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Preface

The purpose of this book is to provide a thorough, up-to-date treatment of the
differential geometry of hypersurfaces in real, complex, and quaternionic space
forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces
in real space forms and Hopf hypersurfaces in complex space forms. An in-
depth discussion of these topics and the contents of each chapter is given in the
introduction.

The presentation is aimed at a reader who has completed a one-year graduate
course in differential geometry and manifold theory. This book could be used for a
second graduate course in differential geometry, a research seminar or as a reference.

The material in Chapters 2 and 3 has substantial overlap with our book Tight
and Taut Immersions of Manifolds [95], published in 1985. For many topics, the
order of the presentation has been changed significantly from our earlier book, and
the material has been updated to include results published after 1985. Chapter 4
contains a brief introduction to submanifold theory in the context of Lie sphere
geometry. This is studied in more detail in the book Lie Sphere Geometry [77],
published in 2008. Parts of Chapter 5 on Dupin hypersurfaces are also treated in
[77] or [95].

The material in Chapters 6–9 on real hypersurfaces in complex and quaternionic
space forms was only mentioned briefly in our previous book [95]. The treatment
of these subjects follows the notation and terminology of the survey article [399] of
Niebergall and Ryan published in 1997.

All of the figures in this book are adapted from figures in the book [77]. These
figures were constructed by Andrew D. Hwang, College of the Holy Cross, using
his ePiX program for constructing figures in the LATEXpicture environment. We are
grateful to Professor Hwang for the excellent quality of the figures, and for his time
and effort in constructing them. See the project page: http://math.holycross.edu/~
ahwang/software/ePiX.html for more information on the ePiX program.

This book grew out of lectures given in the Differential Geometry Seminar of
the Clavius Group during the summers of 2009–2014 at the University of Notre
Dame, the College of the Holy Cross, Boston College, Fairfield University, and
Loyola University Maryland. We are grateful to our fellow members of the Clavius
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Group for their support of these lectures and for many enlightening remarks. We
also acknowledge with gratitude the hospitality of the institutions mentioned above.

We wish to acknowledge the personal contributions to our understanding of this
subject of several mathematicians both living and deceased. Katsumi Nomizu was
our doctoral thesis advisor at Brown University, and he introduced us to the theory
of isoparametric hypersurfaces in the early 1970s. Thomas Banchoff introduced
us to tight and taut immersions and the cyclides of Dupin, and he has given
us many important insights over the years. We are also deeply indebted to S.-S.
Chern, Quo-Shin Chi, Thomas Ivey, Gary Jensen, and Ross Niebergall for sustained
collaborations over many years.

We also gratefully acknowledge helpful conversations and correspondence on
various aspects of the subject with Jürgen Berndt, Sheila Carter, Lawrence Conlon,
José Carlos Díaz-Ramos, Miguel Domínguez-Vázquez, Josef Dorfmeister, Hermann
Karcher, Makoto Kimura, Mayuko Kon, Nicolaas Kuiper, Hiroyuki Kurihara,
Sadahiro Maeda, Martin Magid, Reiko Miyaoka, Thomas Murphy, Tetsuya Ozawa,
Richard Palais, Juan de Dios Pérez, Ulrich Pinkall, Helmut Reckziegel, Paul
Schweitzer, S.J., Young Jin Suh, Z.-Z. Tang, Chuu-Lian Terng, Gudlaugur Thor-
bergsson, McKenzie Wang, Alan West, and Andrew Whitman, S.J.

While writing this book during the period 2009–2015, Professor Cecil was
supported by the Anthony and Renee Marlon Professorship in the Sciences, the
Mary Louise Marfuggi Award, and by a sabbatical leave in academic year 2013–
2014 at the College of the Holy Cross. He was also supported by a grant from
the National Science Foundation (DMS–0405529). This support was invaluable in
completing the project, and it is gratefully acknowledged.

We are also grateful to Elizabeth Loew, Ann Kostant, and the staff at Springer
for their excellent professional support of this project.

Finally, we are most grateful to our wives, Patsy and Ellen, and to our families
for their support and encouragement of this lengthy project.

Worcester, MA, USA Thomas E. Cecil
Hamilton, ON, Canada Patrick J. Ryan
July 2015
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Chapter 1
Introduction

A smooth real-valued function F defined on a Riemannian manifold QM is called
an isoparametric function if both of its classical Beltrami differential parameters
�1F D jgrad Fj2 and �2F D �F .Laplacian of F) are smooth functions of F
itself. That is, both of the differential parameters are constant on each level set
of F. An isoparametric family of QM is the collection of level sets of a nonconstant
isoparametric function F on QM.

In the case where QM is a real space form Rn, Sn or Hn (hyperbolic space),
a necessary and sufficient condition for an oriented hypersurface M � QM to belong
to an isoparametric family is that all of its principal curvatures are constant (see
Section 3.1). Thus, an oriented hypersurface of a real space form QM is called an
isoparametric hypersurface if it has constant principal curvatures.

For QM equal to Rn or Hn, the classification of isoparametric hypersurfaces
is complete and relatively simple, but as Cartan [52–55] showed in a series of
four papers in 1938–1940, the subject is much deeper and more complicated for
hypersurfaces in the sphere Sn.

A hypersurface Mn�1 in a real space form QMn is proper Dupin if the number g
of distinct principal curvatures is constant on Mn�1, and each principal curvature
function is constant along each leaf of its corresponding principal foliation. This is
an important generalization of the isoparametric property that traces back to the
book of Dupin [143] published in 1822. Proper Dupin hypersurfaces have been
studied effectively in the context of Lie sphere geometry.

The theories of isoparametric and Dupin hypersurfaces are beautiful and filled
with well-known important examples, and they have been analyzed from several
points of view: geometric, algebraic, analytic, and topological. In this book, we
cover the fundamental framework of these theories, and we study the main examples
in detail. We also give a comprehensive treatment of the extension of these theories
to real hypersurfaces with special curvature properties in complex and quaternionic
space forms. We now give a brief overview of the contents of the book.

© Thomas E. Cecil and Patrick J. Ryan 2015
T.E. Cecil, P.J. Ryan, Geometry of Hypersurfaces, Springer Monographs
in Mathematics, DOI 10.1007/978-1-4939-3246-7_1
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2 1 Introduction

Chapter 2 contains important results from the theory of submanifolds of real
space forms that are needed in our study of isoparametric and Dupin hypersurfaces.
In Sections 2.1–2.4, we find formulas for the shape operators of parallel hyper-
surfaces and tubes over submanifolds, and we discuss the focal submanifolds of
a given submanifold. This leads naturally to the notions of curvature surfaces and
Dupin hypersurfaces in Section 2.5. There we prove Pinkall’s [446] local result
(Theorem 2.25) which states that given any positive integer g, and any positive
integers m1; : : : ;mg with m1 C � � � C mg D n � 1, there exists a proper Dupin
hypersurface Mn�1 in Rn with g distinct principal curvatures having respective
multiplicities m1; : : : ;mg.

In Sections 2.6 and 2.7, we cover some basic results concerning tight and taut
immersions of manifolds into real space forms. These are fundamental ideas in
themselves, and they are needed to develop certain important results in the theory
of isoparametric and Dupin hypersurfaces. In Section 2.8, we study the close
relationship between the concepts of taut and Dupin submanifolds. Finally, we close
the chapter with a treatment of the standard embeddings of projective spaces into
Euclidean spaces. These examples play a significant role in the theories of tight,
taut, and isoparametric hypersurfaces.

Chapter 3 is devoted to the basic theory of isoparametric hypersurfaces in real
space forms developed primarily by Cartan [53–56] and Münzner [381, 382] (first
published as preprints in the early 1970s). In Section 3.1, we describe the aspects of
the theory that are common to all three space forms, and then prove the classification
of isoparametric hypersurfaces Mn�1 in Euclidean space Rn and in hyperbolic space
Hn using Cartan’s formula involving the principal curvatures of Mn�1.

The rest of the chapter is devoted to the much more complicated theory of
isoparametric hypersurfaces in the sphere Sn. In Sections 3.2–3.6, we present
Münzner’s theory, including the proof that an isoparametric hypersurface in
Sn � RnC1 with g distinct principal curvatures is always contained in a level
set of a homogeneous polynomial of degree g on RnC1 satisfying certain differential
equations on the length of its gradient and its Laplacian. From this it can be shown
that every connected isoparametric hypersurface in Sn is contained in a unique
compact, connected isoparametric hypersurface in Sn.

Using Münzner’s construction, it can also be shown that each compact, connected
isoparametric hypersurface Mn�1 � Sn has two focal submanifolds of codimension
greater than one. These codimensions are determined by the multiplicities of the
principal curvatures of Mn�1. From this it follows that Mn�1 separates Sn into two
ball bundles over these two focal submanifolds. Münzner then used cohomology
theory to show that this topological situation implies that the number g of distinct
principal curvatures of Mn�1 can only be 1; 2; 3; 4, or 6. At approximately the
same time as Münzner’s work, Takagi and Takahashi [511] classified homogeneous
isoparametric hypersurfaces and found examples having g distinct principal curva-
tures for each of the values g D 1; 2; 3; 4 or 6.

Thorbergsson [533] applied Münzner’s theory to show that the number g
of distinct principal curvatures of a compact proper Dupin hypersurface Mn�1
embedded in Sn is always 1; 2; 3; 4, or 6, since Mn�1 separates Sn into two ball
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bundles over two focal submanifolds of Mn�1, as in the isoparametric case. Several
authors then used this same topological information to find a complete list of
possibilities for the multiplicities of the principal curvatures of a compact proper
Dupin hypersurface in Sn. This is discussed in Section 3.7.

In Section 3.8, we describe many important examples of isoparametric hypersur-
faces in Sn from various points of view, and we discuss many classification results
that have been obtained. Then in Section 3.9, we give a thorough treatment of the
important paper of Ferus, Karcher, and Münzner [160], who used representations of
Clifford algebras to construct an infinite collection of isoparametric hypersurfaces
with g D 4 principal curvatures, now known as isoparametric hypersurfaces of
FKM-type. Many of the hypersurfaces of FKM-type are not homogeneous. At the
end of that section (see Subsection 3.9.1), we discuss progress that has been made
on the classification of isoparametric hypersurfaces with four principal curvatures.

Isoparametric hypersurfaces in spheres have also occurred in considerations of
several concepts in Riemannian geometry, such as the spectrum of the Laplacian,
constant scalar curvature, and Willmore submanifolds. These applications and
others are discussed in Section 3.10.

Chapter 4 describes the method for studying submanifolds of Euclidean space
Rn or the sphere Sn in the setting of Lie sphere geometry. For proper Dupin
hypersurfaces this has proven to be a valuable approach, since Dupin hypersurfaces
occur naturally as envelopes of families of spheres, which can be handled well
in Lie sphere geometry. Since the proper Dupin condition is invariant under Lie
sphere transformations, this is also a natural setting for classification theorems. In
Section 4.6, we formulate the related notion of tautness in the setting of Lie sphere
geometry and prove that it is also invariant under Lie sphere transformations. The
material in this chapter is covered in more detail in Chapters 2–4 of the book [77].

In Chapter 5, we study proper Dupin hypersurfaces in a real space form QMn

in detail. As noted above, proper Dupin hypersurfaces can also be studied in the
context of Lie sphere geometry, and many classification results have been obtained
in that setting. In this chapter, we use the viewpoint of the metric geometry of QMn

and that of Lie sphere geometry to obtain results about proper Dupin hypersurfaces.
An important class of proper Dupin hypersurfaces consists of the isoparamet-

ric hypersurfaces in Sn, and those hypersurfaces in Rn obtained from isopara-
metric hypersurfaces in Sn via stereographic projection. For example, the well-
known cyclides of Dupin in R3 are obtained from a standard product torus
S1.r/ � S1.s/ � S3, r2 C s2 D 1, in this way. These examples are discussed in more
detail in Section 5.5.

However, in contrast to the situation for isoparametric hypersurfaces, there are
both local and global aspects to the theory of proper Dupin hypersurfaces with quite
different results. As noted above, Thorbergsson [533] proved that the restriction
g D 1; 2; 3; 4, or 6 on the number of distinct principal curvatures of an isoparametric
hypersurface in Sn also holds for a compact proper Dupin hypersurface Mn�1
embedded in Sn. On the other hand, Pinkall [446] (see Theorem 2.25) showed that it
is possible to construct a non-compact proper Dupin hypersurface with any number
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g of distinct principal curvatures having any prescribed multiplicities. The proof
involves Pinkall’s standard constructions of building tubes, cylinders, and surfaces
of revolution over lower dimensional Dupin submanifolds. These constructions are
described in Section 5.1.

Pinkall’s constructions lead naturally to proper Dupin hypersurfaces with the
property that each point has a neighborhood with a local principal coordinate
system, i.e., one in which the coordinate curves are principal curves. We discuss
this type of hypersurface in Section 5.2. In particular, we show that if M � Sn

is an isoparametric hypersurface with g � 3 principal curvatures, then there does
not exist any local principal coordinate system on M (see Pinkall [442, p. 42] and
Cecil–Ryan [95, pp. 180–184]). We then give necessary and sufficient conditions
for a hypersurface in a real space form with a fixed number g of distinct principal
curvatures to have a local principal coordinate system in a neighborhood of each of
its points.

An important notion in the local classification of proper Dupin hypersurfaces
is reducibility. A proper Dupin hypersurface is called reducible if it is locally Lie
equivalent to a proper Dupin hypersurface in Rn obtained as the result of one of
Pinkall’s standard constructions. In Section 5.3, we discuss reducible proper Dupin
hypersurfaces in detail and develop Lie geometric criteria for reducibility.

In Section 5.4, we introduce the method of moving frames in Lie sphere
geometry, which has been used to obtain local classifications of proper Dupin
hypersurfaces with 2, 3, or 4 distinct principal curvatures. In Section 5.5, we use this
method to give a complete local classification of proper Dupin hypersurfaces with
g D 2 distinct principal curvatures, i.e., the cyclides of Dupin. This is a nineteenth
century result for n D 3, and it was obtained in dimensions n > 3 by Pinkall [446]
in 1985. In Sections 5.6 and 5.7, we discuss local classification results for the cases
g D 3 and g D 4, respectively, that have been obtained using the moving frames
approach.

As demonstrated by Thorbergsson’s restriction on the number of distinct prin-
cipal curvatures, compact proper Dupin hypersurfaces in Sn are relatively rare, and
several important classification results have been obtained for them. These results
are discussed in detail in Section 5.8 together with the important counterexamples
of Pinkall-Thorbergsson [448] and Miyaoka–Ozawa [377] to the conjecture of Cecil
and Ryan [95, p. 184] that every compact proper Dupin hypersurface embedded in
Sn is Lie equivalent to an isoparametric hypersurface.

As noted earlier, the Dupin and taut conditions for submanifolds of real space
forms are very closely related (see Section 2.8). In Sections 5.9 and 5.10, we discuss
important classification results that have been obtained for taut submanifolds in
Euclidean space Rn. Many of these have been proven by using classifications of
compact proper Dupin hypersurfaces.

The study of real hypersurfaces in complex projective space CPn and complex
hyperbolic space CHn began at approximately the same time as Münzner’s work on
isoparametric hypersurfaces in spheres. A key early work was Takagi’s [507] clas-
sification in 1973 of homogeneous real hypersurfaces in CPn. These hypersurfaces
necessarily have constant principal curvatures, and they serve as model spaces for
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many subsequent classification theorems. Later Montiel [378] provided a similar list
of standard examples in complex hyperbolic space CHn. These examples of Takagi
and Montiel are presented in detail in Sections 6.3–6.5.

Let M be an oriented real hypersurface in CPn or CHn, n � 2, with field of unit
normals � . The hypersurface M is said to be Hopf if the structure vector W D �J�
is a principal vector at every point of M, where J is the complex structure on the
ambient space. In that case, if AW D ˛W, then ˛ is called the Hopf principal
curvature on M. A fundamental result is that the Hopf principal curvature ˛ is
always constant on a Hopf hypersurface M.

The hypersurfaces on the lists of Takagi and Montiel are Hopf hypersurfaces with
constant principal curvatures. Furthermore, all tubes over complex submanifolds of
CPn or CHn are Hopf. Conversely, if the rank of the focal map determined by the
Hopf principal curvature is constant, then the image of that focal map is a complex
submanifold of the ambient space. This was first shown by Cecil–Ryan [94] in CPn,
and by Montiel [378] in CHn. These basic results concerning Hopf hypersurfaces
are covered in Sections 6.6–6.8.

In Section 6.7, we study parallel hypersurfaces, focal sets and tubes over
submanifolds of complex space forms using techniques similar to those used in
Sections 2.2–2.4 for submanifolds of real space forms. This yields formulas that
can be used to compute the principal curvatures of the hypersurfaces on the lists of
Takagi and Montiel. In Section 6.9, we present an alternative approach to the study
of parallel hypersurfaces and tubes using the method of Jacobi fields. This method
has been effective in proving some important results in the field, and we will use it
extensively.

Most of the examples on the lists of Takagi and Montiel are tubes over complex
submanifolds. In Chapter 7, we study the basic geometry of complex submanifolds
in complex space forms, and we focus on certain important examples in CPn that
arise in the classification of Hopf hypersurfaces with constant principal curvatures.
Specifically, in Sections 7.2–7.5, we determine the behavior of the principal
curvatures of the Veronese embedding of CPm in CPn, the Segre embedding of
CPh � CPk in CPn, the Plücker embedding of complex Grassmannians in CPn, and
the half-spin embedding of SO.2d/=U.d/ in CPn.

In Chapter 8, we present the classification of Hopf hypersurfaces with constant
principal curvatures. This is due to Kimura [270] in CPn and to Berndt [27] in
CHn. Simply stated, these theorems say that any connected Hopf hypersurface in a
complex space form is an open subset of a hypersurface on Takagi’s list for CPn,
and on Montiel’s list for CHn. These classifications are major results in the field.

In the case of CHn, the classification follows from a generalization to complex
space forms of Cartan’s formula for isoparametric hypersurfaces in real space forms
(see Section 8.1). The proof of the classification theorem in the case of CPn is more
involved. A Hopf hypersurface M in CPn with constant principal curvatures gives
rise to an isoparametric hypersurface QM D ��1M in the sphere S2nC1, where � W
S2nC1 ! CPn is the Hopf fibration. By Münzner’s results, the number Qg of principal
curvatures of QM can only be 1; 2; 3; 4, or 6. By a careful analysis of the relationship
between the principal curvatures of M and those of QM, one can show that the number
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g of principal curvatures of M is either 2; 3 or 5, the same as for the hypersurfaces on
Takagi’s list. When g D 2 or 3, we prove that M is an open subset of a hypersurface
on Takagi’s list by an elementary argument involving the shape operators of the
complex focal submanifold of M corresponding to the Hopf principal curvature ˛.

In the case g D 5, the classification is much more difficult. We first prove that
the complex focal submanifold determined by ˛ is a parallel submanifold, i.e., it
has parallel second fundamental form. Such parallel complex submanifolds of CPn

were classified by Nakagawa and Takagi [391], and the list includes the special
embeddings studied in Chapter 7. Using the analysis of the shape operators of these
parallel submanifolds in Sections 7.2–7.5, we ultimately determine which parallel
submanifolds have tubes with constant principal curvatures. From this we can
deduce that every connected Hopf hypersurface with constant principal curvatures
in CPn is an open subset of a hypersurface on Takagi’s list.

In Section 8.5, we study other characterizations of the hypersurfaces on the lists
of Takagi and Montiel. In particular, a real hypersurface M in CPn or CHn is said to
be pseudo-Einstein if there exist functions � and � on M such that the Ricci tensor
S of M satisfies the equation SX D �X C �hX;WiW, for all tangent vectors X to M,
where W is the structure vector defined above.

Of course, if � is identically zero, then M is Einstein, but there do not exist any
Einstein real hypersurfaces in CPn or CHn. For n � 3, Cecil and Ryan [94] proved
in 1982 that a pseudo-Einstein hypersurface in CPn is an open subset of a geodesic
sphere, a tube of a certain radius over a totally geodesic CPk, 1 � k � n�2, or a tube
of a certain radius over a complex quadric Qn�1 � CPn. All of these hypersurfaces
are on Takagi’s list. M. Kon [289] obtained the same conclusion in 1979 under the
assumption that the functions � and � are constant.

In 1985, Montiel [378] showed that a pseudo-Einstein hypersurface in CHn,
n � 3, is an open subset of a geodesic sphere, a tube over a complex hyperplane,
or a horosphere. It is important to note that the classifications of pseudo-Einstein
hypersurfaces in CP2 by H.S. Kim and Ryan [260], and in CH2 by Ivey and Ryan
[222], are different than the classification theorems for n � 3. These classifications
of pseudo-Einstein hypersurfaces will be discussed in detail in Section 8.5. There we
also study several other related classifications of hypersurfaces based on conditions
on the shape operator, the curvature tensor, or the Ricci tensor.

In Section 8.6, we study non-Hopf hypersurfaces in complex space forms.
These include the Berndt orbits, which are a family of non-Hopf homogeneous
hypersurfaces in CHn for n � 2 having three distinct constant principal curvatures.
In Section 8.7, we discuss various ways to extend the definition of “isoparametric”
to hypersurfaces in complex forms. These formulations of the concept are equivalent
for hypersurfaces in real space forms, but different in complex space forms.
In Section 8.8, we discuss some open problems that remain in the theory of real
hypersurfaces in complex space forms.
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In 1986, Martinez and Pérez [353] began the study of real hypersurfaces in
quaternionic space forms, and in 1991 Berndt [28] found a list of standard examples
of real hypersurfaces in quaternionic space forms with constant principal curvatures,
leading to further research in this area. These examples together with classification
results and open problems are described in Chapter 9.

In this book, all manifolds and maps are taken to be smooth, i.e., C1, unless
explicitly stated otherwise. Notation generally follows the book of Kobayashi and
Nomizu [283].



Chapter 2
Submanifolds of Real Space Forms

In this chapter, we review the basic theory of submanifolds of real space forms
needed for our in-depth treatment of isoparametric and Dupin hypersurfaces in later
chapters. In Sections 2.1–2.4, we find the formulas for the shape operators of parallel
hypersurfaces and tubes over submanifolds, and we discuss the focal submanifolds
of a given submanifold.

We then define curvature surfaces and Dupin hypersurfaces in Section 2.5, and
prove Pinkall’s [446] result (Theorem 2.25) that given any positive integer g, and
any positive integers m1; : : : ;mg with m1 C � � � C mg D n � 1, there exists a
proper Dupin hypersurface Mn�1 in Rn with g distinct principal curvatures having
respective multiplicities m1; : : : ;mg.

In the next two sections, we define the notions of tight and taut immersions of
manifolds into real space forms and develop the basic properties of these types of
immersions. These concepts are important in themselves, and they are needed in the
theory of isoparametric and Dupin hypersurfaces. In Section 2.8, we study the close
relationship between the concepts of taut and Dupin submanifolds in detail.

Finally, in Section 2.9, we describe the standard embeddings of projective spaces
into Euclidean spaces. These examples have many remarkable properties, and they
are important in the theories of tight, taut, and isoparametric hypersurfaces.

2.1 Real Space Forms

We let Rn denote n-dimensional Euclidean space endowed with the standard
Euclidean metric of constant sectional curvature zero. The theory of isoparametric
and Dupin hypersurfaces in the sphere Sn.c/ of constant sectional curvature c > 0

is essentially the same for all values of c > 0, and so we restrict our attention to the
sphere Sn of constant sectional curvature 1, that is, the unit sphere in RnC1 with the
Riemannian metric induced from the Euclidean metric in RnC1.

© Thomas E. Cecil and Patrick J. Ryan 2015
T.E. Cecil, P.J. Ryan, Geometry of Hypersurfaces, Springer Monographs
in Mathematics, DOI 10.1007/978-1-4939-3246-7_2
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Similarly, for ambient spaces of constant negative sectional curvature, we restrict
our attention to the hyperbolic space Hn of constant sectional curvature �1. To get a
model for Hn, we consider the Lorentz space RnC1

1 endowed with the Lorentz metric
of signature .1; n/,

hx; yi D x1y1 C � � � C xnyn � xnC1ynC1; (2.1)

for x D .x1; : : : ; xnC1/ and y D .y1; : : : ; ynC1/ in RnC1
1 . Then real hyperbolic space

of constant sectional curvature �1 is the hypersurface in RnC1
1 given by

Hn D fx 2 RnC1
1 j hx; xi D �1; xnC1 � 1g; (2.2)

on which the Lorentz metric h ; i restricts to a Riemannian metric of constant
sectional curvature �1 (see Kobayashi–Nomizu [283, Vol. II, pp. 268–271] for more
detail).

By a real space form of dimension n, we mean a complete, connected, simply
connected manifold QMn with constant sectional curvature c. If c D 0, then QMn D Rn;
if c D 1, then QMn D Sn, and if c D �1, then QMn D Hn (see, for example, [283,
Vol. I, pp. 204–209]).

Let f W Mn ! QMnCk for k � 1 be an immersion with codimension k of an
n-dimensional manifold M into one of the three space forms QMnCk mentioned above.
For x 2 M, let TxM denote the tangent space to M at x, and let T?x M denote the
normal space to f .M/ at the point f .x/ 2 QM. Let

NM D f.x; �/ j x 2 M; � 2 T?x Mg; (2.3)

be the normal bundle of f .M/ with natural bundle projection � W NM ! M defined
by �.x; �/ D x. Let � be a local cross section of NM. For any vector X in the tangent
space TxM, we have the fundamental equation

Qrf�.X/� D �f�.A�X/C r?f�.X/�; (2.4)

where Qr is the Levi-Civita connection in QM, f� is the differential of f , A� is the
shape operator determined by the normal vector �.x/, and r? is the connection in
the normal bundle.

The shape operator defines smooth map .x; �/ 7! A� from the normal bundle
NM into the space of symmetric tensors of type .1; 1/ on M. An eigenvalue � of A�
is called a principal curvature of A� , and its corresponding eigenvector is called a
principal vector. Since At� D tA� , for t 2 R, it is sufficient to know the principal
curvatures on the bundle BM of unit normal vectors to M, i.e., the unit normal bundle
of M.
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2.2 Focal Points

Let f W M ! QM be an embedded submanifold of a real space form. Let T QM denote
the tangent bundle of QM, and let exp:T QM ! QM be the exponential map of QM. The
normal exponential map or end-point map E W NM ! QM is the restriction of the
exponential map of QM to the normal bundle NM of the submanifold M. Thus, if � is
a nonzero normal vector to f .M/ at f .x/, then E.x; �/ is the point of QM reached by
traversing a distance j�j along the geodesic in QM with initial point f .x/ and initial
tangent vector � . If � is the zero vector in the tangent space to QM at f .x/, then E.x; �/
is the point f .x/. It is well known (see, for example, [283, Vol. I, p. 147]) that exp
is smooth in a neighborhood of the 0-section in T QM, and so E is also smooth in a
neighborhood of the 0-section in NM. It is easy to show that the differential E� is
nonsingular at points on the zero section, so we restrict our attention to points in
NM that are not in the 0-section in trying to locate the critical values of E.

The focal points of M are the critical values of the normal exponential map E.
Specifically, a point p 2 QM is called a focal point of .M; x/ of multiplicity m if
p D E.x; �/ and the differential E� at the point .x; �/ has nullity m > 0. The focal
set of M is the set of all focal points of .M; x/ for all x 2 M. Since NM and QM have
the same dimension, it follows from Sard’s Theorem (see, for example, [359, p. 33])
that the focal set of M has measure zero in QM.

We now assume that � is a unit length normal vector to f .M/ at a point x 2 M.
The following theorem gives the location of the focal points of .M; x/ along the
geodesic E.x; t�/, for t 2 R, in terms of the eigenvalues of the shape operator A�
at x. We will give a proof for part (a) of the theorem, the case QMnCk D RnCk. (See
also Milnor [359, pp. 32–35] for a proof in the Euclidean case, and Cecil [70] for a
proof in the hyperbolic case. The proof in the spherical case is similar to that in the
hyperbolic case.)

Theorem 2.1. Let f W Mn ! QMnCk be a submanifold of a real space form QMnCk,
and let � be a unit normal vector to f .Mn/ at f .x/. Then p D E.x; t�/ is a focal point
of .Mn; x/ of multiplicity m > 0 if and only if there is an eigenvalue � of the shape
operator A� of multiplicity m such that

(a) � D 1=t, if QMnCk D RnCk,
(b) � D cot t, if QMnCk D SnCk,
(c) � D coth t, if QMnCk D HnCk.

Proof. (a) In the following local calculation, we consider Mn � RnCk as an
embedded submanifold and do not mention the embedding f explicitly. We also
consider the tangent space TxM to be a subspace of TxRnCk. We first recall some
standard terminology and equations of submanifold theory. We will denote the Levi-
Civita connection on RnCk by D rather than Qr. For locally defined smooth vector
fields X and Y defined on M, we have the decomposition of DXY into tangential and
normal components,

DXY D rXY C �.X;Y/; (2.5)
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which defines the Levi-Civita connection r of the induced Riemannian metric on M
and the second fundamental form � . For a local field of unit normal vectors � on M,
we have the decomposition of DX� into tangential and normal components,

DX� D �A�X C r?X �; (2.6)

which defines the shape operator A� and normal connection r?, as in equation (2.4)
above.

Since we know that there are no focal points on the 0-section, we will compute
E� at a point of NM that is not on the 0-section. We can consider this point to have
the form .x; t�/, where j�j D 1 and t > 0. Let �1; : : : ; �k be an orthonormal frame of
normal vectors to M at x with �1 D � . Let U be a normal coordinate neighborhood of
x in M as defined in [283, Vol. I, p. 148]. In order to simplify the calculations below,
we extend �1; : : : ; �k to orthonormal normal vector fields on U by parallel translation
with respect to the normal connection r? along geodesics in U through x.

Let f	1; : : : ; 	kg be the standard orthonormal basis of Rk. Let Sk�1 be the unit
sphere in Rk given by

Sk�1 D fa D
kX

jD1
aj	j j a21 C � � � C a2k D 1g: (2.7)

We parametrize the normal bundle NM locally in a neighborhood of the point .x; t�/
by defining


 W .0;1/ � Sk�1 � U ! NM (2.8)

by


.�; a; y/ D �

kX

jD1
aj�j.y/; (2.9)

where the vector 
.�; a; y/ is normal to M at the point y 2 U.
Then .E ı 
/.�; a; y/ is the point in RnCk reached by traversing a distance �

along the geodesic in RnCk beginning at y and having initial direction

kX

jD1
aj�j.y/: (2.10)

That is,

.E ı 
/.�; a; y/ D y C �

kX

jD1
aj�j.y/: (2.11)
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In this local parametrization, the point .x; t�/ is equal to 
.t; 	1; x/. Evaluating E�
at .x; t�/ is equivalent to evaluating .E ı 
/� at the point .t; 	1; x/. We now want to
express .E ı 
/� in terms of a basis consisting of @=@� for .0;1/, f	jg, 2 � j � k,
for T	1S

k�1, and an orthonormal basis of TxM consisting of eigenvectors X of A�
with corresponding eigenvalues denoted by �.

We first evaluate .E ı 
/�.@=@�/ at the point .t; 	1; x/. We have

.E ı 
/�.@=@�/ D �!̌
.�/j�Dt; where ˇ.�/ D x C � �1.x/; (2.12)

where
�!̌
.�/ is the velocity vector (tangent vector) of the curve ˇ.�/.

Thus, we get

.E ı 
/�.@=@�/ D �1.x/ D �: (2.13)

Next, the tangent space T	1S
k�1 has an orthonormal basis f	2; : : : ; 	kg. We want to

compute .E ı 
/�	j for 2 � j � k. In Sk�1, the curve

�.s/ D cos s 	1 C sin s 	j (2.14)

has initial point 	1 and initial velocity vector 	j. Thus by equation (2.11), we see that
.E ı 
/�	j is the initial velocity vector to the curve

ˇ.s/ D x C t .cos s �1.x/C sin s �j.x//: (2.15)

Differentiating with respect to s and substituting s D 0, we get

.E ı 
/�	j D t�j.x/: (2.16)

Equations (2.13) and (2.16) show that if

V D c1

�
@

@�

�
C

kX

jD2
cj	j; (2.17)

then .E ı 
/�V D 0 only if V D 0.
Next we compute .E ı 
/�X for X 2 TxM. If ı.s/ is a curve in U with initial

point x and initial velocity vector X, then .E ı 
/�X is the initial velocity vector to
the curve

.s/ D .E ı 
/ı.s/ D ı.s/C t �1.ı.s//: (2.18)

Differentiating with respect to s and using ı.0/ D x and
�!
ı .0/ D X, we get

�!
 .0/ D X C t DX�1: (2.19)
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We know that DX�1 D �A�1X Cr?X �1, and we have constructed �1 so that �1.x/ D �

and r?X �1 D 0. Hence, we have

.E ı 
/�X D X � tA�X D .I � tA� /X; (2.20)

where we are identifying X with its Euclidean parallel translate at the point p D
E.x; t�/.

From equations (2.13), (2.16), and (2.20), we see that for V as in equation (2.17)
and a nonzero X 2 TxM, we have .E ı 
/�.X C V/ D 0 if and only if V D 0 and
A�X D .1=t/X, i.e., 1=t is an eigenvalue of A� with eigenvector X. Furthermore,
if � D 1=t is an eigenvalue of A� , then the nullity of E� at .x; t�/ is equal to the
dimension of the eigenspace T�, i.e., the multiplicity m of �. This completes the
proof of the theorem. ut

2.3 Tubes and Parallel Hypersurfaces

As above, let f W Mn ! QMnCk be an immersion into a real space form, and let
BM denote the bundle of unit normal vectors to f .M/ in QM. If the codimension k
is greater than one, then we define the tube of radius t > 0 over M by the map
ft W BM ! QM,

ft.x; �/ D E.x; t�/: (2.21)

If .x; t�/ is not a critical point of E, then ft is an immersion in a neighborhood of
.x; �/ in BM. It follows from Theorem 2.1 that given any point x 2 M, there is a
neighborhood U of x in M such that for all t > 0 sufficiently small, the restriction
of ft to the unit normal bundle BU over U is an immersion onto an .n C k � 1/-
dimensional manifold, which is geometrically a tube of radius t over U.

In the case where M is a hypersurface, i.e., the codimension k D 1, then BM is a
double covering of M. In that case, for local calculations, we can assume that M is
orientable with a local field of unit normal vectors � . Then we consider the parallel
hypersurface ft W M ! QM given by

ft.x/ D E.x; t�/; (2.22)

for t 2 R, rather than defining ft on the double covering BM. Note that t can take
any real value in this case. For a negative value of t, the parallel hypersurface lies
locally on the side of M in the direction of the unit normal field �� , instead of on the
side of M in the direction of � . For t D 0, we have f0 D f , the original hypersurface.

In this section, we will compute the principal curvatures of the tube ft in terms
of the principal curvatures of the original submanifold M. We will treat the case of
codimension k > 1 here. The case of codimension k D 1 is similar and is actually
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easier, and we omit it here. The formulas in Theorem 2.2 below work for the case of
codimension 1 also, except that there are no 	j in that case. We will handle the case
QM D RnCk here. The calculations for the other space forms are similar and are left

to the reader.
As in the preceding section, in the following local calculation we consider Mn �

RnCk as an embedded submanifold and do not mention the embedding f explicitly.
We also consider the tangent space TxM to be a subspace of TxRnCk. Let .x; �/ be
a point in BM such that ft is an immersion at .x; �/, i.e., .x; t�/ is not a critical
point of E. Let �1; : : : ; �k be an orthonormal frame of normal vectors to M at x with
�1 D � . Let U be a normal coordinate neighborhood of x in M. We extend �1; : : : ; �k

to orthonormal normal vector fields on U by parallel translation with respect to the
normal connection r? along geodesics in U through x. Thus, we have the same
setup as for the calculations in the proof of Theorem 2.1.

As in the proof of Theorem 2.1, let f	1; : : : ; 	kg be the standard orthonormal basis
of Rk. Let Sk�1 be the unit sphere in Rk given by

Sk�1 D fa D
kX

jD1
aj	j j a21 C � � � C a2k D 1g: (2.23)

We parametrize the unit normal bundle BM locally in a neighborhood of the point
.x; �/ by defining


 W Sk�1 � U ! BM (2.24)

by


.a; y/ D
kX

jD1
aj�j.y/; (2.25)

where the vector 
.a; y/ is a unit normal vector to M at the point y 2 U.
In this local parametrization, the point .x; �/ in BM is equal to 
.	1; x/.

Evaluating .ft/� at .x; �/ is equivalent to evaluating .ft ı 
/� at the point .	1; x/.
We now want to express .ft ı 
/� at .	1; x/ in terms of a basis consisting of f	jg,
2 � j � k, for T	1S

k�1, and an orthonormal basis of TxM consisting of eigenvectors
X of A� with corresponding eigenvalues denoted by �.

The calculations of .ft ı
/� are exactly the same as the calculations of .E ı
/�
in the proof of Theorem 2.1, except that there is no @=@� term. Specifically, as in
equation (2.16), we get

.ft ı 
/�	j D t�j.x/: (2.26)
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Then for X 2 TxM, we get as in equation (2.20),

.ft ı 
/�X D X � tA�X D .I � tA� /X; (2.27)

where we are identifying X with its Euclidean parallel translate at the point
p D ft.x; �/.

Since ft is an immersion at .x; �/, there is a neighborhood W of the point .x; �/
in the unit normal bundle BU such that the restriction of ft to W is an embedded
hypersurface in RnCk. To find the shape operator of ftW, we need to find a local field
of unit normals to ftW, and then compute its covariant derivative.

If .u; �/ is an arbitrary point of W, then the Euclidean parallel translate of � is a
unit normal to the hypersurface ftW at the point ft.u; �/. So we now let � denote a
field of unit normals to the hypersurface ftW on the neighborhood W. We denote the
corresponding shape operator of the oriented hypersurface ftW by At.

We use the same local parametrization of BM given above. We can identify the
tangent space T.x;�/BM with T	1S

k�1 � TxM via the parametrization 
 , and we can
consider the shape operator At to be defined on T	1S

k�1 � TxM. In particular, At is
defined by,

.ft ı 
/�.AtZ/ D �D.ftı
/�Z�; (2.28)

for Z 2 T	1S
k�1 � TxM. Note that there is no term involving the normal connection

r?, since the codimension of ftW is one.
We first compute At	j for 2 � j � k. As in equation (2.15), we have that .ftı
/�	j

is the initial velocity vector to the curve

ˇ.s/ D x C t .cos s �1.x/C sin s �j.x//: (2.29)

Hence, D.ftı
/�	j� is the initial velocity vector �!� .0/ to the curve

�.ˇ.s// D cos s �1.x/C sin s �j.x/: (2.30)

Therefore, we have

.ft ı 
/�.At	j/ D ��!� .0/ D ��j.x/: (2.31)

Since we have .ft ı 
/�	j D t�j.x/ by equation (2.26), we get

At	j D �1
t
	j: (2.32)

Thus, 	j is a principal vector of At with corresponding principal curvature �1=t,
where t is the radius of the tube.
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Next we find AtX for a vector X 2 TxM. Let ı.s/ be a curve in M with initial

point ı.0/ D x and initial velocity vector
�!
ı .0/ D X. Then .ft ı 
/�X is the initial

velocity vector to the curve

.s/ D ı.s/C t �1.ı.s//: (2.33)

Along this curve .s/, the unit normal field � to the tube is given by

�.ı.s// D �1.ı.s//: (2.34)

Then D.ftı
/�X� is the initial velocity vector to this curve �1.ı.s//, which is just
DX�1, where again we are identifying parallel vectors in RnCk. Then using the fact
that r?X �1 D 0, we get from equation (2.4)

D.ftı
/�X� D DX�1 D �A�X; (2.35)

since �1.x/ D � . Thus we have from equation (2.28) that .ft ı 
/�.AtX/ D A�X.
Then it follows from equation (2.27) for .ft ı 
/�X that

AtX D .I � tA� /
�1A�X: (2.36)

In the case of a principal vector X such that A�X D �X, this reduces to

AtX D �

1 � t�
X: (2.37)

Therefore, X is a principal vector of At with corresponding principal curvature
�=.1 � t�/.

Principal curvatures of a tube

In summary, we have the following theorem for the shape operators of a tube over
a submanifold of Euclidean space RnCk. Similar computations to those above yield
the results for submanifolds of SnCk and HnCk, which are also stated in the theorem.
In the case k D 1, the theorem gives the formula for the shape operator of a parallel
hypersurface ftM. In that case, there are no terms At	j.

Theorem 2.2. Let Mn be a submanifold of a real space form QMnCk and � a unit
normal vector to M at x such that ft W BM ! QMnCk is an immersion at the point
.x; �/ 2 BM. Let fX1; : : : ;Xng be a basis of TxM consisting of principal vectors of
A� with A�Xi D �iXi for 1 � i � n. In terms of the local parametrization of BM
given in this section, the shape operator At of the tube ft of radius t over M at the
point .x; �/ is given in terms of its principal vectors as follows:
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For submanifolds of RnCk,

(1) For 2 � j � k, At	j D � 1
t 	j,

(2) For 1 � i � n, AtXi D �i
1�t�i

Xi.

For submanifolds of SnCk,

(1) For 2 � j � k, At	j D � cot t 	j,
(2) For 1 � i � n, AtXi D cot.�i � t/ Xi, if �i D cot �i, 0 < �i < � .

For submanifolds of HnCk,

(1) For 2 � j � k, At	j D � coth t 	j,
(2) For 1 � i � n,

(a) AtXi D coth.�i � t/ Xi, if j�ij > 1, and �i D coth �i,
(b) AtXi D ˙Xi, if �i D ˙1,
(c) AtXi D tanh.�i � t/ Xi, if j�ij < 1, and �i D tanh �i.

As a consequence of Theorems 2.1 and 2.2, we obtain the following useful result.
In the case where M has codimension k > 1, the points of M are focal points
of the tube ftM corresponding to the principal curvature � D �1=t of At in the
case QMnCk D RnCk, � D � cot t in the case QMnCk D SnCk, and � D � coth t in
the case QMnCk D HnCk.

Theorem 2.3. Let Mn be a submanifold of a real space form QMnCk and t a real
number such that ftM is a hypersurface.

(a) If M is a hypersurface, then the focal set of the parallel hypersurface ftM is the
focal set of M.

(b) If M has codimension greater than one, then the focal set of the tube ftM consists
of the union of the focal set of M with M itself.

2.4 Focal Submanifolds

In this section, we find a natural manifold structure for the sheet of the focal set
of a hypersurface of a real space form corresponding to a principal curvature of
constant multiplicity. By considering tubes and using Theorems 2.2 and 2.3, this also
enables us to give a manifold structure to a sheet of the focal set of a submanifold
of codimension greater than one. These results were originally obtained in the paper
of Cecil and Ryan [88], and they were suggested by the work of Nomizu [403],
who obtained similar results for the sheets of the focal set of an isoparametric
hypersurface. See also the related work of Reckziegel [457–459].

Let f W Mn ! QMnC1 be an immersed hypersurface in a real space form QM. For
the following local considerations, we assume that f .M/ is orientable with a global
field of unit normals � and corresponding shape operator A D A� . If the principal
curvature functions on M are ordered as
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�1 � �2 � � � � � �n; (2.38)

then each �i is a continuous function (see Ryan [468, p. 371]). Furthermore, if a
continuous principal curvature function � has constant multiplicity m on M, then
� is a smooth function, and its m-dimensional distribution T� of principal vectors
is also smooth on M (see, for example, Nomizu [402], Reckziegel [457, 458], or
Singley [486]). We will show in this section that T� is also integrable, and so it is
an m-dimensional foliation on M called the principal foliation corresponding to the
principal curvature �. Using this fact, we will then show that if � is constant along
each leaf of T�, then the sheet of the focal set of M corresponding to � is a smooth
.n � m/-dimensional submanifold of QM.

Remark 2.4 (An example of principal curvature functions that are not smooth). If a
continuous principal curvature function does not have constant multiplicity, then it
is not necessarily a smooth function. Consider, for example, the behavior of the
principal curvature functions of the monkey saddle in R3 given as the graph of
the function

z D x3 � 3xy2

3
: (2.39)

This surface has two distinct principal curvatures at each point except at the
umbilic point at the origin. In terms of polar coordinates .r; �/ on R2, the principal
curvatures are given by the formula,

.1C r4/3=2 � D �r5 cos 3� ˙ 2r

�
1C r4 C r8

4
cos2 3�

�1=2
: (2.40)

As r approaches zero, the two principal curvature functions are asymptotically equal
to ˙2r, so these functions are continuous, but not smooth at the origin. (See [96] or
[95, pp. 134–135] for more detail.)

If a principal curvature function � has constant multiplicity m on M, then we can
define a smooth focal map f� from an open subset U � M (defined below) onto the
sheet of the focal set of M determined by �. Using Theorem 2.1 for the location of
the focal points, we define the map f� by the formulas,

f�.x/ D f .x/C 1

�
�.x/;

f�.x/ D cos � f .x/C sin � �.x/; where cot � D �; (2.41)

f�.x/ D cosh � f .x/C sinh � �.x/; where coth � D �;

for QM equal to RnC1, SnC1, and HnC1, respectively.
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In the case of RnC1, the domain U of f� is the set of points in M where � ¤ 0.
In hyperbolic space, the domain U of f� is the set of points where j�j > 1. In the case
of SnC1, at each point x 2 M the principal curvature � gives rise to two antipodal
focal points in SnC1 determined by substituting � D cot�1 � and � D cot�1 �C �

into equation (2.41). Thus, � gives rise to two antipodal focal maps into SnC1.
For a point x in the domain U of f�, the hypersphere K�.x/ in QM through x and

centered at the focal point f�.x/ is called the curvature sphere determined by � at x.
This curvature sphere is tangent to f .M/ at the point f .x/. These curvature spheres
play a crucial role in the study of Dupin hypersurfaces in the context of Lie sphere
geometry.

Remark 2.5 (On the definition of a curvature sphere). Note that the definition of a
curvature sphere does not require that � have constant multiplicity or be a smooth
function. It can be defined pointwise. If x is in the domain U of the map f� defined
in equation (2.41), then the curvature sphere at x corresponding to the principal
curvature � is the hypersphere K�.x/ in QM through x and centered at the focal point
f�.x/.

Conformal transformations of the ambient space

The condition that a principal curvature function � has constant multiplicity on M
is important in the study of Dupin hypersurfaces. This consideration is preserved
by conformal transformations of the ambient space, as the following considerations
show.

Let . QM; g/ and . QM0; g0/ be two Riemannian manifolds, and suppose that W QM !
QM0 is a conformal diffeomorphism such that

g0. �X;  �Y/ D e2h.x/g.X;Y/; (2.42)

for all X;Y tangent to QM at x, where h is a smooth function on QM. Let M be a
submanifold of QM, and let � be a local field of unit normals to M in a neighborhood
of x. Then � 0 D  �.e�h�/ is a field of unit normals to  .M/ near  .x/ and the
corresponding shape operators are related by the equation,

B�0 D e�h.A� � g.grad h; �/I/: (2.43)

A direct calculation then yields the following relationship between the principal
curvatures of M in QM and those of  .M/ in QM0.
Theorem 2.6. Let  W . QM; g/ ! . QM0; g0/ be a conformal diffeomorphism of
Riemannian manifolds with g0. �X;  �Y/ D e2h.x/g.X;Y/ for all X;Y tangent to
QM at x. Let M be an oriented hypersurface in QM, and let � be a smooth principal

curvature function of constant multiplicity m on M. Then
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P

x

τ (x)

Rk

Fig. 2.1 Stereographic projection

� D e�h.� � g.grad h; �//

is a smooth principal curvature function of multiplicity m on  .M/, and the
respective principal distributions of � and � coincide on M.

Remark 2.7 (Stereographic projection and inversions in spheres). We want to apply
Theorem 2.6 to the case of hypersurfaces in real space forms by considering the
conformal transformation given by stereographic projection from Sk or Hk into Rk,
for any positive integer k. In the spherical case, let P be an arbitrary point of the unit
sphere Sk � RkC1, and let

Rk D fx 2 RkC1 j hx;Pi D 0g; (2.44)

where h ; i is the Euclidean inner product on RkC1. Then stereographic projection
with pole P is the map � W Sk � fPg ! Rk defined geometrically as follows. For
x 2 Sk � fPg, the ray from x through P intersects Rk in exactly one point which is
�.x/ (see Figure 2.1). Analytically, this is given by

�.x/ D P C 1

1 � hx;Pi .x � P/: (2.45)

In terms of our conformal geometric considerations, this can be written as

�.x/ D P C eh.x/.x � P/; (2.46)

where e�h.x/ D 1 � hx;Pi. It is easily shown that � is a conformal diffeomorphism
with h��X; ��Yi D e2h.x/hX;Yi, for all X;Y tangent to Sk at x.

Recall from equation (2.2) that our model of k-dimensional hyperbolic space is
given by

Hk D fx 2 RkC1
1 j hx; xi D �1; xkC1 � 1g;
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where h ; i is the Lorentz metric,

hx; yi D x1y1 C � � � C xkyk � xkC1ykC1;

on RkC1
1 . Let P be a point in RkC1

1 such that �P 2 Hk. Let Dk be the k-dimensional
disk

Dk D fx 2 RkC1
1 j hx;Pi D 0; hx; xi < 1g; (2.47)

on which the metric h ; i restricts to a Euclidean metric, which we denote by g.
Then we define stereographic projection � W Hk ! Dk with pole P as follows. For
x 2 Hk, the ray from P through x intersects Dk in exactly one point which is �.x/.
Analytically, this is given by

�.x/ D P C 1

1C hx;Pi .x � P/: (2.48)

In terms of our conformal geometry, this can be written as,

�.x/ D P C eh.x/.x � P/; (2.49)

where e�h.x/ D 1Chx;Pi. One can easily show that � is a conformal diffeomorphism
with g.��X; ��Y/ D e2h.x/hX;Yi, for all X;Y tangent to Hk at the point x.

Another important type of conformal transformation is inversion,

� W RnC1 � fpg ! RnC1 � fpg; (2.50)

in a sphere centered at p 2 RnC1 with radius r > 0. The map � takes a
point q 2 RnC1 � fpg to the point �.q/ on the ray from p through q such that
jq � pj j�.q/ � pj D r2.

We now return to the case of a hypersurface f W Mn ! QMnC1 in a real space form
and consider the question of when the image of a focal map f� is a submanifold of
the ambient space QM, where � is a principal curvature of constant multiplicity m
on M. Here we will make the calculations only for QM D RnC1. The proofs for the
other space forms are similar.

Theorem 2.8. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m � 1 in a neighborhood of a point x in the domain of f�. Then the rank
of the focal map f� at x equals n � m C 1 if there exists X 2 T�.x/ such that X� ¤ 0,
and it equals n � m otherwise.

Proof. Here we consider the case f W Mn ! RnC1. Let � be the field of unit normals
on M. On a neighborhood W of x on which � is nonzero and has constant multiplicity
m, we have from equation (2.41) that

f�.y/ D f .y/C �.y/�.y/;
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for y 2 W, where � D 1=�. For X 2 TxM, we compute the differential of f� applied
to X,

.f�/�.X/ D X C .X�/ � C �DX�; (2.51)

where again we are identifying vectors that are Euclidean parallel. If X 2 T�.x/ for
a principal curvature � ¤ �, then since DX� D ��X, equation (2.51) yields

.f�/�.X/ D .1 � �

�
/X C .X�/ �; for X 2 T�; (2.52)

and thus .f�/� is injective on T�. This is true for all principal curvatures � not equal
to �, and so .f�/� is injective on T?� .x/, which is the direct sum of the principal
spaces corresponding to the other principal curvatures. On the other hand, if X 2
T�.x/, then equation (2.51) yields

.f�/�.X/ D .X�/� D �X�

�2
�; for X 2 T�: (2.53)

Thus, if X� ¤ 0 for some X 2 T�.x/, then the range of .f�/� is the .n � m C 1/-
dimensional space spanned by T?� .x/ and � , while if X� D 0 for all X 2 T�.x/, then
the range of .f�/� is the .n � m/-dimensional space .f�/�.T?� .x//. ut

This proof shows that at a point x where the focal map f� has rank equal to
n � m C 1, a vector parallel to the normal vector �.x/ is tangent to the image of
f� at the point f�.x/. Thus, it generalizes the classical result that the normal to a
surface M in R3 is tangent to the evolute surface (focal set) when f� has rank two
(see, for example, Goetz [175]). In the classical case, if a principal curvature � has
constant multiplicity one, and X� ¤ 0 on M for a corresponding nonzero principal
vector field X, then the sheet of the focal submanifold f�.M/ is also an immersed
surface. More generally, if � has constant multiplicity one, then f�.M/ is a surface
with singularities at the images under f� of points where X� D 0. For example, the
evolute of an ellipse in a plane has singularities at the images of the four vertices.

Another consequence of the proof of Theorem 2.8 is the following corollary.
Recall that for x in the domain U of f�, the curvature sphere K�.x/ in QM is the
hypersphere through x centered at the focal point f�.x/. Thus, the curvature sphere
map K� is constant along a leaf of T� in U if and only if the focal map f� is constant
along that leaf.

Corollary 2.9. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m � 1 on M, and let U be the domain of the focal map f�. Then the
following conditions are equivalent on U:

(1) � is constant along each leaf of its principal foliation T�.
(2) The focal map f� is constant along each leaf of T� in U.
(3) The curvature sphere map K� is constant along each leaf of T� in U.
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Returning to the general situation of a hypersurface f W Mn ! QMnC1, it follows
from the “constant rank theorem” (see, for example, Conlon [120, p. 39]) that the
sheet f�.U/ of the focal set will be a submanifold of QM locally if f� has constant
rank on U. From Theorem 2.8, we see that this is contingent on the value of X�
for principal vectors X corresponding to the principal curvature �. The following
theorem shows that in the case where � has constant multiplicity m > 1 on M, the
derivative X� is always zero for every principal vector X corresponding to � at every
point of M, and thus f� has constant rank n � m on U. However, this is not the case
if � has constant multiplicity m D 1 on M, and so we will handle the cases m > 1

and m D 1 separately, beginning with the case m > 1.

Integrability of the principal distribution when m > 1

Theorem 2.10. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m > 1 on M. Then the principal distribution T� is integrable, and
X� D 0 for every X 2 T� at every point of M.

Proof. We use the Codazzi equation, which for an oriented hypersurface in a real
space form takes the form .rXA/Y D .rYA/X (see [283, Vol. II, p. 26]), that is,

rX.AY/ � A.rXY/ D rY.AX/ � A.rYX/; (2.54)

for vector fields X and Y tangent to M. If take X and Y to be linearly independent
(local) vector fields in the principal distribution T�, then the Codazzi equation (2.54)
becomes

.X�/Y C �rXY � A.rXY/ D .Y�/X C �rYX � A.rYX/: (2.55)

Since the Levi-Civita connection has zero torsion, the Lie bracket ŒX;Y� D rXY �
rYX, and equation (2.55) reduces to

.X�/Y � .Y�/X D .A � �I/ ŒX;Y�: (2.56)

Since the left side of this equation is in T�, while the right side is T?� , both sides are
equal to zero. Thus, T� is integrable by the Frobenius Theorem (see, for example,
[283, Vol I., p. 10]), since ŒX;Y� is in T�. Furthermore, X� and Y� are both zero on
M, since X and Y are linearly independent. ut

Thus, in the case where � has constant multiplicity m > 1 on M, the distribution
T� is a foliation on M, which we call the principal foliation corresponding to �. We
next prove that the leaves of a principal foliation are m-dimensional totally umbilic
submanifolds of QM, where a submanifold V of a space form QM is said to be totally
umbilic if for each x 2 V , there is a real-valued linear function ! on T?x V such that
the shape operator B� of V satisfies B� D !.�/I for every � 2 T?x V .
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In all three space forms QMnC1, a totally umbilic m-dimensional submanifold
always lies in a totally geodesic .m C 1/-dimensional submanifold of QMnC1. Thus
it suffices to describe the totally umbilic hypersurfaces in each of the three space
forms. In RmC1, a connected totally umbilic hypersurface is an open subset of an
m-plane or an m-dimensional metric sphere. In SmC1, a connected totally umbilic
hypersurface is an open subset of a great or small hypersphere in SmC1. Finally, in
hyperbolic space HmC1, a connected totally umbilic hypersurface is an open subset
of a totally geodesic hyperplane, an equidistant hypersurface from a hyperplane, a
horosphere, or a metric sphere (see, for example, [283, Vol. II, pp. 30–32] or Spivak
[495, Vol. 4, pp. 110–114]).

Theorem 2.11. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m > 1 on M. Then the leaves of the principal foliation T� are
m-dimensional totally umbilic submanifolds of QM.

Proof. Let V be a leaf of the principal foliation T�. The normal space T?x V to V in
QM at a point x 2 V can be decomposed as

T?x V D T?x M ˚ T?� .x/;

where T?� .x/ is the orthogonal complement to T�.x/ in TxM. For a unit vector � 2
T?x V , let B� denote the shape operator of V corresponding to �. If � is the normal
vector � to M at x with associated shape operator A, then B�X D AX D �X, for
X 2 T�.x/, and thus B� D �I.

Next let � 2 T?� .x/ be a unit length principal vector of A with corresponding
principal curvature �, so that A� D �� for � ¤ �. Extend � to a vector field
Y 2 T?� on a neighborhood W of x. Then there exists a unique vector field Z 2 T?�
such that hZ;Yi D 0 and

AY D �Y C Z; (2.57)

for some smooth function � on W. This is possible since T?� is invariant under A,
even though the eigenvalues of A need not be smooth.

We now find the shape operator B�. Let X be a vector field in T� on the
neighborhood W. Since the vector field Z D 0 at x, one can easily show that
rXZ 2 T?� at x. Using equation (2.57), we see that the Codazzi equation (2.54)
becomes

.X�/Y � .Y�/X C rXZ D .A � �I/rXY � .A � �I/rYX: (2.58)

If we consider the T�-component of both sides of this equation, we see that the
T�-component of rXY at x is

�.Y�/X
� � � : (2.59)
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If Qr is the Levi-Civita connection on QMnC1, we have the basic equation,

QrXY D rXY C hAX;Yi�:

Since hAX;Yi D 0, the T�-component of QrXY at x is equal to the T�-component of
rXY at x, which is given by equation (2.59). Since � D Y at x, the vector �B�X is
by definition equal to the T�-component of QrXY , and so we have

B�X D .��/X

� � � : (2.60)

This completes the proof of the theorem. ut

A manifold structure for the focal set

As we saw in Theorem 2.1, the domain U of the focal map f� is the set where � ¤ 0

in the case QM D RnC1, and the set where j�j > 1 for QM D HnC1. At all such
points, the leaf of the principal foliation T� through the point is an open subset of an
m-dimensional metric sphere in QM.

By Theorems 2.8 and 2.10, we know that in this case of multiplicity m > 1, the
focal map f� is constant along each leaf of T�, and so it factors through a map of the
space U=T� of leaves of T�, where U is the domain of f�. This enables us to place a
manifold structure on the sheet of the focal set f�.U/ as follows.

Theorem 2.12. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m > 1 on Mn. Then the focal map f� W U ! QMnC1 factors through an
immersion of the (possibly non-Hausdorff) .n�m/-dimensional manifold U=T� into
QMnC1. If Mn is complete with respect to the induced metric, then the manifold U=T�

is Hausdorff.

Proof. Since the leaves of T� are totally umbilic submanifolds of QMnC1, the foliation
T� is regular as defined by Palais [425, p. 13], that is, every point has a coordinate
chart distinguished by the foliation such that each leaf intersects the chart in at
most one m-dimensional slice. This implies that the space of leaves U=T� is an
.n�m/-dimensional manifold in the sense of Palais, which may not be Hausdorff. By
Theorems 2.8 and 2.10, the focal map f� factors through a map g� W U=T� ! QMnC1,
and the map g� is an immersion, since the rank of g� equals the rank f�, which is
n�m at each point. Finally, the regularity of the foliation T� implies that each leaf is
a closed subset of M (see Palais [425, p. 18]). Thus, if M is complete, then each leaf
is also complete (see, for example, [283, Vol. I, p. 179]). Therefore, each leaf of T�
that intersects the domain U of f� is an m-dimensional metric sphere in QMnC1 and is
thus compact. This implies that the leaf space U=T� is Hausdorff [425, p. 16]. ut
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Remark 2.13 (An example in which f�.M/ is not a Hausdorff manifold). The
following example ([88, p. 34] or [95, p. 143]) shows that the leaf space of a regular
foliation is not necessarily Hausdorff and that the image of a focal map with constant
rank is not necessarily a Hausdorff manifold. Let �.t/ be the real-valued function
on R defined by �.t/ D e�1=t if t > 0 and �.t/ D 0 if t � 0. Let K be a tube of
constant radius one in R3 over the curve,

�.t/ D .t; 0; �.t//; t 2 .�1; 1/:

Then the curve � itself is the sheet of the focal set of K corresponding to the principal
curvature � D 1 with appropriate choice of unit normal field.

Let N be the intersection of K with the closed upper half-space given by z � 0,
with the points satisfying z D 0; x � 0 removed. Let M be the union of N with its
mirror image in the plane z D 0. Then � D 1 is still a constant principal curvature
on all of M. However, the leaf space M=T� is not Hausdorff, since the two open
semi-circular leaves L1 and L2 in the plane x D 0 cannot be separated by disjoint
neighborhoods in the quotient topology. The corresponding sheet of the focal set
f�.M/ consists of the union of the curve � with its mirror image in the plane z D 0,
and it is not a Hausdorff 1-dimensional manifold in a neighborhood of the origin.
Nevertheless, the rank of the focal map f� is one on all of M.

In this example, � has constant multiplicity m D 1. One can produce similar
examples where m > 1 by imitating the construction above in Rn for n > 3.

The case of a principal curvature of multiplicity m D 1

We now consider the case where a principal curvature � has constant multiplicity
m D 1 on an oriented hypersurface f W Mn ! QMnC1 . This case differs greatly
from the case of multiplicity greater than one, since � is not necessarily constant
along the leaves of its principal foliation T�, i.e., along its lines of curvature. In fact,
by Theorem 2.8, the rank of the focal map f� is n at points x where X� ¤ 0 for a
nonzero vector X 2 T�.x/, and it is n�1 at points x where X� D 0 for all X 2 T�.x/.
Thus, in general, the sheet of the focal set f�.U/, where U is the domain of f�, is a
hypersurface with singularities at points where X� D 0 for all X 2 T�.x/.

We are interested in the case where the sheet f�.U/ of the focal set is a
submanifold of dimension n � 1 in QMnC1. As noted above, this is not always the
case, as it was in the case of higher multiplicity, and so the main result is formulated
in terms of conditions that are equivalent to the condition that f�.U/ is a submanifold
of dimension n � 1.

In this case of multiplicity one, it is significant that for hypersurfaces in
hyperbolic space HnC1, the domain U of f� does not include those points x 2 M
where j�.x/j � 1. In fact, conditions (1–3) of Theorem 2.14 below are equivalent
on U, but not on all of M. Specifically, conditions (1) and (2) are equivalent on M
and they imply (3). However, one can construct a surface M in H3 such that focal
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set f�.U/ is a curve (and so condition (3) holds), and yet not all of the lines of
curvature corresponding to � are plane curves of constant curvature. This is done
by beginning with a surface N � H3 on which all three conditions are satisfied,
and then modifying N on the set where j�j < 1 (which is disjoint from U) so as
to destroy condition (2), but introduce no new focal points and thereby preserve
condition (3).

Theorem 2.14. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m D 1 on Mn. Then the following conditions are equivalent on QMnC1 if
QMnC1 D RnC1 or SnC1, and on the domain U of f� if QMnC1 D HnC1.

(1) � is constant along each leaf of its principal foliation T�.
(2) The leaves of T� are plane curves of constant curvature.
(3) The rank of the focal map f� is identically equal to n�1 on its domain U, and f�

factors through an immersion of the .n � 1/-dimensional space of leaves U=T�
into QMnC1.

We first give the proof in the Euclidean case and then handle the other cases via
stereographic projection.

Proof (Euclidean case). .1/ , .3/ This follows immediately from Theorem 2.8
concerning the rank of the focal map f� and from the connectedness of the leaves of
the foliation T�.
.2/ ) .1/ This follows easily from the Frenet equations for plane curves.
.1/ ) .2/ Since T� is a 1-dimensional foliation on M, in a neighborhood of

any point of M, we can find a local coordinates .t; v/ given by the coordinate chart
� W .�"; "/� V ! M, where V is an open subset in Rn�1, such that the leaves of T�
that intersect the image W � M of � are precisely the images under � of the curves
v D constant in .�"; "/ � V .

We first consider the case where � is nonzero on W. By an appropriate choice
of the unit normal field � , we may arrange that � > 0 on W. Thus, � is a
positive constant on each leaf of T� that passes through W. By condition (1) and
Theorem 2.8, the focal map f� on W is constant on each leaf of T�, and so the
functions g� D f� ı � and � D .1=�/ ı � are functions of the coordinate v 2 V
alone, and g� is an immersion on V , since it has rank n � 1.

The point q D f .�.t; v// lies on the hypersphere in RnC1 determined by v given
by the equation

jz � g�.v/j D �.v/; z 2 RnC1: (2.61)

Since the normal line to f .M/ at q is the same as the normal line to the sphere given
in equation (2.61) at q (i.e., f .M/ is the envelope of the .n � 1/-parameter family of
spheres parametrized by v), one can show that for any Y tangent to V at the point v,
the point q also lies on the hyperplane in RnC1 given by the equation:

hz � g�.v/; .g�/�.Y/i D ��.v/Y.�/; z 2 RnC1: (2.62)
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Thus, for any given value of v, the leaf of T� in W determined by v lies on the
circle obtained by intersecting the hypersphere in equation (2.61) with the 2-plane
determined by equation (2.62), as Y ranges over the .n � 1/-dimensional tangent
space TvV . Hence, each leaf of T� on which � is nonzero lies locally on a circle, and
by connectedness, it is an arc of a circle.

Finally, suppose that � is a leaf of T� on which � is identically zero.
By Theorem 2.6, there exists an inversion � of RnC1 in a hypersphere such that
.� ı f /.�/ is a leaf of the principal foliation T� on which the associated principal
principal curvature �, as in Theorem 2.6, is a nonzero constant. By the argument
above, .� ı f /.�/ lies on a circle, and so f .�/ itself lies on a circle or a straight line.
This completes the proof of the theorem in the Euclidean case. ut

We now discuss the proof of Theorem 2.14 in the non-Euclidean cases. As in the
Euclidean case, .1/ , .3/ follows immediately from Theorem 2.8.

To prove .1/ , .2/, we use stereographic projection � , as defined in Remark 2.7.
Let f W Mn ! QMnC1 be an oriented hypersurface with field of unit normals � in a
real space form QMnC1 D SnC1 or HnC1, and let � be the appropriate stereographic
projection for QMnC1. If � is a principal curvature of f .M/ of multiplicity one,
then � D e�h.� � g.grad h; �// is a principal curvature of multiplicity one of
the hypersurface .� ı f /.M/ in RnC1 (or DnC1 � RnC1 in the hyperbolic case)
by Theorem 2.6. By a direct calculation, one can show that the leaves of T� are
plane curves of constant curvature in QMnC1 if and only if the leaves of T� are plane
curves of constant curvature in RnC1 (or DnC1). Thus, the equivalence of conditions
.1/ and .2/ follows from the equivalence of .1/ and .2/ in the Euclidean case and
the following important lemma.

Lemma 2.15. Let f W Mn ! SnC1 (respectively, HnC1) be an oriented hypersurface
with field of unit normals � . Suppose that � is a smooth principal curvature function
of constant multiplicity m D 1 on Mn, and let X denote a field of unit principal
vectors of � on M. Let

� D e�h.� � hgrad h; �i/

be the corresponding principal curvature of multiplicity m D 1 of the hypersurface
.� ı f / W M ! RnC1 (respectively, DnC1), where � is stereographic projection. Then
X� D 0 at x 2 M if and only if X� D 0 at x.

Proof. We will do the proof for a hypersurface in SnC1, and the proof in HnC1 is
quite similar. This is a local calculation, so we will consider M as an embedded
hypersurface in SnC1 and suppress the mention of the embedding f . We use
stereographic projection � W SnC1 � fPg ! RnC1 with pole P as given in
equation (2.46), that is

�.x/ D P C eh.x/.x � P/;
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where e�h.x/ D 1 � hx;Pi. Then, a direct calculation yields,

grad h D eh.P � hx;Pi x/:

Using the fact that hx; �i D 0 for x 2 M and � the local field of unit normals to M,
we get

� D e�h.� � hehP; �i/ D e�h� � hP; �i;

and

X� D �e�h.Xh/�C e�h.X�/ � hP;DX�i; (2.63)

where D is the Euclidean covariant differentiation on RnC2. Since hX; �i D 0, it
follows that DX� D QrX� , where Qr is the Levi-Civita connection on SnC1. Then, we
know that QrX� D �AX D ��X, so DX� D ��X. This and the fact that

Xh D hgrad h;Xi D ehhP;Xi;

enable us to rewrite the expression for X� in equation (2.63) as,

X� D �hP;Xi�C e�h.X�/C hP;Xi� D e�h.X�/:

From this it is clear that X� D 0 if and only if X� D 0.
For a hypersurface M in HnC1, we have from equation (2.49) that stereographic

projection � W HnC1 ! DnC1 with pole P is given by

�.x/ D P C eh.x/.x � P/;

where e�h.x/ D 1C hx;Pi. From this we can compute that

grad h D �eh.P C hx;Pi x/;

where h ; i is the Lorentz metric, and the rest of the proof follows in a way similar
to the spherical case. ut
Remark 2.16. In the context of Lie sphere geometry (see, for example, Pinkall [446]
or the book [77, p. 67]), it is easy to prove that the property that a curvature sphere
map is constant along each leaf of its principal foliation is invariant under Möbius
(conformal) transformations, and more generally, under Lie sphere transformations.
From this, Lemma 2.15 follows easily.

In the case where the hypersurface M is complete with respect to the metric
induced from QM, Theorem 2.14 enables us to give a manifold structure to the sheet
f�.U/ of the focal set, where U is the domain of f�, similar to that obtained in
Theorem 2.12 for the case of higher multiplicity.
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Theorem 2.17. Let f W Mn ! QMnC1 be an oriented hypersurface of a real space
form which is complete with respect to the induced metric. Suppose that � is a
smooth principal curvature function of constant multiplicity m D 1 on Mn such that
the equivalent conditions (1)–(3) of Theorem 2.14 are satisfied on the domain U of
the focal map f�. Then f� factors through an immersion of the .n � 1/-dimensional
manifold U=T� into QMnC1.

Proof. The proof is almost identical to the proof of Theorem 2.12 for the case of
higher multiplicity. As in that case, the completeness of M implies that each leaf
of T� is complete with respect to the induced metric. This implies that each leaf of
T� in M is a covering space of the metric circle in QMnC1 on which it lies (see, for
example, [283, Vol. I, p. 176]). However, since the circle is not simply connected,
this does not guarantee that the leaf itself is compact, as in the multiplicity m > 1

case. Even so, using the fact that each leaf of T� is a covering of the circle on which
it lies, one can produce a direct argument (which we omit here) that the leaf space
U=T� is Hausdorff. ut

We close this section with three results that have proven to be valuable in the
study of isoparametric and Dupin hypersurfaces. Theorems 2.11 and 2.14 show that
if a principal curvature � of a hypersurface f W Mn ! QMnC1 has constant multiplicity
m � 1 on M and is constant along the leaves of its principal foliation, then the leaves
of T� are totally umbilic submanifolds in QMnC1. The next result shows that the case
where � assumes a critical value along a certain leaf of T� has even more geometric
significance.

Theorem 2.18. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m � 1 on Mn which is constant along each leaf of its principal
foliation T�. Then � assumes a critical value along a leaf � of T� if and only if
� is totally geodesic in M.

Proof. Let x be a point on the leaf � . Then the normal space to � in M at x is T?� .x/.
We know that T?� .x/ is the direct sum of the principal spaces T�.x/, where � ranges
over the principal curvatures of M at x that are not equal to �. Let � 2 T�.x/, for
� ¤ �. By the same calculation used to obtain equation (2.60), we get that the shape
operator B� of � in M at x has the form

B�X D .��/X

� � � ;

for X 2 T�.x/. The leaf � is totally geodesic in M if and only if B� D 0 for each
� 2 T�.x/ for each � ¤ � for all x 2 � . This occurs precisely when �� D 0 for all
� 2 T?� .x/ for all x 2 � . Since � is assumed constant along � , this happens precisely
when � assumes a critical value along � . ut
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Since the principal curvatures are constant on an isoparametric hypersurface, the
following corollary follows immediately from Theorems 2.11, 2.14, and 2.18, as
was first shown by Nomizu [403].

Corollary 2.19. Let f W Mn ! QMnC1 be an isoparametric hypersurface of a real
space form. Then for each principal curvature �, the leaves of the principal foliation
T� are totally umbilic in QMnC1 and totally geodesic in Mn.

The following result is similar to Theorem 2.18, and it is useful in the study of
Dupin hypersurfaces. Recall from Corollary 2.9 that if a principal curvature � has
constant multiplicity m � 1, then � is constant along each leaf of T� in the domain
U of f� if and only if f� itself is constant along each leaf of T� in U. In that case,
the curvature sphere map K� is also constant along each leaf of T� in U. As in
Theorem 2.18, the case where � has a critical value along a leaf of T� has special
geometric significance.

Theorem 2.20. Let f W Mn ! QMnC1 be an oriented hypersurface of a real
space form. Suppose that � is a smooth principal curvature function of constant
multiplicity m � 1 on Mn which is constant along each leaf of its principal
foliation T�. Then � assumes a critical value along a leaf � of T� in the domain
U of f� if and only if � is totally geodesic in the curvature sphere K� determined
by � .

Proof. A leaf � of T� in U is a submanifold of the curvature sphere K�, and its
normal space in K� is T?� , since K� is tangent to M along � . The rest of the proof is
then exactly the same as the proof of Theorem 2.18. ut

2.5 Curvature Surfaces and Dupin Hypersurfaces

Let f W Mn ! QMnC1 be an oriented hypersurface of a real space form. A connected
submanifold S of Mn is called a curvature surface if at each x 2 S, the tangent space
TxS is equal to some principal space T�.x/. In that case, the corresponding principal
curvature � W S ! R is a smooth function on S.

For example, if dim T� is constant on an open subset U of Mn, then each leaf
of the principal foliation T� is a curvature surface on U. Curvature surfaces are
plentiful, since the results of Reckziegel [458] and Singley [486] imply that there is
an open dense (possibly not connected) subset ˝ of Mn on which the multiplicities
of the principal curvatures are locally constant. On ˝, each leaf of each principal
foliation is a curvature surface.

Remark 2.21 (Curvature surfaces of submanifolds of codimension k > 1).
Reckziegel [458] generalized the notion of a curvature surface to the case of an
immersed submanifold f W Mn ! QMnCk of a space form QMnCk with codimension
k > 1. In that case, Reckziegel defines a curvature surface to be a connected
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submanifold S � Mn for which there is a parallel (with respect to the normal
connection) section � W S ! BnCk�1 of the unit normal bundle BnCk�1 such that for
each x 2 S, the tangent space TxS is equal to some eigenspace of A�.x/. In that case,
the corresponding principal curvature � W S ! R is a smooth function on S.

It is also possible to have a curvature surface S that is not a leaf of a principal
foliation, because the multiplicity of the corresponding principal curvature is not
constant on a neighborhood of S, as the following example due to Pinkall [447]
shows.

Example 2.22 (A curvature surface that is not a leaf of a principal foliation). Let
T2 be a torus of revolution in R3, and embed R3 into R4 D R3 � R. Let � be a
field of unit normals to T2 in R3. Let M3 be a tube of sufficiently small radius " > 0
around T2 in R4, so that M3 is a compact smooth embedded hypersurface in R4. The
normal space to T2 in R4 at a point x 2 T2 is spanned by �.x/ and e4 D .0; 0; 0; 1/.
The shape operator A� of T2 has two distinct principal curvatures at each point of
T2, while the shape operator Ae4 of T2 is identically zero. Thus the shape operator
A for the normal

 D cos � �.x/C sin � e4;

at a point x 2 T2, is given by

A D cos � A�.x/:

From the formulas for the principal curvatures of a tube in Theorem 2.2, we see
that at all points of M3 where x4 ¤ ˙", there are three distinct principal curvatures
of multiplicity one, which are constant along their corresponding lines of curvature
(curvature surfaces of dimension one). However, on the two tori, T2 � f˙"g, the
principal curvature � D 0 has multiplicity two. These two tori are curvature surfaces
for this principal curvature, since the principal space corresponding to � is tangent
to each torus at every point.

Theorem 2.10 has the following generalization to curvature surfaces of subman-
ifolds of arbitrary codimension. The proof is the same as that of Theorem 2.10 with
obvious minor modifications.

Theorem 2.23. Suppose that S is a curvature surface of dimension m > 1 of a
submanifold f W Mn ! QMnCk for k � 1. Then the corresponding principal curvature
is constant along S.

An oriented hypersurface f W Mn ! QMnC1 is called a Dupin hypersurface if:

(a) along each curvature surface, the corresponding principal curvature is constant.
Furthermore, a Dupin hypersurface M is called proper Dupin if, in addition

to Condition (a), the following condition is satisfied:
(b) the number g of distinct principal curvatures is constant on M.
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By Theorem 2.23, Condition (a) is automatically satisfied along a curvature
surface of dimension m > 1, and thus the key case is when the dimension of the
curvature surface equals one.

Condition (b) is equivalent to requiring that each continuous principal curvature
function has constant multiplicity on Mn. The torus T2 in Example 2.22 above is
a proper Dupin hypersurface of R3, but the tube M3 over T2 in R4 is Dupin, but
not proper Dupin, since the number of distinct principal curvatures is not constant
on M3.

Remark 2.24 (On the terms: Dupin and proper Dupin). In some early papers on
the subject (see, for example, Thorbergsson [533], and Grove–Halperin [184]) and
in the book [95, p. 166], a hypersurface which satisfies Conditions (a) and (b) was
called “Dupin” instead of “proper Dupin.” Pinkall introduced the term “proper
Dupin” in his paper [446], and that has become the standard terminology in the
subject. In the book [95, p. 189], hypersurfaces such as the tube M3 over T2 in R4

were called “semi-Dupin.”

Pinkall’s local construction of proper Dupin hypersurfaces

The following local construction due to Pinkall [446] shows that proper Dupin
hypersurfaces are very plentiful.

Theorem 2.25. Given positive integers m1; : : : ;mg with

m1 C � � � C mg D n � 1;

there exists a proper Dupin hypersurface in Rn with g distinct principal curvatures
having respective multiplicities m1; : : : ;mg.

Proof. The proof is by an inductive local construction which will be clear once
the first few steps are done. The proof uses the fact that the proper Dupin property
is preserved by inversion of Rn in a hypersphere S � Rn (see Remark 2.7). This
follows from Theorems 2.6 and 2.10, and an argument similar to the proof of
Lemma 2.15 for stereographic projection. This construction does not, in general,
result in a compact proper Dupin hypersurface.

Let M1 � Rm1C1 be a sphere of radius one centered at the origin. Construct a
cylinder

M1 � Rm2 � Rm1C1 � Rm2 D Rm1Cm2C1

over the submanifold M1 � Rm1C1 � Rm1Cm2C1. This cylinder has two distinct
principal curvatures at each point, �1 D 1 of multiplicity m1, and �2 D 0 of
multiplicity m2. The next step is to invert the cylinder M1 � Rm2 in a hypersphere
S1 � Rm1Cm2C1 chosen so that the image of the cylinder under the inversion has
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an open subset M2 on which neither of its two principal curvatures equals zero at
any point. Then M2 is a proper Dupin hypersurface in Rm1Cm2C1 having two distinct
nonzero principal curvatures with multiplicities m1 and m2.

Next construct a cylinder

M2 � Rm3 � Rm1Cm2C1 � Rm3 D Rm1Cm2Cm3C1

over the submanifold M2 � Rm1Cm2C1. This cylinder has three distinct principal
curvatures at each point with respective multiplicities m1;m2;m3, where m3 is the
multiplicity of the principal curvature that is identically zero. As above, invert the
cylinder M2 � Rm3 in a hypersphere S2 � Rm1Cm2Cm3C1 chosen so that the image
of the cylinder under the inversion has an open subset M3 on which none of its
three principal curvatures equals zero at any point. One continues the process by
constructing the cylinder

M3 � Rm4 � Rm1Cm2Cm3C1 � Rm4 D Rm1Cm2Cm3Cm4C1

and so on, until one finally obtains the desired proper Dupin hypersurface
Mg � Rm1C���CmgC1 with g distinct principal curvatures having respective
multiplicities m1; : : : ;mg. ut

As noted above, the proper Dupin hypersurfaces constructed in Theorem 2.25 are
not compact, in general, and compact proper Dupin hypersurfaces are much more
rare.

An important class of compact proper Dupin hypersurfaces consists of the
isoparametric hypersurfaces in spheres Sn and those hypersurfaces in Rn obtained
from isoparametric hypersurfaces in Sn via stereographic projection. For example,
the well-known cyclides of Dupin in R3 are obtained from a standard product torus
S1.r/ � S1.s/ � S3, r2 C s2 D 1, in this way. These examples will be discussed in
more detail in later chapters.

In fact, Thorbergsson [533] proved that the number g of distinct principal
curvatures of a compact proper Dupin hypersurface M embedded in Sn (or Rn) can
only be 1; 2; 3; 4, or 6, the same restriction as for an isoparametric hypersurface
in Sn. There are also restrictions on the multiplicities of the principal curvatures
due to Stolz [502] and Grove and Halperin [184] (see Sections 3.7 and 5.8 for
more detail).

We will see in Chapter 4 that both the Dupin and proper Dupin conditions are
invariant under Lie sphere transformations. Because of this, Lie sphere geometry
has proven to be a useful setting for the study of Dupin hypersurfaces, and we will
use Lie sphere geometry extensively in Chapter 5 on Dupin hypersurfaces.

Remark 2.26 (Dupin submanifolds of higher codimension). In the case of an
immersed submanifold f W Mn ! QMnCk of a space form QMnCk with codimension
k > 1, Pinkall defined f .Mn/ to be Dupin if along each curvature surface (in the
sense of Remark 2.21), the corresponding principal curvature is constant. In that
case, f .Mn/ is called proper Dupin if the number of distinct principal curvatures is
constant on the unit normal bundle BnCk�1. One can show that Pinkall’s definition
is equivalent to the definition of a Dupin submanifold given in Section 4.4 in the
context of Lie sphere geometry (see Remark 4.10 on page 217).
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2.6 Height Functions and Tight Submanifolds

In this section, we give a brief review of the aspects of the theory of tight
submanifolds that will be needed later in the book. For more complete coverage of
the topic, the reader is referred to Chapter 1 of the book [95] or the survey articles
of Kuiper [302, 303], or Banchoff and Kühnel [24]. Our treatment here is based on
the book [95, pp. 6–33].

We begin with a review of the critical point theory needed in the theory of tight
and taut submanifolds (see Milnor [359, pp. 4–6] for more detail). Let f W M1 ! M2

be a smooth function between manifolds M1 and M2. A point x 2 M1 is called a
critical point of f if the derivative map

f� W TxM1 ! Tf .x/M2

at x is not surjective. If y 2 M2 is the image of a critical point x under f , then y
is called a critical value of f . All other points in the image of f are called regular
values of f . Note that if M1 and M2 have the same dimension, then x is a critical
point of f if and only if f� is singular at x.

Suppose � W M ! R is a smooth function on a manifold M; then x 2 M is a
critical point of � if and only if �� D 0 at x. If .x1; : : : ; xn/ are local coordinates on
M in a neighborhood of x, then x is a critical point of � if and only if

@�

@x1
.x/ D � � � D @�

@xn
.x/ D 0: (2.64)

If x is a critical point of �, then the behavior of � near x is determined by the
Hessian Hx of � at x, which is given in local coordinates by the symmetric matrix

Hx D
�
@2�

@xi@xj

�
: (2.65)

A critical point x of � is said to be degenerate if the rank of the Hessian Hx is less
than n D dim M. If rank Hx D n, then x is called a nondegenerate critical point. The
index of a nondegenerate critical point x is the number of negative eigenvalues of
the symmetric matrix Hx. The behavior of � in a neighborhood of a nondegenerate
critical point is determined by the index according to the following lemma (see, for
example, Milnor [359, p. 6]).

Lemma 2.27 (Lemma of Morse). Let p be a nondegenerate critical point of index
k of a function � W M ! R. Then there is a local coordinate system .x1; : : : ; xn/ in a
neighborhood U with origin at p such that the identity

� D �.p/ � x21 � � � � � x2k C x2kC1 C � � � C x2n (2.66)

holds throughout U.
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From the lemma we see that a critical point of index n is a local maximum of �, and
a critical point of index 0 is a local minimum of �. All other nondegenerate critical
points are various types of saddle points.

A real-valued function � is called a Morse function or nondegenerate function
if all of its critical points are nondegenerate. From the lemma, we see that if M is
compact, then a Morse function � on M can only have a finite number of critical
points, since the critical points are isolated.

Let � W M ! R be a Morse function such that the sublevel set,

Mr.�/ D fx 2 M j �.x/ � rg; (2.67)

is compact for all r 2 R. Of course, this is always true if M itself is compact. Let
�k.�; r/ be the number of critical points of � of index k in Mr.�/. For compact M,
let �k.�/ be the number of critical points of � of index k in M, and let �.�/ be the
total number of critical points of � on M. For a field F, let

ˇk.�; r;F/ D dimF Hk.Mr.�/;F/; (2.68)

where Hk.Mr.�/;F/ is the k-th homology group of Mr.�/ over the field F. That is,
ˇk.�; r;F/ is the k-th F-Betti number of Mr.�/. Further, let

ˇk.M;F/ D dimF Hk.M;F/ (2.69)

be the k-th F-Betti number of M. The Morse inequalities (see, for example, Morse–
Cairns [379, p. 270]) state that

�k.�; r/ � ˇk.�; r;F/; (2.70)

for all F; r; k. For a compact M, the Morse number �.M/ of M is defined by

�.M/ D minf�.�/ j � is a Morse function on Mg: (2.71)

The Morse inequalities imply that

�.M/ � ˇ.M;F/ D
nX

kD0
ˇk.M;F/; (2.72)

for any field F. If there exists a field F such that �.�/ D ˇ.M;F/, then � is called
a perfect Morse function. In that case, � has the minimum number of critical points
possible in view of the Morse inequalities.

Kuiper [301] noted the following reformulation of the condition that the Morse
inequalities are actually equalities, and he used it very effectively in his papers on
tight and taut immersions.
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Theorem 2.28. Let � be a Morse function on a compact manifold M. For a given
field F, the equality �k.�; r/ D ˇk.�; r;F/ holds for all k; r if and only if the map
on homology

H�.Mr.�/;F/ ! H�.M;F/

induced by the inclusion Mr.�/ � M is injective for all r.

This theorem follows immediately from Theorem 29.2 of Morse–Cairns [379, p.
260], and we will omit it here, although we will make a few comments about some
of the key ideas in the proof.

Suppose that p is a nondegenerate critical point of index k of a Morse function �
on M and �.p/ D r. For the sake of simplicity, assume that p is the only critical point
at the critical level r. A fundamental result in critical point theory (see, for example,
Milnor [359, pp. 12–24] or Morse–Cairns [379, pp. 184–202]) states that Mr.�/ has
the homotopy type of M�r .�/ with a k-cell attached, where M�r .�/ consists of all
points in M for which � < r. Morse and Cairns [379, pp. 258–261] characterize the
effect of attaching this k-cell as follows. Let

4ˇi.r/ D ˇi.Mr.�// � ˇi.M
�
r .�//:

Then the 4ˇi.r/ are 0 for all i, except that 4ˇk.r/ D 1 if the critical point is of
“linking type,” and 4ˇk�1.r/ D �1 if the critical point p if of “non-linking type.”
From this, it is clear that the two conditions in Theorem 2.28 are equivalent, and
they hold precisely when every critical point of � is of linking type.

Let f W Mn ! Rm be a smooth immersion, and let Sm�1 denote the unit sphere in
Rm. For p 2 Sm�1, the linear height function lp W Rm ! R is defined by the formula

lp.q/ D hp; qi; (2.73)

where h ; i is the usual Euclidean inner product on Rm. This induces a smooth
function lp defined on M by lp.x/ D lp.f .x//.

Critical points of height functions

The critical point behavior of linear height functions is related to the shape operator
of f .Mn/ according to the following well-known theorem.

Theorem 2.29. Let f W M ! Rm be a smooth immersion of an n-dimensional
manifold M into Rm, and let p 2 Sm�1.

(a) A point x 2 M is a critical point of lp if and only if p is orthogonal to TxM.
(b) Suppose lp has a critical point at x. Then for X;Y 2 TxM, the Hessian Hx of lp

at x satisfies Hx.X;Y/ D hApX;Yi.
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Proof. (a) Let x 2 M, and let U be a neighborhood of x on which f is an embedding.
We omit the mention of f in the following local calculation. Let X 2 TxM, and
let �.t/ be a curve in U with initial point �.0/ D x and initial tangent vector�!� .0/ D X. By definition we have

Xlp.x/ D d

dt
lp.�.t//jtD0 D h p;�!� .t/ ijtD0 D hp;Xi: (2.74)

Thus, Xlp.x/ D 0 if and only if hp;Xi D 0, and so x is a critical point of lp if
and only if p is orthogonal to TxM.

(b) To compute the Hessian, let X and Y be tangent to M at a critical point x of lp,
and extend Y to a vector field tangent to M on the neighborhood U of x. It is
easy to show that the Hessian of lp at the critical point x is given by Hx.X;Y/ D
X.Ylp/ at the point x. Using part (a), we compute

Hx.X;Y/ D X.Ylp/ D XhY; pi D hDXY; pi: (2.75)

Let � be a field of unit normals on U with �.x/ D p. Then hY; �i D 0 on U, and
thus

0 D DXhY; �i D hDXY; �i C hY;DX�i (2.76)

D hDXY; �i C hY;�A�Xi D hDXY; pi C hY;�ApXi:

From equations (2.75) and (2.76), we get Hx.X;Y/ D hApX;Yi. ut
As an immediate consequence, we get the following corollary, which is an “Index

Theorem” for height functions.

Corollary 2.30. Let f W M ! Rm be a smooth immersion of an n-dimensional
manifold M into Rm, and suppose that p is a unit vector orthogonal to TxM.

(a) The function lp has a degenerate critical point at x if and only if the shape
operator Ap is singular.

(b) If lp has a nondegenerate critical point at x, then the index of lp at x is equal to
the number of negative eigenvalues of Ap.

We next consider the Gauss map � W BM ! Sm�1, where BM is the unit normal
bundle of M, defined by �.x; �/ D � . The following well-known theorem is obtained
by a direct calculation using coordinates on the unit normal bundle BM similar to
those used in the proof of Theorem 2.1 on page 11, and we omit the proof here.

Theorem 2.31. The nullity of the Gauss map � at a point � 2 BM is equal to the
nullity of the shape operator A� . In particular, � is a critical point of � if and only if
A� is singular.

From Theorem 2.31 and Corollary 2.30, we immediately obtain the following
theorem.
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Theorem 2.32. For p 2 Sm�1, the height function lp is a Morse function on M if
and only if p is a regular value of the Gauss map �.

Since BM and Sm�1 are manifolds of the same dimension, Sard’s Theorem (see,
for example, Milnor [360, p. 10]) implies the following corollary.

Corollary 2.33. (a) For almost all p 2 Sm�1, the function lp is a Morse function.
(b) Suppose lp has a nondegenerate critical point of index k at x 2 M. Then there

is a Morse function lq having a critical point y 2 M of index k (q and y can be
chosen as close to p and x, respectively, as desired).

Proof. (a) This follows from Theorem 2.32 and Sard’s Theorem.
(b) By Theorem 2.29 (a), we know that p D �.�/, where � is a unit normal

vector to M at x. Since lp has a nondegenerate critical point of index k at x, the
derivative map �� is nonsingular at .x; �/, and A� has k negative eigenvalues and
n�k positive eigenvalues. Thus, there is a neighborhood V of .x; �/ in BM such that
�� is nonsingular on V , and the restriction of � to V is a diffeomorphism of V onto
a neighborhood U of p in Sm�1. Let q 2 U be a regular value of �. Then q D �.y; �/
for some .y; �/ in V , and lq is a Morse function having a critical point at y 2 M.
Furthermore, since �� is nonsingular on V , the number of negative eigenvalues of
A� equals the number of negative eigenvalues of A� , so the index of lq at y is also k.
By Sard’s Theorem, the points q and y can be chosen to be as close to p and x,
respectively, as desired. ut

Tight immersions

Suppose now that M is compact. An immersion f W M ! Rm is said to be
a tight immersion if there exists a field F such that every nondegenerate linear
height function lp has ˇ.M;F/ critical points on M, i.e., every nondegenerate height
function is a perfect Morse function. By Theorem 2.28 above, we see that f is tight if
and only if for every nondegenerate linear height function lp, the map on homology

H�.Mr.lp/;F/ ! H�.M;F/ (2.77)

induced by the inclusion Mr.lp/ � M is injective for all r. Note that

Mr.lp/ D fx 2 M j hp; f .x/i � rg: (2.78)

Thus, Mr.lp/ is the inverse image under f of the half-space in Rm determined by
the inequality lp.q/ � r. In this formulation, one requires the map on homology
in equation (2.77) to be injective for all half-spaces determined by nondegenerate
height functions.
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Remark 2.34 (Immersions of minimal total absolute curvature). For smooth immer-
sions of manifolds into Euclidean space, tightness is closely related to the property
that the immersion has minimal total absolute curvature in the sense of Chern and
Lashof [103, 104] (see [95, pp. 9–17] for more detail).

A celebrated result in the theory of tight immersions is the Chern–Lashof
Theorem [103, 104] which states that a tight immersion of a sphere Sn is a convex
hypersurface Mn � RnC1 � Rm. This was generalized to tight topological
immersions by Kuiper [302], and so we will state the theorem in that generality.
(See also [95, p. 86] for a proof.)

Recall that a map f of a topological space X into Rm is said to be substantial if
the image f .X/ is not contained in any hyperplane in Rm.

Theorem 2.35. (Chern–Lashof Theorem) Let f W Sn ! Rm be a substantial
topological immersion such that almost all linear height functions have exactly two
critical points. Then m D n C1, and f embeds Sn as a convex hypersurface in RnC1.

Remark 2.36. Kuiper [301] first used the term “convex immersions” for tight
immersions, because of the Chern–Lashof Theorem. Banchoff [19] was the first
to use the term “tight” for such immersions, in conjunction with his introduction of
the two-piece property.

An important advance in the theory due to Kuiper [303] was to remove the
restriction mentioned above that the half-space be determined by a nondegenerate
linear height function, so that one can use all half-spaces. Kuiper accomplished this
by using Čech homology and its “continuity property,” as we will now describe.

Kuiper’s formulation of tightness then generalizes to continuous maps on
compact topological spaces, and so we will define it in that context. For the sake
of definiteness, we will use the field F D Z2, which has been satisfactory in almost
all known applications of the theory of tight immersions thus far.

A map f of a compact topological space X into Rm is called a tight map if for
every closed half-space h in Rm, the induced homomorphism

H�.f�1h/ ! H�.X/ (2.79)

in Čech homology with Z2 coefficients is injective. A subset of Rm is called a tight
set if the inclusion map f W X ! Rm given by f .x/ D x is a tight map.

Remark 2.37 (On the use of Čech homology). Kuiper used Čech homology instead
of singular homology because of its continuity property. In particular, this property
is used in Kuiper’s proof (see Theorem 2.41) that for a tight immersion of smooth
manifold, one can use all half-spaces instead of only those that are determined by
nondegenerate height functions. This fact simplifies many arguments in the theory of
tight immersions and maps. Of course, for triangulable spaces (and thus for smooth
manifolds), Čech homology agrees with singular homology.
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Remark 2.38 (Tightness is a projective property). In the definition of a tight map
above, one does not use the Euclidean metric on Rm, but only the underlying affine
space Am. We can consider Am as the complement of a hyperplane in real projective
space RPm. If f W X ! Am is a tight map, and � W RPm ! RPm is a projective
transformation such that the image �.f .X// lies in Am, then � f W X ! Am is also a
tight map. This follows immediately from the definition, since for every half-space
h in Am, the set .� f /�1h D f�1.��1h/ D f�1h0, for the appropriate half-space h0.

Remark 2.39 (Orthogonal projections of tight maps). Suppose that f W X ! Rm is
a tight map, and � W Rm ! Rk is orthogonal projection onto a Euclidean subspace
of Rm. Then � ı f W X ! Rk is also tight. To see this, let h be the closed half-space
in Rk given by the inequality lp � r, for p 2 Rk and r 2 R. Then the same inequality
in Rm gives a half-space h0 in Rm such that ��1h D h0. Thus, .� ı f /�1h D f�1h0,
and the tightness of � ı f follows from the tightness of f . Similarly, if f W X ! Rm

is tight and i W Rm ! RmCj is inclusion of Rm into a higher dimensional Euclidean
space, then i ı f W X ! RmCj is also tight. In that case, if h is a half-space in RmCj

and h0 D h \ Rm, then .i ı f /�1h D f�1h0.

We will show in Theorem 2.41 that if an immersion f W M ! Rm is a tight
immersion in the sense that every nondegenerate height function is a perfect Morse
function on M, then f is a tight map as defined above. The important point here
is to show that the injectivity condition on homology in equation (2.77) holds for
half-spaces determined by degenerate height functions, as well as those determined
by nondegenerate height functions.

The main ingredients of the proof are the continuity property of Čech homology
and the following lemma due to Kuiper [303] (see also [95, pp. 24–26]).

Lemma 2.40. Let f W M ! Rm be an immersion of a compact manifold. Suppose
U is an open subset of M containing Mr.lp/ for some p 2 Sm�1 and real number r.
Then there exists a nondegenerate height function lq and a real number s such that

Mr.lp/ � M�s .lq/ � Ms.lq/ � U: (2.80)

Proof. Since Mr.lp/ is compact and U is open, one can easily show that there exists
" > 0 such that MrC".lp/ � U. Let K be the maximum absolute value that any linear
height function assumes on M.

We will use the spherical metric d.p; z/ D cos�1hp; zi on Sm�1. If d.p; z/ D ˛,
then there is a unit vector p0 is orthogonal to p such that

z D cos˛ p C sin˛ p0: (2.81)

Then

p D sec˛ z � tan˛ p0: (2.82)
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For any x 2 M, we have

jlp.x/ � lz.x/j D jhp � z; f .x/ij D jh.sec˛ � 1/z � tan˛ p0; f .x/ij
� j sec˛ � 1j jlz.x/j C j tan˛j jlp0.x/j � .j sec˛ � 1j C j tan˛j/K:

(2.83)

Choose the positive number ˛ sufficiently small so that

j sec˛ � 1j < "=4K and j tan˛j < "=4K: (2.84)

Then

jlp.x/ � lz.x/j < "=2 (2.85)

for any x 2 M, and therefore

Mr.lp/ � M�rC"=2.lz/ � MrC"=2.lz/ � MrC".lp/ � U: (2.86)

Let W be the open disk in Sm�1 centered at p of radius ˛. If q 2 W, then we can
write

q D cos � p C sin � p0; (2.87)

for some unit vector p0 orthogonal to p, where 0 � � < ˛. We can replace z by q
and ˛ by � in equation (2.83), and get

jlp.x/ � lq.x/j � .j sec � � 1j C j tan � j/K: (2.88)

Since 0 � � < ˛, we have

j sec � � 1j < j sec˛ � 1j < "=4K and j tan � j < j tan˛j < "=4K; (2.89)

and we still get jlp.x/ � lq.x/j < "=2 for all x 2 M. Thus we have

Mr.lp/ � M�rC"=2.lq/ � MrC"=2.lq/ � MrC".lp/ � U: (2.90)

This holds for any point q in the open neighborhood W of p in Sm�1. Since the set
of regular values of the Gauss map is dense in Sm�1, there exists a point q in W such
that lq is nondegenerate, and equation (2.80) holds for that q and s D r C "=2 by
equation (2.90). ut

With this lemma, we can prove the following important result due to Kuiper
[303]. The proof given here is similar to the proof of Theorem 5.4 of [95, pp. 25–26].
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Theorem 2.41. Let f W M ! Rm be an immersion of a compact, connected
manifold. Suppose that every nondegenerate linear height function lp has ˇ.M;Z2/
critical points on M. Then for every closed half-space h in Rm, the induced
homomorphism

H�.f�1h/ ! H�.M/ (2.91)

in Čech homology with Z2 coefficients is injective.

Proof. For a given half-space h, we have f�1h D Mr.lp/ for some p 2 Sm�1, r 2 R.
If lp is nondegenerate, then the map in equation (2.91) is injective by Theorem 2.28,
since lp has ˇ.M;Z2/ critical points on M.

Suppose now that f�1h D Mr.lp/ for a degenerate height function lp, and some
r 2 R. We need to show that the map in equation (2.91) is injective in that case also.
Here we use the continuity property of Čech homology. We will produce a nested
sequence of half-spaces hi; i D 1; 2; 3; : : : satisfying

f�1.hi/ � f�1.hiC1/ � � � � �
1\

jD1
f�1.hj/ D Mr.lp/; i D 1; 2; 3; : : : (2.92)

such that the homomorphism in Z2-homology

H�.f�1.hi// ! H�M is injective; i D 1; 2; 3; : : : (2.93)

If equations (2.92) and (2.93) are satisfied, then the map

H�.f�1.hi// ! H�.f�1.hj// is injective for all i > j: (2.94)

The continuity property of Čech homology (see Eilenberg–Steenrod [145, p. 261])
says that

H�.Mr.lp// D  
lim

i!1H�.f�1.hi//: (2.95)

Equations (2.94) and Theorem 3.4 of Eilenberg–Steenrod [145, p. 216] on inverse
limits imply that the map

H�.Mr.lp// ! H�.f�1.hi// (2.96)

is injective for each i. Thus, the map

H�.Mr.lp// ! H�.M/ (2.97)

is injective, as needed.
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It remains to construct the sequence fhig. This is done by an inductive procedure
using Lemma 2.40 to find at each step a nondegenerate height function lq and a real
number s such that

Mr.lp/ � M�s .lq/ � Ms.lq/ � M�rC.1=i/.lp/: (2.98)

At each step, the set U in Lemma 2.40 should be taken to be the previous M�s .lq/,
except for i D 1 when U D M�rC1.lp/. We take hi to be the half-space lq � s
constructed at the i-th step. Note that equation (2.93) is satisfied since each lq is
nondegenerate, and the half-spaces hi are nested as in equation (2.92). Finally, since

f�1.hiC1/ � MrC.1=i/.lp/; (2.99)

we get

1\

jD1
f�1.hj/ D Mr.lp/; (2.100)

and the theorem is proven. ut

The two-piece property

Another important idea in the theory of tight immersions is the two-piece property
due to Banchoff [21]. A continuous map f W X ! Rm of a compact, connected
topological space is said to have the two-piece property (TPP) if f�1h is connected
for every closed half-space h in Rm. A compact, connected space X � Rm embedded
in Rm is said to have the TPP if the inclusion map f W X ! Rm has the TPP. In that
case, the TPP means that every hyperplane in Rm cuts X into at most two pieces,
whence the name “two-piece property.” The following result is immediate.

Theorem 2.42. Let f W X ! Rm be continuous map of a compact, connected space
X into Rm. If f is tight, then f has the TPP.

Proof. If the map f W X ! Rm is tight, then f has the TPP, since tightness implies
that ˇ0.f�1h;Z2/ is less than or equal to one, and ˇ0.f�1h;Z2/ is equal to the
number of connected components of f�1h. ut

More generally, a map f of a compact connected topological space X into Rm

is said to be k-tight if for every closed half-space h in Rm and for every integer
0 � i � k, the induced homomorphism Hi.f�1h/ ! Hi.X/ in Čech homology
with Z2 coefficients is injective. Thus, 0-tightness is just the two-piece property. If
f W M ! Rm is a smooth immersion of a compact, connected manifold, then f is
k-tight if and only if every nondegenerate height function lp has exactly ˇi.M;Z2/
critical points of index i for every integer i such that 0 � i � k.



46 2 Submanifolds of Real Space Forms

In the setting of smooth immersions of compact manifolds into Rm, we have the
following theorem due to Banchoff.

Theorem 2.43. Let f W M ! Rm be an immersion of a smooth compact, connected
manifold. Then f has the TPP if and only if every nondegenerate linear height
function lp has exactly one minimum and one maximum on M.

The basic idea here is that if a hyperplane determined by a height function lp cuts
f .M/ into more than two pieces, then lp must have either more than one maximum
or more than one minimum, since lp has a maximum or a minimum on each piece.
Conversely, if lp has more than one maximum or more than one minimum, then
there exists a hyperplane determined by lp that cuts f .M/ into more than two pieces
(see [95, pp. 29–31] for a complete proof).

Banchoff [21] also noted the following corollary in the case where M is a 2-
dimensional surface.

Corollary 2.44. A TPP immersion f W M2 ! Rm of a smooth compact, connected
manifold 2-dimensional surface M2 is tight.

Proof. Let lp be a nondegenerate linear height function on M2. Let �k.lp/ be the
number of critical points of lp of index k. Since f has the TPP, we know that�0.lp/ D
ˇ0.M2;Z2/ D 1 and �2.lp/ D ˇ2.M2;Z2/ D 1, i.e., łp has one minimum and one
maximum on M2. Then the Morse relation involving the Euler characteristic �.M2/

(see, for example, Milnor [359, p. 29]),

2X

kD0
.�1/k�k.lp/ D

2X

kD0
.�1/kˇk.M

2;Z2/ D �.M2/; (2.101)

implies that �1.lp/ D ˇ1.M2;Z2/ as well, and thus f is a tight immersion. ut

Bound on the codimension of a substantial TPP immersion

Another important result in the theory of tight immersions concerns the upper bound
on the codimension of a substantial smooth TPP immersion. Kuiper [300] proved
part (a) of Theorem 2.46 below, and we will give the proof as in [95, pp. 33–34].
The proof of part (b) of Theorem 2.46 is much more difficult. It is due to Kuiper
[301] for n D 2, and to Little and Pohl [333] for higher dimensions, and we refer
the reader to [95, p. 105] for a complete proof.

The standard embeddings of projective spaces mentioned in part (b) are described
in detail in Section 2.9 (see also Tai [505] or [95, pp. 87–98]). The standard
embedding of RP2 into S4 � R5 is the well-known Veronese surface, which we
will now describe.
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Remark 2.45 (Veronese surface). Let S2 be the unit sphere in R3 given by the
equation

x2 C y2 C z2 D 1: (2.102)

Define a map from S2 into R6 by

.x; y; z/ 7! .x2; y2; z2;
p
2yz;

p
2zx;

p
2xy/: (2.103)

One can easily check that this map takes the same value on antipodal points of S2,
and so it induces a map � W RP2 ! R6. An elementary calculation then proves
that � is a smooth embedding of RP2. Furthermore, if .u1; : : : ; u6/ are the standard
coordinates on R6, then the image of � lies in the Euclidean hyperplane R5 � R6

given by the equation:

u1 C u2 C u3 D 1; (2.104)

since x2Cy2Cz2 D 1. One can easily show further that � is a substantial embedding
into R5, and that the image of � is contained in the unit sphere S5 � R6 given by
the equation,

u21 C � � � C u26 D 1: (2.105)

Thus, � is a substantial embedding of RP2 into the 4-sphere S4 D S5 \ R5 (see
Section 2.9 for more detail).

To see that � has the TPP, note that a hyperplane in R5 given by an equation

a1u1 C � � � C a6u6 D c; (2.106)

for c 2 R, cuts RP2 in a conic. Such a conic does not separate RP2 into more than
two pieces, and so � has the TPP. Since RP2 has dimension two, � is also tight by
Corollary 2.44. Finally, since � is tight and spherical, it is a taut embedding of RP2

into S4 � R5 by Theorem 2.69, which will be proven in the next section.
From the Veronese embedding �, we can obtain a tight substantial embedding

of RP2 into a 4-dimensional Euclidean space R4 in two different ways. First let
� W S4 � fPg ! R4 be stereographic projection with pole P not in the image of �
(see Remark 2.7). Then by Theorem 2.70 (see page 61), � ı � is a taut (and hence
tight by Theorem 2.55 on page 55) embedding of RP2 into R4. Secondly, we can
compose � with orthogonal projection of R6 onto the 4-space R4 spanned by the
vectors f.e1 � e2/=

p
2; e4; e5; e6g, where fe1; : : : ; e6g is the standard basis of R6.

This gives a parametrization

.x; y; z/ 7!
�

x2 � y2p
2
;
p
2yz;

p
2zx;

p
2xy

�
; (2.107)

which induces an embedding f W RP2 ! R4. Since tightness is preserved by
orthogonal projections (see Remark 2.39), f is a tight embedding of RP2 into R4.
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TPP immersions with maximal codimension

In the following theorem, the term “up to a projective transformation of Rm” means
in the sense defined in Remark 2.38 on page 42.

Theorem 2.46. Let f W Mn ! Rm be a substantial smooth immersion of a compact,
connected n-dimensional manifold.

(a) If f has the TPP, then m � n.n C 3/=2.
(b) If f has the TPP and m D n.n C3/=2 for n � 2, then f is a standard embedding

f W RPn ! Rm of a projective space, up to a projective transformation of Rm.

Proof. (a) Let lp be a nondegenerate linear height function on M with an absolute
maximum at a point x 2 M. After a translation, we can assume that f .x/ is the
origin of our coordinate system on Rm, so that lp.x/ D 0. Since lp has a maximum
at f .x/, we know by Theorem 2.29 that the vector p is normal to f .M/ at f .x/, and
the Hessian H.X;Y/ D hApX;Yi of lp at x is negative-definite. Let T?x M denote the
normal space to f .M/ at f .x/, and let V be the vector space of symmetric bilinear
forms on TxM. Define a linear map � W T?x M ! V by �.q/ D Aq, i.e.,

�.q/.X;Y/ D hAqX;Yi; X;Y 2 TxM: (2.108)

The dimension of T?x M is m � n, and the dimension of V is n.n C 1/=2. Thus, if
m � n > n.n C 1/=2, i.e., m > n.n C 3/=2, then the kernel of � contains a nonzero
vector.

We now complete the proof by showing that if f has the TPP, then the kernel of
� contains only the zero vector, and thus m � n.n C 3/=2. Suppose there exists a
vector q ¤ 0 in T?x M with Aq D 0. Let z.t/ D p C tq. Then z.t/ 2 T?x M for all t,
and

Az.t/ D Ap C tAq D Ap;

for all t. Thus, lz.t/ has a nondegenerate maximum at x for all t. Note that lz.t/.x/ D 0

for all t, since f .x/ is at the origin of the coordinate system.
On the other hand, since f is substantial, there exists a point y 2 M such that

lq.y/ ¤ 0. Then we have

lz.t/.y/ D lp.y/C tlq.y/;

and thus lz.t/.y/ > 0 for a suitable choice of t. For that value of t, the function lz.t/
does not assume its absolute maximum at x. Thus, f does not have the TPP, since if
h is the half-space determined by the inequality lz.t/.u/ � 0, for u 2 Rm, then f�1h
has at least two components, the single point fxg and a component containing y.
(b) For a proof of part (b), see Kuiper [301] for n D 2, and Little and Pohl [333] for
higher dimensions (see also [95, pp. 98–105] for a complete proof). ut
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Remark 2.47 (The case of dimension n D 1). For n D 1, part (a) of Theorem 2.46
states that if f W S1 ! Rm is a substantially immersed closed curve with the TPP,
then m � 2, and hence the curve is a plane curve. In fact, much more can be said. For
n D 1, the TPP is equivalent to requiring that the closed curve have total absolute
curvature equal to 2� , the minimum value possible. Fenchel [155] proved that a
closed curve f W S1 ! R3 with total absolute curvature equal to 2� is an embedded
convex plane curve, and Borsuk [48] obtained the same conclusion for curves in Rm

with m > 3. (See also Chern [102] for a proof of Fenchel’s Theorem.) If the curve
f is knotted, then the total absolute curvature is greater than 4� (see Fary [153] and
Milnor [357, 358]). For a related result regarding the total curvature of a knotted
torus, see the paper of Kuiper and Meeks [306].

Kuiper [300] also proved the following generalization of part (a) of Theorem 2.46
which is useful in determining the possible codimensions of tight immersions of
projective planes (see Theorem 2.95 on page 81). For this theorem, we need the
following notation. Let .ˇ0; : : : ; ˇn/ be an .n C 1/-tuple of nonnegative integers.
Let c.ˇ0; : : : ; ˇn/ be the maximal dimension of a linear family of symmetric bilinear
forms in n variables which contains a positive definite form and such that no form
in the family has index k if ˇk D 0. Note that c.ˇ0; : : : ; ˇn/ � n.n C 1/=2, the
dimension of the space of all symmetric bilinear forms in n variables.

In our applications, of course, the .n C 1/-tuple .ˇ0; : : : ; ˇn/ will be the
Z2-Betti numbers of a compact manifold M. In the case where M is FP2 for
F D R;C;H, or O (Cayley numbers), the number c.ˇ0; : : : ; ˇn/ can be computed,
and so the following theorem can be used to give bounds on the codimension of a
tight immersion of these projective planes into Euclidean spaces (see Theorem 2.95
on page 81).

Theorem 2.48. Let f W Mn ! Rm be a substantial tight immersion of a compact,
connected n-dimensional manifold, and let ˇk denote the k-th Z2-Betti number of M.
Then

m � n � c.ˇ0; : : : ; ˇn/ � n.n C 1/=2:

Proof. We will use the notation of the proof of Theorem 2.46. Let V be the
vector space of all symmetric bilinear forms on TxM. Consider the linear map
� W T?x M ! V defined by �.q/ D Aq, that is,

�.q/.X;Y/ D hAqX;Yi; X;Y 2 TxM: (2.109)

Since f is tight, it has the TPP, and so the proof of Theorem 2.46 shows that � is
injective on T?x M, which has dimension m � n. Thus, we have

m � n D dim .Image �/: (2.110)

The image of � is a vector space that contains a positive definite bilinear form.
Furthermore, if ˇk D 0, then no bilinear form in Image � can have index k, for if
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�.q/ has index k, then lq has a nondegenerate critical point of index k at x. Then
by Corollary 2.33, there exists a nondegenerate linear height function lz having a
critical point y of index k, contradicting tightness, since ˇk D 0.

Thus, the space Image � contains a positive definite form and no form of index
k if ˇk D 0. Then by definition, the dimension of Image � is less than or equal to
c.ˇ0; : : : ; ˇn/, which is less than or equal to n.n C 1/=2, the dimension of the space
V of all symmetric bilinear forms in n variables. So we have

m � n D dim .Image �/ � c.ˇ0; : : : ; ˇn/ � n.n C 1/=2;

as needed. ut

The product of two tight immersions is tight

We close this section with a proof of the fact that a product of two tight immersions
is tight. This was first noted by Kuiper [300], and we follow the presentation given
in [95, pp. 43–46].

Let f W M ! Rm and g W M0 ! Rm0

be immersions of compact,
connected manifolds, each having dimension greater than or equal to 1. The product
immersion,

f � g W M � M0 ! Rm � Rm0 D RmCm0

; (2.111)

is defined by

.f � g/.x; y/ D .f .x/; g.y//: (2.112)

Let p be a unit vector in RmCm0

. We can decompose p in a unique way as,

p D cos � q C sin � q0; (2.113)

for q 2 Rm, q0 2 Rm0

, and 0 � � � �=2.

Lemma 2.49. Let p D cos � q C sin � q0 for 0 � � � �=2.

(a) lp is nondegenerate on M � M0 if and only if 0 < � < �=2, and lq, lq0 are
nondegenerate on M, M0, respectively.

(b) If lp is nondegenerate, then the number �.lp/ of critical points of lp on M � M0
is given by �.lp/ D �.lq/�.lq0/

Proof. Let .x; y/ 2 M � M0, and let X 2 TxM, Y 2 TyM0. Then a straightforward
calculation yields

.lp/�.X;Y/ D cos � .lq/�X C sin � .lq0/�Y: (2.114)
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If � D 0, the set of critical points of lp is the set of all points of the form .x; y/,
where x is a critical point of lq, and y is any point in M0. Similarly, if � D �=2, the
set of critical points of lp is the set of all points of the form .x; y/, where x any point
in M, and y is a critical point of lq0 . In either case, the critical points of lp are not
isolated, so they are degenerate critical points, and lp is not a Morse function.

If 0 < � < �=2, then we see from equation (2.114) that lp has a critical point
at .x; y/ if and only if lq has a critical point at x and lq0 has a critical point at y.
We now compute the Hessian of lp at such a critical point .x; y/. Let .u1; : : : ; un/

and .v1; : : : ; vn0/ be local coordinates in neighborhoods of x in M, and y in M0,
respectively. Clearly, with respect to the local coordinates .u1; : : : ; un; v1; : : : ; vn0/

in a neighborhood of .x; y/ in M � M0, the Hessian of lp at the critical point .x; y/
has the form

H.x;y/.lp/ D
�

cos � Hx.lq/ 0

0 sin � Hy.lq0/

�
: (2.115)

Thus, H.x;y/.lp/ is nonsingular if and only if Hx.lq/ and Hy.lq0/ are nonsingular.
Hence, lp is a nondegenerate function if and only if lq and lq0 are nondegenerate
functions. Furthermore, from equation (2.115), we see that the index of lp at a
nondegenerate critical point .x; y/ is equal to the sum of the indices of lq at x and lq0

at y. Thus, for 0 � k � n C n0, we have

�k.lp/ D
X

iCjDk

�i.lq/�j.lq0/: (2.116)

From this, we compute

�.lp/ D
nCn0X

kD0
�k.lp/

D
nCn0X

kD0

X

iCjDk

�i.lq/�j.lq0/

D �.lq/ �.lq0/:

ut
Theorem 2.50. Suppose f W M ! Rm and g W M0 ! Rm0

are tight immersions of
compact manifolds. Then f � g is a tight immersion of M � M0 into RmCm0

.

Proof. In the notation of Lemma 2.49, we have for any nondegenerate height
function lp on M � M0,

�.lp/ D �.lq/�.lq0/;
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for appropriate nondegenerate functions lq and lq0 . Since f and g are tight, we
know that

�.lq/ D ˇ.M;Z2/ and �.lq0/ D ˇ.M0;Z2/;

for every such pair of nondegenerate functions lq and lq0 . Thus,

�.lp/ D ˇ.M;Z2/ ˇ.M0;Z2/ D ˇ.M � M0;Z2/;

where the last equality is due to the Künneth formula (see, for example, Greenberg
[183, p. 198]). Hence, f � g is tight. ut

2.7 Distance Functions and Taut Submanifolds

In this section, we give a brief review of the theory of distance functions and taut
submanifolds in Euclidean space. Various aspects of this theory will be treated in
more detail later in this book. For more complete coverage of the topic, the reader is
referred to Chapter 2 of the book [95] or the survey article [76]. Our treatment here
is based on [95, pp. 113–127].

Let f W M ! Rm be a smooth immersion of an n-dimensional manifold M into
Euclidean space Rm. For p 2 Rm, the Euclidean distance function Lp is defined on
Rm by

Lp.q/ D jp � qj2: (2.117)

The restriction of Lp to M gives a real-valued function Lp W M ! R defined by
Lp.x/ D jp � f .x/j2. As with linear height functions, Sard’s Theorem implies that
for almost all p 2 Rm, the function Lp is a Morse function on M.

We recall the normal exponential map E W NM ! Rm defined in Section 2.2 by

E.x; / D f .x/C ; (2.118)

where  is a normal vector to f .M/ at f .x/. As in Section 2.2, the focal set of M is
the set of critical values of the map E. Hence, by Sard’s Theorem, the focal set of M
has measure zero in Rm. As noted in Theorem 2.1, if p D E.x; t�/, where j�j D 1,
then p is a focal point of .M; x/ of multiplicity � > 0 if and only if 1=t is a principal
curvature of multiplicity � of the shape operator A� .

Index Theorem for distance functions

The critical point behavior of the Lp functions is described by the following well-
known Index Theorem (see Milnor [359, pp. 32–38] for a proof).
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Theorem 2.51. Let f W M ! Rm be a smooth immersion of an n-dimensional
manifold M into Euclidean space Rm, and let p 2 Rm.

(a) A point x 2 M is a critical point of Lp if and only if p D E.x; / for some
 2 T?x M.

(b) Lp has a degenerate critical point at x if and only if p is a focal point of .M; x/.
(c) If Lp has a nondegenerate critical point at x, then the index of Lp at x is equal

to the number of focal points of .M; x/ (counting multiplicities) on the segment
from f .x/ to p.

The following corollary, due to Nomizu and Rodriguez [405, p. 199], follows
from Theorem 2.51 in the same way that Corollary 2.33 follows from Theorem 2.29
for height functions. In the proof of Corollary 2.52, one uses the normal exponential
map E instead of the Gauss map �. In particular, part (a) of the corollary follows
from part (b) of Theorem 2.51, since the focal set of M has measure zero in Rm.

Corollary 2.52. Let f W M ! Rm be a smooth immersion of an n-dimensional
manifold M into Euclidean space Rm.

(a) For almost all p 2 Rm, Lp is a Morse function on M.
(b) Suppose Lp has a nondegenerate critical point of index k at x 2 M. Then there

is a Morse function Lq having a critical point y 2 M of index k (q and y may be
chosen as close to p and x, respectively, as desired).

Taut immersions

We can now define taut immersions in a similar way to how we defined tight
immersions in the previous section. Suppose first that M is a compact n-dimensional
manifold. An immersion f W M ! Rm is said to be a taut immersion if there exists
a field F such that every nondegenerate Euclidean distance function Lp has ˇ.M;F/
critical points on M, i.e., every nondegenerate distance function is a perfect Morse
function. By Theorem 2.28 in the previous section, we see that f is taut if and only
if for every nondegenerate Euclidean distance function Lp, the map on homology

H�.Mr.Lp/;F/ ! H�.M;F/ (2.119)

induced by the inclusion Mr.Lp/ � M is injective for all r. Note that

Mr.Lp/ D fx 2 M j jp � f .x/j2 � rg: (2.120)

Thus, Mr.Lp/ is the inverse image under f of the closed ball in Rm with center p
and radius

p
r. In this formulation of tautness, one requires the map on homology

in equation (2.119) to be injective for all closed balls determined by nondegenerate
distance functions, that is, the map
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H�.f�1B;F/ ! H�.M;F/ (2.121)

is injective for every closed ball B centered at a point p 2 Rm such that Lp is a
nondegenerate function.

Remark 2.53 (F-taut implies Z2-taut). Grove and Halperin [185]), and indepen-
dently Terng and Thorbergsson [531], extended the notion of tautness to submani-
folds of complete Riemannian manifolds. Their definition agrees with the definition
of tautness above for submanifolds of Euclidean space. Recently Wiesendorf [554]
showed that if a compact submanifold of a complete Riemannian manifold is taut
with respect to some field F, then it is also Z2-taut. Thus, we will use Z2-tautness at
all times.

As with tight immersions, if we use Z2–Čech homology and its continuity
property, we can prove results similar to Lemma 2.40 and Theorem 2.41 which
imply that we can use all closed balls B in Rm in equation (2.121) and not just those
determined by nondegenerate distance functions.

Next one shows that if the injectivity condition in equation (2.121) holds for all
closed balls B, then it also holds for all closed half-spaces h and for all complements
of open balls in Rm. For half-spaces, this comes from approximating f�1h by
f�1B, for an appropriate large closed ball B, in a manner similar to the proof of
Lemma 2.40. For complements of open balls, one uses the fact that Lp.x/ � r if and
only if �Lp.x/ � �r, and Lp is a perfect Morse function on M if and only if �Lp is
a perfect Morse function on M. Using these ideas and techniques similar to those in
the proofs of Lemma 2.40 and Theorem 2.41, one can prove the following theorem,
and we omit the proof here.

Theorem 2.54. Let f W M ! Rm be an immersion of a compact, connected
manifold. Suppose that every nondegenerate Euclidean distance function Lp has
ˇ.M;Z2/ critical points on M. Then for every closed ball, complement of an open
ball, and closed half-space ˝ in Rm, the induced homomorphism,

H�.f�1˝/ ! H�.M/ (2.122)

in Čech homology with Z2 coefficients is injective.

If Sm�1 is the metric hypersphere in Rm with center p and radius r, then Sm�1
is a taut subset of Rm. To see this, note that if q is any point in Rm other than p,
then Lq is a nondegenerate function having exactly two critical points on Sm�1 at the
two points where the line determined by p and q intersects the sphere Sm�1. We will
show later (see Theorems 2.73 and 2.74 on page 63) that every taut immersion of an
.m � 1/-sphere into Rm is a metric hypersphere. This result was proven for m D 2

and m D 3 by Banchoff [20], and for higher dimensions by Carter and West [61],
and independently by Nomizu and Rodriguez [405] using a different proof.

As in the case of tightness, one can generalize the notion of tautness to continuous
maps of compact spaces as follows. A map f of a compact topological space X into



2.7 Distance Functions and Taut Submanifolds 55

Rm is called a taut map if for every closed ball, complement of an open ball, and
closed half-space ˝ in Rm, the induced homomorphism

H�.f�1˝/ ! H�.X/ (2.123)

in Čech homology with Z2 coefficients is injective. A subset of Rm is called a taut
set if the inclusion map f W X ! Rm is a taut map.

An obvious consequence of this definition and the definition of a tight map is
the following theorem, since tightness only requires that the map on homology in
equation (2.123) be injective when ˝ is a closed half-space.

Theorem 2.55. Let f W X ! Rm be continuous map of a compact, connected space
X into Rm. If f is taut, then f is tight.

Of course, Theorem 2.54 shows that if an immersion f W M ! Rm of a compact,
connected manifold M is taut in the sense that every nondegenerate Lp-function is a
perfect Morse function, then f is a taut map as defined above.

The spherical two-piece property

As is the case with tightness, there is a two-piece property associated to tautness
due to Banchoff [20]. A continuous map f W X ! Rm of a compact, connected
topological space is said to have the spherical two-piece property (STPP) if f�1˝ is
connected for every closed ball, complement of an open ball, and closed half-space
˝ in Rm. A compact, connected space X � Rm embedded in Rm is said to have the
STPP if the inclusion map f W X ! Rm has the STPP. In that case, the STPP means
that every hypersphere and hyperplane in Rm cuts X into at most two pieces, whence
the name “spherical two-piece property.”

The following results can be proven in a way to very similar Theorem 2.42,
Theorem 2.43, and Corollary 2.44 for the two-piece property in the last section, and
we omit the proofs here. These are due to Banchoff [20].

Theorem 2.56. Let f W X ! Rm be continuous map of a compact, connected space
X into Rm. If f is taut, then f has the STPP.

Theorem 2.57. Let f W M ! Rm be an immersion of a smooth compact, connected
manifold. Then f has the STPP if and only if every nondegenerate distance function
Lp has exactly one minimum and one maximum on M.

Corollary 2.58. An STPP immersion f W M2 ! Rm of a smooth compact,
connected manifold 2-dimensional surface M2 is taut.

Carter and West [61] introduced the term “taut immersion” in a paper published
in 1972. They also noted that tautness can be defined for proper immersions of non-
compact manifolds as follows. Recall that a map f W X ! Rm of a topological space
X is called proper if f�1K is compact for every compact subset K of Rm.
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If f W M ! Rm is a proper immersion of a smooth manifold, then f�1B is
compact for every closed ball B in Rm, and so the Morse inequalities (2.68) for
a nondegenerate distance function Lp can be applied.

We say that such a proper immersion of a non-compact manifold is taut if for
every closed ball B in Rm, the map H�.f�1B/ ! H�M (in Z2–Čech homology) is
injective. This definition agrees with the definition of a taut immersion of a compact
manifold by Theorem 2.54, since in that case if the map H�.f�1B/ ! H�M is
injective for all closed balls B, then the map H�.f�1˝/ ! H�M is also injective for
all closed half-spaces and all complements of open balls ˝.

From Theorem 2.28 on page 38, we see that a proper immersion of a non-
compact manifold is taut if and only if for every nondegenerate Lp, the equation

�k.Lp; r/ D ˇk.Lp; r;Z2/ (2.124)

holds for all r 2 R, k 2 Z.
More generally, a proper immersion f W M ! Rm of a smooth connected

manifold is said to be k-taut if for every closed ball B in Rm and for every integer
i � k, the induced homomorphism Hi.f�1B/ ! Hi.M/ in Čech homology with Z2
coefficients is injective. If M is compact and connected, then 0-tautness is equivalent
to the STPP, since in that case if the map H0.f�1B/ ! H�M is injective for all closed
balls B, then the map H0.f�1˝/ ! H�M is also injective for all closed half-spaces
and all complements of open balls ˝, and so f has the STPP.

Next we have the following important consequence of the 0-tautness for smooth
immersions due to Banchoff [20], and Carter and West [61].

Theorem 2.59. Let f W M ! Rm be a proper immersion of a smooth connected
manifold. If f is 0-taut, then f is an embedding.

Proof. Suppose f .x1/ D f .x2/ D p for two distinct points x1; x2 in M. Since f is an
immersion, there exist neighborhoods U1 and U2 of x1 and x2, respectively, on which
f is an embedding. Let B be the closed ball of radius 0 centered at p. Then f�1B has
at least two connected components, fx1g � U1 and fx2g � U2, contradicting the
assumption that f is 0-taut. ut

Constructions preserving tautness

In the following three remarks, we discuss three important constructions which
preserve tautness: cylinders over taut submanifolds, tubes over taut submanifolds,
and hypersurfaces of revolution with a taut submanifold as the profile submanifold.

Remark 2.60 (Cylinders over taut submanifolds). An example of a taut embedding
of a non-compact manifold is a circular cylinder in R3, or more generally a spherical
cylinder defined by the product embedding,

f � g W Sk � Rn�k ! RkC1 � Rn�k D RnC1; (2.125)
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where f embeds Sk as a metric sphere, and g is the identity map on Rn�k. Every
nondegenerate Lp function has two critical points on Sk � Rn�k, one of index 0 and
one of index k. More generally, suppose that f W M ! Rk is a taut immersion of a
compact, connected manifold M, and g is the identity map on Rm�k then

f � g W M � Rm�k ! Rk � Rm�k D Rm; (2.126)

is taut. To see this, note that if p D .p1; p2/ and x D .x1; x2/ are points in Rk �Rm�k,
then

Lp.x/ D Lp1 .x1/C Lp2 .x2/: (2.127)

Thus, Lp has a critical point at x if and only if Lp1 has a critical point at x1 and
p2 D x2. Such a critical point is nondegenerate if and only if the critical point of
Lp1 at x1 is nondegenerate, and in that case, these two critical points have the same
index. Since M � Rm�k and M have the same Betti numbers, f is taut if and only if
f � g is taut.

Remark 2.61 (Parallel hypersurfaces and tubes over taut submanifolds). Carter
and West [61] and Pinkall [447, p. 83] pointed out that constructing parallel
hypersurfaces or tubes over taut submanifolds preserves tautness.

First suppose that f W M ! RnC1 is an embedded compact, connected oriented
hypersurface with global field of unit normals � . Suppose that t is a real number
such that the parallel map ft W M ! RnC1 given by

ft.x/ D f .x/C t�.x/ (2.128)

is an embedding. Then ft is a parallel hypersurface of the original embedding f0 D f .
By Theorem 2.3 on page 18, the parallel hypersurfaces ft and f have the same focal
set. Suppose that p 2 RnC1 is not a focal point of these hypersurfaces. Let Lp denote
the restriction of the distance function determined by p to the original embedding
f , and let QLp denote its restriction to the parallel hypersurface ft. By Theorem 2.51,
Lp has a critical point at x 2 M if and only if QLp has a critical point at x, since the
normal line to f .M/ at f .x/ is the same as the normal line to ft.M/ at ft.x/. So the
functions Lp and QLp have the same number of critical points on M. Thus, ft is taut if
and only if f is taut.

Next consider the case where f W M ! RnCk is a tautly embedded compact,
connected submanifold of codimension k > 1 in RnCk. Again consider t > 0

sufficiently small so that the tube ft W BM ! RnCk is an embedded hypersurface,
where BM is the unit normal bundle of f .M/ in RnCk.

By Theorem 2.3, the focal set of the tube ft is the union of the focal set of f .M/
with f .M/ itself. Let p 2 RnCk be a point that is not a focal point of the tube ft.
Let Lp denote the restriction of the distance function determined by p to the original
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embedding f , and let QLp denote its restriction to the tube ft. Each critical point x 2 M
of Lp corresponds to two critical points of QLp on the tube ft at points where the line
from p to f .x/ intersects the tube. These critical points are

z1 D f .x/C t�; and z2 D f .x/ � t�; (2.129)

where � D .p � f .x//=jp � f .x/j. Thus, the number of critical points of QLp is equal
to twice the number of critical points of Lp. (Note that if p 2 f .M/, then QLp is a
degenerate function, whereas Lp may be nondegenerate. This will not affect tautness
since f .M/ has measure zero in RnCk.)

Therefore, f is taut if and only if ft is taut, since the sum of the Z2-Betti numbers
of the unit normal bundle BM (the domain of the tube ft) is equal to twice the sum
of the Z2-Betti numbers of M. This last fact follows from the Gysin sequence of the
unit normal bundle BM of M (see, for example, [418, Lemma 4.7, p. 264]), as was
pointed out by Pinkall [447, p. 83]). Thus we have the following theorem due to
Pinkall.

Theorem 2.62. Let f W M ! Rn be a compact, connected embedded submanifold
of Rn of codimension greater than one, and let t > 0 be sufficiently small so that the
tube ft W BM ! Rn is a compact, connected embedded hypersurface in Rn. Then
f .M/ is taut with respect to Z2 coefficients if and only if the tube ft.M/ is taut with
respect to Z2 coefficients.

Remark 2.63 (Taut hypersurfaces of revolution). Suppose M is a taut compact,
connected hypersurface embedded in RkC1 which is disjoint from a hyperplane
Rk � RkC1 through the origin. Let ekC1 be a unit normal to the hyperplane Rk

in RkC1. Embed RkC1 in RnC1, and let Rn�kC1 be the orthogonal complement of
Rk in RnC1. Let SO.n � k C 1/ denote the group of isometries in SO.n C 1/ that
keep Rk pointwise fixed. If we consider RnC1 as Rk � Rn�kC1, then each point of
M � RkC1 has the form .x; y/, where y D cekC1 for some c > 0. Let

W D f.x;Ay/ j .x; y/ 2 M; A 2 SO.n � k C 1/g (2.130)

be the hypersurface in RnC1 obtained by rotating M about the axis Rk. Then W is
diffeomorphic to M � Sn�k, and the sum of the Z2-Betti numbers of W satisfies
ˇ.W/ D 2ˇ.M/.

We now show that W is taut in RnC1. First, if p 2 Rk � RnC1, then Lp has an
absolute minimum on M at some point z 2 M. Hence, Lp has critical points at all the
points of W in the orbit of z under the action of SO.n � k C 1/. Since these critical
points are not isolated, they are degenerate critical points. Thus, every point p 2 Rk

is a focal point of W. Next consider any .k C 1/-plane of the form

V D Rk ˚ Span fAekC1g; (2.131)
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for a fixed A 2 SO.n�k C1/. Then W \V consists of two disjoint congruent copies
of M. If z 2 W \ V , then the normal line to W through z lies in V . Now suppose
that Lp, for p 2 RnC1, is a nondegenerate function on W. Then p does not lie in the
axis Rk, so p lies in the space V spanned by Rk and p itself. All of the critical points
of Lp on W lie in W \ V . Since M is taut, Lp has exactly ˇ.M/ critical points on
each of the two copies of M in W \ V . Thus, Lp has ˇ.W/ D 2ˇ.M/ critical points
on W. This is true for all Morse functions of the form Lp on W, and so W is tautly
embedded in RnC1.

Basic results on taut embeddings

We now follow the development of the theory in Carter and West [61]. The first
theorem is essentially Banchoff’s [20] observation that for an STPP embedding,
every local support sphere is a global support sphere.

Theorem 2.64. (a) Let f W M ! Rm be a 0-taut embedding of a connected
manifold M. Suppose p is the first focal point of .M; x/ on a normal ray to
f .M/ at f .x/. If q is any point except p on the closed segment from f .x/ to p,
then Lq has a strict absolute minimum on M at x. Further, the function Lp itself
has an absolute minimum at x.

(b) Let f W M ! Rm be an STPP embedding of a compact, connected n-dimensional
manifold. Suppose that p is a focal point of .M; x/ such that the sum of the
multiplicities of the focal points of .M; x/ on the closed segment from f .x/ to
p is n. If q is any point beyond p on the normal ray from f .x/ through p, then
Lq has a strict absolute maximum at p. Further, the function Lp itself has an
absolute maximum at x.

Proof. (a) For any point q ¤ p on the closed segment from f .x/ to p, the function
Lq has a strict local minimum at x by the Index Theorem (Theorem 2.51). Since
the intersection of f .M/ with the closed ball centered at q through f .x/ is connected
by 0-tautness, this intersection consists of the point f .x/ alone. Therefore, f .M/ lies
outside the corresponding open ball centered at q with radius equal to the length of
the segment from q to f .x/. Thus f .M/ lies outside the union of these open balls as
q varies from f .x/ to p, and so f .M/ lies outside the open ball centered at p through
f .x/. Therefore, Lp has an absolute minimum at x.
(b) This is proven in a way similar to (a) using maxima rather than minima. ut

This theorem has the following three useful corollaries. Here l� denotes the linear
height function in the direction � .

Corollary 2.65. Let f W M ! Rm be a 0-taut embedding of a connected manifold
M. Suppose there are no focal points of .M; x/ on the normal ray to f .M/ in the
direction � at f .x/. Then f .M/ lies in the closed half-space determined by the
inequality l� � ł� .x/.
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Proof. For all q on the normal ray in question, part (a) of Theorem 2.64 above
implies that the set f .M/ is disjoint from the open sphere centered at q of radius
jq � f .x/j. Hence, f .M/ is disjoint from the union of such open balls, which is the
open half-space determined by the inequality l� .u/ > l� .x/, for u 2 Rm. ut

From Theorem 2.64 and Corollary 2.65, we see that the existence of a normal
vector � such that A� D �I has strong implications for an STPP embedding, as the
next two corollaries show.

Corollary 2.66. Let f W M ! Rm be a 0-taut embedding of a connected manifold
M. If A� D 0 for some unit normal � to f .M/ at a point f .x/, then f .M/ lies in the
hyperplane in Rm determined by the condition l� D l� .x/.

Proof. Since A� D 0, there do not exist any focal points on the normal line
determined by � . If we apply Corollary 2.65 to each of the normal rays determined
by � , we get that f .M/ lies in the intersection of the two closed half spaces
determined by the hyperplane with equation l� D ł� .x/, and so f .M/ lies in that
hyperplane. ut
Corollary 2.67. Let f W M ! Rm be an STPP embedding of a compact, connected
manifold M. If A� D �I; � ¤ 0, for some unit normal � to f .M/ at a point f .x/, then
f .M/ lies in the hypersphere in Rm centered at the focal point p D f .x/ C .1=�/�

with radius 1=j�j.
Proof. Let q be a point on the open segment from f .x/ to p. By Theorem 2.64 (a),
the set f .M/ does not intersect the open ball centered at q of radius jq� f .x/j. Hence
f .M/ is disjoint from the union of such open balls, i.e., the open ball centered at p
of radius 1=j�j. Similarly, by part (b) of Theorem 2.64, the set f .M/ is disjoint from
the complement of the closed ball centered at p with radius 1=j�j. Thus f .M/ lies in
the hypersphere centered at p with radius 1=j�j. ut

This has the following immediate corollary in the case where M is a hypersurface.
This was first proven by Banchoff [20] in the case of where M is a 2-dimensional
surface.

Corollary 2.68. Let f W Mn ! RnC1 be a codimension one STPP embedding of a
compact, connected manifold M . If f .M/ has one umbilic point, then f embeds M
as a metric sphere in RnC1.

Proof. By Corollaries 2.66 and 2.67, if f .M/ has one umbilic point, then f .M/ is
contained in a hyperplane in RnC1 or in a metric hypersphere Sn � RnC1. The image
of the compact n-dimensional manifold M cannot be contained in a hyperplane, and
so f .M/ is a compact, connected n-dimensional submanifold of Sn. Thus, f .M/ is Sn

itself. ut
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The relationship between tight and taut maps

We now wish to explore the relationship between tightness and tautness further. The
first result is that a tight, spherical map is taut. Here f W X ! Rm is spherical if the
image of f lies in a metric hypersphere in Rm.

Theorem 2.69. Let f W M ! Sm � RmC1 be a tight spherical map of a compact
topological space X. Then f is a taut map into RmC1.

Proof. Let ˝ be a closed ball or the complement of an open ball in RmC1. Then
˝ \ Sm D h \ Sm for some closed half-space in RmC1. Since f .X/ is contained in
Sm, we have

f�1˝ D f�1.˝ \ Sm/ D f�1.h \ Sm/ D f�1h:

Since f is tight, the map H�.f�1h/ ! H�.X/ is injective, and so the map
H�.f�1˝/ ! H�.X/ is injective, and f is taut. ut

Let � W Sm � fPg ! Rm be stereographic projection with pole P 2 Sm as in
equation (2.45). Via the map � , the space Sm � fPg is conformally equivalent to
Rm, or we may consider Sm as Rm [ f1g, the one-point compactification of Rm.
A conformal transformation of Rm [ f1g takes the collection of all hyperspheres
and hyperplanes onto itself. Hence, tautness and the STPP are preserved by such a
conformal transformation. We formulate this conformal invariance of tautness and
the STPP specifically in the following theorem. In this way, we see that tautness is
equivalent to the combination of tight and spherical via stereographic projection.

Theorem 2.70. Let X be a compact topological space.

(a) If f W X ! Rm is a taut (respectively STPP) map, and ' is a conformal
transformation of Rm [ f1g such that '.f .X// � Rm, then ' ı f is a taut
(respectively STPP) map of X into Rm.

(b) If f W X ! Sm � RmC1 is taut (respectively STPP), and � W Sm � fPg ! Rm is
stereographic projection with pole P not in f .X/, then � ıf is a taut (respectively
STPP) map of X into Rm.

(c) If f W X ! Rm is taut (respectively STPP) and ��1 W Rm ! Sm � RmC1 is
inverse stereographic projection with respect to any pole P, then ��1 ı f is a
taut (respectively STPP) map of X into Sm.

By similar considerations, we see another method to obtain taut embeddings of
non-compact manifolds, as in Carter and West [61] (see also [95, pp. 120–121]).

Theorem 2.71. Suppose that f W M ! Rm is a taut embedding of a compact,
connected manifold M, and ' is a conformal transformation of Rm [ f1g such that
'.f .x// D 1 for some x 2 M. Then ' ı f is a taut embedding of M � fxg into Rm.

Proof. If B is any closed ball in Rm, then '�1B is a closed ball, the complement of an
open ball, or a closed half-space in Rm. Since f is taut, the map H�.f�1.'�1B// !
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H�.M/ is injective. Since this map factors through the homomorphism H�.M �
fxg/ ! H�.M/, the map

H�.f�1.'�1B// ! H�.M � fxg/

is injective also, as needed. ut
Recall that a map f of a topological space X into Rm is said to be substantial if

the image f .X/ is not contained in any hyperplane in Rm. From the theorem above,
we immediately get a way to obtain more examples of taut submanifolds in Rm by
taking the image under stereographic projection of taut submanifolds in Sm.

Corollary 2.72. Let M be a compact manifold. Then there exists a substantial, non-
spherical taut (respectively STPP) embedding f W M ! Rm if and only if there exists
a substantial taut (respectively STPP) spherical embedding

Qf W M ! RmC1:

Proof. Let f W M ! Rm be a substantial, non-spherical taut embedding. Let ��1
be the inverse of stereographic projection with respect to any pole P 2 Sm. Then
Qf D ��1 ı f is a taut embedding of M into Sm � RmC1. Furthermore, ��1 ı f is
substantial in RmC1, since if the image of ��1 ı f lies in a hyperplane � in RmC1,
then it lies in the hypersphere ˙m�1 D � \ Sm. This implies that the image of f lies
in the hyperplane or hypersphere �.˙m�1/ in Rm, contradicting the assumption that
f is substantial and non-spherical in Rm.

Conversely, suppose that Qf W M ! Sm � RmC1 is a substantial taut spherical
embedding. Since Qf is substantial in RmC1, the image of Qf does not lie in a
hypersphere in Sm � RmC1. Let P be any point in Sm that is not in the image of Qf ,
and let � W Sm �fPg ! Rm be stereographic projection with pole P. Then f D � ı Qf is
a taut embedding of M into Rm, and it is substantial and non-spherical in Rm, since
the image of Qf does not lie in a hypersphere in Sm. ut

This corollary is useful, because many important examples of taut submanifolds
lie in a sphere Sm in RmC1. In particular, all isoparametric (constant principal
curvatures) hypersurfaces and their focal submanifolds in Sm are taut [93], as we
will see in Section 3.6 (see Corollary 3.56 on page 139).

Using Theorem 2.70, we can thus obtain many new taut submanifolds in Rm via
stereographic projection. In particular, the cyclides of Dupin in Rm are obtained
from a standard product of two spheres (which is an isoparametric hypersurface in
Sm, see Section 3.8.2 on page 148),

Sp.r/ � Sm�1�p.s/ � Sm; r2 C s2 D 1; (2.132)

via stereographic projection, and thus they are taut in Rm.
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Taut embeddings of spheres

Banchoff [20], and Carter and West [61] pointed out that Theorem 2.70, when
combined with known results for tight immersions, yields theorems for taut immer-
sions. In particular, in conjunction with the Chern–Lashof Theorem (Theorem 2.35),
which states that if f W Sn ! Rm is a tight immersion, then f embeds Sn as a convex
hypersurface in a Euclidean space RnC1 � Rm, one gets the following theorem.

Theorem 2.73. Let f W Sn ! Rm be a substantial taut immersion. Then m D n C 1,
and f embeds Sn as a metric hypersphere.

Proof. Since a taut immersion is tight, the Chern–Lashof Theorem implies that m D
n C 1 and f embeds Sn as a convex hypersurface in RnC1. If f .Sn/ were not a metric
hypersphere, then by part (c) of Theorem 2.70, the map ��1 ı f would be a taut
substantial embedding of Sn into RnC2, contradicting the Chern–Lashof Theorem.

ut
We next give a different proof of Theorem 2.73 due to Nomizu and Rodriguez

[405]. This is an important type of proof using the properties of distance functions
and the Index Theorem (Theorem 2.51), as opposed to the proof above which is
based on the theory of tight immersions. Another key element in this proof is the
characterization of spheres as compact, totally umbilical submanifolds in Euclidean
space. A similar approach can be used to characterize totally umbilic submanifolds
of hyperbolic space (see Cecil–Ryan [90]) and to characterize totally geodesic
embeddings of CPn and complex quadrics Qn in complex projective space CPm

in terms of the critical point behavior of distance functions (see Cecil [71]).
Since the proof of the following theorem relies on the characterization of metric

spheres as totally umbilic submanifolds, it only works for Sn with n � 2. For
n D 1, one can use the approach of Theorem 2.73 above, or else use Banchoff’s
[20] elementary direct proof using the spherical two-piece property. The following
theorem is due to Nomizu and Rodriguez [405]. Here we are following the proof in
[95, p. 126].

Theorem 2.74. Let Mn; n � 2, be a connected, complete Riemannian manifold
isometrically immersed in Rm. If every nondegenerate distance function Lp has index
0 or n at each of its critical points, then Mn is embedded as a totally geodesic n-plane
or a metric n-sphere Sn � RnC1 � Rm.

Proof. As noted above, the proof is accomplished by showing that the immersion
f W Mn ! Rm is totally umbilic, that is, for every normal vector � to f .Mn/ at
every point f .x/, the shape operator A� is a multiple of the identity endomorphism
on TxMn.

Let � be a unit normal to f .Mn/ at a point f .x/. If A� D 0, then A� is
a multiple of the identity as needed. If not, then we may assume that A� has
a positive eigenvalue by considering A�� D �A� , if necessary. Let � be the
largest positive eigenvalue of A� . Let t be a real number such that 1=� < t < 1=�,
where � is the next largest positive eigenvalue of A� (if � is the only positive
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eigenvalue, just consider 1=� < t). Then for p D f .x/ C t� , the Index Theorem
(Theorem 2.51) implies that the distance function Lp has a nondegenerate critical
point of index k at x, where k is the multiplicity of the eigenvalue �. While Lp

may not be a nondegenerate function, Corollary 2.52 implies that there exists a
nondegenerate distance function Lq having a critical point y of index k, where q
and y can be chosen to be as close to p and x, respectively, as desired. By the
hypothesis of the theorem, since k is greater than 0, we get k D n, and so A� D �I.
Since this is true for any unit normal � at any point x 2 Mn, we have that f is
totally umbilical. The result then follows from a theorem of E. Cartan [57] which
states that a complete Riemannian n-manifold isometrically and totally umbilically
immersed in Rm is embedded as a totally geodesic n-plane or a metric n-sphere
Sn � RnC1 � Rm. (See also B.Y. Chen [98] or M. Spivak [495, Vol. 4, p. 110] for a
proof of Cartan’s theorem.) ut
Remark 2.75 (Another proof of Theorem 2.73). As a consequence of Theorem 2.74,
we get another proof of Theorem 2.73 that a taut immersion f W Sn ! Rm

is an embedding of Sn as a metric hypersphere in RnC1 � Rm. Specifically, if
f W Sn ! Rm is taut, then every nondegenerate distance function Lp has exactly one
maximum and one minimum. Thus all of the critical points of Lp have index 0 or n,
and so f embeds Sn as a metric hypersphere in RnC1 � Rm by Theorem 2.74.

Taut embeddings of maximal codimension

Finally, as with Theorem 2.46 for TPP immersions, there is a bound on the codi-
mension of a substantial STPP embedding of a compact, connected n-dimensional
manifold into Rm. This follows fairly directly from Theorem 2.46, Corollary 2.72,
and the fact that the STPP implies the TPP. This result is due to Banchoff [20]
for n D 2 and to Carter and West [61] for n � 3 (see also [95, pp. 124–125]).
The standard embeddings of RPn into Rm, m D n.n C 3/=2, are described in
detail in Section 2.9. The term “projectively equivalent” means up to a projective
transformation in the sense defined in Remark 2.38.

Theorem 2.76. Let f W Mn ! Rm, n � 2, be a substantial smooth immersion of a
compact, connected n-dimensional manifold.

(a) If f has the STPP, then m � n.n C 3/=2.
(b) If f has the STPP and m D n.n C 3/=2, then f is projectively equivalent to a

standard embedding of RPn into Rm, and the image f .M/ lies in a metric sphere
Sm�1 � Rm.

Proof. Since the STPP implies the TPP, part (a) follows immediately from part (a)
of Theorem 2.46.

To prove part (b), suppose that m D n.nC3/=2 for n � 2. If the image f .M/ does
not lie in a metric sphere in Rm, then by Corollary 2.72 (for the STPP), there exists
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a substantial spherical STPP embedding Qf W M ! RmC1. This contradicts part (a)
of the theorem. Furthermore, f is a TPP embedding of an n-dimensional manifold
into Rm with m D n.n C 3/=2 for n � 2. Thus, by part (b) of Theorem 2.46, f
is a standard embedding f W RPn ! Rm of a projective space, up to a projective
transformation of Rm. ut

We also have the following similar result for taut embeddings of non-compact
manifolds into Rm�1 due to Carter and West [61] (see also [95, pp. 124–125]).

Theorem 2.77. Let g W Mn ! Rm, n � 2, be a substantial smooth proper
immersion of a non-compact, connected n-dimensional manifold.

(a) If g is taut, then m � n.nC3/
2

� 1.

(b) If g is taut and m D n.nC3/
2

� 1, then g D � ı f , where f W RPn ! RmC1 is
projectively equivalent to a standard embedding and the image of f lies in a
metric sphere Sm � RmC1, and � W Sm � fPg ! Rm is stereographic projection
with pole P 2 f .M/.

Remark 2.78 (Tight and taut immersions into hyperbolic space). In hyperbolic
space Hm there are three types of totally umbilic hypersurfaces: spheres, horo-
spheres, and equidistant hypersurfaces (those at a fixed oriented distance from
a totally geodesic hyperplane, including hyperplanes themselves). These have
constant sectional curvature which is positive, zero, or negative, for spheres,
horospheres, and equidistant hypersurfaces, respectively. Thus, there are three
natural types of distance functions Lp, Lh, and L� , which measure the distance from a
given point p, horosphere h, or hyperplane � , respectively. Just as in Euclidean space
(see Theorem 2.74), the totally umbilic hypersurfaces of Hm can be characterized
in terms of the critical point behavior of these distance functions as follows (see
Cecil–Ryan [90]).

Theorem 2.79. Let Mn; n � 2, be a connected, complete Riemannian manifold
isometrically immersed in Hm. Every Morse function of the form Lp or L� has index
0 or n at all of its critical points if and only if M is embedded as a sphere, horosphere,
or equidistant hypersurface in a totally geodesic HnC1 � Hm.

An immersion f W M ! Hm is called taut, horo-tight, or tight, respectively, if every
nondegenerate function Lp, Lh, or L� , has the minimum number of critical points
required by the Morse inequalities. See Cecil and Ryan [90, 91], [95, pp. 233–236],
and Izumiya et al. [227, 228], for more on these conditions.

2.8 The Relationship between Taut and Dupin

In this section, we examine the relationship between taut and Dupin submanifolds.
We begin with a theorem of Thorbergsson [533] which states that the proper
Dupin condition implies tautness for complete embedded hypersurfaces in real
space forms. After stating the theorem, we will make some comments regarding
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Thorbergsson’s approach to proving this result, and we refer the reader to [533] for
a complete proof.

Theorem 2.80. Let Mn � QMnC1 be a complete, connected proper Dupin hypersur-
face embedded in a real space form QMnC1. Then M is taut.

We now discuss Thorbergsson’s method of proof. Let p 2 QMnC1 and let Lp be
the distance function Lp.x/ D d.p; x/2, where d.p; x/ is the distance from p to x in
QMnC1. By Sard’s Theorem, the restriction of Lp to M is a Morse function for almost

all p 2 QMnC1.
To prove that M is tautly embedded, one must show that every nondegenerate

(Morse) function of the form Lp has the minimum number of critical points required
by the Morse inequalities on M. Equivalently, one can show that every critical point
of every nondegenerate distance function is of linking type (see, Morse–Cairns [379,
p. 258] and the comments after Theorem 2.28 on page 38). That is the method used
by Thorbergsson, as we now discuss.

Specifically, since M is a complete embedded hypersurface in a (simply con-
nected) real space form, M is orientable, and we take � to be a field of unit normal
vectors on M. Since M is proper Dupin, it has g distinct principal curvatures at each
point, and thus we have g smooth principal curvature functions:

�1 > �2 > � � � > �g; (2.133)

with respective constant multiplicities m1; : : : ;mg on M.
Let E W NM ! QMnC1 be the normal exponential map of M as defined in

Section 2.2. By Theorem 2.1, a point p D E.x; t�.x// is a focal point of .M; x/ of
multiplicity m > 0 if and only if there is a principal curvature � of A� of multiplicity
m such that:

� D 1=t; if QMnC1 D RnC1;

� D cot t; if QMnC1 D SnC1; (2.134)

� D coth t; if QMnC1 D HnC1:

Thus, as noted earlier, if a principal curvature function � has constant multiplicity
m on M, then we can define a smooth focal map f� from an open subset U � M
(defined below) onto the sheet of the focal set of M determined by �. Using
equation (2.134) for the location of the focal points, we define the map f� by the
formulas:

f�.x/ D f .x/C 1

�
�.x/;

f�.x/ D cos � f .x/C sin � �.x/; where cot � D �; (2.135)

f�.x/ D cosh � f .x/C sinh � �.x/; where coth � D �;

for QM equal to RnC1, SnC1, and HnC1, respectively.
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In the case of RnC1, the domain U of the focal map f� is the set of points in M
where � ¤ 0. In hyperbolic space, the domain U of f� is the set of points where
j�j > 1. In the case of SnC1, at each point x 2 M the principal curvature � gives rise
to two antipodal focal points in SnC1 determined by substituting � D cot�1 � and
� D cot�1 � C � into equation (2.135). Thus, � gives rise to two antipodal focal
maps into SnC1.

