
Springer Undergraduate Texts 
in Mathematics and Technology

Timothy G. Feeman

The 
Mathematics of 
Medical Imaging
A Beginner’s Guide

 Second Edition 



Springer Undergraduate Texts
in Mathematics and Technology

Series Editors:
J. M. Borwein, Callaghan, NSW, Australia
H. Holden, Trondheim, Norway
V. Moll, New Orleans, LA, USA

Editorial Board:
L. Goldberg, Berkeley, CA, USA
A. Iske, Hamburg, Germany
P.E.T. Jorgensen, Iowa City, IA, USA
S. M. Robinson, Madison, WI, USA

More information about this series at http://www.springer.com/series/7438

http://www.springer.com/series/7438




Timothy G. Feeman

The Mathematics of Medical Imaging
A Beginner’s Guide

Second Edition

123



Timothy G. Feeman
Department of Mathematics and Statistics
Villanova University
Villanova, PA, USA

ISSN 1867-5506 ISSN 1867-5514 (electronic)
Springer Undergraduate Texts in Mathematics and Technology
ISBN 978-3-319-22664-4 ISBN 978-3-319-22665-1 (eBook)
DOI 10.1007/978-3-319-22665-1

Library of Congress Control Number: 2015949223

Mathematics Subject Classification (2010): 42A38, 42B10, 44A12, 65T50, 68U10, 94A08, 94A20

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2010, 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions
that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.
com)

www.springer.com
www.springer.com


For Max and Simon
and for Alexandra





Contents

Preface to the second edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 X-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 X-ray behavior and Beer’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Lines in the plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Radon Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Some properties of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Designing phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Plotting an elliptical region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 The Radon transform of an ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Plotting a square region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.4 The Radon transform of a square region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 The domain of R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 The attenuated Radon transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Back Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



viii Contents

4 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 The complex number system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The complex exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Properties and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Heaviside and Dirac ı . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Inversion of the Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Multivariable forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Two Big Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 The central slice theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Filtered back projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 The Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Filters and Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Some properties of convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3 Filter resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Convolution and the Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5 The Rayleigh–Plancherel theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.6 Convolution in 2-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.7 Convolution, B, R, and ı . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.8 Low-pass filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Discrete Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3 Discrete low-pass filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4 Discrete Radon transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.5 Discrete functions and convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.6 Discrete Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.7 Discrete back projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.8 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.9 Discrete image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.10 Matrix forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.11 FFT — the fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Contents ix

8.12 Fan beam geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9 Algebraic Reconstruction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2 Kaczmarz’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2.1 Affine spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.2 Kaczmarz’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2.3 Variations of Kaczmarz’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3 Least squares approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.4 Pseudoinverses and least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.5 Spectral filtering and regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.6 ART or the Fourier transform? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10 MRI — an overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.3 The Bloch equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.4 The RF field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.5 RF pulse sequences; T1 and T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.6 Gradients and slice selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.7 The imaging equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Appendix A Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.1 Improper integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.2 Iterated improper integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.3 L1 and L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.4 Summability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Appendix B Matrices, transposes, and factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.1 Transpose of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.2 Eigenvalue decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.3 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Appendix C Topics for further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195





Preface to the second edition

In producing this second edition, I acknowledge first and foremost the contributions of the
amazing Elizabeth Loew, my editor at Springer. Without her unwavering enthusiasm and
support, and, yes, some firm prodding, this project would not have made it this far.

The response I have received to the first edition has been gratifying. I thank the many
readers who have sent along their questions, comments, compliments, and lists of typos. All
these have been both helpful and encouraging. I have also received repeated requests for
any materials I could provide to supplement the text. At first, I had very little available for
public consumption. This gradually changed as I used the book myself, for courses at both
the undergraduate and master’s degree levels. By necessity, I developed additional exercises,
created short computer-based assignments, and found new ways to explain some of the tricky
concepts. So, in this second edition, I have sought to enhance the development of the main
themes and ideas from the earlier edition. This includes the addition of a few new topics that,
I hope, lend deeper insight into the core concepts.

Chapter 2 includes new material on the Radon transform and its properties as well as
more figures, more worked examples, and a new section that offers a computer-based, hands-
on guide to creating phantoms. Chapters 5 and 7 have more on the Dirac delta function and
its role in X-ray imaging analysis. Chapter 8 has an expanded look at interpolation using
cubic splines, more illustrations of the principal image reconstruction algorithms based on
the filtered back projection, and examples of how to implement the algorithms on a computer.
Chapter 9, on algebraic image reconstruction techniques, includes more thorough discussions
of Kaczmarz’s method and least squares approximation, a new section on regularization and
spectral filtering, and more computer-based examples and exercises. A new appendix collects
some useful results concerning matrices and their transposes that figure in the discussion in
Chapter 9, including the eigenvalue decomposition of a (real) symmetric matrix of the form
ATA and the singular value decomposition of a matrix. Additional exercises are to be found
in most chapters, with about 30% more exercises overall than in the first edition.

The use of technology has been revamped throughout this second edition, with the
incorporation of the open-source programming environment R [42]. I began to study and
learn R not too long ago, as part of a research collaboration with a colleague of mine in
statistics here at Villanova University. In the midst of running Monte Carlo simulations, I

xi



xii Preface to the second edition

realized that the discrete, vector-based nature of R is well suited to many of the applications
found here. Nearly all of the figures have been redesigned using R, and quite a few new
figures have been added. More than 20 examples using R are included throughout the text,
offering new opportunities for hands-on exploration. SpringerLink includes additional R
scripts, including some of those used to produce the figures in the book.

I hope this new edition will stoke your enthusiasm for mathematics and the powerful
impact of its applications. Enjoy!

Villanova, PA, USA Timothy G. Feeman



Preface

In 1979, the Nobel Prize for Medicine and Physiology was awarded jointly to Allan McLeod
Cormack and Godfrey Newbold Hounsfield, the two pioneering scientist-engineers primarily
responsible for the development, in the 1960s and early 1970s, of computerized axial
tomography, popularly known as the CAT or CT scan. In his papers [14], Cormack, then
a professor at Tufts University, in Massachusetts, developed certain mathematical algorithms
that, he envisioned, could be used to create an image from X-ray data. Working completely
independently of Cormack and at about the same time, Hounsfield, a research scientist at
EMI Central Research Laboratories in the United Kingdom, designed the first operational
CT scanner as well as the first commercially available model. (See [27] and [28].)

Since 1980, the number of CT scans performed each year in the United States has risen
from about 3 million to over 67 million. What few people who have had CT scans probably
realize is that the fundamental problem behind this procedure is essentially mathematical:
If we know the values of the integral of a two- or three-dimensional function along all
possible cross sections, then how can we reconstruct the function itself? This particular
example of what is known as an inverse problem was studied by Johann Radon, an Austrian
mathematician, in the early part of the twentieth century. Radon’s work incorporated a
sophisticated use of the theory of transforms and integral operators and, by expanding the
scope of that theory, contributed to the development of the rich and vibrant mathematical
field of functional analysis. Cormack essentially rediscovered Radon’s ideas, but did so at
a time when technological applications were actually conceivable. The practical obstacles
to implementing Radon’s theories are several. First, Radon’s inversion methods assume
knowledge of the behavior of the function along every cross section, while, in practice, only
a discrete set of cross sections can feasibly be sampled. Thus, it is possible to construct
only an approximation of the solution. Second, the computational power needed to process a
multitude of discrete measurements and, from them, to obtain a useful approximate solution
has been available for just a few decades. The response to these obstacles has been a rich and
dynamic development both of theoretical approaches to approximation methods, including
the use of interpolation and filters, and of computer algorithms to effectively implement the
approximation and inversion strategies. Alongside these mathematical and computational
advances, the machines that perform the scans have gone through several generations of

xiii
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improvements in both the speed of data collection and the accuracy of the images, while
the range of applications has expanded well beyond the original focus on imaging of the
brain. Other related processes, such as positron emission tomography (PET), have developed
alongside the advances in CT.

Clearly, this subject crosses many disciplinary boundaries. Indeed, literature on technical
aspects of medical imaging appears in journals published in engineering, mathematics,
computer science, biomedical research, and physics. This book, which grew out of a course
I gave for undergraduate mathematics majors and minors at Villanova University in 2008,
addresses the mathematical fundamentals of the topic in a concise way at a relatively
elementary level. The emphasis is on the mathematics of CT, though there is also a chapter
on magnetic resonance imaging (MRI), another medical imaging process whose originators
have earned Nobel prizes. The discussion includes not only the necessary theoretical
background but also the role of approximation methods and some attention to the computer
implementation of the inversion algorithms. A working knowledge of multivariable calculus
and basic vector and matrix methods should serve as adequate prerequisite mathematics.

I hope you will join me, then, in this quest to comprehend one of the most significant
and beneficial technological advances of our time and to experience mathematics as an
inextricable part of human culture.

Villanova, PA, USA Timothy G. Feeman
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X-rays

1.1 Introduction

A computerized axial tomography (CAT or CT) scan is generated from a set of thousands of
X-ray beams, consisting of 160 or more beams at each of 180 directions. To comprehend this
large collection of X-rays, we must first understand just one beam.

When a single X-ray beam of known intensity passes through a medium, such as muscle
or brain tissue or an ancient Egyptian sarcophagus, some of the energy present in the beam
is absorbed by the medium and some passes through. The intensity of the beam as it emerges
from the medium can be measured by a detector. The difference between the initial and final
intensities tells us about the ability of the medium to absorb energy. For the sort of X-rays
one might get at the dentist’s office or for a suspected broken bone, the detector is a piece of
film. A fan- or cone-shaped set of X-rays is emitted from a machine and those photons that
are not blocked or absorbed by teeth or bone expose the film, thus creating a picture of the
medium. The picture essentially lacks depth since anything positioned behind a point where
the photons are blocked will not be seen. This shortcoming highlights a significant difficulty
in imaging, namely, that the medium through which the X-rays pass is not homogeneous. For
instance, muscles are fibrous and denser in some parts than others; brain tissue is composed of
grey matter, water, blood, neurons, and more; inside the sarcophagus is a mummified, partly
decomposed body, but also remains of objects that were buried along with the deceased.

The idea behind the CT scan is that, by measuring the changes in the intensity of X-ray
beams passing through the medium in different directions and, then, by comparing the
measurements, we might be able to determine which locations within the medium are more
absorbent or less absorbent than others.

To get an idea of how this works, let’s start with a simple model. Suppose we have a one-
centimeter-thick slice of material (the medium) in the shape of a square. The square is divided
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Fig. 1.1. This grid of white and black squares has a prescribed X-ray energy absorption for each row and
column.

into a 3-by-3 rectangular grid of smaller squares each of which is either black or white. Each
white square absorbs “1 unit” of X-ray energy while the black squares do not absorb X-ray
energy. (So the white squares act like bone, say, and the black ones act like air.) Suppose now
that an X-ray beam passing through the first row of the grid loses 2 energy units. It follows
that there must be two white squares, and one black square, in the first row of the grid. If an
X-ray beam passing through the first column of the grid loses 1 unit of energy, then the first
column would contain only one white square. At this point, there are only four possibilities
for the configuration of the first row and column (instead of the initial 25 D 32 possibilities
for these five squares), namely, Row 1 D WWB and Column 1 D WBB; Row 1 D WBW
and Column 1 D WBB; Row 1 D BWW and Column 1 D BWB; or Row 1 D BWW and
Column 1 D BBW. Continuing in this way, suppose that we measure the following losses in
X-ray energy for the various rows and columns of the grid: Row 1 ! 2 units lost; Row 2 !
2 units; Row 3 ! 1 unit; Column 1 ! 1 unit; Column 2 ! 2 units; and Column 3 ! 2 units
of energy lost. Figure 1.1 shows one of several possible configurations of black and white
squares that are consistent with these measurements.

What are the other possible configurations? Is there an easy way to determine the total
number of white squares, and, consequently, the total number of black squares, in the grid?
Is there more than one consistent pattern? If so, what additional information might help to
pinpoint a unique shading pattern? For a rich and highly entertaining elaboration on this
model for thinking about CT scans, see [16].

In some sense, creating an image from a CT scan consists of carrying out a scheme like
this on a rectangular image grid subdivided into thousands of small squares. Instead of just
black or white, each square is assigned a greyscale value — a number between 0 and 1,
where, by common practice, black is 0 and white is 1 — based on the energy-absorption
ability of the material located in that square in the grid. Each X-ray passing through the
material is measured, and the change in intensity gives us information about the amount of
grey encountered along the path of the beam. What is not known is precisely where along the
way the reduction in energy occurred. Once we know the changes in intensity for enough X-
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rays, we try to create an image whose greyscale values are consistent with the measurements.
This approach to image construction is akin to the basic idea implemented by Hounsfield in
his early CT scanners and will be discussed in a more refined way in Chapter 9.

Example with R 1.1. There are two ways to produce an image like that in Figure 1.1 using R.
The polygon command allows one to have defined borders within the grid. Otherwise, the
image command converts a matrix of numbers into a grid of boxes colored according to the
matrix entries. The code used here is the following:

##Fig 1.1 has three polygonal regions
x1=c(1,0,0,1,1,1,1,2,2,3,3,3,2,2,1)
y1=c(2,2,3,3,2,1,0,0,1,1,2,3,3,2,2)
x2=c(1,0,0,1,1,1,2,2,1)
y2=c(2,2,0,0,2,3,3,2,2)
x3=c(2,2,3,3,2)
y3=c(0,1,1,0,0)
plot(0:3, 0:3, type = "n")
polygon(x1, y1, col = "white",border = "black")
polygon(x2, y2, col = "black",border = "black")
polygon(x3, y3, col = "black",border = "black")
lines(c(1,2,2,3),c(1,1,2,2))

1.2 X-ray behavior and Beer’s law

To simplify the analysis, we will make some assumptions that present an idealized view of
what an X-ray is and how it behaves. Specifically, in thinking of an X-ray beam as being
composed of photons, we will assume that the beam is monochromatic. That is, each photon
has the same energy level E and the beam propagates at a constant frequency, with the same
number of photons per second passing through every centimeter of the path of the beam. If
N.x/ denotes the number of photons per second passing through a point x, then the intensity
of the beam at the point x is

I.x/ D E � N.x/:

We also assume that an X-ray beam has zero width and that it is not subject to refraction or
diffraction. That is, X-ray beams are not bent by the medium nor do they spread out as they
propagate.

Every substance through which an X-ray passes has the property that each millimeter of
the substance absorbs a certain proportion of the photons that pass through it. This proportion,
which is specific to the substance, is called the attenuation coefficient of that material. The
units of the attenuation coefficient are something like “proportion of photons absorbed per
millimeter of the medium.” In general the attenuation coefficient is non-negative and its value
depends on the substance involved. Bone has a very high attenuation coefficient, air has a low
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Table 1.1. Approximate Hounsfield units for certain organic substances.

substance Hounsfield units substance Hounsfield units
bone 1000 kidney 30
liver 40 to 60 cerebrospinal fluid 15

white matter 20 to 30 water 0
grey matter 37 to 45 fat �100 to �50

blood 40 air �1000
muscle 10 – 40

coefficient, and water is somewhere in between. Different soft tissues have slightly different
attenuation coefficients associated with them.

Radiologists actually use a variant of the attenuation coefficient in their work. Developed
by Godfrey Hounsfield, the Hounsfield unit associated with a medium is a number that
represents a comparison of the attenuation coefficient of the medium with that of water.
Specifically, the Hounsfield unit of a medium is

Hmedium WD Amedium � Awater

Awater
; (1.1)

where A denotes the true attenuation coefficient. Table 1.1 gives the Hounsfield units of
some typical organic substances.

Now suppose an X-ray beam passes through some medium located between the position
x and the position x C �x, and suppose that A.x/ is the attenuation coefficient of the medium
located there. Then the proportion of all photons that will be absorbed in the interval Œx; x C
�x� is p.x/ D A.x/ � �x. Thus the number of photons that will be absorbed per second by the
medium located in the interval Œx; xC�x� is p.x/ �N.x/ D A.x/ �N.x/ ��x. If we multiply both
sides by the energy level E of each photon, we see that the corresponding loss of intensity of
the X-ray beam over this interval is

�I � �A.x/ � I.x/ � �x:

Let �x ! 0 to get the differential equation known as Beer’s law:

dI

dx
D �A.x/ � I.x/ (1.2)

This may also be stated as follows.
Beer’s law. The rate of change of intensity per millimeter of a nonrefractive, monochromatic,
zero-width X-ray beam passing through a medium is jointly proportional to the intensity of
the beam and to the attenuation coefficient of the medium. This condition is expressed by the
differential equation (1.2).

The differential equation (1.2) is separable and can be written as
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dI

I
D �A.x/ dx:

If the beam starts at location x0 with initial intensity I0 D I.x0/ and is detected, after passing
through the medium, at the location x1 with final intensity I1 D I.x1/, then we get

Z x1

x0

dI

I
D �

Z x1

x0

A.x/ dx;

from which it follows that

ln.I.x1// � ln.I.x0// D �
Z x1

x0

A.x/ dx:

Thus

ln

�
I1

I0

�
D �

Z x1

x0

A.x/ dx:

Multiplying both sides by �1 yields the result

Z x1

x0

A.x/ dx D ln

�
I0

I1

�
: (1.3)

This is a little bit backwards from what we often encounter in textbook problems in
differential equations. There, we would typically know the coefficient function and use
integration to find the function I. Here, however, we know the initial and final values of
I, and it is the coefficient function A, which expresses an essential property of the medium
being sampled by the X-ray, that is unknown. Thus, we see that from the measured intensity
of the X-ray we are able to determine not the values of A itself, but rather the value of the
integral of A along the line of the X-ray.

Example 1.2. For a simple example, suppose the attenuation-coefficient function A is
constant throughout a sample. Then, the amount of absorption along any given X-ray beam
depends only on the width of the sample along the line of the beam. So, if the beam is
travelling along the x-axis and enters the sample at x0, say, and leaves the sample at x1, then
the amount of absorption is A.x1 � x0/. It follows from (1.3) that

A D
ln
�

I0
I1

�

x1 � x0
;

where I0 and I1 are the initial and final intensities of the X-ray.

Example 1.3. Suppose that
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A.x/ WD
(

1 � jxj if jxj � 1,
0 if jxj > 1,

and suppose that an X-ray with initial intensity I0 is emitted at the point x0 with x0 < �1,
passes through the sample, and has final intensity I1, as measured by a detector at the point
x1 with x1 > 1. Since

Z x1

x0

.1 � jxj/ dx D 1;

we see that

ln

�
I0

I1

�
D 1;

from which it follows that I1 D e�1 � I0: For instance, if I0 D 1, then I1 D e�1. Solving the
differential equation dI

dx D �A.x/ � I.x/ , with the initial condition I0 D I.�1/ D 1, yields

I.x/ WD

8̂
ˆ̂<
ˆ̂̂:

1 if x � �1,

e�x� 1
2 � 1

2 x2
if �1 � x � 0,

e�x� 1
2 C 1

2 x2
if 0 � x � 1,

e�1 if x � 1.

Example 1.3: Alternate version. Suppose that the intersection of a sample with the x-axis
lies entirely inside the interval Œ�1; 1� and suppose that an X-ray with initial intensity I0 D 1
is emitted at the point x0 with x0 < �1, passes through the sample, and has final intensity
I1 D e �1, as measured by a detector at the point x1 with x1 > 1. Moreover, imagine that we
somehow knew that the intensity function of the beam was given by

I.x/ WD

8̂
ˆ̂<
ˆ̂̂:

1 if x � �1,

e �x� 1
2 � 1

2 x2
if �1 � x � 0,

e �x� 1
2 C 1

2 x2
if 0 � x � 1,

e �1 if x � 1.

Beer’s law (1.2) now yields

A.x/ WD
(

1 � jxj if jxj � 1,
0 if jxj > 1.

With actual X-ray detection equipment, though, we would not know the function I.x/ at
all values of x, only at the points of emission and detection. The condition I1 D e�1 � I0

tells us only that
R x1

x0
A.x/ dx D 1, not what formula A.x/ has. For instance, we would not be
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able to distinguish A1.x/ WD
(

1 � jxj if jxj � 1,
0 if jxj > 1

from A2.x/ WD
(

1 if jxj � 1=2,
0 if jxj > 1=2

or, for that

matter, from any other attenuation function having an integral equal to 1. A single X-ray can
measure only the integral of the attenuation function, not its shape.

What we can measure: We can design an X-ray emission/detection machine that can
measure the values of I0 and I1. Hence, from (1.3), we can compute

R x1
x0

A.x/ dx, the integral
of the (unknown) attenuation-coefficient function along the path of the X-ray.
What we want to know: The value of A.x/ at each location depends on the nature of the
matter located at the point x. It is precisely the function A itself that we wish to know.
Two- or three-dimensional interpretation. Suppose a sample of material occupies a finite
region in space. At each point .x; y; z/ within the sample, the material there has an attenuation
coefficient value A.x; y; z/. An X-ray beam passing through the sample follows a line ` from
an initial point P (assumed to be outside the region) to a final point Q (also assumed to be
outside the region). The emission/detection machine measures the initial and final intensities
of the beam at P and Q, respectively, from which the value ln .Iinitial=Ifinal/ is calculated.
According to (1.3), this is equal to the value of the integral

R
PQ A.x; y; z/ ds, where ds

represents arclength units along the segment PQ of the line `. Thus, the measurement of
each X-ray beam gives us information about the average value of A along the path of the
beam.

In our study of CT scans, we will consider a two-dimensional slice of the sample, obtained
as the intersection of the sample and some plane, which we will generally assume coincides
with the xy-plane. In this context, we interpret the attenuation coefficient function as a
function A.x; y/ of two variables within the specific slice. Indeed, the word tomography is
built on the Greek language root form tomos meaning “slice.”

The fundamental question of image reconstruction is this: Can we reconstruct the function
A.x; y; z/ (within some finite region) if we know the average value of A along every line that
passes through the region?

1.3 Lines in the plane

For simplicity, let us assume that we are interested only in the cross section of a sample that
lies in the xy-plane. Each X-ray will follow a segment of a line in the plane, so we would
like to have a way of cataloguing all such lines. For instance, every nonvertical line has an
equation of the form y D mx C b. So we could catalogue these lines using all possible pairs
.m; b/. However, vertical lines would be excluded from this list. Instead, we can classify all
lines by adopting a “point–normal” approach, in which every line in the plane is characterized
by a pair consisting of a point that the line passes through and a vector that is normal (i.e.,
perpendicular) to the line.

For a vector �!n normal to a given line `, there is some angle � (with 0 � � < 2� , say)
such that �!n is parallel to the line radiating out from the origin at an angle of � measured
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Fig. 1.2. The figure shows the lines `t; � for eleven different values of t and values of � in increments
of �=10.

counterclockwise from the positive x-axis. This line, at angle � , is also perpendicular to
` and, hence, intersects ` at some point whose coordinates in the xy-plane have the form
.t cos.�/; t sin.�// for some real number t. In this way, the line ` is characterized by the
values of t and � and is accordingly denoted by `t; � . This may also be stated as follows.

Definition 1.4. For any real numbers t and � , the line `t; � is the line that passes through
the point .t cos.�/; t sin.�// and is perpendicular to the unit vector �!n D h cos.�/; sin.�/ i.

Every line in the plane can be characterized as `t; � for some values of t and � .
For example, the line with Cartesian equation x C y D p

2 is the same as the line `1; �=4.
Figure 1.2 shows an array of lines corresponding to eleven different values of t at each of
ten angles � .

Two relationships are apparent, namely,

`t; �C2� D `t; � and `t; �C� D `�t; � for all t; �:

This means that each line in the plane has many different representations of the form `t; � . To
avoid this, we can use either of the sets

f`t; � W t real; 0 � � < �g or f`t; � W t � 0; 0 � � < 2�g :

For the most part, we will use the former of these sets.
Parameterization of `t; � . To parameterize a line `t; � , observe that the unit vector
h� sin.�/; cos.�/ i is perpendicular to the vector hcos.�/; sin.�/ i. Thus, every point on
`t; � has the form

h t cos.�/; t sin.�/ i C s � h � sin.�/; cos.�/ i
for some real number s. That is, the line `t; � can be parameterized as .x.s/; y.s//, where
x.s/ D t cos.�/ � s sin.�/ and y.s/ D t sin.�/ C s cos.�/ for �1 < s < 1 . Consequently,
`t; � can be described as
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`t; � D f.t cos.�/ � s sin.�/; t sin.�/ C s cos.�// W �1 < s < 1g : (1.4)

Note that at every point .x.s/; y.s// on `t; � we get x2 C y2 D t2 C s2.

Example with R 1.5. We can plot a set of lines `t;� in parameterized form like so.

## Figure 1.2: parameterized lines
xray.line=function(t,theta,s){
xval=t*cos(theta)-s*sin(theta)
yval=t*sin(theta)+s*cos(theta)
list(xval=xval,yval=yval) }
######
sval1=(sqrt(2)/200)*(-200:200)#200 pts on each line
thetaval1=(pi/10)*(1:10-1)
tval1=(1/5)*(-5:5)
##plot
plot(c(-1.45,1.45),c(-1.45,1.45),cex=0.,type=’n’,

axes=F,asp=1)
for (m in 1:length(tval1)){
for (k in 1:length(thetaval1)){
xray.out=xray.line(tval1[m],thetaval1[k],sval1)
lines(xray.out$xval,xray.out$yval) } }

Lines through a fixed point. For an arbitrary point .a; b/ in the plane and a given value for
� , there is a unique value of t for which the line `t; � passes through .a; b/. More precisely,
there are unique values of both t and s for which

a D t cos.�/ � s sin.�/ and (1.5)

b D t sin.�/ C s cos.�/:

This is a system of two equations in the two unknowns, t and s. The solutions are t D
a cos.�/ C b sin.�/ and s D �a sin.�/ C b cos.�/. That is, given a, b, and � ,

the line `a cos.�/Cb sin.�/; � passes through .a; b/: (1.6)

Again, note that t2 C s2 D a2 C b2, a fact that will be used later to implement a change of
coordinates from the .x; y/ system to the .t; s/ framework.

With the parameterization x.s/ D t cos.�/ � s sin.�/ and y.s/ D t sin.�/ C s cos.�/,
from (1.4), the arclength element along the line `t; � is given by

s�
dx

ds

�2

C
�

dy

ds

�2

ds D
q

.� sin.�//2 C .cos.�//2 ds D ds:

Therefore, for a given function A.x; y/ defined in the plane, we get
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Z
`t;�

A.x; y/ D
Z 1

sD�1
A.t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds (1.7)

The value of this integral is exactly what an X-ray emission/detection machine measures
when an X-ray is emitted along the line `t; � .

We can now rephrase the fundamental question of image reconstruction to ask, “Can we
reconstruct the function A.x; y/ (within some finite region of the plane) if we know the value
of
R

`t;�
A.x; y/ for every line `t;� ?”

1.4 Exercises

1. Consider a 3�3 grid in which each of the nine squares is shaded either black or white.

(a) Find all possible grids for which Rows 1 and 2 each have two white squares and
Row 3 has one white square; Column 1 has one white square and Columns 2 and 3
each have two white squares. (Figure 1.1 shows one solution.)

(b) Find all possible grids for which Rows 1 and 2 each have two white squares and
Row 3 has one white square; Columns 1 and 3 each have one white square and
Column 2 has three white squares.

2. Find two different 4 � 4 grids having the same row and column scans; that is, the first
row of the first pattern has the same number of white squares as the first row of the
second pattern has, and so on.

3. What additional information would help to identify a 3 � 3 or 4 � 4 grid uniquely?

4. What does the attenuation coefficient measure?

5. Referring to Table 1.1, why must an image be accurate to within about 10 Hounsfield
units in order to be clinically useful?

6. Explain in a few sentences, and with a minimum of mathematical detail, why Beer’s law
is a plausible model for X-ray attenuation.

7. Let

A.x/ WD
(

1 � jxj if jxj � 1,
0 otherwise

and

I.x/ WD

8̂
ˆ̂<
ˆ̂̂:

1 if x � �1,

e�x� 1
2 � 1

2 x2
if �1 � x � 0,

e�x� 1
2 C 1

2 x2
if 0 � x � 1,

e�1 if x � 1.
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(a) Evaluate
Z 1

�1
A.x/ dx and ln

�
I.�1/
I.1/

�
.

(b) Verify that these functions satisfy the differential equation

dI

dx
D �A.x/ � I.x/ :

8. (a) Sketch the graph of the line `1=2; �=6 . (So t D 1=2 and � D �=6 for this line.)

(b) Determine the y-intercept of the line `1=2; �=6 .

9. (a) Explain the parameterization

`t;� D f.t cos.�/ � s sin.�/; t sin.�/ C s cos.�// W �1 < s < 1g :

(b) Prove that x2 C y2 D t2 C s2 at every point .x; y/ on `t; � .

10. Find values of t and � for which the line `t; � is the same as the line with equationp
3 x C y D 4.

11. Explain why `t;� D `�t;�C� for all t and all � . (A sketch might help.)

12. (a) Given a, b, and � , find t and s so that

.a; b/ D .t cos.�/ � s sin.�/; t sin.�/ C s cos.�//:

That is, solve the system in (1.5) and verify the statement in (1.6).

(b) Show that t2 C s2 D a2 C b2 for the values you found in part (a).

13. For a fixed value of R > 0 , let f .x; y/ WD
(

1 if x2 C y2 � R 2,
0 otherwise.

Show that
Z

`t;�

f ds D
(

2
p

R 2 � t2 if jtj � R,
0 if jtj > R.

.

14. Discussion: Why does the fundamental question of image reconstruction require that
we consider so many lines? Why would a single set of parallel lines not suffice? (Hint:
Think about the game we played with the 3-by-3 grid of black and white squares.)
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The Radon Transform

2.1 Definition

For a given function f defined in the plane, which may represent, for instance, the
attenuation-coefficient function in a cross section of a sample, the fundamental question of
image reconstruction calls on us to consider the value of the integral of f along a typical line
`t; � . For each pair of values of t and � , we will integrate f along a different line. Thus, we
really have a new function on our hands, where the inputs are the values of t and � and the
output is the value of the integral of f along the corresponding line `t; � . But even more is
going on than that because we also wish to apply this process to a whole variety of functions
f . So really we start by selecting a function f . Then, once f has been selected, we get a
corresponding function of t and � . Schematically,

input f 7! output

8̂
<
:̂.t; �/ 7!

Z

`t; �

f ds

9>=
>; :

This multi-step process is called the Radon transform, named for the Austrian mathemati-
cian Johann Karl August Radon (1887–1956) who studied its properties. For the input f , we
denote by R.f / the corresponding function of t and � shown in the schematic. That is, we
make the following definition.

Definition 2.1. For a given function f , whose domain is the plane, the Radon transform of
f is defined, for each pair of real numbers .t; �/, by
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Rf .t; �/ WD
Z

`t; �

f ds

D
Z 1

sD�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds: (2.1)

A few immediate observations are that (i) both f and Rf are functions; (ii) f is a function
of the Cartesian coordinates x and y while Rf is a function of the polar coordinates t and � ;
(iii) for each choice of f , t, and � , Rf .t; �/ is a number (the value of a definite integral); (iv)
in the integral on the right, the variable of integration is s, while the values of t and � are
preselected and so should be treated as “constants” when evaluating the integral.

We can visualize the Radon transform of a given function by treating � and t as
rectangular coordinates. We depict the values of the Radon transform according to their
brightness on a continuum of grey values, with the value 0 representing the color black,
0:5 representing a neutral grey, and the value 1 representing white. Such a graph is called
a sinogram and essentially depicts all of the data generated by the X-ray emission/detection
machine for the given slice of the sample. The choice of the term sinogram is no doubt
suggested by the symmetry Rf .�t; � C �/ D Rf .t; �/ as well as by the appearance of the
graphs for some simple examples that we will explore next. Sinograms can also be portrayed
in color, using an appropriate segment of the rainbow in place of the grey scale.

2.2 Examples

Example 2.2. As a first example, suppose our patient has a small circular tumor with radius
0:05 centered at the point .0; 1/, and suppose the attenuation-coefficient function f has the
constant value 10 there. Now take an arbitrary value of � . In this case, when t D sin.�/,
the line `t;� will pass through .0; 1/ and make a diameter of the circular tumor. Since
the diameter of this disc is 2 � .0:05/ D 0:1, we get Rf .sin.�/; �/ D 10 � .0:1/ D 1.
Moreover, for any given � , the value of Rf .t; �/ will be zero except on the narrow band
sin.�/ � 0:05 < t < sin.�/ C 0:05.

Thus, as � varies from 0 to � , the graph will show a narrow, brighter grey ribbon of width
0:1 centered around t D sin.�/. In other words, the graph of Rf in the .�; t/ plane will
resemble the graph of the sine function. Similarly, the graph in the .�; t/ plane of the Radon
transform of a small, bright disc located at .1; 0/ will resemble the graph of the cosine
function. Figure 2.1 shows the sinograms for these two bright discs. Perhaps these examples
helped to motivate the use of the term sinogram for the graph of a Radon transform.

In the previous example, we considered an attenuation-coefficient function that had a
constant (nonzero) value on a finite region of the plane and the value 0 outside of that region.
To attach some terminology to functions of this type, suppose � is some finite region in the
plane and take f� to be the function that has the value 1 at each point contained in � and the
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Fig. 2.1. The sinograms for small, bright circular discs centered at .0; 1/ (left) and at .1; 0/ (right)
resemble the graphs of the sine and cosine functions, respectively.

value 0 at each point not in �. This function f� is known as the characteristic function, or
the indicator function, of the region �. Thus, in our previous example, we looked at 10 times
the characteristic function of a small disc.

When the attenuation-coefficient function is a characteristic function f�, its Radon
transform is particularly easy to comprehend. Indeed, along any line `t;� , the value of f�
will be 0 except when the line is passing through the region �, where the value is 1. Thus, for
each pair of values of t and � , the value of Rf�.t; �/ is equal to the length of the intersection
of the line `t; � with the region �.

In general, the object we are testing may comprise a collection of “blobs” of various
materials, each with its specific attenuation coefficient. As we shall soon see, the Radon
transform of the entire collection will be a composite of the transforms of the separate blobs.
Consequently, understanding this basic sort of example will play a central role in assessing
the accuracy of various approaches to image reconstruction.

Example 2.3. For instance, let’s take the region � to be the closed circular disc of radius
R > 0 centered at the origin. Then the characteristic function of � is given by

f�.x; y/ WD
(

1 if x2 C y2 � R 2,
0 otherwise.

If we choose a value of t such that jtj > R, then, regardless of the value of � , the
line `t; � will not intersect the disc �. Thus, f� D 0 at every point on `t; � , and, hence,
Rf�.t; �/ D 0 for such t. On the other hand, if jtj � R, then `t; � intersects � along the
segment corresponding to the parameter values �p

R2 � t2 � s � p
R2 � t2 in the standard

parameterization for the line. The length of this segment is 2
p

R2 � t2. The value of f� is 1
at points in this interval and 0 otherwise. Therefore, for such t, the value of Rf�.t; �/ is the
same as the length of the segment, namely, 2

p
R2 � t2.

In summary, we have shown that

Rf�.t; �/ D
(

2
p

R 2 � t2 if jtj � R,
0 if jtj > R.
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Example 2.4. Continuing with the theme of characteristic functions, take S to be the region
enclosed by the square whose edges lie along the vertical lines x D ˙1 and the horizontal
lines y D ˙1. This square is centered at the origin and has side length 2. Let fS be the
function that takes the value 1 at each point of S and the value 0 at each point not in S . That
is, let

fS.x; y/ D
(

1 if maxfjxj; jyjg � 1,
0 otherwise.

As discussed above, for each t and each � , the corresponding value RfS.t; �/, of the
Radon transform of fS , will equal the length of the intersection of the line `t; � and the square
region S . There are two values of � for which this intersection length is easy to see: � D 0
and � D �=2. In these cases, the lines `t; � are vertical or horizontal, respectively. Thus, for
� D 0 or � D �=2, we get Rf .t; �/ D 2 when �1 � t � 1 and Rf .t; �/ D 0 when
jtj > 1. In general, the function RfS.t; �/ will be piecewise linear in t for each fixed value of
� . Figure 2.2 shows these cross sections for several values of � .

Figure 2.3 shows the full sinogram for the function fS . Note the symmetry inherited
from that of the square region S . This example will play an important role in the image
reconstruction algorithms examined in Chapter 9.

Example 2.5. For an example that is not a characteristic function, let f be the function
defined by

f .x; y/ WD
(

1 �p
x2 C y2 if x2 C y2 � 1,
0 if x2 C y2 > 1.

(2.2)
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Fig. 2.2. Cross sections at � D 0, � D �=9, � D �=4, and � D �=3 of the sinogram of the characteristic
function of the basic square.
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Fig. 2.4. The figure shows the cone defined in (2.2) and the graph of its Radon transform for any fixed
value of � .

The graph of f is a cone, shown in Figure 2.4. We have already observed that, on the line
`t; � , we have

x2 C y2 D .t cos.�/ � s sin.�//2 C .t sin.�/ C s cos.�//2 D t2 C s2:

It follows that, on the line `t; � , the function f is given by

f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�//

WD
(

1 � p
t2 C s2 if t2 C s2 � 1,
0 if t2 C s2 > 1.

(2.3)

From this, we see that the value of Rf .t; �/ depends only on t and not on � and that
Rf .t; �/ D 0 whenever jtj > 1. For a fixed value of t such that jtj � 1, the condition
t2 C s2 � 1 will be satisfied provided that s2 � 1 � t2. Thus, for any value of � and for t
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such that jtj � 1, we have

f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�//

WD
(

1 � p
t2 C s2 if �p

1 � t2 � s � p
1 � t2,

0 otherwise;
(2.4)

whence

Z
`t; �

f ds D
Z p

1�t2

sD�p
1�t2

�
1 �

p
t2 C s2

�
ds : (2.5)

This integral requires a trigonometric substitution for its evaluation. Sparing the details for
now, we have

Z p
1�t2

sD�p
1�t2

�
1 �

p
t2 C s2

�
ds D

p
1 � t2 � 1

2
t2 ln

 
1 C p

1 � t2

1 � p
1 � t2

!
: (2.6)

In conclusion, we have shown that the Radon transform of this function f is given by

Rf .t; �/ WD
( p

1 � t2 � 1
2 t2 ln

�
1Cp

1�t2

1�p
1�t2

�
if �1 � t � 1,

0 if jtj > 1.
(2.7)

In this case, where Rf is independent of � , the value of Rf .t; �/ corresponds to the area
under an appropriate vertical cross section of the cone defined by z D f .x; y/. Several of
these cross sections are visible in Figure 2.4.

2.3 Some properties of R

Suppose that two functions f and g are both defined in the plane. Then so is the function
f C g. Since the integral of a sum of two functions is equal to the sum of the integrals of the
functions separately, it follows that we get, for every choice of t and � ,

R.f C g/.t; �/ D
Z 1

sD�1
.f C g/.t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds

D
Z 1

sD�1
ff .t cos.�/ � s sin.�/; t sin.�/ C s cos.�//

C g.t cos.�/ � s sin.�/; t sin.�/ C s cos.�//g ds
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D
Z 1

sD�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds

C
Z 1

sD�1
g.t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds

D Rf .t; �/ C Rg.t; �/:

In other words, R.f C g/ D Rf C Rg as functions.
Similarly, when a function is multiplied by a constant and then integrated, the result is the

same as if the function were integrated first and then that value multiplied by the constant;
i.e.,

R
˛f D ˛

R
f . In the context of the Radon transform, this means that R.˛f / D ˛Rf .

We now have proven the following proposition.

Proposition 2.6. For two functions f and g and any constants ˛ and ˇ,

R.˛f C ˇg/ D ˛Rf C ˇRg: (2.8)

In the language of linear algebra, we say that the Radon transform is a linear transfor-
mation; that is, the Radon transform R maps a linear combination of functions to the same
linear combination of the Radon transforms of the functions separately. We also express this
property by saying that “R preserves linear combinations.”

Example 2.7. Consider the function

f .x; y/ WD
8<
:

0:5 if x2 C y2 � 0:25,
1:0 if 0:25 < x2 C y2 � 1:0,
0 otherwise.

This a linear combination of the characteristic functions of two circular discs. Namely, f D
f�1 � .0:5/f�2 , where �1 and �2 are the discs of radii 1 and 0:5, respectively, centered at
the origin.

Using property (2.8), along with the computation in Example 2.3, it follows that

Rf .t; �/ D R.f�1/.t; �/ � .0:5/R.f�2/.t; �/

D

8̂
<
:̂

2
p

1 � t2 �p
.0:25/ � t2 if jtj � 0:5,

2
p

1 � t2 if .0:5/ < jtj � 1,
0 if jtj > 1.

Figure 2.5 shows the graph of this attenuation-coefficient function alongside a graph of the
cross section of its Radon transform corresponding to any fixed value of � and �1 � t � 1.

What happens to the Radon transform if we modify a function either by shifting it or
by re-scaling it? That is, suppose we know the Radon transform of a function f , and now
look at the functions g.x; y/ D f .x � a; y � b/, where a and b are some real numbers, and
h.x; y/ D f .cx; cy/, where c > 0 is a positive scaling factor.
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Fig. 2.5. The figure shows the attenuation function defined in Example 2.7 alongside the graph of its Radon
transform for any fixed value of � .
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Fig. 2.6. The shifting property of R: The lines `t;� and `tCa cos.�/Cb sin.�/;� intersect congruent regions,
centered at .0; 0/ and .a; b/, respectively, along segments of the same length.

In the first case, we obtain the graph of g by shifting the graph of f by a units in the x
direction and b units in the y direction. It follows that if we take any line `t; � and shift it by
just the right amount, we will get a line b̀t; �

with the property that Rg.bt; �/ D Rf .t; �/. What
is the correct shift in the value of t? Well, when t D 0, then `0; � passes through the origin,
while the parallel line `a cos.�/Cb sin.�/; � passes through .a; b/, as we saw in Exercise 12 of
Chapter 1. So, the relationship between `0; � and the graph of f is the same as that between
`a cos.�/Cb sin.�/; � and the graph of g. In other words, the correct shift isbt D t C a cos.�/ C
b sin.�/. Figure 2.6 illustrates this correspondence.

In the case of the function h.x; y/ D f .cx; cy/, we can think of the domain of h as a .1=c/-
times scale model of the corresponding domain for f . Thus, to compute the Radon transform
of h for a given choice of t and � , we first have to scale the value of t by the factor c, in
order to locate a parallel line that intersects a similar part of the domain of f . Then multiply
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Fig. 2.7. The scaling property of R: With c D Ow=w D Ot=t, the length of the intersection of `t;� with the
smaller square region is equal to 1=c times the length of the intersection of Òt;� with the larger square region.

the corresponding value of the Radon transform of f by 1=c to get back to the scale of h.
That is, for given values of t and � , we get Rh.t; �/ D .1=c/ � Rf .ct; �/. This relationship
is shown in Figure 2.7, in which f and h are taken to be the characteristic functions of two
square regions.

We summarize these statements in a proposition.

Proposition 2.8. Let the function f be defined in the plane, let a and b be arbitrary real
numbers, and let c > 0 be a positive real number. Define the function g by g.x; y/ D f .x �
a; y � b/ and the function h by h.x; y/ D f .cx; cy/. Then, for all real numbers t and � ,

Rg.t; �/ D Rf .t � a cos.�/ � b sin.�/; �/ and (2.9)

Rh.t; �/ D .1=c/ � Rf .ct; �/ : (2.10)

Example 2.9. We already know the Radon transform for the characteristic function of a disc
of radius R > 0 centered at the origin. So now suppose � is the disc of radius R > 0 centered
at .a; b/, with characteristic function f�. It follows from (2.9) that the Radon transform of f�
is given by

Rf�.t; �/ D
(

2
p

R 2 �bt2 if jbtj � R,
0 if jbtj > R,

wherebt WD t � a cos.�/ � b sin.�/. This certainly looks difficult to compute, but in practice
we will use a digital computer, so there is no sweat for us!
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Fig. 2.8. The figure shows the graph of the attenuation-coefficient function A defined in (2.11), alongside
a sinogram of its Radon transform RA.t; �/.

Example 2.10. To combine several properties of the Radon transform in one example,
consider a crescent-shaped region inside the circle x2 C y2 D 1=4 and outside the circle
.x � 1=8/2 C y2 D 9=64. Assign density 1 to points in the crescent, density 1=2 to points
inside the smaller disc, and density 0 to points outside the larger disc. Thus, the attenuation
function is

A.x; y/ WD
8<
:

1 if x2 C y2 � 1=4 and .x � 1=8/2 C y2 > 9=64;
0:5 if .x � 1=8/2 C y2 � 9=64;
0 if x2 C y2 > 1=4.

