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v

Disclaimer
In using the computer coding given in Seismic Design Aids, the reader accepts and 
understands that no warranty is expressed or implied by the authors on the accuracy 
or the reliability of the programs. The examples presented are only introductory 
guidelines to explain the applications of proposed methodology. The reader must 
independently verify the results and is responsible for the results.
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Series Preface
The new 2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design 
requires pushover analysis for Seismic Design Category D bridges. The pushover 
analysis can identify the failure modes with collapse sequence of damaged bridges 
for the limit state design of the system. This is a benchmark book that provides read-
ers with an executable file for a computer program, INSTRUCT, to serve the engi-
neering community’s needs. The book includes step-by-step numerical procedures 
with five different nonlinear element stiffness formulation methods that vary from 
the most sophisticated to the simplest and are suitable for users with varying levels 
of experience in nonlinear analysis. Most of the numerical examples provided with 
the demonstration of the accuracy of analytical prediction conformed well with the 
full- or large-scale test results. The key features of this book are as follows:

	 1.	A complete handbook for pushover analysis of reinforced concrete and steel 
bridges with confined and nonconfined concrete column members of either 
circular or rectangular cross sections as well as steel members of standard 
shapes

	 2.	New technology for displacement-based seismic analysis with various in-
depth, nonlinear member stiffness formulations

	 3.	Step-by-step pushover analysis procedures and applications in bridge 
engineering

	 4.	A computer execute file for readers to perform pushover analysis
	 5.	Real engineering examples with performance-based bridge design
	 6.	Detailed figures/illustrations as well as detailed input and output descriptions

This book is a useful reference for researchers and practitioners working in the field 
of structural engineering. It is also a key resource for senior undergraduates and all 
postgraduates that provides an organized collection of nonlinear pushover analysis 
applications.

© 2012 by Taylor & Francis Group, LLC



xvii

Preface
Nonlinear static monotonic analysis, or pushover analysis, has become a com-
mon practice for performance-based bridge seismic design. The 2009 AASHTO 
Guide Specifications for LRFD Seismic Bridge Design (AASHTO, 2009) explicitly 
requires pushover analysis for Seismic Design Category D bridges. The 2006 FHWA 
Seismic Retrofitting Manual for Highway Structures: Part I—Bridges (FHWA, 
2006) adopted pushover analysis for bridges in Seismic Retrofit Categories C and 
D to assess bridge seismic capacity. The popularity of pushover analysis is mainly 
due to its ability to identify failure modes and design limit states of bridge piers and 
provide the progressive collapse sequence of damaged bridges when subjected to 
major earthquakes. Unfortunately, there is no complete technical reference in this 
field to give the practical engineer step-by-step procedures for pushover analyses 
and various nonlinear member stiffness formulations. This book includes step-by-
step procedures for pushover analysis and provides readers an executable file for a 
computer program, INSTRUCT (INelastic STRUCTural Analysis of Reinforced-
Concrete and Steel Structures) to perform pushover analysis. The readers can 
download the INSTRUCT executable file from the website at http://www.crcpress.
com/product/isbn/9781439837634. Many examples are provided to demonstrate 
the accuracy of analytical prediction by comparing numerical results with full- or 
large-scale test results. 

The computer program INSTRUCT was developed based on a microcomputer 
program INRESB-3D-SUPII (Cheng et al., 1996a and b) and mainframe program 
INRESB_3D-SUP (Cheng and Mertz, 1989a). INRESB-3D-SUPII was a modu-
lar computer program consisting of six primary blocks. The first block (STRUCT) 
defines the structural model. The remaining five blocks (SOL01, SOL02, SOL03, 
SOL04, and SOL05) are independent solutions for static loading, seismic load-
ing, natural frequency and buckling loading, static cyclic or pushover loading, and 
response spectrum analysis, respectively. Since the purpose of INSTRUCT is mainly 
to perform nonlinear pushover analysis of reinforced concrete and steel bridge bents, 
it includes only SOL01 and SOL04. During the development of INSTRUCT, SOL04 
was enhanced significantly, and it includes five different nonlinear element stiffness 
formulation methods for pushover analysis. They are finite segment–finite string 
(FSFS), finite segment–moment curvature (FSMC), axial load–moment interaction 
(PM), constant moment ratio (CMR), and plastic hinge length (PHL) methods. These 
range from the most sophisticated to the simplest and are suitable for engineers with 
varying levels of experience in nonlinear structural analysis. The results from these 
methods have been compared during the development of the program. They gener-
ally exhibit reasonable differences due to the different numerical operation of indi-
vidual methods, but are consistent in general. SOL04 is capable of performing not 
only unidirectional pushover analysis but also cyclic pushover analysis. Depending 
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xviii Preface

on future needs, SOL02, SOL03, and SOL05 can be incorporated into future versions 
of INSTRUCT.

Chapter 1 describes the evolution of seismic bridge design codes in the United 
States over the past 70 years and includes a comparison between force-based and 
displacement-based design approaches. Regardless of the design approach being 
used, it demonstrates the importance of using pushover analysis for seismic bridge 
design and retrofitting evaluation.

Chapter 2 summarizes the application of pushover analysis in force-based bridge 
design as well as in displacement-based seismic bridge design. Other applications 
such as capacity/demand analysis for the evaluation of existing bridges, quantitative 
bridge redundancy evaluation, moment–curvature analysis, and estimation of inelas-
tic response demand for buildings are also described in this chapter.

Nonlinear pushover analysis procedure is described in Chapter 3. The flow-
chart for structural modeling and the procedures for solutions SOL01 and SOL04 
are described. Material and element libraries are provided, including 12 material 
and 7 element types. The material library covers elastic material and hysteresis 
models of bilinear, Takeda, gap/restrainer, hinge, interaction axial load–moment, 
finite-segment (steel), finite-segment (reinforced concrete), FSMC, plate, point, and 
brace materials. The element library includes elastic three-dimensional (3D) beam, 
spring, inelastic 3D beam, finite-segment, plate, point, and brace elements.

The nonlinear bending stiffness matrix formulations for reinforced concrete mem-
bers are described in Chapter 4, including the above-mentioned FSFS, FSMC, PM, 
CMR, and PHL methods. Since most bridge columns in the United States are rein-
forced concrete columns, it is necessary to check all the possible concrete column fail-
ure modes in the pushover analysis. Possible concrete column failure modes include

	 1.	Compression failure of unconfined concrete due to fracture of transverse 
reinforcement

	 2.	Compression failure of confined concrete due to fracture of transverse 
reinforcement

	 3.	Compression failure due to buckling of the longitudinal reinforcement
	 4.	Longitudinal tensile fracture of reinforcing bars
	 5.	Low cycle fatigue of the longitudinal reinforcement
	 6.	Failure in the lap-splice zone
	 7.	Shear failure of the member that limits ductile behavior
	 8.	Failure of the beam–column connection joint

INSTRUCT is capable of checking all the possible concrete column failure modes. 
The approaches used to check individual failure modes are also described in this 
chapter.

Chapter 5 describes how to combine bending, shear, axial, and torsional stiff-
nesses to form the 3D element stiffness matrices for bridge columns and cap beams. 
The stiffness matrix formulation for other elements such as brace and plate ele-
ments is introduced in this chapter. Once all the element stiffness matrices are 
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xixPreface

formulated, a 3D structural system subjected to both static and nonlinear push-
over loadings can be analyzed. The definitions of structural joints and degrees of 
freedom (dofs), including free, restrained, condensed, or constrained dofs, are also 
described in detail.

Chapter 6 contains detailed input data instructions. The modular form of 
INSTRUCT allows the addition of new materials and/or new elements into the pro-
gram depending on future needs. The structural analysis adopted in the program 
is based on the matrix method. The system formulation in INSTRUCT has the fol-
lowing attributes: (1) joint-based degrees of freedom, (2) rigid body and planar con-
straints, (3) material and geometric stiffness matrix formulation, and (4) unbalanced 
load correction. INSTRUCT has been developed to achieve efficiency in both com-
putation and data preparation. The output solutions include the results of joint forces 
and displacements, member forces and deformations, member ductility factors, and 
structural displacement capacities corresponding to different performance-based 
limit states.

Chapter 7 provides 13 numerical examples to illustrate the preparation of input 
data and the output solutions for the bridge pushover analysis of reinforced concrete 
and steel bridge bents. Most examples provide a comparison between the numeri-
cal results and available experimental test results. Many existing steel diaphragms 
(cross frames) in steel or prestressed concrete girder bridges were not designed for 
high seismic loads, and the inelastic buckling of brace members could occur when 
subjected to lateral loads. For steel pile cap bents, the steel piles may develop plas-
tic hinges and the diagonal brace members may buckle due to lateral seismic load. 
As shown in some of the examples, INSTRUCT is capable of performing pushover 
analysis for steel pile cap bents and steel diaphragms, with consideration of post-
buckling effects of steel members.

The majority of the mathematic derivations for the nonlinear stiffness matrices 
of various structural elements, nonlinear member cross-sectional properties, and 
different numerical analyses described in this book are included in Appendices A 
through E, I, and J. Although this book is mainly for readers who have fundamental 
earthquake engineering and structural dynamics background, Appendices F through 
H provide structural engineers with basic knowledge of dynamic analysis of struc-
tures, including elastic and inelastic time history analyses, damped free vibration, 
damped vibration with dynamic force, the development elastic and inelastic response 
spectra, equivalent viscous damping, and the response spectrum analysis of the mul-
tiple-degrees-of-freedom system.

The photo shown on the book cover is of the Tanana River Bridge near Tok, 
Alaska, which was one of the first bridges in Alaska designed using the AASHTO 
Guide Specifications for LRFD Seismic Bridge Design (AASHTO, 2009) and 
pushover analysis to ensure that the displacement capacities of individual piers are 
greater than the corresponding seismic displacement demands. The authors wish 
to thank Derek Soden, the former Alaska DOT structural designer who designed 
this bridge, for providing this photo cover and proofreading a majority of the book 
manuscripts.
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1

1 Overview of Seismic 
Design of Highway 
Bridges in the 
United States

1.1  Introduction

The nonlinear static monotonic analysis, or pushover analysis, has become a com-
mon procedure in current structural engineering practice (ATC-40, 1996; FEMA-
273, 1997; FEMA-356, 2000). The American Association of State Highway and 
Transportation Officials (AASHTO) Guide Specifications for load and resistance fac-
tors design (LRFD) Seismic Bridge Design explicitly require pushover analysis for 
seismic design category D (SDC D) bridges. The 2006 FHWA Seismic Retrofitting 
Manual for Highway Structures: Part I—Bridges (FHWA, 2006) adopted pushover 
analysis in evaluation method D2 for bridges of seismic retrofit categories C and D 
(SRC C and SRC D) to assess bridge seismic performance.

This chapter describes the evolution of seismic bridge design codes in the United 
States. The intent is not to introduce the seismic design codes in detail, but to illus-
trate the differences among these codes and discuss major code improvements over 
the past 70 years. The history of code development can explain why the current 
AASHTO Guide Specifications for LRFD Seismic Bridge Design and the FHWA 
Seismic Retrofitting Manual require using nonlinear pushover analysis for bridge 
design and retrofit, respectively. This chapter also provides a discussion of possible 
future code improvement.

1.2  AASHTO Bridge Seismic Design Philosophy

The highway bridge design code in the United States has evolved several times over 
the past 70 years. The first highway bridge design code was published in 1931 by the 
American Association of State Highway Officials (AASHO), later by the AASHTO. 
From 1931 through 1940, AASHO codes did not address seismic design. The 1941 
edition of the AASHO code required that bridges be designed for earthquake 
load; however, it did not specify how to estimate that load. In 1943, the California 
Department of Transportation (Caltrans) developed various levels of equivalent 
static lateral forces for the seismic design of bridges with different foundation types, 
with individual members designed using the working stress design (WSD) method 
(Moehle et al., 1995).
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2 Seismic Design Aids for Nonlinear Pushover Analysis

Following Caltrans’ criteria, the 1961 edition of the AASHO specifications for the 
first time specified an earthquake loading for use with the WSD design approach. 
This seismic provision, used until 1975, did not include a national seismic map. The 
AASHO design code provisions from this period are briefly described as follows.

1.2.1  AASHO Elastic Design Procedures (1961–1974)

In regions where earthquakes may be anticipated, the equivalent earthquake static 
lateral force was calculated (AASHO, 1969) as follows:

	 EQ CD= 	 (1.1)

where
EQ is the lateral force applied horizontally at the center of gravity of the structure
D is the dead load of structure
C = 0.02 for structures founded on spread footings on material rated as 4 t or more 

per square foot
C = 0.04 for structures founded on spread footings on material rated as less than 

4 t per square foot
C = 0.06 for structures founded on piles

The earthquake force, EQ, calculated from Equation 1.1 was part of the Group 
VII loading combination given by

	 Group VII = + + + +D E B SF EQ 	 (1.2)

in which D, E, B, and SF are dead load, earth pressure, buoyancy, and stream flow, 
respectively. With WSD, the code allowed a 33 1

3 % increase in the allowable stress 
for member design due to earthquake consideration. For reinforced concrete col-
umns subjected to bending, the allowable compression stress at the extreme fiber 
was 0 4. ′fc , and tension stress at the extreme fiber of the member was not permitted.

Despite the Caltrans design criteria, many highway bridges were severely dam-
aged or collapsed during the 1971 San Fernando earthquake. The post-earthquake 
damage assessment indicated that the elastic WSD provisions for bridges subjected to 
earthquake were not adequate. This event illustrated the drawbacks of elastic design, 
such as (1) the seismic lateral force levels of 2%, 4%, and 6% of the total structural 
dead load were too low in California, (2) the actual column moment demand reached 
the column moment capacity, (3) columns were not designed for ductility, which 
resulted in brittle failure during the earthquake, and (4) energy dissipation was very 
small.

Following the San Fernando earthquake, Caltrans developed a new force-based 
seismic design procedure for highway bridges. The new design criteria included 
soil effects on seismic load and the dynamic response characteristics of bridges. It 
increased the amount of column transverse reinforcement for ductility, and beam 
seat lengths were increased to minimize the risk of unseating of the superstructure. 
In 1975, AASHTO adopted an interim seismic design specification, which was based 
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3Overview of Seismic Design of Highway Bridges in the United States

on the Caltrans’ design criteria. The same design criteria were used in the 1977, 
1983, 1989, and 1992 AASHTO Standard Specifications. The following describes 
the design criteria during this time period.

1.2.2  AASHTO Force-Based Design Procedures (1975–1992)

The equivalent static force method was used to calculate the design earthquake load-
ing. The design earthquake load is given as follows:

	 EQ CFW= 	 (1.3)

where
EQ is the equivalent static horizontal force applied at the center of gravity of the 

structure
F is the framing factor
F = 1.0 for structures where single columns or piers resist the horizontal forces
F = 0.8 for structures where continuous frames resist the horizontal forces applied 

along the frame
W is the total dead weight of the structure
C is the combined response coefficient, expressed as

	
C A R

S

Z
= × × 	 (1.4)

where
A is the maximum expected peak ground acceleration (PGA) as shown in the 

seismic risk map of the United States in Figure 1.1
R is the normalized acceleration response (PGA = 1 g) spectral value for a rock 

site
S is the soil amplification factor
Z is the force-reduction factor, which accounts for the ductility of various struc-

tural components

The first U.S. seismic map, as shown in Figure 1.1, was included in this version 
of the AASHTO code. Although the definitions of R, S, and Z were described in the 
code, the numerical values of R, S, and Z were not provided. Instead, four plots of C 
as a function of structural period were provided with each plot representing a certain 
depth range of alluvium to rocklike material. One of the combined response coef-
ficient plots is shown in Figure 1.2. The PGA values corresponding to three seismic 
zones (zones 1, 2, and 3) in the seismic map are shown in Table 1.1.

The same Group VII load combination given by Equation 1.2 was used for WSD 
with a 33 1

3 % increase in the allowable stress. From the lessons learned in the 1971 
San Fernando earthquake, for the first time, AASHTO provided the option of using 
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4 Seismic Design Aids for Nonlinear Pushover Analysis

load factor strength design (LFD) and allowed inelastic deformations in ductile col-
umn members. For LFD, the Group VII load combination was

	 Group VII = + + + +γ β β[ ]D ED E B SF EQ 	 (1.5)

in which the load factor γ = 1.3, βD = 0.75 for checking the column for minimum axial 
load and maximum moment, βD = 1.0 for checking the column for maximum axial 
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FIGURE 1.1  National seismic risk map. (From American Association of State Highway 
Transportation Officials (AASHTO), Standard Specifications for Highway Bridges, 12th 
edn., Washington, DC, 1977.)
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FIGURE  1.2  Combined response coefficient C for different rock acceleration A. (From 
American Association of State Highway Transportation Officials (AASHTO), Standard 
Specifications for Highway Bridges, 12th edn., Washington, DC, 1977.)
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5Overview of Seismic Design of Highway Bridges in the United States

load and minimum moment, βE = 1.3 for lateral earth pressure and 0.5 for checking 
positive moments in rigid frames, and B and SF are the buoyancy and stream flow 
pressure, respectively.

Since values for Z were not provided in the specifications, a designer did not 
have a clear idea what column ductility demand was required. Without knowing 
the ductility demand, the ductility capacity of the design column was of question-
able adequacy. This drawback was improved in the 1992 AASHTO specifications as 
described in the next section.

1.2.3  AASHTO Force-Based Design Procedures (1992–2008)

The 1992 edition of the AASHTO Standard Specifications was based on the Applied 
Technology Council (ATC) publication entitled “Seismic Design Guidelines for 
Highway Bridges” (ATC-6, 1981). The primary departure from the previously men-
tioned AASHTO specification (1975–1992) is described as follows:

	 1.	 Instead of the equivalent static force method, structures were analyzed by 
elastic response spectrum analysis. The detailed description of response 
spectrum analysis is given in Appendix H.

	 2.	The design acceleration spectrum included consideration of soil type at the 
bridge site, ranging from hard (S1) to very soft (S4).

	 3.	The elastic member forces calculation considered two horizontal seismic 
components. The combination of structural responses due to multicompo-
nent seismic input is described in Appendix H.

	 4.	The elastic member forces from the response spectrum analysis were 
reduced by a response modification factor, R, which mainly represented 
the column ductility demand with consideration of the redundancy of the 
structure.

	 5.	The specifications emphasized the ductile detailing of columns via a mini-
mum transverse reinforcement requirement.

As mentioned above, the elastic force demand of the ductile member is divided by 
the code-provided response modification factor R (also called force-reduction fac-
tor or strength-reduction factor). The intent of R is to estimate the column ductility 

TABLE 1.1
Maximum Expected 
PGA for Different Zones

PGA Value (g) Zone

0.09 1

0.22 2

0.5 3
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6 Seismic Design Aids for Nonlinear Pushover Analysis

demand. The response modification factors in the 1992 and 1996 editions of the 
AASHTO Standard Specifications are shown in Table 1.2.

Based on these specifications, the LFD Group VII load combination for seismic 
performance categories (SPCs) C and D was

	 Group VII = + + + +1 0. [ ]D E B SF EQM 	 (1.6)

in which

	
EQM

EQ

R
= 	 (1.7)

where
EQ is the elastic seismic member force calculated from the response spectrum 

analysis
EQM is the elastic seismic member force modified by the appropriate R-factor 

given in Table 1.2

In the response spectrum analysis, the design spectrum value corresponding to the 
mth mode shape is in terms of the elastic seismic response coefficient, Csm, expressed 
by

	
C

AS

T
sm

m

= 1 2
2 3

.
/ 	 (1.8)

TABLE 1.2
Response Modification Factors

Substructure R

Wall-type pier 2

Reinforced concrete pile bents

	 1.	 Vertical piles only 3

	 2.	 One or more battered piles 2

Single columns 3

Steel or composite and steel

Concrete pile bents

	 1.	 Vertical piles only 5

	 2.	 One or more battered piles 3

Multiple column bent 5

Source:	 American Association of State Highway 
Transportation Officials (AASHTO), 
Standard Specifications for Highway 
Bridges, 16th edn., Washington, DC, 
1996.
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where
A is the acceleration coefficient from the seismic PGA map
S is the site coefficient having the values of 1.0, 1.2, 1.5, and 2.0 for soil types of 

S1, S2, S3, and S4 (or called soil types I, II, III, and IV), respectively
Tm is the structural period corresponding to the mth mode

Figure 1.3 shows the AASHTO 500-year return period seismic contour map, 
which is much more refined than the previous AASHTO map shown in Figure 1.1. 
The design spectrum with soil types of S1, S2, S3, and S4 is shown in Figure 1.4, 
which was determined from the generation of many response spectra based on 
many earthquake records, primarily from earthquakes in the western United States 
(Seed et al., 1976). A description of how to generate response spectra is given in 
Appendix G. The specifications defined four SPCs (A, B, C, and D) on the basis 
of the acceleration coefficient, A, for the site, and the importance classification 
(IC) of the bridge to be designed, as shown in Table 1.3, in which IC = I for essen-
tial bridges and IC = II for other bridges. An essential bridge is one that must be 
designed to function during and after an earthquake. The specifications provided 
different degrees of sophistication of seismic analysis and design for each of the 
four SPCs.

In 1994, AASHTO published the first edition of the AASHTO LRFD Bridge 
Design Specifications, with the second, third, and fourth editions published in 1998, 
2004, and 2007, respectively. Similar to the previous 1992 and 1996 AASHTO 
standard specifications, the LRFD specifications account for column ductility 

FIGURE  1.3  PGA acceleration coefficient A. (From American Association of State 
Highway Transportation Officials (AASHTO), Standard Specifications for Highway Bridges, 
16th edn., Washington, DC, 1996.)
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8 Seismic Design Aids for Nonlinear Pushover Analysis

using response modification R factors. The R factors in the LRFD specifications 
are shown in Table 1.4. The number of levels of bridge importance was increased 
from two levels (“essential” and “other”) to three levels (“critical,” “essential,” 
and “other”). Critical bridges are those that must remain open to all traffic after 
the design earthquake. Essential bridges are those that should be open to emer-
gency vehicles and for security/defense purposes immediately after the design 
earthquake.

Instead of using SPCs, the LRFD requires each bridge to be assigned to one of the 
four seismic zones in accordance with Table 1.5. Similar to the AASHTO Standard 
Specifications, the seismic zone reflects the different requirements for methods of 
analysis and bridge design details.

In LRFD design, load combinations are based on the following equation:

	
Q Qi i i= ∑η γ 	 (1.9)
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FIGURE 1.4  Normalized seismic response spectra for various soil types. (From American 
Association of State Highway Transportation Officials (AASHTO), Standard Specifications 
for Highway Bridges, 16th edn., Washington, DC, 1996; American Association of State 
Highway Transportation Officials (AASHTO), LRFD Bridge Design Specifications, 4th edn., 
Washington, DC, 2007.)

TABLE 1.3
Seismic Performance Category

Acceleration Coefficient (g) IC

A I II

A ≤ 0.09 A A

0.09 < A ≤ 0.19 B B

0.19 < A ≤ 0.29 C C

0.29 < A D C
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9Overview of Seismic Design of Highway Bridges in the United States

where
Qi is the force effect from loading type i
γi is the load factor for load Qi

ηi is the load modifier relating to ductility, redundancy, and operational impor-
tance for load Qi

In most cases, the value of each ηi is between 0.95 and 1.05, though normally, a 
constant η is used for all force effects, Qi. The load combination including earth-
quake load is considered as the “EXTREME EVENT I” limit state in the code, 
given by

	 Q DC DW LL WA FR EQMDC DW EQ= + + + + +η γ γ γ[ ] 	 (1.10)

TABLE 1.4
Response Modification Factors

Substructure

IC

Critical Essential Other

Wall-type piers, larger 
dimension

1.5 1.5 2.0

Reinforced concrete pile bents

	 1.	 Vertical piles only 1.5 2.0 3.0

	 2.	 With batter piles 1.5 1.5 2.0

Single columns 1.5 2.0 3.0

Steel or composite steel and concrete pile bents

Vertical piles only 1.5 3.5 5.0

With batter piles 1.5 2.0 3.0

Multiple column bents 1.5 3.5 5.0

Source:	 American Association of State Highway 
Transportation Officials (AASHTO), LRFD 
Bridge Design Specifications, 4th edn., 
Washington, DC, 2007.

TABLE 1.5
Seismic Zones

Acceleration Coefficient (g) Seismic Zone

A ≤ 0.09 1

0.09 < A ≤ 0.19 2

0.19 < A ≤ 0.29 3

0.29 < A 4
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10 Seismic Design Aids for Nonlinear Pushover Analysis

where
DC is the dead load of structural components
DW is the dead load of wearing surfaces and utilities
LL is the vehicular live load
WA is the water load
FR is the friction load
EQM is the elastic seismic member force, EQ, modified by the appropriate 

R-factor given in Table 1.4

The elastic seismic member force, EQ, is calculated via response spectrum 
analysis. The design spectrum value, Csm, corresponding to the mth mode shape is 
expressed by Equation 1.8. Essentially, the same design spectrum shown in Figure 
1.4 was used in the 1994–2007 LRFD specifications.

The 2008 AASHTO LRFD interim bridge design specifications use the same R 
factors shown in Table 1.4. However, they incorporate some major changes to the 
calculation of the elastic force demand, including (1) three 1000-year USGS seismic 
maps (PGA, 0.2 and 1.0 s) are provided in the interim specifications (Frankel et al., 
1996) and (2) more realistic site effects are incorporated into the design accelera-
tion spectrum. The revised site effects are the result of studies carried out following 
the 1989 Loma Prieta earthquake in California, which culminated in recommenda-
tions that have also been adopted by the Uniform Building Code (ICBO, 1997), 
NEHRP Building Provisions (BSSC, 1998), and the International Building Code 
(ICC, 2000).

The design response spectrum in the 2008 interim specifications as shown in 
Figure 1.5 is constructed using accelerations taken from three seismic maps men-
tioned above. The design earthquake response spectral acceleration coefficients, AS, 
SDS (the short period 0.2 s), and SD1 (the 1 s period acceleration coefficient) are deter-
mined using Equations 1.11 through 1.13, respectively:

	
A F PGAS pga= 	 (1.11)

	 S F SDS a S= 	 (1.12)

	 S F SD v1 1= 	 (1.13)

where
PGA is the peak horizontal ground acceleration coefficient from the PGA seismic 

map
Fpga is the site factor corresponding to the PGA coefficient
SS = 0.2 s period spectral acceleration coefficient from 0.2 s seismic map
Fa is the site factor for SS

S1 = 1.0 s period spectral acceleration coefficient from 1.0 s seismic map
Fv is the site factor for S1

The value of SD1 is used to determine the seismic zone level, as shown in Table 1.6.
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11Overview of Seismic Design of Highway Bridges in the United States

The code recognizes that a well-designed structure should have enough ductility 
to be able to deform inelastically to the deformations imposed by the earthquake 
without loss of the post-yield strength. R-factors are used in the code to estimate the 
inelastic deformation demands on the resisting members when a bridge is subjected 
to the design earthquake.

The concept of R-factor is based on the equal-displacement approximation, as 
illustrated in Figure 1.6.

The equal-displacement approximation assumes that the maximum seismic dis-
placement of an elastic system is the same as (or very close to) that of an inelastic 
system when subjected to the same design earthquake. Figure 1.6 shows two struc-
tures with the same lateral stiffness, Ke, but with different lateral yield strengths, FY1 
and FY2. Based on the equal-displacement approximation, the inelastic deformation, 
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FIGURE 1.5  Design response spectrum.

TABLE 1.6
Seismic Zones

Acceleration Coefficient, SD1 = FvS1 Seismic Zone

SD1 ≤ 0.15 1

0.15 < SD1 ≤ 0.30 2

0.30 < SD1 ≤ 0.50 3

0.50 < SD1 4
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Δmax, is equal to the elastic deformation from the elastic lateral force, Fe. Therefore, 
the ductility demands of structures 1 and 2 can be expressed as follows:

	
µ1

1 1
1= = =∆

∆
max

Y

e

Y

F

F
R 	 (1.14)

and

	
µ2

2 2
2= = =∆

∆
max

Y

e

Y

F

F
R 	 (1.15)

From Equations 1.14 and 1.15, the force-reduction factor R represents the ratio of 
the elastic strength demand to the inelastic strength demand. Based on the equal-
displacement approximation, the force-reduction factors R1 and R2 also represent 
the member ductility demands μ1 and μ2, respectively. Sound seismic design dictates 
that a structure should be designed for the ductility capacity greater than the seismic-
induced ductility demand. However, the code-specified R-factor has its drawbacks, 
which will be discussed in the following section.

Structure No. 2

Structure No. 1 FY2

Ke, FY1

Ke, FY2

FY1

Fe

Fe

Fe

∆e

∆e

∆Y1 ∆Y2 ∆max
=∆e

FIGURE 1.6  R-factor based on equal-displacement approximation.
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1.2.3.1  Force-Reduction R-Factor
The problems with the force-reduction factor are described as follows:

	 1.	Period independence: As described in the previous section, AASHTO 
force-based design specifications define constant R-factors for different 
substructure types, independent of the period of the structure. In fact, the 
R-factor is a function of the period of vibration, T, of the structure, the 
structural damping, the hysteretic behavior of the structure, soil conditions 
at the site, and the level of inelastic deformation (i.e., ductility demand). 
Figure 1.7 shows the mean force-reduction factor spectrum for a single-
degree-of-freedom system, using a large number of ground acceleration 
time histories recorded on rock and on alluvium. The force-reduction factor 
spectrum represents the ratio of the elastic strength demand to the inelastic 
strength demand corresponding to a specific ductility demand for a range 
of periods of vibration. From Figure 1.7, it can be seen that the R-factor is 
period dependent. It demonstrates that soil conditions at the site can have 
a significant effect on the R-factor, particularly in very soft soil (Miranda 
and Bertero, 1994), and it also shows that the ductility demand is larger 
than the force-reduction factor for short-period structures, and the equal-
displacement approximation is not appropriate. The method of developing 
the force-reduction factor spectrum is described in Appendix G.

	 2.	Constant member initial stiffness: As shown in Figure 1.6, in the R-factor 
methodology, the ductility demand of a structural member is estimated by 
the equal-displacement assumption, which assumes a constant initial stiff-
ness, Ke. Using this approach, it is assumed that the member’s initial stiffness 
is independent of the member’s strength, when, in reality, the opposite is the 
case. To demonstrate this, Figure 1.8 shows the moment–curvature relation-
ship of a concrete column with cross section diameter of 48 in., subjected 
to different axial loads. INSTRUCT was used for the moment–curvature 

Rµ Rµ
8.0

6.0

4.0

2.0

0.0

8.0

6.0

4.0

2.0

0.0
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

µ=6
µ=5
µ=4
µ=3

µ=2

µ=6
µ=5
µ=4

µ=3

µ=2

Statistical study Statistical study
Miranda Miranda

Period (s) Period (s)

AlluviumRock

(a) (b)

FIGURE 1.7  Mean force-reduction factors for (a) rock and (b) alluvium. (From Miranda, E. 
and Bertero, V., Earthquake Spectra, 10(2), 357, 1994.)
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14 Seismic Design Aids for Nonlinear Pushover Analysis

analysis. Two longitudinal reinforcement ratios of 1.4% and 2.8% are con-
sidered in the analysis The concrete compression strength, ′fc , is 4 ksi; steel 
yield stress, fy, is 60 ksi, concrete cover is 2.6″ transverse reinforcement is 
No. 5 spirals with 3.25″ pitch; and the steel post-yield stress–strain slope is 
1% of the elastic modulus. For each longitudinal steel ratio, the axial load 
ratios, defined as the ratio of column axial load, P, to the column axial 
compression nominal strength, P f An c g= ′ , of 0, 0.1, 0.2, 0.3, and 0.4 are con-
sidered in the analysis. The simplified bilinear moment–curvature (M − ϕ) 
curves are also plotted in the figure. The initial stiffness of the bilinear 
M − ϕ curve represents the cracked section flexural rigidity of the concrete 
member at which the first longitudinal steel reinforcement yield occurs. 
For bilinear M − ϕ curve, the point at which the line with initial stiffness 
intersects the line with post-yield stiffness defines the location of nomi-
nal moment Mn and nominal curvature ϕn. Figure 1.8 clearly indicates that 
the initial stiffness of the member is not a constant and is a function of the 
moment capacity. Figure 1.8 also shows that the nominal curvatures of the 
bilinear M − ϕ curves do not vary very much between the curves, where 
nominal curvature is about 0.0001 for this example. The moment capacity 
is strongly influenced by the axial load ratio and the amount of longitudinal 
reinforcement.

From the above discussion, Figure 1.9 compares the equal-displacement 
approximation with the more realistic condition of the reinforced con-
crete M − ϕ bilinear relationship (Priestley et al., 2007). It can be seen 
that the equal-displacement approximation correlates the strength poorly 
with the ductility demand (i.e., R-factor approach), due to the assump-
tion that the nominal curvature will increase in proportion to the strength 
increase. In fact, the nominal curvature, ϕn, is independent of the strength 
(see Figure 1.9b) and is instead dependent on the column diameter and the 
yield strain, εy, of the longitudinal reinforcement. The column nominal 
curvature can be estimated by (Priestley et al., 1996)
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FIGURE  1.8  Moment–curvature curves of a 48″ circular column: (a) reinforcement 
ratio = 1.4% and (b) reinforcement ratio = 2.8%.
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φ ε
n

y

D
= 2 45.

for circular concrete columns 	 (1.16)

	
φ ε
n

y

ch
= 2 14.

for rectangular concrete columns 	 (1.17)

where hc = cross section depth. Figure 1.9b also shows that the initial bend-
ing stiffness, EIe, increases as the strength increases.

	 3.	The use of elastic mode shapes to predict inelastic demand: As mentioned 
previously, force-based design codes use the member stiffness at yield 
(i.e., cracked section stiffness for ductile members) in the elastic response 
spectrum analysis based on the code-provided design acceleration spec-
trum. However, this does not take into account the member inelastic stiff-
ness distribution at the maximum inelastic response. For ductile structures, 
the inelastic mode shapes may be quite different from the elastic mode 
shapes used in the current design codes.

	 4.	Difficulty in predicting the bridge performance under strong ground 
motion: As described above, the ductility demand of a ductile member can-
not be accurately predicted, and, as such, the performance level of a bridge 
subjected to the design earthquake may not be achieved.

1.2.3.2  Capacity Design Concept
Normally, the strong beam–weak column design philosophy is used for bridge seis-
mic design. In this strategy, plastic hinges are expected to occur in the columns but 
not in the beams or foundations. Whether or not a column can withstand a high duc-
tility demand is dependent on the reinforcement details within and adjacent to the 
column plastic hinge zones. Columns with confined cores and sufficiently anchored 
reinforcement have been proven to have the necessary ductility capacity. Neither the 
AASHTO force-based standard specifications nor the LRFD design specifications 
provide detailed design criteria for estimating the ductility capacity of column sub-
jected to the design earthquake. However, both specifications do require designers 
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FIGURE 1.9  Moment–curvature relationship: (a) equal-displacement assumption and (b) 
realistic model.
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to use capacity design principles (i.e., strong beam–weak column design philosophy) 
to design cap beams and foundations. When designed according to capacity design 
principles, the nominal strength of the cap beam and foundation is greater than the 
column overstrength capacity, so that there is little or no damage to the cap beam 
and foundation. The column overstrength capacity is the result of the actual mate-
rial strengths being greater than the minimum specified strength; confinement of 
concrete; and the strain hardening of steel reinforcement. The use of capacity design 
principles along with R-factors is intended to ensure that plastic hinges are developed 
at column ends.

In addition, the code also applies capacity design (or so-called capacity protec-
tion) principles to the column itself, with the intent of ensuring that column fail-
ure is governed by the flexural failure mode and not the brittle shear failure mode. 
However, the code shear design criteria only ensures that shear failure will not occur 
prior to the development of the plastic hinge, it does not provide shear capacity design 
criteria for columns subjected to large ductility demand. The concrete shear capacity 
within the plastic hinge region degrades as the ductility demand increases, and thus 
shear design criteria should be the function of column ductility demand. This issue 
was not addressed until the publication of the AASHTO Guide Specifications for 
LRFD Seismic Bridge Design.

1.2.4  �AASHTO Guide Specifications for LRFD 
Seismic Bridge Design (2009)

After damaging earthquakes in the 1980s and 1990s (1989 Loma Prieta earthquake, 
CA; 1994 Northridge earthquake, CA; 1995 Kobe earthquake, Japan; 1999 Chi-Chi 
earthquake, Taiwan; 1999 Izmit earthquake, Turkey, etc.), further research efforts 
provided critical earthquake design recommendations, shifting design focus from 
the force-based R-factor design approach to the displacement-based design approach. 
In 2009, AASHTO published the Guide Specifications for LRFD Seismic Bridge 
Design (AASHTO LRFD, 2009), which mainly incorporates the research results 
published in ATC-32 (ATC, 1994), Caltrans Seismic Design Criteria (Caltrans, 
1999), NCHRP 12 and 49 (ATC-MCEER, 2003), and the South Carolina Seismic 
Design Specifications for Highway Bridges (SCDOT, 2001).

This is the first AASHTO seismic design provision to incorporate displace-
ment design principles for the design of ductile members. Compared with previ-
ous AASHTO standard specifications and LRFD specifications, several significant 
improvements are summarized as follows:

	 1.	Discontinues use of R-factors for ductile column design.
	 2.	While the equal-displacement approximation is still adopted for the esti-

mation of inelastic displacement demand, the inelastic demand for short-
period structures is increased by a modification factor, such that the more 
realistic equal energy approximation is applied to short-period structures.

	 3.	As shown in Table 1.7, four SDCs (A, B, C, and D) are used instead of 
seismic zones 1, 2, 3, and 4 as in the previous LRFD specifications. For 
each SDC, the guide specifications describe the requirements for the 
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17Overview of Seismic Design of Highway Bridges in the United States

displacement demand analysis, displacement capacity check, minimum 
level of detailing, and consideration of liquefaction.

	 4.	Uses capacity protection principles for the column shear capacity design. 
The degradation of shear capacity is recognized and evaluated for columns 
expected to have significant amounts of plastic deformation.

	 5.	Uses capacity protection principles for the cap beam–column connection 
joint design.

	 6.	Uses nonlinear pushover analysis to evaluate the displacement capac-
ity of individual bents. The evaluation of displacement capacity involves 
determining the displacement at which the first column reaches its inelas-
tic capacity, the point where concrete strain reaches the ultimate concrete 
compression strain, εcu, defined by the fracture of transverse reinforcement. 
The nonlinear pushover analysis procedure is briefly described in Section 
1.2.4.1 and will be described in detail in Chapter 3.

	 7.	Explicitly requires that the displacement capacity be greater than the dis-
placement demand. The displacement capacity evaluation is required for 
individual bents, and the effect of foundation and cap beam flexibilities is 
considered in the displacement capacity evaluation.

	 8.	The guide specifications also recognize that the inelastic displacement 
demand calculated by elastic response spectrum analysis with cracked sec-
tion properties for concrete columns may not represent the realistic inelastic 
behavior of bridges under strong ground motion. With the bridge owner’s 
concurrence, nonlinear time history analysis (see Appendix F) may be used 
to evaluate inelastic displacement demand, especially for bridges with dis-
tinct unequal column heights, different superstructure masses over bents, or 
bridges with sharp horizontal curves. Regardless of which analysis is used, 
the guide specifications require the pushover analysis be used to evaluate 
the displacement capacity of SDC D bridges. The following section pro-
vides a brief description of the nonlinear pushover analysis procedure.

1.2.4.1  Nonlinear Pushover Analysis Procedure
The nonlinear pushover analysis considers column nonlinear behavior, P − δ effects 
on the structure, and the flexibility of the foundation and soil system. In general, appli-
cable permanent gravity loads are first applied to the structure, and then a horizontal 
lateral load or lateral displacement is incrementally applied to the mass center of the 

TABLE 1.7
Seismic Design Categories

Acceleration Coefficient, SD1 = FvS1 SDC

SD1 ≤ 0.15 A

0.15 < SD1 ≤ 0.30 B

0.30 < SD1 ≤ 0.50 C

0.50 < SD1 D
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18 Seismic Design Aids for Nonlinear Pushover Analysis

bridge (or individual bent) until the structural displacement capacity is reached. The 
AASHTO guide specifications define the structural displacement capacity as the dis-
placement, Δd, at which the first column reaches its inelastic capacity (i.e., initiation 
of a failure mode) as shown in Figure 1.10. In the figure, Δy is the displacement 
corresponding to first yield of longitudinal reinforcement, and Δu represents the dis-
placement at which a failure mechanism develops. During the analysis process, each 
member’s inelastic deformation and corresponding forces are monitored. All possible 
member failure modes are checked at each incremental step. In INSTRUCT, either an 
incremental force or displacement could be applied to the structure.

For bridges designed with consideration of capacity design principles, the most 
likely column failure mode is confined to concrete compression failure due to frac-
ture of the transverse reinforcement or tensile fracture of the longitudinal reinforce-
ment. For existing bridges not designed using capacity design principles, the column 
failure mode could be one or a combination of the following:

	 1.	Compression failure of unconfined concrete due to fracture of transverse 
reinforcement

	 2.	Compression failure of confined concrete due to fracture of transverse rein-
forcement (Figure 1.11)

	 3.	Compression failure due to buckling of the longitudinal reinforcement 
(Figure 1.12)

	 4.	Longitudinal tensile fracture of reinforcing bar
	 5.	Low-cycle fatigue of the longitudinal reinforcement
	 6.	Failure in the lap-splice zone (Figure 1.13)
	 7.	Shear failure of the member that limits ductile behavior (Figure 1.14)
	 8.	Failure of the beam–column connection joint (Figure 1.15)

INSTRUCT is capable of checking all the possible concrete column failure modes 
described above. The analytical approach for checking individual failure modes is 
described in detail in Chapter 4.

1.3  Direct Displacement-Based Design Procedures

As mentioned in Section 1.2.4, since the Loma Prieta earthquake in 1989, exten-
sive research has been conducted to develop improved seismic design criteria for 

P, Δ

Δy Δd Δu

Pd

FIGURE 1.10  Pushover curve.
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concrete bridges. This research demonstrated that using displacement (or ductil-
ity) rather than force is a better measure of bridge performance. For example, the 
2009 AASHTO guide specifications use displacement to quantify the demand and 
capacity of bridge bents. However, the guide specifications still use the acceleration 
(force) spectrum for the response spectrum analysis, and the displacement demand 
is still estimated based on the equal-displacement approximation with a modifica-
tion for short-period structures. Using this approach, it is possible, in some cases 
(Suarez and Kowalsky, 2006), that the calculated displacement demands will not be 

FIGURE 1.11  Compression failure of confined concrete. (With permission from Caltrans.)

FIGURE  1.12  Buckling of longitudinal reinforcement. (From Cheng, C.T., New para-
digms for the seismic design and retrofit of bridges, PhD dissertation, Department of Civil 
Engineering, State University of New York, Buffalo, NY, 1997. With permission.)
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FIGURE 1.14  Column shear failure. (From Chile Earthquake, February 27, 2010.)

FIGURE 1.15  Cracking of beam–column connection. (With permission from Caltrans.)

FIGURE 1.13  Lap-splice failure. (With permission from Caltrans.)
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in good agreement with results obtained from nonlinear time history analysis. This 
is due to the fact that the column cracked section stiffness distribution at yield in the 
response spectrum analysis is different from the stiffness distribution at the maxi-
mum demand response. In addition, the fundamental inelastic mode shape at the 
maximum demand response is different from the mode shape based on the cracked 
sectional stiffness distribution.

To overcome this problem, several researchers (Dwairi and Kowalsky, 2006; 
Suarez and Kowalsky, 2006; Priestley et al., 2007) have recommended using the 
direct displacement-based design (DDBD) method. Instead of using an acceleration 
spectrum and the equal-displacement approximation, DDBD uses the displacement 
spectrum (see Appendix G) at the design level of ground motion to obtain the inelas-
tic structural period. DDBD uses an iterative approach to obtain the effective (secant) 
stiffnesses of individual bents and to calculate the target-displacement profile (i.e., 
displacement demand) of the inelastic structure. Depending on the importance of a 
bridge, the bridge can be designed for a certain level of performance in terms of tar-
get displacement, strain, or ductility. The DDBD approach will be briefly described 
in Chapter 2.
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2 Pushover Analysis 
Applications

Several pushover analysis applications in bridge engineering are summarized here. 
From the previous overview of past American Association of State Highway and 
Transportation Officials (AASHTO) design code developments in the present, and 
for the future, it is clear that pushover analysis is a necessary tool for the evaluation 
of the displacement capacity of new bridges. This chapter also describes its applica-
tion in the seismic retrofit of existing bridges and in the evaluation of bridge system 
redundancy.

2.1  �Displacement Capacity Evaluation for 
the Seismic Design of New Bridges

As described in Section 1.2.4, pushover analysis is required in the AASHTO load 
and resistance factors design (LRFD) guide specifications to check the displace-
ment demand and evaluate the displacement capacity of seismic design category 
D (SDC D) bridges.

2.2  �Performance Level Verification for 
New Bridges Designed by DDBD

Using the direct displacement-based design (DDBD) approach, a bridge is designed 
to meet an expected performance level (or so-called limit state), which is determined 
by the bridge owner. Normally, the performance level of a bridge could be the (1) 
serviceability limit state, (2) damage-control limit state, (3) life-safety limit state, 
or (4) survival limit state. In the serviceability limit state, the bridge should be in 
full operation with minor damage after a design ground motion. No major repair 
action is needed at this limit state. To avoid remedial actions after the earthquake, 
the column concrete cover should not be spalled. However, the first yield of longi-
tudinal reinforcement of column is acceptable, and the maximum tension strain of 
the longitudinal reinforcement is limited to about 0.015. The concrete compression 
strain is limited to 0.02.

For the damage-control limit state, life safety is essentially protected and damage 
is moderate. In this state, spalling of column concrete cover is acceptable, but the 
damage is manageable and repair costs should be economically feasible. None of the 
possible concrete column failure modes mentioned in Section 1.2.4.1 should occur, as 
the column is designed conservatively for the ultimate concrete compression strain, 
εcu, at which the transverse reinforcement is close to fracture (see Equation 2.14). 
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24 Seismic Design Aids for Nonlinear Pushover Analysis

Similarly, the maximum tension strain of longitudinal reinforcement, εsu, should be 
less than but close to the actual ultimate tension strain limit of steel reinforcement. 
Conservatively, εsu = 0.09 is adopted in INSTRUCT. The conservatism of choosing 
εcu and εsu is to control the damage so that the repair cost is acceptable.

In the life-safety limit state, significant structural damage occurs, but some mar-
gin against either partial or total structural collapse remains. Multiple column fail-
ures are expected. The overall risk of life threatening injury as a result of structural 
damage is expected to be low. It is possible to repair the structure, however, for 
economic reasons, this may not be practical.

In the survival limit state, avoiding structural collapse at the design level earth-
quake is the goal. Substantial damage such as multiple column failures is expected 
to occur, including significant degradation in the stiffness and strength reduction. 
Large permanent lateral deformation could occur, and live load carry capacity is 
reduced significantly. Bridge replacement will be required due to high repair costs.

Normally, the damage-control or the life-safety limit state is considered for the 
seismic design of bridges. However, the higher performance level such as service-
ability limit state or the limit state between serviceability and damage-control limit 
states may be considered by the bridge owner. Depending on the importance of a 
bridge, the bridge can be designed for a certain level of performance in terms of 
target displacement, rotation, strain, or ductility.

The DDBD approach (Dwairi and Kowalsky, 2006; Suarez and Kowalsky, 2006; 
Priestley et al., 2007) is briefly described as follows:

Step 1: Obtain initial parameters such as column height (h) and diameter (D), super-
structure mass, steel and concrete material properties ( fy, εy, fc′, etc.), and design 
elastic displacement spectrum.

Step 2: Per the bridge owner, define the desired performance level. For example, the 
performance level can be the limitation of column ductility ratio (say, μ ≤ 4), column 
plastic rotation capacity (say, θp ≤ 0.035 rad), or concrete strain level to εcu. Once the 
performance level is defined, the estimated critical target displacement of a critical 
bent i, ∆i

c, can be calculated. For example, as bent No. 4 in Figure 2.1a has the short-
est column height, it would be considered as the critical bent and its critical target 
displacement would be ∆4

c .

Displacement profile

(a) (b)

∆2∆1
∆3

∆4 = ∆c
4

∆5

∆sys

F1 F2 F3 F4 F5

m1
m2 m3

m5 Msys
m4

V1

V3

V4

V5

V2
Keff

FIGURE 2.1  (a) Target displacement profile; (b) substitute sdof structure.
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Step 3: Estimate the column yield displacement, Δy, based on the column nominal 
curvature ϕn from analysis or Equations 1.16 or 1.17.

Step 4: Using eigen solution analysis, find the inelastic mode shape based on the 
secant stiffness, Ki, of each bent i, and estimate the target inelastic displacement 
profile (see Figure 2.1a). Since the secant stiffnesses of the bents will not be known 
for the first iteration, the initial displacement profile can be assumed to be the mode 
shape based on the column cracked section stiffnesses and calculated based on EIe 
(see Figure 1.9b).

Step 5: Scale the displacement profile from Step 4 such that the displacement at the 
critical bent is equal to the estimated critical target displacement, ∆i

c, from Step 2 
(∆4

c  in this example).

Step 6: Define a “substitute” single-degree-of-freedom (sdof) structure for the bridge 
(see Figure 2.1b) with equivalent system displacement and mass:
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∆

∆
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where
mi is the mass associated with bent i
Δi is the target displacement of bent i obtained from Step 4
n is the total number of bents

Step 7: Estimate the equivalent viscous damping of the substitute sdof structure 
(Dwairi and Kowalsky, 2006):
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where ξi is the equivalent viscous damping of individual column i
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1
. . for concrete column 	 (2.4)

μi is the ductility demand of column i
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where
α is the fraction of the total base shear VB (see Steps 9 and 11) taken by the inter-

mediate bents
β is the fraction of the total base shear VB taken by the abutments

For example, α is given by α = (V2 + V3 + V4)/VB in Figure 2.1, and β is given by 
β = (V1 + V5)/VB. The methodologies of calculating equivalent viscous damping are 
given in Appendix G.

Step 8: Determine the effective period, Teff, of the substitute sdof structure from the 
design displacement spectrum (see Figure 2.2) based on Δsys and ξsys of the substitute 
structure. Appendix G provides the description of how to generate the displacement 
spectrum.

Step 9: Calculate the effective stiffness, Kef f, and base shear, VB, of the substitute 
sdof system:

	
K

M

T
eff

sys

eff

= 4 2
2π 	 (2.7)
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FIGURE 2.2  Obtain effective period from the Design Displacement Spectrum.
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Step 10: Calculate the inertia forces by distributing the base shear VB to the inertial 
mass location at each bent i:
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Step 11: Calculate the base shear at each bent i (see Figure 2.1):
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in which

	 F F Fabt = +1 5 	 (2.11)

	
V V FB i i= =∑ ∑ 	 (2.12)

Step 12: Find the secant stiffness of each bent based on Δi from Step 5 and Vi from 
Step 11:

	
K

V
i

i

i

=
∆

	 (2.13)

Step 13: Using the secant stiffness Ki for each bent i, perform a static structural 
analysis by applying lateral forces Fi at each bent to calculate the new estimated 
target displacement profile. Compare the calculated displacement at the critical bent 
(in this example, Δ4) with the critical displacement ∆4

c . If Δ4 is not equal to ∆4
c , scale 

the displacement profile such that the scaled ∆ ∆4 4= c .

Step 14: Iterate through Steps 4 through 14, until the target displacement profile 
converges in Step 13 (i.e., ∆ ∆4 4= c ).

Step 15: Design the column longitudinal reinforcement based on the column axial 
load and moment from the static structural analysis in Step 13. Design the column 
transverse reinforcement to meet the performance level defined in Step 2 with the 
target displacement demand of Δi for each bent i in Step 13. For example, if the per-
formance level is defined as when the column-confined concrete strain reaches εcu, 
the transverse reinforcement of confined column at bent No. 4 can be designed using 
Equation 3.24, reproduced here as Equation 2.14:

	
ε ρ ε
cu

s yh su

cc

f

f
= +

′
0 004

1 4
.

.
	 (2.14)

© 2012 by Taylor & Francis Group, LLC



28 Seismic Design Aids for Nonlinear Pushover Analysis

Note that Equation 2.14, for estimating the ultimate compression concrete strain, εcu, 
is based on a column subjected to axial compression without bending. For columns 
subjected to both axial compression and bending, the ultimate concrete compres-
sion strain estimated by Equation 2.14 is conservative (Mander et al., 1988). From 
Equation 2.14

	
ρ ε

εs cu
cc

yh su

f

f
= −

′
0 74 0 004. ( . ) 	 (2.15)

where
εsu is the steel strain at maximum tensile stress (conservatively, εsu = 0.09 is 

adopted in INSTRUCT)
fyh is the yield stress of the hoop or spiral bar
ρs is the volumetric ratio of the transverse reinforcement

εcu can be calculated as follows:

	 ε φcu uc= 	 (2.16)

where
ϕu is the curvature corresponding to the moment at ∆4

c

c is the neutral axis depth at ϕu and can be obtained from the moment–curvature 
analysis

It can also be estimated either by the formula in Appendix E or by the following 
approximated equation (Priestley et al., 2007):

	

c

D

P

f Ace g

= +
′

0 2 0 65. . 	 (2.17)

where
D is the column diameter
Ag is the gross cross-sectional area of column

′fce  is the expected concrete compression strength

The value of ′ = ′f fce c1 3.  is usually adopted to take into account the material strength, 
which is generally greater than the specified strength of ′fc .

Once the columns are designed in Step 15, the pushover analysis can be used to 
verify that the expected performance level defined in Step 2 is achieved.

2.3  �Capacity/Demand Ratios for the Seismic 
Evaluation of Existing Bridges

Another pushover analysis application is the seismic evaluation of existing bridges 
and the development of retrofitting strategies. In 2006, The U.S. Federal Highway 

© 2012 by Taylor & Francis Group, LLC



29Pushover Analysis Applications

Administration (FHWA) published the Seismic Retrofitting Manual for Highway 
Structures: Part I—Bridges (FHWA, 2006). The manual specifies six evaluation 
methods. One of the evaluation methods is “Structure Capacity/Demand” Method 
(or so-called Method D2). In this method, the capacity assessment is based on the 
displacement capacity of individual bents as determined by pushover analysis with 
consideration of inelastic member behavior. The demand assessment is based on the 
multimode response spectrum analysis with consideration of cracked section prop-
erties. For each bent, the pushover analysis is performed independently in both the 
longitudinal and transverse directions. From the analysis, the displacement at which 
the first member reaches its inelastic capacity defines the displacement capacity of a 
bent. Since the pushover analysis is performed for each bent, the force distribution 
from bent-to-bent is neglected. The displacement capacity of a bent is then compared 
with the results from the elastic response spectrum analysis, which does consider 
the behavior of the whole bridge. The inelastic capacity of a column in the pushover 
analysis is determined by the maximum plastic hinge rotation corresponding to the 
governing column failure mode. The maximum plastic curvatures for possible gov-
erning failure modes can be estimated and are provided in Appendix E.

The capacity/demand ratio of a bent is determined as follows:

	
r

C NS

EQ

=
−∑∆ ∆

∆
	 (2.18)

where
ΔC is the displacement capacity of the bent from pushover analysis
ΔNS is the sum of any non-seismic displacement demands
ΔEQ is the seismic displacement demand from response spectrum analysis

If r ≥ 1.5, no retrofit action is required.
If 1.0 ≤ r ≤ 1.5, some remedial action may be required.
If r < 1.0, retrofit strategy that improves the ductility of bridge or reduces the seismic 
demand of bridge should be considered.

2.4  �Quantitative Bridge System 
Redundancy Evaluation

Both the AASHTO standard specifications and LRFD specifications require the 
consideration of redundancy for highway bridge design. However, both codes pro-
vide limited guidance on how to measure redundancy. This has led to a wide varia-
tion in the interpretation of the specifications and a need to develop a quantitative 
measure of bridge redundancy.

Bridge superstructure redundancy was investigated in NCHRP project 12-36 as 
reported in NCHRP Report 406 (Ghosn and Moses, 1998), while bridge substructure 
redundancy was investigated in NCHRP project 12-47 as reported in NCHRP Report 
458 (Liu et al., 2001). In both studies, bridge redundancy is defined as the capability 
of a bridge to continue to carry loads after the failure of the first member. The failed 
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member could be a superstructure girder or a substructure column. Member failure 
can be either in a ductile or brittle fashion and can be caused by lateral seismic load, 
overweight vehicular load, or collision by a vehicle or vessel.

Based on this definition, a system reserve ratio, Ru, can be used as a quantita-
tive measure of substructure or superstructure redundancy, which is expressed as 
follows:

	
R

P

P
u

u

f

= 	 (2.19)

For superstructure redundancy, Pu is the maximum live load corresponding to the 
ultimate capacity (failure mechanism) of the superstructure, and Pf is the live load 
corresponding to the first main girder failure. For substructure redundancy, Pu is the 
lateral force corresponding to the collapse mechanism of a bent, and Pf is the lateral 
force corresponding to the first column failure. For example, when Ru of a substruc-
ture is equal to or less than one, the ultimate capacity of the substructure is equal to 
or less than the strength of the substructure at which the first column fails. In this 
case, the bridge with Ru ≤ 1 is a nonredundant bridge. A two-column bent shown in 
Figure 2.3a is a nonredundant structure. A value of Ru greater than one means that 
the substructure has additional reserve strength such that the failure of one column 
does not result in the failure of the complete substructure system. The four-column 
bent shown in Figure 2.3b is a redundant structure. As the total number of columns 
increases, the level of redundancy increases. From Figure 2.3, it can be seen that 
pushover analysis is needed to generate the pushover curve from which the system 
substructure reserve ratio can be calculated. Similarly, pushover analysis is used 
to generate the live load–vertical superstructure displacement pushover curve, from 
which Ru of the superstructure can be calculated.

P, ∆

P, ∆

(a)

(b)

Pf

Pu

Pu
Pf

∆y ∆f ∆u

∆y ∆f ∆u

FIGURE 2.3  Pushover curves for bridge redundancy evaluation: (a) Ru < 1 and (b) Ru > 1.
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2.5  �Moment–Curvature Curves and Axial 
Load–Moment Interaction Curves

Another pushover analysis application is to perform moment–curvature analysis 
for ductile members. Instead of using the conventional direct cross-sectional force-
equilibrium analysis to generate moment–curvature curves, a simple structural 
model for the moment–curvature pushover analysis by INSTRUCT is used as shown 
in Figure 2.4.

In the figure, a simply supported member of length 2 has a constant axial load, 
P, applied at the ends of the member. The finite-segment finite-string material type 
is used for the member. This material type will be discussed in detail in Chapter 3. 
Incremental rotations are applied at both ends of the member with the same incre-
mental magnitude. Since the member length is equal to 2, the end rotation represents 
the curvature of the cross section. Using this model, the moment–curvature curves 
generated by INSTRUCT are shown in Figure 2.5 for a reinforced concrete column. 
Once the family of moment–curvature curves is developed, the axial load–moment 
interaction curve can also be generated. Figure 2.5 shows the comparison of the 
moment–curvature curves generated by INSTRUCT and by the direct cross-sec-
tional moment–curvature analysis (SEQMC, 1998). The column cross section and 
material details from the FHWA Seismic Design Example No. 4 (FHWA, 1996) were 
used herein, where column diameter = 48″, longitudinal reinforcement is 34 − #11, 
fc′ = 4 ksi, fy = 60 ksi, spiral = #5 @3.5″, concrete cover = 2.63″ from the surface of 
longitudinal rebar to the surface of column, and the applied axial load = 660 kip. The 
post-yield modulus of the reinforcing steel stress–strain curve is assumed to be 1% of 
the elastic modulus. It can be seen that both curves are almost identical.

Similar to the moment–curvature analysis for reinforced concrete cross sections, 
INSTRUCT is also capable of performing moment–curvature analysis for various 
steel cross sections. Figure 2.6 shows a comparison of moment–curvature curves of a 
W8×31 wide flange section, generated by INSTRUCT and from Chen and Lui (1991). 
Good agreement is observed.

2.6  Other Applications

Another nonlinear pushover analysis application is to monotonically increase the 
invariant lateral load pattern to a building until a specific target displacement is 

Length = 2

P
Y

X

M

P

M

2

FIGURE 2.4  Structural model for moment–curvature analysis.
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exceeded (FEMA-273, 1997; FEMA-356, 2000). The specified target displacement 
is a function of structural fundamental period and the design earthquake level. 
Once a building is pushed to a target displacement, the design performance level 
(i.e., member strength, story drift limit, etc.) is checked for acceptance. The pushover 
analysis used in FEMA-273 and FEMA-356 does not include higher mode effects. 
To overcome the higher mode effect, several researchers (Gupta and Kunnath, 2000; 
Goel and Chopra, 2004; Chopra, 2005; Goel, 2005) used the earthquake design 
response acceleration spectrum as the basis for determining the incremental lateral 
forces to be applied to the building in the pushover analysis for each individual mode. 
The total structural response demand is the combination of responses from all modes 
using the SRSS rule (see Appendix H), and the response demand is checked with the 
performance level for acceptance. The above-mentioned approach is called modal 
pushover analysis. Strictly speaking, the lateral load pattern during the nonlinear 
pushover analysis is not invariant and is dependent on the instantaneous dynamic 
properties of the building at each increment step. Some adaptive pushover proce-
dures, in which the applied load pattern continually changes during the pushover 
analysis, have been recommended (Bracci et al., 1997; Gupta and Kunnath, 2000).

The modal pushover analysis approach for estimating inelastic response demand 
is mainly used in the building seismic design and has not been adopted by AASHTO 
for bridge design. For a detailed description of the modal pushover analysis, see the 
above-mentioned references.
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3 Nonlinear Pushover 
Analysis Procedure

3.1  Introduction

As mentioned in the preface of this book, INSTRUCT is capable of analyzing 3D 
structures. It was developed based on a microcomputer program INRESB-3D-
SUPII (Cheng et al., 1996a,b) and mainframe program INRESB-3D-SUP (Cheng 
and Mertz, 1989a). INRESB-3D-SUPII was a modular computer program consisting 
of six primary blocks. The first block (STRUCT) defines the structural model. The 
remaining five blocks (SOL01, SOL02, SOL03, SOL04, and SOL05) are indepen-
dent solutions for static loading, seismic loading, natural frequency or buckling load, 
static cyclic or pushover loading, and response spectrum analysis, respectively.

Since the purpose of this book is mainly performing nonlinear pushover analyses 
of reinforced concrete and steel bridge bents, it only includes SOL01 and SOL04. 
SOL04 is capable of performing not only unidirectional pushover but also cyclic 
pushover analysis. Depending on future needs, SOL02, SOL03, and SOL05 can be 
incorporated into the future versions of INSTRUCT. During the development of 
INSTRUCT, SOL04 was enhanced significantly, and it includes five different non-
linear element-bending stiffness formulation methods for pushover analysis. They 
are finite segment–finite string (FSFS), finite segment–moment curvature (FSMC), 
bilinear interaction axial load–moment (PM) interaction, plastic hinge length (PHL), 
and constant moment ratio (CMR) methods. These methods range from the most 
sophisticated to the simplest and will be discussed in Chapter 4.

To perform pushover analysis, the structural model must first be generated. The 
structural model consists of an assemblage of elements. The point where two or more 
elements connect is called a joint. A structure is modeled by first defining the loca-
tion and orientation of each joint; then materials that describe the behavior of the 
elements, the elements that connect the joints, and the orientations of the elements 
are defined. All of these are defined in the STRUCT block in INSTRUCT program. 
The flowchart for STRUCT is shown in Figure 3.1.

Step 1: Define joints and determine the dofs. The coordinates of the joints and their 
orientation are defined by the user. The coordinates are defined in the global coordi-
nate system (GCS). The GCS defines the location of a structure. The orientation of 
each structural joint defines its joint coordinate system (JCS). Each joint initially has 
six global degrees of freedom (Gdofs) in the JCS. The user also defines the joint’s 
degrees of freedom (dofs) that are free, restrained, constrained, and condensed out. 
INSTRUCT generates the structural dof identification numbers for the user. The 
definitions of free, restrained, constrained, and condensed dofs are described in 
Chapter 5.
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Step 2: Define material properties. The material properties are input and initial-
ized. There are different material behaviors available, which constitute the material 
library and are discussed later.

Step 3: Define elements. The element data is input. The element coordinate system 
(ECS), initial element structural stiffness, and the initial element geometric stiffness 
are calculated. There are different elements available in the program, which consti-
tute the element library and are discussed later.

Step 4: Initialize storage for stiffness. The storage for the structural stiffness and 
geometric matrices is initialized.

Step 5: Input and store mass. The lumped mass at each joint is input. The structure 
mass matrix is stored. This is reserved for SOL02, SOL03, and SOL05. For SOL01 
and SOL04, there is no need to generate the structure mass matrix.

To conduct pushover analysis, INSTRUCT first performs the elastic static analysis 
of bridge bents due to superstructure dead loads. The member forces and structural 
displacements from the static dead load analysis are then used as the initial condi-
tion for the pushover analysis. The elastic static analysis (SOL01) and the pushover 
analysis (SOL04) are described as follows.

Start

Define joints and
determine dofs

Define material
properties

Define elements

Initialize storage for
stiffness

Input and form mass
matrix

Go to next
program block

FIGURE 3.1  Block STRUCT—define the structural model.
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3.2  SOL01—Elastic Static Analysis

This block performs the elastic static analysis. The flowchart for SOL01 is shown in 
Figure 3.2.

Step 1: Input joint and element loadings. The joint loads and imposed displacements 
are input. Uniform or concentrated element loadings are input on the 3D beam or 
plate element.

Step 2: Form the structural stiffness and load matrices. The structural stiffness 
matrix is formed. Joint loadings are determined for the imposed displacements 
(support settlements) and combined with the input joint loadings and element 
loadings.

Step 3: Calculate displacements. The displacements are calculated by Gaussian 
elimination.

Step 4: Calculate reactions. The reactions at restrained dofs and the summation of 
reactions are calculated.

Step 5: Calculate element forces. The element forces are calculated.

Start

Input joint and
element loadings

Form the structural
stiffness and load matrices

Calculate
displacements

Calculate reactions

Calculate element
forces

Go to next
program block

FIGURE 3.2  Block SOL01—static analysis.
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3.3  �SOL04—Nonlinear Static Pushover 
(Cyclic or Monotonic) Analysis

3.3.1  Flowchart in SOL04

Block SOL04 calculates the nonlinear static cyclic or monotonic structural 
response for a given loading pattern. A loading pattern consisting of joint loads, 
imposed displacements and element loads is defined and stored in the loading vec-
tor {Q}. {Q} is multiplied by positive and negative load factors to generate loading 
cycles. Defining Fj as the loading factor for the current cycle, and Fi as the loading 
factor for the previous cycle, the total loads on the structure for cycles i and j are 
Fi{Q} and Fj{Q}, respectively. The loading from Fi{Q} to Fj{Q} is carried out in a 
series of steps.

A fixed number of equal load steps is chosen to load from Fi{Q} to Fj{Q}. The 
flowchart for SOL04 is shown in Figure 3.3.

Step 1: Input joint and element loadings. The joint loads and imposed displacements 
of the load pattern are input. Element loadings are also input.

Step 2: Input load factors. For each loading cycle, a load factor and the number of 
load steps are input.

Start

Input joint and element loadings

Input load factors

Form the load matrix

Form the structural stiffness

Form the geometric stiffness

Calculate displacements

Calculate displacements due to
unbalanced forces

Combine displacements
Go to next program

block

Next
cycle?

Next step?

Total response

Incremental element forces

Incremental reactions

FIGURE 3.3  Block SOL04—nonlinear static cyclic response.
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Step 3: Form the load matrix. The loading matrix is the incremental load. 
(Fj − Fi)/N × {Q}, where N is the number of load steps.

Step 4: Form the structural stiffness. The structural stiffness is formed (1) for the 
first load step, (2) for every load step that an element’s stiffness is modified, and (3) 
for every load step that the geometric stiffness is modified.

Step 5: Form the geometric stiffness. The geometric stiffness is formed (1) for the 
first load step and (2) for every load step if the actual element axial loads are used to 
calculate the geometric stiffness.

Step 6: Calculate displacements. The incremental displacements due to the applied 
loadings are calculated by Gaussian elimination.

Step 7: Calculate displacements due to unbalanced forces. The incremental dis-
placements due to the unbalanced forces from the previous load step are calculated 
by Gaussian elimination.

Step 8: Combine displacements. The displacements due to the applied loading and 
the displacements due to the unbalanced loadings are added together.

Step 9: Incremental reactions. The incremental reactions are calculated.

Step 10: Incremental element forces. The hysteresis models in the material library 
are called to calculate the incremental element forces, given the incremental dis-
placements and previous loading history. For nonlinear analysis, if the element’s 
stiffness changes during the incremental displacement, (1) the element’s unbalanced 
forces are calculated and (2) a flag to reform the structural stiffness in Step 4 is set 
for the next load step.

Step 11. Total response. The total displacements, reactions, and element forces are 
calculated. The unbalanced force vector for nonlinear analysis is also calculated. If 
desired, selected results may be written to output files.

Go to Step 3 for additional loading steps. Go to Step 2 for the next loading cycle.

3.3.2  Nonlinear Pushover Procedure

The loadings described in Step 1 in the previous section may consist of joint loads 
(force control), imposed displacements (displacement control), or combination of 
joint loads and imposed displacements (Cheng and Mertz, 1989b; Cheng and Ger, 
1992). The loading is divided into increments and applied to the structure in steps. 
At the beginning of each load step, the tangent stiffness of the structure is deter-
mined, and the structure is assumed to behave linearly for the duration of the load 
step. Unbalanced forces, when they exist, are calculated at the end of each load step 
and added to the incremental loads for the next load step (see Appendix D). The 
structural stiffness is updated at each load step, if necessary. Depending on the axial 
load, the geometric stiffness is updated for each load step. At the end of each load 
step, total forces and displacements are determined by summing the values for the 
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previous load step and the incremental values. The analysis procedure is governed 
by the following equations:

	 [ ]{ } { } { }K F U∆ ∆δ = + 	 (3.1)

Partitioning the structural global stiffness [K], displacement {Δδ}, load {ΔF}, and 
unbalanced force {U} matrices between free ( f ) and restrained (r) dofs yields
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where
{Δδr} represents the imposed displacement vector (i.e., displacement control)
{ΔR} represents the reaction vector
{ΔFf} is the incremental joint load vector (i.e., force control)

INSTRUCT can perform both force and displacement controls concurrently during 
the pushover analysis. Expanding Equation 3.2

	
[ ]{ } [ ]{ } { } { }K K F Uff f fr r f f∆ ∆ ∆δ δ+ = + 	 (3.3)

	
[ ]{ } [ ]{ } { } { }K K R Urf f rr r r∆ ∆ ∆δ δ+ = + 	 (3.4)

Rewriting Equation 3.3 yields

	
[ ]{ } { } { } [ ]{ }K F U Kff f f f fr r∆ ∆ ∆δ δ= + − 	 (3.5)

which is solved for the free Gdofs {Δδf} by Gaussian elimination.
Rewriting Equation 3.4 yields the reactions

	
{ } [ ]{ } [ ]{ } { }∆ ∆ ∆R K K Urf f rr r r= + −δ δ 	 (3.6)

The total structural global displacements, forces, and reactions at load step t are 
determined from

	 { } { } { }δ δ δt t t= +−1 ∆ 	 (3.7)

	 { } { } { }F F Ft t t= +−1 ∆ 	 (3.8)

	 { } { } { }R R Rt t t= +−1 ∆ 	 (3.9)
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Once the total global displacement increment vector, {Δδt}, is obtained, the 
individual member deformation increment vector, { }∆δe

t , can be calculated by

	 { } [ ] { }∆ ∆δ δe
t T tA= 	 (3.10)

and

	 { } [ ]{ }∆ ∆F ke
t

e e
t= δ 	 (3.11)

where [A]T is the transformation matrix between the global displacements increment 
vector and the member deformation increment vector, which will be discussed in 
Section 5.2.3. { }∆Fet  is the element force increment vector at load step t. [ke] is the 
individual element stiffness matrix. The global unbalanced joint force vector, {U}, 
is assembled by the element unbalanced forces being transferred to the structural 
Gdofs. At the end of the load step t, the element unbalanced force vector is calcu-
lated, as is the difference between the calculated element force vector from Equation 
3.11 and the element force vector calculated based on the element’s hysteresis model 
or stress resultants from steel and concrete stress–strain relationships. These member 
unbalanced forces are transferred to the structural Gdofs to form the global unbal-
anced joint force vector {U} for the next step. As mentioned above, the unbalanced 
forces are calculated at the end of each load step and added to the incremental loads 
for the next step to reduce drift-off errors. A detailed description of the nonlinear 
incremental solution scheme used in the program is provided in Appendix D. The 
unbalanced force vector {U} will be discussed in Chapter 5.