Define �i.x/ D 1=�i.x/ if QMnC1 D RnC1 and �i.x/ ¤ 0; �i.x/ D cot�1 �i.x/
if QMnC1 D SnC1; and �i.x/ D coth�1 �i.x/ if QMnC1 D HnC1 and j�i.x/j >
1. Then the focal point fi.x/ corresponding to the principal curvature �i.x/ is
fi.x/ D E.x; �i.x/�.x//.

For x 2 M, let Si.x/ denote the leaf of the principal foliation Ti determined by �i

through the point x. If x is in the domain U of the focal map fi, then by Theorems 2.11
and 2.14, the Dupin condition implies that the leaf Si.x/ is a compact mi-dimensional
metric sphere contained in a totally geodesic .mi C 1/-dimensional submanifold of
QMnC1 (which does not necessarily contain the focal point fi.x/). The mi-sphere Si.x/

is also contained in the metric hypersphere (the curvature sphere) in QMnC1 with
center fi.x/ and radius j�i.x/j, and Si.x/ is either a great or small sphere in this
curvature sphere.

Using these facts about the principal foliations Ti by mi-spheres on the domain
U of fi, Thorbergsson gave an inductive procedure using iterated sphere bundles
to construct concrete Z2-cycles in M to show that every critical point of every
nondegenerate distance function Lp is of linking type, and thus M is taut. (See
Thorbergsson’s paper [533] for the detailed construction.)

As noted earlier in Theorem 2.62, using the Gysin sequence of the unit normal
bundle of the submanifold M, Pinkall [447] proved the following result concerning
submanifolds of codimension greater than one. We restate the theorem here for the
sake of completeness.

Theorem 2.81. Let f W M ! Rn be a compact, connected embedded submanifold
of Rn of codimension greater than one, and let t > 0 be sufficiently small so that the
tube ft W BM ! Rn is a compact, connected embedded hypersurface in Rn. Then
f .M/ is taut with respect to Z2 coefficients if and only if the tube ft.M/ is taut with
respect to Z2 coefficients.

We can use this to generalize Theorem 2.80 to submanifolds of higher codi-
mension as follows. Recall from Remark 2.21 that if f W M ! Rn is an
immersed submanifold of Rn with codimension greater than one, then a connected
submanifold S � M is called a curvature surface of f .M/ if there exists a parallel
(with respect to the normal connection) section of the unit normal bundle � W S !
Bn�1 such that for each x 2 S, the tangent space TxS is equal to some eigenspace
of A�.x/. As in Remark 2.26, the submanifold f .M/ is called Dupin if along each
curvature surface, the corresponding principal curvature is constant. In that case,
f .M/ is called proper Dupin if the number of distinct principal curvatures is constant
on the unit normal bundle Bn�1. We can now prove the following result due to
Pinkall [447].
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Theorem 2.82. Let M be a compact, connected proper Dupin submanifold of
codimension greater than one embedded in Rn. Then M is taut with respect to Z2
coefficients.

Proof. Let f W M ! Rn be the embedding of M as a compact, connected proper
Dupin submanifold, and let t > 0 be sufficiently small so that the tube ft W BM ! Rn

is a compact, connected embedded hypersurface in Rn. Since f .M/ is proper Dupin,
the multiplicities of its principal curvatures are constant on its unit normal bundle
Bn�1. Then by using Theorem 2.2 (page 17) regarding the shape operators of a
tube, one easily shows that ft.M/ is a proper Dupin hypersurface embedded in Rn.
By Theorem 2.80, ft.M/ is a taut hypersurface, and thus by Theorem 2.81, f .M/ is
also taut. ut

More generally, tautness has been established for Dupin submanifolds with
constant multiplicities of higher codimension by Terng [527] and [529, p. 467].
These are Dupin submanifolds M � Rn of codimension greater than one such that
the multiplicities of the principal curvatures of any parallel normal field �.t/ along
any piecewise smooth curve on M are constant.

Taut implies Dupin

In the opposite direction of Theorem 2.80, Pinkall [447] and Miyaoka [364] (for
hypersurfaces) independently proved the following theorem, which is also valid for
submanifolds of Sn. We give Pinkall’s proof below, following the presentation given
in [95, pp. 194–196].

Theorem 2.83. Every taut submanifold M � Rn is Dupin (but not necessarily
proper Dupin).

Remark 2.84. Although a taut submanifold is always Dupin, it need not be proper
Dupin, as we see from Example 2.22 (page 33). In that example, the tube M3 of
sufficiently small radius 	 over a torus of revolution T2 � R3 � R4 is taut (see
Remark 2.61), but it is not proper Dupin, since there are only two distinct principal
curvatures on the set T2 � f˙	g, but three distinct principal curvatures elsewhere
on M.

To begin the proof of Theorem 2.83, let M � Rn be a connected taut submanifold
of arbitrary codimension. To prove that M is Dupin, we must show that along any
curvature surface the corresponding principal curvature is constant. As shown in
Theorem 2.23, this is always true if the dimension of the curvature surface is greater
than one. Thus, the proof consists in showing that along any 1-dimensional curvature
surface (line of curvature), the corresponding principal curvature is constant.
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Let � be a line of curvature in M. By definition � is a connected 1-dimensional
submanifold of M for which there is a parallel (with respect to the normal connection
r?) unit normal field � defined along � such that for each x 2 � , the tangent space
Tx� is a principal space of the shape operator A� . Assuming that �.x/ ¤ 0 for some
x 2 � , the curvature sphere determined by � at x is the hypersphere in Rn with center
at the focal point

f�.x/ D x C 1

�.x/
�.x/; (2.136)

and radius 1=j�.x/j.
The following lemma is a generalization of the classical result that if the

curvature of a plane curve has nonvanishing derivative on a parameter interval, then
the corresponding one-parameter family of osculating circles is nested one within
another (see, for example, Stoker [501, p. 31]).

Lemma 2.85. Let �.s/ be a unit speed parametrization of a line of curvature of a
submanifold M � Rn with corresponding principal curvature function �. Suppose
that � and its derivative �0 are both nonzero along � . Then along � , the family of
curvature spheres determined by � is nested.

Proof. By appropriate choice of sign of the parallel unit normal field � and the
direction of the unit speed parametrization, we can assume that � < 0 and �0 > 0

on � , where the prime denotes differentiation with respect to s. Let �.s/ denote
the normal vector field �.�.s//. Let s1 and s2 be any two parameter values with
s1 < s2, and let p1 and p2 be the �-focal points of x1 D �.s1/ and x2 D �.s2/, as in
equation (2.136). Let ˛.s/ be the evolute curve (focal curve)

˛.s/ D �.s/C 1

�.s/
�.s/: (2.137)

Using the fact that r?� D 0, we can compute that the velocity vector
�!
� .s/ to the

curve �.s/ is given by

�!
� .s/ D �A� .

�!� .s// D ��.s/�!� .s/: (2.138)

Using this, we calculate that the velocity vector to the curve ˛.s/ is

�!̨.s/ D
�
1

�.s/

�0
�.s/: (2.139)

Thus, the arc-length of the evolute curve from p1 to p2 is

1

�.s1/
� 1

�.s2/
D � � �; (2.140)
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where � is the Euclidean distance d.x1; p1/ and � D d.x2; p2/. The left side of
equation (2.140) equals ���, since �.s1/ and �.s2/ are both negative. We know that
˛ is not a straight line segment, since � is not constant along � . Thus, d.p1; p2/ <
���, and by the triangle inequality, the closed ball B�.p1/ with center p1 and radius
� is contained in the interior of the closed ball B� .p2/. ut
Proof (of Theorem 2.83). As noted earlier, to prove that M is Dupin we must show
that if � is any line of curvature on M, then the corresponding principal curvature �
is constant along � . If � is identically zero on � , then � is constant along � as needed.
Otherwise, there exists a unit speed parametrization �.s/ on a real parameter interval
.a; b/ with �.s/ < 0 and �0.s/ > 0 for all s 2 .a; b/, as in Lemma 2.85. For each s in
the interval .a; b/, let Bs be the closed ball of radius 1=j�.s/j centered at the �-focal
point ˛.s/ given in equation (2.137). Let

ˇ.s/ D dim H�.M \ Bs;Z2/: (2.141)

By the tautness of M, the number ˇ.s/ is a finite integer for each s in .a; b/. We will
obtain a contradiction by proving that the function ˇ.s/ is strictly increasing on the
parameter interval .a; b/, which is clearly impossible for an integer-valued function.

To see this, let s1 and s2 be any two parameter values in .a; b/ with s1 < s2, and
let B1 and B2 be the corresponding closed balls centered at the �-focal points ˛.s1/
and ˛.s2/, respectively. We will prove that the homomorphism,

j W H�.M \ B1/ ! H�.M \ B2/; (2.142)

induced by the inclusion B1 � B2 is injective, but not surjective, and thus ˇ.s1/ <
ˇ.s2/.

The injectivity of the map j follows immediately from the tautness of M, since
the injective map

H�.M \ B1/ ! H�.M/; (2.143)

factors through the sequence

H�.M \ B1/
j! H�.M \ B2/ ! H�.M/: (2.144)

To show that j is not surjective, consider any parameter value s0 with s1 < s0 <
s2. Let p0 D ˛.s0/ denote the �-focal point of �.s0/, and let B0 be the closed ball
centered at p0 of radius 1=j�.s0/j. Let q be a point on the normal ray from �.s0/ to p0
such that q is beyond p0 and before the next focal point (if any exist) of .M; �.s0// on
the normal ray. The point q can be chosen arbitrarily close to p0. By Corollary 2.52,
there exists a point p 2 Rn arbitrarily near to q (and hence to p0 also) such that Lp is
a Morse function having a nondegenerate critical point x arbitrarily near to �.s0/ and
no other critical points at the same level. Let r D d.p; x/. By Lemma 2.85, we have

B1 � int.B0/; B0 � int.B2/; (2.145)
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where int.B0/ denotes the interior of B0. Since p and x can be chosen arbitrarily
close to p0 and �.s0/, respectively, there exists a ı > 0 such that

B1 � int.Br�ı.p//; BrCı.p/ � int.B2/: (2.146)

Let k be the index of Lp at the critical point x. Since M is taut, the k-th Betti number
increases by one as the critical point x is passed, and thus the homomorphism

Hk.M \ Br�ı.p// ! Hk.M \ BrCı.p// (2.147)

is injective but not surjective. The map j factors through the sequence of homomor-
phisms induced by inclusions

Hk.M \ B1/ ! Hk.M \ Br�ı.p// ! Hk.M \ BrCı.p// ! Hk.M \ B2/:

By tautness, all of the maps in this sequence are injective, but the middle one is not
surjective, as shown in equation (2.147). Thus, the map j is not surjective, and so
ˇ.s1/ < ˇ.s2/. This is true for all s1 < s2 in the interval .a; b/, which is impossible
for the integer-valued function ˇ. This completes the proof of Theorem 2.83. ut

Ozawa’s Theorem

In the case where M is compact, we can use a theorem of Ozawa [421] to obtain
a result which is slightly stronger than Theorem 2.83, as was noted in [76]. Note
that the definition of a Dupin hypersurface in Section 2.5 does not require that
given a principal space T� at a point x 2 M, there exists a curvature surface S
through x whose tangent space at x is T�. However, using the following result of
Ozawa [421], we can show that tautness does imply that this property holds on M
(see Corollary 2.88 below). We first state Ozawa’s result and then use it to derive
this corollary. Ozawa proved his result using Morse–Bott critical point theory (see
[49]) and a careful analysis of the critical submanifolds, and we refer the reader to
Ozawa’s paper for a complete proof.

Theorem 2.86. Let M be a taut compact, connected submanifold of Rn, and let Lp

be a Euclidean distance function on M. Let x 2 M be a critical point of Lp and let S
be the connected component of the critical set of Lp which contains x. Then S is

(a) a smooth compact manifold of dimension equal to the nullity of the Hessian of
Lp at the critical point x,

(b) nondegenerate as a critical manifold,
(c) taut in Rn.

Part (a) of the theorem implies that for each p 2 Rn, the critical set of Lp is a
union of smooth, compact submanifolds of Rn. Note that the critical set of Lp is the
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pre-image of p under the normal exponential map of the submanifold M. Thus, part
(a) of the theorem implies that for each p 2 Rn, the pre-image of p under the normal
exponential map is a union of submanifolds.

Remark 2.87 (Taut embeddings into complete Riemannian manifolds). Using dif-
ferent approaches, Grove and Halperin [185]), and independently, Terng and
Thorbergsson [531], extended the notion of tautness to properly embedded sub-
manifolds of complete Riemannian manifolds. Specifically, a submanifold M of a
complete Riemannian manifold N is said to be taut if there exists a field F such that
each energy functional:

Ep.�/ D
Z 1

0

j� 0.t/j2dt; (2.148)

on the space P.N;M � p/ of H1-paths � W Œ0; 1� ! N from M to a fixed point p 2 N
is a perfect Morse function with respect to F, if p is not a focal point of M. (Here
a path is H1 if it is absolutely continuous and the length of its derivative is square
integrable.)

This definition can be shown to agree with the usual definition of tautness for
submanifolds of Euclidean space. Terng and Thorbergsson [531] showed that many
of the important properties of taut embeddings into Euclidean space have natural
analogues in this more general setting.

In a recent paper, Wiesendorf [554] proved that a compact, connected subman-
ifold M embedded in a complete Riemannian manifold N is taut if and only if for
each point p in N, the pre-image of p under the normal exponential map of M is a
union of submanifolds, as in Ozawa’s Theorem above.

Wiesendorf also proved that if M is taut with respect to any field F, then M is also
taut with respect to Z2. In addition, Wiesendorf proved several results concerning
singular Riemannian foliations, all of whose leaves are taut (see also Lytchak [338,
339], Lytchak and Thorbergsson [340, 341]).

In the context of taut submanifolds of complete Riemannian manifolds, Taylor
[524] gave a classification of immersions of Sn�1 into a complete Riemannian
manifold Nn which have odd order in homotopy and are taut. (See also Hebda
[191, 192], Kahn [232], and Ruberman [467] for related results.)

Using Ozawa’s theorem, we can prove the following corollary (as in [76, p. 154]).

Corollary 2.88. Let M be a taut compact, connected submanifold of Rn. Then

(a) M is a Dupin submanifold.
(b) Given a principal space T� of a shape operator A� at a point x 2 M, there exists

a curvature surface S through x whose tangent space at x is equal to T�, and �
is constant along S.

Proof. Note that part (b) implies part (a), so we will prove part (b). Let f W M ! Rn

be a taut embedding. Let � be a unit normal vector at an arbitrary point x 2 M,
and let � be a principal curvature of A� . We first consider the case where � ¤ 0. Let
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p D f .x/C.1=�/� be the focal point of .M; x/ determined by the principal curvature
� of A� . Then the distance function Lp has a degenerate critical point at x and the
nullity of the Hessian of Lp at x is equal to the multiplicity m of � as an eigenvalue
of A� (see [359, p. 36]). By Ozawa’s theorem, the connected component S of the
critical set of Lp containing x is a smooth submanifold (a critical submanifold) of
dimension m. We will now show that S is the desired curvature surface and that the
corresponding principal curvature is constant along S.

The function Lp has a constant value, which is 1=�2, on the critical submanifold
S. Thus, for every point y 2 S, the vector p � f .y/ is normal to f .M/ at f .y/, and it
has length 1=j�j. So we can extend the normal vector � to a unit normal vector field
to f .M/ along S, which we also denote by � , by setting �.y/ D �.p � f .y//. Note
that p is a focal point of .M; y/ for every point y 2 S, and Ozawa’s theorem implies
that the number � is an eigenvalue of A�.y/ of multiplicity m = dim S for every point
y 2 S. Thus, the principal curvature � is constant along S. We next show that TyS
equals the principal space T�.y/ at each point y 2 S, and that the normal field � is
parallel along S with respect to the normal connection. Consider the focal map,

f�.y/ D f .y/C 1

�
�.y/;

for y 2 S. Then f�.y/ D p for all y 2 S. Let X be any tangent vector to S at any point
y 2 S. Then .f�/�X D 0, since f� is constant on S. On the other hand,

.f�/�X D f�X C 1

�
��X;

and ��X D DX� D f�.�A�X/C r?X � . Therefore,

.f�/�X D f�.X � 1

�
A�X/C 1

�
r?X �:

Since .f�/�X D 0, we see that A�X D �X and r?X � D 0. Thus, � is parallel along
S and TyS � T�.y/. Since TyS and T�.y/ have the same dimension, they are equal.
So S is the curvature surface through y corresponding to the principal curvature �,
which is constant along S.

Now suppose that � D 0 is an eigenvalue of A� at x. Let � W RnC1�fqg ! RnC1�
fqg be an inversion, as in equation (2.50), centered at a point q 2 Rn chosen so that
q … f .M/, and so that the principal curvature � of the embedding � f W M ! Rn

corresponding to � by Theorem 2.6 is not zero. Since � f is taut by Theorem 2.70
and � ¤ 0, the argument above shows that there exists a curvature surface V of
� f through x whose tangent space at x is equal to T�, and � is constant along V .
Applying the inversion � again, we get a curvature surface S D �.V/ corresponding
to the principal curvature � of f D �2f , and � is constant along S, as needed in part
(b) of the theorem. This completes the proof. ut
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Remark 2.89 (On the relationship between taut and “semi-Dupin”). In the book
[95, p. 189], a Dupin (but not necessarily proper Dupin) hypersurface which satisfies
Condition (b) in Corollary 2.88 was called “semi-Dupin.” Corollary 2.88 gives
an affirmative answer to one direction of Conjecture 6.19 in [95, p. 189], that is,
taut implies semi-Dupin for a compact, connected submanifold of Rn. Perhaps the
converse can be proved using the approach of Wiesendorf [554] .

2.9 Standard Embeddings of Projective Spaces

In this section, we consider the standard embeddings of projective spaces into
Euclidean space. These are important in the theory of tight and taut submanifolds,
as well as in the theory of isoparametric hypersurfaces (see Subsection 3.8.3,
page 151), and we will present some of the associated results here also. This
section is based on the paper of Tai [505] (see also Section 9 of Chapter 1 of
[95, pp. 87–98]).

As noted in Theorem 2.46 on page 48, Kuiper [300] showed that if f W Mn ! Rm

is a substantial TPP immersion, then m � n.n C 3/=2. In a much deeper result,
he also showed that a substantial TPP immersion f W M2 ! R5 (so having
maximal codimension) is a Veronese surface (see Remark 2.45), which is a standard
embedding f W RP2 ! R5, up to a projective transformation (as defined in
Remark 2.38). Kuiper’s result was then generalized by Little and Pohl [333], who
showed that a TPP immersion f W Mn ! Rm, m D n.n C 3/=2, is a standard
embedding of RPn, up to projective transformation. (See also [95, pp. 98–108] for
a proof of the result of Little and Pohl).

Kuiper and Pohl [307] also generalized some of these results to the topological
category by proving that if f W RP2 ! Rm, m � 5, is a substantial TPP topological
embedding, then m D 5, and f is either a smooth standard embedding (up to
projective transformation) or the TPP polyhedral embedding of Banchoff [22] (see
also Example 5.21 of [95, p. 37]).

We now begin our presentation of the standard embeddings, following the
approach and using the notation of Tai [505]. Let F be one of the division algebras,
R, C or H (quaternions). For q 2 H, we can write,

q D r0 C r1i C r2j C r3k; (2.149)

where r0; r1; r2; r3 are real numbers, and the conjugate of q is defined by

Nq D r0 � r1i � r2j � r3k: (2.150)

The norm of q is given by jqj D .qNq/1=2. If q 2 C, then Nq is the usual complex
conjugate, and if q 2 R, then Nq D q. We let d D 1; 2; 4, respectively, for the
algebras R, C, H. If A is a matrix with coefficients in F, we define A� D NAT ,
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where AT denotes the transpose of A. Then it is easy to check that the following two
equations hold, whenever the indicated operations make sense,

.AB/� D B�A�; (2.151)

< .trace .AB// D < .trace .BA//: (2.152)

Here < denotes the real part.
Let M.n C 1;F/ denote the space of all .n C 1/ � .n C 1/ matrices over F. Let

H.n C 1;F/ D fA 2 M.n C 1;F/ j A� D Ag (2.153)

be the space of Hermitian matrices over F. If A is Hermitian, then the off-diagonal
entries in A are in F, while the diagonal entries are in R. Thus, H.n C 1;F/ is a real
vector space with dimension given by

dim H.n C 1;F/ D n.n C 1/d

2
C n C 1: (2.154)

Let

U.n C 1;F/ D fA 2 M.n C 1;F/ j AA� D Ig: (2.155)

Then for F D R;C;H, respectively, U.n C 1;F/ is equal to O.n C 1/, U.n C 1/,
Sp.n C 1/, respectively.

The space FnC1 is a Euclidean space of real dimension .n C 1/d. The usual
Euclidean inner product on FnC1 D R.nC1/d is given by

hx; yi D < .x�y/; (2.156)

where x and y in FnC1 are considered as column vectors, such as,

x D

2

66666664

x0
x1
�
�
�

xn

3

77777775

; (2.157)

and thus x� D .Nx0; : : : ; Nxn/, a row vector. Then

hx;Ayi D hA�x; yi; (2.158)

for all A 2 M.n C 1;F/.



76 2 Submanifolds of Real Space Forms

The space M.n C 1;F/ can be considered as a Euclidean space of real dimension
.n C 1/2d, and the usual Euclidean inner product is given by

hA;Bi D < .trace .AB�//; (2.159)

for A;B 2 M.n C 1;F/. On the subspace H.n C 1;F/, this simplifies to

hA;Bi D < .trace .AB//: (2.160)

Let S.nC1/d�1 be the unit sphere in FnC1, and let FPn be the quotient space of
S.nC1/d�1 under the equivalence relation,

.x0; : : : ; xn/ ' .x0�; : : : ; xn�/; � 2 F; j�j D 1: (2.161)

Consider the map from S.nC1/d�1 into H.n C 1;F/ given by

x 7! xx� D

2

664

jx0j2 x0 Nx1 � � � x0 Nxn

x1 Nx0 jx1j2 � � � x1 Nxn

� � � � � � � � � � � �
xn Nx0 xn Nx1 � � � jxnj2

3

775 (2.162)

for x a column vector as in equation (2.157) with jxj D 1. Note that if y D x� for
� 2 F with j�j D 1, then xx� D yy�. Furthermore, if xx� D yy�, then multiplication
of this equation by x on the right gives

x D yy�x D y�; (2.163)

where � D y�x is in F and j�j D 1. Thus, the map in equation (2.162) induces a
well-defined, injective map � W FPn ! H.n C 1;F/.

The image of � consists precisely of those matrices in M.n C 1;F/ satisfying the
equation,

A D A� D A2; rank A D 1: (2.164)

In fact, �.x/ is just the matrix representation of orthogonal projection of FnC1 onto
the F-line spanned by the vector x. One can verify that � is a smooth immersion
on FPn by a direct calculation, or else deduce this fact as a consequence of the
equivariance given in Theorem 2.91 below. Thus, � is a smooth embedding of FPn

into H.n C 1;F/. We can, and often will, consider .x0; : : : ; xn/ to be homogeneous
coordinates on FPn.

This embedding � W FPn ! H.n C 1;F/ is often called the standard embedding
of FPn into the Euclidean space H.n C 1;F/. In the case F D R, the formula in
equation (2.162) agrees with the formula x 7! xxT for the Veronese embedding, but
this is not true for F D C or H, since x� does not equal xT in those cases.
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The condition jxj D 1 is equivalent to the condition trace �.x/ D 1. Hence, the
image of � lies in the hyperplane in H.n C 1;F/ given by the linear equation trace
A D 1. We now show that the image of � does not lie in any lower dimensional
plane, and hence � is a substantial map into the space

RN D fA 2 H.n C 1;F/ j trace A D 1g; (2.165)

where

N D n.n C 1/d

2
C n: (2.166)

For the remainder of this section, N will always have the value given in equa-
tion (2.166).

Theorem 2.90. The standard embedding � W FPn ! RN is substantial in RN, and
its image lies in a metric sphere in RN.

Proof. Let p be an arbitrary point in the unit sphere S.nC1/d�1, and let X be a unit
tangent vector to S.nC1/d�1 at p. Consider the curve,

˛.t/ D cos t p C sin t X: (2.167)

Then

��.X/ D d

dt
Œ˛.t/ ˛�.t/�jtD0 D pX� C Xp�: (2.168)

Let fe0; : : : ; eng be the standard basis of FnC1 as a vector space over the field F. If we
take p D ei and X D eju, for j ¤ i and u a unit length element of F, equation (2.168)
implies that ��.X/ is a matrix which is zero except for u in the .j; i/ position and Nu
in the .i; j/ position. This shows that all off-diagonal elements of H.n C 1;F/ occur
as tangent vectors to �.

If we take p D e0, X D ej and evaluate at t D �=4, we get

��.X/ D eje
�
j � e0e

�
0 ; (2.169)

showing that all real diagonal matrices with trace zero also occur. Thus, � embeds
FPn substantially into the Euclidean space RN given in equation (2.165).

Finally, note that

hxx�; xx�i D trace Œ.xx�/2� D trace Œxx�� D 1; (2.170)

so that the image of � lies in the intersection of RN with the unit sphere in M.n C
1;F/, which is a metric sphere in RN . ut
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We next show that the embedding � W FPn ! H.n C 1;F/ is equivariant with
respect to the linear action of U.n C 1;F/ on M.n C 1;F/ defined by

U.A/ D UAU�; (2.171)

for U 2 U.n C 1;F/ and A 2 M.n C 1;F/. An elementary calculation shows that
this group action preserves the inner product on M.n C 1;F/. Further, we have

�.Ux/ D .Ux/.Ux/� D Uxx�U� D U.�.x//; (2.172)

for x 2 FPn and U 2 U.n C 1;F/. Thus we have the following theorem.

Theorem 2.91. The embedding � W FPn ! H.n C 1;F/ is equivariant with respect
to and invariant under the action of U.n C 1;F/, i.e.,

�.Ux/ D U.�.x// 2 �.FPn/; (2.173)

for all x 2 FPn, and U 2 U.n C 1;F/.

The standard embeddings are taut

As noted in Sections 2.6 and 2.7, the standard embeddings of projective spaces
play a special role in the theory of tight and taut immersions of manifolds into
Euclidean spaces. We now prove that these standard embeddings are taut, substantial
embeddings of FPn into RN .

Theorem 2.92. The embedding � W FPn ! H.n C 1;F/ is taut. Hence, the
embedding � W FPn ! RN is taut and substantial.

Proof. We will prove that the embedding � W FPn ! RN � H.nC1;F/ is tight, and
since � is spherical by Theorem 2.90, � is also taut by Theorem 2.69. We already
know that the embedding � W FPn ! RN is substantial by Theorem 2.90.

To establish the tightness if �, we will prove that every nondegenerate linear
height function lA, for A 2 H.n C 1;F/, has the minimum number of critical points
required by the Morse inequalities. Thus � W FPn ! H.n C 1;F/ is tight. Since RN

is a Euclidean subspace of H.n C 1;F/, every height function in RN corresponds to
a height function in H.n C 1;F/, and so � is also tight as an embedding into RN .

Let A 2 H.n C 1;F/, and let x be a point in the sphere S.nC1/d�1. Then x is also
a homogeneous coordinate vector of the point in FPn corresponding to the F-line in
FnC1 determined by x. We compute the value of the linear height function lA at x as,

lA.x/ D hA; �.x/i D hA; xx�i D < trace .Axx�/ D < trace .x�Ax/ D hx;Axi:

Thus, if X is a tangent vector to the sphere at x, we have
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XlA D hX;Axi C hx;AXi D 2hX;Axi: (2.174)

Therefore, lA has a critical point at x if and only if hX;Axi D 0 for all X tangent
to the sphere at x. This means that the vector Ax is normal to the sphere S.nC1/d�1
at x, and so Ax is a real multiple of the vector x. Thus, the critical points of the
height function lA on the sphere correspond to real eigenvectors of the matrix A.
The usual inductive process (maximizing hx;Axi) can be used to produce n C 1 real
eigenvalues (not necessarily distinct) of A, each with a d-dimensional eigenspace. In
fact, if x and � 2 R are such that Ax D �x, and u is a unit length element in F, then
A.xu/ D �.xu/, and thus xu is also an eigenvector of A corresponding to the real
eigenvalue �. However, for any given x 2 S.nC1/d�1, all the points xu in S.nC1/d�1
determine the same point of the projective space FPn. Thus, lA has precisely n C 1

critical points on FPn provided that the n C 1 real eigenvalues of A are distinct.
We now compute the Hessian of lA at a point x such that Ax D �x for � 2 R. Let X

and Y be tangent to the sphere at x. To get H.X;Y/, we differentiate equation (2.174)
in the direction Y . We use the decomposition of the Euclidean covariant derivative:

DYX D rYX � hX;Yix; (2.175)

where rYX is the component tangent to the sphere S.nC1/d�1, and the normal
component is �hX;Yix. We extend X to a vector field tangent to the sphere in a
neighborhood of x and then differentiate the expression 2hX;Axi in the direction Y
to get

H.X;Y/ D Y.2hX;Axi/ D 2.hDYX;Axi C hX;AYi/
D 2 .hrYX;Axi � hX;Yihx;Axi C hX;AYi/ (2.176)

D 2 .�hX;Yi�C hAX;Yi/ D 2 h.A � �I/X;Yi;

since the term hrYX;Axi equals zero, because rYX is tangent to the sphere, while
Ax D �x is normal to the sphere at x. Equation (2.176) shows that the Hessian is
nondegenerate if and only if all of the eigenvalues of A with eigenspaces orthogonal
to the F-line determined by x are distinct from �. In particular, lA is a Morse function
on FPn if and only if all nC1 eigenvalues are distinct. In that case, a consideration of
the Hessian shows that lA has one critical point of index k for each of the following
values,

k D 0; d; 2d; : : : ; nd: (2.177)

Thus, every Morse function of the form lA has n C 1 critical points with indices
given in equation (2.177). This shows that the embedding � W FPn ! H.n C1;F/ is
tight. In the case of F D R, this follows from the well-known fact that the Z2-Betti
numbers of RPn are as follows:

ˇi.RPn;Z2/ D 1; for 0 � i � n: (2.178)
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In the cases of F D C or F D H, the construction of a Morse function on FPn

having exactly one critical point of index k for each k in equation (2.177) and no
other critical points determines the Betti numbers of these spaces as follows,

ˇi.FPn;Z2/ D 1; for i D 0; d; 2d; : : : ; nd; and 0 otherwise: (2.179)

This follows from the lacunary principle in Morse theory (see, for example, Morse–
Cairns [379, p. 272] or Milnor [359, p. 31]), which states if a Morse function f W
M ! R on a compact manifold has no critical points of index i � 1 and no critical
points of index i C 1, then for any field K, the K-Betti numbers of M satisfy ˇi�1 D
ˇiC1 D 0, and ˇi D �i, where �i is the number of critical points of f of index i
on M. ut

Tight embeddings of projective spaces

Kuiper [300] presented a variation of the standard embeddings of projective spaces
due to H. Hopf [201] which gives tight substantial embeddings of FPn into
lower dimensional Euclidean spaces produced by composing � with orthogonal
projections onto certain subspaces of H.n C 1;F/.

Theorem 2.93. There exists a tight substantial embedding of FPn into Rm for

.2n � 1/d C 1 � m � N; where N D n.n C 1/d

2
C n:

Proof. The embeddings are obtained by projecting the standard embedding onto an
appropriate subspace Rm of H.n C 1;F/. Define the following quadratic functions
in the homogeneous coordinates .x0; : : : ; xn/ of FPn,

zk D
X

iCjDk
i�j

xi Nxj; k D 0; : : : ; 2n � 1: (2.180)

The values of zk are real for k D 0 and are in F for k > 0. These functions are
easily shown to be linearly independent, and so the mapping  W FPn ! RK , where
K D .2n � 1/d C 1, given by

 .x/ D .z0; : : : ; z2n�1/ (2.181)

is a substantial map of FPn into RK . Furthermore, the values of all the homogeneous
coordinates .x0; : : : ; xn/ can be recovered by knowing .z0; : : : ; z2n�1/, so the map-
ping  is injective on FPn. Finally, one can compute that  is an immersion, and
thus  is a substantial embedding of FPn into RK .
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The embedding  is related to the standard embedding � as follows. For each k,
0 � k � 2n � 1, let Mk be the matrix having a 1 in the .i; j/ position for i C j D k,
i � j, and zero elsewhere. The Mk are mutually orthogonal, and so we can write,

 .x/ D
2n�1X

kD0
zkMk=jMkj: (2.182)

Note that  D � ı �, where � is the standard embedding and � is the orthogonal
projection of H.n C 1;F/ onto the Euclidean subspace RK determined by real
multiples of M0 and F-multiples of the other Mk. By Remark 2.39 on page 42, the
map  D � ı � is tight, since it is an orthogonal projection of a tight map.

To obtain a tight substantial embedding of FPn into Rm for K < m < N, one
needs to adjoin appropriate coordinates of the embedding � which are linearly
independent from the coordinates of the embedding  , i.e., project �.FPn/ into
a subspace Rm of H.n C 1;F/ that contains RK . Such an embedding is tight and
substantial for the same reasons as those given for  . ut
Remark 2.94 (Taut embeddings of Grassmann manifolds). The standard embed-
dings of projective spaces can be generalized to produce taut embeddings of
Grassmann manifolds over F D R, C, or H into Rm (see, for example, Kuiper
[303, p. 113]).

For projective planes, one can get even sharper results. From Theorem 2.93 with
n D 2, we get the existence of substantial tight embeddings of FP2 into Rm for

3d C 1 � m � 3d C 2: (2.183)

In fact, we can also obtain taut embeddings of FP2 into Rm for these values of
m as follows. First of all, the standard embedding � of FP2 into R3dC2 is taut
and spherical, as was shown in Theorems 2.90 and 2.92. By composing � with
stereographic projection with respect to a pole not in the image of �, we obtain a
taut, non-spherical embedding of FP2 into R3dC1 by Corollary 2.72.

Using methods similar to those employed in the proof of Theorem 2.92, Tai
[505] showed that the analogous embedding of OP2 (Cayley projective plane)
into R26 is tight and spherical, and thus taut. Again by Corollary 2.72, we can
obtain a substantial non-spherical taut embedding of OP2 into R25 via stereographic
projection.

Kuiper [302, pp. 215–217] proved that these are the only dimensions possible for
tight substantial embeddings of these projective planes as follows.

Theorem 2.95. There exist tight substantial embeddings of the projective planes
FP2 into Rm for precisely the following dimensions.

(a) RP2 into R4 or R5,
(b) CP2 into R7 or R8,
(c) HP2 into R13 or R14,
(d) OP2 into R25 or R26.
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Proof. The existence of tight embeddings into the spaces listed in the theorem has
been noted above. There do not exist embeddings of FP2 into lower dimensional
Euclidean spaces because the normal Stiefel–Whitney class Nwd.FP2/ ¤ 0, where
d D 1; 2; 4; 8 for F D R;C;H;O, respectively. (See, for example, Husemöller
[212, p. 263] and Borel–Hirzebruch [47, p. 533] for the case F D O.)

The upper bound in the case F D R is given in Theorem 2.46 (due to Kuiper) on
page 48 regarding tight immersions of maximal codimension. For the other division
algebras C;H;O, we need to use Theorem 2.48 (also due to Kuiper) on page 49 to
obtain the upper bound as follows.

The Z2-Betti numbers of FP2 are known to be as follows,

ˇi.FP2;Z2/ D 1 for i D 0; d; 2d; ˇi.FP2;Z2/ D 0 for i ¤ 0; d; 2d: (2.184)

By Theorem 2.48, we know that the substantial codimension of a tight smooth
immersion is less than or equal to c.ˇ0; : : : ; ˇ2d/, which is the maximal dimension of
a linear family of symmetric bilinear forms in 2d variables which contains a positive
definite form and such that no form of the family has index k if ˇk D 0. Thus, we
will complete the proof if we show that for the ˇi given in equation (2.184), we have
c.ˇ0; : : : ; ˇ2d/ D 4; 6; 10, for d D 2; 4; 8, respectively.

The result that we need is contained in Hurwitz [211] (see also Kuiper [302, pp.
232–234]). There it is shown that the desired linear family of symmetric bilinear
forms with maximal dimension can be represented by the set of symmetric matrices
of the form

�
�I B
BT �I

�
; (2.185)

where B is the 2 � 2, 4 � 4, or 8 � 8 matrix in the upper left corner of the matrix
in equation (2.186) below, depending on whether F D C;H;O, respectively. From
this, we see that c.ˇ0; : : : ; ˇ2d/ has the desired values.

2

666666666664

x1 �x2 �x3 �x4 �x5 �x6 �x7 �x8
x2 x1 �x4 x3 �x6 x5 �x8 x7
x3 x4 x1 �x2 �x7 x8 x5 �x6
x4 �x3 x2 x1 x8 x7 �x6 �x5
x5 x6 x7 �x8 x1 �x2 �x3 x4
x6 �x5 �x8 �x7 x2 x1 x4 x3
x7 x8 �x5 x6 x3 �x4 x1 �x2
x8 �x7 x6 x5 �x4 �x3 x2 x1

3

777777777775

(2.186)

ut
Remark 2.96 (Manifolds which are like projective planes). Recall that the Morse
number of a compact manifold M is the minimum number of critical points that any
Morse function has on M. A compact, connected manifold with Morse number 3
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was called a manifold which is like a projective plane by Eells and Kuiper [144],
who gave many examples of such manifolds M2k, all necessarily of dimensions
2k D 2; 4; 8, or 16. They are obtained from R2k under compactification by a
k-sphere. Of course, the projective planes FP2 for F D R;C;H;O are examples.
Kuiper [303, p. 132] showed that if f W M2k ! Rm is a tight substantial topological
embedding of a manifold which is like a projective plane, then m � 3k C 2.
Moreover, if f W M2k ! R3kC2 is a tight smooth substantial embedding of a manifold
like a projective plane, then M2k is embedded as an algebraic submanifold. For
k D 1; 2, respectively, Kuiper showed that M2k is RP2, CP2, respectively, and f is a
standard embedding up to a real projective transformation of R3kC2. The hypothesis
of smoothness is necessary in these results, as the piecewise linear embeddings of
RP2 into R5 due to Banchoff [19], and of CP2 into R8 due to Kühnel and Banchoff
[299] show.

In Theorem 2.46 on page 48, we showed that the substantial codimension of a
tight immersion of an n-manifold always satisfies the inequality 1 � k � n.nC1/=2.
In the following theorem, we show that every value k in this interval can be realized.

Theorem 2.97. For every integer k satisfying 1 � k � n.n C 1/=2, there exists a
tight substantial embedding of an n-dimensional manifold M into RnCk.

Proof. For k D 1, we have the embedding of Sn as a metric hypersphere in RnC1.
For k D 2, take the standard product embedding of Sn�1 � S1 into RnC2, which is
tight by Theorem 2.50 on page 51 concerning a product of tight immersions. More
generally, for 2 � k � n, we can take the standard product of Sn�kC1 with k � 1

copies of S1,

Sn�kC1 � S1 � � � � � S1 � Rn�kC2 � R2 � � � � � R2 D RnCk: (2.187)

Finally, for codimensions nC1 � k � n.nC1/=2, we can use the tight embeddings
of RPn given in Theorem 2.93. ut



Chapter 3
Isoparametric Hypersurfaces

This chapter is devoted to the basic theory of isoparametric hypersurfaces in real
space forms developed primarily by Cartan [53–56] and Münzner [381, 382]. In
Section 3.1, we describe the aspects of the theory that are common to all three
space forms, and then prove the classification of isoparametric hypersurfaces Mn

in Euclidean space RnC1 and in hyperbolic space HnC1 using Cartan’s formula
involving the principal curvatures of Mn.

The rest of the chapter is devoted to the theory of isoparametric hypersurfaces
in the sphere SnC1. In Sections 3.2–3.6, we present Münzner’s theory, including the
proof that an isoparametric hypersurface in SnC1 � RnC2 with g distinct principal
curvatures is contained in a level set of a homogeneous polynomial of degree g on
RnC2 satisfying certain differential equations on the length of its gradient and its
Laplacian, known as the Cartan–Münzner differential equations.

As a result of this construction, each isoparametric hypersurface Mn in SnC1
has two focal submanifolds of codimension greater than one. These codimensions
are determined by the multiplicities of the principal curvatures of Mn. From this
one can show that Mn separates SnC1 into two ball bundles over these two focal
submanifolds. Münzner then used cohomology theory to show that this topological
situation implies that the number g of distinct principal curvatures of Mn can only
be 1; 2; 3; 4, or 6. At about the same time as Münzner’s work, Takagi and Takahashi
[511] classified homogeneous isoparametric hypersurfaces and found examples
having g distinct principal curvatures for each of the values g D 1; 2; 3; 4, or 6.

Thorbergsson [533] then applied Münzner’s theory to show that the number of
distinct principal curvatures of a compact proper Dupin hypersurface Mn embedded
in SnC1 can only be 1; 2; 3; 4, or 6, since Mn also separates SnC1 into two ball bundles
over two focal submanifolds of Mn. Several authors used this same topological
information to find a complete list of possibilities for the multiplicities of the
principal curvatures of a compact proper Dupin hypersurface in SnC1. This is
discussed in Section 3.7.

© Thomas E. Cecil and Patrick J. Ryan 2015
T.E. Cecil, P.J. Ryan, Geometry of Hypersurfaces, Springer Monographs
in Mathematics, DOI 10.1007/978-1-4939-3246-7_3
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In Section 3.8, we describe many important examples of isoparametric hyper-
surfaces in SnC1 from various points of view, both algebraic and geometric. Then
in Section 3.9, we study the important construction of isoparametric hypersurfaces
with g D 4 principal curvatures based on representations of Clifford algebras due to
Ferus, Karcher, and Münzner [160]. At the end of that section, we discuss progress
that has been made on the classification of isoparametric hypersurfaces with four
principal curvatures (see Subsection 3.9.1, page 180).

Isoparametric hypersurfaces in spheres have also occurred in considerations of
several concepts in Riemannian geometry, such as the spectrum of the Laplacian,
constant scalar curvature, and Willmore submanifolds. These applications and
others are discussed in Section 3.10.

The reader is also referred to the survey articles by Ferus [159], Thorbergsson
[538], and Cecil [78] on isoparametric hypersurfaces and related topics.

3.1 Isoparametric Hypersurfaces in Real Space Forms

As noted in Chapter 1, the original definition of an isoparametric family of
hypersurfaces in a real space form QMnC1 was formulated in terms of the level sets of
an isoparametric function, as we now describe. Let F W QMnC1 ! R be a nonconstant
smooth function. The classical Beltrami differential parameters of F are defined by

�1F D jgrad Fj2; �2F D �F .Laplacian of F/: (3.1)

The function F is said to be isoparametric if there exist smooth functions �1 and �2
from R to R such that

�1F D �1.F/; �2F D �2.F/: (3.2)

That is, both of the Beltrami differential parameters are constant on each level
set of F. This is the origin of the term isoparametric. The collection of level
sets of an isoparametric function is called an isoparametric family of QMnC1. (See
Thorbergsson [538, pp. 965–967], Q.-M. Wang [548, 549], Ge and Tang [169, 170],
and Ge, Tang, and Yan [171] for more discussion of isoparametric functions.)

We now show that if M is a level set of an isoparametric function F on which
grad F is nonzero, then M has constant principal curvatures. To do this, we need to
express the shape operator and principal curvatures of M in terms of the function F
and its derivatives.

Theorem 3.1. Let F W QMnC1 ! R be a smooth function defined on a real space
form QMnC1. Suppose that grad F does not vanish on the level set M D F�1.0/. Then
the shape operator A of the hypersurface M satisfies the equation
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hAX;Yi D �HF.X;Y/

jgrad Fj ; (3.3)

where X and Y are tangent vectors to M and HF is the Hessian of the function F.

Proof. The vector field � D grad F=jgrad Fj is a field of unit normals to M, and its
corresponding shape operator A is determined by the equation

hAX;Yi D �h QrX�;Yi;

where Qr is the Levi-Civita connection on QMnC1. If we take � D jgrad Fj, we have
grad F D �� , and we compute,

h QrX.��/;Yi D .X�/h�;Yi C �h QrX�;Yi D ��hAX;Yi: (3.4)

On the other hand, we have

h QrXgrad F;Yi D QrXhgrad F;Yi � hgrad F; QrXYi (3.5)

D X.YF/ � . QrXY/.F/ D HF.X;Y/:

Equating the right sides of these two equations and dividing by �, we get
equation (3.3). ut
Remark 3.2 (On the definition of the Hessian). In the proof above, the Hessian HF

is the symmetric tensor field of type .0; 2/ defined by the equation

HF.X;Y/ D X.YF/ � . QrXY/.F/: (3.6)

At a critical point of F, this definition reduces to the definition given in equa-
tion (2.65) on page 36. In the calculation above, F is constant on M, so that
X.YF/ D 0, but

. QrXY/.F/ D .rXY/F C hAX;Yi�F (3.7)

D hAX;Yihgrad F; �i D hAX;Yi�;

need not be zero.

We next express the mean curvature of the level hypersurface M in terms of the
function F and its derivatives.

Theorem 3.3. With the notation of the preceding theorem, the mean curvature h of
the level hypersurface M is given by

h D 1

n�2
.hgrad F; grad �i � ��F/; (3.8)

where � D jgrad Fj.
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Proof. At a given point x 2 M, let fe1; : : : ; eng be an orthonormal basis for the
tangent space TxM. Using equation (3.4), we compute

nh D �1
�

nX

iD1
h Qrei grad F; eii

D �1
�
.�F � h Qr�grad F; �i/

D �1
�
.�F � 1

�2
h Qrgrad F grad F; grad Fi/

D �1
�
.�F � 1

2�2
Qrgrad Fjgrad Fj2/

D �1
�
.�F � 2�

2�2
Qrgrad F�/

D �1
�
.�F � 1

�
hgrad F; grad �i/

D 1

�2
.hgrad F; grad �i � ��F/: ut

The following theorem is important in showing that the level sets of an
isoparametric function have constant principal curvatures.

Theorem 3.4. If F W QMnC1 ! R is an isoparametric function on a real space form,
then each level hypersurface of F has constant mean curvature.

Proof. Since F is an isoparametric function, there exist smooth real-valued func-
tions T and S such that

jgrad Fj2 D T ı F; �F D S ı F: (3.9)

Using Theorem 3.3 to compute the mean curvature of the level hypersurface M D
F�1.0/, we get

nh D 1

�2
.hgrad F; grad �i � ��F/

D 1

�2
.hgrad F;

T 0 ı F

2�
grad Fi � � S ı F/

D T 0 ı F

2�
� S ı F

�
D
�

1

2
p

T
.T 0 � 2S/

�
ı F:

This shows that h is constant on the level hypersurface M, and a similar proof shows
that h is constant on any level hypersurface of F. ut
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The vector field � D grad F=jgrad Fj is defined on the open subset of QMnC1 on
which grad F is nonzero. We now show that the integral curves of � are geodesics
in QMnC1.

Theorem 3.5. Let F W QMnC1 ! R be a function for which jgrad Fj is a function of
F. Then on the subset of QMnC1 where jgrad Fj is nonzero, the integral curves of the
vector field � D grad F=jgrad Fj are geodesics in QMnC1.

Proof. We need to show that Qr�� D 0 on the subset of QMnC1 where jgrad Fj is
nonzero. Since � has constant length, we know that h Qr��; �i D 0. Let X be a
vector field in a neighborhood U of a point where jgrad Fj is nonzero such that
X is orthogonal to � at each point of U. Thus, X is tangent to a level surface of F at
each point of U. We must show that h Qr��;Xi D 0. We have

h Qr��;Xi D �h�; Qr�Xi D �h�; QrX� C ŒX; ��i;

where Œ ; � is the Lie bracket. Since � has constant length, we know that h�; QrX�i D
0, and so

h Qr��;Xi D �h�; ŒX; ��i:

To complete the proof, we show that ŒX; ��F D 0 at all points in U, and so ŒX; �� is
orthogonal to grad F and thus to � . We have

ŒX; ��F D X.�F/ � �.XF/:

Since X is orthogonal to grad F at all points of U, we know that XF is identically
zero, and so �.XF/ D 0. On the other hand, since �F D jgrad Fj, and jgrad Fj is a
function of F, we have X.�F/ D 0. ut

Theorem 3.5 shows that a family of level hypersurfaces of an isoparametric
function is a family of parallel hypersurfaces in QMnC1 modulo reparametrization
to take into account the possibility that jgrad Fj is not identically equal to one. We
now show that each of these level hypersurfaces has constant principal curvatures.
This follows from Theorem 3.4 and the next theorem.

Theorem 3.6. Let ft W M ! QMnC1, �" < t < ", be a family of parallel
hypersurfaces in a real space form. Then f0M has constant principal curvatures
if and only if each ftM has constant mean curvature.

Proof. We do the proof for the case QMnC1 D RnC1 following Nomizu [403, p. 192]
(see Cecil–Ryan [95, p. 272] for the case QMnC1 D SnC1 and a similar proof can
be constructed for QMnC1 D HnC1). Let �i, 1 � i � n, be the principal curvature
functions of f0M, where we are not assuming that the �i are necessarily distinct. By
Theorem 2.2 on page 17, the principal curvature functions of ftM are �i=.1 � t�i/

for 1 � i � n. Since the mean curvature of ftM is constant on M, we have that
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nX

iD1

�i.x/

1 � t�i.x/
D �.t/ (3.10)

is a function of t alone, even though the functions �i.x/ are assumed to depend on
x 2 M. Evaluating �.t/; d�=dt; d2�=dt2; : : : ; dn�=dtn at t D 0, we get that

sk.x/ D
nX

iD1
�k

i .x/ D ck; 1 � k � n; (3.11)

where the ck are constants. By Newton’s identities (see Van der Waerden
[541, p. 81]), the coefficients of the characteristic polynomial of the shape operator
A of f0M are polynomials in the sk.x/, which we have just shown to be constant
on M. Therefore, the principal curvatures, which are the roots of this characteristic
polynomial, are also constant on M. ut

As a consequence of Theorems 3.4–3.6, we have the following corollary.

Corollary 3.7. If F W QMnC1 ! R is an isoparametric function on a real space form,
then each level hypersurface of F has constant principal curvatures.

Conversely, let ft W M ! QMnC1, �" < t < ", be a family of parallel hypersurfaces
such that f0 has constant principal curvatures. Then each ftM has constant principal
curvatures by Theorem 2.2 on page 17, and thus each ftM has constant mean
curvature. Then the function F defined by F.x/ D t, if x 2 ftM, is a smooth function
defined on an open subset of QMnC1 such that grad F D � is a unit length vector field
with the property that Qr�� D 0. Furthermore, since the function � D jgrad Fj is
constant, we see from Theorem 3.3 that the constancy of the mean curvature h on
each level hypersurface ftM implies that the Laplacian of F is also constant on each
ftM, and therefore F is an isoparametric function.

Thus, the analytic definition of an isoparametric family of hypersurfaces in terms
of level sets of an isoparametric function on a real space form QMnC1 is equivalent to
the geometric definition as a family of parallel hypersurfaces to a hypersurface with
constant principal curvatures. Note that this is not true if QMnC1 is only assumed to
be a Riemannian manifold, as can be seen by examples in complex projective space
due to Q.-M. Wang [547] (see also Section 8.7 and Thorbergsson [538]).

For hypersurfaces in real space forms we now adopt the following official
definition of an isoparametric hypersurface.

Definition 3.8. A connected hypersurface Mn immersed in a real space form QMnC1
is said to be isoparametric if it has constant principal curvatures.

Note that the definition does not include the condition that M is complete. It follows
from the work of Cartan [53–56] and Münzner [381, 382] that any connected
isoparametric hypersurface embedded in a real space form is contained in a unique
complete isoparametric hypersurface, as we shall see.
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We now continue the study of isoparametric hypersurfaces from the geometric
point of view. Let f W Mn ! QMnC1 be a connected, oriented isoparametric
hypersurface in a real space form with field of unit normals � , and g distinct constant
principal curvatures,

�1 > � � � > �g; (3.12)

with respective multiplicities m1; : : : ;mg.
Since the principal curvatures are constant, we see from Theorem 2.1 on page 11

that the focal points along the normal geodesic to M at a point x 2 M occur for the
same values of t independent of the point x. If t is not one of those values, then the
map ft W Mn ! QMnC1 defined in equation (2.22) on page 14 is an immersion, and
ft.M/ is a parallel hypersurface to f .M/. By Theorem 2.2 on page 17, ft.M/ also
has constant principal curvatures, and so it is an isoparametric hypersurface, too.
On the other hand, if t is a value such that ft is not an immersion, then ft.M/ is a
focal submanifold of dimension n � m, where m is the multiplicity of the principal
curvature corresponding to the parameter value t as in Theorem 2.1. It is important
that isoparametric hypersurfaces always come as a family of parallel hypersurfaces
together with their focal submanifolds.

An isoparametric hypersurface Mn in RnC1 is an open subset of a hyperplane, a
hypersphere or a spherical cylinder Sk � Rn�k, as we will show in Theorem 3.12
on page 96. This was first shown for n D 2 by Somigliana [492] (see also B. Segre
[479] and Levi-Civita [315]), and for arbitrary n by B. Segre [480]. In the late 1930s,
shortly after the publication of the papers of Levi-Civita and Segre, Élie Cartan [52–
55] began a study of isoparametric hypersurfaces in arbitrary real space forms which
produced a classification of isoparametric hypersurfaces in hyperbolic space, and
made great progress in the study of isoparametric hypersurfaces in spheres. We now
describe Cartan’s work as it is applicable to hypersurfaces in RnC1 and HnC1, and
prove the classification of isoparametric hypersurfaces in those space forms using
Cartan’s theory.

Cartan’s formula

A crucial element in Cartan’s work is the following equation, known as Cartan’s
formula or Cartan’s identity, involving the distinct principal curvatures �1; : : : ; �g

and their multiplicities m1; : : : ;mg for an isoparametric hypersurface f W Mn !
QMnC1.c/ in a space form of constant sectional curvature c. If the number g of distinct

principal curvatures is greater than one, Cartan showed that for each i, 1 � i � g,
the following equation holds,

X

j¤i

mj
c C �i�j

�i � �j
D 0: (3.13)
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We now give a proof of Cartan’s formula that is valid for all real space forms
(see also Cartan [55] or Ferus [159, p. 10]). In this proof, h ; i denotes the usual
Euclidean inner product in the cases RnC1 and SnC1, and it denotes the Lorentz
metric given in equation (2.1) on page 10 in the case HnC1.

We first make a few preliminary observations. If X and Y are vector fields on M,
then rXA is the tensor field of type .1; 1/ defined by

.rXA/Y D rX.AY/ � A.rXY/: (3.14)

Since A is symmetric, we can show that rXA is symmetric as follows. First note that
for vector fields X;Y and Z on M, we have

XhAY;Zi D hrX.AY/;Zi C hAY;rXZi; (3.15)

and thus,

hrX.AY/;Zi D XhAY;Zi � hAY;rXZi: (3.16)

Using equations (3.14) and (3.16) and the symmetry of A, we compute

h.rXA/Y;Zi D hrX.AY/;Zi � hA.rXY/;Zi (3.17)

D XhAY;Zi � hAY;rXZi � hrXY;AZi
D XhY;AZi � hrXY;AZi � hY;A.rXZ/i
D hY;rX.AZ/ � A.rXZ/i D hY; .rXA/Zi;

and so rXA is symmetric.
A crucial element in our calculations is the Codazzi equation, which for an

oriented hypersurface in a real space form takes the following form (see Kobayashi–
Nomizu [283, Vol. II, p. 26]),

.rXA/Y D .rYA/X: (3.18)

As our final preliminary calculation, suppose that � and � are distinct constant
principal curvatures with corresponding principal foliations T� and T�. If X 2 T�
and Y 2 T�, then one easily verifies that

h.rZA/X;Yi D .� � �/hrZX;Yi (3.19)

for all vectors Z tangent to M.

Lemma 3.9. Let M be an isoparametric hypersurface in a space form QMnC1.c/ of
constant sectional curvature c. For all principal curvatures �, �, we have

(1) rXY 2 T� for all X;Y in T�,
(2) rXY ? T� if X 2 T�, Y 2 T�, � ¤ �:
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Proof. Let X and Y be in T�, and take any � ¤ � and choose any Z 2 T�. By the
Codazzi equation and equation (3.19),

0 D h�.rXA/Z � .rZA/X
�
;Yi (3.20)

D .� � �/hrXZ;Yi � h�rZ.�X/ � ArZX
�
;Yi

D .� � �/hrXZ;Yi � .Z�/hX;Yi � �hrZX;Yi C �hrZX;Yi
D .� � �/hrXY;Zi � .Z�/hX;Yi:

Since Z� D 0 we have hrXY;Zi D 0 and thus, rXY 2 T�: Note that the second
assertion follows from the first since hrXZ;Yi D �hrXY;Zi: ut

In the following version of Cartan’s formula, we denote the principal curvatures
by �i for 1 � i � n, that is, we allow some of the principal curvatures to
equal each other. This is for ease of notation in the calculations required in the
proof. The following version of Cartan’s formula is clearly equivalent to the version
given above in equation (3.13), which is written in terms of the distinct principal
curvatures.

Lemma 3.10 (Cartan’s formula). Let M be an isoparametric hypersurface in
a space form QMnC1.c/. Let X be a unit principal vector at a point p and �

the associated principal curvature. For any principal orthonormal basis feign
iD1

satisfying Aei D �iei, we have

X

�i¤�

c C ��i

� � �i
D 0: (3.21)

Proof. We first assume that the number g of distinct principal curvatures is greater
than two. After we complete that proof, we will give the modifications necessary in
the case g D 2.

We first give an outline of the main steps of the proof in the case g > 2 and
then follow with the details. Let Y be a second unit principal vector at p with
corresponding principal curvature � ¤ �. Extend X and Y to be principal vector
fields near p. The main steps of the proof are as follows:

1. Using the Codazzi equation we show that

h.rŒX;Y�A/X;Yi D .� � �/ hrXY;rYXi: (3.22)

2. Using the Gauss equation, show that

hR.X;Y/Y;Xi D c C ��: (3.23)
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3. Using the definition of the curvature tensor, show that

hR.X;Y/Y;Xi D hrXY;rYXi C 1

� � � h.rŒX;Y�A/X;Yi: (3.24)

4. Using the Codazzi equation, show that for a unit principal vector Z corresponding
to a principal curvature � not equal to � or �, we have

.� � �/.� � �/hrXY;ZihrYX;Zi D h.rZA/X;Yi2 D h.rZA/Y;Xi2: (3.25)

5. Express hrXY;rYXi in terms of the orthonormal principal basis as follows:

hrXY;rYXi D
X

�i¤�;�
hrXY; eiihrYX; eii: (3.26)

6. Use the results of Steps 1, 2, and 3 to show that

2
X

�i¤�;�

h.rei A/Y;Xi2
.� � �i/.� � �i/

D c C ��: (3.27)

To complete the proof of the lemma, note that for any j with �j ¤ �, we have by
setting Y D ej in equation (3.27) and dividing by � � �j,

c C ��j

� � �j
D 2

X

�i¤�;�j

h.rei A/ej;Xi2
.� � �j/.� � �i/.�j � �i/

: (3.28)

Summing this over all j for which �j ¤ �, we have

X

�j¤�

c C ��j

� � �j
D 2

X

�j¤�

X

�i¤�;�j

h.rei A/ej;Xi2
.� � �j/.� � �i/.�j � �i/

: (3.29)

Since the summand on the right side of equation (3.29) is skew-symmetric in fi; jg,
the value of the sum is 0, and so the sum on the left equals 0.

We now give the details of the proofs of the steps listed above.

1. Using the Codazzi equation and the fact that rXA is symmetric, we compute

h.rŒX;Y�A/X;Yi D h.rXA/ŒX;Y�;Yi D hŒX;Y�; .rXA/Yi (3.30)

D hŒX;Y�; .rYA/Xi:

But now,

hrXY; .rYA/Xi D h.�I � A/rYX;rXYi;
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while

hrYX; .rYA/Xi D hrYX; .rXA/Yi D h.�I � A/rYX;rXYi:

Thus

hŒX;Y�; .rYA/Xi D .� � �/hrXY;rYXi: (3.31)

On substituting in (3.30) we obtain (3.22) as desired.
2. This is immediate from the Gauss equation (see, for example, [283, Vol. II,

p. 23]),

R.X;Y/Z D c .hY;ZiX � hX;ZiY/ � .hAX;ZiAY � hAY;ZiAX/: (3.32)

3. First note that hrYY;Xi D 0 by Lemma 3.9, and so

hrXrYY;Xi D �hrYY;rXXi;

which vanishes, again by Lemma 3.9. Similarly, hrXY;Xi D 0, so that

hrYrXY;Xi D �hrXY;rYXi:

Finally,

h.rŒX;Y�A/X;Yi D .� � �/hrŒX;Y�X;Yi:

Using these three equations, we compute hR.X;Y/Y;Xi to be

hrXrYY � rYrXY � rŒX;Y�/Y;Xi D hrXY;rYXi C 1

� � � h.rŒX;Y�A/X;Yi;

which gives equation (3.24).
4. From the Codazzi equation and the symmetry of rXA, we have

h.rZA/X;Yi D h.rXA/Z;Yi D hZ; .rXA/Yi D .� � �/hZ;rXYi:

The same calculation with X and Y interchanged gives

h.rZA/X;Yi D .� � �/hZ;rYXi:

Multiplying these two equations together gives the first equation in (3.25). The
last equation in (3.25) follows from the symmetry of rZA.

5. To establish equation (3.26), we need only observe that the terms omitted from
the full summation of the terms hrXY; eiihrYX; eii (i.e., those i for which �i D �

or �i D �) actually vanish and make no contribution to the sum. This is easily
checked using Lemma 3.9.
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6. Combine equations (3.22), (3.23), and (3.24) to get

2hrXY;rYXi D c C ��:

Using this and the result of equation (3.25) in equation (3.26), we get equa-
tion (3.27). This completes the proof of Lemma 3.10 in the case where the number
g of distinct principal curvatures is greater than two.

In the case g D 2, we can take the two distinct principal curvatures to be � and �,
as in the proof above. In that case, Cartan’s formula reduces to the single equation
c C �� D 0. By steps 1–3 in the proof above, we get

c C �� D hR.X;Y/Y;Xi D 2hrXY;rYXi: (3.33)

The right side of this equation vanishes by part 2 of Lemma 3.9, and thus we have
c C �� D 0. This completes the proof of Lemma 3.10. ut

For QMnC1.c/ D SnC1, we will also give a different proof of Cartan’s formula
due to Münzner [381] in Corollary 3.24 on page 106. In the spherical case, Cartan’s
formula is equivalent to the minimality of the focal submanifolds of Mn in SnC1.
Münzner proved that the focal submanifolds are minimal (see Corollary 3.23 on
page 106). This was also established independently by Nomizu [403, 404] by a
different proof than that of Münzner.

Remark 3.11 (Generalizations of Cartan’s formula). Berndt found a generalization
of Cartan’s formula for real hypersurfaces with constant principal curvatures in
complex space forms [27] (see Theorem 8.6), and in quaternionic space forms [28].
Nomizu [403] proved a version of Cartan’s formula for isoparametric hypersurfaces
in Lorentzian forms, and Ooguri [413] found one for equiaffine isoparametric
hypersurfaces in affine differential geometry.

Later Abe and Hasegawa [1] extended these results to a more general setting.
Recently, Koike [286] found a Cartan type formula for isoparametric hypersurfaces
in symmetric spaces. (See also Koike [287].)

Isoparametric hypersurfaces in Euclidean space

Using his formula, Cartan was able to classify isoparametric hypersurfaces in RnC1
and HnC1, and we will do that now. We first consider an isoparametric hypersurface
in Euclidean space. This is a local theorem so we consider the hypersurface to be
embedded in RnC1.

Theorem 3.12. Let Mn � RnC1 be a connected isoparametric hypersurface. Then
Mn is an open subset of a flat hyperplane, a metric hypersphere, or a spherical
cylinder Sk.r/ � Rn�k.
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Proof. If the number g of distinct principal curvatures of Mn is one, then Mn is
totally umbilic, and it is well known that Mn is an open subset of a hyperplane or
hypersphere in RnC1 (see, for example, [495, Vol. 4, p. 110]).

If g � 2, then by taking an appropriate choice of unit normal field � , one can
assume that at least one of the principal curvatures is positive. If �i is the smallest
positive principal curvature, then each term �i�j=.�i ��j/ in Cartan’s formula (3.13)
is non-positive, and thus it equals zero. Hence, there can be at most two distinct
principal curvatures, and if there are two, then one of them equals zero.

In the case g D 2, suppose that the principal curvatures are �1 > 0 with
multiplicity m1 D k, and �2 D 0 with multiplicity m2 D n � k. Then for t D 1=�1,
the focal submanifold V D ft.Mn/ has dimension n � k, and it is totally geodesic in
RnC1, since the same calculations given in the proof of Theorem 2.2 (page 17) show
that for every unit normal � to V at every point p of V , the shape operator A� has
one distinct principal curvature given by

�2

.1 � t�2/
D 0: (3.34)

Thus, this focal submanifold V is contained in a totally geodesic submanifold
Rn�k � RnC1, and Mn is an open subset of a tube of radius 1=�1 over Rn�k. Such a
tube is a spherical cylinder Sk.r/ � Rn�k, where Sk.r/ is a k-dimensional sphere of
radius r D 1=�1 in a totally geodesic RkC1 � RnC1 orthogonal to Rn�k. ut
Remark 3.13. A formal proof of the fact that for every unit normal � at every
point p 2 V , the shape operator A� has one principal curvature equal to zero as in
equation (3.34) can be constructed in the same way as the proofs of Theorem 3.21
and Corollary 3.22 in the spherical case in Section 3.3 on page 105. Specifically,
one first gets that A� D 0 on an open subset of the m1-sphere S?p V of unit normals
to V at p. Then, as in Corollary 3.22, since the characteristic polynomial of A� is
analytic as a function of �, we get that A� D 0 for all � 2 S?p V .

Isoparametric hypersurfaces in hyperbolic space

Next we consider an isoparametric hypersurface Mn � HnC1 in hyperbolic space
.c D �1/. Again this is a local result so we consider the hypersurface to be
embedded.

Theorem 3.14. Let Mn � HnC1 be a connected isoparametric hypersurface. Then
Mn is an open subset of a totally geodesic hyperplane, an equidistant hypersurface,
a horosphere, a metric hypersphere, or a tube over a totally geodesic submanifold
of codimension greater than one in HnC1.
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Proof. Let g be the number of distinct principal curvatures of Mn. If g D 1, then
Mn is totally umbilic, and it is an open subset of a totally geodesic hyperplane, an
equidistant hypersurface, a horosphere or a metric hypersphere in HnC1 (see, for
example, [495, Vol. 4, p. 114]).

If g � 2, then by an appropriate choice of the unit normal field � , we can
arrange that at least one of the principal curvatures is positive. Then there exists
a positive principal curvature �i such that no principal curvature lies between �i

and 1=�i. (In fact, �i is either the largest principal curvature between 0 and 1, or
the smallest principal curvature greater than or equal to one.) For this �i, each term
.�1 C �i�j/=.�i � �j/ in Cartan’s formula (3.13) with c D �1 is negative unless
�j D 1=�i. Therefore, there can be at most two distinct principal curvatures, and if
there are two, they are reciprocals of each other.

In that case, suppose that the two principal curvatures are �1 D coth � with
multiplicity m1 D k, and �2 D 1=�1 D tanh � with multiplicity m2 D n � k. If
we take t D � , then V D ft.Mn/ is a focal submanifold of dimension n � k, and it
is totally geodesic in HnC1, since the same calculations that prove Theorem 2.2 on
page 17 in the hyperbolic case show that for every unit normal � to V at every point
of V , the shape operator A� has one distinct principal curvature given by

tanh.� � t/ D tanh.t � t/ D 0: (3.35)

Thus, this focal submanifold V is contained in a totally geodesic submanifold
Hn�k � HnC1, and f .Mn/ is an open subset of a tube of radius t D � over Hn�k. Such
a tube is standard Riemannian product Sk.c1/� Hn�k.c2/ in hyperbolic space HnC1,
where c1 D 1= sinh2 � and c2 D �1= cosh2 � are the constant sectional curvatures of
the sphere Sk.c1/ and the hyperbolic space Hn�k.c2/, respectively (see Ryan [469]).

ut
Remark 3.15. As in the Euclidean case (see Remark 3.13), a formal proof of the
fact that for every unit normal � at every point p 2 V , the shape operator A� has
one principal curvature equal to zero as in equation (3.35) can be constructed in the
same way as the proofs of Theorem 3.21 and Corollary 3.22 in the spherical case in
Section 3.3 on page 105.

Isoparametric hypersurfaces in the sphere

In the sphere SnC1, however, Cartan’s formula does not lead to the conclusion that
g � 2, and in fact Cartan produced examples with g D 1; 2; 3 or 4 distinct principal
curvatures. Moreover, he classified isoparametric hypersurfaces Mn � SnC1 with
g � 3 as follows.

In the case g D 1, the hypersurface Mn is totally umbilic, and it is well known that
Mn is an open subset of a great or small hypersphere in SnC1 (see Subsection 3.8.1
on page 144 and [495, Vol. 4, p. 112]).



3.1 Isoparametric Hypersurfaces in Real Space Forms 99

If g D 2, then Mn is an open subset of a standard product of two spheres,

Sp.r/ � Sq.s/ � SnC1.1/ � RpC1 � RqC1 D RnC2; r2 C s2 D 1; (3.36)

where n D p C q, and r > 0, s > 0. The proof of this result is similar to the proofs
of Theorems 3.12 and 3.14 above, i.e., one shows that a focal submanifold is totally
geodesic (see Theorem 3.29 on page 111).

The case of g D 3 distinct principal curvatures is much more difficult, and it is a
highlight of Cartan’s work. Ultimately, Cartan [54] showed that in the case g D 3,
all the principal curvatures have the same multiplicity m D 1; 2; 4 or 8, and Mn is an
open subset of a tube of constant radius over a standard embedding of a projective
plane FP2 into S3mC1, where F is the division algebra R, C, H (quaternions), O
(Cayley numbers), for m D 1; 2; 4; 8; respectively. (See Section 2.9 on page 74 and
Subsection 3.8.3 on page 151 for more detail on the standard embeddings.)

Thus, up to congruence, there is only one such family of isoparametric hyper-
surfaces for each value of m. For each of these hypersurfaces, the focal set of Mn

consists of two antipodal standard embeddings of FP2, and Mn is a tube of constant
radius over each focal submanifold.

More generally, Cartan showed that any isoparametric family with g distinct
principal curvatures of the same multiplicity can be defined by an equation of
the form F D cos gt (restricted to SnC1), where F is a harmonic homogeneous
polynomial of degree g on RnC1 satisfying

j grad Fj2 D g2r2g�2; (3.37)

where r D jxj for x 2 RnC2, and grad F is the gradient of F in RnC2. This was
a forerunner of Münzner’s general result that every isoparametric hypersurface is
algebraic, and its defining polynomial satisfies certain differential equations (see
Theorem 3.32 on page 115), which generalize those that Cartan found in this special
case where all the principal curvatures have the same multiplicity.

In the case g D 4, Cartan [56] produced isoparametric hypersurfaces with
four principal curvatures of multiplicity one in S5, and four principal curvatures
of multiplicity two in S9. Cartan claimed without writing the proof that these are
the only examples of isoparametric hypersurfaces with four principal curvatures of
the same multiplicity m. Cartan’s claim was shown to be true in the case m D 1 by
Takagi [510], and in the case m D 2 by Ozeki and Takeuchi [423]. The fact that no
other values of m are possible was shown by Grove and Halperin [184].

Cartan noted that all of his examples are homogeneous, each being an orbit of a
point under an appropriate closed subgroup of SO.n C 2/. Based on his results and
the properties of his examples, Cartan asked the following three questions [54], all
of which were answered in the 1970s, as we will describe below.
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Cartan’s questions

1. For each positive integer g, does there exist an isoparametric family with g
distinct principal curvatures of the same multiplicity?

2. Does there exist an isoparametric family of hypersurfaces with more than three
distinct principal curvatures such that the principal curvatures do not all have the
same multiplicity?

3. Does every isoparametric family of hypersurfaces admit a transitive group of
isometries?

In the early 1970s, Nomizu [401, 402] wrote two papers describing the highlights
of Cartan’s work. He also generalized Cartan’s example with four principal curva-
tures of multiplicity one to produce examples with four principal curvatures having
multiplicities m1 D m3 D m, and m2 D m4 D 1, for any positive integer m. This
answered Cartan’s Question 2 in the affirmative.

Nomizu also proved that every focal submanifold of every isoparametric hyper-
surface is a minimal submanifold of SnC1. This also follows from Münzner’s work
(see Corollary 3.23 on page 106), and Münzner’s proof is different than that of
Nomizu.

In 1972, Takagi and Takahashi [511] gave a complete classification of all
homogeneous isoparametric hypersurfaces in SnC1, based on the work of Hsiang and
Lawson [195]. Takagi and Takahashi showed that each homogeneous isoparametric
hypersurface in SnC1 is a principal orbit of the isotropy representation of a
Riemannian symmetric space of rank 2, and they gave a complete list of examples
[511, p. 480]. This list contains examples with g D 6 principal curvatures as well
as those with g D 1; 2; 3; 4 principal curvatures. In some cases with g D 4, the
principal curvatures do not all have the same multiplicity, so this also provided an
affirmative answer to Cartan’s Question 2.

At about the same time as the papers of Nomizu and Takagi-Takahashi, Münzner
published two preprints that greatly extended Cartan’s work and have served as
the basis for much of the research in the field since that time. The preprints
were eventually published as papers [381, 382] in 1980–1981. Of course, one of
Münzner’s primary results is that the number g of distinct principal curvatures of an
isoparametric hypersurface in a sphere equals 1; 2; 3; 4 or 6 (see Theorem 3.49 on
page 136), and thus the answer to Cartan’s Question 1 is negative.

Finally, the answer to Cartan’s Question 3 is also negative, as was first shown
by the construction of inhomogeneous isoparametric hypersurfaces with g D 4

principal curvatures by Ozeki and Takeuchi [422] in 1975. Their construction was
then generalized in 1981 to yield even more inhomogeneous examples by Ferus,
Karcher, and Münzner [160] (see Section 3.9 on page 162).
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Isoparametric submanifolds of higher codimension

Remark 3.16 (Isoparametric submanifolds of codimension greater than one).
There is also an extensive theory of isoparametric submanifolds of codimension
greater than one in the sphere, due primarily to Carter and West [66–68, 553], Terng
[525–529], and Hsiang, Palais and Terng [203]. (See also Harle [189] and Strübing
[503].) Terng [525] formulated the definition as follows: a connected, complete
submanifold V in a real space form QMnC1 is said to be isoparametric if it has flat
normal bundle and if for any parallel section of the unit normal bundle � W V ! Bn,
the principal curvatures of A� are constant. Note that Terng’s definition does include
the assumption of completeness.

After considerable development of the theory, Thorbergsson [537] showed that a
compact, irreducible isoparametric submanifold M substantially embedded in SnC1
with codimension greater than one is homogeneous. Thus, M is a principal orbit of
an isotropy representation of a symmetric space (also called s-representations), as
in the codimension one case. Orbits of isotropy representations of symmetric spaces
are also known as generalized flag manifolds or R-spaces. (See Bott-Samelson [49]
and Takeuchi-Kobayashi [513]). This is an important theory, but it is not the focus
of this book. See the books by Palais and Terng [426], and Berndt, Console, and
Olmos [33] for a thorough treatment of this subject. (See also Subsection 3.8.6 for
more detail and further generalizations.)

Remark 3.17 (Isoparametric hypersurfaces in semi-Riemannian spaces). Nomizu
[403] began the study of isoparametric hypersurfaces in semi-Riemannian space
forms by proving a generalization of Cartan’s formula for spacelike hypersurfaces in
a Lorentzian space form QMn

1.c/ of constant sectional curvature c. As a consequence
of this formula, Nomizu showed that a spacelike isoparametric hypersurface in
QMn
1.c/ can have at most two distinct principal curvatures if c � 0. Later Li

and Xie [325] proved that this conclusion also holds for spacelike isoparametric
hypersurfaces in QMn

1.c/ for c < 0. Magid [351] studied isoparametric hypersurfaces
in Lorentz space whose shape operator is not diagonalizable, and Hahn [187] did an
extensive study of isoparametric hypersurfaces in semi-Riemannian space forms of
arbitrary signatures.

Xiao [557] studied isoparametric hypersurfaces in the anti-de Sitter space HnC1
1 ,

and Li and Wang [316] studied isoparametric surfaces in the de Sitter space S31 (see
also [324] for further developments in this area).

Working in a different direction, Niebergall and Ryan [395–398] extended the
notions of isoparametric and Dupin to Blaschke hypersurfaces in affine differential
geometry, where the eigenvalues of the affine shape operator are considered as the
principal curvatures. (See also the related papers of Cecil [75] and Cecil-Magid-
Vrancken [87].) Then Koike [284, 285] extended the definition of Dupin to the
setting of equiaffine hypersurfaces in equiaffine spaces and proved several theorems
in that context that are analogous to well-known results about Dupin hypersurfaces
in Euclidean space.



102 3 Isoparametric Hypersurfaces

3.2 Parallel Hypersurfaces in the Sphere

We now begin a thorough treatment of Münzner’s theory, which is contained in
Sections 3.2–3.6. For the following local calculations, we consider a connected,
oriented hypersurface Mn � SnC1 � RnC2 with field of unit normals � . Assume
that M has g distinct principal curvatures at each point, which we label as in
Section 2.3 by

�i D cot �i; 0 < �i < �; 1 � i � g; (3.38)

where the �i form an increasing sequence, and �i has constant multiplicity mi on M.
We denote the corresponding principal distribution by

Ti.x/ D fX 2 TxM j AX D �iXg; (3.39)

where A is the shape operator determined by the field of unit normals � . By
Theorem 2.10 on page 24 in the case of multiplicity mi > 1, and by the theory
of ordinary equations in the case mi D 1, each Ti is a foliation of M with leaves of
dimension mi.

We consider the parallel hypersurface ft W M ! SnC1 defined as in Section 2.3 by

ft.x/ D cos t x C sin t �.x/; (3.40)

that is, ft.x/ is the point in SnC1 at an oriented distance t along the normal geodesic
in SnC1 to M through the point x. Note that f0 is the original embedding f (whose
mention we are suppressing at present).

In the following calculations, we show that ft is an immersion at x if and only if
cot t is not a principal curvature of M at x. In that case, we then find the principal
curvatures of ft in terms of the principal curvatures of the original embedding f .

Let X 2 TxM. Then differentiating equation (3.40) in the direction X, we get

.ft/�X D cos t X C sin t DX� D cos t X � sin t AX D .cos t I � sin t A/X;

where on the right side we are identifying X with its Euclidean parallel translate at
ft.x/. If X 2 Ti.x/, this yields

.ft/�X D .cos t � sin t cot �i/ X D sin.�i � t/

sin �i
X: (3.41)

Since TxM is the direct sum of the principal spaces Ti.x/, we see that .ft/� is injective
on TxM, unless t D �i (mod �) for some i, that is, ft.x/ is a focal point of .M; x/.

If the principal curvatures �i D cot �i are all constant on M, then we see that a
parallel hypersurface ftM is an immersed hypersurface if t ¤ �i (mod �) for any
i. In that case, we want to find the principal curvatures of ftM. These are given in
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Theorem 2.2 on page 17, where we did the computations in the ambient space RnC1.
We include these calculations here for the sake of completeness, and because they
are important in the development of the theory.

Theorem 3.18. Let Mn � SnC1 be an oriented hypersurface with a principal
curvature � D cot � of multiplicity m on M, and suppose that ft is an immersion
in a neighborhood of a point x 2 M. Then the parallel hypersurface ftM has a
principal curvature Q� D cot.� � t/ at ft.x/ having the same multiplicity m and (up
to parallel translation in RnC2) the same principal space T�.x/ as � at x.

Proof. Let W be a neighborhood of x in M on which ft is an immersion. Let � be the
field of unit normals on Mn, and denote � at a point y by �y. Then for y 2 W, one
can easily show that the vector

Q�y D � sin t y C cos t �y; (3.42)

when translated to Qy D ft.y/, is a unit normal to the hypersurface ftW at the point Qy.
We want to find the shape operator At determined by this field of unit normals Q� on
ftW. Let X 2 T�.x/. Since hX; �i D 0, we have

DX� D QrX� � hX; �i x D QrX� D �AX D ��X D � cot � X; (3.43)

where D is the Euclidean covariant derivative on RnC2, and Qr is the induced Levi-
Civita connection on SnC1. By definition, the shape operator At is given by

.ft/�.AtX/ D � Qr.ft/�X
Q� D �D.ft/�X

Q�; (3.44)

since h.ft/�X; Q�i D 0. To compute this, let xu be a curve in M with initial point
x0 D x and initial tangent vector �!x0 D X. Then we have using equation (3.43),

D.ft/�X
Q� D d

du
. Q�xu/juD0 D � sin t X � cos t cot � X (3.45)

D � cos.� � t/

sin �
X;

where we again identify X on the right with its Euclidean parallel translate at ft.x/.
If we compare this with equation (3.41) and use equation (3.44), we see that

AtX D cot.� � t/X; (3.46)

for X 2 T�.x/, and so Q� D cot.� � t/ is a principal curvature of At with the same
principal space T�.x/ and same multiplicity m as � at x. ut

As a consequence of Theorem 3.18, we get the following corollary regarding the
principal curvatures of a family of parallel isoparametric hypersurfaces.
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Corollary 3.19. Let Mn � SnC1 be a connected isoparametric hypersurface having
g distinct principal curvatures �i D cot �i, 1 � i � g, with respective multiplicities
mi. If t is any real number not congruent to any �i (mod �), then the map ft immerses
M as an isoparametric hypersurface with principal curvatures Q�i D cot.�i � t/,
1 � i � g, with the same multiplicities mi. Furthermore, for each i, the principal
foliation corresponding to Q�i is the same as the principal foliation Ti corresponding
to �i on M.

Remark 3.20. It follows from Münzner’s theory that if M is an isoparametric
hypersurface embedded in SnC1, then each parallel isoparametric hypersurface ftM
is also embedded in SnC1 and not just immersed. This is because M and its parallel
hypersurfaces are level sets of the restriction to SnC1 of a certain polynomial
function on RnC2, as will be discussed later in the chapter in Theorem 3.32 on
page 115.

3.3 Focal Submanifolds

The geometry of the focal submanifolds of an isoparametric hypersurface is a crucial
element in this theory. In this section, we obtain some important basic results about
isoparametric hypersurfaces and their focal submanifolds due to Münzner [381] (see
also Chapter 3 of [95]).

As in the previous section, let Mn � SnC1 be a connected, oriented isoparametric
hypersurface with field of unit normals � having g distinct constant principal
curvatures,

�i D cot �i; 0 < �i < �; 1 � i � g; (3.47)

where the �i form an increasing sequence, and denote the multiplicity of �i by mi.
By Theorems 2.11, 2.12, and 2.14 of Section 2.4, the leaves of the principal

foliation Ti are open subsets of mi-dimensional metric spheres in SnC1, and the space
of leaves M=Ti is an .n � mi/-dimensional manifold with the quotient topology.

If t D �i, then the map ft has constant rank n � mi on M, and ft factors through
an immersion  i W M=Ti ! SnC1, i.e., ft D  i ı � , where � is the projection from
M onto M=Ti. Thus, ft is a focal map, as in Theorems 2.12 and 2.14 of Section 2.4,
and we denote image of  i by Vi.

We now want to find the principal curvatures of this focal submanifold Vi. This
is similar to the calculation for parallel hypersurfaces in the preceding section,
although we must make some adjustments because Vi has codimension greater
than one.
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Let x 2 M. Then we have the orthogonal decomposition of the tangent space
TxM as

TxM D Ti.x/˚ T?i .x/; (3.48)

where T?i .x/ is the direct sum of the spaces Tj.x/, for j ¤ i. By equation (3.41),
.ft/� D 0 on Ti.x/, and .ft/� is injective on T?i .x/.

We consider a map h W M ! SnC1 given by

h.x/ D � sin t x C cos t �.x/: (3.49)

This is basically the same function that we considered in equation (3.42) for the
field Q� of unit normals to ftM in the case where ft is an immersion.

In the case t D �i, we see that hft.x/; h.x/i D 0, and so the vector h.x/ is tangent
to the sphere SnC1 at the point p D ft.x/. Furthermore, hh.x/;Xi D 0 for all X 2
T?i .x/, and so by equation (3.41), h.x/ is normal to the focal submanifold Vi at the
point p.

We can use the map h to find the shape operator of a normal vector to Vi as
follows. Let p be an arbitrary point in Vi. Then the set C D f�1t .p/ is an open subset
of an mi-sphere in SnC1. For each x 2 C, the vector h.x/ is a unit normal to the
focal submanifold Vi at p. Thus, the restriction of h to C is a map from C into the
mi-sphere S?p Vi of unit normal vectors to Vi at p. At a point x 2 C, the tangent space
TxC equals Ti.x/. Since t D �i, we have for x 2 C and a nonzero vector X 2 Ti.x/
that

h�.X/ D � sin tX C cos t.�AX/ D � sin �iX C cos �i.� cot �i/X (3.50)

D �1
sin �i

X ¤ 0:

Thus, h� has full rank mi on C, and so h is a local diffeomorphism of open subsets of
mi-spheres. This enables us to prove the following important result due to Münzner
[381].

Theorem 3.21. Let M � SnC1 be a connected isoparametric hypersurface, and let
Vi D ftM for t D �i be a focal submanifold of M. Let � be a unit normal vector to Vi

at a point p 2 Vi, and suppose that � D h.x/ for some x 2 f�1t .p/. Then the shape
operator A� of Vi is given in terms of its principal vectors by

A�X D cot.�j � �i/X; for X 2 Tj.x/; j ¤ i: (3.51)

(As before we are identifying Tj.x/ with its Euclidean parallel translate at p.)

Proof. Let � D h.x/ for some x 2 C D f�1t .p/ for t D �i. The same calculation
used in proving Theorem 3.18 is valid here, and it leads to equation (3.46), which
we write as

A�X D cot.�j � �i/X; for X 2 Tj.x/; j ¤ i: ut
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Corollary 3.22. Let M � SnC1 be a connected isoparametric hypersurface, and let
Vi D ftM, for t D �i, be a focal submanifold of M. Then for every unit normal vector
� at every point p 2 Vi, the shape operator A� has principal curvatures cot.�j � �i/

with multiplicities mj, for j ¤ i, 1 � j � g.

Proof. By Theorem 3.21, the corollary holds on the open subset h.C/ of the mi-
sphere S?p Vi of unit normal vectors to Vi at p. Consider the characteristic polynomial
Pu.�/ D det.A��uI/ as a function of � on the normal space T?p Vi. Since A� is linear
in �, we have for each fixed u 2 R that the function Pu.�/ is a polynomial of degree
n � mi on the vector space T?p Vi. Thus, the restriction of Pu.�/ to the sphere S?p Vi

is an analytic function of �. Then since Pu.�/ is constant on the open subset h.C/ of
S?p Vi, it is constant on all of S?p Vi. ut

Minimality of the focal submanifolds

Münzner also obtained the following consequence of Corollary 3.22. This result was
obtained independently with a different proof by Nomizu [403].

Corollary 3.23. Let M � SnC1 be a connected isoparametric hypersurface. Then
each focal submanifold Vi of M is a minimal submanifold in SnC1.

Proof. Let � be a unit normal vector to a focal submanifold Vi of M. Then �� is
also a unit normal vector to Vi. By Corollary 3.22, the shape operators A� and A��
have the same eigenvalues with the same multiplicities. So

trace A�� D trace A�:

On the other hand, trace A�� D � trace A�, since A�� D �A�. Thus, we have
trace A� D � trace A�, and so trace A� D 0. Since this is true for all unit normal
vectors �, we conclude that Vi is a minimal submanifold in SnC1. ut

As a consequence of Theorem 3.21, we can give a proof of Cartan’s formula
for isoparametric hypersurfaces in Sn that is different than the proof given for
Lemma 3.10 on page 93.

Corollary 3.24 (Cartan’s formula). Let M � SnC1 be a connected isoparametric
hypersurface with g principal curvatures

�i D cot �i; 0 < �1 < � � � < �g < �;

with respective multiplicities mi. Then for each i; 1 � i � g, the following formula
holds

X

j¤i

mj
1C �i�j

�i � �j
D 0: (3.52)
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Proof. We will show that for each i and for any unit normal � to the focal
submanifold Vi, the left side of equation (3.52) equals trace A�, which equals
zero by Corollary 3.23. Represent the principal curvatures of M as �i D cot �i,
0 < �1 < � � � < �g < � , with respective multiplicities mi. Let Vi be the focal
submanifold corresponding to �i. By Corollary 3.22, we have

0 D trace A� D
X

j¤i

mj cot.�j � �i/ D
X

j¤i

mj
1C cot �i cot �j

cot �i � cot �j
(3.53)

D
X

j¤i

mj
1C �i�j

�i � �j
:

ut
Remark 3.25 (Cartan’s formula in RnC1 and HnC1). The same type of proof for
Cartan’s formula is possible for isoparametric hypersurfaces in RnC1. In that case
the sectional curvature c D 0 and Cartan’s formula becomes

X

j¤i

mj
�i�j

�i � �j
D 0; (3.54)

for each i; 1 � i � g. If the principal curvature �i D 0, then both sides of the
equation are zero, and the formula holds. If �i ¤ 0, let Vi be the focal submanifold
ftM, for t D 1=�i. Then calculations similar to those in Theorem 2.2 on page 17 and
an argument similar to that in Corollary 3.22 above show that for each unit normal
� to Vi, the shape operator A� has distinct principal curvatures

�j

1 � t�j
D �j

1 � .�j=�i/
D �i�j

�i � �j
; (3.55)

with multiplicities mj, for j ¤ i; 1 � j � g. Thus the expression on the left
side of equation (3.54) is the trace of the shape operator A�. Therefore, Cartan’s
formula is equivalent to the minimality of the focal submanifolds Vi, 1 � i � g.
One can prove that these focal submanifolds are minimal by the argument given
in Corollary 3.23, and thus Cartan’s formula can be proven by this method for
isoparametric hypersurfaces in RnC1.

For an isoparametric hypersurface M in HnC1, the situation is more complicated,
since by Theorem 2.1 on page 11, if j�ij � 1 for a principal curvature �i of M,
then there is no focal submanifold in HnC1 corresponding to �i. Thus, one cannot
consider the minimality of the focal submanifolds corresponding to such principal
curvatures. If j�ij > 1, then there does exist a focal submanifold Vi corresponding to
�i, and one can show that Cartan’s formula for that �i is equivalent to the minimality
of Vi. Of course, we already have a different proof of Cartan’s formula which is valid
for all real space forms (see Lemma 3.10, page 93).
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Formula for the principal curvatures

We now return to our consideration of isoparametric hypersurfaces in SnC1. The
following remarkable result of Münzner shows that the principal curvatures of such
an isoparametric hypersurface have a very specific form.

Theorem 3.26. Let M � SnC1 be a connected isoparametric hypersurface with
g principal curvatures �i D cot �i, 0 < �1 < � � � < �g < � , with respective
multiplicities mi. Then

�i D �1 C .i � 1/�
g
; 1 � i � g; (3.56)

and the multiplicities satisfy mi D miC2 (subscripts mod g). For any point x 2 M,
there are 2g focal points of .M; x/ along the normal geodesic to M through x, and
they are evenly distributed at intervals of length �=g.

Proof. If g D 1, then the theorem is trivially true, so we now consider g D 2. Let
V1 be the focal submanifold determined by the map ft for t D �1. By Corollary 3.22,
the principal curvature cot.�2 � �1/ of the shape operator A� is the same for every
choice of unit normal � at every point p 2 V1. Since A�� D �A�, this says that

cot.�2 � �1/ D � cot.�2 � �1/:

Thus, cot.�2 � �1/ D 0, so �2 � �1 D �=2 as desired. In the case g D 2, there is no
restriction on the multiplicities.

Next we consider the case g � 3. For a fixed value of i, 1 � i � g, let Vi be the
focal submanifold determined by the map ft for t D �i. By Corollary 3.22, the set

fcot.�j � �i/ j j ¤ ig

of principal curvatures of the shape operator A� is the same for every choice of unit
normal � at every point p 2 Vi. Since A�� D �A�, this says that the two sets

fcot.�j � �i/ j j ¤ ig and f� cot.�j � �i/ j j ¤ ig

are the same. In the case 2 � i � g � 1, the largest principal curvature of A� is
cot.�iC1 � �i/ with multiplicity miC1, while the largest principal curvature of A��
is cot.�i � �i�1/ with multiplicity mi�1. Since these two largest principal curvatures
and their respective multiplicities are equal, we conclude that

�iC1 � �i D �i � �i�1; miC1 D mi�1; 2 � i � g � 1: (3.57)

If i D 1, the largest principal curvature of A� is cot.�2 � �1/ with multiplicity m2,
and the largest principal curvature of A�� is
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Fig. 3.1 Focal points on a
normal geodesic, g D 6
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cot.�1 � �g/ D cot.�1 � .�g � �//;

with multiplicity mg, and we have

�2 � �1 D �1 � .�g � �/; m2 D mg: (3.58)

If we let �2 � �1 D ı, then equation (3.57) implies that �g � �1 D .g � 1/ı, while
equation (3.58) implies that �g ��1 D ��ı. Combining these two equations, we get
that gı D � , and thus ı D �=g. From this we get the formula in equation (3.56) for
�i. The formula for the multiplicities in the theorem follows from equations (3.57)
and (3.58).

If x is any point of M, then each principal curvature cot �i of M gives rise to a pair
of antipodal focal points along the normal geodesic to M through x. Thus, there are
2g focal points of .M; x/ along this normal geodesic, and they are evenly distributed
at intervals of length �=g by equation (3.56). ut

Figure 3.1 illustrates the case g D 6. In the figure, the two antipodal focal points
labeled pi and piC6 are determined by the same principal curvature �i for 1 � i � 6.

Remark 3.27 (Isoparametric submanifolds and their Coxeter groups). It follows
from Theorem 3.26 that the set of focal points along a normal circle to M � SnC1
is invariant under the dihedral group Dg of order 2g that acts on the normal circle
and is generated by reflections in the focal points. This is a fundamental idea that
generalizes to isoparametric submanifolds of higher codimension in the sphere.
Specifically, for an isoparametric submanifold Mn of codimension k > 1 in SnCk,
Carter and West [66] (in the case k D 2) and Terng [525] for arbitrary k > 1 found
a Coxeter group (finite group generated by reflections) that acts in a way similar to
this dihedral group in the codimension one case. This Coxeter group is important in
the overall development of the theory in the case of higher codimension.
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Since the multiplicities satisfy mi D miC2 (subscripts mod g), we have the
following immediate corollary.

Corollary 3.28. Let M � SnC1 be a connected isoparametric hypersurface with g
distinct principal curvatures. If g is odd, then all of the principal curvatures have
the same multiplicity. If g is even, then there are at most two distinct multiplicities.

Classification of isoparametric hypersurfaces with g D 2

Using Corollary 3.22 and Theorem 3.26, we can now derive the classification of
isoparametric hypersurfaces in the sphere with g D 2 distinct principal curvatures
due to Cartan. We first want to describe the basic example in the form of a tube over
a totally geodesic submanifold of SnC1.

We consider RnC2 D RpC1 � RqC1, where p C q D n. A standard product of a
p-sphere and a q-sphere has the form,

Sp.r/ � Sq.s/ D f.x; y/ 2 RpC1 � RqC1 j jxj2 D r2; jyj2 D s2; r2 C s2 D 1g;
(3.59)

where r > 0 and s > 0. Since r2 C s2 D 1, we have

Sp.r/ � Sq.s/ � SnC1.1/ � RpC1 � RqC1 D RnC2: (3.60)

We want to show that such a standard product of two spheres is a tube over a
totally geodesic p-sphere,

V D f.u; v/ j v D 0g D Sp � f0g; (3.61)

where Sp is the unit sphere in RpC1.
We now construct the tube of radius t, 0 < t < �=2, over V , as in Section 2.3.

Let .u; 0/ be a point in V . Then every unit normal to V in SnC1 at .u; 0/ has the form
.0; v/, where v 2 Sq, the unit sphere in RqC1. Thus, the unit normal bundle BV is
given by

BV D f..u; 0/; .0; v// j u 2 Sp; v 2 Sqg: (3.62)

Then the map ft W BV ! SnC1 to the tube of (spherical) radius t over V is given by

ft..u; 0/; .0; v// D cos t .u; 0/C sin t .0; v/ D .cos t u; sin t v/ D .x; y/; (3.63)

where x D cos t u and y D sin t v. We see that the point .x; y/ lies in the standard
product of spheres Sp.r/ � Sq.s/ given in equation (3.59) for the values r D cos t
and s D sin t.
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Conversely, if .x; y/ in any point in Sp.r/ � Sq.s/, then

.x; y/ D ft..u; 0/; .0; v//;

where u D x=r, v D y=s, and t D cos�1 r. Thus, the standard product of spheres
Sp.r/ � Sq.s/ is precisely the tube of radius t over V in SnC1.

We can find the principal curvatures of a tube Mt of radius t over V D Sp � f0g
from the formula in Theorem 2.2 on page 17 for the shape operators of a tube. Since
V is totally geodesic, we see from Theorem 2.2 that Mt has two constant principal
curvatures,

�1 D cot
��
2

� t
	

D tan t; �2 D � cot t;

with respective multiplicities p and q.
We now prove the classification of isoparametric hypersurfaces with g D 2

principal curvatures due to Cartan.

Theorem 3.29. Let M � SnC1 be a connected isoparametric hypersurface with
g D 2 distinct principal curvatures. Then M is an open subset of a standard product
of two spheres.

Proof. Let �1 D cot �1 and �2 D cot �2, 0 < �1 < �2 < � , be the two principal
curvatures of M with respective multiplicities m1 D q and m2 D p with p C q D
n. Let V1 D f�1M be the focal submanifold of M corresponding to the principal
curvature �1. Then by Corollary 3.22, V1 is a p-dimensional submanifold of SnC1
such that for every unit normal vector � to V1, the shape operator A� has one distinct
principal curvature cot.�2 � �1/. By Theorem 3.26, we have �2 � �1 D �=2, and so
the one principal curvature is zero. Therefore, V1 is a p-dimensional totally geodesic
submanifold of SnC1, which is thus a p-dimensional great sphere Sp � RpC1 �
RnC2. The connected hypersurface M lies on a tube of radius �1 over V1, and by
what we have shown above, such a tube is a standard product of two spheres. ut

Other characterizations of standard products of spheres are given by Alías, Brasil
and Perdomo [10], by Brasil, Gervasio and Palmas [50], and by Adachi and Maeda
[5]. For a survey of results concerning flat tori in S3, see Kitigawa [280].

3.4 Isoparametric Functions

As noted at the beginning of this chapter, the original definition of an isoparametric
family of hypersurfaces in a real space form QMnC1 was formulated in terms of the
level sets of an isoparametric function, where a smooth function F W QMnC1 ! R is
called isoparametric if both of the classical Beltrami differential parameters,

�1F D jgrad Fj2; �2F D �F .Laplacian F/; (3.64)

are functions of F itself, and are therefore constant on the level sets of F in QMnC1.
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In the case of an isoparametric hypersurface M in the sphere SnC1 in RnC2,
Münzner showed that the corresponding isoparametric function V W SnC1 ! R is the
restriction to SnC1 of a homogeneous polynomial F W RnC2 ! R satisfying certain
differential equations. Thus, it is useful to be able to relate the Beltrami differential
parameters of a homogeneous function F on RnC2 to those of its restriction V to
SnC1.

The type of polynomial that arises in Münzner’s theory is homogeneous of degree
g, where g is the number of distinct principal curvatures of the corresponding
isoparametric hypersurface M � SnC1. Recall that a function F W RnC2 ! R is
homogeneous of degree g if F.tx/ D tgF.x/, for all t 2 R and x 2 RnC2. By Euler’s
Theorem, we know that for any x 2 RnC2,

hgradEF; xi D gF.x/: (3.65)

Here the superscript E is used to denote the Euclidean gradient of F, and the gradient
of the restriction V of F to SnC1 will be denoted by gradSF. Similarly, we will
denote the respective Laplacians by �EF and �SF. The following theorem relates
the various differential operators for a homogeneous function F of degree g.

Theorem 3.30. Let F W RnC2 ! R be a homogeneous function of degree g. Then

(a) jgradSFj2 D jgradEFj2 � g2F2,
(b) �SF D �EF � g.g � 1/F � g.n C 1/F.

Proof. (a) At a point x 2 SnC1, the vector gradSF is obtained from gradEF by
subtracting off the component of gradEF normal to SnC1 at x. Thus, we have

gradSF D gradEF � hgradEF; xix: (3.66)

Then, using equation (3.65), we compute

jgradSFj2 D jgradEFj2 � 2gF.x/hgradEF; xi C g2F2.x/jxj2 (3.67)

D jgradEFj2 � 2g2F2.x/C g2F2.x/ D jgradEFj2 � g2F2.x/:

(b) Let D and Qr denote the Levi-Civita connections on RnC2 and SnC1, respectively.
The Laplacian �SF is the trace of the operator on TxSnC1 given by

X 7! QrX gradSF: (3.68)

For X 2 TxSnC1, we know that QrX gradSF is the component of DX gradSF that is
tangent to SnC1, and thus

QrX gradSF D DX gradSF � hDX gradSF; xi x: (3.69)
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We take the covariant derivative of the formula for gradSF given in equation (3.66)
and use equation (3.65) to compute

DX gradSF D DX gradEF � gFX � g.XF/x: (3.70)

Next we take the component of equation (3.70) tangent to SnC1 to get

QrX gradSF D DX gradEF � hDX gradEF; xi x � gFX: (3.71)

From this we can compute the Laplacian as the trace of the operator given in
equation (3.68). Let fe1; : : : ; enC1g be an orthonormal basis for TxSnC1. Then
fe1; : : : ; enC1; xg is an orthonormal basis for TxRnC2. We work with the terms on
the right side of equation (3.71) to compute the Laplacian. First,

nC1X

iD1
hDei gradEF; eii D �EF � hDx gradEF; xi: (3.72)

Recall that

hDx gradEF; xi D DxhgradEF; xi � hgradEF; xi: (3.73)

Using equation (3.65), we have

DxhgradEF; xi D Dx.gF/ D ghgradEF; xi: (3.74)

Substituting this into equation (3.73) and using equation (3.65), we get

hDx gradEF; xi D .g � 1/hgradEF; xi D .g � 1/gF.x/: (3.75)

Next we compute that

nC1X

iD1
hDei gradEF; xihx; eii D 0; (3.76)

and the trace of the map X 7! �gFX on TxSnC1 is clearly �g.n C 1/F. Thus, using
equations (3.71)–(3.76), we have computed

�SF D �EF � g.g � 1/F � g.n C 1/F; (3.77)

as needed to prove part (b) of the theorem. ut
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Examples of isoparametric functions

We now consider some examples of homogeneous polynomials with the property
that jgradSFj2 and �SF are both functions of F itself. Thus, the restriction of F to
SnC1 is an isoparametric function on SnC1.

Example 3.31 (Examples of isoparametric functions on SnC1).

(a) Let F W RnC2 ! R be the linear height function,

F.z/ D hz; pi; p 2 RnC2; jpj D 1: (3.78)

Then F is a homogeneous polynomial of degree g D 1, and

jgradEFj2 D 1; �EF D 0: (3.79)

Consequently, by Theorem 3.30, we have

jgradSFj2 D 1 � F2; �SF D �.n C 1/F; (3.80)

so that the restriction of F to SnC1 is an isoparametric function on SnC1. The level
sets

Mt D fz 2 SnC1 j F.z/ D tg; �1 < t < 1; (3.81)

form an isoparametric family of n-spheres in hyperplanes orthogonal to p. The two
focal submanifolds of this family are the 1-point sets fpg and f�pg.

(b) Decompose RnC2 as RnC2 D RpC1 � RqC1, where p and q are positive integers
such that p C q D n. For any point z D .x; y/ in RpC1 � RqC1, define

F.z/ D jxj2 � jyj2: (3.82)

Then F is a homogeneous polynomial of degree g D 2, and for r2 D jxj2 C jyj2, we
have

gradEF D 2.x;�y/; jgradEFj2 D 4r2; �EF D 2.p � q/: (3.83)

Thus by Theorem 3.30, we have

jgradSFj2 D 4.1 � F2/; �SF D 2.p � q/ � 2.n C 2/F: (3.84)

Therefore, the restriction of F to SnC1 is an isoparametric function. The level sets
form an isoparametric family of hypersurfaces as follows. Let

Mt D fz 2 SnC1 j F.z/ D cos 2tg; 0 � t � �=2: (3.85)
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For .x; y/ 2 Mt, we have

jxj2 � jyj2 D cos 2t D cos2 t � sin2 t;

and

jxj2 C jyj2 D 1 D cos2 t C sin2 t;

and so we get jxj2 D cos2 t and jyj2 D sin2 t. Thus, for 0 < t < �=2, the level set
is the Cartesian product of a p-sphere of radius cos t and a q-sphere of radius sin t.
The two focal submanifolds of the family of isoparametric hypersurfaces are

M0 D f.x; y/ j y D 0g D Sp � f0g; M�=2 D f.x; y/ j x D 0g D f0g � Sq:

Note that one can obtain the same family of level sets from the polynomial G.x; y/ D
jxj2, since F D 2G � 1 on SnC1.

3.5 Cartan–Münzner Polynomials

In this section, we describe Münzner’s [381] work concerning the algebraic nature
of isoparametric hypersurfaces in spheres. Münzner’s primary result in this regard
is the following theorem (see also Ferus [159] and Cecil–Ryan [95, pp. 255–267]).

Theorem 3.32. Let M � SnC1 � RnC2 be a connected isoparametric hypersurface
with g principal curvatures �i D cot �i, 0 < �i < � , with respective multiplicities
mi. Then M is an open subset of a level set of the restriction to SnC1 of a homoge-
neous polynomial F on RnC2 of degree g satisfying the differential equations,

jgradEFj2 D g2r2g�2; (3.86)

�EF D crg�2; (3.87)

where r D jxj, and c D g2.m2 � m1/=2.

Remark 3.33. Recall from Corollary 3.28 that there are at most two distinct
multiplicities m1;m2, and the multiplicities satisfy miC2 D mi (subscripts mod g).

Münzner called F the Cartan polynomial of M, and now F is usually referred
to as the Cartan–Münzner polynomial of M. Equations (3.86)–(3.87) are called the
Cartan–Münzner differential equations. By Theorem 3.30 the restriction V of F to
SnC1 satisfies the differential equations,

jgradSVj2 D g2.1 � V2/; (3.88)
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�SV D c � g.n C g/V; (3.89)

where c D g2.m2 � m1/=2. Thus V is an isoparametric function in the sense of
Cartan, since both jgradSVj2 and �SV are functions of V itself.

We now describe Münzner’s construction of this polynomial F in detail. Let M �
SnC1 be a connected, oriented isoparametric hypersurface with g distinct principal
curvatures �i D cot �i, 0 < �1 < � � � < �g < � , with respective multiplicities
mi. The normal bundle NM of M in SnC1 is trivial and is therefore diffeomorphic
to M � R. Thus we can consider the normal exponential map E W M � R ! SnC1
defined by

E.x; t/ D ft.x/ D cos t x C sin t �.x/; (3.90)

where � is the field of unit normals to M in SnC1.
By Theorem 2.1 on page 11, we know that the differential of E has rank n C 1

at .x; t/ 2 M � R unless cot t is a principal curvature of M at x. Thus, for any
noncritical point .x; t/ of E, there is an open neighborhood U of .x; t/ in M � R on
which E restricts to a diffeomorphism onto an open subset QU D E.U/ in SnC1. We
define a function � W QU ! R by

�.p/ D �1 � �2.E�1.p//; (3.91)

where �2 is projection onto the second coordinate. That is, if p D E.x; t/, then

�.p/ D �1 � t: (3.92)

Then we define a function V W QU ! R by,

V.p/ D cos.g�.p//: (3.93)

Clearly, � and V are constant on each parallel hypersurface Mt D ft.M/ in QU.
The number �.p/ is the oriented distance from p to the first focal point along the

normal geodesic to the parallel hypersurface Mt through p. Thus, if we begin the
construction with a parallel hypersurface Mt near M rather than with M itself, we
get the same functions � and V . If we begin the construction with the opposite field
of unit normals �� instead of � , then we obtain the function �V instead of V .

We next extend V to a homogeneous function of degree g on the cone in RnC2
over QU by the formula

F.rp/ D rg cos.g.�.p//; p 2 QU; r > 0: (3.94)

The first step in the proof of Theorem 3.32 is to show that the function F in
equation (3.94) satisfies the Cartan–Münzner differential equations (3.86)–(3.87).
One then completes the proof of Theorem 3.32 by showing that F is the restriction
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to the cone over QU of a homogeneous polynomial of degree g. These two steps
involve lengthy calculations based on the formula for the principal curvatures of an
isoparametric hypersurface given in Theorem 3.26.

Remark 3.34 (Consequences of Theorem 3.32). Before giving the proof of Theo-
rem 3.32, we will make a few remarks concerning some important consequences
of the theorem. From equation (3.88), we see that the range of the restriction V
of F to SnC1 is contained in the closed interval Œ�1; 1�, since the left side of the
equation is nonnegative. We can see that the range of V is all of the interval Œ�1; 1�
as follows. Since V is not constant on SnC1, it has distinct maximum and minimum
values on SnC1. By equation (3.88) these maximum and minimum values are 1
and �1, respectively, since gradSV is nonzero at any point where V is not equal
to ˙1. For any s in the open interval .�1; 1/, the level set V�1.s/ is a compact
hypersurface, since gradSV is never zero on V�1.s/. Münzner also proves (see
Theorem 3.44 in Section 3.6) that each level set of V is connected, and therefore, the
original connected isoparametric hypersurface M is contained in a unique compact,
connected isoparametric hypersurface.

For s D ˙1, gradSV is identically equal to zero on V�1.s/, and the sets
MC D V�1.1/ and M� D V�1.�1/ are submanifolds of codimension greater
than one in SnC1. We will show in Section 3.6 that MC and M� are connected,
and that they are the focal submanifolds of any isoparametric hypersurface V�1.s/,
�1 < s < 1, in the family of isoparametric hypersurfaces. Thus, there are only
two focal submanifolds regardless of the number g of distinct principal curvatures.
By Theorem 3.26, there are 2g focal points evenly distributed along each normal
geodesic to the family fV�1.s/g of isoparametric hypersurfaces. We will see in
Section 3.6 that these focal points lie alternately on the two focal submanifolds
MC and M�.

We now consider the isoparametric hypersurface V�1.0/. From equation (3.93),
we see that the function � equals �=2g on V�1.0/. The function � is the distance
from a point x in V�1.0/ to the first focal point along the normal geodesic through
x. By Theorem 3.26, this means that the largest principal curvature of V�1.0/ is
cot.�=2g/, and the principal curvatures of V�1.0/ are given by cot �i, where

�i D �

2g
C .i � 1/

g
�; 1 � i � g; (3.95)

with multiplicities satisfying miC2 D mi (subscripts mod g).

Remark 3.35 (Transnormal systems). A parallel family of isoparametric hypersur-
faces in SnC1 together with its focal submanifolds forms what Bolton [45] defines
to be a transnormal system in that any geodesic in SnC1 meets the submanifolds
in the family orthogonally at either none or all of its points. With just this
geometric hypothesis, Bolton recovered many facts about an isoparametric family,
in particular, that there are only two submanifolds of codimension greater than one
in a transnormal system that contains at least one hypersurface. See the recent papers
of Miyaoka [375, 376] for more on transnormal systems.
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Proof of Münzner’s Theorem

In the remainder of this section, we will give a proof of Münzner’s Theo-
rem 3.32. Our proof follows the proof in the book [95, pp. 256–267] closely.
That proof is based on Münzner’s original proof [381, pp. 62–65] (see also Ferus
[159, pp. 18–20]).

Let p D cos t x C sin t �.x/ be a point in the open set QU defined above. As in
equation (3.42), the vector,

Q�.p/ D � sin t x C cos t �.x/;

is a unit normal vector to the parallel hypersurface Mt D ft.M/ at p. Moreover,

Q�.p/ D .E�/.x;t/
�
@

@t

�
; (3.96)

and it is easy to check that

Q�.p/ D �gradS�: (3.97)

If z is point in the cone over QU, we see from equation (3.94) that

F.z/ D jzjg cos g.�.z=jzj//:

Thus, if we define � W RnC2 � f0g ! SnC1 by �.z/ D z=jzj D z=r, then we can
re-write the equation above in terms of functions as

F D rg cos g.� ı �/: (3.98)

One can easily compute that gradEr D � . Further, if Z 2 TzRnC2, then

hZ; gradE.� ı �/i D ����Z:

Then we compute

��.Z/ D 1

r
.Z � hZ; �i�/; (3.99)

and ��.��Z/ D hgradS�; ��Zi. Using equations (3.97) and (3.99) and the fact that
hgradS�; �i D 0, we get

��.��Z/ D �1
r

h Q� ı �;Zi:

Thus, we get
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gradE.� ı �/ D �1
r

Q� ı �: (3.100)

Hence, we have

gradEF D grg�1.cos g.� ı �/� C sin g.� ı �/ Q� ı �/: (3.101)

Since �.z/ and Q�.�.z// are orthonormal at �.z/, we get

jgradEFj2 D g2r2g�2; (3.102)

and so equation (3.86) is satisfied.
Next we compute the Laplacian �EF. This is a lengthy computation using

the formula for the principal curvatures of M obtained in Theorem 3.26. From
equation (3.101), we have gradEF D grg�1W, where W is the vector field

W D cos g.� ı �/� C sin g.� ı �/ Q� ı �:

In the rest of the proof, all gradients are with respect to Euclidean space RnC2, and
we often omit the superscript E in the notation for gradients. By definition,

�EF D div gradEF D hgrad .grg�1/;Wi C grg�1div W: (3.103)

We compute the first term on the right side of the equation above to be

hgrad .grg�1/;Wi D g.g � 1/rg�2hgrad r;Wi D g.g � 1/rg�2h�;Wi
D g.g � 1/rg�2 cos g.� ı �/: (3.104)

The last term on the right side of equation (3.103) is

div W D hgrad cos g.� ı �/; �i C hgrad sin g.� ı �/; Q� ı �i (3.105)

C cos g.� ı �/ div � C sin g.� ı �/ div . Q� ı �/:

We will handle the terms on the right side of equation (3.105) one at a time. Using
equation (3.100), we compute the first term as follows

hgrad cos g.� ı �/; �i D �g sin g.� ı �/hgrad � ı �; �i (3.106)

D �g sin g.� ı �/h.�1=r/ Q� ı �; �i D 0:

Similarly, the second term on the right side of equation (3.105) is

hgrad sin g.� ı �/; Q� ı �i D g cos g.� ı �/h.�1=r/ Q� ı �; Q� ı �i (3.107)

D .�g=r/ cos g.� ı �/:
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For the third term on the right side of equation (3.105), we compute

div � D � 1

r2
hgrad r; zi C 1

r
div z D �1

r
C n C 2

r
D n C 1

r
: (3.108)

For the final term in equation (3.105), we need the following lemma.

Lemma 3.36. (a) div . Q� ı �/ D 1
r .div Q�/ ı � ,

(b) div Q� D �Pg
iD1 mi cot.� C .i�1/

g �/,

(c) div Q� D �n cot g� � .m1�m2/g
2 sin g� .

Proof. (a) Let Z be any tangent vector to RnC2 at an arbitrary point z in the cone over
QU, and let zu be a curve in RnC2 with initial position z and initial tangent vector Z.
Then the Euclidean covariant derivative DZ. Q� ı �/ equals the initial tangent vector�!̨
0 to the curve ˛u D . Q� ı �/.zu/. Note that �!̨

0 D DY
Q�, where Y D ��Z. From

equation (3.99), we have

��Z D .Z � hZ; �i�/=r:

Thus, for Z D z=r, we have ��Z D 0, while for Z parallel to a tangent vector to
SnC1 at �.z/ D z=r, we have ��Z D Z=r. Hence, we have

DZ. Q� ı �/ D 0; for Z D z

r
;

DZ. Q� ı �/ D 1

r
.DZ

Q�/ ı �;

for Z parallel to a tangent vector to SnC1 at �.z/. Using this we can compute

div . Q� ı �/ D 1

r

nC1X

iD1
h.Dei

Q�/ ı �; eiiei;

where e1; : : : ; enC1 are orthonormal and tangent to SnC1 at �.z/. Thus, we have

div . Q� ı �/ D 1

r
.div Q�/ ı �;

and part (a) of the lemma is proven.
(b) In proving part (b) of the lemma, we make use of formula (3.56) in

Theorem 3.26 for the principal curvatures of an isoparametric hypersurface. Let
Qr be the Levi-Civita connection on SnC1, and let p D E.x; t/ be a point in QU. Let
fe1; : : : ; eng be an orthonormal basis for the tangent space TpMt, where Mt D ftM.
Then
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div Q� D
nX

iD1
h Qrei

Q�; eii C h QrQ� Q�; Q�i:

The last term in the equation above is zero, since Q� has constant length. If we choose
the ei to be principal vectors for the shape operator At of Mt, then we have

div Q� D �
nX

iD1
hAtei; eii D � trace At:

Using Corollary 3.19 and Theorem 3.26, we get

div Q� D �
gX

iD1
mi cot.�i � t/ D �

gX

iD1
mi cot..�i � �1/ � .t � �1//

D �
gX

iD1
mi cot.� C .i � 1/

g
�/: (3.109)

(c) We know that either all of the multiplicities mi are equal or else there exist two
distinct multiplicities m1 and m2. In the case where all of the multiplicities are equal,
the formula above for div Q� becomes

�
gX

iD1
mi cot.� C .i � 1/

g
�/ D �n

g

gX

iD1
cot.� C .i � 1/

g
�/

D �n

g
g cot g� D �n cot g�;

which proves (c) in this case.
In the case where there are two distinct multiplicities, we know that g is even and

that m1 D m3 D � � � D mg�1, while m2 D m4 D � � � D mg. For simplicity, we set
g D 2l. Then we compute the last line in equation (3.109) to be

gX

iD1
mi cot.� C .i � 1/

g
�/ (3.110)

D m1

lX

jD1
cot.� C .j � 1/

l
�/C m2

lX

jD1
cot.� C �

2l
C .j � 1/

l
�/

D m1 l cot.l�/C m2 l cot.l� C �

2
/ D m1 l cot.l�/ � m2 l tan.l�/:

Then we can find ! so that

cos2 ! D m1=.m1 C m2/; sin2 ! D m2=.m1 C m2/:
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The total number n of principal curvatures of M is .m1 C m2/g=2. Since l D g=2,
we have n D .m1 C m2/l, and the last expression in equation (3.110) can be written
as

m1 l cot l� � m2 l tan l� D n .cos2 ! cot l� � sin2 ! tan l�/

D n
cos2 !.1C cos g�/ � sin2 !.1 � cos g�/

sin g�

D n
.cos 2! C cos g�/

sin g�
D n cot g� C g.m1 � m2/

2 sin g�
;

and the lemma is proven. ut
Remark 3.37. Since gradS� D �Q� , part (c) of the lemma implies that

�S� D n cot g� C .m1 � m2/g

2 sin g�
:

We can now complete the calculation of �EF. From equations (3.103)–(3.108)
and Lemma 3.36, we get

�EF D g.g � 1/rg�2 cos g.� ı �/C grg�1
�

� g

r
cos g.� ı �/

�

C grg�1 cos g.� ı �/
�

n C 1

r

�

C grg�1 sin g.� ı �/
�
1

r

��
�n cot g.� ı �/ � .m1 � m2/g

2 sin g.� ı �/
�

D grg�2 cos g.� ı �/.g � 1 � g C n C 1 � n/C grg�2 .�.m1 � m2//g

2

D g2rg�2 .m2 � m1/

2
:

Proof that F is a homogeneous polynomial of degree g

This completes the proof that the function F defined on the cone over the open
set QU � SnC1 satisfies the Cartan–Münzner differential equations (3.86)–(3.87). In
order to complete the proof of Münzner’s Theorem 3.32, we must show that F is the
restriction to the cone over QU of a homogeneous polynomial of degree g on RnC2.
We first need the following elementary lemma.

Lemma 3.38. �rk D k.k C n/rk�2 on RnC2 for any positive integer k.

Proof. We first compute that grad rk D krk�1 grad r D krk�1� , where �.z/ D z=r,
as defined above. Then
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�rk D div grad rk D khgrad rk�1; �i C krk�1div �

D k.k � 1/rk�2h�; �i C krk�1.n C 1/=r

D k.k C n/rk�2: ut

Consider the function G D F � arg on the cone over QU, where

a D g.m2 � m1/

2.g C n/
:

From equation (3.87) for the Laplacian of F and by Lemma 3.38, we see that G
is a harmonic function. Thus, all the partial derivatives of G of all orders are also
harmonic. Next we show that the Laplacian of order g of the function jgrad Gj2 is
zero.

Lemma 3.39. �gjgrad Gj2 D 0, where �1 D �, and �k D � ı�k�1.

Proof. Since G D F � arg, we compute grad G = grad F � agrg�1� , as in the
preceding lemma. Then

jgrad Gj2 D jgrad Fj2 C a2g2r2g�2 � 2agrg�1hgrad F; �i:

Using equation (3.98) for F, equation (3.101) for grad F, and equation (3.102) for
jgrad Fj2, the equation above yields

jgrad Gj2 D g2r2g�2.1C a2/ � .2agrg�1/.grg�1 cos g.� ı �//
D g2r2g�2.1C a2/ � 2ag2rg�2F:

Thus, we have since F D G C arg,

jgrad Gj2 C 2ag2rg�2G D g2r2g�2.1C a2/ � 2ag2rg�2arg (3.111)

D g2r2g�2.1 � a2/:

Now using Lemma 3.38, we can compute

�.rkG/ D div .rk grad G/C div .G grad rk/

D 2hgrad rk; grad Gi C rk�G C G.�rk/

D 2krk�1h�; grad F � agrg�1�i C k.k C n/rk�2G

D 2kgrgCk�2 cos g.� ı �/ � 2kagrkCg�2 C k.k C n/rk�2G

D 2kgrk�2.F � arg/C k.k C n/rk�2G

D 2kgrk�2G C k.k C n/rk�2G

D krk�2G.2g C .k C n//:
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Consider the expression in equation (3.111). If the multiplicities m1 and m2 are not
equal, then g is even, and the calculation above shows that g=2 applications of �
will reduce the term 2ag2rg�2G on the left side of equation (3.111) to zero. The term
g2r2g�2.1 � a2/ on the right side of equation (3.111) will be reduced to zero by g
applications of �, and so the lemma follows in that case.

On the other hand, if all the multiplicities are equal, then a D 0, and the term
2ag2rg�2G on the left side of equation (3.111) vanishes. As in the previous case, g
applications of � reduce the right side of the equation to zero, and so the lemma
follows in this case also. ut

Next we compute the following formula for �gjgrad Gj2.
Lemma 3.40. For any harmonic function G,

�gjgrad Gj2 D 2g
X

 
@gC1G

@xi1@xi2 � � � @xigC1

!2
;

where the sum takes place over all .g C 1/-tuples .i1; : : : ; igC1/ with each ij in
f1; : : : ; n C 2g. (The ij’s are not necessarily distinct from one another.)

Proof. We have

jgrad Gj2 D
nC2X

iD1

�
@G

@xi

�2
:

For any function f W RnC2 ! R, we have the formula

�f 2 D 2 jgrad f j2 C 2f�f :

Using this and the fact that �G D 0, we get

�jgrad Gj2 D
nC2X

iD1
2

ˇ̌
ˇ̌grad

@G

@xi

ˇ̌
ˇ̌
2

D
nC2X

iD1

nC2X

jD1

�
@2G

@xi@xj

�2
:

For the rest of the proof, the sums are all from 1 to n C 2. Using the fact that all of
the partial derivatives of G are harmonic, we repeat the step above to get

�2jgrad Gj2 D 22
XXˇ̌

ˇ̌grad
@2G

@xi@xj

ˇ̌
ˇ̌
2

D 22
XXX�

@3G

@xi@xj@xk

�2
:
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Continuing this process, we eventually obtain

�gjgrad Gj2 D 2g
X

 
@gC1G

@xi1@xi2 � � � @xigC1

!2
;

with the sum over all .g C 1/-tuples .i1; : : : ; igC1/ with each ij 2 f1; : : : ; n C 2g. ut
Combining the results of Lemmas 3.39 and 3.40, we get that all partial derivatives

of G of order g C 1 are zero. Further, we can see that �g�1jgrad Gj2 is a nonzero
constant as follows. If the quantity a D g.m2 � m1/=2.g C n/ equals zero, then we
see from equation (3.111) that

jgrad Gj2 D g2r2g�2;

and

�g�1jgrad Gj2 D .2g/g�1.g�1/Š.nC2.g�1//.nC2.g�2// � � � .nC2/; (3.112)

which is a nonzero constant. On the other hand, if a ¤ 0, then g is even, say g D 2l,
and the second term on the left side of equation (3.111) is handled by noting that
�l.rg�2G/ D 0, so that �g�1jgrad Gj2 is equal to 1� a2 times the term on the right
side of equation (3.112), and so it is still a nonzero constant, since jaj < 1.

Thus G is a polynomial of degree g. Since G is a homogeneous function on the
cone over QU, it is a homogeneous polynomial of degree g. This completes the proof
of Münzner’s Theorem 3.32.

A converse result to Münzner’s Theorem

Münzner also proved a result in the converse direction by showing that any homo-
geneous polynomial on RnC2 that satisfies the differential equations (3.86)–(3.87)
is related to the Cartan–Münzner polynomial of an isoparametric hypersurface in a
very specific way given in the following theorem.

Theorem 3.41. Let QF W RnC2 ! R be a homogeneous polynomial of degree
Qg which satisfies the Cartan–Münzner differential equations (3.86)–(3.87) with
parameters Qg and Qc, such that the restriction QV of QF to SnC1 is not constant. Then
zero is a regular value of QV and QV�1.0/ is an oriented isoparametric hypersurface
with normal field gradS QV. Let F be the Cartan–Münzner polynomial of a connected
component of QV�1.0/. Then either QF D F or QF D ˙.2F2 � r2g/, in which case
c D 0, Qg D 2g and Qc D 	Qgn.

Remark 3.42. There exist other polynomials which when restricted to SnC1 have a
family of isoparametric hypersurfaces and their focal submanifolds as level sets. For
example, the polynomial G in Example 3.31 (b) defined on RnC2 D RpC1 � RqC1
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by G.x; y/ D jxj2 has the same family of level sets in SnC1 as the Cartan–Münzner
polynomial F.x; y/ D jxj2 � jyj2, since F D 2G � 1 on SnC1. However, G does not
satisfy the Cartan–Münzner differential equations.

Proof (of Theorem 3.41). Suppose that QF is a homogeneous polynomial of degree Qg
that satisfies the Cartan–Münzner differential equations,

jgradE QFj2 D Qg2r2Qg�2; (3.113)

�E QF D QcrQg�2; (3.114)

for some constant Qc, such that the restriction QV of QF to SnC1 is not constant. By
Theorem 3.30, QV satisfies the differential equations

jgradS QVj2 D Qg2.1 � QV2/; (3.115)

�S QV D Qc � Qg.n C Qg/ QV: (3.116)

Since QV is not constant on SnC1, it has a maximum value of 1 and a minimum value
of �1 by equation (3.115), as noted in Remark 3.34.

Let M0 be a connected component of the level hypersurface QV�1.0/. Let x0 2 M0,
and let U0 be a neighborhood of x0 in SnC1 on which j QVj ¤ 1. By Corollary 3.7,
M0 has constant principal curvatures, and so we can construct the Cartan–Münzner
polynomial F of M0, as in equations (3.92)–(3.94). In particular, we can define the
function � as in equation (3.92) on U0. By Theorem 3.26, we have �.x0/ D �1,
where 0 < �1 < �=g, where g is the number of distinct principal curvatures of M0.
By equation (3.97), we have for each x 2 M0 \ U0,

.grad �/p D �Q�p; (3.117)

where Q�p is a unit normal at the point p D ft.x/ to the parallel hypersurface ft.M0/,
where t D �1 � �.p/. That is,

Q�p D � sin .�1 � �.p// x C cos .�1 � �.p// �x; (3.118)

where we may assume for convenience that the unit normal �x to M0 at x is given by

�x D grad QV.x/
jgrad QV.x/j D grad QV.x/

Qg ; (3.119)

since jgrad QV.x/j D Qg for x 2 M0 by equation (3.115).
By the procedure in the proof of Theorem 3.32, the function � leads to the

Cartan–Münzner polynomial F of M0, whose restriction to SnC1 will be denoted
by V . We now compare the two functions V and QV . Note that on U0, we have
Q� D .cos�1 QV/=Qg. Then we compute



3.5 Cartan–Münzner Polynomials 127

grad Q� D 1

Qg
� �1
.1 � QV2/1=2

�
grad QV: (3.120)

Since jgrad QVj D Qg.1� QV2/1=2 by equation (3.115), the right side of equation (3.120)
is a unit vector field. Furthermore, it is normal to the appropriate level hypersurface
of QV at each point z 2 U0. By Theorem 3.5 on page 89, each level hypersurface of
QV is a parallel hypersurface of M0, and thus its unit normal field coincides with the
normal field Q� defined above. Hence, if p D ft.x/ for x 2 M0 as above, we have

Q�p D 1

Qg
grad QV.p/

.1 � QV2.p//1=2
: (3.121)

By equations (3.117), (3.120), and (3.121), the functions � and Q� have the same
gradient, and therefore they differ by a constant on U0, i.e., Q� D � C a, where jaj is
less than the maximum of f�=g; �=Qgg.

Since grad � D grad Q� D �Q� , it follows from Remark 3.37 that

� Q� D �� D 1

sin g�

�
n cos g� � c

g

�
; (3.122)

where c D .m2�m1/g2=2, and m1;m2 have the usual meaning as multiplicities of the
principal curvatures of M0. On the other hand, using equations (3.115) and (3.120),
we compute that

� Q� D div grad Q� (3.123)

D �1
Qg .h grad .1 � QV2/1=2; grad QVi C .1 � QV2/�1=2� QV/

D �1
Qg ..�1=2/..1 � QV2/�3=2.�2 QV/jgrad QVj2 C .1 � QV2/�1=2� QV/

D �.1 � QV2/�1=2 Qg QV C .1 � QV2/�1=2.n C Qg/ QV � Qc
Qg .1 � QV2/�1=2

D .1 � QV2/�1=2.n QV � Qc=Qg/

D 1

sin Qg Q� .n cos Qg Q� � Qc=Qg/:

Here Qg is the degree of QF, and Qc is the constant given in equation (3.114). We know
that Q� D � C a for some constant a on U0. Thus, by equating the two expressions
for � Q� in equations (3.122) and (3.123), we get

n cos g� � c=g

sin g�
D n cos Qg.� C a/ � Qc=Qg

sin Qg.� C a/
: (3.124)
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Since a whole interval of values of � are covered along a suitable normal geodesic
in U0, the equation,

.n cos g� � c=g/ sin Qg.� C a/ D .n cos Qg.� C a/ � Qc=Qg/ sin g�; (3.125)

must hold as an identity in � , since each side is an analytic expression in � .
We now derive some consequences of equation (3.125). First note that the right

side is zero at integral multiples of �=g, while since n D .m1 C m2/g=2, we get

n cos g� � c

g
D ˙ .m1 C m2/

2
g � .m2 � m1/

2
g ¤ 0; (3.126)

when � is an integral multiple of �=g. Thus sin g.� C a/ vanishes at such points.
Therefore, for any integer k, we have

Qg
�

k�

g
C a

�
D l�; (3.127)

for some integer l. If we set k D 0, we see that a is an integral multiple of �=Qg. If we
set k D 1, we get that �=g is an integral multiple of �=Qg. Thus, we have Qg D ˛g for
some positive integer ˛. The restriction on jaj reduces to jaj < �=g, since g � Qg.

We now examine the possibilities for the positive integer ˛. If ˛ D 1, then we
have a D 0, so that � D Q� , and thus V D QV , F D QF and c D Qc. Suppose now that
˛ > 1. Substituting a D l�=Qg for an integer l into equation (3.125) yields

.n cos g� � c=g/ sin .˛g� C l�/ D .n cos .˛g� C l�/ � Qc=Qg/.sin g�/:

Thus, we have either

sin ˛g�

sin g�
D n cos ˛g� � Qc=Qg

n cos g� � c=g
; (3.128)

or

sin ˛g�

sin g�
D n cos ˛g� C Qc=Qg

n cos g� � c=g
; (3.129)

depending on whether l is even or odd. Set � D �=˛g. If (3.128) holds, then we
have

� n � Qc=Qg D 0; i:e:; Qc D �˛gn; for l even: (3.130)

Similarly, if equation (3.129) holds, we get

Qc D ˛gn; for l odd: (3.131)
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On the other hand, taking � D 2�=˛g in equation (3.128) yields

.sin 2�=˛/.n � Qc=Qg/ D 0; for l even; (3.132)

and equation (3.129) gives

.sin 2�=˛/.n C Qc=Qg/ D 0; for l odd: (3.133)

We see that equations (3.132) and (3.133) contradict equations (3.130) and (3.131),
unless sin 2�=˛ D 0, i.e., ˛ D 2. Thus, Qg D 2g. Then the equation

jaj D jl�=2gj < �=g (3.134)

implies that l D 0; 1 or �1.
First consider l D 0. Then we have from equations (3.128) and (3.130) that

sin 2g�

sin g�
D n.cos 2g� C 1/

n cos g� � c=g
; (3.135)

which, using half-angle formulas, gives

2 cos g� D 2n cos2 g�

n cos g� � c=g
: (3.136)

Thus, we get c D 0, Qc D �2ng D �nQg, � D Q� and

QV D cos Qg Q� D cos 2g� D 2 cos2 g� � 1 D 2V2 � 1: (3.137)

There is at most one homogeneous polynomial that extends QV , namely, the
polynomial 2F2 � r2g, so we have QF D 2F2 � r2g in that case.

Next we consider the possibility that l D ˙1. In that case, equations (3.129)
and (3.131) imply that

sin 2g�

sin g�
D n.cos 2g� C 1/

n cos g� � c=g
; (3.138)

so that c D 0, Qc D 2ng D nQg, and Q� D � ˙ �=2g. Then, we get

QV D cos Qg Q� D cos .2g� ˙ �/ D � cos 2g� D �.2V2 � 1/: (3.139)

In that case, we have QF D �.2F2 � r2g/, as stated in the theorem. In both of the last
two cases, the conditions c D 0, Qg D 2g and Qc D ˙Qgn are satisfied. ut
Corollary 3.43. Let F W RnC2 ! R be a homogeneous polynomial of degree
g which satisfies the Cartan–Münzner differential equations (3.86)–(3.87) with
parameters g and c. Suppose that the restriction V of F to SnC1 is not constant.
Then the following statements are equivalent.
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(a) F is the Cartan–Münzner polynomial of a connected, oriented isoparametric
hypersurface.

(b) c ¤ ˙gn.
(c) F is the Cartan–Münzner polynomial of each component of V�1.0/.

Proof. Suppose that F is the Cartan–Münzner polynomial of a connected, oriented
isoparametric hypersurface. We know that n D .m1 C m2/g=2, and so

˙ gn D ˙.m1 C m2/g
2=2: (3.140)

Since F is a Cartan–Münzner polynomial, we have by Theorem 3.32 that

c D .m2 � m1/g
2=2: (3.141)

Thus, c D ˙gn is not possible, since m1 and m2 are nonzero. So (a) implies (b). Next
suppose that (b) is true. By Theorem 3.41, F is the Cartan–Münzner polynomial of
each connected component of V�1.0/, so (c) is true. Finally, it is obvious that (c)
implies (a). ut

3.6 Global Structure Theorems

In this section, we discuss several results concerning the global structure of an
isoparametric family of hypersurfaces in SnC1 that stem from Münzner’s construc-
tion of the Cartan–Münzner polynomials as discussed in the previous section.

Let F W RnC2 ! R be the Cartan–Münzner polynomial of degree g constructed
from a connected isoparametric hypersurface in SnC1 � RnC2 with g distinct
principal curvatures as in Theorem 3.32, and let V denote the restriction of F to
SnC1. As noted in Remark 3.34 on page 117, the range of the function V is the closed
interval Œ�1; 1�, and each level set Mt D V�1.t/;�1 < t < 1, is an isoparametric
hypersurface in SnC1.

For the sake of concreteness, let M D M0 D V�1.0/ be the isoparametric
hypersurface discussed in the previous section. Denote the two (possibly equal)
multiplicities of M by mC D m1 and m� D m�1. We next want to prove that
M and indeed all of the hypersurfaces Mt;�1 < t < 1, as well as the two focal
submanifolds, are connected.

For x 2 M, we have V.x/ D 0, and so the function � in equation (3.92) satisfies
�.x/ D �=2g. Thus, the largest principal curvature of M is cot �1 D cot.�=2g/
(see also Remark 3.34). The focal map fC W M ! SnC1 onto the focal submanifold
fC.M/ is given by

fC.x/ D E

�
x;
�

2g

�
D cos

�
�

2g

�
x C sin

�
�

2g

�
�.x/; (3.142)
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where � is the field of unit normals to M, and E is the normal exponential map. The
focal map fC factors through an immersion of the space of leaves M=T1 into SnC1,
as in Theorems 2.12 and 2.14 (see page 26), and so fC.M/ is a smooth submanifold
of SnC1 of dimension n � mC.

By Theorem 3.26 on page 108, we have �g D cot �g, where

�g D � � .�=2g/ D ��=2g .mod �/;

and so the focal map f� W M ! SnC1 onto the focal submanifold f�.M/ is given by

f�.x/ D E

�
x;

��
2g

�
D cos

���
2g

�
x C sin

���
2g

�
�.x/: (3.143)

The focal map f� factors through an immersion of the space of leaves M=Tg into
SnC1, and so f�.M/ is a smooth submanifold of SnC1 of dimension n � m�.

Connectedness of the level sets of F

Theorem 3.44. Let F W RnC2 ! R be a Cartan–Münzner polynomial of degree g
and V its restriction to SnC1. Then each isoparametric hypersurface

Mt D V�1.t/; �1 < t < 1;

is connected. Moreover, MC D V�1.1/ and M� D V�1.�1/ are the focal
submanifolds fC.M/ and f�.M/, respectively, and they are also connected.

Proof. We begin by defining a map d W M � R ! SnC1 by

d.x; �/ D E

�
x;
�

2g
� �

�
D cos

�
�

2g
� �

�
x C sin

�
�

2g
� �

�
�.x/: (3.144)

From the construction of the Cartan–Münzner polynomials, we have on an open
neighborhood of M � f �

2g g,

V.d.x; �// D cos.g�/; (3.145)

since the largest principal curvature �1 D �=2g on M. By analyticity, this
relation (3.145) holds on all of M � R. By equation (3.145), we see that V D 1

on the focal submanifold fC.M/ D d.M � f0g/, so that fC.M/ � MC. Similarly,
V D �1 on the focal submanifold f�.M/ D d.M � f�g g/, so that f�.M/ � M�. We
will show that, in fact, fC.M/ D MC and f�.M/ D M�.

The restriction of d to the set fxg � .0; �g /, for x 2 M, is a geodesic in SnC1
which intersects each hypersurface Mt;�1 < t < 1, in exactly one point by
equation (3.145). This geodesic intersects each hypersurface orthogonally, and at
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the point of intersection x of this geodesic with M, the tangent vector to the geodesic
is ��.x/. Hence V�1.�1; 1/ is the disjoint union of these geodesics as x varies over
M. The map d is a local diffeomorphism on M�.0; �=g/, since its image contains no
focal points. Since V�1.�1; 1/ is a disjoint union of these normal geodesic segments
through M with tangent vectors ��.x/ at x 2 M, the map d is a diffeomorphism of
M � .0; �=g/ onto V�1.�1; 1/. Note that the open set V�1.�1; 1/ is dense in SnC1,
since if V D ˙1 on an open set in SnC1, then V D ˙1 on all of SnC1 by the
analyticity of V . The image d.M � Œ0; �=g�/ is compact and it contains the dense
open subset V�1.�1; 1/, so it equals all of SnC1.

Since MC D V�1.1/ is a subset of d.M � Œ0; �=g�/, equation (3.145) implies that

MC D d.M � f0g/ D E.M � f �
2g

g/ D fC.M/:

In a similar way, we get f�.M/ D M�. By Theorems 2.12 and 2.14 (see page 26),
the focal submanifolds fC.M/ and f�.M/ have dimensions n � mC and n � m�,
respectively. Thus, both focal submanifolds have codimension greater than one in
SnC1. Therefore,

SnC1 � .MC [ M�/ D V�1.�1; 1/

is connected. Since V�1.�1; 1/ is diffeomorphic to M � .0; �=g/, we conclude that
M is connected. Furthermore, for �1 � t � 1, the submanifold Mt equals d.M�fsg/
for an appropriate choice of s 2 Œ0; �=g�, and so each Mt is also connected, including
the two focal submanifolds. ut

As we noted earlier, a consequence of Theorem 3.44 is that any connected
isoparametric hypersurface M lies in a unique compact, connected isoparametric
hypersurface of the form V�1.t/;�1 < t < 1, where V is the restriction to SnC1 of
the Cartan–Münzner polynomial of M. For the rest of this section, we will assume
that each isoparametric hypersurface and each focal submanifold is compact and
connected.

Münzner’s Structure Theorem

We now prove Münzner’s important structure theorem for an isoparametric family
of hypersurfaces which states that a compact, connected isoparametric hypersurface
M divides the sphere SnC1 into two ball bundles over the two focal submanifolds
MC and M�, which lie on different sides of M in SnC1. The precise wording of the
theorem is as follows.

Theorem 3.45. Let k D ˙1, and let Z be a normal vector to the focal submanifold
Mk in SnC1. Let exp W NMk ! SnC1 denote the normal exponential map for Mk.
Then



3.6 Global Structure Theorems 133

(a) V.exp Z/ D k cos.gjZj/.
(b) Let Bk D fq 2 SnC1 j kV.q/ � 0g, and let .B?Mk; S?Mk/ be the bounded unit

ball bundle in NMk. Then

 k W .B?Mk; S
?Mk/ ! .Bk;M/;

where M D V�1.0/ and  k.Z/ D exp. �
2g Z/, is a diffeomorphism of manifolds

with boundary.

Proof. Let p be a point in the focal submanifold Mk and let Z be a unit normal
vector to Mk at p, i.e., Z 2 S?p Mk. Then the focal map fk W M ! Mk maps an mk-
dimensional sphere (which is a leaf of a principal foliation on M) to the point p.
By considering the map h W f�1k .p/ ! S?p Mk used in equation (3.49) on page 105,
we see that there exists a point x 2 f�1k .p/ such that Z is the tangent vector to the
geodesic starting at x with initial tangent vector �.x/. Thus, exp.�Z/ and d.x; �/
traverse the same geodesic in SnC1 with unit speed as � varies over the real numbers
R. From equation (3.145), we see that

V.exp �Z/ D cos.g.� C � 0//; (3.146)

for some � 0 2 Œ0; 2�=g/. For � D 0, the left side of the equation above equals k, and
so � 0 D 0 if k D 1, and � 0 D �=g if k D �1. This proves part (a) of the theorem.

To prove (b), note that part (a) implies that the family of all normal geodesics
to Mk is the same as the family of all normal geodesics to M. Each point in the
complement Bk � Mk lies on precisely one level hypersurface of V , and therefore it
lies on exactly one normal geodesic to Mk. Thus, the map  k is bijective, and so it
is a diffeomorphism, since it is clearly a local diffeomorphism. ut

As a consequence of the fact that the set of normal geodesics to each focal
submanifold Mk, k D ˙1, is the same as the set of normal geodesics to each
of the parallel isoparametric hypersurfaces, we immediately obtain the following
corollary.

Corollary 3.46. Let Mk, k D ˙1, be a focal submanifold of an isoparametric
hypersurface M. Then the focal set of Mk is the same as the focal set of M, i.e.,
it is Mk [ M�k.

Münzner’s restriction on the number of principal curvatures

Münzner’s major result is that the number g of distinct principal curvatures of
an isoparametric hypersurface M in SnC1 is 1; 2; 3; 4, or 6. This is a lengthy and
delicate computation involving the cohomology rings of the hypersurface M and
its two focal submanifolds MC and M�. The structure of these rings is determined
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by the basic topological fact that a compact, connected isoparametric hypersurface
M � SnC1 divides SnC1 into two ball bundles over the two focal submanifolds as in
Theorem 3.45 (b).

Theorem 3.47 below does not assume that M is isoparametric, but only that it
divides the sphere into two ball bundles. This is important, since the theorem can
be applied to more general settings, in particular, the case of a compact, connected
proper Dupin hypersurface embedded in SnC1, as we will see in the next section.
Using methods of algebraic topology, Münzner [382] proved the theorem below,
and we refer the reader to Münzner’s paper for the proof.

Theorem 3.47. Let M be a compact, connected hypersurface in SnC1 which
divides SnC1 into two ball bundles over submanifolds MC and M�. Then ˛ D
.1=2/ dim H�.M;R/ can only assume the values 1; 2; 3; 4, and 6. (The ring R of
coefficients is Z if both MC and M� are orientable, and Z2 otherwise.)

Münzner then proved Theorem 3.48 below regarding the cohomology of an
isoparametric hypersurface and its focal submanifolds. Since all of the parallel
hypersurfaces Mt D V�1.t/ are diffeomorphic, it is sufficient to consider the case
M D V�1.0/. In that case, M has two focal submanifolds M1 D V�1.1/ of
dimension n � m1 and M�1 D V�1.�1/ of dimension n � m�1, where m1 and m�1
are the two (possibly equal) multiplicities of the principal curvatures of M. Then by
Theorem 3.45, the sets,

B1 D fq 2 SnC1 j V.q/ � 0g; B�1 D fq 2 SnC1 j V.q/ � 0g;

are .mk C 1/-ball bundles over the focal submanifolds Mk, for k D 1;�1,
respectively.

The dimension n of M is equal to g.m1 C m�1/=2, and so g D 2n=�, where
� D m1 C m�1. Thus, an isoparametric hypersurface M satisfies the hypothesis of
the following theorem of Münzner [382] (the presentation of Münzner’s proof here
follows [95, pp. 289–292] closely).

Theorem 3.48. Let M be a compact, connected hypersurface in SnC1 such that:

(a) SnC1 is divided into two manifolds .B1;M/ and .B�1;M/ with boundary along
M.

(b) For k D ˙1, the manifold Bk has the structure of a differentiable ball bundle
over a compact, connected manifold Mk of dimension n � mk.

Let the ring R of coefficients be Z if both M1 and M�1 are orientable, and Z2
otherwise. Let � D m1 C m�1. Then ˛ D 2n=� is an integer, and for k D ˙1,

Hq.Mk/ D
8
<

:

R for q 
 0 .mod �/; 0 � q < n;
R for q 
 m�k .mod �/; 0 � q < n;
0 otherwise:
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Further,

Hq.M/ D



R for q D 0; n;
Hq.M1/˚ Hq.M�1/; for 1 � q � n � 1:

Proof. By part (b) of the hypothesis, the submanifold Mk is a deformation retract of
Bk and also of the open ball bundle Bk � M for k D ˙1. Thus, for all q, we have

Hq.Bk/ D Hq.Mk/ D Hq.Bk � M/; k D ˙1: (3.147)

Suppose now that 1 � q � n � 1. Then Hq.SnC1/ D HqC1.SnC1/ D 0. Hence,
from the Mayer-Vietoris sequence for the exact triad .SnC1;B1;B�1/, we get using
equation (3.147) that

Hq.M/ ' Hq.B1/˚ Hq.B�1/ D Hq.M1/˚ Hq.M�1/: (3.148)

Since SnC1 � Bk D B�k � M, the Alexander duality theorem and equation (3.147)
imply that for 1 � q � n � 1,

Hq.Mk/ ' Hq.Bk/ ' Hn�q.B�k � M/ D Hn�q.M�k/; k D ˙1: (3.149)

Our convention on the coefficient ring R allows us to use Poincaré duality on the
.n � m�k/-dimensional manifold M�k. This and equation (3.149) give

Hq.Mk/ ' Hn�q.M�k/ ' Hq�m�k.M�k/; k D ˙1: (3.150)

Two repetitions of the formula above lead to the equation

Hq.Mk/ ' Hq�m1�m�1 .Mk/; for 1C m�k � q � n � 1: (3.151)

Since Mk is connected, we have H0.Mk/ D R. Since M�k has dimension n � m�k,
we have Hq.M�k/ D 0 for q > n � m�k. Further, by our convention on R, we have
Hn�m�k.M�k/ ' R. From this and equation (3.149), we get

Hm�k.Mk/ ' Hn�m�k.M�k/ ' R; Hq.Mk/ D 0; for 0 < q < m�k:

Using this and equation (3.150) or (3.151), we get

Hq.Mk/ D 0 for m�k < q < �; H�.Mk/ ' R:

Repeated use of formula (3.151) then gives the desired cohomology for Mk. Then
we get the cohomology of M immediately from equation (3.148) and the fact that
M is connected.
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Finally, we show that ˛ is an integer. From the formulas for the cohomology of
Mk, we know that

dim Mk 
 0 .mod �/ or dim Mk 
 m�k .mod �/:

We consider two cases. First suppose that

dim Mk 
 0 .mod �/ for k D 1 and k D �1:

Then n � m1 D j� and n � m�1 D `�, for some integers j and `. Hence,

� D 2n � .n � m1/ � .n � m�1/ D 2n � j� � `� D 2n � .j C `/�:

Thus, ˛ D 2n=� D jC`C1. Note that since jj��`�j D jm�1�m1j < �, we have
j D `. Hence, ˛ is odd and m1 D m�1. In the other case, we can assume without
loss of generality that dim M1 
 m�1 .mod �/. Then, we have

n D dim M1 C m1 
 0 .mod �/;

and we see that ˛ D 2n=� is, in fact, an even integer. ut
For a compact, connected isoparametric hypersurface M � SnC1 with g distinct

principal curvatures, we have

dim M D n D g.m1 C m�1/=2 D g�=2:

Thus, ˛ D 2n=� D g. By Theorem 3.48, we see that ˛ is also equal to
dimR H�.M;R/=2. Hence by Münzner’s Theorem 3.47, g D ˛ can only assume
the values 1; 2; 3; 4 or 6, and we have Münzner’s major theorem.

Theorem 3.49. Let M � SnC1 be a connected isoparametric hypersurface with g
distinct principal curvatures. Then g is 1; 2; 3; 4 or 6.

Note that we do not have to assume that M is compact in the theorem, because any
connected isoparametric hypersurface is contained in a unique compact, connected
isoparametric hypersurface to which the arguments above can be applied. We also
note that there do exist isoparametric hypersurfaces for each of the values of g in
the theorem, as mentioned in Section 3.1 and Subsection 3.8.5 (to follow).

Remark 3.50 (Crystallographic groups). A consequence of Münzner’s Theo-
rem 3.49 is that the dihedral group Dg associated with M (see Remark 3.27) is
crystallographic (see L.C. Grove and C.T. Benson [186, pp. 21–22]). A direct proof
of this fact could possibly give a simpler proof of Theorem 3.49 (see also K. Grove
and S. Halperin [184, pp. 437–438]).

Remark 3.51 (Multiplicities of the principal curvatures). Cartan [52–55] classified
isoparametric hypersurfaces with g � 3 principal curvatures, as discussed in
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Section 3.1. In the cases g D 4 and g D 6, many results concerning the possible
multiplicities of the principal curvatures have been obtained from the topological
situation given in Theorem 3.48, i.e., that a compact, connected isoparametric
hypersurface M in SnC1 divides SnC1 into two ball bundles over its two focal
submanifolds. In the case of four principal curvatures, several mathematicians,
including Münzner [381, 382], Abresch [2], Grove and Halperin [184], Tang
[514, 515] and Fang [149, 150], found restrictions on the multiplicities .m1;m2/.
This series of results culminated with the paper of Stolz [502], who proved the
following theorem.

Theorem 3.52. The multiplicities .m1;m2/ of the principal curvatures of an
isoparametric hypersurface with g D 4 principal curvatures are the same as
those in the known examples due to Ferus, Karcher, and Münzner [160] or the two
homogeneous examples with .m1;m2/ D .2; 2/ or .4; 5/ that are not of FKM-type.

In the case of g D 6 principal curvatures, Münzner [382] showed that all of the
principal curvatures have the same multiplicity m, and Abresch [2] showed that m
equals 1 or 2. Thus we have:

Theorem 3.53. For an isoparametric hypersurface with g D 6 principal curva-
tures, all the principal curvatures have the same multiplicity m, and m equals 1
or 2.

Isoparametric hypersurfaces are taut

We next give a proof that compact, connected isoparametric hypersurfaces are taut.
For the sake of completeness, we briefly recall some basic results from Sections 2.6
and 2.7 related to the theory of taut embeddings. Compact, connected isoparametric
submanifolds of higher codimension (see Section 3.8.6) were also shown to be taut
by Terng [525].

Let M be a compact, connected submanifold of arbitrary codimension embedded
in an m-dimensional sphere Sm. For p 2 Sm and x 2 M, the spherical distance
function Lp is defined by

Lp.x/ D d.p; x/2 D .cos�1hp; xi/2: (3.152)

There is an Index Theorem for spherical distance functions similar to the well-
known Index Theorem (Theorem 2.51, page 53) for Euclidean distance functions.
The Index Theorem for spherical distance functions states that Lp has a critical point
at x 2 M if and only if p lies on the normal geodesic to M at x. This critical point
is nondegenerate if and only if p is not a focal point of .M; x/. The index of Lp at
a nondegenerate critical point x is equal to the number of focal points (counting
multiplicities) of .M; x/ on the shortest geodesic segment from p to x.
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A function � W M ! R on a compact, connected manifold M is said to
be a nondegenerate function, or a Morse function, if every critical point of � is
nondegenerate. If any of the critical points of � is degenerate, then we will say that
� is a degenerate function on M.

A compact, connected submanifold M � Sm is taut if there exists a field F such
that every nondegenerate function of the form Lp; p 2 Sm, has ˇ.M;F/ critical
points on M, where ˇ.M;F/ is the sum of the F-Betti numbers of M. By the Morse
inequalities (see, for example, Morse-Cairns [379, p. 270]), the number of critical
points of any nondegenerate function on M is at least ˇ.M;F/ for any field F. In the
theory of taut submanifolds, the field F D Z2 has proved to be optimal, and we will
used it exclusively here. (See Remark 2.53, page 54.)

Note that a spherical distance function Lp has the same critical points on M as
the linear height function,

lp.x/ D hp; xi; p 2 Sm: (3.153)

A compact, connected submanifold M � RmC1 is tight if there exists a field F such
that every nondegenerate height function lp; p 2 Sm, has ˇ.M;F/ critical points on M
(see Section 2.6, page 36). For a compact, connected submanifold M � Sm � RmC1,
tautness is equivalent to tightness, that is, the combination of tight and spherical is
equivalent to tautness (see Theorems 2.69 and 2.70, and Corollary 2.72). At times it
is more convenient to use linear height functions than spherical distance functions,
and we will do this when it is appropriate.

As a consequence of the Index Theorem, we immediately obtain the following
result.

Theorem 3.54. Let M � SnC1 be a compact, connected hypersurface. If a spherical
distance function Lp is nondegenerate on M, then the number of critical points of Lp

on M is equal to the number of pre-images of p under the normal exponential map
E in the set M � .��; ��.

