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Preface

The best way to start writing, perhaps the only way, is to write on the spiral plan. According
to the spiral plan the chapters get written and rewritten in the order 1; 2; 1; 2; 3; 1; 2; 3; 4;
etc. [. . . ]

Paul R. Halmos1

Ergodic theory has its roots in Maxwell’s and Boltzmann’s kinetic theory of gases
and was born as a mathematical theory around 1930 by the groundbreaking works
of von Neumann and Birkhoff. In the 1970s, Furstenberg showed how to translate
questions in combinatorial number theory into ergodic theory. This inspired a new
line of research, which ultimately led to stunning recent results of Host and Kra,
Green and Tao, and many others.

In its 80 years of existence, ergodic theory has developed into a highly sophisti-
cated field that builds heavily on methods and results from many other mathematical
disciplines, e.g., probability theory, combinatorics, group theory, topology and set
theory, even mathematical logic. Right from the beginning, also operator theory
(which for the sake of simplicity we use synonymously to “functional analysis”
here) played a central role. To wit, the main protagonist of the seminal papers of
von Neumann (1932b) and Birkhoff (1931) is the so-called Koopman operator

T W L2.X/! L2.X/ .Tf /.x/ WD f .'.x//; (1)

where X D .X; ˙; �/ is the underlying probability space, and ' W X ! X is the
measure-preserving dynamics. (See Chapter 1 for more details.) By passing from
the state space dynamics ' to the (linear) operator T, one linearizes the situation
and can then employ all the methods and tools from operator theory, e.g., spectral
theory, duality theory, harmonic analysis.

1How to write mathematics, L’Enseignement mathématique, T. XVI, fasc. 2, 1970.
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However, this is not a one-way street. Results and problems from ergodic theory,
once formulated in operator theoretic terms, tend to emancipate from their parental
home and to lead their own life in functional analysis, with sometimes stunning
applicability (like the mean ergodic theorem, see Chapter 8). We, as functional
analysts, are fascinated by this interplay, and the present book is the result of this
fascination.

Scope

The present text can be regarded as a systematic introduction into classical
ergodic theory with a special focus on (some of) its operator theoretic aspects; or,
alternatively, as a book on topics in functional analysis with a special focus on (some
of) their applications in ergodic theory.

Accordingly, its classroom use can be at least twofold. As no prior encounter with
ergodic theory is expected, the book can serve as a basis for an introductory course
on that subject, especially for students or researchers with an interest in functional
analysis. Secondly, as the functional analytic notions and results are often developed
here beyond their immediate connection with ergodic theory, the book can also be
a starting point for some advanced or “special topics” course on functional analysis
with a special view on applications to ergodic theory.

Apart from the classroom use, however, we intend this book as an invitation for
anyone working in ergodic theory to learn more about the many operator theoretic
aspects of his/her own discipline. Finally—one great hope of ours—the book may
prove valuable as a foundation for future research, leading towards new and yet
unknown connections between ergodic and operator theory.

Prerequisites

We certainly require familiarity with basic topology, measure theory, and standard
functional analysis, see the Appendices A, B, C. As operator theory on Hilbert
spaces is particularly important, we devoted an own appendix (Appendix D) to
it. Apart from standard material, it also includes some topics usually missing in
elementary functional analysis courses, hence the presentation is relatively detailed
there. As a rule, whenever there were doubts about what may be considered “stan-
dard,” we included full proofs. This concerns, e.g., the Stone–Weierstraß theorem
and the Gelfand–Naimark theorem (Chapter 4), Pontryagin duality (Chapter 14)
and the Peter–Weyl theorem (Chapter 15), the Szőkefalvi–Nagy dilation theorem
(Appendix D), the Riesz representation theorem (Appendix E), von Neumann’s
theorem on the existence of point isomorphisms (Appendix F), the theorems of
Eberlein, Grothendieck, and Kreı̆n on weak compactness, Ellis’ theorem and the
existence of the Haar measure (all in Appendix G).
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A Short Synopsis

Chapter 1 entitled “What is Ergodic Theory?” contains a brief and intuitive
introduction to the subject, including some remarks on its historical development.
The mathematical theory then starts in Chapters 2 and 3 with topological dynamical
systems. There, we introduce the basic notions (transitivity, minimality, and recur-
rence) and cover the standard examples, constructions and results, for instance, the
Birkhoff recurrence theorem.

Operator theory appears first in Chapter 4 when we introduce, as in (1) above, the
Koopman operator T on the Banach space C.K/ induced by a topological dynamical
system .KI'/. After providing some classical results on spaces C.K/ (Urysohn’s
lemma, theorems of Tietze and Stone–Weierstraß), we emphasize the Banach
algebra structure and give a proof of the classical Gelfand–Naimark theorem. This
famous theorem allows to represent each commutative C�-algebra as a space C.K/
and leads to an identification of Koopman operators as the morphisms of such
algebras.

In Chapter 5 we introduce measure-preserving dynamical systems and cover
standard examples and constructions. In particular, we discuss the correspondence
of measures on a compact space K with bounded linear functionals on the Banach
space C.K/. (The proof of the central result here, the Riesz representation theorem,
is deferred to Appendix E.) The classical topics of recurrence and ergodicity as the
most basic properties of measure-preserving systems are discussed in Chapter 6.

Subsequently, in Chapter 7, we turn to the corresponding operator theory. As
in the topological case, a measure-preserving map ' on the probability space
X induces a Koopman operator T on each space Lp.X/ as in (1). While in the
topological situation we look at the space C.K/ as a Banach algebra and at the
Koopman operator as an algebra homomorphism, in the measure theoretic context
the corresponding spaces are Banach lattices and the Koopman operators are
lattice homomorphisms. Consequently, we include a short introduction into abstract
Banach lattices and their morphisms. Finally, we characterize the ergodicity of a
measure-preserving dynamical system by the fixed space or, alternatively, by the
irreducibility of the Koopman operator.

After these preparations, we discuss the most central operator theoretic results in
ergodic theory, von Neumann’s mean ergodic theorem (Chapter 8) and Birkhoff’s
pointwise ergodic theorem (Chapter 11). The former is placed in the more general
context of mean ergodic operators, and in Chapter 10 we discuss this concept for
Koopman operators of topological dynamical systems. Here, the classical results
of Krylov–Bogoljubov about the existence of invariant measures are proved and
the concepts of unique and strict ergodicity are introduced and exemplified with
Furstenberg’s theorem on group extensions.

In between the discussion of the ergodic theorems, in Chapter 9, we introduce
the concepts of strongly and weakly mixing systems. This topic has again a strong
operator theoretic flavor, as the different types of mixing are characterized by
different asymptotic behavior of the powers Tn of the Koopman operator as n!1.
Admittedly, at this stage the results on weakly mixing systems are still somehow
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incomplete as the relative weak compactness of the orbits of the Koopman operator
(on Lp-spaces) is not yet taken into account. The full picture is eventually revealed
in Chapter 16, when this compactness is studied in detail (see below).

Next, in Chapter 12, we consider different concepts of “isomorphism”—
point isomorphism, measure algebra isomorphism, and Markov isomorphism—of
measure-preserving systems. From a classical point of view, the notion of point
isomorphism appears to be the most natural. In our view, however, the Koopman
operators contain all essential information of the dynamical system and underlying
state space maps are secondary. Therefore, it becomes natural to embed the class of
“concrete” measure-preserving systems into the larger class of “abstract” measure-
preserving systems and use the corresponding notion of (Markov) isomorphism.
By virtue of the Gelfand–Naimark theorem, each abstract measure-preserving
system has many concrete topological models. One canonical model, the Stone
representation is discussed in detail.

In Chapter 13, we introduce the class of Markov operators, which plays a central
role in later chapters. Different types of Markov operators (embeddings, factor
maps, Markov projections) are discussed and the related concept of a factor of a
measure-preserving system is introduced.

Compact groups feature prominently as one of the most fundamental examples
of dynamical systems. A short yet self-contained introduction to their theory is the
topic of Chapter 14. For a better understanding of dynamical systems, we present the
essentials of Pontryagin’s duality theory for compact/discrete Abelian groups. This
chapter is accompanied by the results in Appendix G, where the existence of the
Haar measure and Ellis’ theorem for compact semitopological groups is proved in
its full generality. In Chapter 15, we discuss group actions and linear representations
of compact groups on Banach spaces, with a special focus on representations by
Markov operators.

In Chapter 16, we start with the study of compact semigroups. Then we develop
a powerful tool for the study of the asymptotic behavior of semigroup actions on
Banach spaces, the Jacobs–de Leeuw–Glicksberg (JdLG-) decomposition. Applied
to the semigroup generated by a Markov operator T it yields an orthogonal splitting
of the corresponding L2-space into its “reversible” and the “almost weakly stable”
part. The former is the range of a Markov projection and hence a factor, and
the operator generates a compact group on it. The latter is characterized by a
convergence to 0 (in some sense) of the powers of T.

Applied to the Koopman operator of a measure-preserving system, the reversible
part in the JdLG-decomposition is the so-called Kronecker factor. It turns out that
this factor is trivial if and only if the system is weakly mixing. On the other hand,
this factor is the whole system if and only if the Koopman operator has discrete
spectrum, in which case the system is (Markov) isomorphic to a rotation on a
compact monothetic group (Halmos–von Neumann theorem, Chapter 17).

Chapter 18 is devoted to the spectral theory of dynamical systems. Based on a
detailed proof of the spectral theorem for normal operators on Hilbert spaces, the
concepts of maximal spectral type and spectral multiplicity function are introduced.
The chapter concludes with a series of instructive examples.
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In Chapter 19, we approach the Stone–Čech compactification of a (discrete)
semigroup via the Gelfand–Naimark theorem and return to topological dynamics
by showing some less classical results, like the theorem of Furstenberg and Weiss
about multiple recurrence. Here, we encounter the first applications of dynamical
systems to combinatorics and prove the theorems of van der Waerden, Gallai, and
Hindman.

In Chapter 20, we describe Furstenberg’s correspondence principle, which
establishes a relation between ergodic theory and combinatorial number theory. As
an application of the JdLG-decomposition, we prove the existence of arithmetic
progressions of length 3 in certain subsets of N, i.e., the first nontrivial case of
Szemerédi’s theorem on arithmetic progressions.

Finally, in Chapter 21, more ergodic theorems lead the reader to less classical
areas and to the front of active research.

What is Not in This Book

Some classical topics of ergodic theory, even with a strong connection to operator
theory, have been left out or only briefly touched upon. Our treatment of the spectral
theory of dynamical systems in Chapter 18 is of an introductory character. From
the vast literature on, e.g., spectral realization or spectral isomorphisms of concrete
dynamical systems, only a few examples are discussed. For more information on this
topic, we refer to Queffélec (1987), Nadkarni (1998b), Lemańczyk (1996), Katok
and Thouvenot (2006), Lemańczyk (2009), and to the references therein.

Entropy is briefly mentioned in Chapter 18 in connection with Ornstein’s theory
of Bernoulli shifts. The reader interested in its theory is referred to, e.g., the
following books: Billingsley (1965), Parry (1969a), Ornstein (1974), Sinaı̆ (1976),
England and Martin (1981), Cornfeld et al. (1982), Petersen (1989), Downarowicz
(2011).

Applications of ergodic theory in number theory and combinatorics are discussed
at several places throughout the book, most notably in Chapter 20 where we prove
Roth’s theorem. However, this is admittedly far from being comprehensive, and
we refer to the books Furstenberg (1981), McCutcheon (1999), and Einsiedler and
Ward (2011) for more on this circle of ideas. For applications of ergodic theoretic
techniques in nonlinear dynamics, see Lasota and Mackey (1994).

Apart from some notable exceptions, in this book we mainly treat the ergodic
theory of a single measure-preserving transformation (i.e., N- or Z-actions).
However, many of the notions and results carry over with no difficulty to measure-
preserving actions of countable discrete (semi-)groups. For more about ergodic
theory beyond Z-actions see Bergelson (1996), Lindenstrauss (2001), Tempelman
(1992), Gorodnik and Nevo (2010) and the references given in Section 21.5.



xii Preface

Finally, the theory of joinings (see Thouvenot (1995) and Glasner (2003)) is not
covered here. This theory has a strong functional analytic core and is connected to
the theory of dilations and disintegrations of operators. Our original plan to include
these topics in the present book had to be altered due to size constraints, and a
detailed treatment is deferred to a future publication.

Notation, Conventions, and Peculiarities

For convenience, a list of symbols is included at the end. There, to each symbol we
give a short explanation and indicate the place of its first occurrence in the text. At
this point, we only want to stress that for us the set of natural numbers is

N WD ˚1; 2; 3; : : : �;

i.e., it does not contain 0, and N0 WD N[f0g is the set of nonnegative integers. (The
meanings of Z, Q, R, C are as usual.)

For us, the word positive (number, measure, function, functional, etc.) means
that the object under consideration is “� 0”. That is, we call “positive” what in
other texts might be called nonnegative.

In our definition of a compact topological space, the Hausdorff property is
included, see Appendix A. Similarly, our notion of a commutative algebra includes
the existence of a unit element, and algebra homomorphisms are to be understood
as unital, see Appendix C.2.

History

The text of this book has a long and complicated history. In the early 1960s, Helmut
H. Schaefer founded his Tübingen school systematically investigating Banach
lattices and positive operators (Schaefer 1974). Growing out of that school, Rainer
Nagel in the early 1970s developed in a series of lectures an abstract “ergodic theory
on Banach lattices” in order to unify topological dynamics with the ergodic theory
of measure-preserving systems. This approach was pursued subsequently together
with several doctoral students, among whom Günther Palm (1976b), (1976a), (1978)
succeeded in unifying the topological and measure theoretic entropy theories. This
and other results, e.g., on discrete spectrum (Nagel and Wolff 1972), mean ergodic
semigroups (Nagel 1973), and dilations of positive operators (Kern et al. 1977)
led eventually to a manuscript by Roland Derndinger, Rainer Nagel, and Günther
Palm entitled “Ergodic Theory in the Perspective of Functional Analysis,” ready for
publication around 1980.

However, the “Zeitgeist” seemed to be against this approach. Ergodic theorists
at the time were fascinated by other topics, like the isomorphism problem and the
impact the concept of entropy had made on it. For this reason, the publication of the
manuscript was delayed for several years. In 1987, when the manuscript was finally
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Fig. 1 The poster of the Internet Seminar by Karl Heinrich Hofmann

accepted by Springer’s Lecture Notes in Mathematics, time had passed over it, and
none of the authors was willing or able to do the final editing. The book project was
buried and the manuscript remained in an unpublished preprint form (Derndinger
et al. 1987).

Then, some 20 years later and inspired by the survey articles by Bryna
Kra (2006), (2007) and Terence Tao (2007) on the Green–Tao theorem, Rainer
Nagel took up the topic again. He quickly motivated two of his former doctoral
students (T.E., B.F.) and a former master student (M.H.) for the project. However,
it was clear that the old manuscript could only serve as an important source, but a
totally new text would have had to be written. During the academic year 2008/2009,
the authors organized an international internet seminar under the title “Ergodic
Theory—An Operator Theoretic Approach” (Figure 1) and wrote the corresponding
lecture notes. Over the last 6 years, these notes were expanded considerably,
rearranged and rewritten several times (cf. the quote at the beginning). Until, finally,
they became the book that we now present to the mathematical public.
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Chapter 1
What Is Ergodic Theory?

... 10 éves koromban édesapám elmondta annak bizonyítását, hogy végtelen sok prímszám
van, és hogy a prímszámok között tetszőlegesen nagy hézagok vannak, így barátságom a
prímszámokkal korán kezdődött ...1

Paul Erdős2

Ergodic Theory is not one of the classical mathematical disciplines and its name,
in contrast to, e.g., number theory, does not indicate its subject. However, its origin
can be described quite precisely.

It was around 1880 when Boltzmann, Maxwell, and others tried to explain ther-
modynamical phenomena by mechanical models and their underlying mathematical
principles. In this context, Boltzmann (1885) coined the word Ergode (as a special
kind of Monode)3:

Monoden, welche nur durch die Gleichung der lebendigen Kraft beschränkt sind, will ich
als Ergoden bezeichnen.4

A few years later the Ehrenfests (1912) wrote

. . . haben Boltzmann und Maxwell eine Klasse von mechanischen Systemen durch die
folgende Forderung definiert:

1... when I was 10 years old my father told me the proof that there are infinitely many prime
numbers and that there are arbitrarily large gaps between them, so my friendship with primes
began very early ...
2Természet Világa, 128, No. 2, February 1997, pp. 78–79.
3For the still controversial discussion “On the origin of the notion ‘Ergodic Theory,’” see the
excellent article by Mathieu (1988) but also the remarks by Gallavotti (1975).
4“Monodes which are restricted only by the equations of the living power, I shall call Ergodes.”
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2 1 What Is Ergodic Theory?

Die einzelne ungestörte Bewegung des Systems führt bei unbegrenzter Fortsetzung
schließlich durch jeden Phasenpunkt hindurch, der mit der mitgegebenen Totalenergie
verträglich ist. – Ein mechanisches System, das diese Forderung erfüllt, nennt Boltzmann
ein ergodisches System.5

The assumption that certain systems are “ergodic” is then called “Ergodic
Hypothesis.” Leaving the original problem behind, “Ergodic Theory” set out on its
fascinating journey into mathematics and arrived at quite unexpected destinations.

Before we, too, undertake this journey, let us explain the original problem without
going too deep into the underlying physics. We start with an (ideal) gas contained
in a box and represented by d (frictionlessly) moving particles. Each particle is
described by six coordinates (three for position, three for velocity), so the situation
of the gas (better: the state of the system) is given by a point x 2 R

6d. Clearly, not all
points in R

6d can be attained by our gas in the box, so we restrict our considerations
to the set X of all possible states and call this set the state space of our system.
We now observe that our system changes while time is running, i.e., the particles
are moving (in the box) and therefore a given state (= point in X) also “moves”
(in X). This motion (in the box, therefore in X) is governed by Newton’s laws of
mechanics and then by Hamilton’s differential equations. The solutions to these
equations determine a map

' W X ! X

in the following way: If our system, at time t D 0, is in the state x0 2 X, then at time
t D 1 it will be in a new state x1, and we define ' by '.x0/ WD x1. As a consequence,
at time t D 2 the state x0 becomes

x2 WD '.x1/ D '2.x0/

and

xn WD 'n.x0/

at time t D n 2 N. The so-obtained set f'n.x0/ W n 2 N0g of states is called the
orbit of x0. In this way, the physical motion of the system of particles becomes a
“motion” of the “points” in the state space. The motion of all states within one time
unit is given by the map '. For these objects we introduce the following terminology.

5“. . . Boltzmann and Maxwell have defined a class of mechanical systems by the following claim:
By unlimited continuation the single undisturbed motion passes through every state which is
compatible with the given total energy. Boltzmann calls a mechanical system which fulfills this
claim an ergodic system.”



1 What Is Ergodic Theory? 3

Fig. 1.1 Try to determine the exact state of the system for only d D 1 000 gas particles

Definition 1.1. A pair .XI'/ consisting of a state space X and a map ' W X ! X is
called a dynamical system.6

The mathematical goal now is not so much to determine ' but rather to find
interesting properties of it. Motivated by the underlying physical situation, the
emphasis is on “long term” properties of ', i.e., properties of 'n as n gets large.

First Objection. In the physical situation it is not possible to determine exactly the
given initial state x0 2 X of the system or any of its later states 'n.x0/ (Figure 1.1).

To overcome this objection we introduce “observables,” i.e., functions f W X !
R assigning to each state x 2 X the value f .x/ of a measurement, for instance of the
temperature. The motion in time (“evolution”) of the states described by the map
' W X ! X is then reflected by a map T' of the observables defined as

f 7! T'f WD f ı ';
and called the Koopman operator. This change of perspective is not only
physically justified, but it also has an enormous mathematical advantage:

The set of all observables ff W X ! Rg has a vector space structure and
the map T' D .f 7! f ı '/ is a linear operator on this vector space.

So instead of looking at the orbits f'n.x0/ W n 2 N0g of the state map ' we study
the orbit fTn

'f W n 2 N0g of an observable f under the linear operator T' . This
allows one to use operator theoretic tools and is the leitmotif of this book.

Returning to our description of the motion of the particles in a box and keeping
in mind realistic experiments, we should make another objection.

Second Objection. The motion of our system happens so quickly that we will be
able to determine neither the states

x0; '.x0/; '
2.x0/; : : :

nor their measurements

f .x0/;T'f .x0/;T
2
'f .x0/; : : :

at time t D 0; 1; 2; : : : .

6This is a mathematical model for the philosophical principle of determinism and we refer to the
article by Nickel (2000) for more on this interplay between mathematics and philosophy.



4 1 What Is Ergodic Theory?

Reacting on this objection we slightly change our perspective and instead of the
above measurements we look at the averages over time

1

N

N�1X

nD0
Tn
'f .x0/ D

1

N

N�1X

nD0
f .'n.x0//

lim
N!1

1

N

N�1X

nD0
Tn
'f .x0/;and their limit

called the time mean (of the observable f at the state x0). This appears to
be a good idea, but it is still based on the knowledge of the states 'n.x0/ and
their measurements f .'n.x0//, so the first objection remains valid. At this point,
Boltzmann asked for more.

Third Objection. The time mean limN!1 1
N

PN�1
nD0 f .'n.x0// should not depend

on the initial state x0 2 X.
Boltzmann even suggested what the time mean should be. Indeed, for his system

there exists a canonical probability measure � on the state space X for which he
claimed the validity of the so-called

Ergodic Hypothesis. For each initial state x0 2 X and each (reasonable) observ-
able f W X ! R, it is true that “time mean equals space mean,” i.e.,

lim
N!1

1

N

N�1X

nD0
f .'n.x0// D

Z

X
f d�:

Up to now our arguments are quite vague and based on some more or less realistic
physical intuition (that one may or may not have). However, we have arrived at the
point where mathematicians can take over and build a mathematical theory. To do
so we propose the following steps:

1) Make reasonable assumptions on the basic objects such as the state space X,
the dynamics given by the map ' W X ! X, and the observables f W X ! R.

2) Prove theorems that answer the following questions.

a) Under which assumptions and in which sense does the limit appearing
in the time mean exist?

b) What are the best assumptions to guarantee that the ergodic hypothe-
sis holds.

Historically, these goals could be achieved only after the necessary tools had been
created. Fortunately, between 1900 and 1930 new mathematical theories emerged
such as topology, measure theory, and functional analysis. Using the tools from these
new theories, von Neumann and Birkhoff proved in 1931 the so-called mean ergodic
theorem (von Neumann 1932b) and the individual ergodic theorem (Birkhoff 1931)
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and thereby established ergodic theory as a new and independent mathematical
discipline, see Bergelson (2004).

Now, a valuable mathematical theory should offer more than precise definitions
(see Step 1) and nice theorems (see Step 2). You also expect that applications can
be made to the original problem from physics. But something very fascinating
happened, something that Wigner called “the unreasonable effectiveness of math-
ematics” (Wigner 1960). While Wigner noted this “effectiveness” with regard to
the natural sciences, we shall see that ergodic theory is effective in completely
different fields of mathematics such as number theory. This phenomenon was
unconsciously anticipated by Borel’s theorem on normal numbers (Borel 1909) or
by the equidistribution theorem of Weyl (1916). Both results are now considered to
be parts of ergodic theory.

But not only classical results can now be proved using ergodic theory. Confirming
a conjecture from 1936 by Erdős and Turán, Green and Tao caused a mathematical
sensation by proving the following theorem using, among others, techniques and
results from ergodic theory, see Green and Tao (2008).

Theorem 1.2 (Green–Tao). The set of primes P contains arbitrarily long arith-
metic progressions, i.e., for every k 2 N there exist a 2 P and n 2 N such that

a; aC n; aC 2n; : : : ; aC .k � 1/n 2 P:

The Green–Tao theorem had a precursor first proved by Szemerédi in a combinato-
rial way but eventually given a purely ergodic theoretic proof by Furstenberg (1977),
see also Furstenberg et al. (1982).

Theorem 1.3 (Szemerédi). If a set A � N has upper density

d.A/ WD lim sup
n!1

card .A \ f1; : : : ; ng/
n

> 0;

then it contains arbitrarily long arithmetic progressions.

A complete proof of this theorem remains beyond the reach of this book. However,
we shall provide some of the necessary tools.

As a warm-up before the real work, we give you a simple exercise.

Problem. Consider the unit circle T D fz 2 C W jzj D 1g and take a point
1 ¤ a 2 T. What can we say about the behavior of the barycenters bn of the vertices
of the polygons formed by the points 1; a; a2; : : : ; an�1 as n tends to infinity? (Figure
1.2).

While this problem can be solved using only very elementary mathematics, see
Exercise 1, we will show later that its solution is just a (trivial) special case of von
Neumann’s ergodic theorem.
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Further Reading

Among the many monographs on ergodic theory we mention Einsiedler and Ward
(2011), Kalikow and McCutcheon (2010), Gorodnik and Nevo (2010), Silva (2008),
Glasner (2003), Pollicott and Yuri (1998), Tempelman (1992), Petersen (1989),
Krengel (1985), Walters (1982), Cornfeld et al. (1982), Furstenberg (1981), and
Denker et al. (1976).

The commonly accepted etymology of the word “ergodic” is due to the Ehren-
fests (1912, p. 30), see also LoBello (2013, p. 132):

ἔργον = energy ὁδός = path
A slightly different but perhaps correct explanation can be traced back to the

work of Boltzmann (1885):
ἔργον = energy –ῶδης = –like

Both possible explanations and their background can be found in Mathieu (1988).
Some aspects of the history of ergodic theory are treated, for instance, in Rédei and
Werndl (2012), Bergelson (2004), LoBello (1983), and Gallavotti (1975).

Exercises

1. For � 2 T prove that

1

n

nX

jD1
�j converges as n!1

and calculate its limit. Is the convergence uniform in � 2 T?
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2. Prove that a convergent sequence .an/n2N in C with limit a is Cesàro convergent
with Cesàro limit a, i.e., that for the Cesàro averages (arithmetic averages)

An WD 1

n

nX

jD1
aj ! a as n!1.

3. In the setting of the preceding exercise give an example of a nonconvergent but
Cesàro convergent sequence in C. Give an example of a bounded sequence which is
not Cesàro convergent.

4. Let T be a d � d permutation matrix. Prove that

1

n

nX

jD1
Tj converges as n!1

and determine the limit.

5. Let T be a d � d-matrix with complex entries. Prove that

sup
n2N
kTnk <1 if and only if An WD 1

n

nX

jD1
Tj converges as n!1.

(Hint: Use the Jordan normal form of T.)

6. Consider the Hilbert space H WD `2.N/ and a sequence .an/n2N in C with
supn2N janj � 1. Define T W H ! H by T.xn/n2N D .anxn/n2N. Prove that for
every x D .xk/k2N 2 H

1

n

nX

jD1
Tjx converges as n!1,

and determine the limit.

7. Denote by �.x/ the number of primes in the interval Œ0; x�. The prime number
theorem7 states that limx!1 �.x/ log.x/

x D 1. Use this to prove that the set of
primes P has upper density 0. (Thus, the Green–Tao theorem does not follow from
Szemerédi’s theorem.) Give an alternative proof of the identity d.P/ D 0 avoiding
the use of the prime number theorem by first establishing the estimate

n�.2n/��.n/ �
 
2n

n

!

< 4n

and then employing a telescopic argument to estimate �.22k/ and hence �.x/.

7See for example: G. J. O. Jameson, The Prime Number Theorem, London Mathematical Society
Student Texts, vol. 53, Cambridge University Press, Cambridge, 2003 (Chapter 1).



Chapter 2
Topological Dynamical Systems

For Bourbaki, Poincaré was the devil incarnate. For students of chaos and fractals, Poincaré
is of course God on Earth.

Marshall H. Stone1

In Chapter 1 we introduced a dynamical system as consisting of a set X and a self-
map ' W X ! X. However, in concrete situations one usually has some additional
structure on the set X, e.g., a topology and/or a measure, and then the map ' is
continuous and/or measurable. We shall study measure theoretic dynamical systems
in later chapters and start here with an introduction to topological dynamics.

As a matter of fact, this requires some familiarity with elementary (point-set)
topology as discussed, for instance, in Kuratowski (1966), Kelley (1975) or Willard
(2004). For the convenience of the reader, some basic definitions and results are
collected in Appendix A.

Definition 2.1. A topological (dynamical) system is a pair .KI'/, where K is a
nonempty compact space2 and ' W K ! K is continuous. A topological system
.KI'/ is surjective if ' is surjective, and the system is invertible if ' is invertible,
i.e., a homeomorphism.

An invertible topological system .KI'/ defines two “one-sided” topological sys-
tems, namely the forward system .KI'/ and the backward system .KI'�1/.

Many of the following notions, like the forward orbit of a point x, do make
sense in the more general setting of a continuous self-map of a topological space.
However, we restrict ourselves to compact spaces and reserve the term topological
dynamical system for this special situation.

1D. Mac Hale, Comic sections: the book of mathematical jokes, humour, wit, and wisdom, Boole
Press, 1993.
2Note that by (our) definition compact spaces are Hausdorff, see Appendix A.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_2
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2.1 Basic Examples

First we list some basic examples of topological dynamical systems.

Example 2.2. The trivial system is .KI idK/, where K D f0g. The trivial system
is invertible, and it is abbreviated by f0g.
Example 2.3 (Finite State Space). Take d 2 N and consider the finite set
K WD f0; : : : ; d � 1g with the discrete topology. Then K is compact and every map
' W K ! K is continuous. The system .KI'/ is invertible if and only if ' is a
permutation of the elements of K.

A topological system on a finite state space can be interpreted as a finite directed
graph with the edges describing the action of ': The points of K form the vertices of
the graph and there is a directed edge from vertex i to vertex j precisely if '.i/ D j.
See Figure 2.1 below and also Exercise 1.

Example 2.4 (Finite-Dimensional Contractions). Let k�k be a norm on R
d and

let T W Rd ! R
d be linear and contractive with respect to the chosen norm, i.e.,

kTxk � kxk, x 2 R
d. Then the unit ball K WD fx 2 R

d W kxk � 1g is compact, and
' WD TjK is a continuous self-map of K.

As a more concrete example we choose the norm kxk1 D max fjx1j ; : : : ; jxdjg
on R

d and the linear operator T given by a row-substochastic matrix .tij/i;jD1;:::;d,
i.e.,

tij � 0 and
dX

kD1
tik � 1 .1 � i; j � d/:

Then

jŒTx�ij D
ˇ
ˇ
ˇ

dX

jD1
tijxj

ˇ
ˇ
ˇ �

dX

jD1
tij
ˇ
ˇxj

ˇ
ˇ � kxk1

dX

jD1
tij � kxk1

for every j D 1; : : : ; d. Hence, T is contractive.

Example 2.5 (Shift). Take k 2 N and consider the set

K WD W C
k WD f0; 1; : : : ; k � 1gN0

Fig. 2.1 A topological
system on the finite state
space K D f0; 1; : : : ; 9g
depicted as a graph 1

2
3

4
5

6 7 8

9

0
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of infinite sequences within the set L WD f0; : : : ; k � 1g. In this context, the set L is
often called an alphabet, its elements being the letters. So the elements of K are
the infinite words composed of these letters. Endowed with the discrete metric the
alphabet is a compact metric space. Hence, by Tychonoff’s theorem K is compact
when endowed with the product topology (see Section A.5 and Exercise 2). On K
we consider the (left) shift � defined by

� W K ! K; .xn/n2N0 7! .xnC1/n2N0 :

Then .KI �/ is a topological system, called the one-sided shift. If we consider two-
sided sequences instead, that is, Wk WD f0; 1; : : : ; k�1gZ with � defined analogously,
we obtain an invertible topological system .WkI �/, called the two-sided shift.

Example 2.6 (Cantor System). The Cantor set is

C D
n
x 2 Œ0; 1� W x D

1X

jD1
aj

3j ; aj 2 f0; 2g
o
; (2.1)

cf. Appendix A.8. As a closed subset of the unit interval, the Cantor set C is compact.
Consider on C the mapping

'.x/ D
(
3x if 0 � x � 1

3
;

3x � 2 if 2
3
� x � 1:

The continuity of ' is clear, and a close inspection using (2.1) reveals that ' maps
C to itself. Hence, .CI'/ is a topological system, called the Cantor system.

Example 2.7 (Translation mod 1). Consider the interval K WD Œ0; 1/ and define

d.x; y/ WD ˇˇe2 ix � e2 iy
ˇ
ˇ .x; y 2 Œ0; 1//:

By Exercise 3, d is a metric on K, continuous with respect to the standard one, and
turning K into a compact metric space. For a real number x 2 R we write

x .mod 1/ WD x � bxc;

where bxc WD maxfn 2 Z W n � xg is the greatest integer less than or equal to x.
Now, given ˛ 2 Œ0; 1/ we define the translation by ˛ mod 1 as

'.x/ WD xC ˛ .mod 1/ D xC ˛ � bxC ˛c .x 2 Œ0; 1//:

By Exercise 3, ' is continuous with respect to the metric d, hence it gives rise to a
topological system on Œ0; 1/. We shall abbreviate this system by .Œ0; 1/I˛/.
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Example 2.8 (Rotation on the Torus). Let K D T WD fz 2 C W jzj D 1g be
the unit circle, also called the (one-dimensional) torus. Take a 2 T and define
' W T! T by

'.z/ WD a � z for all z 2 T:

Since ' is obviously continuous, it gives rise to an invertible topological system
defined on T called the rotation by a. We shall denote this system by .TI a/.
Example 2.9 (Rotation on Compact Groups). The previous example is an in-
stance of the following general set-up. A topological group is a group .G; �/
endowed with a topology such that the maps

.g; h/ 7! g � h; G �G! G

g 7! g�1; G! Gand

are continuous. A topological group is a compact group if G is compact.
Given a compact group G, the left rotation by a 2 G is the mapping

'a W G! G; 'a.g/ WD a � g:

Then .GI'a/ is an invertible topological system, which we henceforth shall denote
by .GI a/. Similarly, the right rotation by a 2 G is

�a W G! G; �a.g/ WD g � a

and .GI �a/ is an invertible topological system. Obviously, the trivial system
(Example 2.2) is an instance of a group rotation.

If the group is Abelian, then left and right rotations are identical and one often
speaks of translation instead of rotation. The torusT is our most important example
of a compact Abelian group.

Example 2.10 (Dyadic Adding Machine). For n 2 N consider the cyclic group
Z2n WD Z=2n

Z, endowed with the discrete topology. The quotient maps

�ij W Z2j ! Z2i ; �ij.xC 2j
Z/ WD xC 2i

Z .i � j/

are trivially continuous, and satisfy the relations

�ii D id and �ij ı �jk D �ik .i � j � k/:

The topological product space G WD Q
n2N Z2n is a compact Abelian group by

Tychonoff’s Theorem A.5. Since each �ij is a group homomorphism, the set
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A2 D
n
x D .xn/n2N 2

Y

n2N
Z2n W xi D �ij.xj/ for all i � j

o

is a closed subgroup of G, called the group of dyadic integers. Being closed in the
compact group G, A2 is compact. (This construction is an instance of what is called
an inverse or projective limit, see also Exercise 18.) Finally, consider the element

1 WD .1C 2Z; 1C 4Z; 1C 8Z; : : : / 2 A2:

The group rotation system .A2I 1/ is called the dyadic adding machine.

The group rotation systems are special cases of the following more general class
of examples.

Example 2.11 (Homogeneous Systems). Let G be a Hausdorff topological group
and let 	 be a closed subgroup of G. The set of left cosets of 	 ,

G=	 WD ˚g	 W g 2 G
�
;

becomes a Hausdorff topological space, called a homogeneous space of G, when
endowed with the quotient topology with respect to the canonical surjection

q W G! G=	; q.g/ WD g	:

Suppose in addition that 	 is a cocompact subgroup, i.e., that G=	 is compact.
Then for a 2 G the left multiplication g	 7! ag	 acts on G=	 and gives rise to an
invertible topological system .G=	 I a/, called a homogeneous system.

If 	 is even a normal subgroup of G, then G=	 is canonically a (compact
topological) group, and the homogeneous system .G=	 I a/ is the same as the
group rotation system .G=	 I a	 /, cf. Example 2.9. In particular, any group rotation
system .GI a/ with a compact group G can be seen as a homogeneous system
.G=	 I a/ for the (discrete, cocompact, and normal) subgroup 	 D f1g. See
Exercise 16 and also Example 2.18 below.

Example 2.12 (Group Rotation on R=Z). Consider the additive group R with
the standard topology and its closed (normal) subgroup Z. The homogeneous space
(= factor group)R=Z is compact since R=Z D q.Œ0; 1�/ (cf. Proposition A.4), where

q.x/ WD xC Z; R! R=Z

is the canonical homomorphism. Each ˛ 2 R acts by translation xCZ 7! ˛CxCZ

and gives rise to the homogeneous (viz. group rotation) system .R=ZI˛/.
Example 2.13 (Heisenberg System). In the following we describe an important
example of a homogeneous system which is in general not a group rotation. The
non-Abelian group G of upper triangular real matrices with all diagonal entries equal
to 1, i.e.,
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G D
(0

@
1 x z
0 1 y
0 0 1

1

A W x; y; z 2 R

)

;

is called the Heisenberg group. We introduce the notation

Œx; y; z� WD
0

@
1 x z
0 1 y
0 0 1

1

A ;

so that the multiplication takes the form

Œx; y; z� � Œx0; y0; z0� D ŒxC x0; yC y0; zC z0 C xy0�:

Identifying the vector .x; y; z/t 2 R
3 with the element Œx; y; z� 2 G we endow G with

the usual topology of R3. Then G is a locally compact, but not compact, topological
group. The set

	 WD ˚Œ˛; ˇ; 
� W ˛; ˇ; 
 2 Z
�

of elements of G with integer entries is a discrete and closed (but not a normal)
subgroup of G.

We shall see that 	 is cocompact, i.e., the homogeneous space H WD G=	 is
compact. To this end, consider the set

A D ˚Œx; y; z� W x; y; z 2 Œ0; 1/� � G:

Obviously, A D Œ0; 1�3 is compact, and A is a complete set of representatives for
the left cosets in G=	 , i.e., for each g 2 G there is a unique a 2 A and h 2 	 such
that g D ah (see Exercise 4). In other words,

G D q.A/ D A	 D
[

h2	
Ah;

where the sets in this union are pairwise disjoint. It follows that H D G=	 D q.A/,
the so-called Heisenberg manifold, is compact, so 	 is cocompact.

Each a D Œ˛; ˇ; 
� 2 G acts on H D G=	 by left multiplication g	 7! ag	 and
gives rise to a homogeneous system .HI a/ (Example 2.11), called a Heisenberg
system.
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2.2 Basic Constructions

In the present section we shall make precise what it means for two topological
systems to be “essentially equal.” Then we shall present some techniques for
constructing “new” topological systems from “old” ones, and review our list of
examples from the previous section in the light of these constructions.

1. Homomorphisms

A homomorphism between two topological systems .K1I'1/, .K2I'2/ is a continu-
ous map � W K1 ! K2 such that � ı '1 D '2 ı � , i.e., the diagram

y

is commutative. We indicate this by writing simply

� W .K1I'1/! .K2I'2/:

A homomorphism� W .K1I'1/! .K2I'2/ is a factor map if it is surjective. Then,
.K2I'2/ is called a factor of .K1I'1/ and .K1I'1/ is called an extension of .K2I'2/.

If � is bijective, then it is called an isomorphism (or conjugation). Two
topological systems .K1I'1/, .K2I'2/ are called isomorphic (or conjugate) if there
is an isomorphism between them. An isomorphism � W .KI'/ ! .KI'/ is called
an automorphism, and the set of automorphisms of a topological system .KI'/ is
denoted by Aut.KI'/. This is clearly a group with respect to composition.

Example 2.14 (Right Rotations as Automorphisms). Consider a left group rota-
tion system .GI a/. Then any right rotation �h, h 2 G, is an automorphism of .GI a/:

�h.a � g/ D .ag/h D a.gh/ D a � .�h.g// .g 2 G/:

This yields an injective homomorphism� W G! Aut.GI a/ of groups. The inversion
map�.g/ WD g�1 is an isomorphism of the topological systems .GI a/ and .GI �a�1 /

since

�a�1 .�.g// D g�1a�1 D .ag/�1 D �.a � g/ .g 2 G/:
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Example 2.15 (Rotation and Translation). For ˛ 2 Œ0; 1/ let a WD e2 i˛. Then the
three topological systems

1) .Œ0; 1/I˛/ from Example 2.7,

2) .TI a/ from Example 2.8,

3) and .R=ZI˛/ from Example 2.12

are all isomorphic.

Proof. The (well-defined!) map

˚ W R=Z! T; xC Z 7! e2 ix

is a group isomorphism. It is continuous since˚ ıq is continuous and q W R! R=Z

is a quotient map (Appendix A.4). Since 'a ı ˚ D ˚ ı '˛, ˚ is an isomorphism of
the topological systems 2) and 3). The isomorphy of 1) and 2) is Exercise 6. ut
Example 2.16 (Shift Š Cantor System). The two topological systems

1) .CI'/ from Example 2.6 (Cantor system)

2) .W C
2 I �/ from Example 2.5 (shift on two letters)

are isomorphic (Exercise 7).

Remark 2.17 (Factors). Let .KI'/ be a topological system. An equivalence re-
lation � on K is called a '-congruence if � is compatible with the action of ':

x � y H) '.x/ � '.y/:

Let L WD K=� be the space of equivalence classes with respect to �. Then L
is a compact space by endowing it with the quotient topology with respect to the
canonical surjection q W K ! K=�, q.x/ D Œx��, the equivalence class of x 2 K.
Moreover, the dynamics induced on L via

 .Œx��/ WD Œ'.x/�� .x 2 K/

is well defined because ' is a congruence. Hence, we obtain a new topological
system .LI / and q W .KI'/! .LI / is a factor map.

Conversely, suppose that � W .KI'/ ! .LI / is a factor map between two
topological systems. Then �, defined by x � y if and only if �.x/ D �.y/, is a
'-congruence. The map

˚ W .K=�I'/! .LI /; ˚.Œx��/ WD �.x/

is an isomorphism of the two systems.
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Example 2.18 (Homogeneous Systems II). Consider a group rotation .GI a/ and
let 	 be a closed subgroup of G. The equivalence relation

x � y
Def.” y�1x 2 	

is a congruence since .ay/�1.ax/ D y�1a�1ax D y�1x. The set of corresponding
equivalence classes is simply the homogeneous space

G=	 D ˚g	 W g 2 G
�

of left cosets, and the induced dynamics on it is given by g	 7! ag	 . In this way
we recover the homogeneous system .G=	 I a/, cf. Example 2.11. The canonical
surjection

q W .GI a/! .G=	 I a/ q.g/ WD g	

is a factor map of topological dynamical systems.

Example 2.19 (Group Factors). Let .KI'/ be a topological system, and let
H � Aut.KI'/ be a subgroup of Aut.KI'/. Consider the equivalence relation

x �H y
Def.” 9 h 2 H W h.x/ D y

on K. The set of equivalence classes is denoted by K=H. Since all h 2 H act as
automorphisms of .KI'/, this is a '-congruence, hence constitutes a factor

q W .KI'/! .K=HI'/

with '.Œx�H/ WD Œ'.x/�H by abuse of language. A homogeneous system is a special
case of a group factor (Exercise 8).

2. Products, Skew Products, and Group Extensions

Let .K1I'1/ and .K2I'2/ be two topological systems. The product topological
system .KI'/ is defined by

K WD K1 � K2;

' WD '1 � '2 W K ! K; .'1 � '2/.x; y/ WD .'1.x/; '2.x//:

It is invertible if and only if both .K1I'1/ and .K2I'2/ are invertible. Iterating this
construction we obtain finite products of topological systems as in the following
example.
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Example 2.20 (d-Torus). The d-torus is the d-fold direct product G WD T� � � � �
T D T

d of the one-dimensional torus. It is a compact topological group. The rotation
by a D .a1; a2; : : : ; ad/ 2 G is the d-fold product of the one-dimensional rotations
.TI ai/, i D 1; : : : ; d.

The construction of products is not restricted to a finite number of factors.
If .K�I'�/ is a topological system for each � from some nonempty index set I, then
by Tychonoff’s Theorem A.5

K WD
Y

�2I

K�; '.x/ D .'�.x�//�2I

is a topological system, called the product of the collection ..K�I'�//�2I . The
canonical projections

�� W .KI'/! .K�I'�/; �.x/ WD x� .� 2 I/

are factor maps.
A product of two systems is a special case of the following construction.

Let .KI'/ be a topological system, let L be a compact space, and let

˚ W K � L! L

be continuous. The mapping

 W K � L! K � L;  .x; y/ WD .'.x/; ˚.x; y//
is continuous, hence we obtain a topological system .K�LI /. It is called the skew
product of .KI'/ with L along ˚ .

Remarks 2.21. Let .K � LI / be a skew product along ˚ as above.

1) The projection

� W .K � LI /! .KI'/; �.x; y/ D x

is a factor map.

2) If ˚.x; y/ is independent of x 2 K, the skew product is just an ordinary
product as defined above.

3) We abbreviate˚x WD ˚.x; �/. If ' and each mapping ˚x, x 2 K, is invertible,
then  is invertible with

 �1.x; y/ D .'�1.x/; ˚�1
'�1.x/.y//:

4) If we iterate  on .x; y/, we obtain

 n.x; y/ D .'n.x/; ˚'n�1.x/ : : : ˚'.x/˚x.y//;
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i.e.,  n.x; y/ D .'n.x/; ˚Œn�
x .y// with ˚Œn�

x WD ˚'n�1.x/ ı � � � ı ˚'.x/ ı ˚x. The
mapping

O̊ W N0 � K ! LL; O̊ .n; x/ WD ˚Œn�
x

is called the cocycle of the skew product. It satisfies the relations

˚Œ0�
x D id; ˚ŒmCn�

x D ˚Œm�
'n.x/ ı ˚Œn�

x .n; m 2 N0; x 2 K/:

A group extension is a particular instance of a skew product, where the second
factor is a compact group G, and ˚ W K � G ! G is given by left rotations. That
means that we have (by abuse of language)

˚.x; g/ D ˚.x/ � g .x 2 K; g 2 G/

where ˚ W K ! G is continuous. By Remark 2.21.3 a group extension is invertible
if its first factor .KI'/ is invertible.

Example 2.22 (Skew Rotation). Let G be a compact group and a 2 G. The group
extension of the rotation .GI a/ along the identity map id W G! G is

 a.x; y/ D .ax; xy/ .x; y 2 G/:

This topological system .G2I a/ is called the skew rotation by a 2 G.

Example 2.23 (Skew Shift). A particular example of a skew rotation is the skew
shift .Œ0; 1/2I ˛/ where ˛ 2 Œ0; 1/,

 ˛.x; y/ D .xC ˛ .mod 1/ ; xC y .mod 1/ /;

and on Œ0; 1/ we consider the topology defined in Example 2.7 above.

Remark 2.24. Let H D K � G be a group extension of .KI'/ along ˚ W K ! G.
For h 2 G we take

�h W H ! H; �h.x; g/ WD .x; gh/

to be the right multiplication by h in the second coordinate. Then we have �h 2
Aut.HI /. Indeed,

�h. .x; g// D �h.'.x/; ˚.x/g/ D .'.x/; ˚.x/gh/ D  .x; gh/ D  .�h.x; g//

holds for all .x; g/ 2 H. Hence, � W G! Aut.K �GI / is a group homomorphism.
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3. Subsystems and Unions

Let .KI'/ be a topological system. A subset A � K is called invariant if '.A/ � A,
stable if '.A/ D A, and bi-invariant if A D '�1.A/. If we want to stress the
dependence of these notions on ', we say, e.g., invariant under ', or '-invariant.

Lemma 2.25. Let .KI'/ be a topological system and let A � K. Then the following
assertions hold:

a) If A is bi-invariant or stable, then A is invariant.

b) If A is stable and ' is injective, then A is bi-invariant.

c) If A is bi-invariant and ' is surjective, then A is stable.

Proof. This is Exercise 9. ut
Every nonempty invariant closed subset A � K gives rise to a subsystem by

restricting ' to A. For simplicity we write ' again in place of 'jA, and so the
subsystem is denoted by .AI'/. Note that even if the original system is invertible,
the subsystem need not be invertible any more unless A is bi-invariant (= stable in
this case). We record the following for later use.

Lemma 2.26. Suppose that .KI'/ is a topological system and ; 6D A � K is closed
and invariant. Then there is a nonempty, closed set B � A such that '.B/ D B.

Proof. Since A � K is invariant,

A 	 '.A/ 	 '2.A/ 	 � � � 	 'n.A/ holds for all n 2 N.

All these sets are compact and nonempty since A is closed and ' is continuous. Thus
the set B WD T

n2N 'n.A/ is again nonempty and compact, and satisfies '.B/ � B.
In order to prove '.B/ D B, let x 2 B be arbitrary. Then for each n 2 N we have
x 2 'n.A/, i.e., '�1fxg\'n�1.A/ 6D ;. Hence, these sets form a decreasing sequence
of compact nonempty sets, and therefore their intersection '�1fxg \ B is not empty
either. It follows that x 2 '.B/ as desired. ut
From this lemma the following result is immediate.

Corollary 2.27 (Maximal Surjective Subsystem). For a topological system
.KI'/ let

Ks WD
\

n�0
'n.K/:

Then .KsI'/ is the unique maximal, hence largest, surjective subsystem of .KI'/.
Example 2.28 (Minimal Invertible Extension). Let .KI'/ be a surjective system
and consider the infinite product K1 WD Qj2N K together with the map
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 W K1 ! K1;  .x1; x2; : : : / WD .'.x1/; x1; x2; : : : /:

Then  is injective and the projection onto the first coordinate

� W .K1I /! .KI'/; �.x1; x2; : : : / WD x1

is a factor map. Let L D T
n2N  n.K1/ � K1 be the maximal surjective

subsystem. Then .LI / is an invertible system, by construction. By Exercise 19.a,
�.L/ D K, and hence � W .LI /! .KI'/ is a factor map.

The extension � W .LI /! .KI'/ is called the (minimal) invertible extension
of .KI'/. See Exercise 19 for more information.

Let .K1I'1/, .K2I'2/ be two topological systems. Then there is a unique topo-
logy on K WD .K1 � f1g/[ .K2 � f2g/ such that the canonical embeddings

Jn W Kn ! K; Jn.x/ WD .x; n/ .n D 1; 2/

become homeomorphisms onto open subsets of K. (This topology is the inductive
topology defined by the mappings J1, J2, cf. Appendix A.4.) It is common to identify
the original sets K1, K2 with their images within K. Doing this, we can write
K D K1 [ K2 and define the map

'.x/ WD
(
'1.x/ if x 2 K1;

'2.x/ if x 2 K2:

Then .KI'/ is a topological system, called the (disjoint) union of the original
topological systems, and it contains the original systems as subsystems. It is
invertible if and only if .K1I'1/ and .K2I'2/ are both invertible. In contrast to
products, disjoint unions can only be formed out of finite collections of given
topological systems.

Example 2.29 (Subshifts). As in Example 2.5, consider the shift .W C
k I �/ on the

alphabet f0; 1; : : : ; k � 1g. We determine its subsystems, called subshifts. For this
purpose we need some further notions. An n-block of an infinite word x 2 W C

k is a
finite sequence y 2 f0; 1; : : : ; k � 1gn which occurs in x at some position. Take now
an arbitrary set

B �
[

n2N0
f0; 1; : : : ; k � 1gn;

and consider it as the family of excluded blocks. From this we define

W B
k WD

˚
x 2 W C

k W no block of x is contained in B
�
:
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It is easy to see that W B
k is a closed �-invariant subset, hence, if nonempty, it gives

rise to a subsystem .W B
k I �/. We claim that each subsystem of .W C

k I �/ arises in this
way.

To prove this claim, let .FI �/ be a subsystem and consider the set B of finite
sequences that are not present in any of the words in F, i.e.,

B WD ˚y W y is a finite sequence and not contained in any x 2 F
�
:

We have F � W B
k by definition, and we claim that actually F D W B

k . To this end
let x 62 F. Then there is an open cylinder U � W C

k with x 2 U and U \ F D ;.
By taking a possibly smaller cylinder we may suppose that U has the form

U D ˚z 2 W C
k W z0 D x0; z1 D x1; : : : ; zn D xn

�

for some n 2 N0. Since F \ U D ; and F is shift invariant, the block y WD
.x0; : : : ; xn/ does not occur in any of the words in F. Hence, y 2 B, so x … W B

k .
Particularly important are those subshifts (FI �/ that arise from a finite set B as

F D W B
k . These are called subshifts of finite type. The subshift is called of order

n if there is an excluded block-system B containing only sequences not longer than
n, i.e., B � S

i�nf0; 1; : : : ; k � 1gi. In this case, by extending shorter blocks in all
possible ways, one may suppose that all blocks in B have length exactly n.

Of course, all these notions make sense and all these results remain valid for
two-sided subshifts of .WkI �/.

2.3 Topological Transitivity

Investigating a topological dynamical system means to ask questions like: How does
a particular state of the system evolve in time? How does ' mix the points of K as it
is applied over and over again? Will two points that are close to each other initially
stay close even after a long time? Will a point return to its original position, at least
very near to it? Will a certain point x never leave a certain region or will it come
arbitrarily close to any other given point of K?

In order to study such questions we define the forward orbit of x 2 K as

orbC.x/ WD
˚
'n.x/ W n 2 N0

�
;

and, if the system is invertible, the (total) orbit of x 2 K as

orb.x/ WD ˚'n.x/ W n 2 Z
�
:
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And we shall write

orbC.x/ WD f'n.x/ W n 2 N0g and orb.x/ WD f'n.x/ W n 2 Zg

for the closure of the forward and the total orbit, respectively.

Definition 2.30. Let .KI'/ be a topological system. A point x 2 K is called
forward transitive if its forward orbit orbC.x/ is dense in K. If there is at least one
forward transitive point, then the system .KI'/ is called (topologically) forward
transitive.

Analogously, a point x 2 K in an invertible topological system .KI'/ is called
transitive if its total orbit orb.x/ is dense, and the invertible topological system
.KI'/ is called (topologically) transitive if there exists at least one transitive point.

Example 2.31. Let K WD Z[ f˙1g be the two-point compactification of Z, and
define

'.n/ WD
(

nC 1 if n 2 Z;

n if n D ˙1:

Then .KI'/ is an invertible topological system, each point n 2 Z is transitive but no
point of K is forward (or backward) transitive.

Remarks 2.32. 1) We sometimes say just “transitive” in place of “topologi-
cally transitive.” The reason is that algebraic transitivity—the fact that a point
eventually reaches exactly every other point—is rare in topological dynamics
and does not play any role in this theory.

2) The distinction between forward transitivity and (two-sided) transitivity is
only meaningful in invertible systems. If a system under consideration is
not invertible, we may therefore drop the word “forward” without causing
confusion.

A point x 2 K is forward transitive if we can reach, at least approximately, any
other point in K after some time. The following result tells us that this is a mixing-
property: Two arbitrary open regions are mixed with each other under the action of
' after finitely many steps.

Proposition 2.33. Let .KI'/ be a topological system and consider the following
assertions:

(i) .KI'/ is forward transitive, i.e., there is a point x 2 K with orbC.x/ D K.

(ii) For all open sets U; V ¤ ; in K there is n 2 N with 'n.U/\ V ¤ ;.

(iii) For all open sets U; V ¤ ; in K there is n 2 N with '�n.U/\ V ¤ ;.

Then (ii) and (iii) are equivalent, (ii) implies (i) if K is metrizable, and (i) implies
(ii) if K has no isolated points.
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Proof. The proof of the equivalence of (ii) and (iii) is left to the reader.

(i)) (ii): Suppose that K has no isolated points and that x 2 K has dense forward
orbit. Let U; V be nonempty open subsets of K. Then certainly 'k.x/ 2 U for
some k 2 N0. Consider the open set W WD V n fx; '.x/; : : : ; 'k.x/g. If K has no
isolated points, W cannot be empty, and hence 'm.x/ 2 W for some m > k. Now,
'm.x/ D 'm�k.'k.x// 2 'm�k.U/\ V .

(iii)) (i): If K is metrizable, there is a countable base fUn W n 2 Ng for the topology
on K (see Section A.7). For each n 2 N consider the open set

Gn WD
[

k2N0
'�k.Un/:

By assumption (iii), Gn intersects nontrivially every nonempty open set, and hence
is dense in K. By the Baire Category Theorem A.10 the set

T
n2N Gn is nonempty

(it is even dense). Every point in this intersection has dense forward orbit. ut
Remarks 2.34. 1) In general, (i) does not imply (ii) even if K is metrizable.

Take, e.g., K WD N [ f1g, and ' W K ! K, '.n/ D nC 1, '.1/ D '.1/.
The point 1 2 K has dense forward orbit, but for U D f2g, V D f1g condition
(ii) fails to hold.

2) The proof of Proposition 2.33 yields even more: If K is metrizable without
isolated points, then the set of points with dense forward orbit is either empty
or a dense Gı , see Appendix A.9.

There is an analogous statement for transitivity of invertible systems. It is proved
almost exactly as Proposition 2.33.

Proposition 2.35. Let .KI'/ be an invertible topological system, with K metriz-
able. Then the following assertions are equivalent:

(i) .KI'/ is topologically transitive, i.e., there is a point x 2 K with dense orbit.

(ii) For all ; ¤ U; V open sets in K there is n 2 Z with 'n.U/\ V ¤ ;.

Let us turn to our central examples.

Theorem 2.36 (Rotation Systems). Let .GI a/ be a left rotation system. Then the
following statements are equivalent:

(i) .GI a/ is topologically forward transitive.

(ii) Every point of G has dense forward orbit.

(iii) .GI a/ is topologically transitive.

(iv) Every point of G has dense total orbit.
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Proof. Since every right rotation �h W g 7! gh is an automorphism of .GI a/, we
have

�h.orbC.g// D orbC.gh/ and �h.orb.g// D orb.gh/

for every g; h 2 G. Taking closures we obtain the equivalences (i), (ii) and (iii),
(iv). Now clearly (ii) implies (iv). In order to prove the converse, fix g 2 G and
consider the nonempty invariant closed set

A WD orbC.g/ D fang W n � 0g:

By Lemma 2.26 there is a nonempty closed set B � A such that aB D B. Since B is
nonempty, fix h 2 B. Then orb.h/ � B and hence orb.h/ � B. By (iv), this implies
that G � B � A, and thus A D G. ut
A corollary of this result is that a topologically transitive group rotation .GI a/ does
not admit any nontrivial subsystem. We exploit this fact in the following examples.

Example 2.37 (Kronecker’s Theorem). The rotation .TI a/ is topologically tran-
sitive if and only if a 2 T is not a root of unity.

Proof. If an0 D 1 for some n0 2 N, then fz 2 T W zn0 D 1g is closed and '-invariant,
so by Theorem 2.36, .TI a/ is not transitive.

For the converse, suppose that a is not a root of unity and take " > 0. By
compactness, the sequence .an/n2N0 has a convergent subsequence, and so there
exist l < k 2 N such that

ˇ
ˇ1 � ak�l

ˇ
ˇ D ˇ

ˇal � ak
ˇ
ˇ < ". By hypothesis one has

b WD ak�l 6D 1, and since j1 � bj < " every z 2 T lies in "-distance to some positive
power of b. But fbn W n � 0g � orbC.1/, and the proof is complete. ut
If a D e2 i˛ , then a is a root of unity if and only if ˛ is a rational number. In this
case we call the associated rotation system .TI a/ a rational rotation, otherwise an
irrational rotation.

Example 2.38. The product of two topologically transitive systems need not be
topologically transitive. Consider a1 D ei, a2 D e2i, and the product system
.T2I .a1; a2//. Then M D f.x; y/ 2 T

2 W x2 D yg is a nontrivial, closed invariant
set which contains the orbit of .1; 1/. By Theorem 2.36 the product system is not
topologically transitive (cf. Figure 2.2).

Fig. 2.2 The first 100 iterates of a point under the rotation in Example 2.38 and its orbit closure,
and the same for the cases a1 D e5i, a2 D e2i and a1 D e5i, a2 D e8i
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Because of these two examples, it is interesting to characterize transitivity of the
rotations on the d-torus for d > 1. This is a classical result of Kronecker (1885).

Theorem 2.39 (Kronecker). Let a D .a1; : : : ; ad/ 2 T
d. Then the rotation

system .TdI a/ is topologically transitive if and only if a1; a2; : : : ; ad are linearly
independent in the Z-module T (which means that if ak1

1 ak2
2 � � � akd

d D 1 for
k1; k2; : : : ; kd 2 Z, then k1 D k2 D � � � D kd D 0).

We do not give the elementary proof here, but shall present a proof later in
Chapter 14 after having developed some general, abstract tools. Instead, we
conclude this chapter by characterizing topological transitivity of certain subshifts.

2.4 Transitivity of Subshifts

To a subshift .FI �/ of .W C
k I �/ of order 2 (Example 2.29) we associate its

transition matrix A D .aij/
k�1
i;jD0 by

aij D
(
1 if .i; j/ occurs in a word in F,

0 otherwise:

The excluded blocks .i; j/ of length 2 are exactly those with aij D 0. Hence, the
positive matrix A describes the subshift completely.

In subshifts of order 2 we can “glue” words together as we shall see in the proof
of the next lemma.

Lemma 2.40. For n 2 N one has ŒAn�ij > 0 if and only if there is x 2 F with x0 D i
and xn D j.

Proof. We argue by induction on n 2 N, the case n D 1 being clear by the definition
of the transition matrix A. Suppose that the claimed equivalence is proved for n � 1.
The inequality ŒAnC1�ij > 0 holds if and only if there is m such that

ŒAn�im > 0 and ŒA�mj > 0:

By the induction hypothesis this means that there are x; y 2 F with x0 D i, xn D m,
and y0 D m, y1 D j.

So if by assumption ŒAnC1�ij > 0, then we can define z 2 W C
k by

zs WD

8
ˆ̂
<

ˆ̂
:

xs if s < n;

m if s D n;

ys�n if s > n:
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Then actually z 2 F, because z does not contain any excluded block of length 2 by
construction. Hence, one implication of the claim is proved.

For the converse implication assume that there is x 2 F and n 2 N with x0 D i
and xnC1 D j. Set y D �n.x/, then y0 D xn DW m and y1 D j, as desired. ut

A k � k-matrix A with positive entries which has the property that for all i; j 2
f0; : : : ; k � 1g there is some n 2 N with ŒAn�ij > 0 is called irreducible (see also
Section 8.3). This property of transition matrices characterizes forward transitivity.

Proposition 2.41. Let .FI �/ be a subshift of order 2 and suppose that every letter
occurs in some word in F. Consider the next assertions.

(i) The transition matrix A of .FI �/ is irreducible.

(ii) .FI �/ is forward transitive.

Then (i) implies (ii). If F does not have isolated points or if the shift is two-sided,
then (ii) implies (i).

Proof. (i)) (ii): Since F is metrizable, we can apply Proposition 2.35. It suffices to
consider open sets U and V intersecting F that are of the form

U D ˚x W x0 D u0; : : : ; xn D un
�

and V D ˚x W x0 D v0; : : : ; xm D vm
�

for some n; m 2 N0, u0; : : : ; un; v0; : : : ; vm 2 f0; : : : ; k � 1g. Then we have to show
that F \ U \ � j.V/ ¤ ; for some j 2 N. There is x 2 U \ F and y 2 V \ F, and
by assumption and Lemma 2.40 there are N 2 N, z 2 F with z0 D un and zN D v0.
Now define w by

ws WD

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
:

xs if s < n;

un if s D n;

zs�n if n < s < nC N;

v0 if s D nC N;

ys�n�N if s > nC N:

By construction w does not contain any excluded block of length 2, so w 2 F, and
of course w 2 U, �nCN.w/ 2 V .

(ii)) (i): Suppose F has no isolated points. If A is not irreducible, then there are
i; j 2 f0; : : : ; k � 1g such that ŒAn�ij D 0 for all n 2 N. By Lemma 2.40 this means
that there is no word in F of the form .i; � � � ; j; � � � /. Consider the open sets

U D ˚x W x0 D j
�

and V D ˚x W x0 D i
�

both of which intersect F since i and j occur in some word in F and F is shift
invariant. However, for no N 2 N can �N.V/ intersect U\F, so by Proposition 2.35
the subshift cannot be topologically transitive.
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Suppose now that .FI �/ is a two-sided shift, y 2 F has dense forward orbit and
x 2 F is isolated. Then �n.y/ D x for some n � 0. Since � is a homeomorphism, y
is isolated, too, and hence by compactness must have finite orbit. Consequently, F
is finite and � is a cyclic permutation of F. It is then easy to see that A is a cyclic
permutation matrix, hence irreducible. ut
For noninvertible shifts the statements (i) and (ii) are in general not equivalent.

Example 2.42. Consider the subshift W B
3 of W C

3 defined by the excluded blocks
B D f.0; 1/; .0; 2/; .1; 0/; .1; 1/; .2; 1/; .2; 2/g, i.e.,

F D ˚.0; 0; 0; : : : ; 0; : : : /; .1; 2; 0; : : : ; 0; : : : /; .2; 0; 0; : : : ; 0; : : : /�:
The .FI �/ has the transition matrix

A D
0

@
1 0 0

0 0 1

1 0 0

1

A :

Clearly, .FI �/ is forward transitive, but—as a moment’s thought shows—A is not
irreducible.

In the case of two-sided subshifts, (total) transitivity does not imply that its
transition matrix is irreducible.

Example 2.43. Consider the subshift F WD W B
2 of W2 given by the excluded blocks

B D f.1; 0/g, i.e., the elements of F are of the form

.: : : ; 0; 0; 0; 0; : : : /; .: : : ; 1; 1; 1; 1; : : : /; .: : : ; 0; 0; 1; 1; : : : /:

The transition matrix

A D
�
1 1

0 1

�

is clearly not irreducible, whereas .FI �/ is transitive (of course, not forward
transitive).

For more on subshifts of finite type, we refer to Sec. 17 of Denker et al. (1976).

Further Reading

The theory of topological dynamical systems goes under the name topological
dynamics and is treated in very detailed manner, e.g., in the classical monograph
Gottschalk and Hedlund (1955). Instead of the single mapping ' W K ! K one
frequently considers the action of groups or semigroups of continuous mappings
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on K. Some of the more modern theory is outlined, e.g., in Ellis (1969), de Vries
(1993), and Hasselblatt and Katok (2003).

For more details and further references on the notion of topological transitivity,
we refer to the survey by Kolyada and Snoha (1997). For dynamical systems on the
torus, we refer to Block and Coppel (1992). Irrational rotation systems .TI a/ play
a central role in this class of dynamical systems. For example, Denjoy’s theorem
(Denjoy 1932) gives a sufficient condition, in terms of the so-called rotation number,
for a topological system .TI'/ to be conjugate to an irrational rotation. A more
systematic discussion of dynamical systems on intervals can be found in Collet and
Eckmann (2009).

By modeling the behavior of a dynamical system by means of a shift one
can study properties of the dynamical system by understanding the shift. This is
the viewpoint of symbolic dynamics, see, for example, Lind and Marcus (1995)
and Kitchens (1998). Subshifts of finite type are studied also in great detail in
Denker et al. (1976).

Exercises

1. Consider a topological system on a finite state space as a directed graph as
in Example 2.4. Characterize in graph theoretic terms the invertibility/topological
transitivity of the system. Describe its maximal surjective subsystem.

2. Fix k 2 N and consider W C
k D f0; 1; : : : ; k � 1gN0 with its natural compact

(product) topology as in Example 2.5. For words x D .xj/j2N0 and y D .yj/j2N0 in
W C

k define

.x; y/ WD min
˚
j � 0 W xj 6D yj

� 2 N0 [ f1g:

Show that d.x; y/ WD e�.x;y/ is a metric that induces the product topology on W C
k .

Show further that no metric on W C
k inducing its topology can turn the shift � into

an isometry. What about the two-sided shift?

3. Prove that the function d.x; y/ WD ˇˇe2 ix � e2 ix
ˇ
ˇ is a metric on Œ0; 1/ which turns

it into a compact space. For ˛ 2 Œ0; 1/ show that the addition with ˛ .mod 1/ is
continuous with respect to the metric d. See also Example 2.7.

4. Let G be the Heisenberg group and 	; A as in Example 2.13. Prove that
G D A	 D A	 .

5. Give an example of a Heisenberg system .HI g/ which is an extension of a given
skew shift .T2I ˛/, ˛ 2 Œ0; 1/.
6. Let ˛ 2 Œ0; 1/ and a WD e2 i˛ 2 T. Show that the map

� W .Œ0; 1/I˛/! .TI a/; �.x/ WD e2 ix
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is an isomorphism of topological systems, cf. Example 2.15.

7. Let .CI'/ be the Cantor system (Example 2.6). Show that the map

� W .W C
2 I �/! .CI'/; �.x/ WD

1X

jD1

2xj�1
3j

is an isomorphism of topological systems, cf. Example 2.16.

8. Let .GI a/ be a group rotation and let 	 be a closed subgroup of G. Show that
the homogeneous system .G=	 I a/ is a group factor of .GI a/, cf. Example 2.19.

9. Prove Lemma 2.25.

10 (Dyadic Adding Machine). Let K WD f0; 1gN0 be endowed with the product
topology, and define � W K ! A2 by

�..xn/n2N0 / WD .x0 C Z2; x0 C 2x1 C Z4; x0 C 2x1 C 4x2 C Z8; : : : : : : /:

Show that � is a homeomorphism. Now let ' be the unique dynamics on K that
turns � W .KI'/ ! .A2I 1/ into an isomorphism. Describe the action of ' on a
0-1-sequence x 2 K.

11. Let .KI'/ be a topological system.

a) Show that if A � K is invariant/stable, then A is invariant/stable, too.

b) Show that the intersection of arbitrarily many (bi-)invariant subsets of K is
again (bi-)invariant.

c) Let � W .KI'/! .LI / be a homomorphism of topological systems. Show
that if A � K is invariant/stable, then so is �.A/ � L.

12. Let the doubling map be defined as '.x/ D 2x .mod 1/ for x 2 Œ0; 1/. Show
that ' is continuous with respect to the metric introduced in Example 2.7. Show that
.Œ0; 1/I'/ is transitive.

13. Consider the tent map '.x/ WD 1 � j2x � 1j, x 2 Œ0; 1�. Prove that for every
nontrivial closed sub-interval I of Œ0; 1�, there is n 2 N with 'n.I/ D Œ0; 1�. Show
that .Œ0; 1�I'/ is transitive.

14. Consider the function  W Œ0; 1� ! Œ0; 1�,  .x/ WD 4x.1 � x/. Show that
.Œ0; 1�I / is isomorphic to the tent map system from Exercise 13. (Hint: Use
�.x/ WD .sin 1

2
 x/2 as an isomorphism.)

15. Let k 2 N and consider the full shift .W C
k I �/ over the alphabet f0; : : : ; k � 1g.

Let x; y 2 W C
k . Show that y 2 orbC.x/ if and only if for every n � 0 there is k 2 N

such that

y0 D xk; y1 D xkC1; : : : ; yn D xkCn:
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Show that there is x 2 W C
k with dense forward orbit.

16. Prove that for a Hausdorff topological group G and a closed subgroup 	 the set
of left cosets G=	 becomes a Hausdorff topological space under the quotient map
q W G 7! G=	 , q.g/ D g	 . In addition, prove the following statements:

a) The natural map q W G! G=	 is open.

b) If G D K	 for some compact set K � G, then G=	 is compact. The
converse holds true if G is locally compact.

c) If 	 is a normal subgroup, then G=	 is a topological group.

17. Describe all finite type subshifts ofW C
2 of order 2 and determine their transition

matrices. Which of them are forward transitive?

18 (Projective Limit). Let .I;�/ be a directed set, and let for each i 2 I a
topological system .KiI'i/ be given. Moreover, suppose that for each pair .i; j/ 2 I2

with i � j a homomorphism �ij W .KjI'j/! .KiI'i/ is given subject to the relations

�ii D id and �ij ı �jk D �ik .i � j � k/: (2.2)

Let K WD
n
.xi/i2I 2

Y

i2I

Ki W �ij.xj/ D xi for all i; j 2 I such that i � j
o

and

let �i W K ! Ki be the projection onto the ith coordinate. Then, by construction,
�ij�j D �i for all i; j 2 I with i � j.

Show that K is a nonempty compact space, invariant under the product dynamics
' WD .'i/i2I . Then show that the system .KI'/ has the following universal
property: Whenever .LI / is a topological system and �i W .LI / ! .KiI'i/ is
a homomorphism for each i 2 I with �i D �ij ı �j for all i; j 2 I with i � j, then
there is a unique homomorphism � W .LI /! .KI'/ with �i ı � D �i for all i 2 I.

K

Ki Kj

L sj

si

pi

pj

pij
t

The system .KI'/ is called the inverse or projective limit associated with the
projective system ...KiI'i//i; .�ij/i�j/, and is denoted by

.KI'/ DW lim �
j

.KiI'i/:

Show further that if each �ij W Kj ! Ki, i � j, is surjective, then so are the mappings
�i W K ! Ki.
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19 (Invertible Extension). Let .KI'/ be a surjective system, let K1 WD Q
j2N K

be the infinite product, and let  W K1 ! K1 be defined by

 .x1; x2; : : : / WD .'.x1/; x1; : : : /; x D .x1; x2; : : : / 2 K1:

Let, furthermore, L WD Tn�0  n.K1/ � K1.

a) Show that �.L/ D K, where � W K1 ! K is the projection onto the
first component. (Hint: For y 2 K apply Lemma 2.26 to the  -invariant
set ��1fyg.)

b) Show that .LI / is an invertible system, cf. Example 2.28.

c) For each i; j 2 N such that i � j let �ij WD ' j�i. Then

�ij W .KI'/! .KI'/

is a factor map satisfying the relations (2.2). Show that .LI / coincides
with the projective limit system associated with this projective system (cf.
Exercise 18).

d) Suppose that .MI �/ is any invertible system and � W .MI �/ ! .KI'/ is a
factor map. Show that there is a unique factor map Q� W .MI �/ ! .LI /
with � D � ı Q� . (This justifies the name “minimal invertible extension” for
.LI /.)



Chapter 3
Minimality and Recurrence

Point set topology is a disease from which the human race will soon recover.

Henri Poincaré1

In this chapter, we study the existence of nontrivial subsystems of topological
systems and the intrinsically connected phenomenon of regularly recurrent points.
It was Birkhoff who discovered this connection and wrote in (1912):

THÉORÈME III. — La condition nécessaire et suffisante pour qu’un mouvement positive-
ment et négativement stable M soit un mouvement récurrent est que pour tout nombre positif
", si petit qu’il soit, il existe un intervalle de temps T, assez grand pour que l’arc de la courbe
représentative correspondant à tout intervalle égal à T ait des points distants de moins de "
de n’importe quel point de la courbe tout entière.

and then

THÉORÈME IV. — L’ensemble des mouvements limites oméga M0, de tout mouvement
positivement stable M, contient au moins un mouvement récurrent.

Roughly speaking, these quotations mean the following: If a topological system
does not contain a nontrivial invariant set, then each of its points returns arbitrarily
near to itself under the dynamical action infinitely often.

Our aim is to prove these results, today known as Birkhoff’s recurrence theorem,
and to study the connected notions. To start with, let us recall from Chapter 2 that a
subset A � K of a topological dynamical system .KI'/ is invariant if '.A/ � A. If
A is invariant, closed, and nonempty, then it gives rise to the subsystem .AI'/.

By Exercise 2.11, the closure of an invariant set is invariant and the intersection
of arbitrarily many invariant sets is again invariant. It is also easy to see that for
every point x 2 K the forward orbit orbC.x/ and its closure are both invariant. So
there are many possibilities to construct subsystems: Simply pick a point x 2 K and

1D. Mac Hale, Comic sections: the book of mathematical jokes, humour, wit, and wisdom, Boole
Press, 1993.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_3
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consider F WD orbC.x/. Then .FI'/ is a subsystem, which coincides with .KI'/
whenever x 2 K is a transitive point. Hence, nontrivial subsystems exist only when
there are nontransitive points.

3.1 Minimality

Systems without any proper subsystems play a special role for recurrence, so let us
give them a special name.

Definition 3.1. A topological dynamical system .KI'/ is called minimal if there
are no nontrivial closed '-invariant sets in K. This means that whenever A � K is
closed and '.A/ � A, then A D ; or A D K.

Remarks 3.2. 1) Given any topological system, its subsystems (= nonempty,
closed, '-invariant sets) are ordered by set inclusion. Clearly, a subsystem
is minimal in this order if and only if it is a minimal topological system.
Therefore we call such a subsystem a minimal subsystem.

2) By Lemma 2.26, if .KI'/ is minimal, then '.K/ D K.

3) Even if a topological system is invertible, its subsystems need not be so.
However, by 2) every minimal subsystem of an invertible system is invertible.
More precisely, it follows from Lemma 2.26 that an invertible topological
system is minimal if and only if it has no nontrivial closed bi-invariant
subsets.

4) If .K1I'1/, .K2I'2/ are minimal subsystems of a topological system .KI'/,
then either K1 \ K2 D ; or K1 D K2.

5) Minimality is an isomorphism invariant, i.e., if two topological systems are
isomorphic and one of them is minimal, then so is the other.

6) More generally, if � W .KI'/ ! .LI / is a factor map, and if .KI'/ is
minimal, then so is .LI / (Exercise 2). In particular, if a product topological
system is minimal so is each of its components. The converse is not true, see
Example 2.38.

Minimality can be characterized in different ways.

Proposition 3.3. For a topological system .KI'/ the following assertions are
equivalent:

(i) .KI'/ is minimal.

(ii) orbC.x/ is dense in K for each x 2 K.

(iii) K D Sn2N0 '
�n.U/ for every open set ; 6D U � K.

In particular, every minimal system is topologically forward transitive.

Proof. This is Exercise 4. ut
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Proposition 3.3 allows to extend the list of equivalences for rotation systems
given in Theorem 2.36.

Theorem 3.4 (Rotation Systems). For a rotation system .GI a/ the following
assertions are equivalent to each of the properties (i)–(iv) of Theorem 2.36:

(v) The system .GI a/ is minimal.

(vi) fan W n 2 N0g is dense in G.

(vii) fan W n 2 Zg is dense in G.

Whenever a compact space K has at least two points, the topological system
.KI id/ is not minimal. Also, the full shift .W C

k I �/ on words from a k-letter alphabet
for k � 2 is not minimal. Indeed, every constant sequence is shift invariant and
constitutes a one-point minimal subsystem.

It is actually a general fact that one always finds a subsystem that is minimal.

Theorem 3.5. Every topological system .KI'/ has at least one minimal subsystem.

Proof. Let M be the family of all nonempty closed '-invariant subsets of K. Then,
of course, K 2M , so M is nonempty. Further, M is ordered by set inclusion.
Given a chain C � M the set C WD T

A2C A is not empty (by compactness) and
hence a lower bound for the chain C . Zorn’s lemma yields a minimal element F
in M . By Remark 3.2.1 above, .FI'/ is a minimal system. ut

Apart from compact groups there is another important class of topological
dynamical systems for which minimality and transitivity coincide. A topological
system .KI'/ is called isometric if there is a metric d inducing the topology of K
such that ' is an isometry with respect to d.

Proposition 3.6. An isometric topological system .KI'/ is minimal if and only if it
is topologically transitive.

Proof. Suppose that x0 2 K has dense forward orbit and pick y 2 K. By Proposi-
tion 3.3 it suffices to prove that x0 2 orbC.y/. Let " > 0 be arbitrary. Then there is
m 2 N0 such that d.'m.x0/; y/ � ". The sequence .'mn.x0//n2N has a convergent
subsequence .'mnk.x0//k2N. Using that ' is an isometry we obtain

d.x0; '
m.nkC1�nk/.x0// D d.'mnk.x0/; '

mnkC1 .x0//! 0 as k!1:

This yields that there is n � m with d.x0; 'n.x0// < ", and therefore

d.'n�m.y/; x0/ � d.'n�m.y/; 'n.x0//C d.'n.x0/; x0/

D d.y; 'm.x0//C d.'n.x0/; x0/ < 2": ut

For isometric systems we have the following decomposition into minimal
subsystems.
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Corollary 3.7 (“Structure Theorem” for Isometric Systems). An isometric sys-
tem is a (possibly infinite) disjoint union of minimal subsystems.

Proof. By Remark 3.2.4, different minimal subsystems must be disjoint. Hence, the
statement is equivalent to saying that every point in K is contained in a minimal
system. But for any x 2 K the system .orbC.x/I'/ is topologically transitive, hence
minimal by Proposition 3.6. ut
Example 3.8. Consider the rotation by a 2 T of the closed unit disc

D WD ˚z 2 C W jzj � 1�; '.z/ WD a � z:

The system .DI'/ is isometric but not minimal. Now suppose that a 2 T is not a
root of unity. Then D is the disjoint union D D Sr2Œ0;1� rT and each rT is a minimal
subsystem. The case that a is a root of unity is left as Exercise 5.

The shift system .W C
k I �/ is an example with points that are not contained in a

minimal subsystem, see Example 3.10 below.

3.2 Topological Recurrence

For a rotation on the circle T we have observed in Example 2.37 two mutually
exclusive phenomena:

1) For a rational rotation every orbit is periodic.

2) For an irrational rotation every orbit is dense.

In neither case, however, it matters at which point x 2 T we start: The iterates return
to a neighborhood of x again and again, in case of a rational rotation even exactly to
x itself. Given a topological system .KI'/ we can classify the points according to
this behavior of their orbits.

Definition 3.9. Let .KI'/ be a topological system. A point x 2 K is called

a) recurrent if for every open neighborhood U of x, there is m 2 N such that
'm.x/ 2 U.

b) uniformly recurrent if for every open neighborhood U of x, the set of
return times

˚
m 2 N W 'm.x/ 2 U

�

has bounded gaps. A subset M � N has bounded gaps (= syndetic, or
relatively dense) if there is N 2 N such that M \ Œn; nC N� 6D ; for every
n 2 N.

c) periodic if there is m 2 N such that 'm.x/ D x.
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In the literature, uniformly recurrent points are sometimes also called almost
periodic, see, for example, Gottschalk and Hedlund (1955, pp. 30–31) or Tao (2009,
Sec. 2.3).

The images of recurrent (uniformly recurrent, periodic) points under a homomor-
phism of topological systems are again recurrent (uniformly recurrent, periodic),
see Exercise 8. Clearly, a periodic point is uniformly recurrent, and a uniformly
recurrent point is, of course, recurrent, but none of the converse implications is true
in general (see Example 3.10 below). Further, a recurrent point is even infinitely
recurrent, i.e., it returns infinitely often to each of its neighborhoods (Exercise 6).

For all these properties of a point x 2 K only the subsystem orbC.x/ is relevant,
hence we may suppose right away that the system is topologically transitive and x
is a transitive point. In this context it is very helpful to use the notation

orb>0.x/ WD
˚
'n.x/ W n 2 N

� D orbC.'.x//:

Then x is periodic if and only if x 2 orb>0.x/, and x is recurrent if and only if
x 2 orb>0.x/.

For an irrational rotation on the torus every point is recurrent but none is periodic.
Here are some more examples.

Example 3.10. Consider the full shift .W C
k I �/ in a k-alphabet.

a) A point x 2 W C
k is recurrent if every finite block of x occurs infinitely often

in x (Exercise 7).

b) The point x is uniformly recurrent if it is recurrent and the gaps between two
occurrences of a given block y of x are bounded (Exercise 7).

c) By a) and b) a recurrent, but not uniformly recurrent point is easy to find: Let
k D 2, and enumerate the words formed from the alphabet f0; 1g according
to the lexicographical ordering. Now write these words into one infinite word
x 2 W C

2 :

0 j 1 j 00 j 01 j 10 j 11 j 000 j 001 j 010 j 011 j 100 j 101 j 110 j 111 j 0000j � � � :

All blocks of x occur as a sub-block of later finite blocks, hence they are
repeated infinitely often, and hence x is recurrent. On the other hand, since
there are arbitrary long sub-words consisting of the letter 0 only, we see that
the block 1 does not appear with bounded gaps.

d) A concrete example for a nonperiodic but uniformly recurrent point is given
in Exercise 14.

According to Example 2.37, all points in the rotation system .TI a/ are recurrent.
This happens also in minimal systems: If K is minimal and x 2 K, then orb>0.x/ is
a nontrivial, closed invariant set, hence it coincides with K and thus contains x. One
can push this a little further.

Theorem 3.11. Let .KI'/ be a topological system and x 2 K. Then the following
assertions are equivalent:
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(i) x is uniformly recurrent.

(ii) .orbC.x/I'/ is minimal.

(iii) x is contained in a minimal subsystem of .KI'/.
Proof. The equivalence of (ii) and (iii) is evident. Suppose that (iii) holds. Then
we may suppose without loss of generality that .KI'/ is minimal. Let U � K be
a nonempty open neighborhood of x. By Proposition 3.3,

S
n2N0 '

�n.U/ D K. By
compactness there is m 2 N such that K D Sm

jD0 '�j.U/. For each n 2 N we have
'n.x/ 2 '�j.U/, i.e., 'nCj.x/ 2 U for some 0 � j � m. So the set of return times
fk 2 N0 W 'k.x/ 2 Ug has gaps of length at most m, hence (i) follows.

Conversely, suppose that (i) holds and let F WD orbC.x/. Take y 2 F and a
closed neighborhood U of x (see Lemma A.3). Since x is uniformly recurrent, the
set

˚
n 2 N W 'n.x/ 2 U

�
has gaps with maximal length m 2 N, say. This means

that

orbC.x/ �
mC1[

iD1
'�i.U/

and hence y 2 orbC.x/ � SmC1
iD1 '�i.U/. This implies ' i.y/ 2 U for some 1 � i �

mC 1, and therefore x 2 orbC.y/. Hence (ii) follows by Proposition 3.3. ut
Let us draw some immediate conclusions from this characterization.

Proposition 3.12. a) If a topological system contains a forward transitive
uniformly recurrent point, then it is minimal.

b) In a minimal system every point is uniformly recurrent.

c) In an isometric system every point is uniformly recurrent.

d) In a group rotation system .GI a/ every point is uniformly recurrent.

e) In a homogeneous system .G=HI a/ every point is uniformly recurrent.

Proof. a) and b) are immediate from Theorem 3.11, and c) follows from Theo-
rem 3.11 together with Corollary 3.7.

For the proof of d), note that since right rotations are automorphisms of .GI a/
and the neutral element 1 2 G can be moved via a right rotation to any other point
of G, it suffices to prove that 1 is uniformly recurrent. Define H WD clfan W n 2 Zg.
This is a compact subgroup containing a, and hence the rotation system .HI a/ is a
subsystem of .GI a/. It is minimal by Theorem 3.4. Hence, by Theorem 3.11, 1 2 H
is uniformly recurrent. Assertion e) follows from d) and Exercise 8. ut
Example 3.13. Let ˛ 2 Œ0; 1/ and I � Œ0; 1/ be an interval containing ˛ in its
interior. Then the set

˚
n 2 N W n˛ � bn˛c 2 I

�

has bounded gaps.
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Proof. Consider .Œ0; 1/I˛/, the translation mod 1 by ˛ (Example 2.7). It is isomor-
phic to the group rotation .TI e2 i˛/, so the claim follows from Proposition 3.12. ut

Finally, combining Theorem 3.11 with Theorem 3.5 on the existence of minimal
subsystems yields the following famous theorem.

Theorem 3.14 (Birkhoff). Every topological dynamical system contains at least
one uniformly recurrent, hence recurrent point.

3.3 Recurrence in Extensions

Take a compact group G, a topological dynamical system .KI'/ and a continuous
function ˚ W K ! G. Then we consider, as in Section 2.2.2 on page 19, the group
extension .HI / with

 .x; g/ WD .'.x/; ˚.x/g/ for .x; g/ 2 H WD K �G:

Proposition 3.15. Let .KI'/ be a topological system, G a compact group, and
.HI / the group extension along some ˚ W K ! G. If x0 2 K is a recurrent
point, then .x0; g/ 2 H is recurrent in H for all g 2 G.

Proof. It suffices to prove the assertions for g D 1 2 G. Indeed, for every g 2 G
the map �g W H ! H, �g.x; h/ D .x; hg/, is an automorphism of .HI /, and hence
maps recurrent points to recurrent points. For every n 2 N we have

 n.x0; 1/ D
�
'n.x0/; ˚.'

n�1.x0// � � �˚.x0/
�
:

Since the projection � W H ! K is continuous and H is compact, we have
�.orb>0.x0; 1// D orb>0.x0/. The point x0 is recurrent by assumption, so x0 2
orb>0.x0/. Therefore, for some h 2 G we have .x0; h/ 2 orb>0.x0; 1/. Multiplying
from the right by h in the second coordinate, we obtain by continuity that

.x0; h
2/ 2 orb>0.x0; h/ � orb>0.x0; 1/:

Inductively this leads to .x0; hn/ 2 orb>0.x0; 1/ for all n 2 N. By Proposition 3.12
we know that 1 is recurrent in .GI h/, so if V is a neighborhood of 1, then hn 2 V for
some n 2 N. This means that .x0; hn/ 2 U � V for any neighborhood U of x0. Thus

.x0; 1/ 2
˚
.x0; h/; .x0; h2/; : : :

� � orb>0.x0; 1/:

This means that .x0; 1/ is a recurrent point in .HI /. ut
An analogous result is true for uniformly recurrent points.
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Proposition 3.16. Let .KI'/ be a topological system, G a compact group, and
.HI / the group extension along ˚ W K ! G. If x0 2 K is a uniformly recurrent
point, then .x0; g/ 2 H is uniformly recurrent in H for all g 2 G.

Proof. As before, it suffices to prove that .x0; h/ is uniformly recurrent for one
h 2 G. The set orbC.x0/ is minimal by Theorem 3.11, so by passing to a subsystem
we can assume that .KI'/ is minimal. Now let .H0I / be a minimal subsystem in
.HI / (Theorem 3.5). The projection � W H ! K is a homomorphism from .HI /
to .KI'/, so the image �.H0/ is a '-invariant subset in K, and therefore must be
equal to K. Let x0 be a uniformly recurrent point in .KI'/, and h 2 G such that
.x0; h/ 2 H0. Then, by Theorem 3.11 .x0; h/ is uniformly recurrent. ut

We apply the foregoing results to the problem of Diophantine approximation.
It is elementary that any real number can be approximated by rational numbers,
but how well and, at the same time, how “simple” (keeping the denominator small)
this approximation can be, is a hard question. The most basic answer is Dirichlet’s
theorem, see Exercise 13. Using the recurrence result from above, we can give a
more sophisticated answer.

Corollary 3.17. Let ˛ 2 R and " > 0 be given. Then there exists n 2 N, m 2 Z

such that

ˇ̌
n2˛ �m

ˇ̌ � ":

Proof. Consider the topological system .Œ0; 1/I˛/ from Example 2.7, and recall that,
endowed with the appropriate metric and with addition modulo 1, it is a compact
group isomorphic as a topological group to T. We consider a group extension similar
to Example 2.22. Let

˚ W Œ0; 1/! Œ0; 1/; ˚.x/ D 2xC ˛ .mod 1/

and take the group extension of .Œ0; 1/I˛/ along ˚ . This means

H WD Œ0; 1/ � Œ0; 1/;  .x; y/ D .xC ˛; 2xC ˛ C y/ .mod 1/ :

Then by Proposition 3.15, .0; 0/ is a recurrent point in .HI /. By induction we
obtain

 .0; 0/ D .˛; ˛/;  2.0; 0/ D  .˛; ˛/ D .2˛; 4˛/; : : : ;  n.0; 0/ D .n˛; n2˛/:

The recurrence of .0; 0/ implies that for any " > 0 we have d.0; n2˛ � bn2˛c/ < "

for some n 2 N, hence the assertion follows. ut
By the same technique, i.e., using the recurrence of points in appropriate group

extensions, one can prove the following result.
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Proposition 3.18. Let p 2 RŒx� be a polynomial of degree k 2 N with p.0/ D 0.
Then for every " > 0 there is n 2 N and m 2 Z with

ˇ
ˇp.n/�m

ˇ
ˇ < ":

Proof. Start from a polynomial p.x/ of degree k and define

pk.x/ WD p.x/; pk�i.x/ WD pk�iC1.xC 1/� pk�iC1.x/ .i D 1; : : : ; k/:

Then each polynomial pi has degree i, so p0 is constant ˛. Consider the topological
system .Œ0; 1/I˛/ (Example 2.7) and the following tower of group extensions. Set
H1 WD Œ0; 1/,  1.x/ WD xC ˛ .mod 1/ , and for 2 � i � k define

Hi WD Hi�1 � Œ0; 1/; ˚i W Hi�1 ! Œ0; 1/; ˚i.x1; x2; : : : ; xi�1/ WD xi�1:

Hence, for the group extension .HiI i/ of .Hi�1I i�1/ along ˚i we have

 i.x1; x2; : : : ; xi/ D .x1 C ˛; x1 C x2; x2 C x3; : : : ; xi C xi�1/:

We can apply Proposition 3.15, and obtain by starting from a recurrent point x1
in .H1I 1/ that every point .x1; x2; : : : ; xi/ in .HiI i/, 1 � i � k, is recurrent.
In particular, the point p1.0/ just as any other point in Œ0; 1/ is recurrent in the
topological system .Œ0; 1/I˛/, hence so is the point .p1.0/; p2.0/; : : : ; pk.0// 2 Hk.
By the definition of  k we have

 k
�
p1.0/; p2.0/; : : : ; pk.0/

� D �p1.0/C ˛; p2.0/C p1.0/; : : : ; pk.0/C pk�1.0/
�

D �p1.0/C p0.0/; p2.0/C p1.0/; : : : ; pk.0/C pk�1.0/
�

D �p1.1/; p2.1/; : : : ; pk.1/
�
;

and, analogously,

 n
k

�
p1.0/; p2.0/; : : : ; pk.0/

� D �p1.n/; p2.n/; : : : ; pk.n/
�
:

By looking at the last component we see that for some n 2 N the point pk.n/ D p.n/
comes arbitrarily close to pk.0/ D p.0/ D 0. The assertion is proved. ut

We refer to Furstenberg (1981) for more results on Diophantine approximations
that can be obtained by means of topological recurrence. After having developed
more sophisticated tools, we shall see more applications of dynamical systems to
number theory in Chapters 10, 11, and 20.
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Exercises

1. Prove that a minimal subsystem of an invertible topological system is itself
invertible.

2. Let � W .KI'/ ! .LI / be a factor map of topological systems. Prove that if
B � L is a nonempty, closed  -invariant subset of L, then ��1.B/ is a nonempty,
closed '-invariant subset of K. Conclude that if .KI'/ is minimal, then so is .LI /.
3. Let .KI'/ be a surjective system, and let � W .LI / ! .KI'/ be its minimal
invertible extension, see Example 2.28 and Exercise 2.19. Show that the system
.KI'/ is minimal if and only if the system .LI / is minimal.

4. Prove Proposition 3.3.

5. Consider as in Example 3.8 the system .DI'/, where '.z/ D az is rotation by
a 2 T. Describe the minimal subsystems in the case that a is a root of unity.

6. Let x0 be a recurrent point of .KI'/. Show that x0 is infinitely recurrent, i.e., for
every neighborhood U of x0 one has

x0 2
\

n2N

[

m�n

'�m.U/:

7. Prove the statements a) and b) from Example 3.10.

8. Let � W .KI'/! .LI / be a homomorphism of topological systems. Show
that if x 2 K is periodic/recurrent/uniformly recurrent, then �.x/ 2 L is peri-
odic/recurrent/uniformly recurrent as well.

9. Consider the tent map '.x/ WD 1�j2x�1j, x 2 Œ0; 1�. By Exercise 11 the system
.Œ0; 1�I'/ is topologically transitive. Is this system also minimal?

10. Show that the dyadic adding machine .A2I 1/ is minimal, see Example 2.10 and
Exercise 2.10.

11. Let .KI'/ be a topological system and let x0 2 K be a recurrent point. Show
that x0 is also recurrent in the topological system .KI'm/ for each m 2 N. (Hint:
Use a group extension by the cyclic group Zm.)

12. Consider the sequence 2, 4, 8, 16, 32, 64, 128; : : : , 2n; : : : . It seems that 7 does
not appear as leading digit in this sequence. Show however that actually 7, just as
any other digit, occurs infinitely often. As a test try out 246.

13 (Dirichlet’s Theorem). Let ˛ 2 R be irrational and n 2 N be fixed. Show that
there are pn 2 Z, qn 2 N such that 1 � qn � n and

ˇ
ˇ̌
˛ � pn

qn

ˇ
ˇ̌
<

1

nqn
:
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(Hint: Divide the interval Œ0; 1/ into n sub-intervals of length 1
n , and use the

pigeonhole principle.) Show that qn !1 for n!1.

14 (Thue–Morse Sequence). Consider W C
2 D f0; 1gN0 and define the following

recursion on finite words over the alphabet f0; 1g. We start with f1 D 01. Then we
replace every occurrence of letter 0 by the block 01 and every occurrence of the
letter 1 by 10. We repeat this procedure at each step. For instance:

f1 D 0 j1 f2 D 01 j10 f3 D 01 j10 j10 j01 f4 D 01 j10 j10 j01 j10 j01 j01 j10:

We consider the finite words fi as elements of W C
2 by setting the “missing

coordinates” as 0.

a) Show that the sequence .fn/n2N converges to some f 2 W C
2 , called the

Thue–Morse sequence.

b) Show that this f is uniformly recurrent but not periodic in the shift system
.W C

2 I �/.
c) Prove that the nth coordinate of f equals the sum of the binary digits of n

modulo 1.

15. A topological system .KI'/ is called totally minimal if for each m 2 N the
system .KI'm/ is minimal.

a) Prove that if K is connected then minimality and total minimality are
equivalent properties.

b) Give an example of a minimal but not totally minimal system.

16. Prove that an isometric topological system is invertible.

17. Let K be a compact metrizable space. An invertible topological system .KI'/
is called equicontinuous with respect to a compatible metric d if the family f'n W
n 2 Zg is uniformly equicontinuous with respect to d, i.e., if for every " > 0

there is ı > 0 such that for every n 2 Z, x; y 2 K with d.x; y/ < ı one has
d.'n.x/; 'n.y// < ".

a) Show that equicontinuity of a system is independent of the chosen compati-
ble metric.

b) Verify that each system which is isometric with respect to a compatible
metric is equicontinuous.

c) Let .KI'/ be an equicontinuous system and let d be a compatible metric on
K. Prove that

� W K � K ! R; �.x; y/ WD sup
n2Z

d
�
'n.x/; 'n.y/

�

is a compatible metric on K for which .KI'/ becomes isometric.
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d) Give an example of a (necessarily noninvertible) system .KI'/ which cannot
be turned into an isometric system via a compatible metric, but for which
f'n W n 2 N0g is uniformly equicontinuous.

18. Prove that the skew shift .Œ0; 1/ � Œ0; 1/I ˛/ is not equicontinuous, cf. the
previous exercise. (Hint: Consider the iterates of the points . 1

2n ; 0/ and .0; 0/.)

19. Let ...KiI'i//i; .�ij/i�j/ be a projective system of topological dynamical
systems, and let .KI'/ WD lim �i

.KiI'i/ be its projective limit as in Exercise 2.18.
Show that to each open set O � K and p 2 O there is j 2 I and an open set Uj � Kj

such that

p 2 K \
�

Uj �
Y

i6Dj

Ki

�
� O:

Conclude that if each .KiI'i/ is minimal, then so is .KI'/.



Chapter 4
The C�-Algebra C.K/ and the Koopman
Operator

Explain this to me on a simple example; the difficult example I will be able to do on my
own.

Israel M. Gelfand

In the previous two chapters we introduced the concept of a topological dynamical
system and discussed certain basic notions such as minimality, recurrence, and
transitivity. However, a deeper study requires a change of perspective: Instead of
the state space transformation ' W K ! K we now consider its Koopman operator
T WD T' defined by

T'f WD f ı '
for scalar-valued functions f on K (in operator theory it is often called composition
operator). This allows us to look at the functional analytic and operator theoretic
aspects of topological systems. The space of functions on K has a rich structure: One
can add, multiply, take absolute values or complex conjugates. All these operations
are defined pointwise, that is, we have

.f C g/.x/ WD f .x/C g.x/; .�f /.x/ WD �f .x/;

.f g/.x/ WD f .x/g.x/; f .x/ WD f .x/; jf j .x/ WD jf .x/j
for f; g W K ! C, � 2 C, x 2 K. Clearly, the operator T D T' commutes with all
these operations, meaning that

T.f C g/ D Tf C Tg; T.�f / D �.Tf /;
T.f g/ D .Tf /.Tg/; Tf D Tf ; jTf j D T jf j

for all f; g W K ! C, � 2 C. In particular, the operator T is linear, and, denoting by
1 the function taking the value 1 everywhere, satisfies T1 D 1.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_4
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Now, since ' is continuous, the operator T' leaves invariant the space C.K/ of
all complex-valued continuous functions on K, i.e., f ı ' is continuous whenever
f is. Our major goal in this chapter is to show that the Koopman operator T' on
C.K/ actually contains all information about ', that is, ' can be recovered from T' .
In order to achieve this, we need a closer look at the Banach space C.K/.

4.1 Continuous Functions on Compact Spaces

In this section we let K be a nonempty compact topological space and consider the
vector space C.K/ of all continuous C-valued functions on K. Since a continuous
image of a compact space is compact, each f 2 C.K/ is bounded, hence

kf k1 WD sup
˚jf .x/j W x 2 K

�

is finite. The map k�k1 is a norm on C.K/ turning it into a complex Banach space
(see also Appendix A.6). In our study of C.K/ we shall rely on three classical
theorems: Urysohn’s lemma, Tietze’s extension theorem, and the Stone–Weierstraß
theorem.

Urysohn’s Lemma

Given a function f W K ! R and a number r 2 R, we introduce the notation

Œ f > r � WD ˚x 2 K W f .x/ > r
�

and, analogously, Œ f < r �, Œ f � r �, Œ f � r � and Œ f D r �. The first lemma tells
that in a compact space (by definition Hausdorff) two disjoint closed sets can
be separated by disjoint open sets. This property of a topological space is called
normality.

Lemma 4.1. Let A; B be disjoint closed subsets of a compact space K. Then there
are disjoint open sets U; V � K with A � U and B � V; or, equivalently, A � U
and U \ B D ;.

Proof. Let x 2 A be fixed. For every y 2 B there are disjoint open neighborhoods
U.x; y/ of x and V.x; y/ of y. Finitely many of the V.x; y/ cover B by compactness,
i.e., B � V.x; y1/ [ � � � [ V.x; yk/ DW V.x/. Set U.x/ WD U.x; y1/ \ � � � \ U.x; yk/,
which is a open neighborhood of x, disjoint from V.x/. Again by compactness
finitely many U.x/ cover A, i.e., A � U.x1/ [ � � � [ U.xn/ DW U. Set V WD
V.x1/\� � �\V.xn/. Then U and V are disjoint open sets with A � U and B � V . ut
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Lemma 4.2 (Urysohn). Let A; B be disjoint closed subsets of a compact space K.
Then there exists a continuous function f W K ! Œ0; 1� such that

f jA D 0 and f jB D 1:

Proof. We first construct for each dyadic rational r D n
2m , 0 � n � 2m, an open set

U.r/ with

A � U.r/ � U.r/ � U.s/ � U.s/ � Bc for r < s dyadic rationals in .0; 1/.

We start with U.0/ WD ; and U.1/ WD K. By Lemma 4.1 there is some U with
A � U and U \ B D ;. Set U. 1

2
/ D U. Suppose that for some m � 1 all the

sets U. n
2m / with n D 0; : : : ; 2m are already defined. Let k 2 Œ1; 2mC1� \ N be odd.