3.4  Material Library

3.4.1  Elastic 3D Prismatic Beam Material (3D-BEAM)

This material consists of the elastic section properties of a 3D prismatic element, 
Ax, J, Iy, Iz, E, and G, representing the cross-sectional area of the element, torsional 
moment of inertia, moments of inertia in the element’s Ye and Ze directions (see 
Section 3.5.1 for the definition of the ECS), elastic Young’s modulus, and shear mod-
ulus, respectively.

3.4.2  Bilinear Hysteresis Model (BILINEAR)

A hysteretic material model that has a bilinear backbone curve and an elastic unload-
ing and reloading curve is shown in Figure 3.4. This model is mainly used for spring 
elements. The model may represent the elastoplastic model by setting the post-
yielding stiffness to zero.

3.4.3  Gap/Restrainer Model (GAP)

This hysteresis model simulates the restrainer’s inelastic behavior, see Figure 3.5. 
This model is mainly used for spring elements. When a gap is opened and the 
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restrainer has not been engaged in tension, the program uses a very small stiffness 
(i.e., 0.001) to represent the gap opening. In the figure, DC represents the displace-
ment at which the gap closes, and DX represents the displacement at which the 
restrainer is in tension.

3.4.4  Takeda Hysteresis Model (TAKEDA)

The Takeda model (Takeda et al., 1970), shown in Figure 3.6, is mainly used to 
model the bending deformation of reinforced concrete members subjected to cyclic 
loading. In the figure, three control points define the backbone curve, correspond-
ing to the cracking moment (Mcr), nominal moment (Mn), and ultimate moment (Mu), 
respectively. The Takeda model consists of many hysteresis rules. These rules define 

Force, moment,
or stress

Displacement,
rotation, or strain

(DY, PY )
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FIGURE 3.4  Bilinear hysteresis model.
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FIGURE 3.5  Gap/restrainer hysteresis model.
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the loading, unloading, and load reversal paths. During the cyclic response analysis, 
the element’s flexural stiffness is updated based on the hysteresis rules. These rules 
are described in the above-mentioned reference and are not explained in detail in 
this book.

3.4.5  Bilinear Moment-Rotation Model (HINGE)

This model is only used in the inelastic 3D beam (IE3DBEAM) element described 
in Section 3.5, when the PHL method is considered for the element-bending stiffness 
matrix formulation. The PHL method is described in Section 4.2. The axial load–
nominal moment interaction in terms of a third-order polynomial equation can be 
considered, as is described in Section 4.8.

3.4.6  Bilinear Hysteresis Model (IA_BILN)

This model is only used in the IE3DBEAM element. The model has a bilinear back-
bone curve and an elastic unloading and reloading curve as shown in Figure 3.4. The 
axial load–nominal moment interaction can be considered in the pushover analysis. 
The IA_BILN material is used in the PM method for the element-bending stiffness 
matrix formulation, which is described in Section 4.1.

3.4.7  �Finite-Segment Steel Stress–Strain 
Hysteresis Model (STABILITY1)

This model can be either a bilinear stress–strain relationship, as shown in Figure 
3.4, or a Ramberg–Osgood stress–strain relationship (Ramberg and Osgood, 1943) 
as shown in Figure 3.7. The model is only used for the finite-segment element 
described in the element library later in this chapter. For the Ramberg–Osgood 

First load cycle

Rotation

M
om

en
t

(Mcr ,θcr)

(Mn ,θn)
(Mu ,θu)

FIGURE 3.6  Takeda hysteresis model.
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stress–strain relationship, the parameters R and b̄ are positive constants chosen to 
fit the material nonlinear stress–strain curves. If R equals infinity, the stress–strain 
curve converges to the elastoplastic stress–strain relationship. When R = 1 and 
b̄ = 0, it represents the elastic condition. The STABILITY1 material is normally 
used for non-concrete members. Usually, the bilinear stress–strain relationship is 
sufficient to represent the steel stress–strain curve of most structural steel mem-
bers. However, if the bilinear model cannot adequately represent the stress–strain 
relationship of a material, the Ramberg–Osgood stress–strain model may be con-
sidered. During the pushover analysis, the tangent modulus, TE, of the Ramberg–
Osgood stress–strain model is calculated at each incremental step, which is given 
as follows:

	
TE

d

d
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Rb y
R= =

+ −
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ε σ σ( | | )1 1/

for the skeleton (or so-called bacckbone) curve
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TE

EM

Rb y
R=

+ + −( | ( ) / | )1 20
1σ σ σ

for the reloading branch curve 	 (3.14)
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FIGURE 3.7  Ramberg–Osgood stress–strain relationship.
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3.4.8  �Finite-Segment Reinforced Concrete Stress–Strain 
Hysteresis Model (R/CONCRETE1)

This model is based on Mander’s concrete stress–strain relationship (Mander et al., 
1988). However, the unloading curve is assumed to be linear in the program instead 
of using a nonlinear curve. The model is only used for the finite-segment element 
described later in the element library. The Mander’s confined concrete stress–strain 
( fc − ε) relationship is sketched in Figure 3.8 and given by Equation 3.15:
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FIGURE 3.8  Confined concrete stress–strain hysteresis model.
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E fc c= ′57 000, ( )psi 	 (3.20)

	
E

fcc

cc
sec = ′

ε
	 (3.21)

	 f K fl e l′ = 	 (3.22)
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In the figure, ′fcc  is the maximum confined concrete strength, and εcc is the concrete 
strain corresponding to ′fcc . fl is the maximum effective stress around the hoop or 
spiral bar, and Ke is a confinement effectiveness coefficient. The typical values of Ke 
are 0.95 and 0.75 for circular and rectangular confined sections, respectively. Ke is 
zero for unconfined concrete such as concrete cover. fl′ is the effective lateral con-
fined stress. D″ is the diameter of the hoop or spiral (measured to the centerline of 
the bar); Asp is the cross-sectional area of the hoop or spiral bar; and s is the longitu-
dinal spacing of the hoop or spiral. εcu is the ultimate confined concrete compression 
strain at which the hoop or spiral bar starts to fracture under axial compression load. 
εcu is conservatively expressed as follows:

	
ε

ρ ε
cu

s yh su

cc
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f
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′
0 004

1 4
.

.
	 (3.24)

where
εsu is the steel strain at maximum tensile stress (conservatively, εsu = 0.09 is 

adopted in the program)
fyh is the yield stress of hoop or spiral bar
ρs is the volumetric ratio of the hoop or spiral bar

ρs can be expressed as follows:

	
ρs

spA

D s
=

′′
4

for circular sections 	 (3.25)

	 ρ ρ ρs X Y= + for rectangular sections 	 (3.26)

in which ρX and ρY are the volumetric ratios of transverse hoops to core concrete in the 
X and Y directions (see Figure 3.9), respectively. ρX and ρY can be expressed as follows:
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X sp
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ρY Y sp

x

N A

sh
=

′′
	 (3.28)

where
′′hX  and ′′hY  are the confined core dimensions in the X and Y directions, 

respectively
NX and NY are the total number of transverse hoop legs in the X and Y directions, 

respectively

For example, the rectangular cross section in Figure 3.9 has NX = × +( )2 3 2/  
( ) . ,1 3 4 2 67/ × =  because the central one-third of the section has four hoop legs, and 
the other two-thirds of the section has only two hoop legs. Similarly, NY is equal to 4.

The maximum confined concrete strength, ′fcc , for rectangular cross section can 
be obtained from the ratio of ′ ′f fcc c/ , which can be found from Table 3.1. Table 3.1 
was developed from Figure E.2 and incorporated into INSTRUCT for calculating ′fcc. 
In the table, ′flX and ′flY  are the effective lateral confined stresses in X and Y direc-
tions, respectively. ′flX and ′flY can be calculated as follows:

	
′ =f K flX e X yhρ 	 (3.29)

	
′ =f K flY e Y yhρ 	 (3.30)

Equation 3.24 is derived based on a column subjected to axial compression without 
bending. For columns subjected to both axial compression and bending, the ultimate 
compression concrete strain estimated by Equation 3.24 is conservative (Mander 
et al., 1988). The actual ultimate confined concrete strain under combined axial force 
and moment is about 1.3–1.6 times εcu from Equation 3.24.

Hoop 2
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Hoop 1Hoop 1

X

hX̋

hY̋

Y

FIGURE 3.9  Rectangular cross section.
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TABLE 3.1
Concrete Lateral Confined Stress for Rectangular Section

Confined Strength Ratio ′ ′f fcc c/

f flY c′ ′/

f flX c′ ′/ 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

0 1

0.02 1.04 1.13

0.04 1.1 1.17 1.26

0.06 1.13 1.22 1.3 1.38

0.08 1.15 1.25 1.34 1.43 1.48

0.1 1.19 1.28 1.37 1.45 1.52 1.57

0.12 1.21 1.31 1.4 1.49 1.55 1.62 1.66

0.14 1.23 1.33 1.43 1.52 1.58 1.66 1.7 1.76

0.16 1.24 1.35 1.45 1.53 1.62 1.68 1.74 1.79 1.83

0.18 1.25 1.37 1.48 1.56 1.64 1.72 1.77 1.83 1.88 1.9

0.2 1.26 1.39 1.49 1.58 1.66 1.74 1.79 1.85 1.9 1.94 1.97

0.22 1.27 1.4 1.5 1.59 1.68 1.75 1.82 1.88 1.93 1.97 2 2.05

0.24 1.28 1.41 1.52 1.61 1.7 1.77 1.83 1.9 1.96 2 2.04 2.07 2.12

0.26 1.29 1.42 1.53 1.62 1.72 1.78 1.85 1.92 1.97 2.02 2.06 2.1 2.14 2.18

0.28 1.295 1.43 1.54 1.64 1.73 1.8 1.87 1.94 2 2.05 2.08 2.13 2.17 2.2 2.25

0.3 1.3 1.43 1.55 1.65 1.74 1.82 1.9 1.95 2.02 2.06 2.1 2.15 2.2 2.23 2.27 2.3
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The slope (i.e., tangent stiffness) of the backbone (  fc − ε) curve in Figure 3.8 can 
be expressed as follows:

	

df

d
AA B C Dc

ε
= − ×[ ] 	 (3.31)

where

	
AA

f rcc

cc

= ′
ε

	 (3.32)
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a cc
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+
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( )ε ε/
	 (3.33)
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a cc
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ε ε[ ( ) ]/ 2 	 (3.34)
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cc cc
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


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−

ε
ε

ε

1

	 (3.35)

and

	 a r= −1 	 (3.36)

The cracking stress, f ft c′ = ′9  (psi), is used in the program.

Example 3.1

Find the ρX, ρY, and the maximum confined concrete strength, ′fcc, of a rectan-
gular section shown in Figure 3.10. The cross-sectional area of the transverse 
reinforcement, Asp, is 0.122 in.2 The yield stress of the transverse reinforcement 
is 67,570 psi, and the spacing of the hoops is 4.61 in. Concrete fc′ = 4104 psi.

Solution

From Figure 3.10, NX = × + × =( ) ( ) .2 3 4 1 3 6 4 67/ / ; NY = 4.67.
ρX and ρY can be calculated from Equations 3.27 and 3.28 as follows:

	
ρX

X sp

Y

N A

sh
=

′′
= ×

×
=4 67 0 122

4 61 14 33
0 0086

. .
. .

.

	
ρY

Y sp

X

N A

sh
=

′′
= ×

×
=4 67 0 122

4 61 19 33
0 0064

. .
. .

.
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	 ′ = = × × =f K flX e X yhρ 0 75 0 0086 67 570 435 8. . , . psi

	 ′ = = × × =f K flY e Y yhρ 0 75 0 0064 67 570 324 3. . , . psi
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From Table 3.1,
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The interpolation ratios in the X and Y directions are

	
Ratio X = −

−
=0 106 0 1

0 12 0 1
0 3

. .
. .

. 	 (3.40)

Hoop 2
Hoop 2

Hoop 1

20.75˝

15.75˝

Hoop 3

Hoop 3

Hoop 1

X

hY̋ = 14.33˝

hX̋ = 19.33˝

Y

FIGURE 3.10  Rectangular cross section for Example 3.1.
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Ratio Y = −

−
=0 079 0 06

0 08 0 06
0 95

. .
. .

. 	 (3.41)

From Equations 3.37 through 3.41
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0 1 0 06

0 0665 0 012 1 45 1 53 	
(3.42)

Therefore, ′ = ′ = × =f fcc c1 53 1 53 4104 6279. .  psi, which also can be obtained 
from Figure E.2.

The unconfined concrete stress–strain model is shown in Figure 3.11. In the 
figure, fc′ is the maximum concrete strength and εc0 is the concrete strain corre-
sponding to fc′. εc0 = 0.002 is used in the program. εsp is the concrete spalling strain 
of unconfined cover concrete. A straight line is assumed between 2εc0 and εsp.

The hysteresis rules shown in Figures 3.8 and 3.11 are

•	 Rule 0: Compression backbone curve
•	 Rule 1: Unloading compression curve from compression backbone curve

0

1

21

3

31

f t́

f ć

fc

Ec

41

40

30
20

: Rule number

Slope = Ec

2εc0

εc0
εsp εc

FIGURE 3.11  Unconfined concrete stress–strain hysteresis model.

© 2012 by Taylor & Francis Group, LLC



52 Seismic Design Aids for Nonlinear Pushover Analysis

•	 Rule 20: Tension backbone curve
•	 Rule 21: Unloading tension curve from compression backbone curve
•	 Rule 31: Tensile crack after unloading from compression
•	 Rule 41: Concrete compression after reloading from tensile crack
•	 Rule 30: Tensile crack after tensile strain greater than crack strain, εt, cor-

responding to ft′
•	 Rule 40: Tensile strain between εt and zero
•	 Rule 3: Compression strain greater than εcu or εsp

For reinforcing steel, the bilinear hysteresis model shown in Figure 3.4 is adopted.

3.4.9  Finite Segment–Moment Curvature Model (MOMCURVA1)

This model is based on user-defined backbone moment–curvature curves. The model 
is only used for the finite-segment element described in Section 3.5. INSTRUCT 
uses a bilinear curve for the unloading and reloading conditions; therefore, this 
model is mainly for monotonic pushover. The moment–curvature model is sketched 
in Figure 3.12a using the multiple segment backbone curve. The minimum number 
of control points is two, representing a bilinear moment–curvature model as shown 
in Figure 3.12b. During pushover analysis, if a segment’s curvature exceeds D(n), 
the program uses the slope of the last two control points (i.e., M(n − 1) and M(n)) to 
calculate tangent bending rigidity EI.

To consider the axial load–moment interaction, the user can input multiple 
moment–curvature curves as illustrated in Figure 3.12c. Each curve corresponds to 
a certain magnitude of axial load. At each incremental load step during the push-
over analysis, the program will calculate the member’s axial load first and then the 
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FIGURE 3.12  (a) Finite segment–moment curvature model; (b) moment–curvature model 
(two control points); (c) multiple moment–curvature curves.
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member’s tangent bending rigidity, EI, by interpolating EIs from the two adjacent 
moment–curvature curves.

3.4.10  Plate Material (PLATE)

This material defines the elastic material properties for the rectangular plate 
element. The plate element is described later in the element library.

3.4.11  Point Material (POINT)

This material defines the elastic material properties of the point element. The point 
element is described later in the element library.

3.4.12  Brace Material (BRACE)

This material defines the hysteresis rule of Jain–Goel–Hanson’s model (Jain et al., 
1980). The model is mainly for struts with angle or rectangular tube sections. For 
I-shape sections, several control points in the model are modified in order to fit the 
experimental results achieved by Black et al. (1980).

As shown in Figure 3.13, the normalized axial load–axial deformation coordinate, 
P/Py, Δ/Δy, is used, and tension and compression are treated as positive and negative, 
respectively. When a member is subjected to compression loading, the axial force–
axial displacement relationship will follow path OA elastically. Point A represents 
the initial buckling load, which can be expressed as follows:
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c
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
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forσ 	 (3.43)

–12 –5 0

0.5

θ

θ/3

–0.5

–1.0

1.0

1 2 3 4 5 ∆/∆y

P/Py

C

C΄

L΄

D΄
D

H

A

I

E F

J΄
A΄

J˝

J

K

L
B

FIGURE 3.13  Hysteresis model for brace members.
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= < ≤π2

2 200
/

for 	 (3.44)

where C Ec y= ( )2 2π σ/  and σy represents yield stress. Continued negative axial 
displacement results in the path ABC. The coordinates of control point B are 
[−18/(KL/r), −5] for angle or rectangular tube sections and [−11.3/(KL/r), −5] for 
I-shape sections. The coordinates of control point C are [−12/(KL/r), −12] for angle 
or rectangular tube sections and [−8.5/(KL/r), −12] for I-shape sections. If the 
reverse point occurs at C, the member will follow path CDE. If the negative axial 
displacement is beyond point C, the axial stiffness is assumed to be zero. The 
coordinates of control point E are (1,1 + εL/Δy) in which ε is the member residual 
strain, given by

	
ε = +
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1 75
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0 0002 2.
.

/
.

∆ ∆
KL r

for angle or rectangular tubee sections 	 (3.45)
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KL r/
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in which Δ is the current maximum compressive displacement. As shown in 
Equations 3.45 and 3.46, the residual strain of a member is influenced by the effec-
tive slenderness ratio, KL/r, of a member and the maximum compressive displace-
ment of a member, Δ. The coordinates of control point D can be obtained by first 
drawing a line OD′ with a slope of one-third times the initial elastic slope, θ. The 
point located at 60/(KL/r) times the distance OD′ is taken as control point D for angle 
or rectangular tube sections and 20/(KL/r) times the distance OD′ for I-shape sec-
tions. When the member starts unloading from the tension side on the branch EF, the 
maximum compression in the second cycle is given by − (30Py)/(KL/r) and the third 
and subsequent cycles by − (25Py)/(KL/r).

Using this model, Figure 3.14 shows the hysteresis loops based on experimental 
results (Black et al., 1980; Popov and Black, 1981) and numerical calculation from 
INSTRUCT, for a W6 × 20 member with KL /r = 80. It can be seen that the analytical 
result is in favorable agreement with the experimental curves.

3.5  Element Library

3.5.1  Elastic 3D Prismatic Element (3D-BEAM)

The elastic 3D prismatic beam element is shown in Figure 3.15.
This element connects a start and an end joint. At the start end of the element, a 

rigid body (or so-called rigid zone) of length XS is used to model the structural joint. 
A similar rigid body of length XE is used at the end joint. The ECS Xe axis goes from 
end “A” toward end “B.” The orientation of the ECS Ye axis is defined by a vector 
VXY, which lies on the ECS XY-plane. The ECS Ze axis is perpendicular to the Xe and 
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Ye axes, oriented according to the right-hand rule. There are six internal forces FX, 
FY, FZ, MX, MY, MZ at end “A” in the ECS. Similarly, six internal forces also exist at 
end “B.” All of the internal forces are positive in the direction of the ECS. Therefore, 
the 3D-BEAM element has 12 dofs. The formulation of the 12 × 12 element stiffness 
matrix is described in Chapter 5.

The element considers axial deformation, torsional deformation, and bend-
ing deformations about the Ye and Ze axes. Warping torsion and shear deformation 
are not considered. The geometric stiffness for P − δ effects is also available. The 
3D-BEAM material is used with this element (see Table 3.2).

3.5.2  Spring Element (SPRING)

The spring element consists of an isolated spring that connects the start and end 
joints. At the start end of the spring, a rigid body of length XS is used to model the 
joint depth. A similar rigid body, of length XE is used at the end joint. The spring 
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FIGURE 3.14  Hysteresis loops based on analytical approach for KL/r = 80: (a) test result 
and (b) analytical result. (From Cheng, F.Y. et al., Observations on behavior of tall steel 
building under earthquake excitations, Proceedings of Structural Stability Research Council, 
Pittsburgh, PA, pp. 15–26, 1992.)
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FIGURE 3.15  3D prismatic element.

TABLE 3.2
Material-Element Cross Reference

Element Material Availability

Type
Subroutine Name 

in INSTRUCT Type Subroutine Name in INSTRUCT

3D-BEAM ELE01 3D-BEAM MAT01

SPRING ELE02 3D-BEAM MAT01 (for axial spring only)

BILINEAR MAT07

GAP MAT15B

TAKEDA MAT06

BRACE ELE08 BRACE MAT08

IE3DBEAM ELE09 IA_BILN MAT10 (PM method)a

HINGE MAT19 (PHL method)a

TAKEDA MAT06 (CMR method)a

STABILITY ELE12 STABILITY1 MAT12 (bilinear and Ramberg–Osgood 
models)

R/CONCRET MAT17

E1

MOMCURVA1 MAT18

PLATE ELE16 PLATE MAT16

POINT ELE20 POINT MAT20

a	 For PM-, PHL-, and CMR-bending stiffness formulations, see Chapter 4.

© 2012 by Taylor & Francis Group, LLC



57Nonlinear Pushover Analysis Procedure

ECS Xe axis goes from end “A” toward end “B.” The orientation of the ECS Ye 
axis is defined by the user. The ECS Ze axis is perpendicular to the Xe and Ye axes, 
oriented according to the right-hand rule. When the distance between the start and 
end joints is zero, the orientation of the ECS is identical to the start joint’s JCS. 
Subtracting the length of the rigid bodies from the distance between the start and 
end joints gives the length of the spring element. Optionally, the user may define the 
length of the spring element. The spring element may behave elastically or nonlin-
early depending on the material properties used and the magnitude of forces acting 
on the spring. Second-order P − δ forces are not calculated for the spring element.

The spring may be orientated in one of six positions as shown in Figure 3.16.
The axial spring is parallel to the element’s Xe axis. The rigid bodies at the ends 

of the spring reduce the length of the axial spring. The spring’s axial force, FX, at end 
“A” is positive in the Xe direction.

The Y-axis shear spring and Z-axis shear spring are orientated parallel to the ele-
ment’s Ye and Ze axes, respectively. The rigid bodies at the ends of the spring reduce 
the length of the shear spring. The spring’s internal shears, FY and FZ, at end “A” are 
positive in the Ye and Ze directions.

XE

XS

Xe

Ye

Ze

Fx

Fy

Fz

Mx My
Mz

A

B

Start joint

End joint

(a) (b) (c)

(d) (e) (f)

FIGURE 3.16  Spring element: (a) axial spring and ECS, (b) Y-axis shear spring, (c) Z-axis 
shear spring, (d) torsional spring, (e) Y-axis rotational spring, and (f) Z-axis rotational spring.
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The torsional spring is parallel to the element’s Xe axis. The rigid bodies reduce 
the length of the torsional spring. The spring’s internal torsion, MX at end “A” is posi-
tive in the Xe direction.

The Y-axis rotational spring and the Z-axis rotational spring are rotational springs 
about the Ye and Ze axes, respectively. The rigid bodies at the ends of the spring 
reduce the length of the rotational spring. The spring’s internal moments, MY and MZ, 
at end “A” are positive in the Ye and Ze directions. A nonlinear rotational spring, with 
material type of BILINEAR or TAKEDA, could be applied to the end of a structural 
member (e.g., attached to an elastic 3D-BEAM element) to evaluate the inelastic 
behavior of the member.

3.5.3  Inelastic 3D Beam Element (IE3DBEAM)

The inelastic 3D beam-column element is shown in Figure 3.17 and has the same 
ECS as elastic 3D-BEAM element.

Similar to the elastic 3D-BEAM element, this element connects a start and an 
end joint. At the start end of the element, a rigid body of length XS is used to model 
the structural joint. A similar rigid body of length XE is used at the end joint. The 
ECS Xe axis goes from end “A” toward end “B.” The orientation of the ECS Ye axis is 
defined by a vector VXY, which lies on the ECS XY-plane. The ECS Ze axis is perpen-
dicular to the Xe and Ye axes, oriented according to the right-hand rule. There are six 
internal forces FX, FY, FZ, MX, MY, MZ at end “A” in the ECS. Similarly, six internal 
forces also exist at end “B.” All of the internal forces are positive in the direction of 
the ECS. Therefore, the IE3DBEAM element has 12 dofs.

The element considers axial, torsional, and bending deformations. Warping 
torsion and shear deformation are not considered. The geometric stiffness is also 
available. The HINGE, IA_BILN, or TAKEDA material can be used for bending 
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FIGURE 3.17  Inelastic 3D beam element.
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deformation. Only IA_BILN material can be used for torsion and axial deforma-
tions. The formulation of element stiffness matrix is described in Chapter 5.

3.5.4  Finite-Segment Element (STABILITY)

The finite-segment element (Ger and Cheng, 1993; Ger et al., 1993) is shown in 
Figure 3.18, in which the member is divided into several segments. Each segment 
has 12 dofs, and the cross section is divided into many small elements (or so-called 
strings) as shown in Figure 3.19.

The finite-segment element connects a start and an end joint. At the start end of 
the element, a rigid body of length XS is used to model the structural joint. A similar 
rigid body of length XE is used at the end joint. The ECS Xe axis goes from end “A” 
toward end “B.” The orientation of the ECS Ye axis is defined by a vector VXY, which 
lies on the ECS XY plane. The ECS Ze axis is perpendicular to the Xe and Ye axes, 
oriented according to the right-hand rule. There are six internal forces FX, FY, FZ, 
MX, MY, MZ at end “A” in the ECS. Similarly, six internal forces also exist at end “B.”

All of the internal forces are positive in the direction of the ECS. An initial imper-
fection of sinusoidal shape can be considered for the finite-segment element (see 
Figure B.3).

The element considers nonlinear axial and bending deformations. Warping tor-
sion and shear deformation are not considered. The member is divided into several 
segments. The cross section of each segment is further divided into many small 
elements, and U0, V0, and W0 represent an individual segment’s sectional reference 
coordinates as shown in Figure 3.19. If a member is perfectly straight without initial 
imperfection, the relationship between the ECS (Xe, Ye, Ze) and the segment’s refer-
ence coordinate system (U0, V0, W0) is that Xe, Ye, and Ze axes are parallel to W0, U0, 
and V0 axes, respectively (see Figure 3.18).
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FIGURE 3.18  Finite-segment element.

© 2012 by Taylor & Francis Group, LLC



60 Seismic Design Aids for Nonlinear Pushover Analysis

In the analysis of a structural system, the dofs of an individual member should 
be reduced so that a computational efficiency can be achieved. A substructural tech-
nique is applied to the finite-segment element for which the internal dofs is con-
densed out by Gaussian elimination, and only the dofs at both ends of the member 
are maintained. The STABILITY1, R/CONCRETE1, or MOMCURVA1 hysteresis 
material model described in the previous section can be used for the finite-segment 
element. The second-order P − δ forces are considered in the element stiffness 
matrix formulation. The formulation of the element stiffness matrix is described in 
Chapter 5.

3.5.5  Plate Element (PLATE)

The plate element consists of a plate linking four joints as shown in Figure 3.20. The 
ECS Xe axis goes from joint “3” toward joint “4.” The orientation of the ECS Ye axis 
goes from joint “3” toward joint “2.” The ECS Ze axis is perpendicular to Xe and 
Ye axes, oriented according to the right-hand rule. The joint rigid body zone is not 

(a)

U0

V0

U0

V0

U0

V0

(b)

(c) (d) (e)

U0

V0

U0

V0

FIGURE 3.19  Segment reference coordinates (U0, V0, W0). (a) Reinforced concrete circular 
or rectangular section, (b) steel angle section, (c) steel tube section, (d) steel box section, and 
(e) steel wide-flange section.
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available for the plate element. The plate element has 20 dofs at the corner joints as 
shown in Figure 3.20. At each joint, there are five internal forces FX, FY, FZ, MX, and 
MY in the ECS. The PLATE material is used with this element.

3.5.6  Point Element (POINT)

The point element (see Figure 3.21) is a point consisting of a 6 × 6 stiffness matrix. 
For example, bridge foundation stiffnesses can be modeled by point elements. The 
ECS’s Xe and Ye axes of a point element are determined by the users. The 6 × 6 

Width

Le
ng

th

Ze

Ye

Xe

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12
F13

F14

F15

F16

F17
F18

F19

F20

Joint 1Joint 2

Joint 3

Joint 4

FIGURE 3.20  Plate element.
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FIGURE 3.21  Point element.
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stiffness matrix is also determined by the users, and the coupling effect of any two 
dofs can be input. The POINT material is used with this element.

3.5.7  Brace Element (BRACE)

As shown in Figure 3.22, the brace element (Ger and Cheng, 1992) is similar to the 
axial spring element shown in Figure 3.16a. At the start end of the brace element, 
a rigid body of length XS is used to model the joint depth. A similar rigid body of 
length XE is used at the end joint. The brace ECS Xe axis goes from end “A” toward 
end “B.” The orientation of the ECS Ye axis is defined by the user. The ECS Ze axis 
is perpendicular to the Xe and Ye axes, oriented according to the right-hand rule. The 
cross section of the brace element could be an angle, rectangular tube, or I-shape. 
The BRACE material is used with this element (see Table 3.2). The formulation of 
the element stiffness matrix is described in Chapter 5.

3.6  Material-Element Cross Reference

Table 3.2 shows which materials can be used for each element type.

A

B

XS

XE

Start joint

End joint

Y

Z

XGCS

VXY = V1i + V2 j + V3k
Ye

Xe, Vx

(Xga, Yga, Zga)

(Xgb, Ygb, Zgb)Fxa

Fxb

FIGURE 3.22  Brace element.
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4 Nonlinear Bending 
Stiffness Matrix 
Formulations

As described in Chapter 2, pushover analysis is a verification tool for new bridge 
design. It is also a useful tool to estimate the capacities of existing bridge bents. 
However, due to material and geometrical nonlinearities of bridge bents, it is imper-
ative to have a computer program to perform the pushover analysis. It is equally 
important to understand the methodologies used in the pushover analysis. This 
chapter briefly describes how INSTRUCT formulates the element bending stiff-
ness matrix using five different methods: (1) bilinear interaction axial load–moment 
(PM), (2) plastic hinge length (PHL), (3) constant moment ratio (CMR), (4) finite 
segment–finite string (FSFS), and (5) finite segment–moment curvature (FSMC) 
methods. The PM, PHL, and CMR methods are simpler than FSFS and FSMC, with 
FSFS method being the most sophisticated.

4.1  Bilinear Interaction Axial Load–Moment Method

The bilinear moment–curvature curve shown in Figure 4.1a is used to generate the 
nonlinear member bending stiffness matrix. The moment–curvature curve is com-
posed of two imaginary components shown in Figure 4.1b. In these figures, the slopes 
of the linear and elastoplastic components are a1 = p × EI, a2 = q × EI, and p + q = 1, 
where p is the fraction of flexural rigidity apportioned to the linear component and 
q is the fraction of flexural rigidity apportioned to the elastoplastic component. The 
post-yield slope of the elastoplastic component is equal to zero.

The nonlinear member shown in Figure 4.2 is used to formulate the nonlinear 
bending member stiffness matrix (Cheng, 2000). As described previously, the non-
linear member has two components, linear and elastoplastic. θi and θj are member-
end total rotations; αi and αj are plastic rotations at each end of the elastoplastic 
component. The member stiffness matrix at any incremental step can be formulated 
according to the state of yield. Appendix A provides the derivation of the member 
stiffness matrix at different yield states. The state of yield may be one of the follow-
ing four conditions: (a) both ends linear, (b) i end nonlinear and j end linear, (c) i end 
linear and j end nonlinear, and (d) both ends nonlinear.

The flexural stiffness matrix for condition (a) is

	

∆
∆

∆
∆

M

M

a b

b a
i

j

i

j
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
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θ

	 (4.1)
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The stiffness matrix for condition (b) is
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The stiffness matrix for condition (c) is
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	 (4.3)

= +1
EI

1

a1 1
a2

M
M M

Linear component

Elastoplastic component

(b)

Mn Mn

Mn

n(a)

For axial load, P

 p × EI

FIGURE 4.1  (a) Bilinear moment–curvature model; (b) linear and elastoplastic components.
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θ́j

Elastoplastic component
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FIGURE 4.2  Nonlinear member.
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The stiffness matrix for condition (d) is

	

∆
∆

∆
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	 (4.4)

in which a = 4EI/L, b = 2EI/L, and e = 3EI/L. As shown in Figure 4.1, the nominal 
moment capacity, Mn, is used for judging the member end’s yield condition. During 
monotonic pushover analysis, the nominal moment capacity is influenced by the 
magnitude of axial load. If the variation of axial load is large, an interaction axial 
load–nominal moment (P–M) curve can be input into INSTRUCT for the analysis. 
Note that the program does not consider material isotropic hardening or kinematic 
hardening (i.e., the interaction P–M yield surface will not move outward). When the 
column axial load is small, the nominal moment capacity, Mn, will not change much 
due to axial load effects. In this case, consideration of axial load–moment interaction 
may not be necessary.

The dimension of the member flexural stiffness matrix in Equations 4.1 through 
4.3 or 4.4 is 2 × 2. The actual member stiffness matrix incorporated into the 
INSTRUCT program is 12 × 12, which includes bending, axial, and torsional loads 
for the inelastic 3D-beam (IE3DBEAM) element shown in Figure 3.17. The deriva-
tion of the 12 × 12 element stiffness matrix is described in Chapter 5.

4.2  Plastic Hinge Length Method

One of the popular methods used for the nonlinear pushover analysis of bridges with 
concrete columns is the PHL method. In this method, the stiffness matrix of a col-
umn is formulated by the combination of an elastic column element and a nonlinear 
rotational spring connected at each end of the element. As shown in Figure 4.3, the 

L

θi

θiH

θjH

θj

Mj

Mi

θn θ (total rotation)

P

P

Mn

n

Mn
RMn

(plastic rotation)θiH

FIGURE 4.3  PHL method.
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rotational spring and the elastic bending stiffness of the column element behave 
as two springs in series. The stiffness of the rotational spring is governed by the 
moment–rotational curve of a hinge with length Lp, which is called the PHL. Lp can 
be calculated as follows:

	
L L f d f dp y bl y bl= + ≥0 08 0 15 0 3. . . 	 (4.5)

where
L (in in.) is the distance from the critical section of the column plastic hinge to the 

point of contraflexure of the column
dbl (in in.) is the diameter of the longitudinal reinforcement
fy (in ksi) is the yield stress of the longitudinal reinforcement

Equation 4.5 has been calibrated using experimental data from large-scale test col-
umns, which limit the PHL method to bridge bents with reinforced concrete col-
umns. The PM method mentioned previously could be used for either pile cap bents 
with steel piles or bents with reinforced concrete columns.

The member stiffness matrix can be derived using the modified slope-deflection 
theory as follows:

	
∆ ∆ ∆ ∆ ∆M

EI

L
i i iH j jH= − + −[ ( ) ( )]4 2θ θ θ θ 	 (4.6)

	
∆ ∆ ∆ ∆ ∆M

EI

L
j i iH j jH= − + −[ ( ) ( )]2 4θ θ θ θ 	 (4.7)

where

	
∆ ∆ ∆ ∆θ θiH

i

i
jH

j

j

M

R

M

R
= =and 	 (4.8)

ΔθiH and ΔθjH are the incremental plastic rotations at ends “a” and “b,” respectively. 
As shown in Figure 4.3, the moment–plastic rotation (M − θH) curve can be generated 
from the column moment–curvature (M − ϕ) relationship. Ri and Rj are the inelastic 
stiffnesses of the plastic hinges at ends “a” and “b,” respectively, and can be obtained 
from the slopes of the M − θH curves corresponding to ends “a” and “b,” respectively. 
EI is the bending rigidity of the elastic column element. Solving Equations 4.6 and 
4.7 for Mi and Mj gives

	
∆ ∆ ∆M

EI

L
S Si ii i ij j= +[ ]θ θ 	 (4.9)

	
∆ ∆ ∆M

EI

L
S Sj ij i jj j= +[ ]θ θ 	 (4.10)
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or
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where
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To calculate the plastic rotation of a reinforced concrete column for a pushover anal-
ysis using the PHL method, the bilinear moment–curvature (M − ϕ) relationship and 
PHL (Lp) of the column need to be defined first. For illustration, a bilinear M − ϕ rela-
tionship as shown in Figure 4.4 is used here. In the figure, nominal moment, Mn, is 
defined as the moment where either the extreme compression concrete strain reaches 
0.004 or the first longitudinal reinforcement’s tensile strain reaches 0.015. Mu is the 
ultimate moment capacity of the column cross section. My is the initial yield moment 
defined as the moment where the extreme tensile rebar reaches initial yield. EIe is the 
effective bending rigidity, which is the slope of elastic segment OMy.

Lp

Point of contraflexure

Mn

Mu

L

y

O

My

n uy
M

Moment diagram

EIe

FIGURE 4.4  Calculation of M − θH curve based on M − ϕ curve and Lp.

© 2012 by Taylor & Francis Group, LLC



68 Seismic Design Aids for Nonlinear Pushover Analysis

The total rotation at the top of the column plastic hinge can be expressed as 
θ = θn + θH in which θn is the yield rotation at the hinge top and θH is the plastic rota-
tion at the hinge top. Based on the M − ϕ relationship, θn and θH can be calculated as 
follows:
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θ φ φH n pL= −( ) 	 (4.17)

where ϕ is the total curvature corresponding to the moment, M, at the bottom of the 
column (see Figure 4.4). Equation 4.17 assumes that the plastic curvature, (ϕ − ϕn), is 
uniformly distributed along the plastic length, Lp.

Example 4.1

Table 4.1 shows the moment–curvature relationship of a column with L = 270 
in. and Lp = 34.3 in. The corresponding moment–curvature curve is shown in 
Figure 4.5. A bilinear model is also shown in the figure. Points (limit states) 1, 
2, and 3 in the bilinear model correspond to moments at My, Mn, and Mu, respec-
tively. My = 2510 k-ft, ϕy = 7.71E − 5, Mn = 3296 k-ft, ϕn = 0.0001, Mu = 3370.6 k-ft, 
and ϕu = 0.00108. The curvature ϕn at point 2 can be calculated as ϕn = Mn/EIe 
and EIe = My/ϕy. Calculate the moment–total rotation (M − θ) and moment–
plastic rotation (M − θH) curve based on (1) the moment–curvature curve and (2) 
the bilinear model.

TABLE 4.1
Moment–Curvature 
Relationship

Curvature (1/in.) Moment (k-ft)

0 0

8.5E – 6 686

1.4E – 5 906

5.86E – 5 2091.2

7.83E – 5 2540.1

1E – 4 2807.4

1.16E – 4 2920.4

1.67E – 4 3126

2.54E – 4 3265

3.39E – 4 3311.1

0.00108 3370.6
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Solution

	 (1)	Based on the moment–curvature curve:

φn = 0 0001. ( )rad

θ φn n p
pL
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L
E= − ∗
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2
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2 2

. .
( . )
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At M = 686 k-ft
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E E
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2

* ( . )( . ) . ( )rad

Therefore, no plastic rotation developed, θH = 0 (rad)

At M = 2091.2 k-ft
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E E
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Therefore, no plastic rotation developed, θH = 0 (rad)

At M = 2807.4 k-ft
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FIGURE 4.5  Moment–curvature curves.
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Therefore, no plastic rotation developed, θH = 0 (rad)

At M = 2920.4 k-ft

θ φ φH n pL E E E= − ∗ = − − − ∗ = −( ) (( . ) ( . )) . . ( )1 16 4 1 0 4 34 3 5 14 4 rad

Total rotation θ = θn + θH = 3.24E − 3 + 5.14E − 4 = 3.75E − 3 (rad)

At M = 3126 k-ft

θ φ φH n pL E E E= − ∗ = − − − ∗ = −( ) (( . ) ( . )) . . ( )1 67 4 1 0 4 34 3 2 30 3 rad

Total rotation θ = θn + θH = 3.24E − 3 + 2.30E − 3 = 5.54E − 3 (rad)

At M = 3265 k-ft

θ φ φH n pL E E E= − ∗ = − − − ∗ = −( ) (( . ) ( . )) . . ( )2 54 4 1 0 4 34 3 5 28 3 rad

Total rotation θ = θn + θH = 3.24E − 3 + 5.28E − 3 = 8.52E − 3 (rad)

At M = 3311.1 k-ft

θ φ φH n pL E E E= − ∗ = − − − ∗ = −( ) (( . ) ( . )) . . ( )3 39 4 1 0 4 34 3 8 16 3 rad

Total rotation θ = θn + θH = 3.24E − 3 + 8.16E − 3 = 1.14E − 2 (rad)

At M = 3370.6 k-ft: Since M = Mu at point 3, the plastic-curvature capacity 
is ϕp = ϕu − ϕn.

θ φ φ φH p p u n pL L E E E= = − ∗ = − − − ∗ = −( ) (( . ) ( . )) . . ( )1 08 3 1 0 4 34 3 3 36 2 rad

Total rotation θ = θn + θH = 3.24E − 3 + 3.36E − 2 = 3.68E − 2 (rad)

	 (2)	Based on the bilinear model:

φn = 0 0001. ( )rad

θ φn n p
pL

L

L
E= − ∗









 = − ∗









 =1

2
0 0001 34 3

1
270

34 3
2

3 24
2 2

. .
( . )

. −− 3( )rad

For M < Mn = 3296 k-ft, θH = 0 (rad)

At M = Mn = 3296 k-ft, θH = 0 (rad)

Total rotation θ = θn + θH = 3.24E − 3 + 0 = 3.24E − 3 (rad)

At M = 3370.6 k-ft

θ φ φH u n pL E E E= − ∗ = − − − ∗ = −( ) (( . ) ( . )) . . ( )1 08 3 1 0 4 34 3 3 36 2 rad

Total rotation θ = θn + θH = 3.24E − 3 + 3.36E − 2 = 3.68E − 2 (rad)

From the above calculation, the moment–total rotation and the moment–plastic 
rotation curves are shown in Figures 4.6 and 4.7, respectively.
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Note that the PHL, Lp, in Equation 4.5 is a function of the distance from the col-
umn plastic hinge to the point of contraflexure of the column. Once the user defines 
the location of the contraflexure point along column, it is assumed that the contraf-
lexure point is fixed during the pushover analysis. In reality, the contraflexure point 
could shift if the ratio of two column end moments, Mi/Mj, changes.
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FIGURE 4.6  Moment–total rotation curves.
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FIGURE 4.7  Moment–plastic rotation curves.
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4.3  Constant Moment Ratio Method

In the CMR method (Cheng and Ger, 1992), the nonlinear bending stiffness matrix is 
derived based on a simply supported structural model as shown in Figure 4.8. Given 
a member of length L, the end moments Mi, Mj, and the moment–curvature relation-
ship, the end moment–rotation relationship at each end can be obtained by the con-
jugate beam theory. However, using the PHL, Lp, to generate the moment–rotation 
curve, is recommended for concrete columns because Lp in Equation 4.5 is based 
on the experiment results of large-scale test columns. The Takeda moment–rotation 
material described in Chapter 3 can also be used to formulate the nonlinear stiffness 
matrix of the concrete member by CMR method. Normally, the conjugate beam 
theory is used to generate the moment–rotation curve for steel members.

As mentioned previously, if the moment ratio, Mi/Mj is close to a constant, the 
location of the contraflexure point is assumed to be fixed. The flexibility of the 
inelastic rotation can be lumped at the member ends. Therefore, the total rotation, 
elastic rotation, and the plastic rotation expressed in terms of incremental forms are
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FIGURE 4.8  Moment–rotation relationship.
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where fi and fj are the flexibilities of the plastic rotations at member ends i and j, 
respectively, obtained from the moment–inelastic rotation curves in Figure 4.8. Note 
that the inelastic rotations calculated from Equation 4.20 are approximate because 
it is assumed that the inelastic rotation increment at one end is not influenced by the 
moment increment at the other end. From Equations 4.18 through 4.20, the member 
stiffness matrix can be derived as follows:
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in which

	
D
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f f f fi j i j= + + +

2

212 3( )
( ) 	 (4.22)

For a multiple-column bent subjected to earthquake, if a column deforms in a 
double-curvature shape, it may be assumed that the point of contraflexure is at the 
middle point of the column. In this case, Mi /Mj ≅ 1 and fi = fj can be used for the stiff-
ness matrix formulation.

The following example demonstrates how to generate the moment–rotation curve 
from the moment–curvature curve by conjugate beam theory.

Example 4.2

A bilinear moment–curvature curve of a W8 × 31 steel cross section is shown 
in Figure 4.9. The length of the steel member is 10 ft. It deforms in a double-
curvature shape when subjected to lateral load. The contraflexure point is 
located near the mid height of the column (i.e., Ma/Mb = 1). Find the moment–
total rotation and moment–plastic rotation curves of the member. For demon-
stration purposes, assume the ultimate curvature capacity, ϕu, is equal to 0.001.

Solution

	 a.	 At point 2 (i.e., M = Mn = 700 k-ft):
		  Since the curvature distribution is symmetric, the rotation θa can be 

calculated by taking the moment at the midpoint of the member (i.e., 
point “c”) with consideration of half of the member length (Figure 4.10).

Mc =∑ 0 :

θ φ θ φ
a

n
a

nL
L L L

( )
( . )( )

. ( )− 



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= ∴ = = =
2

2
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0
3

0 00025 60
3

0 005 rad
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	 b.	 At point 3 (i.e., M = Mu = 745 k-ft):
		  From Figure 4.10 and Table 4.2, the rotation θa can be calculated as

Mc =∑ 0 :

θ θa aL AX
AX

L
E( )

.
. ( )− = ∴ = = = −0

0 4
60

6 7 3 rad
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FIGURE 4.9  Bilinear moment–curvature curve of W8 × 31.
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FIGURE 4.10  Curvature distribution at ϕn and ϕu.
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Figure 4.11 shows the moment–total rotation, moment–elastic rotation, and moment–
plastic rotation curves.

Although the flexural stiffness matrix formulation for the PHL method shown in 
Equation 4.11 is different from that for the CMR method shown in Equation 4.21, the 
numerical values of the stiffness matrices calculated from both methods are identi-
cal, if the same moment–rotation curve is used for both methods. This is demon-
strated in the following example.

Example 4.3

Use the moment–rotation curve generated in Example 4.1 to calculate the flex-
ural stiffness matrix based on the PHL and CMR methods. Assuming the con-
traflexure point is at the mid height of a column with length L = 45 ft and bending 
rigidity of EI = 2,729,000 (k-ft2).
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(Mn, θn) = (700,0.005) (Mu, θu) = (745,0.0067)

M
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en
t

Rotation

Elastic rotation, θe

FIGURE 4.11  Moment–rotation curves.

Table 4.2
Conjugate Load

Section Area (A) Arm from Point c(X
_
) AX

_

A 1.36E – 3 58.79 0.08

B 9.08E – 4 58.19 0.053

C 7.04E – 3 37.58 0.265

Total 0.4
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Solution

From Example 4.1, the moment–total rotation and moment–plastic rotation 
curves are shown in Figure 4.12. In the figure, slopes 1 and 2 are the effective 
and post-yield slopes of the moment–total rotation curve. Slope 3 is the slope 
corresponding to the moment–plastic rotation curve. The values of slopes 1–3 
are 1,098,667, 2,223, and 2,194 (k-ft2/rad), respectively.

	 1.	 Using the PHL method:
	 a.	 Elastic case

R Ri j= = ∞

From Equation 4.15,
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From Equations 4.12 through 4.14,
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FIGURE 4.12  Moment–rotation curves from Example 4.1.
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	 b.	 Inelastic case
		  Since the contraflexure point is at the mid height of the column, 

Ri = Rj = slope 3 = 2194 (k-ft2/rad).
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	 2.	 Using the CMR method:
	 a.	 Elastic case

The flexibilities of the inelastic rotation at member ends i and j are

f fi j= = 0

From Equation 4.22,
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From Equation 4.21,
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Comparing Equations (a) and (c), the elastic flexural stiffness matri-
ces by the PHL and CMR methods are identical.

	 b.	 Inelastic case
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Comparing Equations (b) and (d), the inelastic flexural stiffness matrices by the 
PHL and CMR methods are essentially the same with minor difference between 
(b) and (d) being due to numerical truncation errors.
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4.4  Finite Segment–Finite String Method

Another common method of nonlinear pushover analysis is the use of the distributed 
plasticity model. Using this method, a structural member (e.g., a bridge column) is 
divided into several segments (Chen and Atsuta, 1977). Each segment has 12 degrees 
of freedom, and its cross section is divided into many finite elements (or so-called 
finite strings) along the segment’s longitudinal direction as shown in Figure 4.13. 
When a load or displacement increment is applied to a member in the pushover analy-
sis, each segment is deformed and may become partially plastic as sketched in Figure 
4.13. The plastification of the cross section can be detected by the steel and concrete 
stress–strain relationships. For simplicity, the segment’s cross-sectional plastification 
and strains are calculated based on the average curvature along the segment length.

For each small element (string) on the segment’s cross section, the strain incre-
ment can be expressed as follows:

	 ∆ ∆ ∆ ∆ε ε ϕ ϕc
ij

c
j

i u
j

i v
jV U= + − 	 (4.23)

in which

	
∆ ∆ ∆εcj b

j
a
jW W

L
= −( )

	 (4.24)

	
∆ ∆ ∆ϕ θ θ

u
j ub

j
ua
j

L
= −( ) 	 (4.25)
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FIGURE 4.13  FSFS method based on the distributed plasticity model.
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∆ ∆ ∆ϕ θ θ

v
j vb

j
va
j

L
= −( )

	 (4.26)

where
Ui and Vi equal the location of the ith cross-sectional element in the segment local 

coordinates U and V, respectively
W equals the segment local coordinate along the longitudinal direction of the 

segment
The subscripts a and b represent the two ends of the segment
i equals the ith cross-sectional element
j equals the jth segment
L equals the segment length
∆εcij  equals the strain increment of cross-sectional element i in the jth segment
∆εcj equals the normal strain at the centroid of the jth segment
∆Wa

j  equals the longitudinal deformation increment at a end of the segment j
∆θuaj  and ∆θva

j  equal the rotational increments at a end of the segment j in the seg-
ment local U and V directions, respectively

Δφu and Δφv equal the average bending curvature increments about the U and V 
axes, respectively

The current total strain for element i is

	
ε ε εij

p
ij ij= + ∆ 	 (4.27)

where εpij  is the ith element total strain in the previous deformation state. As shown 
in the flowchart in Figure 4.14, once the plastification of the cross section is known, 
the current principal axes, sectional properties, and the stiffness matrix of individual 
segments can be calculated. The procedures for calculating principal axes and sec-
tional properties are described in Appendix B.

The direction of the segment local coordinate system (U, V, W) is updated in 
each load step, in the direction of the segment’s instantaneous principal U, V, and 
W axes. Each segment’s material and geometric stiffness matrices are transferred 
from the segment local coordinate system (U, V, W) to the segment global coordinate 
system (XR, YR, ZR). The member’s stiffness matrix is established by stacking up 
the segmental stiffness matrices, for which a rotation matrix [R–]12×12 is required for 
each segment, by transferring the segment stiffness matrix from the segment local 
coordinate system (U, V, W) to the segment global coordinate system (XR, YR, ZR). 
The calculation of the rotation matrix [R–]12×12 is described in Appendix B. The more 
segments assigned, the more accurate the element stiffness matrix will be.

In order to provide computational efficiency, the member internal degrees of free-
dom at the member’s internal joints (see Figure 4.13) are condensed out by Gaussian 
elimination, and only the degrees of freedom at both ends of the member are main-
tained. Thus, the condensed member stiffness matrix has a dimension of 12×12. This 
condensed member stiffness matrix will be transformed from the segment global 
coordinate system (XR, YR, ZR) to the member coordinate system (Xe, Ye, Ze), as shown 
in Figure 4.13.
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The disadvantage of using this method is that the plastification at each end of the 
segment is not actually calculated, and a uniform plastification distribution along 
the segment based on the average curvature increment, as shown in Equations 4.24 
through 4.26, is assumed. Because of this assumption, the unbalanced force calcu-
lation at each end of a segment (see Appendix C) is also approximated. The pro-
gram only calculates the unbalanced forces for segments in single curvature. For a 
segment deformed in a double-curvature shape, the unbalanced forces are ignored 
by the program. In order to improve numerical accuracy, it is recommended that 
(1) more segments are used for each column, so the curvature distribution along each 
segment is close to a uniform distribution and (2) smaller incremental steps be used. 
If a numerical instability exists, try to use the simple Euler incremental approach 
(see Appendix D) with small incremental steps and without consideration of unbal-
anced forces (i.e., choose UNBAL = .FALSE. option in the SOL04 input data block 
as described in Chapter 6). Future program enhancement will include the plastifica-
tion at each end of the segment according to the curvature increments at each end, 
so more accurate unbalanced force calculation can be incorporated in the program.

4.5  Finite Segment–Moment Curvature Method

This method is similar to the FSFS method except that the cross section of each 
segment is not divided into many elements. The segment stiffness matrix at each 
incremental step is calculated based on the cross-sectional axial load–moment–
curvature family of curves from which the flexural property, EI (i.e., the slope of 
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Stress, σij
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Stress
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Strain

FIGURE 4.14  Segment stiffness matrix formulation based on average curvature.
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moment–curvature curve) can be obtained (see Section 3.4.9). The total curvature at 
each step is the accumulation of the incremental curvatures from the previous steps 
based on Equations 4.24 through 4.27. Similar to the FSFS method, the member 
stiffness matrix is established by stacking up the segment stiffness matrix with con-
sideration of the segmental rotation matrix [R–]12×12 and P − δ effects.

4.6  Concrete Column Failure Modes

For a reinforced concrete column, the plastic-curvature capacity, ϕp, is controlled by 
the governing failure mode. The possible failure modes include

	 1.	Compression failure of unconfined concrete
	 2.	Compression failure of confined concrete
	 3.	Compression failure due to buckling of the longitudinal reinforcement
	 4.	Longitudinal tensile fracture of the reinforcing bar
	 5.	Low-cycle fatigue of the longitudinal reinforcement
	 6.	Failure in the lap-splice zone
	 7.	Shear failure of the member that limits ductile behavior
	 8.	Failure of the connection joint

INSTRUCT can perform moment–curvature analysis by the FSFS method to cal-
culate the ultimate curvature capacity, ϕu, and plastic-curvature capacity, ϕp, corre-
sponding to the governing failure mode (see Figure 4.21). The ϕp obtained from the 
FSFS method can be used to calculate the plastic rotation capacity, θp, with which the 
column plastic rotation is checked at each incremental step during pushover analysis, 
when either the PM or PHL bending stiffness formulation method is considered. In 
addition, a column shear failure and the joint shear failure modes are also checked 
during the pushover analysis if the column is modeled by the IE3DBEAM element. 
Using the FSFS method to calculate plastic-curvature capacities due to failure modes 
1–6 is briefly described as follows:

	 1.	Compression failure of unconfined concrete
		  The concrete stress–strain relationship for unconfined concrete is shown in 

Figure 3.11. Conservatively, it is assumed that the compression failure of the 
unconfined concrete column occurs when the ultimate concrete compres-
sion strain, εcu, at the column extreme fiber is equal to

	 ε εcu c= × =2 0 0040 . 	 (4.28)

		  in which εc0 is the concrete strain corresponding to fc′.
	 2.	Compression failure of confined concrete
		  As shown in Equation 3.24, the ultimate confined concrete compression 

strain is equal to

	
ε ρ ε
cu

s yh su

cc

f

f
= +

′
0 004

1 4
.

. 	 (4.29)
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	 3.	Compression failure due to buckling of the longitudinal reinforcement
		  The buckling of longitudinal rebar is based on the following equation 

(Dutta and Mander, 1998):
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		  (4.30)

		  where
Nh is the number of hoop(s) within the buckling region (excluding bound-

ary hoops as shown in Figure 4.15)
db is the longitudinal rebar diameter
dbh is the transverse rebar (hoop) diameter
K is the restrained coefficient
K = 1 for rectangular section
K = N/2π for circular section
N is the number of longitudinal reinforcing steel bars
fsu is the ultimate stress of longitudinal reinforcing steel bars
fcr is the buckling stress of longitudinal reinforcing steel bars
fy is the yield stress of longitudinal reinforcing steel bars
fyh is the yield stress of hoop
s is the spacing of hoops
Lb is the buckling region length = (Nh + 1)(s)

S

Nh = 3

Lb

S

Longitudinal rebar

Transverse reinforcement

(a) (b)

FIGURE 4.15  Buckling of longitudinal reinforcing steel: (a) global buckling and (b) local 
buckling.
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		  INSTRUCT finds each fcr corresponding to each individual Nh (from Nh = 0 
through Nh = 15). The least fcr represents the buckling stress of the longitudi-
nal bars. Equation 4.30 considers both local and global buckling of the lon-
gitudinal bars (see Figure 4.15). The program only considers the buckling at 
the post-yield stress level of the bar (i.e., fcr ≥ fy) at the plastic hinge location. 
In the pushover analysis, when the stress of a longitudinal bar reaches fcr at 
a certain incremental step, the program output will report the reinforcing 
steel buckling failure mode occurrence.

	 4.	Longitudinal tensile fracture of reinforcing bar
		  As described in Section 3.4.8, the maximum tensile strain of εsu = 0.09 is 

used for reinforcing steel in INSTRUCT.
	 5.	Low-cycle fatigue of the longitudinal reinforcement
		  Low-cycle fatigue of the longitudinal reinforcement is dependent on the 

fundamental natural period, Tn, of the bridge. Once Tn is input by the user, 
the program will calculate the plastic strain amplitude, εap, of the steel from 
Equation 4.31:

	
εap fN= −0 08 2 0 5. ( ) . 	 (4.31)

		  in which Nf is the effective number of equal-amplitude cycles of loading 
that lead to fracture, which can be approximated by

	
N Tf n= −3 5 1 3. ( ) / 	 (4.32)

		  provided that 2 ≤ Nf ≤ 10. The corresponding plastic-curvature capacity can 
be obtained from the following equation (Dutta and Mander, 1998):

	
2 1

2ε φap pD
d

D
= −

′



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	 (4.33a)

		  or

	
φp

fN

D d D
=

− ′

−0 113

1 2

0 5. ( )

( )

.

/
	 (4.33b)

		  where
D is the overall depth of the section
d′ is the depth from the extreme concrete compression fiber to the center of 

the compression reinforcement

		  INSTRUCT only considers low-cycle fatigue of the longitudinal reinforce-
ment for confined concrete columns.
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	 6.	Failure of the lap-splice in the plastic hinge zone (Priestley et al., 1996)
		  INSTRUCT uses the following equation to calculate the stress of longitu-

dinal steel bar at which the splice failure occurs and flexural strength starts 
degrading:

	
f

f pl

A
slap

t s

b

= 	 (4.34)

		  where
fslap represents the tensile stress at which lap-splice failure occurs

f ft c= ′4  psi
ls represents the splice length, input by user
Ab represents the cross-sectional area of longitudinal bar
p represents the perimeter of crack for each spliced pairs of longitudinal 

bars (see Figure 4.16), which is defined as

	
p

D

n
d c d cb b=

′
+ + ≤ +π

2
2 2 2( ) ( ) for circular columns 	 (4.35)

	
p

s
d c d cb b=

′
+ + ≤ +

2
2 2 2( ) ( ) for rectangular columns 	 (4.36a)

		  where
n is the total number of longitudinal bars
D′ is the concrete core diameter
c is the concrete cover
s′ is the average spacing between spliced pairs of longitudinal bars

		  If fslap is less than fy, the flexural strength degradation occurs at the curva-
ture corresponding to fslap. If fslap is greater than fy, the flexural strength deg-
radation starts when the concrete extreme fiber compression strain reaches 
0.002. For a confined concrete column, it is possible that the flexural 
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FIGURE 4.16  Splice failure of longitudinal reinforcement.
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strength of a splice will degrade under cyclic loading if the volumetric ratio 
of transverse reinforcement ρs is less than the following:

	
ρs

b y

s yh

A f

pl f
= 2 42.

for circular sections 	 (4.36b)

	
ρ ρX

b y

s yh
Y

b y

s yh

A f

pl f

A f

pl f
= =1 21 1 21. .

and for rectangular sectioons 	 (4.37)

		  Conservatively, the program uses Equation 4.34 to check the flexural 
strength degradation of both poor-confined and confined concrete columns. 
The maximum plastic-curvature capacity due to lap-splice failure can be 
estimated as follows:

	
φ φ φp lap n= + 7 	 (4.38)

		  where ϕn is the nominal curvature corresponding to Mn; ϕlap = 0 when fslap is 
less than fy. If fslap is greater than fy, ϕlap is the plastic curvature at which the 
concrete extreme fiber compression strain reaches 0.002. If the volumetric 
ratio of transverse reinforcement is greater than that shown in Equations 
4.36b and 4.37, the transverse reinforcement can provide enough clamping 
stress across the concrete fracture surface, and the flexural strength degra-
dation will not occur. Although the program uses the above-mentioned fslap 
criteria to check the flexural strength degradation for both poor-confined 
and confined concrete columns, the user should check whether or not there 
is a sufficient volumetric ratio of transverse reinforcement to prevent the 
flexural strength degradation per Equations 4.36b and 4.37, which provide 
enough transverse reinforcement to ensure that the concrete dilation strain 
is less than 0.0015, and the coefficient of friction of μ = 1.4 is appropriately 
achieved.

The FHWA publication entitled Seismic Retrofitting Manual for 
Highway Structures (FHWA, 2006) provides a closed form formula (see 
Appendix E) to estimate the plastic-curvature capacities for the six above-
mentioned failure modes. Note that these formulas are approximate. To 
obtain the more accurate plastic-curvature capacities, Equations 4.28 
through 4.38 should be used.

As mentioned previously, INSTRUCT also checks shear and joint shear 
failure modes during the pushover analysis when the PM or PHL method 
is used. The analytical approaches of checking shear and joint shear failure 
modes are described as follows:

	 7.	Column shear failure (Priestley et al., 1996)
		  The shear strength capacity of the member is equal to

	
V V V Vcap c s p( )µ = + + 	 (4.39)
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		  where
Vc is the concrete shear strength
Vs is the shear strength due to transverse reinforcement
Vp is the shear strength due to compressive axial load

		  The value of Vc depends on the rotational ductility of the member end (μ):

	
V V k f A k A Ac ci c e e gross= = ′ = =; . ; .3 5 0 8 	 (4.40)

	
V V k f A k A Ac cf c e e gross= = ′ = =; . ; .0 6 0 8 	 (4.41)

		  where
fc′ is in psi
Agross is the gross cross-sectional area
Vci is the initial concrete shear strength
Vcf is the concrete shear strength when μ is greater than or equal to 15

		  As shown in Figure 4.17, the coefficient k is a function of member-end rota-
tional ductility.

The shear strength due to transverse reinforcement, Vs, is

	
V

A f D

s
s

sp yh=
′π θcot( )

2
for circular sections 	 (4.42)

	
V

A f D

s
s

v yh=
′cot( )θ

for rectangular sections 	 (4.43)
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FIGURE 4.17  Concrete shear strength capacity in terms of member-end rotational ductility.
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		  where
θ = 30°
D′ is the core dimension measured to the centerline of hoop or width 

between the centerline of the rectangular transverse reinforcement
s is the spacing of transverse reinforcement
Asp is the cross-sectional area of transverse reinforcement
Av is the effective area of transverse reinforcement, calculated as 

Av = Nx Asp or Ny Asp based on Equations 3.27 and 3.28

The shear strength, Vp, due to compressive axial load can be calculated 
as follows:

	
V Pp = tan( )α 	 (4.44)

		  where
P is the axial load (compression is positive)
α is the angle between the column axis and the line joining the centers of 

flexural compression of concrete at the top and bottom of the column

As shown in Figure 4.18, tan(α) can be calculated as follows:

	
tan( )α = −D c

L
for multiple column bents 	 (4.45)

or

	
tan( )α = −D c

L2
for single column bents 	 (4.46)

As described previously, INSTRUCT checks shear and connection 
joint shear failure modes if the IE3DBEAM element is used with either 
the PM or PHL method. To help the user in preparing input data for 
the pushover analysis using the PM or PHL method, the parameters Vc, 
Vs, and c can be calculated from the moment–curvature analysis by the 
FSFS method. Alternatively, an approximate value of c can be obtained 
using Equation E.13 for rectangular sections or Equation E.14 for circu-
lar sections as described in Appendix E. At each incremental step, the 
member shear force, V, will be compared with the corresponding shear 
strength capacity, Vcap(μ), calculated from Equation 4.39. If V ≥ Vcap(μ), 
shear failure occurs, and a message will be shown in the INSTRUCT 
output file.
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	 8.	Connection joint shear failure (Priestley et al., 1996)

The joint shear stress capacity of a joint is equal to

	
v p p f f f fj t t v h v h( ) ( )µ = − + +2 	 (4.47)

		  where
fv is the average column axial stress (compression is negative)
fh is the average horizontal joint stress (compression is negative)
pt is the principal tensile stress of the joint (tension is positive)

	
f

P

h h b
v

c b je

=
+( )

	 (4.48)

	
f

P

b h
h

b

b b

= 	 (4.49)
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FIGURE 4.18  Column shear strength due to axial load.
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		  where
hc is the column width
bc is the column depth
hb is the beam depth
bb is the beam width
Pb is the prestress force from cap beam
P is the column axial force
bje is the effective beam width of the joint, which is calculated as

	
b D bje b= ≤2 for circular columns 	 (4.50)

	
b h b bje c c b= + ≤ for rectangular sections 	 (4.51)

The principal tensile stress, pt, is a function of the member-end rotational 
ductility, μ, and can be calculated as follows:

	
p ft c= ′ < ≤5 0 3psi for µ 	 (4.52)

	
p ft c= ′ <3 5 7. psi for µ 	 (4.53)

pt can be obtained from Figure 4.19. During the pushover analysis, if the prin-

cipal tensile stress is less than 3 5. fc′psi, the initial joint diagonal crack is 

not expected. However, when the principal tensile stress reaches 3 5. fc′psi, 
the joint diagonal crack is initiated. As long as the principal tensile stress is 
under the principal tensile stress capacity envelope as shown in Figure 4.19, 
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f ć

pt

Member end rotational ductility µ

3 7

3.5

FIGURE 4.19  Principal tensile stress in terms of member-end rotational ductility.
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the joint strength does not degrade although the initial diagonal crack may 
have been developed. Once the principal tensile stress exceeds the envelope, 
the joint strength is degraded, which defines the connection shear failure.

The joint shear stress demand, vjh (Figure 4.20), can be calculated as 
follows:

	
v

M h

h b
jh

b

c je

= ( )
( )

/ 	 (4.54)

where M is the column moment adjacent to the joint. At each incremental 
step, the joint shear stress, vjh, will be compared with the corresponding joint 
shear stress capacity, vj(μ). If vjh ≥ vj(μ), joint shear failure occurs, and a mes-

sage will be shown in the INSTRUCT output file. When p ft c≥ ′3 5. psi, 
joint shear reinforcement needs to be provided according to seismic design 
codes such as AASHTO Guide Specifications for LRFD Seismic Bridge 
Design (AASHTO, 2009).

4.7  Bilinear Moment–Curvature Curves

As described in Section 2.5, moment–curvature curves can be generated by the 
FSFS method using a single simply supported FSFS element with a length of 2 and 
one segment. Section 4.6 has discussed that the ultimate curvature capacity, ϕu, and 
plastic-curvature capacity, ϕp, are determined by one of the six failure modes as 
shown in Table 4.3.

Figure 4.21 shows that the bilinear moment–curvature curve can be defined using 
the idealized nominal curvature, ϕn (i.e., point 2 in the figure). ϕn can be calculated 
as follows:

	
φn

n

e

M

EI
= 	 (4.55)
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FIGURE 4.20  Stresses acting on joint.

© 2012 by Taylor & Francis Group, LLC



92 Seismic Design Aids for Nonlinear Pushover Analysis

in which

	
EI

M
e

y

y

=
φ

	 (4.56)

where
Mn is defined as the nominal moment where either the extreme compression con-

crete strain reaches 0.004 or the first longitudinal reinforcement tensile strain 
reaches 0.015

My is the initial yield moment defined as the moment where the first longitudinal 
tensile reinforcement reaches initial yield

The ultimate curvature capacity, ϕu, in Figure 4.21 is governed by the failure modes 
mentioned in Section 4.6.

TABLE 4.3
Control Points for Bilinear Moment–Curvature Curves
Point 1 (My, ϕy) First tensile rebar reaches yield

Point 2 (Mn, ϕn) Concrete extreme fiber compression strain reaches 0.004 or tensile 
reinforcing steel strain reaches 0.015

Point 3 (Mu, ϕu) Compression failure of unconfined concrete

Compression failure of confined concrete

Compression failure due to buckling of the longitudinal reinforcement

Longitudinal tensile fracture of reinforcing bar

Low-cycle fatigue of the longitudinal reinforcement

Failure in the lap-splice zone
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FIGURE 4.21  Bilinear moment–curvature expression.
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4.8  Column Axial Load–Moment Interaction

As shown in Figures 4.1 and 4.3, the bilinear moment–curvature curves are used 
in the PM and PHL methods to formulate the element flexural stiffness matrix. For 
single column bents, normally, the column axial load does not vary much when sub-
jected to lateral load, and there is no need to consider axial load–nominal moment 
interaction effects. For multicolumn bents subjected to lateral load, column axial 
load may vary a lot, and the effect of axial load on the nominal moment may be 
significant (see Figure 1.8). In this case, the nominal moment, Mn, in the bilinear 
moment–curvature curve needs to be adjusted in accordance with the axial load–
moment interaction curve.

The axial load–moment interaction curve can be generated by performing sev-
eral moment–curvature analyses with different magnitudes of axial load. As shown 
in Figure 4.22, a set of bilinear moment–curvature curves can be generated by the 
FSFS method. Plotting Mn s (i.e., point 2 of each bilinear curve) and corresponding 
axial loads in Figure 4.22, the axial load–moment interaction curve is obtained as 
shown in Figure 4.23.

In the figure, a third-order polynomial fitting curve representing the axial load–
moment interaction is used in INSTRUCT. The polynomial is given by

	 M a a P a P a Pn = + + +0 1 2
2

3
3 	 (4.57)

in which a0, a1, a2, and a3 are the coefficients for zero-order, first-order, second-
order, and third-order terms, respectively. The user can input either these coefficients 
into INSTRUCT or data points (i.e., points 2 shown in Figure 4.23) directly into 
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FIGURE 4.22  Moment–curvature curves.
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INSTRUCT. If data points are input by the user, INSTRUCT will perform polyno-
mial curve fitting to obtain a0−a3. The numerical analysis of polynomial curve fitting 
is described in Appendix I. For the PM and PHL methods, at each incremental load 
step, INSTRUCT will adjust Mn based on the polynomial equation in Equation 4.57. 
Note that the axial load–nominal moment interaction is not considered in the CMR 
method, because the CMR method is mainly used with the Takeda hysteresis model 
to predict the cyclic behavior of concrete members. It is difficult to modify the Takeda 
hysteretic rules to account for the variation of member axial load due to cyclic loading.

4.9  �Column Axial Load–Plastic 
Curvature Capacity Curve

As shown in Figure 4.21, the plastic-curvature capacity is

	
φ φ φp u n= −( ) 	 (4.58)

Since the ultimate curvature, ϕu (point 3 in Figures 4.21 and 4.22), is dependent 
on the column axial load, P, the column plastic curvature also depends on P. From 
Figure 4.22 and Equation 4.58, the column axial load–plastic curvature capacity 
(i.e., P − ϕp) curve is plotted in Figure 4.24. Multiplying Equation 4.58 by the PHL, 
Lp, gives the column axial load–plastic rotation capacity (i.e., P − θp) curve shown in 
Figure 4.25. Similar to Equation 4.57, INSTRUCT uses a polynomial to represent the 
P − θp interaction, given as

	
θp b b P b P b P= + + +0 1 2

2
3

3 	 (4.59)
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FIGURE 4.23  Axial load–nominal moment interaction.
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The user can either input coefficients, b0, b1, b2, and b3 into INSTRUCT, or enter data 
points (i.e., points as shown in Figure 4.25) into INSTRUCT so that INSTRUCT 
will perform polynomial curve fitting to obtain b0 − b3. Equation 4.59 is used in the 
PM and PHL methods to calculate plastic rotation capacity due to column axial 
load effects.
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5 Analytical Formulation 
for Structures

This chapter describes how to combine bending, shear, axial, and torsional stiff-
nesses to form the element stiffness matrices for bridge columns and cap beams. 
The bending stiffness matrices of column and cap beams are presented in Chapter 
4 and based on the hysteresis models described in Chapter 3. The stiffness matrix 
formulation for other elements such as brace and plate elements are introduced in 
this chapter. Once all the element stiffness matrices are formulated, a 3D structural 
system subjected to both static and nonlinear pushover loadings can be analyzed. To 
perform static and nonlinear pushover analyses, the structural joints and degrees of 
freedom (dofs) need to be defined first; a process is described below.