If M � SnC1 is a compact, connected isoparametric hypersurface, then Corol-
lary 3.46 implies that a spherical distance function Lp is nondegenerate on M if and
only if it is nondegenerate on each focal submanifold of M. The following theorem
gives the number of critical points of any nondegenerate spherical distance function
on M and its focal submanifolds.

Theorem 3.55. Let M � SnC1 be a compact, connected isoparametric hypersur-
face with g distinct principal curvatures, and let MC and M� be the two focal
submanifolds of M. Then

(a) Every nondegenerate spherical distance function Lp has 2g critical points on M.
(b) Every nondegenerate Lp has g critical points on MC and g critical points

on M�.

Proof. (a) Let � be a field of unit normals to M, and let �1 D cot �1, where 0 <
�1 < � , be the largest principal curvature of the shape operator A determined by � .
As in the proof of Theorem 3.44, we define a map d W M � R ! SnC1 by
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d.x; �/ D E.x; �1 � �/ D cos.�1 � �/x C sin.�1 � �/�.x/;

where E is the normal exponential map on M. The restriction V of the Cartan–
Münzner polynomial of M to SnC1 satisfies the equation

V.d.x; �// D cos g�: (3.154)

As in Theorem 3.44, the restriction of the map d to M�.0; �=g/ is a diffeomorphism
onto V�1.�1; 1/ D SnC1 � .MC [ M�/. The same is true if .0; �=g/ is replaced by
any interval of the form .j�=g; .j C 1/�=g/, for any integer j. Thus, as � varies over
the interval .��; �/, each point p in SnC1 � .MC [ M�/ is covered 2g times by d,
and so Lp has 2g critical points on M.

(b) As we noted above, Lp is nondegenerate on MC or M� if and only if p is in
the set SnC1 � .MC [ M�/. In that case, p lies on precisely one of the isoparametric
hypersurfaces Mt;�1 < t < 1. There is exactly one geodesic � through p that is
normal to each isoparametric hypersurface in the family. This geodesic � is also the
only geodesic through p which intersects MC or M� orthogonally. The geodesic �
can be parametrized as �.�/ D d.p; �/, for � 2 R. As � varies over the interval
.��; ��, equation (3.154) implies that the geodesic � alternately intersects MC and
M� at values � D j�=g, where j is an integer. Thus, � meets MC and M� exactly g
times, and so Lp has g critical points on each of the focal submanifolds. ut

As a consequence, we have the following result first obtained in [93].

Corollary 3.56. Let M � SnC1 be a compact, connected isoparametric hypersur-
face. Then M and its two focal submanifolds MC and M� are taut submanifolds of
SnC1.

Proof. As noted after the proof of Theorem 3.48, the quantity ˛ D 2n=� D g.
From Theorem 3.48, we see that the sum of the Betti numbers ˇ.M;Z2/ of M is
2˛ D 2g, whereas ˇ.MC;Z2/ D ˇ.M�;Z2/ D g. Since every nondegenerate Lp

has 2g critical points on M and g critical points on MC and M�, the corollary is
proved. ut

Totally focal embeddings

We close this section with a discussion of the notion of totally focal embeddings
introduced by Carter and West [62–64, 68]. An embedding f W M ! Sm of a
compact, connected manifold is said to be totally focal if every spherical distance
function Lp is either nondegenerate or has only degenerate critical points. (Carter
and West [62, 63] also considered totally focal embeddings into Euclidean space
Rm which are defined in a similar way.) Cecil and Ryan [93, p. 102] proved the
following corollary of Theorem 3.55.
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Corollary 3.57. Let M � SnC1 be a compact, connected isoparametric hypersur-
face. Then M is totally focal in SnC1.

Proof. Using the notation of Theorem 3.55, suppose that Lp is a degenerate function
on M, i.e., suppose that p is a focal point of M. Suppose first that p 2 MC so that
V.p/ D 1. If p is also equal to d.y; �/ for some y ¤ x in M, then by equation (3.154),
� is an even integral multiple of �=g. If p were in M�, then � would have to
be an odd multiple of �=g. In either case, p is a focal point of .M; y/. Thus, all
of the critical points of Lp on M are degenerate. Therefore, if Lp is a degenerate
function on M, then all of the critical points of Lp are degenerate, and so M is totally
focal. ut
Remark 3.58. Note that the focal submanifolds MC and M� are not totally focal.
If p 2 MC, then p is a focal point of MC, but Lp has a nondegenerate absolute
minimum at p itself. A similar proof shows that M� is not totally focal.

Remark 3.59 (On the converse to Corollary 3.57). Carter and West [64] proved the
converse of Corollary 3.57, i.e., a compact, connected totally focal hypersurface
M � SnC1 is isoparametric.

In a later paper [68], Carter and West presented a proof that a compact,
connected totally focal submanifold of codimension greater than one in SnC1 is
an isoparametric submanifold as defined by Terng [525] (see Subsection 3.8.6).
However, Terng and Thorbergsson [531, p. 197] noted a gap in the proof of Theorem
5.1 of that paper [68, p. 619].

For simplicity, we describe the gap in the situation of a proper Dupin hypersur-
face M � SnC1. The gap involves the assertion that for any leaf C of any principal
foliation T� through an arbitrary point x 2 M, the normal geodesic to M at x
intersects M again at the point y 2 M antipodal to x in the leaf C.

This implies that C is totally geodesic in the corresponding curvature sphere at x.
By Theorem 2.20 on page 32, this means that the corresponding principal curvature
function � has a critical value along the leaf C. Since x is an arbitrary point in M,
this means that every point of M is a critical point of �, and thus � is constant on M.
This holds for any principal curvature �, and so M is isoparametric.

The gap in the proof is the assertion that the normal geodesic to M at any point
x 2 M always intersects M again at the point y 2 M antipodal to x in the leaf C. This
is not necessarily true if M is proper Dupin but not isoparametric. There is a similar
gap in the proof given in [95, Theorem 9.25, p. 231].

Attempting to eliminate the gap in the case of codimension greater than one
remains as an open problem.

3.7 Applications to Dupin Hypersurfaces

In this section, we discuss a result due to Thorbergsson [533] that the restriction
g D 1; 2; 3; 4, or 6 on the number of distinct principal curvatures of an isoparametric
hypersurface in SnC1 also holds for a compact, connected proper Dupin hypersurface
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M embedded in SnC1. This leads to restrictions on the multiplicities of the principal
curvatures of a compact, connected proper Dupin hypersurface due to Stolz [502]
and Grove and Halperin [184].

Let Mn � SnC1 � RnC2 be a compact, connected proper Dupin hypersurface
embedded in SnC1. Then M is orientable (see, for example, [471]), and let � denote
a global field of unit normals on M. Assume that M has g distinct smooth principal
curvature functions, which we label as in Section 3.2 on page 102,

�i D cot �i; 0 < �i < �; 1 � i � g; (3.155)

where the �i form an increasing sequence. Then �i has constant multiplicity on M
which we denote by mi.

Let fC W M ! SnC1 denote the focal map of M onto the first focal submanifold
MC reached by going a distance �1 from M in the direction of � , that is,

fC.x/ D E.x; �1.x// D cos.�1.x//x C sin.�1.x//�.x/; (3.156)

where E is the normal exponential map on M. The focal map fC factors through an
immersion of the space of leaves M=T1 into SnC1, as in Theorems 2.12 and 2.14
(see page 26), and so MC is a smooth immersed submanifold of SnC1 of dimension
n � m1. Similarly, we have the focal map f� W M ! SnC1 onto the first focal
submanifold M� in the direction �� . Then M� is a smooth immersed submanifold
of SnC1 of dimension n � m�1, where m�1 D mg.

We now discuss Thorbergsson’s argument that M divides SnC1 into a union of
two ball bundles over these two focal submanifolds MC and M�. This leads to the
restriction on the number of distinct principal curvatures and to many restrictions
on the possible multiplicities of the principal curvatures, as noted in Remark 3.51.

Thorbergsson’s proof relies on the following theorem which he proved in [533].
His theorem is valid in all the real space forms, Euclidean space RnC1, the sphere
SnC1, and hyperbolic space HnC1. Here tautness means with respect to Z2-homology
as usual.

Theorem 3.60. Let Mn � QMnC1 be a complete, connected proper Dupin hypersur-
face embedded in a real space form QMnC1. Then M is taut.

This theorem was also stated earlier as Theorem 2.80 on page 66, where we
discussed Thorbergsson’s method of proof. As noted there, Thorbergsson’s proof is
different than the proof of tautness in the isoparametric case given in Corollary 3.56.
Thorbergsson used the principal foliations to construct concrete Z2-cycles in M,
which enabled him to show that every critical point of every nondegenerate distance
function is of linking type (see, Morse-Cairns [379, p. 258] and the discussion after
Theorem 2.28), and thus M is taut. See Thorbergsson’s paper [533] for a complete
proof.

Remark 3.61 (Focal submanifolds of Dupin hypersurfaces may not be taut). In
contrast to the case of an isoparametric hypersurface (see Corollary 3.56), the focal
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submanifolds of a compact, connected proper Dupin hypersurface embedded in
SnC1 or RnC1 are not necessarily taut. For example, for a compact ring cyclide of
Dupin M in R3 that is not a torus of revolution (see Figure 5.3, page 277), one focal
submanifold is an ellipse, which is not taut in R3, although it is tight in R3. More
generally, using techniques from Lie sphere geometry, Buyske [51] showed that if a
hypersurface M in RnC1 is Lie equivalent to an isoparametric hypersurface in SnC1,
then each compact focal submanifold of M is tight in RnC1, although not necessarily
taut.

We now use Theorem 3.60 to derive an important theorem due to Thorbergsson
[533]. Here MC and M� are the first focal submanifolds on either side of M in SnC1,
as defined in the paragraph containing equation (3.156).

Theorem 3.62. Let M � SnC1 be a compact, connected proper Dupin hypersur-
face. Then M divides SnC1 into a union of two ball bundles over the two focal
submanifolds MC and M�.

Proof. We first show that MC and M� lie in different components of SnC1 � M,
the complement of M in SnC1. Let p D fC.x/ for some point x 2 M. Since M is
tautly embedded, the spherical distance function Lp has an absolute minimum at x
by Theorem 2.64 on page 59. Therefore, the normal geodesic segment Œx; p� does not
intersect M except at x, and so p lies in the component WC of SnC1�M to which the
normal field � points. Thus, MC is contained in WC, and similarly, M� is contained
in the other component W�.

Since M is proper Dupin and compact, each leaf of each principal foliation is an
embedded metric sphere of the appropriate dimension by Theorems 2.11 and 2.14
(see page 25). Thus, the inverse image f�1C .p/ of any focal point p in MC consists of a
discrete union of m1-dimensional spheres which are leaves of the principal foliation
T1. Each such leaf lies on the n-sphere in SnC1 with center p and radius r, where r
is the minimum value of Lp on M. Since M is taut, it has the spherical two-piece
property (STPP) of Banchoff [20] (see Section 2.7), and so this discrete collection
of m1-dimensional spheres consists of only one leaf L of T1. Thus, the immersion
of the space of leaves M=T1 onto MC given in Theorems 2.12 and 2.14 is injective,
and MC is an embedded .n � m1/-dimensional submanifold of SnC1.

For each point x 2 M, the geodesic segment Œx; fC.x/� lies in the closure WC
of WC. Furthermore, if q is any point of WC � MC, then the distance function Lq

has a nondegenerate minimum on M which is unique by tautness. Hence, q lies on
exactly one of the segments Œx; fC.x/� from a point x 2 M to the focal point fC.x/
on MC. Thus WC is the union of the segments Œx; fC.x/� as x ranges over M, and
the map � W WC ! MC which takes the segment Œx; fC.x/� to the point fC.x/ is
a ball bundle projection. The same proof shows that W� is a ball bundle over the
embedded .n � m�1/-dimensional focal submanifold M�. ut

Thus, the hypotheses of Theorem 3.48 on page 134 are satisfied by M and
the focal submanifolds MC and M�, and therefore the Z2-cohomology of M,
MC and M� is determined by that theorem. In particular, the number ˛ D
.1=2/ dim H�.M;Z2/ can only assume the values 1; 2; 3; 4, or 6.
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Restriction on g for compact proper Dupin hypersurfaces

By counting the number of cycles that he constructed in his proof of Theorem 3.60,
Thorbergsson showed that dim H�.M;Z2/ D 2g, where g is the number of distinct
principal curvatures of M, and thus ˛ D g. Hence, Thorbergsson obtained the
following theorem (see also Grove-Halperin [184, pp. 437–438] for another proof
of Theorem 3.63).

Theorem 3.63. Let M � SnC1 be a compact, connected proper Dupin hypersur-
face. Then the number g of distinct principal curvatures of M is 1; 2; 3; 4 or 6.

Thorbergsson [538, p. 980] pointed out that his construction of the cycles in [533]
can be used to show that the multiplicities of the principal curvatures of a compact,
connected proper Dupin hypersurface satisfy the relation mk D mkC2 (subscripts
mod g), as in Theorem 3.26 for isoparametric hypersurfaces. The proof is different
than in the isoparametric case. In the Dupin case, it is accomplished by calculating
the homology of M by using the cycles constructed by Thorbergsson and comparing
that with the calculation of the homology based on the fact that M divides SnC1 into
two ball bundles, as in Theorem 3.62.

In fact, the following theorem regarding the multiplicities of a compact, con-
nected proper Dupin hypersurface embedded in SnC1 has been proven.

Theorem 3.64. For each value of g D 1; 2; 3; 4 or 6, the possible multiplicities
of the principal curvatures of a compact, connected proper Dupin hypersurface
embedded in SnC1 are the same as the possible multiplicities for an isoparametric
hypersurface with the same number of principal curvatures (see Remark 3.51,
page 136).

This was shown in the case g D 4 by Stolz [502] and for g D 6 by Grove and
Halperin [184]. Both of these papers involve sophisticated topological arguments.
Note that for g D 1 and g D 2, there are no restrictions on the multiplicities.
In the case g D 3, Miyaoka [363] proved that a compact, connected proper
Dupin hypersurface M is Lie equivalent to an isoparametric hypersurface, and thus
it has the same multiplicities as an isoparametric hypersurface. That is, all the
multiplicities are equal to a certain integer m, and m is 1; 2; 4 or 8.

Proper Dupin hypersurfaces are algebraic

Another important result is that like isoparametric hypersurfaces, proper Dupin
hypersurfaces are algebraic. This was formulated by Cecil, Chi, and Jensen [84]
as follows.

Theorem 3.65. Every connected proper Dupin hypersurface f W M ! Rn

embedded in Rn is contained in a connected component of an irreducible algebraic
subset of Rn of dimension n � 1.
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The main idea of the proof of this theorem is due to Pinkall, who sent a letter
[444] to T. Cecil in 1984 that contained a sketch of the proof. However, Pinkall did
not publish a proof, and a full proof based on Pinkall’s sketch was not published until
2008 by Cecil, Chi, and Jensen [84]. The proof makes use of the various principal
foliations whose leaves are open subsets of spheres to construct an analytic algebraic
parametrization of a neighborhood of f .x/ for each point x 2 M. From this, one can
get the final conclusion stated above by using methods of real algebraic geometry.

In contrast to the situation for isoparametric hypersurfaces, however, a connected
proper Dupin hypersurface in Rn or Sn does not necessarily lie in a compact
connected proper Dupin hypersurface, as the tube M3 over a torus T2 � R3 � R4 in
Example 2.22 on page 33 illustrates. The tube M3 is a compact algebraic Dupin
hypersurface that contains the open subset U � M3 on which there are three
distinct principal curvatures. Each connected component of U is a proper Dupin
hypersurface contained in the compact algebraic hypersurface M3, but M3 itself is
only Dupin and not proper Dupin.

The algebraicity, and hence analyticity, of proper Dupin hypersurfaces was useful
in clarifying certain fine points in the 2007 paper [82] of Cecil, Chi, and Jensen on
proper Dupin hypersurfaces with four principal curvatures.

In 1984, Kuiper [305] asked whether all taut submanifolds are algebraic. Of
course, taut implies Dupin but not necessarily proper Dupin, so Theorem 3.65 does
not completely answer Kuiper’s question. In their paper, Cecil, Chi, and Jensen [84]
proved that a compact taut submanifold Mn is algebraic if n � 4. This was known
in dimensions n � 2 by Banchoff’s [20] classification of taut compact curves (must
be a metric circle) and surfaces (see Theorem 5.49, page 326). The main result of a
recent preprint of Chi [110] is that the answer to Kuiper’s question is affirmative.

3.8 Examples of Isoparametric Hypersurfaces

In this section, we discuss some examples of isoparametric hypersurfaces in SnC1
based on the number g of distinct principal curvatures.

3.8.1 The case g D 1

If a connected isoparametric hypersurface Mn � SnC1 has g D 1 principal curvature,
then Mn is a totally umbilic hypersurface in SnC1. As such, Mn is an open subset
of a great or small hypersphere in SnC1. Each great or small hypersphere is the
set where SnC1 intersects a hyperplane in RnC2. The spheres lying in hyperplanes
perpendicular to a given diameter of SnC1 make up an isoparametric family whose
focal set consists of the two end-points (poles) of the diameter. We now describe
these hypersurfaces in terms of the general theory of isoparametric hypersurfaces
that we have developed.
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Let p be a unit vector in RnC2 which we will use to determine a diameter of SnC1.
Let F be the linear height function,

F.z/ D hz; pi; (3.157)

for z 2 RnC2. Then

gradEF D p; jgradEFj2 D 1; �EF D 0;

so that F satisfies the Cartan–Münzner differential equations (3.86)–(3.87) with g D
1 and c D 0. It follows from Theorem 3.30 on page 112 that the restriction V of F
to SnC1 satisfies

jgradSVj2 D 1 � V2; �SV D �.n C 1/V; (3.158)

so that V is an isoparametric function on SnC1. In fact, it is useful to note that at any
z 2 SnC1, we have

gradSV D p � hz; piz: (3.159)

We consider the level sets

Ms D fz 2 SnC1 j hz; pi D cos sg; 0 � s � �:

Except for the two focal submanifolds, M0 D fpg and M� D f�pg, each level set is
an n-sphere with radius sin s lying in the hyperplane situated 1 � cos s units below
the north pole p. From the point of view of the intrinsic geometry of SnC1, the set
Ms is the geodesic hypersphere S.p; s/ centered at the point p having radius s. Note
that Ms may also be regarded as the sphere S.�p; � � s/. Finally, the collection of
all Ms forms a system of parallel hypersurfaces with

Ms0�t D ftMs0 ; s0 � � < t < s0;

provided that � D gradSV=jgradSVj is used as the field of unit normals to Ms in the
definition of ft.

We now compute the shape operator A of Ms0 . We first compute for z 2 Ms0 ,
X 2 TzMs0 ,

QrX.gradSV/ D �.hX; piz C hz; piX/:

Then, using Theorem 3.1 on page 86, we have for X;Y 2 TzMs0 and � D jgradSVj,
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hAX;Yi D �1
�

HF.X;Y/

D �1p
1 � F2

h QrX gradSV;Yi

D 1
p
1 � cos2 s0

.hX; pihz;Yi C hz; pihX;Yi/

D cos s0
sin s0

hX;Yi:

Thus Ms is totally umbilic with principal curvature cot s0. The sectional curvature is
therefore 1Ccot2 s0 D csc2 s0, as is appropriate for a sphere of radius sin s0. All this
agrees with our general calculations of principal curvatures of parallel hypersurfaces
in Theorem 2.2 on page 17, which would assign the principal curvature cot.s0 � t/
to the parallel hypersurface ft.Ms0 / D Ms0�t.

Orbits of a group action

The family fMsg may also be realized as the set of orbits of a group action as follows.
Pick an arbitrary point p 2 SnC1 and consider the subgroup G of SO.n C 2/ of
transformations that leave p fixed. For z 2 SnC1, z ¤ ˙p, the isotropy subgroup,

Gz D fg 2 G j gz D zg;
is a naturally embedded copy of SO.n/, so that the orbit M D Gz has codimension
1 in SnC1.

Take an orthonormal basis fe1; : : : ; enC2g with e1 D p, and e2 chosen so that
z lies in the plane spanned by fe1; e2g. Thus, z D z1e1 C z2e2 and z2 ¤ 0, since
z ¤ ˙p. With respect to this orthonormal basis, let A0 be an arbitrary skew-
symmetric .n C 1/ � .n C 1/ matrix, and let A be the .n C 2/ � .n C 2/ matrix,

A D
�
0 0

0 A0

�
: (3.160)

Then gt D exp tA is a curve in G with g0 D I and initial tangent vector �!g 0 D A.
The tangent space to the orbit M of z is the set of vectors of the form,

d

dt
.gtz/jtD0 D d

dt
exp.tA/z D Az;

for A as in equation (3.160).
Let � D �p C �z C w, where hw; pi D hw; zi D 0. Then

hAz; �i D 0 , hz;A�i D 0 , hz; 0C �Az C Awi D 0 , hz;Awi D 0;

since Ap D 0, and hz;Azi D 0, because A is skew-symmetric.
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If � is normal to M at z, then we have hAz; �i D hz;Awi D 0 for all skew-
symmetric A of the form described above. In particular, the function A such that
A.ej/ D 0, for j ¤ 2; k, A.e2/ D ek, A.ek/ D �e2 is skew-symmetric and

Aw D A.
nC2X

iD3
wiei/ D �wke2:

Thus,

0 D hz;Awi D hz1e1 C z2e2;Awi D hz1e1 C z2e2;�wke2i D �z2wk;

and so wk D 0 for all k, since z2 ¤ 0. We conclude that

� D �p C �z:

We also have h�; zi D 0, since � is tangent to the sphere at z. Thus, we have

�hz; pi C � D 0;

so that � D ��hz; pi. Let hz; pi D cos s0, 0 < s0 < � . Then

� D �p � �hz; piz D �.p � hz; piz/;

and

j�j2 D �2.1C hz; pi2 � 2hz; pi2/ D �2.1 � hz; pi2/ D �2 sin2 s0:

Thus, a unit normal vector �0 to M at z has the form,

�0 D ˙ 1

sin s0
.p � cos s0 z/; (3.161)

and we take the positive sign in order to agree with the level set approach.
Recall that at a point z0 2 M, we have

Tz0M D fAz0 j A 2 gg;

where g is the set of matrices of the form (3.160). For any A 2 g, we have
exp.tA/ 2 G, and the curve

zt D exp.tA/z0

has initial tangent vector �!z 0 D Az0. The vector �0 in equation (3.161) with z D z0
(where we take the positive sign) is
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�0 D 1

sin s0
.p � cos s0 z0/; (3.162)

where hz0; pi D cos s0. This is a unit normal to M at the point z0.
For any g 2 G, at the point z D gz0 we have TzM D gTz0M and �z D g�0. Then,

DAz0� D d

dt
.exp tA/�0jtD0 D A�0 D A

�
p � cos s0z0

sin s0

�
D � cot s0.Az0/;

which shows that M is umbilic at z0 with principal curvature cot s0.
Now let z D gz0 be any point in M. Then

gAz0 D d

dt
g.exp tA/z0jtD0;

so that

DgAz0� D d

dt
.g exp.tA/�0/ D gA�0 D g.� cot s0/Az0 D � cot s0.gAz0/;

so that M is totally umbilic with constant principal curvature cot s0.

3.8.2 The case g D 2

We know from Theorem 3.29 that an isoparametric hypersurface M � SnC1
with two distinct principal curvatures is a standard product of two spheres in
complementary orthogonal Euclidean spaces. In this section, we describe these
hypersurfaces from various points of view.

We consider RnC2 D RpC1 � RqC1, where p C q D n. For z D .x; y/ in RpC1 �
RqC1, set

F.z/ D jxj2 � jyj2: (3.163)

Then we compute

gradEF D 2.x;�y/; jgradEFj2 D 4r2; �EF D 2.p � q/; (3.164)

so that F satisfies the Cartan–Münzner differential equations (3.86)–(3.87) with
g D 2 and c D 2.p � q/. Note that since c D g2.m2 � m1/=2 D 2.m2 � m1/, we
have m2 � m1 D p � q. Since we also have m1 C m2 D p C q D n, we conclude that

m1 D q; m2 D p: (3.165)

The restriction V of F to SnC1 satisfies
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gradSV D 2..1 � V/x;�.1C V/y/; jgradSVj2 D 4.1 � V2/; (3.166)

�SV D 2.p � q/ � 2.n C 2/V;

so that V is an isoparametric function. Let

Ms D fz 2 SnC1 j F.z/ D cos 2sg; 0 � s � �

2
:

The two focal submanifolds are

M0 D f.x; y/ j y D 0g D Sp � f0g; M �
2

D f.x; y/ j x D 0g D f0g � Sq:

Note that dim M0 D p D n � q D n � m1, and dim M�=2 D q D n � p D n � m2.

Products of spheres

Except for these two focal submanifolds, each level set is the Cartesian product of
a p-sphere of radius cos s with a q-sphere of radius sin s. To see this, note that if
z D .x; y/ is in Ms, then

jxj2 � jyj2 D cos 2s D cos2 s � sin2 s: (3.167)

On the other hand, since .x; y/ 2 SnC1, we have

jxj2 C jyj2 D 1 D cos2 s C sin2 s: (3.168)

Adding these two equations, we get jxj2 D cos2 s, while subtracting equa-
tion (3.167) from equation (3.168) yields jyj2 D sin2 s.

Finally, the Ms form a system of parallel hypersurfaces with

Ms0�t D ft.Ms0 /; s0 � �

2
< t < s0;

provided that � D gradSV=jgradSVj is used as unit normal to Ms0 .
As in the previous example, we compute the shape operator A at z D .x; y/ by

using

QrX.gradSV/ D 2.1 � cos 2s/X; X 2 RpC1 \ TzS
nC1;

QrY.gradSV/ D �2.1C cos 2s/Y; Y 2 RqC1 \ TzS
nC1:

Note that

TzM D f.X;Y/ j hX; xi D 0; hY; yi D 0g
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naturally decomposes into principal subspaces corresponding to principal
curvatures,

�2.1 � cos 2s/

2
p
1 � cos2 2s

D �2 sin2 s

2 sin s cos s
D � tan s D cot.s C �

2
/

and

2.1C cos 2s/

2
p
1 � cos2 2s

D cot s;

with respective multiplicities p and q.

Homogeneity in the case g D 2

The family fMsg may also be realized as the set of orbits of a group action. Pick
z0 D .x0; y0/ in SnC1 with neither x0 nor y0 equal to zero. Then

G D SO.p C 1/ � SO.q C 1/

is naturally embedded in SO.n C 2/. The Lie algebra g of G decomposes into the
direct sum o.p C 1/˚ o.q C 1/, and an element of g may be written in the form

�
A 0

0 B

�
; (3.169)

where A is a skew-symmetric .p C 1/ � .p C 1/ matrix and B is a skew-symmetric
.qC1/�.qC1/matrix. The isotropy subgroup at z0 D .x0; y0/ is SO.p/�SO.q/, so
that each orbit has codimension two in RnC2, and hence codimension one in SnC1.

Again considering the exponential map of o.n C 2/, we see that

Tz0M D f.Ax0;By0/ j A 2 o.p C 1/; B 2 o.q C 1/g;

so that � D .u; v/ is a unit normal to M at z0 if and only if h�; z0i D 0, j�j D 1, and

hAx0; ui D hBy0; vi D 0;

for all A;B. In other words,

� D ˙.tan s x0;� cot s y0/;

where s 2 .0; �=2/ is chosen so that jx0j D cos s, jy0j D sin s. We take the positive
sign to agree with the level set approach.
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As in the g D 1 case, we compute for Z D .Ax0;By0/,

DZ� D d

dt

�
exp tA 0

0 exp tB

� �
tan s x0

� cot s y0

�
D �

�� tan s Ax0
cot s By0

�
;

so that the principal vectors and principal curvatures at z0 are what we expected.
Then the same situation holds at every point of M by homogeneity.

Note that the orbit under the G action of a point .x; 0/ with jxj D 1 is the focal
submanifold M0, while the orbit of a point of the form .0; y/with jyj D 1 is the focal
submanifold M�=2.

Since the focal submanifolds are totally geodesic, we can also find the principal
curvatures of Ms from the formula in Theorem 2.2 on page 17 for the shape
operators of a tube. Consider Ms as a tube of radius s over the totally geodesic focal
submanifold M0 D Sp � f0g. From Theorem 2.2, we see that Ms has two constant
principal curvatures,

�1 D cot
��
2

� s
	

D tan s; �2 D � cot s; (3.170)

with respective multiplicities p and q. If we choose the opposite field of unit normals,
then these principal curvatures agree with those obtained by the level set approach
above.

3.8.3 The case g D 3

Isoparametric hypersurfaces with g D 3 principal curvatures are not as easily
described as the hyperspheres and the products of spheres. We recall from Corol-
lary 3.28 that g D 3 requires that the all the principal curvatures have the same
multiplicity m so that the dimension n of M is a multiple of 3. Thus, for the first
time, we have a restriction on the dimension in which isoparametric hypersurfaces
with a given g can occur. As we have noted earlier, Cartan [55] proved that m is one
of the numbers 1; 2; 4; 8, and therefore n is 3; 6; 12, or 24.

In the examples presented so far, each isoparametric family can be viewed in the
following three ways.

(1) as the level sets of an isoparametric function,
(2) as the set of tubes over its focal submanifolds,
(3) as the orbits of a certain group action.

We will present the case g D 3 in the same three ways. Note that description (3)
is only possible if the hypersurfaces in the family are homogeneous, and this is not
necessarily true in the case of g D 4 principal curvatures.
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Cartan [54] showed that an isoparametric family of hypersurfaces with g D 3

principal curvatures of multiplicity m is determined as the family of level sets of the
Cartan–Münzner polynomial F.x; y;X;Y;Z/ on R3mC2 given by

x3�3xy2C3

2
x.XXCYY�2ZZ/C3

p
3

2
y.XX�YY/C3

p
3

2
.XYZCZYX/: (3.171)

In this formula, x and y are real parameters, while X;Y;Z are coordinates in the
division algebra F D R;C;H (quaternions), O (Cayley numbers, i.e., octonians),
for m D 1; 2; 4; 8, respectively. Note that the sum XYZ C ZYX is twice the real
part of the product XYZ. In the case of the Cayley numbers, multiplication is not
associative, but the real part of XYZ is the same whether one interprets the product
as .XY/Z or X.YZ/.

The isoparametric hypersurfaces in the family are the level sets Mt in S3mC1
determined by the equation F D cos 3t, 0 < t < �=3, where F is the polynomial
in equation (3.171). The focal submanifolds are obtained by taking t D 0 and
t D �=3. These focal submanifolds are a pair of antipodal standard embeddings
of the projective plane FP2, for the appropriate division algebra F (see Section 2.9,
[303, 505] or [95, pp. 87–90]). In the case of F D R, these focal submanifolds are
standard Veronese surfaces in S4 � R5. For the cases F D R;C;H, Cartan gave a
specific parametrization of the focal submanifold M0 where the polynomial F D 1

as follows:

X D p
3vw; Y D p

3wu; Z D p
3uv;

x D
p
3

2
.juj2 � jvj2/; y D jwj2 � juj2 C jvj2

2
;

where u; v;w are in F, and juj2 C jvj2 C jwj2 D 1. This map is invariant under the
equivalence relation

.u; v;w/ � .u�; v�;w�/; � 2 F; j�j D 1:

Thus, it is well-defined on FP2, and it is easily shown to be injective on FP2.
Therefore, it is an embedding of FP2 into S3mC1. This parametrization differs
slightly from that given in Section 2.9 for the standard embeddings of projective
spaces.

Principal curvatures of the focal submanifolds

We now determine the principal curvatures of the focal submanifolds and the
isoparametric hypersurfaces using Münzner’s theory. For simplicity, we consider
the case F D R. We first consider the focal submanifold M0. By Corollary 3.22 and
Theorem 3.26, for any unit normal � at any point p 2 M0, the shape operator A� has
the form,
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A� D
�

cot.2�=3/ 0

0 cot.�=3/

�
D
��1=p3 0

0 1=
p
3

�
: (3.172)

For 0 < t < �=3, the hypersurface Mt is a tube ft of radius t over the Veronese
surface M0 in S4, as can be seen by the definition of the Cartan–Münzner polynomial
on page 116. By Theorem 2.2 on page 17 concerning the shape operator of a tube,
the shape operator of Mt at the point ft.p; �/ has the matrix form

At D
2

4
cot. 2�

3
� t/ 0 0

0 cot.�
3

� t/ 0

0 0 � cot t

3

5 ; (3.173)

with respect to the appropriate orthonormal basis. For t D �=6, and thus F D 0, we
get Cartan’s minimal isoparametric hypersurface M�=6, which has shape operator,

A�=6 D
2

4
cot �

2
0 0

0 cot �
6

0

0 0 � cot �
6

3

5 D
2

4
0 0 0

0
p
3 0

0 0 �p
3

3

5 : (3.174)

Note that M�=6 is the unique minimal hypersurface in the isoparametric family, as
can be seen by taking the trace of At given in equation (3.173). In 2006, Adachi
and Maeda gave a characterization of a minimal Cartan hypersurface and certain
products of spheres in terms of extrinsic properties of their geodesics (see [5] for
more details).

Due to the nonassociativity of the Cayley numbers, there is no corresponding
parametrization of the standard embedding of the Cayley projective plane. However,
it can be described (see, for example, [162, 303]) as the submanifold

V D fA 2 M3�3.O/ j A
T D A D A2; trace A D 1g;

where M3�3.O/ is the space of 3� 3matrices of Cayley numbers. This submanifold
V lies in a sphere S25 in a 26-dimensional real subspace of M3�3.O/.

Cartan’s results imply that up to congruence, there is only one isoparametric
family of hypersurfaces with g D 3 principal curvatures for each value of m.
This classification is closely related to various characterizations of these standard
embeddings of FP2. (See Ewert [148], Little [332], and Knarr-Kramer [282].)

See the papers of Knarr and Kramer [282], and Console and Olmos [121], for
alternative proofs of Cartan’s classification of isoparametric hypersurfaces with
g D 3 principal curvatures. In a related paper, Sanchez [473] studied Cartan’s
isoparametric hypersurfaces from an algebraic point of view. (See also the paper
of Giunta and Sanchez [174].)
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Homogeneity of Cartan’s hypersurfaces

Cartan showed that in each case m D 1; 2; 4 or 8, the isoparametric hypersurfaces
and the two focal submanifolds are homogeneous, that is, they are orbits of points in
SnC1 under the action of a closed subgroup of SO.nC2/. Here we give a presentation
of this fact for the case F D R as in [95, pp. 297–299]. An analogous construction
can be made for the other algebras.

We consider R9 as the space M3�3.R/ of 3 � 3 real matrices with standard inner
product

hA;Bi D trace ABT :

We consider the 5-dimensional subspace R5 of symmetric matrices with trace zero,
and let S4 be the unit sphere in R5. That is,

S4 D fA 2 M3�3.R/ j A D AT ; trace A D 0; jAj D 1g:

The group SO.3/ acts on S4 by conjugation. This action is isometric and thus
preserves S4. For every A 2 S4, there exists a matrix U 2 SO.3/ such that UAUT is
diagonal. In fact, a direct calculation shows that every orbit of this action contains a
representative of the form Bt, where Bt is a diagonal matrix whose diagonal entries
are

r
2

3
fcos.t � �

3
/; cos.t C �

3
/; cos.t C �/g:

If all the eigenvalues of Bt are distinct, then the orbit of Bt is 3-dimensional. For
example, consider

B�=6 D diagonal f1=p2; 0;�1=p2g:

The isotropy subgroup of B�=6 under this group action is the set of matrices in
SO.3/ that commute with B�=6. One can easily compute that this group consists
of diagonal matrices in SO.3/ with entries ˙1 along the diagonal. This group is
isomorphic to the Klein 4-group Z2 � Z2, and thus the orbit M�=6 is isomorphic to
SO.3/=Z2 � Z2. The hypersurface M�=6 is the unique minimal hypersurface in the
isoparametric family.

The two focal submanifolds are lower-dimensional orbits, and they occur when
Bt has a repeated eigenvalue. For example, when t D 0, we have

B0 D diagonal f1=p6; 1=p6;�2=p6g:

The isotropy subgroup for B0 is the subgroup S.O.2/ � O.1// consisting of all
matrices of the form
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�
A 0

0 ˙1
�
; A 2 O.2/;

having determinant one. Thus, M0 is diffeomorphic to SO.3/=S.O.2/�O.1// which
is the real projective plane RP2. In fact, M0 is a standard Veronese surface, as noted
above. The other focal submanifold M�=3 is the orbit of

B�=3 D diagonal f2=p6;�1=p6;�1=p6g:
This is also a standard Veronese surface antipodal to M0.

Remark 3.66 (Irreducible proper Dupin hypersurfaces with g D 3). Working in
the context of Lie sphere geometry, Pinkall [442, 445] showed that a connected
irreducible proper Dupin hypersurface M3 � S4 with g D 3 principal curvatures is
Lie equivalent to an isoparametric hypersurface in S4. Later without using Cartan’s
classification of isoparametric hypersurfaces with g D 3 in S4, Cecil and Chern [80]
(see also [77, pp. 182–186]) showed directly that a connected irreducible proper
Dupin hypersurface M3 � S4 with g D 3 principal curvatures is Lie equivalent to
an open subset of a tube over a spherical Veronese surface V2 � S4.

Cecil and Jensen [85] later proved that if Mn�1 is a connected irreducible proper
Dupin hypersurface in Sn with three distinct principal curvatures of multiplicities
m1;m2;m3, then m1 D m2 D m3, and Mn�1 is Lie equivalent to an isoparametric
hypersurface in Sn. Thus, by Cartan’s classification of isoparametric hypersurfaces
with g D 3, the common multiplicity m of the principal curvatures satisfies m D
1; 2; 4, or 8.

Remark 3.67 (Tight polyhedral models of isoparametric families). Banchoff and
Kühnel [25] constructed tight polyhedral models of isoparametric families in
spheres with g � 3 principal curvatures. In the case g D 3, their models are
obtained as deleted joins of minimal (number of vertices) triangulated projective
planes with their Alexander duals. This constructions works for the real and complex
projective planes, but the cases of the quaternionic and Cayley projective planes are
unresolved, since it is not clear if such minimal triangulations of these projective
planes exist (see also [23]). Banchoff and Kühnel also introduced a definition of
PL-tautness and showed that their models are PL-taut.

3.8.4 A homogeneous example with g D 4

In this section, we describe an important class of homogeneous isoparametric
hypersurfaces with g D 4 distinct principal curvatures. This example is due in
full generality to Nomizu [403, 404], and it was given by Cartan [56] in the case
of dimension M equal to 4. This is an important example, because it is the simplest
case of the isoparametric hypersurfaces constructed by Ferus, Karcher and Münzner
which will be discussed in detail in Section 3.9. Our treatment here follows Nomizu
[403, 404] (see also [95, pp. 299–303]).
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We consider the .mC1/-dimensional complex vector space CmC1 as a real vector
space CmC1 D RmC1 ˚ iRmC1. The real inner product on CmC1 is given by

hz;wi D hx; ui C hy; vi;
for z D x C iy, w D u C iv for x; y; u; v 2 RmC1. The unit sphere in CmC1 is

S2mC1 D fz 2 CmC1 j jzj D 1g:
In the following construction, we assume that m � 2. In the case m D 1, this
construction reduces to a product of two circles in S3. Consider the homogeneous
polynomial F of degree 4 on CmC1 given by

F.z/ D j
mX

kD0
z2k j2 D .jxj2 � jyj2/2 C 4hx; yi2; for z D x C iy: (3.175)

A direct computation shows that

jgradEFj2 D 16r2F; �EF D 16r2: (3.176)

By Theorem 3.30, the restriction V of F to S2mC1 satisfies

jgradSVj2 D 16V.1 � V/; �SV D 16 � V.16C 8m/; (3.177)

and so V is an isoparametric function on S2mC1.

Remark 3.68. Note that F does not satisfy the Cartan–Münzner differential equa-
tions (3.86)–(3.87). However, as noted by Takagi [510], the polynomial QF D r4�2F
has the same level sets as F on S2mC1, since the restriction QV of QF to S2mC1 satisfies
QV D 1 � 2V . The function QF satisfies the equations,

jgradE QFj2 D 16r6; �E QF D 8.m � 2/r2; (3.178)

and so it does satisfy the Cartan–Münzner differential equations with g D 4 and
multiplicities m2 D m � 1 and m1 D 1, since c D g2.m2 � m1/=2 D 8.m � 2/.

Focal submanifolds

We now continue our discussion of this example using the functions F and V . From
equation (3.177), we see that the focal submanifolds occur when V D 0 or 1. From
equation (3.175), we that V D 1 is equivalent to the condition,

j
mX

kD0
z2k j D 1:



3.8 Examples of Isoparametric Hypersurfaces 157

This is easily seen to be equivalent to the condition that z lies in the set

M0 D fei�x j x 2 Smg;

where Sm is the unit sphere in the first factor RmC1. For x 2 Sm, we have

TxM0 D TxSm ˚ Span fixg:

Thus, the normal space to M0 at x is

T?x M0 D fiy j y 2 Sm; hx; yi D 0g:

The normal geodesic to M0 through x in the direction iy can be parametrized as

cos t x C sin t iy: (3.179)

At the point ei�x in the focal submanifold M0, one can easily show that

T?M0 D fei�y j y 2 Sm; hx; yi D 0g:

Thus, the normal geodesic to M0 through the point ei�x in the direction ei� iy can be
parametrized as

cos t ei�x C sin t ei� iy D ei� .cos t x C sin t iy/: (3.180)

Let VmC1;2 be the Stiefel manifold of orthonormal pairs of vectors .x; y/ in RmC1.
By equations (3.179) and (3.180), we see that the tube Mt of radius t over the focal
submanifold M0 is given by

Mt D fei� .cos t x C sin t iy/ j .x; y/ 2 VmC1;2g: (3.181)

In fact, the map ft W S1 � VmC1;2 ! S2mC1 given by

ft.e
i� ; .x; y// D ei� .cos t x C sin t iy/; (3.182)

is an immersion that is a double covering of the tube Mt, since

ft.e
i� ; .x; y// D ft.e

i.�C�/; .�x;�y//:

Substituting equation (3.182) into the defining formula (3.175) for F shows that for
z 2 Mt, the restriction V of F to S2mC1 satisfies

V.z/ D .cos2 t � sin2 t/2 D cos2 2t:
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Therefore, the other focal submanifold determined by the equation V D 0 occurs
when t D �=4. By equations (3.181), we get that the focal submanifold M�=4

consists of points of the form ei� .x C iy/=
p
2 for .x; y/ 2 VmC1;2. On the other hand,

the equation V D 0 implies that jxj D jyj and hx; yi D 0, and we conclude that

M�=4 D f.x C iy/=
p
2 j .x; y/ 2 VmC1;2g:

This is an embedded image of the Stiefel manifold VmC1;2 which has dimension
2m � 1.

Remark 3.69. The fact that one of the focal submanifolds is a Stiefel manifold is an
important feature of the general construction of Ferus, Karcher, and Münzner [160]
(see Section 3.9), in which case one of the focal submanifolds is always a so-called
Clifford–Stiefel manifold determined by a corresponding Clifford algebra.

Since adjacent focal points along a normal geodesic are at a distance �=4
apart, we know from Münzner’s Theorem 3.26 on page 108 that the tube Mt is
an isoparametric hypersurface with four principal curvatures,

cot t; cot.t C �

4
/; cot.t C �

2
/; cot.t C 3�

4
/: (3.183)

The focal submanifolds M0 and M�=4 have respective dimensions mC1 and 2m � 1.
Thus, the principal curvatures in equation (3.183) have respective multiplicities
.m � 1/; 1; .m � 1/; 1. This agrees with the information that we obtained from the
Cartan-Münzner polynomial in Remark 3.68.

From equation (3.182), we see that Mt admits a transitive group of isometries
isomorphic to SO.2/ � SO.m C 1/, and hence each Mt is an orbit hypersurface.
This is the fifth example on the list of Takagi and Takahashi [511] of homogeneous
isoparametric hypersurfaces. Later Takagi [510] showed that if an isoparametric
hypersurface M in S2mC1 has four principal curvatures with multiplicities .m � 1/,
1; .m�1/; 1, then M is congruent to a hypersurface Mt of this example. In particular,
M is homogeneous.

Regarding the other focal submanifold M0, the map f0 W S1 � Sm ! M0 given by
f0.ei� ; x/ D ei�x is a double covering of M0, since

f0.e
i� ; x/ D f0.e

i.�C�/;�x/:

Hence, M0 can be considered as a quotient manifold with identifications given by
the map f0. The two spheres f1g � Sm and f�1g � Sm are attached via the antipodal
map of Sm. Thus, M0 is orientable if and only if the antipodal map on Sm preserves
orientation on Sm. Therefore, M0 is orientable if m is odd and non-orientable if m is
even.

This example illustrates Münzner’s discussion of the orientability of the focal
submanifolds in Theorem C [381, p. 59]. Münzner shows that in the case g D 4

there are two possibilities. In the first situation, one of the focal submanifolds
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MC;M� is orientable and the other is not, in which case, if MC is orientable, then the
multiplicity mC D 1. In the second situation, both focal submanifolds are orientable,
in which case mC C m� is odd or else mC D m� is even.

In our example, mC D 1, m� D m � 1 and mC C m� D m. Thus, if m is even,
Münzner’s theorem implies that the focal submanifold M� D M0 corresponding to
the principal curvature of multiplicity m � 1 is non-orientable, as we have shown
above. In the case where m is odd, then both focal submanifolds in our example are
orientable, which is consistent with Münzner’s theorem, although not a consequence
of it.

Remark 3.70 (Real hypersurfaces in complex projective space). Note that in our
example, each Mt, including the two focal submanifolds, is invariant under the
S1-action on S2mC1 given by multiplication by ei� . Hence, under the projection
� W S2mC1 ! CPm of the Hopf fibration, each submanifold Mt projects to a real
submanifold of CPm of dimension one less than the dimension of Mt. Under the
projection � , the image of M0 is a naturally embedded totally geodesic RPm in CPm,
whereas the image of M�=4 is the complex quadric hypersurface Qm�1 (complex
dimension) given by the equation

z20 C � � � C z2m D 0:

The image under � of each hypersurface Mt; 0 < t < �=4, is a tube of constant
radius in CPm over RPm and also over Qm�1. It is a real hypersurface with three
distinct constant principal curvatures in CPm. Real hypersurfaces with constant
principal curvatures in CPm will be studied in more detail in Chapters 6–8. (see
also Takagi [507–509], Cecil–Ryan [94] and Niebergall-Ryan [399]).

3.8.5 Homogeneous examples and the case g D 6

All of the examples that we have given so far are homogeneous. In 1972, R. Takagi
and T. Takahashi [511] published a complete classification of homogeneous isopara-
metric hypersurfaces in spheres based on the work of Hsiang and Lawson [202].
Takagi and Takahashi showed that each homogeneous isoparametric hypersurface M
in SnC1 is a principal orbit of the isotropy representation of a Riemannian symmetric
space of rank 2, and they gave a complete list of examples [511, p. 480]. (See
also H. Takagi [506] for necessary and sufficient conditions for an isoparametric
hypersurface to be homogeneous in terms of derivatives of the second fundamental
form.)

Takagi and Takahashi found homogeneous examples with g D 1; 2; 3; 4, or 6
principal curvatures, i.e., all values of g possible by Münzner’s Theorem 3.49.
The examples with g D 1; 2; 3 have been discussed earlier in this section. For
g D 4, there exist homogeneous examples with multiplicities .m1;m2/ as follows
(in this list m can be any positive integer): .1;m/ (as in Section 3.8.4), .2; 2m � 1/,
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.4; 4m � 1/, .2; 2/, .4; 5/, .9; 6/. As we will see in Section 3.9, there are inhomo-
geneous isometric hypersurfaces with multiplicities different from those on this list
due to Ozeki and Takeuchi [422, 423], and Ferus, Karcher, and Münzner [160].

In the case of g D 6 principal curvatures, Münzner [382] showed that all of the
principal curvatures have the same multiplicity m, and Abresch [2] showed that m
equals 1 or 2. Takagi and Takahashi found homogeneous isoparametric families in
both cases m D 1 and m D 2, and they showed that up to congruence, there is only
one homogeneous isoparametric family in each case.

Peng and Hou [429] gave explicit forms for the Cartan–Münzner polynomials
of degree six for the homogeneous isoparametric hypersurfaces with g D 6,
while Grove and Halperin [184], and Fang [151] proved several results concerning
the topology of isoparametric and compact proper Dupin hypersurfaces with six
principal curvatures.

R. Miyaoka [367] gave a geometric description of the case g D 6, m D 1. She
proved that a homogeneous isoparametric M6 � S7 with six principal curvatures
can be obtained as the inverse image under the Hopf fibration h W S7 ! S4 of an
isoparametric hypersurface W3 � S4 with three principal curvatures, as discussed in
Subsection 3.8.3. As noted earlier, the two focal submanifolds of W3 in S4 are a pair
of antipodal Veronese surfaces. Miyaoka showed that the two focal submanifolds of
M6 in S7 are not congruent, even though they are lifts under h�1 of the two congruent
antipodal Veronese surfaces in S4. Thus, these two focal submanifolds of M6 in S7

are two non-congruent minimal homogeneous embeddings of RP2 � S3 in S7.
In a later paper, Miyaoka [371] gave a geometric description of the homogeneous

case g D 6, m D 2, by considering adjoint orbits of the exceptional compact Lie
group G2 on S13, where G2 acts on its Lie algebra g ' R14 as an isometry with
respect to the bi-invariant metric. Miyaoka characterizes the orbits as fibered spaces
over S6 with fibers given by Cartan hypersurfaces with three principal curvatures
of multiplicity two, i.e., the case F D C in Subsection 3.8.3. This connects the
case .g;m/ D .6; 2/ with the case .g;m/ D .3; 2/. The fibrations on the two
singular orbits MC and M� are diffeomorphic to the twistor fibrations on S6 and
on the quaternionic Kähler manifold G2=SO.4/, respectively. From the viewpoint
of symplectic geometry, Miyaoka shows that there exists a 2-parameter family of
Lagrangian submanifolds on every orbit.

Dorfmeister and Neher [139] proved that every isoparametric hypersurface
M6 � S7 with g D 6 principal curvatures of multiplicity m D 1 is homogeneous.
The proof of Dorfmeister and Neher is very algebraic in nature. See Miyaoka [370]
and Siffert [484] for alternate approaches.

The classification of isoparametric hypersurfaces with six principal curvatures
of multiplicity m D 2 has been a long-standing problem in the field, and it was
listed together with the classification of isoparametric hypersurfaces with g D 4

as Problem 34 on Yau’s [562] list of important open problems in geometry in
1990. Recently, R. Miyaoka [373] (see also the errata [374]) published a proof that
every isoparametric hypersurface M12 � S13 with g D 6 principal curvatures of

publication, pertain to an error in the original proof that was pointed out by Abresch
and Siffert (see also [484]).

multiplicity m D 2 is homogeneous. The errata, which have been accepted for
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3.8.6 Isoparametric submanifolds of higher codimension

As noted in Remark 3.16 on page 101, there is also an extensive theory of
isoparametric to submanifolds of codimension greater than one in the sphere. This
theory was developed by several authors, including Carter and West [66–68, 553],
Terng [525–529], Hsiang, Palais and Terng [203], Strübing [503], and Harle [189].

By definition, a connected, complete submanifold V in a real space form QMn is
said to be isoparametric if it has flat normal bundle and if for any parallel section of
the unit normal bundle � W V ! Bn�1, the principal curvatures of the shape operator
A� are constant.

Several authors, in particular Terng [525], who showed that compact, connected
isoparametric submanifolds of higher codimension are taut, made important con-
tributions to this theory. This culminated with the work of Thorbergsson [537],
who used the theory of Tits buildings to show that all irreducible isoparametric
submanifolds which are substantially embedded in Sn with codimension greater than
one are homogeneous. Thus, they are principal orbits of isotropy representations of
symmetric spaces (also known as standard embeddings of R-spaces or generalized
flag manifolds), as was the case for homogeneous isoparametric hypersurfaces in
the sphere. Subsequent to Thorbergsson’s paper, Olmos [409], and Heintze and Liu
[195] published alternate proofs of Thorbergsson’s result.

The theory of R-spaces was developed extensively in the papers of Bott and
Samelson [49], and Takeuchi and Kobayashi [513]. (See also the papers of Heintze,
Olmos and Thorbergsson [196], Thorbergsson [538], and the books by Palais and
Terng [426], Kramer [297], and Berndt, Console and Olmos [33] for thorough
treatments of these topics.) The R-spaces were shown to be taut submanifolds by
Bott and Samelson [49] (see also Takeuchi and Kobayashi [513]).

An isoparametric submanifold of codimension greater than one in the sphere
is always Dupin, but it may not be proper Dupin (see Terng [529, pp. 464–469]
for more detail). Pinkall [446, p. 439] proved that every extrinsically symmetric
submanifold of a real space form is Dupin. Takeuchi [512] then determined which
of these are proper Dupin.

In a further generalization, Heintze, Olmos, and Thorbergsson [196] defined a
submanifold � W V ! Rn (or Sn) to have constant principal curvatures if for
any smooth curve � on V and any parallel normal vector field �.t/ along � , the
shape operator A�.t/ has constant eigenvalues along � . If the normal bundle N.M/ is
flat, then having constant principal curvatures is equivalent to being isoparametric.
They then showed that a submanifold with constant principal curvatures is either
isoparametric or a focal submanifold of an isoparametric submanifold.

The theory of isoparametric submanifolds of codimension greater than one
was generalized to submanifolds of hyperbolic space by Wu [555] and Zhao
[563]. Verhóczki [543] then developed a theory of isoparametric submanifolds for
Riemannian manifolds which do not have constant curvature.



162 3 Isoparametric Hypersurfaces

Terng and Thorbergsson [531] (and independently Grove and Halperin [185])
gave a definition of tautness for submanifolds of arbitrary complete Riemannian
manifolds, and they discussed the notions of isoparametric, equifocal and Dupin
submanifolds in that setting.

West [553] and Mullen [380] formulated a theory of isoparametric systems on
symmetric spaces, and Terng and Thorbergsson [530] studied compact isopara-
metric submanifolds of symmetric spaces using the related notion of equifocal
submanifolds.

Christ [119] then generalized Thorbergsson’s result for submanifolds of Sn

by showing that a complete connected irreducible equifocal submanifold of
codimension greater than one in a simply connected compact symmetric space is
homogeneous. In a related paper, Tang [515] studied the possible multiplicities
of the focal points of equifocal hypersurfaces in symmetric spaces (see also
Fang [152]). A promising recent generalization of the theory of isoparametric
submanifolds is the theory of singular Riemannian foliations admitting sections
(see Alexandrino [9], Töben [540], Lytchak [338, 339], Lytchak and Thorbergsson
[340, 341], Thorbergsson [539], and Wiesendorf [554]).

Terng [529] considered isoparametric submanifolds in infinite-dimensional
Hilbert spaces and generalized many results from the finite-dimensional case to
that setting. Pinkall and Thorbergsson [450] then gave more examples of such
submanifolds, and Heintze and Liu [195] generalized the finite-dimensional
homogeneity result of Thorbergsson [534] to the infinite-dimensional case.
Mare [352] obtained descriptions of the cohomology ring of an isoparametric
hypersurface in Hilbert space in terms of multiplicities and characteristic classes of
the curvature distributions. (See also the recent paper of Koike [288] on infinite-
dimensional isoparametric submanifolds.)

The survey paper of Thorbergsson [538] has a good account of all the topics
mentioned in this section.

3.9 Isoparametric Hypersurfaces of FKM-type

In a paper published in 1981, Ferus, Karcher, and Münzner [160] constructed an
infinite class of isoparametric hypersurfaces with g D 4 principal curvatures that
includes all known examples with g D 4 except for two homogeneous examples
with multiplicities .2; 2/ and .4; 5/. This construction is based on representations
of Clifford algebras, and the classification of such representations is an important
element in the construction. The FKM construction is a generalization of an earlier
construction of Ozeki and Takeuchi [422, 423], who also used representations of
certain Clifford algebras.

In this section, we describe the construction of Ferus, Karcher, and Münzner
following their original paper [160] closely. (See also the notes of Ferus [159], and
Section 4.7 of the book [77], which is also based on the original paper [160].) At
the end of this section, we will also discuss the known classification results for
isoparametric hypersurfaces with four principal curvatures.
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First we recall some facts about Clifford algebras and their representations. For
each integer m � 0, the Clifford algebra Cm is the associative algebra over R that is
generated by a unity 1 and the elements e1; : : : ; em subject only to the relations

e2i D �1; eiej D �ejei; i ¤ j; 1 � i; j � m: (3.184)

One can show that the set

f1; ei1 � � � eir j i1 < � � � < ir; 1 � r � mg; (3.185)

forms a basis for the underlying vector space Cm, and thus dim Cm D 2m.
The Clifford algebra C0 is isomorphic to R, and C1 is isomorphic to the complex

numbers C with e1 equal to the complex number i. Atiyah, Bott, and Shapiro
[16] explicitly determined all the Clifford algebras and their representations as
formulated in the table in equation (3.188) below.

We first need some terminology in order to understand the table. Let R.q/ denote
the algebra of q � q matrices with entries from the algebra R. The multiplication
in R.q/ is matrix multiplication defined using the operations of addition and
multiplication in the algebra R. The direct sum R1 ˚ R2 is the Cartesian product
R1 � R2 with all algebra operations defined coordinatewise.

A representation of a Clifford algebra on Rq corresponds to a set E1; : : : ;Em of
skew-symmetric q � q matrices satisfying

E2i D �I; EiEj D �EjEi; i ¤ j; 1 � i; j � m: (3.186)

Note that the skew-symmetry and equation (3.186) imply that the Ei is also
orthogonal, since for all v;w 2 Rq,

hEiv;Eiwi D hv;ET
i Eiwi D hv; .�Ei/Eiwi D hv; Iwi D hv;wi: (3.187)

Atiyah, Bott, and Shapiro determined all of the Clifford algebras according to the
table below. Moreover, they showed that the Clifford algebra Cm�1 has an irreducible
representation of degree q if and only if q D ı.m/ as in the table.

m Cm�1 ı.m/

1 R 1

2 C 2

3 H 4

4 H ˚ H 4

5 H.2/ 8

6 C.4/ 8

7 R.8/ 8

8 R.8/˚ R.8/ 8

k C 8 Ck�1.16/ 16ı.k/

(3.188)

Clifford algebras and the degree of an irreducible representation
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One can obtain reducible representations of Cm�1 on Rq for q D kı.m/, k > 1,
by taking a direct sum of k irreducible representations of Cm�1 on Rı.m/.

Clifford systems of symmetric operators

Ferus, Karcher, and Münzner used Clifford systems of symmetric operators that are
closely related to representations of Clifford algebras. Let H.n;R/ be the space of
symmetric n � n matrices with real entries on which we have the standard inner
product,

hA;Bi D trace .AB/=n: (3.189)

For positive integers l and m, the .m C 1/-tuple .P0; : : : ;Pm/ with Pi 2 H.2l;R/ is
called a (symmetric) Clifford system on R2l if the Pi satisfy

P2i D I; PiPj D �PjPi; i ¤ j; 0 � i; j � m: (3.190)

Note that the transformations Pi in a Clifford system are orthogonal since for all
x; y 2 R2l,

hPix;Piyi D hx;P2i yi D hx; Iyi D hx; yi: (3.191)

If .P0; : : : ;Pm/ is a Clifford system on R2l and .Q0; : : : ;Qm/ is a Clifford system on
R2n, then we can define a Clifford system .P0 ˚ Q0; : : : ;Pm ˚ Qm/ on R2l ˚ R2n D
R2.lCn/ by defining .Pi ˚Qi/.x; y/ D .Pix;Qiy/. This system is called the direct sum
of .P0; : : : ;Pm/ and .Q0; : : : ;Qm/.

A Clifford system .P0; : : : ;Pm/ on R2l is called irreducible if it is not possible
to write R2l as a direct sum of two positive-dimensional subspaces that are invariant
under all of the Pi.

There is an explicit correspondence between Clifford systems on R2l and
representations of Clifford algebras on Rl which we now describe. First suppose
that E1; : : : ;Em are skew-symmetric l � l real matrices that satisfy equation (3.186)
and thereby determine a representation of the Clifford algebra Cm�1 on Rl. We write
R2l D Rl ˚ Rl and define symmetric transformations P0; : : : ;Pm by

P0.u; v/ D .u;�v/; P1.u; v/ D .v; u/; (3.192)

P1Ci.u; v/ D .Eiv;�Eiu/; 1 � i � m � 1:

We can show that .P0; : : : ;Pm/ is a Clifford system as follows. First the
transformations P0 and P1 are clearly symmetric. To check that P1Ci is symmetric
for 1 � i � m � 1, note that
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hP1Ci.u; v/; .x; y/i D h.Eiv;�Eiu/; .x; y/i D hEiv; xi � hEiu; yi D
h�v;Eixi C hu;Eiyi D h.u; v/; .Eiy;�Eix/i D h.u; v/;P1Ci.x; y/i:

To show that the Pi satisfy equation (3.190), note that P20 D P21 D I is clearly
true. Then we compute for 1 � i � m � 1,

P21Ci.u; v/ D P1Ci.Eiv;�Eiu/ D .�E2i u;�E2i v/ D .u; v/; (3.193)

so that P21Ci D I. In a similar way, one can show that PiPj D �PjPi for i ¤ j,
0 � i; j � m, and so .P0; : : : ;Pm/ is a Clifford system.

Conversely, suppose that .P0; : : : ;Pm/ is a Clifford system on R2l. Since P2i D I,
the eigenvalues of Pi can only be ˙1 for 0 � i � m. We denote the eigenspaces by

EC.Pi/ D fx 2 R2l j Pix D xg; (3.194)

E�.Pi/ D fx 2 R2l j Pix D �xg:

The equation PiPj C PjPi D 0, for i ¤ j, implies that Pj interchanges the
eigenspaces EC.Pi/ and E�.Pi/ for each i ¤ j. Thus, EC.Pi/ and E�.Pi/ both
have dimension l for each i. This shows that each Pi has trace zero. In particular,
for 1 � j � m, the transformation Pj interchanges the spaces EC.P0/ and E�.P0/.
Thus, the space EC.P0/ is invariant under the transformations P1P1Ci, 1 � i � m�1,
since P1Ci maps EC.P0/ to E�.P0/, and then P1 maps E�.P0/ to EC.P0/.

We identify Rl with EC.P0/ and define the transformation Ei W Rl ! Rl 1 � i �
m � 1, to be the restriction to EC.P0/ of the transformation P1P1Ci. Then a direct
calculation using equation (3.190) shows that E1; : : : ;Em�1 are skew-symmetric and
that they determine a representation of the Clifford algebra Cm�1 on Rl (see [77,
pp. 100–101] for more detail).

Using this correspondence between Clifford systems and representations of
Clifford algebras, Ferus, Karcher, and Münzner deduce several important facts about
Clifford systems from known results about representations of Clifford algebras. In
particular, a Clifford system is irreducible if and only if the corresponding Clifford
algebra representation is irreducible, and thus there exists an irreducible Clifford
system .P0; : : : ;Pm/ on R2l if and only if l D ı.m/ as in equation (3.188).

A next logical question is when are two Clifford systems equivalent in some
sense. Ferus, Karcher, and Münzner define two Clifford systems .P0; : : : ;Pm/ and
.Q0; : : : ;Qm/ on R2l to be algebraically equivalent if there exists an orthogonal
transformation A 2 O.2l/ such that Qi D APiAT , for 0 � i � m. Two Clifford
systems are said to be geometrically equivalent if there exists

B 2 O. Span fP0; : : : ;Pmg � H.2l;R//

such that .Q0; : : : ;Qm/ and .BP0; : : : ;BPm/ are algebraically equivalent.



166 3 Isoparametric Hypersurfaces

Ferus, Karcher, and Münzner show that for m 6
 0 (mod 4), there exists exactly
one algebraic equivalence class of irreducible Clifford systems. Thus, in this case,
there can be only one geometric equivalence class also. Hence, for each positive
integer k there exists exactly one algebraic (or geometric) equivalence class of
Clifford systems .P0; : : : ;Pm/ on R2l with l D kı.m/.

For m 
 0 (mod 4), there exist exactly two algebraic classes of irreducible
Clifford systems. These can be distinguished from each other by the choice of sign
in the equation

trace .P0 � � � Pm/ D ˙ trace I D ˙ 2ı.m/: (3.195)

In this case, there is also only one geometric equivalence class of irreducible Clifford
systems. This can be seen by replacing P0 by �P0. The absolute trace,

j trace .P0 � � � Pm/j; (3.196)

is obviously an invariant under geometric equivalence. If one constructs all possible
direct sums using both of the algebraic equivalence classes of irreducible Clifford
systems with altogether k summands, then this invariant takes on Œk=2�C 1 different
values, where Œk=2� is the greatest integer less than or equal to k=2. Thus, for m 
 0

(mod 4), there are exactly Œk=2�C1 distinct geometric equivalence classes of Clifford
systems on R2l with l D kı.m/.

The Clifford sphere

An important object in the theory of Ferus, Karcher, and Münzner is the Clifford
sphere determined by a Clifford system .P0; : : : ;Pm/ on R2l. This is defined to be
the unit sphere in the space Span fP0; : : : ;Pmg � H.2l;R/. Ferus, Karcher, and
Münzner [160, p. 484] show that the Clifford sphere, denoted ˙.P0; : : : ;Pm/, has
the following important properties. The proof here follows the original proof of
Ferus, Karcher, and Münzner (see also [77, pp. 102–105]).

Theorem 3.71 (Properties of the Clifford sphere). The Clifford sphere
˙.P0; : : : ;Pm/ has the following properties.

(a) For each P 2 ˙.P0; : : : ;Pm/, we have P2 D I. Conversely, if ˙ is the unit
sphere in a linear subspace W spanned by ˙ in H.2l;R/ such that P2 D I for
all P 2 ˙ , then every orthonormal basis of W is a Clifford system on R2l.

(b) Two Clifford systems are geometrically equivalent if and only if their Clifford
spheres are conjugate to one another under an orthogonal transformation
of R2l.

(c) The function,

H.x/ D
mX

iD0
hPix; xi2; (3.197)
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depends only on ˙.P0; : : : ;Pm/ and not on the choice of orthonormal basis
.P0; : : : ;Pm/. For P 2 ˙.P0; : : : ;Pm/, we have

H.Px/ D H.x/; (3.198)

for all x in R2l.
(d) For an orthonormal set fQ1; : : : ;Qrg in ˙.P0; : : : ;Pm/, since QiQj D �QjQi,

for i ¤ j, we have

Q1 � � � Qr is symmetric if r 
 0; 1 mod 4; (3.199)

Q1 � � � Qr is skew-symmetric if r 
 2; 3 mod 4:

Furthermore, the product Q1 � � � Qr is uniquely determined by a choice of
orientation of Span fQ1; : : : :Qrg.

(e) For P;Q 2 Span fP0; : : : ;Pmg and x 2 R2l, we have

hPx;Qxi D hP;Qihx; xi: (3.200)

Proof. (a) Let P D Pm
iD0 aiPi with

Pm
iD0 a2i D 1: Then

P2 D
 

mX

iD0
aiPi

!0

@
mX

jD0
ajPj

1

A D
mX

iD0

mX

jD0
aiajPiPj (3.201)

D
mX

iD0
a2i P2i C

mX

iD0

X

j¤i

aiajPiPj

D
mX

iD0
a2i I C

mX

iD0

X

j>i

aiaj.PiPj C PjPi/ D
mX

iD0
a2i I D I:

Conversely, let fQ0; : : : ;Qmg be an orthonormal basis for W. By hypothesis,
Q2

i D I for all i. We must show that QiQj C QjQi D 0 for all i ¤ j. Let
Q D .1=

p
2/.Qi C Qj/, for i ¤ j. Then Q has length 1, so Q2 D I. On the other

hand,

Q2 D .Q2
i C .QiQj C QjQi/C Q2

j /=2 (3.202)

D .I C .QiQj C QjQi/C I/=2 D I C 1

2
.QiQj C QjQi/;

and so .QiQj C QjQi/ D 0.
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(b) Two Clifford systems .P0; : : : ;Pm/ and .Q0; : : : ;Qm/ on R2l are geometrically
equivalent if there exists an orthogonal transformation

B 2 O. Span fP0; : : : ;Pmg � H.2l;R//

such that

Qi D A.BPi/A
T ; for A 2 O.2l/: (3.203)

Let Ri D BPi. Then the Clifford spheres ˙.P0; : : : ;Pm/ and ˙.R0; : : : ;Rm/

are equal because B is orthogonal, and ˙.Q0; : : : ;Qm/ and ˙.R0; : : : ;Rm/ are
clearly conjugate by equation (3.203).

Conversely, if the Clifford spheres ˙.P0; : : : ;Pm/ and ˙.Q0; : : : ;Qm/ are
conjugate, then there exists A 2 O.2l/ such that fQ0; : : : ;Qmg is an orthonormal
frame in the Clifford sphere

˙.AP0A
T ; : : : ;APmAT/ D ˙.Q0; : : : ;Qm/:

So there exists an orthogonal transformation B 2 O. Span fQ0; : : : ;Qmg/ such that
BQi D APiAT , for 0 � i � m, and so the Clifford systems .P0; : : : ;Pm/ and
.Q0; : : : ;Qm/ are geometrically equivalent.

(c) Suppose that fQ0; : : : ;Qmg is another orthonormal basis for

Span fP0; : : : ;Pmg:
Then

Qi D
mX

jD0
bj

iPj; Œbj
i� 2 O.m C 1/:

Then we have

mX

iD0
hQix; xi2 D

mX

iD0

0

@h
mX

jD0
bj

iPjx; xi
1

A
2

D
mX

iD0

0

@
mX

jD0
bj

ihPjx; xi
1

A
2

: (3.204)

Fix x 2 R2l, and let aj D hPjx; xi. Then the sum on the right side of equation (3.204)
becomes

mX

iD0
.

mX

jD0
bj

iaj/
2 D

mX

iD0
a2i D

mX

iD0
hPix; xi2;

since Œbj
i� 2 O.m C 1/. So H.x/ D Pm

iD0hPix; xi2 does not depend on the choice of
orthonormal basis.
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To show that H.Px/ D H.x/ for P 2 ˙.P0; : : : ;Pm/, choose an orthonormal
basis fQ0; : : : ;Qmg for Span fP0; : : : ;Pmg with Q0 D P. Then

H.Px/ D
mX

iD0
hQi.Px/;Pxi2 D

mX

iD0
hQiQ0x;Q0xi2 (3.205)

D hQ2
0x;Q0xi2 C

mX

iD1
h�Q0Qix;Q0xi2

D hx;Q0xi2 C
mX

iD1
hQ0Qix;Q0xi2

D hx;Q0xi2 C
mX

iD1
hQix; xi2 D

mX

iD0
hQix; xi2 D H.x/;

where we used the fact that Q0 is orthogonal in going from the second to last line to
the last line.

(d) Let fQ1; : : : ;Qrg be an orthonormal set in ˙.P0; : : : ;Pm/. Since the Qi are
symmetric, we have

hQ1 � � � Qrx; yi D hx;Qr � � � Q1yi: (3.206)

We use the equation QiQj D �QjQi for i ¤ j, to change Qr � � � Q1 into Q1 � � � Qr.
The number of switches required is

.r � 1/C .r � 2/C � � � C 1 D .r � 1/r=2;

and this is even for r 
 0; 1 mod 4, and odd for r 
 2; 3 mod 4. Thus Q1 � � � Qr is
symmetric for r 
 0; 1 mod 4, and skew-symmetric for r 
 2; 3 mod 4.

To see that Q1 � � � Qr is determined by an orientation of Span fQ1; : : : ;Qrg, note
that SO.r/ is generated by rotations in two-dimensional coordinate planes. Since
any two of the Qi can be brought next to each other through interchanges using
QiQj D �QjQi, it suffices to do the proof for r D 2, and this can be easily done by
a direct calculation.

(e) First, it suffices to show the equation (3.200) for Pi and Pj in the orthonormal
basis fP0; : : : ;Pmg, since if

P D
mX

iD0
aiPi; Q D

mX

jD0
bjPj

we have using equation (3.200) for Pi and Pj,
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hPx;Qxi D h
mX

iD0
aiPix;

mX

jD0
bjPjxi D

mX

iD0

mX

jD0
aibjhPix;Pjxi

D
mX

iD0

mX

jD0
aibjhPi;Pjihx; xi D hP;Qihx; xi; (3.207)

since

hP;Qi D
mX

iD0

mX

jD0
aibjhPi;Pji:

Next we show that equation (3.200) holds for Pi and Pj. First, if i D j, since Pi is
orthogonal, we have

hPix;Pixi D hx; xi D 1hx; xi D hPi;Piihx; xi:

Now suppose that i ¤ j. Then hPi;Pji D 0, so we must show that hPix;Pjxi D 0 for
all x 2 R2l. Then hPix;Pjxi D hx;PiPjxi and hPix;Pjxi D hPjPix; xi, so

2hPix;Pjxi D hx; .PiPj C PjPi/xi D hx; 0i D 0;

as needed. ut

The examples of Ferus, Karcher and Münzner

We now give the examples of Ferus, Karcher, and Münzner in the following
theorem. We will describe the examples in more detail after the proof of the theorem.
Note that by part (c) of Theorem 3.71, the function F in the theorem below depends
only on the Clifford sphere˙.P0; : : : ;Pm/ of the Clifford system .P0; : : : ;Pm/. (See
[77, pp.106–107] for more detail in the calculations in the proof.)

Theorem 3.72. Let .P0; : : : ;Pm/ be a Clifford system on R2l. Let m1 D m be a
positive integer, m2 D l � m � 1, and F W R2l ! R be defined by

F.x/ D hx; xi2 � 2
mX

iD0
hPix; xi2: (3.208)

Then F satisfies the Cartan–Münzner differential equations (3.86)–(3.87),

jgrad Fj2 D g2r2g�2;

�F D crg�2;



3.9 Isoparametric Hypersurfaces of FKM-type 171

where g D 4 and c D g2.m2 � m1/=2. If m2 > 0, then the level sets of F on S2l�1
form a family of isoparametric hypersurfaces with g D 4 principal curvatures with
multiplicities .m1;m2/.

Proof. By differentiating equation (3.208), we calculate that

grad F D 4hx; xix � 8
mX

iD0
hPix; xiPix: (3.209)

Thus,

j grad Fj2 D 16 hx; xi3 � 64 hx; xi
mX

iD0
hPix; xi2

C 64

*
mX

iD0
hPix; xi Pix;

mX

jD0
hPjx; xi Pjx

+
: (3.210)

Then using equation (3.200) with P D Pi;Q D Pj, so that hPi;Pji D ıij, we have

*
mX

iD0
hPix; xiPix;

mX

jD0
hPjx; xiPjx

+
D

mX

iD0

mX

jD0
hPix; xihPjx; xihPix;Pjxi

D
mX

iD0

mX

jD0
hPix; xihPjx; xihPi;Pjihx; xi

D
mX

iD0
hPix; xi2hx; xi: (3.211)

Substituting equation (3.211) into equation (3.210), we get

j grad Fj2 D 16 hx; xi3 � 64 hx; xi
mX

iD0
hPix; xi2 C 64 hx; xi

mX

iD0
hPix; xi2

D 16 hx; xi3 D 16r6 D g2r2g�2; (3.212)

for g D 4, and thus we have the first of the Cartan–Münzner differential equations.
To show that the second Cartan–Münzner differential equation (3.87) is satisfied,

we use the identity,

�h2 D 2j grad hj2 C 2h�h; (3.213)
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which holds for any smooth function h W R2l ! R. We have

�F D �hx; xi2 � 2
mX

iD0
�hPix; xi2: (3.214)

We can use the identity in equation (3.213) on each term on the right side of
equation (3.214). First, we take h D hx; xi. Then grad h D 2x, and �h D 4l, so

�hx; xi2 D 2j grad hj2 C 2h�h

D 8hx; xi C 2hx; xi4l (3.215)

D 8.l C 1/hx; xi:

Next we consider the term

mX

iD0
�hPix; xi2;

in equation (3.214). Let hi D hPix; xi. Then by equation (3.213),

�h2i D 2j grad hij2 C 2hi�hi: (3.216)

We compute grad hi D 2Pix, so

j grad hij2 D 4hPix;Pixi D 4hx; xi: (3.217)

Next we calculate

�hi D trace Pi D 0: (3.218)

Thus the terms hi�hi in equation (3.216) are all zero. So from equations (3.216)–
(3.218), we have

mX

iD0
�hPix; xi2 D

mX

iD0
�h2i D

mX

iD0
8hx; xi D 8.m C 1/hx; xi: (3.219)

Combining equations (3.214), (3.215), and (3.219), we get

�F D 8.l C 1/hx; xi � 16.m C 1/hx; xi D 8..l � m � 1/ � m/hx; xi
D 8.m2 � m1/hx; xi D g2

�m2 � m1

2

	
rg�2 D crg�2; (3.220)

so the second Cartan–Münzner differential equation is satisfied.
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We have c D 8.m2�m1/, n D 2.m1Cm2/ and g D 4. Thus, c D ˙gn implies that
m1 D 0 or m2 D 0. Hence, if m1 and m2 are both positive, Corollary 3.43 (page 129)
implies that level sets of F on SnC1 form a family of isoparametric hypersurfaces
having g D 4 principal curvatures with multiplicities .m1;m2/, and F is the Cartan–
Münzner polynomial of this isoparametric family. ut

The isoparametric hypersurfaces obtained by this construction of Ferus, Karcher,
and Münzner are usually referred to as isoparametric hypersurfaces of FKM-type.
Since these examples are a generalization of the work of Ozeki and Takeuchi [422]–
[423], they are sometimes referred to as isoparametric hypersurfaces of OT-FKM-
type.

As we know from Münzner’s general theory (see Remark 3.34 on page 117),
the restriction V of the polynomial F in Theorem 3.72 to S2l�1 takes values in the
closed interval Œ�1; 1�, and the two focal submanifolds are MC D V�1.1/ and M� D
V�1.�1/. We will primarily focus our attention on MC, which turns out to be a so-
called Clifford–Stiefel manifold as described below.

We first state a theorem concerning the focal submanifold M�. We refer the
reader to the paper of Ferus, Karcher, and Münzner [160, pp. 485–487] for a proof.

Theorem 3.73. With the notation as in Theorem 3.72, let V be the restriction of F
to S2l�1 and let ˙ D ˙.P0; : : : ;Pm/. For M� D V�1.�1/, we have

M� D fx 2 S2l�1 j there exists P 2 ˙ with x 2 EC.P/g: (3.221)

In the case m2 < 0, then V D �1, and thus M� D S2l�1; this is only possible for
m 2 f1; 2; 4; 8g.

In the case m2 � 0, then M� is diffeomorphic to the total space of an .l � 1/-
sphere bundle,

� D f.x;P/ j x 2 S2l�1; P 2 ˙; x 2 EC.P/g �! ˙; .x;P/ 7! P:

The diffeomorphism from � onto M� is furnished by .x;P/ 7! x. In particular, if
V is not constant, then M� is a – trivially connected – submanifold of codimension
m2 C 1 in the sphere S2l�1.

In the case m2 D 0, then M� is a hypersurface; this is only possible for
m 2 f1; 3; 7g. In the case m2 > 0, then M� is the focal submanifold corresponding to
the principal curvatures of the isoparametric hypersurfaces having multiplicity m2.
The isoparametric hypersurfaces are m2-sphere bundles over the connected sphere
bundle space M�.

Suppose .P0; : : : ;Pm/ can be extended to a Clifford system .P0; : : : ;PmC1/. Then
� W � ! ˙ is trivial and M� is diffeomorphic to Sl�1 � Sm. For m 
 0 .mod 4/,
the geometrically inequivalent Clifford systems (see page 166) lead to inequivalent
sphere bundles � ! ˙ .



174 3 Isoparametric Hypersurfaces

Clifford–Stiefel manifolds

We now consider the case m2 > 0, and study the other focal submanifold MC of
codimension m C 1, where m D m1. From the defining equation (3.208) for F, we
see that MC is the set

MC D fx 2 S2l�1 j hPix; xi D 0; 0 � i � mg: (3.222)

As we saw in equation (3.192), the Clifford system .P0; : : : ;Pm/ on R2l is related to
a representation of the Clifford algebra Cm�1 on Rl determined by skew-symmetric
transformations E1; : : : ;Em�1 on Rl given by the following equations for .u; v/ 2
Rl � Rl D R2l,

P0.u; v/ D .u;�v/; P1.u; v/ D .v; u/; (3.223)

P1Ci.u; v/ D .Eiv;�Eiu/; 1 � i � m � 1:
Thus, we have

hP0.u; v/; .u; v/i D juj2 � jvj2; hP1.u; v/; .u; v/i D 2hu; vi; (3.224)

hP1Ci.u; v/; .u; v/i D �2hEiu; vi; 1 � i � m � 1:
The equations

juj2 � jvj2 D 0; juj2 C jvj2 D 1

imply that

juj2 D jvj2 D 1=2; (3.225)

and we see that

MC D f.u; v/ 2 S2l�1 j juj D jvj D 1p
2
; hu; vi D 0; hEiu; vi D 0; 1 � i � m � 1g:

(3.226)

Pinkall and Thorbergsson [448] called MC a Clifford–Stiefel manifold V2.Cm�1/
of Clifford orthogonal 2-frames of length 1=

p
2 in Rl, where vectors u and v in Rl

are said to be Clifford orthogonal if

hu; vi D hE1u; vi D � � � D hEm�1u; vi D 0: (3.227)

Many of the results of Ferus, Karcher, and Münzner concerning these examples
involve a careful analysis of the shape operators of the focal submanifolds,
especially the focal submanifold MC of codimension m C 1 in S2l�1. We now find
an explicit description of the principal curvatures and their corresponding principal
spaces for MC.
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From equation (3.222), we see that MC is determined by the m C 1 conditions,
hPix; xi D 0; 0 � i � m. If X 2 TxMC, then XhPix; xi D 0. On the other hand, since
Pi is linear and symmetric, we have

XhPix; xi D hX.Pix/; xi C hPix;Xi D hPiX; xi C hPix;Xi D 2hPix;Xi:
Thus hPix;Xi D 0 for all tangent vectors X to MC at x, and we see that Pi.x/ is
normal to MC for 0 � i � m. Furthermore, the set fP0x; : : : ;Pmxg is an orthonormal
basis for the normal space T?x MC to MC in the sphere S2l�1, since

hPix;Pixi D hx;P2i xi D hx; xi D 1; (3.228)

and

hPix;Pjxi D hx;PiPjxi D �hx;PjPixi D �hPjx;Pixi; (3.229)

so hPix;Pjxi D 0 if i ¤ j.
This shows that the normal bundle of MC is trivial with fP0x; : : : ;Pmxg a global

orthonormal frame as x varies over MC. Hence, the isoparametric hypersurfaces are
trivial sphere bundles over MC. It also implies that

T?x MC.x/ D fQx j Q 2 Span fP0; : : : ;Pmgg; (3.230)

and the space of unit normals to MC at x is

B.x/ D fPx j P 2 ˙.P0; : : : ;Pm/g: (3.231)

By Corollary 3.22 (page 106) and Theorem 3.26 (page 108), we know that the
principal curvatures of a focal submanifold of an isoparametric hypersurface with
four principal curvatures are �1; 0; 1, and the principal curvatures �1 and 1 have
the same multiplicity.

We now want to explicitly find the principal spaces for these principal curvatures
on the focal submanifold MC. Let � D Px be a unit normal to MC at a point x,
where P 2 ˙.P0; : : : ;Pm/. We can extend � to a normal field on MC by setting
�.y/ D Py, for y 2 MC. Then for X 2 TxMC, we know that A�X is the negative of
the tangential component of QrX� , where Qr is the Levi-Civita connection on S2l�1.
Since �.y/ D Py, we have

QrX� D QrXPy D P.X/; (3.232)

since P is a linear transformation on R2l, and so

A�X D �. tangential component P.X//: (3.233)

We can now compute the principal curvatures of A� as follows.
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Theorem 3.74. Let x be a point on the focal submanifold MC, and let � D Px be
a unit normal vector to MC at x, where P 2 ˙.P0; : : : ;Pm/. Let EC and E� be the
l-dimensional eigenspaces of P for the eigenvalues C1 and �1, respectively, so that
R2l D EC˚ E�. Then the shape operator A� has principal curvatures 0; 1;�1 with
corresponding principal spaces T0.�/;T1.�/;T�1.�/ as follows:

T0.�/ D fQPx j Q 2 ˙; hQ;Pi D 0g; (3.234)

T1.�/ D fX 2 E� j hX;Qxi D 0;8Q 2 ˙g D E� \ TxMC;

T�1.�/ D fX 2 EC j hX;Qxi D 0;8Q 2 ˙g D EC \ TxMC;

where ˙ D ˙.P0; : : : ;Pm/. Furthermore,

dim T0.�/ D m; dim T1.�/ D dim T�1.�/ D l � m � 1: (3.235)

Proof. Let X D QPx for Q 2 ˙ , and hQ;Pi D 0. We first want to show that X is
tangent to MC at x. To do this, we need to show that X is orthogonal to every vector
in the space T?x MC.x/ given in equation (3.230). First, we have

hX;Pxi D hQPx;Pxi D �hPQx;Pxi D �hQx; xi D 0; (3.236)

hX;Qxi D hQPx;Qxi D hPx; xi D 0:

Next, suppose that R 2 ˙ such that hR;Pi D hR;Qi D 0: Then

hX;Rxi D hQPx;Rxi D hRQPx; xi D �hx;RQPxi D �hRx;QPxi D �hX;Rxi;

so hX;Rxi D 0, where we have used the fact that RQP is skew-symmetric by part
(d) of Theorem 3.71. Thus X D QPx is tangent to MC at x.

We now compute A�X, for � D Px. By equation (3.232), we have

QrX� D P.X/ D P.QPx/ D �.P2Qx/ D �Qx;

which is normal to MC at x. Thus the tangential component of QrX� is zero, and so
A�X D 0. Therefore, the m-dimensional space

fQPx j Q 2 ˙; hQ;Pi D 0g � T0.�/: (3.237)

Later we will see that these two sets are actually equal to each other.
Next for X 2 E� \ TxMC, we have QrX� D P.X/ D �X, so that A�X D X, and

X 2 T1.�/. Thus

E� \ TxMC � T1.�/: (3.238)
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Since

E� \ TxMC D fX 2 E� j hX;Qxi D 0; 8Q 2 ˙g;

this space has dimension l � .m C 1/ D l � m � 1, and we will show later that
E� \ TxMC is actually equal to T1.�/.

Finally, let X 2 EC \ TxMC. Then as above, we can show that A�X D �X, and
so X 2 T�1.�/, and we have

EC \ TxMC � T�1.�/; (3.239)

for the .l�m�1/-dimensional space EC\TxMC. Since the sum of the dimensions of
the three mutually orthogonal spaces on the left sides of equations (3.237)–(3.239)
is equal to mC2.l�m�1/ D 2l�2 D dim MC, the inclusions in equations (3.237)–
(3.239) are all equalities, and the theorem is proved. ut

From the formulas for the shape operator of a tube in Theorem 2.2 (page 17), we
immediately obtain the following corollary of Theorem 3.74.

Corollary 3.75. Let Mt be a tube of radius t over the focal submanifold MC, where
0 < t < � and t … f�

4
; �
2
; 3�
4

g. Then Mt is an isoparametric hypersurface with four
distinct principal curvatures,

cot.�t/; cot
��
4

� t
	
; cot

��
2

� t
	
; cot

�
3�

4
� t

�
;

having respective multiplicities m; l � m � 1;m; l � m � 1.

Multiplicities of the principal curvatures of FKM-hypersurfaces

As we see in Corollary 3.75, the multiplicities of the FKM-hypersurfaces are
m1 D m and m2 D l � m � 1. Here m can be any positive integer, and l must
be such that the Clifford algebra Cm�1 has a representation on Rl, and therefore
l D kı.m/, where ı.m/ is the unique positive integer such that Cm�1 has an
irreducible representation on Rl as in equation (3.188). Thus, the multiplicities of
an isoparametric hypersurface of FKM-type are

m1 D m; m2 D kı.m/ � m � 1; k > 0; (3.240)

where k is sufficiently large as to make m2 > 0. In the table below of possible
multiplicities of the principal curvatures of an isoparametric hypersurface of FKM-
type, the cases where m2 � 0 are denoted by a dash.
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ı.m/j 1 2 4 4 8 8 8 8 16 32 ��
k
1 � � � � .5; 2/ .6; 1/ � � .9; 6/ .10; 21/ ��
2 � .2; 1/ .3; 4/ .4; 3/ .5; 10/ .6; 9/ .7; 8/ .8; 7/ .9; 22/ .10; 53/ ��
3 .1; 1/ .2; 3/ .3; 8/ .4; 7/ .5; 18/ .6; 17/ .7; 16/ .8; 15/ .9; 38/ .10; 85/ ��
4 .1; 2/ .2; 5/ .3; 12/ .4; 11/ .5; 26/ .6; 25/ .7; 24/ .8; 23/ .9; 54/ � ��
5 .1; 3/ .2; 7/ .3; 16/ .4; 15/ .5; 34/ .6; 33/ .7; 32/ .8; 31/ � � ��
� � � � � � � � � � � ��
� � � � � � � � � � � ��
� � � � � � � � � � � ��

Table FKM: Multiplicities of principal curvatures of FKM-hypersurfaces

From parts (b) and (c) of Theorem 3.71 and from formula (3.208) for the Cartan–
Münzner polynomial F, we see that geometrically equivalent Clifford systems
determine congruent families of isoparametric hypersurfaces. In the table above,
the underlined multiplicities,

.m1;m2/; .m1;m2/;

denote the two, respectively, three geometrically inequivalent Clifford systems
for the multiplicities .m1;m2/. Ferus, Karcher, and Münzner show that these
geometrically inequivalent Clifford systems with m 
 0 (mod 4) and l D kı.m/
actually lead to incongruent families of isoparametric hypersurfaces, of which there
are Œk=2�C 1.

Through a study of the second fundamental forms of the focal submani-
folds, Ferus, Karcher, and Münzner show that the families for multiplicities
.2; 1/; .6; 1/; .5; 2/ and one of the .4; 3/-families are congruent to those with
multiplicities .1; 2/; .1; 6/; .2; 5/, and .3; 4/, respectively, and these are the only
coincidences under congruence among the FKM-hypersurfaces.

Ferus, Karcher, and Münzner [160, p. 490] (see also Ferus [159, pp. 30–31])
point out the following interesting consequence of the incongruence in the case
m 
 0 (mod 4) of two families with the same multiplicities. Note first that the
FKM-hypersurfaces all have at least three nonzero principal curvatures, so they are
rigid in the sphere by the classical rigidity theorem.

Consider two incongruent families of FKM-hypersurfaces in the case m 
 0

(mod 4) with the same multiplicities, and choose one hypersurface from each family
at the same distance from the corresponding focal submanifolds M�. Then these
two hypersurfaces have the same shape operator and thus from the Gauss equation
the same curvature tensor pointwise (as defined below). Nevertheless, these two
hypersurfaces are not intrinsically isometric, since any such isometry would extend
to an isometry of the whole sphere taking one family to the other, and this does
not exist.
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Here we define two Riemannian manifolds M and M0 to have the same curvature
tensor at points x 2 M and x0 2 M0 if there exists a linear isometry � W TxM ! Tx0M0
such that for the respective curvature tensors R and R0, we have

�.R.X;Y/Z/ D R0.�X; �Y/�Z: (3.241)

Thus, Ferus, Karcher, and Münzner [160, p. 490] obtained the following
theorem as a consequence of the incongruence of various families with the same
multiplicities.

Theorem 3.76. For m 
 0 (mod 4) and any positive integer k, there exist Œk=2�C 1

non-isometric compact Riemannian manifolds with the same curvature tensor (at
any two points of any two of them). The dimension of these manifolds is 2kı.m/� 2.

Inhomogeneity of many FKM-hypersurfaces

Regarding the question of homogeneity, Ozeki and Takeuchi [422, 423] were the
first to produce examples of inhomogeneous isoparametric hypersurfaces. They
used representations of Clifford algebras to produce the FKM-series with multi-
plicities .3; 4k/ and (7; 8k/. Most of these multiplicities are not on the list of Takagi
and Takahashi [511] of multiplicities of homogeneous isoparametric hypersurfaces
(see Section 3.8.5, page 159). Thus, those examples whose multiplicities are not on
the list of Takagi and Takahashi are inhomogeneous.

Ferus, Karcher, and Münzner [160, p. 491] gave a geometric argument which
we will now describe to prove that many of these FKM-hypersurfaces are not
homogeneous. Let .P0; : : : ;Pm/ be a Clifford system on R2l with m1 D m � 3

and m2 D l � m � 1, and let ˙ D ˙.P0; : : : ;Pm/ be the associated Clifford sphere.
Let NC be the set of all points x in the focal submanifold MC such that there

exists orthonormal Q0;Q1;Q2;Q3 2 ˙ such that Q0Q1Q2Q3x D x. Ferus, Karcher
and Münzner showed that NC can also be described as the set of x 2 MC such that
there exist orthonormal vectors �0; �1; �2; �3 in the normal space T?x MC such that

dim .

3\

iD0
ker A�i/ � 3: (3.242)

Ferus, Karcher and Münzner [160, p. 491] (see also Ferus [159, pp. 32–33]) then
proved the following theorem which provides a geometric proof of inhomogeneity
in many cases.

Theorem 3.77. Suppose that 9 � 3m1 < m2 C 9, and for m1 D 4 suppose also
that P0 � � � P4 ¤ ˙I. Then ; ¤ NC ¤ MC. Thus, the focal submanifold MC and the
whole isoparametric family are not homogeneously embedded.
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Ferus, Karcher, and Münzner also handle the pairs of multiplicities not covered
by Theorem 3.77. As noted by Ferus [159, p. 33], these fall into two categories:

(a) m1 � 2, .4; 4k � 1/ and P0 � � � P4 D ˙I, .5; 2/, .6; 1/, .9; 6/
(b) .4; 3/ and P0 � � � P4 ¤ ˙I, .6; 9/, .7; 8/, .8; 7/, .8; 15/, .10; 21/.

Ferus, Karcher, and Münzner [160, pp. 490–502] then proved that FKM-
hypersurfaces with multiplicities as in Case (a) are homogeneous, while those
with multiplicities as in Case (b) are inhomogeneous. They also settled the question
of the homogeneity or inhomogeneity of the focal submanifolds in all but a few
cases.

Later Q.-M. Wang [550] proved many results about the topology of FKM-
hypersurfaces, including the fact that hypersurfaces in two different isoparametric
families can be diffeomorphic but not congruent to each other. Wu [556] showed
that for each n, there are only finitely many diffeomorphism classes of compact
isoparametric hypersurfaces in SnC1 with four principal curvatures.

3.9.1 Classification results for g D 4

We now turn our attention to classification results for isoparametric hypersurfaces
with four principal curvatures. All known examples of isoparametric hypersurfaces
with four principal curvatures are of FKM-type with the exception of two homo-
geneous families, having multiplicities .2; 2/ and .4; 5/. Many mathematicians,
including Münzner [381, 382], Abresch [2], Grove and Halperin [184], Tang
[514, 515], and Fang [149, 150], found restrictions on the multiplicities .m1;m2/

of the principal curvatures of an isoparametric hypersurface with four principal
curvatures. This series of results culminated with the paper of Stolz [502], who
proved that the multiplicities .m1;m2/ must be the same as those in the known
examples of FKM-type or the two homogeneous exceptions.

These papers are topological in nature, based on Theorem 3.45 of Münzner (see
page 132), which states that an isoparametric hypersurface separates the sphere SnC1
into two ball bundles over the two focal submanifolds. In particular, the proof of
Stolz is homotopy theoretic, and the main tools used are the Hopf invariant and
the EHP-sequence. It is worth noting that the theorem of Stolz is actually valid
for the more general case of a compact, connected proper Dupin hypersurface
with four principal curvatures embedded in SnC1. Such a result is possible because
Thorbergsson [533] had shown earlier that a compact, connected proper Dupin
hypersurface M � SnC1 also separates SnC1 into two ball bundles over the first
focal submanifolds on either side of M (see Theorem 3.62 on page 142).

In 1976, Takagi [510] showed that if one of the multiplicities m1 D 1, then
the isoparametric family is congruent to the example described in Subsection 3.8.4.
Therefore, such an isoparametric hypersurface is homogeneous and of FKM-type.
At approximately the same time, Ozeki and Takeuchi [422, 423] showed that if one
of the multiplicities m1 D 2, then M is of FKM-type unless .m1;m2/ D .2; 2/, in
which case M is the known homogeneous example of Cartan.
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Cecil, Chi, and Jensen [81] then showed in a paper published in 2007 that
if the multiplicities .m1;m2/ satisfy m2 � 2m1 � 1, then M is of FKM-type.
Taken together with the results of Takagi and Ozeki-Takeuchi mentioned above,
the theorem of Cecil, Chi, and Jensen classifies isoparametric hypersurfaces with
four principal curvatures for all possible pairs of multiplicities except for four cases,
the homogeneous pair .4; 5/, and the FKM pairs .3; 4/; .6; 9/ and .7; 8/.

Following this, Chi published two papers [107, 109] (see also [106, 108]) which
resolved the classification problem for all pairs of multiplicities except the .7; 8/
case. Specifically, in [107] Chi used more commutative algebra than had been
employed in the paper of Cecil, Chi, and Jensen [81] to simplify the last part of
the proof of the main result in [81]. Furthermore, Chi showed that in the case
of multiplicities .3; 4/, the isoparametric hypersurface is of FKM-type, thereby
resolving that case.

Next in [109], Chi resolved the .4; 5/ and .6; 9/ cases. In the .4; 5/ case, Chi
proved that the isoparametric hypersurface is homogeneous, and so it is congruent to
an isoparametric hypersurface in the unique .4; 5/-family of parallel isoparametric
hypersurfaces on the list of Takagi and Takahashi [511] of homogeneous isopara-
metric hypersurfaces.

In the .6; 9/ case, Chi showed that an isoparametric hypersurface is of FKM-
type. It can be either homogeneous or inhomogeneous. If it is homogeneous, then it
is congruent to an isoparametric hypersurface in the unique .9; 6/-family of parallel
isoparametric hypersurfaces on the list of Takagi and Takahashi (the .9; 6/ pair on
Table FKM). If it is inhomogeneous, then it belongs to the inhomogeneous .6; 9/-
family constructed by Ferus, Karcher and Münzner (the .6; 9/ pair on Table FKM).
Thus, only the case of multiplicities .7; 8/ remains to be classified.

We now give a brief description of the method of proof of Cecil, Chi, and Jensen
[81]. In Sections 8–9 of the paper, Cecil, Chi, and Jensen use Cartan’s method
of moving frames to find necessary and sufficient conditions for the codimension
m1 C 1 focal submanifold MC of an isoparametric hypersurface M with four
principal curvatures and multiplicities .m1;m2/ to be a Clifford–Stiefel manifold
V2.Cm1�1/. These conditions are equations (8.1)–(8.4) of [81]. (Later Chi [105]
gave a different proof of the fact that equations (8.1)–(8.4) of [81] are necessary
and sufficient to show that MC is a Clifford–Stiefel manifold.)

These conditions involve the shape operators A� of MC, where � is a unit normal
vector to MC at a point x 2 MC. By Corollary 3.22 (page 106) and Theorem 3.26
(page 108) of Münzner, one knows that every A� at every point x 2 MC has the same
eigenvalues �1; 0; 1, with respective multiplicities m2;m1;m2. If � is a unit normal
vector to MC at x 2 MC, then the point � is also in MC by Münzner’s results, since
it lies at a distance �=2 along the normal geodesic to MC beginning at the point x in
the direction �.

The shape operators corresponding to an orthonormal basis of normal vectors to
MC at the point x naturally determine a family of m1C1 homogeneous polynomials.
Similarly, the shape operators corresponding to an orthonormal basis of normal
vectors to MC at the point � 2 MC determine a family of m1 C 1 homogeneous
polynomials.
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In Section 10 of [81], Cecil, Chi, and Jensen show that these two families of
homogeneous polynomials have the same zero set in projective space by use of a
formulation of the Cartan–Münzner polynomial due to Ozeki and Takeuchi [422].
This fact is then shown in Sections 11–13 of [81] to imply that the necessary and
sufficient conditions for MC to be a Clifford–Stiefel manifold are satisfied if m2 �
2m1 � 1. This completes the proof that M is of FKM-type, since M is a tube of
constant radius over the Clifford–Stiefel manifold MC. The proof in Sections 11–
13 of [81] involves techniques from algebraic geometry, and Chi [107] later gave a
simpler version of this part of the proof. (See also the expository paper of Miyaoka
[369] concerning this proof.)

Later Immervoll [218] used the method of isoparametric triple systems developed
by Dorfmeister and Neher [135–140] to give a different proof of the theorem of
Cecil, Chi and Jensen [81]. (See also the papers of Immervoll [214–217] concerning
various aspects of the theory of isoparametric hypersurfaces with four principal
curvatures, including triple systems and smooth generalized quadrangles.)

3.10 Applications to Riemannian geometry

In this section, we discuss several contexts in Riemannian geometry where isopara-
metric hypersurfaces have been studied.

Remark 3.78 (A geometric characterization of isoparametric hypersurfaces).
Kimura and Maeda [279] proved that a connected hypersurface M in a real space
form QM is isoparametric if and only if for each point p 2 M there exists an
orthonormal basis X1; : : : ;Xr of the orthogonal complement of the kernel of the
shape operator A of M (r D rank A) such that the geodesics in M through p in the
direction Xi. 1 � i � r, lie on circles of nonzero curvature in QM. (Here the authors
use the term “circle” in the sense of Riemannian geometry.) See also the paper of
Maeda and Tanabe [349] and the survey article of Kimura [273] for related results.

Remark 3.79 (Spectrum of the Laplacian). Solomon [489–491] found results con-
cerning the spectrum of the Laplacian of isoparametric hypersurfaces in Sn with
three or four principal curvatures. A conjecture of Yau [561] states that the first
eigenvalue of the Laplacian of every compact minimal hypersurface Mn in SnC1 is
equal to n, the dimension of Mn.

Progress on verifying this conjecture for minimal isoparametric hypersurfaces
was made by Muto-Ohnita-Urakawa [387], Kotani [294], Muto [386], and Solomon
[489–491], ultimately leading to the verification of Yau’s conjecture for all minimal
isoparametric hypersurfaces in the sphere by Tang and Yan [520].

Tang and Yan also made progress in determining which focal submanifolds V of
isoparametric hypersurfaces with g D 4 principal curvatures have the property that
the first eigenvalue of the Laplacian is equal to the dimension of V . In a subsequent
paper, Tang, Xie, and Yan [517] made further progress on that question, and they
also proved results concerning the focal submanifolds in the case g D 6. (See also
Tang and Yan [521] for more characterizations of the focal submanifolds.)
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In a related paper, Tang and Yan [519] studied the critical sets of various
eigenfunctions of the Laplacian on an isoparametric hypersurface of FKM-type. In
an application related to the Schoen-Yau-Gromov-Lawson surgery theory on metrics
of positive scalar curvature, Tang, Xie, and Yan [516] constructed a double manifold
associated with a minimal isoparametric hypersurface such that this double manifold
carries a metric of positive scalar curvature and an isoparametric foliation as well.
See also the paper of Henry and Petean [197] on isoparametric hypersurfaces and
metrics of constant scalar curvature.

Remark 3.80 (Chern conjecture for isoparametric hypersurfaces). The Chern con-
jecture for isoparametric hypersurfaces states that every closed minimal hypersur-
face immersed into the sphere with constant scalar curvature is isoparametric. See
the papers of Scherfner and Weiss [474], and of Scherfner, Weiss and Yau [475], for
a survey of progress on this conjecture and its generalizations. See also the paper of
Ge and Tang [168].

Remark 3.81 (Applications to Willmore submanifolds). An isometric immersion x
of a compact, connected n-dimensional manifold Mn into the unit sphere SnCp �
RnCpC1 is called Willmore if it is an extremal submanifold of the Willmore
functional:

W.x/ D
Z

Mn
.S � nh2/n=2dv;

where S is the norm square of the second fundamental form and h is the mean
curvature. In the papers of Tang and Yan [518] and Qian, Tang, and Yan [456], the
authors prove that both focal submanifolds of every isoparametric hypersurface with
four distinct principal curvatures are Willmore. They also completely determine
which focal submanifolds are Einstein for all known isoparametric hypersurfaces
with g D 4 principal curvatures.

Remark 3.82 (Anisotropic isoparametric hypersurfaces in Euclidean spaces). Ge
and Ma [167] gave a generalization of the classification of isoparametric hyper-
surfaces Mn in Euclidean space RnC1 (Theorem 3.12) to the setting of anisotropic
isoparametric hypersurfaces in RnC1 as follows.

Let F W Sn ! RC be a smooth positive function defined on the unit sphere
Sn in RnC1 satisfying the convexity condition that the matrix AF D .D2F C FI/u
is positive-definite for all u 2 Sn, where D2F denotes the Hessian of F on Sn,
and I denotes the identity on TuSn. Let x W M ! RnC1 be an immersed oriented
hypersurface, and � W M ! Sn be its Gauss map. Then the anisotropic surface
energy of x is a parametric elliptic functional F defined by:

F.x/ D
Z

M
F.�/dA:

If F 
 1, then F.x/ is just the area of x.
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A fundamental result is Wulff’s Theorem which states that among all closed
hypersurfaces enclosing the same volume, there exists a unique absolute minimizer
WF of F called the Wulff shape of F. Under the convexity condition of F, WF

is a smooth convex hypersurface. In the case F 
 1, WF is just the unit sphere
Sn. Frequently, the Wulff shape plays the same role as the unit sphere Sn does
for the area functional. In a way analogous to the classical situation, one can
define the anisotropic shape operator, the anisotropic principal curvatures, and the
anisotropic mean curvature. An anisotropic isoparametric hypersurface is one which
has constant anisotropic principal curvatures. Ge and Ma prove that a complete
hypersurface in Euclidean space RnC1 has constant anisotropic principal curvatures
if and only if up to translations and homotheties, it is one of the following:

1. Rn � RnC1,
2. WF � RnC1,
3. �t W Wk

F � Rn�k ! RnC1, for some 0 < k < n, t ¤ 0.

Here the immersion �t in the third case is a generalization of a spherical cylinder
Sk.r/ � Rn�k � RnC1 for each value of t.

Remark 3.83 (Moment maps and isoparametric hypersurfaces). For a survey of the
results and open problems on the relationship between isoparametric hypersurfaces
in spheres and moment maps, see the papers of Miyaoka [372], Fujii [164], and Fujii
and Tamaru [165].

Remark 3.84 (Other applications to Riemannian geometry). In other Riemannian
applications, Eschenburg and Schroeder [147] studied the behavior of the Tits metric
on isoparametric hypersurfaces. Other similar topics such as homogeneous spaces,
Tits buildings, and their relationship to the theory of isoparametric hypersurfaces
are discussed in the book by Kramer [297]. (See also the papers of Kramer-Van
Maldeghem [298], and Kramer [295, 296].)

Ferapontov [156, 157] studied the relationship between isoparametric and Dupin
hypersurfaces and Hamiltonian systems of hydrodynamic type, listing several open
research problems in that context. (See also the paper of Miyaoka [368].) Ma and
Ohnita [345] published a paper on the Hamiltonian stability of the Gauss images
of homogeneous isoparametric hypersurfaces, and J. Kaneko wrote two papers
concerning the wave equation and Dupin [235], respectively, isoparametric [236]
hypersurfaces.

Shklover [481] studied the relationship between isoparametric hypersurfaces
and the Schiffer problem in Riemannian geometry, and Kim and Takahashi [264]
found various characterizations of isoparametric hypersurfaces in terms of metric
connections. The relationship between the geometry of Lagrangian submanifolds
and isoparametric hypersurfaces together with related open problems is discussed
in the papers of Ma and Ohnita [344], and of Ohnita [407].



Chapter 4
Submanifolds in Lie Sphere Geometry

This chapter is an outline of the method for studying submanifolds of Euclidean
space Rn or the sphere Sn in the context of Lie sphere geometry. For Dupin
hypersurfaces this has proven to be a valuable approach, since Dupin hypersurfaces
occur naturally as envelopes of families of spheres, which can be handled well
in Lie sphere geometry. Since the Dupin property is invariant under Lie sphere
transformations, this is also a natural setting for classification theorems.

In Section 4.5, we give a Lie geometric criterion for a Legendre submanifold
to be Lie equivalent to the Legendre lift of an isoparametric hypersurface in Sn,
and we develop the important invariants known as Lie curvatures of a Legendre
submanifold. Finally, in Section 4.6, we formulate the notion of tautness in
the setting of Lie sphere geometry and prove that it is invariant under Lie sphere
transformations.

For the early development of Lie sphere geometry, see the paper of Lie [326] and
the books of Lie and Scheffers [327], Klein [281], Blaschke [42] and Bol [44]. For a
historical treatment of the subject, see the papers of Hawkins [190] and Rowe [466].
For a modern treatment of Möbius geometry, see the book of Hertrich-Jeromin
[198]. The material in this chapter is covered in more detail in Chapters 2–4 of
the book [77], and the figures in this chapter are also taken from that book.

4.1 Möbius Geometry of Unoriented Spheres

We begin with the “Möbius geometry” of unoriented hyperspheres in Euclidean
space Rn or in the unit sphere Sn in RnC1. We always assume that n � 2.

We can go back and forth between these two ambient spaces Rn and Sn via
stereographic projection, which we recall here. Let RnC1 have coordinates x D
.x1; : : : ; xnC1/, and denote the usual inner product in RnC1 by x � y, where

© Thomas E. Cecil and Patrick J. Ryan 2015
T.E. Cecil, P.J. Ryan, Geometry of Hypersurfaces, Springer Monographs
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P

σ (u)

u

Rn

Fig. 4.1 Inverse stereographic projection

x � y D x1y1 C � � � C xnC1ynC1: (4.1)

In this chapter, we will use the notation x �y instead of hx; yi (as used in the preceding
chapters) to denote the Euclidean inner product, because we want to use hx; yi for
the Lie scalar product, which we will introduce later in this chapter.

The unit sphere Sn is the set of points x 2 RnC1 such that x �x D 1. We identify Rn

with the hyperplane given by the equation x1 D 0 in RnC1. Let P D .�1; 0; : : : ; 0/
be the south pole of Sn.

As in Remark 2.7 on page 21, we define stereographic projection with pole P to
be the map � W Sn � fPg ! Rn given by the formula,

�.x1; : : : ; xnC1/ D
�
0;

x2
x1 C 1

; : : : ;
xnC1

x1 C 1

�
: (4.2)

To describe inverse stereographic projection � W Rn ! Sn � fPg (see Figure 4.1),
we write a point u 2 Rn as u D .u2; : : : ; unC1/, that is, we omit the first coordinate 0.
Then inverse stereographic projection is given by the formula:

�.u/ D
�
1 � u � u

1C u � u
;

2u

1C u � u

�
: (4.3)

Later in this section we will show that stereographic projection � maps a
hypersphere S in Sn that does not contain the point P to a hypersphere �.S/ in Rn. If
S does contain P, then � maps S � fPg to a hyperplane in Rn. Obviously, the inverse
map � has similar properties.

Remark 4.1. Sometimes the map � is referred to as “stereographic projection,” as
in the book Lie Sphere Geometry [77]. However, in this book, we will call the map
� “stereographic projection,” and the map � “inverse stereographic projection.”

To construct the space of unoriented hyperspheres in Sn, we need to consider the
Lorentz space RnC2

1 of dimension n C 2 endowed with the Lorentz metric (bilinear
form) of signature .1; nC1/ defined for x D .x1; : : : ; xnC2/ and y D y1; : : : ; ynC2/ by

.x; y/ D �x1y1 C x2y2 C � � � C xnC2ynC2: (4.4)

This metric is also referred to as the Lorentz scalar product.
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We borrow the terminology of relativity theory and say that vector x in RnC2
1 is

spacelike, timelike, or lightlike, respectively, depending on whether .x; x/ is positive,
negative, or zero. We will use this terminology even when we are using a metric of
different signature.

In the Lorentz space RnC2
1 , the set of all lightlike vectors forms a cone of

revolution, called the light cone or isotropy cone. Lightlike vectors are often called
isotropic in the literature. Timelike vectors are “inside the cone” and spacelike
vectors are “outside the cone.”

We identify RnC1 with the spacelike subspace of RnC2
1 determined by the

equation x1 D 0, and we consider Sn to be the unit sphere in this space RnC1.
We next embed this space RnC1 as an affine subspace of projective space RPnC1 as
follows. Define projective space RPnC1 to be the space of lines through the origin in
RnC2. Equivalently, RPnC1 is the set of equivalence classes Œx� for the equivalence
relation ' on RnC2 � f0g defined by x ' y if and only if y D tx for some nonzero
real number t.

We embed the space RnC1 determined by the equation x1 D 0 in RnC2
1 as an

affine hyperplane in RPnC1 by the map � W RnC1 ! RPnC1,

�.x2; : : : ; xnC2/ D Œ.1; x2; : : : ; xnC2/�: (4.5)

If x 2 RnC2
1 is a spacelike, timelike, or lightlike vector, then the corresponding point

Œx� in RPnC1 will be referred to as spacelike, timelike, or lightlike point, respectively.
Let Sn be the unit sphere in RnC1. The image ˙ of Sn under the embedding �

consists of all points Œ.1; y/� for y 2 Sn. If we compute the Lorentz scalar product on
such a point .1; y/, we get

..1; y/; .1; y// D �1 � 1C y � y D �1C 1 D 0:

Conversely, if the Lorentz scalar product of .1; y/ with itself is zero, then y is in Sn.
Thus the image ˙ D �.Sn/ consists precisely of the projective classes of lightlike
vectors in RnC2

1 .
We identify Rn with the subspace of RnC1 determined by the equation x2 D 0.

We next consider the composition of the map � above with inverse stereographic
projection � , that is, �� W Rn ! RPnC1 given by

��.u/ D
��
1;
1 � u � u

1C u � u
;

2u

1C u � u

��
D
��
1C u � u

2
;
1 � u � u

2
; u

��
: (4.6)

Let .z1; : : : ; znC2/ be homogeneous coordinates on RPnC1. Then ��.Rn/ is just the
set of points in RPnC1 lying on the n-sphere˙ given by the equation .z; z/ D 0, with
the exception of the improper point Œ.1;�1; 0; : : : ; 0/�, that is, the image under � of
the south pole P 2 Sn. We will refer to the points in ˙ other than Œ.1;�1; 0; : : : ; 0/�
as proper points, and will call ˙ the Möbius sphere or Möbius space.
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ξ⊥ ξ

Σ

Fig. 4.2 Intersection of ˙ with �?

Spheres in Möbius geometry

The basic construction in the Möbius geometry of unoriented spheres is a correspon-
dence between the set of all hyperspheres and hyperplanes in Rn and the manifold of
all spacelike points in projective space RPnC1, and we now give a brief description
of this correspondence.

Let � be a spacelike vector in RnC2
1 . The polar hyperplane �? of Œ�� in RPnC1

intersects the sphere ˙ in an .n � 1/-sphere Sn�1 (see Figure 4.2).
This sphere Sn�1 is the image under �� of a hypersphere in Rn, unless it contains

the improper point, in which case it is the image under �� of a hyperplane in Rn.
Thus we have a bijective correspondence between the set of all hyperspheres and
hyperplanes in Rn and the manifold of all spacelike points RPnC1. We next derive
the analytic formulas for this correspondence.

The hypersphere in Rn with center p and radius r > 0 has equation

.u � p/ � .u � p/ D r2: (4.7)

A straightforward calculation shows that this is equivalent to the following equation
in homogeneous coordinates in RPnC1,

.�; ��.u// D 0; (4.8)

where � is the spacelike vector,

� D
�
1C p � p � r2

2
;
1 � p � p C r2

2
; p

�
; (4.9)

and ��.u/ is given by equation (4.6). Thus the point u 2 Rn lies on the sphere
given by equation (4.7) if and only if ��.u/ lies on the polar hyperplane to Œ��.
Since .�; �/ D r2 > 0, the point Œ�� is spacelike. Note also that �1 C �2 D 1. The
homogeneous coordinates of Œ�� are only determined up to a nonzero scalar multiple,
but we can conclude that �1 C �2 ¤ 0 for any homogeneous coordinates of Œ��.
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Conversely, if Œz� is a spacelike point in RPnC1 with z1 C z2 ¤ 0, then Œz�
corresponds to a hypersphere in Rn as follows. Let � D z=.z1 C z2/ so that Œ�� D Œz�
is a spacelike point with �1C�2 D 1. Then .�; �/ D r2 > 0 for some r > 0, and there
exists a unique p 2 Rn such that � can be written in the form of equation (4.9). This
p 2 Rn and r > 0 determine the sphere in Rn corresponding to Œ�� via equation (4.8).

Next consider the hyperplane in Rn given by the equation

u � N D h; jNj D 1: (4.10)

A direct calculation shows that (4.10) is equivalent to the equation

.�; ��.u// D 0;where � D .h;�h;N/: (4.11)

Note that �1 C �2 D 0, and this is true for any nonzero scalar multiple of �. This
condition �1 C �2 D 0 is equivalent to the equation

.�; .1;�1; 0; : : : ; 0// D 0;

and thus the improper point Œ.1;�1; 0; : : : ; 0/� lies on the hypersphere of˙ obtained
by intersecting ˙ with the polar hyperplane of �.

Conversely, if Œz� is a spacelike point in RPnC1 with z1Cz2 D 0, then .z; z/ D v�v,
where v D .z3; : : : ; znC2/ is a nonzero vector in Rn. If we take � D z=jvj, then �
has the form .h;�h;N/ for some real number h and some unit vector N 2 Rn, and
the polar hyperplane of Œ�� intersects ˙ in an .n � 1/-sphere corresponding to the
hyperplane in Rn given by equation (4.10).

Thus we have a correspondence between each spacelike point in RPnC1 and a
unique hypersphere or hyperplane in Rn. The set of all spacelike points in RPnC1
can be realized as an .n C 1/-dimensional manifold in the following natural way.
Let WnC1 be the set of vectors in RnC2

1 satisfying .; / D 1: This is a hyperboloid
of revolution of one sheet in RnC2

1 . If Œ�� is a spacelike point in RPnC1, then there
are precisely two vectors  D ˙�=p.�; �/ in WnC1 with Œ� D Œ��. Thus the set of
all spacelike points in RPnC1 is diffeomorphic to the quotient manifold WnC1= ',
where ' is projective equivalence.

Note that this correspondence also demonstrates that inverse stereographic
projection � maps a hypersphere or hyperplane in Rn to a hypersphere in the
sphere ˙ corresponding to the intersection of ˙ with the polar hyperplane of the
appropriate spacelike point Œ�� or Œ��. Conversely, any hypersphere in ˙ is obtained
by intersecting ˙ with the polar hyperplane of some spacelike point Œ�� or Œ�� in
RPnC1, and stereographic projection � maps this hypersphere in˙ to a hypersphere
or hyperplane in Rn determined by equation (4.7) or (4.10), as the case may be.
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The space of hyperspheres in the sphere Sn

Similarly, we can construct a bijective correspondence between the space of all
hyperspheres in the unit sphere Sn � RnC1 and the manifold of all spacelike points
in RPnC1 as follows. The hypersphere S in Sn with center p 2 Sn and (spherical)
radius �; 0 < � < � , is given by the equation

p � y D cos �; 0 < � < �; (4.12)

for y 2 Sn. If we take Œz� D �.y/ D Œ.1; y/�, then

p � y D �.z; .0; p//
.z; e1/

;

where e1 D .1; 0; : : : ; 0/. Thus equation (4.12) is equivalent to the equation

.z; .cos �; p// D 0; (4.13)

in homogeneous coordinates in RPnC1. Therefore, y lies on the hypersphere S given
by equation (4.12) if and only if Œz� D �.y/ lies on the polar hyperplane in RPnC1
of the spacelike point

Œ�� D Œ.cos �; p/�: (4.14)

Remark 4.2 (The space of hyperspheres in hyperbolic space Hn). One can also
construct the space of unoriented hyperspheres in hyperbolic space Hn with constant
sectional curvature �1. To do this, we let RnC1

1 denote the Lorentz subspace of RnC2
1

spanned by the orthonormal basis fe1; e3; : : : ; enC2g. Then Hn is the hypersurface

fy 2 RnC1
1 j .y; y/ D �1; y1 � 1g;

on which the restriction of the Lorentz metric . ; / is a positive definite metric of
constant sectional curvature �1 (see Kobayashi–Nomizu [283, Vol. II, p. 268–271]
for more detail). The distance between two points p and q in Hn is given by

d.p; q/ D cosh�1.�.p; q//:

Thus the equation for the unoriented sphere in Hn with center p and radius � is

.p; y/ D � cosh �: (4.15)

As with Sn, we first embed RnC1
1 into RPnC1 as an affine space by the map

 .y/ D Œy C e2�:
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Let p 2 Hn and let z D y C e2 for y 2 Hn. Then we have

.p; y/ D .z; p/=.z; e2/:

Thus, the condition (4.15) for y to lie on sphere S with center p and radius � is
equivalent to the condition that Œz� D ŒyCe2� lies on the polar hyperplane in RPnC1 to

Œ�� D Œp C cosh � e2�; (4.16)

and we can associate the sphere S with the point Œ��.

Orthogonal spheres

Möbius geometry in Rn or Sn is often identified with the conformal geometry of
these spaces via the following considerations. Let S1 and S2 denote hyperspheres
in Rn with centers p1 and p2 and radii r1 and r2, respectively. These two spheres
intersect orthogonally (see Figure 4.3) if and only if

jp1 � p2j2 D r21 C r22: (4.17)

Suppose that S1 and S2 correspond to the spacelike points Œ�1� and Œ�2� via
equation (4.9). Then a straightforward calculation shows that equation (4.17) is
equivalent to the condition

.�1; �2/ D 0; (4.18)

in homogeneous coordinates in RPnC1.

p1 p2

r1 r2

Fig. 4.3 Orthogonal spheres
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Similarly, a hyperplane � in Rn intersects a hypersphere S in Rn orthogonally if
and only if the center p of S lies in the hyperplane � . If � is given by equation (4.10)
above, then this condition is p � N D 0. One can easily verify that this equation is
equivalent to the condition .�; �/ D 0 in homogeneous coordinates in RPnC1, where
� and � correspond to S and � via equations (4.8) or (4.11), respectively. Finally, two
hyperplanes �1 and �2 in Rn are orthogonal if and only if their unit normals N1 and
N2 are orthogonal. A direct calculation shows that this is equivalent to the equation
.�1; �2/ D 0 in homogeneous coordinates for the spacelike points Œ�1� and Œ�2�
corresponding to �1 and �2 via equation (4.11). Thus, in all cases of hyperspheres
or hyperplanes in Rn, orthogonal intersection corresponds to a polar relationship in
RPnC1 given by equations (4.8) or (4.11).

Möbius transformations

We conclude this section with a discussion of Möbius transformations. Recall that
a linear transformation A 2 GL.n C 2/ induces a projective transformation P.A/ on
RPnC1 defined by P.A/Œx� D ŒAx�. The map P is a homomorphism of GL.n C 2/

onto the group PGL.n C 1/ of projective transformations of RPnC1, and its kernel
is the group of nonzero multiples of the identity transformation I 2 GL.n C 2/.

A Möbius transformation is a projective transformation ˛ of RPnC1 that pre-
serves the condition .�; �/ D 0 for Œ�� 2 RPnC1, that is, ˛ D P.A/, where
A 2 GL.n C 2/ maps lightlike vectors in RnC2

1 to lightlike vectors. It can be shown
(see, for example, [77, pp. 26–27]) that such a linear transformation A is a nonzero
scalar multiple of a linear transformation B 2 O.n C 1; 1/, the orthogonal group for
the Lorentz inner product space RnC2

1 . Thus, ˛ D P.A/ D P.B/.
The Möbius transformation ˛ D P.B/ induced by an orthogonal transformation

B 2 O.nC1; 1/maps spacelike points to spacelike points in RPnC1, and it preserves
the polarity condition .�; �/ D 0 for any two points Œ�� and Œ�� in RPnC1. Therefore
by the correspondence given in equations (4.8) and (4.11) above, ˛ maps the set
of hyperspheres and hyperplanes in Rn to itself, and it preserves orthogonality and
hence angles between hyperspheres and hyperplanes. A similar statement holds for
the set of all hyperspheres in Sn.

Let H denote the group of Möbius transformations and let

 W O.n C 1; 1/ ! H (4.19)

be the restriction of the map P to O.n C 1; 1/. The discussion above shows that  is
onto, and the kernel of  is f˙Ig, the intersection of O.n C 1; 1/ with the kernel of
P. Therefore, H is isomorphic to the quotient group O.n C 1; 1/=f˙Ig.

One can show that the group H is generated by Möbius transformations induced
by inversions in spheres in Rn. This follows from the fact that the corresponding
orthogonal groups are generated by reflections in hyperplanes. In fact, every
orthogonal transformation on an indefinite inner product space Rn

k is a product
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of at most n reflections, a result due to Cartan and Dieudonné. (See Cartan
[58, pp. 10–12], Chapter 3 of E. Artin’s book [15], or [77, pp. 30–34]).

Since a Möbius transformation ˛ D P.B/ for B 2 O.n C 1; 1/ maps lightlike
points to lightlike points in RPnC1 in a bijective way, it induces a diffeomorphism
of the n-sphere ˙ which is conformal by the considerations given above. It is well
known that the group of conformal diffeomorphisms of the n-sphere is precisely the
Möbius group.

4.2 Lie Geometry of Oriented Spheres

We now turn to Lie’s construction of the space of oriented spheres which is a natural
setting for the study of Dupin hypersurfaces. As noted in the previous section,
each unoriented hypersphere or hyperplane in Rn corresponds to a spacelike point
Œ�� in RPnC1 via the polarity relationships in equations (4.8) and (4.11). If Œ��
is a spacelike point in RPnC1, then there are precisely two unit length spacelike
vectors ˙�=p.�; �/ that determine the same spacelike point Œ�� in RPnC1. Thus, as
noted earlier, the set of spacelike points in RPnC1 is diffeomorphic to the quotient
manifold WnC1= ', where WnC1 is the set of all unit spacelike vectors in RnC2

1 and
' is projective equivalence.

We can associate the two points ˙�=p.�; �/ to the two orientations of the
hypersphere or hyperplane corresponding to Œ�� by the following construction. We
first embed RnC2

1 as an affine space in projective space RPnC2 by the embedding
z 7! Œ.z; 1/�, i.e., we introduce one more coordinate xnC3 to give RnC3 and then
let RPnC2 be the space of lines through the origin in RnC3. If  2 WnC1 is a unit
spacelike vector in RnC2

1 , then

�21 C 22 C � � � C 2nC2 D 1;

so the point Œ.; 1/� in RPnC2 lies on the quadric QnC1 in RPnC2 given in
homogeneous coordinates by the equation

hx; xi D �x21 C x22 C � � � C x2nC2 � x2nC3 D 0; (4.20)

which defines the indefinite scalar product h ; i of signature .n C 1; 2/ on the space
RnC3, which we now denote as RnC3

2 to indicate the signature of the indefinite scalar
product h ; i. This scalar product is called the Lie metric or Lie scalar product, and
the quadric QnC1 is called the Lie quadric.

We now give the details of how the set of points on the Lie quadric corresponds
to the set of all oriented hyperspheres, oriented hyperplanes and point spheres in Rn,
or equivalently, to the set of all oriented hyperspheres and point spheres in Sn.

First consider a point Œx� D Œ.x1; : : : ; xnC3/� on QnC1 with last coordinate
xnC3 ¤ 0. Then we can divide x by xnC3 and represent Œx� by a vector of the form
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.; 1/ with  2 WnC1. Thus,  represents an unoriented hypersphere or unoriented
hyperplane in Rn via the Möbius geometric correspondence.

Suppose first that 1C2 is nonzero. Then Œ� represents a hypersphere in Möbius
geometry via equation (4.8). Specifically, we can divide  by 1C2 and get a vector
� that is projectively equivalent to  that satisfies �1 C �2 D 1. Then, as in Möbius
geometry, .�; �/ D r2 for some r > 0, and we can take p D .�3; : : : ; �nC2/ in Rn so
that � has the form

� D
�
1C p � p � r2

2
;
1 � p � p C r2

2
; p

�
: (4.21)

Since .�; �/ D r2 and .; / D 1, we see that  D ˙�=r. So the two unit vectors ˙
in Œ�� 2 RPnC1 give rise to two points

Œ.˙; 1/� D Œ.˙�=r; 1/� D Œ.�;˙r/�

in the Lie quadric. We associate these two points to the two orientations of the
unoriented hypersphere S in Rn corresponding to Œ�� D Œ� as follows. For p 2 Rn

and r > 0, and � given by equation (4.21), the point Œ.�; r/� in QnC1 corresponds to
the oriented hypersphere in Rn with center p, radius r, and orientation given by the
inner field of unit normals. The point Œ.�;�r/� corresponds to the same sphere in Rn

with the opposite orientation.
Next we handle the case where .; / D 1, but 1 C 2 D 0. In this case, Œ.; 1/�

corresponds to an oriented hyperplane in Rn as follows. Since 1 C 2 D 0, the
vector  can be written in the form  D .h;�h;N/, with jNj D 1 since .; / D 1.
Then the two projective points on QnC1 induced by  and � are

Œ.h;�h;N;˙1/�: (4.22)

These represent the two orientations of the hyperplane in Rn with equation u�N D h.
We adopt the convention that Œ.h;�h;N; 1/� corresponds to the orientation given by
the field of unit normals N, while Œ.h;�h;N;�1/� D Œ.�h; h;�N; 1/� corresponds
to the opposite orientation.

Finally, we consider the case of Œx� D Œ.x1; : : : ; xnC3/� in QnC1 with xnC3 D 0.
Then if we take z D .x1; : : : ; xnC2/, we have

0 D hx; xi D �x21 C x22 C : : :C x2nC2 D .z; z/;

and so Œz� 2 RPnC1 represents a point in the Möbius sphere ˙ , or
equivalently a point in Rn [ f1g, where 1 corresponds to the improper point
Œ.1;�1; 0; : : : ; 0/� 2 ˙ . Thus, Œx� represents a point sphere or sphere with radius
zero in Rn [ f1g. Point spheres do not have an orientation assigned to them.
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Lie coordinates of oriented spheres

In summary, we have the following bijective correspondence between the set of all
oriented hyperspheres, oriented hyperplanes and point spheres in Rn [ f1g and the
set of points on the Lie quadric QnC1.

Euclidean Lie

points W u 2 Rn
��
1Cu�u
2
; 1�u�u

2
; u; 0

��

1 Œ.1;�1; 0; 0/�

spheres: center p, signed radius r
h�

1Cp�p�r2

2
; 1�p�pCr2

2
; p; r

	i

planes: u � N D h, unit normal N Œ.h;�h;N; 1/�

(4.23)

We will use the term Lie sphere to denote any oriented hypersphere, oriented
hyperplane, or point sphere in Rn [ f1g, and we will refer to the coordinates on the
right side of the table above as the Lie coordinates of the corresponding Lie sphere.

We can begin with a point Œx� D Œ.x1; : : : ; xnC3/� in QnC1 and find the
corresponding Euclidean object as follows. If x1 C x2 ¤ 0, then we can divide x
by x1 C x2 to obtain a point y D .y1; : : : ; ynC3/ with y1 C y2 D 1. Then if ynC3 ¤ 0,
we can take r D ynC3, and p D .y3; : : : ; ynC2/, and see that y is in the correct form
for the Lie coordinates of the oriented hypersphere with center p 2 Rn and signed
radius r. If ynC3 D 0, then y is in the correct form for the point u D .y3; : : : ; ynC2/
in Rn.

Next if x1 C x2 D 0 and xnC3 ¤ 0, then we can divide x by xnC3 to get a vector
y D .h;�h;N; 1/, which clearly represents an oriented hyperplane in Rn. Finally, if
x1 C x2 D 0 and xnC3 D 0, then the equation hx; xi D 0 forces x to have the form
.h;�h; 0; : : : ; 0/ ' .1;�1; 0; : : : ; 0/, and so Œx� is the improper point corresponding
to the point 1.

Oriented spheres in Sn and Hn

If we wish to consider oriented hyperspheres and point spheres in the unit sphere Sn

in RnC1, then the table above can be simplified. First, we have shown that in Möbius
geometry, the unoriented hypersphere S in Sn with center p 2 Sn and spherical radius
�, 0 < � < � , corresponds to the point Œ�� D Œ.cos �; p/� in RPnC1. To correspond
the two orientations of this sphere to points on the Lie quadric, we first note that

.�; �/ D � cos2 �C 1 D sin2 �:
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Since sin � > 0 for 0 < � < � , we can divide � by sin � and consider the two
vectors  D ˙�= sin � that satisfy .; / D 1. We then map these two points into the
Lie quadric to get the points

Œ.; 1/� D Œ.�;˙ sin �/� D Œ.cos �; p;˙ sin �/�:

in QnC1. We can incorporate the sign of the last coordinate into the radius and
thereby arrange that the oriented sphere S with signed radius � ¤ 0, where
�� < � < � , and center p corresponds to the point

Œx� D Œ.cos �; p; sin �/�: (4.24)

in QnC1. This formula still makes sense if the radius � D 0, in which case it yields
the point sphere Œ.1; p; 0/�.

We adopt the convention that the positive radius � in (4.24) corresponds to
the orientation of the sphere given by the field of unit normals which are tangent
vectors to geodesics from �p to p, and a negative radius corresponds to the opposite
orientation. Each oriented sphere can be considered in two ways, with center p and
signed radius �;�� < � < � , or with center �p and the appropriate signed radius
�˙ � .

For a given point Œx� in the quadric QnC1, we can determine the corresponding
oriented hypersphere or point sphere in Sn as follows. Multiplying by �1, if
necessary, we can arrange that the first coordinate x1 of x is nonnegative. If x1 is
positive, then it follows from equation (4.24) that the center p and signed radius
�;��=2 < � < �=2, are given by

tan � D xnC3=x1; p D .x2; : : : ; xnC2/=.x21 C x2nC3/1=2: (4.25)

If x1 D 0, then xnC3 is nonzero, and we can divide by xnC3 to obtain a point with
coordinates .0; p; 1/. This corresponds to the oriented hypersphere in Sn with center
p and signed radius �=2, which is a great sphere in Sn.

We can also find a representation for oriented hyperspheres in hyperbolic
space Hn. We know from equation (4.16) in Möbius geometry that the unoriented
hypersphere S in Hn with center p 2 Hn and hyperbolic radius � corresponds to
the point Œp C cosh � e2� in RPnC1. Following exactly the same procedure as in the
spherical case, we find that the oriented hypersphere in Hn with center p and signed
radius � corresponds to a point Œx� 2 QnC1 given by

Œx� D Œp C cosh � e2 C sinh � enC3�: (4.26)
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Oriented contact of spheres

As we saw in the previous section, the angle between two spheres is the fundamental
geometric quantity in Möbius geometry, and it is the quantity that is preserved by
Möbius transformations. In Lie’s geometry of oriented spheres, the corresponding
fundamental notion is that of oriented contact of spheres. By definition, two oriented
spheres S1 and S2 in Rn are in oriented contact if they are tangent to each other and
they have the same orientation at the point of contact. (See Figures 4.4 and 4.5 for
the two possibilities.)

r1 > 0

r2 < 0

Fig. 4.4 Oriented contact of spheres, first case

Fig. 4.5 Oriented contact of
spheres, second case

r1, r2 > 0
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If p1 and p2 are the respective centers of S1 and S2, and r1 and r2 are their
respective signed radii, then the analytic condition for oriented contact is

jp1 � p2j D jr1 � r2j: (4.27)

Similarly, we say that an oriented hypersphere sphere S with center p and signed
radius r and an oriented hyperplane � with unit normal N and equation u � N D h
are in oriented contact if � is tangent to S and their orientations agree at the point of
contact. This condition is given by the equation

p � N D r C h: (4.28)

Next we say that two oriented planes �1 and �2 are in oriented contact if their unit
normals N1 and N2 are the same. These planes can be considered to be two oriented
spheres in oriented contact at the improper point. Finally, a proper point u in Rn is
in oriented contact with a sphere or a plane if it lies on the sphere or plane, and the
improper point is in oriented contact with each plane, since it lies on each plane.

An important fact in Lie sphere geometry is that if S1 and S2 are two Lie spheres
which are represented as in equation (4.23) by Œk1� and Œk2�, then the analytic
condition for oriented contact is equivalent to the equation

hk1; k2i D 0: (4.29)

This can be checked easily by a direct calculation.

Parabolic pencils of spheres

By standard linear algebra in indefinite inner product spaces (see, for example, [77,
p. 21]), it follows from the fact that the signature of RnC3

2 is .n C 1; 2/ that the Lie
quadric contains projective lines in RPnC2, but no linear subspaces of RPnC2 of
higher dimension. These projective lines on QnC1 play a crucial role in the theory
of submanifolds in the context of Lie sphere geometry.

One can show further that if Œk1� and Œk2� are two points of QnC1, then the line
Œk1; k2� in RPnC2 lies on QnC1 if and only if the spheres corresponding to Œk1� and
Œk2� are in oriented contact, i.e., hk1; k2i D 0. Moreover, if the line Œk1; k2� lies on
QnC1, then the set of spheres in Rn corresponding to points on the line Œk1; k2� is
precisely the set of all spheres in oriented contact with both Œk1� and Œk2�. Such a
1-parameter family of spheres is called a parabolic pencil of spheres in Rn [ f1g.

Each parabolic pencil contains exactly one point sphere, and if that point sphere
is a proper point, then the parabolic pencil contains exactly one hyperplane � in
Rn (see Figure 4.6), and the pencil consists of all spheres in oriented contact with a
certain oriented plane � at p. Thus, we can associate the parabolic pencil with the
point .p;N/ in the unit tangent bundle to Rn [ f1g, where N is the unit normal to
the oriented plane � .
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π

Fig. 4.6 Parabolic pencil of spheres

If the point sphere in the pencil is the improper point, then the parabolic pencil
is a family of parallel hyperplanes in oriented contact at the improper point. If N is
the common unit normal to all of these planes, then we can associate the pencil with
the point .1;N/ in the unit tangent bundle to Rn [ f1g.

Similarly, we can establish a correspondence between parabolic pencils and
elements of the unit tangent bundle T1Sn that is expressed in terms of the spherical
metric on Sn. If ` is a line on the quadric, then ` intersects both e?1 and e?nC3 at exactly
one point, where e1 D .1; 0; : : : ; 0/ and enC3 D .0; : : : ; 0; 1/. So the parabolic
pencil corresponding to ` contains exactly one point sphere (orthogonal to enC3)
and one great sphere (orthogonal to e1), given respectively by the points,

Œk1� D Œ.1; p; 0/�; Œk2� D Œ.0; �; 1/�: (4.30)

Since ` lies on the quadric we know that hk1; k2i D 0, and this condition is
equivalent to the condition p � � D 0, i.e., � is tangent to Sn at p. Thus, the parabolic
pencil of spheres corresponding to the line ` can be associated with the point .p; �/
in T1Sn. More specifically, the line ` can be parametrized as

ŒKt� D Œcos t k1 C sin t k2� D Œ.cos t; cos t p C sin t �; sin t/�:

From equation (4.24) above, we see that ŒKt� corresponds to the oriented sphere in
Sn with center

pt D cos t p C sin t �; (4.31)

and signed radius t. The pencil consists of all oriented spheres in Sn in oriented
contact with the great sphere corresponding to Œk2� at the point .p; �/ in T1Sn. Their
centers pt lie along the geodesic in Sn with initial point p and initial velocity vector � .
Detailed proofs of all these facts are given in [77, pp. 21–23].



200 4 Submanifolds in Lie Sphere Geometry

Lie sphere transformations

We conclude this section with a discussion of Lie sphere transformations. By
definition, a Lie sphere transformation is a projective transformation of RPnC2
which maps the Lie quadric QnC1 to itself. In terms of the geometry of Rn or Sn, a Lie
sphere transformation maps Lie spheres to Lie spheres, and since it is a projective
transformation, it maps lines on QnC1 to lines on QnC1. Thus, it preserves oriented
contact of spheres in Rn or Sn. Conversely, Pinkall [443] (see also [77, pp. 28–30])
proved the so-called “Fundamental Theorem of Lie sphere geometry,” which states
that any line preserving diffeomorphism of QnC1 is the restriction to QnC1 of a
projective transformation, that is, a transformation of the space of oriented spheres
which preserves oriented contact is a Lie sphere transformation.

By the same type of reasoning given for Möbius transformations, one can show
that the group G of Lie sphere transformations is isomorphic to the group O.n C
1; 2/=f˙Ig, where O.n C 1; 2/ is the group of orthogonal transformations of RnC3

2 .
As with the Möbius group, it follows from the theorem of Cartan and Dieudonné
(see [77, pp. 30–34]) that the Lie sphere group G is generated by Lie inversions,
that is, projective transformations that are induced by reflections in O.n C 1; 2/.

The Möbius group H can be considered to be a subgroup of G in the following
manner. Each Möbius transformation on the space of unoriented spheres, naturally
induces two Lie sphere transformations on the space QnC1 of oriented spheres as
follows. If A is in O.n C 1; 1/, then we can extend A to a transformation B in
O.n C 1; 2/ by setting B D A on RnC2

1 and B.enC3/ D enC3. In terms the standard
orthonormal basis in RnC3

2 , the transformation B has the matrix representation,

B D
�

A 0
0 1

�
: (4.32)

Although A and �A induce the same Möbius transformation in H, the Lie transfor-
mation P.B/ is not the same as the Lie transformation P.C/ induced by the matrix

C D
��A 0
0 1

�
'
�

A 0

0 �1
�
;

where ' denotes equivalence as projective transformations. Note that P.B/ D
� P.C/, where � is the Lie transformation represented in matrix form by

� D
�

I 0

0 �1
�

'
��I 0
0 1

�
:

From equation (4.23), we see that � has the effect of changing the orientation
of every oriented sphere or plane. The transformation � is called the change of
orientation transformation or “Richtungswechsel” in German. Hence, the two Lie
sphere transformations induced by the Möbius transformation P.A/ differ by this
change of orientation factor.
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Thus, the group of Lie sphere transformations induced from Möbius transfor-
mations is isomorphic to O.n C 1; 1/. This group consists of those Lie transforma-
tions that map ŒenC3� to itself, and it is a double covering of the Möbius group H.
Since these transformations are induced from orthogonal transformations of RnC3

2 ,
they also map e?nC3 to itself, and thereby map point spheres to point spheres. When
working in the context of Lie sphere geometry, we will refer to these transformations
as “Möbius transformations.”

Laguerre transformations

A Lie sphere transformation that maps the improper point to itself is a Laguerre
transformation. Since oriented contact must be preserved, Laguerre transformations
can also be characterized as those Lie sphere transformations that take planes to
planes. Like Möbius geometry, Laguerre geometry can be studied on its own,
independent of Lie sphere geometry (see, for example, Blaschke [42]). One can
show (see, for example, [77, p. 47]) that the group G of Lie sphere transformations
is generated by the union of the groups of Möbius and Laguerre.

An important Laguerre transformation in the study of submanifolds is Euclidean
parallel transformation Pt that adds t to the signed radius of every oriented sphere
in Rn while keeping the center fixed. In terms of the standard basis of RnC3

2 , the
transformation Pt has the matrix representation,

Pt D

2

664

1 � .t2=2/ �t2=2 0 : : : 0 �t
t2=2 1C .t2=2/ 0 : : : 0 t
0 0 I 0

t t 0 : : : 0 1

3

775 : (4.33)

One can check that if the column vector consisting of the Lie coordinates (see
equation (4.23)) of the oriented sphere with center p 2 Rn and signed radius r is
multiplied on the left by this matrix Pt, the result is the column vector consisting
of the Lie coordinates of the oriented hypersphere with center p and signed radius
r C t.

There is also a parallel transformation that adds t to the signed radius of every
oriented sphere in Sn or Hn while keeping the center fixed. In the case of Sn, using the
fact that Œx� D Œ.cos �; p; sin �/� represents the oriented hypersphere in Sn with center
p 2 Sn and signed radius �, one can check that spherical parallel transformation Pt

is given by the following transformation in O.n C 1; 2/,

Pte1 D cos t e1 C sin t enC3;

PtenC3 D � sin t e1 C cos t enC3; (4.34)

Ptei D ei; 2 � i � n C 2:
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In hyperbolic space, the sphere with center p 2 Hn and signed radius �
corresponds to the point Œp C cosh � e2 C sinh � enC3� in QnC1, and so hyperbolic
parallel transformation is accomplished by the transformation,

Ptei D ei; i D 1; 3; : : : ; n C 2:

Pte2 D cosh t e2 C sinh t enC3; (4.35)

PtenC3 D sinh t e2 C cosh t enC3:

The following theorem of Cecil and Chern [79] (see also [77, p. 49]) demon-
strates the important role played by parallel transformations.

Theorem 4.3. Any Lie sphere transformation ˛ can be written as

˛ D �Pt ;

where � and  are Möbius transformations and Pt is some Euclidean, spherical or
hyperbolic parallel transformation.

4.3 Contact Structure and Legendre Submanifolds

The goal of this section is to define a contact structure on the unit tangent bundle
T1Sn and on the .2n � 1/-dimensional manifold �2n�1 of projective lines on the
Lie quadric QnC1, and to describe its associated Legendre submanifolds. This will
enable us to study submanifolds of Rn or Sn within the context of Lie sphere
geometry in a natural way. This theory was first developed extensively in a modern
setting by Pinkall [447] (see also Cecil–Chern [79] or [77, pp. 51–60]).

We consider T1Sn to be the .2n � 1/-dimensional submanifold of

Sn � Sn � RnC1 � RnC1

given by

T1S
n D f.x; �/ j jxj D 1; j�j D 1; x � � D 0g: (4.36)

As shown in the previous section, the points on a line ` lying on QnC1
correspond to the spheres in a parabolic pencil of spheres in Sn. In particular,
as in equation (4.30), ` contains one point Œk1� D Œ.1; x; 0/� corresponding to a
point sphere in Sn, and one point Œk2� D Œ.0; �; 1/� corresponding to a great sphere
in Sn, where the coordinates are with respect to the standard orthonormal basis
fe1; : : : ; enC3g of RnC3

2 . Thus we get a bijective correspondence between the points
.x; �/ of T1Sn and the space �2n�1 of lines on QnC1 given by the map:

.x; �/ 7! ŒY1.x; �/;YnC3.x; �/�; (4.37)
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where

Y1.x; �/ D .1; x; 0/; YnC3.x; �/ D .0; �; 1/: (4.38)

We use this correspondence to place a natural differentiable structure on �2n�1 in
such a way as to make the map in equation (4.37) a diffeomorphism.

We now show how to define a contact structure on the manifold T1Sn. By the
diffeomorphism in equation (4.37), this also determines a contact structure on
�2n�1. Recall that a .2n � 1/-dimensional manifold V2n�1 is said to be a contact
manifold if it carries a globally defined 1-form ! such that

! ^ .d!/n�1 ¤ 0 (4.39)

at all points of V2n�1. Such a form ! is called a contact form. A contact form !

determines a codimension one distribution (the contact distribution) D on V2n�1
defined by

Dp D fY 2 TpV2n�1 j !.Y/ D 0g; (4.40)

for p 2 V2n�1. This distribution is as far from being integrable as possible,
in that there exist integral submanifolds of D of dimension n � 1 but none of
higher dimension (see, for example, [77, p. 57]). The distribution D determines
the corresponding contact form ! up to multiplication by a nonvanishing smooth
function.

A tangent vector to T1Sn at a point .x; �/ can be written in the form .X;Z/ where

X � x D 0; Z � � D 0: (4.41)

Differentiation of the condition x � � D 0 implies that .X;Z/ also satisfies

X � � C Z � x D 0: (4.42)

We now show that the form ! defined by

!.X;Z/ D X � �; (4.43)

is a contact form on T1Sn. At a point .x; �/, the distribution D is the .2n �
2/-dimensional space of vectors .X;Z/ satisfying X � � D 0, as well as the
equations (4.41) and (4.42). The equation X � � D 0 together with equation (4.42)
implies that

Z � x D 0; (4.44)

for vectors .X;Z/ in D.
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Note that if we take Y1.x; �/ D .1; x; 0/, and YnC3.x; �/ D .0; �; 1/ as in
equation (4.38), then

dY1.X;Z/ D .0;X; 0/; dYnC3.X;Z/ D .0;Z; 0/: (4.45)

Thus,

hdY1.X;Z/;YnC3.x; �/i D X � � D !.X;Z/: (4.46)

To prove that the form ! defined by equation (4.43) is a contact form and to study
submanifolds in the context of Lie sphere geometry, we use the method of moving
frames, as in Cecil–Chern [79] or the book [77]. (See also the paper of Jensen [229]
and the forthcoming book of Jensen, Musso and Nicolodi [230].)

Moving frames in Lie sphere geometry

Since we want to define frames on the manifold �2n�1, it is better to use frames
for which some of the vectors are lightlike, rather than orthonormal frames. For the
sake of brevity, we use the following ranges of indices in this section:

1 � a; b; c � n C 3; 3 � i; j; k � n C 1: (4.47)

A Lie frame is an ordered set of vectors fY1; : : : ;YnC3g in RnC3
2 satisfying the

relations

hYa;Ybi D gab; (4.48)

for

Œgab� D
2

4
J 0 0

0 In�1 0
0 0 J

3

5 ; (4.49)

where In�1 is the .n � 1/ � .n � 1/ identity matrix and

J D
�
0 1

1 0

�
: (4.50)

If .y1; : : : ; ynC3/ are homogeneous coordinates on RPnC2 with respect to a Lie
frame, then the Lie metric has the form

hy; yi D 2.y1y2 C ynC2ynC3/C y23 C � � � C y2nC1: (4.51)
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The space of all Lie frames can be identified with the group O.n C1; 2/ of which
the Lie sphere group G, being isomorphic to O.n C 1; 2/=f˙Ig, is a quotient group.
In this space, we use the Maurer–Cartan forms !b

a defined by the equation

dYa D
X

!b
a Yb; (4.52)

and we adopt the convention that the sum is always over the repeated index.
Differentiating equation (4.48), we get

!ab C !ba D 0; (4.53)

where

!ab D
X

gbc!
c
a: (4.54)

Equation (4.53) says that the following matrix is skew-symmetric,

Œ!ab� D

2

666664

!21 !11 ! i
1 !nC3

1 !nC2
1

!22 !12 ! i
2 !nC3

2 !nC2
2

!2j !1j ! i
j !nC3

j !nC2
j

!2nC2 !1nC2 ! i
nC2 !

nC3
nC2 !

nC2
nC2

!2nC3 !1nC3 ! i
nC3 !

nC3
nC3 !

nC2
nC3

3

777775
: (4.55)

Taking the exterior derivative of equation (4.52) yields the Maurer–Cartan
equations,

d!b
a D

X
!c

a ^ !b
c : (4.56)

To show that the form defined by equation (4.43) is a contact form on T1Sn we
want to choose a local frame fY1; : : : ;YnC3g on T1Sn with Y1 and YnC3 given by
equation (4.38). When we transfer this frame to�2n�1, it will have the property that
for each point � 2 �2n�1, the line ŒY1;YnC3� of the frame at � is the line on the
quadric QnC1 corresponding to �.

On a sufficiently small open subset U in T1Sn, we can find smooth mappings,

vi W U ! RnC1; 3 � i � n C 1;

such that at each point .x; �/ 2 U, the vectors v3.x; �/; : : : ; vnC1.x; �/ are unit
vectors orthogonal to each other and to x and � . By equations (4.41) and (4.42),
we see that the vectors

f.vi; 0/; .0; vi/; .�;�x/g; 3 � i � n C 1; (4.57)
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form a basis to the tangent space to T1Sn at .x; �/. We now define a Lie frame on U
as follows:

Y1.x; �/ D .1; x; 0/;

Y2.x; �/ D .�1=2; x=2; 0/;
Yi.x; �/ D .0; vi.x; �/; 0/; 3 � i � n C 1; (4.58)

YnC2.x; �/ D .0; �=2;�1=2/
YnC3.x; �/ D .0; �; 1/:

Note that Y1 and YnC3 are defined on all of T1Sn. We compute the derivatives dY1
and dYnC3 and find

dY1.vi; 0/ D .0; vi; 0/ D Yi;

dY1.0; vi/ D .0; 0; 0/; (4.59)

dY1.�;�x/ D .0; �; 0/ D YnC2 C .1=2/YnC3;

and

dYnC3.vi; 0/ D .0; 0; 0/;

dYnC3.0; vi/ D .0; vi; 0/ D Yi; (4.60)

dYnC3.�;�x/ D .0;�x; 0/ D .�1=2/Y1 � Y2:

Comparing these equations with the equation (4.52), we see that the 1-forms,

f! i
1; !

i
nC3; !nC2

1 g; 3 � i � n C 1; (4.61)

form the dual basis to the basis given in (4.57) for the tangent space to T1Sn at .x; �/.
Furthermore,

!nC2
1 .X;Z/ D hdY1.X;Z/;YnC3.x; �/i D X � � D !.X;Z/; (4.62)

so !nC2
1 is the form ! in equation (4.43).

To prove that !nC2
1 satisfies the condition (4.39) for a contact form, we use the

Maurer–Cartan equations and the skew-symmetry of the matrix in equation (4.55)
to show by a straightforward calculation that

!nC2
1 ^ .d!nC2

1 /n�1 D !nC2
1 ^ .

X
! i
1 ^ !nC2

i /n�1 (4.63)

D .�1/n�1.n � 1/Š !nC2
1 ^ !31 ^ !3nC3 ^ � � � ^ !nC1

1 ^ !nC1
nC3 ¤ 0:
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Here the last form is nonzero because the set (4.61) is a basis for the cotangent
space to T1Sn at .x; �/. We can use the diffeomorphism given in (4.37) to transfer
this contact form !nC2

1 to the manifold �2n�1 of lines on the Lie quadric.
Finally, suppose that

Z1 D ˛Y1 C ˇYnC3; ZnC3 D �Y1 C ıYnC3; (4.64)

for smooth functions ˛; ˇ; �; ı with ˛ı�ˇ� ¤ 0 on T1Sn, so that the line ŒZ1;ZnC3�
equals the line ŒY1;YnC3� at all points of T1Sn. Let �nC2

1 be the 1-form defined by
�nC2
1 D hdZ1;ZnC3i. Then using equation (4.48), we can compute

�nC2
1 D hdZ1;ZnC3i D hd.˛Y1 C ˇYnC3/; �Y1 C ıYnC3i

D ˛ıhdY1;YnC3i C ˇ�hdYnC3;Y1i D .˛ı � ˇ�/hdY1;YnC3i (4.65)

D .˛ı � ˇ�/!nC2
1 :

Thus, �nC2
1 is also a contact form on T1Sn.

Legendre submanifolds

Returning briefly to the general theory, let V2n�1 be a contact manifold with
contact form ! and corresponding contact distribution D, as in equation (4.40). An
immersion � W Wk ! V2n�1 of a smooth k-dimensional manifold Wk into V2n�1
is called an integral submanifold of the distribution D if ��! D 0 on Wk, i.e., for
each tangent vector Y at each point w 2 W, the vector d�.Y/ is in the distribution
D at the point �.w/. (See Blair [41, p. 36].) It is well known (see, for example, [77,
p. 57]) that the contact distribution D has integral submanifolds of dimension n � 1,
but none of higher dimension. These integral submanifolds of maximal dimension
are called Legendre submanifolds of the contact structure.

In our specific case, we now formulate conditions for a smooth map � W Mn�1 !
T1Sn to be a Legendre submanifold. We consider T1Sn as a submanifold of Sn �Sn as
in equation (4.36), and so we can write � D .f ; �/, where f and � are both smooth
maps from Mn�1 to Sn. We have the following theorem (see [77, p. 58]) giving
necessary and sufficient conditions for � to be a Legendre submanifold.