Lemma 4.1 yields open sets U. k
2mC1 /, when this lemma is applied to each of the

pairs of closed sets

A and U. 1
2m /

c for k D 1;
U. k�1

2mC1 / and U. kC1
2mC1 /

c for k D 3; : : : ; 2mC1 � 3;
U.1� 1

2m / and B for k D 2mC1 � 1:

In this way the open sets U. k
2mC1 / are defined for all k D 0; : : : ; 2mC1. Recursively

one obtains U.r/ for all dyadic rationals r 2 Œ0; 1�.
We now can define the desired function by

f .x/ WD inf
˚
r W r 2 Œ0; 1� dyadic rational; x 2 U.r/

�
:

If x 2 A, then x 2 U.r/ for all dyadic rationals, so f .x/ D 0. In turn, if x 2 B,
then x 62 U.r/ for each r 2 .0; 1/, so f .x/ D 1. It only remains to prove that f is
continuous.

Let r 2 Œ0; 1� be given and let x 2 Œ f < r �. Then there is a dyadic rational
r0 < r with x 2 U.r0/. Since for all y 2 U.r0/ one has f .y/ � r0 < r, we see that
Œ f < r � is open. On the other hand, let x 2 Œ f > r �. Then there is a dyadic rational
r00 > r with f .x/ > r00, so x 62 U.r00/, but then x 62 U.r0/ for every r0 < r00. If
r < r0 < r00 and y 2 U.r0/c, then f .y/ � r0 > r. So U.r0/c is an open neighborhood
of x belonging to Œ f > r �, hence this latter set is open. Altogether we obtain that f
is continuous. ut
Urysohn’s lemma says that for given sets F; G � K, F closed, G open, one finds
f 2 C.K/ with

1F � f � 1G;

where 1A denotes the characteristic function of a set A.
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Tietze’s Theorem

The second classical result is essentially an application of Urysohn’s lemma to the
level sets of a continuous function defined on a closed subset of K.

Theorem 4.3 (Tietze). Let K be a compact space, let A � K be closed, and let
f 2 C.A/. Then there is g 2 C.K/ such that gjA D f .

Proof. The real and imaginary parts of a continuous function are continuous, hence
it suffices to consider the case that f is real-valued. Then, since A is compact, f .A/
is a compact subset of R, and by scaling and shifting we may suppose that f .A/ �
Œ0; 1� and 0; 1 2 f .A/. Urysohn’s Lemma 4.2 yields a continuous function g1 W K !
Œ0; 1

3
� with

	
f � 1

3


 � Œ g1 D 0 � and
	
f � 2

3


 � 	 g1 D 1
3



. For f1 WD f � g1jA

we thus have f1 2 C.AIR/ and 0 � f1 � 2
3
.

Suppose we have defined the continuous functions

fn W A!
	
0; . 2

3
/n



and gn W K !
	
0; 1

3
. 2
3
/n�1


for some n 2 N. Then, again by Urysohn’s lemma, we obtain a continuous function

gnC1 W K !
	
0; 1

3
. 2
3
/n



	
fn � 1

3
. 2
3
/n

 � Œ gnC1 D 0 � and

	
fn � 2

3
. 2
3
/n

 � 	 gnC1 D 2

3
. 2
3
/n


:with

Set fnC1 D fn � gnC1jA. Since kgnk1 � . 23 /n, the function

g WD
1X

nD1
gn

is continuous, i.e., g 2 C.KIR/. For x 2 A we have

f .x/ � .g1.x/C � � � C gn.x// D f1.x/� .g2.x/C � � � C gn.x//

D f2.x/� .g3.x/C � � � C gn.x// D � � � D fn.x/:

Since fn.x/! 0 as n!1, we obtain f .x/ D g.x/ for x 2 A. ut

The Stone–Weierstraß Theorem

The third classical theorem about continuous functions is the Stone–Weierstraß
theorem. A linear subspace A � C.K/ is called a subalgebra if f; g 2 A implies
f g 2 A. It is called conjugation invariant if f 2 A implies f 2 A. We say that A
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separates the points of K if for each pair x; y 2 K of distinct points of K there is
f 2 A such that f .x/ 6D f .y/. Urysohn’s lemma tells that C.K/ separates the points
of K since singletons fxg are closed.

Theorem 4.4 (Stone–Weierstraß). Let A be a complex conjugation invariant
subalgebra of C.K/ containing the constant functions and separating the points
of K. Then A is dense in C.K/.

For the proof we note that the closure A of A also satisfies the hypotheses of the
theorem, hence we may suppose without loss of generality that A is closed. The next
result is the key to the proof.

Proposition 4.5. Let A be a closed conjugation invariant subalgebra of C.K/
containing the constant function 1. Then any positive function f 2 A has a unique
real square root g 2 A, i.e., f D g2 D g � g.

Proof. We prove that the square root of f , defined pointwise, belongs to A.
By normalizing first we can assume kf k1 � 1. Recall that the binomial series

.1C x/
1
2 D

1X

nD0

�
1
2

n

�
xn

is absolutely convergent for �1 � x � 1. Since 0 � f .x/ � 1 for all x 2 K implies
kf � 1k1 � 1, we can plug f � 1 into this series to obtain g. Since A is closed, we
have g 2 A. ut

Proof of Theorem 4.4. As noted above, we may suppose that A is closed. Notice
first that it suffices to prove that Re A is dense in C.KIR/, because, by conjugation
invariance, for each f 2 A also Re f and Imf belong to A. So one can approximate
real and imaginary parts of functions h 2 C.K/ by elements of Re A separately.

Since A is a conjugation invariant algebra, for every f 2 A also jf j2 D f f 2 A,
thus Proposition 4.5 implies that jf j 2 A. From this we obtain for every f; g 2
Re A that

max.f; g/ D 1
2
.jf � gj C .f C g// 2 A

min.f; g/ D � 1
2
.jf � gj � .f C g// 2 A:and

These facts will be crucial in the following.
Next, we claim that for every a; b 2 C and x; y 2 K, x ¤ y there is a function

f 2 A with f .x/ D a, f .y/ D b. Indeed, if g 2 A separates the points x and y, then
the function

f WD a
g � g.y/1

g.x/� g.y/
C b

g � g.x/1
g.y/� g.x/

has the desired properties.
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Let x 2 K, " > 0 and take h 2 C.KIR/. We shall construct a function fx 2 A
such that

fx.x/ D h.x/ and fx.y/ > h.y/� " for all y 2 K.

For every y 2 K, y ¤ x, take a function fx;y 2 A with

fx;y.x/ D h.x/ and fx;y.y/ D h.y/;

and set fx;x D h.x/1. For the open sets

Ux;y WD
	
fx;y > h � "1 


we have y 2 Ux;y, whence they cover the whole of K. By compactness we find
y1; : : : ; yn 2 K such that

K D Ux;y1 [ � � � [Ux;yn :

The function fx WD max.fx;y1 ; : : : ; fx;yn/ 2 A has the desired property. Indeed, for
y 2 K there is some k 2 f1; : : : ; ng with y 2 Ux;yk , so

fx.y/ � fx;yk .y/ > h.y/� ":

For every x 2 K consider the function fx from the above. The open sets Ux WD
Œ fx < hC "1 �, x 2 K, cover K. So again by compactness we have a finite subcover
K � Ux1 [ � � � [ Uxm . We set f WD min.fx1 ; : : : ; fxm/ 2 A and obtain

h.y/� " < f .y/ � fxk.y/ < h.y/C ";

whenever y 2 Uxk . Whence kh � f k1 � " follows, and A is dense in C.KIR/. ut

Metrizability and Separability

The Stone–Weierstraß theorem can be employed to characterize the metrizability
of the compact space K in terms of a topological property of C.K/. Recall that a
topological space˝ is called separable if there exists a countable and dense subset
A of ˝ . A Banach space E is separable if and only if there is a countable set D � E
such that lin.D/ D E.

Lemma 4.6. Each compact metric space is separable.
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Proof. For fixed m 2 N the balls B.x; 1m /, x 2 K, cover K, so there is a finite set
Fm � K such that

K �
[

x2Fm

B.x; 1m/:

Then the set F WD Sm2N Fm is countable and dense in K. ut
Theorem 4.7. A compact topological space K is metrizable if and only if C.K/ is
separable.

Proof. Suppose that C.K/ is separable, and let .fn/n2N be a sequence in C.K/ such
that ffn W n 2 Ng is dense in C.K/. Define

˚ W K ! ˝ WD
Y

n2N
C; ˚.x/ WD .fn.x//n2N;

where ˝ carries the usual product topology. Then ˚ is continuous and injective,
by Urysohn’s lemma and the density assumption. The topology on ˝ is metrizable
(see Appendix A.5). Since K is compact,˚ is a homeomorphism from K onto˚.K/.
Consequently, K is metrizable.

For the converse suppose that d W K � K ! RC is a metric that induces the
topology of K. By Lemma 4.6 there is a countable set A � K with A D K. Consider
the countable(!) set

D WD ˚f 2 C.K/ W f is a finite product of functions d.�; y/, y 2 A
� [ ˚1�:

Then lin.D/ is a conjugation invariant subalgebra of C.K/ containing the constants
and separating the points of K. By the Stone–Weierstraß theorem, lin.D/ D C.K/
and hence C.K/ is separable. ut

4.2 The Space C.K/ as a Commutative C�-Algebra

In this section we show how the compact space K can be recovered if only the space
C.K/ is known (see Theorem 4.11 below).

The main idea is readily formulated. Let K be any compact topological space. To
x 2 K we associate the functional

ıx W C.K/! C; hf; ıxi WD f .x/ .f 2 C.K//

called the Dirac or evaluation functional at x 2 K. Then ıx 2 C.K/0 with
kıxk D 1. By Urysohn’s lemma, C.K/ separates the points of K, which means that
the map

ı W K ! C.K/0; x 7! ıx
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is injective. Let us endow C.K/0 with the weak�-topology (see Appendix C.5). Then
ı is continuous, and since the weak�-topology is Hausdorff, ı is a homeomorphism
onto its image (Proposition A.4). Consequently,

K Š ˚ıx W x 2 K
� � C.K/0: (4.1)

In order to recover K from C.K/ we need to distinguish the Dirac functionals within
C.K/0. For this we view C.K/ not merely as a Banach space, but rather as a Banach
algebra.

Recall, e.g., from Appendix C.2, the notion of a commutative Banach algebra.
In particular, note that for us a Banach algebra is always unital, i.e., contains a unit
element. Clearly, if K is a compact topological space, then we have

kf gk1 � kf k1 kgk1 .f; g 2 C.K//;

and hence C.K/ is a Banach algebra with respect to pointwise multiplication, unit
element 1, and the sup-norm. The Banach algebra C.K/ is degenerate if and only if
K D ;. Since C.K/ is also invariant under complex conjugation and

�
�f f

�
�1 D kf k21 .f 2 C.K//

holds, we conclude that C.K/ is even a commutative C�-algebra.
The central notion in the study of C.K/ as a Banach algebra is that of an (algebra)

ideal, see again Appendix C.2. For a closed subset F � K we define

IF WD
˚
f 2 C.K/ W f 
 0 on F

�
:

Evidently, IF is closed; and it is proper if and only if F 6D ;. The next theorem tells
that each closed ideal of C.K/ is of this type.

Theorem 4.8. Let I � C.K/ be a closed algebra ideal. Then there is a closed subset
F � K such that I D IF.

Proof. Define

F WD ˚x 2 K W f .x/ D 0 for all f 2 I
� D

\

f 2I

Œ f D 0 � :

Obviously, F is closed and I � IF. Fix f 2 IF, " > 0 and define F" WD Œ jf j � " �.
Since f is continuous and vanishes on F, F" is a closed subset of K n F. Hence, for
each point x 2 F" one can find a function fx 2 I such that fx.x/ 6D 0. By multiplying
with fx and a positive constant we may assume that fx � 0 and fx.x/ > 1. The
collection of open sets .Œ fx > 1 �/x2F" covers F". Since F" is compact, this cover
has a finite subcover. So there are 0 � f1; : : : ; fk 2 I such that

F" � Œ f1 > 1 �[ � � � [ Œ fk > 1 � :
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Let g WD f1 C � � � C fk 2 I. Then 0 � g and Œ jf j � " � � Œ g � 1 �. Define

gn WD nf

1C ng
g 2 I:

jgn � f j D jf j
1C ng

� max

�
";
kf k1
1C n


:Then

(Indeed, one has g � 1 on F" and jf j < " on K n F".) Hence, for n large enough
we have kgn � f k1 � ". Since " was arbitrary and I is closed, we obtain f 2 I as
desired. ut

Recall from Appendix C.2 that an ideal I in a Banach algebra A is called maximal
if I 6D A, and for every ideal J satisfying I � J � A either J D I or J D A. The
maximal ideals in C.K/ are easy to spot.

Lemma 4.9. An ideal I of C.K/ is maximal if and only if I D Ifxg for some x 2 K.

Proof. It is straightforward to see that each Ifxg, x 2 K, is a maximal ideal. Suppose
conversely that I is a maximal ideal. By Theorem 4.8 it suffices to show that I is
closed. Since I is again an ideal and I is maximal, I D I or I D C.K/. In the latter
case we can find f 2 I such that k1 � f k1 < 1. Then f D 1 � .1 � f / has no
zeroes and hence 1

f
2 C.K/. But then 1 D 1

f
f 2 I, whence I D A contradicting

the assumption that I is maximal. ut
To proceed we observe that the maximal ideal Ifxg can also be written as

Ifxg D
˚
f 2 C.K/ W f .x/ D 0� D ker.ıx/;

where ıx is the Dirac functional at x 2 K as above. Clearly,

ıx W C.K/! C

is a nonzero multiplicative linear functional satisfying ıx.1/ D 1, i.e., an algebra
homomorphism from C.K/ into C. (See again Appendix C.2 for the terminology.)
As before, also the converse is true.

Lemma 4.10. A nonzero linear functional  W C.K/ ! C is multiplicative if and
only if  D ıx for some x 2 K.

Proof. Let 
 W C.K/ ! C be nonzero and multiplicative. Then there is f 2 C.K/
such that 
.f / D 1. Hence

1 D 
.f / D 
.1f / D 
.1/
.f / D 
.1/;
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which means that 
 is an algebra homomorphism. Hence, I WD ker.
/ is a proper
ideal, and maximal since it has codimension one. By Lemma 4.9 there is x 2 K such
that ker.
/ D Ifxg D ker.ıx/. Hence f � 
.f /1 2 ker.ıx/ and therefore

0 D .f � 
.f /1/.x/ D f .x/ � 
.f /

for every f 2 C.K/. ut
Lemma 4.10 yields a purely algebraic characterization of the Dirac functionals

among all linear functionals on C.K/. Let us summarize our results in the following
theorem.

Theorem 4.11. Let K be a compact space, and let

�.C.K// WD ˚
 2 C.K/0 W 
 algebra homomorphism
�
:

Then the map

ı W K ! �.C.K//; x 7! ıx

is a homeomorphism, where �.C.K// is endowed with the weak�-topology as a
subset of C.K/0.

4.3 The Koopman Operator

We now return to our original setting of a topological dynamical system .KI'/ with
its Koopman operator T D T' defined at the beginning of this chapter. Actually,
we shall first be a little more general, i.e., we shall consider possibly different
compact spaces K, L and a mapping ' W L! K. Again we can define the Koopman
operator T' mapping functions on K to functions on L. The following lemma says,
in particular, that ' is continuous if and only if T'.C.K// � C.L/. We shall need this
fact in the slightly more general situation when we suppose that only K is compact.

Lemma 4.12. Let K be a compact space, ˝ a topological space, and let ' W ˝ !
K be a mapping. Then ' is continuous if and only if f ı ' is continuous for all
f 2 C.K/.

Proof. Clearly, if ' is continuous, then also f ı' is continuous for every f 2 C.K/.
Conversely, if this condition holds, then '�1 Œ jf j > 0 � D Œ jf ı 'j > 0 � is open in
˝ for every f 2 C.K/. To conclude that ' is continuous, it suffices to show that
sets of the form Œ jf j > 0 � form a base of the topology of K (see Appendix A.2).
Note first that such sets are open. On the other hand, if U � K is open and x 2 U
is a point, then by Urysohn’s lemma one can find a function f 2 C.K/ such that
0 � f � 1, f .x/ D 1 and f 
 0 on K nU. But then x 2 Œ jf j > 0 � � U. ut
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We now return to compact spaces K and L. If ' W L ! K is continuous, the
operator T WD T' is an algebra homomorphism from C.K/ to C.L/. The next result
states that actually every algebra homomorphism is such a Koopman operator. For
the case of a topological system, i.e., for K D L, the result shows that the state space
mapping ' is uniquely determined by its Koopman operator T' .

Theorem 4.13. Let K, L be (nonempty) compact spaces and let T W C.K/ ! C.L/
be linear. Then the following assertions are equivalent:

(i) T is an algebra homomorphism.

(ii) There is a continuous mapping ' W L! K such that T D T' .

In this case, ' in (ii) is uniquely determined and the operator T has norm kTk D 1.

Proof. Urysohn’s lemma yields that ' as in (ii) is uniquely determined, and it is
clear from (ii) that kTk D 1. For the proof of the implication (i)) (ii) take y 2 L.
Then

T 0ıy WD ıy ı T W C.K/! C; f 7! .Tf /.y/

is an algebra homomorphism. By Theorem 4.11 there is a unique x DW '.y/ such
that T 0ıy D ı'.y/. This means that .Tf /.y/ D f .'.y// for all y 2 L, i.e., Tf D f ı'
for all f 2 C.K/. By Lemma 4.12, ' is continuous, whence (ii) is established. ut

Theorem 4.13 with K D L shows that no information is lost when looking at T'
in place of ' itself. On the other hand, one has all the tools from linear analysis—
in particular spectral theory—to study the linear operator T' . Our aim is to show
how properties of the topological system .KI'/ are reflected by properties of the
operator T' . Here is a first result in this direction.

Lemma 4.14. Let K, L be compact spaces, and let ' W L! K be continuous, with
Koopman operator T WD T' W C.K/! C.L/. Then the following hold:

a) ' is surjective if and only if T is injective. In this case, T is isometric.

b) ' is injective if and only if T is surjective.

Proof. This is Exercise 1. ut
An important consequence is the following.

Corollary 4.15. Compact spaces K, L are homeomorphic if and only if the algebras
C.K/ and C.L/ are isomorphic.

Next we look at continuity of mappings on product spaces, where the Koopman
operator again turns out to be helpful. This will be important in Section 10.3 when
we study ergodic properties of group rotations on spaces of continuous functions.
First we need a lemma.
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Lemma 4.16. Let ˝; K be topological spaces, K compact. For a mapping ˚ W
˝ � K ! C the following assertions are equivalent:

(i) ˚ is continuous.

(ii) For each x 2 ˝ the mapping Q̊ .x/ WD ˚.x; �/ W K ! C is continuous, and
the induced mapping Q̊ W ˝ ! C.K/ is continuous.

Proof. (i)) (ii): Fix x 2 ˝ and " > 0. For each y 2 K there are open sets Uy � ˝
and Vy � K with x 2 Uy, y 2 Vy such that

ˇ
ˇ˚.x; y/ �˚.x0; y0/

ˇ
ˇ � " whenever x0 2 Uy; y0 2 Vy:

Since K is compact, there is a finite set F � K such that K � S
y2F Vy. Define

U WD T
y2F Uy and let x0 2 U; y0 2 K. Then there is y 2 F such that y0 2 Vy, and

hence
ˇ
ˇ˚.x; y0/� ˚.x0; y0/

ˇ
ˇ � ˇˇ˚.x; y0/� ˚.x; y/ˇˇC ˇˇ˚.x; y/ �˚.x0; y0/

ˇ
ˇ � 2":

As y0 2 K was arbitrary, this means that
�
� Q̊ .x/� Q̊ .x0/

�
�1 � 2" for all x0 2 U.

(ii)) (i): Let .x; y/ 2 ˝ �K and " > 0. By assumption there is an open set U � ˝
with x 2 U and

�
� Q̊ .x/� Q̊ .x0/

�
�1 � " whenever x0 2 U:

Since Q̊ .x/ 2 C.KIE/, there is an open set V � K with y 2 V and

ˇ
ˇ˚.x; y/� ˚.x; y0/

ˇ
ˇ � " whenever y0 2 V:

Hence, if .x0; y0/ 2 U � V ,

ˇ
ˇ˚.x; y/ �˚.x0; y0/

ˇ
ˇ � ˇˇ˚.x; y/� ˚.x; x0/

ˇ
ˇC ˇˇ˚.x; y0/ �˚.x0; y0/

ˇ
ˇ

� "C �� Q̊ .x/ � Q̊ .x0/
�
�1 � 2": ut

Theorem 4.17. Let ˝; K; L be topological spaces, and suppose that K and L are
compact. Let ˚ W ˝ � K ! L be a mapping such that for every x 2 ˝ the mapping
˚.x; �/ W K ! L is continuous. Let Tx W C.L/ ! C.K/ be the associated Koopman
operator, i.e.,

.Txf /.y/ WD f .˚.x; y// .x 2 ˝; y 2 K; f 2 C.L//:

Then the following assertions are equivalent:

(i) The mapping˝ ! L .C.L/IC.K//, x 7! Tx is strongly continuous, i.e., the
mapping x 7! Txf is continuous for every f 2 C.L/.

(ii) ˚ is continuous.
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Proof. Note that ˚ is continuous if and only if for every f 2 C.L/ the mapping
f ı˚ is continuous. This follows from Lemma 4.12. Hence, the assertion is a direct
consequence of Lemma 4.16 above. ut

We now return to topological systems and their invariant sets.

Lemma 4.18. Let .KI'/ be a topological system with Koopman operator T D T'
and let A � K be a closed subset. Then A is '-invariant if and only if the ideal IA is
T-invariant.

Proof. Suppose that A is '-invariant and f 2 IA. If x 2 A, then '.x/ 2 A and hence
.Tf /.x/ D f .'.x// D 0 since f vanishes on A. Thus Tf vanishes on A, hence
Tf 2 IA. Conversely, suppose that IA is T-invariant. If x … A, then by Urysohn’s
lemma there is f 2 IA such that f .x/ 6D 0. By hypothesis, Tf D f ı ' vanishes on
A, hence x … '.A/. This implies that '.A/ � A. ut

Using Theorem 4.11, we obtain the following characterization of minimality.

Corollary 4.19. Let .KI'/ be a topological system and T WD T' its Koopman
operator on C.K/. Then the topological system .KI'/ is minimal if and only if no
nontrivial closed algebra ideal of C.K/ is invariant under T.

An important object in the study of T' is its fixed space

fix.T'/ WD
˚
f 2 C.K/ W T'f D f

�
;

which is the eigenspace corresponding to the eigenvalue 1, hence a spectral notion.
For topologically transitive systems, one has the following information.

Lemma 4.20. Let .KI'/ be a topological system with Koopman operator T D T'
on C.K/. If .KI'/ is topologically transitive, then fix.T/ is one-dimensional.

Proof. As already remarked, if x 2 K and f 2 fix.T/, then f .'n.x// D .Tnf /.x/ D
f .x/ is independent of n � 0, and hence f is constant on orbC.x/. Consequently, if
there is a point with dense forward orbit, then each f 2 fix.T/must be constant. ut
Exercise 2 shows that the converse statement fails.

An eigenvalue � of T WD T' of modulus 1 is called a peripheral eigenvalue.
The set of peripheral eigenvalues

¢p.T/ \ T WD ˚� 2 T W 9 0 6D f 2 C.K/ with Tf D �f �

is called the peripheral point spectrum of T. We shall see later in Chapters 16
and 17 that this set is important for the asymptotic behavior of the iterates of T. In
the case of a topologically transitive system, the peripheral point spectrum of the
Koopman operator has a particularly nice property.

Theorem 4.21. Let .KI'/ be a topological system with Koopman operator T D T' .
Then the peripheral point spectrum of T is a union of subgroups of T. If fix.T/ is
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one-dimensional, then the peripheral point spectrum is a group, each peripheral
eigenvalue is simple, and each corresponding eigenvector is unimodular (up to a
multiplicative constant).

Proof. Let � 2 T be an eigenvalue of T, and let 0 ¤ f 2 C.K/ be a corresponding
eigenvector with kf k1 D 1. Then for each n 2 N we have that �n is an eigenvalue
with eigenvector f n, while ��n D �

n
is an eigenvalue with eigenvector f n. Of

course, 1 is an eigenvalue of T. This shows that the peripheral point spectrum is a
union of cyclic groups of unimodular eigenvalues.

Suppose fix.T/ is one-dimensional. Then for f 2 fix.T/ with kf k1 D 1

jf j D j�f j D jTf j D T jf j ;

hence jf j D 1, i.e., f is unimodular. Let � 2 T be an another eigenvalue of T with
corresponding eigenvector 0 ¤ g 2 C.K/ with kgk1 D 1. Then

T.f g/ D Tf � .Tg/ D �f � �g D .��/.f g/;

and hence �� is again a peripheral eigenvalue of T, because f g is unimodular,
hence nonzero. This proves that the peripheral point spectrum is a subgroup of T.
For � D � in the above argument we obtain f g 2 fix.T/ and hence f g is constant.
But this means that f is a scalar multiple of g, hence dim ker.�I � T/ D 1. ut
Example 4.22 (Minimal Rotations). For a rotation system .GI a/ (see Exam-
ple 2.9) the associated Koopman operator is denoted by

La W C.G/! C.G/; .Laf /.x/ WD f .ax/ .f 2 C.G/; x 2 G/

and called the left rotation (operator). Recall from Theorem 3.4 that .GI a/ is
minimal if and only if fan W n 2 N0g is dense in G. In this case, G is Abelian,
fix.La/ D C1, and by Theorem 4.21 the peripheral point spectrum ¢p.La/ \ T is a
subgroup of T.

In order to determine this subgroup, take � 2 T and � 2 C.G/ such that j�j D 1
and La� D ��, i.e., �.ax/ D ��.x/ for all x 2 G. Without loss of generality we may
suppose that �.1/ D 1. It follows that �.a/ D � and

�.anam/ D �.anCm/ D �nCm D �n�m D �.an/�.am/

for all n; m 2 N0. By continuity of � and since the powers of a are dense in G, this
implies

� W G! T continuous; �.xy/ D �.x/�.y/ .x; y 2 G/

i.e., � is a continuous homomorphism into T, a so-called character of G.
Conversely, each such character � of G is an unimodular eigenvalue of La with
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eigenvalue �.a/. It follows that

¢p.La/ \ T D ˚�.a/ W � W G! T is a character
�

is the group of peripheral eigenvalues of La. See Section 14.2 for more about
characters.

4.4 The Gelfand–Naimark Theorem

We now come to one of the great theorems of functional analysis. While we have
seen in Section 4.2 that C.K/ is a commutative C�-algebra, the following theorem
tells that the converse also holds.

Theorem 4.23 (Gelfand–Naimark). Let A be a commutative C�-algebra. Then
there is a compact space K and an isometric �-isomorphism ˚ W A ! C.K/. The
space K is unique up to homeomorphism.

The Gelfand–Naimark theorem is central to our operator theoretic approach to
ergodic theory, see Chapter 12 and the Halmos–von Neumann Theorem 17.11.

Before giving the complete proof of the Gelfand–Naimark theorem let us say
some words about its strategy. By Corollary 4.15 the space K is unique up to
homeomorphism. Moreover, Theorem 4.11 leads us to identify K as the set of all
scalar algebra homomorphisms

�.A/ WD ˚ W A! C W  is an algebra homomorphism
�
:

The set �.A/, endowed with the restriction of the weak� topology �.A0;A/, is
called the Gelfand space of A. Each element of A can be viewed in a natural
way as a continuous function on �.A/, and the main problem is to show that in
this manner one obtains an isomorphism of C�-algebras, i.e., C.�.A// Š A. We
postpone the detailed proof to the supplement of this chapter. At this point, let us
rather familiarize ourselves with the result by looking at some examples.

Examples 4.24. 1) For a compact space K consider the algebra A D C.K/.
Then �.A/ ' K as we proved in Section 4.2.

2) Consider the space C0.R/ of continuous functions f W R ! C vanishing
at infinity. Define A WD C0.R/ ˚ h1i. Then A is a C�-algebra and �.A/
is homeomorphic to the one-point compactification of R, i.e., to the unit
circle T. Of course, one can replace R by any locally compact Hausdorff
space and thereby arrive at the one-point compactification of such spaces,
cf. Exercise 5.14.
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3) Let X D .X; ˙; �/ be a finite measure space. For the C�-algebra L1.X/,
the Gelfand space is the Stone representation space of the measure algebra
˙.X/. See, e.g., Chapters 5 and 12, in particular Section 12.4.

4) The Gelfand space of the C�-algebra `1.N/ is the Stone–Čech compactifi-
cation1 of N and is denoted by “N. This space will be studied in more detail
in Chapter 19.

5) Let S be a nonempty set and consider

`1.S/ WD ˚x W S! C W x is bounded
�
;

which becomes a Banach space if endowed with the supremum norm

kxk1 D sup
s2S
jx.s/j :

As matter of fact, `1.S/ is even a C�-algebra (with pointwise multipli-
cation), and its Gelfand space is the Stone–Čech compactification of the
discrete space S.

6) Consider the Banach space E WD `1.Z/ and the left shift L W E! E thereon
defined by L.xn/n2Z D .xnC1/n2Z. We call a sequence x D .xn/n2Z 2 E
almost periodic if the set

˚
Lkx W k 2 Z

� � E

is relatively compact in E. The set ap.Z/ of almost periodic sequences is a
closed subspace of `1.Z/ and actually a C�-subalgebra. The Gelfand repre-
sentation space of A D ap.Z/ is bZ the so-called Bohr compactification of
Z, see Exercise 13 and Chapter 14. A similar construction can be carried out
for each locally compact topological group.

Supplement: Proof of the Gelfand–Naimark Theorem

We need some preparation for the proof. As has been already said, the candidate for
the desired compact space is the set of scalar algebra homomorphisms.

Definition 4.25. Let A be a commutative complex Banach algebra. The set

�.A/ WD ˚ W A! C W  is an algebra homomorphism
�

is called the Gelfand (representation) space of A.

The first proposition shows that the elements of the Gelfand space are continuous
functionals.

1European authors sometimes use the nomenclature Čech–Stone compactification.
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Proposition 4.26. Let A be a commutative complex Banach algebra. If  2 �.A/,
then  is continuous with k k � 1.

Proof. Suppose by contradiction that there is a 2 A with kak < 1 and  .a/ D 1.
The series

b WD
1X

nD1
an

is absolutely convergent in A with ab C a D b. Since  is a homomorphism, we
obtain

 .b/ D  .ab/C  .a/ D  .a/ .b/C  .a/ D  .b/C 1;

a contradiction. This means that j .a/j � 1 holds for all a 2 A with kak � 1. ut
As in the case of A D C.K/, we now consider the dual Banach space A0 of A

endowed with its weak�-topology (see Appendix C.5). Then �.A/ is a subset of A0
and weakly� closed since

�.A/ D ˚ 2 A0 W  .e/ D 1�\
\

x; y2A

˚
 2 A0 W  .xy/ D  .x/ .y/�:

As a consequence of Proposition 4.26 and the Banach–Alaoglu Theorem C.4, the
set �.A/ is compact. Notice, however, that at this point we do not know whether
�.A/ is nonempty. Later we shall show that �.A/ has sufficiently many elements,
but let us accept this fact for the moment. For x 2 A consider the function

Ox W �.A/! C; Ox. / WD  .x/ . 2 �.A//:

By definition of the topology of �.A/, the function Ox is continuous. Hence, the map

˚ WD ˚A W A! C.�.A//; x 7! Ox

is well defined and clearly an algebra homomorphism. It is called the Gelfand
representation or Gelfand map.

To conclude the proof of the Gelfand–Naimark theorem it remains to show that

1) ˚ commutes with the involutions, i.e., is a �-homomorphism, see Appendix
C.2;

2) ˚ is isometric;

3) ˚ is surjective.

The proof of 1) is simple as soon as one knows that an algebra homomorphism
 W A ! C of a C�-algebra is automatically a �-homomorphism. Property 2)
entails that �.A/ is nonempty if A is nondegenerate. An analysis of the proof of
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Theorem 4.11 shows that in order to prove 2) and 3) we have to study maximal
ideals in A and invertibility of elements of the form �e � a 2 A. The proof of the
remaining parts of the theorem needs an excursion into Gelfand theory, done in the
following.

The Spectrum in Unital Algebras

Let A be a complex Banach algebra with unit e and let a 2 A. The spectrum of a is
the set

Sp.a/ WD ˚� 2 C W �e � a is not invertible
�
:

The number

r.a/ WD inf
n2N ka

nk 1n

is called the spectral radius of a. Here are some first properties.

Lemma 4.27. a) For every a 2 A we have r.a/ � kak.
b) If A 6D f0g, then r.e/ D 1.

Proof. a) This follows from the submultiplicativity of the norm. To see b), notice
that kek D keek � kek2. Since by assumption kek ¤ 0, we obtain kek � 1. This
implies kek D kenk � 1, and therefore r.e/ D 1. ut

Just as in the case of bounded linear operators one can replace “inf” by “lim” in
the definition of the spectral radius, i.e.,

r.a/ D lim
n!1 ka

nk 1n ;

see Exercise 5. The spectral radius is connected to the spectrum via the next result.

Lemma 4.28. Let A be a Banach algebra with unit element e. If a 2 A is such that
r.a/ < 1, then e � a is invertible and its inverse is given by the Neumann2 series

.e � a/�1 D
1X

nD0
an:

Moreover, for � 2 C with j�j > r.a/ one has

.�e � a/�1 D ��1
1X

nD0
��nan:

2Named after Carl Neumann (1832–1925).
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We leave the proof of this lemma as Exercise 4.
The following proposition lists important properties of the spectrum and explains

the name “spectral radius” for the quantity r.a/.

Proposition 4.29. Let A be a complex Banach algebra and let a 2 A. Then the
following are true:

a) The spectrum Sp.a/ is a compact subset of C and is contained in the closed
ball B.0; r.a//.

b) The mapping

C n Sp.a/! A; � 7! .�e � a/�1

is holomorphic and vanishes at infinity.

c) If A 6D f0g, then there is � 2 Sp.a/ with j�j D r.a/.

In particular, if A 6D f0g, then Sp.a/ 6D ; and

lim
n!1 ka

nk1=n D r.a/ D sup�2Sp.a/ j�j : (4.2)

The identity (4.2) is called the spectral radius formula.

Proof. a) If � 2 C is such that j�j > r.a/, then Lemma 4.28 implies that �e � a is
invertible, hence Sp.a/ � B.0; r.a//. We now show that the complement of Sp.a/
is open, hence compactness of Sp.a/ follows. Let � 2 C n Sp.a/ be fixed and let
� 2 C be such that j� � �j < k.�e � a/�1k�1. Then by Lemma 4.28 we conclude
that .�e � a/�1 exists and is given by the absolutely convergent series

.�e � a/�1 D .�e � a/�1..� � �/.�e � a/�1 � e/�1 (4.3)

D .�e � a/�1
1X

nD0
.� � �/n.�e � a/�n;

i.e., � 2 C n Sp.a/.

b) By (4.3) the function � 7! .�e � a/�1 is given by a power series in a small
neighborhood of each � 2 C n Sp.a/, so it is holomorphic. From Lemma 4.28 we
obtain

k.�e � a/�1k � j��1j
1X

nD0
k��nank � j�j�1

1X

nD0
j�j�n kakn D 1

j�j � kak

for j�j > kak. This shows the second part of b).

c) Suppose that Sp.a/ � B.0; r0/ for some r0 > 0. This means that

C n B.0; r0/ 3 � 7! .�e � a/�1
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is holomorphic and hence given by the series

.�e � a/�1 D ��1
1X

nD0
��nan;

which is uniformly convergent for j�j � r0 with r0 > r0. This implies that kank �
Mr0n holds for all n 2 N0 and some M � 0. From this we conclude r.a/ � r0, hence
r.a/ � r0, and Sp.a/ cannot be contained in any ball smaller than B.0; r.a//. It
remains to prove that Sp.a/ is nonempty provided dim.A/ � 1. If Sp.a/ is empty
then, by part b), the mapping

C! A; � 7! .�e � a/�1

is a bounded holomorphic function. For every ' 2 A0 we can define the holomorphic
function

f' W C 7! C; � 7! '
�
.�e � a/�1

�
;

which is again bounded. By Liouville’s theorem from complex analysis it follows
that each f' is constant, but then by the Hahn–Banach Theorem C.3 also the
function � 7! .�e � a/�1 2 A is constant. By part b), this constant must be zero,
which is impossible if A 6D f0g. ut
Theorem 4.30 (Gelfand–Mazur). Let A 6D f0g be a complex Banach algebra
such that every nonzero element in A is invertible. Then A is isomorphic to C.

Proof. Let a 2 A. Then by Proposition 4.29 there is �a 2 Sp.a/ with j�aj D r.a/.
By assumption, �ae � a D 0, so a D �ae, hence A is one-dimensional. This proves
the assertion. ut

Maximal Ideals

If I is a closed ideal in the Banach algebra A, then the quotient vector space A=I
becomes a Banach algebra if endowed with the norm

kaC Ik D inf
˚kaC xk W x 2 I

�
:

For the details we refer to Exercise 6.

Proposition 4.31. Let A be a commutative complex Banach algebra. If  2 �.A/,
then ker. / is a maximal ideal. Conversely, if I � A is a maximal ideal, then I is
closed and there is a unique  2 �.A/ such that I D ker. /.

Proof. Clearly, ker. / is a closed ideal. Since ker. / is of codimension one, it must
be maximal.
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For the second assertion let I be a maximal ideal. Consider its closure I, still
an ideal. Since B.e; 1/ consists of invertible elements by Lemma 4.27, we have
B.e; 1/ \ I D ;, hence B.e; 1/ \ I D ;. In particular, I is a proper ideal, hence
equals to I by maximality. Therefore, each maximal ideal is closed.

Consider now the quotient algebra A=I. Since I is maximal, A=I does not contain
any proper ideals other than 0. If aC I is a noninvertible element in A=I, then aA=I
is a proper ideal, so actually it must be the zero-ideal. This yields a 2 I. Hence,
all nonzero elements in A=I are invertible. By the Gelfand–Mazur Theorem 4.30 we
obtain that A=I is isomorphic to C under some � . The required homomorphism 2
T.A/ is given by  D � ı q, where q W A ! A=I is the quotient map. Uniqueness
of  can be proved as follows. For every a 2 A we have  .a/e � a 2 ker. /. So if
ker. / D ker. 0/, then  0. .a/e � a/ D 0, hence  .a/ D  0.a/. ut
As an important consequence of this proposition we obtain that the Gelfand space
�.A/ is not empty if the algebra A is nondegenerate. Indeed, by an application of
Zorn’s lemma, every proper ideal I of A is contained in a maximal one, so in a unital
Banach algebra there are maximal ideals.

On our way to the proof of the Gelfand–Naimark theorem we need to connect
the spectrum and the Gelfand space. This is the content of the next theorem.

Theorem 4.32. Let A be a commutative unital Banach algebra and let a 2 A. Then

Sp.a/ D ˚ .a/ W  2 �.A/� D Oa.�.A//:

Proof. Since  .e/ D 1 for  2 �.A/, one has  . .a/e � a/ D 0, so  .a/e � a
cannot be invertible, i.e.,  .a/ 2 Sp.a/.

On the other hand, if � 2 Sp.a/, then the principal ideal .�e�a/A is not the whole
algebra A. So by a standard application of Zorn’s lemma we obtain a maximal ideal
I containing �e � a. By Proposition 4.29 there is  2 �.A/ with ker. / D I. We
conclude  .�e � a/ D 0, i.e.,  .a/ D �. ut

An immediate consequence is the following alternative description of the spectral
radius.

Corollary 4.33. For a commutative unital Banach algebra A and an element a 2 A
we have

r.a/ D sup
˚j .a/j W  2 �.A/� D kOak1 D k˚A.a/k1:

The Proof of the Gelfand–Naimark Theorem

To complete the proof of Gelfand–Naimark theorem the C�-algebra structure has to
enter the picture.
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Lemma 4.34. Let A be a commutative C�-algebra. For a 2 A with a D a� the
following assertions are true:

a) r.a/ D kak.
b) Sp.a/ � R; equivalently,  .a/ 2 R for every  2 �.A/.

Proof. a) We have aa� D a2, so ka2k D kak2 holds. By induction one can prove
ka2nk D kak2n

for all n 2 N0. From this we obtain

r.a/ D lim
n!1 ka

2nk 1
2n D kak:

b) The equivalence of the two formulations is clear by Theorem 4.32. For a fixed
 2 �.A/ set ˛ D Re .a/ and ˇ D Im .a/. Since  .e/ D 1, we obtain

 .aC ite/ D ˛ C i.ˇ C t/

for all t 2 R. The inequality

k.aC ite/.aC ite/�k D ka2 C t2ek � kak2 C t2

is easy to see. On the other hand, by using that k k � 1 and the C�-property of the
norm, we obtain

˛2 C .ˇ C t/2 D j .aC ite/j2 � kaC itek2 D k.aC ite/.aC ite/�k:

These two inequalities imply that

˛2 C ˇ2 C 2ˇtC t2 � kak2 C t2 for all t 2 R:

This yields ˇ D 0. ut
Lemma 4.35. Let A be a commutative C�-algebra and let  2 �.A/. Then

 .a�/ D  .a/ for all a 2 A;

i.e.,  is a �-homomorphism.

Proof. For a 2 A fixed define

x WD aC a�

2
and y WD b � b�

2i
:

Then we have x D x� and y D y� and a D xC iy. By Lemma 4.34.b,  .x/;  .y/ 2
R, so we conclude
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 .a�/ D  .x�/ � i .y�/ D  .x/C i .y/ D  .xC iy/ D  .a/: ut

Proof of the Gelfand–Naimark Theorem 4.23. Let a 2 A and let  2 �.A/. Then
by Lemma 4.34.b we obtain

˚.a�/. / D a�. / D  .a�/ D  .a/ D Oa. / D ˚.a/. /;

hence ˚ is a �-homomorphism, and therefore a homomorphism between the C�-
algebras A and C.�.A//.

Next, we prove that the Gelfand map ˚ is an isometry, i.e., that kak D kOak1.
For a 2 A we have .aa�/� D aa�, so by Lemma 4.34.a, kaa�k D r.aa�/. From this
and from Corollary 4.33 we conclude

kak2 D kaa�k D r.aa�/ D k˚.aa�/k1 D k˚.a/˚.a/k1 D k˚.a/k21:

Finally, we prove that ˚ W A ! C.�.A// is surjective. Since ˚ is a homomor-
phism, ˚.A/ is �-subalgebra, i.e., a conjugation invariant subalgebra of C.�.A//. It
trivially separates the points of �.A/. By the Stone–Weierstraß Theorem 4.4, ˚.A/
is dense, but since ˚ is an isometry its image is closed. Hence, ˚ is surjective. ut

Notes and Remarks

What we call a Koopman operator here, is also named induced operator or
composition operator in the literature. The idea of associating a linear operator
T with a nonlinear map ' appeared (first?) in Koopman (1931) in the context
of measurable dynamical systems and Hilbert spaces and led to von Neumann’s
work (partly in cooperation with Koopman) on the ergodic theorem. It was von
Neumann’s groundbreaking paper (1932c) that firmly established the “operator
method in classical mechanics.”

The study of normed and Banach algebras was originally motivated by the “rings
of operators” arising in quantum mechanics. But in the hands of the Russian school
(Gelfand, Naimark, Raikov, Silov) it developed into an independent and powerful
mathematical discipline. The Gelfand–Naimark theorem appeared in Gelfand and
Neumark (1943), although the fact that a compact space K is determined by the
algebraic structure of C.K/ is due to Gelfand and Kolmogorov (1939).

It is a simple consequence of this theory that the Koopman operators between
C.K/-spaces are exactly the algebra homomorphisms (Theorem 4.13). Interestingly
enough, the converse of Theorem 4.32 is also true: If  is a linear functional on a
complex (unital) Banach algebra A with  .a/ � Sp.a/ for every a 2 A, then  is
a multiplicative linear functional. This result is due to Gleason (1967), Kahane and
PZelazko (1968) in the commutative case, and due to Żelazko (1968) in the general
case. For the detailed theory of Banach algebras we refer, e.g., to Żelazko (1973).
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Exercises

1. Prove Lemma 4.14.

2. Let K WD Œ0; 1� and '.x/ WD x2, x 2 K. Show that the system .KI'/ is not
topologically transitive, while the fixed space of the Koopman operator is one-
dimensional. Determine the peripheral point spectrum of T' .

3. Let .KI'/ be a topological system with Koopman operator T WD T' . For m 2 N

let Pm WD fx 2 K W 'm.x/ D xg. Let � 2 T be a peripheral eigenvalue of T with
eigenfunction f . Show that either �m D 1 or f vanishes on Pm. Determine the
peripheral point spectrum of the Koopman operator for the one-sided shift .W C

k I �/,
k � 1.

4. Prove Lemma 4.28.

5 (Fekete’s Lemma). Let .xn/n2N 2 R be a nonnegative sequence with the
property

xnCm
nCm � xn

nxm
m for all n; m 2 N:

Prove that .xn/n2N is convergent and that

inf
n2N xn D lim

n!1 xn:

Apply this to prove the equality

r.a/ D lim
n!1 ka

nk 1n

for a 2 A, A a Banach algebra.

6. Let A be a commutative Banach algebra and let I be a closed ideal in A. Prove
that

kaC Ik D inf
˚kaC xk W x 2 I

�

defines a norm on the quotient vector space A=I, and that A=I becomes a Banach
algebra with the multiplication

.aC I/.bC I/ WD abC I:

7. Let A be a Banach algebra and a; b 2 A such that ab D ba. Prove that
r.ab/ � r.a/r.b/.

8. Let A be a commutative algebra and  W A ! C a linear functional. Prove that
 is multiplicative if and only if  .a2/ D  .a/2 holds for every a 2 A.
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9. Let A be a complex Banach algebra. Prove that the Gelfand map is an isometry
if and only if kak2 D ka2k for all a 2 A.

10 (Disc Algebra). We let D WD fz 2 C W jzj < 1g be the open unit disc. Show that

D WD ˚f 2 C.D/ W f jD holomorphic
�

is a commutative complex Banach algebra if endowed with pointwise operations
and the sup-norm. Define

f �.z/ WD f .z/:
Show that f 7! f � is an involution on D and kf k1 D kf �k1. Prove that the
Gelfand map ˚D is an algebra homomorphism but not a �-homomorphism.

11. Let A be a C�-algebra. Prove that r.a/ D kak for each a 2 A with aa� D a�a.

12. Let A be a complex algebra without unit element. Show that the vector space
AC WD A˚ C becomes a unital algebra with respect to the multiplication

.a; x/ � .b; y/ WD .abC xbC ya; xy/ .a; b 2 A; x; y 2 C/

and with unit element e D .0; 1/. Suppose that A is a Banach space, and that kabk �
kak kbk for all a; b 2 A. Show that AC becomes Banach algebra with respect to the
norm k.a; x/k WD kak C jxj.
13. Show that ap.Z/, the set of almost periodic sequences is a C�-subalgebra of
`1.Z/.

14. Let c be the space of convergent complex sequences, and c0 be the space
of complex null sequences. Show that they are Banach spaces if endowed with
the sup-norm, and that c is a C�-algebra in which c0 is a closed ideal. De-
termine the multiplicative and the translation invariant functionals on c and c0.
Describe the Gelfand space of c.

15. Prove that a nontrivial translation invariant functional on `1.N/ is not multi-
plicative, and a multiplicative unit preserving functional on `1.N/ is not translation
invariant. Prove that each nontrivial element of `1.N/ � `1.N/0 is neither
multiplicative nor translation invariant.

16 (Inductive and Projective Limits). Let ...KiI'i//i2I ; .�ij/i�j/ be a projective
system of dynamical systems with associated projective limit system .KI'/ as in
Exercise 2.18. Denote by

Jji W C.Ki/! C.Kj/

the Koopman operator of the map �ij W Kj ! Ki, i � j, and by

Ji W C.Ki/! C.K/
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the Koopman operator of the map �i W K ! Ki. Show that

[

i2I

ran.Ji/ D
˚
Jifi W i 2 I; fi 2 C.Ki/

�

is a dense �-subalgebra of C.K/. (This means that C.K/ is the inductive (or direct)
limit of the inductive system ..C.Ki//iI .Jji/i�j/.)

Ki C(Ki)

K C(K)

Kj C(Kj)

πi j

πi

π j

Jji

Ji

Jj

Use this to show that the set

˚
Jifi W i 2 I; 0 � fi 2 C.Ki/

�

is dense in the positive cone ff 2 C.K/ W f � 0g.
17. In the situation of the previous exercise, let .LI / be a topological system.

a) Show that by ˚ W T 7! .T Jj/j a one-to-one correspondence is defined
between the bounded operators T W C.K/! C.L/ and the set

˚
.Ti/i2I W supi2I kTik <1 and Tj Jji D Ti .i � j/

� �
Y

i2I

L .C.Ki/IC.L//:

b) Show that k˚.T/k D supi2I kT Jik for each T W C.K/! C.L/.

c) Show that T W C.K/ ! C.L/ is positive (i.e., maps positive functions to
positive functions) if and only if each T Ji, i 2 I, is positive.

d) Show that T T D T T' if and only if T T Ji D T Ji T'i for each i 2 I.



Chapter 5
Measure-Preserving Systems

. . . viele(n) Resultate(n) der reinen Mathematik, die, wenn auch anfangs unfruchtbar
scheinend, später doch der praktischen Wissenschaft immer nützlich werden, sobald sie
den Kreis unserer Denkformen und inneren Anschauung wesentlich erweitern . . . 1

Ludwig Boltzmann2

In the previous chapters we looked at topological dynamical systems, but now let
us turn to dynamical systems that preserve some probability measure on the state
space. We shall first motivate this change of perspective.

As explained in Chapter 1, “ergodic theory” as a mathematical discipline has its
roots in the development of statistical mechanics, in particular in the attempts of
Boltzmann, Maxwell, and others to derive the second law of thermodynamics from
mechanical principles. Central to this theory is the concept of (thermodynamical)
equilibrium. In topological dynamics, an equilibrium state is a state of rest of the
dynamical system itself. However, this is different in the case of a thermodynamical
equilibrium, which is an emergent (= macro) phenomenon, while on the microscopic
level the molecules show plenty of activity. What is at rest here is rather of a
statistical nature.

To clarify this, consider the example from Chapter 1, an ideal gas in a box.
What could “equilibrium” mean there? Now, since the internal (micro-)states of this
system are so manifold (their set is denoted by X) and the time scale of their changes
is so much smaller than the time scale of our observations, a measurement on the
gas has the character of a random experiment: The outcome appears to be random,
although the underlying dynamics is deterministic. To wait a moment with the next

1 . . . many results of pure mathematics, which though likewise apparently fruitless at first, later
become useful in practical science as soon as our mental horizon has been broadened . . .
2Vorlesungen über Gastheorie, I. Theil, Verlag von Johann Ambrosius Barth, Leipzig, 1896,
Vorwort � Translation by Stephen G. Brush, Lectures on Gas Theory, University of California
Press, 1964 � Foreword to Part I.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_5
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experiment is like shuffling a deck of cards again before drawing the next card; and
the “equilibrium” hypothesis—still intuitive—just means that the experiment can be
repeated at any time under the same “statistical conditions,” i.e., the distribution of
an observable f W X ! R (modeling our experiment and now viewed as a random
variable) does not change with time.

If ' W X ! X describes the change of the system in one unit of time and if
� denotes the (assumed) probability measure on X, then time-invariance of the
distribution of f simply means

�Œ f > ˛� D �Œ f ı ' > ˛� for all ˛ 2 R:

Having this for a sufficiently rich class of observables f is equivalent to

�.'�1A/ D �.A/

for all A � X in the underlying �-algebra. Thus we see how the “equilibrium
hypothesis” translates into the existence of a probability measure � which is
invariant under the dynamics '.

We now leave thermodynamics and intuitive reasoning and return to mathemat-
ics. The reader is assumed to have a background in abstract measure and integration
theory, but some definitions and results are collected in Appendix B.

A measurable space is a pair .X; ˙/, where X is a set and ˙ is a �-algebra of
subsets of X. Given measurable spaces .X; ˙/ and .Y; ˙ 0/, a mapping ' W X ! Y
is called measurable if

Œ ' 2 A � WD '�1.A/ D ˚x 2 X W '.x/ 2 A
� 2 ˙ .A 2 ˙ 0/:

Given a measure � on ˙ , its push-forward measure (or image measure) '�� is
defined by

.'��/.A/ WD �Œ ' 2 A � .A 2 ˙ 0/:

It is convenient to abbreviate a measure space .X; ˙; �/ simply with the single
letter X, i.e., X D .X; ˙; �/. However, if different measure spaces X;Y;Z; : : :
are involved, we shall occasionally use ˙X; ˙Y; ˙Z; : : : for the corresponding �-
algebras, and �X; �Y; �Z; : : : for the corresponding measures. For integration with
respect to the measure of X, we introduce the notation

Z

X
f WD

Z

X
f d� for f 2 L1.X/;

and

hf; giX WD
Z

X
f � g whenever f � g 2 L1.X/.
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When no confusion can arise we shall drop the subscript X, and write, e.g.,

Z
f g D hf; gi D hf g; 1i D hg; f i

whenever f � g 2 L1.X/.

Definition 5.1. Let X and Y be measure spaces. A measurable mapping ' W X ! Y
is called measure-preserving if '��X D �Y, i.e.,

�XŒ ' 2 A � D �Y.A/ .A 2 ˙Y/:

In the case when X D Y and ' is measure-preserving, � is called an invariant
measure for ' (or '-invariant, invariant under ').

Standard arguments from measure theory show that '��X D �Y follows if
�XŒ ' 2 A � D �Y.A/ for all A belonging to a generator E of the �-algebra ˙Y,
see Appendix B.1. Furthermore, ' is measure-preserving if and only if

Z

X
.f ı '/ D

Z

Y
f

for all f 2MC.Y/ (the positive measurable functions on Y).
We can now introduce our main object of interest.

Definition 5.2. A pair .XI'/ is called a measure-preserving dynamical system
(measure-preserving system or simply system for short) if X D .X; ˙; �/ is a
probability space, ' W X ! X is measurable and � is '-invariant.

We reserve the notion of measure-preserving system for probability spaces. How-
ever, some results remain true for general or at least for �-finite measure spaces.

5.1 Examples

As for topological systems (Example 2.2), there is of course a trivial system .XI'/
where X D f0g is a one-point space,˙X D f;;Xg,�X D ı0 is the unique probability
measure on ˙X, and ' D idX is the identity mapping. As in the topological case,
this system is abbreviated by f0g.

In the remainder of this section we shall list some less trivial instances of
measure-preserving systems.
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−→ −→

Fig. 5.1 The baker’s transformation deforms a square like a baker does with puff pastry when
kneading

1. The Baker’s Transformation

On X D Œ0; 1� � Œ0; 1� we define the map

' W X ! X; '.x; y/ WD
(
.2x; 1

2
y/ if 0 � x < 1

2
;

.2x � 1; 1
2
.yC 1// if 1

2
� x � 1:

The Lebesgue � measure is invariant under this transformation since

Z

Œ0;1�2
f .'.x; y// d.x; y/

D
Z 1

0

Z 1
2

0

f .2x; 1
2
y/ dx dyC

Z 1

0

Z 1

1
2

f .2x � 1; 1
2
.yC 1// dx dy

D
Z 1

2

0

Z 1

0

f .x; y/ dx dyC
Z 1

1
2

Z 1

0

f .x; y/ dx dy

D
Z 1

0

Z 1

0

f .x; y/ dx dy D
Z

Œ0;1�2
f .x; y/ d.x; y/

for every positive measurable function on Œ0; 1�2. The mapping ' is called the
baker’s transformation, a name explained by Figure 5.1.

2. The Doubling Map

Let X D Œ0; 1� and consider the doubling map ' W X ! X defined as

'.x/ WD 2x .mod 1/ D
(
2x if 0 � x < 1

2
;

2x � 1 if 1
2
� x � 1
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Fig. 5.2 A set A and its in-
verse image '�1.A/ D I1[I2
under the doubling map

I1 I2

A

(cf. also Exercise 2.12). The Lebesgue measure is invariant under ' since

Z 1

0

f .'.x// dx D
Z 1

2

0

f .2x/ dxC
Z 1

1
2

f .2x � 1/ dx

D 1
2

Z 1

0

f .x/ dxC 1
2

Z 1

0

f .x/ dx D
Z 1

0

f .x/ dx

for every positive measurable function f on Œ0; 1� (Figure 5.2).

3. The Tent Map

Let X D Œ0; 1� and consider the tent map ' W X ! X given by

'.x/ D
(
2x if 0 � x < 1

2
;

2 � 2x if 1
2
� x � 1

(cf. Exercise 2.13). It is Exercise 1 to show that ' preserves the Lebesgue measure
(Figure 5.3).

4. The Gauß Map

Consider X D Œ0; 1/ and define the Gauß map ' W X ! X by

'.x/ WD 1
x �

�
1
x

˘
.0 < x < 1/; '.0/ WD 0:
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Fig. 5.3 A set A and its
inverse image '�1.A/DI1[I2
under the tent map

I1 I2

A

Fig. 5.4 A set A and its in-
verse image '�1.A/ D I1[
I2 [ : : : under the Gauß map

I1I2· · ·In · · ·

A

It is easy to see that for x 2 X

'.x/ D 1
x � n if x 2 � 1

nC1 ;
1
n



; n 2 N;

and

'�1fyg D
n

1
yCn W n 2 N

o

for every y 2 Œ0; 1/. By Exercise 2, the measure

� WD dx

xC 1
on Œ0; 1/ is '-invariant. The Gauß map links ergodic theory with number theory
via continued fractions (Figure 5.4), see Silva (2008, p. 154) and Baker (1984,
pp. 44–46).
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5. Bernoulli Shifts

Fix k 2 N, consider the finite space L WD f0; : : : ; k � 1g and form the product space

X WD
Y

n2N0
L D ˚0; : : : ; k � 1�N0 D W C

k

(cf. Example 2.5) with the product �-algebra˙ WDNn�0 P.L/, see Appendix B.6.
On .X; ˙/ we consider the left shift � . To see that � is a measurable mapping, note
that the cylinder sets, i.e., sets of the form

A WD A0 � A1 � � � � � An�1 � L � L � : : : (5.1)

with n 2 N; A0; : : : ;An�1 � L, generate˙ . Then

Œ� 2 A� D L � A0 � A1 � � � � � An�1 � L � L � : : :

is again contained in ˙ .
There are many shift invariant probability measures on W C

k , and we just
construct one. (For different ones see the next section.) Fix a probability vector
p D .p0; : : : ; pk�1/t and consider the associated measure  DPk�1

jD0 pjıfjg on L. Let
˙ be the �-algebra generated by the cylinder sets, and let � WD N

n�0  be the
infinite product measure on˙ defined on cylinder sets A as in (5.1) by

�.A/ D .A0/.A1/ � � �.An�1/:

(By Theorem B.9 there is a unique measure � on ˙ satisfying this requirement.)
The product measure � is shift invariant, because for cylinder sets A as in (5.1) we
have

�Œ� 2 A� D .L/.A0/ : : : .An�1/ D .A0/ : : : .An�1/ D �.A/;

since .L/ D 1. This measure-preserving system .X; ˙; �I �/ is called the (one-
sided) Bernoulli shift and is denoted by B.p0; : : : ; pk�1/.

The previously described Bernoulli shifts are special cases of a more general
construction. Namely, fix a probability space Y D .Y; ˙Y; / and consider the
infinite product X WD Q

n�0 Y with the product measure �X WD N
n�0 �Y on the

product �-algebra ˙X WDNn�0 ˙Y. Then the shift � defined by

�.xn/n2N0 D .xnC1/n2N0

is measurable and �X is �-invariant. The system .XI �/ is called a Bernoulli shift
with state space Y.
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If one replaces N0 by Z in the construction of the product spaces above, one
obtains the notion of a two-sided Bernoulli shift, which, by abuse of notation, is
also denoted by B.p0; : : : ; pk�1/ or in the general situation by .XI �/.

6. Markov Shifts

We consider a generalization of Example 5. Take L D f0; : : : ; k � 1g, X D LN0 and
˙ as in Example 5. Let S WD .sij/

k�1
i;jD0 be a row stochastic k � k-matrix, i.e.,

sij � 0 .0 � i; j � k � 1/;
k�1X

jD0
sij D 1 .0 � i � k � 1/:

For every probability vector p WD .p0; : : : ; pk�1/t we construct the Markov measure
� on W C

k requiring that on the special cylinder sets

A WD fj0g � fj1g � � � � fjng �
Y

m>n

L .n � 1; j0; : : : ; jn 2 L/

one has

�.A/ WD pj0sj0j1 : : : sjn�1jn : (5.2)

It is standard measure theory based on Lemma B.5 to show that there exists a unique
measure � on .X; ˙/ satisfying this requirement. Now with A as above one has

�Œ� 2 A� D �
 

L � fj0g � fj1g � � � � fjng �
Y

m>n

L

!

D
k�1X

jD0
pjsjj0 : : : sjn�1jn :

Hence, the measure � is invariant under the left shift if and only if

pj0sj0j1 : : : sjn�1 jn D
k�1X

jD0
pjsjj0 : : : sjn�1jn

for all choices of parameters n � 0; 0 � j1; : : : jn < k. This is true if and only if it
holds for n D 0 (sum over the other indices!), i.e., if and only if

pl D
k�1X

jD0
pjsjl:
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This means that ptS D pt, i.e., p is a fixed vector of St. Such a fixed probability
vector indeed always exists by Perron’s theorem. (See Exercise 9 and Theorem 8.12
for proofs of Perron’s theorem.)

If S is a row-stochastic k � k-matrix, p is a fixed probability vector for St and
� DW �.S; p/ is the unique probability measure on W C

k with (5.2), then the measure-
preserving system .W C

k ; ˙; �.P; p/I �/ is called the Markov shift associated with
.S; p/, and S is called its transition matrix. If S is the matrix all of whose rows are
equal to pt, then � is just the product measure and the Markov system is the same
as the Bernoulli system B.p0; : : : ; pk�1/.

As in the case of Bernoulli shifts, Markov shifts can be generalized to arbitrary
probability spaces. One needs the notion of a probability kernel and the Ionescu
Tulcea theorem (see, e.g., Ethier and Kurtz (1986, p. 504)).

7. Products and Skew Products

Let .XI'/ be a measure-preserving system and let Y be a probability space.
Furthermore, let

˚ W X � Y ! Y

be a measurable map such that ˚.x; �/ preserves �Y for all x 2 X. Define

 W X � Y ! X � Y;  .x; y/ WD .'.x/; ˚.x; y//:

Then the product measure �X ˝�Y is  -invariant. Hence .X � Y; ˙X ˝˙Y; �X ˝
�YI / is a measure-preserving system, called the skew product of .XI'/ along˚ .

In the special case that ˚.x; �/ D  does not depend on x 2 X, the skew product
is called the product of the measure-preserving systems .XI'/ and .YI / denoted
by .X˝ YI' ˝  /.

5.2 Measures on Compact Spaces

This section connects our discussion of topological dynamics with invariant mea-
sures. For details on measure theory the interested reader may consult Bogachev
(2007), Bauer (1981), Billingsley (1979) or any other standard textbook.

Let K be a compact space. There are two natural �-algebras on K: the Borel
algebra Bo.K/, generated by the family of open sets, and the Baire algebra
Ba.K/, the smallest �-algebra that makes all continuous functions measurable.
Equivalently,
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Ba.K/ D �˚Œ f > 0 � W 0 � f 2 C.K/
�
:

Clearly Ba.K/ � Bo.K/, and by the proof of Lemma 4.12 the open Baire sets form a
base for the topology of K. Exercise 8 shows that Ba.K/ is generated by the compact
Gı-subsets of K. If K is metrizable, then Ba.K/ and Bo.K/ coincide, but in general
this is false, see Exercise 10 and Bogachev (2007, II, 7.1.3).

A (complex) measure � on Ba.K/ (resp. Bo.K/) is called a Baire measure (resp.
Borel measure).

Lemma 5.3. Every finite positive Baire measure is regular in the sense that for
every B 2 Ba.K/ one has

�.B/ D sup
˚
�.A/ W A 2 Ba.K/; A compact; A � B

�

D inf
˚
�.O/ W O 2 Ba.K/; O open; B � O

�
:

Proof. This is a standard argument involving Dynkin systems (Theorem B.1); for a
different proof, see Bogachev (2007, II, 7.1.8). ut

Combining the regularity with Urysohn’s lemma one can show that for a finite
positive Baire measure �, C.K/ is dense in Lp.K;Ba.K/; �/, 1 � p < 1 (see also
Lemma E.3).

A finite positive Borel measure is called regular if for every B 2 Bo.K/

�.B/ D sup
˚
�.A/ W A compact; A � B

�

D inf
˚
�.O/ W O open; B � O

�
:

To clarify the connection between Baire and regular Borel measures we state the
following result.

Proposition 5.4. If �;  are regular finite positive Borel measures on K, then to
each Borel set A 2 Bo.K/ there is a Baire set B 2 Ba.K/ such that

�.A4B/ D 0 D .A4B/:

Proof. Let A � K be a Borel set. By regularity, there are open sets On; O0
n, closed

sets Ln; L0
n such that Ln; L0

n � A � On; O0
n and �.On n Ln/; .O0

n n L0
n/ ! 0.

By passing to On \ O0
n and Ln [ L0

n we may suppose that On D O0
n and Ln D L0

n.
Moreover, by passing to finite unions of the Ln’s and finite intersections of the On’s
we may suppose that

Ln � LnC1 � A � OnC1 � On

for all n 2 N. By Urysohn’s lemma we can find continuous functions fn 2 C.K/
with 1Ln � fn � 1On . Now define
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B WD
1[

kD1

\

n�k

Œ fn > 0 � ;

which is clearly a Baire set. By construction, Ln � B � On. This yields A4B �
On n Ln for all n 2 N, whence �.A4B/ D 0 D .A4B/. ut

Proposition 5.4 shows that a regular Borel measure is completely determined by
its restriction to the Baire algebra. Moreover, as soon as one disregards null sets, the
two concepts become interchangeable, see also Remark 5.8 below.

Let us denote the linear space of finite complex Baire measures on K by M.K/.
It is a Banach space with respect to the total variation norm k�kM WD j�j.K/ (see
Appendix B.9). Every � 2 M.K/ defines a linear functional on C.K/ via

hf;�i WD
Z

K
f d� .f 2 C.K//:

Since jhf;�ij � RK jf j d j�j � kf k1 k�kM, we have h � ; �i 2 C.K/0, the Banach
space dual of C.K/. The following lemma shows in particular that the mapping
� 7! h�; �i is injective.

Lemma 5.5. If �;  2 M.K/ with
R

K f d� D R
K f d for all f 2 C.K/, then

� D .

Proof. By passing to�� we may suppose that  D 0. By Exercise 8.a and standard
measure theory it suffices to prove that �.A/ D 0 for each compact Gı-subset A of
K. Given such a set, one can find open subsets On of K such that OnC1 � On and
A D T

n2N On. By Urysohn’s lemma there are continuous functions fn 2 C.K/
such that 1A � fn � 1On . Then fn ! 1A pointwise and jfnj � 1. It follows that
�.A/ D limn!1 hfn; �i D 0, by the dominated convergence theorem. ut

Note that, using the same approximation technique as in this proof, one can show
that for a Baire measure � 2 M.K/

� � 0 ” hf;�i � 0 for all 0 � f 2 C.K/:

Lemma 5.5 has an important consequence.

Proposition 5.6. Let K, L be compact spaces, let ' W K ! L be Baire measurable,
and let �,  be finite positive Baire measures on K, L, respectively. If

Z

K
.f ı '/ d� D

Z

L
f d for all f 2 C.L/;

then  D '��.

By this proposition, if ' W K ! K is Baire measurable, then a probability measure
� on K is '-invariant if and only if hf ı ';�i D hf;�i for all f 2 C.K/.
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We have seen that every Baire measure on K gives rise to a bounded linear
functional on C.K/ by integration. The following important theorem states the
converse.

Theorem 5.7 (Riesz’ Representation Theorem). Let K be a compact space. Then
the mapping

M.K/! C.K/0; � 7! h � ; �i

is an isometric isomorphism.

For the convenience of the reader, we have included a proof in Appendix E; see also
Rudin (1987, 2.14) or Lang (1993, IX.2). Justified by the Riesz theorem, we shall
identify M.K/ D C.K/0 and often write � in place of h � ; �i.
Remark 5.8. The common form of Riesz’ theorem, for instance in Rudin (1987),
involves regular Borel measures instead of Baire measures. This implies in par-
ticular that each finite positive Baire measure has a unique extension to a regular
Borel measure. It is sometimes convenient to use this extension, and we shall do it
without further reference. However, it is advantageous to work with Baire measures
in general since regularity is automatic and the Baire algebra behaves well when
one forms infinite products (see Exercise 8). From the functional analytic point of
view there is anyway no difference between a Baire measure and its regular Borel
extension, since the associated Lp-spaces coincide by Proposition 5.4. For a positive
Baire (regular Borel) measure � on K we therefore abbreviate

Lp.K; �/ WD Lp.K;Ba.K/; �/ .1 � p � 1/

and note that in place of Ba.K/ we may write Bo.K/ in this definition. Moreover, as
already noted, C.K/ is dense in Lp.K; �/ for 1 � p <1.

For each 0 � � 2 M.K/ it is easily seen that

I� WD
n
f 2 C.K/ W kf kL1.�/ D

Z

K
jf j d� D 0

o

is a closed algebra ideal of C.K/. It is the kernel of the canonical mapping

C.K/! L1.K; �/

sending f 2 C.K/ to its equivalence class modulo �-almost everywhere equality.
By Theorem 4.8 there is a closed set M � K such that I D IM . The set M is called
the (topological) support of � and is denoted by M DW supp.�/. Here is a measure
theoretic description. (See also Exercise 12.)
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Proposition 5.9. Let 0 � � 2 M.K/. Then

supp.�/ D ˚x 2 K W �.U/ > 0 for each open neighborhood U of x
�
: (5.3)

Proof. Let M WD supp.�/ and let L denote the right-hand side of (5.3). Let x 2 M
and U be an open neighborhood of x. By Urysohn’s lemma there is f 2 C.K/ such
that x 2 Œ f 6D 0 � � U. Since x 2 M, f … IM and hence

R
K jf j d� 6D 0. It follows

that �.U/ > 0 and, consequently, that x 2 L.
Conversely, suppose that x … M. Then by Urysohn’s lemma there is f 2 C.K/

such that x 2 Œ f 6D 0 � and f D 0 on M. Hence, f 2 IM and therefore
R

K jf j d� D
0. It follows that �Œ f 6D 0 � D 0, and hence x … L. ut

A positive measure � 2 M.K/ has full support or is called strictly positive if
supp.�/ D K, or equivalently, if the canonical map C.K/! L1.K; �/ is isometric
(see Exercise 11).

For a topological system .KI'/, each '-invariant probability Baire measure
� 2 M.K/ gives rise to a measure-preserving system .K;Ba.K/; �I'/, which for
convenience we abbreviate by

.K; �I'/:

The following classical theorem says that such measures can always be found.

Theorem 5.10 (Krylov–Bogoljubov). Let .KI'/ be a topological system. Then
there is at least one '-invariant Baire probability measure on K.

Proof. We postpone the proof of this theorem to Chapter 10, see Theorem 10.2. Note
however that under the identification M.K/ D C.K/0 from above, the '-invariance
of� just means that T 0

'.�/ D �, i.e.,� is a fixed point of the adjoint of the Koopman
operator T' on C.K/. Hence, fixed point theorems or similar techniques can be
applied. ut

The following example shows that there may be many different invariant
Baire probability measures, and hence many different measure-preserving systems
.K; �I'/ associated with a topological system .KI'/.
Example 5.11. Consider the rotation topological system .TI a/ for some a 2 T.
Obviously, the normalized arc-length measure is invariant. If a is an nth root of
unity, then the convex combination of point measures

� WD 1

n

nX

jD1
ıaj

is another invariant probability measure, see also Exercise 5.
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Example 5.12. Fix k 2 N, consider the shift .W C
k I �/. Then each of the Markov

measures in Section 5.1 is an invariant measure for � on Ba.W C
k / (by Exercise 8

the product �-algebra is ˙ D Ba.W C
k /).

Topological dynamical systems with unique invariant probability measures will be
studied in Section 10.2.

5.3 Haar Measures and Rotations

Let G be a compact topological group. A nontrivial finite Baire measure on G that
is invariant under all left rotations g 7! a � g, a 2 G, is called a Haar measure.

Any Haar measure on a compact group is automatically right invariant, i.e.,
invariant under right rotations, and inversion invariant, i.e., invariant under the
inversion mapping g 7! g�1 of the group. Moreover, it has full support (cf. Proposi-
tion 5.9 and the definition immediately thereafter). Finally, a Haar measure is unique
up to a multiplicative constant. (We accept these facts for the moment without proof
and return to them in Chapter 14, see Theorem 14.2.)

It is a fundamental fact that on each compact group G there is a Haar measure,
and hence a unique Haar probability measure. We denote this measure by mG

(or simply by m when there is no danger of confusion), and sometimes speak of
it as the Haar measure on G.

A proof for the existence of the Haar measure can be found in Section 14.1
for compact Abelian and in Appendix G.4 for general compact groups. In many
concrete cases, however, one need not rely on this abstract existence result, since
the Haar measure can be described explicitly.

Example 5.13. 1) The Haar measure dz on T is given by

Z

T

f .z/ dz WD
Z 1

0

f .e2 it/ dt

for integrable f W T! C.

2) The Haar measure on a finite discrete group is the counting measure. In
particular, the Haar probability measure on the cyclic group Zn D Z=nZ D
f0; 1; : : : ; n � 1g is given by

Z

Zn

f .g/ dg D 1

n

n�1X

jD0
f .j/

for every f W Zn ! C.

3) For the Haar measure on the dyadic integers A2 see Exercise 6.



5.3 Haar Measures and Rotations 85

If G; H are compact groups with Haar measures �; , respectively, then the
product measure � ˝  is a Haar measure on the product group G � H. The same
holds for infinite products: Let .Gn/n2N be a family of compact groups, and let �n

denote the unique Haar probability measure on Gn, n 2 N. Then the product measureN
n �n is the unique Haar probability measure on the product group

Q
n Gn.

With the Haar measure at hand, we can prolong the list of examples from the
previous section.

Example 5.14 (Rotation Systems). Let G be a compact group and a 2 G. Recall
that the rotation system .GI a/ is the topological system with state space G and
dynamics g 7! ag. Since, by definition, the Haar measure m is invariant under
left rotations, we obtain a measure-preserving system .G;mI a/, also called (group)
rotation system.

Analogously, since the Haar measure is also right invariant, each topological
right rotation system .GI �a/ gives rise to a measure-preserving system .G;mI �a/

with respect to the Haar measure.
The trivial system f0g is an (of course trivial) example of a group rotation system.

Example 5.15 (Skew Rotation Systems). Let G be a compact group with Haar
measure m, and a 2 G. Then the skew rotation map

 a W G2 ! G2;  .x; y/ D .ax; xy/;

cf. Example 2.22, preserves the product measure m˝m. The system .G2;m˝mI a/

is called the skew rotation with a 2 G. (This is a special case of Example 7 from
Section 5.1 above.)

A special instance of a skew rotation system is the skew shift .Œ0; 1/2; �I ˛/ for
˛ 2 Œ0; 1/ and

 a.x; y/ D .xC ˛ .mod 1/ ; xC y .mod 1/ /;

and � is the two-dimensional Lebesgue measure. Cf. Example 2.23.

Let G be a compact group with Haar probability measure m, and let 	 be a closed
subgroup of G. Then the quotient map

q W G! G=	; g 7! g	

maps m to a probability measure q�m on the homogeneous space G=	 . By abuse of
language, we write again m instead of q�m and call it the Haar measure on G=	 .

It is easy to see that m is invariant under all rotations g	 7! ag	 , see
Exercise 13. (Moreover, one can prove that m is the unique probability measure
on G=	 with this property, see Theorem 5.18.) As a result, for a 2 G one can
pass from the topological homogeneous system .G=	 I a/ to the measure-preserving
homogeneous system .G=	;mI a/.
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Finally, let us consider a general homogeneous space G=	 as in Example 2.11,
i.e., G is a topological group and 	 is a closed and cocompact subgroup of
G. By virtue of the Krylov–Bogoljubov theorem, for any given element a 2 G
the topological homogeneous system .G=HI a/ admits (usually many) invariant
measures. However, like in the situation above, it is of interest whether a probability
measure can be found that is invariant under every rotation by elements of G. We
first look at the special case of the Heisenberg system from Example 2.13.

Example 5.16 (Heisenberg System). Consider the Heisenberg group G. When we
identify elements Œx; y; z� 2 G with vectors .x; y; z/t 2 R

3 then left multiplication by
Œ˛; ˇ; 
� 2 G corresponds to the affine mapping

0

@
x
y
z

1

A 7!
0

@
˛ C x
ˇ C y


 C zC ˛y

1

A D
0

@
1 0 0

0 1 0

0 ˛ 1

1

A

0

@
x
y
z

1

AC
0

@
˛

ˇ




1

A :

Since the determinant of the involved matrix is one, the mapping preserves the three-
dimensional Lebesgue measure � on R

3. (Similarly, � is also invariant under right
rotations.)

Let 	 be the discrete subgroup of G whose elements have integer entries, let
q W G ! G=	 be the natural quotient map, and let A; B � R

3 be two (Borel)
measurable complete sets of representatives of the left cosets in G=	 . (For instance,
A D Œ0; 1/3 as in Example 2.13.) We claim that for every Borel set M � G=	

�
�
A \ q�1.M/

� D ��B \ q�1.M/
�
:

Indeed, by the invariance of � and since q�1.M/h D q�1.M/ for all h 2 	

�
�
A \ q�1.M/

� D ��A \ q�1.M/ \R
3
� D �

�
A \ q�1.M/ \

[

h2	
Bh
�

D
X

h2	
�
�
A \ q�1.M/ \ Bh

� D
X

h2	
�
�
Ah�1 \ q�1.M/h�1 \ B

�

D
X

h2	
�
�
Ah�1 \ q�1.M/ \ B

� D �
�[

h2	
Ah�1 \ q�1.M/ \ B

�

D ��q�1.M/ \ B
�
:

Now keep A fixed, e.g., A D Œ0; 1/3. For g 2 G the set g�1A is again a measurable
complete set of representatives. Hence, by the invariance of � and by what was
proved above,

�
�
A \ q�1.gM/

� D ��A \ gq�1.M/
� D ��g�1A \ q�1.M/

� D ��A \ q�1.M/
�
:
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It follows that

m
�
M
� WD ��A \ q�1.M/

�
.M � G=	 Borel/

is a probability measure on H D G=	 , invariant under all left rotations by elements
of G. This measure is again called the Haar measure. For any a 2 G the measure-
preserving system .H;mI a/ is a measure-preserving homogeneous system, called a
Heisenberg system.

The previous example can be put into a more abstract perspective.

Example 5.17 (Homogeneous Systems). Let G be a locally compact group, and
let 	 be a discrete and cocompact subgroup of G. Then there is a unique Baire
probability measure m on G=	 , called the Haar measure, which is invariant under
all left rotations g	 7! ag	 by elements a 2 G. As a consequence, each a 2 G
gives rise to a measure-preserving homogeneous system .G=	;mI a/.

We shall not need the abstract result stated in Example 5.17 in the rest of this
book. However, for the interested reader, a proof (even of a slightly more general
result) is included in the following supplement.

Supplement: Haar Measures on Homogeneous Spaces

Let G be a locally compact topological group and let 	 be a closed compact
subgroup of G. Any nontrivial positive Baire measure on the homogeneous space
G=	 that is invariant under all (necessarily left) rotations by elements of G is called
a Haar measure on G=	 . Under certain conditions existence and uniqueness of
a Haar measure can be guaranteed. In order to establish this, we start with listing
some facts about Haar integrals on locally compact groups. For proofs we refer to
Deitmar and Echterhoff (2009, Ch. 1), Folland (1995, Ch. 2), Nachbin (1976, Ch. II)
or Hewitt and Ross (1979, §IV.15).

Given a locally compact (Hausdorff) topological space X, we denote by Cc.X/
the space of all continuous functions f on X with compact support supp.f / WD
clfx W f .x/ 6D 0g . To see that the space Cc.X/ is nontrivial, we note that X can be
regarded as an open subset of a compact space and employ Urysohn’s lemma (see
Exercise 14). The Riesz representation theorem asserts that every positive linear
functional on Cc.X/ (i.e., a functional mapping positive functions to Œ0;1/, cf.
Appendix E) can be represented as integration against a positive Borel measure,
see Rudin (1987, Thm. 2.14) or Lang (1993, Thms. 2.3 and 2.7).

Let G be a locally compact group. For a 2 G we denote by La the Koopman
operator of the corresponding left rotation, i.e., .Laf /.x/ D f .ax/ for x 2 G and f W
G ! C. Clearly Laf 2 Cc.G/ whenever f 2 Cc.G/. A (left) Haar integral on G
is any nonzero linear functional I W Cc.G/! C which is positive and left invariant,
i.e., satisfies I.Laf / D I.f / for all f 2 Cc.G/ and a 2 G. It is straightforward
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to prove that each Haar integral must be strictly positive, i.e., one has I.f / > 0

whenever 0 � f 2 Cc.G/ and f ¤ 0 (Exercise 15). It is a fundamental fact, first
established in full generality by Weil (1940), that each locally compact group admits
a Haar integral.

For the rest of this section let us fix for each occurring locally compact group G
one Haar integral, say IG, together with a representing Borel measure mG, called a
(left) Haar measure. (We do not need more information since in the following we
shall integrate exclusively over continuous functions with compact support.) Any
other Haar integral is of the form c � IG for some real number c > 0. It follows that
for given a 2 G there is a unique number�G.a/ > 0 such that

�G.a/
Z

G
f .xa/ dmG.x/ D

Z

G
f .x/ dmG.x/ D

Z

G
f .ax/ dmG.x/

for all f 2 Cc.G/. The function �G W G! .0;1/ is called the modular function
of G. It is a continuous homomorphism and independent of the chosen left Haar
measure. The modular function links mG with the associated right Haar measure via
the formula

Z

G
f .x�1/ dmG.x/ D

Z

G
f .x/�G.x

�1/ dmG.x/ .f 2 Cc.G//:

A locally compact group is called unimodular if�G D 1, i.e., any left Haar integral
is also right invariant. Examples for unimodular groups are: compact groups (as
already mentioned, see Theorem 14.2), discrete groups (the counting measure is
left and right invariant) and Abelian groups (trivial). Less obviously, also nilpotent
groups are unimodular (Nachbin 1976, Ch. 2, Prop. 25).

Now, we can state the main result of this supplement. Note that since a discrete
group is unimodular, the next theorem implies the result stated in Example 5.17.

Theorem 5.18. Let G be a locally compact group, and let 	 be an unimodular,
closed and cocompact subgroup of G. Then G is unimodular and there is a unique
Baire probability measure m on G=	 that is invariant under all rotations by
elements of G.

For the proof we need some auxiliary results. Integration against the measures
mG and m	 on G and 	 is denoted by dx and dy, respectively. The modular
function on G is abbreviated by �. We identify continuous functions on G=	
with continuous functions on G that are constant on each coset g	 , g 2 G (cf.
Appendix A.4). For f 2 Cc.G/ define ˚f 2 C.G=	 / by

.˚f /.x/ WD
Z

	

f .xy/ dy .x 2 G/:

Then La˚f D ˚Laf for each a 2 G and ˚.hf / D h � ˚f for h 2 C.G=	 /.
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Lemma 5.19. In the situation described above, the following assertions hold:

a) ˚ W Cc.G/ ! C.G=	 / is linear and surjective. More precisely, there is a
positive linear operator � W C.G=	 / ! Cc.G/ (i.e., one that maps positive
functions to positive functions) such that ˚ ı � D I.

b)
Z

G
g .˚f / dmG D

Z

G
˚.�g/��1f dmG for all f; g 2 Cc.G/.

c) If f 2 Cc.G/ with ˚f D 0 then
R

G�
�1f dmG D 0.

Proof. a) Linearity is clear. By Exercise 2.16 there is a compact subset K � G
with K	 D G. By Exercise 14.b we can find a function 0 � h 2 Cc.G/ with
K � Œ h D 1 �. Then .˚h/.x/ > 0 for all x 2 G. (Indeed, given x 2 G there is y 2 	
with xy 2 K, whence h.x�/j	 6D 0.) Next, let e WD h=˚h. Then 0 � e 2 Cc.G/
satisfies ˚e D 1. Let � W C.G=	 / ! Cc.G/ be defined by �g WD eg. Then
˚�g D ˚.eg/ D .˚e/g D g for all g 2 C.G=	 /, and � is certainly positive.

For the proof of b) we compute

Z

G
g.x/

Z

	

f .xy/ dy dx D
Z

G
g.x/

Z

	

f .xy�1/ dy dx D
Z

	

�.y/
Z

G
g.xy/f .x/ dx dy

D
Z

G

h Z

	

g.xy/�.xy/ dy
i
�.x/�1f .x/ dx:

c) follows from b) with g WD ��1�1. ut

Proof of Theorem 5.18. We first show that G is unimodular. Let e WD �1 2 Cc.G/.
Then ˚e D 1 and hence, for each a 2 G, ˚.e � Lae/ D ˚e � La˚e D 1 � 1 D 0.
By Lemma 5.19.c,

0 D
Z

G
��1.e � Lae/ dmG D

Z

G
��1e dmG ��.a/

Z

G
��1e dmG;

and consequently�.a/ D 1 for all a 2 G.
For uniqueness, let m be any G-invariant probability measure on G=	 . Then ,

defined by

hf; i WD h˚f;mi D
Z

G=	
˚f dm;

is a positive left invariant functional with he; i D 1. By uniqueness of the left Haar
integral,  D he;mGi�1 mG. Since ˚ is surjective by Lemma 5.19.b, it follows that
m is uniquely determined, and in fact must be given by

hh;mi D h�h;mGi
he;mGi .h 2 C.G=	 //:
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For the existence, we take this formula as a definition of m as a functional on
C.G=	 /. Then m � 0 and h1;mi D he;mGi � he;mGi�1 D 1. To see that m is
invariant under left rotations, fix a 2 G. Then

˚.�.Lah/� La�h/ D Lah � La˚�h D Lah � Lah D 0:

By Lemma 5.19.c, �.Lah/� La� has mG-integral zero, which means that

hLah;mi D h�Lah;mGi
he;mGi D hLa�h;mGi

he;mGi D h�h;mGi
he;mGi D hh;mi : ut

Remarks 5.20. 1) It follows from the proof that—with the right choice of the
Haar integral on 	—one has Weil’s formula

Z

G
f dmG D

Z

G=	

Z

	

f .xy/ dm	 .y/ dm.x	 / .f 2 Cc.G//:

2) The proof of Theorem 5.18 follows the lines of the proof of the classical
theorem of Weil, see Deitmar and Echterhoff (2009, Thm. 1.5.2) or Nachbin
(1976, Ch. III, Thm. 1). That result states that for a locally compact group
G and a closed subgroup 	 a G-invariant integral on Cc.G=	 / exists if and
only if �	 is the restriction of �G to 	 (and in this case the G-invariant
integral is unique up to a constant).
Therefore, Theorem 5.18 would be a corollary of Weil’s theorem if one could
prove the unimodularity of G independently. It seems, however, that the proof
of the unimodularity of G requires essentially the same techniques as the
proof of Weil’s theorem.

Exercises

1. Show that the Lebesgue measure is invariant under the tent map (Example 5.1.3).
Consider the continuous mapping ' W Œ0; 1�! Œ0; 1�, '.x/ WD 4x.1 � x/. Show that
the (finite!) measure � WD .4x.1 � x//�1=2dx on Œ0; 1� is invariant under '.

2. Consider the Gauß map (Example 5.1.4)

'.x/ D 1
x �

�
1
x

˘
.0 < x < 1/; '.0/ WD 0;

on Œ0; 1/ and show that the measure � WD dx
1Cx is invariant under '.

3 (Boole Transformation). Show that the Lebesgue measure on R is invariant
under the map ' W R ! R, '.x/ D x � 1

x . This map is called the Boole
transformation. Define the modified Boole transformation  W R! R by
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 .x/ WD 1
2
'.x/ D 1

2

�
x � 1

x

�
.x 6D 0/:

Show that the (finite!) measure � WD dx
1Cx2

is invariant under  .

4. Consider the locally compact Abelian group G WD .0;1/ with respect to
multiplication. Show that� WD dx

x is invariant with respect to all mappings x 7! a �x,
a > 0. (Hence, � is “the” Haar measure on G.) Find an isomorphism ˚ W R ! G
that is also a homeomorphism (on R we consider the additive structure).

5. Describe all invariant measures for .TI a/ where a 2 T is a root of unity.

6. Consider the compact Abelian group A2 of dyadic integers (Example 2.10)
together with the map

� W f0; 1gN0 ! A2

described in Exercise 2.10. Furthermore, let � be the Bernoulli . 1
2
; 1
2
/-measure

on K WD f0; 1gN0. Show that the push-forward measure m WD ��� is the Haar
probability measure on A2. (Hint: For n 2 N consider the projection

�n W A2 ! Z2n

onto the nth coordinate. This is a homomorphism, and let Hn WD ker.�n/ be its
kernel. Show that m.aCHn/ D 1

2n for every a 2 A2.)

7. Let G be a compact Abelian group, and fix k 2 N. Consider the map 'k W G! G,
'k.g/ D gk, g 2 G. This is a continuous group homomorphism since G is Abelian.
Show that if 'k is surjective, then the Haar measure is invariant under 'k. (Hint: Use
the uniqueness of the Haar measure.)

8. Let K be a compact space with its Baire algebra Ba.K/.

a) Show that Ba.K/ is generated by the compact Gı-sets.

b) Show that Ba.K/ D Bo.K/ if K is metrizable.

c) Show that if A � O with A � K closed and O � K open, there exists
A � A0 � O0 � O with A0; O0 2 Ba.K/, A0 closed and O0 open.

d) Let .Kn/n2N be a sequence of nonempty compact spaces and let K WD Qn Kn

be their product space. Show that Ba.K/ DNn Ba.Kn/.

9 (Perron’s Theorem). Let A be a column-stochastic d � d-matrix, i.e., all aij � 0
and

Pd
iD1 aij D 1 for all j D 1; : : : ; d. In this exercise we show Perron’s theorem:

There is a nonzero vector p � 0 such that Ap D p.

a) Let 1 D .1; 1; � � � ; 1/t and show that 1tA D 1. Conclude that there is a vector
0 6D v 2 R

d such that Av D v.

b) Show that kAxk1 � kxk1, where kxk1 WD
Pd

jD1
ˇ
ˇxj

ˇ
ˇ for x 2 R

d.
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c) Show that for � > 1 the matrix �I � A is invertible and

.� � A/�1x D
1X

nD0

Anx

�nC1 .x 2 R
d/:

d) Let y WD jvj D .jv1j ; : : : ; jvdj/, where v is the vector from a). Employing c),
show that

kvk1
� � 1 �

�
�.� � A/�1y

�
�
1

.� > 1/:

e) Fix a sequence �n & 1 and consider

yn WD
�
�.�n � A/�1y

�
��1
1
.�n � A/�1y:

By compactness one may suppose that yn ! p as n!1. Show that p � 0,
kpk1 D 1 and Ap D p.

10. Let X be an uncountable set, take p … X and let X� WD X[fpg. A set O � X� is
defined to be open if O � X, or if p 2 O and X nO is finite (cf. Exercise 14 below).

a) Show that this defines a compact topology on X�.

b) Show that if f 2 C.X�/, then f .x/ D f .p/ for all but countably many x 2 X.

c) Prove that the singleton fpg is a Borel, but not a Baire set in X�.

11. Let K be a compact space and 0 � � 2 M.K/. Show that the following asser-
tions are equivalent:

a) supp.�/ D K.

b)
R

K jf j d� D 0 implies that f D 0 for every f 2 C.K/.

c) kf kL1.K;�/ D kf k1 for every f 2 C.K/.

12. Let K be a compact space, and let � 2 M.K/ be a regular Borel probability
measure on K. Show that

supp.�/ D
\˚

A W A � K closed, �.A/ D 1�

and that �.supp.�// D 1. So supp.�/ is the smallest closed subset of K with full
measure.

13. Let ˚ W .KI'/ ! .LI / be a homomorphism of topological dynamical
systems. Suppose that � is a '-invariant Baire probability measure on K. Show
that  WD ˚�� is a  -invariant Baire probability measure on L. Show that if � has
full support and ˚ is a factor map, then  has full support, too.



Exercises 93

14 (One-Point Compactification). Let X be a locally compact space with topology
� , let p … X and define

X� WD X [ ˚p�; �� D � [ ˚O [ fpg W O 2 �; X n O compact
�
:

a) Show that �� is a compact topology on X� and .X; �/ is a dense open subset
of .X�; ��/.

b) Let K � O � X with K compact and O open. Show that there is f 2
Cc.X/ with 0 � f � 1, f D 1 on K and supp.f / � O. (Hint: By local
compactness find U � X open and relatively compact with K � U � U �
O. Then apply Urysohn’s Lemma 4.2 to K and .X nU/[ fpg in X�.)

The topological space .X�; ��/ is called the one-point compactification of .X; �/.

15. Let G be a locally compact group, and let I W Cc.G/! C be a left Haar integral,
i.e., I satisfies

1. I 6D 0.

2. If � 0 for each 0 � f 2 Cc.G/.

3. I.Laf / D If for each f 2 Cc.G/ and a 2 G.

Show that I is strictly positive, i.e., one has If > 0 whenever 0 � f 2 Cc.G/ and
f ¤ 0.





Chapter 6
Recurrence and Ergodicity

Siehe, wir wissen, was Du lehrst: dass alle Dinge ewig wiederkehren und wir selber mit,
und dass wir schon ewige Male dagewesen sind, und alle Dinge mit uns.1

Friedrich Nietzsche2

In the previous chapter we have introduced the notion of a measure-preserving
system and seen a number of examples. We now begin with their systematic study.
In particular we shall define invertibility of a measure-preserving system, prove the
classical recurrence theorem of Poincaré, and introduce the central notion of an
ergodic system.

6.1 The Measure Algebra and Invertible Systems

In a measure space .X; ˙; �/ we consider null-sets to be negligible. This means
that we identify sets A; B 2 ˙ that are (�-)essentially equal, i.e., which satisfy
�.A4B/ D 0 (here A4B D .A n B/ [ .B n A/ is the symmetric difference of A and
B). To be more precise, we define the relation� on˙ by

A � B
Def.” �.A4B/ D 0 ” 1A D 1B �-almost everywhere:

Then� is an equivalence relation on˙ and the set˙.X/ WD ˙=� of equivalence
classes is called the corresponding measure algebra. For a set A 2 ˙ let us

1Behold, we know what thou teachest: that all things eternally return, and ourselves with them, and
that we have already existed times without number, and all things with us.
2Also sprach Zarathustra, Teil III, Der Genesende. From: Werke II, hrsg. v. Karl Schlechta,
Darmstadt, 1997 � Translation from: Thus Spake Zarathustra, Part III, The Convalescent, translated
by Thomas Common, Wilder Publications, 2008.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_6
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temporarily write ŒA � for its equivalence class. It is an easy but tedious exercise
to show that the set theoretic relations and (countable) operations on ˙ induce
corresponding operations on the measure algebra via

ŒA �� ŒB � Def.” �X.AnB/ D 0; ŒA �\ ŒB � WD ŒA\B � ; ŒA �[ ŒB � WD ŒA[B �

and so on. Moreover, the measure � induces a (�-additive) map

˙.X/! Œ0;1�; ŒA � 7! �.A/:

As for equivalence classes of functions, we normally do not distinguish notationally
between a set A in ˙ and its equivalence class ŒA � in ˙.X/.

If the measure is finite, the measure algebra can be turned into a complete metric
space with metric given by

dX.A;B/ WD �.A4B/ D k1A � 1Bk1 D
Z

X
j1A � 1Bj .A; B 2 ˙.X//:

The set theoretic operations as well as the measure � itself are continuous with
respect to this metric. (See also Exercise 1 and Appendix B.) Frequently, the
�-algebra ˙ is generated by an algebra E, i.e., ˙ D �.E/ (cf. Appendix B.1).
This property has an important topological implication.

Lemma 6.1 (Approximation). Let .X; ˙; �/ be a finite measure space and let E �
˙ be an algebra of subsets such that �.E/ D ˙ . Then E is dense in the measure
algebra, i.e., for every A 2 ˙ and " > 0 there is E 2 E such that dX.A;E/ < ".

Proof. This is just Lemma B.17 from Appendix B. Its proof is standard measure
theory using Dynkin systems. ut

Suppose that X D .X; ˙X; �X/ and Y D .Y; ˙Y; �Y/ are measure spaces and
' W X ! Y is a measurable mapping, and consider the push-forward measure '��X

on Y. If ' preserves null-sets, i.e., if

�Y.A/ D 0 H) �X.'
�1A/ D .'��X/.A/ D 0 for all A 2 ˙Y;

then the mapping ' induces a mapping '� between the measure algebras defined by

'� W ˙.Y/! ˙.X/; ŒA � 7! 	
'�1A



:

Note that '� commutes with all the set theoretic operations, i.e.,

'�.A \ B/ D '�A \ '�B; '�[

n

An D
[

n

'�An etc.
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All this is, in particular, applicable when ' is measure-preserving. In this case and
when both�X and �Y are probability measures, the induced mapping '� W ˙.Y/!
˙.X/ is an isometry, since

dX.'
�A; '�B/ D �X.Œ' 2 A�4Œ' 2 B�/

D �XŒ' 2 .A4B/� D �Y.A4B/ D dY.A;B/

for A; B 2 ˙Y.
We are now able to define invertibility of a measure-preserving system.

Definition 6.2. A measure-preserving system .XI'/ is called invertible if the
induced map '� on˙.X/ is bijective.

Let us relate this notion of invertibility to a possibly more intuitive one, based on
the following definition.

Definition 6.3. Let X and Y be measure spaces, and let ' W X ! Y be measure-
preserving. A measurable map  W Y ! X is called an essential inverse of ' if

' ı  D idY �Y-a.e. and  ı ' D idX �X-a.e.

The mapping ' is called essentially invertible if it has an essential inverse.

The properties stated in Exercise 2 help with computations with essential
inverses. In particular, it follows that if X D Y and  is an essential inverse of
', then  n is an essential inverse of 'n for every n 2 N. See also Exercise 3 for an
equivalent characterization of essential invertibility.

Lemma 6.4. An essential inverse  W Y ! X of a measure-preserving map
' W X ! Y is unique up to equality almost everywhere. Moreover,  is measure-
preserving as well, and the induced map '� W ˙.Y/ ! ˙.X/ is bijective with
inverse .'�/�1 D  �.

Proof. Suppose that  is an essential inverse of the measure-preserving map '.
Then, since �Y D '��X,

�Y. 
�1.A// D �X.'

�1 �1.A// D �X
�
. ı '/�1A� D �X.A/;

because . ı '/�1A D A modulo a �X-null set. The assertions about the induced
map are straightforward to show.

Finally, let  1;  2 be essential inverses of '. By definition we can find
measurable null sets N � Y and M � X such that Œ id ¤ ' ı  1 � � N and
Œ id ¤  2 ı ' � � M. Then

Œ  1 ¤  2 � � Œ  1 6D  2 ı ' ı  1 � [ N

�  �1
1 Œ id ¤  2 ı ' � [ N �  �1

1 .M/ [ N:

Since  1 is measure-preserving, it follows that  1 D  2 almost everywhere. ut
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A direct consequence of Lemma 6.4 is the following.

Corollary 6.5. A measure-preserving system .XI'/ is invertible if ' is essentially
invertible.

Example 6.6. The baker’s transformation and every group rotation is invertible
(use Corollary 6.5). The tent map and the doubling map systems are not invert-
ible (Exercise 4). A two-sided Bernoulli system is but a one-sided is not invertible
(Exercise 5).

By construction, in passing from ' to '� all information contained in null sets is
lost. However, even if one considers ' to be determined only almost everywhere,
the mapping ' 7! '� may still not be injective.

Example 6.7. Let X WD f0; 1g with the trivial �-algebra ˙ WD f;;Xg and the
unique probability measure thereon. Consider the measure-preserving mappings '
and  on X defined by

'.x/ WD 0 .x D 0; 1/;  .x/ WD
(
1 if x D 0;
0 if x D 1:

Then '� D  � D id�, but neither ' D  nor ' D id nor  D id holds almost
everywhere.

We also note that the map ' in Example 6.7 does not have an essential inverse
although its induced map '� is invertible. Hence, the converse of Corollary 6.5 does
not hold in general.

We shall see that such pathologies can be avoided when one restricts oneself to a
subclass of all probability spaces.

Definition 6.8. A probability space X D .X; ˙; �/ is a Borel probability space if
X can be endowed with a Polish topology and ˙ is the associated Borel �-algebra
generated by all open sets. Furthermore, a probability space Y is called a standard
probability space if there is a Borel probability space X and a measurable, measure-
preserving, and essentially invertible mapping � W Y ! X. A measure-preserving
system .XI'/ is called standard if X is a standard probability space.

See Appendix F.1 and, in particular, Remark 7.22 for more information about
these notions. We shall prove that on standard probability spaces, the state space
dynamics ' is essentially determined by its associated measure algebra map '�. In
order to achieve this, we need the following lemma.

Lemma 6.9. Let ';  W X ! Y be measure-preserving mappings between proba-
bility spaces X; Y such that '� D  �. If there is a countable set E � ˙Y such
that the set of characteristic functions f1A W A 2 Eg separates the points of Y, then
' D  almost everywhere.
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Proof. By enlargingE we may suppose that E is closed under forming complements.
Then for x 2 X we have '.x/ 6D  .x/ if and only if there is A 2 E such that '.x/ 2 A
and  .x/ 2 Ac. This means that

Œ ' ¤  � D
[

A2E
'�1.A/\  �1.Ac/:

But by hypothesis we have  �1.Ac/ D '�1.Ac/ up to a null set and hence Œ ' ¤  �
is a null set. ut

We can now state the promised result.

Proposition 6.10. Let '; W X! Y be measure-preserving maps between proba-
bility spaces X and Y such that '� D  �. If Y is a standard probability space, then
' D  almost everywhere.

Proof. Note that if Y is a Borel probability space then the hypotheses of Lemma 6.9
are satisfied since there is countable collection of open balls separating the points.
In the general case we can find a Borel probability space Y0 and an essentially
invertible measure-preserving map � W Y! Y0. Then .� ı '/� D '��� D  ��� D
.� ı /�, and therefore, by what we just have seen, � ı' D � ı almost everywhere.
Applying the essential inverse of � then yields ' D  almost everywhere. ut

It turns out that for a measure-preserving map ' on a standard probability
space the invertibility of '� is equivalent with the essential invertibility of ' (see
Corollary 7.21 below). So the pathologies displayed in Example 6.7 are avoided if
one restricts to standard probability spaces. See also the discussions at the end of
Sections 7.3, 12.2 and 12.3.

6.2 Recurrence

Recall that a point x in a topological system is recurrent if it returns eventually
to each of its neighborhoods. In the measure theoretic setting pointwise notions are
meaningless due to the presence of null-sets. So, given a measure-preserving system
.XI'/ in place of points of X we have to use sets of positive measure, i.e., “points”
of the measure algebra˙.X/. We adopt that view with the following definition.

Definition 6.11. Let .XI'/ be a measure-preserving system.

a) A set A 2 ˙X is called recurrent if almost every point of A returns to A
after some time, or equivalently,

A �
[

n�1
'�nA (6.1)

in the measure algebra˙.X/.
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b) A set A 2 ˙X is infinitely recurrent if almost every point of A returns to A
infinitely often, or equivalently,

A �
\

k�1

[

n�k

'�nA (6.2)

in the measure algebra˙.X/.