5.1  Joint Definition and Degrees of Freedom

A joint is defined as the point where two or more elements are connected. The assem-
blage of all elements becomes a structural model. The structural model is built by 
first defining the location and orientation of each joint. Then, the elements that con-
nect the joints and their orientations are defined.

5.1.1  Global Coordinate System

The global coordinate system (GCS) defines the location of a structure. The GCS 
is a Cartesian coordinate system with three perpendicular axes Xg, Yg, and Zg. Zg is 
defined as Xg cross Yg (right-hand rule), as shown in Figure 5.1. The location of the 
GCS’s origin is arbitrary and usually taken at the base of the structure.

5.1.2  Joint Coordinate System

The location of a joint is defined by its Xg, Yg, and Zg coordinates in the GCS. Each 
joint is assumed to have six dofs. The first three dofs are translational and correspond 
to the joint’s Xj, Yj, and Zj axes. The remaining three dofs are rotational about the 
joint’s Xj, Yj, and Zj axes as shown in Figure 5.1. The Xj, Yj, and Zj axes define a joint 
coordinate system (JCS) for a given joint. The JCS need not be parallel to the GCS, 
and the JCS may vary for different joints. Thus, the orientation of the JCS for a given 

joint is defined by two vectors 
�
Vxj and 

�
Vyj. The origin of the JCS is at the joint. A third 

vector is then 
� � �
V V Vzj xj yj= × . The three vectors are written in matrix form as follows:
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where 
�
i , 

�
j , and 

�
k  are unit vectors parallel to the Xg, Yg, and Zg axes. Note that the 

orientation of the JCS determines the orientation of the global degrees of freedom 
(Gdofs).

5.1.3  Rigid Body Constraints

In general, the deformation of one structural component (e.g., a beam cap with inte-
gral concrete diaphragm) may be very small relative to the deformations of other 
components (e.g., columns). The component with very small deformation may be 
idealized as a rigid body. Two joints on the rigid body are constrained, such that the 
deformation of one joint (the “slave” joint) can be represented by the deformation of 
the other joint (the “master” joint). Thus, the dofs for the slave joint are transferred 
to the master joint, and the number of dofs in a structural model is reduced. The 
reduced set of dofs is referred to as the Gdofs. Transformations for a 3D constraint 
and a planar constraint are described below.

Let joint m be the master joint and joint s be the slave joint. Also, let the orien-
tation of both joints be identical, {Vj}m = {Vj}s. Assume that the two joints are con-
nected by a rigid body. Thus, the forces at the slave joint are transferred to the 
master joint, and the displacement of the slave joint is expressed in terms of the 
master joint. Examining Figure 5.2, for the typical notation, Fjmx represents the force 
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FIGURE 5.1  Global and joint coordinate systems.
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at the master joint m in the JCS X-direction, and Mjmz represents the moment at the 
master joint m about the JCS Z-axis. Likewise, Fjsx represents the force at the slave 
joint about the JCS X-direction, and Mjsz represents the moment at the slave joint 
about the JCS Z-axis.

Summing the forces acting on the slave joint about the master joint, in three 
dimensions, yields the force transformation for a 3D rigid body as follows:
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	 (5.2)

or

	
{ } [ ]{ }F T Fjm ms js= 	 (5.3)

where
{Fjm} represents the forces acting on the master joint
{Fjs} represents the forces acting on the slave joint

A similar transformation for displacements can be derived

	 { } [ ] { }δ δjs ms
T

jmT= 	 (5.4)
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FIGURE 5.2  Three-dimensional rigid body constraint.
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where
{δjm} represents the displacements of the master joint
{δjs} represents the displacements of the slave joint

The distances Xms, Yms, and Zms are in the master joint’s JCS.
Recall the joint’s coordinates are defined in the GCS. Transferring the coordi-

nates of both joints from the GCS into the JCS yields
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where
the typical notation Xgm represents the global X coordinate of the master joint m
Zgs represents the global Z coordinate of the slave joint s

A bridge deck is relatively stiff in its in-plane direction, yet it is flexible out of 
plane. Thus, a planar constraint could be used to treat the deck’s in-plane stiffness 
as a rigid body.

Let the plane of the deck be in the joint’s Xj – Yj plane as shown in Figure 5.3. The 
moments about the Xj and Yj axes and the force in the Zj axis cannot be transferred 
from the slave to the master joint because the floor is flexible in the out of plane 
direction. Thus, the force transformation is
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	 (5.6)

Xj

Yj

Master joint

Slave joint

(Rigid body)
Fjmx

Fjmy

Mjmz

Xms

Yms

Fjsx

Fjsy

Mjsz

FIGURE 5.3  X–Y planar constraint.
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The slave joint’s translations in the Xj and Yj axes and rotation about the Zj axis are 
transferred to the master joint. The slave joint’s translation in the Zj axis and rota-
tions about the Xj and Yj axes remain at the slave joint.

5.1.4  Condensed Degrees of Freedom

In Section 3.3.2, the structural global stiffness matrix, [K], is partitioned between 
free and restrained dofs for the pushover analysis. For a typical bridge bent, the 
dimension of the stiffness matrix corresponding to free dofs, [Kff], shown in Equation 
3.2, is usually not a very large number, and the computation time for the matrix 
inversion of [Kff] in Equation 3.5 is not significant. However, if a pushover analy-
sis is performed for an entire bridge with many intermediate bents or a high rise 
building, the total number of free dofs may be very large. In this case, significant 
computation time for the matrix inversion of [Kff] may be needed in order to solve 
the unknown displacements corresponding to the free dofs, {Δδf}. In this case, a 
common Gaussian elimination procedure can be used to partition the original free 
dofs into condensed dofs and remaining free dofs. Hence, the dimension of [Kff] is 
reduced to the total number of remaining free dofs, which decreases the computation 
time for the matrix inversion at each load step during the pushover analysis.

5.1.5  Global Degrees of Freedom

The Gdofs are in the JCS, and these dofs describe the structural response. Once 
the joints have been defined and the constraints have been identified, the Gdofs are 
numbered by INSTRUCT. Any Gdof not condensed out, restrained, or eliminated 
by a constraint is a free degree of freedom. It is advantageous to partition the stiff-
ness matrix along the following boundaries: dofs to be condensed out, free dofs, 
and restrained degree of freedom. Thus, in INSTRUCT, the dofs are assigned in the 
following order:

	 1.	dofs to be condensed out are assigned first
	 2.	Free dofs are assigned second
	 3.	Restrained dofs are assigned third

The Gdof numbers for each joint are stored in the array {Lmj}, in which subscript j 
represents the jth joint.

5.2  Inelastic IE3DBEAM Element

The elastic 3D-BEAM and inelastic IE3DBEAM elements are shown in Figures 3.15 
and 3.17, respectively. For IE3DBEAM, the element bending stiffness is determined 
based on the PM, PHL, or CMR methods as described in Chapter 4. The axial and 
torsional stiffnesses are based on the bilinear hysteresis model (IA_BILN) described 
in Chapter 3. Since the elastic 3D-BEAM and the inelastic IE3DBEAM have the 
same element coordinate system (ECS) and dofs, the formulation of their structural 

© 2012 by Taylor & Francis Group, LLC



102 Seismic Design Aids for Nonlinear Pushover Analysis

and geometric stiffness matrices is similar, and only the IE3DBEAM element stiff-
ness formulation is described here.

5.2.1  Element Coordinate System and Degrees of Freedom

Let Xga, Yga, and Zga be the coordinates of the start joint A in the GCS, and Xgb, Ygb, 
and Zgb be the coordinates of the end joint B in the GCS. The distance between the 
start joint and end joint is given by

	
L X X Y Y Z Zga gb ga gb ga gb= − + − + −( ) ( ) ( )2 2 2 	 (5.7)

Define 
�
Vx as a unit vector from the start to the end joints,

	

�
� � �

V
X X i Y Y j Z Z k

L
x

gb ga gb ga gb ga= − + − + −( ) ( ) ( )
	 (5.8)

The vector 
�
Vx defines the orientation of the element’s local Xe axis. Choose a vector, 

�
Vxy, such that both 

�
Vx and 

�
Vxy lie on the element local XY plane.

	

�
� �

�V
V V

V
z

x xy

xy

= ×
	 (5.9)

and

	

� � �
V V Vy z x= × 	 (5.10)

where 
�
Vy and 

�
Vz are unit vectors, which define the orientation of the element’s local 

Ye and Ze axes, respectively.

The three unit vectors 
�
Vx, 

�
Vy, and 

�
Vz define the ECS, denoted Xe, Ye, Ze, with the 

origin at the joint A. The three unit vectors that define the orientation of the ECS are 
written in matrix form as follows:

	

{ }V

V

V

V

C C C

C C C

C C C
e

x

y

z

=
















=









�

�

�

11 12 13

21 22 23

31 32 33 





















=
















�

�

�

�

�

�

i

j

k

C

i

j

k

e[ ] 	 (5.11)

where [Ce] is the direction cosine matrix for the ECS. The element has 12 dofs as 
shown in Figure 3.17 and is reproduced here as Figure 5.4. In matrix form, the local 
forces and displacements in the ECS are given by

	 { } { , , , , , , , , , , , }F F F F M M M F F F M M Me xa ya za xa ya za xb yb zb xb yb zb
T= 	 (5.12a)
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{ } { , , , , , , , , , , , }δ δ δ δ θ θ θ δ δ δ θ θ θe xa ya za xa ya za xb yb zb xb yb zb

T= 	 (5.12b)

5.2.2  Element Stiffness Matrix in ECS

The bending stiffness matrices of an IE3DBEAM element corresponding to the 
�
Vy 

and 
�
Vz directions can be expressed as follows:

	

M

M

B D

D B
ya

yb

ya

yb









 =

′




















θ
θ

	 (5.13)

	

M

M

A C

C A
za

zb

za

zb









 =

′




















θ
θ

	 (5.14)

where

θya and θyb represent the rotations in the 
�
Vy direction

θza and θzb represent the rotations in the 
�
Vz direction

The nonlinear bending stiffness coefficients, A, A′, B, B′, C, and D, are described 
in Chapter 4 and are dependent on the hysteresis model used in the analysis. The 
torsional stiffness is given by

	

M

M

G J

L

Q Q

Q Q
xa

xb

t xa

xb

xa







 =

−
−



















 =

−
−











1 1

1 1

θ
θ

θ
θxxb









 	 (5.15a)
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Fzb
Mzb
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Mxb

Fyb

Myb
(Xgb, Ygb, Zgb)

(Xga, Yga, Zga)

Xe, Vx

L

 VXY = V1i+V2 j+V3k

Ye, Vy

Ze, Vz

FIGURE 5.4  Elastic 3D beam and inelastic IE3DBEAM elements.
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and

	
G

G

SIG
t =






for elastic condition

for inelastic condition
	 (5.15b)

where
J is the polar moment of inertia of the cross section
Gt is the tangent torsional rigidity
G is the elastic torsional rigidity
SIG is the inelastic torsional rigidity

Similarly, the axial stiffness is given by

	

F

F

E A

L

H H

H H
xa

xb

t xa

xb

xa







 =
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












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
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
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1 1

δ
δ

δ
δxxb









 	 (5.16)

and

	
E

E

SIE
t =






for elastic condition

for inelastic condition
	 (5.17)

where
Et is the tangent modulus
E is the elastic modulus
SIE is the inelastic modulus
A is the cross-sectional area

The bilinear hysteresis model, IA_BILN, described in Chapter 3 is employed in 
Equations 5.15 and 5.16. Combining stiffness terms from Equations 5.13 through 
5.16 yields the local element stiffness matrix as follows:

	

F
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M

M

F

M

M

M

H Hxa
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



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


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

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
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
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	 (5.18)
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or

	 { } [ ]{ }F SI= δ 	 (5.19)

Examining Figure 5.4, the following relationships are derived by summing moments 
about ends A and B:

	
( )M M M F L F

M M

L
y A ya yb zb zb

ya yb= = + − ⇒ = +∑ 0 	 (5.20)

	
( )M M M F L F

M M

L
y B ya yb za za

ya yb= = + + ⇒ = − −∑ 0 	 (5.21)

	
( )M M M F L F

M M

L
z A za zb yb yb

za zb= = + + ⇒ = − −∑ 0 	 (5.22)

	
( )M M M F L F

M M

L
z B za zb ya ya

za zb= = + − ⇒ = +∑ 0 	 (5.23)

Rewriting Equations 5.20 through 5.23 in matrix form yields
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(5.24)

Substituting Equation 5.19 into Equation 5.24 leads to

	 { } [ ][ ][ ] { } [ ]{ }F A S A ke e I e
T

e e e= =δ δ 	 (5.25)
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Therefore, the IE3DBEAM element stiffness matrix in the ECS is given by
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(5.26)

where

	
S

A C A

L
22 2

2= + + ′
	 (5.27)

	
S

A C

L
26 = +

	 (5.28)

	
S

A C

L
212 =

′ +
	 (5.29)

	
S

B D B

L
33 2

2= + + ′
	 (5.30)

	
S

B D

L
35 = +

	 (5.31)

	
S

B D

L
311 =

′ +
	 (5.32)

5.2.3  Element Stiffness Matrix in Terms of Global Degrees of Freedom

The transformation of dofs from the ECS to Gdofs consists of two steps. First, the 
dofs at each of the two joints are rotated from the ECS to JCS at joints A and B. 
Second, the constraint transformation moves the dofs from each of the slave joints to 
the master joints, if constrained dofs are considered.
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Recall the transformation between the global forces and forces in an ECS is 
given by

	

{ }

[ ]

[ ]

[ ]

[ ]

{ } [ ]{F
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

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

=

0 0 0

0 0 0

0 0 0

0 0 0

GGCS} 	 (5.33)

where
{Fe} is the force vector in the ECS
{FGCS} is the force vector in the GCS
[Ce̅] is the direction cosine matrix of the ECS

Thus, rotating the element forces, {Fe}, to global forces, {FGCS}, is achieved by

	 { } [ ] { }F C FGCS e
T

e= 	 (5.34)

and rotating the global forces to joint forces, {Fj}, is achieved by
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=
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[[ ]{ }C Fj GCS 	 (5.35)

Substituting Equation 5.34 into Equation 5.35 leads to

	
{ } [ ][ ] { }F C C Fj j e

T
e= 	 (5.36)

The third transformation is the constraint transformation for each joint, which trans-
fers forces from the slave joint to the master joint. Let [Tms]A and [Tms]B be the con-
straint transformation matrices for joint A and joint B, respectively. The forces acting 
on the master joints, {Fjm}, can be expressed as follows:

	
{ }

[ ]

[ ]
{ } [ ]{ }F

T

T
F T Fjm

ms A

ms B
j m j=









 =

0

0
	 (5.37)

If constraints are not present, the transformation matrix [Tm̅] reduces to an identity 
matrix. Combining Equations 5.36 and 5.37 yields the transformation from internal 
element forces, {Fe}, to forces acting on the master joints, {Fjm}, at the Gdof:

	 { } [ ][ ][ ] { } [ ]{ }F T C C F A Fjm m j e
T

e e= = 	 (5.38)
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Similarly, the transformation for the deformation is given by

	
{ } [ ] { }δ δe

T
jmA= 	 (5.39)

Recall {Lmj} described in Section 5.1.5 is a vector containing the Gdof numbers at 
joint j. For an element e with two end joints A and B, the vector {Lm}e that contains 
the Gdof numbers at ends A and B is

	
{ }

{ }

{ }
Lm

Lm

Lm
e

A

B

=








 	 (5.40)

The vector of Gdof numbers is used in the assembly of the global stiffness matrix. 
The stiffness matrix is transformed from the member stiffness, Equation 5.25, to the 
Gdof by

	 [ ] [ ][ ][ ]k A k Ae G e
T= 	 (5.41)

In structural analysis, we assume that members are directly connected to a joint. 
However, in reality, only center lines of structural members are intersected at the 
connection joint, and the end of a member is connected to the rigid zone, as shown in 
Figure 5.5. If the rigid zone effect is considered in the structural analysis, the column 
or beam element stiffness matrix, [ke], should be transferred from the member ends 
to the joints in the rigid zones by rigid body transformation.

The member force vector, {Fe}, shown in Equation 5.25, is transferred to the start 
and end joints (see Figure 5.4) in the rigid zones by the transformation matrix, [T]:

	 { } [ ]{ }′′ =F T Fe e 	 (5.42)

Beam center line

Column center line

Rigid zone
Joint

FIGURE 5.5  Rigid zone of structural connection.
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and

	 { } [ ] { }δ δe
T

eT= ′′ 	 (5.43)

in which

	
[ ]

[ ]

[ ]
T

T

T
SA

EB

=










0

0
	 (5.44)

{ }′′Fe  and { }′′δe  represent the member force and displacement vectors at the rigid zone 
joints. The subscripts S and E in Equation 5.44 represent the start and end joints, 
respectively. [TSA] and [TEB] are the transformation matrices corresponding to the 
start and end joints, respectively. From Equation 5.2, [TSA] and [TEB] are
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	 (5.45)

and

	

[ ]T
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XE

EB =

−



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1









	 (5.46)

Substituting Equation 5.25 into Equation 5.42 leads to

	 { } [ ][ ][ ] { } [ ]{ }′′ = ′′ = ′′ ′′F T k T ke e
T

e e eδ δ 	 (5.47)

Once [ ]′′ke  is formed, it can be transformed to the Gdof by the same procedure 
described by Equations 5.38 through 5.41, except that {Fe}, [ke], and {δe} are replaced 
by { }Fe′′ , [ ]′′ke , and { }δe′′ , respectively.

5.2.4  Element Geometric Stiffness Matrix in Gdof

The “lumped mass” geometric stiffness matrix is formulated with consideration of 
the effect of axial load on the member’s lateral deflections. The element is idealized 
as a rigid bar with an axial load P as shown in Figure 5.6.
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The axial load P is positive when the member is in compression. The shear at 
each end of the member is equal to PΔ/L. Thus, the element geometric stiffness 
matrix is
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	 (5.48a)

The “consistent mass” geometric stiffness matrix is formulated with consideration of 
the effect of axial load on the member’s rotations and lateral deflections, which can 
be expressed as follows:

L
PΔ

L
PΔ

PΔ

P

L

FIGURE 5.6  P − δ force for the IN3DBEAM or 3D-BEAM element.
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(5.48b)

in which A = 2L/15, B = A, C = L/30, D = E = 0.1, F = 1.2/L, and L is the element length.
The geometric stiffness is transferred from element to Gdof by the transformation

	 [ ] [ ][ ][ ]G A G Ae G e
T= 	 (5.49)

5.3  Finite-Segment Element

As described in Section 3.5.4, the finite-segment element consists of two joints, A 
and B, as shown in Figures 3.18 and 4.13. Figure 3.18 is reproduced here as Figure 
5.7a. The member is divided into several segments and each segment has 12 dofs. 
The element’s cross section is divided into many sectional elements as shown in 
Figure 3.19.

5.3.1  Element Coordinate System and Degrees of Freedom

The equations used to define the ECS for a finite-segment element are identical to 
Equations 5.7 through 5.12.

5.3.2  Element Stiffness Matrix in ECS

As described in Appendix B, the element stiffness matrix, [k]̅, corresponding to a 
segment’s Gdof direction (XR, YR, ZR) is formulated first, in which

	 { } [ ]{ }F ke e= δ 	 (5.50)

and

	 { } { , , , , , , , , , , , }F F F F F F F F F F F F Fe
T= 1 2 3 4 5 6 7 8 9 10 11 12 	 (5.51)
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	 { } { , , , , , , , , , , , }δ δ δ δ δ δ δ δ δ δ δ δ δe
T= 1 2 3 4 5 6 7 8 9 10 11 12 	 (5.52)

The element force directions, {Fe̅}, are shown in Figure 5.7b. Since (XR, YR, ZR) and 
(Xe, Ye, Ze) are not identical, the transformation between the element forces, {Fe̅}, and 
the forces in ECS, {Fe}, is given by
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XEStart joint

End joint
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(a)
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XE
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Segment

Internal joints
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FIGURE  5.7  Finite-segment element forces corresponding to (a) (Xe, Ye, Ze) and (b) 
(XR, YR, ZR).
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{ }Fe =
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






{ }Fe 	 (5.53)

or

	 { } [ ]{ }F A Fe e= 	 (5.54)

Substituting Equation 5.50 into Equation 5.54

	 { } [ ][ ][ ] { } [ ]{ }F A k A ke
T

e e e= =δ δ 	 (5.55)

where [ke] represents the element stiffness matrix in the ECS. The transformation 
of dofs from the ECS to Gdofs for the finite-segment element is same as that for 
the IE3DBEAM element. Since the geometric stiffness matrix for each segment 
has been included in the segmental stiffness matrix formation as described in 
Appendix B, the geometric stiffness effect has been included in the member stiff-
ness matrix [ke].

5.4  Brace Element

The brace element consists of two joints, A and B, as shown in Figure 3.22 and 
reproduced here as Figure 5.8. The orientation of the brace element is defined by the 
ECS. The element stiffness is governed by the bracing member’s hysteresis model as 
described in Section 3.4.12.

5.4.1  Element Coordinate System and Degrees of Freedom

The locations of both the start joint A and end joint B are defined in the GCS. Let 
(Xga, Yga, Zga) be the coordinates of the start joint A, and (Xgb, Ygb, Zgb) be the coor-
dinates of the end joint B. As shown in Equation 5.7, the distance between joint A 
and joint B is given by L. The unit vector, 

�
Vx, from the start joint to the end joint is 
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given in Equation 5.8. Let the ECS be denoted (Xe, Ye, Ze). The vector 
�
Vx defines the 

orientation of the brace element’s Xe axis and can be written in matrix form

	

{ } [ ]V V C C C

i

j

k

C

i

j

k

e x e= = [ ]
















=
















�

�

�

�

�

�

�
11 12 13 	 (5.56)

where [Ce] is the direction cosine matrix of the ECS. The element has two dofs as 
shown in Figure 5.8. The element forces and displacements in the ECS are

	 { } { , }F F Fe xa xb
T= 	 (5.57)

	 { } { , }δ δ δe xa xb
T= 	 (5.58)

5.4.2  Element Stiffness Matrix in ECS

The stiffness matrix of a bracing element corresponding to ECS can be expressed 
as follows:

	
{ }F

F

F
ke

xa

xa
br

xa

xb

=








=
−

−


















1 1

1 1

δ
δ 	 (5.59)

where kbr represents the axial stiffness coefficient obtained from the brace member 
hysteresis model described in Section 3.4.12.

5.4.3  Element Stiffness Matrix in Gdof

The procedures are similar to those used for the 3D-BEAM and IE3DBEAM ele-
ments in Section 5.2.3 and are therefore briefly presented herein. The transformation 
between the global forces and forces in the ECS is given by

A

B

XS

XE

Start joint

End joint

Y

Z

X
GCS

 Ye
 

 Fxa

 Fxb
VXY = V1 i+V2 j+V3k

(Xgb, Ygb, Zgb)

(Xga, Yga, Zga)

Xe, Vx

FIGURE 5.8  Brace element.
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{ }

[ ]

[ ]
{ } [ ]{ }F

C

C
F C Fe

e

e
GCS e GCS=









 =

0

0
	 (5.60)

where
{Fe} contains the forces in the ECS
{FGCS} is the force vector in GCS
[Ce̅] is the direction cosine matrix of the ECS

Thus, rotating the element forces, {Fe}, to global forces, {FGCS}, is achieved by

	 { } [ ] { }F C FGCS e
T

e= 	 (5.61)

and rotating the global forces to joint forces, {Fj}, is achieved by

	

{ }
[ ]

[ ]
{ } [ ]{ }F

C

C
F C Fj

j A

j B
GCS j GCS=









 =

0

0
	 (5.62)

Substituting Equation 5.61 into Equation 5.62 leads to

	
{ } [ ][ ] { }F C C Fj j e

T
e= 	 (5.63)

The constraint transformation for the forces from each slave joint to the master joint 
yields
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

	 (5.64)

or

	
{ } [ ]{ }F T Fjm ms js= 	 (5.65)

where {Fjm} and {Fjs} represent the forces acting on the master and slave joints, 
respectively. The distances Xms, Yms, and Zms are in the master joint’s JCS and can be 
calculated using Equation 5.5. The formulation of the stiffness matrix expressed in 
Gdof, [ke]G, follows exactly as shown in Equations 5.38 through 5.41.

5.5  Plate Element

The plate element consists of four joints as shown in Figure 3.20 and reproduced here 
as Figure 5.9. The ECS Xe axis goes from joint 3 toward joint 4. The orientation of 

© 2012 by Taylor & Francis Group, LLC



116 Seismic Design Aids for Nonlinear Pushover Analysis

the ECS Ye axis goes from joint 3 toward joint 2. The ECS Ze axis is perpendicular to 
Xe and Ye axes, oriented according to the right-hand rule. The plate element is elastic, 
and nonlinear behavior of the plate element is not considered.

5.5.1  Element Coordinate System and Degrees of Freedom

There are three unit vectors, 
�
Vx, 

�
Vy, and 

�
Vz, which define the ECS, denoted Xe, Ye, Ze, 

with the origin at the joint 3. The three unit vectors that define the orientation of the 
ECS are written in matrix form as follows:
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e
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k

C

i

j

k

e[ ] 	 (5.66)

where [Ce] is the direction cosine matrix for the ECS. The element has 20 dofs as 
shown in Figure 5.9. In matrix form, these local forces and displacements in the ECS 
are

	 { } { , , , , }F F F F Fe
T= 1 2 3 20… 	 (5.67)

	 { } { , , , , }δ δ δ δ δe
T= 1 2 3 20… 	 (5.68)

5.5.2  Element Stiffness Matrix in ECS

The stiffness matrix of a plate element corresponding to the ECS can be expressed 
as follows:
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FIGURE 5.9  Plate element.
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	 { } [ ]{ }F ke e e= δ 	 (5.69)

in which [ke] is given in Appendix J.

5.5.3  Element Stiffness Matrix in Gdof

The transformation of dofs from the ECS to Gdofs consists of two steps. First, the 
dofs at each of the four joints are rotated from the ECS to JCS at joints 1–4. Second, 
the constraint transformation moves dofs from each of the slave joints to the master 
joint, if constrained dofs are considered.

The transformation between the global forces and forces in an ECS is given by
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






{{ } [ ]{ }F C FGCS e GCS24 1× = 	 (5.70)

in which
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
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×

×
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e

e

e

3 3
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0

0
	 (5.71)

where

	
[ ]*C

C C C

C C C
e =











11 12 13

21 22 23

	 (5.72)

Thus, {FGCS} is achieved by

	 { } [ ] { }F C FGCS e
T

e= 	 (5.73)

Rotating the global forces to joint forces, {Fj}, is achieved by
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[[ ]{ }C Fj GCS 	 (5.74)

in which
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[ ]

[ ]
C

C

C
j i

j

j

=



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




0

0
	 (5.75)

with [Cj] as defined in Equation 5.1.
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Substituting Equation 5.73 into Equation 5.74 leads to

	
{ } [ ][ ] { }F C C Fj j e

T
e= 	 (5.76)

If constrained dofs are considered, the constraint transformation from the slave 
joints to the master joint(s) can be expressed as follows:
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== [ ]{ }T Fms j 	 (5.77)

If a joint i of a plate element is not constrained, the corresponding [Tms]i is an identity 
matrix. The formulation of the stiffness matrix expressed in Gdof, [ke]G, follows 
exactly as shown in Equations 5.38 through 5.41.

5.6  Unbalanced Forces

5.6.1  Unbalanced Element Forces

As described in the material library in Chapter 3, material nonlinearity is simulated 
by different hysteresis models. During pushover analysis, the relationship between 
a material’s stress (force) and strain (displacement) is not linear. Hence, the internal 
element forces may not be in equilibrium with the forces acting on a joint at the end 
of a given incremental load step. As a result, at each incremental load step, there may 
be unbalanced forces at the member ends. If these unbalanced forces are not elimi-
nated or reduced, the analysis will converge to an inaccurate response. There are 
several ways to correct this phenomenon. The simplest approach is to reduce the size 
of the incremental load step. However, many steps are required, and this approach 
leads to an excessive computation time. Another technique is to locate the point 
where an element stiffness will be changed (say element bending stiffness changes 
at the point of yield moment, Mp) and then reanalyze the structure by adjusting the 
magnitude of the load increment vector such that the element moment reaches Mp. 
For a structure with many members, several elements may experience the stiffness 
change in a single load step, and this approach can lead to an excessive solution time. 
A third technique is to calculate the magnitude of these unbalanced forces and apply 
them as joint loads to the structure in the next incremental load step. This approach 
is adopted in INSTRUCT. It is fairly simple to execute and yet provides reasonable 
approximation of the actual nonlinear response.

Consider an IE3DBEAM element using a bilinear bending hysteresis (IA_BILN) 
model with a moment–rotation curve at element joint A shown in Figure 5.10. 
Assuming that point Ā is on the loading curve and has a rotation and moment of θa0 
and Ma0, an incremental rotation, Δθa, is applied to the member, and the member 
tangent stiffness at the current load step is used to determine the end moment, which 
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has a value of Ma1. However, the moment Ma1 is apparently greater than the actual 
internal moment Ma1′ . The internal moment, ′Ma1, at rotation θa1 is calculated by

	
′ = − − −M M M M pa a a p1 1 1 1[( )( )]

	 (5.78)

The moment acting on the element joint A, Ma1, exceeds the internal moment ′Ma1, 
and the unbalanced moment at joint A is

	 U M Ma a a= − ′1 1 	 (5.79)

Similarly, the unbalanced moment at joint B is

	 U M Mb b b= − ′1 1 	 (5.80)

The unbalanced force for axial load can be obtained using the same approach men-
tioned above.

5.6.2  Global Unbalanced Joint Forces

For the IE3DBEAM element, the unbalanced forces are determined by bending and 
axial hysteresis models. For the bracing element, the unbalanced force is determined 
by the bracing member hysteresis model only. The element unbalanced forces are 
then applied to the Gdof by

	

{ }

{ }
[ ][{ } { }]

U

U
A F F

Ame

Bme
e e

6 1

6 1

×

×









 = − ′

	 (5.81)

where
{UAme}6 × 1 is the unbalanced force vector from element e, acting on the joint A
{ }Fe′  is the actual element internal force vector based on the hysteresis models
{Fe} is the calculated element force vector from the structural pushover analysis

Rotation
θa0 θa1 = θa0 + ∆θa

M
om

en
t
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Má1
Mp

Ma0 A

Ua p× S
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FIGURE 5.10  Member unbalance moment Ua.
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The global unbalanced joint force vector, {U}, as shown in Equation 3.1, is assem-
bled by

	

U li U li U i i

j A B

e NELEM

li Lm i

jme

e

( ) ( ) ( ),

( )

= + =

=

=

=

1 6

1

to

joint or

to
	 (5.82)

where
e is the element number
NELEM is the total number of elements in the structure

Recall that {Lm}e in Equation 5.40 is a vector containing the Gdof numbers at ele-
ment e’s joints. Lm(i)e is the global degree of freedom number li corresponding to the 
ith degree of freedom of element e.

5.6.3  Assembly of the Global Structural and Geometric Stiffness

The structural stiffness matrix is assembled by the direct element method, where 
the element’s stiffness is mapped into the Gdof. The global structural stiffness [K] 
is given by

	

K li lj K li lj k i j i NELDOF

j NELDOF

e N

e G( , ) ( , ) ( , ) ,= + =

=

=

for to

to

to

1

1

1 EELEM

li Lm i

lj Lm j

e

e

=

=

( )

( )

	 (5.83)

where
NELDOF is the number of dofs for element e
ke(i,j)G is the ijth term of the element stiffness matrix, [ke]G, as shown in Equation 

5.41 for element e

Similarly, the element’s geometric stiffness is mapped into the Gdof. The structural 
global geometric stiffness [G] is given by

	

G li lj G li lj G i j i NELDOF

j NELDOF

e N

e G( , ) ( , ) ( , ) ,= + =

=

=

for to

to

to

1

1

1 EELEM

li Lm i

lj Lm j

e

e

=

=

( )

( )

	 (5.84)
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where Ge(i,j)G is the ijth term of the element geometric stiffness matrix [Ge]G, as 
shown in Equation 5.49, for element e.

Example 5.1

Find the global stiffness matrix corresponding to the Gdofs 1–6 shown in Figure 
5.11a, based on the procedure described in Sections 5.2.3 and 5.6.3. In the fig-
ure, the direction of the JCS, (Xj, Yj, Zj), is same as that of the GCS, (Xg, Yg, Zg). 
The ECS, (Xe, Ye, Ze), for each 3D-BEAM member is also shown in Figure 5.11b. 
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FIGURE 5.11  Two-member structure: (a) structure model; (b) element dofs in ECS (Xe, Ye, 
Ze); (c) element dofs in JCS (Xj, Yj, Zj).
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The element stiffness matrix, [ke], for the 3D-BEAM element can be calculated 
using Equation 5.26. For demonstration purposes, the material properties of 
3D-BEAM are assumed to be: E = 1000 ksi; G = 1000 ksi; AX = AY = AZ = 1 in.2; 
J = 1 in.4; IY = 2 in.4; and IZ = 4 in.4

Solution

	 1.	 Find the direction cosine matrix, [Ce], between ECS and GCS:
		  From Figure 5.11, the direction cosine matrices for members 1 and 2 

are
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and
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	 2.	 Find the direction cosine matrix, [Cj], between JCS and GCS:

		  Since the directions of JCS and GCS are the same,
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	 3.	 Find the transformation matrix, [A], for each element:
		  Since there is no rigid body constraint, the transformation matrix, 

[Tm̅], shown in Equation 5.37, is an identity matrix. Therefore, [A], for 
member 1 can be obtained based on Equation 5.38 as follows:
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	 (5.87)

		  Similarly, [A], for member 2 is
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	 (5.88)

	 4.	 Find the element stiffness matrix in the JCS direction (i.e., in the Gdof 
directions):
The element stiffness matrix, [ke], in the ECS for both elements can be 
obtained from Equation 5.26 as follows:
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(5.89)

From Equation 5.41, the element stiffness matrix in the JCS direction 
for element 1 is
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(5.90)

Similarly, the element stiffness matrix in the JCS direction for element 2 is
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(5.91)
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	 5.	Find the global stiffness matrix corresponding to Gdof 1–6:
In Equation 5.83, the Gdof numbers for element 1 are Lm(i)e = (7,8,9,10,11,12,1,
2,3,4,5,6), corresponding to element dofs of i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 
12 in the JCS (see Figure 5.11c), respectively. Similarly, the Gdof numbers for 
element 2 are Lm(i)e = (1,2,3,4,5,6,13,14,15,16,17,18), corresponding to element 
dofs of i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 in the JCS, respectively. Note that 
Gdofs 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 are restrained dof as described 
in Section 5.1.5.

From Equations 5.90 and 5.91, and Lm(i)e for members 1 and 2, the global 
stiffness matrix corresponding to Gdofs 1–6 is obtained as follows:

	

K

Symm

  =

−



12 82 0 0 0 1 44 0

0 096 0 2 88 0 0

7 24 0 0 0

128 0 0

160 0

212

. .

. .

.

.























	 (5.92)
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6 Input Data for 
INSTRUCT Program

As described in Chapter 3, INSTRUCT is divided into several blocks. The input data 
of each block is described below. The blocks may be executed in any order, except as 
noted. Multiple solutions of the same structure can be performed by using multiple 
solution blocks. Multiple structures may be analyzed by redefining the structure with 
the STRUCT block. The readers can download the INSTRUCT executable file from 
the Web site at http://www.crcpress.com/product/isbn/9781439837634.

Block Description

STRUCT Defines the structure to be analyzed. Joints, materials, elements, mass, and damping are 
defined.

SOL01 Elastic static solution of the structure with multiple load cases. SOL01 must be preceded 
by the block STRUCT.

SOL04 Incremental static (pushover) solution of a nonlinear structure. SOL04 must be preceded 
by the block STRUCT.

Secondary Blocks
BUG Sets flags to print out detailed information

READ Reads results written to an output file during SOL04 and prints the results

NOECHO Inhibits the input echo

DUMP Prints out the contents of the memory

RELEASE Releases the memory used for the previous solution

STOP Terminates execution of the program

Notes on Input

	 1.	 Input is free format, unless otherwise noted.
	 2.	 Input variables beginning with I–N are integers and should not contain a 

decimal point.
	 3.	 Input variables beginning with A–H and O–Z are real and may contain a 

decimal point.
	 4.	Logical variables are identified in the input description and have the value 

.TRUE. or .FALSE.
	 5.	Character variables are identified in the input description and are enclosed 

in single quotes, except as noted.
	 6.	The input data is read from unit 05, except as noted.
	 7.	The output is printed on unit 06, except as noted.
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	 8.	Units 10 through 47 and units 51 through 60 are reserved for plot files (i.e., 
temp10.out through temp47.out and temp51.out through temp60.out), which 
include the output responses at selected joints, elements, or degrees of free-
dom (dofs).

	 9.	 Input cards are identified by a box. If that card is repeated, the entire box is 
repeated.

input card image

		  The data for one card may be input on one or more lines in the data file, 
provided that all of the character variables are on the first line.

	 10.	Consistent units are used throughout the program. Thus, input in inches, 
kips, seconds yields output in inches, inch-kips, etc. Mixing units will yield 
unpredictable results. Units are indicated parenthetically where appropriate.

Example
Note

‘BUG=K’ (1)

‘STRUCT’ (2)

.

.

. Structure input is omitted

.

‘SOL04’ (3)

.

. Solution input is omitted

.

‘READ UNIT=21’ (4)

‘STOP’ (5)

	 (1)	The bug option is set. This prints out the hysteresis model data for each load 
step.

	 (2)	The structure is defined.
	 (3)	A cyclic static incremental solution of the structure is performed.
	 (4)	Data from the plot file ‘temp21.out’ on unit 21 is written to the output file on 

unit 06.
	 (5)	The program is terminated.

6.1  STRUCTURE—Define the Structural Model

These cards define the structural model to be analyzed. The following cards are each 
input once.

‘STRUCT’
‘TITLE’
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STRUCT	� Signifies that the structural model is to be input. Character variable, 
enclosed in single quotes.

TITLE	 User input title, 80 characters maximum.

6.1.1  Joints and Degrees of Freedom

These cards are used to define the coordinates of the joints, joint restraints, con-
straints, and the dof to be condensed out. The dof numbers are assigned by the pro-
gram and printed in the output. The following card is input once.

NJOINT NCOS NSUPT NCOND NCONST SCALE

NJOINT	 The number of joints defined by the joint coordinate cards.
NCOS	 The number of joint direction cosine cards input.
NSUPT	 The number of joint restraint cards input.
NCOND	 The number of joint condensation cards input.
NCONST	 The number of joint constraint cards input.
SCALE	� Scale factor that the joint coordinates are to be multiplied by. For exam-

ple, if SCALE = 12, the user inputs the joint coordinates in feet, and the 
structure is defined in inches

	 a.	Joint coordinates: These cards are used to define the coordinates of the 
joints, in the global coordinate system, GCS, and identify the direction 
cosine of the joint. The total number of joints defined in this section is less 
than or equal to NJOINT. The second card is only used when the preceding 
card has a value of IGEN that is greater than zero. These cards are repeated 
until (1) NJOINT joints have been defined or (2) an input or generated joint 
ID number is less than or equal to zero.

ID X Y Z ICOS IGEN
Δ ID Δ X Δ Y Δ Z

ID	� The joint identification number. ID numbers can be input in any convenient 
order and need not be consecutive. However, the band width of the struc-
tural stiffness matrix is dependent on the joint ID numbers. An ID ≤ 0 termi-
nates the input of the joint coordinates.

X	 The GCS X-coordinate of the joint (length).
Y	 The GCS Y-coordinate of the joint (length).
Z	 The GCS Z-coordinate of the joint (length).
ICOS	 The joint’s direction cosine number.
IGEN	 The number of additional joints to be generated from this joint.
Δ ID	� The increment between the generated ID number and the previous joint’s ID 

number.
	 A generated ID ≤ 0 terminates the input of the joint coordinates.
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Δ X	� The increment between the generated joint’s GCS X-coordinate and the 
previous joint’s X-coordinate (length).

Δ Y	� The increment between the generated joint’s GCS Y-coordinate and the 
previous joint’s Y-coordinate (length).

Δ Z	� The increment between the generated joint’s GCS Z-coordinate and the 
previous joint’s Z-coordinate (length).

Example: NJOINT = 7
Note

10 0. 0. 0. 1 2 (1,2)

10 0. 0. 3. (2)

1 4. 3. −1. 2 0 (3)

−1 0 0 0 0 0 (4)

	 (1)	 Joint 10 has the coordinates (0,0,0) and uses direction cosine #1.
	 (2)	 Two joints are generated from joint 10: Joint 20 (0,0,3) and Joint 30 

(0,0,6).
	 (3)	 Joint 1 has the coordinates (4,3,−1) and uses direction cosine #2.
	 (4)	 Input of the joint coordinates is terminated.

	 b.	Joint direction cosines: These cards are used to input the joint direction 
cosines, which in turn define the joint coordinate system, JCS. The joint 
direction cosines are numbered from 1 to NCOS.

This card is repeated NCOS times.

Vxi Vxj Vxk Vyi Vyj Vyk

Vxi	� The projection on the GCS X-axis of a unit vector parallel to the JCS X-axis.

Vxj	� The projection on the GCS Y-axis of a unit vector parallel to the JCS X-axis.
Vxk	� The projection on the GCS Z-axis of a unit vector parallel to the JCS X-axis.
Vyi	� The projection on the GCS X-axis of a unit vector parallel to the JCS Y-axis.
Vyj	� The projection on the GCS Y-axis of a unit vector parallel to the JCS Y-axis.
Vyk	� The projection on the GCS Z-axis of a unit vector parallel to the JCS Y-axis.

	 c.	Joint restraints: These cards are used to define the joint restraints. This 
card is repeated NSUPT times.

ID ITX ITY ITZ IRX IRY IRZ IGEN Δ ID

ID	� The joint identification number. An ID of zero indicates that all the joints 
are restrained by this card.

ITX	 Restraint flag for translation in the JCS X-direction.
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ITY	 Restraint flag for translation in the JCS Y-direction.
ITZ	 Restraint flag for translation in the JCS Z-direction.
IRX	 Restraint flag for rotation about the JCS X-axis.
IRY	 Restraint flag for rotation about the JCS Y-axis.
IRZ	 Restraint flag for rotation about the JCS Z-axis.
IGEN	� The number of additional joints, with the same restraints, to be generated 

from this joint.
Δ ID	� The increment between the generated ID number and the last ID number.

Valid joint restraint flags are

0	 Free or unrestrained dof.
1	 Restrained dof.
2	� Restrained dof. A restraint flag of 2 forces the program to assign the 

dof a higher number. This option can be used to reduce the band-
width of the stiffness matrix.

Example: NSUPT=2
Note

0 0 0 0 0 0 1 0 0 (1)

1 1 1 1 1 1 1 0 0 (2)

	 (1)	 The rotation about the JCS Z-axis of all joints is restrained.
	 (2)	 Joint 1 has all six dofs restrained.

	 d.	Joint condensation: These cards are used to identify which dofs are con-
densed out. This card is repeated NCOND times and is omitted if NCOND 
equals zero.

ID ITX ITY ITZ IRX IRY IRZ IGEN Δ ID

ID	� The joint identification number. An ID of zero indicates that all of the joints 
are affected by this card.

ITX	 Condensation flag for translation in the JCS X-direction.
ITY	 Condensation flag for translation in the JCS Y-direction.
ITZ	 Condensation flag for translation in the JCS Z-direction.
IRX	 Condensation flag for rotation about the JCS X-axis.
IRY	 Condensation flag for rotation about the JCS Y-axis.
IRZ	 Condensation flag for rotation about the JCS Z-axis.
IGEN	� The number of additional joints, with the same condensation, to be gener-

ated from this joint.
Δ ID	� Increment between the generated ID number and the last ID number.

Valid condensation flags are

0	 dof is not condensed out.
1	 dof is condensed out. Condensation of a restrained dof is ignored.
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Example: NCOND = 1
30 0 0 0 1 1 1 0 0

The rotations of joint 30 are condensed out. If the Z-axis rotation has been previ-
ously restrained, only the X- and Y-axes rotations are condensed out.

	 e.	Joint constraints: These cards are used to identify which dofs are constrained. 
This card is repeated NCONST times and omitted if NCONST equals zero.

ITYPE MASTER ISLAVE IGEN Δ ID

ITYPE	 The type of constraint.
	� 0 Rigid body constraint. A rigid body constraint transfers all six joint 

dofs from the slave to the master joint.
	� 1 XY-planar constraint. An XY-planar constraint transfers the joint’s 

JCS X- and Y-axes translational dof and the joint’s JCS Z-axis rota-
tional dof from the slave to the master joint.

MASTER	 The joint identification number of the master joint.
ISLAVE	 The joint identification number of the slave joint.
IGEN	� The number of additional slave joints, constrained to the same master 

joint to be generated.
Δ ID	� The increment between the generated ID number and the previous ID 

number.
Note: Both the slave and master joints must have the same joint direction cosine 
number (ICOS).

Example: NCONST=1
1 10 20 0 0

Joint 20 is constrained in the JCS XY-plane to Joint 10.

6.1.2  Materials and Hysteresis Models

These cards are used to input the material and hysteresis model information. The 
first card is input once. The second card is repeated NMAT times.

NMAT
TYPE VALUE1 VALUE2 …

NMAT	 Number of material input.
TYPE	� Material type. Valid types are discussed below. Character variable, 

enclosed in single quotes.
VALUEi	� Input required by a given material type. The values for each TYPE are 

discussed below (real or integer).
Note

A given material may not be compatible with all the elements. For example, the 
3D-BEAM material cannot be used with the PLATE element. Compatible materials 
for each element are specified under element input or Table 3.2.
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	 a.	TYPE = ‘3D-BEAM’. Material data for an elastic 3D-beam (MAT01 
subroutine)

‘3D-BEAM’ E G AX AY AZ J IY IZ

E	 Young’s modulus (force/length2).
G	 Shear modulus (force/length2).
AX	 Cross-sectional area (length2).
AY	 Y-axis shear area (length2).
AZ	 Z-axis shear area (length2).
J	 Torsional moment of inertia (length4).
IY	� Moment of inertia about the element coordinate system (ECS) Y-axis 

(length4).
IZ	 Moment of inertia about the ECS Z-axis (length4).

	 b.	TYPE = ‘BILINEAR or ELSPLS’. Material data for bilinear spring model 
(MAT07)

‘BILINEAR’ E PY SIE μf βDI

E	 Elastic stiffness (force/length).
PY	 Yield load (force).
SIE	 Inelastic stiffness (force/length).
μf	 Failure ductility.
βDI	� Parameter for damage index. (Note: Current version of the program does not 

calculate it. Dummy variable. The damage index is a parameter (Park and 
Ang, 1985), showing the damage condition of a structure. A damage index 
greater than one indicates structure is fully damaged and collapsed.)

	 b2.	TYPE = ‘TAKEDA’. Material data for TAKEDA hysteresis model that was 
developed to model bending deformation in reinforced concrete members 
(MAT06).

‘TAKEDA’ EI PC DC PY DY PU DU βDI

EI	 Initial bending stiffness of the member (force * length2/rad)
PC	 Cracking moment (force * length)
DC	 Cracking rotation, for a unit length member (radian/length)
PY	 Yield moment (force * length)
DY	 Yield rotation, for a unit length member (radian/length)
PU	 Ultimate moment (force * length)
DU	 Ultimate rotation, for a unit length member (radian/length)
βDI	 Parameter for damage index (dummy variable)
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	 b3.	TYPE = ‘GAP’. Material data for gap or restrainer model (MAT15B) (see 
Figure 3.5).

‘GAP’ KC KT KTIE DC DX PPY IOPTION

KC	 Compression stiffness when D ≤ DC (i.e., gap closed)
KT	 Restrainer elastic stiffness
KTIE	 Restrainer post-yield stiffness
DC	 Displacement at which gap closed
DX	 Displacement at which restrainer engaged
PPY	 Yield displacement of restrainer
IOPTION	 1: Inelastic restrainer.
	 2: Gap without restrainer.
	 3: Special gap: Spring stiffness = 0 if D = DC.
		  Spring stiffness = KC if D ≠ DC.

	 c.	TYPE= ‘HINGE’. Material data for plastic hinge length method (MAT19).

‘HINGE’ RHA VA RATIO μf βDI STIELE PRMAX ELAS
ICHOICE1 (if ELAS = 1 or 3)
A0	 A1 A2 A3 (if ICHOICE1 = 0 and ELAS = 1 or 3)
M (if ICHOICE1 = 1 and ELAS = 1 or 3)
X1	 Y1
X2	 Y2
…	 … (if ICHOICE1 = 1 and ELAS = 1 or 3)
Xm	 Ym
ICHOICE2 (if ELAS = 2 or 3)
B0	 B1 B2 B3 (if ICHOICE2 = 0 and ELAS = 2 or 3)
M (if ICHOICE2 = 1 and ELAS = 2 or 3)
X1	 Y1 FMODE1
X2	 Y2 FMODE2
…	 … …… (if ICHOICE2 = 1 and ELAS = 2 or 3)
Xm	 Ym FMODEm
ICHOICE3 (use ICHOICE3 for concrete column only)
VCI	 VCF VS ALFA (if ICHOICE3 = 1)

RHA	 Yield rotation at VA of plastic hinge segment.
VA	 Plastic moment, Mn, of plastic hinge segment.
RATIO	� Ratio of post-yield stiffness to elastic stiffness of plastic hinge 

segment.
μf	 Failure ductility of plastic hinge segment.
βDI	� Parameter for damage index of plastic hinge segment (dummy 

variable).
STIELE	 Elastic bending stiffness, EI, for elastic member portion.
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PRMAX	� Plastic rotation capacity, θp, of a member (if PRMAX < 0, member 
plastic rotation capacity is not checked).

ELAS	 Index for nonlinear analysis:
	 0	 Axial load and moment interaction curve is not considered.
	 1	� Nominal moment, Mn, in ECS Y-direction is adjusted based on 

interaction axial load–moment (P–M) curve. The axial load–
plastic rotation capacity interaction (P–PRC) is not considered.

	 2	 P–PRC is considered, but P–M interaction is not considered.
	 3	 Both P–M and P–PRC interactions are considered.
ICHOICE1	 0: A0 − A3 are input by user.
	� 1: The program will calculate A0 − A3 based on user input interaction 

data points.
A0 − A3	� If ELAS = 1 or 3, input coefficients used for the nominal moment–axial 

load interaction curve are
	� M = A0 + A1 * P + A2 * P2 + A3 * P3 in which M and P are nominal 

moment and axial load, respectively. If A2 = A3 = 0, the maximum 
moment along the interaction curve is VA. This is mainly for steel 
member with linear interaction curve.

M	 If ICHOICE1 = 1, total number of P − M data points input by user.
Xi Yi	� The ith data point values (Xi represents the ith axial load and Yi repre-

sents the ith nominal moment).
ICHOICE2	 0: B0 − B3 are input by user.
	� 1: The program will calculate B0 − B3 based on user input interaction 

data points.
B0 − B3	� If ELAS = 2 or 3, input coefficients used for the axial–plastic rotation 

capacity interaction (P–PRC) interaction curve are
	� PRC = B0 + B1 * P + B2 * P2 + B3 * P3 in which PRC and P are plastic 

rotation capacity and axial load, respectively.
M	� If ICHOICE2 = 1, total number of P − PRC data points input by user.
Xi Yi	� The ith data point values (Xi represents the ith axial load, and Yi rep-

resents the ith plastic rotation capacity).
FMODEi	� Failure mode corresponding to (Xi Yi). Character variable, enclosed in 

single quotes.
	 FMODEi could be one of the following:
	 ‘CONCRETE’: Concrete compression failure.
	 ‘FRACTURE’: Longitudinal steel tensile fracture.
	 ‘BUCKLING’ Longitudinal steel buckling.
	 ‘FATIGUE’: Longitudinal steel low-cycle fatigue.
	 ‘SPLICE’: Longitudinal steel lap-splice failure.
ICHOICE3	 0: Element shear capacity is not considered.
	 1: Element shear capacity is considered.
VCI	 Initial concrete shear capacity.
VCF	 Concrete shear capacity after ductility μ ≥ 15.
VS	 Shear strength due to transverse rebars.
ALFA	� Angle for calculating shear strength due to compression axial load (in 

degree) (see Figure 4.18).
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Notes

	 1.	 If user inputs RATIO = 0, the program uses RATIO = 0.00001 for computa-
tion to prevent numerical overflow.

	 2.	For ELAS = 1 and RATIO > 0: The P–M interaction curve is only used for 
determining the nominal moment Mn in ECS Y-direction. Once the moment 
reaches Mn according to the P–M interaction curve, it will not be adjusted 
along the interaction curve if axial load varies.

	 3.	For ELAS = 1 and RATIO = 0: The P–M interaction curve is used for deter-
mining the nominal moment Mn in ECS Y-direction. Once the moment 
reaches Mn according to the P–M interaction curve, it will also be adjusted 
along the interaction curve if axial load changes.

	 4.	ELAS = 1, 2, and 3 are not applicable in ECS Z-direction.
	 5.	When member ductility > μf, it is assumed that failure occurs and moment 

is reduced to zero.
	 6.	Currently damage index is not calculated.

	 d.	 TYPE = ‘IA_BILN’. Material data for bilinear model (MAT10)

‘IA_BILN’ ELAS SP E TI TMP μf βDI PRMAX
ICHOICE1 (if ELAS = 4 or 6)
A0	 A1 A2 A3 (if ICHOICE1 = 0 and ELAS = 4 or 6)
M (if ICHOICE1 = 1 and ELAS=4 or 6)
X1	 Y1
X2	 Y2
…	 … (if ICHOICE1 = 1 and ELAS = 4 or 6)
Xm	 Ym
ICHOICE2 (if ELAS = 5 or 6)
B0	 B1 B2 B3 (if ICHOICE2 = 0 and ELAS = 5 or 6)
M (if ICHOICE2 = 1 and ELAS = 5 or 6)
X1	 Y1 FMODE1
X2	 Y2 FMODE2
…	 … …… (if ICHOICE2 = 1 and ELAS = 5 or 6)
Xm	 Ym FMODEm
ICHOICE3 (use ICHOICE3 if ELAS ≠ 0) (use ICHOICE3 for concrete 
column only)
VCI	 VCF VS ALFA (if ICHOICE3 = 1)

ELAS	 Index for elastic or nonlinear analysis:
	 0	 Elastic material property.
	 1	 For bilinear material property.
	 2	 Dummy.
	 3	 Dummy.
	 4	� Nominal moment, Mn, is adjusted based on interaction axial load–

moment (P–M) curve. ELAS = 4 is not applicable to nominal 
moment in ECS Z-direction.
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	 5	 P–PRC is considered, but P–M interaction is not considered.
	 6	 Both P–M and P–PRC interactions are considered.
SP	 Post-yield hardening ratio.
E	 Elastic modulus.
TI	 Section area, torsional rigidity, or moment of inertia.
TMP	 Axial yield load, torsional yield load, or plastic moment.
μf	 Failure ductility (if μf < 1, failure ductility is not checked).
βDI	 Parameter for damage index (not available currently).
PRMAX	� Plastic rotation capacity, θp, of a member (if PRMAX < 0, member 

plastic rotation capacity is not checked).
ICHOICE1	 0: A0 − A3 are input by user.
	� 1: The program will calculate A0 − A3 based on user input interaction 

data points.
A0 – A3	� If ELAS = 4 or 6, coefficients used in the nominal moment–axial load 

interaction curve are
	� M = A0 + A1 * P + A2 * P2 + A3 * P3 in which M and P are nominal 

moment and axial loads, respectively. If A2 = A3 = 0, the maximum 
moment along the interaction curve is TMP. This is mainly for steel 
member with linear interaction curve.

M	 If ICHOICE1 = 1, total number of P − M data points input by user.
Xi Yi	� The ith data point values (Xi represents the ith axial load, and Yi rep-

resents the ith nominal moment)
ICHOICE2	 0: B0 − B3 are input by user.
	� 1: The program will calculate B0 − B3 based on user input interaction 

data points.
B0 − B3	� If ELAS = 5 or 6, input coefficients used for the axial–plastic rotation 

capacity interaction (P–PRC) curve are
	� PRC = B0 + B1 * P + B2 * P2 + B3 * P3 in which PRC and P are plastic 

rotation capacity and axial load, respectively.
M	 If ICHOICE2 = 1, total number of P − PRC data points input by user.
Xi Yi	� The ith data point values (Xi represents the ith axial load, and Yi rep-

resents the ith plastic rotation capacity).
FMODEi	� Failure mode corresponding to (Xi Yi). Character variable, enclosed in 

single quotes.
	 FMODEi could be one of the following:
	 ‘CONCRETE’: Concrete compression failure.
	 ‘FRACTURE’: Longitudinal steel tensile fracture.
	 ‘BUCKLING’: Longitudinal steel buckling.
	 ‘FATIGUE’: Longitudinal steel low-cycle fatigue.
	 ‘SPLICE’: Longitudinal steel lap-splice failure.
ICHOICE3	 0: Element shear capacity is not considered.
	 1: Element shear capacity is considered.
VCI	 Initial concrete shear capacity.
VCF	 Concrete shear capacity after ductility μ ≥ 15.
VS	 Shear strength due to transverse rebars.
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ALFA	� Angle for calculating shear strength due to compression axial load (in 
degree).

Notes

	 1.	For ELAS = 4 and SP > 0: The P–M interaction curve is only used for deter-
mining the nominal moment, Mn, in ECS Y-direction. Once the moment 
reaches Mn according to the P–M interaction curve, it will not be adjusted 
along the interaction curve if axial load varies.

	 2.	For ELAS = 4 and SP = 0: The P–M interaction curve is used for determin-
ing the nominal moment Mn in ECS Y-direction. Once the moment reaches 
Mn according to the P–M interaction curve, it will also be adjusted along the 
interaction curve if axial load changes.

	 3.	When member ductility > μf, it is assumed that failure occurs and the 
moment is reduced to zero.

	 4.	Currently damage index is not calculated.
	 5.	ELAS = 4, 5, and 6 are not applicable in ECS Z-direction.

	 e.	TYPE = ‘STABILITY1’. Material data are mainly for finite-segment steel 
member (MAT12).

‘STABILITY1’    NSEG    YS    EM    LIBN    HH    UU    WW    ZZ    INEB    INEH    ST    
IREV1    IREV2    IREV3    IREV4    IECOP    SMALL    RATIX0    RATIY0    TOTA    
IAUTO    IMATER    RATIO3    IR    G    QRNEE    ISTIF    IELAS    PCMAX

NSEG	 Number of segments considered. Maximum number of NSEG is 32.
YS	 Material yield stress (force/length2).
EM	 Elastic modulus.
LIBN	 Cross section library number (see Figures 6.1 through 6.6):
	 1	 Box section.
	 2	 Tube (one layer) section.
	 3	 Rectangular section.
	 4	 Wide-flange section.
	 5	 Not available.
	 6	 Tube (two layers) section.
	 7	 Equal leg angle section.
HH	 Height for LIBN = 1, 3, 4.
	 Radius of tube for LIBN = 2, 6.
	 Angle leg length for LIBN = 7.
UU	 Width for LIBN = 1, 3, 4.
	 Dummy variable for LIBN = 2, 6.
	 Dummy variable for LIBN = 7.
WW	� U0 direction eccentricity from section reference coordinate origin to 

applied load location (see Figure 6.6, for example).
ZZ	� V0 direction eccentricity from section reference coordinate origin to 

applied load location (see Figure 6.6, for example).
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INEB	 Total number of section elements in half width for LIBN = 1, 3.
	 Web thickness for LIBN = 4.
	� Total number of section elements in one quarter of a circle for 

LIBN = 2, 6.
	 Dummy variable for LIBN = 7.
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FIGURE 6.1  Box section, INEB = 4 and INEH = 5 per quarter.
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INEH	 Total number of section elements in half height for LIBN = 1, 3.
	 Dummy variable for LIBN = 2, 4, 6, and 7.
ST	� Thickness for LIBN = 1, 2, 6, and 7; flange thickness for LIBN = 4 

(length).
IREV1	 IREV1 = 0 for LIBN = 1.
	 Dummy variable for LIBN = 2, 3, and 6.
	 Number of rows in flange’s U0 direction for LIBN = 4.
	 Number of columns in segment U0 direction for LIBN = 7.
IREV2	 Dummy variable for LIBN = 1, 2, 3, and 6.
	 Number of columns in flange’s U0 direction for LIBN = 4.
	 Number of rows in segment U0 direction for LIBN = 7.
IREV3	 Dummy variable for LIBN = 1, 2, 3, and 6.
	 Number of columns in web’s V0 direction for LIBN = 4.
	 Number of rows in segment V0 direction for LIBN = 7.
IREV4	 Dummy variable for LIBN = 1, 2, 3, and 6.
	 Number of rows in web’s V0 direction for LIBN = 4.
	 Number of columns in segment V direction for LIBN = 7.
IECOP	 0	 Eccentricity is not considered.
	 1	 Eccentricity is considered.
	 Note: If IECOP = 0, WW and ZZ are ignored by program.
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FIGURE 6.3  Rectangular section, INEB = 2 and INEH = 4.
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SMALL	� Length of segments at two ends and center right and left sides. The 
length of a segment other than end segments or center right and left 
side segments is equal to member total length divided by (NSEG-4). If 
SMALL ≤ 0, the length of every segment = member total length divided 
by NSEG.

RATIX0	 Initial imperfection ratio in element coordinate U0 direction.
RATIY0	 Initial imperfection ratio in element coordinate V0 direction.
TOTA	 Section gross area (length2).
IAUTO	 1	 Element stiffness parameter, SP, is calculated (see Appendix D).
	 0	 Element SP is not calculated.
IMATER	 0	 For bilinear stress–strain model.
	 2	 For Ramberg–Osgood stress–strain model.
	 3	 For elastic case.
RATIO3	� Finite-segment element strain-hardening ratio for IMATER = 0 or 3; b

_
 

for IMATER = 2 (see Figure 3.7).
IR	 Parameter, R, for Ramberg–Osgood stress–strain model.
G	 Shear modulus.
QRNEE	 Dummy variable.
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FIGURE 6.4  Wide-flange section, IREV1 = 2, IREV2 = 10, IREV3 = 2, and IREV4 = 10.
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ISTIF	 Segment stiffness formulation index:
	 0	 Exact approach (Chen and Atsuta, 1977).
	 1	 Approximated approach (see Appendix B).
IELAS	 IELAS = 0: use elastic material properties.
	� IELAS = 1: use nonlinear material properties with iterations for axial 

load (see Appendix C).
	� IELAS = 2: use nonlinear material properties without iterations for axial 

load (see Appendix C).
PCMAX	� Maximum allowable plastic curvature defined by user. If PCMAX ≤ 0, 

the maximum plastic curvature is defined by INSTRUCT as five times 
of the curvature at nominal moment, My (see Figure 6.7).

Notes

	 1.	μf and βDI are not considered.
	 2.	When IAUTO = 1, element SP is calculated by the program. If an element’s 

SP ≤ 0, it is in the unstable condition (for example, element buckled), and 
the program output will show a message that the element is in the unstable 
condition.

	 3.	PCMAX is the curvature between maximum allowable curvature and the 
curvature corresponding to nominal moment (i.e., yield moment), My. My is 
defined as the moment at which compression yield stresses occurred in a 
steel cross section (i.e., Mn = My).
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FIGURE 6.5  Tube section (two layers), INEB = 5 for each layer per quarter.
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	 f.	TYPE = ‘R/CONCRETE1’. Material data for finite-segment R/C concrete 
member (MAT17)

‘R/CONCRETE1’    NSEG    YS    EM    LIBN    HH    UU    WW    ZZ    INEB    INEH 
ST    IREV1   IREV2   IREV3   IREV4   IECOP   SMALL    RATIX0    RATIY0    TOTA    
IAUTO    IMATER    RATIO3    IR    G    QRNEE    ISTIF    NLBAR    SMAT(31)    
NLBARB    SMAT(33)    NLBARS    SMAT(35)    YSHOOP    IELAS PCMAX    ECU    
ESU    RHOOPDIA    RHOOPSPA    STRPERIOD    SPLICELT

NSEG	 Number of segments considered. Maximum number of NSEG is 32.
YS	 Steel rebar yield stress (psi).
EM	 Elastic modulus of steel rebar (psi).
LIBN	 Cross section library number (see Figures 6.8 through 6.10):
	 1.	 Circular concrete section with steel ring.
	 2.	 Circular concrete section with steel rebars.
	 3.	 Rectangular concrete section.
HH	 Width for LIBN = 3 along V0 (i.e., Ze) direction (in.).
	 Diameter of column for LIBN = 1 and 2 (in.).
UU	 Width for LIBN = 3 along U0 (i.e., Ye) direction (in.).
	� Concrete cover (from surface of column to the edge of longitudinal 

rebar) for LIBN = 1 and 2 (in.).
WW	� U0 direction eccentricity from section reference coordinate origin to 

applied load location (in.).
ZZ	� V0 direction eccentricity from section reference coordinate origin to 

applied load location (in.).
INEB	� Total number of section elements in half width for LIBN = 3 in U0 

direction (exclude cover) (in.).
	� Total number of section elements in one quarter of circle for each 

layer LIBN = 1, 2.
INEH	� Total number of section elements in half height for LIBN = 3 in V0 

direction (exclude cover) (in.).
	 Total number of layers including cover layer for LIBN = 1 2.
ST	 Concrete fc′ at 28 days (psi).
IREV1	� Cross-sectional diameter (in inch) of hoop or spiral for LIBN = 1, 2. 

Volumetric ratio of transverse reinforcement in the U0 direction (i.e., 
ρU0) for LIBN = 3.

IREV2	� Spacing of hoop (in inch) or spiral for LIBN = 1, 2. Volumetric ratio 
of transverse reinforcement in the V0 direction (i.e., ρV0) for LIBN = 3.

IREV3	� Effective confinement coefficient, Ke. Ke = 0.95 for circular section; 
0.75 for rectangular section; and 0.6 for rectangular wall section.

IREV4	 Steel layer thickness for LIBN = 1 (in.).
	 Diameter of longitudinal rebar for LIBN = 2 (in.).
	 Concrete cover thickness for LIBN = 3 (in.).
IECOP	 0:	 Eccentricity is not considered.
	 1:	 Eccentricity is considered.
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	 Note: If IECOP = 0, WW and ZZ are ignored by program.
SMALL	� Length of segments at two ends and center right and left sides (in.). 

The length of a segment other than end segments or center right 
and left side segments is equal to member total length divided by 
(NSEG-4). If SMALL ≤ 0, the length of every segment = member 
total length divided by NSEG.

RATIX0	 Initial imperfection ratio in element coordinate U0 direction (in.).
RATIY0	 Initial imperfection ratio in element coordinate V0 direction (in.).
TOTA	 Section gross area (in.2).
IAUTO	 1	 Element SP is calculated (see Appendix D).
	 0	 Element SP is not calculated.
IMATER	� 1: only for LIBN = 1 (bilinear steel model and Mander’s concrete 

model).
	� 2: only for LIBN = 2 (bilinear steel model and Mander’s concrete 

model).
	� 3: only for LIBN = 3 (bilinear steel model and Mander’s concrete 

model).
RATIO3	 Finite-segment element steel strain-hardening ratio.
IR	 0:	 concrete tension strength is not considered.
	 1:	 concrete tension strength is considered.
G	 Concrete shear modulus.
QRNEE	 Dummy variable.
ISTIF	 Segment stiffness formulation index:
	 0:	 Exact approach.
	 1:	 Approximated approach.
NLBAR	 Total numbers of top bars for LIBN = 3.
	 Dummy variable for LIBN = 1.
	 Total numbers of long bars for LIBN = 2.
SMAT(31)	� Top bar diameter for LIBN = 3 (in.). SMAT(31) is used for the buck-

ling of longitudinal rebar analysis.
	 Dummy variable for LIBN = 1, 2.
NLBARB	 Total numbers of bottom bars for LIBN = 3.
	 Dummy variable for LIBN = 1, 2.
SMAT(33)	 Bottom bar diameter for LIBN = 3 (in.).
	 Dummy variable for LIBN = 1, 2.
NLBARS	 Total number of side bar (each side) for LIBN = 3.
	 Dummy variable for LIBN = 1, 2.
SMAT(35)	 Side bar diameter for LIBN = 3 (in.).
	 Dummy variable for LIBN = 1, 2.
YSHOOP	 Yield stress of hoop (psi).
IELAS	 IELAS = 0: use elastic material properties.
	� IELAS = 1: use nonlinear material properties with iterations for 

axial load (see Appendix C).
	� IELAS = 2: use nonlinear material properties without iterations for 

axial load (see Appendix C).
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PCMAX	� Maximum allowable plastic curvature. If PCMAX ≤ 0, maximum 
plastic curvature is determined when the concrete strain reaches its 
ultimate compression strain, εcu.

ECU	� User-defined ultimate concrete compression strain, εcu. If ECU ≤ 0, 
the εcu is determined by the program per Equation 3.24. This 
option is useful for the seismic retrofit of column using either 
steel jacket or composite material jacket. For example, the ulti-
mate concrete compression strain of steel-jacketed column can be 
input by user and expressed as ε ρ εcu sj yj sm ccf f= + ′0 004 1 4. . /  where 
ρsj = 4tj/D = volumetric ratio of confining steel; tj = jacket thick-
ness; D = diameter of steel jacket; εsm = jacket strain at maximum 
stress = 0.15 for grade 40 and 0.12 for grade 60; and fyj = yield 
stress of jacket. For the composite jacket, the ultimate concrete 
compression strain can be input by user and be expressed as 
ε ρ εcu sj uj uj ccf f= + ′0 004 2 5. . /  in which ρsj = 4tj/D for circular column 
and ρsj = 2tj[(b + h)/bh] for rectangular column, where ρsj = ρX + ρY; fuj 
and εuj are the ultimate stress and strain of the jacket material, and 
b and h are the section dimensions of the column.

ESU	� User-defined ultimate steel strain of longitudinal rebar. If 
ESU ≤ 0, the ultimate steel strain of 0.09 is used by the program 
per Chapter 3.

RHOOPDIA	 Hoop diameter for rectangular section in LIBN = 3.
RHOOPSPA	 Hoop spacing for rectangular section in LIBN = 3.
STRPERIOD	� Structural period. If STRPERIOD > 0 and column concrete is con-

fined, low-cycle fatigue is checked. If STRPERIOD ≤ 0, low-cycle 
fatigue is not checked.

SPLICELT	� Lap-splice length in the plastic hinge region. If SPLICELT > 0, 
splice failure is checked. If SPLICELT ≤ 0, splice failure is not 
checked.

Notes

	 1.	μf and βDI are not considered.
	 2.	The units used for R/CONCRETE1 shall be in “pound” and “inch” because 

the concrete confined model in the program is based on these units.
	 3.	When IAUTO = 1, element SP is calculated by the program. If an element’s 

SP ≤ 0, it is in the unstable condition and the program output will show a 
message that the element is in the unstable condition.

	 g.	TYPE = ‘MOMCURVA1’. Material data for finite-segment moment–
curvature element (MAT18).