Theorem 4.4. A smooth map � D .f ; �/ from an .n � 1/-dimensional manifold
Mn�1 into T1Sn is a Legendre submanifold if and only if the following three
conditions are satisfied.

(1) Scalar product conditions: f � f D 1; � � � D 1; f � � D 0.
(2) Immersion condition: there is no nonzero tangent vector X at any point x 2

Mn�1 such that df .X/ and d�.X/ are both equal to zero.
(3) Contact condition: df � � D 0.
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Note that by equation (4.36), the scalar product conditions are precisely the
conditions necessary for the image of the map � D .f ; �/ to be contained in T1Sn.
Next, since d�.X/ D .df .X/; d�.X//, Condition .2/ is necessary and sufficient for
� to be an immersion. Finally, from equation (4.43), we see that !.d�.X// D
df .X/ � �.x/, for each X 2 TxMn�1. Hence Condition .3/ is equivalent to the
requirement that ��! D 0 on Mn�1.

We now want to translate these conditions into the projective setting, and find
necessary and sufficient conditions for a smooth map � W Mn�1 ! �2n�1 to be
a Legendre submanifold. We again make use of the diffeomorphism defined in
equation (4.37) between T1Sn and �2n�1.

For each x 2 Mn�1, we know that �.x/ is a line on the quadric QnC1. This line
contains exactly one point ŒY1.x/� D Œ.1; f .x/; 0/� corresponding to a point sphere
in Sn, and one point ŒYnC3.x/� D Œ.0; �.x/; 1/� corresponding to a great sphere in Sn.
These two formulas define maps f and � from Mn�1 to Sn which depend on the
choice of orthonormal basis fe1; : : : ; enC2g for the orthogonal complement of enC3.

The map ŒY1� from Mn�1 to QnC1 is called the Möbius projection or point sphere
map of �, and the map ŒYnC3� from Mn�1 to QnC1 is called the great sphere map.
The maps f and � are called the spherical projection of �, and the spherical field of
unit normals of �, respectively.

In this way, � determines a map � D .f ; �/ from Mn�1 to T1Sn, and because of
the diffeomorphism (4.37), � is a Legendre submanifold if and only if � satisfies
the conditions of Theorem 4.4.

It is often useful to have conditions for when � determines a Legendre subman-
ifold that do not depend on the special parametrization of � in terms of the point
sphere and great sphere maps, ŒY1� and ŒYnC3�. In fact, in many applications of Lie
sphere geometry to submanifolds of Sn or Rn, it is better to consider � D ŒZ1;ZnC3�,
where Z1 and ZnC3 are not the point sphere and great sphere maps.

Legendre submanifolds in Lie sphere geometry

Pinkall [447] gave the following projective formulation of the conditions needed for
a Legendre submanifold. In his paper, Pinkall referred to a Legendre submanifold as
a “Lie geometric hypersurface.” The proof that the three conditions of the theorem
below are equivalent to the three conditions of Theorem 4.4 can be found in [77,
pp. 59–60].

Theorem 4.5. Let � W Mn�1 ! �2n�1 be a smooth map with � D ŒZ1;ZnC3�, where
Z1 and ZnC3 are smooth maps from Mn�1 into RnC3

2 . Then � determines a Legendre
submanifold if and only if Z1 and ZnC3 satisfy the following conditions.

(1) Scalar product conditions: for each x 2 Mn�1, the vectors Z1.x/ and ZnC3.x/
are linearly independent and

hZ1;Z1i D 0; hZnC3;ZnC3i D 0; hZ1;ZnC3i D 0:
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(2) Immersion condition: there is no nonzero tangent vector X at any point x 2
Mn�1 such that dZ1.X/ and dZnC3.X/ are both in

Span fZ1.x/;ZnC3.x/g:

(3) Contact condition: hdZ1;ZnC3i D 0.

These conditions are invariant under a reparametrization � D ŒW1;WnC3�, where
W1 D ˛Z1 C ˇZnC3 and WnC3 D �Z1 C ıZnC3, for smooth functions ˛; ˇ; �; ı on
Mn�1 with ˛ı � ˇ� ¤ 0:

The Legendre lift of a submanifold of a real space form

Every oriented hypersurface in a real space form Sn, Rn or Hn naturally induces a
Legendre submanifold of �2n�1, as does every submanifold of codimension m > 1

in these spaces. Conversely, a Legendre submanifold naturally induces a smooth
map into Sn which may have singularities. We now study the details of these maps.

Let f W Mn�1 ! Sn be an immersed oriented hypersurface with field of unit
normals � W Mn�1 ! Sn. The induced Legendre submanifold is given by the map
� W Mn�1 ! �2n�1 defined by �.x/ D ŒY1.x/;YnC3.x/�, where

Y1.x/ D .1; f .x/; 0/; YnC3.x/ D .0; �.x/; 1/: (4.66)

The map � is called the Legendre lift of the immersion f with field of unit normals � .
To show that � is a Legendre submanifold, we check the conditions of Theo-

rem 4.5. Condition (1) is satisfied since both f and � are maps into Sn, and �.x/
is tangent to Sn at f .x/ for each x in Mn�1. Since f is an immersion, dY1.X/ D
.0; df .X/; 0/ is not in Span fY1.x/;YnC3.x/g, for any nonzero vector X 2 TxMn�1,
and so Condition .2/ is satisfied. Finally, Condition (3) is satisfied since

hdY1.X/;YnC3.x/i D df .X/ � �.x/ D 0;

because � is a field of unit normals to f .
In the case of a submanifold � W V ! Sn of codimension m C 1 greater than

one, the domain of the Legendre lift is be the unit normal bundle Bn�1 of the
submanifold �.V/. We consider Bn�1 to be the submanifold of V � Sn given by

Bn�1 D f.x; �/j�.x/ � � D 0; d�.X/ � � D 0; for all X 2 TxVg:

The Legendre lift �.V/ (or the Legendre submanifold induced by �) is the map
� W Bn�1 ! �2n�1 defined by

�.x; �/ D ŒY1.x; �/;YnC3.x; �/�; (4.67)
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where

Y1.x; �/ D .1; �.x/; 0/; YnC3.x; �/ D .0; �; 1/: (4.68)

Geometrically, �.x; �/ is the line on the quadric QnC1 corresponding to the parabolic
pencil of spheres in Sn in oriented contact at the contact element .�.x/; �/ 2 T1Sn.
In [77, pp. 61–62], we show that � satisfies the conditions of Theorem 4.5,

Similarly, suppose that F W Mn�1 ! Rn is an oriented hypersurface with field
of unit normals � W Mn�1 ! Rn, where we identify Rn with the subspace of RnC3

2

spanned by fe3; : : : ; enC2g. The Legendre lift of .F; �/ is the map � W Mn�1 ! �2n�1
defined by � D ŒY1;YnC3�, where

Y1 D .1C F � F; 1 � F � F; 2F; 0/=2; YnC3 D .F � �;�.F � �/; �; 1/: (4.69)

By equation (4.23), ŒY1.x/� corresponds to the point sphere and ŒYnC3.x/� corre-
sponds to the hyperplane in the parabolic pencil determined by the line �.x/ for each
x 2 Mn�1. One can easily verify that Conditions (1)–(3) of Theorem 4.5 are satisfied
in a manner similar to the spherical case. In the case of a submanifold  W V ! Rn

of codimension greater than one, the Legendre lift of  is the map � from the unit
normal bundle Bn�1 to �2n�1 defined by �.x; �/ D ŒY1.x; �/;YnC3.x; �/�, where

Y1.x; �/ D .1C  .x/ �  .x/; 1 �  .x/ �  .x/; 2 .x/; 0/=2; (4.70)

YnC3.x; �/ D . .x/ � �;�. .x/ � �/; �; 1/:

The verification that the pair fY1;YnC3g satisfies conditions (1)–(3) of Theorem 4.5
is similar to that for submanifolds of Sn of codimension greater than one.

Finally, as in Section 4.1, we consider Hn to be the submanifold of the Lorentz
space RnC1

1 spanned by fe1; e3; : : : ; enC2g defined by:

Hn D fy 2 RnC1
1 j.y; y/ D �1; y1 � 1g;

where . ; / is the Lorentz metric on RnC1
1 obtained by restricting the Lie metric. Let

h W Mn�1 ! Hn be an oriented hypersurface with field of unit normals  W Mn�1 !
RnC1
1 . The Legendre lift of .h; / is given by the map � D ŒY1;YnC3�, where

Y1.x/ D h.x/C e2; YnC3.x/ D .x/C enC3: (4.71)

Note that .h; h/ D �1, so hY1;Y1i D 0, while .; / D 1, so hYnC3;YnC3i D 0. One
can easily check that the conditions (1)–(3) are satisfied. Finally, if � W V ! Hn

is an immersed submanifold of codimension greater than one, then the Legendre
submanifold � W Bn�1 ! �2n�1 is again defined on the unit normal bundle Bn�1 in
the obvious way.
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Conversely, suppose that � W Mn�1 ! �2n�1 is an arbitrary Legendre
submanifold. We have seen above that we can parametrize � as � D ŒY1;YnC3�,
where

Y1 D .1; f ; 0/; YnC3 D .0; �; 1/: (4.72)

for the spherical projection f and spherical field of unit normals � . Both f and �
are smooth maps, but neither need be an immersion or even have constant rank
(see Example 4.6 below). The Legendre lift of an oriented hypersurface in Sn is the
special case where the spherical projection f is an immersion, i.e., f has constant
rank n � 1 on Mn�1. In the case of the Legendre lift of a submanifold � W Vk ! Sn,
the spherical projection f W Bn�1 ! Sn defined by f .x; �/ D �.x/ has constant
rank k.

If the range of the point sphere map ŒY1� does not contain the improper point
Œ.1;�1; 0; : : : ; 0/�, then � also determines a Euclidean projection F W Mn�1 ! Rn,
and a Euclidean field of unit normals, � W Mn�1 ! Rn. These are defined by the
equation � D ŒZ1;ZnC3�, where

Z1 D .1C F � F; 1 � F � F; 2F; 0/=2; ZnC3 D .F � �;�.F � �/; �; 1/: (4.73)

Here ŒZ1.x/� corresponds to the unique point sphere in the parabolic pencil
determined by �.x/, and ŒZnC3.x/� corresponds to the unique plane in this pencil.
As in the spherical case, the smooth maps F and � need not have constant rank.

Finally, if the range of the Euclidean projection F lies inside some disk ˝ in Rn,
then one can define a hyperbolic projection and hyperbolic field of unit normals by
placing a hyperbolic metric on ˝.

There are, however, many Dupin submanifolds whose spherical (or Euclidean)
projection is not an immersion and does not have constant rank. Examples of
this type can be obtained by applying a parallel transformation Pt to a Dupin
submanifold � whose spherical or Euclidean projection is an immersion, where Pt

is chosen in such a way that the spherical or Euclidean projection of Pt� contains
a focal point of the original hypersurface. In particular, consider the following
example from [77, pp. 63–64].

Example 4.6. A Euclidean projection F that is not an immersion.
An example where the Euclidean (or spherical) projection does not have constant
rank is illustrated by the cyclide of Dupin in Figure 4.7. Here the corresponding
Legendre submanifold is a map � W T2 ! �5, where T2 is a 2-dimensional torus.
The Euclidean projection F W T2 ! R3 maps the circle S1 containing the points
A;B;C and D to the point P. However, the map � into the space of lines on the
quadric (corresponding to contact elements) is an immersion. The four arrows in
Figure 4.7 represent the contact elements corresponding under the map � to the four
points indicated on the circle S1.
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Fig. 4.7 A Euclidean projection F with a singularity

4.4 Curvature Spheres and Dupin Submanifolds

In this section, we discuss the notions of curvature spheres and Dupin hypersurfaces
in the context of Lie sphere geometry, and we prove that the Dupin property is
invariant under Lie sphere transformations.

We begin with the case of an oriented hypersurface f W Mn�1 ! Sn with field of
unit normals � W Mn�1 ! Sn. As we showed in Section 2.2, a point

ft.x/ D cos t f .x/C sin t �.x/ (4.74)

is a focal point of .Mn�1; x/ of multiplicity m > 0 if and only if cot t is a principal
curvature of multiplicity m at x. Note that each principal curvature � D cot t D
cot.t C �/ produces two distinct antipodal focal points on the normal geodesic
to f .Mn�1/ at f with parameter values t and t C � . The oriented hypersphere
centered at a focal point p and in oriented contact with f .Mn�1/ at f .x/ is called
a curvature sphere of f at x. The two antipodal focal points determined by � are
the two centers of the corresponding curvature sphere. Thus, the correspondence
between principal curvatures and curvature spheres is bijective. The multiplicity of
the curvature sphere is by definition equal to the multiplicity of the corresponding
principal curvature.

Curvature spheres in Lie sphere geometry

We now formulate the notion of curvature sphere in the context of Lie sphere
geometry. As in equation (4.66), the Legendre lift � W Mn�1 ! �2n�1 of the oriented
hypersurface .f ; �/ is given by � D ŒY1;YnC3�, where

Y1 D .1; f ; 0/; YnC3 D .0; �; 1/: (4.75)
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For each x 2 Mn�1, the points on the line �.x/ can be parametrized as

ŒKt.x/� D Œcos t Y1.x/C sin t YnC3.x/� D Œ.cos t; ft.x/; sin t/�; (4.76)

where ft is given in equation (4.74) above. By equation (4.24), the point ŒKt.x/� in
QnC1 corresponds to the oriented sphere in Sn with center ft.x/ and signed radius t.
This sphere is in oriented contact with the oriented hypersurface f .Mn�1/ at f .x/.
Given a tangent vector X 2 TxMn�1, we have

dKt.X/ D .0; dft.X/; 0/: (4.77)

Thus, dKt.X/ D .0; 0; 0/ for a nonzero vector X 2 TxMn�1 if and only if dft.X/ D 0,
i.e., p D ft.x/ is a focal point of f at x corresponding to the principal curvature cot t.
The vector X is a principal vector corresponding to the principal curvature cot t, and
it is also called a principal vector corresponding to the curvature sphere ŒKt�.

This characterization of curvature spheres depends on the parametrization of � D
ŒY1;YnC3� given by the point sphere and great sphere maps ŒY1� and ŒYnC3�, and it
has only been defined in the case where the spherical projection f is an immersion.
We now give a projective formulation of the definition of a curvature sphere that
is independent of the parametrization of � and is valid for an arbitrary Legendre
submanifold.

Let � W Mn�1 ! �2n�1 be a Legendre submanifold parametrized by the pair
fZ1;ZnC3g, as in Theorem 4.5. Let x 2 Mn�1 and r; s 2 R with at least one of r and
s not equal to zero. The sphere,

ŒK� D ŒrZ1.x/C sZnC3.x/�;

is called a curvature sphere of � at x if there exists a nonzero vector X in TxMn�1
such that

r dZ1.X/C s dZnC3.X/ 2 Span fZ1.x/;ZnC3.x/g: (4.78)

The vector X is called a principal vector corresponding to the curvature sphere ŒK�.
This definition is invariant under a change of parametrization of the form considered
in Theorem 4.5 on page 208. Furthermore, if we take the special parametrization
Z1 D Y1, ZnC3 D YnC3 given in equation (4.75), then condition (4.78) holds if and
only if r dY1.X/C s dYnC3.X/ actually equals .0; 0; 0/.

From equation (4.78), it is clear that the set of principal vectors corresponding
to a given curvature sphere ŒK� at x is a subspace of TxMn�1. This set is called
the principal space corresponding to the curvature sphere ŒK�. Its dimension is the
multiplicity of ŒK�.
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Lie equivalent Legendre submanifolds

We next show that a Lie sphere transformation maps curvature spheres to cur-
vature spheres. We first need to discuss the notion of Lie equivalent Legendre
submanifolds. Let � W Mn�1 ! �2n�1 be a Legendre submanifold parametrized
by � D ŒZ1;ZnC3�. Suppose ˇ D P.B/ is the Lie sphere transformation induced by
an orthogonal transformation B in the group O.n C 1; 2/. Since B is orthogonal, the
maps, W1 D BZ1, WnC3 D BZnC3, satisfy the Conditions (1)–(3) of Theorem 4.5,
and thus � D ŒW1;WnC3� is a Legendre submanifold which we denote by ˇ� W
Mn�1 ! �2n�1. We say that the Legendre submanifolds � and ˇ� are Lie
equivalent. In terms of submanifolds of real space forms, we say that two immersed
submanifolds of Rn, Sn, or Hn are Lie equivalent if their Legendre lifts are Lie
equivalent.

Theorem 4.7. Let � W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a Lie
sphere transformation. The point ŒK� on the line �.x/ is a curvature sphere of � at x
if and only if the point ˇŒK� is a curvature sphere of the Legendre submanifold ˇ�
at x. Furthermore, the principal spaces corresponding to ŒK� and ˇŒK� are identical.

Proof. Let � D ŒZ1;ZnC3� and ˇ� D ŒW1;WnC3� as above. For a tangent vector
X 2 TxMn�1 and real numbers r and s, at least one of which is not zero, we have

r dW1.X/C s dWnC3.X/ D r d.BZ1/.X/C s d.BZnC3/.X/ (4.79)

D B.r dZ1.X/C s dZnC3.X//;

since B is a constant linear transformation. Thus, we see that

r dW1.X/C s dWnC3.X/ 2 Span fW1.x/;WnC3.x/g

if and only if

r dZ1.X/C s dZnC3.X/ 2 Span fZ1.x/;ZnC3.x/g:

ut
We next consider the case when the Lie sphere transformation ˇ is a spherical

parallel transformation Pt given in equation (4.34), that is,

Pte1 D cos t e1 C sin t enC3;

PtenC3 D � sin t e1 C cos t enC3; (4.80)

Ptei D ei; 2 � i � n C 2:

Recall that Pt has the effect of adding t to the signed radius of each oriented sphere
in Sn while keeping the center fixed.
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If � W Mn�1 ! �2n�1 is a Legendre submanifold parametrized by the point
sphere map Y1 D .1; f ; 0/ and the great sphere map YnC3 D .0; �; 1/, then Pt� D
ŒW1;WnC3�, where

W1 D PtY1 D .cos t; f ; sin t/; WnC3 D PtYnC3 D .� sin t; �; cos t/: (4.81)

Note that W1 and WnC3 are not the point sphere and great sphere maps for Pt�.
Solving for the point sphere map Z1 and the great sphere map ZnC3 of Pt�, we find

Z1 D cos t W1 � sin t WnC3 D .1; cos t f � sin t �; 0/; (4.82)

ZnC3 D sin t W1 C cos t WnC3 D .0; sin t f C cos t �; 1/:

From this, we see that Pt� has spherical projection and spherical unit normal field
given, respectively, by

f�t D cos t f � sin t � D cos.�t/f C sin.�t/�; (4.83)

��t D sin t f C cos t � D � sin.�t/f C cos.�t/�:

The minus sign occurs because Pt takes a sphere with center f�t.x/ and radius �t to
the point sphere f�t.x/. We call Pt� a parallel submanifold of �. Formula (4.83)
shows the close correspondence between these parallel submanifolds and the
parallel hypersurfaces ft to f , in the case where f is an immersed hypersurface.

In the case where the spherical projection f is an immersion at a point x 2 Mn�1,
we know that the number of values of t in the interval Œ0; �/ for which ft is not an
immersion is at most n � 1, the maximum number of distinct principal curvatures
of f at x. Pinkall [446, p. 428] proved that this statement is also true for an arbitrary
Legendre submanifold, even if the spherical projection f is not an immersion at x by
proving the following theorem (see also [77, pp. 68–72] for a proof).

Theorem 4.8. Let � W Mn�1 ! �2n�1 be a Legendre submanifold with spherical
projection f and spherical unit normal field � . Then for each x 2 Mn�1, the parallel
map,

ft D cos t f C sin t �;

fails to be an immersion at x for at most n � 1 values of t 2 Œ0; �/.
As a consequence of Pinkall’s theorem, one can pass to a parallel submanifold to

obtain the following important corollary. Note that parts (a)–(c) of the corollary are
pointwise statements, while (d)–(e) hold on an open set U if they can be shown to
hold in a neighborhood of each point of U.

Now let x be an arbitrary point of Mn�1. If the spherical projection f of � is an
immersion at x, then it is an immersion on a neighborhood of x, and the corollary
holds on this neighborhood by known results concerning hypersurfaces in Sn given
in Chapter 2, and by the correspondence between the curvature spheres of � and
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the principal curvatures of f . If the spherical projection f is not an immersion at x,
then by Theorem 4.8, there exists parallel transformation P�t such that the spherical
projection ft of the Legendre submanifold P�t� is an immersion at x, and hence on
a neighborhood of x. So the corollary holds for P�t� on this neighborhood of x, and
by Theorem 4.7, the corollary also holds for � on this neighborhood x.

Corollary 4.9. Let � W Mn�1 ! �2n�1 be a Legendre submanifold. Then:

(a) at each point x 2 Mn�1, there are at most n � 1 distinct curvature spheres
K1; : : : ;Kg,

(b) the principal vectors corresponding to a curvature sphere Ki form a subspace
Ti of the tangent space TxMn�1,

(c) the tangent space TxMn�1 D T1 ˚ � � � ˚ Tg,
(d) if the dimension of a given Ti is constant on an open subset U of Mn�1, then the

principal distribution Ti is integrable on U,
(e) if dim Ti D m > 1 on an open subset U of Mn�1, then the curvature sphere map

Ki is constant along the leaves of the principal foliation Ti.

We can also generalize the notion of a curvature surface defined in Section 2.5
(page 32) for hypersurfaces in real space forms to Legendre submanifolds. Specifi-
cally, let � W Mn�1 ! �2n�1 be a Legendre submanifold. A connected submanifold
S of Mn�1 is called a curvature surface if at each x 2 S, the tangent space TxS is equal
to some principal space Ti. For example, if dim Ti is constant on an open subset U
of Mn�1, then each leaf of the principal foliation Ti is a curvature surface on U. It is
also possible to have a curvature surface S which is not a leaf of a principal foliation
as in Example 2.22 on page 33.

Dupin submanifolds in Lie sphere geometry

Next we generalize the definition of a Dupin hypersurface in a real space form to the
setting of Legendre submanifolds in Lie sphere geometry. We say that a Legendre
submanifold � W Mn�1 ! �2n�1 is a Dupin submanifold if:

(a) along each curvature surface, the corresponding curvature sphere map is
constant.

The Dupin submanifold � is called proper Dupin if, in addition to Condition (a), the
following condition is satisfied:

(b) the number g of distinct curvature spheres is constant on M.

In the case of the Legendre lift � W Mn�1 ! �2n�1 of an immersed Dupin
hypersurface f W Mn�1 ! Sn, the submanifold � is a Dupin submanifold, since
a curvature sphere map of � is constant along a curvature surface if and only if
the corresponding principal curvature map of f is constant along that curvature
surface. Similarly, � is proper Dupin if and only if f is proper Dupin, since the
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number of distinct curvatures spheres of � at a point x 2 Mn�1 equals the number
of distinct principal curvatures of f at x. Particularly important examples of proper
Dupin submanifolds are the Legendre lifts of isoparametric hypersurfaces in Sn.

Remark 4.10 (Relationship to the Euclidean definition of Dupin). Reckziegel [458]
gives a definition of principal curvatures and curvature surfaces in the case of an
immersed submanifold � W V ! Sn of codimension � C 1 > 1. In that case,
Reckziegel defines a curvature surface to be a connected submanifold S � V for
which there is a parallel section of the unit normal bundle � W S ! Bn�1 such that
for each x 2 S, the tangent space TxS is equal to some eigenspace of A�.x/. The
corresponding principal curvature function � W S ! R is then a smooth function
on S. As noted in Remark 2.26 on page 35, Pinkall [447] calls a submanifold
�.V/ of codimension greater than one Dupin if along each curvature surface (in the
sense of Reckziegel), the corresponding principal curvature is constant. A Dupin
submanifold �.V/ is proper Dupin if the number of distinct principal curvatures is
constant on the unit normal bundle Bn�1. One can show that Pinkall’s definition is
equivalent to requiring that the Legendre lift � W Bn�1 ! �2n�1 of the submanifold
�.V/ is a proper Dupin submanifold in the sense of Lie sphere geometry, as defined
above.

Lie invariance of the Dupin condition

By Theorem 4.7 both the Dupin and proper Dupin conditions are invariant under Lie
sphere transformations (see Theorem 4.11 below), and many important classifica-
tion results for Dupin submanifolds have been obtained in the setting of Lie sphere
geometry, as we will see in Chapter 5.

Theorem 4.11. Let � W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a Lie
sphere transformation.

(a) If � is Dupin, then ˇ� is Dupin.
(b) If � is proper Dupin, then ˇ� is proper Dupin.

Proof. By Theorem 4.7, a point ŒK� on the line �.x/ is a curvature sphere of � at
x 2 M if and only if the point ˇŒK� is a curvature sphere of ˇ� at x, and the principal
spaces corresponding ŒK� and ˇŒK� are identical. Since these principal spaces are the
same, if S is a curvature surface of � corresponding to a curvature sphere map ŒK�,
then S is also a curvature surface of ˇ� corresponding to a curvature sphere map
ˇŒK�, and clearly ŒK� is constant along S if and only if ˇŒK� is constant along S. This
proves part (a) of the theorem. Part (b) also follows immediately from Theorem 4.7,
since for each x 2 M, the number g of distinct curvature spheres of � at x equals the
number of distinct curvatures spheres of ˇ� at x. So if this number g is constant on
M for �, then it is constant on M for ˇ�. ut
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4.5 Lie Curvatures and Isoparametric Hypersurfaces

In this section,we introduce certain natural Lie invariants, known as Lie curvatures,
due to R. Miyaoka [365], that have been important in the study of Dupin and
isoparametric hypersurfaces in the context of Lie sphere geometry. We also find a
criterion (Theorem 4.16) for when a Legendre submanifold is Lie equivalent to the
Legendre lift of an isoparametric hypersurface in Sn. This theorem has been used in
proving various classification results for Dupin hypersurfaces.

Let � W Mn�1 ! �2n�1 be an arbitrary Legendre submanifold. As before, we can
write � D ŒY1;YnC3�, where

Y1 D .1; f ; 0/; YnC3 D .0; �; 1/; (4.84)

where f and � are the spherical projection and spherical field of unit normals,
respectively.

For x 2 Mn�1, the points on the line �.x/ can be written in the form,

�Y1.x/C YnC3.x/; (4.85)

that is, we take � as an inhomogeneous coordinate along the projective line �.x/.
Then the point sphere ŒY1� corresponds to � D 1. The next two theorems give the
relationship between the coordinates of the curvature spheres of � and the principal
curvatures of f , in the case where f has constant rank. In the first theorem, we assume
that the spherical projection f is an immersion on Mn�1. By Theorem 4.8, we know
that this can always be achieved locally by passing to a parallel submanifold.

Theorem 4.12. Let � W Mn�1 ! �2n�1 be a Legendre submanifold whose spherical
projection f W Mn�1 ! Sn is an immersion. Let Y1 and YnC3 be the point sphere and
great sphere maps of � as in equation (4.84). Then the curvature spheres of � at a
point x 2 Mn�1 are

ŒKi� D Œ�iY1 C YnC3�; 1 � i � g;

where �1; : : : ; �g are the distinct principal curvatures at x of the oriented hyper-
surface f with field of unit normals � . The multiplicity of the curvature sphere ŒKi�

equals the multiplicity of the principal curvature �i.

Proof. Let X be a nonzero vector in TxMn�1. Then for any real number �,

d.�Y1 C YnC3/.X/ D .0; � df .X/C d�.X/; 0/:

This vector is in Span fY1.x/;YnC3.x/g if and only if

� df .X/C d�.X/ D 0;

i.e., � is a principal curvature of f with corresponding principal vector X. ut
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We next consider the case where the point sphere map Y1 is a curvature sphere
of constant multiplicity m on Mn�1. By Corollary 4.9, the corresponding principal
distribution is a foliation, and the curvature sphere map ŒY1� is constant along the
leaves of this foliation. Thus the map ŒY1� factors through an immersion ŒW1� from
the space of leaves V of this foliation into QnC1. We can write ŒW1� D Œ.1; �; 0/�,
where � W V ! Sn is an immersed submanifold of codimension mC1. The manifold
Mn�1 is locally diffeomorphic to an open subset of the unit normal bundle Bn�1
of the submanifold �, and � is essentially the Legendre lift of �.V/, as defined in
Section 4.3. The following theorem relates the curvature spheres of � to the principal
curvatures of �. Recall that the point sphere and great sphere maps for � are given
as in equation (4.68) by

Y1.x; �/ D .1; �.x/; 0/; YnC3.x; �/ D .0; �; 1/: (4.86)

Theorem 4.13. Let � W Bn�1 ! �2n�1 be the Legendre lift of an immersed
submanifold �.V/ in Sn of codimension m C 1. Let Y1 and YnC3 be the point sphere
and great sphere maps of � as in equation (4.86). Then the curvature spheres of �
at a point .x; �/ 2 Bn�1 are

ŒKi� D Œ�iY1 C YnC3�; 1 � i � g;

where �1; : : : ; �g�1 are the distinct principal curvatures of the shape operator A� ,
and �g D 1. For 1 � i � g � 1, the multiplicity of the curvature sphere ŒKi� equals
the multiplicity of the principal curvature �i, while the multiplicity of ŒKg� is m.

The proof of this theorem is similar to that of Theorem 4.12, but one must
introduce local coordinates on the unit normal bundle to get a complete proof (see
[77, p. 74]).

Given these two theorems, we define a principal curvature of a Legendre
submanifold � W Mn�1 ! �2n�1 at a point x 2 Mn�1 to be a value � in the set
R [ f1g such that Œ�Y1.x/C YnC3.x/� is a curvature sphere of � at x, where Y1 and
YnC3 are as in equation (4.84).

Lie curvatures and Möbius curvatures

The principal curvatures of a Legendre submanifold are not Lie invariants, and they
depend on the special parametrization for � given in equation (4.84). However, R.
Miyaoka [365] pointed out that the cross-ratios of the principal curvatures are Lie
invariants. This is due to the fact that a projective transformation preserves the cross-
ratio of four points on a projective line.

We now formulate Miyaoka’s theorem specifically. Let � W Bn�1 ! �2n�1 be
a Legendre submanifold, and let ˇ be a Lie sphere transformation. The Legendre
submanifold ˇ� has point sphere and great sphere maps which we denote by
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Z1 D .1; h; 0/; ZnC3 D .0; ; 1/;

where h and  are the spherical projection and spherical field of unit normals of ˇ�.
Let

ŒKi� D Œ�iY1 C YnC3�; 1 � i � g;

denote the distinct curvature spheres of � at a point x 2 Mn�1. By Theorem 4.7, the
points ˇŒKi�; 1 � i � g, are the distinct curvature spheres of ˇ� at x. We can write

ˇŒKi� D Œ�iZ1 C ZnC3�; 1 � i � g:

Then these �i are the principal curvatures of ˇ� at x.
Next recall that the cross-ratio of four distinct numbers a; b; c; d in R [ f1g is

given by

Œa; bI c; d� D .a � b/.d � c/

.a � c/.d � b/
: (4.87)

We use the usual conventions involving operations with 1. For example, if d D 1,
then the expression .d � c/=.d � b/ evaluates to one, and the cross-ratio Œa; bI c; d�
equals .a � b/=.a � c/.

Miyaoka’s theorem can now be stated as follows.

Theorem 4.14. Let � W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a Lie
sphere transformation. Suppose that �1; : : : ; �g; g � 4; are the distinct principal
curvatures of � at a point x 2 Mn�1, and �1; : : : ; �g are the corresponding principal
curvatures of ˇ� at x. Then for any choice of four numbers h; i; j; k from the set
f1; : : : ; gg, we have

Œ�h; �iI �j; �k� D Œ�h; �iI �j; �k�: (4.88)

Proof. The left side of equation (4.88) is the cross-ratio, in the sense of projective
geometry, of the four points ŒKh�; ŒKi�; ŒKj�; ŒKk� on the projective line �.x/. The
right side of equation (4.88) is the cross-ratio of the images of these four points
under ˇ. The theorem now follows from the fact that the projective transformation
ˇ preserves the cross-ratio of four points on a line. ut

The cross-ratios of the principal curvatures of � are called the Lie curvatures of �.
There is also a set of similar invariants for the Möbius group defined as follows.
Here we consider a Möbius transformation to be a Lie sphere transformation that
takes point spheres to point spheres. Hence the transformation ˇ in Theorem 4.14
is a Möbius transformation if and only if ˇŒY1� D ŒZ1�. This leads to the following
corollary of Theorem 4.14.
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Corollary 4.15. Let � W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a
Möbius transformation. Then for any three distinct principal curvatures �h; �i; �j

of � at a point x 2 Mn�1, none of which equals 1, we have

˚.�h; �i; �j/ D .�h � �i/=.�h � �j/ D .�h � �i/=.�h � �j/; (4.89)

where �h; �i, and �j are the corresponding principal curvatures of ˇ� at the point x.

Proof. Note that we are using equation (4.89) to define the ratio ˚ , which is
called a Möbius curvature of �. Since ˇ is a Möbius transformation, the point ŒY1�,
corresponding to � D 1, is taken by ˇ to the point Z1 with coordinate � D 1.
Since ˇ preserves cross-ratios, we have

Œ�h; �iI �j;1� D Œ�h; �iI �j;1�: (4.90)

Since the cross-ratio on the left in equation (4.90) equals the left side of equa-
tion (4.89), and the cross-ratio on the right in equation (4.90) equals the right side
of equation (4.89), the corollary holds. ut

Criterion for Lie equivalence to an isoparametric hypersurface

We close this section with a local Lie geometric characterization of Legendre
submanifolds that are Lie equivalent to the Legendre lift of an isoparametric
hypersurface in Sn (see Cecil [73]). Here a line in RPnC2 is called timelike if
it contains only timelike points. This means that an orthonormal basis for the
2-plane in RnC3

2 determined by the timelike line consists of two timelike vectors.
An example is the line Œe1; enC3�.

Theorem 4.16. Let � W Mn�1 ! �2n�1 be a Legendre submanifold with g distinct
curvature spheres ŒK1�; : : : ; ŒKg� at each point. Then � is Lie equivalent to the
Legendre lift of an isoparametric hypersurface in Sn if and only if there exist g
points ŒP1�; : : : ; ŒPg� on a timelike line in RPnC2 such that

hKi;Pii D 0; 1 � i � g:

Proof. If � is the Legendre lift of an isoparametric hypersurface in Sn, then all
the spheres in a family ŒKi� have the same radius �i, where 0 < �i < � . By
formula (4.24), this is equivalent to the condition hKi;Pii D 0, where

Pi D sin �i e1 � cos �i enC3; 1 � i � g; (4.91)

are g points on the timelike line Œe1; enC3�. Since a Lie sphere transformation
preserves curvature spheres, timelike lines and the polarity relationship, the same
is true for any image of � under a Lie sphere transformation.
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Conversely, suppose that there exist g points ŒP1�; : : : ; ŒPg� on a timelike line `
such that hKi;Pii D 0, for 1 � i � g. Let ˇ be a Lie sphere transformation that maps
` to the line Œe1; enC3�. Then the curvature spheres ˇŒKi� of ˇ� are orthogonal to the
points ŒQi� D ˇŒPi� on the line Œe1; enC3�. This means that the spheres corresponding
to ˇŒKi� have constant radius on Mn�1. By applying a parallel transformation Pt, if
necessary, we can arrange that none of these curvature spheres has radius zero. Then
Ptˇ� is the Legendre lift of an isoparametric hypersurface in Sn. ut
Remark 4.17. In the case where � is Lie equivalent to the Legendre lift of an
isoparametric hypersurface in Sn, one can say more about the position of the points
ŒP1�; : : : ; ŒPg� on the timelike line `. By Theorem 3.26 (page 108) due to Münzner,
the radii �i of the curvature spheres of an isoparametric hypersurface satisfy the
equation

�i D �1 C .i � 1/�
g
; 1 � i � g; (4.92)

for some �1 2 .0; �=g/. Hence, after Lie sphere transformation, the ŒPi� have the
form (4.91) for �i as in equation (4.92).

On an isoparametric hypersurface, the distinct principal curvatures have the form

cot �i; 1 � i � g; (4.93)

for �i as in equation (4.92). From this, we can determine the Lie curvatures of an
isoparametric hypersurface, which are obviously constant.

For the sake of definiteness, we make the calculation as follows. First we order
the principal curvatures so that

�1 < � � � < �g; (4.94)

and so the �i decrease as the �i increase.
We first consider the case g D 4. Then the ordering of the principal curvatures in

equation (4.94) leads to a unique Lie curvature 
 defined by


 D Œ�1; �2I �3; �4� D .�1 � �2/.�4 � �3/=.�1 � �3/.�4 � �2/: (4.95)

With this ordering of the principal curvatures, the Lie curvature 
 satisfies the
inequality 0 < 
 < 1. Using equations (4.93) and (4.95), one can compute that

 D 1=2 on any isoparametric hypersurface with g D 4 principal curvatures, i.e.,
the four curvature spheres form a harmonic set in the sense of projective geometry
(see, for example, [472, p. 59]).
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Computation of the Lie curvature

There is, however, a simpler way to compute 
 by considering the focal sub-
manifolds. By Theorem 3.44 (page 131), each isoparametric hypersurface Mn�1
embedded in Sn has two distinct focal submanifolds, each of codimension greater
than one. The hypersurface Mn�1 is a tube of constant radius over each of these focal
submanifolds. Therefore, the Legendre lift of Mn�1 is obtained from the Legendre
lift of either focal submanifold by parallel transformation. Thus, the Legendre lift
of Mn�1 has the same Lie curvature as the Legendre lift of either focal submanifold.

Let � W V ! Sn be one of the focal submanifolds of an isoparametric
hypersurface Mn�1 with g D 4 principal curvatures. By Theorem 3.21 (page 105)
and Theorem 3.26 (page 108), we see that if � is any unit normal to �.V/ at any
point, then the shape operator A� has three distinct principal curvatures,

�1 D �1; �2 D 0; �3 D 1:

By Theorem 4.13, the Legendre lift of � has a fourth principal curvature �4 D 1.
Thus, the Lie curvature of this Legendre lift is


 D .�1 � 0/.1 � 1/=.�1 � 1/.1 � 0/ D 1=2; (4.96)

as stated above.
We can determine the Lie curvatures of an isoparametric hypersurface Mn�1 in

Sn with g D 6 principal curvatures in the same way. Let �.V/ be one of the focal
submanifolds of Mn�1. By Münzner’s formula (4.92) and Theorem 3.21 (page 105),
the Legendre lift of �.V/ has six constant principal curvatures,

�1 D �p
3; �2 D �1=p3; �3 D 0; �4 D 1=

p
3; �5 D p

3; �6 D 1;

as in Theorem 4.13. The corresponding six curvature spheres ŒK1�; : : : ; ŒK6� are
situated symmetrically on a projective line, as in Figure 4.8.

There are only three geometrically distinct configurations which can obtained by
choosing four of the six curvature spheres. These give the cross-ratios:

Œ�3; �4I �5; �6� D 1=3; Œ�2; �3I �5; �6� D 1=4; Œ�2; �3I �4; �6� D 1=2:

Of course, if a certain cross-ratio has the value r, then one can obtain the values,

fr; 1=r; 1 � r; 1=.1 � r/; .r � 1/=r; r=.r � 1/g; (4.97)

by permuting the order of the spheres (see, for example, Samuel [472, p. 58]).
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Fig. 4.8 Curvature spheres
on a projective line, g D 6
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4.6 Lie Invariance of Tautness

In this section, we discuss the notion of tautness for Legendre submanifolds in
the context of Lie sphere geometry. This was introduced in a paper of Cecil and
Chern [79], although the approach taken here is due to Álvarez Paiva [14], who used
functions whose level sets form a parabolic pencil of spheres rather than the usual
distance functions or height functions to formulate tautness. This approach leads to
a natural proof of the invariance of tautness under Lie sphere transformations. In
this section, we follow Section 4.6 of the book [77] closely, although we will omit
some of the calculations given there. (See also another paper of Álvarez Paiva [13]
that extends the notion of tautness to symplectic geometry.)

In the proof of the Lie invariance of tautness, it is more convenient to consider
embeddings of compact, connected manifolds into Sn rather than Rn. Theorem 2.70
on page 61 shows that these two theories are equivalent.

As noted in Theorem 2.28 on page 38, Kuiper [301] reformulated tightness and
tautness in terms of an injectivity condition on homology which has turned out be
very useful. Let f be a nondegenerate function on a manifold V . We consider the
sublevel set

Vr.f / D fx 2 V j f .x/ � rg; r 2 R: (4.98)

The next theorem, which follows immediately from Theorem 29.2 of Morse–Cairns
[379, p. 260] was a key to Kuiper’s formulation of these conditions. (This is the
same as Theorem 2.28, see page 38 for more discussion).

Theorem 4.18. Let f be a nondegenerate function on a compact, connected
manifold V. For a given field F, the number �.f / of critical points of f equals the
sum ˇ.V;F/ of the F-Betti numbers of V if and only if the map on homology,

H�.Vr.f /;F/ ! H�.V;F/; (4.99)

induced by the inclusion Vr.f / � V is injective for all r 2 R.
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Of course, for an embedding � W V ! Sn and a height function `p, the set Vr.`p/,
is equal to ��1.B/, where B is the closed ball in Sn obtained by intersecting Sn

with the half-space in RnC1 determined by the inequality `p.q/ � r. Kuiper [304]
used the continuity property of Z2-Čech homology to formulate tautness in terms of
��1.B/, for all closed balls B in Sn, not just those centered at non-focal points of �.
Thus, Kuiper proved the following theorem (see also Theorem 2.54 on page 54 for
the Euclidean version).

Theorem 4.19. Let � W V ! Sn be an embedding of a compact, connected manifold
V into Sn. Then � is taut if and only if for every closed ball B in Sn, the induced
homomorphism H�.f�1.B// ! H�.V/ in Z2-Čech homology is injective.

The key to the approach of Álvarez Paiva [14] is to formulate tautness of
Legendre submanifolds in terms of functions whose level sets form a parabolic
pencil of unoriented spheres, instead of using linear height functions. This is quite
natural in the context of Lie sphere geometry, and it is equivalent to the usual
formulation of tautness in the case of the Legendre lift of an embedding � W V ! Sn.

The specific construction is as follows (see [77, pp. 83–84]). Given a contact
element .p; �/ 2 T1Sn, we want to define a function

r.p;�/ W Sn � fpg ! .0; �/;

whose level sets are unoriented spheres in the parabolic pencil of unoriented spheres
determined by .p; �/. (We will often denote r.p;�/ simply by r when the context is
clear.) Every point x in Sn � fpg lies on precisely one sphere Sx in the pencil as the
spherical radius r of the spheres in the pencil varies from 0 to � . The radius r.p;�/.x/
of Sx is defined implicitly by the equation

cos r D x � .cos r p C sin r �/: (4.100)

This equation says that x lies in the unoriented sphere Sx in the pencil with center

q D cos r p C sin r �; (4.101)

and spherical radius r 2 .0; �/ (see Figure 4.9).
This defines a smooth function

r.p;�/ W Sn � fpg ! .0; �/: (4.102)

Note that the contact element .p;��/ determines the same pencil of unoriented
spheres and the function r.p;��/ D � � r.p;�/. Some sample values of the function
r.p;�/ are

r.p;�/.�/ D �=4; r.p;�/.�p/ D �=2; r.p;�/.��/ D 3�=4:
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Fig. 4.9 The sphere Sx in the
parabolic pencil determined
by .p; �/
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Consider an immersion � W V ! Sn, where V is a k-dimensional manifold with
k < n. If x 2 V , we say that the sphere Sx and �.V/ are tangent at �.x/ if

d�.TxV/ � T�.x/Sx; (4.103)

where d� is the differential of �.

Critical point behavior

The following lemma describes the critical point behavior of a function of the form
r.p;�/ on an immersed submanifold � W V ! Sn. This lemma is similar to the Index
Theorem Lp functions (Theorem 2.51 on page 53), and it is proven by a direct
calculation of the first and second derivatives of r. We will omit the proof here
and refer the reader to [77, pp. 84–88] for a complete proof.

Lemma 4.20. Let � W V ! Sn be an immersion of a connected manifold V with
dim V < n into Sn, and let .p; �/ 2 T1Sn such that p … �.V/.
(a) A point x0 2 V is a critical point of the function r.p;�/ if and only if the sphere

Sx0 containing �.x0/ in the parabolic pencil of unoriented spheres determined
by .p; �/ and the submanifold �.V/ are tangent at �.x0/.

(b) If r.p;�/ has a critical point at x0 2 V, then this critical point is degenerate if and
only if the sphere Sx0 is a curvature sphere of �.V/ at x0.
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Next we show that except for .p; �/ in a set of measure zero in T1Sn, the function
r.p;�/ is a Morse function on �.V/. This is accomplished using Sard’s Theorem in a
manner similar to the proof of Corollary 2.33 on page 40.

In our particular case, from Lemma 4.20 we know that the function r.p;�/, for
p … �.V/, is a Morse function on �.V/ unless the parabolic pencil of unoriented
spheres determined by .p; �/ contains a curvature sphere of �.V/. We now show that
the set of .p; �/ in T1Sn such that the parabolic pencil determined by .p; �/ contains
a curvature sphere of �.V/ has measure zero in T1Sn.

Let Bn�1 denote the unit normal bundle of the submanifold �.V/ in Sn. Note that
in the case where �.V/ is a hypersurface, Bn�1 is a two-sheeted covering of V . We
first recall the normal exponential map,

q W Bn�1 � .0; �/ ! Sn; (4.104)

defined as follows. For a point .x;N/ in Bn�1 and r 2 .0; �/, we define

q..x;N/; r/ D cos r x C sin r N: (4.105)

Next we define a .2n � 1/-dimensional manifold W2n�1 by

W2n�1 D f..x;N/; r; �/ 2 Bn�1 � .0; �/ � Sn j � � q..x;N/; r/ D 0g: (4.106)

The manifold W2n�1 is a fiber bundle over Bn�1 � .0; �/ with fiber diffeomorphic
to Sn�1. For each point ..x;N/; r/ 2 Bn�1 � .0; �/, the fiber consists of all unit
vectors � in RnC1 that are tangent to Sn at the point q..x;N/; r/.

We define a map,

F W W2n�1 ! T1S
n; (4.107)

by

F..x;N/; r; �/ D .cos r q C sin r �; sin r q � cos r �/; (4.108)

where q D q..x;N/; r/ is defined in equation (4.105).
The next lemma shows that if the parabolic pencil of unoriented spheres

determined by .p; �/ 2 T1Sn contains a curvature sphere of �.V/, then .p; �/ is
a critical value of F. Since the set of critical values of F has measure zero by
Sard’s Theorem (see, for example, Milnor [359, p. 33]), this will give the desired
conclusion. The proof of this lemma is a fairly straightforward calculation of the
differential of the map F, and we refer the reader to [77, pp. 89–91] for a detailed
proof.

Lemma 4.21. Let � W V ! Sn be an immersion of a connected manifold V with
dim V < n into Sn, and let Bn�1 be the unit normal bundle of �.V/. Define

F W W2n�1 ! T1S
n;
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as in equation (4.108). If the parabolic pencil of unoriented spheres determined by
.p; �/ in T1Sn contains a curvature sphere of �.V/, then .p; �/ is a critical value of
F. Thus, the set of such .p; �/ has measure zero in T1Sn.

Corollary 4.22. Let � W V ! Sn be an immersion of a connected manifold V with
dim V < n into Sn. For almost all .p; �/ 2 T1Sn, the function r.p;�/ is a Morse
function on V.

Proof. By Lemma 4.20, the function r.p;�/ is a Morse function on V if and only if
p … �.V/ and the parabolic pencil of unoriented spheres determined by .p; �/ does
not contain a curvature sphere of �.V/. The set of .p; �/ such that p 2 �.V/ has
measure zero, since �.V/ is a submanifold of codimension at least one in Sn. The
set of .p; �/ such that the parabolic pencil determined by .p; �/ contains a curvature
sphere of �.V/ has measure zero by Lemma 4.21. Thus, except for .p; �/ in the set
of measure zero obtained by taking the union of these two sets, the function r.p;�/ is
a Morse function on V . ut

Tautness in Lie sphere geometry

We will now formulate the definition of tautness for Legendre submanifolds in Lie
sphere geometry. Recall the diffeomorphism from T1Sn to the space �2n�1 of lines
on the Lie quadric QnC1 given by equations (4.37) and (4.38),

.p; �/ 7! Œ.1; p; 0/; .0; �; 1/� D ` 2 �2n�1: (4.109)

Under this correspondence, an oriented sphere S in Sn belongs to the parabolic pencil
of oriented spheres determined by .p; �/ 2 T1Sn if and only if the point Œk� in QnC1
corresponding to S lies on the line `. Thus, the parabolic pencil of oriented spheres
determined by a contact element .p; �/ contains a curvature sphere S of a Legendre
submanifold � W Bn�1 ! �2n�1 if and only if the corresponding line ` contains the
point Œk� corresponding to S.

A compact, connected Legendre submanifold � W Bn�1 ! �2n�1 is said to be
Lie-taut if for almost every line ` on the Lie quadric QnC1, the number of points
x 2 Bn�1 such that �.x/ intersects ` is ˇ.Bn�1;Z2/=2, i.e., one-half the sum of the
Z2-Betti numbers of Bn�1. Here by “almost every,” we mean except for a set of
measure zero.

Equivalently, this definition says that for almost every contact element .p; �/ in
T1Sn, the number of points x 2 Bn�1 such that the contact element corresponding
to �.x/ is in oriented contact with some sphere in the parabolic pencil of oriented
spheres determined by .p; �/ is ˇ.Bn�1;Z2/=2.

The property of Lie-tautness is clearly invariant under Lie sphere transforma-
tions, i.e., if � W Bn�1 ! �2n�1 is Lie-taut and ˛ is a Lie sphere transformation,
then the Legendre submanifold ˛� W Bn�1 ! �2n�1 is also Lie-taut. This follows
from the fact that the line �.x/ intersects a line ` if and only if the line ˛.�.x//
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intersects the line ˛.`/, and ˛ maps the complement of a set of measure zero in
�2n�1 to the complement of a set of measure zero in �2n�1.

Remark 4.23 (Comments on the definition of Lie-tautness). The factor of one-half
in the definition comes from the fact that Lie sphere geometry deals with oriented
contact and not just unoriented tangency, as we will see in the proof of Theorem 4.24
below. Recall that if � W V ! Sn is an embedding of a compact, connected manifold
V into Sn and Bn�1 is the unit normal bundle of �.V/, then the Legendre lift of � is
defined to be the Legendre submanifold � W Bn�1 ! �2n�1 given by

�.x;N/ D Œ.1; �.x/; 0/; .0;N; 1/�; (4.110)

where N is a unit normal vector to �.V/ at �.x/. If V has dimension n � 1, then
Bn�1 is a two-sheeted covering of V . If V has dimension less than n � 1, then Bn�1
is diffeomorphic to a tube Wn�1 of sufficiently small radius over �.V/ so that Wn�1
is an embedded hypersurface in Sn. In either case,

ˇ.Bn�1;Z2/ D 2ˇ.V;Z2/:

This is obvious in the case where V has dimension n � 1, and it was proved by
Pinkall [447] in the case where V has dimension less than n � 1.

Since Lie-tautness is invariant under Lie sphere transformations, the following
theorem establishes that tautness is Lie invariant. Recall that a taut immersion � W
V ! Sn is in fact an embedding (see Theorem 2.59 on page 56). Here we use the
proof of Theorem 4.28 of the book [77, pp. 93–95].

Theorem 4.24. Let � W V ! Sn be an embedding of a compact, connected manifold
V with dim V < n into Sn. Then �.V/ is a taut submanifold in Sn if and only if the
Legendre lift � W Bn�1 ! �2n�1 of � is Lie-taut.

Proof. Suppose that �.V/ is a taut submanifold in Sn, and let

� W Bn�1 ! �2n�1

be the Legendre lift of �. Let .p; �/ 2 T1Sn such that p … �.V/ and such that
the parabolic pencil of unoriented spheres determined by .p; �/ does not contain a
curvature sphere of �.V/. By Lemma 4.21, the set of such .p; �/ is the complement
of a set of measure zero in T1Sn. For such .p; �/, the function r.p;�/ is a Morse
function on V , and the sublevel set

Vs.r.p;�// D fx 2 V j r.p;�/.x/ � sg D �.V/ \ B; 0 < s < �; (4.111)

is the intersection of �.V/with a closed ball B � Sn. By tautness and Theorem 4.19,
the map on Z2-Čech homology,

H�.Vs.r.p;�/// D H�.��1.B// ! H�.V/; (4.112)
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is injective for every s 2 R, and so by Theorem 4.18, the function r.p;�/ has ˇ.V;Z2/
critical points on V .

By Lemma 4.20, a point x 2 V is a critical point of r.p;�/ if and only if the
unoriented sphere Sx in the parabolic pencil determined by .p; �/ containing x
is tangent to �.V/ at �.x/. At each such point x, exactly one contact element
.x;N/ 2 Bn�1 is in oriented contact with the oriented sphere QSx through x in
the parabolic pencil of oriented spheres determined by .p; �/. Thus, the number
of critical points of r.p;�/ on V equals the number of points .x;N/ 2 Bn�1 such
that .x;N/ is in oriented contact with an oriented sphere in the parabolic pencil of
oriented spheres determined by .p; �/.

Thus there are

ˇ.V;Z2/ D ˇ.Bn�1;Z2/=2

points .x;N/ 2 Bn�1 such that .x;N/ is in oriented contact with an oriented sphere
in the parabolic pencil of oriented spheres determined by .p; �/. This means that
there are ˇ.Bn�1;Z2/=2 points .x;N/ 2 Bn�1 such that the line �.x;N/ intersects
the line ` on QnC1 corresponding to the contact element .p; �/. Since this true for
almost every .p; �/ 2 T1Sn, the Legendre lift � of � is Lie-taut.

To prove the converse, we use a Čech homology argument similar to that of
Kuiper [303] used in the proof of Theorem 2.41 on page 44. Suppose that the
Legendre lift � W Bn�1 ! �2n�1 of � is Lie-taut. Then for all .p; �/ 2 T1Sn except
for a set Z of measure zero, the number of points .x;N/ 2 Bn�1 that are in oriented
contact with some sphere in the parabolic pencil of oriented spheres determined by
.p; �/ is ˇ.Bn�1;Z2/=2 D ˇ.V;Z2/. This means that the corresponding function
r.p;�/ has ˇ.V;Z2/ critical points on V . By Theorem 4.18, this implies that for a
closed ball B � Sn such that ��1.B/ D Vs.r.p;�// for .p; �/ … Z and s 2 R, the map
on homology,

H�.��1.B// ! H�.V/; (4.113)

is injective. On the other hand, if B is a closed ball corresponding to a sublevel set
of r.p;�/ for .p; �/ 2 Z, then since Z has measure zero, one can produce a nested
sequence,

fBig; i D 1; 2; 3; : : : ;

of closed balls (coming from r.p;�/ for .p; �/ … Z) satisfying

��1.Bi/ � ��1.BiC1/ � � � � � \1jD1��1.Bj/ D ��1.B/; (4.114)

for i D 1; 2; 3; : : : ; such that the homomorphism in Z2-homology,

H�.��1.Bi// ! H�.V/; is injective for i D 1; 2; 3; : : : (4.115)



4.6 Lie Invariance of Tautness 231

If equations (4.114) and (4.115) are satisfied, then the map

H�.��1.Bi// ! H�.��1.Bj// is injective for all i > j: (4.116)

The continuity property of Čech homology (see Eilenberg–Steenrod [145, p. 261])
says that

H�.��1.B// D  
lim

i!1 H�.��1.Bi//:

Equation (4.116) and Theorem 3.4 of Eilenberg–Steenrod [145, p. 216] on inverse
limits imply that the map

H�.��1.B// ! H�.��1.Bi//

is injective for each i. Thus, from equation (4.115), we get that the map

H�.��1.B// ! H�.V/

is also injective. Since this holds for all closed balls B in Sn, the embedding �.V/ is
taut by Theorem 4.19. ut
Another formulation of the Lie invariance of tautness is the following corollary, as
in [77, p. 95].

Corollary 4.25. Let � W V ! Sn and  W V ! Sn be two embeddings of a compact,
connected manifold V with dim V < n into Sn, such that their corresponding
Legendre lifts are Lie equivalent. Then � is taut if and only if  is taut.

Proof. Since the Legendre lifts of � and  are Lie equivalent, the unit normal
bundles of �.V/ and  .V/ are diffeomorphic, and we will denote them both by
Bn�1. Now let � W Bn�1 ! �2n�1 and � W Bn�1 ! �2n�1 be the Legendre lifts of
� and  , respectively. By Theorem 4.24, � is taut if and only if � is Lie-taut, and
 is taut if and only if � is Lie-taut. Further, since � and � are Lie equivalent, � is
Lie-taut if and only if � is Lie-taut, so it follows that � is taut if and only if  is
taut. ut



Chapter 5
Dupin Hypersurfaces

In this chapter, we study Dupin hypersurfaces in a real space form QMn. As noted
earlier, Dupin hypersurfaces can also be studied in the context of Lie sphere
geometry, and many classification results have been obtained in that setting. In this
chapter, we will use the viewpoint of the metric geometry of QMn as well as that of
Lie sphere geometry to obtain results about Dupin hypersurfaces.

As we saw in Lemma 2.15 on page 29, the theory of Dupin hypersurfaces in the
three space forms Rn, Sn or Hn, is essentially the same via stereographic projection.
We will use whichever ambient space is most convenient for the discussion at hand.

We begin by recalling some definitions and results that were discussed in
Chapter 2. Let f W M ! QMn be a connected immersed hypersurface, and let �
be a locally defined field of unit normals to f .M/. A curvature surface of M is a
smooth submanifold S such that for each point x 2 S, the tangent space TxS is equal
to a principal space of the shape operator A of M at x.

An oriented hypersurface f W Mn ! QMnC1 is called a Dupin hypersurface if:

(a) along each curvature surface, the corresponding principal curvature is constant.

Furthermore, a Dupin hypersurface M is called proper Dupin if, in addition to
Condition (a), the following condition is satisfied:

(b) the number g of distinct principal curvatures is constant on M.

We showed in Theorem 2.23 on page 33 that as a result of the Codazzi equation,
Condition (a) is automatically satisfied on a curvature surface S of dimension greater
than one.

Note that Condition (b) is equivalent to requiring that each continuous principal
curvature function has constant multiplicity on M. Furthermore, the number of
distinct principal curvatures is locally constant on a dense open subset of any
hypersurface in Sn (see Reckziegel [457, 458] or Singley [486]).

© Thomas E. Cecil and Patrick J. Ryan 2015
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Next, if a continuous principal curvature function � has constant multiplicity
m on M, then � is a smooth function on M, and the distribution T� of principal
vectors corresponding to � is a smooth distribution on M (see, for example, Nomizu
[402], Reckziegel [457, 458], or Singley [486]). Furthermore, by using the Codazzi
equation, we showed in Theorem 2.10 on page 24 that T� is integrable, and the
leaves of the foliation T� are curvature surfaces of M.

In Theorems 2.11 and 2.14 (see page 25), we showed that a principal curvature
� of constant multiplicity m is constant along each of its curvature surfaces in M
if and only if these curvature surfaces are open subsets of m-dimensional totally
umbilic submanifolds of QMn in the case m > 1, and they are plane curves of constant
curvature in the case m D 1. Furthermore, on the open subset U � M on which the
focal map f� W U ! QMn is defined, f� factors through an immersion of the (possibly
non-Hausdorff) .n�1�m/-dimensional manifold U=T� into QMn (see Theorems 2.12
and 2.14). Furthermore, if M is complete with respect to the induced metric, then
the leaf space U=T� is a Hausdorff manifold.

The curvature sphere K�.x/ corresponding to the principal curvature � at a point
x 2 U is the hypersphere in QMn through f .x/ centered at the focal point f�.x/. Thus,
K�.x/ is tangent to f .M/ at f .x/. By Corollary 2.9 on page 23, the principal curvature
� is constant along each of its curvature surfaces in U if and only if the curvature
sphere map K� is constant along each of these curvature surfaces.

An important class of proper Dupin hypersurfaces is the set of all isoparametric
hypersurfaces in Sn, and those hypersurfaces in Rn obtained from isoparametric
hypersurfaces in Sn via stereographic projection. For example, the well-known
cyclides of Dupin in R3 are obtained from a standard product torus S1.r/ � S1.s/ �
S3, r2 C s2 D 1, in this way. These examples will be discussed in more detail in
Section 5.5.

As noted in Chapter 1, there are both local and global aspects to the theory of
proper Dupin hypersurfaces with quite different results. For example, Thorbergsson
[533] proved that the restriction g D 1; 2; 3; 4, or 6 on the number of distinct
principal curvatures of an isoparametric hypersurface in Sn also holds for compact
proper Dupin hypersurfaces embedded in Sn (see Theorem 3.63 on page 143).
However, as we saw in Theorem 2.25 on page 34, there exist noncompact proper
Dupin hypersurfaces with any given number g of distinct principal curvatures having
any prescribed multiplicities.

In Section 5.1, we discuss Pinkall’s standard constructions for producing a proper
Dupin hypersurface in RnCm, m � 1, with g C 1 distinct principal curvatures from
a Dupin hypersurface Mn�1 in Rn � RnCm with g distinct principal curvatures.
These constructions involving building a tube, cylinder or a surface of revolution
over Mn�1 in RnCm, and they were used in proving Pinkall’s Theorem 2.25.

In Section 5.2, we discuss the notion of a principal coordinate system, and
find a local criterion for a hypersurface to have a principal coordinate system.
The examples constructed by Pinkall in proving Theorem 2.25 all have such a
local principal coordinate system, and several authors have considered principal
coordinate systems in their work on Dupin hypersurfaces.
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The notion of reducibility due to Pinkall [446, p. 438] is important in the theory
of Dupin hypersurfaces, and it is a concept that is best formulated in the context
of Lie sphere geometry. A proper Dupin submanifold � W Mn�1 ! �2n�1 is said
to be reducible if it is locally Lie equivalent to the Legendre lift of a proper Dupin
hypersurface in Rn obtained by one of Pinkall’s constructions. In Section 5.3, we
discuss reducible proper Dupin hypersurfaces in detail and develop Lie geometric
criteria for reducibility.

In Section 5.4, we study the method of moving frames in Lie sphere geometry.
This method has been used to obtain local classifications of proper Dupin hypersur-
faces with 2, 3, or 4 distinct principal curvatures. In Section 5.5, we use this method
to give a complete local classification of proper Dupin hypersurfaces with g D 2

distinct principal curvatures, i.e., the cyclides of Dupin. This is a nineteenth century
result for n D 3, and it was obtained in dimensions n > 3 by Pinkall [446] in 1985.
In Sections 5.6 and 5.7, we discuss local classification results for the cases g D 3

and g D 4, respectively, that have been obtained using the moving frames approach.
As demonstrated by Thorbergsson’s theorem (Theorem 3.63 on page 143),

compact proper Dupin hypersurfaces in Sn are far less plentiful, and several
important classification results have been obtained for them. These results are
discussed in detail in Section 5.8 together with the important counterexamples
of Pinkall–Thorbergsson [448] and Miyaoka–Ozawa [377] to the conjecture that
every compact proper Dupin hypersurface embedded in Sn is Lie equivalent to an
isoparametric hypersurface.

As noted in Section 2.8, the notions of Dupin and taut for submanifolds of real
space forms are closely related. In Sections 5.9 and 5.10, we discuss important
classification results that have been obtained for taut submanifolds in Euclidean
space Rn. Many of these have been proven by using classifications of compact
proper Dupin hypersurfaces.

5.1 Pinkall’s Standard Constructions

In this section, we discuss three standard constructions introduced by Pinkall [446]
for producing a Dupin hypersurface in RnCm, m � 1, with g C 1 distinct principal
curvatures from a Dupin hypersurface Mn�1 in Rn � RnCm with g distinct principal
curvatures. These constructions involving building a tube, cylinder, or a surface of
revolution over M in RnCm.

These constructions can be generalized to the context of Lie sphere geometry (see
[77, pp. 127–141]), and some of the problems involving singularities that occur in
the Euclidean setting are handled much better in the setting of Lie sphere geometry.
Even so, the constructions are simpler to formulate in the Euclidean setting, and we
will do that here.

For all of the constructions, we begin with an immersed hypersurface
f W Mn�1 ! Rn. We then embed Rn as a linear subspace of RnCm;m � 1, and
consider the immersion f W Mn�1 ! Rn � RnCm. We then construct a tube, cylinder
or surface of revolution starting with this given f .
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Remark 5.1 (Pinkall’s cone construction). When Pinkall [446] introduced his con-
structions, he also listed the following cone construction. Begin with a proper Dupin
hypersurface Mn�1 � Sn � RnC1. Then construct a cone Cn over Mn�1 in RnC1 with
vertex at the origin. This cone is also a Dupin hypersurface in RnC1. Pinkall pointed
out that this cone construction is locally Lie equivalent to the tube construction (see
also [77, p. 144]). Thus one does not need both the tube and cone constructions
when considering Dupin hypersurfaces in the context of Lie sphere geometry. In
this section, we will describe the tube construction in detail, but not the cone
construction.

We first set some notation common to all three constructions. Let

fe1; : : : ; enCmg (5.1)

be the standard orthonormal basis for RnCm, and let Rn be the linear subspace of
RnCm spanned by fe1; : : : ; eng. For all three constructions, we begin with an oriented
immersed hypersurface f W Mn�1 ! Rn � RnCm with field of unit normal vectors �
to f .M/ in Rn. The vector fields �; enC1; : : : ; enCm form a basis to the normal space
to f .M/ in RnCm at f .x/ for each x 2 M. The unit normal bundle BnCm�1 of f .M/ in
RnCm is diffeomorphic to M � Sm as follows. Let

Sm D f.y0; y1; : : : ; ym/ j y20 C � � � C y2m D 1g: (5.2)

For x 2 M and y D .y0; y1; : : : ; ym/ 2 Sm, let

�.x; y/ D y0�.x/C y1enC1 C � � � C ymenCm: (5.3)

The map,

.x; y/ 7! .x; �.x; y//; (5.4)

is a diffeomorphism from M � Sm onto BnCm�1. With this notation set, we now
formulate Pinkall’s three constructions.

Tubes

For t > 0, we define a map ft W BnCm�1 ! RnCm which gives the tube of radius t
around the submanifold f .M/ in RnCm. Using the diffeomorphism between M � Sm

and BnCm�1 in equation (5.4), we can consider ft as a map from M � Sm into RnCm

given by

ft.x; y/ D f .x/C t�.x; y/; (5.5)
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where �.x; y/ is given in equation (5.3).
In the following local calculation, we consider Mn�1 � Rn � RnCm as an

embedded submanifold, and we do not specifically mention the embedding f .
We consider the tangent space TxM at a point x 2 M to be a subspace of TxRnCm.
Then the tangent space to M � Sm at a point .x; y/ is given by

T.x;y/.M � Sm/ D f.X;Y/ j X 2 TxM; Y 2 TySmg: (5.6)

We first compute the differential .ft/� of ft in order to determine where ft is
an immersion. We begin by computing .ft/�.0;Y/ at the point .x; y/ 2 M � Sm,
where Y D .Y0;Y1; : : : ;Ym/ is a tangent vector to Sm at y 2 Sm. Let ˛.s/ D
.˛0.s/; : : : ; ˛m.s// be a curve in Sm with ˛.0/ D y and initial tangent vector�!̨.0/ D Y . Then .ft/�.0;Y/ is the initial tangent vector to the curve

ˇ.s/ D ft.x; ˛.s// D x C t.˛0.s/�.x/C ˛1.s/enC1 C � � � C ˛m.s/enCm/: (5.7)

Using the fact that �!̨.0/ D Y , we compute

.ft/�.0;Y/ D �!̌
.0/ D t .Y0�.x/C Y1enC1 C � � � C YmenCm/: (5.8)

Next we calculate .ft/�.X; 0/ for X 2 TxM. Let ı.s/ be a curve in M with initial

point ı.0/ D x and initial tangent vector
�!
ı .0/ D X. Then .ft/�.X; 0/ is the initial

tangent vector to the curve

".s/ D ft.ı.s/; y/ D ı.s/C t�.ı.s/; y/ (5.9)

D ı.s/C t.y0�.ı.s//C y1enC1 C � � � C ymenCm/:

Differentiating with respect to s and evaluating at s D 0, we get

.ft/�.X; 0/ D �!" .0/ D X C ty0DX� D X � ty0AX

D .I � ty0A/X; (5.10)

where we are identifying X with its Euclidean parallel translate at the point ft.x; y/,
and A is the shape operator of M determined by � , i.e., AX D �DX� .

From equations (5.8) and (5.10), we see that .ft/�.0;Y/ is parallel to a normal
vector to M at x, and .ft/�.X; 0/ is parallel to a tangent vector to M at x. Since
.ft/�.0;Y/ ¤ 0 for a nonzero vector Y 2 TySm, we see that .ft/�.X;Y/ ¤ 0 if Y ¤ 0.

Next we check when .ft/�.X; 0/ equals zero. From equation (5.10), we see that
for a nonzero vector X 2 TxM, the vector .ft/�.X; 0/ equals zero if and only if

.I � ty0A/X D 0: (5.11)
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In the case where y0 ¤ 0, this holds if and only if 1=ty0 is a principal curvature of A
at x with corresponding principal vector X. Note that this happens precisely when

p D ft.x; y/ D x C t�.x; y/: (5.12)

is a focal point of .M; x/ in RnCm, since A� D y0A by equation (5.3), and so 1=ty0 is a
principal curvature of A at x if and only if 1=t is an eigenvalue of the shape operator
A� at x. Thus, this calculation agrees with Theorem 2.1 on page 11 regarding the
location of focal points.

Shape operator of a tube

We now wish to find the shape operator At of the tube ft at points .x; y/ where ft.x; y/
is not a focal point of .M; x/ in RnCm. Let W be the open subset of M � Sm on which
.ft/� has rank n C m � 1. Then ftW is an immersed hypersurface in RnCm, and we
want to find the shape operator and principal curvatures of ftW. For .x; y/ 2 W, the
vector field,

�.x; y/ D y0�.x/C y1enC1 C � � � C ymenCm; (5.13)

is a field of unit normals on the tube ftW, as can be seen from equations (5.8)
and (5.10). The shape operator At determined by the unit normal field � on the
tube ftW is defined by the equation,

.ft/�.At.X;Y// D �D.ft/�.X;Y/�; (5.14)

where � is the field of unit normals given in equation (5.13).
We first compute At for vectors of the form .0;Y/ in T.x;y/M � Sm, and then for

vectors of the form .X; 0/. As we saw earlier, .ft/�.0;Y/ is the initial tangent vector
to the curve

ˇ.s/ D ft.x; ˛.s// D x C t.˛0.s/�.x/C ˛1.s/enC1 C � � � C ˛m.s/enCm/;

as in equation (5.7) above. Hence D.ft/�.0;Y/� is the initial tangent vector to the curve

�.ˇ.s// D ˛0.s/�.x/C ˛1.s/enC1 C � � � C ˛m.s/enCm;

and so,

.ft/�.At.0;Y// D � .Y0�.x/C Y1enC1 C � � � C YmenCm/: (5.15)
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Comparing this with equation (5.8), we see that

At.0;Y/ D �1
t
.0;Y/: (5.16)

Thus, every vector of the form .0;Y/ is a principal vector of At corresponding to
the principal curvature �1=t. This new principal curvature arises because f .M/ has
codimension m C 1 > 1 in RnCm. This agrees with Theorem 2.2 (page 17) for the
shape operator of a tube.

Next we find At.X; 0/ for X 2 TxM. Let ı.s/ be a curve in M with initial point

ı.0/ D x and initial tangent vector
�!
ı .0/ D X, as above. Then .ft/�.X; 0/ is the

initial tangent vector to the curve,

".s/ D ft.ı.s/; y/ D ı.s/C t.y0�.ı.s//C y1enC1 C � � � C ymenCm/;

as in equation (5.9) above. Along this curve ".s/, the unit normal to the tube ftW is
given by

�.".s// D y0�.ı.s//C y1enC1 C � � � C ymenCm:

Then D.ft/�.X;0/� is the initial tangent vector to the curve �.".s//, which is just
DX.y0�/, since the other terms in the formula for �.".s// are constants. So we have

D.ft/�.X;0/� D y0Dx� D �y0AX: (5.17)

where we are identifying AX with its Euclidean parallel translate at the point ft.x; y/.
Comparing this with equation (5.10),

.ft/�.X; 0/ D .I � ty0A/X;

and using equation (5.14), we get

At.X; 0/ D ..I � ty0A/
�1y0AX; 0/: (5.18)

In the case of a principal vector X such that AX D �X at a point .x; y/ with y0 ¤ 0,
this reduces to

At.X; 0/ D ..I � ty0A/
�1y0AX; 0/ D

�
y0�

1 � ty0�
X; 0

�
: (5.19)

Thus, .X; 0/ is a principal vector with corresponding principal curvature

� D y0�

1 � ty0�
: (5.20)
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We now assume that the original hypersurface f W Mn�1 ! Rn is a proper Dupin
hypersurface with g distinct principal curvatures �i, 1 � i � g, at each point. We
first list the principal curvatures of the tube ftW and check the Dupin condition at
a point .x; y/ 2 W. As we have seen above, this depends on whether or not the
coordinate y0 is zero, that is, whether or not the vector �.x; y/ in equation (5.3) is
orthogonal to Rn in RnCm.

We first treat the case where y0 ¤ 0, that is, when the vector �.x; y/ in
equation (5.3) is not orthogonal to Rn in RnCm. From equations (5.16) and (5.20),
we see that At has g C 1 distinct principal curvatures at such points,

�i D y0�i

1 � ty0�i
; 1 � i � g; (5.21)

and �gC1 D �1=t of multiplicity m. For 1 � i � g, the principal space
corresponding to �i is

T�i D f.X; 0/ j X 2 T�ig D T�i � f0g: (5.22)

So the principal curvature �i has the same multiplicity as �i. The leaves of the
principal foliation T�i have the form S � fyg, where S is a leaf of the principal
foliation T�i on M. Furthermore, for a vector X 2 T�i , the derivative .X; 0/�i D 0

if and only if X�i D 0, and this condition holds, because f is Dupin. Thus, �i

is constant along its curvatures surfaces. In addition, the new principal curvature
�gC1 D �1=t is constant on W, and therefore it is constant along its curvature
surfaces, which have the form fxg � Sm for x 2 M. Thus, the Dupin Condition (a) is
satisfied at a point .x; y/ with y0 ¤ 0.

Next we consider points .x; y/ in W � M � Sm where y0 D 0, that is, where the
vector �.x; y/ in equation (5.3) is orthogonal to Rn in RnCm. From equations (5.10)
and (5.19), we see that .ft/�.X; 0/ D X and At.X; 0/ D .0; 0/ for every X 2 TxM.
Thus � D 0 is a principal curvature of multiplicity n � 1, and its curvature surfaces
are of the form M�fyg, where y0 D 0. The other principal curvature at such points is
� D �1=t having multiplicity m, and its curvature surfaces have the form fxg � Sm,
for x 2 M. So the number of distinct principal curvatures is two at such points, and
the Dupin Condition (a) is satisfied at these points also. However, the tube ftW is not
proper Dupin unless the number g of distinct principal curvatures of M is one, since
g C 1 ¤ 2 unless g D 1.

Number of distinct principal curvatures

We summarize these results in the following proposition.

Proposition 5.2. Suppose that f W Mn�1 ! Rn � RnCm is a proper Dupin
hypersurface in Rn with g distinct principal curvatures. Then the tube construction
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ft yields a Dupin hypersurface ft W W ! RnCm, where W is the open subset of
the unit normal bundle BnCm�1 on which ft is an immersion. The number �.x; �/ of
distinct principal curvatures of ft at a point .x; �/ 2 BnCm�1 is as follows:

(a) �.x; �/ D 2, if � is orthogonal to Rn in RnCm.
(b) �.x; �/ D g C 1, otherwise.

Remark 5.3. The tube over a torus T2 � R3 � R4 in Example 2.22 on page 33
provides a good example of Proposition 5.2.

The tube construction can be formulated in the context of Lie sphere geometry
(see [77, pp. 127–133]). In that context, there is no need to exclude the points where
ft is not an immersion, and the tube construction can be defined on the whole unit
normal bundle BnCm�1. The precise formulation in that context is the following
proposition from [77, p. 131].

Proposition 5.4. Suppose that � W Mn�1 ! �2n�1 is a proper Dupin submanifold
with g distinct curvature spheres such that the Euclidean projection f is an
immersion of Mn�1 into Rn � RnCm. Then the tube construction yields a Dupin
submanifold � defined on the unit normal bundle BnCm�1 of f .Mn�1/ in RnCm. The
number �.x; �/ of distinct curvature spheres of � at a point .x; �/ 2 BnCm�1 is as
follows:

(a) �.x; �/ D 2, if � is orthogonal to Rn in RnCm.
(b) �.x; �/ D g C 1, otherwise.

In this case, the new curvature sphere in Case (b) corresponding to the principal
curvature �1=t in equation (5.16) arises because f .M/ has codimension m C 1 > 1

in RnCm.
Another situation in which the tube construction can be applied is that of an

immersed proper Dupin submanifold  W V ! Rn, where  .V/ has codimension
� C 1 > 1 in Rn. Recall from equation (4.70) on page 210 that the Legendre
lift of  is the Legendre submanifold � W Bn�1 ! �2n�1 defined by �.x; �/ D
ŒY1.x; �/;YnC3.x; �/�, where

Y1.x; �/ D .1C  .x/ �  .x/; 1 �  .x/ �  .x/; 2 .x/; 0/=2; (5.23)

YnC3.x; �/ D . .x/ � �;�. .x/ � �/; �; 1/;

where Bn�1 is the unit normal bundle of  .V/ in Rn. The submanifold  .V/ is said
to be Dupin, respectively, proper Dupin, if its Legendre lift � is Dupin, respectively
proper Dupin, as defined in Section 4.4 (see page 212).

Specifically, the Legendre submanifold � W Bn�1 ! �2n�1 is a Dupin
submanifold if:

(a) along each curvature surface, the corresponding curvature sphere map is
constant.
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Furthermore, � is called proper Dupin if, in addition to Condition (a), the following
condition is satisfied:

(b) the number g of distinct curvature spheres is constant on Bn�1.

As noted Remark 4.10 on page 217, the definition of a proper Dupin submanifold
 W V ! Rn of codimension � C 1 > 1 in Rn can also be formulated in terms of
Euclidean submanifold theory (see Pinkall [447]). That formulation is equivalent to
the Lie sphere geometric formulation given above.

The application of the tube construction to the Legendre lift � W Bn�1 ! �2n�1
of an immersed proper Dupin submanifold  W V ! Rn of codimension �C 1 > 1,
yields a Dupin submanifold according to the following proposition [77, p. 132].

Proposition 5.5. Suppose that � W Bn�1 ! �2n�1 is a proper Dupin submanifold
with g distinct curvature spheres induced by an immersed submanifold �.V/ of
codimension � C 1 in Rn, where Rn � RnCm. Then the tube construction yields
a Dupin submanifold � defined on the unit normal bundle BnCm�1 to �.V/ in RnCm.
The number �.x; �/ of distinct curvature spheres of � at a point .x; �/ 2 BnCm�1 is
as follows:

(a) �.x; �/ D 2, if � is orthogonal to Rn in RnCm.
(b) �.x; �/ D g, otherwise.

In this situation, the number of distinct curvature spheres does not increase in
Case (b), because the point sphere map of � is already a curvature sphere map, since
�.V/ has codimension � C 1 > 1 in Rn (see [77, pp. 131–132] for more detail).

Cylinders

For the cylinder construction, we again begin with an immersion

f W Mn�1 ! Rn � RnCm;

with field of unit normals � to f .M/ in Rn. In the following local calculation,
we consider Mn�1 � Rn � RnCm as an embedded submanifold, and we do not
specifically mention the embedding f . We consider the tangent space TxM at a point
x 2 M to be a subspace of TxRnCm. Then the tangent space to M � Rm at a point
.x; z/, where z D .z1; : : : ; zm/, is given by

T.x;z/.M � Rm/ D f.X;Z/ j X 2 TxM; Z 2 TzRmg: (5.24)

The cylinder built over M in RnCm is defined by the map F W M �Rm ! RnCm given
by the formula

F.x; z/ D x C z1enC1 C � � � C zmenCm: (5.25)



5.1 Pinkall’s Standard Constructions 243

The field �.x; z/ of unit normals to the cylinder is given by

�.x; z/ D �.x/; (5.26)

that is, the normal field is constant along the rulings of the cylinder given by setting
x equal to a constant. For .X;Z/ tangent to M � Rm at a point .x; z/, where Z D
.Z1; : : : ;Zm/, we compute

F�.X;Z/ D X C Z1enC1 C � � � C ZmenCm; (5.27)

where we identify vectors that are parallel in RnCm. Thus, F is an immersion on
M � Rm.

We next find the shape operator B of the cylinder built over M in RnCm at a point
.x; z/ in terms of the shape operator A of M � Rn at x. First we compute using
equation (5.26),

F�.B.X; 0// D �DF�.X;0/� D �DX� D AX; (5.28)

where we are again identifying parallel vectors in RnCm. Next we compute

F�.B.0;Z// D �DF�.0;Z/� D 0; (5.29)

since the field of unit normals � is constant along the rulings of the cylinder
through x. From equations (5.27)–(5.29), we see that if X is a principal vector of
M in Rn with AX D �X, then .X; 0/ is a principal vector of the cylinder at .x; z/ with
B.X; 0/ D �.X; 0/ for every z 2 Rm. Furthermore, B.0;Z/ D 0 for every Z 2 TzRm.

From this we see that there are two situations in which the cylinder construction
applied to a proper Dupin hypersurface M in Rn leads to a proper Dupin cylinder in
RnCm. The first is the following.

Proposition 5.6. Suppose that f W Mn�1 ! Rn � RnCm is a proper Dupin
hypersurface in Rn with g distinct principal curvatures such that zero is not a
principal curvature at any point of Mn�1. Then the cylinder construction yields a
proper Dupin hypersurface F W M � Rm ! RnCm with g C 1 distinct principal
curvatures at each point.

Proof. Let �i; 1 � i � g, denote the distinct principal curvature functions of the
hypersurface f .M/ in Rn with corresponding mi-dimensional principal foliations Ti,
where mi is the multiplicity of �i. By equations (5.28)–(5.29), the principal curvature
functions of the cylinder F.M � Rm/ in RnCm are �i.x; z/ D �i.x/; 1 � i � g,
and �gC1 D 0. Since none of the �i ever equal zero on M, these g C 1 principal
curvature functions �1; : : : ; �g; �gC1 are distinct at each point of M � Rm, and they
have multiplicities m1; : : : ;mg;mgC1, respectively, where mgC1 D m. For 1 � i � g,
the principal curvature function �i is constant along the leaves of its principal
foliation Ti, since f .M/ is proper Dupin. Therefore, �i is constant along the leaves
of its principal foliation in M � Rm, which have the form S � fzg, where S is a leaf
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of Ti in M. The principal curvature �gC1 D 0 is constant on M � Rm, so it is clearly
constant along the leaves of its principal foliation, which have the form fxg � Rm in
M � Rm. Thus the cylinder is a proper Dupin hypersurface in M � Rm with g C 1

distinct principal curvature functions at each point. ut
The other situation in which the cylinder construction leads to a proper Dupin

hypersurface in RnCm is when one of the principal curvature functions �k of M is
identically zero on M. In that case, we get the following.

Proposition 5.7. Suppose that f W Mn�1 ! Rn � RnCm is a proper Dupin
hypersurface in Rn with g distinct principal curvature functions �i; 1 � i � g, such
that one particular principal curvature function �k is identically zero on Mn�1. Then
the cylinder construction yields a proper Dupin hypersurface F W M � Rm ! RnCm

with g distinct principal curvatures at each point.

Proof. From equations (5.28)–(5.29), we see that at a point .x; z/ 2 M � Rm, the
cylinder has g distinct principal curvatures, �i.x; z/ D �i.x/, for 1 � i � g. For
i ¤ k, the principal curvature �i has the same multiplicity as �i, but the multiplicity
of the principal curvature �k D 0 is mk C m, where mk is the multiplicity of the
principal curvature �k D 0 on M. As in the previous proposition, for i ¤ k, the
fact that �i is constant along the leaves of its principal foliation Ti implies that �i is
constant along the leaves of its principal foliation in M � Rm, which have the form
S � fzg, where S is a leaf of Ti in M. For i D k, the principal curvature �k D 0 is
constant on M�Rm, so it is clearly constant along the leaves of its principal foliation,
which have the form S � Rm, where S is a leaf of the foliation Tk on M. ut
Remark 5.8 (Cylinder construction in Lie sphere geometry). The cylinder construc-
tion can be formulated in the context of Lie sphere geometry (see [77, pp. 133–136]).
In that context, the cylinder construction can be extended to M�Sm in the case where
none of the principal curvatures of the hypersurface f W M ! Rn is ever equal to
zero on M.

Surfaces of revolution

As in the other two constructions, we begin with an immersion f W Mn�1 !
Rn � RnCm with field of unit normals � W Mn�1 ! Sn�1 � Rn. We want to
construct the hypersurface of revolution in RnCm obtained by revolving the profile
submanifold f .M/ about an axis Rn�1 � Rn, where Rn�1 is determined by the
equation xn D 0. We will not insist that f .M/ be disjoint from the axis Rn�1,
although the hypersurface of revolution will have singularities at points where
f .M/ intersects Rn�1. In keeping with the usual terminology, we will refer to a
hypersurface of revolution as a “surface of revolution” in this section.

First we decompose the maps f and � into components along the axis Rn�1 and
orthogonal to Rn�1, and we write
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f .x/ D Of .x/C fn.x/en; Of .x/ 2 Rn�1; (5.30)

�.x/ D O�.x/C �n.x/en; O�.x/ 2 Rn�1: (5.31)

For x 2 M and y D .y0; : : : ; ym/ 2 Sm, we define

F.x; y/ D Of .x/C fn.x/.y0en C y1enC1 C � � � C ymenCm/; (5.32)

�.x; y/ D O�.x/C �n.x/.y0en C y1enC1 C � � � C ymenCm/: (5.33)

Note that for y D .1; 0; : : : ; 0/, we have

F.x; .1; 0; : : : ; 0// D f .x/; �.x; .1; 0; : : : ; 0// D �.x/;

that is, we have the profile submanifold for the surface of revolution.
For a fixed point x 2 M, the points F.x; y/, y 2 Sm, form an m-dimensional sphere

of radius jfn.x/j obtained by revolving the point f .x/ about the axis Rn�1 in RnCm,
provided that fn.x/ is not zero. If fn.x/ D 0, then F maps all of the set fxg � Sm to
the point f .x/, and thus F has a singularity at all such points.

For a vector X 2 TxM and Y D .Y0; : : : ;Ym/ 2 TySm, we compute

F�.X; 0/ D Of�.X/C .Xfn/.y0en C y1enC1 C � � � C ymenCm/; (5.34)

F�.0;Y/ D fn.x/.Y0en C Y1enC1 C � � � C YmenCm/: (5.35)

Note that when y D .1; 0; : : : ; 0/, we have

F�.X; 0/ D f�.X/:

From equations (5.34)–(5.35), we see that F�.X; 0/ is orthogonal to F�.0;Y/, since
Y is orthogonal to y in Sm. These equations imply that F is an immersion at points
.x; y/ where fn.x/ ¤ 0, i.e., points where f .x/ does not lie on the axis of revolution
Rn�1. If f .x/ does lie on the axis, then F�.0;Y/ D 0 for all Y 2 TySm, and F has a
singularity at .x; y/ for all y 2 Sm. In that case, the point F.x; y/ is fixed as the profile
submanifold is revolved around the axis of revolution.

Shape operator of a surface of revolution

Now we want to find the shape operator of the surface of revolution. First we recall
that if X 2 TxM, then the shape operator A of the surface f W Mn�1 ! Rn applied to
X is determined by the equation

f�.AX/ D �Df�.X/� D ���.X/ D �. O��.X/C .X�n/en/: (5.36)
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Since

f�.X/ D Of�.X/C .Xfn/en; (5.37)

we see that AX D �X if and only if

O��.X/ D ��Of�.X/; and X�n D ��.Xfn/: (5.38)

From equations (5.34)–(5.35), we see that the vector �.x; y/ is normal to the surface
of revolution F at the point F.x; y/. Thus, � is a field of unit normals to the surface
of revolution. By definition, the shape operator B determined by the field of unit
normal � satisfies the equation,

F�.B.X; 0// D �DF�.X;0/�; (5.39)

which we can compute as follows. Take a curve ı.s/ in M with ı.0/ D x and initial

tangent vector
�!
ı .0/ D X. Let ".s/ D F.ı.s/; y/. Then DF�.X;0/� is the initial tangent

vector to the curve

�.".s// D O�.ı.s//C �n.ı.s//.y0en C � � � C ymenCm/: (5.40)

Therefore,

F�.B.X; 0// D ��!� .0/ D �. O��.X/C .X�n/.y0en C � � � C ymenCm//: (5.41)

From equations (5.34) and (5.41), we see that B.X; 0/ D �.X; 0/ if and only if

O��.X/ D ��f�.X/; and X�n D ��.Xfn/; (5.42)

that is, if and only if equation (5.38) holds.
Thus, we have shown that .X; 0/ is a principal vector of the shape operator B of

F with corresponding principal curvature � if and only if X is a principal vector of
the shape operator A of f with the same corresponding principal curvature �. The
principal space of the principal curvature � of B at .x; y/ is T� � f0g, where T� is
the principal space of the principal curvature � of A at x. The curvature surface of
the principal curvature � of B through the point .x; y/ has the form S � fyg, where
S � M is the curvature surface of the principal curvature � of A through x. Clearly,
the principal curvature function � of B is constant along the curvature surface S�fyg
if and only if the principal curvature function � of A is constant along S in M.

Next we turn to the new principal curvature created by the surface of revolution
construction. For these considerations, we insist that fn.x/ ¤ 0 at the point x 2 M,
that is, the surface of revolution map F is an immersion at points .x; y/ for all y 2 Sm.
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For Y D .Y0; : : : ;Ym/ 2 TySm, we have

F�.B.0;Y// D �DF�.0;Y/�; (5.43)

which can be computed as follows. Let ˛.s/ D .˛0.s/; : : : ; ˛m.s// be a curve in Sm

with ˛.0/ D y and initial tangent vector

�!̨.0/ D .˛00.0/; : : : ; ˛0m.0// D .Y0; : : : ;Ym/ D Y;

where ˛0i.0/ is the derivative of the coordinate function ˛i.s/ at s D 0.
Let ˇ.s/ D F.x; ˛.s//. Then DF�.0;Y/� is the initial tangent vector to the curve,

�.ˇ.s// D O�.x/C �n.x/.˛0.s/en C � � � C ˛m.s/enCm/; (5.44)

and thus

DF�.0;Y/� D �n.x/.Y0en C � � � C YmenCm/: (5.45)

Therefore, we have

F�.B.0;Y// D ��n.x/.Y0en C � � � C YmenCm/: (5.46)

Comparing this with equation (5.35) for F�.0;Y/, we see that at points where
fn.x/ ¤ 0,

B.0;Y/ D ��n.x/

fn.x/
.0;Y/: (5.47)

Hence, each vector .0;Y/ in TxM�TySm is a principal vector of B with corresponding
principal curvature �.x; y/ D ��n.x/=fn.x/, which only depends on x. This principal
curvature � is constant on the set fxg � Sm.

Note that if �.x/ ¤ 0, the focal point of the surface of revolution corresponding
to this principal curvature is

F�.x; y/ D F.x; y/C .1=�/�.x; y/

D Of .x/C fn.x/.y0en C � � � C ymenCm/ (5.48)

� fn.x/

�n.x/
. O�.x/C �n.x/.y0en C � � � C ymenCm// (5.49)

D Of .x/ � fn.x/

�n.x/
O�.x/:

This point is the point of intersection of the normal line to the surface of revolution
at F.x; y/ with the axis of revolution Rn�1. Thus, the center of the curvature sphere
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corresponding to � at F.x; y/ lies on the axis of revolution, and the curvature sphere
itself is orthogonal to the axis of revolution. If �.x/ D 0, then there is no focal
point corresponding to �, and the corresponding curvature sphere at F.x; y/ is the
tangent hyperplane to the surface of revolution at F.x; y/. In that case, �n.x/ D 0, so
that �.x; y/ D O�.x/, which is parallel to the axis of revolution Rn�1. Thus the tangent
plane to the surface of revolution at F.x; y/ is orthogonal to Rn�1 at such points.

Therefore, there are two possibilities for the number �.x; y/ of distinct curvature
spheres of F at .x; y/. If none of the principal curvatures of f .M/ at x is equal to
the new principal curvature � D ��n.x/=fn.x/, then we have �.x; y/ D g C 1 for
all y 2 Sm, and the curvature surface of F through .x; y/ corresponding to the new
principal curvature � has the form fxg � Sm. On the other hand, if � equals one of
the principal curvatures � of f .M/ at x, then �.x; y/ D g for all y 2 Sm, and the
curvature surface of F through .x; y/ has the form S � Sm, where S is the curvature
surface of f .M/ through x corresponding to the principal curvature �. We summarize
these results in the following proposition.

Proposition 5.9. Suppose that f W Mn�1 ! Rn is a proper Dupin hypersurface with
g distinct principal curvatures at each point. The surface of revolution construction
F W Mn�1 � Sm ! RnCm yields a Dupin hypersurface defined on all points of
Mn�1 � Sm, except those points where f .x/ lies in the axis of revolution Rn�1. For
.x; y/ in the domain of definition of the surface of revolution, the number �.x; y/ of
distinct principal curvatures of F at .x; y/ is as follows:

(a) �.x; y/ D g C 1, if none of the principal curvatures of f at x is equal to the new
principal curvature � D ��n.x/=fn.x/.

(b) �.x; y/ D g, otherwise.

Remark 5.10 (Surface of revolution construction in Lie sphere geometry). For a
formulation of the surface of revolution construction in the context of Lie sphere
geometry, see [77, pp. 136–141].

5.2 Principal Coordinate Systems

In his dissertation, Pinkall ([442] and [445]) classified all proper Dupin hypersur-
faces in R4 with g D 3 principal curvatures up to Lie equivalence. He showed that
the only compact proper Dupin hypersurfaces with g D 3 in R4 are those that are Lie
equivalent to an isoparametric hypersurface M3 in S4 (see Theorem 5.29). Pinkall
also showed that those are the only proper Dupin hypersurfaces in R4 with g D 3

principal curvatures for which the lines of curvature cannot serve as coordinates of
a local parametrization.

In this section, we show that if Mn � SnC1 is an isoparametric hypersurface with
g � 3 principal curvatures, then there does not exist any local principal coordinate
system on Mn (see Pinkall [442, p. 42] and Cecil–Ryan [95, pp. 180–184]). We then
give necessary and sufficient conditions for a hypersurface in a real space form with
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a fixed number g of distinct principal curvatures to have a local principal coordinate
system in a neighborhood of each of its points.

Let Mn be a hypersurface in a real space form QMnC1 with g distinct principal
curvatures �1; : : : ; �g at each point having respective multiplicities m1; : : : ;mg. For
each i, let Ti be the principal foliation corresponding to �i. A principal coordinate
system is a local coordinate system

.x11; : : : ; x1m1 ; x21; : : : ; x2m2 ; : : : ; xg1; : : : ; xgmg/ (5.50)

defined on a connected open set U � Mn such that

Ti D Span f@=@xi1; : : : ; @=@ximig; 1 � i � g: (5.51)

That is, for any set of constants cjk, j ¤ i, 1 � j � g, 1 � k � mj, the equations

xjk D cjk; j ¤ i; 1 � j � g; 1 � k � mj; (5.52)

determine an integral manifold of Ti.
Two foliations T 0 and T 00 on a manifold Mn are said to be complementary if

the sum of their dimensions equals the dimension of Mn. Kobayashi and Nomizu
[283, Vol. I, p. 182] proved that if two foliations T 0 and T 00 are complementary on
a manifold Mn, then for each point y 2 Mn, there exists a local coordinate system
.x1; : : : ; xn/ with origin at y such that .@=@x1; : : : ; @=@xk/ is a local basis for T 0 and
.@=@xkC1; : : : ; @=@xn/ is a local basis for T 00. Thus, if Mn � QMnC1 is a hypersurface
in a real space form with g D 2 distinct principal curvatures at each point, then
the principal distributions T1 and T2 are complementary, and there exists a principal
coordinate system in a neighborhood of every point of Mn.

In the following theorem due to Pinkall [442, p. 42] (see also Cecil–Ryan [95,
pp. 180–184]), we show that there cannot exist a local principal coordinate system
on an isoparametric hypersurface in Sn with g � 3 distinct principal curvatures.

Theorem 5.11. Let M � SnC1 be an isoparametric hypersurface with g � 3

distinct principal curvatures. Then there cannot exist a local principal coordinate
system on M.

Proof. Suppose there exists such a local coordinate system on an open subset U �
M. Let � and � be two distinct principal curvatures of M, and let X 2 T� and
Y 2 T� be coordinate vector fields in this principal coordinate system. Since they
are coordinate vector fields, the Lie bracket

ŒX;Y� D rXY � rYX D 0: (5.53)

The Codazzi equation,

.rXA/Y D .rYA/X; (5.54)
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then yields

rX.�Y/ � rY.�X/ D A.rXY � rYX/ D A.ŒX;Y�/ D 0: (5.55)

Thus, using equation (5.53), we have

0 D �rXY � �rYX D .� � �/rXY; (5.56)

so that rXY D 0, since � ¤ �. On the other hand, since the Euclidean inner product
hX;Yi D 0, we have

hrXX;Yi D �hX;rXYi D 0: (5.57)

Thus, rXX lies in T?� for all � ¤ �, and so

rXX 2 T�: (5.58)

Using the Gauss equation (see, for example, [468, p. 366]), we find

R.X;Y/Y D .��C 1/.hY;YiX � hX;YiY/ D .��C 1/hY;YiX: (5.59)

On the other hand,

R.X;Y/Y D rXrYY � rYrXY � rŒX;Y�Y; (5.60)

which, since rXY D 0 and ŒX;Y� D 0, becomes

R.X;Y/Y D rXrYY: (5.61)

Thus we get

hR.X;Y/Y;Xi D hrXrYY;Xi D XhrYY;Xi � hrYY;rXXi D 0; (5.62)

since equation (5.58) also applies to Y and T�. In view of (5.59), we have
��C 1 D 0. Thus any principal curvature � distinct from � satisfies � D �1=�
and so g D 2, contradicting the assumption that g � 3. ut
Remark 5.12 (Proper Dupin hypersurfaces and principal coordinate systems).
Principal coordinate systems arose in the work of T. Otsuki [419, 420] and R.
Miyaoka [361, 362] on minimal hypersurfaces in the sphere. Otsuki [420, p. 17]
gave examples of minimal hypersurfaces in the sphere with three distinct non-
simple (having constant multiplicity greater than one) principal curvatures. Since all
of the multiplicities are greater than one, these hypersurfaces are proper Dupin by
Theorem 2.10 on page 24. Otsuki’s examples have the property that each orthogonal
complement T?i of a principal foliation is integrable. Theorem 5.13 below shows
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that this is equivalent to the assumption that each point of the hypersurface M
has a principal coordinate neighborhood. Otsuki showed that his examples are not
isoparametric and cannot be complete. In fact, Miyaoka [362] showed that if M is a
complete hypersurface with constant mean curvature and three non-simple principal
curvatures in a real space form QMnC1.c/ with constant sectional curvature c � 0,
then c > 0 and M is isoparametric.

Using a different approach based on the theory of higher-dimensional Laplace
invariants due to Kamran and Tenenblat [234], Riveros and Tenenblat [463, 464]
gave a local classification of proper Dupin hypersurfaces M4 in R5 with four distinct
principal curvatures which are parametrized by lines of curvature. In a related result,
Riveros, Rodrigues, and Tenenblat [462] proved that a proper Dupin hypersurface
Mn � RnC1, n � 4, with n distinct principal curvatures and constant Möbius
curvatures cannot be parametrized by lines of curvature. They also showed that up
to Möbius transformations, there is a unique proper Dupin hypersurface M3 � R4

with three principal curvatures and constant Möbius curvature that is parametrized
by lines of curvature. This M3 is a cone in R4 over a standard flat torus in the unit
sphere S3 � R4. In a recent paper, Riveros [461] gave a characterization of a class
of proper Dupin hypersurfaces in R4 that satisfy an additional condition on their
higher-dimensional invariants.

Conditions for the existence of a principal coordinate system

The following theorem taken from Cecil–Ryan [95, pp. 182–184] gives necessary
and sufficient conditions for a hypersurface in a real space form with a fixed number
g of distinct principal curvatures to have a local principal coordinate system in a
neighborhood of each of its points.

Theorem 5.13. Let Mn be a hypersurface in a real space form QMnC1 with g distinct
principal curvatures �1; : : : ; �g at each point. Then each point of Mn has a principal
coordinate neighborhood if and only if each T?i is integrable on Mn.

Proof. Suppose there exists a principal coordinate system on an open set U � Mn.
Then for a fixed i, the equations,

xik D cik; 1 � k � mi; (5.63)

determine a manifold whose tangent space is the direct sum of the Tj for j ¤ i. This
direct sum is equal to T?i , and so T?i is integrable on U. Since Mn is covered by
such neighborhoods, T?i is integrable on Mn.

Conversely, suppose that each T?i is integrable. Then for each i, the two foliations
Ti and T?i are complementary, and so by the theorem of Kobayashi and Nomizu
[283, Vol. I, p. 182] mentioned above, for each point p 2 Mn, there exists a system
of local coordinates,
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.xi1; : : : ; ximi ; yi1; : : : ; yi.n�mi//; (5.64)

with origin at p such that the leaves of T?i are given by the equations

xik D cik; 1 � k � mi: (5.65)

It can then be shown by induction that

.x11; : : : ; x1m1 ; x21; : : : ; x2m2 ; : : : ; xg1; : : : ; xgmg/ (5.66)

is a coordinate system by using the coordinate systems in equation (5.64) and
verifying that for each h, 1 � h � g,

.x11; : : : ; x1m1 ; x21; : : : ; x2m2 ; : : : ; xh1; : : : ; xhmh ; yhj1 ; : : : ; yhjr /;

where

r D n �
hX

iD1
mi;

is a coordinate system for a suitable subset fj1; : : : ; jrg of f1; : : : ; n � mhg. If L is the
manifold given by the equations,

xjk D cjk; j ¤ i; 1 � j � g; 1 � k � mj; (5.67)

then at each point q 2 L, we have

TqL �
\

j¤i

T?j .q/ D Ti.q/: (5.68)

Since TqL has the same dimension as Ti.q/, we get TqL D Ti.q/ , and thus the
coordinate system in equation (5.66) is a principal coordinate system with origin
at p. ut

5.3 Reducible Dupin Hypersurfaces

The notion of reducibility due to Pinkall [446, p. 438] is important in the theory of
Dupin hypersurfaces, and it is a concept that is best formulated in the context of Lie
sphere geometry. A proper Dupin submanifold,

� W Mn�1 ! �2n�1; (5.69)
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is said to be reducible if it is locally Lie equivalent to the Legendre lift of a
proper Dupin hypersurface in Rn obtained by one of Pinkall’s constructions given
in Section 5.1.

More specifically, a Dupin submanifold � that is obtained from a Dupin
submanifold � by one of Pinkall’s standard constructions is reducible to �. Further,
a Dupin submanifold � that is Lie equivalent to such a Dupin submanifold � is also
said to be reducible to �.

A detailed study of Pinkall’s constructions in the context of Lie sphere geometry
(see [446] or [77, pp. 127–148]) yields the main results of this section. For the sake
of completeness, we want to state these results here. However, we will omit several
of the proofs since they can be found in these two references.

The following result characterizes the case when the application of one of the
standard constructions to a proper Dupin submanifold with g distinct curvature
spheres produces a proper Dupin submanifold with g C 1 distinct curvature spheres
defined on an open subset of Mn�1 � Sm.

Theorem 5.14. For g � 1, a proper Dupin submanifold � W Wd�1 ! �2d�1 with
gC1 distinct curvature spheres is reducible to a proper Dupin submanifold � with g
distinct curvature spheres if and only if � has a curvature sphere ŒK� of multiplicity
m � 1 that lies in a .d C 1 � m/-dimensional linear subspace of RPdC2.

As Proposition 5.5 on page 242 shows, the application of one of the standard
constructions does not always increase the number of curvature spheres, even
though the resulting Dupin submanifold is still reducible. Pinkall [446, p. 438]
also formulated his local criterion for reducibility to handle the case where the
number of distinct curvature spheres of � is the same as the number of distinct
curvature spheres of �. This criterion does not take into account the multiplicity of
the curvature sphere ŒK�, as was done in Theorem 5.14 (see also [77, p. 143]).

Theorem 5.15. A connected proper Dupin submanifold � W Wd�1 ! �2d�1 is
reducible if and only if there exists a curvature sphere ŒK� of � that lies in a linear
subspace of RPdC2 of codimension at least two.

Tube over a Veronese surface in S4 � S5

The following example taken from [77, p. 132] is important in the theory of
reducibility, and it illustrates some of the problems that can occur in attempting
to characterize reducible Dupin submanifolds. The key point here is that the
number of distinct curvatures spheres does not necessarily increase when one of
the standard constructions is applied to a proper Dupin submanifold (as illustrated
by Proposition 5.5 on page 242).

Example 5.16 (Tube over a Veronese surface in S4 � S5). In this example, we
consider the case where V2 is a Veronese surface embedded in S4 � S5, where
S4 is a great sphere in S5. Of course, V2 � S4 is one of the focal submanifolds
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of an isoparametric hypersurface in S4 with three distinct principal curvatures of
multiplicity one described in Section 3.8.3 (see page 151). We first recall the details
of the Veronese surface. Let S2 be the unit sphere in R3 given by the equation

u2 C v2 C w2 D 1:

Consider the map from S2 into the unit sphere S4 � R5 given by

.u; v;w/ 7!
 p

3vw;
p
3wu;

p
3uv;

p
3

2
.u2 � v2/;w2 � u2 C v2

2

!
:

This map takes the same value on antipodal points of S2, so it induces a map � W
RP2 ! S4, and one can show that � is an embedding. The surface V2 D �.RP2/ is
a Veronese surface. One can show (see Section 3.8.3) that a tube over V2 of radius
", for 0 < " < �=3, in the spherical metric of S4 is an isoparametric hypersurface
M3 with g D 3 distinct principal curvatures. This isoparametric hypersurface M3

is not a reducible Dupin hypersurface, because the Veronese surface is substantial
(does not lie in a hyperplane) in R5, so M3 is not obtained as a result of the tube
construction as described in Section 5.1. In terms of Lie sphere geometry, the point
sphere map of the Legendre lift of the submanifold V2 � S4 lies in a linear subspace
of codimension one in the projective space RP6, but not in a linear subspace of
codimension two.

Now embed R5 as a hyperplane through the origin in R6 and let e6 be a unit
normal vector to R5 in R6. The surface V2 is a subset of the unit sphere S5 � R6.
By Proposition 5.5 on page 242 (see [77, pp. 131–132] for a proof), we see that a
tube over V2 of radius " in S5 is not an isoparametric hypersurface, nor is it even
a proper Dupin hypersurface, because the number of distinct principal curvatures
is not constant on the unit normal bundle B4 to V2 in S5. Specifically, if � is the
Legendre submanifold induced by the submanifold V2 � S5, then � has two distinct
curvature spheres at points in B4 of the form .x;˙e6/, and three distinct curvature
spheres at all other points of B4. A tube W4 over V2 in S5 is a reducible Dupin
hypersurface, but it is not proper Dupin. At points of W4 corresponding to the points
.x;˙e6/ in B4, there are two principal curvatures, both of multiplicity two. At the
other points of W4, there are three distinct principal curvatures, one of multiplicity
two, and the others of multiplicity one. Thus, W4 has an open dense subset U which
is a reducible proper Dupin hypersurface with three principal curvatures at each
point, but W4 itself is not proper Dupin.

The following remark taken from [77, pp. 131–132] demonstrates the subtlety of
the notion of reducibility of Dupin hypersurfaces even further.

Remark 5.17 (Weak reducibility). In the paper [124], Dajczer, Florit, and Tojeiro
studied reducibility in the context of Riemannian geometry. They formulated a
concept of weak reducibility for proper Dupin submanifolds that have a flat normal
bundle including proper Dupin hypersurfaces. For hypersurfaces, their definition
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can be formulated as follows. A proper Dupin hypersurface f W Mn�1 ! Rn (or Sn)
is said to be weakly reducible if, for some principal curvature �i with corresponding
principal space Ti, the orthogonal complement T?i is integrable. Dajczer, Florit, and
Tojeiro show that if a proper Dupin hypersurface f W Mn�1 ! Rn is Lie equivalent to
a proper Dupin hypersurface with gC1 distinct principal curvatures that is obtained
via one of the standard constructions from a proper Dupin hypersurface with g
distinct principal curvatures, then f is weakly reducible. Thus, reducible implies
weakly reducible for such hypersurfaces.

However, one can show that the open set U of the tube W4 over V2 in S5 in
Example 5.16 on which there are three principal curvatures at each point is reducible
but not weakly reducible, because none of the orthogonal complements of the
principal spaces is integrable. Of course, U is not constructed from a proper Dupin
submanifold with two curvature spheres, but rather from one with three curvature
spheres, so this does not violate the theorem of Dajczer, Florit, and Tojeiro.

Irreducibility

In two papers by Cecil and Jensen [85, 86], the notion of local irreducibility was used
in the formulation of the main classification results. Specifically, a proper Dupin
submanifold � W Mn�1 ! �2n�1 is said to be locally irreducible if there does not
exist any open subset U � Mn�1 such that the restriction of � to U is reducible.
Theoretically, this is a stronger condition than irreducibility of � itself. However,
using the analyticity of proper Dupin submanifolds (see Theorem 3.65 on page 143
and [84]), Cecil, Chi, and Jensen [82] proved the following proposition which shows
that the concepts of local irreducibility and irreducibility are equivalent. (See also
[77, pp. 145–146] for a complete proof of this result.)

Proposition 5.18. Let � W Mn�1 ! �2n�1 be a connected, proper Dupin
submanifold. If the restriction of � to an open subset U � Mn�1 is reducible, then
� is reducible. Thus, a connected proper Dupin submanifold is locally irreducible if
and only if it is irreducible.

Every connected proper Dupin hypersurface in Rn with g D 2 principal
curvatures, i.e., a cyclide of Dupin, is reducible, as we shall see in the next
section. It is Lie equivalent to a hypersurface obtained by applying one of Pinkall’s
constructions to an open subset of a metric sphere Sq � RqC1 � Rn, where
1 � q � n � 2. Thus, there exist reducible compact proper Dupin hypersurfaces
in Rn or Sn with g D 2 principal curvatures, such as a standard product of two
spheres in Sn. However, Cecil, Chi, and Jensen [82] proved that this is not possible
for g > 2 in the following theorem (see also [77, pp. 146–147] for a proof).

Theorem 5.19. Let Wd�1 be a compact, connected proper Dupin hypersur-
face immersed in Rd with g > 2 distinct principal curvatures. Then Wd�1 is
irreducible. That is, the Legendre submanifold induced by the hypersurface Wd�1 is
irreducible.
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Remark 5.20 (Comments on irreducibility). We now make a few comments on
irreducibility following the book [77, p. 147]. Since the proper Dupin property
is invariant under stereographic projection, Theorem 5.19 implies that a compact,
connected isoparametric hypersurface in Sd is irreducible as a Dupin hypersurface
if the number g of distinct principal curvatures is greater than two. This was proved
earlier by Pinkall in his dissertation [442]. Of course, compactness is not really
a restriction for an isoparametric hypersurface, since any connected isoparametric
hypersurface is contained in a unique compact, connected isoparametric hypersur-
face by Münzner’s results. The same is not true for proper Dupin hypersurfaces,
since a compact Dupin hypersurface containing a connected non-compact proper
Dupin hypersurface may not be proper Dupin, as we see with the tube M3 over a
torus T2 � R3 � R4 in Example 2.22 on page 33. The tube M3 contains the open
subset U of M3 on which there are three distinct principal curvatures of multiplicity
one. The set U is a proper Dupin hypersurface (with two connected components),
but M3 is only Dupin, but not proper Dupin.

Another geometric consequence of Theorem 5.19 is the following. Münzner
showed that an isoparametric hypersurface Mn�1 � Sn � RnC1 is a tube of constant
radius in Sn over each of its two focal submanifolds. If g D 2, then the isoparametric
hypersurface Mn�1 is a standard product of two spheres,

Sq.r/ � Sn�q�1.s/ � Sn; r2 C s2 D 1; 1 � q � n � 2;

and the two focal submanifolds are both totally geodesic spheres, Sq.1/ � f0g and
f0g � Sn�q�1.1/ (see Theorem 3.29 on page 111). The isoparametric hypersurface
Mn�1 is reducible in two ways, since it can be obtained as a tube of constant radius
over each of these focal submanifolds, which are not substantial in RnC1. On the
other hand, if an isoparametric hypersurface Mn�1 has g � 3 distinct principal
curvatures, then each of its focal submanifolds is substantial in RnC1. Otherwise,
Mn�1 would be reducible to such a non-substantial focal submanifold by the tube
construction, contradicting Theorem 5.19.

5.4 Moving Frames in Lie Sphere Geometry

In this section, we develop the framework for studying Legendre submanifolds in the
context of Lie sphere geometry by using the method of moving frames. In particular,
we show that the assumption that the Legendre submanifold is proper Dupin leads
to a Lie frame with certain special properties. We follow the approach of Cecil and
Chern [79, 80], also given in the book [77, pp. 159–165]. (See also the paper of
Jensen [229] and the forthcoming book of Jensen, Musso and Nicolodi [230].)

We first recall the basic definitions introduced in Section 4.3. Specifically, we use
the following range of indices, and all summations are over the repeated index or
indices:
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1 � a; b; c � n C 3; 3 � i; j; k � n C 1: (5.70)

A Lie frame is an ordered set of vectors fY1; : : : ;YnC3g in RnC3
2 satisfying the

relations,

hYa;Ybi D gab; (5.71)

for

Œgab� D
2

4
J 0 0

0 In�1 0
0 0 J

3

5 ; (5.72)

where In�1 is the .n � 1/ � .n � 1/ identity matrix and

J D
�
0 1

1 0

�
: (5.73)

The Maurer–Cartan forms !b
a are defined by the equation

dYa D
X

!b
a Yb: (5.74)

Let � W Mn�1 ! �2n�1 be an arbitrary Legendre submanifold. Let fYag be a smooth
Lie frame on an open subset U � Mn�1 such that for each x 2 U, we have

�.x/ D ŒY1.x/;YnC3.x/�:

We will pull back these Maurer–Cartan forms to U using the map �� and omit the
symbols of such pull-backs for simplicity. Recall that the following matrix of forms
is skew-symmetric,

Œ!ab� D

2

666664

!21 !11 ! i
1 !nC3

1 !nC2
1

!22 !12 ! i
2 !nC3

2 !nC2
2

!2j !1j ! i
j !nC3

j !nC2
j

!2nC2 !1nC2 ! i
nC2 !

nC3
nC2 !

nC2
nC2

!2nC3 !1nC3 ! i
nC3 !

nC3
nC3 !

nC2
nC3

3

777775
; (5.75)

and that the forms satisfy the Maurer–Cartan equations,

d!b
a D

X
!c

a ^ !b
c : (5.76)

By Theorem 4.8 on page 215, there are at most n � 1 distinct curvature spheres
along each line �.x/. Thus, we can choose the Lie frame locally so that neither
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Y1 nor YnC3 is a curvature sphere at any point of U. We now examine what those
conditions mean in terms of our Lie frame.

The form !21 D 0 by the skew-symmetry of the matrix in equation (5.75), and
!nC2
1 D 0 by the contact condition .3/ of Theorem 4.5 (page 208) for �. Thus, for

any X 2 TxMn�1 at any point x 2 U, we have

dY1.X/ D !11.X/Y1 C
X

! i
1.X/Yi C !nC3

1 .X/YnC3 (5.77)



X

! i
1.X/Yi; modfY1;YnC3g:

The assumption that Y1 is not a curvature sphere means that there does not exist
any nonzero tangent vector X at any point x 2 U such that dY1.X/ is congruent
to zero modfY1;YnC3g. By equation (5.77), this assumption is equivalent to the
condition that the forms f!31 ; : : : ; !nC1

1 g are linearly independent, i.e., they satisfy
the regularity condition,

!31 ^ � � � ^ !nC1
1 ¤ 0; (5.78)

on U. Similarly, the condition that YnC3 is not a curvature sphere is equivalent to the
condition

!3nC3 ^ � � � ^ !nC1
nC3 ¤ 0: (5.79)

Second fundamental form of a Legendre submanifold

We next consider the curvature spheres of � in the context of Lie frames. The
Legendre condition .3/ for � is equivalent to !nC2

1 D 0. Exterior differentiation
of this equation using equations (5.75)–(5.76) yields the equation

X
! i
1 ^ ! i

nC3 D 0: (5.80)

Hence, by Cartan’s Lemma and the regularity condition (5.78), we get that for each i,

! i
nC3 D

X
hij!

j
1; with hij D hji: (5.81)

The quadratic differential form

II.Y1/ D
X

hij!
i
1!

j
1; (5.82)

defined up to a nonzero factor and dependent on the choice of Y1, is called the second
fundamental form of � determined by Y1.
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This second fundamental form is related to the usual Euclidean second funda-
mental form as follows. Suppose that Y1 and YnC3 are given by

Y1 D .1C f � f ; 1 � f � f ; 2f ; 0/=2; YnC3 D .f � �;�f � �; �; 1/; (5.83)

where f is the Euclidean projection of �, and � is the Euclidean field of unit normals.
The condition in equation (5.78) is equivalent to assuming that f is an immersion
on U. Since f is an immersion, we can choose the Lie frame vectors Y3; : : : ;YnC1 to
satisfy

Yi D dY1.Xi/ D .f � df .Xi/;�f � df .Xi/; df .Xi/; 0/; 3 � i � n C 1; (5.84)

where X3; : : : ;XnC1 are smooth vector fields on U. Then we have

! i
1.Xj/ D hdY1.Xj/;Yii D hYj;Yii D ıij: (5.85)

Using equations (5.83) and (5.84), we compute

! i
nC3.Xj/ D hdYnC3.Xj/;Yii D d�.Xj/ � df .Xi/ (5.86)

D �df .AXj/ � df .Xi/ D �Aij;

where ŒAij� is the Euclidean shape operator (second fundamental form) of f . Now by
equations (5.81) and (5.85), we have

! i
nC3.Xj/ D

X
hik!

k
1.Xj/ D hij; (5.87)

and so hij D �Aij.
Suppose now that � is an arbitrary Legendre submanifold, and fYag is a Lie frame

on U such that Y1 and YnC3 satisfy equations (5.78) and (5.79), respectively. Since
the matrix Œhij� is symmetric, we can diagonalize it at any given point x 2 U by a
change of frame of the form

Y�i D
X

Cj
iYj; 3 � i � n C 1;

where ŒCj
i� is an .n�1/�.n�1/ orthogonal matrix. In the new frame, equation (5.81)

has the following form at x,

! i
nC3 D ��i!

i
1; 3 � i � n C 1: (5.88)

These �i determine the curvature spheres of � at x. Specifically, given any point
x 2 U, let

fX3; : : : ;XnC1g
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be the dual basis to f!31 ; : : : ; !nC1
1 g in the tangent space TxMn�1. Then using

equation (5.88), we compute the differential of �iY1 C YnC3 on Xi to be

d.�iY1 C YnC3/.Xi/ D d�i.Xi/Y1 C .�idY1 C dYnC3/.Xi/



X

.�i!
j
1.Xi/C !

j
nC3.Xi//Yj D .�i!

i
1.Xi/C ! i

nC3.Xi//Yi

D .�i � �i/Yi D 0; modfY1;YnC3g: (5.89)

Hence, the curvature spheres of � at x are precisely

Ki D �iY1 C YnC3; 3 � i � n C 1; (5.90)

and X3; : : : ;XnC1 are the principal vectors at x. In the case where Y1 and YnC3 have
the form in equation (5.83), the �i are just the principal curvatures of the immersion
f at the point x, as in Theorem 4.12 on page 218.

Principal Lie frames

Assume now that the number g of distinct curvature spheres is constant on the
neighborhood U. Then each distinct curvature sphere has constant multiplicity on
U, and so its corresponding curvature sphere map is smooth on U. Furthermore, the
principal vector fields X3; : : : ;XnC1 can be chosen smoothly on U (see, for example,
Nomizu [402], Reckziegel [457, 458], or Singley [486]). This leads to a smooth
choice of frame vectors Y3; : : : ;YnC1 on U via the formula,

Yi D dY1.Xi/; 3 � i � n C 1:

As in equation (5.85), this means that f!31 ; : : : ; !nC1
1 g is the dual basis to

fX3; : : : ;XnC1g. Equation (5.88) is then satisfied at every point of U.
This frame fYag is an example of a principal frame. In general, a Lie frame fZag

on U is said to be a principal Lie frame if there exist smooth functions ˛i and ˇi on
U, which are never simultaneously zero, such that the Maurer–Cartan forms f�b

a g
for the frame satisfy the equations,

˛i�
i
1 C ˇi�

i
nC3 D 0; 3 � i � n C 1: (5.91)

Note that � i
1 and � i

nC3 cannot both vanish at a point x in U. To see this, take a Lie
frame fWag on U with

Wi D Zi; 3 � i � n C 1;
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such that W1 D ˛Z1CˇZnC3 is not a curvature sphere at x. Then the Maurer–Cartan
form � i

1 for this frame satisfies the equation

� i
1 D hdW1;Wii D h˛Z1 C ˇZnC3;Zii D ˛� i

1 C ˇ� i
nC3:

Since W1 is not a curvature sphere, it follows that � i
1 ¤ 0, and thus it is not possible

for � i
1 and � i

nC3 to both equal zero.
We next adapt the choice of frame to study a given curvature sphere map and

then consider the impact of the Dupin condition on that map. Suppose that fYag is
a principal frame on U satisfying equations (5.78) and (5.79) and that the curvature
spheres are given by equation (5.90). In particular, suppose that

K D �Y1 C YnC3

is a curvature sphere of multiplicity m on U. As noted above, the function � is
smooth on U, and we can re-order the frame vectors Y3; : : : ;YnC1 so that

� D �3 D � � � D �mC2 (5.92)

on U. The function � does not take the value 0 or 1 on U, since Y1 and YnC3 are
not curvature spheres at any point of U.

Next we find a frame fY�a g with the property that Y�1 D K is a curvature sphere
of multiplicity m. To accomplish this, let

Y�1 D �Y1 C YnC3; Y�2 D .1=�/Y2; (5.93)

Y�nC2 D YnC2 � .1=�/Y2; Y�nC3 D YnC3; Y�i D Yi; 3 � i � n C 1:

Let �b
a denote the Maurer–Cartan forms for this frame. Note that

dY�1 D d.�Y1 C YnC3/ D .d�/Y1 C � dY1 C dYnC3 D
X

�a
1Y�a : (5.94)

Using equation (5.88), we see that the coefficient of Y�i D Yi in the above
equation (5.94) is

� i
1 D �! i

1 C ! i
nC3 D .� � �i/ !

i
1; 3 � i � n C 1: (5.95)

This and equation (5.92) show that

� r
1 D 0; 3 � r � m C 2: (5.96)

Equation (5.96) characterizes the condition that Y�1 is a curvature sphere of constant
multiplicity m on U.
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The Dupin condition in terms of moving frames

We now consider the condition that the Legendre submanifold is proper Dupin in
terms of our moving frame. In particular, suppose that the curvature sphere map
K D Y�1 is constant along each leaf of its corresponding principal foliation. As
noted in Corollary 4.9 on page 216, this is automatic if the multiplicity m of K is
greater than one. We denote the corresponding principal foliation by T1 and choose
smooth vector fields

fX3; : : : ;XmC2g

on U that span T1. The condition that Y�1 is constant along each leaf of its principal
foliation is given by

dY�1 .Xr/ 
 0; mod Y�1 ; 3 � r � m C 2: (5.97)

On the other hand, from equations (5.85) and (5.95), we have

dY�1 .Xr/ D �11 .Xr/Y1 C �nC3
1 .Xr/YnC3; 3 � r � m C 2: (5.98)

Comparing equations (5.97) and (5.98), we see that

�nC3
1 .Xr/ D 0; 3 � r � m C 2: (5.99)

We can make one more change of frame so that in the new frame the Maurer–
Cartan form ˛nC3

1 D 0 by the following procedure. In terms of the basis
f!31 ; : : : ; !nC1

1 g, we can write �nC3
1 as

�nC3
1 D

X
si!

i
1; (5.100)

for smooth functions si on U. From equation (5.99), we see that this reduces to

�nC3
1 D

nC1X

tDmC3
st!

t
1: (5.101)

For m C 3 � t � n C 1, we use equations (5.85), (5.95), and (5.101) to compute

dY�1 .Xt/ D �11 .Xt/Y
�
1 C � t

1.Xt/Yt C �nC3
1 .Xt/YnC3

D �11 .Xt/Y
�
1 C .� � �t/Yt C stYnC3 (5.102)

D �11 .Xt/Y
�
1 C .� � �t/.Yt C .st=.� � �t//YnC3:
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We now make the change of Lie frame,

Z1 D Y�1 ; Z2 D Y�2 ; ZnC3 D Y�nC3; Zr D Y�r D Yr; 3 � r � m C 2;

Zt D Yt C .st=.� � �t//YnC3; m C 3 � t � n C 1; (5.103)

ZnC2 D �
X

t

.st=.� � �t//Yt C YnC2 � .1=2/
X

t

.st=.� � �t//
2YnC3:

Let ˛b
a be the Maurer–Cartan forms for this new frame. The equation,

˛r
1 D hdZ1;Zri D hdY�1 ;Y�r i D � r

1 D 0; 3 � r � m C 2; (5.104)

is still valid. Further, since Z1 D Y�1 , the Dupin condition (5.97) still yields

˛nC3
1 .Xr/ D 0; 3 � r � m C 2: (5.105)

Finally, for m C 3 � t � n C 1, equations (5.102) and (5.103) give

˛nC3
1 .Xt/ D hdZ1.Xt/;ZnC2i D h�11 .Xt/Z1 C .� � �t/Zt;ZnC2i D 0: (5.106)

Thus, we have ˛nC3
1 D 0. We summarize these results in the following theorem.

Theorem 5.21. Let � W Mn�1 ! �2n�1 be a Legendre submanifold. Suppose that
K is a curvature sphere of multiplicity m on an open subset U of Mn�1 that is
constant along each leaf of its principal foliation. Then locally on U, there exists
a Lie frame fY1; : : : ;YnC3g with Y1 D K, such that the Maurer–Cartan forms satisfy
the equations

!r
1 D 0; 3 � r � m C 2; !nC3

1 D 0: (5.107)

5.5 Cyclides of Dupin

In a book published in 1822, Dupin [143] defined a cyclide to be a surface M in
R3 that is the envelope of the family of spheres tangent to three fixed spheres in
R3. This is equivalent to requiring that M have two distinct principal curvatures at
each point, and that both sheets of the focal set of M degenerate into curves, which
are fact a pair of focal conics (see, for example, [95, pp. 176–178] for a description
of the focal sets of the cyclides of Dupin). Thus M is a proper Dupin hypersurface
in modern terminology by Theorem 2.14 on page 28, and M is the envelope of
the family of curvature spheres centered along either of the two focal curves. The
three fixed spheres in Dupin’s definition can be chosen to be three spheres from
either family of curvature spheres.
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The cyclides of Dupin were studied intensively by many leading mathematicians
in the nineteenth century, including Liouville [331], Cayley [69], and Maxwell
[356], whose paper contains stereoscopic figures of the various types of cyclides.
A good account of the history of the cyclides in the nineteenth century is given
by Lilienthal [328] (see also Klein [281, pp. 56–58], Darboux [125, vol. 2, pp. 267–
269], Blaschke [42, p. 238], Eisenhart [146, pp. 312–314], Hilbert and Cohn-Vossen
[199, pp. 217–219], Fladt and Baur [161, pp. 354–379], and Cecil and Ryan [92, 95,
pp. 151–166]). The physicist, Louis Michel, also pointed out to us that the focal
conics and the cyclides are prominent in the 1923 paper of G. Friedel [163] on the
structure of crystals.

The cyclides of Dupin reappeared in a modern context in the paper of Banchoff
[20] on the spherical two-piece property, and then they were studied extensively in
the many papers on Dupin hypersurfaces mentioned in the introduction. Pinkall’s
paper [446] describing the higher dimensional cyclides of Dupin in the context of
Lie sphere geometry was particularly influential, and it had its roots in Volume 3
of the book of Blaschke [42], which studied surfaces in the context of Lie sphere
geometry. See also [77, pp. 148–159] for a Lie sphere geometric account of the
cyclides.

The classical cyclides are the only surfaces in R3 with two principal curvatures
at each point such that all lines of curvature in both families are circles or straight
lines. This is just the proper Dupin condition. Using exterior differential systems,
Ivey [220] showed that any surface in R3 containing two orthogonal families of
circles is a cyclide of Dupin. For further results involving the cyclides of Dupin, see
Garnier et al. [166], Druoton et al. [141, 142], and Bartoszek et al. [26].

The cyclides have also appeared in the context of computer graphics in the papers
of Degen [127], Pratt [451, 452], Srinivas and Dutta [496–499], Schrott and Odehnal
[478], and Jia [231] among others.

We now turn our attention to the higher dimensional cyclides of Dupin. Since the
cyclides are most easily classified in the setting of Lie sphere geometry, we give our
definition in that context and then discuss various characterizations of the cyclides
in Rn and Sn.

Cyclides of Dupin of characteristic .p; q/

A proper Dupin submanifold � W Mn�1 ! �2n�1 with two distinct curvature
spheres of respective multiplicities p and q at each point is called a cyclide of
Dupin of characteristic .p; q/. We will prove that any connected cyclide of Dupin
of characteristic .p; q/ is Lie equivalent to the Legendre lift of an open subset of a
standard product of two spheres,

Sq.1=
p
2/ � Sp.1=

p
2/ � Sn � RqC1 � RpC1 D RnC1; (5.108)
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where p and q are positive integers such that pCq D n�1. Thus any two connected
cyclides of Dupin of the same characteristic are locally Lie equivalent.

As discussed in Subsection 3.8.2, the product Sq.1=
p
2/ � Sp.1=

p
2/ is an

isoparametric hypersurface in Sn with two distinct principal curvatures having
multiplicities m1 D p and m2 D q. Furthermore, every isoparametric hypersurface
in Sn with two principal curvatures of multiplicities p and q is Lie equivalent
to Sq.1=

p
2/ � Sp.1=

p
2/, since it is congruent to a parallel hypersurface of

Sq.1=
p
2/ � Sp.1=

p
2/.

Although Sq.1=
p
2/ � Sp.1=

p
2/ is a good model for the cyclides, it is often

easier to work with the two focal submanifolds Sq.1/ � f0g and f0g � Sp.1/ in
proving classification results. The Legendre lifts of these two focal submanifolds
are Lie equivalent to the Legendre lift of Sq.1=

p
2/ � Sp.1=

p
2/, since they are

parallel submanifolds of the Legendre lift of Sq.1=
p
2/ � Sp.1=

p
2/. In fact, the

hypersurface Sq.1=
p
2/ � Sp.1=

p
2/ is a tube of radius �=4 in Sn over either of its

two focal submanifolds.
We now describe our standard model of a cyclide of characteristic .p; q/ in detail

in the context of Lie sphere geometry, as in Pinkall’s paper [446] (see also [77,
p. 149]). Let fe1; : : : ; enC3g be the standard orthonormal basis for RnC3

2 . Then Sn is
the unit sphere in the Euclidean space RnC1 spanned by fe2; : : : ; enC2g. Let

˝ D Span fe1; : : : ; eqC2g; ˝? D Span feqC3; : : : ; enC3g: (5.109)

These spaces have signatures .qC1; 1/ and .pC1; 1/, respectively. The intersection
˝ \ QnC1 is the quadric given in homogeneous coordinates by

x21 D x22 C � � � C x2qC2; xqC3 D � � � D xnC3 D 0:

This set is diffeomorphic to the unit sphere Sq in

RqC1 D Span fe2; : : : ; eqC2g;

by the diffeomorphism � W Sq ! ˝ \ QnC1, defined by �.v/ D Œe1 C v�. Similarly,
the quadric ˝? \ QnC1 is diffeomorphic to the unit sphere Sp in

RpC1 D Span feqC3; : : : ; enC2g

by the diffeomorphism  W Sp ! ˝? \ QnC1, defined by  .u/ D Œu C enC3�.
The model that we will use for the cyclides in Lie sphere geometry is the Legendre
submanifold � W Sp � Sq ! �2n�1 defined by

�.u; v/ D Œk1; k2�;with Œk1.u; v/� D Œ�.v/�; Œk2.u; v/� D Œ .u/�: (5.110)

It is easy to check that the Legendre Conditions .1/–.3/ of Theorem 4.5 on page 208
are satisfied by the pair fk1; k2g. To find the curvature spheres of �, we decompose
the tangent space to Sp � Sq at a point .u; v/ as
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T.u;v/S
p � Sq D TuSp � TvS

q:

Then dk1.X; 0/ D 0 for all X 2 TuSp, and dk2.Y/ D 0 for all Y in TvSq. (Here we
use the notation dk1 instead of .k1/� for the differential of k1 to be consistent with
the notation used in Chapter 4.) Thus, Œk1� and Œk2� are curvature spheres of � with
respective multiplicities p and q. Furthermore, the image of Œk1� lies in the quadric
˝ \ QnC1, and the image of Œk2� is contained in the quadric ˝? \ QnC1. The point
sphere map of � is Œk1�, and thus � is the Legendre lift of the focal submanifold
Sq � f0g � Sn, considered as a submanifold of codimension p C 1 in Sn.

Lie geometric classification of the cyclides of Dupin

We now prove Pinkall’s [446] classification of proper Dupin submanifolds with two
distinct curvature spheres at each point (see also [77, pp. 149–151] for an exposition
of Pinkall’s proof). Pinkall’s proof depends on establishing the existence of a local
principal coordinate system. This can always be done in the case of g D 2 curvature
spheres, but not necessarily if g > 2. In fact, if M is an isoparametric hypersurface
in Sn with more than two distinct principal curvatures, then there cannot exist a local
principal coordinate system on M (see Theorem 5.11 on page 249).

Here we give a different proof of Pinkall’s theorem using the method of moving
frames, following the paper of Cecil-Chern [80]. This approach generalizes to the
case of g > 2 curvature spheres, as we will see in later sections of this chapter.

Theorem 5.22. (a) Every connected cyclide of Dupin is contained in a unique
compact, connected cyclide of Dupin.

(b) Any two cyclides of Dupin of the same characteristic .p; q/ are locally Lie
equivalent, each being Lie equivalent to an open subset of a standard product
of two spheres

Sq.1=
p
2/ � Sp.1=

p
2/ � Sn � RqC1 � RpC1 D RnC1; (5.111)

where p C q D n � 1.

Proof. Suppose that � W Mn�1 ! �2n�1 is a connected proper Dupin submanifold
with two distinct curvature spheres of multiplicities p and q at each point. As we
showed in Theorem 5.21, on any local neighborhood U in Mn�1, we can find a local
Lie frame, which we now denote by YA, whose Maurer–Cartan forms !B

A satisfy

!a
1 D 0; 3 � a � p C 2; !nC3

1 D 0: (5.112)

In this frame, Y1 is a curvature sphere map of multiplicity p from U to QnC1. By
the hypotheses of Theorem 5.22, there is one other curvature sphere of multiplicity
q D n�1�p at each point of Mn�1. By repeating the procedure used in constructing
the frame YA in Theorem 5.21, we can construct a new frame YA which has YnC3 as
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the other curvature sphere map sY1 C YnC3, where s is a smooth function on U. The
principal space corresponding to this curvature sphere YnC3 D sY1 C YnC3 is the
span of the vectors XpC3; : : : ;XnC1 in the notation of equation (5.106). The fact that
YnC3 is a curvature sphere map yields

!b
nC3 D 0; p C 3 � b � n C 1; (5.113)

as in equation (5.99). The Dupin condition analogous to equation (5.97) is

dY
�
nC3.Xb/ 
 0; mod YnC3; p C 3 � b � n C 1: (5.114)

This eventually leads to

!1nC3 D 0: (5.115)

One can check that this change of frame does not affect the condition (5.112). So
we now drop the bars and call this last frame YA with Maurer–Cartan forms !B

A
satisfying,

!a
1 D 0; 3 � a � p C 2;

!b
nC3 D 0; p C 3 � b � n C 1; (5.116)

!nC3
1 D 0; !1nC3 D 0:

Furthermore, the following forms are easily shown to be a basis for the cotangent
space at each point of U,

f!3nC3; : : : ; !pC2
nC3 ; !

pC3
1 ; : : : ; !nC1

1 g: (5.117)

We first take the exterior derivative of the equations !a
1 D 0 and !b

nC3 D 0

in equation (5.116). Using the skew-symmetry of the matrix in (5.75) along with
equations (5.76) and (5.116), we obtain

0 D !
pC3
1 ^ !a

pC3 C � � � C !nC1
1 ^ !a

nC1; 3 � a � p C 2; (5.118)

0 D !3nC3 ^ !b
3 C � � � C !

pC2
nC3 ^ !b

pC2; p C 3 � b � n C 1: (5.119)

We now show that equations (5.118) and (5.119) imply that

!a
b D 0; 3 � a � p C 2; p C 3 � b � n C 1: (5.120)

To see this, note that since !a
b D �!b

a , each of the terms !a
b occurs in exactly one of

the equations (5.118) and in exactly one of the equations (5.119). Equation (5.118)
involves the basis forms !pC3

1 ; : : : ; !nC1
1 , while equation (5.119) involves the basis
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forms !3nC3; : : : ; !
pC2
nC3 . We now show how to handle the form !3pC3, and the others

are treated in a similar way. The equations from (5.118) and (5.119), respectively,
involving !3pC3 D �!pC3

3 are

0 D !
pC3
1 ^ !3pC3 C !

pC4
1 ^ !3pC4 C � � � C !nC1

1 ^ !3nC1; (5.121)

0 D !3nC3 ^ !pC3
3 C !4nC3 ^ !pC3

4 C � � � C !
pC2
nC3 ^ !pC3

pC2 : (5.122)

We take the wedge product of (5.121) with !pC4
1 ^ � � � ^ !nC1

1 and get

0 D !3pC3 ^ .!pC3
1 ^ � � � ^ !nC1

1 /;

which implies that !pC3 is in the span of f!pC3
1 ; : : : ; !nC1

1 g. On the other hand,
taking the wedge product of equation (5.122) with !4nC3 ^ � � � ^ !pC2

nC3 yields

0 D !3pC3 ^ .!3nC3 ^ � � � ^ !pC2
nC3 /;

and so!3pC3 is in the span of f!3nC3; : : : ; !pC2
nC3g. Thus, we have !3pC3 D 0, as desired.

We next differentiate !nC3
1 D 0 and use the skew-symmetry of the matrix in

equation (5.75), the equation !nC2
1 D 0, and equation (5.116) to obtain

0 D d!nC3
1 D !

pC3
1 ^ !nC3

pC3 C � � � C !nC1
1 ^ !nC3

nC1 : (5.123)

This implies that

!nC3
b 2 Span f!pC3

1 ; : : : ; !nC1
1 g; p C 3 � b � n C 1: (5.124)

Similarly, differentiation of the equation !1nC3 D 0 yields

0 D d!1nC3 D !3nC3 ^ !13 C � � � C !
pC2
nC3 ^ !1pC2; (5.125)

which implies that

!a
1 2 Span f!3nC3; : : : ; !pC2

nC3g; 3 � a � p C 2: (5.126)

We next differentiate equation (5.120). Using the skew-symmetry of the matrix
in equation (5.75), and also equations (5.116) and (5.120), we see that all terms drop
out except the following,

0 D d!a
b D !2b ^ !a

2 C !nC3
b ^ !a

nC3
D �.!1a ^ !b

1 /C !nC3
b ^ !a

nC3: (5.127)
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Thus, we have

!1a ^ !b
1 D !nC3

b ^ !a
nC3; 3 � a � p C 2; p C 3 � b � n C 1: (5.128)

We next show that equation (5.128) implies that there exists a function ˛ on U such
that

!1a D ˛ !a
nC3; 3 � a � p C 2

!nC3
b D �˛ !b

1 ; p C 3 � b � n C 1: (5.129)

To see this, note that for any a, 3 � a � p C 2, equation (5.126) gives

!1a D c3!
3
nC3 C � � � C cpC2!pC2

nC3 ; (5.130)

for some coefficient functions c1; : : : ; cpC2. Similarly, for any b, p C3 � b � n C1,
equation (5.124) gives

!nC3
b D dpC3!pC3

1 C � � � C dnC1!nC1
1 ; (5.131)

for some coefficient functions dpC3; : : : ; dnC1. Thus, we have

!1a ^ !b
1 D c3!

3
nC3 ^ !b

1 C � � � C ca!
a
nC3 ^ !b

1 C � � � C cpC2!pC2
nC3 ^ !b

1 ; (5.132)

!nC3
b ^ !a

nC3 D dpC3!pC3
1 ^ !a

nC3 C � � � C db!
b
1 ^ !a

nC3 C � � � C dnC1!nC1
1 ^ !a

nC3:
(5.133)

From equation (5.128) we know that the right-hand sides of these equations are
equal, but these expressions contain no common terms from the basis of 2-forms
except those involving !a

nC3 ^ !b
1 . Thus, all of the coefficients except ca and db are

zero, and we have

ca!
a
nC3 ^ !b

1 D db!
b
1 ^ !a

nC3 D .�db/!
a
nC3 ^ !b

1 ; (5.134)

and we conclude that ca D �db. Thus, we have shown that equations (5.130)
and (5.131) reduce to

!1a D ca!
a
nC3; !nC3

b D db!
b
1 ; (5.135)

with db D �ca. This procedure works for any choice of a and b in the appropriate
ranges. By holding a fixed and varying b, we see that all of the quantities db are
equal to each other and to �ca. Similarly, all the quantities ca are the same, and thus
equation (5.129) holds with ˛ equal to the common value of ca.
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We now consider the expression in equation (5.74) for dYa, 3 � a � p C 2. We
omit the terms that vanish because of the skew-symmetry of the matrix in (5.75),
and equations (5.116) and (5.120). We then have

dYa D !1a Y1 C !3a Y3 C � � � C !pC2
a YpC2 C !nC2

a YnC2 C !nC3
a YnC3: (5.136)

Using equation (5.129) and the skew-symmetry relation !nC2
a D �!a

nC3, this
becomes

dYa D !a
nC3.˛Y1 � YnC2/C !3a Y3 C � � � C !pC2

a YpC2 C !nC3
a YnC3: (5.137)

Similarly, for p C 3 � b � n C 1, we get

dYb D !1b Y1 C !2b.Y2 C ˛YnC3/C !
pC3
b YpC3 C � � � C !nC1

b YnC1: (5.138)

We make the change of frame,

Y�2 D Y2 C ˛YnC3; Y�nC2 D YnC2 � ˛Y1;

Y�B D YB; B ¤ 2; n C 2: (5.139)

We now drop the asterisks but use the new frame. From equations (5.137)
and (5.138), we see that in this new frame, we have

dYa D !a
nC3.�YnC2/C !3a Y3 C � � � C !pC2

a YpC2 C !nC3
a YnC3; (5.140)

dYb D !1b Y1 C !2b Y2 C !
pC3
b YpC3 C � � � C !nC1

b YnC1: (5.141)

That is, in this new frame, we have

!1a D 0; 3 � a � p C 2; (5.142)

!nC3
b D 0; p C 3 � b � n C 1: (5.143)

We next want to show that the space

E D Span fY1;Y2;YpC3; : : : ;YnC1g (5.144)

and its orthogonal complement,

E? D Span fY3; : : : ;YpC2;YnC2;YnC3g (5.145)

are both invariant under exterior differentiation d, and so they are constant spaces
on U.
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Invariance of the space E under exterior differentiation

First for the space E, we have that dYb 2 E for pC3 � b � nC1 by equation (5.141).
Furthermore, the skew-symmetry of the matrix in (5.75), the equation !nC2

1 D 0,
and equation (5.116) imply that

dY1 D !11Y1 C !
pC3
1 YpC3 C � � � C !nC1

1 YnC1; (5.146)

which is in E. Thus, it only remains to show that dY2 is in E. To show this, we
differentiate equation (5.142). As before, we omit terms which are zero because of
the skew-symmetry of the matrix in (5.75), or because of equations (5.116), (5.120),
and (5.142). We see that the Maurer–Cartan equation for d!1a reduces to

0 D d!1a D !nC2
a ^ !1nC2 D �!a

nC3 ^ !1nC2 D !a
nC3 ^ !nC3

2 ; (5.147)

for 3 � a � p C 2. Similarly, by differentiating equation (5.143), we find that

0 D d!nC3
b D !2b ^ !nC3

2 D �!b
1 ^ !nC3

2 ; p C 3 � b � n C 1: (5.148)

From this and equation (5.147), we see that the wedge product of !nC3
2 with every

form in the basis in equation (5.117) is zero, and hence !nC3
2 D 0. Using this and

the fact that !nC2
2 D �!1nC3 D 0, and that by the skew-symmetry relations (5.75)

and equation (5.142) we have

!a
2 D �!1a D 0; 3 � a � p C 2; (5.149)

and we get

dY2 D !22Y2 C !
pC3
2 YpC3 C � � � C !nC1

2 YnC1; (5.150)

which is in E. Thus the space E is invariant under exterior differentiation d, and so
E is a fixed subspace of RPnC2, independent of the choice of point in U. Obviously,
the orthogonal complement E? defined in equation (5.145) is also a fixed subspace
of RPnC2 on U.

Note that E has signature .q C 1; 1/ as a vector subspace of RnC3
2 , and E? has

signature .p C 1; 1/. Take an orthornormal basis fw1; : : : ;wnC3g of RnC3
2 with w1

and wnC3 timelike such that

E D Span fw1; : : : ;wqC2g; E? D Span fwqC3; : : : ;wnC3g: (5.151)

Then E \ QnC1 is given in homogeneous coordinates .x1; : : : ; xnC3/ with respect to
this basis by

x21 D x22 C � � � C x2qC2; xqC3 D � � � D xnC3 D 0: (5.152)
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This quadric is diffeomorphic to the unit sphere Sq in the span RqC1 of the spacelike
vectors w2; : : : ;wqC2 with the diffeomorphism � W Sq ! E \ QnC1 given by

�.v/ D Œw1 C v�; v 2 Sq: (5.153)

Similarly E? \ QnC1 is the quadric given in homogeneous coordinates by

x2nC3 D x2qC3 C � � � C x2nC2; x1 D � � � D xqC2 D 0: (5.154)

This space E?\ QnC1 is diffeomorphic to the unit sphere Sp in the span RpC1 of the
spacelike vectors wqC3; : : : ;wnC2 with the diffeomorphism

ı W Sp ! E? \ QnC1

given by

ı.u/ D Œu C wnC3�; u 2 Sp: (5.155)

The image of the curvature sphere map Y1 of multiplicity p is contained in the
q-dimensional quadric E \ QnC1 given by equation (5.152), which is diffeomorphic
to Sq. The map Y1 is constant on each leaf of its principal foliation T1, and so Y1
factors through an immersion of the q-dimensional space of leaves U=T1 into the
q-dimensional quadric E \ QnC1. Hence, the image of Y1 is an open subset of this
quadric, and each leaf of T1 corresponds to a point of v of the quadric.

Similarly, the curvature sphere map YnC3 of multiplicity q factors through an
immersion of its p-dimensional space of leaves U=T2 onto an open subset of the
p-dimensional quadric E? \ QnC1 given by equation (5.154), and each leaf of T2
corresponds to a point of u of that quadric.

From this it is clear that the restriction of the Legendre map � to the neighbor-
hood U � M is contained in the compact, connected cyclide

� W Sp � Sq ! �2n�1

defined by

�.u; v/ D Œk1.u; v/; k2.u; v/�; .u; v/ 2 Sp � Sq; (5.156)

where

k1.u; v/ D �.v/; k2.u; v/ D ı.u/; (5.157)

for the maps � and ı defined above. By a standard connectedness argument, the
Legendre map � W M ! �2n�1 is also the restriction of � to an open subset of
Sp � Sq. This proves part (a) of the theorem.
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Geometrically, the image of � consists of all lines joining a point on the quadric
in equation (5.152) to a point on the quadric in equation (5.154). Thus any choice of
.q C 1/-plane E in RPnC2 with signature .q C 1; 1/ and corresponding orthogonal
complement E? with signature .p C 1; 1/ determines a unique compact, connected
cyclide of characteristic .p; q/ and vice versa. The local Lie equivalence of any two
cyclides of the same characteristic is then clear.

Our standard model is the case where E is the space ˝ in equation (5.109). Part
(b) of the theorem then follows since our standard model is Lie equivalent to the
Legendre lift of the standard product of two spheres,

Sq.1=
p
2/ � Sp.1=

p
2/ � Sn � RqC1 � RpC1 D RnC1; (5.158)

where p C q D n � 1, as discussed before the statement of the theorem. ut

Möbius geometric classification of the cyclides of Dupin

Theorem 5.22 is a classification of proper Dupin submanifolds with two distinct
curvature spheres in the context of Lie sphere geometry. It is also useful to have
a Möbius geometric description of proper Dupin hypersurfaces Mn�1 � Rn with
two distinct principal curvatures at each point. This is analogous to the classical
characterizations of the cyclides of Dupin in R3 obtained in the nineteenth century
(see, for example, [95, pp. 151–166]). The following Möbius geometric theorem can
be proved as a consequence of the Lie sphere geometric Theorem 5.22 above. The
proof of this theorem was first given in [74]. The treatment here is taken from the
book [77, pp. 151–159].

Theorem 5.23. (a) Every connected cyclide of Dupin Mn�1 � Rn of characteristic
.p; q/ is Möbius equivalent to an open subset of a hypersurface of revolution
obtained by revolving a q-sphere Sq � RqC1 � Rn about an axis Rq � RqC1 or
a p-sphere Sp � RpC1 � Rn about an axis Rp � RpC1.

(b) Two hypersurfaces obtained by revolving a q-sphere Sq � RqC1 � Rn about an
axis of revolution Rq � RqC1 are Möbius equivalent if and only if they have the
same value of � D jrj=a, where r is the signed radius of the profile sphere Sq

and a > 0 is the distance from the center of Sq to the axis of revolution.

Proof. This theorem follows from Theorem 5.22 by a consideration of Möbius
geometry as a subgeometry of Lie sphere geometry. By Theorem 5.22, it suffices
to classify compact, connected cyclides up to Möbius equivalence, since every
connected cyclide is contained in a unique compact, connected cyclide. Consider
a compact, connected cyclide

� W Sp � Sq ! �2n�1; p C q D n � 1;
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of characteristic .p; q/. As shown in the proof of Theorem 5.22, there is a linear
space E of RPnC2 with signature .q C 1; 1/ given in equation (5.151) such that the
two curvature sphere maps,

Œk1� W Sq ! E \ QnC1; Œk2� W Sp ! E? \ QnC1;

are diffeomorphisms.
Recall that Möbius transformations are precisely those Lie sphere transfor-

mations A satisfying AŒenC3� D ŒenC3�, where fe1; : : : ; enC3g is the standard
orthonormal basis for RnC3

2 . We can decompose enC3 as

enC3 D ˛ C ˇ; ˛ 2 E; ˇ 2 E?: (5.159)

Since h˛; ˇi D 0, we have

�1 D henC3; enC3i D h˛; ˛i C hˇ; ˇi:
Thus at least one of the two vectors ˛; ˇ is timelike.

We first consider the case where ˇ is timelike. Let Z be the orthogonal
complement of ˇ in E?. Then Z is a .p C 1/-dimensional vector space on which
the restriction of h ; i has signature .p C 1; 0/. Since Z � e?nC3, there is a Möbius
transformation A such that

A.Z/ D S D Span feqC3; : : : ; enC2g:
The curvature sphere map ŒAk1� of the Dupin submanifold A� is a q-dimensional
submanifold in the space S? \ QnC1. By equation (4.23) on page 195, this means
that these spheres all have their centers in the space

Rq D Span fe3; : : : ; eqC2g:

Note that

Rq � RqC1 D Span fe3; : : : ; eqC3g � Rn D Span fe3; : : : ; enC2g:

This implies that the Dupin submanifold A� is a hypersurface of revolution in Rn

obtained by revolving a q-dimensional profile submanifold in RqC1 about the axis
Rq (see the proof of Theorem 5.11 in [77, pp. 142–143]). Since A� has two distinct
curvature spheres, the profile submanifold has only one curvature sphere. Thus, it is
a totally umbilical submanifold of RqC1.

We can distinguish four cases based on the nature of the vector ˛ in equa-
tion (5.159). These correspond to different singularity sets of the Euclidean
projection of A�. Such singularities correspond exactly with the singularities of the
Euclidean projection of �, since the Möbius transformation A preserves the rank of
the Euclidean projection. Since we have assumed that ˇ is timelike, we know that
for all u 2 Sp,
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hk2.u/; enC3i D hk2.u/; ˛ C ˇi D hk2.u/; ˇi ¤ 0;

because the orthogonal complement of ˇ in E? is spacelike. Thus, the curvature
sphere ŒAk2� is never a point sphere. However, it is possible for ŒAk1� to be a point
sphere. We now consider the four cases determined by the nature of ˛.

Case 1: ˛ D 0

In this case, the curvature sphere ŒAk1� is a point sphere for every point in Sp � Sq.
The image of the Euclidean projection of A� is precisely the axis Rq. The cyclide
A� is the Legendre lift of Rq as a submanifold of codimension p C 1 in Rn. This
is, in fact, the standard model given in equation (5.110). In this case, the Euclidean
projection is not an immersion, and so this case does not yield any of the embedded
hypersurfaces classified in part (a) of the theorem.

In the remaining cases, we can always arrange that the totally umbilic profile
submanifold is a q-sphere and not a q-plane by first inverting RqC1 in a sphere
centered at a point on the axis Rq which is not on the profile submanifold, if
necessary. This type of inversion preserves the axis of revolution Rq. Then, by a
Euclidean translation, if necessary, we can arrange that the center of the profile
sphere is a point .0; a/ on the xqC3-axis ` in RqC1, as in Figure 5.1. We know that
the center of the profile sphere cannot lie on the axis of revolution Rq; otherwise, the
hypersurface of revolution would be an .n � 1/-sphere and not a cyclide of Dupin.
Thus, we may take a > 0.

The map ŒAk1� is the curvature sphere map that results from the surface of
revolution construction. The other curvature sphere of A� corresponds exactly to
the curvature sphere of the profile sphere, i.e., to the profile sphere itself. Therefore,

a
xq+3

Rq

r

Sq

Fig. 5.1 Profile sphere Sq for the surface of revolution
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the signed radius r of the profile sphere is equal to the signed radius of the curvature
sphere ŒAk2�. Since ŒAk2� is never a point sphere, we conclude that r ¤ 0. From
now on, we will identify the profile sphere with the second factor Sq in the domain
of �. We now consider the remaining cases based on whether the nonzero vector ˛
is timelike, lightlike, or spacelike.

Case 2: ˛ is timelike

Since the orthogonal complement of ˛ in E is spacelike, we have for all v 2 Sq,

hk1.v/; enC3i D hk1.v/; ˛i ¤ 0;

This implies that the Euclidean projection of A� is an immersion at all points.
This corresponds to the case jrj < a, when the profile sphere is disjoint from the axis
of revolution. Note that by interchanging the roles of ˛ and ˇ, we can find a Möbius
transformation that takes � to the Legendre submanifold obtained by revolving a
p-sphere around an axis Rp � RpC1 � Rn.

