of silicate minerals. For different 
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metals, chlorides and plastics, Regel' et al. (1972) claim distinct ranges of 
activation energy reflecting the different compositions of those materials (me-
tals: 28 to 150 kcal/mole, chlorides: 30 to 74 kcal/mole, plastics: 31 to 45 
kcal/mole). 

— Matsui et al. (1980) found a hyperbolic relation between the shear force 
acting on each flow unit and macroscopic strain - Fig. 8.5, which seems to be 
parallel to the relation of shear strength to the number of bonds (Fig. 8.4) and 
corresponds with the phenomenological stress-strain relations which often take 
on a hyperbolic form (eqn. 5.6). 

Fig. 8.4. Relation between shear strength and number of bonds (Matsui et a l , 1980). 

Summing up, the application of rate-process theory, considering creep of 
geomaterials as a thermally activated process, has been extremely fruitful in 
getting an insight into the nature of bonding of soils and in outlining the 
influence the number of bonds exerts on soil deformation and failure on the 
macromechanical scale. Valuable, indeed, is the substitution of rather vague and 
descriptive geological terms by numbers, i.e., the quantification of the quality of 
structure. 

Eqn. (8.14), if generalized, can be expressed in the form (Schoeck, 1961a, b) 
/
 υ,(σ, s t ) \ 

« = 1 / ^ S
 s t

)
 e x

P ( -
 · (8.20) 
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This relation indicates that there exist different thermally activated processes 
with various activation energies Ut and frequency factors fv They depend on 
stress σ, absolute temperature Τ and structure (st) (in metals defined by the 
number and arrangement of dislocations, the type and dispersion of precipitates, 
the grain size or type and number of subgrain boundaries, etc. — Schoeck, 
1961a), which may change during deformation. 

Fig. 8.5. Hyperbolic variation of shear force acting on each flow unit with shear strain for Send clay 
(wL = 92.6 %, wp = 37.7 %, / P = 54.9 %, N.C.)—Matsui et al. (1980). 

One of the thermally activated processes usually dominates. If individual 
processes depend on each other in such a way that none of them can occur 
without the other, the creep rate will be governed by the slowest one with the 
largest U(; if Ui is too large, the process becomes practically "frozen in" and 
cannot develop in reasonable time. If the processes are, however, independent of 
each other, the fastest one with the smallest Ui will be rate-controlling; if Ui is 
too small, the process can take place so rapidly that it cannot be measured by 
ordinary techniques (Schoeck, 1961b; see also Andersland and Douglas, 1970). 

If applied to soils, the first possibility, that of maximum Ut controlling creep 
rate, can be expected with dense sand (of a structure of the type in Fig. 3.8b) and 
cemented (overconsolidated) clays (exhibiting higher resistance up to the brea-
kage of cementation bonds, as can be exemplified by the behaviour of loess in 
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Figs. 3.29 and 3.30). The other possibility, that of minimum ^cont ro l l ing creep 
rate, is likely to be met in soils containing continuous surfaces of lower resistance 
(e.g., presheared soils) and with clayey suspensions so dilute that the activation 
energy of water comes into action, and not the stronger bonds of individual 
clusters (assemblages) of clayey particles. Loose sands (consisting of denser 
clusters of grains which are not in contact) belong also to this category. 

Pusch and Feltham (1980) used an approach similar to that expressed by eqn. 
(8.20), i.e., they assumed the existence of a spectrum of {/-values and arrived at 
logarithmic creep, i.e., at Boltzmann's kernel (they add to the time t a value of 
t0), a special form of a simplified Abel's kernel with Abel's exponent η equal to 
1 (eqn. 7.65). 

Then (referring to eqn. 7.64) the creep rate 

έ = at , or better έ = a — J (8.21) 

where, e.g., tx = 1 min., as in the author's tests. For t -* 0, ε -> oo, therefore 
the relation 

(8.22) 

is sometimes formally preferred. 
As evidenced in Section 6.3, first readings after the application of any loading 

step are, however, burdened by the increased effect of unequalled or undrained 
pore-water pressures or other influences which are parasitic from the standpoint 
of creep measurements. 

For large tjt^ 1, there is, however, no practical difference between eqns. 
(8.21) and (8.22). 

If 

ε = a e x p ^ - — — ^ J , (8.23) 

one can derive 

ε = ε0 + b In t + 1^ . (8.24) 

Logarithmic creep is thus interpreted as a thermally activated process with the 
activation energy increasing linearly with deformation (strain-hardening preva-
ils completely) - Schoeck (1961a). 
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(tf is the time to failure, tQ = 1 0
- 13

 s represents the mean period of thermal 
vibrations of atoms in solids, U0 is the initial activation energy of an unloaded 
specimen). This relation suggests that the process of the gradual time-dependent 
accumulation of structural defects in any stressed material is also of the nature 
of a thermally activated process: the energy of thermal fluctuations (Regel'et 
al.'s term) is spent on the destruction of atomic bonds. 

Broken atomic bonds will recover due to recombination of the failed bonds, 
but the applied stress increases the probability of surmounting the energy barrier 
and suppresses the occurrence of recombinations. 

The relation (8.25) holds only for σΐ y 0 (otherwise / f = oo for σϊ = 0). The 
value of U = UQ - adaf in eqn. (8.25) accords with that in eqn. (8.13) up to the 
factor of N. It is therefore of importance that Regel' and his coworkers found 
that U0 = const and the coefficient ocd varies according to the technology applied 
(heating, rolling, etc.) and is, consequently, structure-dependent. This finding 
agrees with soils where the structure-dependent coefficient a d (eqn. 8.18) indica-
tes the number of bonds, i.e., the intensity of bonding. 

Regel' et al. (1972) investigated in detail the progress of interatomic failure, 
using different direct physical methods and tensile tests of linearly oriented 
polymers (chosen for their chemically easily decipherable structure). They found 
the growth of free radicals, indicators of broken atomic bonds, with time of 
loading, magnitude of load and with the gradual exhaustion of the material's 
long-term resistance and creep. 

They also studied the kinetics of submicro-, micro- and macrofissures. Their 
initiation was localized in the overstressed regions of the material's structure and 
they were prompted by the release of elastic mechanical energy (a process well 
known in fracture mechanics). 

(8.25) 
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The conception of Pusch and Feltham (1980) does not seem to open new 
horizons, even if their original formulation has been corrected to express the 
effect of stress on creep deformation according to eqn. (8.20). 

The assumption of an activation energy increasing with ε, though rightly 
showing the deformation to be a state parameter, appears oversimplified. If 
Abel's exponent η > 1, some additional hardening should take place, but it is 
difficult to imagine its source. 

Eqn. (8.20) cannot be solved since the structural and stress effects are introdu-
ced implicitly. Therefore, some physically acceptable simplifications are needed. 

Regel' et al. (1972) explored the long-term strength oy of different solids and 
found that 
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The above elucidation of the mechanism of thermally activated creep (and 
relaxation) and failure processes in solids is doubtless of general validity. Vyalov 
(1978, p. 314 et seq.) presented a similar analysis of the growth of structural 
defects (fissuration) with time and load in remoulded samples of a kaolin and 
another clayey soil and found that it depends logarithmically on time. 

Though the softening process, i.e., the progressive accumulation of structural 
defects, is relatively well explored in both polymers (and other materials such as 
metals) and soils, the hardening mechanisms are not so well understood. Regel' 
et al. (1972) claim that the slowing in the pace of the growth of fissures 
representing hardening (and it is characteristic that the process of hardening is 
defined on the basis of the process of softening, or recovery, as it is called with 
metals) is due to the exhaustion of structurally weak regions (i.e., weakly bonded 
and highly overstressed) in the material, and also to fabric changes and to 
mutual "nailing" of fissures (if they are situated in noncollinear positions). 
Vyalov (1978, p. 341) has chosen the analytical expression of the hardening 
process in analogy with the corresponding relation for structural softening. 

This useful excursion into the mechanics of other solids can be inspiring for 
the modification of the currently used formulation of the rate-process theory of 
soils. Taking into account that all solids are subjected, on the atomic level, to 
a similar structural mechanism that differs quantitatively only due to the com-
position of the materials in question, one can maintain that: 

— The field of thermally activated processes covers both deformation (creep) 
and failure of soils. 

— In the course of time and loading, structural changes take place (identifi-
able, e.g., by decrease or increase of bonds per cm

2
) and these are expressed by 

some characteristic structure-dependent parameter such as a d, which determines 
the mechanical response of the material. 

— Except for some unusual cases, the value of the activation energy U0 = 
= const. 

Attention should be focused on eqn. (8.12). For the time being, it is of 
secondary importance that the values of UQ and su (eqn. 8.4) are mean values. 
They are probably locally variable, and the whole thermally activated process 
develops progressively, but to disclose its details seems, at present, too deman-
ding a task. The multiaxial state of stress and strain may produce the values of 
U different in different axes (e.g. constant for the distortional creep and time-
dependent for the volumetric creep). 

Two problems are of primary significance: how to measure the magnitude of 
U0 and Β and how to take into consideration the effect of time on the process 
of creep. 

If Β is only a function of the stress history, water content, strength and 
remoulding (Mitchell, 1976, pp. 298 and 303), but not of time, then a combinati-
on of the rate-process conception with a phenomenological concept results 
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(creep kernel C(t) must be used, usually of the Abel type - eqn. 8.16) which is 
neither logical, nor practical. On the right-hand side of eqn. (8.17) another factor 
(X in Mitchell, 1976, p. 294) is added to obviate the (doubtful) assumption of 
the time-dependence of U0. 

To determine its magnitude either the variation of the experimental tempera-
ture Γ must be determined (eqn. 8.15), which is rather complicated, or use must 
be made of the relations (8.12) and (8.18) for two neighbouring stress levels τχ 

and τ2 in the form (Andersland and Douglas, 1970) 

kT U0 

I n γχ = I n h 
h RT 

kT U0 

I n γ2 = I n h α ατ 2 

h RT 

(8.26) 

λ Ά ( ν
 ln

 (h/fi) , Q 0 7v In - = a d (τ{ - τ 2) => a d = (8.27) 
Ϊ2 - τ2 

and finally 

U0 = RT I ln ln y Η τ J . (8.28) 
\ h

 τ
ι -

 τ
2 / 

For two stress levels, τ{ < τ 2, the creep rate is to be determined under the 
condition of identical structure of the specimen. One assumes this condition to 
be fulfilled if the values of yx and f2 are defined at the same displacement of the 
loaded specimen. This necessitates finding a suitable extrapolation formula. 
Often a linear relationship of log γ (or log έ) and γ(ε) is used with a good 
approximation; it is strictly valid in the case of logarithmic creep. Fig. 8.6 shows 
an example of such a graph for two loading steps of undisturbed Strahov 
claystone (σ'η = 0.31 MPa, Fig. 6.10), where the respective correlation is very 
narrow (r > 0.9). The magnitude of the creep strain rate can be determined for 
the common shear deformation .st = 10.5 mm. 

Unfortunately, a more serious obstacle hinders the use of eqn. (8.28) for the 
calculation of U0. Eqns. (8.12) and (8.14) are valid for secondary creep (as is 
explicitly stated by Andersland and Douglas, 1970; Mitchell et al., 1968, obviate 
this uncomfortable fact by introducing in eqn. (8.14) an arbitrary factor X). Let 
the creep rate follow Abel's creep kernel (eqn. 7.65) in a simplified form 

è = al-) . (8.29) 
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The value of η — 1 is characteristic for logarithmic creep, and η = 0 for 
secondary (constant-rate-of-deformation) creep. Many creep tests have been 
performed with soft to plastic laboratory-prepared soil samples (usually clayey 
powder mixed with distilled water and normally consolidated). Lack of brittle 
(irreversible, cementation, diagenetic) bonds causes the range of stress levels 
inducing secondary creep to be wide, as is conceptually depicted in Fig. 8.7 (soils 
with "soft" structure). 

Soils with "hard" structure (brittle bonding, dense sand, etc.) show only 
a very narrow and often impossible to record range of secondary creep (typically 
for τ/τ{ > 0.9), of a rather limited duration (the dependence of η on the stress 
level in Fig. 8.7 will be analysed later). 

Examples of such behaviour are presented in Fig. 8.8. In all cases τ/τ( = 1 and 
one finds either a horizontal section marking secondary creep (Dablice claysto-
ne) or a point of minimum rate of creep identified with secondary creep (Varnes', 
1983, analysis of many creep curves indicated the same result). In these cases, the 
preceding loading step produced primary creep (for undisturbed Strahov clay-
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Fig. 8.6. Linear dependence of the logarithms of the experimental values of distortional γ and 
volumetric ε ν creep rates on the shear deformation for two loading steps of a specimen of undi-

sturbed Strahov claystone (σ'η = 0.31 MPa) represented in Fig. 6.10. 
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EXPERIMENTAL RANGE 

SHEAR STRESS 

Fig. 8.7. Conceptual representation of the creep behaviour of soils with "soft" and "hard" structu-
res, as reflected by the value of Abel's exponent. 

LOG TIME SINCE THE BEGINNING OF THE RESPECTIVE 

LOADING STEP l o g ( i - ) , t , » 1 min. 

0 1 ^ 2 3 

Fig. 8.8. Experimental course of the distortional creep strain rate for two tested soils at their last 
torsional loading step. 
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stone, the last but one loading step amounted to τ/τ{ = 0.94 to 0.97, for Öablice 
claystone the loading steps were larger, but the log y-log t/tx curves in Fig. 8.8 
are similar to the previous case, i.e., they run through all the three creep phases). 

One may observe for higher load τ 2 > τχ (both τχ and τ 2 are equal to τΓ, which 
increases with σ'η) that either γχ = y2 (Dablice claystone) or even that yx > y2 

(Strahov claystone). This is to be ascribed to the natural dispersion of the 
structure of the seemingly identical specimens (see Sections 3.7 and 6.4 and Fig. 
6.9). One cannot, therefore, use the relation (8.27) and the truncated equation 
(8.28) reads 

U0 = RTI In In y) (8.30) 

(which is equivalent to the assumption U = U0). According to Fig. 8.8, the 
minimum values of log y = —4.5 (Strahov claystone) and - 2 (Öablice claystone) 
in m i n

- 1
 (γ = dy/dt in m i n

- 1
, if t is inserted in minutes, or γ = dy/d(t/tx) and 

tx = 1 min. — then y is dimensionless), i.e., In y is equal to about —14.44 and 
— 8.69 (in s

- 1
) , respectively. For Τ = 293 Κ and after inserting the values of the 

constants R , k and /*, one obtains 

/ 14.44 \ 25.81 kcal m o l e
- 1 

l / 0 = 5.822 χ 10
2
 / + 29.44 = ^ (8.31) 

\ 8.69 / 23.43 kcal m o l e
- 1

. 

These values lie near the middle of the usual range of activation energies of soils 
(20 to 30 kcal m o l e

- 1
) . Somewhat lower value of U0 for presheared claystone 

may suggest the absence of cementation bonds, which are typical for undistur-
bed Strahov claystone (for reconstituted Strahov claystone U0 = 
= 23.2 kcal m o l e

- 1
, for Zbraslav sand approximately U0 = 25 to 26.5 kcal 

mole"
1
) . This amounts to an oscillation of U0 = 24.5 ± 2 kcal m o l e

- 1
, i.e., less 

than 10 % of the mean value. Such a variation is insignificant and discloses the 
same (atomic) composition of the tested soils. The highest are the values of U0 

for cemented claystone and Zbraslav sand, i.e., for soils classified above as having 
"hard" structure. According to Fig. 8.6, for the same value of sv ε ν < γ. This 
inequality causes a slight increase in the activation energy (about 2 kcal m o l e

- 1
) 

which can, perhaps, be interpreted (since in the ring-shear apparatus the volu-
metric strain equals the vertical compression or extension of specimens) as 
a slightly more resistant structure in the vertical direction (slight deformation 
anisotropy). 

The fact that eqn. (8.12) refers to secondary creep, and therefore Β Φ j[t), does 
not prevent its application in the case of the molecular theory of viscosity or in 
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the analysis of the creep behaviour of solids such as metals, polymers, etc., where 
the stage of secondary creep is prominent, especially at elevated temperatures. 
On applying this equation geomechanically, one is forced to test soils with soft 
structures, more in an attempt to follow the same pattern of behaviour than 
being guided by practical requirements. 

With metals, polymers, etc., it is reasonable to assume volumetric incompress-
ibility in rheological investigations (thermally activated processes under the 
action of a directional potential are irreversible; the same assumption of volu-
metric incompressibility is common in the plasticity theory of these materials). 
Then all creep testing reduces to the simple tensile test and to the recording of 
distortional creep (axial strain). The situation with liquids is similar. 

Copying this procedure, unconfined compression tests and triaxial tests of 
water-saturated clayey specimens with constant vertical load (the variation of 
the cross-sectional area with axial strain is not always taken into account) and 
cell pressure are mostly used in geomechanics. Although the value of the 
difference in triaxial stress (σΆ - στ) does not depend on the neutral stress, pore 
pressures are generated in the course of time-dependent vertical compression 
(see e.g., Mitchell, 1976, p. 324 et seq.; Christensen and Wu, 1964, etc.). Thus the 
tensor of the effective stress is not time-independent (due to its variable spherical 
component) as is required for creep testing. 

Having often tacitly violated the definition of creep, eqn. (8.16) has been 
subjected to an analysis transforming it into 

In γ = In [C(i)] + α ατ (8.32α) 

or 

In γ = In [C(t)] + a d r f - , (8.326) 
τ
ϊ 

where the index d in a d identifies this structural parameter with distortional 
creep. It has been found in many experiments that for t = const also a d = const 
(at least for 0.3 < τ/τΓ < 1 ). Such a conclusion is, however, not in agreement with 
investigations by Regel'et al. (1972) and Vyalov (1978) at least. If a d φ /(/) , then 
the soil structure does not undergo any alteration in the course of creep. Another 
factor, Abel's creep kernel C(t), is burdened with the role of expressing the 
time-dependency of γ (εν). 

If η = 1 in eqn. (8.29), then the time-dependent behaviour is physically 
isomorphous (see Section 10, eqn. 10.31) and if Abel's kernel closely matches the 
experimental data, a d Φ j[t). The latter relation thus characterizes soils with 
isomorphous behaviour in shear. 
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The maintenance of the tensor of effective stress constant through the time 
can most easily be achieved by drained testing. In such experiments, both 
distortional and volumetric creep are measured and a d should be distinguished 
from a v (the structural parameter of volumetric creep). Figs. 8.9 and 8.10 present 
two test results from the author's series of experiments. In the first case, a dr f 

= 3.11 is a constant (indirectly indicating physical isomorphism in shear), in the 

"** log jr =-12.70 + 3.13 ß -
ï ï s . t 

y S ( r = 0.885 î 
- 1 0 -

I n f l o g f 

_ - 1 2 - y Ç log 15.40*3.11 

Ã
| t 7 =

1
°

2
 oj/ ( r = 0.965 J

 F 

æ - y r 

*v S ï 

or yS 

Î l o g ^ = - 18 .10* 3.11 ã-

I "
 1 03

 o / ( r = 0.974 J
 F 

CO S 

5 -16 -7 > ^ 
o > ^ 

ο - / 

~ r 
á ï log f = - 2 0 . 8 0 * 3 . 1 0 ^ 

ù IQ> ï y S ^
Ã
 = 0 . 9 0 6 ) 

" - - 8 %S 
Ï O 

C - yT 

o = 1 min. 

4 1 1 1 . 1 

0 0.2 0.4 0.6 0.8 1 
f 

S H E A R S T R E S S L E V E L ã 

Fig. 8.9. Relationship o f the logarithm of the distortional creep rate ã and shear-stress level ô/ô{ for 

the specimen of reconstituted Strahov claystone (ó'ç — 0.31 MPa) . 
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second case α ντ Γ decreases with time. Taking into account eqn. (8.10), which is 
the prerequisite of the validity of eqn. (8.11) and hence (8.16), and because 

suk λ τ 
= τ = ocdTf — , (8.33) 

2kT 2BkT τ Γ 

the condition (8.10) gives 

a d r f - > 1 . (8.34) 

In 

•io H 

h - 5 

~ -124 
r-

Ê 
z 

> 

< 
cc 

< 
cc 
™ -16-L 
ο 
cc 
Y-
LU 

Σ 
—I 
Ο 

> 
u. -18 
o 

log ε ν 

-4 
SYMBOLS : 

ο
2
 MEAN OF TWO 

TESTS 

t<j = 1 m i n . 

-7 

h-8 

log * v = -16.02*5.52 T J -

log i Y= -16.88*3.84 

log £ v= - 17.86* 2.27 ~ 

log £ v= - 18.47* 0.33 ~ 

10* 

Η 1 1 1 1 ί-
0 0.2 0Â 0.6 0.8 1 

SHEAR STRESS LEVEL 

Fig. 8 .10 . Relationship of the logarithm of the volumetric creep strain rate εν and shear stress level 
τ/τΓ of undisturbed Strahov claystone (σ'η = 0.31 MPa). 
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In analogy with eqn. (8.32), for the volumetric creep rate 

In ε ν = In [C(t)] + α ντ (8.35α) 

or 

1 η έ ν = In [C(t)] + α ν τ Γ - (8.35b) 
τ
( 

[all volumetric deformation is assumed to be generated by shear stressing of 
specimens; kernel C(t) is generally different in eqns. 8.32 and 8.35]. 

Analyses of all experimental data for 4 soils (undisturbed and reconstituted 
Strahov claystone, Dablice claystone and Zbraslav sand) have led to the values 
of a d r f and α ντ Γ usually depending on time, as is represented in Figs. 8.11 and 
8.12 and in Table 8.1. Then the relations (8.32b) and (8.35b) can be written in 
the form 

τ τ 
In γ = αά + bd — and In ε ν = a v + fev — (8.36) 

STRAHOV CLAYSTONE STRAHOV CLAYSTONE 

UNDISTURBED RECONSTITUTED 

SYMBOLS : 
tfn(MPa) 

a ) ο 0.11 b) 

•  0.31 
Δ 0.52 

Fig. 8.11. Variation in the values of a d r f and α ν τ{ of undisturbed and reconstituted Strahov 
claystone, evaluated from the author's tests in the ring-shear apparatus. 
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TABLE 8.1
Parameters in eqns. (8.36)

soil type (j~ time t/l l , / 1 = 1 min

MPa 102 103 104 105 102 103 104 105

Strahov claystone 0.11 ad -14.925 -17.516 -20.511 -23.475 a v -19.526 -20.148 -20.799 -21.442
(undisturbed) bd 4.009 4.686 5.867 7.016 bv 8.817 5.726 2.678 0.384

0.31 ad -16.072 -18.193 -20.348 -22.646 a v --16.017 -16.885 -17.859 -18.474
bd 8.637 8.441 8.255 8.296 bv 5.517 3.483 2.270 0.334

0.52 ad -13.666 -17.057 -20.560 -24.389 Gv -12.455 -14.391 -16.127 --]8.206
bd 2.666 4.729 7.023 9.447 bv -D.723 ---0.981 -1.536 --1.227

Strahov claystone 0.11 ad -12.722 -16.286 -19.982 -23.397 av -14.076 -15.717 -17.509 -19.001
(reconstituted) bd 4.686 4.785 5.073 4.983 bv 1.667 0.923 0.529 -0.573

0.31 ad -12.703 -15.402 -18.098 -20.797 a v -13.788 -14.444 -14.891 -15.540
bd 3.127 3.115 3.106 3.079 bv 0.069 -1.943 -4.193 -6.067

0.52 ad -14.152 -17.824 -21.308 -24.790 a v -14.066 -15.796 -16.500 -17.559
bd 6.781 7.502 7.907 8.308 bv 1.354 0.292 -2.735 -5.167

Dablice claystone 0.31 ad -19.717 -19.247 -18.778 -18.305 av -12.217 -15.879 -19.376 -22.876
(presheared) bd 9.731 6.447 3.164 0.117 bv -2.303 -0.011 2.084 4.177

0.52 ad -17.723 -19.429 -21.131 -23.164 Gv -17.972 -21.474 -24.976 -28.478
bd 6.691 6.385 6.076 6.157 bv 5.952 8.4]6 10.880 13.343

Zbraslav sand 0.31 ad -15.427 -19.590 -23.855 -28.131 Gv -25.289 -28.421 -32.773 -35.743
bd 4.900 5.740 7.251 8.773 bv 13.684 14.527 16.659 17.230

0.52 ad -12,374 -17.534 -22.694 -27.854 av - - - -

bd 2.190 5.756 9.321 ]2.885 bv - - - -

~
(=;'
"'1o
"'1
::r"
~oo

(JCl
~
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(bd = αατΓ, bv = αντΓ, γ and èw in m i n
- 1
 or, better, dimensionless, if dî = d(t/ix) 

and tx = 1 min.). 
As can be read in Table 8.1, the condition (8.34), now in the form 

> 1 (8.37) 

is generally fulfilled for τ/τΓ > 0.2 to 0.3 (in more than 90 % of the cases 
investigated), contrary to the analogical condition for volumetric creep 

> 1 (8.38) 

const is confined to 

which is far from being generally valid (in many cases 6V < 0). 
Figs. 8.11 and 8.12 show that the correlation of the values of bd and by with 

log(///j) or ln(t/tx) (time since the application of the respective loading step) is 
surprisingly close. The occurrence of the value ba 

reconstituted Strahov claystone (Fig. 8.11b). 

ÖABLICE CLAYSTONE 
PRESHEARED 

or 

) t t-jslmin. 
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0r! (MPa) 
•  0.31 
Δ 0.52 

10 

8 + 

6 

4 

2 + 

0 
0 1 2 .3 5 6 

a ) 

log ( •£- ) , t,= 1 min 
1
 b) 

Fig. 8.12. Variation in the values o f a d r f and a v r f o f presheared Dablice claystone and Zbraslav 

sand, evaluated from the author's tests in the ring-shear apparatus. 
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The value of the parameter bd (bw) can, accordingly, be successfully correlated 
with time to get a relation in the form 

t t 
b
d =

 a
bd + K d

l n
 -

 a nd
 Κ =

 a
bv + Κ

 ln
 - · (

8
·

3 9
) 

h h 

The following parameters of eqns. (8.39) have been found by a regression 
analysis (Tab. 8.2). 

TABLE 8.2 

Parameters ab and bh o f eqn. ( 8 . 3 9 ) 

soil type σ'η 

M P a 
b̂d 

Strahov claystone 0 . 1 1 

(undisturbed) 0 .31 

0 . 5 2 

1 .807 

8 . 8 4 0 

- 3 . 1 5 0 

0 . 4 4 5 

- 0 . 0 5 4 

0 . 9 8 2 

1 4 . 3 2 2 

8 . 9 8 5 

- 0 . 3 9 4 

- 1 . 2 3 1 

- 0 . 7 4 4 

- 0 . 0 9 0 

Strahov claystone 0 . 1 1 

(reconstituted) 0 .31 

0 . 5 2 

4 . 4 6 9 

3 .141 

5 .878 

0 .051 

- 0 . 0 0 4 

0 . 2 1 6 

3 . 1 2 7 

- 4 . 2 0 2 

6 . 3 4 4 

- 0 . 3 0 9 

- 0 . 8 9 7 

- 0 . 9 8 1 

Dablice claystone 0 .31 

0 . 5 2 

1 6 . 1 0 9 

6 . 9 9 5 

- 1 . 3 9 5 

- 0 . 0 8 3 

- 6 . 5 5 1 

1.025 

0 . 9 3 5 

1.070 

Zbraslav sand 0 .31 

0 . 5 2 

2 . 0 7 0 

- 4 . 9 3 9 

0 . 5 7 0 

1.548 

1 1 . 0 5 5 0 . 5 5 5 

Thus eqns. (8.36) and (8.39) give 

ln γ = ad + a b d - + è M - In - (8.40) 

and 

τ χ t 
In £v = av + a b v - + fcbv - ln - (8.41) 

(all parameters are dimensionless, if ε ν and γ are dimensionless, t x = 1 min). 
As far as parameters ad and ay are concerned, they can also be successfully 

correlated with time (they are not constant at the low stress level since for 
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τ/τΓ -» 0, γ or ε ν -> 0) — Figs. 8.13 and 8.14. Table 8.3 presents the values of 
the respective parameters in the following relations: 

(8.42) 

T IME (min.) 

Fig. 8.13. Correlations of the parameter ad (distortional creep) with time for soils tested by the 
author. 
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and 

a
v

 = a
w\ +

 a
vi

 ln
 - · (

8
·

4 3
) 

According to Figs. 8.13 and 8.14, experimental results are consistent, with the 
sole exception of decreasing ad at σ'η = 0.31 MPa for Dablice claystone. All 
ad-values are confined to a relatively narrow band (which does not apply to 
tfv-values). 

SYMBOLS : 

ο · Δ STRAHOV CLAYSTONE 
UNDISTURBED 

ο · δ STRAHOV CLAYSTONE 
RECONSTITUTED 

ÖABLICE CLAYSTONE 

ZBRASLAV SAND 

6'n ( M P o ) 

ο 0.11 

•  T B 0.31 

Δ V 0.52 

TIME 1 10
1
 1 0

2
1 0

3
 1 0

A
1 0

5
 min. 

Fig. 8.14. Correlations of the parameter av (volumetric creep) with time for soils tested by the author. 
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TABLE 8.3 

Parameters o f eqns. (8.42) and (8.43) 

soil type σ'η 

M P a 

a
d2 

Strahov claystone 0.11 

(undisturbed) 0.31 

0.52 

- 9 . 0 8 1 

- 6 . 4 3 3 

- 1 1 . 6 5 8 

- 1 . 2 4 4 

- 1 . 5 4 9 

- 0 . 9 5 0 

- 1 8 . 2 3 9 

- 1 4 . 3 8 8 

- 8 . 6 4 9 

- 0 . 2 7 8 

- 0 . 3 6 2 

- 0 . 8 2 5 

Strahov claystone 0.11 

(reconstituted) 0.31 

0.52 

- 5 . 5 9 4 

- 7 . 3 0 8 

- 7 . 1 2 9 

- 1 . 5 5 1 

- 1 . 1 7 2 

- 1 . 5 3 7 

- 1 0 . 7 7 7 

- 1 2 . 6 7 0 

- 1 2 . 0 6 6 

- 0 . 7 2 0 

- 0 . 2 4 7 

- 0 . 4 8 5 

Dablice claystone 0.31 

0.52 

- 2 0 . 6 5 8 

- 1 4 . 0 5 3 

0.204 

- 0 . 7 8 3 

- 5 . 1 7 1 

- 1 0 . 9 6 8 

- 1 . 5 4 0 

- 1 . 5 2 1 

Zbraslav sand 0.31 

0.52 

- 6 . 9 1 9 

- 2 . 0 5 4 

- 1 . 8 4 0 

- 2 . 2 4 1 

- 1 8 . 0 5 7 - 1 . 5 5 1 

Combining the relations (8.40) and (8.41) with (8.42) and (8.43), one gets 

(8.44) 
ι τ \ f τ 

In y = adl + ( ad2 + bhd - J ln - + abd -
V h 

and 

ι τ \ r τ 
ln e v = flvl + aw2 + bbw - In - + a b v - . 

These equations can be represented in the form 

t 

γ = exp a d l exp a b d - exp < ln 

adl + bbd(T/Tf)-i 

(8.45) 

(8.46) 

(and similarly for έ ν; both relations are valid for Τ = const). The relation (8.46) 
accords with the conceptions of the rate-process theory. It may be transformed 
(and a similar relation for £v) into 

y = e (8.47) 
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where 

™d = a
di + "bd

 1
 (

8
·

4 8
) 

and 

«d = «d2 + *bd 1 (8-49) 
T
f 

and 

Mv 

έ ν = e m v I - I , (8.50) 

where 

M + tfbv
1
 (8.51) 

and 

ny = a v 2 4 - 6 b v - . (8.52) 
T
f 

According to the relations (8.49) and (8.52), Abel's exponent should depend on 
the shear-stress level. This has been experimentally verified (Fig. 8.15). This 
makes possible the transition from primary to tertiary creep which depends on 
the stress level. 