‘MOMCURVA1’    NSEG    YS    EM    LIBN    HH    UU    WW    ZZ    PCMAX 
CURNM   ST   IREV1   IREV2   IREV3   IREV4   IECOP    SMALL    RATIX0    
RATIY0    TOTA    IAUTO    IMATER    RATIO3    IR    G    QRNEE    ISTIF    
IELAS
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AXIAL(1)	 AXIAL(2) … AXIAL(IREV2)
For AXIAL(1): MOM(1)	 MOM(2) … MOM(IREV1)
For AXIAL(1): CUR(1)	 CUR(2) … CUR(IREV1)
For AXIAL(2): MOM(1)	 MOM(2) … MOM(IREV1)
For AXIAL(2): CUR(1)	 CUR(2) … CUR(IREV1)
…
For AXIAL(IREV2): MOM(1)	 MOM(2) … MOM(IREV1)
For AXIAL(IREV2): CUR(1)	 CUR(2) … CUR(IREV1)

NSEG	 Number of segments considered. Maximum number of NSEG is 32.
YS	 Concrete shear modulus, G (force/length2).
EM	 Concrete elastic modulus.
LIBN	 1: general cross section.
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FIGURE 6.8  Circular concrete section with steel ring, INEB = 5 for each layer per quarter 
and INEH = 6.

© 2012 by Taylor & Francis Group, LLC



146 Seismic Design Aids for Nonlinear Pushover Analysis

HH	� Cross-sectional elastic moment of inertia, IV, in the segment’s local coor-
dinate V0 direction.

UU	 Cross-sectional polar moment of inertia, J.
WW	� U0 direction eccentricity from section reference coordinate origin to 

applied load location.
ZZ	� V0 direction eccentricity from section reference coordinate origin to 

applied load location.
PCMAX	� Maximum allowable plastic curvature. If PCMAX ≤ 0, plastic curvature 

is unlimited. This is only for IREV2 = 1 (i.e., only one set of moment–
curvature data points is input). If IREV2 > 1, the program ignores 
PCMAX and treats the last curvature control point, CUR(IREV1), as 
the maximum curvature capacity.

CURNM	� Curvature corresponding to nominal moment, Mn. This is only for 
IREV2 = 1 (i.e., only one set of moment–curvature data points is input). 
If IREV2 > 1, the program ignores CURNM.
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FIGURE 6.9  Circular concrete section with steel reinforcement, INEB = 5 for each layer per 
quarter, INEH = 5, and NLBAR = 8.
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ST	� Dummy variable.
IREV1	� Total number of control points along the M − ϕ backbone curve (exclude 

origin).
IREV2	 Total number of axial load cases considered.
IREV3	� 0: Moment–curvature relationship is not adjusted for axial load effect. 

Moment–curvature relationship is based on AXIAL(1).
	 1: Moment–curvature relationship is adjusted due to axial load.
IREV4	 Dummy variable.
IECOP	 0: Eccentricity is not considered.
	 1: Eccentricity is considered.
	 Note: If IECOP = 0, WW and ZZ are ignored by program.
SMALL	� Length of segments at two ends and center right and left sides. The 

length of a segment other than end segments or center right and left 
side segments is equal to member total length divided by (NSEG-4). If 
SMALL ≤ 0, the length of every segment = member total length divided 
by NSEG.

RATIX0	 Initial imperfection ratio in element coordinate U0 direction.
RATIY0	 Initial imperfection ratio in element coordinate V0 direction.
TOTA	 Section gross area (length2).
IAUTO	 1	 Element SP is calculated (see Appendix D).
	 0	 Element SP is not calculated.
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FIGURE 6.10  Rectangular concrete section, INEB = 4, INEH = 3, NLBAR = 5, NLBARB = 5, 
and NLBARS = 1.
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IMATER	� 1: Moment–curvature relationship is not influenced by shear or splice 
failures.

	� 2: Moment–curvature relationship is influenced by shear or splice fail-
ures (current�ly not available).

RATIO3	 Dummy variable.
IR	 0: concrete tension strength is not considered (dummy variable).
	 1: concrete tension strength is considered (dummy variable).
G	 Concrete shear modulus (dummy variable).
QRNEE	 Dummy variable.
ISTIF	 Segment stiffness formulation index:
	 0: Exact approach.
	 1: Approximated approach.
IELAS	 IELAS = 0: use elastic material properties.
	 IELAS = 1: use nonlinear material properties.
AXIAL(n)	� Column axial load for load case n, where n = 1 to IREV2. Input axial 

load values in ascending order. Positive in compression and negative in 
tension.

MOM(m)	 mth moment control point, where m = 1 to IREV1.
CUR(m)	 mth curvature control point, where m = 1 to IREV1.

Notes

	 1.	μf and βDI are not considered.
	 2.	The moment–curvature control points (MOM, CUR) are for the calculation 

of segment’s sectional moment of inertia, IU, in the segment local coordi-
nate U0 direction.

	 3.	 IV is constant and in elastic.
	 4.	When IAUTO = 1, element SP is calculated by the program. If an element’s 

SP ≤ 0, it is in the unstable condition, and the program output will show a 
message that the element is in the unstable condition.

	 h.	TYPE = ‘PLATE’. Material data for plate element (MAT16).

‘PLATE’ E NU THK

E	 Young’s modulus (force/length2).
NU	 Poisson’s ratio of plate material.
THK	 Thickness of plate (length).

	 i.	TYPE = ‘POINT’. Material data for Point Element (MAT20).

‘POINT’
S(1,1) S(2,2) S(3,3)
S(4,4) S(5,5) S(6,6)
S(1,2) S(1,3) S(1,4)
S(1,5) S(1,6) S(2,3)
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S(2,4) S(2,5) S(2,6)
S(3,4) S(3,5) S(3,6)
S(4,5) S(4,6) S(5,6)

Note

	 1.	When using point element (see Figure 3.21) to simulate pile–soil interac-
tion, in general, the nonzero terms in the stiffness matrix are S(1,1), S(2,2), 
S(3,3), S(4,4), S(5,5), S(6,6), S(2,6), and S(3,5). Since the stiffness matrix is 
symmetric, the program will generate S(6,2) and S(5,3).

	 j.	TYPE = ‘BRACE’. Material data for bracing element (MAT08).

‘BRACE’ E A R YS SHAPE FDMAX βDI

E	 Elastic modulus (force/length2).
A	 Section area (length2).
R	 Radius of gyration (length).
YS	 Yielding stress (force/length2).
SHAPE	 Member cross section shape.
	 1	 For box or equal-leg angle section.
	 2	 For I-shape section.
FDMAX	� Failure ductility due to elongation (if FDMAX < 0, failure ductility is not 

considered).
βDI	 Parameter for damage index (dummy variable).

6.1.3  Geometric Stiffness Data

This card is used to determine the type of geometric stiffness used in the analysis. 
This card is input once.

KGLOAD KGTYPE KGFORM KGCOND

KGLOAD	 The type of axial force used to calculate the geometric stiffness.
	 0	 The geometric stiffness is omitted.
	 1	� The axial force is equal to the input force, magnified by the ground 

acceleration in the global Z direction, if applicable.
	 2	� The internal element force of the previous load step is used to gener-

ate the geometric stiffness.
KGTYPE	 The type of geometric stiffness formulation.
	 0	 The geometric stiffness is omitted.
	 1	� A “lumped parameter” formulation is used for the element geomet-

ric stiffness (see Equation 5.48a).
	 2	� A “consistent parameter” formulation is used for the element geo-

metric stiffness (see Equation 5.48b). If a consistent parameter 
formulation for an individual element is not available, the lumped 
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parameter formulation is used. Refer to individual element specifi-
cations for applicability.

KGFORM	 Form of the geometric stiffness used.
	 0	 The geometric stiffness is omitted.
	 1	 The geometric stiffness is subtracted from the structural stiffness.
	 2	� Separate structural stiffness and geometric stiffness matrices are 

formed.
KGCOND	� A logical flag. If KGCOND = .TRUE., the geometric stiffness matrix is 

condensed when applicable. Logical variable.

6.1.4  Element Data

These cards are used to define the elements. Elements are numbered by the program 
in the order they are input from 1 to NELMT. Element numbers are used to identify 
elements in the output. The first card is input once. Second and third cards (if used) 
are repeated until (1) NELMT elements are input or (2) a TYPE = ‘END’ is encoun-
tered. The third card follows each second card with a value of IGEN > 1.

NELMT
TYPE NAME VALUE1 VALUE2 … IGEN

ΔVALUE1 ΔVALUE2 …

NELMT	 Number of elements input.
TYPE	� Element type. Valid types are described below. Character variable, 

enclosed in single quotes.
NAME	 A user-defined name. Character variable, enclosed in single quotes.
VALUEi	� Input required by a given element type. Values for each TYPE are dis-

cussed below.
IGEN	 Number of additional elements to be generated from the element.
ΔVALUEi	 Incremental value used to generate subsequent elements.

	
VALUEi VALUEi VALUEigenerated previous= + ∆

	 a.	TYPE = ‘3D-BEAM’. This card is used to define element data for elastic 
prismatic element (ELE01).

‘3D-BEAM’ NAME MAT JOINTI JOINTJ V1 V2 V3 XS XE PKG IRELT IGEN

NAME	 A user-defined name. Character variable, enclosed in single quotes.
MAT	� Material number. This number must correspond to the material type 

‘3D-BEAM’.
JOINTI	 Start joint ID number.
JOINTJ	 End joint ID number.
V1	� Projection on the GCS X-axis of a vector in the element’s local XY-plane. 

This vector defines the orientation of element’s local Y-axis.
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V2	� Projection on the GCS Y-axis of a vector in the element’s local 
XY-plane.

V3	� Projection on the GCS Z-axis of a vector in the element’s local 
XY-plane.

XS	� Offset distance (i.e., rigid zone) from the start joint to the beginning of the 
element. Positive in the direction of the element’s local X-axis.

XE	� Offset distance from the end joint to the end of the element. Negative in 
the direction of the element’s local X-axis.

PKG	� Axial load used to calculate the geometric stiffness, if KGLOAD = 1. 
Positive is compression.

IRELT	� A six-digit release code that is used to release the rotational dof at 
both  ends  of the element. A nonzero value of the ith digit signifies a 
released dof.

Digit

1:	Release the moment about the element’s X-axis at the start joint.
2:	Release the moment about the element’s Y-axis at the start joint.
3:	Release the moment about the element’s Z-axis at the start joint.
4:	Release the moment about the element’s X-axis at the end joint.
5:	Release the moment about the element’s Y-axis at the end joint.
6:	Release the moment about the element’s Z-axis at the end joint.

IGEN	� Element generation parameter. See discussion under “Element Data.”
Note: Both KGTYPE = 1 and 2 are available.

	 b.	TYPE = ‘IE3DBEAM’. This card is used to define element data for inelastic 
3D-Beam element (ELE09).

‘IE3DBEAM’    NAME    MATMYA    MATMYB    MATMZA    MATMZB    MATMXA    
MATFXA    JOINTI    JOINTJ    V1    V2    V3    XS    XE    PKG
ENDI    PTII    HCI    BCI    HBI    BBI    PRESI ENDJ    PTIJ    HCJ    BCJ    HBJ   BBJ    
PRESJ    IGEN

NAME	 A user-defined name. Character variable, enclosed in single quotes.
MATMYA	� Bending hysteresis material number at the start joint in the element’s 

local Y-axis.
MATMYB	� Bending hysteresis material number at the end joint in the element’s 

local Y-axis.
MATMZA	� Bending hysteresis material number at the start joint in the element’s 

local Z-axis.
MATMZB	� Bending hysteresis material number at the end joint in the element’s 

local Z-axis.
MATMXA	 Element torsional hysteresis material number.
MATFXA	 Element axial hysteresis material number.
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JOINTI	 Start joint ID number.
JOINTJ	 End joint ID number.
V1	� Projection on the GCS X-axis of a vector in the element’s local 

XY-plane. This vector defines the orientation of element’s local Y-axis.
V2	� Projection on the GCS Y-axis of a vector in the element’s local 

XY-plane.
V3	� Projection on the GCS Z-axis of a vector in the element’s local 

XY-plane.
XS	� Offset distance from the start joint to the beginning of the element. 

Positive in the direction of the element’s local X-axis.
XE	� Offset distance from the end joint to the end of the element. Negative 

in the direction of the element’s local X-axis.
PKG	� Axial load used to calculate the geometric stiffness, if KGLOAD = 1. 

Positive is compression.
ENDI	 0: Joint shear at joint i is not checked.
	 1: Joint shear at joint i is checked.
PTII	 Initial principle stress at joint i.
HCI	 Column width (or diameter of circular column) (see Figure 4.20).
BCI	 Column depth (= 0 for circular column) (see Figure 4.20).
HBI	 Beam depth at joint i (see Figure 4.20).
BBI	 Beam width at joint i (see Figure 4.20).
PRESI	 Prestress force of beam at joint i.
ENDJ	 0: Joint shear at joint j is not checked.
	 1: Joint shear at joint j is checked.
PTIJ	 Initial principle stress at joint j.
HCJ	 Column width (or diameter of circular column).
BCJ	 Column depth (= 0 for circular column).
HBJ	 Beam depth at joint j (see Figure 4.20).
BBJ	 Beam width at joint j (see Figure 4.20).
PRESJ	 Prestress force of beam at joint j.
IGEN	� Element generation parameter. See discussion under “Element Data.”

Notes

	 1.	Bending material specified for IE3DBEAM element may consist of 
IA-BILN, HINGE, or TAKEDA.

	 2.	Bending hysteresis material number at the start joint in the element’s 
local Y-axis should be the same as that at the end joint in the element’s 
Y-axis.

	 3.	Bending hysteresis material number at the start joint in the element’s local 
Z-axis should be the same as that at the end joint in the element’s Z-axis.

	 4.	 IA-BILN model with ELAS = 0 or 1 is specified for the torsional and axial 
materials.

	 5.	Axial load–moment interaction (i.e., IA-BILN model with ELAS = 4, 5, and 
6; HINGE model with ELAS = 1, 2, and 3) only applies to moments in the 
ECS Y-direction.
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	 6.	Only KGTYPE = 1 (lump parameter formulation) is available for this 
element.

	 7.	The program outputs the yielding condition of element by a six-digit code 
called “STBFAG.”

STBFAG could be:
100000: axial yield load occurred.
010000: torsion yield load occurred.
001000: yield moment occurred at ‘START’ joint in ECS Y-direction.
000100: yield moment occurred at ‘END’ joint in ECS Y-direction.
000010: yield moment occurred at ‘START’ joint in ECS Z-direction.
000001: yield moment occurred at ‘END’ joint in ECS Z-direction.
In addition, the program outputs the failure mode of the element by a variable called 
“FLP.”
FLP could be
	 0: Elastic condition.
	 1: Axial yield occurs.
	 2: Torsion yield occurs.
	 3: Norminal moment Mn occurs at End A Y-direction.
	 4: Norminal moment Mn occurs at End B Y-direction.
	 5: Norminal moment Mn occurs at End A Z-direction.
	 6: Norminal moment Mn occurs at End B Z-direction.
	 7: �Plastic rotation capacity reaches at End A Y-direction due to concrete 

compression failure.
	 8: �Plastic rotation capacity reaches at End A Y-direction due to longitudinal 

steel reinforcement tensile fracture.
	 9: �Plastic rotation capacity reaches at End A Y-direction due to longitudi-

nal steel reinforcement buckling.
	 10: �Plastic rotation capacity reaches at End A Y-direction due to longitudi-

nal steel reinforcement low-cycle fatigue.
	 11: �Plastic rotation capacity reaches at End A Y-direction due to longitudinal 

steel reinforcement lap-splice failure.
	 12: �Plastic rotation capacity reaches at End A Y-direction due to shear 

failure.
	 13: �Plastic rotation capacity reaches at End A Y-direction due to possible 

joint shear crack.
	 14: �Plastic rotation capacity reaches at End B Y-direction due to concrete 

compression failure.
	 15: �Plastic rotation capacity reaches at End B Y-direction due to longitudi-

nal steel reinforcement tensile fracture.
	 16: �Plastic rotation capacity reaches at End B Y-direction due to longitudi-

nal steel reinforcement buckling.
	 17: �Plastic rotation capacity reaches at End B Y-direction due to longitudi-

nal steel reinforcement low-cycle fatigue.
	 18: �Plastic rotation capacity reaches at End B Y-direction due to longitudi-

nal steel reinforcement lap-splice failure.
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	 19: �Plastic rotation capacity reaches at End B Y-direction due to shear 
failure.

	 20: �Plastic rotation capacity reaches at End B Y-direction due to possible 
joint shear crack.

	 c.	TYPE = ‘STABILITY’. This card is used to define element data for Finite 
Segment–Finite String element (ELE12).

‘STABILITY’ NAME MAT JOINTI JOINTJ V1 V2 V3 XS XE IGEN

NAME	 A user-defined name. Character variable, enclosed in single quotes.
MAT	 Material number.
JOINTI	 Start joint ID number.
JOINTJ	 End joint ID number.
V1	� The projection on the GCS X-axis of a vector in the member XY-plane. 

This vector defines the orientation of the element’s local Y-axis.
V2	� The projection on the GCS Y-axis of a vector in the member XY-plane.
V3	� The projection on the GCS Z-axis of a vector in the member XY-plane.
XS	� The offset distance from the start joint to the beginning of the element. 

Positive in the direction of the element’s local X-axis (length).
XE	� The offset distance from the end joint to the end of the element. Negative 

in the direction of the element’s local X-axis (length).
IGEN	� Element generation parameter. See discussion under “Element Data.”

Notes

	 1.	The STABILITY1, R/CONCRETE1, or MOMCURVA1 material model is 
specified for this element.

	 2.	Each STABILITY element shall have its own assigned material number. 
One material number can only be assigned to one STABILITY element. 
Material numbers are defined in the Material data block.

	 3.	For ‘STABILITY’ element using R/CONCRETE1 or MOMCURVA1 
material model, the program outputs the yielding condition of element by a 
variable called “FLP.”

FLP for ‘R/CONCRETE1’ material could be
	 0:	�Concrete extreme fiber strain is less than 0.004 and steel rebar stress is 

below yield stress.
	 1:	The first tensile rebar reaches yield.
	 2:	�After yielding of the first rebar and before reaching nominal moment, Mn.
	 3:	�Concrete extreme fiber strain reaches 0.004, at which nominal moment, Mn, 

is defined.
	 3.5:	�Tension rebar’s strain reaches 0.015, at which nominal moment, Mn, is 

defined.
	 4:	�Concrete extreme fiber strain is greater than 0.004 or tension rebar is greater 

than 0.015.
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	 5:	�Concrete extreme fiber strain reaches its ultimate compression strain, εcu.
	 5.1:	� After 5.
	 6:	�Longitudinal rebar buckled.
	 6.1:	� After 6.
	 7:	�Longitudinal steel reaches its ultimate strain of 0.09.
	 8:	�Concrete average compression strain reaches its ultimate compression 

strain, εcu.
	 10:	�Plastic curvature reaches maximum allowable curvature, PCMAX.
	10.1: �Plastic curvature is beyond PCMAX.
	 11:	Longitudinal rebar lap-splice failure occurred.
	 12:	�Longitudinal rebar low-cycle fatigue occurred.

FLP for ‘MOMCURVA1’ material could be

	 3:	Curvature reaches nominal curvature, CURNM.
	 4:	Curvature is between CURNM and PCMAX.
	 10:	�Plastic curvature reaches maximum allowable curvature, PCMAX.

	 4.	For ‘STABILITY’ element using STABILITY1 material model, the pro-
gram outputs the yielding condition of element by a variable called “FLP.” 
FLP could be

	 0:	Steel extreme fiber strain is less than yield strain.
	 1:	�The compression yield stress occurred, the yield moment, My, is defined.
	 2:	After My.
	 5:	Steel member global buckling occurred.
	 5.1:	 After 5.0.
	 10:	�Plastic curvature reaches the maximum plastic curvature, PCMAX.

	 5.	The program outputs the stability condition of ‘STABILITY’ element by 
a variable SP (stiffness parameter). If SP ≤ 0, the element is unstable. If 
SP > 0, the element is stable.

	 d.	TYPE = ‘SPRING’. This card is used to define element data for the one-
dimensional spring (ELE02).

‘SPRING’     NAME    MAT    JOINTI    JOINTJ    KTYPE    XLEN    V1    V2    
V3    XS    XE    IGEN

NAME	 A user-defined name. Character variable, enclosed in single quotes.
MAT	 Material number.
JOINTI	 Start joint ID number.
JOINTJ	 End joint ID number.
KTYPE	 Type of spring.
	 1	 Axial spring.
	 2	 Shear spring in the element’s local Y-axis.
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	 3	 Shear spring in the element’s local Z-axis.
	 4	 Torsional spring.
	 5	 Rotational spring about the element’s local Y-axis.
	 6	 Rotational spring about the element’s local Z-axis.
XLEN	 Length of the spring used to calculate the stiffness.
V1	� Projection on the GCS X-axis of a vector in the spring’s local XY-plane. 

This vector defines the orientation of element’s local Y-axis.
V2	� Projection on the GCS Y-axis of a vector in the spring’s local XY-plane.
V3	� Projection on the GCS Z-axis of a vector in the spring’s local XY-plane.
XS	� Offset distance from the start joint to the beginning of the spring. Positive 

in the direction of the element’s local X-axis.
XE	� Offset distance from the end joint to the end of the spring. Negative in the 

direction of the element’s local X-axis.
IGEN	� Element generation parameter. See discussion under “Element Data.”

Notes

	 1.	Material specified for the spring element may consist of any of the follow-
ing: 3D-BEAM, BILINEAR, TAKEDA, or GAP.

	 2.	Spring uses the axial stiffness from the 3D-BEAM material.
	 3.	 If the distance between the start and end joints is zero, the spring is oriented 

such that the ECS is parallel to the start joint’s JCS.
	 4.	Geometric stiffness matrix is not calculated for SPRING element.

	 e.	TYPE = ‘PLATE’. This card is used to define element data for the plate ele-
ment (ELE16).

‘PLATE’ NAME MAT J1 J2 J3 J4 IGEN

NAME	 A user-defined name. Character variable, enclosed in single quotes.
MAT	� Material number. This number corresponds to the material type ‘PLATE’.
J1	 Joint 1 ID number (see Figure 3.20).
J2	 Joint 2 ID number.
J3	 Joint 3 ID number.
J4	 Joint 4 ID number.
IGEN	� Element generation parameter. See discussion under “Element Data.”

Example
Note

5 (1)

‘3D-BEAM’ ‘A1’ 1 10 20 0. 0. 1. 0. 0. 100000 2 (2)

0 10 10 0. 0. 0. 0. 0. 000000 (3)

‘SPRING’ ‘s1’ 2 10 11 1 0. 0. 0. 1. 0. 0. 0 (4)

‘PLATE’ ‘p1’ 3 20 10 1 2 0 (5)
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	 (1)	Five elements are to be input.
	 (2)	A 3D-BEAM element is input between joint 10 and 20 with moment 

released about the element’s Xe axis at the start joint.
	 (3)	Two more 3D-BEAM elements are generated from the first element.
	 (4)	An axial spring is input between joints 10 and 11.
	 (5)	A plate element is input, which is connected at joints 20, 10, 1, and 2.
	 (6)	Geometric stiffness matrix is not calculated for PLATE element.

	 f.	TYPE = ‘POINT’. This card is used to define element data for the point ele-
ment (ELE20).

‘POINT’ NAME MAT JOINT VY1 VY2 VY3 VX1 VX2 VX3 IGEN

NAME	 A user-defined name. Character variable, enclosed in single quotes.
MAT	� Material number. This number corresponds to the material type ‘POINT’.
JOINT	 Joint that element is located.
VY1	 Projection on the GCS X-axis of the element’s Y-axis.
VY2	 Projection on the GCS Y-axis of the element’s Y-axis.
VY3	 Projection on the GCS Z-axis of the element’s Y-axis.
VX1	 Projection on the GCS X-axis of the element’s X-axis.
VX2	 Projection on the GCS Y-axis of the element’s X-axis.
VX3	 Projection on the GCS Z-axis of the element’s X-axis.
IGEN	� Element generation parameter. See discussion under “Element Data.”

Note:	 Geometric stiffness matrix is not calculated for this element.

	 g.	TYPE = ‘BRACE’. This card is used to define the element data for the brac-
ing member (ELE08).

‘BRACE’    NAME   MAT    JOINTI    JOINTJ    KTYPE    SLK    V1    V2    V3    
XS    XE    IGEN

NAME	 A user-defined name. Character variable, enclosed in single quotes.
MAT	� Material number. This number corresponds to the material type ‘BRACE’.
JOINTI	 Start joint ID number.
JOINTJ	 End joint ID number.
KTYPE	 Equal to 1.
SLK	 K factor for slenderness ratio.
V1	� The projection on the GCS X-axis of a vector in the member XY-plane. 

This vector defines the orientation of the element’s local Y-axis.
V2	� The projection on the GCS Y-axis of a vector in the member XY-plane.
V3	� The projection on the GCS Z-axis of a vector in the member XY-plane.
XS	� The offset distance from the start joint to the beginning of the brace ele-

ment. Positive in the direction of the element’s local X-axis (length).
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XE	� The offset distance from the end joint to the end of the brace element. 
Negative in the direction of the element’s local X-axis (length).

IGEN	� Element generation parameter. See discussion under “Element Data.”

Notes

	 1.	The stiffness of bracing member is based on the ‘BRACE’ material only.
	 2.	The cross section of the bracing member could be box, angle, or wide flange 

section.

6.1.5  Mass

These cards are used to input lumped masses at the joints. The first card is input 
once. The second card is repeated INMASS times or until a joint ID ≤ 0 is encoun-
tered. If INMASS is less than one, or FMASS is zero, omit the second card.

INMASS FMASS MCOND
ID    PX    PY    PZ    RXX    RYY    RZZ    RXY    RXZ    RYZ    IGEN    Δ ID

INMASS	 The number of mass cards to be read.
FMASS	 Mass flag.
	 0	 The mass matrix is omitted.
	 1	 The mass matrix due to concentrated joint masses is formed.
MCOND	� A logical flag. If MCOND = .TRUE., the mass matrix is condensed when 

applicable.
	 Logical variable.
ID	 Identification number of the joint.
PX	 Translational mass in the joint’s JCS X-direction (mass).
PY	 Translational mass in the joint’s JCS Y-direction (mass).
PZ	 Translational mass in the joint’s JCS Z-direction (mass).
RXX	� Rotational mass moment of inertia about the joint’s JCS X-axis (mass * 

length2).
RYY	� Rotational mass moment of inertia about the joint’s JCS Y-axis (mass * 

length2).
RZZ	� Rotational mass moment of inertia about the joint’s JCS Z-axis (mass * 

length2).
RXY	� Rotational mass product of inertia about the joint’s JCS XY-axis (mass * 

length2).
RXZ	� Rotational mass product of inertia about the joint’s JCS XZ-axis (mass * 

length2).
RYZ	� Rotational mass product of inertia about the joint’s JCS YZ-axis (mass * 

length2).
IGEN	 Number of joints with identical mass, to be generated.
Δ ID	 Increment of joint ID number for generated values.
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Example: INMASS = 1, FMASS = 1,
20 8. 8. 8. 0 0 0 0 0 0 0 0

Joint 20 has a translational mass of 8.0 in the X-, Y-, and Z-directions.

6.1.6  Damping

This card is used to input proportional damping data.

ALPHA BETA

ALPHA	 Proportional damping coefficient for mass.
BETA	 Proportional damping coefficient for stiffness.

6.2  SOL01—Elastic Static Solution

The following solution is an elastic solution with multiple load cases. The following 
cards are input once.

‘SOL01’
TITLE
NLOAD MAXELD

SOL01	 Signifies solution #1. Character variable, enclosed in single quotes.
TITLE	� User input title, 80 characters maximum. Character variable, enclosed 

in single quotes.
NLOAD	 Number of load cases.
MAXELD	 Maximum number of element loads.

Notes

	 1.	Condensation increases the band width of the stiffness matrix for SOL01 
without any other benefits. Condensation is not recommended for SOL01.

	 2.	A separate geometric stiffness (KGFORM = 2) is not used by SOL01. The 
geometric stiffness may be included by using KGFORM = 1.

	 3.	 If the geometric stiffness is included, the element axial loads must be input, 
KGLOAD = 1.

6.2.1  Joint Loads

These cards are used to apply loads to joints. Loads applied to restrained joints are 
considered as displacements, support settlement, or displacement-control solutions. 
Loads applied to constrained joints are transferred to their “master” joints. If the 
“master” joint is restrained, loads transferred to restrained dof are considered as 
displacements. Joint loads are additive; applying two loads to the same joint results 
in the sum of the joint loads being considered. The following card is repeated until 
the value of DIR is ‘END’.
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LOAD ID IGEN Δ ID DIR VALUE

LOAD	 Number of the load case that the load is applied to.
ID	 Joint ID number that the load is applied to.
IGEN	 Number of identical joint loads to be generated.
Δ ID	 Increment of joint ID number for generated values.
DIR	� Direction of load in the JCS. Valid directions and the units of VALUE are 

given below. Character variable, enclosed in single quotes.
	 ‘FX’	 Applied force in the joint’s JCS X-direction (force).
	 ‘FY’	 Applied force in the joint’s JCS Y-direction (force).
	 ‘FZ’	 Applied force in the joint’s JCS Z-direction (force).
	� ‘MX’	� Applied moment about the joint’s JCS X-axis (force * length).
	 ‘�MY’	 Applied moment about the joint’s JCS Y-axis (force * length).
	� ‘MZ’	 Applied moment about the joint’s JCS Z-axis (force * length).
	 ‘END’	 Terminate the input of element loads.
VALUE	 Magnitude of the applied load.

Example
1 2 2 1 ‘FZ’ −3.00 (1)

2 7 0 0 ‘MX’ 33.5 (2)

0 0 0 0 ‘END’ 0 (3)

	 (1)	Joints 2, 3, and 4 have an applied force of −3.00 in the Z-direction, load case 1.
	 (2)	Joints 7 has an applied moment of 33.50 in the X-direction, load case 2.
	 (3)	Joint loading input is terminated.

6.2.2  Element Loads

These cards are used to apply element loads to the ‘3D-BEAM’, ‘IE3DBEAM’, or 
‘PLATE’ element. The loads are applied to the portion of the beam between points 
A and B of Figure 5.4 in the ECS. The loads are transferred by the program to the 
start and end joints. The following card is only included if MAXELD > 0. The card 
is repeated MAXELD times or until the value of TYPE is ‘END’.

LOAD IELE IGEN Δ IELE TYPE DIR VALUE1,  VALUE2, …

LOAD	 Load case number.
IELE	 Element number.
IGEN	 Number of similar element loads to be generated.
Δ IELE	 Increment of element number for generated values.
TYPE	� Type of load. Valid types are described in detail below. Character vari-

able, enclosed in single quotes.
	� ‘CONC’	� Concentrated load applied in direction DIR. VALUE1 is the 

magnitude of the load (force or force * length). VALUE2 is 
the ratio of the distance to the load, divided by the flexible 
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length of the member. The distance is measured from the 
beginning of the flexible length at the member’s start end. 
VALUE2 is between 0 and 1. Only two values are input. 
‘CONC’ is not available for ‘PLATE’ element.

	 ‘UNIF’	� Uniform load applied in direction DIR. VALUE1 is the 
magnitude of the load. Only one value is input (force/length 
for ‘3D-BEAM’ and ‘IE3DBEAM’ elements and force/
length2 for ‘PLATE’ element).

	 ‘FEM’	� Input the fixed end forces on the ends of the member. DIR is 
not used and may be set to any value. VALUE1 to VALUE12 
are required.

	 VALUE1	� Fixed end axial force, at point A of Figure 5.4, 
in the ECS X-direction (force).

	 VALUE2	� Fixed end shear, at point A of Figure 5.4, in 
the ECS Y-direction (force).

	 VALUE3	� Fixed end shear, at point A of Figure 5.4, in 
the ECS Z-direction (force).

	 VALUE4	� Fixed end torsion, at point A of Figure 5.4, 
about the ECS X-axis (force * length).

	 VALUE5	� Fixed end moment, at point A of Figure 5.4, 
about the ECS Y-axis (force * length).

	 VALUE6	� Fixed end moment, at point A of Figure 5.4, 
about the ECS Z-axis (force * length).

	 VALUE7	� Fixed end axial force, at point B of Figure 5.4, 
in the ECS X-direction (force).

	 VALUE8	� Fixed end shear, at point B of Figure 5.4, in 
the ECS Y-direction (force).

	 VALUE9	� Fixed end shear, at point B of Figure 5.4, in 
the ECS Z-direction (force).

	 VALUE10	� Fixed end torsion, at point B of Figure 5.4, 
about the ECS X-axis (force * length).

	 VALUE11	� Fixed end moment, at point B of Figure 5.4, 
about the ECS Y-axis (force * length).

	 VALUE12	� Fixed end moment, at point B of Figure 5.4, 
about the ECS Z-axis (force * length).

	 ‘END’	 Terminate the input of element loads.
DIR	� Direction of load in ECS. Valid directions are given below. Character 

variable is enclosed in single quotes.
	 ‘FX’	 Axial load is applied.
	 ‘FY’	 Force is applied in the local element’s Y-direction.
	 ‘FZ’	 Force is applied in the local element’s Z-direction.
	 ‘MX’	 Torque is applied.
	 ‘MY’	 Moment is applied about the local element’s Y-axis.
	 ‘MZ’	 Moment is applied about the local element’s Z-axis.
VALUEi	 Values used to calculate the element loads.
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Notes

	 1.	Multiple loads may be put on a single element.
	 2.	 ‘UNIF’ ‘MY’ and ‘UNIF’ ‘MZ’ are not available for ‘3D-BEAM’ and 

‘IE3DBEAM’ elements.
	 3.	Only ‘UNIF’ ‘FZ’ is available for ‘PLATE’ element.
	 4.	Element load TYPE = ‘FEM’ is not modified to reflect member end releases.

Example: MAXELD = 1,
1 13 0 0 ‘UNIF’ ‘FZ’ −3.00

Element 13 has a uniform load of −3.00 applied in the element’s local Z-direction, 
for load case 1.

6.3  SOL04—Incremental Static (Pushover) Solution

The following solution is used to calculate the static cyclic response of nonlinear 
structures. The following cards are input once.

‘SOL04’
TITLE
MAXELD IPRINT IWRITE UNBAL SPLIMIT

SOL04	 Signifies solution #4. Character variable, enclosed in single quotes.
TITLE	� User input title, 80 characters maximum. Character variable, enclosed in 

single quotes.
MAXELD	 Maximum number of element loads.
IPRINT	 Step increment for printed output.
IWRITE	 Step increment for plot data written to output files.
UNBAL	� A logical flag. If UNBAL = .TRUE., the unbalanced loads from the pre-

ceding step is added to the current load. Logical variable.
SPLIMIT	� Stiffness parameter limit. The SP is calculated at each load step. The 

unbalanced forces will be added to the next load step if ABS(SP) is greater 
than SPLIMIT. Otherwise, the unbalanced forces are not added to the 
next load step, and the simple Euler incremental method is performed 
until ABS(SP) is greater than SPLIMIT (normally SPLIMIT = 10−2–
10−5). If SPLIMIT = 0, the unbalanced forces are adjusted at every step 
regardless of SP value.

	 1.	The load case for this solution is always input as one.
	 2.	A separate geometric stiffness (KGFORM = 2) is not used by SOL04. The 

geometric stiffness may be included by using KGFORM = 1.

6.3.1  Output Data to Plot Files

These cards control the data that are written to separate plot files. This data is used 
to print reports and plot data. The card is repeated until the value of TYPE is ‘END’.
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TYPE NUMB IUNIT IGEN Δ NUMB Δ IUNIT

TYPE	� Type of data to be written to plot file. Valid types are given below. 
Character variable, enclosed in single quotes.

	� ‘DOF’	� Data is printed for a dof. The dof ID number, as assigned 
by the program, is used.

	� ‘JOINT FX’	� Data is printed for the dof corresponding to the joint’s 
JCS X translation.

	� ‘JOINT FY’	� Data is printed for the dof corresponding to the joint’s 
JCS Y translation.

	� ‘JOINT FZ’	� Data is printed for the dof corresponding to the joint’s 
JCS Z translation.

	� ‘JOINT MX’	� Data is printed for the dof corresponding to the joint’s 
JCS X rotation.

	� ‘JOINT MY’	� Data is printed for the dof corresponding to the joint’s 
JCS Y rotation.

	� ‘JOINT MZ’	� Data is printed for the dof corresponding to the joint’s 
JCS Z rotation.

	 ‘ELE’	 Element data is printed.
	 ‘END’	 Terminate the input of element loads.
NUMB	 Element, dof, or joint number.
IUNIT	 Plot file unit number.
IGEN	 Number of similar data groups to be printed.
Δ NUMB	 Incremental element dof or joint number for generation.
Δ IUNIT	 Incremental plot file unit number for generation.

Example
Note

‘DOF’ 5 10 0 0 0 (1)

‘ELE’ 32 11 1 1 1 (2)

‘END’ 0 0 0 0 0 (3)

	 (1)	dof #5 plot data is written to plot file ‘temp10.out’.
	 (2)	Element 32’s data is written to file ‘temp11.out’, and element 33’s data is 

written to file ‘temp12.out’.
	 (3)	End of plot file generation.
	 (4)	For a structure with element(s) using R/CONCRETE1 material type, the 

data written from ‘JOINT XX’ plot file to output file (unit 06) will show the 
occurrence of limit state(s) for the structure. The possible limit states are

	� Limit State 1: Yield moment occurred, a symbol of *1* will be shown in the 
output file.

	� Limit State 2: Nominal moment occurred, a symbol of *2* will be shown in the 
output file.

	� Limit State 3: Ultimate moment occurred, a symbol of *3* will be shown in the 
output file.
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	� Limit State 4: Buckling of longitudinal rebar occurred, a symbol of *4* will be 
shown in the output file.

	� Limit State 5: Lap-splice failure occurred, a symbol of *5* will be shown in the 
output file.

	� Limit State 6: Low-cycle fatigue occurred, a symbol of *6* will be shown in the 
output file.

6.3.2  Joint Loads

These cards are used to apply loads to joints. These cards are identical to the ‘Joint 
Load’ cards in block SOL01. Refer to SOL01 for a detailed description. The follow-
ing card is repeated until the value of DIR is ‘END’.

LOAD ID IGEN Δ ID DIR VALUE

6.3.3  Element Loads

These cards are used to apply element loads to the ‘3D-BEAM’, ‘IE3DBEAM’, or 
‘PLATE’ element. These cards are identical to the ‘Element Load’ cards in block 
SOL01. Refer to SOL01 for a detailed description. The following card is only 
included if MAXELD > 0. The card is repeated MAXELD times or until the value 
of TYPE is ‘END’.

LOAD IELE IGEN Δ IELE TYPE DIR VALUE1, VALUE2, … 

6.3.4  Load Factors

These cards contain the load factors that are used to generate incremental static 
loads. Each load step is subdivided into N small load steps. The card is repeated until 
the value of STEP is ‘END’.

STEP FACTOR PMAX DMAX N

STEP	� User input step name, 80 characters maximum. Character variable, 
enclosed in single quotes. If STEP is ‘END’, the current solution is 
terminated.

FACTOR	� Load factor. The applied load at the end of the step is FACTOR * (applied 
joint and element loads).

PMAX	 Dummy variable, use PMAX = 0.
DMAX	 Dummy variable, use DMAX = 0.
N	� Number of load steps between the previous and current factor. N is only 

used if both PMAX and DMAX are equal to zero.
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Example
Note

‘LOAD’ 10. 0 0 100 (1)

‘UNLOAD’ 0.0 0. 0. 20 (2)

‘END’ 0 0. 0. 0 (3)

Two load steps are inputted. They are ‘LOAD’ and ‘UNLOAD.’

	 (1)	The structure is loaded to 10 times the joint and element loads with 100 
equal size load steps

	 (2)	The structure is then unloaded with 20 equal size load steps.
	 (3)	SOL04 is terminated.

6.4  BUG—Set Bug Options

This card is used to set the bug options, which print out the intermediate results 
listed below. The entire statement is a character variable and is enclosed in single 
quotes.

‘BUG = options’

Option Description

A Print element displacements.

Print loads applied to dofs.

B Not used.

C Not used.

D Print joint, element, and dynamic loading data.

E Print numerical integration data for linear and average acceleration methods.

F Print the element’s structural and geometric stiffness. Print the global mass, structural 
stiffness, geometric stiffness, loads, and displacements.

G Print the condensed global mass, structural stiffness, and geometric stiffness matrices.

H Print the element transformations, structural and geometric stiffness, etc.

I Print contents of memory for elements.

J Print a skyline map for matrices.

K Print the material data for each load step (e.g., cross-sectional elements of a finite 
segment).

L Print the energy balance.

M Print the skyline data for matrices.

N Print the contents of memory when DUMP is called.

Notes

	 1.	Any number of options may be specified at one time.
	 2.	Options specified with the last bug statement are the only options active.
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6.5  READ—Read Plot Files

This card is used to read plot data written to output file (unit 06). The entire state-
ment is a character variable and is enclosed in single quotes.

‘READ INC = I UNIT = NO’

Where NO is the unit number of the plot file that contains the plot data, and I is the 
increment of the steps printed out. Multiple UNIT = NO statements may exist on 
each read card.

6.6  NOECHO—Inhibit Input Echo

This card is used to inhibit the input echo. Character variable, enclosed in single 
quotes.

‘NOECHO’

6.7  DUMP—Print Memory

This card is used to print the addresses of the data in memory. If ‘BUG = N’ was 
previously specified, ‘DUMP’ also prints the nonzero values in the linear array. 
Character variable, enclosed in single quotes.

‘DUMP’

6.8  RELEASE—Release Memory

This card is used to release or ‘free up’ memory used for previous solutions. Global 
displacements, velocities, etc., are reset to zero. The entire statement is a character 
variable and is enclosed in single quotes.

‘RELEASE OPTION’

If OPTION = ‘ELEMENT’, the element forces, displacements, and hysteresis models 
are also reset to their initial values.

Example
Note

‘STRUCT’ (1)

.

. Structure input is omitted.

.

‘SOL01’ (2)

.

. Solution input is omitted.

.

‘RELEASE’ (3)
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‘SOL04’ (4)

Solution input is omitted.

‘STOP’ (5)

	 (1)	The structure is defined.
	 (2)	A static solution is performed.
	 (3)	The static solution is released. The memory required for load, displacement, 

stiffness, etc., is released. The element forces are not released because the 
ELEMENT statement was omitted from the RELEASE card.

	 (4)	Releasing the memory after the static solution allows the same memory to be 
used for SOL04. If the memory had not been released, then the total memory 
required would be the sum of the memory required for SOL01 and SOL04.

	 (5)	Terminate the program.

6.9  STOP—Terminate Execution

This card is used to terminate execution of the program. The statement is a character 
variable and is enclosed in single quotes.

‘STOP’
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7 Numerical Examples

Several numerical examples are included in this chapter for the illustration of how 
to use INSTRUCT to perform moment–curvature analyses of structural members 
and pushover analyses of bridge concrete and steel bents and other structures. The 
examples are as follows:

Example 1: Moment–Curvature Analysis
Example 2: Single-Column Bent
Example 3: Steel Member Plastic Analysis
Example 4: Two-Column Bent (Displacement Control)

PHL Method
PM Method
FSFS Method
FSMC Method

Example 5: Two-Column Bent (Force Control)
Example 6: Concrete Column with Rectangular Section
Example 7: Three-Column Bent with Different Elements
Example 8: Four-Column Bent
Example 9: Steel Pile Cap Bent
Example 10: Steel Cross Frame Analysis
Example 11: Concrete Column with Shear Failure
Example 12: Concrete Beam–Column Joint Failure
Example 13: Cyclic Response of a Cantilever Beam

7.1  Structural Limit State Indicators

INSTRUCT provides several structural limit state indicators in the output. Some 
indicators are shown in the “structural joint” output at certain pushover load steps, 
depending on the nonlinear condition of the structure. Table 7.1 lists the possible 
limit state indicators shown at the structural joint force–displacement output.

For example, during the pushover analysis of a multiple-column bent, the struc-
tural limit state at which the first column reaches its Mn occurs at load step “X.” 
Then, *2* will be shown in the “structural joint” output corresponding to load step 
“X.” As shown in Table 7.1, ultimate limit state of a structure may be controlled by 
limit state indicator *3*, *4*, *5*, or *6*. Normally, *3* controls the ultimate struc-
ture-displacement capacity, if a structure is designed based on the current American 
Association of State Highway and Transportation Officials (AASHTO) design speci-
fications. However, for old bridges, structural limit states may be controlled by *4*, 
*5*, or *6*.
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Note that INSTRUCT performs pushover analysis until the user-defined target 
pushover displacement at a joint is reached. For example, if the user assigned a target 
pushover displacement of 5 in. at structure joint “Y,” the structural limit state *3* 
occurs at a pushover displacement of 3 in. The program will not stop at pushover 
displacement of 3 in., but will continue to push the structure to the displacement of 
5 in. However, the INSTRUCT output will show the indicator *3* at the joint “Y” 
corresponding to pushover displacement of 3 in.

7.2  Member Yield Indicators

INSTRUCT output also provides yield conditions of individual members by using 
an indicator called FLP (flag for limit state of plasticity). FLPs are shown in the 
“element” output and described in Chapter 6 for “STABILITY” and “IE3DBEAM” 
elements.

7.3  Numerical Examples

7.3.1  Example 1: Moment–Curvature Analysis

Moment–curvature curve of a reinforced concrete circular section shown in 
Figure 7.1 is generated. The details of the section are as follows: diameter = 48″, 
20-#10 longitudinal bars, fc′ = 4 ksi, fy = 60 ksi, spiral = #5 @3.25″, concrete 
cover = 2.6″ and applied column axial dead loads = 765 kip. The post-yield modulus 
of the steel stress–strain curve is assumed to be 1% of the elastic modulus. The finite 
segment–finite string (FSFS) method is used to (1) generate the moment–curvature 
curve for axial dead load P = 765 kip and (2) generate column axial load–nominal 

TABLE 7.1
Limit State Indicators at Structural Joint Output

Limit State 
Indicators Occurrence at the First Member

*1* Yield moment, My, as defined in Section 4.2

*2* Nominal moment, Mn, as defined in Section 4.2

*3* Ultimate moment, Mu, due to failure modes 1, 2, or 4 (i.e., unconfined concrete 
compression failure, confined concrete compression failure, or tensile 
fracture of longitudinal rebar, respectively), as described in Section 4.6

*4* Ultimate moment, Mu, due to failure mode 3 (i.e., buckling of longitudinal 
rebar), as described in Section 4.6

*5* Ultimate moment, Mu, due to failure mode 6 (i.e., failure in lap-splice of 
longitudinal rebar), as described in Section 4.6

*6* Ultimate moment, Mu, due to failure mode 5 (i.e., low cycle fatigue of 
longitudinal rebar), as described in Section 4.6
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moment interaction curve using P = −1000, 0, 765, 2000, 3000, and 5000 (kip). 
The ultimate concrete compression strain, εcu, is based on Equation 3.24, which is 
ε ρ εcu s yh su ccf f= + ′0 004 1 4. . ./

The structural model based on Section 2.5 for the moment–curvature analysis is 
shown in Figure 7.2. A “STABILITY” element with only one segment is used. The 
“R/CONCRETE1” material is considered. The length of the member is chosen to be 
2, and so the end rotation of the member represents the curvature of the cross sec-
tion. The same magnitudes of rotations are applied at both ends of the element by 
incremental displacement control.

	 1.	Output (EX1_MC.out, Moment–Curvature Curve, P = 765 kip)
		  The output results are shown below. Note that the symbols, %7, %8, and 

%9, in the output file indicate the limit states 1, 2, and 3, respectively. 
Limit state 1 occurs when moment reaches yield moment, My; limit state 
2 occurs when moment reaches nominal moment, Mn; and limit state 3 
occurs when moment reaches ultimate moment, Mu. Limit states 1, 2, and 
3 (with symbols *1*, *2*, and *3*, respectively) are also shown in the 
user-defined joint’s force–displacement plot file written to the output. The 
moment–curvature curves are shown in Figures 7.3 and 7.4.

D= 48˝
Cover = 2.6˝
#5 spiral @ 3.25˝
Steel post-yield slope = 1%
f ć = 4 ksi
fy (longitudinal bar) = 60 ksi
fy (hoop) = 60 ksi

20 – #10

Figure 7.1  Cross section details.

Length = 2

M M

2

X

Y

Figure 7.2  Structural model.
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Figure 7.3  Moment–curvature curve (with 765 kip dead load).

0.0000 0.0005 0.0010 0.0015
0

500

1000

1500

2000

2500

3000

3500

4000

(My, y) = (2515.8, 0.000078)

(Mn, n) = (3275.5, 0.0001)

M
om

en
t (

ki
p-

ft)

Curvature (rad/in.)

(Mu, u) = (3409.5, 0.00166)

Figure 7.4  Bilinear moment–curvature curve (with 765 kip dead load).
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1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - R/C Circular Sec. 20-#10 rebars with 48 in. Dia.’                                     
       2: ‘Moment-curvature analysis; Axial load P=765000 lbs’                                                          
       3: 2   1   2   0   0   1                                                                                         
       4: 1   0.0   0.0   0.0   1   0                                                                                   
       5: 2   2.0   0.0   0.0   1   0                                                                                   
       6: 1   0   0   0   1   0   | Direction Cosine                                                                    
       7: 1   0   1   1   1   1   1   0   0                                                                             
       8: 2   1   1   1   1   1   1   0   0                                                                             
       9: 1   | Number of Material                                                                                      
      10: ‘R/CONCRETE1   MAT#1’   1   60000   29000000   2   48.   2.625   0   0   10   6   4000                        
      11: 0.625   3.25   0.95   1.27   1   0.   0.   0.   1809.6   0   2   0.01   0   1200780.   0.01   1               
      12: 20   0   0   0   0   0   60000.   1   -1    -1  -1   0   0   -1   -1                                          
      13: 0   0   0   .FALSE.      | Geometric stiffness                                                                
      14: 1   | Number of Element                                                                                       
      15: ‘STABILITY’   ‘R/C CIRCULAR SECTION ELE.’   1   1   2   0   1   0   0   0   0                                 
      16: 0   0   .FALSE.   | Mass                                                                                      
      17: 0   0      | Damp                                                                                             
      18: ‘SOL01 Elastic Static Analysis’                                                                               
      19: ‘APPLY AXIAL LOAD AT JOINT 1’                                                                                 
      20: 1   0                                                                                                         
      21: 1   1   0   0   ‘FX’   765000.0   | Joint Load                                                                
      22: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      23: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      24: ‘incremental disp. control’                                                                                   
      25: 0   50000   10   .TRUE.   0                                                                                   
      26: ‘JOINT MZ’   1   13   0   0   0                                                                               
      27: ‘END’   0   0   0   0   0                                                                                     
      28: 1   1   0   0   ‘MZ’   0.003   | Joint Load                                                                   
      29: 1   2   0   0   ‘MZ’   -0.003   | Joint Load                                                                  
      30: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      31: ‘disp. from 0 to 0.003’   1   0   0   1000                                                                    
      32: ‘END’   0   0   0   0                                                                                         
      33: ‘READ   UNIT=13’                                                                                              
      34: ‘STOP’                                                                                                        
1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....:                                                                                                                 
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 *** PROGRAM INSTRUCT ***   (VERSION 1.0)     

 %1S%

     NODE COORDINATES AND DEGREES OF FREEDOM

    TOTAL NUMBER OF DEGREES OF FREEDOM.............    12
    NUMBER OF DEGREES OF FREEDOM CONDENSED OUT.....     0
    NUMBER OF FREE DEGREES OF FREEDOM..............     1
    NUMBER OF RESTRAINED DEGREES OF FREEDOM........    11

      NODE COS#    X-COORD        Y-COORD        Z-COORD        FX      FY      FZ      MX      MY      MZ
         1    1     0.0000         0.0000         0.0000         1       2-R     3-R     4-R     5-R     6-R
         2    1     2.0000         0.0000         0.0000         7-R     8-R     9-R    10-R    11-R    12-R
          NOTE: R - RESTRAINED DEGREE OF FREEDOM
                C - CONSTRAINED DEGREE OF FREEDOM
 %1E%

 %2S%

     DIRECTION COSINES ... 

 COS(  1)   VX:  1.00000 I +0.00000 J +0.00000 K   VY:  0.00000 I +1.00000 J +0.00000 K   VZ:  0.00000 I +0.00000 J +1.00000 K  
 %2E%

 %3S%
1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....:                                                                                                                 
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 R/CONCRETE1 ELEMENT
 ===================

 MAT. NO.    =  1   R/C CIRCULAR SECTION
 NSEG        =         1         YS          = 6.000E+04
 EM          = 2.900E+07         LIBN        =         2
 COL. DIA    =  48.0             COL. THK    =  2.63    
 ECCX0       =  0.00             ECCY0       =  0.00    
 ELE #/QT,LAY=        10         NO.OF LAYERS=         6
 F”C         = 4.000E+03         DIA. OF HOOP= 0.625    
 S           =  3.25             KE          = 0.950    
 L.BAR DIA.  =  1.27             IECOP       =         1
 NUMP        =       264         SMALL       =  0.00    
 RATIX0      =  0.00             RATIY0      =  0.00    
 TOTA        = 1.810E+03         IAUTO       =         0
 IMATER      =         2         RATIO3      = 1.000E-02
 IR          =         0         G           = 1.201E+06
 QRNEE       = 1.000E-02         ISTIF       =         1
 YSHOOP      = 6.000E+04         IELAS       =  1.00    
 PCMAX       = -1.00             NLBAR       =        20
 ECU         = -1.00             ESU         = -1.00    
 STR. PERIOD = -1.00             SPLICE LEN. = -1.00    

 %3E%

 %4S%
1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....:                                                                                                                 

 MAT. NO.    =  1
 INITIAL CONCRETE SHEAR CAPACITY (VCI in lb)  = 3.204E+05
 FINAL CONCRETE SHEAR CAPACITY (VCF in lb)    = 5.493E+04
 TRANS.STEEL SHEAR CAPACITY,U0 DIR (VSu in lb)= 6.684E+05
 TRANS.STEEL SHEAR CAPACITY,V0 DIR (VSv in lb)= 6.684E+05
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 ELEMENT 12,  STABILITY ELEMENT

                     #   MATL   START   END   LENGTH   -----------  Y-AXIS  ------------  START DIST    END DIST     
 R/C CIRCULAR SE     1     1     1      2   2.000      0.00000 I +1.00000 J +0.00000 K   0.000       0.000    
 %4E%
.
.
.
1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....: APPLY AXIAL LOAD AT JOINT 1                                                     TIME: 08:48:29, DATE: 31-AUG-09 

  SOLUTION #1, STATIC - ELASTIC ANALYSIS 
 ========================================

  NUMBER OF LOAD CASES ............    1
    APPLIED JOINT LOADS
   =====================

 LOAD CASE:  1  JOINT:     1  DIRECTION: FX   DOF(S)    1               MAGNITUDE:   765000.                               
1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....: APPLY AXIAL LOAD AT JOINT 1                                                     TIME: 08:48:29, DATE: 31-AUG-09 

  GCS DISPLACEMENTS,  LOADING #    1                                             
 ===================

      NODE       DX             DY             DZ             RX             RY             RZ

         1  2.107969E-04    0.00000        0.00000        0.00000        0.00000        0.00000     
         2   0.00000        0.00000        0.00000        0.00000        0.00000        0.00000     
1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....: APPLY AXIAL LOAD AT JOINT 1                                                     TIME: 08:48:29, DATE: 31-AUG-09 
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  GCS RESTRAINT REACTIONS,   LOADING #    1                                             
 =========================

      NODE       FX             FY             FZ             MX             MY             MZ

         1   0.000000       0.000000       0.000000       0.000000       0.000000       0.000000    
         2  -765000.0       0.000000       0.000000       0.000000       0.000000       0.000000    
          ------------------------------------------------------------------------------------------
 SUMMATION  -765000.0       0.000000       0.000000       0.000000       0.000000       0.000000    
1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....: APPLY AXIAL LOAD AT JOINT 1                                                     TIME: 08:48:29, DATE: 31-AUG-09 

     STABILITY ELEMENT  FORCES...
                                               
   ELEMENT LOAD         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP 

         1    1  DISPL     1   2.107969E-04    0.00000        0.00000        0.00000        0.00000        0.00000    
                 DISPL     2    0.00000        0.00000        0.00000        0.00000        0.00000        0.00000     FLP:   0.0    

         1    1  FORCE     1    765000.        0.00000        0.00000        0.00000        0.00000        0.00000    
                 FORCE     2   -765000.        0.00000        0.00000        0.00000        0.00000        0.00000     SP:    0.0    

1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....: incremental disp. control                                                       TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION #4, STATIC NONLINEAR SOLUTION 
 ========================================
  INTERVAL FOR PRINTING DATA.............50000
  INTERVAL FOR WRITING DATA TO FILE......   10

  UNBALANCED JOINT FORCES ARE ADDED TO THE NEXT CYCLE
 UNBALANCED FORCES ARE NOT ADDED WHEN THE ABS(SP) IS LESS THAN SPLIMIT OF     0.00000    
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      DATA WRITTEN TO FILES 
     =======================

     DEGREE OF FREEDOM  #    6 IS WRITTEN TO UNIT #   13  JOINT:     1   DIRECTION: MZ
    APPLIED JOINT LOADS
   =====================

 LOAD CASE:  1  JOINT:     1  DIRECTION: MZ   DOF(S)    6               MAGNITUDE:  3.000000E-03  ...JOINT DISPLACEMENT... 
 LOAD CASE:  1  JOINT:     2  DIRECTION: MZ   DOF(S)   12               MAGNITUDE: -3.000000E-03  ...JOINT DISPLACEMENT... 

**** STABILITY ELEMENT          1REACHES FIRST YIELD, WHICH OCCURRED AT THE FOLLOWING STAGE:

     STABILITY ELEMENT  FORCES...
       disp. from STEP:   26 FACTOR:  1.000    
   ELEMENT LOAD         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP 

         1    1  DISPL     1   2.107969E-04    0.00000        0.00000        0.00000        0.00000       7.800001E-05
                 DISPL     2    0.00000        0.00000        0.00000        0.00000        0.00000      -7.800001E-05 FLP:   1.0    

         1    1  FORCE     1    765000.        0.00000        0.00000        0.00000       0.328492       3.025547E+07
                 FORCE     2   -765000.        0.00000        0.00000        0.00000      -0.328492      -3.025547E+07 SP:    0.0    
 %7 % LIMIT STATE POINT 1 DEFINED DUE TO ELEMENT NO     1 AT STEP=   26

**** STABILITY ELEMENT          1 SEGMENT NO.          1 REACHES NOMINAL MOMENT AT CURVATURE OF CURNM =    0.333000E-03

**** STABILITY ELEMENT          1 EXTREME FIBER REACHES COMPRESSION STRAIN OF 0.004, AT WHICH 
     NOMINAL MOMENT, MN, IS DEFINED AT THE FOLLOWING STAGE:

     STABILITY ELEMENT  FORCES...
       disp. from STEP:  111 FACTOR:  1.000    
   ELEMENT LOAD         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP 

         1    1  DISPL     1   2.107969E-04    0.00000        0.00000        0.00000        0.00000       3.329996E-04
                 DISPL     2    0.00000        0.00000        0.00000        0.00000        0.00000      -3.329996E-04 FLP:   3.0    

         1    1  FORCE     1    765000.        0.00000        0.00000        0.00000        1.44113       3.963655E+07
                 FORCE     2   -765000.        0.00000        0.00000        0.00000       -1.44113      -3.963655E+07 SP:    0.0    
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     1 AT STEP=  111
***%MEMBER   1SEG.     1ELE.    60STRAIN=  -0.159741E-01AT ISTEP   554
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     WHICH EXCEEDS ECU of    0.159607E-01
    STRESS =      -4753.18    
    STRAIN =     -0.159741E-01
    FCCP   =       5502.39    
    ECC    =      0.575599E-02

**** STABILITY ELEMENT          1 SEGMENT NO.          1 REACHES ULTIMATE CONCRETE COMPRESSION STRAIN.
     PLASTIC CURVATURE CURPLS =    0.132901E-02
     CUR  : TOTAL CURVATURE =   0.166201E-02
     COMPRESSION DEPTH TO N.A. IN U0 DIR. =    12.8653    

     COMPRESSION DEPTH TO N.A. IN V0 DIR. =    0.00000    

**** STABILITY ELEMENT          1 EXTREME FIBER REACHES ULTIMATE COMPRESSION STRAIN,                PROGRAM CONTINUE
**** THE ELEMENT FORCES disp. from STEP:  554 FACTOR:  1.000     ARE:

         1    2  DISPL     1   2.107969E-04    0.00000        0.00000        0.00000        0.00000       1.659008E-03
                 DISPL     2    0.00000        0.00000        0.00000        0.00000        0.00000      -1.659008E-03 FLP:   5.0    

         1    2  FORCE     1    765000.        0.00000        0.00000        0.00000        5.26468       4.124242E+07
                 FORCE     2   -765000.        0.00000        0.00000        0.00000       -5.26468      -4.124242E+07 SP:    0.0    
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     1 AT STEP=  554

**** STABILITY ELEMENT          1 SEGMENT NO.          1 LONG. REBAR REACHES ULTIMATE TENSION STRAIN.
     PLASTIC CURVATURE CURPLS =    0.254402E-02
     CUR  : TOTAL CURVATURE =   0.287702E-02
     COMPRESSION DEPTH TO N.A. IN U0 DIR. =    13.3807    

     COMPRESSION DEPTH TO N.A. IN V0 DIR. =    0.00000    

**** STABILITY ELEMENT          1 LONG. REBARREACHES ULTIMATE TENSION STRAIN OF 0.09,            PROGRAM CONTINUE
**** THE ELEMENT FORCES disp. from STEP:  959 FACTOR:  1.000     ARE:

         1    2  DISPL     1   2.107969E-04    0.00000        0.00000        0.00000        0.00000       2.874017E-03
                 DISPL     2    0.00000        0.00000        0.00000        0.00000        0.00000      -2.874017E-03 FLP:   7.0    

         1    2  FORCE     1    765000.        0.00000        0.00000        0.00000       -5.46955       4.349969E+07
                 FORCE     2   -765000.        0.00000        0.00000        0.00000        5.46955      -4.349969E+07 SP:    0.0    
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1 STRUCTURE....: Moment-curvature analysis; Axial load P=765000 lbs                              TIME: 08:48:29, DATE: 31-AUG-09 
  SOLUTION.....: incremental disp. control                                                       TIME: 08:48:29, DATE: 31-AUG-09 

 %5S%
     DEGREE OF FREEDOM #    6 IS READ FROM UNIT #   13     JOINT #    1, DIRECTION: MZ

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000         0.0000         0.0000         0.0000         0.0000    
        10     0.0000        1.64879E+07    3.00000E-05     0.0000         0.0000    
        20     0.0000        2.53391E+07    6.00000E-05     0.0000         0.0000    
*1*     30     0.0000        3.24775E+07    9.00000E-05     0.0000         0.0000    
.
.
.
*2*    120     0.0000        3.97430E+07    3.60000E-04     0.0000         0.0000    
       130     0.0000        3.98538E+07    3.89999E-04     0.0000         0.0000    
.
.
.
*3*    560     0.0000        4.12866E+07    1.68001E-03     0.0000         0.0000    
       570     0.0000        4.13497E+07    1.71001E-03     0.0000         0.0000    
.
.
       980     0.0000        4.36019E+07    2.94002E-03     0.0000         0.0000    
       990     0.0000        4.36441E+07    2.97002E-03     0.0000         0.0000    
      1000     0.0000        4.36825E+07    3.00002E-03     0.0000         0.0000    
 %5E%

 *--------------------------------------*
 *--- MEMORY UTILIZATION .......... ----*
 *--- IZ=   7681,    MEM= 0.015%    ----*
 *--------------------------------------*
 *--- ELAPSED CPU TIME     0.00 SEC ----*
 *--- TOTAL CPU TIME       0.59 SEC ----*

 *--------------------------------------*
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	 2.	Generate P–M Interaction Curve
Similar to the above moment–curvature analysis for P = 765 kip, the 
moment–curvature plots corresponding to different column axial dead 
loads are shown in Figure 7.5 by using the FSFS method.

For each axial load case, the nominal moment Mn is shown in the 
INSTRUCT output file (with %8 symbol). Once all the nominal moments 
corresponding to different axial loads are known, the P–M interaction 
curve can be plotted as in Figure 7.6.
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7.3.2  Example 2: Single-Column Bent

This example compares the numerical result with a full-scale column test result. 
The full-scale column test was conducted by the National Institute of Standards 
and Technology (NIST) (Stone and Cheok, 1989). The height of the column was 30′ 
measured from the top of the footing to the top of the column. The diameter of the 
column was 60″. The plastic hinge length based on Equation 4.5 is 46.3″. The mate-
rial properties of the column are shown in Figure 7.7. As shown in Figure 7.8, the 
column is modeled as a “STABILITY” element with eight segments. The length of 
the first segment near the foundation is equal to the plastic hinge length of 46.3″. The 

D = 60˝
Cover = 2.625˝
#5 spiral @ 3.5˝

Steel post-yield slope = 2%
f ć = 5.2 ksi
fy (longitudinal bar) = 68.9 ksi
fy (hoop) = 71.5 ksi
Lp = 46.3"

H

P= 1000 kip

30΄

25 – #14

Figure 7.7  NIST 30′ full-scale column.

Y

X

Z

ze

xe
ye

Joint 1

Joint 2

: Internal joints

Figure 7.8  Structural models: FSFS method (eight segments).

© 2012 by Taylor & Francis Group, LLC



183Numerical Examples

column is pushed by the incremental displacement control at the top of the column 
until the total displacement at the top of the column is equal to 24″.

The pushover curve is shown in Figure 7.9. It can be seen that the lateral force–
lateral displacement curve generated by the FSFS method is in agreement with the 
test results when lateral displacement is between 0 and 350 mm. The output results 
show that the concrete ultimate compression strain, εcu, is reached (i.e., limit state 
3) at a pushover displacement of 505 mm. Once εcu is developed, fracture of the 
transverse reinforcement may occur, and the concrete is no longer in the confined 
condition.

Output (EX2_NIST3B62.out file)
The output results are shown below. The symbols, %7, %8, and %9, in the output 

file indicate the limit states 1, 2, and 3, respectively. Limit state 1 occurs when the 
moment reaches yield moment, My; limit state 2 occurs when the moment reaches 
nominal moment, Mn; and limit state 3 occurs when the moment reaches ultimate 
moment, Mu.
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Figure 7.9  Experimental and numerical comparison.
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 1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - NIST 30’ COLUMN’                                                                      
       2: ‘TEST FULL-SCALE R/C COLUMN, use one ele & 8 segments’                                                        
       3: 2   1   2   0   0   1                                                                                         
       4: 1   0.00   0.00   .00   1   0                                                                                 
       5: 2   360.0   0.00   .00   1   0                                                                                
       6: 1   0   0   0   1   0   | Direction Cosine                                                                    
       7: 1   1   1   1   1   1   1   0   0                                                                             
       8: 2   0   1   1   1   1   0   0   0                                                                             
       9: 1   | Number of Material                                                                                      
      10: ‘R/CONCRETE1   MAT#1’   8   68900   27438000   2   60.   2.625   0   0   10   6   5200.                       
      11: 0.625   3.5   0.95   1.69   0   46.3   0.   0.   2827.43   0   2   0.02   0   1580895.   0.01   1             
      12: 25   0   0   0   0   0   71500.   1   -1    -1   -1  0  0  -1  -1                                             
      13: 0   0   0   .FALSE.      | Geometric stiffness                                                                
      14: 1   | Number of Element                                                                                       
      15: ‘STABILITY’   ‘R/C CIRCULAR MEMBER 1’   1   1   2   0   0   1   0   0   0                                     
      16: 0   0   .FALSE.   | Mass                                                                                      
      17: 0   0      | Damp                                                                                             
      18: ‘SOL01 Elastic Static Analysis’                                                                               
      19: ‘APPLY AXIAL LOAD AT JOINT 2’                                                                                 
      20: 1   0                                                                                                         
      21: 1   2   0   0   ‘FX’   -1000000.   | Joint Load                                                               
      22: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      23: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      24: ‘INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 2’                                                                 
      25: 0   50000   2   .TRUE.   0                                                                                    
      26: ‘JOINT FY’   2   11   0   0   0                                                                               
      27: ‘ELE     ‘   1   12   0   0   0                                                                               
      28: ‘END’   0   0   0   0   0                                                                                     
      29: 1   2   0   0   ‘FY’   24   | Joint Load                                                                      
      30: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      31: ‘DISP. FROM  0    TO  24’   1   0   0   800                                                                   
      32: ‘END’   0   0   0   0                                                                                         
      33: ‘READ   UNIT=11   UNIT=12’                                                                                    
      34: ‘STOP’                                                                                                        
.
.
.
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**** STABILITY ELEMENT          1REACHES FIRST YIELD, WHICH OCCURRED AT THE FOLLOWING STAGE:

     STABILITY ELEMENT  FORCES...
       DISP. FROM STEP:  102 FACTOR:  1.000    
   ELEMENT LOAD         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP 

         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                 DISPL     2  -4.235713E-02    0.00000       -3.06000        0.00000       1.209287E-02    0.00000     FLP:   1.0    

         1    1  FORCE     1    998511.       1.378863E-02    228886.        0.00000      -8.545890E+07    4.57937    
                 FORCE     2  -1.000030E+06  -1.378863E-02   -228886.        0.00000        1.63044       0.384536     SP:    0.0    
 %7 % LIMIT STATE POINT 1 DEFINED DUE TO ELEMENT NO     1 AT STEP=  102

**** STABILITY ELEMENT          1 SEGMENT NO.          1 REACHES NOMINAL MOMENT AT CURVATURE OF CURNM =    0.268345E-03

**** STABILITY ELEMENT          1 EXTREME FIBER REACHES COMPRESSION STRAIN OF 0.004, AT WHICH 
     NOMINAL MOMENT, MN, IS DEFINED AT THE FOLLOWING STAGE:

     STABILITY ELEMENT  FORCES...
       DISP. FROM STEP:  247 FACTOR:  1.000    
   ELEMENT LOAD         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP 

         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                 DISPL     2  -0.110737        0.00000       -7.41002        0.00000       2.675829E-02    0.00000     FLP:   3.0    

         1    1  FORCE     1    995383.       1.239864E-02    299526.        0.00000      -1.152396E+08    3.94567    
                 FORCE     2  -1.000029E+06  -1.239864E-02   -299526.        0.00000       -17.3179       0.517838     SP:    0.0    
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     1 AT STEP=  247
***%MEMBER   1SEG.     1ELE.    61STRAIN=  -0.127191E-01AT ISTEP   665
     WHICH EXCEEDS ECU of    0.126985E-01
    STRESS =      -5271.18    
    STRAIN =     -0.127191E-01
    FCCP   =       6557.84    
    ECC    =      0.461123E-02

**** STABILITY ELEMENT          1 SEGMENT NO.          1 REACHES ULTIMATE CONCRETE COMPRESSION STRAIN.
     PLASTIC CURVATURE CURPLS =    0.730140E-03
     CUR  : TOTAL CURVATURE =   0.998485E-03
     COMPRESSION DEPTH TO N.A. IN U0 DIR. =    0.00000    

     COMPRESSION DEPTH TO N.A. IN V0 DIR. =    16.2017    
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**** STABILITY ELEMENT          1 EXTREME FIBER REACHES ULTIMATE COMPRESSION STRAIN,                PROGRAM CONTINUE
**** THE ELEMENT FORCES DISP. FROM STEP:  665 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                 DISPL     2  -0.607292        0.00000       -19.9200        0.00000       6.493258E-02    0.00000     FLP:   5.0    

         1    2  FORCE     1    987204.       2.922991E-02    292462.        0.00000      -1.252070E+08    10.1835    
                 FORCE     2  -1.000028E+06  -2.922991E-02   -292462.        0.00000       -37.0481       0.339241     SP:    0.0    
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     1 AT STEP=  665
.
.
.
     DEGREE OF FREEDOM #    9 IS READ FROM UNIT #   11     JOINT #    2, DIRECTION: FY

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000         0.0000         0.0000         0.0000         0.0000    
         2     0.0000         11768.        6.00000E-02     0.0000         0.0000    
         4     0.0000         23532.        0.12000         0.0000         0.0000    
.
.
.
       100     0.0000        2.25491E+05     3.0000         0.0000         0.0000    
*1*    102     0.0000        2.28887E+05     3.0600         0.0000         0.0000    
       104     0.0000        2.32136E+05     3.1200         0.0000         0.0000    
.
.
.
       246     0.0000        2.99435E+05     7.3800         0.0000         0.0000    
*2*    248     0.0000        2.99600E+05     7.4400         0.0000         0.0000    
       250     0.0000        2.99763E+05     7.5000         0.0000         0.0000    
.
.
       664     0.0000        2.92458E+05     19.920         0.0000         0.0000    
*3*    666     0.0000        2.92412E+05     19.980         0.0000         0.0000    
       668     0.0000        2.92369E+05     20.040         0.0000         0.0000    
.
.
.
       798     0.0000        2.88694E+05     23.940         0.0000         0.0000    
       800     0.0000        2.88623E+05     24.000         0.0000         0.0000    
 %5E%
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1 STRUCTURE....: TEST FULL-SCALE R/C COLUMN, use one ele & 8 segments                            TIME: 08:59:24, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 2                                     TIME: 08:59:24, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    1 IS READ FROM UNIT #   12

     STABILITY ELEMENT FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP

         0     0.0000         1   0.100000E+07   0.111844E-02  -0.807263E-03    0.00000        1.33950       0.140470    
                              2  -0.100000E+07  -0.111844E-02   0.807263E-03    0.00000       -1.04890       0.262160     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.273549E-01    0.00000        0.00000        0.00000        0.00000        0.00000     FLP:  0.0

         2     0.0000         1   0.100000E+07  -0.340459E-03    11777.0        0.00000      -0.429976E+07  -0.149020    
                              2  -0.100000E+07   0.340459E-03   -11777.0        0.00000       -10.3760       0.264571E-01 SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.273578E-01    0.00000      -0.600000E-01    0.00000       0.250191E-03    0.00000     FLP:  0.0

.