We now describe this case in the classical situation of surfaces in R3. Then the
Euclidean projection of A� is a torus of revolution (see Figure 5.2).

It then follows that the Euclidean projection of � itself is a ring cyclide (see
Figure 5.3) if the Möbius projection of � does not contain the improper point, or a
parabolic ring cyclide (see Figure 5.4) if the Möbius projection of � does contain
the improper point. In either case, the focal set in R3 consists of a pair of focal
conics, as we describe in the following remark.

Remark 5.24 (Focal sets of the cyclides in Rn). For a ring cyclide in R3, the focal
set consists of an ellipse and a hyperbola in mutually orthogonal planes such that the
vertices of the ellipse are the foci of the hyperbola and vice versa. For a parabolic
ring cyclide in R3, the focal set consists of two parabolas in orthogonal planes such
that the vertex of each is the focus of the other. For a torus of revolution in R3, the
focal set consists of the core circle and the axis of revolution covered twice. This is a
special case of a pair of focal conics. These classical cyclides of Dupin are discussed
in more detail in the book of Cecil–Ryan [95, pp. 151–166], and other references are

Fig. 5.2 Torus of revolution
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Fig. 5.3 Ring cyclide

Fig. 5.4 Parabolic ring cyclide

given there. For the higher dimensional cyclides in Rn, the focal set in Rn consists
of a pair of focal quadrics defined in an analogous way. This is shown in detail in
[95, pp. 176–178].

Case 3: ˛ is lightlike, but not zero

In this case, there is exactly one v 2 Sq such that

hk1.v/; enC3i D hk1.v/; ˛i D 0: (5.160)

Geometrically, this corresponds to the case jrj D a, where the profile sphere
intersects the axis in one point. Thus, Sp � fvg is the set of points in Sp � Sq where
the Euclidean projection is singular.

We now describe this case for the classical situation of surfaces in R3. Then
the Euclidean projection of A� is a limit torus (see Figure 5.5), and the Euclidean
projection of � itself is a limit spindle cyclide (see Figure 5.6) or a limit horn cyclide
(see Figure 5.7), if the Möbius projection of � does not contain the improper point.

On the other hand, if the Möbius projection of � does contain the improper
point, then the Euclidean projection of � is either a limit parabolic horn cyclide
(see Figure 5.8) or a circular cylinder (in the case where the singularity is at the
improper point). For all of these surfaces except the cylinder, the focal set in R3
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Fig. 5.5 Limit torus

Fig. 5.6 Limit spindle
cyclide

Fig. 5.7 Limit horn cyclide

consists of a pair of focal conics, as in the previous case. To see this, note that each
of these surfaces is a parallel surface to a cyclide without singularities, and so it has
the same focal set as that cyclide.

For the cylinder, the Euclidean focal set consists only of the axis of revolution,
since one of the principal curvatures is identically zero, and so the corresponding
focal points are all at infinity. In Lie sphere geometry, both curvature sphere maps
are plane curves on the Lie quadric, as shown in the proof of Theorem 5.22.
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Fig. 5.8 Limit parabolic horn cyclide

Fig. 5.9 Spindle torus

Case 4: ˛ is spacelike

In this case, the condition (5.160) is satisfied by points v in a .q � 1/-sphere Sq�1 �
Sq. For points in Sp � Sq�1, the point sphere map is a curvature sphere, and thus the
Euclidean projection is singular. Geometrically, this is the case jrj > a, and so the
profile sphere intersects the axis Rq in a .q � 1/-sphere.

In the classical situation of surfaces in R3, the Euclidean projection of A� is
a spindle torus (see Figure 5.9). The Euclidean projection of � itself is a spindle
cyclide (see Figure 5.10) or a horn cyclide (see Figure 5.11), if the Möbius
projection does not contain the improper point.

On the other hand, if the Möbius projection of � contains the improper point, then
the Euclidean projection of � is either a parabolic horn cyclide (see Figure 5.12) or
circular cone (in the case where one of the singularities is at the improper point).
For all of these surfaces except the cone, the focal set in R3 consists of a pair of
focal conics, since each of these surfaces is a parallel surface to a cyclide without
singularities. For the cone, the Euclidean focal set consists of only the axis of
revolution (minus the origin), since one principal curvature is identically zero.

In the four cases above, we assumed that the vector ˇ is timelike. There are
also four cases to handle under the assumption that ˛ is timelike. In those cases,



280 5 Dupin Hypersurfaces

Fig. 5.10 Spindle cyclide

Fig. 5.11 Horn cyclide

Fig. 5.12 Parabolic horn cyclide

the axis of revolution is a subspace Rp � RpC1, and the profile submanifold is a
p-sphere. The roles of p and q in determining the dimension of the singularity set
of the Euclidean projection are then reversed from the four cases above. Thus, if
p ¤ q, then only a ring cyclide can be represented as a hypersurface of revolution
of both a q-sphere and a p-sphere. This completes the proof of part (a).
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Proof of part (b)

Next we turn to the proof of part (b). By part (a), we may assume that the profile
sphere Sq of the hypersurface of revolution has center .0; a/ with a > 0 on the
xqC3-axis `. Möbius classification clearly does not depend on the sign of the radius
of Sq, since the two hypersurfaces of revolution obtained by revolving spheres
with the same center and opposite radii differ only by the change of orientation
transformation � .

We now show that the ratio � D jrj=a is invariant under the subgroup of Möbius
transformations of the profile space RqC1 which take one such hypersurface of
revolution to another. First, note that symmetry implies that a transformation T in
this subgroup maps the axis of revolution Rq to itself and the axis of symmetry
` to itself. Since Rq and ` intersect only at 0 and the improper point 1, the
transformation T maps the set f0;1g to itself. If T maps 0 to 1, then the
composition ˚T , where ˚ is an inversion in a sphere centered at 0, is a member
of the subgroup of transformations that map 1 to 1 and map 0 to 0. By Theorem
3.16 of [77, p. 47], such a Möbius transformation is a similarity transformation, and
so it is the composition of a central dilatation D and a linear isometry 
 . Therefore,
T D ˚D
 , and each of the transformations on the right of this equation preserves
the ratio �. The invariant � is the only one needed for Möbius classification, since
any two profile spheres with the same value of � can be mapped to one another by a
central dilatation. ut
Remark 5.25. To obtain a collection of hypersurfaces containing one representative
from each Möbius equivalence class, we fix a D 1 and allow r to vary, 0 < r < 1.
This results in a family of parallel hypersurfaces of revolution. Note that taking a
negative signed radius s for the profile sphere yields a parallel hypersurface that
differs only in orientation from the hypersurface corresponding to r D �s. Finally,
taking r D 0 also gives a parallel submanifold in the family, but the Euclidean
projection degenerates to a sphere Sp. This is the case ˇ D 0; ˛ D enC3 in the proof
above, where the point sphere map equals the curvature sphere Œk2� at every point.

Complete cyclides of Dupin in Rn

From Theorem 5.23, we can derive a classification of complete proper Dupin
hypersurfaces in Rn with g D 2 principal curvatures (see Theorem 5.26 below). This
classification was proven in full in the book [95, pp. 168–179] without using Lie
sphere geometry. However, that proof uses the assumption of completeness, which
is not required in the local Lie-geometric Theorem 5.23. In the treatment given in
[95, pp. 176–178], we also showed that the focal submanifolds of a complete cyclide
of Dupin in Rn are always a pair of focal quadrics.
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In the following theorem, we will use the classical terminology to give names
to the hypersurfaces of revolution in Theorem 5.23 and their images under Möbius
transformations.

Theorem 5.26. Let Mn�1 � Rn be a connected, complete cyclide of Dupin of
characteristic .p; q/.

(a) If Mn�1 is compact, then it is a ring cyclide diffeomorphic to Sp � Sq.
(b) If Mn�1 is not compact, then it is a spherical cylinder Sp�Rn�1�p or a parabolic

ring cyclide.

Proof. In Theorem 5.23, we showed that every connected cyclide of Dupin Mn�1 �
Rn of characteristic .p; q/ is Möbius equivalent to an open subset of a hypersurface
of revolution obtained by revolving a q-sphere Sq � RqC1 � Rn about an axis
Rq � RqC1 or a p-sphere Sp � RpC1 � Rn about an axis Rp � RpC1. Thus, we
need to determine which Möbius images of open subsets of these hypersurfaces of
revolution are complete.

We consider the setup depicted in Figure 5.1 in the proof of Theorem 5.23. If the
profile sphere Sq does not intersect the axis of revolution Rq, the hypersurface of
revolution is a torus of revolution diffeomorphic to Sp � Sq. Such a hypersurface is
also referred to as a round cyclide (see Figure 5.2). The image M � Rn of a round
cyclide C under a Möbius transformation is called a ring cyclide (see Figure 5.3) if
M is compact, and this is the only case that results in a compact hypersurface.

On the other hand, if the image M � Rn is not compact, i.e., if the Möbius
transformation maps one point of the round cyclide C to the improper point P at
infinity, then M is called a parabolic ring cyclide (see Figure 5.4), which is also a
complete hypersurface in Rn.

We now examine the cases where the profile sphere Sq intersects the axis of
revolution Rq. Let O be the point of intersection of the line ` with the axis Rq in
Figure 5.1. If the profile sphere Sq in Figure 5.1 intersects the axis in the one point
O, then the hypersurface of revolution W is called a limit torus (see Figure 5.5). Of
course, W has a singularity at O and no open subset of W is a complete hypersurface
in Rn. If T is a Möbius transformation that maps O to a proper point Q in Rn, then
T.W/ has a singularity at Q, and no open subset of T.W/ is a complete hypersurface
in Rn.

On the other hand, if T is a Möbius transformation that maps O to the improper
point P, then the image M D T.W�fOg/ in Rn is a spherical cylinder Sp�Rq, where
q D n � 1 � p. To see this, note that if � is an inversion of Rn [ fPg in a sphere
˙ centered at O, then by symmetry, the copies of the profile sphere Sq obtained as
one rotates Sq about the axis Rq are all mapped by � to q-planes parallel to the axis
Rq, since the point O is mapped to the improper point P. Thus, �.W � fOg/ is a
spherical cylinder Sp � Rq.

Note that �.O/ D P and �.P/ D O. Thus, since T.O/ D P, the Möbius
transformation T ı � maps the improper point P to itself. This means that T ı �
is both a Laguerre transformation (a Lie sphere transformation that maps P to itself)
and a Möbius transformation. Therefore T ı � is a similarity transformation S of Rn



5.6 Local Classifications in the Case g D 3 283

(see Theorem 3.16 of [77, p. 47]). Since � is its own inverse, we can multiply the
equation T ı � D S on the right by � to get T D S ı �. Since � maps W � fOg to a
spherical cylinder, and S maps a spherical cylinder to another spherical cylinder, we
see that M D T.W � fOg/ is a spherical cylinder, which is a complete hypersurface
in Rn.

Finally, if the profile sphere Sq in Figure 5.1 intersects the axis Rq in more than
one point, the resulting hypersurface of revolution is called a spindle torus (see
Figure 5.9), which has more than one singularity in Rn. The image of a spindle
torus under a Möbius transformation T always has a singularity in Rn, so no open
subset of T.W/ is a complete hypersurface in Rn. Thus, we have handled all the
possible cases in Theorem 5.23 and the proof is finished. ut
Remark 5.27 (Cyclides in discrete differential geometry). The cyclides of Dupin
and their characterization in the setting of Lie sphere geometry play an important
role in a recent paper by A. Bobenko and E. Huhnen-Venedy [43]. In that paper, the
authors study cyclidic nets, which are discrete analogues of surfaces parametrized
by lines of curvature (2-dimensional case), and of triply orthogonal coordinate
systems (3-dimensional case). Specifically, a 2-dimensional cyclidic net in R3 is
constructed from cyclidic patches, which are obtained by restricting an oriented
principal coordinate parametrization of a cyclide of Dupin to a closed rectangle.
The lines of curvature of the cyclidic patches in a 2-dimensional cyclidic net form
a net of C1-curves composed of circular arcs, which can be considered to be the
lines of curvature of the cyclidic net. As the authors note, discretization of surfaces
parametrized by lines of curvature is an important area of current research in discrete
differential geometry. Some of the most notable discretizations so far are circular
nets, conical nets, and contact element nets. The authors show that all of these types
of discretizations are cyclidic nets having certain special properties.

5.6 Local Classifications in the Case g D 3

In this section, we discuss local classifications of proper Dupin hypersurfaces with
g D 3 principal curvatures. The first case is that of a Dupin hypersurface M3 � R4

with three principal curvatures of multiplicity one. In his dissertation, Pinkall [442,
445] gave a local classification of such Dupin hypersurfaces up to Lie equivalence.
This is a fundamental case, and it is the first case where Lie invariants are needed in
the classification.

In Pinkall’s local classification, he found one Lie invariant (� in our treatment
below) that completely determines whether or not the Legendre lift � of the Dupin
hypersurface is reducible. If � ¤ 0, then � is irreducible. Pinkall proved that the
Legendre lifts of any two irreducible proper Dupin hypersurfaces with g D 3 in R4

are locally Lie equivalent, each being Lie equivalent to an open subset of Cartan’s
isoparametric hypersurface in S4 (see Subsection 3.8.3 on page 151). If � D 0,
then � is reducible, and Pinkall showed that there is a 1-parameter family of Lie
equivalence classes of reducible proper Dupin hypersurfaces with g D 3 in R4 (see
[445, p. 111]).



284 5 Dupin Hypersurfaces

Here we give an exposition of the portion of Pinkall’s work concerning the
irreducible case, following the paper of Cecil and Chern [80] and using the method
of moving frames. (See also the book [70, pp. 168–188] for a similar treatment.)
After that we will discuss local classifications of higher dimensional proper Dupin
hypersurfaces with g D 3 due to Niebergall [393, 394], and Cecil and Jensen [85],
although we will not give complete proofs here.

Let � W M3 ! �7 be a proper Dupin submanifold with three curvature spheres at
each point. Note that the Legendre lift of any proper Dupin hypersurface in R4 with
three distinct principal curvatures is such a map �.

On a local neighborhood U in M we take a Lie frame YA such that for each x 2 M,
the line �.x/ D ŒY1.x/;Y7.x/�. Using Theorem 5.21 on page 263 as we did in the
g D 2 case, we can arrange that ŒY1� and ŒY7� are curvature sphere maps, and that
the Maurer–Cartan forms satisfy

!31 D !71 D 0; !47 D !17 D 0: (5.161)

In this frame the third curvature sphere has the form ˛Y1 CˇY7 for some smooth
nonvanishing functions ˛ and ˇ on U. If we make a change of Lie frame of the form,

Y�1 D ˛Y1; Y�2 D .1=˛/Y2; Y�7 D ˇY7; Y�6 D .1=ˇ/Y6; (5.162)

then Y�1 and Y�7 still represent the first two curvature sphere maps, and Y�1 C Y�7
represents the third curvature sphere at each point of U. We drop the asterisks and
use this frame. Then by using the method of proof of Theorem 5.21, we can find a
new Lie frame whose Maurer–Cartan forms satisfy

!51 C !57 D 0; !11 � !77 D 0; (5.163)

as well as equation (5.161). Such a frame is called a second order frame in the
terminology of Cecil and Jensen [85, p. 138]. Conditions (5.161) and (5.163)
completely determine the frame vectors Y3, Y4 and Y5, while Y1 and Y7 are
determined up to a transformation of the form,

Y�1 D �Y1; Y�7 D �Y7; (5.164)

for some smooth nonvanishing function � on U.
Each of the three curvature sphere maps Y1;Y7 and Y1 C Y7 is constant along

the leaves of its corresponding principal foliation. Thus, each curvature sphere map
factors through an immersion of the corresponding 2-dimensional space of leaves
of its principal foliation into the Lie quadric Q5. In terms of moving frames, this
implies that the forms !41 ; !

5
1 ; !

3
7 are linearly independent on the open set U, i.e.,

!41 ^ !51 ^ !37 ¤ 0: (5.165)
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This can also be seen by expressing the forms above in terms of a Lie frame
fZ1; : : : ;ZnC3g whose Maurer–Cartan forms satisfy the regularity condition (5.78)
and using the fact that each curvature sphere has multiplicity one. For simplicity, we
will also use the notation,

�1 D !41 ; �2 D !51 ; �3 D !37 : (5.166)

Analytically, the Dupin conditions are three partial differential equations, and we
are treating an over-determined system. The method of moving frames reduces
the handling of its integrability conditions to a straightforward algebraic problem,
namely, that of repeated exterior differentiations.

Computing exterior derivatives

We begin by computing the exterior derivatives of the equations,

!31 D 0; !47 D 0; !51 C !57 D 0: (5.167)

These equations come from the fact that Y1, Y7 and Y1 C Y7 are curvature
spheres. Using the skew-symmetry of the matrix in equation (5.75), as well as
the relations (5.161) and (5.163), the exterior derivatives of the three equations
in (5.167) yield

0 D !41 ^ !43 C !51 ^ !53 ;
0 D !51 ^ !54 C !37 ^ !43 ; (5.168)

0 D !41 ^ !54 C !37 ^ !53 :
If we take the wedge product of the first of these equations with !41 , we conclude
that !53 is in the span of !41 and !51 . On the other hand, taking the wedge product of
the third equation with !41 yields that !53 is in the span of !41 and !37 . Consequently,
!53 D �!41 , for some smooth function �. Similarly, there exist smooth functions ˛
and ˇ such that !43 D ˛!51 and !54 D ˇ!37 . Then, if we substitute these results into
equation (5.168), we get that � D ˛ D ˇ, and hence we have

!53 D �!41 ; !43 D �!51 ; !54 D �!37 : (5.169)

Next we differentiate the three equations that come from the Dupin conditions,

!71 D 0; !17 D 0; !11 � !77 D 0: (5.170)

As above, use of the skew-symmetry relations in equation (5.75) and equa-
tions (5.161) and (5.163) yields the existence of smooth functions a, b, c, p, q, r,
s, t, u such that the following relations hold:
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!74 D �!46 D a!41 C b!51 ;

!75 D �!56 D b!41 C c!51 I (5.171)

!13 D �!32 D p!37 � q!51 ;

!15 D �!52 D q!37 � r!51 I (5.172)

!14 D �!42 D b!51 C s!41 C t!37 ;

!36 D �!73 D q!51 C t!41 C u!37 : (5.173)

We next take the exterior derivatives of the three basis forms !41 , !51 , and !37 .
Using the relations that we have derived so far, we obtain from the Maurer–Cartan
equation (5.76),

d!41 D !11 ^ !41 C !51 ^ !45 D !11 ^ !41 � �!51 ^ !37 : (5.174)

We can obtain similar equations for d!51 and d!37 . If we write these expressions in
terms of the forms �1, �2 and �3 defined in equation (5.166), we get

d�1 D !11 ^ �1 � � �2 ^ �3;
d�2 D !11 ^ �2 � � �3 ^ �1; (5.175)

d�3 D !11 ^ �3 � � �1 ^ �2:

We next differentiate equation (5.169). We have !43 D �!51 . On the one hand,

d!43 D � d!51 C d� ^ !51 :

Using the second equation in (5.175) with !51 D �2, this becomes

d!43 D �!11 ^ !51 � �2!37 ^ !41 C d� ^ !51 :

On the other hand, we can compute d!43 from the Maurer–Cartan equation (5.76)
and use the relationships that we have derived to find

d!43 D .�p � �2 � a/.!41 ^ !37/ � q!51 ^ !41 C b!37 ^ !51 :

Equating these two expressions for d!43 yields

.�p � a � 2�2/ !41 ^ !37 D .d�C �!11 � q!41 � b!37/ ^ !51 : (5.176)
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Due to the linear independence of the forms f!41 ; !51 ; !37g, both sides of the equation
above vanish. Thus, we conclude that

2�2 D �a � p; (5.177)

and that d�C �!11 � q!41 � b!37 is a multiple of !51 . Similarly, differentiation of the
equation !54 D �!37 yields the following analogue of equation (5.176),

.s � a � r C 2�2/ !41 ^ !51 D .d�C �!11 C t!51 � q!41/ ^ !37 ; (5.178)

and differentiation of !53 D �!41 yields

.c C p C u � 2�2/ !51 ^ !37 D .�d� � �!11 � t!51 C b!37/ ^ !41 : (5.179)

In each of the equations (5.176), (5.178), (5.179), both sides of the equation vanish.
From the vanishing of the left sides of the equations, we get the fundamental
relationship

2�2 D �a � p D a C r � s D c C p C u: (5.180)

Furthermore, from the vanishing of the right sides of the three equa-
tions (5.176), (5.178), (5.179), we can determine after some algebra that

d�C �!11 D q!41 � t!51 C b!37 : (5.181)

This equation shows the importance of �.

Covariant derivatives

Following the notation introduced in equation (5.166), we write equation (5.181) as

d�C �!11 D �1�1 C �2�2 C �3�3; (5.182)

where

�1 D q; �2 D �t; �3 D b; (5.183)

are the covariant derivatives of �.
Using the Maurer–Cartan equations, we can compute

d!11 D !41 ^ !14 C !51 ^ !15
D !41 ^ .b!51 C t!37/C !51 ^ .q!37 � r!51/

D b!41 ^ !51 C q!51 ^ !37 � t!37 ^ !41 : (5.184)
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Using equations (5.166) and (5.183), this can be rewritten as

d!11 D �3 �1 ^ �2 C �1 �2 ^ �3 C �2 �3 ^ �1: (5.185)

The key idea now is to express everything in terms of � and its successive covariant
derivatives. Ultimately, this leads to the solution of the problem.

We first derive a general form for these covariant derivatives. Suppose that � is a
smooth function which satisfies a relation of the form

d� C m�!11 D �1 �1 C �2 �2 C �3 �3; (5.186)

for some integer m. (Note that equation (5.181) is such a relationship for the function
� with m D 1.) By taking the exterior derivative of equation (5.186) and using
equations (5.175) and (5.185) to express both sides in terms of the standard basis of
2-forms �1 ^ �2, �2 ^ �3 and �3 ^ �1, one finds that the functions �1; �2; �3 satisfy
equations of the form

d�˛ C .m C 1/�˛!
1
1 D �˛1 �1 C �˛2 �2 C �˛3 �3; ˛ D 1; 2; 3; (5.187)

where the coefficient functions �˛ˇ satisfy the commutation relations,

�12 � �21 D ���3 � m��3;

�23 � �32 D ���1 � m��1; (5.188)

�31 � �13 D ���2 � m��2:

In particular, from equation (5.182), we have the following commutation relations
on �1; �2; �3:

�12 � �21 D �2��3
�23 � �32 D �2��1 (5.189)

�31 � �13 D �2��2:

We next take the exterior derivative of equations (5.171)–(5.173). We first
differentiate the equation

!74 D a!41 C b!51 : (5.190)

On the one hand, if we write the Maurer–Cartan equation (5.76) for d!74 and omit
those terms that have already been shown to vanish, we get

d!74 D !24 ^ !72 C !34 ^ !73 C !54 ^ !75 C !74 ^ !77
D �!41 ^ !72 C .��/!51 ^ .�q!51 � t!41 � u!37/

C �!37 ^ .b!41 C c!51/C .a!41 C b!51/ ^ !11 : (5.191)
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On the other hand, differentiation of the right side of equation (5.190) yields

d!74 D da ^ !41 C ad!41 C db ^ !51 C bd!51

D da ^ !41 C a.!11 ^ !41 � �!51 ^ !37/
C db ^ !51 C b.!11 ^ !51 � �!41 ^ !37/: (5.192)

Equating (5.191) and (5.192), we find

.da C 2a!11 � 2b�!37 � !72/ ^ !41
C .db C 2b!11 C .a C u � c/�!37/ ^ !51 C �t!41 ^ !51 D 0: (5.193)

Since b D �3, it follows from (5.181) and (5.187) that

db C 2b!11 D d�3 C 2�3!
1
1 D �31 �1 C �32 �2 C �33 �3: (5.194)

By examining the coefficient of !51 ^ !37 D �2 ^ �3 in equation (5.193) and using
equation (5.194), we find

�33 D �.c � a � u/: (5.195)

Furthermore, the remaining terms in equation (5.193) are

.da C 2a!11 � !72 � 2�b!37 � .�t C �31/!
5
1/ ^ !41 (5.196)

Cterms involving !51 and !37 only:

Thus, the coefficient in parentheses is a multiple of !41 , call it Na!41 . We can write
this using (5.166) and (5.183) as

da C 2a!11 D !72 C Na�1 C .�31 � ��2/�2 C 2��3�3: (5.197)

In a similar manner, if we differentiate the equation

!75 D b!41 C c!51 ;

we obtain

dc C 2c!11 D !72 C .�32 C ��1/�1 C Nc�2 � 2��3�3: (5.198)

Thus, from the two equations in (5.171), we have obtained equations (5.195), (5.197),
and (5.198). In a completely analogous manner, we can differentiate the two
equations in (5.172) to obtain

�11 D �.s C r � p/; (5.199)
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dp C 2p!11 D �!72 C 2��1�1 C .��13 � ��2/�2 C Np�3; (5.200)

dr C 2r!11 D �!72 � 2��1�1 C Nr�2 C .��12 C ��3/�3: (5.201)

Similarly, differentiation of equation (5.173) yields

�22 C �33 D �.p � r � s/; (5.202)

ds C 2s!11 D Ns�1 C .�31 C ��2/�2 C .��21 C ��3/�3; (5.203)

du C 2u!11 D .��23 � ��1/�1 C .�13 � ��2/�2 C Nu�3: (5.204)

In these equations, the coefficients Na, Nc, Np, Nr, Ns, Nu remain undetermined. However,
by differentiating equation (5.180) and using the appropriate equations from above,
one can show that

Na D �6��1; Nc D 6��2;

Np D �6��3; Nr D 6��2; (5.205)

Ns D �12��1; Nu D 12��3:

From equations (5.195), (5.199), (5.202), and (5.180), we can easily compute that

�11 C �22 C �33 D 0: (5.206)

Using equation (5.205), equations (5.203) and (5.204) can be rewritten as

ds C 2s!11 D �12��1�1 C .�31 C ��2/�2 C .��21 C ��3/�3; (5.207)

du C 2u!11 D .��23 � ��1/�1 C .�13 � ��2/�2 C 12��3�3: (5.208)

Fundamental equations

By taking the exterior derivatives of these two equations and making use of
equation (5.206) and of the commutation relations in equation (5.188) for � and
its various derivatives, one can ultimately show after a lengthy calculation that the
following fundamental equations hold:

��12 C �1�2 C �2�3 D 0;

��21 C �1�2 � �2�3 D 0;

��23 C �2�3 C �2�1 D 0; (5.209)
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��32 C �2�3 � �2�1 D 0;

��31 C �3�1 C �2�2 D 0;

��13 C �3�1 � �2�2 D 0:

We now briefly outline the details of this calculation. By equation (5.207), we have

s1 D �12��1; s2 D �31 C ��2; s3 D ��3 � �21: (5.210)

The commutation relation (5.188) for s with m D 2 gives

s12 � s21 D �2s�3 � �s3 D �2s�3 � �.��3 � �21/: (5.211)

On the other hand, we can directly compute by taking covariant derivatives of
equation (5.211) that

s12 � s21 D �12��12 � 12�2�1 � .�311 C �1�2 C ��21/: (5.212)

The main problem now is to get the covariant derivative �311 into a form involving
� and its first and second covariant derivatives. By taking the covariant derivative of
the third equation in (5.189), we find

�311 � �131 D �2�1�2 � 2��21: (5.213)

Then using the commutation relation,

�131 D �113 � 2�1�2 � ��12;

we get from equation (5.213) that

�311 D �113 � 4�1�2 � ��12 � 2��21: (5.214)

Taking the covariant derivative of the equation,

�11 D �.s C r � p/;

and substituting the expression obtained for �113 into equation (5.214), we get

�311 D �3.s C r � p/ � 3��21 � 2��12 C 8�2�3 � 4�1�2: (5.215)

If we substitute this expression for �311 into equation (5.212) and then equate the
right sides of equations (5.211) and (5.212), we obtain the first equation in (5.209).
The cyclic permutations are obtained in a similar way from s23 � s32, and so on.
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Our frame attached to the line ŒY1;Y7� is still not completely determined, namely,
the following change is allowable:

Y�1 D �Y1; Y�2 D .1=�/Y2 C �Y7; (5.216)

Y�7 D �Y7; Y�6 D .1=�/Y6 � �Y1:

Under this change of frame, we have

!4�1 D �!41 ; !5�1 D �!51 ; !3�7 D �!37 ;

!7�4 D .1=�/!74 C �!41 ; (5.217)

!1�3 D .1=�/!13 � �!37 :

Since Y3;Y4;Y5 are completely determined, we have under this change,

!4�1 D �!41 ; !5�1 D �!51 ; !3�7 D �!37 ;

!7�4 D .1=�/!74 C �!41 ; (5.218)

!1�3 D .1=�/!13 � �!37 ;

which implies that

a� D ��2a C ��1�; p� D ��2p � ��1�:

Thus, by taking � D .p � a/=2� , we can arrange that a� D p�. We now make this
change of frame and drop the asterisks. In this new frame, we have

a D p D ��2; r D 3�2 C s; c D 3�2 � �: (5.219)

Using the fact that a D p, we can subtract equation (5.200) from equation (5.197)
and get that

!72 D 4��1�1 � ..�31 C �13/=2/�2 � 4��3�3: (5.220)

Now through equations (5.196)–(5.201), the covariant derivatives of the functions
a, c, p, and r are expressed in terms of � and its derivatives. We are now ready to
proceed to the main results. Ultimately, we show that it is possible to choose a frame
in which � is constant. Thus, the classification naturally splits into two cases, � D 0

and � ¤ 0. We handle the two cases separately.
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Case 1: � ¤ 0 (the irreducible case)

Assume that the function � is never zero on the open set U on which the frame
fYag is defined. The key step in getting � to be constant is the following lemma
due to Pinkall [445, p. 108], where his function c is the negative of our function �.
The formulation of the proof here using the method of moving frames was given in
Cecil-Chern [80, p. 33]. The crucial point here is that since � ¤ 0, the fundamental
equations (5.209) allow us to express all of the second covariant derivatives �ij in
terms of � and its first derivatives.

Lemma 5.28. Suppose that the function � never vanishes on the open set U on
which the frame fYag is defined. Then its covariant derivatives satisfy �1 D �2 D
�3 D 0 at every point of U.

Proof. First, note that if �3 vanishes identically, then the equations (5.209) and
the assumption that � ¤ 0 imply that �1 and �2 also vanish identically. We
now complete the proof by showing that �3 vanishes everywhere on U. This
is accomplished by considering the expression s12 � s21. By the commutation
relations (5.209), we have

s12 � s21 D �2s�3 � �s3:

By equations (5.209)–(5.210), we have

�s3 D �2�3 � ��21 D �1�2;

and so

s12 � s21 D �2s�3 � �1�2: (5.221)

On the other hand, we can compute s12 directly by differentiating the equation

s1 D �12��1:
Then using the expression for �12 obtained from equation (5.209), we get

s12 D �12�2�1 � 12��12 D �12.�2�1 C ��12/ (5.222)

D �12.�2�1 C .��2�1 � �2�3// D 12�2�3:

Next we have from equation (5.210) that s2 D �31 C ��2. Using equation (5.209),
we can write

�31 D ��3�1��1 � ��2;

and thus,

s2 D ��3�1=�: (5.223)
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Then we compute

s21 D �.�.�3�11 C �31�1/ � �3�21/=�2:

Using equation (5.199) for �11 and (5.209) to get �31, this becomes

s21 D ��3.s C r � p/C 2�3�
2
1�
�2 C �1�2: (5.224)

Now equate the expression in equation (5.221) for s12 � s21 with the expression
obtained by subtracting equation (5.224) from equation (5.222) to get

�2s�3 � �1�2 D 12�2�3 C �3.s C r � p/ � 2�3�21��2 � �1�2:

This can be rewritten as

0 D �3.12�
2 C 3s C r � p � 2�21��2/: (5.225)

Using the expressions in (5.219) for r and p, we see that

3s C r � p D 4s C 4�2;

and so equation (5.225) can be rewritten as

0 D �3.16�
2 C 4s � 2�21��2/: (5.226)

Suppose that �3 ¤ 0 at some point x of U. Then �3 does not vanish on some
neighborhood V of x. By equation (5.226), we have

16�2 C 4s � 2�21��2 D 0 (5.227)

on V . We now take the �2-covariant derivative of equation (5.227) and obtain

32��2 C 4s2 � 4�1�12��2 C 4�21�2�
�3 D 0: (5.228)

We now substitute the expression (5.223) for s2 and the formula

�12 D ��1�2��1 � ��3
obtained from equation (5.209) into equation (5.228). After some algebra, equa-
tion (5.228) reduces to

�2.32�
4 C 8�21/ D 0:

Since � ¤ 0, this implies that �2 D 0 on V . But then, the left side of the equation
below, obtained from (5.209),

��21 C �1�2 D �2�3;
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vanishes on V . Since � ¤ 0, we conclude that �3 D 0 on V , a contradiction to our
assumption. Hence, �3 vanishes identically on the set U, and the lemma is proved.

ut
We now continue with the case � ¤ 0. According to Lemma 5.28, all the covari-

ant derivatives of � are zero, and our formulas simplify greatly. Equations (5.195)
and (5.199) give

c � a � u D 0; s C r � p D 0:

These combined with equation (5.219) give

c D r D �2; u D �s D 2�2: (5.229)

By equation (5.220), we have !72 D 0. So the differentials of the frame vectors can
now be written as

dY1 � !11Y1 D !41Y4 C !51Y5;

dY7 � !11Y7 D !37Y3 � !51Y5;

dY2 C !11Y2 D �2.!37Y3 C 2!41Y4 C !51Y5/;

dY6 C !11Y6 D �2.2!37Y3 C !41Y4 � !51Y5/;

dY3 D !37Z3 C �.!51Y4 C !41Y5/;

dY4 D �!41Z4 C �.�!51Y3 C !37Y5/;

dY5 D !51Z5 C �.�!41Y3 � !37Y4/; (5.230)

where

Z3 D �Y6 C �2.�Y1 � 2Y7/;

Z4 D Y2 C �2.2Y1 C Y7/;

Z5 D �Y2 C Y6 C �2.�Y1 C Y7/: (5.231)

From this we notice that

Z3 C Z4 C Z5 D 0; (5.232)

so that the points Z3, Z4, and Z5 lie on a line in projective space RP6. From
equations (5.182), (5.185) and the lemma above, we see that

d�C �!11 D 0; d!11 D 0: (5.233)



296 5 Dupin Hypersurfaces

We now make a change of frame of the form

Y�1 D �Y1; Y�2 D .1=�/Y2;

Y�7 D �Y7; Y�6 D .1=�/Y6;

Y�i D Yi; 3 � i � 5: (5.234)

Then set

Z�i D .1=�/Zi; 3 � i � 5;

!4�1 D �!41 ; !5�1 D �!51 ; !3�7 D �!37 : (5.235)

The effect of this change is to make �� D 1 and !1�1 D 0, for we can compute the
following differentials of the frame vectors:

dY�1 D !4�1 Y4 C !5�1 Y5;

dY�7 D !3�7 Y3 � !5�1 Y5;

dY�2 D !3�7 Y3 C 2!4�1 Y4 C !5�1 Y5;

dY�6 D 2!3�7 Y3 C !4�1 Y4 � !5�1 Y5;

dY3 D !3�7 Z�3 C !5�1 Y4 C !4�1 Y5;

dY4 D �!4�1 Z�4 � !5�1 Y3 C !3�7 Y5;

dY5 D !5�1 Z�5 � !4�1 Y3 � !3�7 Y4; (5.236)

with

dZ�3 D 2.�2!3�7 Y3 � !4�1 Y4 C !5�1 Y5/;

dZ�4 D 2.!3�7 Y3 C 2!4�1 Y4 C !5�1 Y5/;

dZ�5 D 2.!3�7 Y3 � !4�1 Y4 � 2!5�1 Y5/; (5.237)

and

d!4�1 D �!5�1 ^ !3�7 ; i:e:; d��1 D ���2 ^ ��3 ;
d!5�1 D �!3�7 ^ !4�1 ; i:e:; d��2 D ���3 ^ ��1 ;
d!3�7 D �!4�1 ^ !5�1 ; i:e:; d��3 D ���1 ^ ��2 : (5.238)

Comparing the last equation with (5.175), we see that !1�1 D 0 and �� D 1. This is
the final frame needed in the case � ¤ 0, so we drop the asterisks once more.



5.6 Local Classifications in the Case g D 3 297

Classification in the irreducible case

We can now prove Pinkall’s [442, 445] classification for the case � ¤ 0. As with
the cyclides of Dupin, there is only one model up to Lie equivalence. This model is
Cartan’s isoparametric hypersurface with three principal curvatures in S4. Cartan’s
hypersurface is a tube over each of its two focal submanifolds in S4, both of which
are Veronese surfaces. (See Subsection 3.8.3 on page 151 for more detail.)

Theorem 5.29. (a) Every connected Dupin proper submanifold

� W M3 ! �7

with three distinct curvature spheres and � ¤ 0 is contained in a unique
compact, connected proper Dupin submanifold with � ¤ 0.

(b) Any two proper Dupin submanifolds with � ¤ 0 are locally Lie equivalent, each
being Lie equivalent to an open subset of Cartan’s isoparametric hypersurface
in S4.

Proof. Let fYag be the Lie frame just constructed on a connected open subset U �
M3 satisfying,

!11 D 0; � D 1: (5.239)

Then the derivatives of the frame vectors satisfy the system of equations (5.236),
where we again drop the asterisks. The three curvature sphere maps on U are Y1, Y7,
and Y1 C Y7. Let

W1 D �Y1 C Y6 � 2Y7; W2 D �2Y1 C Y2 � Y7: (5.240)

Then from equation (5.236), we find that

dW1 D dW2 D 0:

Hence W1 and W2 are constant maps. Furthermore, since

hW1;W1i D hW2;W2i D �4; hW1;W2i D �2;

the line ŒW1;W2� is timelike. Finally, the equations,

hY1;W1i D 0; hY7;W2i D 0; hY1 C Y7;W1 � W2i D 0; (5.241)

imply that the restriction of � to U is Lie equivalent to an open subset of an
isoparametric hypersurface in S4 by Theorem 4.16 (page 221), since the three
curvature sphere maps are orthogonal to three points on a timelike line in RP6.
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If f QYag is a Lie frame defined on an open subset QU � M3 by the same construction
as fYag, and U \ QU is nonempty, then the uniqueness of the construction implies that
at points of U \ QU the curvature spheres satisfy

QY1 D Y1; QY7 D Y7; QY1 C QY7 D Y1 C Y7;

and the points QW1 D W1, QW2 D W2. Thus, the timelike line ŒW1;W2� and the
points W1 and W2 on it satisfying equation (5.241) are the same on the set QU as
they are on U, and hence they are the same on all of the connected manifold M3.
Therefore, the whole Dupin submanifold � W M3 ! �7 is Lie equivalent
to an open subset of an isoparametric hypersurface in S4. Since any connected
open subset of an isoparametric hypersurface is contained in a unique compact,
connected isoparametric hypersurface by Theorem 3.44 (page 131), part (a) is
proved. Furthermore, because all isoparametric hypersurfaces in S4 are locally Lie
equivalent by a result of Cartan [54], part (b) is also true. ut
Remark 5.30. The proof of Theorem 5.29 above relies on Cartan’s classification of
isoparametric hypersurfaces with three principal curvatures in S4 for its completion.
However, without needing to invoke Cartan’s classification, Cecil and Chern
[80] (see also [77, pp. 182–186]) proved directly that a connected Dupin proper
submanifold � W U3 ! �7 with three distinct curvature spheres and � ¤ 0 is
Lie equivalent to an open subset of the Legendre lift of a Veronese surface V2,
considered as a submanifold of codimension two in S4. Thus, � is also Lie equivalent
to the Legendre lift of an open subset of a tube over the Veronese surface in S4, i.e.,
to an open subset of Cartan’s isoparametric hypersurface in S4.

Case 2: � D 0 (the reducible case)

We now consider the case where � is identically zero. It turns out that all such Dupin
submanifolds are reducible to cyclides of Dupin in R3. We return to the frame that
we used prior to the assumption that � ¤ 0. Thus, only those relations through
equation (5.220) are valid.

If � is identically zero, then by equation (5.182) all of its covariant derivatives
are also equal to zero. From equations (5.183) and (5.219), we see that the functions
defined in equations (5.171)–(5.173) satisfy the equations

q D t D b D 0; a D p D 0; r D s; c D �u:

Thus, from equation (5.220) we have !72 D 0. From these and the other relations
among the Maurer–Cartan forms which we have derived, we see that the differen-
tials of the frame vectors can be written as

dY1 � !11Y1 D !41Y4 C !51Y5;
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dY7 � !11Y7 D !37Y3 � !51Y5;

dY2 C !11Y2 D s.�!41Y4 C !51Y5/;

dY6 C !11Y6 D u.!37Y3 C !51Y5/;

dY3 D !37.�Y6 C uY7/;

dY4 D !41.sY1 � Y2/;

dY5 D !51.�sY1 � Y2 C Y6 � uY7/: (5.242)

Note also that from equations (5.203) and (5.204), we have

ds C 2s!11 D 0; du C 2u!11 D 0; (5.243)

and from (5.175) that

d�i D !11 ^ �i; i D 1; 2; 3: (5.244)

From equation (5.185), we have d!11 D 0. Hence on any local disk neighborhood U
in M, we have

!11 D d�; (5.245)

for some smooth scalar function � on U. We next consider a change of frame of the
form,

Y�1 D e��Y1; Y�7 D e��Y7;

Y�2 D e�Y2; Y�6 D e�Y6;

Y�i D Yi; 3 � i � 5: (5.246)

The effect of this change is to make !1�1 D 0 while keeping �� D 0. If we set

!4�1 D e��!41 ; !5�1 D e��!51 ; !3�7 D e��!37 ;

then we can compute from equation (5.242) that

dY�1 D !4�1 Y4 C !5�1 Y5;

dY�7 D !3�7 Y3 � !5�1 Y5;

dY�2 D s�.�!4�1 Y4 C !5�1 Y5/

dY�6 D u�.!3�7 Y3 C !5�1 Y5/;

dY3 D !3�7 Z�3 ;
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dY4 D !4�1 Z�4 ;

dY5 D !5�1 Z�5 ; (5.247)

where

Z�3 D �Y�6 � u�Y�7 ;

Z�4 D s�Y�1 � Y�2 ;

Z�5 D �s�Y�1 � Y�2 C Y�6 � u�Y�7 ; (5.248)

and

s� D se2� ; u� D ue2� : (5.249)

Using equations (5.243) and (5.249), we can then compute that

ds� D 0; du� D 0; (5.250)

i.e., s� and u� are constant functions on the local neighborhood U.
The frame in equation (5.246) is our final frame, and we drop the asterisks in

further references to equations (5.246)–(5.250). Since the functions s and u are now
constant, we can compute from equation (5.248) that

dZ3 D �2u!37Y3;

dZ4 D 2s!41Y4;

dZ5 D 2.u � s/!51Y5: (5.251)

From this we see that the following 4-dimensional subspaces of RP6,

Span fY1;Y4;Y5;Z4;Z5g;
Span fY7;Y3;Y5;Z3;Z5g;

Span fY1 C Y7;Y3;Y4;Z3;Z4g; (5.252)

are invariant under exterior differentiation, and hence they are constant. Thus,
each of the three curvature sphere maps, Y1, Y7, and Y1 C Y7 is contained in a
4-dimensional subspace of RP6. One can easily show that each of the subspaces
in equation (5.252) has signature .4; 1/. Thus by Theorem 5.14, our Dupin
submanifold � on U is Lie equivalent to an open subset of a tube over a cyclide
of Dupin in R3 in three different ways. Hence, we have the following result due to
Pinkall [442, 445].
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Theorem 5.31. A connected Dupin submanifold � W M3 ! �7 with � D 0 is
reducible. It is locally Lie equivalent to a tube over a cyclide of Dupin in R3 � R4.

Pinkall [445, p. 111] proceeds to classify Dupin submanifolds with � D 0 up
to Lie equivalence. We will not do that here. The reader can follow Pinkall’s proof
using the fact that his constants ˛ and ˇ are our constants s and �u, respectively.

Classification in the irreducible case for higher dimensions

We now turn to some generalizations of this approach to higher-dimensional
Dupin submanifolds. After Pinkall’s result, Niebergall [393] next proved that every
connected proper Dupin hypersurface in R5 with three principal curvatures is
reducible. Next Cecil and Jensen [85] proved the following theorem.

Theorem 5.32. If Mn�1 is a connected irreducible proper Dupin hypersurface in
Sn with three distinct principal curvatures of multiplicities m1;m2;m3, then m1 D
m2 D m3 D m, and Mn�1 is Lie equivalent to an isoparametric hypersurface in Sn.

It then follows from Cartan’s classification of isoparametric hypersurfaces with
g D 3 (see Subsection 3.8.3, page 151) that m D 1; 2; 4 or 8. Note that in the original
paper [85], Theorem 5.32 was proven under the assumption that Mn�1 is locally
irreducible, i.e., that Mn�1 does not contain any reducible open subset. However, as
noted in Proposition 5.18 on page 255, local irreducibility has now been shown to
be equivalent to irreducibility.

We will briefly describe the approach of the paper of Cecil and Jensen [85]. The
reader is referred to the paper itself for the details. Let � W Mn�1 ! �2n�1 be a
connected proper Dupin submanifold with three curvature spheres at each point. As
in the proof of Pinkall’s theorem above, Cecil and Jensen construct a Lie frame fYag
on a connected open subset U of Mn�1 so that the three curvature spheres are Y1,
YnC3 and Y1 C YnC3 with respective multiplicities m1, m2, and m3. Corresponding to
the one function � in the case above, there are m1m2m3 functions F˛pa, where

1 � a � m1;

m1 C 1 � p � m1 C m2;

m1 C m2 C 1 � ˛ � m1 C m2 C m3 D n � 1: (5.253)

Corresponding to the case � D 0 above, Cecil and Jensen show that if there exists a
fixed index, say a, such that

F˛pa D 0; for all p; ˛; (5.254)

then the restriction of � to the open set U is reducible. Thus, by Proposition 5.18,
� is reducible on all of Mn�1. Next they show that if the multiplicities are not all
equal, then there exists some index a such that equation (5.254) holds, and thus � is
reducible.
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Finally, Cecil and Jensen consider the case where all the multiplicities have the
same value m. As in the proof of Pinkall’s theorem above, they show that if �
is irreducible, then the three curvature sphere maps Y1, YnC3 and Y1 C YnC3 are
orthogonal to three points on a timelike line in RPnC2, and thus � is Lie equivalent
to the Legendre lift of an isoparametric hypersurface in Sn by Theorem 4.16 on page
221. The classification of such Dupin hypersurfaces then follows from Cartan’s [54]
classification of isoparametric hypersurfaces with three principal curvatures.

Remark 5.33. The indexing in the paper of Cecil and Jensen [85] is slightly
different than that used here, although the approach is very similar. In that paper,
the Lie frame is taken so that � D ŒY0;Y1� rather than � D ŒY1;YnC3�, and the
three curvature spheres are Y0, Y1 and Y0 C Y1, rather than Y1, YnC3 and Y1 C YnC3.
This causes a slight change in all of the indices, and it is simpler to begin reading
the paper [85] itself from the beginning, rather than attempting to find a way to
transform the indices from our treatment here to the notation in that paper.

An open problem is the classification of reducible Dupin hypersurfaces of
arbitrary dimension with three principal curvatures up to Lie equivalence. As noted
above, Pinkall [445] found such a classification in the case of M3 � R4. It may
be possible to generalize Pinkall’s result to higher dimensions using the approach
of [85].

Remark 5.34 (Examples with principal coordinate systems and g D 3). As noted
in Section 5.2, Otsuki [420, p. 17] gave examples of minimal hypersurfaces in
the sphere with three distinct non-simple (having constant multiplicity greater
than one) principal curvatures. Since all of the multiplicities are greater than
one, these hypersurfaces are proper Dupin by Theorem 2.10. Otsuki’s examples
have the property that each orthogonal complement T?i of a principal foliation
is integrable, and thus by Theorem 5.13, each point of the hypersurface M has
a principal coordinate neighborhood. Otsuki showed that his examples are not
isoparametric and cannot be complete. In fact, Miyaoka [362] showed that if M is a
complete hypersurface with constant mean curvature and three non-simple principal
curvatures in a real space form QMnC1.c/ with constant sectional curvature c � 0,
then c > 0 and M is isoparametric.

5.7 Local Classifications in the Case g D 4

In this section, we discuss local classification results for proper Dupin submanifolds
with g D 4 curvature spheres. In these results, a key invariant is the Lie curvature

 (see Section 4.5, page 218), which is the cross-ratio of the four curvature spheres
(or principal curvatures).

Let � W Mn�1 ! �2n�1 be a connected proper Dupin submanifold with g D 4

curvature spheres at each point. Then in a manner similar to the construction above
in the case g D 3, one can construct a Lie frame fY1; : : : ;YnC3g in RnC3

2 (see Cecil



5.7 Local Classifications in the Case g D 4 303

and Jensen [86]) in which the four curvature spheres are Y1, YnC3, Y1 C YnC3 and
Y1 C 
YnC3, where 
 is the Lie curvature of �.

Remark 5.35. In the paper [86], the indexing is different, and the curvature spheres
are Y0, Y1, Y0 C Y1 and Y0 C rY1, where r denotes the Lie curvature. This is similar
to the situation described in Remark 5.33 above.

Denote the multiplicities of these curvature spheres by m1, m2, m3, and m4,
respectively. Corresponding to the one function � in the case g D 3 above, there
are four sets of functions that are crucial in the proof for g D 4,

F˛pa;F
�
pa;F

�
˛a;F

�
˛p; (5.255)

where

1 � a � m1;

m1 C 1 � p � m1 C m2;

m1 C m2 C 1 � ˛ � m1 C m2 C m3:

m1 C m2 C m3 C 1 � � � m1 C m2 C m3 C m4 D n � 1: (5.256)

As noted after Theorem 3.63 on page 143, Thorbergsson [533] showed that
for a compact proper Dupin hypersurface in Sn with four principal curvatures,
the multiplicities of the principal curvatures satisfy m1 D m3, m2 D m4, when
the principal curvatures are appropriately ordered (see also Stolz [502] for more
restrictions on the multiplicities). Thus, in the papers of Cecil and Jensen [86] and
Cecil, Chi, and Jensen [82], such an assumption is placed on the multiplicities. It
is also assumed in [82] that the Lie curvature 
 D 1=2, since that is true for
an isoparametric hypersurface with four principal curvatures (when the principal
curvatures are listed in ascending order as in equation (4.94) on page 222).

In [86, pp. 3–4], Cecil and Jensen conjectured that an irreducible connected
proper Dupin hypersurface in Sn with four principal curvatures having multiplicities
satisfying m1 D m3;m2 D m4, and constant Lie curvature 
 is Lie equivalent to an
open subset of an isoparametric hypersurface in Sn.

In that paper [86], the conjecture was verified in the case where all the
multiplicities are equal to one (see also Niebergall [394], who obtained the same
conclusion under additional assumptions). In the paper of Cecil, Chi, and Jensen
[82] mentioned above, the conjecture was proven to be true if m1 D m3 � 1, and
m2 D m4 D 1, and the Lie curvature is assumed to satisfy 
 D 1=2 by proving
Theorem 5.36 below. The conjecture in its full generality is still an open problem,
since the conjecture does not assume that m2 D m4 D 1 nor that the constant value
of 
 is 1=2.

Theorem 5.36. Let M be an irreducible connected proper Dupin hypersurface in
Sn with four principal curvatures having multiplicities m1 D m3; m2 D m4 D 1,
and constant Lie curvature 
 D 1=2. Then M is Lie equivalent to an open subset of
an isoparametric hypersurface.
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An important step in proving this theorem is that under the assumptions on the
multiplicities and the Lie curvature given in the theorem, the corresponding Dupin
submanifold � is reducible if there exists some fixed index, say a, such that

F˛pa D F�pa D F�˛a D 0; for all p; ˛; �: (5.257)

Thus, if � is irreducible, no such index exists. In that case, it was shown after a
lengthy argument that � is Lie equivalent to the Legendre lift of an isoparametric
hypersurface in Sn by invoking Theorem 4.16 (page 221).

The following example [73] (see also [77, pp. 80–82]) shows that the hypothesis
of irreducibility is necessary in Theorem 5.36. This example is a noncompact proper
Dupin submanifold with g D 4 distinct principal curvatures and constant Lie
curvature 
 D 1=2, which is not Lie equivalent to an isoparametric hypersurface
with four principal curvatures in Sn. Furthermore, one can arrange that all of the
principal curvatures have the same multiplicity by an appropriate choice of m in
the example. This example is reducible, and it cannot be made compact while
preserving the property that the number g of distinct curvatures spheres equals four
at each point.

A reducible example with constant Lie curvature � D 1=2

Example 5.37 (A reducible example with Lie curvature 
 D 1=2). Let V � Sn�m

be an embedded Dupin hypersurface in Sn�m with field of unit normals � , such that
V has three distinct principal curvatures,

�1 < �2 < �3;

at each point. Embed Sn�m as a totally geodesic submanifold of Sn, and let Bn�1 be
the unit normal bundle of the submanifold V � Sn. Let

� W Bn�1 ! �2n�1

be the Legendre lift of the submanifold V in Sn. Any unit normal � to V at a point
x 2 V can be written in the form

� D cos � �.x/C sin � ;

where  is a unit normal to Sn�m in Sn. Since the shape operator A D 0, we have

A� D cos � A� :

Thus the principal curvatures of A� are

�i D cos � �i; 1 � i � 3: (5.258)
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If h�; �i D cos � ¤ 0, then A� has three distinct principal curvatures. However, if
h�; �i D 0, then A� D 0.

Let U be the open subset of Bn�1 on which cos � > 0, and let ˛ denote the
restriction of � to U. By Theorem 4.13 on page 219, the Legendre submanifold ˛
has four distinct curvature spheres at each point of U. The fourth principal curvature
�4 D 1 has multiplicity m, as in Theorem 4.13.

Since V is proper Dupin in Sn�m, it is easy to show that ˛ is proper Dupin (this
is similar to the calculations in the tube construction in Section 5.1, see also Section
5.2 of [77]). Furthermore, since �4 D 1, the Lie curvature 
 of ˛ at a point .x; �/ of
U equals the Möbius curvature ˚.�1; �2; �3/. Using equation (5.258), we compute


 D ˚.�1; �2; �3/ D �1 � �2
�1 � �3 D �1 � �2

�1 � �3 D ˚.�1; �2; �3/: (5.259)

Now suppose that V is a minimal isoparametric hypersurface in Sn�m with three
distinct principal curvatures of multiplicity m for m D 1; 2; 4 or 8 (see Subsec-
tion 3.8.3, page 151). By Münzner’s formula (see Theorem 3.26 on page 108), these
principal curvatures have the values,

�1 D �p
3; �2 D 0; �3 D p

3:

On the open subset U of Bn�1 described above, the Lie curvature of ˛ has the
constant value 1=2 by equation (5.259). To construct a reducible proper Dupin
hypersurface in Sn with four principal curvatures of multiplicity m and constant
Lie curvature 
 D 1=2 in Sn, we simply take the open subset ft.U/ of the tube of
radius t around V in Sn.

To see that this example is not Lie equivalent to the Legendre lift of an
isoparametric hypersurface in Sn with four distinct principal curvatures, note that
the point sphere map ŒY1� of ˛ is a curvature sphere of multiplicity m which lies
in the linear subspace of codimension m C 1 in RPnC2 orthogonal to the space
spanned by enC3 and by those vectors  normal to Sn�m in Sn. Thus, ˛ is reducible
by Theorem 5.15 on page 253.

On the other hand, the Legendre lift of a compact isoparametric hypersurface
with four distinct principal curvatures is irreducible by Theorem 5.19 on page 255,
and it cannot contain a reducible open subset by Proposition 5.18 (page 255). Since
reducibility is a Lie invariant property, ˛ cannot be Lie equivalent to the Legendre
lift of an isoparametric hypersurface with four principal curvatures.

The fact that the number of distinct principal curvatures of A� is not constant as
� varies over the unit normal bundle Bn�1 illustrates why ˛ cannot be extended to a
compact proper Dupin submanifold with g D 4.

With regard to Theorem 4.16, ˛ comes as close as possible to satisfying the
requirements for being Lie equivalent to an isoparametric hypersurface without
actually fulfilling them. The principal curvatures �2 D 0 and �4 D 1 are constant
on U. If a third principal curvature were also constant, then the constancy of 

would imply that all four principal curvatures were constant, and ˛ would be the
Legendre lift of an isoparametric hypersurface.
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Using this same method, it is easy to construct noncompact proper Dupin
hypersurfaces in Sn with g D 4 and 
 D c, for any constant 0 < c < 1. If V �
Sn�m is an isoparametric hypersurface with three distinct principal curvatures, then
Münzner’s formula in Theorem 3.26 on page 108 implies that these principal
curvatures have the values,

�1 D cot.�C 2�

3
/; �2 D cot.� C �

3
/; �3 D cot �; 0 < � <

�

3
: (5.260)

Furthermore, any value of � in .0; �=3/ can be realized by some hypersurface in a
parallel family of isoparametric hypersurfaces.

As above, consider V � Sn�m � Sn. A direct calculation using equations (5.259)
and (5.260) shows that the Lie curvature 
 of the Legendre submanifold ˛

constructed as above from V satisfies


 D ˚.�1; �2; �3/ D �1 � �2
�1 � �3 D �1 � �2

�1 � �3 D 1

2
C

p
3

2
tan

�
� � �

6

	
;

on the set U. This Lie curvature can assume any value c in the interval .0; 1/
by an appropriate choice of � in .0; �=3/. The open subset ft.U/ of the tube of
radius t around V in Sn is a reducible proper Dupin hypersurface with g D 4 and

 D ˚ D c.

Remark 5.38 (Examples with principal coordinate systems and g D 4). As noted
in Remark 5.12 on page 250, using the theory of higher-dimensional Laplace
invariants due to Kamran and Tenenblat [234], Riveros and Tenenblat [463, 464]
gave a local classification of proper Dupin hypersurfaces M4 in R5 with four distinct
principal curvatures which are parametrized by lines of curvatures. (See also Riveros
[460].) Then Riveros, Rodrigues, and Tenenblat [462] proved that a proper Dupin
hypersurface Mn � RnC1, n � 4, with n distinct principal curvatures and constant
Möbius curvatures cannot be parametrized by lines of curvature. They also showed
that up to Möbius transformations, there is a unique proper Dupin hypersurface
M3 � R4 with three principal curvatures and constant Möbius curvature that is
parametrized by lines of curvature. This M3 is a cone in R4 over a standard flat torus
in the unit sphere S3 � R4. In a recent paper, Ferro, Rodrigues, and Tenenblat [158]
constructed examples of proper Dupin hypersurfaces in R5 parametrized by lines of
curvature having four distinct principal curvatures and nonconstant Lie curvature.

Submanifolds in Möbius and Laguerre geometries

Finally, we turn to a discussion of some results on submanifolds in the geometries
of Möbius and Laguerre that are related to the study of Dupin hypersurfaces (see
also the survey paper [78]).
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First, C.-P. Wang [544–546] studied the Möbius geometry of submanifolds in Sn

in a series of papers. Using the method of moving frames, Wang found a complete
set of Möbius invariants for surfaces in R3 without umbilic points [544] and for
hypersurfaces in R4 with three distinct principal curvatures at each point [545]. Then
in [546], Wang defined a Möbius invariant metric g and second fundamental form
B for submanifolds in Sn. He then proved that for hypersurfaces in Sn with n � 4,
the pair .g;B/ forms a complete Möbius invariant system which determines the
hypersurface up to Möbius transformations.

In [318], H. Li, Lui, Wang, and Zhao introduced the concept of a Möbius
isoparametric hypersurface in a sphere Sn. They showed that an isoparametric
hypersurface in Sn is automatically Möbius isoparametric, whereas a Möbius
isoparametric hypersurface is proper Dupin. Later Rodrigues and Tenenblat [465]
showed that if M � Sn is a hypersurface with a constant number g of distinct
principal curvatures at each point, where g � 3, then M is Möbius isoparametric
if and only if M is Dupin with constant Möbius curvatures.

Recently significant progress has been made in the classification of Möbius
isoparametric hypersurfaces. First, H. Li, Lui, Wang, and Zhao [318] showed that
a connected Möbius isoparametric hypersurface in Sn with two distinct principal
curvatures is Möbius equivalent to an open subset of one of the following three
types of hypersurfaces in Sn:

(a) a standard product of spheres Sp.r/ � Sn�1�p.s/ � Sn, r2 C s2 D 1,
(b) the image under inverse stereographic projection from Rn ! Sn � fPg of a

standard spherical cylinder Sp.1/ � Rn�1�p � Rn,
(c) the image under hyperbolic stereographic projection from Hn ! Sn of a

standard product Sp.r/ � Hn�1�p.
p
1C r2/ � Hn.

Later Hu and H. Li [205] classified Möbius isoparametric hypersurfaces in S4, Hu,
H. Li and Wang [206] classified Möbius isoparametric hypersurfaces in S5, and Hu
and Zhai [209] classified those in S6.

Hu and D. Li [204] studied Möbius isoparametric hypersurfaces with three
distinct principal curvatures in Sn and found a complete classification of such
hypersurfaces in S6. Later Hu and Zhai [210] gave a complete classification of
Möbius isoparametric hypersurfaces in Sn with three distinct principal curvatures.
In a related paper, Hu and Tian [208] studied the relationship between the vanishing
of the Möbius form and Möbius isoparametric hypersurfaces.

Remark 5.39 (Laguerre isoparametric hypersurfaces). Recently Y.P. Song [493]
studied Laguerre isoparametric hypersurfaces in Rn. These are umbilic free oriented
hypersurfaces with nonzero principal curvatures for which the Laguerre 1-form
vanishes and the Laguerre shape operator has constant eigenvalues. Song gave
a classification of Laguerre isoparametric hypersurfaces in Rn; n > 3, with two
distinct nonzero principal curvatures up to Laguerre transformations. The proof
relies on the theory of Laguerre embeddings introduced by T. Li and C.P. Wang
[320]. (See also Song-Wang [494].) In related results, T.-Z. Li and H.-F. Sun [319]
classified Laguerre isoparametric hypersurfaces in R4. (See also the related papers
of Cezana and Tenenblat [97], and Musso and Nicolodi [384, 385].)
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Hu, X.X. Li and Zhai [207], and X.X Li and Y.J. Peng [322] studied Blaschke
isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigen-
values. They used the method of moving frames and made extensive use of the
algebraic techniques developed by Cecil and Jensen [85] in their classification of
irreducible proper Dupin hypersurfaces in spheres with three principal curvatures.
X.X. Li and F.Y. Zhang [323] classified Blaschke isoparametric hypersurfaces
in S5 up to Möbius equivalence. See also the note of Li and Wang [321] on
Blaschke isoparametric hypersurfaces. In related papers, Shu and Su [483] and Shu
and Li [482] obtained some classification results for para-Blaschke isoparametric
hypersurfaces in the unit sphere.

5.8 Compact Proper Dupin Hypersurfaces

As we saw in Theorem 2.25 (page 34) due to Pinkall [446], given positive integers
m1; : : : ;mg with m1 C � � � C mg D n � 1, there exists a proper Dupin hypersurface in
Rn with g distinct principal curvatures having respective multiplicities m1; : : : ;mg.
Pinkall constructed the examples needed to prove this theorem using his three
standard constructions (cylinder, tube, and surface of revolution), so these examples
are all reducible proper Dupin hypersurfaces.

For g � 3, Pinkall’s examples are not compact, and in fact, compact proper
Dupin hypersurfaces are far more rare. As noted in Theorem 3.63 on page 143,
Thorbergsson [533] proved that if Mn�1 � Sn (or Rn) is a compact, connected
proper Dupin hypersurface, then the number g of distinct principal curvatures of Mn

is 1; 2; 3; 4 or 6, the same restriction as for an isoparametric hypersurface in a sphere.
Furthermore, the restrictions on the multiplicities of the principal curvatures of
isoparametric hypersurfaces are still valid for compact proper Dupin hypersurfaces
in the sphere (see Remark 3.51 on page 136, and Stolz [502] for g D 4, Grove-
Halperin [184] for g D 6). Grove and Halperin [184] gave a list of the integral
homology of all compact proper Dupin hypersurfaces, and Fang [151] has results
on the topology of compact proper Dupin hypersurfaces with g D 6 principal
curvatures.

We also know from Theorem 5.19 (page 255) due to Cecil, Chi, and Jensen
[82] that if Mn�1 is a compact, connected proper Dupin hypersurface embedded
in Rn with g � 3 distinct principal curvatures, then Mn�1 is irreducible as a Dupin
hypersurface. That is, the Legendre lift of Mn�1 is irreducible.

Compact proper Dupin hypersurfaces in Sn have been classified in the cases g D
1; 2, and 3. In each case, Mn�1 is Lie equivalent to an isoparametric hypersurface.
The case g D 1 is simply the case of umbilic hypersurfaces, and Mn�1 is a great or
small hypersphere in Sn. In the case g D 2, Cecil and Ryan [89] showed that Mn�1
is a cyclide of Dupin (see Section 5.5), and thus it is Möbius equivalent to a standard
product of spheres

Sp.r/ � Sn�1�p.s/ � Sn.1/ � RnC1; r2 C s2 D 1:
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In the case g D 3, Miyaoka [363] proved that Mn�1 is Lie equivalent to an
isoparametric hypersurface (see also Cecil-Chi-Jensen [82] for a different proof).
Earlier, Cartan [54] had shown that an isoparametric hypersurface with g D 3

principal curvatures is a tube over a standard embedding of a projective plane FP2,
for F D R;C;H (quaternions) or O (Cayley numbers), in S4; S7; S13, and S25,
respectively. For F D R, a standard embedding is a spherical Veronese surface
(see Subsection 3.8.3, page 151).

All of these results led to the widely held conjecture (see Cecil–Ryan [95,
p. 184]) that every compact, connected proper Dupin hypersurface embedded in
Sn is Lie equivalent to an isoparametric hypersurface. All attempts to verify this
conjecture in the cases g D 4 and 6 were unsuccessful. Finally, in 1988, Pinkall and
Thorbergsson [448] and Miyaoka and Ozawa [377] gave two different methods for
producing counterexamples to the conjecture with g D 4 principal curvatures. The
method of Miyaoka and Ozawa also yields counterexamples to the conjecture in the
case g D 6.

The key ingredient in the construction of these counterexamples to the conjecture
is the Lie curvature, i.e., the cross-ratio of the principal curvatures taken four at
a time (see Section 4.5 on page 218). Pinkall and Thorbergsson proved that their
examples with g D 4 are not Lie equivalent to an isoparametric hypersurface by
showing that the Lie curvature does not have the constant value 
 D 1=2, as
required for a submanifold that is Lie equivalent to an isoparametric hypersurface.
In fact, we will show below that the Lie curvature is not constant on their examples.

Miyaoka and Ozawa showed that the Lie curvatures are not constant on their
examples with g D 4 or g D 6, and so these examples cannot be Lie equivalent
to an isoparametric hypersurface. In this section, we will present both of these
constructions. Our presentation is based on the papers of Pinkall–Thorbergsson
[448] and Miyaoka–Ozawa [377], and we follow the treatment of these examples
given in the book [77, pp. 112–123] closely.

Pinkall–Thorbergsson examples

The construction of Pinkall and Thorbergsson begins with the Clifford–Stiefel
manifold of Clifford orthogonal 2-frames of length 1=

p
2 in Rl. This is the focal

submanifold MC of a family of FKM-type isoparametric hypersurfaces with four
principal curvatures. We now recall some details of this construction given in
Section 3.9 (see page 162).

Ferus, Karcher, and Münzner [160] begin with a representation of the Clifford
algebra Cm�1 on Rl determined by a set of orthogonal, skew-symmetric l�l matrices
E1; : : : ;Em�1 that satisfy the equations

E2i D �I; EiEj D �EjEi; i ¤ j; 1 � i; j � m: (5.261)
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Two vectors u and v in Rl are said to be Clifford orthogonal if

hu; vi D hE1u; vi D � � � D hEm�1u; vi D 0; (5.262)

where h ; i is the usual Euclidean inner product on Rl. As shown in equation (3.226),
the focal submanifold MC of the corresponding isoparametric family is given by

MC D


.u; v/ 2 S2l�1 j juj D jvj D 1p

2
; hu; vi D 0; hEiu; vi D 0; 1 � i � m � 1


:

(5.263)

Thus, MC D V2.Cm�1/, the Clifford–Stiefel manifold of Clifford orthogonal 2-
frames of length 1=

p
2 in Rl. The submanifold MC has codimension m C 1 in the

sphere S2l�1.
In Theorem 3.74 on page 176, we showed that for any unit normal � at any point

.u; v/ 2 MC, the shape operator A� has three distinct principal curvatures

�1 D �1; �2 D 0; �3 D 1; (5.264)

with respective multiplicities l � m � 1, m, l � m � 1.
The submanifold MC of codimension m C 1 in S2l�1 has a Legendre lift defined

on the unit normal bundle B.MC/ of MC in S2l�1. As in Theorem 4.13 on page 219,
this Legendre lift has a fourth principal curvature �4 D 1 of multiplicity m at each
point of B.MC/. Since �4 D 1, the Lie curvature 
 at any point of B.MC/ equals
the Möbius curvature ˚ , as in equation (4.96) on page 223, i.e.,


 D ˚ D �1 � �2
�1 � �3 D �1 � 0

�1 � 1 D 1

2
: (5.265)

Since all four principal curvatures are constant on B.MC/, a tube Mt of spherical
radius t, where 0 < t < � and t … f�

4
; �
2
; 3�
4

g, over MC is an isoparametric
hypersurface with four distinct principal curvatures, as in Corollary 3.75 on page
177. Note that Münzner [381] proved that if M is any isoparametric hypersurface in
Sn with four principal curvatures, then the Lie curvature 
 D 1=2 on all of M, as in
equation (4.96).

The construction of Pinkall and Thorbergsson now proceeds as follows. Given
positive real numbers ˛ and ˇ with

˛2 C ˇ2 D 1; ˛ ¤ 1p
2
; ˇ ¤ 1p

2
; (5.266)

let

T˛;ˇ W R2l ! R2l;
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be the linear map defined by

T˛;ˇ.u; v/ D p
2 .˛u; ˇv/: (5.267)

Then for .u; v/ 2 MC, we have

jT˛;ˇ.u; v/j2 D 2.˛2hu; ui C ˇ2hv; vi/ D 2

�
˛2

2
C ˇ2

2

�
D 1;

and thus the image V˛;ˇ
2 D T˛;ˇ.MC/ is a submanifold of S2l�1 of codimension

m C 1 also.
Our first goal is to show that V˛;ˇ

2 is proper Dupin, that is, its Legendre lift
is a proper Dupin submanifold. Here we use the notion of curvature surfaces of
a submanifold of codimension greater than one defined by Reckziegel [458] (see
Remark 2.21 on page 32). Specifically, suppose that V � Sn is a submanifold
of codimension greater than one, and let B.V/ denote its unit normal bundle.
A connected submanifold S � V is called a curvature surface if there exists a parallel
section � W S ! B.V/ such that for each x 2 S, the tangent space TxS is equal to
some eigenspace of A�.x/. The corresponding principal curvature function � W S ! R
is then a smooth function on S. Reckziegel showed that if a principal curvature �
has constant multiplicity � on B.V/ and is constant along each of its curvature
surfaces, then each of its curvature surfaces is an open subset of a �-dimensional
metric sphere in Sn. Since our particular submanifold MC is compact, all of the
curvature surfaces of the principal curvatures �1, �2 and �3 given in equation (5.264)
are spheres of the appropriate dimensions in S2l�1.

We now show that the Legendre lift of V˛;ˇ
2 is proper Dupin with four smooth

principal curvature functions

�1 < �2 < �3 < �4; (5.268)

defined on the unit normal bundle B.V˛;ˇ
2 / of V˛;ˇ

2 , as in Theorem 4.13 on page 219.

Since V˛;ˇ
2 has codimension m C 1, the principal curvature �4 D 1 has

multiplicity m and is constant along its curvature surfaces. To complete the proof
that V˛;ˇ

2 is proper Dupin, we establish a bijective correspondence between the other

curvature surfaces of MC and those of V˛;ˇ
2 . Let S be any curvature surface of MC.

Since MC is compact and proper Dupin, S is a �-dimensional sphere, where � is the
multiplicity of the corresponding principal curvature of MC. Along the curvature
surface S, the corresponding curvature sphere ˙ is constant. Note that ˙ is a
hypersphere obtained by intersecting S2l�1 with a hyperplane � that is tangent to
MC along S. The image T˛;ˇ.�/ is a hyperplane that is tangent to V˛;ˇ

2 along the
�-dimensional sphere T˛;ˇ.S/. Since the hypersphere T˛;ˇ.�/ \ S2l�1 is tangent to

V˛;ˇ
2 along T˛;ˇ.S/, it is a curvature sphere of V˛;ˇ

2 with multiplicity �, and T˛;ˇ.S/
is the corresponding curvature surface. Thus, we have a bijective correspondence
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between the curvature surfaces of MC and those of V˛;ˇ
2 , and the Dupin condition is

clearly satisfied on V˛;ˇ
2 . Therefore, V˛;ˇ

2 is a proper Dupin submanifold with four
principal curvatures, including �4 D 1.

Computing the Lie curvature

With the principal curvature functions defined as in equation (5.268) and using the
fact that �4 D 1, there is a unique Lie curvature function 
 defined on B.V˛;ˇ

2 / by


 D ˚ D �1 � �2
�1 � �3 ; (5.269)

where ˚ is the Möbius curvature.
We next show that the Legendre lift of V˛;ˇ

2 is not Lie equivalent to the Legendre
lift of an isoparametric hypersurface in S2l�1 by showing that the Lie curvature 

does not equal 1=2 at some points of the unit normal bundle B.V˛;ˇ

2 /, as required for
the Legendre lift of an isoparametric hypersurface. Moreover, we will show that the
Lie curvature is not constant on B.V˛;ˇ

2 /.
To compute the functions �1 < �2 < �3, we first note that

V˛;ˇ
2 � f�1.0/ \ g�1.0/;

where f and g are the real-valued functions defined on S2l�1 by

f .u; v/ D h�ˇ
2˛

u; ui C h ˛
2ˇ
v; vi; g.u; v/ D �hu; vi: (5.270)

Thus, the gradients,

� D
��ˇ
˛

u;
˛

ˇ
v

�
; � D .�v;�u/;

of f and g are two unit normal vector fields on V˛;ˇ
2 . Note that by Theorem 3.72

on page 170, we have l > m C 1 for the FKM-hypersurfaces, so we can choose
x; y 2 Rl such that

jxj D ˛; hx; ui D 0; hx; vi D 0; hx;Eivi D 0; 1 � i � m � 1;
jyj D ˇ; hy; ui D 0; hy; vi D 0; hy;Eiui D 0; 1 � i � m � 1:
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We define three curves,

�.t/ D .cos t u C sin t x; v/; ı.t/ D .u; cos t v C sin t y/;

".t/ D .cos t u C ˛

ˇ
sin t v;�ˇ

˛
sin t u C cos t v/: (5.271)

It is straightforward to check that each of these curves lies on V˛;ˇ
2 and goes through

the point .u; v/ when t D 0. Along � , the normal vector � is given by

�.t/ D
�

�ˇ
˛
.cos t u C sin t x/;

˛

ˇ
v

�
:

Thus, the initial velocity vector to �.t/ satisfies

�!
� .0/ D

�
�ˇ
˛

x; 0

�
D �ˇ

˛

�!� .0/:

So X D .x; 0/ D �!� .0/ is a principal vector of A� at .u; v/ with corresponding
principal curvature ˇ=˛.

Similarly, Y D .0; y/ D �!
ı .0/ is a principal vector of A� at .u; v/ with

corresponding principal curvature �˛=ˇ. Finally, along the curve ", we have

�.t/ D
�

�ˇ
˛

�
cos t u C ˛

ˇ
sin t v

�
;
˛

ˇ

�
�ˇ
˛

sin t u C cos t v

��
:

Then
�!
� .0/ D .�v;�u/ D �, which is normal to V˛;ˇ

2 at .u; v/. Thus, we have
A�Z D 0, for Z D �!" .0/, and Z is a principal vector with corresponding principal

curvature zero. Therefore, at the point �.u; v/ in B.V˛;ˇ
2 /, there are four principal

curvatures written in ascending order as in equation (5.268) (recall that ˛ and ˇ are
positive),

�1 D �˛
ˇ
; �2 D 0; �3 D ˇ

˛
; �4 D 1: (5.272)

At this point, the Lie curvature 
 is


 D ˚ D �1 � �2
�1 � �3 D �˛=ˇ

.�˛=ˇ � ˇ=˛/ D ˛2: (5.273)

Since ˛2 ¤ 1=2, the Legendre lift of V˛;ˇ
2 is not Lie equivalent to an isoparametric

hypersurface. To obtain a compact proper Dupin hypersurface in S2l�1 with four
principal curvatures that is not Lie equivalent to an isoparametric hypersurface, one
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simply takes a tube M over V˛;ˇ
2 in S2l�1 of sufficiently small radius so that the tube

is an embedded hypersurface.
Since A�� D �A� , the principal curvatures at the point ��.u; v/ in B.V˛;ˇ

2 / are
the negatives of those given in equation (5.272). Thus, since the smooth principal
curvature functions �1, �2, �3 defined on B.V˛;ˇ

2 / by equation (5.268) satisfy �1 <
�2 < �3, we have

�1 D �ˇ
˛
; �2 D 0; �3 D ˛

ˇ
; �4 D 1: (5.274)

at this point ��.u; v/ in B.V˛;ˇ
2 /. Thus, at this point ��.u; v/, we have the Lie

curvature,


 D ˚ D �1 � �2
�1 � �3 D �ˇ=˛

.�ˇ=˛ � ˛=ˇ/ D ˇ2: (5.275)

Since ˇ2 ¤ ˛2, the Lie curvature 
 is not constant on B.V˛;ˇ
2 /.

In a related result, Miyaoka [365, Corollary 8.3, p. 252] proved that if the Lie
curvature 
 is constant on a compact, connected proper Dupin hypersurface with
four principal curvatures, then, in fact, 
 D 1=2 on the hypersurface.

Miyaoka–Ozawa examples

We next handle the counterexamples due to Miyaoka and Ozawa [377] to the
conjecture that every compact, connected proper Dupin hypersurface embedded in
Sn is Lie equivalent to an isoparametric hypersurface. The construction of Miyaoka
and Ozawa uses the Hopf fibration of S7 over S4. Let R8 D H � H, where H is the
skew field of quaternions. The Hopf fibration of the unit sphere S7 in R8 over S4 is
given by

h.u; v/ D .2u Nv; juj2 � jvj2/; u; v 2 H; (5.276)

where Nv is the conjugate of v in H. One can easily compute that the image of h lies
in the unit sphere S4 in the Euclidean space R5 D H � R.

We first recall some important facts about the Hopf fibration and the inverse
image of certain types of subsets of S4 under h. Suppose .w; t/ 2 S4, with t ¤ 1,
that is, .w; t/ is not the point .0; 1/. We first find the inverse image of .w; t/ under h.
Suppose that

2u Nv D w; juj2 � jvj2 D t: (5.277)
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Multiplying the first equation in (5.277) by v on the right, we obtain

2ujvj2 D wv; 2u D w

jvj
v

jvj : (5.278)

Since juj2 C jvj2 D 1, the second equation in (5.277) yields

jvj2 D .1 � t/=2: (5.279)

If we write z D v=jvj, then z 2 S3, the unit sphere in H D R4. Then
equations (5.278) and (5.279) give

u D wz
p
2.1 � t/

; v D
r
1 � t

2
z; z 2 S3: (5.280)

Thus, if U is the open set S4 � f.0; 1/g, then h�1.U/ is diffeomorphic to U � S3 by
the formula (5.280). The second equation in (5.277) also shows that h�1.f.0; 1/g/ is
just the 3-sphere in S7 determined by the equation v D 0.

We can find a similar local trivialization containing these points with v D 0 by
beginning the process above with multiplication of equation (5.277) by Nu on the
left, rather than by v on the right. As a consequence of this local triviality, if M
is an embedded submanifold in S4 which does not equal all of S4, then h�1.M/ is
diffeomorphic to M � S3. Finally, recall that the Euclidean inner product h ; i on the
space R8 D H � H is given by

h.a; b/; .u; v/i D <.Nau C Nbv/; (5.281)

where <w denotes the real part of the quaternion w.
The counterexamples to the conjecture due to Miyaoka and Ozawa all arise as

inverse images under h of proper Dupin hypersurfaces in S4. The proof that these
examples are proper Dupin is accomplished by first showing that they are taut, and
thus they are Dupin (but not necessarily proper Dupin) by Theorem 2.83 on page
68. Then a separate argument is used to prove that they are in fact proper Dupin.

The Hopf fibration and tautness

We begin with a result about the Hopf fibration and tautness.

Theorem 5.40. Let M be a compact, connected submanifold of S4. If M is taut in
S4, then h�1.M/ is taut in S7.

Proof. Since both M and h�1.M/ lie in spheres, tautness is equivalent to tightness
for these hypersurfaces by Theorem 2.69 on page 61. We write linear height
functions in R8 in the form
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fab.u; v/ D <.au C bv/ D h.Na; Nb/; .u; v/i; .a; b/ 2 S7: (5.282)

This is the height function in the direction .Na; Nb/. We want to determine when the
point .u; v/ is a critical point of fab. Without loss of generality, we may assume
that .u; v/ lies in a local trivialization of the form (5.280) when making local
calculations. Let x D .w; t/ be a point of M � S4, and let

.x; z/ D .w; t; z/

be a point in the fiber h�1.x/. The tangent space to h�1.M/ at .x; z/ can be
decomposed as TxM � TzS3. We first locate the critical points of the restriction of fab

to the fiber through .x; z/. By equations (5.280) and (5.282), we have

fab.w; t; z/ D <
 

awz
p
2.1 � t/

C bz
p
.1 � t/=2

!
(5.283)

D <.˛.w; t/z/ D h˛.w; t/; Nzi;

where

˛.w; t/ D aw
p
2.1 � t/

C b
p
.1 � t/=2:

This defines the map ˛ from S4 to H. If Z is any tangent vector to S3 at z, we write
Zfab for the derivative of fab in the direction .0;Z/. Then

Zfab D h˛.w; t/; NZi (5.284)

at .x; z/. Now there are two cases to consider. First, if ˛.w; t/ ¤ 0, then in order to
have Zfab D 0 for all Z 2 TzS3, we must have

Nz D ˙ ˛.w; t/

j˛.w; t/j : (5.285)

So the restriction of fab to the fiber has exactly two critical points with corresponding
values

˙ j˛.w; t/j: (5.286)

The second case is when ˛.w; t/ D 0. Then the restriction of fab to the fiber is
identically zero by equation (5.283). In both cases the function,

gab.w; t/ D j˛.w; t/j2;
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satisfies the equation

gab.w; t/ D f 2ab.w; t; z/;

at the critical point. The key in relating this fact to information about the submani-
fold M is to note that

gab.w; t/ D j˛.w; t/j2 D 1

2
<


2aNbw C .jaj2 � jbj2/t


C 1

2
.jaj2 C jbj2/

D 1

2
C 1

2
h.w; t/; .2Nab; jaj2 � jbj2/i (5.287)

D 1

2
C 1

2
`ab.w; t/;

where `ab is the linear height function on R5 in the direction

.2Nab; jaj2 � jbj2/ D h.Na; Nb/:

This shows that gab.w; t/ D 0 if and only if .w; t/ D �h.Na; Nb/. Thus, if �h.Na; Nb/ is
not in M, the restriction of fab to each fiber has exactly two critical points of the form
.x; z/, with z as in equation (5.285). For X 2 TxM, we write Xfab for the derivative
of fab in the direction .X; 0/. At the two critical points, we have

Xfab D hd˛.X/; Nzi; (5.288)

Xgab D 2hd˛.X/; ˛.x/i D ˙2j˛.x/jhd˛.X/; Nzi D ˙2j˛.X/jXfab: (5.289)

Thus .x; z/ is a critical point of fab if and only if x is a critical point of gab. By
equation (5.287), this happens precisely when x is a critical point of `ab.

We conclude that if �h.Na; Nb/ is not in M, then fab has two critical points for every
critical point of `ab on M. The set of points .a; b/ in S7 such that �h.Na; Nb/ belongs
to M has measure zero. If .a; b/ is not in this set, then fab has twice as many critical
points as the height function `ab on M. Since M is taut, every nondegenerate height
function `ab has ˇ.M;Z2/ critical points on M, where ˇ.M;Z2/ is the sum of the Z2-
Betti numbers of M. Thus, except for a set of measure zero, every height function fab

has 2ˇ.M;Z2/ critical points on h�1.M/. Since h�1.M/ is diffeomorphic to M � S3,
we have

ˇ.h�1.M/;Z2/ D ˇ.M � S3;Z2/ D 2ˇ.M;Z2/:

Thus, h�1.M/ is taut in S7. ut
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The Hopf fibration and Dupin submanifolds

We next use Theorem 5.40 to show that the inverse image under h of a compact
proper Dupin submanifold in S4 is proper Dupin. The key idea here is due to Ozawa
[421], who proved that a taut submanifold M � Sn is proper Dupin if and only if
every connected component of a critical set of a linear height function on M is a
point or is homeomorphic to a sphere of some dimension k. (See also Hebda [194].)

Theorem 5.41. Let M be a compact, connected proper Dupin submanifold embed-
ded in S4. Then h�1.M/ is a proper Dupin submanifold in S7.

Proof. As noted in Theorem 2.80 on page 66, Thorbergsson [533] proved that a
compact proper Dupin hypersurface embedded in Sn is taut, and Pinkall [447] (see
Theorem 2.82) extended this result to the case where M has codimension greater
than one and the number of distinct principal curvatures is constant on the unit
normal bundle B.M/. Thus, our M is taut in S4, and therefore h�1.M/ is taut in S7

by Theorem 5.40. To show that h�1.M/ is proper Dupin, we need to show that each
connected component of a critical set of a height function fab on h�1.M/ is a point
or is homeomorphic to a sphere.

We use the same notation as in the proof of Theorem 5.40. Suppose that .x; z/ is
a critical point of fab. For X 2 TxM, we compute from equation (5.283) that

Xfab D hd˛.X/; Nzi: (5.290)

From (5.289), we see that Xgab also equals zero, and the argument again splits into
two cases, depending on whether or not gab.x/ is zero. If gab.x/ is nonzero, then there
are two critical points of fab on the fiber h�1.x/. Thus a component in h�1.M/ of the
critical set of fab through .x; z/ is homeomorphic to the corresponding component
of the critical set containing x of the linear function `ab on M. Since M is proper
Dupin, such a component is a point or a sphere.

The second case is when gab.x/ D f 2ab.x; z/ D 0. As we have seen, this happens
only if x D �h.Na; Nb/. In that case, x is an isolated absolute minimum of the height
function `ab. Thus, the corresponding component of the critical set of fab through
.x; z/ lies in the fiber h�1.x/, which is diffeomorphic to S3. From equation (5.290),
we see that this component of the critical set consists of those points .x; y/ in the
fiber such that Ny is orthogonal to d˛.X/, for all X 2 TxM. We know that

gab.x/ D 1

2
C 1

2
`ab.x/; (5.291)

and x is an isolated critical point of `ab on M. The tautness of M and the
results of Ozawa [421] imply that x is a nondegenerate critical point of `ab, since
the component of the critical set of a height function containing a degenerate
critical point is a sphere of dimension greater than zero. By equation (5.291), x
is also a nondegenerate critical point of gab, and so the Hessian H.X;Y/ of gab is
nondegenerate at x. Since ˛.x/ D 0, we compute that for X and Y in TxM,
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H.X;Y/ D 2hd˛.X/; d˛.Y/i:

Hence, d˛ is nondegenerate at x, and the rank of d˛ is the dimension of M. From
this it follows that the component of the critical set of fab through .x; z/ is a sphere in
h�1.x/ of dimension .3� dim M/. Therefore, we have shown that every component
of the critical set of a linear height function fab on h�1.M/ is homeomorphic to a
point or a sphere. Thus, h�1.M/ is proper Dupin. ut

We next relate the principal curvatures of h�1.M/ to those of M.

Theorem 5.42. Let M be a compact, connected proper Dupin hypersurface embed-
ded in S4 with g principal curvatures. Then the proper Dupin hypersurface h�1.M/
in S7 has 2g principal curvatures. Each principal curvature,

� D cot �; 0 < � < �;

of M at a point x 2 M yields two principal curvatures of h�1.M/ at points in h�1.x/
with values

�C D cot.�=2/; �� D cot..� C �/=2/:

Proof. By Theorem 2.1 on page 11, a principal curvature � D cot � of a
hypersurface M at x corresponds to a focal point at oriented distance � along the
normal geodesic to M at x. A point .x; z/ in h�1.M/ is a critical point of fab if and
only if .Na; Nb/ lies along the normal geodesic to h�1.M/ at .x; z/. The critical point is
degenerate if and only if .Na; Nb/ is a focal point of h�1.M/ at .x; z/. Note further that
.x; z/ is a degenerate critical point of fab if and only if x is a degenerate critical point
of `ab. This follows from the fact that both embeddings are taut, and the dimensions
of the components of the critical sets agree by Theorem 5.41. The latter claim holds
even when x D �h.Na; Nb/, since the fact that M has dimension three implies that the
critical point .x; z/ of fab is isolated. Thus, .Na; Nb/ is a focal point of h�1.M/ if and
only if h.Na; Nb/ is a focal point of M.

Suppose now that .Na; Nb/ lies along the normal geodesic to h�1.M/ at .x; z/ and
that fab.x; z/ D cos�. Then by equation (5.287),

gab.x/ D 1

2
C 1

2
`ab.x/ D 1

2
C 1

2
cos �;

where � is the distance from h.Na; Nb/ to x. Since .x; z/ is a critical point of fab, we
have gab.x/ D f 2ab.x; z/. Thus,

1

2
C 1

2
cos � D cos2 � D 1

2
C 1

2
cos 2�;

and so cos � D cos 2�. This means that under the map h, the normal geodesic
to h�1.M/ at .x; z/ double covers the normal geodesic to M at x, since the points
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corresponding to the values � D �=2 and � D .� C �/=2 are mapped to the same
point by h. In particular, a focal point corresponding to a principal curvature � D
cot � on the normal geodesic to M at x gives rise to two focal points on the normal
geodesic to h�1.M/ at .x; z/ with corresponding principal curvatures

�C D cot.�=2/; �� D cot..� C �/=2/;

thus completing the proof of the theorem. ut
We now construct the examples of Miyaoka and Ozawa. As noted above, a

compact proper Dupin hypersurface M in S4 with two principal curvatures is
a cyclide of Dupin, which is the image under a Möbius transformation of S4 of a
standard product of spheres,

S1.r/ � S2.s/ � S4.1/ � R5; r2 C s2 D 1:

A conformal, non-isometric image of an isoparametric cyclide does not have
constant principal curvatures. Similarly, a compact, connected proper Dupin hyper-
surface in S4 with three principal curvatures is Lie equivalent to an isoparametric
hypersurface in S4 with three principal curvatures, but it can have three nonconstant
principal curvature functions.

Corollary 5.43. Let M be a compact, connected proper Dupin hypersurface
embedded in S4 with g nonconstant principal curvatures, where g D 2 or 3.
Then h�1.M/ is a compact, connected proper Dupin hypersurface in S7 with 2g
principal curvatures that is not Lie equivalent to an isoparametric hypersurface
in S7.

Proof. Suppose that � D cot � and � D cot˛ are two distinct nonconstant principal
curvature functions on M. (In the case g D 3, just use any two of the principal
curvature functions.) Let

�C D cot.�=2/; �� D cot..� C �/=2/;

�C D cot.˛=2/; �� D cot..˛ C �/=2/;

be the four distinct principal curvature functions on h�1.M/ induced from � and �.
Then the Lie curvature


 D .�C � ��/.�C � ��/
.�C � ��/.�C � ��/ D 2

1C cos.� � ˛/ ;

is not constant on h�1.M/, and therefore h�1.M/ is not Lie equivalent to an
isoparametric hypersurface in S7. ut
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Miyaoka and Ozawa note that certain parts of their construction are also valid if
H is replaced by the Cayley numbers or a more general Clifford algebra. See their
paper [377] for more detail on this point.

Compact proper Dupin hypersurfaces with constant Lie
curvatures

In these examples due to Pinkall–Thorbergsson and Miyaoka–Ozawa, the Lie
curvatures are not constant, and so these hypersurfaces cannot be Lie equivalent
to an isoparametric hypersurface. This leaves open the possibility that a compact
proper Dupin hypersurface with 4 or 6 principal curvatures and constant Lie
curvatures must be Lie equivalent to an isoparametric hypersurface. In the case
g D 4, Miyaoka [365] showed that this is true if the hypersurface also satisfies some
additional assumptions on the intersections of the leaves of the various principal
foliations. In the same paper, Miyaoka also proved that if the Lie curvature of
compact proper Dupin hypersurface with g D 4 is constant, then it has the value
1=2.

Later Cecil, Chi, and Jensen [83] formulated the following conjecture which
remains as an open problem, although partial results have been obtained.

Conjecture 5.44 (Compact proper Dupin hypersurfaces with constant Lie curva-
tures). Every compact, connected proper Dupin hypersurface in Sn with g D 4

or g D 6 principal curvatures and constant Lie curvatures is Lie equivalent to an
isoparametric hypersurface.

In [85], Cecil and Jensen proved that conjecture is true for a compact proper
Dupin hypersurface with four principal curvatures of multiplicity one. Then Cecil,
Chi, and Jensen [82] verified the conjecture in the case where the multiplicities
satisfy m1 D m3 � 1, m2 D m4 D 1 to obtain the following theorem.

Theorem 5.45. Let M be a compact, connected proper Dupin hypersurface in
Sn with four principal curvatures having multiplicities m1 D m3 � 1, m2 D
m4 D 1, and constant Lie curvature. Then M is Lie equivalent to an isoparametric
hypersurface.

Note that since the multiplicities of a compact, connected proper Dupin hyper-
surface with four principal curvatures, satisfy the conditions m1 D m3 and m2 D m4

when the principal curvatures are appropriately ordered. This means that the full
conjecture for g D 4 would be proven if the assumption that the value of m2 D m4

is equal to one could be eliminated from the theorem above.
Cecil, Chi, and Jensen proved Theorem 5.45 as a consequence of the local

classification (Theorem 5.36) of irreducible proper Dupin hypersurfaces with four
principal curvatures having the given multiplicities and constant Lie curvature. The
fact that the constant Lie curvature must equal 1=2 in the compact case is due to
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Miyaoka [365], as mentioned above. The proof of Theorem 5.36 involves some
complicated calculations, which become even more elaborate if the assumption that
m2 D m4 D 1 is dropped. Even so, this approach to proving Conjecture 5.44 could
possibly be successful with some additional insight regarding the structure of the
calculations involved.

In the case g D 6, we do not know of any results beyond those of Miyaoka [366],
who showed that Conjecture 5.44 is true if the hypersurface satisfies some additional
assumptions on the intersections of the leaves of the various principal foliations. An
approach similar to that used by Cecil, Chi, and Jensen in [82] for the g D 4 case
is plausible, but the calculations involved would be very complicated, unless some
new algebraic insight is found to simplify the situation.

Remark 5.46 (Dupin hypersurfaces with constant scalar curvature). S. de Almeida
and A. Brasil [11] proved that if Mn, n � 4, is a compact proper Dupin hypersurface
in SnC1 with constant mean curvature and constant scalar curvature s � 0, then Mn is
isoparametric. In the case n D 3, the conclusion holds even without the assumption
that Mn is Dupin. This was shown in an earlier paper by S. de Almeida and F. Brito
[12]. In another paper, X.M. Wang [551] also found sufficient conditions on the
principal curvatures for a proper Dupin hypersurface with constant mean curvature
to be isoparametric.

5.9 Taut Embeddings of Surfaces

In this section, we give a complete classification of taut (2-dimensional) surfaces in
Euclidean spaces. Many of the results that we need have been covered already, and
we begin by recalling them here.

If M2 is a compact, connected surface, and f W M2 ! Rm is a substantial taut
embedding, then m � 5 by Theorem 2.76 on page 64. Furthermore, m D 5, then
M2 D RP2, and f .M2/ is a spherical Veronese surface contained in a metric sphere
S4 � R5. Next if f W M2 ! R4 is a substantial, non-spherical taut embedding
of a compact surface, then f .M2/ is the image under stereographic projection � W
S4�fPg ! R4, P 2 S4, of a spherical Veronese surface in S4 � R5 by Corollary 2.72
on page 62.

Finally, if f W M2 ! S3 � R4 is a substantial, spherical taut embedding, and
� W S3�fPg ! R3 is stereographic projection with pole P 2 S3, then �ıf W M2 ! R3

is a taut embedding, and conversely any taut spherical embedding of a compact,
connected surface M2 into S3 � R4 is the image under inverse stereographic
projection of a taut compact, connected surface in R3. Thus, the classification of taut
compact, connected surfaces in Euclidean spaces is reduced to the classification of
such surfaces in R3.

If g W M2 ! Rm is a substantial, taut embedding of a non-compact surface M2,
then m � 4 by Theorem 2.77 on page 65, and if m D 4, then g D � ı f , where
f W RP2 ! S4 � R5 is a spherical Veronese surface, and � W S4 � fPg ! R4
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is stereographic projection with pole P 2 f .RP2/. Thus, in the non-compact case
also, the classification of taut embeddings is reduced to the classification of taut
non-compact surfaces in R3.

The classification of taut embeddings of surfaces f W M2 ! R3 follows fairly
quickly from known results. If f .M2/ has even one umbilic point, then it is totally
umbilic by Corollaries 2.66 and 2.68 (see page 60). Thus, f .M2/ is a hyperplane or
metric sphere in R3.

If f .M2/ has no umbilic points, then there are two distinct principal curvatures at
each point of f .M2/. Then since taut implies Dupin by Theorem 2.83 on page 68,
we have that f .M2/ is a proper Dupin surface in R3 with g D 2 principal curvatures
at each point. Since a taut surface is complete, we get that f .M2/ is a ring cyclide, a
parabolic ring cyclide or a circular cylinder by Theorem 5.26 on page 282.

This proof relies on Theorem 2.83 that taut implies Dupin. We can actually get
the classification of taut surfaces in R3 from Lemma 5.47 below, which is more
elementary than Theorem 2.83. We will formulate the lemma for hypersurfaces of
arbitrary dimension, since it will be useful in the next section on higher-dimensional
Dupin hypersurfaces.

Consequences of tautness

We first make some preliminary remarks before stating the lemma. Let f W Mn !
RnC1 be a taut hypersurface. Tautness implies that f is a proper embedding, and
therefore f .Mn/ is a closed subset of RnC1. Thus, f .Mn/ is orientable (see Samelson
[471]), and we can take � to be a field of unit normals on f .Mn/. Thus, there are
globally defined continuous principal curvature functions

�1 � �2 � � � � � �n; (5.292)

on Mn determined by the field of unit normals � (see Ryan [468, p. 371]).
Tautness implies that if Lq is any nondegenerate Euclidean distance function on

Mn and �k denotes the number of critical points of Lq of index k, then �0 D 1, and
�n D 1 or 0, depending on whether or not Mn is compact. We now show that these
conditions on �0 and �n imply that if p is the focal point of .Mn; x/ corresponding
to the largest or smallest principal curvature at x 2 Mn, then Lp has an absolute
minimum or absolute maximum at x.

Let x be a point of Mn. If �1.x/ > 0, then the focal point p determined by �1.x/
is the first focal point on the normal ray to f .Mn/ at f .x/ in the direction �.x/, and
so Lp has an absolute minimum at x by Theorem 2.64 (a) on page 59.

If �1.x/ < 0, then the corresponding focal point p (which lies on the ray in the
direction ��.x/) has the property that the sum of the multiplicities of the focal points
of .Mn; x/ on the closed segment from f .x/ to p is n. Thus, if q is a point beyond p on
the normal ray in the direction ��.x/, then Lq has a nondegenerate maximum at x.
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By Corollary 2.52 (b) on page 53, there is a nondegenerate distance function Lz that
has a nondegenerate maximum at some point near x. Thus, we have �n.Lz/ � 1.
Using the assumption that �n D 1 or 0, depending on whether or not Mn is compact,
we get that �n.Lz/ D 1, and Mn is compact. Then by Theorem 2.64 (b), the distance
function Lp determined by the focal point p has an absolute maximum at x. Similar
statements can be made about the smallest principal curvature �n, which is just the
negative of the largest principal curvature for the unit normal field �� .

In summary, by Theorem 2.64, the conditions �0 D 1, and �n D 1 or 0,
depending on whether or not Mn is compact, imply that if p is the focal point of
.Mn; x/ corresponding to the largest or smallest principal curvature at x, then Lp has
an absolute minimum or absolute maximum at x. This is the key idea in the proof of
the following lemma, which is due to Banchoff [20] and Cecil [72], and we follow
the presentation in the book [95, pp. 191–193].

Lemma 5.47. Let M � RnC1 be a properly embedded hypersurface. Suppose that
for every nondegenerate Euclidean distance function Lp, we have �0 D 1, and
�n D 1 or 0, depending on whether or not Mn is compact. Let � be the largest or
smallest principal curvature function on M. If � has constant multiplicity 1 on some
open set U � M, then � is constant along its lines of curvature in U.

Proof. Let � be an arbitrary (connected) line of curvature of the principal curvature
� in the open set U. If � is identically equal to zero on � , then � is constant along
� as needed. Suppose �.x0/ ¤ 0 for some point x0 on � . Since � is a continuous
function, the set

B D fx 2 � j �.x/ D �.x0/g

is closed in � . We will now show that B is also open in � , and thus it is all of � by
connectedness.

Let x be an arbitrary point in B, and let W � U be a neighborhood of x on which
� is nonzero. Let X be a unit vector field in the principal foliation T� on W. We will
show that X� D 0 on W, and so � is constant along the line of curvature � in W, as
needed.

Let y be a point in W, and let ˇ be the normal section of M at y obtained
by intersecting W with the plane spanned by X.y/ and the hypersurface normal
�.y/. Parametrize ˇ by arc-length so that ˇ.0/ D y and the initial tangent vector�!̌
.0/ D X.y/. Let �.s/ denote the curvature function of ˇ, and let �.s/ D �.ˇ.s//.

We now want to show that �.0/ D �.0/ and �0.0/ D �0.0/, where the prime denotes
differentiation with respect to s.

The normal curvature kn.s/ at the point ˇ.s/ in the direction
�!̌
.s/ is given by the

formula

kn.s/ D hA.�!̌.s//;
�!̌
.s/i; (5.293)
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where A is the shape operator of M. By Meusnier’s theorem, we have

kn.s/ D �.s/ cos�.s/; (5.294)

where �.s/ is the angle between the principal normal to the curve ˇ and the
hypersurface normal � at the point ˇ.s/. Since �.y/ is the principal normal to the
curve ˇ at y D ˇ.0/, we have �.0/ D 0, and thus kn.0/ D �.0/. Since

kn.0/ D hA.�!̌.0//;
�!̌
.0/i D hAX;Xi D h�.0/X;Xi D �.0/;

we have �.0/ D kn.0/ D �.0/. Furthermore, by differentiating equation (5.294) and
evaluating at s D 0, we get k0n.0/ D �0.0/. We now want to show that k0n.0/ D �0.0/.

Decompose
�!̌
.s/ into its components in T� and T?� , i.e.,

�!̌
.s/ D a.s/X.ˇ.s//C b.s/Y.ˇ.s//; (5.295)

where X is the unit vector field in T� and Y is a unit vector field along ˇ in T?� .
Then X and Y are smooth vector fields, and a and b are smooth functions along
the curve ˇ. Furthermore, we have a.0/ D 1, b.0/ D 0 and a0.0/ D 0, since
1 is the maximum value that the function a can attain along ˇ. Applying A to
equation (5.295), we get the following equation along the curve ˇ,

A
�!̌ D a�X C bAY; (5.296)

where AY is also orthogonal to T�, since T?� is invariant under A. Thus, we get

kn.s/ D hA�!̌
;
�!̌i D a2�C b2hY;AYi: (5.297)

Differentiating this equation and evaluating at s D 0, we get k0n.0/ D �0.0/. Since
we already have k0n.0/ D �0.0/, we conclude that �0.0/ D �0.0/.

We now complete the proof of the lemma as follows. Let p be the focal point

p D y C 1

�.y/
�.y/:

Let C be the osculating circle to the plane curve ˇ at y, that is, the circle through
y centered at p. Using Taylor’s formula and the Frenet equations, it is easy to show
(see, for example, Goetz [175, p. 84]) that ˇ crosses C unless �0.0/ D 0. Thus, if
�0.0/ ¤ 0, the function Lp does not have an extreme value at y.

However, the hypotheses of the lemma imply that M is 0-taut, and if it is compact,
it has the STPP. Therefore, M satisfies the hypotheses of Theorem 2.64 on page 59,
and by that theorem Lp has an absolute minimum or absolute maximum at y, since
� is the largest or smallest principal curvature, as explained above the statement of
the lemma.
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Thus, the assumption that �0.0/ ¤ 0 leads to a contradiction, and so we have

X� D �0.0/ D �0.0/ D 0;

at every point y 2 W. This implies that � is constant along the line of curvature � in
W, and so the set B is open. Since B is both open and closed, it is all of � . Therefore,
� is constant along the line of curvature � in U. ut

Classifications of taut surfaces in Euclidean space

From Lemma 5.47 and Theorem 5.26, we obtain the following classification of taut
surfaces in R3 due to Banchoff [20] for the compact case and Cecil [72] for the
non-compact case.

Theorem 5.48. Let M � R3 be a taut connected surface.

(a) If M is compact, then M is a metric sphere or a ring cyclide.
(b) If M is not compact, then M is a plane, a circular cylinder, or a parabolic ring

cyclide.

Proof. (a) Suppose that M is compact. If M has one umbilic point, then it is a metric
sphere by Corollary 2.68 on page 60. If M has no umbilic points, then M has two
distinct principal curvatures at each point, one of which is the largest principal
curvature, and the other is the smallest principal curvature. Tautness implies
that �0 D 1, and �2 D 1 for every nondegenerate Euclidean distance function
Lp. Thus by Lemma 5.47, each principal curvature is constant along each of
its corresponding lines of curvature, that is, M is proper Dupin. Therefore, by
Theorem 5.26, M is a ring cyclide.

(b) Suppose that M is not compact. If M has one umbilic point, then it is a plane in
R3 by Corollary 2.66 on page 60. If M has no umbilic points, then M has two
distinct principal curvatures at each point, one of which is the largest principal
curvature, and the other is the smallest principal curvature. Tautness implies
M is complete and that that �0 D 1, and �2 D 0 for every nondegenerate
Euclidean distance function Lp. Thus by Lemma 5.47, each principal curvature
is constant along each of its corresponding lines of curvature, that is, M is
proper Dupin. Then by the classification of complete non-compact proper Dupin
hypersurfaces with two principal curvatures in Theorem 5.26, M is a circular
cylinder, or a parabolic ring cyclide. ut

Theorem 5.48 and the arguments given at the beginning of this section yield the
following classification of taut surfaces in Euclidean spaces.

Theorem 5.49. Let M be a taut connected surface substantially embedded in Rm.
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(a) If M is compact, then M is a metric sphere or a ring cyclide in R3, a spherical
Veronese surface in R5, or a compact surface in R4 related to one of these by
stereographic or inverse stereographic projection.

(b) If M is not compact, then M is a plane, a circular cylinder, or a parabolic ring
cyclide in R3, or it is the image in R4 of a punctured spherical Veronese surface
in R5 under stereographic projection.

Conversely, all of the surfaces listed in (a) and (b) are taut.

Remark 5.50 (Taut subsets of R2 and R3). Recall from Section 2.7 that a subset
X � Rm is taut if the inclusion map f is a taut map, i.e., for every closed
ball, complement of an open ball, and closed half-space ˝ in Rm, the induced
homomorphism H�.f�1˝/ ! H�.X/ in Čech homology with Z2 coefficients is
injective. An important type of subset R2 is the set X obtained by deleting k � 1
disjoint open round disks from a closed round disk D. Such a set is called a Swiss
cheese, and if the round interiors are everywhere dense in D, then X is called a limit
Swiss cheese. Banchoff [20] showed that a compact, connected X � R2 is 0-taut
if and only if X is a point, a circle, or a Swiss cheese. Kuiper [304] then showed
that X � R2 is taut if and only if it is a point, a circle or a limit Swiss cheese. This
follows from his lemma which states that if X � Sm is taut and has an interior point,
then X D Sm. The determination of taut subsets of R3 is much more difficult, but
Kuiper [304] proved the following theorem.

Theorem 5.51. A taut compact, connected ANR (absolute neighborhood retract)
subset X � R3 is a point, a circle, a round 2-sphere or a ring cyclide of Dupin.

5.10 Classifications of Taut Submanifolds

In this section, we present several classification results for taut submanifolds in
detail, and then survey other known results on taut submanifolds. We will follow the
presentations in the book [95, pp. 197–207] and the article [76]. Results have been
obtained for manifolds with relatively simple homology, but general classifications
of taut submanifolds are rare.

We first recall some known classifications that we have proven already. We
have just classified taut embeddings of 2-dimensional manifolds in Theorem 5.49
in the previous section. Of course, the manifolds with the simplest homology are
spheres, and we have Theorem 2.73 on page 63, which states that if f W Sn ! Rm

is a substantial taut immersion, then m D n C 1, and f embeds Sn as a metric
hypersphere. This is due to Banchoff [20] for n D 2 and Carter and West [61]
for arbitrary dimensions, and it was also proven independently by Nomizu and
Rodriguez [405]. The proof of Nomizu and Rodriguez also yields the slightly
more general Theorem 2.74 on page 63, which we restate here for the sake of
completeness.
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Theorem 5.52. Let Mn; n � 2, be a connected, complete Riemannian manifold
isometrically immersed in Rm. If every nondegenerate distance function Lp has index
0 or n at each of its critical points, then Mn is embedded as a totally geodesic n-plane
or a metric n-sphere Sn � RnC1 � Rm.

In Remark 2.60 on page 56, we saw that a spherical cylinder is taut. We next
prove the related classification result due to Carter and West [61].

Theorem 5.53. Let f W M ! RnC1 be a taut embedding of a connected, non-
compact n-manifold with Hk.M;Z2/ D Z2 for some k, 0 < k < n, and Hi.M;Z2/ D
0 for i ¤ 0; k. Then M is diffeomorphic to Sk � Rn�k and f is a standard product
embedding of Sk � Rn�k as a spherical cylinder.

An important step in the proof of this theorem is to prove that the complement
of the focal set of f .M/ in RnC1 is connected. In this case, this follows fairly
quickly from Lemma 5.54 below. Later we will prove a more general result
(Theorem 5.64) concerning the connectedness of the complement of the focal set
of taut submanifold.

We first recall some terminology. Let f W M ! Rm be an embedding of
a connected manifold, and let � denote the set of critical points of the normal
exponential map E W NM ! Rm. The focal set of f .M/ is the set E.� / � Rm,
i.e., the set of critical values of the normal exponential map E.

Lemma 5.54. Let f W M ! Rm be a taut embedding of a connected manifold.
Suppose that for each x 2 M there is at most one focal point of .M; x/ on each
normal ray to f .M/ at f .x/. Then f .M/ is disjoint from the focal set E.� /, and the
complement of E.� / in Rm is path-connected.

Proof. Suppose that p is a point in Rm and that Lp has a nondegenerate minimum
at x 2 M. Then by Theorem 2.64 (a) on page 59, Lp has a strict absolute minimum
on M at x. Now suppose that p is also a focal point of M, and thus that p D E.y; �/,
where .y; �/ 2 � . By assumption, p is the only point of .M; y/ on the normal ray
to f .M/ at f .y/ in the direction �. Applying Theorem 2.64 (a) again, we get that Lp

has an absolute minimum at y. This contradicts the fact that Lp has a strict absolute
minimum at x. In particular, this applies when p D f .x/, and so no point in f .M/
lies in the focal set E.� /.

Now suppose that p and q are two points in the complement of the focal set
E.� / in Rm. Then Lp and Lq are nondegenerate functions on M. By tautness, the
nondegenerate function Lp has a unique strict absolute minimum at some point x 2
M. Similarly, Lq has a unique strict absolute minimum at some point y 2 M. If
z 2 Rm is any point on the closed line segment from p to f .x/, then the function
Lz has a nondegenerate minimum at x, and so by the preceding paragraph, z is not
in the focal set of f .M/. Similarly, every point on the closed line segment from q
to f .y/ is in the complement of the focal set. We can now construct a path in the
complement of the focal E.� / from p to q. First traverse the line segment from p to
f .x/, then follow a path in f .M/ from f .x/ to f .y/, and then traverse the line segment
from f .y/ to q. Thus, the complement of the focal set is path-connected. ut



5.10 Classifications of Taut Submanifolds 329

We now use the lemma to complete the proof of Theorem 5.53 due to Carter and
West [61].

Proof (of Theorem 5.53). By the assumption on the homology of M, tautness
implies that every nondegenerate distance function Lp has exactly two critical points
on M, one of index 0 and one of index k. Thus by Corollary 2.52 on page 53, if p
is a focal point of f .M/, but Lp has a nondegenerate critical point of index j, then j
equals 0 or k. Hence, there is at most one focal point of f .M/ along each normal ray,
and that focal point has multiplicity k. Therefore, by Lemma 5.54, the complement
˙ of the focal set is path-connected. The restriction of the normal exponential map
E to the set E�1.˙/ is a double covering of˙ , since E is an immersion on NM �� ,
and since for each p 2 ˙ , the function Lp has exactly two critical points.

Since a taut embedding is a proper map, the image f .M/ is a closed subset of
RnC1, and thus it is orientable, and we take a field of unit normals � on f .M/. By
identifying .x; t�/ 2 NM with .x; t/, the normal bundle is diffeomorphic to M � R.
Let

NC D f.x; t/ j t > 0g; N� D f.x; t/ j t < 0g (5.298)

in M � R, and let M0 D M � f0g, the zero-section of NM.
For each .x; t/ 2 E�1.˙/, let p D E.x; t/. Then Lp has a nondegenerate critical

point at x whose index will be denoted by I.x; t/. This index function is continuous
and thus it is constant on any path component of E�1.˙/. Since ˙ is connected,
the set E�1.˙/ has just two components V0 and Vk, on which the index function
is equal to 0 and k, respectively. Since M0 \ E�1.˙/ lies in V0, the component Vk

lies entirely in either NC or N�. By considering the unit normal field �� instead of
� , if necessary, we can assume that Vk lies in MC. Then for each x 2 Mn, there is
at most one focal point of .Mn; x/, and it lies on the normal ray in the direction �
determined by NC. On the other hand, there must be at least one focal point on each
normal line, otherwise by Corollary 2.66 on page 60, tautness implies that f .M/ lies
in a hyperplane in RnC1, which is clearly impossible, since f is not totally geodesic.
Thus, there is exactly one focal point of multiplicity k on each normal line to f .M/,
and so there are exactly two distinct principal curvatures at each point: a nonzero
principal curvature � of multiplicity k, and a second principal curvature � D 0 of
multiplicity n � k.

We complete the proof by showing that f .M/ is proper Dupin. If k > 1, then �
is constant along each leaf of its principal foliation by Theorem 2.10 on page 24.
If k D 1, then since � is the largest or smallest principal curvature function on M,
tautness implies that � is constant along its lines of curvature by Lemma 5.47. Thus,
f .M/ is a non-compact proper Dupin hypersurface with two principal curvatures at
each point, one of which is identically zero, and it is complete since f is a proper
embedding. Thus, by the classification of complete proper Dupin hypersurfaces with
g D 2 in Theorem 5.26, f .M/ is a spherical cylinder Sk � Rn�k in RnC1. ut

We next prove a similar classification result which also characterizes spherical
cylinders.
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Theorem 5.55. Let f W Mn ! RnCq be a substantial taut embedding of a
connected, non-compact n-manifold whose Z2-Betti numbers satisfy ˇk.M/ D j > 0
for some k with n

2
< k < n, and ˇi.M/ D 0 for i ¤ 0; k. Then q D 1, j D 1, and f

embeds M as a spherical cylinder Sk � Rn�k � RnC1.

Proof. As shown in the proof of the previous theorem, the index of any nondegen-
erate critical point of any distance function Lp is 0 or k. Thus, there can be at most
one focal point on every normal ray to f .M/, and it has multiplicity k. Furthermore,
since 2k > n, and the sum of the multiplicities of the focal points on any normal
line is at most n, there can be at most one focal point on any normal line to f .M/.
On the other hand, since f is taut and substantial, there is at least one focal point
on every normal line by Corollary 2.66 on page 60. Thus there is exactly one focal
point on each normal line, and as in the previous proof, we conclude that for each
unit normal vector � to f .M/, the shape operator A� has exactly two eigenvalues, �
of multiplicity k which is never zero, and � of multiplicity n�k which is identically
zero.

If the codimension q is greater than one, then the unit normal bundle BM is
connected and there exists a continuous path in BM from a unit normal � to its
negative �� . Since the principal curvature function � is never zero, it has the same
sign at � as it does at �� . On the other hand, A�� D �A� , and so the nonzero
principal curvature � of A�� has the opposite sign of the nonzero principal curvature
of A� , a contradiction. Thus, the codimension q equals one, and we have shown that
f .M/ is a taut, connected non-compact hypersurface in RnC1 with two principal
curvatures at each point, one of which is identically zero. Then, as in the previous
proof, tautness implies that f .M/ is proper Dupin, and by Theorem 5.26, we get that
f .M/ is a spherical cylinder Sk � Rn�k in RnC1. ut
Remark 5.56. The taut substantial embedding of the Möbius band M2 D RP2�fPg
into R4 obtained from a punctured Veronese surface V2�fPg � S4 by stereographic
projection � W S4 � fPg ! R4 with pole P on V2 shows that the hypothesis n

2
< k in

Theorem 5.55 and the hypothesis that the codimension is one in Theorem 5.53 are
both necessary.

Taut embeddings and the cyclides of Dupin

We now begin a sequence of classification results that include taut hypersurfaces,
in particular, the higher-dimensional cyclides of Dupin. The first result is a
generalization of the classification of taut surfaces in R3 given in Theorem 5.48.
In 1971, Carter and West [61, pp. 712–714] showed that if M2k is a taut compact
.k�1/-connected hypersurface in R2kC1, then Hk.M;Z/ is either 0 or Z˚Z. In 1978,
Cecil and Ryan [89] proved that if Mn � RnC1 is a taut compact hypersurface with
the same integral homology as Sk � Sn�k, 1 � k � n

2
, then M is a ring cyclide. Using

tightness arguments, C.S. Chen [101] (see also [99, 100]) independently proved a



5.10 Classifications of Taut Submanifolds 331

similar result. Chen’s theorem differs in that he only assumes that M is tight and lies
in an ovaloid in RnC2. However, he excludes the case where k=.n � k/ is equal to 2
or 1=2.

We first handle the case k D n � k, which is simpler than the case k ¤ n � k.
The proof originally given in [89, p. 184] actually works under the following weaker
hypothesis which include non-compact hypersurfaces as well as compact ones (see
also [95, pp. 200–201]).

Theorem 5.57. Let M2k � R2kC1 be a taut connected hypersurface such that
Hi.M;Z2/ D 0 for i not equal to 0, k, or 2k.

(a) If M is compact, then M is a metric sphere or a ring cyclide.
(b) If M is not compact, then M is a hyperplane, a spherical cylinder, or a parabolic

ring cyclide.

Proof. For k D 1, there is no restriction on the homology, and the theorem follows
from the classification of taut surfaces in R3 given in Theorem 5.48. So we now
assume that k > 1.

Tautness implies that M is properly embedded, and so it is a closed subset of
RnC1. Thus, M is orientable (see Samelson [471]). Let � be a field of unit normals
on M, and we consider the principal curvature functions on M determined by the
shape operator A� . If the taut hypersurface M has one umbilic point, then it is totally
umbilic by Corollaries 2.66 and 2.68 (see page 60), and then it is a hyperplane or a
metric sphere.

Assume now that M has no umbilic points. Let x be an arbitrary point in M.
There is at least one focal point of .M; x/ along the normal line to M at x, otherwise
M would have a planar (umbilic) point at x. Let p be the first focal point on a normal
ray to M at x. Let q be a point beyond p on that normal ray, but before the second
focal point on that normal ray (if such a second focal point exists). By the Index
Theorem (Theorem 2.51 on page 53), the function Lq has a nondegenerate critical
point of index j > 0 at x, where j is the multiplicity of the focal point p.

The function Lq may or may not be a Morse function, but by Corollary 2.52 on
page 53, there is a Morse function Lz that has a nondegenerate critical point y 2 M of
index j. Tautness and the assumption on the homology of M imply that this index j is
0, k or 2k. The number j is greater than zero, and it cannot equal 2k, for then p would
be a focal point of multiplicity 2k, and thus x would be an umbilic point. Therefore,
the value of j is k. Furthermore, if there is a second focal point on this normal ray, it
also has multiplicity k. Otherwise it would give rise to a distance function having a
critical point at x with index between k and 2k, contradicting tautness. Thus, every
focal point of .M; x/ has multiplicity k.

Given the correspondence between focal points and principal curvatures in
Theorem 2.1 on page 11, we have shown that at every point x 2 M, there are two
distinct principal curvatures, each of which has multiplicity k. Since k > 1, these
principal curvatures are constant along the leaves of their corresponding principal
foliations by Theorem 2.10 on page 24. Thus, M is a complete proper Dupin
hypersurface with g D 2 principal curvatures at each point, and the theorem now
follows from the classification of such hypersurfaces in Theorem 5.26. ut
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Taut embeddings of highly connected manifolds

Remark 5.58 (Taut embeddings of highly connected manifolds). The hypotheses of
Theorem 5.57 imply that M2k is .k�1/-connected. To see this, note that tautness and
the assumptions on the homology of M2k imply that every nondegenerate Lp function
has only critical points of index 0, k, and 2k. By applying basic Morse theory to any
choice of nondegenerate Lp function, we get that M2k has the homotopy type of a
CW-complex with cells of dimension 0, k, and 2k only. Thus, the .k �1/-skeleton of
M2k is just the 0-skeleton, and so M2k is .k � 1/-connected (see, for example, [355,
p. 297]).

Thorbergsson [534] generalized Theorem 5.57 to higher codimension by proving
that if M2k is a compact .k�1/-connected (not k-connected) taut submanifold of Rm

that is substantial and non-spherical, then one of the following holds:

(a) m D 2k C 1, and M2k is a cyclide of Dupin diffeomorphic to Sk � Sk,
(b) m D 3k C 1, and M2k is diffeomorphic to one on the projective planes RP2,

CP2, HP2, OP2, for k D 1; 2; 4; 8, respectively.

Of course, the standard embeddings of these projective planes (see Section 2.9, page
74) are substantial taut embeddings into R3kC2, but they are spherical. One obtains
a substantial, non-spherical taut embedding of the appropriate projective plane into
R3kC1 by applying stereographic projection to the image of a standard embedding.
Thorbergsson [534] has similar results for noncompact taut submanifolds in Rm,
and for taut, compact .k � 1/-connected hypersurfaces in hyperbolic space H2kC1.

Kuiper [302, p. 231] and [303, p. 133] proved that a tight immersion of a
.k � 1/-connected M2k satisfies rather stringent conditions, and his results were
further refined by Thorbergsson [535]. Hebda [193] showed that a connected sum of
arbitrarily many copies of Sk � Sk can be realized as a tight hypersurface in R2kC1.
Hebda’s examples are counterexamples to a conjecture of Kuiper [303, p. 116] that
every smooth .k � 1/-connected 2k-dimensional manifold k � 2 which admits
a smooth tight immersion into Euclidean space is diffeomorphic to one of the
following manifolds: CP2, HP2, OP2 or Sk � Sk. By (a) above, we see that Hebda’s
examples are not taut, as Hebda showed in his paper.

Taut embeddings of Sk � Sn�k for k ¤ n � k

We now prove the analogue of part (a) of Theorem 5.57 in the case k ¤ n � k. This
proof is substantially more difficult than in the case k D n�k given in Theorem 5.57.
The theorem below was first proven in the paper of Cecil and Ryan [89], and we
follow the presentation given in the book [95, pp. 202–207].

Theorem 5.59. Let Mn � RnC1 be a taut connected hypersurface with the same
Z2-homology as Sk � Sn�k for k ¤ n � k. Then M is a ring cyclide.
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Proof. For the sake of definiteness, we assume that k < n � k. By the assumption
on the homology of M, every nondegenerate distance function Lp has four critical
points with respective indices 0; k; n � k and n. As in the proof of Theorem 5.57,
tautness implies that M is orientable, and we take � to be a field of unit normals
on M and consider the principal curvature functions on M determined by the shape
operator A� .

Let x be an arbitrary point in M. We want to try to determine the number of
distinct principal curvatures at x. This number is greater than one, otherwise x is an
umbilic point, and we know from Corollary 2.68 on page 60 that if a taut compact,
connected hypersurface has one umbilic point, then it is a metric sphere. That is
impossible by the assumption on the homology of M.

Next we use the Index Theorem (Theorem 2.51 on page 53) to prove that the
number of distinct principal curvatures at x is at most three. Let p the first focal
point on a normal ray to M at x, and let q be a point beyond p on that normal ray,
but before the second focal point on that normal ray (if such a second focal point
exists). The Index Theorem implies that the function Lq has a nondegenerate critical
point of index j > 0 at x, where j is the multiplicity of the focal point p. Then by
Corollary 2.52 on page 53, there is a Morse function Lz that has a nondegenerate
critical point y 2 M of the same index j. Tautness and the assumption on the
homology of M imply that this index j is k, n � k or n. The value n is impossible,
since then the focal point p would have multiplicity n, and x would be an umbilic
point. Thus, the value of j is k or n � k.

If multiplicity of p is k, then there could exist two other focal points of .M; x/
on the normal line to M at x. In that case, the multiplicities of those two focal
points are n � 2k and k by the Index Theorem and the fact that the index of any
nondegenerate critical point of any distance function is 0; k; n�k or n. Then the sum
of the multiplicities of the focal points is n, and so there are exactly three distinct
principal curvatures at x with respective multiplicities k, n � 2k and k. There could
also be less than three focal points on the normal to M at x. In that case, there
are at most three distinct principal curvatures at x, counting the possibility that one
principal curvature could equal zero and not give rise to a focal point. Again if there
are three distinct principal curvatures, they have respective multiplicities k, n � 2k
and k.

If the first focal point p on a normal ray has multiplicity n � k, then there can
be at most one other focal point of .M; x/ on the normal line to M at x, and it has
multiplicity k. In that case, there can be at most two distinct principal curvatures
at x. The following three lemmas show that M has two principal curvatures at each
point and is a ring cyclide. ut

Number of distinct principal curvatures

In summary, we have shown that the number of distinct principal curvatures at a
given point x 2 M is either two or three. Furthermore, if there are three principal
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curvatures, they have respective multiplicities k, n�2k and k. Let U be the subset of
M on which there are three distinct principal curvatures. Then U is an open subset
of M, and on U there are three distinct smooth principal curvature functions

�1 > �2 > �3; (5.299)

which have respective multiplicities k, n � 2k and k. We now begin a sequence of
lemmas which eventually lead to the conclusion that U is the empty set, and thus
there are exactly two distinct principal curvatures at each point of M. In all of these
lemmas, we assume the hypotheses of Theorem 5.59.

Lemma 5.60. The number of distinct principal curvatures is a constant which is
either 2 or 3.

Proof. We now assume that the set U defined above is non-empty and is not all of
M, and then derive a contradiction. Since M is an embedded compact, connected
hypersurface in RnC1, the concept of inner and outer normal ray is well defined. Let
x be any point on the boundary of the set U in M. Since U is open, and since M has
no umbilic points, there are exactly two distinct principal curvatures at x, and they
have multiplicities k and n � k. By Corollary 2.65 on page 59, there is a focal point
of M on every inner normal ray. By inverting M in a sphere, if necessary, we can
assume that the first focal point on the inner normal ray to M at x has multiplicity
n � k. Of course, inversion in a sphere preserves tautness by Theorem 2.70 on page
61, and it preserves the multiplicities of the principal curvatures by Theorem 2.6 on
page 20. We will complete the proof of the lemma by constructing a nondegenerate
distance function that has at least five critical points, contradicting tautness.

Let � be the globally defined unit inner normal field. The first focal point on the
inner normal ray to M at x is p D x C �� , where � D 1=�, and � is the largest
principal curvature at x. By our construction in the preceding paragraph, the focal
point p has multiplicity n � k. By Theorem 2.64 on page 59, the function Lp has an
absolute minimum value ˛ D �2 at x. Since the segment from x to p cannot intersect
M, the point p lies inside M (i.e., in the bounded component of the complement
of M).

Let y 2 M be a point where Lp has an absolute maximum on M. Since M is not
a metric sphere, we know that Lp.x/ < Lp.y/. The function Lp has a maximum at
y, and so the sum of the multiplicities of the focal points of .M; y/ on the closed
segment from y to p is n. Since we also know that there is at least one focal point on
any inner normal ray, we conclude that p lies on the inner normal ray to M at y. Let
q be the first focal point of .M; y/ on the inner normal ray to M at y. Then q ¤ p,
since Lq has an absolute minimum at y by Theorem 2.64, while Lp has an absolute
maximum at y, and the minimum and maximum values of Lp cannot be the same,
since M is not a metric sphere. Furthermore, the point q also lies inside M, since
the segment from y to q cannot intersect M.

Let � D Lq.y/, the absolute minimum value of Lq on M, and recall that ˛ D Lp.x/
is the absolute minimum value of Lp on M. Using our notation from critical point
theory, let
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M˛.Lp/ D fz 2 M j Lp.z/ � ˛g; (5.300)

and let M� .Lq/ be defined in a similar way. We first show that M˛.Lp/ and M� .Lq/

are disjoint.
Suppose that z is a point in the intersection of M˛.Lp/ and M� .Lq/. Then both

Lp and Lq have an absolute minimum at z. Since p and q are both inside M, and the
closed segments Œz; p� and Œz; q� contain no points of M other than z, these segments
both lie on the inner normal ray to M at z. Furthermore, the normal lines to M at z
and y coincide, since they both contain the points p and q.

We know that z ¤ y, since Lp does not have a minimum at y. If z D x, then p
is the first focal point on the inner normal ray to M at z. If z ¤ x, then Lp does not
have a strict absolute minimum at z, since Lp.x/ D Lp.z/. By Theorem 2.64, Lp has
a degenerate minimum at z, and again we conclude that p is the first focal point on
the inner normal to M at z. Thus, in either case, q lies beyond the first focal point p
on the inner normal ray to M at z, and so Lq cannot have an absolute minimum at z,
contradicting the assumption that z is in M� .Lq/.

Since M˛.Lp/ and M� .Lq/ are compact, there exists " > 0 such that M˛C".Lp/

and M�C".Lq/ are also disjoint. Since the focal set of M has measure zero in RnC1,
there exists a point p0 2 RnC1 and r > 0 such that Lp0 is a nondegenerate function
on M, and r is a non-critical value of Lp0 satisfying

M˛.Lp/ � Mr.Lp0/ � M˛C".Lp/: (5.301)

Since x is on the boundary of U, x has an arbitrarily close neighbor w at which there
are three distinct principal curvatures. By considering the focal points on the inner
normal to M at w and using Corollary 2.52 on page 53, one can produce points a
and b in RnC1 arbitrarily near to p, such that La and Lb are Morse functions with
respective critical points u and v with indices k and n � k, arbitrarily close to x.

Let � D La.u/ and ı D Lb.v/. The points a and b can be chosen so that M� .La/

and Mı.Lb/ are both contained in Mr.Lp0/. The function La has at least two critical
points in M� .La/, a minimum and a critical point of index k at u. By tautness and
the homology of M, we conclude that the Z2-Betti numbers of M� .La/ satisfy

ˇ0.M� .La// D 1; ˇk.M� .La// D 1: (5.302)

Similarly, we can show that

ˇ0.Mı.Lb// D 1; ˇn�k.Mı.Lb// D 1: (5.303)

We have the inclusion maps,

M� .La/
i! Mr.Lp0/

j! M: (5.304)
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By tautness, the induced maps j� and .j ı i/� on homology are injective, and so i�
is also injective. Thus, we get ˇk.Mr.Lp0// D 1. By applying the same argument to
Mı.Lb/, we get ˇn�k.Mr.Lp0// D 1. Since Lp0 must also have a minimum in Mr.Lp0/,
tautness implies that Lp0 has at least three critical points in Mr.Lp0/ with respective
indices 0, k, n � k.

On the other hand, we know that the sets Mr.Lp0/ and M�C".Lq/ are disjoint. Let
q0 be a point just beyond q on the normal line to M at y and s a real number such
that Ms.Lq0/ � M�C".Lq/. Then the function Lq0 has a nondegenerate critical point
of index h at y, where h is the multiplicity of the focal point q of .M; y/. Thus, h is
either k or n � k. By tautness, we get ˇh.Ms.Lq0// D 1.

Note that �Lp0 is a perfect Morse function, since Lp0 is a perfect Morse function,
and so the injectivity condition on homology holds for sublevel sets of �Lp0 as well.
Let

M�r.�Lp0/ D fz 2 M j �Lp0.z/ � �rg D fz 2 M j Lp0.z/ � rg: (5.305)

Since Ms.Lq0/ � M�C".Lq/, and M�C".Lq/ is disjoint from Mr.Lp0/, we get that

Ms.Lq0/ � M�r.�Lp/ � M: (5.306)

As before, tautness and the fact that ˇh.Ms.Lq0// D 1 imply that

ˇh.M�r.�Lp0// D 1;

and so the perfect Morse function �Lp0 has critical points of index 0 and h in
M�r.�Lp0/. Thus, Lp0 has critical points of index n and n � h in M�r.�Lp0/. These
two critical points are distinct from the three critical points found earlier in Mr.Lp0/,
since r is not a critical value of Lp0 . Thus Lp0 has at least five critical points on M,
contradicting tautness.

This contradiction results from the assumption that the set U is a non-empty
proper subset of M. We conclude that U is either empty or else all of M, that is,
there are either two distinct principal curvatures at each point of M, or else three
distinct principal curvatures at each point of M. ut

The complement of the focal set is connected

Using Lemma 5.60 and the fact that a taut embedding is Dupin (see Theorem 2.83
on page 68), we can prove the next lemma.

Lemma 5.61. Each sheet of the focal set of M is an immersed submanifold of
codimension greater than one. Thus, the complement of the focal set in RnC1 is
path-connected.
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Proof. By Lemma 5.60, the number of distinct principal curvatures is constant
on M. Thus, any given principal curvature function � has constant multiplicity �, and
both � and its corresponding �-dimensional principal foliation are smooth. If � > 1,
then the corresponding sheet of the focal set f�.M/ is an immersed submanifold of
dimension n � � (codimension � C 1) by Theorem 2.12 on page 26. If � D 1, then
since a taut embedding is Dupin by Theorem 2.83, � is constant along its lines of
curvature. Thus f�.M/ is an immersed submanifold of dimension n�1 (codimension
2) by Theorem 2.14 on page 28.

Next we show that the complement ˙ D RnC1 � E.� / of the focal set E.� / is
path-connected. We have shown that the focal set E.� / is the union of the images
of at most three immersions gi W Mi ! RnC1, where dim Mi D n � �i, for �i equal
to the multiplicity of the principal curvature �i. Thus, these immersions all have
codimension greater than one.

Let p and q be any two points in ˙ . Cover each Mi by a countable number of
compact .n � �i/-dimensional disks Dij such that the restriction of gi to each Dij is
an embedding. Transversality (see, for example, Hirsch [200, p. 74]) implies that
there is a path from p to q which is disjoint from gi.Dij/ for all i; j, and so ˙ is
path-connected. ut

We now complete the proof of Theorem 5.59 following the approach used by
Carter and West [61] in proving Theorem 5.53.

Lemma 5.62. There exist exactly two principal curvatures on M and they are
constant along the leaves of their corresponding principal foliations. Hence, M is a
ring cyclide.

Proof. Since M is taut, it is Dupin by Theorem 2.83, and so M is a compact proper
Dupin hypersurface in RnC1 with g D 2 or g D 3 principal curvatures at each point.
We now show that g D 2 and not 3. The normal bundle NM is diffeomorphic to
M � R, and we can write NM D NC [ N� [ N0, as in the proof of Theorem 5.53.

Let ˙ D RnC1 � E.� / be the complement of the focal set in RnC1, and let V D
E�1.˙/. Then E W V ! ˙ is a four-fold covering map with E�1.p/ consisting of
four points in V corresponding to the four critical points of Lp. As in Theorem 5.53,
the index function is locally constant on V , and it induces the decomposition of V
into the disjoint union of open sets,

V D V0 [ Vk [ Vn�k [ Vn: (5.307)

Since ˙ is connected by Lemma 5.61, each Vi is connected. Since the intersection
of the zero-section M0 with V is contained in V0, the connected set Vk lies entirely
in either NC or N�. Suppose now that there are three distinct principal curvatures
�1 > �2 > �3 on M with respective multiplicities k; n � 2k; k. The homology of
M is different than that of a sphere Sn, and thus we know that M is not a convex
hypersurface in RnC1. Thus, there exists a point x 2 M such that there are focal
points of .M; x/ on both the inner and outer normal rays to M at x.
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Since M has three principal curvatures at each point, the first focal point on each
normal ray has multiplicity k. Suppose the outer normal ray at x is equal to the set
of points of the form E.x; t/ for t > 0. If we take a point p D E.x; t/, with t > 0,
beyond the first focal point of .M; x/ but before the second focal point of .M; x/ on
this outer normal ray, then Lp has a nondegenerate critical point of index k at x. By
Corollary 2.52 on page 53, there is a point q D E.y; s/with s > 0 near p such that Lq

is a nondegenerate function having a critical point y of index k near to x. Thus, the
point .y; s/ is in the set Vk \ NC. Similarly, by considering the inner normal ray at x,
we can produce a point in Vk\N�. Thus, the set Vk is not connected, a contradiction.
We conclude that the number of distinct principal curvatures of M is two. Thus, M
is a connected, compact proper Dupin hypersurface in RnC1 with g D 2 principal
curvatures, and so it is a ring cyclide by Theorem 5.26. This completes the proof of
Theorem 5.59. ut

Taut conformally flat hypersurfaces

One can get a similar characterization of taut conformally flat hypersurfaces in
RnC1 as follows. Recall that a Riemannian manifold .M; g/ with Riemannian metric
g is conformally flat if every point of M has a neighborhood that is conformally
equivalent to an open subset in Euclidean space Rn.

Schouten [477] proved that if Mn, n � 4, is an immersed hypersurface in RnC1,
then Mn is conformally flat in the induced metric if and only if at least n � 1 of
the principal curvatures coincide at each point of Mn. This characterization does
not hold if n D 3, and Lancaster [312, p. 6] gave an example of a conformally flat
hypersurface M3 in R4 with three distinct principal curvatures. Using Schouten’s
result, Theorem 5.59, and some basic results for taut immersions, Cecil and Ryan
[92] proved the following theorem.

Theorem 5.63. Let Mn, n � 4, be a connected manifold tautly embedded in RnC1.
Then M is conformally flat in the induced metric if and only if it is one of the
following:

(a) a hyperplane or metric hypersphere;
(b) a cylinder over a circle or an .n � 1/-sphere;
(c) a ring cyclide diffeomorphic to S1 � Sn�1;
(d) a parabolic ring cyclide diffeomorphic to .S1 � Sn�1/ � fpg.

Proof. Since M is tautly embedded, it is a complete hypersurface in RnC1. By
Corollaries 2.66 and 2.68, tautness implies that if M has one umbilic point,
then M is totally umbilic, and thus it is a hyperplane or a metric hypersphere.
Otherwise, M has at least two distinct principal curvatures at each point, and then
by Schouten’s theorem, M has exactly two distinct principal curvatures at each
point, � of multiplicity n � 1, and � of multiplicity one. Since taut implies Dupin
by Theorem 2.83, M is a complete proper Dupin hypersurface with two principal
curvatures at each point, and the theorem follows from Theorem 5.26. ut
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Taut implies connectedness of the complement of the focal set

The following generalization of Lemma 5.61 is of independent interest. This was
proven by Cecil, Chi, and Jensen [84, p. 237]. For simplicity, we will prove the
theorem for submanifolds of the sphere Sn, since then each principal curvature of
each shape operator A� gives rise to a focal point (actually two antipodal focal
points) of M in Sn.

Theorem 5.64. Let M � Sn be a connected taut submanifold of Sn. Then the
complement of the focal set of M in Sn is connected.

Proof. We first handle the case where M � Sn is a connected taut hypersurface.
Then M is compact and orientable, and we let � be a field of unit normal vectors
on M. The normal bundle NM is diffeomorphic to M�R, and the normal exponential
map E W M � R ! Sn is defined by

E.x; t/ D cos t x C sin t �: (5.308)

A point p D E.x; t/ is a focal point of .M; x/ of multiplicity m > 0 if the nullity
of the derivative map E� is equal to m at .x; t/. Let � � M � R denote the set of
critical points of E. Then the focal set of M is the set E.� / � Sn of critical values
of E. Let ˙ denote the complement of the focal set E.� / in Sn.

In the proof of this theorem, we will use Federer’s version of Sard’s Theorem
[154, p. 316] which implies that the image of the set of critical points of a smooth
function f W Rk ! Rl at which the rank of the derivative is less than or equal to � is
of H�-measure 0, where H� denotes the Hausdorff �-dimensional measure.

By Theorem 2.1 on page 11, each principal curvature � of M at x gives rise to
two antipodal focal points, p D E.x; t/ and �p D E.x; t � �/, where � D cot t for
0 < t < � . Thus, the set of focal points of .M; x/ is antipodally symmetric along
the normal geodesic to M at x. Label the principal curvature functions on M as

�1 � �2 � � � � � �n�1: (5.309)

Then each �i is a continuous function (see Ryan [468, p. 371]). Furthermore, if a
continuous principal curvature function � has constant multiplicity m on M, then
� is a smooth function, and its m-dimensional distribution T� of principal vectors
is a smooth foliation by Theorem 2.10. Reckziegel [457, 458] and Singley [486],
independently, showed that for each i, there is an open dense subset of M on which
the principal curvature function �i has locally constant multiplicity and is therefore
smooth.

Choose ti, 0 < ti < � , such that �i D cot ti, then the corresponding focal map,

fi.x/ D cos ti x C sin ti �; (5.310)

is continuous on M and smooth on a dense open subset of M.
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For each i, let Oi be the open subset of M on which �i has multiplicity 1. (The
set Oi could be empty.) If non-empty, then Oi consists of countably many open
components Oij, for j D 1; 2; : : : ; such that the restriction of fi to Oij is an embedded
submanifold of dimension n�2. This follows from Theorem 2.14, since taut implies
Dupin (Theorem 2.83), and Dupin implies that �i is constant along its lines of
curvature in Oi.

Let Zi be the complement of Oi in M. (The set Zi could be empty.) At each
point x of Zi, the principal curvature �i has multiplicity at least 2, and so the normal
exponential map E has rank � n�2 at the point .x; ti/. Thus, the focal point fi.x/ lies
in the singular value set K of points for which the derivative of E has rank � n � 2.

Thus the entire focal set E.� / is composed of the countably many embedded
submanifolds fi.Oij/ of dimension n � 2, their antipodal sets, and the set K which
has Hausdorff .n � 2/-measure zero by the theorem of Federer mentioned above.
Therefore, the Hausdorff .n�1/-measure of the whole focal set E.� / is zero, which
implies that the complement ˙ of E.� / in Sn is connected (see Schoen and Yau
[476, p. 269]).

Next suppose that M � Sn is a connected taut submanifold of codimension
greater than one. Then M must be compact. Let M" be a tube over M of sufficiently
small radius " so that M" is an embedded hypersurface in Sn. By Theorem 2.81, M"

is taut, and so by the argument above, the complement of the focal set of M" in Sn

is connected. By Theorem 2.3, the focal set of the tube M" consists of the union of
the focal set of M with M itself. Thus, the complement of the focal set of M is also
connected. ut

Taut embeddings of 3-manifolds

Concerning taut embeddings of 3-manifolds, Pinkall and Thorbergsson [449] have
proven the following result.

Theorem 5.65. A compact taut 3-dimensional submanifold in Euclidean space is
diffeomorphic to one of the following seven manifolds:
S3, RP3, the quaternion space S3=f˙1;˙i;˙j;˙kg, the 3-torus T3, S1 � S2,
S1 � RP2, S1 �h S2, where h denotes an orientation reversing diffeomorphism of
S2. Furthermore, all of these manifolds admit taut embeddings.

Pinkall and Thorbergsson gave more detail about these embeddings as follows.
Since tautness is invariant under stereographic projection (see Theorem 2.70 on
page 61), they classified spherically substantial taut embeddings, i.e., those which
do not lie in any hypersphere. In the description below, the codimension means the
spherically substantial codimension.

A taut embedding of S3 is a metric hypersphere, as shown in Theorem 2.73 on
page 63. Real projective space RP3 can be tautly embedded with codimension 2 as
the Stiefel manifold V3;2 � S5 � R6 (see Subsection 3.8.4, page 155), and with
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codimension 5 as SO.3/ in the unit sphere in the space of 3 � 3 matrices. It is not
known whether the codimensions 3 and 4 are possible.

The quaternion space is embedded as Cartan’s isoparametric hypersurface in
S4 (see Subsection 3.8.3), where it is unique up to Lie equivalence, and no other
codimensions are possible. The 3-torus can be tautly embedded with codimension
one as a tube in R4 around a torus of revolution T2 � R3 � R4, and with
codimension 2 as T2 � S1 � R5.

The space S1 � S2 can be tautly embedded with codimension 1 as a cyclide of
Dupin (see Theorem 5.26 on page 282), and no other codimension is possible.
The manifold S1 � RP2 can be tautly embedded with codimension 3 as the
product of a metric circle and a Veronese surface. It can be tautly embedded with
codimension 2 as a rotational submanifold with profile submanifold RP2, and the
only codimensions possible are 2 and 3. Finally, S1 �h S2 can be tautly embedded
with codimension 2 as the “complexified unit sphere”

fei�x j � 2 R; x 2 S2 � R3g � S5 � C3: (5.311)

This is one of the focal submanifolds of a homogeneous family of isoparametric
hypersurfaces with four principal curvatures in S5, the other being a Stiefel manifold
V2;3 (see Subsection 3.8.4, page 155). No other codimensions are possible for a taut
embedding of S1 �h S2.

Other results on taut submanifolds

Remark 5.66 (Taut embeddings of 4-manifolds). In a nice survey article on taut
submanifolds, Gorodski [177] obtained some partial results on taut embeddings of
4-manifolds into spheres. Let M be a compact, connected smooth 4-dimensional taut
submanifold of a sphere Sn for some n. Gorodski showed that if M has vanishing
first Betti number, then M is diffeomorphic to S4, S2 � S2 or CP2, and if M has
vanishing second Betti number, then M is diffeomorphic to S4 or S1 � S3.

Remark 5.67 (Taut embeddings of homogeneous spaces). Many important exam-
ples of taut embeddings are homogeneous spaces, e.g., principal orbits of isotropy
representations of symmetric spaces. Thorbergsson [536] found some necessary
topological conditions for the existence of a taut embedding which enabled him
to prove that certain homogeneous spaces do not admit taut embeddings. Similarly,
Hebda [194] found certain necessary cohomological conditions for the existence
of a taut embedding, and he used these results to give examples of manifolds
which cannot be tautly embedded. In the case where M is a compact homogeneous
submanifold substantially embedded in Euclidean space with flat normal bundle,
Olmos [410] showed that the following statements are equivalent:

(a) M is taut;
(b) M is Dupin;
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(c) M has constant principal curvatures;
(d) M is an orbit of the isotropy representation of a symmetric space;
(e) the first normal space of M coincides with the normal space.

Remark 5.68 (Taut representations). Gorodski and Thorbergsson [180, 181] stud-
ied taut representations, i.e., representations of compact Lie groups all of whose
orbits are tautly embedded. Bott and Samelson [49] proved that isotropy repre-
sentations of symmetric spaces (also called s-representations) are taut. For a long
time, the s-representations were the only known examples of taut representations,
but in the paper [181], Gorodski and Thorbergsson classified taut irreducible
representations of compact Lie groups. Their classification includes three families
of representations that are not s-representations, thereby supplying many new
examples of tautly embedded homogeneous spaces. In a subsequent paper, Gorodski
[178] gave a complete classification of all taut representations of compact simple Lie
groups.

In related work, the class of polar representations was introduced by Dadok and
Kac [123] in 1985. In that same year, Dadok [122] proved that a polar representation
of a compact Lie group has the same orbits as the isotropy representation of a
Riemannian symmetric space. More recently, Geatti and Gorodski [172] extended
this theory by showing that a polar orthogonal representation of a connected real
reductive algebraic group has the same closed orbits as the isotropy representation
of a semi-Riemannian symmetric space.

In a related area, a proper isometric action of a Lie group G on a Riemannian
manifold M is called polar if there exists a connected, complete submanifold ˙
(called a section) that meets all orbits of G orthogonally. A basic result is that a
section˙ is a totally geodesic submanifold of M. Biliotti and Gorodsky [40] proved
that the orbits of a polar action of a compact Lie group on a compact rank one
symmetric space are Z2-taut.

Remark 5.69 (Cylindrically taut immersions). Carter, Mansour, and West [59, 65]
introduced a notion of k-cylindrical taut immersion f W M ! Rn by using distance
functions from k-planes in Rn (see also Carter and Şentürk [60], and Carter and West
[65]). For k D 0, this is equivalent to tautness, and for k D n � 1 it is equivalent
to tightness. This theory turns out to closely related to the theory of convex sets
and many of the results concern embeddings of spheres. (See also Wegner [552] for
more on cylindrical distance functions.)



Chapter 6
Real Hypersurfaces in Complex Space Forms

The study of real hypersurfaces in complex projective space CPn and complex
hyperbolic space CHn began at approximately the same time as Münzner’s work on
isoparametric hypersurfaces in spheres. A key early work was Takagi’s classification
[507] in 1973 of homogeneous real hypersurfaces in CPn. These hypersurfaces
necessarily have constant principal curvatures, and they serve as model spaces for
many subsequent classification theorems. Later Montiel [378] provided a similar list
of standard examples in complex hyperbolic space CHn. In this chapter, we describe
these examples of Takagi and Montiel in detail, and later we prove many important
classification results involving them.

Each of these ambient spaces can be endowed with a well-known Riemannian
metric. For CPn this is a Fubini-Study metric of constant positive holomorphic
sectional curvature, and for CHn it is a Bergman metric of constant negative
holomorphic sectional curvature. While these spaces may be regarded as the next
simplest ambient spaces after the real space forms, their geometry is significantly
different in fundamental ways. For example, there are no totally umbilic real
hypersurfaces in either of these spaces, and the geodesic spheres in these spaces
do not have constant sectional curvature. There are also no Einstein hypersurfaces
in either of these spaces.

Let M be a real hypersurface in CPn or CHn with field of unit normals � . The
structure vector on M is defined by W D �J� , where J is the complex structure of
the ambient space. In early papers on this subject, computations involving the shape
operator and focal submanifolds of M were found to be much simpler in the case
where W is a principal vector field on M. Furthermore, a tube of constant radius
over a complex submanifold in CPn or CHn always has this property. Eventually,
hypersurfaces for which W is a principal vector field were given the name Hopf
hypersurfaces, and the study of Hopf hypersurfaces has become a major part of the
theory. An important first result is that the Hopf principal curvature ˛ corresponding
to the principal vector field W is always constant.

© Thomas E. Cecil and Patrick J. Ryan 2015
T.E. Cecil, P.J. Ryan, Geometry of Hypersurfaces, Springer Monographs
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The homogeneous hypersurfaces in CPn or CHn on the lists of Takagi and
Montiel are all Hopf hypersurfaces with constant principal curvatures, as we show
in this chapter. The principal curvatures of these hypersurfaces are most easily com-
puted by considering the hypersurface as a tube over one of its focal submanifolds.
Here we develop formulas for the principal curvatures of a tube similar to those
found for tubes over submanifolds of real space forms in Theorem 2.2 (page 17).

A major theorem due to Kimura [270] in CPn (see Theorem 8.13) and Berndt
[27] in CHn (see Theorem 8.12) states that a Hopf hypersurface with constant
principal curvatures is one of the hypersurfaces on the list of Takagi for CPn and
Montiel for CHn. The proofs of these classifications require an analogue of Cartan’s
formula involving the principal curvatures (see Theorem 8.6), as well as a detailed
study of the focal submanifold determined by the Hopf principal curvature ˛. This
focal submanifold (if non-empty) is necessarily a complex submanifold with certain
special properties, and these will be studied in Chapter 7.

Certain important classes of hypersurfaces can also be defined by conditions on
the holomorphic distribution W? orthogonal to W. For example, a hypersurface is
said to be pseudo-Einstein if the Ricci tensor acts as a multiple of the identity on
both W D span W and W?. This is the appropriate generalization of the Einstein
condition for hypersurfaces of complex space forms. We will study this condition as
well as several other natural conditions on the shape operator, curvature tensor, and
Ricci tensor of a real hypersurface M in detail in Chapter 8.

Remark 6.1. As we continue our study of hypersurfaces in a new context, that of
complex space forms, we introduce a few changes in terminology.

• Rather than metric sphere, we use the equivalent term geodesic sphere which is
more commonly used in complex space forms.

• The terms manifold, hypersurface, and submanifold will include the attribute
connected unless otherwise noted.

• When dealing with real space forms, we chose, for convenience, to work with
ambient spaces having constant curvature ˙1 since this simplification has no
significant effect on our results and any quantitative information arising can be
easily scaled. From now on, however, we will need to deal, for example, with
hypersurfaces in spheres of different radii. If a hypersurface in a sphere of radius
1 has a principal curvature cot � , the corresponding hypersurface in a sphere of
radius r will have principal curvature 1

r cot � . We will often make this translation
in what follows, especially when using the results on isoparametric hypersurfaces
from Chapter 3.

• The formulation used for Clifford algebras in Section 7.5 differs slightly from
that used in Section 3.9 and thus should be regarded as independent. Background
material on Clifford algebras may be found in Pressley and Segal [453].
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6.1 Complex Space Forms

In this section we construct the standard models of the nonflat complex space forms,
complex projective space CPn and complex hyperbolic space CHn. We assume that
n � 2 throughout.

Complex projective space

We first construct complex projective space. For z D .z0; : : : ; zn/ and w D
.w0; : : : ;wn/ in CnC1, write

F.z;w/ D
nX

kD0
zk Nwk

and let hz;wi D <F.z;w/, the real part of F.z;w/. The sphere S2nC1.r/ of radius r
is defined by

S2nC1.r/ D fz 2 CnC1 j hz; zi D r2g:

We may identify CnC1 with R2nC2, defining u; v 2 R2nC2 by

z` D u2` C u2`C1 i (6.1)

w` D v2` C v2`C1 i

for 0 � ` � n. Then

hz;wi D hu; vi D
2nC1X

`D0
u`v`

is the usual inner product on R2nC2. We will use hz;wi and hu; vi interchangeably.
When desired, we can work exclusively in real terms by introducing the complex
structure J for multiplication by the complex number i. Note that for z 2 S2nC1.r/,

TzS
2nC1.r/ D fw 2 R2nC2 j hz;wi D 0g:

The restriction of h ; i to S2nC1.r/ is a Riemannian metric whose Levi-Civita
connection Qr satisfies

DXY D QrXY � hX;Yi z

r2
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for X, Y tangent to S2nC1.r/ at z, where D is the Levi-Civita connection of R2nC2.
The usual calculations of the Gauss equation show that the curvature tensor QR of Qr
satisfies

QR.X;Y/ D 1

r2
X ^ Y; (6.2)

where X ^ Y denotes the linear transformation satisfying

.X ^ Y/Z D hY;ZiX � hX;ZiY: (6.3)

Let V be the span of fJzg and write down the orthogonal decomposition into so-
called vertical and horizontal subspaces,

TzS
2nC1.r/ D V ˚ V?:

The complex projective space CPn is the set of complex 1-dimensional subspaces
of CnC1. The canonical projection is

� W S2nC1.r/ ! CPn

with fiber S1.