A theoretical analysis along the lines of the rate-process theory has to go back 
to eqns. (8.1) and (8.2). They show that 

kT / - Ι / Λ 1 Γ fsA\ ( s J — 1 - exp I — 
IT ) 2 L \2fc 

2 — exp I 1 - exp I 1 — exp I — 
h \ RT / 2 I \2kTJ \ 2kT 

(8.53) 

Further analysis meets with the obstacle of the oversimplified representation 
of the mechanism of a thermally activated process in Fig. 8.2. Since volumetric 
creep in the ring-shear apparatus occurs in the direction perpendicular to the 
plane of shear, another series of energy barriers should exist in this direction 
cutting the shear plane. Both barriers interact, as demonstrated by Figs. 8.11 and 
8.12: positive slopes of 6d-values correspond to negative slopes of by-values and 
vice versa (the only exception is Zbraslav sand, but there the volumetric creep 
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is dilatant, i.e., a strain-softening process). Volumetric creep under uniaxial (as 
in the ring-shear apparatus) or isotropic compression is a typical strain-harde-
ning phenomenon, contrary to shear displacement. 

Owing to the theoretical difficulties just referred to, in the following text 
experimentally based analyses will be preferred. 

Eqn. (8.46) can be written in the following form 

£> e x p [ ( 
+ b1 ln (8.54) 

where 

2kT 
A = exp Ξι 

RT 

( = e
a dl

 where adl is indicated in Tab. 8.3) is time- and stress-independent, a is the 
Abel exponent (a = ad2 in Tab. 8.3) and bx (= ahd in Tab. 8.2) and b2 (= bbd 

ο MEAN OF TWO TESTS 

SHEAR STRESS LEVEL ^ 

SYMBOLS : © ο STRAHOV CLAYSTONE UNDISTURBED n d =2.317-1.952 ^ , n v

s
" 6 . 8 5 0 * 10.350 ^ 

® · DITTO RECONSTITUTED nd =2.046-1.075 ^ - . n v= 0.199* 1 150 | -

® Δ ZBRASLAV SAND n d = 3256-2569 ^ . nv=-5-586* 7161 i^-

© A ÖABLICE CLAYSTONE RE n d = 0.129* 1.031 ^ . n v= 1.531- 1.013 $r 

Fig. 8.15. Dependence of Abel's exponent nd (distortional creep) and n„ (volumetric creep) of soils 

tested by the author on the shear-stress level. 
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in Tab. 8.2) are parameters characterizing the increment or decrement of the 
activation energies due to the stress level and time changes. Transforming the 
stress-dependent factor in eqn. (8.54) into the form (see eqn. 8.12) 

AU = exp / — — τ ) , (8.55) 
\2BkT J 

i.e., 

A0 τ 

B T f, 

AU = exp ( T f - ^ - j , (8.56) 

where A0 = λ/lkT, then 

- r f = bx + b2 ln - (8.57) 
Β tx 

or 

ß = - r f . (8.58) 
ί 

+ ö 2 In — 

Thus, the processes of strain-softening (b2 > 0) and strain-hardening 
(b2 < 0) can be structurally understood as a decrease or increase in the number 
of bonds Β per cm

2
 with the elapsed time t\tv In addition, Β depends, as should 

be expected with respect to Fig. 8.4, on the long-term shear strength of soils. The 
value of b2 = bbd or bhv in Figs. 8.11 and 8.12 points out the shear strain-softe-
ning of Zbraslav sand and Strahov claystone (there are instances of b2 = 0 which 
is suggested as indicating that the number of bonds destroyed in the course of 
shearing has been counterbalanced by the number of bonds generated in the 
course of compression) and the compression strain-hardening of Strahov clay-
stone. The mechanism of time-dependent structural changes of Zbraslav sand 
has already been elucidated (occurrence of dilatant volumetric creep). 

An exceptional behaviour is displayed by presheared Dablice claystone. The 
unevenness of shear surfaces (Fig. 3.42c), gradually decreasing with the increase 
of shear displacement, and their kinematic adaptation to the reigning shear 
deformation, seem to explain this behaviour (see also the compression curve in 
Fig. 9.18, described by eqn. 9.27). The concept of a rate-process theory based on 
the number of bonds as a faithfull representation of the soil structure, is too 
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simple in this case. It is necessary to consider also the fabric changes (presheared 
claystone behaves anisotropically in addition). 

In exceptional cases, volumetric strain-hardening can transgress into the 
phase of strain-softening, as is documented by Fig. 4.33. 

Vyalov (1978, p. 341 et seq.) arrived at a similar dependence of the Abel 
exponent on the stress level and time, basing his research on the study of the 
time- and stress-dependence of the degree of fissuration and the mutual interac-
tion of the processes of strain-hardening and strain-softening. 

This analysis can be concluded by the following findings: 
— According to eqn. (8.54), the effect of time is twofold. Firstly, time has 

a considerable influence on the structure of soils. The number of bonds varies 
through time and, consequently, the number of flow units engaged in the process 
of creep is time-variable (as postulated, number of bonds = number of flow 
units). This may be considered to be the result of the redistribution of stresses 
acting on individual structural units, owing to their different deformability, 
disintegration, failure of some bonds, relaxation phenomena, fabric changes, etc. 

Secondly, the factor A(tjtxY in eqn. (8.54) can be expressed in the form 

This relation could be interpreted as revealing the seemingly time-dependent 
fluctuation of the activation energy around its mean value of U0. This phenome-
non may be ascribed to the effect of the multiaxial creep. In Table 8.3 the value 
of a (= ad2) is almost exclusively negative which means, according to the 
exponent of eqn. (8.59) that the maximum values of the activation energy are of 
importance in the creep behaviour of soils. This is acceptable if soils are conside-
red as systems of mutually interacting structural units, which seems to be logical. 
Then the maximum of activation energy is the creep-controlling factor. 

In one case, the opposite result has been recorded — a positive value of a (Tab. 
8.3, Dâblice claystone at σ'η = 0.31 MPa). This may perhaps be explained by the 
idea that in the asperities, at which the contact of two bodies cut by a shear 
surface occurs, the material structure has more kinematic freedom than if the 
structural units were situated within the mass of soil. Then, consistently, the 
minimum of activation energy can represent the pivotal factor in creep develop-
ment, at least at the low stress level, which corresponds with the positive a-value. 

— If the stress-dependent structural changes after eqn. (8.58) compensate 
themselves ("jumping" of bonds), i.e., b2 ( = bbd) = 0, then the sole time-depend-
ence of creep is represented by the value of the exponent a ( = ad2) - see eqns. 
(8.49) and (8.52). In such a case, logarithmic creep (a = — 1) can take place. 
Similarly a (= ad2) = - 1 for 0.6 < τ\τ{ < 0.9 approximately (Fig. 8.15). Thus, 
the logarithmic creep may correspond either to the lack of time-dependent struc-

(8.59) 
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tural changes (the fluctuation of the activation energy around its mean value 
then intervenes as the principal factor), or to some sort of mutual compensation 
of the time-dependent structural changes occurring at some particular shear-
stress level in different creep axes. 

In general, the structure of soils changes in the course of creep (eqn. 8.58). 
This change represents the variation in the number of bonds. In some cases, this 
is a rather oversimplified description of structure, and also the fabric of the soil 
has to be taken into account. 

— The time-dependence of creep strain can be deduced directly from rate-
-process theory, without introducing a phenomenological factor into the eqn. 
(8.17). 

— Volumetric strain-hardening and distortional strain-softening are generally 
observed. In exceptional cases (e.g., dilatant creep of sand or creep along a shear 
surface), also volumetric strain-softening takes place. Thus, that the processes of 
strain-softening and strain-hardening occur concurrently has been experiment-
ally proved. 

— Time independence of the factor a d (eqn. 8.32), which has sometimes been 
experimentally recorded, is probably a result of the mutual compensation of 
strain-hardening and strain-softening or, better, of physical isomorphism in one 
creep axis. To interpret it as indicating no time-dependent structural changes 
disagrees with the distinct time-dependence of the factor a v in the author's tests. 

— Abel's exponent η depends on the shear-stress level (Fig. 8.15, eqns. 8.49 
and 8.52) as was also independently found by Vyalov (1978). 

— Rate-process theory is too simple in its physical conception (Fig. 8.2) to 
cope with other than unidirectional creep. Simultaneous distortional and volu-
metric creep produce cross-effects which cannot at present be analysed theoreti-
cally (Feda, 1989b). Up to now the application of this theory in geomechanics 
has paid much tribute to its applications with metals, polymers, etc. where 
uniaxial creep prevails. 

— Activation energies of soils tested by the author range in the common 
interval of 20 to 30 kcal mole

 -
 Their experimental determination has been very 

difficult since with many soils (with the so-called "hard" structure) secondary 
creep supporting rate-process theory is confined to a very narrow range of creep 
behaviour (Figs. 8.7 and 8.8). 

— The analysis of the author's experimental results has proved the difficulty 
of drawing general conclusions for a series of individual specimens with complex 
structure at different normal loads. The natural variability of their structure 
obscures clear contours in the mathematical model of the studied process. To 
avoid this, laboratory-prepared samples (with "soft" structure) are to be prefer-
red but the application of such experimental results to natural soils is problema-
tic. 
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— The behaviour of geomaterials at Γ Φ const draws much less attention that 
with other materials, namely metals. Tests of soils at Τ = const are, therefore, 
no serious drawback, although the structure of eqn. (8.46) and others is simpli-
fied by the Τ = const condition. 

8.3 Particle-based conception 

8 JΛ Fabric as the principal constitutive factor 

If a particle is considered as being the principal structural element, creep is 
explained as a mechanically activated process: it depends principally on the 
stress level. Some investigators have attempted to combine this mechanically 
activated process with a thermally activated one. They met with difficulties in 
coupling such physically different processes. 

Vyalov (1978, p. 311 et seq.) regards mineral particles and their microaggrega-
tes as representing flow units but retains the meaning of the constants k and h of 
rate-process theory. He admits the inherent contradiction in such an assumpti-
on. Nevertheless, he succeeded in relating the fabric changes of soils in the 
process of creep deformation (microfissuration, alignment of flat particles) to 
stress and time variations. The stress dependence of Abel's exponent is a valuab-
le result of his study, but the identification of flow units with soil particles can 
hardly be tolerated. Mitchell (1978, p. 300) pointed out the controversy of such 
a postulate (particles cannot thermally vibrate; the number of bonds should 
equal the number of interparticle contacts, which contradicts the experimental 
evidence, etc.). 

Murayama and Shibata (1961) treated the sliding of particles on a statistical 
basis and they exploited the rate-process theory as determining the viscosity of 
a nonlinear Newtonian element (eqns. 7.37 and 7.41) of the rheological model 
H-H \V\N that they proposed and found to agree with experimental data. Since 
the stress-dependent coefficient of viscosity adopted (eqn. 7.41) characterizes 
secondary creep, a rheological model was needed to provide it with the time-
-dependence, in line with eqn. (7.44). 

According to Christensen and Wu (1964), flow due to stress starts at weakly 
bonded contacts. The yield strength of bonds forms different spectra in the 
course of creep. They observed that incomplete recovery on unloading results 
from smaller flow during unloading. They proposed a rheological model of 
Ζ material Η \ (H-N) with the viscosity of a Newtonian element obeying 
rate-process theory, as in the case of Murayama and Shibata (1961 ). Such hybrid 
rheological models combine macro- and microrheological concepts, i.e., a struc-
tural and phenomenological approach falsely holding rheological models for 
representing the real structure of soils. 
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KAOLIN CLAY-SYMBOLS : 

1 H 1 1 1 

0.7 0.8 0.9 1 

ABEL'S EXPONENT n d 

Fig. 8.16.' Variation of Abel's exponent nd (distortional creep) with the void ratio and degree of 
isotropy of kaolin (Bazant et al., 1975). 
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Much more frequent is the analysis of the behaviour of granular materials 
whose fabric is defined by the orientation of individual grains, their contact 
normals, and by the number of contacts (Oda, 1984). 

Experimental studies threw light on the fabric changes during deformation 
(Section 3.4) but the disintegration process of grains (and grain clusters) remai-
ned beyond such considerations. 

The investigation of stress-strain behaviour yielded the most familiar result 
- Rowe and Home's stress-dilatancy relation (see e.g., Feda, 1982a, p. 160 et 
seq.), followed by similar and alternative formulations (Matsuoka, 1984), which 
can be evolved into the form of a plastic potential surface. Both stress and strain 
are defined phenomenologically, as is common by the fabric-based approach. 

Another line of research is represented by the statistical applications. Begin-
ning with the theories of regular and random arrays of spheres, they developed 
up to the distinct-element method of Cundall and Strack (1983) enabling nu-
merical experimentation with two-dimensional granular assemblies (Cundall 
and Strack, 1982). Interesting results obtained in this way question the pheno-
menological definitions of strain and stress. They revealed, among other things, 
the discontinuous nature of the internal deformation of such assemblies. 

Calladine's and Pande's slip theories can be annexed to the above direction of 
research; they are dealt with in Section 5.4.5. 
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8.3.2 Mixed analysis 

Rate-process theory and fabric-based analyses emphasize one structural com-
ponent (bonding or fabric) as being prominent in determining the behaviour of 
geomaterials. Such an approach cannot, in principle, be successful under all 
circumstances, as has already been documented in Section 8.2 for Dâblice 
claystone. A combination of both structural components is particularly unavoi-
dable when treating structural anisotropy. 

Bazant et al. (1975) deal with clays as consisting of basic triangular cells of 
three plate-like particles which are oriented randomly. Linearizing the funda-
mental equation of rate-process theory (eqn. 8.3), and taking into account 
individual tangential forces at the contact points of the primitive cells, they 
succeeded in predicting the directional variation of the creep rate of anisotropi-
cally prepared kaolin clay (undrained triaxial creep of water-saturated isotropi-
cally and anisotropically consolidated samples). One interesting result is depic-
ted by Fig. 8.16: a higher creep rate of looser samples is manifested by the lower 
value of Abel's exponent, which, at the same time, reflects also the degree of 
isotropy of the samples (anisotropic samples are more deformation-resistant but 
both vertically and horizontally trimmed specimens exhibited essentially the 
same valuess of nd). Similar results were provided by Krizek et al. (1977). 
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9. PRIMARY A N D SECONDARY 
CONSOLIDATION 

9.1 Introduction 

In this Section only confined compression will be treated. It was realized in an 
oedometer or in a ring-shear apparatus before application of torsional load (or 
at its minimum T M IN = 0.02 to 0.025 MPa - see Section 6.4). Specimens were 
accordingly subjected either to the constant axial load a.à (oedometer) or normal 
load σ η (ring-shear apparatus). 

Uniaxial compression (i.e., e r = 0) is often assumed, with good results, to 
represent the settlement of larger foundations or of thinner layers of compress-
ible subsoil (see e.g., Feda, 1978, p. 118 et seq.). Thus, its prognosis is of 
considerable practical value. 

The study of the time-dependence of uniaxial compression is a special case of 
general volumetric creep investigations, during which specimens deform only 
axially. Their axial strain equals the volumetric strain (ea = ev). Taking into 
account that for loading normally consolidated and granular soils the at-rest 
coefficient K0 (= a'r/a'a) = const, the shear-stress level τ/τΓ of specimens for this 
loading path can be expressed in the form 

cra - σΓ l - ^ o 

τ σ' + σ' 1 + Κ0 t χ 

= - , (9.1) 

i.e., 

1 

T F 2 — sin φ 'r 

(9.2) 

if Jäky's familiar relation K0 = 1 - sin φ\ is considered. Paying heed to the 
long-term shear resistance (Table 3.2; for Zbraslav sand the range of Rvalues 
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is 33.9 ° to 46 °, i.e., sin φ\ = 0.56 to 0.72; the unrestricted use of Jâky's relation 
implies that the value of φ\ is time-independent - see Section 10), the following 
values of τ/τΓ are obtained (Table 9.1). 

TABLE 9.1 

Shear stress level with uniaxial compression 

soil τ/tf 

Strahov claystone (undisturbed) 

Strahov claystone (reconstituted) 

Dâblice claystone 

Zbraslav sand 

0.687 

0.687 

0.598 

0.693 to 0.781 

0.260 

0.989 

0.935 

-0 .623 to 0.007 

Some uniaxial compression curves of tested soils are depicted in Fig. 9.1. They 
generally consist of two well-known parts. The first one, S-shaped on the 
semilogarithmic scale, marks the primary consolidation; the second one, usually 
linear on this scale, represents the secondary consolidation (compression), i.e., 
creep. In Fig. 9.1 volumetric (axial) creep is logarithmic (Section 7.3, eqn. 8.24) 
of the form 

ε* = *o + Cm log - , (9.3) 
h 

TIME : LOG ~ , t i = 1 min 
*1

 1 

£ 0 1 2 3 k 

Fig. 9.1. Examples of uniaxial compression curves of tested soils (ring-shear apparatus; for undistur-
bed Strahov claystone and Dablice claystone at r m in = 0.02 MPa). 
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where Cae is called the secondary-compression index. It denotes the increase of 
strain through a logarithmic cycle of time (ε0 = e a for t = tl9 tx = 1 min.). 
Primary and secondary consolidation differ in the rate of effective stress a a. In 
the first case, a a φ const (in the course of deformation pore-water pressure 
dissipates with time, while the total load a a = const), in the second case, <ra = 0. 
Only secondary consolidation, therefore, fulfils the definition of creep (cra = 
= const). 

TIME (MONTHS) 
0.1 1 10 100 1000 

Fig. 9.2. Fig. 2.1 with the logarithmic scale of time. 

Transforming Fig. 2.1 into a semilogarithmic scale, one obtains graphs (Fig. 
9.2) according qualitatively with Fig. 9.1. One can conclude that the time-depen-
dence of settlement obeys the same pattern of behaviour as laboratory samples. 
The following analyses of both consolidation phases are, consequently, of 
practical use. 

9.2 Primary consolidation 

This process results from the gradual transfer of the applied stress from the 
pore-water pressure (at the time of loading u = σΆ for saturated compressible soils) 
to effective stresses (at the end of primary consolidation <ra = <ra,w = 0). 

268 



Primary consolidation 

Primary consolidation follows Terzaghi's well-known differential équation 

d
2
u du 

c v — = - , (9.4) 
dz

2
 dt 

where c v is the coefficient of consolidation. Eqn. (9.4) is a relation describing the 
process of hydraulic diffusion, which is identical with other diffusion processes, 
such as thermal and electrical, as far as its mathematical expression is concerned 
(Scott, 1963, p. 185). 

Fig. 9.3. Development of swelling with time for Branany bentonite (reconstituted sample: wL = 
= 98.2 %, /p = 57.5 %, IA = 2.13; specimen's dia. 6.7 cm, height 4 cm). 

In addition to primary consolidation, during which the pore-water pressure 
is diffused, other processes of hydraulic diffusion exist in geomechanics. Fig. 9.3 
shows how a reconstituted sample of Branany bentonite swells with time of 
submergence in distilled water (Feda, 1970b). In this case, the water adsorption 
potential, in the form of suction, decreases with time, its value falling with the 
water content of specimens (Fig. 9.3). Typical is the S-shaped curve characteri-
zing the diffusion processes on a semilogarithmic scale. 

If instead of log a square-root of time (yjt) is used in the graph of primary 
consolidation, the diffusion process is depicted by a straight line. Casagrande's 
logarithm of time and Taylor's square root of time fitting methods exploit this 
characteristic feature of the primary consolidation process in determining the 
value of the coefficient of consolidation cy (see e.g., Holtz and Kovacs, 1981, 
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p. 396 et seq.; a third method, based on time discretization, has recently been 
proposed by Asaoka et al., 1985). Coefficient cv is defined by 

«ν = -
 £

o e d (9-5) 

(kz is the coefficient of permeability, E0Qd the oedometric or constrained modulus 
of compression). 

Terzaghi's consolidation theory makes a set of assumptions (see Holtz and 
Kovacs, 1981, p. 683), for instance, that strains are small, Darcy's law is appli-
cable, compression and flow of water are one-dimensional, that a unique relati-
onship exists between the volume change (axial strain s a) and effective stress (cra), 
etc. The last assumption signifies that the effective stress-strain relation defines 
the constrained (oedometric) modulus Eoed which is constant for small strain 
increments and that no secondary compression (i.e., strain increase for 
era = const) occurs. 

The process of primary consolidation is usually expressed as the relationship 
between the average degree of consolidation Uc and the time factor T& both 
values being dimensionless and respectively defined by 

Uc = - (9.6) 

and 

Tc = -jt (9.7) 

(ea, and e a are uniaxial compressions at time / and its final value, hd is the length 
of the maximum drainage path). For Tc > 0.2 the following approximate value 
of Uc can be used (Scott, 1963, p. 194) 

π
2 

i.e., for t > 0.2 h
2

d/cv 

π
2
 V 4 

Uc= 1 - - e x p i - - T c , (9.8) 

eat = ea(l-c°-
 b

<) (9.9) 

(a, b — parameters). 
In Table 9.2 the values of cy for tested soils are given evaluated by Casagran-

de's method, using the curves in Figs. 9.1 and 9.2, adding the liquid limit w L from 
Table 3.2 and that quoted in Feda (1981 ). They are inserted into the approximate 
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TABLE 9 .2 

Coefficient of consolidation cv 

normal load 

< (MPa) (cm
2
/s) 

liquid limit 

wL (%) 

Strahov claystone (undisturbed) 0 .31 

0 . 5 2 

0 .81 χ 1 0 ~
3 

1.6 χ 1 0 "
3 

4 0 . 3 

Strahov claystone (reconstituted) 0 .31 0 . 6 9 χ 1 0 ~
3 

36 .5 

Dablice claystone 0 . 1 1 

0 .31 

0 . 5 2 

1.03 χ 1 0 "
3 

1.11 χ 1 0 ~
3 

1.55 χ 1 0 "
3 

4 1 - 4 5 . 4 

Prague 5 . 9 3 χ 1 0 ~
4 

- 6 0 

Dudince 3.8 χ 1 0 ~
4 

- 6 0 

SYMBOLS : 

ο · Δ op (ΜΡα) : 0.11, 0.31, 0-52 

1 STRAHOV CLAYSTONE 
UNDISTURBED 

2 DITTO, RECONSTITUTED 
3 ÖÄBLICE CLAYSTONE 
• P PRAGUE 
• D DUDINCE 

UNDISTURBED SAMPLES 
( c Y IN RANGE OF VIRGIN 

COMPRESSION ) 

8 10' 

RANGE OF 
COMPLETELY 
RECONSTITUTED 
SAMPLES ( UPPER LIMIT ) 

RANGE OF 
> / RECOMPRESSION 

(LOWER L I M I T ) 

Η 1 1 1 1 1 1 
20 40 60 80 100 120 140 % 

LIQUID L IMIT w L 

Fig. 9.4. Approximate correlation of c v vs. wL (according to U.S. Navy - see Holtz and Kovacs, 1 9 8 1 , 
p. 4 0 4 ) . 
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Ε 
ο 

Ζ 

2 5 

ζ 
ο 
ζ 

10 + 

2 log t 

10 |(F 

( t IN 10
2
DAYS ) 

o in = "η < ί Π \ \ 

•  in = ·η d o g t ) 

Fig. 9.5. Dependence of the inclination of Zermanice dam on the log and square root of time (Feda 
and Stèpânsky, 1986). 
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correlation of c v and wL according to the U.S. Navy - Fig. 9.4 (Holtz and 
Kovacs, 1981, p. 404). They are placed near the lower boundary of the range of 
undisturbed samples. Laboratory and field values follow the same trend. The 
values of cv, the coefficient of "deconsolidation" in Fig. 9.3, show quite another 
tendency. They depend on the initial water content of the specimens (Fig. 9.3b) 
and, consequently, do not correlate with wL. Both processes of hydraulic diffusi-
on, that of consolidation and that of deconsolidation, differ qualitatively. 

The shape of the branch of primary consolidation of the compression curves 
in Fig. 9.1 is not the same. It is much flatter for undisturbed Strahov claystone 
than for the same claystone when reconstituted. This effect should be referred 
to the well-known influence of the load-increment ratio. The undisturbed Stra-
hov claystone behaved as if a low load increment ratio had been applied. The 
adjective "low" should be understood in relation to the structural strength of the 
soil specimen: the same load σ'η = 0.31 MPa is "low" with respect to the 
structural resistance of undisturbed Strahov claystone (and the phase of primary 
consolidation is not adequately developed) but it is appropriate for reconstituted 
specimens of the same claystone that have a much weaker structure, and typi-
cally the phase of primary consolidation is evolved. Numerical analyses have 
shown that the effect of the load-increment ratio is primarily due to the load 
increment straddling the overconsolidation load and thus forcing a structural 
break-down (Hsieh and Kavazanjian, 1987, p. 166). 

As has already been mentioned, Terzaghi's theory involves some simplificati-
ons. Perhaps the most important one, which has been a subject of discussion, is 
the assumption of linear and time-independent deformation of the soil skeleton. 
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Two alternative approaches are at hand. The first one drops the linearity and the 
nonlinearity is introduced (reflecting the variation of both kz and E0Qd in eqn. 9.5, 
i.e., of cy). It is treated numerically as a piecewise linearity (Asaoka, 1985; 
Asaoka et al., 1985) or as a consolidation with variable c v of the form 

c v = C v 0 (1 + aUc), (9.10) 

with α as a parameter (Scott, 1963, p. 212). 
In the second approach, the time-dependent compression of the soil skeleton 

is considered. 
Fig. 2.4b depicts the time-dependent inclination of Zermanice dam. Accor-

ding to the statistical analysis (Feda and Stëpânsky, 1986) 

in = 10.6 (1 - e " ™ ) , (9.11) 

if i n is the inclination in mm/10 m of the height and t is the time in 10
2
 days. Eqn. 

(9.11) resembles eqn. (9.9) for a = 0. 
Transformation of eqn. (9.11) results in the graphs in Fig. 9.5. Linearity of 

in vs. y]t suggests the possibility of interpreting the time-dependent inclination 
as a primary consolidation. The inclination can be referred to nonuniform 
settlement, which is very nearly of uniaxial nature. The value of c v was evaluated, 

back-calculation, 
ι 

in the range of = 1.33 10 - 1 to using a 
3.2 χ 1 0 ~

2
c m

2
s

_ 1
. The field record of i n is bracketed between these two 

magnitudes of c v (Fig. 9.6a). An approximate trial-and-error analysis leads to 
a value of cw varying according to the relation 

cw = 3.2 χ Η Γ 2 (1 + 1.91/J (9.12) 

TIME 

i t 
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ι 
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z 
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.5 5 
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1
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Fig. 9.6. Inclination of Zermanice dam interpreted as primary consolidation with variable coefficient 

of consolidation cv. 
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(cv in cm
2
 s

- 1
) , formally in accord with eqn. (9.10). The variability of cy is due 

to the variation of kz and i s o ed in the consolidation process. Since kz usually 
decreases and Eœd increases, they counterbalance each other and the change in 
c v is not so high. Thus, the analysis of two series of oedometric tests (Asaoka et 
al., 1985 - remoulded Fukakusa clay, σΆ = 0.02 to 1.28 MPa) yielded a value of 
cv increasing with aa (up to 1.86 or 2.13 times the value of c v at σΆ = 0.02 MPa, 
respectively), though kz decreased about 26 (or 32) fold and Eota increased about 
48 (69) fold. 

In the case of Zermanice dam, all the variations in c v values have been ascribed 
to the variable compressibility of the foundation soil. Its compression curve 
could then be deduced from the measured inclination and it is shown in Fig. 9.7. 
Taking into account eqn. (3.14) and the nature of the foundation soil, the 
compression curve in Fig. 9.7 (eqns. 3.23 and 3.24) seems to be acceptable. 
Comparing eqn. (9.11 ) with eqn. (7.14), one may conclude that creep of Kelvin's 
material can be modelled by primary consolidation with variable cv. 

An analysis of the settlement of five dams by Peter and favoda (1985) 
demonstrated also that the primary consolidation of dams extends over many 
years. The Bicaz dam in Roumania underwent inclinations similar to the Zerma-
nice dam, but of much lower magnitude and they terminated within about four 
years (Priscu et al., 1970). The flysch subsoil of the Bicaz dam was less compres-
sible and more permeable and cy was considerably higher than that of the 
Zermanice dam (Fig. 9.6a). 

The deformation of the Zermanice dam was analytically modelled under the 
classical assumption of a time-independent compression of the soil skeleton. The 

MEAN (VERTICAL) EFFECTIVE STRESS IN THE FOUNDATION SOIL 

Fig. 9.7. Compression curve of the subsoil of Zermanice dam as deduced from the measured 
inclination. 
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validity of this assumption has recently been analysed by Mesri and Choi (1985). 
They tested cylindrical specimens of three natural soft clays, subjected to all-
round pressure with axial drainage paths of 2.5 to 50.8 cm length. They conclu-
ded that all reliable data, their own experiments included, support the concept 
of a unique end-of-primary void ratio vs. log a a curve for any soft clay. This 
means that the length of the drainage path in the phase of primary consolidation 
does not influence the compression of soft clays. If this were true, then samples 
of different thicknesses (or drainage paths A d l, hd2) would behave as indicated by 
the full line in Fig. 9.8, i.e., e and £ a at the end of primary consolidation would 
be the same (eY = e2 and £ al = £ a 2, if index 1 and 2 refer to hdx and Ad 2). 
Jamiolkowski et al. (1985) generalize the finding of Mesri and Choi (1985) in 
stating that "creep occurs only after the end of primary consolidation, i.e., after 
dissipation of excess pore pressure". This is too sweeping a statement which can 
hardly be accepted since creep is a general, physically founded phenomenon 
which cannot disappear even if da'Jdt Φ 0. 

t 

LOG TIME 

Fig. 9.8. Two hypotheses concerning the consolidation behaviour of specimens with different 
thicknesses (drainage paths) hd; full line: physically isomorphous behaviour. 

An alternative hypothesis is based on Suklje's conception of isotachs and 
Taylor's and Bjerrum's theory of time-lines (Sekiguchi, 1984; Christie and 
Tonks, 1985). This conception combines the laws of primary and secondary 
consolidation in the range of dissipating pore pressures. The compression 
through the stage of primary consolidation is thus increased for the share of 
creep deformation of the solid skeleton with an increasing value of t7 a, which is 
proportional to the height of the samples. Thus, the compression will follow the 
dashed line in Fig. 9.8 and no unique relation of e vs. σ'Ά will be obtained at the 
end of primary consolidation. 
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Both conceptions have been verified experimentally, the first one most extensi-
vely by Mesri and Choi (1985), the second one, e.g., by Christie and Tonks (1985; 
remoulded Grangemouth clay) and others. Aboshi (1973; reconstituted marine 
clay) observed that e a at the end of primary consolidation varied moderately 
from e a = 7.2 % (thickness of specimen 2 cm) to e a = 8.9 % (thickness of 
specimen 100 cm). Thus, the experimental data do not favour either theory, but 
numerical analysis indicates that the second one is more general (Hsieh and 
Kavazanjian, 1987, p. 158). 

The theory of primary consolidation yields a unique relationship between the 
degree of consolidation Uc and the time factor Tc (eqns. 9.6 and 9.7), e.g., eqn. 
(9.8). Since both values are dimensionless, geomaterials obeying the law of 
primary consolidation (with all the simplifying assumptions) exhibit a physically 
isomorphous behaviour, with consequent validity of the Riabouchinski theorem: 
if Fig. 9.8 is transformed into an Uc vs. Tc graph, all full-line curves will unite 
into one curve of dimensionless ordinates. 

Such a behaviour has already been analysed in Section 4.3, in connection with 
triaxial experiments on Sedlec kaolin (Fig. 4.23 et seq.). To comply with such 
a behaviour, specimens under test have to undergo isomorphous structural 
changes. Within the groups of soft clays and loose granular materials, isomor-
phous behaviour is to be expected but it is by no means a general phenomenon 
(Feda, 1989a, 1990b). The probability of its occurrence is increased only if 
a specific stress- or strain path is experimentally followed, such as uniaxial 
(oedometric) compression and still more so isotropic compression, as in the 
experiments of Mesri and Choi (1985). In the latter case, possible differences in 
behaviour due to dilatancy and contractancy (or generally coupling of the stress 
deviator with the spherical strain tensor and vice versa) will not be expressed. 

One can therefore conclude that both the competitive theories are acceptable, 
each within a specific range of soils, load and time, i.e., within a specific set of 
state parameters. 