Here is an important characterization.

Lemma 6.12. Let .XI'/ be a measure-preserving system. Then the following
statements are equivalent:

(i) Every A 2 ˙X is recurrent.

(ii) Every A 2 ˙X is infinitely recurrent.

(iii) For every ; 6D A 2 ˙.X/ there exists n 2 N such that A \ '�nA 6D ;.

Proof. The implication (ii)) (i) is evident. For the converse take A 2 ˙X and apply
'� to (6.1) to obtain '�A �Sn�2 '�nA. Inserting this back into (6.1) yields

A �
[

n�1
'�nA D '�A [

[

n�2
'�nA �

[

n�2
'�nA:

Continuing in this manner, we see that
S

n�k '
�nA is independent of k � 1 and this

leads to (ii).
(i)) (iii): To obtain a contradiction suppose that A\ '�nA D ; for all n � 1. Then
intersecting with A in (6.1) yields

A D A \
[

n�1
'�nA D

[

n�1

�
A \ '�nA

� D ;:

(iii)) (i): Let A 2 ˙X and consider the set B WD �Tn�1 '�nAc
�\A. Then for every

n 2 N we obtain

B \ '�nB � '�nAc \ '�nA D ;

in the measure algebra. Now (iii) implies that B D ;, i.e., (6.1). ut
As a consequence of this lemma we obtain the famous recurrence theorem of
Poincaré.

Theorem 6.13 (Poincaré). Every measure-preserving system .XI'/ is (infinitely)
recurrent, i.e., every set A 2 ˙X is infinitely recurrent.

Proof. Let A 2 ˙.X/ be such that A\ '�nA D ; for all n � 1. Thus for n > m � 0
we have
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−→ ?−→

Fig. 6.1 What happens after removing the wall?

'�mA \ '�nA D '�m.A \ '�.n�m/A/ D ;:

This means that the sets .'�nA/n2N0 are (essentially) disjoint. (Such a set A is
called wandering.) On the other hand, all sets '�nA have the same measure, and
since �X is finite, this measure must be zero. Hence A D ;, and the measure-
preserving system .XI'/ is infinitely recurrent by the implication (iii)) (i) of
Lemma 6.12. ut
Remark 6.14. Poincaré’s theorem is false for measure-preserving transformations
on infinite measure spaces. Just consider X D R, the shift '.x/ D xC1 .x 2 R/ and
A D Œ0; 1�.

Poincaré’s recurrence theorem has caused some irritation among scholars since
its consequences may seem to be counterintuitive. To explain this, consider once
again our example from Chapter 1, the ideal gas in a container. Suppose that we
start observing the system after having collected all gas molecules in the left half
of the box (e.g., by introducing a wall first, pumping all the gas to the left and then
removing the wall), we expect that the gas diffuses in the whole box and eventually
is distributed uniformly within it. It seems implausible to expect that after some
time the gas molecules again return by their own motion entirely to the left half of
the box. However, since the initial state (all molecules in the left half) has (quite
small but nevertheless) positive probability, the Poincaré theorem states that this
will happen almost surely, see Figure 6.1.

Let us consider a more mathematical example which goes back to the Ehren-
fests (1912), quoted from Petersen (1989, p. 35). Suppose that we have n balls,
numbered from 1 to n, distributed somehow over two urns I and II. In each step, we
pick a number k randomly between 1 and n, take the ball with number k out of the
urn where it is at that moment, and put it into the other one. Initially we start with
all n balls contained in urn I.

The mathematical model of this experiment is that of a Markov shift over L WD
f0; : : : ; ng. The “state sequence” .j0; j1; j2 : : : / records the number jm 2 L of balls
in urn I after the mth step. To determine the transition matrix P note that if there are
i � 1 balls in urn I, then the probability to decrease its number to i � 1 is i

n ; and if
i < n, then the probability to increase the number from i to i C 1 is 1 � i

n . Hence,
we have P D .pij/0�i; j�n with
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pij D

8
ˆ̂<

ˆ̂
:

0 if ji � jj 6D 1;
i
n if j D i� 1;
n�i

n if j D iC 1:

The a priori probability to have j balls in urn I is certainly

pj WD 2�n
� n

j

�
;

and it is easy to see that p D .p0; : : : ; pn/ is indeed a fixed probability row vector,
i.e., that pP D p (Exercise 6). (Since P is irreducible, Perron’s theorem implies that
p is actually the unique fixed probability vector, see Section 8.3.)

Now, starting with all balls contained in urn I is exactly the event A WD
f.jm/m�0 2 LN0 W j0 D ng. Clearly �.A/ D 1

2n > 0, hence Poincaré’s theorem
tells us that in almost all sequences x 2 A the number n occurs infinitely often.

If the number of balls n is large, this result may look again counterintuitive.
However, we shall show that we will have to wait a very long time until the system
comes back to A for the first time. To make this precise, we return to the general
setting.

Let .XI'/ be a measure-preserving system, fix A 2 ˙X and define

B0 WD
\

n�1
'�nAc; B1 WD '�A; Bn WD '�nA \

n�1\

kD1
'�kAc .n � 2/:

The sequence .Bn/n2N is the “disjointification” of .'�nA/n2N, and .Bn/n2N0 is a
disjoint decomposition of X: The points from B0 never reach A and the points
from Bn reach A for the first time after n steps. Recurrence of A just means that
A �Sn�1 Bn, i.e., B0 � Ac (in the measure algebra). If we let

An WD Bn \ A .n 2 N/; (6.3)

then .An/n2N is an essentially disjoint decomposition of A. We note the following
technical lemma for later use.

Lemma 6.15. Let .XI'/ be a measure-preserving system, X D .X; ˙; �/, and let
A; B 2 ˙ . Then, for n � 1,

�.B/ D
nX

kD1
�

 

A \
k�1\

jD1
'�jAc \ '�kB

!

C �

 
n�1\

kD0
'�kAc \ '�nB

!

: (6.4)
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Proof. Using the '-invariance of � we write

�.B/ D �.'�B/ D �.A \ '�B/C �.Ac \ '�B/;

and this is (6.4) when n D 1 and with X WD \0jD1'�jAc. Doing the same again with
the second summand yields

�.B/ D �.'�B/ D �.A \ '�B/C �.Ac \ '�B/

D �.A \ '�B/C �.'�Ac \ '�2B/

D �.A \ '�B/C �.A \ '�Ac \ '�2B/C �.Ac \ '�Ac \ '�2B/

and this is (6.4) for n D 2. An induction argument concludes the proof. ut
Suppose that �.A/ > 0. On the set A we consider the induced �-algebra

˙A WD
˚
B � A W B 2 ˙� � P.A/;

and thereon the induced probability measure �A defined by

�A W ˙A ! Œ0; 1�; �A.B/ D �.B/

�.A/
.B 2 ˙A/:

Then �A.B/ is the conditional probability for B given A. Define the function

nA W A! N; nA.x/ D n if x 2 An .n � 1/;

where An is defined in (6.3). The function nA is called the time of first return to A.
Clearly, nA is ˙A-measurable. The following theorem describes its expected value
(with respect to �A).

Theorem 6.16. Let .XI'/ be a measure-preserving system, X D .X; ˙; �/, and let
A 2 ˙ with �.A/ > 0. Then

Z

A
nAd�A D

�
�S

n�0 '�nA
�

�.A/
: (6.5)

Proof. We specialize B D X in Lemma 6.15. Note that

A \
k�1\

jD1
'�jAc D

1[

jDk

Aj .k � 1/

since A is recurrent by Poincaré’s theorem. Hence, by (6.4) in Lemma 6.15 for
B D X we obtain
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�.X/ D
nX

kD1

1X

jDk

�.Aj/C �
 

n�1\

kD0
'�kAc

!

:

Letting n!1 yields

1 D �.X/ D
1X

kD1

1X

jDk

�.Aj/C �
 1\

kD0
'�kAc

!

;

and by interchanging the order of summation we arrive at

�

 1[

kD0
'�kA

!

D �.X/� �
 1\

kD0
'�kAc

!

D
1X

jD1
j�.Aj/ D �.A/

Z

A
nA d�A:

Dividing by �.A/ proves the claim. ut
Let us return to our ball experiment. If we start with 100 balls, all contained in

urn I, the probability of A is �.A/ D 2�100. If we knew that

1[

nD0
��nA D X; (6.6)

then we could conclude from (6.5) in Theorem 6.16 that the expected waiting time
for returning to A is 1

�.A/ D 2100 steps. Clearly, our lifetimes and that of the universe
would not suffice for the waiting, even if we do one step every millisecond.

However, this reasoning builds on (6.6), a property not yet established. This will
be done in the next section.

6.3 Ergodicity

Ergodicity is the analogue of minimality in measurable dynamics. Let .XI'/ be a
measure-preserving system and let A 2 ˙X. As in the topological case, we call A
invariant if A � Œ ' 2 A �. Since A and Œ ' 2 A � have the same measure and � is
finite, A � Œ ' 2 A �, i.e., A D '�A in the measure algebra. The same reasoning
applies if Œ ' 2 A � � A, and hence we have established the following lemma.

Lemma 6.17. Let .XI'/ be a measure-preserving system and A 2 ˙X. Then the
following assertions are equivalent:

(i) A is invariant, i.e., A � '�A.

(ii) A is strictly invariant, i.e., A D '�A.

(iii) '�A � A.

(iv) Ac is (strictly) invariant.
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The following notion is analogous to minimality in the topological case.

Definition 6.18. A measure-preserving system .XI'/ is called ergodic if every
invariant set is essentially equal either to ; or to X.

Since invariant sets are the fixed points of '� in the measure algebra, a system is
ergodic if and only if '� on˙.X/ has only the trivial fixed points ; and X.

In contrast to minimality in the topological case (Theorem 3.5), a measure-
preserving system need not have ergodic subsystems: Just consider X D Œ0; 1�

with the Lebesgue measure and ' D idX , the identity. Another difference to the
topological situation is that the presence of a nontrivial invariant set A does not only
lead to a restriction of the system (to A), but to a decomposition X D A [ Ac. So
ergodicity could also be termed indecomposability or irreducibility.

The following result characterizes ergodicity.

Lemma 6.19. For a measure-preserving system .XI'/ the following statements are
equivalent:

(i) The measure-preserving system .XI'/ is ergodic.

(ii) For every ; 6D A 2 ˙.X/ one has

\

n�0

[

k�n

'�kA D X:

(iii) For every ; 6D A 2 ˙.X/ one has

[

n�0
'�nA D X:

(iv) For every ; 6D A; B 2 ˙.X/ there is n � 1 such that

'�nA \ B 6D ;:

Proof. (i)) (ii): For a set A 2 ˙X and n � 0 the set

A.n/ WD
[

k�n

'�kA

satisfies '�A.n/ � A.n/ and hence is an invariant set. If A 6D ; in the measure
algebra, then A.n/ 6D ;, too, and by ergodicity, A.n/ D X for every n � 0. Taking the
intersection yields (ii).

(ii)) (iii): This follows from

X D
\

n�0

[

k�n

'�kA �
[

k�0
'�kA � X:
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(iii)) (iv): By hypothesis, we have A.0/ D X, and hence A.1/ D '�A.0/ D '�X D
X. Now suppose that B \ '�nA D ; for all n � 1. Then

; D
[

n�1
B \ '�nA D B \

[

n�1
'�nA D B \ A.1/ D B \ X D B:

(iv)) (i): Let A 2 ˙X be an invariant set. Then '�nA D A for every n 2 N and
hence for B WD Ac we have

B \ '�nA D B \ A D Ac \ A D ;

for every n � 1. By hypothesis (iv) we obtain A D ; or Ac D B D ; in ˙.X/. ut
The implication (i)) (ii) of Lemma 6.19 says that in an ergodic system each

set of positive measure is visited infinitely often by almost every point. Note
also that (iv) is an analogue for measure-preserving systems of condition (ii) in
Proposition 2.33.

Let us now look at some examples. The implication (iv)) (i) of Lemma 6.19
combined with the following result shows that a Bernoulli shift is ergodic.

Proposition 6.20. Let .W C
k ; ˙; �I �/ D B.p0; : : : ; pk�1/ be a Bernoulli shift. Then

lim
n!1�.��nA \ B/ D �.A/�.B/

for all A; B 2 ˙ .

Proof. We use the notation of Example 5.1.5. Let E denote the algebra of cylinder
sets on W C

k D LN0 . If B 2 E, then B D B0�Qk�n0
L for some n0 2 N and B0 � Ln0 .

Then ��nA D Ln � A and

�.��nA \ B/ D �.B0 � A/ D �.B/�.A/

for n � n0 since � D N
n2N0  is a product measure. For general B 2 ˙ one

can find, by Lemma 6.1, a sequence .Bm/m2N � E of cylinder sets such that
dX.Bm;B/! 0 as m!1. Since

j�.��nA \ B/� �.��nA \ Bm/j � dX.B;Bm/

(Exercise 1), one has �.��nA\Bm/! �.��nA\B/ as m!1 uniformly in n 2 N.
Hence, one can interchange limits to obtain

lim
n!1�.��nA \ B/ D lim

m!1 lim
n!1�.��nA \ Bm/ D lim

m!1�.A/�.Bm/ D �.A/�.B/:

ut
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Of course, the same result remains valid for Bernoulli shifts on general state spaces
(one-sided or two-sided), the argumentation being essentially the same.

Proposition 6.20 actually says that the Bernoulli shift is strongly mixing, a
property that will be studied in Chapter 9. Here are other examples of ergodic
systems.

Examples 6.21. 1) A Markov shift with an irreducible transition matrix is
ergodic. This is Theorem 8.14 below.

2) Every minimal rotation on a compact group is ergodic. For the special case
of T, this is Proposition 7.16, the general case is treated in Theorem 10.13.

3) The Gauß map (see page 75) is ergodic. A proof can be found in Einsiedler
and Ward (2011, Sec. 3.2).

The next result tells that in an ergodic system the average time of first return to a
(nontrivial) set is inverse proportional to its measure.

Corollary 6.22 (Kac). Let .XI'/ be an ergodic measure-preserving system,
X D .X; ˙; �/, and A 2 ˙ with �.A/ > 0. Then for the expected return time
to A one has

Z

A
nA d�A D 1

�.A/
:

Proof. Since the system is ergodic, the implication (i)) (iii) of Lemma 6.19 shows
that X DSn�0 '�nA. Hence, the claim follows from Theorem 6.16. ut

Let us return to our ball experiment. The transition matrix P described on page
102 is indeed irreducible, whence by Example 6.21.1 the corresponding Markov
shift is ergodic. Therefore we can apply Kac’s theorem concluding that the expected
return time to our initial state A is 2100 for our choice n D 100.

Supplement: Induced Transformation
and the Kakutani–Rokhlin Lemma

We conclude with two additional results of importance in ergodic theory.

The Induced Transformation

Let .XI'/ be a measure-preserving system, X D .X; ˙; �/, and let A 2 ˙ with
�.A/ > 0. Define the induced transformation 'A by

'A W A! A; 'A.x/ D 'nA.x/.x/ .x 2 A/:

This means that 'A 
 'n on An, n 2 N, where An is as in (6.3).



108 6 Recurrence and Ergodicity

Theorem 6.23. Let .XI'/ be a measure-preserving system, X D .X; ˙; �/, and
let A 2 ˙ be a set of positive measure. Then the induced transformation 'A is
measurable with respect to ˙A and preserves the induced measure �A.

Proof. Take B 2 ˙ , B � A. Then

Œ 'A 2 B � D
[

n�1
An \ Œ 'n 2 B � ;

showing that 'A is indeed ˙A-measurable. To see that 'A preserves �, we use
Lemma 6.15. Note that since B � A,

A \
k�1\

jD1
'�jAc \ '�kB D Ak \ '�kB .k � 1/

and

n\

kD0
'�kAc \ '�nB � Ac \ Bn:

Since � is finite,
P

n �.Bn/ < 1 and hence �.Ac \ Bn/ ! 0 as n ! 1. Letting
n!1 in (6.4) we obtain

�.B/ D
1X

kD1
�.Ak \ '�kB/ D

1X

kD1
�.Ak \ Œ 'A 2 B �/ D � Œ 'A 2 B � ;

and that was to be proved. ut
By Exercise 7, if the original measure-preserving system is ergodic, then the

system .A; ˙A; �AI'A/ is ergodic, too.

The Kakutani–Rokhlin Lemma

The following theorem is due to Kakutani (1943) and Rokhlin (1948). Our
presentation is based on Rosenthal (1988).

Theorem 6.24 (Kakutani–Rokhlin). Let .XI'/ be an ergodic measure-pre-
serving system, X D .X; ˙; �/ let A 2 ˙ with �.A/ > 0 and n 2 N. Then there is
a set B 2 ˙ such that B; '�B; : : : ; '�.n�1/B are pairwise disjoint and

�
�[n�1

jD0'
�jB
�
� 1 � n�.A/:
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Before giving the proof, let us think about the meaning of Theorem 6.24.
A Rokhlin tower of height n 2 N is a finite sequence of pairwise disjoint sets
of the form

B; '�B; '�2B; : : : ; '�.n�1/B;

and B is called the ceiling of the tower. Since

'�kB \ '�jB D ' j�.'�.k�j/B \ B/ .1 � j < k � n � 1/;

in order to have a Rokhlin tower it suffices to show that '�jB \ B D ; for j D
1; : : : ; n � 1.

Since the sets in a Rokhlin tower all have the same measure and� is a probability
measure, one has the upper bound

�.B/ � 1
n

for the ceiling B of a Rokhlin tower of height n. On the other hand, the second
condition in the Kakutani–Rokhlin result is equivalent to

�.B/ � 1
n � �.A/:

So if �.A/ is small, then �.B/ is close to its maximal value 1
n .

Corollary 6.25. Let .XI'/ be an ergodic measure-preserving system such that
there are sets with arbitrarily small positive measure. Then for each " > 0 and
n 2 N there is a Rokhlin tower B; '�B; '�2B; : : : ; '�.n�1/B such that

�
�[n�1

jD0'
�jB
�
> 1 � ":

Proof of Theorem 6.24. Define

A0 WD A; AkC1 WD '�Ak \ Ac .k � 0/:

Then An D '�nA \Tn�1
jD0 '�jAc is the set of points in Ac that hit A for the first time

in the nth step. The sets A1;A2; : : : ;An; : : : are pairwise disjoint, and we note thatS
n�1An D Ac. This follows from

A0 [
[

n�1An D
[

j�0'
�jA D X

by ergodicity. Now, define the set

Bj WD
[

k�1AnkCj .j D 0; : : : ; n � 1/:
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Then the Bj are pairwise disjoint and B1 [ � � � [ Bn�1 D Ac. We claim that

'�jB0 D Bj [ Cj for some Cj � A [ '�A [ � � � [ '�.j�1/A (6.7)

for j D 0; : : : ; n � 1. This is an easy induction argument, the induction step being

'�.jC1/B0 D '�.Bj [ Cj/ D
[

k�1'
�AnkCj [ '�Cj

D
[

k�1AnkCjC1 [
[

k�1.'
�AnkCj \ A/[ '�Cj D BjC1 [ CjC1

with

CjC1 D '�Cj [
[

k�1.'
�AnkCj \ A/ � '��[j�1

kD0'
�kA

�
[ A D

[j

kD0'
�kA:

From (6.7) it follows immediately that

B0 \ '�jB0 D ; .j D 1; : : : ; n � 1/
and hence B0 is the ceiling of a Rokhlin tower of height n. Finally, (6.7) implies that

[n�1
jD0'

�jB0 	
[n�1

jD0Bj D
[

k�n
Ak;

whence
�[n�1

jD0'
�jB0

�c �
[n�1

kD0Ak �
[n�1

kD0'
�kA:

Hence, we obtain

�
�[n�1

jD0'
�jB0

�
� 1 � �

�[n�1
kD0'

�kA
�
� 1 � n�.A/: ut

Exercises

1. Let .X; ˙; �/ be a finite measure space. Show that

dX.A;B/ WD �.A4B/ D k1A � 1BkL1 .A; B 2 ˙.X//
defines a complete metric on the measure algebra˙.X/. Show further that

a) dX.A \ B;C \D/ � dX.A;C/C dX.B;D/,

b) dX.Ac;Bc/ D dX.A;B/,

c) dX.A n B;C n D/ � dX.A;C/C dX.B;D/,
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d) dX.A [ B;C [D/ � dX.A;C/C dX.B;D/,

e) j�.A/� �.B/j � dX.A;B/.

In particular, the mappings

.A;B/ 7! A \ B; A n B; A [ B and A 7! Ac; �.A/

are continuous with respect to dX. Show also that

.An/n2N � ˙.X/; An % A H) dX.An;A/& 0:

2. Let X0; X1; X2 be measure spaces. Let

f0; g0 W X0 ! X1 and f1; g1 W X1 ! X2

be measurable such that f0 D g0 and f1 D g1 almost everywhere and f0 preserves
null sets. Prove the following assertions:

a) g0 preserves null sets, too.

b) f1 ı f0 D g1 ı g0 almost everywhere.

c) f �
0 D g�

0 as mappings˙.X1/! ˙.X0/.

3. Let X and Y be probability spaces, and let ' W X ! Y be measure-preserving.
Show that the following assertions are equivalent:

(i) ' is essentially invertible.

(ii) There are sets A 2 ˙X, A0 2 ˙Y such that �X.A/ D 1 D �Y.A0/, and '
maps A bijectively onto A0 with measurable inverse.

4. Show that the tent map and the doubling map are not invertible.

5. Show that if k � 2, the one-sided Bernoulli shift B.p0; : : : ; pk�1/ on W C
k is not

invertible.

6. Show that pP D p, where P; p are the transition matrix and the probability vector
defined above in connection with the ball experiment (see page 102).

7. Let .XI'/ be an ergodic measure-preserving system, X D .X; ˙; �/, and let
A 2 ˙ with �.A/ > 0. Show that the induced transformation 'A is ergodic, too.
(Hint: Let the sets .An/n2N be defined as in (6.3) and let B � A with '�

A B D B.
Show by induction over n 2 N that '�nB\A � B; e.g., use the identity '�nB\Aj D
'�j.'�n�jB \ A/\ Aj for j < n.)

8. Let K be a compact metric space and let .K; �I'/ be a measure-preserving
system. Prove that for �-almost every x 2 K there is a subsequence .nk/k2N in
N such that 'nk.x/! x as k!1.

9. Prove that an essentially invertible system .XI'/ is ergodic if and only if
.XI'�1/ is ergodic.
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10. Prove that a rational rotation .T;mI a/ is not ergodic.

11. Consider a Bernoulli shift .W C
k ; ˙; �I �/ D B.p0; : : : ; pk�1/. Denote for m 2 N

by �m D � ı � � � ı � the mth iterate of � . Prove that .W C
k ; ˙; �I �m/ is ergodic.

12. Give an example of an ergodic measure-preserving system .XI'/ such that
.XI'm/ is not ergodic for some m 2 N (where 'm D ' ı � � � ı ' is the mth iterate).

13. Let .KI'/ be a topological system with finite state space K WD f0; : : : ; d � 1g.
Prove that .KI'/ is minimal if and only if there is a unique probability measure �
on K such that .K; �I'/ is ergodic and �.fjg/ > 0 for each j 2 K.

14 (Recurrence in Random Literature). The book “Also sprach Zarathustra” by
F. Nietzsche consists of roughly 680 000 characters, including blanks. Suppose that
we are typing randomly on a typewriter having 90 symbols. Show that we will
almost surely type Nietzsche’s book (just as this book you are holding in your hand)
infinitely often. Show further that if we had been typing since eternity, we almost
surely already would have typed the book infinitely often. (This proves correct
one of Nietzsche’s most mysterious theories, see the quote at the beginning of this
chapter.)





Chapter 7
The Banach Lattice Lp and the Koopman
Operator

. . . Mi sono comportato da ostinato, inseguendo una parvenza di ordine, quando dovevo
sapere bene che non vi è ordine, nell’universo. [. . . ] L’ordine che la nostra mente immagina
è come una rete, o una scala, che si costruisce per raggiungere qualcosa. . . . 1

Umberto Eco2

Let X and Y be two measure spaces and suppose that we are given a measurable
map ' W Y! X. The Koopman operator T WD T' , defined by

T'f D f ı ';
then maps a measurable function f on X to a measurable function T'f on Y. If, in
addition, ' respects null sets, i.e., we have

�X.A/ D 0 H) �YŒ ' 2 A � D 0 .A 2 ˙X/;

then

f D g �X-almost everywhere H) T'f D T'g �Y-almost everywhere

for every pair f , g of scalar-valued functions. Hence, T' acts actually on equiva-
lence classes of measurable functions (modulo equality �X-almost everywhere) via

T' Œ f � WD
	

T'f

 D Œ f ı ' � :

1I behaved stubbornly, pursuing a semblance of order, when I should have known well that there is
no order in the universe. [. . . ] The order that our mind imagines is like a net, or like a ladder, built
to attain something. . . . � Actually, the text continues: “. . . But afterward you must throw the ladder
away, because you discover that, even if it was useful, it was meaningless [. . . ] The only truths that
are useful are instruments to be thrown away. . . . ”
2Il Nome Della Rosa, Bompiani, 2004, page 495 � Translation from: The Name of the Rose,
translated by William Weaver, Random House, 2012.
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It is an easy but tedious exercise to show that all the common operations for
functions induce corresponding operations on equivalence classes, so we usually
do not distinguish between functions and their equivalence classes. Moreover, the
Koopman operator T' commutes with all these operations:

T'.f C g/ D T'f C T'g; T'.�f / D �T'f;
ˇ
ˇT'f

ˇ
ˇ D T' jf j : : : :

Note that

T'1A D 1A ı ' D 1Œ '2A � D 1'�A .A 2 ˙X/:

So T' acts on equivalence classes of characteristic functions as '� acts on the
measure algebra˙.X/ (cf. Chapter 6.1).

Suppose now in addition that ' is measure-preserving, i.e., '��Y D �X. Then
for any measurable function f on X and 1 � p <1 we obtain (by Appendix B.5)

�
�T'f

�
�p

p D
Z

Y
jf ı 'jp d�Y D

Z

X
jf jp d.'��Y/ D

Z

X
jf jp d�X D kf kp

p :

This shows that

T' W Lp.X/! Lp.Y/ .1 � p <1/

is a linear isometry. The same is true for p D1 (Exercise 1). Moreover, by a similar
computation

Z

Y
T'f D

Z

X
f .f 2 L1.X//: (7.1)

In Chapter 4 we associated with a topological system .KI'/ the commutative
C�-algebra C.K/ and the Koopman operator T WD T' acting on it. In the case
of a measure-preserving system .XI'/ it is natural to investigate the associated
Koopman operator T' on each of the spaces Lp.X/, 1 � p � 1.

For the case p D1 we note that L1.X/ is, like C.K/ in Chapter 4, a commu-
tative C�-algebra, and Koopman operators are algebra homomorphisms. (This fact
will play an important role in Chapter 12.) For p 6D 1, however, the space Lp is in
general not closed under multiplication of functions, so we have to look for a new
structural element preserved by the operator T' . This will be the lattice structure.

Since we do not expect order theoretic notions to be common knowledge, we
shall introduce the main abstract concepts in the next section and then proceed
with some more specific facts for Lp-spaces. (The reader familiar with Banach
lattices may skip these parts and proceed directly to Section 7.3.) Our intention
here, however, is mostly terminological. This means that Banach lattice theory
provides a convenient framework to address certain features common to Lp—as
well as C.K/—spaces, but no deep results from the theory are actually needed.
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The unexperienced reader may without harm stick to these examples whenever we
use abstract terminology. For a more detailed account, we refer to the monograph
Schaefer (1974).

7.1 Banach Lattices and Positive Operators

A lattice is a partially ordered set .V;�/ such that

x _ y WD supfx; yg and x ^ y WD inffx; yg

exist for all x; y 2 V . Here sup A denotes the least upper bound or supremum of
the set A � V , if it exists. Likewise, inf A is the greatest lower bound, or infimum
of A. A lattice is called complete if every nonempty subset has a supremum and an
infimum.

A subset D � V of a lattice .V;�/ is called _-stable (^-stable) if a; b 2 D
implies a_b 2 D (a^b 2 D). A subset that is _-stable and ^-stable is a sublattice.
If V is a lattice and A � V is a nonempty set, then A has a supremum if and only if
the _-stable set

˚
a1 _ a2 _ � � � _ an W n 2 N; a1; : : : ; an 2 A

�

has a supremum, and in this case these suprema coincide. If .V;�/ and .W;�/ are
lattices, then a map � W V ! W such that for all x; y 2 V

�.x _ y/ D .�x/ _ .�y/ and �.x ^ y/ D .�x/ ^ .�y/

is called a homomorphism of lattices. If � is bijective, then also ��1 is a
homomorphism, and � is called a lattice isomorphism.

Examples 7.1. 1) The prototype of a complete lattice is the extended real line
R WD Œ�1;1� with the usual order. It is lattice isomorphic to the closed
unit interval Œ0; 1� via the isomorphism x 7! 1

2
C 1

 
arctan.x/.

2) For a measure space X D .X; ˙; �/ we denote by

L0 WD L0.XIR/

the set of all equivalence classes of measurable functionsf W X ! Œ�1;1�,
and define a partial order by

Œ f � � Œ g � Def.” f � g �X-almost everywhere:
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The ordered set L0 is a lattice, since for each two elements f; g 2 L0 the
supremum and infimum is given by

.f _g/.x/ D max
˚
f .x/; g.x/

�
; .f ^g/.x/ D min

˚
f .x/; g.x/

�
.x 2 X/:

(To be very precise, this means that the supremum f _g is represented by the
pointwise supremum of representatives of the equivalence classes f and g.)
Analogously we see that in L0 the supremum (infimum) of every sequence
exists and is represented by the pointwise supremum of representatives. In
addition, it is even true that the lattice L0.XIR/ is complete (Exercise 11).

3) The subsets L0.XIR/ and Lp.XIR/ for 1 � p � 1 are sublattices of the
lattice L0.XIR/.

4) If X is a finite measure space, then the measure algebra ˙.X/ is a lattice
(with respect to the obvious order) and

˙.X/! L1.X/; ŒA� 7! Œ1A� .A 2 ˙X/

is an injective lattice homomorphism. By Exercise 14, the lattice ˙.X/ is
complete.
The name “measure algebra” derives from the fact that ˙.X/ is not just a
(complete) lattice, but a Boolean algebra, cf. Section 12.2 below.

The lattice L0.XIR/ does not show any reasonable algebraic structure since the
presence of the values ˙1 prevents a global definition of a sum. This problem
vanishes when one restricts to the sublattices Lp.XIR/ for p D 0 or 1 � p �
1, being real vector spaces. Moreover, the lattice and vector space structures are
connected by the rules

f � g H) f C h � gC h; c � f � c � g; �g � �f (7.2)

for all f; g; h 2 Lp.XIR/ and c � 0. A partially ordered set V which is also a
real vector space such that (7.2) holds is called a (real) ordered vector space. If, in
addition, V is a lattice, it is called a (real) vector lattice. In any vector lattice one
can define

jf j WD f _ .�f /; f C WD f _ 0; f � WD .�f / _ 0;

which—in our space Lp.XIR/—all coincide with the respective pointwise opera-
tions. In any real vector lattice X the following formulae hold:

ˇ
ˇjf jˇˇ D jf j; (7.3a)

jf C gj � jf j C jgj; jcf j D jcj � jf j; (7.3b)
ˇ
ˇjf j � jgjˇˇ � jf � gj; (7.3c)
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f D f C � f �; jf j D f C C f �; (7.3d)

f _ g D 1
2
.f C gC jf � gj/; f ^ g D 1

2
.f C g � jf � gj/; (7.3e)

.f _ g/C h D .f C h/ _ .gC h/; .f ^ g/C h D .f C h/ ^ .gC h/; (7.3f)

j.f _ g/� .f1 _ g1/j � jf � f1j C jg� g1j; (7.3g)

j.f ^ g/� .f1 ^ g1/j � jf � f1j C jg� g1j; (7.3h)

for all f; f1; g; g1; h 2 V and c 2 R. (Note that these are easy to establish for the
special case V D R and hence carry over immediately to the spaces Lp.XIR/.)

In a real vector lattice V an element f 2 V is called positive if f � 0. The
positive cone is the set VC WD ff 2 V W f � 0g of positive elements. If f 2 V ,
then f C and f � are positive, and hence (7.3d) yields that V D VC � VC.

So far, we dealt with real vector spaces. However, for the purpose of spectral
theory (which plays an important role in the study of Koopman operators) it is
essential to work with the complex Banach spaces Lp.X/ D Lp.XIC/. Any function
f 2 Lp.XIC/ can be uniquely written as

f D Re f C i Imf

with real-valued functions Re f , Imf 2 Lp.XIR/. Hence, Lp.X/ decomposes as

Lp.X/ D Lp.XIR/˚ i Lp.XIR/:

Furthermore, the absolute value mapping j � j has an extension to Lp.X/ satisfying

jf j D sup
˚
Re.cf / W c 2 C; jcj D 1�;

cf. Exercise 2. Finally, the norm on Lp.X/ satisfies

jf j � jgj H) kf kp � kgkp :

This gives a key for the general definition of a complex Banach lattice (Schaefer
1974, p. 133).

Definition 7.2. A complex Banach lattice is a complex Banach space E such that
there is a real-linear subspace ER together with an ordering � of it, and a mapping
j � j W E! E, called absolute value or modulus, such that the following holds:

1) E D ER ˚ iER as real vector spaces.

The projection onto the first component is denoted by Re W E ! ER and called
the real part; and Imf WD �Re.if / is called the imaginary part; hence f D
Re f C i Imf is the canonical decomposition of f .

2) .ER;�/ is a real ordered vector space.
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3) jf j D supfRe e itf W t 2 Qg D supt2Q
�
.cos t/Re f � .sin t/ Imf

�
.

4) jf j � jgj H) kf k � kgk.
The set EC D ff 2 ER W f � 0g is called the positive cone of E. If we write
f � g with f; g 2 E, we tacitly suppose that f; g 2 ER. For f 2 E we call
f WD Re f � i Imf its conjugate.

Examples 7.3. 1) If X is a measure space, then Lp.X/ is a complex Banach
lattice for each 1 � p � 1.

2) If K is a compact space, then C.K/ is a complex Banach lattice (Exercise 3).

The following lemma lists some properties of Banach lattices, immediate for our
standard examples. The proof for general Banach lattices is left as Exercise 4.

Lemma 7.4. Let E be a complex Banach lattice, let f; g 2 E and let ˛ 2 C. Then
the following assertions hold:

a) f C g D f C g and f̨ D ˛ � f .

b) jf C gj � jf jCjgj and
ˇ
ˇjf j � jgjˇˇ � jf � gj and j f̨ j D j˛j�jf j.

c) j f j D jf j � jRe f j, jImf j � 0.

d) ER is a real vector lattice with

f _ g D 1
2
.f C gC jf � gj/ and f ^ g D 1

2
.f C g � jf � gj/

if f; g 2 ER. In particular, jf j D f _ .�f / for f 2 ER.

e) f � 0 ” jf j D f .

f)
��jf j�� D ��f �� and

��jf j � jgj�� � ��f � g
��.

Moreover, (7.3d)–(7.3h) hold for f; f1; g; g1; h 2 ER.

Part d) shows that the modulus mapping defined on E is compatible with the
modulus on ER coming from the lattice structure there. Part f) implies that the
modulus mapping f 7! jf j is continuous on E. Hence, by (7.3e) the mappings

ER � ER ! ER; .f; g/ 7! f _ g; f ^ g

are continuous. Furthermore, from c) it follows that kRe f k ; kImf k � kf k, hence
the projection onto ER is bounded and ER is closed. Finally, by e), also the positive
cone EC is closed.

A closed linear subspace F of a Banach lattice E is called a Banach sublattice
of E if it satisfies

f 2 F H) f ; jf j 2 F:

It is easy to see that F is again a Banach lattice satisfying FR D ER \ F.



7.1 Banach Lattices and Positive Operators 121

Positive Operators

Let E; F be Banach lattices. A (linear) operator S W E! F is called positive if

f 2 E; f � 0 H) Sf � 0:

We write S � 0 to indicate that S is positive. The following lemma collects the basic
properties of positive operators.

Lemma 7.5. Let E; F be Banach lattices and let S W E! F be a positive operator.
Then the following assertions hold:

a) f � g H) Sf � Sg for all f; g 2 ER.

b) f 2 ER H) Sf 2 FR.

c) S.Ref / D Re Sf and S.Imf / D Im Sf for all f 2 E.

d) Sf D Sf for all f 2 E.

e) jSf j � S jf j for all f 2 E.

f) S is bounded.

Proof. a) follows from linearity of S. b) holds since S is linear, S.EC/ � FC and
ER D EC � EC. c) and d) are immediate consequences of b).

e) For every t 2 Q we have Re.e it/f � jf j and applying S yields

Re
�
e it�Sf � S jf j :

Taking the supremum with respect to t 2 Q we obtain jSf j � S jf j as claimed.

f) Suppose that S is not bounded. Then there is a sequence .fn/n2N such that fn ! 0

in norm but kSfnk ! 1. Since jSfnj � S jfnj one has also kS jfnjk ! 1. Hence,
we may suppose that fn � 0 for all n 2 N. By passing to a subsequence we may
also suppose that

P
n kfnk < 1. But since E is a Banach space,

P
n fn converges

to some f 2 E. This yields 0 � fn � f and hence 0 � Sfn � Sf , implying that
kSfnk � kSf k. This is a contradiction. ut

A linear operator S W E ! F between two complex Banach lattices E; F is
called a lattice homomorphism if jSf j D S jf j for all f 2 E. Every lattice
homomorphism is positive and bounded and satisfies

S.f _ g/ D Sf _ Sg and S.f ^ g/ D Sf ^ Sg

for f; g 2 ER. We note that the Koopman operator T' associated with a topological
system .KI'/ or a measure-preserving system .XI'/ is a lattice homomorphism.
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7.2 The Space Lp.X/ as a Banach Lattice

Having introduced the abstract concept of a Banach lattice, we turn to some specific
properties of the concrete Banach lattices Lp.X/ for 1 � p < 1. To begin with,
we note that these spaces have order continuous norm, which means that for each
decreasing sequence .fn/n2N in Lp

C.X/, fn � fnC1, one has

inf
n
fn D 0 H) kfnkp ! 0:

This is a direct consequence of the monotone convergence theorem (see Ap-
pendix B.5) by considering the sequence .f p

1 � f p
n /n2N. Actually, the monotone

convergence theorem accounts also for the following statement.

Theorem 7.6. Let X be a measure space and let 1 � p < 1. Let F � Lp
C.X/ be

a _-stable set such that

s WD sup
˚kf kp W f 2 F

�
<1:

Then f WD supF exists in the Banach lattice Lp.XIR/ and there exists an incre-
asing sequence .fn/n2N in F such that supn fn D f and kfn � f kp ! 0. In
particular, supF 2 F if F is closed.

Proof. Take a sequence .fn/n2N in F with kfnkp ! s. By passing to the sequence
.f1 _ f2 _ � � � _ fn/n2N we may suppose that .fn/n2N is increasing. Define f WD
limn fn pointwise almost everywhere. By the monotone convergence theorem we
obtain kf kp D s, hence f 2 Lp. Since infn.f � fn/ D 0, by order continuity of the
norm it follows that kf � fnkp ! 0. If h is any upper bound for F , then fn � h
for each n, and then f � h. Hence, it remains to show that f is an upper bound of
F . Take an arbitrary g 2 F . Then fn _ g % f _ g. Since fn _ g 2 F , it follows
that kfn _ gkp � s for each n 2 N. The monotone convergence theorem implies that
kf _ gkp D limn kfn _ gkp � s. But f _ g � f and hence

k.f _ g/p � f pk1 D kf _ gkp
p � kf kp

p � sp � sp D 0:

This shows that f D f _ g � g, as desired. ut
Remark 7.7. In the previous proof we have used that jf j � jgj, jf j ¤ jgj implies
kf k1 < kgk1, i.e., that L1 has strictly monotone norm. Each Lp-space (1 � p <
1) has strictly monotone norm, cf. Exercise 7.

A Banach lattice E is called order complete if any nonempty subset having
an upper bound has even a least upper bound. Equivalently (Exercise 6), for all
f; g 2 ER the order interval

Œf; g� WD ˚h 2 ER W f � h � g
�

is a complete lattice (as defined in Section 7.1).
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Corollary 7.8. Let X be a measure space and let 1 � p < 1. Then the Banach
lattice Lp.XIR/ is order complete.

Proof. Let F 0 � Lp.XIR/ and suppose that there exists F 2 Lp.XIR/ with f � F
for all f 2 F 0. We may suppose without loss of generality that F 0 is _-stable.
Pick g 2 F 0 and consider the set g _F 0 WD fg _ f W f 2 F 0g, which is again
_-stable and has the same set of upper bounds as F 0. Now F WD .g _ F 0/ � g
is _-stable by (7.3f), consists of positive elements and is dominated by F � g � 0.
In particular it satisfies the conditions of Theorem 7.6. Hence it has a supremum h.
It is then obvious that hC g is the supremum of F 0. By passing to �F 0 the same
arguments show that a nonempty family F 0 in Lp that is bounded from below has an
infimum in Lp. ut

Recall that algebra ideals play an important role in the study of C.K/. In the
Banach lattice setting there is an analogous notion.

Definition 7.9. Let E be a Banach lattice. A linear subspace I � E is called a
(vector) lattice ideal if

f; g 2 E; jf j � jgj ; g 2 I H) f 2 I:

If I is a lattice ideal, then f 2 I if and only if jf j 2 I if and only if Re f; Im f 2 I.
It follows from (7.3e) that the real part IR WD I \ ER of a lattice ideal I is a vector
sublattice of ER.

Immediate examples of closed lattice ideals in Lp.X/ are obtained from measur-
able sets A 2 ˙X by a construction similar to the topological case (cf. page 52):

IA WD
˚
f W jf j ^ 1A D 0

� D ˚f W jf j ^ 1 � 1Ac
� D ˚f W A � Œ f D 0 ��:

Then IA is indeed a closed lattice ideal, and for A D ; and A D X we recover
Lp.X/ and f0g, the two trivial lattice ideals. The following characterization tells that
actually all closed lattice ideals in Lp.X/ arise by this construction.

Theorem 7.10. Let X be a finite measure space and 1 � p <1. Then each closed
lattice ideal I � Lp.X/ has the form IA for some A 2 ˙X.

Proof. Let I � Lp.X/ be a closed lattice ideal. The set

J WD ˚f 2 I W 0 � f � 1
�

is nonempty, closed, _-stable and has upper bound 1 2 Lp.X/ (since �X is finite).
Therefore, by Corollary 7.8 it has even a least upper bound g 2 J. It follows that
0 � g � 1 and thus h WD g ^ .1 � g/ � 0. Since 0 � h � g and g 2 I, the
ideal property yields h 2 I. Since I is a subspace, g C h 2 I. But h � 1 � g, so
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gCh � 1, and this yields hCg 2 J. Thus hCg � g, i.e., h � 0. All in all we obtain
g^ .1� g/ D h D 0, hence g must be a characteristic function 1Ac for some A 2 ˙ .

We claim that I D IA. To prove the inclusion “�” take f 2 I. Then jf j ^ 1 2 J
and therefore jf j ^ 1 � g D 1Ac . This means that f 2 IA. To prove the converse
inclusion take f 2 IA. It suffices to show that jf j 2 I, hence we may suppose that
f � 0. Then fn WD f ^ .n1/ D n.n�1f ^ 1/ � n1Ac D ng. Since g 2 J � I, we
have ng 2 I, whence fn 2 I. Now .fn/n2N is increasing and converges pointwise,
hence in norm to its supremum f . Since I is closed, f 2 I and this concludes the
proof. ut
Remarks 7.11. 1) In most of the results of this section we required p <1 for

good reasons. The space L1.X/ is a Banach lattice, but its norm is not order
continuous in general (Exercise 7). If the measure is finite, L1.X/ is still
order complete (Exercise 11), but this is not true for general measure spaces.
Moreover, if L1 is not finite dimensional, then there are always closed lattice
ideals not of the form IA.

2) For a finite measure space X we have

L1.X/ � Lp.X/ � L1.X/ .1 � p � 1/:
Particularly important in this scale will be the Hilbert lattice L2.X/.

3) Let K be a compact space. Then the closed lattice ideals in the Banach lattice
C.K/ coincide with the closed algebra ideals, i.e., with the sets

IA D
˚
f 2 C.K/ W f 
 0 on A

�
.A � K; closed/;

see Exercise 8.

7.3 The Koopman Operator and Ergodicity

We now study measure-preserving systems .XI'/ and the Koopman operator T WD
T' on Lp.X/. We know that, for every 1 � p � 1,

1) T is an isometry on Lp.X/;

2) T is a Banach lattice homomorphism on Lp.X/ (see page 117);

3) T.f g/ D Tf � Tg for all f 2 Lp.X/, g 2 L1.X/;
4) T is a C�-algebra homomorphism on L1.X/.

As in the topological case, properties of the dynamical system are reflected in
properties of the Koopman operator. Here is a first example (cf. Lemma 4.14 for
the topological analogue).

Proposition 7.12. A measure-preserving system .XI'/ is invertible if and only if
its Koopman operator T' is invertible on Lp.X/ for one/each 1 � p � 1.
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Proof. Fix 1 � p � 1 and abbreviate T WD T' . Let .XI'/ be invertible, i.e.,
'� is surjective (Definition 6.2). Since T1A D 1'�A for any A 2 ˙.X/, it follows
that ran.T/ contains all characteristic functions of measurable sets. Since T is an
isometry, its range is closed, and since simple functions are dense, T is surjective.

Conversely, suppose that T is surjective, and let B 2 ˙.X/. Then there is f 2
Lp.X/ with Tf D 1B. Then Tf D 1B D 12B D .Tf /.Tf / D T.f 2/. Since T is
injective, it follows that f D f 2. But then f D 1A for A D Œ f 6D 0 � and hence
'�A D B. ut

In the following we shall see that ergodicity of .XI'/ can be characterized by a
lattice theoretic property of the associated Koopman operator, namely irreducibility.

Definition 7.13. A positive operator T 2 L .E/ on a Banach lattice E is called
irreducible if the only T-invariant closed lattice ideals of E are the trivial ones, i.e.,

I � E closed lattice ideal; T.I/ � I H) I D f0g or I D E:

If T is not irreducible, it is called reducible.

Let us first discuss this notion in the finite-dimensional setting.

Example 7.14. Consider the space L1.f0; : : : ; n�1g/ D R
n and a positive operator

T on it, identified with its n � n-matrix. Then the irreducibility of T according to
Definition 7.13 coincides with that notion introduced in Section 2.4 on page 27.
Namely, if T is reducible, then there exists a nontrivial T-invariant ideal IA in R

n for
some ; ¤ A ¨ f0; 1; : : : ; n� 1g. After a permutation of the points we may suppose
that A D fk; : : : ; n � 1g for 0 < k < n, and this means that the representing matrix
(with respect to the canonical basis) has the form:

k
0

B
B
B
@

? ? jjj ?
? ? jjj ?
0 jjj ?

1

C
C
C
A k

Let us return to the situation of a measure-preserving system .XI'/. We consider
the associated Koopman operator T WD T' on the space L1.X/, but note that T leaves
each space Lp invariant. The following result shows that the ergodicity of a measure-
preserving system is characterized by the irreducibility of the Koopman operator T
or the one-dimensionality of its fixed space

fix.T/ WD ˚f 2 L1.X/ W Tf D f � D ker.I � T/:

(Note that always 1 2 fix.T/whence dim fix.T/ � 1.) This is reminiscent (cf. Corol-
lary 4.19) of but also contrary to the topological system case, where minimality
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could not be characterized by the one-dimensionality of the fixed space of the
Koopman operator, but by the irreducibility of the Koopman operator.

Proposition 7.15. Let .XI'/ be a measure-preserving system with Koopman oper-
ator T WD T' on L1.X/. Then for 1 � p � 1 the space fix.T/ \ Lp is a Banach
sublattice of Lp.X/ and dense in fix.T/. Furthermore, with 1 � p <1 the following
statements are equivalent:

(i) .XI'/ is ergodic.

(ii) dim fix.T/ D 1, i.e., 1 is a simple eigenvalue of T.

(iii) dim.fix.T/ \ Lp/ D 1.

(iv) dim.fix.T/ \ L1/ D 1.

(v) T as an operator on Lp.X/ is irreducible.

Proof. That fix.T/ \ Lp is a Banach sublattice of Lp is clear from the identities

T.f / D Tf D f and T jf j D jTf j D jf j

for f 2 fix.T/. That fix.T/ \ Lp is dense in fix.T/ follows from Exercise 5. This
establishes the equivalences (ii), (iii), (iv).

For the remaining part notice that, by Lemma 6.17, A is '-invariant if and only if
'�ŒA� D ŒA� if and only if 1A 2 fix.T/. In particular, this establishes the implication
(iv)) (i).

(i)) (iv): Take 0 � f 2 fix.T/ \ L1. Then for every c < kf k1 the set Œ f � c �
is '-invariant. Since f � c almost everywhere is impossible, it follows that f � c
almost everywhere. As c < kf k1 was arbitrary, it follows that f D c1. Since
fix.T/ \ L1 is a Banach sublattice of L1, it follows that fix.T/ \ L1 D C1.

(ii)) (iii)) (iv) is trivial.

(i), (v): By Theorem 7.10 it suffices to show that A 2 ˙ is essentially '-invariant
if and only if IA\Lp is invariant under T. In order to prove this, note that for f 2 L1

and A 2 ˙

T.jf j ^ 1A/ D Tjf j ^ T1A D jTf j ^ T1A:

So if A is essentially '-invariant, we have T1A D 1A, and f 2 IA implies that
Tf 2 IA as well. For the converse suppose that T.IA/ � IA. Then, since 1Ac 2 IA,
we must have 1'�Ac 2 IA, which amounts to '�Ac \ A D ; in ˙.X/. Consequently
A � '�A, which means that A is '-invariant. ut

We apply Proposition 7.15 to the rotations on the torus (see Section 5.3).

Proposition 7.16. For a 2 T the rotation measure-preserving system .T;mI a/ is
ergodic if and only if a is not a root of unity.
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Proof. Let T WD La be the Koopman operator on L2.T/ (cf. Example 4.22) and
suppose that f 2 fix.T/. The functions �n W x 7! xn, n 2 Z, form a complete
orthonormal system in L2.T/. Note that T�n D an�n, i.e., �n is an eigenvector of T
with corresponding eigenvalue an. With appropriate Fourier coefficients bn we have

X

n2Z
bn�n D f D Tf D

X

n2Z
bnT�n D

X

n2Z
anbn�n:

By the uniqueness of the Fourier coefficients, bn.an � 1/ D 0 for all n 2 Z. This
implies that either bn D 0 for all n 2 Z n f0g (hence f is constant), or there is
n 2 Z n f0g with an D 1 (hence a is a root of unity). ut
Remark 7.17. If .TI a/ is a rational rotation, i.e., a is a root of unity, then a
nonconstant fixed point of La is easy to find: Suppose that an D 1 for some n 2 N,
and divide T into n arcs: Ij WD

˚
z 2 T W arg z 2 	2  j�1

n ; 2 
j
n

��
, j D 1; : : : ; n.

Take any integrable function on I1 and “copy it over” to the other segments. The so
arising function is a fixed point of La.

Proposition 7.16 together with Example 2.37 says that a rotation on the torus is
ergodic if and only if it is minimal. Exercise 9 generalizes this to rotations on T

n.
Actually, the result is true for any rotation on a compact group as we shall prove in
Chapter 14.

Similar to the case of minimal topological systems, the peripheral point spectrum
of the Koopman operator has a nice structure.

Proposition 7.18. Let .XI'/ be a measure-preserving system with Koopman oper-
ator Tq WD T' on Lq.X/ (1 � q � 1). Then the following assertions hold:

a) ker.�I � T1/ is dense in ker.� � Tq/ for each � 2 T.

b) Tq has only peripheral eigenvalues, i.e., ¢p.Tq/ D ¢p.Tq/ \ T, and ¢p.Tq/ is
a union of subgroups of T, and it is independent of q 2 Œ1;1�.

c) The system .XI'/ is ergodic if and only if each eigenvalue of T' is simple
and each corresponding eigenfunction is unimodular (up to a multiplicative
constant). In this case, ¢p.Tq/ D ¢p.Tq/\ T is a subgroup of T.

Proof. a) Fix � 2 T and f 2 Lq with Tf D �f . Then jf j D j�f j D jTf j D T jf j,
whence jf j 2 fix.T/. Hence, for any n � 0, gn WD 1Œ jf j�n � 2 fix.T/ as well. Let
fn WD f � gn 2 L1. Then Tfn D Tf � Tgn D �f gn D �fn. Since we may suppose
that q <1, we have fn ! f , and a) is established.

b) The q-independence of the (unimodular) point spectrum follows from a). Since
Tq is isometric, each eigenvalue of Tq is unimodular. Moreover, ¢p.Tq/\T is a union
of subgroups of T by literally the same arguments as in the proof of Theorem 4.21.
This also applies to part c). ut
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The Correspondence Between Koopman Operators and State Space Maps

Contrary to the case of topological systems (cf. Section 4.2), the correspondence
between the underlying dynamics ' and its Koopman operator T' is not so straight-
forward. Of course, one would hope for a result that states that ' is “essentially
determined” by T' . This is false in general; moreover for given two measure-
preserving maps ' and  the set Œ ' D  � may not be (essentially) measurable
(Example 6.7).

As seen in Section 6.1, such pathologies can be avoided by restricting to the class
of standard probability spaces (Definition 6.8).

Proposition 7.19. Let ';  W X ! Y be measure-preserving mappings between
standard probability spaces X, Y, and let T'; T W L1.Y/ ! L1.X/ be the induced
Koopman operators. Then T' D T if and only if ' D  almost everywhere.

Proof. Only one implication is not trivial. If T' D T , then 1'�A D T'1A D T 1A D
1 �A almost everywhere for every A 2 ˙Y, i.e., '� D  �. By Proposition 6.10,
' D  almost everywhere. ut

A second, related, question is, which operators between L1-spaces (say) arise
as Koopman operators. Again, the topological analogue—Theorem 4.13—is un-
ambiguous, but the measure theoretic situation is more complicated. And again,
restricting to standard probability spaces saves the day, by a famous theorem of von
Neumann.

Theorem 7.20 (Von Neumann). Let X and Y be standard probability spaces and
let T W L1.Y/ ! L1.X/ be a linear operator. Then T D T' for some measure-
preserving measurable map ' W X ! Y if and only if T has the following properties:

1) T1 D 1 and
R

X Tf D RY f for all f 2 L1.Y/.

2) T is a lattice homomorphism.

Theorem 7.20 goes back to von Neumann (1932a, Satz 1) where the result is
established for Borel probability spaces. (The extension to standard probability
spaces is straightforward.) It is the central “interface” between a functional analytic
and a measure theoretic approach to ergodic theory. However, it will not be used
in an essential way in the rest of the book (cf., however, Theorem 12.14). For the
interested reader, the proof is included in Appendix F, see Theorem F.9.

The following consequence of Theorem 7.20 has already been mentioned at the
end of Section 6.1.

Corollary 7.21. Let .XI'/ be a measure-preserving system over a standard prob-
ability space X. Then the system .XI'/ is invertible if and only if ' is essentially
invertible.

Proof. One implication is Corollary 6.5. For the converse, suppose that .XI'/ is
invertible. Then its Koopman operator T WD T' is invertible, by Proposition 7.12.
The inverse T�1 satisfies properties 1) and 2) from Theorem 7.20, hence by that



Supplement: Interplay Between Lattice and Algebra Structure 129

very result there is a measure-preserving map  W Y ! X with T D T�1. But then
T ı' D T T D I D Tid. Now Proposition 7.19 implies that  ı ' D id almost
everywhere. Analogously, ' ı  D id almost everywhere, thus  is an essential
inverse of '. ut
Remark 7.22. Standard probability spaces are also called Lebesgue–Rokhlin prob-
ability spaces or standard Lebesgue spaces or simply Lebesgue spaces in the
literature. Lebesgue spaces as such were introduced by Rokhlin in (1949) (English
translation in Rokhlin (1952)), with a definition different from ours (but including
the Borel probability spaces). In this work, Rokhlin gives an alternative proof of von
Neumann’s theorem, see Rokhlin (1952, p. 22).

The name “Lebesgue space” derives from the fact that a probability space is a
Lebesgue space if and only if there is a measure-preserving and essentially invertible
map from it to the disjoint union of a discrete space and the unit interval Œ0; 1� with
Lebesgue measure (appropriately scaled). This result is included in Rokhlin (1949),
but according to Rokhlin (1952, p. 2) it is already contained in an unpublished
work from 1940. Independently, a similar representation theorem was established
by Halmos and von Neumann (1942). The theorem shows that standard probability
spaces in our definition are the same as Rokhlin’s Lebesgue spaces.

Mappings with the properties 1) and 2) as in Theorem 7.20 are also called Markov
embeddings (see Definition 12.9 below). The analogy between Theorems 7.20 and
4.13 becomes more striking when one realizes the close connection between lattice
and algebra homomorphisms. This is the topic of the following supplement and
Exercise 18.

Supplement: Interplay Between Lattice and
Algebra Structure

The space C.K/ for a compact space K and L1.X/ for some probability space
X D .X; ˙; �/ are simultaneously commutative C�-algebras and complex Banach
lattices. In this section we shall show that both structures, the �-algebraic and the
Banach lattice structure, essentially determine each other, in the sense that either
one can be reconstructed from the other, and that mappings that preserve one of
them also preserve the other.

For the following we suppose that E D C.K/ or E D L1.X/. To begin with, note
that

jf j D �1 � .1 � jf j2/� 12 D
1X

kD0

�
1
2

k

�
.�1/k.1 � f f /k
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which is valid for f 2 E with kf k � 1; for general f , we use a rescaling. This
shows that the modulus mapping can be recovered from the C�-algebraic structure
(algebra + conjugation + unit element + norm approximation).

Conversely, the multiplication can be recovered from the lattice structure in the
following way. Since multiplication is bilinear and since conjugation is present in
the lattice structure, it suffices to know the products f �g where f; g are real valued.
By the polarization identity

2 � f � g D .f C g/2 � f 2 � g2; (7.4)

the product of the real elements is determined by taking squares; and since for a real
element h2 D jhj2, it suffices to cover squares of positive elements.

Now, let 0 < p < 1. Writing the (continuous and convex/concave) mapping
x 7! xp on RC as the supremum/infimum over tangent lines, we obtain for x � 0

xp D
(

supt>0 ptp�1x � .p � 1/tp if 1 � p <1;
inft>0 ptp�1x � .p � 1/tp if 0 < p � 1: (7.5)

In the case p � 1 define

hn.x/ WD
n_

kD1
ptp�1

k x � .p � 1/tp
k .x � 0; n 2 N/;

where .tk/k2N is any enumeration of QC. Then, by (7.5) and continuity, hn.x/ %
xp pointwise, and hence uniformly on bounded subsets of RC, by Dini’s theorem
(Exercise 15). So if 0 � f 2 E, then hn ı f ! f p in norm, and hn ı f is contained
in any vector sublattice of E that contains f and 1. In particular, for p D 2, it
follows that the multiplication can be recovered from the Banach lattice structure
and the constant function 1. More precisely, we have the following result.

Theorem 7.23. Let E D C.K/ or E D L1.X/, and let A � E be a closed,
conjugation invariant linear subspace with 1 2 A. Then the following assertions
are equivalent:

(i) A is a subalgebra of E.

(ii) A is a vector sublattice of E.

(iii) If f 2 A, then jf jp 2 A for all 0 < p <1.

Now suppose that A satisfies (i)–(iii), and let ˚ W A ! L1.Y/ be a conjugation-
preserving linear operator such that ˚1 D 1. Then the following statements are
equivalent for 1 � p <1:

(iv) ˚ is a homomorphism of C�-algebras.

(v) ˚ is a lattice homomorphism.

(vi) ˚ jf jp D j˚f jp for every f 2 A.
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Proof. The proof of the first part is left as Exercise 16. In the second part, suppose
that (iv) holds. Then it follows from

�
˚ jf j�2 D ˚ jf j2 D ˚.f f / D .˚f /.˚f / D j˚f j2

that ˚ is a lattice homomorphism, i.e., (v). Now suppose that (v) is true. Then ˚ is
positive and hence bounded. Let f � 0 and 1 < p <1. We have f p D limn hnıf ,
where hn is as above. Then

˚f p D lim
n
˚.hn ı f / D lim

n
hn ı .˚f / D .˚f /p

because ˚ is a lattice homomorphism. Hence, (vi) is established.
Finally, suppose that (vi) holds. Then ˚ is positive. Indeed, if 0 � f 2 A, then

by (iii), g WD f 1=p 2 A and thus ˚f D ˚gp D j˚gjp � 0. Now let f 2 A and
suppose that p > 1. Then by the Hölder inequality (Theorem 7.24) below,

˚ jf j � .˚ jf jp/1=p.˚1q/1=q D .˚ jf jp/1=p D j˚f j � ˚ jf j

by (vi) and the positivity of ˚ . Hence, (v) follows, and this implies (vi) also for
p D 2 as already shown. The polarization identity (7.4) yields˚.f g/ D ˚.f /˚.g/
for real elements f; g 2 A. Since ˚ preserves conjugation, ˚ is multiplicative on
the whole of A, and (iv) follows. ut

The following fact was used in the proof, but is also of independent interest.

Theorem 7.24 (Hölder’s Inequality for Positive Operators). Let E D C.K/ or
L1.X/, and let A � E be a C�-subalgebra of E. Furthermore, let Y be any measure
space, and let T W A! L0.Y/ be a positive linear operator. Then

jT.f � g/j � .T jf jp/1=p � .T jgjq/1=q (7.6)

whenever f; g 2 A with f; g � 0.

Proof. We start with the representation

x1=p D inf
t>0

1
p t�1=qxC 1

q t1=p

which is (7.5) with p replaced by 1
p . For fixed y > 0, multiply this identity with y1=q

and arrive at

x1=py1=q D inf
t>0

1
p .yt�1/1=qxC 1

q t1=py1=q D inf
s>0

1
p s�1=qxC 1

q s1=py
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by a change of parameter s D ty. Replace now x by xp and y by yq to obtain

xy D inf
s>0

1
p s�1=qxp C 1

q s1=pyq: (7.7)

Note that this holds true even for y D 0, and by a continuity argument we may
restrict the range of the parameter s to positive rational numbers. Then, for a fixed
0 < s 2 Q (7.7) yields

jf � gj � 1
p s�1=q jf jp C 1

q s1=p jgjq :

Applying T we obtain

jT.f � g/j � T jf � gj � 1
p s�1=qT jf jp C 1

q s1=pT jgjq

and, taking the infimum over 0 < s 2 Q, by (7.7) again we arrive at (7.6). ut
Remarks 7.25. 1) Theorem 7.23 remains true if one replaces L1.Y/ by a

space C.K0/. (Fix an arbitrary x 2 K0 and apply Theorem 7.23 with Y D
.K;Bo.K/; ıx/.)

2) Theorem 7.23 can be generalized by means of approximation arguments, see
Exercise 17.

Exercises

1. Show that if ' W Y ! X is measurable with '��Y D �X, then the associated
Koopman operator T' W L1.X/! L1.Y/ is an isometry.

2. Let X be a measure space and let 1 � p � 1. Show that

jf j D sup
˚
Re.cf / W c 2 T

�

with the supremum being taken with respect to the order of Lp.XIR/.
3. Prove that C.K/, K compact, is a complex Banach lattice.

4. Prove Lemma 7.4.

5. Let X be a finite measure space, let 1 � p � q � 1, and let E � Lp.X/ be a
Banach sublattice containing 1. Show that E\Lq is a Banach sublattice of Lq, dense
in E.

Remark. One can show that for 1 � p < 1 each Banach sublattice of Lp.X/
containing 1 is of the form Lp.X; ˙; �X/, where ˙ � ˙X is a sub-�-algebra, cf.
Proposition 13.19 below.
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6. Show that a Banach lattice E is order complete if and only if every order interval
Œf; g�, f; g 2 ER, is a complete lattice.

7. Show that if L1.X; ˙; �/ is infinite dimensional, its norm is neither strictly
monotone nor order continuous.

8. Prove that for a space C.K/ the closed lattice ideals coincide with the closed
algebra ideals. (Hint: Adapt the proof of Theorem 4.8.)

9. Show that the rotation on the torusTn is ergodic if and only if it is minimal. (Hint:
Copy the proof of Proposition 7.16 using n-dimensional Fourier coefficients.)

10. Let ˛ 2 Œ0; 1/ be an irrational number and consider the shift '˛ W x 7! x C
˛ .mod 1/ on Œ0; 1�. Show that for the point spectrum of the Koopman operator L˛
on L2Œ0; 1� we have ¢p.L˛/ D fe2 im˛ W m 2 Zg. (Hint: Use a Fourier expansion as
in the proof of Proposition 7.16.)

11. Let X be a finite measure space. Show that the lattice

V WD L0.XI Œ0; 1�/ D ˚f 2 L1.X/ W 0 � f � 1�

is complete. (Hint: Use Corollary 7.8.) Show that the lattices

L0.XIR/ and L0.XI Œ0;1�/

are lattice isomorphic to V and conclude that they are complete. Finally, prove that
L1.XIR/ is an order complete Banach lattice, but its norm is not order continuous
in general.

12. Let X D .X; ˙; �/ be a probability space, and let and F � L1.X/C be^-stable
such that infF D 0. Show (e.g., by using Theorem 7.6) that inff 2F kf k1 D 0.

13. Let X be a finite measure space and 0 � f 2 L0.XIR/. Show that supn2N.nf ^
1/ D 1Œ f >0 �. Show that f D 1A for some A 2 ˙ if and only if cf ^ 1 D f for
every c > 1.

14. Let X D .X; ˙; �/ be a finite measure space. Show that f1A W A 2 ˙g is a
complete sublattice of L1.X/. Conclude that the measure algebra˙.X/ is a complete
lattice.

15 (Dini’s Theorem). Let K be a compact space and suppose that .fn/n2N is a
sequence in C.K/ with 0 � fn � fnC1 for all n 2 N. Suppose further that there is
f 2 C.K/ such that fn ! f pointwise. Then the convergence is uniform. Prove
this fact.

16. Prove the first part of Theorem 7.23.
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17 (Hölder’s Inequality for Positive Operators). Let X and Y be measure spaces,
and let T W L1.X/! L0.Y/ be a positive linear operator. Show that

jT.f � g/j � .T jf jp/1=p � .T jgjq/1=q

whenever 1 < p <1, 1p C 1
q D 1 and f 2 Lp.X/, g 2 Lq.X/.

18 (L1-Version of Von Neumann’s Theorem). Let X and Y be standard proba-
bility spaces and let T W L1.Y/ ! L1.X/ be a linear operator. Prove that T D T'
for some measure-preserving measurable map ' W X ! Y if and only if T has the
following properties:

1) T1 D 1 and
R

X Tf D RY f for all f 2 L1.Y/.
2) T is a C�-algebra homomorphism.

(Hint: Combine Theorem 7.20 with Theorem 7.23.)



Chapter 8
The Mean Ergodic Theorem

One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have a
way of blooming into beautiful theories.

Philip J. Davis1

As said at the beginning of Chapter 5, the reason for introducing measure-preserving
dynamical systems is the intuition of a statistical equilibrium emergent from (very
rapid) deterministic interactions of a multitude of particles. A measurement of the
system can be considered as a random experiment, where repeated measurements
appear to be independent since the time scale of measurements is far larger than the
time scale of the internal dynamics.

In such a perspective, one expects that the (arithmetic) averages over the
outcomes of these measurements (“time averages”) should converge—in some sense
or another—to a sort of “expected value.” In mathematical terms, given a measure-
preserving system .XI'/ and an “observable” f W X ! R, the time averages take
the form

Anf .x/ WD 1

n

�
f .x/C f .'.x//C � � � C f .'n�1.x/

�
(8.1)

if x 2 X is the initial state of the system; and the expected value is the “space mean”

Z

X
f

of f . In his original approach, Boltzmann assumed the so-called Ergodenhypothese,
which allowed him to prove the convergence Anf .x/ !

R
X f (“time mean equals

space mean,” cf. Chapter 1). However, the Ehrenfests (1912) doubted that this

1Scientific American, 211, (Sept. 1964), pp. 51–59.
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“Ergodenhypothese” is ever satisfied, a conjecture that was confirmed independently
by Rosenthal and Plancherel only a few years later (Brush 1971). After some 20
more years, von Neumann (1932b) and Birkhoff (1931) made a major advance
by separating the question of convergence of the averages Anf from the question
whether the limit is the space mean of f or not. Their results—the “Mean
Ergodic Theorem” and the “Individual Ergodic Theorem”—roughly state that under
reasonable conditions on f the time averages always converge in some sense, while
the limit is the expected “space mean” if and only if the system is ergodic (in
our terminology). These theorems gave birth to Ergodic Theory as a mathematical
discipline.

The present and the following two chapters are devoted to these fundamental
results, starting with von Neumann’s theorem. The Koopman operators induced
by dynamical systems and studied in the previous chapters will be the main
protagonists now.

8.1 Von Neumann’s Mean Ergodic Theorem

Let .XI'/ be a measure-preserving system and let T D T' be the Koopman
operator. Note that the time mean of a function f under the first n 2 N iterates
of T (8.1) can be written as

Anf D 1

n

�
f C f ı ' C � � � C f ı 'n�1� D 1

n

n�1X

jD0
Tjf:

Von Neumann’s theorem deals with these averages Anf for f from the Hilbert
space L2.X/.

Theorem 8.1 (Von Neumann). Let .XI'/ be a measure-preserving system and
consider the Koopman operator T WD T' . For each f 2 L2.X/ the limit

lim
n!1 Anf D lim

n!1
1

n

n�1X

jD0
Tjf

exists in the L2-sense and is a fixed point of T.

We shall not give von Neumann’s original proof, but take a route that is more
suitable for generalizations. For a linear operator T on a vector space E we let

AnŒT� WD 1

n

n�1X

jD0
Tj .n 2 N/
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be the Cesàro averages (or: Cesàro means) of the first n iterates of T. If T is
understood, we omit explicit reference and simply write An in place of AnŒT�.
Further we denote by

fix.T/ WD ˚f 2 E W Tf D f � D ker.I � T/

the fixed space of T.

Lemma 8.2. Let E be a Banach space and let T W E ! E be a bounded linear
operator on E. Then, with An WD AnŒT�, the following assertions hold:

a) If f 2 fix.T/, then Anf D f for all n 2 N, and hence Anf ! f .

b) One has

AnT D TAn D nC 1
n

AnC1 � 1
n

I .n 2 N/: (8.2)

If Anf ! g, then Tg D g and AnTf ! g.

c) One has

.I � T/An D An.I � T/ D 1

n
.I � Tn/ .n 2 N/: (8.3)

If 1n Tnf ! 0 for all f 2 E, then Anf ! 0 for all f 2 ran.I � T/.

d) One has

I � An D .I � T/
1

n

n�1X

kD0

k�1X

jD0
Tj .n 2 N/: (8.4)

If Anf ! g, then f � g 2 ran.I � T/.

Proof. a) is trivial, and the formulae (8.2)–(8.4) are established by simple algebraic
manipulations. The remaining statements then follow from these formulae. ut

From a) and b) of Lemma 8.2 we can conclude the following.

Lemma 8.3. Let T be a bounded linear operator on a Banach space E. Then

F WD ˚ f 2 E W PTf WD lim
n!1 Anf exists

�

is a T-invariant subspace of E containing fix.T/. Moreover PT W F ! F is a
projection onto fix.T/ satisfying TPT D PTT D PT on F.

Proof. It is clear that F is a subspace of E and PT W F ! E is linear. By
Lemma 8.2.b, F is T-invariant, ran.PT/ � fix.T/ and PTTf D TPTf D PTf for
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all f 2 F. Finally it follows from Lemma 8.2.a that fix.T/ � F, and PTf D f if
f 2 fix.T/. In particular P2T D PT , i.e., PT is a projection. ut
Definition 8.4. Let T be a bounded linear operator on a Banach space E. Then the
operator PT , defined by

PTf WD lim
n!1

1

n

n�1X

jD0
Tjf (8.5)

on the space F of all f 2 E where this limit exists, is called the mean ergodic
projection associated with T. The operator T is called mean ergodic if F D E, i.e.,
if the limit in (8.5) exists for every f 2 E.

Using this terminology we can rephrase von Neumann’s result: The Koopman
operator associated with a measure-preserving system .XI'/ is mean ergodic when
considered as an operator on E D L2.X/. Our proof of this statement consists of
two more steps.

Theorem 8.5. Let T 2 L .E/, E a Banach space. Suppose that supn2N kAnk < 1
and that 1n Tnf ! 0 for all f 2 E. Then the subspace

F WD ˚f W lim
n!1 Anf exists

�

is closed, T-invariant, and decomposes into a direct sum of closed subspaces

F D fix.T/˚ ran.I � T/:

The operator TjF 2 L .F/ is mean ergodic. Furthermore, the operator

PT W F! fix.T/ PTf WD lim
n!1 Anf

is a bounded projection with kernel ker.PT/ D ran.I � T/ and PTT D PT D TPT.

Proof. By Lemma 8.3, all that remains to show is that F is closed, PT is bounded,
and ker.PT/ D ran.I � T/. The closedness of F and the boundedness of PT are
solely due to the uniform boundedness of the operator sequence .An/n2N and the
strong convergence lemma (Exercise 1).

To prove the remaining statement, note that by Lemma 8.2.c ran.I � T/ �
ker.PT/, hence ran.I � T/ � ker.PT/, as PT is bounded. Since PT is a projection,
one has ker.PT/ D ran.I � PT/, and by Lemma 8.2.d we finally obtain

ker.PT/ D ran.I � PT/ � ran.I � T/ � ker.PT/: ut
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Mean ergodic operators will be studied in greater detail in Section 8.4 below. For
the moment we note the following important result, which entails von Neumann’s
theorem as a corollary.

Theorem 8.6 (Mean Ergodic Theorem on Hilbert Spaces). Let H be a Hilbert
space and let T 2 L .H/ be a contraction, i.e., kTk � 1. Then

PTf WD lim
n!1

1

n

n�1X

jD0
Tjf exists for every f 2 H:

Moreover, H D fix.T/˚ ran.I � T/ is an orthogonal decomposition, and the mean
ergodic projection PT is the orthogonal projection onto fix.T/.

Proof. If T is a contraction, then the powers Tn and hence the Cesàro averages AnŒT�
are contractions, too, and 1

n Tn ! 0. Therefore, Theorem 8.5 can be applied and so
the subspace F is closed and PT W F ! F is a projection onto fix.T/ with kernel
ran.I � T/.

Take now f 2 H with f ? ran.I � T/. Then .f jf � Tf / D 0 and hence
.f jTf / D .f jf / D kf k2. Since T is a contraction, this implies that

kTf � f k2 D kTf k2 � 2Re .f j Tf /C kf k2 D kTf k2 � kf k2 � 0:

Consequently, f D Tf , i.e., f 2 fix.T/.
Hence, we have proved that

ran.I � T/? � fix.T/:

However, from ran.I � T/ \ fix.T/ D f0g we obtain ran.I � T/? D fix.T/ as
claimed. (Alternatively, note that PT must be a contraction and use that a contractive
projection is orthogonal, see Theorem D.21.) ut

Let us note the following interesting consequence (cf. also Lemma D.14).

Corollary 8.7. Let T be a contraction on a Hilbert space H. Then fix.T/ D fix.T�/
and PT D PT� .

Proof. Note that f 2 fix.T�/ implies that .Tf j f / D .f j T�f / D kf k2 and
hence Tf D f as in the proof of Theorem 8.6. By symmetry, fix.T/ D fix.T�/,
and then PT D PT� since both are orthogonal projections onto the same closed
subspace of H.

Alternatively, one may argue as follows. Since AnŒT� ! PT strongly, i.e.,
pointwise on H, AnŒT�� D AnŒT�� ! P�

T D PT weakly. But T� is a contraction
as well, hence AnŒT�� ! PT� strongly. Hence, PT D PT� and fix.T/ =
fix.T�/. ut
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8.2 The Fixed Space and Ergodicity

Let .XI'/ be a measure-preserving system. In von Neumann’s theorem the Koop-
man operator was considered as an operator on L2.X/. However, it is natural to view
it also as an operator on L1 and in fact on any Lp-space with 1 � p � 1.

Theorem 8.8. Let .XI'/ be a measure-preserving system, and consider the Koop-
man operator T D T' on the space L1 D L1.X/. Then

PTf WD lim
n!1

1

n

n�1X

jD0
Tjf exists in Lp for every f 2 Lp, 1 � p <1:

Moreover, for 1 � p � 1, the following assertions hold:

a) The space fix.T/ \ Lp is a Banach sublattice of Lp containing 1.

b) PT W Lp ! fix T \ Lp is a positive contractive projection satisfying

Z

X
PTf D

Z

X
f .f 2 Lp/ (8.6)

and PT.f � PTg/ D .PTf / � .PTg/ .f 2 Lp; g 2 Lq; 1p C 1
q D 1/:

(8.7)

Proof. Let f 2 L1. Then, by von Neumann’s theorem, the limit PTf D
limn!1 Anf exists in L2, thus a fortiori in L1. Moreover, since jTnf j � kf k1 1
for each n 2 N0, we have jAnf j � kf k1 1 and finally jPTf j � kf k1 1. Then
Hölder’s inequality yields

kAnf � PTf kp
p � .2 kf k1/p�1 kAnf � PTf k1 ! 0

for any 1 � p <1. Hence, we have proved that for each such p the space

Fp WD
˚
f 2 Lp W k�kp � lim

n!1 Anf exists
�

contains the dense subspace L1. But Fp is closed in Lp by Theorem 8.5, and so it
must be all of Lp.

a) Take f 2 fix.T/. Then T jf j D jTf j D jf j and Tf D Tf D f . Hence
fix.T/ \ Lp is a vector sublattice of Lp. Since it is obviously closed in Lp, it is a
Banach sublattice of Lp.

b) The equality in (8.6) is immediate from the definition of PT and the measure-
preserving property of ' (see (7.1)). For the proof of the remaining part we may
suppose by symmetry and density that g D PTg 2 L1. Then Tg D g and hence
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An.f g/ D 1

n

n�1X

jD0
Tj.f g/ D 1

n

n�1X

jD0
.Tjf /.Tjg/ D 1

n

n�1X

jD0
.Tjf /g

D .Anf / � g! .PTf / � g as n!1. ut

Remark 8.9. We give a probabilistic view on the mean ergodic projection PT .
Define

˙' WD fix.'�/ WD ˚A 2 ˙X W '�A D A
� D ˚A 2 ˙X W 1A 2 fix.T/

�
:

This is obviously a sub-�-algebra of ˙X, called the '-invariant �-algebra. We
claim that

fix.T/ D L1.X; ˙'; �X/:

Indeed, since step functions are dense in L1, every f 2 L1.X; ˙'; �X/ is contained
in fix.T/. On the other hand, if f 2 fix.T/, then for every Borel set B � C one has

'�Œ f 2 B � D Œ ' 2 Œ f 2 B � � D Œ f ı ' 2 B � D 	T'f 2 B

 D Œ f 2 B � ;

which shows that Œ f 2 B � 2 ˙' . Hence, f is ˙' -measurable. Now, take A 2 ˙'

and f WD 1A in (8.7) and use (8.6) to obtain

Z

X
1A PTf D

Z

X
PT.1A � f / D

Z

X
1A � f:

This shows that PTf D E.f j˙'/ is the conditional expectation of f with respect
to the '-invariant �-algebra ˙' .

We can now extend the characterization of ergodicity by means of the Koopman
operator obtained in Proposition 7.15.

Theorem 8.10. Let .XI'/ be a measure-preserving system, X D .X; ˙; �/, with
associated Koopman operator T WD T' on L1.X/, and let 1 � p <1. The following
statements are equivalent:

(i) .XI'/ is ergodic.

(ii) dim fix.T/ D 1, i.e., 1 is a simple eigenvalue of T.

(iii) dim.fix.T/ \ L1/ D 1.

(iv) T as an operator on Lp.X/ is irreducible.

(v) PTf D lim
n!1

1

n

n�1X

jD0
Tjf D

Z

X
f � 1 for every f 2 L1.X/.
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(vi) lim
n!1

1

n

n�1X

jD0

Z

X
.f ı ' j/ � g D

�Z

X
f

� �Z

X
g

�

for all f 2 Lp, g 2 Lq where 1
p C 1

q D 1.

(vii) lim
n!1

1

n

n�1X

jD0
�.A \ '�j.B// D �.A/�.B/ for all A; B 2 ˙ .

(viii) lim
n!1

1

n

n�1X

jD0
�.A \ '�j.A// D �.A/2 for all A 2 ˙ .

Proof. The equivalence of (i)–(iv) has been proved in Proposition 7.15.

(ii)) (v): Let f 2 L1. Then PTf 2 fix.T/, so PTf D c � 1 by (ii). Integrating yields
c D RX f .

(v)) (vi) follows by multiplying with g and integrating; (vi)) (vii) follows by
specializing f D 1A and g D 1B, and (vii)) (viii) is proved by specializing A D B.

(viii)) (i): Let A be '-invariant, i.e., '�.A/ D A in the measure algebra. Then

1

n

n�1X

jD0
�.A \ '�j.A// D 1

n

n�1X

jD0
�.A/ D �.A/;

and hence �.A/2 D �.A/ by (viii). Therefore �.A/ 2 f0; 1g, and (i) is proved. ut
Remarks 8.11. 1) Note that the convergence in (v) is even in the Lp-norm

whenever f 2 Lp with 1 � p <1. This follows from Theorem 8.8.

2) Assertion (v) is, in probabilistic language, a kind of “weak law of large
numbers”. Namely, fix f 2 Lp.X/ and let Xj WD f ı ' j, j 2 N0. Then the
Xj are identically distributed random variables on the probability space X
with common expectation E.Xj/ D

R
X f DW c. Property (v) just says that

X0 C � � � C Xn�1
n

! c as n!1

in L1-norm. Note that this is slightly stronger than the “classical” weak law
of large numbers that asserts convergence in measure (probability) only (see
Billingsley 1979). We shall come back to this in Section 11.3.

3) Suppose that �.A/ > 0. Then dividing by �.A/ in (vii) yields

1

n

n�1X

jD0
�A
	
' j 2 B


! �.B/ .n!1/

for every B 2 ˙ , where �A is the conditional probability given A (cf.
Section 6.2). This shows that in an ergodic system the original measure �
is completely determined by �A.
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4) By a standard density argument one can replace “for all f 2 L1.X/” in
assertion (v) by “for all f in a dense subset of L1.X/”. The same holds for
f and g in assertion (vi). Similarly, it suffices to take in (vii) sets from a
\-stable generator of˙ (Exercise 2).

8.3 Perron’s Theorem and the Ergodicity of Markov Shifts

Let L D f0; : : : ; k�1g and let S D .sij/0�i;j<k be a row-stochastic matrix, i.e., S � 0
and S1 D 1, where 1 D .1; 1; : : : ; 1/t. It was remarked in Example 2.4 that S is a
contraction on the finite-dimensional Banach space E WD .Cd; k�k1/. In particular,
it satisfies the hypotheses of Theorem 8.5, whence the limit

Qx WD lim
n!1

1

n

n�1X

jD0
Sjx

exists for every x 2 F WD fix.S/ ˚ ran.I � S/. (Note that in finite dimensions all
linear subspaces are closed.) The dimension formula from elementary linear algebra
shows that F D E, i.e., S is mean ergodic, with Q being the mean ergodic projection.
Clearly Q � 0 and Q1 D 1 as well, so the rows of Q are probability vectors.
Moreover, since QS D Q, each row of Q is a left fixed vector of S. Hence, we have
proved the following version of Perron’s theorem, already claimed in Section 5.1 on
page 78.

Theorem 8.12 (Perron). Let S be a row-stochastic k � k-matrix. Then there is at
least one probability (column) vector p such that ptS D pt.

Recall (from Section 2.4, cf. Section 7.3) that a positive matrix S is irreducible
if for every pair of indices .i; j/ 2 L�L there is an r 2 N0 such that sr

ij WD ŒSr�ij > 0.
Furthermore, let us call a matrix A D .aij/0�i;j<k strictly positive if aij > 0 for all
indices i; j. We have the following characterization.

Lemma 8.13. For a row-stochastic k � k-matrix S the following assertions are
equivalent:

(i) S is irreducible.

(ii) There is m 2 N such that .IC S/m is strictly positive.

(iii) Q D limn!1 1
n

Pn�1
jD0 Sj is strictly positive.

If (i)–(iii) hold, then fix.S/ D C1, there is a unique probability vector p with ptS D
pt, and p is strictly positive.

Proof. (i)) (ii): Simply expand .ICS/m DPm
jD0

�m
j

�
Sj. If S is irreducible, then for

large enough m 2 N, the resulting matrix must have each entry strictly positive.
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(ii)) (iii): Since QS D Q, it follows that Q.I C S/m D 2mQ. But if .I C S/m is
strictly positive, so is Q.IC S/m, since Q has no zero row.

(iii)) (i): If Q is strictly positive, then for large n the Cesàro mean AnŒS� must be
strictly positive, and hence S is irreducible.

Suppose that (i)–(iii) hold. We claim that Q has rank 1. If y is a column of Q, then
Qy D y, i.e., Q is a projection onto its column-space. Let " WD minj yj and x WD
y � "1. Then x � 0 and Qx D x, but since Q is strictly positive and x is positive,
either x D 0 or x is also strictly positive. The latter is impossible by construction
of x, and hence x D 0. This means that all entries of y are equal. Since y was an
arbitrary column of Q, the claim is proved.

It follows that each column of Q is a strictly positive multiple of 1, and so all the
rows of Q are identical. That means, there is a strictly positive p such that Q D 1pt.
We have seen above that ptS D pt. And if q is any probability vector with qtS D qt,
then qt D qtQ D qt1pt D pt. ut

We remark that in general dim fix.S/ D 1 does not imply irreducibility of S, see
Exercise 3.

By the lemma, an irreducible row-stochastic matrix S has a unique fixed
probability vector p, which is strictly positive. We are now in the position to
characterize the ergodicity of Markov shifts (see Example 6.21.1).

Theorem 8.14. Let S be a row-stochastic k� k-matrix with fixed probability vector
p. Then p is strictly positive and the Markov shift .W C

k ; ˙; �.S; p/I �/ is ergodic, if
and only if S is irreducible.

Proof. Let i0; : : : ; il 2 L and j0; : : : ; jr 2 L. Then for n 2 N we have

�
�fi0g� � � � � filg � Ln�1 � fj0g � � � � � fjrg �

Y
L
�

D pi0si0i1 : : : sil�1il sn
ilj0 sj0j1 : : : sjr�1 jr

as a short calculation using (5.2) and involving the relevant indices reveals. If we
consider the cylinder sets

E WD fi0g � � � � � filg �
Y

L; F WD fj0g � � � � � fjrg �
Y

L;

then for n > l

Œ �n 2 F � \ E D fi0g � � � � � filg � Ln�l�1 � fj0g � � � � � fjrg �
Y

L;

and hence

�.Œ �n 2 F � \ E/ D pi0si0 i1 : : : sil�1il sn�l
il j0

sj0 j1 : : : sjr�1jr :
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By taking Cesàro averages of this expression we conclude that

lim
N!1

1

N

N�1X

nD0
�.Œ �n 2 F � \ E/ D pi0si0i1 : : : sil�1il qilj0 sj0j1 : : : sjr�1 jr :

If S is irreducible, we know from Lemma 8.13 that qilj0 D pj0 , and hence

lim
N!1

1

N

N�1X

nD0
�.Œ �n 2 F � \ E/ D �.E/�.F/:

Since cylinder sets form a dense subalgebra of ˙ , by Remark 8.11.4 we conclude
that (vii) of Theorem 8.10 holds, i.e., the measure-preserving system is ergodic.

Conversely, suppose that p is strictly positive and the measure-preserving system
is ergodic, and fix i; j 2 L. Specializing E D fig �Q L and F D fjg �Q L above,
by Theorem 8.10 we obtain

pipj D �.E/�.F/ D lim
N!1

1

N

N�1X

nD0
�.Œ �n 2 F � \ E/ D piqij:

Since pi > 0 by assumption, qij D pj > 0. Hence, Q is strictly positive, and this
implies that S is irreducible by Lemma 8.13. ut

8.4 Mean Ergodic Operators

As a matter of fact, the concept of mean ergodicity has applications far beyond
Koopman operators coming from measure-preserving systems. In Section 8.1 we
introduced that concept for bounded linear operators on general Banach spaces, and
a short inspection shows that one can study mean ergodicity under more general
hypotheses.

Remark 8.15. The assertions of Lemma 8.2 and Lemma 8.3 remain valid if T is
merely a continuous linear operator on a Hausdorff topological vector space E.
Some of these statements, e.g., the fundamental identity An � TAn D 1

n .I � Tn/

even hold if E is merely a convex subset of a Hausdorff topological vector space and
T W E ! E is affine (meaning Tf D Lf C g, with g 2 E and L W E ! E linear and
continuous).

Accordingly, and in coherence with Definition 8.4, a continuous linear operator
T W E! E on a Hausdorff topological vector space E is called mean ergodic if

PTf WD lim
n!1

1

n

n�1X

jD0
Tjf
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exists for every f 2 E. Up to now we have seen three instances of mean ergodic
operators:

1) contractions on Hilbert spaces (Theorem 8.6),

2) Koopman operators on Lp, 1 � p < 1, associated with measure-preserving
systems (Theorem 8.8),

3) row-stochastic matrices on C
d (Section 8.3).

We shall see more in this and later chapters:

4) power-bounded operators on reflexive spaces (Theorem 8.22),

5) Dunford–Schwartz operators on finite measure spaces (Theorem 8.24),

6) the Koopman operator on C.T/ of a rotation on T (see Proposition 10.10)
and the Koopman operator on RŒ0; 1� of a mod 1 translation on Œ0; 1/ (see
Proposition 10.21),

7) the Koopman operator on C.G/ of a rotation on a compact group G
(Corollary 10.12).

In this section we shall give a quite surprising characterization for mean ergodicity
of bounded linear operators on general Banach spaces.

We begin by showing that the hypotheses of Theorem 8.5 are natural. Recall the
notation

An D AnŒT� D 1

n

n�1X

jD0
Tj .n 2 N/

for the Cesàro averages. A bounded operator T on a Banach space E is called Cesàro
bounded if supn2N kAnk <1.

Lemma 8.16. If E is a Banach space and T 2 L .E/ is mean ergodic, then T is
Cesàro bounded and 1

n Tnf ! 0 for every f 2 E.

Proof. As limn!1 Anf exists for every f 2 E and E is a Banach space, it follows
from the uniform boundedness principle (Theorem C.1) that supn2N kAnk < 1.
From Lemma 8.2.b we have TPT D PT , i.e., .I � T/Anf ! 0. The identity .I �
T/An D 1

n I � 1
n Tn implies that 1n Tnf ! 0 for every f 2 E. ut

The next lemma exhibits in a very general fashion the connection between fixed
points of an operator T and certain cluster points of the sequence .Anf /n2N. We
shall need it also in our proof of the Markov–Kakutani fixed point theorem, see
Theorem 10.1 below.

Lemma 8.17. Let C be a convex subset of a Hausdorff topological vector space,
T W C ! C be a continuous affine mapping and g 2 C. Then Tg D g if and only if
there is f 2 C and a subsequence .nj/j2N such that

.1/ 1
nj

Tnjf ! 0 and .2/ g 2
\

k2N
fAnjf W j � kg:
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Proof. If Tg D g, then (1) and (2) hold for f D g and every subsequence .nj/j2N.
Conversely, suppose that (1) and (2) hold for some f 2 E and a subsequence .nj/j2N.
Then

g � Tg D .I � T/g 2 f.I � T/Anjf W j � kg D f 1nj
.f � Tnjf / W j � kg

for every k 2 N, cf. Remark 8.15. By (1), 1
nj
.f � Tnjf / ! 0 as j ! 1, and

since C is a Hausdorff space, 0 is the only cluster point of the convergent sequence
. 1nj
.f � Tnjf //j2N. This implies that g � Tg D 0, i.e., Tg D g. ut
The next auxiliary result is essentially a consequence of Lemma 8.17 and

Theorem C.7.

Proposition 8.18. Let T be a Cesàro bounded operator on some Banach space E
such that 1n Tnh! 0 for each h 2 E. Then for f; g 2 E the following statements are
equivalent:

(i) Anf ! g in the norm of E as n!1.

(ii) Anf ! g weakly as n!1.

(iii) g is a weak cluster point of a subsequence of .Anf /n2N.

(iv) g 2 fix.T/ \ convfTnf W n 2 N0g.
(v) g 2 fix.T/ and f � g 2 ran.I � T/.

Proof. The implication (v)) (i) follows from Theorem 8.5 while the implications
(i)) (ii)) (iii) are trivial. If (iii) holds, then g 2 fix.T/ by Lemma 8.17. Moreover,

g 2 cl�conv
˚
Tnf W n 2 N0

� D conv
˚
Tnf W n 2 N0

�
;

where the last equality is due to Theorem C.7. Finally, suppose that (iv) holds andP
n tnTnf is any convex combination of the vectors Tnf . Then

f �
X

n

tnTnf D
X

n

tn. f � Tnf / D .I � T/
X

n

ntnAnf 2 ran.I � T/

by Lemma 8.2.c. It follows that f � g 2 ran.I � T/, as was to be proved. ut
In order to formulate our main result, we introduce the following terminology.

Definition 8.19. Let E be a Banach space, and let F � E and G � E0 be linear
subspaces. Then G separates the points of F if for any 0 6D f 2 F there is g 2
G such that hf; gi 6D 0. The property that F separates the points of G is defined
analogously.

Note that by the Hahn–Banach Theorem C.3, E0 separates the points of E. Our
main result is now a characterization of mean ergodic operators on Banach spaces.
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Theorem 8.20 (Mean Ergodic Operators). Let T be a Cesàro bounded operator
on some Banach space E such that 1n Tnf ! 0 weakly for each f 2 E. Further, let
D � E be a dense subset of E. Then the following assertions are equivalent:

(i) T is mean ergodic.

(ii) T is weakly mean ergodic, i.e., weak� limn!1 Anf exists for each f 2 E.

(iii) For each f 2 D the sequence .Anf /n2N has a subsequence with a weak
cluster point.

(iv) convfTjf W j 2 N0g \ fix.T/ ¤ ; for each f 2 D.

(v) fix.T/ separates the points of fix.T 0/.
(vi) E D fix.T/˚ ran.I � T/.

Proof. The equivalence of (i)–(iv) and (vi) is immediate from Proposition 8.18 and
Theorem 8.5. Suppose that (vi) holds and 0 ¤ f 0 2 fix.T 0/. Then there is f 2 E
such that hf; f 0i ¤ 0. By (vi) we can write f D gC h with h 2 ran.I � T/. Since
T 0f 0 D f 0, f 0 vanishes on h by Exercise 4, and hence we must have hg; f 0i ¤ 0.

Conversely, suppose that (v) holds and consider the space F of vectors where the
Cesàro averages converge. By Theorem 8.5 F D fix.T/˚ ran.I � T/ is closed in E.
We employ the Hahn–Banach Theorem C.3 to show that F is dense in E. Suppose
that f 0 2 E0 vanishes on F. Then f 0 vanishes in particular on ran.I � T/ and this
just means that f 0 2 fix.T 0/ (see Exercise 4). Moreover, f 0 vanishes also on fix.T/,
which by (v) separates fix.T 0/. This forces f 0 D 0. ut
Remarks 8.21. 1) Condition (v) in Theorem 8.20 can also be expressed as

fix.T 0/\ fix.T/? D f0g, cf. Exercise 4.

2) Under the assumptions of Theorem 8.20, fix.T 0/ always separates the points
of fix.T/, see Exercise 5.

3) If T 2 L .E/ is mean ergodic, its adjoint T 0 need not be mean ergodic with
respect to the norm topology on E0, see Exercise 7. However, it is mean
ergodic with respect to the weak� topology on E0, i.e., the Cesàro means
AnŒT 0� converge pointwise in the weak�-topology to PT0 D P0

T . The proof of
this is Exercise 8.

In the following we discuss two classes of examples.

Power-Bounded Operators on Reflexive Spaces

An operator T 2 L .E/ is called power-bounded if supn2N kTnk < 1. Con-
tractions are obviously power-bounded. Moreover, a power-bounded operator T is
Cesàro bounded and satisfies 1

n Tnf ! 0. Hence Theorem 8.20 applies in particular
to power-bounded operators. We arrive at a famous result due to Yosida (1938),
Kakutani (1938) and Lorch (1939).



8.4 Mean Ergodic Operators 149

Theorem 8.22. Every power-bounded linear operator on a reflexive Banach space
is mean ergodic.

Proof. Let f 2 E. Then, by power-boundedness of T the set fAnf W n 2 Ng is
norm-bounded. Since E is reflexive, it is even relatively weakly compact, hence the
sequence .Anf /n2N has a weak cluster points (Theorem 8.20.) ut

Fonf et al. (2001) proved the following converse of the previous theorem: Let E
be a Banach space with Schauder basis. If every power-bounded operator on E is
mean ergodic, then E is reflexive. There exist, however, nonreflexive Banach spaces
in which every contraction is mean ergodic, see Fonf et al. (2010).

Dunford–Schwartz Operators

Let X and Y be measure spaces. A bounded operator

T W L1.X/! L1.Y/

is called a Dunford–Schwartz operator or an absolute contraction if

kTf k1 � kf k1 and kTf k1 � kf k1 .f 2 L1 \ L1/:

By denseness, a Dunford–Schwartz operator is an L1-contraction. The following
result states that T “interpolates” to a contraction on each Lp-space.

Theorem 8.23. Let T W L1.X/! L1.Y/ be a Dunford–Schwartz operator. Then

kTf kp � kf kp for all f 2 Lp \ L1, 1 � p � 1.

Proof. The claim is a direct consequence of the Riesz–Thorin interpolation theorem
(Folland 1999, Thm. 6.27). If T is positive, there is a more elementary proof,
which we give for convenience. For p D 1;1 there is nothing to show, so let
1 < p < 1. Take f 2 Lp \ L1 such that A WD Œ f 6D 0 � has finite measure. Then,
by Theorem 7.24 and Exercise 7.17 and since T1A � 1, we obtain

jTf jp D jT.f 1A/jp � .T jf jp/ � .T1A/
p=q � .T jf jp/ � 1p=q D T jf jp ;

where q 2 Œ1;1� with 1
p C 1

q D 1. Integrating yields kTf kp
p � kT jf jpk1 � kf kp

p.
Finally, a standard density argument completes the proof. ut

Using this interpolation we can prove the following result about mean ergodicity.

Theorem 8.24. A Dunford–Schwartz operator T on L1.X/ over a finite measure
space X is mean ergodic.
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Proof. By Theorem 8.23, T restricts to a contraction on L2, which is a Hilbert space.
By Theorem 8.6, T is mean ergodic on L2, which means that for f 2 L2 the limit
limn!1 AnŒT�f exists in k�k2. As the measure is finite, this limit exists in k�k1.
Since L2 is dense in L1, the claim follows. ut

By employing Theorem 8.20 we can give a second proof.

Alternative proof of Theorem 8.24 . Let B D ff 2 L1 W kf k1 � 1g. View
L1 as the dual of L1 and equip it with the �.L1;L1/-topology. By the Banach–
Alaoglu theorem, B is weak�-compact. Since the embedding .L1; �.L1;L1// �
.L1; �.L1;L1// is (obviously) continuous, B is weakly compact in L1. In addition, B
is invariant under the Cesàro averages An of T, and hence the sequence .An f /n2N
has a weak cluster point for each f 2 B. Thus (iii) from Theorem 8.20 is satisfied
with D WD L1 DSc>0 cB. ut

Example 8.25. The assumption of a finite measure space is crucial in Theo-
rem 8.24. Consider E D L1.R/, where R is endowed with the Lebesgue measure,
and T 2 L .E/ is the shift by 1, i.e., Tf .x/ D f .xC 1/. Then dim fix.T/ D 0 and
dim fix.T 0/ D 1, so T is not mean ergodic, see also Exercise 7.

8.5 Operations with Mean Ergodic Operators

Let us illustrate how the various conditions in Theorem 8.20 can be used to check
mean ergodicity, and thus allow us to carry out certain constructions for mean
ergodic operators.

Powers of Mean Ergodic Operators

Theorem 8.26. Let E be a Banach space and let S 2 L .E/ be a power-bounded
mean ergodic operator. Let T be a kth root of S, i.e., Tk D S for some k 2 N. Then T
is also mean ergodic.

Proof. Denote by PS the mean ergodic projection of S. Define P WD � 1k
Pk�1

jD0 Tj
�
PS

and observe that Pf 2 convfTjf W j 2 N0g for all f 2 E. Since T commutes with
S, it commutes also with PS. We now obtain

PT D TP D
�1

k

k�1X

jD0
TjC1�PS D P;

since TkPS D SPS D PS, and Pf 2 convfTjf W j 2 N0g \ fix.T/ by the above.
So Theorem 8.20(iv) implies that T is mean ergodic. It follows also that P is the
corresponding mean ergodic projection. ut
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On the other hand, it is possible that no power of a mean ergodic operator is mean
ergodic.

Example 8.27. Take E D c, the space of convergent scalar sequences, and the
multiplication operator

M W c! c; .xn/n2N 7! .anxn/n2N

for some sequence .an/n2N with 1 ¤ an ! 1. Now fix.M/ D f0g, whereas
fix.M0/ contains f 0 defined by hf 0; .xn/n2Ni WD limn!1 xn. By Theorem 8.20(v)
we conclude that M is not mean ergodic.

Consider now a kth root of unity 1 ¤ b 2 T and define Tk WD bM. Then it is easy
to see that fix.T 0

k/ D f0g, and hence, again by Theorem 8.20(v), Tk is mean ergodic.
It follows from Theorem 8.26 that Tk

k is not mean ergodic. Now one can employ
a direct sum construction to obtain a Banach space E and a mean ergodic operator
T 2 L .E/ with no power Tk, k � 2, being mean ergodic (Exercise 11).

Convex Combinations of Mean Ergodic Operators

Other examples of “new” mean ergodic operators can be obtained by convex
combinations of mean ergodic operators. Our first lemma, a nice application of the
Kreı̌n–Milman theorem, is due to Kakutani.

Theorem 8.28 (Kakutani). Let E be a Banach space. Then the identity operator
IE is an extreme point of the closed unit ball in L .E/.

Proof. Suppose that IE D 1
2
.RCS/with kSk ; kRk � 1. Then IE0 D 1

2
.R0CS0/. Let f 0

be an extreme point of the dual unit ball BE0 D ff 0 2 E0 W kf 0k � 1g. Then f 0 D
1
2
.R0f 0 C S0f 0/, whence R0f 0 D S0f 0 D f 0. Since BE0 is weak�-compact by the

Banach–Alaoglu Theorem C.4 and the operators R0 and S0 are weak�-continuous,
the Kreı̌n–Milman Theorem C.14 yields R0 D S0 D IE0 . Hence, IE D R D S. ut
Lemma 8.29. Let R, S be two commuting power-bounded operators, and for t 2
.0; 1/ let T WD tRC .1 � t/S. Then fix.T/ D fix.R/\ fix.S/.

Proof. Only the inclusion fix.T/ � fix.R/\ fix.S/ is not obvious. Endow E with an
equivalent norm kf k1 WD supfkRnSmf k W n; m 2 N0g, f 2 E, and observe that R
and S now become contractive. From the definition of T we obtain

Ifix.T/ D Tjfix.T/ D tRjfix.T/ C .1 � t/Sjfix.T/

and Rjfix.T/; Sjfix.T/ 2 L .fix.T//, since R and S commute with T. Lemma 8.28
implies that Rjfix.T/ D Sjfix.T/ D Ifix.T/, i.e., fix.T/ � fix.R/\ fix.S/. ut



152 8 The Mean Ergodic Theorem

Now we can prove the main result of this section.