.

.
       102     0.0000         1    998511.       0.137886E-01    228886.        0.00000      -0.854589E+08    4.57940    
                              2  -0.100003E+07  -0.137886E-01   -228886.        0.00000        1.63040       0.384540     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.423571E-01    0.00000       -3.06000        0.00000       0.120929E-01    0.00000     FLP:  2.0

       104     0.0000         1    998460.       0.399111E-02    232143.        0.00000      -0.866916E+08    1.46510    
                              2  -0.100003E+07  -0.399111E-02   -232143.        0.00000        15.2960      -0.282924E-01 SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.429546E-01    0.00000       -3.12000        0.00000       0.123327E-01    0.00000     FLP:  2.0
.
.
.
       248     0.0000         1    995366.       0.184611E-01    299608.        0.00000      -0.115299E+09    6.55870    
                              2  -0.100003E+07  -0.184611E-01   -299608.        0.00000       -15.1610       0.872474E-01 SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.111390        0.00000       -7.44000        0.00000       0.268520E-01    0.00000     FLP:  4.0

       250     0.0000         1    995332.       0.123476E-01    299771.        0.00000      -0.115418E+09    4.16940    
                              2  -0.100003E+07  -0.123476E-01   -299771.        0.00000       -26.1080       0.275740     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.112710        0.00000       -7.50000        0.00000       0.270393E-01    0.00000     FLP:  4.0
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       664     0.0000         1    987204.       0.292299E-01    292462.        0.00000      -0.125207E+09    10.1840    
                              2  -0.100003E+07  -0.292299E-01   -292462.        0.00000       -37.0480       0.339240     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.607290        0.00000       -19.9200        0.00000       0.649326E-01    0.00000     FLP:  4.0
       
       666     0.0000         1    987173.       0.310389E-01    292419.        0.00000      -0.125252E+09    11.0430    
                              2  -0.100003E+07  -0.310389E-01   -292419.        0.00000       -37.8750       0.130930     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.610780        0.00000       -19.9800        0.00000       0.651177E-01    0.00000     FLP:  5.1
.
.
.

       800     0.0000         1    984053.       0.909737E-01    288630.        0.00000      -0.127907E+09    32.7050    
                              2  -0.100003E+07  -0.909737E-01   -288630.        0.00000       -38.1730       0.452513E-01 SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -0.868400        0.00000       -24.0000        0.00000       0.775572E-01    0.00000     FLP:  5.1
 

© 2012 by Taylor & Francis Group, LLC



189Numerical Examples

Equilibrium check at Step = 800 (Figure 7.10):
From output plot file units 11 and 12, P = 1,000 kip; H = 288.6 kip; Δ = 24 in.; 

M = 127,907 (k-in.); V = 288.6 kip.
V = H (ok)

	
M P HY M= + = ≈∆ 127 896, ( )ok

7.3.3  Example 3: Steel Member Plastic Analysis

This example is to compare the numerical solution with that in Example 8.6 of 
McGuire’s text book (McGuire et al., 2000). The structural model is shown in 
Figure 7.11. The bilinear interaction axial load–moment (PM) interaction method 
is used to determine the plastic limit load P at which the failure mechanism occurs. 
The following P–M interaction curve for the W-shape sections is used here (ASCE, 
1989):

	

M
P

P
M M

y
p p= −









 ≤1 18 1. 	 (7.1)

Y = 360˝
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Figure 7.10  Equilibrium check.
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Figure 7.11  Structure model.
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Solution

For W12 × 65, A = 19.1 (in.2); Iy = 533 (in.4); Zy = 96.8 (in.3); E = 29,000 (ksi); 
σy = 50 (ksi); Py = 19.1 × 50 = 955 (kip); Mp = 96.8 × 50 = 4,840 (in.-kip).

From Equation 7.1

	

P

P

M

My p

+ =
1 18

1
.

	
⇒ + =P M

955
0 85
4840

1
.

	 ⇒ = −M P5694 11 5 9624. .

Therefore, A0 = 5694.11; A1 = −5.9624; A2 = 0; A3 = 0. A0 − A3 were input into the 
program.

The moment–curvature curve is assumed to be an elastoplastic curve. Therefore, 
the moment–rotation curve is also elastoplastic (i.e., post-yield hardening ratio, 
SP = 0). The moment–rotation relations for members 1 and 2 are shown in Figure 7.12.

As mentioned in Chapter 4, the program does not consider material isotropic 
hardening or kinematic hardening (i.e., the interaction P–M yield curve will not 
move outward). Therefore, for the fully plastic condition, the force (M, P) points are 
always on the interaction curve. Performing pushover analysis with force control at 
joints 2 and 3, the pushover curve at joint 2 is shown in Figure 7.13.

Figure 7.14 shows the member’s axial load–moment interactions at joints 1 and 2 
while pushover load P increases. It can be seen that the force (M, P) points are always 
on the interaction curve when the fully plastic condition develops at joint 1. The 
output results are in favorable agreement with those shown in McGuire’s textbook.

Rotation
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Figure 7.12  Elastoplastic moment–rotation curves for Members 1 and 2.
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Intput Data (EX3_Test_PM.dat)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1:          ‘STRUCTURE DEFINITION-TEST PM Method’                                                                
       2:          ‘EXAMPLE: Use Example 8.6 of William McGuire’s Text Book’                                            
       3:           3  1 3 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00    .00 1 0                                                                        
       5:             2   96.0   0.00    .00 1 0                                                                        
       6:             3   288.0  00.0    .00 1 0                                                                        
       7:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       8:             1     1 1 1 1 1 1    0 0                                                                          
       9:             2     0 1 0 1 0 1    0 0                                                                          
      10:             3     0 1 1 1 0 1    0 0                                                                          
      11:                   6 |NMAT                                                                                     
      12: ‘IA_BILN MAT#1: MYA ‘  4  0.00001  29000.0  533.0  4840.0  -1  0   -1.                                        
      13: 0                                                                                                             
      14: 5694.1123   -5.96242   0.   0.                                                                                
      15: 0                                                                                                             
      16: ‘IA_BILN MAT#1: MYA ‘  4  0.00001  29000.0  533.0  4840.0  -1  0   -1.                                        
      17: 0                                                                                                             
      18: 5694.1123   -5.96242   0.   0.                                                                                
      19: 0                                                                                                             
      20: ‘IA_BILN MAT#3: MZA ‘  0  0.0  29000.0  533.0  4840.0  -1  0   -1.                                            
      21: ‘IA_BILN MAT#4: MZA ‘  0  0.0  29000.0  533.0  4840.0  -1  0   -1.                                            
      22: ‘IA_BILN MAT#5: MXA ‘  0  0.0  13000.0  533.0  4840.0  -1  0   -1.                                            
      23: ‘IA_BILN MAT#6: FXA ‘  0  0.0  29000.0  19.1   955.0   -1  0   -1.                                            
      24:         0 0 0 .FALSE.    |KG: AXL, FORM, ASSY                                                                 
      25:        2  NELEM                                                                                               
      26:        ‘IE3DBEAM’   ‘W12x65 STEEL MEMBER 1’ 1 2 3 4 5 6   1 2  0 1 0   0 0  0.                                
      27:         0  0 0 0 0 0 0   0  0 0 0 0 0 0  0                                                                        
      28:        ‘IE3DBEAM’   ‘W12x65 STEEL MEMBER 2’ 1 2 3 4 5 6   2 3  0 1 0   0 0  0.                                
      29:         0  0 0 0 0 0 0   0  0 0 0 0 0 0  0                                                                        
      30:          0 0 .FALSE. |  MASS                                                                                  
      31:          0 0  |  DAMP                                                                                         
      32:        ‘SOL04 SOLUTION’                                                                                       
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      33:        ‘APPLY HORIZONTAL P AT JOINT 3 AND VERTICAL 0.3P AT JOINT 2’                                           
      34:         1 50000 1  .TRUE. 0.000001  | MAXELD IPRINT IWRITE UNBAL SPLIMIT                                      
      35:         ‘JOINT FZ’  2  11 0  0  0                                                                             
      36:         ‘ELE     ‘  1  12 0  0  0                                                                                   
      37:         ‘ELE     ‘  2  13 0  0  0                                                                                   
      38:         ‘END     ‘  3  14 0  0  0                                                                             
      39:         1  3  0  0 ‘FX’  -327                                                                                 
      40:         1  2  0  0 ‘FZ’  -98.1		                                                                                
      41:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      42:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      43:        ‘FORCE. FROM  0     TO  -327   ‘  1   0  0  327                                                        
      44:        ‘END OF FORCE CONTROL       ‘  0   0  0    0                                                           
      45:        ‘READ UNIT=11 UNIT=12 UNIT=13’                                                                         
      46:        ‘STOP’                                                                                                 

© 2012 by Taylor & Francis Group, LLC



194 Seismic Design Aids for Nonlinear Pushover Analysis

7.3.4  Example 4: Two-Column Bent (Displacement Control)

A two-column bent used in the MCEER/ATC Design Example No. 8 (MCEER/
ATC, 2003) was chosen for the pushover analysis (see Figure 7.15). The column size 
and its cross-sectional details are the same as those in Example 1. They are diame-
ter = 48″, 20-#10 longitudinal bars, fc′ = 4 ksi, fy = 60 ksi, spiral = #5 @3.25″, concrete 
cover = 2.6″, and applied column axial dead loads = 765 kip. The post-yield modulus 
of the steel stress–strain curve is 1% of the elastic modulus. The column plastic hinge 
length is 33 in. from Equation 4.5. The foundation of the bent structure is assumed to 
be fixed in this example. The column shear failure mode and the cap beam–column 
joint shear failure mode are not considered in this example.

The structural model is shown in Figure 7.15. The superstructural bent cap beam 
is assumed to be an elastic 3D-BEAM member with the properties of AX = 3888 
(in.2); J = IY = IZ = 2.07  ×  108 (in.4).

Perform pushover analyses by using (1) plastic hinge length (PHL), (2) PM, 
(3) FSFS, and (4) finite segment–moment curvature (FSMC) methods. Pushover 
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Figure 7.15  Two-column bent structural model.
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displacement control is used at joint 3 in the negative global coordinate system 
(GCS) Y-direction until the displacement reaches 35″. P-δ effect is considered in the 
analysis. Find the displacement capacity of the bent from the pushover analysis. For 
the PHL and PM methods, the displacement capacity of the bent is defined when 
the first column reaches its plastic rotational capacity. The plastic rotation capacity 
of the column used here is 0.0515 (rad), which was calculated based on the bilinear 
moment–curvature curve in Figure 7.16 and plastic hinge length. The calculation of 
plastic rotation capacity is described below.

	 1.	PHL Method
From Example 1, the bilinear moment curvature curve is shown as follows:

The moment–rotation relationship for PHL method is shown in Figure 7.17, 
which was calculated based on the idealized bilinear moment–curvature 
curve from Figure 7.16. This curve has a post-yield slope equal to 0.24% of 
the initial slope. The 0.24% post-yield slope can be calculated as follows:

Based on Equation 4.16, the rotation θn at moment equal to Mn = 3275.5 k-ft 
is

	

θ φn n p
pL

L

L= −

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
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From Equation 4.17, the plastic rotation capacity θH at ultimate moment of 
Mu = 3409.5 kip-ft is

	
θ φ φH u n pL= − = − =( ) ( . . )( . ) . ( )0 00166 0 0001 3 0 0 03 515 rad

The rotation θu at moment Mu is

	 θ θ θu n H= + = + =0 0031 0 0515 0 055. . . ( )rad
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Figure 7.16  Bilinear moment–curvature curve (with 765 kip dead load).
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The initial slope in the moment–rotation curve is Mn/θn = 3275.5/0.0031 = 
1,056,612.9 (k-ft/rad). The post slope is (Mu − Mn)/(θu − θn) = (3409.5 − 3275.5)/
(0.055 − 0.0031) = 2582 (k-ft/rad). Therefore, the post slope is 0.24% of the 
initial slope.

The effect of column axial load and moment interaction is considered 
here, but the column axial load–plastic rotation capacity interaction is 
not considered. The P–M interaction curve with A0 = 28,989.6, A1 = 15.31, 
A2 = −0.0024, and A3 = 6.684E − 8 is shown in Figure 7.6 in Example 1. The 
output results are shown as follows (Figure 7.18a and b):
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Output (EX4_PHL2.out file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION-TEST NCHRP-12-49 EXAMPLE 8’                                                             
       2: ‘EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD’                                     
       3:           4  1 4 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   580.56  0.00    .00 1 0                                                                       
       6:             3   580.56  270.0   .00 1 0                                                                       
       7:             4   0.00   270.0    .00 1 0                                                                       
       8:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       9:             1     1 1 1 1 1 1    0 0                                                                          
      10:             2     0 0 1 1 1 0    0 0                                                                          
      11:             3     0 1 1 1 1 0    0 0                                                                          
      12:             4     1 1 1 1 1 1    0 0                                                                          
      13:                   7  |NMAT                                                                                    
      14: ‘HINGE   MAT#1: MYA ‘  0.0031   39306  0.0024    -1   0  393060000.  0.0515  1                                
      15: 0                                                                                                             
      16: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      17: 0                                                                                                             
      18: ‘HINGE   MAT#2: MYB ‘  0.0031   39306  0.0024    -1   0  393060000.  0.0515  1                                
      19: 0                                                                                                             
      20: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      21: 0                                                                                                             
      22: ‘IA_BILN MAT#3: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0     -1                                           
      23: ‘IA_BILN MAT#4: MZB ‘  0  0.001  3605. 260576. 38400.  -1  0     -1                                           
      24: ‘IA_BILN MAT#5: MXA ‘  0  0.001  3605. 521152. 38400.  -1  0     -1                                           
      25: ‘IA_BILN MAT#6: FXA ‘  0  0.001  3605. 1809.6  38400.  -1  0     -1                                           
      26: ‘3D-BEAM MAT#7’  3122. 1200.  3888. 0 0 207000000. 207000000.  207000000.                                     
      27:         2 1 1 .TRUE.    |KG: AXL, FORM, ASSY                                                                  
      28:   3  NELEM                                                                                                    
      29:   ‘IE3DBEAM’ ‘R/C CIRCULAR MEMBER 1’ 1 2 3 4 5 6   1 2  0 0 1   0 40.56  765.                                 
      30:   0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                         
      31:   ‘3D-BEAM’               ‘MEMBER 2’ 7             2 3  0 0 1 0 0 0  000000  0                                
      32:   ‘IE3DBEAM’ ‘R/C CIRCULAR MEMBER 3’ 1 2 3 4 5 6   4 3  0 0 1   0 40.56  765.                                 
      33:   0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                         
      34:          0 0 .FALSE. |  MASS                                                                                  
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      35:          0 0  |  DAMP                                                                                         
      36:        ‘SOL01  SOLUTION’                                                                                      
      37:        ‘APPLY AXIAL LOAD AT JOINT 2 AND JOINT 3’                                                              
      38:         1 1    | NLOAD MAXELD                                                                                 
      39:         1  2  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      40:         1  3  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      41:         0  0  0  0 ‘END’ 0.                                                                                   
      42:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
      43:        ‘SOL04 SOLUTION’                                                                                       
      44:        ‘INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3’                                                          
      45:         1 50000 2  .TRUE.  0 |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                              
      46:         ‘JOINT FY’  3  11 0  0  0                                                                             
      47:         ‘ELE     ‘  1  12 0  0  0                                                                                   
      48:         ‘ELE     ‘  3  13 0  0  0                                                                                   
      49:         ‘JOINT FY’  1  24 0  0  0		                                                                             
      50:         ‘END     ‘  2  15 0  0  0                                                                             
      51:         1  3  0  0 ‘FY’  -35                                                                                  
      52:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      53:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      54:        ‘DISP. FROM  0    TO  -35   ‘  1   0  0  800                                                           
      55:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      56:        ‘READ UNIT=11 UNIT=12 UNIT=13 UNIT=24’                                                                 
.
.

 PLASTIC HINGE LENGTH MOMENT-ROTATION MODEL        
 ==================================================

  MAT.      HA         VA       RATIO      MAX DUC        BETA   STIELE      PRMAX
   1  0.310000E-02 39306.0    0.240000E-02-1.00000     0.00000    0.393060E+090.515000E-01

 P-MY INTERACTION EQUATION:
M(P)=A0 + A1*P + A2*P**2 + A3*P**3
WHERE   A0=     28989.6    
        A1=     15.3100    
        A2=   -0.240000E-02
        A3=    0.668400E-07
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   2  0.310000E-02 39306.0    0.240000E-02-1.00000     0.00000    0.393060E+090.515000E-01

 P-MY INTERACTION EQUATION:
M(P)=A0 + A1*P + A2*P**2 + A3*P**3
WHERE   A0=     28989.6    
        A1=     15.3100    
        A2=   -0.240000E-02
        A3=    0.668400E-07

1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:10:58, DATE: 31-AUG-09 
  SOLUTION.....:                                                                                                                 

 BILINEAR INTERACTIVE MATERIAL PROPERTIES
 ========================================

  MAT.    ELAS         SP           E           TI          MP      MAX DUC        BETA      REDU F      PRMAX

     3 0.00000    0.100000E-02 3605.00     260576.     38400.0     0.00000     0.00000     0.00000    -1.00000    

     4 0.00000    0.100000E-02 3605.00     260576.     38400.0     0.00000     0.00000     0.00000    -1.00000    

     5 0.00000    0.100000E-02 3605.00     521152.     38400.0     0.00000     0.00000     0.00000    -1.00000    

     6 0.00000    0.100000E-02 3605.00     1809.60     38400.0     0.00000     0.00000     0.00000    -1.00000    

1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:10:58, DATE: 31-AUG-09 
  SOLUTION.....:                                                                                                                 

     3-D ELASTIC BEAM ELEMENT
     ========================

    MATL.    E     GAMMA        AX        AY        AZ        IX        IY        IZ

       7 3.122E+03 1.200E+03 3.888E+03  0.00      0.00     2.070E+08 2.070E+08 2.070E+08
.
.
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**** IA_BILN ELEMENT          3 YIELD AT END A   
**** THE ELEMENT FORCES DISP. FROM STEP:  103 FACTOR:  1.000     ARE:

         3    2  DISPL     4    0.00000        0.00000        0.00000        0.00000       8.249833E-03    0.00000    
                 DISPL     3  -3.844852E-02    0.00000        4.45491        0.00000       8.062724E-03    0.00000     FLP:   3.0    

         3    2  FORCE     4    464.487        0.00000       -127.789        0.00000        35590.2        0.00000    
                 FORCE     3   -464.487        0.00000        127.789        0.00000        35485.0        0.00000     CHR: 001000
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     3 AT STEP=  103

**** IA_BILN ELEMENT          3 YIELD AT END B   
**** THE ELEMENT FORCES DISP. FROM STEP:  104 FACTOR:  1.000     ARE:

         3    2  DISPL     4    0.00000        0.00000        0.00000        0.00000       8.330754E-03    0.00000    
                 DISPL     3  -3.827270E-02    0.00000        4.49861        0.00000       8.142346E-03    0.00000     FLP:   4.0    

         3    2  FORCE     4    462.363        0.00000       -127.919        0.00000        35593.8        0.00000    
                 FORCE     3   -462.363        0.00000        127.919        0.00000        35562.1        0.00000     CHR: 001100

**** IA_BILN ELEMENT          1 YIELD AT END A   
**** THE ELEMENT FORCES DISP. FROM STEP:  124 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000       9.943586E-03    0.00000    
                 DISPL     2  -9.080197E-02    0.00000        5.36953        0.00000       9.736083E-03    0.00000     FLP:   3.0    

         1    2  FORCE     1    1096.96        0.00000       -147.995        0.00000        42984.6        0.00000    
                 FORCE     2   -1096.96        0.00000        147.995        0.00000        42822.8        0.00000     CHR: 001000

**** IA_BILN ELEMENT          1 YIELD AT END B   
**** THE ELEMENT FORCES DISP. FROM STEP:  125 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000       1.002457E-02    0.00000    
                 DISPL     2  -9.085673E-02    0.00000        5.41327        0.00000       9.816640E-03    0.00000     FLP:   4.0    

         1    2  FORCE     1    1097.62        0.00000       -148.218        0.00000        42988.3        0.00000    
                 FORCE     2   -1097.62        0.00000        148.218        0.00000        42991.1        0.00000     CHR: 001100
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 * ELEMENT     3 INELASTIC ROTATION IN MY  DIR. AT END A   =  0.5151E-01 > PLASTIC ROTATION 
 CAPACITY OF   0.5150E-01AT STEP =  740
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     3 AT STEP=  740
.
.
.
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:10:58, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:10:58, DATE: 31-AUG-09 

  ,  LOADING #    0     PEAK DUCTILITIES

    IE3DBEAM MEMBER DUCTILITY:        
             ELEM#      |MYA|      |MYB|      |MZA|      |MZB|      |MX |      |FX |
 DUCTILITY :    1     6.46363    6.52546    0.00000    0.00000    0.00000    0.00000
 YIELD DISP:    1     0.01002    0.00990    0.00000    0.00000    0.00000    0.00000

    IE3DBEAM MEMBER DUCTILITY:        
             ELEM#      |MYA|      |MYB|      |MZA|      |MZB|      |MX |      |FX |
 DUCTILITY :    3     7.77826    7.85539    0.00000    0.00000    0.00000    0.00000
 YIELD DISP:    3     0.00833    0.00822    0.00000    0.00000    0.00000    0.00000

1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:10:58, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:10:58, DATE: 31-AUG-09 

 %5S%
     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   11     JOINT #    3, DIRECTION: FY

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000       -2.74601E-06     0.0000         0.0000         0.0000    
         2     0.0000        -4.9246       -8.75000E-02     0.0000         0.0000    
         4     0.0000        -9.8492       -0.17500         0.0000         0.0000    
.
.
.
       102     0.0000        -251.16        -4.4625         0.0000         0.0000    
*2*    104     0.0000        -253.36        -4.5500         0.0000         0.0000    
       106     0.0000        -255.73        -4.6375         0.0000         0.0000    
.
.
.
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       738     0.0000        -210.84        -32.288         0.0000         0.0000    
*3*    740     0.0000        -210.63        -32.375         0.0000         0.0000    
       742     0.0000        -210.42        -32.463         0.0000         0.0000    
.
.
.
       798     0.0000        -204.49        -34.913         0.0000         0.0000    
       800     0.0000        -204.28        -35.000         0.0000         0.0000    
 %5E%
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:10:58, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:10:58, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    1 IS READ FROM UNIT #   12

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP

         0     0.0000         1    765.000        0.00000      -1.448560E-06    0.00000       2.794090E-04    0.00000    
                              2   -765.000        0.00000       1.448560E-06    0.00000       5.076500E-04    0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.171610E-11    0.00000    
                                 -6.332390E-02    0.00000       6.326700E-09    0.00000       1.684990E-10    0.00000        0.0    

         2     0.0000         1    770.890        0.00000       -2.46060        0.00000        700.680        0.00000    
                              2   -770.890        0.00000        2.46060        0.00000        695.340        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.616600E-04    0.00000    
                                 -6.381160E-02    0.00000       8.729650E-02    0.00000       1.579920E-04    0.00000        0.0    

.

.

.
       800     0.0000         1    1099.10        0.00000       -94.1460        0.00000        44647.0        0.00000    
                              2   -1099.10        0.00000        94.1460        0.00000        44649.0        0.00000     001100
                         DISP      0.00000        0.00000        0.00000        0.00000       6.479510E-02    0.00000    
                                 -9.098140E-02    0.00000        34.9890        0.00000       6.458690E-02    0.00000        4.0    
 %5E%
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1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:10:58, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:10:58, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    3 IS READ FROM UNIT #   13

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP

         0     0.0000         4    765.000        0.00000      -1.280530E-06    0.00000       2.470730E-04    0.00000    
                              3   -765.000        0.00000       1.280530E-06    0.00000       4.487110E-04    0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.040350E-11    0.00000    
                                 -6.332390E-02    0.00000       5.617910E-09    0.00000       1.489120E-10    0.00000        0.0    

         2     0.0000         4    759.110        0.00000       -2.46410        0.00000        701.130        0.00000    
                              3   -759.110        0.00000        2.46410        0.00000        695.790        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.617620E-04    0.00000    
                                 -6.283620E-02    0.00000       8.735120E-02    0.00000       1.580930E-04    0.00000        0.0    

.

.

.
       800     0.0000         4    430.880        0.00000       -110.180        0.00000        37304.0        0.00000    
                              3   -430.880        0.00000        110.180        0.00000        37271.0        0.00000     001100
                         DISP      0.00000        0.00000        0.00000        0.00000       6.479880E-02    0.00000    
                                 -3.566640E-02    0.00000        34.9920        0.00000       6.459250E-02    0.00000        4.0    

 %5E%
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204 Seismic Design Aids for Nonlinear Pushover Analysis

The output result shows that the nominal moment occurred at member 
3 at Step 103 (i.e., pushover displacement = 4.5″), and the displacement 
capacity of the bent is reached at Step 740 (pushover displacement = 32.3″) 
at which the plastic rotation of member 3 exceeds the plastic capacity of 
0.0515 rad.

Equilibrium check at Step = 800:
From output plot file units 11, 12, and 13
H = 204.28 kip; Δ = 35″
Column No. 1 end forces: M1 = 44,647 k-in.; V1 = 94.146 kip; A1 = 1,099.1 kip
Column No. 2 end forces: M2 = 37,304 k-in.; V2 = 110.18 kip; A2 = 430.88 kip

	
A P= =∑ 1530 2( ) ( )kip ok

	
V H= ≈∑ 204 3. ( ) ( )kip ok

	
MB =∑ 0 :

	 M M A H P P
−

+ + ∗ − ∗ − − ∗ + =1 2 1 270 580 56 270 0. ( )∆ ∆

	 → = ∗ + + ∗ − ∗ − = ≈M P H A M M
_

( ) . ( ) , ( )1 1 2 1270 2 580 56 270 44 662∆ ok

Similarly

	 M P H A M M
_

( ) . ( ) , ( )2 2 1 2270 2 580 56 270 37 288= − ∗ − + ∗ + ∗ − = ≈∆ ok

Output (EX4_PHL2B.out file)

If the column axial–plastic rotation capacity interaction is considered in the 
PHL method, the output results are shown as follows:
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1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION-TEST NCHRP-12-49 EXAMPLE 8’                                                             
       2: ‘EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD’                                     
       3:           4  1 4 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   580.56  0.00    .00 1 0                                                                       
       6:             3   580.56  270.0   .00 1 0                                                                       
       7:             4   0.00   270.0    .00 1 0                                                                       
       8:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       9:             1     1 1 1 1 1 1    0 0                                                                          
      10:             2     0 0 1 1 1 0    0 0                                                                          
      11:             3     0 1 1 1 1 0    0 0                                                                          
      12:             4     1 1 1 1 1 1    0 0                                                                          
      13:                   7  |NMAT                                                                                    
      14: ‘HINGE   MAT#1: MYA ‘  0.0031   39306  0.0024    -1   0  393060000.  0.0515  3                                
      15: 1   |ICHOICE                                                                                                  
      16: 7    |M                                                                                                       
      17: 0.              2.871880E+04                                                                                  
      18: 1.068400E+03    4.243420E+04                                                                                  
      19: 2.136810E+03    5.112170E+04                                                                                  
      20: 3.205210E+03    5.591830E+04                                                                                  
      21: 4.273610E+03    5.582170E+04                                                                                  
      22: 5.342020E+03    5.144160E+04                                                                                  
      23: 6.410420E+03    4.537660E+04                                                                                  
      24: 1   |ICHOICE                                                                                                  
      25: 7    |M                                                                                                       
      26: 0.    6.436713E-02             ‘FATIGUE’                                                                      
      27: 1.068400E+03    4.345796E-02   ‘BUCKLING’                                                                     
      28: 2.136810E+03    3.101939E-02   ‘SPLICE’	                                                                       
      29: 3.205210E+03    2.364369E-02   ‘CONCRETE’                                                                     
      30: 4.273610E+03    1.973302E-02   ‘CONCRETE’                                                                     
      31: 5.342020E+03    1.697527E-02   ‘CONCRETE’                                                                     
      32: 6.410420E+03    1.478998E-02   ‘CONCRETE’                                                                     
      33: 0   |ICHOICE3                                                                                                 
      34: ‘HINGE   MAT#2: MYB ‘  0.0031   39306  0.0024    -1   0  393060000.  0.0515  3                                
      35: 1   |ICHOICE                                                                                                  
      36: 7    |M                                                                                                       
      37: 0.              2.871880E+04                                                                                  
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      38: 1.068400E+03    4.243420E+04                                                                                  
      39: 2.136810E+03    5.112170E+04                                                                                  
      40: 3.205210E+03    5.591830E+04                                                                                  
      41: 4.273610E+03    5.582170E+04                                                                                  
      42: 5.342020E+03    5.144160E+04                                                                                  
      43: 6.410420E+03    4.537660E+04                                                                                  
      44: 1   |ICHOICE                                                                                                  
      45: 7    |M                                                                                                       
      46: 0.    6.436713E-02             ‘FATIGUE’                                                                      
      47: 1.068400E+03    4.345796E-02   ‘BUCKLING’                                                                     
      48: 2.136810E+03    3.101939E-02   ‘SPLICE’	                                                                       
      49: 3.205210E+03    2.364369E-02   ‘CONCRETE’                                                                     
      50: 4.273610E+03    1.973302E-02   ‘CONCRETE’                                                                     
      51: 5.342020E+03    1.697527E-02   ‘CONCRETE’                                                                     
      52: 6.410420E+03    1.478998E-02   ‘CONCRETE’                                                                     
      53: 0   |ICHOICE3                                                                                                 
      54: ‘IA_BILN MAT#3: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0     -1                                           
      55: ‘IA_BILN MAT#4: MZB ‘  0  0.001  3605. 260576. 38400.  -1  0     -1                                           
      56: ‘IA_BILN MAT#5: MXA ‘  0  0.001  3605. 521152. 38400.  -1  0     -1                                           
1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
      57: ‘IA_BILN MAT#6: FXA ‘  0  0.001  3605. 1809.6  38400.  -1  0     -1                                           
      58: ‘3D-BEAM MAT#7’  3122. 1200.  3888. 0 0 207000000. 207000000.  207000000.                                     
      59:         2 1 1 .TRUE.    |KG: AXL, FORM, ASSY                                                                  
      60:   3  NELEM                                                                                                    
      61:   ‘IE3DBEAM’ ‘R/C CIRCULAR MEMBER 1’ 1 2 3 4 5 6   1 2  0 0 1   0 40.56  765.                                 
      62:   0  0.316  48.  0.  40.56  40.56  0.    0  0.316 48.  0.  40.56  40.56  0.  0                                
      63:   ‘3D-BEAM’               ‘MEMBER 2’ 7             2 3  0 0 1 0 0 0  000000  0                                
      64:   ‘IE3DBEAM’ ‘R/C CIRCULAR MEMBER 3’ 1 2 3 4 5 6   4 3  0 0 1   0 40.56  765.                                 
      65:   0  0.316  48.  0.  40.56  40.56  0.    0  0.316 48.  0.  40.56  40.56  0.  0                                
      66:          0 0 .FALSE. |  MASS                                                                                  
      67:          0 0  |  DAMP                                                                                         
      68:        ‘SOL01  SOLUTION’                                                                                      
      69:        ‘APPLY AXIAL LOAD AT JOINT 2 AND JOINT 3’                                                              
      70:         1 1    | NLOAD MAXELD                                                                                 
      71:         1  2  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      72:         1  3  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      73:         0  0  0  0 ‘END’ 0.                                                                                   
      74:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
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      75:        ‘SOL04 SOLUTION’                                                                                       
      76:        ‘INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3’                                                          
      77:         1 50000 2  .TRUE.  0 |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                              
      78:         ‘JOINT FY’  3  11 0  0  0                                                                             
      79: 		  ‘ELE     ‘  1  12 0  0  0                                                                                   
      80: 		  ‘ELE     ‘  3  13 0  0  0                                                                                   
      81:         ‘JOINT FY’  1  24 0  0  0		                                                                             
      82:         ‘END     ‘  2  15 0  0  0                                                                             
      83:         1  3  0  0 ‘FY’  -35                                                                                  
      84:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      85:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      86:        ‘DISP. FROM  0    TO  -35   ‘  1   0  0  800                                                           
      87:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      88:        ‘READ UNIT=11 UNIT=12 UNIT=13 UNIT=24’                                                                 
      89:        ‘STOP’                                                                                                 
.
.
.
 PLASTIC HINGE LENGTH MOMENT-ROTATION MODEL        
 ==================================================

  MAT.      HA         VA       RATIO      MAX DUC        BETA   STIELE      PRMAX
   1  0.310000E-02 39306.0    0.240000E-02-1.00000     0.00000    0.393060E+090.515000E-01

 TOTAL DATA POINTS FOR A0-A3 (M)=  7
 TOTAL COEFS FOR POLYNOMIAL (N) =  4
 DATA POINT X=AXIAL LOAD; Y=NOMINAL MOMENT
 DATA POINT NO.   1: X=    0.00000    Y=    28718.8    
 DATA POINT NO.   2: X=    1068.40    Y=    42434.2    
 DATA POINT NO.   3: X=    2136.81    Y=    51121.7    
 DATA POINT NO.   4: X=    3205.21    Y=    55918.3    
 DATA POINT NO.   5: X=    4273.61    Y=    55821.7    
 DATA POINT NO.   6: X=    5342.02    Y=    51441.6    
 DATA POINT NO.   7: X=    6410.42    Y=    45376.6    

 TOTAL DATA POINTS FOR B0-B3 (M)=  7
 TOTAL COEFS FOR POLYNOMIAL (N) =  4
 DATA POINT X=AXIAL LOAD; Y=PLASTIC ROTATION CAPACITY
 DATA POINT NO.   1: X=    0.00000    Y=   0.643671E-01
 DATA POINT NO.   2: X=    1068.40    Y=   0.434580E-01
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 DATA POINT NO.   3: X=    2136.81    Y=   0.310194E-01
 DATA POINT NO.   4: X=    3205.21    Y=   0.236437E-01
 DATA POINT NO.   5: X=    4273.61    Y=   0.197330E-01
 DATA POINT NO.   6: X=    5342.02    Y=   0.169753E-01
 DATA POINT NO.   7: X=    6410.42    Y=   0.147900E-01

 P-MY INTERACTION EQUATION:
M(P)=A0 + A1*P + A2*P**2 + A3*P**3
WHERE   A0=     28622.8    
        A1=     15.6001    
        A2=   -0.246176E-02
        A3=    0.672645E-07

 P-PLASTIC ROTATION CAPACITY (PRC) INTERACTION EQUATION:
PRC(P)=B0 + B1*P + B2*P**2 + B3*P**3
WHERE   B0=    0.642238E-01
        B1=   -0.232192E-04
        B2=    0.414012E-08
        B3=   -0.269005E-12

.

.

.
     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   11     JOINT #    3, DIRECTION: FY

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000       -2.74601E-06     0.0000         0.0000         0.0000    
         2     0.0000        -4.9246       -8.75000E-02     0.0000         0.0000    
.
.
.
       100     0.0000        -246.23        -4.3750         0.0000         0.0000    
*2*    102     0.0000        -250.16        -4.4625         0.0000         0.0000    
       104     0.0000        -252.55        -4.5500         0.0000         0.0000    
.
.
.
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       660     0.0000        -217.79        -28.875         0.0000         0.0000    
*3*    662     0.0000        -217.58        -28.963         0.0000         0.0000    
       664     0.0000        -217.36        -29.050         0.0000         0.0000    
.
.
.
       798     0.0000        -203.18        -34.913         0.0000         0.0000    
       800     0.0000        -202.96        -35.000         0.0000         0.0000    
 %5E%
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:24:20, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:24:20, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    1 IS READ FROM UNIT #   12

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP

         0     0.0000         1    765.000        0.00000      -1.448560E-06    0.00000       2.794090E-04    0.00000    
                              2   -765.000        0.00000       1.448560E-06    0.00000       5.076500E-04    0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.171610E-11    0.00000    
                                 -6.332390E-02    0.00000       6.326700E-09    0.00000       1.684990E-10    0.00000        0.0    

         2     0.0000         1    770.890        0.00000       -2.46060        0.00000        700.680        0.00000    
                              2   -770.890        0.00000        2.46060        0.00000        695.340        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.616600E-04    0.00000    
                                 -6.381160E-02    0.00000       8.729650E-02    0.00000       1.579920E-04    0.00000        0.0    

.

.

.
       800     0.0000         1    1097.60        0.00000       -93.7560        0.00000        44514.0        0.00000    
                              2   -1097.60        0.00000        93.7560        0.00000        44517.0        0.00000     001100
                         DISP      0.00000        0.00000        0.00000        0.00000       6.479520E-02    0.00000    
                                 -9.085230E-02    0.00000        34.9890        0.00000       6.458800E-02    0.00000        17.    
 %5E%
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1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,use IE3DBEAM MAT19,plastic hinge length METHOD         TIME: 10:24:20, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:24:20, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    3 IS READ FROM UNIT #   13

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP

         0     0.0000         4    765.000        0.00000      -1.280530E-06    0.00000       2.470730E-04    0.00000    
                              3   -765.000        0.00000       1.280530E-06    0.00000       4.487110E-04    0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.040350E-11    0.00000    
                                 -6.332390E-02    0.00000       5.617910E-09    0.00000       1.489120E-10    0.00000        0.0    

         2     0.0000         4    759.110        0.00000       -2.46410        0.00000        701.130        0.00000    
                              3   -759.110        0.00000        2.46410        0.00000        695.790        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.617620E-04    0.00000    
                                 -6.283620E-02    0.00000       8.735120E-02    0.00000       1.580930E-04    0.00000        0.0    

.

.

.
       800     0.0000         4    432.440        0.00000       -109.270        0.00000        37101.0        0.00000    
                              3   -432.440        0.00000        109.270        0.00000        37036.0        0.00000     001100
                         DISP      0.00000        0.00000        0.00000        0.00000       6.479890E-02    0.00000    
                                 -3.579560E-02    0.00000        34.9920        0.00000       6.459350E-02    0.00000        10.    
 %5E%
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The output result shows that the displacement capacity of the bent is 
reached at Step 661 (pushover displacement = 28.9″) at which the plastic 
rotation of member 1 exceeds the plastic capacity of 0.0434 rad. It can be 
seen that the displacement capacity of the bent reduces from 32.3″ to 28.9″ 
if the column axial–plastic rotation capacity interaction is included in the 
analysis.

	 2.	  PM Method
As shown in Figure 7.16, the post-yield slope of the idealized bilinear 
moment–curvature curve is close to zero (0.26%). Assume that the post-
yield slope is equal to zero (i.e., SP = 0).

The effect of column axial load and moment interaction is considered 
here. The P–M interaction curve with A0 = 28,989.6, A1 = 15.31, A2 = −0.0024, 
and A3 = 6.684E − 8 is shown in Figure 7.6 in Example 1. Since SP = 0 (i.e., 
no isotropic hardening) is considered here, the member force point (axial 
load, moment) is on the P–M yield curve when a member end is in the yield 
stage. The output results are shown as follows:
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Output (EX4_PM3.out file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1:          ‘STRUCTURE DEFINITION-TEST NCHRP 12-49 EXAMPLE 8’                                                    
       2:          ‘EXAMPLE:TWO-COLUMN BENT,IE3DBEAM, PM method, ELAS=4 & POSTSLOPE=0 for columns’                      
       3:           4  1 4 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   580.56  0.00    .00 1 0                                                                       
       6:             3   580.56  270.0   .00 1 0                                                                       
       7:             4   0.00   270.0    .00 1 0                                                                       
       8:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       9:             1     1 1 1 1 1 1    0 0                                                                          
      10:             2     0 0 1 1 1 0    0 0                                                                          
      11:             3     0 1 1 1 1 0    0 0                                                                          
      12:             4     1 1 1 1 1 1    0 0                                                                          
      13:                   7  |NMAT                                                                                    
      14: ‘IA_BILN MAT#1: MYA ‘  4  0  3605. 109032. 39306.  -1  0   0.0515                                             
      15: 0                                                                                                             
      16: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      17: 0                                                                                                             
      18: ‘IA_BILN MAT#2: MYB ‘  4  0  3605. 109032. 39306.  -1  0   0.0515                                             
      19: 0                                                                                                             
      20: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      21: 0                                                                                                             
      22: ‘IA_BILN MAT#3: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0    -1                                            
      23: ‘IA_BILN MAT#4: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0    -1                                            
      24: ‘IA_BILN MAT#5: MXA ‘  0  0.001  3605. 521152. 38400.  -1  0    -1                                            
      25: ‘IA_BILN MAT#6: FXA ‘  0  0.001  3605. 1809.6  38400.  -1  0    -1                                            
      26: ‘3D-BEAM MAT#7’  3122. 1200.  3888. 0 0 207000000. 207000000.  207000000.                                     
      27:         2 1 1 .TRUE.    |KG: AXL, FORM, ASSY                                                                  
      28:        3  NELEM                                                                                               
      29:   ‘IE3DBEAM’   ‘R/C CIRCULAR MEMBER 1’ 1 2 3 4 5 6   1 2  0 0 1   0 40.56  765.                               
      30:    0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                        
      31:   ‘3D-BEAM’                 ‘MEMBER 2’ 7             2 3  0 0 1 0 0 0  000000  0                              
      32:   ‘IE3DBEAM’   ‘R/C CIRCULAR MEMBER 3’ 1 2 3 4 5 6   4 3  0 0 1   0 40.56  765.                               
      33:    0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                        
      34:          0 0 .FALSE. |  MASS                                                                                  
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      35:          0 0  |  DAMP                                                                                         
      36:        ‘SOL01  SOLUTION’                                                                                      
      37:        ‘APPLY AXIAL LOAD AT JOINT 2 AND JOINT 3’                                                              
      38:         1 1    | NLOAD MAXELD                                                                                 
      39:         1  2  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      40:         1  3  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      41:         0  0  0  0 ‘END’ 0.                                                                                   
      42:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
      43:        ‘SOL04 SOLUTION’                                                                                       
      44:        ‘INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3’                                                          
      45:         1 50000 2  .TRUE. 0  | MAXELD IPRINT IWRITE UNBAL SPLIMIT                                             
      46:         ‘JOINT FY’  3  11 0  0  0                                                                             
      47: 		  ‘ELE     ‘  1  12 0  0  0                                                                                   
      48: 		  ‘ELE     ‘  3  13 0  0  0                                                                                   
      49:         ‘JOINT FY’  1  14 0  0  0		                                                                             
      50:         ‘END     ‘  2  15 0  0  0                                                                             
      51:         1  3  0  0 ‘FY’  -35                                                                                  
      52:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      53:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      54:        ‘DISP. FROM  0    TO  -35   ‘  1   0  0  800                                                           
      55:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      56:        ‘READ UNIT=11 UNIT=12 UNIT=13 UNIT=14’
      57:        ‘STOP’                                                                                                                                           
                       
.
.
.
LOAD CASE:  1  JOINT:     3  DIRECTION: FY   DOF(S)   15               MAGNITUDE:  -35.0000      ...JOINT DISPLACEMENT... 
1 STRUCTURE....: EXAMPLE:TWO-COLUMN BENT,IE3DBEAM, PM method, ELAS=4 & POSTSLOPE=0 for columns   TIME: 10:34:05, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:34:05, DATE: 31-AUG-09 

**** IA_BILN ELEMENT          3 YIELD AT END A   
**** THE ELEMENT FORCES DISP. FROM STEP:  103 FACTOR:  1.000     ARE:

         3    1  DISPL     4    0.00000        0.00000        0.00000        0.00000       8.249833E-03    0.00000    
                 DISPL     3  -3.844846E-02    0.00000        4.45491        0.00000       8.062724E-03    0.00000     FLP:   3.0    
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         3    1  FORCE     4    464.487        0.00000       -127.788        0.00000        35589.8        0.00000    
                 FORCE     3   -464.487        0.00000        127.788        0.00000        35485.0        0.00000     CHR: 001000
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     3 AT STEP=  103

**** IA_BILN ELEMENT          3 YIELD AT END B   
**** THE ELEMENT FORCES DISP. FROM STEP:  104 FACTOR:  1.000     ARE:

         3    1  DISPL     4    0.00000        0.00000        0.00000        0.00000       8.330755E-03    0.00000    
                 DISPL     3  -3.827332E-02    0.00000        4.49861        0.00000       8.142351E-03    0.00000     FLP:   4.0    

         3    1  FORCE     4    462.371        0.00000       -127.859        0.00000        35562.0        0.00000    
                 FORCE     3   -462.371        0.00000        127.859        0.00000        35562.0        0.00000     CHR: 001100

**** IA_BILN ELEMENT          1 YIELD AT END A   
**** THE ELEMENT FORCES DISP. FROM STEP:  124 FACTOR:  1.000     ARE:

         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000       9.943656E-03    0.00000    
                 DISPL     2  -9.066310E-02    0.00000        5.36958        0.00000       9.737154E-03    0.00000     FLP:   3.0    

         1    1  FORCE     1    1095.28        0.00000       -147.985        0.00000        42967.0        0.00000    
                 FORCE     2   -1095.28        0.00000        147.985        0.00000        42826.0        0.00000     CHR: 001000

**** IA_BILN ELEMENT          1 YIELD AT END B   
**** THE ELEMENT FORCES DISP. FROM STEP:  125 FACTOR:  1.000     ARE:

         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000       1.002465E-02    0.00000    
                 DISPL     2  -9.070938E-02    0.00000        5.41331        0.00000       9.817779E-03    0.00000     FLP:   4.0    

         1    1  FORCE     1    1095.84        0.00000       -148.162        0.00000        42967.0        0.00000    
                 FORCE     2   -1095.84        0.00000        148.162        0.00000        42972.8        0.00000     CHR: 001100

 * ELEMENT     3 INELASTIC ROTATION IN MY  DIR. AT END A   =  0.5157E-01 > PLASTIC ROTATION 
 CAPACITY OF   0.5150E-01AT STEP =  738
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     3 AT STEP=  738
.
.
.
 %5S%
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     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   11     JOINT #    3, DIRECTION: FY

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000       -2.74601E-06     0.0000         0.0000         0.0000    
         2     0.0000        -4.9246       -8.75000E-02     0.0000         0.0000    
.
.
.
       102     0.0000        -251.16        -4.4625         0.0000         0.0000    
*2*    104     0.0000        -253.29        -4.5500         0.0000         0.0000    
       106     0.0000        -255.52        -4.6375         0.0000         0.0000    
.
.
       736     0.0000        -197.81        -32.200         0.0000         0.0000    
*3*    738     0.0000        -197.56        -32.288         0.0000         0.0000    
       740     0.0000        -197.31        -32.375         0.0000         0.0000    
.
.
.
       800     0.0000        -189.83        -35.000         0.0000         0.0000    
 %5E%
1 STRUCTURE....: EXAMPLE:TWO-COLUMN BENT,IE3DBEAM, PM method, ELAS=4 & POSTSLOPE=0 for columns   TIME: 10:34:05, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:34:05, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    1 IS READ FROM UNIT #   12

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP

         0     0.0000         1    765.000        0.00000      -1.448560E-06    0.00000       2.794100E-04    0.00000    
                              2   -765.000        0.00000       1.448560E-06    0.00000       5.076510E-04    0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.171610E-11    0.00000    
                                 -6.332390E-02    0.00000       6.326700E-09    0.00000       1.684990E-10    0.00000        0.0    

         2     0.0000         1    770.890        0.00000       -2.46060        0.00000        700.680        0.00000    
                              2   -770.890        0.00000        2.46060        0.00000        695.340        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.616600E-04    0.00000    
                                 -6.381160E-02    0.00000       8.729650E-02    0.00000       1.579920E-04    0.00000        0.0    
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.
       800     0.0000         1    1082.50        0.00000       -88.5060        0.00000        42835.0        0.00000    
                              2   -1082.50        0.00000        88.5060        0.00000        42835.0        0.00000     001100
                         DISP      0.00000        0.00000        0.00000        0.00000       6.479570E-02    0.00000    
                                 -8.960670E-02    0.00000        34.9900        0.00000       6.459820E-02    0.00000        4.0    
 %5E%
1 STRUCTURE....: EXAMPLE:TWO-COLUMN BENT,IE3DBEAM, PM method, ELAS=4 & POSTSLOPE=0 for columns   TIME: 10:34:05, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:34:05, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    3 IS READ FROM UNIT #   13

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP

         0     0.0000         4    765.000        0.00000      -1.280530E-06    0.00000       2.470740E-04    0.00000    
                              3   -765.000        0.00000       1.280530E-06    0.00000       4.487110E-04    0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.040350E-11    0.00000    
                                 -6.332390E-02    0.00000       5.617910E-09    0.00000       1.489120E-10    0.00000        0.0    

         2     0.0000         4    759.110        0.00000       -2.46410        0.00000        701.130        0.00000    
                              3   -759.110        0.00000        2.46410        0.00000        695.790        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000       1.617620E-04    0.00000    
                                 -6.283620E-02    0.00000       8.735120E-02    0.00000       1.580930E-04    0.00000        0.0    

.

.

.
       800     0.0000         4    447.490        0.00000       -101.340        0.00000        35190.0        0.00000    
                              3   -447.490        0.00000        101.340        0.00000        35190.0        0.00000     001100
                         DISP      0.00000        0.00000        0.00000        0.00000       6.479930E-02    0.00000    
                                 -3.704120E-02    0.00000        34.9920        0.00000       6.460350E-02    0.00000        4.0    
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The output result shows that the nominal moment occurred at member 3 at 
Step 103 (i.e., pushover displacement = 4.5″), and the displacement capacity of 
the bent is reached at Step 738 (pushover displacement = 32.3″) at which the 
plastic rotation of member 3 exceeds the plastic capacity of 0.0515 rad. If p − δ 
effect is not considered, the pushover curve at joint 3 is shown in Figure 7.19b. 
Comparing Figure 7.19a and b, it can be seen that p − δ effect is significant.

Equilibrium check at Step = 800:
From output plot file units 11, 12, and 13
H = 189.83 kip; Δ = 35″
Column No. 1 end forces: M1 = 42,835 k-in.; V1 = 88.506 kip; A1 = 1,082.5 kip
Column No. 2 end forces: M2 = 35,190 k-in.; V2 = 101.34 kip; A2 = 447.49 kip

	
A P= =∑ 1530 2( ) ( )kip ok

	
V H= ≈∑ 189 85. ( ) ( )kip ok

	
MB =∑ 0 :
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Figure 7.19  (a) Pushover curve at Joint 3; (b) pushover curve at Joint 3 (without p−δ 
effect); (c) equilibrium check.
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	 → = ∗ + + ∗ − ∗ − = ≈M P H A M M
_

( ) . ( ) , ( )1 1 2 1270 2 580 56 270 42 842∆ ok

Similarly

	 M P H A M M
_

( ) . ( ) , ( )2 2 1 2270 2 580 56 270 35 195= − ∗ − + ∗ + ∗ − = ≈∆ ok

	 3.	FSFS Method
Each column is modeled as a “STABILITY” element with “R/
CONCRETE1” material. The element is divided into eight segments. The 
length of each end segment is equal to the plastic hinge length of 33 in. For 
the FSFS method, the lateral displacement capacity can be conservatively 
determined when the first column confined concrete strain in the cross-
sectional compression region reaches the ultimate concrete compression 
strain, εcu, defined in Equation 3.24, which is ε ρ εcu s yh su ccf f= + ′0 004 1 4. . / , 
where ρs is the volumetric ratio of transverse steel, εsu is the ultimate strain 
of transverse steel (εsu = 0.09), fyh is yield stress of transverse steel, and fcc′ 
is the confined concrete strength.

However, a user can also input the maximum allowable plastic cur-
vature into the program, and the lateral displacement capacity of the 
structure can be considered at the point when a column’s plastic curva-
ture exceeds the maximum allowable plastic curvature. For example, the 
moment–curvature analysis for dead load = 765 kip in Example 1 shows 
that ϕn = 0.00033 and ϕu = 0.00166. Therefore, the maximum plastic cur-
vature capacity is equal to ϕu − ϕn = 0.00133, which was input into the pro-
gram in the FSFS pushover analysis. The output results with εcu based on 
Equation 3.24 are shown as follows (Figure 7.20a and b):
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Figure 7.20  (a) Pushover curve at Joint 3; (b) equilibrium check.
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Output (EX4_FSFS5.out file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1:          ‘STRUCTURE DEFINITION-TEST NCHRP 12-49 EXAMPLE 8, use HYST17.SUB’                                    
       2:          ‘EXAMPLE: TWO-COLUMN BENT’                                                                           
       3:           4  1 4 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   580.56  0.00    .00 1 0                                                                       
       6:             3   580.56  270.0   .00 1 0                                                                       
       7:             4   0.00   270.0    .00 1 0                                                                       
       8:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       9:             1     1 1 1 1 1 1    0 0                                                                          
      10:             2     0 0 1 1 1 0    0 0                                                                          
      11:             3     0 1 1 1 1 0    0 0                                                                          
      12:             4     1 1 1 1 1 1    0 0  			                                                                        
      13:           3  |NMAT                                                                                            
      14: ‘R/CONCRETE1 MAT#1 ‘   8 60000  29000000  2  48. 2.625 0  0  10  6     4000                                   
      15:  0.625  3.25  0.95 1.27   0 33.0 0. 0.  1809.6  0  2  0.01  0  1200780. 0.01 1                                
      16:   20 0 0 0 0 0  60000.  1  0.00133    -1  -1   0   0  -1  -1  		                                                
      17: ‘R/CONCRETE1 MAT#2 ‘   8 60000  29000000  2  48. 2.625 0  0  10  6     4000                                   
      18:  0.625  3.25  0.95 1.27   0 33.0 0. 0.  1809.6  0  2  0.01  0  1200780. 0.01 1                                
      19:   20 0 0 0 0 0  60000.  1  0.00133    -1  -1   0   0  -1  -1                                                  
      20:  ‘3D-BEAM MAT#3’  3122020. 1200780.  3888. 0 0 207000000. 207000000. 207000000.                               
      21:         0 0 0 .FALSE.    |KG: AXL, FORM, ASSY                                                                 
      22:        3  NELEM                                                                                               
      23:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 1’ 1 1 2        0 0 1    0.  40.56     0                             
      24:         ‘3D-BEAM’                ‘MEMBER 2’ 3 2 3        0 0 1  0 0 0  000000   0                                 
      25:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 3’ 2 4 3        0 0 1    0.  40.56     0	    	    	    	    	             
      26:          0 0 .FALSE. |  MASS                                                                                  
      27:          0 0  |  DAMP                                                                                         
      28:        ‘SOL01  SOLUTION’                                                                                      
      29:        ‘APPLY AXIAL LOAD AT JOINT 2 AND JOINT 3’                                                              
      30:         1 1    | NLOAD MAXELD                                                                                 
      31:         1  2  0  0 ‘FX’  -765000. |JOINT DEAD LOAD                                                            
      32:         1  3  0  0 ‘FX’  -765000. |JOINT DEAD LOAD                                                            
      33:         0  0  0  0 ‘END’ 0.                                                                                   
      34:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
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      35:        ‘SOL04 SOLUTION’                                                                                       
      36:        ‘INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3’                                                          
      37:         1 50000 2  .TRUE.  0 |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                              
      38:         ‘JOINT FY’  3  11 0  0  0                                                                             
      39: 		  ‘ELE     ‘  1  12 0  0  0                                                                                   
      40: 		  ‘ELE     ‘  3  13 0  0  0                                                                                   
      41:         ‘END     ‘  2  14 0  0  0                                                                             
      42:         1  3  0  0 ‘FY’  -35                                                                                  
      43:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      44:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      45:        ‘DISP. FROM  0    TO  -35   ‘  1   0  0  2000                                                          
      46:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      47:        ‘READ UNIT=11 UNIT=12 UNIT=13’ 	                                                                        
      48:        ‘STOP’                                                                                                 
.
.
.
***%MEMBER   1SEG.     1ELE.    41STRAIN=  -0.159623E-01AT ISTEP  1509
     WHICH EXCEEDS ECU of    0.159607E-01
    STRESS =      -4754.05    
    STRAIN =     -0.159623E-01
    FCCP   =       5502.39    
    ECC    =      0.575599E-02

**** STABILITY ELEMENT          1 SEGMENT NO.          1 REACHES ULTIMATE CONCRETE COMPRESSION STRAIN.
     PLASTIC CURVATURE CURPLS =    0.110436E-02
     CUR  : TOTAL CURVATURE =   0.139570E-02
     COMPRESSION DEPTH TO N.A. IN U0 DIR. =    0.00000    

     COMPRESSION DEPTH TO N.A. IN V0 DIR. =    14.6908    

**** STABILITY ELEMENT          1 EXTREME FIBER REACHES ULTIMATE COMPRESSION STRAIN,                PROGRAM CONTINUE
**** THE ELEMENT FORCES DISP. FROM STEP: 1509 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                 DISPL     2  -0.779201        0.00000        26.3730        0.00000      -3.507670E-04    0.00000     FLP:   5.0    
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         1    2  FORCE     1   1.114250E+06   1.187199E-02   -115863.        0.00000       4.591423E+07    3.48332    
                 FORCE     2  -1.115236E+06  -1.187199E-02    115863.        0.00000       4.606385E+07    2.92756     SP:    0.0    
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     1 AT STEP= 1509

**** STABILITY ELEMENT          1 SEGMENT NO.          1 REACHES MAXIMUM PLASTIC CURVATURE OF CURPLS =    0.133049E-02
     PCMAX: MAXIMUM USER INPUT PLASTIC CURVATURE =   0.133000E-02
     CUR  : TOTAL CURVATURE =   0.162183E-02
     COMPRESSION DEPTH TO N.A. IN U0 DIR. =    0.00000    

     COMPRESSION DEPTH TO N.A. IN V0 DIR. =    14.8806    

**** STABILITY ELEMENT          1 PLASTIC CURVATURE  REACHES MAXIMUM ALLOWABLE,               PROGRAM CONTINUE
**** THE ELEMENT FORCES DISP. FROM STEP: 1725 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                 DISPL     2  -0.987333        0.00000        30.1526        0.00000      -3.630802E-04    0.00000     FLP:   10.    

         1    2  FORCE     1   1.115103E+06   1.325050E-02   -108527.        0.00000       4.605488E+07    3.62961    
                 FORCE     2  -1.116118E+06  -1.325050E-02    108527.        0.00000       4.620340E+07    3.52566     SP:    0.0    

.

.
     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   11     JOINT #    3, DIRECTION: FY

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000       -1.29051E-02     0.0000         0.0000         0.0000    
         2     0.0000        -5417.5       -3.50000E-02     0.0000         0.0000    
.
.
.
       194     0.0000       -2.20071E+05    -3.3950         0.0000         0.0000    
*1*    196     0.0000       -2.21506E+05    -3.4300         0.0000         0.0000    
       198     0.0000       -2.22921E+05    -3.4650         0.0000         0.0000    
.
.
.
       466     0.0000       -2.83439E+05    -8.1550         0.0000         0.0000    
*2*    468     0.0000       -2.83433E+05    -8.1900         0.0000         0.0000    
       470     0.0000       -2.83425E+05    -8.2250         0.0000         0.0000    
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      1508     0.0000       -2.39313E+05    -26.390         0.0000         0.0000    
*3*   1510     0.0000       -2.39235E+05    -26.425         0.0000         0.0000    
      1512     0.0000       -2.39158E+05    -26.460         0.0000         0.0000    
.
.
.
      2000     0.0000       -2.20085E+05    -35.000         0.0000         0.0000    
 %5E%
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT                                                        TIME: 10:47:00, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:47:00, DATE: 31-AUG-09 

 %5S%
     ELEMENT #    1 IS READ FROM UNIT #   12

     STABILITY ELEMENT FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP

         0     0.0000         1    765000.       0.178087E-03  -0.686280E-02    0.00000        1.13830      -0.207280    
                              2   -765000.      -0.178087E-03   0.686280E-02    0.00000        2.57580       0.303450     SP:  0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000       0.00000    
                                 -0.569151E-01    0.00000       0.106943E-07    0.00000       0.267420E-09   0.00000     FLP:  0.0

         2     0.0000         1    771285.      -0.764127E-04   -2706.40        0.00000        751168.      -0.247190    
                              2   -771285.       0.764127E-04    2706.40        0.00000        737150.       0.205930     SP:  0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000       0.00000    
                                 -0.573914E-01    0.00000       0.347948E-01    0.00000      -0.357647E-05   0.00000     FLP:  0.0
.
.
.
      2000     0.0000         1   0.111644E+07   0.101708E-01   -99306.0        0.00000       0.462865E+08   2.85750    
                              2  -0.111749E+07  -0.101708E-01    99306.0        0.00000       0.464309E+08   2.63480      SP:  0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000       0.00000    
                                 -1.29370        0.00000        34.9820        0.00000      -0.380235E-03    0.00000     FLP: 10.1
 %5E%
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT                                                        TIME: 10:47:00, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 10:47:00, DATE: 31-AUG-09 
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 %5S%
     ELEMENT #    3 IS READ FROM UNIT #   13

     STABILITY ELEMENT FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP

         0    0.0000         4    765001.      -0.172806E-03  -0.561881E-02    0.00000        1.00150      -0.285030    
                             3   -765000.       0.172806E-03   0.561881E-02    0.00000        2.03990       0.191710     SP:   0.0    
                         DISP      0.00000        0.00000        0.00000       0.00000        0.00000        0.00000    
                                 -0.569152E-01    0.00000       0.958611E-08   0.00000       0.236344E-09    0.00000    FLP:  0.0

         2     0.0000        4    758716.      -0.777721E-04   -2717.20        0.00000        753814.      -0.254520    
                             3   -758716.       0.777721E-04    2717.20        0.00000        739900.       0.212530    SP:    0.0    
                         DISP      0.00000        0.00000        0.00000       0.00000        0.00000        0.00000    
                                 -0.564416E-01    0.00000       0.348549E-01   0.00000      -0.357701E-05    0.00000    FLP:  0.0
.
.
.
      2000     0.0000        4    412903.      -0.240555E-01   -120787.        0.00000       0.398408E+08   -1.76810    
                             3   -412512.       0.240555E-01    120787.        0.00000       0.398156E+08   -11.2220    SP:    0.0    
                         DISP      0.00000        0.00000        0.00000       0.00000        0.00000        0.00000    
                                  -1.19210        0.00000        34.9850       0.00000       -0.379035E-03   0.00000    FLP:  5.1
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The output result shows that the displacement capacity of the bent base 
on the ultimate concrete compression strain, εcu, is reached at pushover 
displacement = 26.4 in. (at Step = 1509) at which the confined concrete com-
pression strain of Column No. 1 exceeds εcu of 0.01596. If the displacement 
capacity of the bent is based on the maximum plastic curvature of 0.00133 
(rad), it occurs at Column No. 1 with a pushover displacement of 30.15 in. 
(at Step = 1725).

Equilibrium check at Step = 2000:
From output units 11, 12, and 13
H = 220 kip; Δ = 35″
Column No. 1 end forces: M1 = 46,286.5 k-in.; V1 = 99.31 kip; A1 = 1,116.4 kip
Column No. 2 end forces: M2 = 39,840.8 k-in.; V2 = 120.79 kip; A2 = 412.9 kip

	
A P= + = ≈∑ 1116 4 412 9 1529 3 2. . . ( ) ( )kip ok

	
V H= + = ≈∑ 99 31 120 79 220 1. . . ( ) ( )kip ok

	
MB =∑ 0 :

	 M M A H P P
−

+ + ∗ − ∗ − − ∗ + =1 2 1 270 580 56 270 0. ( )∆ ∆

	 → = ∗ + + ∗ − ∗ − = ≈M P H A M M
_

( ) . ( ) , ( )1 1 2 1270 2 580 56 270 46 554∆ ok

Similarly

	 M P H A M M
_

( ) . ( ) , ( )2 2 1 2270 2 580 56 270 39 919= − ∗ − + ∗ + ∗ − = ≈∆ ok

	 4.	  FSMC Method
Each column is modeled as a “STABILITY” element with “MOMCURVA1” 
material. The element is divided into eight segments. The length of 
each end segment is equal to the plastic hinge length of 33 in. Only the 
moment–curvature curve corresponding to axial load P = 765 kip (see 
Figure 7.16) is input into the program. Hence, the moment–curvature will 
not be adjusted due to the effect of axial load change. The lateral displace-
ment capacity of the structure is determined at the point when a column’s 
plastic curvature exceeds the maximum allowable plastic curvature. The 
moment–curvature curve for dead load = 765 kip shows that ϕn = 0.00033 
and ϕu = 0.00166. Therefore, the maximum plastic curvature capacity of 
the column is equal to ϕu − ϕn = 0.00133, which was input into the program 
in the FSMC pushover analysis. The output results are shown as follows 
(Figure 7.21a and b):
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Figure 7.21  (a) Pushover curve at Joint 3; (b) equilibrium check.
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Output (EX4_FSMC5.out file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION-TEST NCHRP 12-49 EXAMPLE 8’                                                             
       2: ‘EXAMPLE: TWO-COLUMN BENT’                                                                                    
       3:           4  1 4 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   580.56  0.00    .00 1 0                                                                       
       6:             3   580.56  270.0   .00 1 0                                                                       
       7:             4   0.00   270.0    .00 1 0                                                                       
       8:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       9:             1     1 1 1 1 1 1    0 0                                                                          
      10:             2     0 0 1 1 1 0    0 0                                                                          
      11:             3     0 1 1 1 1 0    0 0                                                                          
      12:             4     1 1 1 1 1 1    0 0 		                                                                         
      13:           3  |NMAT                                                                                            
      14: ‘MOMCURVA1 MAT#1 ‘  8 1200. 3605.  1  260576. 521152.  0  0  0.00133 0.000333 0                               
      15:  18  1  0  0  0  33.0  0. 0. 1809.6  0  1  0.0  0  1200. 0.01 1   1                                           
      16:  765.   |AXIAL LOAD CASE                                                                                      
      17:  9066.   25339. 34980. 36676. 38323. 38660. 39096.  39408.  39519.                                            
      18:  39696.  39760. 39728. 39638. 39479. 39528. 39697.  40569.  43018.  |MOMENTS                                  
      19:  0.00001 0.00006 .00012 0.00015 0.00021 0.00024 0.0003   0.00036 0.00039                                      
      20:  0.00045 0.00051 .0006  0.00069 0.00081 0.0009  0.00102  0.0015  0.00288 |CUR                                 
      21: ‘MOMCURVA1 MAT#2 ‘  8 1200. 3605.  1  260576. 521152.  0  0  0.00133 0.000333 0                               
      22:  18  1  0  0  0  33.0  0. 0. 1809.6  0  1  0.0  0  1200. 0.01 1   1                                           
      23:  765.   |AXIAL LOAD CASE                                                                                      
      24:  9066.   25339. 34980. 36676. 38323. 38660. 39096.  39408.  39519.                                            
      25:  39696.  39760. 39728. 39638. 39479. 39528. 39697.  40569.  43018.  |MOMENTS                                  
      26:  0.00001 0.00006 .00012 0.00015 0.00021 0.00024 0.0003   0.00036 0.00039                                      
      27:  0.00045 0.00051 .0006  0.00069 0.00081 0.0009  0.00102  0.0015  0.00288 |CUR                                 
      28: ‘3D-BEAM MAT#3’  3122. 1200.  3888. 0 0 207000000. 207000000.  207000000.                                     
      29:         0 0 0 .FALSE.    |KG: AXL, FORM, ASSY                                                                 
      30:        3  NELEM                                                                                               
      31:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 1’ 1 1 2        0 0 1   0.  40.56     0                              
      32:        ‘3D-BEAM’                 ‘MEMBER 2’ 3 2 3        0 0 1  0 0 0  000000  0                                 
      33:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 3’ 2 4 3        0 0 1   0.  40.56     0	    	    	    	                 
      34:          0 0 .FALSE. |  MASS                                                                                  
      35:          0 0  |  DAMP                                                                                         
      36:        ‘SOL01  SOLUTION’                                                                                      
      37:        ‘APPLY AXIAL LOAD AT JOINT 2 AND JOINT 3’                                                              
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      38:         1 1    | NLOAD MAXELD                                                                                 
      39:         1  2  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      40:         1  3  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      41:         0  0  0  0 ‘END’ 0.                                                                                   
      42:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
      43:        ‘SOL04 SOLUTION’                                                                                       
      44:        ‘INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3’                                                          
      45:         1 50000 2  .TRUE.  0 |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                              
      46:         ‘JOINT FY’  3  10 0  0  0                                                                             
      47:         ‘ELE     ‘  1  12 0  0  0                                                                                   
      48:         ‘ELE     ‘  3  13 0  0  0                                                                                   
      49:         ‘END     ‘  2  14 0  0  0                                                                             
      50:         1  3  0  0 ‘FY’  -35                                                                                  
      51:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      52:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      53:        ‘DISP. FROM  0    TO  -35   ‘  1   0  0  1800                                                          
      54:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      55:        ‘READ UNIT=10 UNIT=12 UNIT=13’ 	                                                                        
      56:        ‘STOP’
.
.
.
**** STABILITY ELEMENT          3 SEGMENT NO.          1 REACHES MAXIMUM PLASTIC CURVATURE OF CURPLS =    0.133105E-02
     PCMAX: MAXIMUM USER INPUT PLASTIC CURVATURE =   0.133000E-02
     CUR  : TOTAL CURVATURE =   0.166405E-02

**** STABILITY ELEMENT          3 PLASTIC CURVATURE  REACHES MAXIMUM ALLOWABLE,               PROGRAM CONTINUE
**** THE ELEMENT FORCES DISP. FROM STEP: 1641 FACTOR:  1.000     ARE:

         3    1  DISPL     4    0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                 DISPL     3   -1.01384        0.00000        31.8795        0.00000      -2.279244E-04    0.00000     FLP:   10.    