During primary consolidation different phenomena take place. The value of 
1 - K0 (or shear stress level) may vary and various parasitic effects (e.g., skin 
friction - see Asaoka et al., 1985, or bedding effect, so important for thin 
specimens) are added to the original ones. These phenomena, together with the 
anisotropy of permeability (horizontal permeability is usually higher than the 
vertical one - see Section 3.1), cause a deviation between prediction of the theory 
of primary consolidation and reality. 

9.3 Secondary consolidation 

Secondary consolidation represents a special case of constrained creep. Owing 
to the lateral confinement (in the laboratory, for instance, by the walls of an oe-
dometer) soil hardens in the course of compression and only primary creep 
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takes place. If some cataclastic deformation occurs (as in Fig. 3.15 in the part 
2-3 of the compression curve), a temporary increase in the rate of axial strain 
is observed, causing a structural perturbation. 

Very often, uniaxial creep is of a logarithmic nature - eqn. (9.3) and Figs. 9.1 
and 9.2. According to eqns. (8.23) and (8.24), creep is logarithmic if exclusively 
strain hardening occurs, which is just the case with uniaxial compression (thus 
the overconsolidation due to delayed compression takes place, as recorded, e.g., 
by Yasuhara et al., 1988). 

Writing eqn. (8.12) for the uniaxial creep rate éa in the form 

èa = A exp ( a 
Β j 

(9.13) 

(A = (kT/h) exp (-U0/RT\ a = λ/lkT) and comparing it with eqn. (8.23), one 
obtains 

a — = 
Β 

if «a >
 ε

0 (9.14) 

(b is a dimensionless parameter) and further 

Β = (9.15) 

(6 0 = l jab, a0 = b0 ε0). The number of bonds per cm
2
 Β thus depends 

hyperbolically on axial strain e a. Strain hardening develops due to the 

UNIAXIAL STRAIN 

Fig. 9.9. Strain hardening during uniaxial creep, expressed as the increase in the number of bonds 
Β per cm

2
. 
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gradual increase of the number of bonds B. The increment in the number of 
bonds (dB) is equal to 

gl 

dB = ab- *—-de,. (9.16) 
(«6 -

 £
a ) 

The process of strain hardening is more intensive for higher axial loads ó'¢ and 
attains its maximum for £ a = å0 when dB/Üå^ = oo (Fig. 9.9). Uniaxial 
(logarithmic) creep acquires its damping nature due to the hyperbolic increase 
of the number of bonds per cm 2 with increasing compression of the specimen. 

mm % ^,-» *" " * *" f t * * ^ o * o ï õ ••  "0» MMMMm^ ^ ^ ^ y * *o 
3.8- / 

/ 

-2.9 / DETAIL (× ) 

mm % f
0 

359- ^ 

.SEMI LOGARITHMIC GRAPH ï 
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3·· \ ' h » -

"5 5Ã~5 10 30 80
 1 9 66 Y E AR 

TIME ( IN MONTHS) 

3.4-I 1 1 1 1 : 1 1 
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YEARS 

Fig. 9.10. Oedometric compression of Sedlec kaolin = 0.05 MPa) . 

The character of secondary consolidation was studied by means of long-term 
oedometric compression of a specimen of Sedlec kaolin (Fig. 9.10, ó'Ë = 
= 0.05 MPa - see Section 6.4). The compression curve consists of segments 
mutually intersecting in bifurcation points which mark structural collapses in 
the same way as on the triaxial effective-stress paths referred to in Section 4.3 
(Fig. 4.23). Thus, it is evidenced that the formerly recorded corners of the stress 
paths (Fig. 4.23), similarly to those noted in the oedometric strain paths (Fig. 
9.10), reflect the structural response of kaolin to the load imposed. It may be 
hypothesized, in conformity with the analysis of triaxial tests with the same 
material (Section 4.3), that the flakes of kaolinite cluster into aggregates (Fig. 
9.1 la, b), which become broken and afterwards totally remoulded and transfor-
med to form a compression fabric (Fig. 9.11c, d). The first phase of structural 
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Fig. 9.11. Structural transformation of Sedlec kaolin in the course of oedometric compression, as 
visualized by SEM (Svobodovâ, 1988): a,b - initial structure (a - vertical section, b - horizontal 
section; picture width 5.5 μηι); c, d - after oedometric loading to a'a = 0.325 MPa (c - horizontal 

section, d - vertical section; picture width 11 μηι). 
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compression is less intensive (therefore, lower in Fig. 9.10), the second one 
is more pronounced and therefore is higher (0.423 %, as compared with the 
former value of 0.115 % ) . The value of the secondary compression index is, 
consequently, time-variable. After about two years, the compression became 
totally extinguished. A better analytical description of creep can therefore be 
achieved, in this case, by using a hyperbolic relation of £ a and /. 

Fig. 9.12. Uniaxial compression in Fig. 9.10 transformed into a hyperbolic form (a), a logarithmic 
form of a hyperbolic relation (b) and the variation of the number of bonds with e a in the case of 

hyperbolic creep (c). 

Fig. 9.12a depicts a hyperbolic graph of the uniaxial compression curve of 
Sedlec kaolin in Fig. 9.10. Experimental points are closely approximated by the 
relation 

* a = ^ , (9.17) 
0.287 + 0.328 (t/t{) 

where tx = 1 month and e a is in %. Secondary consolidation of Sedlec kaolin 
accordingly follows a hyperbolic law. If semilogarithmically transformed (Fig. 
9.12b), secondary consolidation is characterized by a time-variable secondary 
compression index C^. Such a variation thus reveals that secondary consolidati-
on does not acquire the form of logarithmic creep. 

From the hyperbolic law (9.17) in the form 

ea = —L- (9.18) 
a + bt 
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one obtains 

êa = \ (1 - beaf , 
α 

(9.19) 

with 0 ^ e a ^ l/b (ea - •  1/6 for r - •  oo) and 0 ^ ea ^ l/α (έΛ -> 0 for 
/ -> oo and έ α = Ι/α for εΆ = 0). 

A similar form of the secondary compression curve to that of Sedlec kaolin, 
i.e., essentially bilinear on a semilogarithmic scale (Figs. 9.10 and 9.12b), can be 
deduced from the experiments by Shibata (1963), Suklje (1969), Bishop and 
Lovenbury (1969) and other investigators. Bilinear secondary consolidation 
recorded also Mejia et al. (1988) for tailing sand with the significant content of 
feldspar. Owing to the easy breakage of feldspar grains similar explanation of 
this type of secondary compression can be proposed as in the case of Sedlec 
kaolin, i.e., the occurrence of the cataclastic deformation. 

For normally consolidated clay, Shibata (1963) found a phenomenon which 
he called "delayed contractancy". For a constant mean normal stress (FX = 
= const) and a stepwise increasing J% (in drained triaxial creep tests; in an 
oedometer, if K0 is time-independent, the state of stress is identical to Shibata's), 
the shear-induced volumetric strain ε ν increased bilinearly with the logarithm of 
time, with the breaking point at 10

3
 minutes. Suklje (1969) reports similar 

behaviour of dry loose and powdered lacustrine chalk in an oedometer, with 
a transition point at about 10

3
 to 10

4
 seconds. Bishop and Lovenbury (1969) 

observed such a course of secondary consolidation of undisturbed Pancone clay 
in an oedometer (breaking point at about 50 days). Identical is the finding of 
Kharkhuta and Ievlev (1961) mentioned in the Introduction. The described 
phenomenon is therefore not confined to Sedlec kaolin and there are other soils 
disobeying the law of logarithmic creep (the constancy of C aJ when secondarily 
compressed. 

Eqn. (9.19) predicts £ a = 0 for e a = \/b (i.e., for t -» oo). Combining eqns. 
(9.13) (where a is changed into a0) and (9.19), one gets 

In (i - Kf σ 3 

= a0 h In A (9.20) 
a 

and 

Β = 

- In A 

=> Β = 
b0 + 2 In (1 - 6ea) 

(9.21) 

a 
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d B = d £a (9.22) 
Γ ι * I / . 1 \ η 2 It 1 \

 a V 7 

(if 0 ^ e a ^ l/b). The increment d ß is equal to 

[&o + 21n (1 - bej]
2
 (1 - bea) 

(b0 = ln(l/aA)). Eqn. (9.22) is represented graphically in Fig. 9.12c. The number 
of bonds grows at an increasing rate with the compression e a and the process of 
structural hardening becomes more intensive than in the case of logarithmic 
creep (Fig. 9.9). This seems to point to a more important role played in the case 
of hyperbolic creep by cataclastic deformation. 

Since £a = 0 for t oo in both logarithmic and hyperbolic creep, at the 
end of uniaxial creep the material tends to become ideally rigid (ea -> 0, for 
hyperbolic creep in addition e a l/b). Then no rate-process takes place because 
there are no displacing units and, according to eqn. (8.14), U -> oo. 

Comparing eqns. (9.3) with (3.13) and (9.18) with (3.15b), an analogy in the 
effects of stress and time on the compression can be found. The bell shaped 
curves in Fig. 3.32 have their parallels in Fig. 9.15 further in the text (the relation 
of vs. cra). Often similar is the form of the relationship between the compressi-
on index ( = As J A log σ'Ά) and σ'Λ, if the preconsolidation pressure lies within 
the range of loading. Thus, it seems that the non-monotonous dependence of 
and on time and/or load indicates the existence of a combined mode of 
structural changes—by sliding and cataclastic deformation (destruction of brit-
tle bonds and breakage of structural units)—with the latter dominating at the 
peak values of Cm and C^. 

In addition to the experiments depicted in Fig. 9.1 and the field evidence in 
Fig. 9.2, a further set of experiments, presented in Angaben (1979) and placed 
at the present author's disposition, has been analysed. Dark grey shale was 
tested in a large oedometer (dia. 100 cm, specimen height 33 cm). Crushed shale 
with grain size varying between 1 and 200 mm and of a pronounced anisotropic 
texture, with the natural water content w = 3.5 %, was stepwise loaded by 
σ'Ά = 0.3, 0.6, 0.9 and 1.2 MPa (loads at which creep was measured) at different 
unit weights γά = 15 to 21 kN/m

3
. Goldisthal shale, as it is called, is structurally 

unstable. After loading, its granulometric curve shifts towards the finer-grain 
range. When wetted, additional compression occurs (Fig. 9.18), the larger the 
looser the material is, and the shear resistance decreases (the apparent cohesion 
of the dry material is annihilated, but the angle of internal friction of 40.7 ° is 
almost unchanged). Section 12.4.1 contains further data. 

Fig. 9.13 presents the relationship of the rate of uniaxial creep vs. log time in 
one series of tests with Goldisthal shale (a a = 0.3 MPa, variable dry unit weight 
γά = 16.5, 18 and 19.5 kN/m

3
) . Especially for loose material, structural per-

turbations are pronounced, probably being intensified by the decreased structu-
ral stability (increased breakage of grains) of the material. The smaller y d the 
higher e a, as could be expected. 
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A still deeper insight into the behaviour of Goldisthal shale is allowed by Fig. 
9.14. The axial creep rate grows with the increase of a a and with the decrease of 
the dry unit weight (Fig. 9.14a). With the drop of the dry unit weight, uniaxial 
creep is more efectively damped (higher value of Abel's exponent n, contrary to 
Fig. 8.16 for clay with a stable structure) and logarithmic creep is approached 
with the growth of the density of the material. The higher the load, the more 
effectively the exponent η is influenced by the dry unit weight. Owing to the 
sensitivity of Goldisthal shale, whose grains break more intensively with the 
increase of a a and with the decrease of yd, one may expect that the value of C a£ 

will depend on cra and yd. 

TIME SINCE THE BEGINNING OF LOADING STEP LOG - j -

0 1 2 t- = 1 min. 3 
Η 1 1 3 1 — 

Fig. 9.13. Effect of dry unit weight on the oedometric creep of Goldisthal shale. 
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Fig. 9.14. Effect of the magnitude of axial load and density on the behaviour of Goldisthal shale in 
oedometric creep. 
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Because η in Fig. 9.14b does not equal one, creep is not logarithmic. Its rate 
is governed by the equation 

(9.23) 

instead of (according to eqn. 9.3) 

e a = 0.434C«,
 %

1. (9.24) 
t 

An approximate value of is obtained if eqns. (9.23) and (9.24) are equalized 
for the middle of the experimental range of t\tx which is about 1 0

1 5
 (see Fig. 

9.13). Then 

Cm = 2.303α χ Ι Ο
1
^

1
" ^ (9.25) 
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ΟΓ 

logC^ = log α - 1.5 (n + 1) + 0.362 2 . (9.26) 

The latter equation defines an approximate relation between log a (Fig. 9.14a) 
and for η in Fig. 9.14b. 

Fig. 8.15b depicts the values of nv of the tested soils for volumetric creep in 
the ring-shear apparatus at different shear-stress levels. Table 9.1 indicates the 
values of nw calculated using the regression straight lines in Fig. 8.15b and the 
shear-stress level of uniaxial creep (eqn. 9.2, Table 9.1). The value of nw for 
Zbraslav sand must be discarded - in this case, volumetric creep is dilatant in the 
ring-shear apparatus, i.e., qualitatively different from uniaxial creep in an oedo-
meter. The remaining values of ny are near to the value of nw = 1 in the case 

TABLE 9.3 

Secondary compression index (in %) 

normal stress σ'η 

(MPa) 
natural water 

content w
+ 

(%) 0.11 0.31 0.52 

natural water 

content w
+ 

(%) 

Strahov claystone (undisturbed) 
Strahov claystone (reconstituted) 
Dablice claystone 

0.195 
0.120 

0.197 
0.250 
0.130 

0.194 
0.185 
0.100 

18.2 to 23.9 
31.0 to 36.4 

20.8 

Zbraslav sand loose: 0.016 dense: 0.004 - 1 

axial stress σ'α (MPa) 

0.3 0.6 0.9 1.2 

Goldisthal shale 
y d = 16.5 kN/m

3 

y d = 20 kN/m
3 

0.117 
0.018 

0.264 
0.046 

0.265 
0.070 

0.215 
0.070 

- 3 . 5 

σ'α = 0.05 (MPa) 

Sedlec kaolin 
t/tj < 4 χ 10

4 
0.115 

- 4 0 Sedlec kaolin 

ί/ij > 4 χ 10
4 

0.423 

- 4 0 

Prague 0.508 

- 3 5 
Dudince 2.000 

- 3 5 

+
 In Table 3.2 and Feda (1981) 
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of reconstituted Strahov claystone and Dablice claystone. The regression line of 
undisturbed Strahov claystone is rather steep, causing large differences in TÎv for 
small variations in τ/τΓ, but the value of nw = 1 for τ/τ Γ = 0.69, lies within 
the dispersion range. The above comparison suggests that volumetric creep is 
logarithmic in virtue of a particular shear-stress level, irrespective of the actual 
boundary conditions imposed on the specimen (in agreement with the data 
presented by Ladd et al., 1977). 

The magnitude of the index of the soils tested is listed in Table 9.3 (Figs. 
9.1, 9.2 and 9.10; for Goldisthal shale values calculated by applying eqn. 9.26; 
for Zbraslav sand deduced from the 7 measured values of e a showing no 
effect of σα). 

Values of in Table 9.3 are represented in Figs. 9.15 and 9.16. Secondary 
compression index seems to be insensitive to the experimental range of axial 
(normal) loads, with the exception of Goldisthal shale: with increasing a a , the 

0.5 4. ν 

ο 
0.4 

χ 
UI 
ο 

% 0.3 
LU 
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ο. 
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Ο 
Ο 
>-
ce 
< 
ο 
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0.2+ 

0.1 + 

SYMBOLS 

~ > 4 χ 1 0
5 

*1 

STRAHOV CLAYSTONE UNDISTURBED 

DITTO, RECONSTITUTED 

ÔÂBLICE CLAYSTONE 

SEDLEC KAOLIN 

ZBRASLAV SAND 

(1 - LOOSE, 2 - D E N S E ) 

GOLDISTHAL SHALE, w = 3 . 5 ° / 0| 

DENSE (w. = 2 0 k N / m 3 ) 

DITTO, LCTOSE ( / d= 1 6 . 5 k N / m 3 ) 

PRAGUE 

0.5 1 MPa 

NORMAL ( A X I A L ) STRESS 0^ (o^ ) 

Fig. 9.15. Dependence of the secondary compression index on the value of normal (axial) load. 
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value of Cae also increases up to some critical value of <ra, falling thereafter. This 
behaviour resembles that of undisturbed samples of sensitive Leda clay and of 
Mexico City clay, recorded by Mesri and Godlewski (1977) and by Mesri et al. 
(1975) and of other natural clays (for references see Sekiguchi, 1984): C a e rises 
with the consolidation pressure up to a peak at some critical pressure and drops 
then to the value of the same but remoulded clay (which does not show such 
a peak, but remains insensitive to the pressure). 

The reason for this behaviour seems to be the same for both Goldisthal shale 
and sensitive clays. At some critical load, structural collapse (breakage of grains, 
destruction of brittle bonds) occurs, causing the growth of creep deformation, 
i.e., of C^. At higher loads, if a stepwise loading of the soil samples is assumed, 
the structural collapse may be accomplished in the course of the preceding 
loading steps and the soil sample will cease to be load-sensitive, its structure 
being near to the remoulded state (destroyed brittle bonds, stable granulometry 
of the well-graded type). 

Fig. 9.15 does not show any pronounced effect of reconstitution on the 
C^-values of Strahov claystone (the range of axial loading being perhaps within 
the "stable" limits). 

u 
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Fig. 9.16. Dependence of the secondary compression index C œ on the natural water content. 
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Mesri (1973) proposed a relationship of vs. the natural water content, 
assembling many available data. Fig. 9.16 presents the mean line and the upper 
and lower limits (dotted lines) based on his proposal. The values of in Table 
9.3 are in accordance with Mesri's graph. On extending it to the low values of 
w < 10 %, also Goldisthal shale and Zbraslav sand appear to conform with this 
relationship. Only the for Dudince seems to be too elevated, the reason for 
which will be given later. 

For independent of time, the logarithmic rate of secondary consolidation 
can be expressed as linearly dependent on the logarithm of time (eqn. 9.24). 
Then Fig. 9.17 is obtained for tested soils. If the slope d(log ea)/d(log (t/t^) = 

T I M E : LOG γ- · t ^ l m i n . 

1
 1

 2 

LEGEND 1-STRAHOV CLAYSTONE 

UNDISTURBED 

2-DITTO RECONSTITUTED 

3-SEDLEC KAOLIN 

3'-DITTO FOR ^ - > 4 x 1 0
5 

4-ÛÂBLICE CLAYSTONE 

5-GOLDISTHAL SHALE DENSE 

( fa=20 k Ν / m
3
; L - LOW STRESS 

LEVEL, Η-HIGH STRESS LEVEL) 

6-ZBRASLAV SAND 

(L-LOOSE, D-DENSE ) 

7-SEDLEC LOESS (WATER 

SATURATED) 

D-DUDINCE 

P-PRAGUE 

( 1 , 4 , 6 -

AT r m l na 0.02 MPa) 

Fig. 9.17. Relationship between the rate of secondary consolidation and time for tested geomate-

rials. 
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= — 1, then secondary creep is logarithmic. The rate of creep decreases, in 
accordance with expectations, with increased resistance of the soil structure, 
from soft clayey soils (P, D, 3 ' in Fig. 9.17) to granular soils (rockfill of Goldis-
thal shale, alluvial Zbraslav sand). The limits of the creep rate for a given soil 
are rather narrow (2-2, 4 - 4 in Fig. 9.17) if a stress-sensitive material (5-5) or 
material of different density (5-5, 6-6) is not being dealt with. 

Two notes should be made referring to Fig. 9.17. First — the line for Dudince 
is in a rather high position. The analysis showed that lateral deformations of the 
foundation soil are responsible for this anomaly, the case of Dudince not being 
one of more or less uniaxial (confined) compression (Feda, 1981). Because the 
foundation soils of buildings in Prague and Dudince are almost the same, one 
may guess that, due to the lateral creep, the value of increased to about 
4 times its proper value (Table 9.3). 

This observation conforms with the suggestion by Walker and Raymond 
(1968) and with Italian evidence (field values of about 3.5 times higher, on 
average, than laboratory values - see discussion in Sekiguchi, 1984). Accepting 
this explanation, one may conclude that field values of are in a good 
agreement with the laboratory values in Fig. 9.17 for similar types of soils. Such 
a conclusion upholds the representativeness of the author's laboratory experi-
ments. 

The second remark concerns the deviations from the logarithmic law of creep 
as exhibited in Fig. 9.17 by loess and Goldisthal shale. Let it be remembered that 
in Fig. 2.5 the rate of settlement of Wilmot dam, built of hard greywacke, 
deviated similarly. In all these cases, the material has probably been of a collap-
sible nature, as is documented at least for loess and Goldisthal shale (Figs. 3.33 
and 9.18), and increased damping of creep with time can be produced by the 
structure of the material becoming gradually more stable. 

For all the soils in Table 9.3, it is only for Öablice claystone and Goldisthal 
shale (γά = 20 kN/m

3
) that compression curves can be constructed (Fig. 9.18; 

note the amount of structural collapse of Goldisthal shale after wetting, shown 
by a dotted line). In other cases, individual samples were used for each value of 
σ'η. The compression index = AeJA log a'a of Goldisthal shale equals 

= 0.037 5, for Öablice claystone Cce = 0.01 (Fig. 9.18). After Mesri and 
Godlewski (1977), the value of the ratio C^/C^ (this ratio is approximately 
equal to the one used by the authors quoted but based on the void ratio instead 
of on strain) should, on average, be about 0.05 and always <0 .1 . Taking the 
values of Cm in Table 9.3, one gets CJC^ = 0.005 to 0.019 and 0.1 to 0.13 
for Goldisthal shale and Öablice claystone, respectively (rough guesses: for 
Prague building 0.02, for reconstituted Strahov claystone 0.07, for loose Zbra-
slav sand 0.007). 

For Goldisthal shale, the compression curve is satisfactorily represented by 
a straight line on the semilogarithmic scale (eqn. 3.13; this points to the increa-
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sed compressibility of this structurally unstable material, since compression 
curve 3.14, with m = 0.5, should be representative for granular soils) and the 
value of the CJC^ ratio falls to the lower limit of the common range. The 
compression curve for Dablice claystone is in the experimental range of σ'η 

convex upward and is best described by the quadratic equation 

e a = 0.68 + 2.88<r'a
2
 (9.27) 

(Fig. 9.18; e a in % and a a in MPa) which remembers eqn. (3.19) (Fig. 3.15). By 
analogy, presheared Dablice claystone compresses in a cataclastic manner. 
A strain-softening effect has therefore been found by the microrheological 
analysis of volumetric creep (Section 8.2, Fig. 8.12) and the slope of its «vvalues 
in Fig. 8.15 has been anomalous. This exceptional behavipur of Dablice claysto-
ne perhaps explains the unusually high value of its CJC^ ratio. 

LOG OF AXIAL ( NORMAL ) STRESS 
-1 , - 0.8 t -0.6 -0.4 -0.2 0 
—* « 1 · 1 1 ι 1 1 1 1-

Fig. 9.18. Uniaxial compression curves of Dablice claystone and of dense Goldisthal shale. 

9.4 Conclusion 

The preceding analysis allows to formulate the following concluding remarks: 
— In soils, hydraulic diffusion can acquire different forms. Their mathemati-

cal models are identical, but the physical meanings of different parameters and 
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factors influencing their variability are diverse, as has been demonstrated for 
primary consolidation and swelling. The comparison of these two processes 
aptly illustrates the discussion of the merits of mathematical and physical 
models in Section 3.2. 

—If expressed in dimensionless coordinates U vs. Τ, primary consolidation 
of samples of various thicknesses can, in some cases, be identical. The phenome-
non of physically isomorphous behaviour is responsible for such a behaviour. It 
is, however, of limited validity being valid only for some soils, e.g., for soft clays, 
and it cannot be generalized to cover all structural varieties of soils. Isomor-
phous behaviour does not signify that creep of solid skeleton does not occur 
during primary consolidation. 

— In the course of primary consolidation the coefficient of consolidation c v 

can vary. This effect may formally resemble creep of Kelvin's material. 
— Since the mechanical behaviour of geomaterials depends on state parame-

ters, secondary consolidation is no exception to this rule. Its intensity, expressed 
by the value of the coefficient of secondary compression (if creep is logarith-
mic), depends, in the general case, on the porosity (or dry unit weight), water 
content, magnitude of stress, time of loading and temperature (Section 4). 
Except for temperature, this dependence was confirmed experimentally. For 
a limited set of geomaterials and for state parameters ranging within relatively 
narrow limits, not all state parameters come into play. The C value of Sedlec 
kaolin, for instance, did not change until t/tl > 4 χ 10

5
, we ich considerably 

surpasses the duration of common laboratory testing. 
— Geomaterials with structures that are unstable within the experimental 

range, display some peculiarities: C does not depend on uniaxial stress in 
a monotonous manner, the creep curve experiences different structural perturba-
tions, manifested in the form of bifurcations, and creep is more effectively 
damped (the value of Abel's exponent η > 1 ), etc. 

— During uniaxial creep, strain hardening occurs which may temporarily be 
interrupted by cataclastic compression. Logarithmic creep implies a hyperbolic 
growth of the number of bonds per cm

2
. The effect of increased load and 

temperature can be explained in terms of a growing number of bonds. 
— Lateral creep in the field is probably responsible for the possible divergence 

between laboratory and field values of C . For the same boundary conditions, 
field and laboratory C indexes agree. 

— The finding that tfie ratio CJC ( = 0.05) is almost constant for different 
soils need not be generally acceptable. This statement implies the same mecha-
nism of structural changes inflicted by stress and time, i.e., the possibility of an 
interchange of these two state parameters. Although valid in many cases (see 
Section 6.2)

1
, the structural peculiarities of geomaterials can be reflected in the 

1
 For physically isomorphous behaviour, the ratio CJC^ (= CJCC) is equal to the ratio of 
(oedometric) compression for a 10 fold increase of both stress and time. Its value < 1 indicates much 
more intensive stress-hardening than time-hardening. 
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stress- (or even time-) dependence of either or and their ratio is then also 
stress- (or even time-) dependent. A more complicated anisotropic structure, like 
that of presheared Dablice claystone, may undergo cataclastic deformations and 
strain-softening in the course of volumetric creep, causing the CJC^ ratio to be 
different from its accepted limits 0.05 ± 0.01. While Dablice claystone trans-
gresses the upper limit of this ratio, reaching the value of ^ 0.1, Goldisthal 
shale, with an unstable structure, shifts to its lower limit ( < 0.02). 

The analysis of the uniaxial compression of the soils tested by the author can 
conveniently be concluded by an instructive piece of advice. Any generalization 
in the realm of geomaterials should be presented with the utmost care and with 
many reservations. The structural variability of geomaterials and the sensitivity 
of their structure to state parameters often form an unsurmountable obstacle to 
any elegant and simplifying, but too sweeping a conclusion. 



10. LONG-TERM STRENGTH OF SOILS 

10.1 Introduction 

The analysis presented in Section 8 suggests that soil particles (structural 
units) interact via their interparticle contacts containing many solid bonds of 
primary valence type. Their number affects the strength and deformation pro-
perties of soils. 

- 4 -J 1 1 • 

0 -10 -20 MPa 
TENSILE STRENGTH öf 

Fig. 10.1. Experimental long-term tensile resistance in the range of small loads (Regel' et a l , 1972). 

In studying the long-term strength of soils, it is therefore natural to exploit the 
findings in this field relating to solid materials like metals where the activation 
energy is of the same order of magnitude as that of soils. 

Experiments with metals, polymers, etc. have proved the validity of rate-
-process theory, eqn. (8.25) (Regel'et al., 1972) as depicted in Fig. 10.1: the longer 
the time to failure /f, the lower the tensile strength <rf, according to the relation 

kT In - = U0 - a d< 7 f . (10.1) 

ίο 
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Since for σ{ -* 0, t{ cannot be a constant, some deviations from the relation 
(10.1) are to be expected in the range of small Of values. 

The mechanical behaviour of soils depends on their straining because strain 
is a state parameter (Section 4.4). In the range of small strains ( < 10~

5
), soils 

behave purely elastically and their deformations are reversible (within this range, 
a high shear modulus is measured by the resonant-column method, as reviewed 
by Kohusho, 1984, which accords with the recent local measurements of triaxial 
soil stiffnesses within the above small strain range). Elastoplastic deformations 
take place in the range of strain from 10~

4
 to 10~

2
. The effects of dilatancy and 

contractancy and pore-water pressure change during undrained creep and, 
consequently, the effects of load repetition and of cyclic deterioration, commen-
ce to appear at strains larger than about 10~

3
. In the same range of strains 

( > 10~
3
), rate effects emerge (Ishihara, 1981). Thus, in the low and medium 

strain range ( < 10~
3
), soils behave mostly like quasicontinuous porous mate-

rials void of typical particulate features (e.g., of dilatancy and contractancy). For 
structural transformation to take place calls for a sufficiently large deformation 
of the material. 

In the quasicontinuum range, the strength of soils is expected (after Fig. 10.1) 
to increase with tf decreasing, as does that of other solid materials. A similar 
effect, but affecting exclusively the cohesion intercept, has been observed in 
experiments by Ishihara (1983, 1984) with partially saturated clayey soils: due 
to dynamic loading (of a specimen with residual strain) the cohesion increased, 
but the angle of internal friction retained its value for static loading. If the 
viscous effect is modelled by the loading-rate-dependent Newtonian element

1
, 

than it is impressed on the cohesion intercept only. Cohesion is deemed to 
represent the result of brittle and current-load independent bonding and is 
therefore related to the quasicontinuous behaviour. 

The rise in strength with rapid loading is ascribed, for saturated soils, to the 
effective path migration, the effect of varying pore-water pressure generation 
and to other internal migration effects (similar to those of the cyclic mobility of 
granular soils). The effective angle of internal friction remains essentially time-
independent (Sekiguchi, 1984). 

One may conclude that the type of structural bonding prevails among the 
factors influencing the rate-sensitivity of soils, frictional bonds being, as a rule, 
time-insensitive. 

1
 Idealizing a material by a Maxwell body, its behaviour depends on the relation of the time of 

loading and of relaxation — eqn. (7.8). If the former is much shorter than the latter, the behaviour 
is purely elastic and Hookean, and, in the opposite case, it is viscous and Newtonian (Reiner, 1958, 
p. 466). 
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10.2 Stress - long-term strain diagrams 

Figs. 10.2, 10.3 and 10.4 depict the stress-strain diagrams of Zbraslav sand 
and Strahov claystone (in undisturbed and reconstituted states). Loading and 
unloading branches are drawn, with the exception of Zbraslav sand where 
their great number would obscure the overall picture. The calculation of the 
ratio of reversible to total strain enabled Fig. 10.5 to be drawn. Strains in all 
diagrams are the strains at the end of primary creep, i.e., they are long-term 
strains. 

The prominent feature of all stress-strain diagrams is their consisting of 
several segments. This is due both to their being tested in a ring-shear apparatus 
and to the loading procedure adopted. The apparatus makes large deformations 
of specimens possible without disturbing their original shape; stepwise and 
sustained loading, on the other hand, produce periods of limited structural 
collapse (sudden rebuilding of the structure) similarly to that in Fig. 3.26. Owing 
to the strain-hardening effect (disclosable on the volumetric strain curves) 
brought about by the ring apparatus, specimens under test are capable to 
withstand further load after some additional shear displacement. 

Fig. 10.2. Stress - long-term strain graphs of Zbraslav sand (unloading branches not shown). 
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Fig. 10.3. Stress - long-term strain diagrams o f undisturbed Strahov claystone. 

Fig. 10.4. Stress - long-term strain diagrams o f reconstituted Strahov claystone. 
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The conditions for the segment-like appearance of loading diagrams were 
studied with Zbraslav sand. It has been found that: 

— The greater the loading steps, the more pronounced the segments are. For 
very small loading steps, simulating the common constant-strain-rate testing 
procedure, no segments originate, the resulting graph is, however, far from being 
smooth (Nos. 11 and 14 in Fig. 10.2). With small loading steps, the structure is 
apt to adapt to higher load continuously, with large steps the adaptation takes 
the form of periodic local structural collapses. 