Theorem 8.30. Let T1, T2; : : : ;Tm be commuting power-bounded, mean ergodic
operators. Then every convex combination

T WD
mX

jD1
tjTj;

with all tj > 0, is mean ergodic. Denoting by Pj the mean ergodic projection
corresponding to Tj, we have for the mean ergodic projection PT of T that

PT D P1P2 � � �Pm D lim
n!1

mY

jD1
AnŒSj�;

where the limit is understood strongly, i.e., pointwise on E.

Proof. It suffices to prove the statement for the case of m D 2, the general case can
then be established by induction. So let S D T1, R D T2, let 0 < t < 1, and let
T WD tRC .1� t/S. By Lemma 8.29 we have fix.T/ D fix.R/\fix.S/ and fix.T 0/ D
fix.R0/\fix.S0/. By Theorem 8.20(v) it suffices to show that fix.R/\fix.S/ separates
fix.R0/\fix.S0/. To this end, take 0 ¤ f 0 2 fix.R0/\fix.S0/. Then there is f 2 fix.R/
with hf; f 0i ¤ 0. Since S.fix.R// � fix.R/, we have PSf 2 fix.R/ \ fix.S/ where
PS denotes the mean ergodic projection corresponding to S. Consequently, we have
(see also Remark 8.21.3)

˝
PSf; f

0˛ D ˝f;P0
Sf

0˛ D ˝f;PS0f 0˛ D ˝f; f 0˛ ¤ 0:

We have proved that T is mean ergodic. Since R and S commute, their mean
ergodic projections commute with each other and also with T and PT . The equalities
PT D PRPS D PSPR follow from this and from the previous considerations. The last
assertion concerning the convergence is the consequence of the joint continuity of
the multiplication for the strong operator topology, see Proposition C.19. ut

Supplement: Mean Ergodic Operator Semigroups

In this supplement we discuss a generalization of the mean ergodic theorems for
single operators to sets of operators. For a Banach space E and a subset T � L .E/
we form the (common) fixed space

fix.T / WD
\

T2T
fix.T/:

An (operator) semigroup on E is a subset T � L .E/ satisfying
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T �T WD ˚ST W S; T 2 T
� � T :

Clearly, for any finite sequence T1; : : : ;Td of operators one has
Td

jD1 fix.Tj/ �
fix.T1 � � �Td/. Therefore in dealing with fixed spaces of operator sets one may pass
to the generated semigroup

˚
T1 � � �Td W d 2 N; T1; : : : ;Td 2 T

�

without changing the fixed space. In particular, for a single operator T 2 L .E/ one
has

fix.T/ D fix
�fI;T;T2;T3; : : : g�:

In view of Lemma 8.3, if T is mean ergodic, then the semigroup fI;T;T2; : : : g is
mean ergodic in the sense of the following definition.

Definition 8.31. A semigroupT � L .E/ of bounded operators on a Banach space
E is called mean ergodic if there is P 2 L .E/ such that TP D PT D P for each
T 2 T and

Pf 2 conv
˚
Tf W T 2 T

�
for each f 2 E:

In this case, the operator P is called the associated mean ergodic projection.

We note that if T is mean ergodic with mean ergodic projection P 2 L .E/, then
Pf 2 fix.T / (since TP D P for all T 2 T / and Pf D f for all f 2 fix.T /.
In particular, P2 D P is indeed a projection. Finally, P is uniquely determined: If Q
has the same properties as required for P, then for f 2 E

Pf D QPf 2 conv
˚
QTf W T 2 T

� D ˚Qf �;

whence P D Q. Therefore, speaking of the associated mean ergodic projection is
justified. The kernel of P is

ker.P/ D lin
˚
f � Tf W f 2 E; T 2 T

�
:

Indeed, the inclusion “	” holds since PT D P for all T 2 T , and the inclusion “�”
holds since

f � Pf 2 f � conv
˚
Tf W T 2 T

� D conv
˚
f � Tf W T 2 T

�
for each f 2 E:

Before proceeding with the general theory, let us mention a straightforward, but
important, example.

Theorem 8.32 (Contraction Semigroups on Hilbert Spaces). Let T be a semi-
group of linear contractions on a Hilbert space H, and let P 2 L .H/ be the
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orthogonal projection onto fix.T /. Then T is mean ergodic with mean ergodic
projection P. Furthermore, for each f 2 H, Pf is the unique element of conv

˚
Tf W

T 2 T
�

with minimal norm.

Proof. Let T 2 T . Then TP D P by definition of P, and fix.T/ D fix.T�/ by
Corollary 8.7. Hence, T�P D P, and taking adjoints yields PT D P.

By Theorem D.2, the closed convex set C WD convfTf W T 2 T g contains a
unique element g with minimal norm. Then, for T 2 T , Tg 2 C and kTgk � kgk,
whence Tg D g. Thus, g D Pg 2 convfPTf W T 2 T g D fPf g, i.e., g D Pf . ut

The following theorem is a useful characterization of mean ergodicity. We
abbreviate T f WD fTf W T 2 T g and T 0 WD fT 0 W T 2 T g.
Theorem 8.33. Let T � L .E/ be a bounded semigroup of operators on a Banach
space E. Then the following assertions are equivalent:

(i) For each f 2 E the set convfTf W T 2 T g \ fix.T / contains precisely one
element.

(ii) The semigroup T is mean ergodic.

(iii) For each f 2 E: convfTf W T 2 T g \ fix.T / ¤ ; and for each f 0 2 E0:
convw�fT 0f 0 W T 2 T g \ fix.T 0/ ¤ ;.

In this case, Pf is the unique element in convfTf W T 2 T g \ fix.T / for each
f 2 E.

Proof. (i)) (ii): For each f 2 E let Pf be the unique element in conv.T f / \
fix.T /. Then SPf D Pf for each S 2 T , as well as PSf 2 conv.T Sf / �
conv.T f /. By uniqueness, PSf D Pf . Hence, we have PS D SP D P for all
S 2 T .

By hypothesis c WD supfkTk W T 2 T g <1. Then, obviously, kPf k � c kf k
for each f 2 E.

Finally, we show that P W E ! E is linear. It is obvious that P.�f / D �Pf for
each � 2 C and f 2 E. In order to show that P is additive, take f; g 2 E and " > 0.
By hypothesis, there is S 2 conv.T / with kPf � Sf k � " and R 2 conv.T / with
kPSg� RSgk � ". Therefore, since PSg D Pg and RPf D Pf ,

k.Pf C Pg/� RS.f C g/k � kRPf � RSf k C kPg � RSgk
� c kPf � Sf k C kPg � RSgk � .cC 1/";

where c > 0 is as above. Since RS 2 conv.T / and " > 0 is arbitrary, it follows that
PfCPg 2 convfT.f Cg/ W T 2 T g\fix.T /. By uniqueness, PfCPg D P.fCg/
as claimed.

(ii)) (iii): If f 2 E, then Pf 2 conv.T f / \ fix.T / by hypothesis. If f 0 2
E0, then by the Hahn–Banach Separation Theorem C.13, P0f 0 2 convw�

.T 0f 0/.
Furthermore, P0f 0 2 fix.T 0/ since T 0P0 D .PT/0 D P0 for each T 2 T .
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(iii)) (i): Let f 2 E. By (iii) the set conv.T f /\fix.T / is nonempty, so it remains
to show uniqueness. Let u; v 2 conv.T f /\ fix.T /. Consider the set

C WD ˚f 0 2 E0 W ��f 0�� � 1; hu � v; f i D ku � vk�;

which is convex, weakly�-closed, and nonempty (by the Hahn–Banach theorem).
Moreover, C is invariant under T 0 (since u � v 2 fix.T /) and hence (iii) implies
that there is f 0 2 C \ fix.T 0/. It follows that hf; f 0i D hTf; f 0i for all T 2 T ,
whence

ku � vk D ˝u � v; f 0˛ D ˝u; f 0˛ � ˝v; f 0˛ D ˝f; f 0˛ � ˝f; f 0˛ D 0:

This concludes the proof. ut
As a consequence of Theorem 8.33 we obtain the following generalization of

Theorem 8.32. Let us call (for the moment) a semigroup T � L .E/ relatively
weakly compact if conv.T f / is weakly compact for all f 2 E. For example,
each norm-bounded semigroup on a reflexive space is relatively weakly compact.
Furthermore, we call a Banach space strictly convex (or rotund) if kf k D kgk D 1
and f 6D g imply that kf C gk < 2; cf. Megginson (1998, Sec. 5.1).

Theorem 8.34. Let E be a strictly convex Banach space E which has a strictly
convex dual space. Then each relatively weakly compact contraction semigroup on
E is mean ergodic.

Proof. We only sketch the proof. Let T be a relatively weakly compact semigroup
of contractions on E, and let f 2 E. Then by weak compactness, conv.T f /

contains an element g with minimal norm. This element is unique because of the
strict convexity. As in the proof of Theorem 8.32 it follows that g 2 fix.T /.
Likewise, if f 0 2 E0, then by weak� compactness we find g0 2 convw�

.T 0f 0/ with
minimal norm. Again, the strict convexity of the norm of E0 implies uniqueness,
and as before one concludes that g0 must be a fixed point of T 0. Hence, (iii) of
Theorem 8.33 is satisfied, so T is mean ergodic. ut

Note that the proof yields more information: If P is the mean ergodic projection
associated with T , then Pf is the unique element of conv.T f / with minimal
norm.

It follows from Theorem 8.34 that each contraction semigroup on a reflexive
space E such that E and E0 both are strictly convex is mean ergodic. This is a
generalization of a classical result of Alaoglu and Birkhoff (1940) which states that a
contraction semigroup on a Banach space E is mean ergodic if E is uniformly convex
and E0 is strictly convex. (Note that by the Milman–Pettis theorem, uniformly
convex spaces are reflexive (Megginson 1998, Thm. 5.2.15). Moreover, uniformly
convex spaces are strictly convex.)
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We shall recover Theorem 8.34 with a different proof in Chapter 16 when we
study (relatively) weakly compact semigroups in more detail and treat the so-called
Jacobs–de Leeuw–Glicksberg splitting theory (Remark 16.26).

Another class of conditions implying mean ergodicity involves the concept of
amenability of a semigroup with respect to the strong operator topology. We do
not go into details here but note that compact groups and Abelian semigroups are
amenable, see Day (1957) for more information on this notion. The following result
from Nagel (1973, Satz 1.8) is quoted without proof.

Theorem 8.35. A bounded amenable (e.g., Abelian) semigroup T on a Banach
space E is mean ergodic if T is relatively weakly compact.

Recall again that a bounded semigroup on a reflexive Banach space is always
relatively weakly compact, so bounded amenable semigroups on reflexive Banach
spaces are mean ergodic. This is a direct generalization of Theorem 8.22.

Finally, we quote without proof the following result from Nagel (1973, Thm.
1.7), which is a generalization of Theorem 8.20, condition (v), cf. also Exercise 5.

Theorem 8.36. A bounded semigroup T on a Banach space E is mean ergodic if
and only if convw�

.T 0f 0/ \ fix.T 0/ ¤ ; for each f 0 2 E0 and fix.T / separates
the points of fix.T 0/.

Final Remarks

Von Neumann’s mean ergodic theorem (von Neumann 1932b) not only marked the
birth of ergodic theory as a mathematical discipline, but became the source of a
continuous and still ongoing flow of newer and deeper “ergodic theorems.” The
history of this development, however, is difficult to reconstruct, as so many people
contributed to it already in the 1930s, e.g., Kakutani (1938), Riesz (1938, 1941),
Yosida (1938), Birkhoff (1939a, 1939b), Yosida and Kakutani (1938), Lorch (1939)
and Wiener (1939). Until 1940 it had been realized that von Neumann’s theorem
could be seen as a special case of more abstract results involving the topological
property of weak compactness and the algebraic properties of a (semi)group of
linear operators. Yosida and Kakutani (1938), for instance, extended von Neumann’s
mean ergodic theorem to, e.g., power-bounded operators on reflexive Banach spaces
by using the weak compactness of the unit ball.

The generalization from the cyclic case towards more general semigroups was
fostered among others by an influential paper of Alaoglu and Birkhoff (1940).
There, the authors showed that any semigroup of contractions on a Banach space
whose unit ball is uniformly convex and has no “sharp edges” is mean ergodic (in
our terminology, cf. Theorem 8.34). They also introduced “ergodic semigroups”
(Alaoglu and Birkhoff 1940, Def. 3) and proved convergence of the so-called
nearly invariant integrals under weak compactness assumptions. This concept was
pursued further by Eberlein (1948) and related to weakly almost periodic functions
in Eberlein (1949).
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Along with these attempts to generalize the cyclic case towards more general
semigroups there developed a common conception of a “(mean) ergodic theorem”:
a statement of convergence of some nets of averages of a (semi)group of linear
operators on a topological linear space to a projection onto the common fixed
space. This conception relied heavily on the notion of “averages” (means) that
were to replace the Cesàro averages from the case of a single operator. Abstractly,
one could work with so-called ergodic nets (Krengel 1985, p. 75). Concretely, the
“nearly invariant integrals” of Alaoglu and Birkhoff developed into the theory
of “amenable” (semi)groups (see Day (1957) or Paterson (1988)) and the related
notion of “Følner sequences” (nets), introduced in Følner (1955).

It turned out that amenability of a semigroup is essentially characterizable by
fixed point properties, see Day (1973, Ch. V.2). Departing from this insight, Nagel
(1973) proposed a revision of the classical concept of a mean ergodic theorem. He
defined a semigroupS of operators to be “mean ergodic” if the semigroup conv.S /

contains a “zero element” (Definition 8.31). In this view, a “mean ergodic theorem”
is not a statement about the convergence of a more or less explicitly defined net
of means, but about the semigroup itself. Mean ergodicity, he proposed, should
be viewed as a purely semigroup theoretic property. As a consequence, conditions
characterizing mean ergodicity in terms of the existence and uniqueness of fixed
points (see Theorems 8.33 and 8.36) revealed their structural essence.

Of course, this is only a very short (and admittedly partial) description. An
exhaustive exposition of the whole development of mean ergodic theorems, let alone
their applications, is out of (our) reach. However, in order to give the reader at least
an impression about the range of related topics, we shall highlight a few.

So far, our sketch concerned mainly mean ergodic theorems involving the strong
operator topology of a Banach space. Besides this, other locally convex topologies
have been considered, for instance the operator norm topology (already in Yosida
and Kakutani (1939) under the name “uniform” mean ergodicity) or certain weak
topologies, see Gerlach and Kunze (2014) and the references therein.

Convergence rates in mean ergodic theorems had been briefly discussed in the
1970s. Recently, in connection with applications to central limit theorems and laws
of large numbers, results about convergence rates in the classical (single-operator on
a Banach space) mean ergodic theorem have been obtained in Gomilko et al. (2011)
and Gomilko et al. (2012). See the bibliography there for other papers studying
convergence rates.

As an example of an application of mean ergodic theorems we mention the
results on periodic decomposition of functions obtained in Laczkovich and Révész
(1989, 1990), Farkas and Révész (2014), and Farkas (2014).

A collection of rather recent variations of von Neumann’s original ergodic
theorem can be found in Chapter 21 below.
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Exercises

1 (Strong Convergence Lemma). Let E; F be Banach spaces and let .Tn/n2N be
a sequence in L .EIF/. Suppose that there is M � 0 such that kTnk � M for all
n 2 N. Show that

G WD
n
f 2 E W lim

n!1 Tnf exists
o

is a closed subspace of E, and

T W G! F; Tf WD lim
n!1 Tnf

is a bounded linear operator with kTk � lim infn!1 kTnk.
2. Let .XI'/ be a measure-preserving system, X D .X; ˙; �/ with E a \-stable
generator of ˙ . Suppose that

lim
n!1

1

n

n�1X

jD0
�.'�jA \ A/ D �.A/2

for all A 2 E. Show that .XI'/ is ergodic. (Hint: Use Lemma B.15.)

3. Show that the matrix

S D
�
1 0

1 0

�

is not irreducible, but fix.S/ is one-dimensional. Show that there is a unique
probability vector p such that ptS D pt. Then show that the Markov shift associated
with S is ergodic.

4. Let E be a Banach space. For F � E and G � E0 we define

F? WD ˚f 0 2 E0 W ˝ f; f 0˛ D 0 for all f 2 F
�

and G> WD G? \ E:

(Here E is canonically identified with a subspace of E00.) For T 2 L .E/ show that

fix.T 0/ D ran.I � T/? and fix.T/ D ran.I � T 0/>:

5. Let T be a Cesàro bounded linear operator on a Banach space E, and suppose
that 1n Tnf ! 0 as n!1 for every f 2 E. Show that fix.T 0/ always separates the
points of fix.T/. (Hint: Take 0 6D f 2 fix.T/ and consider the set K WD ff 0 2 E0 W
kf 0k � 1; hf; f 0i D kf kg. Then K is nonempty by the Hahn–Banach theorem,
�.E0;E/-closed and norm-bounded. Then use Lemma 8.17 to show that fix.T 0/ \
K 6D ;.)
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6. Prove that for k � 2 the Koopman operator T of the shift .W C
k I �/ is not mean

ergodic on C.W C
k /.

7 (Shift Operators). For a scalar sequence x D .xn/n2N0 the left shift L and the
right shift R are defined by

L.x0; x1; : : : / WD .x1; x2; : : : / and R.x0; x1; : : : / WD .0; x0; x1; x2; : : : /:

Clearly, a fixed vector of L must be constant, while 0 is the only fixed vector of R.
Prove the following assertions:

a) The left and the right shift is mean ergodic on each E D `p, 1 < p <1.

b) The left shift on E D `1 is mean ergodic, while the right shift is not.

c) The left and the right shift is mean ergodic on E D c0, the space of null
sequences.

d) The left shift is while the right shift is not mean ergodic on E D c, the space
of convergent sequences.

e) Neither the left nor the right shift is mean ergodic on E D `1.

8. Let T be a mean ergodic operator on a Banach space E with associated mean
ergodic projection P W E ! fix.T/. Show that A0

n ! P0 in the weak�-topology and
that P0 is a projection with ran.P0/ D fix.T 0/.

9. Let X be a finite measure space and let T be a positive operator on L1.X/. We
identify L1.X/ with L1.X/0, the dual space of L1.X/. Show that T is a Dunford–
Schwartz operator if and only if T 01 � 1 and T1 � 1.

10. Show that the following operators are not mean ergodic:

a) E D CŒ0; 1� and .Tf /.x/ D f .x2/, x 2 Œ0; 1�. (Hint: Determine fix.T/ and
fix.T 0/, cf. Chapter 3.)

b) E D CŒ0; 1� and .Tf /.x/ D xf .x/, x 2 Œ0; 1�. (Hint: Look at An1, n 2 N.)

11. Work out the details of Example 8.27.

12. Prove that the left shift L defined by L.xn/n2Z WD .xnC1/n2Z is mean ergodic on
the space ap.Z/ of almost periodic sequences (see Example 4.24.6).



Chapter 9
Mixing Dynamical Systems

Verschiedene Weine zu mischen mag falsch sein, aber alte und neue Weisheit mischen sich
ausgezeichnet.1

Bertolt Brecht2

In the present chapter we consider two mathematical formalizations of the intuitive
concept that iterating the dynamics ' provides a “thorough mixing” of the space
.X; ˙; �/. Whereas the main theme of the previous chapter, the mean ergodicity
of the associated Koopman operator, involved the norm topology, now the weak
topology of the associated Lp-spaces becomes important.

The dual space E0 of a Banach space E and the associated weak topology on a
Banach space E have already been touched upon briefly in Section 8.4. For general
background about these notions see Appendix C.4 and C.6. In particular, keep in
mind that we write hx; x0i for the action of x0 2 E0 on x 2 E.

In the case E D Lp.X/ for some probability space X D .X; ˙; �/ and p 2
Œ1;1/, a standard result from functional analysis states that the dual space E0 can
be identified with Lq.X/ via the canonical duality

hf; gi WD
Z

X
f g D

Z

X
f g d� .f 2 Lp.X/; g 2 Lq.X//;

see, e.g., Rudin (1987, Thm. 6.16). Here q 2 .1;1� denotes the conjugate
exponent to p, i.e., it satisfies 1

p C 1
q D 1. (We use this as a standing terminology.

Also, if the measure space is understood, we often write Lp;Lq in order to increase
readability.)

1It may be mistaken to mix different wines, but old and new wisdom mix very well.
2Der Kaukasische Kreidekreis, Szene 1; Edition Suhrkamp � Translation from: The Caucasian
Chalk Circle, translated by Stefan S. Brecht, James Stern, Heinemann 1996.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_9
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In the symbolism of the Lp-Lq-duality, the integral of f 2 L1.X/ reads

Z

X
f D

Z

X
f d� D hf; 1i D h1; f i :

In particular,�.A/ D h1A; 1i D h1; 1Ai for A 2 ˙ . The connection with the standard
inner product on the Hilbert space L2.X/ is

.f j g/ D
Z

X
f g D hf; gi .f; g 2 L2/:

After these preliminaries we can now go medias in res.

9.1 Strong Mixing

Following Halmos (1956, p. 36) let us consider a measure-preserving system .XI'/,
X D .X; ˙; �/, that models the action of a particular way of stirring the contents of
a glass (of total volume �.X/ D 1) filled with two different liquids, say wine and
water. If A � X is the region originally occupied by the wine and B is any other part
of the glass, then, after n repetitions of the stirring operation, the relative amount of
wine in B is

an.B/ WD �.'�nB \ A/

�.B/
:

For a thorough “mixing” of the two liquids, one would require that eventually the
wine is “equally distributed” within the glass. More precisely, for large n 2 N the
relative amount an.B/ of wine in B should be close to the relative amount �.A/ of
wine in the whole glass. These considerations lead to the following mathematical
concept.

Definition 9.1. A measure-preserving system .XI'/, X D .X; ˙; �/, is called
strongly mixing (or, simply, mixing) if for every A; B 2 ˙ one has

�.'�nA \ B/! �.A/�.B/ as n!1.

Example 9.2 (Bernoulli Shifts). It was shown in Proposition 6.20 that a Bernoulli
shift B.p0; : : : ; pk�1/ is strongly mixing. The same is true for general Bernoulli
shifts, see Exercise 16, and Example 4 in Section 18.4 below.

Each mixing system is ergodic. Indeed, as we saw in Theorem 8.10, the measure-
preserving system .XI'/ is ergodic if and only if



9.1 Strong Mixing 163

1

n

n�1X

jD0
�.'�jB \ A/! �.A/�.B/ for all A; B 2 ˙:

Since ordinary convergence of a sequence .an/n2N implies the convergence of the
arithmetic averages 1

n .an C � � � C an/ to the same limit, ergodicity is a consequence
of mixing.

However, mere ergodicity of the system is not strong enough to guarantee
mixing. To stay in the picture from above, ergodicity means that we have an.B/ !
�.A/ only on the average, but it may well happen that again and again an.B/ is quite
far away from �.A/. For example, if B D Ac, then we may find arbitrarily large n
with an.B/ close to 0, which means that for these n the largest part of the wine is
situated again in A, the region where it was located in the beginning.

Example 9.3 (Nonmixing Markov Shifts). Consider the Markov shift associated
with the transition matrix

P D
�
0 1

1 0

�

on two points. The Markov measure � on W C
2 puts equal weight of 1

2
on the two

points

x1 WD .0; 1; 0; 1; : : : / and x2 WD .1; 0; 1; 0; : : : /

and the system oscillates between those two under the shift � , so this system is
ergodic (cf. also Section 8.3). On the other hand, if A D fx1g, then �.'�nA \ A/ is
either 0 or 1

2
, depending whether n is odd or even. Hence, this Markov shift is not

strongly mixing. We shall characterize mixing Markov shifts in Proposition 9.10
below.

Let us introduce the projection

1˝ 1 W L1.X/! L1.X/; f 7! hf; 1i � 1 D
� Z

X
f
�
� 1

onto the one-dimensional space of constant functions. Then, by Theorem 8.10,
ergodicity of a measure-preserving system .XI'/ is characterized by PT D 1˝ 1,
where PT is the mean ergodic projection associated with the Koopman operator
T D T' on L1.X/. In other words

PT D lim
n!1 AnŒT� D 1˝ 1

in the strong (equivalently, in the weak) operator topology. In an analogous fashion
one can characterize strongly mixing measure-preserving systems.
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Theorem 9.4. For a measure-preserving system .XI'/, X D .X; ˙; �/, its asso-
ciated Koopman operator T WD T' , and p 2 Œ1;1/ the following assertions are
equivalent:

(i) .XI'/ is strongly mixing.

(ii) �.'�nA \ A/! �.A/2 for every A 2 ˙ .

(iii) Tn ! 1˝ 1 as n!1 in the weak operator topology on L .Lp.X//, i.e.,
Z

X
.Tnf / g D hTnf; gi ! hf; 1i � h1; gi D

� Z

X
f
�
�
� Z

X
g
�

for all f 2 Lp.X/, g 2 Lq.X/.

Proof. The implications (i)) (ii) and (iii)) (i) are trivial, so suppose that (ii)
holds. Fix A 2 ˙ and k; l 2 N0, and let f WD Tk1A, g WD Tl1A. Then for n � l � k
we have

hTnf; gi D ˝TnCk1A;T
l1A
˛ D ˝TnCk�l1A; 1A

˛ D �.'�.nCk�l/A \ A/:

By (ii) it follows that

lim
n!1 hT

nf; gi D �.A/2 D ˝Tk1A; 1
˛ ˝

1;Tl1A
˛ D hf; 1i � h1; gi :

Let EA D linf1;Tk1A W k � 0g in L2.X/. Then by the power-boundedness of T an
approximation argument yields the convergence

hTnf; gi ! hf; 1i � h1; gi (9.1)

for all f; g 2 EA. But if g 2 E?
A , then, since EA is T-invariant, hTnf; gi D 0 D h1; gi

for f 2 EA. Therefore (9.1) holds true for all f 2 EA and g 2 L2.X/. If we take
f D 1A and g D 1B we arrive at (i). Moreover, another approximation argument
yields (9.1) for arbitrary f 2 Lp.X/ and g 2 Lq.X/, i.e., (iii). ut
Remark 9.5. In the situation of Theorem 9.4 let D � Lp and F � Lq such
that lin.D/ is norm-dense in Lp and lin.F/ is norm-dense in Lq. Then by standard
approximation arguments we can add to Theorem 9.4 the additional equivalent
statement:

(iii’) lim
n!1

Z

X
.Tnf / � g D

�Z

X
f
�
�
�Z

X
g
�

for every f 2 D, g 2 F.

Based on (iii’), one can add another equivalent statement:

(i’) lim
n!1�.'�nA \ B/ D �.A/�.B/ for all A 2 D, B 2 F,

where D;F are given \-stable generators of ˙ (use Lemma B.15).

Let T be a power-bounded operator on a Banach space E. A vector f 2 E is
called weakly stable with respect to T if Tnf ! 0 weakly. It is easy to see that the
set of weakly stable vectors
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Ews.T/ WD
˚
f 2 E W Tnf ! 0 weakly

�

is a closed T-invariant subspace of E, and that fix.T/ \ Ews.T/ D f0g.
Theorem 9.6. For a measure-preserving system .XI'/ with Koopman operator
T WD T' on E D Lp.X/, 1 � p <1, the following assertions are equivalent:

(i) .XI'/ is strongly mixing.

(iv) For all f 2 E with
R

X f D 0 one has Tnf ! 0 weakly.

(v) fix.T/ D linf1g and TnC1 � Tn ! 0 in the weak operator topology.

(vi) E D linf1g ˚ Ews.T/.

Proof. (i), (iv) and (i)) (v) are clear from (iii) of Theorem 9.4.

(v)) (vi): By mean ergodicity of T, we have E D fix.T/ ˚ ran.I � T/. By (v),
fix.T/ D linf1g and ran.I � T/ � Ews.T/. Since Ews.T/ is closed, (iv) follows.

(vi)) (i): Write f 2 E as f D c1C g with g 2 Ews.T/. Then Tnf D c1C Tng!
c1 weakly. Hence hf; 1i D hTnf; 1i ! c, and this is (i) by (iii) of Theorem 9.4. ut

Products and Iterates

For a measure-preserving system .XI'/ and a fixed natural number k 2 N, 'k D
' ı ' ı � � � ı ' (k-times) is measure-preserving, too. We thus obtain a new measure-
preserving system .XI'k/, called the kth iterate of the original system. The next
result shows that the class of (strongly) mixing systems is stable under forming
iterates. In fact, we can prolong our list of characterizations once more.

Proposition 9.7. For a measure-preserving system .XI'/ and k 2 N the following
assertions are equivalent:

(i) The measure-preserving system .XI'/ is strongly mixing.

(vii) Its kth iterate .XI'k/ is strongly mixing.

Proof. By (iv) of Theorem 9.6 it suffices to show that Ews.T/ D Ews.Tk/. The
inclusion “�” is trivial. For the inclusion “	” take f 2 Ews.Tk/. Then for each
0 � j < k the sequence .TnkCjf /n2N tends to 0 weakly, hence Tnf ! 0 weakly as
well. ut

Mixing can be equivalently described also by means of product systems. Recall
from Section 5.1 that given two measure-preserving systems .XI'/ and .YI / their
product is

.X˝ YI' �  /; where X˝ Y WD .X � Y; ˙X ˝˙Y; �X ˝ �Y/

and .'� /.x; y/ WD .'.x/;  .y//. It is sometimes convenient to write simply X˝Y
to refer to that system.
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For functions f on X and g 2 Y the function f ˝ g on the product is defined by

.f ˝ g/.x; y/ WD f .x/g.y/ .x 2 X; y 2 Y/;

see Appendix B.6. Standard measure theory yields that for 1 � p < 1 the linear
span of

˚
f ˝ g W f 2 Lp.X/; g 2 Lp.Y/

�

is dense in Lp.X ˝ Y/, see Corollary B.18. Since we have the product measure on
the product space, the canonical Lp-Lq-duality satisfies

hf ˝ g; u˝ vi D hf; ui � hg; vi

for Lp-functions f; g and Lq-functions u; v (where q is, of course, the conjugate
exponent to p).

Let T and S denote the Koopman operators associated with ' and , respectively.
The Koopman operator associated with ' �  is denoted by T ˝ S since it satisfies

.T ˝ S/.f ˝ g/ D Tf ˝ Sg .f 2 Lp.X/; g 2 Lp.Y//:

(By density, T ˝ S is uniquely determined by these identities.) After these prelim-
inary remarks we can state and prove the announced additional characterization of
mixing.

Proposition 9.8. For a measure-preserving system .XI'/ the following assertions
are equivalent:

(i) .XI'/ is strongly mixing.

(ii) .X˝YI'� / is strongly mixing for any strongly mixing measure-preserving
system .YI /.

(iii) .X˝ XI' � '/ is strongly mixing.

(iv) .X ˝ YI' �  / is strongly mixing for some measure-preserving system
.YI /.

Proof. For the implication (i)) (ii) suppose that .XI'/ and .YI / are mixing and
let as above T and S be the respective Koopman operators. Then for f; u 2 L2.X/
and g; v 2 L2.Y/,

h.T ˝ S/n.f ˝ g/; u˝ vi D hTnf; ui � hSng; vi ! hf; 1i h1; ui hg; 1i h1; vi
D hf ˝ g; 1˝ 1i h1˝ 1; u˝ vi

as n!1, by hypothesis. So (ii) follows by approximation (Remark 9.5).
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The implication (iii)) (iv) is trivial, and the implication (iv)) (i) follows from
the identity

hTnf; gi D h.T ˝ S/n.f ˝ 1/; g˝ 1i

for functions f; g 2 L2.X/, where as above T and S are the Koopman operators of
.XI'/ and .YI /, respectively.

Finally, suppose that (ii) holds. Since the trivial system is certainly mixing, (iv)
is satisfied and hence (i), by what we already have shown. But this together with (ii)
implies (iii). ut

Here is a nice application of the previous result.

Example 9.9 (Card Shuffling). Suppose we are given a deck of d cards which
is to be shuffled fairly, i.e., such that after sufficiently many shuffling steps each
permutation occurs with nearly the same probability � 1

dŠ . One of the standard
ways to achieve this is riffle shuffling: The deck is divided into a lower and an upper
part and then these parts are riffled together randomly.

One corresponding mathematical model, called the Gilbert–Shannon–Reeds
model, can be described as follows. We consider the unit interval Œ0; 1/ in which
we take d random points x1; : : : ; xd independently with uniform distribution and
label them according to the natural ordering x1 < x2 < � � � < xd. These points
will represent the d cards in the deck, and their labeling means that initially the
cards are not shuffled at all. (Note that the event that some components coincide
has zero probability.) The points in the interval Œ0; 1

2
/ correspond to the lower

part of the deck, while the points in the interval Œ 1
2
; 1/ to the upper part. Riffling

together then means that we apply the doubling map ' to these points (Example 5.1).
This will (almost surely) yield a permutation � of the d cards. The corresponding
probability distribution on the group Sd of all permutations can be described as
follows. Consider .XI / the d-fold product of the doubling map with itself, that is
X D .Œ0; 1/d; �d/ and  D ' � � � � � '. For each permutation � 2 Sd we define a
simplex

C� WD
˚
x 2 Œ0; 1/d W x�.1/ < x�.2/ < � � � < x�.d/

�
:

Then �d.C�/ D 1
dŠ for each � , and the probability of the permutation � is

p� D
�d
�
 �1.C�/ \ C1

�

�d.C1/
D dŠ�d

�
 �1.C�/\ C1

�
:

To describe the independent shuffling steps, take a sequence of independent
random variables X1;X2; : : : ; with values in Sd and with the previously described
distribution, i.e., P ŒXk D � � D p� . Consider the sequence

Yn WD X1X2 � � �Xn 2 Sd:
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We claim that the probability of a permutation � after n shuffling steps is

Pn
� WD P ŒYn D � � D dŠ�d

�
 �n.C�/ \ C1

�
:

We argue by induction on n. The case n D 1 is just the definition of the distribution.
Suppose the identity above is proved for some n. By independence and by the
induction hypothesis we conclude

PnC1
� D

X

�2Sd

P
	

Yn D � and XnC1 D ��1�



D dŠ
X

�2Sd

�d
�
 �n.C� / \ C1

� � �d
�
 �1.C��1�/\ C1

�
:

Since coordinate permutations commute with the action of  , we obtain

PnC1
� D dŠ

X

�2Sd

�d
�
 �n.C� /\ C1

� � �d
�
 �1.C�/ \ C�

�
:

Whence, by Exercise 3, we obtain

PnC1
� D dŠ�d

�
 �.nC1/.C� / \ C1

�
;

and the induction proof is complete.
We shall prove in Example 12.4 that the doubling map is isomorphic to the

Bernoulli shift. Since by Proposition 6.20 the Bernoulli shift is strongly mixing,
so is the doubling map, hence also its dth power, by Proposition 9.8. It follows that

Pn
� ! dŠ � �d.C�/ � �d.C1/ D dŠ � 1

.dŠ/2
D 1

dŠ
(n!1).

(Of course, it is immaterial that we started with a nonshuffled deck, the same
convergence holds if the deck is shuffled according to some permutation � .)
Therefore this shuffling procedure turns out to be fair. How many steps, however,
one needs to achieve a fairly evenly shuffled deck, is an intriguing question, and we
refer to Bayer and Diaconis (1992) for a detailed analysis of the model. (It turns out
that 7 shuffling steps provide a sufficiently good result for a deck of d D 52 cards.)

Mixing of Markov Shifts

Let .W C
k ; ˙; �.S; p/I �/ be the Markov shift on L WD f0; : : : ; k� 1g associated with

a row-stochastic matrix S D .sij/0�i; j<k and a fixed probability vector p D .pj/0�j<k.
Since ergodicity is necessary for strong mixing, we suppose in addition that S is
irreducible (see Theorem 8.14). As in Section 8.3 we introduce
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Q WD lim
n!1

1

n

n�1X

jD0
Sj:

Then Q is strictly positive and each row of Q is equal to p.

Proposition 9.10. In the situation described above, the following assertions are
equivalent:

(i) The Markov shift .W C
k ; ˙; �.S; p/I �/ is strongly mixing.

(ii) Sn ! Q as n!1.

(iii) There is n 2 N such that Sn is strictly positive.

(iv) ¢.S/\ T D f1g.
Proof. Since Q is strictly positive, (ii) implies (iii). That (iv) implies (ii) can be seen
by using the ergodic decompositionCk D fix.S/˚ran.I�S/ and by noting that S has
spectral radius strictly less than 1when restricted to the second direct summand. For
the implication (iii)) (iv) we may suppose without loss of generality that S itself
is strictly positive. Indeed, suppose we know that ¢.A/\ T D f1g for every strictly
positive row-stochastic matrix A. Now, if we take A D Sn, we obtain

¢.S/n \ T D ¢.Sn/ \ T D f1g

for all large n 2 N. (We used here that Sm is strictly positive for every m � m0 if Sm0

is strictly positive.) This implies that eventually �n D �nC1 D 1 for every peripheral
eigenvalue � of S, hence (iv) holds.

So suppose that A is a strictly positive row-stochastic matrix. Then there is " 2
.0; 1/ and a row-stochastic matrix T such that A D .1�"/TC"E, where E D 1

k 1 �1t

is the matrix having each entry equal to 1
k . Since row-stochastic matrices act on row

vectors as contractions for the 1-norm, we have

�
�xtA � ytA

�
�
1
D .1 � "/ ��.x � y/tT

�
�
1
� .1 � "/ kx � yk1

for all probability vectors x; y 2 C
k. Banach’s fixed-point theorem yields that

limn!1 xtAn must exist for every probability vector x 2 C
k, hence for every x 2 C

k.
Therefore 1 is the only peripheral eigenvalue of A. This was the missing piece of the
puzzle above.

Suppose now that (ii) holds and let

E D fi0g � � � � � filg �
Y

L; F D fj0g � � � � � fjrg �
Y

L

for certain i0; : : : ; il; j0; : : : ; jr 2 L WD f0; : : : ; k � 1g. As in Section 8.3,

�.Œ �n 2 F � \ E/ D pi0si0i1 : : : sil�1 il ŒS
n�l�il j0sj0 j1 : : : sjr�1jr
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for n > l. By (ii) this converges to

pi0si0 i1 : : : sil�1il pj0sj0 j1 : : : sjr�1 jr D �.F/�.E/:

Since sets E; F as above generate ˙ , (i) follows. Conversely, if (i) holds, then by
taking r D l D 0 in the above we obtain

pi0 ŒS
n�i0 j0 D �.Œ �n 2 F � \ E/! �.E/�.F/ D pi0pj0 :

Since p is strictly positive, (ii) follows. ut
If the matrix S satisfies the equivalent statements of the foregoing proposition,

it is called primitive. Another term often used is aperiodic; this is due to the fact
that a row-stochastic matrix is primitive if and only if the greatest common divisor
of the lengths of cycles in the associated transition graph over L is equal to 1 (see
Billingsley (1979, p. 106) for more information).

The Blum–Hanson Theorem

Let us return to the more theoretical aspects. The following striking result was
proved by Blum and Hanson (1960).

Theorem 9.11 (Blum–Hanson). Let .XI'/ be a measure-preserving system with
Koopman operator T D T' , and let 1 � p < 1. Then .XI'/ is strongly mixing
if and only if for every subsequence .nk/k2N of N and every f 2 Lp.X/ the strong
convergence

lim
n!1

1

n

n�1X

jD0
Tnjf D

� Z

X
f
�
� 1

holds.

The equivalence stated in this theorem is rather elementary if strong convergence
is replaced by weak convergence. Namely, it follows from the fact that a sequence
.an/n2N in C is convergent if and only if each of its subsequences is Cesàro
convergent (cf. Exercise 1 and the proof given below).

As a matter of fact, Theorem 9.11 is of purely operator theoretic content.
In Jones and Kuftinec (1971) and Akcoglu and Sucheston (1972) the following
generalization was proved. (See Appendix C.8 for the definition of the involved
operator topologies.)

Theorem 9.12. Let T be a contraction on a Hilbert space H and denote by P
the corresponding mean ergodic projection. Then the following assertions are
equivalent:
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(i) Tn ! P in the weak operator topology.

(ii)
1

n

n�1X

jD0
Tnj ! P in the strong operator topology for every subsequence .nj/j2N

of N.

Proof. We shall prove a bit more, namely, that the weak convergence of .Tnf /n2N
is equivalent to the strong Cesàro convergence of each its subsequences. Note that
if .Tnf /n2N converges weakly, then the limit must be Pf .

First, suppose that .Tnf /n2N is not weakly convergent. Then there is g 2 H
such that the sequence ..Tnf j g//n2N does not converge. But then, by Exercise 1,
..Tnf j g//n2N has a subsequence which is Cesàro divergent, and that contradicts
(ii).

For the converse, suppose that .Tnf /n2N converges weakly. Then its limit is Pf ,
and by passing to f � Pf , we may suppose that Tnf ! Pf D 0 weakly. Since T
is a contraction, kTnf k ! infk2N

�
�Tkf

�
� � 0 as n!1, and by rescaling we may

suppose that this infimum is equal to 1.
Let " > 0 be given, and let m0 2 N be such that kTmf k2 < 1 C " for each

m � m0. By assumption, there is k0 2 N with
ˇ
ˇ.TkCm0f jTm0f /

ˇ
ˇ < " for all k � k0.

Hence, for m � m0 and n � m � k0

2Re .Tnf jTmf / D kTmf C Tnf k2 � kTnf k2 � kTmf k2

� ��Tm�m0
�
Tm0f C Tn�mCm0f

���2 � 2 � ��Tm0f C Tn�mCm0f
�
�2 � 2

D kTm0f k2 C ��Tn�mCm0f
�
�2 C 2Re

�
Tm0f

ˇ
ˇ Tn�mCm0f

� � 2
� 1C "C 1C "C 2Re

�
Tm0f

ˇ
ˇ Tn�mCm0f

� � 2 � 4": (9.2)

Take an arbitrary subsequence .nj/j2N of N. We then have

�
�
�

n�1X

jD0
Tnjf

�
�
�
2 D

n�1X

i;jD0
.Tnjf j Tnif / D

n�1X

iD0
kTnif k2 C 2

n�1X

i;jD0
i<j

Re .Tnjf j Tnif /

� n kf k2 C 2
n�1X

i; jD0
i<m0; i<j

Re .Tnjf j Tnif /

C 2
n�1X

i;jD0
i�m0; i<j<k0Ci

Re .Tnjf jTnif /C 2
n�1X

i;jD0
i�m0; j�iCk0

Re .Tnjf j Tnif /

� n kf k2 C 2m0 n kf k2 C 2n.k0 � 1/ kf k2 C
n�1X

i;jD0
i�m0; j�i�k0

2Re .Tnjf jTnif / :
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Since ni � i � m0 and nj � ni � j � i � k0 in the last summand, by (9.2),

�
�
�

n�1X

jD0
Tnj

�
�
�
2 � n kf k2 C 2m0 n kf k2 C 2n.k0 � 1/ kf k2 C n24":

Hence, we obtain

�
��
1

n

n�1X

jD0
Tnjf

�
��
2 � 5"

if n 2 N is sufficiently large. As " > 0 was arbitrary, (ii) follows. ut
Müller and Tomilov (2007) have shown that the statement may fail for power-

bounded operators on Hilbert spaces. The previous results fall into the category
of so-called subsequential ergodic theorems to be discussed in more detail in
Section 21.4.

Strong mixing is generally considered to be a “difficult” property. For instance,
Katok and Hasselblatt (1995, p. 748) write:

“: : : It [strong mixing] is, however, one of those notions, that is easy and natural to define
but very difficult to study: : :”

One reason may be that the characterizations of mixing from above require
knowledge about all the powers Tn of T, and hence are usually not easy to verify.
Another reason is that up to now no simple, purely spectral characterization of
strong mixing is known (cf. Section 18.4). This is in contrast with ergodicity, which
is characterized by the condition that 1 is a simple eigenvalue of T.

In the rest of the present chapter, we shall deal with a related mixing concept,
which proves to be much more well-behaved, so-called weak mixing.

9.2 Weak Mixing

Let us begin with some terminological remarks. Any strictly increasing sequence
.jn/n2N of natural numbers defines an infinite subset J D fjn W n 2 Ng of N.
Conversely, any infinite subset J � N can be written in this way, where the sequence
.jn/n2N is uniquely determined and called the enumeration of A. As a consequence
we often do not distinguish between the set J and its enumeration sequence .jn/n2N
and simply call it a subsequence of N. If J � N is a subsequence and .xn/n2N is a
sequence in some topological space E and x 2 E, then we say that xn ! x along J
if limn!1 xjn D x, where .jn/n2N is the enumeration of J. We write

lim
n2J;n!1 xn D x or xn ! x as n 2 J; n!1 or lim

n2J
xn D x

to denote that xn ! x along J.
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For any subset J � N0 we define its (asymptotic) density by

d.J/ WD lim
n!1

card.J \ Œ1; n�/
n

provided this limit exists. The density yields a measure of “largeness” of a set of
natural numbers. (See Exercises 4 and 5 for some properties.) Subsequences of
density 1 are particularly important. If .xn/n2N is sequence in a topological space
E and x 2 E, we say that xn ! x in density, written

D-lim
n

xn D x;

if there is a subsequence J � N with density d.J/ D 1 such that limn2J xn D x.
With this terminology at hand we can introduce the weaker type of mixing that

was announced above.

Definition 9.13. A measure-preserving system .XI'/ is called weakly mixing if

D-lim
n!1 �.'�nA \ B/ D �.A/�.B/ for every A; B 2 ˙: (9.3)

Obviously, a strongly mixing system is weakly mixing, and every weakly mixing
system is ergodic (specialize A D B in (9.3) with A being '-invariant). It turns out
that no nontrivial group rotation system is weakly mixing, so ergodic group rotations
provide examples of ergodic systems that are not weakly mixing, see Example 9.22.

Remark 9.14. Weakly but not strongly mixing systems are much harder to con-
struct. In fact, this had been an open problem for some while until finally Chacon
(1969b) succeeded by using his so-called stacking method, see also Chacon (1967,
1969a) and Petersen (1989, Sec. 4.5).

Curiously enough, the mere existence of such systems had been established
much earlier, based on Baire category arguments: Consider a nonatomic standard
Lebesgue probability space X (see Appendix F). Then H WD L2.X/ is separable
(since ˙X is countably generated) and hence by Proposition D.20 the space Iso.H/
of isometries is separable and completely metrizable, i.e., a Polish space, for the
strong operator topology. This induces a Polish topology on the space G of all
measure-preserving transformations on X. Halmos (1944) showed that the set of
weakly mixing transformations is residual in G (i.e., its complement is of first
category). Four years later, Rokhlin (1948) proved that the set of all strongly mixing
transformations is of first category in G. In the proofs one of the key ingredients is
the Kakutani–Rokhlin lemma, see Corollary 6.25. Thus, in this sense, the generic
measure-preserving system is weakly but not strongly mixing, see Nadkarni (1998a,
Ch. 8) for more details.

A large part of the theory of weakly mixing systems can be reduced to pure
operator theory.
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Theorem 9.15. Let T be a power-bounded operator T on a Banach space E, let
x 2 E, and let M � E0 such that lin.M/ is norm-dense in E0. Then the following
assertions are equivalent:

(i) D-lim
n!1

˝
Tnx; x0˛ D 0 for all x0 2 M.

(ii) D-lim
n!1

˝
Tnx; x0˛ D 0 for all x0 2 E0.

(iii) lim
n!1

1

n

n�1X

jD0

ˇ
ˇ˝Tjx; x0˛ˇˇp D 0 for all x0 2 M and some/each p 2 Œ1;1/.

(iv) lim
n!1

1

n

n�1X

jD0

ˇ
ˇ˝Tjx; x0˛ˇˇp D 0 for all x0 2 E0 and some/each p 2 Œ1;1/.

The proof of Theorem 9.15 rests on the following general fact, first observed by
Koopman and von Neumann (1932).

Lemma 9.16 (Koopman–von Neumann). For a bounded sequence .xn/n2N in
some Banach space E, x 2 E and p 2 .1;1/ the following assertions are
equivalent:

(i) lim
n!1

1

n

nX

jD1
kxj � xk D 0.

(ii) lim
n!1

1

n

nX

jD1
kxj � xkp D 0.

(iii) D-lim
n!1 xn D x.

In the case that X D H is a Hilbert space, assertions (i)–(iii) are equivalent to

(iv)
1

n

nX

jD1
xj ! x weakly and

1

n

nX

jD1
kxjk2 ! kxk2.

Proof. For the proof of the equivalence of (i)–(iii) we may suppose that x D 0 and,
by passing to the norm of the elements, that E D R and 0 � xn 2 R for all n 2 N.

(i)) (ii): Since the sequence .xn/n2N is bounded, we have xp
n � Mxn for some

constant M � 0. Hence, (i) implies (ii). On the other hand, by Hölder’s inequality
(with 1

p C 1
q D 1)

1

n

nX

jD1
xj �

�1
n

nX

jD1
x p

j

� 1
p �
�1

n

nX

jD1
1
� 1

q D
�1

n

nX

jD1
x p

j

� 1
p
:

Hence, (ii) implies (i).

(i)) (iii): Let Lk WD fn 2 N W xn � 1
k g. Then L1 � L2 � : : : , and d.Lk/ D 0 since
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card.Lk \ Œ1; n�/
n

�
Pn

jD1 kxj

n
D k � 1

n

nX

jD1
xj ! 0 as n!1:

Therefore, we can choose integers 1 � n1 < n2 < : : : such that

card.Lk \ Œ1; n�/
n

<
1

k
.n � nk/:

Now we define

L WD
[

k�1

�
Lk \ Œnk;1/

�

and claim that d.L/ D 0. Indeed, let m 2 N such that nk � m < nkC1. Then
L \ Œ1;m� � Lk \ Œ1;m� (because the sets Lk increase with k) and so

card.L \ Œ1;m�/
m

� card.Lk \ Œ1;m�/
m

� 1

k
:

Hence, d.L/ D 0 as claimed. For J WD N n L we have d.J/ D 1 and limn2J xn D 0.

(iii)) (i): Let " > 0 and c WD supfxn W n 2 Ng. Choose n" 2 N such that n > n",
n 2 J imply xn < ". For these n we conclude that

1

n

nX

jD1
xj � cn"

n
C 1

n

nX

jDn"C1
xj � cn"

n
C "n� n"

n
C 1

n

X

j2.n";n�nJ

xj

� cn"
n
C "C c

card.Œ1; n� n J/

n
:

Since d.N n J/ D 0, this implies

lim sup
n!1

1

n

nX

jD1
xj � ":

Since " was arbitrary, the proof is complete.

(ii), (iv): Let X D H be a Hilbert space. Then it follows from the identity

kxj � xk2 D kxjk2 � 2Re
�

xj

ˇ
ˇ x
�C kxk2

that (iv) implies (ii) with p D 2. Conversely, if (ii) holds with p D 2, then also (i)
holds, whence 1

n

Pn
jD1 xj ! x even in norm. Now apply again the previous identity

above to conclude that 1n
Pn

jD1 kxjk2 ! kxk2, which is the last part of (iv). ut
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Proof of Theorem 9.15. The equivalences (i), (iii) and (ii), (iv) follow from the
Koopman–von Neumann lemma. It is clear that (iv) implies (iii) and the converse
holds by approximation. (Note that the sequence .Tnx/n2N is bounded.) ut

Proposition 9.17 (Jones–Lin). One can add the assertion

(v) sup
x02E0;kx0k�1

1

n

n�1X

jD0

ˇ
ˇ˝Tjx; x0˛ˇˇp �!

n!1 0 for one/all p 2 Œ1;1/.

to the equivalences in Theorem 9.15. That is, the convergence in (iv) is even uniform
in x0 from the dual unit ball.

Proof. First, we suppose that T is a contraction. The dual unit ball B0 WD fx0 2
E0 W kx0k � 1g is compact with respect to the weak�-topology (Banach–Alaoglu
theorem). Since T is a contraction, T 0 leaves B0 invariant, and thus gives rise to a
topological system .B0IT 0/. We consider its Koopman operator S on C.B0/, i.e.,

.Sf /.x0/ WD f .T 0x0/ .x0 2 B0/:

Consider the function f 2 C.B0/ defined by f .x0/ WD jhx; x0ijp. Hypothesis (iv)
of Theorem 9.15 simply says that AnŒS�f ! 0 pointwise. As a consequence of
the Riesz representation theorem (see Theorem 5.7) and the dominated convergence
theorem, AnŒS�f ! 0 weakly, hence in norm, by Proposition 8.18.

In the case that T is just power-bounded we pass to the equivalent norm jjj y jjj WD
supn�0 kTnyk for y 2 E. With respect to this new norm T is a contraction, and
the induced norm on the dual space is equivalent to the original dual norm, see
Exercise 6. Hence, the contraction case can be applied to conclude the proof. ut

Let E be a Banach space and let T 2 L .E/. A vector x 2 E is called almost
weakly stable (with respect to T) if it satisfies the equivalent conditions (ii) and
(iv) of Theorem 9.15 and (v) of Proposition 9.17. The set of almost weakly stable
vectors is denoted by

Eaws D Eaws.T/ WD
˚
x 2 E W x is almost weakly stable w.r.t. T

�
; (9.4)

and is called the almost weakly stable subspace.

Corollary 9.18. Let T be a power-bounded operator on the Banach space E. Then
the set Eaws.T/ of weakly almost stable vectors is a closed T-invariant subspace of
E contained in ran.I � T/. Moreover, Eaws.T/ D Eaws.Tk/ holds for all k 2 N.

Proof. It is trivial from (ii) in Theorem 9.15 that Eaws is T-invariant. That it is a
closed subspace follows from characterization (iv) (see Exercise 8). If x 2 Eaws then
by (iv) AnŒT�x ! 0 weakly, hence x 2 ran.I � T/ by Proposition 8.18. Finally,
suppose that x 2 Eaws.T/ and let k 2 N. Then for n 2 N and x0 2 E0 we have



9.2 Weak Mixing 177

1

n

n�1X

jD0

ˇ
ˇ˝Tkjx; x0˛ˇˇ � k � 1

kn

nk�1X

jD0

ˇ
ˇ˝Tjx; x0˛ˇˇ! 0 as n!1;

so x 2 Eaws.Tk/. The converse inclusion Eaws.Tk/ � Eaws.T/ is Exercise 9. ut
After these general operator theoretic considerations, we return to dynamical

systems. Recall our standing terminology that for p 2 Œ1;1� the letter q denotes
the exponent conjugate to p.

Theorem 9.19. Let .XI'/ be a measure-preserving system with associated Koop-
man operator T WD T' on E WD Lp.X/, p 2 Œ1;1/. Then the following assertions
are equivalent:

(i) The measure-preserving system .XI'/ is weakly mixing.

(ii) For every f 2 Lp.X/, g 2 Lq.X/ there is a subsequence J � N of density
d.J/ D 1 with

lim
n2J

Z

X
.Tnf / � g D

�Z

X
f
�
�
�Z

X
g
�
:

(iii) sup
g2Lq; kgkq�1

1

n

n�1X

kD0

ˇ
ˇ˝Tkf; g

˛ � hf; 1i � h1; giˇˇ �!
n!1 0 for all f 2 Lp.

(iv) For each f 2 E with
R

X f D 0 one has f 2 Eaws.T/.

(v) fix.T/ D linf1g and ran.I � T/ � Eaws.T/.

(vi) E D linf1g ˚ Eaws.T/.

Proof. Note that (ii) simply says that f � hf; 1i 1 2 Eaws.T/ for all f 2 E. Hence,
the equivalence (ii), (iii) follows from Theorems 9.15 and 9.17. The equivalences
(ii), (iv) and (ii), (vi) are straightforward.

(v), (vi): By Corollary 9.18 we have Eaws � ran.I�T/. So the asserted equivalence
follows since T is mean ergodic.

(ii)) (i): Simply specialize f D 1A; g D 1B in (ii) for A; B 2 ˙X.

(i)) (ii): Fix A 2 ˙X and let f WD 1A. Then, by the definition of weak mixing,

D-lim
n!1 hT

n.f � hf; 1i 1/; 1Bi D D-lim
n!1 hT

nf; 1Bi � �.A/�.B/ D 0

for all B 2 ˙X. Hence, Theorem 9.15 with M D f1B W B 2 ˙Xg yields that
f � hf; 1i 1 2 Eaws.T/. Since Eaws.T/ is a closed linear subspace, it follows by
approximation that f � hf; 1i 1 2 Eaws for all f 2 E, i.e., (ii). ut
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Remark 9.20. In the situation of Theorem 9.19 let D � Lp and M � Lq such that
lin.D/ is norm-dense in Lp and lin.M/ is norm-dense in Lq. Then we can add to
Theorem 9.19 the following additional equivalences.

(ii’) For every f 2 D; g 2 M there is a subsequence J � N of density d.J/ D 1
with

lim
n2J

Z

X
.Tnf / � g D

�Z

X
f
�
�
�Z

X
g
�
:

(iii’)
1

n

n�1X

kD0

ˇ
ˇ˝Tkf; g

˛ � hf; 1i � h1; giˇˇ2 �!
n!1 0 for each f 2 D, g 2 M.

(vi’) f � hf; 1i 1 2 Eaws.T/ for each f 2 D.

Moreover, based on (iii’) and Lemma B.15 one can add another equivalence:

(i’) D-limn!1 �.'�nA \ B/ D �.A/�.B/ for all A 2 D; B 2 F,

where D;F are given \-stable generators of ˙X. The proofs for these claims are
left as Exercise 10.

From these results we obtain as in Proposition 9.7 a characterization of weakly
mixing systems by their iterates.

Corollary 9.21. For a measure-preserving system .XI'/ and k 2 N the following
assertions are equivalent:

(i) The measure-preserving system .XI'/ is weakly mixing.

(vii) Its kth iterate .XI'k/ is weakly mixing.

Proof. By (iv) from Theorem 9.19 it suffices to have Eaws.T/ D Eaws.Tk/, which
has already been established in Corollary 9.18. ut

A measure-preserving system .XI'/ is called totally ergodic if all its kth iterates
are ergodic. It is easy to construct ergodic systems which are not totally ergodic
(Exercise 12). By Corollary 9.21 and Theorem 9.19 every weakly mixing measure-
preserving system is totally ergodic. On the other hand, any ergodic (= irrational)
rotation .TI a/ is totally ergodic, but not weakly mixing, as the following example
shows.

Example 9.22 (Nonmixing Group Rotations). Consider any rotation .TI a/ with
Koopman operator T and f .z/ WD z. Then hf; 1i D 0. But hTnf; f i D an does
not converge to 0 D hf; 1i along any subsequence J � N, so .TI a/ is not weakly
mixing.
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9.3 More Characterizations of Weakly Mixing Systems

In this section we extend the list of equivalent characterizations of weakly mixing
systems from the previous section.

Product Systems

Like strong mixing, weak mixing can be equivalently described by means of product
systems. We use the notational conventions introduced above in Section 9.1

Theorem 9.23. Let .XI'/ be a measure-preserving system. Then the following
assertions are equivalent:

(i) .XI'/ is weakly mixing.

(ii) .X˝ XI' � '/ is weakly mixing.

(iii) .X˝YI'� / is weakly mixing for some/each weakly mixing system .YI /.
(iv) .X˝ XI' � '/ is ergodic.

(v) .X˝ YI' �  / is ergodic for each ergodic system .YI /.
Proof. (i)) (v): Let f; u 2 L2.X/ and g; v 2 L2.Y/. Then

h.S˝ T/n.f ˝ g/; u˝ viX˝Y D hTnf; uiX � hSng; viY :

By hypothesis, D-limn hTnf; uiX D hf; 1iX h1; uiX and limn!1 1
n

Pn�1
jD0

˝
Sjg; v

˛
Y Dhg; 1iY h1; viY. Hence, by Exercise 2,

lim
n!1

1

n

n�1X

jD0

˝
.S˝ T/j.f ˝ g/; u˝ v˛X˝Y D hf; 1iX h1; uiX hg; 1iY h1; viY

D hf ˝ g; 1iX˝Y h1; u˝ viX˝Y :

By mean ergodicity, fix.T ˝ S/ D C1 (see Theorem 8.10).

(v)) (iv): By specializing Y D fpg, a one-point space it follows that .XI'/ is
ergodic. Then specialize .YI / D .XI'/.
(iv)) (i): Let T be the Koopman operator. Take f; g 2 L2.X/ and note that

˝
Tjf; g

˛ D ˝.T ˝ T/j.f ˝ 1/; 1˝ g
˛
:

By hypothesis, the Cesàro limit of this sequence is hf; 1i � h1; gi. Moreover,

ˇ
ˇ˝Tjf; g

˛ˇˇ2 D ˝Tjf; g
˛ �
D
Tjf ; g

E
D
D
.T ˝ T/j.f ˝ f /; g˝ g

E
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and the Cesàro limit of this sequence is

D
f ˝ f ; 1

E
� hg˝ g; 1i D jhf; 1i h1; gij2 :

By Lemma 9.16 (iv) with H D C it follows that

1

n

n�1X

jD0

ˇ
ˇ˝Tjf; g

˛ � hf; 1i � h1; giˇˇ2 ! 0:

This yields (i) by Theorem 9.19 and its succeeding remark.

(i)) (iii): Let .YI / be any weakly mixing system and let .ZI �/ be any ergodic
system. Then by the already proven implication (i)) (v), the system Y ˝ Z is
ergodic, hence by the same reasoning also X ˝ .Y ˝ Z/ D .X ˝ Y/ ˝ Z
is ergodic. By the already established implication (v)) (i) it follows that X˝ Y is
weakly mixing.

The implication (iii)) (ii) is straightforward. Finally, if X˝X is weakly mixing, it
is ergodic and by what we already know, this implies that .XI'/ is weakly mixing.
Hence, (ii) implies (i) and the proof is complete. ut

We remark that the product of two ergodic systems need not be ergodic, see
Exercise 11.

Corollary 9.24. A nontrivial ergodic group rotation system .G;mI a/ is not weakly
mixing.

Proof. Let 0 � f 2 C.G/ and consider the function k.x; y/ WD f .x�1y/ for x; y 2 G.
Then k is invariant under left rotations by .a; a/ and

R
G�G k D R

G f . By Urysohn’s
lemma one may choose f in such a way that it vanishes in a neighborhood of 1 in
G but has nonzero integral. Then k vanishes in a neighborhood of 1 2 G � G and
has nonzero integral as well, whence is not constant almost everywhere.

It follows that the product rotation system .G � G;mG�GI .a; a// is not ergodic,
whence by Theorem 9.23, the rotation system .G;mI a/ is not weakly mixing. ut

Spectral Characterization

Recall that ergodicity of a system .XI'/ is characterized by a spectral property
of the associated Koopman operator T, namely, the one-dimensionality of the
eigenspace corresponding to the eigenvalue � D 1. The purpose of this section
is to show that weak mixing can also be spectrally characterized. More precisely,
we have the following fundamental result.

Theorem 9.25. For a measure-preserving system .XI'/ with associated Koopman
operator T on Lp.X/, 1 � p <1, the following assertions are equivalent:
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(i) The system .XI'/ is weakly mixing.

(ii) The Koopman operator T has no eigenvalues except � D 1, i.e., ¢p.T/ D f1g,
and dim fix.T/ D 1.

Note that since T is an isometry, each eigenvalue of T is unimodular, i.e., ¢p.T/ D
¢p.T/ \ T. Moreover, ¢p.T/ does not depend on the choice of p 2 Œ1;1/, see
Proposition 7.18.

Proof. (i)) (ii): We have already seen that weak mixing implies ergodicity
(dim fix.T/ D 1). Suppose that Tf D �f with � 6D 1. Then hf; 1i D hTf; 1i D
� hf; 1i, whence hf; 1i D 0. By Theorem 9.19 (iii),

1

n

n�1X

jD0

ˇ
ˇ˝Tjf; g

˛ˇˇ D 1

n

n�1X

jD0

ˇ
ˇ�j hf; giˇˇ D jhf; gij ! 0 as n!1

for each g 2 L1.X/. But this implies that f D 0. (A different proof is in
Exercise 13.)

(ii)) (i): Let k 2 L2.X˝ X/ be a fixed function of T ˝ T. We have to show that k
is constant (almost everywhere). Note that also the adjoint function, defined by

k�.x; y/ WD k.y; x/ .x; y 2 X/

is fixed under T ˝ T and that k D 1
2
.kC k�/C i 1

2i .k� k�/. Hence, we may suppose
without loss of generality that k D k�.

Now consider the self-adjoint (Hilbert–Schmidt) integral operator

A W L2.X/! L2.X/; .Af /.x/ D
Z

X
k.x; �/f .�/:

As a Hilbert–Schmidt operator, A is compact, see Young (1988, Sec. 8.1) or Deitmar
and Echterhoff (2009, Sec. 5.3). By the Spectral Theorem D.26, L2.X/ is the Hilbert
space direct sum of ker.A/ and finite-dimensional eigenspaces associated with
nonzero eigenvalues of A.

It follows from the T ˝ T-invariance of k that A commutes with T, i.e., TA D
AT. In particular, every eigenspace of A is also T-invariant. Consequently, if an
eigenspace F of A is finite-dimensional, then T is a unitary mapping on F and hence
diagonalizable. Since, by hypothesis, T has the only eigenvalue � D 1, and its
multiplicity is one with normalized eigenvector 1, Af D c .f j 1/�1 for some c 2 K

and all f 2 L2.X/. But the correspondence of functions in L2.X˝ X/ and Hilbert–
Schmidt operators on L2.X/ is bijective, so we can conclude that k D c 1˝ 1. ut

In Chapter 17, more precisely in Section 17.3, we shall give an alternative proof
of Theorem 9.25 based on a new description of Eaws.T/ as a summand of the so-
called Jacobs–de Leeuw–Glicksberg decomposition
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E D Erev.T/˚ Eaws.T/

of a reflexive Banach space E with respect to a power-bounded operator T 2 L .E/.
This theory, contained in Chapter 16, is heavily based on the harmonic analysis
of compact groups (Chapter 14) and, in particular, their representation theory
(Chapter 15).

As a consequence, in Chapter 17 we shall also obtain further characterizations
of weakly mixing systems, see Theorem 17.19. In particular, we shall re-interpret
the spectral characterization (ii) of Theorem 9.25 as the triviality of the so-called
Kronecker factor of the system.

9.4 Weak Mixing of All Orders

For our mixing concepts hitherto we considered pairs of sets A; B 2 ˙ or pairs of
functions f; g. In this section we introduce a new notion, which intuitively describes
the mixing of an arbitrary finite number of sets.

Definition 9.26. A measure-preserving system .XI'/, X D .X; ˙; �/, is called
weakly mixing of order k 2 N if

lim
N!1

1

N

N�1X

nD0

ˇ
ˇ�.A0 \ '�nA1 \ : : : \ '�.k�1/nAk�1/ � �.A0/�.A1/ � � ��.Ak�1/

ˇ
ˇ D 0

holds for every A0; : : : ;Ak�1 2 ˙ . A measure-preserving system is weakly mixing
of all orders if it is weakly mixing of order k for every k 2 N.

Notice first that weak mixing of order 2 is just the same as weak mixing, see
Theorem 9.19. We begin with some elementary observations.

Proposition 9.27. a) If a measure-preserving system .XI'/ is weakly mixing
of order m 2 N, then it is weakly mixing of order k for all k � m.

b) A measure-preserving system .XI'/, X D .X; ˙; �/, is weakly mixing of
order k 2 N if and only if

D-lim
n!1 �.A0 \ '�nA1 \ : : : \ '�.k�1/nAk�1/ D �.A0/�.A1/ � � ��.Ak�1/

for all A0;A1; : : : ;Ak�1 2 ˙ .

Proof. a) To check weak mixing of order k specialize Ak D � � � D Am�1 D X. For
b) use the Koopman–von Neumann Lemma 9.16. ut
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As seen above, a system that is weakly mixing of all orders is weakly mixing.
Our aim in this section is to show that, surprisingly, the converse is also true: A
weakly mixing system is even weakly mixing of every order k 2 N (Theorem 9.31
below).

The next lemma that plays a central role in this context.

Lemma 9.28 (Van der Corput). Let H be a Hilbert space and .un/n2N0 be a
sequence in H with kunk � 1. For j 2 N0 define


j WD lim sup
N!1

ˇ
ˇ̌ 1
N

N�1X

nD0

�
un

ˇ
ˇ unCj

�ˇˇ̌
:

Then the inequality

lim sup
N!1

�
��
1

N

N�1X

nD0
un

�
��
2 � lim sup

J!1
1

J

J�1X

jD0

j

holds. In particular, limN!1 1
N

PN�1
jD0 
j D 0 implies limN!1 1

N

PN�1
nD0 un D 0.

Proof. We shall use the notation o.1/ to denote terms converging to 0 as N ! 1.
First observe that for a fixed J 2 N we have

1

N

N�1X

nD0
un D 1

N

N�1X

nD0
unCj C o.1/

for every 0 � j � J � 1, and hence

1

N

N�1X

nD0
un D 1

N

N�1X

nD0

1

J

J�1X

jD0
unCj C o.1/:

By the Cauchy–Schwarz inequality this implies

�
��
1

N

N�1X

nD0
un

�
�� � 1

N

N�1X

nD0

�
��
1

J

J�1X

jD0
unCj

�
��C o.1/ �

�
1

N

N�1X

nD0

�
��
1

J

J�1X

jD0
unCj

�
��
2
�1=2
C o.1/

D
�
1

N

N�1X

nD0

1

J2

J�1X

j1;j2D0

�
unCj1

ˇ
ˇ unCj2

�
�1=2

C o.1/:

Letting N !1 in the above and using the definition of 
j, we thus obtain
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lim sup
N!1

��
�
1

N

N�1X

nD0
un

��
�
2 � 1

J2

J�1X

j1;j2D0

jj1�j2j: (9.5)

It remains to show that

lim sup
J!1

1

J2

J�1X

j1;j2D0

jj1�j2j � lim sup

J!1
1

J

J�1X

jD0

j DW d: (9.6)

To this aim, observe first that

J�1X

j1;j2D0

jj1�j2j D J
0 C 2

J�1X

jD1
.J � j/
j � 2

J�1X

jD0
.J � j/
j D 2

J�1X

kD1
k
�1

k

kX

jD0

j

�
: (9.7)

Take " > 0 and k0 such that 1k
Pk

jD0 
j < dC " for every k � k0. By

2

J�1X

kDk0

k
�1

k

kX

jD0

j

�
< 2.dC "/

J�1X

kD1
k D J.J � 1/.dC "/;

the estimate (9.7) implies that

lim sup
J!1

1

J2

J�1X

j1;j2D0

jj1�j2j � dC ";

which yields (9.6). ut
For more on van der Corput’s lemma, see, e.g., Tao (2009, Sec. 1.3). Here we shall
employ it to derive the following “multiple mean ergodic theorem.”

Theorem 9.29. Let .XI'/ be a weakly mixing measure-preserving system and let
T WD T' be the Koopman operator on E WD L2.X; ˙; �/. Then

lim
N!1

1

N

N�1X

nD0
.Tnf1/.T

2nf2/ � � � .T.k�1/nfk�1/ D
� Z

X
f1 � � �

Z

X
fk�1

�
� 1 (9.8)

in L2.X/ for every k � 2 and every f1; : : : ; fk�1 2 L1.X/.

Note that, since we take the functions f1; : : : ; fk from L1.X/, the products above
remain in L2.

Proof. We prove the theorem by induction on k � 2. For k D 2 the assertion
reduces to the mean ergodic theorem for ergodic systems, see Theorem 8.10. So
suppose that the assertion holds for some k � 2 and take f1; : : : ; fk 2 L1. Since the
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measure-preserving system given by ' is weakly mixing, we can decompose fk D
hfk; 1i 1C .f �hfk; 1i 1/, where the latter part is contained in Eaws. Hence, without
loss of generality we may consider the cases fk 2 Eaws and fk 2 C1 separately.
Since in the latter case the assertions reduce to the induction hypothesis, we are left
with the case that fk 2 Eaws. Then hfk; 1i D 0 (since Eaws � ran.I � T/, the kernel
of the mean ergodic projection), so we have to show that

lim
N!1

1

N

N�1X

nD0
.Tnf1/.T

2nf2/ � � � .Tknfk/ D 0:

To achieve this we employ van der Corput’s Lemma 9.28. Define un WD Tnf1 �
T2nf2 � � �Tknfk. Then the invariance of � and the multiplicativity of T imply

�
un

ˇ
ˇ unCj

� D
Z

X
.Tnf1 � T2nf2 � � �Tknfk/ � .TnCjf1 � T2nC2jf2 � � �TknCkjfk/

D
Z

X
.f1 � Tnf2 � � �T.k�1/nfk/ � .Tjf1 � TnC2jf2 � � �T.k�1/nCkjfk/

D
Z

X
.f1T

jf1/ � Tn.f2T
2jf2/ � � �T.k�1/n.fkTkjfk/:

Thus, by the induction hypothesis, the Cesàro means of
�

un

ˇ
ˇ unCj

�
converge to

Z

X
f1T

jf1 �
Z

X
f2T

2jf2 � � �
Z

X
fkTkjfk D

kY

mD1

�
fm

ˇ
ˇ Tjmfm

�
:

So we obtain


j WD lim sup
N!1

ˇ
ˇ
ˇ
1

N

N�1X

nD0

�
un

ˇ
ˇ unCj

�ˇˇ
ˇ D

kY

mD1

ˇ
ˇ�fm

ˇ
ˇ Tjmfm

�ˇˇ :

Now, each Tjm is a contraction and fk 2 Eaws.T/ D Eaws.Tk/ (Corollary 9.18),
hence it follows that

lim sup
n!1

1

n

n�1X

jD0

j � kf1k2 : : : kfk�1k2 lim sup

n!1
1

n

n�1X

jD0

ˇ
ˇ
ˇ
�
fk

ˇ
ˇTkjfk

�ˇˇ
ˇ D 0;

where we used Theorem 9.19(iii) for the last equality. An application of van der
Corput’s lemma concludes the proof. ut

By specializing the fj to characteristic functions in Theorem 9.29 we obtain the
following corollary.



186 9 Mixing Dynamical Systems

Corollary 9.30. Let .XI'/, X D .X; ˙; �/, be a weakly mixing measure-
preserving system. Then

lim
N!1

1

N

N�1X

nD0
�
�
A0 \ '�nA1 \ : : : \ '�.k�1/nAk�1

� D �.A0/�.A1/ � � ��.Ak�1/ (9.9)

for every k 2 N and every A0; : : : ;Ak�1 2 ˙ .

We can now prove the following result.

Theorem 9.31. Every weakly mixing measure-preserving system .XI'/, X D
.X; ˙; �/, is weakly mixing of all orders, i.e.,

lim
N!1

1

N

N�1X

nD0

ˇ
ˇ
ˇ�
�
A0 \ '�nA1 \ : : : \ '�.k�1/nAk�1

� � �.A0/�.A1/ � � ��.Ak�1/
ˇ
ˇ
ˇ D 0

for every k 2 N and every A0; : : : ;Ak�1 2 ˙ .

Proof. Since .X˝XI'�'/ is again weakly mixing by Theorem 9.23, we can apply
Corollary 9.30 to ' � ' and the sets A0 � A0; : : : ;Ak�1 � Ak�1 to obtain

lim
N!1

1

N

N�1X

nD0
�
�
A0 \ '�nA1 \ : : : \ '�.k�1/nAk�1

�2

D lim
N!1

1

N

N�1X

nD0
.�˝ �/�.A0 � A0/ \ : : : \ .' � '/�.k�1/n.Ak�1 � Ak�1/

�

D �.A0 � A0/ � � ��.Ak�1 � Ak�1/ D �.A0/2 : : : �.Ak�1/2:

This combined with (9.9) in Corollary 9.30 implies, by Lemma 9.16, that

lim
N!1

1

N

N�1X

nD0

ˇ
ˇ
ˇ�
�
A0 \ : : : \ '�.k�1/nAk�1

� � �.A0/ : : : �.Ak�1/
ˇ
ˇ
ˇ D 0: ut

Remark 9.32. It is a long-standing open problem, known as Rokhlin’s problem,
whether the analogue of Theorem 9.31 for strongly mixing systems is true, i.e.,
whether a strongly mixing system is also strongly mixing of all orders. More
precisely, it is not even known for k D 3 whether for a general strongly mixing
system .XI'/ one has

lim
n!1�

�
A0 \ '�nA1 \ : : : \ '�.k�1/nAk�1

� D �.A0/�.A1/ � � ��.Ak�1/

for every A0; : : : ;Ak�1 2 ˙ . (Cf., however, Theorem 18.30.)
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Concluding Remarks

Let .XI'/ be a measure-preserving system with Koopman operator T on L2.X/.
According to Furstenberg and Weiss in (1978a), a function f 2 L2.X/ is called
rigid if for some subsequence .nk/k2N in N one has Tnkf ! f as k!1. And the
system .XI'/ is called mildly mixing if the only rigid functions are the constants.
Clearly, any eigenfunction f of T is a rigid function. Hence, a mildly mixing system
is weakly mixing by Theorem 9.25. A strongly mixing system is mildly mixing
by Theorem 9.4. Chacon’s example (Chacon 1969b) for a weakly mixing but not
strongly mixing transformation is known to be mildly mixing. On the other hand,
there are examples of weakly mixing systems that are not mildly mixing, so that
mild mixing lies strictly between weak and strong mixing, see, e.g., Bergelson et
al. (2014) and the references therein. Analogously to weak mixing of all orders the
notion “mild mixing of all orders” can be defined which turns out to be equivalent
to mild mixing itself, see Furstenberg (1981, Ch. 9). For more details on various
mixing properties and their connections to p-limits, see Bergelson and Downarowicz
(2008).

Let us summarize the fundamental relations between these notions in the
following diagram:

mildly mixing mildly mixing
of all orders

strongly mixing weakly mixing totally ergodic ergodic

weakly mixing
of all orders

weakly mixing ergodic

Exercises

1. Prove that a sequence .an/n2N in C converges if and only if each of its
subsequences is Cesàro convergent.

2. Let .an/n2N; .bn/n2N 2 `1 such that an ! a along a subsequence J of N with
density 1 and that 1n

Pn
jD1 bj ! b. Show that

lim
n!1

1

n

nX

jD1
ajbj D ab:

Note that the Cesàro limit is not multiplicative in general! (Hint: Use the Koopman–
von Neumann lemma and a 3"-argument.)
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3. Consider, as in Example 9.9, the d-fold product .XI / of the doubling map with
itself. For a permutation � 2 Sd define

C� WD
˚
x 2 Œ0; 1/d W x�.1/ < x�.2/ < x�.d/

�
:

Prove that for each n 2 N

X

�2Sd

�d
�
 �.n�1/.C� /\ C1

� � �d
�
 �1.C�/ \ C�

� D �d
�
 �n.C�/\ C1

�
:

4 (Upper and Lower Density). For a subset J � N0 the upper and lower density
are defined as

d.J/ WD lim sup
n!1

card.J \ Œ1; n�/
n

and d.J/ WD lim inf
n!1

card.J \ Œ1; n�/
n

:

Show that d.J/ and d.J/ do not alter if we change J by finitely many elements. Then
show that

d.J/ D 1 � d.N n J/ for every J � N

and that

d.J [ K/ � d.J/C d.K/ for every J;K � N:

Conclude that if d.J/ D d.K/ D 1, then d.J \ K/ D 1.

5. Prove the following assertions:

a) For ˛; ˇ 2 Œ0; 1�, ˛ � ˇ there is a set A � N with d.A/ D ˛ and d.A/ D ˇ.

b) Suppose that A � N is relatively dense, i.e., has bounded gaps (Defini-
tion 3.9). Then d.A/ > 0. The converse implication, however, is not true.

c) Let N D A1 [ A2 [ � � � [ Ak. Then there is 1 � j � k with d.Aj/ > 0. The
assertion is not true if d is replaced by d.

6. Let T be a power-bounded operator on a Banach space E and define

jjj y jjj WD supn�0 kTnyk for y 2 E:

Show that jjj � jjj is a norm on E equivalent to the original norm. Show that T is a
contraction with respect to this norm. Then show that the corresponding dual norm

jjj x0 jjj D sup
˚ˇˇ˝x; x0˛ˇˇ W jjj x jjj � 1�

is equivalent to the original dual norm.
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7. Prove that a sequence .xn/n2N in a Banach space E converges in density to x 2 E
if and only if for every " > 0 one has

d
�˚

n 2 N W kxn � xk > "�� D 0:

(Hint: Look at the proof of the Koopman–von Neumann lemma.)

8. Let T be a power-bounded operator on a Banach space E. Prove that Eaws.T/
is a closed subspace of E, cf. Corollary 9.18. (Hint: Use the description (iv) of
Theorem 9.15.)

9. Let T be a power-bounded operator on a Banach space E and let k 2 N. Prove
the inclusion Eaws.Tk/ � Eaws.T/, cf. Corollary 9.18. (Hint: Use the description (iv)
of Theorem 9.15 and employ an argument as in the proof of Proposition 9.7.)

10. Prove the characterizations of weakly mixing systems stated in Remark 9.20.

11. Let .TI a/ be an ergodic rotation. Show that the product system .T � TI .a; a//
is not ergodic. (Hint: Consider the function f .z;w/ WD zw on T � T.)

12. Give an example of an ergodic measure-preserving system .XI'/ such that the
measure-preserving system .XI'k/ is not ergodic for some k � 2.

13. Give an alternative proof of the implication (i)) (ii) in Theorem 9.25 in the
following way: Suppose that Tf D �f and show that f ˝ f 2 fix.T ˝ T/. Finally,
show that if a function of the form g˝ h is constant almost everywhere, both g and
h must be constant almost everywhere.

14. Give an interpretation of weak mixing (Definition 9.13) and mixing of all orders
(Theorem 9.31) for the wine/water-example from the beginning of this chapter.

15. Let .XI'/ be a measure-preserving system such that ' is essentially invertible.
Show that .XI'/ is (weakly) mixing if and only if the inverse system .XI'�1/ is
(weakly) mixing.

16. Prove that a general Bernoulli shift is strongly mixing. (Hint: Look at the proof
of Proposition 6.20.)



Chapter 10
Mean Ergodic Operators on C.K/

The pendulum of mathematics swings back and forth towards abstraction and away from it
with a timing that remains to be estimated.

Gian-Carlo Rota1

In this chapter we consider a topological dynamical system .KI'/ and ask under
which conditions its Koopman operator T WD T' is mean ergodic on C.K/. In
contrast to the Lp-case, it is much more difficult to establish weak compactness of
subsets of C.K/. Consequently, property (iii) of Theorem 8.20 plays a minor role
here. Using instead condition (v)

“fix.T/ separates fix.T 0/”

of that theorem, we have already seen simple examples of topological systems where
the Koopman operator is not mean ergodic (see Exercise 8.10.a). Obviously, mean
ergodicity of T is connected with fix.T 0/ being “not too large” (as compared to
fix.T/). Now, if we identify C.K/0 D M.K/ by virtue of the Riesz Representation
Theorem 5.7, we see that a complex Baire measure � 2 M.K/ is a fixed point of T 0
if and only if it is '-invariant, i.e.,

M'.K/ WD
˚
� 2 M.K/ W � is '-invariant

� D fix.T 0/:

Mean ergodicity of T therefore becomes more likely if there are only few '-invariant
measures. We first discuss the existence of invariant measures as announced in
Section 5.2.

1Indiscrete Thoughts, Birkhäuser Verlag, Boston, 1997, p. 30.
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10.1 Invariant Measures

Given a topological dynamical system .KI'/ with Koopman operator T on C.K/
we want to find a fixed point of T 0 which is a probability measure. For this purpose
let us introduce

M1.K/ WD ˚� 2 M.K/ W � � 0; h�; 1i D 1�;
M1
'.K/ WD M1.K/ \M'.K/ D M1.K/\ fix.T 0/and

the set of all and of all '-invariant probability measures, respectively. Recall that

� � 0 ” hf;�i � 0 for all f 2 C.K/ with f � 0:

It follows that both M1.K/ and M1
'.K/ are convex and weakly� closed. Since

M1.K/ � ˚� 2 M.K/ W k�k � 1�

and the latter set is weakly� compact by the Banach–Alaoglu theorem, we conclude
that M1.K/ and M1

'.K/ are compact (for the weak� topology). Moreover, M1.K/
is nonempty since it contains all point measures. To see that M1

'.K/ is nonempty
either, we employ one of the classical fixed point theorems.

Theorem 10.1 (Markov–Kakutani). Let C be a nonempty compact, convex subset
of a Hausdorff topological vector space, and let 	 be a set of pairwise commuting,
affine, and continuous mappings T W C! C. Then these mappings have a common
fixed point in C.

Proof. First we suppose that 	 D fTg is a singleton. Let f 2 C. Then, by
compactness of C, the sequence AnŒT�f has a cluster point g 2 C. Since C is
compact, 1n .f � Tnf /! 0. Hence, by Lemma 8.17 we conclude that Tg D g.

For the general case it suffices, by compactness, that the sets fix.T/, T 2 	 , have
the finite intersection property. We prove this by induction. Suppose that for any
T1; : : : ;Tn 2 	 we already know that C1 WD fix.T1/ \ � � � \ fix.Tn/ is nonempty.
Now C1 is compact and convex, and every TnC1 2 	 leaves C1 invariant (because
TnC1 commutes with each Tj, 1 � j � n). Hence, by the case already treated, we
obtain fix.TnC1/\ C1 6D ;. ut
With this result at hand we can prove the existence of invariant measures for any
topological system.

Theorem 10.2 (Krylov–Bogoljubov). For every topological system .KI'/ there
exists at least one '-invariant probability measure on K. More precisely, for every
0 ¤ f 2 fix.T'/ in C.K/ there exists � 2 M1

'.K/ such that hf;�i ¤ 0.
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Proof. We apply the Markov–Kakutani theorem to 	 D fT 0
'g and to the weakly�

compact, convex set

C WD M1.K/\ ˚� 2 M.K/ W hf;�i D kf k1
�
:

By compactness there is x0 2 K with ıx0 2 C, so C is nonempty. Since f 2 fix.T'/,
T 0
' leaves C invariant and by Theorem 10.1 the assertion is proved. ut

Remarks 10.3. 1) Let T WD T' . As has been mentioned, a measure � 2 M.K/
is '-invariant if and only if T 0� D �, i.e., � 2 fix.T 0/. Hence, Theorem 10.2
implies in particular that

fix.T 0/ separates fix.T/:

Remarkably enough, this holds for any power-bounded operator on a general
Banach space (see Exercise 8.5).

2) Theorem 10.2 has a generalization to so-called Markov operators, i.e.,
operators T on C.K/ such that T � 0 and T1 D 1 (see Exercise 2).

3) The proof of the Krylov–Bogoljubov theorem relies on the Markov–
Kakutani theorem for 	 D fT 0

'g. The use of Lemma 8.17 makes it possible
to consider any subsequence .Ank ŒT

0
'�/, a cluster point of which will always

be a fixed point of T 0
' . This “trick” can be used to produce invariant measures

with particular properties, see Chapter 20.

The following result shows that the extreme points of the convex compact set
M1
'.K/ (see Appendix C.7) are of special interest.

Proposition 10.4. Let .KI'/ be a topological system. Then � 2 M1
'.K/ is an

extreme point of M1
'.K/ if and only if the measure-preserving system .K; �I'/ is

ergodic.

A '-invariant probability measure� 2 M1
'.K/ is called ergodic if the corresponding

measure-preserving system .K; �I'/ is ergodic. By the proposition, � is ergodic
if and only if it is an extreme point of M1

'.K/. By the Kreı̆n–Milman theorem
(Theorem C.14) such extreme points do always exist. Furthermore, we have

M1
'.K/ D conv

˚
� 2 M1

'.K/ W � is ergodic
�
; (10.1)

where the closure is to be taken in the weak� topology. Employing the so-called
Choquet theory one can go even further and represent an arbitrary '-invariant
measure as a “barycenter” of ergodic measures, see Phelps (1966).

Proof. Assume that ' is not ergodic. Then there exists a set A with 0 < �.A/ < 1

such that '�A D A. The probability measure �A, defined by

�A.B/ WD �.A \ B/

�.A/
.B 2 Ba.K//;
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is clearly '-invariant, i.e., �A 2 M1
'.K/. Analogously,�Ac 2 M1

'.K/. But

� D �.A/�A C .1 � �.A//�Ac

is a representation of � as a nontrivial convex combination, and hence � is not an
extreme point of M1

'.K/.
Conversely, suppose that � is ergodic and that � D 1

2
.�1 C �2/ for some �1; �2 2

M1
'.K/. This implies in particular that �1 � 2�, hence

jhf;�1ij � 2 hjf j ; �i D 2 kf kL1.�/ .f 2 C.K//:

Since C.K/ is dense in L1.K; �/, the measure �1 belongs to L1.K; �/0. Let us
consider the Koopman operator T' on L1.K; �/. Since � is ergodic, fix.T'/ is
one-dimensional. By Example 8.24 the operator T' is mean ergodic, and fix.T'/
separates fix.T 0

'/ by Theorem 8.20(v). Hence, the latter is one-dimensional too, and
since �;�1 2 fix.T 0

'/ it follows that �1 D �. Consequently, � is an extreme point
of M1

'.K/. ut
By this result, if there are two different '-invariant probability measures, then

there is also a nonergodic one. Conversely, all '-invariant measures are ergodic if
and only if there is exactly one '-invariant probability measure. This leads us to the
next section.

10.2 Uniquely and Strictly Ergodic Systems

Topological dynamical systems that have a unique invariant probability measure
are called uniquely ergodic. To analyze this notion further, we need the following
useful information.

Proposition 10.5. Let .KI'/ be a topological system. Then M'.K/ is a lattice, i.e.,
if  2 M'.K/, then also jj 2 M'.K/. Consequently, M1

'.K/ linearly spans M'.K/.

Proof. Let T be the associated Koopman operator on C.K/ and take  2 fix.T 0/ D
M'.K/. By Exercise 9 we obtain jj D jT 0j � T 0jj and

h1; jji � h1;T 0jji D h1; jji:

This implies that h1;T 0jj � jji D 0, hence jj 2 fix.T 0/. To prove the second
statement, note that  2 fix.T 0/ if and only if Re ; Im  2 fix.T 0/. But if  is a
real (= signed) measure in fix.T 0/, then  D C � � with C D 1

2
.jj C / and

� D 1
2
.jj � / being both in M'.K/C (see Chapter 7.2). ut

As a consequence we can characterize unique ergodicity.
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Theorem 10.6. Let .KI'/ be a topological system with Koopman operator T on
C.K/. The following assertions are equivalent:

(i) .KI'/ is uniquely ergodic, i.e., M1
'.K/ is a singleton.

(ii) dim M'.K/ D 1.

(iii) Every invariant probability measure is ergodic.

(iv) T is mean ergodic and dim fix.T/ D 1.

(v) For each f 2 C.K/ there is c.f / 2 C such that

.AnŒT�f /.x/! c.f / as n!1 for all x 2 K.

Proof. The equivalence (i), (ii) is clear by Proposition 10.5. The equivalence
(i), (iii) is a consequence of Proposition 10.4 and has been discussed in the
paragraph after that proposition.

If (ii) holds, then fix.T/ is one-dimensional since fix.T 0/ D M'.K/ separates
the points of fix.T/ by Theorem 10.2. But then also fix.T/ separates the points of
fix.T 0/, and hence by Theorem 8.20, T is mean ergodic. If (iv) holds, then Pf WD
limn!1 Anf exists uniformly and is a constant function Pf D c.f /1, hence (v)
holds.

Finally, suppose that (v) holds. If  2 M1
'.K/ is arbitrary and f 2 C.K/, then by

dominated convergence

hf; i D hAnf; i ! hc.f /1; i D c.f /:

Hence, M1
'.K/ consists of at most one point, and (i) holds. ut

Let K be compact and let � 2 M1.K/ be any probability measure on K. Recall
from Section 5.2 that the support supp.�/ of � is the unique closed set M � K
such that for f 2 C.K/

f 2 IM WD
˚
g 2 C.K/ W g 
 0 on M

� ”
Z

K
jf j d� D 0: (10.2)

Equivalently, we have

supp.�/ D ˚x 2 K W �.U/ > 0 for each open set x 2 U � K
�

D
\˚

A � K W A is closed and �.A/ D 1�

(see Lemma 5.9 and Exercise 5.12). The following observation is quite important.

Lemma 10.7. Let .KI'/ be a topological system and � 2 M1.K/ a '-invariant
measure. Then the support supp.�/ of � is '-stable, i.e., it satisfies '.supp.�// D
supp.�/.
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Proof. Let M WD supp.�/. Since T is a lattice homomorphism,

Z

K
jTf j d� D

Z

K
T jf j d� D

Z

K
jf j d�;

whence by (10.2) f 2 IM if and only if Tf 2 IM . By Lemma 4.14 we conclude that
'.M/ D M. The remaining statement follows readily. ut

The measure� 2 M1.K/ has full support or is strictly positive if supp.�/ D K.
With the help of Lemma 10.7 we obtain a new characterization of minimal systems.

Proposition 10.8. Let .KI'/ be a topological system, and let M � K be closed and
'-invariant.

a) There exists an ergodic probability measure � 2 M1
'.K/ with supp.�/ � M.

b) .MI'/ is minimal if and only if every ergodic '-invariant probability
measure on M has full support.

Proof. a) By the Krylov–Bogoljubov theorem and the arguments following
Proposition 10.4, there is an ergodic � 2 M1

'.M/. Its natural extension to K is
also ergodic since L1.K; �/ D L1.M; �/.

b) One implication follows from Lemma 10.7. For the converse, let L be a closed
'-invariant subset of M. Apply part a) to L and conclude that L D M. ut

A topological dynamical system .KI'/ is called strictly ergodic if it is uniquely
ergodic and the unique invariant probability measure � has full support. We obtain
the following characterization.

Corollary 10.9. Let .KI'/ be a topological system with Koopman operator T on
C.K/. The following assertions are equivalent:

(i) The topological system .KI'/ is strictly ergodic.

(ii) The topological system .KI'/ is minimal and T is mean ergodic.

Proof. (i)) (ii): Suppose that .KI'/ is strictly ergodic, and let � be the unique
invariant probability measure on K. By Theorem 10.6, T is mean ergodic. Now let
; 6D M � K be '-invariant. Then by Theorem 10.2 there is  2 M1

'.M/, which then
can be canonically extended to all K such that supp./ � M, see also Exercise 11.
But then � D  and hence M D K.

(ii)) (i): If .KI'/ is minimal, it is forward transitive, so fix.T/ D C1 (see
Lemma 4.20). Mean ergodicity of T implies that fix.T/ separates fix.T 0/ D M'.K/,
which is possible only if dim M'.K/ D 1, too. Hence, .KI'/ is uniquely ergodic,
with unique invariant probability measure �. By minimality, � has full support
(Proposition 10.8). ut

Minimality is not characterized by unique ergodicity. An easy example of a
uniquely ergodic system that is not minimal (not even transitive) is given in
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Exercise 4. Minimal systems that are not uniquely ergodic are much harder to obtain,
see Furstenberg (1961) and Raimi (1964).

10.3 Mean Ergodicity of Group Rotations

We turn our attention to ergodic theoretic properties of rotations on a compact group
G. Recall from Example 4.22 that for a 2 G

La W L1.G/! L1.G/; .Laf /.x/ WD f .ax/ .x 2 G; f 2 L1.G// (10.3)

is the Koopman operator for the left rotation by a. Analogously, we define the
Koopman operator

Ra W L1.G/! L1.G/; .Raf /.x/ WD f .xa/ .x 2 G; f 2 L1.G// (10.4)

of the right rotation �a. Recall that left rotation by a is isomorphic to right rotation by
a�1 via the inversion mapping (Example 2.9). On the level of Koopman operators
this means that Ra D SLa�1S where S is the Koopman operator associated with
inversion:

S W C.G/! C.G/; .Sf /.x/ D f .x�1/ .x 2 G; f 2 L1.G//:

(Note that the Haar measure is also right-invariant and inversion invariant.) By
Theorem 8.8 the operator La is mean ergodic on Lp.G/ for p 2 Œ1;1/. We
investigate now its behavior on C.G/, starting with the special case G D T.

Proposition 10.10. The Koopman operator La associated with a rotation system
.TI a/ is mean ergodic on C.T/.

Proof. We write T D La for the Koopman operator and An D AnŒT� for its Cesàro
averages. The linear hull of the functions �n W z 7! zn, n 2 Z, is a dense subalgebra
of C.T/, by the Stone–Weierstraß Theorem 4.4. Since T is power-bounded and
therefore Cesàro bounded, it suffices to show that An�m converges for every m 2 Z.
Note that T�m D am�m for m 2 N, hence if am D 1, then �m 2 fix.T/ and there is
nothing to show. So suppose that am ¤ 1. Then

An�m D 1

n

n�1X

jD0
Tj�m D

�1
n

n�1X

jD0
amj
�
�m D 1

n

1 � amn

1 � am
�m ! 0

as n!1. (Compare this with the final problem in Chapter 1.) ut
To establish the analogous result for general group rotations, we need an auxiliary
result.
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Proposition 10.11. Let G be a compact group and let f 2 C.G/. Then the
mappings

G! C.G/; a 7! Laf and

G! C.G/; a 7! Raf

are continuous.

Proof. This is a direct application of Theorem 4.17. ut
As a consequence we obtain the following generalization of Proposition 10.10.

Corollary 10.12. The Koopman operator associated with a compact group rotation
system .GI a/ is mean ergodic on C.G/.

Proof. Let f 2 C.G/. Then by Proposition 10.11 the set fLgf W g 2 Gg � C.G/
is compact. A fortiori, the set fLn

af W n 2 N0g is relatively compact. Consequently,
its closed convex hull is compact, hence Theorem 8.20(iii) concludes the proof. ut

By combining the results of this chapter so far, we arrive at the following
important characterization. (We include also the equivalences known from previous
chapters.)

Theorem 10.13 (Minimal Group Rotations). Let G be a compact group with
Haar probability measure m, and consider a group rotation .GI a/ with associated
Koopman operator La on C.G/. Then the following assertions are equivalent:

(i) .GI a/ is minimal.

(ii) .GI a/ is (forward) transitive.

(iii) fan W n � 0g is dense in G.

(iv) fan W n 2 Zg is dense in G.

(v) dim fix.La/ D 1.

(vi) .GI a/ is uniquely ergodic.

(vii) The Haar measure m is the only invariant probability measure for .GI a/.
(viii) .GI a/ is strictly ergodic.

(ix) .G;mI a/ is ergodic.

Proof. The equivalence of (i)–(iv) has been shown in Theorems 2.36 and 3.4. The
implication (ii)) (v) follows from Lemma 4.20. Combining dim fix.La/ D 1 with
the mean ergodicity of La (Corollary 10.12) we obtain the implication (v)) (vi)
by Theorem 10.6. The implication (vi)) (vii) is clear since the Haar measure
is obviously invariant, and (vii)) (viii) follows since the Haar measure has full
support (Theorem 14.2). By Corollary 10.9, (viii) implies that .GI a/ is minimal,
hence (i).
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By Theorem 10.6, (vii) implies (ix). Conversely, suppose that .G;mI a/ is
ergodic. Then fix.La/ D C1, where La is considered as an operator on L1.G;m/.
Since m has full support, the canonical map C.G/ ,! L1.GIm/ is injective, whence
(v) follows. ut
Example 10.14 (Dyadic Adding Machine). Recall from Example 2.10 the defini-
tion of the dyadic adding machine .A2I 1/, where

A2 D
n
x D .xn C 2n

Z/n2N 2
Y

n2N
Z=2n

Z W xn�1 D xn .mod 2n�1/ for all n � 1
o

is the compact group of dyadic integers and

1 D .1C 2Z; 1C 4Z; 1C 8Z; : : : / 2 A2:

By Exercise 3.10, the dyadic adding machine .A2I 1/ is minimal, so this group
rotation system satisfies the equivalent properties listed in Theorem 10.13.

10.4 Furstenberg’s Theorem on Group Extensions

Let G be a compact group with Haar measure m, and let .KI'/ be a topological
system. Furthermore, let ˚ W K ! G be continuous and consider the group
extension along ˚ with dynamics

 W K � G! K �G;  .x; y/ WD .'.x/; ˚.x/y/;

see Section 2.2. Let � W K �G! K, �.x; g/ WD x be the corresponding factor map.
Of course, for any '-invariant probability measure � on K the measure �˝m is an
invariant measure for the topological system .K �GI /. However, even if .KI'/ is
uniquely ergodic, the product need not be so. As an example consider the product of
two commensurable irrational rotations, which is not minimal (see Example 2.38),
so by Theorem 10.13 it is not uniquely ergodic.

In order to obtain conditions guaranteeing that the group extension is uniquely
ergodic, we need the following preparations. The right rotation �a by an element a 2
G in the second coordinate is an automorphism of the group extension .K � GI /.
The associated Koopman operator is I˝ Ra, which acts on f ˝ g as f ˝ Rag and
commutes with the Koopman operator T , i.e., T .I˝ Ra/ D .I˝ Ra/T .

Theorem 10.15. Let  be a  -invariant probability measure on K � G, and let
� WD ��. If �˝m is ergodic, then  D �˝m.

Proof: The product measure �˝m is not only  -invariant, but also invariant under
�a for all a 2 G. Fix f 2 C.K/ and g 2 C.G/. Since the measure-preserving system
.K � G; � ˝ mI / is ergodic, as a consequence of von Neumann’s Theorem 8.1,
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we find a subsequence .nk/k2N such that for Ank WD Ank ŒT � we have

Ank .f ˝ g/! hf;�i hg;mi � 1 �˝m-almost everywhere: (10.5)

For a 2 G we define

E.a/ WD ˚.x; y/ 2 K � G W Ank.f ˝ Rag/.x; y/! hf;�i hg;mi�:
Note that �a.x; y/ 2 E.1/ if and only if .x; y/ 2 E.a/. Hence, by (10.5) we have
.�˝m/.E.a// D 1 for all a 2 G.

Since the mapping

G � C.G/! C.G/; .a; g/ 7! Rag

is continuous (by Proposition 10.11), the orbit

RGg WD ˚Rag W a 2 G
�

is a compact subset of C.G/. In particular, it is separable, and we find a countable
subset Cg � G such that fRag W a 2 Cgg is dense in RG. For such a countable set
define

E WD
\

a2Cg

E.a/;

which satisfies .�˝m/.E/ D 1. We claim that actually E DTa2G E.a/.

Proof of Claim. The inclusion “	” is clear. For the converse inclusion fix a 2 G
and take .am/m2N in Cg such that kRamg � Ragk1 ! 0 as m!1. Then Ank.f ˝
Ramg/! Ank.f ˝Rag/ uniformly in k 2 N as m!1. Hence, if .x; y/ 2 E.am/ for
each m 2 N, then by a standard argument, .x; y/ 2 E.a/, too. The claim is proved.

Now, for x 2 K and y; a 2 G we have the following chain of equivalences:

.x; ya/ 2 E”8 b 2 G W .x; ya/ 2 E.b/”8 b 2 G W .x; yab/ 2 E.1/

”8 b 2 G W .x; y/ 2 E.ab/” .x; y/ 2 E:

Hence, E D E1 � G, where E1 � K is the section E1 WD fx 2 K W .x; 1/ 2 Eg.
Since E is a Baire set in K � G, and Ba.K � G/ D Ba.K/˝ Ba.G/ (Exercise 5.8),
by standard measure theory E1 is measurable, whence �.E1/ D 1. By definition of
�, this means that .E/ D 1, i.e.,

Ank.f ˝ g/! hf;�i hg;mi -almost everywhere:

By the dominated convergence theorem we therefore obtain

hf ˝ g; i D hAnk.f ˝ g/; i ! hf;�i hg;mi :
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As we saw in the proof of Proposition 10.11 the linear hull of functions f ˝ g
is dense in C.K � G/, so by the Riesz Representation Theorem 5.7 the proof is
complete. ut

A direct consequence is the following result of Furstenberg.