(2.11)

To break this example into pieces, take �1 to be the closed disc of radius 1=2 centered at
the origin and �2 to be the closed disc of radius 3=8 centered at .1=8; 0/. Then the attenuation
function A.x; y/ just described can be written as A.x; y/ D f�1.x; y/ � .1=2/ � f�2.x; y/. It
follows from the property (2.8) that, for all t and all � , RA.t; �/ D Rf�1.t; �/ � .1=2/ �
Rf�2.t; �/. The second of these two Radon transforms can be computed, as we just discussed,
by shifting a Radon transform that we already know, using the property (2.9).

Figure 2.8 shows the graph of this attenuation-coefficient function alongside a graph of its
Radon transform in the .t; �/ plane. Figure 2.9 shows graphs of the Radon transform for the
angles � D 0 and � D �=3.

2.4 Phantoms

The fundamental question of image reconstruction asks whether a picture of an attenuation-
coefficient function can be generated from the values of the Radon transform of that function.
We will see eventually that the answer is “Yes,” if all values of the Radon transform are
available. In practice, though, only a finite set of values of the Radon transform are measured
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Fig. 2.9. For the function A defined in (2.11), the figure shows graphs of its Radon transform RA.t; 0/

(left) and RA.t; �=3/ (right), for �1=2 � t � 1=2.

by a scanning machine, so our answer becomes “Approximately yes.” Consequently, the
nice solution that works in the presence of full information will splinter into a variety of
approximation methods that can be implemented when only partial information is at hand.

One method for testing the accuracy of a particular image reconstruction algorithm, or
for comparing algorithms, is simply to apply each algorithm to data taken from an actual
human subject. The drawback of this approach is that usually we don’t know exactly what
we ought to see in the reconstructed image. That is what we are trying to find out by creating
an image in the first place. But without knowing what the real data are, there is no way to
determine the accuracy of any particular image. To get around this, we can apply algorithms
to data taken from a physical object whose internal structure is known. That way, we know
what the reconstructed image ought to look like and we can recognize inaccuracies in a given
algorithm or identify disparities between different algorithms. Nonetheless, this approach
can be misleading. Although the internal structure of the object is known, there may be
errors in the data that were collected to represent the object. In turn, these errors may lead to
errors in the reconstructed image. We will not be able to distinguish these flaws from errors
caused by the algorithm itself. To resolve this dilemma, Shepp and Logan, in [49], introduced
the concept of a mathematical phantom. This is a simulated object, or test subject, whose
structure is entirely defined by mathematical formulas. Thus, no errors occur in collecting
the data from the object. When an algorithm is applied to produce a reconstructed image of
the phantom, all inaccuracies are due to the algorithm. This makes it possible to compare
different algorithms in a meaningful way.

Since measurement of the Radon transform of an object forms the basis for creating a
CT image of the object, it makes sense to use phantoms for which the Radon transform
is known exactly. We can then test a proposed algorithm by seeing how well it handles
the data from such a phantom. For example, we have computed the Radon transform of
a circular disc of constant density centered at the origin. Using the linearity of R, along
with the shifting and rescaling formulas, we can now compute the Radon transform of any
collection of discs, each having constant density, with any centers and radii. More generally,
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Fig. 2.10. The Shepp–Logan phantom is used as a mathematical facsimile of a brain for testing image
reconstruction algorithms. This version of the phantom is stored in MATLABR. On the right is a sinogram
of the phantom’s Radon transform, with � in increments of �=18 ( 10ı ).

the boundary of an arbitrary ellipse is defined by a quadratic expression in x and y. So, as with
the circle, determining the intersection of any line `t;� with an ellipse amounts to finding the
difference between two roots of a quadratic equation. In this way, we can calculate exactly
the Radon transform of a phantom composed of an assortment of elliptical regions, each
having a constant density. Shepp and Logan [49] developed just such a phantom, shown in
Figure 2.10.

The Shepp–Logan phantom is composed of eleven ellipses of various sizes, eccentricities,
locations, and orientations. (The MATLABR version shown here does not include an ellipse
that models a blood clot in the lower right near the boundary.) The densities are assigned so
that they fall into the ranges typically encountered in a clinical setting. This phantom serves
as a useful model of an actual slice of brain tissue and has proven to be a reliable tool for
testing reconstruction algorithms.

2.5 Designing phantoms

In this section, we will explore how to design our own phantoms. Each phantom will
be a collection of either elliptical regions or square regions, with a constant attenuation-
coefficient function on each region. We will find exact formulas for the Radon transforms
of these phantoms. This will allow us to plot both the phantom and its sinogram. Indeed,
Figures 2.1, 2.3, 2.5, and 2.8 were all created using the templates developed in this section.
Like the Shepp–Logan phantom, the phantoms we create here can be used as mathematical
models for testing the different image reconstruction algorithms discussed in this book.



2.5 Designing phantoms 25

2.5.1 Plotting an elliptical region

We begin with the problem of designing a phantom made up of elliptical regions. Every
ellipse in the xy-plane is determined by the values of five parameters: the lengths a and
b of the semi-major and semi-minor axes, the coordinates .x0; y0/ of the center point of
the ellipse, and the angle � of rotation of the axes of the ellipse away from the horizontal
and vertical coordinate axes. We can compute coordinates relative to the new center and the
rotated framework as

bx D .x � x0/ cos.�/ C .y � y0/ sin.�/ ; and

by D .y � y0/ cos.�/ � .x � x0/ sin.�/ :

Then the general formula for the resulting ellipse is given by

bx 2

a 2
Cby 2

b 2
D 1 : (2.12)

The characteristic function of the region inside the ellipse has value 1 at those points .x; y/

for which the expression on the left-hand side of (2.12) is less than or equal to 1, and the
value 0 otherwise.

Next, we assign to each region an attenuation-coefficient function that is some constant
multiple of the characteristic function for the region. Thus, each elliptical region in the
phantom is defined by six values: the five already mentioned along with the attenuation
coefficient ı assigned to the region. Our phantom is determined by the sum of the
attenuation-coefficient functions of the different regions that make up the phantom. When two
regions overlap, the attenuation coefficient on the overlap will be the sum of the individual
attenuation coefficients. For instance, we can fashion a skull, as it were, by assigning an
attenuation coefficient of 1:0 to a large elliptical region and an attenuation coefficient of,
say, �0:9 to a slightly smaller elliptical region inside it. The net effect will be to have a
shell with attenuation coefficient 1:0 between the two ellipses (the skull) and a coefficient of
0:1 D 1:0 � 0:9 inside the shell, where we can place the remaining elements of the phantom.

Example with R 2.11. Figure 2.11 shows a phantom composed of seven elliptical regions
each defined by six values .a; b; x0; y0; �; ı/, as just described. In R, we encode the phantom
as a matrix, where each elliptical region defines one row, like so.

## each ellipse is a 6-D vector [a,b,x0,y0,phi,greyscale]
p1=c(.7,.8,0,0,0,1)
p2=c(.65,.75,0,0,0,-.9)
p3=c(.15,.2,0,.4,0,.5)
p4=c(.25,.15,-.25,.25,2.37,.2)
p5=c(.25,.15,.25,.25,.79,.2)
p6=c(.08,.25,0,-.3,.5,.65)
p7=c(.05,.05,.5,-.3,0,.8)
#combine into a matrix with one ellipse in each row
P=matrix(c(p1,p2,p3,p4,p5,p6,p7),byrow=T,ncol=6)
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Fig. 2.11. A phantom of elliptical regions; and its sinogram.

Notice the small bright slivers in the top half of the phantom, each formed by the intersection
of two of the interior ellipses. These slivers have the attenuation coefficient 0:8 D 0:5 C
0:2 C 1:0 � 0:9. (Don’t forget that both of these ellipses are inside the two ellipses that define
the skull.)

To plot the phantom, we need to create a grid of points in the xy-plane that form the
locations of the “pixels” in the picture. Here, we first define lists of x and y values in the
interval Œ�1; 1�. Then we replicate the full list of x values paired with each y value.

##define a K-by-K grid of points in the square [-1,1]x[-1,1]
K=100 #larger K gives better resolution
yval=seq(-1,1,2/K)
grid.y=double((K+1)^2)
for (i in 1:(K+1)^2){
grid.y[i]=yval[floor((i-1)/(K+1))+1]}
xval=seq(-1,1,2/K)
grid.x=rep(xval,K+1)

Next, we define a procedure, or function, that checks each point in the grid and adds
the attenuation coefficients for those regions that contain it. We apply this function to our
phantom to determine the color value for each grid point. Finally, we plot each grid point
using a plot character of the assigned color. (The plot character pch=15 in R is an open
square that can be filled with any specified color.)

##procedure to compute color value at each grid point
phantom.proc=function(x,y,M){
phantom.1=matrix(double(nrow(M)*length(x)),nrow(M),length(x))
for (i in 1:nrow(M)){
x.new=x-M[i,3]
y.new=y-M[i,4]
phantom.1[i,]=ifelse(M[i,2]^2*(x.new*cos(M[i,5])
+y.new*sin(M[i,5]))^2+M[i,1]^2*(y.new*cos(M[i,5])
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-x.new*sin(M[i,5]))^2-M[i,1]^2*M[i,2]^2<0,M[i,6],0)}
colorvec=colsums(phantom.1)
list(colorvec=colorvec)}#output is "_$colorvec"
# apply the procedure to our phantom P
P.new=phantom.proc(grid.x,grid.y,P)
#create the picture
par(mar=c(0,0,0,0))#removes margins
plot(grid.x,grid.y,pch=15,col=gray(P.new$colorvec))

2.5.2 The Radon transform of an ellipse

We now turn our attention to computing the Radon transform of a phantom composed of
elliptical regions, each having a constant attenuation coefficient.

To begin with something basic, let ˛ > 0 be some positive constant and let E0 be the
closed region bounded by the ellipse with equation x2 C ˛2y2 D ˛2. The characteristic
function of E0 is then

fE0.x; y/ WD
(

1 if x2 C ˛2y2 � ˛2,
0 otherwise.

(2.13)

To determine the Radon transform of fE0 , choose real numbers t and � , with 0 � � < � .
We give the line `t;� its usual parameterization:

x D t cos.�/ � s sin.�/ I y D t sin.�/ C s cos.�/ I �1 < s < 1 :

Plugging these expressions for x and y into the equation for the boundary ellipse and
reorganizing the terms yields a quadratic equation for the parameter s. Specifically, let

A D �
sin2.�/ C ˛2 cos2.�/

�
;

B D t sin.2�/
�
˛2 � 1

�
; and (2.14)

C D t2.cos2.�/ C ˛2 sin2.�// � ˛2 :

Then we wish to find the roots of A s2 C B s C C D 0. (Notice that, if ˛ D 1, so that the
ellipse is the unit circle, then we get simply s2 C t2 � 1 D 0, whence, s D ˙p

1 � t2. This
agrees with our earlier example of a circular region.)

Since fE0 is the characteristic function of E0, the value of R.fE0/.t; �/ is equal to the
difference between the two roots of this quadratic, in the case where those roots are real
numbers, and 0 otherwise. With some persistence, we can express the discriminant of the
quadratic as

4˛2 �sin2.�/ C ˛2 cos2.�/ � t2� :
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Thus, we get that

R.fE0/.t; �/ D
2˛

q
sin2.�/ C ˛2 cos2.�/ � t2

sin2.�/ C ˛2 cos2.�/
; (2.15)

whenever t2 � sin2.�/ C ˛2 cos2.�/, and R.fE0/.t; �/ D 0 otherwise. (Again, for ˛ D 1, the
result is what we got before for the characteristic function of the unit disc.)

Next, consider a more general ellipse, with equation x2=a2 C y2=b2 D 1, and let E1 be
the closed region bounded by this ellipse. Notice that the new region E1 is a re-scaling by
the factor b of the region E0 bounded by the ellipse x2 C ˛2y2 D ˛2, where ˛ D a=b. That
is, the point .x; y/ lies on the boundary ellipse for E1 if, and only if, the point .x=b; y=b/ lies
on the boundary ellipse for E0. It follows that the characteristic function of the region E1,
denoted by fE1 , satisfies the condition

fE1.x; y/ D fE .x=b; y=b/:

Now apply the property (2.10), with c D 1=b, to the formula (2.15) above, with ˛ D a=b.
This gives us the Radon transform of fE1 . Namely,

R.fE1/.t; �/ D
2ab

q
b2 sin2.�/ C a2 cos2.�/ � t2

b2 sin2.�/ C a2 cos2.�/
; (2.16)

whenever t2 � b2 sin2.�/ C a2 cos2.�/, and R.fE1/.t; �/ D 0 otherwise.
At this point, we have computed the Radon transform of the characteristic function of any

ellipse centered at the origin with its major and minor axes lying on the x- and y-coordinate
axes. Our next step is to consider an ellipse that is centered at the origin but whose axes lie
at an angle from the coordinate axes.

For this, let E1 denote, as above, the closed region bounded by the ellipse with equation
x2=a2 C y2=b2 D 1, and let E� denote the closed region obtained by rotating E1 counter-
clockwise about the origin by an angle �, with 0 � � � � . It follows that the point .x; y/

lies in the region E� if, and only if, the point .x cos.�/ C y sin.�/; �x sin.�/ C y cos.�//

lies in the region E1. Thus, the characteristic functions of the two regions are related by the
equation

fE�
.x; y/ D fE1.x cos.�/ C y sin.�/; �x sin.�/ C y cos.�// :

Moreover, for every pair of real numbers t and � , the intersection of the line `t;� with the
region E� has the same length as that of the line `t;��� with the region E1. Hence, as in
Exercise 7 below, we see that

RfE�
.t; �/ D RfE1.t; � � �/ ; for all t; � 2 R:

In other words, to compute the Radon transform of fE�
, we substitute � � � for � in

formula (2.16) above.
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Finally, we can apply the shifting property (2.9) to obtain the formula for the Radon
transform of an elliptical region whose center is located at .x0; y0/, not necessarily at the
origin. In this modification, we replace the value of t by Ot D t � x0 cos.�/ � y0 sin.�/.

To sum up these findings, let E be the closed region in the xy-plane bounded by the
ellipse with center at the point .x0; y0/ and semi-axes of lengths a and b making an angle
of � with the horizontal (x-axis) and vertical (y-axis), respectively. Next, for real numbers t
and � , let O� D � � � and let Ot D t � x0 cos.�/ � y0 sin.�/. Then, the Radon transform of the
characteristic function fE is given by

R.fE/.t; �/ D 2ab
q

b2 sin2. O�/ C a2 cos2. O�/ � Ot 2

b2 sin2. O�/ C a2 cos2. O�/
; (2.17)

whenever Ot 2 � b2 sin2. O�/ C a2 cos2. O�/, and R.fE/.t; �/ D 0 otherwise. Keep in mind that a
computer will evaluate all of this for us!

Remark 2.12. The reader might protest that we could have started with the general
formula (2.12) for an ellipse in the plane. After all, computing the Radon transform of the
characteristic function of the region inside this ellipse just amounts to finding the distance
between two roots of a quadratic equation. This would have led us to the formula (2.17) all
at once. This is a fair objection, but it is still fun to solve a simpler quadratic first, and then
use the properties of the Radon transform to generalize, isn’t it?

Example with R 2.13. Figure 2.11 shows the sinogram of the phantom defined in
Example 2.11. The sinogram was produced using R, following a process similar to that
used for the image of the phantom itself. This time, we create a grid of values of t and
� corresponding to the lines `t;� in the “scan” of the phantom, like so.

## define values of t and theta for our X-rays
tau=0.02 #space betw/ x-rays
Nangle=180 #no. of angles
Nrays=(1+2/tau)*(Nangle) # total no. of X-rays
tval=seq(-1,1,tau)#for t betw/ -1, 1
thetaval=(pi/Nangle)*(0:(Nangle-1))
## now make a "t, theta" grid:
grid.t=rep(tval,length(thetaval))
grid.theta=double(Nrays)
for (i in 1:Nrays){
grid.theta[i]=thetaval[1+floor((i-1)/length(tval))]}

Then we define a procedure that applies formula (2.17) to each elliptical region in the
phantom. The results are added together to yield the Radon transform of the full phantom
at each point .t; �/. The values of the Radon transform are interpreted as color values in
the picture. Finally, we apply this procedure to our particular phantom and plot the resulting
sinogram.
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##this procedure computes the Radon transform
#ellipse parameters stored as rows of matrix E
radon.proc=function(theta,t,E){
tmp=matrix(double(nrow(E)*length(theta)),nrow(E),length

(theta))
for (i in 1:nrow(E)){
theta.new=theta-E[i,5]
t.new=(t-E[i,3]*cos(theta)-E[i,4]*sin(theta))/E[i,2]
v1=sin(theta.new)^2+(E[i,1]/E[i,2])^2*cos(theta.new)^2-t.

new^2
v2=ifelse(sin(theta.new)^2
+(E[i,1]/E[i,2])^2*cos(theta.new)^2-t.new^2>0,1,0)
v3=sqrt(v1*v2)
v4=sin(theta.new)^2+(E[i,1]/E[i,2])^2*cos(theta.new)^2
tmp[i,]=E[i,1]*E[i,6]*(v3/v4)}
radvec=colSums(tmp)
list(radvec=radvec)}
##apply the procedure to the phantom P
rp7=radon.proc(grid.theta,grid.t,P)
### plot the sinogram
plot(grid.theta,grid.t,pch=15,col=gray(rp7$radvec))

2.5.3 Plotting a square region

We have seen that we can compute the Radon transform of an attenuation-coefficient function
that is constant on the region inside an ellipse and zero outside the ellipse. For a region
bounded by a polygon, it is a simple matter to determine the point of intersection of any given
line `t;� with each segment of the polygon. By comparing these points, we can determine
which segments of `t;� lie inside the polygonal region. This comparison is easier if the region
is convex. Here, we will consider only the example of a square. The attenuation coefficient
function under consideration will be a constant multiple of the characteristic function of the
region inside the square.

A square in general position in the plane is defined by four parameters: the coor-
dinates .x0; y0/ of the center of the square, the side length w, and the angle of coun-
terclockwise rotation � from the horizontal. The region inside the square is the set
f.x; y/ j max fu.x; y/; v.x; y/g < w=2 g, where

u.x; y/ D j.x � x0/ cos.�/ C .y � y0/ sin.�/j and

v.x; y/ D j�.x � x0/ sin.�/ C .y � y0/ cos.�/j :

This region will be assigned a constant attenuation coefficient, which is interpreted as a color
value in the image of the phantom.
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Fig. 2.12. A phantom of square regions; and its sinogram.

Example with R 2.14. To create a phantom, we select a set of squares, each determined by
five parameters, as just described. In R, we can create a matrix in which each row contains
the parameters of one square region. As with the ellipses, we examine each point in a grid of
“pixels” and add up the attenuation coefficients of all square regions that contain that point.
Here is an R script that generates the phantom shown in Figure 2.12.

##Phantom of squares
##define a grid of points in the square [-1,1]x[-1,1]
K=256 #larger K gives better resolution
yval=seq(-1,1,2/K)
grid.y=double((K+1)^2)
for (i in 1:(K+1)^2){
grid.y[i]=yval[floor((i-1)/(K+1))+1]}
xval=seq(-1,1,2/K)
grid.x=rep(xval,K+1)
##define a phantom using squares, each with 5 parameters
#center (x0, y0);side length w;rotation phi;density
#phantom is a matrix; one row per square
S1=c(0,0,1.9,0,1)
S2=c(0,0,1.7,0,-.9)
S3=c(.5,.5,.5,pi/6,.4)
S4=c(-.25,.15,.25,pi/4,.2)
S5=c(-.4,.25,.3,pi/3,.4)
S=matrix(c(S1,S2,S3,S4,S5),byrow=T,ncol=5)
##check each grid point to see if it is
##inside each square; #add the color values
#use the output "square.out" as the color vector
phantom.square=function(x,y,E){
phantom.1=matrix(double(nrow(E)*length(y)),nrow(E),
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length(y))
for (i in 1:nrow(E)){
u=abs((x-E[i,1])*cos(E[i,4])+(y-E[i,2])*sin(E[i,4]))
v=abs(-1*(x-E[i,1])*sin(E[i,4])+(y-E[i,2])*cos(E[i,4]))
phantom.1[i,]=E[i,5]*(u<.5*E[i,3])*(v<.5*E[i,3])}
square.out=colSums(phantom.1)
list(square.out=square.out)}
#apply to specific phantom
sq1=phantom.square(grid.x,grid.y,S)$square.out
## plotting the phantom
plot(grid.x,grid.y,pch=20,col=gray(sq1),xlab="",ylab="")

2.5.4 The Radon transform of a square region

Now we want to compute the Radon transform of the characteristic function of a square
region. As with the ellipses, we’ll consider a basic square first. Then we can apply the scaling,
shifting, and rotational properties of the Radon transform to solve our problem for a general
square.

As in Example 2.4, let S to be the square region whose edges lie along the lines x D ˙1
and y D ˙1, and let fS denote the characteristic function of S . For each t and each � , we
wish to compute the length of the intersection of the line `t; � with S . As we observed in
Example 2.4,

RfS.t; 0/ D RfS .t; �=2/ D
(

2 if jtj � 1,
0 if jtj > 1.

More generally, RfS.t; �/ will be piecewise linear in t, as illustrated in Figure 2.2. To
generate the sinogram, it is helpful to think of S as the intersection of two infinite bands
– the vertical band V D f.x; y/ W jxj � 1g and the horizontal band H D f.x; y/ W jyj � 1g.
Suppose � satisfies 0 < � < � and � ¤ �=2. In this case, each of the lines `t; � passes through
both of the bands V and H. Indeed, using the standard parameterization of `t; � , we can think
of the parameter s as representing time as we travel along the line. Thus, the line crosses the
edges of the band V at the times s1 D .t cos.�/ � 1/= sin.�/ and s2 D .t cos.�/ C 1/= sin.�/.
(Note that sin.�/ > 0 due to our choice of � .) The lesser of these two time values is the time
when `t; � enters the band V , while the larger time value is the time when `t; � exits V . Let’s
denote the entry time by sV1 and the exit time by sV2. Similarly, `t;� crosses the edges of the
horizontal band H at the times s3 D .�t sin.�/C1/= cos.�/ and s4 D .�t sin.�/�1/= cos.�/.
The entry and exit times are given by sH1 D minfs3; s4g and sH2 D maxfs3; s4g, respectively.
Now, for the line `t; � to be inside S , it must be inside both bands V and H simultaneously. For
that to happen, both entry times must come before both exit times. (Otherwise, the line would
leave one of the bands before it entered the other.) That is, the line `t; � will intersect the region
S if, and only if, maxfsV1; sH1g � minfsV2; sH2g. Then the length of the intersection is just
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the difference minfsV2; sH2g�maxfsV1; sH1g. (This is because the standard parameterization
is executed at unit speed.) It is straightforward for R to compute these values for each pair
.t; �/ included in our CT scan of S . The sinogram for the characteristic function of this basic
square is shown in Figure 2.3.

For a square in general position, with center at .x0; y0/, side length w, and rotation �

from the coordinate axes, we calculate entry and exit times as above, but we replace t with
.2=w/ � .t � x0 cos.�/ � y0 sin.�// and � with � � �. (The factor .2=w/ is the ratio of the
side lengths of the basic square examined above and the new square.) Then we multiply
the answer by .w=2/, to rescale to our new square. Finally, we multiply by the attenuation
coefficient assigned to the region.

Example with R 2.15. To produce the sinogram shown in Figure 2.12, first create a grid of t
and � values, as in Example 2.13. Then we devise a procedure to compute the corresponding
values of the Radon transform.

##Radon transform for a square region
## assume: values of t and theta are defined
## procedure to compute "entry" and "exit" times
radon.square=function(theta,t,E){
R1=matrix(double(length(theta)*nrow(E)),nrow(E),length
(theta))

for (i in 1:nrow(E)){
theta.new=theta-E[i,4]
t.new=(t-E[i,1]*cos(theta)-E[i,2]*sin(theta))*(2/E[i,3])
v1=ifelse(theta.new==0,-1*(abs(t.new)<1),
(t.new*cos(theta.new)-1)/sin(theta.new))
v2=ifelse(theta.new==0,1*(abs(t.new)<1),
(t.new*cos(theta.new)+1)/sin(theta.new))
vvmax=ifelse(v1-v2>0,v1,v2)
vvmin=ifelse(v1-v2>0,v2,v1)
h1=ifelse(theta.new==pi/2,-1*(abs(t.new)<1),
(1-t.new*sin(theta.new))/cos(theta.new))
h2=ifelse(theta.new==pi/2,1*(abs(t.new)<1),
-1*(t.new*sin(theta.new)+1)/cos(theta.new))
hhmax=ifelse(h1-h2>0,h1,h2)
hhmin=ifelse(h1-h2>0,h2,h1)
entryval=ifelse(vvmin-hhmin>0,vvmin,hhmin)
exitval=ifelse(vvmax-hhmax>0,hhmax,vvmax)
R1[i,]=(0.5)*E[i,5]*E[i,3]*ifelse(exitval-entryval>0,
(exitval-entryval),0)}
radvec=colSums(R1)
radvec.sq=radvec/max(radvec)#normalizes color vector
list(radvec.sq=radvec.sq)}
## apply radon.square to phantom matrix S
rsq1=radon.square(grid.theta,grid.t,S)
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#plot the sinogram
plot(grid.theta,grid.t,pch=20,
col=gray(rsq1$radvec.sq),xlab=expression(theta),ylab="t")

Using the ideas from Examples 2.11, 2.13, 2.14, and 2.15, create some interesting
phantoms and sinograms of your own. Use your imagination and have some fun!

2.6 The domain of R

As we can see from the definition (2.1), the Radon transform Rf of a function f is defined
provided that the integral of f along `t; � exists for every pair of values of t and � . Each
of these integrals is ostensibly an improper integral evaluated on an infinite interval. Thus,
in general, the function f must be integrable along every such line, as discussed in greater
detail in Appendix A.

In the context of medical imaging, the function f represents the density or attenuation-
coefficient function of a slice of whatever material is being imaged. Thus, the function has
compact support, meaning that there is some finite disc outside of which the function has
the value 0. In this case, the improper integrals

R
`t; �

f ds become regular integrals over finite
intervals. The only requirement, then, for the existence of Rf is that f be integrable over
the finite disc on which it is supported. This will be the case, for instance, if f is piecewise
continuous on the disc.

For a wealth of information about the Radon transform and its generalizations, as well as
an extensive list of references on this topic, see the monograph [24] and the book [15]. A
translation of Radon’s original 1917 paper ([43]) into English is included in [15].

2.7 The attenuated Radon transform

The Radon transform is the foundation of our study of computerized tomography when the
data we are analyzing come from X-rays that are transmitted externally to the patient or
other subject of interest. There are several other forms of tomography, though, in which the
data arise from signals that are emitted from within the patient. In these so-called emission
tomography modalities, a radioactive isotope is injected into the patient. The isotope tends
to concentrate at sites where a pathology may be present. Thus, we would like to determine
the location and distribution of the isotope within the body. Two main variations of emission
tomography are single photon emission computerized tomography, or SPECT, and positron
emission tomography, or PET. (A joke: The patient enters the doctor’s office and is taken
to the examination room. While the patient is waiting, two siamese cats, a schnauzer, and
a guinea pig come in, sniff about for a while, and leave. A few moments later, the doctor
enters, states that the exam is now concluded, and hands the patient a hefty bill for services
rendered. Aghast, the patient exclaims,“But you haven’t even examined me!” The doctor
replies, “Nonsense! You had both a CAT scan and a PET scan. What more do you want?”)
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In the case of SPECT, an isotope that emits individual photons, such as iodine–131, is
used. When a photon hits the external detector, a device called a collimator determines the
direction or line of the photon’s path. PET uses isotopes that emit positrons, such as carbon–
11. Each positron annihilates with a nearby electron to form two � -rays of known energy
and traveling in opposite directions. The simultaneous detection of these � -rays at opposite
detectors determines the line along which the emission took place. In both situations, the
count of either photons or � -rays recorded by each detector corresponds to the measurement
of the concentration of the isotope along some portion of the line on which the detector lies.
This amounts to knowing the value of the Radon transform along part of that line. The two
readings for an opposing pair of positrons combine to give the value of the Radon transform
for a full line.

The analysis is complicated by the fact that the medium through which the photons or
� -rays travel, such as the patient’s brain perhaps, causes the emitted particles to lose energy.
That is, the medium causes attenuation, just as it does for externally transmitted X-rays.
The difference is that, with the CT scan based on X-rays, the attenuation coefficient of the
medium at each point is the unknown function we wish to find. With emission tomography,
it is the unknown location and concentration of the isotope that we wish to determine; but
to do that we also have to consider the unknown attenuation coefficient of the medium. To
be specific, suppose a photon is emitted at the point .x0; y0/ and travels along the line `t;�

until it hits the detector. Thus, the photon will pass through all points along `t;� between
.x0; y0/ and the detector. If .x0; y0/ corresponds to the parameter value s D s0 in the standard
parameterization of `t;� , then the photon will pass through all points of the form .x; y/ D
.t cos.�/ � s sin.�/; t sin.�/ C s cos.�//, for s � s0. Denote by 	.x; y/ the attenuation
coefficient of the medium at the point .x; y/. From Beer’s law, it follows that the photon will

encounter an attenuation of A	.x0; y0; t; �/ D exp
h
� Rs�s0

	.x; y/ ds
i
, where the integral is

evaluated along the portion of `t;� corresponding to parameter values s � s0. Letting f .x; y/

denote the (unknown) concentration of radioactive isotope at the point .x; y/, we now make
the following definition.

Definition 2.16. For a given function f , whose domain is the plane, and a given function 	,
the attenuated Radon transform of f relative to 	 is defined, for each pair of real numbers
.t; �/, by

R	f .t; �/ WD
Z

`t; �

A	.x; y; t; �/f .x; y/ ds; (2.18)

with A	 as just described. If the attenuation of the medium is negligible, so that 	.x; y/ D 0,
then A	 D 1 and R	f D Rf . In general, though, both functions f and 	 are unknown. We
will not consider these variations on the fundamental question of image reconstruction any
further here. More information can be found in the books by Deans [15], Natterer [39], and
Kuchment [32].
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2.8 Exercises

1. The line `1=2; �=6 has the standard parameterization

x D
p

3

4
� s

2
and y D 1

4
C

p
3

2
s ; for � 1 < s < 1:

(a) Find the values of s at which this line intersects the unit circle.

(b) Now, define f by f .x; y/ D
(

x; if x2 C y2 � 1
0; if x2 C y2 > 1.

Compute Rf .1=2; �=6/.

2. Evaluate the integral
Rp

1�t2

sD�p
1�t2

�
1 � p

t2 C s2
�

ds from (2.5).

3. As in Example 2.4 above, consider the function

f .x; y/ WD
(

1 if jxj � 1 and jyj � 1,
0 otherwise.

(That is, f has the value 1 inside the square where �1 � x � 1 and �1 � y � 1, and the
value 0 outside this square.)

(a) Sketch the graph of the function Rf .t; 0/, the Radon transform of f corresponding to
the angle � D 0. Then find a formula for Rf .t; 0/ as a function of t.

(b) Sketch the graph of the function Rf .t; �=4/, the Radon transform of f corresponding
to the angle � D �=4. Then find a formula for Rf .t; �=4/ as a function of t.

(c) For � with 0 � � � �=4, find relationships, if any, between Rf .t; �/, Rf .t; �=2��/,
Rf .t; � C �=2/, and Rf .t; � � �/.

4. Show that, for all choices of t and � and all suitable functions f , Rf .t; �/ D Rf .�t; � C
�/. (This symmetry is one reason that the graph of the Radon transform is called a
sinogram.)

5. With f as in Example 2.7, find a single disc whose characteristic function g satisfies
Rg.0; �/ D Rf .0; �/, for all � . Is Rg.t; 0/ D Rf .t; 0/ for any values of t with 0 <

t < 1? (Hint:Look at the graphs of the Radon transforms.)

6. Provide a rigorous proof of Proposition 2.8 using the definition of the Radon transform
as an integral.



2.8 Exercises 37

7. (R and rotation.) For a function f defined in the plane and a real number �, define a
function g, for all real numbers x and y, by

g.x; y/ D f .x cos.�/ C y sin.�/; �x sin.�/ C y cos.�// :

Thus, the graph of g is a counterclockwise rotation by the angle � of the graph of f . Prove
that, for all real numbers t and � ,

Rg.t; �/ D Rf .t; � � �/:
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Back Projection

3.1 Definition and properties

Let us begin the process of trying to recover the values of an attenuation-coefficient function
f .x; y/ from the values of its Radon transform Rf .

Suppose we select some point in the plane, call it .x0; y0/. This point lies on many
different lines in the plane. In fact, for each value of � , there is exactly one real number t for
which the line `t; � passes through .x0; y0/. Specifically, the value t D x0 cos.�/ C y0 sin.�/

is the one that works, which is to say that, for any given values of x0 , y0 , and � , the line
`.x0 cos.�/Cy0 sin.�//; � passes through the point .x0; y0/ . The proof of this fact is left as an
exercise.

Example with R 3.1. Figure 3.1 shows a network of back-projection lines through a
selection of points in the first quadrant. This figure was created in R with the following
code.

## plot parameterized lines for the back projection
sval1=(sqrt(2)/100)*(-100:100)#pts on each line
thetaval1=(pi/9)*(1:9-1)#9 angles
#grid of points#plot lines through these
x1=c(rep(0,4),rep(.25,4),rep(.5,4),rep(.75,4))
y1=rep(c(0,.25,.5,.75),4)
plot(c(0,.85),c(0,.85),cex=0.,type=’n’,xlab=’’,ylab=’’,

asp=1)
for (i in 1:length(x1)){
for (j in 1:Nangle){
xval=(x1[i]*cos(thetaval1[j])+y1[i]*sin(thetaval1[j]))

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-22665-1_3) contains supplementary material, which is available to authorized users.
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Fig. 3.1. For an array of points in the first quadrant, the figure shows the network of the back-projection
lines corresponding to values of � in increments of �=9 .

*cos(thetaval1[j])-sval1*sin(thetaval1[j])
yval=sval1*cos(thetaval1[j])+(x1[i]*cos(thetaval1[j])+y1[i]

*sin(thetaval1[j]))*sin(thetaval1[j])
lines(xval,yval) } }

In practice, whatever sort of matter is located at the point .x0; y0/ in some sample affects
the intensity of any X-ray beam that passes through that point. We now see that each such
beam follows a line of the form `.x0 cos.�/Cy0 sin.�//; � for some angle � . In other words, the
attenuation coefficient f .x0; y0/ of whatever is located at the point .x0; y0/ is accounted for
in the value of the Radon transform Rf .x0 cos.�/ C y0 sin.�/; �/ , for each angle � .

The first step in recovering f .x0; y0/ is to compute the average value of these line integrals,
averaged over all lines that pass through .x0; y0/. That is, we compute

1

�

Z �

�D0
Rf .x0 cos.�/ C y0 sin.�/; �/ d� : (3.1)

Formally, this integral provides the motivation for a transform called the back projection,
or the back projection transform.

Definition 3.2. Let h D h.t; �/ be a function whose inputs are polar coordinates. The back
projection of h at the point .x; y/ is defined by

Bh.x; y/ WD 1

�

Z �

�D0
h.x cos.�/ C y sin.�/; �/ d� : (3.2)

Note that the inputs for Bh are Cartesian coordinates while those of h are polar coordinates.

The proof of the following proposition is left as an exercise.
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Proposition 3.3. The back projection is a linear transformation. That is, for any two
functions h1 and h2 and arbitrary constants c1 and c2 ,

B.c1h1 C c2h2/.x; y/ D c1Bh1.x; y/ C c2Bh2.x; y/ (3.3)

for all values of x and y .

Example 3.4. Back projection of R. In the context of medical imaging, the integral
in (3.1) represents the back projection of the Radon transform of the attenuation-coefficient
function f . That is,

BRf .x; y/ D 1

�

Z �

�D0
Rf .x cos.�/ C y sin.�/; �/ d� : (3.4)

3.2 Examples

Before we rush to the assumption that (3.4) gives us f .x0; y0/ back again, let us analyze
the situation more closely. Each of the numbers Rf .x0 cos.�/ C y0 sin.�/; �/ , themselves
the values of integrals, really measures the total accumulation of the attenuation-coefficient
function f along a particular line. Hence, the value of the Radon transform along a given line
would not change if we were to replace all of the matter there by a homogeneous sample with
a constant attenuation coefficient equal to the average of the actual sample’s attenuation. The
integral in (3.4) now asks us to compute the average value of those averages. Thus, this gives
us an “averaged out” or “smoothed out” version of f , rather than f itself. We will make this
precise in Proposition 7.20 and its Corollary 7.22. For now, we’ll look at some computational
examples to illustrate what’s going on.

Example 3.5. Suppose f1 is the attenuation-coefficient function corresponding to a disc of
radius 1=2 centered at the origin and with constant density 1. Then, for every line `0; �

through the origin, we have Rf1.0; �/ D 1 . Consequently, BRf1.0; 0/ D 1 .
Now suppose that f2 is the attenuation-coefficient function for a ring of width 1=2

consisting of all points at distances between 1=4 and 3=4 from the origin and with
constant density 1 in this ring. Then, again, for every line `0; � through the origin, we get
Rf2.0; �/ D 1 . So, again, BRf2.0; 0/ D 1 .

Thus, BRf1.0; 0/ D BRf2.0; 0/ D 1 , even though f1.0; 0/ D 1 and f2.0; 0/ D 0 .
This illustrates the fact that the back projection of the Radon transform of a function does not
necessarily reproduce the original function.

Example 3.6. We previously considered the function

f .x; y/ WD
(

1 if x2 C y2 � 1,
0 otherwise
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and computed that

Rf .t; �/ D
Z

`t;�

f ds D
(

2
p

1 � t2 if jtj � 1,
0 if jtj > 1.

From this it follows that, for each point .x; y/ and all 0 � � � � ,

Rf .x cos.�/ C y sin.�/; �/

D
(

2
p

1 � .x cos.�/ C y sin.�//2 if jx cos.�/ C y sin.�/j � 1,
0 if jx cos.�/ C y sin.�/j > 1.

It can be pretty difficult to figure out which values of � satisfy the inequality jx cos.�/ C
y sin.�/j � 1 for an arbitrary point .x; y/ . However, the maximum possible value of the
expression jx cos.�/ C y sin.�/j is

p
x2 C y2 , and we already know that we only care about

points for which
p

x2 C y2 � 1. Hence, jx cos.�/ C y sin.�/j � 1 will hold for all the points
.x; y/ that we care about.

Now apply the back projection. Assuming, as we are, that x2 C y2 � 1, we get

BRf .x; y/ D 1

�

Z �

�D0
Rf .x cos.�/ C y sin.�/; �/ d�

D 1

�

Z �

�D0
2
q

1 � .x cos.�/ C y sin.�//2 d� : (3.5)

The three-dimensional graph of f is a circular column of height 1 with a flat top, while
the graph of BRf , as Figure 3.2 illustrates, is a circular column with the top rounded off.
This is due to the “smoothing” effect of the back projection.

Example 3.7. This time, let

f .x; y/ WD
(

1 �p
x2 C y2 if x2 C y2 � 1,
0 otherwise.

Fig. 3.2. For a test function whose graph is a cylinder or a cone, the back projection of the Radon transform
of the function yields a rounded-off cylinder or a rounded-off cone.
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In Example 2.5, we computed that, for �1 � t � 1,

Rf .t; �/ D
Z 1

sD�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds

D
Z p

1�t2

sD�p
1�t2

�
1 �

p
t2 C s2

�
ds

D
p

1 � t2 � 1

2
t2 ln

 
1 C p

1 � t2

1 � p
1 � t2

!
:

As in the previous example, the inequality jx cos.�/ C y sin.�/j � 1 is satisfied for all
values of � as long as we only look at points .x; y/ in the unit disc. With that assumption,
applying the back projection yields

BRf .x; y/ D 1

�

Z �

�D0
Rf .x cos.�/ C y sin.�/; �/ d�

D 1

�

Z �

�D0

8̂
<
:̂
q

1 � t 2
�

� 1

2
t 2
� ln

0
B@1 C

q
1 � t 2

�

1 �
q

1 � t 2
�

1
CA
9>=
>; d�;

where, for brevity, t� D x cos.�/ C y sin.�/ . If we settle for the use of a Riemann sum,
then we can approximate the values of BRf .x; y/ and generate an approximate graph of
BRf .x; y/ over the unit disc.

In this example, the graph of f is a cone, while the graph of BRf , shown in Figure 3.2,
is a cone that has been rounded off, again illustrating the smoothing effect of the back
projection.

In the last two examples above, we restricted the back projection to points .x; y/ for
which x2 Cy2 � 1 . For those points, the inequality jx cos.�/Cy sin.�/j � 1 holds for every
value of � . In reality, even for points outside the unit circle, that is, even if x2 Cy2 > 1 , there
are always some values of � for which jx cos.�/ C y sin.�/j � 1. (For instance, this follows
from Exercise 2 below.) For those values of � , the corresponding line `.x cos.�/Cy sin.�//; �

passes through the unit disc, and so provides a nonzero value of Rf .x cos.�/ C y sin.�/; �/ .
In turn, this nonzero value of the Radon transform contributes to a nonzero value of the back
projection BRf .x; y/. Thus, in the examples above, we have effectively truncated the back
projection by “filtering out” points outside the unit circle and excluding them from the
smoothing process. The resulting images of BRf are actually closer to the original f than if
we had not done this filtering. This analysis raises the questions of how we can describe this
filtering process mathematically and of whether there are other forms of filtering that will
enhance the effort to recover the original attenuation-coefficient function.

Figure 3.3 shows a phantom created in section 2.5. When the back projection is applied
to the Radon transform data for the phantom, we see that the bright “skull” in the phantom
results in serious distortions. This occurs because every line that intersects the region of the
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Fig. 3.3. A phantom of squares (left); the back projection of its Radon transform with (center) and without
(right) the skull. The presence of the skull interferes with the inversion of the rest of the phantom. Of course,
in real life one can’t delete the skull!

phantom also intersects the skull. Since the skull is so much brighter than the other features
within the phantom, its presence is over-emphasized in the value of the back projection at
every point. When the skull is omitted, we get a better reproduction of the phantom, though it
is still blurry. (Caution: We can omit the skull only because these are mathematical phantoms.
Do not try this on a real human subject!)

Example with R 3.8. The back projection images in Figure 3.3 were formed in R using
a discrete form of the back projection that will be discussed in Chapter 8. Essentially, this
amounts to replacing the integrals in (3.2) and (3.4) with Riemann sums, taking the angle �

in increments of d� D �=N . We first have to set a grid of points at which to evaluate the
back projection, as in Example 2.11. Next, at each point .x; y/ in the grid, we compute the
average of the values of the integrand at .x cos.�/ C y sin.�/; �/ over the various values
of � . Here, the integrand is the Radon transform for the phantom of squares shown in the
figure. The following code finishes the process.

##Back projection for phantom of squares Fig 3.3
##form K-by-K grid; select theta values:
N=180 # number of angles for the X-rays
theta=pi/N*(1:N-1)
# two matrices: x*cos(theta) and y*sin(theta)
M1=matrix(double((K+1)*N),(K+1),N)
M2=matrix(double((K+1)*N),(K+1),N)
for (i in 1:(K+1)){
M1[i,]=xval[i]*cos(theta)}
for (j in 1:(K+1)){
M2[j,]=yval[j]*sin(theta)}
#phantom of squares; its radon transform
# back projection
bp1=matrix(double((K+1)^2),(K+1),(K+1))
for (i in 1:(K+1)){
for (j in 1:(K+1)){
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Fig. 3.4. The back projection of the Radon transform of the Shepp–Logan phantom.

bp1[i,j]=(1/N)*sum(radon.mat(theta,M1[i,]+M2[j,],S)$radvec
.sq)}}

# plot the result
plot(grid.x,grid.y,pch=19,cex=1.5,col=gray(bp1),xlab="",
ylab="")

#re-compute without the skull

Example 3.9. The Shepp–Logan phantom. As a final example for now, Figure 3.4 shows
the back projection of the Radon transform of the Shepp–Logan phantom, introduced in
Figure 2.10. This should reinforce the fact that the back projection is not, by itself, the inverse
of the Radon transform. Nonetheless, as we shall see in Chapter 6, the back projection is a
crucial ingredient in the image reconstruction process.

3.3 Exercises

1. Verify that, for given values of a , b , and � , the line `.a cos.�/Cb sin.�//; � passes through
the point .a; b/.

2. Verify that, for every pair of real numbers a and b , the set of points in the plane that
satisfy the polar-coordinate equation

r D .a cos.�/ C b sin.�// for 0 � � � �

forms a circle that passes through the origin as well as through the point with Cartesian
coordinates .a; b/. Find the radius of this circle and the location of its center. (Figure 3.5
illustrates this phenomenon. See [19] for more.)
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Fig. 3.5. The points where a set of back projection lines intersect their associated radial lines form a circle.
See Exercise 2 and [19].