— With increasing density of samples, segments are more distinct. Dense 
specimens are held to be less homogeneous and more inclined to progressive 
failure, which may account for this behaviour. 

— The rise of normal load seems to accent the segment-like shape of the 
graphs. This effect is somewhat ambiguous as one may imagine that loads higher 
than some critical value will homogenize the samples and thus limit their 
disposition to collapsibility. 

Variation in the magnitude of loading steps is not reflected in the value of the 
long-term shear resistance (Fig. 10.9), but in some cases it is responsible for 
appreciable failure shear strain y f (Fig. 10.17). 

The stress-strain graphs in Figs. 10.2, 10.3 and 10.4 define the failure load: it 
is greater than the last but one loading step and smaller than the last one. Fig. 
10.5, deduced from the above figures, shows that undisturbed samples possess 
stronger structural bonds, as is demonstrated for Strahov claystone by the 
higher reversibility of deformation at the same shear-stress level and total shear 
strain. The values for reconstituted Strahov claystone are near to those for loose 

SYMBOLS : 

0.01 0.1 1 

REVERSIBLE/TOTAL SHEAR STRAIN RATIO — 

Fig. 10.5. Effect of the shear stress level on the reversibility of deformation of tested soils. 
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Zbraslav sand (for this sand no regular pattern of behaviour emerged, therefore, 
only the field of measured values is depicted in Fig. 10.5). The effect of the 
magnitude of normal load seems to be suppressed by the individual variability 
of undisturbed samples, but it appears to be negligible, as shown by reconstitu-
ted Strahov claystone. It has also been found that creep rate curves (their 
position in the log έ vs. log t plot) are affected by the normal load only indirectly, 
by means of the long-term shear resistance which is variable with σ'η. 

10.3 Long-term strength 

The long-term strength can, in principle, be higher or lower than the standard 
strength. In addition to diagenetical bonding (by certain water-soluble and 
precipitating agents), the effect of secondary consolidation (i.e., aging, delayed 
consolidation) has been well examined. It results in some additional quasi-
-preconsolidation of soils, for which the time-dependent increase in the specific 
number of bonds seems to be responsible. Since volumetric creep is usually 
a structurally hardening process (Section 8.2), volumetric compression induces 
a strength increase, with the exception of cemented soils (thus a slight increase 
in the long-term strength as compared with the standard value - 3 % to 7 % 
- has been recorded with reconstituted Keuper Marl - O'Reilly et al., 1988). In 
the latter case, such a creep deformation destroys brittle bonding and lowers the 
long-term strength. This is an effect impressed on the time-dependent alteration 
of cohesion. 

In other more common and, from the engineering standpoint, more impor-
tant cases, when the structural softening effect of distortional creep (Section 8.2) 
prevails, strength decreases with time. One must, however, use the proper 
definition of strength - it should be dealt with in effective parameters to avoid 
the phenomenon of the effective stress path migration mentioned above. 

Following the introductory comments, the effective angle of internal friction 
seems to be time-independent. This finding can be explained on the basis of the 
adhesion theory of friction (see e.g., Mitchell, 1976, p. 306 et seq.). In its simplest 
version, a contact of two bodies is taken to be realized by means of asperities. 
They yield under the normal load Fn so that the actual contact area 

^ = - (10-2) 

and the shear resistance 

Ft = Aer{ (10.3) 
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(σ is the yield strength). Then 

t g P f = 
Α

ο
τ

ί 

Acay 

(10.4) 

If the time-dependence of both the shear stress resistance and the yield stress of 
contacting asperities is of the same functional form, then r f / a y = const 
irrespective of time and, consequently, tg φ\ = const. The same conclusion 
should be valid also for the residual angle of internal friction. 

If φ\ is time-insensitive (tacitly assuming the value of n0 to be time-indepen-
dent) then, employing Jaky's formula for the earth pressure coefficient at rest (at 
rest stress ratio) K0 = 1 - sin <p\, one can understand why the value of K0 is also 
very nearly time-independent (Dyer et al., 1986). If more intensive creep pheno-

RAN6E OF EXPERIMENTAL 

VALUES-FIG. 4.4 

\ -—=1.938-0.1 .0303 n 0± 0.055 

{ r =0.949) 

( r= 0.076 < rQ 0 5= 0.532) 

32 
- Η 1 1 1 1 1 ·— 
34 36 38 40 

INIT IAL POROSITY n 0 

42 

Fig. 10.6. Normalized long-term peak and residual shear resistance of Zbraslav sand in the ring-
shear apparatus. 
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mena take place, theoretically (Feda, 1976; Hsieh and Kvazanjian, 1987, p. 154) 
and experimentally (Hsieh and Kavazanjian, 1987, p. 154) a moderate increase 
in the A^-value is to be expected (5 % to 10 % according to Nova, 1985), tending 
to the constant value of K0 for t -> oo. 

The time-independence of the angle of internal friction has been explored with 
Zbraslav sand. Long-term normalized peak and residual shear resistances (e.i., 
tg ç>f and tg φ'τ) measured in the ring-shear apparatus are represented in Fig. 10.6. 
Fig. 10.7 shows the frequency distribution of tg <p\ (Fig. 10.7a) and of tg φ\ (Fig. 
10.7b) as projected, in the latter case, on the n0 = 0 axis. Both values are 
normally distributed and tg φ'τ does not depend significantly on n0. 

Comparing these results with the standard triaxial tests (Fig. 4.7), one finds 
an acceptable agreement in φ\ (33.05 ° and 34.33 ° in the ring-shear and triaxial 
apparatuses, respectively), the torsional shear measurements being more reliable 
(the coefficient of variation ν = 1.94 % as compared with the triaxial value of 
t? = 4.15 % ) , as is commonly stated. Nearly the same value (φ'τ = 32.83 %) as 
in the ring apparatus has been obtained in the direct shear box (Section 6.3), 
where the kinematic conditions of shearing the specimen are very similar. 

One concludes that the value of φ[ is time-independent, in agreement with 
Kenney's (1968) results. 

Peak values of the angle of internal friction fall into the range of values 
measured in the direct-shear box (short-term or standard strength, eqn. 4.4, Fig. 

Fig. 10.7. Frequency distributions of tg φ\ (projection on the n0 axis) and tg φ\ from the data in Fig. 
10.6. 
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4.4), the mean coefficient of variability being comparable in magnitude (Fig. 4.4 
_ ν = 5.7 %; Fig. 10.6 - ν = 4.3 % ) . 

If a strain-rate controlled shear test is performed in such a way that at specific 
shear strains the deformation is stopped and the shear-stress relaxation is 
recorded, another, relaxed, stress-strain diagram is obtained, paired with the 
first (standard) one. Such tests were carried out in the direct shear box and one 
example of their outcome is presented in Fig. 10.8. The shear-stress relaxation 
is documented in selected peak points 1 and 2 and with the parallel time-depen-
dent volumetric curves (inserted graphs)

2
. 

In Fig. 10.9, all measured values of the peak shear strength are assembled: 
those recorded in the ring apparatus (long-term tests) and in the direct shear box 

Fig. 10.8. Standard and relaxed stress-strain diagrams of dry Zbraslav sand in the direct shear box. 

2
 The relaxed peak strength is the shear stress at zero shear-strain rate and it can be compared with 
the upper yield strength defined by Finn and Shead (1973). It is a threshold stress at which the 
sample will not fail in creep, and it indicates the lower limit of the long-term strength. 
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(standard tests transferred from Fig. 4.4 and marked by crosses, and relaxation 
tests). Residual values pertain to the ring-shear apparatus. 

Based on Fig. 10.9, the following comments are useful: 
— The results of relaxation tests in the direct shear box agree with those of 

long-term tests in the ring-shear apparatus. 
— The standard short-term peak strength of sand does not differ at all from 

the long-term strength in the loose range and only a small drop in the long-term 
strength appears to take place in the dense range. It amounts to about 5 % 
(approximately 1 ° in the value of (p'f) and causes the long-term strength to be 
situated at the lower boundary of the dispersion band of the short-term values. 
The differences in both strengths can therefore be neglected with good reason. 
This fact discloses small if any effect of possible experimental parasitic vibrati-
ons on the results of long-term tests. 

— Verification of the testing procedure adopted in the ring-shear apparatus 
sanctions the use of greater loading steps (the results of tests with small steps do 
not deviate essentially from the general trend of experimental results) and shows 

SYMBOLS : 

1 1 1 

30 35 40 % 

IN IT IAL POROSITY n 0 

Fig. 10.9. Summary diagram of the shear strength of Zbraslav sand measured by different procedu-
res. 
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the necessity of providing the upper and lower plates of the apparatus with 
blades (Section 6.3, Fig. 6.5) - otherwise the strength obtained seems to be too 
low. 

Fig. 10.10 shows Mohr's envelope of the long-term shear resistance of Zbra-
slav sand for dense and loose states. Both envelopes are of the common linear 
shape, with greater dispersion in the range of small porosity, as has already been 
visualized by Fig. 10.9. 

The long-term shear resistance envelope of Strahov and Dâblice claystones is 
represented in Fig. 10.11 where it has been statistically interpolated among 
measured data. This figure suggests that: 

— The long-term strength of both undisturbed and reconstituted Strahov 
claystone is the same (the behaviour of the reconstituted specimen at σ'η = 
= 0.52 MPa is anomalous, as observed also in Fig. 10.4; its strength is unusually 
small, failure strain high and volumetric strains low; only its residual strength, 
therefore, has been respected). The peak failure envelope displays a small value 
of effective cohesion (cr = 1.3 kPa). 

— The long-term strength of (presheared) Dâblice claystone bears the charac-
ter of a residual strength envelope. The relaxation test result (Fig. 6.7) is situated 
on the same strength envelope, in accord with the tests of Zbraslav sand. 

Fig. 10.10. Peak strength envelopes of Zbraslav sand - long-term tests in the ring-shear apparatus. 

303 



Long-term strength of soils 

NORMAL STRESS On 

Fig. 10.11. Long-term peak strength envelopes of Strahov and Öablice claystone - ring-shear 
apparatus. 
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Fig. 10.12. Bands of standard peak and residual effective angles of internal friction as related to the 
index of plasticity (<p'T - according to Deere; φ'ξ- according to Kenney and Olson-Mitchell, 1976, pp. 

284 and 285). 
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Measured peak and residual angles of internal friction were compared with 
data from the literature indicating their standard (short-term) magnitude (Fig. 
10.12). One may deduce directly that both short- and long-term values are in fair 
agreement. Thus, the generally accepted time-insensitivity of the effective angle 
of internal friction (particularly documented on the basis of field data by 
Chandler and Skempton, 1974) has been corroborated by the author's tests. The 
so-called "fully softened strength", equal to the long-term strength, depends 
only on the composition and can be measured in the laboratory using normally 
consolidated remoulded samples. Formerly analysed data for Zbraslav sand 
additionally confirm this conclusion. 

The bearer of the time-dependence of the strength of cohesive soils is, conse-
quently, the cohesion (tacitly assuming that no time-dependent cementation 
occurs). It decreases with time to a small but non-zero value, in accordance with 
other solid materials (Fig. 10.1). The relation (10.1) can be hypothesized as 
characterizing this dependence (σ\ replaced by the effective cohesion c'r). As an 
additional support for this conception, reference can be made to Fig. 3.37 which 
shows a relative stability of the angle of internal friction and a drop in the value 
of cohesion with the amount of straining (representing, at least to some extent, 
the effect of time in the process of creep). 

It is interesting to observe the same conception to be evidenced by the 
experimental data for weak rocks. Fig. 10.13 shows the residual (time-indepen-
dent) failure envelope of a tuff and two mudstone as found by Adachi and 
Takase (1981), Okamoto (1985b) and Ohtsuki et al. (1981). The long-term 

ΜΡα ι 

1 - POROUS TUFF (ADACHI AND TAKASE, 1981) 

2 - MUDSTONE ί OKAMOTO, 1985 b ) 

3 - SILTY MUDSTONE (OHTSUKI ET AL.,1981 ) 

0 

RESIDUAL OR 
:
NC STRENGTH 

Ô 2 A 6 
MEAN STRESS 6 * o ct 

8 MPa 

Fig. 10.13. Long-term triaxial strength of weak rocks. 
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envelope is curved in these cases (the adhesion theory of friction with elastic 
junctions can be applicable for weak rocks - see Mitchell, 1976, p. 308), in the 
same way as the failure envelopes in Figs. 4.11,4.18,4.21 (see also Fig. 4.20) and 
Fig. 4.25 (No. 5). Also curved, isochronic peak-failure envelopes (forming the 
so-called overconsolidation range) intersect the residual strength envelope, 
which, in the range of higher c r^ after the point of intersection, coincides with 
the strength of normally consolidated samples (in analogy with the "fully 
softened strength"). With elapsed time, the region of overconsolidation behavi-
our shrinks to the failure line of normally consolidated samples. 

10.4 Creep failure (rupture) 

Fig. 2.8b shows the relation between the remaining time to failure tfc and the 
minimum creep rate (or of the constant creep rate if secondary creep occurs) έ, 
as proposed by Saito and Uezawa (1961), the existence of which was probably 
pointed out for the first time by Servi and Grant in 1951 (Varnes, 1983). Fig. 
10.14 suggests the range of validity of this relation. 
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•  0.31 
ο 0.11 
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Fig. 10.14. Correlations between the total (or remaining) creep failure life and the minimum (or 

constant) creep rate è^. 
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Before proceeding with the analysis, it is necessary to elucidate the term 
"creep failure (rupture) time". According to Fig. 10.15, the value of e m in can be 
correlated with three time abscissae: tf- total creep failure time; tfc - remaining 
creep failure time; AB or tAB - time to failure. With the exception of Mitchell 
(1976, p. 354 et seq.), who defines / f = tAB in Fig. 10.15, usually tf = 
= AC is used for correlating laboratory data and tic = BC for field data (such 
as those in Fig. 2.8b). Since the time period of primary creep AB at the stress 
level aiming at failure is usually short enough, approximately i f ( = AC) = tfc ( = 
BC) and the same relation, e.g., that of Saito and Uezawa (1961) 

log tf = -1 .334 - 0.916 log é m in ± 0.59 (10.5) 

(i*f in min.) is accepted for both field analysis and laboratory testing. Fig. 10.15a 
shows the possible variation in the relationship between t{ (or / f c) and èmin for the 
author's tests. 

I ν 

2 DITTO RECONSTITUTED Δ 0.52 *minvs. t f c 

3 6ÂBLICE CLAYSTONE · 0.31 i . vs t 
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 m ,n
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MINIMUM CREEP RATE log * m i nt * m i n
, N Μ , Ν

·
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Q) 

Fig. 10.15. Definition of the creep failure life (b) and consequences of the interchange of rf and tfc 

(a) according to the author's tests. 

The majority of laboratory (with t{) and field (with tic) data fall in the range 
- eqn. (10.5) - found by Saito and Uezawa (1961) and affirmed by Saito's (1979) 
detailed review. Mitchell's (1976, p. 337) data are grouped around the lower 
boundary of this range, those for weak rocks (in Fig. 10.13) being situated still 
further down. Morlier's (1964) data show maximum dispersion, being situated 
above and below Saito and Uezawa's band. 
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The present author's results for claystones and clay fall slightly above Saito 
and Uezawa's mean line and the relation

3 

l o g i f c= -1 .033 - 0.91 log êmin (10.6) 

is very close to that of Shead (Finn and Shead, 1973) 

l o g i f c= -1 .089 - 0.92 log e m i n. (10.7) 

Another regression line 

log t fc = -0 .087 - 0.799 log émin (10.8) 

has been found for presheared Dâblice claystone. 
The original statement by Saito and Uezawa (1961): "... this formula is 

independent of the type of soil or testing method", formulated more cautiously 
by Finn and Shead (1973): " ... for Haney clay... it is independent of consolidati-
on history, stress level and drainage conditions", had therefore to be revised in 
the light of the subsequent evidence. Thus, Saito (1979) concludes that "creep 
rupture life is longer for ductile material such as metals and shorter for brittle 
material such as rocks". Anyway, the fact that eqn. (10.5) and the likes are 
equally valid in field and laboratory conditions make a strong case (in addition 
to Fig. 9.17) in support of laboratory creep testing being realistic. Similarly like 
for Strahov claystone, Vaid (1988) found the same relationship of ff vs. e m in for 
both undisturbed and remoulded Haney clay which is the additional finding of 
practical importance. 

Eqns. (10.5) to (10.8) can be written in a general form 

è
a
minh=b or e m i nt ? = b> (10.9) 

where a and b are constants
4
. If a = 1, which is often accepted, then e m i n/ f is 

a dimensionless parameter. This signifies that the relation 

= b (10.10) 

defines a group of soils (materials) with a physically isomorphous behaviour and 
the exponent a indicates, by its deviation from the value a = 1, the degree of 
digression from this behaviour. 

3
 The value of è has been calculated from y, so that in both cases the value of y ^ , as calculated by 
eqns. (6.18) and (6.19), should be the same. 
4
 In eqns. (10.5) to (10.9) 0.8 ^ a ^ 0.92, - 1 .334 ^ log 6 ^ -0 .087 ; according to Vyalov (1978, 
p. 286), 0.92 ^ a ^ 1.08; after Monkman and Grant - see Varnes (1983) - for pure metals and alloys 
0.77 S a ^ 0.93. 
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It can be concluded that relation (10.5) cannot be of universal validity (just 
the dispersion of + 0.59 in eqn. 10.5 amounts to almost one order of magnitude 
in the variation of ?f), as Fig. 10.14 has already clearly demonstrated. Physically 
isomorphous behaviour is to be expected only with soils in a particular state 
(soft, plastic, loose) acquired either by their structural history or by a high 
pressure range (Section 4.3). The value of the parameter b is perhaps related to 
the fabric of soils in question (its isotropy or anisotropy, as suggested by the test 
series of Campanella and Vaid, 1974, with undisturbed Haney clay, or by 
Dablice claystone in Fig. 10.14). It can also be related to the composition of the 
material (metals vs. weak rocks in Fig. 10.14), depending on the way in which 
the value of / is defined, etc. 

The above analysis, in addition to Section 9.2 and Fig. 9.8 and Section 4.3 
(Fig. 4.23 et seq.), points out how important the concept of physically isomor-
phous behaviour is to our knowledge as to how general the validity of a particu-
lar law governing the mechanical behaviour of geomaterials is. 

Giving eqn. (10.9) the form 

C A f e = * . ( 1 0 . 1 1 ) 

and if the relation of e m in vs. τ is known [e.g., Adachi and Takase, 1981, found 
a linear relationship between (<ra - στ) and log e m i n] , eqn. (10.11) can be used to 
predict the time to failure i f c. Since the same relation is approximately valid 
through tertiary creep, as shown in the following text, it suffices to measure the 
actual value of έ to be able to predict the remaining creep-failure life, as is done 
in Fig. 2.8b. Such a procedure leaves the domain of primary creep and enters the 
much less explored field of secondary and tertiary creep. The region of seconda-
ry creep is usually confined, for the reasons given later on, to the singular point 
o f é m in (Fig- 8-8). 

In a greater detail, the transgression from primary to tertiary creep is 
spotlighted by three examples in Fig. 10.16. The complex curves of γ (or έΆ) vs. 
t consist of alternating portions of decreasing (primary) and increasing (tertiary) 
creep rates. This variation is responsible for the undulation of the resulting 
graphs and it explains what has been called "structural perturbations" of creep 
curves (Sections 1 and 6.4, e.g., Fig. 6.13). 

Primary creep can be simply described by means of Abel's kernel (eqns. 7.65 
and 8.29) or by its particular form, Boltzmann's kernel, corresponding to 
logarithmic creep. Such creep is typical for secondary consolidation under the 
laterally confined conditions of the specimens (Fig. 9.1). The shear-stress level 
inducing strain-softening (Section 8.2) does not change (eqn. 9.2) through the 
course of creep. Thus, the volumetric creep prevails and its strain-hardening 
effect (Section 8.2) dominates. Logarithmic creep can therefore be held to 
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represent strain-hardening. The resulting eqns. (8.23) and (8.24) can be simpli-
fied into the form 

έ = — — (10.12) 
1 + t 

and 

ε = a exp I J 

(a - parameter; έ - creep rate, either έΆ or γ). Since 

χ = e
l nx

 , 

then, if ε = 0 for / = 0, eqns. (10.12) and (10.13) are valid if 

ε = a ln (1 + ή , 

ELAPSED TIME t 

0 10 20 30 ΜΙΝ.Α0 

Fig. 10.16. Time dependent strain-rate at the failure stress level of three specimens tested by the 
author in the ring-shear apparatus (Strahov claystone) and in the triaxial apparatus (Kyjice clay). 

(10.13) 

(10.14) 

(10.15) 
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which points to primary creep of a logarithmic nature (it is better to replace / by 
t/tl9 tx - unit time). 

For tertiary creep, Saito (1969) proposed the relation 

ε = 
tf - t 

(10.16) 

(b - parameter), which can be transformed into 

b £
 , έ = - e x p - , (10.17) 

tf υ 

and hence 

ε = b In —^— . (10.18) 
tf - t 

Through tertiary creep, the strain-softening effect of distortional creep (Secti-
on 8.2) prevails. 

Eqns. (10.12) and (10.16) thus express primary and tertiary creep, respectively, 
which in both cases are of logarithmic nature (in a more general case, Abel's 
kernel should be used with η Φ 1). Eqns. (10.13) and (10.17) disclose that in 
either case creep represents a thermally activated process. 

Combining primary and tertiary creep (eqns. 10.13 and 10.17; instead of /f, 
tf\tx is used to make b dimensionless) 

bt< ε ( ε\ t 

ε = — exp - + a exp - - . (10.19) 
tf b \ a) 

For secondary creep to occur, 

dé = 0 , (10.20) 

i.e., 

- e x p - = e x p i - - ) . (10.21) 
tf b \ a 

Then 

ti ε ε . 
In J. + _ = _ _ (10.22) 

tf b a 
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and finally 

(10.23) 

If the parameters a and b(a is related to C ag by eqn. 9.3) and tf are constants, 
time- and strain-independent, then eqn. (10.23) reveals the fact that secondary 
creep cannot theoretically occupy a longer time period (surely excluding Newto-
nian liquids and materials that have entered into the state of no hardening/softe-
ning effects). A quasi-secondary creep, as well as different kinds of structural 
perturbations, results from a combination of primary and tertiary creep. The 
onset of creep failure is marked by the prevailing of tertiary creep, with strain-
-softening becoming prominent. Failure is thus announced by the emergence of 
the period of a constant è or of e m i n. 

Structural perturbations found in both the primary and tertiary stages of 
creep (Fig. 10.16) embody a blend of strain-hardening (primary creep) and 
strain-softening (tertiary creep) occurring at different extent throughout the 
whole creep deformation process. 

Quasi-secondary creep has also sometimes been recorded, such as in Figs. 2.2 
and 2.3. In these cases, load variations should account for it (filling and empty-
ing of silos, wind pressure on chimneys, etc.). If throughout the whole process 
of deformation only secondary creep is considered to occurr, i.e. 

è = - or γ = - , (10.24) 
t{ tf 

eqn. (10.10) leads to 

e f (or yf) = const . (10.25) 

Since it often occurs that a = 1 in eqn. (10.9) and the period of secondary 
creep is short, pointlike episode in the creep process (at least for geomaterials), 
the argumentation leading to eqn. (10.25) can hardly be accepted. Because £f (or 
yf) are dimensionless quantities, the validity of eqn. (10.25) presumes, in addi-
tion, a physically isomorphous behaviour. This may happen within a limited 
population of geomaterials, but, in principle, cannot generally be taken for 
granted. 

Fig. 10.17 shows the relationship between the final shear strains yf (i.e., γ at 
the application of the last loading step leading to failure) and the initial porosity 
n0 (Zbraslav sand) or the normal stress σ'η (claystones). The relatively high 
dispersion is affected by the loading procedure (stepwise loading with loading 
steps varying in magnitude). Small loading steps (Fig. 10.17a) at n0 = const yield 
smaller values of yf (by reducing the segment-like form of stress-strain dia-
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grams). The effect of initial porosity is statistically insignificant (with the excep-
tion of small loading steps), being eliminated by the high dispersion. The effect 
of normal load increases the value of yf, but it is equally statistically insignificant 
owing to the large dispersion. The failure strain of reconstituted specimens 
exceeds that of undisturbed ones, as should be expected. In neither case can 
constancy of yf be accepted. 

Hitherto, physical isomorphism has been explored by comparing the behavi-
our of individual samples of the same or different materials. The external feature 
of the structural quality represented by physical isomorphism is the identity of 
dimensionless parameters or functions. Variable φ\, as in Fig. 4.18, is thus the 
sign of deviation from physical isomorphism. The constancy of dimensionless 
parameters implies the linearity of the respective dimensional quatities defining 
those parameters (e.g., the linearity of τ vs. σ'η in the quoted case of φ'^). 
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Fig. 10.17. Shear strain γ{ in the author's tests at the end of the last but one loading step, as 
depending on the initial porosity n0 (Zbraslav sand) and on the normal load σ'η (claystones). 

If is strange to see that the relation (10.10) has been found applicable even if 
ff is replaced by tfc or tAB (ÄB in Fig. 10.15b), or e m in by the value of the constant 
rate of secondary creep. To analyse this problem, physical isomorphism will be 
traced through the course of the creep testing of a single specimen, stressed 
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above the long-term shear-strength level. The hyperbolic relation (10.10), which 
may be also transformed into a linear one, 

*min = b - (10.26) 
if 

should be generally valid if the considered creep process is physically isomor-
phous, i.e., 

et = b0 (10.27) 

(b0 is a parameter). The degree of isomorphous behaviour can be investigated for 
both stages, that of primary and that of tertiary creep, if they are taken separate-
ly, because one is the process of strain-hardening, another of strain-softening, 
i.e., they are substantially different from the physical standpoint. 

Inserting έ from eqns. (10.12) and (10.16) into eqn. (10.27), one obtains 

a —E- = b0 (10.28) 
t{ + t 

(tx = 1 min.) and 

b = — — = b0 . (10.29) 
t{ - t 

The relation (10.27) is valid in both cases for whatever pair of (έ and ή values, 
if t is measured in the direction A -•  Β in the first case (and t > tx) and C -•  Β 
(Fig. 10.15b) in the second. Either measure is acceptable for the singular value 
o f έ

 = é^This_expla ins the equivalence of e^mtAB = é m i ni f c = é m i n/ f (but only 
if either AB or BC are of negligible extent) and the approximate constancy of 
ê t in the case of the sliding slope in Fig. 2.8b (as found independently also by 
Finn and Shead, 1973). Since the stages of primary and tertiary creep are not, 
owing to structural perturbations, physically homogeneous (being combinati-
ons, in different proportions, of strain-hardening and of strain-softening), physi-
cal isomorphism does not control both processes exactly. This is demonstrated 
by their deviating from the relation (10.27), as e.g., in Fig. 2.8b or as evidenced 
by the exponent α Φ 1 in eqns. (10.9) and (10.11). 

From the fundamental relation (10.27) one gets 

log t = log b0 - log έ , (10.30) 
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i.e., the law of logarithmic creep or of secondary consolidation as its particular 
case. Logarithmic creep is a physically isomorphous process. According to eqn. 

Thus, Boltzmann's variant of the Abel creep kernel follows as the consequence 
of physical isomorphism. Such isomorphism can be physically conceived (but in 
a rather oversimplified manner, based on rate-process theory as a physical model 
of soil structure) as a phenomenon brought about by strain-hardening, occur-
ring in consequence of a hyperbolic increase of the number of bonds with the 
increase of strain or of the logarithm of time (eqns. 9.15 and 9.16), and/or by 
stress-hardening when the number of bonds increases linearly with the increa-
sing stress (Fig. 8.4, eqn. 8.58). 

Only logarithmic creep marks a physically isomorphous behaviour. Parabolic 
creep (eqn. 10.9, α Φ 1) and hyperbolic creep (eqns. 9.17 and 9.18) indicate that 
the rheological behaviour is physically anisomorphous. For hyperbolic creep 
(eqn. 9.18) 

(a and b — parameters). 

10.5 Conclusion 

The principal points in the above analysis can be recapitulated in the form of 
the following statements: 

— While the migration of effective stress path is responsible for the loading 
rate-sensitivity of the total strength, effective peak and residual angles of inter-
nal friction are time-independent (even in the case when they are stress-depen-
dent). This can theoretically be accounted for by the adhesion theory of friction. 

— The time-dependence of effective cohesion can possibly be treated in 
a similar manner as the strength of other solid materials. The theoretical 
background for this treatment forms rate-process theory. 

— Long-term strength may be reasonably approximated by the fully-softened 
strength, i.e., there is essentially no distinction between the long-term strengths 
of undisturbed and reconstituted (remoulded) samples. 

— Long-term strength equals the upper yield stress and can be accordingly 
measured by the relaxation method. 

(10.27) 

(10.31) 

έ (α φ btf = a (10.32) 
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— Time-dependent deformations in the medium stress range are very nearly 
irreversible. 

— Structural perturbations and the occurrence of secondary creep (through 
a very limited time period) are explained by periodical combinations of primary 
and tertiary creep in different proportions. 

— The validity of the relation èmin tf = const or generally of έ t = const and 
of sf = const (and similar expressions for γ) is limited to the range of physically 
isomorphous behaviour. Their applicability is not generally guaranteed (the 
same is valid for constitutive models, like that of Oka et al., 1988, where the 
validity of eqn. 10.27 is assumed). 
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11. CREEP A N D STRESS RELAXATION 

11.1 Creep 

In the following text the problem of how to express the stress- and time-depen-
dence of creep deformations is examined in the light of the author's experimental 
results (Appendix 2). 

Referring to eqn. (7.78), a simplified form of the creep function 

e = F{a)f(t) (11.1) 

can be adopted. The creep deformation ε depends on two functions F and / , 
separately introducing the effect of stress - F(a) - and time -f[t\ If/(i) = const 
= α0, an isochronic set of stress-strain relations ε = a0F(a) is obtained. 

According to eqn. (8.47), the microrheological analysis yields 

F(a) = a e x p ^ f e - ^ (11.2) 

and 

• A O - ( f ) ( " J ) 

if in eqn. (11.1) ε = γ and σ = τ/τρ. Eqn. (11.3) represents the well-known 
Abel's creep kernel (eqn. 7.65) 

n d = a, + (11.4) 

(a, b, flj and bx are different parameters). 
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The relation governing creep should define, in a general way, the effects of the 
initial structure (st) and of the state parameters («0, w, σ, ε, t, Γ, σ- and ε-paths 
- Section 4). Then 

fx (st, n 0, w, σ, ε, t, Γ) = 0 , (11.5) 

if the stress- and strain paths are abstracted for the sake of simplicity. Assuming 
Τ = const, n0 and w depend on initial conditions and σ and ε (only creep 
deformation is considered) and for specimens / = 1, 2, 3, n, i.e. fx = /l5/2, 

Λ> ···> / « = X
 t h en 

/ ( ( j n , τ, y or ε ν, ί) = const (11.6) 

if the stress state in a ring-shear apparatus is regarded. This relation is dimensio-
nally homogeneous and can be expressed in the form of dimensionless quanti-
ties. If these are aptly chosen, eqn. (11.6) transforms into 

/ ( V o r = 0 . (11.7) 

Admittedly, this equation is not a general one, but it reflects particular stress and 
strain paths to which a specimen is subjected in the ring-shear apparatus. It can 
be generalized if the relations (6.23) are used. 

If r f symbolizes the long-term shear resistance, then 

σ
ή - 1 

τ Γ = σ'η tg φ\ => — = tg φ\ = const (H-8) 

for a particular soil (if c'{ is assumed to be of negligible magnitude). Then eqn. 
(11.7) changes into 

ft (or èyt)=f(^J (11.9) 

or 

( 1 1 . 1 0 ) 

318 



Creep 

(f being generally different functions). For final creep deformation it can be 
deduced that 

7 = 7o + dt or «y = «vo + / 
Λ ι 

- d i 

V t 

(11.11) 

(t - time since the application of the loading step τ/τΓ). 
The relation (11.10) lacks in generallity since the form of the time effect 

presumes a physically isomorphous behaviour (eqn. 10.27) which is not general-
ly acceptable. 