Corollary 10.16 (Furstenberg). If .KI'/ is uniquely ergodic with invariant prob-
ability measure �, and if �˝m is ergodic, then .K � GI / is uniquely ergodic.

The usual proof of Furstenberg’s result relies on the pointwise ergodic theorem
(which is the subject of the next chapter) and on generic points (see Exercise 11.4).
A completely different, more conceptual, approach is given in Chapter 15, see in
particular Theorem 15.31.

We now turn to an important example of the situation from above.

Strict Ergodicity of Skew Shifts

Let ˛ 2 Œ0; 1/ be an irrational number and take on Œ0; 1/ the compact topology
defined in Example 2.7. By Example 2.15, Kronecker’s theorem (Example 2.37)
and Theorem 10.13, the translation system .Œ0; 1/I˛/ is strictly ergodic. We consider
here its group extension along the identity function ˚ W Œ0; 1/ ! Œ0; 1/, ˚.x/ D x,
i.e., the skew shift .KI ˛/, where K WD Œ0; 1/2 and

 ˛.x; y/ D .xC ˛ .mod 1/ ; xC y .mod 1/ /;

see also Example 2.23. Our aim is to show that this system is also strictly ergodic.
The two-dimensional Lebesgue measure �2 on K is  ˛-invariant (Example 5.15),
so it remains to prove that this measure is actually the only  ˛-invariant probability
measure on K. We start with an auxiliary result.

Proposition 10.17. Let ˛ 2 Œ0; 1/ be an irrational number. Then the skew shift
.Œ0; 1/2; �2I ˛/ is ergodic.

Proof. To prove the assertion we use Proposition 7.15 and show that the fixed
space of the Koopman operator T of  ˛ on L2.Œ0; 1/2/ D L2.Œ0; 1�2/ consists of the
constant functions only. For f; g 2 L2Œ0; 1� the function f ˝ g W .x; y/ 7! f .x/g.y/
belongs to L2.Œ0; 1�2/. Now, every F 2 L2.Œ0; 1�2/ can be written uniquely as an
L2-series

F D
X

n2Z
fn ˝ en;

where .fn/n2Z is a sequence in L2Œ0; 1� and .en/n2Z is the orthonormal basis

en.y/ WD e2 iny .y 2 Œ0; 1�; n 2 Z/
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of L2Œ0; 1�. Applying T to F yields

TF D
X

n2Z
.enL˛fn/˝ en;

hence the condition F 2 fix.T/ is equivalent to

L˛fn D e�nfn for every n 2 Z:

Now fix n 2 Z and write fn DPk2Z akek, with
P

k2Z jakj2 <1. Then

X

k2Z
ake2 i˛ek D L˛fn D e�nfn D

X

k2Z
akek�n D

X

k2Z
akCnek:

Comparing coefficients yields jakj D jakCnj for all k 2 Z. Since
P

k2Z jakj2 < 1,
this implies that a D 0 or n D 0. Consequently, F D f0 ˝ e0, and L˛f0 D f0.
By hypothesis, ˛ is irrational, hence the system .Œ0; 1/; �I˛/ is ergodic, and so f0 is
constant. It follows that F is constant. ut
The previous result allows to apply Furstenberg’s theorem (Corollary 10.16) to
conclude that the skew shift .KI ˛/ is uniquely ergodic with the Lebesgue measure
� being the unique invariant probability measure on K. Since � is strictly positive,
the skew shift is even strictly ergodic. So by Corollary 10.9 we obtain the next result.

Corollary 10.18. For an irrational number ˛ 2 R the skew shift .KI ˛/, where

K D Œ0; 1/2 and  ˛.x; y/ D .xC ˛ .mod 1/ ; xC y .mod 1/ /;

is strictly ergodic and its associated Koopman operator is mean ergodic on C.K/.

Consider now (recursively for d � 2) the following tower of group extensions,
familiar already from the proof of Proposition 3.18:

Œ0; 1/dWDŒ0; 1/d�1 � Œ0; 1/; ˚d W Œ0; 1/d�1 ! Œ0; 1/; ˚d.x1; x2; : : : ; xd�1/WDxd�1:

Then for the group extension .Œ0; 1/dI d/ of .Œ0; 1/d�1I d�1/ along ˚d we have

 d.x1; x2; : : : ; xd/ D .x1 C ˛; x1 C x2; x2 C x3; : : : ; xd�1 C xd/:

Combining induction on d with the same arguments as in the proof above one can
prove the following result (Exercise 7).

Proposition 10.19. Let ˛ 2 Œ0; 1/ be an irrational number. Then for each d � 2 the
group extension .Œ0; 1/d; �dI d/ is ergodic, where �d is the d-dimensional Lebesgue
measure on Œ0; 1/d. Moreover, the topological system .Œ0; 1/dI d/ is strictly ergodic
and its Koopman operator on C

�
Œ0; 1/d

�
is mean ergodic.
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10.5 Application: Equidistribution

A sequence .˛n/n2N0 in Œ0; 1/ is called equidistributed in [0,1) if

lim
n!1

cardf j W 0 � j < n; ˛j 2 Œa; b�g
n

D b � a

for all a; b with 0 � a < b � 1. In other words, the relative frequency of the first
n elements of the sequence falling into an arbitrary fixed interval Œa; b� converges to
the length of that interval (independently of its location). In this section we show
how mean ergodicity of the Koopman operator on various spaces can be used to
study equidistribution of some sequences.

A classical theorem of Weyl (1916) gives an important example of an equidis-
tributed sequence and is a quantitative version of Kronecker’s theorem in Exam-
ple 2.37.

Theorem 10.20 (Weyl). For ˛ 2 Œ0; 1/ n Q the sequence .n˛ .mod 1/ /n2N0 is
equidistributed in Œ0; 1/.

We consider the translation system .Œ0; 1/I˛/ as in Example 2.7. Recall from
Example 2.15 that this topological system is isomorphic to the rotation system
.TI a/, where a D e2 i˛ . As we saw in the previous section, the Koopman operator
La is mean ergodic on C.T/, hence so is the Koopman operator L˛ of .Œ0; 1/I˛/ on
C.Œ0; 1//. To see the direct connection between this measure-preserving system and
equidistribution it is better to work with the space RŒ0; 1� of bounded, 1-periodic
functions on R that are Riemann integrable over compact intervals. Equipped with
the sup-norm, RŒ0; 1� becomes a Banach space, and the Koopman operator T
associated with the translation x 7! x C ˛ leaves RŒ0; 1� invariant, i.e., restricts
to an isometric isomorphism of RŒ0; 1�.

We shall use Riemann’s criterion of integrability. A bounded real-valued function
f W Œ0; 1�! R is Riemann integrable if and only if for every " > 0 there exist step
functions g", h" such that

g" � f � h" and
Z 1

0

.h" � g"/.t/ dt � ":

Clearly, if f is 1-periodic (i.e., if f .0/ D f .1/), then g" and h" can be chosen
1-periodic as well.

Proposition 10.21. Let ˛ 2 Œ0; 1/nQ. Then the Koopman operator associated with
the translation system .Œ0; 1/I˛/ is mean ergodic on RŒ0; 1�, and the mean ergodic
projection is given by

Pf D
Z 1

0

f .t/ dt � 1 .f 2 RŒ0; 1�/:
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Proof. We denote as usual the Koopman operator by T and its Cesàro averages
by An, n 2 N. We shall identify functions defined on Œ0; 1/ with their 1-periodic
extensions to R.

Let � be any characteristic function of an interval (open, closed, or half-open)
contained in Œ0; 1/, and let " > 0. A moment’s thought reveals that there exist
continuous 1-periodic functions g", h" on R satisfying

g" � � � h" and
Z 1

0

.h" � g"/.t/ dt � ":

By Proposition 10.10 and by the isomorphism of the rotation on the torus and the
mod 1 translation on Œ0; 1/, Ang" converges uniformly to .

R 1
0

g".t/ dt/ �1, while Anh"
converges uniformly to .

R 1
0

h".t/ dt/ � 1. Since Ang" � An� � Anh" for all n 2 N,
we obtain

�Z 1

0

g".t/ dt � "
�
� 1 � An� �

�Z 1

0

h".t/ dtC "
�
� 1

for sufficiently large n. So we have for such n that

�
�
�An� �

Z 1

0

�.t/ dt � 1
�
�
�1 � 2"

by the choice of g" and h". Therefore

k � k1 � lim
n!1 An� D

�Z 1

0

�.t/ dt

�
� 1:

Clearly the convergence on these characteristic functions extends to all 1-periodic
step functions. Take now a real-valued f 2 RŒ0; 1�. As noted above, for " > 0 we
find 1-periodic step functions g", h" with g" � f � h" and

R 1
0
.h" � g"/.t/ dt � ".

By a similar argument as above we then obtain

k � k1 � lim
n!1 Anf D

�Z 1

0

f .t/ dt

�
� 1: ut

By using the mean ergodicity of L˛ on RŒ0; 1� we can now prove Weyl’s equidistri-
bution theorem.

Proof of Weyl’s Theorem 10.20. Denote ˛n WD n˛ .mod 1/ and let

f WD
(

1Œa;b� if b < 1;

1f0g[Œa;b� if b D 1:
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Then f 2 RŒ0; 1� and

Anf .0/ D 1

n

n�1X

jD0
Lj
˛f .0/ D

1

n

n�1X

jD0
f .˛j/ D cardf j W 0 � j < n; ˛j 2 Œa; b�g

n
:

By Proposition 10.21, L˛ is mean ergodic on RŒ0; 1� and the Cesàro averages
converge uniformly to Pf . In particular

Anf .0/!
Z 1

0

f .s/ ds D b � a: ut

Note that the last step of the proof consisted essentially in showing that if

1

n

n�1X

jD0
f .˛j/!

Z 1

0

f .s/ ds .n!1/

for all f 2 RŒ0; 1�, then the sequence .˛n/n2N is equidistributed. The following is a
converse to this fact, its proof is left as Exercise 15.

Proposition 10.22. A sequence .˛n/n2N in Œ0; 1/ is equidistributed if and only if

lim
n!1

1

n

n�1X

jD0
f .˛j/ D

Z 1

0

f .s/ ds

holds for every bounded and Riemann integrable (equivalently, for every continu-
ous) function f W Œ0; 1�! C.

This result applied to exponential functions s 7! e2 ins was the basis of Weyl’s
original proof. More on this circle of ideas can be found in Hlawka (1979) or Kuipers
and Niederreiter (1974).

By using the mean ergodicity of the Koopman operator corresponding to
the group extension from Proposition 10.19 we obtain the following result on
equidistribution of polynomial sequences.

Theorem 10.23 (Weyl’s Equidistribution Theorem for Polynomials). Let
p.x/ DPd

jD0 ajxj 2 RŒx� be a polynomial such that for some j ¤ 0 the coefficient aj

is irrational. Then the sequence .p.n//n2N is equidistributed modulo 1.

Proof. Let d D deg p (d � 1 by assumption) and suppose the leading coefficient
ad of p is rational, i.e., ad D q

r with q; r 2 Z. For i D 0; : : : ; r � 1 consider the
polynomials qi.x/ WD p.rxCi/�ad.rx/d. Then deg qi < deg p and p.rnC i/ D qi.n/
modulo 1 for every n 2 N. Hence, by Exercise 16 it is enough to prove that
.qi.n//n2N is equidistributed modulo 1 for every i D 0; : : : ; r � 1. Proceeding
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successively and reducing the degree of the occurring polynomials we see that it
is no loss of generality to suppose in the following that the leading coefficient of p
is irrational.

Define as in the proof of Proposition 3.18

pd.x/ WD p.x/; pd�i.x/ WD pd�iC1.xC 1/� pd�iC1.x/ .i D 1; : : : ; d/:

Then each polynomial pi has degree i and p0 is a constant ˛. One sees immediately
that if the leading coefficient of pd�iC1 is irrational, then so is the leading coefficient
of pd�i. In particular ˛ is irrational, since we assumed the leading coefficient of p
to be irrational. Consider the group extension .HdI d/ from Proposition 10.19, and
recall from the proof of Proposition 3.18 that

 n
d

�
p1.0/; p2.0/; : : : ; pd.0/

� D �p1.n/; p2.n/; : : : ; pd.n/
�
:

Let f 2 C.Œ0; 1// and define g.x1; : : : ; xd/ D f .xd/. By the mentioned proposition,
the Koopman operator T of .HdI d/ on C.Œ0; 1/d/ is mean ergodic, and the system
is uniquely ergodic. Since point evaluation at .p1.0/; : : : ; pd.0// is continuous on
C.Œ0; 1/d/, we obtain

1

n

n�1X

jD0
f
�
p.j/

� D 1

n

n�1X

jD0
.Tjg/.p1.0/; : : : ; pd.0//!

Z

Œ0;1/d
g d�d D

Z 1

0

f .s/ ds:

This being true for every continuous function f implies the assertion by virtue of
Proposition 10.22. ut

Exercises

1 (Mean Ergodicity on C.K/). Let .KI'/ be a topological system and � a
probability measure on K. Suppose that

lim
n!1

1

n

n�1X

jD0
f .' j.x// D

Z

K
f d�

for every f 2 C.K/ and every x 2 K. Show that � is '-invariant, the Koopman
operator T' on C.K/ is mean ergodic, and that .K; �I'/ is ergodic. (Hint: Use the
dominated convergence theorem to prove weak mean ergodicity and then use part
(iii) of Theorem 8.20.)

2 (Markov Operators). Let K be a compact topological space. A bounded linear
operator T W C.K/! C.K/ is called a Markov operator if it is positive (i.e., f � 0
implies Tf � 0) and satisfies T1 D 1, (cf. Chapter 13).
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Let T be a Markov operator on C.K/. Show that kTk D 1 and that there exists a
probability measure � 2 M1.K/ such that

Z

K
Tf d� D

Z

K
f d� for all f 2 C.K/:

(Hint: Imitate the proof of the Krylov–Bogoljubov theorem.)

3. A linear functional  on `1 D `1.N/ with the following properties is called a
Banach limit:

1)  is positive, i.e., x 2 `1, x � 0 imply  .x/ � 0,

2)  is translation invariant, i.e.,  .x/ D  .Lx/, where L is the left shift (see
Exercise 8.7).

3)  .1/ D 1, where 1 D .1; 1; : : : /.
Prove the following assertions:

a) A Banach limit  is continuous, i.e.,  2 .`1/0.
b) If x D .xn/n2N 2 `1 is periodic with period k � 1, then for each Banach

limit  one has

 .x/ D 1

k

kX

jD1
xj:

c) If x D .xn/n2N 2 c and  is a Banach limit, then  .x/ D limn!1 xn.

d) If x D .xn/n2N 2 `1 is Cesàro convergent (i.e., cn WD 1
n

Pn
jD1 xj converges),

then for each Banach limit  one has

 .x/ D lim
n!1

1

n

nX

jD1
xj:

e) There exist Banach limits. More precisely, for x D .xn/n 2N 2 `1 con-
sider the Cesàro averages cn WD 1

n

Pn
jD1 xj. For any ˛ 2 Œlim infn!1 cn;

lim supn!1 cn� there is a Banach limit  with  .x/ D ˛ (see Remark
10.3.3).

4. Let K WD Œ0; 1� and '.x/ D 0 for all x 2 Œ0; 1�. Show that .KI'/ is uniquely
ergodic, but not minimal.

5. Consider D D fz 2 C W jzj � 1g and 'a.z/ D az for some a 2 T satisfying
an ¤ 1 for all n 2 N. Find the ergodic measures for 'a.

6. For the doubling map on K D Œ0; 1/ (cf. Exercise 2.12) and the tent map on Œ0; 1�
(cf. Exercise 2.13) answer the following questions:

1) Is the topological system uniquely ergodic?

2) Is the Koopman operator on C.K/ mean ergodic?
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7. Prove Proposition 10.19.

8. Let a 2 T with an ¤ 1 for all n 2 N. Show that the Koopman operator La of the
rotation system .TI a/ is not mean ergodic on the space BM.T/ of bounded, Borel
measurable functions endowed with sup-norm. (Hint: Take a 0-1-sequence .cn/n2N
which is not Cesàro convergent and consider the characteristic function of the set
fan W cn D 1g.)
9. Let � W .KI'/ ! .LI / be a homomorphism of topological systems, and let
T WD T� W C.L/! C.K/ be the associated Koopman operator.

a) Show that T 0� D ��� is the push-forward measure for every � 2 M.K/.

b) Show that jT 0�j � T 0 j�j for every � 2 M.K/, e.g., by using the definition
of the modulus of a measure in Appendix B.9.

c) Suppose that � is surjective, i.e., a factor map. Show that

T 0 W M1
'.K/! M1

 .L/

is surjective, too. (Hint: Employ the Hahn–Banach theorem and b) in order
to show that T 0 W M1.K/ ! M1.L/ is surjective. Then use the Markov–
Kakutani theorem to finish the proof.)

10 (Invariant Measures for Product Systems). Let .KiI'i/, i 2 I, be a family of
topological systems, and let

.KI'/ D
Y

i2I

.KiI'i/

be the topological product system, with canonical factor maps �i W .KI'/ !
.KiI'i/. For � 2 M.K/ the measures �i�� 2 M.Ki/ are called its marginals.

a) Show that �i 2 M1
'i
.Ki/ is an ergodic measure for each i 2 I if and only if

.�i/i2I is an extreme point in the compact convex set
Q

i2I M1
'i
.Ki/.

b) Show that the map

M1
'.K/!

Y

i2I

M1
'i
.Ki/; � 7! .�i��/i2I

is continuous, affine, and surjective.
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c) Conclude that for given �i 2 M1
'i
.Ki/, i 2 I, the set

˚
� 2 M1

'.K/ W �i�� D �i for all i 2 I
�

is a closed face (see page 515) of the compact convex set M1
'.K/.

11. Let .KI'/ be a topological system and let L � K be a compact subset with
'.L/ � L. Let R W C.K/ ! C.L/ be the restriction operator. Show that the dual
operator R0 W M.L/! M.K/ is an isometric lattice homomorphism satisfying

R0.M1
'.L// D

˚
� 2 M1

'.K/ W supp.�/ � L
�
:

(Hint: First use Tietze’s theorem to show that R0 is an isometry; then use Exercise 9
and the isometry property of R0 to show that jR0�j D j�j for every � 2 M.L/;
finally use Proposition 5.6 to show that R0.M'.L// � M'.K/.)

12. Prove the following result: Let .KsI'/ be the maximal surjective subsystem of
a topological system .KI'/ (see Corollary 2.27), and let R W C.K/ ! C.Ks/ be the
restriction mapping. Then the dual operator R0 W M.Ks/ ! M.K/ restricts to an
isometric lattice isomorphism

R0 W M'.Ks/! M'.K/:

13 (Invariant Measures on Projective Limits). Let ...KiI'i//i2I; .�ij/i�j/ be a
projective system of topological dynamical systems with projective limit system

.KI'/ WD lim �
i2I

.KiI'i/

as in Exercises 2.18 and 4.16. One obtains a new projective system of compact
convex spaces

M1
'i
.Ki/ .i 2 I/; �ij� W M1

'j
.Kj/! M1

'i
.Ki/ .i; j 2 I; i � j/:

(Note that, by Exercise 9, each �ij� is surjective if each �ij is surjective.) Show that
the map

˚ W M1
'.K/! lim �

j

M1
'j
.Kj/; � 7! .�j��/j2I

is an affine homeomorphism of compact convex sets. (Hint: Use Exercise 4.17.)

14 (Invertible Extension). Let .KI'/ be a surjective system, and let .LI / �!
.KI'/ be its minimal invertible extension as in Exercise 2.19.
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a) Show that

�� W M1
 .L/! M1

'.K/

is an affine homeomorphism. (Hint: Exercise 13.)

b) Prove that .KI'/ is uniquely/strictly ergodic if and only if .LI / is.

15. Prove Proposition 10.22.

16. Let .˛n/n2N be a sequence of real numbers, and let r 2 N. Prove that .˛n/n2N
is equidistributed modulo 1 if and only if for each i 2 f0; : : : ; r � 1g the sequences
.˛rnCi/n2N are equidistributed.

17 (Van der Corput’s Difference Theorem). Let .˛n/n2N be a sequence of real
numbers. Prove that if for all h 2 N the difference sequence .˛n � ˛nCh/n2N is
equidistributed modulo 1, then so is .˛n/n2N. Is the converse implication also true,
i.e., does the equidistribution of .˛n/n2N imply that of the difference sequences?

18 (Equidistribution of Polynomial Sequences). Give an alternative proof of
Theorem 10.23 by using the result of the previous exercise.

19 (Invariant Functions as Invariant Measures). Let .KI'/ be a topological
dynamical system with invariant probability measure � 2 M1

'.K/. Let T be the as-
sociated Koopman operator on L1.K; �/. Show that for f 2 L1.K; �/ the following
assertions are equivalent:

(i) Tf D f .

(ii) The (complex) measure  D f� is '-invariant, see Appendix B.10.

(Hint: Consider T as a Markov operator in the sense of Chapter 13. Then (ii)
is equivalent to T 0f D f . But for Markov operators T, fix.T/ D fix.T 0/ by
Example 13.24. For a measure theoretic proof see Phelps (1966, Lem. 12.1).)



Chapter 11
The Pointwise Ergodic Theorem

What I don’t like about measure theory is that you have to say “almost everywhere” almost
everywhere.

Kurt Friedrichs1

While von Neumann’s mean ergodic theorem is powerful and far reaching, it does
not actually solve the original problem of establishing that “time mean equals space
mean” for a given measure-preserving system .XI'/. For this we need the pointwise
limit

lim
n!1

1

n

n�1X

jD0
f .' j.x//

for states x 2 X and observables f W X ! R. Of course, by Theorem 8.10
this limit equals the “space mean”

R
X f d� for each observable f only if the

system is ergodic. Moreover, due to the presence of null-sets we cannot expect
the convergence to hold for all points x 2 X. Hence, we should ask merely for
convergence almost everywhere.

Shortly after and inspired by von Neumann’s mean ergodic theorem, Birkhoff
(1931) proved the desired result.

Theorem 11.1 (Birkhoff). Let .XI'/, X D .X; ˙; �/, be a measure-preserving
system, and let f 2 L1.X/. Then the limit

lim
n!1

1

n

n�1X

jD0
f .' j.x//

exists for �-almost every x 2 X.

1An apparently well-known quote attributed to K. Friedrichs without known published source.
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Birkhoff’s theorem is also called the Pointwise (or: Individual) Ergodic Theorem.
Using the Koopman operator T D T' and its Cesàro averages An D AnŒT�we obtain
by Birkhoff’s theorem that for every f 2 L1.X/ the sequence .Anf /n2N converges
pointwise �-almost everywhere. Since we already know that T is mean ergodic, the
Cesàro averages Anf converge in L1-norm to the projection onto the fixed space
of T. Hence, Birkhoff’s theorem in combination with Theorem 8.10(v) implies the
following characterization of ergodic measure-preserving systems.

Corollary 11.2. A measure-preserving system .XI'/, X D .X; ˙; �/, is ergodic if
and only if for every (“observable”) f 2 L1.X/ one has “time mean equals space
mean,” i.e.,

lim
n!1

1

n

n�1X

jD0
f .' j.x// D

Z

X
f d�

for �-almost every (“state”) x 2 X.

As in the case of von Neumann’s theorem, Birkhoff’s result is operator theoretic
in nature. We therefore proceed as in Chapter 8 and use an abstract approach.

11.1 Pointwise Ergodic Operators

Definition 11.3. Let X be a measure space and let 1 � p � 1. A bounded linear
operator T on Lp.X/ is called pointwise ergodic if the limit

lim
n!1 Anf D lim

n!1
1

n

n�1X

jD0
Tjf

exists �-almost everywhere for every f 2 Lp.X/.

Birkhoff’s theorem says that Koopman operators arising from measure-preserving
systems are pointwise ergodic. We shall obtain Birkhoff’s theorem from a more
general result which goes back to Hopf (1954) and Dunford and Schwartz (1958).
Recall that an operator T on L1.X/ is called a Dunford–Schwartz operator (or an
absolute contraction) if

kTf k1 � kf k1 and kTf k1 � kf k1

for all f 2 L1 \ L1. The Hopf–Dunford–Schwartz result then reads as follows.

Theorem 11.4 (Pointwise Ergodic Theorem). Let X be a general measure space
and let T be a positive Dunford–Schwartz operator on L1.X/. Then T is pointwise
ergodic.
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Before we turn to the proof of Theorem 11.4 let us discuss some further results.
Dunford and Schwartz (1958) have shown that one can omit the condition of

positivity from Theorem 11.4. This is due to the fact that for a Dunford–Schwartz
operator T there always exists a positive Dunford–Schwartz operator S � 0

dominating it, in the sense that jTf j � S jf j for all f 2 L1.X/. On the other hand, a
general positive contraction on L1.X/ need not be pointwise ergodic. A first example
was given in Chacon (1964). Shortly after, Ionescu Tulcea proved even that the class
of positive isometric isomorphisms on L1Œ0; 1� which are not pointwise ergodic is
“rich” in the sense of category (Ionescu Tulcea 1965).

One can weaken the condition on L1-contractivity, though. For example, Hopf
has shown that in place of T1 � 1 (cf. Exercise 8.9) one may suppose that there
is a strictly positive function f such that Tf � f (Krengel 1985, Thm. 3.3.5). For
general positive L1-contractions there is the following result from Krengel (1985,
Thm. 3.4.9).

Theorem 11.5 (Stochastic Ergodic Theorem). Let X be a finite measure space
and let T be a positive contraction on L1.X/. Then the Cesàro averages AnŒT�f
converge in measure as n!1 for every f 2 L1.X/.

If we pass to Lp spaces with 1 < p <1, the situation improves. Namely, building
on Ionescu Tulcea (1964), Akcoglu (1975) established the following celebrated
result.

Theorem 11.6 (Akcoglu’s Ergodic Theorem). Let X be a measure space and let
T be a positive contraction on Lp.X/ for some 1 < p < 1. Then T is pointwise
ergodic.

For p D 2 and T self-adjoint this is due to Stein and has an elementary proof, see
Stein (1961b). In the general case the proof is quite involved and beyond the scope
of this book, see Krengel (1985, Sec. 5.2 ) or Kern et al. (1977) and Nagel and Palm
(1982). Burkholder (1962) showed that if p D 2, the condition of positivity cannot
be omitted. (The question whether this is true also for p 6D 2 seems still to be open.)

Let us return to Theorem 11.4 and its proof. For simplicity, suppose that X D
.X; ˙; �/ is a finite measure space, and T is a Dunford–Schwartz operator on X. By
Theorem 8.24 we already know that T is mean ergodic, hence

L1.X/ D fix.T/˚ ran.I � T/:

Since L1.X/ is dense in L1.X/, the space

F WD fix.T/˚ .I � T/L1.X/

is still dense in L1.X/. As before, we write An WD AnŒT� for n 2 N.

Lemma 11.7. In the situation described above, the sequence .Anf /n2N is k�k1-
convergent for every f 2 F.
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Proof. Write f D gC .I � T/h with g 2 fix.T/ and h 2 L1.X/. Then as already
seen before, Anf D g C 1

n .h � Tnh/, and since supn kTnhk1 � khk1, it follows
that kAnf � gk1 ! 0 for n!1. ut

By the lemma we have a.e.-convergence of .Anf /n2N for every f from the dense
subspace F of L1.X/. What we need is a tool that allows us to pass from F to its
closure. This is considerably more difficult than in the case of norm convergence,
and will be treated in the next section.

11.2 Banach’s Principle and Maximal Inequalities

Let X D .X; ˙; �/ be a measure space, 1 � p � 1, and .Tn/n2N a sequence
of bounded linear operators on E WD Lp.X/. The statement “limn!1 Tnf exists
almost everywhere” can be reformulated as

lim sup
k;l!1

jTkf � Tlf j WD inf
n2N

sup
k;l�n
jTkf � Tlf j D 0; (11.1)

where suprema and infima are taken in the complete lattice L0 WD L0.XIR/ (see
Section 7.2).

If (11.1) is already established for f from some dense subspace F of E, one
would like to infer that it holds for every f 2 E. For this purpose we consider the
associated maximal operator T� W E! L0 defined by

T�f WD sup
n2N
jTnf j .f 2 E/:

Note that T�f � 0 and T�. f̨ / D j˛j T�f for every f 2 E and ˛ 2 C. Moreover,
the operator2 T� is only subadditive, i.e., T�.f Cg/ � T�f CT�g for all f; g 2 E.

Definition 11.8. We say that the sequence of operators .Tn/n2N satisfies an
(abstract) maximal inequality if there is a function c W .0;1/ ! Œ0;1/ with
lim�!1 c.�/ D 0 such that

�
	

T�f > �

 � c.�/ .� > 0; f 2 E; kf k � 1/:

The following result shows that an abstract maximal inequality is exactly what
we need.

Proposition 11.9 (Banach’s Principle). Let X D .X; ˙; �/ be a measure space,
1�p<1, and .Tn/n2N a sequence of bounded linear operators on EDLp.X/. If the

2This notation should not be confused with the Hilbert space adjoint of an operator. The two
meanings of � will not occur in the same context.
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associated maximal operator T� satisfies a maximal inequality, then the set

F WD ˚f 2 E W .Tnf /n2N is a:e:-convergent
�

is a closed subspace of E.

Proof. Since the operators Tn are linear, F is a subspace of E. To see that it is closed,
let f 2 E and g 2 F. For any natural numbers k; l we have

jTkf � Tlf j � jTk.f � g/jCjTkg � TlgjCjTl.g� f /j � 2T�.f �g/CjTkg � Tlgj :

Taking the limsup in L0 with k; l!1 (see (11.1)) one obtains

h WD lim sup
k;l!1

jTkf � Tlf j � 2T�.f � g/C lim sup
k;l!1

jTkg � Tlgj D 2T�.f � g/

since g 2 F. For � > 0 we thus have Œ h > 2� � � ŒT�.f � g/ > � � and hence

�Œ h > 2� � � �	T�.f � g/ > �

 � c

�
�

kf�gk
�
:

If f 2 F we can make kf � gk arbitrarily small, and since limt!1 c.t/ D 0, we
obtain�Œ h > 2� � D 0. Since � > 0 was arbitrary, it follows that h D 0. This shows
that f 2 F, hence F is closed. ut

Maximal Inequalities for Dunford–Schwartz Operators

In the following, X D .X; ˙; �/ denotes a general measure space and T denotes a
positive Dunford–Schwartz operator on L1.X/. By Theorem 8.23, T is contractive
for the p-norm on L1 \ Lp for each 1 � p � 1, and by a standard approximation
T extends in a consistent way to a positive contraction on each space Lp.X/ for
1 � p <1.

Since the measure is not necessarily finite, it is unclear, however, whether T
extends to L1. What we will use are the following simple observations.

Lemma 11.10. Let 1 � p < 1 and 0 � f 2 Lp.XIR/ and � > 0. Then the
following assertions hold:

a) �Œ f > � � � ��p kf kp
p <1.

b) .f � �/C 2 L1 \ Lp.

c) Tf � � � T.f � �/C.
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Proof. a) Let A WD Œ f > � �. Then �p1A � f p1A, and integrating proves the claim.
For b) use the same set A to write

.f � �/C D .f � �/1A D f 1A � �1A:

Since �.A/ <1, the claim follows. Finally, note that
ˇ
ˇf � .f � �/Cˇˇ � �, which

is easily checked by distinguishing what happens on the sets A and Ac. Since T is a
Dunford–Schwartz operator, we obtain

Tf � T.f � �/C � ˇ̌T.f � .f � �/C/ˇ̌ � �;

and c) is proved. ut
We now turn to the so-called maximal ergodic theorem. For 0 � f 2 Lp (with

1 � p <1) and � > 0 we write

A�
nf D max

1�k�n
Akf; Skf WD

k�1X

jD0
Tjf; M�

nf WD max
1�k�n

.Skf � k�/:

Then the set

	
A�

nf > �

 D 	M�

nf > 0

 �

n[

kD1

	
Skf > k�




has finite measure and .M�
nf /

C 2 L1 \ Lp, by Lemma 11.10.a and b) above.

Theorem 11.11 (Maximal Ergodic Theorem). Let T be a positive Dunford–
Schwartz operator on L1.X/, X some measure space, let p 2 Œ1;1/, and let
0 � f 2 Lp.X/. Then for each � > 0 and n 2 N

�
	

A�
nf > �


 � 1

�

Z

ŒA�

n f >� �
f d�:

Proof. Take k 2 f2; : : : ; ng. Then, by Lemma 11.10.c,

Skf � k� D f � �C TSk�1f � .k � 1/� � f � �C T.Sk�1f � .k � 1/�/C

� f � �C T.M�
n f /

C:

By taking the maximum with respect to k we obtain M�
nf � f � � C T.M�

n f /
C

(for k D 1 we have Skf � k� D f � �). Now we integrate and estimate

Z

X
.M�

nf /
C d� D

Z

ŒM�
n f >0 �

M�
nf d� �

Z

ŒM�
n f >0 �

f � � d�C
Z

X
T.M�

nf /
C d�
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�
Z

ŒM�
n f >0 �

f � � d�C
Z

X
.M�

nf /
C d�;

by the L1-contractivity of T. It follows that

��
	

A�
nf > �


 D ��ŒM�
nf > 0� �

Z

ŒM�
n f >0 �

f d� D
Z

ŒA�

n f >��
f d�;

which concludes the proof. ut
Corollary 11.12 (Maximal Inequality). Let T be a positive Dunford–Schwartz
operator on L1.X/, X some measure space, let p 2 Œ1;1/, and let 0 � f 2 Lp.X/.
Then

�
	

A�f > �

 � ��p kf kp

p .� > 0/:

Proof. By the Maximal Ergodic Theorem 11.11 and by Hölder’s inequality,

�
	

A�
n jf j > �


 � 1

�

Z

ŒA�

n jf j>� �
jf j d� � 1

�
kf kp �

	
A�

n jf j > �

1=q

;

where q is the conjugate exponent to p. This leads to

�
	

A�
n jf j > �


1=p � kf kp

�
:

Now, since T is positive, each An is positive and hence max1�k�n jAkf j � A�
n jf j.

It follows that

�

�
max
1�k�n

jAkf j > �
�
� �	A�

n jf j > �

 � ��p kf kp

p :

We let n!1 and obtain the claim. ut
We remark that there is a better estimate in the case 1 < p <1, see Exercise 6.

Proof of the Pointwise Ergodic Theorem

Let, as before, T be a positive Dunford–Schwartz operator on some L1.X/. If the
measure space is finite, then, by Lemma 11.7, Anf converges almost everywhere
for all f from the dense subspace F D fix.T/˚ .I� T/L1. Banach’s principle and
the maximal ergodic theorem yield the convergence for every f 2 L1.X/.
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In the general case, i.e., when X is an arbitrary measure space, consider the
assertion

lim
n!1 Anf exists pointwise almost everywhere: (11.2)

We shall establish (11.2) for larger and larger classes of functions f by virtue
of Banach’s principle. Recall that T is consistently defined simultaneously on all
spaces Lp with 1 � p < 1. If we want to explicitly consider its version on Lp, we
shall write Tp, which is always a contraction.

First of all, it is clear that (11.2) holds if Tf D f . It also holds if f 2 .I �
T/.L1 \ L1/, because then Anf ! 0 uniformly by the L1-contractivity of T (cf.
Lemma 11.7). Next, let 1 < p <1. We know by the mean ergodic theorem that

Lp D fix.Tp/C ran.I � Tp/:

Since a maximal inequality holds for Lp (Corollary 11.12) and L1 \ L1 is dense
in Lp, (11.2) holds for all f 2 Lp. Finally, since a maximal inequality holds for L1

(Corollary 11.12 again) and L2 \ L1 is dense in L1, (11.2) holds for all f 2 L1. ut

11.3 Applications

Weyl’s Theorem Revisited

Let ˛ 2 Œ0; 1�nQ. In Chapter 10 we proved Weyl’s theorem stating that the sequence
.n˛ .mod 1/ /n2N is equidistributed in Œ0; 1/. The mean ergodicity of the involved
Koopman operator with respect to the sup-norm (see Proposition 10.21) implies the
following stronger statement.

Corollary 11.13. If ˛ 2 Œ0; 1� nQ, then for every interval B D Œa; b� � Œ0; 1�
1

n
card

˚
j 2 Œ0; n/\N0 W xC j˛ .mod 1/ 2 B

� ! b � a

uniformly for x 2 Œ0; 1� as n!1.

The pointwise ergodic theorem accounts for the analogous statement allowing
for general Borel sets B in place of just intervals. However, one has to pay the price
of losing convergence everywhere. Denoting by � the Lebesgue measure on R we
obtain the following result.
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Corollary 11.14. If ˛ 2 Œ0; 1� nQ, then for every Borel set B � Œ0; 1� we have

1

n
card

˚
j 2 Œ0; n/\N0 W xC j˛ .mod 1/ 2 B

� ! �.B/

for almost every x 2 Œ0; 1� as n!1.

Proof. This is Exercise 3. ut

Borel’s Theorem on (Simply) Normal Numbers

A number x 2 Œ0; 1� is called simply normal (in base 10) if in its decimal expansion

x D 0:x1x2x3 : : : xj 2
˚
0; : : : ; 9

�
; j 2 N;

each digit appears asymptotically with frequency 1
10

. The following goes back to
Borel (1909).

Theorem 11.15 (Borel). Almost every number x 2 Œ0; 1� is simply normal.

Proof. First of all note that the set of numbers with nonunique decimal expansion is
countable. Let '.x/ WD 10x .mod 1/ for x 2 Œ0; 1�. As in Example 12.4 below,
the measure-preserving system .Œ0; 1�; �I'/ is isomorphic to the Bernoulli shift
(Section 5.1.5)

B. 1
10
; : : : ; 1

10
/ D .W C

10 ;˙;�I �/:

The isomorphism is induced by the point isomorphism (modulo null sets)

W C
10 ! Œ0; 1�; .x1; x2; : : : / 7! 0:x1x2 : : : :

(For more details on isomorphism, we refer to Section 12.1 below.) Since
the Bernoulli shift is ergodic (Proposition 6.20), the measure-preserving system
.Œ0; 1�; �I'/ is ergodic as well. Fix a digit k 2 f0; : : : ; 9g and consider

A WD ˚x 2 Œ0; 1/ W x1 D k
� D 	 k

10
; kC1
10

�
;

so �.A/ D 1
10

. Then, as n!1,

cardf1 � j � n W xj D kg
n

D 1

n

n�1X

jD0
1A.'

j.x//!
Z

Œ0;1�

1A d� D �.A/ D 1
10

for almost every x 2 Œ0; 1� by Corollary 11.2. ut
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We refer to Exercise 5 for the definition and analogous property of normal
numbers.

The Strong Law of Large Numbers

In Chapter 10 we briefly pointed at a connection between the (mean) ergodic
theorem and the (weak) law of large numbers. In this section we shall make this
more precise and prove the following classical result, going back to Kolmogorov
(1977). We freely use the terminology common in probability theory, cf. Billingsley
(1979).

Theorem 11.16 (Kolmogorov). Let .˝;F;P/ be a probability space, and let
.Xn/n2N � L1.˝;F;P/ be a sequence of independent and identically distributed
real random variables. Then

lim
n!1

1

n
.X1 C � � � C Xn/ D E.X1/ P-almost surely.

Proof. Since the Xj are identically distributed,  WD PXj (the distribution of Xj) is a
Borel probability measure on R, independent of j, and

E.X1/ D
Z

R

t d.t/

is the common expectation. Define the product space

X WD .X; ˙; �/ WD .RN;
O

N

Bo.R/;
O

N

/:

As mentioned in Section 5.1.5, the left shift � is a measurable transformation of
.X; ˙/ and � is �-invariant. The measure-preserving system .XI �/ is ergodic, and
this can be shown in exactly the same way as it was done for the finite state space
Bernoulli shift (Proposition 6.20).

For n 2 N let Yn W X ! R be the nth projection and write g WD Y1. Then
YjC1 D g ı � j for every j � 0, hence Corollary 11.2 yields that

lim
n!1

1

n
.Y1 C � � � C Yn/ D lim

n!1
1

n

n�1X

jD0
.g ı � j/ D

Z

X
g d�

pointwise �-almost everywhere. Note that g�� D  and hence

Z

X
g d� D

Z

R

t d.t/:
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It remains to show that the .Yn/n2N are in a certain sense “the same” as the origi-
nally given .Xn/n2N. This is done by devising an injective lattice homomorphism

˚ W L0.XIR/! L0.˝;F;PIR/

which carries Yn to ˚.Yn/ D Xn for every n 2 N. Define

' W ˝ ! X; '.!/ WD .Xn.!//n2N .! 2 ˝/:

Since .Xn/n2N is an independent sequence, the push-forward measure satisfies
'�P D �. Let ˚ D T' W f 7! f ı ' be the Koopman operator induced by
' mapping L0.XIR/ to L0.˝;F;PIR/. The operator ˚ is well defined since ' is
measure-preserving.

By construction, ˚Yn D Yn ı ' D Xn for each n 2 N. Moreover, ˚ is clearly a
homomorphism of lattices (see Chapter 7) satisfying

sup
n2N

˚
�
fn
� D ˚�sup

n2N
fn
�

and inf
n2N˚

�
fn
� D ˚. inf

n2N fn/

for every sequence .fn/n2N in L0.XIR/. Since the almost everywhere convergence
of a sequence can be described in purely lattice theoretic terms involving only
countable suprema and infima (cf. also (11.1)), one has

lim
n!1fn D f �-a.e. H) lim

n!1˚.fn/ D ˚.f / P-almost surely:

This, for fn WD 1
n .Y1 C � � � C Yn/ and f WD E.X1/1, concludes the proof. ut

Remark 11.17. By virtue of the same product construction one can show that the
mean ergodic theorem implies a general weak law of large numbers.

Final Remark: Birkhoff Versus von Neumann

From the point of view of statistical mechanics, Birkhoff’s theorem seems to outrun
von Neumann’s. By virtue of the dominated convergence theorem and the denseness
of L1 in L2, the latter is even a corollary of the former (cf. the presentation in Walters
(1982, Cor. 1.14.1)). Reed and Simon take a moderate viewpoint when they write in
(1972, p. 60) (annotation in square brackets by the authors).

This [i.e., the pointwise ergodic] theorem is closer to what one wants to justify [in?]
statistical mechanics than the von Neumann theorem, and it is fashionable to say that
the von Neumann theorem is unsuitable for statistical mechanics. We feel that this is an
exaggeration. If we had only the von Neumann theorem we could probably live with it
quite well. Typically, initial conditions are not precisely measurable anyway, so that one
could well associate initial states with measures f d� where

R
f d� D 1, in which case the

von Neumann theorem suffices. However, the Birkhoff theorem does hold and is clearly a
result that we are happier to use in justifying the statement that phase-space averages and
time averages are equal.
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However, von Neumann’s theorem inspired the operator theoretic concept of mean
ergodicity and an enormous amount of research in the field of asymptotics of
discrete (and continuous) operator semigroups with tantamount applications to
various other fields. Certainly it would be too much to say that Birkhoff’s theorem
is overrated, but von Neumann’s theorem should not be underestimated either.

Notes and Further Reading

The maximal ergodic theorem and a related result, called “Hopf’s lemma”
(Exercise 7) are from Hopf (1954) generalizing results from Yosida and Kakutani
(1939). A slightly weaker form was already obtained by Wiener (1939). Our proof
is due to Garsia (1965).

The role of maximal inequalities for almost everywhere convergence results
is known at least since Kolmogorov (1925) and is demonstrated impressively in
Stein (1993). Employing a Baire category argument one can show that an abstract
maximal inequality is indeed necessary for pointwise convergence results of quite
a general type Krengel (1985, Ch. 1, Thm. 7.2); a thorough study of this connection
has been carried out in Stein (1961a).

Finally, we recommend Garsia (1970) for more results on almost everywhere
convergence.

Exercises

1. Let K be a compact topological space, let T be a Markov operator on C.K/ (see
Exercise 10.2), and let � 2 M1.K/ be such that T 0� � �. Show that T extends
uniquely to a positive Dunford–Schwartz operator on L1.K; �/.

2. Let X be a measure space, 1 � p <1, and let .Tn/n2N be a sequence of bounded
linear operators on E D Lp.X/. Moreover, let T be a bounded linear operator on E.
If the associated maximal operator T� satisfies a maximal inequality, then the set

C WD ˚f 2 E W Tnf ! Tf almost everywhere
�

is a closed subspace of E.

3. Prove Corollaries 11.13 and 11.14.

4. Let .KI'/ be a topological system with Koopman operator T WD T' and
associated Cesàro averages An D AnŒT�, n 2 N. Let � be a '-invariant probability
measure on K. A point x 2 K is called generic for � if

lim
n!1 .Anf /.x/ D

Z

K
f d� (11.3)

for all f 2 C.K/.
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a) Show that x 2 K is generic for � if (11.3) holds for each f from a dense
subset of C.K/.

b) Show that in the case that C.K/ is separable and � is ergodic, �-almost
every x 2 K is generic for �. (Hint: Apply Corollary 11.2 to every f from a
countable dense set D � C.K/.)

5. A number x 2 Œ0; 1� is called normal (in base 10) if every finite combination
(of length k) of the digits f0; 1; : : : ; 9g appears in the decimal expansion of x with
asymptotic frequency 10�k. Prove that almost all numbers in Œ0; 1� are normal.

6 (Dominated Ergodic Theorem). Let X D .X; ˙; �/ be a measure space and let
f 2 L0C.X/. Show that

Z

X
f d� D

Z 1

0

�Œ f > t � dt

and derive from this that kf kp
p D

R1
0

ptp�1�Œ jf j > t � dt for all f 2 L0.X/ for
1 � p <1.

Now let T be a Dunford–Schwartz operator on L1.X/ with its Cesàro averages
.An/n2N and the associated maximal operator A�. Use the maximal ergodic theorem
to show that

kA�f kp �
p

p � 1 kf kp .1 < p <1; f 2 Lp.X//:

7 (Hopf’s Lemma). For a positive contraction T on L1.X/ define

Snf WD
n�1X

jD0
Tjf and Mnf WD max

1�k�n
Skf .f 2 L1.XIR//

for n 2 N. Prove that
Z

ŒMnf�0 �
f d� � 0

for every f 2 L1.XIR/. (Hint: Replace � D 0 in the proof of the maximal ergodic
Theorem 11.11 and realize that only the L1-contractivity is needed.)



Chapter 12
Isomorphisms and Topological Models

No matter how correct a mathematical theorem may appear to be, one ought never to be
satisfied that there was not something imperfect about it until it also gives the impression of
being beautiful.

George Boole1

In Chapter 10 we showed how a topological dynamical system .KI'/ gives rise
to a measure-preserving system by choosing a '-invariant measure on K. The
existence of such a measure is guaranteed by the Krylov–Bogoljubov Theorem 10.2.
In general there can be many invariant measures, and we also investigated how
minimality of the topological system is reflected in properties of the associated
measure-preserving system. It is now our aim to go in the other direction: starting
from a given measure-preserving system we shall construct some topological system
(sometimes called topological model) and an invariant measure so that the resulting
measure-preserving system is isomorphic to the original one. By doing this, methods
from the theory of topological dynamical system will be available, and we may gain
further insights into measure-preserving systems. Thus, by switching back and forth
between the measure theoretic and the topological situation, we can deepen our
understanding of dynamical systems. In particular, this procedure will be carried
out in Chapter 17.

Let us first discuss the question when two measure-preserving systems can be
considered as identical, i.e., isomorphic.

1D. Mac Hale, Comic sections: the book of mathematical jokes, humour, wit, and wisdom, Boole
Press, 1993.
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Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_12
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12.1 Point Isomorphisms and Factor Maps

Isomorphisms of topological systems were defined in Chapter 2. The corresponding
definition for measure-preserving systems is more subtle and is the subject of the
present section.

Definition 12.1. Let .XI'/ and .YI / be two measure-preserving systems, X D
.X; ˙; �/ and Y D .Y; ˙ 0; /. A point factor map or a point homomorphism is a
measure-preserving map � W X ! Y such that

 ı � D � ı ' �-almost everywhere:

We shall indicate this by writing

� W .XI'/! .YI /:

A point isomorphism (or metric isomorphism) is a point factor map which is
essentially invertible (see Definition 6.3). Two measure-preserving systems are
called point isomorphic if there is a point isomorphism between them.

In other words, a measure-preserving map � W X ! Y is a factor map if the diagram

X X

Y Y

qq

y

commutes almost everywhere.

Example 12.2. Consider a measure-preserving system .XI'/ with Koopman oper-
ator T D T' . Fix M 2 ˙X and define � W X ! W C

2 D f0; 1gN0 by

�.x/ WD �1Œ 'n2M �.x/
�

n2N0 D
�
Tn1M.x/

�
n2N0 :

Then � is measurable and satisfies � ı� D � ı', where � is the shift on W C
2 . Indeed,

'.x/ 2 Œ 'n 2 M � if and only if x 2 	 'nC1 2 M


, thus

�.'.x// D �.�.x//:

Let  D ��� be the push-forward measure on the product �-algebra ˙ . Then � is
measure-preserving and for A 2 ˙

.��1.A// D �.��1.��1.A/// D �.'�1.��1.A/// D �.��1.A// D .A/;
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i.e.,  is shift invariant. It follows that � W .XI'/! .W C
2 ;˙; I �/ is a homomor-

phism of measure-preserving systems.

Let � W X ! Y be a point isomorphism. Recall that by Lemma 6.4 an essential
inverse � of � is uniquely determined up to equality almost everywhere and it is
also measure-preserving. Moreover, since � ı ' D  ı � almost everywhere and �
is measure-preserving, it follows from Exercise 6.2 that

' ı � D � ı � ı ' ı � D � ı  ı � ı � D � ı  
almost everywhere. To sum up, if � is a point isomorphism with essential inverse �,
then � is a point isomorphism with essential inverse � .

Remarks 12.3. 1) The composition of isomorphisms of measure-preserving
systems/point factor maps is again a point isomorphism/factor map, see
Exercise 1. In particular, it follows that point isomorphy is an equivalence
relation on the class of measure-preserving systems.

2) Sometimes an alternative characterization of point isomorphic measure-
preserving systems is used in the literature, for instance in Einsiedler and
Ward (2011, Def. 2.7). See also Exercise 2.

Now let us give some examples of point isomorphic systems.

Example 12.4 (Doubling MapŠ Bernoulli Shift). The doubling map

'.x/ WD 2x .mod 1/ D
(
2x if 0 � x < 1

2
;

2x � 1 if 1
2
� x � 1;

on Œ0; 1� is point isomorphic to the one-sided Bernoulli shift B. 1
2
; 1
2
/.

Proof. We define

� W f0; 1gN! Œ0; 1�; �.x/ WD
1X

jD1

xj

2j
:

Then � is a pointwise limit of measurable maps, hence measurable. On the other
hand, let

˚ W Œ0; 1�! f0; 1gN; Œ˚.a/�n WD b2nac .mod 2/ 2 f0; 1g:
In order to see that ˚ is measurable and measure-preserving, we fix a1; : : : ; an 2
f0; 1g and note that

˚�1 	 xj D aj W 1 � j � n

 D

nX

jD1

aj

2j
C Œ0; 1

2n �:
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The claim follows since the cylinder sets form a generator of the �-algebra on
f0; 1gN. Next, we note that � ı ˚ D id except on the null set f1g, since the map
˚ just produces a dyadic expansion of a number in Œ0; 1/. Conversely, ˚ ı � D id
except on the null set

N WD
[

n�1

\

k�n

Œ xk D 1 � � f0; 1gN

of all 0-1-sequences that are eventually constant 1. Finally, it is an easy computation
to show that � ı ˚ D ˚ ı ' everywhere on Œ0; 1�. ut
Example 12.5 (Tent Map Š Bernoulli Shift). The tent map

'.x/ D
(
2x if 0 � x < 1

2
;

2 � 2x if 1
2
� x � 1;

on Œ0; 1� is point isomorphic to the one-sided Bernoulli shift B. 1
2
; 1
2
/.

Proof. We define ˚ D .˚n/n2N0 W Œ0; 1�! f0; 1gN0 via

˚n.x/ WD
(
0 if 0 � 'n.x/ < 1

2
;

1 if 1
2
� 'n.x/ � 1:

It is clear that ˚ is measurable. By induction on n 2 N0 one proves that the graph
of 'n on a dyadic interval of the form Œ.j � 1/2�n; j2�n� is either a line of slope 2n

starting in 0 and rising to 1 (if j is odd), or a line of slope�2n starting at 1 and falling
down to 0 (if j is even). Applying ' once more, we see that

'nC1.x/ D 0 if and only if x D j

2n
. j D 0; : : : ; 2n/:

Again by induction on n 2 N0 we can prove that given a0; : : : ; an 2 f0; 1g the set

n\

jD0

	
˚j.x/ D aj


 D ˚�1
�
fa0g � � � � � fang �

Y

k>n

f0; 1g
�

is a dyadic interval (closed, half-open, or open) of length 2�.nC1/. Since the algebra
of cylinder sets is generating, it follows that ˚ is measure-preserving. Moreover, if
� denotes the shift on f0; 1gN0, then clearly � ı ˚ D ˚ ı ' everywhere, hence ˚ is
a point homomorphism.

An essential inverse of ˚ is constructed as follows. Define

A0n WD
	
0 � 'n � 1

2



; A1n WD

	
1
2
� 'n � 1 
 .n 2 N0/:
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Then there is a one-to-one correspondence between dyadic intervals of length
2�.nC1/ and finite sequences .a0; : : : ; an/ 2 f0; 1gnC1 given by

h
k�1
2nC1 ;

k
2nC1

i
D

n\

jD0
A

aj

j : (12.1)

Let � W f0; 1gN0 ! Œ0; 1� be defined by

f�.a/g D
1\

jD0
A

aj

j :

Note that the intersection is indeed a singleton since the intersected intervals are
closed and their length tends to 0. If x 2 Œ0; 1�, then x 2 A˚n.x/

n by definition of ˚ ,
and hence �.˚.x// D x. This shows that � ı ˚ D id.

In order to show that � is measurable, suppose first that a; b are 0-1-sequences
such that a 6D b but �.a/ D x D �.b/. Then there is a minimal n � 0 such that
bn 6D an. Since x 2 Aan

n \Abn
n , it follows that 'n.x/ D 1

2
. Hence, x is a dyadic rational

of the form j2�.nC1/ with j odd. Moreover, 'k.x/ D 0 for all k � n C 2, and this
forces ak D bk D 0 for all k � n C 2. It follows that a and b both come from the
countable set N of sequences that are eventually constant 0.

Now, given a dyadic interval associated with .a0; : : : ; an/ as in (12.1), we have
that

fa0g � : : : fang �
Y

k>n

f0; 1g � ��1�
n\

jD0
A

aj

j

�

� N [
�
fa0g � : : : fang �

Y

k>n

f0; 1g
�
:

Since N (the set of eventually 0 sequences) is countable, every subset of N is
measurable, and so ��1�Tn

jD0 A
aj

j

�
is measurable. Since dyadic intervals form a

\-stable generator of the Borel �-algebra of Œ0; 1�, � is measurable.
Finally, suppose that b WD ˚.�.a// 6D a for some a 2 f0; 1gN0. Then, since

� ı˚ D id everywhere, we have�.b/ D �.a/ and hence a 2 N as seen above. This
means that Œ ˚ ı � 6D id � � N is a null set, hence ˚ ı � D id almost everywhere.

ut
Example 12.6. The baker’s transformation

' W X ! X; '.x; y/ WD
(
.2x; 1

2
y/ if 0 � x < 1

2
;

.2x � 1; 1
2
.yC 1// if 1

2
� x � 1;

on X D Œ0; 1� � Œ0; 1� is isomorphic to the two-sided Bernoulli B. 1
2
; 1
2
/-shift.

The proof is left as Exercise 3.
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We indicated in Chapter 6 that for the study of a measure-preserving system
.XI'/, the relevant feature is the action of ' on the measure algebra and not on
the set X itself. This motivates the following notion of “isomorphism” based on the
measure algebra.

12.2 Algebra Isomorphisms of Measure-Preserving Systems

Recall the notions of a lattice and a lattice homomorphism from Section 7.1. A
lattice .V;�/ is called a distributive lattice if the distributive laws

x ^ .y _ z/ D .x ^ y/ _ .x ^ z/; x _ .y ^ z/ D .x _ y/ ^ .x _ z/

hold for all x; y; z 2 V . If V has a greatest element > and least element ?, then a
complement of x 2 V is an element y 2 V such that

x _ y D > and x ^ y D? :

A Boolean algebra is a distributive lattice .V;�/ with > and ? such that every
element x 2 V has a complement. Such a complement is then unique, see Birkhoff
(1948, Thm. X.1), and is usually denoted by xc. An (abstract) measure algebra is
a complete Boolean algebra V (i.e., complete as a lattice, see Section 7.1) together
with a map � W V ! Œ0; 1� such that

1) �.>/ D 1,

2) �.x/ D 0 if and only if x D?,

3) � is �-additive in the sense that

.xn/n2N � V; xn ^ xm D? .n 6D m/ H) �
�_

n2N
xn

�
D
X

n2N
�.xn/:

A lattice homomorphism� W V ! W of (abstract) measure algebras .V; �/; .W; /
is called a (measure algebra) homomorphism if .�.x// D �.x/ for all x 2 V .

By the results of Section 6.1, the measure algebra ˙.X/ associated with a
measure space X is an abstract measure algebra (see also Example 7.1.4). Moreover,
given a measure-preserving system .XI'/, the map

'� W ˙.X/! ˙.X/; ŒA � 7! 	
'�1A




acts as a measure algebra homomorphism on ˙.X/. In this way, .˙.X/; �I'�/
can be viewed as a “measure algebra dynamical system” and one can form the
corresponding notion of a homomorphism of such systems. This leads to the
following definition.
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Definition 12.7. An algebra homomorphism, or briefly a homomorphism, of two
measure-preserving systems .XI'/ and .YI / is a homomorphism

� W .˙.Y/; �Y/! .˙.X/; �X/

of the corresponding measure algebras such that� ı � D '� ı�, i.e., the diagram

 Â (Y)

 Â (X)  Â (X)

 Â (Y)
∗

∗

Q Q

y

is commutative. An (algebra) isomorphism is a bijective homomorphism. Two
measure-preserving systems are (algebra) isomorphic if there exists an (algebra)
isomorphism between them.

Note that by Exercise 5 each measure algebra homomorphism is an embedding,
isometric with respect to the canonical metric coming from the measure(s).

Remark 12.8. Let � W .XI'/! .YI / be a point factor map. Then the associated
map

�� W .˙.Y/; �YI �/! .˙.X/; �XI'�/

(see Section 6.1) is an algebra homomorphism. If � is a point isomorphism, then ��
is an algebra isomorphism.

Markov Embeddings and Isomorphisms

We shall now see that (measure) algebra homomorphisms correspond in a natural
way to certain operators on the associated L1-spaces.

Definition 12.9. An operator S W L1.Y/ ! L1.X/, with X, Y probability spaces, is
called a Markov operator if

S � 0; S1Y D 1X; and
Z

X
Sf D

Z

Y
f for all f 2 L1.Y/.

If, in addition, one has

jSf j D S jf j for every f 2 L1.Y/;

then S is called a Markov embedding.
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Note that S is a Markov operator if and only if S � 0, S1Y D 1X and S01X D 1Y .
A Markov operator is a Markov embedding if it is a homomorphism of Banach
lattices. It is easy to see that in this case kSf k1 D kf k1 for every f 2 L1, so each
Markov embedding is an isometry.

Markov operators form the basic operator class in ergodic theory and shall play
a central role below. We shall look at them in more detail in Chapter 13. For now
we only remark that, of course, a Koopman operator associated with a measure-
preserving system is a Markov embedding; cf. also the end of Section 7.3.

A Markov embedding S is called a Markov isomorphism or an isometric
lattice isomorphism if it is surjective. In this case, S is bijective and S�1 is a
Markov embedding, too. The next theorem clarifies the relation between Markov
embeddings and measure algebra homomorphisms.

Theorem 12.10. Every Markov embedding S W L1.Y/ ! L1.X/ induces a map
� W ˙.Y/! ˙.X/ via

S1A D 1�.A/ for all A 2 ˙.Y/; (12.2)

and� is a measure algebra homomorphism.
Conversely, let � W ˙.Y/ ! ˙.X/ be a measure algebra homomorphism.

Then there is a unique bounded operator S W L1.Y/ ! L1.X/ which is a Markov
embedding and satisfies (12.2).

Finally, � is surjective if and only if S is a Markov isomorphism.

Proof. Since S is a positive operator, it maps real-valued functions to real-valued
functions. Now, a moment’s thought reveals that a real-valued function f 2 L1 is a
characteristic function if and only if f ^ .1�f / D 0. Hence, S maps characteristic
functions on Y to characteristic functions on X. This gives rise to a map

� W ˙.Y/! ˙.X/ given by S1A D 1�.A/ .A 2 ˙.Y//:

It is then easy to see that � is a measure algebra homomorphism (Exercise 6).
For the converse, let � W ˙.Y/! ˙.X/ be a measure algebra homomorphism.

We write a step function f on Y as

f D
nX

jD1
˛j1Aj

with pairwise disjoint Aj 2 ˙Y, �Y.Aj/ > 0, and ˛j 2 C. Then we define

Sf WD
nX

jD1
˛j1�.Aj/:



12.2 Algebra Isomorphisms of Measure-Preserving Systems 233

From the properties of � it follows in a standard way that S is well defined and
satisfies S1Y D 1X ,

R
X Sf D R

Y f , jSf j D S jf j and hence kSf k1 D kf k1 for
all step functions f . By approximation, S extends uniquely to an isometry of the
L1-spaces. This extension is clearly a Markov embedding.

Finally, if � is surjective, then the dense set of step functions is contained in
the range of S. Since S is an isometry, S must be surjective. Conversely, if S is
surjective, it is bijective and S�1 is also a Markov embedding. Hence, if B 2 ˙.X/,
then S�11B D 1A for some A 2 ˙.Y/, and therefore�.A/ D B. Consequently,� is
surjective. ut

Suppose that .XI'/ and .YI / are measure-preserving systems, and �; S are
maps

� W .˙.Y/; �Y/! .˙.X/; �X/; S W L1.Y/! L1.X/

related by S1A D 1�.A/ for A 2 ˙.Y/ as before. Then

ST 1A D S1 �A D 1�. �A/ and T'S1A D T'1�.A/ D 1'�.�.A//:

Therefore, � is an algebra homomorphism of the two measure-preserving systems
if and only if its associated operator S W L1.Y/! L1.X/ satisfies ST D T'S, i.e., if
the diagram

L1(Y) L1(Y)

L1(X) L1(X)

T

S S

y

Tj

commutes. In yet other words: the operator S intertwines the Koopman operators
of the systems. In this case, i.e., if such an intertwining Markov embedding exists,
the system .YI / is called a factor of the system .XI'/ and .XI'/ is an extension
of the system .YI /.

Clearly, if � W .XI'/! .YI / is a point factor map, then its Koopman operator
T� is an intertwining Markov embedding, and hence .YI / is a factor of .XI'/.
Proposition 12.11. If a measure-preserving system .XI'/ is ergodic, or strongly
mixing, or weakly mixing (of order k 2 N), or mildly mixing, then the same,
respectively, is true for each of its factors.

The proof is left as Exercise 7.
The considerations above lead to the following characterization of isomorphic

systems.
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Corollary 12.12. Two measure-preserving systems .XI'/ and .YI / are algebra
isomorphic if and only if there is a Markov isomorphism S W L1.Y/ ! L1.X/ that
satisfies ST D T'S.

A Markov isomorphism restricts to a lattice isomorphism between the correspond-
ing Lp spaces, hence one can obtain an analogous characterization of isomorphism
of measure-preserving systems in terms of the Koopman operator on each Lp space.

Relation Between Point and Markov Isomorphisms

As we saw in Section 7.3, the relation between state space maps and Koopman
operators is complicated in general. So it is not surprising that, with a construction
similar to Example 6.7, one can show that an algebra isomorphism of measure-
preserving systems need not be induced by a point isomorphism as in Remark 12.8.

Example 12.13. Take X D f0g, ˙ D f;;Xg, �X. / D 1, ' D idX and .YI /
with Y D f0; 1g, ˙ 0 D f;;Yg, �Y.Y/ D 1,  D idY . The two measure-preserving
systems are not point isomorphic, but isomorphic in the measure algebra sense.

Again, it is not surprising that the distinction between “algebra isomorphic” and
“point isomorphic” systems is superfluous when one restricts to standard probability
spaces (Definition 6.8).

Theorem 12.14 (Von Neumann). Two measure-preserving systems on standard
probability spaces are isomorphic if and only if they are point isomorphic.

Proof. One implication is trivial. The converse is a straightforward consequence of
Theorem 7.20. Indeed, let .XI'/ and .YI / be measure-preserving systems with
Koopman operators T' and T , respectively, and let ˚ W L1.Y/ ! L1.X/ be an
isomorphism. Then˚ and˚�1 satisfy the hypotheses of Theorem 7.20, hence there
are measure-preserving maps � W X ! Y and � W Y ! X such that ˚ D T� and
˚�1 D T�. Then

T�ı� D T�T� D ˚�1˚ D I D Tid

and from Proposition 7.19 we conclude that � ı � D id almost everywhere.
Analogously, � ı � D id almost everywhere. Finally, note that

T ı� D T�T D ˚T D T'˚ D T'T� D T�ı';

whence, as before, it follows � ı ' D  ı � almost everywhere. ut
Each Markov isomorphism between L1-spaces restricts to an isomorphism

between the corresponding L1-spaces. This leads to the following characterization
of isomorphic systems.

X
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Theorem 12.15. For measure-preserving systems .XI'/ and .YI / with associ-
ated Koopman operators T' and T , respectively, consider the following assertions:

(i) The systems .XI'/ and .YI / are point isomorphic.

(ii) The systems .XI'/ and .YI / are algebra isomorphic.

(iii) There is a one-preserving lattice isomorphism S W L1.X/ ! L1.Y/ such
that

R
Y Sf D RX f for all f 2 L1.X/ and ST' D T S.

(iv) There is a C�-algebra isomorphism S W L1.X/! L1.Y/ such that
R

Y Sf DR
X f for all f 2 L1.X/ and ST' D T S.

Then (i)) (ii), (iii), (iv); and if X and Y are standard probability spaces, then
(ii)) (i).

Proof. (i)) (ii) is simply Remark 12.8. The converse, in the case when the under-
lying spaces are standard probability spaces, is von Neumann’s Theorem 12.14.

(ii)) (iii): By Corollary 12.12 we find a Markov isomorphism S W L1.X/! L1.Y/
with ST' D T S. Then S restricts to a lattice isomorphism S W L1.X/ ! L1.Y/,
and (iii) follows.

(iii)) (iv): This follows from Theorem 7.23.

(iv)) (ii): Let S W L1.X/ ! L1.Y/ be as in (iv). Then, again by Theorem 7.23,
S is also a lattice homomorphism. It follows that S is isometric for the L1-norms.
Hence, S extends uniquely to a lattice isomorphism of the L1-spaces. By standard
approximation arguments, this extension is a Markov isomorphism of the dynamical
systems, whence (ii) follows by Corollary 12.12. ut
Remark 12.16. Theorem 12.15 should be compared with the following conse-
quence of Theorems 4.13 and 7.23: For topological systems .KI'/ and .LI / the
following assertions are equivalent:

(i) The systems .KI'/ and .LI / are isomorphic.

(ii) There is a C�-algebra isomorphism ˚ W C.K/! C.L/ with T ˚ D ˚T' .

(iii) There is a Banach lattice isomorphism ˚ W C.K/! C.L/ with ˚1 D 1 and
T ˚ D ˚T' .

12.3 Abstract Systems and Topological Models

A compact probability space is any pair .K; �/ where K is a compact space and
� is a Baire probability measure on K. The compact probability space .K; �/ is
called metric if K is endowed with a metric inducing its topology, and faithful if
supp.�/ D K, i.e., if the canonical map C.K/! L1.K; �/ is injective.

A topological measure-preserving system is any triple .K; �I'/, where .K; �/
is a compact probability space, and ' W K ! K is a �-preserving continuous map.
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The topological measure-preserving system .K; �I'/ is called metric or faithful
if .K; �/ is metric or faithful, respectively. The following is a consequence of
Lemma 10.7.

Lemma 12.17. If .K; �I'/ is a faithful topological measure-preserving system,
then '.K/ D K, i.e., .KI'/ is a surjective topological system.

Theorem 10.2 of Krylov and Bogoljubov tells that every topological system
.KI'/ has at least one invariant probability measure, and hence gives rise to at least
one topological measure-preserving system. (By the lemma above, this topological
measure-preserving system cannot be faithful if .KI'/ is not a surjective system.
But even if the topological system is surjective and uniquely ergodic, the arising
measure-preserving system need not be faithful as Exercise 9 shows.) Conversely,
one may ask:

Is every measure-preserving system (algebra) isomorphic to a topological
one?

Before we answer this question in the affirmative, it is convenient to pass to a larger
category (see also the discussion at the end of this section).

Definition 12.18. An abstract measure-preserving system is a pair .XIT/, where
X is a probability space and T W L1.X/! L1.X/ is a Markov embedding.

For simplicity, an abstract measure-preserving system is also called just an
abstract system. A homomorphism

S W .X1IT1/! .X2IT2/

of abstract systems .X1IT1/; .X2IT2/ is a Markov embedding S W L1.X1/ !
L1.X2/ that intertwines the operators T1;T2, i.e., such that T2S D ST1. In this
case .X2IT2/ is called an extension of .X1IT1/ and .X1IT1/ is called a factor
of .X2IT2/. (This is coherent with the terminology on page 233.) A surjective
(= bijective) homomorphism S is an isomorphism. In this case its inverse S�1 is also
a homomorphism. Finally, an abstract system .XIT/ is invertible if T is invertible,
and it is called ergodic if fix.T/ D C1.

Given two abstract systems .X1IT1/ and .X2IT2/ one can form their product
system .X1 ˝ X2IT1 ˝ T2/, see Exercise 16. An abstract system .XIT/ is called
weakly mixing if the product system .X �XIT ˝ T/ is ergodic.

Example 12.19. Each measure-preserving system .XI'/ gives rise to an abstract
system .XIT/ where T WD T' is the Koopman operator. According to Propo-
sition 7.12, the system .XI'/ is invertible if and only if its abstract counterpart
.XIT'/ is invertible. Moreover, by Corollary 12.12 above, two measure-preserving
systems .XI'/ and .YI / are algebra isomorphic if and only if the associated
abstract systems .XIT'/ and .YIT / are isomorphic in the sense noted above. The
Koopman operator T� of a point factor map � W .XI'/! .YI / (Definition 12.1) is
a homomorphism T� W .YIT /! .XIT'/ of abstract systems, hence yields a factor.
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A (faithful) topological model of an abstract measure-preserving system .XIT/
is any (faithful) topological measure-preserving system .K; �I / together with an
isomorphism

˚ W .K; �IT /! .XIT/

of abstract measure-preserving systems. In the following we shall show that every
abstract system has (usually many) faithful topological models.

Suppose that .XIT/ is an abstract measure-preserving system and let A � L1.X/
be a C�-subalgebra. (Recall that this means that A is a norm-closed and conjugation
invariant subalgebra with 1 2 A.) By the Gelfand–Naimark Theorem 4.23, there is a
compact space K and a (unital) C�-algebra isomorphism˚ W C.K/! A. The Riesz
representation theorem yields a unique probability measure � 2 M1.K/ such that

Z

K
f d� D

Z

X
˚f .f 2 C.K//: (12.3)

(Note that the measure � has full support.) By Theorem 7.23 one has in addition

j˚f j D ˚ jf j .f 2 C.K//; (12.4)

and this yields

k˚f kL1.X/ D
Z

X
˚ jf j D

Z

K
jf j d� D kf kL1.K;�/

for every f 2 C.K/, i.e., ˚ is an L1-isometry. Consequently,˚ extends uniquely to
an isometric embedding

˚ W L1.K; �/! L1.X/

with range ran.˚/ D clL1 .A/, the L1-closure of A. Moreover, it follows from (12.3)
and (12.4) by approximation that ˚ is a Markov embedding.

Now, suppose in addition that A is T-invariant, i.e., T.A/ � A. Then

˚�1T˚ W C.K/! C.K/

is an algebra homomorphism, again by Theorem 7.23. Hence, by Theorem 4.13
there is a unique continuous map  W K ! K such that ˚�1T˚ D T . Moreover,
the measure � is  -invariant since

Z

K
f ı  d� D

Z

K
˚�1T˚f d� D

Z

X
T˚f D

Z

X
˚f D

Z

K
f d�
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for every f 2 C.K/. It follows that .K; �I / is a faithful topological measure-
preserving system, and that ˚ W L1.K; �/ ! L1.X/ is a Markov embedding that
intertwines T and T, i.e., a homomorphism of the dynamical systems.

L1(X)

L1(K, m) clL1(A)

C(K) A

C(K) A

K

K
ψ

T

Tψ

Φ
�

Φ
�

Φ
�

Φ

We have proved the nontrivial part of the following theorem. (The remaining part is
left as Exercise 10.)

Theorem 12.20. Let .XIT/ be an abstract measure-preserving system. Then A �
L1.X/ is a T-invariant C�-subalgebra if and only if there exists a faithful
topological measure-preserving system .K; �I / and a Markov embedding ˚ W
L1.K; �/! L1.X/ with T˚ D ˚T and such that A D ˚.C.K//.

Let us call a subalgebra A of L1.X/ full if clL1A D L1.X/. If A is full, then the
Markov embedding ˚ in Theorem 12.20 is surjective, hence

˚ W .K; �IT /! .XIT/

is an isomorphism of abstract dynamical systems, i.e., a (faithful) topological model
of .XIT/.
Corollary 12.21. Every abstract measure-preserving system has a faithful topolog-
ical model. In particular, every measure-preserving system is (algebra) isomorphic
to a topological measure-preserving system.

Note that in the construction above we can choose an arbitrary full subalgebra,
hence uniqueness of a model cannot be expected. For the choice A WD L1.X/ we
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obtain a distinguished model, to be studied in more detail in Section 12.4 below.
However, other models may be of interest, as in the following result.

Theorem 12.22 (Metric Models). An abstract measure-preserving system .XIT/
has a metric model if and only if L1.X/ is a separable Banach space.

Proof. Let .K; �I / be a metric model for .XIT/. By Theorem 4.7, C.K/ is a
separable Banach space, and as any dense subset of C.K/ is also dense in L1.K; �/,
the latter space must be separable as well.

Conversely, suppose that L1.X/ is separable, and let M � L1.X/ be a countable
dense set. Since L1 is dense in L1, we can approximate each element of M by
a sequence in L1, and hence we may suppose without loss of generality that
1 2 M � L1. After enlarging M by at most countably many elements, we may
also suppose that M is conjugation invariant. By passing to

S
n�0 Tn.M/ we may

then suppose that M is T-invariant. Let A WD clL1alg.M/ be the smallest C�-
subalgebra of L1 containing M. Then A is separable (Exercise 11), T-invariant,
and full. Theorem 12.20 yields a topological model ˚ W .K; �I / ! .XIT/ with
˚.C.K// D A. Since ˚ W C.K/ ! A is an isomorphism of C�-algebras, C.K/ is a
separable Banach space. By Theorem 4.7 K is metrizable. ut

Abstract vs. Concrete Measure-Preserving Systems

In our original notion, a measure-preserving system is a probability space X with
some measure-preserving transformation ' acting on it. Associated with ' is its
Koopman operator T' acting on L1.X/ as a Markov embedding.

In a structural view of ergodic theory, the Koopman operator is the central object
and the state space mapping ' fades more or less out of focus. The reason is that all
relevant properties of the system are formulated “almost everywhere,” i.e., actually
not in terms of ' but rather in terms of '�, the induced action on the measure
algebra. But '� and the Koopman operator T' are essentially the same objects by
Theorem 12.10.

It is therefore reasonable to embed the class of “concrete” measure-preserving
systems .XI'/ into the larger class of “abstract” measure-preserving systems .XIT/
and use the corresponding notion of isomorphism. (This also explains our definition
of “invertible system” in Definition 6.2.) The existence of topological models then
means in particular that every abstract measure-preserving system is isomorphic to
a “concrete” one.

The standard literature on ergodic theory often takes a different route. Instead of
enlarging the class of systems, one restricts it by allowing only standard probability
(= Lebesgue) spaces (see Definition 6.8 and Remark 7.22) as underlying probability
spaces. But every measure algebra homomorphism between standard probability
spaces is induced by a point homomorphism by von Neumann’s Theorem 7.20.
Hence, when one confines oneself to measure-preserving systems over standard
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probability spaces, the difference between algebra isomorphisms and point isomor-
phisms disappears (Theorem 12.14).

From a functional analytic perspective, the restriction to standard probabil-
ity spaces amounts—by Theorem 12.22—to considering only abstract measure-
preserving systems .XIT/ where L1.X/ is separable as a Banach space.

12.4 The Stone Representation

Let .XI'/ be any given measure-preserving system. Then we can apply the
construction preceding Theorem 12.20 to the algebra A D L1.X/, yielding a
distinguished topological model .K; �I / of the whole system .XI'/, called its
Stone representation or its Stone model.

The name derives from an alternative description of the compact space K.
Consider the measure algebra V WD ˙.X/, which is a Boolean algebra (see
Section 12.2). By the Stone representation theorem (see, e.g., Birkhoff (1948,
Sec. IX.9)) there exists a unique compact and totally disconnected space KV such
that V is isomorphic to the Boolean algebra of all closed and open (clopen)
subsets of KV . The compact space KV is called the Stone representation space
of the Boolean algebra ˙.X/, and one can prove that K and KV are actually
homeomorphic. By Example 7.1.4 the Boolean algebra˙.X/ is complete, in which
case the Stone representation theorem asserts that the space K ' KV is extremally
disconnected. We shall prove this fact directly using the Banach lattice C.K/.

Proposition 12.23. Let K be the Stone representation space obtained above. Then
K is extremally disconnected, i.e., the closure of every open set is open.

Proof. We know that L1.X/ and C.K/ are isomorphic Banach lattices. Since L1.X/
is order complete (Remark 7.11), so is C.K/. Let G � K be an open set. Consider
the function

f WD inf
˚
g W g 2 C.K/; g.x/ � 1G.x/ for all x 2 K

�
;

where the infimum is to be understood in the order complete lattice C.K/, so f
is continuous. If x 62 G, then by Urysohn’s Lemma 4.2 there is a real-valued
continuous function g vanishing on a small neighborhood of x and equal to 1 on
G, so f .x/ D 0. If x 2 G, then each g appearing in the above infimum is 1 on a fixed
neighborhood of x, so f .x/ D 1. Since f is continuous, we have f .x/ D 1 for all
x 2 G. This implies f D 1G, hence G is open. ut

Recall that the measure (positive functional) � on K is induced via the isomor-
phism

C.K/ Š L1.X/
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and hence is strictly positive, i.e., has full support supp.�/ D K. Moreover, � is
order continuous, i.e., if F � C.K/C is a ^ -stable set such that infF D 0,
then inff 2F hf;�i D 0 (see Exercise 7.12). In the following it will be sometimes
convenient to use the regular Borel extension of the (Baire) measure �.

Lemma 12.24. The �-null sets in K are precisely the nowhere dense subsets of K.

Proof. We shall use that C.K/ is order complete, K is extremally disconnected
and that � induces a strictly positive order continuous linear functional on C.K/;
moreover, we shall use that a characteristic function 1U is continuous if and only if
U is a clopen subset of K.

Let F � K be a nowhere dense set. Since a set is nowhere dense if and only if
its closure is nowhere dense, we may suppose without loss of generality that F is
closed and has empty interior. Consider the continuous function f defined as

f WD inf
˚
1U W F � U; U is clopen

�

in the (order complete) lattice C.K/. Then trivially f � 0 and we claim that actually
f D 0. Indeed, if f ¤ 0 there is some x 2 K n F with f .x/ > 0 (since K n F is
dense). Then the compact sets fxg and F can be separated by disjoint open sets and
by Proposition 12.23 we find a clopen set U 	 F with x 62 U. It follows by definition
of f that f � 1U, which in turn implies that f .x/ D 0, a contradiction.

We now can use that � is order continuous and

�.F/ � inf
˚
�.U/ W F � U; U is clopen

� D inf
F	U clopen

h1U; �i D hf;�i D 0;

whence F is a �-null set.
For the converse implication, suppose that A 2 Bo.K/ is a �-null set. By

regularity we find a decreasing sequence .Un/n2N of open sets containing A such that
limn!1�.Un/ D �.A/ D 0. By what was proved above, the nowhere dense closed
sets @Un have �-measure 0, so �.Un/ D �.Un/. The closed set B WD T

n2N Un

contains A and satisfies �.B/ D 0 since

�.B/ � �.Un/! 0 as n!1:

By the strict positivity of �, B has empty interior, hence A is nowhere dense. ut
We now can prove the following result, showing in particular that constructing

Stone models repeatedly does not lead to something new.

Proposition 12.25. The canonical map C.K/ ! L1.K; �/ is bijective. In other
words, every equivalence class f 2 L1.K; �/ contains a (unique) continuous
function.
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Proof. Since � is strictly positive, the canonical map J W C.K/ ! L1.K; �/
(mapping each continuous function onto its equivalence class modulo equality �-
almost everywhere) is an isometry (Exercise 5.11). Note that the lattice isomorphism
L1.X/ Š C.K/ extends to a lattice isomorphism L1.X/ Š L1.K; �/. Since a
function f 2 L1 is contained in L1 if and only if there is c > 0 such that jf j � c1,
the assertion follows. ut

The next question is whether ergodicity of .XI'/ reappears in its Stone repre-
sentation. We note the following result.

Proposition 12.26. Let .XI'/ be a measure-preserving system, let A � L1.X/
be an invariant C�-subalgebra, let .K; �I / be a faithful topological measure-
preserving system, and let

˚ W .K; �IT /! .XIT'/

be a homomorphism of abstract measure-preserving systems with ˚.C.K// D A.
Then .K; �I / is strictly ergodic if and only if A \ fix.T'/ D C1 and T' is mean
ergodic on A.

Proof. By construction, T is mean ergodic on C.K/ if and only if T' is mean
ergodic on A. The fixed spaces are related by

fix.T \ C.K// D ˚�1.fix.T /\ A/:

Hence, the assertions follows from Theorem 10.6 and the fact that � is strictly
positive. ut

Note that by Corollary 10.9 a strictly ergodic topological system is minimal. If
we apply Proposition 12.26 to A D L1.X/, we obtain the following result.

Corollary 12.27. If a measure-preserving system .XI'/ is ergodic and its Koop-
man operator is mean ergodic on L1.X/, then its Stone representation topological
system is strictly ergodic (and hence minimal).

In a moment we shall see that mean ergodicity on L1 is a too strong assumption:
Essentially, there is no interesting measure-preserving system with Koopman
operator having this property. However, by virtue of Proposition 12.26 one may
try to find a strictly ergodic model of a given ergodic system .XI'/ by looking at
smaller full subalgebras A of L1.X/. This is the topic of the next section.

12.5 Mean Ergodicity on Subalgebras

In Chapter 8 we showed that a Koopman operator of a measure-preserving system
.XI'/ is always mean ergodic on Lp.X/ for 1 � p < 1. In this section we are
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interested in the missing case p D 1. However, mean ergodicity cannot be expected
on the whole of L1. In fact, the Koopman operator of an ergodic rotation on the torus
is not mean ergodic on L1.T; dz/, see Exercise 12. The next proposition shows that
this is no exception.

Proposition 12.28. For an ergodic measure-preserving system .XI'/ the following
assertions are equivalent:

(i) The Koopman operator T' is mean ergodic on L1.X/.
(ii) L1.X/ is finite dimensional.

Proof. Since a finite-dimensional Banach space is reflexive, by Theorem 8.22 every
power-bounded operator thereon is mean ergodic, whence the implication (ii)) (i)
follows.

For the converse we use the Stone representation .K; �I / with its (unique)
invariant measure �. This topological system is minimal by Corollary 12.27. For an
arbitrary x 2 K, the orbit

orbC.x/ D
˚
 n.x/ W n 2 N0

�

is dense in K, so by Lemma 12.24 �.orbC.x// > 0. Since the orbit is an at most
countable set, there is n 2 N0 such that the singleton f n.x/g has positive measure
˛ WD �f n.x/g > 0. But then, by the  -invariance of �,

�f nCk.x/g D �	 k 2 f nCk.x/g 
 � �f n.x/g D ˛

for each k � 0. Since the measure is finite, the orbit orbC.x/ must be finite. But
since it is dense in K, it follows that K D orbC.x/ is finite. Consequently, L1.K; �/
is finite-dimensional. ut

Having seen that T WD T' is (in general) not mean ergodic on L1.X/, we look
for a smaller (but still full) subalgebra A of L1.X/ on which mean ergodicity is
guaranteed. Let us call such a subalgebra A a mean ergodic subalgebra. In the case
of an ergodic rotation on the torus there are natural examples of such subalgebras,
e.g., A D C.T/ (Corollary 10.12) or A D R.T/ WD ft 7! f .e2 it/ W f 2 RŒ0; 1�g,
the space of Riemann integrable functions on the torus (Proposition 10.21). But, of
course, the question arises, whether such a choice is always possible.

In any case, each mean ergodic subalgebra A has to be contained in the closed
space

fix.T'/˚ .I � T'/L1.X/;

since by Theorem 8.5 this is the largest subspace of L1 on which the Cesàro
averages of T' converge. Would this be an appropriate choice for an algebra? Here
is another bad news.
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Proposition 12.29. For an ergodic measure-preserving system .XI'/ the following
assertions are equivalent:

(i) linf1g ˚ .I � T'/L1 is a C�-subalgebra of L1.X/.
(ii) L1.X/ is finite dimensional.

(iii) The Koopman operator T' is mean ergodic on L1.X/.

Proof. By Proposition 12.28, (ii) and (iii) are equivalent.
Let A WD linf1g ˚ .I � T'/L1, which is a closed subspace of L1. Since .XI'/

is ergodic, one has fix.T'/ D linf1g by Proposition 7.15, and hence (iii) implies (i).
Conversely, suppose that (i) holds. We identify .XI'/ with its Stone represen-

tation .K; �I /. Under this identification, A is a closed �-subalgebra of C.K/
containing 1. If we can prove that A separates the points of K, by the Stone–
Weierstraß Theorem 4.4 it follows that A D C.K/, and therefore (iii).

Suppose first that .KI'/ has a fixed point x 2 K. Then f .x/ D 0 for every
f 2 ran.I � T'/ and hence for every f 2 ran.I � T'/ (closure in sup-norm). For
f 2 ran.I � T'/ � A we have jf j2 D f f 2 A and jf j2.x/ D 0. Since x is a fixed
point, Anjf j2.x/ D 0 for every n 2 N. But T' is mean ergodic on A, so the Cesàro
means Anjf j2 converge in sup-norm. By Theorem 8.10, the limit is the constant
function

R
K jf j2d� � 1, hence

R
K jf j2 d� D 0. From the strict positivity of � we

obtain jf j2 D 0 and hence f D 0. This means that .I � T'/L1 D f0g, i.e., T' D I.
By ergodicity, dim L1 D 1, so (ii) follows.

Now suppose that .KI'/ does not have any fixed points. We shall show that
already ran.I � T'/ separates the points of K. Take two different points x; y 2 K.
We need to find a continuous function f 2 C.K/ such that

f .x/ � f .y/ ¤ f .'.x// � f .'.y//:

Since x ¤ '.x/ and y ¤ '.y/, such a function is found easily by an application of
Urysohn’s lemma: If '.x/ D '.y/, let f be any continuous function separating x
and y; and if '.x/ ¤ '.y/, let f 2 C.K/ be such that f .x/ D f .'.y// D 0 and
f .y/ D f .'.x// D 1. ut

After these results it becomes clear that the task consists in finding “large”
subalgebras contained in linf1g ˚ .I � T'/L1. For invertible standard systems this
was achieved by Jewett (1970) (in the weak mixing case, cf. Chapter 9) and Krieger
(1972), see also Petersen (1989, Sec. 4.4) and Glasner (2003, Sec.15.8) .

Theorem 12.30 (Jewett–Krieger). Let .XI'/ be an ergodic invertible standard
system with Koopman operator T' .

a) There exists a full, mean ergodic subalgebra of L1.X/, i.e., a T' -invariant
C�-subalgebra of L1.X/, dense in L1.X/, on which T' is mean ergodic.

b) .XI'/ is isomorphic to a measure-preserving system determined by a strictly
ergodic topological system on a totally disconnected compact metric space.
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Exercises

1. Let .XjI'j/, Xj D .Xj; ˙j; �jI'j/, j D 1; 2; 3, be given measure-preserving
systems, and let �1 W X1 ! X2 and �2 W X2 ! X3 be point factor maps/isomorphisms.
Show that �2 ı �1 is a point factor map/isomorphism, too. (Hint: Exercise 6.2.)

2. Prove the following alternative characterization of point isomorphic measure-
preserving systems. For measure-preserving systems .XI'/ and .YI / the follow-
ing assertions are equivalent:

(i) .XI'/ and .YI / are point isomorphic.

(ii) There are sets A 2 ˙ and A0 2 ˙ 0 and a bijection � W A! A0 such that the
following hold:

1) �.A/ D 1 D �0.A0/,
2) � is bijective, bi-measurable and measure-preserving,

3) A � '�1.A/, A0 �  �1.A0/ and � ı ' D  ı � on A.

(Hint: For the implication (i)) (ii), define

A WD
\

n�0
Œ � ı � ı 'n D 'n � \ Œ  n ı � D � ı 'n � 2 ˙

and A0 2 ˙ 0 likewise, cf. also Exercise 6.3.)

3. a) Consider the Bernoulli shift B. 1
2
; 1
2
/ D .W C

2 ;˙;�I �/ and endow Œ0; 1�

with the Lebesgue measure. Show that the measure spaces .W2;˙;�/ and
.Œ0; 1�;�; �/, � the Lebesgue �-algebra, are point isomorphic. Prove that
B. 1

2
; 1
2
/ and .Œ0; 1�;�; �I'/, ' the doubling map, are point isomorphic (see

Example 5.1).

b) Prove the analogous statements for the baker’s transformation (Example 5.1)
and the two-sided Bernoulli-shift B. 1

2
; 1
2
/ D .W2;˙;�I �/.

(Hint: Write the numbers in Œ0; 1� in binary form.)

4. Let ' be the tent map and  the doubling map on Œ0; 1�. Show that

' W .Œ0; 1�; �I /! .Œ0; 1�; �I'/

is a point homomorphism of measure-preserving systems.

5. a) Let .V; �/ be an abstract measure algebra. Show that

d�.x; y/ WD �..x ^ yc/ _ .y ^ xc// .x; y 2 V/

is a metric on V .



246 12 Isomorphisms and Topological Models

b) Let � W .V; �/ ! .W; / be a homomorphism of measure algebras. Show
that�.?/ D?, �.>/ D > and�.xc/ D �.x/c for all x 2 V . Then show that
� is isometric for the metrics d�; d defined as in a).

c) Let� W .V; �/! .W; / be a surjective homomorphism of measure algebras.
Show that � is bijective, and ��1 is a measure algebra homomorphism as
well.

6. Work out in detail the proof of Theorem 12.10.

7. Let .YI / be a factor of .XI'/ and suppose that .XI'/ is ergodic (strongly
mixing, weakly mixing (of order k 2 N), mildly mixing). Show that .YI / is
ergodic (strongly mixing, weakly mixing (of order k 2 N), mildly mixing) as
well. (This is Proposition 12.11.) Conclude that all the mentioned properties are
isomorphism invariants and show that invertibility is an isomorphism invariant, too.
Finally, provide an example showing that a factor of an invertible system need not
be invertible.

8. Let .XI'/ and .YI / be two measure-preserving systems. Show that if S is
a Markov isomorphism of the corresponding L1-spaces, the respective measure
algebra isomorphism � is a �-algebra isomorphism, i.e., also preserves countable
disjoint unions.

9. Let K D Z[ f1g be the one-point compactification of Z, and let ' W K ! K be
given by

'.x/ WD
(

xC 1 if x 2 Z;

1 if x D1.

Show that ı1 is the only '-invariant probability measure on K, so .KI'/ is uniquely
ergodic, surjective, but not minimal (see also Example 2.31).

10. Let .XIT/ be an abstract measure-preserving system, let .K; �I / be a faithful
topological measure-preserving system, and let ˚ W .K; �IT / ! .XIT/ be a
homomorphism of abstract measure-preserving systems. Prove that A WD ˚.C.K//
is a T-invariant C�-subalgebra of L1.X/. (Hint: Use Theorem 7.23.)

11. Let A be a C�-algebra, let M � A be countable subset of A, and take B WD
alg.M/ the smallest C�-subalgebra of A containing M. Show that B is separable.

12. Let a 2 T with an ¤ 1 for all n 2 N. Show that the Koopman operator La

induced by the rotation with a is not mean ergodic on L1.T; dz/. (Hint: Consider
M WD fan W n 2 Ng and

I WD ˚Œf � 2 L1.T; dz/ W f 2 BM .T/ vanishes on a neighborhood of M
�
:

Show that I is an ideal of L1.T; dz/ with 1 … J WD I. Conclude that there is  2
L1.T; dz/0 which vanishes on J and satisfies h1; i D 1. Use this property for T 0n
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and A0
n and then exploit the weak*-compactness of the set of probability measures

on T.)

13. Consider the rotation system .T; dzI a/ for some a 2 T.

a) Show that R.T/ is a full C�-subalgebra of L1.T/.
b) Show that if the system is ergodic, then there is precisely one normalized

positive invariant functional on R.T) (namely, f 7! R
T
f dz).

c) Show that on L1.T; dz/ functionals as in b) abound.

14. Give an example of a measure-preserving system .XI'/ such that the space
L1.X/ is infinite dimensional and the Koopman operator T' is mean ergodic
thereon.

15. Prove that the product of two Bernoulli shifts is isomorphic to a Bernoulli shift,
and that the kth iterate of a Bernoulli shift is isomorphic to a Bernoulli shift.

16. Let X1; X2; Y1; Y2 be probability spaces and let Sj W L1.Xj/ ! L1.Yj/ for
j D 1; 2 be Markov embeddings. Show that there is a unique bounded operator
S WD S1 ˝ S2 W L1.X1 ˝ X2/! L1.Y1 ˝ Y2/ satisfying

.T1 ˝ T2/.f1 ˝ f2/ D T1f1 ˝ T2f2 .f1 2 L1.X1/; f2 2 L1.X2//:

Show moreover that S is again a Markov embedding. (Hint: There is a direct proof
based on Corollary B.18. Alternatively one can use topological models.)



Chapter 13
Markov Operators

1

Andrey A. Markov2

In this chapter we shall have a closer look at Markov operators (which have been
introduced in Section 12.2). We start from given probability spaces X; Y, and recall
from Definition 12.9 that an operator S W L1.X/ ! L1.Y/ is a Markov operator if
it satisfies

S � 0; S1X D 1Y ; and
Z

Y
Sf D

Z

X
f .f 2 L1.X//;

the latter being equivalently expressed as S01Y D 1X. We denote the set of all
Markov operators by

M.XIY/ WD ˚S W L1.X/! L1.Y/ W S is Markov
�

and abbreviate M.X/ WD M.XIX/. The standard topology on M.XIY/ is the weak
operator topology (see Appendix C.8).

There is an obvious conflict of terminology with Markov operators between
C.K/-spaces defined in Exercise 10.2. Markov operators between L1-spaces, besides
being positive and 1-preserving also preserve the integral, or equivalently: Its adjoint
S0 as an operator between L1-spaces is also positive and preserves 1. Hence our
“Markov operators” could rather be called bi-Markov operators.

This would also be in coherence with the finite dimensional situation. Namely,
if ˝ D f1; : : : ; dg is a finite set with probability measure � D 1

d

Pd
jD1 ıfjg, and

1Mathematics is what Gauß, Chebyshev, Liapunov, Steklov and I do.
2Markov once answered this to the question: “What is mathematics?” � Source: “Mathematicians
Joke Too” by Sergey Fedin.
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operators on L1.˝;�/ D C
d are identified with matrices, then a matrix represents a

Markov operator in the sense of definition above if and only if it is bistochastic (or:
doubly stochastic).

However, our definition reflects the common practice in the field, see Glasner
(2003, Def. 6.12), so we stick to it.

13.1 Examples and Basic Properties

Let us begin with some examples.

Examples 13.1. 1) The operator 1X ˝ 1Y defined by

.1X ˝ 1Y/f WD hf; 1Xi � 1Y D
�Z

X
f

�
1Y .f 2 L1.X//

is a Markov operator from L1.X/ to L1.Y/. It is the unique Markov operator
S 2 M.XIY/ with dim ran.S/ D 1, and is called the trivial Markov operator.

2) The identity operator I is a Markov operator, I 2 M.X/.

3) Clearly, every Markov embedding as defined in Section 12.2 is a Markov
operator. In particular, every Koopman operator T' associated with a
measure-preserving system .XI'/ is a Markov operator.

The following theorem summarizes the basic properties of Markov operators.

Theorem 13.2. a) The set M.XIY/ of all Markov operators is a convex subset
of L .L1.X/IL1.Y//. Composition of Markov operators yields a Markov
operator, so in particular M.X/ is a semigroup.

b) Every Markov operator S 2 M.XIY/ is a Dunford–Schwartz operator, i.e.,
it restricts to a contraction on each space Lp.X/ for 1 � p � 1, i.e.

kSf kp � kf kp .f 2 Lp.X/; 1 � p � 1/:

c) The adjoint S0 of a Markov operator S W L1.X/! L1.Y/ extends uniquely to
a Markov operator S0 W L1.Y/! L1.X/. The mapping

M.XIY/! M.YIX/; S 7! S0

is affine and continuous. Moreover, one has .S0/0 D S. If R 2 M.YIZ/ is
another Markov operator, then .RS/0 D S0R0.

d) If S;T 2 M.XIY/ are Markov operators and f 2 L1.X/ is such that
Sf � Tf , then Sf D Tf .
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Proof. The first assertion a) is straightforward from the definition.

For b) note first that S 2 M.XIY/ is an L1-contraction. Indeed, by Lemma 7.5 we
have jSf j � S jf j, and integration yields, for every f 2 L1,

kSf k1 D
Z

Y
jSf j �

Z

Y
S jf j D

Z

X
jf j D kf k1 :

Furthermore, S is an L1-contraction since jSf j � S jf j � kf k1 S1 D kf k1 1
for every f 2 L1. The rest is Theorem 8.23.

For c) take 0 � g 2 L1.Y/. Then

Z

X
S0g � f D

Z

Y
g � Sf � 0 whenever 0 � f 2 L1.X/:

Hence, S0 is a positive operator. It follows that jS0gj � S0 jgj (Lemma 7.5) and hence

�
�S0g

�
�
1
D
Z

X

ˇ
ˇS0g

ˇ
ˇ �

Z

X
S0 jgj D

Z

Y
jgj � S1 D

Z

Y
jgj D kgk1

for every g 2 L1.Y/. So S0 is an L1-contraction, and as such has a unique extension
to a contraction S0 W L1.Y/ ! L1.X/. Since the positive cone of L1 is dense in the
positive cone of L1, S0 is indeed a positive operator. An easy argument shows that

.S0/0 D SjL1.X/;

in particular .S0/01 D S1 D 1, hence S0 is a Markov operator. The proofs for the
remaining assertions are left as Exercise 1.

Finally, we prove d). If Sf � Tf , then h WD Tf � Sf � 0. Integration yields

0 �
Z

Y
h D

Z

Y
Tf �

Z

Y
Sf D

Z

X
f �

Z

X
f D 0;

which implies that h D 0. ut
By definition, the adjoint S0 of a Markov operator S 2 M.XIY/ satisfies

hSf; giY D
˝
f; S0g

˛
X

for f 2 L1.X/ and g 2 L1.Y/. In order to extend this to other pairs of functions f
and g, we need the following lemma.

Lemma 13.3. Let 1 � p < 1, and let f; g 2 Lp.X/. Then f � g 2 Lp.X/ if and
only if there are sequences .fn/n2N; .gn/n2N � L1.X/ such that

kfn � f kp ; kgn � gkp ! 0; sup
n
kfn � gnkp <1:
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In this case, one can choose .fn/n2N and .gn/n2N with the additional properties

jfnj � jf j ; jgnj � jgj :

Moreover, if the sequences .fn/n2N and .gn/n2N have these properties, then

kfngn � f gkp ! 0:

Proof. For one implication, pass to subsequences that converge almost everywhere
and then apply Fatou’s lemma to conclude that the product belongs to Lp. For the
converse, use the approximation

fn WD f � 1Œ jf j�n �; gn WD g � 1Œ jgj�n �

and the dominated convergence theorem. ut
Proposition 13.4. Let S 2 M.XIY/ and f 2 L1.X/, g 2 L1.Y/. If g � Sf 2 L1.Y/,
then f � S0g 2 L1.X/ and one has

Z

Y
Sf � g D

Z

X
f � S0g:

Proof. Take gn 2 L1.Y/with jgnj � jgj such that gn ! g almost everywhere and in
L1. Then jgnSf j � jgj � jSf j D jgSf j � jgj � Sjf j 2 L1.Y/, hence by the dominated
convergence theorem gnSf ! gSf in L1. On the other hand, we have S0gn ! S0g
in L1 and

�
�f S0gn

�
�
1
�
Z

X
jf j S0 jgnj D

Z

Y

�
S jf j� jgnj � kg � S jf jk1

for all n 2 N. Hence, by Lemma 13.3, f � S0 jgj 2 L1.X/ and f � S0gn ! f � S0g in
L1.X/. Therefore, hSf; giY D hf; S0giX as claimed. ut

Finally, we describe a convenient method of constructing Markov operators,
already employed in Section 12.3 above. The simple proof is left as Exercise 2.

Proposition 13.5. Let K be a compact space and let S W C.K/! L1.X/ be a linear
operator satisfying S � 0 and S1 D 1. Then there is a unique � 2 M1.K/, namely
� D S01, such that S extends to a Markov operator S� W L1.K; �/ ! L1.X/. If S is
injective, then � has full support.

What we mean by “extension” here is of course that S D S�J, where J W C.K/!
L1.K; �/ is the canonical map assigning to each f 2 C.K/ its equivalence class Jf
modulo equality �-almost everywhere. We usually suppress reference to this map
and write again simply S in place of S�.
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Markov Operators on Lp-Spaces

Let X; Y be probability spaces and let 1 � p � 1. As in the case p D 1, an
operator S W Lp.X/ ! Lp.Y/ is a Markov operator if it satisfies S � 0, S1 D 1
and

R
Y Sf D R

X f for all f 2 Lp.X/. We denote by Mp.XIY/ the set of Markov
operators in L .Lp.X/ILp.Y//, so that M1.XIY/ D M.XIY/.

Every Markov operator S 2 M.XIY/ restricts to a Markov operator on Lp by
Theorem 13.2.b. Hence, we can consider the restriction mapping

˚p W M.XIY/! Mp.XIY/; ˚p.S/ WD SjLp :

The following proposition lists some of its properties.

Proposition 13.6. Let X; Y be probability spaces and let 1 � p � 1. Then the
restriction mapping

˚p W M.XIY/! Mp.XIY/; ˚p.S/ WD SjLp

is a bijection. If p < 1 and q is the conjugate exponent, then ˚q.S0/ D ˚p.S/0 for
each S 2 M.XIY/ and the mapping ˚p is a homeomorphism for the weak as well
as for the strong operator topologies.

Proof. Each S 2 Mp.XIY/ satisfies

kSf k1 D
Z

Y
jSf j �

Z

Y
S jf j D

Z

X
jf j D kf k1

for all f 2 Lp.X/. Hence, S extends uniquely to a Markov operator on L1 by
approximation, and ˚p is bijective. The proof of the remaining assertions is left
as Exercise 3. ut
Remark 13.7. Let X; Y be measure spaces and let S W L2.X/ ! L2.Y/ be a
bounded operator. The Banach adjoint of S is the unique operator S0 W L2.Y/ !
L2.X/ such that

Z

Y
.Sf / � g D

Z

X
f � .S0g/ for all f 2 L2.X/; g 2 L2.Y/.