3. (a) For a function F D F.r; �/, whose inputs are polar coordinates, show that the
value of BF.x; y/ is the average value of F on the circle determined by the
polar-coordinate equation r D .x cos.�/ C y sin.�// for 0 � � � � . (Hint:
Use Definition 3.2 and Exercise 2.) Use this to compute the following back
projections.

(b) Use part (a) to compute Bg.x; y/ , where g.r; �/ WD r cos.�/ .
(c) Use part (a) to compute Bh.x; y/ , where h.r; �/ WD r sin.�/ .

4. Prove Proposition 3.3, which asserts that the back projection is a linear transformation.
That is, show that, for any two functions h1 and h2 and arbitrary constants c1 and c2 ,

B.c1h1 C c2h2/.x; y/ D c1Bh1.x; y/ C c2Bh2.x; y/

for all values of x and y .
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Complex Numbers

There is no real number a for which a2 C 1 D 0 . In order to develop an expanded number
system that includes solutions to this simple quadratic equation, we define the “imaginary
number” i D p�1 . That is, this new number i is defined by the condition that i2 C 1 D 0 .

Since i2 D �1, it follows that i3 D i2 � i D �1 � i D �i . Similarly, i4 D i3 � i D �i � i D
�i2 D �.�1/ D 1 , and i5 D i4 � i D 1 � i D i .

As a quick observation, notice that the equation a4 D 1 now has not only the familiar
solutions a D ˙1 but also two “imaginary” solutions a D ˙i . Thus, there are four fourth
roots of unity, namely, ˙1 and ˙i . The inclusion of the number i in our number system
provides us with new solutions to many simple equations.

4.1 The complex number system

The complex number system, denoted by C, is defined to be the set

C D fa C b � i W a and b are real numbersg :

To carry out arithmetic operations in C, use the usual rules of commutativity, associativity,
and distributivity, along with the definition i2 D �1. Thus, .a C bi/ C .c C di/ D .a C c/ C
.b C d/i and .a C bi/ � .c C di/ D .ac � bd/ C .ad C bc/i. Also, �.a C bi/ D �a C .�b/i.
Momentarily, we will look at division of one complex number by another.

A geometric view of C . Each complex number z D a C bi is determined by two real
numbers. The number a is called the real part of z and is denoted by <z D a , while the
number b is called the imaginary part and is denoted by =z D b . (It is important to keep
in mind that the imaginary part of a complex number is actually a real number, which is
the coefficient of i in the complex number.) In this sense, the complex number system is

© Springer International Publishing Switzerland 2015
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“two-dimensional,” and so can be represented geometrically in the xy-plane, where we plot
the real part of a complex number as the x-coordinate and the imaginary part of the complex
number as the y-coordinate.

A real number a can also be written as a D a C 0 � i , and so corresponds to the point
.a; 0/ on the x-axis, which is known therefore as the real axis. Similarly, a purely imaginary
number b � i D 0 C b � i corresponds to the point .0; b/ on the y-axis, which is called the
imaginary axis.

The distance to the origin from the point .a; b/ , corresponding to the complex number
a C bi, is equal to

p
a2 C b2. Accordingly, we make the following definition.

Definition 4.1. The modulus of the complex number aCbi, denoted by jaCbij , is defined by

ja C bij D
p

a2 C b2: (4.1)

The modulus of a complex number is analogous to the absolute value of a real number.
Indeed, for a real number a D a C 0 � i , we get that ja C 0 � ij D p

a2 C 02 D jaj in the usual
sense. Note also that ja C bij D 0 if, and only if, a D b D 0 . A central observation is that

.a C bi/ � .a � bi/ D a2 C b2 D ja C bij2 :

With this in mind, we make another definition.

Definition 4.2. The conjugate of a complex number aCbi , denoted by a C bi , is defined by

a C bi D a � bi : (4.2)

The central property, to repeat, is that

.a C bi/ � .a C bi/ D .a C bi/ � .a � bi/ D a2 C b2 D ja C bij2 : (4.3)

The conjugate of a complex number is the key ingredient when it comes to the arithmetic
operation of division. For example, notice that

.5 C 12i/.5 � 12i/ D 52 C 122 D 132 D 169:

It follows from this that

1

5 C 12i
D 5 � 12i

169
D 5

169
� 12

169
i ;

whence

3 C 4i

5 C 12i
D .3 C 4i/ � 1

5 C 12i
D .3 C 4i/

�
5

169
� 12

169
i

�
D 63

169
� 16

169
i:
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In general, we get that

1

a C bi
D 1

a2 C b2
.a � bi/ :

This enables us to divide any complex number by .a C bi/ , provided that a and b are not
both 0 . The act of dividing by the nonzero complex number .a C bi/ is re-expressed as
multiplication by .a � bi/ and division by the nonzero real number .a2 C b2/ .

4.2 The complex exponential function

Consider these well-known Taylor series:

cos.x/ D
1X

nD0

.�1/n x2n

.2n/Š
D 1 � x2

2Š
C x4

4Š
� x6

6Š
C � � � ;

sin.x/ D
1X

nD0

.�1/n x2nC1

.2n C 1/Š
D x � x3

3Š
C x5

5Š
� x7

7Š
C � � � ;

and

exp.x/ D ex D
1X

nD0

xn

nŠ
D 1 C x C x2

2Š
C x3

3Š
C x4

4Š
C � � � :

Substitute x D i� (where � is assumed to be a real number) into the series for exp.x/ to get
(formally)

exp.i�/ D ei� D
1X

nD0

.i�/n

nŠ

D 1 C .i�/ C .i�/2

2Š
C .i�/3

3Š
C .i�/4

4Š
C .i�/5

5Š
C � � �

D 1 C i� � �2

2Š
� i

�3

3Š
C �4

4Š
C i

�5

5Š
� � � �

D
�

1 � �2

2Š
C �4

4Š
� �6

6Š
C � � �

	
C i �

�
� � �3

3Š
C �5

5Š
� � � �

	

D cos.�/ C i � sin.�/:
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Euler’s formula. The remarkable relationship

e i� D cos.�/ C i � sin.�/ (4.4)

between an imaginary power of e and the sine and cosine functions is known as Euler’s
formula after its discoverer, Leonhard Euler (1707–1783).

Some examples of Euler’s formula that are of special interest are

ei� D cos.�/ C i sin.�/ D �1 C i.0/ D �1 ;

ei�=2 D cos.�=2/ C i sin.�=2/ D 0 C i.1/ D i ; and

e2� i D cos.2�/ C i sin.2�/ D 1 :

In general, for any real number � , <.ei� / D cos.�/ and =.ei� / D sin.�/. Hence,

ˇ̌
ˇei�

ˇ̌
ˇ D

q
cos2.�/ C sin2.�/ D 1

regardless of the value of � .
Geometrically, for real numbers r and � , we get

rei� D r.cos.�/ C i sin.�// D r cos.�/ C ir sin.�/

so that the complex number rei� corresponds to the point in the xy-plane with Cartesian
coordinates .r cos.�/; r sin.�//. This same point has polar coordinates r and � . For this
reason, the form rei� is called the polar form of the complex number r.cos.�/ C i sin.�//.

Observe that
ˇ̌
re i�

ˇ̌ D jrj. So, jrj is the modulus of re i� . The number � , viewed as an
angle now, is called the argument of the complex number re i� .

A simple computation shows that .rei� / � .Rei�/ D r � R � ei.�C�/ . Thus, when we multiply
two complex numbers, expressed here in their polar forms, the modulus of the product is
equal to the product of the individual moduli and the argument of the product is the sum of
the individual arguments.
DeMoivre’s law. When the equation .ei� /n D ein� is translated into standard complex
number form, we get

Œcos.�/ C i sin.�/�n D cos.n�/ C i sin.n�/ : (4.5)

This is called DeMoivre’s law.

It is just a short step now to define the exponential function for every complex number.
Namely, for any complex number z D a C bi ,

ez D eaCbi D ea � ebi D ea � .cos.b/ C i sin.b// : (4.6)
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The complex exponential function has many interesting and important properties, not least
of which is that it is a conformal mapping. (See [18] and [46], for example.) For our purposes,
the periodicity property of the exponential function is central.

4.3 Wave functions

Waves, periodicity, and frequency. For a fixed real number ! , the functions t 7! cos.!t/
and t 7! sin.!t/ have period 2�=! and frequency !=.2�/ . If the value of ! is large, then
these functions have high frequency and short wavelength; lower values of ! yield functions
with longer waves and lower frequencies.

For a given real number ! , consider the function E!.t/ D ei!t . Then

E!.t C 2�=!/ D ei!.tC2�=!/ D ei!tC2� i D ei!t � e2� i D ei!t D E!.t/ ;

where we have used the fact that e2� i D 1 . Thus, the function E! is periodic with period
2�=! and frequency !=.2�/ .

Another point of view is to see that

E!.t/ D ei!t D cos.!t/ C i sin.!t/

which is a sum of two periodic functions each having period 2�=! . So the sum also is
periodic with that same period.

A signal, such as a radio, light, or sound wave, can, in principle, be decomposed into
its components of specific frequencies. For example, we might try to decompose the sound
wave from a musical instrument into the high notes, the mid-tones, bass, and so on. That is,
a signal, viewed as a function propagated over time, might also be viewed as a composite of
functions of the form cos.!t/ and sin.!t/ , or, more compactly, E!.t/ D ei!t , for various
values of ! . The pertinent issue becomes how to determine which values of ! correspond
to the different frequency components of a given signal f .t/ , and, for each such ! , to find
the amplitude of the associated component.

Fourier analysis. As a first step toward finding the different frequencies that make up
a given signal, consider the “harmonic frequencies” n=.2�/ where n is an integer. The
basic periodic functions having these frequencies are of the form En.t/ D eint . Two basic
computations involving these functions are the following.

For m ¤ n;

Z 2�

0
eimt � e�int dt D

Z 2�

0
ei.m�n/t dt D ei.m�n/t

i.m � n/

ˇ̌
ˇ̌
ˇ
2�

0

D 0 ;

since ei.m�n/2� D e0 D 1 .
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For m D n;

Z 2�

0
eint � e�int dt D

Z 2�

0
e0 dt D 2� :

These computations mean that, if a signal has the form

f .t/ D
X
n2


cneint

for integers n in some set 
 , then the amplitudes fcng are given by

cn D 1

2�

Z 2�

0
f .t/ � e�int dt for each n 2 
 :

Applying this analysis to an arbitrary function f that is periodic on the interval
0 � t � 2� , we define the n th Fourier coefficient of f by

Of .n/ D 1

2�

Z 2�

0
f .t/ � e�int dt : (4.7)

We have in mind that f somehow can be represented, at least on the interval 0 � t � 2� ,
by the sum

P Of .n/eint . Determining precisely when such a representation is valid (and even
what is meant by “representation” or “valid”) is part of the subject of Fourier series, initiated
in 1811 by Jean-Baptiste Joseph Fourier (1768–1830).

In our analysis of X-ray attenuation-coefficient functions, we will use a different tool, also
pioneered by Fourier, called the Fourier transform. The Fourier transform is analogous to the
Fourier series but it allows for all possible frequencies and does not assume that the signal is
periodic.

4.4 Exercises

1. (a) Let z and w be complex numbers. Show that .z C w/ D zCw and that z � w D z�w .
(b) Show that rei� D re�i� .

(c) Use (4.3) to express
1

3 C 4i
in the form a C bi .

2. Evaluate the integral
Z 2�

0
e i� d� .

3. (a) Show that
Z 1

0
e ��x � e �i!x dx D � � i!

� 2 C ! 2
, where � and ! are real numbers with

� > 0 .

(b) Use part (a) to show that
Z 1

�1
e ��jxj � e �i!x dx D 2�

� 2 C ! 2
.
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4. (a) Use Euler’s formula to show that

e �i!T � e i!T D �2i sin.!T/

for all real numbers ! and T .

(b) Now show that
Z T

�T
e �i!x dx D 2

sin.!T/

!
for ! ¤ 0 .

(c) Plot the graph of S.!/ D 2
sin.!T/

!
, as a function of the real variable ! , for T D 1,

for T D 0:5 , and for T D 0:2 . (Note that setting S.0/ D 2T yields a continuous
function on the real line.)

5. Use a change of variables to show that

Z 1

�1
f .x � ˛/ e�i!x dx D e�i!˛

Z 1

�1
f .x/ e�i!x dx

for all real numbers ! and ˛ .

6. (a) Show that the functions F1.t/ D e.˛C!i/t and F2.t/ D e.˛�!i/t, where ˛ and ! are
real constants, satisfy the (second-order linear) differential equation

y 00 � 2˛y 0 C .˛2 C !2/y D 0 :

(b) Using Euler’s formula, conclude that the functions y1 D e˛t cos.!t/ and
y2 D e˛t sin.!t/ also satisfy the same differential equation. (In case ˛ < 0 , these
are examples of decaying wave functions.)
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The Fourier Transform

5.1 Definition and examples

For a given function f such that
R1

�1 jf .x/j dx < 1, the Fourier transform of f is defined,
for each real number !, by

F f .!/ WD
Z 1

�1
f .x/ e�i!x dx: (5.1)

The idea behind this definition is that, for each value of !, the value of F f .!/ captures
the component of f that has the frequency !=.2�/ (and period 2�=! ).

Example 5.1. The Fourier transform of a Gaussian. Let f .x/ D e�Ax2
, for some positive

constant A > 0. Then we have

F f .!/ D
r

�

A
e� !2

4A : (5.2)

To prove this, we first need the following fact.

Lemma 5.2. For A ¤ 0, we have
R1

�1 e�Ax2
dx D p

�
A .

© Springer International Publishing Switzerland 2015
T.G. Feeman, The Mathematics of Medical Imaging, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-3-319-22665-1_5

55



56 5 The Fourier Transform

Proof. Squaring the integral, we get

�Z 1

�1
e�Ax2

dx

�2

D
�Z 1

�1
e�Ax2

dx

� �Z 1

�1
e�Ax2

dx

�

D
�Z 1

�1
e�Ax2

dx

� �Z 1

�1
e�Ay2

dy

�

D
Z 1

�1

Z 1

�1
e�A.x2Cy2/ dx dy

.polar coordinates/ D
Z 2�

�D0

Z 1

rD0
e�Ar2

r dr d�

D
Z 2�

�D0

 
lim

b!1
1 � e�Ab2

2A

!
d�

D
Z 2�

�D0

1

2A
d�

D �

A
:

Taking square roots proves the lemma. ut
Now to compute the Fourier transform for this example. For each !,

F f .!/ D
Z 1

�1
e�Ax2

e�i!x dx

D
Z 1

�1
e�A.x2Ci!x=A/ dx

.complete the square/ D
Z 1

�1
e�A.x2Ci!x=AC.i!=2A/2

eA.i!=2A/2
dx

D e�!2=4A
Z 1

�1
e�A.xCi!=2A/2

dx

D e�!2=4A
Z 1

�1
e�Au2

du with u D x C i!=2A

D
r

�

A
e�!2=4A by the lemma:

This establishes the result we were after. ut

Observe that if we take A D 1=2, then f .x/ D e�x2=2 and F f .!/ D p
2�e�!2=2,

a constant multiple of f itself. In the language of linear algebra, this function f is an
eigenvector, or eigenfunction, of the Fourier transform.
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Additional examples are considered in the exercises. Let us look at some basic properties
of the Fourier transform.

5.2 Properties and applications

Additivity. Because the integral of a sum of functions is equal to the sum of the integrals of
the functions separately, it follows that

F.f C g/.!/ D F f .!/ C Fg.!/ ; (5.3)

for all integrable functions f and g and every real number !.

Constant multiples. Because the integral of c � f is equal to c times the integral of f , we
see that

F.cf /.!/ D c � F f .!/ ; (5.4)

for all integrable functions f , all (complex) numbers c, and every real number !.

The two properties (5.3) and (5.4) taken together prove the following.

Proposition 5.3. The Fourier transform acts as a linear transformation on the space of all
absolutely integrable functions. That is, for two such functions f and g and any constants ˛

and ˇ, we get that

F.˛f C ˇg/ D ˛F.f / C ˇF.g/: (5.5)

Shifting/translation. For an integrable function f and fixed real number ˛, let
g.x/ D f .x � ˛/. (So the graph of g is the graph of f shifted or translated to the right
by ˛ units.) Then

Fg.!/ D e�i!˛F f .!/: (5.6)

Proof. For each !, we get

Fg.!/ D
Z 1

�1
f .x � ˛/ e�i!x dx

.let u D x � ˛/ D
Z 1

�1
f .u/ e�i!.uC˛/ du
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D e�i!˛

Z 1

�1
f .u/ e�i!u du

D e�i!˛ F f .!/ as claimed:

ut
Since the graph of g is a simple translation of the graph of f , the magnitude of the

component of g at any given frequency is the same as that of f . However, the components
occur at different places in the two signals, so there is a phase shift or delay in the Fourier
transform. Also, the fixed translation ˛ encompasses more cycles of a wave at a higher
frequency than at a lower one. (For instance, an interval of width ˛ D 2� contains two
cycles of the wave y D sin.2x/, but only one cycle of the wave y D sin.x/.) Therefore, the
larger the value of ˛ is relative to the wavelength 2�=! the larger will be the phase delay in
the transform. That is, the phase delay in the transform is proportional to !, which explains
the factor of e�i!˛ in the transform of the shifted function g.

Shifting/modulation. For a given function f and a fixed real number !0, let h.x/ D ei!0x f .x/.
(So h “modulates” f by multiplying f by a periodic function of a fixed frequency !0=2� .)
Then

Fh.!/ D F f .! � !0/: (5.7)

Proof. For each !, we get

Fh.!/ D
Z 1

�1
ei!0x f .x/ e�i!x dx

D
Z 1

�1
f .x/ e�i.!�!0/x dx

D F f .! � !0/ .by definitionŠ/:

ut
These two shifting properties show that a translation of f results in a modulation of F f

while a modulation of f produces a translation of F f .

Scaling. For a given function f and a fixed real number a ¤ 0, let �.x/ D f .ax/. Then

F�.!/ D 1

jajF f .!=a/: (5.8)
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Proof. Assume that a > 0 for now. For each !, we get

F�.!/ D
Z 1

�1
f .ax/ e�i!x dx

.let u D ax/ D 1

a

Z 1

�1
f .u/ e�i!u=a du

D 1

a

Z 1

�1
f .u/ e�i.!=a/u du

D 1

a
F f .!=a/ .by definitionŠ/:

A similar argument applies when a < 0. (Why do we get a factor of 1=jaj in this case?)
ut

Even and odd functions. A function f , defined on the real line, is even if f .�x/ D f .x/

for every x. Similarly, a function g is odd if g.�x/ D �g.x/ for every x. For example, the
cosine function is even while the sine function is odd.

Using Euler’s formula (4.4), e i� D cos.�/ C i sin.�/, we may write the Fourier transform
of a suitable real-valued function f as

F f .!/ D
Z 1

�1
f .x/ cos.!x/ dx � i �

Z 1

�1
f .x/ sin.!x/ dx :

Now, if f is even, then, for fixed !, the function x 7! f .x/ sin.!x/ is odd, whenceR1
�1 f .x/ sin.!x/ dx D 0. Thus, an even function has a real-valued Fourier transform.

Similarly, if f is odd, then x 7! f .x/ cos.!x/ is also odd for each fixed !. Thus,R1
�1 f .x/ cos.!x/ dx D 0. It follows that an odd function has a purely imaginary Fourier

transform.

Transform of the complex conjugate. For a complex-number-valued function f defined on
the real line R, the complex conjugate of f is the function f defined by

f .x/ D f .x/ for every real number x: (5.9)

To uncover the relationship between the Fourier transform of f and that of f , let ! be an
arbitrary real number. Then we have

F f .!/ D
Z 1

�1
f .x/ e�i!x dx

D
Z 1

�1
f .x/ e i.�!/x dx

D
Z 1

�1
f .x/ e�i.�!/x dx
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D
Z 1

�1
f .x/ e�i.�!/x dx

D F f .�!/

D F f .�!/:

This proves the following proposition.

Proposition 5.4. For an integrable function f defined on the real line, and for every real
number !,

F f .!/ D F f .�!/: (5.10)

Example 5.5. Let f .x/ D
(

1 if �1 � x � 1,
0 if jxj > 1.

Then the Fourier transform of f is F f .!/ D

2 sin.!/=!. Now let �.x/ D f .ax/, where a > 0. That is, �.x/ D
(

1 if �1=a � x � 1=a,
0 if jxj > 1=a.

So we already know from earlier work that F�.!/ D 2sin.!=a/=!, which is the same as
.1=a/F f .!=a/. This agrees with the scaling result (5.8).

Example 5.6. Let f .x/ D
(

1 if �1 � x � 1,
0 if jxj > 1

as in the previous example. So, again, the

Fourier transform of f is F f .!/ D 2sin.!/=!. Now let

g.x/ D f .x � 2/ D
(

1 if 1 � x � 3,
0 if x < 1 or x > 3.

By the shifting/translation result (5.6), we get

Fg.!/ D e�2i!F f .!/ D 2e�2i! sin.!/

!
:

Example 5.7. As an application of the shifting/modulation property (5.7), observe that

cos.!0x/ D .1=2/.ei!0x C e�i!0x/:

Thus, for any suitable f , take h.x/ D f .x/ cos.!0x/. That is,

h.x/ D .1=2/ei!0xf .x/ C .1=2/ei.�!0/xf .x/:

It follows that

Fh.!/ D .1=2/F f .! � !0/ C .1=2/F f .! C !0/:
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For a specific example, let f .x/ D
(

1 if �1 � x � 1,
0 if jxj > 1

as in the previous examples. So,

again, the Fourier transform of f is F f .!/ D 2sin.!/=!. With h.x/ D f .x/ cos.!0x/, we get

Fh.!/ D .1=2/F f .! � !0/ C .1=2/F f .! C !0/

D .1=2/



2

sin.! � !0/

.! � !0/
C 2

sin.! C !0/

.! C !0/

�

D sin.! � !0/

.! � !0/
C sin.! C !0/

.! C !0/

The graph of F f in this example has a main peak of height 2 centered at ! D 0 with
smaller ripples at the edges. The graph of Fh has two main peaks, centered at ! D ˙!0,
with a valley in between and smaller ripples at the edges.

5.3 Heaviside and Dirac ı

Definition 5.8. The Heaviside function H is defined by

H.x/ D
(

0 if x < 0,
1 if x > 0.

(5.11)

Technically, H.0/ is not defined, which, nonetheless, does not stop us from writing
formulas like

H.x � a/ � H.x � b/ D
(

1 if a < x < b,
0 otherwise.

Definition 5.9. The Dirac ı function, denoted simply by ı, is defined to be the formal
derivative ı D dH=dx of the Heaviside function with respect to x.

Of course, since H is constant except at 0, we get that ı.x/ D 0 except at x D 0 where
H does not have a derivative (or the derivative is essentially 1 ). So apparently ı.0/ does
not make sense. Alternatively, we can think of ı.0/ as being equal to 1. So the “graph”
of ı basically consists of an infinitely tall spike at 0. (Warning: We should not expect a
computer to plot this graph for us!) The Dirac ı function is also known as the impulse
function, perhaps because its graph (!) evokes the image of a sudden massive impulse of
energy that immediately dies out again.

Neither H nor ı can exist in reality as a physical signal. The Heaviside signal would
have to appear out of nowhere (like a Big Bang?) and then propagate without loss of
energy for eternity. The ı impulse also would have to appear out of nowhere, but then die
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instantly. Moreover, neither of these functions is even properly defined as a function. Instead,
they fall into a class known as generalized functions or distributions. Nonetheless, they are
useful idealized mathematical and physical constructs and we shall use them without further
troubling ourselves over their precise natures.

Integrals involving H and ı. In the context of integration, the Heaviside function has a
property of central importance. Formally, the value of H jumps by 1 at 0; so we can think of
the differential dH as having the value 1 at 0 and the value 0 everywhere else. This point of
view suggests that

Z 1

�1
f .x/ dH D f .0/ (5.12)

for any function f . The intuitive idea here is that dH is 0 except at 0 where dH D 1, so the
value of the integral is just f .0/ � 1 D f .0/. In fact, this is an example of a theory of integrals
known as Riemann–Stieltjes integration that generalizes the sort of integration we typically
learn in a first course in calculus. For our purposes here, we will simply accept this integral
as a defining feature of the Heaviside function.

Next, since ı D dH=dx, it follows that dH D ı.x/ dx. Hence, for any f , it follows
from (5.12) that

Z 1

�1
f .x/ı.x/ dx D

Z 1

�1
f .x/ dH D f .0/: (5.13)

This integral formula will feature prominently in what lies ahead for us.
For a first example, substitute the constant function f .x/ D 1 into (5.13). This yields the

formula

Z 1

�1
ı.x/ dx D 1: (5.14)

Thus, the graph of ı is an infinitely tall spike with no width but which has “underneath it”
an area of 1! This truly is a strange function.

As a generalization of formula (5.13), we have the following result, whose proof is left as
an exercise.

For a 2 R;

Z 1

�1
f .x/ı.x � a/ dx D f .a/: (5.15)

Remark 5.10. There are other ways of thinking about ı. For instance, the equation (5.21)
below can be taken as a definition, with Lemma 5.13 providing the justification. Alternatively,
we can define the ı function as a limit by setting

ı.x/ D lim
a!0C

�
1

2a

�
ua .x/ ; (5.16)
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where ua.x/ D
(

1 if �a � x � a,
0 if jxj > a.

We will take advantage of this approach in Chapter 7.

(The function ua is also called the characteristic function of the interval Œ�a; a� and is often
denoted by �Œ�a; a�. We will use the symbol u to remind us of the shape of its graph.)

F and ı. We use (5.13) to compute the Fourier transform of the ı function. Namely,

Fı.!/ D
Z 1

�1
ı.x/ e�i!x dx D e�i!�0 D e0 D 1: (5.17)

So the Fourier transform of ı is the constant function equal to 1.

5.4 Inversion of the Fourier transform

In the definition of the Fourier transform (5.1), there may seem to be no reason a priori to
have used the exponent �i!x rather than its opposite Ci!x. This prompts the following
definition.

Definition 5.11. For a function g for which
R1

�1 jg.!/j d! < 1, the inverse Fourier
transform of g is defined, for each real number x, by

F�1g.x/ WD 1

2�

Z 1

!D�1
g.!/ ei!x d!: (5.18)

The reasons for the factor 1=2� as well as for the name of this transform are made clear by
the following essential theorem.

Theorem 5.12. Fourier inversion theorem. If f is continuous on the real line andR1
�1 jf .x/j dx < 1, then

F�1.F f /.x/ D f .x/ for all x: (5.19)

To prove this, we first need a lemma.

Lemma 5.13. For real numbers t and x,

Z 1

!D�1
ei!.t�x/ d! D lim

"!0

r
�

"
� e�.x�t/2=.4"/: (5.20)

Proof of Lemma 5.13. For each real number ! we have lim"!0 e�" !2 D 1. Thus, for any
real numbers t and x,

Z 1

!D�1
ei!.t�x/ d! D lim

"!0

Z 1

!D�1
e�" !2 � ei!.t�x/ d!

D lim
"!0

Z 1

!D�1
e�" !2 � e�i!.x�t/ d!:
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Previously, we computed the Fourier transform of a Gaussian function e�Ax2
to bep

�=A e�t2=.4A/. Applying this formula to the Gaussian function e�"!2
(so A D " and !

is in place of x) and evaluating the resulting Fourier transform at .x � t/ yields

Z 1

!D�1
e�" !2 � e�i!.x�t/ d! D

r
�

"
e�.x�t/2=.4"/:

Substituting this into the previous calculation, we get

Z 1

!D�1
ei!.t�x/ d! D lim

"!0

Z 1

!D�1
e�" !2 � e�i!.x�t/ d!

D lim
"!0

r
�

"
e�.x�t/2=.4"/ ;

which establishes the lemma. ut

Proof of Theorem 5.12. For a continuous function f that is absolutely integrable on the real
line, let F denote the Fourier transform F f . For any real number t, we get

F�1F.t/ D 1

2�

Z 1

!D�1
F.!/ ei!t d!

D 1

2�

Z 1

!D�1

Z 1

xD�1
f .x/ e�i!x ei!t dx d! .by definition of F/

D 1

2�

Z 1

xD�1

Z 1

!D�1
f .x/ ei!.t�x/ d! dx

D 1

2�

Z 1

xD�1
f .x/

�Z 1

!D�1
ei!.t�x/ d!

�
dx

D 1

2�
� lim

"!0

Z 1

xD�1
f .x/

r
�

"
e�.x�t/2=.4"/ dx .by the lemma/:

Set y D .x � t/=.2
p

"/, so x D t C 2
p

"y and dx D 2
p

" dy :

F�1F.t/ D 1

2�
� lim

"!0

�r
�

"
� 2

p
"

� Z 1

yD�1
f .t C 2

p
"y/ e�y2

dy

D 1p
�

� f .t/ �
Z 1

yD�1
e�y2

dy .since lim
"!0

f .t C 2
p

"y/ D f .t/8y/

D 1p
�

� f .t/ � p
�

D f .t/:

This is the desired result. ut
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A bit more generally, if f has a point of discontinuity at ˛ and if the one-sided limits
limx!˛� f .x/ and limx!˛C f .x/ both exist, then

F�1.F f /.˛/ D .1=2/

�
lim

x!˛�
f .x/ C lim

x!˛C
f .x/

�
:

The proof of this claim is left as an exercise.

Example 5.14. Right away let’s apply the inverse Fourier transform to a function that is not
even a function! We saw before that the Fourier transform of the ı function is the constant
function to 1. That means that the ı function is the inverse Fourier transform of the constant
function 1. That is,

ı.x/ D F�11.x/ D 1

2�

Z 1

�1
ei!x d! (5.21)

for all x. Interestingly, had we elected to define the ı function by this integral, then we could
have used that to provide a simpler proof of the Fourier inversion theorem, Theorem 5.12.
(See (2.12) in [9].)

Example 5.15. Inverse Fourier transform of a Gaussian. We have already seen that the
Fourier transform of a Gaussian is another Gaussian. Thus, the same will be true for the
inverse Fourier transform of a Gaussian. Specifically,

F�1.e�B!2
/.x/ D 1

2�

Z 1

�1
e�B!2

ei!x d!

D
r

1

4�B
e�x2=.4B/ : (5.22)

In particular, if we take B D 1=.4A/ and multiply both sides by
p

�=A we see that we get
e�Ax2

, illustrating again the inverse relationship between the transforms (5.1) and (5.18).

Example 5.16. Inverse Fourier transform of a square wave. As in (5.16), let

ua .x/ D
(

1 if �a � x � a,
0 if jxj > a.

(5.23)

Then the inverse Fourier transform of ua is given by

F�1 ua .x/ D 1

2�

Z 1

!D�1
ua.!/ e i!x d!

D 1

2�

Z a

!D�a
e i!x d!
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D 1

2�

e iax � e �iax

ix

D 1

�

sin.ax/

x
; (5.24)

where Euler’s formula (4.4) was used in the final step.

5.5 Multivariable forms

We will need two generalizations of the Fourier transform in order to apply it within the
context of medical imaging, where the functions involved are defined in the plane using
either Cartesian or polar coordinates.

First, for a function h.r; �/ defined using polar coordinates in the plane, we simply apply
the one-variable Fourier transform in the radial variable ( r ) only. This gives the following
definitions.

Definition 5.17. For h.r; �/, we define the Fourier transform of h at a point .t; �/ (also in
polar coordinates and with the same angle � ) by

Fh.t; �/ D
Z 1

rD�1
h.r; �/ e�irt dr : (5.25)

Definition 5.18. Similarly, the inverse Fourier transform of h is given by

F�1h.t; �/ D 1

2�

Z 1

rD�1
h.r; �/ eirt dr : (5.26)

The inverse relationship between these transforms is clear because the variable � is
treated as a constant in the computations. Significantly, this generalization of the Fourier
transform and its inverse applies to the Radon transform of a function f since Rf is defined
at the points .t; �/ corresponding to the lines `t; � .

The second generalization of the Fourier transform is applied to functions g defined
using Cartesian coordinates in the plane. For instance, g.x; y/ might represent the X-ray
attenuation coefficient of a tissue sample located at the point .x; y/.

Definition 5.19. For such a function g, we define the Fourier transform of g evaluated at the
point .X; Y/ (also in Cartesian coordinates in the plane) by

Fg.X; Y/ D
Z 1

�1

Z 1

�1
g.x; y// e �i.xXCyY/ dx dy: (5.27)
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Definition 5.20. Similarly, the inverse Fourier transform of g at .x; y/ is given by

F�1g.x; y/ D 1

4�2

Z 1

�1

Z 1

�1
g.X; Y/ ei.xXCyY/ dX dY : (5.28)

As in the one-variable setting, we have the inverse relationship

F�1.Fg/.x; y/ D F.F�1g/.x; y/ D g.x; y/:

Of course, some assumptions and restrictions on g are necessary for these integrals to make
sense, but we will gloss over these concerns here. (See Appendix A for details.)

A geometric viewpoint. Consider a vector h X; Y i D h r cos.�/; r sin.�/ i in R
2. For

arbitrary real numbers x and y, let

t D x cos.�/ C y sin.�/ ;

s D �x sin.�/ C y cos.�/ ; and

h x1; y1 i D h �s sin.�/; s cos.�/ i :

Then

h x; y i D h t cos.�/; t sin.�/ i C h x1; y1 i ;

and, because h x1; y1 i � h cos.�/; sin.�/ i D 0, it follows that

xX C yY D rt cos2.�/ C rt sin2.�/ C r.x1 cos.�/ C y1 sin.�// D rt :

Thus, the expression e�i.xXCyY/ in the definition of the 2-dimensional Fourier transform
is the same as the expression e�irt that appears in the one-variable Fourier transform. This
function is periodic with period 2�=r but, in this setting, adding a multiple of 2�=r to the
value of t amounts to moving the point .x; y/ by a distance of 2�=r in the direction of
the vector h cos.�/; sin.�/ i. In other words, the function e�i.xXCyY/ oscillates with period
2�=

p
X2 C Y2 ( D 2�=r ) in the direction of the vector h X; Y i.

In higher dimensions, suppose the function g is defined in n-dimensional space and
represent points in n-dimensional space as vectors, such as u or v. The n-dimensional
Fourier transform is defined by

Fg.u/ D
Z
Rn

g.v/ e�i.u � v/ dv: (5.29)

We will not have occasion to use the generalized Fourier transform for n > 2.
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The Dirac ı function can also be defined as a function in the plane. Using Cartesian
coordinates, we set

ı.x; y/ D ı.x/ � ı.y/ : (5.30)

Observe that

Z Z 1

x;yD�1
ı.x; y/ dx dy D

�Z 1

xD�1
ı.x/ dx

�
�
�Z 1

yD�1
ı.y/ dy

�
D 1 � 1 D 1 ;

as required.
For polar coordinates, as with the Fourier transform, we interpret ı as depending only on

the radial variable. Since we require the integral of ı over the plane to have the value 1, and
the change of coordinates in the plane is dx dy D r dr d� , we now define

ı.r; �/ D 1

�r
ı.r/ : (5.31)

With this definition, when we integrate over the plane, we get

Z �

�D0

Z 1

rD�1
ı.r; �/ r dr d� D

Z 1

rD�1
ı.r/ dr D 1 ;

as required.
For either choice of coordinates, the 2-D ı function may be viewed as a limit by setting

ı.r/ D lim
a!0C

(
1

2a if �a � r � a,
0 if jrj > a.

(5.32)

5.6 Exercises

1. Use the shifting rules, (5.6) and (5.7), to examine the following examples. (In each case,
the Fourier transform of the given function has been computed previously.)

(a) Let f .x/ D e �jxj. Then the Fourier transform of f is

F f .!/ D 2

1 C ! 2
:

(i) Compute the Fourier transform of g.x/ D f .x � ˛/,
where ˛ is a constant;
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(ii) Compute the Fourier transform of h.x/ D ei!0xf .x/,
where !0 is a constant;

(iii) Plot the Fourier transform of f , the Fourier transform of g with ˛ D 1, and the
Fourier transform of h with !0 D �=2.

(b) For u1=2.x/ D
(

1 if � 1
2 � x � 1

2 ,
0 if jxj > 1

2 ,
the Fourier transform is

F u1=2 .!/ D sin.!=2/

.!=2/
:

(i) Compute the Fourier transform of g.x/ D u1=2.x � ˛/,
where ˛ is a constant;

(ii) Compute the Fourier transform of h.x/ D ei!0x u1=2 .x/,
where !0 is a constant;

(iii) Plot the Fourier transform of u1=2, the Fourier transform of g with ˛ D 1, and
the Fourier transform of h with !0 D �=2.

(c) For f .x/ WD e�x2=2, the Fourier transform of f is

F f .!/ D p
2� e�!2=2 :

(i) Compute the Fourier transform of g.x/ D f .x � ˛/,
where ˛ is a constant;

(ii) Compute the Fourier transform of h.x/ D ei!0xf .x/,
where !0 is a constant;

(iii) Plot the Fourier transform of f , the Fourier transform of g with ˛ D 1, and the
Fourier transform of h with !0 D �=2.

2. Recall Euler’s Formula: eit D cos.t/ C i sin.t/ for every real number t.

(a) Prove that cos.ax/ D �
e iax C e �iax� =2 for all real numbers a and x.

(b) Prove that the function G.x/ D e iax has period 2�=a.

(c) Explain, based on parts (a) and (b), why the Fourier transform of f .x/ D cos.ax/

consists of two impulses, located at the values ! D ˙a corresponding to the

frequencies ˙ a

2�
.

3. With the assumption that limx!˙1 f .x/ e�i!x D 0 for all !, show that

F.f 0 /.!/ D i! F f .!/ for all !:
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4. Again using the fact that F.!/ D 2

1 C ! 2
is the Fourier transform of f .x/ D e �jxj,

compute the inverse Fourier transform of

H.!/ D 1

1 C B2.! � !0/ 2
;

where B and !0 are (real) constants. (Such a function H is called a Lorentzian.)

5. A common type of signal is a decaying wave. Compute the Fourier transforms of the
following two decaying waves. (Assume that � > 0 in both cases.)

(a) (two-way decaying wave) f .x/ D e ��jxj cos.!0x/;

(b) (one-way decaying wave) g.x/ D
(

e ��x cos.!0x/ if x � 0,
0 if x < 0.

6. Provide a proof of the integral formula (5.15): For a 2 R,

Z 1

�1
f .x/ı.x � a/ dx D f .a/: (5.33)

7. Show that the inverse Fourier transform of an even function is a real-valued function
while the inverse Fourier transform of an odd function is purely imaginary (has real part
equal to 0).

8. Let f be absolutely integrable on the real line and piecewise continuous with a point of
discontinuity at ˛. In particular, the one-sided limits limx!˛� f .x/ and limx!˛C f .x/

both exist. Prove that

F�1.F f /.˛/ D .1=2/

�
lim

x!˛�
f .x/ C lim

x!˛C
f .x/

�
:
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Two Big Theorems

The ideas discussed in this chapter involve interactions between three transforms —
the Radon transform, the Fourier transform, and the back-projection transform. Each
of these transforms is defined in terms of improper integrals on infinite intervals. This
raises the somewhat technical matter of determining which functions may appropriately be
considered, an issue that is addressed in Appendix A. For the time being, we assume that any
function being considered here meets the requirements. For those functions that arise in the
practical world of medical imaging this is certainly the case.

6.1 The central slice theorem

The interaction between the Fourier transform and the Radon transform is expressed in an
equation known as the central slice theorem (also called the central projection theorem).

In this presentation, the symbols F and F2 are used to denote the 1- and 2-dimensional
Fourier transforms, respectively. The Radon transform is denoted by R. The function f ,
representing, say, an X-ray attenuation coefficient, is a function of 2-dimensional Cartesian
coordinates.

Theorem 6.1. Central slice theorem. For any suitable function f defined in the plane and
all real numbers S and � ,

F2f .S cos.�/; S sin.�// D F .Rf / .S; �/: (6.1)

Proof. Given f defined in the plane and real numbers S and � , the definition of the 2-
dimensional Fourier transform gives

F2f .S cos.�/; S sin.�// D
Z 1

�1

Z 1

�1
f .x; y/ e�iS.x cos.�/Cy sin.�// dx dy: (6.2)

© Springer International Publishing Switzerland 2015
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Now, instead of integrating separately over �1 < x < 1 and �1 < y < 1, we can
reorganize the points in the xy-plane according to the value of x cos.�/Cy sin.�/. Specifically,
for each real number t, gather together all of the points .x; y/ in the plane for which x cos.�/C
y sin.�/ D t. This is exactly the line `t; � ! From our earlier analysis, we know that, for each
point .x; y/ on `t; � , the real number s D �x sin.�/Cy cos.�/ satisfies x D t cos.�/� s sin.�/

and y D t sin.�/ C s cos.�/. Moreover, the matrix

"
@x=@t @x=@s
@y=@t @y=@s

#
has determinant 1, so that

ds dt D dx dy when the change of variables is put in place. With these changes, the right-hand
side of (6.2) becomes

Z 1

�1

Z 1

�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// e�iSt ds dt: (6.3)

The factor e�iSt in the integrand of (6.3) does not depend on s, so it may be factored out of
the inner integral. Thus, (6.3) becomes

Z 1

�1

�Z 1

�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds

�
e�iSt dt: (6.4)

The inner integral in (6.4) is exactly the definition of Rf .t; �/, the Radon transform of the
function f evaluated at the point .t; �/. That is, (6.4) is the same as

Z 1

�1
.Rf .t; �/ / e�iSt dt: (6.5)

Finally, the integral (6.5) is the definition of the Fourier transform of Rf evaluated at .S; �/.
That is, (6.5) is equal to

F .Rf / .S; �/: (6.6)

We have established, as we set out to do, the equality

F2f .S cos.�/; S sin.�// D F .Rf / .S; �/: (6.7)

ut

6.2 Filtered back projection

The back projection served as a first attempt at inverting the Radon transform and recovering
the X-ray attenuation-coefficient function. The result was not the original function but a
smoothed-out version of it. The next theorem, called the filtered back-projection formula,
shows how to correct for the smoothing effect and recover the original function.
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Theorem 6.2. The filtered back-projection formula. For a suitable function f defined in
the plane and real numbers x and y,

f .x; y/ D 1

2
B ˚F�1 Œ jSjF .Rf / .S; �/�

�
.x; y/: (6.8)

Proof. The (2-dimensional) Fourier transform and its inverse transform are just that —
inverses. Hence, for any suitable function f and any point .x; y/ in the plane, we get

f .x; y/ D F�1
2 F2f .x; y/: (6.9)

Applying the definition of the inverse 2-dimensional Fourier transform, the right-hand side
of (6.9) becomes

1

4�2

Z 1

�1

Z 1

�1
F2f .X; Y/ eCi.xXCyY/ dX dY : (6.10)

Now change variables from Cartesian coordinates .X; Y/ to polar coordinates .S; �/ , where
X D S cos.�/ and Y D S sin.�/ . Rather than use the usual intervals 0 � S < 1 and
0 � � � 2� , however, allow S to be any real number and restrict � to 0 � � � � . With
this variation, we get dX dY D jSj dS d� (rather than S dS d� ). With these changes, (6.10)
becomes

1

4�2

Z �

0

Z 1

�1
F2f .S cos.�/; S sin.�// eCiS.x cos.�/Cy sin.�// jSj dS d� : (6.11)

The factor F2f .S cos.�/; S sin.�// in the integrand of (6.11) is, according to the central slice
theorem (Theorem 6.1), the same as F .Rf / .S; �/. Thus, (6.11) is the same as

1

4�2

Z �

0

Z 1

�1
F .Rf / .S; �/ eCiS.x cos.�/Cy sin.�// jSj dS d�: (6.12)

The inner integral (with respect to S) in (6.12) is, by definition, 2� times the inverse
Fourier transform of the function jSjF .Rf / .S; �/ evaluated at the point .x cos.�/ C
y sin.�/; �/. That is, (6.12) is the same as

1

2�

Z �

0
F�1 ŒjSjF .Rf / .S; �/� .x cos.�/ C y sin.�/; �/ d� : (6.13)

Finally, the integral in (6.13) is the one used in the back projection of the (admittedly
somewhat elaborate) function F�1 ŒjSjF .Rf / .S; �/�. Hence, (6.13) is equal to

1

2
B ˚F�1 ŒjSjF .Rf / .S; �/�

�
.x; y/: (6.14)



74 6 Two Big Theorems

We have successfully established the desired formula

f .x; y/ D 1

2
B ˚F�1 Œ jSjF .Rf / .S; �/�

�
.x; y/: (6.15)

ut
Without the factor of jSj in the formula, the Fourier transform and its inverse would

cancel out and the result would be simply the back projection of the Radon transform of
f , which we know does not lead to recovery of f . Thus, the essential element in the formula
is to multiply the Fourier transform of Rf .S; �/ by the absolute-value function jSj before
the inverse Fourier transform is applied. In the language of signal processing, we say that
the Fourier transform of Rf is filtered by multiplication by jSj. That is why the formula is
called the filtered back-projection formula. We will discuss filters in greater detail in the next
chapter.