Since /(τ/τΓ) does not depend on time, 

y = of - = 1 - ϊο (11.12) 

(a is a function of time) and the funct ion / (T/T f) defines an isochronic stress-strain 
relation. A set of such graphs is depicted in Fig. 11.1 as derived from Fig. 6.10. 

2 u 6 8 1 0 

S H E A R D I S P L A C E M E N T 

Fig. 11.1. Isochronic stress-strain relations of undisturbed Strahov claystone tested at 
σ'η = 0.31 MPa (based on Fig. 6.10). 

The task of finding an optimum expression of eqn. (11.7) can be solved in two 
steps: firstly, for t = const, the function /(τ/τγ) is selected and then the effect 
of time, say j\t) or more generally f[t, τ/τ() is found. 

According to eqns. (11.2) and (11.12), two groups of functions /(τ/τΓ) are 
available. The first one is inspired by the shape of the isochronic stress-strain 
diagrams, one of which is also the standard diagram, the second one is backed 
by rate-process theory. 
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In the first group, the hyperbolic stress-strain relation (eqns. 3.15b and 5.6, 
Fig. 5.9) seems to be the most relevant. After this relation 

(11.13) 
T f a + ε 

or 

g = a
 v t;

 => g = fl - ( l . (11.14) 
1 - (τ /Tf) T f \ V 

Thus, considering eqn. (11.12) and generalizing — 1 into 6, one can deduce 

γ = a { ^ - l \ (11.15) 

or 

γ = a^l - . (11.16) 

Following the second line, that of rate-process theory, eqn. (11.2), 

γ = α exp (^b . (11.17) 

A combination of hyperbolic and rate-process-based approaches is represented 
by the relation 

τ 

(11.18) 
τ - e

û 

which can be written in the form 

τ 
= e -

w
( e*> - e

a
) . (11.19) 

By its relation to the strain-hardening and strain-softening processes (eqns. 
10.13 and 10.17, taking into account eqn. 11.12), eqn. (11.19) explains the 
segment-like shape of the stress-strain diagrams by the intervention of those 
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strain-dependent processes (Figs. 10.2, 10.3 and 10.4, Section 10.2). Eqn. (11.19) 
can also be given in the form 

-=\-ç"-t>y or e
a

~ ^ = l - - (11.20) 

(in the above relations, a and ft represent different parameters). Replacing γ by 
εν, one obtains similar relation for the volumetric creep rate. 

Hyperbolic and rate-process-based relations are not independent. Puting 
eqns. (11.16) and (11.17) into the form of logarithms 

log γ = log a + ft log ^1 - (11.21) 

and 

In y = I n a + ft-, (11.22) 
τ, 

and accepting that 

In (1 - x) = - x - — — , (11.23) 
2 3 4 X X X 

eqn. (11.21) yields 

In γ = In a + ft 
2 

(11.24) 

which is in accordance with eqn. (11.22), if quadratic and higher-order members 
on the right-hand side of eqn. (11.23) are neglected (0 ^ τ/τΓ ^ 1). Rate-process 
theory thus underlies the hyperbolic stress-strain relations often met with soils. 

Eqns. (11.15), (11.16), (11.17) and (11.20) are shown in Fig. 11.2 in the form 
of isochronic stress-strain relations. Not all of them are flawless as to the 
boundary conditions. For only three relations γ -> oo if τ/τΓ 1 and only one 
gives γ = 0 for τ/ττ = 0. These deviations are of little significance for practical 
purposes when 0 < τ/τΓ < 1. 

The implicit condition that r f is time-independent is strictly applicable to 
normally consolidated and to granular soils. More generally, r f = τΓ(/) as in Fig. 
5.1a. Then the separation of variables in eqn. (11.1) is not acceptable and 
a stepwise determination of isochronic stress-strain relations (with time steps tl9 
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t2, etc. - Fig. 5.1a) should be adopted, or, better, the value of τ should be 
expressed as a fraction of the long-term strength τΓ. 

The present analysis is of a somewhat pragmatic nature: one is satisfied if the 
correlation of γ or ε ν vs. τ\τ{ is close enough for practical purposes. 

The loading branches of distortional creep curves will first be subjected to 
analysis, then volumetric creep curves will be added. The unloading branches, 
for which fewer experimental data are available, will be dealt with afterwards. 

Fig. 11.2. Isochronic stress-strain graphs of the shape used for testing γ or ε ν vs. τ/τ{ relations. 

Eqns. (11.15), (11.16), (11.17) and (11.20) can be represented in the following 
forms: 

1: log γ = log a + b log ^ - - 1^ , (11.25) 

2: log γ = log a + b log ^1 - , (11.26) 

3: In γ = Ina + & (11.27) 

4: γ = a + b ln ^1 - χ 1 0 "
6
 . (11.28) 
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TABLE 11.1
Parameters in eqns. (11.25) to (11.28) - distortional creep

1 2 3 4

(1' log a b r log a b r Ig a b r a b rn

Strahov claystone 0.1 -6.538 -0.726 0.849 -6.806 -0.936 0.808 -17.376 +4.479 0.904 -0.02 -0.717 0.643
(undisturbed) 0.3 -5.768 -1.006 0.961 -6.056 -1.235 0.960 -17.02() +6.695 0.942 -10.789 -12.72() 0.977

0.5 -6.234 -0.531 0.750 -6.438 -0.715 0.788 -15.711 +2.743 0.624 -0.567 -1.286 0.875
total -6.195 -0.678 0.603 -6.419 -0.859 0.591 -16.434 +4.103 0.594 -1.805 -3.143 0.435

Strahov claystone 0.1 -6.035 -1.092 0.999 -6.588 -1.786 0.995 -16.276 +4.770 0.997 -1.221 - 3.111 0.980
(reconstituted) 0.3 -6.025 -0.638 0.971 -6.367 -0.990 0.948 -15.401 +3.117 0.965 -0.109 -1.613 0.958

0.5 -5.934 -0.807 1.0 -6.240 -1.087 0.995 -15.934 +4.412 0.994 -1.554 -3.557 0.994
total -5.984 -0.732 0.944 -6.326 -1.082 0.915 -15.602 +3.640 0.947 -0.509 -2.290 0.878

Dablice claystone 0.3 -6.521 -0.598 0.910 -6.674 -0.714 0.927 -17.524 +4.345 0.808 +0.074 -0.358 0.925
0.5 -6.899 -1.047 0.987 -7.213 -1.325 0.979 -19.43<J +6.385 0.999 -0.510 -0.706 1.0

total -6.700 -0.777 0.918 -6.898 -0.929 0.916 -18.66.. + 5.569 0.894 -0.113 -0.455 0.921

Zbraslav sand 0.3 -6.815 -0.918 0.822 -6.997 -1.049 0.810 -21.051 +8.331 0.876 -0.627 -0.836 0.821
0.5 -6.144 -0.633 0.997 -6.305 -0.733 0.998 -17.536 +5.7.57 0.994 -1.328 -2.231 0.999

total -6.398 -0.619 0.713 -6.563 -0.744 0.734 -17.129 +4.289 0.593 -1.549 -1.639 0.751

Notes: O'~ in MPa
r - coefficient of correlation

('j
""1(l)
(l)
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Creep and stress relaxation 

All parameters a and b are dimensionless if γ is defined as γ = dy/d(///1), tx = 
= 1 min. 

Experimental values of γ were determined from the regression lines in Appen-
dix 2 for tjtx = 10

3
, when the correlation with τ/τ{ is the closest. Parameters 

of eqns. (11.25) to (11.28) were found by linear regression analysis. 
Figs. 11.3 and 11.4 show graphically the results of regression analyses for 

undisturbed and reconstituted Strahov claystone. Table 11.1 contains the nume-
rical values of the parameters in eqns. (11.25) to (11.28) indicated by φ to ® or 
( D (in Figs. 11.3 and 11.4 or 11.5, respectively). Also listed in Table 11.1 are the 
respective correlation coefficients r. The results of regression analyses of experi-
ments with Dablice claystone and Zbraslav sand were similar. They are depicted, 
only for the relation (11.26), in Figs. 11.5a and 11.5b. 

Fig. 11.6 documents the calculated coefficients of correlation for different 
regression lines 1 to 4 corresponding to eqns. (11.25) to (11.28). All of them are 
statistically signicant (r > r005). Correlation coefficients have been computed 
either for the individual specimens (i.e., for each experimental σ^-value) or for 
the whole set of experimental points, the number of which is indicated in 

Fig. 11.3. Correlations of the distortional creep strain rate γ (at t/tx = 10
3
, tx = 1 min.) with the 

shear-stress level τ/τ{ (τ{ - long-term shear resistance) for specimens of undisturbed Strahov clay-
stone (4 - summary regression line for all experimental points). 
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brackets, for each soil type (i.e., for undisturbed Strahov claystone, reconstituted 
Strahov claystone, Dablice claystone and Zbraslav sand). 

The following findings may be derived from the data in Figs. 11.3 to 11.6: 
— In general, the distortional creep rate γ correlates well with the shear-stress 

level τ/τγ, irrespective of the relation selected from the four alternatives 1 to 
4 (eqns. 11.25 to 11.28). This is not surprising, because the above analysis has 
shown their mutual alliance. 

— The dispersion of experimental points for undisturbed samples is much 
greater than for reconstituted samples, as is documented by Strahov claystone 
(Fig. 11.6). This is the result of reconstitution (remoulding) which simplifies the 
structure of the original sample. 

— The dispersion of experimental points around individual regression lines 
(marked 1, 2 and 3 for σ'Ώ = 0.1, 0.3 and 0.5 MPa, respectively, in Figs. 11.3, 
11.4 and 11.5) is much smaller than around the total (summary) regression line 
(labelled 4). This is clearly demonstrated in Fig. 11.6, even if it is respected that 
reducing the set amounts, as a rule, to an increase of the r-value. This phenome-
non is especially pronounced with the specimen of undisturbed Strahov claysto-
ne tested at σ'Ώ = 0.3 MPa. 

Fig. 11.4. Correlations of the distortional creep strain rate γ (at t\tx = 10
3
, = 1 min.) with the 

shear-stress level τ/τΓ (τΓ - long-term shear resistance for specimens of reconstituted Strahov clay-
stone (4 - summary regression line for all experimental points). 
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Fig. 11.5. Correlations of the distortional creep strain rate γ at t\tx = 10
3
 (t] = 1 min.; a - Dablice 

claystone, b - Zbraslav sand) and of the volumetric creep strain rate £v at t/tl = 10
3
 (tx = 1 min; 

c - Dablice claystone, d -Zbraslav sand) with the shear-stress level τ/τΤ (rf - long-term shear 
resistance; 4 - summary regression line for all experimental points). 
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— The value of σ'η does not seem to affect the creep-strain rate, with possible 
exception of Zbraslav sand (Fig. 11.5b). The effect of the initial porosity is not 
prominent, perhaps because it is reflected in the value of τ Γ 

— One may preliminary conclude that the dispersion of γ owing to the 
structure of individual specimens is much more important than the choice of 
a plausible function correlating γ with τ/τΓ. 

Similar analyses of the volumetric-creep strain rates have been performed. The 
selection of suitable correlation functions is more difficult than in case of y. Fig. 
11.7 presents some experimental curves for Zbraslav sand, demonstrating the 
difficulty of describing the dilatancy branch analytically. Fortunately, significant 
creep phenomena had been recorded with Zbraslav sand at τ/τΓ > 0.6 and only 
dense sand specimens at higher shear stress levels dilated. Therefore, the same 
functions - eqns. (11.25) to (11.28) - were used with ε ν in place of γ and one 
more, namely 

5: έ ν = α + ί> - , (11.29) 



Creep 

É 
< Z 
—JO 

S h TOTAL INDIVIDUAL SPECIMENS 

STRAHOV 11 Γ ~ 5 É É I Ä ο Ã 
CLAYSTONE 2 I ! Ï I UP · 
UNDISTURBED 3 Ï I Ä Ï · 

« ( 2 7 )_ A E _ ! » ° Ä · 

DITTO \ ! É •  ! J £ 

RECONSTITUTED 3 1 D I ¢ 

Ô�BLICE 1 I
 D

 · Ô Ã 
CLAYSTONE § é é OD « .

 #
i 

ZBRASLAV I ! · f 

SAND i ! Ï * · 4 

3 05 t "S 05 Ã 
COEFFICIENT OF CORRELATION r COEFFICIENT OF CORRELATION r 

RELATION 1 : log ý. = á + b log(li-l ) 3 : In p a * b Î -

2 : log £ = á • b log(1 - ·—) A : £ = [á + b In ( 1 - ±-)]÷ 10"
6 

S Y M B O L S :
 f

 ' 

( ) N U M B E R OF EXPERIMENTAL POINTS 

J
 Γ
005

 ( C 0 E F
'
 0F

 CORRELATION ON T H E 0.05 PROBABILITY LEVEL) 

• ' r FOR A L L M E A S U R E M E N T S OF A SOIL T Y P E 

on ( M P a ) 

ο 0.1 

• 0.3 

Ä 0.5 

Fig. 11.6. Coefficient of correlation for different regression lines (1 to 4) of distortional creep strain 

rate ã vs. shear-stress level ô/ôã (Figs. 11.3 to 11.5). 

1 -
 2

 o ^ 1 0 ^ ,12 Ä ^ Ä 

H / y ^s 
S Y M B O L S : ν / 

T E S T No. n 0 6-Þ \ / 

% M P a 0.5·· y Jt 

Ä 3 41.3 0.517 / JT „S 
ο 5 32.9 0.11 // dy* 
• 12 40.7 0.313 

ο 2 43.2 0.11 lap 
• 10 38.65 0.313 Kr 

, 1 f. . 1 I — 

-1 -0.5 0 *0.5 *1 *1.5 % 

— • C O M P R E S S I O N åí 

Fig. 11.7. Volumetrie strain vs. shear-stress level of some specimens of Zbraslav sand as measured 

in the ring-shear apparatus. 

327 



Creep and stress relaxation 

was added. This relation results from the combination of 

γ = ax exp (bxéy) (11.30) 

and 

(11.31) 

Figs. 11.8 and 11.9 show examples of the regression analyses of the volumet-
ric-creep strain rate έν and the shear-stress level τ/τΓ for Strahov claystone and 
Fig. 11.10 lists the respective coefficients of correlation. The correlations of ε ν vs. 
τ/τΓ for Dablice claystone and Zbraslav sand, with the relation (11.26) applied, 
are presented in Fig. 11.5c, d (with Zbraslav sand dilatancy takes place). Nu-
merical values of parameters in the relations used are quoted in Table 11.2. 

The examination of these Figures enables the following observations to be 
made: 

— The correlation of ε ν vs. τ/τΓ is generally looser than in the case of 
distortional creep. For the whole set of experimental data for each soil type, it 
ceases to be statistically significant. The final regression line 4 (Figs. 11.5, 11.8 
and 11.9) is, consequently, often almost horizontal. 

Fig. 11.8. Correlations of the volumetric creep-strain rate e v (at t/tx = 10
3
, tx = 1 min.) with the 

shear-stress level τ/τ{ (τ( - long-term shear resistance) for specimens of undisturbed Strahov clay-
stone (4 - summary regression line for all experimental points). 

-
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Creep and stress relaxation 

— The coefficient of correlation for individual specimens (or for individual 
experimental σ^-values) is much higher. As with distortional creep, the selection 
of the suitable relation between ε ν and τ/τ{ is subordinate to the effect of 
structural variations of individual specimens. All the relations 1 to 5 are appli-
cable. 

— Contrary to distortional creep, the undisturbed sample of Strahov clay-
stone reveals a more regular pattern of behaviour (the individual value of r as 
a rule being higher) than the reconstituted one. 

— The specimen of undisturbed Strahov claystone loaded by σ'η = 0.52 MPa 
discloses a curious behaviour. The whole set of experimental points falls into two 
subsets, one delimited by τ/τΓ ^ 0.734, the other one by τ\τ{ > 0.734. Two 
regression lines are, therefore, interpolated through the points of each subset 
(marked 3' and 3 " in Fig. 11.8). If the respective stress-strain diagram in Fig. 
10.3 is examined, one finds that the shear-stress level τ\τ{ = 0.734 corresponds 
with the corner (point of bifurcation) of two segments. It is thus confirmed that 
the segment-like shape of the stress-strain diagrams is truly an expression of the 
interchanging periods of strain-hardening and strain-softening, as stated in 
Section 10.2. This process can be reflected, as in the case dealt with, in the 
variation of the deformation response of the soil structure. 

SYMBOLS : 

Fig. 11.9. Correlations of the volumetric creep strain rate ε ν (at t/tl = 10
3
, /, = 1 min.) with the 

shear-stress level τ/τΓ (τΓ - long-term shear resistance) for specimens of reconstituted Strahov clay-
stone (4 - summary regression line for all experimental points). 
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The preceding analysis emphasizes the overriding effect of the structural 
variations among individual specimens. It does not offer, however, a clue to the 
selection of the analytical relation of γ or ε ν vs. τ/τΓ which would be most 
appropriate, different alternatives revealing, as is shown by the statistical analy-
sis, approximately the same predictive capacity. The quality of the parameters 
of eqns. (11.25) to (11.29) has, therefore, been chosen as a criterion for their 
discrimination. 

Parameters found by the regression analyses and listed in Tables 11.1 and 11.2, 
are represented graphically, with respect to the frequency of their occurrence, in 
Figs. 11.11 (f) and 11.12 (εν). A set of parameters should be preferred which 
varies for all four tested soils in a random manner, i.e., the respective frequency 
curve is of a bell-shaped, Gaussian type and the coefficient of variability ν = s/χ, 
as defined for a normal Gaussian distribution, is of minimum value. In addition, 
different values of one parameter should be of the same sign. 

According to Fig. 11.11, the first three functions form the best choice, and 
amongst them, the function 2 (eqn. 11.26) will be preferred. In addition to the 
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-ό-ι 1 1 — < > — -cA ι 1 eft o —κ£—ι 1 »-6— - I — 6 * 1 Η 

- 1 5 - 1 7 - 1 9 - 2 1 2 4 6 8 +1 0 -1 -2 *2 0 -2 -A In α b α b 
( ONE PAIR OF VALUES DELETED ) 

Fig. 1 1 . 1 1 . Frequency of different values of parameters intervening in distortional creep-rate functi-
ons (11.25) to (11.28) at t/tl = 10

3
 (f, = 1 min.) - see Table 11.1 

-6 -7 -8 -2 0 +2 -6 -7 -8 -9 *1 -1 -3 -10 -14 -18 -22 -26 

Fig. 11 .12 . Frequency of different values of parameters intervening in volumetric creep-rate 
functions (11.25) to (11.29) (γ replaced by £v) at t\tx = 10

3
 (/, = 1 min.) - see Table 11.2. 
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acceptable shape of the frequency curves of both log a and b, it is provided by 
the mean value of b = — 1. Thus approximately 

log γ = - 6 .563 (1 ± 0.1) - (1 ± 0.5) log ^1 - , (11.32) 

if the confidence interval equal to (3c ± 2 s) is chosen. 
The poorer predictibility of έ ν, as already mentioned in connection with Figs. 

11.8, 11.9 and 11.10, is affirmed also by Fig. 11.12. The majority of parameters 
range from negative to positive values and, consequently, the coefficient of 
variability rises to high values. The first three functions 1 to 3 are again preferab-
le, and the same function 2 (eqn. 11.26) as for γ seems to be most acceptable also 
for εν. The value of b ranges between —2.56 S b ^ +0.87 (Table 11.2) and 
approximately 

log ε ν = - 6 . 8 3 (1 ± 0.17) - 0.35 ^1 ± ^ log ^1 - . (11.33) 

The undesirable asymmetry of the parameter b is a sign of its inferior service. If 
the relations (11.32) and (11.33) were restricted to one kind of soil, the variability 
of the respective parameters would certainly drop. 

Parameter a of the first three functions 1 to 3 displays a lognormal distributi-
on. It is therefore a product of an exponential function whose exponent varies 
randomly in the Gaussian sense. This finding accords in principle with the 
random variation of the activation energy around a fixed value (compare eqns. 
8.12 and 8.46), while the parameter b refers to the structural changes of the soil 
in the process of creep (variation in the number of bonds 5 - e q n . 8.12 and 8.54). 
The value of bd < 0 for γ corresponds with strain-softening, a monotonous 
process taking place through the distortional creep. Volumetric creep where 6V 

^ 0 is accompanied both by strain-hardening and strain-softening. If the value 
of by is considered for the same normal load σ'η = 0.3 MPa, then £ v = —0.63 
for undisturbed Strahov claystone (strain-softening, i.e., an increase in the 
magnitude of éy with the rise of τ/τΓ), and by = +0.87, +0.19 and +0.46 for 
reconstituted Strahov claystone, Dablice claystone and Zbraslav sand, respecti-
vely. This signifies strain-hardening, i.e., a decrease in the magnitude of ε ν with 
rising τ/τγ, which is most intensive for reconstituted Strahov claystone, as could 
be expected. The parameter by can partly be exploited to differentiate between 
soil types. 

It is instructive to explore the case when both processes, that of strain-harde-
ning and that of strain-softening, occur with the same soil type. For reconstitu-
ted Strahov claystone and εν, for example, strain-hardening takes place at σ'η = 
= 0.3 MPa and strain-softening at σ'η = 0.5 MPa (Fig. 11.9). Strain-softening 
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seems to cause a much closer έ ν vs. τ/τΓ relation. This may be the reason for the 
higher r-values with undisturbed Strahov claystone (Fig. 11.8) and, more gene-
rally, the reason for closer correlation of γ vs. τ/τ( when exclusively strain-softe-
ning occurs than of ε ν vs. τ/τ{ where both processes are intermingled. This 
observation suggests that strain-softening makes the soil structure more homo-
geneous. 

The next step in the development of an analytical function (11.1) requires the 
investigation of the effect of time. In agreement with eqn. (11.4), one expects that 
Abel's exponents nd and ny (indexes d for distortional and ν for volumetric creep) 
will be linear functions of the stress level (stress level should a priori affect the 
value of η in order to simulate the transition from primary to tertiary creep). 

Figs. 11.13 and 11.14 present measured values of nd and ny which are 
correlated with the shear-stress level τ/τΓ. Numerical values are listed in Table 
11.3. Fig. 11.15 indicates the magnitude of the coefficient of correlation r - it is 
in all cases statistically insignificant (r < r 0 0 5) . Figs. 11.13e and 11.14e present 
the distribution of « d-and «v-values of reconstituted and undisturbed Strahov 
claystone (Figs. 11.13b and 11.14a, respectively). Both distributions are roughly 
Gaussian and the coefficient of variability of ny is about twice that for nd. 
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Fig. 11.13. Correlations of Abel's exponent nd of distortional creep with the shear-stress level 
(a - Strahov claystone undisturbed, b - ditto, reconstituted, c - Öablice claystone, d - Zbraslav sand, 
e - distribution of nd-values for reconstituted Strahov claystone: nd - mean value, ν - coefficient of 

variability). 
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TABLE 11.3 

Abel's exponents for distortional (nd) and volumetric (ny) creep 

< "d =
 a 

+ b(T/T{) nv - a + b(T/T{) 

(MPa) 
a b 

V 
a b 

V 

0.1 + 1.251 - 0 . 4 5 4 0.519 + 1.689 -0 .827 0.995 
Strahov claystone 0.3 + 0.930 + 0.075 0.096 + 0.480 + 0.590 0.507 
(undisturbed) 0.5 + 1.175 - 0 . 5 2 0 0.376 +0.830 +0.080 0.058 

total + 2.317 -1 .952 — + 0.806 + 0.178 0.127 

0.1 + 1.214 + 0.479 0.509 + 1.209 -0 .510 0.159 
Strahov claystone 0.3 + 1.172 - 0 . 0 0 4 0.011 + 0.315 + 0.815 0.813 
(reconstituted) 0.5 + 1.221 + 0.216 0.184 + 0.700 + 0.486 0.700 

total + 2.046 -1 .075 — + 0.587 + 0.510 0.440 

0.3 - 0 . 0 5 + 1.237 0.975 + 1.265 -0 .599 0.691 
Dablice claystone 0.5 + 0.739 + 0.134 0.216 + 1.438 -0 .971 0.944 

total + 0.129 + 1.031 — + 1.250 -0 .652 0.648 

0.3 + 2.150 -1 .137 0.727 -1 .312 + 2.555 0.953 
Zbraslav sand 0.5 + 2.241 -1 .548 0.999 — — — 

total + 3.256 -2 .569 — + 0.286 + 0.694 0.230 

Note: r - coefficient of correlation 

If the coefficient of correlation is low, then for the whole set of experimental 
points of each tested soil, the regression line 4 (Fig. 11.14) is not strongly fixed. 
These lines were drawn in Fig. 8.15 after reducing the dispersion of experimental 
points by replacing two or three values by their means. Thus the weight of 
individual points has been reduced to one half or one third. 

A more distinct regression line has then been obtained, sufficiently representa-
tive (Fig. 11.13) to be used in subsequent calculations. Such a procedure could 
not produce values of wv appropriate for calculations because for Zbraslav sand 
and Öablice claystone an unacceptable value of ny < 0 has been recorded for τ/τ( 

< 0.6 to 0.8 (Fig. 8.15b). In this case, therefore, the common regression analysis 
has been applied (4 in Fig. 11.14). 

By combining the regression lines ηά = /(τ/τγ) and nw = J[r/rr) with the 
relations: γ or ε ν = /(τ/τΓ) (eqn. 11.26 and the likes - other alternatives to these 
relations are posible but are omitted in the following analysis), whose parame-
ters were found statistically for t/tl = 10

3
 (t{ = 1 min.), one can obtain 

γ = lo^ + ioga^ _ ( 1 L 3 4 ) 
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Fig. 11.14. Correlations of Abel's exponent « v of volumetric creep with the shear-stress level 
(a - Strahov claystone undisturbed, b - ditto, reconstituted, c - Dablice claystone, d - Zbraslav sand, 
e - distribution of «v-values for undisturbed Strahov claystone: « v - mean value, ν - coefficient of 

variability). 
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Fig. 11.15. Coefficients of correlation of nd and nv with the shear-stress level of tested soils (Figs. 
11.13 and 11.14). 
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(log a, b and nd in Tables 11.1 and 11.3). Thus, for example, for undisturbed 
Strahov claystone and 

σ' = 0.11 MPa: 
η 

\ -0 .936 / t \ -1.251 + 0.454 (τ/τΓ) 

• = 10 - 3.053 - 1.362 ( T / r f )l Μ J _ . ( u 3 5) 

σ'η = 0.31 MPa: 

/ s -1 .235 / χ - 0 . 9 3 - 0.075 (r / r f) 

• = 10 - 3.266 + 0.225 (r / r f) ^ _ i j ^ . ( U 3 6) 

0.52 MPa: 

-0.715 / , \ -1 .175 + 0.52 ( r / r f) 

10 -2.933 1 . 5 6 ( τ / τ Γ) Λ _ M ' Μ j ' . ( 1 L 3 7) 

and in total, for all experimental values of σ'η, 

859 

. = 1 00 . 5 3 2 - 5.856 (r/rf) f 1 - 1) f 1) " . (11.38) 

-0.859 / \ -2 .317 + 1.952 (τ/τΓ) 

h 

Similar relations are valid for ε ν with the parameters of Tables 11.2 and 11.3 
and nv in place of n& 

For engineering calculations, it is of importance to know how reliable the use 
of relations (11.35) to (11.38) is, i.e., how accurately they could predict creep-
-strain rates. For this purpose, the calculated and measured values of γ and ε ν 

have to be compared, for instance, by means of the coefficient of the calculation 
confidence 

feca. = - or /c c al = ^ , (11.39) 

where γ& éwc and ym, are calculated (using e.g., eqns. 11.35 to 11.38) and 
measured (regression lines in Appendix 2) values of γ and εν. Since creep 
deformations are considered, for practical applications it is the mean value of fccal 

that matters. Calculated values result either from the application of relations 
such as eqns. (11.35), (11.36) and (11.37), found for each experimental a^-value 
(individual fccal) or they follow from the relation (11.38) and the likes for each 
tested soil (total £ c a l) . The magnitudes of yc and ym or e vc and at t\tx = 10

3 

to 10
7
 (0.7 of a day to about 19 years; t{ = 1 min.) were employed. 
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TABLE 11.4 

Mean values of the coefficient 

< 
(MPa) 

y 

< 
(MPa) ĉal ĉal 
< 

(MPa) 

ind. total ind. total ind. total ind. total 

Strahov claysto-
ne (undisturbed) 

0.1 
0.3 
0.5 

0.68 
1.00 
0.95 

2.56 
0.74 
0.86 

0.89 1.06 
1.00 
1.00 
1.04 

12.67 
2.26 
5.02 

1.02 4.60 

Strahov claysto-
ne (reconstitu-
ted) 

0.1 
0.3 
0.5 

1.00 
1.03 
1.00 

1.81 
0.56 
1.15 

1.01 0.95 
1.00 
0.96 
1.00 

0.84 
0.86 
1.38 

0.98 0.99 

Dablice claysto-
ne 

0.3 
0.5 

1.00 
1.00 

0.87 
0.75 

1.00 0.81 
1.05 
1.03 

2.10 
0.52 

1.04 1.12 

Zbraslav sand 
0.3 
0.5 

1.00 
1.00 

4.34 
0.30 

1.00 1.60 
1.00 

- - -

mean: 0.975 1.10 1.01 1.93 

A summary of the calculations is contained in Table 11.4. The values of either 
γ or ε ν can reliably be predicted on the basis of individual and total relations, 
with the exception of ε ν for undisturbed samples, if the specimens tested are 
evaluated as a whole

1
. 

In the calculations, values of nw < 0 (Fig. 8.15b) must be rejected for physical 
reasons, as mentioned previously. Nevertheless, if used and treated along purely 
mathematical lines, better results can be gained than by the usual approach 
- e.g., £ c al in Table 11.4 for σ'η = 0.1 MPa instead of 12.67 equals 1.72. Though 
attractive, such an approach is unacceptable and represents yet another illustra-
tion of the principles put forward in Section 3.2. 

Figs. 11.16 and 11.17 give an idea as to the distribution of for different soils 
tested and for γ or εν. The reliability of the strain-rate calculations for individual 
specimens is higher—the interval of log Ar^-values is narrower and the distribution 
symmetrical to the value of log k^ = 0, i.e., k^ = 1. The difference 

The apparent contradiction in kca] of undisturbed Strahov claystone tested at σ'η = 0.1 MPa - its 
value is smaller for γ than for ev (0.68 vs. 1.0) - is accounted for by the fact that for γ all experimental 
shear-stress levels were respected, contrary to εν> where only three out of five stress levels were 
considered, owing to the high dispersion. 
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between undisturbed and reconstituted samples is prominent. If extreme values 
were required, the results of calculations would be certainly much less satisfacto-
ry. 

Knowing the distortional creep strain rate to follow the relation 

γ = a 1 - - - , (11.40) 

one may deduce: 

for nd < 1: 

z \
b
 1 / Λ

1
 ~ "

d 

(γ0 = γ for t = 0) ; 

Fig. 11.16. Frequency of different values of the ratio of calculated and measured values of distortio-
nal creep strain rates kcaX = yjym for tested soils (a - undisturbed Strahov claystone, b - ditto, 
reconstituted, c - Dâblice claystone, d - Zbraslav sand) in the range of tjtx = 10

3
 to 10

7
 (t{ = 1 min.). 
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for nd = 1: 

y = y 0 + (11.42) 

(y0 = y for ί = ; 

for n d > 1: 

(11.43) 

(ïoo = y for ί oo ) . 

Similar relations are valid for ε ν if the same form of the creep kernel is chosen. 
Until now only loading has been considered. Creep in the case of unloading 

has been analysed for Strahov claystone and the results, in a graphical form, are 
presented in Fig. 11.18. Since in unloading strains are of opposite sign, absolute 
values | γ | and | ε ν | are used, as with dilatant έ ν for Zbraslav sand in Fig. 11.5d. 