In contrast, the Hilbert adjoint of S is the unique operator S� W L2.Y/ ! L2.X/
such that
Z

Y
.Sf /�g D .Sf j g/ D �f j S�g

� D
Z

X
f �S�g for all f 2 L2.X/; g 2 L2.Y/.
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Hence, S�g D S0g for g 2 L2.Y/. It follows (since positive operators preserve
conjugation by Lemma 7.5) that the Banach adjoint and the Hilbert adjoint of a
Markov operator coincide.

Compactness and Metrizability

There are two canonical topologies on M.XIY/, the weak and the strong operator
topology. By Proposition 13.6, neither of these changes when one considers Markov
operators in M.XIY/ as mappings Lp.X/! Lp.Y/ for different p 2 Œ1;1/.
Theorem 13.8. The set of Markov operators M.XIY/ is compact with respect to
the weak operator topology. If both L1.X/ and L1.Y/ are separable, then both
weak and strong operator topologies on M.XIY/ are Polish, i.e., separable and
completely metrizable.

Proof. The set M.XIY/ of Markov operators is weakly closed in the set of all
contractions L2.X/! L2.Y/. Hence, the first assertion follows from Theorem D.7.

The separability of L1.X/ is equivalent with the separability of L2.X/ since both
topologies coincide on the unit ball of L1 (Exercise 3). As the same holds for Y, we
can apply Proposition D.20, and this concludes the proof. ut

13.2 Embeddings, Factor Maps and Isomorphisms

Recall from Section 12.2 that a Markov operator is an embedding if it is a lattice
homomorphism. Let

Emb.XIY/ WD ˚S W S 2 M.XIY/ is a Markov embedding
�

denote the set of Markov embeddings. In the case X D Y we abbreviate Emb.X/ WD
Emb.XIX/. Here is a comprehensive characterization.

Theorem 13.9. For a Markov operator S 2 M.XIY/ the following assertions are
equivalent:

(i) S.f � g/ D Sf � Sg for all f; g 2 L1.X/.
(ii) S0S D I.

(iii) There is T 2 M.YIX/ such that TS D I.

(iv) kSf kp D kf kp for all f 2 Lp.X/ and some/all 1 � p <1.

(v) jSf jp D S jf jp for all f 2 L1.X/ and some/all 1 � p <1.

(vi) S 2 Emb.XIY/, i.e., jSf j D S jf j for all f 2 L1.X/.

Moreover, (ii) implies that kSf k1 D kf k1 for all f 2 L1.X/.
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Proof. If (i) holds, then hSf; SgiY D
R
.Sf / � .Sg/ D R S.f � g/ D R f � g D hf; giX

for all f; g 2 L1.X/. This means that S0Sf D f for all f 2 L1.X/, whence (ii)
follows by approximation. The implication (ii)) (iii) is trivial. If (iii) holds, then
for f 2 Lp.X/ and 1 � p � 1 one has kf kp D kTSf kp � kSf kp � kf kp, hence
kSf kp D kf kp.

Suppose that (iv) holds for some p 2 Œ1;1/ and f 2 Lp.X/. Then 0 � jSf jp �
S jf jp by Theorem 7.24 with g D 1. Integrating yields

kf kp
p D kSf kp

p D
Z

Y
jSf jp �

Z

Y
S jf jp D

Z

X
jf jp D kf kp

p :

Hence, jSf jp D S jf jp, i.e., (v) is true. If we start from (v) and use that identity for
f and jf j, we obtain

jSf jp D S jf jp D ˇˇS jf jˇˇp D �S jf j�p
:

Taking pth roots yields jSf j D S jf j for every f 2 L1.X/, and by density
we obtain (vi). Finally, the implication (vi)) (i) follows from the second part of
Theorem 7.23. ut
Remark 13.10. Property (i) can be strengthened to

(i’) S.f � g/ D Sf � Sg for all f; g 2 L1.Y/ such that f � g 2 L1.Y/.

This follows from (i) and Lemma 13.3.

We conclude this section with an important result on the topologies on
Emb.XIY/.
Theorem 13.11. On the set of Markov embeddings Emb.XIY/ the weak and the
strong operator topologies coincide.

Proof. Let ˚ W M.XIY/ ! M2.XIY/ be the restriction mapping ˚.S/ WD SjL2 .
By Theorem 13.9(iv) one has˚.Emb.XIY// D M2.XIY/\ Iso.L2/. On Iso.L2/ the
weak and strong operator topologies coincide (Corollary D.19). Hence, the claim
follows from Proposition 13.6. ut

Factor Maps

A Markov operator P 2 M.XIY/ is called a (Markov) factor map if P0 is an
embedding. Here is a characterization of factor maps.

Theorem 13.12. For a Markov operator P 2 M.XIY/ the following assertions are
equivalent:

(i) P is a factor map, i.e., P0 is an embedding.

(ii) PP0 D I.
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(iii) There is T 2 M.YIX/ such that PT D I.

(iv) P..P0f / � g/ D f � .Pg/ for all f 2 L1.Y/, g 2 L1.X/.

Proof. If (i) holds, then P0 is an embedding, whence I D .P0/0P0 D PP0, i.e., (ii)
follows. The implication (ii)) (iii) is trivial. If PT D I, then taking adjoints we
obtain T 0P0 D I, hence by Theorem 13.9 we conclude that P0 is an embedding, and
that is (i).

Finally, observe that (iv) implies (ii) (just take g D 1 and apply a density
argument). On the other hand, if P0 is an embedding, we have by Theorem 13.9(i)
that

Z

Y
P.P0f � g/ � h D

Z

X
P0f � g � P0h D

Z

X
P0.f h/ � g D

Z

Y
f � Pg � h

for f; h 2 L1.Y/ and g 2 L1.X/. This is the weak formulation of (iv). ut
Remark 13.13. Assertion (iv) can be strengthened to

(iv’) P..P0f / � g/ D f � .Pg/ .f 2 L1.Y/, g 2 L1.X/, P0f � g 2 L1.X//.

Proof. By denseness, the claim is true if g 2 L1.X/. In the general case approximate
gn ! g a.e. by gn 2 L1.X/ satisfying jgnj � jgj. Then P0f � gn ! P0f � g a.e. and

ˇ
ˇP0f � gn

ˇ
ˇ � ˇˇP0f � gˇˇ ;

hence P0f � gn ! P0f � g by the dominated convergence theorem. This implies that

f � Pgn D P.P0f � gn/! P.P0f � g/
in L1.Y/. But Pgn ! Pg in L1.Y/ and by passing to an a.e. convergent subsequence
one concludes (iv’). ut

Isomorphisms

Recall from Section 12.2 that a surjective Markov embedding S 2 M.XIY/ is called
a Markov isomorphism. The next is a characterization of such embeddings.

Corollary 13.14. For a Markov operator S 2 M.XIY/ the following assertions are
equivalent:

(i) There are T1; T2 2 M.YIX/ such that T1S D I and ST2 D I.

(ii) S is an embedding and a factor map.

(iii) S and S0 are both embeddings (both factor maps).

(iv) S is a surjective embedding, i.e., a Markov isomorphism.

(v) S is an injective factor map.

(vi) S is bijective and S�1 is positive.

Under these equivalent conditions S�1 D S0.
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Proof. By Theorems 13.9 and 13.12 it is clear that (i)–(iii) are equivalent, and any
one of them implies (iv) and (v). Suppose that (iv) holds. Then S0S D I and S is
surjective. Hence, it is bijective, and S�1 D S0 is a Markov operator, whence (i)
follows. The proof of (v)) (i) is similar. Clearly (i)–(v) all imply (vi). Conversely,
suppose that (vi) holds, i.e., S is bijective and S�1 � 0. Then

jSf j � S jf j D S
ˇ
ˇS�1Sf

ˇ
ˇ � SS�1 jSf j D jSf j

for every f 2 L1.X/. Hence, S is an embedding, i.e., (iv) is proved. ut
A Markov automorphism S of X is a self-isomorphism of X. We introduce the
following notation:

Iso.XIY/ WD ˚S W S 2 M.XIY/ is a Markov isomorphism
�
;

Aut.X/ WD ˚S W S 2 M.X/ is a Markov automorphism
�
:

We note that even if S is a bijective Markov operator, its inverse S�1 need not be
positive, hence not a Markov operator. As an example consider the bi-stochastic
matrix

S WD
� 1
3

2
3

2
3

1
3

�
with inverse S�1 D

��1 2

2 �1
�
;

which is not positive. This shows that one cannot drop the requirement of positivity
of S�1 in (ii) of Corollary 13.14.

Proposition 13.15. For a probability space X the set Aut.X/ of Markov automor-
phisms is a topological group with respect to the strong (= weak) operator topology.
If L1.X/ is separable, then Aut.X/ is a Polish space.

Proof. Clearly, Aut.X/ is a group with the neutral element Id. The operator
multiplication is jointly continuous for the strong operator topology (since all
Markov operators are contractions). Inversion coincides with taking the adjoint and
is therefore continuous for the weak operator topology. But both topologies coincide
on Emb.XIX/ and hence, a fortiori, on Aut.X/. If L1.X/ is separable, so is L2.X/,
hence the second claim follows from Proposition D.20. ut

13.3 Markov Projections

We turn to our last class of distinguished Markov operators. A Markov operator
Q 2 M.X/ is called a Markov projection if it is a projection, i.e., Q2 D Q.
Alternatively, Markov projections are called conditional expectations, for reasons
that will become clear in Remark 13.21 below.

The following lemma characterizes Markov projections in terms of the Hilbert
space L2.X/.
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Lemma 13.16. Every Markov projection Q 2 M.X/ is self-adjoint, i.e., satisfies
Q0 D Q and restricts to an orthogonal projection on the Hilbert space L2.X/.
Conversely, if Q is an orthogonal projection on L2.X/ such that Q � 0 and Q1 D 1,
then Q extends uniquely to a Markov projection on L1.X/.

Proof. If Q is a Markov projection, it restricts to a contractive projection on the
Hilbert space H WD L2.X/. Hence, by Theorem D.21, Q is an orthogonal projection
and in particular self-adjoint, see also Remark 13.7.

If, conversely, Q is an orthogonal projection on H with Q � 0 and Q1 D 1, then
Z

X
Qf D .Qf j 1/ D .f jQ1/ D .f j 1/ D

Z

X
f for f 2 L2:

Hence, Q is a Markov operator on L2. By Proposition 13.6, Q extends uniquely to a
Markov operator on L1, which is again a projection. ut
Corollary 13.17. Every Markov projection Q 2 M.X/ is uniquely determined by
its range ran.Q/.

Proof. Let P; Q be Markov projections with ran.P/ D ran.Q/. Then

ran.PjL2/ D ran.P/\ L2 D ran.Q/\ L2 D ran.QjL2/:
Hence, P D Q on L2 (Corollary D.22.c), and thus by approximation even on L1. ut
Before we continue, let us note the following useful fact, based on the L2-theory of
orthogonal projections.

Corollary 13.18. Let X; Y be probability spaces, let Q 2 M.Y/ be a Markov
projection, and let S 2 M.XIY/ be such that QS is an embedding. Then QS D S.

Proof. Let f 2 L2.X/. Since QS is an embedding, it is isometric on L2, and hence

kf k2 D kQSf k2 � kSf k2 � kf k2 :
Hence, QSf D Sf by Corollary D.22.a. Since L2 is dense in L1, it follows that
QS D S. ut

Given a probability space X and 1 � p � 1 we shall call a vector sublattice F
of Lp.X/ unital if 1 2 F. Such sublattices play an important role, as the following
characterizations of Markov projections show.

Proposition 13.19. Let X D .X; ˙; �/ be a probability space. Then the following
assertions hold:

a) The range F WD ran.Q/ of a Markov projection Q 2 M.X/ is a unital Banach
sublattice of L1.X/.

b) If F is a unital Banach sublattice of L1.X/, then

˙F WD
˚
A 2 ˙ W 1A 2 F

�

is a sub-�-algebra of ˙ , and F D L1.X; ˙F; �/.
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c) If ˙ 0 is a sub-�-algebra of ˙ , then the canonical injection

J W L1.X; ˙ 0; �/! L1.X; ˙; �/; Jf D f

is a Markov embedding.

d) If S W L1.Y/ ! L1.X/ is a Markov embedding, then Q WD SS0 is a Markov
projection with ran.Q/ D ran.S/.

Proof. a) Obviously 1 D Q1 2 F. For f D Qf 2 F we have

jf j D jQf j � Q jf j ; i.e., Q jf j � jf j � 0:

Therefore, since Q2 D Q and Q is a Markov operator,

0 �
Z

X

�
Q jf j � jf j� D

Z

X
Q
�
Q jf j � jf j� D

Z

X

�
Q2 � Q

� jf j D 0:

This implies that jf j D Q jf j 2 F, hence F is a unital vector sublattice. Since F is
closed (being the range of a bounded projection), it is a Banach sublattice.

b) It is easily seen that ˙F is a sub-�-algebra of ˙ . Now, the inclusion
L1.X; ˙F; �/ � F is clear, the step functions being dense in L1. For the converse
inclusion, let 0 � f 2 F. Then 1Œ f >0 � D supn2N nf ^ 1 2 F. Applying this to
.f � c1/C 2 F yields that 1Œ f >c � 2 F for each c 2 R. Hence f is ˙F-measurable.
Since F is a sublattice, F � L1.X; ˙F; �/, as claimed.

c) is trivial.

d) Since S is an embedding, S0S D I (Theorem 13.9) and hence Q2 D .SS0/.SS0/ D
S.S0S/S0 D SS0 D Q. By Q D SS0 it is clear that ran.Q/ � ran.S/, but since
QS D SS0S D S, we also have ran.S/ � ran.Q/ as claimed. ut

Suppose now that Q 2 M.X/ is a Markov projection. Following the steps a)–d)
in Proposition 13.19 yields

Q 7! F D ran.Q/ 7! ˙F 7! JJ0 D P

and P is a Markov projection with ran.P/ D ran.J/ D L1.X; ˙F; �/ D F D ran.Q/.
By Corollary 13.17, it follows that P D Q.

If, however, we start with a unital Banach sublattice F of L1.X/ and follow the
steps above, we obtain

F 7! ˙F 7! Q D JJ0 7! ran.Q/;

with ran.Q/ D ran.J/ D L1.X; ˙F; �/ D F.
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Finally, start with a sub-�-algebra˙ 0 � ˙ and follow the steps above to obtain

˙ 0 7! Q D JJ0 7! F D ran.Q/ D ran.J/ D L1.X; ˙ 0; �/ 7! ˙F:

One has A 2 ˙F if and only if 1A 2 L1.X; ˙ 0; �/, which holds if and only if
�.A4B/ D 0 for some B 2 ˙ 0. Hence, ˙ 0 D ˙F if and only if ˙ 0 is relatively
complete, meaning that it contains all �-null sets from ˙ . (Note that ˙F as in
Proposition 13.19.b is always relatively complete.)

We have proved the first part of the following characterization result.

Theorem 13.20. Let X D .X; ˙; �/ be a probability space. The assignments

Q 7! P D QjL2 ; Q 7! ran.Q/; Q 7! ˙ 0 D ˚A 2 ˙ W Q1A D 1A
�

constitute one-to-one correspondences between the following four sets of objects:

1) Markov projections Q on L1.X/,

2) orthogonal projections P on L2.X/ satisfying P � 0 and P1 D 1,

3) unital Banach sublattices F � L1.X/,

4) relatively complete sub-�-algebras˙ 0 of ˙ .

Furthermore, for 1 < p < 1 the assignments F 7! F \ Lp and E 7! clL1 .E/ are
mutually inverse bijections between the sets of objects 3) above and

5) unital Banach sublattices E of Lp.X/.

Proof. Only the last assertion remains to be proved. If F is a unital Banach sublattice
of L1, then clearly E WD F \ Lp is a unital Banach sublattice of Lp. If 0 � f 2 F,
then fn WD f ^ n1 2 E and fn % f . Since F is a lattice, E is L1-dense in F.

Conversely, let E be a unital Banach sublattice of Lp. Then F WD clL1 .E/ is clearly
a unital Banach sublattice of L1 with E � F \ Lp. For the converse inclusion take
0 � f 2 F \ Lp. Since f ^ n1 2 F and f ^ n1% f , we may suppose that f is
bounded by some number c > 0. Take fn 2 E such that fn ! f in L1. By passing
to jfnj ^ c1, we may suppose that 0 � fn � c for all n. But then fn ! f in Lp,
see Exercise 3. Since F \ Lp is a sublattice, it follows that it is contained in E as
claimed. ut

In the following we sketch the connection of all these objects to probability
theory.

Remark 13.21 (Conditional Expectations). Let ˙ 0 be a sub-�-algebra of ˙ , and
let Q be the associated Markov projection, i.e., the unique Markov projection Q2 D
Q 2 M.X/ with

ran.Q/ D L1.X; ˙ 0; �/:

Let us abbreviate Y WD .X; ˙ 0; �/. Then, for A 2 ˙ 0 and f 2 L1.X/, we have
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Z

A
Qf d� D

Z

X
1A � JJ0f D

Z

Y
1A � J0f D

Z

X
.J1A/ � f D

Z

A
f d�:

This means that Q D E.�j˙ 0/ is the conditional expectation operator, common in
probability theory (Billingsley 1979, Sec. 34).

Let us turn to a characterization of Markov projections in the spirit of Theorems
13.9 and 13.12.

Theorem 13.22. For a Markov operator Q 2 M.X/ the following assertions are
equivalent:

(i) Q2 D Q, i.e., Q is a Markov projection.

(ii) Q D SS0 for some Markov embedding S.

(iii) Q D P0P for some Markov factor map P.

(iv) Q.Qf � g/ D Qf � Qg for all f; g 2 L1.X/.

Proof. By the duality of embeddings and factor maps, (ii) and (iii) are equivalent.
The equivalence of (i) and (ii) follows from Proposition 13.19 and the remarks
following it. The implication (iii)) (iv) is obtained from

Q.Qf � g/ D P0P.P0Pf � g/ D P0 	P
�
P0.Pf / � g�
 D P0.Pf � Pg/

D P0Pf � P0Pg D Qf � Qg

by virtue of Theorems 13.9 and 13.12. The implication (iv)) (i) is proved by
specializing g D 1 and by denseness of L1.X/ in L1.X/. ut
Remark 13.23. Assertion (iv) can be strengthened to

(iv’) Q.Qf � g/ D Qf � Qg for all f; g 2 L1.X/ such that Qf � g 2 L1.X/.

This follows, as in Remarks 13.13 and 13.10, by approximation.

Example 13.24 (Mean Ergodic Projections I). Every Markov operator T2M.X/,
X D .X; ˙; �/, is a Dunford–Schwartz operator. Hence, it is mean ergodic by
Theorem 8.24, i.e., the limit

PT WD lim
n!1 AnŒT� D lim

n!1
1

n

n�1X

jD0
Tj

exists in the strong operator topology. The operator PT is a projection with
ran.PT/ D fix.T/. Since T is a Markov operator, so is PT , i.e., PT is a Markov
projection. By Proposition 13.19, fix.T/ is a Banach sublattice. Note that by
Corollary 8.7 we have

fix.T/ D fix.T 0/ and PT D PT0 :
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The corresponding �-algebra is

˙fix D
˚
A 2 ˙ W T1A D 1A

�

and the mean ergodic projection PT coincides with the conditional expectation PT D
E.�j˙fix/. (Cf. Remark 8.9 for the special case when T is a Koopman operator.)

Example 13.25 (Mean Ergodic Projections II). More generally, let T � M.X/
be a semigroup of Markov operators. Then the fixed space fix.T / D T

T2T fix.T/
is a unital Banach sublattice of L1.X/ and hence the range of a unique Markov
projection P. It holds

Pf 2 conv
˚
Tf W T 2 T

�
for all f 2 L1.X/,

because this is true for f 2 L2.X/, see Theorem 8.32. It follows that, in the
terminology of Definition 8.31, the semigroupT is mean ergodic with mean ergodic
projection P.

13.4 Factors and Topological Models

Factors of abstract measure-preserving systems have been defined in Section 12.3.
Here, we generalize this notion to sets of Markov operators in place of just a single
Markov embedding, see Remark 13.31 below.

Definition 13.26. Let T � M.X/ be a set of Markov operators over a probability
space X. Then a T -factor of X is any unital Banach sublattice of L1.X/ which is
invariant under each T 2 T . In case T D fTgwe also write “T-factor.” A T -factor
is bi-invariant or a strict T -factor if it is also invariant under the set T 0 D fT 0 W
T 2 T g.
If the set T is understood, we simply speak of a factor or a strict factor.

Example 13.27 (Fixed Factor). For every Markov operator T 2 M.X/ its fixed
space fix.T/ is a strict T-factor, called the fixed factor, see Example 13.24. It is the
largest T-factor of X on which T acts as the identity. More generally, for a subset
T � M.X/ its fixed factor fix.T / DTT2T fix.T/ is a strict T -factor.

By Proposition 13.19, each unital Banach sublattice of L1.X/ can be obtained as
the range of a unique Markov projection Q. We first describe how the T -invariance
of a factor is expressed in terms of Q.

Lemma 13.28. Let X;Y be probability spaces, and let P 2 M.X/ and Q 2 M.Y/
be Markov projections with ranges F D ran.P/ and G D ran.Q/. Then for a Markov
operator T 2 M.XIY/ the following equivalences hold:

a) T.F/ � G ” QTP D TP.

b) T.F/ � G; T 0.G/ � F ” QT D TP ” PT 0 D T 0Q.
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Proof. The equivalence in a) is trivial. For the equivalences in b) see Proposi-
tion D.23. ut

The following is an immediate corollary.

Theorem 13.29. For a set T � M.X/ of Markov operators over a probability
space X the following assertions hold:

a) The map

Q 7! F D ran.Q/

establishes a one-to-one correspondence between the T -factors F of X and
the Markov projections Q 2 M.X/ satisfying TQ D QTQ for every T 2 T .

b) Under the map given in a) the strict factors F correspond to Markov
projections Q satisfying TQ D QT for every T 2 T .

By Proposition 13.19 one can describe factors also in terms of sub-�-algebras.
Given a unital Banach sublattice F of L1.X/ there is a unique relatively complete
sub-�-algebra ˙F of ˙X such that F D L1.Y/ for Y WD .X; ˙F; �X/. A Markov
operator T 2 M.X/ leaves F invariant if and only if

T1A is ˙F-measurable for every A 2 ˙F . (13.1)

If T is a Koopman operator of a measure-preserving mapping ', then (13.1) just
means that ' is ˙F-measurable, see also Exercise 5.

Again by Proposition 13.19, a factor F can also be given as F D ran.S/, where

S W L1.Y/! L1.X/

is a Markov embedding. In this situation one can consider the mapping

�S W M.X/! M.Y/; �S.T/ WD S0TS: (13.2)

By abuse of language, �S.T/ is called the restriction of T to L1.Y/. If the context is
clear, one omits the subscript S.

Lemma 13.30. Let S W L1.Y/ ! L1.X/ be a Markov embedding, F WD ran.S/
its range, and � D �S the corresponding restriction map as in (13.2). Then for
R; T 2 M.X/ and U 2 M.Y/ the following assertions hold:

a) SU D TS if and only if F is T-invariant and U D �.T/.
b) �.RT/ D �.R/�.T/ if F is T-invariant.

c) �.T/ D I if T D I on F.

d) �.T 0/ D �.T/0.
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e) �.T/ is a Markov embedding if and only if F is T-invariant and TS is a
Markov embedding.

Proof. The proof of a)–d) is simple and is left as Exercise 4. For e) suppose first
that �.T/ D S0TS is a Markov embedding. Then S�.T/ D SS0TS D QTS is an
embedding, where Q is the Markov projection with range F. By Corollary 13.18 it
follows that QTS D TS, hence TS is an embedding and T.F/ � F.

For the converse suppose that F is T-invariant and TS is an embedding. By a),
TS D S�.T/. But then �.T/ has a left Markov inverse, hence is an embedding by
Proposition 13.9. ut
Remark 13.31 (Factors of Abstract Measure-Preserving Systems). In Sec-
tion 12.3 we defined a factor of an abstract measure-preserving system .XIT/ as
an abstract system .YIU/ together with a homomorphism S W .YIU/! .XIT/, i.e.,
a Markov embedding S W L1.Y/ ! L1.X/ such that SU D TS. Then by a) above,
F D ran.S/ is T-invariant, i.e., is a T-factor in the terminology of Definition 13.26.

Conversely, let F � L1.X/ be a T-factor given as F D ran.S/ for some Markov
embedding S W L1.Y/ ! L1.X/. Then again by a) from above, U WD �.T/ D S0TS
is the unique Markov operator on Y such that SU D TS. By e) in the previous
proposition, U is even an embedding, and hence S W .YIU/ ! .XIT/ is a homo-
morphism of abstract measure-preserving systems.

It follows that the factors of an abstract system .XIT/ can be classified up to
canonical isomorphism by the T-factors of X, cf. also Exercise 6.

Remark 13.32 (Fixed Factors within Extensions). Suppose that S W L1.Y/ !
L1.X/ is a Markov embedding and T � M.X/ a semigroup of Markov op-
erators. Suppose further that ran.S/ is T -invariant, i.e., a T -factor. Then � W
M.Y/ ! M.Y/ defined by �.T/ WD S0TS is a homomorphism of semigroups (by
Lemma 13.30.b).

Let P be the associated mean ergodic projection, i.e., the unique Markov projec-
tion onto fix.T / � L1.X/. Then, by Remark 13.25, Pf 2 convfTf W T 2 T g
for each f 2 L1.X/. In particular, P leaves ran.S/ invariant. Therefore, �.P/ D
S0PS is a Markov projection satisfying �.T/�.P/ D �.TP/ D �.P/ D �.PT/ D
�.P/�.T/ for all T 2 T . In particular, ran.�.P// � fix.�.T //. On the other hand,
if S0TSf D f for all T 2 T , then by passing to the convex closure we obtain
�.P/f D S0PSf D f .

It follows that �.P/ D S0PS is the mean ergodic projection onto the fixed factor
of the semigroup �.T /.

Remark 13.33 (Invertible Factors). Let S W .YIU/ ! .XIT/ be a homomor-
phism of abstract measure-preserving systems with corresponding T-factor F WD
ran.S/ of X. It is easy to see that U is invertible if and only if F � T.F/, and
this implies that F is also T 0-invariant (Exercise 7). In general, the T 0-invariance
of F need not imply that U is invertible. However, if .XIT/ is invertible, then
T 0 D T�1 and T 0-invariance implies that T is invertible on F and hence U is
invertible. It follows that the invertible factors of an invertible system can be
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classified up to canonical isomorphism by the strict T-factors of X. Often in the
literature only invertible systems are considered, and then “factor” is used as to
include invertibility.

Example 13.34 (Invertible Core). Let .XIT/ be an abstract measure-preserving
system. For each n 2 N the set Fn WD ran.Tn/ is a T-factor, hence so is F1 WDT

n�0 ran.Tn/. The operator T is invertible on F1 (injective since it is an embedding
and surjective by construction), and it is easy to see that F1 contains each factor
on which T is invertible. Hence F1 is the largest factor of .XIT/ on which T is
invertible. It is called the invertible core of T and we shall come back to it in
Section 17.2.

Topological Models

We now generalize the notion of a topological model introduced in Section 12.3 for
abstract measure-preserving systems.

A topological (metric) model for a probability space X is a compact (compact
metric) probability space .K; �/ together with a Markov isomorphism L1.K; �/ Š
L1.X/. In the terminology of Section 12.3, a model for X is simply a model for the
trivial abstract system .XI I/. As we know from Corollary 12.21 and Theorem 12.22,
such a model always exists and can be chosen to be metric if and only if L1.X/ is
separable.

Now suppose that one is given a probability space X and a set of Markov
operators T � M.X/. A topological (metric) model for .XIT / is a faithful
topological (metric) model ˚ W L1.K; �/ ! L1.X/ for X such that for each T 2 T
the pulled back operator ˚�1T˚ leaves C.K/ invariant. (We require the model
.K; �/ to be faithful to avoid some awkward technicalities. This is not a serious
restriction because one can always replace K by the topological support supp.�/
of �.)

The same technique used in Section 12.3 to construct models for abstract dynam-
ical systems can be applied to find a topological model for .XIT /. The Gelfand
space of any full T -invariant C�-subalgebra A of L1 will do. The question of the
existence of metric models is slightly more subtle than the single operator case: A
sufficient criterion is that L1.X/ is separable and T is countable.

13.5 Inductive Limits and the Invertible Extension

In this section we consider certain “universal” constructions for abstract systems
.XIT/. For simplicity and by abuse of language we shall denote the dynamics
always by T, and hence write, e.g., .XiIT/, i 2 I, for a family of abstract systems.
Recall that a homomorphism of systems S W .XIT/ ! .YIT/ is simply a Markov
embedding S 2 Emb.XIY/ intertwining the T-actions, i.e., satisfying ST D TS.
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(See page 236.) By virtue of S, .YIT/ becomes an extension of .XIT/, while .XIT/
is then a factor of .YIT/. If, in addition, ST 0 D T 0S, then S is called a strict
homomorphism and we speak of .YIT/ as a strict extension and of .XIT/ as a
strict factor, cf. Definition 13.26 and Remark 13.31.

Inductive Limits of Abstract Dynamical Systems

Let .I;�/ be a directed set, and let for each i 2 I an abstract system .XiIT/ be given.
Moreover, suppose that for each pair .i; j/ 2 I2, i � j, a homomorphism of systems
Jji W .XiIT/! .XjIT/ is given subject to the relations

Jii D I and JkjJji D Jki .i � j � k/: (13.3)

Then the pair ..XiIT/; .Jij/i�j/ is called a direct or inductive system of abstract
dynamical systems.

A direct or inductive limit of an inductive system ..XiIT/; .Jij/i�j/ is any
system .XIT/ together with a family of homomorphisms

�
Ji W .XiIT/! .XIT/�i2I

satisfying Ji D Jj ı Jji whenever i � j and such that it has the following universal
property: Whenever .YIT/ is an abstract dynamical system and Si W .XiIT/ !
.YIT/ is a homomorphism for each i 2 I with Si D SjJji for all i; j 2 I with i � j,
then there is a unique homomorphism S W .XIT/ ! .YIT/ with SJi D Si for all
i 2 I. A particular consequence of the universal property is that an inductive limit

L1(X)

L1(Xj) L1(Xi)

L1(Y)

Jji

Jj

Ji

Sj

Si

S

of systems is unique up to a (canonical) isomorphism. To indicate that .XIT/ is an
inductive limit of an inductive system one uses

.XIT/ D lim�!
i2I

.XiIT/

as a shorthand notation.

Theorem 13.35. Let ..XiIT/; .Jij/i�j/ be an inductive system and let .XIT/ be
another system together with a family of homomorphisms

�
Ji W .XiIT/! .XIT/�

i2I
satisfying Ji D Jj ı Jji whenever i � j. Let Ei WD JiJ0

i , i 2 I, be the corresponding
Markov projections on L1.X/. Then
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EiEj D EjEi D Ei for all i � j. (13.4)

Moreover, the following assertions are equivalent:

(i) .XIT/ D lim�!i2I
.XiIT/, i.e., ..XIT/; .Ji/i2I/ is an inductive limit of the given

inductive system.

(ii) limi!1 Ei D I in the strong operator topology.

(iii) The union of the spaces ran.Ji/ D Ji.L1.Xi// is dense in L1.X/, i.e.,

L1.X/ D clL1
[

i2I

L1.Xi/;

where one identifies L1.Xi/ with its image under Ji within L1.X/.

(iv) Whenever .YIT/ is another system and Si 2 M.XiIY/ is a Markov operator
for each i 2 I such that SjJji D Si for i � j, then there is a unique Markov
operator S 2 M.XIY/ with SJi D Si for each i 2 I.

Proof. For i � j one has Ji D JjJji and hence ran.Ei/ D ran.Ji/ � ran.Jj/ D ran.Ej/.
This yields (13.4).

Note first that the equivalence (ii), (iii) is straightforward.

(i)) (iii): Let F WD clL1
S

i ran.Ji/. Each ran.Ji/ is a T-factor of L1.X/ and these
T-factors are upwards directed. It follows that F is a T-factor. Hence, F D ran.J/
for some homomorphism J W .YIT/ ! .XIT/. (For example, Y D X, ˙Y is a
sub-�-algebra of ˙X and J is the canonical inclusion, cf. Proposition 13.19.)

Note that J0 acts as a Markov embedding from F to L1.Y/. Then each J0Ji W
.XiIT/ ! .YIT/ is a homomorphism. By the universal property, one can find a
unique homomorphism S W .XIT/! .YIT/ such that SJi D J0Ji for all i 2 I. Then
.JS/Ji D JJ0Ji D Ji for each i 2 I, and by the universal property again, JS D I. In
particular, F D ran.J/ D L1.X/.

(iii)) (iv): Uniqueness is straightforward. For existence we define S on E WDS
i2I ran.Ji/ by SJifi WD Sifi whenever fi 2 L1.Xi/. Since the subspaces ran.Ji/,

i 2 I, of L1.X/ are upwards directed, S is a well-defined linear operator satisfying
SJi D Si for all i 2 I. Clearly, S � 0, S1 D 1 and

R
Y Sf D R

X f for f 2 E.
It follows that S is a contraction and, by (ii), has a unique extension to a bounded
operator S W L1.X/! L1.Y/. Clearly, S is a Markov operator.

(iv)) (i): Suppose that (iv) holds. Then (iii) follows similarly as in the proof of the
implication (i)) (iii). Assertions (iii) and (iv) together imply (i): The existence of
the desired operator comes from (iv), the uniqueness from (iii). ut

Before we turn to the question of existence, we note some further properties of
an inductive limit.
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Proposition 13.36. Let ..XIT/; .Ji/i2I/ be an inductive limit of an inductive system
..XiIT/; .Jij/i�j/. Further, let .YIT/ be another system, S 2 M.XIY/ a Markov
operator and Si D SJi for i 2 I. Then the following assertions hold:

a) If TSi D SiT for each i 2 I, then ST D TS.

b) If T 0SiT D Si for each i 2 I, then T 0ST D S.

In addition suppose that each Jji is a strict homomorphism. Then the following
assertions hold:

c) Each Ji is a strict homomorphism, i.e., each L1.Xi/ is a strict factor of L1.X/.

d) If T 0Si D SiT 0 for each i 2 I, then T 0S D ST 0.

Proof. a) The hypothesis yields TSJi D TSi D SiT D SJiT D STJi and hence
TSEi D STEi for all i 2 I. It follows that ST D TS. The proof of b) is similar.

c) It suffices to show that EiT D TEi for all i 2 I. Fix i 2 I and k � i. Then
J0

kJi D J0
kJkJki D Jki and hence

TEi D TJiJ
0
i D JiTJ0

i D JiT.JkJki/
0 D JiTJ0

kiJ
0
k D JiJ

0
kiTJ0

k D Ji.J
0
i Jk/TJ0

k

D EiJkTJ0
k D EiTEk:

Letting k!1 yields EiT D TEi as claimed.

d) By c), for each i 2 I, T 0SJi D T 0Si D SiT 0 D SJiT 0 D ST 0Ji. By uniqueness it
follows that T 0S D ST 0. ut
Corollary 13.37. The inductive limit of an inductive system of ergodic/weakly
mixing systems is again ergodic/weakly mixing.

Proof. Let ..XIT/; .Ji/i2I/ be an inductive limit of an inductive system
..XiIT/; .Jij/i�j/. For each i 2 I let Pi W L1.Xi/! L1.Xi/ be the mean ergodic pro-
jection onto the fixed space of T on L1.Xi/, and let P be the mean ergodic projection
of T on L1.X/. Then P leaves ran.Ji/ invariant (see Remark 13.32), whence PJi D
JiPi for all i 2 I. If each .XiIT/ is ergodic, this yields PJi D 1˝ 1 for all i 2 I, and
hence P D 1˝ 1 as well. Consequently, .XIT/ is ergodic.

Passing to products we obtain a new inductive system, consisting of the product
systems .Xi˝XiIT˝T/ for i 2 I and connecting homomorphisms Jji˝Jji for i � j.
Since the union of the spaces ran.Ji ˝ Ji/, i 2 I, is dense in L1.X˝X/, we have

.X˝ XIT ˝ T/ D lim�!
i2I

.Xi ˝ XiIT ˝ T/:

If each system .XiITi/ is weakly mixing, then by definition each product system
.Xi˝XiIT˝T/ is ergodic, and hence, by a), so is the inductive limit .X˝XIT˝T/.
But this simply means that .XIT/ is weakly mixing. ut
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Finally, we shall employ topological models to show that an inductive limit
always exists.

Theorem 13.38. Each inductive system ..XiIT/; .Jij/i�j/ of abstract dynamical
systems has an inductive limit.

Proof. Pick for each i 2 I a faithful topological model .Ki; �iI'i/ of .XiIT/.
Without loss of generality we may identify L1.Xi/ with L1.Ki; �i/ and replace the
probability space Xi by .Ki; �i/. Suppose further that for i � j the operator Jji

restricts to a necessarily isometric operator Jji W C.Ki/ ! C.Kj/. (Note that this
can be realized, for example, by taking Ki to be the Stone space of L1.Xi/, see
Section 12.4.) Then, by Theorem 4.13 and Lemma 4.14, Jji is the Koopman operator
of a uniquely determined continuous factor map �ij W .KjI'j/! .KiI'i/.

The systems .KiI'i/ together with the maps .�ij/i�j form a projective system
of topological dynamical systems, see Exercise 2.18. Let .KI'/ WD lim �i

.KiI'i/ be
its projective limit and let Ji W C.Ki/! C.K/ be the canonical embedding, i.e., the
Koopman operator of the canonical projection map �i W K ! Ki. By Exercise 10.13,
there is a unique '-invariant probability measure � on K satisfying hJifi; �i D
hfi; �ii for all fi 2 C.Ki/, i 2 I.

Finally, set X WD .K; �/ and T D T' on L1.K; �/. The operators Ji extend by
continuity to homomorphisms Ji W .XiIT/! .XIT/which clearly satisfy the identi-
ties JjJji D Ji for i � j. Moreover,

S
i2I ran.Ji/ is dense in L1.X/. By Theorem 13.35,

.XIT/ is an inductive limit of the system we started with. ut

The Minimal Invertible Extension

Suppose that .XIT/ is a possibly noninvertible abstract system. That is: X is
a probability space and T W L1.X/! L1.X/ is a possibly noninvertible Markov
embedding. We consider the inductive system

L1.X/
T! L1.X/

T! L1.X/
T! : : : :

That is, we take I WD N0 with the usual ordering, Xi WD X and Jji D Tj�i for all
i; j 2 N0 with i � j. Let ..YIT/; .Ji/i2N0 / be an inductive limit of this system.

Lemma 13.39. The inductive limit system .YIT/ is invertible.

Proof. Since T is an isometry, it is sufficient to show that ran.T/ is dense, and for
this it is sufficient to show that ran.T/ contains

S
k2N0 ran.Jk/. Now note that if j � k

Jj D JkJkj D JkTk�j D Tk�jJk:

This implies that ran.Jj/ � ran.Tk�j/, concluding the proof. ut
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The invertible system .YIT/ together with the embedding J WD J0 2 M.XIY/
is called the minimal invertible extension. Its uniqueness (up to isomorphism) and
the adjective “minimal” become clear from the following result.

Theorem 13.40. Let .XIT/ be an abstract system with minimal invertible extension
J W .XIT/ ! .YIT/. If QJ W .XIT/ ! .ZIT/ is another invertible extension, then
there is a unique homomorphism S W .YIT/! .ZIT/ such that SJ D QJ.

Proof. Note that if S W .YIT/ ! .ZIT/ is a homomorphism with SJ D QJ, then
QJ D SJ D SJiTi D TiSJi and hence SJj D T�i QJ, since T is invertible on L1.Z/. By
the universal property of the inductive limit, S is uniquely determined.

Conversely, define Si W L1.Xi/ ! L1.Z/ by Si WD T�i QJ. Then clearly each Si is a
homomorphism and

SjJji D T�j QJTj�i D T�jTj�i QJ D T�i QJ D Si

for i � j. So by the universal property of an inductive limit, there is a unique ho-
momorphism S W .YIT/! .ZIT/ such that SJi D T�i QJ for each i 2 I. In particular,
this holds for i D 0, which yields SJ D QJ. ut

Since the minimal invertible extension is an inductive limit, we obtain the
following consequence of Corollary 13.37.

Corollary 13.41. The minimal invertible extension of a ergodic/weakly mixing
system is again ergodic/weakly mixing.

Finally, we state the existence of a minimal invertible extension for standard
systems.

Theorem 13.42 (Minimal Invertible Extension). Let .XI'/ be a standard
measure-preserving system. Then there exists an invertible standard system .YI /
and a point factor map � W .YI /! .XI'/ with the following universal property:
Whenever . QYI Q / is an invertible standard system and Q� W . QYI Q / ! .XI'/ is a
point factor map, then there is a unique point factor map � W . QYI Q /! .YI / such
that Q� D � ı � almost everywhere.

Furthermore, if .XI'/ is ergodic or weakly mixing, then so is .YI /.
Proof. Since X is a standard probability space, L1.X/ is separable. Let
J W .XIT'/! .YIT/ be an invertible extension of the abstract system .XIT'/. Since
L1.Y/ is the closure of a countable union of separable subspaces, it is separable
as well. In particular, we can choose a metric model for it, that is, we may
suppose without loss of generality that Y is a standard probability space. By von
Neumann’s Theorem 7.20, the Markov embedding J is the Koopman operator of a
measure-preserving map � W Y! X and the Markov embedding T is the Koopman
operator of a measure-preserving map  W Y! Y. Since TJ D JT' it follows that
� ı  D ' ı � almost everywhere, i.e., � is a point factor map.

The universal property is proved in a similar manner by combination of the
universal property of abstract systems and the theorem of von Neumann. The
assertion about ergodicity/weak mixing follows directly from Corollary 13.37. ut
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Exercises

1. Prove the remaining statements of Theorem 13.2.

2. Prove Proposition 13.5.

3. Let X be a probability space. Show that on a bounded subset of L1.X/ all the
Lp-norm topologies for 1 � p <1 coincide. Then prove Proposition 13.6.

4. Prove a)–d) of Lemma 13.30.

5. Under the hypotheses of Lemma 13.28, let ˙F and ˙G be the associated sub-
�-algebras of ˙X and ˙Y, respectively. Furthermore, suppose that T D T' is the
Koopman operator of a measure-preserving measurable map ' W Y ! X. Prove that
T.F/ � G if and only if ' is ˙G-˙F-measurable.

6. Let .XIT/ be an abstract measure-preserving system and let

S1 W .X1IT1/! .XIT/ and S2 W .X2IT2/! .XIT/

be two homomorphisms of abstract systems such that ran.S1/ D ran.S2/. Show that
there is an isomorphism S W .X1IT1/! .X2IT2/ of abstract systems with S2S D S1.

7. Let S W .YIU/ ! .XIT/ be a homomorphism of abstract measure-preserving
systems with corresponding T-factor F WD ran.S/ of X. Show that U is invertible if
and only if F � T.F/, and this implies that F is also T 0-invariant. Give an example
showing that the T 0-invariance of F is in general not sufficient for invertibility of U.

8. Let .XI'/ be a measure-preserving system, 1 � p < 1, and let E � Lp.X/.
Show that the following assertions are equivalent:

(i) clL1 .E/ is a factor of .XI'/ and E D clL1 .E/\ Lp.

(ii) E is a T' -invariant unital Banach sublattice of Lp.X/.

(iii) E D clLp.A/ for some T'-invariant unital C�-subalgebra of L1.X/.
(iv) E D ˚.Lp.Y// for some embedding ˚ W .L1.Y/IT / ! .L1.X/IT'/ of

measure-preserving systems.

9. Let .XI'/ be a measure-preserving system with a faithful model .K; �I / (e.g.,
the Stone model). By Lemma 12.17, .KI / is a surjective system, so we can
consider its minimal invertible extension � W .LI �/! .KI / (see Exercise 2.19).
Suppose that  2 M1

�.L/ satisfies �� D � (cf. Exercise 10.14). Prove that
.L; I �/ is (Markov) isomorphic to the minimal invertible extension of the measure-
preserving system .XI'/.



Chapter 14
Compact Groups

The territory of compact groups seems boundless.

Karl H. Hofmann – Sidney A. Morris1

Compact groups were introduced already in Chapter 2 yielding fundamental
examples of topological dynamical systems. In Chapter 5 they reappeared, endowed
with their Haar measure, as simple examples of measure-preserving systems. As we
shall see later in Chapter 17, these examples are by no means artificial: Within a
structure theory of general dynamical systems they form the basic building blocks.

Another reason to study groups (or even semigroups) is that they are present in
the mere setting of general dynamical systems already. If .KI'/ is an invertible
topological system, then f'n W n 2 Zg is an Abelian group of transformations on K
and—passing to the Koopman operator—fTn

' W n 2 Zg is a group of operators on
C.K/. Analogous remarks hold for measure-preserving systems, of course.

In this chapter we shall develop the theory of compact groups relevant for a
deeper analysis of dynamical systems, e.g., for the decomposition theorem to come
in Chapter 16. Our treatment is therefore far from being complete and the reader is
referred to Hewitt and Ross (1979), Rudin (1990) and Hofmann and Morris (2013)
for further information.

14.1 Compact Groups and the Haar Measure

We assume the reader to be familiar with the fundamentals of group theory, see, e.g.,
Lang (2005). Generically, we write the group operation as a multiplication. A group
G is called Abelian if it is commutative, i.e., if ab D ba for all a; b 2 G. For subsets

1The Structure of Compact Groups, de Gruyter Studies in Mathematics, vol. 25; Preface to the
First Edition.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_14
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A; B of a group G and elements x 2 G we write

xA WD ˚xa W a 2 A
�
; Ax WD ˚ax W a 2 A

�
;

AB WD ˚ab W a 2 A; b 2 B
�

A�1 WD ˚a�1 W a 2 A
�
:

A set A � G is symmetric if A�1 D A.
Recall from Example 2.9 that a topological group is a group G with a topology

such that the mappings

G � G! G; .x; y/ 7! x � y
G! G; g 7! g�1and

are continuous. (We say that the multiplication is jointly continuous to emphasize
that it is continuous as a two variable function.)

In the following, G always denotes a topological group with neutral element
1 D 1G. Note that A is open if and only if A�1 is open since the inversion mapping
is a homeomorphism of G. In particular, every open neighborhood U of 1 contains
a symmetric open neighborhood of 1, namely U \U�1.

Since the left and right multiplications by any given element x 2 G are
homeomorphisms of G, the set of open neighborhoods of the neutral element 1
completely determines the topology of G. Indeed, U is an open neighborhood of 1
if and only if Ux (or xU) is an open neighborhood of x 2 G.

The following are the basic properties of topological groups needed later.

Lemma 14.1. For a topological group G the following statements hold:

a) If V is an open neighborhood of 1, then there is an open, symmetric set W
with 1 2 W and WW � V.

b) If H is a topological group and ' W G! H is a group homomorphism, then
' is continuous if and only if it is continuous at 1.

c) If H is a normal subgroup of G, then the factor group G=H is a topological
group with respect to the quotient topology.

d) If H is a (normal) subgroup of G, then H is also a (normal) subgroup of G.

Proof. a) Let V be an open neighborhood of 1. Since the multiplication is continuous
we find U open with 1 2 U and UU � V . Then W WD U \ U�1 has the desired
property. For b), c), and d) see Exercise 1. ut

Recall that a topological group is called a (locally) compact group if its topology
is (locally) compact. Important (locally) compact groups are the additive groups Rd

and the (multiplicative) toriTd , d 2 N. Furthermore, every group G can be made into
a locally compact group by endowing it with the discrete topology. This topological
group is then denoted by Gd.
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Recall from Section 10.3 that for a group G and an element a 2 G the Koopman
operators associated with the left and right rotations by a are denoted by La and Ra,
respectively. That is

.Laf /.x/ WD f .ax/; .Raf /.x/ WD f .xa/ .x 2 G; f W G! C/:

The Haar Measure

As stated in Chapter 5, on any compact group there is a unique rotation invariant
(Baire) probability measure m, called the Haar measure. In this section we shall
prove this for the Abelian case; the general case is treated in Appendix G.4.

Theorem 14.2 (Haar Measure). On a compact group G there is a unique left
invariant Baire probability measure. This measure is also right invariant, inversion
invariant, and strictly positive.

Proof. It is easy to see that if � 2 M1.G/ is left (right) invariant, then Q� 2 M1.G/,
defined by

hf; Q�i D
Z

G
f .x�1/ d�.x/ .f 2 C.G//

is right (left) invariant. On the other hand, if � is right invariant and  is left invar-
iant, then by Fubini’s theorem for f 2 C.G/ we have

Z

G
f .x/d�.x/ D

Z

G

Z

G
f .x/d�.x/d.y/ D

Z

G

Z

G
f .xy/d�.x/d.y/

D
Z

G

Z

G
f .xy/d.y/d�.x/ D

Z

G

Z

G
f .y/d.y/d�.x/ D

Z

G
f .y/d.y/;

and hence � D . This proves uniqueness, and that every left invariant measure is
also right invariant and inversion invariant.

Suppose that m is such an invariant probability measure. To see that it is strictly
positive, let 0 6D f � 0. Then the sets Ua WD ŒLaf > 0 � ; a 2 G; cover G, hence
by compactness there is a finite set F � G such that G � Sa2F ŒLaf > 0 �. Define
g WDPa2F Laf and c WD infx2G g.x/ > 0. Then g � c1, whence

c D
Z

G
c1 dm �

Z

G
g dm D

X

a2F

Z

K
Laf dm D

X

a2F

Z

K
f dm:

It follows that hf;mi > 0.
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Only existence is left to show. As announced, we treat here only the case when G
is Abelian. Then the family .L0

a/a2G of adjoints of left rotations is a commuting
family of continuous affine mappings on M1.K/, which is convex and weakly�
compact, see Section 10.1. Hence, the Markov–Kakutani Theorem 10.1 yields a
common fixed point m, which is what we were looking for. ut
Remark 14.3. A proof for the non-Abelian case can be based on a more refined
fixed-point theorem, for instance on the one of Ryll-Nardzewski (1967), see also
Dugundji and Granas (2003, §7.9). Our proof in Appendix G.4 is based on the
classical construction as, e.g., in Rudin (1991), but departs from slightly more
general hypotheses in order to cover Ellis’ theorem, see Theorem G.10.

14.2 The Character Group

An important tool in the study of locally compact Abelian groups is the character
group. A character of a locally compact group G is a continuous homomorphism
� W G! T. The set of characters

G� WD ˚� W � character of G
�

is an Abelian group with respect to pointwise multiplication and neutral element 1;
it is called the character group (or dual group).

For many locally compact Abelian groups the dual group can be described
explicitly. For example, the character group of R is given by

R
� D ˚t 7! e2 i˛ t W ˛ 2 R

� ' R;

and the character group of T ' Œ0; 1/ by

T
� D ˚z 7! zn W n 2 Z

� ' ˚t 7! e2 in t W n 2 Z
� ' Z

(see Examples 14.16 and Exercise 5). In these examples, the character group seems
to be quite “rich,” and an important result says that this is actually a general fact.

Theorem 14.4. Let G be a locally compact Abelian group. Then its dual group G�
separates the points of G, i.e., for every 1 6D a 2 G there is a character � 2 G� such
that �.a/ 6D 1.

We shall not prove this theorem in its full generality, but only in the two cases
most interesting to us, namely when G is discrete or when G is compact. For discrete
groups, the proof reduces to pure algebra, see Proposition 14.28 in the supplement
to this chapter. The other case is treated in the next chapter, where we prove the more
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general fact that the finite-dimensional unitary representations of a compact group
separate the points (Theorem 15.11). Theorem 14.4 for compact Abelian groups is
then a straightforward consequence, see Theorem 15.17.

We proceed with exploring the consequences of Theorem 14.4. The proof of the
first one is Exercise 3.

Corollary 14.5. Let G be a locally compact Abelian group and let H be a closed
subgroup of G. If g 62 H, then there is a character � 2 G� with �.g/ ¤ 1 and
�jH D 1.

We now turn to compact groups. For such groups one has G� � C.G/ � L2.G/.
The following is a fundamental preliminary result.

Proposition 14.6 (Orthogonality). Let G be a compact Abelian group. Then G� is
an orthonormal set in L2.G/.

Proof. Let �1; �2 2 G� be two characters and consider � WD �1�2. Then

˛ WD .�1 j�2 / D
Z

G
�1�2 dm D

Z

G
�.g/ dm.g/ D

Z

G
�.gh/ dm.g/ D �.h/˛

for every h 2 G. Hence, either � D 1 (in which case �1 D �2) or ˛ D 0. ut
By the orthogonality of the characters we obtain the following.

Proposition 14.7. Let G be a compact Abelian group and let X � G� be a subset
separating the points of G. Then the subgroup hXi generated by X is equal to G�.
Moreover, linhXi is dense in the Banach space C.G/.

Proof. Consider A D linhXi which is a conjugation invariant subalgebra of C.G/
separating the points of G. So by the Stone–Weierstraß Theorem 4.4 it is dense in
C.G/. If there is � 2 G�nhXi, take f 2 A with k��f k1 < 1. Then, by Proposition
14.6, � is orthogonal to A and we obtain the following contradiction

1 > kf � �k2L2 D kf k2L2 � .f j�/ � .� j f /C k�k2L2 D 1C kf k2L2 � 1: ut

A trigonometric polynomial is a linear combination of characters of a compact
Abelian group.

Corollary 14.8. For a compact Abelian group G we have the following:

a) The set lin.G�/ of trigonometric polynomials is dense in C.G/.

b) The dual group G� forms an orthonormal basis of L2.G/.

Proof. a) follows from Proposition 14.7 with X D G� since G� separates the points
of G by Theorem 14.4. A fortiori, lin.G�/ is dense in L2.G/, and hence b) follows
from Proposition 14.6. ut
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As a consequence we obtain the following connection between spectral proper-
ties of the Koopman operator of a group rotation on an Abelian group G and the
dual group of G, cf. Example 4.22.

Proposition 14.9. Let G be a compact Abelian group with Haar measure m, let
a 2 G and consider the measure-preserving rotation system .G;mI a/with Koopman
operator La on L2.G/. Then

Laf D
X

�2G�

�.a/ .f j�/ �: (14.1)

In particular, � 2 G� is an eigenvector to the eigenvalue �.a/ of La, and the point
spectrum of La is

¢p.La/ D
˚
�.a/ W � 2 G��:

Proof. By Corollary 14.8 we can write f D P
�2G�

.f j�/ �, then apply La to
obtain

X

�2G�

� .f j�/ � D �f D Laf D
X

�2G�

�.a/ .f j�/ �:

This proves the first statement. If � 2 G�, then La� D �.a/�, hence �.a/ 2 ¢p.La/.
For the final statement suppose that � 2 ¢p.La/ and f 2 L2.G/ is such that Laf D
�f . By the already proven equality (14.1) we obtain .� � �.a// .f j�/ D 0 for all
� 2 G�. If f 6D 0, then at least one .f j�/ 6D 0, thus �.a/ D �. ut

Topology on the Character Group

Let G be a locally compact Abelian group. In this section we describe a topology
turning G� into a locally compact group as well.

Consider the product space T
G of all functions from G to T and endow it with

the product topology (Appendix A.5). Then by Tychonoff’s Theorem A.5, this is a
compact space. It is an easy exercise to show that it is actually a compact group with
respect to the pointwise operations. The subspace topology on G� � T

G, called the
pointwise topology, makes G� a topological group. However, only in exceptional
cases this topology is (locally) compact.

It turns out that a better choice is the topology of uniform convergence on compact
sets, called the compact-open topology. This also turns G� into a topological group,
and unless otherwise specified, we always take this topology on G�.

Examples 14.10. 1) If the group G is compact, the compact-open topology is
the same as the topology inherited from the norm topology on C.G/.
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2) If the group G is discrete, then the compact-open topology is just the
pointwise topology.

One has the following nice duality.

Proposition 14.11. Let G be a locally compact Abelian group. If G is compact,
then G� is discrete; and if G is discrete, then G� is compact.

Proof. Suppose that G is compact. Take � 2 G�, then �.G/ � T is a compact
subgroup of T. Therefore, if � satisfies

k1 � �k1 D sup
g2G
j1 � �.g/j < dist.1; e2 i=3/ D p3;

then we must have �.G/ D f1g, and hence � D 1. Consequently, f1g is an open
neighborhood of 1, and G� is discrete.

Suppose that G is discrete. Then by Example 14.10.2 the dual group G� carries
the pointwise topology. But it is clear that a pointwise limit of homomorphisms is
again a homomorphism. This means that G� is closed in the compact product space
T

G, hence compact. ut
It is actually true that G�, endowed with the compact-open topology, is a locally
compact Abelian group whenever G is a locally compact Abelian group, see Hewitt
and Ross (1979, §23).

The next is an auxiliary result, whose proof is left as Exercise 6. Note that
an algebraic isomorphism ˚ W G ! H between topological groups G; H is a
topological isomorphism if ˚ and ˚�1 are continuous.

Proposition 14.12. Let G and H be locally compact Abelian groups. Then the
product group G � H with the product topology is a locally compact topological
group. For every � 2 G� and  2 H� we have � ˝  2 .G � H/�, where
.�˝  /.x; y/ WD �.x/ .y/. Moreover, the mapping

� W G� �H� ! .G � H/�; .�;  / 7! �˝  

is a topological isomorphism.

14.3 The Pontryagin Duality Theorem

For a locally compact Abelian group G consider its dual G� and the compact
group T

G�

. Define the mapping

˚ W G! T
G�

; ˚.g/� D �.g/: (14.2)
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It is easy to see that ˚ is a continuous homomorphism, and by Theorem 14.4 it is
injective. By Exercise 9, ˚.g/ is actually a character of the dual group G� for any
g 2 G.

Lemma 14.13. The mapping

˚ W G! G�� WD .G�/�

is continuous.

We prove this lemma for discrete or compact groups only. The general case requires
some more efforts, see Hewitt and Ross (1979, §23).

Proof. If G is discrete, then ˚ is trivially a continuous mapping. If G is compact,
then G� is discrete. So the compact sets in G� are just the finite ones, and the
topology on G�� is the topology of pointwise convergence. So ˚ is continuous. ut

The following fundamental theorem of Pontryagin asserts that G is topologically
isomorphic to its bi-dual group G�� under the mapping ˚ . Again, we prove this
theorem only for discrete or compact groups; for the general case see Hewitt and
Ross (1979, Thm. 24.8), Folland (1995, (4.31)) or Hofmann and Morris (2013,
Thm. 7.63)

Theorem 14.14 (Pontryagin Duality Theorem). For a locally compact Abelian
group G the mapping ˚ W G! G�� defined in (14.2) is a topological isomorphism.

Proof. After the preceding discussion it remains to prove that ˚ is surjective and its
inverse in continuous.

First, suppose that G is discrete. Then, by Proposition 14.11, G� is compact and
the subgroup ran.˚/ � G�� clearly separates the points of G�. By Proposition 14.7
we have ran.˚/ D G��. Since both G and G�� are discrete, the mapping ˚ is a
homeomorphism.

Let now G be compact. Then G� is discrete and G�� is compact by Proposi-
tion 14.11. Since ˚ is continuous and injective, ran.˚/ is a compact, hence closed
subgroup of G��. If ran.˚/ ¤ G��, then by Corollary 14.5 there is a character

 ¤ 1 of G�� with 
 jran.˚/ D 1. Now, since G� is discrete, by the first part of the
proof we see that there is � 2 G� with 
.'/ D '.�/ for all ' 2 G��. In particular,
for g 2 G and ' D ˚.g/ we have �.g/ D ˚.g/� D 
.˚.g// D 1, a contradiction.
Since G is compact and ˚ continuous onto G��, it is actually a homeomorphism
(see Appendix A.7). ut
An important message of Pontryagin’s theorem is that the dual group determines the
group itself. This is stated as follows.

Corollary 14.15. Two locally compact Abelian groups are topologically isomor-
phic if and only if their duals are topologically isomorphic.

Examples 14.16. 1) For n 2 Z define

�n W T! T; �n.z/ WD zn .z 2 T/:
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Clearly, each �n is a character of T, and .n 7! �n/ is a (continuous) homo-
morphism of Z into T

�. Since �1 separates the points of T, Proposition 14.7
tells that this homomorphism is surjective, i.e.,

T
� D ˚�n W n 2 Z

� ' Z:

2) By inductive application of Proposition 14.12 and by part 1) we obtain

.Td/� D ˚.z 7! zk1
1 zk2

2 � � � zkd
d / W ki 2 Z; i D 1; : : : ; d� ' Z

d:

3) The dual group Z
� is topologically isomorphic to T. This follows from part

1) and Pontryagin’s Theorem 14.14.

4) The mapping � W R ! R
�, �.˛/ D .t 7! e2 i˛t/ is a topological

isomorphism. We leave the proof as Exercise 5.

Let us return to the mapping ˚ from G into T
G�

defined in (14.2). Since this latter
space is compact, the closure bG of ran.˚/ in T

G�

is compact. Then bG is a compact
group (see Exercise 2.b and G is densely and continuously embedded in bG by ˚ .
The compact group bG is called the Bohr compactification of G.

Proposition 14.17. Let G be a locally compact Abelian group and bG its Bohr
compactification. Then the following assertions hold:

a) If G is compact, then

bG D .G�/� ' G:

b) The dual group of bG is topologically isomorphic to the dual group of G, but
endowed with the discrete topology, i.e.,

.bG/� ' .G�/d:

c) The Bohr compactification bG is obtained by taking the dual of G, endowing
it with the discrete topology and taking the dual again, i.e.,

bG ' .G�/�d :

Proof. a) Since ˚ is continuous, ˚.G/ is compact, and hence closed in T
G�

. So
bG D ˚.G/ D .G�/�.

b) For � 2 G� the projection �� W TG� ! T, ��.
/ D 
.�/ is a character of TG�

and hence of bG by restriction. We claim that the mapping

.G�/d ! .bG/�; � 7! ��

is a (topological) isomorphism. Since both spaces carry the discrete topology, we
have to show that it is an algebraic isomorphism. Now, if �; �0 2 G� and g 2 G,
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then

.����0/.˚.g// D ��.˚.g// � ��0.˚.g// D ˚.g/� � ˚.g/�0 D �.g/ � �0.g/

D .��0/.g/ D ˚.g/.��0/ D ���0 .˚.g//:

Hence, ����0 D ���0 on ˚.G/, and therefore on bG by continuity. If �� D 1, then

1 D ��.˚.g// D � � � D �.g/ for all g 2 G;

whence � D 1. Finally, note that X WD f�� W � 2 G�g is a subgroup of .bG/�
separating the points of bG (trivially). Hence, by Proposition 14.7 it must be all of
.bG/�.

c) follows from b) and Pontryagin’s Theorem 14.14. ut
We are now in the position to give the hitherto postponed proof of Kronecker’s

theorem (Theorem 2.39) Actually we present two proofs: One based on the Bohr
compactification, and in Section 14.4 below another one exploiting the fact that the
characters form an orthonormal basis.

Theorem 14.18 (Kronecker). For a D .a1; : : : ; ad/ 2 T
d the rotation system

.TdI a/ is topologically transitive (= minimal) if and only if a1; a2; : : : ; ad are
linearly independent in the Z-module T, i.e.,

k1; k2; : : : ; kd 2 Z; ak1
1 ak2

2 � � � akd
n D 1 H) k1 D k2 D � � � D kd D 0:

Proof. If ak1
1 ak2

2 � � � akd
n D 1 for 0 ¤ .k1; k2; : : : ; kd/ 2 Z

d , then the set

A WD ˚x 2 T
d W xk1

1 xk2
2 � � � xkd

d D 1
�

is nonempty, closed, and invariant under the rotation by a. If ki ¤ 0, there are
exactly ki points in A of the form .1; : : : ; 1; xi; 1; : : : ; 1/, hence A ¤ T

d. Hence, the
topological system .TdI a/ is not minimal.

For the converse implication suppose that a1; a2; : : : ; ad are linearly independent
in the Z-module T, and recall from Example 14.16 that Z� and T are topologically
isomorphic, so we may identify them.

Let b WD .b1; : : : ; bd/ 2 T
d, and consider G D ha1; a2; : : : ; adi. Since

fa1; : : : ; adg is linearly independent in the Z-module (= Abelian group) T, there
exists a Z-linear mapping (= group homomorphism)

 W G! T with  .ai/ D bi for i D 1; : : : ; d:

By Proposition 14.27 there is a group homomorphism � W T! T extending . Ob-
viously � 2 .Td/

�, which is topologically isomorphic to bZ by Proposition 14.17.
Now take " > 0. By the definition of bZ and its topology, we find k 2 Z such that
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jbi � ak
i j D

ˇ
ˇ�.ai/ �˚.k/.ai/j < "

for i D 1; : : : ; d (recall that ˚.k/.z/ D zk for z 2 T ' Z
�). Therefore orb.1/ D

f.ak
1; a

k
2; : : : ; a

k
d/ W k 2 Zg is dense in T

d. ut

14.4 Monothetic Groups and Ergodic Rotations

We saw in Theorem 10.13 that for a compact group G, the Haar measure m and
a 2 G the corresponding rotation system .GI a/ is minimal if and only if it is forward
transitive, and this happens precisely when .G;mI a/ is ergodic. All these properties
are equivalent to the fact that the cyclic subgroup hai WD fan W n 2 Zg is dense in G.
Topological groups having this latter property deserve a name.

A topological group G is called monothetic if there is an element a 2 G such that
the cyclic subgroup hai is dense in G. In this case a is called a generating element
of G. By Exercise 2, monothetic groups are necessarily Abelian.

Examples 14.19. 1) Evidently, discrete monothetic groups are cyclic.

2) The torus T is a compact monothetic group: Each element a 2 T, not a root
of unity, is a generating element by Kronecker’s theorem, Example 2.37.

3) The group of dyadic integers A2 is a compact monothetic group with
generating element 1, see Example 2.10 and Exercise 3.10.

The next proposition yields some information about locally compact monothetic
groups.

Proposition 14.20 (Weil’s Lemma). Let G be a locally compact monothetic group
with generating element a 2 G. Then G is either topologically isomorphic to Z or
compact, and the latter happens if and only if already fan W n 2 Ng is dense in G.

Proof. We define A WD fan W n � 1g and suppose that U \ A D ; for some
nonempty open subset U � G. Since hai is dense, we can find k � 0 such that
a�k 2 U, and then pick a symmetric open neighborhood of 1 with V � akU. It
follows that V \ akA D ;, and hence by symmetry V \ fan W jnj � k C 1g D ;.
By choosing V even smaller we can achieve that V \ hai D f1g. Since hai is dense
in G, it follows that V n f1g D ;, i.e., f1g D V is open. Consequently, G is discrete
and hence G D hai. Since A ¤ G, we must have G Š Z.

Alternatively, we now suppose that U \ A ¤ ; for every nonempty open subset
U � G, i.e., A is dense in G. Let U be a fixed symmetric open neighborhood of
1 2 G such that U is compact. Since U � G � AU and by compactness, there is
m 2 N such that

U �
m[

nD1
anU �

m[

nD1
anU DW K:
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Now fix g 2 G. Since g�1U \ A ¤ ;, we are allowed to define

ng WD min
˚
n � 1 W an 2 g�1U

�
:

Then ang 2 g�1U � g�1U and hence ang 2 g�1ajU for some 1 � j � m. It follows
that ang�j 2 g�1U, and by definition of ng we conclude that ng � j. Hence g 2
aj�ng U � K [U since 0 � j � ng < m. Thus, G D K [U is compact. ut

The next result characterizes the monothetic groups among all compact groups.
The equivalence of the statements (i), (ii), and (v) below was already proved in
Theorem 10.13 along with a longer list of equivalences. We add statement (iv)
below to that list and give an alternative proof based on Proposition 14.9, cf. also
Proposition 7.16.

Proposition 14.21. For a compact group G with Haar measure m and an element
a 2 G the following statements are equivalent:

(i) The topological system .GI a/ is minimal.

(ii) The set fan W n 2 Ng is dense in G.

(iii) The group G is monothetic with generating element a.

(iv) The group G is Abelian and the element a separates G�.

(v) The measure-preserving system .G;mI a/ is ergodic.

Proof. The implications (i)) (ii)) (iii) are trivial, while (iii)) (ii) follows from
Weil’s Lemma 14.20. Implication (ii)) (i) is proved in Theorem 3.4.

Suppose that (iii) holds. Then G is Abelian, and by continuity, two characters are
equal if they coincide on a dense subset. Hence, (iv) follows. By Corollary 14.5 if a
separates G�, then hai � G must be dense. So (iv) implies (iii).

Suppose that (iv) holds, i.e., for each � 2 G�, � ¤ 1 one has �.a/ ¤ 1. Let
f 2 fix.La/ � L2.G/. Then by (14.1) f ? � for each � ¤ 1. Hence, dim fix.La/ D
1, so (v) follows by virtue of Proposition 7.15. Conversely, suppose (v), i.e.,
dim fix.La/ D 1. Since � 2 G� is an eigenvector of La for the eigenvalue �.a/,
the equality �.a/ D 1, i.e., � 2 fix.La/ can only hold for � D 1, and this is (iv). ut
As a consequence we obtain the following short proof of Kronecker’s Theorem
14.18.

Second Proof of Kronecker’s Theorem. By Example 14.16.2 each character of Td

has the form z 7! zk1 � � � zkd . Hence, the Z-independence of a1; : : : ; ad is precisely
assertion (iv) in Proposition 14.21 for G D T

d. ut
We now characterize the duals of compact monothetic groups.

Proposition 14.22. A compact Abelian group G is monothetic if and only if its
dual group G� is algebraically isomorphic to a subgroup of T. In this case, the
isomorphism is given by
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� 7! �.a/ 2 G�.a/ WD ˚�.a/ W � 2 G�� � T;

where a 2 G is any generating element of G.

Proof. Suppose that G is monothetic with generating element a. Then the set G�.a/
is a subgroup of T and the evaluation mapping G� 3 � 7! �.a/ is a surjective group
homomorphism. Furthermore, it is even injective by (iii) of Proposition 14.21.

For the converse, suppose that 
 W G� ! T is an injective homomorphism.
Since the topology of G� is discrete, 
 is a character of G�. By Pontryagin’s
Theorem 14.14 there is a 2 G with 
.�/ D �.a/ for all � 2 G�.

Consider the closed subgroup H WD clhai. If H ¤ G, then by Corollary 14.5
there exists a character � ¤ 1 of G such that � 
 1 on H 	 hai. But then 
 is not
injective, a contradiction. This yields H D G. ut

This proposition helps to describe all compact monothetic groups or, which is
the same, all minimal/ergodic group rotations.

Example 14.23. Let H be an arbitrary subgroup of Td. By Proposition 14.22, the
compact group G WD H� is monothetic with some generating element a 2 G, hence
the group rotation .GI a/ is minimal. By Proposition 14.22 all compact monothetic
groups arise this way.

We close this section by showing that in the class of minimal/ergodic group
rotations one can decide whether two such systems are isomorphic only by looking
at the eigenvalues of the Koopman operator. In other words the point spectrum of
the Koopman operator is a complete isomorphism invariant for these two classes.
We first determine the point spectrum of the Koopman operator.

Proposition 14.24. Let G be a compact Abelian group with Haar measure m, and
La be the Koopman operator of the rotation by some element a 2 G, considered
either as an operator on C.G/ or on Lp.G/, p 2 Œ1;1/. Then

¢p.La/ D G�.a/ D ˚�.a/ W � 2 G��:

Proof. If La is regarded on L2.G/, the statement was proved in Proposition 14.9.
Since characters are continuous and are eigenvectors of La, the statement follows
also for C.G/. So the inclusion G�.a/ � ¢p.La/ is evident for each of the spaces
Lp. Suppose � 62 G�.a/ is an eigenvalue with an Lp-eigenvector f ¤ 0. Since
the characters belong to C.G/ � Lq.G/, q the conjugate exponent, we obtain 0 D
hLaf � �f; �i D .�.a/ � �/ hf; �i. The assumptions imply hf; �i D 0 for all � 2
G� which in turn yields f D 0, a contradiction (use that lin.G�/ is dense in Lp). ut

The next result characterizes isomorphy of minimal/ergodic group rotations.

Proposition 14.25. Let G; H be compact monothetic groups with Haar measures
mG and mH, respectively, and with generating elements a 2 G, b 2 H. Then the
following statements are equivalent:
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(i) The topological systems .GI a/ and .HI b/ are isomorphic.

(ii) The measure-preserving systems .G;mGI a/ and .H;mHI b/ are isomorphic.

(iii) There is a topological group isomorphism ˚ W G! H with ˚.a/ D b.

(iv) G�.a/ D H�.b/.

Proof. (iii)) (i), (ii): If ˚ is a topological group isomorphism with ˚.a/ D b, then
˚ is also an isomorphism of the dynamical systems.

(i) or (ii)) (iv): If the dynamical systems are isomorphic, the Koopman operators
on the corresponding spaces are similar. Hence, they have the same point spectrum.
So (iv) follows from Proposition 14.24.

(iv)) (iii): If G�.a/ D H�.b/, then by Proposition 14.22 the discrete groups G�
and H� are isomorphic. Recall that this isomorphism is given by

G� 3 � 7! � 2 H�; where �; � satisfy �.a/ D �.b/.

By Pontryagin’s Theorem 14.14, this implies that G and H are topologically isomor-
phic under the mapping ˚ W G ! H, where ˚.g/ 2 H is the unique element with
�.˚.g// D �.g/ if �.a/ D �.b/, � 2 G�, � 2 H�. Then˚.a/ D b, and the assertion
follows. ut

Rotations on Tori

The d-tori G WD T
d are monothetic groups for each d 2 N. Indeed, Kronecker’s

Theorem 14.18 describes precisely their generating elements. However, we can even
form “infinite dimensional” tori: Let I be a nonempty set, then the product G WD T

I

with the product topology and the pointwise operations is a compact group. The next
theorem describes when this group is monothetic. The proof relies on the existence
of sufficiently many rationally independent elements in T (after identifying T with
the additive group Œ0; 1/ mod 1).

Theorem 14.26. Consider the compact group G WD T
I , I a nonempty set. Then G

is monothetic if and only if card.I/ � card.T/.

Proof. If G is monothetic, then by Proposition 14.22 we have that card.G�/ �
card.T/. Since the projections �i W TI ! T, i 2 I, are all different characters of G,
we obtain card.I/ � card.G�/ � card.T/.

Now suppose that card.I/ � card.T/. Take a Hamel basis B of R over Q such
that 1 2 B. Then card.B/ D card.T/, so there is an injective function f W I !
B n f1g. Define a WD .ai/i2I WD .e2 if .i//i2I 2 T

I . If U � T
I is a nonempty open

cylinder, then by Kronecker’s Theorem 14.18 we obtain an 2 U for some n 2 Z. ut
The above product construction is very special and makes heavy use of the

structure of T. In fact, products of monothetic groups in general may not be
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monothetic (see Exercise 10). Notice also that the monothetic tori T
I are all

connected (as products of connected spaces).

Supplement: Characters of Discrete Abelian Groups

In this supplement we shall examine the character group of discrete Abelian groups,
which is, of course, pure algebra.

Proposition 14.27. Let G be an Abelian group, H � G a subgroup, and let
 W H ! T be a homomorphism. Then there is a homomorphism � W G ! T

extending  .

Proof. Consider the following collection of pairs

M WD ˚.K; '/ W H � K subgroup of G, ' W K ! T homomorphism, 'jH D  
�
:

This set is partially ordered by the relation .K1; '1/ � .K2; '2/ if and only if
K1 � K2 and '2jK1 D '1. By Zorn’s lemma, as the chain condition is clearly
satisfied, there is a maximal element .K; '/ 2M . We prove that K D G.

If x 2 GnK, then we construct an extension of ' to K1 WD hK[fxgi contradicting
maximality. We have K1 D fxnh W n 2 Z; h 2 Kg. If no power xn for n � 2 belongs
to K, then the mapping

'1 W K1 ! T; '1.x
ih/ WD '.h/; .i 2 Z; h 2 K/

is a well-defined group homomorphism. If xn 2 K for some n � 2, then take the
smallest such n. Let ˛ 2 T be some nth root of '.xn/ and set '1.xih/ WD ˛i'.h/
for i 2 Z, h 2 K. This mapping is well-defined: If xih D xjh0 and i > j, then
xi�jh D h0 2 K and xi�j 2 K, so '.h0/ D '.xi�jh/ D '.xi�j/'.h/. By assumption, n
divides i � j, so '.xi�jh/ D ˛i�j'.h/. Of course, '1 W K1 ! T is a homomorphism
extending ', so .K1; '1/ 2M with .K1; '1/ > .K; '/, a contradiction. ut

As a corollary we obtain the version of Theorem 14.4 for the discrete case.

Proposition 14.28. If G is a (discrete) Abelian group, then the characters separate
the points of G.

Proof. Let x 2 G, x ¤ 1. If there is n � 2 with xn D 1, then take 1 ¤ ˛ 2 T an
nth root of unity. If the order of x is infinite, then take any 1 ¤ ˛ 2 T. For k 2 Z set
 .xk/ D ˛k. Then  is a nontrivial character of hxi. By Proposition 14.27 we can
extend it to a character � on G that separates 1 and x. ut
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Exercises

1. Prove assertions b), c), and d) in Lemma 14.1. Prove also the following: If G and
H are topological groups, G is compact and f W G ! H is continuous, then f is
uniformly continuous in the sense that for any V open neighborhood of 1H there is
an open neighborhood U of 1G such that gh�1 2 U implies f .g/f .h/�1 2 V .

2. Show that if G is a topological group and H is a (normal) subgroup of G then H
is a (normal) subgroup as well.

3. Prove Corollary 14.5 for

a) G a compact or discrete Abelian group,

b) G a general locally compact Abelian group.

(Hint: Prove that the factor group G=H is a locally compact (in particular Hausdorff)
Abelian group and apply Theorem 14.4 to this group.)

4. Let G be a topological group and let H � G be an open topological subgroup.
Show that H is closed. Show that the connected component G0 of 1 2 G is a closed
normal subgroup.

5. Show that the dual group of R is as claimed in Section 14.2.

6 (Product Groups). Let .Gi/i2I be a family of locally compact groups.

a) Suppose that Gj is compact except for finitely many j 2 I. Prove that the
product group

∏
i2I

Gi

is a locally compact group with the coordinatewise operations and the
product topology. Prove also that this group is compact if and only if each
Gi, i 2 I is compact.

b) Suppose that Gj is discrete except for finitely many j 2 I. The restricted
direct product is defined by
a

i2I

Gi WD
n
.xi/i2I 2

∏
i2I

Gi W gj D 1Gj except for finitely many j 2 I
o
:

Prove that with coordinatewise operations and the subspace topology inher-
ited from

Q
i2I Gi the restricted direct product is a locally compact group.

Prove also that this group is discrete if and only if each Gi, i 2 I is discrete.

c) Suppose that Gi is Abelian for each i 2 I and compact except for finitely
many i 2 I. Prove that

�∏
i2I

Gi

�� D
a

i2I

G�
i :
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d) Suppose that Gi is Abelian for each i 2 I and discrete except for finitely
many i 2 I. Prove that

�a

i2I

Gi

�� D
∏
i2I

G�
i :

7 (Projective Limits). Let ..Gi/iI .�ij/i�j/ be a projective system of compact
groups over the directed index set I. That means, each Gi, i 2 I is a compact group
and each map �ij W Gj ! Gi (i; j 2 I, i � j) is a continuous homomorphism of
groups. Then the associated projective limit (Exercise 2.18)

G WD lim �
i

Gi D
˚
.xi/i2I W �ij.xj/ D xi whenever i � j

� �
∏
i2I

Gi

is a compact subgroup of
Q

i2I Gi (see Exercise 6). Show that each character � 2 G�
is of the form � D �j ı�j for some index j and some character �j 2 G�

j . (Hint: Take
a small neighborhood U of 1 in T and apply Exercise 3.19 to O WD ��1.U/ to
conclude that there must be j 2 I with ker.�j/ � ker.�/.)

8 (Dyadic Adding Machine). Let .A2I 1/ be the dyadic adding machine as in
Examples 2.10 and 10.14. This system is minimal (Exercise 3.10), i.e., A2 is
monothetic with generator 1. Show that the mapping

A
�
2 !

n
e2 i k

2m W m 2 N0; k 2 N

o
� T; � 7! �.1/;

is an isomorphism of discrete groups. (Hint: Exercise 7.)

9. For the mapping ˚ W G! T
G�

defined in (14.2) prove that ˚ maps G continu-
ously into G��.

10. Show that a monothetic group is commutative. Describe all finite monothetic
groups.

11. Prove that for a closed subgroup G of T either G D T or G is finite cyclic.

12. Determine all locally compact monothetic groups whose dual is also mono-
thetic.



Chapter 15
Group Actions and Representations

My work has always tried to unite the true with the beautiful and when I had to choose one
or the other, I usually chose the beautiful.

Hermann Weyl1

To facilitate the study of abstract objects, a central theme in mathematics is
their representations as more concrete ones while preserving their fundamental
properties. This procedure is evidently useful if the representing objects have
additional special structure, which then allows to carry out concrete calculations in
specific situations, or to obtain complete descriptions of the abstract objects under
study. One of the greatest achievements of mathematics, the classification of finite
simple groups, relies heavily on such representation techniques. But also in this
book we have already encountered instances of this phenomenon: In Chapter 4, we
studied one-dimensional representations of C�-algebras, i.e., multiplicative linear
functionals, and thereby arrived at the Gelfand–Naimark theorem; in Chapter 14 we
studied characters, i.e., one-dimensional representations of locally compact Abelian
groups (where we left a gap to be filled in this chapter); also the proof of Ellis’
theorem in Appendix G uses representation theory of compact semigroups. We
devote this chapter to the fundamentals of representation theory of compact groups.
As a by-product we also take a look at actions of compact groups both in the
topological and in the measure-preserving settings. All these will be crucial in
Chapters 16 and 17 when we return to operators, particularly to Koopman operators
of dynamical systems, and apply the developed representation theory to obtain a
basic structural description of the dynamical system.

1As quoted by Freeman J. Dyson in the obituary in Nature 177, 457–458 (10 March 1956),
doi:10.1038/177457a0.
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15.1 Continuous Representations on Banach Spaces

A representation of a group 	 with unit element 1 is a pair .�;E/, where E is a
Banach space and � W 	 ! L .E/ is a mapping satisfying

1. �1 D I, the identity operator,

2. �xy D �x�y .x; y 2 	 /.
If 	 carries a topology, the representation .�;E/ is called weakly continuous if the
mapping

	 ! C; x 7! ˝
�xu; u0˛

is continuous for all u 2 E; u0 2 E0. In other words, � W 	 ! Lw.E/ is continuous.
In contrast, � is called (strongly) continuous if � W 	 ! Ls.E/ is continuous, i.e.,
each mapping

	 ! E; x 7! �xu .u 2 E/

is continuous for the norm topology on E. The representation .�;E/ is faithful if it
is injective, i.e., if its kernel

ker.�/ WD ˚x 2 	 W �x D I
�

is the trivial subgroup f1g.
In the following, G is always a compact group with Haar measure m and neutral

element 1. We abbreviate dm.x/ D dx whenever the Haar measure is understood.

Example 15.1 (Regular Representations). Recall the definition of the operators
Lx and Rx, x 2 G, from (10.3) and (10.4). For f 2 L1.G/ and x 2 G we define

.�xf /.y/ WD f .x�1y/ .y 2 G/;

i.e., �x D Lx�1 . Then

� W G! L .C.G//; x 7! �x

R W G! L .C.G//; x 7! Rx

are representation of the compact group G on C.G/, called the left and right regular
representation. By Proposition 10.11, these representations are continuous.

Since the Haar measure is left invariant, the left regular representation extends to
a representation

� W G! L .Lp.G//; x 7! �x
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of G on Lp.G/, p 2 Œ1;1�. This representation is isometric, i.e.,

k�xf kp D kf kp .x 2 G; f 2 Lp.G//;

hence in particular supx2G k�xk D 1. By Exercise 1, .�;Lp.G// is also faithful.
Moreover, if p <1, then by denseness of C.G/ in Lp.G/ it follows from Propo-
sition 10.11 that .�;Lp.G// is strongly continuous. (The same is true for the right
regular representation, as the Haar measure is also right invariant.)

Clearly, every strongly continuous representation of G is weakly continuous.
We shall prove below that, actually, weak and strong continuity are equivalent
properties.

Let � W G! L .E/ be a weakly continuous representation of the compact group
G on a Banach space E. It follows from the uniform boundedness principle that

sup
x2G
k�xk <1: (15.1)

For f 2 L1.G/ we define the integral

�f WD
Z

G
f .x/�x dx (15.2)

as an operator E! E00 by

˝
�f u; u0˛ WD

Z

G
f .x/

˝
�xu; u0˛ dx .u 2 E; u0 2 E0/:

A simple estimate yields

���f
��
L .EIE00/

�
�

sup
x2G

���x

��
�
� ��f ��

1
: (15.3)

Our first goal is to show that actually �f u 2 E for each u 2 E, where E is canonically
embedded in E00 (see Appendix C.4).

Lemma 15.2. In the setting described above, one has �f u 2 E for all f 2 L1.G/
and for all u 2 E.

Proof. It suffices to consider a real-valued function f . Furthermore, by (15.3) and
by density, we may suppose that f 2 L1.G/ and, after adding a multiple of 1 and
multiplying by a scalar, even that f � 0 and

R
G f D 1. By Kreı̆n’s Theorem C.11

the set

K WD conv
˚
�xu W x 2 G

� � E
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is weakly compact. Let u00 2 E00 n E. Then, by the Hahn–Banach theorem, E0
separates u00 from K (see Theorem C.13). This means that there is u0 2 E0 and
c 2 R such that

Re
˝
�xu; u0˛ � c < Re

˝
u00; u0˛ .x 2 G/:

Multiplying by f .x/ and integrating yields

Re
˝
�f u; u0˛ � c < Re

˝
u00; u0˛ ;

which shows that �f u 6D u00, whence �f u 2 E follows. ut
Remark 15.3. We refer to Rudin (1991, Thm. 3.27) for more information on weak
integration. Certainly, Lemma 15.2 is trivial if E is reflexive. In particular, that is
the case if E D H is a Hilbert space. Moreover, the application of Kreı̌n’s theorem
can be avoided also if E contains a densely embedded Hilbert space H such that �
restricts to a weakly continuous representation on H.

By Lemma 15.2 we obtain �f 2 L .E/ for every f 2 L1.G/, and by (15.3)

�
��f

�
� �

�
sup
x2G

�
��x

�
�
�
� ��f ��

1
; (15.4)

showing that � W L1.G/! L .E/ is a bounded linear mapping.

Example 15.4 (Mean Ergodic Projection). If we specialize f D 1 in (15.2), we
obtain

PG WD �1 D
Z

G
�x dx:

By the invariance of the Haar measure, �yPG D PG for every y 2 G, whence
P2G D PG, and PG is a projection onto the fixed space

fix.�G/ WD
˚
u 2 E W �xu D u for all x 2 G

�
;

called the mean ergodic projection. Note that by virtue of the Hahn–Banach
separation theorem (Theorem C.13)

PGu D
Z

G
�xu dx 2 conv

˚
�xu W x 2 G

�

for each u 2 E. Hence, the operator semigroup f�x W x 2 Gg is mean ergodic with
projection PG in the sense of Definition 8.31.
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The next lemma shows that the set of vectors of the form �f u is large.

Lemma 15.5. For each u 2 E one has u 2 clf�f u W f 2 C.G/g. In particular,

E D lin
˚
�f u W f 2 C.G/; u 2 E

�
:

Proof. Let u0 2 E0 such that for all f 2 C.G/ one has
˝
�f u; u0˛ D 0. This means

that
Z

G
f .x/

˝
�xu; u0˛ dx D 0 for all f 2 C.G/;

hence h�xu; u0i D 0 m-almost everywhere. But the Haar measure m is strictly
positive, thus h�xu; u0i D 0 for all x 2 G and u 2 E. Letting x D 1 yields hu; u0i D 0,
and the claim follows by a standard application of the Hahn–Banach theorem. ut

We can now prove the announced equivalence of weak and strong continuity.

Theorem 15.6. For a representation � W G ! L .E/ of a compact group G on a
Banach space E the following assertions are equivalent:

(i) � is weakly continuous.

(ii) � is strongly continuous.

(iii) The mapping

G � E! E; .x; u/ 7! �xu

is continuous.

In this case, the weak and strong operator topologies coincide on the set �G WD
f�x W x 2 Gg.
Proof. (i)) (ii): We define

F WD ˚u 2 E W the mapping G! E; x 7! �xu is continuous
�
:

Then F is a closed subspace of E by the uniform boundedness of the operators �x

for x 2 G. If f 2 L1.G/ we have

˝
�x�f u; u0˛ D ˝�f u; � 0

xu0˛ D
Z

G
f .y/

˝
�yu; � 0

xu0˛ dy D
Z

G
f .y/

˝
�xyu; u0˛ dy

D
Z

G
f .x�1y/

˝
�yu; u0˛ dy:

This shows that �x�f u D ��xf u, where

.�xf /.y/ D f .x�1y/ .x; y 2 G; f 2 L1.G//;
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see Example 15.1. But the mappings g 7! �gu (see (15.4)) and

G! L1.G/; x 7! �xf

are continuous, hence ran.�f / � F. By Lemma 15.5 it follows that E D F.

(ii)) (iii): By the uniform boundedness principle M WD supx2G k�xk < 1. Let
.x˛/˛ � G and .u˛/˛ � E be nets with x˛ ! x 2 G and u˛ ! u 2 E. Then

k�x˛u˛ � �xuk � M ku˛ � uk C k�x˛u � �xuk ! 0:

The implication (iii)) (i) is trivial.

Suppose that (ii) holds. Then K WD �G is compact in the strong operator topology.
Since the weak operator topology is still Hausdorff, the two topologies must
coincide on K (Proposition A.4). ut

Convolution

Let us consider the integral (15.2) for the left regular representation of G on L1.G/.
We obtain

�f WD
Z

G
f .x/�x dx .f 2 L1.G//;

where �xg.y/ D g.x�1y/, see Example 15.1.
Applying this operator to g 2 L1.G/ yields the convolution

f � g WD �f .g/ D
Z

G
f .x/�xg dx: (15.5)

If g 2 C.G/, then the map x 7! �xg is even continuous from G into C.G/, thus
we can view � as a continuous representation of G on C.G/. It follows that the
vector-valued integral

Z

G
f .x/.�xg/ dx

belongs to C.G/, see also Exercise 5. It also follows that we can evaluate pointwise
and obtain

.f � g/.y/ D
Z

G
f .x/.�xg/.y/ dx D

Z

G
f .x/g.x�1y/ dx

for y 2 G. For the following lemma we employ the notation

f �.y/ WD f .y�1/ .f 2 L1.G/; y 2 G/: (15.6)
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Lemma 15.7. For f; g; h 2 L1.G/ and x 2 G we have

a) kf � gkp � kf k1 kgkp for 1 � p � 1 (Young’s Inequality).

b) .f � g/� D g� � f �.

c) �x.f � g/ D .�xf / � g.

d) .h � f / � g D h � .f � g/.

Furthermore, if f; g 2 L2.G/, then f � g 2 C.G/ and

kf � gk1 � kf k2 kgk2 ; .f � f �/.1/ D kf k22 :

Proof. a) follows, for 1 � p < 1, from (15.4) and the fact that the left regular
representation is isometric. For p D1 one computes

hf � g; hi D
Z

G
f .x/ h�xg; hi dx D

Z

G
f .x/ hg; �x�1hi dx:

This yields jhf � g; hij � kf k1 kgk1 khk1 and hence kf � gk1 � kf k1 kgk1.

b) For f; g 2 C.G/ the proof is a simple computation; for general f; g 2 L1.G/ use
an approximation argument and a).

c) This just means �x�f D ��xf , which has been shown (more generally) in the proof
of Theorem 15.6.

d) Take u 2 L1.G/. Then by part c)

˝
�h�f g; u

˛ D
Z

G
h.x/

˝
�x�f g; u

˛
dx D

Z

G
h.x/

˝
��xf g; u

˛
dx D ˝��hf g; u

˛

since v 7! h�vg; ui is a continuous functional on L1.G/.

For the remaining part we recall that f � g 2 C.G/ if f; g are both continuous.
The estimate kf � gk1 � kf k2 kgk2 is an easy consequence of the Cauchy–
Schwarz inequality and the invariance of the Haar measure. Moreover, the identity
.f � f �/.1/ D kf k22 is trivial for a continuous function f . The case of general
f; g 2 L2.G/ then follows by approximation. ut

15.2 Unitary Representations

Let, as before, G be a compact topological group, and let H be a Hilbert space.
A representation � W G ! L .H/ is called unitary if it is strongly continuous and
if �x�1 D ��

x for each x 2 G. That is to say, each operator �x is a unitary operator
on H. A unitary representation .�;H/ is called finite-dimensional if dim H <1.

If .�;H�/ and .�;H�/ are two unitary representations of G, an operator
A W H� ! H� is called intertwining if A�x D �xA for all x 2 G. A closed subspace
F of H is called reducing if it is invariant under the action of G. Since �G � L .H/
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is invariant under taking adjoints, a closed subspace F is reducing if and only
its orthogonal complement F? is reducing, and this happens precisely when the
orthogonal projection P onto F is intertwining.

Every reducing subspace F gives rise to a subrepresentation by restriction:
�F

x WD �xjF . A unitary representation .�;H/ is called irreducible if f0g and H
are the only reducing subspaces. By virtue of an induction argument it is easily
seen that a finite-dimensional unitary representation decomposes orthogonally into
irreducible ones (however, not in a unique manner).

Coordinate Functions

After the choice of an orthonormal basis, a unitary representation on a finite-
dimensional Hilbert space H is the same as a group homomorphism

 W G! U.n/

into the matrix group of unitary n�n matrices. A continuous function f 2 C.K/
is called a coordinate function if there is a continuous unitary representation  W
G! U.n/ and some indices i; j with f D  ij. Equivalently, a coordinate function
is a function of the form f .x/ D .�xei jej /, where � W G ! L .H/ is a continuous
unitary representation and H is a finite-dimensional Hilbert space with orthonormal
basis .ej/j. If the representation is irreducible, f is called an irreducible coordinate
function. The aim of the present section is to prove the following central result.

Theorem 15.8. Let G be a compact group. Then the linear span of irreducible
coordinate functions is dense in C.G/.

The proof of this theorem is rather lengthy. First, we recall from the above
that any finite-dimensional unitary representation decomposes orthogonally into
irreducible representations. By picking an orthonormal basis subordinate to this
decomposition, we see that any coordinate function is a linear combination of
irreducible coordinate functions. So it suffices to prove that the linear span of
coordinate functions is dense in C.G/. The strategy is, of course, to employ the
Stone–Weierstraß Theorem 4.4. The following auxiliary result takes the first step.

Lemma 15.9. The product of two coordinate functions is again a coordinate
function. The pointwise conjugate of a coordinate function is a coordinate function.

Proof. Let � W G ! U.n/ and � W G ! U.m/ be two unitary representations of
the compact group G. Denote �x D .�ij.x//i;j and �x D .�kl.x//k;l. Define � W G!
C

nm�nm by

�x D .�˛ˇ.x//˛;ˇ; �˛ˇ.x/ WD �ij.x/�kl.x/ .˛ D .i; k/; ˇ D .j; l//I
and � W G! C

n�n by

�x WD .�ij.x//i; j:
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Then, by direct verification, � W G ! U.nm/ and � W G ! U.n/ are again unitary
representations of G (Exercise 4). ut
Remark 15.10. The constructions in the preceding proof can be formulated more
perspicuously in the language of abstract representation theory. Namely, if .�;H/
and .�;K/ are two unitary representations of G, then one can form the tensor
product representation .W;H ˝ K/ by Wx WD �x ˝ �x, and the contragradient
representation .�;H0/ on the dual space H0 of H by �x WD � 0

x�1 . The matrix
representations of these constructions lead to the formulation in the proof above.

It follows from Lemma 15.9 that the linear span of the coordinate functions
is a conjugation invariant subalgebra of C.G/. Since the constant function 1 is a
coordinate function (of the trivial representation �x WD I on C

1), it remains to show
that the coordinate functions separate the points of G.

Theorem 15.11. The finite-dimensional unitary representations (equivalently, the
set of coordinate functions) of a compact group G separate the points of G.

Our major tool for proving Theorem 15.11 is the following result.

Proposition 15.12. Let 0 6D f 2 L2.G/. Then there is a finite-dimensional unitary
representation .�;H/ of G such that �f 6D 0.

Proof. Let h WD f � f �. Then h� D h 2 C.G/ and h.1/ D kf k22 6D 0 by Lemma
15.7. Since h is continuous and the Haar measure is strictly positive, khk2 6D 0.

Define the operator A on L2.G/ by Au WD u � h. By Lemma 15.7, A is bounded
with kAk � khk1. Moreover, it is easy to see that A is self-adjoint (Exercise 6). We
note that

�f Af � D �f .f � � h/ D .f � .f � � h// D .f � f �/ � h D h � h:

Since h� D h, .h � h/.1/ D khk22 > 0, it follows that �f Af � 6D 0. In particular,
A 6D 0.

Next, from

.Au/.y/ D .u � h/.y/ D
Z

G
u.x/h.x�1y/ dx D

Z

G
k.y; x/u.x/ dx .y 2 G/

it follows that A is an integral operator with continuous integral kernel k.y; x/ WD
h.x�1y/. Therefore, A is compact on L2. (One can employ different reasonings here,
see Exercise 7.) By the Spectral Theorem D.26, A can be written as a convergent
sum

A D
X

�2�
�P�;
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where � � C n f0g is a finite or countable set, for each � 2 � the eigenspace
H� WD ker.�I � A/ satisfies 0 < dim H� < 1, and P� is the orthogonal projection
onto H�. (Note that, since A 6D 0, � 6D ;.)

Finally, A intertwines � with itself since by Lemma 15.7.c we have

�xAu D �x.u � h/ D .�xu/ � h D A�xu .u 2 L2.G//:

This implies that each eigenspace H� is invariant under �x, and hence gives rise to
the (finite-dimensional) subrepresentation ��x WD �xjH� : We claim that there is at
least one � 2 � with ��f 6D 0. Indeed, since �f Af � 6D 0 we must have

��f P�f
� 6D 0 for some �.

But on H� we have �f D ��f , and hence the claim is proved. Taking .�;H/ WD
.��;H�/ concludes the proof of the proposition. ut

Proof of Theorem 15.11. Let a; b 2 G with a 6D b. We have to devise a finite-
dimensional unitary representation .�;H/ of G with �a 6D �b. By passing to ab�1
we may suppose a 6D 1 and we aim for a representation with �a 6D I. We can take
a neighborhood U of 1 with aU \ U D ; and a continuous function 0 � u 2 C.G/
with u.1/ > 0 and supp.u/ � U. Hence, the function f WD u � �au is nonzero.
By Proposition 15.12 there is a finite-dimensional unitary representation .�;H/ of
G with �f 6D 0. This implies that

0 6D �f D �u��au D �u � ��au D �u � �a�u;

whence �a 6D I. ut
As mentioned above, this also concludes the proof of Theorem 15.8.

Application to Banach Space Representations

We shall now apply the theory of unitary representations to Banach space represen-
tations.

Let � W G ! L .E/ be any strongly continuous representation of G on some
Banach space E. A tuple .ej/

n
jD1 of vectors in E is called a (finite) unitary system

for .�;E/ if the vectors e1; : : : ; en are linearly independent, F WD linfe1; : : : ; eng is
�G-invariant and the corresponding matrix representation � W G! C

n�n defined by

�xei D
nX

jD1
�ij.x/ej .j D 1; : : : ; n/

is unitary, i.e., satisfies �.x/ 2 U.n/ for all x 2 G. A unitary system .ej/
n
jD1 is called

irreducible if F does not contain any nontrivial �G-invariant subspaces.
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Lemma 15.13. Let � W G! L .E/ be a continuous representation of the compact
group G on some Banach space E.

a) Let � W G ! U.n/ be a finite-dimensional unitary representation of G and
u 2 E. Then the finite-dimensional space linf��ij u W i; j D 1; : : : ; ng is
�G-invariant.

b) Let F � E be a finite-dimensional �G-invariant subspace. Then there is a
unitary system .ej/

n
jD1 for .�;E/ with F D linfe1; : : : ; eng.

Proof. a) We note first that

.�x�ij/.y/ D �ij.x
�1y/ D

nX

kD1
�ik.x

�1/�kj.y/ .x; y 2 G/:

Hence �x��ij u D ��x�ij u D
Pn

kD1 �ik.x�1/��kj u, and the invariance follows.

b) Take any inner product . � j �/F on F and define

.u j v / WD
Z

G
.�xu j�xv /F dx .u; v 2 F/:

Then . � j �/ is again an inner product on F since

.u j u/ D
Z

G
k�xuk2F dx D 0 H) kukF D k�1ukF D 0:

With respect to this new inner product, each �x acts isometrically due to the
invariance of the Haar measure. Hence, any basis e1; : : : ; en of F orthonormal with
respect to this inner product is a unitary system for .�;E/ spanning F. ut
We now arrive at the main result of this section.

Theorem 15.14. Let � W G ! L .E/ be a continuous representation of the
compact group G on some Banach space E. Then

E D cl
[˚

F W F is a �G-invariant subspace of E, dim F <1�

D lin
˚
ej W .ei/

n
iD1 (irreducible) unitary system; j D 1; : : : ; n; n 2 N

�
:

Proof. By Lemma 15.13 each �G-invariant finite-dimensional subspace F of E is
the span of a unitary system. Since one can decompose each unitary representation
orthogonally into irreducible subspaces, the second equality is clear. To prove the
first, note that by Theorem 15.8 the linear span of the coordinate functions of finite-
dimensional unitary representations of G form a dense set in C.G/. Since by (15.4)
the mapping L1.G/! L .E/, f 7! �f is bounded, we have
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�f u 2 lin
˚
��ij u W n 2 N; � unitary representation of G on C

n; i; j D 1; : : : ; n�

for every f 2 C.G/. Hence, by Lemma 15.13 we obtain

�f u 2 cl
[˚

F W F is a �G-invariant subspace of E, dim F <1�

for each f 2 C.G/ and u 2 E, and we conclude the proof by an appeal to
Lemma 15.5 above. ut
Remarks 15.15. 1) It follows from Theorem 15.14 that each infinite-dimen-

sional (continuous) representation of a compact group G has a nontrivial
finite-dimensional invariant subspace. In particular, each irreducible unitary
representation of G is finite-dimensional.

2) Two unitary representations .�;H/ and .�;K/ are called (unitarily) equiv-
alent if there is a unitary operator U W H ! K intertwining the representa-
tions. The Peter–Weyl theorem states that L2.G/ decomposes orthogonally

L2.G/ Š
M

˛

H˛ ˚ � � � ˚ H˛„ ƒ‚ …
dim H˛-times

into finite-dimensional subspaces H˛ such that 1) each H˛ reduces the
left regular representation, 2) the induced subrepresentation .�;H˛/ is
irreducible, 3) each irreducible representation of G is equivalent to precisely
one .�;H˛/. We refer to Deitmar and Echterhoff (2009, Ch. 7) or to Tao
(2014, Ch. 18) for further details.

Compact Abelian Groups

Let us consider the special situation when the compact group G is Abelian. We
start from a finite-dimensional irreducible unitary representation .�;H/ of G and
take x 2 G. Since dim H < 1, �x must have an eigenvalue �.x/ 2 T. Since G
is Abelian, �x intertwines � with itself, and hence ker.�.x/I � �x/ is a reducing
subspace. By irreducibility, it must be all of H and hence �x D �.x/I. But then
every one-dimensional subspace is reducing, whence dim H D 1 follows. We have
proved the following.