         3    1  FORCE     4    411.887        0.00000       -135.938        0.00000        43270.8        0.00000    
                 FORCE     3   -411.903        0.00000        135.938        0.00000        43267.1        0.00000     SP:    0.0    
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     3 AT STEP= 1641
.
.
     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   10     JOINT #    3, DIRECTION: FY

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000       -6.75075E-06     0.0000         0.0000         0.0000    
         2     0.0000        -5.0726       -3.88889E-02     0.0000         0.0000    
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       478     0.0000        -282.13        -9.2945         0.0000         0.0000    
*2*    480     0.0000        -282.10        -9.3333         0.0000         0.0000    
       482     0.0000        -282.08        -9.3722         0.0000         0.0000    
.
.
.
      1640     0.0000        -228.46        -31.889         0.0000         0.0000    
*3*   1642     0.0000        -228.38        -31.928         0.0000         0.0000    
      1644     0.0000        -228.30        -31.966         0.0000         0.0000    
.
.
.
      1798     0.0000        -221.96        -34.961         0.0000         0.0000    
      1800     0.0000        -221.87        -35.000         0.0000         0.0000    
 %5E%
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT                                                        TIME: 21:39:13, DATE: 07-SEP-07 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 21:39:13, DATE: 07-SEP-07 

 %5S%
     ELEMENT #    1 IS READ FROM UNIT #   12

     STABILITY ELEMENT FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP

         0     0.0000         1    765.000        0.00000      -3.567900E-06    0.00000       6.855170E-04    0.00000    
                              2   -765.000        0.00000       3.567900E-06    0.00000       1.246270E-03    0.00000     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -6.332390E-02    0.00000       6.693200E-09    0.00000       1.669820E-10    0.00000     FLP:   0.0    

         2     0.0000         1    770.910        0.00000       -2.53770        0.00000        706.080        0.00000    
                              2   -770.910        0.00000        2.53770        0.00000        694.090        0.00000     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -6.381370E-02    0.00000       3.868340E-02    0.00000      -3.677250E-06    0.00000     FLP:   0.0    
.
.
.
      1800     0.0000         1    1119.30        0.00000       -87.0390        0.00000        43083.0        0.00000    
                              2   -1119.30        0.00000        87.0390        0.00000        43082.0        0.00000     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                  -1.27500        0.00000        34.9890        0.00000      -2.304930E-04    0.00000     FLP:   11.    
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 %5E%
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT                                                        TIME: 21:39:13, DATE: 07-SEP-07 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3                                     TIME: 21:39:13, DATE: 07-SEP-07 

 %5S%
     ELEMENT #    3 IS READ FROM UNIT #   13

     STABILITY ELEMENT FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY             MZ     FLP,SP

         0     0.0000         4    765.000        0.00000      -3.164220E-06    0.00000       6.083540E-04    0.00000    
                              3   -765.000        0.00000       3.164220E-06    0.00000       1.104910E-03    0.00000     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -6.332390E-02    0.00000       5.997440E-09    0.00000       1.478660E-10    0.00000     FLP:   0.0    

         2     0.0000         4    759.090        0.00000       -2.54240        0.00000        707.180        0.00000    
                              3   -759.090        0.00000        2.54240        0.00000        695.100        0.00000     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                 -6.283580E-02    0.00000       3.873970E-02    0.00000      -3.677520E-06    0.00000     FLP:   0.0    
.
.
.
      1800     0.0000         4    410.650        0.00000       -134.840        0.00000        43594.0        0.00000    
                              3   -410.660        0.00000        134.840        0.00000        43590.0        0.00000     SP:    0.0    
                         DISP      0.00000        0.00000        0.00000        0.00000        0.00000        0.00000    
                                  -1.21360        0.00000        34.9900        0.00000      -2.310050E-04    0.00000     FLP:   11.    
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230 Seismic Design Aids for Nonlinear Pushover Analysis

The output result shows that the displacement capacity of the bent occurs at pushover 
displacement = 31.9 in. (at Step = 1641) at which Column No. 3 reaches its maximum 
plastic curvature of 0.00133 (rad).

Equilibrium check at Step = 1800:
From output units 11, 12, and 13
H = 221.87 kip; Δ = 35″
Column No. 1 end forces: M1 = 43,083 k-in.; V1 = 87.04 kip; A1 = 1,119.3 kip
Column No. 2 end forces: M2 = 43,594 k-in.; V2 = 134.84 kip; A2 = 410.65 kip

	
A P= + = =∑ 1119 3 410 65 1530 2. . ( ) ( )kip ok

	
V H= ≈∑ 221 88. ( ) ( )kip ok

	
MB =∑ 0 :

	 M M A H P P1 2 1 270 580 56 270 0+ + ∗ − ∗ − − ∗ + =. ( )∆ ∆

	 → = ∗ + + ∗ − ∗ − = ≈M P H A M M1 1 2 1270 2 580 56 270 43 104( ) . ( ) , ( )∆ ok

Similarly

	 M P H A M M2 2 1 2270 2 580 56 270 43 601= − ∗ − + ∗ + ∗ − = ≈( ) . ( ) , ( )∆ ok

Figure 7.22 shows the lateral force–lateral displacement relationships generated from 
different methods with consideration of p−δ effects. The displacement capacities of 
the bent determined by different methods are summarized as follows:

From Table 7.2, it can be seen that structural-displacement capacity decreases 
when the effect of the column axial load on the column plastic rotational capac-
ity is considered (see Section 4.9). In the elastic dynamic analysis (such as using 
multiple-mode response spectrum analysis as described in Appendix H), the demand 
displacement Δd should be less than the least of the displacement capacity calculated 
from the above methods. For example, 1.5Δd ≤ Δc (ATC and MCEER, 2003).

7.3.5  Example 5: Two-Column Bent (Force Control)

Use force control to reanalyze the structure shown in Example 4 by the PM Method 
and compare the pushover curve generated by the force control with that based on 
displacement control in Example 4 (Figure 7.23).

© 2012 by Taylor & Francis Group, LLC



231Numerical Examples

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

PM
FSFS

FSMC

PHL

La
te

ra
l f

or
ce

 (k
ip

)

Lateral displacement (in.)

Figure 7.22  Lateral force–lateral displacement curves.

TABLE 7.2
Pushover Results

Method
Displacement 

Capacity (in.), Δc

Criteria to Determine 
Displacement Capacity

PHL (without 
P–PRC interaction)

32.3 θp = 0.0515 (rad)

PHL (with P–PRC 
interaction)

28.9 θp = 0.0434 (rad)

PM 32.3 θp = 0.0515 (rad)

FSFS 26.4 ε
ρ ε

cu
s yh su

cc

f

f
= +0 004

1 4
.

.
’

FSFS 30.2 ϕp = 0.00133 (based on M−ϕ 
curve with axial load = 765 kip)

FSMC 31.9 ϕp = 0.00133 (based on M−ϕ 
curve with axial load = 765 kip)
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First Run Output (EX5_PM_FORCE.out file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1:          ‘STRUCTURE DEFINITION-TEST NCHRP 12-49 EXAMPLE 8’                                                    
       2:          ‘EXAMPLE: TWO-COLUMN BENT,IE3DBEAM, MAT10 with ELAS=4 for columns’                                   
       3:           4  1 4 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   580.56  0.00    .00 1 0                                                                       
       6:             3   580.56  270.0   .00 1 0                                                                       
       7:             4   0.00   270.0    .00 1 0                                                                       
       8:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       9:             1     1 1 1 1 1 1    0 0                                                                          
      10:             2     0 0 1 1 1 0    0 0                                                                          
      11:             3     0 0 1 1 1 0    0 0                                                                          
      12:             4     1 1 1 1 1 1    0 0                                                                          
      13:                   7  |NMAT                                                                                    
      14: ‘IA_BILN MAT#1: MYA ‘  4  0.  3605. 109032. 39306.  -1  0   0.0515                                            
      15: 0                                                                                                             
      16: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      17: 0                                                                                                             
      18: ‘IA_BILN MAT#2: MYB ‘  4  0.  3605. 109032. 39306.  -1  0   0.0515                                            
      19: 0                                                                                                             
      20: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      21: 0                                                                                                             
      22: ‘IA_BILN MAT#3: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0    -1                                            
      23: ‘IA_BILN MAT#4: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0    -1                                            
      24: ‘IA_BILN MAT#5: MXA ‘  0  0.001  3605. 521152. 38400.  -1  0    -1                                            
      25: ‘IA_BILN MAT#6: FXA ‘  0  0.001  3605. 1809.6  38400.  -1  0    -1                                            
      26: ‘3D-BEAM MAT#7’  3122. 1200.  3888. 0 0 207000000. 207000000.  207000000.                                     
      27:         2 1 1 .TRUE.    |KG: AXL, FORM, ASSY                                                                  
      28:        3  NELEM                                                                                               
      29:  ‘IE3DBEAM’   ‘R/C CIRCULAR MEMBER 1’ 1 2 3 4 5 6   1 2  0 0 1   0 40.56  765.                                
      30:   0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                         
      31:  ‘3D-BEAM’                 ‘MEMBER 2’ 7             2 3  0 0 1 0 0 0  000000  0                               
      32:  ‘IE3DBEAM’   ‘R/C CIRCULAR MEMBER 3’ 1 2 3 4 5 6   4 3  0 0 1   0 40.56  765.                                
      33:   0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                         
      34:          0 0 .FALSE. |  MASS                                                                                  
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      35:          0 0  |  DAMP                                                                                         
      36:        ‘SOL01  SOLUTION’                                                                                      
      37:        ‘APPLY AXIAL LOAD AT JOINT 2 AND JOINT 3’                                                              
      38:         1 1    | NLOAD MAXELD                                                                                 
      39:         1  2  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      40:         1  3  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      41:         0  0  0  0 ‘END’ 0.                                                                                   
      42:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
      43:        ‘SOL04 SOLUTION’                                                                                       
      44:        ‘INCREMEMTAL FORCE CONTROL AT JOINT 3’                                                                 
      45:         1 50000 1  .TRUE. 0.00001  | MAXELD IPRINT IWRITE UNBAL SPLIMIT                                       
      46:         ‘JOINT FY’  3  11 0  0  0                                                                             
      47:          ‘ELE     ‘  1  12 0  0  0                                                                                   
      48:          ‘ELE     ‘  3  13 0  0  0                                                                                   
      49:         ‘END     ‘  2  14 0  0  0                                                                             
      50:         1  3  0  0 ‘FY’  -280                                                                                 
      51:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      52:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      53:        ‘DISP. FROM  0    TO  -280   ‘  1   0  0  560                                                          
      54:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      55:        ‘READ UNIT=11 UNIT=12 UNIT=13’                                                                         
      56:        ‘STOP’                                                                                                 
.
.
.
LOAD CASE:  1  JOINT:     3  DIRECTION: FY   DOF(S)    5               MAGNITUDE:  -280.000                               
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,IE3DBEAM, MAT10 with ELAS=4 for columns                TIME: 11:24:40, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL FORCE CONTROL AT JOINT 3                                            TIME: 11:24:40, DATE: 31-AUG-09 

 @@@@ NOTE: STIFFNESS PARAMETER, SP=  0.9943534E-05< PLIMIT=   0.100000E-04AT ISTEP= 327
          UNBALANCE FORCES ARE NOT ADJUSTED AT    ISTEP =  328
.
.
.
**** IA_BILN ELEMENT          1 YIELD AT END B   
**** THE ELEMENT FORCES DISP. FROM STEP:  553 FACTOR:  1.000     ARE:
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         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000       1.011309E-02    0.00000    
                 DISPL     2  -9.090001E-02    0.00000        5.46107        0.00000       9.904816E-03    0.00000     FLP:   4.0    

         1    1  FORCE     1    1098.14        0.00000       -148.108        0.00000        42979.0        0.00000    
                 FORCE     2   -1098.14        0.00000        148.108        0.00000        42996.4        0.00000     CHR: 001100

 @@@@ STABILITY PARAMETER IS NEGATIVE OF   -0.856483E-08 AT ISTEP =             553
    PROGRAM WILL STOP. CHANGE SIGN OF LOAD INCREMENT AT ISTEP =             553 AND RERUN THE PROGRAM

.

.

.
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236 Seismic Design Aids for Nonlinear Pushover Analysis

From the above output, it shows that the structure’s SP is less than the user-defined 
limit (i.e., SPLIMIT = 0.00001) at Step 327. Therefore, the unbalanced forces are not 
adjusted after Step 327. At Step 553, the SP becomes negative and the program stops. 
In order to obtain the descending curve, a second run is performed by changing the 
sign of load increment (in this example, change from negative to positive) at Step 553 
and following steps after Step 553 in the input data file.
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Second Run Output (EX5_PM_FORCE2.out file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1:          ‘STRUCTURE DEFINITION-TEST NCHRP 12-49 EXAMPLE 8’                                                    
       2:          ‘EXAMPLE: TWO-COLUMN BENT,IE3DBEAM,PM method,ELAS=4 for columns’                                     
       3:           4  1 4 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   580.56  0.00    .00 1 0                                                                       
       6:             3   580.56  270.0   .00 1 0                                                                       
       7:             4   0.00   270.0    .00 1 0                                                                       
       8:               1 0 0     0 1 0 | DIRECTION COSINE                                                              
       9:             1     1 1 1 1 1 1    0 0                                                                          
      10:             2     0 0 1 1 1 0    0 0                                                                          
      11:             3     0 0 1 1 1 0    0 0                                                                          
      12:             4     1 1 1 1 1 1    0 0                                                                          
      13:                   7  |NMAT                                                                                    
      14: ‘IA_BILN MAT#1: MYA ‘  4  0.  3605. 109032. 39306.  -1  0   0.0515                                            
      15: 0                                                                                                             
      16: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      17: 0                                                                                                             
      18: ‘IA_BILN MAT#2: MYB ‘  4  0.  3605. 109032. 39306.  -1  0   0.0515                                            
      19: 0                                                                                                             
      20: 28989.6   15.31    -0.0024   6.684E-8                                                                         
      21: 0                                                                                                             
      22: ‘IA_BILN MAT#3: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0    -1                                            
      23: ‘IA_BILN MAT#4: MZA ‘  0  0.001  3605. 260576. 38400.  -1  0    -1                                            
      24: ‘IA_BILN MAT#5: MXA ‘  0  0.001  3605. 521152. 38400.  -1  0    -1                                            
      25: ‘IA_BILN MAT#6: FXA ‘  0  0.001  3605. 1809.6  38400.  -1  0    -1                                            
      26: ‘3D-BEAM MAT#7’  3122. 1200.  3888. 0 0 207000000. 207000000.  207000000.                                     
      27:         2 1 1 .TRUE.    |KG: AXL, FORM, ASSY                                                                  
      28:        3  NELEM                                                                                               
      29:  ‘IE3DBEAM’   ‘R/C CIRCULAR MEMBER 1’ 1 2 3 4 5 6   1 2  0 0 1   0 40.56  765.                                
      30:   0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                         
      31:  ‘3D-BEAM’                 ‘MEMBER 2’ 7             2 3  0 0 1 0 0 0  000000  0                               
      32:  ‘IE3DBEAM’   ‘R/C CIRCULAR MEMBER 3’ 1 2 3 4 5 6   4 3  0 0 1   0 40.56  765.                                
      33:   0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                         
      34:          0 0 .FALSE. |  MASS                                                                                  
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      35:          0 0  |  DAMP                                                                                         
      36:        ‘SOL01  SOLUTION’                                                                                      
      37:        ‘APPLY AXIAL LOAD AT JOINT 2 AND JOINT 3’                                                              
      38:         1 1    | NLOAD MAXELD                                                                                 
      39:         1  2  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      40:         1  3  0  0 ‘FX’  -765. |JOINT DEAD LOAD                                                               
      41:         0  0  0  0 ‘END’ 0.                                                                                   
      42:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
      43:        ‘SOL04 SOLUTION’                                                                                       
      44:        ‘INCREMEMTAL FORCE CONTROL AT JOINT 3’                                                                 
      45:         1 50000 1  .TRUE. 0.00001  | MAXELD IPRINT IWRITE UNBAL SPLIMIT                                       
      46:         ‘JOINT FY’  3  11 0  0  0                                                                             
      47:         ‘ELE     ‘  1  12 0  0  0                                                                                   
      48:         ‘ELE     ‘  3  13 0  0  0                                                                                   
      49:         ‘END     ‘  2  14 0  0  0                                                                             
      50:         1  3  0  0 ‘FY’  -276.0                                                                               
      51:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      52:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      53:        ‘DISP. FROM  0       TO  -276.0   ‘  1   0  0  552                                                     
      54:        ‘DISP. FROM  -276.0  TO  -190.0   ‘  0.688406   0  0  172                                              
      55:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      56:        ‘READ UNIT=11 UNIT=12 UNIT=13’
      57:        ‘STOP’                                                                           
.
.
.
LOAD CASE:  1  JOINT:     3  DIRECTION: FY   DOF(S)    5               MAGNITUDE:  -276.000                               
1 STRUCTURE....: EXAMPLE: TWO-COLUMN BENT,IE3DBEAM,PM method,ELAS=4 for columns                  TIME: 11:29:10, DATE: 31-AUG-09 
  SOLUTION.....: INCREMEMTAL FORCE CONTROL AT JOINT 3                                            TIME: 11:29:10, DATE: 31-AUG-09 

 @@@@ NOTE: STIFFNESS PARAMETER, SP=  0.9943470E-05< PLIMIT=   0.100000E-04AT ISTEP= 327
          UNBALANCE FORCES ARE NOT ADJUSTED AT    ISTEP =  328
.
.
.
**** IA_BILN ELEMENT          1 YIELD AT END B   
**** THE ELEMENT FORCES DISP. FROM STEP:  553 FACTOR: 0.6884     ARE:

         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000       1.011307E-02    0.00000    
                 DISPL     2  -9.090000E-02    0.00000        5.46107        0.00000       9.904793E-03    0.00000     FLP:   4.0    
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         1    1  FORCE     1    1098.14        0.00000       -148.108        0.00000        42979.0        0.00000    
                 FORCE     2   -1098.14        0.00000        148.108        0.00000        42996.4        0.00000     CHR: 001100

 * ELEMENT     3 INELASTIC ROTATION IN MY  DIR. AT END A   =  0.5158E-01 > PLASTIC ROTATION 
 CAPACITY OF   0.5150E-01AT STEP =  704
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     3 AT STEP=  704
.
.
.
     DEGREE OF FREEDOM #    5 IS READ FROM UNIT #   11     JOINT #    3, DIRECTION: FY

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000         0.0000        4.60371E-08     0.0000         0.0000    
         1     0.0000       -0.50000       -8.88375E-03     0.0000         0.0000    
.
.
.
       501     0.0000        -250.50        -4.4508         0.0000         0.0000    
*2*    502     0.0000        -251.00        -4.4655         0.0000         0.0000    
       503     0.0000        -251.50        -4.4801         0.0000         0.0000    
.
.
.
       703     0.0000        -200.50        -32.118         0.0000         0.0000    
*3*    704     0.0000        -200.00        -32.295         0.0000         0.0000    
       705     0.0000        -199.50        -32.471         0.0000         0.0000    
.
.
.
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240 Seismic Design Aids for Nonlinear Pushover Analysis

The pushover curves based on force control and displacement control are shown in 
Figure 7.24. They are in agreement with each other.

7.3.6  Example 6: Column with Rectangular Section

This example compares the numerical results with test results for a column specimen 
(Unit 7, ZAHN86U7.WK1) from NISTIR 5984 report (Taylor et al., 1997). The test 
was performed at the University of Canterbury, New Zealand (Zahn et al., 1986). 
The test setup and structural model are shown in Figure 7.25. The height of the 
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Figure 7.24  Pushover curve comparison.
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column was 63″, and width of the column was 15.75″. The lateral load was applied 
to a central stub at the column midheight. The height of the central stub was 15.75″. 
For simplicity, the numerical solutions were based on the simple cantilever model. 
The longitudinal bar diameter and cross-sectional area are 0.63 (in.) and 0.312 (in.2). 
The transverse rebar diameter and area (Asp) are 0.394 (in.) and 0.122 (in.2). Other 
material properties are shown in Figure 7.25.

From Chapter 3, the volumetric ratios of transverse hoops, ρX and ρY, can be expressed 
as ρX X sp YN A sh= ′′/ ; ρY Y sp XN A sh= ′′/ , in which ′′hX  and ′′hY  are the confined core dimen-
sions in the X and Y directions, respectively. ′′ = ′′ = ′′h hX Y 14 33. . NX and NY are the total 
number of transverse hoop legs in the X and Y directions, which are 4.67 and 4.67, 
respectively. Transverse loop spacing, s, is 4.606 (in.). Therefore, ρX = ρY = 0.00863.

The input data are shown as follows:
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Input Data (EX6_pries7_5.dat file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1:          ‘STRUCTURE DEFINITION- SINGLE COLUMN TEST’                                                           
       2:          ‘TEST SMALL-SCALE RECTANGULAR COLUMN SPECIMEN UNIT 7 W/ CENTER STUB’                                 
       3:           3  1 2 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                          
       4:             1   0.00   0.00     .00 1 0                                                                       
       5:             2   7.875    0.00     .00 1 0			                                                                    
       6:             3   70.875   0.00     .00 1 0                                                                     
       7:             1 0 0     0 1 0 | DIRECTION COSINE                                                                
       8:             1     1 1 1 1 1 1    0 0                                                                          
       9:             3     0 1 1 1 1 0    0 0                                                                          
      10:           2  |NMAT                                                                                            
      11: ‘R/CONCRETE1 MAT#1 ‘   1 63800.  29000000  3  15.75  15.75 0  0  10  10     4104.                             
      12:  0.0087   0.0087  0.75   0.512  0  7.875 0. 0.  248.06 0 3  0.02  0  1200000. 0.01 1                          
      13:   4 0.63  4 0.63 2 0.63 67570.  0   -1  -1  -1   0.394  4.606  0  0                                           
      14: ‘R/CONCRETE1 MAT#1 ‘   6 63800.  29000000  3  15.75  15.75 0  0  10  10     4104.                             
      15:  0.0087   0.0087  0.75   0.512  0  12.0  0. 0.  248.06 0 3  0.02  0  1200000. 0.01 1                          
      16:   4 0.63  4 0.63 2 0.63 67570.  1   -1  -1  -1  0.394  4.606  0  0                                            
      17:           0 0 0 .FALSE.    |KG: AXL, FORM, ASSY                                                               
      18:       2  NELEM                                                                                                
      19:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 1’  1 1 2        0 0 1   0  0   0                                    
      20:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 1’  2 2 3        0 0 1   0  0   0                                    
      21:          0 0 .FALSE. |  MASS                                                                                  
      22:          0 0  |  DAMP                                                                                         
      23:        ‘SOL01  SOLUTION’                                                                                      
      24:        ‘APPLY AXIAL LOAD AT JOINT 2’                                                                          
      25:         1 1    | NLOAD MAXELD                                                                                 
      26:         1  3  0  0 ‘FX’  -227050. |JOINT DEAD LOAD                                                            
      27:         0  0  0  0 ‘END’ 0.                                                                                   
      28:        0  0  0  0  ‘END’  ‘FZ’     0.   0.                                                                    
      29:        ‘SOL04 SOLUTION’                                                                                       
      30:        ‘INCREMEMTAL DISPLACEMENT CONTROL AT JOINT 3’                                                          
      31:         1 50000 2  .TRUE. 0  |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                              
      32:         ‘JOINT FY’  3  11 0  0  0                                                                             
      33:         ‘ELE     ‘  2  12 0  0  0 		                                                                            
      34:         ‘END     ‘  2  14 0  0  0                                                                             
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      35:         1  3  0  0 ‘FY’  5                                                                                    
      36:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      37:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      38:        ‘DISP. FROM  0    TO  5   ‘  1   0  0  1000                                                            
      39:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      40:        ‘READ UNIT=11 UNIT=12’                                                                                 
      41:        ‘STOP’                                                                                                 
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The output results are shown in Figure 7.26.
It can be seen that the lateral force–lateral displacement curve generated by the 

FSFS method is in agreement with the test results when lateral displacement is 
between 0 and 3 in.. The numerical calculation shows that the concrete ultimate com-
pression strain, εcu, is not developed when pushover displacement reaches 5 in.

7.3.7  �Example 7: Three-Column Bent (with 3D-BEAM, 
IE3DBEAM, SPRING, PLATE, and POINT elements)

A three-column intermediate bent as shown in Figure 7.27 contains circular R/C col-
umns, collision walls, and bracing members. The bent has 63.44° skew from the longi-
tudinal direction of the beam to the bridge transverse direction. The bracing members 
are treated as “SPRING” elements with bilinear material model, and the collision walls 
are treated as plate elements. The cross-sectional properties of the columns are as fol-
lows: diameter = 32″, cross-sectional area = 804.25 (in.2), fc′ = 4 ksi, E = 3,605,000 psi, 
G = 1,442,000 psi, I = 51,472 (in.4), and J = 102,943 (in.4), Mn = 23,500 in-kip, 
θn = 0.000127 (rad). The height of the collision wall is 6 ft. The thickness of the wall 
is 30 in. The elastic modulus of the wall is E = 3320.6 ksi. The spring element is an 
L5  ×  3.5  ×  0.375 angle member with σy = 36 ksi. The post-yield axial stiffness of the 
angle member is 5% of its elastic axial stiffness. The POINT elements are located at 
the ground level, which represents the stiffnesses of the foundation–soil interaction. 
The translational stiffnesses of a point element corresponding to element coordinate 
system (ECS) (Xe, Ye, Ze) are 5415, 6937.5, and 6937.5 (k/in.), respectively. The rota-
tional stiffnesses of a point element corresponding to ECS (Xe, Ye, Ze) are 1.42E + 8, 
3.57E + 7, and 3.57E + 7 (k-in./rad), respectively. Find the displacement capacity of the 
bent by applying pushover displacement at joint 6 in the joint coordinate system (JCS) 
Xj direction. Assume column plastic rotation capacity, θp, is 0.035 rad.
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Figure 7.26  Pushover curve comparison.
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Input Data (EX7_Test3b.dat)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURAL MOdel:Three-Column Bent’                                                                          
       2: ‘Elements: 3D-beam, IE3D-beam, Plate, spring, and point elements’                                             
       3: 9   2   2   0   1   1                                                                                         
       4: 1   -240   -120   0   1   2                                                                                   
       5:       3   240   120   0                                                                                       
       6: 2   -240   -120   72   1   2                                                                                  
       7:       3   240   120   0                                                                                       
       8: 3   -240   -120   192   2   2                                                                                 
       9:       3   240   120   0                                                                                       
      10: 1   0   0   0   1   0   | Direction Cosine                                                                    
      11: 0.8944   0.4472   0   -0.4472   0.8944   0   | Direction Cosine                                               
      12: 6   1   1   0   1   1   0   0   0                                                                             
      13: 1   0   0   0   0   0   1   3   2                                                                             
      14: 0   6   3   1   6                                                                                             
      15: 10   | Number of Material                                                                                     
      16: ‘3D-BEAM   MAT#1’   3605000   1442000   1764   0   0   518616   259308   259308                               
      17: ‘IA_BILN   MAT#2’   1   0   3605   51472   23500   -1   0   0.035                                             
      18: 0                                                                                                             
      19: ‘IA_BILN   MAT#3’   1   0   3605   51472   23500   -1   0   0.035                                             
      20: 0                                                                                                             
      21: ‘IA_BILN   MAT#4’   0   0.001   3605   51472   23500   -1   0   -1                                            
      22: ‘IA_BILN   MAT#5’   0   0.001   3605   51472   23500   -1   0   -1                                            
      23: ‘IA_BILN   MAT#6’   0   0.001   1442   102943   23500   -1   0   -1                                           
      24: ‘IA_BILN   MAT#7’   0   0.001   3605   804.25   3271   -1   0   -1                                            
      25: ‘PLATE   MAT#8’   3320.6   0.3   30                                                                           
      26: ‘BILINEAR   MAT#9’   176610   219   0   10   0                                                                
      27: ‘POINT   MAT#10’                                                                                              
      28: 5145   6940   6940                                                                                            
      29: 1.42E+8   3.57E+7   3.57E+7                                                                                   
      30: 0   0   0                                                                                                     
      31: 0   0   0                                                                                                     
      32: 0   0   0                                                                                                     
      33: 0   0   0                                                                                                     
      34: 0   0   0                                                                                                     
      35: 0   0   0   .FALSE.      | Geometric stiffness                                                                
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      36: 15   | Number of Element                                                                                      
      37: ‘3D-BEAM’   ‘Member  1’   1   1   2   -0.4472   0.8944   0   0   0   0   000000   0                           
      38: ‘3D-BEAM’   ‘Member  2’   1   4   5   -0.4472   0.8944   0   0   0   0   000000   0                           
      39: ‘3D-BEAM’   ‘Member  3’   1   7   8   -0.4472   0.8944   0   0   0   0   000000   0                           
      40: ‘IE3DBEAM’   ‘Member  4’   2   3   4   5   6   7   2   3   -0.4472   0.8944   0   0   0   0                   
      41:    0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                        
      42: ‘IE3DBEAM’   ‘Member  5’   2   3   4   5   6   7   5   6   -0.4472   0.8944   0   0   0   0                   
      43:    0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                        
      44: ‘IE3DBEAM’   ‘Member  6’   2   3   4   5   6   7   8   9   -0.4472   0.8944   0   0   0   0                   
      45:    0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                        
      46: ‘SPRING’   ‘Member  7’   9   2   6   1   294   0.4472   -0.8944   0   0   0   0                               
      47: ‘SPRING’   ‘Member  8’   9   5   9   1   294   0.4472   -0.8944   0   0   0   0                               
      48: ‘SPRING’   ‘Member  9’   9   3   5   1   294   0.4472   -0.8944   0   0   0   0                               
      49: ‘SPRING’   ‘Member  10’   9   6   8   1   294   0.4472   -0.8944   0   0   0   0                              
      50: ‘PLATE’   ‘Member  11’   8   5   2   1   4   0                                                                
      51: ‘PLATE’   ‘Member  12’   8   8   5   4   7   0                                                                
      52: ‘POINT’   ‘Member  13’   10   1   0.8944   0.4472   0   0   0   1   0                                         
      53: ‘POINT’   ‘Member  14’   10   4   0.8944   0.4472   0   0   0   1   0                                         
      54: ‘POINT’   ‘Member  15’   10   7   0.8944   0.4472   0   0   0   1   0                                         
      55: 0   0   .FALSE.   | Mass                                                                                      
      56: 0   0      | Damp                                                                                             
1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
      57: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      58: ‘Incremental displacement control at Joint 6’                                                                 
      59:         1 50000 3 .TRUE. 0 |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                                
      60:         ‘JOINT FX’  6   11 0  0  0                                                                            
      61:         ‘JOINT FY’  6   12 0  0  0                                                                            
      62:         ‘ELE     ‘  1   13 4  3  1                                                                            
      63:         ‘ELE     ‘  11  18 0  0  0                                                                            
      64:         ‘END     ‘  0    0 0  0  0                                                                            
      65:         1  6  0  0 ‘FX’  5                                                                                    
      66:         0  0  0  0 ‘END’  0     |JOINT LOAD                                                                   
      67:         0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                           
      68:        ‘DISP. FROM  0    TO  5  ‘  1   0  0  100                                                              
      69:        ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                           
      70:        ‘READ UNIT=11 UNIT=12 UNIT=13 UNIT=14’                                                                 
      71: 	    ‘READ UNIT=15 UNIT=16 UNIT=17 UNIT=18’                                                                    
      72:        ‘STOP’                                                                                                 
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The pushover curve at joint 6 is shown in Figure 7.28. The output result shows 
that the nominal moment occurred at member 4 at Step 10 (i.e., pushover displace-
ment = 0.5″), and the displacement capacity of the bent is reached at Step 93 (push-
over displacement = 4.65″) at which the plastic rotation of member 4 exceeds the 
plastic capacity of 0.035 rad.

7.3.8  Example 8: Four-Column Bent

A four-column intermediate bent with circular R/C columns is shown in Figure 7.29. 
Five AASHTO Type IV P/S I-girders are placed on the cap beam. The dead load reac-
tion of each girder line is 150 kip. The cross-sectional properties of the columns are 
diameter = 32″, cross-sectional area = 804.25 (in.2), fc′ = 4000 psi, Ec = 3,605,000 psi, 
G = 1,442,000 psi, longitudinal bars = 18 – #11, spiral bar = #5 @3″ pitch, fy = 60 ksi, 
Es = 29,000 ksi, and plastic hinge length = 25″. The superstructural center of the mass 
is 78″ above the centerline of the cap beam. The cap beam is 42″ deep and 42″ wide 
and is assumed to be elastic. The properties of the cap beam are cross-sectional 
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area = 1764 (in.2), fc′ = 4 ksi, E = 3,605,000 psi, G = 1,442,000 psi, I = 259,308 (in.4), 
and J = 518,616 (in.4). Use the FSFS method to find the displacement capacity of the 
bent by applying pushover displacement at the “master” joint 11 (i.e., at the super-
structural mass center) in the GCS’ X direction. Joints 6, 7, 8, and 9 are “slave” 
joints and constrained by the “master” joint. The lateral displacement capacity is 
determined when the first column confined concrete strain in the cross-sectional 
compression region reaches the ultimate concrete compression strain, εcu, defined 
in Equation 3.24, which is ε ρ εcu s yh su ccf f= + ′0 004 1 4. ( . )/ , where ρs is the volumetric 
ratio of transverse steel, εsu is the ultimate strain of transverse steel (εsu = 0.09), fyh is 
yield stress of transverse steel, and ′fcc is the confined concrete strength.
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Input Data (EX8_Four_Column_bent.dat)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION: Four-column bent with AASHTO girders.’                                                 
       2: ‘PROJECT INFORMATION: Project No, 888888’                                                                     
       3: 11   1   3   0   1   1   |NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                             
       4: 1   -252   0   0     1   3                                                                                    
       5:   1   168   0   0                                                                                             
       6: 5   -289   0   222   1   1                                                                                    
       7:   5   578   0   0                                                                                             
       8: 6   -252   0   222     1   3                                                                                  
       9:   1   168   0   0                                                                                             
      10: 11   0   0   300     1   0                                                                                    
      11: 1   0   0   0   1   0   | Direction Cosine                                                                    
      12: 1   1   1   1   1   1   1   3   1                                                                             
      13: 5   0   1   0   1   0   1   5   1                                                                             
      14: 11  1   1   0   1   0   1   0   0                                                                             
      15: 0   11   6   3   1                                                                                            
      16: 5   | Number of Material                                                                                      
      17: ‘R/CONCRETE1 MAT#1 ‘   10 60000  29000000  2  32. 2. 0  0  20  10    4000                                     
      18:  0.625  3.  0.95   1.375   0  25.  0. 0. 804.25  1  2  0.01  1  1442000. 0.01 1                               
      19:   18 0 0 0 0 0  60000.  1  -1    -1  -1  0  0  -1  -1                                                         
      20: ‘R/CONCRETE1 MAT#2 ‘   10 60000  29000000  2  32. 2. 0  0  20  10    4000                                     
      21:  0.625  3.  0.95   1.375   0  25.  0. 0. 804.25  1  2  0.01  1  1442000. 0.01 1                               
      22:   18 0 0 0 0 0  60000.  1  -1    -1  -1  0  0  -1  -1                                                         
      23: ‘R/CONCRETE1 MAT#3 ‘   10 60000  29000000  2  32. 2. 0  0  20  10    4000                                     
      24:  0.625  3.  0.95   1.375   0  25.  0. 0. 804.25  1  2  0.01  1  1442000. 0.01 1                               
      25:   18 0 0 0 0 0  60000.  1  -1    -1  -1  0  0  -1  -1                                                         
      26: ‘R/CONCRETE1 MAT#4 ‘   10 60000  29000000  2  32. 2. 0  0  20  10    4000                                     
      27:  0.625  3.  0.95   1.375   0  25.  0. 0. 804.25  1  2  0.01  1  1442000. 0.01 1                               
      28:   18 0 0 0 0 0  60000.  1  -1    -1  -1  0  0  -1  -1                                                         
      29:  ‘3D-BEAM MAT#5 ‘  3605000. 1442000.  1764. 0 0 518616. 259308.  259308.                                      
      30: 0   0   0   .FALSE.      | Geometric stiffness                                                                
      31: 9   | Number of Element                                                                                       
      32:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 1’ 1  1 6        0 1 0   0.  21.0    0                               
      33:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 2’ 2  2 7        0 1 0   0.  21.0    0                               
      34:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 3’ 3  3 8        0 1 0   0.  21.0    0                               
      35:        ‘STABILITY’  ‘R/C CIRCULAR MEMBER 4’ 4  4 9        0 1 0   0.  21.0    0	                               
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      36:        ‘3D-BEAM’    ‘MEMBER  5’ 5  5  6   0 1 0  0 0 0  000000  0                                                 
      37:        ‘3D-BEAM’    ‘MEMBER  6’ 5  6  7   0 1 0  0 0 0  000000  0                                                 
      38:        ‘3D-BEAM’    ‘MEMBER  7’ 5  7  8   0 1 0  0 0 0  000000  0                                                 
      39:        ‘3D-BEAM’    ‘MEMBER  8’ 5  8  9   0 1 0  0 0 0  000000  0                                                 
      40:        ‘3D-BEAM’    ‘MEMBER  9’ 5  9  10  0 1 0  0 0 0  000000  0                                                 
      41: 0   0   .FALSE.   | Mass                                                                                      
      42: 0   0      | Damp                                                                                             
      43: ‘SOL01  SOLUTION’                                                                                             
      44: ‘APPLY DEAD LOADS AT BEAM’                                                                                    
      45:  1 5    | NLOAD MAXELD                                                                                        
      46:     0  0  0  0 ‘END’ 0.  |JOINT DEAD LOAD                                                                     
      47: 1  5  0  0  ‘CONC’  ‘FZ’    -150000. 0.6756                                                                   
      48: 1  6  0  0  ‘CONC’  ‘FZ’    -150000. 0.7143                                                                   
      49: 1  7  0  0  ‘CONC’  ‘FZ’    -150000. 0.5                                                                      
      50: 1  8  0  0  ‘CONC’  ‘FZ’    -150000. 0.2857                                                                   
      51: 1  9  0  0  ‘CONC’  ‘FZ’    -150000. 0.3244                                                                   
      52: ‘SOL04 SOLUTION’                                                                                              
      53: ‘INCREMEMTAL DISPLACEMENT CONTROL AT MASTER JOINT 11’                                                         
      54:  1 50000 3 .TRUE. 0 |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                                       
      55:  ‘JOINT FX’  11  11 0  0  0                                                                                   
      56:  ‘ELE     ‘  1   12 0  0  0                                                                                   
1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
      57:  ‘ELE     ‘  2   13 0  0  0                                                                                   
      58:  ‘ELE     ‘  3   14 0  0  0                                                                                   
      59:  ‘ELE     ‘  4   15 0  0  0                                                                                   
      60:  ‘ELE     ‘  5   16 0  0  0                                                                                   
      61:  ‘ELE     ‘  6   17 0  0  0						       		                                                                            
      62:  ‘END     ‘  2   18 0  0  0                                                                                   
      63:  1 11  0  0 ‘FX’  15                                                                                          
      64:  0  0  0  0 ‘END’  0     |JOINT LOAD                                                                          
      65:  0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                                  
      66:  ‘DISP. FROM  0    TO  15   ‘  1   0  0  500                                                                  
      67:  ‘END OF DISP. CONTROL       ‘  0   0  0    0                                                                 
      68:  ‘READ UNIT=11 UNIT=12 UNIT=13 UNIT=14 UNIT=15 UNIT=16 UNIT=17’
      69:  ‘STOP’
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The pushover curve at master joint 11 is shown in Figure 7.30. The output result 
shows that the nominal moment occurred at member 4 at Step 73 (i.e., pushover dis-
placement = 2.18″), and the displacement capacity of the bent is reached at Step 397 
(pushover displacement = 11.88″) at which the confined concrete compression strain 
of member 4 reaches its εcu of 0.021.

7.3.9  Example 9: Pile Cap Bent

A pile-cap intermediate bent shown in Figure 7.31 contains four steel HP 12 × 53 piles, 

diagonal angle braces L5 3
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The unsupported length of the pile is 10 ft above ground, and the spacing between 
the two piles is 8 ft. The axial load–moment interaction of the steel pile is considered 
in the pushover analysis. The horizontal bracing members are 12″ above ground line. 
The brace members have yield stress of 36 ksi. The postbuckling of brace members 
is considered in the analysis. The stiffnesses of pile–soil interaction are modeled by 
using POINT element for each pile. The structural model is shown in Figure 7.31. 
The properties of HP pile are A = 15.5 (in.2), fy = 36 ksi, E = 29,000 ksi, G = 11,300 ksi, 
Ix (strong axis) = 393 (in.4), Iy (weak axis) = 127 (in.4), J = 1.12 (in.4), Mpx = 2,664 in-
kip, Mpy = 1,159 in-kip, and Fy = 558 kip. The stiffnesses of point element are 
S(1,1) = 1498.33 kip/in., S(2,2) = 159 kip/in., S(3,3) = 142.9 kip/in., S(4,4) = 41.44 kip-
in./rad, S(5,5) = 240,000 kip-in./rad, S(6,6) = 538,460 kip-in./rad, S(2,6) = −10,460 kip/
rad, and S(3,5) = 5,200 kip/rad. The superstructure has five girder lines, and the dead 
load reaction of each girder line is 100 kip. The performance-based criteria for this 
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Figure 7.30  Pushover curve at master Joint 11.
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example are as follows: pile plastic rotation capacity, θp, is 0.05 rad. The maximum 
allowable brace tensile elongation is 10 times that of the brace yield elongation. Find 
the displacement capacity of the bent by applying incremental pushover displacement 
at joint 5 in the GCS’s X direction.

The output results are shown as follows:
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Output (Ex9_Pilecap_4c_flex_cap.out file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - Four-Pile bent w/flexible foundation’                                                 
       2: ‘Pushover at cap beam’                                                                                        
       3: 18   1   4   0   0   1                                                                                        
       4: 1   0     0   -120   1   0                                                                                    
       5: 2   96    0   -120   1   0                                                                                    
       6: 3   192   0   -120   1   0                                                                                    
       7: 4   288   0   -120   1   0                                                                                    
       8: 5   -30   0   0   1   0                                                                                       
       9: 6   0     0   0   1   0                                                                                       
      10: 7   96    0   0   1   0                                                                                       
      11: 8   192   0   0   1   0                                                                                       
      12: 9   288   0   0   1   0                                                                                       
      13: 10  318   0   0   1   0                                                                                       
      14: 11   0    0    -108   1   0                                                                                   
      15: 12   96   0    -108   1   0                                                                                   
      16: 13   192   0   -108   1   0                                                                                   
      17: 14   288   0   -108   1   0                                                                                   
      18: 15   96    0   -72   1   0                                                                                    
      19: 16   96   0   -36   1   0                                                                                     
      20: 17   192   0   -72   1   0                                                                                    
      21: 18   192   0   -36   1   0                                                                                    
      22: 1   0   0   0   1   0   | Direction Cosine                                                                    
      23: 1   0   0   0   1   0   1   3   1                                                                             
      24: 5   1   1   0   1   0   1   0   0                                                                             
      25: 6   0   1   0   1   0   1   4   1                                                                             
      26: 11   0   1   0   1   0   1   3   1                                                                            
      27: 10   | NMAT                                                                                                   
      28: ‘3D-BEAM   MAT#1’   3605   1442   1764   0   0   198533   198533   397066                                     
      29: ‘IA_BILN   MAT#2’   4   0.005  29000.   127.  1159.       -1   0    0.05                                      
      30: 0                                                                                                             
      31: 1146.79   1.10979   -0.554461E-02   -0.272039E-06   |A0 - A3                                                  
      32: 0                                                                                                             
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      33: ‘IA_BILN   MAT#3’   4   0.005  29000.   127.  1159.       -1   0    0.05                                      
      34: 0                                                                                                             
      35: 1146.79   1.10979   -0.554461E-02   -0.272039E-06   |A0 - A3                                                  
      36: 0                                                                                                             
      37: ‘IA_BILN   MAT#4’   0   0   1   3683000   0   0   0   -1                                                      
      38: ‘IA_BILN   MAT#5’   0   0   1   3683000   0   0   0   -1                                                      
      39: ‘IA_BILN   MAT#6’   0   0   1   7366000   0   0   0   -1                                                      
      40: ‘IA_BILN   MAT#7’   0   0   1   449500    0   0   0   -1                                                      
      41: ‘BRACE  MAT#8(DIA)’   29000.   3.05   0.762   36.   1  10  -1                                                 
      42: ‘BRACE  MAT#9(HOR)’   29000.   3.05   0.762   36.   1  10  -1                                                 
      43: ‘POINT   MAT#10’                                                                                              
      44: 1498.33   159   142.9                                                                                         
      45: 41.44   240000   538460                                                                                       
      46: 0   0   0                                                                                                     
      47: 0   0   0                                                                                                     
      48: 0   0   -8313                                                                                                 
      49: 0   5200   0                                                                                                  
      50: 0   0   0                                                                                                     
      51: 2   1   1   .TRUE.      | Geometric stiffness                                                                 
      52: 30   | Number of Element                                                                                      
      53: ‘IE3DBEAM’   ‘Member 1’   2   3   4   5   6   7     11   6    0   1   0   0   18.0   0                        
      54:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      55: ‘IE3DBEAM’   ‘Member 2’   2   3   4   5   6   7     16   7    0   1   0   0   18.0   0                        
      56:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
      57: ‘IE3DBEAM’   ‘Member 3’   2   3   4   5   6   7     18   8    0   1   0   0   18.0   0                        
      58:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      59: ‘IE3DBEAM’   ‘Member 4’   2   3   4   5   6   7     14   9    0   1   0   0   18.0   0                        
      60:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      61: ‘3D-BEAM’   ‘Member 5’   1   5   6   0   1   0   0   0   0   000000   0                                       
      62: ‘3D-BEAM’   ‘Member 6’   1   6   7   0   1   0   0   0   0   000000   0                                       
      63: ‘3D-BEAM’   ‘Member 7’   1   7   8   0   1   0   0   0   0   000000   0                                       
      64: ‘3D-BEAM’   ‘Member 8’   1   8   9   0   1   0   0   0   0   000000   0                                       
      65: ‘3D-BEAM’   ‘Member 9’   1   9   10   0   1   0   0   0   0   000000   0                                      
      66: ‘IE3DBEAM’   ‘Member 10’   2   3   4   5   6   7     1   11    0   1   0   0   0     0                        
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      67:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      68: ‘IE3DBEAM’   ‘Member 11’   2   3   4   5   6   7     2   12    0   1   0   0   0     0                        
      69:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      70: ‘IE3DBEAM’   ‘Member 12’   2   3   4   5   6   7     3   13    0   1   0   0   0     0                        
      71:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      72: ‘IE3DBEAM’   ‘Member 13’   2   3   4   5   6   7     4   14    0   1   0   0   0     0                        
      73:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      74: ‘IE3DBEAM’   ‘Member 14’   2   3   4   5   6   7     12  15    0   1   0   0   0     0                        
      75:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      76: ‘IE3DBEAM’   ‘Member 15’   2   3   4   5   6   7     15  16    0   1   0   0   0     0                        
      77:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      78: ‘IE3DBEAM’   ‘Member 16’   2   3   4   5   6   7     13  17    0   1   0   0   0     0                        
      79:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      80: ‘IE3DBEAM’   ‘Member 17’   2   3   4   5   6   7     17  18    0   1   0   0   0     0                        
      81:   0  0. 0. 0. 0. 0. 0.     0  0. 0. 0. 0. 0. 0.  0                                                            
      82: ‘BRACE’   ‘Member 18’   8    6 16   1  1.  0  1  0   0  0  0                                                  
      83: ‘BRACE’   ‘Member 19’   8   16 17   1  1.  0  1  0   0  0  0                                                  
      84: ‘BRACE’   ‘Member 20’   8   17 14   1  1.  0  1  0   0  0  0                                                  
      85: ‘BRACE’   ‘Member 21’   8   11 15   1  1.  0  1  0   0  0  0                                                  
      86: ‘BRACE’   ‘Member 22’   8   15 18   1  1.  0  1  0   0  0  0                                                  
      87: ‘BRACE’   ‘Member 23’   8   18  9   1  1.  0  1  0   0  0  0                                                  
      88: ‘BRACE’   ‘Member 24’   9   11 12   1  1.  0  1  0   0  0  0                                                  
      89: ‘BRACE’   ‘Member 25’   9   12 13   1  1.  0  1  0   0  0  0                                                  
      90: ‘BRACE’   ‘Member 26’   9   13 14   1  1.  0  1  0   0  0  0                                                  
      91: ‘POINT’   ‘Member 27’   10   1    0   -1   0   0   0   1  0                                                   
      92: ‘POINT’   ‘Member 28’   10   2   0   -1   0   0   0   1   0                                                   
      93: ‘POINT’   ‘Member 29’   10   3   0   -1   0   0   0   1   0                                                   
      94: ‘POINT’   ‘Member 30’   10   4   0   -1   0   0   0   1   0                                                   
      95: 0   0   .FALSE.   | Mass                                                                                      
      96: 0   0      | Damp                                                                                             
      97: ‘SOL01 Elastic Static Analysis’                                                                               
      98: ‘APPLY DEAD LOADS AT CAPBEAM’                                                                                 
      99: 1   10                                                                                                        
     100: 1   5   0   0   ‘FZ’   0   | Joint Load                                                                       
     101: 1   6   0   0   ‘FZ’   0   | Joint Load                                                                       
     102: 1   7   0   0   ‘FZ’   0   | Joint Load                                                                       
     103: 1   8   0   0   ‘FZ’   0   | Joint Load                                                                       
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     104: 1   9   0   0   ‘FZ’   0   | Joint Load                                                                       
     105: 1   10   0   0   ‘FZ’   0   | Joint Load                                                                      
     106: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
     107: 1   5   0   0   ‘CONC’   ‘FZ’   -100   0.4000   | Element Load                                                
     108: 1   6   0   0   ‘CONC’   ‘FZ’   -100   0.6000   | Element Load                                                
     109: 1   7   0   0   ‘CONC’   ‘FZ’   -100   0.5000   | Element Load                                                
     110: 1   8   0   0   ‘CONC’   ‘FZ’   -100   0.4000   | Element Load                                                
     111: 1   9   0   0   ‘CONC’   ‘FZ’   -100   0.6000   | Element Load                                                
     112: 1   5   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
     113: 1   6   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
     114: 1   7   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
     115: 1   8   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
     116: 1   9   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
     117: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
     118: ‘INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM’                                                                 
     119: 0   50000   2   .TRUE.   0                                                                                    
     120: ‘JOINT FX’   5   11   0   0   0                                                                               
     121: ‘ELE     ‘   1   12   0   0   0                                                                               
     122: ‘ELE     ‘   2   13   0   0   0                                                                               
     123: ‘ELE     ‘   3   14   0   0   0                                                                               
     124: ‘ELE     ‘   4   15   0   0   0                                                                               
     125: ‘ELE     ‘   5   16   0   0   0                                                                               
     126: ‘ELE     ‘   6   17   0   0   0                                                                               
     127: ‘ELE     ‘   7   18   0   0   0                                                                               
     128: ‘ELE     ‘   8   19   0   0   0                                                                               
     129: ‘ELE     ‘   9   20   0   0   0                                                                               
     130: ‘ELE     ‘   10   21   0   0   0                                                                              
     131: ‘ELE     ‘   11   22   0   0   0                                                                              
     132: ‘ELE     ‘   12   23   0   0   0                                                                              
     133: ‘ELE     ‘   13   24   0   0   0                                                                              
     134: ‘ELE     ‘   14   25   0   0   0                                                                              
     135: ‘ELE     ‘   15   26   0   0   0                                                                              
     136: ‘ELE     ‘   16   27   0   0   0                                                                              
     137: ‘ELE     ‘   17   28   0   0   0                                                                              
     138: ‘ELE     ‘   18   29   0   0   0                                                                              
     139: ‘ELE     ‘   19   30   0   0   0                                                                              
     140: ‘ELE     ‘   20   31   0   0   0                                                                              
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     141: ‘ELE     ‘   21   32   0   0   0                                                                              
     142: ‘ELE     ‘   22   33   0   0   0                                                                              
     143: ‘ELE     ‘   23   34   0   0   0                                                                              
     144: ‘ELE     ‘   24   35   0   0   0                                                                              
     145: ‘ELE     ‘   25   36   0   0   0                                                                              
     146: ‘ELE     ‘   26   37   0   0   0                                                                              
     147: ‘ELE     ‘   27   38   0   0   0                                                                              
     148: ‘ELE     ‘   28   39   0   0   0                                                                              
     149: ‘ELE     ‘   29   40   0   0   0                                                                              
     150: ‘ELE     ‘   30   41   0   0   0                                                                              
     151: ‘END’   0   0   0   0   0                                                                                     
     152: 1   5   0   0   ‘FX’   8   | Joint Load                                                                       
     153: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
     154: ‘DISP. FROM  0  TO  8’   1   0   0   400                                                                      
     155: ‘END’   0   0   0   0                                                                                         
     156: ‘READ UNIT=11 UNIT=31’                                                                                        
     157: ‘STOP’                                                                                                        
.
.
.

1 STRUCTURE....: Pushover at cap beam                                                            TIME: 12:48:28, DATE: 28-AUG-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM                                     TIME: 12:48:28, DATE: 28-AUG-09 

**** BRACE ELEMENT         20 BUCKLING LOAD =    -48.2194    

**** BRACE ELEMENT         20 BUCKLED AT STEP =    26. DISP. =   -0.578410E-01

**** BRACE ELEMENT         19 BUCKLING LOAD =    -48.2194    

**** BRACE ELEMENT         19 BUCKLED AT STEP =    36. DISP. =   -0.568199E-01

**** BRACE ELEMENT         24 BUCKLING LOAD =    -55.0001    

**** BRACE ELEMENT         24 BUCKLED AT STEP =    47. DISP. =   -0.604826E-01

© 2012 by Taylor & Francis Group, LLC



258
Seism

ic D
esign

 A
id

s fo
r N

o
n

lin
ear Pu

sh
o

ver A
n

alysis

**** IA_BILN ELEMENT          3 YIELD AT END B   
**** THE ELEMENT FORCES DISP. FROM STEP:   65 FACTOR:  1.000     ARE:

         3    1  DISPL    18  -0.114368        0.00000       -1.22615        0.00000       1.176101E-03    0.00000    
                 DISPL     8  -0.118619        0.00000       -1.26996        0.00000      -2.056564E-03    0.00000     FLP:   4.0    

         3    1  FORCE    18    106.156        0.00000        59.7867        0.00000        120.981        0.00000    
                 FORCE     8   -106.156        0.00000       -59.7867        0.00000       -1201.79        0.00000     CHR: 000100
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     3 AT STEP=   65
.
.
.
**** BRACE ELEMENT         22 ELONGATION AT STEP =   329 IS     1.27689    WHICH IS GREATER THAN MAXIMUM ALLOWABLE ELONGATION OF     
1.27276    

 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO    22 AT STEP=  329
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The pushover curve of the bent is shown in Figure 7.32. The output results indicate 
that the brace element no. 20 (with start joint 17 and end joint 14) buckled first at 
Step 26 (corresponding pushover displacement = 0.52 in.). Consequently, brace ele-
ments 19 and 24 buckled. The buckling behavior of brace element no. 20 is plotted in 
Figure 7.33, which shows the buckling load is about 48.2 kip. The first plastic hinge 
developed at the top of pile element no. 3 at Step 65 (pushover displacement = 1.32 in.). 
The displacement capacity of the bent is reached at Step 329 (pushover displace-
ment = 6.6 in.) at which the elongation of brace element no. 22 exceeds the allowable 
elongation of 1.27 in. (i.e., 10 times of yield deformation).
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Figure 7.32  Pushover curve at Joint 5.
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Figure 7.33  Postbuckling of brace element 20.
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7.3.10  Example 10: Cross Frame Analysis

Figure 7.34 shows cross frame details. The components of the cross frame include 
top and bottom chords and diagonal angle members. The top and bottom chords are 
L5 × 5 × 5/16 angles, diagonal angle members are L3 × 3 × 5/16, and the bearing stiff-
ener size is 8.5″  ×  0.75″. The sizes of top flange, bottom flange, and girder web are 
12″  ×  1.125″, 14″  ×  2″, and 0.5″, respectively. The yield stress of steel is 36 ksi, and 
the girder spacing is 117″. The bearing stiffeners provide the main stiffness for gird-
ers, and only 20 in. of the girder length is considered in the structural model (Zahrai 
and Bruneau, 1999) (see Figure 7.34b). The structural model is shown in Figure 7.35. 
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Figure 7.34  Cross frame details: (a) cross flame; (b) stub girder.
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Two identical pushover displacements are applied at joints 4 and 8, simultaneously. 
Find the displacement capacity at which the first angle member buckles. The stub 
girders are assumed to be elastic. Use “STABILITY” elements for the diagonal 
members, top chord, and bottom chord in the pushover analysis. The initial imper-
fection ratio of diagonal members is assumed to be 0.01. After the analysis, replace 
“STABILITY” elements with “BRACE” elements and perform the same analysis. 
Compare both analytical results.

The pushover curves at joints 4 and 8 are shown in Figure 7.36. When push-
over displacement reached 0.18 in., the diagonal angle member 4 buckled (see 
Figure 7.37). As shown in Figure 7.36, once diagonal angle member buckled, the 
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Figure 7.36  Pushover curves at Joints 4 and 8 (use STABILITY elements).
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Figure 7.37  Angle member 4 (L3 × 3 × 5/16) buckled.

© 2012 by Taylor & Francis Group, LLC



262 Seismic Design Aids for Nonlinear Pushover Analysis

earthquake inertial shear forces transferred from deck to girders are not equally 
distributed. Therefore, bearings resist different shear forces after the diagonal angle 
member buckled. The output shows that the maximum shear forces at elements 7 
and 10 (bearing locations) are 145.6 and 107.3 kip, respectively. The nonuniformed 
shear distribution due to buckling of cross frame members may damage the bearing, 
gusset plate connection, or cause the transverse stability of the girder. Note that if 
stability elements in the structural model are replaced by the BRACE elements, the 
pushover curve based on the structural model with BRACE elements is shown in 
Figure 7.38, which is in agreement with that in Figure 7.36.
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Figure 7.38  Pushover curves at Joints 4 and 8 (use BRACE elements).
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Input Data (EXAMPLE_10.dat file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION CROSS FRAME OVER INTERMEDIATE BENT’                                                     
       2: ‘LATERAL STRENGTH OF CROSS FRAME’                                                                             
       3:    9  1 5 0 0  1.     NNODE,NCOS , NSUPT,NCOND,NCONST   SCALE                                                 
       4:    1   0.00   0.00    .00 1 0                                                                                 
       5:    2   0.0    6.0     0.0 1 0                                                                                 
       6:    3   0.00   46.5    .00 1 0                                                                                 
       7:    4   0.0    52.5    0.0 1 0                                                                                 
       8:    5  117.0   0.00    .00 1 0                                                                                 
       9:    6  117.0   6.0     0.0 1 0                                                                                 
      10:    7  117.0   46.5    .00 1 0                                                                                 
      11:    8  117.0   52.5    0.0 1 0                                                                                 
      12:    9   58.5   26.25   .00 1 0                                                                                 
      13:        1 0 0     0 1 0 | DIRECTION COSINE                                                                     
      14:    1     1 1 1 1 1 0    1 4                                                                                   
      15:    4     1 1 1 1 1 1    0 0                                                                                   
      16:    8     1 1 1 1 1 1    0 0                                                                                   
      17:    2     0 0 1 1 1 0    1 1                                                                                   
      18:    6     0 0 1 1 1 0    1 1                                                                                   
      19:        7  |NMAT                                                                                               
      20:  ‘STABILITY1 L5x5x.3125 MAT1’  16  36  29000  7  5.0  0  -1.37  -1.13  0  0  0.3125                           
      21:  41  4  40  4  1  4. 0.01  0.01  3.125  1  0  0.01  0  11300 0.01 1 1 0.05                                    
      22:  ‘STABILITY1 L5x5x.3125 MAT2’  16  36  29000  7  5.0  0  -1.37  -1.13  0  0  0.3125                           
      23:  41  4  40  4  1  4. 0.01  0.01  3.125  1  0  0.01  0  11300 0.01 1 1 0.05                                    
      24:  ‘STABILITY1 L3x3x.3125 MAT3’  16  36  29000  7  3.0  0  -0.865 -0.635 0  0  0.3125                           
      25:  41  4  40  4  1  2. 0.01  0.01  1.875  1  0  0.01  0  11300 0.01 1 1 0.05                                    
      26:  ‘STABILITY1 L3x3x.3125 MAT4’  16  36  29000  7  3.0  0  -0.865 -0.635 0  0  0.3125                           
      27:  41  4  40  4  1  2. 0.01  0.01  1.875  1  0  0.01  0  11300 0.01 1 1 0.05                                    
      28:  ‘STABILITY1 L3x3x.3125 MAT5’  16  36  29000  7  3.0  0  0.865 -0.635  0  0  0.3125                           
      29:  41  4  40  4  1  2. 0.01  0.01  1.875  1  0  0.01  0  11300 0.01 1 1 0.05                                    
      30:  ‘STABILITY1 L3x3x.3125 MAT6’  16  36  29000  7  3.0  0  0.865 -0.635  0  0  0.3125                           
      31:  41  4  40  4  1  2. 0.01  0.01  1.875  1  0  0.01  0  11300 0.01 1 1 0.05                                    
      32: ‘3D-BEAM MAT#7’  29000. 11300.  22.75 0 0 614.  307.  307.                                                    
      33:    0 0 0 .FALSE. KG: AXL, FORM, ASSY                                                                          
      34:      12 NELEM    ELE MAT SJ EJ VYI,VYJ,VYK XS XE                                                              
      35:      ‘STABILITY’ ‘ELE#1’  1  3 7  0 0 -1  0 0 0                                                               
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      36:      ‘STABILITY’ ‘ELE#2’  2  2 6  0 0 -1  0 0 0                                                               
      37:      ‘STABILITY’ ‘ELE#3’  3  3 9  0 0  -1  0 0 0	                                                              
      38:      ‘STABILITY’ ‘ELE#4’  4  9 6  0 0  -1  0 0 0                                                              
      39:      ‘STABILITY’ ‘ELE#5’  5  9 2  0 0  1  0 0 0                                                               
      40:      ‘STABILITY’ ‘ELE#6’  6  7 9  0 0  1  0 0 0                                                               
      41:   ‘3D-BEAM’      ‘ELE#7’  7  1 2  0 0 -1  0 0 0  000000  0                                                    
      42:   ‘3D-BEAM’      ‘ELE#8’  7  2 3  0 0 -1  0 0 0  000000  0                                                    
      43:   ‘3D-BEAM’      ‘ELE#9’  7  3 4  0 0 -1  0 0 0  000000  0                                                    
      44:   ‘3D-BEAM’      ‘ELE#10’  7  5 6  0 0 -1  0 0 0  000000  0                                                   
      45:   ‘3D-BEAM’      ‘ELE#11’  7  6 7  0 0 -1  0 0 0  000000  0                                                   
      46:   ‘3D-BEAM’      ‘ELE#12’  7  7 8  0 0 -1  0 0 0  000000  0         	  		   		   		
      47:       0 0 .FALSE. |  MASS                                                                                     
      48:       0 0  |  DAMP                                                                                            
      49:  ‘SOL04 SOLUTION’                                                                                             
      50:  ‘INCREMEMTAL DISPLACEMENT CONTROL’                                                                           
      51:       1 50000 2  .FALSE. 0.00001 |MAXELD IPRINT IWRITE UNBAL SPLIMIT                                          
      52:       ‘JOINT FX’  4  11 0  0  0                                                                               
      53:       ‘JOINT FX’  8  12 0  0  0 	                                                                             
      54:       ‘ELE     ‘  1  13 0  0  0	                                                                                  
      55:       ‘ELE     ‘  2  14 0  0  0                                                                                  
      56:       ‘ELE     ‘  3  15 0  0  0                                                                                  
1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
      57:       ‘ELE     ‘  4  16 0  0  0	                                                                                  
      58:       ‘ELE     ‘  5  17 0  0  0                                                                                  
      59:       ‘ELE     ‘  6  18 0  0  0	     	   		                                                                          
      60:       ‘ELE    ‘   7  19 0  0  0                                                                               
      61:       ‘ELE    ‘  10  20 0  0  0                                                                               
      62:       ‘END     ‘  11  20 0  0  0	                                                                             
      63:       1  4  0  0 ‘FX’  0.5                                                                                    
      64:       1  8  0  0 ‘FX’  0.5                                                                                    
      65:       0  0  0  0 ‘END’  0     |JOINT LOAD                                                                     
      66:       0  0  0  0 ‘END’ ‘FY’  0  0  | ELEMENT LOAD                                                             
      67:       ‘DISP. FROM  0    TO  0.5  ‘  1   0  0  400                                                             
      68:       ‘END OF DISP. CONTROL     ‘  1   0  0  60                                                                  
      69:       ‘READ UNIT=11 UNIT=12 UNIT=13 UNIT=14 UNIT=15’                                                          
      70:       ‘READ UNIT=16 UNIT=17 UNIT=18 UNIT=19 UNIT=20’	                                                          
      71:       ‘STOP’                                                                                                 
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7.3.11  Example 11: Column with Shear Failure

Figure 7.39 shows a short column tested at the University of California, San Diego, 
CA (Ohtaki et al., 1996). The column diameter is 6 ft, and the height is 12 ft. The 
longitudinal reinforcement consists of 24 – #14 rebars with fy = 73.8 ksi. The concrete 
cover is 2.5 in. The transverse reinforcement is #4 @ 12″ with fy = 43.3 ksi. Concrete 
strength is fc′ = 4 29.  ksi. The footing and the load stub were designed to be strong 
enough to resist flexural or shear failure prior to column failure. There is no axial 
load applied to the column. Perform pushover analysis and identify the failure mode.

	 1.	Output 1 (shear1_MC.out file)
The moment–curvature analysis is performed first in order to determine 
the input parameters for the HINGE material to be used for the column 
pushover analysis. The bilinear moment–curvature parameters, φn, Mn, 
φu, and Mu, were obtained from the moment–curvature analysis. The 
M−φ curve is shown in Figure 7.40. The analysis also calculates the ini-
tial concrete shear strength, Vci = 746.7 kip, the concrete shear strength, 
Vcf = 128 kip, when the rotational ductility (μ) of the member end is greater 
than or equal to 15 and the transverse steel shear strength, Vs = 130.1 kip, 
which are shown in the output.

Load stub

72˝

Footing

48˝

120˝

P = 0 kip

24 – #14H

144˝

j1

j6

z

x

Structural model

Figure 7.39  Shear column specimen.
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Figure 7.40  Moment–curvature curve.
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1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - Moment-curvature analysis of R/C columns’                                             
       2: ‘Moment-curvature analysis under dead load’                                                                   
       3: 2   1   2   0   0   1                                                                                         
       4: 1   0.0   0.0   0.0   1   0                                                                                   
       5: 2   2.0   0.0   0.0   1   0                                                                                   
       6: 1   0   0   0   1   0   | Direction Cosine                                                                    
       7: 1   0   1   1   1   1   1   0   0                                                                             
       8: 2   1   1   1   1   1   1   0   0                                                                             
       9: 1   |NMAT                                                                                                     
      10: ‘R/CONCRETE1   MAT#1’   1   73800   29000000   2   72   2.5   0   0   20   10   4290                          
      11: 0.5   12   0.95   1.75   0   -1   0.   0.   4071.50   1   2   0.01   0   1500000                              
      12: 0.01   1   24   0   0   0   0   0   43300   1   -1   -1   -1   -1   -1   -1   -1                              
      13: 0   0   0   .FALSE.      | Geometric stiffness                                                                
      14: 1   | Number of Element                                                                                       
      15: ‘STABILITY’   ‘R/C CIRCULAR SECTION ELE.’   1   1   2   0   1   0   0   0   0                                 
      16: 0   0   .FALSE.   | Mass                                                                                      
      17: 0   0      | Damp                                                                                             
      18: ‘SOL01 Elastic Static Analysis’                                                                               
      19: ‘APPLY AXIAL LOAD AT JOINT 1’                                                                                 
      20: 1   0   |SOL01_VALUE                                                                                          
      21: 1   1   0   0   ‘FX’   0   | Joint Load                                                                       
      22: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      23: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      24: ‘incremental disp. control’                                                                                   
      25: 0   50000   1   .TRUE.   0                                                                                    
      26: ‘JOINT MZ’   1   13   0   0   0                                                                               
      27: ‘ELE     ‘   1   11   0   0   0                                                                               
      28: ‘END’   0   0   0   0   0                                                                                     
      29: 1   1   0   0   ‘MZ’   0.007   | Joint Load                                                                   
      30: 1   2   0   0   ‘MZ’   -0.007   | Joint Load                                                                  
      31: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      32: ‘disp. from 0 to 0.007’   1   0   0   2000                                                                    
      33: ‘END’   0   0   0   0                                                                                         
      34: ‘READ   UNIT=13’                                                                                              
      35: ‘STOP’                                                                                                        
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MAT. NO.    =  1
 INITIAL CONCRETE SHEAR CAPACITY (VCI in lb)  = 7.467E+05
 FINAL CONCRETE SHEAR CAPACITY (VCF in lb)    = 1.280E+05
 TRANS.STEEL SHEAR CAPACITY,U0 DIR (VSu in lb)= 1.301E+05
 TRANS.STEEL SHEAR CAPACITY,V0 DIR (VSv in lb)= 1.301E+05
.
.
.
     DEGREE OF FREEDOM #    6 IS READ FROM UNIT #   13     JOINT #    1, DIRECTION: MZ

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000         0.0000         0.0000         0.0000         0.0000    
         1     0.0000        2.02760E+07    3.50000E-06     0.0000         0.0000    
         2     0.0000        1.15081E+07    7.00000E-06     0.0000         0.0000    
.
.
.
        14     0.0000        7.95350E+07    4.90000E-05     0.0000         0.0000    
*1*     15     0.0000        8.50287E+07    5.25000E-05     0.0000         0.0000    
        16     0.0000        8.99098E+07    5.60000E-05     0.0000         0.0000    
.
.
.
        80     0.0000        1.23436E+08    2.80000E-04     0.0000         0.0000    
*2*     81     0.0000        1.23506E+08    2.83500E-04     0.0000         0.0000    
        82     0.0000        1.23575E+08    2.87000E-04     0.0000         0.0000    
.
.
.
       125     0.0000        1.25213E+08    4.37500E-04     0.0000         0.0000    
*3*    126     0.0000        1.25216E+08    4.41000E-04     0.0000         0.0000    
       127     0.0000        1.25219E+08    4.44500E-04     0.0000         0.0000    
.
.
.
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From the above output, the bilinear parameters φn, Mn, φu, and Mu are 
calculated per Section 4.2 and equal to 7.626E − 5 rad., 1.235E + 5 k-in., 
4.37E − 4 rad., and 1.252E + 5 k-in., respectively. The plastic hinge length Lp 
is 38.74″ per Equation 4.5. Therefore, the yield rotation, θn, and the plastic 
rotational capacity, θp, at the hinge top, are 2.56E − 3 rad and 0.0139 rad 
based on Equations 4.16 and 4.17, respectively.