-2 -1 ο *1 +2 +3 * 4 
log kcai 

a } 

% 
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30+ 
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10 

A 

-0L3-0.1+0.140.3 
log k c al d) 

% 
40+ 

30 

20 

10 

% 
40 
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20 

10 

0 

SYMBOLS : 

· INDIVIDUAL 

SPECIMENS 

ο TOTAL 

-3 - 2 - 1 0 • I +2 *3 
log k c ai 

b ) 

-1.5 -1 -0.5 0 +05 +1 *15 
log k Ca i c) 

Fig. 11.17. Frequency of different values of the ratio of calculated and measured values of volumet-
ric creep strain rates = è^/é^ for tested soils (a - undisturbed Strahov claystone, b - ditto, 
reconstituted, c - Dablice claystone, d - Zbraslav sand) in the range of//*, = 1 0

3
t o l 0

7
( r , = 1 mm. . 
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Creep behaviour in unloading is the same as in the regime of loading. In Fig. 
11.18a, the regression line 1 (full) shows that the effect of stress level is better 
respected if instead of the stress level τ/τ{ at the moment of unloading, an 
unloading step is used of the form Δτ/τ Γ (Δτ equals the current value of τ minus 
the residual value of τ after unloading). In the latter case, the experimental 
points for σ'η = 0.1 MPa are better arranged along the (full) regression line 
1. Therefore Δτ is used throughout Fig. 11.18. 

One can observe the tendency of exponent b to become of the opposite sign 
as for loading. Curious is the value of γ for reconstituted Strahov claystone at 
σ'η = 0.3 MPa (Fig. 11.18a): it does not depend on the shear-stress level τ/τΓ. The 
effect of τ/τ Γ on ε ν in this case is also not too strong. It must be left to further 
investigation whether or not such behaviour—no stress-dependent changes of 
structure—is characteristic for overconsolidated specimens, as seems to be the 
case. 

Eqn. (6.12) quoted a plastic potential surface which yields, for the stress and 
strain boundary conditions of a ring-shear apparatus 

- J ! = t g p r - - . 11.44 

log|fl 

- 7 · · 

log jr =-5.76*1.66 log ( Ι - ζ ' ) 
( r = 0.93 )

 v 

log M 
( r =0.95 ) -9 

X / iog f=-5.82*1.08 log (1 -^) 

y \ϊ' Ψ -β 

- ( r = 0.45) 

log fr=-&67- 0.04 log (1 ) -7 j . 
4 \ gi-s-6.67-a05 log (1 -f-

(r = 0.39)
 f 

- 6 

4t\ 
/ 

/ δ 

A / 
/ 

log V - & 9 2 * 6.52 logd-fM 
/ I r = 0.89)

 f 

logiv=-7.52-0.78log(1~) 
( r = 0.69)

 f 

at, 
logiY=-4.9 

2.34log(1-Sj 
( r =0.86) .

 Tf 

-0.5 zJ\ 
l o g ( 1 - ^ ) , l o g ( 1 ~ ) a) 

nv=-Q05*4.67 ψ 
(r = 1 )

 f 

1*2 

l o g d - ^ ) 
-1 

b ) 

SYMBOLS : 
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ΑΧ ο · 
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0.25 0.5 Δχ 0.75 0.25 
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 f 

05 0.75 
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ΔΧ Δ 

< -

Fig. 1 1 . 1 8 . Creep parameters of Strahov claystone for unloading regime. 
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If de^/dy
p
 = ev/y, relations (11.25) and the likes can be used to derive 

equations similar to (11.44). Generally, using eqn. (11.34) and its analogous form 
for ε ν 

— = 10
l og flv - log fld + 3 (nv - nd) / j j / _ j (l 1.45) 

(indexes d and ν for distortional and volumetric creep rates). For undisturbed 
Strahov claystone 

( \ -0 .225 / \ -0 .806 - 0.178 (τ/τή 

1 - - J ( - J . (11.46) 

Using this equation with eqn. (11.38), one gets 

/ dp κ έ , ν 0.634 / Ν 1 . 5 1 1 - 2 . 1 3 (τ/τή 

(^1 ώ j *1 = ΙΟ""·™ + 7.386(r/rf) ^ _ ^ ^ (n 4 ?) 

Since τ{ = σ'η tg φ '{, 

Ρ ί τ \ 0.634 / s 1 . 5 1 1 - 2 . 1 3 (r/Tf) 

S
_Z = 10 -4 .729 + 7.386 (r/rr) t g φ ,-0.634 ^ g φ , _ JLj ^ (l 1 4 8) 

which is closely related to eqn. (11.44). 
Similar ratios of èjy for other tested soils are: 

reconstituted Strahov claystone: 

. / ν 1.441 / A 1.459 - 1.585 ( r /T f) 

^ = 1 0_ 4 . 5 7 1 + 4.755 (T/r f) ^ _ ^ ^ (n 4 9) 

Dablice claystone: 

. / ν 0.587 / χ- 1 . 1 2 1 + 1.683 (τ/τή 

= 1 03 . 3 0 6 - 5.049 (T/r f) ^ _ ^ ^ . (l ! 5 0) 

Zbraslav sand: 

•  / s 1.206 / A 2.97 - 3.263 (r/tf) 

I i = K T
8
'

3 55
 + 3 2 6 3

( ^ f ) ^1 - i j ^ i j . (11.51) 
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For isochronic conditions, if t/tl = 10
3
, one gets (eqns. 11.32 and 11.33 - mean 

values) 

è ( Λ
0

·
6 5 

f v = j o - O ^ T / j _ M ( 1 1 5 2) 

y \ ν 

The relation (11.45) enables to calculate one creep-strain rate ( γ or ε ν) if the 
other one is known, or, on the other hand, retaining the normality rule, it 
determines the shape of the dynamic (time dependent) plastic potential surface, 
if creep deformations are identified with plastic ones. The shape of the isochro-
nous plastic potential thus derived shows Fig. 11.19 for undisturbed Strahov 
claystone. It depends significantly on the time interval. 

< td f c P ( E 6 v ) 

Fig. 11.19. The shape of the dynamic plastic potential of undisturbed Strahov claystone according 
to eqn. (11.48) (ring-shear apparatus, tx = 1 min.). 

For τ/τ{ = 0.7 (eqns. 11.47 and 11.50) and r / r f = 0.9 (egns. 11.49 and 11.51), 
the direction of the normal to the dynamic plastic potential surface is indepen-
dent of time. This seems to be the effect of the coefficient of earth pressure at 
rest K0 being approximately time-independent (see Section 10.3). For higher 
(lower) values of τ/τΓ, the slope of the vector defined by ε ν and γ decreases 
(increases) with time, with the exception of Dâblice claystone, where the opposi-
te tendency takes place (Feda, 1990d). 

The shape of the dynamic plastic potential surface is worthy of further 
investigation. For instance, contrary to the static one (eqn. 11.44), it depends on 
the initial porosity of sand since φ\ is replaced by φ\. 

If only partial experimental data are at hand, the relation (11.45) can be of 
use. If they are lacking, then approximate values of creep parameters can be 
selected, by comparing the structure and mechanical behaviour of the soil in 
question with those analysed above. 
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11.2 Stress relaxation 

Let it be assumed that a shear stress τ 0 drops with time to a relaxed stress r t 

at γ = const. From the condition 

y0 = rt = r {n.53) 

344 

The creep behaviour depends primarily on the magnitude of the parameters 
è v, nd and nr As far as the parameters log aw and log ad and bd are concerned, 
their mean values can be accepted as the first approximation, as indicated in 
eqns. (11.32) and (11.33), respecting their variability. The creep behaviour is thus 
assumed to be defined not by a set of unique parameters, but by parameters with 
different probability of occurrence. An interval analysis is therefore necessary, 
predicting the range within which the probable distortional and volumetric creep 
deformations will be situated with the chosen margin of reliability. 

The magnitudes of ny and nd are highly dispersed. For undisturbed and 
reconstituted Strahov claystone, Dablice claystone and Zbraslav sand, their 
mean values are as follows: nd = 0.86, 1.35 (Fig. 11.13e), 0.90 and 1.13; ny 

= 0.94 (Fig. 11.14e), 0.98, 0.73 and 0.92, respectively. They could be used with 
coefficients of variability of about ν = 15 % (hd) and 25 % to 30 % («v). The 
value of by is the most uncertain, ranging, as a rule,, between —0.5 < by 

< +0.5 . The best way seems to be to apply a relation of èj% as eqn. (11.45) 
offers. 

It is interesting to observe the small variation of ny, if presheared Dablice 
claystone is excluded. This seems to correspond with Fig. 10.14. In the ring-shear 
aparatus, the value of ε ν is comparable to that of uniaxial e a and the magnitude 
of ny should correlate with the exponent a in eqn. (10.9). This equation is known 
(see Section 10.4) to have quite general meaning and is identical for both 
undisturbed and reconstituted Strahov claystone, but different for Dablice 
claystone (Figs. 10.14 and 10.15) as is the case of hv. 

The value of bv ranges between bw = —0.22 and —0.34 (undisturbed Strahov 
claystone and Dablice claystone, respectively) and +0.36 and +0.46 (reconsti-
tuted Strahov claystone and Zbraslav sand) - Table 11.2. Its magnitude is 
variable and even its sign changes for the same soil and different σ'η (reconstitu-
ted Strahov claystone, Dablice claystone); this justifies the choice of its mean 
value, but a high variation should be expected. Fig. 11.12 gives some guidance 
in this respect, and, as has already been mentioned, eqn. (11.45) may be exploi-
ted. 



Stress relaxation 

(γ0 at t0 and yt at / are deformations at τ 0 and τ,, / > t0 is time) and using eqns. 
(11.41) to (11.43) (if ηά = η and assuming that the parameters a, b and η are 
independent of time and stress level), one gets 

for η < 1: 
1 - η 

τ, — Tr 

1 - η 

(11.54) 

and similarly 

for η = 1: 

ΑηίΛ 
(11.55) 

for η > 1: 

η - 1 

(11.56) 

If b = — 1 (eqn. 11.32) then of these relations only the second and third are 
physically valid, e.g. 

η > 1: 

η - 1 

(11.57) 

since for t oo , (τ, — r f) 0. The first relation (11.54) requires b > 0 for 
such a validity. 

If instead of the relations (11.41) to (11.43), the relation (11.17) is used in the 
final form (Singh and Mitchell, 1968) 

γ = a exp ( b — 
τ, 

(11.58) 

then 

τ \ It 
y = a exp ί b — \ (1 — n) 

1 - η 

(11.59) 

345 



Creep and stress relaxation 

and 

In γ = In a + b - + In (1 - n) + (1 - n) In - . (11.60) 

Using the condition (11.53), one obtains 

τ- 1 — n t / 

- = 1 Tf I n - , (11.61) 

which has been experimentally investigated by Lacerda and Houston (1973) and 
proved to be valid for « < 1. They experimented with undisturbed soft marine 
clay (San Francisco Bay mud), kaolinite clay (consolidated from a slurry), 
compacted clay (Ygnacio Valley Clay) and uniform quartz sand (Monterey No. 
0). In all cases, a logarithmic relation of τ,/τ 0 vs. t/t0 was recorded, as with other 
investigators quoted by the authors. 

The relation (11.61) cannot be of general validity because for η > 1, TJT0 > 1 
which is the contrary of the process of stress relaxation. For soils tested by the 
present author b > 0 for γ (Table 11.1) but if b < 0, as in the case of some 
volumetric creep curves (Table 11.2), the relation would not be valid. 

Thus the factor 

1
 -

 n
 < 

^ 0 , 11.62 
b 

but for the validity of eqns. (11.54), (11.56) and (11.61) in the case of stress 
relaxation, it is necessary that 

1
 -

 n

 t > 0. (11.63) 
b 

The relation (11.55) is valid if b < 0. Since the actual values of b ^ 0, no general 
relation can be found, but the analysis proves that creep parameters η and b and 
eventually a, as disclosed by Lacerda and Houston (1973), are sufficient to define 
stress relaxation. The form of the creep kernel used is not of primary importance. 
For t -> oo the relaxed stress xt T f, i.e., it reaches the long-term shear resistance 
of the tested soil, which agrees with Figs. 6.7, 10.8 and 10.11. 

As with creep, both stress relaxation (τ, decreasing with time) and stress 
swelling (τ, increases with time) can be analytically described by the same 
constitutive equations (resolvents of the creep kernel - Mustafayev et al., 1985). 

Vaid (1988) has shown the uniqueness of the stress-strain-strain rate relation for 
different types of testing which makes possible a far reaching generalization. 

Another field of generalization points out Hicher (1988): the characterization 
of cyclic behaviour by a pseudo-cyclic viscosity. 
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11.3 Conclusion 

The above analysis shows that: 
— Creep and stress relaxation are related phenomena obeying identical 

constitutive equations whose parameters are sufficient to be defined by one of 
these processes only. 

— Creep under loading or unloading or stress relaxation or swelling are 
governed by the same laws. Relaxed stress tends to the long-term strength with 
elapsed time. 

— Distortional creep can be better predicted than volumetric creep, as testi-
fied by the less-variable distortional creep parameters ad, bd and nd. 

— The choice of the analytical function of creep should preferably respect the 
variation of its parameters. Some effects are counterbalanced, so that that 
a prediction with a fair degree of accuracy can be arrived at, even if an individu-
ally variable set of specimens is tested. 

— The factor dominating the dispersion of the test results is the structure of 
individual specimens. Its variability may cause even qualitative differences in the 
volumetric creep response (è v ^ 0). 

— The value of the Abel exponent depends on the shear-stress level τ/τΓ with 
variable intensity. In some cases, the correlation is so weak that no significant 
effect of τ/τΓ can be observed. 

— The ratio of the volumetric to the distortional creep strain rate makes it 
possible to define the dynamic (time-dependent) plastic potential surface. Its 
convexity changes with time and shear-stress level in a rather complicated way, 
which depends also on the structure of the geomaterial tested (the initial poro-
sity of sand; the fabric anisotropy, i.e., shear surfaces of Dâblice claystone). 

— If creep experiments are not available, one can approximately find the 
relevant creep parameters of eqn. (11.34) and the similar for ε ν by taking ad, ay 

and bd to be constant (eqns. 11.32 and 11.33), hw = 0.9 to 1 ( ± 0.3) under 
ordinary conditions and (very roughly) nd = 1 to 1.1 ( ± 0.15). The value of 
6V is the most uncertain, ranging, as a rule, within, —0.5 < bv < +0 .5 . The 
best method for its identification seems to be to apply a relation of êjf, such as 
eqn. (11.45). It is recommended to carry out an interval analysis attempting to 
fix the upper and lower boundaries of the expected magnitudes of γ and èv with, 
say, about 90 % probability. 

— The creep parameters a, b and η have the following physical meaning: b is 
a measure of the deviation from the (isochronic) hyperbolic stress-strain relation 
(when b = — I); η denotes the intensity of the time hardening (depending on the 
shear-stress level); a indicates the deformation anisotropy (in the case of γ) or the 
creep-strain rate under an isotropic state of stress (in the case of ev). 
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12. ON NUMERICAL SOLUTION 
OF RHEOLOGICAL PROBLEMS 

12.1 Introduction 

Analytical solutions of rheological problems are, as a rule, limited to some 
simplified cases. Up to the present time, closed solutions were only obtained 
within the framework of viscoelasticity for isotropic, homogeneous regions of 
selected shape with certain types of boundary and loading conditions (Zaretskiy, 
1967; Suklje, 1969; Feda, 1982a). Consideration of the real mechanical behavi-
our of geological materials exhibiting heterogeneity, anisotropy, plasticity and 
creep calls for numerical methods which have been already proved as a powerful, 
general tool for solving geomechanical problems (Zienkiewicz, 1971, 1977; 
Desai and Christian, 1977, Desai and Siriwardane, 1984; Gudehus, 1977; Breb-
bia, 1978, etc.; see also the Proceedings of International Conferences on Numeri-
cal Methods in Geomechanics held in Vicksburg 1972, Blacksburg 1976, Aachen 
1979, Edmonton 1982, Nagoya 1985 and Innsbruck 1988). 

H 
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S W I F T 40 

STRAWBERRY 47 

DIX RIVER 90 

SALT SPRINGS n o 

KHRAMSKOI 30 

LOWER BAR RIVER 75 

BONITO " 30 

§IR0K0VSKAVA 40 

DALESICE 9 0 

MAMMOTH POOL 120 

MUDDY RUN 76 

NETZAHUALC0Y0TL137 

INFIERNILLO U 8 

JIRK0V 50 

Fig. 12.1. Relative crest settlements of rockfill dams vs. time; rockfill dams, earth-rockfill 

dams. 
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These new possibilities met the needs well. The intensively growing dimensi-
ons of earth and underground structures have made necessary a physically more 
correct prediction of their performace, showing pronounced time effects (e.g., 
Section 2.2). Actually, post-constructional settlements of rockfill dams are con-
trolled largely by creep (Figs. 2.5 and 12.1) and neither the assessment of 
cracking in the clay cores nor the safe design of the upstream facing can be 
carried out without taking this phenomenon into account (Dolezalovâ et al., 
1988). Concerning underground structures, not only the weak rocks are noted 
for a marked rheological behaviour, but also the hard rock masses in the 
surroundings of large caverns show significant retardation of deformations due 
to time effects (Lombardi, 1977; Mimaki et al., 1977, and others). A more correct 
estimation of creep is necessary both for the safe design of the excavation 
sequence and for the evaluation of the lining pressure. The latter strongly 
depends on the lining constraining the creep deformations. The significance of 
creep for landslide control and ground freezing design is well known and an 
increasing use of numerical methods for these purposes can be noted (Klein, 
1979; Vulliet and Hutter, 1988, and others). Adding the important cases of creep 
and especially secondary consolidation of the subsoil described in Section 2, we 
can conclude that neither realistic predictions of the behaviour of large enginee-
ring structures nor acceptable interpretation of the field measurement of their 
performance can be made without taking the time effect into account. 

In the Section 12.2 a brief review of numerical methods and the related 
numerical techniques most widely used for modelling the complex material 
behaviour of soils and rocks is given. In the next Section 12.3, the numerical 
treatment of rheological problems is briefly reviewed and simple algorithms for 
implementing the new creep laws (Section 11) in three-dimensional (3D) and 
two-dimensional (2D) finite element codes are described. The application of 
these algorithms in design prectice is demonstrated by two case studies (Section 
12.4): 

— by a 3D analysis of a high rockfill dam with asphaltic concrete facing and 
— by a 3D solution of a tunnel face problem. 

12.2 Numerical methods 

12.2.1 Numerical methods in geomechanics 

Numerical methods solve physical problems by arithmetic means. A continu-
um with infinitely many degrees of freedom is replaced by a set of points or 
elements with a finite number of interconnections. Instead of unknown continu-
ous functions, the numerical values of these functions in a set of discrete points 
are determined. Using this discrete model, the governing system of differential 
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or integral equations is replaced by a large system of linear or nonlinear
algebraic equations solved by computers (Zienkiewicz, 1971; Oden, 1972).

Numerical methods can be divided into two large groups: differential methods
including finite differences and finite elements (FEM) and integral methods
represented mainly by the boundary element method (Banerjee, 1976; Brebbia,
1978, 1986).

The finite difference method is the oldest numerical method where a continu
um is represented by a regular set of discrete points. The partial derivatives are
replaced by finite differencies and the governing system of partial differential
equations by a system of difference equations. This method is still used for
geomechanical problems with simple constitutive laws and for solving some flow
and consolidation problems. Its application for modelling plasticity and creep
is possible (Zaretskiy and Lombardo, 1983), but the corresponding algorithms
are more complicated and less general than those using FEM.

The finite element method is still the most effective discrete variational me
thod for solving a broad class of problems in mathematical physics. In geome
chanics, the displacement approach is preferred, based on the Lagrange variatio
nal principle of minimum' total potential energy of the system under considerati
on~

The applicability of FEM in geomechanics depends considerably on the level
of the constitutive model used (Desai and Siriwardane, 1984). Simple quasilinear
models are acceptable for deformation problems, while the modelling of the
transition to failure or of the limit state of failure itself requires very sophistica
ted constitutive models (e.g., nonassociative, multiface plastic potentials, rate
type constitutive laws - see Kolymbas, 1987, etc.) and extremely small loading
increments.

Such limit state problems can effectively be handled by recent, modified FEM
approaches using rigid elements, such as the rigid-plastic FEM of Tamura et. al.
(1985), the rigid-body-spring model of Hamajima et al. (1985) or the kinematic
-element method of Gussmann (1986). Another new and effective method for
large strain plasticity problems is FLAC (Fast Lagrangian Analysis of Continu
urn) suggested by Cundall and Board (1988).

During the last decade, an increasing use of the boundary element method
(BEM) can be noted, especially for solving infinite-domain geomechanical pro
blems. BEM takes advantage of the classical boundary integral equation method
which transforms the partial differential equations governing the problem to
integral equations defined over the boundary (Mikhlin, 1947). The difficulties
connected with solving these boundary integral equations are overcome by
discretization of the boundaries and by numerical solution of the equations for
functions on the boundary alone. One of the~ost interesting features of BEM
is the reduction of the dimensions of the prdblem, resulting in much smaller
systems of equations and in reduced amounts of input data required. In
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addition, the numerical accuracy of the solution inside the region is generally
greater than that of finite elements.

All these advantages of BEM are most marked when solving homogeneous,
linear, three-dimensional or infinite domains or when dealing with dynamic
problems considerably influenced by the boundary conditions. Regarding the
basic assumptions of BEM (utilization of a fundamental elastic solution and its
superposition on the general one), an at least incrementally linear constitutive
relation is needed and hence the consideration of nonlinearity, plasticity, hetero
geneity and creep requires special treatments (Kobayashi, 1985; Brebbia, 1978,
1986, and others). Introducing these, however, the method loses its simplicity
and elegance. As a reasonable approach, the combination ofFEM and BEM can
be considered, using FEM for the internal domain with complex material
behaviour (e.g., a dam body, an underground structure and its surroundings,
etc.) and BEM for the infinite external domain with presumably linear behavi
our.

According to the references, all numerical methods are able to take creep into
account to some extent, but the most widely used method for solving rheological
problems is the finite element method. The basic equations of FEM for the
simplest, linear elastic, plane-strain case are given below (Zienkiewicz and
Cheung, 1964, 1965; Kolar et aI., 1971).

12.2.2 Finite element method

A two-dimensional region divided into triangles, Hooke's linear stress-strain
law and linear displacement functions uT = [u(x, y), v(x, y)] are assumed (a
vector or a matrix are marked by fat printing, superscript T indicates transpose).
A typical finite element (triangle) is defined by its number e, nodes i,j, k and their
coordinates with respect to the coordinate axes x, y.

The function u defines the displacement pattern throughout the triangle
including the nodal displacements u, v which form a vector

(12.1 )

With polynomial expansion of u, one can express the displacements at any
point of the triangle as

u (x, y) = ~lx + a2y + a3,
v (x, y) = a4x + asy + a6. (12.2)
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By substituting the nodal coordinates Xi' Yi' etc. into the above relations, one
gets a system of six simultaneous equations of the type

Ui Xi Yi 1 0 0 0 (Xl
Uj Xj Yj 1 0 0 0 (X2
uk X k Yk 1 0 0 0 (X3

8 = = Aae
Vi 0 0 0 Xi Yi 1 (X4
vj 0 0 0 xj Yj 1 (Xs
vk 0 0 0 xk Yk 1 (X6

with A being a 6 x 6 matrix from which

a = A-I 8 e

and

(12.3 )

(12.4)

1
2w

Yjk Yki Yij

x kj x ik Xji 0

Sjk ski Sij
(12.5)

o
Yjk Yki Yij

X kj X ik Xji

Sjk Ski Sij

with

Yab = Ya - Yb ;

and w - area of the triangle.
Expressing eqn. (12.2) in matrix form

(12.2a)withu = Ua U = [x Y 1 0 0 OJ
000xy1

and substituting eqns. (12.4) and (12.5) into (12.2a), the shape function N defi
ning u by 8 e can be obtained:

u = UA -1 8 e = N8e . (12.2b)

Strains are given by the usual definitions and by eqn. (12.2):

au ov
Yxy = - + - = (X2 + (X4·(12.6)

oy ax
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Eqn. (12.6) can be written as

1 0 0 0 0 0
8 = La; L= 0 0 0 0 1 0

0 1 0 1 0 0

Substituting (12.4) into (12.7) one obtains

8 = LA -1 8 e or 8 = S8e ,

and using Hooke's law

ax
(J = a y = D8 = D L A-I 8 e = DS 8 e .

t xy

(12.7)

(12.8)

(12.9)

Matrix D in the case of two-dimensional elasticity of isotropic material is
given by

1 C2 0
C2 1 0

D = C1 1 - C2
, (12.10)

0 0
2

with C1 = E/(1 - v2),

C2 = v for plane stress and C1 = E(1 - v)/[(1 + v) (I - 2v)],
C2 = v/(I - v) for plane strain. E and vdenote elasticity constants, i.e.,

Young's modulus and Poisson's ratio.
Note that due to linear displacement functions, the components of strains

- eqn. (12.6) - and stresses - eqn. (12.9) - are constant throughout the area of
the triangle.

Using the relationships (12.8) and (12-9), the internal work done by the
stresses, i.e., the potential energy of internal forces 11, can be calculated. Integra
ting over the volume of the element V, we have

p~ = t f II adV = t a; ~ ae ,

v
(12.11 )
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where K
e
 is the stiffness matrix of the element. For the elements with constant 

thickness /, we have 

K
e
 = tea B

T
DB . (12.12) 

To calculate the external work all external loads on the element have to be 
transformed to statically equivalent nodal forces 

F
T
 = TF

e
. F

e
. F

e
, F

e
 F

e
 F M 

' e χι» * xp
 A

 xh
 1

 yv
 Λ

 yj"> * ykJ ' 

For various types of loads, this can be done by using the virtual work principle 
(Zienkiewicz and Cheung, 1965) and then 

P l = - F j a e . (12.13) 

The potential energy of the element F e is given by the sum of internal and 
external work 

P e = P° + Fl = i a j K
e
 a e - Fj a e (12.14) 

and the total potential energy of the region Ρ by the sum of P e of single elements 

Ρ = X P e = \ a
T
 K a - F

T
 a . (12.15) 

e 

In (12.15) K, F, a denote the assembled stiffness matrix, the nodal force vector 
and the nodal displacement vector of the whole region under consideration. 

By minimization of this quadratic functional (12.15) with respect to the 
unknown nodal displacements a, i.e. by dP/da = 0, we obtain the basic equation 
of FEM 

K a = F , (12.16) 

which is a system of linear algebraic equations for the treated linear (or incre-
mentally linear) problem. 

This singular system of equations becomes regular by introducting static and 
kinematic boundary conditions. The assembled stiffness matrix Κ is positively 
definite and of band type, which are important properties regarding the effective 
solution of the large system of equations obtained (eqn. 12.16). 

12.2.3 Nonlinear techniques 

In the above, the validity of the linear constitutive law (12.9 and 12.10) was 
assumed in addition to the linear strain-displacement relations (12.6 and 12.8), 
continuity of displacements and the approximate fulfillment of equilibrium. 
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Taking into account initial stresses σ and initial strains ε , the linear constitu-&
 o o ' 

tive law can be written 

In this equation, the initial stresses and strains could be either real (e.g., 
geostatic stress state, strains due to temperature, wetting, etc.) or fictitious 
quantities for obtaining a physically nonlinear solution where a nonlinear 
stress-strain law given, in general, by some relation 

is satisfied. 
Actually, if a solution of eqn. (12.16) can be achieved in which, by adjustment 

of D, £Q or σ ο in eqn. (12.17), the equations (12.17) and 12.18) are made to yield 
the same stress and strain values, then the nonlinear solution is found (Zienkie-
wicz, 1971). 

An iterative approach is obviously needed and if it is conducted by adjustment 
of the D matrix, the process is known as the variable stiffness approach. If ε^ or 
σ ο are adjusted, the initial strain or initial stress method will be obtained. 

In real situations, these processes are applied for an increment of load (or time 
in creep problems) and the relations (12.17) and (12.18) are written in terms of 
increments Δσ and Αε. 

Thus, D, £Q and are essential data through which the linear elastic analysis 
program can form the core of any nonlinear analysis solution. 

If the variable stiffness approach is used, then the elasticity matrix D, i.e., the 
elasticity constants Ε and v, are modified for each loading increment starting 
from the previous loading step (Fig. 12.2a). Hence, at each loading step the 
stiffness matrix Κ has to be reformulated and a new solution of the equations 
obtained. This process allows for simulating construction and excavation pro-
gress (Section 12.4) and for taking stress paths into account (Section 12.2.4). 

If no changes of the region are considered, the initial strain or initial stress 
method can appear as a more economical solution. Determining Αε^ or Δσ ο 

according to Fig. 12.2b, the fictitious nodal forces AR which are statically 
equivalent to these strain or stress incremetns, can be calculated. The correspon-
ding formulae derived using the virtual work principle (Zienkiewicz, 1971) are: 

(12.17) 

F (σ, ε ) = 0 (12.18) 

(12.19α) 

ν 
and 

(12.196) 

ν 
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These fictitious nodal force increments are then used iteratively in eqn. (12.16) 
to correct the solution until the correction of a is sufficiently close to zero. 

Fig. 12.2. Nonlinear techniques: a - variable tangential stiffness method, b - initial strain and initial 
stress method. 

In this case, at every stage of iteration the constant stiffness matrix Κ is 
maintained and if this is once partially inverted, a more economical solution can 
be obtained than by the variable stiffnesss method. 

It can be shown (Zienkiewicz, 1977) that the methods described above corres-
pond with the classical techniques for nonlinear numerical analysis—with the 
Newton-Raphson method and with the modified Newton-Raphson method. As 
a reliable procedure, minimizing the drift of results during the numerical integra-
tion (Fig. 12.2a), an incremental—iterative scheme using Newton-Raphson 
method is recommended. The correction of unbalanced force vector ΔΛ™+ / for 
η + 1 loading increment (Fn + x) and its m + 1 iterate is given by 

- p ( a : u ) + F n +1 = ^ x) ( 1 2 . 2 0 « ) 

+ F- + i + ( f T ) : + i A < + i = 0 

with a„+l = a ™ + t + Aa™+ x and a ° + 1 = an for starting the procedure. 
There P(a™+ x) denotes the nodal force vector which is equivalent to stress 

vector σ™+ { computed by nonlinear constitutive law (12.18). According to the 
virtual work principle we can write 

f B f + 1< + 1d K . (12.206) 
J ν 
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The tangential stiffness matrix is generally determined by 

dP 

da 
ß 

d<7 άε 

άε da 
dV B

T
DjB dV 

J ν 
(12.20c) 

where D T is the tangential elasticity matrix. Thus (KT)™+ \ is a successively 
improved tangent matrix depending on (DT)™+ { and x. 

This incremental-iterative scheme copes with more complex material behavi-
our showing dilatancy, strain softening, plasticity and viscoplasticity. Useful 
algorithmus and subroutines are published in Owen and Hinton (1980), in 
Hinton et al. (1982) and also in Siriwardane and Desai (1983). An efficient 
scheme of adaptive local integration for solving incrementally nonlinear pro-
blems can be found in Boulon et al. (1990). 

Solving nonlinear problems, however, one should always remember that 
whatever numerical techniques are used the uniquness of the solution cannot be 
assured. The results depend considerably on the magnitude of the load incre-
ments and chosen way of iteration. Physical insight into the problem and 
consideration of the characteristic stress paths of the analysed structure may 
help to obtain acceptable results. 

12.2.4 Path-dependent constitutive model 

In this section, a simple, zero-grade hypoelastic constitutive relation allowing 
for the path-dependence of the tangent values of the deformation parameters Ev 

vt is described. Analysing a large series of constant stress ratio (CR) tests (K = 
= \σ3/\σ{ = const) of isotropically and anisotropically consolidated sands and 
clays and triaxial tests of rockfill samples, some strëss-path categories and their 
influence on the softening and hardening of tested materials were found (Dole-
zalovâ et al., 1982a, 1982b, 1988). 