Proposition 15.16. A (finite-dimensional) unitary representation of a compact
Abelian group is irreducible if and only if it is one-dimensional.

Note that the unitary group of C
1 is U.1/ D T, and a one-dimensional

representation of G is the same as a continuous group homomorphism G ! T,
i.e., a character of G. The set of characters is G�, the dual group of G, and has been
introduced in Section 14.2. The following is hence an immediate consequence of
Proposition 15.16 and Theorem 15.8.
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Theorem 15.17. For a compact Abelian group G the dual group G� separates the
points of G. The set lin G� of trigonometric polynomials is a dense subalgebra
of C.G/.

Turning to general Banach space representations we obtain the following.

Corollary 15.18. If � W G ! L .E/ is a continuous representation of a compact
Abelian group G, then

E D lin
˚
u 2 E W 9� 2 G� with �xu D �.x/u 8 x 2 G

�
:

We refer to Exercise 8 for more information about representations of compact
Abelian groups.

15.3 Compact Group Actions

Let 	 be a (not necessarily topological) group with unit element 1. A topological
(right) action of 	 on a compact space K is a mapping

' W K � 	 ! K; .x; g/ 7! x � g

such that

1) x � 1 D x for all x 2 K,

2) x � .gh/ D .x � g/ � h for all x 2 K and all g; h 2 	 , and

3) the mapping K ! K, x 7! x � g is continuous for every g 2 	 .

We suppress the notation ' if the action is understood, and simply say that .KI	 /
is a topological � -system.

An isomorphism of topological 	 -systems .KI	 / and .LI	 / is a homeomor-
phism ˚ W K ! L such that

˚.z � g/ D ˚.z/ � g for all z 2 K; g 2 	:

If 	 carries a topology, then a continuous action of 	 on K is a topological action
K � 	 ! K which is continuous for the product topology. In this case, .KI	 / is
called a (continuous) � -system.

Remark 15.19. Obviously, there is an analogous theory for left group actions.
Denote by 	 op the opposite group with multiplication defined by a �op b WD ba
for a; b 2 	 . Then right 	 -actions and left 	 op-actions correspond in an obvious
way. Since the mapping g 7! g�1 is an isomorphism 	 ! 	 op, any left 	 -action
can be turned into a right 	 -action and vice versa.
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For simplicity, we consider mostly right 	 -actions in the following and reserve
the name “	 -systems” for them. In case there is a danger of confusion or ambiguity
we shall distinguish between left and right 	 -systems.

Of course, if 	 is Abelian, the difference between left and right 	 -actions
disappears.

Example 15.20 (Homogeneous Systems). Let 	 be a topological group and let H
be a cocompact closed subgroup. This means that the space

Hn	 WD ˚Hg W g 2 	 �

of right cosets is compact in the quotient topology with respect to the canonical
surjection s W 	 ! Hn	 . (Equivalently, the space

	 =H WD ˚gH W g 2 	 �

of left cosets is compact in the quotient topology with respect to the canonical
surjection 	 ! 	 =H.)

Then 	 acts on Hn	 by right and on 	 =H by left multiplication and these
actions are continuous. The 	 -systems .Hn	 I	 / and .	 =HI	 / are both called
homogeneous 	 -systems.

Given any topological 	 -system .KI	 / we can form, for each g 2 	 , the
Koopman operator

�g W C.K/! C.K/; .�gf /.x/ D f .x � g/ .f 2 C.K/; x 2 K/:

Then 1) and 2) above imply that the mapping

� W 	 ! L .C.K//; g 7! �g;

is a group representation of 	 on C.K/ by one-preserving lattice/algebra homomor-
phisms, called Koopman representation. Its kernel is

ker.�/ D ˚g 2 	 W �g D I
� D ˚g 2 	 W x � g D x for all x 2 K

�
:

Conversely, suppose that .�IC.K// is a representation of 	 by one-preserving
lattice homomorphisms. Then, by Theorems 4.14 and 7.23 each �g is the Koopman
operator of a unique continuous mapping 'g W K ! K, and the map K � 	 ! K
defined by .x; g/ 7! 'g.x/ is a topological 	 -action on K. We have proved the first
part of the following theorem.

Theorem 15.21. There is a natural correspondence between topological	 -actions
K � 	 ! K and representations � W 	 ! L .C.K// by one-preserving lattice
homomorphisms on C.K/. Moreover, if 	 carries a topology, then the action
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K � 	 ! K is continuous if and only if its Koopman representation � is strongly
continuous.

Proof. The first part has already been proved. The second part is an immediate
consequence of Theorem 4.17. ut

A topological 	 -system .KI	 / is called minimal if ; and K are the only
	 -invariant closed subsets of K. By Lemma 4.18 this happens precisely when the
associated Koopman representation � W 	 ! L .C.K// is irreducible, i.e., f0g and
C.K/ are the only �	 -invariant closed ideals of C.K/.

Example 15.22. Every homogeneous 	 -system .Hn	 I	 /, H a cocompact sub-
group of 	 , is minimal. The kernel of this representation is

T
g2	 g�1Hg, i.e., the

so-called normal core of the subgroup H.

Remark 15.23. With a view on Section 16.1, we note that the definition of a
topological (minimal) 	 -system makes perfect sense if 	 is merely a semigroup
with unit (i.e., a monoid). Theorem 15.21 remains true in this more general setting.

Suppose now that G is a compact group and K�G! K is a continuous G-action.
Then every orbit z �G, z 2 K, is compact and G-invariant. What is more, two orbits
are either disjoint or equal. It follows that each orbit is a minimal G-system, and K
is fibered into orbits via

p W K ! K=G; p.x/ WD x � G:

For any chosen point z 2 K the stabilizer

Gz WD
˚
g 2 G W z � g D z

�

is a closed subgroup of G. The mapping

' W GznG! z � G; Gzg 7! z � g

is an isomorphism of G-actions since

'.Gzg � h/ D '.Gz.gh// D z � .gh/ D .z � g/ � h D '.Gzg/ � h .h 2 G/:

It follows that each orbit is (isomorphic to) a homogeneous G-system.

Theorem 15.24. Let G be a compact group and let K � G ! K be a continuous
action of G on the compact space K with associated Koopman representation � W
G! L .C.K//. Then the following assertions are equivalent:
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(i) The system .KIG/ is minimal.

(ii) The fixed space of �G is trivial, i.e.,

fix.�G/ WD
\

g2G

fix.�g/ D C1:

(iii) The system .KIG/ is isomorphic to a homogeneous system .HnGIG/ for
some closed subgroup H of G.

In this case, ker.�/ DTg2G g�1Hg is the normal core of H.

Proof. (i), (iii): This has been shown above.

(i)) (ii): Let f 2 fix.�g/ and fix z 2 K. Then f .z � g/ D f .z/ for every g 2 G.
Since z � G D K by minimality, it follows that f D f .z/1.

(ii)) (i): Let z; w 2 K and suppose that z �G\w �GD ;. By Urysohn’s Lemma 4.2
there is f 2 C.K/ such that f D 1 on z � G and f D 0 on w � G. Then PGf DR

G �gf dg is a function fixed under the action of G and has the same properties as f .
But, by hypothesis, PGf is a constant function, a contradiction. Hence, z�G\w�G 6D
;, i.e., z � G D w � G (since G is a group), and this implies minimality. ut

Let us look at the case when G is Abelian. Then the homogeneous space HnG of
cosets is a compact Abelian group, and the kernel of the Koopman representation is
ker.�/ D H itself. In particular, the representation is faithful if and only if H D f1g
is trivial.

Corollary 15.25. Let G be a compact Abelian group. Then any faithful continuous
minimal G-system is isomorphic to the action of G on itself by (right or left)
rotations.

15.4 Markov Representations

Let X be a probability space and 	 a group. A Markov representation of 	 on
a probability space X is a representation � W 	 ! Aut.X/, i.e., �g 2 L .L1.X//
is a Markov embedding for each g 2 	 (see Section 13.2). If the representation is
understood, we simply write .XI	 / and call it a (measure-preserving) 	 -system.
A 	 -system .XI	 / is called ergodic if

fix.�	 / WD
\

g2	
fix.�g/ D C1:

An isomorphism between 	 -systems .XI	 / and .YI	 / is a Markov isomorphism
S 2 Iso.XIY/ that intertwines the representations, i.e., that satisfies
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�gS D S�g for all g 2 	:

If 	 carries a topology, then a Markov representation � W 	 ! L .L1.X// of 	 is
called (weakly continuous) continuous if it is continuous with respect to the (weak)
strong operator topology.

Markov representations arise as Koopman representations from actions X�	 !
X of 	 if all mappings 'g W x 7! x�g are measure-preserving on the underlying set X.

Example 15.26 (Homogeneous System). Let G be a compact group with Haar
measure m, let H be a closed subgroup G, and let s W G ! HnG be the canonical
surjection onto the space of right cosets. Then m WD s�m (by abuse of notation) is
the unique probability measure on HnG invariant under the canonical action of G
(see Section 5.3). Hence, the topological system .HnGIG/ gives rise to a Markov
representation of G on L1.HnG;m/. This measure-preserving G-system is called a
homogeneous system and is abbreviated as .HnG;mIG/.

Conversely, if .XI	 / is a measure-preserving	 -system, one may find a topolog-
ical model K for X such that the Markov representation restricts to a representation
on C.K/, and hence there is an underlying topological action whose Koopman
representation is the given one. If 	 is countable and L1.X/ is separable, then the
compact space K can be chosen to be metrizable.

Theorem 15.27. Let � W G! Aut.X/ be any continuous Markov representation of
a compact group G over a probability space X. Then the following assertions hold:

a) The system .XIG/ is isomorphic to a Koopman representation associated
with a continuous topological and measure-preserving G-action on a faithful
compact probability space .K; �/ (i.e., supp.�/ D K, see Section 12.3).

b) If L1.K/ is separable, then K can be chosen to be metrizable.

Proof. a) Let A0 be the space of functions h 2 L1.X/ such that the mapping

G! L1.X/; x 7! �xh

is continuous. Then A0 is a �G-invariant subalgebra of L1.X/. We claim that A0 is
dense in L1.X/. Indeed, if f 2 C.G/ and u 2 L1.X/, then

�y.�f u/� �f u D ��yf u � �f u D �.�yf�f /u D
Z

G
.�yf � f /.x/�xu dx

and hence

�
��y.�f u/� �f u

�
�1 �

Z

G

ˇ
ˇ.�yf � f /.x/

ˇ
ˇ k�xuk1 dx � kuk1

�
��yf � f

�
�

L1.G/ :

Since the left regular representation of G on L1.G/ is strongly continuous, it follows
that �f u 2 A0. Hence, our claim follows from Lemma 15.5.
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Let now A WD clL1 A0 and let K be the Gelfand space of the C�-algebra A. Then,
by the Gelfand–Naimark theorem there is a C�-algebra isomorphism ˚ W C.K/ !
A. Moreover, as in the proof of Theorem 12.20 there is a unique measure � on K
(of full support) such that ˚ extends to a Markov isomorphism L1.K; �/! L1.X/.
The corresponding Markov representation of G on L1.K; �/ restricts to a continuous
representation of G on C.K/ by algebra homomorphisms, hence by Theorem 15.21
is induced by a continuous G-action K �G! K.

b) If L1.X/ is separable, M.X/ is metrizable and separable (Theorem 13.8).
Consequently, �G is separable. Hence, we can fix a subset G0 of G such that �G0 is
countable and dense in �G. Then one can find a separable subalgebra A00 of A0 that
is �G0-invariant and dense in L1.X/. The C�-algebra A WD clL1 A00 is then separable
and again �G0-invariant. By definition of A0 and since �G0 is dense in �G, it follows
that A is �G-invariant. Now the proof can be concluded as in part a). ut

If the original G-system is ergodic, one obtains the following beautiful represen-
tation result.

Corollary 15.28. For a continuous Markov representation � W G ! Aut.X/
of a compact group G on the probability space X the following assertions are
equivalent:

(i) The system .XIG/ is ergodic.

(ii) The system .XIG/ is isomorphic to a homogeneous system .HnG;mIG/
Proof. We leave the implication (ii)) (i) as Exercise 10 and prove the converse
(i)) (ii). It follows from Theorem 15.27 that we can assume without loss of
generality that the given Markov representation is the Koopman representation
associated with a continuous action K � G ! K, with an G-invariant measure �
of full support. By ergodicity, the fixed space in L1.K; �/ is trivial, and since the
measure has full support, this is true also for the fixed space in C.K/. But then,
by Theorem 15.24, the system .KIG/ is minimal and isomorphic to the canonical
action of G on a homogeneous space HnG. By Example 15.26 the invariant measure
on HnG is unique, so the claim is proved. ut
For Abelian groups, as in Corollary 15.25, the situation becomes even more special.

Corollary 15.29. Every faithful ergodic measure-preserving G-system with a com-
pact Abelian group G is isomorphic to the G-action on itself by rotations.

Supplement: Abstract Compact Group Extensions

In this supplement, we present an alternative approach to Furstenberg’s theorem
about the unique ergodicity of group extensions (Corollary 10.16). It is based on the
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previous findings on compact group actions and on Bauer’s lemma from Choquet
theory.

Recall from Section 2.2 that the automorphism group of a topological system
.KI'/ is

Aut.KI'/ D ˚˛ W K ! K W ˛ is a homeomorphism and ˛ ı ' D ' ı ˛�:

For the sake of coherence, we shall use the group structure on Aut.KI'/ defined by
˛ � ˇ WD ˇ ı ˛. Then Aut.KI'/ acts canonically on K from the right by

K �Aut.KI'/! K; .x; ˛/ 7! x � ˛ WD ˛.x/:

The associated Koopman representation

� W Aut.KI'/! L .C.K//; g 7! �g; .�gf /.x/ D f .x � g/

is a group isomorphism onto its image, the set of one-preserving lattice isomor-
phisms commuting with the Koopman operator T' of the dynamical system.

We endow Aut.KI'/ with the topology that turns the Koopman representa-
tion into a homeomorphism (for the strong topology on the operator side). By
Theorem 15.21 this topology is the smallest that renders the canonical map

K � Aut.KI'/! K

continuous. With this topology, Aut.KI'/ is a topological group.
Suppose now that G � Aut.KI'/ is a compact subgroup. As seen above, the

action of G induces a fibration

p W K ! K=G; p.z/ WD z � G

of K into orbits z � G, z 2 K. Since G acts as '-automorphisms, ' maps G-orbits to
G-orbits, and hence p is a factor map (by abuse of language)

p W .KI'/! .K=GI'/:

The associated Koopman operator � W C.K=G/ ! C.K/ maps C.K=G/ onto the
T'-invariant C�-subalgebra of C.K/ consisting of all continuous functions that are
constant on fibers, i.e., that are fixed under the G-action, so

�.C.K=G// D fix.�G/:

Let us give a name for the situation just described.

Definition 15.30. An extension .KI'/ of a topological system .LI / with factor
map � W .KI'/! .LI / is called an (abstract) group extension by the compact
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group G � Aut.KI'/ if L Š K=G and this isomorphism makes the following
diagram commutative:

K

L K/G

p

∼=

p

Let � W .KI'/ ! .LI / be a group extension by the compact group G �
Aut.KI'/. Then the corresponding mean ergodic projection onto fix.�G/

P D
Z

G
�g dg

(cf. Example 15.4) can be viewed as a positive operator

P W C.K/! C.L/

with P1 D 1 and intertwining the Koopman operators T' and T of the two systems.
Given any  -invariant measure � on L, its Haar lift is

� �mG WD P0�; i.e.; hf;� �mGi D
Z

L

Z

G
f .x � g/ dg d�.p.x// .f 2 C.K//:

This is clearly a '-invariant measure on K and one has p�.� � mG/ D �.
Moreover, P extends to the Markov factor map associated with the factor L1.L; �/
of L1.K; � �mG/.

After all these preliminaries we can now establish the following generalization
of Furstenberg’s Theorem 10.15, see also Exercise 14.

Theorem 15.31. Let � W .KI'/ ! .LI / be an abstract group extension by the
compact group G � Aut.KI'/. Let  be any '-invariant probability measure on K
and suppose that the Haar lift .��/�mG of �� is ergodic. Then  D .��/�mG.

Proof. Let us write � WD ��. Then, by hypothesis, � � mG D P0� is an ergodic
measure. For f 2 C.K/ we have

hf;� �mGi D
Z

L

Z

G
�gf dg d D

Z

G

˝
�gf; 

˛
dg D

Z

G

˝
f; �0

g
˛

dg:

Hence � � mG D
R

G �
0
g dg as a weak� integral. As  is '-invariant, also each

measure �0
g is '-invariant, hence the integration is performed within the compact

convex set X WD M1
'.K/. But � � mG is ergodic, and therefore an extreme point of

X (Proposition 10.4). By Bauer’s Lemma 15.33 below, it follows that the mapping
g 7! �0

g is mG-almost everywhere equal to � � mG. As the Haar measure has
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full support, the continuous function g 7! ˝
�gf; 

˛
is constant for each f 2 C.K/.

It follows that �0
g D  for all g 2 G, and hence that  D � �mG. ut

If the factor .LI / is uniquely ergodic, Theorem 15.31 turns into a characteriza-
tion of the unique ergodicity of the original system.

Corollary 15.32. In the situation of Theorem 15.31, suppose that .LI / is uniquely
ergodic with invariant probability measure �. If the Haar lift ��mG is ergodic, then
.KI'/ is also uniquely ergodic.

In Chapter 17 below we shall apply Corollary 15.32 to characterize unique
ergodicity of Heisenberg systems (Theorem 17.22).

Bauer’s Lemma

Bauer’s Lemma, employed in the proof of Theorem 15.31 above, is an elementary
result in the so-called Choquet theory of compact convex subsets of locally convex
spaces E. We shall formulate and prove it in full generality, but the reader unfamiliar
with locally convex spaces may confine to the situation where E D M.K/ for some
compact space K, endowed with the weak� topology. The associated dual space is
then E0 D C.K/. For more information on Choquet theory we refer to Phelps (1966).

Let E be locally convex space with dual space E0, let X � E a compact convex
subset of E, and let � 2 M1.X/. One says that x 2 X is the barycenter of � if

˝
x; x0˛ D

Z

X

˝
y; x0˛ d�.y/ for all x0 2 E0:

By the Hahn–Banach separation theorem (Theorem C.13), a barycenter is unique,
and by Rudin (1991, Thm. 3.26), a barycenter always exists. See also Exercise 15
for a proof in a situation that is sufficient for our purposes.

Lemma 15.33 (Bauer). Let X be a compact convex subset of a locally convex space
E and let � 2 M1.X/ with barycenter x 2 X. If x is an extreme point of X, then
� D ıx is the Dirac measure at x.

Proof. Define F WD fxg and U WD X n F. We claim: If �.U/ > 0, then there is
a compact convex subset V � U with �.V/ > 0. Indeed, by regularity, there is a
compact set M � U with �.M/ > 0. By local convexity, for each y 2 M there is
a compact convex neighborhood Vy � U of y (in X). Since M is compact, finitely
many Vy cover M, and hence by subadditivity of �, at least one of them must have
strictly positive measure.

Next, note that �.V/ 6D 1. Otherwise, it follows from the Hahn–Banach
separation theorem that x 2 V , which is impossible by the choice of V .
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Now define

�1.A/ WD �.A \ V/

�.V/
and �2.A/ WD �.A n V/

1� �.V/

for A 2 Ba.X/. Then �1; �2 2 M1.X/, and for their barycenters x1 and x2,
respectively, we obtain

�.V/x1 C .1 � �.V//x2 D u 2 F

as can be seen by applying elements of the dual space. By hypothesis, x1 2 F and
x2 2 F. But �1 is concentrated on the compact convex set V , hence x2 2 V , a
contradiction. ut
Remark 15.34. Bauer’s Lemma is Hilfssatz 7 in Bauer (1961), see also Phelps
(1966, Prop. 1.4). Note that with the same proof the following more general
statement can be established: If F � X is a closed face of X and the barycenter
x of � 2 M1.X/ is contained in F, then supp.�/ � F.

Exercises

1. Let G be a compact group and 1 � p < 1. Show that the left regular
representation of G on Lp.G/ is faithful.

2. Let � W G ! L .E/ be a continuous representation of a compact group G on a
Banach space E. For f 2 L1.G/ define �f as in (15.2). Show that

�f �g D �f �g;

where f � g denotes convolution of f; g as defined in (15.5). Show that for E D H
a Hilbert space one has .�f /� D �f � , where f � is defined as in (15.6).

3 (Weakly� Continuous Representations). Let G be a compact group and let � W
G ! L .E0/ be a representation of G which is weakly� continuous, i.e., such that
the mapping

G! C; x 7! ˝
u; �xu0˛

is continuous for each u 2 E and u0 2 E0. For f 2 L1.G/ form the operator

�f WD
Z

G
f .x/�x dx

on E00 defined by
˝
u; �f u

˛ WD RG f .x/ hu; �xu0i dx. Prove the following assertions:
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a) supx2G k�xk <1.

b)
�
��f

�
� � .supx2G k�xk/ kf k1.

c) �1 is a projection onto the fixed space fix.�G/.

d) Every u 2 E0 is contained in the weak�-closure of the space f�f u W f 2
C.G/g.

4. Let � W G ! U.n/ and � W G ! U.m/ be two unitary representations of the
compact group G. Denote �x D .�ij.x//i;j and �x D .�kl.x//k;l. Define � W G !
C

nm�nm by

�x D .�˛ˇ.x//˛;ˇ; �˛ˇ.x/ WD �ij.x/�kl.x/ .˛ D .i; k/; ˇ D .k; j//I

and � W G! C
n�n by

�x WD .�ij.x//i;j:

Show that � W G ! U.nm/ and � W G ! U.n/ are again unitary representations
of G.

5. Deduce directly from the definition that f � g 2 C.G/ for f 2 L1.G/ and
g 2 C.G/.

6. Let u; v 2 L2.G/ and h 2 L1.G/. Show that

�
u� j v� �

L2 D .v j u/L2 and .u � h j v / D �u j v � h� � :

Conclude that the operator A in the proof of Proposition 15.12 is self-adjoint. (Hint:
Show the assertion for h 2 C.G/ first and then employ an approximation argument.)

7. Let K be a compact space, and let � 2 M.K/ be a positive measure. For k 2
C.K � K/ define

.Tf /.y/ WD
Z

K
k.y; x/f .x/ d�.x/ .f 2 L2.K; �/; y 2 K/:

Show that T is a compact linear operator through each of the following ways:

a) The kernel k can be approximated uniformly on K � K by finite linear
combinations of functions of the form f ˝ g, f; g 2 C.K/. (Employ the
Stone–Weierstraß theorem.) Show that this leads to an approximation in
operator norm of T by finite rank operators.

b) Realize that T is a Hilbert–Schmidt operator and as such is compact, see
Haase (2014, Example 12.3) or Deitmar and Echterhoff (2009, Sec. 5.3).
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8. Let G be a compact Abelian group and let � W G ! L .E/ be a continuous
representation of G. For a character � 2 G� consider the operator P� WD ��, i.e.,

P�u D
Z

G
�.x/ �xu dx .u 2 E/:

a) Show that � � � D .� j �/ � for any two characters �; � 2 G� and that

P�P� D ı��P� .�; � 2 G�/;

where ı is the usual Kronecker delta.

b) Show that ran.P�/ D fu 2 E W �xu D �.x/u for all x 2 G} and

I D
X

�2G�

P�

the sum being convergent in the strong operator topology.

c) Show that if E D H is a Hilbert space, then each P� is self-adjoint, and

H D
M

�2G�

ran.P�/

is an orthogonal decomposition of H.

9. In the situation of Exercise 8, show that

h� 2 G� W P� ¤ 0i D .ker.�/nG/�:

10. Prove the implication (ii)) (i) in Corollary 15.28.

11. Let � W G! L .E/ be a continuous representation of a compact group G on a
Banach space E. Show that the dual fixed space

fix.� 0
G/ D fu0 2 E0 W � 0

xu0 D u0 for all x 2 Gg

separates the points of the fixed space fix.�G/. (Hint: Combine the Hahn–Banach
theorem with an application of P0

G (cf. Example 15.4).)

12. Let G be a compact group with left regular representation � W G ! L2.G/.
Show that fix.�G/ D linf1g, i.e., G acts “ergodically” on itself by rotations. (Hint:
Use Exercise 11 and the uniqueness of the Haar measure; alternatively, prove that
f 2 clff � u W u 2 C.G/g and show that each f � u is constant whenever f 2
fix.�G/.)
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13. Let .KI'/ be a topological system, and suppose that K is metrizable and d W
K � K ! RC is a compatible metric. Show that

d0.˛; ˇ/ WD sup
x2K

d.˛.x/; ˇ.x//

is a metric on Aut.KI'/ and that the Koopman representation

� W .Aut.KI'/; d0/! Ls.C.K//

is a homeomorphism onto its image.

14. Show that Furstenberg’s Theorem 10.15 is a special case of Theorem 15.31.

15. Let E be a Banach space, and let X � E0 be a compact convex subset of its dual
space E0, endowed with the weak� topology. Show that for each � 2 M1.X/ there
is a unique x0 2 X such that

˝
x; x0˛ D

Z

K

˝
x; x0˛ d�.x0/ for all x 2 E:

(Hint: Use the uniform boundedness principle to show that X is norm bounded.)

16. Let G be a compact group and let E D L2.G/.

a) Prove that for a representation � W G ! L .E/ with supx2G k�xk < 1 the
following assertions are equivalent:

(i) � is weakly measurable, i.e., g 7! �
�gu

ˇ
ˇ v
�

is Borel measurable for
every u; v 2 E.

(ii) � is continuous.

(Hint: For the nontrivial implication apply techniques as in Section 15.1.)

b) Let ' W G! G be a Borel measurable group automorphism. Show that g 7!
L'.g/ is a weakly measurable representation, and conclude that ' W G! G is
continuous.



Chapter 16
The Jacobs–de Leeuw–Glicksberg
Decomposition

I hail a semigroup when I see one and I seem to see them everywhere!

Einar Hille1

The notion of a group is without doubt one of the most fundamental concepts
of mathematics. For us, groups provide basic examples of dynamical systems.
However, many processes in nature show an inherent irreversibility (e.g., diffusion
phenomena), hence for a general theory of dynamical systems groups are too
restrictive, and the notion of a semigroup seems to be more appropriate. The purpose
of the present chapter is to find a factor of the dynamical system on which the
dynamics is invertible and, even more, can be embedded into a compact group
action. This is achieved by a beautiful application of abstract semigroup theory to
dynamical systems due to Jacobs (1956), de Leeuw and Glicksberg (1959, 1961).

16.1 Compact Semigroups

A semigroup is a nonempty set S with an operation

S � S! S; .s; t/ 7! st WD s � t

(usually called multiplication) which is associative, i.e., one has r.st/ D .rs/t for
all r; s; t 2 S. If the multiplication is commutative (i.e., st D ts for all s; t 2 S),
then the semigroup is called Abelian. An element e of a semigroup S is called an
idempotent if e2 D e, a zero element if es D se D e for all s 2 S, and a neutral

1Hille continues: “: : : Friends have observed, however, that there are mathematical objects which
are not semigroups.” � Functional Analysis and Semigroups, AMS Coll. Publ. vol. 31, Providence
R.I., 1948. — Foreword.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_16
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element if se D es D s for all s 2 S. It is easy to see that there is at most one
neutral/zero element in a semigroup. A semigroup S is a group if it has a (unique)
neutral element e and for every s 2 S the equation sx D xs D e has a solution x. It is
easy to see that this solution, called the inverse s�1 of s is unique.

As usual, for subsets A; B � S and elements s 2 S we write

sA D ˚sa W a 2 A
�
; As D ˚as W a 2 A

�
; AB WD ˚ab W a 2 A; b 2 B

�
:

A subsemigroup of S is a nonempty subset H � S such that HH � H. Clearly, the
intersection of any family of subsemigroups is either empty or a subsemigroup. For
a subset ; ¤ A � S of a semigroup S we write

sgr.A/ WD
\˚

H W A � H subsemigroup of S
�

for the generated subsemigroup. It consists of all finite products of elements of A.
A right ideal of S is a nonempty subset J such that JS � J. Similarly one defines

left ideals. A subset which is simultaneously a left and a right ideal is called a (two-
sided) ideal. Obviously, in an Abelian semigroup this condition reduces to JS � J.

A right (left, two-sided) ideal of a semigroup S is called minimal if it is minimal
with respect to set inclusion within the set of all right (left, two-sided) ideals. There
can be at most one minimal ideal, since if I and J are ideals and I is minimal, then
; ¤ IJ � I \ J is an ideal and hence is equal to I by minimality. Consequently, the
intersection of all ideals

K.S/ WD
\˚

J W J � S; J ideal
�

is either empty or the unique minimal ideal. It is called the Sushkevich kernel of S.

Minimal right (left) ideals are either disjoint or equal. An idempotent element in a
minimal right (left) ideal is called a minimal idempotent and has special properties.

Lemma 16.1 (Minimal Idempotents). Let S be a semigroup, and let e 2 S be an
idempotent. Then the following assertions are equivalent:

(i) eS (or Se) is a minimal right ideal (or left ideal).

(ii) e is contained in some minimal right ideal (left ideal).

(iii) eSe is a group (with neutral element e).

In this case, e is minimal in the set of idempotents with respect to the ordering

p � q
Def.” pq D qp D p:

Proof. (i)) (ii) is trivial. For the proof of (ii)) (iii) let R be a minimal right ideal
with e 2 R, and let G WD eSe. Clearly, e is a neutral element in G. Let s 2 S be
arbitrary. Then eseR � R is also a right ideal, and by minimality eseR D R. In
particular, there is x 2 R such that esex D e. It follows that g WD ese 2 G has the
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right inverse h WD exe 2 G. Applying the same reasoning to x we find that also h
has a right inverse, say k. But then hg D hge D hghk D hk D e, and hence h is also
the left inverse of g.

(iii)) (i): Suppose that G WD eSe is a group, and let R � eS be a right ideal. Take
r D es 2 R. Then there is x 2 S such that e D .ese/.exe/ D rexe 2 R. It follows that
eS � R, so R D eS.

Suppose f is an idempotent and f � e, i.e., ef D f e D f D f 2. Then f S � eS
and by minimality f S D eS. Hence, there is x 2 S such that f x D e2 D e. But then
f D f e D f 2x D f x D e. ut

As we are doing analysis, semigroups are interesting for us only if endowed
with a topology which in some sense is related to the algebraic structure. One has
different possibilities here.

Definition 16.2. A semigroup endowed with a topology is called a left-topological
semigroup if for each a 2 S the left multiplication by a, i.e., the mapping

S! S; s 7! as

is continuous. Similarly, S is called a right-topological semigroup if for each a 2 S
the right multiplication with a, i.e., the mapping

S! S; s 7! sa

is continuous. If both left and right multiplications are continuous, S is a semi-
topological semigroup. Further, S is a topological semigroup if the multiplication
mapping

S � S! S; .s; t/ 7! st

is continuous.

Note that a topological group (Example 2.9) is a topological semigroup that is
algebraically a group and such that the inversion mapping s 7! s�1 is continuous.
Clearly, an Abelian semigroup is left-topological if and only if it is semitopological.

One says that in a semitopological semigroup the multiplication is separately
continuous, whereas in a topological semigroup it is jointly continuous. Of course,
there are examples of semitopological semigroups that are not topological, i.e.,
such that the multiplication is not jointly continuous (see Exercise 6). The example
particularly interesting for us is L .E/, E a Banach space, endowed with the weak
operator topology. By Proposition C.19 and Example C.19 this is a semitopological
semigroup, which is not topological in general. Another example of a right-
topological but not topological semigroup is “N (as topological space familiar
already from Chapter 4), whose semigroup structure will be studied in Chapter 19.

Any semigroup can be made into a topological one by endowing it with the
discrete topology. This indicates that such semigroups may be too general to
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study. However, compact left-topological semigroups (i.e., ones whose topology
is compact) exhibit some amazing structure, which we shall study now.

Theorem 16.3 (Ellis). In a compact left-topological semigroup every right ideal
contains a minimal right ideal. Every minimal right ideal is closed and contains
at least one idempotent. In particular, every compact left-topological semigroup
contains an idempotent.

Proof. Note that sS is a closed right ideal for any s 2 S. If R is a right ideal and
x 2 R, then xS � R, and hence any right ideal contains a closed one. If R is minimal,
then we must have R D xS, and R itself is closed.

Now if J0 is a given right ideal, then let M be the set of all closed right ideals
of S contained in J0. Then M is nonempty and partially ordered by set inclusion.
Moreover, every chain C in M has a lower bound

T
C , since this set is nonempty

by compactness. By Zorn’s lemma, there is a minimal element R in M . If J � R
is also a right ideal and x 2 J, then xS � J � R, and xS is a closed right ideal. By
construction xS D R, hence J D R.

Finally, by an application of Zorn’s lemma as before we find a nonempty closed
subsemigroup H of R which is minimal within all closed subsemigroups of R.
For every e 2 H the set eH is a closed subsemigroup of R, contained in H,
whence eH D H. The set ft 2 H W et D eg is then nonempty and closed, and a
subsemigroup of R. By minimality, it must coincide with H, and hence contains e.
This yields e2 D e, concluding the proof. ut
Lemma 16.4. In a compact left-topological semigroup the Sushkevich kernel
satisfies

K.S/ D
[˚

R W R minimal right ideal
�
: (16.1)

In particular, K.S/ ¤ ;. Moreover, an idempotent of S is minimal if and only if it is
contained in K.S/.

Proof. To prove “	” let I be an ideal and J a minimal right ideal. Then JI � J \ I,
so J \ I is nonempty, hence a right ideal. By minimality J D J \ I, i.e., J � I.

For “�” it suffices to show that the right-hand side of (16.1) is an ideal. Let R be
any minimal right ideal, x 2 S, and R0 � xR another right ideal. Then ; 6D fy W xy 2
R0g \ R is a right ideal, hence by minimality equals R. But this means that xR � R0
and it follows that xR is also minimal, whence contained in the right-hand side of
(16.1).

The remaining statements follow from (16.1) and Lemma 16.1. ut
We can now state and prove the main result in this section.

Theorem 16.5. Let S be a compact semitopological semigroup. Then the following
assertions are equivalent:

(i) Every minimal right ideal is a minimal left ideal.

(ii) There is a unique minimal right ideal and a unique minimal left ideal.
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(iii) There is a unique minimal idempotent.

(iv) The Sushkevich kernel K.S/ is a group.

(v) There is a minimal idempotent e 2 S such that es D se for all s 2 S.

The conditions (i)–(v) are satisfied in particular if S is Abelian.

Proof. Clearly, (ii) implies (i) by Lemma 16.4.

(i)) (iv): Let R be a minimal right ideal and let e 2 R be an idempotent, which
exists by Theorem 16.3. By hypothesis, R is also a left ideal, i.e., an ideal. Hence,
K.S/ � R � K.S/ (by Lemma 16.4), yielding R D K.S/. Since R is minimal as a
left and as a right ideal, R D eS D Se. This implies that K.S/ D R D eSe is a group
by Lemma 16.1, hence (iv) is proved.

(iv)) (iii): A minimal idempotent belongs to K.S/ by Lemma 16.4, and so must
coincide with the unique neutral element of K.S/.

(iii)) (ii): Since different minimal right ideals are disjoint and each one contains
an idempotent, there can be only one of them. By symmetry, the same is true for left
ideals, whence (ii) follows.

(iv)) (v): Let e 2 K.S/ be the neutral element of the group K.S/. Then e is
a minimal idempotent by Lemma 16.4. If s 2 S, then se; es 2 K.S/, hence
es D ese D se.

(v)) (iii): Let e2 D e 2 S be as in (v) and let f 2 S be any minimal idempotent.
Then p WD ef D f e is also an idempotent satisfying pe D ep D p D f p D pf .
By minimality of e and f it follows (by Lemma 16.1) that e D p D f . ut

Suppose that S is a compact semitopological semigroup satisfying the equivalent
conditions (i)–(iv) of Theorem 16.5, so that K.S/ is a group. Then K.S/ is
also compact, as it coincides with the unique right (left) ideal, being closed by
Theorem 16.3. The following fundamental result of Ellis (see Ellis (1957) or
Hindman and Strauss (1998, Sec. 2.5)) states that in this case the group K.S/ is
already topological.

Theorem 16.6 (Ellis). Let G be a semitopological group whose topology is locally
compact. Then G is a topological group.

As mentioned, combining Theorem 16.5 with Ellis’ result, we obtain the following.

Corollary 16.7. Let S be a compact semitopological semigroup that satisfies the
equivalent conditions of Theorem 16.5 (e.g., S is Abelian). Then its minimal ideal
K.S/ is a compact (topological) group.

One can ask for which noncommutative semigroups S the minimal ideal K.S/ is
a group. One class of examples is given by the so-called amenable semigroups, for
details see Day (1957) or Paterson (1988). Another one, and very important for our
operator theoretic perspective, are the weakly closed semigroups of contractions on
certain Banach spaces, see Section 16.2.
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Proof of Ellis’ Theorem in the Metrizable Case

The proof of Theorem 16.6 is fairly involved. The major difficulty is deducing
joint continuity from separate continuity. By making use of the group structure it
is enough to find one single point in G � G at which multiplication is continuous.
This can be achieved by applying a more general result of Namioka (1974) that
asserts that under appropriate assumptions a separately continuous function has
many points of joint continuity, see also Kechris (1995, Sec. I.8M) or Todorcevic
(1997, Sec. 4). Recall from Appendix A.9 the definition of a Baire space.

Proposition 16.8. Let Z; Y be metric spaces, X a Baire space, and let f W X�Y !
Z be a separately continuous function. For every b 2 Y, the set

˚
x 2 X W f is not continuous at .x; b/

�

is of first category in X.

Proof. Let b 2 Y be fixed. For n; k 2 N define

Xb;n;k WD
\

y2B.b; 1k /

˚
x 2 X W d.f .x; y/; f .x; b// � 1

n

�
:

By the continuity of f in the first variable, we obtain that the sets Xb;n;k are closed.
From the continuity of f in the second variable, we infer that for all n 2 N the sets
Xb;n;k cover X, i.e.,

X D
[

k2N
Xb;n;k D

[

k2N
Xı

b;n;k [
[

k2N
@Xb;n;k:

(Here Xı
b;n;k and @Xb;n;k denotes the interior and the boundary of Xb;n;k, respectively.)

Since X is a Baire space and @Xb;n;k are nowhere dense, it follows from Theo-
rem A.11 that the open set

[

k2N
Xı

b;n;k

is dense in X. This yields, again by Theorem A.11, that

Xb WD
\

n2N

[

k2N
Xı

b;n;k

is a dense Gı set. If a 2 Xb, then for all n 2 N there is k 2 N with a 2 Xı
b;n;k.

So we can choose an appropriate open neighborhood U of a such that U � Xb;n;k.
Since f is continuous in the first variable, we can take the neighborhood U such that
d.f .a; b/; f .x; b// � 1

n holds for all x 2 U. Now, if x 2 U � Xb;n;k and y 2 B.b; 1k /,
we obtain
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d.f .x; y/; f .a; b// � d.f .x; y/; f .x; b//C d.f .x; b/; f .a; b// � 2
n :

Hence, f is continuous at .a; b/ 2 X � Y if a 2 Xb. Since Xb is a dense Gı set, the
assertion follows. ut

Proof of Ellis’ Theorem (Compact, Metrizable Case). Apply Proposition 16.8 to the
multiplication mapping to obtain joint continuity at one point in G � G. Then, by
translation, the joint continuity everywhere follows.

It remains to prove that the inversion mapping g 7! g�1 is continuous on G. Let
gn ! g. By compactness, it suffices to show that there is a subsequence of .g�1

n /n2N
convergent to g�1. Again by compactness we find a subsequence .nk/k2N such that

g�1
nk
! h as k!1.

By the joint continuity of the multiplication, 1 D gnk g�1
nk
! gh, hence h D g�1. ut

Remark 16.9. A completely different proof of Ellis’ theorem in the compact (but
not necessarily metrizable) case is based on Grothendieck’s theorem about weak
compactness in C.K/ spaces. Roughly sketched, one first constructs a Haar measure
m on the compact semitopological group G, then represents G by the right regular
representation on the Hilbert space H D L2.G;m/, and finally uses the fact that on
the set of unitary operators on H the weak and strong operator topologies coincide.
As multiplication is jointly continuous for the latter topology and the representation
is faithful, G is a topological group. A detailed account can be found in Appendix G,
see in particular Theorem G.12.

16.2 Weakly Compact Operator Semigroups

In what follows we shall apply the previously developed semigroup theory to
compact semigroups of bounded linear operators on a Banach space E. We recall
from Appendix C.8 the following definitions: The strong operator topology on
L .E/ is the coarsest topology that renders all evaluation mappings

L .E/! E; T 7! Tx .x 2 E/

continuous. The weak operator topology is the coarsest topology that renders all
mappings

L .E/! C; T 7! ˝
Tx; x0˛ .x 2 E; x0 2 E0/

continuous, where E0 is the dual space of E. Note that if E D H is a Hilbert space,
in the latter definition we could have written
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L .H/! C; T 7! .Tx j y/ .x; y 2 H/;

by virtue of the Riesz–Fréchet Theorem D.4.
We write Ls.E/ and Lw.E/ to denote the space L .E/ endowed with the strong

and the weak operator topology, respectively. To simplify terminology, we shall
speak of weakly/strongly closed, open, relatively compact, compact, etc. sets of
operators when we intend the weak/strong operator topology.2 In order to render
the notation more feasible, we shall write clwT , clsT for the closure of a set T �
L .E/ with respect to the weak/strong operator topology. For a subset A � E we
shall write cl�A to denote its closure in the �.E;E0/-topology.

Note that a subset T � L .E/ is a semigroup (with respect to operator mul-
tiplication) if it is closed under this operation. The operator multiplication is
separately continuous with respect to both the strong and the weak operator
topologies (cf. Appendix C.8). Hence both Ls.E/ and Lw.E/ are semitopological
semigroups with respect to the operator multiplication. The closed unit ball of
L .E/, i.e., the set of contractions

Con.E/ WD ˚T 2 L .E/ W kTk � 1�

is a closed subsemigroup (in both topologies); and this subsemigroup has jointly
continuous multiplication for the strong operator topology.

Rather trivial cases of weakly compact operator (semi)groups arise from contin-
uous representations � W G ! L .E/ of a compact group G. In this case �G is a
strongly compact group. In particular, this holds for the regular representations of G
and hence we obtain the following.

Proposition 16.10. Let G be a compact group. Then the sets of left and right
rotations

L D ˚La W a 2 G
�

and R D ˚Ra W a 2 G
�

are strongly compact subgroups of Con.C.G// or Con.Lp.G//, 1 � p < 1,
topologically isomorphic to G.

In the following we shall concentrate mainly on Lw.E/. The main tool in
identifying (relatively) weakly compact sets of operators is the following result.

Theorem 16.11. Let E be a Hilbert space, or, more generally, a reflexive Banach
space. Then for each M � 0 the closed norm-ball

˚
T 2 L .E/ W kTk � M

�

is compact in the weak operator topology. In particular, the set Con.E/ of
contractions is a weakly compact semitopological semigroup.

2This should not be confused with the corresponding notion for the weak topology of L .E/ as a
Banach space, a topology which will not appear in this book.
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Proof. It is clear that it suffices to consider the case M D 1, i.e., the set Con.E/.
If E is a Hilbert space, this is simply Theorem D.7 from Appendix D. The proof for
the case that E is reflexive is completely analogous and is left as Exercise 7. ut

Let H be a Hilbert space. Recall from Corollary D.19 that on the set

Iso.H/ WD ˚T 2 L .H/ W T is an isometry
� � Con.H/

of isometries, the weak and the strong operator topologies coincide. Since the
operator multiplication on Con.H/ is jointly continuous for the strong operator
topology, we obtain that Iso.H/ is a topological semigroup and the subgroup of
unitary operators

U.H/ WD ˚T 2 L .H/ W T is unitary
�

is a topological group (with identity I) with respect to the weak (= strong) operator
topology. Hence, we obtain almost for free the following special case of Ellis’
Theorem 16.6.

Theorem 16.12. Let S � Con.H/ be a weakly closed subsemigroup of contrac-
tions on a Hilbert space H. If S is algebraically a group, then it is a compact
topological group, and the strong and weak operator topologies coincide on S .

Proof. Let P be the unit element of S . Then P2 D P and kPk � 1, hence P is an
orthogonal projection onto the closed subspace K WD ran.P/. Since S D PS for each
S 2 S , the space K is invariant under S and hence

˚ W S ! U.K/; S 7! SjK
is a well-defined homomorphism of groups. Since S D SP, this homomorphism
is injective. Clearly, ˚ is also continuous, and since S is compact, ˚ is a
homeomorphism onto its image ˚.S /. But on ˚.S /—as on a subgroup of
the unitary group U.K/—the strong and weak operator topologies coincide (see
Corollary D.19), and since S D SP for each S 2 S , this holds on S as well. In
particular, the multiplication is jointly continuous. Since the inversion mapping is
continuous on ˚.S /, this must be so on S as well, and the proof is complete. ut

Let now X D .X; ˙; �/ be a measure space. Then, in general, the semitopo-
logical semigroup of all contractions on L1.X/ is not weakly compact (when
dim L1.X/ D1). However, if we restrict to those operators which are also
L2-contractive, we can use the Hilbert space results from above.



326 16 The Jacobs–de Leeuw–Glicksberg Decomposition

Lemma 16.13. Let X be a measure space, and let E WD L1.X/. Then the semigroup

S WD ˚T 2 L .E/ W kTk � 1 and kTf k2 � kf k2 8 f 2 L1 \ L2
�

of simultaneous L1- and L2-contractions is weakly compact. Moreover, on S the
weak operator topologies of L .L1/ and L .L2/ coincide.

Proof. We can consider S as a subset of Con.L2/. As such, it is weakly closed since
the L1-contractivity of an L2-contraction T is expressible in weak terms by

ˇ̌
ˇ
Z

X
.Tf / � g

ˇ̌
ˇ � kf k1 kgk1

for all f; g 2 L1\L1. By Theorem 16.11,S is weakly compact. The weak operator
topologies on L .L1/ and L .L2/ coincide on S since S is norm-bounded in both
spaces and L1 \ L1 is dense in L1 and in L2. ut

Trivially, if one intersects a weakly compact semigroup S � L .E/ with any
weakly closed subsemigroup of L .E/, then the result is again a weakly compact
semigroup. Using this we obtain the following result, covering and extending
Theorem 13.8.

Corollary 16.14. Let X be a finite measure space. Then the following sets are
weakly compact subsemigroups of L .L1/:

1) the set of all Dunford–Schwartz operators,

2) the set of all positive Dunford–Schwartz operators,

3) the set M.X/ of Markov operators.

On each of these sets the weak operator topologies of L .L1/ and L .L2/ coincide.
In particular, the semigroup Emb.X/ of Markov embeddings (see Definition 12.9) is
a topological semigroup with respect to the weak (= strong) operator topology.

Proof. Combine Exercises 8 and 9 and the interpolation Theorem 8.23, cf. also the
proof of Theorem 13.8. ut

By combining Corollary 16.14 with Theorem 16.12 above we obtain the
following important corollary.

Corollary 16.15. Let S � M.X/ be a weakly compact subsemigroup of Markov
operators on some probability space X. If S is algebraically a group, then it is a
compact topological group, and the weak and strong operator topologies coincide
on S .

Let us look, in the situation of Corollary 16.15, at the proof of Theorem 16.12.
The unit element Q of S is a Markov projection, and we can choose a model for
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F WD ran.Q/, i.e., a probability space Y and a Markov embedding J 2 M.XIY/
such that ran.J/ D F (Theorem 13.22). Then we can consider the mapping

˚ W S ! M.Y/; S 7! J�1.SjF/J

which is a topological isomorphism onto its image ˚.S /. The latter is a compact
topological subgroup of Aut.Y/, the group of Markov automorphisms on Y.

More on Compact Operator Semigroups

Let E be a Banach space. Then the following result is useful to recognize relatively
weakly compact subsets of L .E/.

Lemma 16.16. Let E be a Banach space, let T � L .E/, and let D � E be a
subset such that lin D is dense in E. Then the following assertions are equivalent:

(i) T is relatively weakly compact, i.e., relatively compact in the weak operator
topology.

(ii) T x D fTx W T 2 T g is relatively weakly compact in E for each x 2 E.

(iii) T is norm-bounded and T x D fTx W T 2 T g is relatively weakly compact
in E for each x 2 D.

Proof. (i)) (ii): For fixed x 2 E the mapping Lw.E/ ! .E; �.E;E0//, T 7! Tx,
is continuous and hence carries relatively compact subsets of Lw.E/ to relatively
weakly compact subsets of E.

(ii)) (iii): The first statement follows from the principle of uniform boundedness,
the second is a trivial consequence of (ii).

(iii)) (i): Let .T˛/˛ � T be some net. We have to show that it has a subnet,
converging weakly to some bounded operator T 2 L .E/. Consider the product
space

K WD
Y

x2D

T x
�
;

which is compact by Tychonoff’s Theorem A.5. Then

˛ 7! .T˛x/x2D

is a net in K, hence there is a subnet .Tˇ/ˇ , say, such that Tx WD limˇ Tˇx exists in
the weak topology for every x 2 D. By linearity, we may suppose without loss of
generality that D is a linear subspace of E, whence T W D ! E is linear. From the
norm-boundedness of T it now follows that kTxk � M kxk for all x 2 D, where
M WD supS2T kSk. Since D is norm-dense in E, T extends uniquely to a bounded
linear operator on E, i.e., T 2 L .E/.



328 16 The Jacobs–de Leeuw–Glicksberg Decomposition

It remains to show that Tˇ ! T in Lw.E/. Take y 2 E, x 2 D and x0 2 E0. Then
from the estimate

ˇ
ˇ˝Tˇy � Ty; x0˛ˇˇ � ˇˇ˝Tˇ.y � x/; x0˛ˇˇC ˇˇ˝Tˇx � Tx; x0˛ˇˇC ˇˇ˝T.x � y/; x0˛ˇˇ

� 2M
�
�x0�� � ��y � x

�
�C ˇˇ˝Tˇx � Tx; x0˛ˇˇ

we obtain

lim sup
ˇ

ˇ
ˇ˝Tˇy � Ty; x0˛ˇˇ � 2M

�
�x0�� � ��y � x

�
�:

Since for fixed y the latter can be made arbitrarily small, the proof is complete. ut
It is clear that Theorem 16.11 about reflexive spaces follows from Lemma 16.16,

as the closed unit ball of a reflexive space is weakly compact.

Remarks 16.17. 1) For historical reasons, a relatively weakly compact semi-
group T � L .E/ is sometimes called weakly almost periodic (e.g., in
Krengel (1985)). Analogously, relatively strongly compact semigroups are
termed (strongly) almost periodic.

2) If T � L .E/ is relatively strongly compact, then it is relatively weakly
compact, and both topologies coincide on the (strong = weak) closure of T .
In Exercise 10 it is asked to establish the analogue of Lemma 16.16 for
relative strong compactness.

3) A semigroup T � L .E/ is relatively weakly compact if and only if
the semigroup conv.T / is relatively weakly compact. (This follows from
Lemma 16.16 together with Kreı̌n’s Theorem C.11.) The same is true for the
strong operator topology.

4) Let T 2 L .E/ be a single operator. The semigroup generated by T is

TT WD sgrfTg D ˚Tn W n 2 N0

� D ˚I;T;T2; : : : �:

Suppose that TT is relatively weakly compact. Equivalently,

cl�
˚
Tnf W n 2 N0

�
is weakly compact for each f 2 E

(Lemma 16.16). Then T is certainly power-bounded. By 3),

conv
˚
Tnf W n 2 N0

�
is weakly compact for each f 2 E:

In particular, for each f 2 E the sequence .AnŒT�f /n2N of Cesàro means
has a weak cluster point, whence by Proposition 8.18 it actually converges
in norm. To sum up, we have shown that if T generates a relatively weakly
compact semigroup, then T is mean ergodic.
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The converse statement fails to hold. In fact, Example 8.27 exhibits a
multiplication operator T on c, the space of convergent sequences, such that
T is mean ergodic but T2 is not. However, T2 generates a relatively weakly
compact semigroup as soon as T does so. Thus T is mean ergodic but does
not generate a relatively weakly compact semigroup.

We close this section with a classical result. If S is a semigroup and a 2 S, then as
in the group case we denote by La and Ra the left and the right rotation by a defined
as .Laf /.x/ D f .ax/ and .Raf /.x/ D f .xa/ for f W S! C and x 2 S.

Theorem 16.18. Let S be a compact semitopological semigroup. Then the semi-
group of left rotations fLa W a 2 Sg is a weakly compact semigroup of operators
on C.S/.

Proof. By Lemma 16.16 we only have to check that for fixed f 2 C.S/ the orbit
M WD fLaf W a 2 Sg is weakly compact in C.S/. By Grothendieck’s Theorem G.5,
this is equivalent to M being compact in Cp.S/, the space C.S/ endowed with
the pointwise topology. But by separate continuity of the multiplication of S, the
mapping

S! Cp.S/; a 7! Laf

is continuous. Since S is compact, its image is compact. ut

16.3 The Jacobs–de Leeuw–Glicksberg Decomposition

Let E be a Banach space and let T � L .E/ be a semigroup of operators on E.
Then

S WD clw.T /;

the weak operator closure of T is a semitopological semigroup. We call the semi-
groupT Jacobs–de Leeuw–Glicksberg admissible (or briefly: JdLG-admissible)
if S is weakly compact and contains a unique minimal idempotent, i.e., satisfies the
equivalent conditions of Theorem 16.5. (Note that by Theorem 16.3 every weakly
compact operator semigroup contains at least one minimal idempotent.)

The following theorem gives a list of important examples.

Theorem 16.19. Let E be a Banach space and T � Lw.E/ a semigroup of
operators on E. Then T is JdLG-admissible in the following cases:

1) T is Abelian and relatively weakly compact.

2) E is a Hilbert space and T consists of contractions.

3) E D L1.X/, X a probability space, and T � M.X/, i.e., T consists of
Markov operators.
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Proof. The case 1) was already mentioned in Theorem 16.5. (Note that by
Exercise 14.2 the closure S of T is Abelian, too.) The case 3) can be reduced to 2)
via Corollary 16.14. To prove 2) suppose that P and Q are minimal idempotents
in S D clw.T /. Then P and Q are contractive hence orthogonal projections
(Theorem D.21). Since S Q is a minimal left ideal (Lemma 16.1) and S PQ is a
left ideal contained in S Q, it follows that these left ideals are identical. Hence,
there is an operator S 2 S such that SPQ D QQ D Q. Now let f 2 H be arbitrary.
Since S and P are contractions, it follows that

kQf k D kSPQf k � kPQf k � kQf k :
So kPQf k D kQf k, and since P is an orthogonal projection, by Corollary D.22
we obtain PQf D Qf . Since f 2 H was arbitrary, we conclude that PQ D Q, i.e.,
ran.Q/ � ran.P/. By symmetry ran.P/ D ran.Q/, and since orthogonal projections
are uniquely determined by their range, it follows that P D Q. ut

With a little more effort one can show the following.

Theorem 16.20. If E and its dual space E0 both are strictly convex, then every
relatively weakly compact semigroup of contractions on E is JdLG-admissible.

Sketch of proof. Recall that a Banach space E is strictly convex if kf k D kgk D 1
and f 6D g implies that kf C gk < 2. If P is a contractive projection on a strictly
convex space E, then it has the property in Corollary D.22.a, see Exercise 11. Hence,
by the same reasoning as in the proof above we conclude that PQ D Q. By taking
right ideals in place of left ideals, we find an operator T 2 S such that PQT D P,
and taking adjoints yields P0 D T 0Q0P0. If E0 is also strictly convex, it follows as
before that P0 D Q0P0, i.e., P D PQ D Q. ut
The theorem is applicable to spaces Lp.X/ with 1 < p <1, since these are strictly
convex and .Lp/0 D Lq with 1

p C 1
q D 1. Note that these spaces are reflexive, hence

contraction semigroups are automatically relatively weakly compact.

Corollary 16.21. Every semigroup of contractions on a space Lp.X/, X some
measure space and 1 < p <1, is JdLG-admissible.

Remark 16.22. Theorem 16.20 is due to de Leeuw and Glicksberg (1961, Cor.
4.14). There one can find even a characterization of JdLG-admissible semigroups
in terms of the amenability of their weak closures. See Day (1957) and Paterson
(1988) for more about this notion.

The JdLG-Decomposition

As before, let E be a Banach space, let T � L .E/ be a semigroup of operators
and let

S D clw.T /
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be its weak operator closure. In the following we shall suppose that T is JdLG-
admissible, i.e., S is weakly compact and contains a unique minimal idempotent Q.

By Theorem 16.5, S has a unique nonempty minimal ideal

G WD K.S / D QS D S Q D QS Q; (16.2)

which is a group with unit element Q. Since Q2 D Q, Q is a projection and the space
E decomposes into a direct sum

E D Erev.T /˚ Eaws.T / D ran.Q/˚ ker.Q/ D ker.I �Q/˚ ran.I � Q/;

called the Jacobs–de Leeuw–Glicksberg decomposition (JdLG-decomposition for
short) of E associated with T . This decomposition goes back to Jacobs (1956)
and de Leeuw and Glicksberg (1959, 1961). The space Erev WD Erev.S / is called
the reversible part of E and its elements are the reversible vectors; the space
Eaws WD Eaws.T / is called the almost weakly stable part and its element are the
almost weakly stable vectors. Both are closed subspaces of E. This terminology
will become clear shortly. Moreover, we shall see below that for T D TT D
fTn W n 2 N0g consisting of the iterates of one single operator T 2 L .E/, we
have Eaws.T / D Eaws.T/, as introduced in Section 9.2.

Proposition 16.23. In the situation above, the minimal idempotent Q of S satisfies

TQ D QT for all T 2 T :

In particular Erev and Eaws are invariant under S .

Proof. This is an immediate consequence of (v) in Theorem 16.5. ut
By Proposition 16.23, we may restrict the operators from S to the invariant

subspaces Erev and Eaws and obtain

Trev WD
˚
TjErev W T 2 T

�
; Srev WD

˚
SjErev W S 2 S

� � L .Erev/

Taws WD
˚
TjEaws W T 2 T

�
; Saws WD

˚
SjEaws W S 2 S

� � L .Eaws/:and

By Exercise 12, the restriction maps

S 7! SjErev and S 7! SjEaws

are continuous for the weak operator topologies. Since S is compact and S D
clw.T /, it follows that

Srev D clw.Trev/ and Saws D clw.Taws/:
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The following theorem shows that a vector u 2 E is reversible if and only if,
whenever some vector v can be reached by the action of S starting from u, then
one can return to u again by the action of S . This explains the terminology.

Theorem 16.24. Let E D Erev ˚ Eaws be the JdLG-decomposition of a Banach
space E with respect to a JdLG-admissible semigroup T � L .E/ with weak
closure S WD clw.T / and minimal idempotent Q in S . Then the following
assertions hold:

a) The reversible part Erev is given by

Erev D
˚
u 2 E W v 2 cl� .T u/ ) u 2 cl� .T v/

�

D ˚u 2 E W v 2 S u ) u 2 S v
�
:

b) The minimal ideal G WD K.S / is a compact topological group with neutral
element Q, the strong and the weak operator topologies coincide on G , and
the restriction map

G ! Srev; S 7! SjErev

is a topological isomorphism of compact groups.

Proof. a) Recall that Q acts as the identity on Erev D ran.Q/. If u 2 Erev, then
S u D S Qu D G u. Hence if v 2 S u, then there is R 2 G with v D Ru. Since
G is a group, there is S 2 G with SR D Q. Hence, u D Qu D SRu D Sv 2 S v.
Conversely, if u 2 E is such that there is S 2 S with SQu D u, then u D SQu D
QSu 2 ran.Q/.

b) For the special case when E is a Hilbert space and T is a semigroup of
contractions, this is Theorem 16.12. In the case that E D L1.X/, X some probability
space, and T � M.X/ is semigroup of Markov operators, it is Corollary 16.15.

In the general case, it follows from Ellis’ Theorem 16.6 that G is a compact
group. The assertion about the topological isomorphism is then evident. Finally,
that the strong and the weak operator topologies coincide on G follows from
Theorem 15.6. ut
Example 16.25 (Contraction Semigroups on Hilbert Spaces). Let H be a Hilbert
space and let T � L .H/ be a semigroup of contractions. Then T is JdLG-
admissible by Theorem 16.19. The minimal idempotent Q 2 S is a contraction,
hence self-adjoint, and the corresponding JdLG-decomposition

H D Hrev ˚ Haws

is an orthogonal decomposition. On Hrev the semigroup S WD clw.T / restricts to
a compact group of unitary operators. Because Q D Q�, the projection Q is also an
idempotent in the adjoint semigroup S � D fS� W S 2 S g. Since taking adjoints
is a homeomorphism and (up to order) a semigroup homomorphism on the set of
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all contractions, Q is also the minimal idempotent in S �. Consequently, the JdlG-
decompositions for T and T � coincide in this case.

Remark 16.26 (Mean Ergodic Semigroups). We claim that JdLG-admissible
semigroups are mean ergodic in the sense of Definition 8.31. In combination with
Theorem 16.20, this yields an alternative proof of Theorem 8.34.

To establish the claim, suppose that T � L .X/ is a JdLG-admissible semigroup
with weak closure S D clw.T /, minimal ideal G and minimal idempotent Q. Let,
as in Example 15.4,

P D PG WD
Z

G
S dm.S/;

(where m is the Haar probability measure on G ) be the mean ergodic projection
associated with G . Then, for every T 2 T ,

TP D T.QP/ D .TQ/P D P and PT D .PQ/T D P.QT/ D P

since QT; TQ 2 G . Moreover, for each u 2 E,

Pu 2 conv
˚
Su W S 2 G

� � conv
˚
Su W S 2 S

� D conv
˚
Tu W T 2 T

�
:

This shows that T is mean ergodic as claimed.

The Almost Weakly Stable Part

We now investigate the two parts of the JdLG-decomposition separately. Let us first
deal with the almost weakly stable part.

Proposition 16.27. Let E D Erev ˚ Eaws be the JdLG-decomposition of a Banach
space E with respect to a JdLG-admissible semigroup T � L .E/ with weak
closure S WD clw.T /. Then the following assertions hold:

a) Taws is a JdLG-admissible semigroup on Eaws with weak operator closure
Saws.

b) The minimal idempotent of Saws is the zero operator 0 2 Saws, and its
minimal ideal is K.Saws/ D f0g.

c) The elements of Eaws are characterized by

u 2 Eaws ” 0 2 cl�
˚
Tu W T 2 T

� ” Su D 0 for some S 2 S :

Proof. Let Q be the minimal idempotent of S . Then Q restricts to 0 on Eaws, and
hence a) and b) are evident.
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For c), note first that for each u 2 E the mapping T 7! Tu is continuous from
Lw.E/ to .E; �.E;E0//. Since S D clw.T / is compact, one has cl� .T u/ D
.clwT /u D S u. This proves the second equivalence in c).

If u 2 Eaws D ker.Q/, then it follows immediately that 0 D Qu 2 S u.
Conversely, suppose that Su D 0 for some S 2 S . Since QS 2 G D K.S /

and G is a group with unit element Q, there is R 2 G such that RQS D Q. So,
Qu D RQSu D 0, whence u 2 Eaws follows. ut

A JdLG-admissible semigroup T on a Banach space E is called almost weakly
stable if E D Eaws. Equivalently, T is almost weakly stable if 0 is in the weak
closure of each orbit fTu W T 2 T g, u 2 E.

Remark 16.28. A semigroup T can be almost weakly stable even if it is already a
group of unitary operators. Indeed, take H WD `2.Z/ and T the (right or left) shift.
Then T is a unitary operator and hence T WD fTn W n 2 Zg is a relatively weakly
compact group of unitary operators. But Tnf ! 0 weakly for every f 2 H, hence
H D Haws and Hrev D f0g.

The Reversible Part

Let us now look at the reversible part. We start with a characterization that is often
useful.

Proposition 16.29. Let T be a JdLG-admissible semigroup of bounded linear
operators on a Banach space E. Then

Eaws \
˚
x 2 E W Tx relatively compact and inf

T2T kTxk > 0� D ;:

In particular, if infT2T kTyk > 0 for every y ¤ 0 such that Ty is relatively compact
in E, then Erev D fx 2 E W Tx is relatively compact in Eg.
Proof. Let Q be the minimal idempotent of S WD clwT , i.e., the projection onto
Erev along Eaws. Let x 2 Eaws such that Tx is relatively compact. Then the weak
closure of Tx coincides with the norm closure. But then 0 D Qx 2 T x and hence
0 D infT2T kTxk.

In the second assertion, the inclusion “�” follows from Theorem 16.24.b. For the
converse, let x 2 E such that Tx is relatively compact and define y WD x�Qx 2 Eaws.
Then T y is relatively compact as well, hence by the first assertion infT2T kTyk D 0.
But then, by hypothesis, y D 0, i.e., x D Qx 2 Erev. ut
Corollary 16.30. Let T be a JdLG-admissible semigroup of linear isometries on
a Banach space E. Then Erev D fx 2 E W Tx is relatively compact in Eg.
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Similar to group representations (see Chapter 15), let us call a tuple .ej/
n
jD1 of

vectors of E a (finite) unitary system for a semigroup T � L .E/ if .e1; : : : ; en/

is linearly independent, F WD linfe1; : : : ; eng is T -invariant, and the corresponding
matrix representation � of T on F defined by

Tei D
nX

jD1
�ij.T/ej .i D 1; : : : ; n; T 2 T /

satisfies �.T/ 2 U.n/ for each T 2 T . Furthermore, a unitary system .ej/
n
jD1 for

T is called irreducible if F does not have nontrivial subspaces invariant under the
action of T .

Theorem 16.31 (Jacobs, de Leeuw, Glicksberg). Let E D Erev ˚ Eaws be the
JdLG-decomposition of a Banach space E with respect to a JdLG-admissible
semigroup T � L .E/. Then

Erev D lin
˚
u W .ej/j (irred.) unitary system for T and u D ej for some j

�
:

Proof. We use the previous terminology, i.e., S D clw.T / is the weak operator
closure of T , Q the minimal idempotent, Erev D ran.Q/ and G WD S Q D QS .

Let B WD .e1; : : : ; en/ be some unitary system for T and denote by F WD
linfe1; : : : ; eng the generated subspace. As F is closed and invariant underT , it must
be invariant under S as well. Let � be the matrix representation of S on F with
respect to the basis B. Then � is continuous and a homomorphism of semigroups.
By hypothesis, �.T / � U.n/, and since the latter is closed in L .Cn/, �.S/ 2 U.n/
for all S 2 S . In particular, �.Q/ 2 U.n/, and since Q is an idempotent, �.Q/ D In,
the n�n identity matrix. This means that Q acts as the identity on F, hence F � Erev.

For the converse we first note that the compact groupG acts continuously on Erev.
Hence, by Theorem 15.14, Erev is the closed linear span of all irreducible unitary
systems for this representation. But it is clear that each unitary system .ej/

n
jD1 in

Erev for G is a unitary system for T , since T D TQ on Erev for every T 2 T .
Further, if it is irreducible for the G -action, then it is irreducible for the T -action as
well since G � clw.T /. ut
We refer to Exercise 16 for a converse to Theorem 16.31. In the case of Abelian
semigroups, employing Corollary 15.18 we obtain the following information about
the reversible part.

Corollary 16.32. Let E be a Banach space, and let T � L .E/ be an Abelian
relatively weakly compact semigroup. Then

Erev D lin
˚
u 2 E W 8 T 2 T 9� 2 T with Tu D �u

�
:
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16.4 Cyclic Semigroups of Operators

In the following we investigate more closely the special case of the semigroup

TT D
˚
I;T;T2;T3; : : :

�

generated by a single operator T 2 L .E/. We suppose that this semigroup is re-
latively weakly compact. (Recall that this is automatic if T is power-bounded and E
is reflexive, or if T is a Markov operator on some L1.X/.) Then ST WD clw.TT/ is
Abelian, hence TT is JdLG-admissible, and we can form the JdLG-decomposition

E D Erev ˚ Eaws D Erev.TT/˚ Eaws.TT/

associated with TT .

Theorem 16.33. Let T 2 L .E/ generate a relatively weakly compact semigroup
TT with associated JdLG-decomposition E D Erev ˚ Eaws. Then the following as-
sertions hold:

a) Erev is spanned by the eigenvectors associated with unimodular eigenvalues
of T, i.e.,

Erev D lin
˚
u 2 E W 9� 2 T with Tu D �u

� D lin
[

�2T
ker.�I � T/:

If T is an isometry, then

Erev D
˚
u 2 E W fTnu W n � 0g is relatively compact

�
:

b) T is mean ergodic, fix.T/ � Erev and Eaws � ran.I � T/.

c) Eaws D ran.I � T/ if and only if ¢p.T/ \ T � f1g.
d) E D Eaws if and only if ¢p.T/\ T D ;.

Proof. a) The first assertion follows from Corollary 16.32 since if Tu D �u, then
Tnu D �nu for all n 2 N0. The second follows from Corollary 16.30.

b) The inclusion fix.T/ � Erev follows from a), but is self-evident since the
projection Q is in clwTT , and therefore Qf D f for all f 2 fix.T/. For the second
inclusion let u 2 Eaws, i.e., 0 2 cl�fTnu W n 2 N0g. But then 0 2 convfTnu W n 2
N0g and hence u D u � 0 2 ran.I � T/ by Proposition 8.18.

To prove mean ergodicity it suffices to show that T is mean ergodic on Erev, and
this follows from a). Alternatively one can argue that for given f 2 E the orbit
ff;Tf;T2f; : : : g is relatively weakly compact, and the same is true for the convex
hull, by Kreı̌n’s Theorem C.11.

c) follows from b) and a), and d) follows from a) directly. ut
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It follows that on Erev the action of T embeds into a faithful representation of the
compact monothetic group G WD ST jErev . By Exercise 15.9, the dual group G� is
generated by those characters � such that P� ¤ 0, i.e., such that �.T/ 2 ¢p.T/ is an
eigenvalue of T.

We look at a closer description of Eaws and thereby explain the term “almost
weakly stable.” Recall from Chapter 9, page 173, that a sequence .xn/n2N in a
topological space converges in density to x, in notation D-limn!1 xn D x, if there
is a subsequence J � N with density d.J/ D 1 such that limn2J xn D x.

Theorem 16.34. Let T generate a relatively weakly compact semigroup TT on a
Banach space E, and let M � E0 be norm-dense in the dual space E0. Then for
x 2 E the following assertions are equivalent:

(i) D-lim
n!1

˝
Tnx; x0˛ D 0 for all x0 2 M.

(ii) D-lim
n!1

˝
Tnx; x0˛ D 0 for all x0 2 E0.

(iii) lim
n!1

1

n

n�1X

jD0

ˇ
ˇ˝Tjx; x0˛ˇˇp D 0 for all x0 2 M and some/each p 2 Œ1;1/.

(iv) lim
n!1

1

n

n�1X

jD0

ˇ
ˇ˝Tjx; x0˛ˇˇp D 0 for all x0 2 E0 and some/each p 2 Œ1;1/.

(v) sup
x02E0;kx0k�1

1

n

n�1X

jD0

ˇ
ˇ˝Tjx; x0˛ˇˇp �!

n!1 0 for some/each p 2 Œ1;1/.

(vi) 0 2 cl�fTnx W n 2 Ng, i.e., x 2 Eaws.TT/.

(vii) There exists a subsequence .nj/j2N in N with Tnj x! 0 weakly as j!1.

(viii) D-limn Tnx D 0 weakly.

Proof. We note that T is necessarily power-bounded. For such operators the
pairwise equivalence of (i)–(v) has already been shown in Theorem 9.15 and
Proposition 9.17. Note also that the implications (viii)) (vii)) (vi) are trivial.

For the proof of the remaining assertions we need some preparations. Take x 2 E
and define F WD linfTnx W n � 0g, which is then a closed separable subspace of E.
Since F is also weakly closed, the set K WD cl�fTnx W n 2 N0g (closure in E)
is contained in F and hence a weakly compact subset of F. (By the Hahn–Banach
theorem the weak topology of F is induced by the weak topology on E.) Hence, in
the following we may suppose that E is separable.

Then, by the Hahn–Banach theorem we can find a sequence .x0
j/j2N in E0 with

kx0
jk D 1 for all j 2 N and such that fx0

j W j 2 Ng separates the points of E (see
Exercise 15), and define

d.y; z/ WD
1X

jD1
2�j

ˇ
ˇ˝y � z; x0

j

˛ˇˇ .y; z 2 E/: (16.3)
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Then d is a metric on E and continuous for the weak topology. Since K is weakly
compact, d is a metric for the weak topology on K.

We can now turn to the proof of the remaining implications.

(v)) (viii): It follows from (v) and the particular form (16.3) of the metric on K
that

1

n

n�1X

jD0
d.Tjx; 0/! 0 as n!1:

The Koopman–von Neumann Lemma 9.16 yields D-limn d.Tnx; 0/ D 0, i.e., (viii).

(vi)) (vii): Note that

0 2 cl�
˚
Tnx W n 2 N0

� D ˚x;Tx; : : : ;Tk�1x
� [ cl�

˚
Tnx W n � k

�

for every k 2 N. Since Tkx D 0 implies Tmx D 0 for all m � k, one has

0 2
\

k2N
cl�fTnx W n � kg;

that is, 0 is a weak cluster point of .Tnx/n2N0 . Since K is metrizable, (vii) follows.

(vii)) (v): This is similar to the proof of Proposition 9.17. By passing to the
equivalent norm jjj y jjj WD supn2N0 kTnyk (Exercise 9.6) one may suppose that T
is a contraction. Hence the (weakly�) compact set B0 WD fx0 2 E0 W kx0k � 1g
is invariant under T 0, and we obtain a topological system .B0IT 0/ with associated
Koopman operator S on C.B0/. Let f .x0/ WD jhx; x0ij. Then by hypothesis, there
is a subsequence .nj/j2N such that Snjf ! 0 pointwise on B0. By the dominated
convergence theorem, Snjf ! 0 weakly. Hence, 0 2 fix.S/\ convfSnf W n � 1g,
and by Proposition 8.18, implication (iv)) (i) it follows that AnŒS�f ! 0 in the
norm of C.B0/, which is assertion (v). ut
Remark 16.35. Theorem 16.34 states in particular that the almost weakly stable
subspace Eaws associated with TT coincides with Eaws.T/ from Section 9.2.

We give another characterization of Erev in the case of a semigroup generated by
a single operator. A power-bounded operator T 2 L .E/ on a Banach space E is said
to have discrete spectrum if

E D lin
˚
u 2 E W 9� 2 T with Tu D �u

�
:

Theorem 16.36. For an operator T 2 L .E/ on a Banach space E the following
assertions are equivalent:

(i) The operator T has discrete spectrum.

(ii) The operator T generates a relatively weakly compact operator semigroup
on E, and E D Erev.T/.
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(iii) The weak operator closure clwfTn W n � 0g is a weakly/strongly compact
group of invertible operators.

(iv) The operator T is contained in a strongly compact subgroup G � L .E/ of
invertible operators.

(v) fTnx W n � 0g is relatively compact and infT2T kTxk > 0 for all 0 ¤ x 2 E.

Proof. (i)) (ii): It is clear that the orbit fTnu W n � 0g is relatively strongly
(hence weakly) compact whenever Tu D �u, � 2 T. Therefore, by Lemma 16.16,
if T has discrete spectrum, then T generates a weakly compact operator semigroup
on E. By Theorem 16.33, the reversible part Erev.T/ is generated by the eigenvectors
corresponding to unimodular eigenvalues, hence coincides with E, by hypothesis.

(ii)) (iii): Let S WD clwfTn W n � 0g, which is an Abelian weakly compact
operator semigroup. By hypothesis, E D Erev, i.e., the minimal idempotent in S is
the identity operator. Hence, S D K.S / is a (weakly) compact topological group
of invertible operators.

(iii)) (iv): If clwfTn W n � 0g is a weakly compact group of invertible operators,
then, by Theorem 16.24, the weak and strong operator topologies coincide on it.

(iv)) (v): This is immediate.

(v)) (i): If (v) holds, then (ii) follows from Proposition 16.29. But then (i) is
immediate from Theorem 16.33. ut

Contractions on Hilbert Spaces

Let T be a contraction on a Hilbert space. Then, by Example 16.25, the JdLG-
decomposition

H D Hrev.T/˚ Haws.T/

is orthogonal. It is instructive to compare it with the Szőkefalvi-Nagy–Foiaş
decomposition H D Huni ˚ Hcnu (Theorem D.27) into a unitary and a completely
nonunitary part. Clearly

Hrev � Huni and Hcnu � Haws:

By Theorem 16.34, the vectors f 2 Haws are characterized by the existence of
a subsequence .nj/j2N � N with Tnjf ! 0 weakly as j ! 1. On the other
hand, vectors f 2 Hcnu satisfy Tnf ! 0 weakly as n ! 1 (Theorem D.28).
If T is an isometry, then the Szőkelfalvi-Nagy–Foiaş decomposition becomes the
Wold decomposition of H with respect to T. The unitary part is then Huni DT

n�0 ran.Tn/, see Theorem D.29. We return to the relation between these two
decompositions in Chapter 18.
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We close this chapter with a nice application of the JdLG-splitting theory to
Hilbert space contractions.

Proposition 16.37 (Abstract Wiener Lemma). Let T be a contraction on a
Hilbert space H, with JdLG-decomposition H D Hrev ˚ Haws. For � 2 T let P�
denote the orthogonal projection onto ker.�I � T/. Then the following assertions
hold:

a) The orthogonal projection P onto the stable part Hrev decomposes as an
orthogonal and strongly convergent series P D

X

�2T
P�:

b) For every f; g 2 H:

lim
n!1

1

n

n�1X

jD0

ˇ
ˇ�Tjf

ˇ
ˇ g
�ˇˇ2 D

X

�2T
j.P�f jP�g/j2 D

X

�2T
j.P�f j g/j2 :

Proof. a) By Theorem 16.33, Hrev is the linear hull of the eigenvectors to unimodular
eigenvalues. Since, by Exercise 19, eigenvectors to different such eigenvalues are
orthogonal, the assertion follows.

b) For f; g 2 H and j 2 N0 let

aj WD
�

TjPf
ˇ
ˇPg

� D �TjPf
ˇ
ˇ g
�

and bj WD
�

Tjf
ˇ
ˇ g
�
:

Then, by Theorem 16.34, we have

1

n

n�1X

jD0

ˇ
ˇbj � aj

ˇ
ˇ D 1

n

n�1X

jD0

ˇ
ˇ�Tj.f � Pf /

ˇ
ˇ g
�ˇˇ! 0 as n!1.

Note that

X

�2T
j.P�f j g/j D

X

�2T
j.P�f jP�g/j �

X

�2T
kP�f k kP�gk

�
0

@
X

�2T
kP�f k2

X

�2T
kP�gk2

1

A

1
2

D kPf k kPgk <1;

by a combination of Cauchy–Schwarz, Bessel, Parseval and part a). Hence,

ˇ̌
aj

ˇ̌2 D
X

�2T
�j .P�f j g/ �

X

�2T
�j
�

P�f
ˇ̌
g
�

D
X

�2T
j.P�f j g/j2 C

X

�;�2T;�6D�
.��/j .P�f j g/

�
P�f

ˇ̌
g
�
:



Exercises 341

By dominated convergence, we obtain

1

n

n�1X

jD0

ˇ
ˇaj

ˇ
ˇ2 D

X

�2T
j.P�f j g/j2 C

X

�;�2T

�¤�

1

n
.��/n�1
���1 .P�f j g/

�
P�f

ˇ
ˇ g
�

!
X

�2T
j.P�f j g/j2 as n!1:

Since aj; bj � kf k kgk,
ˇ
ˇ
ˇ
ˇ
ˇ̌
1

n

n�1X

jD0

ˇ
ˇbj

ˇ
ˇ2 � 1

n

n�1X

jD0

ˇ
ˇaj

ˇ
ˇ2
ˇ
ˇ
ˇ
ˇ
ˇ̌ �

ˇ
ˇ
ˇ
ˇ
ˇ̌
1

n

n�1X

jD0

ˇ
ˇbj

ˇ
ˇ2 � 1

n

n�1X

jD0

ˇ
ˇaj

ˇ
ˇ2
ˇ
ˇ
ˇ
ˇ
ˇ̌ �

1

n

n�1X

jD0

ˇ
ˇ
ˇ
ˇ
ˇbj

ˇ
ˇ2 � ˇˇaj

ˇ
ˇ2
ˇ
ˇ
ˇ

� 1

n

n�1X

jD0

ˇ
ˇbj � aj

ˇ
ˇ �
ˇ
ˇbj

ˇ
ˇC ˇˇaj

ˇ
ˇ� � 2 kf k kgk 1

n

n�1X

jD0

ˇ
ˇbj � aj

ˇ
ˇ ! 0

as n!1. Assertion b) follows. ut
A concrete version of this result, Wiener’s lemma, will be discussed in Chapter 18.

Exercises

1. Determine all possible semigroups with base set S D f0; 1g and the correspond-
ing minimal ideals.

2. Let S and S0 be semigroups and let˚ W S! S0 be a semigroup homomorphism,
i.e.,˚.st/ D ˚.s/˚.t/ for all s; t 2 S. Suppose in addition that˚ is surjective. Show
that the following assertions hold:

a) If J � S is a subsemigroup/left (right) ideal of S, then ˚.J/ is a subsemi-
group/left (right) ideal of S0.

b) If J � S0 is a subsemigroup/left (right) ideal of S0, then ˚�1.J/ is a
subsemigroup/left (right) ideal of S.

c) ˚.K.S// D K.S0/.
d) If J is a minimal left (right) ideal of S, then ˚.J/ is a minimal left (right)

ideal of S0.
e) If e 2 S is a (minimal) idempotent in S, then ˚.e/ is a (minimal) idempotent

of S0.
f) If S is a group with neutral element e, then S0 is a group with neutral

element ˚.e/.
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3. Show that in a compact left-topological semigroup S an element s 2 S is an
idempotent if and only if it generates a minimal closed subsemigroup.

4. Let S be a semitopological semigroup and H � S a subsemigroup. Show that if
H is a subsemigroup (ideal), then H is a subsemigroup (ideal), too. Show that if H
is Abelian, then so is H.

5. Let S and S0 be compact semitopological semigroups, and let ˚ W S ! S0 be
a surjective semigroup homomorphism (see Exercise 2). Suppose that S contains a
unique minimal idempotent e 2 S. Show that˚.e/ is the unique minimal idempotent
of S0. (Hint: Exercise 2 and Theorem 16.5.)

6. Consider S WD R[f1g, the one-point compactification of R, and define thereon
the addition t C1 WD 1 C t WD 1,1C1 WD 1 for t 2 R. Show that S is a
compact semitopological but not a topological semigroup. Determine the minimal
ideal.

7. Give a proof of Theorem 16.11 for a reflexive Banach space E. (Hint: Mimic the
Hilbert space proof.)

8. Let E be a Banach space. Show that the following sets are closed subsemigroups
of Lw.E/:

a) fT 2 L .E/ W TQ D QTg for some fixed operator Q 2 L .E/,

b) fT 2 L .E/ W Tf D f g for some fixed element f 2 E.

9. Let E D C.K/ or E D Lp.X/ for some 1 � p � 1. Show that the following sets
are closed subsemigroups of Lw.E/:

a) fT 2 L .E/ W T � 0g,
b) fT 2 L .E/ W Tf D Tf 8 f 2 Eg,
c) fT 2 L .E/ W T � 0; Th � hg for some fixed element h 2 ER.

10. Prove the following analogue of Lemma 16.16 for the strong operator topology:
Let E be a Banach space, let T � L .E/, and let D � E be a subset such that lin D
is dense in E. Then the following assertions are equivalent:

(i) T is relatively strongly compact, i.e., relatively compact in the strong
operator topology.

(ii) T x D fTx W T 2 T g is relatively compact in E for each x 2 E.

(iii) T is norm-bounded and T x D fTx W T 2 T g is relatively compact in E
for each x 2 D.

11. Let E be a strictly convex Banach space, and let P 2 L .E/ be a projection with
kPk � 1. Show that for any f 2 E one has

kPf k D kf k ” Pf D f:

(Hint: Write Pf D P
�
fCPf
2

�
.)
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12. Let E be a Banach space, and F � E a closed subspace. Show that the set

LF.E/ D
˚
T 2 L .E/ W T.F/ � F

�

is weakly closed, and the restriction mapping

LF.E/! L .F/; T 7! TjF
is a semigroup homomorphism (see Exercise 2), continuous for the weak and strong
operator topologies. (Hint: Use the Hahn–Banach theorem.)

13. Let E be a Banach space, let T � L .E/ be a JdLG-admissible semigroup
with minimal idempotent Q, and let F � E be a closed T -invariant subspace of E.
Show that

T jF WD fTjF W T 2 T g

is a JdLG-admissible subsemigroup of L .F/ with QjF as its unique minimal
idempotent. Conclude that Frev D Erev \ F and Faws D Eaws \ F. (Hint: Exercises 5
and 12.)

14. Let A be an algebra over R and let S � A be multiplicative, i.e., S � S � S. Show
that conv.S/ is multiplicative, too. Show that if st D ts holds for all s; t 2 S, then it
also holds for all s; t 2 conv.S/.

15. Let E be a separable Banach space. Show that there is a sequence .x0
j/j2N in E0

with kx0
jk D 1 for all j 2 N and such that fxj W j 2 Ng separates the points of E.

(Hint: Use the Hahn–Banach theorem.)

16. Let E be a Banach space, and let T � L .E/ be a norm-bounded subsemigroup.
Recall from page 335 the notion of a (finite) unitary system for T . Suppose that

E D lin
˚
u 2 E W 9 finite unitary system .ej/j for T with u 2 linfe1; : : : ; ejg

�
:

Show that T is relatively strongly compact, and that clwT D clsT is a compact
subgroup of L .E/ with the identity operator as neutral element.

17. Let E be a Banach space, and let T � L .E/ be a subsemigroup. Prove the
following assertions:

a) conv.T / is a subsemigroup of L .E/.

b) If T is JdLG-admissible, then conv.T / is JdLG-admissible, too. Moreover,
the projection onto Erev.conv.T // associated with conv.T / coincides with
the mean ergodic projection of T , cf. Remark 16.26.
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18. Suppose that one is given a dense continuous embedding E ,! F of Banach
spaces, and a power-bounded operator T 2 L .F/ that leaves E invariant and
restricts to a power-bounded operator on E. Show that if T has discrete spectrum
on E, then it has discrete spectrum on F. (The converse does not hold in general, cf.
Example 17.10.)

19. Prove that the eigenspaces associated with unimodular eigenvalues of a Hilbert
space contraction are pairwise orthogonal. (Hint: Note that ker.� � T/ D fix.�T/
and use Corollary 8.7.)



Chapter 17
The Kronecker Factor and Systems
with Discrete Spectrum

I want to know how God created this world. I am not interested in this or that phenomenon,
in the spectrum of this or that element. I want to know His thoughts, the rest are details.

Albert Einstein1

In this chapter we apply the splitting theory from Chapter 16 to semigroups of
Markov operators and, in particular, to the semigroup generated by the Koopman
operator of a dynamical system. In the ergodic case, the reversible part, the so-called
Kronecker factor, is described by the classical Halmos–von Neumann theorem from
1942 and becomes the first building block for a deeper structure theory of dynamical
systems. Its complement, the almost weakly stable part, relates to mixing properties
of dynamical systems. In the last section, the Kronecker factor is determined for a
couple of important examples.

17.1 Semigroups of Markov Operators
and the Kronecker Factor

Let X be a probability space and let T � M.X/ be a set of Markov operators. Then

S WD clw sgr.T /

is a weakly compact semigroup of Markov operators on E D L1.X/. Since
S is JdLG-admissible by Theorem 16.19, we obtain a corresponding JdLG-
decomposition

E D Erev ˚ Eaws D ran.Q/˚ ker.Q/;

where Q is the unique minimal idempotent in S .

1E. Salaman, A Talk with Einstein, The Listener 54 (1955), 370–371.
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Since S consists of Markov operators, Q is a Markov projection commuting
with the operators from T , and hence Erev D ran.Q/ is a strict T -factor of X, see
Theorem 13.29. This factor is called the Kronecker factor of T and denoted by

Kro WD Kro.XIT / WD reversible part in the JdLG-decomposition of L1.X/

with respect to T :

The group G WD QS D S Q is compact, and

� W G ! L .Kro/; �S WD SjKro

is a faithful continuous Markov representation. Hence, the results of Chapter 15
apply.

Example 17.1 (Fixed Factor). The Kronecker factor associated with the convex
semigroup conv.T / coincides with the fixed factor of T , i.e.,

Kro.XI conv.T // D fix.T / D
\

T2T
fix.T/;

see Example 13.27 and Exercise 16.17. The corresponding Markov projection
P2 D P 2 M.X/ with ran.P/ D fix.T / is the mean ergodic projection associated
with T , see also Remark 13.25. Clearly, fix.T / � Kro.XIT /, and PQ D QP D P.

Example 17.2 (Markov Embeddings). If T is a semigroup of Markov embed-
dings on a probability space X, then

Kro.XIT / D ˚f 2 L1.X/ W Tf is relatively compact
�
:

This follows from Corollary 16.30.

From now on we suppose that T is a semigroup. By Theorem 16.31, Kro.XIT /

is generated by the finite unitary T -systems. Recall that such a system consists of
a sequence .e1; : : : ; en/ of vectors in E and a multiplicative mapping (= semigroup
representation)

� W T ! U.n/

such that Tei DPn
jD1 �.T/ijej. By analogy to eigenvalues and eigenvectors, we call

the tuple .e1; : : : ; en/ an eigensystem associated with �.

Lemma 17.3. Let � W T ! U.n/ be fixed, and let .e1; : : : ; en/ 2 En be an
associated eigensystem. Then

� nX

jD1

ˇ
ˇej

ˇ
ˇ2
�1=2 2 fix.T /:
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Moreover, if f 2 fix.T /\ L1, then .f e1; : : : ; f en/ is again a �-eigensystem. The
T -invariant space

E� WD lin
˚
e1; : : : ; en W .e1; : : : ; en/ is a �-eigensystem

�

is also invariant under multiplication by elements from fix.T /\ L1, and E� \ L1
is dense in E�.

Proof. For a given eigensystem .e1; : : : ; en/ set e WD .
Pn

jD1 jejj2/1=2. Let f 2
fix.T /\L1 and T 2 T . Then f ei 2 Kro, and since T acts on the Kronecker factor
Kro as a Markov embedding,

T.f ei/ D Tf � Tei D f
nX

jD1
�.T/ijej D

nX

jD1
�.T/ijf ej:

Moreover, since �.T/ 2 U.n/,

e D
� nX

jD1

ˇ
ˇej

ˇ
ˇ2
�1=2 D

� nX

jD1

ˇ
ˇTej

ˇ
ˇ2
�1=2 � T

� nX

jD1

ˇ
ˇej

ˇ
ˇ2
�1=2 D Te

(consider T as a positive operator on L1.XICn/). Since T is a Markov operator, it
follows that Te D e.

For the remaining part note that, since e 2 fix.T / and fix.T / is a factor, 1Œ e�m � 2
fix.T / for m 2 N. Hence, the eigensystem .ej/j can be approximated by the L1-
eigensystems .ej1Œ e�m �/j as m!1. ut
Definition 17.4. Let A be a subalgebra of L1.X/. A subspace F of L1.X/ is called
an A-module if AF � F. Moreover, a linear operator T W F ! L1.X/ is called an
A-module homomorphism if T.f g/ D f Tg for all f 2 A and g 2 F.

In the situation from above, each T 2 T acts on Kro.XIT / as a Markov
embedding, and hence as a fix.T /-module homomorphism. Moreover, Lemma 17.3
states, in particular, that each space E� is a fix.T /-module.

We say that the semigroup T of Markov operators on L1.X/ is ergodic if
fix.T / D C1. This is perfectly in coherence with the concept of ergodicity
of measure-preserving systems, see also Section 15.4. If T is ergodic and if
.e1; : : : ; en/ is a �-eigensystem of T , then by Lemma 17.3 e D .

Pn
jD1 jejj2/1=2 is

a constant function, hence each ej is contained in L1. Furthermore, the Kronecker
factor Kro.XIT / is an ergodic G -system, hence Corollary 15.28 applies.

Theorem 17.5. Let T be an ergodic semigroup of Markov operators on some
probability space X. Then the action of S WD clwT on Kro.XIT / is equivalent
to the canonical rotation action of a compact group G on HnG for some closed
subgroup H of G.
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Abelian Markov Semigroups

Now we suppose that the semigroup T is Abelian. Then one can employ Corol-
lary 16.32. It states that to build up the Kronecker factor it suffices to consider
one-dimensional “unitary” systems, i.e., common eigenvectors of the operators
T 2 T associated with unimodular eigenvalues. In the ergodic case one can apply
Corollary 15.29 and obtains the following.

Theorem 17.6. Let T be an Abelian semigroup of Markov operators on a proba-
bility space X. Then its Kronecker factor is

Kro.XIT / D lin
˚
u 2 L1.X/ W 8 T 2 T 9� 2 T with Tu D �u

�
:

If T is ergodic, then the action of S WD clw.T / on Kro.XIT / is equivalent to the
canonical rotation action of a compact Abelian group G on itself.

The Kronecker Factor in Lp

Let T be a semigroup of Markov operators on a probability space X, and let 1 <
p <1. Denote by

Tp WD
˚
TjLp W T 2 T

� � L .Lp.X//

the restricted semigroup. Then we can form its associated JdLG-decomposition of
Lp.X/. As in the case p D 1 we denote

Kro WD Kro.XITp/ WD reversible part in the JdLG-decomposition of Lp.X/

with respect to the semigroup Tp:

Since the map T 7! TjLp is a homeomorphism and a semigroup isomorphism
(Proposition 13.6), the JdLG-theories for T and Tp are identical. In particular, if Q
is the JdLG-projection of T onto Kro.T /, then QjLp is the JdLG-projection of Tp

onto Kro.Tp/. Since, trivially, ran.QjLp/ D ran.Q/ \ Lp, we arrive at the following
useful fact.

Proposition 17.7. In the situation from above, Kro.XITp/ D Kro.XIT /\ Lp.

Since Kro.XIT / is a factor, Kro.XIT / \ Lp is dense in Kro.XIT /, and hence
one can switch freely between the L1-case and the Lp-case.
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17.2 Dynamical Systems with Discrete Spectrum

Next, we confine our attention to semigroups TT D sgrfTg generated by one single
Markov operator T 2 M.X/, where the associated Kronecker factor is denoted by
Kro.XIT/ WD Kro.XITT/. If T WD T' is the Koopman operator on L1.X/ of a
dynamical system .XI'/, then we also write Kro.XI'/ in place of Kro.T/ and call
it the Kronecker factor of .XI'/.

Let us summarize what we know from the general theory of the previous section:

1) The Kronecker factor Kro.XIT/ is a strict T-factor of L1.X/.

2) T acts as a Markov isomorphism on Kro.XIT/.
3) For � 2 T the space ker.�I�T/\L1 is dense in ker.�I�T/ (Lemma 17.3).

4) The space

lin
[

�2T
ker.�I � T/ \ L1

is a subalgebra of L1; its L1-closure equals Kro.XIT/.
5) If T is the Koopman operator of a system .XI'/, then

Kro.XI'/ D ˚f 2 L1.X/ W fTnf W n � 0g is relatively compact
�
:

The Kronecker factor Kro.XIT/ is certainly included in the invertible core of T,
i.e., the largest factor of the system on which T is invertible, see Example 13.34. The
invertible core of T is

T
n2N ran.Tn/ and coincides (after restriction to the L2-spaces)

with the unitary part of H in the Wold decomposition, cf. also Example 13.34 and
the paragraph on page 339 preceding Proposition 16.37.

Recall from Section 16.4 that a power-bounded operator T on a Banach space E
is said to have discrete spectrum if the linear span of eigenvectors associated with
unimodular eigenvalues of T is dense in E. A topological dynamical system .KI'/
is said to have discrete spectrum if its associated Koopman operator T' on C.K/
has discrete spectrum. Similarly, a measure-preserving system .XI'/ has discrete
spectrum if its associated Koopman operator T' on L1.X/ has discrete spectrum.
We say that f; g 2 L2.X/ correlate with each other if .f jg/ ¤ 0.

Corollary 17.8. Let .XI'/ be a measure-preserving system with Koopman opera-
tor T' , and let 1 � p <1. Then the following assertions are equivalent:

(i) The system .XI'/ has discrete spectrum.

(ii) The Koopman operator T' has discrete spectrum on Lp.X/.

(iii) The Kronecker factor of .XI'/ is all of L1.X/.

(iv) Each 0 6D f 2 L2.X/ correlates with some bounded eigenfunction associ-
ated with an unimodular eigenvalue of T' .
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Proof. We write Tp for the restriction of T' to Lp. The equivalences (i), (ii)
for p D 1 and (i), (iii) are clear. By Proposition 17.7, (iii) is equivalent to
Kro.XITp/ D Lp. By 3) above, bounded eigenfunctions generate Kro.XIT2/, hence
assertion (iv) simply states that Kro.XIT2/? D f0g. This is equivalent to (ii) for
p D 2. ut
Example 17.9. Let G be a compact Abelian group and let La be the Koopman
operator induced by the rotation by a 2 G. Since every character � 2 G� is an
eigenfunction of La corresponding to the eigenvalue �.a/ 2 T and since lin G� is
dense in C.G/ (Proposition 14.7), La has discrete spectrum on C.G/. A fortiori, La

has discrete spectrum also on Lp.G/ for every 1 � p <1.

Example 17.10. Let T be the Koopman operator of an ergodic measure-preserving
system .XI'/ such that L1.X/ is not finite-dimensional. Then T is not mean ergodic
on L1 by Proposition 12.28. A fortiori, T does not have discrete spectrum on L1.

In particular, the Koopman operator La of an irrational rotation .TI a/ has discrete
spectrum on L2 but not on L1.

Suppose now that .XI'/ is an ergodic measure-preserving system with discrete
spectrum. By the second part of Theorem 17.6, the system is Markov isomorphic
to a rotation system .G;mI a/ for a compact Abelian group G with Haar measure m
and some element a 2 G. As the rotation system must be ergodic, too, the group
G is monothetic with a being a generating element (Propositions 10.13 and 14.21).
By Proposition 14.22, the dual G� of G is isomorphic to the subgroup

	 WD ˚�.a/ W � 2 G�� � T:

Under this isomorphism, by the Pontryagin duality theorem (Theorem 14.14), G Š
	 � with a 2 G corresponding to the canonical inclusion map 	 ! T, � 7! �.a/.
Note that, by Proposition 14.24, 	 D ¢p.La/ is the point spectrum of the Koopman
operator. Hence, the rotation system .G;mI a/ can be determined from the original
system .XI'/ in the following way:

1) Form 	 WD ¢p.T'/, where T' is the Koopman operator of .XI'/. Then 	 is
a subgroup of T.

2) Define G WD 	 �, the dual group of 	 . This is a compact Abelian group.

3) Let a 2 G be the canonical inclusion map 	 ! T.

4) Then .XI'/ is isomorphic to .G;mI a/.
In effect, we have proved the following fundamental result.

Theorem 17.11 (Halmos–von Neumann). Each ergodic measure-preserving sys-
tem with discrete spectrum is isomorphic to an ergodic rotation system on a compact
monothetic group.

More precisely, let .XI'/ be an ergodic measure-preserving system with discrete
spectrum. Then the set 	 of unimodular eigenvalues of the associated Koopman
operator is a subgroup of T, and .XI'/ is isomorphic to the rotation system
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.G;mI a/, where G D 	 � is the dual group and a 2 G is the canonical inclusion
map 	 ! T.

This theorem is of considerable interest. We therefore give now a direct proof of
the Halmos–von Neumann theorem not relying on the Jacobs–de Leeuw–Glicksberg
theory. We follow the steps 1)–4) from above.

Direct proof of Theorem 17.11. Let T be the Koopman operator of the ergodic
system .XI'/ with discrete spectrum, and let 	 WD ¢p.T/ be its point spectrum. By
Proposition 7.18, each eigenvalue is unimodular and simple, and 	 is a subgroup of
T. Each eigenfunction is unimodular up to a multiplicative constant.

As a product of unimodular eigenfunctions is again an unimodular eigenfunction,
the set

A WD clL1

[

�2	
ker.�I � T/

is a unital C�-subalgebra of L1.X/. By the Gelfand–Naimark theorem we may
hence suppose that X D .K; �/ is a compact probability space, � has full support,
' W K ! K is continuous, and the unimodular eigenfunctions generate C.K/.

The Koopman operator is mean ergodic on C.K/, since it is mean ergodic on
each eigenspace and the linear span of the eigenspaces is dense in C.K/. Moreover,
fix.T/ is one-dimensional (by ergodicity of .K; �I'/ and since � has full support).
By Theorem 10.6, the topological system is uniquely ergodic, i.e., � is the unique '-
invariant probability measure on K. Since � has full support, .KI'/ is even strictly
ergodic. Hence, by Corollary 10.9, .KI'/ is minimal.

Now fix x0 2 K. For each � 2 	 let f� 2 C.K/ be the unique(!) function that
satisfies Tf� D �f� and f .x0/ D 1. Define

˚ W K ! H WD T
	 ; ˚.x/ D .f�.x//�2	 :

Then H is a compact Abelian group and ˚ is continuous and injective (since the
functions f� separate the points). Moreover, if a WD .�/�2	 is the inclusion map
	 ! T, ˚.'.x// D a˚.x/ for all x 2 K. It follows that

˚ W .KI'/! .HI a/
is an injective homomorphism of topological dynamical systems. Since ˚.x0/ D 1H

and orb.x0/ is dense in K (by minimality),

G WD ˚.K/ D orbC.1H/ D cl
˚
an W n � 0�

is a monothetic subgroup of H, and ˚ W .KI'/ ! .GI a/ is an isomorphism of
topological systems. The push-forward measure ˚�� is invariant, hence it is the
Haar measure. Therefore

˚ W .K; �I'/! .G;mI a/
is an isomorphism of measure-preserving systems.
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As a last step, we show that G D 	 �. Note that, by uniqueness, f��� D f� � f�
for all �; � 2 	 . Hence, every ˚.x/, x 2 K, is actually a character of 	 , i.e.,
˚.K/ D G � 	 � � H. Conversely, suppose that � 2 	 is such that G is trivial
on �. Then f�.x/ D 1 for all x 2 K, and in particular 1 D f .'.x0// D �f�.x0/ D �.
By duality theory (Corollary 14.5 and Theorem 14.14) it follows that G D 	 �. ut

Let us turn to some consequences of the Halmos–von Neumann theorem. The
first is another characterization of the Kronecker factor.

Corollary 17.12. Let .XI'/ be a measure-preserving system. Then Kro.XI'/ is
the largest factor of .XI'/ which is isomorphic to a compact group rotation system.

The isomorphism problem consists in determining complete isomorphism
invariants for (ergodic) measure-preserving systems, see, for instance, Rédei and
Werndl (2012) for a historical account, but cf. also Section 18.4.7 below. The
following corollary of the Halmos–von Neumann theorem states that for the class
of discrete spectrum systems the point spectrum of the Koopman operator is such a
complete isomorphism invariant.

Corollary 17.13. Two ergodic measure-preserving systems with discrete spectrum
are isomorphic if and only if the Koopman operators have the same point spectrum.

Two measure-preserving systems .XI'/ and .YI / are called spectrally iso-
morphic if their Koopman operators on the L2-spaces are unitarily equivalent, that
is, if there is a Hilbert space isomorphism (a unitary operator) S W L2.X/ ! L2.Y/
intertwining the Koopman operators, i.e., ST' D T S.

Corollary 17.14. Two ergodic measure-preserving systems with discrete spectrum
are (Markov) isomorphic if and only if they are spectrally isomorphic.