	 2.	Output 2 (shear1.out file)
Once the parameters of θn, Mn, θp, and Mu for HINGE material were 
obtained from Output1 above, they were used as the input data for the col-
umn pushover analysis. The pushover output results are shown as follows:
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1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - Test shear failure’                                                                   
       2: ‘Compare test results from UC-San Diego.’                                                                     
       3: 4   1   3   0   0   1                                                                                         
       4: 1   0   0   -144   1   0                                                                                      
       5: 5   -30   0   0   1   0                                                                                       
       6: 6   0   0   0   1   0                                                                                         
       7: 7   30   0   0   1   0                                                                                        
       8: 1   0   0   0   1   0   | Direction Cosine                                                                    
       9: 1   1   1   1   1   1   1   0   0                                                                             
      10: 5   1   1   0   1   0   1   0   0                                                                             
      11: 6   0   1   0   1   0   1   1   1                                                                             
      12: 7   | NMAT                                                                                                    
      13: ‘3D-BEAM   MAT#1’   3122   1200   7000   0   0   20700000   20700000   41400000                               
      14: ‘HINGE   MAT#2’   0.002558531   123504   0.002526851   0   0   1.618667E+09   0.01399   0                     
      15: 1                                                                                                             
      16: 746.7   128.0   130.1   22.6                                                                                  
      17: ‘HINGE   MAT#3’   0.002558531   123504   0.002526851   0   0   1.618667E+09   0.01399   0                     
      18: 1                                                                                                             
      19: 746.7   128.0   130.1   22.6                                                                                  
      20: ‘IA_BILN   MAT#4’   0   0   1   8.458694E+08   0   0   0   -1                                                 
      21: ‘IA_BILN   MAT#5’   0   0   1   8.458694E+08   0   0   0   -1                                                 
      22: ‘IA_BILN   MAT#6’   0   0   1   3.166002E+09   0   0   0   -1                                                 
      23: ‘IA_BILN   MAT#7’   0   0   1   1.585248E+07   0   0   0   -1                                                 
      24: 2   1   1   .TRUE.      | Geometric stiffness                                                                 
      25: 3   | Number of Element                                                                                       
      26: ‘IE3DBEAM’   ‘Member 1’   2   3   4   5   6   7   1   6   0   1   0   0   24   0   0                          
      27: 0  0.316  48.  0.  40.56  40.56  0.    0  0.316 48.  0.  40.56  40.56  0.                                     
      28: ‘3D-BEAM’   ‘Member 2’   1   5   6   0   1   0   0   0   0   000000   0                                       
      29: ‘3D-BEAM’   ‘Member 3’   1   6   7   0   1   0   0   0   0   000000   0                                       
      30: 0   0   .FALSE.   | Mass                                                                                      
      31: 0   0      | Damp                                                                                             
      32: ‘SOL01 Elastic Static Analysis’                                                                               
      33: ‘APPLY DEAD LOADS AT CAPBEAM’                                                                                 
      34: 1   2                                                                                                         
      35: 1   5   0   0   ‘FZ’   0   | Joint Load                                                                       
      36: 1   6   0   0   ‘FZ’   0   | Joint Load                                                                       
      37: 1   7   0   0   ‘FZ’   0   | Joint Load                                                                       
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      38: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      39: 1   2   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
      40: 1   3   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
      41: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      42: ‘INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM’                                                                 
      43: 0   50000   1   .TRUE.   0                                                                                    
      44: ‘JOINT FX’   5   11   0   0   0                                                                               
      45: ‘ELE     ‘   1   12   0   0   0                                                                               
      46: ‘ELE     ‘   2   13   0   0   0                                                                               
      47: ‘ELE     ‘   3   14   0   0   0                                                                               
      48: ‘END’   0   0   0   0   0                                                                                     
      49: 1   5   0   0   ‘FX’   2   | Joint Load                                                                       
      50: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      51: ‘DISP. FROM  0  TO  2’   1   0   0   1000                                                                     
      52: ‘END’   0   0   0   0                                                                                         
      53: ‘READ UNIT=11 UNIT=12’                                                                                        
      54: ‘STOP’                                                                                                        
.
.
.
 PLASTIC HINGE LENGTH MOMENT-ROTATION MODEL        
 ==================================================

  MAT.      HA         VA       RATIO      MAX DUC        BETA   STIELE   PRMAX
   2  0.255853E-02 123504.    0.252685E-02 0.00000     0.00000    0.161867E+10 0.00000    

 PARAMETERS FOR MEMBER SHEAR CAPACITIES:
      VCI=     746.700    
      VCF=     128.000    
       VS=     130.100    
     ALFA (degree) =     22.6000    

   3  0.255853E-02 123504.    0.252685E-02 0.00000     0.00000    0.161867E+10 0.00000    

 PARAMETERS FOR MEMBER SHEAR CAPACITIES:
      VCI=     746.700    
      VCF=     128.000    
       VS=     130.100    
     ALFA (degree) =     22.6000    
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1 STRUCTURE....: Compare test results from UC-San Diego.                                         TIME: 09:29:56, DATE: 30-MAR-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM                                     TIME: 09:29:56, DATE: 30-MAR-09 

**** IA_BILN ELEMENT          1 YIELD AT END A   
**** THE ELEMENT FORCES DISP. FROM STEP:  265 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000      -3.317976E-03    0.00000    
                 DISPL     6   2.586920E-07    0.00000      -0.398156        0.00000       2.042972E-03    0.00000     FLP:   3.0    

         1    2  FORCE     1  -3.417425E-02    0.00000        856.557        0.00000       -123505.        0.00000    
                 FORCE     6   3.417425E-02    0.00000       -856.557        0.00000        20718.2        0.00000     CHR: 001000
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     1 AT STEP=  265

**** IA_BILN ELEMENT          1 FAILED DUE TO SHEAR                          AT END A   

**** THE ELEMENT FORCES DISP. FROM STEP:  775 FACTOR:  1.000     ARE:

         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000      -1.041259E-02    0.00000    
                 DISPL     6   5.863909E-07    0.00000       -1.24949        0.00000       2.059160E-03    0.00000     FLP:   12.    

         1    1  FORCE     1  -7.746466E-02    0.00000        861.924        0.00000       -124371.        0.00000    
                 FORCE     6   7.746466E-02    0.00000       -861.924        0.00000        20940.6        0.00000     CHR: 001000

 * ELEMENT     1 SHEAR IN Z  DIR. AT END A   =   861.9     > SHEAR 
 CAPACITY OF    861.5    AT STEP =  775
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     1 AT STEP=  775
.
.
.
     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   11     JOINT #    5, DIRECTION: FX

      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000         0.0000         0.0000         0.0000         0.0000    
         1     0.0000         3.2597        2.00000E-03     0.0000         0.0000    
         2     0.0000         6.5195        4.00000E-03     0.0000         0.0000    
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       264     0.0000         859.91        0.52800         0.0000         0.0000    
*2*    265     0.0000         857.12        0.53000         0.0000         0.0000    
       266     0.0000         857.13        0.53200         0.0000         0.0000    
.
.
.
       774     0.0000         861.87         1.5480         0.0000         0.0000    
*3*    775     0.0000         861.88         1.5500         0.0000         0.0000    
       776     0.0000         861.89         1.5520         0.0000         0.0000    
.
.
.
     ELEMENT #    1 IS READ FROM UNIT #   12

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP

.

.
       264     0.0000         1  -3.417420E-02    0.00000        856.560        0.00000       -123505.        0.00000    
                              6   3.417420E-02    0.00000       -856.560        0.00000        20718.0        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000      -3.317980E-03    0.00000    
                                  2.586920E-07    0.00000      -0.398160        0.00000       2.042970E-03    0.00000        0.0    

       265     0.0000         1  -3.425030E-02    0.00000        857.130        0.00000       -123507.        0.00000    
                              6   3.425030E-02    0.00000       -857.130        0.00000        20652.0        0.00000     001000
                         DISP      0.00000        0.00000        0.00000        0.00000      -3.332160E-03    0.00000    
                                  2.592680E-07    0.00000      -0.399860        0.00000       2.041350E-03    0.00000        3.0    
.
.

       774     0.0000         1  -7.738040E-02    0.00000        861.920        0.00000       -124370.        0.00000    
                              6   7.738040E-02    0.00000       -861.920        0.00000        20940.0        0.00000     001000
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                         DISP      0.00000        0.00000        0.00000        0.00000      -1.039870E-02    0.00000    
                                  5.857530E-07    0.00000       -1.24780        0.00000       2.059130E-03    0.00000        3.0    

       775     0.0000         1  -7.746470E-02    0.00000        861.920        0.00000       -124371.        0.00000    
                              6   7.746470E-02    0.00000       -861.920        0.00000        20941.0        0.00000     001000
                         DISP      0.00000        0.00000        0.00000        0.00000      -1.041260E-02    0.00000    
                                  5.863910E-07    0.00000       -1.24950        0.00000       2.059160E-03    0.00000        12.    

.

.
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The pushover curve at the center of the load stub is shown in Figure 7.41. The above out-
put shows that the shear failure occurs at incremental Step 775, at which the lateral shear 
force is 861.9 kip, and the lateral displacement is 1.55 in. The column shear strength capac-
ity at Step 775 can be checked from the above element output. It shows that the column 
yields at Step 265 with the yield rotation θy = 0.0033 rad, and the rotation at Step 775 is 
θ = 0.0104 rad. Therefore, the rotational ductility at Step 775 is μ = 0.0104/0.0033 = 3.12. 
From Figure 4.17 and Vci = 746.7 kip, Vcf = 128 kip, and Vs = 130.1 kip obtained from 
Output1, Vc12 corresponding to k = 1.2 is Vc12 = Vci(1.2/3.5) = 746.7 * 0.342 = 256 kip. Vc 
corresponding to the ductility of μ = 3.12 is Vc = Vc12 + ((Vc12 − Vci)/(7 − 3))(μ − 7) = 731.5 kip. 
Therefore, the total shear strength at Step 775 is V = Vc + Vs = 731.5 + 130.1 = 861.6 kip. 
Since 861.6 kip is less than the shear demand of 861.9 kip, shear failure occurs at Step 
775. The calculated shear strength of 861.6 kip from this analysis is in agreement with 
that of 856.1 kip based on UCSD predictive model (Ohtaki et al., 1996).

7.3.12  Example 12: Beam–Column Joint Failure

Figure 7.42a and b shows the full-scale inversed cap beam–column test specimen 
#1 and #2, respectively. The specimens were tested at the University of California, 
San Diego, CA (Seible et al., 1994). The geometries and material properties of the 
specimens are described as follows.

7.3.12.1  For Test Specimen #1
The column diameter (hc or D) is 5 ft and the height is 25ft. The cap beam width (bb) 
is 5 ft-6 in., and the cap beam depth (hb) is 72 in. The test specimen #1 was post ten-
sioned with the prestressed force (Pb) of 1726 kip. The column axial load (P) is 600 kip 
applied at the load stub. The longitudinal reinforcement consists of 20 – #18 rebars with 
fy = 77.5 ksi. The concrete cover is 2 in. The transverse reinforcement is #6 @ 3.5″ with 
fy = 62.3 ksi. Concrete strength is fc′ = 6 ksi. The load stub was designed to be strong 
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Figure 7.41  Pushover curve.
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Figure 7.42  (a) Test specimen #1. (b) Test Specimen #2. (Copied from Seible, F. et al., Full-scale bridge column/superstructure connection tests 
under simulated longitudinal seismic loads, Report No. SSRP-94/14, University of California, San Diego, 1994. With permission)
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enough to resist flexural or shear failure prior to column failure. The plastic hinge length 
of the column can be calculated using Equation 4.5, which is Lp = 52.47″. Based on 
Lp and moment–curvature analysis of the column, the bilinear moment and rotational 
parameters, θn, Mn, θp, and Mu, are 0.00495 rad, 149,760 k-in., 0.0495 rad, and 160,162 
k-in., respectively. These parameters are used to define the HINGE material for the 
column. Perform pushover analysis and identify the failure mode for test specimen #1.

7.3.12.2  For Test Specimen #2
The geometry and reinforcement for test specimen #2 are the same as those for test 
specimen #1, with the exception of (1) an increased cap beam width (hb) from 5′–6″ 
to 7′–0″, (2) column fc′ = 4 67.  ksi, and (3) fy = 70 ksi for longitudinal reinforcement 
and fy = 66.8 ksi for the transverse reinforcement. The plastic hinge length of column 
per Equation 4.5 is Lp = 47.9″. Based on Lp and moment–curvature analysis of the col-
umn, the bilinear moment and rotational parameters, θn, Mn, θp, and Mu, are 0.00422 
rad, 135,480 k-in., 0.0538 rad, and 148,776 k-in., respectively. These parameters are 
used to define the HINGE material for the column. Perform pushover analysis and 
identify the failure mode for test specimen #2.
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1. Output 1 (Joint_shear1.out file)
 
1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - Test Joint shear failure, Sample #1’                                                  
       2: ‘Compare test results from UC-San Diego (SSRP-94/14).’                                                        
       3: 4   1   3   0   0   1                                                                                         
       4: 1   0   0   -300   1   0                                                                                      
       5: 5   -30   0   0   1   0                                                                                       
       6: 6   0   0   0   1   0                                                                                         
       7: 7   30   0   0   1   0                                                                                        
       8: 1   0   0   0   1   0   | Direction Cosine                                                                    
       9: 1   1   1   1   1   1   1   0   0                                                                             
      10: 5   1   1   0   1   0   1   0   0                                                                             
      11: 6   0   1   0   1   0   1   1   1                                                                             
      12: 7   | NMAT                                                                                                    
      13: ‘3D-BEAM   MAT#1’   3122   1200   7000   0   0   41400000   20700000   20700000                               
      14: ‘HINGE   MAT#2’   0.004954254   149760   0.006946992   0   0   1.44752E+09   0.04949   0                      
      15: 0                                                                                                             
      16: ‘HINGE   MAT#3’   0.004954254   149760   0.006946992   0   0   1.44752E+09   0.04949   0                      
      17: 0                                                                                                             
      18: ‘IA_BILN   MAT#4’   0   0   1   1.44752E+09   0   0   0   -1                                                  
      19: ‘IA_BILN   MAT#5’   0   0   1   1.44752E+09   0   0   0   -1                                                  
      20: ‘IA_BILN   MAT#6’   0   0   1   1.526814E+09   0   0   0   -1                                                 
      21: ‘IA_BILN   MAT#7’   0   0   1   1.445089E+07   0   0   0   -1                                                 
      22: 2   1   1   .TRUE.      | Geometric stiffness                                                                 
      23: 3   | Number of Element                                                                                       
      24: ‘IE3DBEAM’   ‘Member 1’   2   3   4   5   6   7   1   6   0   1   0   0   24   0                              
      25: 1   0.39  60  0  72  66  1726.  0   0.39  60.  0  72  66  1726.    0                                          
      26: ‘3D-BEAM’   ‘Member 2’   1   5   6   0   1   0   0   0   0   000000   0                                       
      27: ‘3D-BEAM’   ‘Member 3’   1   6   7   0   1   0   0   0   0   000000   0                                       
      28: 0   0   .FALSE.   | Mass                                                                                      
      29: 0   0      | Damp                                                                                             
      30: ‘SOL01 Elastic Static Analysis’                                                                               
      31: ‘APPLY DEAD LOADS AT CAPBEAM’                                                                                 
      32: 1   2                                                                                                         
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      33: 1   5   0   0   ‘FZ’   0   | Joint Load                                                                       
      34: 1   6   0   0   ‘FZ’   -600   | Joint Load                                                                    
      35: 1   7   0   0   ‘FZ’   0   | Joint Load                                                                       
      36: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      37: 1   2   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
      38: 1   3   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
      39: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      40: ‘INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM’                                                                 
      41: 0   50000   2   .TRUE.   0                                                                                    
      42: ‘JOINT FX’   5   11   0   0   0                                                                               
      43: ‘ELE     ‘   1   12   0   0   0                                                                               
      44: ‘ELE     ‘   2   13   0   0   0                                                                               
      45: ‘ELE     ‘   3   14   0   0   0                                                                               
      46: ‘END’   0   0   0   0   0                                                                                     
      47: 1   5   0   0   ‘FX’   20   | Joint Load                                                                      
      48: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      49: ‘DISP. FROM 0 TO 20’   1   0   0   1000                                                                       
      50: ‘END’   0   0   0   0                                                                                         
      51: ‘READ UNIT=11 UNIT=12’                                                                                        
      52: ‘STOP’                                                                                                        
.
.
.
1 STRUCTURE....: Compare test results from UC-San Diego (SSRP-94/14).                            TIME: 09:26:45, DATE: 02-APR-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM                                     TIME: 09:26:45, DATE: 02-APR-09 

**** IA_BILN ELEMENT          1 YIELD AT END A   
**** THE ELEMENT FORCES DISP. FROM STEP:  157 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000      -9.953722E-03    0.00000    
                 DISPL     6  -1.146027E-02    0.00000       -2.74722        0.00000       5.550232E-03    0.00000     FLP:   3.0    

         1    2  FORCE     1    600.041        0.00000        493.075        0.00000       -149766.        0.00000    
                 FORCE     6   -600.041        0.00000       -493.075        0.00000        12028.6        0.00000     CHR: 001000
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     1 AT STEP=  157
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**** IA_BILN ELEMENT          1 FAILED DUE TO POSSIBLE JOINT SHEAR CRACK     AT END A   

**** THE ELEMENT FORCES DISP. FROM STEP:  650 FACTOR:  1.000     ARE:

         1    1  DISPL     1    0.00000        0.00000        0.00000        0.00000      -4.286712E-02    0.00000    
                 DISPL     6  -1.145942E-02    0.00000       -11.8313        0.00000       5.802284E-03    0.00000     FLP:   13.    

         1    1  FORCE     1    599.995        0.00000        496.255        0.00000       -156628.        0.00000    
                 FORCE     6   -599.995        0.00000       -496.255        0.00000        12563.3        0.00000     CHR: 001000

 * ELEMENT     1 JOINT SHEAR STRESS IN Z  DIR. AT END A   =  0.5493     > JOINT SHEAR 
 STRESS CAPACITY OF   0.5493    AT STEP =  650
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     1 AT STEP=  650
.
.
     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   11     JOINT #    5, DIRECTION: FX
      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000        9.26422E-05     0.0000         0.0000         0.0000    
         2     0.0000         6.3689        4.00000E-02     0.0000         0.0000    
.
.
       156     0.0000         496.16         3.1200         0.0000         0.0000    
*2*    158     0.0000         493.41         3.1600         0.0000         0.0000    
       160     0.0000         493.42         3.2000         0.0000         0.0000    
.
.       
       648     0.0000         497.29         12.960         0.0000         0.0000    
*3*    650     0.0000         497.31         13.000         0.0000         0.0000    
       652     0.0000         497.33         13.040         0.0000         0.0000    
.
.
     ELEMENT #    1 IS READ FROM UNIT #   12

     IE3D BEAM FORCES...
      STEP    TIME         NODE       AXIAL           FY             FZ           TORSION          MY            MZ   STBFAG & FLP
.
.
       156     0.0000         1    600.040        0.00000        493.080        0.00000       -149766.        0.00000    
                              6   -600.040        0.00000       -493.080        0.00000        12029.0        0.00000     000000
                         DISP      0.00000        0.00000        0.00000        0.00000      -9.953720E-03    0.00000    
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                                 -1.146030E-02    0.00000       -2.74720        0.00000       5.550230E-03    0.00000        0.0    

       158     0.0000         1    600.040        0.00000        493.330        0.00000       -149794.        0.00000    
                              6   -600.040        0.00000       -493.330        0.00000        11965.0        0.00000     001000
                         DISP      0.00000        0.00000        0.00000        0.00000      -1.008730E-02    0.00000    
                                 -1.146030E-02    0.00000       -2.78410        0.00000       5.547060E-03    0.00000        3.0    
.
.
       648     0.0000         1    599.990        0.00000        496.240        0.00000       -156601.        0.00000    
                              6   -599.990        0.00000       -496.240        0.00000        12561.0        0.00000     001000
                         DISP      0.00000        0.00000        0.00000        0.00000      -4.273390E-02    0.00000    
                                 -1.145940E-02    0.00000       -11.7950        0.00000       5.801250E-03    0.00000        3.0    

       650     0.0000         1    599.990        0.00000        496.250        0.00000       -156628.        0.00000    
                              6   -599.990        0.00000       -496.250        0.00000        12563.0        0.00000     001000
                         DISP      0.00000        0.00000        0.00000        0.00000      -4.286710E-02    0.00000    
                                 -1.145940E-02    0.00000       -11.8310        0.00000       5.802280E-03    0.00000        13.    
.
.
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The pushover curve for test specimen #1 is shown in Figure 7.43. The above 
output shows that the joint shear crack occurs at Step 650 (i.e., pushover 
displacement = 13 in.) at which joint shear at cap beam–column joint reaches 
the shear stress capacity of 0.549 ksi. The predicted joint shear failure mode 
is consistent with the UCSD full-scale test result. After joint shear failure 
occurs, INSTRUCT does not check whether or not the shear reinforcement 
is sufficient to prevent rapid shear strength degradation. The user should 
check the adequacy of shear reinforcement at the joint. INSTRUCT calcu-
lated the joint shear stress capacity per Equation 4.47, which is

	
v p p f f f fj t t v h v h( ) ( ) .µ = − + + =2 0 549 ksi

at which

	

f
P

h h b
v

c b je

=
+

=
+

= −
( ) ( )

.
600

60 72 66
0 0689 ksi (compression) 

from EEquation 4.48

and

	
f

P

b h
h

b

b b

= = = −1726
66 72

0
*

.363 ksi (compression) from Equation  4 49.

At Step = 650, the ductility μ is equal to 4.3, calculated as μ = θ (Step = 650)/
θy(Step = 157) = (−4.286E−2)/(−9.953E−3) = 4.3 in which θy (Step = 157) is 
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Figure 7.43  Pushover curve for test specimen #1.
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the column yield rotation occurred at Step = 157, and θ (Step = 650) is the 
column rotation at Step = 650. From Equations 4.52 and 4.53, the principal 
tensile stresses for μ ≤ 3 and μ ≥ 7 are equal to 0.39 and 0.273 ksi, respectively. 
Therefore, from Figure 4.19, pt corresponding to μ = 4.3 is equal to 0.353 ksi. 
The joint shear stress at Step = 650 can be obtained from Equation 4.54, 
which is vjh = (M/hb)/(hcbje) = (156, 628/72)/(60 * 66) = 0.5493 ksi > 0.549 ksi. 
Therefore, joint shear failure occurs at Step 650.

	 2.	Output 2 (Joint_shear2.out file)
Perform pushover analysis for test specimen #2. The output results are 
shown as follows:
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1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - Test Joint shear failure, Sample #2’                                                  
       2: ‘Compare test results from UC-San Diego (SSRP-94/14).’                                                        
       3: 4   1   3   0   0   1                                                                                         
       4: 1   0   0   -300   1   0                                                                                      
       5: 5   -30   0   0   1   0                                                                                       
       6: 6   0   0   0   1   0                                                                                         
       7: 7   30   0   0   1   0                                                                                        
       8: 1   0   0   0   1   0   | Direction Cosine                                                                    
       9: 1   1   1   1   1   1   1   0   0                                                                             
      10: 5   1   1   0   1   0   1   0   0                                                                             
      11: 6   0   1   0   1   0   1   1   1                                                                             
      12: 7   | NMAT                                                                                                    
      13: ‘3D-BEAM   MAT#1’   3122   1200   7000   0   0   41400000   20700000   20700000                               
      14: ‘HINGE   MAT#2’   0.004223643   135480   0.007698497   0   0   1.408373E+09   0.05384   0                     
      15: 0                                                                                                             
      16: ‘HINGE   MAT#3’   0.004223643   135480   0.007698497   0   0   1.408373E+09   0.05384   0                     
      17: 0                                                                                                             
      18: ‘IA_BILN   MAT#4’   0   0   1   1.44752E+09   0   0   0   -1                                                  
      19: ‘IA_BILN   MAT#5’   0   0   1   1.44752E+09   0   0   0   -1                                                  
      20: ‘IA_BILN   MAT#6’   0   0   1   1.526814E+09   0   0   0   -1                                                 
      21: ‘IA_BILN   MAT#7’   0   0   1   1.445089E+07   0   0   0   -1                                                 
      22: 2   1   1   .TRUE.      | Geometric stiffness                                                                 
      23: 3   | Number of Element                                                                                       
      24: ‘IE3DBEAM’   ‘Member 1’   2   3   4   5   6   7   1   6   0   1   0   0   24   0                              
      25: 1   0.342  60  0  72  84  2062.  0   0.342  60  0  72  84  2062.    0                                         
      26: ‘3D-BEAM’   ‘Member 2’   1   5   6   0   1   0   0   0   0   000000   0                                       
      27: ‘3D-BEAM’   ‘Member 3’   1   6   7   0   1   0   0   0   0   000000   0                                       
      28: 0   0   .FALSE.   | Mass                                                                                      
      29: 0   0      | Damp                                                                                             
      30: ‘SOL01 Elastic Static Analysis’                                                                               
      31: ‘APPLY DEAD LOADS AT CAPBEAM’                                                                                 
      32: 1   2                                                                                                         
      33: 1   5   0   0   ‘FZ’   0   | Joint Load                                                                       
      34: 1   6   0   0   ‘FZ’   -600   | Joint Load                                                                    
      35: 1   7   0   0   ‘FZ’   0   | Joint Load                                                                       
      36: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      37: 1   2   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
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      38: 1   3   0   0   ‘UNIF’   ‘FZ’   0   | Element Load                                                            
      39: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      40: ‘INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM’                                                                 
      41: 0   50000   2   .TRUE.   0                                                                                    
      42: ‘JOINT FX’   5   11   0   0   0                                                                               
      43: ‘ELE     ‘   1   12   0   0   0                                                                               
      44: ‘ELE     ‘   2   13   0   0   0                                                                               
      45: ‘ELE     ‘   3   14   0   0   0                                                                               
      46: ‘END’   0   0   0   0   0                                                                                     
      47: 1   5   0   0   ‘FX’   20   | Joint Load                                                                      
      48: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      49: ‘DISP. FROM 0 TO 20’   1   0   0   1000                                                                       
      50: ‘END’   0   0   0   0                                                                                         
      51: ‘READ UNIT=11 UNIT=12’                                                                                        
      52: ‘STOP’                                                                                                        
.
.
.
1 STRUCTURE....: Compare test results from UC-San Diego (SSRP-94/14).                            TIME: 16:01:15, DATE: 21-JUN-09 
  SOLUTION.....: INCREMEMTAL DISPLACEMENT CONTROL AT CAPBEAM                                     TIME: 16:01:15, DATE: 21-JUN-09 

**** IA_BILN ELEMENT          1 YIELD AT END A   
**** THE ELEMENT FORCES DISP. FROM STEP:  146 FACTOR:  1.000     ARE:

         1    2  DISPL     1    0.00000        0.00000        0.00000        0.00000      -9.251915E-03    0.00000    
                 DISPL     6  -1.146033E-02    0.00000       -2.55353        0.00000       5.158725E-03    0.00000     FLP:   3.0    

         1    2  FORCE     1    600.043        0.00000        445.938        0.00000       -135486.        0.00000    
                 FORCE     6   -600.043        0.00000       -445.938        0.00000        10874.4        0.00000     CHR: 001000
 %8 % LIMIT STATE POINT 2 DEFINED DUE TO ELEMENT NO     1 AT STEP=  146

 * ELEMENT     1 INELASTIC ROTATION IN MY  DIR. AT END A   =  0.5389E-01 > PLASTIC ROTATION 
 CAPACITY OF   0.5384E-01AT STEP =  961
 %9 % LIMIT STATE POINT 3 DEFINED DUE TO ELEMENT NO     1 AT STEP=  961
.
.
.
     DEGREE OF FREEDOM #   15 IS READ FROM UNIT #   11     JOINT #    5, DIRECTION: FX
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      STEP     TIME          LOAD        DISPLACEMENT     VELOCITY     ACCELERATION  
         0     0.0000        9.40331E-05     0.0000         0.0000         0.0000    
         2     0.0000         6.1892        4.00000E-02     0.0000         0.0000    
.
.
.
       144     0.0000         445.22         2.8800         0.0000         0.0000    
*2*    146     0.0000         445.97         2.9200         0.0000         0.0000    
       148     0.0000         446.00         2.9600         0.0000         0.0000    
.
.
.
       960     0.0000         458.36         19.200         0.0000         0.0000    
*3*    962     0.0000         458.39         19.240         0.0000         0.0000    
       964     0.0000         458.42         19.280         0.0000         0.0000    
.
.
.
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The pushover curve for test specimen #2 is shown in Figure 7.44. The above output 
shows that the joint shear failure mode does not occur during the pushover analysis. 
By increasing the cap beam width from 5′–6″ to 7′–0″, the failure mode changes 
from the joint shear failure to the column compression failure of confined concrete at 
Step 961 (i.e., pushover displacement = 19.22″) with plastic rotation greater than the 
plastic rotation capacity of 0.05384 rad. The predicted failure mode of compression 
failure of confined concrete is consistent with the UCSD test result.

7.3.13  Example 13: Cyclic Response of a Cantilever Beam

A cantilever beam is shown in Figure 7.45. The concrete properties of the beam are 
fc′=3 ksi, fcr = 0.3 ksi, εcu = 0.03, and Ec = 3320 ksi. The material properties of steel 
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Figure 7.44  Pushover curve for test specimen #2.
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Figure 7.45  Reinforced concrete cantilever beam.
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reinforcement are fy = 40 ksi and Es = 29,000 ksi. The steel rebar size is #9 with cross 
section area of As = 1 in.2 per bar. The moment–curvature curve of the cross section 
is shown in Figure 7.46, in which Mcr, Mn, and Mu are the crack moment, nominal 
moment, and ultimate moment, respectively. The beam is subjected to cyclic static 
vertical load, P, applying at joint 2 as shown in Figure 7.47. Using the Takeda Model, 
find the vertical load–vertical displacement of the beam.
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Figure 7.46  Moment–curvature curve.
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Figure 7.47  Vertical loading diagram.
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In order to use the Takeda model for the nonlinear analysis of the beam, the 
moment–total rotation curves at two ends of the member must be determined first. 
The moment–total rotation relationship at each member end can be obtained by the 
conjugate beam method as described in Section 4.3. The moment and curvature 
diagrams of the beam corresponding to Mcr, Mn, and Mu are shown in Figure 7.48. 
The reactions at two ends of the member shown in the curvature diagrams, based on 
conjugate beam method, represent the total end rotations, θ1 and θ2, of the member.

From Figure 7.48, the moment–total rotation relationship at each end of member 
is shown in Figure 7.49. The data corresponding to each control points in the figure 
were input into INSTRUCT for the cyclic pushover analysis. The output results are 
shown in Figure 7.50.
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Figure 7.48  Moment and curvature diagrams.
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Figure 7.50  Response of cantilever beam subjected to cyclic loading shown in Figure 7.47.
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Input (EX13_TAKEDA2.dat file)

1    ECHO OF INPUT DATA 

    LINE  ....|.. 10....|.. 20....|.. 30....|.. 40....|.. 50....|.. 60....|.. 70....|.. 80....|.. 90....|..100....|..110
       1: ‘STRUCTURE DEFINITION - R/C CONCRETE BEAM’                                                                    
       2: ‘INELASTIC CYCLIC BEHAVIOR OF BEAM BASED ON TAKEDA MODEL’                                                     
       3: 2   1   2   0   0   12                                                                                        
       4: 1   0.00   0.00   .00   1   0                                                                                 
       5: 2   15.0   0.00   .00   1   0                                                                                 
       6: 1   0   0   0   1   0   | Direction Cosine                                                                    
       7: 1   1   1   1   1   1   1   0   0                                                                             
       8: 2   1   1   0   1   0   1   0   0                                                                             
       9: 6   | Number of Material                                                                                      
      10: ‘TAKEDA  MAT#1’   24200000  242  3.333E-6   1500  5.12167E-5  1550   6.28E-5   -1                             
      11: ‘TAKEDA  MAT#2’   24200000  0  1.666E-6   0  2.43889E-5  0   2.497E-5   -1                                    
      12: ‘IA_BILN MAT#3: MZA ‘  0  0.001  3320. 3012     1125.  -1  0    -1                                            
      13: ‘IA_BILN MAT#4: MZA ‘  0  0.001  3320. 3012     1125.  -1  0    -1                                            
      14: ‘IA_BILN MAT#5: MXA ‘  0  0.001  3320. 6024     1125.  -1  0    -1                                            
      15: ‘IA_BILN MAT#6: FXA ‘  0  0.001  3320. 216      1125.  -1  0    -1                                            
      16: 0   0   0   .FALSE.      | Geometric stiffness                                                                
      17: 1   | Number of Element                                                                                       
      18:   ‘IE3DBEAM’   ‘R/C CIRCULAR MEMBER 1’ 1 2 3 4 5 6   1 2  0 1 0   0 0  0.                                     
      19:    0  0 0 0 0 0 0   0  0 0 0 0 0 0   0                                                                        
      20: 0   0   .FALSE.   | Mass                                                                                      
      21: 0   0      | Damp                                                                                             
      22: ‘SOL04 Inelastic Incremental Pushover Analysis’                                                               
      23: ‘INCREMEMTAL FORCE CONTROL AT JOINT 2’                                                                        
      24: 0   50000   1   .TRUE.   0.0001                                                                               
      25: ‘JOINT FZ’   2   11   0   0   0                                                                               
      26: ‘ELE     ‘   1   12   0   0   0                                                                               
      27: ‘END’   0   0   0   0   0                                                                                     
      28: 1   2   0   0   ‘FZ’   -8.61  | Joint Load                                                                    
      29: 0   0   0   0   ‘END’   0   | Joint Load                                                                      
      30: ‘DISP. FROM  0    TO  -5   ‘    0.580  0   0   290                                                            
      31: ‘DISP. FROM  -5   TO   5   ‘   -0.580  0   0   580                                                            
      32: ‘DISP. FROM  5    TO  -8.4 ‘    0.975  0   0   578                                                            
      33: ‘DISP. FROM  -8.4 TO   8.4 ‘   -0.975  0   0   975                                                            
      34: ‘DISP. FROM  8.4  TO  -6   ‘    0.696   0   0   836                                                           
      35: ‘DISP. FROM  -6   TO   7   ‘   -0.812   0   0   755                                                           
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      36: ‘DISP. FROM  7    TO  -5   ‘    0.580  0   0   697                                                            
      37: ‘DISP. FROM  -5   TO   4   ‘   -0.464   0   0   522                                                           
      38: ‘DISP. FROM  4    TO  -8.61’    1        0   0   734                                                          
      39: ‘DISP. FROM  -8.61TO  0    ‘    0        0   0   500                                                          
      40: ‘END’   0   0   0   0                                                                                         
      41: ‘READ   UNIT=11   UNIT=12’                                                                                    
      42: ‘STOP’                                                                                                        
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Appendix A: Stiffness 
Matrix Formulation for 
Bilinear PM Method
Based on the moment–curvature model in Figure 4.1, assume that an inelastic mem-
ber has two components, linear and elastoplastic, as shown in Figure A.1. θi and θj 
are member-end total rotations; αi and αj are plastic rotations at each end of elasto-
plastic component (Cheng, 2000). From Figure A.1, the end rotations of the elasto-
plastic component are

	
′ = − ′ = −θ θ α θ θ αi i i j j j; 	 (A.1)

or in incremental form

	
∆ ∆ ∆ ∆ ∆ ∆′ = − ′ = −θ θ α θ θ αi i i j j j; 	 (A.2)

The incremental forces and deformations at both ends of these two components in 
Figure A.1 may be expressed in terms of stiffness coefficients as follows:

	 1.	Linear component
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	 (A.3)

		  in which a = 4EI/L, b = 2EI/L, c = 6EI/L2, and d = 12EI/L3.
	 2.	Elastoplastic component
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	 (A.4)

		  Moments and shears of the nonlinear member are the combination of the 
component end forces according to the state of the yield. The state of yield 
may be one of the following four conditions: (a) both ends linear, (b) i-end 
nonlinear and j-end linear, (c) i-end linear and j-end nonlinear, and (d) both 
ends nonlinear.
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	 (a)	 Both ends linear: Member is still elastic and plastic hinges (plastic rota-
tions) do not exist. From Equations A.1 and A.2,

	
α α θ θ θ θi j i i j j= = ′ = ′ =0; ; and 	 (A.5)

		  or in incremental form

	
∆ ∆ ∆ ∆ ∆ ∆α α θ θ θ θi j i i j j= = ′ = ′ =0; ; and 	 (A.6)

		  Combining Equations A.3 and A.4 with p + q = 1 leads to
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	 (A.7)

	 (b)	 i-End nonlinear and j-end linear: From Equations A.1 and A.2,

	
α α θ θ α θ θi j i i i j j≠ = ′ = − ′ =0 0; ; ; and 	 (A.8)

		  or in incremental form

	
∆ ∆ ∆ ∆ ∆ ∆ ∆α α θ θ α θ θi j i i i j j≠ = ′ = − ′ =0 0; ; ; and 	 (A.9)
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FIGURE A.1  Bilinear beam: (a) nonlinear beam, (b) linear component, and (c) elastoplastic 
component.
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		  Combining Equations A.3 and A.4 gives
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		  Since the moment at the i-end of the elastoplastic component is con-
stant, the increase in ΔMi at the end of the member must be due to ΔMpi 
of the linear component, that is,

	
∆ ∆M Mi pi= 	 (A.11)

		  which means that ΔMpi of Equation A.3 is equal to ΔMi of Equation A.10. 
This equality yields
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(A.12)

		  Substituting Equation A.12 into Equation A.10 gives the following 
matrix:

	

∆
∆
∆
∆

M

M

V

V

pa pb pc pc

pb pa qe pc qf pc qf

pc

i

j

i

j





















=

−
+ − − +

− −ppc qf pd qg pd qg

pc pc qf pd qg pd qg

Y

i

j

i− + − −
+ − − +




















∆
∆
∆
∆

θ
θ

YYj





















	 (A.13)

		  in which e = 3EI/L, f = 3EI/L2, and g = 3EI/L3.
	 (c)	 i-End linear and j-end nonlinear: Similar to item (b), the stiffness 

matrix for condition (c) is
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	 (A.14)
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	 (d)	 Both ends nonlinear: Since both ends have plastic hinges, substitute 
Equation A.2 into Equation A.4 and then combine Equations A.3 and 
A.4 as follows:
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	 (A.15)

		  Equating ΔMi = ΔMpi and ΔMj = ΔMpj in Equations A.3 and A.15 yields
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		  Thus, Equation A.15 can be expressed as follows:
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	 (A.18)

		  which are actually the incremental forces of the linear component as 
shown in Equation A.3.
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Appendix B: Stiffness Matrix 
Formulation for Finite Segment
B.1  Section Properties of Finite Segment

As shown in Figures 4.13 and B.4, section properties of the cross section correspond-
ing to segment reference axes U0 and V0 can be expressed as follows:
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∑ 	 (B.6)

where
N represents the total number of cross-sectional elements
U0i and V0i represent the location of the ith cross-sectional element in the segment 

reference coordinate U0 and V0 directions, respectively
Ai and Eti are the area and tangent modulus of the ith cross-sectional element, 

respectively

For each load step during the pushover analysis, the value of Eti is determined by 
the instantaneous strain of the ith cross-sectional element in accordance with the 
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material stress–strain relationship, such as bilinear, Ramberg–Osgood, or confined 
concrete material models described in Chapter 3. The instantaneous centroid loca-
tion, C′(Uc0,Vc0), and the rotation angle, β, the angle between reference axis, U0, and 
instantaneous principal axis, U, are calculated by
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in which

	 EI EI V EAU U c′ = −0 0
2

0 	 (B.10)

	 EI EI U EAV V c′ = −0 0
2

0 	 (B.11)

	 EI EI U V EAU V U V c c′ ′ = −0 0 0 0 0 	 (B.12)

The segment reference coordinates directions, (U0,V0,W0), for different cross-
sectional shapes are defined in Figure 3.19. The origin of the U0 and V0 axes (i.e., 
point C in Figure 4.13 or B.4) is the geometric centroid of the elastic cross section. 
The sectional properties about instantaneous principal axes U and V can be obtained 
as follows:

	 EA EA= 0 	 (B.13)

	
EI

EI EI EI EI
EIU

U V U V
U V= + + − −′ ′ ′ ′

′ ′
2 2

2 2cos( ) sin( )β β 	 (B.14)

	
EI

EI EI EI EI
EIV

U V U V
U V= + − − +′ ′ ′ ′

′ ′
2 2

2 2cos( ) sin( )β β 	 (B.15)

Theoretically, EIUV corresponding to principal axes U and V is equal to zero. Since 
finite cross-sectional elements are used here, the EIUV value may not be equal to zero, 
but should be close to zero. Once EA, EIU, and EIV are obtained, the segment mate-
rial stiffness matrix, [skm], can be formulated as shown in Equation B.32.
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Example B.1

Find the principal axes (U,V), cross-sectional properties EA, EIU, EIV, and GJ, 
and centroid location, C′(Uc0,Vc0), of the L2 2 1 4× × ( )/  equal-leg angle section 
shown in Figure B.1 for the (a) elastic condition and (b) inelastic condition. For 
simplicity, the cross section is only divided into seven elements. The elastic 
modulus, E = 29,000 ksi, and shear modulus, G = 11,300 ksi.

Solution

The segment reference coordinate system (U0, V0, W0) is defined in Figure B.1. 
The coordinates and areas of the cross-sectional elements are

	 (a)	 Elastic condition: From Table B.1,

	

EA E Ati i

i

0

1

7

29 000 4 0 125 3 0 146 27 187 5= = × + × =
=

∑ ( , )( . . ) , .

Plastification
(a) (b)

1 2 3 4

5

6

7
 U0

5

1 2 3 4

6

7

 U0

V0 V0

 C C

0.592˝ 0.592˝

0.592˝ 0.592˝

FIGURE B.1  Equal-leg angle section: (a) elastic and (b) inelastic.

TABLE B.1
Element Data

Element i
Coordinate 

(U0i,V0i)
Area Ai 
(in.2)

1 (−1.16, 0.47) 0.125

2 (−0.66, 0.47) 0.125

3 (−0.16, 0.47) 0.125

4 (0.34, 0.47) 0.125

5 (0.47, −1.12) 0.146

6 (0.47, −0.53) 0.146

7 (0.47, 0.05) 0.146
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∑

The centroid location, C′(Uc0,Vc0), is calculated as follows:

	

U
ES

EA
c

U
0

0

0

1 98
27 187 5

0= = ≅.
, .

	
V

ES

EA
c

V
0

0

0

1 248
27 187 5

0= = − ≅.
, .

	 EI EI V EAU U c′ = − =0 0
2

0 9648

	 EI EI U EAV V c′ = − =0 0
2

0 9709

	 EI EI U V EAUV U V c c′ ′ = − = −0 0 0 0 0 5921

β = (1/2)tan−1[2EIU′V′/(EIV′ − EIU′)] = 0.5 tan−1(2(−5921)/(9709−9648)) = 
−44.8° (clockwise), which is close to actual, −45°, considering only seven 
cross-sectional elements are used here. Therefore, the principal axis U is 
44.8° from the U0-axis, as shown in Figure B.2a. The section properties, 
EA, EIU, and EIV, are calculated from Equations B.13 through B.15 as 
follows:

	 EA EA= =0 27 187 5, . ( )kip
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		  where bi is the length of cross-sectional element i.
	 (b)	 Inelastic condition: From Table B.1,
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FIGURE B.2  Centroids and principal axes: (a) elastic and (b) inelastic.
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The centroid location, C′(Uc0,Vc0), is calculated as follows:
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0 3400

	 EI EI U EAV V c′ = − =0 0
2

0 8621

	 EI EI U V EAUV U V c c′ ′ = − = −0 0 0 0 0 3311

β = 1/2 tan−1[2EIU′V′/(EIV′ − EIU′)] = 0.5 tan−1(−6622/5221) = −25.87° (clock-
wise). Therefore, the principal axis U is 25.87° from the U0-axis, as 
shown in Figure B.2b. The section properties, EA, EIU, and EIV, are cal-
culated from Equations B.13 through B.15 as follows:

	 EA EA= =0 22 958, ( )kip
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B.2  �Segment’s Rotation Matrix, [R ̅]12×12, 
and Stiffness Matrix

As shown in Figures 4.13 and B.3, the member stiffness matrix is established by 
stacking up the segment stiffness matrices for which a rotation matrix [R]3×3 (Chen 
and Atsuta, 1977) is required by transforming a vector from the segment global coor-
dinate system (XR, YR, ZR) to the segment local coordinate system (U, V, W):
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[ ]3 3 	 (B.16)

where
(UX) is the direction cosine between the local U-axis and the segment global 

XR-axis
eu
→

 represents the unit vector in the U-axis direction
e x
→

 represents the unit vector in the XR-axis direction

Initial position

Deformed position

L/2

Plane

L/2

L

(a) (b)

U WW0

Y0
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V0

ZR

YR
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Ze
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V
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Q
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B0B0 B

A0
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Initial impection:

(Xe, Ye, Ze): Element ECS
(XR, YR, ZR): Segment GCS
(U, V, W): Segment LCS (instantaneous principal axes direction)
(U0, V0, W0): Segment reference coordinate system

Xe

ew0

ew

ew0

Plane ew

ev0

ev
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ev0
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Y = Y0 sin πZ
L

θ

)(

FIGURE B.3  Relationship between original and deformed position: (a) deformation of seg-
ment and (b) direction of V-axis.
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Segment local axes U, V, and W represent the instantaneous principal axes of the 
cross section with consideration of sectional plasticity. Consider a segment AB 
deformed from the initial point A0B0 in (XR, YR, ZR) system as shown in Figure B.3a, 
the initial rotation matrix can be expressed as follows:
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	 (B.17)

where eu
→

0 represents the unit vector in the initial U0-axis direction when the segment 
is in the undeformed position, as shown in Figure B.3a. The length AB is

	 L X X Y Y Z ZB A B A B A= − + − + −( ) ( ) ( )2 2 2 	 (B.18)

and the new W-axis is determined by its unit vector
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	 (B.19)

To determine the orientation of the new V-axis, first consider a V ̅-axis rotating about 
the W0-axis by the average angle of rotation at ends A0 and B0, θwa and θwb, plus the 
rotation of the principal axes, β; thus

	
θ θ θ β= + +1

2 0 0( )w a w b 	 (B.20)

in which β is the angle from reference axis U0 to principal axis U (see Figure B.4 for 
example).

Then, the V ̅-axis shown in Figure B.3b is obtained as follows:
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As shown in Figure B.3, V ̅ is the vector located at θ angle from the V0-axis. θwa 
and θwb are the total rotations at ends A and B, respectively, at each load step. From 
Figure B.3,

	
� � �
Q V e ew w= ⋅( ) 	 (B.22)
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or

	
� �
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Let
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The unit vector in the new V-axis can be expressed as follows:
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where
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The unit vector 
�
eu  is obtained as the cross product of 

�
ev and 

�
ew:
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FIGURE B.4  Deformed angle segment at A end (B end is similar).
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Therefore, the stiffness matrix of segment j, [ ]sk j, corresponding to the segment 
global coordinate system (XR, YR, ZR) can be expressed as follows:

	
[ ] [ ] [ ] [ ]sk R sk Rj j

T
j j= 	 (B.29)

where

	

[ ]

[ ]

[ ]

[ ]

[ ]

R

R

R

R

R

j =



















×12 12

	 (B.30)

in which [sk]j is the jth segment stiffness matrix corresponding to the (U,V,W) local 
coordinate system. Matrix [sk]j is expressed as follows:

	
[ ] [ ] [ ]sk sk skj m j g j= + 	 (B.31)

in which [skm]j and [skg]j are the segment material stiffness matrix and geometric 
stiffness matrix, respectively, given by
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(B.32)
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and
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(B.33)

The geometric stiffness matrix in Equation B.33 considers the effect of a compres-
sion force, P, to the member lateral deflection and rotation. Equations B.32 and B.33 
are approximate, but provide reasonable accuracy for structural engineering prac-
tice. For a more accurate stiffness matrix that accounts for the change in member 
bending stiffness due to the presence of an axial force see Chen and Atsuta (1977) 
and Chen and Lui (1991). At each incremental load step during the pushover analy-
sis, the section properties of each segment, EA, EIU, and EIV, need to be checked 
and recalculated if the plastification of segment is changed. EA, EIU, and EIV can 
be obtained from Equations B.13 through B.15, respectively. Adding all segment 
stiffness matrices in (XR, YR, ZR) together, the member stiffness matrix is obtained 
as follows:

	

[ ] [ ]K sk j

j

K

=
=

∑
1

	 (B.34)

where
j is the jth segment
k is the total number of segments
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In order to provide computational efficiency, the internal degrees of freedom are 
condensed out by Gaussian elimination and only the degrees of freedom at both ends 
are maintained. Thus, the condensed member stiffness matrix, [k]̅, in (XR, YR, ZR) 
has a dimension of 12 × 12. As shown in Figure B.3, the condensed matrix [k]̅ also 
needs to be transferred from (XR, YR, ZR) to the element coordinate system (Xe, Ye, Ze), 
denoted as [ke] in Equation 5.55. The structural global stiffness matrix is then for-
mulated per Section 5.6.3 and is illustrated in Example 5.1. If a member is subject to 
eccentric axial load, P̅ (see Figure B.4), [k]̅ will need to be transferred to the loca-
tion of P̅ first, before being transformed to [ke] in (Xe, Ye, Ze). The stiffness matrix 
transformation from the end segment’s geometric centroid “C” to the location of P̅ 
is given as follows:

	 [ ] [ ][ ][ ]k T k T T= 	 (B.35)

where
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	 (B.37)

in which ex and ey are the eccentricities, positive in the XR and YR directions, respec-
tively, shown in Figure B.4. The matrix [TA] transfers the force vector from the seg-
ment’s geometric centroid C to the P̅ location. Equation B.37 is similar to the rigid 
body transformation described in Section 5.1.3.

At load step t during the pushover analysis, a finite segment element’s displacement 
increment vector, { }∆δet 12 1× , corresponding to the member’s two ends in the element 
coordinate system (Xe, Ye, Ze) is transferred back to the segment’s global coordinate 
system (XR, YR, ZR) as { }∆δR

t
12 1× . Once { }∆δR

t
12 1×  is known, the individual segment 

displacement increment vector, { },∆δR SEG j
t

12 1× , corresponding to (XR, YR, ZR) can be 
obtained by a Gaussian back-substitution process. { },∆δR SEG j

t
12 1×  is then transformed 

to the segment local coordinate system (U, V, W) as { },∆δLOC SEG j
t

12 1×  through rotation 
matrix [R̅]j transformation. The segment force increment vector, { },∆FLOC SEG j

t
12 1× , in 

the (U, V, W) coordinate system is calculated by multiplying { },∆δLOC SEG j
t

12 1×  with 
the jth segment stiffness matrix, [sk]j. The jth segment total displacement and force 
vectors at step t are
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{ } { } { }, , ,δ δ δLOC SEG j

t
LOC SEG j
t

LOC SEG j
t

12 1
1

12 1 12 1×
−

× ×= + ∆ 	 (B.38)

	
{ } { } { }, , ,F F FLOC SEG j

t
LOC SEG j
t

LOC SEG j
t

12 1
1

12 1 12 1×
−

× ×= + ∆ 	 (B.39)

The segment local displacement increment vector, { },∆δLOC SEG j
t

12 1× , at step t is 
expressed as follows:

	
{ } { , , , , , , , , ,,∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆δ θ θ θLOC SEG j

t
a a a ua va wa b b bU V W U V W12 1× = ∆∆ ∆ ∆θ θ θub vb wb

T, , }
	

(B.40)

In Equation B.40, ΔWa, ΔWb, Δθua, Δθub, Δθva, and Δθvb are used to calculate the 
segment cross-sectional strain increment based on Equations 4.23 through 4.26, in 
order to obtain the strain of each cross-sectional element, εij, in Equation 4.27. Once 
εij is known, the stress σij and tangent modulus Eti of cross-sectional element i are 
determined in accordance with the material stress–strain relationship of the mem-
ber. Subsequently, the new section properties and instantaneous principal axes are 
calculated from Equations B.1 through B.15. They will be used to calculate each seg-
ment’s new stiffness matrix [sk]j, rotation matrix [R̅]j, etc. for the next load step t + 1.

The calculated total segment force vector, { },FLOC SEG j
t

12 1× , will be used to calculate 
the unbalanced force vector as described in Appendix C.

Example B.2

An angle member L2 2 1
4× ×  shown in Figure B.5 has initial imperfection of 

0.1% of its total length. The member length is 34.9 in. Assume the member is 
divided into two segments, and the cross section of each segment is divided 
into seven cross-sectional elements as shown in Example B.1a. Find the rotation 
matrix, [R], for each segment.

Solution

	 1.	 Find the segment rotation matrices corresponding to reference coor-
dinate (U0, V0, W0): As shown in Figure B.5, the rotation matrix with 

0.592˝

C΄ = C = (0, 0)

L΄/2 = 17.45˝L΄/2 = 17.45˝

δ = 0.001L΄

V0

U0, XR
ZR

YR W0

U

β = –44.8° α = 2 × 10–3 (rad)

V

0.592˝ 1 2
A

B
C

1 2 3 4
7

6

5

FIGURE B.5  Angle member with two segments.
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consideration of initial imperfection for segment 1 can be calculated 
as follows:

	 ( ) cos( ) cos( ) ( )W Z V Y0
3

02 10 1= − = − × ≅ =−α

	
( ) cosV Z0

3

2
2 10= − −





= − × −α π

	
( ) cosW Y0

3

2
2 10= −





= × −π α

	

[ ]

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
,R

U X U Y U Z

V X V Y V Z

W X W Y W Z
initial1

0 0 0

0 0 0

0 0 0

=
















= − ×
×

















−

−

1 0 0

0 1 2 10

0 2 10 1

3

3

	
(B.41)

Similarly, the rotation matrix for segment 2 is

	

[ ]

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
,R

U X U Y U Z

V X V Y V Z

W X W Y W Z
initial2

0 0 0

0 0 0

0 0 0

=
















= ×
− ×

















−

−

1 0 0

0 1 2 10

0 2 10 1

3

3

	
(B.42)

	 2.	 Find the segment rotation matrices corresponding to (U,V,W):
		  Based on Equations B.18 through B.28, the rotation matrix for seg-

ment 1 is calculated as follows:

	

L X X Y Y Z ZB A B A B A= − + − + −

= + + ≅ ′′

( ) ( ) ( )

( . ) ( . ) .

2 2 2

2 20 0 0349 17 45 17 45

	

e

WX

WY

WZ

X X L

Y Y L

Z Z L

w

B A

B A

B A

→ =
















=
−
−
−








( )

( )

( )

( )

( )

( )

/

/

/









= ×
















−

0

2 10

1

3 	 (B.43)

		  Since there is no deformation for the member at the initial position, 
the rotations at ends A and B, θwa and θwb, are zero. Equation B.20 
becomes
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θ θ θ β= + + = + − = −1

2
0 44 8 0 782( ) ( . ) . ( )wa wb ° rad

		  From Equation B.21

V e e

V X

V Y

V Z

V X

Vv u= − =
















=( )cos ( )sin

( )

( )

( )

( )

(
� �

0 0

0

0

0

0

0θ θ YY

V Z

U X

U Y

U Z

)

( )

cos

( )

( )

( )

sin

0

0

0

0

0

1

2

















−
















=
− ×

θ θ

110

0 7091

1

0

0

0 7051

0 7051

0 709
3−

















−
















− =( . ) ( . )

.

. 11

1 41 10 3− ×















−.

		  From Equation B.24

	

M V X WX V Y WY V Z WZ= + +

= + × − ×−

( )( ) ( )( ) ( )( )

( . )( ) ( .

0 0 0

30 0 7091 2 10 1 41 100 1 03− ≅)( )

		  From Equations B.26 and B.27

	 L V X M WX V Y M WY V Z M WZp = − + − + − ≅[( ) ( )] [( ) ( )] [( ) ( )]0
2

0
2

0
2 1

	

�
e

L

V X M WX

V Y M WY

V Z M WZ

VX

VYv
p

=
−
−
−

















=1
0

0

0

( ) ( )

( ) ( )

( ) ( )

( )

( ))

( )

.

.

.VZ

















=
− ×















−

0 7051

0 7091

1 41 10 3

	 (B.44)

		  The unit vector 
� � �
e e eu v w= ×  is given as follows:

	

�
e

UX

UY

UZ

VY WZ VZ WY

VZ WX VXu =
















=
−
−

( )

( )

( )

( )( ) ( )( )

( )( ) ( )(WWZ

VX WY VY WX

)

( )( ) ( )( )

.

.

.−

















= −
×








−

0 7091

0 7051

1 41 10 3









	 (B.45)

		  From Equations B.43 through B.45, the rotation matrix of segment 1 is

	

[ ]

. . .

. . .R 1

3

3

3

0 7091 0 7051 1 41 10

0 7051 0 7091 1 41 10

0 2 10 1

=
− ×

− ×
×

 −

−

−














	 (B.46)
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		  Similarly, the rotation matrix of segment 2 can be calculated as 
follows:

	

[ ]

. . .

. . .R 2

3

3

3

0 7091 0 7051 1 41 10

0 7051 0 7091 1 41 10

0 2 10 1

=
− − ×

×
− ×

−

−

−

















	 (B.47)

		  [R]1 and [R]2 are used to formulate the segment stiffness matrix, 

[ ]sk 1 and [ ]sk 2, corresponding to (XR, YR, ZR), respectively, based on 
Equation B.29.
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Appendix C: Unbalanced 
Forces of a Finite Segment
At load step t, let Pc, MUc, and MVc represent the calculated average segment forces of 
a segment. Pc, MUc, and MVc can be calculated as follows:

	
P

P P
c

ca cb= −
2

	 (C.1)

	
M

M M
Uc

Uca Ucb= −
2

	 (C.2)

	
M

M M
Vc

Vca Vcb= −
2

	 (C.3)

in which Pca, MUca, and MVca represent the calculated segment local forces at the a 
end of the segment in the local coordinate system (U, V, W), from { }, 12 1FLOC SEG j

t
×  in 

Appendix B. Pcb, MUcb, and MVcb are calculated force vector at the b end of the seg-
ment. The segment cross-sectional resultant force vector can be calculated using the 
following equations:

	

P Azi i

i

N

=
=

∑σ
1

	 (C.4)

	

M V AU i zi i

i

N

=
=

∑ ″σ
1

	 (C.5)

	

M U AV i zi i

i

N

=
=

∑ ″σ
1

	 (C.6)

Note that Ui″  and Vi″  are the location of the ith cross-sectional element, corre-
sponding to the (U″, V″) axes as shown in Figure B.4. The (U″, V″) axes are parallel 
to the instantaneous principal axes (U, V). The origin of the (U″, V″) axes is the same 
as that of the (U0, V0) axes and is usually chosen as the geometric centroid (i.e., point 
C in Figure B.4) of the elastic cross section. Normally, P, MU, and MV will deviate 
from Pc, MUc, and MVc in the analysis. In order to adjust P to Pc (i.e., ΔP = Pc − P = 0), 
an iteration process is required to adjust the normal strain increment, ∆εcj, at the 
centroid of segment’s cross section (see Equation 4.24). Currently, INSTRUCT does 
not adjust ∆ϕu

j  and ∆ϕv
j  during the iteration (see Equations 4.25 and 4.26). Once ΔP 
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converges to zero, the corresponding MU and MV are calculated from Equations C.5 
and C.6, respectively. The unbalanced moment, {U}bending, between average moments 
(MUc, MVc) and segment cross-sectional moments (MU, MV) is

	

{ }U
M M

M M
bending

Uc U

Vc V

=
−

−












	 (C.7)

Therefore, the moments at end a are adjusted approximately by

	

M

M

M

M
U

M

M
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Uca

Vca
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
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


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







−

−












∓

M M

M M

Uc U

Vc V

	 (C.8)

Similarly, the moments at end b are adjusted approximately by

	

M

M

M

M
U

M

M

Ub

Vb
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Vcb
bending

Ucb

Vcb












=










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

∓
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
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
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
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∓

M M

M M

Uc U
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	 (C.9)

As mentioned previously, the disadvantage of using this method is that the plastifica-
tion at each end of the segment is not actually calculated, and a uniform plastification 
distribution along the segment based on the average curvature increment is assumed. 
Because of this assumption, the unbalanced force calculation at each end of a seg-
ment is also approximated. By comparing with experimental column test results, 
this approximate approach provides good results if a column element is divided into 
more than five segments. The program only calculates the unbalanced forces for seg-
ments with single curvatures. For a segment with double curvature, the unbalanced 
forces will not be calculated by the program. In order to reduce numerical instability 
(i.e., zigzagged stress reversals at some segment’s cross-sectional elements due to the 
unbalanced force adjustment), it is recommended that (1) more segments be used on 
each column, so the curvature distribution along each segment is close to a uniform 
distribution and (2) smaller incremental load steps be used. If a numerical instability 
still exists, try to use the simple Euler incremental approach (see Appendix D) with 
small incremental steps and without consideration of unbalanced forces (i.e., choose 
the UNBAL = .FALSE. option in the SOL04 input data block).

The segment’s unbalanced shear forces can be obtained from the unbalanced 
bending moments by force equilibrium.
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Appendix D: Nonlinear 
Incremental Solution 
Algorithms
As mentioned previously, the loadings in the pushover analysis may consist of joint 
loads (force control), imposed displacements (displacement control), or a combina-
tion thereof. The loading is divided into increments and applied to the structure 
in steps. At the beginning of each load step, the tangent stiffness of the structure 
is determined, and the structure is assumed to behave linearly for the duration of 
load step. Unbalanced forces, when they exist, are calculated at the end of each load 
step and added to the incremental loads for the next step. The structural stiffness is 
updated at each step, if necessary.

There are several other incremental methods commonly used for nonlinear push-
over analysis, for example, the simple Euler incremental method, Newton–Raphson 
method, arc length control method, and work control method. In the simple Euler 
incremental method, the unbalanced forces that exist in each load increment are 
ignored. In the Newton–Raphson method, iterations are used to eliminate the unbal-
anced forces that exist at each load step. Schematic representations of the simple 
Euler incremental method, the current method used in INSTRUCT as described in 
the previous paragraph, and the Newton–Raphson method are shown in Figure D.1. 
In the figure, the subscript number in the Newton–Raphson method represents the 
iteration number. It can be seen that the incremental scheme used in the current 
method combines the pure Euler incremental method with a “single” equilibrium 
correction without going through an iteration at each load step.

A drawback of both the current method and the Newton–Raphson method is 
that they fail at the limit point, the peak point of the load–deflection curve. At the 
limit point, the solution will diverge as shown in Figure D.2. In order to trace the 
descending branch of the load–deflection curve, the current stiffness parameter, Sp, 
is used here to detect the limit point. In the current method, a “single” equilibrium 
correction at each incremental step is applied to trace the ascending branch of the 
load–deflection curve. However, once the limit point is near, the simple Euler incre-
mental method is used to trace the curve past the limit point. The current method is 
then resumed to trace the descending branch of the curve. This process is shown in 
Figure D.3.

The current stiffness parameter has the form

	

S
F

F

F

F
p

t T

t T t=






∆
∆

∆ ∆
∆ ∆1

2
1 1{ } { }

{ } { }
δ
δ

	 (D.1)
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Actual
deformation
at step t + 2(a)

(c)

(b)

Equilibrium
path

{F t+1}

{F t–1}

{δt–1} {δt+1} {δt+2}{δt }

{F t }

{F t+2}

Actual
deformation
at step t + 2

Equilibrium
path

{F t+1}

{U t+1}

{U t+2}

{U t+3}

{F t–1}

{δt–1} {δt+1} {δt+2}{δt }

{F t }

{F t+2}

Actual
deformation
at step t + 2

Equilibrium
path

{F t+1}

{U t }1

{U t+1}1

{U t+1}2

{U t+2}1

{U t+2}2 {U t+2}3

{F t–1}

{δt–1} {δt+1} {δt+2}{δt }

{F t }

{F t+2}

FIGURE D .1  Three force control incremental methods: (a) simple Euler incremental 
method, (b) current method used in INSTRUCT, and (c) Newton–Raphson method.

{F t+1}

Limit point
Sp = 0

Sp < 0Sp > 0

{F t }

{δt }

{U t+1}2
{U t+1}1

FIGURE D.2  Divergence of solution in the Newton–Raphson method.
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where
Index 1 represents the initial increment step 1
t represents the incremental step t
∥ΔFt∥ is the norm of the increment load vector {ΔFt}

The unstable behavior (i.e., the descending branch of the curve) is characterized 
by a value of Sp less than zero. The value becomes zero at the limit point. The value 
of Sp is equal to one at the initial step 1 and decreases as the structure gets softer. In 
the program, when the absolute value of Sp is less than a user-defined value, simple 
Euler incremental steps are performed, and the unbalanced forces will not be added 
to the incremental loads for the next steps until the absolute value of Sp is greater 
than or equal to the user defined limit value. When Sp changes from a positive to a 
negative value at a step t, it is necessary to reanalyze step t by decreasing loads (i.e., 
using negative {ΔFt} instead of positive {ΔFt}). The program will not automatically 
change from a positive incremental load step to a negative incremental load step for 
the reanalysis of step t. Therefore, a user needs to redefine the load step at step t and 
the subsequent steps and rerun the program. The norm of the incremental load vec-
tor, ∥ΔFt∥, can be calculated as follows:

	
∆ ∆
F

N

F

F
t i

t

i ref
t

i

N

=














=
∑1

1

2 1 2

,

/

	 (D.2)

where
N is the total number of global degrees of freedom (including restrained degrees 

of freedom)
Fi ref
t
,  is taken as the largest force component of the corresponding category (i.e., 
translational force or rotational moment) at step t

{F t+1}

{F t+3}

{δt+1} {δt+2}{δt }

{F t }

{F t+2}
{U t+3}

{U t+1} Limit point
Sp = 0

Unbalanced force is not adjusted

Sp < 0
Sp > 0

FIGURE D.3  Incremental method using current stiffness parameter.
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If an imposed displacement (i.e., displacement control) is used in the program, 
the unbalanced forces are considered at all displacement incremental steps. There is 
no limit point divergence problem, as equilibriums are carried out at displacement 
steps rather than at load steps. A schematic representation of displacement control is 
shown in Figure D.4.

{F t+1}

{F t+2}

{F t+3}

{δt+1} {δt+2} {δt+3}{δt }

{F t }

{U t+2}

{U t+3}{U t+1}
Limit point

Sp = 0

Sp < 0

Sp > 0

FIGURE D.4  Displacement control.
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Appendix E: Plastic Curvature 
Capacities and Neutral 
Axis Depth in Columns
The FHWA publication (FHWA, 2006) entitled Seismic Retrofitting Manual for 
Highway Structures provides a closed-form formula to estimate the plastic curvature 
capacities of concrete columns subjected to different failure modes. Note that the 
plastic curvature capacities based on these formulas are approximate. To obtain more 
accurate plastic curvature capacities, the FSFS method should be used to perform 
the moment–curvature analysis, as described in Chapter 4. The FHWA approximate 
formulas are shown in Table E.1.

TABLE E.1
Plastic Curvature Capacities

Column Failure Mode
Plastic Curvature 

Capacity (ϕp) Equation

Compression failure, unconfined concrete φ ε φp
cu

n
c

= − (E.1)

Compression failure, confined concrete φ ε φp
cu

n
c d

=
− ′′

−
( )

(E.2)

Buckling of longitudinal bars φ ε φp
b

n
c d

=
− ′

−
( )

(E.3)

Fracture of longitudinal reinforcement φ ε φp
s

n
d c

=
−

−max

( )
(E.4)

Low-cycle fatigue of longitudinal 
reinforcement

φ
ε ε

p
ap ap

d d D
=

− ′
=

′
2 2

( )
(E.5)

Lap-splice failure φ µ φφp lap n= +( )7 (E.6)

where
ϕn is the curvature corresponding to the nominal moment, Mn

c is the depth from the extreme compression fiber of the cover concrete to the neu-
tral axis, which can be estimated by the plastic section analysis as described 
later

d″ is the distance from the extreme compression fiber of the cover concrete to the 
centerline of the perimeter hoop (thus, c − d″ is the depth of confined concrete 
under compression)

εcu is the ultimate compression strain of the core concrete, given as
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ε

ρ ε
cu

s yh su

cc

f

f
= +

′
0 004

1 4
.

.
for confined concrete 	 (E.7)

where
εsu is the strain at the maximum stress of the transverse reinforcement
fyh is the yield stress of the transverse steel
ρs is the volumetric ratio of transverse steel

′fcc is the confined concrete strength

or

	 εcu = 0 00. 4 for unconfined concrete 	 (E.8)

(note that εcu = 0.005 is used in the FHWA publication [2006] for seismic retrofit 
analysis)

εb = 2fy/Es is the buckling strain in the longitudinal reinforcing steel
εsmax is the fracture tensile strain of the longitudinal steel. εsmax should be limited 

to a value less than or equal to 0.1
εap is the plastic strain amplitude, as given by

	
εap fN= −0 08 2 0 5. ( ) . 	 (E.9)

in which Nf is the effective number of equal-amplitude cycles of loading that lead to 
fracture, which can be approximated by

	
N Tf n= −3 5 1 3. ( ) / 	 (E.10)

provided that 2 ≤ Nf ≤ 10, and Tn is the natural period of vibration of the bridge.
μlapϕ is the curvature ductility at the initial breakdown of bond in the lap-splice 

zone μlapϕ = 0 if Ms < Mn where Mn is the nominal moment strength and Ms is the 
reduced moment strength given by

	
M M

l

l
s n

lap

s

= 





	 (E.11)

where
llap is the actual length of splice
ls is the theoretical lap-splice length determined from

	

l
f

f
ds

y

c

b=
′

0 04. ( )in. 	 (E.12)

μlapϕ is the curvature ductility at which the concrete extreme fiber compression strain 
reaches 0.002, when Mn < Ms < Mu, in which Mu is the ultimate moment strength.
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A user could calculate the least (controlled) plastic curvature capacity, ϕp, based 
on the equations in Table E.1. The plastic rotation capacity is then calculated by the 
PHL or CMR method as described in Chapter 4. The input parameter of plastic rota-
tional capacity in INSTRUCT is PRMAX for “HINGE” and “IA_BILN” material 
types. Similarly, the input parameter of plastic curvature capacity is PCMAX for 
“R/CONCRETE1” and “MOMCURVA1” material types. INSTRUCT can perform 
a moment–curvature analysis using the FSFS method to obtain the plastic curvature 
capacity corresponding to the above failure modes.

In order to calculate the plastic curvature capacities corresponding to some of the 
failure modes shown in Table E.1, it is necessary to find the neutral axis depth, c, for 
a given value of strain at the extreme concrete compression fiber.

For rectangular sections, the neutral axis depth ratio is approximately given by

	

c

D

P f A f f d D

f f d

e c g t y c

t y c

=
′ + ′ − ′

+ ′ − ′

( ) ( ( )

( (

/ / )/ /

/ )/ /

γρ

αβ γρ

1 2

2 1 2 DD)
	 (E.13)

For circular sections, the neutral axis depth ratio is approximately calculated by 
trial and error using the following equation:

	

c

D

P f A f f c D d De c g t y c=
′ + ′ − − ′





1 0 5 1 2 1 2

1 32β
ρ

α
( ) . ( )( ) (( ) )

.

/ / / / / 





0 725.

	 (E.14)

where
c is the depth to neutral axis (see Figure E.1)
D is the overall depth of section
Pe is the axial load on the section
fc′ is the specified concrete strength
fy is the specified yield strength of the longitudinal reinforcement
Ag is the gross cross-sectional area
d′ is the depth from the extreme compression fiber to the center of the compres-

sion reinforcement

Neutral axis

d

d˝

d–d˝ = D΄

d΄

C

D

Compression

Tension

Figure E.1  Definition of c, D, D′, d, d′, and d″.
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ρt is the volumetric ratio of the longitudinal reinforcement
α, β are the concrete stress block parameters as defined below
γ is the reinforcing steel configuration factor
γ = 0.5 for square sections with steel placed symmetrically around the perimeter
γ = 0.0 for rectangular beam sections with steel lumped at the outer (top and 

bottom) faces
γ = 0.0 for wall section bending about the weak (out-of-plane) axis
γ = 1.0 for wall sections bending about the strong (in-plane) axis
α is the ratio of average concrete stress in the compression zone to confined con-

crete strength
α = 0.85 + 0.12(K − 1)0.4

K is the strength enhancement factor due to the confining action of the transverse 
reinforcement

K f fcc c= ′ ′/ , for circular and rectangular sections
′fcc is the confined concrete strength

β is the depth of stress block
β = 0.85 + 0.13(K − 1)0.6

For circular sections, the confined strength parameter (K) is given by Mander et al. 
(1988):

	

K
f

f

f

f

l

c

l

c

= +
′
′

−
′
′

−2 254 1 7 94 2 1 254. . . 	 (E.15)

where

f K fl e s yh′ = ( )1 2/ ρ  is the lateral stress supplied by the transverse reinforcement at 
yield

ρs = 4Abh/D″s is the volumetric ratio of spirals or circular hoops to the core concrete
Abh is the cross-sectional area of the hoop or spiral bar
Ke = (1 − χs/D″)/(1 − ρcc) is the confinement effectiveness coefficient for spirals and 

hoop steel
ρcc is the ratio of area of longitudinal reinforcement to area of core of section
χ is the coefficient with values of 0.5 and 1.0 for spirals and hoops, respectively
s is the spacing of spirals or hoops
D″ is the diameter of transverse hoop or spiral (measured to the centerline of the 

hoop)

For rectangular sections, the confined strength parameter (K) is obtained from 
Figure E.2, which uses the x- and y-confining stresses ( ′flx and ′fly, respectively) to 
derive K. Stresses ′flx and ′fly are defined as follows:

′ =f K flx e x yhρ  is the lateral confining stress in the x-direction
′ =f K fly e y yhρ  is the lateral confining stress in the y-direction

ρx sx yA h s= ′′/  is the volumetric ratio of transverse hoops or ties to the core concrete 
in x-direction
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ρy sy xA h s= ′′/  is the volumetric ratio of transverse hoops or ties to the core concrete 
in y-direction

Asx is the total area of transverse reinforcement parallel to x-axis
Asy is the total area of transverse reinforcement parallel to y-axis
Ke is the confinement effectiveness coefficient for rectangular sections with hoops 

or ties
Ke = 0.75 for rectangular columns
Ke = 0.6 for rectangular wall sections
fyh is the yield stress of the transverse hoops

′′hx  is the width of column paraller to x-direction (measured to the centerline of 
hoops or ties, see Figure 3.9)

′′hy  is the width of column paraller to y-direction (measured to the centerline of 
hoops or ties)
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Figure E .2  Confined strength ratio (K) for reinforced concrete members (Paulay and 
Priestley, 1992).
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Appendix F: Elastic and 
Inelastic Time History Analysis
The dynamic response of a multiple-degree-of-freedom system subjected to an 
earthquake excitation can be obtained by solving the following motion equation:

	 [ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )}M x t C x t K x t F t�� �+ + = 	 (F.1)

in which {x(t)}, {ẋ(t)}, and {ẍ(t)} are the structural displacement, velocity, and accel-
eration vectors, respectively, relative to the ground motion; [M], [C], and [K] are the 
structural mass, damping, and stiffness matrix, respectively. {F(t)} is the effective 
earthquake force vector expressed as follows:

	 { ( )} [ ]{ }F t M I xn G= − �� 	 (F.2)

where
ẍG is the earthquake acceleration record expressed in terms of gravity, G
{In} is the system influence coefficient vector representing the structural displace-

ment vector due to a unit ground movement

For example, {In} of a four-degree-of-freedom structure shown in Figure F.1 is 
{1,0,1,0}T.