If the shear-stress level is defined by i = T o c t/ r o c tf ( τ ο α, r o c t f- octahedral shear 
stress and its limit value according to the applied failure hypothesis), the stress 
path direction change by AK = Kn — Kn_{ (n- loading step number) and the 
strain-path direction change by \e3 = e" — e\~

l
 (e3 = ε3/ε{ - principal strain 

ratio), the following stress-path categories can be distinguished for the loading 
case with Acro ct = o£ ct — > 0 (a o c t, σ ^

χ
 - octahedral normal stress and its 

maximum value till now reached): 

1st group: paths with increasing shear stress level 

(Μ > 0; AK < 0; Ae3 < 0); 
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2nd group: paths with constant shear stress level 

(Ai = 0; AK = 0; Ae3 = 0); 

3rd group: paths with decreasing shear stress level 

(Ai < 0; AX > 0; Ae3 > 0). 

Calculating Et and vt from CR tests with different Κ and relating them to /, 
almost unique relations Et = Et(i, K) and vt = vt(i, K) were found for the paths 
of the first group. These relations indicate decrease of Et and increase of vt, i.e., 
softening of the soil when Ai > 0. This is just the case when the stress dependen-
ce of the deformation parameters can be simply expressed by an unique (hyper-
bolic or other) relation which was first utilized by Duncan and Chang (1970). 

For the paths of the second and third groups with Ai ^ 0, however, a sharp 
increase of Et and decrease of vt was found. This indicates the hardening of the 
soil caused by unloading in shear. 

Thus, the deformation parameters Et and vt depend not only the normal stress 
level determined by <7 o ct and the shear-stress level given by /, but also on the path 
direction changes controlled by signs of Aaoct and Ai. 

Relating the principal strain ratio e3 of different CR tests to the shear stress 
level ι, another unique relation was obtained which allowed of interpreting the 
in situ strain paths derived from field measurements of rockfill dams (Dolezalo-
vâ, 1976; Dolezalovâ and Hofeni, 1982a). This analysis shows that unloading in 
shear is a frequent phenomenon in embankment dams and the majority of paths 
belong to the second and third groups. This explains the disagreement between 
the measurements and computations when unloading in shear is neglected 
(Marsal et al., 1977; De Mello, 1983). 

Another significant finding gained from field evidence is the occurrence of 
tensile zones near to the surface, either along the dam crests or along the 
contours of underground openings. Hence, regardless of the very low tensile 
strength of geomaterials, this phenomenon has to be considered by the constitu-
tive models which are used for solving geomechanical boundary value problems. 

Accordingly, the zones of compression (isotropy), compression/tension (ani-
sotropy) and tension (isotropy) are distinguished by the constitutive model and 
altogether twelve groups of stress-path directions are taken into account. 

In the compression zone (σ{ > σ2 > σ3 ^ 0), the selected groups and the 
corresponding relationships for Et and vt are as follows: 

1. A<7o ct ^ 0; Αι > 0 

Et = £p (νί[1 -(1 "s) e] ' (12,21) 

vt = v p + ( v m ax - V p) i? ; (12.22) 
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2. Δ σ ο α ^ 0; M ^ 0 

max ' (12.23) 

ν, P ' 
(12.24) 

3. \aoct < 0; Ai > 0 

Et = £ u nl [1 - (1 - rf] [1 - (1 - δ) fi] , 
V
t =

 V
p + (

V
m a x -

 V
p ) *'? ί 

(12.25) 

4. A a o ct < 0; Ai ^ 0 

initial shear stress level i0; /? - exponent controlling the hardening by a o c t; m, 
« - exponents controlling the loosening by r o c t; δ - ratio determining the 
minimum value of Et at failure; h - exponent controlling the change of Eun{ with 
the change of r = ^ c t/ a ^

x
; parametr u is given by 

All parameters are determined by a curve-fitting procedure, using standard 
triaxial tests or, if necessary, simple shear and oedometer tests. 

In the zone of compression/tension, similar paths and the anisotropy due to 
different responses of geomaterials to compression and tension are taken into 
account. In the direction of the major (compressive) principal stress, the above 
relations, while in the direction of the minor (tensile) principal stress analogical 
expressions relating the deformation modulus in tension to the tensile stress level 
(s = σ3/σν at - tensile strength) are used. 

For each loading increment, the nodal coordinates are updated according to 
the previously computed displacements and each loading step is repeated for 
adjusting Ev vt to the stress level. 

A number of large engineering structures were analysed by the above model with 
acceptable results (Dolezalovä et al., 1988; Dolezalovâ and Herle, 1990, Dolezalovâ, 
1990). The experience with these solutions can be summarized as follows: 

1. The path-dependent constitutive model using the incremental variable stiff-
ness method requires small loading steps, especially when failure zones arise. Other-
wise, the equilibrium fails and incorrect stresses are computed. To avoid this, the 
equilibrium is to be checked at each loading step using the initial stress method. 

1 - i 0 

(12.27) 
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2. No simple constant-strain triangles can be used regarding the sharp 
changes of the stress components. As the simplest element, the condensed 
quadrilateral element formed from four triangles can be recommended. 

3. In modelling the initial geostatic stress state of the region, a correct 
selection of Poisson's ratio is necessary. Too low a Poisson ratio brings about low 
lateral pressures and large stress deviators which could result in an unrealistic 
stress state that is close to failure. A check by the formula 

1 — sin q>e 
v t è 

2 — sin φ{ 

derived from Jâky's relation, can be recommended. 
4. Similarly, at a particular loading increment an error in Poisson's ratio 

considerably influences the minor and intermediate principal stresses and hence 
the stress deviator and the shear stress level. In this way, incorrect deformation 
moduli and incorrect displacements due to creep (see Section 12.3.2) can be 
computed. Analogical errors could be caused by a failure hypothesis which is 
too much on the safe side. 

5. This simple, incrementally linear model suits for analysing deformational 
problems, but it cannot be recommended for analysis of structures near the limit 
state of failure. Neither the direction of strain increments nor the volumetric 
strains can be correctly computed for this state and numerical difficulties are 
likely to arise. For these problems more sophisticated models (Zienkiewicz and 
Cormeau, 1974; Kolymbas, 1987; Hsieh and Kavazanjian, 1987; Shoji et al., 
1988 and others, see Section 5.4) or special numerical methods (see Section 
12.2.1) are to be applied. 

12.3 Numerical modelling of creep 

12.3.1 Review 

This brief review is only intended to give an idea of the general trends in the 
numerical solution of rheological problems and this is the reason why only some 
selected works in this field are mentioned. 

The various approaches to numerical modelling of creep differ by the rheolo-
gical constitutive relations and the numerical techiques applied. As regards the 
constitutive relations, four groups can be distinguished: 

a) linear viscoelastic, 
b) nonlinear viscoelastic, 
c) elastic-viscoplastic and 
d) rate-type viscoplastic relations. 
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According to the references, all numerical techniques described in Section 12.2.3, 
i.e., the variable-stiffness approach and the initial stress and strain methods are 
used with an earlier preference for the initial strain method and now for incre-
mental — iterative schemes via Newton-Raphson procedure. 

Linear viscoelastic constitutive relations derived from rheological models or 
given by integral representation (see Section 7) allow of obtaining closed form 
analytical solutions for a certain, limited class of problems. Nevertheless, a wide 
use of numerical methods im this area can be noted regarding the possibility of 
treating nonhomogeneous regions of arbitrary shape with arbitrary loading and 
boundary conditions (Zienkiewicz, 1977; Desai and Christian, 1977, etc.). The 
strain is separated into elastic and viscous (creep) components and first a linear 
elastic solution of the problem of interest is obtained. Then either an incremental 
procedure (time steps) or integral transformation (Laplace transformation) can 
be applied (Huang, 1976). As far as the incremental procedure is concerned, 
viscoelastic material with no volume changes is supposed and the increment of 
deviatoric creep and the corresponding corrective nodal forces are computed. 
The incremental solution depends considerably on the magnitude of the time 
increments and for large ones the iteration within a time step may not converge. 
For these linear problems with long periods of time, the integral transformation 
procedure is recommended. The use of the incremental procedure is efficient 
when together with creep, the nonlinear behaviour of soils, the change of the 
shape of the region due to the construction sequence or some complicated 
time-dependent loading is also considered. 

Actually, the simplest way to take creep into account in the framework of the 
deformation theory of plasticity (as defined in Section 5.2) is to compute the 
stresses and strains for each loading increment by the variable-stiffness method 
(assuming incrementally linear behaviour within the step) and then to determine 
the creep increment corresponding with this stress state and the elapsed time. 
The equivalent nodal forces introducing these creep increments into the solution 
are computed by the initial strain method (Section 12.3.2). Using these tech-
niques, nonlinear consolidation problems taking creep effects into account were 
solved by Gioda and Cividini (1979) and creep in ground freezing was analysed 
by Klein (1979). Similar procedures were applied by the author of this section 
(see Section 12.4) for stress-strain analyses of dams and tunnels (Dolezalovâ, 
1982, 1986), using rheological constitutive relations suggested by Feda (1980, 
1983). 

When solving 2D and 3D rheological problems by numerical methods, the 
determination of the magnitude and direction of all creep components is necess-
ary. In the above linear and incrementally linear solutions, these problems were 
solved by transforming the relations to invariant form and supposing the coinci-
dence of the directions of stress and strain tensors in a given time step (Section 
12.3.2). 
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When the plastic potential theory - considered physically more correct for 
soils (Section 5.4) - is used, the magnitude of creep is, as a rule, given by a scaling 
factor and the direction of its components by the potential surface and the 
normality rule. 

Using Perzyna's concept of viscoplasticity (Perzyna, 1966), a successful elas-
toviscoplastic approach was suggested by Cormeau (Stagg et al., 1972; Zienkie-
wicz and Cormeau, 1974; Cormeau, 1975) which has been used and analysed by 
a number of authors during the last decade (Geisler et al., 1985; Fritz, 1982a, 
1982b; Schotman and Vermeer, 1988; Shoji et al., 1988; Vulliet and Hutter, 1988, 
etc.). In Cormeau's approach, time-independent elastic strains, time-dependent 
viscoplactic strains (occurring in real time, compare dynamic plastic potential 
surface in Section 11.1) and time-independent plastic flow at failure (simulated 
by imaginary time steps) are supposed. The pure plastic strains corresponding 
to failure are computed by the imaginary viscosity procedure, which helps to 
obtain a stable solution (Shoji et al., 1988). The initial strain and initial stress 
methods are used which allow one to handle the associated and nonassociated 
flow rules with equal ease. Nevertheless, the important a priori criteria of 
numerical stability are only derived for the perfect plastic case and applied for 
the associated theory. According to these criteria, the potential surfaces that are 
smooth in the deviatoric plane (von Mises, Drucker-Prager) differ considerably 
from those with corners (Mohr-Coulomb, Tresca). The potential surfaces with 
corners are less convenient as they require considerably smaller time steps and 
hence, much more computer effort to get a stable solution. This problem was 
revised by Fritz (1982b), giving valuable empirical recommendations for the 
allowable strain changes (5 - 10 %) within a time step in order to get a stable 
solution. 

Concerning the soft clays, the soils with most pronounced time-dependent 
behaviour, the approaches using the Cam clay model and its modifications are 
physically well based and most often accepted. The last achievements in this field 
are published in Hsieh and Kavazanjian (1987) where a nonassociative, two-
-surface plasticity model

1
 taking consolidation into account is described. Many 

commonly accepted concepts and findings concerning the mechanical behaviour 
of soft clays are incorporated into this model. A porosity-dependent permeabili-
ty and both the deviatoric and volumetric components of creep are considered. 
The elliptical and horizontal plastic potential surfaces have time-independent 
and time-dependent portions when expanding. The initial stress method is used 
for incorporating the creep component into the solution. The use of the nonasso-
ciative law yields an asymmetric matrix and hence an asymmetric system of 
resulting equations. The model has been also mentioned in Section 5.5. 

Flow with respect to each of the two yield surfaces is associative, but the resulting combined plastic 
deformation may not, however, be associative with respect to either individual yield surface. 
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Difficulties with deriving plastic potential surfaces for different materials and 
the complexity of the nonassociated theory led to the development of new 
elastoplastic and viscoplastic constitutive models which depart completely from 
the framework of the plastic potential theory. As a successful approach, the 
Kolymbas relations can be mentioned (Kolymbas, 1987), which have a remar-
kable prediction capability with a small number of required parameters (see 
Section 5.4.6). The time-dependent behaviour (logarithmic rate dependence) is 
taken into account in these equations by an additional term containing second 
time derivatives of the strain. These constitutive equations are incrementally 
nonlinear and hence they require the solution of a system of nonlinear equations 
at each loading and time step. 

12.3.2 Algorithms for computing creep by FEM 

If the rheological constitutive relations for the creep rate è
c
 are known (see 

Section 11), the strain increment due to creep Ae
c
 in a time interval Atn = 

= *n + 1 -
 l

n
 is

 S
i v en b

Y 

where 0 ^ Θ ^ 1 . 

For Θ = 0 we obtain the Euler method — a fully expilicit (forward difference) 
time integration scheme where the strain increment due to creep is completely 
determined from conditions existing at time, tn. Accordingly 

In this equation the last term corresponding to eqn. (12.19a) is added to the 
load increment AFn + x applied at the time step tn+x. Such a technique avoids 
the iteration process and at the same time a reduction in error is achieved (Owen 
and Hinton, 1980). 

A refinement of the solution can be obtained assuming Θ = \ which results 
in so called midpoint or implicit trapezoidal (Crank-Nicolson) scheme. A fully 
explicit or backward difference scheme is given by Θ = 1 where the strain 
increment is determined by the strain rate corresponding to the end of the time 
interval. Improved integration schemes can be found in Desai (1989) and Royis 
(1990). 

Αέη = Atn [(1 - Θ) <ç + aç + i ] (12.28α) 
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It should be mentioned, however, that only time integration schemes with 
Θ > 0,5 are unconditionally stable while the schemes with Θ ^ 0,5 are only 
conditionally stable. Using the explicit schemes, the time increment should be 
limited to At < Atcrii (Cormeau, 1975; Owen and Hinton, 1980). 

In the algorithms given below, the Euler method with 0 = 0 was applied and 
the strain increments due to creep were computed using integrated creep laws. 
This approach is suitable for materials with relatively low creep rate allowing to 
introduce larger time intervals during the computations. This was especially 
important for 3D problems described below. The relations used in algorithms 
correspond to the simplified interpretation of the experimental results described 
in Feda (1983, p. 136). According to this some practically significant relations 
between the uniaxial (oedometric) creep rate e a, volumetric creep rate 3e o ct and 
distortional creep rate yoct (both in the torsion-shear apparatus) were found: 

(i) the relation log è a vs. log t is linear (Fig. 9.17); 

( " ) ^oct
 a nd

 êoct depend on / = T o c t/ * r o c t f; 

(iii) 3éoci/èa = Hx = 0.12 - 0.23; (12.29a) 

(iv) 7 o c tA = H2 = 0.82 - 2.88 . (12 . 29e ) 

Using these findings, the following creep laws were suggested (Feda, 1980; 
1983, p. 136) 

e a = e°a + 10äaoct-F Int , (12.30) 

*oct = 4 t + 1<Τ°*-*(1 -if In t , (12.31) 

ïoa = 7oct + 10*™ - * (1 - i)'7 In t , (12.32) 

where e a, ^ c t and y^ct are time-independent portions of uniaxial and octahedral 
strains, a, b, c, d,J, g are empirical parameters, / is time in minutes. 

The basic relation (12.32) determining the distortional and hence the deviato-
ric creep corresponds to the relation (11.42) derived in Section 11. 

The empirical parameters can be calibrated using creep test results or estima-
ted according to generalized results of experiments (Sections 9 and 11 ). 

Parameter a expresses the influence of aoct on ê a which is rather non-unique 
according to the experiments. In many cases, a = 0 (as in Section 11 ) but for 
the Goldisthal rockfill a value of 2.84 was found (Feda, 1980), as a consequence 
of its weak grains (see Section 9). 

Parameter 5 expresses the initial uniaxial creep rate for t = 1 min. and its 
approximate value can be estimated using Fig. 9.17. 

Parameters c and g are given by the relations (12.29a) and (12.29&): 

c = b — log Hx and g = b — log H2 . 
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Experimental ranges of rfandj, according to Feda (1983, p. 131) are as follows 

3 = 0.3 - r - 0.46 and J = 0.56 0.9 . 

Displacements due to creep are computed for a given loading step, assuming 
a constant stress level during the time increment At. The calculation consists of 
the following steps: 

(i) Calculation of the creep vector corresponding to the time increment 
A t , using relations (12.30) - (12.32). 

(ii) Calculation of equivalent nodal forces forming a fictitious load vector 
according to the equation (12.19a). 

(iii) Calculation of displacements by FEM using this fictitious load vector. 
As input data the stress tensor σ° corresponding to the previous loading step, 

parameters ä, 5, cf 3, J, g, and the time increment Atn = tn — t0, are given. 
For the three-dimensional case, the creep vector 

is computed by the following steps (superscript c for creep is used only in this 
section): 

1. Treatment of special cases: 

if < 0 (tension), then 

As
c
 = (0, 0, 0, 0, 0, 0 )

T
; 

if E\ = s°3 ^ 0, then 

Αε] = 10
 o ct

 ln tjt0 

and 

\s
c

2 = Δε^ = 0 . 

2. Computation of the volumetric and distortional creep according to 
(12.31) and (12.32): 

ασΟ —c , 
Δ 4 , = 1 0 " (1 - ln t j t 0 , (12.33) 

äcß —g 7 

A j ^ = 10 °" (1 - i ) -
T

\ n t „ / t 0 . (12.34) 
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3. Computation of Θ in the octahedral plane (see eqn. 5.37): 

1 . . 
Θ = - s in" 1 

3 

3J3 f 
ΣΟ 

2 [Jff2 

π π 
; < Θ < - 12.35 

6 6 

(J^
0
 - 2nd invariant of the stress deviator for σ°, - 3rd invariant of the stress 

deviator for σ°). 
4. Computation of the principal creep components Δε^ (ι = 1, 2, 3) 

Ae
c

2 

Ae
c

3 

,c 
oct 

/ 2π> 
sin [ Θ + — 

\ 3 ) 

sin Θ 

sin [ Θ + 
4π> 

+ Δε' oct * (12.36) 

5. Computation of the principal angles α,, /?,·, yi (i = 1, 2, 3), using the 
components of the stress tensor <x° 

(σ°χ - σ°) cos a, + τ% cos β, + τ°χζ cos y, = 0 , 

ήχ
 c o s «i + (σ? - σ?) c o s A + τ

% cos y, = 0 , 

τ°2Χ cos a, + r j , C O S β, + (σ°ζ - σ?) cos y, = 0 . 

(12.37) 

6. Computation of the components of the creep vector Δε°, using the 
principal angles according to eqn. (12.37) and the principal creep components 
according to eqn. (12.36). In matrix notation, we have (Leitner, 1981) 

C = T
l

P T , (12.38) 

where 

C = 
Αε' X 2^-RXY 

sym 

YZ 
(12.39) 

Ρ = 

sym 

0 

0 

Αεί 

(12.40) 
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Τ = 

cos a{ cos ßx cos yx 

cos a 2 cos ß2 cos y2 

cos a 3 cos ß3 cos /?3 

(12.41) 

In the following step, the creep vector Αε° is considered as the initial strain 
vector and the equivalent nodal force vector AR

n
 (n - loading increment number) 

is calculated by the formula (12.19a). Using AR
n
 as a fictitious loading vector, the 

displacements due to creep are determined by eqn. (12.16). The matrix β in eqn. 
(12.19a) and the stiffness matrix Κ in eqn. (12.16) are now given by the isopara-
meteric shape functions used for 3D isoparametric elements (see Zienkiewicz, 
1971). 

According to the basic assumption of this algorithm, the change of stresses 
obtained by 

Ασ = D (Δε - Δε
ς
) (12.42) 

should be small (5 — 7 % ) , otherwise the time increment must be reduced. 
In eqn. (12.42) Ασ and Αε denote the vectors 

Δσ = (Ασχ, Aay, Ασζ, Ατχγ, Ατχζ, Aryz)
J
, 

Αε = (Αεχ, Αε^ Αεζ, Ayxy> Αγχζ, Ayyz)
T
. 

A similar algorithm for two-dimensional (plane-strain) problems results in 
simpler relations (Dolezalovâ and Ulrich, 1986). 

The initial state is defined by the vector σ° = (σ°χ, σ^, σ°ζ, τ°χγ)
Τ 

and as input data the above parameters a, h, c,d,J,g and the time increment At 
are given. The creep vector 

As
c
 = (Αε% Αε^, Afxy)

T 
(12.43) 

is computed in the following manner: 
1. The same as in the 3D case. 
2. The same as in the 3D case. 
3. Having determined Δ ε ^ and Ay£ct by eqn. (12.33) and (12.34) the 

principal creep comonents are calculated by the formulas 

^ = I [6 Aslct - V6 (AySct)
2
 - 12 ( A C )

2
] (12.44) 

and 

(12.45) 
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The existence of a solution for eqn. (12.44) is conditioned by the relation 

YFI (1 - IF~ * S 10
e
" -

 δ
 , (12.46) 

which is satisfied in practice if the parameters 5, c, 3, / a r e kept within the range 
given by Fig. 9.17 and by the comments in this section. 

4. The principal angle α is calculated according to the formula 

5. The components of the creep vector - eqn. (12.43) - are given by 

ΓΚΊ = 1 Π + cos 2α 1 - cos 2αΊ ΓΑεΠ 

L
A
^J 2 L

1
 ~

 c os 2α 1
 +

 c os 2 a
J L

A e
3 j 

and 

Ay
c

xy = tg 2a {Ae
c

x - As
c

y). (12.49) 

The remaining part of the algorithm is identical to the one described for the 
3D case. 

12.4 Applications 

In this section some selected applications are treated where the above descri-
bed time-independent (Section 12.2.4) and time-dependent (Section 12.3.2) con-
stitutive relations were applied. 

12.4.1 Dams 

The pronounced time-dependent behaviour of rockfill dams is well demon-
strated by Fig. 12.1. It concerns not only rockfill dams with upstream facings but 
also earth-rockfill dams. Due to the wet clay cores, delayed consolidation is 
observed and the post-constructional performance of these dams is controlled 
much more by creep than by primary consolidation. This was proved by the 
analysis of the Dalesice dam where a close prediction (Β 1 type according to 
Lambe, 1973) of the post-constructional settlements was obtained using the 
above creep laws (Dolezalovâ and Leitner, 1981; Dolezalovâ et al., 1988). 
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A 3D FEM analysis including creep was also performed for the Goldisthal 
dam to be built in Germany. This 90 m high rockfill dam with asphaltic concrete 
facing is situated in a symmetrical narrow valley with steep abutments, where the 
bedrock is formed by shales. A prediction of the displacements of the asphaltic 
concrete facing, i.e., data for its design and monitoring were required. 

The rock selected for the rockfill was also shale of relatively poor quality 
which — along with the considerable height of the dam and the unfavourable 
morphological conditions — was one of the main reasons for the more compre-
hensive analysis. 

The rock particles of the Palaeozoic shale show a low density (2.55 — 
— 2.76 g/cm

3
) and a low compressive strength (σ1( = 54 MPa, aL = 60 MPa 

and σ 45 = 20 MPa for the load applied in the parallel, perpendicular and at 
45 to the bedding planes directions) which brings about grain breakage influen-
cing the compressibility of the fill unfavourably. On the other hand, the particles 
are resistant to weathering and the loss of strength by saturation is relatively 
small. 

The deformation and strength parameters of the rockfill were investigated by 
large-scale laboratory tests (oedometer 0 1000 mm, h = 330 mm; direct shear 
box 1 500 χ 1 000 mm

2
, h = 800 mm) and field compaction tests. 

The main characteristics are as follows: 

granulation: ^50 ^max 

before compaction 18-95 mm 240-600 mm 
after compaction 12-24 mm 180-300 mm 

bulk density for w = 0 w = 3.5 % 

<?min ( g /
C m 3

) 1.51 1.65 

0max ( g /
Cm

 ) 2.05 2.1 

moduli (MPa) for w = 3.5 % and ρ = 2.1 g/cm
3 

moduli (MPa) for 

^ d e f ^unl 

oedometer 37-176 143-368 

Εχ E2 

loading test 39-56 143-200 

shear strength for w = 3.5 % and ρ = 2.05 g/cm 
c' = 0.003 MPa; φ\ = 39.35° 

Additional data are given in Section 9.3. 
The large-scale oedometer tests were used for selecting the initial deformati-

on parameters Ε , v p and the exponent of hardening ρ in the path-dependent 
constitutive model yielding the time-independent portion of strain, see eqns. 
(12.30) - (12.32). The calibration is treated by Dolezalovâ and Hofeni (1982b), 
together with the derivation of the remaining parameters from large-scale direct 
shear tests. To determine the stress state in the shear box, some additional 
assumptions had to be introduced. 
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Considering the slightly modified version of the relations given by eqns. 
(12.21) - (12.24), the parameters are as follows: 

Ep = 16 MPa; v p = 0.268; ρ = 0.67; Emax = 116 MPa; 

v
max = ° ·

4 8
; Λ = 0.5 - 0.002 5 <jo c t/a0; m = 1.25; 

ρ = 2.1 g/cm
3
. 

With regard to the extremely low value of η given by the above relation, which 
could not represent the whole region belonging to the first stress path group, the 
latter was divided into two parts: 

(i) group la: 

M > 0, \σοοί > 0, Ασ3 < 0 

with η = 0.5 - 0.002 5 <το ε 1/σ0 

(ii) group lb: 

M > 0, A<jo ct > 0, Δσ 3 = 0 

with an estimated value η = 2.0. 

The value of η = 2.0 was obtained by back analysis of the field measurements 
performed for Dalesice dam. 

The parameters in the creep laws were derived from large-scale uniaxial creep 
tests and extrapolated according to the experimentally proven correlation bet-
ween uniaxial and torsion tests (Feda, 1980). Assuming Hx = 0.07 and 
H2 = 1.0 in eqns. (12.29a) and (12.29ft) and nd = 1 in eqn. (11.42) and, 
consequently, in eqns. (12.30) - (12.32) the parameters are as follows: 

ä = 2.84; b = 5.55; c = 6.25; d = 0.3; 

/ = 0.9; g = 5.55. 

The relatively large influence of cro ct on the creep rate given by ä = 2.84 is 
limited to the low stress level 0 < aoct < 0.6 MPa. 

Creep tests of the Goldisthal shale are described in Section 9.3 (Figs. 9.13 to 
9.17) where the corresponding secondary compression index is also derived. 

For the stress-strain analysis of the Goldisthal dam, 3D FEM code with 
isoparametric elements (8 nodes, three-linear shape function, three-point Gaus-
sian quadrature) and IBM-370/148 computer were used. 

Regarding the symmetry of the valley, only half of the dam was modelled. 
Incompressible bedrock and a contact layer with reduced shear strength [φ\ = 
= 25 °-28 °) were assumed. Altogether, 14 loading stages were considered, 7 for 
simulating the dam consturction and 7 for modelling reservoir filling and creep. 
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The solution results are shown in Figs. 12.3 to 12.8. The displacement vectors 
due to construction have a marked horizontal component corresponding with 
the construction of the upper part of the dam. This phenomenon matches the 
field measument results well. The maximum construction settlement was 67 cm 
at the middle of the dam. The corresponding stress state showing the arch effect 
(the vertical stresses are only 80 % of overburden weight) and shear stress 
mobilization along the contact with the abutment, is demonstrated in Figs. 12.4a 
and 12.4b. 

SCALE 

Fig. 12.3. Goldisthal dam - displacement vectors at the end of construction period. 

The reservoir filling was computed for three types of constitutive laws: linear, 
nonlinear and nonlinear with creep (1 460 days). The results differ considerably 
regarding both the distribution and the magnitude of the upstream face settle-
ments. The maximum settlements at 0 .3 / / and I.OH ( / / - t h e height of the dam) 
are as follows: 

0 .3 / / I.OH 
(crest) 

linear solution 44 cm 0 
nonlinear solution 22 cm 0 
nonlinear solution 
with creep 28 cm 22 cm 

The last two cases, together with the settlements due to construction are 
shown in Fig. 12.5. 

The above differences well demonstrate the significance of considering 
nonlinearity and creep. The linear solution is on the safe side, but yields 
unrealistic data for the monitoring and for the design of the asphaltic concrete 
facing. The difference found between the linear and nonlinear solutions is caused 
by the stress redistribution (normal stress increase and shear stress decrease) in 
the upstream part of the dam due to reservoir filling (Figs. 12.4a and 12.4b). 
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Unloading in shear occurs and the nonlinear constitutive model produces 
a considerable increase of deformation moduli in the upstream rockfill (Fig. 
12.6), reducing the deflections and strains of the upstream facing. This behaviour 
corresponds well with the field measurement results, indicating much less deflec-
tion of the upstream facings due to reservoir filling than expected (De Mello, 
1983). 

On the other hand, without considering creep, the upstream settlement which 
is so important in the design of facing, would be underestimated and the 
computed distribution of settlements would not correspond with field measure-

E N D O F C O N S T R U C T I O N 

L E N G T H S T R E S S E S 

0 5 0 m 0 0.1 0.2 MPa 

Fig. 12.4. Goldisthal dam-stress components at the end of construction period: a - normal stresses 
σχ, ayy σζ; b - tangential stresses τχν τνζ. 
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On numerical solution of rheological problems 

merits. The correct prediction of both the time-independent and the time-depen-
dent components of displacements are important in the design of dams. This 
conclusion is well demonstrated by Fig. 12.7 where the deflection contours of the 
upstream face are shown, together with the displacement vectors in the plane of 
the face. No realistic crest settlements could be predicted without considering 
creep. 

The effect of the full reservoir filling, including creep (1 460 + 1 213 days), is 
demonstrated in Fig. 12.8. The displacements due to reservoir filling at 0.5//, 
0.75// and 1.0// (subhorizontal parts of the vectors) and the displacements due 
to creep (subvertical parts of the vectors) can be distinguished and the significan-
ce of creep realized. 

Fig. 12.6. Goldisthal dam-deformation moduli Et at the end of construction period and after 
reservoir filling (0.75//). 

12.4.2 Tunnels 

The consideration of creep is necessary in underground design for both the 
design of the excavation sequence and for the design of the lining. The stability 
of an unsupported or temporarily supported opening depends on the mutual 
influence of the progress of the face and the time-dependent deformations of the 
rocks mass. Concerning the lining pressure, it can increase considerably if the 
deformations due to creep are restricted. 

In the following text, a 3D FEM study is described where the stability of the 
tunnel face was analysed with consideration of creep. 
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In the last period of the construction of the underground motor railway in 

Prague, face-stability problems arose during the excavation of the station tun-

nels due to unfavourable geological conditions (wide faults, seamy and blocky 

structure of the clayey shale) at some localities. The choice of the adequate 

technology—partial excavation with a pilot tunnel or fullface excavation with 

reinforcement of the face by anchors—was the main question to be solved. The 

selection of a suitable technology was especially significant in the construction 

of the Charles Square Station where the surface settlements were considerably 

limited in regard to some important buildings above the station. 

I 

T O P V I E W „ P " J 

\ % . r / r w ••••· * 
D I S P L A C E M E N T V E C T 0 R S : \ W V ^ 

LOADING S T A G E S • · \ \ t / 

' 2 1-0.5H \ \ \ , / / 
' \ 3 2-0.75 H \ V \ V [ / < $ > - · 

3-0.75 H + C R E E P \ \ \ \ \ ^ [ 

NORMAL D I S P L A C E M E N T S [mm]: \ \ \ \ \ g 'X 

·..,- S T A G E 2 \ \ \ Y \ V ^ 

<·* « S T A G E 3 \ \ í Ë \ : 

D I S P L A C E M E N T S C A L E · \ \wAv^' 
0 10 30 50 cm \ 

S C A L E : \ \ V \ V 

0 10 20 30 AO 50 m /^ \ 

Fig. 12.7. Goldisthal dam-deflection contours and displacements vectors of the upstream face due 

to reservoir filling, with and without creep. 
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In order to contribute to solving this problem, physical and numerical models 
simulating the progress of excavation of a station tunnel with partial and fullface 
excavation, respectively, were elaborated. The measurements on the physical 
models indicated the unfavourable effect of a pilot tunnel on the total stability 
of the face due to repeated disturbance of the equilibrium of the rock mass and 
delayed fitting up of the final support (Dolezel, 1983). 