The filtered back-projection formula is the fundamental basis for image reconstruction.
However, it assumes that the values of Rf .S; �/ are known for all possible lines `S; � .
In practice, of course, this is not the case. Only a finite number of X-ray samples are taken
and we must approximate an image from the resulting data. Indeed, for any finite set of
X-rays that make up a scan, there will be so-called ghosts: nonzero attenuation coefficient
functions whose Radon transforms vanish on all lines in the scan. For instance, try to imagine
a function that is nonzero only in the gaps between the lines in Figure 1.2! See [36] for more
about ghosts.

Soon, we will turn our attention to the practical implementation of the filtered back-
projection formula. But first, let us look at a different formula for recovering f that was
presented by Radon in 1917 ([43]).

6.3 The Hilbert transform

A property of the Fourier transform that was addressed in Chapter 5, in Exercise 3, concerns
the interaction of the Fourier transform with the derivative of a function. To wit,

F
�

df

dx

�
.!/ D i ! F.f /.!/: (6.16)

Applied to the Radon transform, (6.16) yields

F
�

@.Rf /.t; �/

@t

�
.S; �/ D i SF.Rf /.S; �/: (6.17)

Now, jSj D S � sgn.S/, where

sgn.S/ D
8<
:

1 if S > 0,
0 if S D 0,

�1 if S < 0.
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Thus, from (6.17),

i � sgn.S/ � F
�

@.Rf /.t; �/

@t

�
.S; �/ D �jSjF.Rf /.S; �/: (6.18)

It now follows from Theorem 6.2, the filtered back-projection formula, that

f .x; y/ D �1

2
B


F�1

�
i � sgn.S/ � F

�
@.Rf /.t; �/

@t

�
.S; �/

	�
.x; y/: (6.19)

That is quite a pile of symbols, so, historically, it has been simplified by defining a new
transform, called the Hilbert transform, named for David Hilbert (1862–1943).

Definition 6.3. For a suitable function g defined on the real line, the Hilbert transform of
g , denoted by Hg , is the function whose Fourier transform is equal to i � sgn � Fg . That is,
for each real number t , we define

Hg.t/ D F�1 Œ i � sgn.!/ � Fg.!/ � .t/ : (6.20)

With this definition, (6.19) simplifies to the formula

f .x; y/ D �1

2
B
�
H
�

@.Rf /.t; �/

@t

�
.S; �/

	
.x; y/: (6.21)

This is Radon’s original inversion formula, though expressed here in contemporary notation.
(See [43], or the English translation in [15].)

6.4 Exercises

1. Provide the logical explanation for each step in the proof of Theorem 6.1, the central
slice theorem. (Note: The symbols F and F2 are used to denote the 1- and 2-dimensional
Fourier transforms, respectively. The Radon transform is denoted by R. In this problem, f
is a function of 2-dimensional Cartesian coordinates, and .S cos.�/; S sin.�// is a typical
point in 2-dimensional Cartesian space.)

F2f .S cos.�/; S sin.�// D
Z 1

�1

Z 1

�1
f .x; y/ e�iS.x cos.�/Cy sin.�// dx dy (6.22)

D
Z 1

�1

Z 1

�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// e�iSt ds dt (6.23)
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D
Z 1

�1

�Z 1

�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds

�
e�iSt dt (6.24)

D
Z 1

�1
.Rf .t; �/ / e�iSt dt (6.25)

D F .Rf / .S; �/: (6.26)

2. Provide a proof of the central slice theorem, Theorem 6.1, that reverses the order of the
steps in the proof presented above. That is, start with the expression F .Rf / .S; �/ and
end with F2f .S cos.�/; S sin.�//.

3. Provide the logical explanation for each step in the derivation of Theorem 6.2, the filtered
back-projection formula. (Note: The symbols F and F2 are used to denote the 1- and
2-dimensional Fourier transforms, respectively. The Radon transform is denoted by R
and the back projection by B. In this problem, f is a function of 2-dimensional Cartesian
coordinates and .x; y/ is a typical point in the Cartesian plane.)

f .x; y/ D F�1
2 F2f .x; y/ (6.27)

D 1

4�2

Z 1

�1

Z 1

�1
F2f .X; Y/ eCi.xXCyY/ dX dY (6.28)

D 1

4�2

Z �

0

Z 1

�1
F2f .S cos.�/; S sin.�// eCiS.x cos.�/Cy sin.�// jSj dS d� (6.29)

D 1

4�2

Z �

0

Z 1

�1
F .Rf / .S; �/ eCiS.x cos.�/Cy sin.�// jSj dS d� (6.30)

D 1

2�

Z �

0
F�1 ŒjSjF .Rf / .S; �/� .x cos.�/ C y sin.�/; �/ d� (6.31)

D 1

2
B ˚F�1 ŒjSjF .Rf / .S; �/�

�
.x; y/ : (6.32)
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Filters and Convolution

7.1 Introduction

Of constant concern in the analysis of signals is the presence of noise, a term which
here means more or less any effect that corrupts a signal. This corruption may arise
from background radiation, stray signals that interfere with the main signal, errors in
the measurement of the actual signal, or what have you. In order to remove the effects of
noise and form a clearer picture of the actual signal, a filter is applied.

For a first example of a filter, consider that the noise present in a signal is often random.
That means that the average amount of noise over time should be 0. Consider also that noise
often has a high frequency, so the graph of the noise signal is fuzzy and jaggedy. That means
that the amount of noise should average out to 0 over a fairly short time interval. So, let
T > 0 be a positive real number and let f represent a noisy signal. For each fixed value of x,
the average value of f over the interval x � T � t � x C T is given by

fave.x/ D 1

2T

Z xCT

tDx�T
f .t/ dt: (7.1)

The function fave that has just been defined represents a filtered version of the original
signal f . For an appropriate value of T , the noise should average out to 0 over the interval, so
fave would be close to the noise-free signal that we are trying to recover. If the value of T is
too large, then some interesting features of the true signal may get smoothed out too much.
If the choice of T is too small, then the time interval may be too short for the randomized
noise to average out to 0.

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-22665-1_7) contains supplementary material, which is available to authorized users.
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A deeper analysis of (7.1) suggests that we consider the function � D uT=.2T/ , where

uT .t/ D
(

1 if �T � t � T ,
0 if jtj > T .

(7.2)

Notice that

Z 1

�1
�.t/ dt D 1

2T
�
Z T

�T
uT.t/ dt D 1:

Also, for each fixed value of x, we get

�.x � t/ D
(

1
2T if x � T � t � x C T ,
0 otherwise.

(7.3)

Hence, for any given function f and any fixed value of x, we get

f .t/ �.x � t/ D
(

1
2T f .t/ if x � T � t � x C T ,

0 otherwise,
(7.4)

from which it follows that the integral in (7.1) is the same as the integral

fave.x/ D
Z 1

tD�1
f .t/ �.x � t/ dt: (7.5)

Computationally, the function fave represents a moving average of the value of f over
intervals of width 2T . This technique is used for the analysis of all sorts of signals — radio,
electrical, microwave, audio — and also for things we might not think of as being signals,
like long-term behavior of stock market prices.

Graphically, the graph of �.x � t/ as a function of t is obtained by flipping the graph of
� over from right to left and then sliding this flipped graph along the t-axis until it is centered
at x instead of at 0 . This reflected-and-translated version of � is then superimposed on the
graph of f , and the area under the graph of the resulting product is computed. To generate the
graph of fave , we reflect the graph of � and then slide the reflected graph across the graph
of f , stopping at each x value to compute the area underneath the product where the graphs
overlap.

Example 7.1. Consider a simple square wave:

f .t/ D ua.t/ D
(

1 if jtj � a,
0 if jtj > a.

Take � D uT=.2T/ as above. Let’s also assume that a � T .
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For any given value of x , the product f .t/ � �.x � t/ will vanish at values of t outside the
intersection of the intervals x � T � t � x C T and �a � t � a . The value of the integralR1

tD�1 f .t/ � �.x � t/ dt will be equal to the length of this overlap multiplied by 1=.2T/.
There are three sets of values of x to consider. First, if jxj > T C a , then it is impossible

to have both jtj � a and jx � tj � T . So f .t/ � �.x � t/ D 0 for all t in this case.
Next, for x satisfying jxj � a � T , we have both �a � x � T and x C T � a. Hence,
f .t/ � �.x � t/ D 1=.2T/ whenever x � T � t � x C T; therefore,

Z 1

tD�1
f .t/ � �.x � t/ dt D

Z xCT

tDx�T

�
1

2T

�
dt D 1 :

Finally, consider x such that a�T � jxj � aCT . In this case, the intersection of the intervals
Œx � T; x C T� and Œ�a; a� is either the interval Œx � T; a� or the interval Œ�a; x C T� ,
depending on whether x is positive or negative, respectively. In either event, this intersection
is an interval of width a C T � jxj . Hence, for such x , we get

Z 1

tD�1
f .t/ � �.x � t/ dt D 1

2T
� .a C T � jxj/ :

Combining these cases, we have shown that the filtered function fave , as in (7.5), is
given by

fave.x/ D
8<
:

1 if jxj � a � T ,
1

2T � .a C T � jxj/ if a � T � jxj � a C T ,
0 if jxj > a C T .

(7.6)

Figure 7.1 shows an example of this. We see that, where the graph of f is a box (square
wave) on the interval Œ�a; a� , the graph of fave has been spread out over the interval Œ�a �
T; a C T�. The sides of the graph of fave are no longer vertical but sloped, with slopes

−0.5 0.0 0.5

0.
0

0.
5

1.
0

Fig. 7.1. The convolution of two boxes, in this case u0:5 and u0:15, has the shape of a truncated tent. (If the
boxes have the same width, then the convolution will be a tent.)
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˙1=.2T/. Instead of a signal that starts and ends abruptly, as with the box, the smoothed-out
signal fades in and fades out more gradually. In the case where a D T , the box actually
becomes a tent. Perhaps we can visualize filling a rectangular box with dry sand. When the
box is turned upside down and lifted away, the pile of sand will lose its box shape as the
edges collapse. In the extreme case, the pile of sand will collapse into a cone.

7.2 Convolution

When some other function g is used in place of uT=.2T/ in the integral in (7.5), then the
resulting function is not a simple moving average of the value of f over successive intervals.
But we do get a modified version of f that has been “filtered” in a way that is determined by
the function g. We make the following formal definition.

Definition 7.2. Given two functions f and g (defined and integrable on the real line), the
convolution of f and g is denoted by f � g and defined by

.f � g/.x/ WD
Z 1

tD�1
f .t/ g.x � t/ dt for x 2 R: (7.7)

For instance, the function fave in (7.5) is the same as the convolution f � � , where � D
uT=.2T/ . Graphically, the graph of f �g can be obtained by reflecting the graph of g across
the y-axis, then sliding the reflected graph across the graph of f , stopping at each x to
compute the integral of the product where the two graphs overlap.

Example 7.3. The formula for the convolution ua � .uT=.2T// is given in (7.6).

Example 7.4. For the tent function
V

.t/ D
(

1 � jtj if �1 � t � 1,
0 if jtj > 1,

the convolution
V�V is piecewise cubic on the interval �2 � x � 2 and vanishes outside that interval.

In general, it is not so easy to compute the convolution of two functions by hand. The
most manageable situation occurs if one of the functions is a box function k � uT . Another
helpful observation is that, if f vanishes outside the interval Œa; b� and g vanishes outside
the interval Œc; d� , then the convolution f � g vanishes outside the interval Œa C c; b C d� .
The proof of this is left as an exercise.

7.2.1 Some properties of convolution

Commutativity. For suitable functions f and g, we get

f � g D g � f :
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Proof. For each real number x , by definition

.f � g/.x/ D
Z 1

tD�1
f .t/ g.x � t/ dt:

Make a change of variables with u D x � t . Then du D �dt and t D .x � u/ . Also, when
t D �1 , then u D 1 and, when t D 1 , then u D �1 . (Remember that x is fixed
throughout this process). Thus, the previous integral becomes

Z �1

uD1
f .x � u/ g.u/ .�du/

which is the same as the integral

Z 1

uD�1
g.u/ f .x � u/ du:

This last integral is exactly the definition of .g � f /.x/ . Thus, f � g D g � f as claimed. ut
Linearity. For suitable functions f , g1 , and g2 , and for scalars ˛ and ˇ , we get

f � .˛g1 C ˇg2/ D ˛.f � g1/ C ˇ.f � g2/:

This property follows immediately from the fact that integration is linear. Combining this
with the commutativity result, we also get that

.˛g1 C ˇg2/ � f D ˛.g1 � f / C ˇ.g2 � f /:

Shifting. Given a function f and a real number a , let fa denote the shifted (translated)
function

fa.x/ D f .x � a/ :

Then, for suitable g , we get

.g � fa/.x/ D
Z 1

tD�1
g.t/ fa.x � t/ dt

D
Z 1

tD�1
g.t/ f .x � t � a/ dt

D
Z 1

tD�1
g.t/ f ..x � a/ � t/ dt

D .g � f /.x � a/

D .g � f /a.x/ :
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Similarly,

.ga � f /.x/ D
Z 1

tD�1
ga.t/ f .x � t/ dt

D
Z 1

tD�1
g.t � a/ f .x � t/ dt

D
Z 1

tD�1
g.t � a/ f ..x � a/ � .t � a// dt

D
Z 1

sD�1
g.s/ f ..x � a/ � s/ ds where s D t � a

D .g � f /.x � a/

D .g � f /a.x/ :

Convolution with ı . The convolution of an arbitrary function with the Dirac delta function
yields an interesting result — it isolates the value of the function at a specific point.
Specifically, for each real number x , compute

.f � ı/.x/ D
Z 1

tD�1
f .t/ ı.x � t/ dt D f .x/ ;

where we have used the facts that ı.x � t/ D 0 unless t D x and that
R1

�1 ı.s/ ds D 1 . In
other words, convolution with ı acts like the identity map:

.f � ı/.x/ D f .x/ for all x I f � ı D f : (7.8)

7.3 Filter resolution

The convolution of a function f with the ı function reproduces f exactly; so this filter has
perfect resolution. More generally, let � be a nonnegative function with a single maximum
value M attained at x D 0. Suppose also that � is increasing for x < 0 and decreasing for
x > 0. (For example, � could be a Gaussian or a tent.) Let the numbers x1 and x2 satisfy
x1 < 0 < x2 and �.x1/ D �.x2/ D M=2, half the maximum value of �. The distance
.x2 � x1/ is called the full width half maximum of the function �, denoted FWHM.�/. For the
filter of convolution with �, the resolution of the filter is defined to be equal to FWHM.�/.

The idea is that a function � having a smaller FWHM is pointier or spikier than a function
with a larger FWHM and, hence, looks more like the ı function. So the resolution is better
if the filter function � has a smaller FWHM.
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Here is a graphical way to see how the resolution of a filter is related to the FWHM of
the filter function. Suppose a signal S consists of two impulses, two instantaneous blips,
separated by a positive distance of a . Using the graphical approach to convolution, where
we slide the reflected graph of the filter function � across the graph of S , we see that, if
a > FWHM.�/ , then the sliding copy of � will slide past the first impulse before it really
reaches the second one. Hence, the graph of .� � S/ will have two distinct peaks, like S .
But if a is less than FWHM.�/ , then the sliding copy of � will overlap both impulses at
once, so the two peaks will start to blend together. The detail in the original signal is getting
blurry. For a sufficiently small, the graph of .� � S/ will have only one peak, so the detail in
S will have been lost completely. Overall, we see that the smallest distance between distinct
features (the spikes) in the signal S that will still be distinct in the filtered signal .� � S/ is
a D FWHM.�/.

For a computational perspective, take a > 0 and let S be the signal S.x/ D ı.x/Cı.x�a/.
Suppose also that the filter function � is symmetric about x D 0 and achieves its maximum
value M there. Thus, � attains its half-maximum M=2 when x D ˙.1=2/�FWHM.�/. Let’s
also assume that the graph of � tapers off fairly quickly away from 0, meaning that �.x/ � 0
when jxj � FWHM.�/. With this setup, the convolution is ��S.x/ D �.x/C�.x�a/, the sum
of two copies of �, one of which has been shifted to the right by a units. (Here we have used
the shifting property of convolution together with formula (7.8) above.) So what happens if
a D FWHM.�/? Well, then we get � � S.a=2/ D �.a=2/ C �.�a=2/ D M=2 C M=2 D M.
We also get � �S.0/ D M C�.�a/ and � �S.a/ D �.a/CM, both of which are close to M
in value, given our assumptions about the graph of � . In other words, with a D FWHM.�/,
the filtered signal .� � S/ will be near M in value on the entire interval 0 � x � a. The two
distinct spikes in S will get smeared or blurred across an interval. If a < FWHM.�/ , the
blurring gets even worse. The detail in the signal has been lost! On the other hand, suppose
a D 2 � FWHM.�/. Then � will achieve its half-maximum value of M=2 at ˙a=4. So
� � S.0/ D �.0/ C �.�a/ � M and � � S.a/ D �.a/ C �.0/ � M. The filtered signal will
have two distinct peaks, at or near x D 0 and x D a , with a valley in between, at x D a=2.
The original detail has been preserved.

Thus, the choice of the filter function has a direct effect on the resolution of the filtered
signal.

Example 7.5. FWHM of a box. The box function

uT.x/ D
(

1 if jxj � T ,
0 if jxj > T ,

doesn’t satisfy the condition specified above that the filter should attain its maximum at a
single point. Nonetheless, these functions make good filters in applications. So we’ll cheat
and declare the FWHM of a box to be the width of the box; that is, FWHM.uT/ D 2T .
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Example 7.6. FWHM of a tent. For T > 0, take

�T.x/ D
(

1
T .T � jxj/ if jxj � T ,

0 if jxj > T .

The graph of � is a tent with a maximum height of M D 1 , attained at x D 0. Since
�.˙T=2/ D 1=2, it follows that FWHM.�/ D T .

Example 7.7. FWHM of a Gaussian. For ! real, let F.!/ D e�B!2
, where B is a positive

constant. The maximum value of F is F.0/ D 1 . Thus, half maximum is achieved when
e�B!2 D 1=2 , or when ! D ˙pln.2/=B . Therefore,

FWHM D 2
p

ln.2/=B

for this function.

Example 7.8. FWHM of a Lorentzian. A signal of the form

g.!/ D T2

1 C 4�2T2
2.! � !0/2

;

where T2 is a positive constant and the signal is centered around the angular frequency !0 ,
is called a Lorentzian. These signals are important in magnetic resonance imaging (MRI), in
which context the constant T2 is one of the so-called relaxation constants. We leave it as an
exercise to show that the FWHM of this Lorentzian is 1=.�T2/.

7.4 Convolution and the Fourier transform

For suitable functions f and g , the product of their respective Fourier transforms, evaluated
at ! , is

F f .!/ � Fg.!/ D
Z 1

xD�1
f .x/ e�i!x dx �

Z 1

yD�1
g.y/ e�i!y dy: (7.9)

Keep in mind that x and y are just “dummy” variables here. Now, introduce a new variable
s such that, for each fixed value of x , we have y D s � x . Thus dy D ds , and hence the
right-hand side of (7.9) becomes

Z 1

xD�1
f .x/ e�i!x dx �

Z 1

sD�1
g.s � x/ e�i!.s�x/ ds: (7.10)
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The first integral in (7.10) is independent of s, so we may move it inside the other integral.
Since e�i!x � e�i!.s�x/ D e�i!s, this yields

Z 1

sD�1

�Z 1

xD�1
f .x/ g.s � x/ dx

�
e�i!s ds: (7.11)

Notice now that the inner integral in (7.11) is exactly .f � g/.s/ , while the outer integral is
the Fourier transform of the inner integral, evaluated at ! . That is, (7.11) is the same as

Z 1

sD�1
.f � g/.s/ e�i!s ds D F.f � g/.!/ : (7.12)

Thus, we have established the following property.

Theorem 7.9. For suitable functions f and g ,

F f � Fg D F.f � g/: (7.13)

So, we see that the Fourier transform of a convolution is just the product of the individual
transforms. This relationship will play a significant role in what is to come. We might wonder
as well what happens if we apply the Fourier transform to a product. The result is almost as
clean as in the previous theorem, except for a factor of 1=2� that creeps in.

Theorem 7.10. For suitable functions f and g ,

F.f � g/ D 1

2�
.F f / � .Fg/ : (7.14)

Proof. Given f and g , for simplicity denote F f and Fg by F and G, respectively. The
Fourier transform of the product f � g , evaluated at an arbitrary real number ! , is

F.f � g/.!/

D
Z 1

xD�1
f .x/g.x/ e�i!x dx

D 1

4�2
�
Z 1

xD�1

�Z 1

D�1
F./eCix d

��Z 1

�D�1
G.�/eCi�x d�

�
e�i!x dx

D 1

4�2
�
Z 1

D�1
F./

�Z 1

�D�1
G.�/

�Z 1

xD�1
eCi.C��!/x dx

�
d�

�
d:

Observe that the inner integral,
R1

xD�1 eCi.C��!/x dx , represents .2�/ times the inverse
Fourier transform of the constant function 1 evaluated at . C � � !/. But F�1.1/ D ı, so,

Z 1

xD�1
eCi.C��!/x dx D .2�/ � ı. C � � !/:
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Moreover, ı. C � � !/ D 0 except when � D ! � . Hence, from (5.13),

Z 1

�D�1
G.�/

�Z 1

xD�1
eCi.C��!/x dx

�
d�

D 2�

Z 1

�D�1
G.�/ ı. C � � !/ d� D 2� G.! � /:

Continuing from where we left off, we now see that

F.f � g/.!/

D 1

4�2
�
Z 1

D�1
F./

�Z 1

�D�1
G.�/

�Z 1

xD�1
eCi.C��!/x dx

�
d�

�
d

D 1

2�
�
Z 1

D�1
F./ G.! � / d

D 1

2�
� .F � G/ .!/ ;

which establishes the claim. ut

7.5 The Rayleigh–Plancherel theorem

Theorem 7.11. Rayleigh–Plancherel. Let f be an integrable function. If either the function
f or its Fourier transform F f is square-integrable on the real line, then so is the other and

Z 1

�1
jf .x/j2 dx D 1

2�

Z 1

�1
jF f .!/j2 d!: (7.15)

Before looking at a proof of this statement, note that both integrands are nonnegative
functions even if f or F f has complex number values. The function jF f .!/j2 is called
the power spectrum of f , and in some physical applications actually does represent the total
power (measured in watts, for example) of a signal at a given frequency. In the same sort of
setting, the integral on the right in (7.15) represents a measure of the total amount of power
present in the system.

Computationally, the value of the theorem is that one of the integrals might be compara-
tively easy to evaluate while the other, on its own, may be difficult.

Example 7.12. Take

f .x/ D
(

1 if �1 � x � 1,
0 if jxj > 1.
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Then
Z 1

�1
jf .x/j2 dx D

Z 1

�1
1 dx D 2:

We have seen before that F f .!/ D 2
sin.!/

!
. Hence, by (7.15),

Z 1

�1
sin2.!/

!2
d! D � :

Rayleigh established this result in 1889 and used it in his analysis of blackbody radiation.
Where Rayleigh tacitly assumed that both integrals would be finite, Plancherel proved, in
1910, that the existence of one or the other integral is indeed the only hypothesis required.
In other words, the relation (7.15) holds whenever either integral exists.

Now for the proof.

Proof of Theorem 7.11. Let f be an integrable function and suppose that either f or F f is
square-integrable. We have

Z 1

�1
jf .x/j2 dx D

Z 1

�1
f .x/f .x/ dx

D
Z 1

�1
f .x/f .x/ e�i.0/x dx

D F.f � f /.0/

D 1

2�


.F f / � .F f /

�
.0/ by (7.14)

D 1

2�

Z 1

�1
F f .!/F f .0 � !/ d!

D 1

2�

Z 1

�1
F f .!/F f .!/ d! by (5.10)

D 1

2�

Z 1

�1
jF f .!/j2 d!:

Hence, provided one of these integrals is finite, then so is the other and the desired relation
holds. ut

7.6 Convolution in 2-dimensional space

For two functions whose inputs are polar coordinates in the plane, the convolution is defined
in terms of the radial variable only. That is, for f .t; �/ and g.t; �/, we define
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.f � g/.t; �/ D
Z 1

sD�1
f .s; �/ � g.t � s; �/ ds: (7.16)

For two functions whose inputs are Cartesian coordinates in the plane, the convolution
incorporates both variables. That is, for F.x; y/ and G.x; y/, we define

.F � G/.x; y/ D
Z 1

tD�1

Z 1

sD�1
F.s; t/ � G.x � s; y � t/ ds dt: (7.17)

As in one dimension, convolution is commutative: f � g D g � f and F � G D G � F.

7.7 Convolution, B, R, and ı

Given functions g.t; �/ (in polar coordinates) and f .x; y/ (in Cartesian coordinates), recall
that the back projection and Radon transform are defined by

Bg.x; y/ D 1

�

Z �

�D0
g.x cos.�/ C y sin.�/; �/ d� (7.18)

and

Rf .t; �/ D
Z 1

sD�1
f .t cos.�/ � s sin.�/; t sin.�/ C s cos.�// ds: (7.19)

Proposition 7.13. (See [39], Theorem 1.3) For suitable functions g.t; �/ and f .x; y/, and
arbitrary real numbers X and Y, we have

.Bg � f /.X; Y/ D B.g � Rf /.X; Y/: (7.20)

Proof. From (7.17) and (7.18), we compute

.Bg � f /.X; Y/ D
Z 1

�1

Z 1

�1
Bg.X � x; Y � y/ � f .x; y/ dx dy

D 1

�

Z 1

�1

Z 1

�1

�Z �

0
g..X � x/ cos.�/ C .Y � y/ sin.�/; �/d�

	
f .x; y/dxdy:

Now substitute x D t cos.�/ � s sin.�/ and y D t sin.�/ C s cos.�/. Keeping in mind that
ds dt D dx dy and using (7.19), the preceding integral becomes

D 1

�

Z �

0

Z 1

�1
g.X cos.�/ C Y sin.�/ � t; �/ � Rf .t; �/ dt d�
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D 1

�

Z �

0
.g � Rf /.X cos.�/ C Y sin.�/; �/ d� by (7.16)

D B.g � Rf /.X; Y/ by (7.18):

This proves the claim. ut
We observed earlier that applying the back projection to the Radon transform of an

attenuation function resulted in a smoothing out of the attenuation function. We can now use
Proposition 7.13 to make this more concrete. Indeed, suppose we take g , in (7.20), to be the
2-dimensional Dirac ı function. Since ı � Rf D Rf , the right-hand side of the conclusion is
just B.Rf /, while the left-hand side is Bı � f . Thus, when we apply the back projection to the
Radon transform of a function, the effect is to smooth the function by taking its convolution
with the filter Bı. So now, of course, we’re curious to know what the back projection of the
ı function is!

To find the answer, look at the limit formulation in (5.32), and, for convenience, set

ha.r; �/ D
(

1
2a if �a � r � a,
0 if jrj > a.

For each point .x; y/ in the plane and each value of � , we know that the line `x cos.�/Cy sin.�/;�

passes through .x; y/. So, given a small positive value of a, we are interested in those values of
� for which jx cos.�/ C y sin.�/j � a. In Figure 7.2, we see that the angle labeled ˛ satisfies
sin.˛/ D a=

p
x2 C y2. Since a is small, the angle ˛ is also small and, so, ˛ � sin.˛/.

It follows that the interval of values of � that we want will have width 2˛ � 2a=
p

x2 C y2.
Thus,

Bha.x; y/ D 1

�

Z �

0
ha.x cos.�/ C y sin.�/; �/ d�

y

x

(x,y)

a

a

α α

Fig. 7.2. The set of � for which the line `x cos.�/Cy sin.�/;� / passes through .x; y/ has width 2˛.
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Fig. 7.3. Each figure shows cross sections of the graph of an attenuation-coefficient function (solid line)
with the back projection of its Radon transform (dashed line).

� 1

�
�
�

1

2a

�
� 2ap

x2 C y2

D 1

�
p

x2 C y2
:

Letting a ! 0C improves the approximations involved, so we conclude that

Bı.x; y/ D 1

�
p

x2 C y2
: (7.21)

Here is what we have now shown.

Corollary 7.14. For a suitable attenuation-coefficient function f ,

B.Rf / D 1

�

 
1p

x2 C y2

!
� f : (7.22)

Example with R 7.15. Figure 7.3 shows cross sections for several pairings of an attenuation-
coefficient function with the back projection of its Radon transform. The back projections
were computed as the convolution in (7.22). The smoothing effect is the same as what we
saw before, only now we have a precise way to quantify it.

The convolve procedure in R implements a discrete version of convolution that we
will discuss in Chapter 8. Moreover, this procedure does not “flip over” the second operand
and, so, computes the so-called cross correlation of two (discretized) functions. To get true
convolution, we need to reverse the list of values of the second function. Also, the value of
Bı has been modified slightly in the following example to avoid evaluation at 0.

#B(Rf) computed as convolution B(delta)*f
xval=(.01)*(-200:200)#list of x-coord
f1=1*(abs(xval)<=0.5)#vals of f1
Bdelta=1/(pi*abs(xval+.0025))#vals of B(delta)
f1.new=convolve(f1,rev(Bdelta),type="open")
plot(c(-2,2),c(0,1),type = "n",asp=1,xlab="",ylab="")
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lines(xval,fval,lwd=2)
lines(xval,f.new[201:601]/max(f.new[201:601]),lwd=2,lty=2)
## other functions
f2=(1-abs(xval))*(abs(xval)<=1)
f2.new=convolve(f2,rev(Bdelta),type="open")
f3=exp(-1*xval)*(xval>=0)
f3.new=convolve(f3,rev(Bdelta),type="open")

7.8 Low-pass filters

Let us return our attention to the filtered back-projection formula,

f .x; y/ D 1

2
B ˚F�1 Œ jSjF .Rf / .S; �/�

�
.x; y/ ; (7.23)

where f is some suitable function defined in the xy-plane.
Suppose there were a function �.t/ whose Fourier transform satisfied F�.S/ D jSj . That

is, suppose F� were equal to the absolute-value function. Then we would get

jSjF .Rf / .S; �/ D ŒF� � F .Rf /� .S; �/:

This is the product of two Fourier transforms, which we now know is equal to the Fourier
transform of the convolution of the two functions. So we would have

jSjF .Rf / .S; �/ D F .� � Rf / .S; �/:

Hence, we would have

F�1 Œ jSjF .Rf / .S; �/� D F�1 ŒF .� � Rf / .S; �/�

D .� � Rf / .t; �/:

Substituting this into (7.23), we would get

f .x; y/ D 1

2
B .� � Rf / .x; y/: (7.24)

Thus, reconstruction of f would require the convolution, or filtering, of Rf , the data from the
X-ray machine, with � followed by an application of the back projection to that. That doesn’t
sound so terrible, except that there is no such function �. The absolute-value function is not
the Fourier transform of any function.

So we might as well ignore all of the preceding discussion, right? Well, not so fast. The
filtered back-projection formula (7.23) gives a recipe for reconstructing f , but in practice
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the recipe has a problem. The function jSjF .Rf / .S; �/ in the formula is highly sensitive
to noise. The value of S represents a frequency that is present in a signal. So, if the Radon
transform Rf , representing the X-ray data, has a component at a high frequency, then that
component is magnified by the factor jSj . That means that noise present in the data gets
exaggerated, an effect which corrupts the reconstructed image. Thus, in practice, we don’t
really want to use the factor jSj anyway.

In place of jSj , we use a function that is close to the absolute-value function for S near
0 but that vanishes when the value of jSj is large. Such a function is called a low-pass
filter because the lower frequencies are not affected by its presence while higher frequencies,
including noise, get cut off. Also, in order to use the modification (7.24) of the filtered back-
projection formula, we want the function that replaces jSj to be the Fourier transform of
something. That is, we want to replace jSj with a function of the form A D F� , where A
is nonzero on some finite interval and zero outside that interval.

Definition 7.16. A function � whose Fourier transform is nonzero on some finite interval
and zero outside that interval is called a band-limited function.

So, using this terminology, we want to replace jSj in the filtered back-projection formula
by a low-pass filter that is the Fourier transform of a band-limited function. The price of doing
this is that the formula (7.24) is no longer exact, but gives only an approximation for f :

f .x; y/ � 1

2
B �F�1A � Rf

�
.x; y/: (7.25)

To design a low-pass filter to replace the absolute-value function, we typically use a
function of the form

A.!/ D j!j � F.!/ � uL.!/ ; (7.26)

for some number L > 0 . Thus, A.!/ vanishes for j!j > L and has the value j!j � F.!/

when j!j � L . Near the origin, the value of A should be close to the absolute value, so we
want F to be an even function for which F.0/ D 1 . Also, choosing A to be an even function
guarantees that � D F�1A is real-valued. In general, the function F � uL , by which j � j is
multiplied, is called the window function.

Example 7.17. Low-pass filters. Here are some of the low-pass filters most commonly used
in medical imaging. We will analyze them more closely in Section 8.3. Their graphs are
shown in Figure 7.4.

• The Ram–Lak filter:

A1.!/ D j!j � uL.!/ D
(

j!j if j!j � L,
0 if j!j > L,

(7.27)
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Ram−Lak
Shepp−Logan
Low−pass cosine

Fig. 7.4. The graphs of three popular low-pass filters are shown.

where L > 0 . This is simply a truncation of the absolute-value function to a finite interval.
It is the Fourier transform of a band-limited function. This filter was used by Bracewell
and Riddle [6, 8]) as well as by Ramachandran and Lakshminarayanan [44].

• The Shepp–Logan filter:

A3.!/ D j!j �
�

sin.�!=.2L//

�!=.2L/

�
� uL.!/

D
(

2L
�

� jsin.�!=.2L//j if j!j � L,
0 if j!j > L.

(7.28)

This filter was introduced by Shepp and Logan [49].
• The low-pass cosine filter:

A2.!/ D j!j � cos.�!=.2L// � uL.!/

D
(

j!j cos.�!=.2L// if j!j � L,
0 if j!j > L.

(7.29)

This filter is commonly used in signal analysis.

We conclude this chapter by looking at the general form of a band-limited function. So,
let f be band-limited and select a number L > 0 such that F f .!/ D 0 whenever j!j > L .
In particular, this means that there is some function G such that

F f .!/ D uL.!/ � G.!/ ;
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where, again, uL.!/ D 1 when j!j � L and uL.!/ D 0 when j!j > L . From
Example 5.16 and Theorem 5.12, we know that uL is the Fourier transform of the function
�.x/ D sin.Lx/=.� x/ . If we let g D F�1G , then we see that F f D F� � Fg , the product
of two Fourier transforms. Hence, from Theorem 7.9, it follows that F f D F.� � g/ and,
hence that f D � � g . This is therefore the general form that a band-limited function must
have: the convolution of the function � , for some value of L , with an integrable function g .

7.9 Exercises

1. Use a computer algebra system to compute and plot the convolutions of various pairs
of functions. (Note: It is perfectly reasonable to form the convolution of a function with
itself !)

2. In this exercise, let the filter function be u1=2 . (Recall that u 1
2
.x/ D 1 for �1=2 � x �

1=2 and u1=2.x/ D 0 when jxj > 1=2 .)

(a) For g.x/ D cos.x/ , compute .u1=2 � g/.x/ for x real.

(b) For h.x/ D sin.x/ , compute .u1=2 � h/.x/ for x real.

(c) For F.x/ D e�jxj , compute .u1=2 � F/.x/ for x real.

3. Suppose the function f vanishes outside the interval Œa; b� and the function g vanishes
outside the interval Œc; d� . Show that the convolution f � g vanishes outside the interval
Œa C c; b C d� .

4. Apply the inverse Fourier transform F�1 to both sides of (7.13) and (7.14) to provide
companion statements about the inverse Fourier transform of a convolution and of a
product.

5. Apply the Rayleigh-Plancherel Theorem 7.11 to the function f .x/ D e �jxj in order to
evaluate the integral

Z 1

�1
1�

1 C !2
�2 d! :

(Note: One can evaluate this integral by hand, but it’s much easier to evaluate the
companion integral in the Theorem!)

6. Show that, if f and g are suitable functions of two real variables, then

R.f � g/.t; �/ D .Rf � Rg/.t; �/ (7.30)

for all values of t and � . (Hint: This can be proven either as a consequence of the central
slice theorem (Theorem 6.1) or directly from the definitions, using (7.16) and (7.17).)

7. Set f .x; y/ D ı.x; y/ D ı.x/ � ı.y/ in either Proposition 7.20 or Exercise 6 above. What
does this suggest about the value of Rı.t; �/?
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8. (a) Compute the FWHM (full width half maximum) of the Lorentzian signal

g.!/ D T2

1 C 4�2T2
2.! � !0/2

;

where T2 is a constant (one of the relaxation constants related to magnetic resonance
imaging) and the signal is centered around the angular frequency !0 .

(b) Find a value for B so that the Gaussian signal

f .!/ D T2 e �B.!�!0/2

has the same FWHM as the Lorentzian signal in part (a).

(c) For several values of the relaxation constant T2, plot and compare the graphs of the
signals in parts (a) and (b).

9. In section 7.3 above, we said the following.

[T]he smallest distance between distinct features : : : in the signal S that will still be distinct in
the filtered signal .� � S/ is a D FWHM.�/.

(a) Experiment with this using a signal S made up of two narrow tent functions and
a filter � in the shape of a box function. Try a variety of widths for the box.
(As mentioned in the text, take FWHM to be the width of the box.) Convince yourself
that if the box is wide enough, then it can capture both tents at once when we slide it
along to form the convolution.

(b) Experiment some more with a signal S consisting of a few cycles of a cosine wave
and a filter � in the form of a tent. Are the crests of the original cosine wave still
distinct in the convolution?



8

Discrete Image Reconstruction

8.1 Introduction

We have seen that, when complete continuous X-ray data are available, then an attenuation-
coefficient function f .x; y/ can be reconstructed exactly using the filtered back-projection
formula, Theorem 6.2. To repeat,

f .x; y/ D 1

2
B ˚F�1 Œ jSjF .Rf / .S; �/�

�
.x; y/: (8.1)

In Chapter 7, section 7.8, we discussed the practice of replacing the absolute-value
function j � j in (8.1) with a low-pass filter A , obtained by multiplying the absolute value by
a window function that vanishes outside some finite interval. Then, in place of (8.1), we use
the approximation

f .x; y/ � 1

2
B �F�1A � Rf

�
.x; y/: (8.2)

The starting point in the implementation of (8.2) in the practical reconstruction of images
from X-ray data is that only a finite number of values of Rf .S; �/ are available in a real
study. This raises both questions of accuracy — How many values are needed in order to
generate a clinically useful image? — and problems of computation — What do the various
components of the formula (8.2) mean in a discrete setting? Also, as we shall see, one step
in the algorithm requires essentially that we fill in some missing values. This is done using a
process called interpolation that we will discuss later. Each different method of interpolation
has its advantages and disadvantages. And, of course, the choice of the low-pass filter affects
image quality. (See [45] and [48], from the early days of CT, for concise discussions of these
issues.)
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8.2 Sampling

The term sampling refers to the situation where the values of a function that presumably is
defined on the whole real line are known or are computed only at a discrete set of points. For
instance, we might know the values of the function at all points of the form k � � , where �

is called the sample spacing. The basic problem is to determine how many sampled values
are enough, or what value � should have, to form an accurate description of the function as
a whole.

For example, consider a string of sampled values ff .k/ D 1g , sampled at every integer
(so � D 1 ). These could be the values of the constant function f .x/ 	 1 , or of the periodic
function cos.2�x/ . If it is the latter, then we obviously would need more samples to be
certain.

Heuristically, we might think of a signal as consisting of a compilation of sine or cosine
waves of various frequencies and amplitudes. The narrowest bump in this compilation
constitutes the smallest feature that is present in the signal and corresponds to the wave that
has the shortest wavelength. The reciprocal of the shortest wavelength present in the signal is
the maximum frequency that is present in the Fourier transform of the signal. So this signal
is a band-limited function — its Fourier transform is zero outside a finite interval.

Now, suppose that f is a band-limited function for which F f .!/ D 0 whenever j!j > L.
By definition (see (4.7)), the Fourier series coefficients of F f are given by

Cn D
�

1

2L

� Z L

�L
F f .!/ e �i�n!=L d! ; (8.3)

where n is any integer. (Here, we are acting as if F f has been extended beyond the interval
Œ�L; L� to be periodic on the real line, with period 2L.) For each integer n, then,

.2�/ � f .�n=L/ D 2� � F�1.F f /.�n=L/

D
Z 1

�1
F f .!/ e i!�n=L d!

D
Z L

�L
F f .!/ e i!�n=L d! since f is band-limited

D .2L/ � C�n:

That is,

C�n D .�=L/ � f .�n=L/ for every integer n:

Assuming that F f is continuous, it follows from standard results of Fourier series that

F f .!/ D
1X

nD�1
C�n e �in�!=L D

��

L

�
�

1X
nD�1

f .�n=L/ e �in�!=L: (8.4)
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Finally, all of this means that, for every x, we have

f .x/ D F�1.F f /.x/

D
�

1

2�

� Z L

�L
F f .!/ e i!x dx

D
�

1

2�

� ��

L

� Z L

�L

" 1X
nD�1

f .�n=L/ e �in�!=L

#
e i!x dx from .8:4/

D
�

1

2L

� 1X
nD�1

�
f .�n=L/ �

Z L

�L
e i!.Lx�n�/=L d!

	

D
�

1

2L

� 1X
nD�1

f .�n=L/ � .2L/ �
�

sin.Lx � n�/

Lx � n�

�
.Ch: 4; Exer: 4/

D
1X

nD�1
f .�n=L/ �

�
sin.Lx � n�/

Lx � n�

�
:

Thus we see that, for a band-limited function f whose Fourier transform vanishes outside
the interval Œ�L; L�, the function f can be reconstructed exactly from the values f f .n�=L/ W
�1 < n < 1g. In other words, the appropriate sample spacing for the function f is � D
�=L. Since L represents the maximum value of j!j present in the Fourier transform F f ,
the value 2�=L represents the smallest wavelength present in the signal f . Therefore, the
optimal sample spacing is equal to half of the size of the smallest detail present in the signal.
This result is known as Nyquist’s theorem and the value � D �=L is called the Nyquist
distance.

To sum up, we have established the following.

Theorem 8.1. Nyquist’s theorem. If f is a square-integrable band-limited function such that
the Fourier transform F f .!/ D 0 whenever j!j > L, then, for every real number x,

f .x/ D
1X

nD�1
f .�n=L/ � sin.Lx � n�/

Lx � n�
: (8.5)

Nyquist’s theorem is also sometimes referred to as Shannon–Whittaker interpolation since
it asserts that any value of the function f can be interpolated from the values f f .n�=L/ g.

A heuristic approach to Nyquist’s theorem. As above, assume that the function f is band-
limited, with F f .!/ D 0 whenever j!j > L. We want to extend F f to be periodic on the
whole line, so we can take the period to be 2L , the length of the interval �L � ! � L.
Now, each of the functions ! 7! e �in�!=L , where n is an integer, has period 2L. From the
definition of the Fourier transform,
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F f .!/ D
Z 1

xD�1
f .x/ e�i!x dx: (8.6)

Approximate this integral using a Riemann sum with dx D �=L. That is, the Riemann sum
will use a partition of the line that includes all points of the form n�=L, where n is an integer.
This results in the approximation

F f .!/ �
��

L

�
�

1X
nD�1

f .n�=L/ e �in�!=L:

This approximates F f in a way that is periodic on the whole line with period 2L. Notice
that this is the same as (8.4) except for having “�” instead of “D.” In the proof above,
we appealed to results in the theory of Fourier series that assert that this approximation is
actually an equality. Without that knowledge, we instead substitute the approximation for
F f into the rest of the proof of Nyquist’s theorem and end up with the approximation

f .x/ �
1X

nD�1
f .�n=L/ � sin.Lx � n�/

Lx � n�
: (8.7)

Nyquist’s theorem, which builds on the results concerning Fourier series, asserts that this is
in fact an equality.

Oversampling. The interpolation formula (8.5) is an infinite series. In practice, we would
only use a partial sum. However, the series (8.5) may converge fairly slowly because the
expression sin.Lx � n�/=.Lx � n�/ is on the order of .1=n/ for large values of n and the
harmonic series

P
1=n diverges. That means that a partial sum might require a large number

of terms in order to achieve a good approximation to f .x/.
To address this difficulty, notice that, if F f .!/ D 0 whenever j!j > L, and if R > L, then

F f .!/ D 0 whenever j!j > R as well. Thus, we can use Shannon–Whittaker interpolation
on the interval Œ�R; R� instead of Œ�L; L�. This requires that we sample the function f at
the Nyquist distance �=R , instead of �=L. Since �=R < �=L, this results in what is called
oversampling of the function f . So there is a computational price to pay for oversampling,
but the improvement in the results, when using a partial sum to approximate f .x/, may be
worth that price.