Complex hyperbolic space

Next, we introduce the complex hyperbolic space CHn. The construction is parallel
to that of CPn with some important differences. For z, w in CnC1, write

F.z;w/ D �z0 Nw0 C
nX

kD1
zk Nwk

and let hz;wi D <F.z;w/. Using the same identification of CnC1 with R2nC2 we get

hz;wi D hu; vi D �
1X

`D0
u`v` C

2nC1X

`D2
u`v`:

Set

H D fz 2 CnC1 j hz; zi D �r2g:

The restriction of h ; i to H makes it into the anti-de Sitter space H2nC1
1 .r/, a semi-

Riemannian space form of constant curvature �1=r2. It is a Lorentz space as its
index is 1 (see O’Neill [412, p. 110]). Its tangent space is given by
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TzH D fw 2 CnC1 j hz;wi D 0g;

and its Levi-Civita connection Qr satisfies

DXY D QrXY C hX;Yi z

r2

at z. The Gauss equation takes the form

QR.X;Y/ D � 1

r2
X ^ Y: (6.4)

Again we get an orthogonal decomposition

TzH D V ˚ V?:

Denote by CHn the image of H by the canonical projection � to complex projective
space,

� W H ! CHn � CPn:

Thus, topologically, CHn is an open subset of CPn. However, as Riemannian
manifolds, they have quite different structures.

The Complex Space Forms CPn and CHn

From here on we make a uniform exposition covering both CPn and CHn. When
convenient, we make use of the letter 	 to distinguish the two cases. It will serve as
the sign of the constant holomorphic sectional curvature 4c D 4	=r2. For example,
equations (6.2) and (6.4) could be written as

QR.X;Y/ D 	

r2
X ^ Y:

We also use QM to stand for either CPn or CHn and QM0 for S2nC1.r/ or H.
Note that ��V D 0 but that �� is an isomorphism on V?. Let z be any point

of QM0. For X 2 T�z QM, let XL be the vector in V?z that projects to X. The vector
XL is called the horizontal lift of X to z. Define a Riemannian metric on QM by
hX;Yi D hXL;YLi. It is well defined since the metric on QM0 is invariant by the fiber
S1. Since V? is invariant by J, the manifold QM can be assigned a complex structure
which we (by abuse of notation) also denote by J by setting JX D ��.JXL/. The
reader can easily distinguish by context. Specifically, we define for X 2 Tz QM,

JX D ��.JXL/:
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It is easy to check that h ; i is Hermitian with respect to J and its Levi-Civita
connection Qr satisfies

QrXY D ��. QrXL YL/:

We also note that on QM0

QrXL V D QrVXL D JXL D .JX/L (6.5)

for V D Jz 2 V; while

QrVV D 0:

See O’Neill [411] for background on Riemannian submersions.
The curvature tensor of QM follows from the relationship between the respective

Levi-Civita connections on QM and QM0.
Theorem 6.2. The curvature tensor QR of QM satisfies

QR.X;Y/Z D 	

r2
.X ^ Y C JX ^ JY C 2hX; JYiJ/Z: (6.6)

In particular, it follows from equation (6.6) that every holomorphic 2-plane (i.e.,
one with a basis of the form fX; JXg) has sectional curvature 4	=r2 which we can
write as 4c. Such a space is said to have constant holomorphic sectional curvature.
Note also that QrJ D 0 on QM so that our metrics are Kähler. These metrics are
traditionally known as the Fubini-Study metric on CPn and the Bergman metric
on CHn. A detailed discussion of these metrics may be found in Chapter IX of
Kobayashi and Nomizu [283].

6.2 Real Hypersurfaces

Now take any space QM of constant holomorphic curvature 4c with real dimension
2n and Levi-Civita connection Qr. For an immersed manifold f W M2n�1 ! QM, the
Levi-Civita connection r of the induced metric and the shape operator A of the
immersion are characterized, respectively, by

QrXY D rXY C hAX;Yi�;

and

QrX� D �AX;
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where � is a local choice of unit normal. We omit mention of the immersion f in
these equations for brevity of notation. We define the structure vector W D �J� on
M. Also, we get the .1; 1/ tensor field ' on M by projection of J. Specifically, for
all tangent vectors X, we define

'X D JX � hJX; �i� D JX � hX;Wi�:

Let W be the span of W. Then ' preserves W and W?. In fact, 'W D 0 and
'2X D �X for X 2 W?: The distribution W? is called the holomorphic
distribution.

The relationship between Qr and r gives rise to the Gauss and Codazzi equations
given, respectively, by

QR.X;Y/ D AX ^ AY C c .X ^ Y C 'X ^ 'Y C 2hX; 'Yi'/ ; (6.7)

.rXA/Y � .rYA/X D c.hX;Wi'Y � hY;Wi'X C 2hX; 'YiW/: (6.8)

Proposition 6.3.

h.rXA/Y � .rYA/X;Wi D 2c hX; 'Yi
h.rXA/W;Wi D h.rWA/X;Wi D h.rWA/W;Xi:

Proof. The first equation follows by taking the inner product of the Codazzi
equation with W, and the second follows by letting Y D W. ut

Proofs of the following two basic propositions may be found in Niebergall and
Ryan [399, pp. 239–240].

Proposition 6.4.

rXW D 'AX:

.rX'/Y D hY;WiAX � hAX;YiW:

Proposition 6.5. If c ¤ 0, then rW cannot be identically zero. Equivalently, 'A
cannot be identically zero.

We next show that there are no totally umbilic hypersurfaces in CPn or CHn.
This was first shown by Tashiro and Tachibana [523] in 1963. We also find that the
shape operator cannot be parallel.

Theorem 6.6. Let M2n�1, where n � 2, be a hypersurface in a complex space form
of constant holomorphic sectional curvature 4c ¤ 0. Then the shape operator A
cannot be parallel. Also, no identity of the form A D �I can hold, even with �
nonconstant. In particular, totally umbilic hypersurfaces cannot occur.
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Proof. Suppose first that A D �I. Then the Codazzi equation (6.8) becomes

.X�/Y � .Y�/X D c.hX;Wi'Y � hY;Wi'X C 2hX; 'YiW/: (6.9)

If we take Y D W in this equation, it reduces to

.X�/Y � .Y�/X D �c'X: (6.10)

For X ¤ 0 orthogonal to W, the set fX; 'X;Wg is linearly independent, and so
c D 0, contradicting the hypothesis. Now suppose that rA D 0. Taking X ¤ 0

orthogonal to W and Y D W in the Codazzi equation yields �c'X D 0, another
contradiction. ut
Remark 6.7. We note that this does not rule out the possibility of umbilic points.
However, they cannot be so numerous as to form an open set.

The Ricci tensor S of type .1; 1/ is defined by the equation

hSX;Yi D trace fZ 7! R.Z;X/Yg: (6.11)

Using the Gauss equation, we compute the Ricci tensor S to be given by

SX D .2n C 1/cX � 3chX;WiW C .trace A/AX � A2X: (6.12)

The trace of the shape operator A is denoted by m and we reserve the symbol m
for this purpose throughout. It is, of course, closely related to the mean curvature
m=.2n � 1/.

A hypersurface is said to be pseudo-Einstein if the Ricci tensor acts as a multiple
of the identity on both W and W?. Thus, M is pseudo-Einstein if there exist
functions � and � such that

SX D �X C �hX;WiW

for all tangent vectors X. Although it is traditional to require that � and � be
constant (see, for example, Kon [289]), we will not do this since it follows from
the classification (see Theorems 8.63 and 8.64). In fact, it is easy to see that even
the smoothness of � and � need not be assumed. Note that if � is identically zero,
we have the familiar Einstein condition. However, it will turn out that Einstein
hypersurfaces cannot occur in CPn or CHn (see Theorem 8.69).

6.3 Examples in CPn (Takagi’s list)

In this section, we introduce a list of examples that first appeared in Takagi’s
[507] classification of homogeneous hypersurfaces in CPn – hence the designation
“Takagi’s list.” The principal curvatures listed below can easily be computed from
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the formulas for the shape operator of a tube over a submanifold given later in
Subsection 6.7.1, and several of them are computed there. Here we simply list the
principal curvatures without giving the calculations.

Let M be a totally geodesic CPk in CPn. For 0 < u < �
2
; the tube of radius ru

over M is a hypersurface in CPn. Such tubes fall into two categories, Type A1 and
Type A2. We present them in the following order to simplify the exposition.

Type A2
If 1 � k � n � 2, then the tube has the following principal curvatures:

• ˛ D 2
r cot 2u of multiplicity 1;

• � D 1
r cot u of multiplicity 2`;

• � D � 1
r tan u of multiplicity 2k,

where k C ` D n � 1.

Type A1
If k D n � 1, the tube has the following principal curvatures:

• ˛ D 2
r cot 2u of multiplicity 1;

• � D � 1
r tan u of multiplicity 2k D 2n � 2.

The Type A1 hypersurfaces are tubes over complex projective hyperplanes. They are
also geodesic spheres. For example, the geodesic sphere centered at �e0 with radius
r.�
2

� u/ coincides with the tube of radius ru over the totally geodesic CPn�1 D
�fz j z0 D 0g. In fact, if we abuse notation slightly and set k D 0 in the prescription
for Type A2 hypersurfaces, we get

• ˛ D 2
r cot 2u of multiplicity 1;

• � D 1
r cot u of multiplicity 2n � 2

which, upon substitution of �
2

� u for u, would give the configuration of principal
curvatures derived for the Type A1 case (with a change of sign).

Type B
Let M be a totally geodesic real projective space RPn in CPn. This can be obtained,
for example, by setting the imaginary part of all coordinates to zero, i.e.,

M D �fz 2 S2nC1.r/ j =z D 0g � CPn; (6.13)

where =z denotes the imaginary part of z. For 0 < u < �
4
; the tube of radius ru

over M is a hypersurface in CPn. Such a hypersurface is said to be of Type B. Its
principal curvatures are as follows:
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• ˛ D 2
r tan 2u of multiplicity 1;

• � D � 1
r cot u of multiplicity n � 1;

• � D 1
r tan u of multiplicity n � 1.

This hypersurface coincides with the tube of radius r.�
4

� u/ over the complex
quadric Qn�1 and a description from this point of view is given in Subsection 6.7.1.

The Type B hypersurfaces are the images under � of the family of isoparametric
hypersurfaces in the sphere S2nC1.r/ with four principal curvatures discussed in
Subsection 3.8.4 (page 155).

Type C
These are tubes over the Segre embedding of CP1 � CPm�1 in CPn. The specific
construction will be given in Section 7.3 (page 400).

Type D
These are tubes over the Plücker embedding into CP9 of the Grassmann manifold
of complex 2-planes in C5. The specific construction will be given in Section 7.4
(page 405).

Type E
These are tubes over the half-spin embedding of SO.10/=U.5/ in CP15. The specific
construction will be given in Section 7.5 (page 412).

The principal curvatures of the hypersurfaces of types C, D, and E may be found
in [399, p. 261]. See also Proposition 8.14 and the ambient discussion.

6.4 Examples in CHn (Montiel’s list)

The hypersurfaces that we introduce in this section first appeared in Montiel’s paper
[378] – hence the designation “Montiel’s list.” The principal curvatures listed below
can easily be computed from the formulas for the shape operator of a tube over a
submanifold given later in Subsection 6.7.1.

Let M be a totally geodesic CHk in CHn. For u > 0 the tube of radius ru over M
is a hypersurface in CHn. Such tubes fall into two categories, Type A1 and Type A2.

Type A2
If 1 � k � n � 2, the tube has the following principal curvatures:

• ˛ D 2
r coth 2u of multiplicity 1;

• � D 1
r coth u of multiplicity 2`;

• � D 1
r tanh u of multiplicity 2k.

where k C ` D n � 1.
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Type A1
If k D n � 1, the tube has the following principal curvatures:

• ˛ D 2
r coth 2u of multiplicity 1;

• � D 1
r tanh u of multiplicity 2k D 2n � 2.

These hypersurfaces are tubes over complex hyperbolic hyperplanes. The geodesic
spheres in CHn (unlike those in CPn) form a distinct class of hypersurfaces, formally
corresponding to the k D 0 case. The geodesic spheres of radius ru in CHn have
principal curvatures

• ˛ D 2
r coth 2u of multiplicity 1;

• � D 1
r coth u of multiplicity 2n � 2,

and they are also designated as Type A1 hypersurfaces.

Type A0
These are the horospheres in CHn. The principal curvatures are as follows:

• ˛ D 2
r of multiplicity 1;

• � D 1
r of multiplicity 2n � 2:

Type B

Let M be a totally geodesic real hyperbolic space RHn in CHn. In a similar fashion
to the CPn case, we take

M D �.fz 2 H j =z D 0g/ � CHn: (6.14)

For u > 0; the tube of radius ru over M is a hypersurface in CHn. Its principal
curvatures are as follows:

• ˛ D 2
r tanh 2u of multiplicity 1 (except when coth u D 2 tanh 2u);

• � D 1
r coth u of multiplicity n � 1 (except when coth u D 2 tanh 2u);

• � D 1
r tanh u of multiplicity n � 1.

Such a hypersurface is said to be of Type B. In the special case noted, � and ˛ have
the same value and so the common multiplicity is n.

Remark 6.8. When introducing the complex space forms CPn and CHn earlier in
this chapter, we specified that n � 2. More specifically, we will assume this when
these spaces are used as ambient spaces. However, our definitions work equally well
for n D 1 and both CP1 and CH1 can occur as submanifolds, as they have in the
construction of Type A1 and Type A2 hypersurfaces. Note that the 1-dimensional
complex space forms are surfaces of constant curvature 4c since all 2-planes are
holomorphic planes. Thus they are, in fact, isometric to spheres or real hyperbolic
planes depending on the sign of c.
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6.5 Properties of Type A; B; C; D, and E Hypersurfaces

For brevity of notation, hypersurfaces of types A0, A1, and A2 are all referred to
as Type A hypersurfaces. An immediate observation is that all the hypersurfaces
we have introduced so far have constant principal curvatures. It will follow from
our construction later on that the structure vector W D �J� is a principal vector
for the principal curvature ˛, i.e., they are Hopf hypersurfaces (see definition in
Section 6.6). There is a useful criterion, following directly from (6.12), for such a
hypersurface to be pseudo-Einstein.

Proposition 6.9. A Hopf hypersurface is pseudo-Einstein if and only if

�C � D m

whenever � and � are distinct principal curvatures corresponding to principal
vectors in W?.

Proposition 6.9 includes the possibility that no such distinct pair f�;�g exists, (i.e.,
A acts as a scalar multiple of the identity on W?), in which case the hypersurface
in question is pseudo-Einstein. We also have

Proposition 6.10.
1. For Type A2 and B hypersurfaces ��C c D 0.
2. For Type A2 hypersurfaces, �C � D ˛.
3. For Type B hypersurfaces, .�C �/˛ C 4c D 0.
4. Type A1 hypersurfaces are pseudo-Einstein with

SX D ��X C .�˛ � ��/hX;WiW;

where

�� D 2nc C 2.n � 1/�2; (6.15)

�˛ D 2.n � 1/�2;

and � is the principal curvature of multiplicity 2n � 2.
5. Type A0 hypersurfaces are pseudo-Einstein with

SX D ��X C .�˛ � ��/hX;WiW;

where

�� D 2c; (6.16)

�˛ D �2.n � 1/c:

(Note that these values are limits as u ! 1 of the respective values for the
corresponding Type A1 hypersurfaces.)
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6. The principal vectors of Type A2 hypersurfaces are also eigenvectors of the Ricci
tensor S with corresponding eigenvalues

�� D 2.`C 1/c C 2`�2; (6.17)

�� D 2.k C 1/c C 2k�2;

�˛ D 2`�2 C 2k�2:

7. A Type A2 hypersurface in CPn is pseudo-Einstein if and only if its radius as a
tube over CPk is ru where

cot2 u D k

`
:

In this case, �� D �� D 2nc, while �˛ D 2.n � 1/c. No Type A2 hypersurface in
CHn is pseudo-Einstein.

8. The principal vectors of Type B hypersurfaces are also eigenvectors of the Ricci
tensor S with corresponding eigenvalues

�˛ D �2.n � 1/c; (6.18)

�� D .n C 2/c C .n � 2/�2 C ˛�;

�� D .n C 2/c C .n � 2/�2 C ˛�:

9. A Type B hypersurface in CPn is pseudo-Einstein if and only if its radius as a
tube over RPn is ru where

tan2 2u D n � 2:

In this case, �� D �� D 2nc, while �˛ D �2.n � 1/c. No Type B hypersurface
in CHn is pseudo-Einstein.

10. The hypersurfaces discussed in this section are not Einstein.

Lifts of hypersurfaces in QM to QM0

We now show how to relate the shape operators of hypersurfaces in complex space
forms to shape operators in the more familiar setting of hypersurfaces in real space
forms. Detailed proofs of the assertions in this section may be found in Niebergall
and Ryan [399, pp. 240–242].

Once again, we let QM represent CPn or CHn and QM0 represent S2nC1.r/ or H
respectively, with the canonical projection

� W QM0 ! QM:
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Now consider a hypersurface M in QM. Then M0 D ��1M is an S1-invariant
hypersurface in QM0 (Lorentzian in the case QM0 D H). If � is a unit normal for
M, then � 0 D �L is a unit normal for M0. The induced connection r 0 and the shape
operator A0 for M0 satisfy

QrXY D r 0XY C hA0X;Yi� 0;
QrX�
0 D �A0X;

and the more familiar form of the Codazzi equation

.r 0XA0/Y D .r 0YA0/X

holds. There is also a Gauss equation, but we will not have occasion to use it. In
addition, WL D U D �J� 0, where W D �J� is the structure vector introduced
earlier.

Lemma 6.11. For X and Y tangent to QM,

. QrXY/L D QrXL YL C hJXL;YLi 	
r2

V:

Recalling that c D 	=r2 and computing the shape operator A0 of M0, we have

Lemma 6.12. • QrV�
0 D J� 0 D �U, so A0V D U.

• For X tangent to M, .AX/L D A0XL � hXL;UicV:
• In particular, .AW/L D A0U � cV:
• If AW D ˛W, then A0U D ˛U C cV.

We now look at the relationship between the covariant derivatives of the
respective shape operators of M and M0.

Theorem 6.13. Let M2n�1, where n � 2; be a real hypersurface in a complex space
form of constant holomorphic sectional curvature 4c ¤ 0. Then the shape operator
A0 of M0 D ��1M satisfies

��..r 0XL A0/YL/ D .rXA/Y C c.h'X;YiW C hY;Wi'X/

for all X, Y tangent to M.

Clearly this, together with the Codazzi equation for M0 in QM0, leads to the Codazzi
equation (6.8) for M in QM. We also look at the vertical component of the covariant
derivative of A0 and observe the following nice relationship.

Proposition 6.14. Under the hypothesis of Theorem 6.13,

h.r 0XL A0/YL;Vi D h.'A � A'/X;Yi:

Therefore .r 0
XL A0/YL is horizontal for all X and Y if and only if ' and A commute.
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Using Theorem 6.13, we can strengthen the result that the shape operator
cannot be parallel. In fact, its covariant derivative cannot vanish even at one point.
Specifically we have

Theorem 6.15. Let M2n�1, where n � 2; be a real hypersurface in a complex space
form of constant holomorphic sectional curvature 4c ¤ 0. Then the shape operator
A satisfies

jrAj2 � 4c2.n � 1/:

Equality holds if and only if

.rXA/Y D �c.h'X;YiW C hY;Wi'X/

for all X and Y.

The proof of this theorem is given in detail in [399, p. 243]. In a later section, we
will show an even stronger result. Specifically, equality holds if and only if M is an
open subset of a Type A hypersurface.

6.6 Basic Results on Hopf Hypersurfaces

A hypersurface in a complex space form is said to be a Hopf hypersurface if
W D �J� is a principal vector. If AW D ˛W, then ˛ is called the Hopf principal
curvature. We shall see in Chapter 8 that the hypersurfaces in the Takagi/Montiel
lists are Hopf. Further, we shall see that all hypersurfaces that are tubes over
complex submanifolds are Hopf.

The following fact is fundamental.

Theorem 6.16. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Then the Hopf principal curvature ˛ is constant.

The proof of this is easy for CPn but rather difficult for CHn. See [399, pp. 244–252]
for a complete proof. We also have the following useful result.

Theorem 6.17. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or
CHn. Then

1. A'A � ˛
2
.A' C 'A/ � c' D 0.

2. If X 2 W? and AX D �X, then

�
� � ˛

2

	
A'X D

�
�˛

2
C c

�
'X:
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3. If 0 ¤ X 2 W? satisfies AX D �X and A'X D �'X; then

�� D �C �

2
˛ C c:

If T� is '-invariant, then �2 D ˛�C c. (Here T� denotes the space of principal
vectors for a principal curvature �.)

The following criteria for principal curvatures and principal vectors are equiva-
lent to Theorem 6.17.

Corollary 6.18. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Then for each p 2 M, W?p has an orthonormal basis consisting of n � 1 pairs
fX; 'Xg of principal vectors with corresponding respective principal curvatures �
and � such that exactly one of the following holds:

1. � ¤ �, neither � nor � is equal to ˛
2

and �� D �C�
2
˛ C c;

2. � D � ¤ ˛
2

and �2 D ˛�C c;

3. � ¤ � D ˛
2

and �� D �C�
2
˛ C c;

4. � D � D ˛
2

and �2 D ˛�C c.

Clearly, 3. and 4. cannot occur unless ˛2 C 4c D 0. In particular, they cannot occur
when the ambient space is CPn. On the other hand, if a Hopf hypersurface M in
CHn happens to satisfy ˛2 C 4c D 0, then 1. and 2. cannot occur and the only
possibilities are 3. and 4. In this case, the condition �� D �C�

2
˛C c does not place

any restriction on � but implies that � D ˛
2

.
We can now refine Theorem 6.15 as follows:

Theorem 6.19. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then 'A D A' if and only if

• M is a Hopf hypersurface with constant principal curvatures, and
• the number of distinct principal curvatures is 2 or 3, and
• the principal subspaces are '-invariant.

That is, the principal curvature configuration matches that of a Type A hypersurface.

Later, (see Theorem 8.37) we will show that such an M is actually an open subset
of a Type A hypersurface.

Proof. First note that the “if” part of this theorem is almost trivial. Since AW D ˛W,
we have 'AW D '˛W D ˛'W D 0 D A'W. Also, if AX D �X for X 2 W?, then
A'X D �'X D '�X D 'AX. Thus, A' � 'A vanishes on a basis of the tangent
space, and therefore it vanishes identically.

Now assume that 'A D A'. First note that 'AW D A'W D 0. Thus M is a Hopf
hypersurface. Now suppose that � is a principal curvature with associated principal
vector X 2 W?. Then A'X D 'AX D �'X. Applying Theorem 6.17, we find that
T� is '-invariant and �2 D ˛� C c. Noting that the Hopf principal curvature ˛ is
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constant, the same is also true about the two possible roots of the quadratic equation.
The number of distinct principal curvatures is therefore either 2 or 3. Note that the
principal space of ˛, namely W , is also '-invariant. This completes the proof. ut

6.7 Parallel Hypersurfaces, Focal Sets, and Tubes

Let M be a submanifold of a complex space form QM (either CPn or CHn) of (real)
codimension �. As in Section 2.2 for submanifolds of real space forms, the normal
exponential map E W NM ! QM is smooth and nonsingular at points on the 0-section
of NM. Thus, in trying to locate the critical values of E, we restrict our attention to
points NM that are not in the 0-section.

As in Section 2.2 (page 11) for submanifolds of real space forms, the normal
exponential map can be formulated as follows:

1. Choose a point p 2 M.
2. Let U � M be a normal coordinate neighborhood centered at p.
3. Choose an orthonormal basis f�jg1�j�� for the normal space at p.
4. Extend this basis to an orthonormal frame in U by parallel translation (with

respect to the normal connection) along radial geodesics beginning at p.

We parametrize the normal bundle (minus the 0-section) locally, defining


 W .0;1/ � S��1 � U ! NM (6.19)

by


.�; a; x/ D �

�X

jD1
aj�j.x/; (6.20)

where the vector 
.�; a; x/ is normal to M at the point x 2 U. Then

.E ı 
/.�; a; x/

is the point of QM reached by traveling a distance � along the geodesic beginning at
x and having direction

P�
jD1 aj�j.x/:

Let QM0 be the set of “length r” vectors in CnC1 with respect to the metric that
defines QM, that is, QM0 is S2nC1.r/ or H2nC1

1 .r/. We have the natural projection � W
QM0 ! QM with fiber S1 and denote ��1M � QM0 by M0. For any x 2 U, let w be

a point in M0 such that �w D x: Each tangent vector X to QM at x has a unique
horizontal lift XL, tangent to QM0 at w. (In fact, a vector field on QM can be lifted
uniquely to a horizontal vector field on QM0.)

Focal points occur when the differential of the normal exponential map E is
singular, i.e., when its rank is less than 2n. A typical point in the normal bundle
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(not in the 0-section) may be regarded as ��1.p/ using the setup described above.
Evaluating E� at this point is equivalent to evaluating the differential .E ı 
/� at
the point .�; 	1; p/; where f	jg, 1 � j � �, is the standard basis of R� . Now, writing
u D �=r; we have

.E ı 
/.�; a; x/ D �z; (6.21)

where

z D cos u w C r sin u �L
1 .w/; (6.22)

and

z D cosh u w C r sinh u �L
1 .w/; (6.23)

in the CPn and CHn cases, respectively. Here, �L
1 .w/ is the horizontal lift of �1.x/

to w. Locally, z is determined by a single choice of w so that it may be regarded a
smooth function of .�; a; x/: Let

 D � sin u
w

r
C cos u �L

1 .w/ (6.24)

respectively,

 D sinh u
w

r
C cosh u �L

1 .w/: (6.25)

Note that both  and i are horizontal at z.
We now express .E ı 
/� in terms of a basis consisting of @

@�
for .0;1/, f	jg,

2 � j � �, for T	1S
��1, and an orthonormal basis of TxM. The latter is made up

of eigenvectors X of the shape operator A�1 with corresponding eigenvalue �. We
compute

.E ı 
/� @
@�

D .��/z (6.26)

.E ı 
/�	j D .��/z.r sin u �L
j .w//

.E ı 
/�X D .��/z
�
.cos u � r� sin u/XL C sin u hJ�1;Xi iw

r

�

for CPn, and

.E ı 
/� @
@�

D .��/z (6.27)

.E ı 
/�	j D .��/z.r sinh u �L
j .w//

.E ı 
/�X D .��/z
�
.cosh u � r� sinh u/XL � sinh u hJ�1;Xi iw

r

�
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for CHn. However, the arguments of .��/z are not automatically horizontal. There
are two special cases for which it is relatively easy to modify the arguments so that
they will be horizontal, as we now discuss.

Case 1: when M is a complex submanifold

If M is a complex submanifold, then J�1 is also a unit normal vector, so that we may
choose �2 D J�1. Note that J�1 is parallel along geodesics emanating from p. Our
equations now become

.E ı 
/� @
@�

D .��/z (6.28)

.E ı 
/�	2 D .��/z
�

r

2
sin 2u i

�

.E ı 
/�	j D .��/z.r sin u �L
j .w// for j � 3

.E ı 
/�X D .��/z
�
.cos u � r� sin u/XL

�

and

.E ı 
/� @
@�

D .��/z (6.29)

.E ı 
/�	2 D .��/z
�

r

2
sinh 2u i

�

.E ı 
/�	j D .��/z.r sinh u �L
j .w// for j � 3

.E ı 
/�X D .��/z
�
.cosh u � r� sinh u/XL

�

in their respective contexts. In the CPn case, we may choose � to satisfy 0 < � < �
and � D 1

r cot � , in which case the last equation in (6.28) may be rewritten as

.E ı 
/�X D sin.� � u/

sin �
.��/zXL: (6.30)

Case 2: when J�1 is an eigenvector for A�1

In the second special case, we write �1 as � and A�1 as A. We assume that W D �J�
is a tangent vector to M satisfying AW D ˛W: This generalizes the Hopf condition.
Our equations become:
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CPn case:

.E ı 
/� @
@�

D .��/z (6.31)

.E ı 
/�W D �.��/z
�
.cos 2u � r˛

2
sin 2u/i

�

.E ı 
/�	j D .��/z.r sin u �L
j .w// for j � 2

.E ı 
/�X D .��/z
�
.cos u � r� sin u/XL

�
for X 2 W?

where X is any eigenvalue of A with corresponding eigenvalue �. The arguments for
.��/z are horizontal tangent vectors to QM0 at z. All of this is immediate, except for
the formula involving W. We verify it as follows:

.cos u � r˛ sin u/WL C sin u hJ�;Wi iw

r
(6.32)

D i C .2 cos u � r˛ sin u/ WL


 i C .2 cos u � r˛ sin u/
�
WL C sin u

iz

r

�

D i C .2 cos u � r˛ sin u/
�

cos2 u WL C sin u cos u
iw

r

�

D i C .2 cos2 u � r˛ sin u cos u/.�i/

D �
�

cos 2u � r˛

2
sin 2u

	
i

where 
 represents equivalence with respect to .��/z:

CHn case:
Under analogous conditions on X and �, we have

.E ı 
/� @
@�

D .��/z (6.33)

.E ı 
/�W D �.��/z
�
.cosh 2u � r˛

2
sinh 2u/i

�

.E ı 
/�	j D .��/z.r sinh u �L
j .w// for j � 2

.E ı 
/�X D .��/z
�
.cosh u � r� sinh u/XL

�
;

where again, the arguments of .��/z are horizontal and we need only verify the
equation involving W, as follows:

.cosh u � r˛ sinh u/WL � sinh u hJ�;Wi iw

r
(6.34)

D i C .2 cosh u � r˛ sinh u/ WL


 i C .2 cosh u � r˛ sinh u/
�
WL � sinh u

iz

r

�
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D i C .2 cosh u � r˛ sinh u/
�

cosh2 u WL � sinh u cosh u
iw

r

�

D i C .2 cosh2 u � r˛ sinh u cosh u/.�i/

D �.cosh 2u � r˛

2
sinh 2u/ i

where 
 represents equivalence with respect to .��/z:

6.7.1 Shape operators of tubes

In this section, we find formulas for shape operators of tubes over submanifolds in
complex space forms similar to the formulas in Theorem 2.2 on page 17 for tubes
over submanifolds of real space forms.

Fix a value of � > 0 and the associated value u D �=r: Define �u and E� by

�u.a; x/ D .E ı 
/.�; a; x/ D E�.
.1; a; x//:

Then .�u/� may be read off from the formulas displayed above as follows. Just
replace E ı 
 by �u and ignore the @=@� equations in (6.28), (6.29), (6.31),
and (6.33).

If � is chosen so that E ı 
 is nonsingular at .�; 	1; p/, then �u embeds a
neighborhood of .	1; p/ into QM as a (real) hypersurface M�, the tube over M of
radius � D ru. We now compute the shape operator of this hypersurface.

It is easy to check that � D �.��/z is a field of unit normals for M�: The shape
operator A� is defined as follows:

.�u/�.A�v/ D � Qr.�u/�v� (6.35)

for v tangent to M.

Shape operators for tubes over complex submanifolds

In the CPn case,

A�	2 D 2

r
cot 2u 	2; (6.36)

A�	j D 1

r
cot u 	j for j � 3;

A�X D �1
r

cot.� � u/X:

There will be a version of the third equation for each eigenvalue of A D A�1 .
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For CHn, we have the analogous equations

A�	2 D 2

r
coth 2u 	2; (6.37)

A�	j D 1

r
coth u 	j for j � 3;

A�X D 1

r

sinh u � r� cosh u

cosh u � r� sinh u
X:

The last equation breaks down into separate cases depending on the magnitude of
r� which can be coth � , tanh � , 1 or �1. Thus A�X is given by:

A�X D �1
r

coth.� � u/ X; if AX D 1

r
coth � X; (6.38)

A�X D �1
r

tanh.� � u/ X; if AX D 1

r
tanh � X;

A�X D �1
r

X; if AX D 1

r
X;

A�X D 1

r
X; if AX D �1

r
X:

Typical examples are the Type A2 hypersurfaces which are tubes over totally
geodesic complex projective (respectively complex hyperbolic) subspaces CPk

(respectively, CHk). The codimension of M is 2.n � k/. In the CPn case, � D �=2

and the three principal curvatures of the tube are

2

r
cot 2u;

1

r
cot u; �1

r
cot

��
2

� u
	

D �1
r

tan u;

with respective multiplicities 1, 2`, 2k, where k C ` D n � 1.
In the CHn case, we must use the tanh alternative with � D 0. The three principal

curvatures of the tube will be

2

r
coth 2u;

1

r
coth u; �1

r
tanh.�u/ D 1

r
tanh u;

with respective multiplicities 1, 2`, and 2k. See [399, pp. 257–260].
Note that J� D �.��/z.i/ since � is the horizontal lift of � to z. Thus .�u/�	2

is a nonzero multiple of J�. This shows that M� is embedded as a Hopf hypersurface
with Hopf principal curvature ˛ D 2

r cot 2u (respectively, 2r coth 2u).
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Another example is given by the Type B hypersurfaces in CPn. In that case, M is
the complex quadric, and if � is a unit normal, then A� has eigenvalues 1

r cot �
4

and
1
r cot 3�

4
, each of multiplicity n � 1. Then M� has principal curvatures

2

r
cot 2u; �1

r
cot

��
4

� u
	
; �1

r
cot

�
3�

4
� u

�
;

with respective multiplicities .1; n � 1; n � 1/. Another way of describing the same
hypersurfaces would be to use a radius of r.�

4
� u/, in which case the principal

curvatures reduce to the “simpler” expressions

2

r
tan 2u; �1

r
cot u;

1

r
tan u:

These data agree with [399, p. 260]. See also the alternative description in
Section 6.3.

Shape operator for tubes for which J�1 is an eigenvector of A�1

For the calculations of this section, we will choose � D ��. Then the shape
operator of the tube will have the following behavior. As before, we write W for
�J�1 and A for A�1 . We choose ˛ so that AW D ˛W. Then we get separate formulas
for A�W and A�X, where X 2 W? is an eigenvector of A with corresponding
eigenvalue �. In the CPn case, we have

A�W D 2

r
cot 2.� � u/W; if ˛ D 2

r
cot 2�; (6.39)

A�	j D �1
r

cot u 	j; for j � 2;

A�X D 1

r
cot.� � u/ X; if � D 1

r
cot �;

while in the CHn case, we get

A�W D �2
r

sinh 2u � r˛
2

cosh 2u

cosh 2u � r˛
2

sinh 2u
W; if AW D ˛W; (6.40)

A�	j D �1
r

coth u 	j; for j � 2;

A�X D �1
r

sinh u � r� cosh u

cosh u � r� sinh u
X; if AX D �X:

If M is a Hopf hypersurface, the shape operator of the tube M� is related to that
of M in a particularly simple way. First of all, a Hopf hypersurface satisfies the
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conditions of this section. The codimension � is 1, so that � D �1 is a field of unit
normals with A�X D ˛X: The principal vectors for M� are the same as those for M.
In the CPn case, with ˛ D 2

r cot 2� where 0 < � < �
2

, M� is a Hopf hypersurface
with Hopf principal curvature 2

r cot 2.� � u/. Further, for each principal curvature
�, we can find � with 0 < � < � , so that � D 1

r cot � , and M� has corresponding
principal curvature 1

r cot.� � u/.
For the CHn case, there are three possibilities, depending on the magnitudes of

˛ and �. We can check that A�W satisfies:

A�W D 2

r
coth 2.� � u/ W; if AW D 2

r
coth 2� W; (6.41)

A�W D 2

r
tanh 2.� � u/ W; if AW D 2

r
tanh 2� W;

A�W D 2

r
W; if AW D 2

r
W;

A�W D �2
r

W; if AW D �2
r

W:

In particular, we notice that all tubes over a given horosphere have the same principal
curvatures. It turns out that they form a parallel family of congruent horospheres.
Montiel called the horosphere a “self-tube.”

The Type B hypersurfaces also arise as examples of this construction. In the CPn

case, let M be the totally geodesic real projective space RPn. The real dimension is
n, so the codimension is � D n also. For a choice of �1 and W D �J�1, we have
AW D 0, so that ˛ D 2 cot 2�=r with � D �=4. For X 2 W?, we also have AX D 0,
so that � D cot �=r with � D �=2. Thus M� has principal curvatures

2

r
cot 2

��
4

� u
	
; �1

r
cot u;

1

r
cot

��
2

� u
	
;

with respective multiplicities .1; n � 1; n � 1/. These principal curvatures can also
be written as

2

r
tan 2u; �1

r
cot u;

1

r
tan u:

This is consistent with the observation that the tube of radius ru over RPn is also the
tube of radius r.�

4
� u/ over the complex quadric.

In the CHn case, let M be the totally geodesic real hyperbolic space RHn. Noting
that ˛ and � are both zero, we can see immediately that the principal curvatures of
the tube are

�2
r

tanh 2u; �1
r

coth u; �1
r

tanh u;
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with respective multiplicities .1; n � 1; n � 1/. The negative sign could be regarded
as coming from the fact that

tanh 2.� � u/ D � tanh 2u; and tanh.� � u/ D � tanh u; when � D 0:

These principal curvatures differ in sign from those in [399, p. 259].

6.7.2 Geometry of focal sets

When the rank of �u is less than 2n � 1, its range consists of focal points. Assume
that this rank is a constant m in a neighborhood of the point .	1; p/. Then �u embeds
this neighborhood as an m-dimensional focal submanifold of QM. As before, � D ��
is a unit normal to the focal submanifold at the point �u.	1; x/ D �z, and we can
use our previous calculations to study the focal submanifold in two important cases.

Case 1: when M is a complex submanifold

We can see from equation (6.28) that the following focal point behavior occurs in
the CPn case.

• If 0 is not an eigenvalue of A�1 at p and u D �
2

, then �u has rank 2n�2 near p and
�u maps a neighborhood of .	1; p/ onto a focal submanifold of codimension 2.

• If 0 is an eigenvalue of constant multiplicity k and u D �
2

, then �u has rank
2n�2�k near p and �u maps a neighborhood of .	1; p/ onto a focal submanifold
of codimension k C 2.

• If 1
r cot u ¤ 0 is an eigenvalue of constant multiplicity k, then �u has rank 2n �

1 � k near p and �u maps a neighborhood of .	1; p/ onto a focal submanifold of
codimension k C 1.

Looking at equation (6.29) for the CHn case, we see that the situation is simpler.

• If 1
r coth u is an eigenvalue of constant multiplicity k, then �u has rank 2n �

1 � k near p and �u maps a neighborhood of .	1; p/ onto a focal submanifold of
codimension k C 1.

In all cases, � is a unit normal for the focal submanifold. For the first two CPn

possibilities (where u D �
2

), A� can be read off from equation (6.36) by merely
discarding the equation involving cot 2u and the equation for which � D u, if it
occurs. For third CPn case, we discard the equation for which � D u. For CHn,
we use equation (6.37) and discard the term for which r� D coth u. Specifically,
we have
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A�	2 D 2

r
coth 2u 	2; (6.42)

A�	j D 1

r
coth u 	j for j � 3;

A�X D 1

r

sinh u � r� cosh u

cosh u � r� sinh u
X; if AX D �X;

the third equation holding for eigenvalues � of A for which r� ¤ coth u.

Case 2: when J�1 is an eigenvector of A�1

The values of u that give rise to focal points are those for which r˛ D 2 cot 2u and
r� D cot u (resp. r˛ D 2 coth 2u and r� D coth u) for the CPn and CHn cases,
respectively. If the eigenvalues of A maintain constant multiplicities, then these �u

will map locally to focal submanifolds for these values of u. The shape operator
A� can be read off from the corresponding tube equations, discarding equations
involving expressions that are undefined at the relevant value of u.

In the CHn case, suppose first that either jr˛j > 2 and u is such that

˛ ¤ 2

r
coth 2u

or that jr˛j � 2: Then .�u/�W ¤ 0: For a focal point, we need a unit tangent vector
Y 2 W? at x and a number � such that AY D �Y and r� D coth u. Provided that
� is a principal curvature of constant multiplicity, we will have a focal submanifold
and the A� can be read off from equation (6.40), discarding the equation for which
� D �.

If jr˛j > 2 and ˛ D 2
r coth 2u, there are basically two possibilities. One is that

� D 1
r coth u is also an eigenvalue of A (with constant multiplicity). Then shape

operator A� can be read off from equation (6.40) discarding both the W equation
and the equation for which � D �. The second is that 1r coth u is not an eigenvalue.
Then dimension of the focal submanifold is greater and the only equation that should
be discarded is that involving W.

Note that in all cases, existence of a focal submanifold requires that certain
multiplicities be constant, to ensure that �u has constant rank. However, other
principal curvatures need not have constant multiplicities. The shape operator
formulas for the focal submanifold will still be correct.

A special case of the situation we have been discussing is that of a Hopf
hypersurface. We carry out a detailed study of the focal set behavior of Hopf
hypersurfaces in the next section.
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6.8 Structure Theorem for Hopf Hypersurfaces

We now have the machinery to work out the fundamental structure of Hopf
hypersurfaces. We have seen that tubes over complex submanifolds are Hopf. We
will show in this section that typically Hopf hypersurfaces in CPn are tubes over
complex submanifolds and that these submanifolds are focal submanifolds. In CHn,
focal submanifolds may not always exist but similar structure theorems hold. These
results were first proved by Cecil and Ryan [94] in CPn, and Montiel [378] in CHn.

We start by briefly revisiting the previous three sections in the codimension one
context. Recall that U is a normal coordinate neighborhood. For a hypersurface with
a specified choice of unit normal, we simplify the function �u, considering instead
the function

fu W U ! QM

defined by

fu.x/ D �u.	1; x/:

Thus, fu.x/ is the point reached by traveling along the (unique) normal geodesic
through x a distance ru in the direction determined by the choice of unit normal.
Choosing w; z 2 QM0 so that �w D x and �z D fu.x/, we can read off the differential
of fu from equations (6.26) and (6.27) to get

.fu/�X D .��/z
�
.cos u � r� sin u/XL C sin u hJ�;Xi iw

r

�
(6.43)

.fu/�X D .��/z
�
.cosh u � r� sinh u/XL � sinh u hJ�;Xi iw

r

�

for CPn and CHn, respectively. (Here X is a principal vector with principal curvature
�.) When the range of fu consists of focal points, we refer to it as a “focal map.”
When a focal map has constant rank, its range is a focal submanifold. We have the
following theorem.

Theorem 6.20. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Suppose that fu has constant rank m, where 0 < m < 2n � 1 in a neighborhood of
a point x 2 M. Then fu maps a neighborhood U of x onto an m-dimensional focal
submanifold V. Furthermore, U lies on the tube of radius ru over V.

Proof. The “constant rank theorem” (see, for example, Conlon [120, p. 39]) implies
that fu maps a neighborhood U of x onto an m-dimensional submanifold V of QM.
Define a mapping

� W U ! BV;
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where BV is the unit normal bundle of V , by

� D ��:

In other words, for each x 2 U,

�.x/ D .��/z D .��/z.� sin u
w

r
C cos u �L.w//:

Since fXL; iw;w; �Lg form a mutually orthogonal set, it is clear that �.x/ is a unit
normal to V at p. Now, �.x/ is just the velocity vector at the point p D fu.x/
of the normal geodesic to M with initial conditions .x; �/. On the other hand, our
construction for the tube of radius ru over V involves traversing this same geodesic
in the opposite direction. Thus

E�.��.x// D x

for all x in U, where E� W BV ! QM comes from the normal exponential map of
V (see the beginning of Subsection 6.7.1). We conclude that U lies on the tube as
required. ut
Remark 6.21. It is possible for a Hopf hypersurface that fu is a constant map, and
thus has rank m D 0. Then the focal set consists of a single point and U lies on
a geodesic sphere of radius ru centered at that point. Such hypersurfaces are open
subsets of Type A1 hypersurfaces. Although it is possible to interpret the focal set
as a submanifold of dimension 0, we shall not do this. All of our manifolds have
dimension at least 1.

The focal submanifolds of a Hopf hypersurface fall into two categories, depend-
ing on the Hopf principal curvature ˛. In CPn, at least one focal submanifold is a
complex (Kähler) submanifold. All non-complex focal submanifolds are generic in
the sense of Yano and Kon [560] (as defined in the paragraph below). In CHn it
is possible for a Hopf hypersurface to have no focal points at all. Horospheres are
examples of this phenomenon.

A submanifold V of a complex space form is said to be generic if for every
normal vector v, the vector Jv is tangent to V . A submanifold V is said to be totally
real if for every vector X tangent to V , JX is a normal vector.

We now refine Theorem 6.20 using the relationship between ˛ and u.

Theorem 6.22. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn with
Hopf principal curvature ˛ D 2

r cot 2u, 0 < u � �
2

. Suppose that fu has constant
rank m > 0 in a neighborhood of a point x 2 M. Then m is even and fu maps a
neighborhood U of x onto a complex m

2
-dimensional submanifold V. Furthermore,

V D fuU is a focal submanifold and U lies on the tube of radius ru over V.

Proof. We need only show that V is a complex submanifold. Because of the
relationship between ˛ and u, we have .fu/�W D 0: On the other hand, if X 2 W?
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is principal with principal curvature �, then .fu/�X is a scalar multiple of .��/zXL.
In order to show that J� is normal to fuU at p, it will be sufficient to check that
h.��/zXL; J�i D 0 for all such X. Now

h.��/zXL; J�i D h..��/zXL/L; ii D hXL � az � biz; ii (6.44)

D hXL; ii D hXL;� sin u
iw

r
C cos u i�L.w/i;

where a and b are suitable scalars. The terms involving a and b vanish since i is
horizontal at z. Then, since XL is horizontal at w, the term involving iw must also
vanish. We need only check that hXL; i�Li D 0. Observe that the difference between
i�L and .J�/L is a linear combination of w and iw. Since X 2 W?, we have

0 D hX; J�i D hXL; .J�/Li D hXL; i�Li;

as required. Now, of course, �.x/ is only one of the many unit normals to V at
p. However, all other normals at p can be expressed as linear combinations of
similar terms. To see this, first recall the equation E�.��.x// D x from the proof of
Theorem 6.20. From the fact that U and BV have the same dimension it follows that
� is a diffeomorphism of U onto an open subset �.U/ of BV . The fiber of BV over
p is a sphere of dimension 2n � m � 1. Its intersection with �.U/ is nonempty and
open in the sphere. Therefore, it contains a basis for the normal space of V at p. Each
such basis element is of the form �.y/ for some y 2 f�1u .p/ and, as we have seen,
J�.y/ is normal at p. Thus for any normal vector v at p, Jv is a linear combination of
unit normals and hence is normal itself. Consequently, J preserves the normal space
(and hence the tangent space) to V , and V is a complex submanifold. ut

The situation for CHn is slightly more complicated. If the Hopf principal
curvature satisfies jr˛j > 2, we may write ˛ D 2

r coth 2u. Then U lies on a tube
over a complex submanifold, as in the CPn case. Specifically, we have

Theorem 6.23. Let M2n�1, where n � 2, be a Hopf hypersurface in CHn with Hopf
principal curvature ˛ D 2

r coth 2u, where u > 0. Suppose that fu has constant
rank m > 0 in a neighborhood of a point x 2 M. Then m is even and fu maps a
neighborhood U of x onto a complex m

2
-dimensional submanifold V. Furthermore,

V is a focal submanifold and U lies on the tube of radius ru over V.

The proof is exactly the same as for CPn with the trigonometric functions
replaced by the appropriate hyperbolic functions.

If jr˛j � 2, on the other hand, one cannot guarantee that focal points exist.
In other words, it may happen that fu embeds a neighborhood U of x onto a
parallel hypersurface for all u. However, when focal submanifolds exist, they can
be characterized as follows.

Theorem 6.24. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn (resp.
CHn). Suppose that 0 < u < �

2
(resp. u > 0) is such that fu has constant rank
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m < 2n � 1 in a neighborhood of a point x 2 M. Except in the case 2
r cot 2u D

˛ (resp. 2
r coth 2u D ˛), fu maps a neighborhood U of x onto an m-dimensional

generic submanifold V. Furthermore, V is a focal submanifold and U lies on the
tube of radius ru over V.

Proof. We proceed as in the proof of the preceding theorem. The difference is
that .fu/�W does not vanish, but is a nonzero multiple of .��/zi. Now J�.x/ D
J.��/z D .��/z.i/ since  is horizontal. This exhibits J�.x/ as a tangent vector to
V at p. By the same argument used in the preceding theorem, every normal vector at
p is a linear combination of suitable �.y/ all of which are mapped into the tangent
space by J. ut
Corollary 6.25. Let Vm be a generic focal submanifold of a Hopf hypersurface in
CPn or CHn. Then m � n. In other words, the codimension cannot be larger than
half the dimension of the ambient space. If m D n, then V is totally real.

Remark 6.26. For complex focal submanifolds there are no corresponding restric-
tions on the dimension. There are Type A hypersurfaces having complex focal
submanifolds of every complex dimension k for 1 � k � n � 1.

For a Hopf hypersurface M, the shape operator of a parallel hypersurface M� can
be read off from equations (6.39) and (6.40),

A�W D 2

r
cot 2.� � u/W; if ˛ D 2

r
cot 2�; (6.45)

A�X D 1

r
cot.� � u/ X; if � D 1

r
cot �;AX D �X;

A�W D �2
r

sinh 2u � r˛
2

cosh 2u

cosh 2u � r˛
2

sinh 2u
W; if AW D ˛W; (6.46)

A�X D �1
r

sinh u � r� cosh u

cosh u � r� sinh u
X; if AX D �X;

for CPn and CHn, respectively.
With regard to focal sets, the CPn case is simplest. Suppose that the Hopf

hypersurface M has principal curvatures f�j; �jg on W? at a point x. We write

�j D 1

r
cot �j

for suitable �j 2 .0; �/. For each j we assume that the pair .�j; �j/ satisfies condition
3. of Theorem 6.17 on page 357. For at most two values of j we may have �j D �j.
In these cases, the �j can be expressed in terms of ˛. In fact, if ˛ D 2

r cot 2� , then
the two possible values of �j are 1

r cot � and
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1

r
cot

�
� � �

2

	
D �1

r
tan �:

Except for this, elements of the list f�j; �jg are distinct. Condition 3. of Theo-
rem 6.17 also implies that if �j D 1

r cot �j, then �j D 1
r cot.2� � �j/. We might

as well assume that �j � � for all j.
We first look at a complex focal submanifolds in CPn. Assume that fu has

constant rank m near x where ˛ D 2
r cot 2u. If it happens that 1

r cot u is also a
principal curvature at x, the same must hold in a neighborhood U (because of the
constant rank assumption). The tangent space at any point of V is spanned by
(the image by .fu/� of) the principal vectors X 2 W? corresponding to principal
curvatures other than 1

r cot u. The shape operator A� of the focal submanifold V at
such a point satisfies

A�X D 1

r
cot.� � u/ X; (6.47)

where AX D 1
r cot �X: This result can be read off the formulas (6.39) for parallel

hypersurfaces M�. Even though V is a (smooth) complex submanifold, there is no
guarantee that the principal curvatures will be smooth functions near x so that the
result is a pointwise one. However, if the multiplicities of the principal curvatures
of M remain constant in a neighborhood of x, then one can choose the various X and
� smoothly near x.

If it happens that 1
r cot u is not a principal curvature at x, then fu has rank m D

2n�2 near x and V is a complex hypersurface (i.e., the complex dimension is n�1).
This happens, for example, with a Type B hypersurface. The tangent space to V is
spanned by W?. The shape operator A� satisfies the same conditions (6.47).

We now consider generic focal submanifolds. If 1
r cot u is a principal curvature

of constant multiplicity k in a neighborhood of x, then the rank of fu will be m D
2n �1� k there. The tangent space to the focal submanifold V will be (the image by
.fu/� of) the orthogonal complement of the principal subspace corresponding to the
principal curvature 1

r cot u. This includes W, so that shape operator A� of V satisfies

A�W D 2

r
cot 2.Qu � u/ W (6.48)

A�X D 1

r
cot.� � u/ X

where we have written ˛ D 2
r cot 2Qu and X and � are as before.

The situation for CHn is complicated by the fact that there are three possible
forms for the Hopf principal curvature ˛ and three possible forms for each of
the other principal curvatures of M. However, the computation of the principal
curvatures of the parallel hypersurface M� and the focal submanifolds follows a
similar pattern, using hyperbolic instead trigonometric functions.
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The case of constant principal curvatures

We have presented many examples of Hopf hypersurfaces whose principal curva-
tures are constant. Most of them are tubes over focal submanifolds and these focal
submanifolds exhibit a high degree of symmetry. The following lemma will be
useful for our classification theorem.

Lemma 6.27. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or
CHn. Suppose that its principal curvatures are constant and that Mu is a focal
submanifold. Let � be any unit normal to Mu. Then a number � is an eigenvalue of
the shape operator A� if and only if �� is an eigenvalue with the same multiplicity.
In other words, A� and �A� have the same characteristic polynomial. Furthermore,
the eigenvalues and multiplicities are independent of the choice of � in the unit
normal bundle BMu.

Proof. Our assumptions guarantee that fu is of constant rank. For any x 2 M,
the arguments presented in the proofs of the previous three theorems show that
fu maps a neighborhood U of x onto an open subset V of Mu. Also, � maps
U diffeomorphically onto an open subset �.U/ of the unit normal bundle BV .
Since the principal curvatures are constant on U, the eigenvalues of the shape
operator A�.y/ are the same for all y 2 U (just subtract u from the arguments
of the functions used to express the principal curvatures). Thus the characteristic
polynomial f� 7! det.A� � tI/g is a constant function on the open set �.U/.
Since every unit normal to Mu comes from such an x, we see that det.A� � tI/ is
locally constant, and hence constant, on BMu. In particular, A� and A�� D �A�
have the same principal curvatures and multiplicities. Note also that the values and
multiplicities of the eigenvalues of A� are completely determined by the principal
curvatures of M and the value of u. They do not change if we vary the unit normal �
or the point at which it is based. This completes the proof of our lemma. ut

6.9 Focal Sets and Tubes Using Jacobi Fields

In the previous sections, we have studied this topic by explicitly parametrizing
geodesics on the real space forms QM0 and exploiting the relationship between the
geometry of QM0 and that of our desired ambient space QM. We now present a second
approach which is more general. In particular, it will be useful when working with
more complicated ambient spaces, such as quaternionic space forms. It will also
be more adaptable to situations when we wish to emphasize the symmetric space
structure of the ambient space.



6.9 Focal Sets and Tubes Using Jacobi Fields 375

Vector fields along a curve

Let Mn be a manifold with linear connection r and let p be an arbitrary point of
M. If X and Y are vector fields on M, then the value of rXY at p is determined by
Xp and the value of Y along any curve through p whose velocity vector at p is Xp.
Put another way, if xt is any curve and Yt 2 Txt M for each t, then (by extending the
velocity vector �!xt and Yt to vector fields locally), we may arrive at a unique value
for rXY at xt for any particular parameter value t satisfying �!xt ¤ 0: In order to
illustrate this dependence, we call Yt a vector field along xt and write its covariant
derivative as r�!xt

Y or rtY . We can also extend this notation to handle curves for

which �!xt is allowed to vanish, and so determine rtY , by using local coordinates.
Specifically, let x W U ! Rn define a local coordinate system on a suitable open

set U � M. Express the curve xt in local coordinates xi
t. Then �!xt is expressed as

nX

kD1

dxk

dt

@

@xk

ˇ̌
ˇ̌
xt

and rtYt as

nX

kD1

�
dYk

dt
C

nX

i;jD1
Yi dxj

dt
� k

ij

�
@

@xk

ˇ̌
ˇ̌
xt

(6.49)

where � k
ij are the usual Christoffel symbols. This expression may be used to define

rtY , even at values of t for which �!xt vanishes. The construction is sometimes
referred to as the “associated covariant derivative,” see Conlon [120, p. 297].

We say that Yt is parallel along xt if rtY D 0 for all t. The curve xt is called a
geodesic if its velocity vector �!xt is parallel along xt. It is well known that for a given
curve xt, a parallel vector field Yt along xt is uniquely determined by specifying its
value arbitrarily at one particular t. Furthermore, given a point p in M and a tangent
vector v at p, there is (at least locally) a unique geodesic passing through p and
having velocity vector v there. These facts follow from standard theory of ordinary
differential equations.

The geodesic flow on a complete Riemannian manifold

Let Mn be a complete Riemannian manifold. Completeness means that all geodesics
have parameter interval .�1;1/. We use, of course, the Levi-Civita connection of
M, the unique torsion-free linear connection that is compatible with the Riemannian
metric h ; i. Each point � D .p; v/ in the tangent bundle TM determines a unique
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geodesic �� . Abbreviating �� as � , so that �t now denotes the point along the
geodesic corresponding to parameter value t, we have �0 D p and �!�0 D v: Define

˚t W TM ! TM

by

˚t� D .�t;
�!�t /;

and let G� be the initial tangent vector to the curve t 7! ˚t�: The vector field
G on TM is called the geodesic spray. It generates the one-parameter group of
transformations f˚tg and is complete in the sense of Kobayashi and Nomizu [283,
Vol. I, pp. 12–14]. This group of transformations is called the geodesic flow. We note
that the unit tangent bundle SM is invariant by the geodesic flow. In other words, we
can write

˚t W SM ! SM

using the same formula. This defines G as a vector field on SM. Denote by

˘ W TM ! M

the canonical projection map of the bundle TM. For � D .p; v/ in TM, we note that

.˘�/�G� D v 2 TpM:

Decomposition of T�TM

We will now describe a splitting of T�TM into vertical and horizontal subspaces.
The vertical subspace V� is the kernel of

.˘�/� W T�TM ! TpM:

Note that the vertical subspace depends only on the differentiable structure. The
horizontal subspace, however, will depend on the Riemannian metric, or more
specifically, the Levi-Civita connection r of that metric. Let

zt D .˛t;Zt/

be a curve in TM with z0 D � and �!z0 D � 2 T�TM. We define a map

K� W T�TM ! TpM
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to be the (associated) covariant derivative of Zt along ˛t evaluated at t D 0. In other
words, we have

K� � D rtZjtD0:

The horizontal subspace H� at � is, by definition, the kernel of the map K� . The
Sasaki metric on TM is given by

h�; �i D h˘��;˘��i C hK� �;K��i;

for �; � in T�TM: The right side represents evaluation of the Riemannian metric of
M on TpM: Then we have

Proposition 6.28.
• T� is the orthogonal direct sum of V� and H� ;
• K� is a linear isomorphism of V� onto TpM;
• .˘�/� is a linear isomorphism of H� onto TpM.

Proof of this proposition and further discussion of the decomposition will be
provided in the next few sections. A good reference for this material is Paternain
[428].

Local coordinates in TM

Given a coordinate map x W U ! Rn for M, there is a natural way to define a
coordinate map z W ˘�1U ! R2n for TM. We write

z.p; v/ D .x.p/; y.p; v// 2 Rn � Rn D R2n;

where

v D
nX

iD1
yi.p; v/

@

@xi

ˇ̌
ˇ̌
p

:

It is easy to check that

.˘�/�
@

@zi

ˇ̌
ˇ̌
�

D @

@xi

ˇ̌
ˇ̌
p

and .˘�/�
@

@znCi

ˇ̌
ˇ̌
�

D 0;

for 1 � i � n.
If � 2 T�TM is expressed in terms of this coordinate system, then � is vertical

if and only if � i D 0 for 1 � i � n: The vertical space V� is spanned by the last n
coordinate vectors. Using the coordinate expression (6.49), we see that K� is well
defined. Specifically, the coordinate expression for K� � in this case is
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nX

kD1

�
dZk

dt
C

nX

i;jD1
Zi d˛j

dt
� k

ij

�
@

@xk

ˇ̌
ˇ̌
˛t

(6.50)

evaluated at t D 0. The terms in this expression may be interpreted as follows.
The d˛j

dt are the first n components of � , while the dZk

dt are the last n components
of � . The Zi are the last n coordinates of � and the � k

ij are evaluated at p. Thus, all
elements of the expression for the covariant derivative at t D 0 depend only on � ,
even though there are many choices of zt for which �!z0 D �: The kth component of
K� � is

�nCk C
nX

i;jD1
vi� j� k

ij .p/

where

v D
nX

iD1
vi @

@xi

ˇ̌
ˇ̌
p

:

This also shows that K� is linear in � . Clearly, the restriction of K� to vertical vectors
is injective and is thus an isomorphism. On the other hand, equation (6.49) shows
that if Z is parallel along ˛, then K� � D 0 and so � is horizontal.

There is an identification of TpM with the horizontal subspace of T�TM by means
of the horizontal lift. Specifically, for each X 2 TpM, there is a unique horizontal
element of T�TM, denoted by XL

� ; satisfying ˘�XL
� D X. It may be constructed as

follows. Let ˛ be a curve in M with initial tangent vector X. Let Zt 2 T˛t M be
defined by parallel translation of v along ˛. Consider zt D .˛t;Zt/ as a curve in TM.
Set XL

� D �!z0 . The horizontal lift XL
� has the Xj as its first n components and the

dZk

dt
D �

nX

i;jD1
Zi d˛j

dt
� k

ij

as its last n components. Thus, the kth component of K�XL
� is

nX

i;jD1

� � viXj� k
ij .p/C viXj� k

ij .p/
� D 0

so XL
� is horizontal. Since .˘�/�XL

� D X, it is the unique horizontal lift. This shows
that (the restriction of) .˘�/� W H� ! TpM is a linear isomorphism and completes
the proof of our proposition.
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The exponential map

The exponential map

Exp W TM ! TM

is defined by Exp.�/ D ˚1.�/ and induces for each p 2 M the familiar map

expp W TpM ! M

by

expp.v/ D ˘.Exp.�//

where � D .p; v/. We will be using (for our study of submanifolds) a slightly more
general version of the exponential map and we will need to compute its differential.
Our calculation will also yield the differential of the usual exponential map, as we
point out in Subsection 6.9.2.

6.9.1 Jacobi fields

Let zs D .˛s;Zs/ be a curve in TM with z0 D � D .p; v/ and �!z0 D �: Let Q� D
.˚t/�� 2 T Q�TM where Q� D ˚t� D .Qp; Qv/. Write Qz D ˚t ı z D . Q̨ ; QZ/ so that Qz0 D Q�
and

�!Qz0 D Q�. Now set

V.s; t/ D ˘.˚tzs/:

V is said to be a variation of the geodesic �� . The initial tangent vector Yt to the
curve s 7! V.s; t/, also written

@V

@s

ˇ̌
ˇ̌
sD0

is a vector field along the geodesic �� . Such a Yt is said to be a Jacobi field along
the geodesic. Jacobi fields are characterized by the fact that they satisfy the Jacobi
equation

r2Yt C R.Yt;
�!�t /

�!�t D 0;

where R is the curvature tensor of the Riemannian metric and �� is abbreviated � .
The set of Jacobi fields along � is a 2n-dimensional vector space. A unique Jacobi

field is determined by specifying its value Yt and its associated covariant derivative
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rtY at t D 0. We also sometimes write Yt as Y.t/ and rtY as Y 0.t/. We denote by
J� .t/ the unique Jacobi field Yt along �� such that Y0 D .˘�/� � and Y 0.0/ D K� � .
Since .˘�/�H� D K�V� D TpM, all possible Jacobi fields along �� are obtained in
this way.

Equality of “mixed partials”

Lemma 6.29. Let M be a Riemannian manifold and U an open connected subset
of R2. A mapping V W U ! M may be considered as a 1-parameter family of curves

on M in two ways. If we write ˛s D ˇt D V.s; t/, then
�!̌

t is a vector field along ˛s

and �!̨
s is a vector field along ˇt. Then

rs
�!̌

t D rt
�!̨

s

for all .s; t/ 2 U:

Proof. If we carry out the calculation in local coordinates (as introduced earlier),
the kth component of rt

�!̨
s is easily computed to be

@2Vk

@t@s
C

nX

i;jD1

@Vi

@s

@Vj

@t
� k

ij ;

where the Vi are the components of V . Because mixed partial derivatives of real-
valued functions commute, it is clear that this expression is unchanged when s and
t are interchanged. ut
Remark 6.30. In this situation, it is standard to write @V

@s for �!̨
s and @V

@t for
�!̌

t . By an
abuse of notation, the result of the lemma is sometimes written

@2V

@t@s
D @2V

@s@t

in analogy with the fact from elementary calculus that we have used in the proof,
i.e., for real-valued functions, repeated partial derivatives are independent of the
order of differentiation used in computing them.

6.9.2 Differential of the exponential and related maps

Using the setup of Subsection 6.9.1, we have @V
@t D QZs and

@V

@s

ˇ̌
ˇ̌
sD0

D ˘�..˚t/��!z0 / D ˘� Q�:
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By Lemma 6.29 and the definition of K, we have

rt
@V

@s

ˇ̌
ˇ̌
sD0

D rs
@V

@t

ˇ̌
ˇ̌
sD0

D K Q� Q�:

In particular, for t D 0, this is K� � . This means that ˘� Q� coincides with the Jacobi
field J� .t/ and also shows that for all t, J0� .t/ D K Q� Q�:

This allows us to improve the result of Proposition 6.28 as follows.

Proposition 6.31. If Q� D Q�V C Q�H is the decomposition of Q� 2 T Q�TM into vertical

and horizontal components, then K Q� Q�V D J0� .t/ and ˘� Q�H D J� .t/:

Proof. The first assertion has already been established. From the discussion above,
we also have

J� .t/ D ˘� Q� D ˘�. Q�V C Q�H/ D ˘� Q�H;

which completes the proof. ut
Remark 6.32. The geodesic spray G is a horizontal vector field. In fact, G� D vL

� for
each � D .p; v/ in TM. G is the unique horizontal vector field such that .˘�/�G� D
v 2 TpM: The associated Jacobi field JG.t/ D ���!

�� .t/ is the unique Jacobi field with
initial conditions .v; 0/; that is, JG.0/ D v and J0G.0/ D 0: Note that J0G.t/ D 0 for
all t.

Lemma 6.33. In the notation of the previous paragraph, K�XL
� D 0. Furthermore,

for every horizontal � 2 T�TM, .˘��/L� D � .

The 2n-dimensional space of Jacobi fields along the geodesic �� may be regarded
as the direct sum of two n-dimensional subspaces, one consisting of Jacobi fields
with initial conditions .0;˘��/ with � 2 H� , the other consisting of Jacobi fields
with initial conditions .K� �; 0/with � 2 V� . The rank of the exponential map TM !
TM at � is the dimension of the space spanned by these Jacobi fields at t D 1.

We now look at the map expp W TpM ! M which may be broken down as
˘ ı Exp ı � where � W TpM ! TM is given by �.v/ D .p; v/ D �: Take any
X 2 Tv.TpM/: Consider the curve s 7! v C sX whose initial tangent vector is X.
Let zs D .p; v C sX/ so that z0 D � and �!z0 D .��/vX. In keeping with the notation
of the preceding subsection, denote �!z0 by � . Then ..expp/�/vX D J� .1/: In fact, we
have

Proposition 6.34. For X 2 Tv.TpM/, .expp/�X D J� .1/, where J� .t/ is the unique
Jacobi field along �t satisfying J� .0/ D 0 and J0� .0/ D X: Here, we have used the
natural identification of Tv.TpM/ with TpM itself.
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Proof. In the coordinate system introduced earlier, zs is expressed as

.p1; p2; : : : ; pn; v1 C sX1; v2 C sX2; : : : ; vn C sXn/:

Then

� D �!z0 D
nX

iD1
Xi @

@znCi

ˇ̌
ˇ̌
�

2 T�TM:

Then �nCk C vi� j� k
ij .p/ D Xk, so that

K� � D
nX

iD1
Xi @

@xi

ˇ̌
ˇ̌
p

:

In other words, K� � D X: ut

Submanifolds and the normal bundle

Let QM be a complete Riemannian manifold and M a submanifold with the induced
Riemannian metric. We now discuss the restriction of the exponential map to the
normal bundle NM and apply our previous discussion to the study of tubes over M.
Take any � D .p; v/ 2 NM. Let zs D .˛s;Zs/ be a curve in NM such that z0 D � .
For a fixed real number �; consider the map

�� W NM ! QM

defined by �� D ˘ ı˚�: Then .��/�� D .˘/�.˚�/�� D J� .�/: If �� has maximal
rank (i.e., the same as the dimension of QM) at � , then �� maps a neighborhood
of � 2 NM diffeomorphically onto an open neighborhood of q D �� D ��� .
The restriction of �� to the unit normal bundle BM maps a neighborhood of �
diffeomorphically to a neighborhood of q in the tube M� of radius � (for as long as
�� is a minimizing geodesic). The tangent space to the tube at q is the direct sum of
two subspaces. The first is spanned by the Jacobi fields J� .�/ with initial conditions
J� .0/ D X 2 TpM and J0� .0/ D �AvX: The second is spanned by Jacobi fields
J� .�/ with initial conditions J� .0/ D 0 and J0� .0/ D w; where w is normal to M but
orthogonal to v at p.

To see this, first choose zs so that �!̨
s is nonvanishing and Z is parallel along ˛

with respect to the normal connection. In other words,

QrsZ D �AZs
�!̨

s :
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Let X D �!̨
0. Then

K� � D QrsZ
ˇ̌
sD0 D �AvX;

˘�� D �!̨
0 D X:

The resulting Jacobi fields J� provide the second summand in the tangent space to
the tube at q.

Lemma 6.35. The unit normal to the tube M� at q D �� is �!��.

Proof. We show that

hJ� .t/;�!�t i D 0

for all t. For either of the two types of tangent vectors to M� at q, we have jZsj D
jvj D 1: Thus,

��!
.�zs/t is a unit vector for all s; t. As we saw in Lemma 6.29,

J0� .t/ D Qrs
@

@t
.˘.˚t.zs///

ˇ̌
ˇ̌
sD0

D Qrs
��!
.�zs/t

ˇ̌
ˇ̌
sD0
;

which is, of course, orthogonal to �!�t , since
��!
.�zs/t is a unit vector. So

hJ0� .t/;
��!
.�zs/t

ˇ̌
ˇ̌
sD0

i D hJ0� .t/;�!�t i D 0:

Now,

d

dt
hJ� .t/;�!�t i D hJ0� .t/;�!�t i C hJ� .t/; Qrt

�!�t i:

The first term is zero as we showed in the previous equation. The second term
vanishes because �t is a geodesic. Thus hJ� .t/;�!�t i is constant and equal to its value
at t D 0, namely hJ� .0/; vi D 0: This shows that every vector in TqM� is orthogonal
to �!�� and thus completes the proof. ut

If �� has constant (but non-maximal) rank k in a neighborhood of � , then ��
maps a neighborhood of � onto a smooth focal submanifold whose tangent space is
spanned by the same Jacobi fields J� .�/.

6.9.3 Shape operators of tubes using Jacobi fields

Having determined the tangent space to the tube M� we now compute the shape
operator with respect to the unit normal

N D ����!
.�� /�
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at the point q D ��� . Write ˛s D �t D V.s; t/. Then J� .t/ D �!̨
0. The shape operator

A with respect to Nq satisfies

QrYN D �AY

for Y 2 TqM�. Since each such Y is of the form J� .�/, we consider

� QrJ� .t/N D Qrs
�!�t

ˇ̌
ˇ̌
sD0

D Qrt
�!̨

s

ˇ̌
ˇ̌
sD0

(6.51)

D QrtJ� .t/ D J0� .t/

for t near �. Thus we have the following.

Theorem 6.36. Let M be a submanifold of a complete Riemannian manifold QM.
For a fixed real number �, suppose that the map �� W BM ! QM has maximal rank
(one less than the dimension of QM) at a point � D .p; v/. Then

1. �� embeds a neighborhood U of � onto a hypersurface U� lying on a tube of
constant radius over M;

2. The tangent space to U� at q D ��.�/ is spanned by Jacobi fields J� .�/ as
described in the preceding subsection.

3. The shape operator of U� at q satisfies AJ� .�/ D J0� .�/ for each J� .�/ in the
tangent space.

Tubes over submanifolds of CPn and CHn

Let M be a submanifold of a complex space form QM of constant holomorphic
sectional curvature 4c D 4	=r2. For � D .p; v/ in the unit normal bundle, let X be
an eigenvector of Av corresponding to eigenvalue �. Let �t be the (normal) geodesic
determined by � . Let Bt be the parallel vector field along �t with B0 D X. We are
interested in the shape operators of tubes over M.

Lemma 6.37. Assume that X is orthogonal to the vector Jv.

• If c > 0, then Xt D .cos u � r� sin u/Bt is a Jacobi field along �t with X0 D X
and X00 D ��X;

• If c < 0, then Xt D .cosh u � r� sinh u/Bt is a Jacobi field along �t with X0 D X
and X00 D ��X,

where u D t=r.

Proof. First it is easy to check that

Qr2
t Xt D X00t D �cXt:
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We need to compute QR.Xt;
�!�t /

�!�t . We consider the terms of equation (6.6) separately.
First, we see that

	

r2
.Xt ^ Ut/ Ut D 	

r2
.hUt;Uti Xt � hXt;Uti Ut/ D cXt; (6.52)

where Ut is the unit vector �!�t . Since Xt is a scalar multiple of Bt, the term hBt;Uti is
constant along �t (being the inner product of two vector fields that are parallel along
�t), and hB0;U0i D hX; vi D 0: Now,

�
JXt ^ JUt C 2hXt; JUti J

�
Ut D �hJXt;Uti JUt C 2hXt; JUti JUt

D 3hXt; JUti JUt: (6.53)

Recalling that Xt is a scalar multiple of Bt and that J, Xt and Ut are parallel along �t,
we see that hBt; JUti is constant along �t and hence equal to hB0; JU0i D hX; Jvi D
0: This completes the proof. ut
Lemma 6.38. Assume that X D Jv.

• If c > 0, then Xt D .cos 2u � r
2
� sin 2u/Bt is a Jacobi field along �t with X0 D X

and X00 D ��X.
• If c < 0, then Xt D .cosh 2u � r

2
� sinh 2u/Bt is a Jacobi field along �t with

X0 D X and X00 D ��X,

where u D t=r.

Proof. The proof is similar to that of the previous lemma. First of all, we get

Qr2
t Xt D X00t D �4cXt:

The first term in the curvature expression is unchanged from equation (6.52).
Further, hBt; JUtiJUt is parallel along �t. Its initial value is hX; JviJv D X. Thus
hBt; JUtiJUt D Bt and hence hXt; JUtiJUt D Xt: Consequently,

QR.Xt;
�!�t /

�!�t D cXt C 3cXt D 4cXt; (6.54)

and the Jacobi equation is satisfied. ut
To complete the tangent space to the tube, we need to look at normals orthogonal

to v.

Lemma 6.39. Assume that .p;w/ is in the unit normal bundle BM with hw; vi D
hw; Jvi D 0. Let Wt be parallel along �t with W0 D w.

• If c > 0, then Yt D .sin u/Wt is a Jacobi field along �t with Y0 D 0 and Y 00 D w=r.
• If c < 0, then Yt D .sinh u/Wt is a Jacobi field along �t with Y0 D 0 and

Y 00 D w=r,

where u D t=r.
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Proof. Following the same procedures as in earlier cases, we find that Y 00t D �4cYt

and that hWt; JUtiJUt D Wt, so that QR.Yt;
�!�t /

�!�t D 4cYt, and the Jacobi equation is
satisfied. ut
Remark 6.40. These constructions are also useful in computing the shape operators
of parallel hypersurfaces in Section 8.2.



Chapter 7
Complex Submanifolds of CPn and CHn

A primary goal in our study of real hypersurfaces in CPn or CHn is the classification
of Hopf hypersurfaces with constant principal curvatures given in Chapter 8. Since
the focal submanifold corresponding to the Hopf principal curvature must be a
complex submanifold, certain aspects of the theory of complex submanifolds are
important in our study of real hypersurfaces. In particular, a knowledge of the
behavior of the principal curvatures of certain well-known complex submanifolds
is needed.

In this chapter, we study those aspects of complex submanifolds in CPn or CHn

that are pertinent to our theory. In Section 7.1, we recall some basic terminology
from the theory of submanifolds in a Riemannian manifold. We then specialize to
the case of a Kähler submanifold M of a complex space form QM. We prove an
important formula of Simons’ type, which expresses the Laplacian of the length of
the second fundamental form � in terms of � and its derivative. Such a formula was
introduced by Simons [485] for minimal submanifolds of Riemannian manifolds,
and developed by Nomizu and Smyth [406] and many other authors in different
contexts. This formula will be needed in Chapter 8 in our classification of Hopf
hypersurfaces with constant principal curvatures.

In Sections 7.2–7.5, we study four important embeddings of complex subman-
ifolds in CPn: the Veronese embedding of CPm in CPn, the Segre embedding of
CPh � CPk in CPn, the Plücker embedding of complex Grassmannians in CPn, and
the half-spin embedding of SO.2d/=U.d/ in CPn.

For each of these embeddings we give a detailed analysis of the behavior of the
principal curvature functions on the unit normal bundle of the submanifold. Such an
analysis is needed to complete the proof of Kimura’s [270] classification of Hopf
hypersurfaces with constant principal curvatures in CPn (Theorem 8.13, page 432).

© Thomas E. Cecil and Patrick J. Ryan 2015
T.E. Cecil, P.J. Ryan, Geometry of Hypersurfaces, Springer Monographs
in Mathematics, DOI 10.1007/978-1-4939-3246-7_7
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7.1 A Formula of Simons’ Type

We begin in a general setting. Let M be a submanifold of a Riemannian manifold
QM. The second fundamental form � is defined by

�.X;Y/ D QrXY � rXY (7.1)

where X and Y are tangent vector fields on M. Then, corresponding to each normal
vector � , we have the shape operator A� which satisfies

hA�X;Yi D h�.X;Y/; �i: (7.2)

A formula of Simons’ type expresses the Laplacian of the length of the second
fundamental form � in terms of � and its derivative. The main result in this section
is a self-contained derivation of such a formula for Kähler submanifolds of complex
space forms. Specifically, we will prove the following theorem. In order to state the
theorem succinctly, we introduce the following terminology. For a 2d-dimensional
(real) vector space with complex structure J, a basis fvig is said to be J-invariant if
it consists of d pairs of the form fv; Jvg. Unless otherwise specified, we will assume
that Jvi D viCd for 1 � i � d.

Theorem 7.1. Let M be a Kähler submanifold of a complex space form QM of
constant holomorphic curvature 4c. Assume that the complex dimensions of M and
QM are m and n respectively, with p D n � m denoting the complex codimension. If
f�˛g2p

˛D1 is a J-invariant orthonormal basis for the normal space with corresponding
shape operators fA˛g, then

1

2
�j� j2 D jr 0� j2 C 2.m C 2/cj� j2 �˙. trace .A˛Aˇ//

2 � 2 trace .˙A2˛/
2:

In the summations, the indices ˛ and ˇ run from 1 to 2p.

We recall a few basic concepts from submanifold theory. The companion formula
to equation (7.1) is

QrX� D �A�X C r?X �; (7.3)

where the two terms on the right side are, by definition, the tangential and normal
components, respectively, of the left side. This formula defines the shape operator
A� as a symmetric tensor field of type .1; 1/ and the normal connection r? as a
connection on the normal bundle. With respect to an orthonormal normal frame
f�˛g, the normal connection can be expressed in terms of a set of 1-forms by

r?X �˛ D ˙s˛ˇ.X/�ˇ: (7.4)
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The normal connection has a natural extension to higher-order objects over M. In
particular, we can differentiate � as follows:

.r 0X�/.Y;Z/ D r?X .�.Y;Z// � �.rXY;Z/ � �.Y;rXZ/ (7.5)

which, when expressed in terms of the normal frame, yields

.r 0X�/.Y;Z/ D h.rXA˛/Y;Zi �˛ C hA˛Y;Zi s˛ˇ.X/�ˇ: (7.6)

The first term is to be summed over all ˛; the second term over all ordered pairs
.˛; ˇ/. The length of the second fundamental form and its covariant derivative may
be expressed as

j� j2 D ˙ j�.ei; ej/j2
jr 0� j2 D ˙ j.r 0ei

�/.ej; ek/j2; (7.7)

where feig is an orthonormal basis for the tangent space to M. The first summation
is over all ordered pairs .i; j/ and the second over all ordered triples .i; j; k/. We will
now relate these to the norms of the shape operators and their covariant derivatives.
Note that for any tensor T of type .1; 1/ we have

jTj2 D ˙ jhTei; ejij2
jrTj2 D ˙ jh.rei T/ej; ekij2 (7.8)

with the same summation indices as in equation (7.7).

Lemma 7.2. In terms of the notation established above, we have

j� j2 D ˙ jA˛j2 D ˙ trace A2˛

jr 0� j2 D ˙ jrA˛j2 � 2 ˙s˛ˇ.ei/ trace ..rei A˛/Aˇ/

�˙s˛ˇ.ei/sˇ� .ei/ trace .A˛A� / (7.9)

with the obvious ranges of summation.

For a tensor field T of type .1; 1/, the second covariant derivative is defined by

K.U;V/ D rUrVT � rrUVT

where U and V are vector fields. In the notation of Kobayashi and Nomizu, [283,
Vol. I, p. 124],

K.U;V/ D r2T.I VI U/:

Also, the curvature operator R.U;V/ is expressed in terms of K by
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K.U;V/ � K.V;U/ D R.U;V/ � T D ŒR.U;V/;T�:

Following Nomizu and Smyth [406], we define the restricted Laplacian�0A of A by

�0A D ˙K.ei; ei/:

The following is straightforward to check (see, for example, [406]).

Lemma 7.3. For any tensor T of type .1; 1/, the Laplacian of its length satisfies

1

2
�jTj2 D trace..�0T/T/C jrTj2: (7.10)

Gauss, Codazzi, and Ricci equations

The Gauss, Codazzi, and Ricci equations relate the curvature operator of the ambient
space QM to the curvature tensor of M and to the second fundamental form and shape
operators. For X and Y tangent to M, we use equations (7.1) and (7.3) to compute
QR.X;Y/Z for Z tangent to M and QR.X;Y/� for � normal to M. It is straightforward
to compute that

QR.X;Y/Z D R.X;Y/Z � .A�.Y;Z/X � A�.X;Z/Y/C .r 0X�/.Y;Z/ � .r 0Y�/.X;Z/:

Thus, we have the Gauss equation

R.X;Y/Z D A�.Y;Z/X � A�.X;Z/Y C tangential component of QR.X;Y/Z; (7.11)

and the Codazzi equation

.r 0X�/.Y;Z/ � .r 0Y�/.X;Z/ D normal component of QR.X;Y/Z: (7.12)

On the other hand, if we apply the curvature operator QR.X;Y/ to a normal vector
� , we get

QR.X;Y/� D �..rXA� /Y � .rYA� /X/C Ar?

X �Y � Ar?

Y �X (7.13)

� .�.X;A�Y/ � �.Y;A�X//C R?.X;Y/�;

where R? is the curvature operator of the normal connection. Again separating out
the tangential and normal components we get

.rXA� /Y � .rYA� /X D Ar?

X �Y � Ar?

Y �X � .tang. comp. of QR.X;Y/�/; (7.14)

where “tang. comp.” means the tangential component.
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Using the fact that h QR.X;Y/Z; �i D �hZ; QR.X;Y/�i, it is easy to check that
equation (7.14) is just another form of the Codazzi equation (7.12). Specifically, in
terms of our orthonormal basis for the normal space, we can write equation (7.14) as

.rXA˛/Y � .rYA˛/X D s˛ˇ.X/AˇY � s˛ˇ.Y/AˇX

�.tang. comp. of QR.X;Y/�˛/ (7.15)

with summation over ˇ. Also we have,

�.X;A�Y/ � �.Y;A�X/ D R?.X;Y/� � .norm. comp. of QR.X;Y/�/; (7.16)

which is the Ricci equation. In terms of the normal basis, we have for each ˛,

hŒA˛;Aˇ�X;Yi�ˇ D ..rXs˛ˇ/Y � .rYs˛ˇ/X/ �ˇ

�.s˛ˇ.X/sˇ� .Y/ � s˛ˇ.Y/sˇ� .X// ��

�.norm. comp. of QR.X;Y/ �˛/; (7.17)

with summation of ˇ and � . In other words, for each fixed pair of indices .˛; ˇ/, we
have

hŒA˛;Aˇ�X;Yi D .rXs˛ˇ/Y � .rYs˛ˇ/X

�˙.s˛� .X/s�ˇ.Y/ � s˛� .Y/s�ˇ.X//

�h QR.X;Y/�˛; �ˇi; (7.18)

with summation over � .

Kähler submanifolds

We now specialize to the case of Kähler manifolds. The complex structure is denoted
by J and it interacts with the shape operators as follows:

Lemma 7.4. For a Kähler submanifold M of a Kähler manifold QM, and any unit
normal vector � , we have

1. AJ� D JA� ,
2. JA� D �A�J.

This allows us to verify the following well-known fact.

Corollary 7.5. A Kähler submanifold M of a Kähler manifold QM is minimal, i.e.,
trace A� D 0 for all normal vectors � .
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Proof. Fix a point x in M. Choose a J-invariant orthonormal basis fe`g for TxM and
a J-invariant orthonormal basis f�˛g for the normal space at x. Then

trace A� D
2mX

`D1
hA�e`; e`i

D
mX

`D1

�hA�e`; e`i C hA�Je`; Je`i
�

D
mX

`D1
hA�e`; e`i � hJA�Je`; e`i

D
mX

`D1
hA�e`; e`i C hJ2A�e`; e`i

D
mX

`D1
hA�e`; e`i � hA�e`; e`i D 0: (7.19)ut

We have used the fact that for a Kähler submanifold of a Kähler manifold both
the tangent space and the normal space are J-invariant. When QM is a complex space
form, we can see using (6.6) that the QR term makes no contribution to the Codazzi
equation in (7.12) or (7.14)). Thus (7.15) takes the form

.rXA˛/Y � .rYA˛/X D s˛ˇ.X/AˇY � s˛ˇ.Y/AˇX (7.20)

with summation over ˇ. Similarly, the Ricci equation becomes

hŒA˛;Aˇ�X;Yi D .rXs˛ˇ/Y � .rYs˛ˇ/X

� ˙.s˛� .X/s�ˇ.Y/ � s˛� .Y/s�ˇ.X// � 2chX; JYihJ�˛; �ˇi
(7.21)

with summation over � .
We now embark upon the calculation of trace .�0A ı A/, where A is a shape

operator. We will suppress the explicit summation signs. Repeated indices indicate
summation over the appropriate ranges. Also, where necessary, we extend fe`g to
a local orthonormal frame near x by parallel translation along geodesics emanating
from x, and we do the same for other tangent vectors used in the proofs.

Lemma 7.6. Let M be a Kähler submanifold of a complex space form QM of constant
holomorphic curvature 4c. Then

�0A˛ D 2.m C 2/cA˛ C ŒAˇ; ŒA˛;Aˇ�� � .trace .A˛Aˇ//Aˇ

C.re`s˛ˇ/.e`/Aˇ C 2s˛ˇ.e`/re`Aˇ � s˛ˇ.e`/sˇ� .e`/A� : (7.22)
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Proof. We will begin by deriving rules for permuting the arguments of the second
covariant derivative operator K. In particular, we have for the K arising from a shape
operator A˛ ,

K.U;V/X D rU..rVA˛/X/

D rU..rXA˛/V � s˛ˇ.X/AˇV C s˛ˇ.V/AˇX/; (7.23)

(evaluated at x) where we have used the Codazzi equation and discarded terms
involving first derivatives of the vector fields U;V; and X since

rU D rV D rX D 0

at x. Continuing in this fashion, we find that the right side is equal to

K.U;X/V � .rUs˛ˇ/.X/AˇV C .rUs˛ˇ/.V/AˇX

� s˛ˇ.X/.rUAˇ/V C s˛ˇ.V/.rUAˇ/X: (7.24)

Thus

K.U;V/X D K.X;U/V � ŒR.X;U/;A˛�V
� .rUs˛ˇ/.X/AˇV C .rUs˛ˇ/.V/AˇX

� s˛ˇ.X/.rUAˇ/V C s˛ˇ.V/.rUAˇ/X: (7.25)

Now we are interested in computing .�0A/X D ˙K.ei; ei/X. Setting U D V D ei

in the previous equation gives us three terms to evaluate. The first term is

K.X; ei/ei D rX..rei A˛/ei/

D .rXs˛ˇ/.ei/Aˇei C s˛ˇ.ei/.rXAˇ/ei: (7.26)

Here we have used the identity

.rei A˛/ei D s˛ˇ.ei/Aˇei; (7.27)

which follows from the Codazzi equation and the fact that trace A˛ D 0: The second
term can be evaluated using the Gauss equation

R.X; ei/A˛ei D c.X ^ ei C JX ^ Jei C 2hX; JeiiJ/A˛ei C .AˇX ^ Aˇei/A˛ei

D c..trace A˛/X � A˛X C trace .A˛J/JX � JA˛JX

C 2JA˛.�JX/C .trace .A˛Aˇ/Aˇ/X � AˇA˛AˇX

D �4cA˛X C .trace .A˛Aˇ//AˇX � AˇA˛AˇX: (7.28)
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On the other hand,

A˛R.X; ei/ei D A˛.c.X ^ ei C JX ^ Jei C 2hX; JeiiJ/ei C .AˇX ^ Aˇei/ei/

D c..2m � 1/A˛X C A˛X C 2A˛X/

C A˛..trace Aˇ/AˇX � A2ˇX/

D 2.m C 1/cA˛X � A˛A2ˇX; (7.29)

so that

ŒR.X; ei/;A˛�ei D �2.m C 3/cA˛X C .trace .A˛Aˇ//AˇX C ŒA˛;Aˇ�AˇX:

The third term is obtained by merely substituting ei for each of U and V and becomes

� .rei s˛ˇ/.X/Aˇei C .rei s˛ˇ/.ei/AˇX

� s˛ˇ.X/.rei Aˇ/ei C s˛ˇ.ei/.rei Aˇ/X: (7.30)

Collecting and slightly rearranging the terms, we get

.�0A˛/X D .rXs˛ˇ/.ei/Aˇei � .rei s˛ˇ/.X/Aˇei

C s˛ˇ.ei/.rXAˇ/ei C .rei s˛ˇ/.ei/AˇX

� s˛ˇ.X/.rei Aˇ/ei C s˛ˇ.ei/.rei Aˇ/X

C 2.m C 3/cA˛X � .trace .A˛Aˇ//AˇX � ŒA˛;Aˇ�AˇX: (7.31)

Applying equation (7.21) to the first two terms, the Codazzi equation to the 3rd term
and equation (7.27) to the 5th term, we get

.�0A˛/X D hŒA˛;Aˇ�X; eiiAˇei C hQR.X; ei/�˛; �ˇiAˇei

C ˙s˛� .X/s�ˇ.ei/Aˇei �˙s˛� .ei/s�ˇ.X/Aˇei

C s˛ˇ.ei/..rei Aˇ/X C sˇ� .X/A�ei � sˇ� .ei/A�X/

C .rei s˛ˇ/.ei/AˇX

C s˛ˇ.ei/.rei Aˇ/X

� s˛ˇ.X/sˇ� .ei/A�ei

C 2.m C 3/cA˛X � .trace .A˛Aˇ//AˇX � ŒA˛;Aˇ�AˇX: (7.32)

It is easy to check that h QR.X; ei/�˛; �ˇiAˇei D �2cA˛X. The key observation is that
the only value of ˇ that produces a nonzero summand is the one for which �ˇ D J�˛ .
Combining some of the 13 terms in (7.32) and noting cancellation of terms 4 and 6,
also terms 3 and 10, we get
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.�0A˛/X D ŒAˇ; ŒA˛;Aˇ��X C 2.m C 2/cA˛X � .trace .A˛Aˇ//AˇX

� s˛ˇ.ei/sˇ� .ei/A�X C .rei s˛ˇ/.ei/AˇX C 2s˛ˇ.ei/.rei Aˇ/X:

This agrees with equation (7.22) and so we have completed the proof of
Lemma 7.6. ut
Lemma 7.7. Let M be a Kähler submanifold of a complex space form QM of constant
holomorphic curvature 4c. Then

trace .�0A˛ ı A˛/ D 2.m C 2/c trace A2˛ C 2 trace ..A˛Aˇ/
2 � A2˛A2ˇ/

� .trace .A˛Aˇ//
2 C .rei s˛ˇ/.ei/ trace .AˇA˛/

C 2s˛ˇ.ei/ trace ..rei Aˇ/A˛/

� s˛ˇ.ei/sˇ� .ei/ trace .A�A˛/: (7.33)

Proof. Composing equation (7.22) with A˛ and taking the trace, we get

trace .�0A˛ ı A˛/ D 2.m C 2/c trace A2˛

C trace .AˇA˛AˇA˛ � A2ˇA2˛ � A˛A2ˇA˛ C AˇA˛AˇA˛/

� .trace .A˛Aˇ//
2 C .rei s˛ˇ/.ei/ trace .AˇA˛/

C 2s˛ˇ.ei/ trace ..rei Aˇ/A˛/

� s˛ˇ.ei/sˇ� .ei/ trace .A�A˛/

D 2.m C 2/c trace A2˛ C 2 trace ..A˛Aˇ/
2 � A2˛A2ˇ/

� .trace .A˛Aˇ//
2 C .rei s˛ˇ/.ei/ trace .A˛Aˇ/

C 2s˛ˇ.ei/ trace ..rei Aˇ/A˛/

� s˛ˇ.ei/sˇ� .ei/ trace .A�A˛/:

Thus we have equation (7.33) which proves Lemma 7.7. ut
We can now complete the proof of Theorem 7.1. From Lemmas 7.2 and 7.3, we

have

1

2
�j� j2 D ˙ trace .�0A˛ ı A˛/C jr 0� j2

C 2˙s˛ˇ.ei/ trace..rei A˛/Aˇ/C˙s˛ˇ.ei/sˇ� .ei/ trace.A˛A� /

D ˙ trace .�0A˛ ı A˛/C jr 0� j2
� 2˙s˛ˇ.ei/ trace..rei Aˇ/A˛/C˙s˛ˇ.ei/sˇ� .ei/ trace.A˛A� /;

where we have interchanged ˛ and ˇ in the next-to-last summation. Substituting for
trace .�0A˛ ı A˛/ from Lemma 7.7, we get
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1

2
�j� j2 D 2.m C 2/c trace .˙A2˛/C 2 trace ˙..A˛Aˇ/

2 � A2˛A2ˇ/

� ˙.trace .A˛Aˇ//
2 C˙..rei s˛ˇ/.ei/ trace .AˇA˛//

C 2˙.s˛ˇ.ei/ trace ..rei Aˇ/A˛//

� ˙.s˛ˇ.ei/sˇ� .ei/ trace .A�A˛//C jr 0� j2
� 2˙.s˛ˇ.ei/ trace..rei Aˇ/A˛//C˙.s˛ˇ.ei/sˇ� .ei/ trace.A˛A� //:

After the obvious cancellations, we notice that .rei s˛ˇ/.ei/ trace .A˛Aˇ/ sums
to zero since trace .A˛Aˇ/ is symmetric in f˛; ˇg, while .rei s˛ˇ/.ei/ is skew-
symmetric. In addition, we note that the .A˛Aˇ/2 term contributes zero to the sum
since the 2p terms occurring with each A˛ can be paired as Aˇ and JAˇ , yielding a
summand of .A˛Aˇ/2 C .A˛.JAˇ//2 D 0: Also, we may rewrite the A2˛A2ˇ term in
terms of one index ˛. Thus, we get

1

2
�j� j2 D 2.m C 2/cj� j2 C jr 0� j2

� 2 trace .˙A2˛/
2 �˙.trace .A˛Aˇ//

2: (7.34)

This completes the proof of Theorem 7.1.

7.2 The Veronese Embedding of CPm in CPn

In the next four sections, we work out the shape operators of some complex
submanifolds in CPn that are important in our classification of Hopf hypersurfaces
with constant principal curvatures.

We begin with the Veronese embedding of CPm into CPn, where n D m.m C
3/=2. Thus the complex codimension is p D m.m C 1/=2. The embedding is
constructed in the following way. For z 2 CmC1, let Qf .z/ D zzT , where zT denotes
the transpose of the column vector z. Thus Qf .z/ is an .m C 1/ � .m C 1/ symmetric
matrix of complex numbers with .j; k/ entry equal to zjzk. We may regard the space
of all .m C1/� .m C1/matrices as C.mC1/2 and the space of symmetric matrices as
CnC1. In fact, if Ejk denotes the matrix with 1 in the .j; k/ position and 0 elsewhere,
then the basis consisting of the m C 1 matrices fEjjg and the m.m C 1/=2 matrices

1p
2
.Ejk C Ekj/

is orthonormal with respect to the standard Hermitian inner product on C.mC1/2 .
This inner product may be written as
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hU;Vi D < trace V�U;

where V� denotes the conjugate transpose of the complex matrix V , and < denotes
the real part. The mapping Qf determines an embedding f of CPm into CPn given
by f .�z/ D � Qf .z/. With respect to the usual Hermitian inner product on CmC1,
we can check that Qf maps vectors of length r into vectors of length r2. The Fubini-
Study metric on CPm, as given in Section 6.1, has constant holomorphic curvature
4c D 4=r2. The Fubini-Study metric on CPn is constructed in the same way. We
write the constant holomorphic curvature of CPn as 4c2 D 4=r4.

If we temporarily denote the metric on CPm by g, it is easy to check that for
vectors v and w tangent to CPm, we have

hf�v; f�wi D 2r2g.v;w/;

so that the induced metric on CPm is 2r2 times the original metric. This implies
that all sectional curvatures in the induced metric are 1=2r2 times the curvatures
in the original metric. Thus, in the induced metric, CPm has constant holomorphic
sectional curvature

1

2r2
4c D 2

r4

which is half that of the ambient space CPn.
When m D 1 and hence n D 2, the Veronese embedding of CP1 is also an

embedding of the complex quadric Q1. Put another way, the quadric Q1 is congruent
to CP1 and both are isometric to the 2-sphere S2 with constant curvature which is
half the holomorphic curvature of the ambient space CP2. We can see this as follows:

Lemma 7.8. The standard quadric Q1 D f�z j z20 C z21 C z22 D 0g in CP2 is related
to the quadric QQ1 D f�z j z22 D 2z0z1g by a holomorphic isometry of CP2.

Proof. Consider the unitary matrix

QT D

2

64

1p
2

� ip
2
0

1p
2

ip
2
0

0 0 �i

3

75 2 SU.3/; (7.35)

and let T be the holomorphic isometry of CP2 determined by QT , that is, T.�z/ D
�. QTz/. It is easy to check that TQ1 D QQ1. ut

Now if

Qf .z/ D zzT D
�

z20 z0z1
z0z1 z21

�
D w0 E00 C w1 E11 C w2

1p
2
.E01 C E10/;
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it is straightforward to verify that w22 D 2w0w1, so that f .CP1/ � QQ1. On the other
hand, the map is surjective, since for every point q of QQ1, either q D �.1; 2a2; 2a/ D
� f .1;

p
2 a/ or q D �.2a2; 1; 2a/ D � f .

p
2 a; 1/ for a suitable complex number a.

Shape operators of the Veronese embedding

Let p0 D �.r	0/ 2 CPm and q0 D f .p0/ D �.r2E00/. The tangent space to f .M/ at
q0 is spanned by

f��Qf�	j; ��.iQf�	j/g D f��.E0j C Ej0/; ��.i.E0j C Ej0//g;

where 1 � j � m: Thus, the normal space at q0 is spanned by f��Ejj; ��.iEjj/g,
1 � j � m, together with f��.Ejk C Ekj/; ��.i.Ejk C Ekj//g, 1 � j < k � m.

Let � D ��E11. We wish to compute A� . In particular, we will compute A� .��	j/

for 1 � j � m: Let

zt D cos
t

r
r	0 C sin

t

r
r	j: (7.36)

This is a curve on S2mC1.r/ with z0 D r	0 and �!z0 D 	j which embeds in S2nC1.r2/
to give

Qf .zt/ D r2.cos2
t

r
E00 C sin2

t

r
Ejj C cos

t

r
sin

t

r
.E0j C Ej0// (7.37)

and

Qf��!zt D r.� sin
2t

r
.E00 � Ejj/C cos

2t

r
.E0j C Ej0//: (7.38)

We need to extend � along � Qf .zt/ so that it remains a unit normal. For j > 1 we let

�t D E11; (7.39)

while for j D 1, we let

�t D sin2
t

r
E00 C cos2

t

r
E11 � cos

t

r
sin

t

r
.E01 C E10//: (7.40)

The space of horizontal tangent vectors to S2mC1.r/ at zt is spanned by

f�!zt ; i
�!zt ; 	k; i	kg;
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where k runs from 1 through m, skipping j. Thus, the space of horizontal tangent
vectors to QM D Qf .S2mC1.r// at Qf .zt/ is spanned by

fQf��!zt ; iQf��!zt ;E0k C Ek0; i.E0k C Ek0/g:

From this, it is straightforward to check that �t is a unit horizontal tangent vector to
S2nC1.r2/ that is orthogonal to the tangent space to QM. Thus, ���t is an appropriate
extension of � and can be used in computing A���	j at p0. Specifically, we get for
j D 1,

d�t

dt
D 1

r

�
2 cos

t

r
sin

t

r
.E00 � E11/ � .cos2

t

r
� sin2

t

r
/.E10 C E01/

�

D 1

r

�
sin

2t

r
.E00 � E11/ � cos

2t

r
.E10 C E01/

�

Evaluating this at t D 0, gives

�1
r
.E01 C E10/ D � 1

r2
Qf��!z0 :

If we write ej D ��	j for 1 � j � m, we thus get A�e1 D �e1, where � D 1=r2.
When j ¤ 1, on the other hand, we have

d�t

dt
D 0;

so A�ej D 0 for j � 2. Of course, using AJ D �JA, we also have

A�Je1 D ��Je1;

and A�Jej D 0 for j � 2. It is easy to see that shape operators of all normals of the
form ��Ejj will behave similarly. We now turn to normals of the form

��
Ejk C Ekjp

2
(7.41)

where k ¤ j. Specifically, let

� D ��
E12 C E21p

2
:

We begin the computation for A�e1 by extending � as follows:

�t D � sin
t

r

E02 C E20p
2

C cos
t

r

E12 C E21p
2

: (7.42)
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Again, we may check that �t is a unit normal to QM along Qf .zt/. Computing

d�t

dt
D �1

r

�
cos

t

r

E02 C E20p
2

C sin
t

r

E12 C E21p
2

�
(7.43)

and setting t D 0 yields .�1=r2/Qf�	2, from which we deduce that A�e1 D �e2 and
also that A�Je1 D ��Je2. A similar calculation gives A�e2 D �e1 and A�Je2 D
��Je1. For j � 3, we choose �t to be constant and find that A�ej D A�Jej D 0:

Again, we note that the same calculation applies to all unit normals of the form

��
Ejk C Ekjp

2
:

Thus we are able to compute the shape operator A for all unit normal vectors . In
fact, for any real symmetric m � m matrix C with jCj D 1,  D ��C is a unit normal
to f .M/ at q0: If we write C D D C E as the sum of a diagonal matrix and a matrix
with zero diagonal, then the matrix of A , restricted to the span of fe1; e2; : : : ; emg, is

A D �.D C p
2E/: (7.44)

We then use A ı J D �J ı A to complete our calculation of A . By appropriate
choice of C (in fact, with E D 0), we see that the rank of A can be as low as 2 and
as high as 2m and that the number of distinct eigenvalues of A can be as high as m
and as low as 2.

7.3 The Segre Embedding of CPh � CPk in CPn

The Segre embedding f W CPh � CPk ! CPn satisfies n D h C k C hk. The
complex dimension of the submanifold is m D hCk and the complex codimension is
p D hk. The construction is similar to that of the Veronese embedding. For z 2 ChC1
and w 2 CkC1, let Qf .z;w/ D zwT . Thus Qf .z;w/ is a .h C 1/ � .k C 1/ matrix of
complex numbers with .i; j/ entry equal to ziwj. We may regard the space of all
.h C 1/ � .k C 1/ matrices as CnC1. The standard Hermitian inner product is given
by the same formula,

hU;Vi D < trace V�U;

and the Eij form an orthonormal basis. The mapping Qf determines an embedding
f of CPh � CPk into CPn given by f .�z; �w/ D � Qf .z;w/. With respect to
the respective standard Hermitian inner products on ChC1, CkC1, and CnC1, Qf



7.3 The Segre Embedding of CPh � CPk in CPn 401

maps S2hC1.r/ � S2kC1.s/ into S2nC1.rs/. The usual Fubini-Study metric on CPh

(respectively CPk) has constant holomorphic curvature 4=r2 (respectively 4=s2).
In terms of these parameters, we can write the constant holomorphic curvature of
CPn as 4=.r2s2/.

When m D 2, f embeds CP1 � CP1 onto a complex quadric QQ2 in CP3. The
situation is similar to the Veronese case discussed earlier. Specifically, we have the
following lemma.

Lemma 7.9. The standard quadric Q2 D f�z j z20 C z21 C z22 C z23 D 0g in CP3 is
related to the quadric QQ2 D f�z j z0z1 D z2z3g by a holomorphic isometry of CP3:

Proof. Consider the unitary matrix

QT D

2

66664

1p
2

� ip
2

0 0
1p
2

ip
2

0 0

0 0 � 1p
2

ip
2

0 0 1p
2

ip
2

3

77775
2 SU.4/; (7.45)

determining the holomorphic isometry T of CP3. It is straightforward to check that
f .CP1 � CP1/ D QQ2 and TQ2 D QQ2. ut

Returning to the general case, an easy calculation yields the following:

Proposition 7.10. The metric on CPh (respectively CPk) induced by the Segre
embedding is s2 times (respectively, r2 times) its original metric. The metric on
CPh � CPk induced by the embedding f is the product metric of two spaces of
constant holomorphic curvature 4=.r2s2/, the same as that of the ambient CPn.

Shape operators of the Segre embedding

In this section, we adopt the following conventions and notation. Components of
vectors and matrices are numbered beginning with 0. The standard unit basis vectors
are denoted by 	j that has 1 in position j and zeroes elsewhere. Ej` denotes the matrix
that has 1 in position .j; `/ and zeroes elsewhere. The dimensions (number of rows
and columns) are determined by the context.

Due to the homogeneity, it is sufficient to compute shape operators at one point
p0 2 M D CPh � CPk. For convenience, we choose the point p0 D �.r	0; s	0/
where r	0 2 S2hC1.r/ � ChC1 and s	0 2 S2kC1.s/ � CkC1.

Then f .p0/ D �.rsE00/ and f�Tp0M is spanned by the h C k vectors of the form
��Ej0 and ��E0`, where 1 � j � h and 1 � ` � k. The normal space is spanned by
the hk vectors ��Ej`. We consider � D ��E11. For X 2 Tp0M, we have

f�.�A�X/ D ��D.f�X/L�
L: (7.46)
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We will need to consider parametrized curves in the space of matrices, and so
we introduce the following notation. Here � and a are real numbers with a positive
and j is an integer whose range will be clear from the context. The curve C (actually
a 1-parameter subgroup of the orthogonal group in case the matrices are square) is
defined by

Cj
� .a/ D cos

�

a
E00 C sin

�

a
Ej0 � sin

�

a
E0j C cos

�

a
Ejj:

Now consider

zj`
t;u D Cj

t.r/.rsE00/.C
`
u.s//

T

D rs.cos
t

r
E00 C sin

t

r
Ej0/.cos

u

s
E00 C sin

u

s
E0`/

D rs
��

cos
t

r
.cos

u

s
E00 C sin

u

s
E0`/C sin

t

r
.cos

u

s
Ej0 C sin

u

s
Ej`/

�
:

(7.47)

In essence, we have chosen one coordinate direction related to the first factor and
one related to the second factor. Then �.zj`

t;u/ is a 2-parameter family of curves on
f .M/. We compute

dz

dt
D s.� sin

t

r
E00 C cos

t

r
Ej0/.cos

u

s
E00 C sin

u

s
E0`/

D s
�

cos
t

r
.cos

u

s
Ej0 C sin

u

s
Ej`/ � sin

t

r
.cos

u

s
E00 C sin

u

s
E0`/

�
; (7.48)

and

dz

du
D r.cos

t

r
E00 C sin

t

r
Ej0/.� sin

u

s
E00 C cos

u

s
E0`/

D r
�

cos
t

r
.� sin

u

s
E00 C cos

u

s
E0`/C sin

t

r
.� sin

u

s
Ej0 C cos

u

s
Ej`/

�
:

(7.49)

Let

Nj`
t;u D cos

t

r
.� sin

u

s
Ej0 C cos

u

s
Ej`/ � sin

t

r
.� sin

u

s
E00 C cos

u

s
E0`/ (7.50)

and note that Nj`
t;u is tangent to the sphere S2nC1.rs/ at zj`

t;u but orthogonal to dz
dt and

dz
du there. Also observe that Nj`

t;u is horizontal at zj`
t;u, and note that Nj`

0;0 D Ej`. We
are thus in a position to compute the shape operators at p, in particular, A� with
N11
0;0 D �L.

To this end, consider first j > 1. Then the constant vector N11
0;0 is orthogonal to zj`

t;u,
dz
dt , and dz

du along the curve ft 7! zj`
t;0g (i.e., �L can be extended to be a constant vector
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along the curve). This leads to the conclusion that A� .��	j; 0/ D 0. Similarly, for
` > 1, we have A� .0; ��	`/ D 0. For j D 1, however, we extend � using N11

t;0.
This gives the first of the following two equations. The second follows by a similar
argument.

dN

dt
D �1

r
E0` D � 1

r2
Qf�.0; 	`/

dN

du
D �1

s
Ej0 D � 1

s2
Qf�.	j; 0/: (7.51)

In fact, setting X D .��	1; 0/ and U D .0; ��	1/, we have

A�X D 1

r2
U

A�U D 1

s2
X: (7.52)

Even though X and U are unit vectors in the respective natural metrics on CPh and
CPk, they are not unit vectors in the metric induced by the embedding into CPn.
Setting OX D 1

s X and OU D 1
r U, we get an orthonormal pair satisfying

A� OX D 1
rs

OU
A� OU D 1

rs
OX: (7.53)

With respect to an orthonormal basis whose first four vectors are OX, OU, J OX, and J OU,
the upper-left 4 � 4 block of the matrix of A� is

2

664

0 � 0 0

� 0 0 0

0 0 0 ��
0 0 �� 0

3

775 (7.54)

where � D 1=rs. All the other entries in the matrix of A� will be zero.
Now consider the unit normal vector � D ��E12. The preceding calculation with

j D 1 and ` D 2 will give

A�X D 1

r2
V

A�V D 1

s2
X; (7.55)

where V D .0; ��	2/. We also set OV D 1
r V . With respect to an orthonormal basis

whose first six vectors are OX, OU, OV , J OX, J OU, and J OV , the upper-left 6�6 block of the
matrix of A� will look like this:
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2

66666664

0 0 � 0 0 0

0 0 0 0 0 0

� 0 0 0 0 0

0 0 0 0 0 ��
0 0 0 0 0 0

0 0 0 �� 0 0

3

77777775

: (7.56)

All other entries in the matrix are zero. Note that both A� and A� have eigenvalues
.�;��; 0/ with respective multiplicities .2; 2; 2.h C k � 2//. The same holds for
��Ej` for any particular index choice .j; `/. Further, consider any unit normal  that
is a linear combination of � and �. Write  D a� C b�. Then, the upper-left 6 � 6
block of A with respect to this same basis is

�

2

66666664

0 a b 0 0 0

a 0 0 0 0 0

b 0 0 0 0 0

0 0 0 0 �a �b
0 0 0 �a 0 0

0 0 0 �b 0 0

3

77777775

: (7.57)

A basis of eigenvectors for this matrix can be worked out as follows:

• . OX C a OU C b OV/ and .J OX � a OU � bJ OV/ with eigenvalue �;
• . OX � a OU � b OV/ and .J OX C a OU C bJ OV/ with eigenvalue ��;
• �b OU C a OV and �bJ OU C aJ OV with eigenvalue 0,

so that A has the same eigenvalue behavior as A� and A�.
We can repeat this process, with a OU C b OV playing the role of OU, for the span of

f��E11; ��E12; ��E13g

and so on, finally determining that every unit normal in the span of

f��E1` j 2 � ` � kg

has these same eigenvalues and multiplicities.
However, if h � 2 and k � 2, let � D ��E11, � D ��E22, and  D

.� C �/=
p
2. It is easy to see that with respect to a basis beginning with

f OX; OU; OY; OV; J OX; J OU; J OY; J OVg, where Y D .��	2; 0/, the upper-left 8 � 8 block of
A is
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1p
2

2

666666666664

0 � 0 0 0 0 0 0

� 0 0 0 0 0 0 0

0 0 0 � 0 0 0 0

0 0 � 0 0 0 0 0

0 0 0 0 0 �� 0 0

0 0 0 0 �� 0 0 0

0 0 0 0 0 0 0 ��
0 0 0 0 0 0 �� 0

3

777777777775

; (7.58)

so that the eigenvalues of A are .�;��; 0/ with respective multiplicities

.4; 4; 2.h C k � 4//:

In fact, considering linear combinations of � and � as above, we get eigenvalues

.a�;�a�; b�;�b�; 0/

with multiplicities .2; 2; 2; 2; 2.h C k � 4// except when a D b or ab D 0.

7.4 The Plücker Embedding of Complex Grassmannians

The complex Grassmann manifold of complex h-planes in ChCk is expressed as a
symmetric space

Gh;k.C/ D U.h C k/

U.h/ � U.k/
;

see [283, Vol. II, pp. 160 and 286], for more details. In case h D 1, G1;k.C/ is just the
complex projective space CPk. The Plücker embedding realizes Gh;k.C/ as a Kähler
submanifold of a higher-dimensional complex projective space CPn, specifically the
complex projective space over the h-th complex exterior power of ChCk. Thus

n D
�

h C k
h

�
� 1:

In fact, an h-plane spanned by h linearly independent elements vi of ChCk, gives
rise to a totally decomposable h-vector v1 ^ v2 ^ � � � ^ vh. This correspondence
gives a well-defined bijection from Gh;k.C/ onto the complex submanifold of totally
decomposable h-vectors. This is the Plücker embedding.
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When considering the submanifolds Gh;k.C/, it is sufficient to assume h � k. This
is because of a duality relationship, i.e., Gh;k.C/ and Gk;h.C/ are holomorphically
congruent as submanifolds of CPn. It turns out that the k D 2 case is particularly
interesting for two reasons:

• The complex 2-plane Grassmannians G2;3.C/ occur as focal submanifolds of
Hopf hypersurfaces in CP9 (see Theorem 8.26 on page 444).

• Hypersurfaces in G2;k.C/ exhibit many of the properties of hypersurfaces in real,
complex, and quaternionic space forms. There has been much recent interest in
studying such hypersurfaces beginning with J. Berndt and Y.J. Suh [29, 37].

We will restrict our attention to this case in the rest of the section.

The complex 2-plane Grassmannian

We now restrict our attention to the h D 2 case. For any m, the 2nd exterior
power of Cm may be identified with the space of complex m � m skew-symmetric
matrices. Here m D 2 C k. Consider the space of all complex m � m matrices
with its standard Hermitian inner product as used in Section 7.3 in connection with
the Segre embedding. We decompose this Cm2 into a direct sum of two orthogonal
subspaces, the symmetric and the skew-symmetric matrices, as in Section 7.2. In
terms of dimensions, the breakdown is

m2 D m.m C 1/

2
C m.m � 1/

2
;

so that the dimension n of the ambient projective space will satisfy

n C 1 D m.m � 1/
2

D .2C k/.1C k/

2
D k.k C 3/

2
C 1:

Note that the Hermitian inner product, when restricted to the space of skew-
symmetric matrices, yields the usual Hermitian inner product on CnC1. Thus, we
can form the familiar sphere S2nC1.r/ and the complex projective space CPn with
constant holomorphic sectional curvature 4c D 4=r2:

The unitary group U.2C k/ D U.m/ acts on Cm2 by

.B; z/ 7! BzBT ;

where B 2 U.m/ and z 2 Cm2 : Clearly, this action preserves symmetry and skew-
symmetry. It is also easy to check that it preserves the Hermitian inner product. In
fact, we have

trace .BVBT/�BUBT D trace V�U: (7.59)
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For 1 � j; ` � 2C k, we introduce

Fj` D Ej` � E`j;

and observe that the n C 1 elements,

ej` D 1p
2

Fj`; where j < `;

form an orthonormal set of complex skew-symmetric matrices, and the set

fej`; iej`g

constitute an orthonormal basis for CnC1.
In this context, the Plücker embedding may be described as follows. Let M0 be

the orbit of z0 D r e12 under the action of U.2C k/ and let M D �M0. The isotropy
subgroup is U.2/� U.k/; understood as the set of matrices with the 2� 2 upper-left
block and the k�k lower-right block, both unitary. The other entries in such matrices
must all be zero. The Cartan decomposition of the Lie algebra u.2C k/ is

u.2C k/ D .u.2/C u.k//C m

where m may be identified with the tangent space to G2;k.C/ at the origin. Note that
m is spanned as a real vector space by the 4k elements fF1j; iF1j;F2j; iF2jg where
3 � j � k C 2. For Z 2 m, let

�t D .exp tZ/ z0 .exp tZ/T :

Then �0 D z0 and

�!�0 D ŒZ; z0� D rp
2
ŒZ;F12�:

This means that if

f W G2;k ! S2nC1.r/

denotes the map we have been describing (so that the Pl̈ucker embedding is � ı f ),
its differential at the origin satisfies

f�Z D rp
2
ŒZ;F12�:

In particular, for j � 3,
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f�F1j D rp
2
ŒF1j;F12� D rp

2
F2j:

By a similar calculation, f�F2j D � rp
2

F1j. Recalling the basis of m, we see that the
4k vectors of the form

f��F1j; J��F1j; ��F2j; J��F2jg;

where 3 � j � k C 2, are mutually orthogonal vectors of length
p
2 spanning the

tangent space to M at �z0. From this, we note that for tangent vectors X;Y to G2;k,
we have hf�X; f�Yi D r2

2
hX;Yi with respect to the usual Hermitian inner product on

the respective spaces of matrices. Also, the normal space to M at �z0 is spanned by
the k.k �1/=2 vectors f��Fj`; J��Fj`g where 3 � j < ` � k C2. These vectors also
have length

p
2.

Shape operators of the Plücker embedding

Theorem 7.11. For the Plücker embedding of G2;k into CPn, where 2n D k.k C 3/,
the shape operator with respect to all unit normals at all points has the following
properties:

• The nonzero eigenvalues are � D 1
r and �� D � 1

r , each of multiplicity 4.
• The corresponding eigenspaces T� and T�� satisfy JT� D T��:
• If k � 3, the zero eigenvalue has multiplicity 4.k �2/: Otherwise, there is no zero

eigenvalue.

Because of homogeneity, it is sufficient to check the shape operator at one point.
We choose the point p0 D �z0. Now consider the unit normal

� D ���0 where �0 D e34 D 1p
2

F34:

Also, it is easy to check that A�X D ��A0�0X
L so that it is sufficient to compute the

shape operator A0�0 for the embedding f of G2;k onto the horizontal submanifold M0

of the sphere S2nC1.
To this end, we set

�t D .exp tZ/ �0 .exp tZ/T

where Z is one of the basis vectors of m:
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Lemma 7.12. �t is a unit normal to M0 at �t.

Proof. Clearly, h�t; �ti D h�0; z0i D 0, since F12 and F34 are orthogonal.
Furthermore, in view of equation (7.59), we have h�t; i�ti D 0 so that �t is horizontal
at �t. We compute

�!�t D .exp tZ/ ŒZ; z0� .exp tZ/T ;

and note that h�t;
�!�t i D 0: However, we need also to check that �t is orthogonal to

all other tangent vectors to M0 at �t. Let QZ be a basis vector of m which is orthogonal
to Z and iZ. Let

ıu D .exp tZ/.exp u QZ/z0.exp u QZ/T.exp tZ/T ;

which is a curve on M0 with initial conditions ı0 D �t and

�!
ı0 D .exp tZ/ Œ QZ; z0� .exp tZ/T :

These initial tangent vectors, together with Z and iZ span the tangent space to M0 at

�t. Since h�t;
�!
ı0 i D h�0; Œ QZ; z0�i D 0, we see that �t is normal to M0 at �t. ut

Using the fact that the sphere S2nC1 is totally umbilic in CnC1, we have for Z 2 m,

�f�A0�0Z D �!
�0 D 1p

2
ŒZ;F34�:

In particular, for Z D F1j, we have ŒZ;F34� D ŒF1j;F34� which is equal to F14 if
j D 3, �F13 if j D 4, and zero otherwise. Thus, we have

�f�A0�0F13 D �1
r

f�F24;

and similar equations for F14, F23, and F24. This gives us

A0�0F13 D 1

r
F24

A0�0F14 D �1
r

F23

A0�0F23 D �1
r

F14

A0�0F24 D 1

r
F13

A0�0Fij D 0 for i D 1; 2 and j � 5: (7.60)

Interpreting our result on M, we see that the eigenvalue/eigenspace configuration of
A� is as follows:
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• The eigenvalues are �, �� and 0, where � D 1=r:
• The eigenspace T� is spanned by

��.F13 C F24/; ��.F14 � F23/; J��.F13 � F24/; J��.F14 C F23/:

• The eigenspace T�� is spanned by

��.F13 � F24/; ��.F14 C F23/; J��.F13 C F24/; J��.F14 � F23/:

• The eigenspace T0 is spanned by the set fFij; JFijg for 1 � i � 2 and 5 � j �
k C 2.

Clearly, the multiplicities of the eigenvalues and their relationship with the
complex structure J are as announced in the statement of the theorem.

When k D 3, we can apply a similar computation to e35 and e45. In the interest
of symmetry, we write e53 for �e35 and let

0 D a e34 C b e45 C c e53;

where a2 C b2 C c2 D 1. Then the matrix of A00 (restricted to the span of F13, F14,
F15, F23, F24, F25) takes the form,

A D 1

r

2

66666664

0 0 0 0 a c
0 0 0 �a 0 �b
0 0 0 �c b 0

0 �a �c 0 0 0

a 0 b 0 0 0

c �b 0 0 0 0

3

77777775

: (7.61)

The square of this matrix is

A2 D 1

r2

2

66666664

a2 C c2 �bc ab 0 0 0

�bc a2 C b2 ac 0 0 0

ab ac b2 C c2 0 0 0

0 0 0 a2 C c2 �bc ab
0 0 0 �bc a2 C b2 ac
0 0 0 ab ac b2 C c2

3

77777775

: (7.62)

One can check that the bF13CcF14�aF15, and bF23CcF24�aF25 span the nullspace
of A2. Provided that a ¤ 0, aF13C bF15, aF23C bF25, aF14C cF15, and aF24C cF25
are linearly independent vectors spanning an eigenspace of A2 with eigenvalue �2.
This means that the eigenvalues of A are f0; �;��g and the zero eigenvalue has



7.4 The Plücker Embedding of Complex Grassmannians 411

multiplicity 2. Further, noting that A has trace 0, we conclude that � and �� each
have multiplicity 2. If a D 0, a different linear combination provides the same
result. In fact, cF13 � bF14, cF23 � bF24, F15, and F25, will span the �2-eigenspace
of A2. Finally, recalling that the shape operator anticommutes with J, we see that
each of the eigenvalues discussed above has multiplicity 4 when the shape operator
is applied to the full tangent space.

We now examine the case k � 4. We will show that not all unit normals have
shape operators with the same eigenvalue configuration. This turns out to have
the implication that tubes over such Grassmannians do not have constant principal
curvatures. We will use this later on, in the proof of Theorem 8.26.

Specifically, let �0 D a e34 C b e56. Then the matrix of A0�0 (restricted to the span
of F13, F14, F23, F24, F15, F16, F25, and F26) takes the form

A D 1

r

2

666666666664

0 0 0 a 0 0 0 0

0 0 �a 0 0 0 0 0

0 �a 0 0 0 0 0 0

a 0 0 0 0 0 0 0

0 0 0 0 0 0 0 b
0 0 0 0 0 0 �b 0
0 0 0 0 0 �b 0 0

0 0 0 0 b 0 0 0

3

777777777775

: (7.63)

The square of this matrix is

A2 D 1

r2

2

666666666664

a2 0 0 0 0 0 0 0

0 a2 0 0 0 0 0 0

0 0 a2 0 0 0 0 0

0 0 0 a2 0 0 0 0

0 0 0 0 b2 0 0 0

0 0 0 0 0 b2 0 0

0 0 0 0 0 0 b2 0
0 0 0 0 0 0 0 b2

3

777777777775

: (7.64)

Also, A0�0 vanishes on the orthogonal complement of the 16-dimensional subspace
spanned by fFij; JFijg where 1 � i � 2, 3 � j � 6. Arguing as in the previous case,
A can be diagonalized with a�, �a�, b�, and �b� each occurring twice along the
diagonal. Depending on the choice of a and b, the eigenvalues of A can be .0; �;��/
with respective multiplicities, .4; 2; 2/, .a�;�a�; b�;�b�/ each of multiplicity 2
(when a2 ¤ b2 and both are nonzero), or, finally, . 1p

2
�;� 1p

2
�/, each of multiplicity

4. In any case, many different multiplicities are possible.
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7.5 The Half-spin Embedding of SO.2d/=U.d/ in CPn

This is the space SO.2d/=U.d/ of real dimension d.d � 1/. It is embedded as an
m D d.d�1/

2
-dimensional complex submanifold M of CPn where nC1 D 2d�1 using

the half-spin embedding. We assume that d � 2. In the special case where d D 5,
we have m D 10, n D 15, and M is a focal submanifold of the Type E hypersurface
in CP15.

Construction of the ambient space – Part 1

1. Let V be a real vector space of dimension 2d. We may regard V as R2d with the
usual inner product h ; i and standard orthonormal basis f	kg, where 1 � k � 2d.

2. Let J be the complex structure on V satisfying 	dCk D J	k for 1 � k � d.
3. Form the Clifford algebra C`.V/ generated by V subject to the relations

v1v2 C v2v1 D 2hv1; v2i:

Then 	2j D 1 and 	k	j D �	j	k for 1 � j ¤ k � 2d: The dimension of this
Clifford algebra is 22d.

4. Let Pin.V/ be the group generated by unit vectors of V using the Clifford
multiplication, and let Spin.V/ be the subgroup of Pin.V/ generated by products
of an even number of unit vectors.

5. Note that each element of the orthogonal group O.V/ is a product of reflections
˝u where

˝u W V ! V

is the reflection in the hyperplane through the origin with unit normal u. The
action can be expressed in terms of Clifford multiplication by

˝uX D �uXu D �uXu�1

for X 2 V . Pin.V/ is a double cover of O.V/ (and Spin.V/ of SO.V/) since
˝u D ˝�u:

6. Let VC be the complexification of V and extend J, the inner product h ; i, and
the Clifford multiplication by (complex) linearity. The complex Clifford algebra
C`.VC/ is just the complexification of C`.V/:

7. The real (resp. complex) Clifford algebras are 22d-dimensional real (resp.
complex) vectors spaces which may be expressed as the direct sum of the

�
2d
j

�
-

dimensional subspaces C`j.V/, (resp., C`j.VC//, consisting of elements of pure
degree j. For any nonempty subset K of the integers 1 through 2d, denote by
	K the product (in ascending order) of f	k j k 2 Kg. When K is the empty set,
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	K D 1, by definition. The set of all 	K forms a basis for the Clifford algebra and
the cardinality of K corresponds to the degree.

We decompose VC D W
L

W, where W is the Ci eigenspace of J and W is the
�i eigenspace. Each is a complex vector space of dimension d.

Lemma 7.13. W is an isotropic subspace, i.e., w2 D 0 for all w 2 W. Similarly, W
is isotropic.

Remark 7.14. The Clifford algebras C`.W/ and C`.W/ are Clifford subalgebras of
C`.VC/. Note that the restriction to W and to W of the bilinear form on which
Clifford multiplication is based, is identically zero, so that any two elements
anticommute. Thus we can identify C`.W/ and C`.W/ with the exterior algebrasV

W and
V

W. In this identification, the Clifford multiplication corresponds to the
usual wedge product.

In this context, we use the notations
Vj W and C`j.W/ interchangeably (and

similarly for W). Write

˛k D 1p
2
.	k � iJ	k/I N̨k D 1p

2
.	k C iJ	k/; (7.65)

for 1 � k � d. The ˛k (resp. N̨k) constitute a basis for W (resp. W), and as before,
the ˛K and N̨K are a basis for the respective Clifford (exterior) algebras.

Construction of the ambient space – Part 2

We first note that there is a unique Hermitian inner product on W that makes the d
vectors ˛k orthonormal. This is obtained by defining

.˛j; ˛k/ D h N̨ j; ˛ki;

for 1 � j; k � d. We extend . ; / to C`.W/ so that the canonical basis elements ˛K are
orthonormal. The Clifford algebra C`.W/ may be further broken down, separating
terms of even and odd degree. Specifically, let

VCW be the span of all ˛K such that
jKj is even. This is a complex vector space of dimension 2d�1 which may therefore
be identified with CnC1. Restricting the Hermitian inner product . ; / to this CnC1,
we may carry out the construction of CPn as usual. For example, when d D 5, so
that CnC1 D C16; we will have the following 16 orthonormal basis elements:

• 1 of degree 0;
• ˛1˛2I ˛1˛3I ˛1˛4I ˛1˛5I ˛2˛3I ˛2˛4I ˛2˛5I ˛3˛4I ˛3˛5I ˛4˛5; all of degree 2;
• ˛1˛2˛3˛4I ˛1˛2˛3˛5I ˛1˛2˛4˛5I ˛1˛3˛4˛5I ˛2˛3˛4˛5; all of degree 4.
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The Lie algebras and exponential maps

We recall that the Lie algebra o.2d/ of SO.2d/ is spanned by the elements Fjk where
j < k (skew-symmetric real 2d � 2d matrices). On the other hand, C`2.V/ may be
regarded as a Lie algebra using the operation Œa; b� D ab � ba. Note that the right
side (which uses the Clifford multiplication) indeed has degree 2. Define the map

� W o.2d/ ! C`2.V/

on basis elements by �.Fjk/ D 1
2
	j	k and extend linearly. Then it is easy to check

that � is a Lie algebra isomorphism. Further, if �.A/ D a, then for all v 2 V , we have

Av D av � va;

where the operation on the left is ordinary matrix multiplication, while that on the
right is again Clifford multiplication. We need to check that if v 2 C`1.V/ and
a 2 C`2.V/, then va � av is in C`1.V/. Furthermore, we have

.exp A/v D .exp a/ v .exp.�a//;

where again, the operations on the left are ordinary matrix exponentiation and
multiplication, while the exponentiations and multiplications on the right are defined
in terms of the Clifford multiplication in the finite-dimensional algebra C`.V/. Of
course, individual terms on the right need not be of degree 1, but the product must be.

We will need to discuss one-parameter subgroups of SO.2d/ in order to analyze
its action on CnC1: We begin with reflections as represented in Pin.V/. For 1 � j ¤
k � 2d, let

ut D � sin
t

2
	j C cos

t

2
	k: (7.66)

This particular element of Pin.V/ determines a reflection in the hyperplane with unit
normal ut. Note that this reflection fixes all basis vectors not in the span of f	j; 	kg.
Now consider the element u0ut 2 Spin.V/. As an element of C`.V/, this is

cos
t

2
C sin

t

2
	j	k D exp

� t

2
	j	k

�
:

The “action” of SO.2d/ on CnC1

We put the word “action” in quotation marks, as it is only defined up to a sign. In
fact, it is Spin.2d/ that acts in an unambiguous sense. (We use Spin.2d/ to mean
Spin.R2d/ here just as SO.2d/ is SO.R2d/.) However, this will be sufficient for our
purposes, since ultimately, we are interested in CPn rather than on CnC1.
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For v 2 V D C`1.V/ � C`1.VC/, we may write v uniquely as

v D vW C vW

where vW 2 W and vW 2 W. For ! 2 VW, write

v � ! D p
2 i.vW ^ ! � vW y !/;

where the notation “y” denotes the interior product (see, for example, Sternberg
[500, p.20]). The action preserves

V
W and raises or lowers the degrees of

individual terms by 1. For u; v in Pin.V/ so that a D uv 2 Spin.V/, we have

a � ! D u � .v � !/

so that the action of Spin.V/ preserves the degree parity. In particular, it preservesVCW D CnC1.
Let M0 � S2nC1.r/ be the orbit of r � 1 under Spin.2d/ and let M D �M0. For

X 2 o.2d/, consider the map

! 7! .exp X/ � !:

The differential of this map at r � 1 sends X to a tangent vector to M0 at the point
.exp X/ � .r � 1/. We may break down the Lie algebra

o.2d/ D h C m (7.67)

where h is a Lie subalgebra, Œm;m� � h, and Œh;m� � m.
Recalling that o.2d/ has a basis of the form fFjkg, 1 � j < k � 2d, we now

choose an alternative basis that is adapted to the action we are studying. For 1 � j <
k � d, we define

Kj D Fj jCd

GCjk D Fjk C FjCd kCd I HCjk D Fj kCd C Fk jCd

G�jk D Fjk � FjCd kCd I H�jk D Fj kCd � Fk jCd: (7.68)

Let k, gC, hC, g�, and h� be the respective spans of these five sets of matrices.
Then set

h D k ˚ gC ˚ hC I m D g� ˚ h�I (7.69)
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One can check that the specified conditions for the decomposition in equation (7.67)
are satisfied. To see this more easily, we extend our notation, temporarily replacing
the condition j < k by j ¤ k, and setting

GCkj D �GCjk I G�kj D �G�jk I HCkj D �HCjk I H�kj D �H�jk :

Then, we have the following identities for distinct indices k, j, and `. The Lie
brackets involving different configurations of indices (for example, four distinct or
only two distinct) all vanish.

ŒGCkj ;G
C
`j � D GC`k; ŒHCkj ;H

C
`j � D GC`k; ŒGCkj ;H

C
`j � D HC`k ;

ŒGCkj ;Kj� D HCjk ; ŒHCkj ;Kj� D GCjk ; ŒKk;Kj� D 0;

and thus h is a Lie subalgebra. Further, we have Œm;m� � h, since

ŒG�kj ;G
�̀
j � D GC`k; ŒH�kj ;H

�̀
j � D GC`k; ŒH�kj ;G

�̀
j � D HC`k :

Finally, we check that

ŒH�kj ;G
C
`j � D H�̀k; ŒG�kj ;G

C
`j � D G�̀k; ŒHCkj ;G

�̀
j � D H�̀k;

ŒH�kj ;H
C
`j � D G�̀k; ŒG�kj ;Kj� D H�kj ; ŒH�kj ;Kj� D G�jk ;

which shows that Œh;m� � m.
We now check that m may be identified with the tangent space to M0 at r � 1. First

take X D G�jk . The associated member of C`1.V/ is

a D 1

2
	j	k � 1

2
	jCd	kCd:

Then

exp ta D .exp.
t

2
	j	k// .exp.� t

2
	jCd	kCd//

since 	j	k and 	jCd	kCd commute in C`.V/. We can write

exp ta D u0ut Qu0 Qu�t

where ut is defined by (7.66) and Qut is the analogous expression involving 	jCd	kCd.
We may rewrite ut in the form

ut D 1

2
.ut � iJut/C 1

2
.ut C iJut/

which reduces to

ut D 1p
2
.� sin

t

2
˛j C cos

t

2
˛k/C 1p

2
.� sin

t

2
N̨ j C cos

t

2
N̨k/:
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Then

u0 D 1p
2
˛k C 1p

2
N̨k:

Similarly,

Qut D Jut D ip
2
.� sin

t

2
˛j C cos

t

2
˛k/ � ip

2
.� sin

t

2
N̨ j C cos

t

2
N̨k/

and

Qu0 D ip
2
˛k � ip

2
N̨k:

These are the expressions we need to compute the action of exp ta on
VCW. In

particular, we compute .exp ta/ � 1 (and hence .exp ta/ � .r � 1/) as follows:

Qu�t � 1 D sin
t

2
˛j � cos

t

2
˛k

Qu0 Qu�t � 1 D cos
t

2
� sin

t

2
˛j˛k

ut Qu0 Qu�t � 1 D i.� sin t ˛j C cos t ˛k/

u0ut Qu0 Qu�t � 1 D cos t � sin t ˛j˛k (7.70)

so that

exp� G�jk D �r˛j˛k:

Similarly, by choosing

a D 1

2
	j	kCd � 1

2
	k	jCd

and

ut D � sin
t

2
	j C cos

t

2
	kCd

we get

ut D 1p
2
.� sin

t

2
˛j C i cos

t

2
˛k/ � 1p

2
.sin

t

2
N̨ j C i cos

t

2
N̨k/:
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Then

u0 D ip
2
˛k � ip

2
N̨k;

Qut D 1p
2
.� sin

t

2
˛k C i cos

t

2
˛j/ � 1p

2
.sin

t

2
N̨k C i cos

t

2
N̨ j/

and

Qu0 D ip
2
˛j � ip

2
N̨ j;

and we compute

u0ut Qu0 Qu�t � 1 D cos t � i sin t ˛j˛k (7.71)

so that

exp�H�jk D �ir˛j˛k:

The detailed computation for the above is as follows:

Qu�t � 1 D � cos
t

2
˛j C i sin

t

2
˛k

Qu0 Qu�t � 1 D cos
t

2
� i sin

t

2
˛j˛k

ut Qu0 Qu�t � 1 D � cos t ˛k � i sin t ˛j

u0ut Qu0 Qu�t � 1 D cos t � i sin t ˛j˛k: (7.72)

Thus exp� maps m onto the
�d
2

�
-dimensional complex subspace spanned by elements

of the form ˛j˛k D ˛j ^ ˛k, where 1 � j < k � d. The action of SO.2d/ preserves
the Hermitian metric, and so preserves the sphere S2nC1.r/.

The shape operators of M

We have seen that the tangent space is spanned by vectors of the form ˛I where I has
cardinality 2. Thus the normal space is spanned by the remaining ˛I , namely those
for which jIj � 4 is even. Choosing � to be one of these normals, we can compute
A� as follows: let

�t D u0ut Qu0 Qu�t � �:

Then �A�X is the normal component of d�=dt evaluated at t D 0.
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Rather than computing �t completely, we can shorten the computation by
differentiating in C`.VC/. The desired result can be obtained by applying

� u0u0 Qu0 Qu00 C u0u
0
0 Qu0 Qu0 D �Qu0 Qu00 C u0u

0
0: (7.73)

In case X D G�jk ,

u0u
0
0 D �1

4
.˛k C N̨k/.˛j C N̨ j/

Qu0 Qu00 D 1

4
.˛k � N̨k/.˛j � N̨ j/; (7.74)

so that

� Qu0 Qu00 C u0u
0
0 D �1

4

�
.˛k C N̨k/.˛j C N̨ j/C .˛k � N̨k/.˛j � N̨ j/

�

D �1
2
.˛k˛j C N̨k N̨ j/ D 1

2
.˛j˛k C N̨ j N̨k/: (7.75)

Thus

d�

dt

ˇ̌
ˇ̌
tD0

D 1

2
.˛j˛k C N̨ j N̨k/ � �: (7.76)

Similarly, if X D H�jk , then

u0u
0
0 D � i

4
.˛k � N̨k/.˛j C N̨ j/

Qu0 Qu00 D � i

4
.˛j � N̨ j/.˛k C N̨k/; (7.77)

so that

� Qu0 Qu00 C u0u
0
0 D � i

4

�
.˛k � N̨k/.˛j C N̨ j/ � .˛j � N̨ j/.˛k C N̨k/

�

D � i

2
.˛k˛j C N̨ j N̨k/ D i

2
.˛j˛k � N̨ j N̨k/: (7.78)

Shape operator computation for d D 5

Let us choose � D ˛1˛2˛3˛4 and set j D 1, k D 2. Then

d�

dt

ˇ̌
ˇ̌
tD0

D 1

2
.˛1˛2 C N̨1 N̨2/ � ˛1˛2˛3˛4 D ˛3˛4; (7.79)
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which corresponds to the tangent vector � 1
r G�34. Thus we can compute

A�G
�
12 D 1

r
G�34

or equivalently,

A� .˛1˛2/ D 1

r
.˛3˛4/:

Continuing in a similar fashion, we get

A� .˛3˛4/ D 1

r
.˛1˛2/;

A� .˛1˛3/ D 1

r
.˛4˛2/; A� .˛4˛2/ D 1

r
.˛1˛3/;

A� .˛1˛4/ D 1

r
.˛2˛3/; A� .˛2˛3/ D 1

r
.˛1˛4/; (7.80)

so that ˛1˛2 C ˛3˛4, ˛1˛3 C ˛4˛2, and ˛1˛4 C ˛2˛3 span a 3-dimensional space of
eigenvectors VC with eigenvalue 1

r , while ˛1˛2�˛3˛4, ˛1˛3�˛4˛2, and ˛1˛4�˛2˛3
span a 3-dimensional space of eigenvectors V� with eigenvalue � 1

r .
It is easy to check using H�jk (or merely invoking the fact that the complex struc-

ture of CnC1 anticommutes with A� ) that iV� and iVC are spaces of eigenvectors
with respective eigenvalues 1

r and � 1
r . Finally, A� .˛j˛5/ and A� .i˛j˛5/ vanish for

all j. Thus, the eigenvalues of A� are 0; 1=r;�1=r; with respective multiplicities
8; 6; 6.

We shall see that when d D 5, tubes over the submanifold SO.2d/=U.d/ are Hopf
hypersurfaces with constant principal curvatures (see Theorem 8.26 on page 444).
For d � 6, the analogous tubes are Hopf (of course) but do not have constant
principal curvatures. When d D 2, we have n C 1 D 2d�1 D 2 so n D 1. Also,
m D 1, so M is just CP1. Similarly, when d D 3, we have n C 1 D 23�1 D 4

so that n D 3. Also, m D 3, so M is just CP3. Finally, when d D 4, we have
n C 1 D 24�1 D 8 so that n D 7. Also, m D 6. In this case, M is the complex
quadric Q6 in CP7.



Chapter 8
Hopf Hypersurfaces

In this chapter, we give the classification of Hopf hypersurfaces with constant
principal curvatures due to Kimura [270] in CPn (see Theorem 8.13) and Berndt
[27] in CHn (see Theorem 8.12). These classifications state that such a hypersurface
is an open subset of a hypersurface on Takagi’s list for CPn, and on Montiel’s list
for CHn.

We begin in Section 8.1 by proving a generalization of Cartan’s formula to
hypersurfaces of complex space forms due to Berndt [27]. Then in Section 8.2, we
derive general formulas for the shape operators of parallel hypersurfaces and focal
submanifolds of Hopf hypersurfaces with constant principal curvatures.

In Section 8.3, we prove Berndt’s [27] classification of Hopf hypersurfaces with
constant principal curvatures in CHn, which is based primarily on the Cartan’s
formula mentioned above. Kimura’s [270] classification of Hopf hypersurfaces with
constant principal curvatures in CPn is proven in Section 8.4. This is significantly
more complicated than the CHn case, and it involves the analysis of the special
complex submanifolds given in Sections 7.2–7.5.

In Section 8.5, we study several characterizations of the hypersurfaces on the
lists of Takagi and Montiel based on conditions on their shape operators, curvature
tensors or Ricci tensors. Complete proofs are given for many of the results and
we have tried to demonstrate the typical kind of arguments used in the original
papers. For example, we have presented Kon and Loo’s classification of �-parallel
hypersurfaces (Theorem 8.128) in detail. This involves extensive analysis under
the non-Hopf assumption for which we introduce a formal framework at the
beginning of the section. We have omitted similar lengthy arguments in discussing
Theorems 8.98 and 8.112. In the latter two cases, the purpose is to prove that the
given hypothesis implies that the hypersurface is Hopf, while in the former case one
proves that it is either Hopf or ruled.

Section 8.6 deals with important examples of non-Hopf hypersurfaces in CHn

with special curvature properties. In Section 8.7, we discuss various generalizations
of the notion of an isoparametric hypersurface to complex space forms. These

© Thomas E. Cecil and Patrick J. Ryan 2015
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include several conditions that are equivalent for hypersurfaces of real space forms,
but are different for hypersurfaces of complex space forms. Finally, in Section 8.8
we list some open problems.

8.1 Cartan’s Formula for Hopf Hypersurfaces

Let M be a submanifold of a Riemannian manifold QM. Let v be a smooth section of
the normal bundle NM and suppose that � and � are distinct eigenvalues of Av with
constant multiplicity and corresponding eigendistributions T� and T�. If X 2 T� and
Y 2 T�, then one easily verifies that

h.rZAv/X;Yi D .� � �/hrZX;Yi

for all vectors Z tangent to M.
Now consider the special case where QM is a complex space form and M is a Hopf

hypersurface. Observe that W? is A-invariant and we denote the spectrum (i.e., set
of eigenvalues) of A restricted to W? by �.W?/:
Lemma 8.1. Let M be a Hopf hypersurface with constant principal curvatures in
CPn or CHn. For all �, � in �.W?/, we have

• rXY C �h'X;YiW 2 T� for all X;Y in T�
• rXY ? T� if X 2 T�, Y 2 T�, � ¤ �:

Proof. It is easy to check that the first expression is orthogonal to W. Now take any
� 2 �.W?/ with � ¤ � and choose any Z 2 T�. By the Codazzi equation,

0 D h�.rXA/Z � .rZA/X
�
;Yi

D .� � �/hrXZ;Yi � h�rZ.�X/ � ArZX
�
;Yi

D .� � �/hrXZ;Yi � .Z�/hX;Yi � �hrZX;Yi C �hrZX;Yi
D .� � �/hrXY;Zi � .Z�/hX;Yi:

Since Z� D 0 we have hrXY;Zi D 0 and thus, rXY C �h'X;YiW 2 T�: Note that
the second assertion follows from the first since hrXZ;Yi D �hrXY;Zi. ut

From the first assertion in the lemma above, we immediately get the following
corollary.

Corollary 8.2. Under the hypothesis of Lemma 8.1, T� is integrable if and only if
� D 0 or 'T� � T?� .

The next lemma gives a formula similar to Cartan’s formula for isoparametric
hypersurfaces in real space forms (see Lemma 3.10 on page 93).
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Lemma 8.3. Let M be a Hopf hypersurface with constant principal curvatures
in CPn or CHn. Let X 2 W? be a unit principal vector at a point p with
associated principal curvature �. For any principal orthonormal basis feig2n�2

iD1 of
W? satisfying Aei D �iei, we have

2n�2X

iD1
�i¤�

ki
��i C c

� � �i
D 0

where ki D 1C 2h'X; eii2.
Proof. Proof outline
Let Y 2 W? be a second unit principal vector at p with corresponding principal
curvature � ¤ �. Extend X and Y to be principal vector fields near p. Our proof will
be broken down into several steps, as follows:

1. Using the Codazzi equation we show that

h.rŒX;Y�A/X;Yi D .� � �/�hrXY;rYXi C ch'X;Yi2�: (8.1)

2. Using the Gauss equation, show that

hR.X;Y/Y;Xi D ��C c.1C 3h'X;Yi2/: (8.2)

3. Using the definition of the curvature tensor, show that

hR.X;Y/Y;Xi D hrXY;rYXi C 1

� � � h.rŒX;Y�A/X;Yi: (8.3)

4. Using the Codazzi equation, show that for a unit principal vector Z 2 W?
corresponding to a principal curvature � not equal to � or �, we have

.� � �/.� � �/hrXY;ZihrYX;Zi D h.rZA/X;Yi2: (8.4)

5. Express hrXY;rYXi in terms of the orthonormal principal basis as follows:

hrXY;rYXi D
X

�i¤�;�
hrXY; eiihrYX; eii � ��h'X;Yi2: (8.5)

6. Use the results of the previous steps to show that

2
X

�i¤�;�

h.rei A/X;Yi2
.� � �i/.� � �i/

D .��C c/.1C 2h'X;Yi2/: (8.6)



424 8 Hopf Hypersurfaces

Now for any j with �j ¤ �, we have (setting Y D ej in equation (8.6)),

��j C c

� � �j
.1C 2h'X; eji2/ D 2

X

�i¤�;�j

h.rei A/ej;Xi2
.� � �i/.� � �j/.�j � �i/

: (8.7)

Summing this over all j for which �j ¤ �, we have

X

�j¤�

��j C c

� � �j
.1C 2h'X; eji2/ D 2

X

i;j
�i¤�j
�i;�j¤�

h.rei A/ej;Xi2
.� � �i/.� � �j/.�j � �i/

: (8.8)

Since the summand on the right side of equation (8.8) is skew-symmetric in fi; jg,
the value of the sum is 0, and so the sum on the left is 0.

Proof details

1. First note that hrXY;Wi D �hY;rXWi D �hY; 'AXi D ��h'X;Yi. Similarly,

hrYX;Wi D ��h'Y;Xi D �h'X;Yi:

Thus, hŒX;Y�;Wi D �.�C �/h'X;Yi: Next we compute

h.rŒX;Y�A/X;Yi D h.rXA/ŒX;Y�;Yi C chŒX;Y�;Wih'X;Yi
D hŒX;Y�; .rXA/Yi C chŒX;Y�;Wih'X;Yi
D hŒX;Y�; .rYA/Xi C chŒX;Y�; 2hX; 'YiWi

CchŒX;Y�;Wih'X;Yi
D hŒX;Y�; .rYA/Xi � chŒX;Y�;Wih'X;Yi
D hŒX;Y�; .rYA/Xi C c.�C �/h'X;Yi2: (8.9)

But now,

hrXY; .rYA/Xi D h.�I � A/rYX;rXYi;

while

hrYX; .rYA/Xi D hrYX; .rXA/Yi C 2ch'X;YihrYX;Wi
D h.�I � A/rYX;rXYi C 2c�h'X;Yi2:
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Thus

hŒX;Y�; .rYA/Xi D .� � �/hrXY;rYXi � 2c�h'X;Yi2: (8.10)

On substituting in equation (8.9) we obtain equation (8.1) as desired.
2. This is immediate from the Gauss equation.
3. First note that hrYY;Xi D 0 by Lemma 8.1, and so

hrXrYY;Xi D �hrYY;rXXi;
which vanishes, again by Lemma 8.1. Similarly, hrXY;Xi D 0, so that

hrYrXY;Xi D �hrXY;rYXi:
Finally, h.rŒX;Y�A/X;Yi D .� � �/hrŒX;Y�X;Yi. We then compute

hrXrYY � rYrXY � rŒX;Y�/Y;Xi D hrXY;rYXi C 1

� � � h.rŒX;Y�A/X;Yi;

which gives equation (8.3).
4. We compute

h.rZA/X;Yi D h.rXA/Z;Yi D hZ; .rXA/Yi D .� � �/hZ;rXYi:
The same calculation with X and Y interchanged gives

h.rZA/X;Yi D .� � �/hZ;rYXi:
Multiplying these two equations together gives equation (8.4).

5. To establish equation (8.5), note that ���h'X;Yi2 is just

hrXY;WihrYX;Wi:
Thus, we need only observe that the terms omitted from the full summation of
the hrXY; eiihrYX; eii, (i.e., those i for which �i D � or �i D �) actually vanish
and make no contribution to the sum. This is easily checked using Lemma 8.1.

6. Combine equations (8.1), (8.2), and (8.3) to get

2hrXY;rYXi D ��C c C 2ch'X;Yi2:
Using this and the result of equation (8.4) in equation (8.5), we get equation (8.6).

ut
Recalling Theorem 6.17 on page 357 and the accompanying Corollary 6.18, we

can state the following lemma. In fact, it is true at each point, even without the
assumption of constant principal curvatures.
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Lemma 8.4. Let M be a Hopf hypersurface with constant principal curvatures in
CPn or CHn such that ˛2 C 4c ¤ 0: Then for every � 2 �.W?/, there is a unique
� 2 �.W?/ such that the following equivalent conditions are satisfied:

1. 'T� D T�
2. �� D .�C�/

2
˛ C c

3. .� � ˛
2
/.� � ˛

2
/ D ˛2

4
C c.

In case � D �, we have �2 D ˛�C c, so there are at most two principal curvatures
with this property.

We now look at the possibility excluded above, namely ˛2C4c D 0: Suppose that
� ¤ ˛

2
is a principal curvature with a corresponding principal vector X 2 W?. Then,

as before, 'X will be principal with principal curvature � satisfying conditions (2)
and (3) of Lemma 8.4. Thus � D ˛

2
and we have at least one principal curvature

with value equal to ˛=2. Now apply Lemma 8.3 with � D ˛
2

. Then

��i C c D ˛

2
.�i � ˛

2
/

so that the summation in Lemma 8.3 reduces to

�.
X

ki/
˛

2
D 0;

a contradiction. Thus, we have the proved the following theorem.

Theorem 8.5. Let M be a Hopf hypersurface with constant principal curvatures in
CHn such that ˛2C4c D 0: Then ˛=2 is a principal curvature of multiplicity 2n�2.

Theorem 8.6. Let M be a Hopf hypersurface with constant principal curvatures in
CPn or CHn such that ˛2 C 4c ¤ 0: Then, for every � 2 �.W?/ such that, in the
sense of Lemma 8.4, � ¤ �, we have

X

�2�.W?/
�¤�

m�

�� C c

� � � C 2
��C c

� � � D 0;

where m� is the multiplicity of � on W?. If � D �, the extra � � � term does not
occur, i.e.,

X

�2�.W?/
�¤�

m�

�� C c

� � � D 0:

Proof. First consider the case where � D �. Then each summand in Lemma 8.3
has ki D 1. Collecting terms with the same value of �i yields
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X

�2�.W?/
�¤�

m�

�� C c

� � � D 0:

Now suppose that � is distinct from �. We may choose the basis feig to contain X
and 'X. For �i ¤ �;�, we still have ki D 1. There are m� summands with �i D �.
One of these will have ki D 1C 2h'X; 'Xi D 3; the rest will have ki D 1. Thus we
need to add the additional term

2
��C c

� � � ;

as shown, to the summation involving the multiplicities in order to agree with the
formula from Lemma 8.3. ut

Of course, Theorem 8.6 also holds (vacuously) when ˛2 C 4c = 0. The two
formulas given in the theorem may be regarded as analogous to the famous “Cartan’s
Formula” for hypersurfaces with constant principal curvatures in real space forms
(see Lemma 3.10 on page 93). One applies when �2 D ˛�C c and the other when
�2 ¤ ˛�C c.

Corollary 8.7. Let M be a Hopf hypersurface with constant principal curvatures in
CHn. Then M has at most 3 distinct principal curvatures. In particular, if � and �
are distinct elements of �.W?/, then �� C c D 0:

Proof. Changing the sign of the unit normal � if necessary, we may assume that at
least one element of �.W?/ is positive. Arrange the positive elements of �.W?/ in
an ascending list f�igk

iD1.
We can choose an element � so that there are no other elements between � and

�c=� as follows. If �21 C c > 0, choose � D �1. If �2k C c � 0, choose � D �k.
Otherwise, there is a unique i such that �2i�1 C c � 0, but �2i C c > 0. If

�i�1 � �c=�i�1 < �i;

choose � D �i�1. If �i�1 � �c=�i � �i, choose � D �i. It is easy to check that the
only other arrangement, �c=�i < �i�1 < �i � �c=�i�1, yields a contradiction, and
that the choice of � has the required property.