Ground motion during an earthquake is measured by a strong motion accel-
erograph, which records the acceleration of the ground at a particular site. A typi-
cal accelerogram (i.e., ẍG), a record of the north–south (N–S) component of the El 
Centro earthquake of May 18, 1940, is shown in Figure F.2.

The solution of Equation F.1 can be obtained by numerical integration techniques. 
The two best-known numerical integration techniques, Newmark and Wilson-θ 
methods are introduced here.

F.1  Newmark Integration Method

The Newmark integration method assumes that during an incremental time step, 
Δt, the acceleration varies linearly as shown in Figure F.3. The average acceleration 
from t to t + Δt is {ẍ}avg = (1/2)({ẍ(t)} + {ẍ(t + Δt)}). Thus, the velocity vector at t + Δt 
can be expressed as follows:

	
{ ( )} { ( )} { } { ( )} ({ ( )} { (� � �� � �� ��x t t x t t x x t

t
x t x tavg+ = + = + + +∆ ∆ ∆

2
∆∆t)}) 	 (F.3)
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xG

{In} = {1, 0, 1, 0}T

{x} = {x1, x2, x3, x4}T

x1

x2

x3

x4

·

FIGURE F.1  Multiple-degree-of-freedom system.
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FIGURE  F.2  Accelerogram for the N–S component of El Centro, the Imperial Valley 
Earthquake of May 18, 1940.
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FIGURE F.3  Linear variation of acceleration.
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The displacement vector at t + Δt can be obtained from (F.3) as {x(t + Δt)} = {x(t)} + 
Δt{ẋ}avg in which {ẋ}avg = (1/2)({ẋ(t)} + {ẋ(t + Δt)}) or

	
{ ( )} { ( )} { ( )}

( )
({ ( )} { ( )})x t t x t x t t

t
x t x t t+ = + + + +∆ ∆ ∆ ∆� �� ��

2

4
	 (F.4)

Equations F.3 and F.4 represent the Newmark trapezoidal rule or the average accel-
eration method. The general Newmark integration may be expressed as follows:

	 { ( )} { ( )} [( ){ ( )} { ( )}]� � �� ��x t t x t x t x t t t+ = + − + +∆ ∆ ∆1 δ δ 	 (F.5)

	
{ ( )} { ( )} { ( )} ({ ( )} { ( )x t t x t x t t x t x t t+ = + + −





+ +∆ ∆ ∆� �� ��1
2

α α }} ( )








 ∆t 2 	 (F.6)

where α and δ are parameters that can be determined to optimize integration accu-
racy and stability. When δ = 1/2 and α = 1/4, Equations F.5 and F.6 correspond to the 
average acceleration method. When δ = 1/2 and α = 1/6, Equations F.5 and F.6 are 
then associated with the linear acceleration method.

From Equation F.6,

	
{ ( )} { ( )} { ( )} { ( )} {�� �x t t

t
x t t x t t x t t+ = + − − − −





∆
∆

∆ ∆ ∆1 1
22

2

α
α ���x t( )}









 	 (F.7)

Substituting Equation F.7 into Equation F.5 leads to

	

{ ( )} { ( )} ( ){ ( )} { ( )} { ( )}� � ��x t t x t x t
t

x t t x t+ = + − + + −[
∆

∆
∆1

1
2δ δ

α





− − −





















∆ ∆t x t t x t{ ( )} { ( )}� ��2 1
2

α 	 (F.8)

Employing Equations F.7 and F.8 in Equation F.1 at t + Δt, and letting a0 = 1/αΔt2, 
a1 = δ/αΔt, a2 = 1/αΔt, a3 = 1/(2α − 1), a4 = δ/(α − 1), and a5 = (Δt/2)(δ/(α − 2)), Equation 
F.1 becomes

	

( [ ] [ ] [ ]){ ( )}

{ ( )} [ ]( { ( )}

{ ( )

a M a C K x t t

F t t M a x t

a x t

0 1

0

2

+ + +

= + +

+

∆

∆

� }} { ( )}) [ ]( { ( )} { ( )} { ( )})+ + + +a x t C a x t a x t a x t3 1 4 5�� � �� 	 (F.9a)

or

	 [ ]{ ( )} [ ]K x t t F+ =∆ 	 (F.9b)
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from which {x(t + Δt)} can be obtained, because all of the response parameters at 
time t are known. Substituting {x(t + Δt)} in Equation F.7 leads to

	 { ( )} [{ ( )} { ( )}] { ( )} { ( )}�� � ��x t t a x t t x t a x t a x t+ = + − − −∆ ∆0 2 3 	 (F.10)

Employing {ẍ(t + Δt)} from Equation F.10 in Equation F.5, we have

	 { ( )} { ( )} { ( )} { ( )}� � �� ��x t t x t a x t a x t t+ = + + +∆ ∆6 7 	 (F.11)

where a6 = Δt(1 − δ) and a7 = δΔt. When δ = 1/2 and α = 1/6, the Newmark integration 
method becomes the linear acceleration method; Equations F.9a, F.10, and F.11 are 
then expressed as Equations F.12a, F.13, and F.14, respectively

	

6 3
2∆ ∆

∆ ∆
t

M
t
C K x t t F t t M A C B[ ] [ ] [ ] { ( )} { ( )} [ ]{ } [ ]{ }+ +



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+ = + − − 	 (F.12a)

or

	 [ ]{ ( )} { ( )}K x t t F t t+ = +∆ ∆ 	 (F.12b)

	
{ ( )} { ( )} { ( )} { ( )} { ( )}�� � ��x t t

t
x t t x t

t
x t x t+ = + − − −
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∆
∆
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∆

6 6
22  = + +6

2∆
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t
x t t A{ ( )} { }

	
(F.13)

	

{ ( )} { ( )} { ( )} { ( )} { ( )}� � ��x t t x t
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x t
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x t t
t
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� ��−



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(F.14)

in which

	
{ } { ( )} { ( )} { ( )}A

t
x t

t
x t x t= − − −6 6

22∆ ∆
� �� 	 (F.15)

and

	
{ } { ( )} { ( )} { ( )}B x t

t
x t

t
x t= − − −2

2
3� ��∆
∆

	 (F.16)

Equations F.12a, F.13, and F.14 are typically used in elastic time history analysis. 
For inelastic (i.e., nonlinear) time history analysis, at each time increment, Δt, the 
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stiffness matrix [K] may be changed according to the hysteresis models of individual 
members. Thus, the linear acceleration method in an incremental form is desired, 
and described as follows.

Let {Δx} = {x(t + Δt)}−{x(t)}, {Δẋ} = {ẋ(t + Δt)}−{ẋ(t)}, and {Δẍ} = {ẍ(t + Δt)}−{ẍ(t)}, 
Equation F.12a can be written as follows:

	

6 3
2∆ ∆

∆ ∆
t

M
t
C K x F t t F t M A C[ ] [ ] [ ] { } ({ ( )} { ( )}) [ ]{ } [ ]+ +





= + − − − {{ }B 	 (F.17)

Therefore, {Δx} can be obtained from Equation F.17. From Equation F.13

{ } { ( )} { ( )} { ( )} { } { ( )}∆ ∆
∆
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∆

∆ ∆ ∆
� �� �� ∆∆ +x A} { } 	 (F.18)

in which

	
{ } { ( )} { ( )}A

t
x t x t= − −6

3
∆

� �� 	 (F.19)

From Equation F.14

	

{ } { ( )} { ( )} { ( )} { } { ( )}

{ (

∆ ∆
∆

∆

∆

� � � �x x t t x t
t
x t t B x t

t
x t
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3 ∆∆ ∆
∆ ∆

t x t
t
x t

t
x t x t

t
x B)} { ( )} { ( )} { ( )} { ( )} { } { }− − − − = ∆ +2

2
3 3� �� �

	
(F.20)

in which

	
{ } { ( )} { ( )}B x t

t
x t= − −3

2
� ��∆

	 (F.21)

The displacement, velocity, and acceleration vectors are then determined from

	 { ( )} { ( )} { }x t t x t x+ = +∆ ∆ 	 (F.22)

	 { ( )} { ( )} { }� � �x t t x t x+ = +∆ ∆ 	 (F.23)

	 { ( )} { ( )} { }�� �� ��x t t x t x+ = +∆ ∆ 	 (F.24)
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It is noted that the specified incremental time interval, Δt, can affect the results of the 
calculation. In order to avoid numerical divergence, Δt ≤0.55T is recommended for 
the Newmark method, where T represents the fundamental period of the structure. 
The Newmark integration procedure is summarized as follows:

Step 1: Obtain time history record, ẍG, with total excitation from t = 0 s to tfinal s. 
Determine the incremental time interval, Δt.

Step 2: Perform time history analysis at time ti, where ti = ti − 1 + Δt, to calculate {Δx}, 
{Δẋ}, and {Δẍ} from Equations F.17, F.20, and F.18, respectively.

Step 3: Obtain {x(ti)}, {ẋ(ti)}, and {ẍ(ti)} from Equations F.22 through F.24, respec-
tively, where ti = ti − 1 + Δt and {x(ti − 1 + Δt)} = {x(ti − 1)} + {Δx}, etc.

Step 4: If ti < tfinal, go to Step 2. If ti = tfinal, the numerical integration is completed.

F.2  Wilson-θ Method

The Wilson-θ method is an extension of the linear acceleration method in which a 
linear variation of the acceleration from time t to t + Δt is assumed. In the Wilson-θ 
method, acceleration is assumed to be linear from time t to t + θΔt, with θ ≥ 1 (θ = 1 
is the linear acceleration method), as shown in Figure F.4.

Let {Δx} = {x(t + Δt)} − {x(t)}, {Δẋ} = {ẋ(t + Δt)} − {ẋ(t)}, and {Δẍ} = {ẍ(t + Δt)} − {ẍ(t)}, 
the incremental velocity vector from t to t + τ can be expressed as follows:
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FIGURE F.4  Wilson-θ integration method.
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Integrating Equation F.25, we have

	

{ ( )} { ( )} { ( )} { }� � �� ��x t d x t d x t d
t

x d+ − = +∫ ∫∫τ τ τ τ τ τ τ
τ τττ
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∆∫∫ 	 (F.26)
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{ } { ( )} { ( )} { }∆

∆
∆x x t x t

t
xτ τ τ τ= + +� �� ��

2 3

2 6
	 (F.27)

Since the Wilson-θ method assumes a linear variation of acceleration from t to 
t + θΔt, Equations F.25 and F.27 can also be expressed as Equations F.28 and F.29, 
respectively, with t ≤ τ ≤ t + θΔt:

	
{ } { ( )} { ( )} { ( )} { }∆

∆
∆� � � �� ��x x t x t x t

t
xτ θτ τ τ

θ
= + − = +

2

2
	 (F.28)

	
{ } { ( )} { ( )} { ( )} { ( )} { }∆

∆
∆x x t x t x t x t

t
xτ θτ τ τ τ

θ
= + − = + +� �� ��

2 3

2 6
	 (F.29)

in which {Δẍθ} = {ẍ(t + θΔt)} − {ẍ(t)}.
When τ = θΔt, let Δtθ = θΔt and tθ = t + θΔt, and Equations F.28 and F.29 are 

reduced to

	
{ } { ( )} { ( )} { ( )} { }∆ ∆ ∆ ∆ ∆� � � �� ��x x t t x t x t t x tθ θ θ θθ= + − = + 1

2
	 (F.30)

	
{ } { ( )} { ( )}( ) { }( )∆ ∆ ∆ ∆ ∆x x t t x t t x tθ θ θ θ θ= + +� �� ��1

2
1
6

2 2 	 (F.31)

From Equation F.31
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Substituting Equation F.32 into Equation F.30 results in

	
{ } { ( )} { } { ( )} { ( )} {∆ ∆

∆
∆ ∆

∆
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θ} { ( )} { ( )}− −3

2
� ��∆

	
(F.33)

Based on Equation F.1, the incremental equation of motion can be expressed as 
follows:

	 [ ]{ } [ ]{ } [ ]{ } { }M x C x K x F∆ ∆ ∆ ∆�� �θ θ θ θ+ + = 	 (F.34)

in which

	 { } { } [{ ( )} { ( )}]∆ ∆ ∆F F F t t F tθ θ θ= = + −

Substituting Equations F.32 into Equation F.33 and Equation F.34 leads to

	 [ ]{ } { }K x F∆ ∆θ = 	 (F.35)

where

	
[ ] [ ]

( )
[ ] [ ]K K

t
M

t
C= + +6 3

2∆ ∆θ θ
	 (F.36)

and

	 { } { } [ ]{ } [ ]{ }∆ ∆F F M Q C R= + +θ 	 (F.37)

in which

	 { } { }∆ ∆F Fθ θ= 	 (F.38)

	
{ } { ( )} { ( )}Q

t
x t x t= +6

3
θ∆

� �� 	 (F.39)

	
{ } { ( )} { ( )}R x t

t
x t= +3

2
� ��∆ θ 	 (F.40)

Equation F.35 is solved for {Δxθ} as follows:

	 { } [ ] { }∆ ∆x K Fθ = −1 	 (F.41)
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Substituting {Δxθ} into Equation F.32, {Δẍθ} is obtained, and {Δẍ} is determined by 
the following formula:

	
{ } { }∆ ∆�� ��x x= 1

θ θ 	 (F.42)

The incremental velocity vector, {Δẋ}, and displacement vector, {Δx}, are obtained 
at τ = Δt from Equations F.28 and F.29, respectively. The total displacement, velocity, 
and acceleration vectors are determined from

	 { ( )} { ( )} { }x t t x t x+ = +∆ ∆ 	 (F.43)

	 { ( )} { ( )} { }� � �x t t x t x+ = +∆ ∆ 	 (F.44)

	 { ( )} { ( )} { }�� �� ��x t t x t x+ = +∆ ∆ 	 (F.45)

Similar to the Newmark method, θ ≥ 1.4 is recommended to avoid numerical 
divergence.

For the inelastic time history analysis, at each time increment, Δt, the stiffness 
matrix [K] is a tangent stiffness matrix, which may be changed in accordance with 
the hysteretic models of individual members. The Wilson-θ integration procedure is 
summarized as follows:

Step 1: Obtain time history record, ẍG, with total excitation from t = 0 s to tfinal s. 
Determine the incremental time interval, Δt.

Step 2: Perform time history analysis at time ti, where ti = ti − 1 + Δt, to obtain {Δxθ} 
from Equation F.41. Substitute {Δxθ} into Equation F.32 to obtain {Δẍθ}, and then 
{Δẍ} = (1/θ){Δẍθ}, per Equation F.42.

Step 3: Once {Δẍ} is known, calculate {Δẋ} and {Δx} from Equations F.28 and F.29, 
respectively.

Step 4: Obtain {x(ti)}, {ẋ(ti)}, and {ẍ(ti)} from Equations F.43 through F.45, respec-
tively, where ti = ti − 1 + Δt and {x(ti − 1 + Δt)} = {x(ti − 1)} + {Δx}, etc.

Step 5: If ti < tfinal, go to Step 2. If ti = tfinal, the numerical integration is complete.

F.3  Proportional Damping Matrix

To form the damping matrix in Equation F.1, it is assumed that the damping matrix 
is linearly related to the mass and stiffness matrices:

	 [ ] [ ] [ ]C M K= +α β 	 (F.46)
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where α and β are constants. For a multiple-degree-of-freedom structure, Equation 
F.1 can be decoupled by the orthogonality relationship, yielding the damping term 
for mode i as follows:

	 2 2ρ ω α βωi i i= + 	 (F.47)

where
ρi is the damping ratio for mode i
ωi is the natural frequency for mode i

One method of determining the constants α and β is by estimating the damping ratio 
and natural frequencies of two modes i and j, then solving
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	 (F.48)

Thus

	
α

ω ω ρ ω ρ ω
ω ω

β
ρ ω ρ ω
ω ω

=
−

−
=

−
−

2 2
2 2 2 2

i j i j j i

j i

j j i i

j i

( )
,

( ) 	 (F.49)

When ρi = ρj = ρ, Equation F.49 becomes

	
α ω ω β β ρ

ω ω
= =

+i j
j i

,
2 	 (F.50)

For the inelastic time history analysis, it can be seen that the damping matrix [C] is 
also updated when the tangent stiffness matrix [K] is changed.
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Appendix G: Elastic and 
Inelastic Response Spectra
In the seismic design of structures, the maximum structural response subjected to 
a design earthquake is of interest to practicing engineers. The maximum structural 
response could be the maximum relative displacement with respect to the ground 
motion displacement or the maximum absolute acceleration (i.e., inertia force) with 
respect to the ground at its rest condition prior to the earthquake.

As shown in Figure G.1, for a single-degree-of-freedom (sdof) structure subjected 
to earthquake excitation, the motion equation, based on force equilibrium (Clough 
and Penzien, 1975), is

	 mx t cx t kx tt�� �( ) ( ) ( )+ + = 0 	 (G.1)

where
m, c, and k are mass, damping coefficient, and stiffness, respectively
ẋ and x are the relative velocity and relative displacement, respectively
superscript t represents the total displacement

The total displacement xt is

	 x t x t x tt
G( ) ( ) ( )= + 	 (G.2)

xG(t) is the ground motion displacement. Similar to Equation F.1, Equation G.1 can 
also be expressed in terms of relative displacement, given as

	 mx t cx t kx t mx tG�� � ��( ) ( ) ( ) ( )+ + = − 	 (G.3)

in which ẍG is the earthquake acceleration record expressed in terms of gravity, G. 
Dividing Equation G.3 by the mass, m, leads to

	
�� � ��x t x t x t x tG( ) ( ) ( ) ( )+ + = −2 2ρω ω 	 (G.4)

where ρ is the damping ratio (or so-called damping factor) expressed as follows:

	
ρ

ω
= = =c

c

c

km

c

mcr 2 2
	 (G.5)
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where
ccr is the critical damping of the system
ω is the angular frequency expressed as follows:

	
ω = k

m
( )rad/s 	 (G.6)

from which the structural natural frequency and the period can be calculated by 
using

	
f = ω

π2
( )cycle/s 	 (G.7)

and

	
T = 2π

ω
( )s/cycle 	 (G.8)

G.1  Elastic Response Spectrum

A displacement response spectrum represents the maximum relative displacements 
of sdof oscillators with different periods (or frequencies) of vibration correspond-
ing to a specified elastic damping ratio (typically 5%), subjected to ground motion, 
ẍG(t). The elastic displacement spectrum can be calculated using the step-by-step 
numerical integration method described in Appendix F to solve either Equation G.3 
or G.4. Since the abscissas of the spectrum represent the structural periods of vibra-
tion, in practice, it is convenient to use Equation G.4 to generate the elastic response 
spectrum. The maximum displacement corresponding to each frequency, ωi, can be 
obtained as follows:

	 R x td i i( , ) max ( , , ) ;ω ρ ω ρ= =i ithe th frequency or period 	 (G.9)

k, c

xG x

m
xt

FIGURE G.1  sdof system subjected to ground motion.
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To generate the acceleration spectrum, the equation of motion in terms of total 
displacement should be used. By substituting Equation G.2 into Equation G.1, the 
equation of motion becomes

	 mx t cx t kx t cx t kx tt t t
G G�� � � ��( ) ( ) ( ) ( ) ( )+ + = + 	 (G.10)

From this, the absolute acceleration spectrum can be calculated from Equation G.10 
by the step-by-step numerical integration method as follows:

	
R x ta i

t
i( , ) max ( , , ) ;ω ρ ω ρ= =�� i ithe th frequency or period 	 (G.11)

From Equations G.1 and G.5, the total acceleration can be expressed as follows:

	
�� �x t x t x tt ( ) ( ) ( )= − −2 2ρω ω 	 (G.12)

In practice, the damping terms in Equation G.12 can be neglected considering 
the damping force contribution to the equilibrium condition is small. Therefore, 
Equation G.12 can be simplified to

	 ��x t x tt ( ) ( )= −ω2 	 (G.13)

The approximate calculation of the absolute acceleration spectrum can be formu-
lated based on Equation G.13:

	
R x t Ra i i d( , ) max ( , , )ω ρ ω ω ρ ω= =2 2 	 (G.14a)

Equation G.14a is called the pseudo-acceleration spectrum. Similarly, the pseudo-
velocity spectrum is given as follows:

	 R Rv i d( , )ω ρ ω= 	 (G.14b)

Typical elastic spectra for the 1940 El Centro earthquake N–S component with 5% 
damping factor are shown in Figure G.2. The elastic displacement, velocity, and 
acceleration spectra were generated by the linear acceleration numerical integration 
method using Equation G.4, and they are in good agreement with those shown in 
other references (Naeim, 1989).

The response spectra generated from a specified earthquake such as those in Figure 
G.2 cannot be used for design, because the response of a structure due to this earth-
quake will be different from that due to another earthquake with similar magnitude, 
and the local peaks and valleys are specific to the earthquake record and may not rep-
resent general peak responses. For this reason, in practical applications, the response 
spectra from many earthquake records with common characteristics are averaged to 
develop the design spectrum with a smooth curve or several straight lines. Since the 
peak ground acceleration (PGA), velocity, and displacement for various earthquake 
records differ, the computed response spectra from these records cannot be averaged 
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on an absolute basis. Therefore, various procedures are used to normalize response 
spectra before the averaging process is carried out. The most common normalization 
procedure is to normalize each spectrum to the corresponding peak ground motion. 
For example, a normalized design spectrum for a certain soil type in the AASHTO 
bridge design specifications (1992–2008) is shown in Figure 1.4. This spectrum is 
the average of many real earthquake spectra, developed by dividing their spectral 
ordinates by the corresponding PGAs. For bridge design, the design acceleration 
spectrum value, Ra in Equation G.14a, is equal to gCsm in which g is the gravitational 
acceleration and Csm is the elastic seismic coefficient are shown in Equation 1.8.

G.2  Inelastic Response Spectrum

Structures subjected to severe earthquake ground motion experience deformation 
beyond the elastic range. The inelastic deformations depend on the hysteretic behav-
ior (i.e., load–deformation characteristics) of the structures.

Similar to the elastic response spectrum, the inelastic response spectrum can be 
generated by the inelastic time history analysis described in Appendix F. An inelas-
tic displacement response spectrum represents the maximum relative displacements 
of sdof oscillators with different periods (or frequencies) of vibration corresponding 
to a specified ductility level, subjected to ground motion, ẍG(t). To illustrate how 
to generate the inelastic response spectrum, a simple elastoplastic hysteresis model 
shown in Figure G.3 is used here.

In the figure, xy and xm represent the yield displacement and the maximum dis-
placement of an sdof structure subjected to ground motion, ẍG(t). The ductility is 
expressed as follows:
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FIGURE G.2  Elastic response spectra (5% damping).
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µ = x

x
m

y

	 (G.15)

The step-by-step procedure below illustrates how to generate an inelastic spec-
trum with a target ductility level of μtarget and an elastic damping ratio ρ.

Step 1: Define a range of structural periods (T1 < T ≤ Tn), the incremental period ΔT, 
and an assumed structural mass m.

Step 2: Select the ith period Ti, Ti = Ti−1 + ΔT; i = 1, n; T0 = 0 s.

Step 3: Perform an elastic time history analysis for Ti to find the corresponding elas-
tic strength demand Fe.

Step 4: Assume the structural yield strength, Fy, as a fraction of Fe (i.e., Fy = ratio × Fe). 
The ratio is increased from 0.001 to 1. For each ratio increment, calculate the yield 
displacement xy = Fy/k, in which k mi= ω 2  and ωi = 2π/Ti, per Equations G.6 and G.8, 
respectively.

Step 5: Using Fy, xy, and k perform a nonlinear time history analysis using the damp-
ing coefficient of c km= 2ρ  in the following equation:

	 mx t cx t kx t mx tG�� � ��( ) ( ) ( ) ( )+ + = − 	 (G.16)

At each incremental time step, check the structural demand force F(t). If F(t) < Fy, 
the elastic condition controls; if F(t) ≥ Fy, the post-yield condition controls. Adjust 
the unbalanced force so that F(t) = Fy. Since the elastoplastic model is used for this 
example, use k = 0 and ωi k m= =/ 0 for the next incremental time step. It is noted 
that, for a structure with the hysteresis model other than the elastoplastic model, 
the tangent post-yield stiffness, k, should be used in accordance with the hysteresis 
model, and F(t) adjusted accordingly. From the time history analysis, find the maxi-
mum displacement, xm = max|x(t)|.

Xy

Fy

Fe

Xe Xm

FIGURE G.3  Elastoplastic model for sdof system.
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Step 6: Calculate ductility μ = |xm/xy|. Compare μ with μtarget. If |μ − μtarget| is more 
than a specified tolerance, increase values of ratio and go to step 4. If |μ − μtarget| 
is less than a specified tolerance, xm = max|x(t)| corresponding to μtarget is obtained. 
Similarly, the absolute maximum acceleration is ẍm = max|ẍt(t)|, where ẍt(t) is calcu-
lated from Equation G.1. Per Equation G.13, for simplicity, the pseudoacceleration 
of ẍm = (Ti/2π)2|xy| can be used instead of using absolute maximum acceleration and 
pseudovelocity as given as ẋm = Ti/2π|xy|.

Step 7: If Ti = Tn, the inelastic displacement spectrum is completed. If Ti < Tn, go to 
step 2 and select the next period Ti, and repeat steps 3–6.

Inelastic spectra for the 1940 El Centro earthquake N–S component generated 
using ductility μ = 4 are shown in Figure G.4. These spectra were generated by the 
Wilson-θ method using Equation G.3. The mass and the initial damping ratio are 20 
kip-s2/in. and 0.05, respectively.

G.3  Force-Reduction R-Factor Spectrum

As described in Section 1.2.3, the force-reduction factor R is the ratio of the elastic 
strength demand to the inelastic strength demand of a structure subjected to the 
ground motion, ẍG(t). Therefore, the force-reduction R-factor spectrum represents 
the ratio of the elastic strength demand to the inelastic (or yield) strength demand, 
corresponding to a specified ductility demand, within a range of periods of vibration. 
By performing the elastic and inelastic response spectrum analyses described in the 
precious sections, both elastic and inelastic strength demands can be obtained (i.e., Fe 
and Fy). A typical Fe(μ = 1) and Fy(μ = 4) spectrum for the 1940 El Centro earthquake 
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FIGURE G.4  Inelastic response spectra (μ = 4, ρ = 0.05).
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N–S component is shown in Figure G.5, and the corresponding force-reduction 
R-factor spectrum (i.e., Fe/Fy) is shown in Figure G.6.

Figure G.6 clearly shows that the R-factor is a function of structural type and 
period. The R-factor is less than the ductility demand μ = 4 in the short period 
range (T < 0.5 s), while between 0.5 < T < 5, the R-factor varies significantly. This 
observation is only based on one earthquake acceleration record. However, simi-
lar to the design response spectrum, a design force-reduction R-factor spectrum 
should be generated based on a large number of ground acceleration time his-
tory records, soil conditions at site, initial damping, and the hysteretic behavior 
of structures.
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G.4  �Elastic Displacement Spectrum with 
Equivalent Viscous Damping for DDBD

As described in Chapter 2, the calculation of the inelastic displacement demand is 
essential to the performance-based seismic design of highway bridges. In the direct 
displacement-based design (DDBD) procedures, the inelastic displacement demand 
and the corresponding equivalent viscous damping, ξeq, are calculated, so that the 
effective period, Teff, of the substitute sdof system can be obtained from the elastic 
design displacement spectrum. A typical elastic design displacement spectrum is 
shown in Figure 2.2.

The concept of equivalent viscous damping was first proposed by Jacobsen (1930). 
He developed the equivalent viscous damping coefficient, ceq, of a linear system, 
which can be used to estimate the maximum nonlinear displacement of a nonlinear 
system with high power of velocity of motion, subjected to harmonic motion (i.e., 
replace the equation of motion of a nonlinear system, mẍ + cn(ẋ)n + kx = Q sin ωt, with 
the linear system, mẍ + ceqẋ + kx = Q sin ωt). By equating the work dissipated by the 
nonlinear system to the work dissipated by the linear system, the equivalent viscous 
damping coefficient, ceq, can be obtained.

Jacobsen’s concept was adopted by many researchers to obtain the equivalent vis-
cous damping, ξeq, of an elastic substitute system to estimate the peak displacement 
response of an inelastic hysteretic system. For example, equating the energy dis-
sipated in one cycle by an sdof bilinear hysteretic system (see Figure G.7) under the 
steady-state harmonic motion between the positive and negative maximum displace-
ments to the viscous damping energy dissipated by the associated elastic substitute 
system undergoing the same displacements, the equivalent viscous damping, ξeq, can 
be expressed as (ATC-40, 1996)

	
ξ µ

πµ µeq
r

r r
= − −

+ −
2 1 1

1
( )( )

( )
	 (G.17)

Elastic substitute system

Fy
rKi

Ki

Keff

Keff = ki
rμ – r + 1 Xy +Xm

–Xm

μ

Teff = Ti r μ – r + 1
μ

FIGURE G.7  Idealized equivalent viscous damping (bilinear sdof system).

© 2012 by Taylor & Francis Group, LLC



343Appendix G

in which r is the postyield stiffness ratio as shown in Figure G.7. It can be seen that 
the equivalent viscous damping, ξeq, is strongly dependent on the ductility demand, 
μ = xm/xy, of the inelastic system. Since the actual earthquake motion is not a steady-
state harmonic motion, the magnitudes of many small hysteresis loops due to earth-
quake are considerately lower than the maximum displacement, xm. Many modified 
ξeq − μ models have been developed (Gulkan and Sozen, 1974; Iwan and Gates, 1979; 
ATC-40, 1996; Kwan and Billington, 2003; Dwairi et al., 2007; Priestley et al., 
2007), based on a large number of ground acceleration time history records. From 
the ξeq − μ relationship, an inelastic displacement spectrum such as the one in Figure 
G.4 can be replaced by an elastic displacement spectrum with equivalent ξeq.

To demonstrate that the elastic displacement spectrum corresponding to ξeq can 
be used to estimate the maximum displacement of an sdof inelastic system, the fol-
lowing three ξeq − μ models are used to generate elastic displacement spectra repre-
senting the maximum inelastic displacement of an elastoplastic hysteretic system 
using the 1940 El Centro earthquake N–S component. These spectra will then be 
compared with the inelastic displacement spectrum in Figure G.4.

	 1.	Model No. 1 (Dwairi et al., 2007):

	
ξ ξ ξ µ

πµeq elas hyst C= + = + −







5

1
% 	 (G.18)

		  in which C = 85 + 60(1 − Teff) if Teff < 1 s, and C = 85 if Teff ≥ 1 s. The equiva-
lent viscous damping is the sum of elastic damping, ξelas, and hysteretic 
damping, ξhyst · ξelas = 5% is typically used here for concrete structure. Teff is 
the effective period of the substitute elastic sdof system.

	 2.	Model No. 2 (Priestley et al., 2007):

	
ξ ξ ξ µ

πµeq elas hyst= + = + −







5 67

1
% 	 (G.19)

	 3.	Model No. 3 (ATC-40, 1996):

	

ξ ξ κξ κ µ
πµeq elas hyst= + = + −

















5 200

1
% 	 (G.20)

	 κ = 1.13 − 0.51(μ − 1/μ), if ξhyst > 16.25; κ = 1.0, if ξhyst ≤ 16.25.

		  Substituting μ = 4 into Equations G.18, ξeq = 25.3% for Teff ≥ 1 s, and 
38.2% ≤ ξeq ≤ 26.7% for 0.1 s ≤ Teff ≤ 0.9 s. Similarly, substituting μ = 4 into 
(G.19) and (G.20) leads to ξeq = 21% and 40.7%, respectively. The elastic 
displacement spectra corresponding to the above calculated ξeq s, generated 
from the elastic time history analysis (see Appendix F for elastic time his-
tory analysis), are shown in Figure G.8.
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Since these spectra represent the maximum responses of a substitute elastic sdof 
system, the period on the abscissa of Figure G.8 is the effective period, Teff, not the 
initial elastic period, Ti. In order to compare Figure G.8 with the inelastic displace-
ment spectrum in Figure G.4, which has the elastic period, Ti, on the abscissa, the Teff 
in Figure G.8 needs to be shifted to Ti. From Figure G.7 for the elastoplastic system 
(i.e., r = 0)

	

T
T T

i
eff eff=
=

=
µ 4 2

	 (G.21)

Figure G.9 shows the comparison between the inelastic displacement spectrum and 
the elastic displacement spectra with equivalent viscous dampings calculated from 
the ξeq − μ models after shifting the period per Equation G.21. It can be seen that 
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FIGURE G.8  Elastic displacement spectra with equivalent viscous dampings.
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Models 1 and 2 provide a good estimate of inelastic response when Ti is less than 
1.5 s. For Ti > 1.5 s, the estimates of all of the models are less than the inelastic dis-
placement values from the inelastic displacement spectrum. As shown in the figure, 
Model No. 3 significantly underestimates the inelastic response due to overestimat-
ing the equivalent viscous damping. Note that models 1 and 2 were developed based 
on results from extensive time history analysis, using many ground motion records. 
Based on just one ground motion record, comparing the elastic displacement spec-
tra with ξeq s with an inelastic displacement spectrum is not adequate. However, 
the main purpose of the above comparison is to demonstrate that the elastic dis-
placement spectrum with appropriate ξeq can be used to estimate maximum inelastic 
displacement.

Instead of using elastic displacement design spectra with associated equivalent 
viscous damping, it is possible to develop inelastic displacement design spectral 
curves in terms of ductility demands for the DDBD. However, the disadvantage of 
using inelastic displacement design spectra is that the equivalent ductility demand 
of the substitute sdof system is not easy to obtain, due to the difficulty of estimating 
the equivalent yield displacement of the substitute sdof system, especially for bridges 
with non-regular geometry or nonuniform distribution of weight and stiffness.
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Appendix H: Response 
Spectrum Analysis of 
Multiple-dof System
As described in Chapter 1, response spectrum analysis has been accepted by 
AASHTO for the seismic design of highway bridges since 1992. Most bridge engi-
neers are familiar with this method. This appendix is mainly for engineers or stu-
dents who are not knowledgeable in response spectrum analysis. To understand 
response spectrum analysis, fundamental structural dynamics concepts, such as free 
vibration, force vibration, and natural frequencies and mode shapes, are first intro-
duced, followed by an introduction to response spectrum analysis.

H.1  Damped Free Vibration System

For a single-degree-of-freedom (sdof) system in free vibration, the equation of 
motion is

	 mx t cx t kx t�� �( ) ( ) ( )+ + = 0 	 (H.1)

where
m, c, and k are mass, damping coefficient, and stiffness of the structure, 

respectively
ẍ, ẋ, and x are the relative acceleration, velocity, and displacement, respectively

Dividing Equation H.1 by the mass m produces

	
�� �x t x t x t( ) ( ) ( )+ + =2 02ρω ω 	 (H.2)

where
ρ is the damping factor
ω is the angular frequency

The general solution of Equation H.2 is

	 x t e C t C tt( ) ( cos sin )= +−ρω ω ω1 2 	 (H.3)

The constants C1 and C2 can be determined from the initial conditions at t = 0 s. If 
the initial displacement and velocity at t = 0 s are x0 and ẋ0, substituting x0 and ẋ0 into 
Equation H.3 and its first derivative with respect to time, respectively, we have

	 C x1 0= 	 (H.4a)
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C

x x
2

0 0= +� ρω
ω

	 (H.4b)

Then, Equation H.3 becomes

	
x t e x t

x x
tt( ) cos sin= + +





−ρω ω ρω
ω

ω0
0 0�

	 (H.5)

or

	 x t Ae tt
d( ) cos( )= −−ρω ω α 	 (H.6)

in which A C C= +1
2

2
2  and αd = tan−1 C2/C1. In Equation H.6, the factor e−ρωt 

decreases with time, and so damping effects will gradually reduce the magnitude 
of vibration as demonstrated in Figure H.1. The damped vibration in Figure H.1 is 
based on x0 = 5, ẋ 0 = 0, ρ = 0.05, and structural period T = 1 s.

H.2  Damped Vibration with Dynamic Forcing Function

For the sdof system shown in Figure G.1, subjected to a dynamic forcing function, 
P(t), the equation of motion is

	 mx t cx t kx t P t�� �( ) ( ) ( ) ( )+ + = 	 (H.7)

The general forcing function P(t) is shown in Figure H.2 and consists of a series of 
impulse forces, P dt′, where t′ varies from 0 to t s, and t is the structural response to 

6

4

2

0

–2

–4

–6
0 1 2

t
3 4 5

x(
t)

X0

A

Ae–ρωt

ω
2πT =

FIGURE H.1  Damped free vibration.
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be calculated. Since the impulse force is equal to the change in momentum, the fol-
lowing equation is obtained for the velocity change due to each impulse force:

	
m dx P dt dx

P dt

m
� �= ′ =

′
or 	 (H.8)

Following the application of an impulse load at time t′, the sdof structure is in free 
vibration. The displacement increment given in Equation H.5 becomes

	
dx e

P dt

m
t tt t=

′
− ′





− − ′ρω

ω
ω( ) sin ( ) 	 (H.9)

Because all the impulse forces between t′ = 0 and t′ = t have such an effect, the total 
structural response due to all the impulse forces (i.e., P(t) as a whole) can be obtained 
by integrating Equation H.9 as follows:

	

x t
P t

m
e t t dt

t

t t( )
( )

sin ( )( )= ′ − ′ ′∫ − − ′1

0
ω

ωρω 	 (H.10)

Equation H.10 is called Duhamel’s integral, which can be used to calculate the struc-
tural response due to any forcing function P(t). For an sdof structure subjected to an 
earthquake excitation, the earthquake induced force is mẍG. Thus, Equation H.10 is 
expressed as follows:

	

x t x t e t t dtG

t

t t( ) ( ) sin ( )( )= ′ − ′ ′∫ − − ′1

0
ω

ωρω�� 	 (H.11)

Since ground acceleration, ẍG, is not a simple periodic function, it is very difficult 
to integrate. Normally, instead of using Duhamel’s integral of Equation H.11, the 
structural response is calculated by the step-by-step numerical integration methods 
described in Appendix F.

PN

P1P1

P(t)

P2P2

P3P3
P4

PN

P4

P = P4

t΄ = t4́
dt΄ t t1́ t2́ t3́ t4́ tŃ

+= + + + ......... +

FIGURE H.2  General forcing function.
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H.3  Structural Natural Frequencies and Mode Shapes

For a structure with m total free dofs, the dimensions of the mass and stiffness 
matrices, [M]m×m and [K]m×m, are m × m. The characteristics of the structure’s vibra-
tion are governed by the natural frequencies and corresponding mode shapes of the 
structure. The total number of governing modes is n and usually n is less than or 
equal to m. The ith natural frequency, ωi, and the mode shape, {Φ}i, can be obtained 
by the following eigenvalue equation:

	 ([ ] [ ]){ } { }, , , ,K M i ni i− = = …ω2 0Φ 1 2 	 (H.12)

To find the nontrivial solution of Equation H.12, set the determinant of [ ] [ ]K Mi− ω2  
equal to zero:

	
[ ] [ ]K Mi− =ω2 0 	 (H.13)

The expansion of Equation H.13 is a polynomial with order n. The n roots of the 
polynomial equation are eigenvalues of the natural frequencies ω1, ω2, …, and ωn. 
Substituting each of the natural frequency into Equation H.12 leads to n eigenvectors 
defining mode shapes {Φ}1, {Φ}2, …, and {Φ}n. Normalizing each of the mode shapes 
{Φ}i, so that the largest positive or negative value of the term in the mode shape vec-
tor is equal to one, yields the normalized mode shapes called normal modes, denoted 
as {X}1, {X}2, …, and {X}n here.

H.3.1  Orthogonality of Normal Modes

Let {X}u and {X}v be two normal modes corresponding to the natural frequencies of 
ωu and ωv, respectively. From Equation H.12

	 ([ ] [ ]){ } { }K M Xu u− =ω2 0

or

	 ωu u uM X K X2[ ]{ } [ ]{ }= 	 (H.14)

Similarly

	 ωv v vM X K X2[ ]{ } [ ]{ }= 	 (H.15)

Postmultiplying the transpose of Equation H.14 by {X}v yields

	 ωu u
T T

v u
T T

vX M X X K X2{ } [ ] { } { } [ ] { }= 	 (H.16)
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Premultiplying Equation H.15 by { }X u
T  yields

	 ωv u
T

v u
T

vX M X X K X2{ } [ ]{ } { } [ ]{ }= 	 (H.17)

Since [M] and [K] are symmetric, [M]T = [M] and [K]T = [K]. Subtracting Equation 
H.17 from Equation H.16 gives

	 ( ){ } [ ]{ }ω ωu v u
T

vX M X2 2 0− = 	 (H.18)

Since ωu ≠ ωv, Equation H.18 is satisfied only if

	 { } [ ]{ }X M X u vu
T

v = ≠0 for 	 (H.19)

which is the orthogonality condition for the uth and vth normal modes with respect 
to the mass matrix [M]. From Equations H.17 and H.19

	 { } [ ]{ }X K X u vu
T

v = ≠0 for 	 (H.20)

which is the orthogonality condition with respect to stiffness matrix [K]. Also, from 
Equation F.46, since the proportional damping matrix [C] is linearly related to the 
mass and stiffness matrices, the orthogonality condition also applies to the damping 
matrix [C]:

	 { } [ ]{ }X C X u vu
T

v = ≠0 for 	 (H.21)

H.4  Multiple-Mode Response Spectrum Analysis

The equation of motion of a multiple-dof system subjected to an earthquake excita-
tion is shown in Equation F.1 and reproduced here:

	 [ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )} [ ]{ }M x t C x t K x t F t M I xn G�� � ��+ + = = − 	 (H.22)

Let

	

{ ( )} [ ]{ ( )} { } ( ),x t X x t X x t Nn n

n

N

= ′ = ′ =
=

∑
1

number of modes consideered 	 (H.23)

where
[X] is the normal mode matrix
{x′(t)} is the generalized response vector
{X}n is the nth normal mode vector

′x tn( ) is the generalized model response corresponding to the nth mode
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Substituting Equation H.23 into Equation H.22 yields

	 [ ][ ]{ ( )} [ ][ ]{ ( )} [ ][ ]{ ( )} { ( )}M X x t C X x t K X x t F t�� �′ + ′ + ′ = 	 (H.24)

Multiplying the above equation by the transpose of any normal mode vector, {X}n, 
corresponding to the nth mode, gives

	 { } [ ][ ]{ ( )} { } [ ][ ]{ ( )} { } [ ][ ]{ ( )X M X x t X C X x t X K X x tn
T

n
T

n
T�� �′ + ′ + ′ }} { } { ( )}= X F tn

T 	 (H.25)

Using the orthogonality conditions of normal modes in Equations H.19 through 
H.21, Equation H.25 can be decoupled into the following generalized form:

	 M x t C x t K x t P t n Nn n n n n n�� �′ + ′ + ′ = =( ) ( ) ( ) ( ), 1 to 	 (H.26)

in which the generalized properties for the nth mode are given as follows:

	 M X M Xn n
T

n= ={ } [ ]{ } generalized mass 	 (H.27)

	 C X C X Mn n
T

n n n n= = ={ } [ ]{ } 2ρ ω generalized damping 	 (H.28)

	 K X K X Mn n
T

n n n= = ={ } [ ]{ } ω2 generalized stiffness 	 (H.29)

	 P t X F tn n
T( ) { } { ( )}= = generalized loading 	 (H.30)

From the above equations, Equation H.26 can be further simplified to

	
�� � ��′ + ′ + ′ = =x t x t x t

P t

M

X M I

M
xn n n n n n

n

n

n
T

n

n
G( ) ( ) ( )

( ) { } [ ]{ }
2 2ρ ω ω (( ),t n N= 1 to 	 (H.31)

As described previously, the response of a damped vibration can be obtained by 
Equation H.11. Similar to Equation H.11, the response of the nth mode in Equation 
H.31 at time t can be expressed as follows:

	

x t
X M I

M
x t e t t dtn

n
T

n

n n
G

t

t t
n′ ( )

{ } [ ]{ }
( ) sin ( )( )= ′ − ′ ′∫ − − ′

ω
ωρω��

0

== { } [ ]{ }
( )

X M I

M
S tn

T
n

n
n 	 (H.32)

in which

	

S t x t e t t dtn
n

G

t

t t
n( ) ( ) sin ( )( )= ′ − ′ ′∫ − − ′1

0
ω

ωρω�� 	 (H.33)
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Sn(t) is same as Duhamel’s integral shown in Equation H.11, which represents the 
displacement response of an sdof system at time t, with natural frequency ωn sub-
jected to ground motion ẍG. As described in Appendix G, the displacement-response 
spectrum, Rd(ωn, ρn), represents the maximum relative displacements of sdof oscilla-
tors with different periods (or frequencies) of vibration, subjected to ground motion, 
ẍG(t). Hence,

	
R S td n n n( , ) max ( )ω ρ = 	 (H.34)

From Equations H.32 and H.34, the maximum displacement of the generalized 
model response corresponding to the nth mode is

	
′ = ′ =x x t

X M I

M
Rn n

n
T

n

n
d n n( ) |

{ } [ ]{ }
( , )max ω ρ 	 (H.35)

Since the pseudo-acceleration spectrum Ra(ωn,ρn) is equal to ω ω ρn d n nR2 ( , ) (see 
Equation G.14), Equation H.35 can also be expressed as follows:

	
′ = =x

X M I

M
R Rn

n
T

n

n n
a n n n a n n

{ } [ ]{ }
( , ) ( , )

ω
ω ρ γ ω ρ2 	 (H.36)

The maximum response of a multiple-dof system corresponding to the nth mode, 
{x}n, can be expressed as follows:

	 { } { } { } ( , )x X x X Rn n n n n a n n= ′ = γ ω ρ 	 (H.37a)

where
γn is called the participation factor for the nth mode, and

	 { } { , , , , , }x x x x xn n n n
k

n
m= 1 2 … … 	 (H.37b)

The superscript m represents the mth dof of the structural system. Using Equation 
H.37a, the maximum modal response {x}n is obtained for each mode. The next ques-
tion to arise is how should these model maxima be combined for the best estimate 
of maximum total response? The response expression in Equation H.23 provides 
accurate results only as long as {x(t)} is evaluated concurrently with time. However, 
in response spectrum analysis, time is removed from the equation. The maximum 
response values for individual modes cannot possibly occur at the same time. 
Therefore, a combination of modal maximum such as

	

{ } { , , , , , } { }x x x x x xk m T
n

n

N

= =
=

∑1 2

1

… … 	 (H.38)
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is too conservative for design applications. To resolve this, two modal combination 
methods are typically accepted, as giving a more reasonable estimate of maximum 
structural response. These two methods are described as follows.

H.4.1  SRSS Model Combination Method

The square-root-of-the-sum-of-the-squares (SRSS) method can be expressed as 
follows:

	

x x Nk
n
k

n

N

= =
=

∑( ) ,2

1

number of modes considered 	 (H.39)

in which xk is the maximum response of the dof k. SRSS provides good approxima-
tion of the response for frequencies distinctly separated from neighboring modes.

H.4.2  Complete-Quadratic-Combination Model Combination Method

In general, the complete-quadratic-combination (CQC) method (Wilso et al., 1981) 
offers a significant improvement in estimating structural response. The CQC combi-
nation is expressed as follows:

	

x x x i j Nk
i
k

ij j
k

j

N

i

N

= =
==

∑∑ α
11

1, , , 	 (H.40)

where
αij is the cross-correlation coefficient, indicating the cross correlation between 

modes i and j
αij is a function of frequency and damping ratio of a structure and can be expressed 

as follows:

	
α ρ

ρij
q q

q q q
= +

− + +
8 1

1 4 1

2 3 2

2 2 2

( )
( ) ( )

/

	 (H.41)

with

	
q j

i

= ω
ω

	 (H.42)

H.4.3  �Combination of Structural Responses due to 
Multiple-Component Ground Motions

In the design and analysis of structures subjected to seismic loading, multicomponent 
ground motions should be considered. The AASHTO bridge design specifications 

© 2012 by Taylor & Francis Group, LLC



355Appendix H

described in Chapter 1 require the consideration of two horizontal orthogonal seis-
mic components (X and Y components). AASHTO allows using the same design-
response spectrum for both orthogonal seismic components. The structural response 
obtained from Equation H.39 or H.40 due to seismic component X is then combined 
with that due to seismic component Y, by the following 30% rule:

	
( ) . ( )x xk

X component
k
Y component- -+ 0 3 	 (H.43)

and

	
( ) . ( )x xk

Y component
k

X component- -+ 0 3 	 (H.44)

with the larger of the two used for design. In some cases, the 30% rule underesti-
mates the structural response. Past research indicated that when using the identical 
design-response spectrum for each of the seismic component, the SRSS combination 
rule in Equation H.45 provides more realistic results (Menun and Kiureghian, 1998) 
than the 30% rule:

	
( ) ( )x xk

X component
k

Y component
2 2

- -+ 	 (H.45)

If the design-response spectra for two seismic components are not identical and have 
different magnitudes, the CQC3 rule proposed by Menun and Kiureghian (1998) is 
recommended. The CQC3 provides a more general procedure than either the 30% 
rule or the SRSS rule for multicomponent ground motion combinations. It not only 
estimates maximum structural response due to the two seismic horizontal compo-
nents but the seismic vertical component as well. It also accounts for the correlation 
between individual seismic components.
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Appendix I: Polynomial 
Curve Fitting
Given m data points, P1(x1,y1), P2(x2,y2),…,Pm(xm,ym), a defined guess function shown 
in Figure I.1 is expressed as follows:

	

g x x x x xn n j j

j

n

( ) ( ) ( ) ( ) ( )= + + + =
=

∑γ φ γ φ γ φ γ φ1 1 2 2

1

� 	 (I.1)

where
ϕj(x) is the jth specified function
γj is the jth parameter to be determined

If we define ϕj(x) = xj − 1, Equation I.1 becomes a (n − 1)-order polynomial, given by

	

g x x x xn
n

j
j

j

n

( ) = + + + =− −

=
∑γ γ γ γ1 2

1 1

1

� 	 (I.2)

In order to find the guess function g(x), which lies near the data points P1, P2, …, Pm, 
define a least square function E(g) as follows:

	

E g g x y x x x yk k

k

m

k k n n k k

k

( ) ( ) ( ) ( ) ( )= −[ ] = + + + −[ ]
= =

∑ 2

1

1 1 2 2
2γ φ γ φ γ φ�

11

m

∑ 	 (I.3)

Minimizing Equation I.3 to best fit the points P1, P2, …, Pm

	

0 2 1
1

= ∂
∂

= −[ ] ∂
∂

−[ ] =
=

∑E g
g x y g x y i n

i
k k

k

m

i
k k

( )
( ) ( ) , , ,

γ γ
… 	 (I.4)

Since ϕ1(xk), ϕ2(xk),…,ϕn(xk) and yk are constants, and ∂γj/∂γi = 0 for j ≠ i, from 
Equation I.3, where ∂[g(kk) − yk]/∂γi = ϕi(xk), Equation I.4 becomes

	

γ φ φj j k k

j

n

k

m

i kx y x i n( ) ( ) , , ,−












= =
==

∑∑
11

0 1 … 	 (I.5)
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or

	

γ φ φ φj j k

j

n

k

m

i k k i k

k

m

x x y x i n( ) ( ) ( ), , ,
== =

∑∑ ∑= =
11 1

1 … 	 (I.6)

Interchanging the order of j and k summations gives

	

γ φ φ φj i k j k

k

m

j

n

k i k

k

m

x x y x i n( ) ( ) ( ) , , ,
== =

∑∑ ∑








 = =

11 1

1 … 	 (I.7)

Equation I.7 can be expressed as (Maron, 1982)

	

φ φ φ φ φ φ

φ φ φ

1 1 1 2 1
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(I.8)

In which ∑ denotes 
k

m

=∑ 1
 (i.e., summation of all the data points). Substituting

 
Equation I.2 into Equation I.8 leads to

x1 x2 x3 ... ...xk xm–1 xm

Pm(xm, ym)

Pm–1 (xm–1, ym–1)

Pk (xk, yk)

y = g(x)

g(xk) – yk

P2 (x2, y2)

P1 (x1, y1)

P3 (x3, y3)

FIGURE I.1  Fitting g(xk) to P1, P2, …, Pm.
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For a third-order polynomial (i.e., n = 4), Equation I.9 becomes
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	 (I.10)

or

	 [ ] { } { }A Bn n n n× × ×=γ 1 1 	 (I.11)

Therefore, {γ}n × 1 can be solved as follows:

	 { } [ ] { }γ n n n nA B× ×
−

×=1
1

1 	 (I.12)

Example I.1

From the moment–curvature analysis of a column section, seven axial load–
nominal moment (P − Mn) data points are shown in Table I.1. Find the coeffi-
cients γ1, γ2, γ3, and γ4 of the third-order polynomial interaction curve.

Solution

Let the x-axis represents axial load, P, and the y-axis represents the nominal 
moment, Mn. Since the total number of data points is 7, m = 7. From Equations 
I.10 and I.11
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a a a a

a a a a
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a a a a
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TABLE I.1
Data Points, P(x,y)

Axial Load, P (kip) Moment, Mn (k-ft)

0 200

210 350
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1143 0
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Therefore, the polynomial curve is

	 M P P Pn = + − + × −198 154 1 0685 0 001568 0 4215 102 6 3. . . ( . )

The axial load–nominal moment interaction curve generated by INSTRUCT is 
shown in Figure I.2.
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FIGURE I.2  Axial load–nominal moment interaction curve fit.
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Appendix J: Plate Element 
Stiffness Matrix
Plate elements can be used to model bridge collision walls, bridge decks, or building 
floors. The closed form of the plate element stiffness matrix can be derived from 
the standard finite-element procedures of using assumed shape functions and the 
principle of virtual work (Weaver and Johnston, 1987). The shape functions relate 
generic displacements to nodal displacements. The principle of virtual work states 
that the virtual work of external actions on an element is equal to the virtual strain 
energy of internal stresses of the element. This appendix provides the plate element 
closed-form stiffness matrix derived from the above-mentioned finite-element pro-
cedure, so that the user can directly use it for the structural analysis.

A plate element and its degrees of freedom are shown in Figure 5.9 and repro-
duced here as Figure J.1. The element has 20 degrees of freedom, which include 
consideration of in-plane and out-of-plane deformations.

The element force vector, displacement vector, and stiffness matrix are as follows:

	 { } { , , , , }F F F F Fe
T= 1 2 3 20… 	 (J.1)

	 { } { , , , , }δ δ δ δ δe
T= 1 2 3 20… 	 (J.2)

	 { } [ ]{ }F ke e e= δ 	 (J.3)
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FIGURE J.1  Plate element.
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and

where
E and μ are the elastic modulus and Poisson’s ratio of the material, respectively
t is the thickness of the plate element.
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condensed degrees of freedom, 101
finite-segment element, 111–113
GCS, 97–98
global degrees of freedom, 101
inelastic IE3DBEAM element (see Inelastic 

3D beam element)
JCS, 97–98
plate element

element coordinate system and degrees of 
freedom, 116

element stiffness matrix, 116–118
rigid body constraints, 98–101
unbalanced forces

element forces, 118–119
global structural and geometric stiffness, 

120–121
global unbalanced joint forces, 119–120

B

Beam-column joint failure
test specimen #1, 275–277
test specimen #2

Joint_shear1.out file, 278–283
Joint_shear2.out file, 283–287

Bilinear hysteresis model, 41–43
Bilinear moment–rotation model (HINGE), 43
Bilinear PM method

elastoplastic component, 293–294
i-end linear and j-end nonlinear, 295
i-end nonlinear and j-end linear, 294–295
linear component, 293–294
nonlinear ends, 296

Brace element (BRACE)
axial spring element, 57, 62
element coordinate system and degrees of 

freedom, 113–114

element stiffness matrix, 114–115
pushover curves, 262

Brace material (BRACE), 53

C

CMR method, see Constant moment ratio 
method

Complete-quadratic-combination (CQC) method, 
354

Concrete column
failure modes

column shear failure, 86–89
confined and unconfined concrete, 82
joint shear failure, 89–91
longitudinal reinforcement, buckling, 

83–84
longitudinal tensile fracture, 84
low-cycle fatigue, 84
plastic-curvature capacity, 82
plastic hinge zone, 85–86

with rectangular section
EX6_pries7_5.dat file, 242–244
structural model, 240

with shear failure
shear column specimen, 265
shear1_MC.out file, 265–269
shear1.out file, 269–275

Constant moment ratio (CMR) method
bilinear moment–curvature curve, 73–74
conjugate beam theory, 72
conjugate load, 75
curvature distribution, 74
moment–inelastic rotation curves, 72–73
moment–rotation curve, 75
moment–rotation relationship, 72

Cross frame analysis
brace elements, 262
diagonal angle member, 261
earthquake inertial shear forces, 262
EXAMPLE_10.dat file, 263–264
pushover displacements and curves, 261
STABILITY element, 261
steel yield stress, 260
structural model, 260

Cyclic response, cantilever beam
EX13_TAKEDA2.dat file, 291–292
moment and curvature, 289
moment–total rotation relationship, 289
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reinforced concrete, 287
Takeda model, 288–289
vertical load–vertical displacement, 288

D

3D-BEAM element, 244
Design-response spectra, 355
Direct displacement-based design (DDBD), 23
Displacement control, two-column bent

bilinear moment–curvature curve, 195
displacement capacity, 195
EX4_PHL2.out file, 197–211
FSFS

confined concrete strain, 218
EX4_FSFS5.out file, 219–224
lateral displacement capacity, 218
STABILITY element, 218

FSMC
EX4_FSMC5.out file, 226–231
pushover curve, 224–225
STABILITY element, 224

MCEER/ATC design, 194
PHL method

bilinear moment–curvature curve, 195
EX4_PHL2B.out file, 204–211
EX4_PHL2.out file, 197–204
moment–rotation curve, 196
moment–rotation relationship, 195–196

plastic rotation capacity, 195
PM method

bilinear moment–curvature curve, 195, 
211

column axial load and moment 
interaction, 211

EX4_PM3.out file, 212–218
structural model, 194

E

Earthquake excitation, 335–336
ECS, see Element coordinate system
Elastic and inelastic time history analysis

accelerogram, 325–326
earthquake acceleration record, 325
earthquake excitation, 325
ground motion, 325
multiple-degree-of-freedom system, 325–326
Newmark integration method (see Newmark 

integration method)
proportional damping matrix, 333–334
Wilson-θ method (see Wilson-θ method)

Elastic displacement spectrum
elastoplastic hysteretic system, 343–344
idealized equivalent viscous damping, 

342–343
inelastic displacement spectrum, 344–345

sdof bilinear hysteretic system, 342
Elastic 3D prismatic beam material 

(3D-BEAM), 41
Elastic 3D prismatic element (3D-BEAM), 54–56
Elastic response spectrum

acceleration, 337
damping, 337–338
displacement, 336–337
El Centro earthquake, 337
equation of motion, 337

El Centro earthquake, 325–326, 337
Element coordinate system (ECS)

axial stiffness, 104
IE3DBEAM element, 103, 106
local element stiffness matrix, 104
plate element, 116
stiffness matrix, 114
torsional stiffness, 103

Element library
BRACE, 62
3D-BEAM, 54–55
IE3DBEAM, 58–59
PLATE, 60–61
POINT, 61–62
SPRING, 55–58
STABILITY, 59–60

Euler incremental method, 315–316

F

Failure modes (see Concrete column failure 
modes)

Finite-segment element (STABILITY), 59
Finite segment–finite string (FSFS) method

confined concrete strain, 218
Euler incremental approach, 81
EX4_FSFS5.out file, 219–224
lateral displacement capacity, 218
nonlinear pushover analysis, 79
plasticity model, 79
plastification distribution, 81
segment stiffness matrix, 80–81
STABILITY element, 218

Finite segment–moment curvature (FSMC) 
method

axial load–moment–curvature, 81
EX4_FSMC5.out file, 226–231
pushover curve, 224–225
segment stiffness matrix, 81–82
STABILITY element, 224

Finite segment–moment curvature model 
(MOMCURVA1), 52

Finite-segment reinforced concrete 
stress–strain hysteresis model 
(R/CONCRETE1), 45

Finite-segment steel stress–strain hysteresis 
model (STABILITY1), 43–44
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Finite segment, unbalanced forces, 313–314
Force-based design procedures

1975–1992
earthquake load calculation, 3
National seismic risk map, 3–4
PGA values, seismic zones, 3, 5
rock acceleration, combined 

response, 4–5
1992–2008

beam–column connection, cracking, 
18, 20

capacity design, 15–16
column shear failure, 18, 20
confined concrete, compression failure, 

18–19
deformation, earthquake, 11
design response spectrum, 10–11
equal-displacement approximation, 11
“EXTREME EVENT I,” 9–10
force-reduction R-factor

bridge performance prediction, 15
constant member initial stiffness, 

13–15
elastic mode shapes, 15
period independence, 13

lap-splice failure, 18, 20
longitudinal reinforcement, buckling, 

18–19
LRFD design, 8–9
PGA acceleration coefficient, 7
response modification factors, 8–9
R-factor, 10–11
seismic performance category, 6–8
seismic zones, 8–9
soil types, design spectrum, 7–8, 10
specification, 5
structures ductility, 12

Force control, two-column bent
EX5_PM_FORCE.out file, 233–236
EX5_PM_FORCE2.out file, 237–239
force control and displacement control, 240
structural model, 230, 232

Force-reduction R-factor spectrum, 340–341
Four-column bent

cap beam, 247–248
EX8_Four_Column_bent.dat, 249–251
lateral displacement capacity, 248
R/C column circular, 247–248

FSFS method, see Finite segment–finite string 
method

FSMC method, see Finite segment–moment 
curvature method

G

Gap/restrainer model (GAP), 41
Gdofs, see Global degrees of freedoms

Global coordinate system (GCS), 97–98
Global degrees of freedoms (Gdofs)

constraint transformation, 107, 115
3D-BEAM and IE3DBEAM elements, 114
ECS-JCS, 106
force and displacement vectors, 109
geometric stiffness matrix, 109–111
global forces and forces, 107
P–δ force, 109–110
rigid zone, 108

H

Highway bridges seismic design
AASHTO bridge philosophy

AASHO elastic design procedures, 2–3
earthquake load, 1
force-based design procedures 

(see Force-based design procedures)
WSD method, 1

AASHTO guide specifications (2009)
nonlinear pushover analysis procedure, 

17–18
principles, 16–17
seismic design categories, 17

direct displacement-based design procedures
bridge, demand and capacity, 19
DDBD method, 21

HINGE material, 321

I

IA_BILN material, 321
Inelastic 3D beam element (IE3DBEAM), 244

ECS, 58
element coordinate system and degrees of 

freedom, 102–103
element stiffness matrix

ECS, 103–106
Gdof, 106–111

IA_BILN material, 58–59
Inelastic response spectrum

deformation, 338
ductility, 338–339
sdof system, 338–339
step-by-step procedure, 339–340

INSTRUCT program, 169–170
BUG options, 165
damping, 159
degrees of freedom

joint condensation, 129–130
joint constraints, 130
joint coordinates, 127–128
joint direction cosines, 128
joint restraints, 128–129
STRUCT, 126–127
TITLE, 126–127
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DUMP–print memory, 166
element data

BRACE, 157–158
3D-BEAM, 150–151
IE3DBEAM, 151–154
NELMT, 150
PLATE, 155–157
POINT, 157
SPRING, 155–156
STABILITY, 154–155

geometric stiffness data, 149–150
INPUT, 125–126
mass, 158–159
materials and hysteresis models

BILINEAR/ELSPLS, 131
BRACE, 149
3D-BEAM, 131
HINGE, 132–134
IA_BILN, 134–136
MOMCURVA1, 144–148
NMAT times, 130
PLATE, 148
POINT, 148–149
R/CONCRETE1, 142–144
STABILITY1, 136–141

noecho–inhibit input echo, 166
read–read plot files, 166
release–release memory, 166–167
SOL01-elastic static solution

element loads, 160–162
joint loads, 159–160
load factors, 164

SOL04-incremental static solution
element loads, 164
joint loads, 164
load factors, 164–165
output data, plot files, 162–164

STOP-terminate execution, 167

J

Joint coordinate system (JCS), 97–98
Joint_shear2.out file, 284–286

L

Load and resistance factors design (LRFD), 23

M

Material library
bilinear hysteresis model, 41
BRACE, 53–54
3D-beam, 41
GaP, 41–42
HINGE, 43

IA_BILN, 43
MOMCURVA1, 52–53
PLATE, 53
POINT, 53
R/CONCRETE1, 45–52
STABILITY1, 43–44
TAKEDA, 42–43

Member yield indicators, 170
MOMCURVA1 material, 321
Moment–curvature analysis

concrete circular section, 170–171
EX1_MC.out, 171–180
FSFS method, 170
P-M interaction curve, 181
STABILITY element, 171
structural model, 171

N

National Institute of Standards and Technology 
(NIST), 182

Newmark integration method
acceleration, linear variation, 325–326
displacement vector, 327
linear acceleration method, 328
procedure, 330
trapezoidal rule, 325, 327
velocity, displacement, and acceleration 

vectors, 329–330
Newton–Raphson method, 315–316
Nonlinear bending stiffness matrix 

formulations
bilinear interaction axial load–moment 

method, 63–65
bilinear moment–curvature curves, 91–92
CMR method

bilinear moment–curvature curve, 73–74
conjugate beam theory, 72
conjugate load, 75
curvature distribution, 74
moment–inelastic rotation curves, 72–73
moment–rotation curve, 75
moment–rotation relationship, 72

column axial load–moment interaction, 
93–94

column axial load–plastic curvature capacity 
curve, 94–95

concrete column failure modes
column shear failure, 86–89
confined and unconfined concrete, 82
joint shear failure, 89–91
longitudinal reinforcement, buckling, 

83–84
longitudinal tensile fracture, 84
low-cycle fatigue, 84
plastic-curvature capacity, 82
plastic hinge zone, 85–86
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FSFS method, 79–81
FSMC method, 81–82
PHL method

bilinear model, 70–71
bilinear moment–curvature relationship, 

67–68
elastic column element and nonlinear 

rotational spring, 65–66
moment–curvature curve, 68–70
moment–curvature relationship, 68
moment–plastic rotation curve, 70–71
moment–total rotation curves, 70–71
slope-deflection theory, 66
yield rotation, 68

Nonlinear incremental solution algorithms
current stiffness parameter, 315, 317
displacement control, 318
Euler incremental method, 315–316
INSTRUCT method, 315
load–deflection curve, 315
Newton–Raphson method, 315–316
pushover analysis, 315
single equilibrium correction, 315
structural stiffness, 315

Nonlinear pushover analysis
cyclic/monotonic analysis

flowchart, 38–39
nonlinear pushover procedure, 39–41

element library
BRACE, 62
3D-BEAM, 54–55
IE3DBEAM, 58–59
PLATE, 60–61
POINT, 61–62
SPRING, 55–58
STABILITY, 59–60

joints and dof determination, 35–36
material–element cross reference, 56, 62
material library

bilinear hysteresis model, 41
BRACE, 53–54
3D-beam, 41
GaP, 41–42
HINGE, 43
IA_BILN, 43
MOMCURVA1, 52–53
PLATE, 53
POINT, 53
R/CONCRETE1, 45–52
STABILITY1, 43–44
TAKEDA, 42–43

material properties, 36
SOL01-elastic static analysis, 37
SOL04-nonlinear static pushover 

analysis
flowchart, 38–39
nonlinear pushover procedure, 39–41

P

PHL method, see Plastic hinge length method
Pile cap bent

axial load–moment interaction, 251
Ex9_Pilecap_4c_flex_cap.out file, 253–259
pile plastic rotation capacity, 252
pile–soil interaction, 251
POINT element, 251
structural model, 251–252

Plastic curvature capacities and neutral axis 
depth, columns

compression strain, 319–320
confined strength parameter, 322–323
FHWA, 319–321
FSFS method, 319
lap-splice length, 320
moment strength, 320
PHL/CMR method, 321
plastic rotation capacity, 321
plastic strain amplitude, 320
seismic retrofit analysis, 320

Plastic hinge length (PHL) method
bilinear model, 70–71
bilinear moment–curvature curve, 195
bilinear moment–curvature relationship, 

67–68
elastic column element and nonlinear 

rotational spring, 65–66
EX4_PHL2B.out file, 204–211
EX4_PHL2.out file, 197–204
moment–curvature curve, 68–70
moment–curvature relationship, 68
moment–plastic rotation curve, 70–71
moment–rotation curve, 196
moment–rotation relationship, 195–196
moment–total rotation curves, 70–71
slope-deflection theory, 66
yield rotation, 68

Plate element (PLATE), 60, 244
element coordinate system and degrees of 

freedom, 116
element stiffness matrix

displacement vector, 363–366
ECS, 116–117
Gdof, 117–118
in-plane and out-of-plane deformations, 

363
structural analysis, 363

Plate material (PLATE), 53
Point element (POINT), 61, 244
Point material (POINT), 53
Polynomial curve fitting

axial load–nominal moment 
interaction, 362

guess function, 357
least square function, 357–359
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Pushover analysis applications
axial load–moment interaction curves, 

31, 33
bridge system redundancy evaluation, 

29–30
capacity/demand ratios, 28–29
DDBD, performance level verification

column yield displacement, 25
damage-control limit, 23
design displacement spectrum, 26
displacement profile, 25
effective period, 26
eigen solution analysis, 25
equivalent viscous damping, 25
life-safety limit state, 24
longitudinal reinforcement, 27
longitudinal reinforcement, tension 

strain, 23
plastic rotation capacity, 24
sdof structure, 24–25
secant stiffness, 27
survival limit state, 24
target displacement profile, 24

design displacement spectrum, 26
displacement capacity evaluation, 23
moment–curvature curves, 31–32

R

R/CONCRETE1 material, 321
Response spectrum analysis

damped vibration
with dynamic forcing function, 348–349
free vibration system, 347–348

multiple-mode response spectrum analysis
CQC combination method, 354
damped vibration, 352
earthquake excitation, 351–352
ground motion, 353
multiple-component ground motions, 

354–355
participation factor, 353–354
SRSS model combination method, 354

orthogonality, normal modes, 350
structural natural frequencies, 350

Rigid zone, 108

S

Single-column bent
EX2_NIST3B62.out file, 183–189
FSFS method, 182
full-scale column test, 182
NIST, 182

pushover curve, 183
STABILITY element, 182

Single-degree-of-freedom (sdof), 335
Spring element (SPRING), 55, 244
Steel member plastic analysis

bilinear interaction axial load–moment, 189
EX3_Test_PM.dat, 192–193
load-displacement pushover curve, 

189–190
load–moment interactions, 190–191
moment–rotation relations, 190
structure model, 189

Stiffness matrix formulation
elastoplastic component, 293–294
finite segment

instantaneous principal axes, 298
pushover analysis, 297–298
rotation angle, 298

i-and j-ends nonlinear, 296
i-end linear and j-end nonlinear, 295
i-end nonlinear and j-end linear, 294–295
linear component, 293–294
segment rotation matrix

coordinate system, 303
deformed angle segment, 305
degrees of freedom, 308
finite segment element, 308
geometric stiffness matrix, 306–307
global coordinate system, 306
original vs. deformed position, 303–304
segment force increment vector, 

308–309
unit vector, 305
V‾-axis, 304

Structural joint output, 169–170

T

Takeda hysteresis model (TAKEDA), 42–43
Three-column bent

EX7_Test3b.dat, 245–248
POINT element, 244
SPRING element, 244

W

Wilson-θ method
incremental equation of motion, 332
incremental velocity vector, 330, 333
integration procedure, 333
linear acceleration method, 330–331
procedure, 333
tangent stiffness matrix, 333

Working stress design (WSD) method, 1
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