8.3 Discrete low-pass filters

The image reconstruction formula (8.2) involves the inverse Fourier transform F�1A for
the low-pass filter A . In practice, this, too, will be sampled, just like the Radon transform.
Nyquist’s theorem, Theorem 8.1, tells us how many sampled values are needed to get an
accurate representation of F�1A . Here, we investigate how this works for two particular
low-pass filters.
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Example 8.2. The Shepp–Logan filter, introduced in (7.28), is defined by

A.!/ D j!j �
�

sin.�!=.2L//

�!=.2L/

�
� uL.!/

D
(

2L
�

� jsin.�!=.2L//j if j!j � L,
0 if j!j > L,

(8.8)

for some choice of L > 0 .
Since A vanishes outside the interval Œ�L; L� , the inverse Fourier transform of A is a

band-limited function. From the fact that A is also an even function, we compute, for each
real number x ,

.F�1A/.x/ D 1

�

Z L

0

2L

�
� sin.�!=.2L// � cos.x!/ d!

D
�

L

�2

�
�



cos..x � �=.2L//!/

x � �=.2L/
� cos..x C �=.2L//!/

x C �=.2L/

� ˇ̌
ˇ̌L
0

D
�

L

�2

�
�

�

cos.Lx � �=2/

x � �=.2L/
� cos.Lx C �=2/

x C �=.2L/

	

�
�

1

x � �=.2L/
� 1

x C �=.2L/

	�
: (8.9)

According to Nyquist’s theorem, the function F�1A can be reconstructed exactly from
its values taken in increments of the Nyquist distance �=L . Setting x D �n=L in (8.9) yields

.F�1A/.�n=L/ D
�

L

�2

�
�

�

cos.�n � �=2/

�n=L � �=.2L/
� cos.�n C �=2/

�n=L C �=.2L/

	

�
�

1

�n=L � �=.2L/
� 1

�n=L C �=.2L/

	�

D
�

L

�2

�
�



1

�n=L C �=.2L/
� 1

�n=L � �=.2L/

�

D 4L2

�3 .1 � 4n2/
: (8.10)

Example 8.3. The Ram–Lak filter, defined in (7.27), has the formula

A.!/ D j!j � uL.!/ D
(

j!j if j!j � L,
0 if j!j > L.

(8.11)

Proceeding as in the previous example, we find that the inverse Fourier transform of the
Ram–Lak filter satisfies
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.F�1A/.x/ D 1

�

Z L

0
! � cos.x!/ d!

D
�

1

�

�
�



cos.x!/ C .x!/ � sin.x!/

x2

� ˇ̌
ˇ̌L
0

D
�

1

�

�
�



cos.Lx/ C .Lx/ � sin.Lx/ � 1

x2

�

D
�

1

�

�
�
(

.Lx/ � sin.Lx/

x2
� 2 � sin2.Lx=2/

x2

)
; (8.12)

where the trigonometric identity cos.�/ D 1 � 2 � sin2.�=2/ was used in the last step.
As before, set x D �n=L to evaluate F�1A at multiples of the Nyquist distance �=L .

Thus,

.F�1A/.�n=L/ D
�

1

�

�
�
(

.�n/ � sin.�n/

.�n=L/2
� 2 � sin2.�n=2/

.�n=L/2

)

D L2

2�
�
(

2 � sin.�n/

�n
�
�

sin.�n=2/

.�n=2/

	2
)

: (8.13)

For n D 0, the right-hand side of (8.13) makes sense only as a limit. This gives
the value .F�1A/.0/ D L2=.2�/ . For nonzero even integers n , (8.13) simplifies to
.F�1A/.�n=L/ D 0. When n is odd, the value is given by .F�1A/.�n=L/ D �2L2=.�3 �
n2/ . Figure 8.1 provides a comparison of the discrete inverse Fourier transforms of the Ram–
Lak and Shepp–Logan low-pass filters, using L D 10 and sampling the inverse Fourier
transforms at the Nyquist distance �=10:

Example 8.4. The low-pass cosine filter, defined in (7.29), is left for the exercises.

Example with R 8.5. In the preceding examples, we computed the discrete inverse Fourier
Transforms for the Shepp–Logan and Ram–Lak low-pass filters. It is easy enough to record
this in R. Then we evaluate at a set of points and draw the plot, like so.

L=10.0 #sets the window
xval=(pi/L)*(-L:L) #sample at Nyquist dist.
##Inverse Fourier transform of the Ram-Lak filter:
IFRL=-function(n){
ifelse(n==0,(0.5)*L^2/pi,
((0.5)*L^2/pi)*(2*sin(pi*n)/(pi*n)-(sin(pi*n/2)/(pi*n/2))

^2))}
yval1=IFRL(-L:L)
##Inverse Fourier transform of the Shepp-Logan (sinc)

filter:
IFSL=function(n){
(4*L^2/pi^3)*(1/(1-4*n^2))}
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Fig. 8.1. Comparison of the discrete inverse Fourier transforms of the Shepp–Logan and Ram–Lak low-
pass filters, from values sampled at the Nyquist distance �=L , with L D 10 .

yval2=IFSL(-L:L)
### plot ##
plot(xval,yval1,pch=1,lwd=2,xlab="",ylab="")
lines(xval,yval1,lwd=2,lty=1,add=T)
points(xval,yval2,pch=2)
lines(xval,yval2,lwd=2,lty=2)

8.4 Discrete Radon transform

In the context of a CT scan, the X-ray machine does not assess the attenuation along every
line `t; � . Instead, in the model we have been using, the Radon transform is sampled for a
finite number of angles � between 0 and � and, at each of these angles, for some finite
number of values of t . Both the angles and the t values are evenly spaced. So, in this model,
the X-ray sources rotate by a fixed angle from one set of readings to the next and, within
each setting, the individual X-ray beams are evenly spaced. This is called the parallel beam
geometry.

If the machine takes scans at N different angles, incremented by d� D �=N , then the
specific values of � that occur are fk�=N W 0 � k � N � 1 g . We are assuming that the
beams at each angle form a set of parallel lines. The spacing between these beams, say � , is
called the sample spacing. For instance, suppose there are 2 � M C 1 parallel X-ray beams
at each angle. With the object to be scanned centered at the origin, the corresponding values
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of t are fj � � W �M � j � Mg . (The specific values of M and � essentially depend on the
design of the machine itself and on the sizes of the objects the machine is designed to scan.)
Thus, the continuous Radon transform Rf is replaced by the discrete function RDf defined,
for �M � j � M and 0 � k � .N � 1/ , by

RDfj; k D Rf .j�; k�=N/: (8.14)

Example with R 8.6. In Examples 2.13 and 2.15, in Chapter 2, we used R to compute and
display sinograms for a variety of phantoms. Since R is a discrete programming environment
by design, we were actually computing the discrete Radon transform of each phantom.
Indeed, our first step was to define the sets of values for both t and � to be included in
the scan. Then we created a vector whose entries were the values RDfj; k for all j and k .

To implement formula (8.2), we must now decide what we mean by the convolution of
two functions for which we have only sampled values. At the same time, we will adopt some
rules and conventions for dealing with discretely defined functions in general.

8.5 Discrete functions and convolution

A discrete function of one variable is a mapping from the integers into the set of real or com-
plex numbers. In other words, a discrete function g may be thought of as a two-way infinite
list, or sequence, of real or complex numbers f : : : ; g.�2/; g.�1/; g.0/; g.1/; g.2/; : : : g .
Because of this connection to sequences, we will often write gn instead of g.n/ to designate
the value of a discrete function g at the integer n.

Remark 8.7. Most of the discrete functions considered here arise by taking a continuous
function, say g , and evaluating it at a discrete set of values, say fxn W n 2 Zg. The subscript
notation allows us to denote the discrete function also by g, with gn D g.xn/. The definition
of the discrete Radon transform, in (8.14), is an example of this notation.

Definition 8.8. In analogy with the integral that defines continuous convolution, the discrete
convolution of two discrete functions f and g , denoted by f N�g , is defined by

.f N�g/m D
1X

jD�1
fj � g.m�j/ for each integer m: (8.15)

As with infinite integrals, there is the issue, which we evade for the time being, of whether
this sum converges.

Proposition 8.9. A few properties of discrete convolution are

(i) f N�g D g N�f ,

(ii) f N�.g C h/ D f N�g C f N�h , and

(iii) f N�.˛g/ D ˛.f N�g/ ,
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for suitable functions f , g , and h , and for any constant ˛ .

In practice, we typically know the values of a function f only at a finite set of points, say
f k � � W k D 0; 1; : : : ; .N � 1/g, where N is the total number of points at which f has been
computed and � is the sample spacing. For simplicity, let fk D f .k�/ for each k between 0
and .N �1/ and use the set of values ff1; f2; : : : ; fN�1 g to represent f as a discrete function.
There are two useful ways to extend this sequence to one that is defined for all integers. The
simplest approach is just to pad the sequence with zeros by setting fk D 0 whenever k is
not between 0 and N � 1. Another intriguing and useful idea is to extend the sequence to be
periodic with period N. Specifically, for any given integer m, there is a unique integer n such
that 0 � m C n � N � .N � 1/. We define fm D fmCn�N . Thus, fN D f0, f�1 D fN�1, fNC1 D f1,
and so on. This defines the discrete function f D f fk g as a periodic function on the set of all
integers. We will refer to such a function as an N-periodic discrete function.

Definition 8.10. For two N-periodic discrete functions f D ffk W 0 � k � N � 1g and
g D fgk W 0 � k � N � 1g, the discrete convolution, denoted as before by f N�g , is defined by

.f N�g/m WD
N�1X
jD0

fj � g.m�j/ for each integer m: (8.16)

This is obviously similar to Definition 8.8 except that the sum extends only over one full
period rather than the full set of integers. Notice that when m and j satisfy 0 � m; j � .N�1/ ,
then the difference .m�j/ satisfies jm�jj � .N�1/ . The periodicity of the discrete functions
enables us to assign values to the discrete convolution function at points outside the range 0
to .N � 1/ , so that f N� g also has period N .

The two versions of discrete convolution in (8.15) and (8.16) can be reconciled if one of
the two functions has only finitely many nonzero values.

Proposition 8.11. Let f and g be two-way infinite discrete functions and suppose there
is some natural number K such that gk D 0 whenever k < 0 or k � K . Let M be an
integer satisfying M � K � 1 and let ef and eg be the .2M C 1/-periodic discrete functions
defined by ef .m/ D f .m/ and eg.m/ D g.m/ for �M � m � M . Then, for all m satisfying
0 � m � K � 1,

.f N� g/m D �ef N�eg� .m/ : (8.17)

Proof. Let f , g , K , M , ef , and eg be as stated. For each pair of integers m and j satisfying
0 � m; j � K � 1 , it follows that jm � jj � K � 1 . Thus, since M � K � 1 , we get that
f .m � j/ Def .m � j/ . Now fix a value of m with 0 � m � K � 1 . From the definition (8.15)
and the properties of N� , we have

.f N� g/m D
1X

jD�1
f .m � j/ � g.j/



106 8 Discrete Image Reconstruction

D
K�1X
jD0

f .m � j/ � g.j/

D
K�1X
jD0

ef .m � j/ � g.j/

D
MX

jD�M

ef .m � j/ �eg.j/

D �ef N�eg� .m/ :

ut
What is really going on in this proposition? Well, there are a few worries when it comes to

using periodic discrete functions. One concern is that it may not be clear what the appropriate
period is. So, we might sample a finite set of values of a continuous periodic function, but
the values we compute might not correspond to a full period. Then, when we extend the data
to form a discrete periodic function, we have the wrong one. Or, the function whose values
we have sampled might not be periodic at all. Then we ought not to use a periodic discrete
function to model it. The proposition offers a remedy that is known as zero padding: we can
take a finite set of values of a function ( g ) and, by padding the sequence of values with a
lot of zeros, form a periodic discrete function ( Qg ) in such a way that the periodic discrete
convolution gives the same value as the true discrete convolution, at least at the points where
the value has been sampled.

For an illustration of the benefits of zero padding, consider the function u1=2 defined, as
before, by

u1=2.x/ D
(

1 if �1=2 � x < 1=2,
0 otherwise.

Suppose we sample u1=2 at two points x D �1=2 and x D 0 and, so generate the 2-periodic
discrete function f with f0 D f1 D 1 . For the periodic discrete convolution f N�f , we get

.f N�f /0 D 1 � 1 C 1 � 1 D 2 and

.f N�f /1 D 1 � 1 C 1 � 1 D 2:

Now pad the function f with a couple of zeros to get the 4-periodic function ef D
f1; 1; 0; 0 g . (We could also think of this as sampling the function u1=2 at the x values
�1=2, 0, 1=2, and 1.) Then we get

.ef N�ef /0 D 1 � 1 C 1 � 0 C 0 � 0 C 0 � 1 D 1 ;

.ef N�ef /1 D 1 � 1 C 1 � 1 C 0 � 0 C 0 � 0 D 2 ;
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.ef N�ef /2 D 1 � 0 C 1 � 1 C 0 � 1 C 0 � 1 D 1 ; and

.ef N�ef /3 D 1 � 0 C 1 � 0 C 0 � 1 C 0 � 1 D 0:

Instead of accurately representing u1=2 , the function f acts like a constant, and so f N� f is
constant, too. But ef does a better job of representing u1=2 , and the convolution ef N�ef is a
discrete version of the function 2.u1=2 � u1=2/ D 2.1 � jxj/, for �1 � x < 1, sampled at the
x values �1=2, 0, 1=2, and 1.

Importantly, Proposition 8.11 applies to the discrete convolution of a sampled version of
the band-limited function F�1A , where A is a low-pass filter, and the discrete (sampled)
Radon transform RDf , where f is the attenuation function we wish to reconstruct. Since the
scanned object is finite in size, we can set RDf .j; �/ D 0 whenever jjj is sufficiently large.
Thus, with enough zero padding, the discrete Radon transform (8.14) can be extended to be
periodic in the radial variable ( j� ), and (8.17) shows how to compute the desired discrete
convolution.

For discrete functions defined using polar coordinates, the discrete convolution is carried
out in the radial variable only. In particular, for a given filter A , we compute the discrete
convolution of the sampled inverse Fourier transform of A with the discrete Radon transform
of f as

�F�1A N�RDf
�

m; �
D

N�1X
jD0

�F�1A
�

j � .RDf /m�j; � : (8.18)

Example with R 8.12. In Example 7.15, in Chapter 7, we applied the convolve procedure
in R to compute the back projection of the Radon transform of a function. As mentioned there,
this procedure is inherently a discrete convolution, provided one remembers to flip one of the
two discrete functions involved. The option type ="open" that we used in that example
applies zero padding to the sequences before computing the convolution. In the next section,
we will apply convolve as one step in the implementation of the filtered back projection
formula (8.2).

8.6 Discrete Fourier transform

For a continuous function f , the Fourier transform is defined by

F f .!/ D
Z 1

�1
f .x/ e�i!x dx

for every real number ! . For a discrete analogue to this, we consider an N-periodic discrete
function f . Replacing the integral in the Fourier transform by a sum and summing over one
full period of f yields the expression
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N�1X
kD0

fk e�i!k:

Now take ! to have the form !j D 2� j=N . Then, for each choice of k , we get e�i!jk D
e�i2�kj=N . This is a periodic function with period N in the j variable, just as fk has period
N in the k variable. In this way, the Fourier transform of the discrete function f is also a
discrete function, defined for !j , with j D 0; 1; : : : ; .N � 1/ , and extended by periodicity
to every integer.

Definition 8.13. The discrete Fourier transform, denoted by FD , transforms an N-periodic
discrete function f into another N-periodic discrete function FDf defined by

.FDf /j D
N�1X
kD0

fk e�i2�kj=N for j D 0; 1; : : : ; .N � 1/: (8.19)

For other integer values of j , the value of .FDf /j is defined by the periodicity requirement.

Remark 8.14. In the summation (8.19), we can replace the range 0 � k � .N � 1/ by
any string of the form M � k � .M C N � 1/ , where M is an integer. This is due to the
periodicity of the discrete function f .

Example 8.15. Fix a natural number M and set

fk D
(

1 if �M � k � M,
0 otherwise.

Now let N > 2M and think of f as being an N -periodic discrete function. (Thus, f
consists of a string of 1s possibly padded with some 0 s.) We might think of f as a discrete
sampling of the characteristic function of a finite interval. The continuous Fourier transform
of a characteristic function is a function of the form a sin.bx/=x .

In the discrete setting, use the periodicity of f to compute, for each j D 0; 1; : : : ; N � 1 ,

.FDf /j D
MX

kD0

e �2� ikj=N C
N�1X

kDN�M

e �2� ikj=N

D e0 C
MX

kD1

�
e �2� ikj=N C e �2� i.N�k/j=N

�

D 1 C 2 �
MX

kD1

cos.2�kj=N/

D 2 � .1=2 C cos.2� j=N/ C cos.2�2j=N/ C � � � C cos.2�Mj=N//
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Fig. 8.2. Continuous and discrete Fourier transforms of a square wave. Zero padding has been used in the
sampling of the square wave. The wrap around in the second picture illustrates the N-periodic behavior of
the discrete transform.

D 2 � sin ..M C 1=2/ � 2� j=N/

2 � sin.� j=N/

D sin ..2M C 1/� j=N/

sin.� j=N/
:

We have used the identity

1=2 C cos.�/ C cos.2�/ C � � � C cos.M�/ D sin..M C 1=2/�/

2 � sin.�=2/
: (8.20)

Figure 8.2 shows a comparison, with M D 8 and N D 20, of the graph of

y D sin..2 � M C 1/x=2/

x=2

with the set of points

�
2� j=N ;

sin ..2 � M C 1/� j=N/

sin.� j=N/

�
;

where the point .0; .2 � M C 1// corresponds to j D 0. The diagram on the left shows the
situation for 0 � x � 2� and j D 0; 1; : : : ; N � 1 . While the curve continues its decay,
the points representing the discrete Fourier transform reveal the N-periodic behavior. In the
diagram on the right, the interval is �� � x � � , corresponding to j D �N=2; : : : ; N=2 . In
comparing the two diagrams, we can see how the N-periodic behavior of the discrete Fourier
transform works.

Where there is a discrete Fourier transform, there must also be an inverse transform.
Indeed, the formula (8.2) demands it. To this end, we have the following.
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Definition 8.16. For an N-periodic discrete function g , the discrete inverse Fourier
transform of g is the N-periodic function defined by

.FD
�1g/n D 1

N

N�1X
kD0

gk e i2�kn=N ; for n D 0; : : : ; N � 1 : (8.21)

Remark 8.17. In Examples 8.2 and 8.3, in section 8.3 of this chapter, we used Nyquist’s
theorem, or Shannon–Whittaker interpolation, to compute samples of the inverse Fourier
transforms of the Shepp–Logan and Ram–Lak low-pass filters, respectively. The filters
were defined to vanish outside the interval Œ�L; L� , and, accordingly, the Nyquist distance
was �=L. A funny thing happened, though, when we defined the discrete inverse Fourier
transform, in Definition 8.16: a factor of 2� sneaked its way into the complex exponential
term in the sum. To accommodate this change, the sample spacing of the N-periodic discrete
function being transformed must be modified from �=L to �=.2�L/, or simply 1=.2L/ .
What has happened is that the period of the discrete function is effectively given by setting
N D 2L in (8.21). Then, adding 1 to the value of n in the complex exponential changes the
value of n=N by the sample spacing value 1=.2L/ ; this in turn changes the value of 2�n=N
by the Nyquist distance, �=L. Thus, the implied sample spacing in (8.21) is 1=N D 1=.2L/.
In other words, when we switch from the continuous version of the low-pass filter to its
periodic discrete counterpart, the sampled values of the continuous inverse Fourier transform,
computed at increments of the Nyquist distance �=L , correspond to sampled values of the
discrete inverse Fourier transform computed at increments of the modified sample spacing
1=.2L/. We will use this sample spacing in section 8.9, when we discuss the implementation
of formula (8.2).

Example with R 8.18. In Example 8.5, we computed the discrete inverse Fourier Transforms
for the Shepp–Logan and Ram–Lak low-pass filters. The only modification we must make
to implement (8.2) is to change the size of the window to L D 1=.2�/ , as just discussed,
where � is the spacing between parallel X-ray beams in the scan. Also, since the value of L
is linked to the t variable, we will form a separate discrete convolution for each value of � .
We will look at this in detail in section 8.9.

The discrete analogue of the Fourier inversion theorem (Theorem 5.12) holds.

Theorem 8.19. For a discrete function f with period N,

FD
�1 .FDf /n D fn for all integers n: (8.22)

Before we prove this theorem, we need the following fact about roots of unity.

Lemma 8.20. For any nonzero integers M and N,

N�1X
kD0

e i2�Mk=N D
(

N if M=N is an integer,
0 if M=N is not an integer.

(8.23)
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Proof. If M=N is an integer, then e i2�Mk=N D 1 for every integer k, whence,PN�1
kD0 e i2�Mk=N D N.

If M=N is not an integer, then
�
e i2�M=N

�N � 1 D 0, but e i2�M=N ¤ 1. Since the expression
xN � 1 factors as xN � 1 D .x � 1/.1 C x C x2 C � � � C xN�1/, it follows that

1 C e i2�M=N C
�

e i2�M=N
�2 C � � � C

�
e i2�M=N

�N�1 D 0:

That is,

N�1X
kD0

e i2�Mk=N D 0

as claimed. ut
Proof of Theorem 8.19. For a given integer n with 0 � n � .N � 1/ , compute

FD
�1 .FDf /n D 1

N

N�1X
kD0

.FDf /k e i2�kn=N

D 1

N

N�1X
kD0

 
N�1X
mD0

fm e�i2�mk=N

!
e i2�kn=N

D 1

N

N�1X
mD0

"
fm

 
N�1X
kD0

e i2�.n�m/k=N

!#
:

When m D n , we have e i2�.n�m/k=N D 1 for every k . So

N�1X
kD0

e i2�.n�m/k=N D N when m D n :

However, when m ¤ n, then Lemma 8.20 asserts that

N�1X
kD0

e i2�.n�m/k=N D 0:

It follows that

1

N

N�1X
mD0

"
fm

 
N�1X
kD0

e i2�.n�m/k=N

!#
D 1

N
Œfn � N� D fn :
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That is, FD
�1 .FDf /n D fn for 0 � n � .N�1/ and, by periodicity, for all integers n. ut

Were we so inclined, we could establish properties about linearity, shifting, and so on for
the discrete Fourier transform and its inverse. However, our focus is on the implementation of
the formula (8.2) so our priority must be to study the interaction between the discrete Fourier
transform and discrete convolution. In particular, the following theorem holds.

Theorem 8.21. For two discrete functions f D ffk W 0 � k � N � 1g and g D fgk W 0 �
k � N � 1g with the same period, we have

FD .f N�g/ D .FDf / � .FDg/ : (8.24)

In words, the discrete Fourier transform of a convolution is the product of the discrete
transforms individually.

Proof. For each integer n such that 0 � n � .N � 1/,

.FDf /n � .FDg/n

D
 

N�1X
kD0

fk e �2� ink=N

!
�
 

N�1X
`D0

g` e �2� in`=N

!

D
N�1X
kD0

fk

 �kCN�1X
`D�k

g` e �2� in`=N

!
e �2� ink=N .by periodicity of g/

D
N�1X
kD0

fk

0
@N�1X

jD0

gj�k e �2� in.j�k/=N

1
A e �2� ink=N .where j D k C `/

D
N�1X
jD0

N�1X
kD0

�
fk � gj�k e �2� inj=N

�

D
N�1X
jD0

 
N�1X
kD0

fk � gj�k

!
e �2� inj=N

D
N�1X
jD0

.f N�g/j e �2� inj=N

D ŒFD .f N�g/�n ;

which is the desired result. ut
We conclude this section by mentioning a few results that are discrete versions of some of

the results from earlier chapters. The proofs are left as exercises.
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Proposition 8.22. In analogy to (7.14), for two discrete N-periodic functions f and g ,

FD.f � g/ D 1

N
.FDf / N� .FDg/ : (8.25)

For a discrete function f , define the conjugate function f by setting f k D fk for every k.
In analogy to (5.10), we have the following fact.

Proposition 8.23. For an N-periodic discrete function f ,

�FDf
�

j D .FDf /�j (8.26)

for all j.

There is also a discrete version of the Rayleigh–Plancherel theorem 7.11:

Proposition 8.24. For an N-periodic discrete function f ,

N�1X
nD0

jfnj2 D 1

N

N�1X
nD0

j.FDf /nj2 : (8.27)

8.7 Discrete back projection

In the continuous setting, the back projection is defined by

Bh.x; y/ WD 1

�

Z �

�D0
h.x cos.�/ C y sin.�/; �/ d�: (8.28)

Definition 8.25. In the discrete setting, the continuously variable angle � is replaced by the
discrete set of angles fk�=N W 0 � k � N � 1 g . So the value of d� becomes �=N and the
back-projection integral is replaced by the sum

BDh.x; y/ D
�

1

N

� N�1X
kD0

h.x cos.k�=N/ C y sin.k�=N/; k�=N/: (8.29)

Remark 8.26. We wish to apply formula (8.29) to h D .FD
�1A/ N�.RDf / . The grid within

which the final image is to be presented will be a rectangular array of pixels, located
at a finite set of points f.xm; yn/ g . We will compute the values BDh.xm; yn/ , each of
which represents a color or greyscale value to be assigned to the appropriate point in the
grid. To do this, we require the values of .FD

�1A/ N�.RDf / at the corresponding points
f.xm cos.k�=N/ C yn sin.k�=N/; k�=N/g . However, the X-ray scanner will give us samples
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of the Radon transform of f , and, hence, of .FD
�1A/ N�.RDf / , only at the set of points

f.j�; k�=N/g . These points are arranged in a polar grid and generally do not match up with
the points needed.

To overcome this obstacle, observe that, for a given .xm; yn/ and a given k , the number
xm cos.k�=N/ C yn sin.k�=N/ must lie in between some two consecutive integer multiples
of � . That is, there is some value j] such that

j]� � xm cos.k�=N/ C yn sin.k�=N/ < .j] C 1/� :

Hence, we will assign a value for .FD
�1A/ N�.RDf / at .xm cos.k�=N/Cyn sin.k�=N/; k�=N/ ,

based on the known values at the points .j]�; k�=N/ and ..j] C 1/�; k�=N/ on either side.
The process of assigning such values is called interpolation.

8.8 Interpolation

When we are given (or have computed) a discrete set of values fk D f .xk/ at a finite set of
inputs fxkg , the process of somehow assigning values f .x/ for inputs x between the distinct
fxkg in order to create a continuous or, at least, piecewise continuous function defined on an
interval is called interpolation. Exactly how the interpolated values are assigned depends on
factors such as what additional properties (continuous, differentiable, infinitely differentiable,
et cetera) the function is to have, the degree of computational difficulty incurred in assigning
the new values, and more. Let us look at some interpolation schemes that are commonly used.

Nearest-neighbor. Given the values ff .xk/g , nearest-neighbor interpolation assigns the
value of f .x/ , for any given x, to be the same as the value of f at the input xk that is
nearest to x . This creates a step function that steps up or down halfway between successive
values of xk . This is computationally simple, but the interpolated function is not continuous,
and what to do at the halfway points between the xk s is not clear.

Linear. With linear interpolation, we literally just connect the dots, thus creating a continuous
function composed of line segments. Computationally, for x lying between xk and xkC1 ,
we set

f .x/ D
�

f .xkC1/ � f .xk/

xkC1 � xk

�
� . x � xk / C f .xk/: (8.30)

This method is often used in medical imaging. It is computationally simple and produces a
continuous function f . The interpolated function is usually not differentiable at the nodes.

Cubic spline. With cubic splines, each pair of successive points .xk; f .xk// and
.xkC1; f .xkC1// is connected by part of a cubic curve, y D ax3 C bx2 C cx C d . We
will design the pieces so that they join together smoothly, producing an overall curve with
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a continuous second-order derivative. This smoothness property often makes this method
preferable to piecewise linear or nearest-neighbor interpolation. As we shall explore here,
computing the coefficients of each cubic piece involves solving a system of linear equations.
Thus, cubic splines are computationally more complicated than linear interpolation, but are
still manageable. Splines are commonly used in a large variety of engineering applications,
including medical imaging.

To see how this method works, suppose our sampled points are

f.x0; y0/; .x1; y1/; : : : ; .xn; yn/g ; with x0 < x1 < : : : < xn :

Our goal is to find n cubic curves, say h1; h2; : : : ; hn that we can piece together smoothly
across our sample. Each cubic curve has four coefficients to be determined, so we will need
a system of 4n equations in order to find them. We get 2n, or half, of these equations from
the requirement that the curves must fit the sample. That is, for each k D 1; : : : ; n, we need
hk.xk�1/ D yk�1 and hk.xk/ D yk. Next, at each of the interior points x1; : : : ; xn�1 in the
sample, we want the two cubic pieces that meet there to join together smoothly, meaning that
the first- and second-order derivatives of the two pieces should agree at the transition. That
is, for each k D 1; : : : ; .n � 1/, we need h 0

k.xk/ D h 0
kC1.xk/ and h 00

k .xk/ D h 00
kC1.xk/. This

produces 2.n � 1/ additional equations to the system, giving us 4n � 2 equations so far. The
remaining two equations are obtained by prescribing values for the initial slope of the first
piece and the final slope of the last piece. That is, we assign values for h 0

1.x0/ and h 0
n.xn/.

(For example, it may be convenient to assign the value 0 to these slopes.) Now we have the
4n equations we need.

Example 8.27. Suppose we wish to fit a cubic spline to the four sample points .0; 1/, .1; 0:5/,
.2; 4/, and .3; 3/. There are three subintervals between the points, so we will need three cubic
pieces. Here is one solution:

h.x/ D
8<
:

h1.x/ D 41
30x3 � 28

15 x C 1 if 0 � x � 1,
h2.x/ D � 17

6 x3 C 63
5 x2 � 217

15 x C 26
5 if 1 � x � 2,

h3.x/ D 22
15x3 � 66

5 x2 C 557
15 x � 146

5 if 2 � x � 3.
(8.31)

In this case, the values of h 0
1.0/ and h 0

3.3/ were unassigned, resulting in free variables in the
linear system of equations.

Lagrange, or polynomial, interpolation. When N C 1 data points are known, then it is
possible to fit a polynomial of degree N to the data. For instance, three noncollinear points
determine a parabola. Generally, a polynomial of degree N has N C 1 coefficients. The
N C 1 data points provide N C 1 equations that these coefficients must satisfy. A general
formula, given values of f .xk/ for k D 1; : : : ; N C 1 , is

f .x/ D
NC1X
jD1

f .xj/ �
Q

k¤j .x � xk/Q
k¤j .xj � xk/

: (8.32)
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Fig. 8.3. Four methods for interpolating the sample points .0; 1/, .1; 0:5/, .2; 4/, and .3; 3/ are shown. The
cubic spline has the formula from equation (8.31).

Notice that, if we take x D xn for some n , then the formula (8.32) yields f .x/ D f .xn/ as
it should. So the formula agrees with the data. Polynomial interpolation can be problematic
because we are using a single global polynomial to meet our needs. This is different from
the other methods outlined here, in which piecewise functions are patched together to fit the
sampled points. Thus, the polynomial may overshoot the sample points significantly while
the piecewise functions would transition to another piece to avoid overshooting. Also, the
degree of the polynomial increases with the size of the data set, so a large sample, typical
in imaging and many other applications, requires a polynomial of high degree, while a cubic
spline has degree 3. The relative merits of these interpolation methods can be glimpsed in
Figure 8.3, which shows examples of nearest-neighbor, piecewise linear, cubic spline, and
polynomial interpolation applied to a small data set.

Generalized interpolation. To see how the interpolation process can be generalized, take
a closer look at nearest-neighbor interpolation. There, we start with a discrete function g ,
where g.m/ denotes the value of g at the sample point m � � , and we want to construct
an interpolated function I.g/ using the nearest-neighbor method. For a given value x , the
sample point m�� is the nearest neighbor to x exactly when jx�m�� j < �=2 , or, equivalently,
when jx=� � mj < 1=2. It follows that

I.g/.x/ D
X

m

g.m/ � u1=2

� x

�
� m

�
; for all x ; (8.33)

where, as usual,
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u1=2.x/ D
(

1 if jxj < 1=2,
0 if jxj > 1=2.

(For x D ˙1=2, make a slight modification by assigning the value C1 to one and 0 to the
other, depending whether we want to consider �1=2 or C1=2 as closer to 0.) This approach
offers a nice compact formula for nearest-neighbor interpolation.

Adopting a similar approach to linear interpolation, suppose that a given x satisfies

m� � � � x < .m� C 1/ � �

for some integer m�. Then

ˇ̌
ˇ x
�

� m�
ˇ̌
ˇ � 1 ;

ˇ̌
ˇ x
�

� .m� C 1/
ˇ̌
ˇ � 1 ;

and, for all integers m other than m� and .m� C 1/ ,

ˇ̌
ˇ x
�

� m
ˇ̌
ˇ > 1 :

Consider again the tent function
V

, defined by

^
.x/ D

(
1 � jxj if jxj � 1,

0 if jxj > 1.

For a discrete function g , evaluated at the sample points f m � � g, and the corresponding
function I.g/ obtained from g by linear interpolation, we get, for x satisfying m� � � �
x < .m� C 1/ � � ,

I.g/.x/ D g.m� C 1/ � g.m�/

�
� .x � m� � �/ C g.m�/

D .g.m� C 1/ � g.m�// �
� x

�
� m�

�
C g.m�/

D g.m�/
�

1 �
� x

�
� m�

��
C g.m� C 1/

� x

�
� m�

�

D g.m�/
�

1 �
ˇ̌
ˇ x
�

� m�
ˇ̌
ˇ
�

C g.m� C 1/
�

1 �
ˇ̌
ˇ x
�

� .m� C 1/
ˇ̌
ˇ
�

D
X

m

g.m/ �
^� x

�
� m

�
: (8.34)

Generalizing this approach, we can design an interpolation method like so.
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Definition 8.28. For a selected weighting function W , satisfying the conditions below, the
W-interpolation IW.g/ of a discrete function g is defined by

IW.g/.x/ D
X

m

g.m/ � W
� x

�
� m

�
for � 1 < x < 1 : (8.35)

Of course, for this to be reasonable, the weighting function W should satisfy a few
conditions. For instance, if g is real-valued, bounded, or even, then IW.g/ should be
too, which means that W should be real-valued, bounded, and even. Also, at the sample
points, we expect the interpolation to be exact. That is, for any integer k , we expect
IW.g/.k � �/ D g.k/ , which implies that W.0/ D 1 and that W.m/ D 0 for all integers
m ¤ 0 . Lastly, for purposes of integration, it would be nice for W-interpolation to preserve
areas in the sense that the integral of the W-interpolated function IW.g/ is actually equal
to the approximation we get when we apply the trapezoidal rule to the sampled points
f.m � �; g.m/ /g. That is, we would like to have

Z 1

�1
IW.g/.x/ dx D � �

X
m

g.m/ : (8.36)

To see what this implies about W , observe that, for each integer m ,

Z 1

�1
W
� x

�
� m

�
dx D � �

Z 1

�1
W .u � m/ du where u D x=�

D � �
Z 1

�1
W .u/ du :

In particular, the value of the integral is independent of m. From (8.35), we now compute

Z 1

�1
IW.g/.x/ dx D

Z 1

�1

(X
m

g.m/ � W
� x

�
� m

�)
dx

D
X

m

g.m/ �
Z 1

�1
W
� x

�
� m

�
dx

D � �
Z 1

�1
W.u/ du �

X
m

g.m/:

(The interchange of the summation and the integral is valid because we are summing over
finitely many m .) Thus, for (8.36) to hold, we want W to satisfy

Z 1

�1
W.u/ du D 1 :
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Fig. 8.4. Interpolating the sample points .0; 1/, .1; 0:5/, .2; 4/, and .3; 3/ using formula (8.35). The weight
functions are: the cubic spline in (8.37),

V
, u1=2 , and sinc.�x/.

In addition to the functions u1=2 and
V

considered above, the rescaled sinc function
x 7! sin.�x/=.�x/ also satisfies these conditions on the weighting function. We can
implement a cubic spline interpolation with the weight function

W.x/ D
8<
:

�2x2 � 3x2 C 1 if �1 � x � 0,
2x2 � 3x2 C 1 if 0 � x � 1,

0 if jxj > 1.
(8.37)

This function defines a cubic spline joining the three points .�1; 0/, .0; 1/, and .1; 0/ with
derivative equal to 0 at the endpoints. The interpolation formula (8.35) remodels it into a
cubic spline that fits the data.

Example with R 8.29. Figure 8.4 was created by implementing formula (8.35) in R. For
example, the following code can be used to carry out a cubic spline interpolation, with the
weight function in (8.37). The lists xdata and ydata are the coordinates of the given data
points, while xval is the list of points at which a function value is to be interpolated.

##cubic spline
Wspline=function(x){
(-2*x^3-3*x^2+1)*(-1<=x&x<=0)+(2*x^3-3*x^2+1)*(0<x&x<=1)}
xdata=0:3
ydata=c(1,0.5,4,3)
xval=.02*(0:150)#151 pts betw/ 0 and 3
#interpolate using spline window
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y.y=double(length(xval))
for (i in 1:length(xval)){
y.y[i]=sum(ydata*Wspline((xval[i]-xdata)/xspace))}

Experiment with different sets of data points as well as different window functions W .

Interpolation and convolution. For a discrete function g and a weighting function W , let
IW.g/ be as in (8.35). Suppose also that g D � N�f for some discrete functions � and f .
That is, suppose that, for each m ,

g.m/ D
X

k

�.m � k/ � f .k/ :

Then, for each x ,

IW.g/.x/ D
X

m

 X
k

�.m � k/ � f .k/

!
� W

� x

�
� m

�

D
X

k

 X
m

�.m � k/ � W
� x

�
� m

�!
� f .k/ (8.38)

D
X

k

 X
m

�.m � k/ � W

�
x � k�

�
� .m � k/

�!
f .k/:

We might mistake the sum
X

m

�.m � k/ � W ...x � k�/=�/ � .m � k// in (8.38) for the

interpolated function IW.�/.x�k�/ . The discrete function � is periodic after all, so shifting
the summation from summing over m to summing over .m � k/ shouldn’t matter. However,
W is not periodic, so there is a glitch when k D N � 1 for N-periodic functions. That’s
where � wraps around but W does not. Nonetheless, it is almost correct to say that these
two expressions are the same; and in practice, we can actually fix this glitch by using zero
padding, as discussed following Proposition 8.17. So, from (8.38), we can write

IW.� N�f /.x/ �
X

k

IW.�/.x � k�/ � f .k/ : (8.39)

The expression on the left in (8.39) represents an interpolation of the filtered form of f . On
the right, the interpolation is brought inside and the expression has the form of a discrete
convolution: a weighted average of the values ff .k/g , where the weights depend on the
distance between x and the sampled points fk � �g .
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8.9 Discrete image reconstruction

We have now examined the discrete versions of all of the components of formula (8.2), and
we are ready to realize our goal of reconstructing an attenuation-coefficient function f using
a discrete set of samples of its Radon transform! In fact, there are two slightly different
algorithms, depending on which side of the formula (8.39) we opt to use at the appropriate
stage. Let us work our way through each algorithm step by step.

Example with R 8.30. Image Reconstruction Algorithm I. In our first implementation of
(8.2), we apply interpolation to the convolution .FD

�1A/ N�.RDf / , where A is the low-pass
filter. Denoting this interpolated function by I , we then approximate the value f .xm; yn/ at
each point in the image grid by

f .xm; yn/ �
�

1

2

�
BDI.xm; yn/

D
�

1

2N

� N�1X
kD0

I
�

xm cos

�
k�

N

�
C yn sin

�
k�

N

�
;

k�

N

�
: (8.40)

As a test case, we will use the radially symmetric phantom shown on the left in
Figure 8.5.

• We use R to compute the (discrete) Radon transform of this phantom, as in Example 2.13,
in Chapter 2. (In a clinical setting, we would use actual X-ray data.) The data from the
scan are recorded here in the vector scan.1.

##Phantom: a "bullseye"
P1=c(.75,.75,0,0,0,1)
P2=c(.5,.5,0,0,0,-.75)
P3=c(.25,.25,0,0,0,.25)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

Fig. 8.5. A radially symmetric attenuation function and its Radon transform.



122 8 Discrete Image Reconstruction

P4=c(.0625,.0625,0,0,0,.4)
P=matrix(c(P1,P2,P3,P4),byrow=T,ncol=6)
##Radon transform for elliptical regions
radon.mat=function(theta,t,E){
tmp=matrix(double(nrow(E)*length(theta)),nrow(E),length

(theta))
for (i in 1:nrow(E)){
theta.1=theta-E[i,5]
t.1=(t-E[i,3]*cos(theta)-E[i,4]*sin(theta))/E[i,2]
v1=sin(theta.1)^2+(E[i,1]/E[i,2])^2*cos(theta.1)^2-t.1^2
v2=ifelse(sin(theta.1)^2+(E[i,1]/E[i,2])^2*cos(theta.1)^2

-t.1^2>0,1,0)
v3=sqrt(v1*v2)
v4=sin(theta.1)^2+(E[i,1]/E[i,2])^2*cos(theta.1)^2
tmp[i,]=E[i,1]*E[i,6]*(v3/v4)}
radvec=colSums(tmp)
list(radvec=radvec)}
## apply Radon transform
scan.1=radon.mat(grid.theta,grid.t,P)$radvec

• The next step is to choose a low-pass filter A and compute its discrete inverse Fourier
transform, FD

�1A. As discussed in Remark 8.17, when we interpret our low-pass filter
as a 2L-periodic discrete function that vanishes outside the interval Œ�L; L� , the effective
sample spacing for FD

�1A is given by 1=.2L/. We then compute the discrete convolution
.FD

�1A/ N�.RDf / . The two discrete functions must have the same sample spacing, so we
want to have 1=.2L/ D � . In practice, the value of � is determined by the scanner, and,
therefore, we set L D 1=.2�/ for the low-pass filter.

For our test case, we use the Shepp–Logan filter and compute a separate discrete
convolution for each angle. The output, called ffrad here, is a matrix with one row
for each angle. (Due to the radial symmetry, these rows will all be the same.)

##DIFT of the Shepp-Logan filter:
L=(0.5)/tau #tau=X-ray spacing
IFSL=(4*L^2/pi^3)*(1/(1-4*((-1/tau):(1/tau))^2))#IFSL vals
#convolve scan.1 w/ IFSL #for each theta
#J=1+2/tau=no. of t vals
filter.rad=function(theta,f,g){
rad.fil=matrix(double(length(theta)*J),length(theta),J)
for (i in 1:length(theta)){
rad.fil[i,]=convolve(f[((i-1)*J+1):(i*J)],
rev(g),type="open")[(J-(1/tau)):(J+(1/tau))]}
list(rad.fil=rad.fil)}
#apply above procedure
ffrad=filter.rad(thetaval,scan.1,IFSL)$rad.fil
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• Next, we select a method of interpolation. As we discussed in Remark 8.26, we will
evaluate the discrete back projection only at a finite set of points f.xm; yn/ g that define the
grid in which the final image is to be presented. We need interpolation in order to assign
values to .FD

�1A/ N�.RDf / at the points f.xm cos.k�=N/ C yn sin.k�=N/; k�=N/g .
We could execute a cubic spline interpolation as in Example 8.29. However, R, being a

statistical tool, has built-in curve-fitting packages, including one for cubic splines. In this
case, for each angle in the scan, a separate spline is computed to fit the data given by the
corresponding row of the matrix of filtered X-ray data. (This is the matrix called ffrad
in the previous step.) Then, for each point .xm; yn/ in the image grid, we interpolate (or
“predict” in the R procedure) values at the desired points. Basic code for this is given here.
Figure 8.6 shows the resulting discrete function. (Compare this to the picture on the right
in Figure 8.5.)

##load "splines" package: "library(splines)"
library(splines)
interp.mat=function(theta,tdata,M,x,y){
yy.mat=matrix(double(length(theta)*length(x)),length

(theta),length(x))
for (i in 1:length(theta)){ydata=M[i,]
y.new=interpSpline(tdata,ydata)
t.new=cos(theta[i])*x+sin(theta[i])*y
yy.mat[i,]=predict(y.new,t.new)$y}
list(yy.mat=yy.mat)}

−1.0 −0.5 0.0 0.5 1.0
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Fig. 8.6. The cubic spline interpolation .FD
�1A/ N�Rf .
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## apply to ffrad on desired grid
ffrad.new=interp.mat(thetaval,tval,ffrad,grid.x,grid.y)

$yy.mat

• Now that we have carried out the interpolation, we finish by applying the discrete back
projection. For each point in the image grid, we compute the average, over all angles in the
scan, of the corresponding interpolated values of the filtered X-ray data. In the previous
step, ffrad.new is a matrix with one column of interpolated values for each grid point.
Hence, the back projection amounts to computing the column averages of this matrix,
like so.