Now one can check directly that for any � 2 �.W?/, � ¤ �, we have

�� C c

� � � � 0;

whether � lies to the left or right of the range determined by � and �c=�. As a
consequence, every term in the relevant equation from Theorem 8.6 vanishes. Thus,
there can be at most two distinct elements � and �c=� in �.W?/. ut
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8.2 Parallel Hypersurfaces and Focal Submanifolds

In this section, we assume that M is a Hopf hypersurface with constant principal
curvatures in CPn or CHn. Let � D .p; �/. Since we will keep the same �
throughout, we abbreviate .�� /t as �t: Then along the geodesic �t, we have for all v
tangent to QM at �t,

QR.v;�!�t /
�!�t D c.v C 3hv; J�!�t iJ�!�t � hv;�!�t i�!�t /:

Take a principal vector X 2 W? with AX D �X. Let Bt be the parallel vector field
along �t satisfying B0 D X. Also along �t, define

Xt D .cos u � r� sin u/Bt for CPn

Xt D .cosh u � r� sinh u/Bt for CHn; (8.11)

where u D t=r. It is easy to check that X00t D �cXt D �QR.Xt;
�!�t /

�!�t so that Xt

is a Jacobi field with initial conditions .X;��X/. Similarly, if Bt is constructed by
parallel translation of W along �t, it turns out that QR.Bt;

�!�t /
�!�t D 4cBt so that we

construct a Jacobi field by setting

Wt D .cos 2u � r˛

2
sin 2u/Bt for CPn;

Wt D .cosh 2u � r˛

2
sinh 2u/Bt for CHn; (8.12)

where again u D t=r.
Note that these Jacobi fields span the tangent space to the tube Mt at �t. Because

M is a hypersurface (codimension 1 in QM), the second type of Jacobi field needed to
span the tangent space in the general submanifold case does not occur.

It follows from the proof of Lemma 6.35 on page 383 that QrXt
�!�t D X0t . Thus, the

shape operator of the tube Mt (using �!�t as unit normal) satisfies �AXt D X0t . For
each principal vector X 2 W? at p 2 M with corresponding principal curvature �,
Xt is a principal vector for Mt satisfying

AXt D �X0t D 1

r

sin u C r� cos u

cos u � r� sin u
Xt D 1

r
cot.� � u/Xt

in the CPn case, where we have written � as 1
r cot �: Similarly, in the CHn case, we

have

AXt D �X0t D 1

r

sinh u � r� cosh u

cosh u � r� sinh u
Xt:

If j�j > 1, we can write � D 1
r coth �; and
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AXt D 1

r
coth.� � u/Xt:

On the other hand, when j�j < 1; we have

AXt D 1

r
tanh.� � u/Xt;

where � D 1
r tanh �: Finally, if � D ˙ 1

r , we have

AXt D ˙1

r
Xt:

The calculations are similar for the tangent direction arising from W. We have

QrWt
�!�t D W 0t

which yields

AWt D 2

r
cot 2.� � u/ Wt:

for CPn, where ˛ D 2
r cot 2� , and

AWt D 2

r
coth 2.� � u/Wt

for CHn, where ˛ D 2
r coth 2� . In the remaining cases, j˛j � 2

r , we have

AWt D 2

r
tanh 2.� � u/Wt

with ˛ D 2
r tanh 2�; and

AWt D ˙2

r
Wt

with ˛ D ˙ 2
r .

Remark 8.8. Nothing in this section (so far) depends on the principal curvatures
being constant.

Thus we have thus proved:

Theorem 8.9. Let M be a Hopf hypersurface in CPn or CHn. Then all parallel
hypersurfaces Mt are also Hopf hypersurfaces whose Hopf principal curvature ˛.t/
varies with t as shown in the previous paragraph. Further, the pointwise behavior of
the other principal curvatures and principal spaces is preserved as indicated there.
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Corollary 8.10. Let M be a Hopf hypersurface in CPn or CHn with constant prin-
cipal curvatures. Then each parallel hypersurface Mt is also a Hopf hypersurface
with constant principal curvatures whose values vary with t as indicated above.

In the general case, focal points may occur at different values of t for different
p 2 M. However, for a given value of t, the Bt are linearly independent. Therefore,
focal points will occur for precisely those values of t for which r� D cot u or r˛ D
2 cot 2u (respectively, r� D coth u or r˛ D 2 coth 2u) in the CPn and CHn cases.
Subject to certain genericity restrictions, we will locally have focal submanifolds
whose principal spaces and principal curvatures can be determined by the same
calculations.

When M has constant principal curvatures, these difficulties will not arise. Each
Mt will either be a hypersurface or will consist entirely of focal points. In the latter
case, Mt is a focal submanifold whose shape operator may be described by adapting
the calculations we have done above.

Lemma 8.11. Let M be a Hopf hypersurface in CPn or CHn. Assume that .˘ ı
˚/.t/ has constant rank � which is less than the dimension of M. Then Mt is a �-
dimensional submanifold of QM. Let �t.x/ D �.x; �x/t for x 2 M; where � is the unit
normal field. Then �t W M ! Mt is a submersion.

• For any p 2 M and any principal vector X 2 TpM not in the kernel of .�t/�, the
vector � D ���!�.p; �p/t

is a unit normal to the focal submanifold Mt and A�Xt D �X0t :
• For q 2 Mt, V D ��1t .q/ is a �-dimensional submanifold of M whose tangent

space at any point is a principal subspace coinciding with the kernel of .�t/�.
The map

� W V ! TqMt

defined by �.x/ D ���!�.x; �x/t satisfies ��X D X0t : In particular, � is a local
diffeomorphism of V with the sphere of unit normals to Mt at q.

Shape operator of the focal submanifold

Assume now that M is a Hopf hypersurface and Mt is a focal submanifold. For a
particular p 2 M, and q D �.p; �p/t

2 Mt, we have � D ���!�.p;�p/t
, a unit normal to Mt

at q. We distinguish two conditions that cause q to be a focal point:

1. The Jacobi field Wt arising from the Hopf principal curvature ˛ vanishes at t.
2. Wt does not vanish, but for some principal vector X 2 W?, the Jacobi field Xt

vanishes at t.
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Case 1 for CPn: r˛
2

D cot 2u

Let �0 D 1
r cot u. If �0 2 �.W?/, then the codimension of Mt is one more than

the multiplicity of �0 (as an eigenvalue of A restricted to W?). Otherwise, the
codimension is 1. In either case, for each � 2 �.W?/; where � ¤ �0, there is
a corresponding eigenvalue Q� of A� such that if AX D �X, then A�Xt D Q�Xt: If
� D 1

r cot � , then Q� D 1
r cot.� � u/.

Case 2 for CPn: r˛
2

¤ cot 2u

Again, let �0 D 1
r cot u 2 �.W?/. For every � 2 �.W?/; where � ¤ �0; there

is a corresponding eigenvalue Q� of A� such that if AX D �X, then A�Xt D Q�Xt: If
� D 1

r cot � , then Q� D 1
r cot.� � u/. Further, if ˛ D 2

r cot 2� , then A�Wt D 2
r cot

2.� � u/Wt.

Case 1 for CHn: r˛
2

D coth 2u

Let �0 D 1
r coth u 2 �.W?/. If �0 2 �.W?/, then the codimension of Mt is one

more than the multiplicity of �0 (as an eigenvalue of A restricted to W?). Otherwise,
the codimension is 1. In either case, for each � 2 �.W?/; where � ¤ �0, there is
a corresponding eigenvalue Q� of A� such that if AX D �X, then A�X.t/ D Q�Xt.
Furthermore,

• if � D 1
r coth � , then Q� D 1

r coth.� � u/;

• if � D 1
r tanh � , then Q� D 1

r tanh.� � u/;

• if � D ˙ 1
r , then Q� D ˙ 1

r , respectively.

Case 2 for CHn: r˛
2

¤ coth 2u

Again, let �0 D 1
r coth u 2 �.W?/. For each � 2 �.W?/; where � ¤ �0, there is a

corresponding eigenvalue Q� of A� such that if AX D �X, then A�Xt D Q�Xt:

• If � D 1
r coth � , then Q� D 1

r coth.� � u/;

• If � D 1
r tanh � , then Q� D 1

r tanh.� � u/;
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• If � D ˙ 1
r , then Q� D ˙ 1

r , respectively.

Also,

• if r˛
2

D coth 2� , then A�Wt D 2
r coth 2.� � u/Wt;

• if r˛
2

D tanh 2� , then A�Wt D 2
r tanh 2.� � u/Wt;

• if r˛
2

D ˙1, then A�Wt D ˙ 2
r Wt, respectively.

8.3 Berndt’s Classification in CHn

Berndt [27] classified the Hopf hypersurfaces with constant principal curvatures in
CHn as follows.

Theorem 8.12. Let M be a Hopf hypersurface in CHn, where n � 2, having
constant principal curvatures. Then M is an open subset of a hypersurface in
Montiel’s list, i.e., a hypersurface of Type A0, Type A1, Type A2 or Type B. In
particular, the number g of distinct principal curvatures is 2 or 3.

Proof. Suppose first that ˛2 C 4c ¤ 0. By Corollary 8.7, �.W?/ has either 1 or 2
elements. Without loss of generality, we can assume that these elements are positive.
If �.W?/ consists of a single number �, we may choose u > 0 such that either
r� D coth u or r� D tanh u. Because �2 D ˛�C c, we get r˛ D 2 coth 2u in either
case. Thus M lies on a Type A1 hypersurface. Otherwise, �.W?/ has two elements
which we may write as 1

r coth u and 1
r tanh u. Substituting in the second equation

of Lemma 8.4, we get ˛ D 2
r tanh 2u. Note that 1

r coth u and 1
r tanh u are principal

curvatures of multiplicity n � 1 whose principal spaces are interchanged by '. As
we have seen in Section 6.8, M lies on a tube over the totally real focal submanifold
RHn.

If ˛2 C 4c D 0; we have already derived complete information on the shape
operator (Theorem 8.5, page 426). There are no focal points and M lies on a
horosphere. For a verification of this last fact, we refer to Berndt’s argument [27,
pp. 140–141]. ut

8.4 Kimura’s Classification in CPn

Kimura [270] classified the Hopf hypersurfaces with constant principal curvatures
in CPn as follows.

Theorem 8.13. Let M be a Hopf hypersurface in CPn, where n � 2, having
constant principal curvatures. Then M is an open subset of a homogeneous
hypersurface (i.e., a member of Takagi’s list). In particular, the number g of distinct
principal curvatures is 2, 3, or 5.

Proof. Let NM D ��1M be the lift of M to the sphere S2nC1.r/ with unit normal �L

and shape operator NA. Then
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NA iz

r
D 1

r
WL

NAWL D ˛WL C 1

r

iz

r
NAXL D �XL (8.13)

for each principal vector X 2 W?, where � is the corresponding principal curvature.
Write ˛ D 2

r cot 2� where 0 < � < �
2

. The eigenvalues of the matrix

�
0 1

r
1
r ˛

�

are 1
r cot � and 1

r cot .� C �
2
/ D � 1

r tan � . Now NM is an open subset of an
isoparametric hypersurface of S2nC1.r/ having Ng D 1; 2; 3; 4; or 6 distinct principal
curvatures, according to Münzner’s result (Theorem 3.49 on page 136).

Since we have already found two distinct principal curvatures for NM, we know
that Ng ¤ 1: Also, if Ng were equal to 3, then according to Theorem 3.26 on page 108,
the three distinct principal curvatures could be written 1

r cot�, 1
r cot.� C �

3
/, and

1
r cot.�C 2�

3
/, where 0 < � < �

3
: Since the cotangent function is strictly decreasing

on Œ0; ��, it is impossible for any two of these three numbers to be of the form cot �
and cot .� C �

2
/: Thus Ng cannot be equal to 3.

Again, according to Münzner [382] and Abresch [2] (see Remark 3.51, page
136), Ng D 6 implies that n D 3 or n D 6. By Theorem 3.26 on page 108, there is a
number � 2 .0; �

6
/ such that the 6 distinct principal curvatures of NM are given by

1

r
cot.� C k�

6
/; 0 � k � 5:

Then there are three possibilities: � D �, � D � C �
6

, and � D � C �
3

, and
no matter which of these possibilities holds, we can choose notation so that the
principal curvatures of NM are

�1 D 1

r
cot �; �2 D 1

r
cot.� C �

6
/; �3 D 1

r
cot.� C �

3
/;

�4 D 1

r
cot.� C �

2
/; �5 D 1

r
cot.� C 2�

3
/; �6 D 1

r
cot.� C 5�

6
/: (8.14)

Note that �1 and �4 are the eigenvalues of the matrix

�
0 1

r
1
r ˛

�
:
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If Ng D 6 and n D 6, the principal curvatures are .˛; �1; �2; �3; �4; �5; �6/ with
respective multiplicities .1; 1; 2; 2; 1; 2; 2/. By Lemma 8.4, the principal spaces of
�1 and �4 are '-invariant, since both of these principal curvatures satisfy �2 D ˛�C
c. This contradicts the fact that each of these principal curvatures has multiplicity 1.
We conclude that n cannot be 6.

If Ng D 6 and n D 3, the principal curvatures of M are .˛; �2; �3; �5; �6/; all of
multiplicity 1. We look at the focal set. First note that each parallel hypersurface
Mu has the same principal curvature configuration as M, substituting � � u for
� in the expressions for ˛ and the various �i in equation (8.14). Consider the
focal submanifold Mu where u D � C �

6
. The eigenvalues of the shape operator

A� are obtained by substituting � � u D ��
6

in the formulas for Mu, omitting,
of course, �2. This gives the eigenvalues as .˛; �3; �5; �6/ D 1

r
p
3
.�2; 3; 0;�1/,

each of multiplicity 1. Since this configuration of eigenvalues is not invariant under
multiplication by �1, we have a contradiction to the fact that A� and A�� have the
same eigenvalues (see Lemma 6.27 on page 374). We conclude that n cannot be
equal to 3. Thus the possibility that Ng D 6 has been eliminated.

We have established that Ng is 2 or 4. If Ng D 2, then we can write the two distinct
principal curvatures of NM as �1 D 1

r cot � of multiplicity m1 and �2 D 1
r cot.� C �

2
/

of multiplicity m2. Then ˛ D 2
r cot 2� is a principal curvature of M of multiplicity

1. If one of the multiplicities (say m2) is equal to 1, then g D 2 and the only
other principal curvature for M is �1 with multiplicity m1 � 1 D 2n � 2. If both
multiplicities are greater than 1, then g D 3 and both �1 and �2 are principal
curvatures of respective multiplicities m1 � 1 and m2 � 1. Both principal subspaces
of W? are '-invariant.

Next we deal with the case Ng D 4. By a similar argument to that used when
Ng D 6, we can write the four distinct principal curvatures of NM as

�1 D 1

r
cot �; �2 D 1

r
cot.� C �

4
/;

�3 D 1

r
cot.� C �

2
/; �4 D 1

r
cot.� C 3�

4
/; (8.15)

with respective multiplicities .m1;m2;m1;m2/. If m1 D 1, then g D 3 and the
principal curvatures of M are .˛; �2; �4/ with respective multiplicities given by
.1; n�1; n�1/. Otherwise, g D 5 and the principal curvatures are .˛; �1; �2; �3; �4/
with multiplicities .1;m1 � 1;m2;m1 � 1;m2/. When g D 2 or g D 3, M is an open
subset of a Type A or Type B hypersurface from Takagi’s list. ut

The case g D 5

When g D 5, we need a significant amount of additional work to describe the focal
set (see the following several pages), and this will complete the proof.



8.4 Kimura’s Classification in CPn 435

First note that the principal curvatures of the parallel hypersurfaces Mu are given
by substituting � � u for � in equation (8.15) and in the equation ˛ D 2

r cot 2� .
When g D 5 and u D �; Mu is a (complex, minimal) focal submanifold whose
shape operator (in all directions, see Lemma 6.27, page 374) has eigenvalues

�2 D 1

r
cot

�

4
D 1

r
; �4 D 1

r
cot

3�

4
D �1

r
;

each of multiplicity m2, and �3 D 1
r cot �

2
D 0, of multiplicity m1 � 1: Since m1 C

m2 D n, the focal submanifold M� therefore has dimension m1 � 1C 2m2.

Principal curvatures for the g D 5 case

These hypersurfaces are tubes over their focal sets which are complex submanifolds.
We know enough about the shape operators of the focal submanifolds to calculate
the principal curvatures of the tubes. Making use of the results of Subsection 6.7.1,
we can say that for a tube of radius ru,

• the Hopf principal curvature ˛ D 2
r cot 2u;

• there is a principal curvature �2 D � 1
r cot.�

4
� u/ of multiplicity m2;

• there is a principal curvature �4 D � 1
r cot. 3�

4
� u/ of multiplicity m2;

• there is a principal curvature �3 D � 1
r cot.�

2
� u/ of multiplicity m1 � 1;

• since the codimension of the focal submanifold is m1 C 1, the tube construction
gives a principal curvature 1

r cot u of multiplicity m1 � 1. We may therefore write
�1 D � 1

r cot.�u/ as our final principal curvature to fit with the notation of the
other �i.

We will see from the construction of the possible focal submanifolds in Chapter 7
that the multiplicities are as follows:

• Type C: m1 � 1 D n � 3, m2 D 2;
• Type D: m1 � 1 D 4, m2 D 4;
• Type E: m1 � 1 D 8, m2 D 6;

Note that the five (distinct, constant) principal curvatures are the same for all
three types. Also, the values of the principal curvature f�1; �3g are those occurring
in the Type A case while f�2; �4g are principal curvatures for Type B hypersurfaces,
when considered as a tubes over the complex quadric. Thus, we can also state

Proposition 8.14. The principal curvatures of the hypersurfaces in CPn of types C,
D, and E have the following properties

• �1�3 C c D 0; �2�4 C c D 0;
• �1 C �3 D ˛; .�2 C �4/˛ C 4c D 0;
• the principal spaces of �1 and �3 are '-invariant;
• the principal spaces of �2 and �4 are interchanged by '.
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Finally, we remark that hypersurfaces of types C, D, or E cannot be pseudo-
Einstein. We can see this from the fact that the pseudo-Einstein condition would
require that (by analysis similar to that done in Section 6.5) ˛ D �1 C �3 D m D
�2 C �4 so that ˛2 D .�2 C �4/˛ D �4c, which is a contradiction.

Certain Kähler submanifolds

We now study a class of Kähler submanifolds that includes the focal submani-
fold M� . We first define a (positive semi-definite) inner product on the space of
normal vectors at any point by G.u; v/ D trace AuAv . Note that the identities
G.Ju; Jv/ D G.u; v/ and G.u; Ju/ D 0 hold since AJu D JAu D �AuJ. The focal
submanifold M� arising from the g D 5 case satisfies the hypothesis of the following
slightly more general lemma.

Lemma 8.15. Let M be a Kähler submanifold of CPn or CHn with the property
that there is a nonzero constant � such that A3 D �2A for every unit normal . Let
� be a particular unit normal such that A� is nonzero and has a nontrivial nullspace
T0. If � is any unit normal such that

trace A�A� D trace AJ�A� D 0;

then A�T0 � T?0 and A�T?0 � T0.

Proof. Let X be a unit eigenvector of A� and write A�X D aX: Then

A3�X D a3X D �2aX;

so that a.a2 � �2/ D 0 and a 2 f0; �;��g. Now A�J D �JA� so A�JX D �aJX.
Thus, for each eigenspace Ta, we have T�a D JTa. Let

` D dim T� D dim T��;

so that T0 has dimension 2.m � `/, where m is the complex dimension of M.
We first show that A�T0 � T?0 . First note that the statement is trivially true if

A� D 0. Thus, we may assume that G.�; �/ > 0. For X 2 T0, we write A�X as the
sum u C vC w of vectors in T�, T��, T0, respectively. We need to show that w D 0.

First observe that � C � is nonzero, otherwise G.�; �/ D 0 would be violated.
Denoting j� C �j by �, we have

A3�C�X D �3A3�C�
�

X D �3�2A �C�
�

X D �2�2A�C�X D �2�2A�X: (8.16)

On the other hand,

A3�C�X D .A� C A�/
3X D A2�.u C v C w/C .A�A� C A�A� /A�X C �2A�X

D �2.u C v/C �2.u C v C w/C .A�A� C A�A� /A�X: (8.17)
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Comparing the two expressions for A3�C�X, we have

�2j� C �j2.u C v C w/ D �2.2u C 2v C w/C .A�A� C A�A� /A�X: (8.18)

If we replace � by ��, we get

� �2j� � �j2.u C v C w/ D ��2.2u C 2v C w/C .A�A� C A�A� /A�X; (8.19)

so that .j�C�j2Cj���j2/.uCvCw/ D 2.2uC2vCw/. Since j�C�j2Cj���j2 D 4,
we get 4w D 2w, i.e., w D 0 as required. We have shown that A�T0 � T?0 :

We now choose X 2 T� and again write A�X D u C v C w: Following similar
steps as before, we get

A3�C�X D �2�2A�C�X D �2�2.�X C A�X/ D �2�2.�X C .u C v C w//;

(8.20)

.A� C A�/3X D �3X C �2.u C v/C �A� .u C v C w/C .A�A� C A�A� /A�X

C�2.u C v C w/C �A2�X C �2.u C v C w/: (8.21)

Thus,

�2j� C �j2.�X C .u C v C w// D �3X C �2.u C v/C �2.u � v/
C �A2�X C .A�A� C A�A� /A�X C 2�2.u C v C w/: (8.22)

so that

.j� C �j2 � j� � �j2/�3X C �2.j� C �j2 C j� � �j2/.u C v C w/

D 2�2.u C v/C 2�2.u � v/C 4�2.u C v C w/: (8.23)

Upon simplification, this yields

u D ��X; (8.24)

where � D h�; �i. Similarly, if we take X 2 T��, and write A�X D uCvCw, we get

v D ���X: (8.25)

Let feig`iD1 be an orthonormal basis for T�. Since G.�; �/ D 0, we have

0 D
X

hA�A�ei; eii C
X

hA�A�Jei; Jeii

D �
�X

.hA�ei; eii � hA�Jei; Jeii/
�

(8.26)

D �`.�� � .���// D 2�2`�;
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from which we get � D 0. Thus A�T� � T0 C T�� and A�T�� � T0 C T�: Since
G.�; J�/ D 0, (this was part of the original hypothesis), we may apply the same
argument to J� to obtain AJ�T� � T0 C T�� and AJ�T�� � T0 C T�. However,
AJ� D JA�, T0 is J-invariant, and J interchanges T� and T��. Therefore, A�T� �
.T0CT�/\.T0CT��/ D T0. Similarly, A�T�� � T0. We conclude that A�T?0 � T0:

ut
Corollary 8.16. Under the conditions of Lemma 8.15, .A�A� /2 D 0:

Proof. Clearly, .A�A� /2X D 0 for any X 2 T0. Now consider X 2 T?0 : Then Y D
A�X 2 T?0 . Thus A�Y 2 T0 so that A�A�Y D 0. Thus

.A�A� /
2X D A�.A�A�A�X/ D A�.A�A�Y/ D 0:

This completes the proof. ut
Lemma 8.17. Let M be a Kähler submanifold of CPn or CHn with the property
that there is a nonzero constant � such that A3 D �2A for every unit normal . If �
and � are orthogonal unit normals (i.e., h�; �i D 0), then they are orthogonal with
respect to the inner product G.

Proof. Let �t be a curve in the sphere of unit normals at a particular point p such
that �0 D � and �!�0 D �: For definiteness, set �t D cos t � C sin t � so that we
can write explicitly A�t D cos t A� C sin t A�: From our hypothesis, trace A2�t

is a
constant function of t (equal to 2`�2 in the notation of Lemma 8.15). Thus

0 D d

dt

ˇ̌
ˇ̌
tD0

trace A2�t
(8.27)

D d

dt

ˇ̌
ˇ̌
tD0

trace .cos t A� C sin t A�/
2

D trace .A�A� C A�A� / D 2 trace .A�A�/ D 2 G.�; �/:

ut
Lemma 8.18. Under the conditions of Lemma 8.17, we have

2 trace .A2�A
2
�/ D trace A4� :

Proof. Apply the same technique as in Lemma 8.17, computing the second
derivative of A4�t

at t D 0. This yields

trace A4� D trace A2�A
2
� C trace .A�A�/

2 C trace .A�A
2
�A�/

D 2 trace A2�A
2
� C trace .A�A�/

2: (8.28)

In view of Corollary 8.16, this completes the proof. ut
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Focal submanifolds for g D 5

Theorem 7.1 simplifies further when the hypotheses of Lemmas 8.15 and 8.17 are
satisfied. Specifically, we have the following.

Proposition 8.19. Let M be a Kähler submanifold of a complex space form QM of
constant holomorphic curvature 4c. Assume that there is a nonzero constant � such
that A3 D �2A for every unit normal . If f�˛g2p

˛D1 is an orthonormal basis for the
normal space with corresponding shape operators fA˛g, then

1

2
�j� j2 D jr 0� j2 C 2.m C 2/cj� j2 �˙. trace A2˛/

2 � 2 trace .˙A2˛/
2:

Here m is the complex dimension of M.

Proof. This is a direct consequence of Lemma 8.17. ut
Theorem 8.20. Let M be a Kähler submanifold of a complex space form QM (CPn or
CHn) of complex dimension m. Suppose M has the property that there is a nonzero
constant � such that the eigenvalues of A are �, �� and 0 for every unit normal 
at every point. Then

1. QM D CPn , i.e., no such submanifold of CHn exists;
2. M is a parallel submanifold of QM, i.e., r 0� D 0;
3. � D ˙ 1

r and ` D 1C 2m � n, where ` is the multiplicity of �.

Since 1 � ` � m � 1, we have m C 2 � n � 2m.

Proof. We first remark that if CHn admitted such a submanifold, then almost all
tubes over it would be Hopf hypersurfaces with 4 or 5 distinct constant principal
curvatures (as computed from equations (6.37) and (6.38)), violating Theorem 8.12.
Further, even in CPn, such submanifolds cannot occur with complex codimension
p D 1 since, according to the corresponding calculation (6.36) for tubes in CPn,
they would lead to Hopf hypersurfaces with 4 distinct constant principal curvatures.
Equation (6.36) combined with the material earlier in this section on g D 5

gives � D ˙ 1
r cot �

4
D ˙ 1

r so that �2 D 1
r2

D c: Now the hypotheses of our
theorem imply that A3 D �2A . Thus the simplified version of Theorem 7.1 (i.e.,
Proposition 8.19) applies. For substitution in the Simons’ type formula, we compute

j� j2 D 4`�2p;

and

˙. trace A2˛/
2 D 8p`2�4:

Also,

2 trace .˙A2˛/
2 D 8p.p C 1/`�4:
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This last assertion requires some justification. First, we simplify by noting that
.JA˛/2 D A2˛ , so that in computing ˙A2˛ , we may restrict our summation to 1 �
˛ � p and multiply the result by 2. We now compute the square of this sum. Note
that ˇ also runs from 1 to p but omits the ˇ D ˛ term.

.˙A2˛/
2 D ˙A4˛ C˙A2˛A2ˇ (8.29)

trace .˙A2˛/
2 D trace ˙A4˛ C˙ trace A2˛A2ˇ

D trace ˙A4˛ C p � 1
2

˙ trace A4˛

D p C 1

2
trace ˙A4˛ D p C 1

2
2p`�4 D p.p C 1/`�4; (8.30)

where we have used Lemma 8.18 to evaluate the ˇ summation.
Noting that�j� j2 D 0, we get jr 0� j2 D 8`pc2.`C p C 1� m � 2/. On the other

hand, recalling the tube construction (see equation (6.36) and the discussion before
Proposition 8.14), we see that tubes over M have two (constant) principal curvatures
of multiplicity `, one of multiplicity 2.m�`/, one of multiplicity 2.p�1/ in addition
to the Hopf principal curvature. Thus p � 1 and m � ` must be equal from which it
follows that `CpC1�m�2 D 0 and r 0� D 0, thus M is a parallel submanifold of
QM. Finally, since mCp D n, we have ` D mC1�p D 1Cm�.n�m/ D 1C2m�n

as required. ut
Note that in terms of the corresponding isoparametric hypersurfaces in the

sphere, 2.p � 1/ D 2.m � `/ D m1 � 1 and ` D m2 which is consistent with
the fact that m1 C m2 D n.

Refining Theorem 8.20

We know that a Hopf hypersurface in CPn with g D 5 distinct constant principal
curvatures has a focal submanifold satisfying Theorem 8.20. In particular this
focal submanifold is parallel. Parallel submanifolds of CPn have been classified by
Nakagawa and Takagi [391] (see also [33, p. 260]). Our parallel submanifolds will
be open subsets of elements of their list (below) of complete parallel submanifolds.
In order to complete the proof of Theorem 8.13, we need to determine which of
these submanifolds actually satisfy the hypothesis of Theorem 8.20.
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Nakagawa and Takagi’s list of parallel submanifolds of CPn

• CPm as a totally geodesic projective subspace;
• a complex quadric Qm in a totally geodesic CPmC1 where m C 1 � n;
• the Veronese embedding of CPm;
• the Segre embedding of CPh � CPk;
• the Plücker embedding of the Grassmannian G2;3.C/;
• the half-spin embedding of SO.10/=U.5/;
• the first canonical embedding of E6=.T � Spin.10//.

We have previously discussed most of these submanifolds. Now we will see how
they fit in with Theorem 8.20.

The first two possibilities, the totally geodesic CPm and the complex quadric
Qn�1 have already been discussed and their tubes have g equal to 2 or 3. The higher
codimension quadrics do not satisfy the conditions of Theorem 8.20 since there
will be normal directions for which the shape operator vanishes. For CPm, all shape
operators are zero while all shape operators of Qn�1 � CPn have only two distinct
eigenvalues (see Smyth [487]). Further, Qm � CPmC1, where m C 1 < n, does not
qualify since a unit normal to CPmC1 at a point of Qm will also be a unit normal to
Qm and therefore will have vanishing shape operator. None of these submanifolds
satisfy Theorem 8.20.

The Veronese embedding

Theorem 8.21. The Veronese embedding of CPm does not satisfy the conditions of
Theorem 8.20. This holds for all m � 1.

Proof. The Ricci tensor of a complex space form of complex dimension k and
constant holomorphic curvature 4� is 2.k C 1/�I: We look at the Gauss equation
(7.11). First, the trace of the map fX 7! R.X;Y/Z � QR.X;Y/Zg is �.m C 1/c2hY;Zi
in our case (since the respective holomorphic curvatures are 2c2 and 4c2). However,
by the Gauss equation, this must be the same as the trace of the map from X to

A�.Y;Z/X � A�.X;Z/Y:

Using a convenient orthonormal basis f�˛g for the normal space, we see that the
displayed equation is the sum of the 2p terms

hA˛Y;ZiA˛X � hA˛X;ZiA˛Y;

where A˛ denotes the shape operator corresponding to �˛ . The trace of the map from
X to this ˛-th term is �hA2˛Y;Zi; since A˛ has zero trace. Thus

˙A2˛ D .m C 1/c2I:



442 8 Hopf Hypersurfaces

Now, in the case of Theorem 8.20, the trace of each term on the left side is 2`�2 so
that the trace of the left side is 4p`�2: The trace of the right side is 2m.m C 1/c2.
Also from Theorem 8.20, �2 D c2 in our case. Finally, we have p D n � m and
` D 2m � n C 1: Since

n D m2 C 3m

2
;

we get

2m.m C 1/ D 4.n � m/.2m � n C 1/ D 2m.m C 1/.2m � n C 1/;

which gives n D 2m and hence m D 1. However, this implies ` D m, which
contradicts the final assertion in Theorem 8.20. ut

The Segre embedding

Although the case h D k D 1 does not qualify because it is a quadric Q2, it
can also be ruled out by the inequalities occurring in the proof of the following
theorem which eliminates many possibilities for .h; k/, based only on dimensional
considerations.

Theorem 8.22. The Segre embedding of CPh � CPk, where h � k, does not satisfy
the conditions of Theorem 8.20 for h � 3 or for h D 2, k � 3. (Eventually we will
eliminate the possibility that h D k D 2, as well.)

Proof. From Theorem 8.20, we have

h C k C 2 � h C k C hk � 2.h C k/;

which simplifies to

2 � hk � h C k:

This shows that k � 2 and k.h � 1/ � h � k from which we see that h � 2. If h D 2

however, we get 2k � 2C k in which case k D 2 is the only possibility. ut
If h D k D 2, then m D 4 and n D 8 so that ` D 1. This contradicts

equation (7.58) which implies that ` D 4.
On the other hand, if h D 1, we have, in the notation of Theorem 8.20, n D 2m�1

and ` D 1C 2m � n D 2. Recall that all shape operators have rank 2`.
Thus, we can state the following:
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Theorem 8.23. The Segre embedding of CPh �CPk into CPn, where h � k, satisfies
the conditions of Theorem 8.20 if and only if h D 1 and k � 2. Note that n D
2k C 1 D 2m � 1.

Proof. Our previous discussion identifies those choices of .h; k/ that cannot occur.
In addition, our calculation shows that CP1�CPk does, in fact, satisfy the conditions
of Theorem 8.20 when n D 2k C 1 � 5. From the results of Subsection 6.7.1,
tubes over such Segre embeddings are Hopf hypersurfaces with 5 distinct principal
curvatures having multiplicities .1; n � 3; 2; n � 3; 2/. These are the Type C
hypersurfaces, see [399, pp. 261–262]. ut

The Plücker embedding

We first prove two lemmas that, taken together, restrict the values of h and k for
which Gh;k.C/ can satisfy the conditions of Theorem 8.20.

Lemma 8.24. For positive integers h; k, let m D hk and n D �hCk
h

� � 1. If n � 2m,
then increasing h or k will make n > 2m.

Proof. Suppose that

.h C k/Š

hŠ kŠ
� 1C 2hk: (8.31)

Then

.h C k C 1/Š

.h C 1/Š kŠ
D h C 1C k

h C 1

.h C k/Š

hŠkŠ
� h C 1C k

h C 1
.1C 2hk/: (8.32)

It is routine to verify that

h C 1C k

h C 1
.1C 2hk/ > 1C 2.h C 1/k (8.33)

if and only if 2h.k � 1/ > 1. Since k > 1, because of equation (8.31), we have the
desired inequality. ut

Based on the results of this lemma, we make the following four observations.
Here we assume that h � k.

1. If h D 1, then m D k and n D k. This violates m C 2 � n.
2. If h D 2 and k D 5, then m D 10 and n D 20 so that n D 2m. Thus every choice

with h D 2 and k � 6 will violate n � 2m.
3. If h D k D 3, then m D 9 and n D 19 so that n > 2m. Thus if h � 3 and k � 3,

we will have a violation of n � 2m.
4. If h D k D 2, then m D 4 and n D 5. This violates m C 2 � n.

Thus we have the following.
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Lemma 8.25. For positive integers h � k, let m D hk and n D �hCk
h

� � 1. Then the
inequality m C 2 � n � 2m requires that fh; kg be f2; 3g, f2; 4g or f2; 5g.

The Plücker embedding satisfies the conditions of Theorem 8.20 if and only if
k D 3.

Theorem 8.26. Let M be a Kähler submanifold of CPn of complex dimension m.
Suppose M has the property that that the eigenvalues of A are 1

r , � 1
r and 0 for

every unit normal  at every point. Then M is congruent to an open subset of one of
the following submanifolds

1. CP1 � CPm�1 (Segre embedding) with 2m D n C 1 � 6.
2. SU.5/=S.U.2/ � U.3//, .G2;3.C/, the Plücker embedding) so that m D 6 and

n D 9.
3. SO.10/=U.5/ (half-spin embedding), so that m D 10 and n D 15.

Proof. The first three items in Nakagawa and Takagi’s list have been ruled out by
the discussion immediately following the list. The Segre and Plücker embeddings
have been dealt with in Theorems 8.23 and 7.11, respectively. The shape operator
for SO.10/=U.5/ is computed in Section 7.5 and satisfies Theorem 8.20.

Finally, we consider E6=.Spin.10/ � T1/. Since E6 has dimension 78 and
Spin.10/ � T1 has dimension 46, we get 2m D 32 and hence m D 16. We also
have n D 26. If Theorem 8.20 is to be satisfied, we must have ` D 7. However,
this requires the existence of an isoparametric hypersurface in S2nC1.r/ with Ng D 4,
m1 D 19 and m2 D 7. As we can see from Section 3.9, no such hypersurface exists.

ut
This completes the proof of Kimura’s [270] classification of Hopf hypersurfaces

in CPn (Theorem 8.13).

8.5 Characterization Theorems

The Hopf hypersurfaces with constant principal curvatures can be classified in
terms of the properties of different geometric structures: shape operators, curvature
tensors, Ricci tensors, and combinations thereof. Since these properties typically do
not include the Hopf assumption, the first step (and sometimes the major step) in
a classification theorem is often a proof that the condition being examined implies
the Hopf condition. This requires us to do a significant amount of analysis under the
non-Hopf assumption. As a by-product, we sometimes discover new interesting non-
Hopf examples, especially in the case n D 2. We begin this section by introducing
appropriate tools for this study.
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8.5.1 Framework for studying non-Hopf hypersurfaces

Our study of Hopf hypersurfaces is facilitated by the breakdown of the tangent space
into W and W? components. We now introduce a standard setup for the non-Hopf
case. Suppose that ˇ D jAW � ˛Wj is nonvanishing on a hypersurface M. Let U be
the unit vector field satisfying AW �˛W D ˇU. Then .W;U; 'U/ is an orthonormal
triple. In case n D 2, we call this the “standard non-Hopf frame,” and there are
functions �, � and � such that the matrix of A with respect to this frame is

2

4
˛ ˇ 0

ˇ � �

0 � �

3

5 : (8.34)

When n � 3, we define a standard non-Hopf frame to be an orthonormal frame
whose first three elements are W, U and 'U. In this case, the upper-left 3 � 3

submatrix of the matrix of A is of the form (8.34). The remaining items in the first
column are zero.

When using this “standard non-Hopf” setup, we reserve the symbols U, ˇ, �, �
and � for the purposes indicated.

Let H be the smallest A-invariant subspace of the tangent space containing the
structure vector W. If H is an integrable distribution of dimension k, we say that
the hypersurface is k-Hopf. Of course, Hopf and 1-Hopf are synonymous. If M is k-
Hopf for some k � 2, then the matrix in equation (8.34) will be simplified. Another
special class are the ruled hypersurfaces. A hypersurface M2n�1 in CPn or CHn is
said to be ruled if its shape operator satisfies AW? � W .

An aside on ruled hypersurfaces

Our definition is in terms of the shape operator and this serves our purposes best.
However, a few remarks about the terminology are in order. We begin with a
proposition.

Proposition 8.27. For a real hypersurface M2n�1 in CPn or CHn, the following are
equivalent:

• M is ruled;
• The holomorphic distribution W? is integrable and its leaves are totally

geodesic.

Proof. Let X and Y be vector fields in W?. Then

hŒX;Y�;Wi D hrXY;Wi � hrYX;Wi
D �hY; 'AXi C hX; 'AYi:
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Suppose that AW?  W . Then 'AX D 'AY D 0, so that ŒX;Y� 2 W?.
Furthermore, on any leaf L of W?, the tangential component .rXY/0 of erXY
satisfies

erXY D rXY C hAX;Yi�
D .rXY/0 C hrXY;WiW C hAX;Yi�
D .rXY/0 � hY; 'AXiW C hAX;Yi�
D .rXY/0: (8.35)

Thus L is totally geodesic.
Conversely, let us assume that W? is integrable with totally geodesic leaves. At

any point p of M, let X and Y be vectors in W?p and extend them to local vector fields
tangent to the leaf L through p. Then equation (8.35) holds locally. Because L is
totally geodesic, we have �hY; 'AXiWChAX;Yi� D 0. In particular, hY; 'AXi D 0

at p. This shows that AW?  W . ut
This proposition means that M is foliated by leaves that are open subsets of CPn�1
(resp. CHn�1). These are the “rulings.” In the CHn case, it is possible for all rulings
to be complete copies of CHn�1 and for M to be a complete hypersurface. However,
this cannot happen in CPn.

Locally, ruled hypersurfaces can be constructed from a regular curve xt as the
union over t of the totally geodesic copies of CPn�1 (resp. CHn�1) which pass
through xt and are orthogonal at xt to the holomorphic 2-plane spanned by f�!xt ; J

�!xt g.
This is how they were first introduced by Kimura [271]. Of course, one may have to
restrict to a small neighborhood of the curve to avoid singularities.

Ruled hypersurfaces cannot be Hopf (see Remark 8.44). In many of our
classification theorems, the condition in question will imply that the hypersurface is
either Hopf or ruled. Although we have many results characterizing specific Hopf
hypersurfaces, the class of ruled hypersurfaces is quite broad and the problem of
identifying and characterizing the “simplest” ruled hypersurfaces is yet unresolved.

In the standard non-Hopf setup, the only nonzero elements of the matrix of the
shape operator of a ruled hypersurface are ˇ and possibly ˛. In addition, a ruled
hypersurface can have points where ˇ D 0 and there may be no standard non-Hopf
frame in a neighborhood of such points.

One simple type of ruled hypersurfaces are the bisectors. They play a significant
role in construction of Dirichlet fundamental domains (see Goldman [176]). Just as
tubes are the simplest hypersurfaces from our point of view, for the questions in
which Goldman is primarily interested, the bisectors are the simplest hypersurfaces,
providing a substitute for totally geodesic hypersurfaces which cannot occur in CPn

or CHn. Gorodski and Gusevskii [179] have also studied bisectors in the context of
complete minimal hypersurfaces.
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In our brief discussion of bisectors, we limit ourselves to the CHn case. For any
two points PC and P�, the bisector they determine is the set of points equidistant
from PC and P�. This generalizes, for example, the “perpendicular bisector” of
a line segment in the Euclidean plane. In real space forms, bisectors are totally
geodesic hypersurfaces.

Returning to the CHn case, let P D x0 be the midpoint of the geodesic segment xt

joining PC and P� and let �t be the geodesic through P in the direction J�!x0 . For each
t, let Mt be the unique CHn�1 through �t spanned by the orthogonal complement of
the span of f�!�t ; J

�!�t g. Then the bisector is the union of these Mt. The geodesic �t is
called the spine of the bisector.

For a point not on the spine, the standard non-Hopf setup holds and the upper-left
3 � 3 portion of the shape operator matrix is

2

4
0 ˇ 0

ˇ 0 0

0 0 0

3

5 (8.36)

where ˇ is essentially the distance from the spine. For points on the spine, the shape
operator vanishes identically. The principal curvatures cannot be defined smoothly
on any open set containing a point of the spine.

A final example of ruled hypersurfaces in CHn is the minimal homogeneous
Lohnherr hypersurface discussed in Section 8.6. This is also a good candidate for
the designation “simplest” as it has constant principal curvatures – two nonzero
principal curvatures of multiplicity 1 and a zero principal curvature of multiplicity
2n � 3.

Although ruled hypersurfaces were not discussed in [399], a brief list of
properties occurs there under the “Additional Topics” heading. These should be
understood to be typical or generic for ruled hypersurfaces, but as our present
discussion shows, there are exceptions. In particular, the Lohnherr hypersurface
violates property (iii) in the list and points on the spine of a bisector violate
properties (ii) and (iv).

Identities for the standard non-Hopf setup

Lemma 8.28. In the standard non-Hopf setup, we have the following identities.

1. h.rXA/W;Wi D h.rWA/X;Wi D h.rWA/W;Xi;
2. .rWA/W D grad ˛ C 2ˇA'U;
3. 'rX.ˇ'U/ D ˇhX;A'UiW � .rXA/W � .A � ˛/'AX C .X˛/W;
4. rX.ˇ'U/C hA2W;XiW D '.rXA/W C .'A/2X C ˛AX;
5. rW.ˇ'U/C .˛2 C ˇ2/W D 3ˇ'A'U C ˛AW C ' grad ˛.

Proof. 1. This is an easy consequence of the Codazzi equation and the symmetry
of rWA.

2. Since ˇU D AW � ˛W, we have
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ˇrXU C .Xˇ/U D .rXA/W C A'AX � .X˛/W � ˛'AX: (8.37)

Thus

ˇhrXU;Wi D h.rXA/W;Wi C h.A � ˛/W; 'AXi � X˛

�ˇhU; 'AXi D h.rXA/W;Wi C ˇhU; 'AXi � X˛

ˇhA'U;Xi D h.rWA/W;Xi � ˇhA'U;Xi � X˛ (8.38)

from which the result is immediate.
3.

'rX.ˇ'U/ D 'rX.'AW/

D '.rX'/AW C '2rX.AW/

D '.hAW;WiAX � hAX;AWiW/ � rX.AW/

ChrX.AW/;WiW
D ˛'AX � ..rXA/W C A'AX/C .X˛/W � hAW; 'AXiW
D .˛ � A/'AX � .rXA/W C .X˛/W C hA'AW;XiW: (8.39)

The result is now clear since 'AW D ˇ'U.

4. If we apply ' to the left side of (8.39), we get

�rX.ˇ'U/C hrX.ˇ'U/;WiW:

This second term is equal to �hˇ'U; 'AXiW D �ˇhAU;XiW, since '2U D
�U. On the other hand, applying ' to the right side yields two nonzero terms,
�'.rXA/W and �'.A � ˛/'AX D �.'A/2X C ˛'2AX. In order to reach our
conclusion, we need only note that

˛'2AX D �˛AX C ˛hAX;WiW
D �˛AX C hA2W;XiW � ˇhAU;XiW:

5. We compute

'.rWA/W C .'A/2W D ' grad ˛ C 2ˇ'A'U C 'Aˇ'U

D ' grad ˛ C 3ˇ'A'U:

Since hA2W;Wi D hAW;AWi D ˛2 C ˇ2, this completes the proof. ut
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8.5.2 Classifications involving shape operators

Restrictions on the number of principal curvatures

We first discuss classification in terms of the number g of distinct principal
curvatures. We have seen that totally umbilic hypersurfaces are impossible (see
Theorem 6.6 on page 349). Thus every hypersurface has at least one point (and
hence an open set) where g � 2. The hypersurfaces with g � 2 have been classified
as follows:

Theorem 8.29. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn with
g � 2 distinct principal curvatures at each point. Then M is a Hopf hypersurface
with constant principal curvatures. Specifically, M is an open subset of a Type A0 or
Type A1 hypersurface, or a Type B hypersurface in CHn with radius r

2
log.2C p

3/.

As a first step in proving this theorem, we show that M is Hopf. Since non-Hopf
hypersurfaces with g D 2 do occur in CP2 and CH2 (see Remark 8.31), we phrase
our lemma as follows:

Lemma 8.30. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn for
which the standard non-Hopf setup holds. If g � 2 everywhere, then n D 2.

Proof. Since M cannot consist entirely of umbilic points, we work in an open set
where there are two distinct principal curvatures �1 and �2 with corresponding
principal spaces T1 and T2. For convenience, we arrange that �1 has larger (or equal)
multiplicity compared with �2. Then there are unique nonvanishing vector fields
X1 2 T1 and X2 2 T2 such that

W D X1 C X2 (8.40)

and so

AW D �1X1 C �2X2: (8.41)

Note that fX1;X2g, fAW;Wg, and fW;Ug have the same span, which is
2-dimensional, and thus this span is A-invariant. In (8.34), we must have � D 0.
Now for any Y1 and Z1 in X?1 \ T1, the Codazzi equation gives

.Y1�1/Z1 � .Z1�1/Y1 C .�1 � A/ŒY1;Z1� D 2chY1; 'Z1iW: (8.42)

This shows that hY1; 'Z1i D 0. Otherwise, taking the inner product with X1 would
yield an immediate contradiction. Since the terms on the left side are in T1 and T2
respectively, each equals zero.

If n � 3, we may arrange that Y1 and Z1 are linearly independent, and thus
conclude that V�1 D 0 for all V 2 X?1 \ T1. Now, the Codazzi equation for X1 and
Y1 reduces to
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.X1�1/Y1 C .�1 � A/ŒX1;Y1� D c.hX1;Wi'Y1 C 2hX1; 'Y1iW/: (8.43)

Taking the inner product with X1 gives 3hX1; 'Y1i D 0: Thus 'Y1 is not only
orthogonal to X?1 \ T1, but also to X1. In addition,

h'Y1;X2i D h'Y1;Wi � h'Y1;X1i D 0;

and hence 'Y1 lies in X?2 \ T2.
Finally, ' maps X?1 \ T1 into X?2 \ T2 injectively since both spaces lie in W?.

We conclude that the dimension of X?2 \ T2 is at least 2. Thus, we can repeat the
argument, reversing the roles of T1 and T2 and conclude that they must have the
same dimension. This is a contradiction since M has odd dimension 2n � 1.

Having shown that the assumption n � 3 leads to a contradiction, we conclude
that n D 2. ut

To complete the proof of Theorem 8.29, we need only show that if a Hopf
hypersurface has g � 2 distinct principal curvatures, these principal curvatures
must be constant. Of course, the constant ˛ is a principal curvature. If � ¤ ˛

2
is

an eigenvalue of the restriction of A to W? at some point, then we have, in the
notation of Theorem 6.17,

�� D �C �

2
˛ C c: (8.44)

If � and � are distinct then, extending by continuity, one of them, say �, coincides
with ˛ in a neighborhood U . Then, in U , we have

˛� D ˛ C �

2
˛ C c: (8.45)

Thus ˛ ¤ 0 and � D .˛2 C 2c/=˛ is also constant. By Theorems 8.12 and 8.13,
U is an open subset of one of the hypersurfaces on Montiel’s or Takagi’s lists. The
only one with the correct multiplicities (see Section 6.4) is the Type B hypersurface
in CHn for which coth u D 2 tanh 2u, i.e., u has the value indicated in the theorem
statement. By continuity of the principal curvatures, the set of points of M for which
they agree with the (constant) values that they have on U is closed (as well as being
open). Since connectedness is assumed, this set is all of M. We conclude that M is
indeed an open subset of the indicated Type B hypersurface.

On the other hand, if � D � on an open set, then �2 D ˛�Cc and � is constant by
the quadratic formula. In this case, M is an open subset of a Type A1 hypersurface.
The final possibility is that ˛ and ˛

2
are the only principal curvatures. In this case,

M is an open subset of a Type A0 hypersurface in CHn. This completes our proof of
Theorem 8.29.

Remark 8.31. The condition that n � 3 is essential for Theorem 8.29. When
n D 2 there is, in addition to the expected Hopf examples, a 2-parameter family
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of non-Hopf hypersurfaces with g D 2 principal curvatures and these principal
curvatures are nonconstant. The proof of Lemma 8.30 (in case n D 2) shows that
'U is a principal vector corresponding to the principal curvature �. Also, since the
span of fW;Ug is not a principal space, � must coincide with one of the principal
curvatures �1 or �2. This means that

�2 � .˛ C �/� C .�˛ � ˇ2/ D 0: (8.46)

This observation is the starting point for the recent classification of non-Hopf
hypersurfaces with g D 2 in CP2 and CH2 by Ivey and Ryan [225]. The construction
and proof make extensive use of exterior differential systems and the new examples
occur as solutions to a system of ordinary differential equations. This classification
has also been carried out independently by Díaz-Ramos, Domínguez-Vázquez and
Vidal-Castiñeira [132] using the notion of polar actions.

The classification problem for hypersurfaces with g D 3 principal curvatures is
open. For Hopf hypersurfaces, we have the following result due to Böning [46].

Theorem 8.32. Let M2n�1, where n � 3, be a Hopf hypersurface in CPn or CHn

with g � 3 distinct principal curvatures at each point. Then M has constant
principal curvatures, provided that ˛2 C 4c ¤ 0. Specifically, M is an open subset
of a hypersurface of Type A or Type B.

Proof. Since Theorem 8.29 covers the case g � 2, we will work in an open set
where g D 3. Using the notation of Theorem 6.17, W? is the direct sum of
even-dimensional '-invariant subspaces, each determined by two (possibly equal)
principal curvatures � and � satisfying

�� D �C �

2
˛ C c: (8.47)

In our case, the number of such subspaces cannot be 3 since this would require
three distinct solutions to the quadratic equation t2 � ˛t � c D 0. Suppose now that
there is a point where there are two such subspaces. Then, at least one of them must
correspond to an “equal pair”. The other must also have the equal-pair property,
since otherwise, one of the principal curvatures, say �, would have to coincide
with ˛ and using (8.47), we could express � in terms of ˛. This situation would
hold locally and all three distinct principal curvatures would be locally constant.
However, none of the examples in the Takagi-Montiel list have this particular
principal curvature configuration. The upshot is that both subspaces are principal
spaces corresponding to locally constant principal curvatures, as occurs for the Type
A2 hypersurfaces.

The remaining possibility is that (at every point) there is only one such subspace
and it is the sum of two principal spaces T� and T�, each of dimension n �1. Again,
this situation holds locally. Since n � 3, we may apply the Codazzi equation to an
orthonormal pair fX;Yg of principal vectors in T� to obtain
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.X�/Y � .Y�/X C .� � A/ŒX;Y� D 2chX; 'YiW: (8.48)

Taking the inner product with Y yields X� D 0. In other words, Z� D 0 for all
Z 2 T�. Similarly, Z� D 0 for all Z 2 T�. On the other hand, differentiating (8.47)
with respect to Z 2 T� gives .�� ˛

2
/Z� D 0 so that Z� D 0 (and similarly Z� D 0)

for all Z 2 W?. Finally, for a unit vector Z 2 T�, we apply the Codazzi equation to
the pair fZ;Wg to get

.˛ � A/rZW � .W�/Z � .� � A/rWZ C c'Z D 0: (8.49)

Since the first term reduces to a scalar multiple of 'Z, taking the inner product with
Z yields W� D 0. Similarly, W� D 0 and thus � and � are constants. Thus the
principal curvature configuration is that of the Type B hypersurfaces.

Having shown that the principal curvatures are locally constant, the usual
connectedness argument completes our proof. ut
Remark 8.33. The existence of Hopf hypersurfaces in CHn with three distinct
principal curvatures, not all constant, remains open. One can show that if such a
hypersurface exists, then two of the three principal curvatures must be constants
equal to ˛ D 2=r and ˛

2
D 1=r.

Remark 8.34. Again, the specification n � 3 is necessary. There are examples of
Hopf hypersurfaces in CP2 with g D 3 distinct principal curvatures .0; �; �/ where
� and � are nonconstant. In fact, these examples are pseudo-Einstein (see Kim and
Ryan [260]).

On the other hand, we can ask about non-Hopf hypersurfaces with g D 3

principal curvatures, where the principal curvatures are assumed to be constant. It
turns out that there exists a family of non-Hopf homogeneous hypersurfaces in CH2

(and, in fact, in CHn for n � 2), having g D 3 distinct constant principal curvatures.
These are the orbits of the Berndt group or Berndt orbits, see Berndt [30] and Kim
et al. [257, 261]. We will discuss them and their generalizations in Section 8.6.

However, the situation is simple for g D 2.

Theorem 8.35. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

with g D 2 distinct principal curvatures at each point. Assume that these principal
curvatures are constant. Then M is a Hopf hypersurface. Thus, M is an open subset
of a Type A0 or Type A1 hypersurface, or a Type B hypersurface in CHn with radius
r
2

log.2C p
3/.

Proof. In view of Theorem 8.29, we need only consider the case n D 2. Assume
that M is not Hopf and consider the standard non-Hopf setup. Proceed as in the proof
of Lemma 8.30 until we reach the point there � D 0. Note that �1 has multiplicity
2 and � D �1, while �2 has multiplicity 1. Now let Z D 'U. Applying the Codazzi
equation to the pair .X1;Z/, we have

.X1�1/Z � .Z�1/X1 C .�1 � A/ŒX1;Z� D 2chX1; 'ZiW: (8.50)
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Now take the inner product of this equation with X1. The left side vanishes and the
right side is

2chX1;�UihW;X1i; (8.51)

which cannot vanish. This contradiction shows that M must be Hopf. ut
The question of hypersurfaces with constant principal curvatures has been settled

for the case g D 3. See Takagi [508] and Berndt and Díaz-Ramos [34].

Theorem 8.36. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

with g D 3 distinct principal curvatures at each point. Assume that these principal
curvatures are constant. Then either

• M is a Hopf hypersurface and hence is an open subset of a Type A2 or Type B
hypersurface, or

• M is non-Hopf and is an open subset of a Berndt orbit in CHn, or
• M is non-Hopf and is an open subset of a tube of radius r

2
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3/ around a
homogeneous ruled submanifold Fk;� of CHn. We will discuss such submanifolds
in conjunction with the Berndt-Tamaru classification of homogeneous hypersur-
faces in CHn (see Theorem 8.148).

Díaz-Ramos, Domínguez-Vázquez et al. have embarked on a project to investi-
gate hypersurfaces with constant principal curvatures for higher values of g and for
weakened versions of the Hopf condition (see Section 8.6). The general approach
is to attempt to classify k-Hopf hypersurfaces with constant principal curvatures
according to the parameters .k; g/. The theorems of Berndt and Kimura correspond
to k D 1 and the possible values of g are 2, 3, and 5, the latter occurring in CPn but
not in CHn. See Section 8.6.

Algebraic conditions on the shape operator

As we have seen in Theorem 6.15, it is impossible for the shape operator A to vanish
identically. In fact, we have jrAj2 � 4c2.n � 1/: Hypersurfaces for which this
inequality becomes an equality form a familiar class, as we see in the next theorem.

Theorem 8.37. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
The following are equivalent:

1. M is an open subset of a Type A hypersurface;
2. 'A D A';
3. jrAj2 D 4c2.n � 1/;
4. .rXA/Y C c.h'X;YiW C hY;Wi'X/ D 0 for all X and Y tangent to M;
5. The cyclic sum h.rXA/Y;Zi C h.rYA/Z;Xi C h.rZA/X;Yi over every triple
.X;Y;Z/ of tangent vectors vanishes.
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Work along these lines was initiated by Y. Maeda [350], Okumura [408], and
Ki [238]. For a detailed proof of this theorem along with relevant references, the
reader may consult Section 4 of Niebergall and Ryan [399]. This theorem allows
us to characterize the compact Type A hypersurfaces by an inequality involving the
shape operator as follows (recall that m D trace A).

Theorem 8.38. Let M2n�1, where n � 2, be a compact hypersurface in CPn or
CHn. Then the following are equivalent:

• jAj2 � 2.n � 1/c C m˛I
• jAj2 D 2.n � 1/c C m˛I
• M is a Type A2 hypersurface in CPn or a geodesic sphere in CPn or CHn.

Proof. We recall Yano’s formula [559]

div.rXX � .divX/X/ D hSX;Xi C 1

2
jLXgj2 � jrXj2 � .divX/2 (8.52)

valid for any vector field X on a Riemannian manifold. (In order to display the
formula, we needed a letter to denote the Riemannian metric and have used g
temporarily for this purpose.) The proof of Yano’s formula is straightforward, so
we leave it as an exercise for the reader. A proof can also be found (in the “tensor
notation” prevalent at the time) in Yano’s paper pp. 39-40. We now set X D W and
compute

hSW;Wi D 2.n � 1/c C m˛ � jAWj2
jLWgj2 D j'A � A'j2
jrWj2 D j'Aj2 D jAj2 � jAWj2
divW D trace 'A D 0:

If M is orientable, we can integrate (8.52) with X D W over M and apply Green’s
theorem ([283] vol. I, p. 281) to get

0 D
Z �

2.n � 1/c C m˛ � jAj2 C 1

2
j'A � A'j�dv (8.53)

where dv is the standard volume element. Our hypothesis on A now implies that
jAj2 D 2.n � 1/c C m˛ and 'A D A'. By Theorem 8.37, M is an open subset
of a Type A hypersurface. Being compact, M is actually a Type A hypersurface and
hence one of the examples listed. The orientability assumption is now seen to be
superfluous. If M were not orientable, we could apply the same argument to the
(compact orientable) twofold cover OM. Since j'A � A'j and 2.n � 1/c C m˛ � jAj2
agree at corresponding points of M and OM, we find that M itself is one of the listed
examples.
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Conversely, it is straightforward to check that jAj2 D 2.n � 1/c C m˛ for all
hypersurfaces of Type A. This completes the proof of our theorem. ut
Remark 8.39. A proof of Theorem 8.38 in the CP2 case has been given by
Deshmukh and Al-Gwaiz [129]. See also [128].

A tensor field T of type .1; 1/ is said to be cyclic parallel if the cyclic sum of
h.rXT/Y;Zi over every triple .X;Y;Z/ of tangent vectors vanishes. Thus, Condition
5 of Theorem 8.37 could be expressed as “A is cyclic parallel.” Condition 2 is
equivalent to parallelism of the shape operator A0 of the lifted hypersurface M0 D
��1M. See Lemma 4.2 of [399]. Ki and H.-J. Kim [240] derive another equivalent
condition for Theorem 8.37, namely rC D 0 where C.X;Y;Z/ is the cyclic sum
used in Condition 5. They call this condition “covariantly cyclic constant.” See also
the related work of J.J. Kim and Pyo [265].

Ghosh [173] proved the equivalence to Condition 2 of two weaker conditions. To
describe these results, we need the following terminology. A tensor field T is said to
be semiparallel if R.X;Y/ � T D 0 for all tangent vectors X and Y . The expression
on the left is defined by

R.X;Y/ � T D rXrYT � rYrXT � rŒX;Y�T: (8.54)

Note that covariant differentiation, and hence R.X;Y/, acts on the algebra of tensor
fields as a derivation that commutes with contractions. If T is of type .r; s/, we can
write R � T for the corresponding tensor field of type .r; s C 2/. For example, if T is
of type .1; 1/, then

.R � T/.X;Y;Z/ D .R.X;Y/ � T/Z:

A tensor field T is recurrent if there is a 1-form ! such that rXT D !.X/T for all
tangent vectors X. Using routine tensor algebra it is straightforward to verify that if
T is a .1; 1/ tensor field satisfying the definition of recurrence, then

.R.X;Y/ � T/Z D ..rX!/Y � .rY!/X/TZ (8.55)

for all tangent vectors X, Y and Z
Ghosh’s theorem can be stated as follows.

Theorem 8.40. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Let T D 'A � A'. The following are equivalent:

1. T D 0;
2. T is recurrent;
3. T is semiparallel.

Proof. We break the proof down into two parts, first showing that Condition 3
implies Condition 1 and then showing that Condition 2 also implies Condition 1.
Since Condition 1 implies Conditions 2 and 3 trivially, this will be sufficient.
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• Condition 3 implies Condition 1:
Suppose that T is semiparallel. Then, in particular,

0 D hŒR.X;Y/;T�W;Wi D 2hR.X;Y/TW;Wi: (8.56)

Note that TW D 'AW and thus hTW;Wi D hTW;AWi D 0. From the Gauss
equation, we get

h.AX ^ AY/W;TWi C ch.X ^ Y/W;TWi D 0

since .'X ^ 'Y/W D hX; 'Yi'W D 0. Thus

hAY;WihAX;TWi C chY;WihX;TWi
D hAX;WihAY;TWi C chX;WihY;TWi (8.57)

for all tangent vectors X and Y . Setting Y D TW, we have

hAX;WihATW;TWi C chX;WijTWj2 D 0: (8.58)

Setting X D 'ATW, we get �hATW;TWi2 D 0, which allows us to conclude that
hATW;TWi D 0. Substituting back in (8.58) yields

chX;WijTWj2 D 0 (8.59)

which, upon setting X D W, gives TW D 'AW D 0. Thus M is Hopf. Consider
now

0 D ŒR.X;W/;T�W D �TR.X;W/W

which, by the Gauss equation, gives

T.˛A C c/X D 0: (8.60)

for all X. Now W? has an orthonormal basis consisting of n � 1 pairs of
principal vectors .X; 'X/ with corresponding principal curvatures .�; �/ (see
Theorem 6.17). Then TX D .'A � A'/X D .� � �/'X and T'X D .� � �/X.
If T ¤ 0, there is a choice of X for which � ¤ �. But then, by (8.60) we have
˛�C c D 0. The same reasoning applied to 'X yields ˛�C c D 0. Since ˛ ¤ 0

and � ¤ �, we have a contradiction and are forced to conclude that T D 0. In
fact, M is an open subset of a Type A hypersurface by Theorem 8.37.

• Condition 2 implies Condition 1:
Since T is symmetric, it has real eigenvalues. We choose a point of M where
the maximum number of eigenvalues are distinct. This insures that the distinct
eigenvalues are smooth functions with smooth eigenspaces in a neighborhood U
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of this point. Assuming that T ¤ 0, we know that at least one eigenvalue � is
nonzero and we can choose a smooth unit vector field Z in U such that AX D �X.
Now !.X/� D !.X/hTZ;Zi D h.rZT/Z;Zi D X� where we have used the
fact that Z, being a unit vector, is orthogonal to its covariant derivative. Thus
X� D !.X/� and we have

d� D �!

on U . By the Poincaré lemma,

0 D d2� D d� ^ ! C �d! D �.! ^ ! C d!/ D �d!:

But d!.X;Y/ D .rX!/Y � .rY!/X which shows that R.X;Y/ � T D 0 and T is
semiparallel on U . By the earlier argument “Condition 3 implies Condition 1,”
we get T D 0 on U , a contradiction. We conclude that T D 0 at all points of
M. ut
Following Maeda and Naitoh [348] we define a tensor field T of type .1; 1/ on a

real hypersurface in CPn or CHn to be strongly '-invariant if

hT'X; 'Yi D hTX;Yi;

for all pairs .X;Y/ of tangent vectors. It is easy to check that this is equivalent to
'T' D �T .

We have the following theorem regarding the case where the shape operator is
strongly '-invariant.

Theorem 8.41. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
The following two conditions are equivalent:

1. the shape operator A is strongly '-invariant;
2. M is an open subset of a Type A hypersurface with ˛ D 0.

In particular, these conditions imply that

• 'A D A';
• the ambient space is CPn;
• M lies on a tube of radius �

4
r over a totally geodesic CPk for some k satisfying

1 � k � n � 1.

Proof. Suppose that Condition 2 is satisfied. Note that ˛ D 0 rules out the
possibility that the ambient space is CHn. For Type A hypersurfaces in CPn, we
have ˛ D 2

r cot 2u, so that u D �
4

and M must be an open subset of a tube over
CPk as described in the statement of the theorem. Also, since 'A D A', we have
'A'X D A'2X D �AX for all X 2 W? and 0 D AW D �'A'W. Thus A is
strongly '-invariant.
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Conversely, if 'A' D �A, then AW D 0. Thus M is a Hopf hypersurface with
˛ D 0. Furthermore,

.'A � A'/'X D �AX � A'2X D 0;

for all X 2 W?. Thus 'A � A' annihilates W?, as well as (trivially) W , so that
Condition 2 holds by Theorem 8.37, and the proof is complete. ut

A hypersurface (in any ambient space) is said to be semiparallel if the shape
operator A is itself semiparallel. Note that this is a weaker condition than rA D 0.
Of course, the latter cannot occur for a hypersurface in CPn or CHn. It turns out that
even semiparallelism is too strong a condition. We can state the following theorem.

Theorem 8.42. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then R � A cannot vanish identically.

This was first proved for CPn by S. Maeda [346] for n � 3. Later, Niebergall and
Ryan [400] dealt with the case n D 2. Finally, Ortega [414] provided a proof for
CHn, n � 3.

Lobos and Ortega studied two more general conditions and their work is
embodied in Theorems 8.51 and 8.60 below. Theorem 8.42 follows from their results
(see remarks following Proposition 8.58 below), and it is basically their approach
that we use in our exposition.

The next few results provide further characterizations of the Type A0 and Type A1
hypersurfaces. The condition (8.61) analyzed in the first proposition was introduced
by Matsuyama [354].

Proposition 8.43. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn.
Then its curvature tensor satisfies

�
R.AX;Y/ � A ı R.X;Y/

�W? � W (8.61)

for all X and Y in W? if and only if M is

• a ruled real hypersurface, or
• an open subset of a Type A0 or Type A1 hypersurface.

Remark 8.44. It is easy to check that a ruled real hypersurface cannot be Hopf.
In fact, if it were, we would have AW? D 0, violating Theorem 6.17 (page 357).
Thus Matsuyama’s condition (8.61) characterizes ruled real hypersurfaces among all
non-Hopf hypersurfaces, as well as characterizing the Type A0 and A1 hypersurfaces
among all Hopf hypersurfaces.

So far, we have considered algebraic conditions relating tangent vectors “in
general.” We now begin to weaken such conditions by requiring them only on the
holomorphic subspace W?. We begin with “umbilicity.”
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Lemma 8.45. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn.
Suppose that there is a function � such that hAX;Yi D �hX;Yi for all X and Y in
W?. Then � is constant and M is

• a ruled real hypersurface if � D 0;
• an open subset of a Type A0 or Type A1 hypersurface if � ¤ 0.

Proof. If � is identically zero, then AX is orthogonal to W? for all X 2 W? and M
must be ruled. Now suppose that there is a point where � ¤ 0. Assume that AW ¤
˛W there and use the standard non-Hopf setup in a neighborhood. Since n � 3, we
can choose a unit tangent vector field Z orthogonal to the span of fW;U; 'Ug. Note
that hAZ;Wi D 0 so that AZ D �Z. Also, AU D ˇW C �U and A'U D �'U (i.e.,
� D � D � and � D 0). From the Codazzi equation (6.8), we have (since Z is also
orthogonal to 'U),

0 D .rUA/Z � .rZA/U D .U�/Z � .Z�/U � .Zˇ/W � ˇrZW C .� � A/ŒU;Z�:

Taking inner product with 'Z and using the fact that .� � A/'Z D 0, the only term
remaining gives

0 D ˇhrZW; 'Zi D ˇh'AZ; 'Zi D ˇ�:

This contradicts the fact that ˇ and � are nonzero. We must conclude that every
point where � ¤ 0 has a Hopf neighborhood in which AX D �X for all X 2 W?.
Since this neighborhood has g � 2 distinct principal curvatures, it must be an
open subset of a hypersurface of Type A0 or A1. (It is clear that the special Type
B hypersurfaces with g D 2 do not qualify, since, in that case, both principal
curvatures have principal vectors in W?). In particular, � must be constant. By
a standard connectedness argument, � is constant on all of M and the conclusion
follows. ut
Remark 8.46. Given the condition hAX;Yi D �hX;Yi, one need not assume that
the function � is continuous. It is automatically smooth, since it is related to m D
trace A by � D .m � ˛/=.2.n � 1//.

The following lemma essentially completes the proof of Proposition 8.43.

Lemma 8.47. A hypersurface in CPn or CHn, where n � 3, satisfying Mat-
suyama’s condition (8.61) also satisfies

hAX;Yi D m � ˛
2.n � 1/ hX;Yi

for all X and Y in W?.
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Proof. Using the Gauss equation, the left side of Matsuyama’s condition may be
written as the sum of four terms:

• A2X ^ AY � A ı .AX ^ AY/;
• c.AX ^ Y � A ı .X ^ Y//;
• c.'AX ^ 'Y � A ı .'X ^ 'Y//;
• 2c.hAX; 'Yi ' � hX; 'Yi A'/.

Choose an orthonormal basis fejg of W?. Set X D ej, apply our formula to 'ej and
sum over all j. Routine calculation (using the fact that 'A and 'A2 have trace zero)
shows that the first two terms each sum to zero. The third term yields

c
�
.2n � 3/A'Y C 'AY � .m � ˛/'Y

�
;

while the fourth term reduces to 2chA'Y;WiW. Thus, for all Z 2 W?, we have

.2n � 3/hA'Y;Zi C h'AY;Zi � .m � ˛/h'Y;Zi D 0: (8.62)

Interchanging the roles of Y and Z and using the symmetry and skew-symmetry
properties of our operators, we get

�.2n � 3/h'AY;Zi � hA'Y;Zi C .m � ˛/h'Y;Zi D 0:

Adding these two equations yields

2.n � 2/h.'A � A'/Y;Zi D 0:

Since n � 3, we have h.'A � A'/Y;Zi D 0 for all Y and Z in W?. In particular,
equation (8.62) becomes

2.n � 1/hA'Y;Zi D .m � ˛/h'Y;Zi:

Since any pair of vectors in W? can be written in the form .'Y;Z/, we have the
desired conclusion. ut
Remark 8.48. One should also verify that every Type A0, every Type A1, and
every ruled hypersurface satisfies the Matsuyama condition. Except for the ruled
hypersurfaces, this is trivial since, if A D �I on W?, the condition reduces to

h.� � A/R.X;Y/Z1;Z2i D 0;

for every quadruple .X;Y;Z1;Z2/ in W?. For ruled hypersurfaces, look at the
breakdown of the condition into four terms, apply each term to Z1, and take the
inner product with Z2. Repeatedly using the fact that AW? � W , we find that every
term vanishes.
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The preceding proof also establishes a technical criterion for Matsuyama’s
condition. We state this as a corollary since we will also make use of it in the
next proof.

Corollary 8.49. A hypersurface in CPn or CHn, where n � 3, satisfies Mat-
suyama’s condition (8.61) if and only if

.2n � 3/hA'Y;Zi C h'AY;Zi � .m � ˛/h'Y;Zi D 0; (8.63)

for all Y and Z in W?.

Remark 8.50. It is easy to check that condition (8.63) holds automatically when
n D 2. In this case, Matsuyama’s condition must be analyzed using a different
method.

We now discuss two more criteria that are equivalent to Matsuyama’s condition
for n � 3. These were established by Ortega [414]. We combine them with
Proposition 8.43 to obtain the following.

Theorem 8.51. For a hypersurface M in CPn or CHn, where n � 3, the following
are equivalent:

1. M is a ruled real hypersurface or an open subset of a hypersurface of Type A0 or
Type A1;

2. .R.X;Y/ � A/Z C .R.Y;Z/ � A/X C .R.Z;X/ � A/Y D 0 for all X, Y, and Z in W?;
3. .R.X;Y/ � A/Z C .R.Y;Z/ � A/X C .R.Z;X/ � A/Y 2 W for all X, Y, and Z in W?;
4.
�
R.AX;Y/ � A ı R.X;Y/

�W? � W for all X and Y in W?.

Proof. In view of the first Bianchi identity we can write the cyclic sum of .R.X;Y/ �
A/Z as

R.X;Y/AZ C R.Y;Z/AX C R.Z;X/AY: (8.64)

Using the Gauss equation, this can expressed as the sum of four terms:

• .AX ^ AY/AZ C .AY ^ AZ/AX C .AZ ^ AX/AY;
• c

�
.X ^ Y/AZ C .Y ^ Z/AX C .Z ^ X/AY

�
;

• c
�
.'X ^ 'Y/AZ C .'Y ^ 'Z/AX C .'Z ^ 'X/AY

�
;

• 2c
�hX; 'Yi'AZ C hY; 'Zi'AX C hZ; 'Xi'AY

�
.

Clearly, the first and second terms evaluate to zero. The third term reduces to

c
�h.'A C A'/Y;Zi'X C h.'A C A'/Z;Xi'Y C h.'A C A'/X;Yi'Z

�
:

If Z D 'Y , this becomes

c
� � .h'A'Y;Yi � hAY;Yi/'X � .hAY;Xi � h'A'X;Yi/'Y

� h.'A C A'/X;YiY�;
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and the fourth term becomes

2c
� � h'X;Yi'A'Y � hY;Yi'AX C hY;Xi'AY

�
:

Choose an orthonormal basis fejg for W?, as in Lemma 8.47. Set Y D ej, and sum
over all j to obtain

2c
�
.m � ˛/'X � .'A C A'/X C hAW; 'XiW�;

and

�4c.n � 2/'AX:

Addition of these expressions yields

2c
�
.m � ˛/'X � .2n � 3/'AX � A'X C hAW; 'XiW�:

If we take the inner product of this with any Z 2 W?, and apply Corollary 8.49,
we see that Condition 3 in our theorem implies Condition 4, which is equivalent
to Condition 1 by Proposition 8.43. Of course, Condition 2 implies Condition 3
trivially.

To complete the proof, we need only observe that Type A0 and Type A1
hypersurfaces, as well as ruled hypersurfaces, satisfy Condition 2. For the Type
A0 and Type A1 hypersurfaces, every vector that occurs is an eigenvector of A with
the same eigenvalue. It follows that the third and fourth terms of (8.64) are negatives
of each other. For ruled hypersurfaces, the third and fourth terms of (8.64) vanish,
since 'AX D 0 for every X 2 W?. ut

As a corollary, we obtain the following result which was proved earlier by Gotoh
[182] in the CPn case.

Corollary 8.52. For a hypersurface M2n�1 in CPn or CHn, where n � 3, the
following are equivalent:

• .R.X;Y/ � A/Z D 0 for all X, Y, and Z in W?I
• M is an open subset of a hypersurface of Type A0 or Type A1.

Proof. For a hypersurface of Type A0 or Type A1, there is a constant � such that A
coincides with �I on W?. Using the Gauss equation, it is straightforward to check
that .R.X;Y/ � A/Z vanishes for all X, Y , and Z in W?:

For the converse, in view of Theorem 8.51, it is sufficient to show that ruled
hypersurfaces do not satisfy our curvature condition. This can be verified by using
the Gauss equation to show that, in terms of the standard non-Hopf setup, ruled
hypersurfaces satisfy .R.U; 'U/ � A/'U D �2cAU ¤ 0. We leave the details to the
reader. ut
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Remark 8.53. In fact, the same argument shows that the condition

.R.X;Y/ � A/Z D 0

can be replaced by .R.X;Y/ � A/Z 2 W :

Proposition 8.43, Lemma 8.45, Lemma 8.47, Theorem 8.51, and Corollary 8.52
do not hold for n D 2. We will now consider what happens in this case.

In the standard non-Hopf setup, the Gauss equation gives

R.U; 'U/ D .�� � �2 C 4c/U ^ 'U C ˇ�W ^ 'U C ˇ�W ^ UI
R.W;U/ D .�˛ � ˇ2 C c/W ^ U C �˛W ^ 'U C ˇ�U ^ 'UI

R.W; 'U/ D .�˛ C c/W ^ 'U C �˛W ^ U C ˇ�U ^ 'U: (8.65)

Then, a straightforward calculation yields

R.AU; 'U/'U � AR.U; 'U/'U D ��q'U mod WI
R.AU; 'U/U � AR.U; 'U/U D ���.� � �/q C ˇ2�

�
'U

C�.q � ˇ2/U mod WI
.R.U; 'U/ � A/U D ��.� � �/q C ˇ2�

�
'U C 2�.q � ˇ2/U mod WI

.R.U; 'U/ � A/'U D ��.� � �/q C ˇ2�
�
U � 2�q'U mod W (8.66)

where we have used q as a temporary abbreviation for �� � �2 C 4c. This provides
a basis for the following theorem in the non-Hopf case.

Theorem 8.54. Let M3 be a real hypersurface in CP2 or CH2 for which the
standard non-Hopf setup is valid. Then

1. There is a function � such that hAX;Yi D �hX;Yi for all X and Y in W? if and
only if � D 0 and � D �. Although all ruled hypersurfaces satisfy this condition,
there also exist non-ruled examples.

2. The following are equivalent:

•
�
R.AX;Y/ � A ı R.X;Y/

�W?  W for all X and Y in W?;
• .R.X;Y/ � A/W?  W for all X and Y in W?;
• � D 0 and .� � �/.�� C 4c/C ˇ2� D 0.

Although all ruled hypersurfaces satisfy these conditions, there also exist non-
ruled examples.

3. .R.X;Y/ � A/Z cannot vanish for all X, Y and Z in W?.

Proof. 1. If a function � exists as indicated, then � D hAU; 'Ui D 0 whereas
� D hAU;Ui D � D hA'U; 'Ui D �. Conversely, suppose that � D 0 and
� D �. Then we can set � D � D � and easily verify the desired identity.
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2. If
�
R.AX;Y/ � A ı R.X;Y/

�W?  W for all X and Y in W?, then the first two
equations of (8.66) give �q D 0 and �.q �ˇ2/ D 0 so that we have � D 0. Now
consider

R.A'U;U/'U � AR.'U;U/'U D �.� � A/.qU C ˇ�W/

D �
.� � �/q C ˇ2�

�
U mod W

where we have used the fact that � D 0. Thus, we have .� � �/q C ˇ2� D 0.
If .R.X;Y/ � A/W?  W for all X and Y in W?, then the last two equations

of (8.66) give �q D 0 and �.q � ˇ2/ D 0 so that � D 0 as before. In this case,
the conclusion that .� � �/q C ˇ2� D 0 is evident without further calculation.

Conversely, if � D 0 and .���/qCˇ2� D 0, the right side of every equation
in (8.66) vanishes. This establishes the second condition. For the first condition,
we also need to check the cases involving R.AU;U/ and R.A'U;U/. This is
routine.

3. Assume that .R.X;Y/ � A/Z D 0 for all X, Y , and Z in W?. Using � D 0, we
compute

.R.U; 'U/ � A/W D .˛ � A/R.U; 'U/W C ˇR.U; 'U/U

D �ˇ�.˛ � A/'U � ˇq'U D ˇ.�.� � ˛/ � q/'U:

Taking the inner product with 'U and using the symmetry of R.U; 'U/ � A,
we can conclude that �.� � ˛/ D q. However, it is shown in Ivey (personal
communication, 2015) that this implies ˇ D 0, a contradiction.

The existence of non-ruled examples follows from Theorem 20 of Ivey and Ryan
[224]. There it is proved, using the theory of exterior differential systems, that a
non-Hopf hypersurface with � D 0 exists with ˛, ˇ, � and � satisfying any desired
algebraic condition and having prescribed initial values. ut
Remark 8.55. It is easy to check that for hypersurfaces in CP2 and CH2, Conditions
2 and 3 of Theorem 8.51 are automatically satisfied. Theorem 8.54 shows that
Conditions 1 and 4 of Theorem 8.51 are inequivalent when n D 2.

We now look at the analogue of Theorem 8.54 for Hopf hypersurfaces.

Theorem 8.56. For a Hopf hypersurface M3 in CP2 or CH2, the following are
equivalent:

(i) M is an open subset of a hypersurface of Type A0 or Type A1;
(ii) There is a function � such that hAX;Yi D �hX;Yi for all X and Y in W?;

(iii)
�
R.AX;Y/ � A ı R.X;Y/

�W? � W for all X and Y in W?;
(iv) .R.X;Y/ � A/W?  W for all X and Y in W?.

In case .ii/, we have � D .m � ˛/=2 and in case .iv/, .R.X;Y/ � A/Z D 0 for all X,
Y, and Z in W?.
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The proof of Theorem 8.56 is easy and we provide only a brief sketch. The
curvature information given in (8.65) is still valid in the Hopf case if we set
� D ˇ D 0 and choose U to be any unit principal vector in W?. The critical
condition is .�� �/.��C 4c/ D 0. However, an assumption that � ¤ � will lead to
a contradiction. In fact, �� C 4c D 0 allows us to show that � and � are constant.
This implies, in turn, that �� C c D 0.

A hypersurface is said to be cyclic-semiparallel if

.R.X;Y/ � A/Z C .R.Y;Z/ � A/X C .R.Z;X/ � A/Y D 0

for all tangent vectors X, Y and Z.
Extending Condition 2 of Theorem 8.51 to W , we obtain the following corollary

(see Kimura and Maeda [277] and Choe [118]).

Corollary 8.57. For a hypersurface M in CPn or CHn, where n � 3, the following
are equivalent:

• M is an open subset of a hypersurface of Type A0 or Type A1;
• M is cyclic-semiparallel.

A hypersurface in CP2 or CH2 is cyclic-semiparallel if and only if it is Hopf.

Proof. We revisit our analysis of equation (8.64) from the proof of Theorem 8.51.
The first and second terms still evaluate to zero. Suppose now that X and Y are in
W? but that Z D W. Then the third term reduces to

c
�hA'Y;Wi'X C h'AW;Xi'Y

�
;

while the fourth term reduces to

2chX; 'Yi'AW:

If M is ruled, we may choose (at a point where AW ¤ ˛W), a unit vector X 2 W?
such that AW D ˛W C ˇX where ˇ ¤ 0. Let Y D 'X. Then the third and fourth
terms of (8.64) sum to

c.�ˇY � 2ˇY/ D �3cˇY ¤ 0:

This shows that ruled real hypersurfaces are not cyclic-semiparallel. We now check
that Type A0 and Type A1 hypersurfaces are cyclic-semiparallel. As before, the third
and fourth terms cancel for X, Y , and Z in W?. For X and Y in W? and Z D W,
both of these terms vanish. This proves our claim.

Having shown that Type A0 and Type A1 hypersurfaces are cyclic-semiparallel,
it remains to remark that every cyclic-semiparallel hypersurface satisfies Condition
2 of Theorem 8.51 and hence is either ruled or an open subset of a Type A0 or Type
A1 hypersurface. Ruled hypersurfaces having been excluded, the first part of our
corollary is proved.
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To prove the second assertion, we need to show that every cyclic parallel
hypersurface in CP2 or CH2 is Hopf. We can do this by using the standard non-
Hopf setup and considering

R.U; 'U/AW C R.'U;W/AU C R.W;U/A'U D 0:

Now take the inner product of this equation with 'U and evaluate using the Gauss
equation. We get

ˇ.�.˛ C �/ � �2 C 4c/ � ˇ.�.˛ C �/C c/C ˇ�2 D 0; (8.67)

which simplifies to 3cˇ D 0, a contradiction which proves that cyclic parallel
hypersurfaces are Hopf. On the other hand, it is now trivial to check, using an
orthonormal principal basis of the form .W;U; 'U/, that every Hopf hypersurface
satisfies the cyclic-semiparallelism condition. ut

Although a hypersurface in CPn or CHn cannot be semiparallel, we have seen
that a slightly weakened version (cyclic-semiparallelism) can be realized. We now
turn to another way of weakening the semiparallelism condition. A hypersurface is
said to be pseudoparallel if there is some function � such that

.R.X;Y/ � �.X ^ Y// � A D 0;

for all tangent vectors X and Y . A brief explanation of the notation is in order.
The linear operator X ^ Y on tangent vectors extends naturally to the algebra of
tensor fields as a derivation that annihilates scalar functions and commutes with
contractions (just as R.X;Y/ does, see (8.54) on page 455). Thus,

..X ^ Y/ � A/Z D .X ^ Y/.AZ/ � A..X ^ Y/Z/:

Note that semiparallelism is a special case of pseudoparallelism in which � is
identically zero.

We first observe the following.

Proposition 8.58. A hypersurface in the Takagi/Montiel lists is pseudoparallel if
and only if it is of Type A0 or Type A1. In the notation of Theorem 6.17, the value of
� is �2 D �˛ C c ¤ 0.

We leave this for the reader to check. However, the converse is also true, namely,
every pseudoparallel hypersurface must be an open subset of a Type A0 or Type A1
hypersurface (see Theorem 8.60 below). In view of Proposition 8.58, Theorem 8.42
is a consequence of Theorem 8.60.

We begin by showing that a pseudoparallel hypersurface must be Hopf.

Lemma 8.59. Let M2n�1, where n � 2, be a pseudoparallel real hypersurface in
CPn or CHn. Then M is a Hopf hypersurface.
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Proof. The condition that M is pseudoparallel means that for all tangent vectors X
and Y , we have

ŒR.X;Y/ � �.X ^ Y/;A� D 0;

which, in view of the Gauss equation means

��
.c � �/X ^ Y C c.'X ^ 'Y C 2hX; 'Yi'/C AX ^ AY

�
;A
� D 0: (8.68)

We contract this formula as follows. Take an orthonormal basis fejg for the tangent
space. Set Y D ej and apply the formula to ej, then sum over j. By a routine
calculation,

• the AX ^ AY term yields .trace A2/AX � m A2X;
• the X ^ Y term yields .c � �/.mX � .2n � 1/AX/;
• the 'X ^ 'Y term yields c.A'2X � 'A'X/;
• the hX; 'Yi' term yields 2c.A'2X � 'A'X/.

Since A, A2, and 'A' are symmetric operators, A'2 is also symmetric. This means
that

A'2 D .A'2/T D .�'/2A D '2A;

and hence

0 D A'2W D '2AW D �AW C hAW;WiW D �.AW � ˛W/:

Thus M is Hopf. ut
We are now ready to classify the pseudoparallel hypersurfaces. This result is due

to Lobos and Ortega [334].

Theorem 8.60. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then M is pseudoparallel if and only if it is an open subset of a Type A0 or Type A1
hypersurface.

Proof. Assuming that M is pseudoparallel, and therefore Hopf, we consider an
arbitrary point of M and pairs .X;Y/, where Y D 'X, belonging to an orthonormal
basis for W? at that point, as given by Corollary 6.18. Our calculation is completely
pointwise – we do not need to consider smoothness of principal curvatures or of the
function �.

Applying the pseudoparallelism condition (8.68) to X, the AX ^ AY term yields
���.� � �/Y . The remaining three terms simplify to Œ.2c � �/X ^ Y � 2c';A�
which, when applied to X, yields �.4c � �/.� � �/Y . The net result is that

.��C 4c � �/.� � �/ D 0:
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Assume now that � ¤ �, so that � D ��C 4c. If we consider

ŒR.W;X/ � �.W ^ X/;A�X D 0;

the analogous calculation gives .��˛/.�˛C c ��/ D 0. Similarly, using Y instead
of X, we get .� � ˛/.�˛ C c � �/ D 0. If neither � nor � is equal to ˛, we must
have ˛ D 0 and hence � D c. Also, from Theorem 6.17,

�� D �C �

2
˛ C c D c;

which contradicts � D ��C 4c.
Without loss of generality, we can thus assume that � D ˛. However, this gives

�� C c � � D 0, again contradicting � D �� C 4c. We are forced to conclude
that � D �. Thus all principal curvatures on W? satisfy the quadratic equation
t2 D ˛t C c.

We now show that there can be only one such principal curvature. To see this,
suppose that there were two, � and �. From the quadratic equation, �� D �c and
�C � D ˛. Consider

ŒR.X;Z/ � �.X ^ Z/;A�Z D 0;

where .X; 'X/ and .Z; 'Z/ are basis pairs (as before) corresponding to � and �,
respectively. By a similar calculation to those done earlier, we get .�� �/.��C c �
�/ D 0 which implies that � D 0. On the other hand, as we have seen earlier, by
considering ŒR.W;X/ � �.W ^ X/;A�, we have

.� � ˛/.�˛ C c � �/ D 0;

i.e., 0 D �.�˛ � ��/ D ��2, a contradiction.
Since we have shown that AX D �X for all X 2 W? and � is a constant

(expressible in terms of ˛ through the quadratic equation), we can conclude that
M is an open subset of a hypersurface of Type A0 or Type A1. ut

8.5.3 In terms of curvature and Ricci tensors

In the preceding subsection, we have dealt with classification of hypersurfaces in
terms of its shape operator. We now move on to classification in terms of the intrinsic
geometry of the hypersurface as expressed by its curvature tensor. The familiar
simple conditions such as constant sectional curvature cannot be realized. In fact,
there are no locally symmetric hypersurfaces (i.e., with rR D 0). This condition
may be weakened to R � R D 0 (semisymmetric) and further to R � S D 0 (Ricci-
semisymmetric, also called Ryan) or to rS D 0 (Ricci-parallel).

We will begin by classifying the pseudo-Einstein hypersurfaces. The first step is
to show that such hypersurfaces are Hopf.
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Lemma 8.61. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn.
Suppose that there is a scalar function � such that SX D �X for all X 2 W?. Then
M is a Hopf hypersurface.

Proof. Assume that AW ¤ ˛W at some point and let U be an open neighborhood
where the standard non-Hopf setup holds. Since W? is S-invariant, W must also
be an eigenvector and we may write SW D .� C �/W for some scalar function � .
Using (8.34) we compute

.mA � A2/W D .m˛ � ˛2/W C .m � ˛/ˇU � ˇAU:

Since W is an eigenvector of S, .mA � A2/W must be a scalar multiple of W and
hence AU lies in the span of fW;Ug. Thus � D 0 and AU D ˇW C �U so that

.mA � A2/W D .m˛ � ˛2 � ˇ2/W C .m � ˛ � �/ˇU:

We conclude that

m D ˛ C � (8.69)

and

.mA � A2/W D .˛� � ˇ2/W:

Further, we can compute

.mA � A2/U D .˛� � ˇ2/U

so that � D �3c. Because all vectors in W? share the same eigenvalue � with U,
we can conclude that

mA � A2 D .˛� � ˇ2/I (8.70)

on the whole tangent space, which proves that U has at most two distinct principal
curvatures. By Lemma 8.30, we have a contradiction. ut
Remark 8.62. Lemma 8.61 is also true when n D 2. However, this requires some
extra work. Our conditions lead, in view of Remark 8.31, to � D �˛ � ˇ2 D 0 and
ultimately, using Lemma 6.8 of [399], to a contradiction. For details, see the proof
of Proposition 2.13 in Kim and Ryan [260].

We are now ready to classify the pseudo-Einstein hypersurfaces for n � 3.

Theorem 8.63. Let M2n�1, where n � 3, be a pseudo-Einstein hypersurface in
CPn or CHn. Then M is a Hopf hypersurface with constant principal curvatures.
Specifically, it is an open subset of one of the following hypersurfaces: (See
Section 6.5.)
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• Type A0 – a horosphere in CHn;
• Type A1 – a geodesic sphere in CPn or CHn or a tube over a totally geodesic

CHn�1 in CHn;
• Type A2 – a tube of radius ru over a totally geodesic CPk in CPn where 1 � k �

n � 2, 0 < u < �
2

, and cot2 u D k
`
, where k C ` D n � 1;

• Type B – a tube of radius ru over a complex quadric Qn�1 in CPn where 0 < u <
�
4

and cot2 2u D n � 2.

Proof. By Lemma 8.61, M is a pseudo-Einstein Hopf hypersurface. Then

.mA � A2/X D .� � .2n � 1/c/X (8.71)

for all X 2 W?. In particular, if � and � are principal curvatures corresponding to
principal vectors in W?, we have

.� � �/.m � .�C �// D 0: (8.72)

For convenience, assume that ˛2 C 4c ¤ 0 so that ˛
2

does not occur as a principal
curvature. Consider now one particular point p in M and one particular choice
of X and �. Then there is unique number � such that A'X D �'X at p. If
� ¤ �, then �, �, and ˛ are the only principal curvatures at p and W? splits into
complementary subspaces of dimension n � 1 consisting of eigenvectors of � and
�, respectively. We may now choose an open neighborhood U on which the largest
and smallest eigenvalues of A (restricted to W?) remain distinct. Then � and � and
the corresponding eigenspaces extend smoothly to U and

m D .n � 1/.�C �/C ˛ D �C �; (8.73)

so that �C � is a constant multiple of ˛. On the other hand, Theorem 6.17 gives

�� D �C �

2
˛ C c; (8.74)

which allows us to express � � � in terms of ˛. The net result is that both � and
� must be constant and hence U must be an open subset of a hypersurface from
the Takagi/Montiel lists. A quick examination of these lists shows that the only
possibility is the Type B hypersurface mentioned in the theorem statement. By a
standard continuity and connectedness argument, M is an open subset of this same
Type B hypersurface.

Returning now to our original choice of � and �, the alternative possibility is that
� D �, i.e., �2 D �˛ C c. If there is a second eigenvalue � at p, then it must satisfy
the same quadratic equation. The tangent space splits into two '-invariant subspaces
consisting of eigenvectors corresponding to eigenvalues � and �, respectively, with
respective (even) dimensions 2` and 2k (say). A similar argument shows that the
same setup holds in a neighborhood with � and � as distinct constant principal
curvatures. This neighborhood, and by the connectedness argument M itself, is an
open subset of the Type A2 hypersurface mentioned in the theorem statement.
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We have already classified the Hopf hypersurfaces with g � 2 distinct principal
curvatures (Theorem 8.29). Thus we can exclude the possibility that AX D �X for
all X 2 W? at all p 2 M as long as we include the Type A1 hypersurfaces in our
theorem statement.

Finally, if ˛2C4c D 0, suppose that � ¤ ˛
2

could be chosen. For all eigenvectors
X corresponding to �, we will get A'X D ˛

2
'X and m D �C ˛

2
. The set of all such

pairs .X; 'X/ spans a 2`-dimensional space, where ` is the multiplicity of �. Its
complementary subspace in W? is spanned by eigenvectors corresponding to the
eigenvalue ˛

2
, and thus m D ˛ C `� C .2n � 2 � `/˛

2
. This allows us to express

� as a constant multiple of ˛. By the same argument as used earlier, M must be an
open subset of a Hopf hypersurface with constant principal curvatures. However,
from Berndt’s classification (Theorem 8.12), there is no hypersurface admitting
such a principal curvature configuration. The Type A0 hypersurface in the theorem
statement is the only possibility satisfying ˛2 C 4c D 0. This completes the proof
of our theorem. ut

The analogue of Theorem 8.63 for n D 2 was proved by Kim and Ryan [260].

Theorem 8.64. Let M be a pseudo-Einstein hypersurface in CP2 or CH2. Then M
is one of the following:

• an open subset of a Type A0 or Type A1 hypersurface, or;
• a Hopf hypersurface with ˛ D 0 and nonconstant principal curvatures � and �

satisfying �� D c.

As we have seen, there are no totally umbilic hypersurfaces. We say that the
hypersurface is �-umbilical if there is a scalar function � such that AX D �X
for all X 2 W?. The weakening of totally umbilic to �-umbilical is analogous
to the weakening of Einstein to pseudo-Einstein. It also anticipates the notions of
�-parallelism and �-recurrence, to be discussed in later sections. The terminology
arises from the fact that the letter � has traditionally been used for the contact 1-form
satisfying �.X/ D hX;Wi (so that W? is the nullspace of �).

Clearly, for an �-umbilical hypersurface M, the holomorphic distribution W?
is A-invariant. Thus �-umbilical hypersurfaces are Hopf. Furthermore, using Theo-
rem 6.17, we see that

�2 D ˛�C c; (8.75)

so that � is constant. Thus M is a Hopf hypersurface with constant principal
curvatures. Using the classification theorem of Kimura and Berndt and inspecting
the lists of Takagi and Montiel, we have the following.

Theorem 8.65. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then M is �-umbilical if and only if it an open subset of a hypersurface of Type A1
or Type A0.

These hypersurfaces can also be characterized by properties of the curvature
tensor, as follows:
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Theorem 8.66. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then there is a real function � such that, for all tangent vectors X and Y,

.R.X;Y/ � �.X ^ Y//W D 0 (8.76)

if and only if M is

1: an open subset of a hypersurface of Type A1 or Type A0, or
2: a Hopf hypersurface with Hopf principal curvature ˛ D 0.

Proof. The first step is to show that any hypersurface satisfying (8.76) must be Hopf.
We assume this for the moment and defer proof until the next lemma, Lemma 8.67.
We now show that any �-umbilical hypersurface (Alternative 1) satisfies (8.76) with
� D �˛ C c. In fact, by the Gauss equation,

R.X;Y/ D .�2 C c/.X ^ Y/C c.'X ^ 'Y C 2hX; 'Yi'/; (8.77)

for all X and Y in W?. Thus R.X;Y/��.X ^Y/ annihilates W no matter what value
of � is chosen. On the other hand, if X 2 W? but Y D W,

R.X;Y/ D .�˛ C c/.X ^ Y/: (8.78)

This establishes our assertion.
On the other hand, if M is a Hopf hypersurface with ˛ D 0 (Alternative 2), then

R.X;W/ D c.X ^ W/ while R.X;Y/W D .X ^ Y/W D 0 for all principal vectors X
and Y in W?. Thus every Hopf hypersurface with ˛ D 0 satisfies (8.76) with � D c.

To complete our proof, it is sufficient to show that a Hopf hypersurface
satisfying (8.76) must fall under Alternative 1 or Alternative 2. If X 2 W? is a
principal vector satisfying AX D �X, then by setting Y D W in (8.76), we get
� D �˛ C c. Thus, unless ˛ D 0 (Alternative 2), two distinct values of � cannot
occur and M is �-umbilical (Alternative 1). ut
Lemma 8.67. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn. If
there is a real function � such that for all tangent vectors X and Y,

.R.X;Y/ � �.X ^ Y//W D 0; (8.79)

then M is a Hopf hypersurface.

Proof. We assume the standard non-Hopf setup and will derive a contradiction.
Setting Y D U in (8.76) yields .AX ^ AU/W D 0 for any X orthogonal to both
W and U. This reduces to

ˇAX D 0: (8.80)
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In particular, taking X D 'U, this shows that � D � D 0. Also,

0 D R.X;W/W � �.X ^ W/W D .AX ^ AW/W C .c � �/.X ^ W/W D .c � �/X;
(8.81)

so that � D c, a constant. Finally, we have

0 D R.U;W/W � �.U ^ W/W D .AU ^ AW/W C .c � �/.U ^ W/W (8.82)

which reduces to

˛AU D ˇAW: (8.83)

Thus the first two columns of A are linearly dependent and A has rank 1. This
contradicts the fact that a hypersurface with fewer than three distinct principal
curvatures must be Hopf (Lemma 8.30) unless n D 2. For n D 2, using (8.34),
we compute the matrix of the Ricci tensor

2

4
2c C ˛.�C �/ � ˇ2 �ˇ ��ˇ

�ˇ 5c C �.� C ˛/ � ˇ2 � �2 �˛

��ˇ �˛ 5c C �.�C ˛/ � �2

3

5 :

(8.84)

Since � D � D ˛� � ˇ2 D 0, we see that M is pseudo-Einstein. However, pseudo-
Einstein hypersurfaces must be Hopf (See Lemma 8.61 and Remark 8.62), so we
have a contradiction. An explicit proof that there are no hypersurfaces with

S D
2

4
2c 0 0

0 5c 0

0 0 5c

3

5 ; (8.85)

may be found in [260, p. 108]. ut
Remark 8.68. The condition addressed in Theorem 8.66 was introduced by Cho and
Ki [111, 114]. However, their proof that M is Hopf is incomplete and the possibility
of Alternative 2 occurring in CHn is not recognized. See also Remark 8.126.

We now proceed to discuss further classification theorems. The rS D 0

condition can be weakened in several ways:

A Riemannian manifold is said to be

• cyclic-Ryan if the cyclic sum of .R.X;Y/ � S/Z over every triple .X;Y;Z/ of
tangent vectors vanishes. Note that since S is of type .1; 1/,

.R.X;Y/ � S/Z D R.X;Y/.SZ/I

• of harmonic curvature if the Ricci tensor S is a Codazzi tensor, i.e., .rXS/Y D
.rYS/X for every pair .X;Y/ of tangent vectors.
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We now summarize results on these conditions and others introduced earlier in
this section.

Theorem 8.69. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then

• M is not Ricci-parallel;
• M is not Ricci-semisymmetric except perhaps if n D 2;
• M does not have harmonic curvature if n � 3;
• If n D 2, M is automatically cyclic-Ryan;
• If n � 3, M is cyclic-Ryan if and only if it is a pseudo-Einstein hypersurface in

the Takagi-Montiel lists (see Theorem 8.63).

For a further discussion of these results, we refer the reader to Theorems 6.20,
6.28, 6.29, and 6.30 of [399]. Some complete proofs are given there along with
references to the original papers where they appeared. The fact that M cannot be
Ricci-parallel when n � 3 was first proved by Ki [239] and a proof is included in
[399]. The result for n D 2 is more recent, and can be found in Ryan [470]. It was
also proved independently by U.K. Kim [269].

Remark 8.70. We know that there are no Hopf hypersurfaces in CP2 or CH2 that
are Ricci-semisymmetric (see Theorem 6.29 in [399]). The existence of non-Hopf
Ricci-semisymmetric hypersurfaces is an open question. However, there is a weaker
condition that can be satisfied. A hypersurface is said to be pseudo-Ryan if .R.X;Y/�
S/W?  W for all X and Y in W?. In [224], Ivey and Ryan show how to construct
a broad class of non-Hopf pseudo-Ryan hypersurfaces in CP2 and CH2. The Hopf
pseudo-Ryan hypersurfaces in CPn and CHn coincide with the pseudo-Einstein ones
for all n � 2. This is part of Theorem 6.30 of [399] for n � 3 and can be checked
directly for n D 2 using Theorem 8.64. We state it as Theorem 8.71 below.

The existence question for hypersurfaces in CP2 and CH2 with harmonic
curvature also seems to be open.

Theorem 8.71. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Then M is pseudo-Ryan if and only if it is pseudo-Einstein.

The tensor fields R � A and R � S have a particularly simple form for Type A0 and
Type A1 hypersurfaces. The following result is due to Kimura and Maeda [277] for
CPn and Choe [118] for CHn.

Theorem 8.72. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
The following are equivalent.

• M is an open subset of a Type A0 or Type A1 hypersurface;
• There is a function � such that

.R.X;Y/ � A/Z D �
�hZ;Wi.X ^ Y/W C h.X ^ Y/W;ZiW�: (8.86)

The function � is constant and equal to ��c. Further, for n � 3,
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• There is a function � such that

.R.X;Y/ � S/Z D �
�hZ;Wi.X ^ Y/W C h.X ^ Y/W;ZiW� (8.87)

if and only if M is an open subset of a hypersurface of Type A0 or Type A1 or
(in the case of CPn where n is odd) a Type A2 hypersurface with ˛ D 0 and
principal curvatures ˙ 1

r of equal multiplicities. The function � is constant and
equal to �2nc�2 (�2c2 for Type A2).

Finally, for n D 2,

• There is a function � satisfying (8.87) if and only if M is a Hopf hypersurface
with ˛ D 0 and nonconstant principal curvatures (and � D �4c2) or M is an
open subset of a hypersurface of Type A0 or Type A1 (and � D �4c�2).

Remark 8.73. In Theorem 8.72, � denotes the principal curvature of multiplicity
2n � 2. Note that all hypersurfaces occurring in this theorem are pseudo-Einstein,
but only one special pseudo-Einstein hypersurface of Type A2 satisfies (8.87).

Pseudosymmetry Conditions

A Riemannian manifold is said to be pseudosymmetric, respectively, Ricci-
pseudosymmetric, if there is some function � such that

.R.X;Y/ � �.X ^ Y// � R D 0; respectively, .R.X;Y/ � �.X ^ Y// � S D 0;

for all tangent vectors X and Y . (Recall notation from Proposition 8.58 on page
466.) Note that the case � D 0 would correspond to semisymmetry (resp., Ricci-
semisymmetry). Pseudosymmetry and related conditions were introduced and have
been studied extensively by R. Deszcz [130].

Remark 8.74. Inoguchi [219] uses the terms “Ricci pseudo-parallel” and “with
pseudo-parallel Ricci operator” instead of “Ricci-pseudosymmetric.” The latter term
is more widely used in the literature.

To deal with pseudosymmetry more efficiently, we introduce the following
abbreviation:

Q.Z1;Z2/ D R.Z1;Z2/ � �.Z1 ^ Z2/

for tangent vectors Z1 and Z2. Since S is a contraction of R, it is easy to see that
every pseudosymmetric manifold is Ricci-pseudosymmetric.

On the other hand, we observe that the cyclic sum of .X ^ Y/SZ vanishes for all
X, Y , and Z. Thus every Ricci-pseudosymmetric manifold is cyclic-Ryan. Applying
Theorem 8.69, we get the first part of the following classification theorem:
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Theorem 8.75. Let M2n�1, where n � 3, be a Ricci-pseudosymmetric hypersurface
in CPn or CHn. Then M is a pseudo-Einstein Hopf hypersurface with constant
principal curvatures. In fact, M must be an open subset of

• a Type A0 or Type A1 hypersurface (with � D �˛ C c), or
• a Type A2 hypersurface having principal curvatures .0; 1=r;�1=r/ with respec-

tive multiplicities .1; 2k; 2k/, where k � 1 and n D 2k C 1. The hypersurface
lies on a tube of radius �

4
r about CPk. The value of � is c (which is the same as

�˛ C c in this case).

Proof. We need only consult the list of pseudo-Einstein hypersurfaces and check
which ones are Ricci-pseudosymmetric. First take a unit vector X in W? such that
AX D �X. Then

ŒQ.X;W/; S�W D .�˛ C c � �/.�˛ � ��/X:

Thus, Ricci-pseudosymmetry requires that � D �˛Cc. If there is a second principal
curvature �, we must also have � D �˛ C c, and hence ˛ D 0. The Type B
pseudo-Einstein hypersurfaces are not Ricci-pseudosymmetric since they do not
have ˛ D 0. A Type A2 Ricci-pseudosymmetric hypersurface must have ˛ D 0

and be pseudo-Einstein. Thus, it lies in CPn and has u D �
4

and k D `. This
eliminates all pseudo-Einstein hypersurfaces not occurring in the theorem statement.
Conversely, it is routine to check that all Type A0 and A1 hypersurfaces and the
special Type A2 hypersurface occurring in the theorem statement are in fact Ricci-
pseudosymmetric. This completes the proof. ut

Theorem 8.75 was essentially proved by I.-B. Kim, H.J. Park, and H. Song [263].
However, their proof contained an error that caused them to exclude the Type A1
hypersurfaces from their list. Subsequently, the error was corrected by Inoguchi
[219].

When n D 2, the cyclic-Ryan condition offers no restriction. We must check for
Ricci-pseudosymmetry directly. We first consider Hopf hypersurfaces.

Theorem 8.76. Let M be a Hopf hypersurface in CP2 or CH2. Then M is Ricci-
pseudosymmetric if and only if it is a pseudo-Einstein hypersurface with Hopf
principal curvature ˛ D 0, or an open subset of

• a Type A0 or Type A1 hypersurface, or
• a Type B hypersurface in CP2 which is a tube of radius �

6
r over RP2.

Proof. At an arbitrary point p 2 M, we can choose an orthonormal basis .W;X;Y D
'X/ for TpM such that AW D ˛W, AX D �X and AY D �Y for suitable scalars �
and �. Then

Q.X;W/ D .�˛ C c � �/X ^ W;

Q.Y;W/ D .�˛ C c � �/Y ^ W;
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Q.X;Y/ D .��C 4c � �/X ^ Y:

The Ricci tensor satisfies

SW D �˛W D .2c C .�C �/˛/W;

SX D ��X D .5c C .��C �˛//X;

SY D ��Y D .5c C .��C �˛//Y:

Then we have

ŒQ.X;W/; S�W D.�˛ C c � �/.�˛ � ��/X; (8.88)

ŒQ.Y;W/; S�W D.�˛ C c � �/.�˛ � ��/Y; (8.89)

ŒQ.X;Y/; S�Y D.��C 4c � �/.�� � ��/X
D � ˛.��C 4c � �/.� � �/: (8.90)

Now suppose that M is Ricci-pseudosymmetric. Consider the possibility that ˛.��
�/ ¤ 0. From equation (8.90), we get � D ��C4c. Also, �˛Cc�� and �˛Cc��
cannot both be nonzero. Without loss of generality, we can assume that �˛Cc�� ¤
0 so that �˛ D ��, which simplifies to 3c C .� � ˛/� D 0. Also, �˛ C c D � D
��C 4c, but this reduces to the same condition. Using Theorem 6.17 to express �
in terms of � and ˛, we find that � must satisfy the quadratic equation

˛t2 � .˛2 � 8c/t � 5c˛ D 0:

By a similar calculation, � must satisfy

˛t2 � .˛2 C 8c/t C 3c˛ D 0:

This allows us to express � and� in terms of ˛. The analysis we have just completed
extends to a neighborhood of p. Since ˛ is constant, this neighborhood is a Hopf
hypersurface with constant principal curvatures .˛; �; �/ where � ¤ �. By a
simple continuity and connectedness argument, M is an open subset of a Type B
hypersurface. One can check directly that for a Type B hypersurface with ˛ ¤ 0,
the Ricci-pseudosymmetry condition implies that c > 0, and

˛ D 2
p
3

r
; � D �

p
3

r
; � D

p
3

3r
:

Thus, � D ��C4c D 3c, �˛ D �� and �˛C c D �. The Type B hypersurface must
be a tube of radius �

6
r over RP2 in CP2.

Conversely, based on this discussion, it is easy to check that for this particular
hypersurface, every expression of the form ŒQ.Z1;Z2/; S�Z3 vanishes, so that the
hypersurface is indeed Ricci-pseudosymmetric.
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Now consider the alternative scenario, namely ˛.� � �/ D 0 everywhere. If
˛ ¤ 0, then � D � everywhere, and M is an open subset of a Type A1 or Type A0
hypersurface. Also, note that such hypersurfaces are Ricci-pseudosymmetric with
� D �˛ C c. Finally, if ˛ D 0, we have �� D c by Theorem 6.17, so that �� D
�� D 6c ¤ 2c D �˛ . Thus, the Ricci-pseudosymmetry condition (8.90) requires
that � D c, and M must be a pseudo-Einstein hypersurface. Since every pseudo-
Einstein hypersurface in CP2 or CH2 is Hopf (see Theorem 8.64), we can now
verify that those with ˛ D 0 must be Ricci-pseudosymmetric. This completes the
proof of our theorem. ut
Remark 8.77. For a Hopf hypersurface M3 in CP2 or CH2, there are just two
possibilities. Either there is a point where ˛.� � �/ ¤ 0, or every point satisfies
˛.� � �/ D 0. In the former case, as we have seen, the hypersurface is Ricci-
pseudosymmetric if and only if it is an open subset of a certain Type B hypersurface
in CP2. For this hypersurface, we have � D 3c. The second case splits in two.
If ˛ ¤ 0, then M is an open subset of a Type A1 or Type A0 hypersurface, and
M is Ricci-pseudosymmetric with � D �˛ C c D �2: The remaining possibility
is that M everywhere matches the pointwise characterization of pseudo-Einstein
hypersurfaces with ˛ D 0 (see [260], p.109).

Theorem 8.76 tells us that, except for the isolated Type B example, a Hopf
hypersurface in CP2 or CH2 is Ricci-pseudosymmetric if and only if it is pseudo-
Einstein. The classification of pseudo-Einstein hypersurfaces (see Theorem 8.64
and, for more detail, [260] and [222]) includes hypersurfaces with nonconstant
principal curvatures, as well as the well-known Type A0 and Type A1 hypersurfaces.
The existence question for non-Hopf Ricci-pseudosymmetric hypersurfaces still
seems to be open.

We are now able to classify the pseudosymmetric hypersurfaces for n � 3 by
refining Theorem 8.75.

Proposition 8.78. For n � 2, all Type A0 and Type A1 hypersurfaces are pseu-
dosymmetric, but Type A2 hypersurfaces are not.

Proof. Consider a Type A hypersurface and choose a unit principal vector X 2 W?.
Then for a suitable number �, we have AX D �X, A'X D �'X and AW D ˛W,
where �2 D �˛ C c. A necessary condition for pseudosymmetry is

ŒQ.X;W/;R.X; 'X/� � R.Q.X;W/X; 'X/ � R.X;Q.X;W/'X/ D 0: (8.91)

By the Gauss equation, R.X;W/ D .�˛ C c/.X ^ W/. Also,

R.X; 'X/ D .�2 C 2c/.X ^ 'X/ � 2c':

Similar statements hold for Q with respective coefficients �˛Cc�� and �2C2c��.
It is easy to check that for any orthonormal triple .Z1;Z2;Z3/ of tangent vectors,

ŒZ1 ^ Z2; Z1 ^ Z3� D Z3 ^ Z2
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and

Œ'; Z1 ^ Z2� D Z1 ^ 'Z2 C 'Z1 ^ Z2:

Thus (8.91) implies that

.�˛ C c � �/.�2 C 4c/ D .�˛ C c � �/.�˛ C c/ (8.92)

which reduces to � D �˛ C c D �2.
Now suppose we have a pseudosymmetric hypersurface of Type A2. By Theorem

8.75 we must have ˛ D 0, � D 1
r , � D � 1

r and hence � D c. We show that
.Q.X;Y/ � R/.X; 'X/ ¤ 0 where X and Y are unit principal vectors corresponding to
respective principal curvatures � and �. To see this, note that

R.X;Y/ D .��C c/X ^ Y C c 'X ^ 'Y;

so that

ŒQ.X;Y/;R.X; 'X/� D �7c2.'X ^ Y C X ^ 'Y/I
R.Q.X;Y/X; 'X/ D c2 X ^ 'YI
R.X;Q.X;Y/'X/ D c2 'X ^ Y:

This contradiction shows that Type A2 hypersurfaces cannot, in fact, be pseudosym-
metric. On the other hand, it is straightforward, though tedious, to check that Type
A0 and Type A1 hypersurfaces are pseudosymmetric. Specifically, if .Zi; 'Zi/ form
an orthonormal basis for W?, we need to check that for all i, Q.Zi; 'Zi/ � R sends
all argument pairs of the form .Zj;Zk/, .Zj; 'Zj/, .Zj;W/ to zero and, for all pairs of
distinct indicies .i; j/, Q.Zi;Zj/ � R does the same. In this analysis, it is necessary
to consider separately the cases of arguments involving distinct and coincident
indices. ut

Thus we have the following classification result for pseudosymmetric hypersur-
faces.

Theorem 8.79. Let M2n�1, where n � 3 be a hypersurface in CPn or CHn. Then M
is pseudosymmetric if and only if it is an open subset of a hypersurface of Type A0
or Type A1. A Hopf hypersurface in CP2 or CH2 is pseudosymmetric if and only if
it is Ricci-pseudosymmetric.

Proof. Since every pseudosymmetric hypersurface is Ricci-pseudosymmetric, The-
orem 8.75 together with Proposition 8.78 establishes our claim for n � 3 and for
the Type A0 and Type A1 possibilities in case n D 2. It remains to check that the
other hypersurfaces occurring in Theorem 8.76 are pseudosymmetric. For the Type
B hypersurface, we again take � D 3c and note that Q.X; 'X/ D 0: Then

ŒQ.X;W/;R.X; 'X/� D 3c.�˛ � 2c/ 'X ^ W
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while R.Q.X;W/X; 'X/ D .�˛�2c/.�˛C c/ 'X ^ W and R.X;Q.X;W/'X/ D 0.
This is consistent with pseudosymmetry since the hypersurface in question satisfies
�˛ D 2c. By a similar calculation, we get .Q.X;W/ � R/.'X;W/ D 0: Trivially,
.Q.X;W/ � R/.X;W/ D 0: Since Q.'X;W/ D .�˛C c � 3c/ 'X ^ W D 0, we have
shown that the Type B hypersurface is pseudosymmetric.

We now consider the pseudo-Einstein hypersurfaces with ˛ D 0. Take, as before,
an orthonormal basis .W;X; 'X/ with AX D �X and A'X D �'X. Then �� D c
and, since n D 2, we have ' D 'X^X. Take � D c. The only nonzero possibility for
Q is Q.X; 'X/ D 5c X ^ 'X. Trivially, .Q.X; 'X/ � R/.X; 'X/ vanishes. In addition,
ŒQ.X; 'X/;R.X;W/� D 4c2 W ^ 'X while R.Q.X; 'X/X;W/ D 4cR.�'X;W/ D
�4c2 'X ^ W and R.X;Q.X; 'X/W/ D 0. This establishes pseudosymmetry for the
pseudo-Einstein hypersurfaces with ˛ D 0 as required. ut
Remark 8.80. The existence question for non-Hopf pseudosymmetric hypersur-
faces in CP2 and CH2 seems to be open.

Special Forms of rS

If a hypersurface is pseudo-Einstein, the covariant derivative of the Ricci tensor has
a special form,

.rXS/Y D �.h'AX;YiW C hY;Wi'AX/ (8.93)

for all tangent vectors X and Y , where � is the constant satisfying

SX D �X C �hX;WiW:

We now ask about other possible hypersurfaces satisfying a similar condition. Of
course Theorem 8.69 assures us that rS cannot vanish identically. It turns out that
equation (8.93) characterizes the pseudo-Einstein hypersurfaces.

Theorem 8.81. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

satisfying the identity

.rXS/Y D �.h'AX;YiW C hY;Wi'AX/ (8.94)

for some function � which is not identically zero. Then M is pseudo-Einstein.

It is straightforward to deduce from (8.94) that

jrSj2 D 2�2.jAj2 � jAWj2/: (8.95)

Using the information given in Chapter 6, concerning the Takagi/Montiel lists,
we can compute jrSj2 to get
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Theorem 8.82. For all n � 2, the pseudo-Einstein hypersurfaces in the Takagi-
Montiel lists satisfy (8.94) with values of � and jrSj2 as follows:

• Type A0 in CHn: � D �2nc; jrSj2 D 16n2.n � 1/jcj3;
• Type A1 in CPn: � D �2nc; jrSj2 D 16n2.n � 1/jcj3 cot2 u (for geodesic sphere

of radius ru);
• Type A1 in CHn: � D �2nc; jrSj2 D 16n2.n�1/jcj3 coth2 u (for geodesic sphere

of radius ru);
• Type A1 in CHn: � D �2nc; jrSj2 D 16n2.n � 1/jcj3 tanh2 u (for tube of radius

ru over CHn�1);
• Type A2 in CPn: � D �2c; jrSj2 D 16.n � 1/jcj3;
• Type B in CPn: � D �2.2n � 1/c; jrSj2 D 16n.n � 1/ .2n�1/2

n�2 jcj3:
For n D 2, there is class of pseudo-Einstein hypersurfaces (see Theorem 8.64)

not covered by Theorem 8.95. For these hypersurfaces, we have

Theorem 8.83. For the pseudo-Einstein hypersurfaces in CP2 and CH2 that do not
occur in the Takagi/Montiel lists,

• � D �4c;
• jrSj2 D 32c2.�2C�2/ where � and � are the nonconstant principal curvatures.

Also, �� D c and jrSj2 is nonconstant.

There is an extensive discussion of material relevant to Theorem 8.81 in Section
6 of [399]. Here, we provide only the necessary additional argument for the proof.

Proof (of Theorem 8.81). Choose a point where � ¤ 0 and work in a neighborhood
U of this point. By Lemmas 6.8 and 6.9 of [399], U is Hopf and m˛ is constant
there. In addition, the identity

.� C 3c/'AX D .A2 � mA C .m˛ � ˛2//'AX (8.96)

holds for all tangent vectors X. Note that either ˛ D 0 or m is constant. Every
hypersurface has an open dense set (see Section 2.5) on which the principal
curvatures have constant multiplicities. In the Hopf case, we can assert that on such
a set, W? consists locally of smooth '-invariant distributions of the form T� or
T� C T� where T� D 'T�, as in Theorem 6.17. We can decrease the size of U if
necessary so that this setup holds on U . We consider the two cases separately.

Case I: ˛ D 0

For a pair .�; �/ as in this setup, we have �� D c. Thus neither � nor � vanishes.
As a consequence of (8.96), we have

� C 3c D �2 � m� D �2 � m� (8.97)
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so that .� � �/.�C � � m/ D 0. Note that if � D �, then � satisfies the quadratic
equation �2 D c and hence is constant. If � ¤ �, on the other hand, then �C� D m.
Substituting in (8.96), we have � C 3c D �2 � .�C �/� D �c. Therefore, we can
rewrite (8.96) as

.A2 � mA C c/X D 0

for all X 2 W?. If a principal curvature � satisfying �2 D c exists, we have
m� D 2c. If not, then there is pair of principal curvatures .�; �/ such that m D
.n � 1/.�C �/ D .n � 1/m.

From this, there are only two possibilities,

1. m is constant and hence all principal curvatures are constant. U is an open subset
of a Type A hypersurface with ˛ D 0. Type B, C, D, and E hypersurfaces do not
have ˛ D 0.

2. n D 2 and M is a pseudo-Einstein hypersurface with nonconstant principal
curvatures.

Case II: m is constant and ˛ ¤ 0

Assume first that 0 is not a principal curvature. Then, using the same setup where
� ¤ � and �C� D m, we have �� D m˛

2
C c which is constant and consequently

� and � are constants. Thus, all principal curvatures are constant and the local
principal curvature data match that of a hypersurface on the Takagi/Montiel lists.
If there is also a pair . Q�; Q�/ with Q� D Q�, then

Q�2 � m Q� D .� C 3c C ˛2 � m˛/ D �2 � m�

by (8.96), implying that �CQ� D m D �C�, a contradiction. This rules out Types C,
D, and E. The only possible Type B match will be pseudo-Einstein, since �C� D m
will be satisfied (see Proposition 6.9). To see that the Type A2 possibilities must
also be pseudo-Einstein, apply the same argument involving (8.96) to the two
'-invariant principal subspaces. This results in the conclusion that the relevant
principal curvatures satisfy � C Q� D m, which is the pseudo-Einstein condition
(again, see Proposition 6.9). Type A0 and Type A1 hypersurfaces are the only
remaining possibilities.

The upshot is that either U is a pseudo-Einstein hypersurface with nonconstant
principal curvatures or an open subset of a member of the Takagi/Montiel lists with
principal curvatures of specific values and multiplicities. In the latter case, however,
the set of points of M with these particular data is a closed set and our construction
shows that it is also open. Therefore, it is all of M and M is an open subset of a
particular pseudo-Einstein member of the Takagi/Montiel lists, as required.

Finally, we eliminate the possibility of 0 occurring as a principal curvature.
Working again in U , suppose that one principal curvature � is identically zero. (If
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not, we get the desired conclusion by again reducing the size of U .) Then we have
a pair .�; �/ with � D 0 and � D �2c=˛ ¤ 0. Let X be a principal vector for �.
Then (8.96) gives � C 3c D m˛ � ˛2. Thus (8.96) reduces to

.A2 � mA/'AX D 0

and any principal curvatures other than �, 0, and ˛ must be equal to m. This implies
that all principal curvatures are constant which is a contradiction since, for the
Takagi/Montiel lists, the Hopf principal curvature ˛ is the only one that can be
0. ut

An even simpler form of rS characterizes the Type A0 and Type A1 hypersur-
faces. Relevant references are Kimura and Maeda [276], Taniguchi [522], and Choe
[118]).

Theorem 8.84. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then M satisfies the identity

.rXS/Y D �.h'X;YiW C hY;Wi'X/; (8.98)

for some nonzero constant � if and only if M is an open subset of a Type A0 or Type
A1 hypersurface.

The following appears in Ki and Suh [254].

Theorem 8.85. Let M2n�1, where n � 3, be a real hypersurface in CPn. Suppose
that m and ˛ D hAW;Wi are constant. Then M satisfies the identity

.rXS/Y D � c m.h'X;YiW C hY;Wi'X/

C c .h'X;YiAW C hAY;Wi'X/ � 2c.hY;Wi'AX � hAX; 'YiW/

if and only if M is an open subset of a hypersurface of Type A1 or Type A2.

Remark 8.86. This result is consistent with Theorem 8.84, as can be seen by setting
� D �2n�c for a Type A1 hypersurface.

One can consider weaker conditions on rS and still obtain a strong conclusion.
For example, Loo [337], considering only directions in W?, has proved the
following:

Theorem 8.87. Let M2n�1, where n � 3, be a hypersurface in CPn or CHn. If there
is a constant � such that

• .rXS/Y D �h'AX;YiW for X and Y in W?, and
• Œ'; S�W? � W ,

then M is pseudo-Einstein.

Ikuta [213] has obtained the following result concerning the second derivative of
the Ricci tensor.
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Theorem 8.88. Let M2n�1, where n � 3, be a Hopf hypersurface in CPn. Then
there is an even positive integer � such that for all Z1, Z2, Z3, and Z4 in W?

h.r2S/.Z3I Z2I Z1/;Z4i
D ���h'AZ2;Z3ih'AZ1;Z4i C h'AZ1;Z3ih'AZ2;Z4i

�

if and only if M is pseudo-Einstein.

Kwon and Nakagawa [309, 310] studied the Ricci cyclic parallel condition.

Theorem 8.89. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Then the Ricci tensor of M is cyclic parallel if and only if M is an open subset of a
hypersurface of Type A or Type B.

Remark 8.90. A weaker version of Theorem 8.89 is stated as Theorem 6.21 in
[399]. However, there is a typographical error there causing the Hopf condition to
be omitted from the hypothesis. We will return to a discussion of Theorem 8.89 in
the section on �-parallelism (see Theorem 8.136).

Commutativity conditions on the Ricci tensor

We have seen that the Type A hypersurfaces satisfy Œ';A� D 0. Clearly, this
condition implies Œ'; S� D 0. In fact, if we recall (6.12)

SX D .2n C 1/cX � 3chX;WiW C mAX � A2X; (8.99)

we note that ' automatically commutes with the first two terms of S, so that

Œ'; S� D mŒ';A� � Œ';A2�: (8.100)

We also have

Theorem 8.91. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then

S ı A D A ı S

if and only if M is a Hopf hypersurface.

Proof. A commutes automatically with three of the four terms in the expres-
sion (8.99) for S and hence our condition is equivalent to

hX;WiAW D hAX;WiW (8.101)
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for all X. In particular, setting X D W, we have AW D ˛W, the Hopf condition. On
the other hand, if the Hopf condition is satisfied, then both sides of (8.101) vanish
for X 2 W?, and so we have ŒS;A� D 0. ut

Clearly, all pseudo-Einstein hypersurfaces satisfy ' ı S D S ı '. The following
converse, due to Lim, Sohn, and Ahn [330] (see also [116]), holds for n D 2.

Theorem 8.92. A hypersurface in CP2 or CH2 satisfies ' ı S D S ı ' if and only if
it is pseudo-Einstein.

Proof. The fact that such a hypersurface is necessarily Hopf can be seen by
looking at the Ricci tensor in the standard non-Hopf situation (8.84). First,
'SW D S'W D 0 gives immediately that � D � D 0. Then, 'SU D .5c C
�˛ � ˇ2/'U while S'U D 5c'U implies that �˛ � ˇ2 D 0. This shows that a
non-Hopf hypersurface satisfying ' ı S D S ı ' is pseudo-Einstein when n D 2.
In view of the classification of pseudo-Einstein hypersurfaces as discussed in the
remark following Lemma 8.61, we conclude that all hypersurfaces in CP2 and CH2

satisfying ' ı S D S ı ' are Hopf. The Ricci tensor now satisfies a modified version
of (8.84), namely

2

4
2c C ˛� 0 0

0 5c C �.� C ˛/ 0

0 0 5c C �.�C ˛/

3

5 : (8.102)

Using ' ı S D S ı', we get ˛.���/ D 0 from which the pseudo-Einstein property
is immediate. ut

When n � 3, however, we cannot draw the conclusion that a hypersurface
satisfying ' ı S D S ı ' is Hopf. Instead, we shall pursue a discussion of Hopf
hypersurfaces satisfying this condition.

Suppose that M2n�1, where n � 3, is a Hopf hypersurface satisfying 'ıS D Sı'.
Choose a point p of M where the restriction of A to W? has the maximum number
of distinct eigenvalues. This ensures constant multiplicities and smoothness for the
principal curvature functions nearby.

As in Theorems 8.32 and 8.81, W? is the direct sum of even-dimensional '-
invariant subspaces, each determined by two (possibly equal) principal curvatures �
and � satisfying

�� D �C �

2
˛ C c: (8.103)

At most two of these subspaces have � D � since the quadratic equation �2 � ˛��
c D 0 must be satisfied. Let �1 and �2 be the roots of the quadratic equation and let
2k1 � 2k2 (possibly 0) be their multiplicities as principal curvatures at p.
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Thus for X 2 T�, we use (8.100) to get

'SX � S'X D .� � �/.m � � � �/'X: (8.104)

When � ¤ �, we have �C � D m. Thus

m D ˛ C 2k1�1 C 2k2�2 C k3m (8.105)

where 2k3 is the sum of the dimensions of the '-invariant subspaces for which � ¤
�. Note that k1 C k2 C k3 D n � 1. Because of how p has been chosen, this situation
also holds locally with each �i and ki constant. Assuming, for the moment, that
k3 ¤ 1, we see that m is constant. Thus, in view of (8.103), we see that for each
“unequal pair” f�;�g, both �� and � C � D m, and hence � and � themselves,
are constant. This shows that p has a neighborhood that is a Hopf hypersurface
with constant principal curvatures and thus is an open subset of an element of the
Takagi/Montiel list. The list and the corresponding values of the ki are as follows.
See discussion preceding Proposition 8.14.

• Type A0 or Type A1 with k1 D n � 1
• Type A2 with k1 and k2 positive, k1 C k2 D n � 1
• Type B with k3 D n � 1
• Type C with 2k1 D 2k2 D n � 3 and k3 D 2

• Type D with k1 D k2 D 2 and k3 D 4

• Type E with k1 D k2 D 4 and k3 D 6.

As we have already observed, all Type A hypersurfaces satisfy 'S D S'. Type
B hypersurfaces satisfy m D ˛ C .n � 1/.� C �/ and .� C �/˛ C 4c D 0. Since
'S D S' if and only if m D �C � in this case, we can easily check that

• Type B hypersurfaces in CHn do not satisfy 'S D S'.
• A Type B hypersurface in CPn satisfies 'S D S' if and only if it is pseudo-

Einstein, i.e., as a tube over the complex quadric, its radius is ru where cot2 2u D
n � 2. See Theorem 8.63.

Similarly, we may check that Type C, D, and E hypersurfaces satisfy 'S D S' if
and only if their respective radii ru as tubes satisfy

• Type C: tan2 2u D n � 2;
• Type D: tan2 2u D 5

3
;

• Type E: tan2 2u D 9
5
.

In the notation of Proposition 8.14, the relevant condition is �2 C �4 D m.
We now consider the possibility that k3 D 1. Since n � 3, we have k1 > 0. Our

mean curvature calculation then yields

˛ C 2k1�1 C 2k2�2 D 0: (8.106)
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Recall that �1�2 D �c and �1 C �2 D ˛. Thus, if c < 0, then ˛, �1 and �2
all have the same sign. This contradicts (8.106). Applying the usual continuity and
connectedness arguments, we have proved

Theorem 8.93. Let M2n�1, where n � 3, be a Hopf hypersurface in CHn. Then
' ı S D S ı ' if and only if M is an open subset of a Type A hypersurface.

Since the possibility that k3 D 1 has not been eliminated in the CPn case, we will
state our conclusion as follows:

Theorem 8.94. Let M2n�1, where n � 2, be a hypersurface in CPn that occurs in
the Takagi list. Then ' ı S D S ı ' if and only M it is

• Type A, or
• Type B with cot2 2u D n � 2, or
• Type C with tan2 2u D n � 2, or
• Type D with tan2 2u D 5

3
, or

• Type E with tan2 2u D 9
5
.

We do know that M is a tube over a complex focal submanifold. Kimura [272]
has stated the same result by listing some necessary conditions that this focal
submanifold should satisfy. In particular, he states that certain tubes over certain
complex curves will satisfy 'S D S' and have k3 D 1. However, the problem of
finding a complete classification is still open.

Remark 8.95. Our statement is a slightly more detailed version of Theorem 6.18 in
[399]. Relevant references are Aiyama, Nakagawa, and Suh [8], Ki and Suh [253],
and Kimura [270].

Variants on the condition ' ı S D S ı ' are also considered in the literature. One
such theorem is the following due to Ki and Suh [253] and Kim and Pyo [259].

Theorem 8.96. Let M2n�1, where n � 3, be a Hopf hypersurface in CPn or CHn.

1. If there is a constant � such that

' ı S C S ı ' D �';

then M is an open subset of a hypersurface of Type A or Type B.
2. If there is a constant � such that

S ı ' ı S D �';

then M is an open subset of a hypersurface of Type A1, Type A0 or Type B.

For n D 2, the situation is slightly different.
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Theorem 8.97. Let M3 be a Hopf hypersurface in CP2 or CH2. The following three
conditions are equivalent:

1. There is a constant � such that

' ı S C S ı ' D �':

2. There is a constant � such that

S ı ' ı S D �';

3. M is an open subset of a hypersurface of Type A1, Type A0 or Type B or M
is a pseudo-Einstein hypersurface with ˛ D 0 and two nonconstant principal
curvatures.

Proof. In terms of the principal curvatures .˛; �; �/, the first condition reduces to

�
5c C �.˛ C �/

�C �
5c C �.˛ C �/

� D 10c C 2�� C ˛.�C �/ D �:

Because of the relationship between � and� given by Theorem 6.17, we have ˛.�C
�/ D 2.�� � c/ so that �� is constant. If ˛ ¤ 0, then � C � is also constant and
thus so are � and � individually. M is an open subset of a hypersurface of Type A0,
Type A1, or Type B. Otherwise, ˛ D 0, and M is a pseudo-Einstein hypersurface
with ˛ D 0 and nonconstant principal curvatures.

The second condition reduces to

�
5c C �.˛ C �/

��
5c C �.˛ C �/

� D �:

Upon expanding the left side and substituting for ˛.�C�/, we find that �� satisfies a
quadratic equation with constant coefficients, and is therefore constant. Proceeding
as before, we find that M is one of the hypersurfaces listed in 3.

Conversely, if M is a hypersurface listed in 3., one can verify directly that it
satisfies the identities of 1. and 2. for suitable choices of the constant �. ut

Kimura and Maeda [278], and Kwon and Suh [311] considered the condition that
the Ricci tensor S commutes with 'A. As a result of their work and that of Ki and
Suh [255], we have

Theorem 8.98. Let M2n�1, where n � 3, be a real hypersurface in CHn. If

S ı ' ı A D ' ı A ı S (8.107)

then M is an open subset of a hypersurface of Type A.

Remark 8.99. Since Type A hypersurfaces have the property that W? consists of
one or two '-invariant principal subspaces, it is clear from (8.99) that they satisfy
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the identity S ı ' ı A D ' ı A ı S. This holds for all n � 2. The question arises:
Does Theorem 8.98 extend to n D 2? In fact, it does not. The pseudo-Einstein
hypersurfaces with nonconstant principal curvatures as discussed by Kim, Ivey, and
Ryan in [260] and [222] are counterexamples. One can show, however, that these
are the only possibilities (Ivey, personal communication, 2015).

For our discussion of Theorem 8.98, we temporarily denote by T the orthogonal
projection on W , i.e., TX D hX;WiW. Clearly, T is a symmetric .1; 1/ tensor field.
Then, using (8.99), we can write

Œ'A; S� D A2'A � 'A3 C m.'A2 � A'A/ � 3c'AT:

Thus S ı ' ı A D ' ı A ı S if and only if

3c'AT D A2'A � 'A3 C m.'A2 � A'A/: (8.108)

Equivalently,

3cTA' D A'A2 � A3' C m.A2' � A'A/ (8.109)

which is the negative of the transpose of (8.108). Multiplying (8.108) and (8.109)
by A on the left and on the right, respectively, and adding, we get

3c.A'AT C TA'A/ D 0:

Applying this to W yields

A'AW D �hA'AW;WiW D �h'AW;AWiW D 0:

Thus, we have

A'AW D 0: (8.110)

Also, by applying (8.109) to W, we get

A'A2W D 0: (8.111)

Further, we can apply (8.108) to W to get 3c'AW D �'A3W C m'A2W which tells
us that .A3W � mA2W C 3cAW/ 2 W . Thus,

A4W � mA3W C 3cA2W (8.112)

lies in the span of AW. On the other hand, if we apply (8.108) to AW, we get
3c'A˛W D �.'A4W � m'A3W/ so that

A4W � mA3W (8.113)
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lies in the span of fAW;Wg. Comparing expressions (8.112) and (8.113), we
conclude that A2W also lies in the span of fAW;Wg. We state these results as a
lemma.

Lemma 8.100. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn. If
S ı ' ı A D ' ı A ı S, then

1. A'AW D 0;
2. the span of fAW;Wg is A-invariant.

Of course, this gives us no new information at points where AW D ˛W, in
particular for Hopf hypersurfaces. In fact, we can use the equations just derived
to prove

Theorem 8.101. For a Hopf hypersurface M2n�1, where n � 2, in CPn or CHn, S
commutes with 'A if and only if S commutes with '.

Proof. First of all, for any Hopf hypersurface, we have Œ'A; S�W D 0 and
Œ'; S�W D 0. Thus we need consider only W?. As in our proof of Theorem 8.93,
we consider basis pairs fX; 'Xg and note that, assuming that Œ'; S� D 0, we have

Œ'A; S�X D �..A2 � mA/'X � .�2 � m�/'X/

But .A2 � mA/'X D .�2 � m�/'X and thus

�.� � �/.m � � � �/ D 0:

The same equation holds with the roles of � and � reversed. Since not both � and
� can be zero, we have .� � �/.m � � � �/ D 0. With this, it is easy to check that
Œ'; S�X D Œ'; S�'X D 0 and Œ'; S� vanishes on all of W?.

Conversely, assuming that Œ'; S� D 0 and using the same basis, we get .� �
�/.m � � � �/ D 0 from (8.104). Applying the right side of (8.108) to X gives

�2� � �3 C m.�2 � ��/ D �..�2 � �2/C m.� � �//

which is zero. A similar equation results from using 'X. Consequently, (8.109) is
satisfied on all of W? and S commutes with 'A. ut

We now consider the non-Hopf situation. It is easy to check the following:

Lemma 8.102. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

satisfying S ı' ı A D ' ı A ı S. Let p be a point where AW ¤ ˛W. Then, in terms of
the standard non-Hopf setup in a neighborhood of p, the upper-left 3� 3 submatrix
of A (see (8.34)) takes the form

2

4
˛ ˇ 0

ˇ � 0

0 0 0

3

5 ; (8.114)
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i.e., � D � D 0. In addition, the orthogonal complement of the span of fW;U; 'Ug
is A-invariant and '-invariant and has an orthonormal basis consisting of n � 2

pairs fX; 'Xg satisfying .A2�mA/X D �X and .A2�mA/'X D �'X for a suitable
function �.

A major step in proving Theorem 8.98 is to show that the hypersurface in
question is Hopf. Using the standard non-Hopf setup, a lengthy computation is
necessary to reach a contradiction. We will not present this computation here, but
the interested reader can fill in the details by following the argument in Ki and Suh
[255].

8.5.4 The structure Jacobi operator RW

At this point, we introduce the Jacobi operators which are .1; 1/ tensor fields derived
from the curvature tensor, just as the Ricci tensor is.

For a vector field Z on a Riemannian manifold, the Jacobi operator RZ is
defined by

RZX D R.X;Z/Z (8.115)

for all tangent vectors X. For a hypersurface in a complex space form with structure
vector field W D �J� , the Jacobi operator RW is called the structure Jacobi
operator.

A related but distinct concept is that of normal Jacobi operator which we will
introduce in the next chapter when discussing curvature-adapted hypersurfaces.

Before proceeding with the main business of this section, the classification of
hypersurfaces in terms of the structure Jacobi operator, we deal briefly with a
classification where the general Jacobi operators play a role.

A Riemannian manifold is said to be

• a D’Atri space if all its local geodesic symmetries are volume-preserving up to a
sign;

• a C-space if the eigenvalues of the Jacobi operators are constant along corre-
sponding geodesics.

Cho and Vanhecke [117] studied the D’Atri and C-space conditions. The
following is their result.

Theorem 8.103. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
The following are equivalent:

• M is an open subset of a Type A hypersurface;
• M is a D’Atri space;
• M is a C-space.
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Their proof relies on the fact that both D’Atri spaces and C-spaces have cyclic
parallel Ricci tensor. By the theorem of Kwon and Nakagawa (Theorem 8.89),
such hypersurfaces are locally of Type A or Type B. The Type B possibility can
be eliminated. An alternative proof was given by Nagai [389]. The reader may find
further background in papers of Vanhecke (with Willmore and Berndt, respectively)
[39, 542], and in Nagai’s survey [390].

The structure Jacobi operator, by definition, satisfies

RWX D R.X;W/W: (8.116)

A few of its basic properties can easily be checked using the Gauss equation and
the first Bianchi identity.

Proposition 8.104. The structure Jacobi operator RW

• is symmetric, i.e., satisfies hRWX;Yi D hX;RWYi;
• satisfies RWW D 0;
• satisfies RWX D .�˛ C c/X if M is Hopf and X 2 W? is a principal vector

corresponding to a principal curvature �.

Note that RW takes on a particularly simple form when ˛ D 0. We can ask about
other hypersurfaces sharing this property.

Theorem 8.105. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Suppose that there is a function � such that

RWX D �X (8.117)

for all X 2 W?. Then, � is constant and M is

• an open subset of a Type A1 or Type A0 hypersurface (� D �2 D �˛ C c), or
• an open subset of a Type A2 hypersurface in CPn with radius �

4
r (� D c and

˛ D 0), or
• a Hopf hypersurface with ˛ D 0 and nonconstant principal curvatures (again,
� D c).

Conversely, all hypersurfaces in this list satisfy the given hypothesis.

Proof. Suppose that M is a Hopf hypersurface satisfying equation (8.117). If ˛ ¤ 0,
then every principal vector X 2 W? satisfies AX D �X where �˛ C c D �, i.e.,

� D � � c

˛
:

Since the principal space of � is '-invariant, we have �2 D �˛Cc D �. In particular,
� and � are constants. Thus M is an open subset of a hypersurface of Type A1 or A0.
It is also clear that these hypersurfaces satisfy (8.117). Suppose now that ˛ D 0. If
M has constant principal curvatures, it must be an open subset of some hypersurface
on the Takagi/Montiel list. However, the only list members for which ˛ D 0 is
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possible are the Type A1 and Type A2 hypersurfaces in CPn with radius �
4

r. The
Type A1 hypersurfaces have already been mentioned, so the only new possibility is
the indicated Type A2 hypersurface. Conversely, the condition ˛ D 0 guarantees
that RW D cX for all principal vectors X 2 W?. This completes the proof. ut
Remark 8.106. It is easy to construct examples in CPn that satisfy the third
condition in Theorem 8.105. Take any complex submanifold that is not totally
geodesic or part of a quadric. Construct the tube of radius �

4
r over a suitable open

subset. This will give a Hopf hypersurface with ˛ D 0, as desired. In CHn, tubes
will not suffice. We need to make a different construction (see Ivey and Ryan [222]
and Ivey [221] for an indication of how to do this).

Remark 8.107. Characterization of non-Hopf hypersurfaces satisfying (8.117) is an
open problem. It is not too difficult to show that there are none with ˛ identically
zero. For n D 2, however, it is not difficult to show that non-Hopf examples exist.
In the standard non-Hopf setup, a hypersurface with ˛ ¤ 0 satisfies (8.117) if and
only if � D 0 and ˛.���/ D ˇ2. Such hypersurfaces exist by Theorem 20 of [224]
as explained in the proof of Theorem 8.54.

Clearly, the condition (8.117) implies that

RW ı ' D ' ı RW : (8.118)

We now derive a useful characterization of this condition.

Lemma 8.108. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then, for all tangent vectors X,

ŒRW ; '�X D �˛.'A � A'/X C h'AW;XiAW C hAW;Xi'AW: (8.119)

Thus RW commutes with ' if and only if

˛.'A � A'/X D h'AW;XiAW C hAW;Xi'AW (8.120)

for all X.

Proof. Using the Gauss equation, we have

RW'X � 'RWX D R.'X;W/W � 'R.X;W/W

D .A'X ^ AW/W � '.AX ^ AW/W

C c.'X ^ W/W � c'.X ^ W/W

D ˛A'X C hX; 'AWiAW

� ˛'AX C hAX;Wi'AW

C c.'X � 'X/;

which is essentially (8.119). ut
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Corollary 8.109. Under the conditions of the preceding lemma,

• At a point where AW D ˛W, we have

ŒRW ; '� D �˛.'A � A'/:

In particular, this is the case globally for a Hopf hypersurface.
• In a neighborhood of a point where AW ¤ ˛W, we have (in terms of the standard

non-Hopf setup),

ŒRW ; '�X D �˛.'A � A'/X C ˇ.h'U;XiAW C hAW;Xi'U/

for all tangent vectors X.

The study of hypersurfaces in terms of the structure Jacobi operator was initiated
by Cho and Ki [112, 113] who proved Theorem 8.105 for CPn, where n � 3. They
then classified hypersurfaces in CPn that satisfy

RW ı ' ı A D A ı ' ı RW :

Subsequently, Ki, Kim, and Lee in [241] obtained a classification (Theorem 8.112
below) that included the CHn case. Our exposition of this theorem begins with an
analysis of this condition.

Lemma 8.110. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then,

• For all tangent vectors X,

.RW'A � A'RW/X D c.'A � A'/X C h'AW;AXiAW C hAW;XiA'AW:
(8.121)

• At a point where AW D ˛W, we have

RW'A � A'RW D cŒ';A�:

• In a neighborhood of a point where AW ¤ ˛W, we have (in terms of the standard
non-Hopf setup),

.RW'A � A'RW/X D c.'A � A'/X C ˇ.h'U;AXiAW C hAW;XiA'U/:

• Further, if A'U D �'U, then

.RW'A � A'RW/X D c.'A � A'/X C ˇ�.h'U;XiAW C hAW;Xi'U/

D �ŒRW ; '�X C .˛� C c/Œ';A�X:
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Proof. Again, from the Gauss equation, we have

RW'AX � A'RWX D R.'AX;W/W � A'R.X;W/W

D .A'AX ^ AW/W � A'..AX ^ AW/W/

C c.'AX ^ W/W � cA'..X ^ W/W/

D hAX; 'AWiAW C hAX;WiA'AW

C c.'AX � A'X/;

which is the first assertion. Since 'AW D 0 when AW D ˛W, the second assertion
follows. On the other hand, in the standard non-Hopf setup, 'AW D ˇ'U. Making
this substitution, we get the third assertion. Finally, when A'U D �'U, the first
part of the fourth assertion is immediate. Then, using Corollary 8.109 to substitute
for ˇ.h'U;XiAW ChAW;Xi'U/, we get the second part of the fourth assertion. ut

If we set X D W in the first assertion, we see that

RW'AW D .˛A C c/'AW:

In particular, for the standard non-Hopf setup, if .RW'A � A'RW/W D 0, then
.˛A C c/'AW D 0. Thus ˛ ¤ 0 and

A'U D �'U;

where � D � c
˛

. In view of the fourth assertion, we get

RW ı ' ı A � A ı ' ı RW D �.RW ı ' � ' ı RW/: (8.122)

This gives

Corollary 8.111. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
If RW ı ' ı A D A ı ' ı RW, then RW ı ' D ' ı RW.

The major step needed to complete our characterization of the condition

RW ı ' ı A D A ı ' ı RW

is to show that it implies the Hopf condition. Assuming the standard non-Hopf setup,
a lengthy computation is necessary to reach a contradiction. We will not present this
computation here, but the interested reader can fill in the details by following the
argument in [241]. Thus we get the following:
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Theorem 8.112. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then

RW ı ' ı A D A ı ' ı RW

if and only if M is an open subset of a Type A hypersurface.

Proof. We begin with the fact that a hypersurface satisfying RW ı' ıA D Aı' ıRW

must be Hopf. Then Lemma 8.110 shows that such a hypersurface must satisfy
' ı A D A ı ' and hence by Theorem 8.37 must be an open subset of a Type A
hypersurface. Conversely, Type A hypersurfaces satisfy ' ıA D Aı' and are Hopf.
Therefore, they must satisfy RW ı ' ı A D A ı ' ı RW , again by Lemma 8.110. ut

Lim and Sohn [329] considered the anti-commutative condition

RW ı ' ı A C A ı ' ı RW D 0

and prove that a hypersurface satisfying it must be Hopf. Although they conclude
that such hypersurfaces are locally Type A, the appropriate conclusion is that this
condition cannot be realized since it is easy to check that the Type A hypersurfaces
do not, in fact, satisfy it.

Although RW cannot be parallel, it can be cyclic parallel. The hypersurfaces for
which RW is cyclic parallel were classified by Ki and Kurihara [243] as follows:

Theorem 8.113. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn.
Then RW is cyclic parallel if and only if M is an open subset of

• A Type A hypersurface, or
• A Type B hypersurface in CPn whose radius ru as a tube over the complex

quadric satisfies tan2 2u D 2.

Further work

We conclude this section by listing a number of further results that have occurred in
the literature recently. The first few assert non-existence of hypersurfaces satisfying
particular conditions on RW .

Theorem 8.114. There are no real hypersurfaces in CPn or CHn, where n � 3,
satisfying any of the following conditions.

• RW ı RX D RX ı RW for all tangent vectors X;
• RW is parallel; i.e., rXRW D 0 for all tangent vectors X;
• RW is recurrent.

Theorem 8.115. There are no real hypersurfaces in CPn or CHn, where n � 2,
satisfying either of the following conditions
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• LXRW D 0 for all tangent vectors X;
• RW is a Codazzi tensor, i.e., it satisfies .rXRW/Y D .rYRW/X for all tangent

vectors X and Y.

On the other hand, all Type A hypersurfaces satisfy LWRW D 0 and every
hypersurface satisfying LWRW D 0 is Hopf.

These theorems include work of Pérez, Santos, and Suh [439, 440], Ivey and
Ryan [223], and Theofanidis and Xenos [532].

Following Kaimakamis and Panagiotidou [233] we define a tensor field T to be
Lie recurrent if there is a 1-form ! such that

LXT D !.X/T;

for all tangent vectors X. They obtained the following improvement of
Theorem 8.115.

Theorem 8.116. There are no real hypersurfaces in CPn or CHn, where n � 2,
whose shape operator is Lie recurrent.

Theorem 8.117 deals with the situation where RW commutes with both ' and the
Ricci tensor and is due to Ki, Nagai, and Takagi [251]. Earlier versions of this result
may be found in [242] and [250].

Theorem 8.117. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

satisfying

RW ı ' D ' ı RW and RW ı S D S ı RW :

Then M is a Hopf hypersurface. Further, if ˛ ¤ 0, then M is an open subset of a
Type A hypersurface.

Yet another way of way of weakening the rS D 0 assumption has been studied
by Ki and Nagai [248, 249] with the following result. See also Li and Ki [317].

Theorem 8.118. Let M2n�1, where n � 2, be a real hypersurface in CPn satisfying
rAW�˛WS D 0.

• If SW D �W for some constant � , then M is Hopf.
• If SW D �W for some function � , and jAWj2 � ˛2 is constant, then M is Hopf.
• If RW ı S D S ı RW and hSW;Wi is constant, then M is Hopf.
• If RW ı A D A ı RW and the mean curvature is constant, then M is Hopf.

8.5.5 W-parallelism and �-parallelism

It is clear that the relationship between geometric structures and the holomorphic
distribution W? plays a large role in the study of hypersurfaces in complex
space forms. The special properties of Hopf hypersurfaces constitute one example.
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Classification in terms of the structure Jacobi operator RW provides another. In this
section, we take familiar geometric conditions, some of which are too strong to be
realized in our context, and weaken them by applying them to W or W? only.

W-parallelism

A tensor field T on a hypersurface M is said to be W-parallel if rWT D 0. Although
the shape operator cannot be parallel, there are nontrivial examples for which it is
W-parallel. Our first step in classifying such hypersurfaces is the following.

Proposition 8.119. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

with rWA D 0. Then M is a Hopf hypersurface.

This is Proposition 7.2 in Niebergall and Ryan [399] where a detailed proof can
be found. Using this, we get

Theorem 8.120. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

with rWA D 0. Then M is

• a Hopf hypersurface with ˛ D 0, or
• an open subset of a Type A hypersurface .

Conversely, such hypersurfaces satisfy rWA D 0.

Proof. Assume that M satisfies rWA D 0: Then for any vector field X, the Codazzi
equation gives .rXA/W D �c'X and so

rX.AW/ D �c'X C A'AX: (8.123)

Recalling that M is Hopf, let X 2 W? be a principal vector with corresponding
principal curvature �. In the notation of Theorem 6.17, we have

˛�'X D rX.˛W/ D �c'X C ��'X; (8.124)

i.e., ˛� D �c C ��. Since �� � c D �C�
2
˛, this reduces to ˛.� � �/ D 0. Unless

˛ D 0, we have � D � and hence T� is '-invariant. Since the quadratic equation,
�2 � ˛� � c D 0 is satisfied, there are only two possible values of � and they are
constant. Thus, M is an open subset of a Type A hypersurface. Conversely, if M
is Hopf with ˛ D 0, then .rWA/W D rW.AW/ � A'AW D 0 while .rWA/X D
.rXA/W C c'X for any principal vector X 2 W?. Since .rXA/W D rX.AW/ �
A'AX, we get

.rWA/X D .���C c/'X D �˛
2
.�C �/ D 0

where � and � are the principal curvatures corresponding to X and 'X, respectively.
On the other hand, for a Type A hypersurface, the W-parallelism follows directly
from Theorem 8.37. ut
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Theorem 8.120 was proved by Kimura and Maeda [275] for the CPn case and has
been generalized by Pyo and others [258, 454, 455]. In the same paper, Kimura and
Maeda considered Hopf hypersurfaces in CPn with W-parallel Ricci tensor under
the assumption of constant mean curvature which was later removed by S. Maeda
[347]. Although he considers only the CPn case, his proof essentially applies in CHn

as well. It turns out that W-parallelism of the Ricci tensor is related to its commuting
with ' which is discussed in Theorems 8.93 and 8.94.

Theorem 8.121. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Then rWS D 0 if and only if M satisfies ˛ D 0 or 'S D S'.