Aimed at the quantification of these effects by numerical models, the FEM 
study briefly summarized below was carried out (Dolezalovâ et al., 1985; Dole-
zalovâ 1986). 

Fig. 12.8. Goldisthal d a m - postconstruction displacement vectors due to reservoir filling and creep 

(1 .0 / / ) . 

The study was focused on the following topics: 
(i) Analysis of the three-dimensional stress redistribution at the tunnel 

face. 

(ii) Comparison of the fullface and partial-face excavation procedures. 
(iii) Evaluation of the effect of primary creep. 

Two computational models simulating the geological, technological and other 
conditions of the Charles Square Station were elaborated and altogether 16 
three-dimensional FEM solutions were performed using algorithms, FEM code 
and the computer mentioned in the preceding text. 

In order to keep the solution within resonable limits, the following simplifica-
tions were introduced: 

(i) Only one station tunnel was modelled, assuming a plane of symmetry 
along the vertical axis of the tunnel. 

(ii) The support was not included in the computational model. A wrong 
construction procedure when the grouting of the gap between the 
support and the rock is delayed can be modelled in this way. 

(iii) The upper part of the overburden was substituted by a surface load. 
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The solution steps for the model A, simulating progress of the partial face 
excavation are shown in Fig. 12.9, together with the finite element mesh. A pilot-
tunnel advance of 60 m/month and a progress of the station tunnel of 10 
m/month were assumed when the creep strain corresponding to the particular 
excavation steps was computed. The initial geostatic stress state was determined 
by the dead weight of the overburden (the height above the tunnel roof is 
35.20 m, 14.6 m of is substituted by surface load) and by the lateral pressure 
coefficient at rest K0 = 0.37. For the comparative model B, the same initial stress 
state was generated and fullface excavation was performed in three steps. 

The deformation and strength parameters of the clay shale forming the 
bedrock at the site were estimated using generalized field test results. The change 
of the degree of the weathering and the joint density with depth were taken into 
account. 

F E M M E S H 3. S T A G E [65 D A Y S ) 

2 . S T A G E ( 35 D A Y S ) 5. S T A G E ( 380 D A Y S ) 

Fig. 12.9. F E M mesh and progress o f excavation including construction stages (1, 2, 3, 4. 5) for 

a station tunnel with pilot tunnel (partial excavation, model A). 
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The input data for the time-independent part of the constitutive model - eqns. 
(12.21) - (12.26) — are as follows: 

0.27; ρ = 0.265; E m ax = 2 900 MPa; 

2.6 g/cm
3
; n{ = 0.5; n2 = 3.0; 

0.48; φ\ = 29°; c' = 0.25 MPa; 

at = 0.10 MPa. 

The first stress path group (A/ > 0, A<roct ^ 0) was subdivided into two parts 
according to the sign of Ασ3: 

(i) for Ασ3 < 0 nx = 0.5, 
(ii) for Ασ3 = 0 n2 = 3.0. 

In the time-dependent part of the constitutive relations (12.30) - (12.32) the 
parameters were chosen according to the generalized results of creep tests given 
by Feda (1983). Assuming Hx = 0.18 and H2=l.O in eqn. (12.29a) and (12.29b), 
the following parameters were selected: 

5 = 0; b = 6.5; c = 6.77; d = 0.32; / = 0.94; g = 6.50. 

The solution results are represented in Figs. 12.10 to 12.15. 
Displacements computed for the final excavation stage including creep are 

given in Fig. 12.10a, b, c. First the vertical displacement contours are depicted, 
giving an idea of the distribution of the settlements and heavings (Fig. 12.10a). 
The distribution of the vertical displacements along some selected horizontal 
sections is shown in Fig. 12.10b. The maximum settlement of the tunnel roof 
amounts to 12 mm at a distance 0.6D (D - tunnel diameter) behind the face. The 
corresponding surface settlement is 4.8 mm. The ratio of the settlements ahead 
of and behind the face is 0.68 if partial excavation with a pilot tunnel is 
performed. For the fullface excavation, it is only 0.51. These ratios indicate the 
portion of the deformations which could be controlled by the final support. It 
is 49 % for fullface excavation and only 32 % for partial excavation. These 
numbers show that greater loosening of the rock mass may occur in the case of 
partial excavation. 

According to Fig. 12.10b, the settlements start at a distance of 0.5-1.0D ahead 
of the face and reach a constant value at a distance of 1.5-2.0Z) behind the face. 
Consequently, the sections where the two-dimensional stress state is valid, are 
located more than 0.5-1.0D ahead of the face and more than 1.5-2.0Z) behind 
it. The length of the section with a three-dimensional stress state around the 
tunnel face is approximately 2.0-3.0D for an unsupported tunnel. 

The creep deformations corresponding with particular excavation steps are 
represented in Fig. 12.10c. The settlements due to creep amount to 20-30 % of 
the cumulated displacements. 

Ep = 680 MPa; v p = 

£ u nl = 1 000 MPa; ρ 
m
 = 2-0; % a x = 
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The stress redistribution, namely the normal stress components correspon-
ding to the final excavation stage including creep, is depicted along two horizon-
tal sections: at the level of the tunnel axis (Fig. 12.1 la) and at the level of the 
pilot-tunnel axis (Fig. 12.1 lb). The geostatic stress state is drawn by dashed lines 
which allow of showing the stress redistribution due to tunneling. Stress relief 
with decrease of the horizontal stress components is recorded at a distance of 
0.5D along the sidewalls and l.OD ahead of the face. The vertical stress concen-
tration along the sidewalls manifests itself at a distance of l.OD. Consequently, 
the stress state undisturbed by tunneling is at a distance of more than l.OD from 
the opening. This is important for the correct localization of in situ stress 
measurement devices. As regards the support design, the character of the 
longitudinal distribution of the vertical stresses behind the tunnel face is signifi-
cant. The maximum stress concentration arises right behind the face and a se-
cond peak appears at a distance of 1 AD. The first peak limits the length of the 
attack ( < 0.3D), while the second one shows the possible length ( < IAD) of an 
ungrouted gap between the support and the surrounding rock mass. 

Fig. 12.10. Cumulated vertical displacements of the rock mass due to excavation and creep (5. step): 
a - contours of vertical displacements, b - settlements along selected horizontal sections, c - settle-

ment of the tunel roof due to excavation and creep (detail of the section ABC). 
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Fig. 12.11. Normal stress in the vicinity of the tunnel after the 5 t h excavation step, including creep: 

a - stress distribution on the level of the tunnel axis, b - stress distribution on the level of the pilot 

tunnel axis. 
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I I TENSILE ZONE 

•  TENSILE FAILURE 

SHEAR FAILURE 

J 

Fig. 12.12. Failure zone propagati-

o n due to advance of the tunnel 

face: a - 1. excavation step + 32.5 

days, b - 3. excavation step + 65 

days, c - 5. excavation step + 380 

days. 
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The development of failure zones due to progress of the tunnel face is 
demonstrated in Fig. 12.12. The maximum extent of the failure zones in shear 
and in tension appears at a distance of 1 AD behind the face and it moves as the 

SHEAR FAILURE 

SHEAR FAILURE DUE TO CREEP 

2' 

0 SAFETY FACTOR CONTOUR FOR 
LOADING WITHOUT CREEP ( ) 

© SAFETY FACTOR CONTOUR FOR 

LOADING INCLUDIDING CREEP(—) 

1 STAGE (32,5 DAYS) 

3 STAGE (65DAYS) 

5 STAGE(380 DAYS) 

Fig. 12.13. The effect of creep on the shear stress level contours and the failure zone propagation 
in the most stressed tunnel section 2 -2 ' . 
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face advances. The sidewalls are stressed by shear and the bottom is failed by 
tension. These phenomena could cause a loss of the total stability of the face in 
cases when an improper technology (delayed closure of the invert, ungrouted 
gap, etc.) is applied in weak rocks. 

In the following Fig. 12.13 the effect of creep on the shear-stress level (contour 
maps) and on the shear failure propagation is demonstrated. A moderate shear 
stress level increase and some propagation of the failure zones due to creep were 
recorded. 

M O D E L Β M O D E L A 

25m 
FULLFACE EXCAVATION 

I I TENSILE ZONE 

• 1 TENSILE FAILURE 

PARTIAL EXCAVATION 

SHEAR FAILURE 

. / SAFETY FACTOR 
Ρ IN SHEAR 

25m 

Fig. 12.14. Comparison of the stress level contours and the failure zones for fullface (model B) and 
partial excavations (model A). 

In Figs. 12.14 and 12.15 a comparison is made between the fullface excavation 
(model B) and partial-face excavation with a pilot tunnel (model A). The 
contour maps are similar but the extent of the shear and tension failure is larger 
for the case when the rock mass is weakened by an incorrectly supported pilot 
tunnel. Moreover, the start of a shear failure tending to the surface can be noted 
in this case. The larger failure zones cause larger loosening of the rock mass, 
which results in larger settlements (up to 30 %) at the surface and in the area 
of the sidewalls (Fig. 12.15). 
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12.5 Conclusions 

Concerning the numerical solution of rheological problems, the following 
conclusions can be drawn: 

1. Consideration of creep in the stress-strain analysis of large engineering 
structures is inevitable for a realistic prediction of their performace. No accep-
table data, either for the design or for the monitoring of these structures, can be 
obtained without taking time effects into account. 

2. FEM analysis in the framework of the deformation theory of plasticity, 
taking primary creep into account, can be performed using the relatively simple 
algorithms and numerical techniques described in this section. 

FULLFACE EXCAVATION PARTIAL EXCAVATION 

% 

DISPLACEMENT SCALE : 
20 mm 

Fig. 12.15. Comparison of the displacement vectors for fullface (model B) and partial face (model 
A) excavations with consideration of creep. 
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3. Concerning rockfill dams, deflection of the upstream facing due to 
reservoir filling and post-construction settlements of the crest are mostly influen-
ced by creep. 

4. Regarding underground openings, both the excavation sequence and 
the lining pressure depend on the rheological behaviour of the rock mass. Creep 
deformations amounting to 30 % of the cumulated displacements were compu-
ted for a station tunnel in Prague (Ordovician) clayey shales. 
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13. CONCLUDING COMMENTS 

Any treatment of the constitutive behaviour of geomaterials has to be judged 
critically from several aspects. The most important, as a rule, are: 

— How general is the outcome of the constitutive modelling as far as the class 
of soils is concerned which is embraced by the proposed relations and the variety 
of stress- and strain paths admissible? 

— How experimentally demanding and accessible is the identification of the 
principal parameters involved and, in the optimum case, are they related to some 
index properties? 

— How numerically complicated is the implementation of the respective 
constitutive relations in the methods of solution of various boundary-value 
problems (e.g., associative or nonassociative flow rule reflected in the symmetry 
or asymmetry of the material matrix)? 

To insure a wide applicability, different soils (sand, clay and claystone) were 
tested and the experimental results generalized. The outcome was qualitatively 
the same. The extent of experimental material is, anyway, always restricted. 
Often, a short cut is used, connecting the constitutive behaviour of a soil with 
its loading history. To be able to estimate the generality of such findings, one 
must penetrate into the physical meaning of the measured quantities. This calls 
for structural insight into the tested soil, i.e., for the incorporation of the 
structural analysis as the basis for the understanding the particular constitutive 
behaviour. 

This idea is well documented by the so-called physically isomorphous behavi-
our (Feda, 1989a, 1990b). If it takes place, a broad generalization of the constitu-
tive behaviour is possible, using a dimensionless representation of the measured 
quantities. Constant constitutive parameters can accordingly be classified as 
dimensionless (in case of physical isomorphism) and dimensional (for ideal 
materials, as Hookean, Newtonian and Saint-Venant's). 

Since the behaviour of soils whose structure undergoes uniform hardening in 
the process of deformation is physically isomorphous, one may guess in advance 
the class of soils involved in such a behaviour: soft to medium ("wet") clays, 
loose (to medium dense) sands. If some irregularities in the structural hardening 
are expected to take place (straddling of the preconsolidation load, brittle 
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Concluding comments 

bonding, etc.), then the validity of the results of any testing and of the proposed 
constitutive model are greatly restricted and their limits must be carefully 
explored. 

Another problem is that of the validity of laboratory test results under field 
conditions. It has been shown in the preceding text that a good representative-
ness of the laboratory experiments in the field is not uncommon (as documented 
by analysis of Figs. 9.17 and 10.14). Sometimes, however, a drastic difference can 
be observed. Minemoto et al. (1981) refer to a ratio of 10:1 between the material 
properties obtained by creep testing of a rock core and those of field-scale tests. 
Such serious discrepancies occur owing to the macrofabric features of geomate-
rials. They can be dissected by different surfaces of lowered shear resistance, 
such as fissures, joints, etc. In such cases, the procedure described in Section 
5.4.5 should be followed: the total response of the rock massif is formed by 
a combination of responses of the cracks and of intact rock. The creep behaviour 
of cracks (surfaces with lowered shear resistance) is similar to compact geomate-
rials, as is demonstrated by the analysis of the creep behaviour of presheared 
Dâblice claystone. 

The problem of the coverage of all practically important stress- and strain 
paths seems to be more difficult to solve, since the majority of creep tests are 
either oedometric or triaxial (exceptionally plane-strain). In the author's tests, 
a ring-shear apparatus was used which may be regarded as an improved version 
of a shear box. Confrontation of test results proves (Section 6.3) that the results 
obtained with this apparatus are well comparable with, e.g., a triaxial apparatus. 
In addition, one will certainly agree with Marsland (1986) that "a critism used 
against standard shear tests is the non-uniformity of the stresses within the 
specimens, but the effects are probably relatively minor compared with the 
variations in the properties of natural soils". 

Since the effect of stress- and strain paths differs according to the kind of soil 
(of the soil structure) and the property measured (deformation vs. strength 
parameters), no general solution of this problem is at present at hand. It is 
believed that using experimental data from the ring-shear apparatus (where the 
state of stress is not unambiguously defined but some hints are given in Section 
6.4) and applying eqns. (6.23) on the one hand, and eqns. (12.28) and (12.29) on 
the other one, one can delimit the probable range of creep deformations (compa-
re the relations 6.18, 6.24 and 6.27). 

Rate-process theory has been accepted by many as a microrheological picture 
of what occurs with the soil structure in the process of creep. It has been shown, 
however, that this theory corresponds to secondary creep and therefore finds 
a good applicability in the realm of molecular theories of viscosity. Grave 
structural changes - hardening and softening - take place with soils in any 
deformation process and the use of rate-process theory for their description is 
at least questionable. 
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Concluding comments 

For soils, the rate-process theory seems to represent more a mathematical 
(computational) than a physical (constitutive) model of behaviour. 

On the phenomenological level, one can use either rheological constitutive 
relations of the rate-type or those deduced from the dynamic plastic potential 
surface. Preferring the latter ones as physically better motivated, one lacks 
a general relation, dictated by the form of these surfaces, unifying both distortio-
nal (deviatoric) and volumetric creep (hence, some uncertainty in the choice 
between volumetric and deviatoric scaling by Hsieh and Kavazanjian, 1987). 
Using eqn. (11.45) one may get a single but rather complex form of the dynamic 
plastic potential surface. Its decomposition into two simpler shapes, such as 
those in Fig. 5.15c, is not unique. Rate-type relations (11.34) and the likes are, 
therefore, preferable at the present time, the concept of the dynamic plastic 
potential surface remaining a goal to be better explored, with the aim of 
elucidating the physical nature of the time-dependent constitutive behaviour of 
soils. 

These comments thus suggest that a structure-based analysis of the rheologi-
cal behaviour of geomaterials is to be preferred to a purely mathematical 
treatment of the subject. 
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APPENDIX 1 

Examples of simple statistical calculations 

There are three types of correlations of experimental data defined by two 
coordinates χ. and yi (e.g., xt = n0, the initial porosity; y. = σ'^/σ'φ the failure 
stress ratio) as depicted in Fig. A-l. 

SYMBOLS : 

ο · EXPERIMENTAL 

DATA 

y 

0 ' χ 0 ' χ ο' 

α) b ) c ) 

Fig. A-l. Examples of statistical calculations. 

In the first case, yi varies around a mean value y (horizontal line in Fig. yi-la, 
e.g. Fig. 4.7); in the second case, all measured data are confined within a strip 
(Fig. A-lb, e.g., Fig. 4.2) and their projection, parallel to the direction of the 
regression line, on the χ = 0 axis, has the form of frequency curves (see e.g., 
Figs. 4.3 and 4.6). In the third case, all measured data fall within a fan whose 
apex lies either on the x-axis (Fig. A-lc, case 1; e.g., Fig. 4.4) or on the >'-axis 
(Fig. ,4-1 c, case 2). 

The following text presents examples of the statistical evaluation of test data 
in these three principal cases. 
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Appendix 1 

a) Residual stress ratio of Zbraslav sand (Figs 4.7 and Λ- la ) 

yi (y, - yf 
(initial porosity) 

(residual stress ratio cell pressure 
% (MPa) 

33.1 3.98 0.154 4 
33.5 3.37 0.047 1 
37.3 3.66 η ι 0.005 3 
38.6 3.42 U. 1 0.027 9 
39.7 3.71 0.015 1 
40.9 3.57 0.000 3 

34.6 3.68 0.008 6 
34.7 3.57 0.000 3 
36.3 3.69 0.010 6 
38.3 3.55 0.25 0.001 4 
40.1 3.56 0.000 7 
40.2 3.59 0.000 0 
41.4 3.54 0.002 2 

33.2 3.31 0.076 7 
34.2 3.64 0.002 8 
34.3 3.50 0.007 6 
35.0 3.37 

0.4 0.047 1 
37.3 3.67 0.006 9 
38.4 3.58 0.000 0 
41.2 3.56 0.000 7 
41.7 3.81 0.049 7 

Jj. = 75.33; £()>,—j?)
2
 = 0.465 4; y = 75.33/21 = 3.587; s = (0.465 4/21 )

1 /2
 = 0.148 9; 

ν = s/y χ 100 = 4.15 %; 

y 3.885 
confidence limits = y ± 2s = 3.587 ± 0.298 = ^ 

X
 3.289 

(a slight dependence of o'Ja'xr on n0 is neglected because the coefficient of correlation 
r = 0.103 < r 0 05 = 0.433). 
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Appendix 1 

b) Peak stress ratio of Zbraslav sand - triaxial apparatus 
(Figs 4.2 and A-\b) 

χ» yt <7rf 01 fa - (?-.)' 
(peak stress (cell 

K ) ratio pressure) 
% <fKf) (MPa) 

33.1 5.22 9.946 7 0.051 4 0.002 5 0.002 1 

33.5 4.72 9.503 8 0.046 7 0.001 9 0.001 9 

37.3 4.63 A 9.956 4 0 055 9 0.002 1 0.002 9 

38.6 4.24 U ι 9.752 1 0.001 0 0.000 0 0.000 1 

39.7 3.95 9.619 2 0.010 2 0.000 3 0.000 6 

40.9 3.84 9.680 5 0.001 5 0.000 0 0.000 1 

34.6 5.02 9.960 9 0.058 0 0.002 6 0.002 5 

34.7 4.91 9.865 2 0.021 1 0.000 9 0.000 9 

36.3 4.59 9.773 6 0.002 9 0.000 1 0.000 1 

38.3 4.35 0. >5 9.819 2 0.009 8 0.000 3 0.000 5 

40.1 3.78 9.506 3 0.045 7 0.001 3 0.002 9 

40.2 3.94 9.680 6 0.001 5 0.000 0 0.000 1 

41.4 3.80 9.711 9 0.000 1 0.000 0 0.000 0 

33.2 4.80 9.541 0 0.032 1 0.001 8 0.001 3 

34.2 4.74 9.623 8 0.009 3 0.000 4 0.000 4 

34.3 4.73 9.628 0 0.008 4 0.000 3 0.000 4 

35.0 4.59 A 9.588 0 0.017 4 0.000 7 0.000 8 

37.3 4.31 9.636 4 0.070 0 0.000 2 0.000 4 

38.4 4.29 9.773 5 0.002 9 0.000 1 0.000 2 

41.2 3.81 9.793 4 0.005 4 0.000 0 0.000 0 

41.7 3.91 9.864 8 0.020 9 0.006 0 0.001 5 

Projection on the χ = 0 axis: 
y. = £χ. + g. => g. = y. - kX. 

= 92.17; y = 92.17/21 = 4.389; Σ fa—g)
2
 = 0.409 2; 

Σ Κ / x - l )
2
 = 0.015 2; Σ ( ^ / ί - Ο

2
 = 0.019 7; 

regression line: y = £ ί + ^ => σ',άΐ\σ'ή = 9.720 — 0.142 8 n0 

(e.g., program of a TI 57 pocket calculator), n0 in %; £ = 0.142 8; 
q = 9.720; r = 0.948 > r 0 05 = 0.433. 

Confidence limits: 2s = 0.28 => o'Ja'n = 9.72 ± 0.28 - 0.143 n 0. 

i>, = s/y x 100 = (0.409 2/21)
1 /2

 /y = 0.139 6/4.389 χ 100 = 3.18 %; 

^2 = [Σ(
χ
ί/* - 0

2
/ 2 l ]

1 /2
 x 100 = (0.015 2/21)

, /2
 χ 100 = 2.69 %; 

v3 = \ΣΜ9 - 0
2
/ 21 ]

1 /2
 x 100 = (0.019 7/21 )

1 /2
 χ 100 = 3.06 %; 

ν = (V] + v2 + ü3)/3 = 3.0 %. 
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Appendix 1 

c) Peak shear-stress ratio of Zbraslav sand - shear box 
(Figs 4.4 and ,4 - lc l ) 

xt = n0 

% 
yt = H H 

29.85 6.30 0.291 1 0.004 0 0.000 39 0.003 6 14.989 6 
31.0 6.09 0.297 2 0.001 9 0.000 19 0.001 6 15.303 2 
31.37 6.06 0.301 2 0.001 0 0.000 09 0.000 8 15.507 8 
32.37 5.58 0.291 8 0.003 8 0.000 36 0.003 4 15.026 2 
33.0 5.99 0.324 0 0.001 8 0.000 17 0.002 1 16.679 9 
38.25 3.76 0.284 0 0.007 5 0.000 72 0.006 9 14.621 5 
39.75 3.46 0.294 7 0.002 7 0.000 26 0.002 4 15.173 8 
39.87 3.65 0.314 1 0.000 1 0.000 01 0.000 2 16.172 3 
40.0 3.41 0.296 8 0.002 1 0.000 20 0.001 8 15.279 8 
31.25 5.91 0.292 0 0.003 7 0.000 36 0.003 3 15.034 3 
34.25 6.09 0.353 2 0.018 5 0.001 79 0.019 6 18.187 8 
32.37 6.22 0.325 3 0.002 1 0.000 21 0.002 5 16.749 7 
31.25 6.04 0.298 4 0.001 6 0.000 16 0.001 3 15.365 0 
32.94 5.52 0.297 6 0.001 8 0.000 18 0.001 6 15.321 4 
32.70 5.60 0.298 0 0.001 7 0.000 17 0.001 4 15.344 9 
32.94 5.83 0.314 3 0.000 1 0.000 12 0.000 2 16.181 8 
33.94 5.30 0.302 0 0.000 8 0.000 08 0.000 6 15.548 9 
34.37 5.67 0.331 2 0.004 3 0.000 41 0.004 8 17.052 2 
34.37 5.38 0.314 2 0.000 1 0.000 01 0.000 2 16.180 0 
34.37 5.25 0.306 7 0.000 2 0.000 02 0.000 1 15.789 1 
34.37 5.11 0.298 5 0.001 6 0.000 15 0.001 3 15.368 0 
34.87 5.53 0.332 1 0.004 6 0.000 45 0.005 5 17.131 4 
35.12 5.45 0.332 9 0.005 0 0.000 48 0.005 6 17.141 4 
35.19 5.40 0.331 3 0.004 3 0.000 42 0.004 8 17.057 1 
38.75 3.90 0.306 1 0.000 2 0.000 02 0.000 1 15.761 0 
39.25 3.63 0.296 6 0.002 1 0.000 20 0.001 8 15.269 1 
39.60 3.78 0.315 3 0.000 2 0.000 02 0.000 3 16.231 5 
32.25 6.51 0.338 4 0.007 8 0.000 76 0.008 5 17.421 3 
32.0 6.56 0.336 6 0.006 8 0.000 66 0.007 5 17.329 9 

X kf = 9.015 6; Κ = 0.310 9 = 0.309 8; YJ(kJk - l) 2
 = 0.092 4; 

- Kf = 0.008 95; %(yjy - l )
2
 = 0.095 1; 

Y/li = 464.219 9; s = (0.008 95/29)
1 /2

 = 0.017 6; q = 16.007 = 15.952; 

regression line: y = kx + q => a'Ja'r{ = 15.952 - 0.309 8 n0; n0 in %; k = 0.309 8; 

q = 15.952; r = 0.959 > r 0 05 = 0.368; y = 0 => χ = 51.491 3 ( = q/k). 

For each point yt = /c,*, + qt and /c( = yj(q/k — χ,·) = 3^/(51.491 — χ,·); 

(y. - y)/y = (fc. - =>! ; , = (0.092 4/29)
1 /2

 χ 100 = 5.64 %; 

t>2 = (0.095 1/29)
12
 χ 100 = 5.73 % (i;, y- v2 due to round-off errors); û = 5.7 %; 

for £ ± 1.755 = 0.31 ± 0.031: qt = 15.952 ^ j '^j = 15.952 ± 1 . 6 => a'Ja'rf = 

= 15.952 ± 1.6 - (0.31 ± 0.031) n0 (n0 in % ) . 
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APPENDIX 2 

Experimental creep rates of tested soils 

Regression lines: 

log γ = log a — η log — 
h 

or 

log ε ν = log a - η log - , 
h 

d e
v . d y Λ . 

Symbols: εν, y - volumetric and distortional creep-strain rates, t - time, η - expo-
nent, r - coefficient of correlation; σ'η, τ - normal and shear stresses (MPa), zf 

- long-term shear resistance, log - decadic logarithm; + - unloading, * - omit-
ted in the summary evaluation. 
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\0
~

(1~ test ( y I ~ tv I

(MPa) No. r/rf n - log a r n - log a r

undisturbed Strahov claystone:

I 1 0.374 1.078 3.632 0.973 - - -

2 0.561 0.862 3.846 0.964 1.231 3.750 0.925
3 0.743 1.124 2.748 0.976 1.060 3.637 0.944

0.11 4+ 0.248 1.118 3.077 0.971 0.964 4.626 0.978
5 0.870 1.033 2.435 0.992 0.978 3.650 0.977
6 0.937 0.598 3.875 0.985 (1.982 0.477 0.803)*
7+ 0.248 0.822 4.335 0.962 0.974 5.021 0.976
8 0.937 0.805 3.641 0.994 (1.261 4.519 0.842)*

1 0.581 1.014 2.456 0.994 0.928 3.296 0.996
2+ 0.121 0.718 4.101 0.987 0.890 4.382 0.986
3 0.640 0.836 3.193 0.994 0.662 4.550 0.934
4+ 0.118 1.089 3.031 0.983 1.082 2.672 0.995
5 0.731 1.135 1.863 0.994 1.099 2.219 0.984

0.31 6+ 0.118 1.376 2.360 0.983 0.929 3.041 0.986

j
7 0.790 0.947 2.414 0.994 0.827 3.710 0.988
8+ 0.118 1.266 2.614 0.946 1.049 3.791 0.989
9 0.885 1.073 1.555 0.993 1.002 2.871 0.990

10+ 0.118 1.730 1.709 0.979 0.999 3.608 0.966
11 0.946 0.918 1.805 0.965 1.062 2.549 0.927

2 0.393 0.963 3.164 0.987 0.885 3.748 0.986
3 0.475 0.677 4.212 0.927 0.702 4.332 0.995
4 0.560 0.936 3.240 0.932 0.902 3.660 0.970
5 0.649 1.006 2.803 0.977 1.188 2.678 0.994
6 0.681 0.860 3.707 0.946 0.583 4.459 0.949
7 0.734 1.145 2.821 0.981 0.982 3.368 0.979
8 0.766 0.385 4.986 0.999 - - -

0.52 9 0.766 1.070 3.068 0.991 1.123 3.657 0.978
10 0.798 0.651 4.102 0.980 1.335 2.564 0.996
11 0.813 0.682 4.123 0.967 0.630 5.068 0.988
12 0.845 0.748 3.409 0.862 0.635 4.641 0.917
13 0.880 0.600 3.833 0.947 0.657 4.504 0.937
14 0.898 1.031 2.487 0.984 0.758 4.531 0.990
15 0.933 0.508 3.942 0.933 1.168 3.040 0.901
16 0.971 0.554 3.710 0.839 0.913 3.498 0.929
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V.J
\D
VI

a~ test ( y J ( ev J

(MPa) No. r/rf
n - log a r n - log a r

reconstituted Strahov claystone:

I 0.423 1.347 2.144 0.991 0.850 4.107 0.995
2+ 0.281 - - - 0.603 5.656 0.984
3 0.641 1.708 0.622 0.988 1.425 2.108 0.994
4+ 0.281 - - - 1.656 2.873 0.961

0.11 5 0.719 1.530 1.019 0.978 0.442 5.400 0.998
6+ 0.281 - - - 1.972 2.881 0.968
7 0.785 1.500 0.915 0.969 - - -
8+ 0.281 - - - - - -

9 0.857 (1.285 2.587 0.989)* - - -

1 0.260 1.184 2.840 0.973 0.615 4.813 0.951
2+ 0.114 - - - 0.383 6.057 0.944
3 0.410 1.228 2.337 0.969 0.508 4.932 0.992
4+ 0.114 0.237 5.943 0.658 0.980 4.709 0.995
5 0.705 1.034 2.645 0.958 1.094 3.089 0.995

0.31 6+ 0.114 1.855 2.622 0.997 1.396 3.226 0.989
7 0.763 1.079 2.570 0.991 0.768 4.768 0.807
8+ 0.114 0.891 3.970 0.996 1.130 3.627 0.968
9 0.851 1.326 1.482 0.979 0.928 4.076 0.971

10+ 0.114 0.809 4.249 0.934 1.161 3.616 0.995
11 0.909 1.198 1.834 0.986 1.150 3.975 0.983
12+ 0.114 1.141 3.182 0.978 0.839 4.391 0.977

1
1 0.089 - - - 0.851 4.296 0.765
2 0.292 (1.694 1.887 0.982)* 2.146 2.126 0.975
3 0.496 1.194 2.363 0.938 0.685 4.586 0.995
4+ 0.089 - - - 1.833 2.002 0.989

0.52 5 0.696 1.639 0.718 0.971 1.116 3.155 0.984

j 6+ 0.089 1.238 2.673 0.996 1.602 2.558 0.995
7 0.898 1.282 1.329 0.942 1.207 2.864 0.985
8+ 0.089 1.108 2.637 0.959 1.436 2.726 0.993
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(J~ test E y ) E Bv
)

(MPa) No. r/rf n - log a r n - log a r

D&blice claystone (presheared):

0.11 1 0.39 (0.860 3.421 0.987)* - - -

i 1 0.68 0.811 3.799 0.987 0.901 4.196 0.972
0.31 2 0.83 0.933 3.460 0.998 0.670 4.770 0.995

1 3 0.95 1.150 2.249 0.982 0.750 4.771 0.994

i 1 0.64 0.790 4.300 0.987 0.836 4.479 0.991
0.52 2 0.79 0.932 3.436 0.989 0.622 4.898 0.971

1 3 0.89 0.806 3.562 0.963 0.603 3.883 0.991

Zbraslav sand: no (initial
porosity, 0/0)

ot
1 0.742 1.376 2.491 0.873 - - - 42.2
6 0.935 1.171 2.186 0.971 1.108 2.984 0.968 33.25
7 0.899 1.004 2.834 0.972 0.912 3.815 0.954 32.9

1 11 0.935 1.129 2.548 0.935 1.098 3.461 0.899 32.85
13 0.808 1.162 2.500 0.955 0.773 3.986 0.876 35.85

i 3' 0.652 1.242 2.214 0.998 - - - 41.3
0.52 3" 0.676 1.183 2.426 0.881 - - - 41.3

1 4 0.970 0.740 2.967 0.902 (0.694 3.824 0.882)* 32.2
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