#discrete back projection
backproj.discrete=function(M){
(1/nrow(M))*colSums(M)}
#apply to ffrad.new#then normalize colors to be betw/ 0

and 1
colors.1=backproj.discrete(ffrad.new)
#final step: plot the result
colors.2=(colors.1-min(colors.1))/(max(colors.1)-min

(colors.1))
#final step: plot the result
plot(grid.x,grid.y,pch=15,col=gray(colors.2),asp=1,

xlab="",ylab="")

Figure 8.7 depicts two reconstructions of the test phantom. In both cases, we used a
100 � 100 grid in the square f.x; y/ W jxj � 1; jyj � 1 g and sample spacing � D 0:05 .
The number of angle samples is 18 on the left and 60 for the picture on the right.

Example with R 8.31. Image Reconstruction Algorithm II. In our second image recon-
struction algorithm, we use the approach indicated by the right-hand side of formula (8.39).
Instead of interpolating the filtered Radon transform .FD

�1A/ N�.RDf / , we first interpolate
the filter itself and then form a weighted average of the sampled values of the Radon
transform. That is, we replace each value of I in (8.40) by the weighted sum

W.k/ D
X

j

IFD
�1A

�
xm cos

�
k�

N

�
C yn sin

�
k�

N

�
� j�

�
� RDf

�
j�;

k�

N

�
:

This leads to a slightly different approximation to the discrete filtered back projection
given by

f .xm; yn/ �
�

1

2N

� N�1X
kD0

W.k/ : (8.41)
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Fig. 8.7. The discrete filtered back-projection reconstruction of the bullseye. Algorithm (8.40) was used
with sample spacing � D 0:05 . The angle was sampled in increments of �=18 on the left and �=60 on
the right. The discrete back projection was applied on a 100 � 100 grid.

This time, we will test our algorithm on the crescent-shaped phantom shown, along with
its sinogram, in Figure 2.8, in Chapter 2.

• The phantom parameters are given below. We compute the (discrete) Radon transform as
before, with scan.2 denoting the output vector.

##The "crescent" phantom
E1=c(.5,.5,0,0,0,1)
E2=c(.375,.375,.125,0,0,-.5)
E.mat=matrix(c(E1,E2),byrow=T,ncol=6)
## apply Radon transform as before
scan.2=radon.mat(grid.theta,grid.t,E.mat)$radvec

• For this example, we use the Ram–Lak low-pass filter, defined earlier. Again, the width
of the window is 2L D 1=� , and the effective sample-spacing for the discrete inverse
Fourier transform is 1=.2L/ D � . We have

##Ram-Lak filter; inverse Fourier transform
L=(0.5)/tau
IFRL=function(n){
ifelse(n==0,(0.5)*L^2/pi,
((0.5)*L^2/pi)*(2*sin(pi*n)/(pi*n)-(sin(pi*n/2)/(pi*n/2)

)^2))}
IFRL2=IFRL(tval/tau)#seq of IFRL vals

• The next step is where our two image reconstruction algorithms differ. This time, for each
point .x; y/ in the picture grid, and every point .t; �/ at which the Radon transform has
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been sampled, we first interpolate a value for the discrete inverse Fourier transform of the
low-pass filter at .x cos.�/ C y sin.�/ � t/ . Then we let t vary, and compute the weighted
sum denoted by W.k/ in (8.41). In this example, we use linear interpolation, calculating
the values as in (8.34). In R, computing the interpolation and the weighted sum can be
combined into one procedure, as shown below, with the output denoted by ffrad.3.

##use linear interpolation
tent1=function(x){
(1-abs(x))*(abs(x)<=1.0)}
#combine interpolation/convolution in one procedure
interp.algII=function(theta,t,v,x,y){
yy.mat=matrix(double(length(theta)*length(x)),length
(theta),length(x))

for (i in 1:length(theta)){
ydata=v[((i-1)*J+1):(i*J)]#J=1+2/tau=no. of t vals
t.new=cos(theta[i])*x+sin(theta[i])*y
for (j in 1:length(x)){
filter.alt=double(length(t))
for (k in 1:length(t)){
filter.alt[k]=sum(IFRL2*tent1((t.new[j]-t[k]-t)/tau))}
yy.mat[i,j]=sum(ydata*filter.alt)}}
list(yy.mat=yy.mat)}
#apply to X-ray data (v=scan.2)
ffrad.3=interp.test3(thetaval,tval,scan.2,grid.x,grid.y)
$yy.mat

• Finally, we apply the discrete back projection to ffrad3 by averaging the values in each
column.

Figure 8.8 illustrates the resulting image reconstructions for two choices of angle increment:
�=60 on the left and �=36 on the right. In both cases, we used the Ram–Lak low-pass filter,
a sample spacing of � D 0:02 (so L D 25 ), and a 100 � 100 image grid.

Example 8.32. Image comparison. By altering the choices of algorithm, low-pass filter,
interpolation method, and sample spacings, we can create a variety of reconstructions of
the same phantom. Comparing the results helps us to assess how our choices affect the
results. For example, the illustrations on the left sides of Figures 8.8 and 8.9 differ only
in the choice of low-pass filter — Ram–Lak compared to Shepp–Logan. The picture on the
right in Figure 8.9 depicts the difference between the two images. Locations where the two
agree are shown as neutral grey; lighter or darker shades of grey indicate locations where the
two reconstructions differ. For instance, a sort of halo effect can be seen at the outer boundary
of the crescent.
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Fig. 8.8. The discrete filtered back-projection algorithm (8.41) is applied to a crescent-shaped phantom
with sample spacing � D 0:02 . The angle is sampled in increments of �=60 on the left and �=36 on the
right.

Fig. 8.9. On the left, algorithm (8.41) is applied to the crescent-shaped phantom using the Shepp–Logan
filter with sample spacing � D 0:02 and angle increments of �=60 . The figure on the right depicts the
difference between this reconstruction and the one on the left in Figure 8.8, which used the Ram–Lak filter.

8.10 Matrix forms

For a discrete function f D h f0; : : : ; fN�1 i having period N, we have defined the discrete
Fourier transform of f to be the discrete function F D h F0; : : : ; FN�1 i, also having period
N, satisfying

Fj D
N�1X
kD0

fk e�i2�kj=N for j D 0; 1; : : : ; .N � 1/:
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Setting wN WD e�i2�=N , we have e�i2�kj=N D .wN/kj. Thus, in matrix form,

Fj D 
1 .wN/j .wN/2j � � � .wN/.N�1/j

�

2
6666664

f0
f1
f2
:::

fN�1

3
7777775

: (8.42)

Denote by WN the N � N matrix whose entry in row j and column k is the number .wN/kj. It
follows from (8.42) that the discrete Fourier transform of f is given by

FDf D WNf; (8.43)

where f is viewed as a column vector in this context.
If we let WN denote the matrix obtained by taking the complex conjugates of the entries

of WN , then it follows from Lemma 8.20 that WNWN D N � IN . That is,

.WN/�1 D 1

N
WN ;

from which we see that the inverse discrete Fourier transform can be expressed in matrix
form as

FD
�1g D 1

N
WNg ; (8.44)

where g is an N-periodic discrete function viewed as a column vector.

Example 8.33. This example illustrates the relation (8.24) in the matrix setting. With N D
3, we get w3 D e�i2�=3. For two discrete 3-periodic functions f D h f0; f1; f2 i and g D
h g0; g1; g2 i, the convolution is

f N�g D h f0g0 C f1g2 C f2g1; f0g1 C f1g0 C f2g2; f0g2 C f1g1 C f2g0 i:
Hence,

W3.f N�g/ D
2
41 1 1

1 w3 .w3/2

1 .w3/2 w3

3
5
2
4 f0g0 C f1g2 C f2g1

f0g1 C f1g0 C f2g2

f0g2 C f1g1 C f2g0

3
5

D
2
4 .f0 C f1 C f2/ � .g0 C g1 C g2/

.f0 C w3f1 C .w3/2f2/ � .g0 C w3g1 C .w3/2g2/

.f0 C .w3/2f1 C w3f2/ � .g0 C .w3/2g1 C w3g2/

3
5

D .W3f/ � .W3g/ ;

where the product in the last step is the entry-by-entry product of two vectors, each viewed
as a discrete 3-periodic function.
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8.11 FFT — the fast Fourier transform

For an N-periodic discrete function f, the computation of the discrete Fourier transform of
f requires N2 multiplications, each of the form fk � e�2� ikj=N with 0 � k; j � N � 1. For
the large values of N encountered in medical imaging, this implies a significant amount of
computational time. With the introduction, in [13], of the fast Fourier transform, Cooley
and Tukey showed that the computation time can be reduced substantially — by a factor of
log.N/=N — if N is a power of 2.

For starters, suppose that N is an even number, say N D 2 � M. Then the Nth roots of unity
can be divided into two sets. Those of the form e�2� i.2k/j=N D e�2� ikj=M , for 0 � k � .M�1/,
are also Mth roots of unity. The rest have the form e�2� i.2kC1/j=N D e�2� ij=N � e�2� ikj=M , for
0 � k � .M � 1/. Thus, for each j between 0 and .N � 1/, the corresponding component of
the discrete Fourier transform of f can be expressed as

.FDf/j D
M�1X
kD0

f2k � e�2� ikj=M C
�

e�2� i=N
�j �

M�1X
kD0

f2kC1 � e�2� ikj=M : (8.45)

Moreover, for 0 � k � .M � 1/ and M � j � .N � 1/, we get

e�2� ikj=M D e�2� ik.j�M/=M � e�2� ikM=M D e�2� ik.j�M/=M : (8.46)

In other words, for M � j � .N � 1/, we may replace j with .j � M/ in the sums on the

right-hand side of (8.45). Also,
�
e�2� i=N

�j D � �e�2� i=N
�j�M

. So now we can express the
discrete Fourier transform of f in an even simpler way. Namely, for 0 � j � .M �1/, we have

.FDf/j D
M�1X
kD0

f2k � e�2� ikj=M C
�

e�2� i=N
�j �

M�1X
kD0

f2kC1 � e�2� ikj=M (8.47)

and

.FDf/jCM D
M�1X
kD0

f2k � e�2� ikj=M �
�

e�2� i=N
�j �

M�1X
kD0

f2kC1 � e�2� ikj=M : (8.48)

The beauty of this is that, for N D 2M, we have now represented the discrete Fourier
transform of the N-periodic discrete function f in terms of the discrete Fourier transforms
of two M-periodic discrete functions f0 D ff2k W 0 � k � M � 1g and f1 D ff2kC1 W 0 �
k � M � 1g. In symbols,

.FDf/j D �FDf0�
j C

�
e�2� i=N

�j � �FDf1�
j (8.49)
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and

.FDf/jCM D �FDf0�
j �

�
e�2� i=N

�j � �FDf1�
j ; (8.50)

for 0 � j � .M � 1/. Assuming that
�FDf0

�
and

�FDf1
�

have already been computed, then
only two multiplications are required to compute each component of .FDf/, for a total of 2N
multiplications. (For each component, there is one multiplication by the factor 1 and another
by the factor ˙e�2� ij=N .)

Now, if M D N=2 also happens to be an even number, then we can apply the same
reasoning to split each of the M-periodic discrete functions f0 and f1 into two M=2-periodic
functions. The discrete Fourier transforms of f0 and f1 can be computed from those of the
corresponding pair using 2M multiplications each, for a total of 2 � 2M D 2N multiplications.
We now see that, if N D 2p is a power of 2, then we can continue this process of splitting
discrete functions into pairs of discrete functions, halving the period at each stage, until we
are left with 2p separate 1-periodic discrete functions — the individual components of the
original function f. Each of these components is equal to its own discrete Fourier transform
(apply the definition (8.19)), so we can start from there, forming pairs, computing discrete
Fourier transforms, and building back up to f. Each stage in the process will require 2N
multiplications, and there are p stages until we reach the discrete Fourier transform of f. The
total number of multiplications required is, therefore, 2Np D 2N log2.N/ , which, for large
values of N , compares favorably to the N2 products required if (8.19) is used. For example,
if N D 216 D 65536 , then 2N log2.N/ is less than 0:05% of N2 . Moreover, many of
the multiplications involved are actually just multiplication by the factor 1; so the savings in
computation time may be even greater than it initially appears. This method is called the fast
Fourier transform.

Some care must be taken in how the individual components of f are paired up if we are
eventually to arrive at the functions f0 and f1 and then, finally, at f. In the first stage, form
separate lists of the components with even subscripts (f0, f2, and so on) and those with odd
subscripts (f1, f3, etc.). Then pair the components in the first half of each list with those in the
second half of the list. Thus, f0 is paired with fN=2, f2 with fN=2C2, and so on up to the pair
fN=2�2 and fN�2. Similarly, f1 is paired with fN=2C1, f3 with fN=2C3, up to the pair fN=2�1 and
fN�1. The discrete Fourier transform of each pair is computed from the transforms of its two
components. For the next stage, the pairs in the even list are paired up according to the same
scheme: those in the first half of the list are paired with those in the second half. In the same
way, the pairs in the first half of the odd list are matched up with the pairs in the second half
of the odd list. This pattern then replicates from stage to stage until, in the penultimate stage,
all of the components with even subscripts are combined in the same N=2-periodic discrete
function, and those with odd subscripts make up another discrete function. In the final stage,
the evens and odds are reunited at last.

Example 8.34. Fast Fourier transform for an 8-periodic discrete function. Let f be an
8-periodic discrete function. To compute the discrete Fourier transform of f via the fast
Fourier transform algorithm, begin with the separate components of f and pair them up
as .f0; f4/, .f2; f6/, .f1; f5/, and .f3; f7/. The discrete Fourier transforms of these pairs are,
respectively,
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f f0 C f4; f0 � f4 g; f f2 C f6; f2 � f6 g; f f1 C f5; f1 � f5 g;
and f f3 C f7; f3 � f7 g:

For the next stage, merge pairs of 2-periodic functions to form two 4-periodic functions:
f .f0; f4/; .f2; f6/ g and f .f1; f5/; .f3; f7/ g. By (8.49) and (8.50), the discrete transforms of
these pairs are, respectively,

f .f0 C f4/ C .f2 C f6/; .f0 � f4/ � i � .f2 � f6/;

.f0 C f4/ � .f2 C f6/; .f0 � f4/ C i � .f2 � f6/ g
and

f .f1 C f5/ C .f3 C f7/; .f1 � f5/ � i � .f3 � f7/;

.f1 C f5/ � .f3 C f7/; .f1 � f5/ C i � .f3 � f7/ g:

Finally, combine the two 4-periodic functions into the single 8-periodic function f D
f Œ.f0; f4/; .f2; f6/�; Œ.f1; f5/; .f3; f7/� g. Again following from (8.49) and (8.50), the discrete
transform is

FDf D f Œ.f0 C f4/ C .f2 C f6/� C Œ.f1 C f5/ C .f3 C f7/�;

Œ.f0 � f4/ � i � .f2 � f6/� C e�� i=4 Œ.f1 � f5/ � i � .f3 � f7/�;

Œ.f0 C f4/ � .f2 C f6/� � iŒ.f1 C f5/ � .f3 C f7/�;

Œ.f0 � f4/ C i � .f2 � f6/� C e�3� i=4 Œ.f1 � f5/ C i � .f3 � f7/�;

f Œ.f0 C f4/ C .f2 C f6/� � Œ.f1 C f5/ C .f3 C f7/�;

Œ.f0 � f4/ � i � .f2 � f6/� � e�� i=4 Œ.f1 � f5/ � i � .f3 � f7/�;

Œ.f0 C f4/ � .f2 C f6/� C iŒ.f1 C f5/ � .f3 C f7/�;

Œ.f0 � f4/ C i � .f2 � f6/� � e�3� i=4 Œ.f1 � f5/ C i � .f3 � f7/� g:
This agrees with (8.19), and if one counts every instance of a coefficient other than 1, the
total number of multiplications involved is only about half of 82 D 64 (though, admittedly,
N D 8 is too small for there to be much of a savings here).

If this is applied to the 8-periodic discrete function with fk D cos.�k=2/ for 0 � k � 7,
the resulting discrete Fourier transform is

FDf D f 0; 0; 4; 0; 0; 0; 4; 0g:

Thus, the amplitude of the cosine wave is evenly divided between two opposite frequencies.
This corresponds to the continuous setting in which the continuous Fourier transform of the
cosine function consists of two impulses at opposite frequencies.
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The fast Fourier transform has a matrix implementation as well. This amounts to factoring
the matrix WN in (8.43) in the case where N D 2p. As in (8.43), an N-periodic discrete
function f is viewed as a column vector,

f D

2
6666664

f0
f1
f2
:::

fN�1

3
7777775

:

The initial step of rearranging the components of f for the first round of pairing is
implemented using a matrix obtained by rearranging the rows of the N � N identity matrix.
Specifically, if ek denotes the kth row of the identity matrix, then let EN denote the matrix

EN WD

2
66666666666666666666664

e0

eN=2

e2

eN=2C2
:::

eN=2�2

eN�2

e1

eN=2C1
:::

eN=2�1

eN�1

3
77777777777777777777775

:

Then ENf achieves the desired reordering of the components of f.
As in (8.43), let wN D e�2� i=N and, for each integer k with 1 � k � p, let Rk be the

2k�1 � 2k�1 diagonal matrix with entries
�
.wN/2p�k

�j
in the jth diagonal position, for 0 � j �

2k�1 � 1. Let I denote the identity matrix (in this case, of dimensions 2k�1 � 2k�1) and define
a 2k � 2k matrix Bk by

Bk WD
"

I Rk

I �Rk

#
: (8.51)

Multiplication by Bk computes the discrete Fourier transform of a 2k-periodic discrete
function from the transforms of a pair of 2k�1-periodic functions. Thus, defining a 2p � 2p

block-diagonal matrix Tk by arranging 2p�k copies of Bk along the diagonal, it follows that
multiplication by Tk computes the discrete transforms of 2p�k different 2k-periodic discrete
functions. This corresponds to the kth stage of the fast Fourier transform algorithm. The end
result of this algorithm is therefore described by the product

FDf D Tp � Tp�1 � � � T1 � EN f: (8.52)
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For example, when N D 4, we get

E4 D

2
6664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3
7775 ; T1 D

2
6664

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

3
7775 ;

and

T2 D

2
6664

1 0 1 0
0 1 0 �i
1 0 �1 0
0 1 0 i

3
7775 :

With f D f f0; f1; f2; f3 g, we have

FDf D T2 � T1 � E4 f

D

2
6664

1 0 1 0
0 1 0 �i
1 0 �1 0
0 1 0 i

3
7775

2
6664

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

3
7775

2
6664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3
7775

2
6664

f0
f1
f2
f3

3
7775 :

Each of the matrices Tk has the property that there are only two nonzero entries in each
row and each column. Thus, the matrix product in (8.52) requires only 2N multiplications for
each factor. There are p factors in all, not counting EN (which requires no multiplications),
for a total of 2Np D 2N log2.N/ multiplications, as we found before. Again, many of these
multiplications involve the factor 1 .

8.12 Fan beam geometry

In order to implement the discrete filtered back-projection formulas (8.2) and (8.40), it is
necessary to know the values of Rf .t; �/ for a variety of choices of t for each of the selected
angles � . Conceptually, we have envisioned a scanning machine that sends out a set of
parallel X-ray beams at each selected angle and records the corresponding values of the
Radon transform. Such a machine would have to have a strip of distinct transmitters spaced at
an appropriate sample spacing and able to rotate as a single unit during the scanning process.
Each setting would correspond to a particular value of � D k�=N , and, once the readings
had been taken, the corresponding summand in (8.40) could be calculated. This corresponds
to the parallel beam geometry that has been the basis of our analysis all along.

In practice, however, it is easier to design a machine that has a single X-ray beam
transmitter that emits a fan of beams. An arc of detectors on the other side measures the
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Fig. 8.10. Different fans yield parallel beams.

values of the Radon transform along the lines corresponding to the beams in the fan. The
trouble is that each transmission includes beams at a variety of values of � . Observe, though,
that if two beams in the fan make an angle of � with each other when they are emitted, then,
when the transmitter itself has been rotated by the same angle � and the two beams are
emitted again, one of the new beams will be parallel to one of the beams from the previous
transmission. (See Figure 8.10 for an illustration of this.) In other words, once the scanning
process has been completed, it is possible to reorganize the fan beam data into an equivalent
collection of parallel beam data. The image reconstruction algorithm can then be applied to
this reorganized data to produce an image. This approach is called the fan beam geometry.

Rather than go into more detail here, we leave an examination of the fan beam geometry
as a topic for further study. Other scanning geometries that have been developed for use
in later generation scanning machines include the spiral beam and cone beam geometries,
both of which facilitate the collection of data for more than one slice at the same time. The
overarching goal in the design of new geometries is to lessen the radiation exposure of the
patient by increasing the efficiency of the collection of the X-ray data. More information can
be found in the article [52] and the books [12] and [32].

8.13 Exercises

1. Consider the low-pass cosine filter (7.29):

A.!/ D j!j � cos.�!=.2L// � uL.!/

D
(

j!j cos.�!=.2L// if j!j � L
0 if j!j > L

:

Following the format used for the Shepp–Logan and Ram–Lak filters in Section 8.3,

(a) compute the inverse Fourier transform F�1A , and



8.13 Exercises 135

(b) show that

.F�1A/.�n=L/ D
�

2 � L2

�3

�
�
�

� � cos.�n/

.1 � 4n2/
� 2 � .1 C 4n2/

.1 � 4n2/2

�

for all integers n .

(c) Use R, as in example 8.5, to plot the filter A and the sampled points of its inverse
Fourier transform.

2. Prove Proposition 8.9: For discrete functions f , g , and h , and any constant ˛,

(a) f N�g D g N�f ,
(b) f N�.g C h/ D f N�g C f N�h , and
(c) f N�.˛g/ D ˛.f N�g/ .

(Assume that all of the sums converge.)

3. Prove Proposition 8.22: For two discrete N-periodic functions f and g ,

FD.f � g/ D 1

N
.FDf / N� .FDg/ : (8.53)

Note that this is analogous to (7.14).

4. For a discrete function f , define the conjugate function f by setting f k D fk for every
k . In analogy to (5.10), prove Proposition 8.23:

�FDf
�

j D .FDf /�j (8.54)

for all j . (Note that .FDf /�j D .FDf /N�j by periodicity.)

5. Prove Proposition 8.24, the discrete Rayleigh–Plancherel theorem: For an N-periodic
discrete function f ,

N�1X
nD0

jfnj2 D 1

N

N�1X
nD0

j.FDf /nj2 : (8.55)

6. Prove the identity (8.20):

1=2 C cos.�/ C cos.2�/ C � � � C cos.M�/ D sin..M C 1=2/�/

2 � sin.�=2/
;

for all natural numbers M and all real � . (The function DM.�/ D sin..MC1=2/�/
sin.�=2/

is called
the Dirichlet kernel, after Peter Gustav Lejeune Dirichlet (1805–1859). The convolution
of DM with a function f having period 2� is equal to the Mth-degree Fourier series
approximation to f .)
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7. On the interval 0 � x � 1 , write down a formula for the piecewise linear function F
determined by the values F.0/ D 0:5 , F.1=3/ D 0:3 , F.2=3/ D 0:6 , and F.1/ D 0:5 .
(The formula should consist of three line segments.) Then use this formula to compute
the values F.0:2/ and F.0:7/ .

8. Recall the formula (8.32) for Lagrange interpolation of a function f using N C 1 data
points .x1; f .x1//; : : : ; .xNC1; f .xNC1// :

f .x/ D
NC1X
jD1

f .xj/ �
Q

k¤j .x � xk/Q
k¤j .xj � xk/

:

Verify that, if x D xn for some n between 1 and N C 1 , then the formula yields
f .x/ D f .xn/ . (Thus, the formula agrees with the data.)

9. (a) Verify that the cubic spline given in equation (8.31) passes through the points .0; 1/,
.1; 0:5/, .2; 4/, and .3; 3/.

(b) Verify that the cubic pieces on adjacent subintervals have the same first- and second-
order derivatives at the transition.

(c) Evaluate h 0
1.0/ and h 0

3.3/.
(d) Compute a cubic spline that passes through the same sample points but has derivative

0 at each end point.
(e) Use a graphing device to compare the graphs of the spline in equation (8.31) and the

spline just computed in part (d).

10. Use formula (8.32) to compute the formula for the polynomial that interpolates the
sample points .0; 1/, .1; 0:5/, .2; 4/, and .3; 3/. Compare the graph of this polynomial
to those of the cubic splines from exercise 9.

11. Consider the sampled data .0; 1/, .1; 0:5/, .2; 4/, and .3; 3/. We may view this as
corresponding to a discrete function g where g.0/ D 1, g.1/ D 0:5, g.2/ D 4, and
g.3/ D 3. Use formula (8.35) to compute the interpolated values IW.g/.0:6/, IW.g/.1:2/,
and IW.g/.2:4/ for each of the following weight functions. (Note that the sample spacing
is � D 1.)

(a) W D u1=2 ;
(b) W D V

;
(c) W W x 7! sin.�x/=.�x/ ;
(d) W as in (8.37).

12. Apply the work in Example 8.34 to the 8-periodic discrete function with fk D cos.�k=2/

for 0 � k � 7. Verify that the resulting discrete Fourier transform is

FDf D f 0; 0; 4; 0; 0; 0; 4; 0g:

As observed above, this divides the amplitude of the cosine wave among two opposite
frequencies, analogous to the continuous Fourier transform of the cosine function.
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Algebraic Reconstruction Techniques

9.1 Introduction

To this point, we have studied how Fourier transform methods are used in image
reconstruction. This is the approach taken in the seminal work of Cormack [14] and used in
the algorithms of today’s CT scan machines. However, the first CT scanner, designed in the
late 1960s, by Godfrey Hounsfield, used an approach grounded in linear algebra and matrix
theory to generate an image from the machine readings. Algorithms that adopt this point of
view are known as algebraic reconstruction techniques, or ART, for short. In this chapter,
we look at a few basic mathematical elements of ART.

Where the Fourier transform methods begin with a continuous theory — the filtered back-
projection formula of Theorem 6.2 — which is then modeled using discrete methods, ART
treats the problem of image reconstruction as a discrete problem from the start. Any image
that we produce will be constructed inside a rectangular grid of picture elements, or pixels.
The number of pixels in a given image may be large, but it is nonetheless finite, typically on
the order of 105. For example, there are 65536 pixels in a 256-by-256 grid. To form an image,
a specific color value is assigned to each pixel. For instance, the color value assigned to a
given pixel might be a greyscale value, a number between 0 (= black) and 1 (= white), that
represents the density or attenuation coefficient of the matter in the sample at the location
of the given pixel. ART techniques use a system of constraints derived from the machine
readings to compute these color values.

So, suppose an image is to be constructed in a K-by-K grid of pixels. Each pixel is really
a small square in the plane. For convenience, number the pixels like so: 1 through K from
left to right across the top row; K C 1 through 2K across the second row; and so on until, in
the bottom row, we find pixels numbered .K � 1/K C 1 through K2 . Next, define the pixel
basis functions b1; : : : ; bK2 by
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bk.x; y/ D
(

1 if .x; y/ lies inside pixel number k,
0 if .x; y/ does not lie inside pixel number k

(9.1)

for k D 1; 2; : : : ; K2 and points .x; y/ in the plane. If we assign the color value xk to the
kth pixel, then the resulting image will be represented by the function

ef .x; y/ D
K2X

kD1

xk � bk.x; y/ (9.2)

for each point .x; y/ lying inside the overall region covered by the grid. Applying the Radon
transform R to both sides of this equation, and using the linearity of R , we get, for each
choice of t and � ,

Ref .t; �/ D
K2X

kD1

xk � Rbk.t; �/ : (9.3)

In practice, the X-ray machine gives us the values of Ref .t; �/ for some finite set of lines
`t; � . For convenience, let’s say these known values correspond to .t1; �1/ , .t2; �2/ , : : :,
.tJ; �J/ for some positive integer J. Then,

let pj D Ref .tj; �j/ ; for j D 1; 2; : : : ; J :

The equation (9.3) can now be written as a system of equations

pj D
K2X

kD1

xk � Rbk.tj; �j/ for j D 1; : : : ; J: (9.4)

Our next observation is that, since the pixel basis function bk has the value 1 on its pixel and
0 elsewhere, the value of the integral Rbk.tj; �j/ is equal to the length of the intersection of
the line `tj; �j with pixel number k. In principle, these values are easy to compute. (Caveat:
If we allow finite-width X-ray beams, rather than zero-width, then this computation becomes
more complicated.) So, let’s denote by rj k the length of the intersection of the line `tj; �j with
pixel number k; that is,

let rj k D Rbk.tj; �j/ for j D 1; : : : ; J and k D 1; : : : ; K2: (9.5)

With this notation, the system (9.4) can be written as

pj D
K2X

kD1

xk � rj k for j D 1; : : : ; J: (9.6)
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This is a system of J linear equations in K2 unknowns (x1, : : :, xK2 ). Typically, both J and
K2 are on the order of 105, so the system is large. However, any particular line `tj; �j passes
through relatively few of the pixels in the grid, on the order of K out of K2 total pixels. Thus,
most of the values rj k are equal to 0, meaning that the system (9.6) is large but sparse. With
typical values of J and K, only about one percent of the entries in the coefficient matrix of
the system are nonzero.

The system (9.6) can also be expressed in matrix form Ax D p by taking A to be
the J � K2 matrix whose jth row is the (row) vector rj D Œrj1; : : : ; rjK2 � , x to be the

(column) vector in R
K2

with kth entry xk, and p to be the (column) vector in R
J with jth

coordinate pj .
Some computational concerns arise from this approach to the image reconstruction

problem. For one thing, the system of equations we have to solve is large — typically
on the order of 105 equations. Each sampling of the Radon transform produces an equation
in the system while each pixel corresponds to an unknown, the color value for that pixel. If the
system of equations is overdetermined, with more equations than unknowns, then the system
likely does not have an exact solution. If the system is underdetermined, with more unknowns
than equations, then there may be infinitely many solutions, only one of which could possibly
be the correct solution. A typical scan might include 200 X-ray measurements at each of
180 different directions, for a total of 36000 equations in the system. A grid of 160 � 160
pixels gives 25600 unknowns and an overdetermined system. To get an image with higher
resolution, though, we may want to use a grid of 256 � 256 pixels, or 65536 unknowns.
This results in a system that is heavily underdetermined, so the iterative algorithms discussed
below are ineffective. For this reason, among others, iterative algorithms are not widely used
in commercial CT machines. In any case, due to errors in measurement in sampling the Radon
transform, the equations are only estimates to begin with. So, again, the system is not likely
to have an exact solution. The fact that the coefficient matrix is sparse, with only a small
proportion of nonzero entries, also has a direct effect on the computational complexity.

We now look at several different methods for arriving at an approximate solution to a
system of linear equations. The first is an iterative approach called Kaczmarz’s method, while
the others are based on least squares approximation.

9.2 Kaczmarz’s method

Kaczmarz’s method is an iterative procedure, or algorithm, for approximating a solution to
a linear system Ax D p . If we denote by rj the jth row of the matrix A and by pj the
jth coordinate of the vector p , then the system Ax D p is the same as having rj � x D pj

for every value of j . Kaczmarz’s method works by producing a sequence of vectors each
of which satisfies one of the individual equations rj � x D pj . The first research article to
explore the application of algebraic reconstruction techniques to medical imaging was [22],
which appeared in 1970. The principal technique employed therein for the reconstruction
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of images turned out to be the same as Kaczmarz’s method. A further elaboration of this
approach can be found in [25].

9.2.1 Affine spaces

Before looking at Kaczmarz’s method itself, we make the following definition.

Definition 9.1. For a fixed n-dimensional vector r and a number p , the affine space Sr; p

is defined by

Sr; p D fx 2 R
n W r � x D p g :

Note that the affine space Sr; p is a subspace of R
n if, and only if, p D 0 .

We have already seen an important example of affine spaces in the lines `t; � . Each point
on `t; � is the terminal point of a vector x D h t cos.�/ � s sin.�/; t sin.�/ C s cos.�/ i for
some value of the parameter s. Letting r D h cos.�/; sin.�/ i , we compute

r � x D t cos2.�/ � s sin.�/ cos.�/ C t sin2.�/ C s cos.�/ sin.�/

D t.cos2.�/ C sin2.�//

D t

regardless of the value of s . Thus, each line `t; � is an affine space. If t D 0 , then `0; � is a
line through the origin and, so, is a subspace of R

2 .
Every affine space can be viewed as a copy of a subspace that has been shifted by a fixed

vector. For example, for each fixed value of � , the line

`0; � D f h �s sin.�/; s cos.�/ i W �1 < s < 1 g

forms a subspace of R
2 . For each real number t , we then have that

`t; � D h t cos.�/; t sin.�/ i C `0; � :

To formulate the same notion slightly differently, let r D h cos.�/; sin.�/ i and x0 D
h t cos.�/; t sin.�/ i . Then r � x0 D t . The subspace `0; � consists of the set of all vectors x
for which r � x D 0. Thus, the line `t; � consists of the terminal points of all vectors of the
form x0 C x , where r � x D 0 .

Similarly, for any vector r and any real number p , consider the affine space Sr; p and
the subspace Sr; 0 . Observe that, for x0 and x1 in Sr; p , the vector xh D x1 � x0 satisfies
the homogeneous equation r � xh D 0. That is, xh is in the subspace Sr; 0 . Since x1 D
xh C x0 , it follows that every element of the affine space Sr; p can be obtained by adding
the vector x0 to some element of the subspace Sr; 0 . This is reminiscent of the use of a
particular solution together with the general homogeneous solution to obtain the general
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solution to a nonhomogeneous linear differential equation or a nonhomogeneous system of
linear equations.

A final crucial observation is that, since the vector r is orthogonal to the subspace Sr; 0 ,
and, since the affine space Sr; p is a parallel translation of this subspace, then it follows that
the vector r itself is orthogonal to the affine space Sr; p .

Definition 9.2. Affine projection. Given a vector u and an affine space Sr; p for some vector
r and some number p , the affine projection of u in Sr; p is the vector u� in Sr; p that is
closest to u amongst all vectors in Sr; p .

Now, in order to move from u to the closest point in the affine space, it is evident that we
should move orthogonally to the affine space. According to our previous observations, this
means that we should move in the direction of the vector r itself. Thus, the vector u� that
we seek should have the form u� D u � �r for some number � .

Substituting u� D u � �r into the equation r � u� D p and solving for � yields

� D .r � u/ � p

r � r
:

Thus, we have proven the following proposition.

Proposition 9.3. The affine projection u� of the vector u in the affine space Sr; p is given by

u� D u �
�

.r � u/ � p

r � r

�
r : (9.7)

9.2.2 Kaczmarz’s method

Now we put our knowledge of affine spaces to work. In matrix form, let A denote the J � K2

matrix whose ith row is given by the vector ri , and take p to be the column vector with
ith coordinate pi , for i D 1; : : : ; J. Then the equation Ax D p describes the linear system
in (9.6). Recall that our goal is to find an approximate solution to a linear system Ax D p .
Again denote the ith row of A by ri and the ith coordinate of p by pi . Then each of the
equations ri � x D pi describes an affine space. Kaczmarz’s method proceeds by starting
with an initial guess at a solution, a vector of prospective color values, and then computing
the affine projection of this initial guess onto the first affine space in our list. This projection is
then projected onto the next affine space in the list, and so on until we have gone through the
entire list of affine spaces. This constitutes one iteration. The result of this iteration becomes
the starting point for the next iteration.

In detail, the method proceeds as follows.

(i) Select a starting guess for x; call it x0 .
(ii) Next set x0; 0 D x0.
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(iii) The inductive step is this: Once the vector x0; j�1 has been determined, define

x0; j D x0; j�1 �
�

x0; j�1 � rj � pj

rj � rj

�
rj : (9.8)

We have used the affine projection formula (9.7) from Proposition 9.3.
(iv) Note that if the matrix A has J rows, then the vectors x0; 1, x0; 2, : : :, x0; J will be

computed.
(v) Once x0; J has been computed, define x1 D x0; J and begin the process again starting

with x1 . That is, now set x1; 0 D x1 and compute the vectors x1; 1 , x1; 2 , : : :, x1; J , as
in (9.8).

(vi) Then let x2 D x1; J and repeat the process starting with x2; 0 D x2 .
(vii) Stop when we’ve had enough!

There are, as we might expect, some computational concerns with this method. In prin-
ciple, the successive vectors x0 , x1 , x2 , : : : should get closer to a vector that satisfies
the original system Ax D p. However, the convergence may be quite slow, meaning that
many steps of the iteration would have to be applied to get a good approximant. Also, if
the system has no solution, then the vectors computed from the algorithm might settle into a
specific pattern, called an attractor in dynamical systems theory, or might even exhibit chaotic
behavior.

Example 9.4. Apply Kaczmarz’s method to the system consisting of just the two lines x C
2y D 5 and x � y D 1 . So r1 D h 1; 2 i , r2 D h 1; �1 i , p1 D 5 , and p2 D 1 . With the
initial guess x0 D h 0:5; 0:5 i , the diagram on the left in Figure 9.1 shows that the solution
h 7=3; 4=3 i will quickly be found.

However, when we include the third line 4x C y D 6 (so r3 D h 4; 1 i and p3 D 6 ), then
the successive iterations settle into a triangular pattern, shown in the diagram on the right in
the figure.

Example with R 9.5. In an implementation of Kaczmarz’s method, one can choose to save
only the last estimate of the solution, after all cycles have been completed. Alternatively, one
can generate a matrix where each successive row is an intermediate estimate, either from
a single equation or from a full cycle. We present two versions here. The first approach is
applied to the systems of equations in Example 9.4 and was used to produce Figure 9.1.

##Kaczmarz method: save next estimate from each eqn.
kacz.v0=function(mat,rhs,ncycles){
neq=nrow(mat)
V=matrix(double((neq*ncycles+1)*ncol(mat)),
neq*ncycles+1,ncol(mat))
V[1,]=rep(0.5,2)
for (i in 1:ncycles){
for (j in 1:neq){
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Fig. 9.1. On the left, Kaczmarz’s method converges quickly to the point of intersection of two lines. On the
right, the successive iterations settle into a triangular pattern for a system of three lines.

V[neq*(i-1)+j+1,]=ifelse(mat[j,]==0,V[neq*(i-1)+j,],
V[neq*(i-1)+j,]-((sum(V[neq*(i-1)+j,]*mat[j,])-
rhs[j])/sum(mat[j,]*mat[j,]))*mat[j,])}}
list(V=V)}
##For Figure 09_1
R1=matrix(c(1,2,1,-1),2,2,byrow=T)#2 lines
p1=c(5,1)
V1=kacz.v0(R1,p1,2)$V
R2=matrix(c(1,2,1,-1,4,1),3,2,byrow=T)#3 lines
p2=c(5,1,6)
V2=kacz.v0(R2,p2,3)$V
#plot fig09_1a
plot(V1[,1],V1[,2],type="l",lwd=2,xlab="x",ylab="y")
plot(V2[,1],V2[,2],type="l",asp=1,xlab="x",ylab="y",lwd=2)

In our second version of Kaczmarz’s method, all intermediate estimates are computed,
but only the final estimate is saved. This version will be used in the CT scan image
reconstructions that follow.

##Kaczmarz’s method; save only most recent estimate
kaczmarz.basic=function(mat,rhs,numcycles){
numeq=nrow(mat)
sol.est=rep(0.5,ncol(mat))#initial "guess" of all 0.5s
for (i in 1:numcycles){
for (j in 1:numeq){
sol.est=ifelse(mat[j,]==0,sol.est,sol.est-
((sum(sol.est*mat[j,])-rhs[j])/sum(mat[j,]*mat[j,]))*

mat[j,])
}}list(sol.est=sol.est)}
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Fig. 9.2. Kaczmarz’s method applied to a crescent-shaped phantom: On the left, a 40 � 40 image grid and
2460 values of the Radon transform; on the right, a 100 � 100 image grid and 9090 values of the Radon
transform.

Before looking at an image created using Kaczmarz’s method, we state, without proof, the
main convergence theorem for this algorithm. (For a proof, see [17] or [39].)

Theorem 9.6. If the linear system Ax D p has at least one solution, then Kaczmarz’s method
converges to a solution of this system. Moreover, if x0 is in the range of AT , then Kaczmarz’s
method converges to the solution of minimum norm.

The convergence result in Theorem 9.6 generally is not relevant in medical imaging,
where the linear systems encountered tend to be indeterminate and where, in any case, it
is computationally feasible to run only a few iterations of Kazcmarz’s method.

The images in Figure 9.2 are reconstructions of the crescent-shaped phantom illustrated
in Figure 2.8 and defined by the attenuation function in (2.11). For each image, five full
iterations of Kaczmarz’s method were applied with an initial vector x0 having every
coordinate equal to 0:5 . (In other words, the starting point was taken to be a neutral grey
image.) For the coarser image, the Radon transform of the phantom was sampled using
�t D 0:05 on the interval �1 � t � 1 , with angle increments of �� D �=60 , for a total of
2460 different values. The corresponding system of equations, (9.6), is overdetermined in this
case. The second image has a grid with 10000 pixels and used �t D :02 and �� D �=90 ,
for a total of 9090 values of the Radon transform. With these settings, the system (9.6) is
underdetermined. These images show the crescent, but do not necessarily compare favorably
to the reconstructions in Figures 8.8 and 8.9.

Example with R 9.7. To create an image from X-ray data using Kaczmarz’s method, as in
Figure 9.2, we must compute the matrix whose entries are the lengths of the intersections
of the lines in the scan with the pixels in the image grid. Since each pixel is a small square,
we can follow the basic approach from Example 2.15 above to compute each entry of the
coefficient matrix. In R, it is convenient to encode this as a function of the set of lines and
the locations of the pixels. For instance, if the general procedure is radon.pix, then the
output for a specific scan and selected image grid might be
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rad.mat=radon.pix(grid.theta,grid.t,grid.cx,grid.cy)$coef.

Next, the right-hand sides are the X-ray data values from the scan, or, in this exercise,
the values of the Radon transform of a phantom. Notice that the coefficient matrix can
be re-used, while the right-hand sides will change with each scan. The color values for
the image are computed by applying the procedure kaczmarz.basic from Example 9.5.
(In this exercise, rad.mat is the coefficient matrix just computed and rp1 is the vector of
X-ray data for the phantom. Then image.mat is the matrix of color values.)

sys2=kaczmarz.basic(rad.mat,rp1,5)$sol.est
image.mat=matrix((sys2-min(sys2))/(max(sys2)-min(sys2)),
nrow=K,byrow=T)

Finally, we plot each pixel using the polygon command, seen in Example 1.1. This
time, each square pixel is its own polygon. The grid is defined by the sets xval and yval
of x- and y-coordinates, respectively.

plot(c(-1,1), c(-1,1), type = "n",axes="",asp=1)
for (i in 1:K){
for (j in 1:K){
polygon(c(xval[j],xval[j+1],xval[j+1],xval[j],xval[j]),
c(yval[i],yval[i],yval[i+1],yval[i+1],i),
col = gray(image.mat[i,j]),border = NA)}}

One concern about the use of Kaczmarz’s method in the context of tomography, as
mentioned before, is that the sheer size of the system of equations involved can be an
impediment. Also, each of the values rjk represents the length of the intersection of one
of the X-ray beams with one of the pixel squares in the image grid. Thus, as observed before,
most of these values are zeros. The formula for computing xk; j from xk; j�1 only alters
xk; j�1 in those components that correspond to the pixels through which the jth beam passes.
To streamline the computation of xk; j�1 � rj , we could store the locations of the nonzero
entries of rj . In its favor, Kaczmarz’s method can be applied to the fan beam and cone beam
geometries without re-binning the scanner data, since each X-ray in the scan simply defines
another affine subspace in the system.

9.2.3 Variations of Kaczmarz’s method

Perhaps the most commonly employed variation of Kaczmarz’s method involves the
introduction of so-called relaxation parameters in the crucial step (9.8) of the algorithm.
Specifically, for each j and k , let �jk satisfy 0 < �jk < 2 and replace the formula in (9.8)
with the formula

xk; j D xk; j�1 � �jk �
�

xk; j�1 � rj � pj

rj � rj

�
rj : (9.9)
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For �jk D 1 this is the same as before. For 0 < �jk < 1 , the vector xk; j�1 is projected
only part of the way to the affine space Srj; pj . When 1 < �jk < 2 , the vector xk; j�1 is
projected to the other side of Srj; pj . Note that, if �jk D 2 , then the vector xk; j is just the
reflection of xk; j�1 across Srj; pj and there is no improvement in the proximity to a solution.
This is the reason for the restriction �jk < 2 . In fact, the usual requirement is that the value
of �jk be bounded away from 0 and 2; that is, there should be numbers ˛ and ˇ such
that 0 < ˛ � �jk � ˇ < 2 for all j and k. The picture on the left in Figure 9.3 shows
a reconstruction of a phantom using Kaczmarz’s method, where the relaxation parameter
at each step is a number between 0:5 and 1:5 that was chosen randomly from a uniform
distribution. The result is virtually indistinguishable from the reconstruction using the basic
Kaczmarz method, shown on the right in Figure 9.2.