Proof. It is an easy consequence of the Codazzi equation (see Lemma 2.13 of [399])
that Wm D 0 for a Hopf hypersurface. From this and (6.12), we can deduce that
every Hopf hypersurface satisfies .rWS/W D 0. Consider now any principal vector
X 2 W? with corresponding principal curvature �. Then

.rWS/X D . m � A/.rWA/X � .rWA/AX

and the Codazzi equation gives .rWA/X D .rXA/W C c'X. Thus

.rWS/X D .m � A � �/..rXA/W C c'X/

D .m � A � �/.�.˛ � A/'X C c'X/ (8.125)

D .m � � � �/� � �
2

˛'X (8.126)

since c � �� D ��C�
2
˛. Thus .rWS/X D 0 if and only if

˛.� � �/.�C � � m/ D 0:

In case n D 2, this is equivalent to ˛.� � �/ D 0 which is precisely the condition
for M to be pseudo-Einstein. The result then follows from Theorem 8.92. For n � 3,
consider the discussion preceding Theorems 8.93 and 8.94. The fact that rWS = 0
implies S' D 'S is immediate from (8.104). Conversely, the same equation shows
that if S' D 'S, then .� � �/.�C � � m/ D 0. This completes the proof. ut

Remark 8.122. Note that the condition rWS D 0 is weaker than rWA D 0 since,
for n � 3, hypersurfaces of types B-E qualify, albeit for only one specific radius.
We note that for the Type B case, those qualifying are precisely the pseudo-Einstein
ones. The general classification problem for Hopf hypersurfaces satisfying rWS D 0

remains open as there is still the possibility of nonconstant � and �. We do know,
however, that when such a f�;�g pair exists, all other principal curvatures will have
'-invariant principal spaces.

The Hopf assumption in Theorem 8.121 can be weakened to SW D �W for
constant � , with similar conclusions. See Kang and Ki [237]. Also see Ahn et al. [7]
and Lee et al. [313] for related results.
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Finally, we note that the W-parallelism condition can be realized even for the
curvature tensor R (see Kimura and Maeda [275]).

We have seen in Theorem 8.114 that the structure Jacobi operator RW cannot be
parallel. However, W-parallelism is possible. We first look at Hopf hypersurfaces.

Theorem 8.123. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Then the structure Jacobi operator of M is W-parallel if and only if M is

• a Hopf hypersurface with ˛ D 0, or
• an open subset of a Type A hypersurface.

Proof. Every hypersurface has an open dense set (see Section 2.5) on which the
principal curvatures have constant multiplicities. In the Hopf case, we can assert
that on such a set, W? consists locally of smooth '-invariant distributions of the
form T� or T� C T� where T� D 'T�, as in Theorem 6.17. For X 2 T�,

rW.RWX/ D rW..�˛ C c/X/ D ˛.W�/X C .�˛ C c/rWX

while

RWrWX D .˛A C c/rWX

where we have used the Gauss equation and the fact that

hrWX;Wi D �hX;rWWi D 0:

This gives

.rWRW/X D ˛
�
.W�/X C .� � A/rWX

�
: (8.127)

It is trivial to check that .rWRW/W D 0: If we apply the Codazzi equation to the
pair .X;W/, we get

rX.˛W/ � A'AX � rW.�X/C ArWX D �c'X (8.128)

�.˛ � �/'X � .W�/X � .� � A/rWX D �c'X:

It is clear from (8.127) that every Hopf hypersurface with ˛ D 0 satisfies
rWRW D 0. For Type A hypersurfaces, we have � D � and �2 D �˛ C c.
Thus (8.128) reduces to .� � A/rWX D 0. Substituting in (8.127) yields
.rWRW/X D 0 as desired.

Conversely, equations (8.127) and (8.128) also show that every Hopf hypersur-
face satisfying rWRW D 0 will have either ˛ D 0 or �.˛��/Cc D 0. Substituting
for �� from Theorem 6.17, we get ˛.� � �/ D 0. Thus, unless ˛ D 0, we have
'A D A' on an open dense set of M, and hence globally. By Theorem 8.37, M is an
open subset of a Type A hypersurface. ut
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Beginning with Cho and Ki, several authors have studied hypersurfaces satisfy-
ing rWRW D 0. Various conditions have been found for such a hypersurface to be
Hopf and therefore belong to the class characterized in Theorem 8.123.

Theorem 8.124. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn

whose structure Jacobi operator is W-parallel. Each of the following conditions is
sufficient for M to be Hopf:

1. RW commutes with the shape operator A; (Cho and Ki [115])
2. RW commutes with the Ricci tensor S; (Ki et al. [245, 247])
3. rWS D 0; (Ki, Pérez, Santos and Suh [252])
4. RW ı ' ı S D S ı ' ı RW; (Ki, Kurihara and Takagi [246])

Conversely, all Type A hypersurfaces satisfy conditions 1–4. All Hopf hypersurfaces
with ˛ D 0 satisfy conditions 1–3.

Proof. Proving sufficiency for the Hopf condition involves starting with the stan-
dard non-Hopf setup and deriving a contradiction. These proofs are rather long and
somewhat similar (see also our discussion of Theorems 8.98 and 8.112). Because of
space limitations, we will not present them here. It is easy to check conditions 1–4
for Type A hypersurfaces. It is also evident from Theorems 8.123 and 8.121 that all
Hopf hypersurfaces with ˛ D 0 satisfy conditions 1–3. ut

The fourth condition in Theorem 8.124 entails an additional restriction.

Theorem 8.125. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn

whose structure Jacobi operator is W-parallel. Then RW ı ' ı S D S ı ' ı RW if and
only if

• M is an open subset of a Type A hypersurface, or
• n D 2, ˛ D 0 and M is a pseudo-Einstein hypersurface with nonconstant

principal curvatures as described in Theorems 8.64 and 8.92, or
• M is a Hopf hypersurface in CPn, where n � 3, for which ˛ D 0, 'S D S'

and not all principal curvatures are constant. See the discussion preceding
Theorem 8.93 for more information.

Remark 8.126. Corresponding theorems in the literature, for example [115], have
been modified to deal with the condition ˛ D 0. Some authors have made the
assertion, citing Berndt [27], that Hopf hypersurfaces in CHn cannot have ˛ D 0.
This is an incorrect reading of Berndt’s result, which was obtained under the
assumption of constant principal curvatures. In fact, as shown by Ivey and Ryan
[222], ˛ can take on all small values 0 � ˛ � 2

r as well as the higher values
that occur in the Montiel list, at least for n D 2. For n � 3, existence of such
hypersurfaces is an open problem.

For further work along these lines, see [266, 268] and [267].

Remark 8.127. Note that Theorem 8.125 differs slightly from the version stated by
Ki, Kurihara, and Takagi to take into account the ˛ D 0 possibilities. In particular,
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for n D 2, hypersurfaces with nonconstant principal curvatures can occur. We do
not know whether any hypersurface satisfying the third condition in Theorem 8.125
actually exists. In terms of the analysis leading to Theorem 8.93, the hypersurface
must contain an open set where �1 D ��2 D 1

r and k1 D k2 D n � 2 is even. Also,
� and � are nonconstant principal curvatures of multiplicity 1 satisfying �� D c.

The same authors also consider the related condition RW ı ' ı S D RW ı S ı ' in
[244, 308].

�-parallelism

The �-parallelism condition is somewhat more complicated and we will make
separate definitions for each type of tensor field in which we are interested.
Specifically, a tensor field T of type .1; 1/ is said to be �-parallel if

h.rXT/Y;Zi D 0

for all X, Y , and Z in W?. Equivalently, for all X 2 W?,

.rXT/W? � W :

We also say that T is cyclic �-parallel if the cyclic sum of h.rXT/Y;Zi vanishes
for all X, Y , and Z in W?. A hypersurface is said to be �-parallel (resp. cyclic
�-parallel) if its shape operator is an �-parallel (resp. cyclic �-parallel) tensor field.

S.H. Kon and T.-H. Loo [292] obtained, for n � 3, the following remarkable
characterization of �-parallel hypersurfaces.

Theorem 8.128. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn.
Then M is �-parallel if and only if it is

• a ruled hypersurface, or
• an open subset of a hypersurface of Type A or Type B.

This completes (except for n D 2) a project begun by Kimura and Maeda [274]
who classified the �-parallel Hopf hypersurfaces in CPn. Subsequently, Suh [504]
dealt with the hyperbolic case. The result of Kimura, Maeda, and Suh is as follows:

Theorem 8.129. Let M2n�1, where n � 2, be a Hopf hypersurface in CPn or CHn.
Then M is �-parallel if and only if it is an open subset of a Type A or a Type B
hypersurface.

Theorem 8.129 was proved in detail in [399]. Following on the recent work of
Kon and Loo [292, 293], we present here a self-contained proof of the complete
result, Theorem 8.128, which we break down into a collection of theorems, lemmas,
and propositions. The classification of �-parallel hypersurfaces in CP2 and CH2

remains an open problem.
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It is easy to verify that every hypersurface of Type A or Type B is �-parallel.
Because of the Codazzi equation and the fact that A is symmetric, the expres-
sion h.rXA/Y;Zi is symmetric in all three arguments used in the definition of
�-parallelism. It is sufficient to check that this expression vanishes on principal basis
vectors and since there are at most two distinct principal curvatures involved, we can
assume that Y and Z correspond to the same principal curvature, say �. Then

h.rXA/Y;Zi D h.� � A/rXY;Zi D hrXY; .� � A/Zi D 0;

where we have used the fact that � is constant. For ruled hypersurfaces, we have

Proposition 8.130. Let M2n�1, where n � 2, be a ruled hypersurface in CPn or
CHn. Then M is �-parallel.

Proof. First note that for any scalar function �, and any vector fields X1 and X2 in
W?,

hrX1 .�W/;X2i D .X1�/hW;X2i C �h'AX1;X2i D 0; (8.129)

since 'AX1 D 0. Now let X, Y , and Z be any vector fields in W?. Since AY and AZ
are both scalar multiples of W, we get

h.rXA/Y;Zi D hrX.AY/;Zi � hArXY;Zi (8.130)

D 0 � hrXY;AZi D hY;rX.�W/i (8.131)

for a suitable function �. Thus, h.rXA/Y;Zi D 0 and M is �-parallel. ut
To complement Theorem 8.129, we state our main result on the non-Hopf case.

This follows from the exposition below and completes the proof of Theorem 8.128.

Theorem 8.131. Let M2n�1, where n � 3, be a non-Hopf �-parallel hypersurface
in CPn or CHn. Then M is ruled.

Proof of Theorem 8.128

We develop, for �-parallel hypersurfaces, a useful formula relating the curvature
operator to the shape operator and its W-derivative.

Lemma 8.132. Let M2n�1, where n � 2, be an �-parallel hypersurface in CPn or
CHn. Then, for all X, Y, U, V in W?,

hŒR.X;Y/;A� U;Vi D L.X;Y;U;V/C L.X;Y;V;U/

�L.Y;X;U;V/ � L.Y;X;V;U/ (8.132)
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where

L.X;Y;U;V/ D h'AX;Uih.F � c'/Y;Vi C 1

2
h'AX;YihFU;Vi

and F D rWA.

The proof of this lemma is obtained by applying rX to the identity

h.rYA/U;Vi D 0

to obtain an expression for r2A.I YI X/. Then, of course,

ŒR.X;Y/;A� U D .R.X;Y/ � A/U D r2A.I YI X/U � r2A.I XI Y/U;

for all X, Y , and U in W?.
We use the Codazzi equation liberally throughout to replace derivatives of A in

W? directions by rWA D F. The Codazzi equation also shows that F is symmetric.
We leave the details to the reader.

Lemma 8.133. Let M2n�1, where n � 3, be an �-parallel hypersurface in CPn or
CHn and let T1 D '2A'2, T2 D 'A'. Let p 2 M be a point where AW ¤ ˛W. Then
T1 and T2 commute at p.

Proof. Our proof is in two parts, in which we first show that

• T1 and T2 have a common eigenvector in W?p , and then
• T1 and T2 commute at p.

Proof of the first assertion

We adopt the standard non-Hopf setup in a neighborhood of p. Let Y 2 W?p be a
unit eigenvector of T1 with corresponding eigenvalue � . Then, working pointwise at
p, we have

AY D �Y C ˇhY;UiW

from which it is straightforward to compute

A2Y D jAYj2Y C ˇ2hU;Yi.U � hU;YiY/ mod W : (8.133)

To set up a proof by contradiction for the first assertion, we assume that T1 and T2
have no common eigenvectors in W?p . In particular, Y is not an eigenvector of T2.
Then there is a unique nonzero vector Z orthogonal to W, Y , and 'Y such that

A'Y D k'Y C 'Z mod W
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where k D hA'Y; 'Yi. In fact, Z D �kY � 'A'Y . We carry out a number of steps,
each proving one or more assertions, culminating in Z D 0, a contradiction. The
outline is as follows:

1. 2�.jAYj2 � A2/Y C hFY;Yi.3A' C 'A/Y D 0 mod W;
2. hFY;Yi D 0 and � ¤ 0 and thus A2Y D jAYj2Y mod W . From (8.133), either

Y D ˙U or Y is orthogonal to U. We can conclude that W? has an orthonormal
basis of eigenvectors of '2A'2 consisting of U and 2n � 3 vectors orthogonal
to U which are also eigenvectors of A. Note that the span of fW;AWg is
A-invariant and has fW;Ug as an orthonormal basis. For the remaining steps
in this list, we take Y D U, so that � D �, k D � and Z D ��U � 'A'U.

3. �hFZ; 'Ui D cjZj2, hFU;Zi D 0, hFZ;Zi D 0 and h'AZ;Zi D 0;
4. hF'Z; 'Zi D 0 and AZ D �Z where �hFU; 'Zi D cjZj2;
5. hF'Z; 'Ui D 0, hF'U; 'Ui D 0 and �hFZ; 'Ui D cjZj2;
6. �.FU C c'U/ D cA'U mod W , and thus �hFU; 'Ui D c.� � �/ ;
7. �hFU; 'Ui D c.� � �/ and 2cjZj2 D ��.�2 C jZj2 � ��/C �c.� � �/ ;
8. �.�C �/ D 2�� and .�� C c/.� � �/ D ��ˇ2;
9. bhFU; 'Zi C hFZ; 'Zi D cjZj2 where bjZ2j D hA'Z; 'Zi;

10. bhFZ; 'Ui � hFZ; 'Zi D cjZj2;
11. �b D jZj2 � c and b D �. Thus �2 C c D jZj2.
12. 2�2 � �� C c D 0.
13. 2�2 � �� C c D 0.

We now show that Steps 1 through 13 imply a contradiction. To this end, first
observe that the results of Steps 12 and 13 show that � D ˙� . However, by Step 8,
neither of these alternatives can occur.

Proof details for the first assertion

1. We apply (8.132) using arguments .X;Y;Y;Y/ for X 2 W?. Because the last
two arguments are equal, our equation reduces to

hR.X;Y/AY;Yi D L.X;Y;Y;Y/ � L.Y;X;Y;Y/:

It is straightforward to check that

L.X;Y;Y;Y/ D 3

2
h'AX;YihFY;Yi

L.Y;X;Y;Y/ D �1
2

hA'X;YihFY;Yi

where we have used the fact that h'AY;Yi D 0. There is only one term of the
Gauss equation that contributes to the curvature term, giving

h.AX ^ AY/AY;Yi D jAYj2hAX;Yi � hAX;AYihAY;Yi:
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Since hAX;Yi D �hX;Yi and hAY;Yi D �hY;Yi D � , we have established the
assertion of Step 1.

2. The fact that hFY;Yi D 0 is clear from Step 1 if � D 0 or hY;Ui D 0. Suppose
now that hFY;Yi ¤ 0 (and therefore �hY;Ui ¤ 0). We obtain a contradiction
by three applications of (8.132), as follows:

• Look at

hR.X;Z/AY;Yi D L.X;Z;Y;Y/ � L.Z;X;Y;Y/:

for X 2 W?. Since Y , 'Y , AY , 'AY and A2Y are all orthogonal to Z, the left
side vanishes. On the other hand,

L.X;Z;Y;Y/ D h'AX;Yih.F � c'/Z;Yi C 1

2
h'AX;ZihFY;Yi

L.Z;X;Y;Y/ D h'AZ;Yih.F � c'/X;Yi C 1

2
h'AZ;XihFY;Yi:

Since h'AZ;Yi D 0, our equation reduces to

1

2
hFY;Yih.'A C A'/Z;Xi C hA'Y;XihFZ;Yi D 0 (8.134)

for all X 2 W?. In particular, for X D 'Y , we have

.'A C A'/'Y D 'A'Y � AY D h'A'Y;YiY � Z � �Y mod W

and the inner product with Z is just �jZj2. Thus,

1

2
hFY;YijZj2 C hFZ;YihA'Y; 'Yi D 0

which implies that both hFZ;Yi and k D hA'Y; 'Yi are nonzero.
• Now look at

hR.X;Y/AZ;Zi D L.X;Y;Z;Z/ � L.Y;X;Z;Z/: (8.135)

It is easy to check that the only term from the Gauss equation that makes a
contribution to the left side is

2chX; 'Yih'AZ;Zi:
Also,

L.X;Y;Z;Z/ D h'AX;Zih.F � c'/Y;Zi C 1

2
h'AX;YihFZ;Zi
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L.Y;X;Z;Z/ D h'AY;Zih.F � c'/X;Zi C 1

2
h'AY;XihFZ;Zi

so that (8.135) becomes

2chX; 'Yih'AZ;Zi C hAX; 'ZihFY;Zi C 1

2
h.A' C 'A/Y;XihFZ;Zi D 0:

(8.136)

Setting X D Z and using the fact that hFY;Zi ¤ 0, we get h'AZ;Zi D 0.
This simplifies (8.136) to

hFY;ZiA'Z C 1

2
hFZ;Zi.A' C 'A/Y D 0 mod W; (8.137)

from which A'Z lies in the span of f'Y; 'Z;Wg. By (8.134), so does 'AZ.
Further, since h'AZ; 'Yi D hAZ;Yi D 0, 'AZ actually lies in the span of
f'Z;Wg and '2AZ is a scalar multiple of Z. Thus we can write

AZ D aW C bZ: (8.138)

• Finally, look at

hR.X;Z/AZ;Zi D L.X;Z;Z;Z/ � L.Z;X;Z;Z/: (8.139)

Taking (8.138) into account, the curvature term reduces to

jAZj2hAX;Zi � hAZ;AXihAZ;Zi:
On the other hand,

L.X;Z;Z;Z/ D h'AX;ZihFZ;Zi C 1

2
h'AX;ZihFZ;Zi

L.Z;X;Z;Z/ D h'AZ;Zih.F � c'/X;Zi C 1

2
h'AZ;XihFZ;Zi

Since h'AZ;Zi D 0, (8.139) reduces to

jAZj2hAX;Zi � hAZ;AXihAZ;Zi C 1

2
hFZ;Zih.3A'Z C 'AZ/;Xi D 0

(8.140)

which simplifies to

a2bZ � abjZj2ˇU C hFZ;Zi.3A'Z C b'Z/ D 0 mod W : (8.141)

Taking the inner product with Y gives abjZj2ˇhU;Yi D 0, i.e., ab D 0. Since
A'Z ¤ 0, we have from (8.137) that hFZ;Zi ¤ 0. Thus (8.141) reduces to
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3A'Z C b'Z D 0 mod W :

However, the inner product of this with 'Y yields hA'Z; 'Yi D 0 which
contradicts the fact that hA'Y; 'Zi D j'Zj2 D jZ2j. We are forced to
conclude that hFY;Yi D 0.

Now, considering (8.132) with arguments .Z;Y; 'Y; 'Y/, we will show that
� ¤ 0. Start with

hR.Z;Y/A'Y; 'Yi D L.Z;Y; 'Y; 'Y/ � L.Y;Z; 'Y; 'Y/: (8.142)

It is straightforward to check that the only nonzero part of the curvature term is

ch.'Z ^ 'Y/A'Y; 'Yi D �cjZj2:

On the other hand,

L.Z;Y; 'Y; 'Y/ D h'AZ; 'Yih.F � c'/Y; 'Yi C 1

2
h'AZ;YihF'Y; 'Yi

L.Y;Z; 'Y; 'Y/ D h'AY; 'Yih.F � c'/Z; 'Yi C 1

2
h'AY;ZihF'Y; 'Yi:

Since h'AZ; 'Yi D hAZ;Yi, h'AZ;Yi D �hZ;A'Yi and h'AY;Zi D
�h'Y;Zi all vanish, (8.142) reduces to

� cjZj2 D ��h.F � c'/Z; 'Yi (8.143)

from which it is clear that � ¤ 0 and �hFZ; 'Yi D cjZj2.
3. The first assertion has been established as a by-product of our calculation in

Step 2. Now, revisiting our application of (8.132) with arguments .X;Z;U;U/,
we have

L.X;Z;U;U/ D L.Z;X;U;U/

which reduces to

h'AX;UihFU;Zi D 0

since hFU;Ui and h'AZ;Ui both vanish. As A'U ¤ 0, we have hFZ;Ui D 0:

Continuing with .X;U;Z;Z/ we get

2chX; 'Uih'AZ;Zi D 1

2
hFZ;Zi.h'AX;Ui � h'AU;Xi/:

Setting X D 'Z gives h'Z;A'UihFZ;Zi D 0. Thus hFZ;Zi D 0 and, as a
consequence, h'AZ;Zi'U D 0; so that h'AZ;Zi D 0.
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4. Using arguments .X;U; 'Z; 'Z/, we have

hR.X;U/A'Z; 'Zi D L.X;U; 'Z; 'Z/ � L.U;X; 'Z; 'Z/:

The only contribution from the curvature term is

cjZj2hZ;Xi:

To see this, we need to observe that U, AU, and A2U are all orthogonal to 'Z.
On the other hand,

L.X;U; 'Z; 'Z/ D h'AX; 'Zih.F � c'/U; 'Zi C 1

2
h'AX;UihF'Z; 'Zi

L.U;X; 'Z; 'Z/ D h'AU; 'Zih.F � c'/X; 'Zi C 1

2
h'AU;XihF'Z; 'Zi:

Thus, we have

cjZj2Z D hFU; 'ZiAZ � 1

2
hF'Z; 'Zi.A'U C 'AU/: (8.144)

Taking the inner product with 'Z yields

0 D hF'Z; 'Zi.hA'U; 'Zi C h'AU; 'Zi/ D hF'Z; 'ZijZj2:

From this we get hF'Z; 'Zi D 0 and cjZj2Z D hFU; 'ZiAZ which we rewrite
as AZ D �Z:

5. Using arguments .X;Z; 'Z; 'Z/, we have

hR.X;Z/A'Z; 'Zi D L.X;Z; 'Z; 'Z/ � L.Z;X; 'Z; 'Z/:

The curvature term reduces to

chA'Z; 'Zih'Z; 'Xi C cjZj2h'A'Z;Xi:

On the other hand, using the fact that hF'Z; 'Zi D 0, we get

L.X;Z; 'Z; 'Z/ D h'AX; 'Zih.F � c'/Z; 'Zi
L.Z;X; 'Z; 'Z/ D h'AZ; 'Zih.F � c'/X; 'Zi:

Thus

c.hA'Z; 'ZiZ CjZj2'A'Z/ D �.hFZ; 'ZiZ �jZj2F'Z/ mod W : (8.145)
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Upon taking the inner product with 'U we get hF'Z; 'Ui D 0. Now using
arguments .X;Z; 'U; 'U/, we have

hR.X;Z/A'U; 'Ui D L.X;Z; 'U; 'U/ � L.Z;X; 'U; 'U/:

The curvature term reduces to cjZj2hU;Xi and

L.X;Z; 'U; 'U/ D hFZ; 'UihAU;Xi � 1

2
hF'U; 'UihA'Z;Xi

L.Z;X; 'U; 'U/ D 1

2
hF'U; 'Uih'AZ;Xi:

Thus

cjZj2U D hFZ; 'UiAU � 1

2
hF'U; 'Ui.A'Z C 'AZ/ mod W : (8.146)

Taking the inner product with 'U and then with U, we get hF'U; 'Ui D 0 and
�hFZ; 'Ui D cjZj2:

6. Use .X; 'Z;U;U/ to get jZj2.FU C c'U/ D hFU; 'ZiA'U mod W which is
essentially the required result.

7. For Step 7, we use arguments .X; 'U; 'U;Z/. Since the last two arguments are
not the same, our application of (8.132) is more complicated. The curvature
term is

hR.X; 'U/A'U;Zi � hR.X; 'U/'U;AZi:

To evaluate this using the Gauss equation, we need

h.AX ^ A'U/A'U;Zi � h.AX ^ A'U/'U;AZi D �.jA'Uj2 � ��/hZ;Xi
h.X ^ 'U/A'U;Zi � h.X ^ 'U/'U;AZi D .� � �/hZ;Xi

h.'X ^ '2U/A'U;Zi � h.'X ^ '2U/'U;AZi D 0

2hX; '2Ui.h'A'U;Zi � h'2U;AZi/ D 2jZj2hU;Xi: (8.147)

For the right side of (8.132), we get

L.X; 'U; 'U;Z/ D hAX;UihF'U;Zi C 1

2
hF'U;ZihAX;Ui D 3

2
cjZj2hU;Xi

L.X; 'U;Z; 'U/ D 1

2
cjZj2hU;Xi (8.148)

L.'U;X; 'U;Z/ D h'A'U; 'Uih.F � c'/X;Zi C 1

2
h'A'U;XihF'U;Zi

D �1
2

h'U;FZih.�U C Z/;Xi
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L.'U;X;Z; 'U/ D h'A'U;Zih.F � c'/X; 'Ui � 1

2
h'U;FZih.�U C Z/;Xi:

Thus (8.132) reduces to

�.�2 C jZj2 � ��/Z C c.� � �/Z C 2cjZj2U
D 2cjZj2U C hFZ; 'Ui.�U C Z/C jZj2.F'U � cU/ mod W :

from which the desired result follows.
8. The first result follows by equating the two expressions just obtained for

hFU; 'Ui. For the second result, consider (8.132) with arguments .X;U;U;Z/.
It is straightforward to check that all four terms on the right side vanish. On the
other hand, the only contributions to the curvature term are

h.AX ^ AU/AU;Zi � h.AX ^ AU/U;AZi D .� jAUj2 � ��2/hZ;Xi

and

ch.X ^ U/AU;Zi � ch.X ^ U/U;AZi D ch.� � �/Z;Xi:

from which we conclude

�.jAUj2 � ��/Z C c.� � �/Z D 0 mod W

which simplifies to .�� C c/.� � �/C �ˇ2 D 0.
9. For Step 9, we use arguments .Z; 'Z; 'Z;U/. The left side of (8.132) is

hR.Z; 'Z/A'Z;Ui � hR.Z; 'Z/'Z;AUi:

The only term from the Gauss equation that makes a nonzero contribution is
the last one, and the left side of (8.132) reduces to 2cjZj4. Evaluating the right
side, we have

L.Z; 'Z; 'Z;U/ D hAZ;ZihF'Z;Ui C 1

2
hF'Z;UihAZ;Zi

D 3

2
� jZj2hFU; 'Zi

L.Z; 'Z;U; 'Z/ D 1

2
� jZj2hFU; 'Zi

L.'Z;Z; 'Z;U/ D 1

2
h'A'Z;ZihFU; 'Zi D �1

2
bjZj2hFU; 'Zi

L.'Z;Z;U; 'Z/ D h'A'Z;Uih.F � c'/Z; 'Zi � 1

2
bjZj2hFU; 'Zi:
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This gives

.hFZ; 'Zi C bhFU; 'Zi C cjZj2/jZj2 (8.149)

where we have used the result of Step 3 to substitute for � . Setting this equal to
the left side yields the desired identity.

10. Again, consider (8.132) using arguments .X; QX;Z;Z/ where X and QX are
arbitrary members of W?. The left side of (8.132) is

hR.X; QX/AZ;Zi � hR.X; QX/Z;AZi D 0: (8.150)

since AZ D �Z and the curvature operator is skew-symmetric. Now, look at the
right side of (8.132) for arguments .'U; 'Z;Z;Z/. Since the third and fourth
arguments are equal and hFZ;Zi D 0, this right side reduces to

h'A'U;Zih.F � c'/'Z;Zi � h'A'Z;Zih.F � c'/'U;Zi

which we can evaluate as

�jZj2.hFZ; 'Zi C cjZj2/C bjZj2hFZ; 'Ui:

Thus we have

hFZ; 'Zi C cjZj2 D bhFZ; 'Ui: (8.151)

11. Consider (8.132) with arguments .'U; 'Z; 'U; 'U/. The two terms from the
Gauss equation that contribute to the left side are

h.A'U ^ A'Z/A'U; 'Ui D h.A'Z;A'Ui� � jZj2.�2 C jZj2/

and

ch.'U ^ 'Z/A'U; 'Ui D cjZj2:

On the other hand, using the facts that hF'U; 'Ui D 0 and hA'U;Ui D 0,
we find that L.'U; 'Z; 'U; 'U/ D L.'Z; 'U; 'U; 'U/ D 0: Since
hA'Z;A'Ui D �jZj2 C bjZj2, we can simplify the left side to obtain

.�b � jZj2 C c/jZj2 D 0

from which the first statement is immediate. Also, adding the equations from
Steps 9 and 10, we get

2��cjZj2 D b.c� jZj2 C �cjZj2/:
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In other words 2�� D b.�C �/. In view of Step 8, this gives b D �.
12. Consider (8.132) with arguments .Z; 'Z;U; 'U/. First note that hAU;AZi D 0,

and it is straightforward to check that the only contribution from the Gauss
equation is

�2cjZj2.� � �/:

Also,

L.Z; 'Z;U; 'U/ D L.Z; 'Z; 'U;U/ D 1

2
� jZj2hFU; 'Ui

L.'Z;Z;U; 'U/ D �jZj2hFZ; 'Ui � 1

2
bjZj2hFU; 'Ui

L.'Z;Z; 'U;U/ D �1
2

bjZj2hFU; 'Ui:

Thus the right side of (8.132) is

� jZj2hFU; 'Ui C jZj2hFZ; 'Ui C bjZj2hFU; 'Ui

so that

2c.� � �/C .� C b/hFU; 'Ui C hFZ; 'Ui D 0 (8.152)

which, by Steps 5 and 6, gives

2��.� � �/C �.b C �/.� � �/C � jZj2 D 0: (8.153)

Since we have just shown that b D �, and jZj2 D �2 C c, we can rewrite this
equation as

2��.� � �/C .�C �/�2 � ��2 C �c D 0: (8.154)

Applying �.�C �/ D 2�� from Step 8 allows us to simplify this equation to

2�2 � �� C c D 0:

13. Consider (8.132) with arguments .U; 'U;Z; 'Z/. Using AZ D �Z and the
Gauss equation, we get

ŒR.U; 'U/;A�Z D .� � A/R.U; 'U/Z D �2c.� � A/'Z:
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Thus the left side of (8.132) is

�2ch.� � A/'Z; 'Zi D �2c.� � �/jZj2:
Since h'AU;Zi D h'AU; 'Zi D h'A'U; 'Zi D 0, we have

L.U; 'U;Z; 'Z/ D 1

2
h'AU; 'UihFZ; 'Zi D 1

2
�hFZ; 'ZiI

L.U; 'U; 'Z;Z/ D 1

2
�hFZ; 'ZiI

L.'U;U;Z; 'Z/ D h'A'U;Zih.F � c'/U; 'Zi C 1

2
h'A'U;UihFZ; 'Zi

D �jZj2hFU; 'Zi � 1

2
�hFZ; 'ZiI

L.'U;U; 'Z;Z/ D �1
2
�hFZ; 'Zi:

Substituting for hFZ; 'Zi from the result of Step 9 and for hFU; 'Zi from
Step 4, we get

2c.� � �/cjZj2 D .�C �/cjZj2 � �� C �2 � jZj2
�

cjZj2

which, upon simplification using �.�C �/ D 2�� and �2 � jZj2 D c (Steps 8
and 11) gives

2�2 � �� C c D 0: (8.155)

ut

Proof of the second assertion

Proof. We first observe that if v 2 W? is an eigenvector of T1, it is easy to check
that v is also an eigenvector of T2 if and only if 'v is an eigenvector of T1.

Take a unit vector e1 2 W? which is an eigenvector of both T1 and T2 and let
e2 D 'e1. Then e2 is a second eigenvector of T1. Working now on the orthogonal
complement of the span of fW; e1; e2g, choose another such pair. Continue until no
further common eigenvectors exist. Let m be the number of pairs thus chosen. We
know that 1 � m � n � 1.

Suppose that m < n � 1. We complete the orthonormal basis by adding
eigenvectors of T1 that are not eigenvectors of T2. Name the basis elements feig2n�2

1

so that e2i D 'e2i�1 for 1 � i � m, and 'ei is not an eigenvector of T1 for
2m C 1 � i � 2n � 2. For v 2 W?, '2A'2v D �v if and only if �v D �'2Av D
Av � hAv;WiW. Thus there are numbers �i (eigenvalues of T1) such that

Aei � hAei;WiW D �iei; (8.156)
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for 1 � i � 2n � 2. However, A'ei � hA'ei;WiW is not a scalar multiple of 'ei

when i � 2m C 1.
We will obtain a contradiction by a series of steps that involve making particular

choices of arguments in (8.132) and evaluating the left side using the Gauss
equation. Let

B1 D fe2i�1 j 1 � i � mg
B2 D fei j 2m C 1 � i � 2n � 2g:

We make the following assertions:

(i) hFY; 'Yi D 0 for all Y 2 B1. Also, �2j�1 D �2j for all j � m.
(ii) hFY;Yi D 0 for all Y 2 B2. Also, all �j are nonzero for 1 � j � 2m.

(iii) For Y 2 B2, X and QX in W?,

hA'Y;Xih.F C c'/Y; QXi D hA'Y; QXih.F C c'/Y;Xi: (8.157)

(iv) The �i are all equal. That is, there is a nonzero number � such that T1X D �X
for all X 2 W?.

Because of (iv), if Y 2 B2, T1'Y D �'Y contradicting the condition that 'Y is not
an eigenvalue of T1. We conclude that m D n�1 and that W? has a basis consisting
of n � 1 pairs of the form .X; 'X/ which are common eigenvectors of T1 and T2.
From this it is clear that T1 and T2 commute.

Proof (i):

Consider (8.132) with arguments .X; QX;Y; 'Y/ with X; QX 2 B2, Y 2 B1. There
is only one nonzero term arising from the Gauss equation and we compute the left
side of (8.132) as

2chX; ' QXih.'A � A'/Y; 'Yi:
Using the fact that AY and A'Y are orthogonal to X and QX, it is easy to deduce that

L.X; QX;Y; 'Y/ D L.X; QX; 'Y;Y/ D 1

2
h'AX; QXihFY; 'Yi

L. QX;X;Y; 'Y/ D L. QX;X; 'Y;Y/ D 1

2
h'A QX;XihFY; 'Yi

and so we get

h.'A C A'/X; QXihFY; 'Yi D 2c.�2j�1 � �2j/hX; ' QXi;
for a suitable value of j � m. If hFY; 'Yi ¤ 0, we can express A'X as a linear
combination of W and 'X which contradicts the fact that 'X is not an eigenvector
of T2. (For this, we need to observe that A'X is orthogonal to the span of B1 and
'B1.) From hFY; 'Yi D 0, it follows that �2j�1 D �2j:



516 8 Hopf Hypersurfaces

Proof (ii):

Consider (8.132) with arguments .X; 'X;Y; QY/ where X 2 B1 and Y; QY 2 B2. Let
� be the eigenvalue of T1 associated with X. Then

L.X; 'X;Y; QY/ D 1

2
� hFY; QYi

L.'X;X;Y; QY/ D �1
2
� hFY; QYi

so that

hŒR.X; 'X/;A�Y; QYi D 2� hFY; QYi:

Once again, the only contribution of the Gauss equation is

� 2ch.'A � A'/Y; QYi

and thus

� hFY; QYi D �ch.'A � A'/Y; QYi: (8.158)

If � were zero, we could obtain a contradiction by expressing A'Y as a linear
combination of W and 'Y . (Here we need to observe that A'Y is orthogonal to
the span of B1.) Now set QY D Y in (8.158). Since � ¤ 0 and hAY; 'Yi D 0, we get
hFY;Yi D 0 as desired.

Proof (iii):

Recalling the analysis of (8.132) with arguments .X;Y;Y;Y/ in the first part of
the proof and using the fact that hFY;Yi D 0, we get

A2Y D jAYj2Y mod W :

Then

h.AX ^ A QX/AY;Yi D � jAYj2.hY; QXihY;Xi � hY;XihY; QXi/ D 0

and the other terms in the Gauss equation for hR.X; QX/AY;Yi vanish for more
obvious reasons.

Since hFY;Yi D 0, we have

L.X; QX;Y;Y/ D h'AX;Yih.F � c'/ QX;Yi
L. QX;X;Y;Y/ D h'A QX;Yih.F � c'/X;Yi:

Equality of these two expressions is equivalent to (iii).
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Proof (iv):

It follows from (iii) that there is a number � such that

.F C c'/Y � �A'Y D 0 mod W; (8.159)

where we have used the fact that A'Y ¤ 0. Now take any X 2 B1 and let � be
associated eigenvalue of T1. Then (8.158) implies that

�FY � cA'Y C c'AY (8.160)

is orthogonal to the span of B2. Using (8.159) to replace FY , the same can be said of

.�� � c/A'Y � c.� � � 0/'Y (8.161)

where � 0 is the eigenvalue of T1 associated with Y . It is easy to check that this
expression is orthogonal to the span of B1 as well and thus is actually a multiple
of W. We deduce that �� � c D 0 and hence � D � 0. Otherwise, we could express
A'Y as a linear combination of W and 'Y which is a contradiction. Since X and Y
were chosen to be arbitrary elements of B1 and B2 respectively, we have completed
our proof of (iv). ut
This establishes Lemma 8.133.

Proposition 8.134. Let M2n�1, where n � 3, be an �-parallel hypersurface in CPn

or CHn. Then either

1. '.'A � A'/' D 0, i.e., .'A � A'/W?  W , or
2. '.'ACA'��'/' D 0, i.e., .'ACA'��'/W?  W , where .n�1/� D m�˛.

Proof. Using the results of Lemma 8.133, we can choose an orthonormal basis
for W? consisting of n � 1 orthonormal '-invariant pairs. For any two such pairs
.X; 'X/ and . QX; ' QX/, there are suitable coefficients that allow us to write

AX D �X C tWI
A'X D �'X C sWI

A QX D Q� QX C QtWI
A' QX D Q�' QX C QsW: (8.162)

If it happens that � D � for all choices of X, then Condition 1 holds, i.e., '.'A �
A'/' D 0. Otherwise, there is a choice of X with � ¤ �. To show that Condition 2
holds in this case, we first apply (8.132) with arguments .'X; QX; 'X; QX/ to get

� Q�2 � .�2 C s2 � c/ Q�C �.Qt2 � c/ D 0: (8.163)

The calculation is similar to those done in the previous lemma and we omit the
details. Using 'X rather than X in the same equation yields
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� Q�2 � .�2 C s2 � c/ Q�C �.Qt2 � c/ D 0: (8.164)

Multiplying (8.163) and (8.164) by � and �, respectively, and subtracting, we get

Q��.� � �/.��C c/ � .�s2 � �t2/
� D 0: (8.165)

Next apply (8.132) with arguments .X; 'X;X; 'X/ to obtain

.� � �/.��C 5c/C 2hFX; 'Xi.�C �/ D �s2 � �t2; (8.166)

and then apply (8.132) with arguments . QX; ' QX;X; 'X/ to get

. Q�C Q�/hFX; 'Xi D �2c.� � �/: (8.167)

Note that hFX; 'Xi ¤ 0. Set

� D �2c.� � �/
hFX; 'Xi :

Because of (8.167) we may, without loss of generality, assume that Q� ¤ 0 (replacing
QX by ' QX if necessary). Then we have

�s2 � �t2 D .� � �/.��C c/ (8.168)

from (8.165) and we can rewrite (8.166) as

4c.� � �/C 2hFX; 'Xi.�C �/ D 0: (8.169)

Thus

�C � D Q�C Q� D �: (8.170)

Having made particular choices of X and QX, we now observe that n � 3 additional
choices of QX can be made to complete a basis, and that (8.170) holds for all these
choices since (8.167) does not depend on Q� being nonzero. Clearly .n�1/� D m�˛,
and it is easy to verify that .'ACA'��'/W?  W , which establishes Condition 2.

So far, we have worked under the assumption that AW ¤ ˛W at p. However, if
p has a Hopf neighborhood, the same argument works with s D t D Qs D Qt D 0.
Further, if p has no Hopf neighborhood but AW D ˛W there, then p is in the closure
of the zero set of either '.'A � A'/' or '.'A C A' � �'/' and therefore one of
the desired conditions holds at p. ut

Using Proposition 8.134 we can now finish the proof of Theorem 8.128. Let M0

be a nonempty connected open subset of M on which '.'A � A'/' ¤ 0. Then the
condition
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'.'A C A' � �'/' D 0 (8.171)

holds on M0. We first show that M0 is Hopf. Assume not and use the standard non-
Hopf setup. Differentiating the left side of (8.171) with respect to X, applying the
result to Y and taking the inner product with Z (where X, Y , and Z are in W?), we
obtain

� .X�/h'Y;Zi D ˇ
�hU;ZihAX;Yi � hU;YihAX;Zi�

�ˇ�h'U;ZihAX; 'Yi � h'U;YihAX; 'Zi�: (8.172)

Setting Z D 'Y in (8.172), where Y is nonzero and orthogonal to U and 'U , we
get X� D 0 and thus (8.172) reduces to

hU;ZihAX;Yi�hU;YihAX;Zi D h'U;ZihAX; 'Yi�h'U;YihAX; 'Zi (8.173)

for all X, Y , and Z in W?. Now suppose that X 2 W? is a unit vector such that
AX D �X mod W for some � ¤ 0. Then choosing Y as above and Z D U
in (8.173), we get �hX;Yi D 0. In other words, AX D 0 mod W for all X 2 W?
orthogonal to U and 'U. On the other hand, if we choose Z D U and Y D 'U,
we get hAX; 'Ui D �hAX; 'Ui for all X 2 W?. In particular, � D hAU; 'Ui D 0

and � D hA'U; 'Ui D 0 so that m � ˛ D � where � and � are the parameters
used in the standard non-Hopf setup (and are not to be confused with those used in
Proposition 8.134). We also have 0 D .'A C A' � �'/U D .� � �/'U so that
� D �. Thus .n � 1/� D � which implies that � D � D 0 since n � 3. We have
shown that AW?  W and hence '.'A � A'/' D 0, a contradiction. We conclude
that M0 is Hopf.

Furthermore, M0 is an open subset of a Type B hypersurface. To see this, we
revisit the proof of Proposition 8.134 following the same argument with s D t D
Qs D Qt D 0 up to equation (8.168). Thus, for each pair .X; 'X/, we have AX D �X
and A'X D �'X where

.��C c/.� � �/ D 0:

We also have �C � D �. Thus, if � ¤ �, then

�c D �� D �C �

2
˛ C c D �˛

2
C c

so that � is a nonzero constant. Consequently, both � and � are nonzero constants
and are the same two constants for every choice of X for which the principal
curvatures corresponding to X and 'X are distinct. On the other hand, if � D �

for a choice of X, then �2 � ˛� � c D 0 so that such principal curvatures are
also constant. In the standard classification theorems for Hopf hypersurfaces with
constant principal curvatures (see Theorems 8.13 and 8.12) the only hypersurfaces
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that match our criteria are of Type B, since those of Type A already satisfy
'.'A � A'/' D 0, while for those of types C, D, and E, the values of � C �

are not all the same. For Type B, however, there are two principal curvatures, each
of multiplicity n � 1 and it is easy to check that

'A C A' � �' D 0:

The standard continuity and connectedness argument shows (since M0 is nonempty)
that M0 D M. Thus M is an open subset of a Type B hypersurface.

The alternative is that '.'A � A'/' D 0 everywhere on M. If M has an open
connected subset U that is Hopf, then 'A D A' there and U is an open subset of
a Type A hypersurface by Theorem 8.37. Since the set of points of M matching the
corresponding principal curvature data is closed, we conclude that M itself is an
open subset of a Type A hypersurface. Suppose now that there is no such U . We use
the standard non-Hopf setup. Differentiating

'.'A � A'/' D 0 (8.174)

with respect to X, applying the result to Y and taking the inner product with Z , we
obtain

hU;ZihAX;Yi C hU;YihAX;Zi
Ch'U;ZihAX; 'Yi C h'U;YihAX; 'Zi D 0 (8.175)

for all X, Y , and Z in W?. Recall that W? has an orthonormal basis consisting of
n � 1 pairs .X; 'X/ with respect to which the shape operator A can be expressed as
in (8.162). Then

0 D '.'A � A'/'X D '.'�'X C �X/

D .� � �/'X (8.176)

so that � D � in (8.162). Now take Y D 'X in (8.175) to get

�
�hU; 'XihX;Zi � h'U;Zi C h'U; 'XihX; 'Zi� D 0: (8.177)

This shows that either � D 0 or 'U lies in the span of X and 'X. However, the latter
is impossible, since it would imply the contradictory condition

'U D �h'U;XiX � hU;Xi'X:

Thus � D � D 0 and AW?  W on a dense open subset of M and hence on M
itself. We conclude that M is ruled.

This completes our proof of Theorem 8.128.
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Other results on �-parallelism

Although the hypothesis of Theorem 8.128 requires n � 3, we have a partial result
that covers n D 2.

Theorem 8.135. Let M3 be an �-parallel hypersurface in CP2 or CH2. If

.' ı A � A ı '/W? � W

then either M is ruled or M is an open subset of a Type A hypersurface.

Returning to the Hopf case, we have Kwon and Nakagawa’s result [310] about
the Ricci tensor.

Theorem 8.136. Let M2n�1, where n � 3, be a Hopf hypersurface in CPn or CHn.
If the Ricci tensor is cyclic �-parallel, then M is an open subset of a Type A or a
Type B hypersurface.

A complete proof is given in [399] presented as Theorem 6.23. This proof also
provides detail relevant to the proof of Theorem 8.89. For another version of this
result, see Suh [504].

We define a .1; 3/ tensor field T to be �-parallel if

..rZT/.X;Y//W? � W

for Z, X and Y in W?. Baikoussis, Lyu, and Suh [17] have the following result.

Theorem 8.137. Let M2n�1, where n � 3, be a Hopf hypersurface in CPn or CHn.
If the curvature tensor is �-parallel, then M is an open subset of a Type A or a Type
B hypersurface.

Relaxing the Hopf condition somewhat, Sohn [488] has proved the following.

Theorem 8.138. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn

with �-parallel Ricci tensor. If ŒS; '�W? � W , then M is an open subset of a
hypersurface of Type A or Type B.

It is also possible to weaken the �-parallelism condition, while introducing a
more restrictive algebraic condition. I.-B. Kim, K.H. Kim, and W.H. Sohn [262]
have the following result (see Mayuko Kon [290] for n D 2).

Theorem 8.139. Let M2n�1, where n � 3, be a real hypersurface in CPn or CHn.
Assume that

.' ı A � A ı '/W? � W : (8.178)

• If M is cyclic �-parallel, then it is either ruled or an open subset of a Type A
hypersurface;
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• If the Ricci tensor S is cyclic �-parallel, then M is an open subset of a Type A
hypersurface.

8.5.6 Recurrence conditions

We recall that a tensor field T is recurrent if there is a 1-form ! such that
rXT D !.X/T for all tangent vectors X. The field T is birecurrent if the same
sort of relationship holds for second covariant derivatives, namely (see Section 7.1
for notation)

r2T.I YI X/ D h.X;Y/ T;

for some tensor field h of type .0; 2/.
As we have seen, there are many conditions that can be realized for hypersurfaces

of real space forms (totally umbilic, Einstein, semisymmetric, etc.), but are not
possible in CPn or CHn. Continuing this theme, we have the following.

Theorem 8.140. Let M2n�1, where n � 2, be a real hypersurface in CPn or CHn.
Then,

• the shape operator cannot be birecurrent or recurrent;
• if n � 3, the Ricci tensor cannot be birecurrent or recurrent.

The relationship between birecurrence and recurrence is clarified in the following
algebraic lemma.

Lemma 8.141. Let T be a tensor field of type .1; 1/ on a Riemannian manifold.
Then,

• if T is recurrent, it is also birecurrent;
• if T is symmetric, birecurrent, and nonzero, then T is semiparallel.

Proof. Suppose that .rYT/Z D !.Y/TZ for all tangent vectors Y and Z. Then, by a
few lines of calculation, we get

r2T.I YI X/Z D .rXrYT � rrXYT/Z

D ..rX!/Y/TZ C !.X/!.Y/TZ;

for all tangent vectors X;Y and Z. If we set

h.X;Y/ D .rX!/Y C !.X/!.Y/;

we have r2T.I YI X/ D h.X;Y/T as required. This proves that recurrence implies
birecurrence.

Now, suppose that T is symmetric, birecurrent, and nonzero. Consider T2 and
note that for all tangent vectors Y ,
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rYT2 D rYT ı T C T ı rYT:

Thus

r2T2.I YI X/ DrXrYT2 � rrXYT2

D.rXrYT/ ı T C rYT ı rXT C rXT ı rYT C T ı rXrYT

� rrXYT ı T � T ı rrXYT

Dr2T.I YI X/ ı T C T ı r2T.I YI X/

C rYT ı rXT C rXT ı rYT:

Since T is birecurrent, we have

r2T2.I YI X/ D 2h.X;Y/T2 C rYT ı rXT C rXT ı rYT:

Taking the trace commutes with covariant differentiation. Thus

r2.trace T2/.I YI X/ D trace r2T2.I YI X/

D 2h.X;Y/ trace T2 C 2 trace .rXT ı rYT/:

Since the left side is symmetric in X and Y and trace T2 D jT2j ¤ 0, we must have
h.X;Y/ D h.Y;X/: This means that

R.X;Y/ � T D r2T.I YI X/ � r2T.I XI Y/ D 0;

for all tangent vectors X and Y . In other words, T is semiparallel. ut
Applying Lemma 8.141 to the shape operator, and invoking Theorem 8.42, we

see that the first claim in Theorem 8.140 has been established. (Note that the possible
vanishing of A is not an issue since every hypersurface has at least one point where
A ¤ 0. Birecurrence in a neighborhood of this point yields a contradiction.)

Similarly, every hypersurface has a point (and hence a neighborhood) where
S ¤ 0. Applying the same lemma to S in this neighborhood, we see that birecurrence
of S implies that S is semiparallel, i.e., M is Ricci-semisymmetric. Since this
contradicts Theorem 8.69, we have proved the second claim of Theorem 8.140.

�-recurrence

We have seen in Subsection 8.5.6 that the shape operator of a real hypersurface
cannot be recurrent. However, there are hypersurfaces that satisfy this condition
restricted to W?. Specifically, a .1; 1/ tensor field T is said to be �-recurrent if
there is a 1-form ! such that

.rXT � !.X/T/W? � W (8.179)

for all X 2 W?.
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We have the following result due to Hamada, Lyu, and Suh [188, 343].

Theorem 8.142. Let M2n�1, where n � 3, be a Hopf hypersurface in CPn or CHn

with �-recurrent shape operator. Then M is an open subset of a hypersurface of Type
A or Type B.

Theorem 8.143. Let M2n�1, where n � 3, be a Hopf hypersurface in CPn or CHn

with �-recurrent Ricci tensor. Then M is an open subset of a hypersurface of Type A
or Type B.

This is due to Kon and Loo [291]. The result was proved earlier by Baikoussis,
Lyu, and Suh [18] under the assumption of constant mean curvature.

Nakajima [392] and Nagai [388] have obtained some classification results for
hypersurfaces of Types A and B in terms of the behavior of r2A on vectors in W?.

8.6 Non-Hopf Possibilities in CHn

As we have seen, the homogeneous hypersurfaces in CPn are Hopf and have
constant principal curvatures. After Hopf hypersurfaces with constant principal
curvatures in CHn had been classified, the question of homogeneous hypersurfaces
remained.

Almost a decade elapsed before M. Lohnherr discovered an example of a homo-
geneous non-Hopf hypersurface in CHn. Since this hypersurface is homogeneous, it
has constant principal curvatures. In fact, it is also complete and ruled. The number
of distinct principal curvatures is g D 3 and, in terms of the standard non-Hopf
setup, the upper-left 3 � 3 submatrix of the shape operator is

1

r

2

4
0 1 0

1 0 0

0 0 0

3

5 ; (8.180)

and the rest of the shape operator matrix is zero.

Remark 8.144. The original construction of Lohnherr’s example may be found in
his thesis [335] or in [336]. In fact, we now know (see Theorem 2 of [36]) that
Lohnherr’s hypersurface is characterized by these principal curvature data.

Berndt [30] realized this hypersurface as one of a family of homogeneous
hypersurfaces M� each of which is an orbit of a cohomogeneity-1 action on CHn

by an appropriate subgroup (the Berndt subgroup, see [257]) of the isometry group
of CHn. Again, each M� is non-Hopf and complete. However only M0 is ruled and
only M0 is minimal. The upper-left 3 � 3 submatrix of the shape operator can be
written
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1

r

2

4
3� � �3 � 0

� �3 0

0 0 �

3

5 ; (8.181)

where � D .1 � �2/
3
2 . The rest of the matrix is zero, except that all the remaining

diagonal entries are the same as the .3; 3/ entry. Thus the principal curvatures are �
of multiplicity 2n � 3 and

3

2
� ˙ 1

r

r
1 � 3

4
r2�2; (8.182)

each of multiplicity 1, where � D �=r. Then m D 2n�, which explains our
statement about minimality. The form of the matrix also shows that M� is ruled
if and only if � D 0. It also turns out that the Berndt orbits M� form a parallel
family of hypersurfaces for �1 < � < 1. They are parametrized by � as � ranges
through the interval .�1; 1/.

In the notation of Section 6.7, this family can also be regarded as a family
of parallel hypersurfaces fMug where u ranges through the real numbers. The
hypersurface M0 is the Lohnherr example and Mu is the parallel hypersurface at
(signed) distance ru from it. Using the general techniques for computing shape
operators of tubes (see Theorem 6.36), we find that the shape operator for Mu takes
the form

1

r

2

4
tanh3 u � 3 tanh u sech3u 0

sech3u � tanh3 u 0

0 0 � tanh u

3

5 ; (8.183)

with the extension to higher dimensions as in (8.181). In the notation of the previous
paragraph, we have � D � tanh u. Our calculation shows that this family of parallel
hypersurfaces has no focal points.

The Berndt orbits form a new class of model hypersurfaces in CHn. For n D 2,
their discovery completes the catalogue of hypersurfaces with constant principal
curvatures. Specifically, Berndt and Díaz-Ramos [35] have proved the following:

Theorem 8.145. Let M3 be a non-Hopf hypersurface in CH2 with constant princi-
pal curvatures. Then M is an open subset of a Berndt orbit.

The Lohnherr hypersurface may be generalized to a “ruled minimal submani-
fold” Fk of dimension 2n � k with “rulings” which are complex hyperbolic spaces
CHn�k, totally geodesic in CHn. This can be done for 2 � k � n � 1. Tubes
around such submanifolds are homogeneous hypersurfaces that typically have g D 4

constant principal curvatures. However, (reminiscent of the Type B hypersurfaces),
there is one particular radius for which g reduces to 3. We have
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Theorem 8.146. Let M2n�1, where n � 3, be a non-Hopf hypersurface in CHn

with constant principal curvatures. If the number of distinct principal curvatures is
g D 3, then M is either

• a Berndt orbit, or
• a tube of radius r

2
log.2 C p

3/ around a ruled minimal submanifold Fk where
2 � k � n � 1.

The classification of non-Hopf hypersurfaces in CHn and CPn with constant
principal curvatures is still an active area of research (see, for example, Díaz-Ramos
and Domínguez-Vázquez [131]).

The classification of non-Hopf homogeneous hypersurfaces in CHn has been
completed by Berndt and Tamaru [38]. As a first step in this classification, we can
state

Theorem 8.147. Let M2n�1, where n � 2, be a homogeneous non-Hopf hypersur-
face in CHn with no focal points. Then M belongs to the family of Berndt orbits.

The remaining non-Hopf homogeneous hypersurfaces break down into two
families of tubes over their focal submanifolds. The first is the set of tubes over
the submanifolds Fk.

Also, for each real number � with 0 < � < �
2

, and each integer k satisfying
0 < 2k < n, there is a submanifold Fk;� of dimension 2.n�k/ that arises as the orbit
under the action of a certain closed subgroup of the isometry group of CHn.

We can now state the Berndt-Tamaru classification.

Theorem 8.148. Let M2n�1, where n � 2, be a homogeneous non-Hopf hypersur-
face in CHn with at least one focal point. Then M is either

• a tube over some Fk, or
• a tube over some Fk;� .

Conversely, all such tubes are homogeneous.

The submanifolds Fk and Fk;� were constructed by Berndt and Brück [32]
and are called the Berndt-Brück submanifolds (see, for example, [131]). They are
homogeneous, minimal and “ruled.” We do not formally define “ruled” in this
context but the notion is a natural generalization from the hypersurface case. Here,
the real codimension is k and the holomorphic subbundle is a foliation with complex
dimension n � k and totally geodesic leaves isometric to CHn�k.

8.7 Isoparametric Hypersurfaces in CPn and CHn

We adopt the following definition:
A hypersurface M in a Riemannian manifold is isoparametric if M and its

nearby parallel hypersurfaces have constant mean curvature. This is equivalent
to our definition for hypersurfaces in real space forms given in Section 3.1 (see
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Theorem 3.6). In our case, however, not all isoparametric hypersurfaces have
constant principal curvatures. In fact, for CPn, we have the following theorem due
to Qi-Ming Wang [547].

Theorem 8.149. For hypersurfaces M2n�1 in CPn where n � 2, any two of the
following properties imply the third.

(1) M has constant principal curvatures;
(2) M is Hopf;
(3) M is isoparametric.

On the other hand, the non-Hopf homogeneous hypersurfaces in CHn satisfy
.1/ and .3/ but not .2/. However, as we have also seen, .1/ and .2/ imply .3/.

Although there are isoparametric hypersurfaces in CPn that do not have constant
principal curvatures, every known example of a hypersurface with constant principal
curvatures is in fact Hopf. We also know from Theorems 8.29 and 8.36 that if there is
a non-Hopf hypersurface in CPn with constant principal curvatures, it must satisfy
g � 4 (and hence n � 3). Even though isoparametric hypersurfaces in complex
space forms offer a wider variety of principal curvature configurations than can
occur in the real case, it turns out that there is a close relationship between the two
contexts, as follows.

Lemma 8.150. Let M2n�1, where n � 2, be a real hypersurface in CPn (resp. CHn).
Then M is isoparametric if and only if ��1M is an isoparametric hypersurface of
S2nC1.r/ (resp. H)

Here, we take the definition of isoparametric hypersurface in the anti-de Sitter
space H to be the more general one – all nearby parallel hypersurfaces have con-
stant mean curvature. In this case, an isoparametric hypersurface must have constant
principal curvatures and Cartan’s formula (3.13) (page 91) applies. However, the
hypersurfaces in question are Lorentz and the shape operator, which is self-adjoint
with respect to the Lorentz metric, may not be diagonalizable and its eigenvalues
can be complex. In this context, we require for validity of Cartan’s formula that �i

be a real principal curvature whose algebraic and geometric multiplicities coincide.
There is no restriction on the other principal curvatures �j in the summation.

In spite of this complication, the trace of the shape operator of ��1M is equal
to m, the trace of the shape operator of M, for all hypersurfaces M in CPn or CHn.
This follows immediately from Lemma 6.12.

Using the Cartan formula, one can deduce the following about the principal
curvatures of a Lorentzian isoparametric hypersurface.

Theorem 8.151. Let M2n be a Lorentzian isoparametric hypersurface in the anti-
de Sitter space H. Then the number g0 of distinct principal curvatures will be 1, 2,
3, or 4. Further,

• If there is a complex principal curvature �, then � and its complex conjugate N�
are principal curvatures of multiplicity 1. There are two subcases:

(i) � is purely imaginary, g0 D 3, and the third principal curvature is zero;
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(ii) g0 D 4 and the real principal curvatures � and � satisfy ��C c D 0;

• If all principal curvatures are real, there are two possibilities:

(i) g0 D 2 and the principal curvatures � and � satisfy ��C c D 0;
(ii) g0 D 1.

This theorem is due to Xiao [557] who made use of earlier work by Hahn [187]
and Magid [351]. A detailed proof of the theorem was presented by Domínguez-
Vázquez in his thesis [133, pp. 69–73]. He goes on to prove the following pointwise
result.

Theorem 8.152. Let M2n�1, where n � 2, be an isoparametric hypersurface in
CHn. Then at any point p 2 M,

• The number g of distinct principal curvatures is 2, 3, 4, or 5;
• The dimension h of H (the smallest A-invariant subspace containing W) is 1, 2,

or 3;
• Neither g nor h need be constant.

The second assertion implies that W can be written as the sum of three or fewer
principal vectors corresponding to distinct principal curvatures.

An analysis of the proof gives the following analogue of Theorem 8.149 for CHn.

Theorem 8.153. Let M2n�1 be a Hopf hypersurface in CHn where n � 2. Then M
is isoparametric if and only if its principal curvatures are constant.

For CPn, Xiao [558], relying in part on the work of Park [427], studied the
possible principal curvature configurations. In particular, it follows from his work
that

Theorem 8.154. Let M2n�1, where n � 2, be an isoparametric hypersurface in
CPn. Suppose that the isoparametric hypersurface ��1M in S2nC1.r/ has g0 distinct
principal curvatures with multiplicities m1 � m2. Then

(i) g0 is 2, 4, or 6;
(ii) If g0 D 2, then m1 and m2 are odd;

(iii) If g0 D 4, then either m1 D 1 or m1m2 is even;
(iv) If g0 D 6, then m1 D m2 D 1 so that n D 3.

In fact, if g0 D 2, we can conclude that M is a familiar Hopf hypersurface with
2 or 3 constant principal curvatures. Neither principal space of ��1M is horizontal
and M is an open subset of a Type A hypersurface.

As seen in Theorem 8.13 on page 432, hypersurfaces of types B, C, D, and E all
correspond to g0 D 4. In each case, exactly two principal subspaces for ��1M are
horizontal. In fact, it is a consequence of Xiao’s work that this property characterizes
the Hopf hypersurfaces with constant principal curvatures among all isoparametric
hypersurfaces in CPn.

We now look at non-Hopf isoparametric hypersurfaces with g0 D 4. First note
that h � 3 at all points. Consequently
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h � g � h C 4 � 7:

To see this we use Lemma 8.156. Note that h C 1 of the 4 distinct principal
curvatures of ��1M will have non-horizontal principal spaces and for those that
have dimension greater than one, the corresponding principal curvatures will also
be principal curvatures for M. For example, if h D 3 and

m2 � m1 � 2;

then M has 7 distinct principal curvatures.
If g0 D 6, then (as we have seen in the proof of Theorem 8.13), M cannot be

among the Hopf hypersurfaces with constant principal curvatures. In other words,
M cannot be an open subset of a homogeneous hypersurface.

When g0 D 6, we can also show, again with the help of Lemma 8.156, that
h D 2 cannot hold on any open set. This is because h D 2 implies that three of
the six principal curvatures must have horizontal principal spaces that project to
three 1-dimensional principal subspaces with the same three numbers as principal
curvatures. By considering the restriction of the characteristic polynomial of the
shape operator of ��1M to the complementary 3-dimensional subspace, we can
show that the two principal curvatures corresponding to the principal subspaces
required to represent W must be constant. Thus M is a non-Hopf hypersurface with
constant principal curvatures and h D 2. This contradicts the results of [131].

However, our argument has not eliminated the possible existence of points where
h D 2, or even h D 1. In any case, no matter what the value of h, we have for g0 D 6,

max.h; 5 � h/ � g � 5:

The fact that 5 � h � g follows by a similar argument to the one used for h D 2.
There are 5�h principal curvatures of ��1M with horizontal principal spaces. Their
projections lie in distinct principal spaces of M with the same 5 � h numbers as
principal curvatures. Summarizing, we have

Theorem 8.155. Let M2n�1, where n � 2, be an isoparametric hypersurface in
CPn. Then at any point p 2 M,

• The number g of distinct principal curvatures satisfies g � 7;
• H (the smallest A-invariant subspace containing W) is of dimension h � 5.

Neither g nor h need be constant.

The following algebraic lemma has been useful in our analysis.

Lemma 8.156. Let T be an .m C 1/� .m C 1/ real symmetric matrix. Assume that
T	i D ˛i	i C �i	mC1 for 1 � i � m and that hT	mC1; 	mC1i D 0. Assume further
that the ˛i are distinct and that the �i are all nonzero. Then

• T has m C 1 distinct eigenvalues;
• No ˛i is an eigenvalue;
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• Every eigenvector has a nonzero 	mC1 component.

As a consequence of this lemma, the h principal curvatures of M corresponding
to the principal spaces required to express W determine h C 1 distinct principal
curvatures of ��1M and hC1 non-horizontal mutually orthogonal principal vectors
of ��1M. The .2n � 1 � h/-dimensional orthogonal complement of their span
is horizontal. As a direct sum of (subspaces of) horizontal principal spaces, it
projects to a direct sum of subspaces of principal spaces of M. However, we need
to determine which of the corresponding principal curvatures are distinct from the
h principal curvatures already postulated. As a consequence of Xiao’s work, we
can state:

Theorem 8.157. Let M2n�1, where n � 2, be a non-Hopf isoparametric hypersur-
face in CPn. Suppose that the isoparametric hypersurface ��1M in S2nC1.r/ has g0
distinct principal curvatures. Then, either g0 D 4 or g0 D 6.

• If g0 D 4, then g D 7 and h D 3 generically with g D 5 and h D 1 on a
lower-dimensional subset;

• If g0 D 6, then n D 3. Generically g D 5 but g drops to 4 on a lower-dimensional
subset. The values assumed by h are 5, 3 and 1.

A deeper analysis of the situation by Domínguez-Vázquez [134] yields an almost
complete classification of isoparametric hypersurfaces in CPn, except for n D 15.
For further generalizations of the notion of isoparametric hypersurfaces, see J.
Ge, Z.-Z. Tang and W. Yan [171]. For results on isoparametric submanifolds of
higher codimension in CPn, see Domínguez-Vázquez [134]. See also the notion
of equifocal submanifolds in symmetric spaces due to Terng and Thorbergsson
[530, 531] which is discussed in Subsection 3.8.6.

8.8 Open Problems

In this section, we summarize the problems raised in this chapter that still appear to
be open. Since the literature these topics is vast and many researchers are currently
working in the area, some of the problems may have been already resolved. In any
case, we present the following list:

1. Theorem 8.32 classifies the Hopf hypersurfaces in CHn where n � 3 having
g � 3 principal curvatures under the assumption that ˛2C4c ¤ 0. Do there exist
Hopf hypersurfaces with ˛2 C 4c D 0 other than open subsets of a horosphere?
See Remark 8.33.

2. Classify hypersurfaces in CPn and CHn, where n � 3, having g D 3 distinct
principal curvatures. This is an open-ended problem. It has been settled in case
of constant principal curvatures (Theorem 8.36). Also, ruled hypersurfaces have
g D 3. What other interesting families of hypersurfaces are possible?
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3. Find appropriate criteria for classifying hypersurfaces in CPn and CHn with
g � 4 constant principal curvatures. See discussion following Theorem 8.36.

4. Do there exist non-Hopf Ricci-semisymmetric hypersurfaces in CP2 or CH2?
See Remark 8.70.

5. Do there exist hypersurfaces in CP2 or CH2 with harmonic curvature, i.e.,
whose Ricci tensor is a Codazzi tensor?

6. Do there exist non-Hopf pseudosymmetric hypersurfaces (or even Ricci-
pseudosymmetric hypersurfaces) in CP2 or CH2? See Remarks 8.77 and 8.80.

7. For n � 3, complete the classification of Hopf hypersurfaces in CPn satisfying
' ı S D S ı ' by giving a more precise description of those that do not have
constant principal curvatures. See discussion following Theorem 8.94.

8. For n � 3, find and characterize an interesting family of non-Hopf hypersur-
faces in CPn and/or CHn satisfying ' ı S D S ı '.

9. Classify non-Hopf hypersurfaces in CPn and CHn, where n � 2, satisfying
RWX D �X for some function � and all X 2 W?. See Theorem 8.105 and the
subsequent remarks.

10. Classify Hopf hypersurfaces CPn and CHn, where n � 3, with W-parallel Ricci
tensor. For CPn, this is related to the ' ıS D Sı' condition mentioned in point
7 above (see Theorem 8.121). However, as that theorem indicates, this problem
also relates to the condition ˛ D 0 which is not well understood in the CHn

case (see Remarks 8.106 and 8.126).
11. Classify �-parallel hypersurfaces in CP2 and CH2. See Theorems 8.128

and 8.129 and subsequent remarks.



Chapter 9
Hypersurfaces in Quaternionic Space Forms

In 1986, Martinez and Pérez [353] began the study of real hypersurfaces in
quaternionic space forms, and in 1991, Berndt [28] found a list of standard examples
of real hypersurfaces in quaternionic space forms with constant principal curvatures,
leading to further research in this area. These examples and classification results are
described in this section.

We begin with the construction of the standard models of the quaternionic space
forms, quaternionic projective space HPn and quaternionic hyperbolic space HHn.

9.1 Quaternionic Projective Space

For z D .z0; : : : ; zn/, w D .w0; : : : ;wn/ in HnC1, write

F.z;w/ D
nX

kD0
zk Nwk;

and let hz;wi D <F.z;w/, the real part of F.z;w/. The sphere S4nC3.r/ of radius r
is defined by

S4nC3.r/ D fz 2 HnC1 j hz; zi D r2g:

We may identify HnC1 with R4nC4, defining u; v 2 R4nC4 by

z` D u4` C u4`C1 i C u4`C2 j C u4`C3 k (9.1)

w` D v4` C v4`C1 i C v4`C2 j C v4`C3 k;

for 0 � ` � n: Then

© Thomas E. Cecil and Patrick J. Ryan 2015
T.E. Cecil, P.J. Ryan, Geometry of Hypersurfaces, Springer Monographs
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hz;wi D hu; vi D
4nC3X

`D0
u`v`

is the usual inner product on R4nC4. We will use hz;wi and hu; vi interchangeably.
When desired, we can work exclusively in real terms by introducing the operators
J1, J2, and J3 for (left) multiplication by the quaternionic units i, j, and k. Note that
for z 2 S4nC3.r/,

TzS
4nC3.r/ D fw 2 R4nC4 j hz;wi D 0g:

The restriction of h ; i to S4nC3.r/ is a Riemannian metric whose Levi-Civita
connection Qr satisfies

DXY D QrXY � hX;Yi z

r2

for X, Y tangent to S4nC3.r/ at z, where D is the Levi-Civita connection of R4nC4.
The usual calculations of the Gauss equation show that the curvature tensor QR of Qr
satisfies

QR.X;Y/ D 1

r2
X ^ Y: (9.2)

Let V be the span of fJ1z; J2z; J3zg and write down the orthogonal decomposition
into so-called vertical and horizontal subspaces,

TzS
4nC3.r/ D V ˚ V?:

The quaternionic projective space HPn is the set of 1-dimensional subspaces of
HnC1, considered as a left vector space over H. The canonical projection is

� W S4nC3.r/ ! HPn;

with fiber S3, the group of unit quaternions.

9.2 Quaternionic Hyperbolic Space

Next, we introduce the quaternionic hyperbolic space HHn. The construction is
parallel to that of HPn with some important differences. For z, w in HnC1, write

F.z;w/ D �z0 Nw0 C
nX

kD1
zk Nwk;
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and let hz;wi D <F.z;w/. Using the same identification of HnC1 with R4nC4 we get

hz;wi D hu; vi D �
3X

`D0
u`v` C

4nC3X

`D4
u`v`:

Set

H D fz 2 HnC1 j hz; zi D �r2g:

The restriction of h ; i to H makes it into the pseudohyperbolic space H4nC3
3 .r/,

a semi-Riemannian space form of constant curvature � 1
r2

and index 3 (see [412,
p. 110]). Its tangent space is given by

TzH D fw 2 HnC1 j hz;wi D 0g;

and its Levi-Civita connection Qr satisfies

DXY D QrXY C hX;Yi z

r2

at z. The Gauss equation takes the form

QR.X;Y/ D � 1

r2
X ^ Y: (9.3)

Again we get an orthogonal decomposition

TzH D V ˚ V?:

Denote by HHn the image of H by the canonical projection � to complex projective
space,

� W H ! HHn � HPn:

Thus, topologically, HHn is an open subset of HPn. However, as Riemannian
manifolds, they have quite different structures.

9.3 Quaternionic Space Forms

From here on we make a uniform exposition covering both HPn and HHn. When
convenient, we make use of the letter 	 to distinguish the two cases. It will serve
as the sign of the constant quaternionic curvature 4c D 4	=r2. For example, (9.2)
and (9.3) could be written as
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QR.X;Y/ D 	

r2
X ^ Y:

We also use QM to stand for either HPn or HHn and QM0 for S4nC3.r/ or H.
Note that ��V D 0 but that �� is an isomorphism on V?. Let z be any point of

QM0. For X 2 T�z QM, let XL be the vector in V?z that projects to X. Then XL is called the
horizontal lift of X to z. Define a Riemannian metric on QM by hX;Yi D hXL;YLi.
It is well defined since the metric on QM0 is invariant by the fiber S3. Since V? is
invariant by J1, J2, and J3, the Ji determine .1; 1/ tensor fields on QM which we (by
abuse of notation) also denote by J1, J2, and J3. The reader can easily distinguish by
context. Specifically, we define for X 2 Tz QM

JiX D ��.JiX
L/:

It is easy to check that the Ji are complex structures on Tz QM and that h ; i is
Hermitian with respect to each of them. Further, they satisfy the identities

Ji ı JiC1 D JiC2 .indices mod 3/ (9.4)

Ji ı Jj D �Jj ı Ji

for 1 � i ¤ j � 3. The Levi-Civita connection Qr on QM satisfies

QrXY D ��. QrXL YL/:

We also note that on QM0

QrXL V D QrVXL D JiX
L D .JiX/

L (9.5)

for V D Jiz 2 V; while

QrVV � V :

See [412] for background on Riemannian submersions.
The curvature tensor of QM follows from the relationship between the respective

Levi-Civita connections on QM and QM0.
Theorem 9.1. The curvature tensor QR of QM satisfies

QR.X;Y/Z D 	

r2

�
X ^ Y C

3X

iD1
.JiX ^ JiY C 2hX; JiYiJi/

�
Z: (9.6)

Denote by J the span of fJ1; J2; J3g. J is a rank 3 sub-bundle of the bundle of .1; 1/
tensor fields on QM and gives QM the structure of a quaternionic Kähler manifold (see
[28]). In particular, it follows from (9.6) that every quaternionic 2-plane (i.e., one
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with a basis of the form fX; JXg where J 2 J ) has sectional curvature 4	=r2 which
we can write as 4c. Such a space is said to have constant quaternionic sectional
curvature.

We recall that in the case of a Kähler manifold (for example, a complex
space form), the complex structure J is parallel, i.e., QrJ D 0. In the case of
a quaternionic Kähler manifold, it is the quaternionic Kähler structure J that is
parallel. Specifically, for quaternionic space forms, we have

Proposition 9.2. On a quaternionic space form QM, there are 1-forms q1, q2, and q3
such that for all tangent vectors X,

QrXJi D qiC2.X/JiC1 � qiC1.X/JiC2 (9.7)

(with indices mod 3) for 1 � i � 3.

Remark 9.3. The result of this proposition is really a property of the quaternionic
Kähler structure J in the sense that it holds for any local basis of J consisting of
complex structures satisfying (9.4) on each tangent space.

9.4 Tubes over Submanifolds

Let M be a submanifold of a quaternionic space form QM of constant quaternionic
sectional curvature 4c D 4	

r2
. For � D .p; v/ in the unit normal bundle, let X be an

eigenvector of Av corresponding to an eigenvalue �. Let �t be the (normal) geodesic
determined by � . Let Bt be the parallel vector field along �t with B0 D X. We are
interested in the shape operators of tubes over M.

Lemma 9.4. Assume that X is orthogonal to the span of fJ1v; J2v; J3vg.

• If c > 0, then Xt D .cos u � r� sin u/Bt is a Jacobi field along �t with X0 D X
and X00 D ��X;

• If c < 0, then Xt D .cosh u � r� sinh u/Bt is a Jacobi field along �t with X0 D X
and X00 D ��X;

where u D t=r.

Proof. First it is easy to check that

Qr2
t Xt D X00t D �cXt:

We need to compute QR.Xt;
�!�t /

�!�t . We consider the terms of (9.6) separately. First,
we see that

	

r2
.Xt ^ Ut/Ut D 	

r2
.hUt;UtiXt � hXt;Uti Ut/ D cXt; (9.8)
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where Ut is the unit vector �!�t . Since Xt is a scalar multiple of Bt, hBt;Uti is constant
along �t (being the inner product of two vector fields that are parallel along �t), and
hB0;U0i D hX; vi D 0: Now,

�
JiXt ^ JiUt C 2hX; JiUtiJi

�
Ut D �hJiXt;UtiJiUt C 2hX; JiUtiJiUt

D 3hXt; JiUtiJiUt: (9.9)

We claim that

3X

iD1
hXt; JiUtiJiUt D 0: (9.10)

To see this, we show that

3X

iD1
Qrt.hBt; JiUtiJiUt/ D 0; (9.11)

and use the fact that Xt is a scalar multiple of Bt. Differentiation of Bt and Ut yields
zero, but differentiation of Ji requires substitution from (9.7). One can check that
the coefficient of each JiUt in the result consists of 4 terms which cancel in pairs.
This completes the proof. ut
Lemma 9.5. Assume that X lies in the span of fJ1v; J2v; J3vg.

• If c > 0, then Xt D .cos 2u � r
2
� sin 2u/Bt is a Jacobi field along �t with X0 D X

and X00 D ��X.
• If c < 0, then Xt D .cosh 2u � r

2
� sinh 2u/Bt is a Jacobi field along �t with

X0 D X and X00 D ��X,

where u D t=r.

Proof. The proof is similar to that of the previous lemma. First of all, we get

Qr2
t Xt D X00t D �4cXt:

The first term in the curvature expression is unchanged from (9.8). Further-
more, (9.11) still holds. This means that

P3
iD1hBt; JiUtiJiUt is parallel along �t. Its

initial value is
P3

iD1hX; JiviJiv. However, this is just X since fJivg an orthonormal
triple. Thus the summation,

3X

iD1
hBt; JiUtiJiUt

coincides with Bt and hence
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3X

iD1
hXt; JiUtiJiUt D Xt:

Consequently,

QR.Xt;
�!�t /

�!�t D cXt C 3cXt D 4cXt; (9.12)

and the Jacobi equation is satisfied. ut
To complete the tangent space to the tube, we need to look at normals orthogonal

to v.

Lemma 9.6. Assume that .p;w/ in N1M with hw; vi D hw; Jivi D 0 for 1 � i � 3.
Let Wt be parallel along �t with W0 D w.

• If c > 0, then Yt D .sin u/Wt is a Jacobi field along �t with Y0 D 0 and Y 00 D w
r .

• If c < 0, then Yt D .sinh u/Wt is a Jacobi field along �t with Y0 D 0 and Y 00 D w
r ,

where u D t=r.

Proof. Again, it is easy to check that Y 00t D �cYt and that the first term of the
curvature expression is cYt. The expression corresponding to (9.11) is again zero.
However, this time

P3
iD1hWt; JiUtiJiUt vanishes since W0 D w is orthogonal to all

of the Jiv. Hence, Yt is a Jacobi field satisfying Y0 D 0 and Y 00 D w
r as required. ut

Lemma 9.7. Assume that .p;w/ in N1M with hw; vi D 0 but

w 2 SpanfJ1v; J2v; J3vg:

Let Wt be parallel along �t with W0 D w.

• If c > 0, then Yt D 1
2

sin 2u Wt is a Jacobi field along �t with Y0 D 0 and Y 00 D w
r ,

• If c < 0, then Yt D 1
2

sinh 2u Wt is a Jacobi field along �t with Y0 D 0 and
Y 00 D w

r ,

where u D t=r.

Proof. Following the same procedures as in earlier cases, we find that Y 00t D �4cYt

and that
P3

iD1hWt; JiUtiJiUt D Wt so that QR.Yt;
�!�t /

�!�t D 4cYt, and the Jacobi
equation is satisfied. ut

9.5 Real Hypersurfaces

Now take any space QM of constant quaternionic curvature 4c with real dimension 4n
and Levi-Civita connection
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Qr. For an immersed manifold f W M4n�1 ! QM, the Levi-Civita connection r
of the induced metric and the shape operator A of the immersion are characterized
respectively by

QrXY D rXY C hAX;Yi�;
and

QrX� D �AX;

where � is the local choice of unit normal. We omit mention of the immersion f for
brevity of notation. Then analogous with the situation for complex space forms, we
have the unit vector fields Wi D �Ji� on M. Also, we get the .1; 1/ tensor fields 'i

on M by projection of the Ji. Specifically, for all tangent vectors X, we define

'iX D JiX � hJiX; �i� D JiX � hX;Wii�:

Let W be the span of fW1;W2;W3g. Then each 'i preserves W and W?. Specifi-
cally, we have

Lemma 9.8. The Wi and the 'i satisfy the following identities (with indices mod 3)

'iWi D 0

'iWiC1 D WiC2I 'iWiC2 D �WiC1
'iX D JiX for X 2 W?i (9.13)

'2i X D �X for X 2 W?i :

The relationship between Qr and r gives rise to the Gauss and Codazzi equations
for the hypersurface

R.X;Y/ D AX ^ AY C c
�
X ^ Y C

3X

iD1
.'iX ^ 'iY C 2hX; 'iYi'i/

�
(9.14)

.rXA/Y � .rYA/X D c
� 3X

iD1
.hX;Wii'iY � hY;Wii'iX C 2hX; 'iYiWi/

�
: (9.15)

From the Gauss equation, we can compute the Ricci tensor S which is given by

SX D .4n C 7/cX � 3c
3X

iD1
hX;WiiWi C mAX � A2X (9.16)

where m is the trace of A.
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A hypersurface is said to be pseudo-Einstein if the Ricci tensor acts as a multiple
of the identity on both W and W?. Specifically, M is pseudo-Einstein if there exist
functions � and � such that

SX D �X C �

3X

iD1
hX;WiiWi;

for all tangent vectors X. Although it is traditional to require that � and � be
constant, we will not do this since (as we shall see below) it follows from the
classification, at least when n � 3. In fact, it is easy to see that even the smoothness
of � and � need not be assumed. Note that if � is identically zero, we have the
familiar Einstein condition. In contrast to the situation in complex projective space,
Einstein hypersurfaces can occur, specifically there is one particular radius for which
the geodesic sphere in quaternionic projective space is Einstein (see next section).

9.6 Examples in Quaternionic Projective Space

Let M be a totally geodesic HPk in HPn. For 0 < u < �
2
; the tube of radius ru over

M is a hypersurface in HPn.

Type A2
If 1 � k � n � 2, then we have the following principal curvatures:

• 2
r cot 2u of multiplicity 3;

• 1
r cot u of multiplicity 4`;

• � 1
r tan u of multiplicity 4k.

where k C ` D n � 1.

Type A1
If k D n � 1, we have the following principal curvatures:

• 2
r cot 2u of multiplicity 3;

• � 1
r tan u of multiplicity 4k D 4n � 4.

The Type A1 hypersurfaces are tubes over quaternionic projective hyperplanes. They
are also geodesic spheres. For example, the geodesic sphere centered at �e0 with
radius r.�

2
� u/ coincides with the tube of radius ru over the totally geodesic HPn�1

given by �fz j z0 D 0g. In fact, if we abuse notation slightly and set k D 0 in the
prescription for Type A2 hypersurfaces, we get

• 2
r cot 2u of multiplicity 3;

• 1
r cot u of multiplicity 4n � 4:

which, upon substitution of �
2

� u, would give the configuration of principal
curvatures derived for the Type A1 case (with a change of sign).
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Type B

Let M be a totally geodesic CPn in HPn. This can be obtained, for example, by
taking any J 2 J and taking

M D �.fx C Jy j x; y 2 RnC1; jxj2 C jyj2 D r2g/ � HPn: (9.17)

(In particular, we could pick J D J1). For 0 < u < �
4
; the tube of radius ru over M

is a hypersurface in HPn. Its principal curvatures are as follows:

• ˛ D 2
r cot 2u of multiplicity 1;

• ˇ D � 2
r tan 2u of multiplicity 2;

• � D 1
r cot u of multiplicity 2.n � 1/;

• � D � 1
r tan u of multiplicity 2.n � 1/.

9.7 Examples in Quaternionic Hyperbolic Space

Type A0
These are the horospheres in HHn. Our description follows closely that used for

CHn. For t > 0 consider the hypersurface

M0 D fz 2 HnC1jhz; zi D �r2; jz0 � z1j2 D tg

in H. Then the corresponding horosphere M is �M0. For z 2 M0, let � 0 be the unit
normal at z with corresponding shape operator A0. For any J 2 J (normalized so
that J2 D �I), let V D 1

r Jz and U D �J� 0. Then A0V D 1
r U and A0U D � 1

r V .
Further, A0X D 1

r X for X orthogonal to all such U and V . On projection down to
HHn, the ��V all vanish and the ��U span the 3-dimensional subspace W . The
principal curvatures of the horosphere M are

• 2
r with multiplicity 3;

• 1
r with multiplicity 4n � 4.

The respective principal spaces are W and W?.
Let M be a totally geodesic HHk in HHn. For u > 0 the tube of radius ru over

M is a hypersurface in HHn.

Type A2
If 1 � k � n � 2, then we have the following principal curvatures:

• 2
r coth 2u of multiplicity 3;

• 1
r coth u of multiplicity 4`;

• 1
r tanh u of multiplicity 4k.

where k C ` D n � 1.
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Type A1
If k D n � 1, we have the following principal curvatures:

• 2
r coth 2u of multiplicity 3;

• 1
r tanh u of multiplicity 4k D 4n � 4.

The Type A1 hypersurfaces are tubes over quaternionic projective hyperplanes.
Unlike the case in HPn, the geodesic spheres form a distinct class of hypersurfaces,
formally corresponding to the k D 0 case. The principal curvatures of a geodesic
sphere of radius ru are:

• 2
r coth 2u of multiplicity 3;

• 1
r coth u of multiplicity 4n � 4:

Type B

Let M be a totally geodesic CHn in HHn. In a similar fashion to the HPn case,
we take

M D �.fx C Jy j x; y 2 RnC1; hx C Jy; x C Jyi D �r2g/ � HHn: (9.18)

(In particular, we could pick J D J1). For u > 0; the tube of radius ru over M is a
hypersurface in HHn. Its principal curvatures are as follows:

• ˛ D 2
r coth 2u of multiplicity 1;

• ˇ D 2
r tanh 2u of multiplicity 2;

• � D 1
r coth u of multiplicity 2.n � 1/;

• � D 1
r tanh u of multiplicity 2.n � 1/.

Proposition 9.9.
1. Type A1 hypersurfaces are pseudo-Einstein with

SX D ��X C .�˛ � ��/
3X

iD1
hX;WiiWi;

where

�� D .4n C 7/c C .4n � 5/�2 C 3�˛ D 4.n C 1/c C 2.2n � 1/�2

�˛ D .4n C 4/c C .4n � 4/�˛ C 2˛2 D 8c C 4.n � 1/�2 C 2˛2
(9.19)

and � is the principal curvature of multiplicity 4n � 4.
2. Type A0 hypersurfaces are pseudo-Einstein with

SX D ��X C .�˛ � ��/
3X

iD1
hX;WiiWi;



544 9 Hypersurfaces in Quaternionic Space Forms

where

�� D �6�2 (9.20)

�˛ D 4.n � 1/�2

and � is the principal curvature of multiplicity 4n � 4. (Note that these values
are limits as u ! 1 of the respective values for the corresponding Type A1
hypersurfaces.)

3. A Type A1 hypersurface in HPn (considered as a tube of radius ru over HPn�1) is
Einstein precisely when cot2 u D 2n: A geodesic sphere of radius ru is Einstein
precisely when tan2 u D 2n. No Type A1 hypersurface in HHn is Einstein.

4. The principal vectors of Type A2 hypersurfaces are also eigenvectors of the Ricci
tensor S with corresponding eigenvalues

�� D 4.`C 2/c C 2.2`C 1/�2

�� D 4.k C 2/c C 2.2k C 1/�2 (9.21)

�˛ D 4c C 2
�
.2`C 1/�2 C .2k C 1/�2/

�

5. No Type A2 hypersurface is Einstein. A Type A2 hypersurface in HPn is pseudo-
Einstein if and only if

cot2 u D 2k C 1

2`C 1
:

In this case, �� D �� D 2.2n C 3/c while �˛ D 4.n C 1/c. No Type A2
hypersurface in HHn is pseudo-Einstein.

The situation for Type B hypersurfaces is more complicated since A has two
distinct eigenspaces in W and two in W?. Of course, the Ricci tensor S is a multiple
of the identity on each of these eigenspaces and the corresponding multipliers can
be computed as

�˛ D 2.n � 1/.2c C ˛2/

�ˇ D �4.n � 2/c C ˇ2 (9.22)

�� D 2..n C 4/c C .n � 1/�2 C ˇ�/

�� D 2..n C 4/c C .n � 1/�2 C ˇ�/:

Lemma 9.10.
1. A Type B hypersurface in HPn satisfies �˛ D �ˇ if and only if tan2 2u D 2.n�1/.

There are no Type B hypersurfaces in HHn for which �˛ D �ˇ;
2. A Type B hypersurface in HPn satisfies �� D �� if and only if tan2 2u D n � 1.

There are no Type B hypersurfaces in HHn for which �� D ��:
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Proof. From our formula for the Ricci tensor of a hypersurface, we note that
�˛ D �ˇ if and only if m˛ � ˛2 D mˇ � ˇ2. Also,

m D ˛ C 2ˇ C 2.n � 1/.�C �/ D ˛ C 2ˇ C 2.n � 1/˛;
since �C� D ˛. Using ˛ ¤ ˇ, we can see that �˛ D �ˇ if and only if m D ˛Cˇ.
This is equivalent to

˛2 D 2c

n � 1 ;

since ˛ˇ D �4c. We conclude that c is positive and tan2 2u D 2.n � 1/. The
condition that �� D �� can be treated similarly. However, in this case, we have
m D �C � D ˛, which leads to the condition

˛2 D 4c

n � 1 :

Again c is positive. In this case, we get tan2 2u D n � 1. This completes the proof.
ut

9.8 Curvature-adapted Hypersurfaces

Let M be a submanifold of a Riemannian manifold QM. For a unit normal vector � at
a point p 2 M, the normal Jacobi operator

R� W TpM ! Tp QM
is defined by R�X D QR.X; �/� . M is said to be curvature-adapted if for all p 2 M,

R� .TpM/ � TpM and R� ı A� D A� ı R� (9.23)

for all unit normals � at p. Note that R� .TpM/ � TpM holds automatically for a
hypersurface. We can check the following for familiar ambient spaces.

Proposition 9.11.
• Every hypersurface in a real space form is curvature-adapted;
• A hypersurface in a nonflat complex space form is curvature-adapted if and only

if it is Hopf;
• A hypersurface in a nonflat quaternionic space form is curvature-adapted if and

only if its shape operator A satisfies AW � W .

Proof. For a real space form of constant curvature c, we have

R�X D QR.X; �/� D c.X ^ �/� D cX (9.24)
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so that R� acts as a scalar multiple of the identity and thus commutes with A
automatically. For a complex space form of constant holomorphic curvature 4c, we
have, for any tangent vector X,

QR.X; �/� D c
�
.X ^ �/C JX ^ J� C 2hX; J�iJ/��

D c.X C 3hX;WiW/ (9.25)

from which it is clear that R�X is tangent. Further, R�X commutes with A if and
only if

hX;WiAW D hX;AWiW: (9.26)

By setting X D W, we see that M is Hopf if R�X commutes with A. On the other
hand, if M is Hopf, then the same equation is satisfied, both for X D W and for
X 2 W?.

Finally we look at the quaternionic case. From (9.6), we see that the expression
for R� is just a more complicated version of (9.25). Specifically, for a tangent
vector X,

QR.X; �/� D c
�
.X ^ �/C

3X

iD1
.JiX ^ Ji� C 2hX; Ji�iJi/

�
�

D c.X C 3

3X

iD1
hX;WiiWi/: (9.27)

Again, it is evident that R�X is tangent and that R� commutes with A if and only if

3X

iD1
hX;WiiAWi D

3X

iD1
hX;AWiiWi: (9.28)

for all tangent vectors X. Setting X D Wj in (9.28) for each j 2 f1; 2; 3g in
turn, we see that AWj D PhAWi;WjiWi for each j and hence that AW � W .
Conversely, if W is A-invariant, then (9.28) is satisfied for each individual Wj and
hence ŒR� ;A�Wj D 0. Also, if X 2 W?, then (9.28) is satisfied and we can conclude
that R� and A commute.

This completes our proof for all three cases. ut
For curvature-adapted hypersurfaces in nonflat quaternionic space forms, we

have the following analogue of our fundamental formula for Hopf hypersurfaces
(see Theorem 6.17 or Lemma 2.2 of [399]).
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Lemma 9.12. Let M be a curvature-adapted hypersurface in HPn or HHn. Choose
i 2 f1; 2; 3g and suppose that AWi D ˛Wi. Then

A'iAX D ˛

2
.A'i C 'iA/X C c'iX

for all X 2 W?.

This and other useful material may be found in Adachi and Maeda [3, 4].

Proposition 9.13. All Type A hypersurfaces in nonflat quaternionic space forms
satisfy A ı 'i D 'i ı A for i 2 f1; 2; 3g.

In fact, this property characterizes the Type A hypersurfaces as follows:

Theorem 9.14. Let M4n�1, where n � 2, be a hypersurface in HPn or HHn. Then
A ı 'i D 'i ı A for 1 � i � 3 if and only if M is an open subset of a hypersurface of
Type A.

We also have for hypersurfaces in quaternionic projective space

Theorem 9.15. Let M4n�1, where n � 2, be a hypersurface in HPn. Then M is
curvature-adapted if and only if it is an open subset of a hypersurface of Type A or
Type B.

In the hyperbolic case, however, we need an additional assumption.

Theorem 9.16. Let M4n�1, where n � 2, be a hypersurface in HHn with constant
principal curvatures. Then M is curvature-adapted if and only if it is an open subset
of a hypersurface of Type A or Type B.

Thus we see that “curvature-adapted” property is a rather strong one for
hypersurfaces of quaternionic space forms, standing in contrast to the situation for
complex space forms where there many nontrivial examples of Hopf hypersurfaces.
We note that all known examples of curvature-adapted hypersurfaces in HHn have
constant principal curvatures.

Theorems 9.15 and 9.16 were proved by Berndt [28]. Martinez and Pérez
had previously proved Theorem 9.15 under the assumption of constant principal
curvatures. As in the case of complex space forms, the proofs involve a study of
parallel hypersurfaces, tubes and focal submanifolds.

Just as in the case of complex space forms, it is impossible for the shape operator
A to vanish identically. In fact, we have jrAj2 � 24c2.n � 1/: Further, we get the
following analogue of Theorem 8.37.

Theorem 9.17. Let M4n�1, where n � 2, be a real hypersurface in HPn or HHn.
The following are equivalent:

1. M is an open subset of a Type A hypersurface;
2. 'iA D A'i for all i 2 f1; 2; 3gI
3. jrAj2 D 24c2.n � 1/;
4. .rXA/Y C c

P3
iD1.h'iX;YiWi C hY;Wii'iX/ D 0 for all X and Y tangent to M.
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These results are due to Pak [424] and Lyu, Pérez and Suh [342]. Pérez [430]
has also proved for the case of HPn that a hypersurface M is cyclic parallel if and
only if it satisfies the conditions of Theorem 9.17. Further, Ki, Suh and Pérez [256]
have shown (again, for HPn) that having conditions 2. and 4. of Theorem 9.17 both
holding on W? is also equivalent. Note that on W?, Condition 4. takes the simpler
form .rXA/Y C c

P3
iD1h'iX;YiWi D 0:

The Type A and Type B hypersurfaces in HPn may also be characterized by
properties of the (tangent) Jacobi operators. Recalling the definition of the Jacobi
operators from equation (8.115), we have

Theorem 9.18. Let M4n�1, where n � 3, be a hypersurface in HPn. Then all Jacobi
operators of M commute if and only if M is curvature-adapted.

Remark 9.19. This is proved in Ortega, Pérez, and Suh [417]. The following
questions still seem to be open:

• Is this theorem true for n D 2?
• Is this theorem true for hypersurfaces in HHn?

The analogue of Theorem 8.29 for the quaternionic case is the following due to
Martinez, Pérez and Ortega [353, 415].

Theorem 9.20. Let M4n�1, where n � 3, be a hypersurface in HPn or HHn. Then
M has g � 2 principal curvatures at each point if and only if it is an open subset of
a hypersurface of Type A1 or Type A0.

The n D 2 case of this theorem is an open problem.
The situation for homogeneous hypersurfaces in the quaternionic space forms

is similar to the complex case. For the quaternionic projective space, we have the
following results of Iwata [226] and D’Atri [126].

Theorem 9.21. Let M4n�1, where n � 2, be a homogeneous hypersurface in HPn.
Then M is a hypersurface of Type A or Type B. Conversely, all Type A and Type B
hypersurfaces are homogeneous.

For the quaternionic hyperbolic space, the classification problem is still open. See
Berndt [31] for a discussion of this and related questions. We do know that there are
examples other than the Type A and B hypersurfaces. First we define the notion of
ruled hypersurfaces in the quaternionic context.

A hypersurface in HPn (resp. HHn) is said to be ruled if W? is a foliation with
totally geodesic leaves locally congruent to HPn�1 (resp. HHn�1). As in the case of
complex space forms, a hypersurface is ruled if and only if AW?  W .

A family of homogeneous ruled real hypersurface in HHn was constructed by
Adachi, Maeda and Udagawa [6]. These hypersurfaces are not curvature-adapted
but have constant principal curvatures. The construction is motivated by that of
Lohnherr (see Section 8.6 and [335, 336]).
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9.9 Einstein, Pseudo-Einstein, and Related Conditions

As we have seen in section 9.7, geodesic spheres of radius ru in HPn are Einstein
when tan2 u D 2n. Also, all Type A1 and Type A0 hypersurfaces in the nonflat
quaternionic space forms are pseudo-Einstein. The only Type A2 hypersurfaces that
are pseudo-Einstein are those in HPn for which cot2 u D 2kC1

2`C1 . Martinez, Ortega,
Pérez and Santos [353, 415, 435] showed that for n � 3, these are essentially all the
pseudo-Einstein hypersurfaces. Specifically, we can state

Theorem 9.22. Let M4n�1, where n � 3, be a pseudo-Einstein hypersurface in HPn

or HHn. Then M is an open subset of a Type A1 or Type A0 hypersurface or a Type
A2 hypersurface in HPn for which cot2 u D 2kC1

2`C1 :

The classification question for pseudo-Einstein hypersurfaces remains open for
n D 2. The same authors also introduced a slightly different condition, “almost-
Einstein.” This means that there exist functions � and � such that

SX D �X C �

3X

iD1
hAX;WiiWi

for all tangent vectors X. For n � 3, every almost-Einstein hypersurface is pseudo-
Einstein. Thus the almost-Einstein hypersurfaces can be classified by checking the
standard examples. However, for n D 2, the almost-Einstein condition is sufficiently
strong to allow the same classification. The result is as follows:

Theorem 9.23. Let M4n�1, where n � 2, be an almost-Einstein hypersurface in
HPn or HHn. Then M is an open subset of a Type A1 or Type A0 hypersurface or a
Type A2 hypersurface in HPn for which cot2 u D 2kC1

2`C1 :

We see that for a Type B hypersurface in HPn, one particular radius gives
�˛ D �ˇ and a different radius gives �� D ��. In neither case is the pseudo-Einstein
condition satisfied. This example motivated Ortega and Pérez [416] to consider the
condition that S acts as a multiple of the identity on W?. They called this condition
“D-Einstein”. Their result is as follows:

Theorem 9.24. Let M4n�1, where n � 3, be a real hypersurface in HPn or HHn.
Suppose that there is a function � such that SX D �X for all X 2 W?. Then either M
is pseudo-Einstein or is an open subset of a Type B hypersurface in HPn satisfying
tan2 2u D n � 1.

Of course, this gives a specific list of Type A and B hypersurfaces that are
characterized by the D-Einstein condition.
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Further classification theorems and problems

There are no hypersurfaces in HPn or HHn with parallel shape operator. In fact,
there are none satisfying the semiparallelism condition R � A D 0. However, Pérez
[432] has classified the hypersurfaces in HPn, where n � 2, satisfying rWA D 0:

Weakening the parallelism condition in another way, he has classified the cyclic
parallel hypersurfaces, (again for HPn, where n � 2), namely those for which the
cyclic sum of h.rXA/Y;Zi vanishes [430].

There are no locally symmetric hypersurfaces in HPn or HHn. In fact, there
are none satisfying the semisymmetry condition R � R D 0. Pérez and Suh [441]
have classified the hypersurfaces in HPn, where n � 3, satisfying rWR D 0: In
addition, Pérez and his collaborators have studied various conditions on the Ricci
tensor, mostly in the context of HPn where n � 3. In particular, they have

Theorem 9.25. Let M4n�1, where n � 2, be a real hypersurface in HPn. Then
following are equivalent:

1. M is Einstein;
2. M is Ricci-parallel (i.e., rS D 0) [433];
3. M has harmonic curvature (i.e., S is a Codazzi tensor) and A acts on W as a

scalar multiple of the identity [437];
4. M is cyclic-Ryan (i.e., R.X;Y/SZ C R.Y;Z/SX C R.Z;X/SY D 0 for all triples
.X;Y;Z/ of tangent vectors) [431, 436].

For other results, see [383, 434, 438] and [314]. Several results pertain only to HPn,
where n � 3. There are still many questions unresolved for HHn and/or n D 2.

9.10 Open Problems

Although our treatment of the quaternionic ambient spaces has been much less
detailed than that of the complex case, we list here a few problems that appear
to be open for hypersurfaces in the quaternionic space forms.

1. Theorem 9.18 characterizes hypersurfaces in HPn, where n � 3, whose Jacobi
operators commute. Does this theorem extend to n D 2? Does it extend to the
quaternionic hyperbolic space HHn?

2. Theorem 9.20 classifies hypersurfaces in HPn and HHn, where n � 3, having
g � 2 distinct principal curvatures. Does this theorem extend to n D 2?

3. Theorem 9.21 classifies the homogeneous hypersurfaces in HPn. What is the
analogous classification theorem for HHn?

4. Classify the pseudo-Einstein hypersurfaces in HP2 and HH2. See Theorem 9.22.
See also remarks following Theorem 9.25.
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9.11 Further Research

All the material we have discussed in this book falls under the heading of
“Hypersurfaces of symmetric spaces.” Our ambient spaces have progressed in
complexity, beginning with the real space forms, then moving to the complex space
forms, and finally the quaternionic space forms. Important classification criteria
have been constancy of principal curvatures, the curvature-adapted/Hopf property,
and special identities involving geometric objects such as the shape operator, the
curvature tensor and other tensors derived from it, principally the Ricci tensor and
the structure Jacobi operator. A key unifying property of many of the most important
classes of hypersurfaces is that they are tubes over their focal submanifolds , or at
least share many of the algebraic properties of such tubes.

The most active area of study over the past decade has been that of hypersurfaces
in the next most complicated ambient spaces, the complex two-plane Grassmannians
(see Section 7.4). This topic was introduced by Berndt and Suh [29, 37] and
approximately 100 papers have appeared in which many of the problems discussed
in Chapters 8 and 9 have been studied in this new context. Unfortunately, limitations
of time and space do not permit us to discuss these results in the current volume.



Appendix A
Summary of Notation

The following is a list of notations that are used frequently in the book and whose
meaning is usually assumed to be known. Some symbols are used in more than one
way.

1. Let R, C, H, O denote the real, complex, quaternion, and Cayley numbers,
respectively.

Z ring of integers
Z2 field of integers modulo 2
Rn vector space of n-tuples of real numbers .x1; : : : ; xn/

Rn
k Rn endowed with an indefinite metric of signature .k; n � k/

Cn vector space of n-tuples of complex numbers .z1; : : : ; zn/

Hn vector space of n-tuples of quaternions .z1; : : : ; zn/

hx; yi nondegenerate bilinear form, signature depends on context
jxj length of a vector x
Sn unit sphere in RnC1
Hn n-dimensional hyperbolic space with constant curvature �1
Dn n-dimensional unit disk in Rn

RPn n-dimensional real projective space
CPn n-dimensional complex projective space
CHn n-dimensional complex hyperbolic space
HPn n-dimensional quaternionic projective space
HHn n-dimensional quaternionic hyperbolic space
OP2 Cayley projective plane
QnC1 Lie quadric in RPnC2
�2n�1 manifold of projective lines on QnC1
GL.n/ general linear group
PGL.n/ group of projective transformations of RPn

O.n/ orthogonal group for the standard metric on Rn
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SO.n/ special orthogonal group
O.n � k; k/ orthogonal group of Rn

k
U.n/ unitary group
SU.n/ special unitary group
M.n;F/ space of all n � n matrices over a field F
H.n;F/ space of all n � n Hermitian matrices over F
U.n;F/ space of all n � n unitary matrices over F
grad F gradient vector field of a function F
gradEF gradient vector field of a function F W Rn ! R
gradSF gradient of the restriction of F to the unit sphere Sn�1
�F Laplacian of a function F
�EF Laplacian of F W Rn ! R
�SF Laplacian of the restriction of F to the unit sphere Sn�1
�1F first Beltrami differential parameter �1F D jgrad Fj2
�2F second Beltrami differential parameter �2F D �F
div X divergence of a vector field X
G Lie group G
g Lie algebra of Lie group G
Cm Clifford algebra generated by 1 and e1; : : : ; em

VmC1;2 Stiefel manifold of orthogonal 2-frames in RmC1
V2.Cm�1/ Clifford–Stiefel manifold of Clifford orthogonal 2-frames

2. Critical point theory for a smooth function � W M ! R on a smooth
n-dimensional manifold M.

Mr.�/ fx 2 M j �.x/ � rg
M�r .�/ fx 2 M j �.x/ < rg
MCr .�/ fx 2 M j �.x/ > rg
Hk.M;F/ k-th homology group of M over the field F
Hk.M;F/ k-th cohomology group of M over the field F
ˇk.M;F/ dimF Hk.M;F/, the k-th F-Betti number of M
ˇ.M;F/ the sum of the F-Betti numbers of M
ˇk.�; r;F/ dimF Hk.Mr.�/;F/
�k.�; r/ number of critical points of � of index k on Mr.�/

�k.�/ number of critical points of � of index k on M
�.�/ number of critical points of � on compact manifold M
lp linear height function lp W Rn ! R, lp.q/ D hp; qi
Lp distance function Lp W Rn ! R, Lp.q/ D jp � qj2
�.M/ Euler characteristic of M
ŒX;Y� Lie bracket of two vector fields X and Y on M
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3. For a manifold M immersed in a Riemannian manifold . QM; g/.

g.X;Y/ Riemannian metric on QM
f immersion f W M ! QM
ft parallel hypersurface or tube at distance t from f
Mt parallel hypersurface at distance t from M
TxM tangent space to M at x
T?x M normal space to M at x
TM tangent bundle of M
T1M unit tangent bundle of M
NM normal bundle of M
BM unit normal bundle of M
E normal exponential map E W NM ! QM
QrX covariant derivative for Levi-Civita connection Qr of QM
rX covariant derivative for induced metric on M
DX covariant derivative in Euclidean space Rn

�!�t velocity vector of curve �t

� unit normal vector field on M
r? normal connection
�.X;Y/ second fundamental form of M
A� shape operator for normal vector �
A shape operator for an oriented hypersurface
At shape operator of tube ft or parallel hypersurface Mt

�.x/ principal curvature of a hypersurface M at a point x
T�.x/ eigenspace for a principal curvature � at x
T� principal distribution on M determined by �
T?� orthogonal complement of T�
M=T� space of leaves of principal foliation T�
f� focal map determined by principal curvature function �
K� curvature sphere determined by principal curvature �
R.X;Y/Z Riemann curvature tensor of M
QR.X;Y/Z Riemann curvature tensor of QM

4. For a real hypersurface M in complex projective space CPn or complex hyper-
bolic space CHn (Chapters 6–8).

J complex structure of CPn or CHn

' projection of complex structure J to M
S2nC1.r/ .2n C 1/-dimensional sphere of radius r in CnC1 D R2nC2
H2nC1
1 .r/ anti-de Sitter space of constant curvature �1=r2

H anti-de Sitter space H2nC1
1 .r/

� projection � W S2nC1.r/ ! CPn or � W H2nC1
1 .r/ ! CHn
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V span of fJzg at z 2 S2nC1.r/ or H2nC1
1 .r/

V? orthogonal complement of V
XL horizontal lift of X to z 2 S2nC1.r/ or H2nC1

1 .r/
� unit normal vector field on M
W W D �J� , the structure vector field on M
W 1-dimensional distribution spanned by W
W? holomorphic distribution orthogonal to W
A shape operator of M
m trace A
�.X;Y/ second fundamental form of submanifold
�.W?/ spectrum of A restricted to W?
S Ricci tensor S of M
Qn�1 complex quadric in CPn

RPn totally geodesic real projective space in CPn

RHn totally geodesic real hyperbolic space in CHn

˛ hAW;Wi: Hopf principal curvature in Hopf case
ˇ, �, �, � entries in matrix of A in standard non-Hopf setup
NM normal bundle of M
BM unit normal bundle of M
E normal exponential map E W NM ! CPn (or CHn)
M� parallel hypersurface of M
A� shape operator of M�

TM tangent bundle of M
SM unit tangent bundle of M
Ej` matrix with 1 in the .j; `/ position and 0 elsewhere
Fj` matrix Ej` � E`j
Gh;k.C/ complex Grassmann manifold of complex h-planes in ChCk

C`.V/ Clifford algebra generated by a vector space V
RW structure Jacobi operator RWX D R.X;W/W

5. For a real hypersurface M in quaternionic projective space HPn or quaternionic
hyperbolic space HHn (Chapter 9).

J1 operator obtained by left multiplication by quaternion i
J2 operator obtained by left multiplication by quaternion j
J3 operator obtained by left multiplication by quaternion k
'i projection of Ji to M for i D 1; 2; 3

S4nC3.r/ .4n C 3/-dimensional sphere of radius r in HnC1 D R4nC4
H4nC3
3 .r/ space form of constant curvature �1=r2 and index 3

H space form H4nC3
3 .r/

� projection � W S4nC3.r/ ! HPn or � W H4nC3
3 .r/ ! HHn

V span of fJ1z; J2z; J3zg at z 2 S4nC3.r/ or H4nC3
3 .r/

V? orthogonal complement of V
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J span of fJ1; J2; J3g on HPn or HHn

XL horizontal lift of X to z 2 S4nC3.r/ or H4nC3
3 .r/

� unit normal vector field on M
Wi Wi D �Ji� , unit vector field on M for i D 1; 2; 3

W 3-dimensional distribution spanned by fW1;W2;W3g
W? distribution orthogonal to W
A shape operator of M
m trace A
S Ricci tensor S of M
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Carter-Şentürk, 342
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337

Carter-West-Mansour, 342
Cayley, 264
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Cech homology, 41, 44, 54, 225, 327
Cecil, 63, 86, 101, 221, 324, 326
Cecil-Chern, 155, 202, 224, 256, 266, 284, 293,
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Cecil-Chi-Jensen, 143, 144, 181, 255, 303, 308,

309, 321, 339
Cecil-Jensen, 155, 255, 284, 301, 303, 308, 321
Cecil-Magid-Vrancken, 101
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249, 264, 308, 330, 332, 338, 369

central dilatation, 281
Cezana-Tenenblat, 307
change of orientation transformation, 200, 281
characteristic polynomial, 90
Chen, C.S., 330
Chern, 49
Chern conjecture for isoparametric

hypersurfaces, 183
Chern-Lashof Theorem, 41, 63
Chi, 144, 181
Cho-Ki, 473, 494, 501
Cho-Vanhecke, 491
Choe, 465, 474, 483
Christ, 162
Christoffel symbols, 375
circular cylinder, 277, 323, 326, 327
circular nets, 283
Clifford

algebra, 86, 158, 163, 309, 321, 412
multiplication, 412
orthogonal, 174, 309
sphere, 166
system of symmetric operators, 164

Clifford-Stiefel manifold, 158, 174, 181, 309
Codazzi equation, 24, 92, 233, 249, 390, 423

of hypersurface in complex space form, 349
of lift of a hypersurface in a complex space

form, 356
Codazzi tensor, 473, 497
cohomology

of compact Dupin hypersurface, 142
of focal submanifold, 134, 142
of isoparametric hypersurface, 134

commutation relations on covariant derivatives,
288, 290, 293

compact proper Dupin hypersurface
irreducible if g > 2, 255, 308
number of principal curvatures, 2, 143, 234
with constant Lie curvatures, 321
with four principal curvatures, 309, 321
with six principal curvatures, 309, 321
with three principal curvatures, 309
with two principal curvatures, 308

complementary foliations, 249, 251
complete hypersurface

proper Dupin, 281, 338
with constant mean curvature, 251, 302

complete Riemannian manifold, 375
complex

2-plane Grassmannian, 352, 406, 441
exterior power, 405
focal submanifold, 370, 373, 435
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hyperbolic space, 346
projective space, 63, 345, 405
quadric, 63, 159, 352, 397, 401, 420,

441
skew-symmetric matrix, 407
structure, 345, 536

on a complex space form, 347
submanifold

of complex hyperbolic space, 387
of complex projective space, 387
of complex space form, 361

complexification of a vector space, 412
complexified unit sphere, 341
cone construction, 236

Lie equivalent to tube, 236
cone over flat torus, 251, 306
conformal geometry, 191
conformal transformations of the ambient

space, 20
conformally flat hypersurface, 338
conical nets, 283
conjecture

of Cecil-Chi-Jensen, 321
of Cecil-Jensen, 303
of Cecil-Ryan, 4, 309
of Chern, 183
of Yau, 182

conjugate
complex, 74, 397
quaternionic, 74

Conlon, 24, 369, 375
connectedness assumption, 344
connectedness of complement of focal set, 328,

336, 339
constant

holomorphic sectional curvature, 343,
347, 348, 388, 397, 401, 406, 439,
441

mean curvature, 88, 322, 526
quaternionic curvature, 535
rank theorem, 24, 369
scalar curvature, 3, 86, 183, 322
sectional curvature, 468

constructions
of Dupin hypersurfaces, 4, 235
preserving tautness, 56

contact
condition for Legendre submanifold, 207,

209, 258
distribution, 203, 207
element nets, 283
form, 207
manifold, 203
structure, 202

continuity property of Cech homology, 41, 44,
54, 225, 231

convex
hypersurface, 41, 63, 337
immersion, 41
set, 342

covariant derivative
associated, 375
in Lie sphere geometry, 287, 293
of second fundamental form, 389
second, 379, 389

Coxeter group associated to an isoparametric
submanifold, 109

critical point, 36
degenerate, 36
nondegenerate, 36
of distance function, 52
of height function, 38
of linking type, 38, 66, 67
of non-linking type, 38

critical submanifold, 73
critical value, 36

of a principal curvature, 31, 32
cross-ratio, 220

of principal curvatures, 219, 302, 309
crystallographic group, 136
curvature sphere, 20, 69, 212, 234, 258, 311

map, 30, 32, 272, 274
on a projective line, 223

curvature surface, 2, 32, 35, 67, 73, 216, 217,
233

in cylinder construction, 243
in surface of revolution, 246
in tube construction, 240
not a leaf of a foliation, 33
of submanifold of higher codimension, 32,

311
curvature tensor, 94, 346, 423

of a complex space form, 348
curvature-adapted hypersurface, 545
cyclic �-parallel hypersurface, 521
cyclic �-parallel tensor field, 502
cyclic parallel

Ricci tensor, 484
structure Jacobi operator, 496
tensor field, 455

cyclic parallel hypersurface
in complex space form, 496
in quaternionic space form, 548, 550

cyclic-Ryan hypersurface in HPn, 550
cyclic-Ryan hypersurface in complex space

form, 474, 475
cyclic-Ryan Riemannian manifold, 473
cyclic-semiparallel hypersurface, 465



584 Index

cyclide of Dupin, 3, 62, 211, 234, 263, 297,
298, 308, 320, 332, 341

in discrete differential geometry, 283
is reducible, 255
of characteristic .p; q/, 264

cyclidic nets, 283
cyclidic patch, 283
cylinder construction, 4, 34, 242, 308

in Lie sphere geometry, 244
number of principal curvatures, 243

cylindrical distance functions, 342
cylindrically taut immersion, 342

D
D’Atri space, 491
D-Einstein hypersurface in quaternionic space

form, 549
Díaz-Ramos, 451, 453, 526
Dadok, 342
Dadok-Kac, 342
Dajczer-Florit-Tojeiro, 254
Darboux, 264
Deshmukh, 455
Deszcz, 475
differential

of exponential map, 380
of normal exponential map, 11, 118, 339,

359
dihedral group, 109, 136
discrete differential geometry, 283
distance from k-plane, 342
distance function

Euclidean, 52, 53
hyperbolic, 65
spherical, 142

Domínguez-Vázquez, 451, 526, 528, 530
Dorfmeister-Neher, 160
dot product, 185
Druoton, 264
duality relationship between complex

Grassmannians, 406
Dupin

condition
Lie invariance, 3, 35
on Lie frame, 262, 267

hypersurface, 1, 33, 212, 233
compact, 2
compact proper, 3, 35
in affine differential geometry, 101
proper, 1, 33, 216, 233
reducible, 4, see reducible

submanifold, 1, 212, 216, 341
in Lie sphere geometry, 241

of higher codimension, 35
with constant multiplicities, 68

E
Eells-Kuiper, 83
EHP sequence, 180
Eilenberg-Steenrod, 44, 231
Einstein hypersurface, 344, 350

in quaternionic projective space, 544, 549
Eisenhart, 264
end-point map, 11
energy functional, 72
envelope of a family of spheres, 28, 263
equality of mixed partials, 380
equidistant hypersurface, 65, 98
equifocal submanifold

in a Riemannian manifold, 162
in a symmetric space, 162, 530
of higher codimension, 162

equivalent Clifford systems, 165
equivariant embedding, 78
Eschenburg-Schroeder, 184
Euclidean

field of unit normals, 211
projection

not an immersion, 211
of a Legendre submanifold, 211
with a singularity, 211

Euclidean inner product, 315
evolute surface, 23
Ewert, 153
examples

of isoparametric functions, 114
of isoparametric hypersurfaces, 144

exponential map, 11
on normal bundle, 11
on tangent bundle, 379

exterior algebra, 413
exterior differential systems, 451
extremal submanifold of Willmore functional,

183

F
Fang, 137, 160, 162, 180, 308
Fary, 49
Federer’s version of Sard’s Theorem, 339
Fenchel, 49
Ferapontov, 184
Ferro-Rodrigues-Tenenblat, 306
Ferus, 86, 92, 118, 180
Ferus-Karcher-Münzner, see FKM construction
first canonical embedding of E6=.T�Spin.10//,

441
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first eigenvalue of Laplacian, 182
first normal space, 342
FKM construction, 3, 86, 100, 137, 155, 160,

162, 309
Fladt-Baur, 264
flat normal bundle, 101, 161
flat tori in S3, 111
focal conic, 263, 276
focal ellipse, 142

of a cyclide, 276
focal hyperbola of a cyclide, 276
focal map, 19, 26, 66, 104, 369
focal parabola of a parabolic cyclide, 276
focal point, 11, 66, 430

location on normal geodesic, 117
of multiplicity m, 11
of submanifold of complex space form, 359

focal quadrics, 277, 281
focal set, 11, 19, 66, 328, 367

of a parallel hypersurface, 18
of a tube, 18
of focal submanifold, 133

focal submanifold, 2, 91, 97, 547, 551
complex, 435
connectedness, 131
for case g D 2, 149
of a complete cyclide, 281
of a complex submanifold, 367
of a Dupin hypersurface, 141, 142
of a FKM-hypersurface, 309
of a Hopf hypersurface, 368, 369, 374, 406,

412, 430, 439
of a product of spheres, 265
of an isoparametric hypersurface, 62, 85,

104, 117
substantially embedded, 256
tautness, 137, 142

foliation, 19, 446, 526, 548
formula of Simons’ type, 387, 388, 439
Frenet equations, 28, 325
Friedel, 264
Frobenius Theorem, 24
Fubini-Study metric, 348, 397, 401
Fujii, 184
Fujii-Tamaru, 184
Fundamental Theorem of Lie sphere geometry,

200

G
Garnier, 264
Gauss equation, 93, 250, 346, 390, 423, 441,

461, 492
of hypersurface in complex space form, 349

Gauss map, 39, 43, 53
Ge-Tang, 86, 183
Ge-Tang-Yan, 86, 530
Geatti-Gorodski, 342
generalized flag manifolds, see isotropy

representation
generic submanifold

focal, 373
of complex space form, 370, 372

geodesic, 375
geodesic flow, 376
geodesic sphere

in complex hyperbolic space, 353
in complex projective space, 351

geodesic spray, 376, 381
Ghosh, 455
Giunta-Sanchez, 153
global support sphere, 59
Goetz, 325
Goldman, 446
Gorodski, 341, 342
Gorodski-Gusevskii, 446
Gorodski-Thorbergsson, 342
Gotoh, 462
Grassmann manifold of complex h-planes in

ChCk, 405, 443
great sphere map, 208
Grove-Benson, 136
Grove-Halperin, 34, 35, 54, 72, 136, 137, 141,

143, 160, 162, 180, 308
Gysin sequence, 58, 67

H
Hahn, 101, 528
half-space, 40
half-spin embedding, 5, 352, 387, 412, 441,

444
Hamiltonian systems of hydrodynamic type,

184
Harle, 101, 161
harmonic

curvature, 473, 474
function, 123
polynomial, 99
set of points on a line, 222

Hausdorff measure, 339
Hawkins, 185
Hebda, 72, 318, 341

counterexamples to Kuiper conjecture, 332
height function, 38, 59, 114, 138, 145, 225, 316
Heintze-Liu, 161
Heintze-Olmos-Thorbergsson, 161
Henry-Petean, 183
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Hermitian
inner product, 396, 400, 406, 408, 413, 418
matrix, 75
metric on a complex space form, 348

Hertrich-Jeromin, 185
Hessian, 36, 87

of height function, 38, 79, 318
higher-dimensional Laplace invariants, 251,

306
Hilbert-Cohn-Vossen, 264
Hirsch, 337
holomorphic

2-plane, 348, 353, 446
distribution, 344, 349, 445
isometry, 397, 401
subbundle, 526

homogeneity
of isoparametric submanifolds of higher

codimension, 161
homogeneity of Plücker embedding, 408
homogeneous

coordinates, 187, 271
isoparametric hypersurface, 2, 85, 99, 100,

146, 150, 154, 158, 159
isoparametric submanifold, 101
of degree g, 85, 112, 116
real hypersurfaces in complex hyperbolic

space, 453
real hypersurfaces in complex projective

space, 343
real hypersurfaces in quaternionic space

forms, 548
ruled real hypersurfaces in HHn, 548
ruled submanifold in complex hyperbolic

space, 453
spaces, 184

not admitting taut embeddings, 341
submanifold with flat normal bundle, 341

homology group, 37
homotopy type of a CW-complex, 332
Hopf condition, 361, 365, 444, 484, 495, 501
Hopf fibration, 5, 159, 160, 314

preserves proper Dupin, 318
preserves tautness, 315

Hopf hypersurface, 5, 343, 357, 365, 466, 492,
546

as tube over a complex submanifold, 370
in complex hyperbolic space, 357

with constant principal curvatures, 5,
344, 358, 387, 421, 425–427, 432

with three principal curvatures, 451
with two principal curvatures, 449

in complex projective space, 357, 439

with constant principal curvatures, 5,
344, 358, 387, 420, 421, 425, 426,
432

with five principal curvatures, 440, 443
with three principal curvatures, 451
with two principal curvatures, 449

in complex space form, 429, 430, 545
with constant principal curvatures, 428,

430
Hopf invariant, 180
Hopf principal curvature, 5, 343, 357, 370, 371

is constant, 357
horizontal lift, 347, 378

in complex space form, 359
in quaternionic space form, 536

horizontal subspace, 376, 534
horn cyclide, 279
horo-tight immersion into hyperbolic space, 65
horosphere

in complex hyperbolic space, 353, 366, 370
in quaternionic hyperbolic space, 542
in real hyperbolic space, 65, 98

Hsiang-Lawson, 100, 159
Hsiang-Palais-Terng, 101, 161
Hu-Li, 307
Hu-Li-Zhai, 308
Hu-Tian, 307
Hu-Zhai, 307
Hurwitz, 82
hyperbolic space, 10, 29, 65, 190
hyperboloid of revolution, 189
hypersurface

W-parallel, 498
�-parallel, 502, 517, 521
�-umbilical, 471, 472
Dupin, see Dupin, hypersurface
in complex space form with two principal

curvatures, 449
isoparametric, see isoparametric,

hypersurface
of harmonic curvature, 474, 531, 550
taut, see taut, hypersurface

I
Ikuta, 483
immersion condition for Legendre

submanifold, 207, 209
Immervoll, 182
improper point, 187, 194, 277
index convention of a Lie frame, 204, 256, 302,

303
index of a critical point, 36
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Index Theorem
for distance functions, 52, 63, 226, 331, 333
for height functions, 39
for spherical distance functions, 137

inhomogeneity of some FKM-hypersurfaces,
179

inhomogeneous isoparametric hypersurface,
100

inner product, 185
Inoguchi, 475
integrability

conditions, 285
of a principal distribution, 24

integral curves, 89
integral submanifold of contact distribution,

207
interior product, 415
invariance under exterior differentiation, 270,

271
inverse limit, 44
inverse stereographic projection, 62, 186, 307,

327
inversion in a sphere, 22, 34, 73, 192, 275, 281
irreducible proper Dupin hypersurface, 155,

283, 293, 305, 321
implies locally irreducible, 255
with four principal curvatures, 303
with three principal curvatures, 155, 297,

301, 308
irreducible representation of a Clifford algebra,

163
isoparametric family, 1, 86
isoparametric foliation, 183
isoparametric function, 1, 86, 111

examples, 114
isoparametric hypersurface, 1, 35, 62, 74, 234

connectedness, 131
homogeneous, 100
in a Riemannian manifold, 526
in a sphere, 5, 98, 352
in affine differential geometry, 101
in complex space form, 526
in Euclidean space, 96
in hyperbolic space, 97
in Lorentzian space form, 96
in semi-Riemannian space form, 101
minimal, 182
non-existence of principal coordinate

system, 249, 266
non-Hopf, 528, 530
number of principal curvatures, 2, 5, 85,

133, 136, 234, 433
tautness, 137
totally focal, 139

with four principal curvatures, 155, 180,
223

of same multiplicity, 99
with multiplicities (2,2), 137, 160, 162, 180
with multiplicities (4,5), 137, 160, 162,

180, 181
with multiplicities (9,6), 160, 181
with six principal curvatures, 160, 223
with three principal curvatures, 99, 151,

298, 301, 302
with two principal curvatures, 99, 110, 111,

148, 265
isoparametric submanifold

Coxeter group, 109
in a Riemannian manifold, 161
of higher codimension, 101, 109, 161

in hyperbolic space, 161
isotropic subspace, 413
isotropic vector, 187
isotropy cone, 187
isotropy representation

of a semi-Riemannian symmetric space,
342

of a symmetric space, 100, 101, 159, 161,
341, 342

isotropy subgroup, 150, 154, 407
iterated sphere bundles, 67
Ivey, 489, 493
Ivey-Ryan, 6, 451, 474, 478, 489, 493, 497, 501
Izumiya, 65

J
Jacobi equation, 379, 539
Jacobi field, 5, 374, 379, 382, 384, 428, 537
Jacobi operator, 548
Jensen, 204, 256
Jensen-Musso-Nicolodi, 204, 256
Jia, 264

K
k-Hopf hypersurface, 445
k-taut map, 56
k-tight map, 45
Kaehler manifold, 391
Kaehler submanifold

minimality, 391
of complex projective space, 405
of complex space form, 388, 392, 436

Kahn, 72
Kaimakamis-Panagiotidou, 497
Kamran-Tenenblat, 251, 306
Ki, 454
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Ki-Kim-Lee, 494, 495
Ki-Kurihara, 496, 501, 502
Ki-Nagai, 497
Ki-Suh, 483, 488, 491
Ki-Suh-Pérez, 548
Kim-Pyo, 455, 487
Kim-Ryan, 6, 452, 469, 471, 473, 478, 489
Kim-Takahashi, 184
Kimura, 5, 344, 387, 421, 432, 528
Kimura-Maeda, 488, 502
Kitigawa, 111
Klein, 185, 264
Knarr-Kramer, 153
Kobayashi-Nomizu, 7, 249, 348, 376
Koike, 96, 101, 162
Kon, Masahiro, 6, 350
Kon, Mayuko, 521
Kon-Loo, 502, 520, 524
Kotani, 182
Kramer, 161, 184
Kramer-Van Maldeghem, 184
Kuiper, 36, 37, 41, 43, 46, 48, 50, 81, 144, 224,

327, 332
Lemma of, 42

Kuiper’s question on tautness, 144
Kuiper-Meeks, 49
Kuiper-Pohl, 74
Kunneth formula, 52
Kwon-Nakagawa, 492, 521
Kwon-Suh, 488

L
lacunary principle, 80
Laguerre

embeddings, 307
geometry, 201
geometry of submanifolds, 306
group, 201
isoparametric hypersurfaces, 307
transformation, 201, 282

Lancaster, 338
Laplacian, 1, 86, 111, 116, 119

of length of a tensor field, 390
restricted, 390

leaf of a principal foliation, 67
leaf space of a principal foliation, 26, 28, 31
Lee-Pérez-Santos, 550
Legendre lift

of a compact isoparametric hypersurface,
305

of a focal submanifold, 266
of a product of spheres, 264
of a submanifold, 209

of an isoparametric hypersurface, 222
Legendre submanifold, 202, 207

conditions for, 207, 208, 265
induced by a submanifold, 209

Lemma of Kuiper, 42
Lemma of Morse, 36
length of gradient, 1, 86, 111, 116, 119
level set, 86
Levi-Civita, 91
Levi-Civita connection, 10, 11, 345, 375, 376,

534, 540
on a complex space form, 348
on a quaternionic space form, 536

Li, Z.-Q., 101
Li-Ki, 497
Li-Lui-Wang-Zhao, 307
Li-Peng, 308
Li-Sun, 307
Li-Wang, 101, 307, 308
Li-Xie, 101
Lie, 185

algebra, 150
decomposition, 415
isomorphism, 414
of SO.2d/, 414

bracket, 24, 249, 416
coordinates, 195
curvature, 218, 220, 302, 309

equal to one-half, 222, 303, 309
not constant, 309
of an isoparametric hypersurface, 222
of FKM-hypersurface, 310
of Pinkall-Thorbergsson example, 312

equivalent
cyclides of Dupin, 273
Legendre submanifolds, 214
to an isoparametric hypersurface, 221,

297, 302, 303
frame, 204

in case g D 3, 301
in case g D 4, 302
on cyclide of Dupin, 266
with special properties, 256

geometric classification of cyclides of
Dupin, 266

geometric hypersurface, 208
group G2, 160
invariance of Dupin condition, 217
invariants, 283
inversion, 200
metric, 193
quadric, 193, 202, 265, 278, 284
recurrent tensor field, 497
scalar product, 186, 193
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sphere, 195
sphere geometry, 1, 3, 30, 185, 193
sphere group, 200, 205
sphere transformation, 3, 30, 200, 214
subalgebra, 416

Lie-Scheffers, 185
Lie-taut, 228
lift of hypersurface of a complex space form,

355
light cone, 187
lightlike vector, 187
Lilienthal, 264
limit

horn cyclide, 277
parabolic horn cyclide, 277
spindle cyclide, 277
Swiss cheese, 327
torus, 277, 282

line on Lie quadric, 198
lines of curvature, 27, 28, 33, 68, 70, 251, 283,

306, 324, 326, 329, 337, 340
linking type (critical point), 38, 66, 67, 141
Liouville, 264
Little, 153
Little-Pohl, 46, 48, 74
Lobos-Ortega, 458
local coordinates in tangent bundle, 377
local support sphere, 59
locally irreducible, 255, 301
locally symmetric hypersurface, 468
Lohnherr, 524, 548
Loo, 483
Lorentz

metric, 10, 92, 186
scalar product, 186
space, 186, 346

Lytchak, 72, 162
Lytchak-Thorbergsson, 72, 162

M
Ma-Ohnita, 184
Maeda, S., 458, 499
Maeda, Y., 454
Maeda-Naitoh, 457
Magid, 101, 528
manifold

structure for the focal set, 26, 30
which is like a projective plane, 83

Mare, 162
Martinez-Pérez, 7, 533, 547–549
matrix multiplication, 414
Matsuyama, 458, 459
Matsuyama’s condition, 458, 459, 461

Maurer-Cartan
equations, 205, 257
forms, 205, 257, 263, 266, 284, 298

Maxwell, 264
Mayer-Vietoris sequence, 135
mean curvature, 87, 183, 322

of hypersurface in complex space form,
350, 459, 483, 497

metric
connections, 184
in hyperbolic space, 190
of positive scalar curvature, 183

Meusnier’s theorem, 325
Michel, 264
Milnor, 11, 36, 49, 52
minimal

Dupin hypersurfaces, 250, 302
focal submanifold, 96, 100, 106, 435
hypersurface in a sphere, 183
isoparametric hypersurface, 305
total absolute curvature, 41

Miyaoka, 68, 117, 143, 160, 184, 218, 219,
250, 302, 309, 314, 322

Miyaoka-Ozawa, 4
counterexamples to Cecil-Ryan conjecture,

4, 235, 309, 314, 320
Moebius

band, 330
curvature, 221, 251, 305–307

of Pinkall-Thorbergsson example, 312
equivalent, 308

cyclides of Dupin, 273
geometric classification of cyclides of

Dupin, 273
geometry of submanifolds, 306
group, 192, 200
invariant metric, 307
invariants, 307
isoparametric hypersurface, 307
projection, 208, 277
second fundamental form, 307
space, 187
sphere, 187
sphere geometry, 185, 188
transformation, 30, 192, 201, 220, 274, 282,

320
monkey saddle, 19
Montiel, 5, 6, 343, 352, 366, 369
Montiel’s list, 5, 343, 352, 357, 421, 432, 466,

480, 501
Morse

function, 37, 66
inequalities, 37
Lemma, 36
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Morse (Cont.)
number, 37
theory, 332

Morse-Bott critical point theory, 71
moving frames in Lie sphere geometry, 256,

284, 293
Muenzner (Münzner), 2, 85, 90, 96, 100, 104,

118, 137, 180, 222, 343, 433
Muenzner’s theorem

on algebraicity of isoparametric
hypersurfaces, 115, 125

on number of principal curvatures of an
isoparametric hypersurface, 2, 5, 35,
85, 100, 133, 136, 159, 433

Mullen, 162
multiplicities of principal curvatures, 35

case g D 6, 160
homogeneous case, 159
of a compact proper Dupin hypersurface,

85, 143, 303
of an isoparametric hypersurface, 2, 85,

100, 108, 110, 137
of FKM-hypersurfaces, 177

multiplicity
of curvature sphere, 213
of focal point, 11

Musso-Nicolodi, 307
Muto, 182
Muto-Ohnita-Urakawa, 182

N
Nagai, 492
Nakagawa-Takagi, 6, 440

list of parallel submanifolds of CPn, 440
Newton’s identities, 90
Niebergall, 284, 301, 303
Niebergall-Ryan, 101, 159, 349, 355, 454, 458,

474, 498
Nomizu, 19, 89, 96, 100, 106, 155, 234, 260
Nomizu-Rodriguez, 53, 54, 63, 327
Nomizu-Smyth, 387
non-Hausdorff manifold, 27, 234
non-Hopf hypersurfaces, 6, 444, 458, 463, 474,

478, 493, 503, 524
framework for studying, 445
homogeneous, 527
shape operator, 445
with three constant principal curvatures,

453, 525
with two principal curvatures, 451

non-linking type (critical point), 38
non-simple principal curvature, 250, 302

nondegenerate function, 37
normal bundle, 10, 329, 339, 382

of submanifold of complex space form, 359
normal connection, 10, 12, 15, 67, 388
normal coordinate neighborhood, 12, 15, 369
normal exponential map, 11, 52, 53, 66, 72,

116, 138, 141, 328, 339, 370
of submanifold of complex space form,

359
normal Jacobi operator, 545
nullity of Gauss map, 39

O
O’Neill, 346, 348
octonians, see Cayley numbers
Okumura, 454
Olmos, 161, 341
one-parameter group of transformations, 376
one-parameter subgroups of SO.2d/, 414
Ooguri, 96
orbit

of a group action, 146, 150, 154, 158, 159
of unitary group action, 407

orientability
of a complete hypersurface, 323, 331
of focal submanifolds, 158

orientation reversing diffeomorphism
of 2-sphere, 340

oriented contact
of planes, 198
of sphere and plane, 198
of spheres, 197

oriented hypersphere
in a sphere, 195
in hyperbolic space, 196

Ortega, 458
Ortega-Pérez, 548, 549
Ortega-Pérez-Suh, 548
orthogonal

complement of a principal space, 251
group, 214
projections of tight maps, 42
spheres, 191
transformation, 214

osculating circle, 69
OT-FKM type, see FKM construction
Otsuki, 250, 302
ovaloid, 331
Ozawa, 71, 72, 318
Ozawa’s Theorem, 71, 72
Ozeki-Takeuchi, 100, 160, 162, 173, 179, 180,

182
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P
Pak-Lyu, 548
Palais, 26
Palais-Terng, 101, 161
para-Blaschke isoparametric hypersurfaces,

308
parabolic horn cyclide, 279
parabolic pencil

of planes, 199
of spheres, 198

parabolic ring cyclide, 276, 282, 323, 326, 327,
331

parallel family of hypersurfaces, 89–91, 103,
125, 181, 281, 306, 366

parallel hypersurface, 2, 14, 91
in a sphere, 102

parallel submanifold, 215
of complex projective space, 6, 440, 441
of complex space form, 439

parallel transformation
Euclidean, 201
hyperbolic, 202
spherical, 201

parallel vector field along a curve, 375
Park, 528
Paternain, 377
path of class H1, 72
Peng-Hou, 160
Perez, 497, 550
Perez-Santos, 549, 550
Perez-Suh, 548, 550
perfect Morse function, 37, 40, 53, 55, 336
piecewise linear embedding

of CP2 into R8, 83
of RP2 into R5, 83
tautness, 155

Pin(V), 412, 414
Pinkall, 2, 4, 30, 57, 58, 67, 68, 144, 155, 200,

202, 215, 217, 229, 248, 249, 256,
265, 266, 283, 293, 300, 308, 318

local construction of Dupin hypersurfaces,
4, 9, 34, 235, 308

Pinkall-Thorbergsson, 162, 174, 235, 340
counterexamples to Cecil-Ryan conjecture,

4, 309, 310
PL-tautness, 155
Plücker embedding, 5, 352, 387, 405, 441, 443,

444
Poincaré duality, 135
point at infinity, see improper point
point sphere, 194
point sphere map, 208
polar action, 342

polar representation, 342
polarity relationship, 221
polyhedral models of isoparametric families,

155
principal basis, 358, 423, 466
principal coordinate system, 4, 248, 266

conditions for, 251
principal curvatures, 10

in cylinder construction, 243
in tube construction, 238
number of distinct, 35
of a focal submanifold, 104
of a Legendre submanifold, 219
of a monkey saddle, 19
of a parallel hypersurface, 17, 102
of a surface of revolution, 246
of a tube, 17
of an isoparametric hypersurface, 108, 305
of hypersurfaces on Montiel’s list, 352
of hypersurfaces on Takagi’s list, 351

principal foliation, 1, 19, 24, 67, 216
principal Lie frame, 260
principal space, 213
principal vector

corresponding to curvature sphere, 213
corresponding to principal curvature, 213

product of spheres, 3, 35, 62, 99, 110, 115, 148,
234, 255, 264, 273, 307, 308, 320

product of tight immersions, 50
profile sphere of surface of revolution, 282
profile submanifold of surface of revolution,

244, 245, 274
projective equivalence, 187, 193
projective plane

Cayley, 153
over a division algebra, 99, 152, 309, 332

projective space
complex, 345
over a field F, 76
quaternionic, 533
real, 187

projective transformation, 192, 200
projectively equivalent maps, 42, 48, 64, 74
proper Dupin hypersurface, 33, 233, 307

compact, 308
complete implies taut, 66, 141, 318
is algebraic, 143
number of principal curvatures, 3, 85, 308
with four principal curvatures, 302
with principal coordinate system, 250, 302,

306
with three principal curvatures, 283
with two principal curvatures, 263
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proper Dupin submanifold, 216
compact implies taut, 68, 318
in Lie sphere geometry, 242

proper map, 55, 329
proper point, 187
properties

of hypersurfaces on Montiel’s list, 354
of hypersurfaces on Takagi’s list, 354

pseudo-Einstein hypersurface in complex
space form, 6, 344, 350, 354, 474,
476, 478, 480

pseudo-Einstein hypersurface in quaternionic
projective space, 549

pseudo-Einstein hypersurface in quaternionic
space form, 541, 543

pseudo-Ryan hypersurface in complex space
form, 474

pseudohyperbolic space, 535
pseudoparallel hypersurface, 466

implies Hopf, 466
implies Type A0 or Type A1, 467

pseudosymmetric hypersurface in complex
space form, 479, 531

pseudosymmetric Riemannian manifold, 475
punctured Veronese surface, 327, 330

Q
Qian-Tang-Yan, 183
quadric

in complex projective space, see complex
quadric

in real projective space, 272
Lie, see Lie quadric

quaternion space, 340
quaternionic

curvature, 535
hyperbolic space, 534
Kähler manifold, 536
projective space, 533
sectional curvature, 537

quaternions, 74, 99, 314

R
R-space, see isotropy representation
radius of a tube, 177
rank of the focal map, 22, 27
real hyperbolic space in complex hyperbolic

space, 353, 366
real hypersurfaces

in complex hyperbolic space, 4, 343
in complex projective space, 4, 159, 343
in complex space forms, 4, 343

in complex two-plane Grassmannians, 551
in quaternionic space forms, 539
with condition 'A D A', 358

real part of a quaternion, 75, 315
real projective space in complex projective

space, 351, 366
real space form, 10
Reckziegel, 19, 32, 217, 233, 260, 311, 339
recurrent tensor field, 455, 522
reducible Dupin hypersurface, 4, 235, 252,

283, 301, 304
in 4-space, 283, 298, 301
Lie geometric criterion, 253
with Lie curvature one-half, 304
with three principal curvatures, 302

reducible to a proper Dupin submanifold, 253
reflection in a hyperplane, 200
regular foliation, 26
regular value, 36

of Gauss map, 40, 43
regularity condition, 258, 285
relationship

between taut and Dupin, 65, 141, 318
between tight and taut, 61

representation of a Clifford algebra, 3, 163, 309
restricted Laplacian, 390
Ricci

equation, 391
tensor, 6, 441

W-parallel, 499
�-recurrent, 524
commuting with ', 485, 487, 499, 501,

502
commuting with A, 484, 488
commuting with RW , 501
of hypersurface in complex space form,

350
Ricci-parallel hypersurface, 468, 501
Ricci-pseudosymmetric hypersurface, 476,

478, 531
Ricci-pseudosymmetric Riemannian manifold,

475
Ricci-semisymmetric hypersurface, 468, 531
Richtungswechsel, 200
Riemannian

manifold of harmonic curvature, 473
manifold with pseudo-parallel Ricci

operator, 475
manifolds with same curvature tensor, 179
metric, 376
product in hyperbolic space, 98, 307

ring cyclide, 142, 276, 280, 282, 323, 326, 327,
331, 338

Riveros, 251
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Riveros-Rodrigues-Tenenblat, 251, 306
Riveros-Tenenblat, 251, 306
Rodrigues-Tenenblat, 307
round cyclide, 282
Rowe, 185
Ruberman, 72
ruled minimal submanifold, 525
ruled real hypersurface

cannot be Hopf, 458
in complex space form, 445, 458, 459, 461,

462, 465, 502
in quaternionic space form, 548
shape operator, 446

Ryan, 19, 98, 323, 339, 474
Ryan hypersurface, 468

S
s-representations, 101, 342
Samelson, 141, 323, 331
Samuel, 223
Sanchez, 153
Santos, 497
Sard’s Theorem, 11, 40, 52, 66, 227, 339

Federer’s version, 339
Sasaki metric, 377
scalar curvature, 322
scalar product conditions for Legendre

submanifold, 207, 208
Scherfner-Weiss, 183
Scherfner-Weiss-Yau, 183
Schiffer problem, 184
Schoen-Yau, 340
Schouten, 338
second covariant derivative of a tensor field,

379, 389, 483, 504, 522
second fundamental form, 12, 388

of a Legendre submanifold, 258
second order frame, 284
section

of a polar action, 342
Segre, 91
Segre embedding, 5, 352, 387, 400, 441–444
self-tube, 366
semi-Dupin hypersurface, 34, 74
semi-Riemannian space form, 101, 535
semiparallel hypersurface, 458, 550
semiparallel tensor field, 455, 522
semisymmetric hypersurface, 468, 550
shape operator, 10, 259, 388

W-parallel, 498
in cylinder construction, 243
in non-Hopf setup, 445
in tube construction, 238

Lie recurrent, 497
of bisector, 447
of focal submanifold of a Hopf

hypersurface, 430
of half-spin embedding, 418
of Hopf hypersurface, 365
of hypersurface in complex space form, 348
of parallel hypersurface, 2, 17

to Hopf hypersurface, 372
of Plücker embedding, 408
of ruled real hypersurface, 446
of Segre embedding, 401
of surface of revolution, 245
of tube, 2, 17
of tube in a Riemannian manifold, 383
of tube in complex projective space, 351
of tube in complex space form, 363, 384
of tube over a complex submanifold, 363
of Type A2 hypersurface, 364
of Type B hypersurface, 365, 366
of Veronese embedding, 398

Shklover, 184
Shu-Li, 308
Shu-Su, 308
Siffert, 160
signature of bilinear form, 187, 193, 198, 265,

271, 274, 300
signed radius, 195, 196, 201, 281
similarity transformation, 281, 282
Simons, 387
Simons’ type formula, see formula of Simons’

type
Singley, 19, 32, 233, 260, 339
singular Riemannian foliations, 72, 162
singularities of a cyclide of Dupin, 274
skew-symmetric

matrix, 406
matrix of one-forms, 205, 257, 267, 271,

285
orthogonal matrix, 163, 309

Smyth, 441
Sohn, 521
Solomon, 182
Somigliana, 91
Song, 307
Song-Wang, 307
space form

complex, 1, 345
quaternionic, 1, 533
real, 1, 10

space of leaves of principal foliation, 219, 272,
284

spacelike vector, 187
spectrum of shape operator, 422
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spectrum of the Laplacian, 3, 86, 182
sphere bundle, 67
sphere in hyperbolic space, 65, 190
spherical

cylinder, 56, 96, 282, 307, 329, 331
distance function, 142
field of unit normals, 208
map, 61
projection, 208

spherical two-piece property, 55, 325
conformal invariance, 61
embedding of maximal codimension, 64,

322
with an umbilic point, 60, 323, 326, 331

spherically substantial taut embeddings, 340
Spin(V), 412, 414
spindle cyclide, 279
spindle torus, 279, 283
spine of a bisector, 447
standard embedding

of a projective plane, 99, 152, 332
of a projective space, 2, 9, 46, 48, 64, 74,

76, 309
tautness, 78

standard examples
in complex hyperbolic space, 352
in complex projective space, 350
in quaternionic hyperbolic space, 542
in quaternionic projective space, 541

standard model of cyclide of Dupin, 265, 273,
275

standard non-Hopf frame, 445, 446
standard non-Hopf setup, 445–447, 449, 452,

459, 462, 463, 469, 472, 490, 491,
493–495, 501, 504, 519, 520, 524

stereographic projection, 21, 28, 35, 61, 186,
233, 327

from hyperbolic space, 22, 30
stereoscopic figures of cyclides, 264
Sternberg, 415
Stiefel manifold, 157, 340
Stiefel-Whitney class, 82
Stolz, 35, 137, 141, 143, 180, 303, 308
STPP, see spherical two-piece property
strongly '-invariant, 457
Strubing, 101, 161
structure Jacobi operator, 492

W-parallel, 500, 501
commuting with ', 493, 497
commuting with S, 501
recurrent, 496

structure of crystals, 264
structure theorem

for Hopf hypersurfaces, 369

of Münzner for isoparametric
hypersurfaces, 132

structure vector, 5, 343, 349
sublevel set, 37, 224, 336
submanifold

Dupin, see Dupin, submanifold
focal, see focal submanifold
isoparametric, see isoparametric,

submanifold
taut, see taut, submanifold

substantial map, 41, 62, 64, 77
Suh, 497, 502, 521
support sphere, 59
surface of revolution, 273, 282

construction, 4, 244, 248, 308
number of principal curvatures, 248

surfaces parametrized by lines of curvature,
283

Swiss cheese, 327
symmetric matrix, 406
symmetric space, 100, 101, 159, 161, 162, 341,

342, 405

T
Tai, 74
Takagi, 4, 156, 159, 180, 343, 350, 501
Takagi’s list, 5, 343, 350, 357, 421, 432, 466,

480
Takagi-Takahashi, 2, 85, 100, 158, 159, 179,

181
Takeuchi-Kobayashi, 101, 161
Tang, 137, 180
Tang-Xie-Yan, 182
Tang-Yan, 182
Tashiro-Tachibana, 349
taut

absolute neighborhood retract, 327
conformal invariance, 61
cylinder construction, 56
embeddings

into hyperbolic space, 332
of 3-manifolds, 340
of 4-manifolds, 341
of Grassmann manifolds, 81
of highly connected manifolds, 332
of homogeneous spaces, 341
of maximal codimension, 64, 322
of spheres, 63

immersions, 2, 53
implies embedding, 56
into hyperbolic space, 65
of a non-compact manifold, 56
of a non-compact surface, 322
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implies Dupin, 68, 323
implies STPP, 55
implies tight, 55
Legendre submanifold, 224
Lie invariance, 224
map, 55
parallel hypersurface, 57
set, 55
sphere in a Riemannian manifold, 72
submanifold, 36, 52, 341

in a Riemannian manifold, 162
of a complete Riemannian manifold, 54,

72
subset of 3-space, 327
subset of a plane, 327
surface of revolution construction, 58
surfaces, 322
tube construction, 57

taut representations, 342
tautness

in Lie sphere geometry, 224
invariant under Lie sphere transformations,

224
of compact proper Dupin submanifolds, 68,

318
of complete proper Dupin hypersurfaces,

141
of focal submanifolds, 137
of isoparametric hypersurfaces, 137
of isoparametric submanifolds of higher

codimension, 137, 161
Taylor, 72
tensor field

�-parallel, 502
�-recurrent, 523, 524
W-parallel, 498

Terng, 68, 101, 109, 161
tautness of isoparametric submanifolds of

higher codimension, 137, 161
Terng-Thorbergsson, 54, 72, 140, 162
Theofanidis-Xenos, 497
Thorbergsson, 34, 65, 85, 86, 101, 140, 143,

161, 162, 180, 234, 303, 308, 332,
341

complete proper Dupin hypersurface
implies taut, 66, 141, 318

homogeneity of isoparametric submanifolds
of higher codimension, 161

tight
immersions, 2, 40

bound on substantial codimension, 46
implies tight map, 43
into hyperbolic space, 65
of a projective plane, 49

of highly connected manifolds, 332
of maximal codimension, 74
of projective spaces, 80
product of, 50
with maximal codimension, 48

implies TPP, 45
invariance under projective transformations,

42
map, 41
set, 41
spherical map implies taut, 61
submanifold, 36
substantial embeddings

in all possible codimensions, 83
of projective planes, 81

timelike line, 221, 297, 302
timelike vector, 187
Tits buildings, 161, 184
Tits metric, 184
Toben, 162
torus

2-dimensional, 211
3-dimensional, 340
in 3-sphere, 3, 35, 234, 251, 306
limit, 277, 282
of revolution, 33, 34, 68, 144, 241, 256,

276, 282, 341
spindle, 279, 283

totally decomposable h-vector, 405
totally focal embedding, 139
totally geodesic

hyperplane in hyperbolic space, 98
submanifolds, 32

in complex hyperbolic space, 352
in complex projective space, 351, 441
in quaternionic hyperbolic space, 542
in quaternionic projective space, 541

totally real submanifold, 370, 372
totally umbilic

hypersurface, 308, 331, 338, 409
in Sn, 144
non-existence in complex space forms,

343, 349, 449
submanifold, 24, 31, 63, 98, 274

in hyperbolic space, 65
TPP, see two-piece property
transnormal system, 117
transversality, 337
triply orthogonal coordinate systems, 283
tube

construction, 4, 236, 308
in Lie sphere geometry, 241
number of principal curvatures, 240

of radius t, 14
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tube (Cont.)
over a complex hyperplane in CHn, 353
over a complex hyperplane in CPn, 351
over a complex submanifold, 343, 369
over a cyclide of Dupin, 300
over a focal submanifold, 223
over a submanifold in quaternionic space

form, 537
over a submanifold of a complex space

form, 384
over a submanifold of a Riemannian

manifold, 382
over a taut submanifold, 340
over a torus, 68, 144, 341

not proper Dupin, 33, 256
over a totally geodesic submanifold, 110
over a Veronese surface, 153

reducible, 253
two-piece property, 41, 45

bound on substantial codimension, 46
curves, 49
immersion with maximal codimension, 48
polyhedral embedding of projective plane,

74
Type A hypersurface, 358, 372, 453, 457, 486,

496–498, 500–502, 521, 524, 547
in quaternionic space form, 541, 547, 549

Type A0 hypersurface, 353, 432, 458, 459, 461,
462, 465–467, 471, 476, 483, 492

in quaternionic hyperbolic space, 542
Type A1 hypersurface, 351, 353, 370, 432, 458,

459, 461, 462, 465–467, 471, 476,
483, 492

in quaternionic hyperbolic space, 543
in quaternionic projective space, 541

Type A2 hypersurface, 351, 352, 432, 476, 483,
492

in quaternionic hyperbolic space, 542
in quaternionic projective space, 541

Type B hypersurface, 351, 353, 432, 476, 486,
496, 502, 521, 524, 528

in quaternionic hyperbolic space, 543
in quaternionic projective space, 542
in quaternionic space form, 544, 547

Type C hypersurface, 352, 443, 486, 528
Type D hypersurface, 352, 486, 528
Type E hypersurface, 352, 412, 486, 528

U
umbilic submanifold, see totally umbilic
unit normal bundle, 10, 14, 67, 370, 382

unit tangent bundle, 376
to Euclidean space, 198
to the sphere, 199, 202

unitary group, 406
unitary matrix, 75, 397, 401

V
Van der Waerden, 90
Vanhecke, 492
Veronese embedding, 5, 76

in complex projective space, 387, 396, 441
Veronese surface, 46, 74, 152, 155, 160, 297,

309, 322, 327
has TPP, 47
is taut, 47
is tight, 47

vertical subspace, 376, 534
Vidal-Castiñeira, 451

W
Walczak, 264
Wang, C.-P., 307
Wang, Q.-M., 86
Wang, X.M., 322
weakly reducible, 255
wedge product, 413
Wegner, 342
West, 161, 162
Wiesendorf, 54, 72, 74, 162
Willmore, 492

functional, 183
submanifold, 3, 86, 183

Wulff shape, 184
Wulff’s Theorem, 184

X
Xiao, 101, 528

Y
Yano’s formula, 454
Yano-Kon, 370
Yau

conjecture, 182
list of problems, 160

Z
zero-section of normal bundle, 329
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