Example with R 9.8. Relaxation parameters can be introduced into the computer implemen-
tation of Kaczmarz’s method with a simple modifcation to the procedure in 9.5. For instance,
the relaxation parameter can be chosen randomly at each step, like so.

#Kaczmarz’s method with relaxation
kaczmarz.relax=function(mat,rhs,numcycles){
numeq=nrow(mat)
solB=rep(0.5,ncol(mat))
for (j in 1:numcycles){
for (i in 1:numeq){
solB=ifelse(mat[i,]==0,solB,solB-runif(1,min=0.5,max=1.5)*
((sum(solB*mat[i,])-rhs[i])/sum(mat[i,]*mat[i,]))*mat[i,])}}
list(solB=solB)}

Then continue as before to compute the coefficient matrix and so on.

The additional control over the projection offered by the relaxation parameters can be
used to facilitate finding an acceptable approximate solution to an indeterminate system.
Alternatively, we can use this additional control to modify the original system of linear
equations by replacing it with a system of inequalities instead. To do this, we select, for
each j , a (small) positive number "j and consider the inequalities

pj � "j � rj � x � pj C "j :

A solution to this system of inequalities is a vector x� that, instead of lying in the intersection
of some collection of affine spaces, lies in close proximity to those spaces. Geometrically, if
we think of an affine space as a higher-dimensional plane sitting inside a many-dimensional
space, then vectors in proximity to an affine space form a higher-dimensional slab, with
thickness 2 � "j . The solution vector x� would lie inside these slabs. The use of relaxation
parameters in the variation of Kaczmarz’s method enables us to control the projection of
each successive vector in the iteration into the next slab. When inequalities are used instead
of equations, the problem is called a feasibility problem rather than an optimization problem.
For the picture on the right in Figure 9.3, random noise, from a Gaussian with mean 0 and
standard deviation 0:02, was added to each value of the Radon transform (the pj in the
application of Kaczmarz’s method).
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Fig. 9.3. Variations of Kaczmarz’s method: On the left, the relaxation parameter at each step is a number
between 0:5 and 1:5 chosen randomly from a uniform distribution; on the right, random Gaussian noise
has been added to the values of the Radon transform.

The article [11] provides a nice introduction to these ideas, while [10] and [22] offer more
details of these methods. A much more general approach to feasibility problems that includes
Kaczmarz’s method and its variants can be found in the comprehensive article [3].

9.3 Least squares approximation

For a given M � N matrix A and a given vector p in R
M, the system Ax D p may not have a

solution. One approach to finding an approximate solution is to find the vectorby of the form
by D Abx such thatby is closest to p amongst all vectors of this form. Thus, the goal of least
squares approximation is to find a vectorbx in R

N such that

jjAbx � pjj D min
x2RN

jjAx � pjj: (9.10)

In other words, we wish to find the vector Abx in the range of the matrix A that is closest to p
amongst all elements of the range of A. Because the magnitude of a vector can be expressed
as a sum of squares, this form of approximation is called least squares approximation.

Geometrically, if we take an arbitrary element Ax in the range of A and consider the
projection of the vector .Ax � p/ onto the range of A , then the foot of this projection will
be a vector in the range of A that is at least as close to p as the original vector Ax was.
Thus, the closest element to p in the range of A is the element Abx for which the foot of
the projection of

�
Abx � p

�
onto the range of A is the vector Abx itself. This means that the

vector
�
Abx � p

�
must be orthogonal to the range of A . By Corollary B.8 in Appendix B, this

means that the vector
�
Abx � p

�
must lie in the nullspace of the matrix AT . In other words,

the vector bx must satisfy the equation
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AT �Abx � p
� D 0 ; (9.11)

or what is the same thing,

ATAbx D ATp: (9.12)

This last equation is called the normal equation.

Definition 9.9. A least squares solution to the equation Ax D p is a vector bx that satisfies
the normal equation (9.12). In this case, the vector Abx is the closest element in the range of
A to the vector p .

Notice that, in the case where the matrix ATA is invertible, then the normal equation
(9.12) yields the least squares solution

bx D �
ATA

��1
ATp: (9.13)

In general, however, ATA need not be invertible, in which case the least squares solution bx
is not unique. Nonetheless, the range element by D Abx that is closest to p is unique.

Example 9.10. Take A D
2
4�1 2

2 �3
�1 3

3
5 and p D

2
44

1
2

3
5 . Show that ATA is invertible and that

the (unique) least squares solution, computed from (9.13), is bx D
"

3
2

#
. Compute jjAbx� pjj

in this case.

Example 9.11. Take A D

2
6664

1 1 0
1 1 0
1 0 1
1 0 1

3
7775 and p D

2
6664

1
3
8
2

3
7775 . Show that ATA is not invertible. Find

all solutions to the normal equation (9.12) and show that the (unique) element closest to p

in the range of A is by D

2
6664

2
2
5
5

3
7775 . Compute jjby � pjj in this case.

Here is an alternate approach to solving the least squares approximation problem that
leads us again to the normal equation (9.12). For a given M � N matrix A and a given vector
p in R

M , define a real-number-valued function F W RN ! R by

F.x/ WD jjAx � pjj2 D .Ax � p/ � .Ax � p/ ; for all x in R
N :
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One can show that the gradient vector of F satisfies

rF.x/ D 2
�
ATAx � ATp

�
; for all x in R

N : (9.14)

The least squares solution bx produces a minimum value for F and, hence, the gradient
of F at bx must vanish. That is, rF.bx/ D 0 for the least squares solution bx . According to
(9.14), then, the least squares solution bx satisfies the normal equation ATAbx D ATp .

One computational concern associated with the least squares method in the context of
imaging is that the matrix ATA in the normal equation (9.12) is huge, on the order of K2-
by-K2 . Also, the matrix ATA might not be sparse even though A is. Another concern is
that the matrix ATA might not be invertible or that its inverse might be difficult to compute.
Moreover, round-off errors can be fatal. For instance, a matrix entry that ought to be 0 but
shows up as a tiny nonzero number can wreck the process of inverting a matrix. Similarly, an
entry that ought to be a tiny nonzero number but shows up as 0 can also have a deleterious
effect.

9.4 Pseudoinverses and least squares

Returning to the problem of minimizing jjAx�pjj , suppose x0 and x1 are any two solutions to
the normal equation, ATAx D ATp. Then ATA.x0 �x1/ D 0 . That is, the difference .x0 �x1/

lies in the nullspace of ATA. From Theorem B.9, this means that .x0 � x1/ is in the nullspace
of A. It follows that there is a unique solution to the normal equation that is also orthogonal
to the nullspace of A. (If there were two such solutions, then their difference would be in
the nullspace of A and at the same time orthogonal to the nullspace of A; so their difference
would have to be 0.) Let’s denote this special solution by xC. Importantly, the norm of xC
is as small as possible for solutions of the normal equation. This is so because, as we just
saw, any other solution must differ from xC by a component in the nullspace of A, orthogonal
to xC. Adding this orthogonal component can only increase the norm, by the Pythagorean
theorem. This uniquely determined vector xC is called the Moore–Penrose solution to the
normal equation. Note that xC lies in the range of AT , from Corollary B.8.

When the matrix ATA happens to be invertible, then the nullspace of ATA, and, so, too,
the nullspace of A, consists just of the zero vector. In this case, as we observed earlier, the
normal equation (9.12) yields the unique least squares solution xC D �

ATA
��1

ATp, which
coincides with the Moore–Penrose solution.

Example 9.12. Going back to Example 9.11, let A D

2
6664

1 1 0
1 1 0
1 0 1
1 0 1

3
7775 and p D .1; 3; 8; 2/. In

this case, ATA is not invertible. The nullspace of A is the set ft.�1; 1; 1/ W t 2 Rg and the
set of solutions to the corresponding normal equation is given by f.5; �3; 0/ C t.�1; 1; 1/ W
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t 2 Rg. The norm of a typical solution is
p

.5 � t/2 C .�3 C t/2 C t2, which is minimized
when t D 8=3. Thus, the Moore–Penrose solution is xC D .5; �3; 0/ C .8=3/.�1; 1; 1/ D
.7=3; �1=3; 8=3/. Note that this is, indeed, orthogonal to the vector .�1; 1; 1/ and, hence,
to the nullspace of A.

To find the Moore–Penrose solution xC in Example 9.12, we first found the general
solution to the normal equation ATAx D ATp and then figured out which solution had the
minimum possible norm. A different approach is based on the singular value decomposition,
discussed in Appendix B. (See (B.5), (B.6), and (B.7).)

Using the singular value decomposition (SVD) of A, we can rewrite our original equation,
Ax D p, as U˙VTx D p. Pretending for a moment that the matrix ˙ is invertible (though
we have no right to think this would be so!), we get the “solution” x D V“˙�1”UTp, where
“˙�1” is in quotation marks to remind us that it is possibly fictitious. But what would “˙�1”
look like if it did exist? Well, where ˙ has the entry �j on its diagonal, now we would want
the reciprocal value 1=�j. This is impossible, of course, when �j D 0. Nonetheless, let’s push
this idea as far as it can go: Given our M � N matrix ˙ , let ˙C denote the N � M matrix with
diagonal entry 1=�j whenever �j ¤ 0 and 0 whenever �j D 0. (That is, we just leave any 0s
on the diagonal of ˙ as they are, take reciprocals of the nonzero entries, and transpose the
whole thing.) This matrix ˙C is called the pseudoinverse of ˙ . Each of the matrix products
˙C˙ and ˙˙C has an r � r identity matrix in its upper left corner, where r is the number
of nonzero singular values. Now define the pseudoinverse of the matrix A by

AC D V˙CUT :

The Moore–Penrose solution to the normal equation is now given by

xC D ACp D �
V˙CUT� p :

To see that this really works, we compute

ATAxC D �
ATAV

�
˙CUTp

D VD˙CUTp .since ATA D VDV�1/

D V˙TUTp .since D˙C D ˙T/

D ATp .since AT D �
U˙VT�T D V˙TUT/:

Thus, xC satisfies the normal equation. Moreover, xC is, by its definition, a linear combina-
tion of those columns of V that correspond to the nonzero singular values of A. The subspace
spanned by these columns of V is orthogonal to the nullspace of A, which is spanned by the
remaining columns of V . Therefore, the vector xC is orthogonal to the nullspace of A, which
is the other property required of the Moore–Penrose solution to the normal equation.
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Example 9.13. Returning to Example 9.12, we take A D

2
6664

1 1 0
1 1 0
1 0 1
1 0 1

3
7775 and p D .1; 3; 8; 2/,

and we consider the equation Ax D p. Example B.11, in Appendix B, shows that ATA has
the eigenvalue decomposition ATA D VDVT , where

D D
2
46 0 0

0 2 0
0 0 0

3
5 and V D

2
42=

p
6 0 �1=

p
3

1=
p

6 �1=
p

2 1=
p

3
1=

p
6 1=

p
2 1=

p
3

3
5 :

Next we compute two units vectors, u1 and u2, such that Av1 D p
6u1 and Av2 D p

2u2.
Two additional unit vectors, u3 and u4 are chosen to produce a full orthonormal basis for R4.
This yields the matrix

U D

2
6664

1=2 �1=2 1=
p

2 0
1=2 �1=2 �1=

p
2 0

1=2 1=2 0 1=
p

2
1=2 1=2 0 �1=

p
2

3
7775

as one possibility. With

˙ D

2
6664

p
6 0 0

0
p

2 0
0 0 0
0 0 0

3
7775 ;

the singular value decomposition of A is now given by U˙VT . The two pseudoinverses are

˙C D
2
41=

p
6 0 0 0

0 1=
p

2 0 0
0 0 0 0

3
5 ;

and AC D V˙CUT D
2
4 1=6 1=6 1=6 1=6

1=3 1=3 �1=6 �1=6
�1=6 �1=6 1=3 1=3

3
5 :



152 9 Algebraic Reconstruction Techniques

Finally, we compute the Moore–Penrose solution as

xC D ACp D
2
4 1=6 1=6 1=6 1=6

1=3 1=3 �1=6 �1=6
�1=6 �1=6 1=3 1=3

3
5
2
6664

1
3
8
2

3
7775 D

2
4 7=3

�1=3
8=3

3
5 :

Happily, this agrees with our earlier solution!

Example with R 9.14. The singular value decomposition of a matrix is available in R
with the svd() command. This returns the three factors, which can be called separately.
The pseudoinverse is also available by loading the MASS package and using the command
ginv(). The preceding example is computed as follows.

##SVD; pseudoinverse of a matrix
A=matrix(c(1,1,1,1,1,1,0,0,0,0,1,1),nrow=4)
p=matrix(c(1,3,8,2))
A0=svd(A)#yields 3 factors u, d, v
A1=round(A0$u%*%diag(A0$d)%*%t(A0$v),5)
#load package MASS; #then ginv() is pseudoinverse
Aplus=ginv(A)
xplus=Aplus%*%p#Moore--Penrose solution

For a problem as small as the one in Examples 9.12 and 9.13, all of this machinery may
seem overwhelming. Isn’t it hard to find the eigenvalues of a matrix that’s larger than 2 �
2? So isn’t the singular value decomposition hard to compute? It didn’t seem that bad to
just solve the normal equation using our familiar, trusted method of Gaussian elimination.
These are reasonable concerns. We must keep in mind that the systems of equations we
typically encounter in CT imaging are large, with sparse coefficient matrices. Solving the
normal equation using Gaussian elimination could get unwieldy, and finding the solution
of minimum norm may be an onerous task. So there are potential difficulties with both the
Gaussian elimination and the pseudoinverse approaches. To address this, we will look at
two popular methods of approximating the Moore–Penrose solution that are computationally
manageable.

9.5 Spectral filtering and regularization

Truncated SVD A basic approach to simplifying the work of the singular value decomposi-
tion is to use just part of it. The geometric point of view discussed in Remark B.12 shows that
the largest singular values of A, along with the corresponding columns of V and U, capture the
dominant behavior of A. This is particularly relevant if some of the nonzero singular values
are quite small relative to the larger ones. For instance, an ellipse with one principal axis of
length 100 and the other principal axis of length 1 is not much different than a line segment.
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A large disparity in the sizes of the nonzero singular values also distorts the behavior of the
pseudoinverse, ˙C, where the reciprocal of a tiny singular value will tend to dominate the
computation of xC.

Mathematically, we can select the k largest positive singular values and approximate A by
Ak D Pk

jD1 �jujvT
j : Equivalently, Ak D Uk˙kVT

k , where Uk and Vk are formed from just the
first k columns of U and V , respectively, and ˙k is the k � k diagonal matrix with diagonal
entries �1 � : : : � �k > 0. The M � N matrix Ak has rank equal to k, where A has rank r > k,
and is called the rank k truncated SVD of A. By retaining the largest singular values of A, the
matrix Ak captures much of the behavior of A.

Example 9.15. For the matrix A in Example 9.13, there are only two nonzero singular values,
so in this example we’ll keep just the largest one,

p
6. This gives us the rank 1 truncated SVD

A1 D p
6u1vT

1 D p
6

2
6664

1=2
1=2
1=2
1=2

3
7775
�

2p
6

1p
6

1p
6

	
D

2
6664

1 1=2 1=2
1 1=2 1=2
1 1=2 1=2
1 1=2 1=2

3
7775 :

The rank 1 matrix A1 has matrix norm jjA1jj D p
6, the same as A, and the difference

.A � A1/ has matrix norm jjA � A1jj D p
2, equal to the largest singular value not used in the

approximation.
We can now also compute a rank 1 approximation to the pseudoinverse as

AC
1 D .1=

p
6/v1uT

1 D 1

12
�
2
42 2 2 2

1 1 1 1
1 1 1 1

3
5 :

With p D .1; 3; 8; 2/ as before, we get AC
1 p D .7=3; 7=6; 7=6/ as our approximation of the

Moore–Penrose solution to the normal equation ATAx D ATp. One can debate the quality
of this approximation; it seems we may have given up too much by dropping the second-
largest singular value,

p
2, which, after all, is not that small relative to

p
6. (The ratio isp

6=
p

2 � 1:73.)

Example 9.16. Perhaps we can get a better sense of the benefits of truncation with an
example where there is a greater disparity between the largest and smallest nonzero singular
values. (The ratio of these two singular values is called the condition number of a matrix;
a matrix with a large condition number is a good candidate for using the truncated SVD.)
Tweaking Example 9.15, let

B D

2
6664

1 1 0 0:05
1 1 0 �0:05
1 0 1 0:05
1 0 1 �0:05

3
7775 :
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The singular value decomposition is B D U˙VT , where

˙ D

2
6664

p
6 0 0 0

0
p

2 0 0
0 0 0:1 0
0 0 0 0

3
7775 ; V D

2
6664

2=
p

6 0 0 �1=
p

3
1=

p
6 �1=

p
2 0 1=

p
3

1=
p

6 1=
p

2 0 1=
p

3
0 0 1 0

3
7775 ;

and U D

2
6664

1=2 �1=2 1=2 1=2
1=2 �1=2 �1=2 �1=2
1=2 1=2 1=2 �1=2
1=2 1=2 �1=2 1=2

3
7775 :

The pseudoinverse is

BC D

2
6664

1=6 1=6 1=6 1=6
1=3 1=3 �1=6 �1=6

�1=6 �1=6 1=3 1=3
5 �5 5 �5

3
7775 :

Once again taking p D .1; 3; 8; 2/, the Moore–Penrose solution to the normal equation
BTBx D BTp is given by BCp D Œ 7=3 � 1=3 8=3 20 �T . Now let’s truncate to get the
best rank 2 approximation to B, given by B2 D p

6u1vT
1 C p

2u2vT
2 . This is the same as B

except the fourth column is now all 0s. The pseudoinverse BC
2 , correspondingly, is the same

as BC except that the bottom row is now all 0s. Thus, we can approximate the Moore–Penrose
solution as xC

2 D BC
2 p D Œ 7=3 �1=3 8=3 0 �T . Comparing BTBxC

2 to BTp, we find that
the difference is the vector Œ0 0 0 1=5 �T , which has length 1=5; so this approximation
is pretty good. Tossing out the smallest nonzero singular value didn’t cost much because the
condition number was large.

Example with R 9.17. To carry out the previous example in R, we restrict each factor in the
SVD of the matrix B to just two columns and then multiply. The truncated pseudoinverse is
computed similarly. Then we compute the approximate Moore–Penrose solution.

#truncated SVD/pseudoinverse
B=matrix(c(1,1,1,1,1,1,0,0,0,0,1,1,.05,-.05,.05,-.05),

nrow=4)
p=matrix(c(1,3,8,2))
B0=svd(B)
##rank-2 truncated SVD
B2=B0$u[,1:2]%*%diag(B0$d[1:2])%*%t(B0$v[,1:2])
#truncated pseudoinverse
B2.plus=B0$v[,1:2]%*%diag(1/B0$d[1:2])%*%t(B0$u[,1:2])
##apply pseudoinverse to rhs vector
x2plus=B2.plus%*%p
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Fig. 9.4. This figure shows the image reconstruction from the truncated SVD of the coefficient matrix; the
grid is K � K with K D 100 and 100 X-rays at each of 90 different angles. The largest K

p
K D 1000

singular values were used in the truncation.

To create an image from X-ray data using the truncated SVD, return to the system (9.6).
Denoting the matrix of coefficients by A , the vector of unknown color values by x , and
the vector of scanner values by p , the system we wish to solve is expressed as Ax D p .
The next step is to compute the singular value decomposition of the coefficient matrix A .
Not surprisingly, for a realistic problem, this a huge computational effort. For the image in
Figure 9.4, corresponding to an image grid with K2 D 1002 pixels and a scan involving
9090 X-ray lines, the SVD was truncated to the largest K

p
K D 1000 singular values.

The corresponding modified pseudoinverse was then computed and applied to the vector of
Radon transform values for a particular phantom. The resulting approximate Moore–Penrose
solution gives us the vector of color values.

While the time needed to compute the SVD of the coefficient matrix for this system is
substantial, the method is nonetheless quite versatile because the same matrix can be used
over and over again, for every slice and for every scan of every patient. Thus, the only new
computation each time is the last step of multiplying the truncated SVD by a new vector of
right-hand sides. This step doesn’t take much time at all. So we can get a lot of work out of
that one big matrix factorization. By comparison, the filtered back-projection algorithm must
be recomputed from scratch each time starting with the new Radon transform data from the
latest scan.

Tikhonov regularization Truncating the singular value decomposition of the coefficient
matrix is one way to manage the distortions introduced by using the pseudoinverse in the
presence of zero or near-zero singular values. By restricting the computation, we can enforce
an upper bound on the size of the reciprocals of the singular values being used.

A second approach to dealing with this problem is to modify the coefficient matrix so
that all singular values are strictly positive. To see how we might accomplish this, consider
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again the equation Ax D p. To compute the singular values, we look at the symmetric
matrix ATA and its eigenvalue decomposition ATA D VDVT , where the columns of V
form an orthonormal basis of eigenvectors of ATA. The obstruction that concerns us here
is that the matrix D might not be invertible. To remove this obstacle, take ˛ > 0 to be
any strictly positive number, and let D1 D .D C ˛2I/, where I denotes the identity matrix
of the appropriate size. The matrix D1 is invertible, because it is a diagonal matrix with
positive diagonal entries, all at least as big as ˛2. We now compute VD1VT D ATA C ˛2I ,
since VT D V�1. The matrix ATA C ˛2I is symmetric, so VD1VT must be its eigenvalue

decomposition. Next, let A1 D
"

A
˛I

#
be the matrix formed when including the rows of ˛I

below the rows of A. Thus, AT
1 A1 D ŒAT ˛I�

"
A
˛I

#
D ATA C ˛2I. Finally, form the vector

p1 D
"

p
0

#
by including the appropriate number of 0s below the coordinates of the vector p.

This gives us the computations AT
1 A1x D ATAx C ˛2x and AT

1 p1 D ATp. In other words, we
can replace our original least squares problem, Ax D p, with the new problem A1x D p1,
which has the corresponding normal equation

�
ATA C ˛2I

�
x D AT

1 p1.
Thus, we are now interested in solving the minimization problem

min
x

jjA1x � p1jj2 D min
x

ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
"

Ax
˛x

#
�
"

p
0

#ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
2

D min
x

ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
"

Ax � p
˛x

#ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
2

D min
x

˚jjAx � pjj2 C ˛2jjxjj2� ; (9.15)

where the Pythagorean theorem gives us the last equality. This differs from the original
problem in that we are no longer minimizing jjAx � pjj2. Rather, we are willing to accept
a larger value for this term if it means we can use a smaller x that reduces the value in (9.15).

Since the matrix AT
1 A1 D �

ATA C ˛2I
�

is invertible, the normal equation for our new
problem has an exact solution,

x˛ D �
ATA C ˛2I

��1
ATp: (9.16)

However, computing a matrix inverse can be perilous, due to round-off errors and other
obstacles. So let’s investigate the singular value decomposition approach to this problem.

Suppose we have the eigenvalue decomposition ATA D VDVT and the corresponding
singular value decomposition A D U˙VT , where VT D V�1 and UT D U�1, as before.
Then AT

1 A1 D �
ATA C ˛2I

� D V.D C ˛2I/VT . The matrix .D C ˛2I/ is diagonal, with
diagonal entries �2

j C ˛2, where f�jg are the singular values of A. The reciprocals of these

numbers are the diagonal entries of the inverse matrix .D C ˛2I/�1.
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For convenience, let ˙˛ D .D C ˛2I/�1˙T . To compute the solution x˛ , given in (9.16),
we need the matrix

�
ATA C ˛2I

��1
AT D �

V.D C ˛2I/�1VT� �V˙TUT� D V˙˛UT :

This is the pseudoinverse of a singular value decomposition. The diagonal entries of ˙˛ are
given by

8<
:

1
�j

�
�2

j

�2
j C˛2

�
if �j > 0,

0 if �j D 0,

Notice that this is a sort of filtered form of the pseudoinverse AC D V˙CUT , in which the
diagonal entries of ˙C are either 1=�j or 0, accordingly. In the matrix ˙˛, the nonzero entries
have been damped by the factors �2

j =.�2
j C ˛2/ < 1. This damping reduces the distortion

caused by large reciprocals 1=�j.
Thus, the solution to the minimization problem (9.15) is

x˛ D V˙˛UTp D
X

jW�j>0

1

�j

 
�2

j

�2
j C ˛2

!�
uT

j p
�

vj : (9.17)

Of course, we could truncate this sum if we wished to emphasize the contributions of the
larger singular values.

Example 9.18. Once again, let A D

2
6664

1 1 0
1 1 0
1 0 1
1 0 1

3
7775 and p D .1; 3; 8; 2/. For a first

example, let’s try ˛ D 1. The singular values of A are
p

6 ,
p

2 , and 0. Thus, ˙˛ D2
64

1p
6

� 6
6C1

�
0 0 0

0 1p
2

� 2
2C1

�
0 0

0 0 0 0

3
75 . This yields the approximate solution x˛ D V˙˛UTp D

.2; 0; 2/. This is smoother than the Moore–Penrose solution, xC D .7=3; �1=3; 8=3/ ,
because the entries have been brought closer together. Looking at the normal equation, we
get ATAx˛ D .10; 4; 8/ , while ATp D .14; 4; 10/ . This suggests that ˛ D 1 might be a
bit large.

With ˛ D 0:5 , we get ˙˛ D

2
64

1p
6

� 6
6:25

�
0 0 0

0 1p
2

� 2
2:25

�
0 0

0 0 0 0

3
75 . This gives x˛ D

.2:24; �0:2133; 2:4533/. This is much closer to the Moore–Penrose solution than our
previous effort. Moreover, ATAx˛ is also closer to ATp than before. This suggests that
˛ D 0:5 may be a reasonable choice for the regularization parameter.

In the exercises, we will explore some other choices for ˛.



158 9 Algebraic Reconstruction Techniques

Example with R 9.19. Of course, we can do the previous example in R. A custom function,
called tik here, computes the weighted diagonal elements.

A=matrix(c(1,1,1,1,1,1,0,0,0,0,1,1),nrow=4)
p=matrix(c(1,3,8,2))
A0=svd(A)
#select a regularization parameter;
#function "tik" to generate weights
tik=function(x,alpha){x/(x^2+alpha^2)}
w1=tik(A0$d,0.5)
#modified pseudoinverse
T1=round(A0$v%*%diag(w1)%*%t(A0$u),4)
#modified Moore--Penrose solution
xalpha=T1%*%p
t(A)%*%A%*%xalpha #(13.44, 4.0536, 9.3864)

In the context of tomography, we can apply the Tikhonov regularization method and
formula (9.17) to the system of equations (9.6). As before, the solution is interpreted as a
vector of color values for the pixels in the image grid. Figure 9.5 illustrates how the choice
of the regularization parameter ˛ affects the resulting image.

Remark 9.20. In Tikhonov regularization, the value of the parameter ˛ is up to the user to
choose. A very large value of ˛ will damp the components of the solution too much; the
resulting image will be over-smoothed. At the other extreme, choosing ˛ D 0 will bring us
back to the Moore–Penrose solution and the image will be under-smoothed. Similarly, with
the truncated SVD, if we use too few terms, the resulting image will not have enough detail;
the image will be over-smoothed. But using too many terms will include too much distortion
and noise, resulting in an under-smoothed image.

The so-called damped least squares or generalized Tikhonov regularization method
involves selecting a matrix ¥, which might approximate a derivative operator, for instance,
and solving the minimization problem

Fig. 9.5. Image reconstruction using ART and Tikhonov regularization. Left to right: ˛ D 0:2, ˛ D 0:5,
and ˛ D 1:0.
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min
x

jjAx � pjj2 C ˛2jj˚xjj2 :

See [23] for more on this approach.

Remark 9.21. We have considered several approaches to finding approximate solutions to

Ax D p. In every case, our solution had the form
P

¥j
1
�j

�
uT

j p
�

vj, for some choice of weights

f¥jg. For the Moore–Penrose solution, xC, we have ¥j D 1 for all j. In the truncated SVD,
¥j has either the value 1, when j is small, or 0, when j is large. The solution x˛ , produced by

the Tikhonov regularization method, uses the weights ¥j D
�

�2
j

�2
j C˛2

�
. A more general theory

of spectral filtering allows for other choices of weights. We will not explore this any further
here. See [37] or [23] for more information.

9.6 ART or the Fourier transform?

As mentioned at the start of this chapter, the first CT scanner, invented at EMI by Hounsfield,
essentially used an ART approach for its images. However, Fourier transform methods, such
as the filtered back-projection formula, are generally faster to implement on a computer.
Consequently, today’s commercial scanners are programmed to use transform methods. The
iterative algorithms of ART simply converge too slowly, while the filtered back projection,
which is based on a continuous model, can be adapted fairly easily to any desired level of
accuracy.

It is nonetheless worth studying ART, and not only for its intrinsic mathematical interest.
For instance, in some nonmedical applications of CT, such as nondestructive material testing,
abrupt changes in the density of the material being scanned require image reconstruction
methods that can provide high contrast. ART turns out to be useful in this regard. Also, ART
can have a role to play in single-photon emission computerized tomography (SPECT) and
positron emission tomography (PET), where difficulty in the measurement of the attenuation
can sometimes render transform methods less reliable than usual. Finally, we mention the
problem of incomplete data collection, which can occur, for instance, if the range of angles
used in a CT scan is restricted in order to limit the patient’s exposure to X-rays. Transform
methods that rely on convolution require the completion of the data, whereas the iterative
ART methods simply get applied to a smaller set of equations.

9.7 Exercises

1. For the system of two lines x1 � x2 D 0 and x1 C x2 D 5 and the starting point

x0 D
"

3
1

#
, apply Kaczmarz’s method to compute x0; 1 and x0; 2. Show that the vector

x0;2 lies on both lines.
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2. For the system of three lines x1 � x2 D 1 , x2 D 1 , and x1 D 0 and the starting point

x0 D
"

0
0

#
, apply Kaczmarz’s method to compute x1 and x2. (That is, apply two full

cycles of the iteration.) What happens? What happens if we start instead at x0 D
"

a1

a2

#
?

3. Prove Theorem B.7: Let A be an M � N matrix, let x be a vector in R
N , and let y be a

vector in R
M. Then

Ax � y D x � ATy :

4. Let A be an M � N matrix. Prove that, if y is in the nullspace of AT , then y is
orthogonal to the range of A . In conjunction with the Corollary B.8, this shows that the
orthogonal complement of the range of A coincides with the nullspace of AT .

5. Provide detailed solutions for Examples 9.10 and 9.11 in the text.
6. In each case, find all least squares solutions to the system Ax D b.

(a) A D
2
44 0

0 2
1 1

3
5; b D

2
4 2

0
11

3
5.

(b) A D

2
66666664

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

3
77777775

; b D

2
66666664

�3
�1
0
2
5
1

3
77777775

. Warning: ATA is not invertible!

7. For a given M �N matrix A and a given vector p in R
M , let the function F W RN ! R

be defined by

F.x/ WD jjAx � pjj2 D .Ax � p/ � .Ax � p/ ; for all x in R
N :

Show that the gradient vector of F satisfies

rF.x/ D 2
�
ATAx � ATp

�
; for all x in R

N ;

as claimed in (9.14).
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8. Let A D
"

1 2
1 2

#
and p D

"
1
2

#
. Define F by

F.x; y/ D
ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇA
"

x
y

#
� p

ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
2

:

By solving the equation rF.x; y/ D
"

0
0

#
, show that the vector q in the range of A

that is closest to p is q D
"

1:5
1:5

#
.

9. Verify the details of the solution to Example 9.12 in the text.

10. In Example 9.18, we used Tikhonov regularization, with the regularization parameters
˛ D 1 and ˛ D 0:5 , to find approximate solutions to the system Ax D p, where

A D

2
6664

1 1 0
1 1 0
1 0 1
1 0 1

3
7775 and p D

2
6664

1
3
8
2

3
7775 :

Now compute x˛ and ATAx˛ for ˛ D 2 and ˛ D 1=
p

10 (so ˛2 D 0:1).
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MRI — an overview

10.1 Introduction

Magnetic resonance imaging, or MRI, is an imaging technique that has grown alongside CT
and that, like CT, has produced Nobel laureates of its own. Where the physics of CT is fairly
straightforward — X-rays are emitted and their changes in intensity measured — MRI is
based on the generation of a complex of overlapping, fluctuating electromagnetic fields that
must be precisely controlled. Mathematically, the effects of the electromagnetic fields on
the atomic nuclei in the sample being studied are modeled with differential equations.
The Fourier transform is the primary tool for analyzing the electrical signals generated by
the motions of atomic nuclei under the influence of these fields.

Clinically, MRI is safer than CT for most patients since it involves no radiation.
The magnetic fields involved operate at frequencies in the radio band range. (In fact, to
the patient undergoing an MRI exam, it sounds like listening to a very loud, very weird
radio station.) In order to emphasize the safety and to discourage confusion, the original
appellation of nuclear magnetic resonance imaging (nMRI) was shortened. On the downside,
an MRI machine is expensive to purchase, operate, and maintain. Also, the intensity of the
magnetic fields can rule out the procedure for some patients, including those with certain
metallic implants.

Magnetic resonance imaging is a wide-ranging and continually developing field of study
and practice, and is the subject of an extensive body of literature. Consequently, in this
chapter we present only a brief overview of some of the basic principles involved in MRI,
emphasizing aspects of the underlying mathematics. For a reader wishing to undertake a
more intensive investigation of MRI, some possible starting points are the article [26] and the
books [5, 20, 21], and [33].

Two basic descriptions of the phenomenon known as nuclear magnetic resonance (NMR)
were published in 1946, one by a team of researchers led by Felix Bloch (1905–1983) and
the other by a team headed by Edward Purcell (1912–1997). Bloch’s point of view (see [4])
is based on principles from classical physics and adopts an aggregate approach, looking at

© Springer International Publishing Switzerland 2015
T.G. Feeman, The Mathematics of Medical Imaging, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-3-319-22665-1_10

163



164 10 MRI — an overview

the net magnetization of the nuclei in a sample. Purcell’s description ([41]) is grounded in
quantum physics and examines the magnetic effects at the level of an individual nucleus.
It is perhaps ironic that Bloch was trained as a quantum physicist (his doctoral advisor was
Werner Heisenberg), while Purcell was a classical physicist (his doctoral advisor was John
van Vleck). In 1952, Bloch and Purcell were joint recipients of the Nobel Prize for Physics.

For several decades after Bloch and Purcell established the physical basis for studying
NMR, the primary application was to chemical spectroscopy, and it was only around 1970
that the possibility of using NMR for imaging was realized. Paul Lauterbur (1929–2007)
is credited with introducing the idea of using gradient magnetic fields to achieve spatial
resolution of the radio signal emitted by a magnetized sample. Applying his technology
to a setup consisting of test tubes of heavy water sitting inside a beaker of regular water,
he produced the first images that could distinguish between two different kinds of water.
(See [34].) Peter Mansfield (1933 – ) advanced Lauterbur’s work by developing techniques
for mathematically analyzing the radio signals, including a technique known as echo-planar
imaging that speeds up the imaging process. (See [38].) Lauterbur and Mansfield were jointly
awarded the 2003 Nobel Prize for Medicine and Physiology.

10.2 Basics

The nucleus of a hydrogen atom, a chemical element found in abundance in the human body,
possesses a property known as spin. Conceptually, one can think of the single proton that
comprises this nucleus as a tiny spinning top, rotating about an axis. This property brings
with it a magnetic effect, whereby the spinning proton behaves like a bar magnet with north
and south poles. As the little magnet spins, it generates an electrical signal. In the absence of
other factors, there is no preferred choice for the axis around which the proton spins nor for
the orientation of this axis within three-dimensional space. Within a sample of hydrogen-rich
tissue, then, the distribution of spins will be random and the resulting signals will cancel each
other out.

If, however, the sample is immersed in a strong external magnetic field having a fixed
direction, then the spin axes of the hydrogen protons will tend to align either in the same
direction as the external field or in the opposite direction. There will be some of each, but
measurably more in the same direction as the field, as this state involves a lower energy level.
To be more precise, the axes of the spinning hydrogen protons will not align exactly with
the external field but will precess, or wobble, about it, much as a spinning top whose axis
is not vertical precesses about the vertical as it spins. Due to the precession, the magnetic
moment of any one particular nucleus will have a vector component that is perpendicular
to the direction of the external field. However, because there is no preferred phase for the
precession, the phases of the various nuclei in the sample will be randomly distributed and,
as a result, the sum of these components will cancel out. Over the whole sample, then, the
effect is of an aggregate nuclear magnetic moment that is aligned in the same direction as the
external magnetic field.
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In this equilibrium state, with all of the nuclei behaving in basically the same way,
exhibiting a sort of herd mentality, no useful electrical signal will be generated. To create
a signal, a second magnetic field is introduced, one that oscillates in a plane perpendicular
to the static external field. This new field causes the alignment of the nuclei to flip out of
the equilibrium state. As the nuclei begin to precess about a new axis, the specifics of which
depend on the strength and duration of the new field, the aggregate nuclear magnetic moment
develops a nonzero net component transverse to the static magnetic field. After a certain
amount of time, this second field is cut off and the nuclei relax back to their previous state.
There are two aspects to this relaxation.

As the net transverse component of the magnetic moment precesses, it induces an
electromotive force (emf) in a coil that surrounds the sample. At the same time, with only the
static field in effect, the nuclei gradually become de-phased in the transverse direction as they
move toward equilibrium. Essentially, the net transverse magnetization describes a decaying
wave, the rate of decay of which can be measured by analyzing the resulting induced emf.
This process is known as spin–spin, or T2, relaxation.

While the transverse component of the nuclear magnetic moment decays to zero, the
component in the direction of the static magnetic field returns, asymptotically, to its
equilibrium level. This process is called spin–lattice, or T1, relaxation. As we shall see,
the rate at which this process evolves can be measured through careful manipulation of
the second magnetic field and the analysis of an electrical signal induced by the motion
of the aggregate nuclear magnetic moment.

Different tissue types, or, more precisely, magnetized nuclei contained inside different
chemical environments, have different T1 and T2 relaxation rates, the measurements of
which reveal the types of material present within the sample. To resolve this information
spatially, so that an image can be created showing the location within the sample of each type
of tissue, additional magnetic fields, known as gradients, are introduced to the experiment.
This is discussed in what follows.

At the molecular and atomic level, quantum effects certainly exist, but the classical
approach outlined here is more feasible when it comes to designing practical machines to
implement the system. So, with this conceptual framework in mind, we turn our attention to
the mathematical model introduced by Bloch in 1946.

10.3 The Bloch equation

In an MRI machine, a strong, uniform, and steady magnetic field, B0, is generated by running
an electrical current through a large coil. In clinical applications, the direction of the field
B0 is aligned along the length of the patient’s body, which direction is taken as the z-axis
of a Cartesian coordinate system and is also referred to as the longitudinal direction. The
magnitude or strength of B0, denoted by B0 (without the boldface type), is usually about
0:5 tesla in practice.

Denote the aggregate magnetic moment of the nuclei in a sample by M.t; p/, or simply
by M if the context is understood. This is a vector function that depends both on time t and
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on the location p within the sample. The coordinate functions of M are denoted by Mx, My,
and Mz. That is, for each time t and each point p in the sample,

M.t; p/ D h Mx.t; p/; My.t; p/; Mz.t; p/ i:

As discussed above, in the presence of the static magnetic field B0 alone, the equilibrium
nuclear magnetization of the sample is directed along the z-axis. That is, at equilibrium,
M D h 0; 0; Meq i, where Meq is the magnitude of this vector.

In addition to the steady magnetic field B0, a variety of other magnetic fields are intro-
duced. These additional fields alter the magnitude and alignment of the nuclear magnetization
of the sample and vary both temporally and spatially. Here, we use B D B.t; p/ to denote
the total external magnetic field experienced by the sample at time t and location p.

The Bloch equation models the rate of change over time of the magnetic moment of the
nuclei at each point in the sample. With the notation just introduced, the equation is

dM
dt

D � M � B � h Mx; My; 0 i
T2

� h 0; 0; Mz � Meq i
T1

; (10.1)

where � , T1, and T2 are constants. For reasons that will be clear soon, the value of � is
related to the resonant frequency of the system, while T1 and T2 are called the relaxation
times.

In the presence only of the static magnetic field B0 D h 0; 0; B0 i , directed along the
z-axis, the Bloch equation simplifies to the system of equations

dMx

dt
D �B0My.t/ � Mx.t/

T2
;

dMy

dt
D ��B0Mx.t/ � My.t/

T2
;

dMz

dt
D �Mz.t/ � Meq

T1
: (10.2)

The first two of these equations define a first-order linear system with a constant coefficient
matrix that can be solved using standard eigenvalue–eigenvector methods. The third equation
can be treated either as a separable equation or as a first order linear equation. The upshot of
this analysis is that

Mx.t/ D e �t=T2
�
Mx.0/ cos.!0t/ � My.0/ sin.!0t/

�
;

My.t/ D e �t=T2
�
Mx.0/ sin.!0t/ C My.0/ cos.!0t/

�
; and

Mz.t/ D Mz.0/e �t=T1 C Meq

�
1 � e �t=T1

�
; (10.3)

where !0 D ��B0. Thus, we see that, for times t that are large compared to the value
of T1, the longitudinal component Mz.t/ tends toward the equilibrium magnetization Meq.
Meanwhile, in the transverse plane, as the xy-plane is called in this context, the magnetic
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moment of the nuclei rotates, or precesses, about the z-axis with angular frequency !0 D
��B0 radians per second, known as the Larmor frequency. The constant � , called the
gyromagnetic ratio, typically has a value of about 2:68 � 108 radians per second per tesla,
or, equivalently, about 42.6 megahertz (MHz) per tesla. (One hertz is one cycle per second,
or 2� radians per second.) Thus, in a typical MRI experiment, the Larmor frequency lies in
the radio frequency band. In comparison, X-rays have a much higher frequency of about 3
gigahertz.

As t ! 1, the transverse component of the nuclear magnetization tends to 0, which
does not mean, however, that the precession of the individual nuclei about the z-axis ceases.
Rather, these rotations go out of phase with each other so that the distribution of the individual
moments becomes random and the aggregate transverse component tends to zero. In the
equilibrium state, each nucleus tends to precess with angular frequency !0 about the z-axis
with longitudinal component Meq. A useful image, again, is that of a spinning top whose axis
is not vertical but precesses about the vertical with a fixed frequency.

The constant T1 is called the spin–lattice relaxation time and reflects the dissipation in
energy away from the spinning nuclei (the spin system) as the atomic and molecular structure
(the lattice) of the sample settles into the equilibrium state. The spin–spin relaxation time, as
T2 is known, reflects the randomization of the phases of the spinning nuclei as the aggregate
transverse component goes to 0. Thus, T2 reflects the dissipation of energy within the spin
system.

10.4 The RF field

No signal is emitted by the atomic nuclei so long as they are subjected only to the static
magnetic field B0. To knock them out of this equilibrium, a radio frequency (RF) transmitter
is used to apply a linearly polarized RF magnetic field

B1 D h 2B1 cos.!t/; 0; 0 i:

This field is generated by sending an oscillating electrical current through a transmitting
coil that surrounds the sample. The field B1 oscillates along the x-axis with frequency !,
called the irradiation frequency, and is effectively the sum of two circularly polarized fields
that oscillate in the xy-plane with the same frequency but in opposite directions. Namely,

B1 D h B1 cos.!t/; B1 sin.!t/; 0 i C h B1 cos.!t/; �B1 sin.!t/; 0 i:

Physically, the nuclei, and, hence, the aggregate magnetic moment, are significantly affected
only by the circular field that oscillates in the same direction as the precession. This means
that we may take

B1 D h B1 cos.!t/; B1 sin.!t/; 0 i (10.4)

to be the effective RF magnetic field.
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The magnetic field in the longitudinal direction consists of the static field B0 and the
contribution from the gradient field, BG, discussed below. The overall magnetic field applied
to the sample is, then,

B D B1 C B0 C BG D h B1 cos.!t/; B1 sin.!t/; B0 C BG i: (10.5)

The duration of the RF pulse is short relative to the values of T1 and T2, sufficiently
so that we may ignore the T1 and T2 terms when we analyze the Bloch equation (10.1)
during this time interval. So, in this context, the Bloch equation leads to a system of linear
differential equations with nonconstant coefficients; specifically,

dMx

dt
D �.B0 C BG/My � �B1Mz sin.!t/ ;

dMy

dt
D ��.B0 C BG/Mx C �MzB1 cos.!t/ ;

dMz

dt
D �B1Mx sin.!t/ � �B1My cos.!t/ : (10.6)

To render this system more amenable to solution, it is convenient to introduce a rotating
coordinate frame for the transverse plane, rather than the usual x- and y-coordinates. To this
end, let e1 D h cos.!t/; sin.!t/ i and e2 D h � sin.!t/; cos.!t/ i , and set

u.t/ D Mx.t/ cos.!t/ C My.t/ sin.!t/ and

v.t/ D My.t/ cos.!t/ � Mx.t/ sin.!t/ : (10.7)

Thus,

Mx D u cos.!t/ � v sin.!t/ and

My D u sin.!t/ C v cos.!t/ : (10.8)

The vector h Mx.t/; My.t/ i in the standard coordinate frame is the same as the vector u.t/e1C
v.t/e2 in the rotating frame.

Translated into the rotating frame, (10.6) yields the system

du

dt
D Œ�.B0 C BG/ C !� v ;

dv

dt
D � Œ�.B0 C BG/ C !� u C �B1Mz ;

dMz

dt
D ��B1v : (10.9)

Suppose now that the RF transmitter is set so that the irradiation frequency matches the
Larmor frequency. That is, suppose that we set ! D !0. Then the RF magnetic field oscillates
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in resonance with the natural frequency of the nuclei in the presence of the static field. With
the rotating reference frame rotating about the z-axis at the same frequency as that at which
the nuclei precess about the z-axis, it appears, from the point of view of the nuclei themselves,
that they are not precessing at all. In other words, the apparent effect is as if there were no
static field. This is what is behind the use of the word resonance in the terms nuclear magnetic
resonance and magnetic resonance imaging. To see how this affects the mathematical model,
take ! D !0 D ��B0 in (10.9) to get the system

du

dt
D �BGv ;

dv

dt
D ��BGu C �B1Mz ;

dMz

dt
D ��B1v : (10.10)

If, in addition, we set BG D 0 and assume that B1 is constant, then (10.10) has constant
coefficients and its solution is

u.t/ D u.0/ ;

v.t/ D v.0/ cos.��B1t/ � Mz.0/ sin.��B1t/ ; and

Mz.t/ D Mz.0/ cos.��B1t/ C v.0/ sin.��B1t/: (10.11)

Thus, when viewed in the rotating coordinate frame, the aggregate magnetization vector
of the nuclei in the sample precesses around the e1-axis with frequency !1 D ��B1.
Meanwhile, the e1-axis itself rotates around the z-axis at the Larmor frequency.

10.5 RF pulse sequences; T1 and T2

To generate a signal, suppose that the RF transmitter, whose irradiation frequency matches
the Larmor frequency, is cut off after a time of � seconds. The nuclear magnetic moment
will then begin to relax from its state of precession about the e1-axis back towards its
equilibrium state of precession about the z-axis. As mentioned before, the aggregate nuclear
magnetic moment now has a nonzero component transverse to the static magnetic field.
As this net transverse component of the magnetic moment relaxes, an emf is induced in a
coil surrounding the sample.

For instance, suppose that the oscillating RF magnetic field is cut off after time �1, where
��B1�1 D �=2. This is called a �=2 pulse or a 90ı pulse. From (10.11), we see that the net
magnetization of the sample at time �1, when viewed in the rotating frame, is given by

u.�1/ D u.0/ ; v.�1/ D �Mz.0/ ; and Mz.�1/ D v.0/: (10.12)
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That is, the effect of this RF field is that the orientation of the aggregate magnetization vector
has been flipped by an angle of �=2, or 90ı, from alignment with the z-axis into alignment
with the e2-axis.

A second important RF pulse is the � , or 180ı, pulse, in which an RF magnetic field,
oscillating at the Larmor frequency, is cut off after time �2, with ��B1�2 D � . (Obviously,
�2 D 2�1.) At the instant when the field is cut off, the net magnetization in the sample is

u.�2/ D u.0/ ; v.�2/ D �v.0/ ; and Mz.�2/ D �Mz.0/: (10.13)

Thus, the orientation of the aggregate magnetization vector has been flipped by an angle of
� , or 180ı, from alignment with the positive z-axis into alignment with the negative z-axis.

In the inversion recovery method for measuring T1, a 180ı RF pulse is applied in order to
align the aggregate nuclear magnetization with the negative z-axis. After the pulse has been
cut off, a time � is allowed to pass, during which the magnetization partially recovers back
toward the equilibrium state. Then a 90ı RF pulse is applied to flip the partially recovered
magnetization into the xy-plane. Following this pulse, the resulting signal is acquired. The
size of the signal depends on the value of Mz.�/. Once the signal has been acquired, the
magnetization is allowed to relax all the way back to equilibrium.

From (10.3), we see that

.Meq � Mz.�// D .Meq � Mz.0// e��=T1 :

Hence,

ln.Meq � Mz.�// D ln.Meq � Mz.0// � �=T1:

This means that, if we graph the value of ln.Meq � Mz.�// against the value of � , the result
is a straight line of slope �1=T1. The signal acquisition step tells us the value of Mz.�/, so,
by applying the inversion recovery pulse sequence just described for a variety of values of � ,
we can determine the value of T1.

One technical detail is that, because the signals involved are fairly weak, the pulse
sequence should be repeated several times for each selected value of � in order to increase
the signal-to-noise ratio, and thus our confidence, in the measurement of Mz.�/ .

The inversion recovery method is typically abbreviated as

.180ı � �� � �90ı � �AT � �t1/n ;

where AT refers to the signal acquisition time and the value of t1 is large compared to T1 so
that the magnetization has time to relax back to equilibrium. (Generally, take t1 > 4 � T1.)
The subscript n indicates the number of times the sequence is to be repeated for each selected
value of � .

Another approach to measuring T1 is saturation recovery, abbreviated as

.90ı � �HS � �� � �90ı � �AT � �HS/n :
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In this scheme, HS refers to the application of a magnetic field pulse that destroys the
homogeneity of the static magnetic field and results in a system that is saturated — the nuclear
magnetic moments are scattered. After time � , the magnetization has partially recovered
back toward equilibrium. This magnetization is flipped into the xy-plane by a 90ı pulse, and
the resulting signal, which depends on Mz.�/, is measured. Then the field homogeneity is
destroyed again and the sequence is repeated. As with inversion recovery, a semi-log plot of
ln.Meq � Mz.�// as a function of � produces a straight line of slope �1=T1.

The principal method for measuring the value of T2 is called spin-echo. First proposed,
in 1950, by Hahn, this method is abbreviated

.90ı � �� � �180ı/n :

The initial 90ı RF pulse flips the magnetization into the xy-plane. Once this pulse has ended,
we would expect the magnetization to precess at the fixed frequency !0 as it relaxes back to
equilibrium. This would mean a constant component of magnetization in the direction of the
e2-axis in the rotating frame. However, there is really a small spread of frequencies, at least
partly because of slight inhomogeneity in the static field. Thus, after some time � has passed,
the nuclear moments have fanned out a bit, with the ones that are rotating faster getting ahead
of the slower ones. Application of a 180ı RF pulse has the effect of flipping this fan over in
the xy-plane, so that the faster rotators are now behind the slower ones. Thus, after another
time lapse of duration � , the moments will come back together, forming an echo of the
magnetization that existed immediately following the original 90ı pulse. The echo is weaker
than the original, though, because of the random nature of spin–spin relaxation, which cannot
be refocused, or undone, by the echo. During the time interval of length 2� , the amplitude
of the transverse magnetization will have diminished, or relaxed, by a factor of e�2�=T2 . By
repeating the process, we increase the signal-to-noise ratio in the measurements.

A variation on the spin-echo method is to use a train of 180ı RF pulses spaced at intervals
of 2� , with signal acquisition midway between successive pulses.

10.6 Gradients and slice selection

The work we have done so far provides the foundation for the methods of NMR spectroscopy.
There, the investigator’s aim is basically to create a graph of the spectrum of the signal
generated by the nuclear magnetic moments in a sample as they respond to some specific
RF pulse sequence. As we shall discuss below, the different frequency components present
in the signal, and their corresponding amplitudes, provide information about the variety of
relaxation times and, hence, the variety of chemical environments present in the sample. In
this way, the investigator can analyze the chemical composition of the sample.

The insight that earned a Nobel Prize for Lauterbur was that, by introducing yet another
carefully controlled component to the magnetic field, it is possible to restrict the fluctuation
in the aggregate magnetic moment of the sample to a specified slice within the sample.
In other words, it is possible to localize the behavior of the nuclear magnetic moments
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and thereby generate an image of a specified slice that reveals the locations of the various
chemical environments to be found there. This is the core idea behind magnetic resonance
imaging, or MRI. A typical MRI study consists of creating a whole series of such images
that, collectively, help the investigator to form a sense of the three-dimensional composition
and structure of a sample.

The key to slice selection is to introduce a magnetic field, BG , that is oriented in the
same direction as the static external field but that varies in magnitude according to the
location within the sample. To achieve this, BG is actually composed of three separately
controlled magnetic fields. The first of these three varies in magnitude in proportion to the
x-coordinate of the point in the sample; the magnitude of the second field is proportional
to the y-coordinate of the location; and the magnitude of the third field is proportional
to the z-coordinate. That is, there are constants G1 , G2 , and G3 such that, at the point
p D h x; y; z i ,

BG.p/ D h 0; 0; G1x C G2y C G3z i
D h 0; 0; G � p i ; (10.14)

where G D h G1; G2; G3 i . This magnetic field is called a gradient field because the
constants G1 , G2 , and G3 measure the gradient of the field as the location varies within
the sample. The magnitude of BG at the point p is BG.p/ D jG � pj .

Geometrically, the set fp W G � p D 0g defines a plane through the origin with normal
vector G . Now, let

G D jGj D
q

G1
2 C G2

2 C G3
2

and observe that, for any given number ˛ > 0 , the vector r˛ D .˛=G/G satisfies r˛ � G D
˛G and jr˛j D ˛ . Thus, the set

fp W jG � pj � ˛G g (10.15)

defines a slice of thickness 2˛ centered at the origin and normal to G . In this way, we can
select a slice of the sample that we wish to image, identify an appropriate normal vector G,
and tailor the gradient magnetic field BG accordingly. (Experimentally, it is possible to locate
the origin at any desired point within the sample, so it suffices to consider slices centered on
the origin.)

The total magnetic field is now given by (10.5) and the Bloch equation has the form given
in (10.6). Taking ! D !0 D ��B0 , the Larmor frequency, and viewing the system in
the rotating frame (10.7), the Bloch equation translates into the system in (10.10). That is,
we have

du

dt
D �BGv;
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dv

dt
D ��BGu C �B1Mz ;

dMz

dt
D ��B1v : (10.16)

The T1 and T2 terms are not present in this system, so we are assuming that the duration
of the gradient magnetic field is short compared to the relaxation times. If we also assume
that the RF field B1 is weak, then (10.16) yields Mz.t/ � Mz.0/ and we can write the other
two equations as

du

dt
D �BGv D �!Gv ;

dv

dt
D ��BGu C �B1Mz.0/ D !Gu C �B1Mz.0/ ; (10.17)

where !G D ��BG .
Now introduce the complex-number-valued function

�.t/ D u.t/ C i � v.t/ : (10.18)

Differentiating, and using (10.17), we get

d�

dt
D du

dt
C i � dv

dt
D �!Gv C i � !Gu C i � �B1Mz.0/

D i � !G � �.t/ C i � B1Mz.0/ : (10.19)

This is a first-order linear differential equation with integrating factor e�i!Gt . With the initial
condition �.0/ D 0 , the solution is

�.t/ D i�Mz.0/e i!Gt �

Z t

0
B1.s/ � e�i!Gs ds

�
: (10.20)

Substituting !G D ��BG D ��.G � p/ into (10.20) gives us

�.t; p/ D i�Mz.0/e�i�.G � p/t �

Z t

0
B1.s/ � e i�.G � p/s ds

�
: (10.21)

Next, note that the RF pulse is exactly that — a pulse. So it shuts off after a certain amount
of time � . Thus, B1.s/ D 0 for s � 0 and for s > � . It follows that �.t; p/ D �.�; p/ for
all t > � . Using (10.21) and a change of variables in the integration, we see that, for t > � ,

�.t; p/ D i�Mz.0/e�i�.G � p/� �

Z �

0
B1.s/ � e i�.G � p/s ds

�
(10.22)
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D i�Mz.0/e�i�.G � p/� �
( Z �=2

sD��=2
B1.s C �=2/ � e i�.G � p/.sC�=2/ ds

)

D i�Mz.0/e�i�.G � p/�=2 �
( Z �=2

sD��=2
B1.s C �=2/ � e i�.G � p/s ds

)
:

Moreover, it follows from (10.22) that

j�.t; p/j D � jMz.0/j �
ˇ̌
ˇ̌
ˇ
Z �=2

sD��=2
B1.s C �=2/ � e i�.G � p/s ds

ˇ̌
ˇ̌
ˇ : (10.23)

The integral in (10.22) and (10.23) is approximately equal to the inverse Fourier transform
of the function B1.sC �=2/ evaluated at �.G � p/ , provided that the value of B1.sC �=2/ is
small when jsj > �=2 . In particular, if B1 is a Gaussian, then the inverse Fourier transform
of B1 is also a Gaussian (see (5.22)). Hence, from (10.23), j�.t; p/j will be large when
jG � pj is small and, just as importantly, j�.t; p/j will be small when jG � pj is large.

Specifically, consider the slice of thickness 2˛ defined, as in (10.15), by
fp W jG � pj � ˛Gg . Shaping the RF pulse so that

B1.s C �=2/ D e�.˛�Gs/2=8 (10.24)

results in

j�.t; p/j proportional to e
�2
�

G � p
˛�G

�2

: (10.25)

Since
R 1

�1 e�2x2
dx � 0:9545 � R1

�1 e�2x2
dx , the Gaussian in (10.25) has about 95% of its

area in the selected slice. Hence, the transverse nuclear magnetic moment, as measured by
j�.t; p/j , is predominantly concentrated in that slice.

10.7 The imaging equation

Having explored how an array of magnetic fields can be carefully orchestrated to produce a
spatially encoded fluctuation in the transverse component of the nuclear magnetic moment
of a sample, we will examine now, in only the coarsest fashion, how this leads to an image
that is clinically useful.

The fluctuating magnetization of the nuclei in the sample induces an electromotive force
(emf) in a coil surrounding the sample. Faraday’s law of induction shows how to express this
induced emf in terms of the derivative of the magnetization. In practice, it is most convenient
to represent the magnetization in the sample by the complex-number-valued function
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M�.t; p/ D Mx.t; p/ C i � My.t; p/ : (10.26)

It follows from (10.7) and (10.18), that

ˇ̌
M�.t; p/

ˇ̌2 D .Mx.t; p//2 C �
My.t; p/

�2
D .u.t; p//2 C .v.t; p//2

D j�.t; p/j2 :

Thus, in the presence of the gradient magnetic field BG , the value of M� is large inside the
selected slice and small outside the slice.

The signal that is induced in the coil is sent through a preamplifier and then is subjected
to a variety of treatments, including a phase detection step that shifts the signal down in
frequency by !0 so that the frequencies present in the modified signal are centered around 0.
This modification simplifies the signal analysis in later steps. Application of a low-pass filter
increases the signal-to-noise ratio. At this stage, the signal S.t/ , induced by the nuclear
magnetization and modified by the receiver system, can be represented as

S.t/ D K
Z

M�.t; p/ exp. �i!t/ dp ; (10.27)

where K is some complex number constant. This formula is called the imaging equation.
It expresses the signal S.t/ as the (2- or 3-dimensional) Fourier transform of the complex
transverse magnetization M� of the sample. Thus, the function M� can be recovered, and
an image of it created, by applying the inverse Fourier transform.

In practice, the signal is sampled at a discrete set of times fk � �tg and the inversion is
done on a digital computer. Thus, some of the techniques discussed in Chapter 8 come into
play, including sampling, the discrete Fourier transform and its inverse, and the fast Fourier
transform.

10.8 Exercises

1. Verify that (10.3) is the solution to the system (10.2).
2. Verify that the system (10.6) is equivalent to the system (10.9) when translated into the

rotating coordinate frame for the transverse plane.
3. Verify that (10.11) gives the solution to the system (10.10).
4. Verify that (10.20) is the solution to the system (10.19).



Appendix A

Integrability

A.1 Improper integrals

The Radon transform, back projection, and Fourier transform all involve improper integrals,
evaluated over infinite intervals. We have applied these concepts, computing examples and
proving theorems, without considering the more technical questions of how these improper
integrals are defined and for what functions they make sense. We ought not evade these
questions completely, so let us now attend to them.

Consider a function f , defined on the real line and having either real or complex values,
with the property that the integral

R b
a f .x/ dx exists for every finite interval Œa; b� . If the

limit limb!1
R b

a f .x/ dx exists, then we denote this limit by
R1

a f .x/ dx and we say that this
improper integral converges. That is,

Z 1

a
f .x/ dx D lim

b!1

Z b

a
f .x/ dx

provided the limit exists.
Similarly,

Z b

�1
f .x/ dx D lim

a!�1

Z b

a
f .x/ dx

provided the limit exists, in which case we say that the improper integral
R b

�1 f .x/ dx
converges.
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If both of the improper integrals
R1

a f .x/ dx and
R a

�1 f .x/ dx converge for some real
number a , then we define

Z 1

�1
f .x/ dx D

Z a

�1
f .x/ dx C

Z 1

a
f .x/ dx:

Again we say that the improper integral
R1

�1 f .x/ dx converges and the function f is said
to be integrable on the real line. If jf j is integrable on the real line, then we say that f is
absolutely integrable.

Some facts about improper integrals are similar to facts about infinite series. Here are a
few, with the proofs left as exercises.

• If f and g are both integrable on Œa; 1/ and if c is any number, then f C cg is also
integrable on Œa; 1/ and

Z 1

a
.f C cg/.x/ dx D

Z 1

a
f .x/ dx C c

Z 1

a
g.x/ dx :

• If f � 0 and the set S D fR b
a f .x/ dx W b � a g is bounded above, then

R1
a f .x/ dx

converges to the least upper bound of the set S .
• If jf .x/j � g.x/ for all real x and the integral

R1
a g.x/ dx converges, then

R1
a f .x/ dx

also converges and
ˇ̌R1

a f .x/ dx
ˇ̌ � R1

a g.x/ dx . (This is a form of the comparison test.
To prove it for f real-valued, apply the previous facts to f D fC � f� , where fC.x/ D
maxff .x/; 0g and f�.x/ D � minff .x/; 0g .)

• If
R1

a jf .x/j dx converges, then so does
R1

a f .x/ dx . In words, if f is absolutely
integrable on Œa; 1/ , then f is integrable there. This is a corollary of the previous fact.
The converse statement is not true.

Similar statements prevail regarding improper integrals on .�1; b/ or on .�1; 1/ .

One large class of functions to which we can look for examples are the piecewise
continuous functions. A real- or complex-valued function f , defined on the real line, is
piecewise continuous if, in every finite interval Œa; b� , there are only a finite number of points
at which f is discontinuous and if the one-sided limits limx!˛� f .x/ and limx!˛C f .x/ both
exist at each point of discontinuity ˛ . Hence, we see that a piecewise continuous function is
integrable on every finite interval of the real line. This is the starting point for asking whether
any of the improper integrals above converge. The class of piecewise continuous functions
will be denoted by PC . This class includes all functions that are continuous on the real line.

Lebesgue’s theory of integration makes it possible to extend the notion of integrability on
the real line to more functions than the piecewise continuous ones. We will not go into this far-
reaching theory here, but we will borrow the notation L1 to denote the class of all (Lebesgue
integrable) functions that are absolutely integrable on the real line. Thus, for instance, the set
of piecewise continuous functions that are absolutely integrable is denoted by L1 \ PC.
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Since jf .x/ e�i!xj D jf .x/j for all real numbers x and ! , it follows from the above
facts that every function in L1 has a Fourier transform. The Fourier inversion theorem
(Theorem 5.12), however, applies only to continuous functions in L1 , though a modified
version of it applies to functions in L1 \ PC . This is ample motivation for restricting our
attention mainly to functions in L1 \ PC .

A.2 Iterated improper integrals

Another technical matter is the manipulation of iterated improper integrals over the plane.
This shows up in the proof of the Fourier Inversion Theorem (Theorem 5.12), for instance,
where the order of integration with respect to the two variables is switched in the middle of
the proof. This begs the question of whether such a step is justified.

Suppose that g is a continuous function of two real variables such that, for some real
number a , the improper integral

R1
a g.x; y/ dx converges for every value of y in some

interval J D Œ˛; ˇ� . Then we say that this improper integral converges uniformly on J
provided that, for every " > 0, there exists a number B such that

ˇ̌
ˇ̌Z b

a
g.x; y/ dx �

Z 1

a
g.x; y/ dx

ˇ̌
ˇ̌ < " (A.1)

for all b > B and all y 2 J .
The relevant facts, found in standard texts in elementary real analysis (such as [2], for

example), are these.

(i) With g as in the preceding paragraph, if
R1

a g.x; y/ dx converges uniformly on the
interval J , then the integral is a continuous function of y on J .

Proof. For each natural number n , let Gn.y/ D R aCn
a g.x; y/ dx . Each function Gn

is continuous on J and the sequence fGng converges uniformly on J to the function
G.y/ D R1

a g.x; y/ dx . Hence, the function G is also continuous on J . ut

(ii) Again supposing g to be a continuous function of two real variables, if the integralR1
a g.x; y/ dx converges uniformly on the interval J D Œ˛; ˇ� , then the improper

integral
R1

a

R ˇ

˛
g.x; y/ dy dx converges and

Z 1

a

Z ˇ

˛

g.x; y/ dy dx D
Z ˇ

˛

Z 1

a
g.x; y/ dx dy :
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Proof. With Gn and G as defined in the preceding proof, the uniform convergence
implies that

Z ˇ

˛

G.y/ dy D lim
n!1

Z ˇ

˛

Gn.y/ dy :

That is,

Z ˇ

˛

Z 1

a
g.x; y/ dx dy D lim

n!1

Z ˇ

˛

Z aCn

a
g.x; y/ dx dy :

The continuity of g implies that iterated integrals over finite rectangles can be evaluated
in either order, so that

Z ˇ

˛

Z aCn

a
g.x; y/ dx dy D

Z aCn

a

Z ˇ

˛

g.x; y/ dy dx :

Hence,

lim
n!1

Z ˇ

˛

Z aCn

a
g.x; y/ dx dy D

Z 1

a

Z ˇ

˛

g.x; y/ dy dx

and the desired result follows. ut
(iii) If g is continuous for x � a and y � ˛, and if the improper integrals

R1
a jg.x; y/j dx

and
R1

˛
jg.x; y/j dy converge uniformly on every finite interval, then if either of the

integrals
R1

a

R1
˛ jg.x; y/j dy dx or

R1
˛

R1
a jg.x; y/j dx dy converges,

Z 1

a

Z 1

˛

g.x; y/ dy dx D
Z 1

˛

Z 1

a
g.x; y/ dx dy:

Proof. Suppose that g � 0 and that the integral
R1

˛

R1
a g.x; y/ dx dy converges. It

follows from the previous result and the nonnegativity of g that, for each b > a,

Z b

a

Z 1

˛

g.x; y/ dy dx D
Z 1

˛

Z b

a
g.x; y/ dx dy

�
Z 1

˛

Z 1

a
g.x; y/ dx dy:

Hence,
R1

a

R1
˛

g.x; y/ dy dx converges by the comparison test, and

Z 1

a

Z 1

˛

g.x; y/ dy dx �
Z 1

˛

Z 1

a
g.x; y/ dx dy:
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Reversing the above argument shows that

Z 1

a

Z 1

˛

g.x; y/ dy dx �
Z 1

˛

Z 1

a
g.x; y/ dx dy;

from which it follows that the integrals are equal, as claimed.
In general, for a real- or complex-valued function g that satisfies the hypotheses, we may
write g D g1 � g2 C ig3 � ig4 , where each of the functions gj satisfies 0 � gj � jgj.
(For instance, take g1.x; y/ D maxf<g.x; y/; 0g.) The result then applies to each gj

and, by the linearity of the integral, to g itself. ut

A.3 L1 and L2

A function f defined on the real line is in the class L2 , and is said to be square-integrable,
if the (improper) integral

R1
�1 jf .x/j2 dx is finite. Neither L1 nor L2 is a subset of the other.

For instance, the function f given by

f .x/ D
(

1=x if x � 1,
0 if x < 1

is in L2 but not in L1, while the function g defined by

g.x/ D
(

1=
p

x if 0 < x � 1,
0 otherwise

is in L1 but not in L2.
The Rayleigh–Plancherel theorem (Theorem 7.11) applies to any absolutely integrable

function f for which either f or its Fourier transform F f is square-integrable. In particular,
for f in L1 \ L2, it follows from (7.15) that F f is in L2. Moreover, the mapping f 7! F f
is an isometry from L1 \ L2 into L2.

It is a fact that L1 \ L2 is dense in L2 in the sense that, for every function f in L2 , there
exists a sequence of functions ffkg in L1 \ L2 such that

lim
k!1

Z 1

�1
jf .x/ � fk.x/j2 dx D 0:

(For instance, one may take fk to be the restriction of f to the interval Œ�k; k�.) Each of the
Fourier transforms F fk is a well-defined function in L2, and we may therefore define the
Fourier transform of f to be the limit of the transforms F fk. (This limit exists because of the
isometry implied by (7.15) and the fact that the space L2 is complete.)
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A modified form of the Fourier inversion theorem (Theorem 5.12) also holds in the L2

setting so that, in the end, the mapping f 7! F f defines an isometric mapping from L2 onto
L2. See Chapter 9 of [46] for a more in-depth discussion of these ideas.

A.4 Summability

Just as the Fourier transform and many of the theorems and computations accompanying
it required the manipulation of improper integrals, so working with the discrete version of
the Fourier transform can, in principle, involve working with infinite series and iterated
infinite series. In practice, however, the discrete functions we use are always finite lists and
the important theorems, like (8.22) and (8.24) to name two, use only finite sums.

The study of infinite series, Fourier series, and sequence spaces such as `1 and `2 is well
worth the investment, but lies beyond the scope of our work here. The books [2] and [47] are
good places to start.



Appendix B

Matrices, transposes, and factorization

In this appendix, we collect some results about matrices and their transposes. We also discuss
two important matrix factorizations: the eigenvalue decomposition of a (real) symmetric
matrix of the form ATA and the singular value decomposition of an arbitrary matrix. These
basic tools are employed in our analysis of least squares approximation and in the image
reconstruction techniques studied in Chapter 9. See the articles [29] and [50] and the texts
[51] and [40] for more information, including additional applications of these concepts.

B.1 Transpose of a matrix

Definition B.1. For a given M � N matrix A, the range of A is the set
˚
Ax j x 2 R

N
�
. The

nullspace of A is the set
˚
x 2 R

N j Ax D 0
�
. Notice that the range of A is a subset of RM,

while the nullspace of A is a subset of RN .

Theorem B.2. For a given M � N matrix A, the range of A is a subspace of RM and the
nullspace of A is a subspace of RN.

Proof. If x1 and x2 are any elements of RN and � is any real constant (scalar), then

�Ax1 C Ax2 D A .�x1 C x2/ ;

by the properties of matrix arithmetic. Thus, the range of A is closed under the operations of
vector addition and scalar multiplication.

© Springer International Publishing Switzerland 2015
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For the other claim, suppose x1 and x2 are elements of RN such that Ax1 D Ax2 D 0, and
let � be any real number. Then

A .�x1 C x2/ D �Ax1 C Ax2 D � � 0 C 0 D 0 :

Thus, the nullspace of A is closed under the operations of vector addition and scalar
multiplication. ut
Definition B.3. For a given M � N matrix A, the transpose of A, denoted by AT , is the N � M
matrix whose entry in row k and column j is the same as the entry of A in row j and column
k. In other words, column j of AT is the same as row j of A, and row k of AT is the same as
column k of A. Notice that, in general,

�
AT
�T D A.

Example B.4. If A D
2
4 4 0

�3 2
1 5

3
5, then AT D

"
4 �3 1
0 2 5

#
.

Proposition B.5. Let A be an M � N matrix and let B be an N � M matrix. Then

.AB/T D BT AT : (B.1)

Proof. Notice that both matrices .AB/T and BT AT are defined and have the same dimen-
sions, M � M. To see that these are indeed the same matrix, suppose A has entries .ai;j/ and
that B has entries .bi;j/. Then the entry in row k and column j of both .AB/T and BT AT is
given by

PN
lD1 aj;l � bl;k . ut

Corollary B.6. For any given M�N matrix A , the matrix AT A is equal to its own transpose.
(Such a matrix is said to be symmetric.)

The interaction between A, AT , and the dot product, stated in the next theorem, is of
fundamental importance in many applications of linear algebra.

Theorem B.7. Let A be an M � N matrix, let x be a vector in R
N, and let y be a vector in

R
M. Then

Ax � y D x � ATy : (B.2)

Notice that the dot product on the left-hand side involves two vectors in R
M while the dot

product on the right-hand side involves two vectors in R
N .
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Proof. Let us consider an example to illustrate. Take A D
2
4 4 0

�3 2
1 5

3
5, x D

"
x1

x2

#
in R

2, and

y D
2
4 y1

y2

y3

3
5 in R

3. Then we compute:

Ax � y D
2
4 4 0

�3 2
1 5

3
5
"

x1

x2

#
�

2
4 y1

y2

y3

3
5

D
2
4 4x1

�3x1 C 2x2

x1 C 5x2

3
5 �

2
4 y1

y2

y3

3
5

D 4x1y1 C .�3x1 C 2x2/y2 C .x1 C 5x2/y3

D x1.4y1 � 3y2 C y3/ C x2.2y2 C 5y3/

D
"

x1

x2

#
�
"

4y1 � 3y2 C y3

2y2 C 5y3

#

D
"

x1

x2

#
�
"

4 �3 1
0 2 5

#2
4 y1

y2

y3

3
5

D x � ATy as desired:

The general proof follows this same pattern and is left as an exercise. ut
Corollary B.8. If y is orthogonal to the range of A , then y is in the nullspace of AT .

Proof. If y is orthogonal to the range of A , then Ax � y D 0 for every vector x in R
N .

Hence, it follows from Theorem B.7 that x � ATy D 0 for every x in R
N . In other words, the

vector ATy is orthogonal to every vector in R
N . In particular, the vector ATy is orthogonal

to itself, so that ATy � ATy D 0 . That is, jjATyjj2 D 0 , from which it follows that ATy D 0 .
In other words, y is in the nullspace of AT as claimed. ut
Theorem B.9. For any matrix A, the nullspace of A is the same as the nullspace of ATA.

Proof. Let A be any matrix. Suppose x is in the nullspace of A, so that Ax D 0. Then,
ATAx D AT0 D 0, as well.
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Conversely, suppose that x is in the nullspace of ATA, so that ATAx D 0. Then, using
Theorem B.2, we see that

jjAxjj2 D Ax � Ax D x � ATAx D x � 0 D 0 : (B.3)

Hence, Ax D 0, as well.
Thus, the matrices A and ATA have the same nullspace, as claimed. ut

B.2 Eigenvalue decomposition

We now turn to the eigenvalue decomposition of the symmetric matrix ATA. Recall that a
nonzero vector v in R

N is said to be an eigenvector of the N � N matrix B if there is a
number � for which Bv D �v. The number � is called an eigenvalue of B.

Theorem B.10. Let A be an M � N real matrix.

(i) All eigenvalues of ATA are non-negative (real) numbers.
(ii) Eigenvectors corresponding to different eigenvalues are orthogonal.
(iii) There is an orthonormal basis of RN consisting of eigenvectors of ATA.

Proof. For (i), suppose the vector v ¤ 0 in R
N satisfies ATAv D 	v for some number 	.

Since all coordinates of both v and ATAv are real numbers, so 	 must also be a real number.
Also,

	 jjvjj2 D 	 .v � v/ D .	v/ � v

D .ATAv/ � v D .Av/ � .Av/

D jjAvjj2 � 0:

Since v ¤ 0, it follows that 	 D jjAvjj2=jjvjj2 � 0.
For (ii), suppose the (non-negative) numbers 	1 ¤ 	2 and the nonzero vectors v1 and v2

satisfy ATAv1 D 	1v1 and ATAv2 D 	2v2. At least one of 	1 and 	2 is nonzero, so, for
convenience, suppose 	1 ¤ 0. Then

v1 � v2 D .1=	1/.	1v1/ � v2

D .1=	1/.ATAv1/ � v2

D .1=	1/v1 � .ATAv2/ .using Theorem B.7/

D .1=	1/v1 � .	2v2/

D .	2=	1/v1 � v2:

But .	2=	1/ ¤ 1, so we must have v1 � v2 D 0; that is, v1 and v2 are orthogonal.
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For (iii), we construct an orthonormal basis for the subspace of eigenvectors corre-
sponding to each eigenvalue of ATA. By (ii), these subspaces are mutually orthogonal, so
collectively we now have an orthonormal basis for all of R

N , as desired. (Some crucial
details, including the fact that ATA even has an eigenvalue to begin with, have been left
out. The interested reader should consult a text on linear algebra, such as [1].) ut

Theorem B.10 gives us a particularly nice way to factor the matrix ATA. Specifically,
record the (non-negative) eigenvalues of ATA in decreasing order 	1 � 	2 � : : : 	n � 0,
each repeated as many times as the dimension of the corresponding subspace of eigenvectors,
on the diagonal of an N � N matrix D; the remaining entries of D are all 0s. Then let V be
an N � N matrix whose columns v1; : : : ; vN form an orthonormal basis of RN and satisfy
ATAvj D 	jvj for all j D 1; : : : ; N, as guaranteed by (iii) in the theorem. In this case, V is
invertible, with V�1 D VT , and

ATA D VDVT : (B.4)

This is called the eigenvalue decomposition of ATA and is also referred to as diagonalizing
ATA. Note that ATA is invertible if, and only if, 0 is not an eigenvalue of ATA, which is
equivalent to the matrix D being invertible.

Example B.11. As in Example 9.12, let A D

2
6664

1 1 0
1 1 0
1 0 1
1 0 1

3
7775 . So ATA D

2
44 2 2

2 2 0
2 0 2

3
5 , which

has eigenvalues of 6, 2, and 0. We store these, in decreasing order, in the columns of the

diagonal matrix D D
2
46 0 0

0 2 0
0 0 0

3
5. Next we compute corresponding unit-length eigenvectors

and store them as the columns of the matrix V D
2
42=

p
6 0 �1=

p
3

1=
p

6 �1=
p

2 1=
p

3
1=

p
6 1=

p
2 1=

p
3

3
5. The eigenvalue

decomposition is now given by ATA D VDV�1. Note that V is invertible, with V�1 D VT .

B.3 Singular value decomposition

For each eigenvalue 	j of ATA, with unit eigenvector vj, we have

jjAvjjj D p
Avj � Avj D

q
ATAvj � vj D

q
.	jvj/ � vj D p

	j ;

since vj is a unit vector. Therefore, for each j D 1; : : : ; N, there is a unit vector uj such
that Avj D p

	j uj. Moreover, provided that 	j and 	k are nonzero, then the corresponding
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vectors uj and uk are orthogonal to each other. (This includes the case where j ¤ k but
	j D 	k.) Indeed, we compute

uj � uk D 1p
	j � 	k

Avj � Avk D 1p
	j � 	k

ATAvj � vk

D 1p
	j � 	k

.	jvj/ � vk D
r

	j

	k
.vj � vk/ D 0 ;

from the construction of the matrix V . In this way, we construct an M � M matrix U whose
columns, u1, . . . , uM, form an orthonormal basis for RM and satisfy Avj D p

	j uj whenever
	j ¤ 0. (The columns of U corresponding to the eigenvalue 0 can actually be any unit vectors
that will produce a full orthonormal basis of R

M.) As with V , the matrix U is invertible and
U�1 D UT .

We need one more ingredient to complete this recipe. For each eigenvalue 	j of ATA, let
�j D p

	j and define an M � N matrix ˙ to have diagonal entries �1 � �2 � � � � � �N and
all remaining entries equal to 0. (By the diagonal entries of ˙ , we mean those whose column
and row addresses are the same; so Œ˙�jj D �j. In general, ˙ need not be a square matrix.)
The numbers �j D p

	j are called the singular values of the matrix A. (Again, the singular
values of A are the square roots of the eigenvalues of the symmetric matrix ATA.) Putting this
all together, we see that AV D U˙ , or, equivalently,

A D U˙VT : (B.5)

This is called the singular value decomposition, or SVD, of the matrix A. Another way to
express the singular value decomposition of A is as the sum

A D
NX

jD1

�jujvT
j : (B.6)

In this sum, each term ujvT
j is an M � N matrix, the product of an M � 1 column vector with a

1 � N row vector. Of course, if �j D 0, then the corresponding summand does not contribute
anything. So, if �1 � : : : � �r > 0 are the nonzero singular values (and �rC1 D : : : D �N D
0), then we have

A D
rX

jD1

�jujvT
j : (B.7)

This form of the singular value decomposition is also known as the outer product expansion
of A.

Remark B.12. The singular value decomposition has a geometric interpretation that stems
from thinking of the M � N matrix A as a linear transformation mapping R

N into R
M. In this

view, A maps the N-dimensional unit sphere of RN (the set fx 2 R
N W jjxjj D 1g) onto an

r-dimensional ellipsoid sitting inside R
M, where r is the number of nonzero singular values

of A. The principal axes of this ellipsoid lie in the directions of the first r column vectors of
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the matrix U and have lengths 2 � �j , for j D 1; : : : ; r. The nullspace of A has dimension
N � r. The first r columns of V are the unit vectors that A maps to these principal axes.
(This is expressed by the relation Avj D �juj.) Thus, when we use the columns of V as our
(orthogonal) coordinate framework in R

N , and the columns of U as our framework in R
M,

then the action of A is described by the simple matrix ˙ . One consequence of this is that the
largest singular value, �1, is equal to the matrix norm of A as a linear transformation. That
is, �1 is the maximum factor by which the mapping A re-scales the length of any nonzero
vector; �1 D jjAjj D max fjjAxjj=jjxjj W x ¤ 0g.



Appendix C

Topics for further study

• For a wealth of information about the Radon transform and its generalizations, as well
as extensive lists of references on this topic, see the monograph [24] and the book [15].
Investigate the interaction between the Radon transform and the derivative in order to
better understand Radon’s original inversion formula.

• The Fourier transform, like Fourier series, was developed originally in the study of
differential equations related to the propagation and diffusion of heat. The interaction
between the Fourier transform and derivatives was mentioned in the exercises but did not
figure into the discussion of CT scans. Moreover, the Fourier transform is a primary tool
of physicists, astronomers, and engineers that is used to tackle a broad range of problems.
See Bracewell’s definitive treatise [7], as well as the entertaining book [9], for much more
on this topic.

• We have focused on the filtered back-projection algorithm as well as some basic ART
techniques. We have not discussed direct Fourier inversion, which takes the central slice
theorem (Theorem 6.1) as its starting point. The filtered back projection (Theorem 6.2)
is primarily what is used in current practice. Nonetheless, direct Fourier inversion is a
worthwhile subject. The article [35] is a good place to start.

• Study the effect of incorporating finite (nonzero) X-ray beam width into the algorithms
for CT.

• Investigate the fan beam, spiral beam, and cone beam geometries and their use in CT scan
technology. The latter two methods can reduce the radiation exposure time of the patient
by collecting data in all three dimensions at once. The books [12] and [32] are good places
to start.

• Investigate the use of wavelets, rather than the Fourier transform, in signal analysis.
Wavelets are particularly useful for analyzing signals that are of short duration or that
come in bursts. Wavelets are also at the core of the signal compression methods used, for
example, in the creation of mp3 music and sound files.
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• Study the evolution of the scanning machines themselves, from the earliest EMI scanner
designed by Hounsfield to the 5th generation machines that employ electron beam CT.
Also, it would be interesting to look more closely at the computational process that is
encoded into the scanning machines used in clinical practice.

• In positron emission tomography (PET) and single-photon emission computed tomogra-
phy (SPECT), a radioactive isotope is introduced internally into the patient. This isotope
tends to bind to areas where certain pathologies are present or certain physiological
functions are in effect. Positrons are emitted from the sample in pairs moving in opposite
directions. When the intensities of a matching pair are measured by external detectors, the
sum of the measurements yields a value of the Radon transform along the line defined by
the paths of the two particles. Then a modified version of the CT analysis discussed here
can be applied to form an image. So PET and SPECT are like inside-out versions of CT.
See [30] and [32] for an introduction to these types of tomography.

• The study of Fourier series predates the development of the Fourier transform historically.
Though we have alluded to the theory of Fourier series in only a few places in the present
work, it nonetheless inspires and informs the transform theory and is a cornerstone of the
branch of mathematics known as functional analysis. See [31] and [47] to get started.

• Functional MRI (fMRI) exploits the difference in the magnetic response of nuclei
contained in oxygenated blood compared to those in deoxygenated blood. Increased
neuronal activity requires a rapid influx of oxygen to the area of the activity, where the
additional oxygen is consumed by the active neurons. MRI images that portray these
magnetic variations are created during many repetitions of some activity or experience,
such as performing mental arithmetic. Then statistical methods are used to determine
which areas of the brain can reliably be said to be most active during the activity.

• For the strongest versions of many of the theorems in Chapters 5 and 7, as well as for
a careful error analysis of the discrete approximations discussed in Chapter 8, we would
require a deeper understanding of the spaces L1 and L2 of integrable functions and of
the theory of integral operators and kernel functions. The books [2] and [46] can help get
one pointed in the right direction.

• Use R to develop additional implementations of the image reconstruction algorithms
studied in this book. We make no claim that the code used here is the most efficient
possible. Also, nothing has been said about incorporating the matrix forms and the fast
Fourier transform, discussed in Chapter 8, into the implementations. One might also
explore how to manage data collected via the fan beam or other geometry. Generating
computer images for magnetic resonance imaging is another avenue for exploration.
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B, 40
F , 55
`t; � , 8
R, 13V

(tent), 80
ı (Dirac), 61
ua, 63

A
affine projection, 141
affine space, 140–141
ART, 137–159
attenuation coefficient, 3

B
back projection, 39–45

and convolution, 88
discrete, 113
filtered, 72
of ı, 89
of R, 41, 89

band-limited function, 92, 93, 98
Beer’s law, 4–5
Bloch equation, 166
Bloch, Felix, 163

C
central slice theorem, 71
complex exponential, 49
complex numbers, 47–52
condition number, 153

convolution, 80
B and R, 88
2-dimensional, 87
and Fourier transform, 84–86, 112
discrete, 104, 105

Cormack, Allan McLeod, xiii
cubic spline, 114

D
decaying wave, 53

Fourier transform, 70
in MRI, 165

DeMoivre’s law, 50
Dirac ı, 61

back projection of, 89
Fourier transform of, 63, 65
multivariable, 68

Dirichlet kernel, 135
Dirichlet, Peter G. L., 135
discrete function, 104

N-periodic, 105
dynamical systems, 142

E
Euler’s formula, 50
Euler, Leonhard, 50
exponential function

complex, 49

F
fast Fourier transform, see FFT
FFT, 129–133

© Springer International Publishing Switzerland 2015
T.G. Feeman, The Mathematics of Medical Imaging, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-3-319-22665-1

195



196 Index

filter, 77
and medical imaging, 92–93
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low-pass cosine, 93, 134
Ram–Lak, 93, 101
resolution, 82
Shepp–Logan, 93, 101

filtered back projection, 72
discrete, 97

fMRI, 192
Fourier series, 52, 98, 192
Fourier transform, 55–67, 191

and L2, 181
and convolution, 84–86
and MRI, 175
and Radon transform, 71
discrete, 108, 127

and convolution, 112
discrete inverse, 110
inverse of, 63
inversion theorem, 63, 110
multivariable, 66–67
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FWHM, 82

of a Gaussian, 84

G
Gaussian

and MRI, 174
Fourier transform of, 55, 65
FWHM of, 84

H
Heaviside function, 61
Heisenberg, Werner, 164
Hilbert transform, 75
Hilbert, David, 75
Hounsfield unit, 4
Hounsfield, Godfrey Newbold, xiii

I
image reconstruction, 121

fundamental question of, 7, 10
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main algorithm, 141
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L
Larmor frequency, 167–170, 172
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damped, 158
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M
magnetic resonance, 163–175
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relaxation constants, 84, 95
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Moore–Penrose, 149

and pseudoinverse, 150

N
normal equation, 148
Nyquist distance, 99
Nyquist’s theorem, 99
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PET, xiv, 192
phantom, 23
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power spectrum, 86
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Radon transform, 13–35, 39
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and Fourier transform, 71
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Radon, Johann, xiii, 13
Ram–Lak filter, 93, 101
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regularization

Tikhonov, 155

S
sampling, 98–100

oversampling, 100
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Shepp–Logan

filter, 93, 101
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sinogram, 14
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SVD, 150

truncated, 152

T
Tikhonov

regularization, 155
tomography, 7

V
van Vleck, John, 164
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wavelets, 191
window function, 92

X
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