Proof. By Corollary 12.12 and by the remark following it, Markov isomorphic
systems are spectrally isomorphic.

Conversely, if two ergodic measure-preserving systems are spectrally isomor-
phic, their Koopman operators have the same point spectrum. Under the assumption
that both systems have discrete spectrum, they must be Markov isomorphic by
Corollary 17.13. ut
Remark 17.15. The Halmos–von Neumann theorem dates back to the ground-
breaking article (Halmos and von Neumann 1942). There, continuous one-
parameter flows were considered and discrete spectrum systems were called systems
with “pure point spectrum,” cf. also Chapter 18. Mackey (1964) generalized that
notion to Borel actions on a standard probability space X of a locally compact
separable group	 . In Mackey’s definition, such an action has “pure point spectrum”
if L2.X/ decomposes orthogonally into finite-dimensional irreducible subrepresen-
tations of 	 . His result is as follows.

Theorem (Mackey). Given any Borel action with pure point spectrum of a locally
compact separable group 	 on a standard probability space X, there is a compact
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group G, a continuous homomorphism � W 	 ! G with dense image and a closed
subgroup H of G such that the action of 	 on X is isomorphic to the action of 	 on
the homogeneous space G=H by rotations via � .

In our language, Mackey’s “pure point spectrum” just means that L2.X/ D
Kro.XI�.	 //, where � W 	 ! L .L2.X// is the associated representation. So
Mackey’s result is covered by Theorem 17.5. Of course, we employ the weaker
notion of Markov isomorphism instead of point isomorphism. However, this is
backed up by von Neumann’s Theorem 12.14 that allows to pass from Markov
to point isomorphisms in case all involved probability spaces are standard. And
this is the case in Mackey’s situation: Since X is standard, L2.X/ is separable and
consequently its unitary group is Polish. A fortiori, the compact group G, being the
strong closure of �.	 /, and finally its homogeneous space G=H are also Polish.

17.3 Disjointness of Weak Mixing and Discrete Spectrum

Recall from Chapter 9 that a measure-preserving system .XI'/ is weakly mixing if
and only if it is ergodic and its Koopman operator has no eigenvalues except � D 1
(Theorem 9.25). Since the Kronecker factor is generated by the eigenvectors, the
following is an equivalent reformulation.

Proposition 17.16. A measure-preserving system .XI'/ is weakly mixing if and
only if its Kronecker factor is trivial, i.e., Kro.XI'/ is isomorphic to a one-point
system.

Proposition 17.16 states that the trivial system is the only one that is weakly
mixing and has discrete spectrum. Or, in Furstenberg’s terminology from (1967),
systems of discrete spectrum and weakly mixing systems are coprime: A weakly
mixing systems and a system with discrete spectrum can have only the trivial system
as a common factor.

Proposition 17.16 can also be rephrased in terms of the notion of disjointness,
coined in Furstenberg (1967) as well. According to Furstenberg, two systems
are disjoint if the product system is the only joining of the two systems. Since
the concept of a joining is not introduced in this book, we work here with an
equivalent—operator theoretic—definition, and refer to Glasner (2003) for more
details.

Definition 17.17. Two measure-preserving systems .XI'/ and .YI / are disjoint
if the projection S D 1 ˝ 1 is the only Markov operator S 2 M.YIX/ with
T 0
'ST D S.

Note that we employ the identity T 0
'ST D S instead of the stronger commutation

relation ST D T'S. The reason is that we want disjointness to be a symmetric
property, and we do not require T' to be invertible (in which case the two identities
are equivalent).
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Proposition 17.18. A measure-preserving system .XI'/ is weakly mixing if and
only if it is disjoint from every system with discrete spectrum.

Proof. If .XI'/ is not weakly mixing, then its Kronecker factor is not trivial, and
hence the associated Markov embedding is not trivial.

Conversely, suppose that .YI / has discrete spectrum, .XI'/ is weakly mixing
and S 2 M.YIX/ is a Markov operator satisfying S D T' 0ST . Since T' is a Markov
embedding, P WD T'T'0 is a projection. Let 0 6D f 2 L2.Y/ with T f D �f ,
j�j D 1. Then

T'Sf D T'T'
0ST f D PST f D PS.�f / D �PSf:

Consequently, since T' is isometric,

kSf k2 D
�
�T'Sf

�
�
2
D kPSf k2 � kSf k2 :

As in the proof of Corollary 13.18 it follows that PSf D Sf , and hence T'Sf D
�Sf . Since .XI'/ is weakly mixing, by Theorem 9.25 (or by Proposition 17.16)
Sf is a constant function. Since .YI / has discrete spectrum, it follows that S
maps L2.Y/ to linf1g, whence S D 1˝ 1. ut

We leave it as an exercise to show that, conversely, Proposition 17.16 is a
consequence of Proposition 17.18.

Let us remark that we need not recur on the spectral characterization of weakly
mixing systems (Theorem 9.25) to obtain Proposition 17.16, because it is in fact a
consequence of the Jacobs–de Leeuw–Glicksberg theory developed in the previous
chapter. In order to see this, let

E WD Erev ˚ Eaws

be the JdLG-decomposition of E WD L2.X/ associated with the Koopman operator
T D T' of a given measure-preserving system .XI'/. On the reversible part Erev,
T generates a compact group of automorphisms, and the representation theory
of compact groups yields that Erev is generated by the eigenvectors of T, cf.
Theorem 16.33.a. The other summand Eaws was identified in Theorem 16.34 with
the subspace Eaws.T/ from Section 9.2. Since by Theorem 9.19(iv), the systems
.XI'/ is weakly mixing if and only if E D linf1g ˚ Eaws.T/, Proposition 17.16
follows immediately.

But the Jacobs–de Leeuw–Glicksberg theory adds even more information since
it exploits the relative weak compactness of the semigroup fTn W n � 0g on Lp.X/,
p 2 Œ1;1/, a fact that played no role at all for the characterizations of weak
mixing in Chapter 9. Taking this weak compactness into account led to the
characterizations of the almost weakly stable part in Theorem 16.34. Applying that
result to dynamical systems (and summarizing the considerations from above) we
obtain the following theorem.
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Theorem 17.19. Let .XI'/ by a measure-preserving system with associated Koop-
man operator T WD T' on E WD Lp.X/, p 2 Œ1;1/. Then the following assertions
are equivalent:

(i) The measure-preserving system .XI'/ is weakly mixing.

(ii)
Z

X
f � 1 2 cl�fTnf W n 2 N0g for every f 2 Lp.X/.

(iii) For each f 2 Lp.X/ there is subsequence J � N such that

lim
n2J

Z

X
.Tnf / � g!

� Z

X
f
�
�
� Z

X
g
�

for all g 2 Lq.X/.

(iv) For each f 2 Lp.X/ there is subsequence J � N of density d.J/ D 1 such
that

lim
n2J

Z

X
.Tnf / � g!

� Z

X
f
�
�
� Z

X
g
�

for all g 2 Lq.X/.

(v) The Kronecker factor of .XI'/ is trivial, i.e., equals linf1g.
(vi) The system is ergodic and the mean ergodic projection coincides with the

projection onto the reversible part of the JdLG-decomposition associated
with T.

(vii) The system .XI'/ is disjoint from every system with discrete spectrum.

Proof. Note that with h WD f � hf; 1i � 1, assertions (ii)–(iv) can be rewritten
equivalently as:

(ii) 0 2 cl�fTnh W n 2 N0g.
(iii) limn2J Tnh D 0 weakly for some subsequence J � N:

(iv) D-limn2N Tnh D 0 weakly.

By Theorem 16.34, each of these assertions is equivalent to h 2 Eaws.T/. Hence,
each assertion (ii), (iii), and (iv) is equivalent with E D linf1g ˚ Eaws.T/, which is
equivalent to (i) by Theorem 9.19.

Since the Kronecker factor equals the reversible part of the Jacobs–de Leeuw–
Glicksberg decomposition with respect to T, the equivalence (v), (vi) is clear.
Finally, the equivalence of (v) and (i) is Proposition 17.16 above; and Proposi-
tion 17.18 accounts for the equivalence of (vii) and (i). ut

17.4 Examples

In this section we treat some examples for Kronecker factors of measure-preserving
systems.
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1. Affine Endomorphisms of the Torus

Fix m 2 N and a 2 T and consider the mapping

' W T! T; '.z/ D azm;

called an affine endomorphism. It is easy to see that ' preserves the Haar measure
(see Exercise 3). If m D 1, the system .T;mI'/ is simply a group rotation, hence
has discrete spectrum. We claim: If m > 1, then .T;mI'/ is weakly mixing, i.e., its
Kronecker factor is trivial.

Proof. The characters of T are the functions z 7! zn, n 2 Z. Hence, every function
f 2 L2.T/ can be uniquely written as a convergent Fourier series

f D
X

n2Z
anzn

with
P

n2Z janj2 <1. Suppose that T'f D �f with j�j D 1. Then

X

n2Z
ananzmn D T'f D �f D

X

n2Z
�anzn:

Comparing Fourier coefficients yields an D 0 whenever m6 j n and anan D �amn for
all n 2 Z. Inductively it follows for each k 2 N that an D 0 whenever mk�1jn but
mk 6 j n. But that means that an D 0 for all n ¤ 0, so f is a constant. By the spectral
characterization of weakly mixing systems, the system is weakly mixing. ut

2. The Kakutani–von Neumann Map

Consider the probability space X D .Œ0; 1/;Bo; �/, � the Lebesgue measure on
Œ0; 1/. The Kakutani–von Neumann map is the transformation ' W Œ0; 1/! Œ0; 1/

defined by

'.x/ WD x � 2k�3
2k if x 2 � 2k�2

2k ;
2k�1
2k

�
.k 2 N/;

and '.x/ is arbitrary on the remaining countably many points.
Let us call an interval of the form .

j�1
2n ;

j
2n / for n 2 N0 and j D 1; : : : ; 2n a

basic dyadic interval. Then it is obvious from the graph of ' (see Figure 17.1)
that '�1 maps—up to countable null sets—basic dyadic intervals to basic dyadic
intervals of the same length. It follows that ' is measure-preserving. Since ' clearly
is essentially invertible, we obtain an invertible measure-preserving system .XI'/,
sometimes called the Kakutani–von Neumann odometer.

Let T WD T' be its Koopman operator, which is unitary on L2.X/. In order
to determine the eigenvalues of T we first recall that T acts for each m 2 N as
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Fig. 17.1 Sets A, B and their
inverse images '�1.A/,
'�1.B/

−1(A)−1(B)

B

A

a permutation on characteristic functions of basic dyadic intervals of length 2�m.
By Exercise 4, this permutation is a full cycle of length 2m.

Now let gm WD 1.0;2�m/. Then the orbit Tjgm passes for j D 0; : : : ; 2m� 1 through
all characteristic functions of basic dyadic intervals of length 2�m, and T2

m
gm D gm

again. Hence

lin
˚
Tjgm W j D 0; : : : ; 2m�1�

is a T-invariant C�-subalgebra of L1.0; 1/ isomorphic to C
2m

with an underlying
cyclic permutation. In other words, for each m 2 N we have found the cyclic group
rotation system .Z=2m

ZI 1/ as a factor of .XI'/. Furthermore, these factors are
linearly ordered as

.XI'/! � � � ! .Z=2m
ZI 1/! : : : .Z=2ZI 1/! f0g:

Note that the spectrum of the Koopman operator on the group rotation factor
.Z=2m

ZI 1/ must be the character group, which is (isomorphic to) Z=2m
Z, i.e., the

group of 2mth roots of unity.
Since the characteristic functions of basic dyadic intervals are dense in L1.X/ and

eigenvectors to different eigenvalues are orthogonal, .XI'/ has discrete spectrum
with

¢p.T/ D
n
e
2 ik
2m W m 2 N0; k 2 N

o
:

Finally, we claim that .XI'/ is ergodic. Suppose that f 2 fix.T/ with f ? 1. Then
f is orthogonal to every eigenfunction of T corresponding to an eigenvalue different
from 1. Since f is also orthogonal to 1, it is orthogonal to any of the group factors
Z=2m

Z and hence, by density, it must be zero. This establishes the claim.
The Halmos–von Neumann Theorem 17.11 now tells that the system .XI'/ is

isomorphic to an ergodic rotation on the (compact) character group of the point
spectrum ¢p.T/. More precisely, by Corollary 17.13 and Proposition 14.24, the
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system is isomorphic to some (respectively, any) group rotation .G;mI a/ where
G is a compact monothetic group with generator a 2 G and ¢p.T/ D f�.a/ W � 2
G�g. Hence, by Exercise 14.8, .XI'/ is isomorphic to the dyadic adding machine
.A2;mI 1/. This explains why .XI'/ is sometimes called the dyadic odometer.

The dyadic odometer can be viewed as the inductive limit of the ergodic group
rotations on Z=2n

Z, see Section 13.5. Hence, its ergodicity (proved above by virtue
of an ad hoc argument) follows from Corollary 13.37. Likewise, it is a general fact
that inductive limits of systems with discrete spectrum have again discrete spectrum
(Exercise 11). And this is a special case of the more general fact that the Kronecker
factor of an inductive limit is the inductive limit of the Kronecker factors, see
Exercise 13.

3. Dyadic Solenoid

Consider again the Kakutani–von Neumann map ' W Œ0; 1/ ! Œ0; 1/ from the
previous section, defined by

'.x/ WD x � 2k�3
2k if x 2 � 2k�2

2k ;
2k�1
2k

�
.k 2 N/;

while ' is arbitrary on the remaining countably many points, see also Figure 17.1.
On the probability space X WD .Œ0; 1/2;Bo; �2/, �2 the Lebesgue measure on Œ0; 1/2,
we define the mapping

 .x; y/ WD
(
.x; yC ˛/ for y 2 Œ0; 1 � ˛/;
.'.x/; yC ˛ � 1/ for y 2 Œ1 � ˛; 1/;

for some ˛ 2 Œ0; 1/nQ. It is Exercise 10 to show that .XI / is an invertible measure-
preserving system. We shall prove that the Koopman operator T WD T has discrete
spectrum on L2.X/ and identify the group rotation isomorphic to this system.

First, we recall some facts from Section 17.4.2 above. Define the set

M WD ˚.m; k/ W m 2 N0, k 2 N odd with k � 2m
�
:

Since ' is an invertible ergodic transformation, each eigenvalue of T is unimodular
and simple (see Proposition 7.18). The Koopman operator T' of ' is unitary and
has discrete spectrum on L2.Œ0; 1// with pairwise different eigenvalues e2 ik=2m

and corresponding pairwise orthogonal eigenvectors fm;k when .m; k/ 2 M
(see Lemma D.25). So .fm;k/.m;k/2M is an orthonormal basis in L2.Œ0; 1//. For
.m; k/ 2 M let

em;k.x/ WD e2 i k
2m x;



17.4 Examples 359

and en.x/ WD e2 inx for n 2 Z. It is Exercise 10 to prove that the functions

fm;k ˝ .em;ken/ .m; k/ 2 M, n 2 Z

form an orthonormal basis of L2.X/ and that

T
�
fm;k ˝ .em;ken/

� D e2 i. k
2m Cn/˛fm;k ˝ .em;ken/:

As a consequence we obtain that .XI / is ergodic and that T has discrete spectrum
on L2.X/ with

¢p.T/ D
˚
e2 i k

2m ˛ W m 2 N0; k 2 Z
�
:

Since ˛ is irrational, this discrete group is isomorphic to the discrete additive group

Q2 WD
n

k
2m W m 2 N0; k 2 Z

o

of dyadic rationals. The Halmos–von Neumann Theorem 17.11 tells that the
system .XI / is isomorphic to the group rotation .˙2;mI a/, where ˙2 is the
(compact, monothetic and, in our case, connected) dual group Q

�
2 of the discrete

group Q2, called the dyadic solenoid, and where the character a W Q2! T is given
by a.r/ WD e2 ir. For an algebraic description of the group rotation .˙2;mI a/ and
for more information about measure-preserving systems on Œ0; 1/2 isomorphic to
group rotations on such solenoidal groups, we refer to Maier (2013a, 2013b). For
details about solenoidal groups, we recommend Hewitt and Ross (1979), Sections 10
and 25, in particular Def. 10.12 and Sec. 25.3.

4. Skew Rotation

Consider the probability space X WD .T2;Bo.T2/;m ˝ m/, where m is the Haar
measure on T, and consider on X the skew rotation

 a W T2 ! T
2;  .z;w/ WD .az; zw/;

see Example 5.15. The projection onto the first component is a point factor map

.XI a/! .T;mI a/

onto the rotation system .T;mI a/. We claim: This factor coincides with the
Kronecker factor.

Proof. Let T D T and S be the Koopman operators of the skew rotation on T
2

and the rotation system .T;mI a/, respectively. The proof uses the same idea as the
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proof of Proposition 10.17. Every function f 2 L2.T � T/ can be written uniquely
as a series

f .z;w/ D
X

n2Z
fn.z/w

n

for certain fn 2 L2.T/. The equation Tf D �f then means that

X

n2Z
�fn.z/w

n D �f D Tf D
X

n2Z
.Sfn/.z/z

nwn

which is equivalent to the infinite system of equations �fn D znSfn, n 2 Z. We have
to show that fn D 0 whenever n 6D 0.

Now fix n 6D 0 and consider a function g 2 L2.T/ with znSg D �g. Writing as
before g DPj2Z ajzj, this translates into

�ajCn D aja
j .j 2 Z/:

Taking the modulus yields jajCnj D jajj for all j 2 Z, but since
P

j2Z jajj2 < 1, it
follows that aj D 0 for all j 2 Z. This concludes the proof. ut

5. Heisenberg Systems

Recall from Example 2.13 that the Heisenberg manifold is H WD G=	 , where G is
the non-Abelian group G of upper triangular real matrices with all diagonal entries
equal to one, i.e.,

G D
(0

@
1 x z
0 1 y
0 0 1

1

A W x; y; z 2 R

)

;

and 	 is its cocompact subgroup of elements with integer entries. Recall also the
notation

Œx; y; z� WD
0

@
1 x z
0 1 y
0 0 1

1

A ;

so that the multiplication takes the form

Œa; b; c� � Œx; y; z� D ŒaC x; bC y; cC zC ay�:
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We fix ˛ D Œa; b; c� 2 G and consider the rotation system .H;mI˛/, where m is
the unique probability measure on H that is invariant under all (left) rotations by
elements of G, see Examples 5.16 and 5.17.

This system has a rotation system on the two-dimensional torus R2=Z2 Š T
2 as

a natural factor, given by the point factor map

H! R
2=Z2; Œx; y; z� 	 7! Œx; y� .mod Z

2/

that intertwines multiplication with ˛ and translation with Œa; b� .mod Z
2/. This

factor is called the rotation factor in the following. We claim: If a D b D 0, then
the Heisenberg system has discrete spectrum. Otherwise, the Kronecker factor is
precisely the rotation factor.

Proof. Note first (Exercise 5) that the center of G is

C WD ˚g 2 G W gh D hg for all h 2 G
� D ˚Œ0; 0; r� W r 2 R

�
:

The compact Abelian group K WD C	 =	 is isomorphic to R=Z. The restriction to
C	 of the canonical left action of G on H induces a left action of K on H. Moreover,
the fixed factor associated with this action of K is precisely the rotation factor.

If a D b D 0, then ˛ 2 C and the translation by ˛ embeds into the action of
the compact Abelian group K. Hence, by Corollary 15.18, the system .H;mI˛/ has
discrete spectrum. In the following we may therefore suppose that either a ¤ 0 or
b ¤ 0. We start with the case b ¤ 0.

Denote, for g 2 G, by Lg the Koopman operator on L2.H/ of the left rotation
�	 7! g� 	 on H. Then Lgh D LhLg and L�

g D L�1
g D Lg�1 , i.e., L W G ! L2.H/

is a unitary “anti-representation.” The Koopman operator of the system .H;mI˛/ is
L˛ , but because of its special role we write T WD L˛ for it.

Let f 2 L2.H/ and � 2 T such that Tf D �f . By the considerations above,
it suffices to show that Lhf D f for each h 2 C. To this aim we shall employ a
little “trick,” whose operator theoretic content is deferred to Lemma 17.20 below.
Its application requires some preparatory computations.

Define, for x 2 R, the element gx WD Œx; 0; 0� 2 G and compute

˛ngx˛
�n D Œx; 0; nbx� for n 2 N0;

see Exercise 6. For given r 2 R let rn WD r
bn (recall that b 6D 0). It follows that

grn ! Œ0; 0; 0� and ˛ngrn˛
�n ! Œ0; 0; r� (17.1)

as n!1. Passing to Koopman operators, this translates into

Lgrn
� Tn�Lgrn

Tn ! I � LŒ0;0;r� strongly as n!1:
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Now we employ Lemma 17.20 from below to conclude LŒ0;0;r�f D f . As r 2 R was
arbitrary, it follows that f is contained in the fixed factor of the action of C	 =	 on
H, which is the rotation factor.

So the claim is proved in the case b ¤ 0. If a ¤ 0, one can employ a similar
reasoning, but with the vectors hx WD Œ0; x; 0� replacing gx D Œx; 0; 0�. ut
Lemma 17.20. Let H be a Hilbert space, T � L .H/ a semigroup of operators on
H and f 2 H such that for each T 2 T there is �T 2 T with Tf D �Tf . Suppose
furthermore that R 2 L .H/ is a contraction with

f � Rf 2 clw
˚
Sf � T�STf W T 2 T ; S 2 L .H/

�
:

Then f 2 fix.R/.

Proof. One has, for every T 2 T and S 2 L .H/,

�
T�STf j f � D .STf j Tf / D �T�T .Sf jf / D .Sf j f / :

It follows from the hypothesis that .Rf j f / D .f j f /. Since R is a contraction,
this implies that Rf D f (Lemma D.14). ut
Remark 17.21. The central idea in the proof above is taken from Einsiedler and
Ward (2011, p. 335). Lemma 17.20 is a generalization of the so-called (abstract)
Mautner phenomenon, see Parry (1970, Sec. 1).

As a result we obtain the following characterization.

Theorem 17.22. For a; b 2 R the following assertions are equivalent:

(i) The Heisenberg system .H;mI Œa; b; c�/ is ergodic.

(ii) The topological Heisenberg system .HI Œa; b; c�/ is strictly ergodic.

(iii) The numbers 1; a; b are rationally independent.

Proof. The equivalence of (i) and (iii) follows from the considerations above in
combination with Kronecker’s theorem (Theorem 14.18) and the fact that factors of
ergodic systems are ergodic. The implication (ii)) (i) is clear, since in this case m
is the unique and hence necessarily ergodic invariant probability measure on H.

For the remaining implication (i)) (ii), we employ Theorem 15.31 about compact
group extensions. As seen above, the rotation factor is the fixed factor with respect
to the action

H � R=Z! H; Œx; y; z� � r WD Œx; y; z� � Œ0; 0; r� D Œx; y; zC r�

by the compact group K D C	 =	 Š R=Z. Hence, by Theorem 15.31 it suffices
to show that the measure m on H is the Haar lift of the Haar measure on the factor
R
2=Z2 with respect to the mean ergodic projection
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P W C.H/! C.R2=Z2/; Pf D
Z

R=Z

�rf dr

where � W R=Z ! L .C.H// is the associated Koopman representation. This is a
simple computation, left as Exercise 7. ut

Exercises

1 (Bottom-Up Approach to the Kronecker Factor). Let T be any semigroup of
Markov operators on a probability space X. Show that the space

A WD lin
˚
e1 W n 2 N and .e1; : : : ; en/ is any L1-unitary system for T

�

is a T -invariant C�-subalgebra of L1.X/. Then show that on the factor L1.Y/ WD
clL1 .A/ the action of the semigroup T embeds into a compact group of Markov
automorphisms. Conclude that L1.Y/ D Kro.XIT /.

2. Let .e1; : : : ; en/ be any eigensystem associated with a multiplicative mapping
� W T ! U.n/ of a semigroupT of Markov operators on E D L1.X/. Let U 2 U.n/
and define �0 W T ! U.n/ by

�0.T/ WD U�1�.T/U .T 2 T /:

Show that linfe1; : : : ; eng contains a �0-eigensystem. Conclude that E� D E�0 .

3. Let G be a compact group with Haar measure m, and let � W G ! G be a
continuous and surjective group homomorphism. Show that ��m D m.

4. Consider the measure-preserving system .XI'/ discussed in Section 17.4.2 (see
page 356). Recall that '� maps basic dyadic intervals to basic dyadic intervals
of equal length. Show, according to the following steps, that for each m 2 N, '�
restricts to a cyclic permutation of the basic dyadic intervals of length 2�m.

a) Call two basic dyadic intervals A and B of length 2�m “brothers” if A [ B is
(up to a null set) a basic dyadic interval of length 2 � 2�m. Show that '� maps
brothers to brothers.

b) Note that the natural order of the reals induces, by restricting to left end-
points, a natural total order on the basic dyadic intervals of a given length
2�m. Show that '�, applied to two brothers A and B with A < B, reverses
their order precisely when A D Am WD .0; 12m / and B D Bm WD . 12m ;

2
2m /.

c) Consider the orbit of Am D .0; 12m / and its larger brother Bm under iterations
of '�. By induction and a) you may suppose that it takes precisely 2m�1
iterations of '� to bring back Am[Bm to itself a first time. Employ b) to show
that precisely 2m iterations of '� are required to bring back Am to itself.
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5. Let G WD fŒx; y; z� W x; y; z 2 R
3g be the Heisenberg group and let ˛ WD Œa; b; c�

2 G. Show that ˛g D g˛ for all g 2 G if and only if a D b D 0.

6. Let G WD fŒx; y; z� W x; y; z 2 R
3g be the Heisenberg group and let ˛ WD Œa; b; c�

2 G. Show that

a) ˛n D Œna; nb; ncC �n
2

�
ab�,

b) ˛�n D Œ�na;�nb;�ncC �nC1
2

�
ab�,

c) ˛nŒx; 0; 0�˛�n D Œx; 0; nbx�

for each n 2 N0 and x 2 R.

7. Complete the proof of Theorem 17.22 by showing that the Haar lift of the Haar
measure on R

2=Z2 along the mean ergodic projection

P W C.H/! C.R2=Z2/

is exactly the Haar measure on H.

8. Let G be a compact group with Haar measure m and a 2 G. Prove that .G;mI a/
and .G;mI a�1/ are isomorphic.

9. Let .T;mI a/ be an ergodic rotation system, and for some m 2 N consider the
group extension .T2I a;m/ of .TI a/ along

˚m W T! T; ˚m.x/ D xm:

(For m D 1 we obtain the already familiar skew rotation, see Example 2.22.) Prove
the following facts:

a) The Haar measure mT2 on T
2 is  a;m-invariant.

b) .T2;mT2 I a;m/ is strictly ergodic.

c) The Kronecker factor of .T2;mT2 I a;m/ is the rotation factor .T;mI a/.
10 (Dyadic Solenoid). We consider the measure-preserving system .XI / from
Section 17.4.3 (see page 358) and use the same notation. Prove the following
assertions:

a)  preserves the two-dimensional Lebesgue measure �2 on Œ0; 1/2.

b) The measure-preserving system .XI / is invertible.

c) The functions

fm;k ˝ .em;ken/ .m; k/ 2 M, n 2 Z

form an orthonormal basis in L2.X/.
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d) For the Koopman operator T WD T on L2.X/ we have

T.fm;k ˝ .em;ken// D e2 i. k
2m Cn/˛fm;k ˝ .em;ken/:

e) The system .XI / is ergodic, and T has discrete spectrum with

¢p.T/ D
˚
e2 i k

2m ˛ W m 2 N0; k 2 Z
�
:

11. Show that an inductive limit of dynamical systems with discrete spectrum has
again discrete spectrum.

12. Let T � M.X/ be a semigroup of Markov operators over a probability space
X, and let S W L1.Y/ ! L1.X/ be a Markov embedding onto a T -factor. Then
� W M.X/ ! M.Y/ defined by �.T/ WD S0TS is a homomorphism of semigroups
(cf. Remark 13.32.)

Let Q 2 M.X/ be the Markov projection onto the Kronecker factor Kro.XIT /.
Show that �.Q/ 2 M.Y/ is the Markov projection onto the Kronecker factor
Kro.YI�.T // and

Kro.YI�.T // D S0.Kro.XIT //:

(Hint: Exercise 16.5 yields the first assertion and the inclusion “�”. For the converse
show that Kro.YI�.T //? � .S0.Kro.XIT ///?.)

13 (Kronecker Factors of Inductive Limits). Let .XIT/ D lim�!i2I
.XiIT/ be an

inductive limit of (an inductive system of) abstract dynamical systems .XiIT/ as in
Section 13.5. Show that

Kro.XIT/ D lim�!
i2I

Kro.XiIT/

in the obvious sense. (Hint: Exercise 12.)



Chapter 18
The Spectral Theorem and Dynamical Systems

By and large it is uniformly true that in mathematics there is a time lapse between a
mathematical discovery and the moment it becomes useful; and that this lapse can be
anything from 30 to 100 years, in some cases even more; and that the whole system seems to
function without any direction, without any reference to usefulness, and without any desire
to do things which are useful.

John von Neumann

In this chapter we prove the spectral theorem for normal operators and study
the corresponding spectral measures in some detail. In particular, we introduce
the maximal spectral type and the multiplicity function yielding together a complete
isomorphism invariant for unitary operators. Based on these fundamental results
we interpret various mixing properties in spectral terms and explain systems with
discrete spectrum from a point of view different from the one taken in Chapter 17.
In addition, a number of examples illuminate the fundamental ideas of the spectral
theory of dynamical systems. Readers interested in details and in the more advanced
theory can consult Queffélec (1987), Nadkarni (1998b), Lemańczyk (1996), Katok
and Thouvenot (2006), Lemańczyk (2009), and the multitude of further references
therein.

18.1 The Spectral Theorem

A bounded operator T 2 L .H/ on a Hilbert space H is called normal if T�T D
TT�, see Appendix D. For such an operator T its generated C�-algebra

A D alg
˚
I;T;T��

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_18
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is commutative. Recall from Section 4.4 the definition of the Gelfand space �.A/
of A and denote by

SpA.T/ WD
˚
� 2 C W �I � T is not invertible within A

�

the spectrum of T as an element of the algebra A. We can also consider T as an
element of the full algebra L .H/, and its spectrum there coincides with ¢.T/, the
usual operator theoretic notion of spectrum. Then, trivially,

¢.T/ � SpA.T/:

The next result shows that we have equality here.

Lemma 18.1. In the situation above, SpA.T/ D ¢.T/ and the evaluation map

�.A/! ¢.T/; � 7! �.T/

is a homeomorphism.

Proof. Let us abbreviate �A.T/ WD f� 2 �.T/ W .�I� T/�1 2 Ag. This set is closed
in �.T/. Indeed, let .�n/n2N be a sequence in �A.T/ with �n ! � 2 �.A/. Then,
since the resolvent mapping � 7! .�I � T/�1 is continuous, ..�nI � T/�1/n2N is
a Cauchy sequence in A, hence it is convergent in A, to some limit which must be
.�I � T/�1.

Since �A.T/ is also open and contains the set f� 2 C W j�j > kTkg, it contains
the entire unbounded connected component of �.T/.

Now, fix � 2 �.T/. Then the operator S WD .�I� T/�.�I� T/ is self-adjoint and
invertible. Since the spectrum of a self-adjoint operator is contained in R, the point
0 is an element of the unbounded component of �.S/. By what we just have shown,
S�1 is an element of the C�-algebra generated by S, which is contained in A. Hence,
.�I � T/�1 D S�1.�I � T/� 2 A, and this implies that � 2 �A.T/. It follows that
SpA.T/ D C n �A.T/ � C n �.T/ D ¢.T/.

For the remaining statement we note that the evaluation map is continuous (by the
definition of the topology on �.A/) and surjective (by Theorem 4.32). To see that
it is injective, note that each � 2 �.A/ satisfies �.T�/ D �.T/ by Lemma 4.35.
In particular, � is completely determined by its value on T. Since each bijective
continuous mapping between compact spaces is a homeomorphism, the proof is
complete. ut

By the lemma we may identify �.A/ with ¢.T/. From now on we abbreviate, for
simplicity,

K WD ¢.T/ Š �.A/:
The Gelfand–Naimark theorem (Theorem 4.23) yields an isomorphism

˚ W A! C.K/
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of C�-algebras. A moment’s thought reveals that ˚.T/ D .z 7! z/ is the coordinate
function, abbreviated here simply by z. The inverse mapping ˚�1 W C.K/! L .H/
is called the continuous functional calculus for T and it is common to write

f .T/ WD ˚�1.f / .f 2 C.K//:

Then one has the identities kf .T/k D kf k1 and

.f C g/.T/ D f .T/C g.T/; .f g/.T/ D f .T/g.T/; f .T/ D f .T/� (18.1)

for f; g 2 C.K/, as well as 1.T/ D I and .z/.T/ D T.
The Riesz representation theorem, Theorem 5.7, yields for each pair of vectors

x; y 2 H a unique complex measure �x;y 2 M.K/ with

.f .T/x j y/ D ˝f;�x;y
˛ D

Z

K
f d�x;y for all f 2 C.K/: (18.2)

We write �x WD �x;x. The following result summarizes the properties of the
measures �x;y. (Note that since K � C, the Baire and the Borel algebra of K
coincide. For � 2 MC.K/ we abbreviate Lp.�/ WD Lp.K; �/.)

Theorem 18.2. Let T be a normal operator on a Hilbert space H, let K D ¢.T/,
and let .�x;y/x;y2H be the associated family of measures given by (18.2). Then the
following assertions hold:

a) The mapping H � H ! M.K/; .x; y/ 7! �x;y is sesquilinear and satisfies
�y;x D �x;y and

���x;y

��
M.K/ � kxk � kyk for all x; y 2 H:

b) For f; g 2 C.K/ and x; y 2 H, �f.T/x;g.T/y D f g�x;y in the sense that
Z

K
h d�f.T/x;g.T/y D

Z

K
hf g d�x;y

for all h 2 C.K/.

c) For each x 2 H the measure �x is positive with

k�xk D �x.K/ D kxk2 and kf .T/xk D kf kL2.�x/
for all f 2 C.K/.

Moreover, the mapping H ! M.K/; x 7! �x is continuous.

d) For f; g 2 BM.K/,

ˇ
ˇ
ˇ
Z

K
f g d�x;y

ˇ
ˇ
ˇ �

� Z

K
jf j2 d�x

�1=2 � Z

K
jgj2 d�y

�1=2
:
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e) For every pair of vectors x; y 2 H there is hx;y 2 L2.�x/ with �x;y D hx;y�x.

Proof. a) The sesquilinearity and the symmetry is straightforward from Eq. (18.2),
see Exercise 1. For the norm inequality let x; y 2 H. Then, again by (18.2),

ˇ
ˇ˝f;�x;y

˛ˇˇ D j.f .T/x j y/j � kf .T/k kxk kyk D kf k1 kxk kyk

for every f 2 C.K/. Hence
�
��x;y

�
� � kxk kyk, by the Riesz representation theorem.

b) By definition and (18.1), one has for f; g; h 2 C.K/ and x; y 2 H

˝
h; �f.T/x;g.T/y

˛ D .h.T/f .T/x j g.T/y/ D �g.T/�.hf /.T/x j y�

D . .hf g/.T/x j y/ D ˝hf g; �x;y
˛
:

c) For each f 2 C.K/ we have by b) that

Z

K
jf j2 d�x D

Z

K
f f d�x D

Z

K
1d�f.T/x D kf .T/xk2 � 0:

It follows that �x � 0. Taking f D 1 yields �x.K/ D kxk2. The continuity of the
mapping x 7! �x follows directly from a).

d) By Theorem E.1 it suffices to prove the inequality for f; g 2 C.K/. But in this
case, it follows from b) (with h D 1), a) and c) that

ˇ̌
ˇ
Z

K
f g d�x;y

ˇ̌
ˇ
2 D

ˇ̌
ˇ
Z

K
1 d�f.T/x;g.T/y

ˇ̌
ˇ
2 � ���f.T/x;g.T/y

�
�2 � kf .T/xk2 kg.T/yk2

D
� Z

K
jf j2 d�x

� � Z

K
jgj2 d�y

�
:

e) Letting g D 1 in the previous assertion we see that �x;y is a functional on
C.K/ that is continuous with respect to the L2.�x/-norm. Hence, e) follows from
the Riesz–Fréchet theorem (Theorem D.4). ut

See also Exercise 2. We draw an interesting conclusion.

Corollary 18.3. If T is a normal operator on a Hilbert space, then r.T/ D kTk.
Proof. The inequality r.T/ � kTk is a general fact from spectral theory (Ap-
pendix C.9). For the converse, in Theorem 18.2.c we put f D id and obtain

kTxk2 D
Z

K
jzj2 d�x.z/ �

�
sup
z2K
jzj2 ��x.K/ D r.T/2 kxk2 :

This yields kTk � r.T/ as claimed. ut
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Theorem 18.2 entails in particular that for fixed x 2 H the map

C.K/! H; f 7! f .T/x

extends to an isometric isomorphism (i.e., to a unitary operator) of Hilbert spaces
L2.�x/ Š Z.x/, where

Z.x/ D Z.xIT/ WD cl
˚
f .T/x W f 2 C.K/

� D cl
˚
Sx W S 2 A

�

is the cyclic subspace (with respect to T) generated by x 2 H. For convenience, we
denote the vector in Z.x/ corresponding to f 2 L2.�x/ again by f .T/x. (However,
note that this is a compound expression, and the term “f .T/” does not, in general,
have a meaning for all f 2 L2.�x/.)

As Z.x/ is a T-bi-invariant subspace of H, so is Z.x/? (see Corollary D.24), and
one can use an argument based on Zorn’s lemma to decompose H orthogonally as

H D
M

˛

Z.x˛/ Š
M

˛

L2.K; �x˛ /: (18.3)

Since under the isomorphism Z.x/ Š L2.�x/ the operator T (as an operator on
Z.x/) corresponds to multiplication by z on L2.�x/, we arrive at a first version of the
spectral theorem.

Theorem 18.4 (Spectral Theorem, Multiplier Form). For a bounded, normal
operator T on a Hilbert space H, the pair .H;T/ is unitarily equivalent to
.L2.˝;�/;M/, where � is a positive Baire measure on a locally compact space
˝ , and M is the multiplication operator associated with a ¢.T/-valued continuous
function on˝ .

Proof. We employ the terminology introduced above. For each ˛ let K˛ WD K �f˛g
be a copy of K D ¢.T/, so that the sets K˛ are pairwise disjoint. Let ˝ WD S

˛K˛
with the direct sum topology and the direct sum measure � WD L

˛ �x˛ . Then we
obtain

H D
M

˛

Z.x˛/ Š
M

˛

L2.K; �x˛ / Š L2.
[

˛

K˛;
M

˛

�x˛ / D L2.˝;�/:

Each K˛ is compact and open in ˝ , whence ˝ is locally compact. On Z.x˛/ the
operator T acts as multiplication by z on L2.K; �x˛ /, and hence T acts on H as
multiplication on L2.˝;�/ by a function m simply given by m.z; ˛/ D z on K˛ .
This is a continuous function on˝ . ut
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The Borel Functional Calculus

The functional calculus can be extended beyond continuous functions. Recall from
Appendix E.1 that BM.K/ denotes the space of bounded Baire (= Borel) measurable
functions on K. If f 2 BM.K/ and x 2 H, then f 2 L2.�x/ and hence f .T/x 2 H
has been defined above as a compound expression, linear in f . By approximation
(use, e.g., Theorem 18.2.e),

.f .T/x j y/ D
Z

K
f d�x;y for all x; y 2 H:

Hence, f .T/ is a linear operator (cf. Corollary D.6). The mapping

� W BM.K/! L .H/; �.f / WD f .T/

is called the (bounded) Borel functional calculus for T. (See Exercise 4 for an
alternative construction of the Borel functional calculus.) For the following result
recall the notion of a bp-convergent sequence from Appendix E.1.

Theorem 18.5 (Borel Functional Calculus). In the situation from above, the
mapping � W BM.K/! L .H/ has the following properties:

a) �.z/ D T.

b) � is a (contractive) homomorphism of C�-algebras.

c) � maps bp-convergent sequences to strongly convergent sequences.

d) Every �.f /, f 2 BM.K/, commutes with every bounded operator on H that
commutes with T and T�.

Moreover, � is uniquely determined by the properties a)–c).

Proof. a) is clear, and c) follows from the identity k�.f /xk D kf .T/xk D
kf kL2.�x/ and from the fact that, by the dominated convergence theorem, bp-
convergence implies convergence in L2.K; �x/.

b) Linearity of � is clear. Note that, for f 2 BM.K/, one has

k�.f /xk2 D kf k2L2.�x/
D
Z

K
jf j2 d�x � kf k21 �x.K/ D kf k21 kxk2

for all x 2 H. It follows that k�.f /k � kf k1.
Fix x 2 H. Then f .T/g.T/x D .f g/.T/x for all f; g 2 C.K/. By approximation

this identity remains valid for f 2 C.K/ and g 2 L2.�x/, in particular for
g 2 BM.K/. But then a second approximation argument establishes the identity
for g 2 BM.K/ and f 2 L2.�g.T/x/, and in particular for all f; g 2 BM.K/. In
a similar way one can show that �.f / D �.f /� for all f 2 BM.K/. Thus, b) is
proved.
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To show d), suppose that S 2 L .H/ commutes with T and T�. Then Sf .T/x D
f .T/Sx for each x 2 H and each f 2 C.K/. By approximation, this identity remains
valid for f 2 L2.�x/, in particular for f 2 BM.K/.

Finally, we prove uniqueness. Suppose that � 0 W BM.K/ ! L .H/ also has the
properties a)–c). Then E WD ff 2 BM.K/ W �.f / D � 0.f /g is closed under
bp-convergence and contains the identity function z. Hence, it contains its conjugate
z and therefore all polynomials in z and z. But these are dense in C.K/, by the
Stone–Weierstraß theorem, and hence C.K/ � E. By Theorem E.1, it follows that
E D BM.K/. ut

Let T be a bounded normal operator on a Hilbert space H and K 	 ¢.T/. Given
a Borel set A 2 Bo.K/, the operator PA WD 1A.T/ is a contractive, hence orthogonal,
projection on H satisfying

kPAxk2 D
Z

K
1Ad�x D �x.A/: (18.4)

In particular, x D PAx if and only of �x.Ac/ D 0. The mapping A 7! PA is called the
(projection valued) spectral measure of the operator T, see Exercise 5 for further
properties.

Unitary Operators and the Theorem of Bochner–Herglotz

Given a complex measure � 2 M.T/ and n 2 Z, the nth Fourier coefficient of the
measure � is defined by

O�.n/ WD
Z

T

z�n d�.z/:

By the Stone–Weierstraß theorem and the Riesz representation theorem, the measure
� 2 M.T/ is completely determined by its Fourier coefficients.

Let now T 2 L .H/ be a unitary operator, i.e., T is invertible with T�1 D T�.
Then T is normal with ¢.T/ � T, and we can consider .�x;y/x;y2H, the associated
family of measures, as elements of M.T/. By definition of �x;y, for n 2 Z,

.x jTny/ D
Z

T

z�n d�x;y

i.e., .x jTny/ D O�x;y.n/ is the nth Fourier coefficient of �x;y.
In the case x D y the measure �x D �x;x is positive. Then, the sequence of its

Fourier coefficients has a special property as the following famous theorem shows.

Theorem 18.6 (Bochner–Herglotz). For a scalar sequence .an/n2Z the following
assertions are equivalent:
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(i) There is a Hilbert space H, a unitary operator T on H and a vector x 2 H
such that

an D .x jTnx/ for all n 2 Z:

(ii) There is a positive measure � 2 M.T/ such that

an D O�.n/ D
Z

T

z�n d�.z/ for all n 2 Z.

(iii) The sequence .an/n2Z is positive definite, i.e.,

X

n;j

an�j�n�j � 0 for all � 2 c00.Z/,

where c00.Z/ denotes the space of sequences having only finitely many
nonzero coordinates.

Proof. (i)) (ii): This is simply the spectral theorem.

(ii)) (iii): A short computation shows that

X

n;j

an�j�n�j D
Z

T

X

n;j

�n�jz
j�n d�.z/ D

Z

T

ˇ
ˇ
X

n

�nz�n
ˇ
ˇ2 d�.z/ � 0

for all � 2 c00.Z/.

(iii)) (i): On c00.Z/ we define the sesquilinear form

.� j �/ WD
X

n;j

�n�jan�j .�; � 2 c00.Z//;

which is positive semi-definite by hypothesis. Since we are working over the
complex numbers, the form is also symmetric. Hence,

k�k WD
�X

n;j

�n�jan�j

�1=2
.� 2 c00.Z//

is a semi-norm on c00.Z/ with kernel N WD f� 2 c00.Z/ W k�k D 0g. Let H be the
Hilbert space that arises as the completion of the quotient space c00.Z/=N with
the induced inner product. The left shift T.�n/n2Z WD .�nC1/n2Z on c00.Z/ leaves
the semi-inner product . � j �/ invariant, and hence extends uniquely to a unitary
operator on H. Finally, let x WD .ı0k/k2Z CN 2 H. Then, as a short computation
reveals,

.x j Tnx/ D an .n 2 Z/
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as desired. ut
Remark 18.7. The Bochner–Herglotz theorem can be used to prove the spectral
theorem for unitary operators (see Exercise 6). This is the route taken, e.g., in
Queffélec (1987, Ch. 2) and Glasner (2003, Ch. 5).

Isometries and Contractions

A noninvertible isometry T on a Hilbert space H cannot be normal, and therefore
the spectral theorem is not applicable, at least not directly. Nevertheless, there is an
indirect way due to the following fact.

Lemma 18.8. If T is a linear isometry on a Hilbert space H, then for each x 2 H
the sequence .an/n2Z, given by

an WD
(
.x jTnx/ for n � 0,

.T�nx j x/ for n < 0;

is positive definite.

Proof. Fix x 2 H and � D .�j/j2Z 2 c00.Z/, and let N � 0 be so large that �j D 0

for all jjj � N. Then

X

n;j

an�j�n�j D
X

j�n

�n�j
�

x
ˇ
ˇ Tn�jx

�C
X

j>n

�n�j
�

Tj�nx
ˇ
ˇ x
�

D
X

j�n

�n�j
�

TNx
ˇ̌
Tn�jCNx

�C
X

j>n

�n�j
�

Tj�nCNx
ˇ̌
TNx

�

D
X

j�n

�n�j
�

TNCjx
ˇ
ˇ TnCNx

�C
X

j>n

�n�j
�

TjCNx
ˇ
ˇ TnCNx

�

D
X

j;n

�n�j
�

TjCNx
ˇ
ˇ TnCNx

� D
�
�
�
X

n

�nTnCNx
�
�
�
2 � 0: ut

Given an isometry T 2 L .H/, by the Bochner–Herglotz theorem, to every x 2 H
one can associate a positive measure �x 2 M.T/ such that

.Tnx j x/ D
Z

T

zn d�x and
�

Tn�x j x� D
Z

T

z�n d�x for n 2 N0:

Alternatively (and more or less equivalently), one can pass to a unitary extension of
T on a larger Hilbert space. This is a special case of a so-called unitary dilation,
which, by a famous theorem of Szőkefalvi-Nagy, exists even for every linear
contraction on a Hilbert space, see Theorem D.32. The spectral theorem can be
then applied to this dilation.
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18.2 Spectral Decompositions and the Maximal
Spectral Type

Before proceeding we need to recall some notions and facts from measure theory.
For simplicity, we restrict ourselves to measures on Ba.K/ D Bo.K/ for compact
subsets K of C.

A measure  2 M.K/ is called absolutely continuous with respect to� 2 M.K/,
in notation   �, if

j�j .B/ D 0 H) .B/ D 0 for every B 2 Bo.K/.

The measures � and  are called mutually singular (denoted by � ? ) if there is
B 2 Bo.K/ with j�j .B/ D 0 D jj .Bc/, and equivalent (� � ) if �   and
  �. The basic properties of these relations are collected in Appendix B.10, in
particular in Lemma B.20.

Returning to spectral theory, we take T 2 L .H/ a normal operator on a Hilbert
space H, and .�x;y/x;y2H the corresponding family of complex Borel (= Baire)
measures on K WD ¢.T/.
Lemma 18.9. In the situation above the following assertions hold:

a) One has �f.T/x D jf j2 �x for all x 2 H and f 2 L2.�x/. In particular, if
x 2 H and y 2 Z.x/, then �y  �x. Conversely, if x 2 H and � 2 MC.K/ is
such that � �x, then there is y 2 Z.x/ with � D �y.

b) For x; y 2 H,

�x ? �y H) �x;y D 0 ” Z.x/ ? Z.y/I

and if x; y 2 Z.u/ for some u 2 H, then �x ? �y , Z.x/ ? Z.y/.

c) �x � �y if and only if the operators TjZ.x/ and TjZ.y/ are unitarily equivalent.

Proof. a) By Theorem 18.2.b the identity

Z

K
h d�f.T/x D

Z

K
h jf j2 d�x

is true for f; h 2 C.K/, and by approximation it continues to hold for f 2 L2.�x/.
This establishes the first claim. For the second, suppose that� 2 MC.K/ is such that
� �x. By the Radon–Nikodym theorem (Theorem B.22) there is 0 � h 2 L1.�x/

such that � D h�x. Then f WD ph 2 L2.�x/ and, by what we have just shown,
�f.T/x D f 2�x D h�x D �.

b) By Theorem 18.2.e, �x;y  �x and �x;y  �y, whence the first implication
follows from Lemma B.20. The proof of the equivalence�x;y D 0 , Z.x/ ? Z.y/
is left as Exercise 3. Finally, suppose that there is u 2 H such that x; y 2 Z.u/. If
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f; g 2 L2.�u/ are such that x D f .T/u and y D g.T/u, then, as in a), �x D jf j2 �u

and �y D jgj2 �u. Moreover, by Theorem 18.2.b and by approximation

�x;y D �f.T/u;g.T/u D f g�u:

If �x;y D 0, then f g D 0 in L2.�u/, hence �x ? �y.

c) It suffices to prove that the multiplication by z on L2.�x/ and the multiplication
by z on L2.�y/ are unitarily equivalent if and only if �x � �y. Suppose first that
�x � �y. Then, by a), �y D jf j2 �x for some f 2 L2.�x/ and �x D jgj2 �y for
some g 2 L2.�y/. It follows that f g D 1 �x-almost everywhere. Define

U W L2.�y/! L2.�x/; Uh WD f h .h 2 L2.�y//:

Then U is a unitary operator intertwining the multiplications by z on L2.�x/ and on
L2.�y/.

For the converse implication suppose that the multiplications by z on L2.�x/ and
on L2.�y/ are unitarily equivalent under some U W L2.�y/! L2.�x/. Then for each
n 2 N0

Z

K
zn d�y D .zn1 j 1/ D .U.zn1/ jU1/ D . znU1 jU1/ D

Z

K
zn jU1j2 d�x;

and similarly for zn. By the Stone–Weierstraß theorem,
R

K f d�y D
R

K f jU1j2 d�x

for all f 2 C.K/, whence �y D jU1j2 �x. This implies that �y  �x, and hence,
by symmetry, �y � �x. ut

In assertion b) of the previous lemma the orthogonality of the cyclic subspaces
Z.x/ and Z.y/ does not imply the singularity of �x and �y (cf. also Exercise 9).
Indeed, for H D C

2, T D I and x D �
1
0

�
, y D �

0
1

�
we have Z.x/ ? Z.y/ and

�x D ı1 D �y.
With the help of Lemma 18.9 one can transfer decompositions of M.K/ into

lattice ideals to orthogonal decompositions of H. Recall from Appendix B.10 that
M.K/ is a complex Banach lattice, and that for given � 2 M.K/ one can think
of L1.j�j/ as the smallest closed ideal of M.K/ containing � (Corollary B.24).
Moreover, if I and J are closed ideals of M.K/, then

I \ J D f0g ”  ? � for all  2 I and � 2 J; (18.5)

by Corollary B.26. Now, with the usual meaning of T, H and .�x;y/x;y2H , given a
closed ideal I � M.K/ we form the space

H.I/ WD ˚x 2 H W �x 2 I
�
:
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Since �x;y  �x for all x; y 2 H and I is an ideal, another description of H.I/ is

H.I/ D ˚x 2 H W �x;y 2 I for all y 2 H
�
: (18.6)

This implies readily that H.I/ is a closed subspace of H. But more is true.

Theorem 18.10. For I; J � M.K/ closed ideals the following assertions hold:

a) H.I/ is a closed T-bi-invariant subspace of H.

b) If I \ J D f0g, then I ˚ J is a closed ideal and

H.I ˚ J/ D H.I/˚ H.J/

is an orthogonal decomposition.

Proof. a) This follows from (18.6). Note that �Tx;y D �x;T�y and �T�x;y D �x;Ty for
all x; y 2 H.

b) By (18.5) and Lemma B.20, k�C k D j�C j .K/ D j�j .K/ C jj .K/ D
k�k C kk for � 2 I and  2 J. Hence, the canonical projection

PI W I C J ! I; �C  7! �

is bounded. Since I and J are closed, they are complete; therefore, ICJ is complete,
hence closed.

To see that I C J is an ideal, suppose that � 2 I,  2 J and � 2 M.K/ with
�  � C . Then there are �0; 0 2 M.K/ with �0  � and 0   and � D
�0 C 0 2 I C J (Exercise 10).

In order to prove orthogonality, let x 2 H.I/ and y 2 H.J/. Then, by (18.6),
�x;y 2 I and �x;y D �y;x 2 J since an ideal is conjugation-invariant. By hypothesis,
�x;y D 0, which implies that x ? y, by Lemma 18.9.c.

Finally, we show that H.I ˚ J/ D H.I/ ˚ H.J/. Only the inclusion “�” needs
to be shown. Let u 2 H.I C J/, i.e., �u D � C  for some measures � 2 I and
 2 I. Since �u � 0, taking the modulus yields �u D j�C j D j�j C jj and
hence � D j�j � 0 and  D jj � 0.

Now, since �u D �C , both � and  are absolutely continuous with respect to
�u. By Lemma 18.9 there are x; y 2 Z.u/ with �x D � and �y D . Take f; g 2
L2.�u/ with x D f .T/u and y D g.T/u. Then �x D jf j2 �u and �y D jgj2 �u, and
hence

�u D �C  D �x C �y D jf j2 �u C jgj2 �u D .jf j2 C jgj2/�u:

This yields jf j2 C jgj2 D 1 �u-almost everywhere. But �x ? �y, whence jf j �
jgj D 0 and then jf j C jgj D 1. Define x0 WD jf j .T/u and y0 WD jgj .T/u. Then
�x0 D jf j2 �u D �x D � 2 I, so x0 2 H.I/. Similarly, y0 2 H.J/, and altogether we
obtain u D 1.T/u D .jf j C jgj/.T/u D x0 C y0 2 H.I/C H.J/, as desired. ut
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Let us pass to a special case. For an arbitrary measure  2 MC.K/ define

H./ WD ˚x 2 H W �x  
�
: (18.7)

Then, as explained above, H./ D H.I/, where I D L1./ is the smallest closed
ideal containing . In particular, Theorem 18.10 applies and yields that H./ is a
closed T-bi-invariant subspace of H.

Corollary 18.11. For �;  2 MC.K/ with � ?  we have the orthogonal
decomposition

H.�C / D H.�/˚ H./:

The Maximal Spectral Type

In the next step, we construct one single measure on K D ¢.T/ containing as much
information about the normal operator T as possible. From now on our standing
assumption is that the underlying Hilbert space is separable.

Theorem 18.12. Let T 2 L .H/ be a normal operator on a separable Hilbert space
H with associated family of measures .�x;y/x;y2H on K WD ¢.T/. Then there is,
up to equivalence, a unique positive measure �max 2 MC.K/ with the following
properties:

1) �y  �max for every y 2 H.

2) If 0 � � �max, then there is y 2 H with �y D �.

Proof. Uniqueness: Suppose that �max and �0
max satisfy 1) and 2). By 2), there is

x 2 H with �x D �max and 1) yields that �max  �0
max. By symmetry �max � �0

max
as claimed.

Existence: Since H is separable we can write

H D
1M

nD1
Z.xn/

for some orthogonal sequence .xn/n2N in H. (If dim.H/ < 1, then only finitely
many xn are nonzero.) Define

x WD
1X

nD1

xn

.1C kxnk/2n
and �max WD �x:

Then 2) follows from Lemma 18.9.a. In order to prove 1), fix y 2 H and let yn be
the orthogonal projection of y onto Z.xn/. Then
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sm D
mX

jD1
yj ! y in norm

and hence �sm ! �y in M.K/ as m ! 1 (Theorem 18.2.c). If i ¤ j, then yi ? yj

and hence �yi;yj D 0, by Lemma 18.9.b. By sesquilinearity it follows that

�sm D
mX

jD1
�yj :

As �yj  �xj for each j 2 N (Lemma 18.9.a), also

�sm D
mX

jD1
�yj 

mX

jD1
�xj  �x D �max

for each m 2 N, and hence �y  �max, by Lemma B.20. ut
The uniquely determined equivalence class Œ�max� of the measure �max from

Theorem 18.12 is called the maximal spectral type of T.

Proposition 18.13. Let H be a separable Hilbert space, and let T be a normal
operator on H with maximal spectral type Œ�max�. Then

supp.�max/ D ¢.T/:

Proof. The inclusion supp.�x/ � ¢.T/ is clear. Take x 2 H with �x D �max and
� 2 C n supp.�x/. Then f WD .�1 � z/�1 2 L1.�x/, and since �y  �x, we
obtain f 2 L1.�y/ with kf kL1.�y/

� kf kL1.�x/
for every y 2 H. Hence, the

multiplication by f in each of the components in the decomposition (18.3) is a
bounded operator, with uniformly bounded norms. This yields an inverse of �I� T,
so � 62 ¢.T/. ut
Remarks 18.14. 1) Theorem 18.12 about the maximal spectral type �max is

just a part of a more sophisticated result. Indeed, one can find a (possibly
finite) sequence .xn/n2N with

�x1 � �x2 � � � � � �xn � � � �

and such that

H D
1M

nD1
Z.xn/

is an orthogonal decomposition. Each measure �xn is uniquely determined
up to equivalence, and Œ�x1 � D Œ�max� is the maximal spectral type.
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Even more is true: There is a decreasing sequence .Bn/n2N of Borel sets and
a sequence .yn/n2N of vectors of H such that

Z.xn/ D Z.yn/, i.e., �xn � �yn and �yn D 1Bn�max:

This leads to the definition of the multiplicity function,

M W K ! N0 [ f1g; M WD
X

n2N
1Bn ;

and to a more precise description of properties of T. The maximal spectral
type and the multiplicity function together provide a complete set of
invariants for unitary equivalence of normal operators. Therefore, they play
a central role in the spectral analysis of dynamical systems. Below, in
Section 18.4 we shall present some basic results of that theory. The previous
decomposition and the corresponding results are sometimes referred to as the
Hahn–Hellinger theorem. For more details, see Nadkarni (1998b, Ch. 1).

2) A normal operator T 2 L .H/ is said to have simple spectrum if the
multiplicity function satisfies M D 1 almost everywhere with respect to
�max. Two operators with simple spectrum are unitarily equivalent if and only
if their maximal spectral types are equal. For a characterization of simple
spectrum we refer to Exercise 9.

3) The separability assumption about H cannot be easily dispensed with as the
following example shows. Consider H D `2.T/ and the unitary operator
T 2 L .H/ defined by Tf .z/ WD zf .z/. It is easy to see that each Dirac
measure ı�, � 2 T, arises as �f for some f 2 H.
On the other hand, no � 2 M.T/ can have the property that ı�  � for
each � 2 T. Hence, our definition of maximal spectral type is of no use
here. (There are, however, definitions of the spectral type and the multiplicity
function that work for the nonseparable case, see Halmos (1998) and Brown
(1974).)

By the definition of the maximal spectral type, we have H.�max/ D H. Hence,
according to Corollary 18.11, any mutually singular decomposition of�max provides
an orthogonal decomposition of the space H into T-bi-invariant closed subspaces.
We shall look at a particular example in the following section.

18.3 Discrete Measures and Eigenvalues

In this section we study eigenvalues and eigenvectors through the spectral theorem
and identify the Jacobs–de Leeuw–Glicksberg decomposition (Chapter 16) of a
normal contraction as a spectral decomposition (Corollary 18.19 and Remark 18.21
below).



382 18 The Spectral Theorem and Dynamical Systems

Eigenvalues and Eigenvectors

As always in this chapter, let T be a bounded normal operator on a Hilbert space H
with associated family .�x;y/x;y2H of complex measures on K D ¢.T/. The following
result characterizes eigenvalues and eigenspaces of T via the functional calculus.

Proposition 18.15. In the situation just described, let x 2 H and � 2 C.

a) The following assertions are equivalent:

(i) Tx D �x.

(ii) f .T/x D f .�/x for all f 2 BM.K/.

(iii) �x;y D .x j y/ ı� for all y 2 H.

(iv) �x D kxk2 ı�.

b) The operator P� WD 1f�g.T/ is the orthogonal projection onto ker.�I � T/.

c) The following assertions are equivalent:

(i) �xf�g > 0.

(ii) kP�xk > 0.

(iii) .x j y/ ¤ 0 for some y 2 ker.�I � T/.

(iv) Z.x/ \ ker.�I � T/ ¤ f0g.
Proof. a) Suppose that Tx D �x. Then Tnx D �nx and hence, by normality, T�nx D
�

n
x for each n 2 N (Lemma D.25). It follows by approximation that f .T/x D f .�/x

for all f 2 C.K/. Next, by the standard argument (using Theorem E.1), this identity
remains true for all f 2 BM.K/. On the other hand, if f .T/x D f .�/x for all
f 2 C.K/, then

Z

K
f d�x;y D .f .T/x j y/ D f .�/ .x j y/ D .x j y/

Z

K
f dı�

for all f 2 C.K/ and hence �x;y D .x j y/ ı�. Finally, suppose that �x D kxk2 ı�.
Then, for all y 2 H,

j.�x � Tx j y/j2 � k.�I � T/xk2 kyk2 D
Z

K
j� � zj ı�.dz/ kxk2 kyk2 D 0:

It follows that �x � Tx D 0 as desired.

b) Clearly, P� is a self-adjoint, hence orthogonal, projection (see Theorem D.21).
From .�� z/1f�g.z/ D 0 it follows that .�I�T/P� D 0. Hence, ran.P�/ � ker.�I�
T/. On the other hand, if Tx D �x, then P�x D 1f�g.�/x D x, by a).

c) The equivalence (i), (ii) follows from (18.4) with A D f�g; and the equivalence
(ii), (iii) holds since .x j y/ D .x jP�y/ D .P�x j y/ for all y 2 ker.�I � T/.
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For the implication (ii)) (iv) note that P�x 2 Z.x/, and for (iv)) (iii) that the
space ker.�I � T/ is T-bi-invariant. ut

As a consequence of Proposition 18.15 we obtain that (in the notation of the
previous section)

H.ı�/ D ker.�I � T/

is the eigenspace of T associated with � 2 C.

Corollary 18.16. For a normal operator T on a Hilbert space H and � 2 C the
following assertions are equivalent:

(i) � 2 ¢p.T/.

(ii) H.ı�/ 6D 0.

(iii) �xf�g > 0 for some x 2 H.

In the case when H is separable, (i)–(iii) are equivalent to

(iv) �maxf�g > 0.

Discrete and Continuous Measures

Recall from Appendix B.10 that a complex Borel measure � on K is called
continuous if �fag D 0 for every a 2 K, and discrete if there are sequences
.�n/n2N in C and .an/n2N in K such that

� D
X

n2N
�nıan :

By Proposition B.27, the sets Mc.K/ and Md.K/ of, respectively, continuous and
discrete measures on K are closed ideals of M.K/ satisfying

M.K/ D Md.K/˚Mc.K/: (18.8)

Hence, given a normal operator T on a Hilbert space H with the family .�x;y/x;y2H

of measures on K 	 ¢.T/, the decomposition (18.8) induces an orthogonal decom-
position

H D Hd ˚ Hc

into the closed T-bi-invariant subspaces

Hd WD
˚
x 2 H W �x is discrete

�

Hc WD
˚
x 2 H W �x is continuous

�
:and
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Proposition 18.17. For a normal operator T 2 L .H/ we have

Hd D lin
˚
x 2 H W x is an eigenvector of T

�
:

Proof. If x 2 H is an eigenvector of T with eigenvalue � 2 C, then �x D kxk2 ı�,
and hence x 2 Hd. Conversely, suppose that x 2 Hd, i.e., �x is discrete. Then
�x.Ac/ D 0 for a countable set A � K. By (18.4) and by Theorem 18.5.c it follows
that x D PAx DP�2A P�x. Since P�x 2 ker.�I � T/, the proof is complete. ut

An immediate consequence of Proposition 18.17 is an alternative description of
the two parts in the JdLG-decomposition.

Corollary 18.18. For a unitary operator T on a Hilbert space H, the JdLG-
decomposition and the discrete-continuous decomposition coincide, i.e.

Hrev D Hd and Haws D Hc:

Proof. Since the JdLG-decomposition is orthogonal (see Example 16.25), the
assertion follows from Proposition 18.17 and the description of the subspace Hrev in
Theorem 16.33. ut

One can refine the previous decomposition in the following way. For a Borel
subset � � K let

Md;�.K/ WD
˚
� 2 Md.K/ W j�j .�c/ D 0�:

Then Md;�.K/ is an ideal of M.K/ and

Md.K/ D Md;�.K/˚Md;�c.K/

is a mutually singular decomposition. By Theorem 18.10 this induces an orthogonal
decomposition

Hd D Hd;� ˚ Hd;�c

into T-bi-invariant subspaces, where, of course,

Hd;� D
˚
x 2 H W �x 2 Md;�.K/

�
:

In the case that T is a normal contraction and � D T, we recover the Jacobs–de
Leeuw–Glicksberg decomposition of T.
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Corollary 18.19. Let T be a normal contraction on a Hilbert space H. Then

Hrev D Hd;T and Haws D Hd;Tc ˚ Hc:

Wiener’s Lemma

Let � 2 M.T/ be a positive measure, let H WD L2.T; �/ and let the operator T 2
L .H/ be defined by .Tu/.z/ WD zu.z/ for z 2 T and u 2 H. Then T is a unitary
operator on H. The Stone–Weierstraß theorem implies that h.T/u D hu for all h 2
C.T/. Hence, for f; g 2 H and h 2 C.T/

Z

T

hd�f;g D .h.T/f j g/ D .hf j g/ D
Z

T

hf g d�:

It follows that for f; g 2 H

�f;g D f g�:

In particular, �u D juj2 � for u 2 H, and f 2 L2.�u/ if and only if f u 2 H; and in
this case, f .T/u D f u. So the functional calculus is simply a multiplier calculus,
cf. Exercise 4. In particular, the spectral projection P� onto ker.�I � T/ is given by
the multiplication operator by 1f�g.

It follows also that � D �1, and since H D Z.1/, Œ�� D Œ�max� is the maximal
spectral type of T.

As an application, we can derive a classical result of Wiener characterizing
continuous measures on T in terms of their Fourier coefficients.

Proposition 18.20 (Wiener’s Lemma). Let  2 M.T/ be a complex measure.
Then

lim
N!1

1

N

NX

nD1
j O.n/j2 D

X

�2T
jf�gj2 D lim

N!1
1

2N C 1
NX

nD�N

j O.n/j2 :

Proof. Note that the second equality follows directly from the first one. Abbreviate
� WD jj and let T be, as above, the operator of multiplication by z on H D L2.�/.
Then, by Corollary B.23,  D h� for some h 2 BM.T/ with jhj D 1 �-almost
everywhere. Consequently,

j O.n/j2 D
ˇ
ˇ̌
Z

T

z�n .dz/
ˇ
ˇ̌2 D

ˇ
ˇ̌
Z

T

z�nh.z/ �.dz/
ˇ
ˇ̌2 D j.h jTn1/j2 :

On the other hand, .h jP�1/ D .h.T/1 jP�1/ D R
T

h � 1f�g d� D f�g and hence
j.h jP�1/j2 D jf�gj2. So the first equality follows from Proposition 16.37. ut
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Remark 18.21. One can prove Wiener’s lemma directly, see Exercise 15. Based
on it, one can give an alternative proof for the Jacobs–de Leeuw–Glicksberg
decomposition of H for a normal contraction T: First, split

H D HT ˚ HTc

with HT D fx 2 H W �x.T
c/ D 0g and HTc D fx 2 H W �x.T/ D 0g. On HTc ,

Tn ! 0 strongly (Exercise 14), and on HT, T is unitary. Next, we split

HT D Hd;T ˚ Hc;T;

then Hd;T D Hrev is the reversible part, generated by the eigenvectors to unimodular
eigenvalues. On the space Hc;T one has 1

n

Pn�1
jD0 j.Tjx jy/j2 ! 0, by Wiener’s lemma.

So, indeed,

H?
rev D

n
x 2 H W 1

n

n�1X

jD0

ˇ
ˇ�Tjx

ˇ
ˇ y
�ˇˇ2 ! 0 for all y 2 H

o
D Haws:

Details are left as Exercise 16.

18.4 Dynamical Systems

We now apply the previously developed theory to measure-preserving systems
.XI'/. In order to employ the spectral theorem, we shall consider only invertible
systems here. This is, however, not a strong restriction, as we can always pass
to the invertible extension, see Section 13.5. (Passing to the invertible extension
of a system .XI'/ is essentially equivalent with passing to the minimal unitary
dilation of its Koopman operator, compare the construction on page 269 with
Example D.30.)

For statements that involve the maximal spectral type, it will be convenient to
suppose further that the occurring probability space X is such that the space L2.X/
is separable. This is the case if and only if .XI'/ is—up to isomorphism—a standard
system (Definition 6.8).

1. Systems with Discrete Spectrum

Recall that a measure-preserving system .XI'/ is said to have discrete spectrum if
its Koopman operator T on L2.X/ has discrete spectrum, which by definition means
that L2.X/ is generated by the eigenvectors of T. We can now make sense of this
terminology.
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Corollary 18.22. A unitary operator T on a Hilbert space H has discrete spectrum
if and only if each �x, x 2 H, is a discrete measure. In particular, if H is separable,
then T has discrete spectrum if and only if �max is a discrete measure.

Proof. Since all eigenvalues of a unitary operator are unimodular, T has discrete
spectrum if and only if H D Hd (cf. Proposition 18.17). ut

Discrete measures are possibly infinite sums of point measures. Therefore,
instead of “discrete spectrum” also the term pure point spectrum is used, especially
in the older literature.

2. Mixing Properties

Let .XI'/ be an invertible measure-preserving system with Koopman operator T
on L2.X/. Since T leaves the constant functions fixed, it is only interesting what
happens on the orthogonal complement 1?. Therefore, spectral properties of a
measure-preserving system are usually defined in terms of the restriction T0 of T
to 1?. If L2.X/ is separable, we may speak of its maximal spectral type, denoted by
Œ�0� and called the (restricted) maximal spectral type of the measure-preserving
system.

Corollary 18.23. An invertible standard system .XI'/ is ergodic if and only if its
maximal spectral type Œ�0� satisfies �0f1g D 0.

Proof. By Proposition 18.15,�0f1g D 0 if and only if dim fix.T0/ D 0, which holds
if and only if dim fix.T/ D 1, equivalent to ergodicity by Proposition 7.15. ut

Next, let us turn to weakly mixing systems.

Proposition 18.24. Let T be a unitary operator on a separable Hilbert space H
with maximal spectral type Œ�max�. Then T is almost weakly stable if and only if
�max is a continuous measure.

Proof. This follows from Corollary 18.18. Alternatively, avoiding the JdLG-theory,
one can argue as follows:

By definition, O�x;y.�n/ D .Tnx j y/ for all x; y 2 H and n 2 N. Since �max is
continuous if and only if �x;y is continuous for every x; y 2 H, the claim follows
from Wiener’s lemma (Proposition 18.20), cf. also Remark 18.21. ut

Proposition 18.24 together with Theorem 9.19 leads to the following result.

Corollary 18.25 (Weak Mixing). An invertible standard system .XI'/ is weakly
mixing if and only if �0 is a continuous measure.

In order to describe strong mixing in spectral terms we need the following
notion. A Borel measure � 2 M.T/ is called a Rajchman measure if its Fourier
coefficients O�.n/ converge to 0 for jnj ! 1. The Haar measure m on T (and any
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complex measure absolutely continuous with respect to m) is a Rajchman measure,
this is the Riemann–Lebesgue lemma. We refer to Lyons (1995) for a survey on
Rajchman measures.

Lemma 18.26. The set of Rajchman measures

MR.T/ WD
˚
� 2 M.T/ W � is a Rajchman measure

�

is a closed ideal of M.T/.

Proof. It is straightforward to prove that MR.T/ is a closed subspace of M.T/. Fix
� 2 MR.T/ and h 2 BM.T/ with jhj D 1 and � D h j�j. Since the mapping

L1.j�j/! M.K/; f 7! f� D f h j�j

is isometric, the space

F WD ˚f 2 L1.j�j/ W f� 2 MR.T/
�

is a closed subspace of L1.j�j/. Since for k 2 Z

bzk�.n/ D O�.n � k/ .n 2 Z/

and � 2 MR.T/, F contains the trigonometric polynomials, hence C.T/, and hence
is equal to all of L1.j�j/. It follows that L1.j�j/ � MR.T/. ut

From Lemma 18.26 we obtain a spectral characterization of the weak stability of
a normal contraction.

Proposition 18.27. Let T be a unitary operator on a separable Hilbert space H
with maximal spectral type Œ�max�. Then Tn ! 0 in the weak operator topology if
and only if �max is a Rajchman measure.

Proof. Since, by Theorems 18.2.d and 18.12, �x;y  �max for every x; y 2 H, the
assertion follows from Lemma 18.26. ut

Proposition 18.27 together with Theorem 9.6 leads to the following result.

Corollary 18.28 (Strong Mixing). An invertible standard system .XI'/ is strongly
mixing if and only if its maximal spectral type Œ�0� consists of Rajchman measures.

A unitary operator T on a separable Hilbert space H is said to have Lebesgue
spectrum if its maximal spectral type is Œ�max� D Œm�, where m is the Haar measure
on T (the normalized Lebesgue measure). An invertible standard system is said to
have Lebesgue spectrum if the restriction T0 of its Koopman operator T to 1? has
Lebesgue spectrum.
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Proposition 18.29. An invertible standard system with Lebesgue spectrum is
strongly mixing.

The proof is left as Exercise 19.

Without proof, we conclude this section with the following beautiful result of
Host (1991), see also Nadkarni (1998b, Ch. 10), and cf. Remark 9.32. We say that
an invertible standard system has singular spectrum if its maximal spectral type
and the Haar measure on T are mutually singular.

Theorem 18.30 (Host). A strongly mixing, invertible standard system .XI'/ with
singular spectrum is strongly mixing of all orders, that is, for each k 2 N and for
each A0; : : : ;Ak�1 2 ˙

�
�
A0 \ '�n1A1 \ : : : \ '�nk�1Ak�1

�!
k�1Y

iD0
�.Ai/ as n1!1, nj � nj�1 !1

for j D 2; : : : ; k � 1. In particular,

lim
n!1�

�
A0 \ '�nA1 \ : : : \ '�.k�1/nAk�1

� D
k�1Y

iD0
�.Ai/

for every A0; : : : ;Ak�1 2 ˙ and k 2 N.

3. Countable Lebesgue Spectrum and Bernoulli Shifts

We say that a unitary operator T on a Hilbert space H has countable Lebesgue
spectrum if

H D
1M

nD1
Z.xn/

with �xn D m, the Haar measure on T. In other words, �max D m and the multi-
plicity function is constant1. We say that an invertible standard system .XI'/ has
countable Lebesgue spectrum if the restriction T0 of its Koopman operator T to
1? has countable Lebesgue spectrum.

The following result is a direct consequence of the spectral theorem as discussed
in Sections 18.1 and 18.2.

Proposition 18.31. Any two unitary operators with countable Lebesgue spectrum
are unitarily equivalent.

We can characterize unitary operators with countable Lebesgue spectrum as
follows.
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Proposition 18.32. For a unitary operator T on a separable Hilbert space H the
following assertions are equivalent:

(i) T has countable Lebesgue spectrum.

(ii) There is an orthonormal system .xn/n2N in H such that for each n 2 N the
sequence .Tkxn/k2Z is an orthonormal basis of Z.xn/ and

H D
1M

nD1
Z.xn/:

(iii) There is an infinite dimensional closed subspace H0 � H such that H0 ?
TkH0 for all k 2 Z and

H D
M

k2Z
TkH0:

Proof. (i), (ii): For a given x 2 H, the sequence .Tkx/k2Z is an orthonormal basis
of Z.x/ if and only if

Z

T

zk�j d�x.z/ D .Tkx jTjx/ D ıkj D
Z

T

zk�j dm.z/ for all j; k 2 ZI

and this is equivalent to �x D m since a measure on T is uniquely determined by its
Fourier coefficients.

(ii), (iii): Given an orthonormal sequence .xn/n2N as in (ii), then H0 WD linfxn W
n 2 Ng satisfies (iii). Conversely, if an infinite dimensional closed subspace H0 is
given as in (iii), any orthonormal basis .xn/n2N of H0 will satisfy (ii). ut
Corollary 18.33. A nontrivial two-sided Bernoulli shift B.p0; : : : ; pk�1/ has count-
able Lebesgue spectrum. As a consequence, all such Bernoulli shifts are spectrally
isomorphic.

(Recall from Section 17.2 that two measure-preserving systems are spectrally
isomorphic if their Koopman operators on the L2-spaces are unitarily equivalent.)

Proof. Consider a Bernoulli shift B.p0; : : : ; pk�1/ D .XI �/, i.e., X D .Wk; ˙; �/

with the corresponding Bernoulli measure � on the product �-algebra ˙ and � the
two-sided shift. Let Fn denote the subspace of H WD L2.Wk; ˙; �/ consisting of
functions that depend only on the coordinates xj of x 2 Wk with j � n and let T
be the Koopman operator of the Bernoulli shift. Then Fn � FnC1, TFn D FnC1 for
each n 2 Z. Since cylinder sets form a (\-stable) generator of ˙ , we have

H D lin
[

n2Z
Fn:
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Let Hn be the orthogonal complement of Fn in FnC1. Then Hn and Hm are orthogonal
for m ¤ n, and THn D HnC1 and hence TnH0 D Hn for each n 2 Z. As a
consequence

H D
M

n2Z
Hn D

M

n2Z
TnH0:

Moreover, as easily seen, dim H0 D 1, hence by Proposition 18.32 the system has
countable Lebesgue spectrum. ut

Corollary 18.33 implies that different Bernoulli shifts cannot be distinguished
by purely spectral information. It had been an open problem for quite some time
whether (nontrivial, invertible) Bernoulli shifts are all isomorphic. Only when
Kolmogorov (1958) introduced the fundamental concept of entropy could this
problem be solved in the negative. (Komogorov’s definition was later adjusted by
Sinaı̆ (1959), whence the now common name Kolmogorov–Sinaı̆ entropy.)

We shall not give the definition of entropy here, but content ourselves with
stating that it is an isomorphism invariant and that the entropy of the Bernoulli shift
B.p0; : : : ; pk�1/ (invertible or noninvertible) can be computed as

H.p0; : : : ; pk�1/ D �
k�1X

jD0
pj log2.pj/

(with the convention 0 � log2.0/ WD 0). Isomorphic Bernoulli shifts must possess the
same entropy and, by a famous theorem of Ornstein (1970a), the converse is also
true.

Theorem 18.34 (Ornstein). Two two-sided Bernoulli shifts over standard proba-
bility state spaces are isomorphic if and only if they have the same entropy.

For instance, the two-sided Bernoulli shifts B. 1
2
; 1
8
; 1
8
; 1
8
; 1
8
/ and B. 1

4
; 1
4
; 1
4
; 1
4
/ are

isomorphic, while B. 1
2
; 1
2
/ and B. 1

4
; 1
4
; 1
4
; 1
4
/ are not.

The previous theorem applies also to two-sided shifts with infinite entropy (this
is only possible if the state space is infinite), see Ornstein (1970b). However, it
fails for the class of all Bernoulli shifts, as a one-sided and a two-sided Bernoulli
shift with the same probability vector .p0; : : : ; pk�1/ are not isomorphic but have
the same entropy. Moreover, and not that obviously, it also fails for the class of
one-sided Bernoulli shifts since, for example, the one-sided shifts B. 1

2
; 1
8
; 1
8
; 1
8
; 1
8
/

and B. 1
4
; 1
4
; 1
4
; 1
4
/ are not isomorphic. In fact, two one-sided Bernoulli shifts

B.p0; : : : ; pk�1/ and B.q0; : : : ; qm�1/ are isomorphic if and only if k D m and the
probability vectors .p0; : : : ; pk�1/ and .q0; : : : ; qm�1/ are permutations of each other,
see Walters (1973).

Finally, we remark that entropy is not a complete isomorphism invariant for
invertible ergodic standard systems: Each ergodic group rotation .G;mI a/ with
G being a metrizable compact group has zero entropy (see, e.g., Walters (1982,
Thm. 4.25)).
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We recommend Walters’ standard book (1982) for a quick introduction to the
theory of entropy, and Katok (2007) for a survey on the history as well as the
most recent developments. The articles Palm (1976b) and Palm (1976a) contain an
abstract, lattice theoretic approach to entropy. For more results on entropy, one can
consult the books Billingsley (1965), Parry (1969a), Ornstein (1974), Sinaı̆ (1976),
England and Martin (1981), Cornfeld et al. (1982), Petersen (1989), Downarowicz
(2011).

4. Kolmogorov Automorphisms

Let .XI'/ be an invertible standard system, X D .X; ˙; �/. The mapping ' is
called a Kolmogorov automorphism (K-automorphism for short) if there is a
sub-�-algebra˙ 0 of ˙ with the following properties:

(i) ˙ 0 � '˙ 0,

(ii) the generated �-algebra �
� 1S

nD0
'n˙ 0

�
D ˙ ,

(iii)
1T

nD0
'�n˙ 0 D f;;Xg,

where the equality of sets is understood in the measure algebra, i.e., almost
everywhere. The system .XI'/ is then called a K-system.

It is Exercise 23 to show that a two-sided Bernoulli shift is a K-system (see
e.g., Walters (1982, Thm. 4.30)). By a result of Ornstein (1971) not every K-
system is isomorphic to a Bernoulli shift. This implies that entropy alone is
not a complete isomorphism invariant for the class of K-systems. This becomes
particularly interesting in view of the next result (for a proof we refer to Rokhlin
(1967, §14) or Walters (1982, Thm. 4.33)).

Theorem 18.35 (Rokhlin). Each nontrivial K-system .XI'/ has countable
Lebesgue spectrum, and in particular, is strongly mixing and spectrally isomorphic
to each nontrivial two-sided Bernoulli shift.

5. Skew Rotation

Consider the skew rotation .T2;mI a/ from Example 5.15 and let T be its Koopman
operator on H WD L2.T2/ which is unitary. We determine its maximal spectral type.
The Kronecker factor (restricted to L2) of the skew rotation is Kro D Hrev D L2.T/
(see Section 17.4.4), and the Koopman operator has discrete spectrum (pure point
spectrum) thereon. More precisely

Kro D lin
˚
ej ˝ 1 W j 2 Z

�
;

where ej.z/ D zj, j 2 Z. Hence, the almost weakly stable part is
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Haws D lin
˚
ej ˝ ek W j; k 2 Z; k ¤ 0�:

If we denote by y 7! ˚
Œn�
x y the cocycle of the skew rotation, cf. Remark 2.21, we

can find by an induction argument that

˚Œn�
x y D a

n.n�1/
2 xny for all x; y 2 T, n 2 N:

Hence, for j; j0; k; k0 2 Z we obtain

�
ej0 ˝ ek0

ˇ
ˇ Tn.ej ˝ ek/

� D
Z

T2

ej0.x/ek0.y/ej.a
nx/ek

�
˚Œn�

x y
�

dx dy (18.9)

D ej.a
n/ek.a

n.n�1/
2 /

Z

T

ej0.x/ej.x/ek.x
n/ dx �

Z

T

ek0.y/ek.y/ dy

D a�nj� n.n�1/
2 k

Z

T

xj0�j�nk dx �
Z

T

yk0�k dy:

This implies that
�

ej ˝ ek

ˇ
ˇ Tn.ej0 ˝ ek0/

� D 0 if and only if k ¤ k0 or if k D k0 and
j0� j�nk ¤ 0. In particular, it follows that for k 2 Zn f0g and j D 0; : : : ; jkj�1 the
cyclic subspaces Z.ej˝ ek/ are pairwise orthogonal, and that the sequence .Tn.ej˝
ek//n2Z is an orthonormal basis in Z.ej ˝ ek/.

We now claim that

Eaws D
M

k2Znf0g

jkj�1M

jD0
Z.ej ˝ ek/:

Indeed, suppose that f is orthogonal to the right-hand side, and consider its Fourier
expansion

f D
X

j0;k02Z
aj0k0ej0 ˝ ek0 :

For k 2 Z n f0g and m 2 Z arbitrary take n 2 Z, j 2 f0; : : : ; jkj � 1g with
m � j� nk D 0. Then we can write

0 D �f ˇˇ Tn.ej ˝ ek/
� D

X

j0;k02Z
aj0k0

�
ej0 ˝ ek0

ˇ
ˇ Tn.ej ˝ ek/

�

D
X

j02Z
aj0k

�
ej0 ˝ ek

ˇ̌
Tn.ej ˝ ek/

� D a�nj� n.n�1/
2 kamk:

So that amk D 0 for every m 2 Z and k 2 Z n f0g, implying f 2 Kro.
These considerations together with Proposition 18.32 yield the following result.
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Proposition 18.36. The Koopman operator T on L2.T2/ of the skew rotation
.T2;mI a/ has countable Lebesgue spectrum when restricted to the almost weakly
stable part Eaws.

6. Automorphisms on Groups

Let G be a compact metric Abelian group, and let ' W G! G be a continuous1 group
automorphism. The Haar measure m is invariant with respect to ' (Exercise 24),
thus .G;mI'/ is a measure-preserving system. Our aim is to prove that if .G;mI'/
is ergodic, then .G;mI'/ has countable Lebesgue spectrum and, hence, that it is
strongly mixing.

Obviously, the Koopman operator T WD T' on L2.G;m/ of ' maps characters to
characters, and restricts to an automorphism of the dual group G�.

Proposition 18.37 (Halmos, Rokhlin). The measure-preserving system .G;mI'/
is ergodic if and only if the group automorphism T WD T' W G� ! G� has no
periodic points other than the trivial character 1. As a consequence, every ergodic
automorphism .G;mI'/ is totally ergodic.

Proof. Suppose that the system .G;mI'/ is ergodic. Let � 2 G� be such that Tn� D
� for some n 2 N being minimal with this property. Then we have .Tj� j�/ D 0 for
j D 1; : : : ; n � 1 by minimality of n since different characters are orthogonal. For

f WD �C T�C � � � C Tn�1�;

we have Tf D f and hence, by ergodicity, f D c1. This implies, provided � ¤ 1,

c D .f j 1/ D 0 and jcj2 D .f j f / D n > 0;

which is impossible.
For the proof of the converse implication let f 2 L2.G;m/ be with Tf D f . By

looking at its Fourier expansion we obtain for each n 2 N

X

�2G�

a�Tn� D Tnf D f D
X

�2G�

a��:

If the characters �; T˙1�; : : : ;T˙n�; : : : are all different, then we conclude aTn� D
a� for each n 2 Z. In this case we must have a� D 0. Therefore, if a� ¤ 0, then
there is n 2 N with Tn� D �. But then � D 1 by assumption, i.e., f is constant.

1A Borel measurable automorphism ' W G ! G is automatically continuous, see Exercise 15.16,
or Banach (1932, Ch. 1, Thm. 4), Hewitt and Ross (1979, Thm. 22.18).
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The last assertion follows from the fact that T' has nontrivial periodic points if
and only if T'k does (for some/all k 2 N). ut

The following result was found independently by Halmos and Rokhlin. For a
proof, which is purely group theoretic, we refer to Halmos (1956, p. 54).

Lemma 18.38. Let A be a nontrivial Abelian group and let ' be an automorphism
of A. Suppose that the orbits of ' different from f1g are all infinite. Then ' has
infinitely many orbits.

We can now prove the result promised at the beginning.

Theorem 18.39. Let G be a nontrivial compact metrizable Abelian group and let
' W G! G be a continuous automorphism of G. If .G;mI'/ is ergodic, then it has
countable Lebesgue spectrum. In particular, it is strongly mixing.

Proof. Let � 2 G� be a nontrivial character. Then Tn� ¤ � by Proposition 18.37
and hence .Tn� j�/ D 0 for every n 2 N. This yields that .Tn�/n2Z is an
orthonormal basis in the cyclic subspace Z.�/. Since the Koopman operator T
is an automorphism of the dual group G� and the orbits are all infinite by
Proposition 18.37, Lemma 18.38 yields that T has infinitely many orbits, and by
assumption actually countably many. Therefore, we can take a sequence .�k/k2N in
G� such that

G� D
[

k2N

˚
Tn�k W n 2 Z

�

with the sets on the right-hand side being disjoint. We therefore obtain

L2.G;m/ D
M

k2N
Z.�k/;

and an application of Proposition 18.32 concludes the proof. ut
As a consequence, if ' is an ergodic automorphism of the d-dimensional

torus T
d, then the measure-preserving system .Td;mI'/ is spectrally isomorphic

to a Bernoulli shift. In (1971) Katznelson proved that such systems are (point)
isomorphic to Bernoulli shifts.

After several other particular cases had been established, Lind (1977) and,
independently Miles and Thomas (1978a, 1978b) found the following beautiful
result.

Theorem 18.40 (Lind–Miles–Thomas). Let G be a compact metrizable Abelian
group and let ' W G ! G be a continuous automorphism of G. If the system
.G;mI'/ is ergodic, then it is (point) isomorphic to a Bernoulli shift.
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7. The Isomorphism Problem

The first explicit formulation of the isomorphism problem goes back to von
Neumann (1932c), where he wrote on page 593:

Daß die Koopmansche Methode wirklich alle Wahrscheinlichkeitsfragen der klassischen
Mechanik erfaßt, wäre belegt, wenn wir wüßten, daß alle isomorphieinvarianten Eigen-
schaften auch unitär invariant sind.

In free translation and in our terminology this reads as:

That the method of Koopman indeed answers all probabilistic questions of classical
mechanics would be established if we knew that all (point) isomorphism invariants are also
invariants for spectral isomorphism.

Yet in other words: Is it true that spectrally isomorphic systems are isomorphic?
A few years later this question was answered in the negative by Halmos and von

Neumann himself, as sketched in Section 11 of the survey article by Halmos (1949).
But no detailed paper of them was published on this matter, and their solution
became obscured. Rédei and Werndl have traced back the sources and found a
letter of von Neumann to Ulam from 1941 describing the same counterexample.
We refer to Rédei and Werndl (2012) where the full story is told and where also
von Neumann’s letter can be found along with some historical information on the
isomorphism problem and its later developments.The example of von Neumann and
Halmos is in Exercise 26. In what follows, we present the solution of Anzai (1951)
that can be based on arguments similar to the ones for the skew rotation above.

For given m 2 N consider the measure-preserving system .T2;mT2 I a;m/

given by

 a;m.x; y/ D .ax; xmy/;

where a 2 T is not a root of unity. Recall from Exercise 17.9 that this system is
strictly ergodic and its Kronecker factor is the rotation factor .T;mI a/

Kro D lin
˚
ej ˝ 1 W j 2 Z

�
:

Now, by analogous calculations as in Section 18.4.5 above, one can establish the
following.

Proposition 18.41. a) The Koopman operator T WD T a;m (on L2.T2/) of the
system .T2;mT2 I a;m/ has countable Lebesgue spectrum when restricted to
the almost weakly stable part.

b) These systems are spectrally isomorphic for all m 2 N.

The proof is left as Exercise 25. Combining this with the next result yields
nonisomorphic but spectrally isomorphic systems.
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Theorem 18.42 (Anzai). Let a 2 T be not a root of unity, and let k; m 2 N.

a) The point isomorphisms between the systems .T2;mT2 I a;m/ and
.T2;mT2 I a;k/ are precisely the transformations

� W T2 ! T
2; �.x; y/ D .bx; �.x/yn/

for some b 2 T, n 2 f�1; 1g and a measurable transformation � W T ! T

satisfying

�.ax/�.x/ D .bx/kx�nm for almost every x 2 T. (18.10)

b) For k ¤ m the systems .T2;mT2 I a;m/ and .T2;mT2 I a;k/ are not isomor-
phic.

Proof. a) If n; b; � satisfy (18.10), then �.x; y/ WD .bx; �.x/yn/ defines an
isomorphism between the two systems (see Exercise 27).

For the converse, denote by La and Ta;m the Koopman operators of the left rotation
.T;mI a/ and .T2;mT2 I a;m/, respectively. Suppose that � W .T2;mT2 I a;m/ !
.T2;mT2 I a;k/ is a point isomorphism with �.x; y/ D .�1.x; y/; �2.x; y//. By
comparing the coordinates we conclude

�1.ax; xmy/ D a�1.x; y/ and �2.ax; xmy/ D �1.x; y/k�2.x; y/:

The first of these equalities implies that �1 is an eigenfunction of Ta;m to the
eigenvalue a 2 T. Since the coordinate function .x; y/ 7! x is such an eigenfunction,
we obtain �1.x; y/ D bx for some b 2 T (see Proposition 7.18). From this we
conclude

�2.ax; xmy/ D bkxk�2.x; y/ for almost all x; y 2 T. (18.11)

By expanding �2 in its Fourier series we obtain

�2 D
X

n2Z
fn ˝ en;

where en.y/ D yn for each n 2 Z and .fn/n2Z is the sequence in L2.T/ given by

fn.x/ D
Z

T

�2.x; y/en.y/ dy:

A short computation based on (18.11) then yields

fn.ax/ D bkxk�nmfn.x/ for almost all x 2 T. (18.12)
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This implies jLafnj D jfnj, and by ergodicity we obtain that jfnj is constant for each
n 2 Z. Suppose i; j 2 Z are such that fi ¤ 0, fj ¤ 0, and define

g.x; y/ WD yi�j fi.x/

jfi.x/j
fj.x/ˇ
ˇfj.x/

ˇ
ˇ :

Then jgj D 1 and g is a fixed vector of Ta;m, which is nonconstant if i ¤ j. So by
ergodicity we must have i D j, i.e., there is precisely one n 2 Z such that fn ¤ 0,
and with � WD fn we have

�2.x; y/ D �.x/yn and hence �.x; y/ D .bx; �.x/yn/:

Since such a mapping � is only invertible if n D ˙1, and since by (18.12) � satisfies
the identity (18.10), the assertion is proved.

b) It is Exercise 27 to show that there are no n; b; � satisfying (18.10) if k ¤ m. ut
We remark that part a) of the previous theorem is true for more general skew

product systems where the transformation is given by

T
2 ! T

2; .x; y/ 7! .ax; c.x/y/ (c W T! T measurable):

The proof is essentially the same as the one above, see Anzai (1951).

Exercises

1. Let T; A; K and .�x;y/x;y2H be as in Theorem 18.2. Prove that the mapping

H �H ! M.K/; .x; y/ 7! �x;y

is sesquilinear and satisfies �y;x D �x;y.

2. Let T; A; K and .�x;y/x;y2H be as in Theorem 18.2. Prove that

ˇ̌
�x;y

ˇ̌
.B/ � �x.B/

1=2 �y.B/
1=2 for all B 2 Bo.K/:

(Hint: Use Theorem 18.2.d.)

3. Let T be a normal operator on a Hilbert space H with associated family of
measures .�x;y/x; y2H . Show that

y ? Z.x/ ” �x;y D 0:
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4 (Borel Functional Calculus, Multiplier Form). Let X D .X; ˙; �/ be a
measure space and let m W X ! C be a bounded measurable function. Let further
H WD L2.X/ and T D Mm 2 L .H/ be the multiplication by m, i.e., Tf D mf for
all f 2 H.

a) Show that T is normal.

b) Show that ¢.T/ D f� 2 C W �Œm 2 B.�; "/ � > 0 for all " > 0g.
c) Show that for f 2 BM.¢.T// the function f ı m is defined �-almost

everywhere, and f .T/ D Mf ım is multiplication by f ı m. (Hint: Consider
first f 2 C.¢.T// and then use the same technique as in the proof of
Theorem 18.5.b.)

d) Show that for f; g 2 H the measure �x;y is the push-forward measure of
.f g/� under the mapping m.

Finally, use the multiplier form of the spectral theorem (Theorem 18.4) to give
an alternative construction of the Borel functional calculus for a general bounded
normal operator on a Hilbert space.

5 (Spectral Measures). Let T be a bounded normal operator on a Hilbert space H.
Given a Borel set B 2 Bo.¢.T// we define E.B/ WD 1B.T/. The function E W B 7!
E.B/ is called the spectral measure of the operator T (see page 373). Show that it
has the following properties:

a) Each operator E.B/, B 2 Bo.¢.T//, is an orthogonal projection.

b) E.¢.T// D I and E.;/ D 0.

c) For a pairwise disjoint sequence .Bn/n2N in Bo.¢.T//,

E
�[

n
Bn

�
D
X

n
E.Bn/;

where the sum converges in the strong operator topology.

d) For B;C 2 Bo.¢.T// one has E.B \ C/ D E.B/E.C/.

e) An operator S 2 L .H/ commutes with T and T� if and only if it commutes
with the spectral measure, i.e., E.B/S D SE.B/ for all B 2 Bo.¢.T//.

f) For x; y 2 H we have

.Tx j y/ D
Z

¢.T/
z d .E.z/x j y/ :

g) If B 2 Bo.¢.T// with Bı ¤ ; (relative interior in ¢.T/), then E.B/ ¤ 0.

6 (Spectral Family via Positive Definite Functions). In this exercise we show how
the spectral theorem can be based on the Bochner–Herglotz theorem.
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Let T be a unitary operator on a Hilbert space H. Prove the following assertions
directly (i.e., not using the spectral theorem itself):

a) For each x 2 H the sequence ..Tnx j x//n2Z is positive definite.

b) For each x 2 H there is a Borel measure �x 2 M.T/ such that

.Tnx j x/ D
Z

T

zn d�x.z/ .n 2 Z/:

(Hint: Use the Bochner–Herglotz theorem.)

c) For each x; y 2 H there is a Borel measure �x;y 2 M.T/ such that

.Tnx j y/ D
Z

T

zn d�x;y.z/ .n 2 Z/:

(Hint: Use polarization.)

7. Prove the following assertions:

a) A power-bounded normal operator is a contraction.

b) A normal operator T on a Hilbert space is unitary if and only if ¢.T/ � T.

c) A Hilbert space contraction with discrete (unimodular) spectrum is unitary.

8. Prove von Neumann’s mean ergodic theorem based on the spectral theorem.

9 (Simple Spectrum).

a) Prove that for a normal operator T 2 L .H/ on a separable Hilbert space H
the following assertions are equivalent:

(i) T has simple spectrum.

(ii) There is a cyclic vector x, i.e., with Z.x/ D H.

(iii) For every x; y 2 H one has Z.x/ ? Z.y/ if and only if �x ? �y.

b) Prove that the Koopman operator T on L2.T/ of an irrational rotation
.T;mI a/ has simple (discrete) spectrum.

10. Let K � C, let �; ; � 2 MC.K/ with � ?  and � �C . Show that there
are unique measures �0; 0 with �0  �, 0   and � D �0 C 0.

11. Let K � C and �;  2 MC.K/ with � ? . Show that

L1.�/C L1./ D L1.�C /

as subsets of M.K/. (Hint: Exercise 10 and the Radon–Nikodym theorem.)

12. Let T be a contraction on a Hilbert space H, and consider its Szőkefalvi-Nagy–
Foiaş decomposition into unitary and completely nonunitary parts (see Section D.7)
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H D Huni ˚Hcnu:

Since T acts unitarily on Huni, we can decompose Huni as in Section 18.3 into
discrete and continuous parts Huni D Hd ˚ Hc. Show that

Hrev D Hd and Haws D Hc ˚Hcnu;

where H D Hrev ˚ Haws is the Jacobs–de Leeuw–Glicksberg decomposition of H
with respect to T.

13. Let H be a separable Hilbert space, and let T 2 L .H/ be a normal operator
with maximal spectral type Œ�max�. Decompose

�max D �d C �c

into a discrete and a continuous part. Show that Hd D H.�d/ and Hc D H.�c/.

14. Let T be a normal contraction on a Hilbert space H, with associated measure
family .�x;y/x;y2H on D D fz 2 C W jzj � 1g. Show that

lim
n!1 kT

nxk2 D �x.T/:

Show further that

kTxk D kxk ” �x.T
c/ D 0 ” x 2 Huni

(where Huni is the unitary part, see Appendix D.7). Conclude that for a normal
contraction T the decomposition

H D ˚x 2 H W kTxk D kxk�˚ ˚x 2 H W Tnx! 0
�

coincides with the Szőkefalvi-Nagy–Foiaş decomposition of H into the unitary and
the completely nonunitary part.

15. Give a direct proof of Wiener’s lemma using only Fubini’s theorem and
dominated convergence.

16. Give a proof of the Jacobs–de Leeuw–Glicksberg decomposition for normal
contractions T on a Hilbert space H by using the spectral theorem, i.e., prove the
following assertions:

a) The space H decomposes orthogonally as H D H1 ˚ H0, where

H1 D lin
˚
x W Tx D �x for some � 2 T

�
;

and H0, H1 are T-invariant subspaces and T restricted to H1 is unitary and
has relatively compact orbits.
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b) x 2 H0 if and only if

lim
N!1

1

N

NX

nD1
j.Tnx j y/j2 D 0

for all y 2 H.

17. Prove that a measure-preserving system .XI'/ is totally ergodic if and only if
it is ergodic and its Koopman operator has no eigenvalue (except 1) that is a root of
unity. (Hint: Suppose first the system to be invertible and use the spectral theorem.)

18. Prove that a measure� 2 M.T/ is a Rajchman measure if and only if O�.n/! 0

as n!1 if and only if O�.�n/! 0 as n!1.

19. Prove that a unitary operator on a separable Hilbert space with Lebesgue
spectrum is weakly stable. As a consequence, prove that an invertible standard
system with Lebesgue spectrum is strongly mixing.

20 (Simple Lebesgue Spectrum). Let T be a unitary operator on a Hilbert space
H. We say that T has simple Lebesgue spectrum if there is a cyclic vector x 2 H
(i.e., Z.x/ D H) and for the maximal spectral type we have Œ�max� D Œm�, where
m is the Haar measure on T. Prove that T has simple Lebesgue spectrum if and
only if there is y 2 H such that .Tny/n2Z is an orthonormal basis in H. (The still
unsolved question whether an ergodic system exists with simple Lebesgue spectrum
is attributed to Banach2 and hence is sometimes referred to as Banach’s problem.)

21. Prove that for every ˛ > 0, there is a two-sided Bernoulli shift B.p0; : : : ; pk�1/
with entropy exactly ˛. (Hint: Use the formula on page 391 for the entropy of a
Bernoulli shift.)

22. Prove the following assertions:

a) Every two-sided Bernoulli shift B.p0; : : : ; pk�1/ is, for each m 2 N,
isomorphic to the mth iterate of some Bernoulli shift.

b) Every two-sided Bernoulli shift B.p0; : : : ; pk�1/ is the product of two
nontrivial Bernoulli shifts.

c) Every two-sided Bernoulli shift B.p0; : : : ; pk�1/ is isomorphic to its inverse.

(Hint: Use the formula given on page 391 for the entropy of a Bernoulli shift
B.p0; : : : ; pk�1/, that entropy is an isomorphism invariant, Exercises 21, 12.15 and
Ornstein’s theorem.)

23 (Bernoulli Shifts are K-Systems). Let Y D .Y; ˙Y; / be a standard proba-
bility space and consider the two-sided Bernoulli shift .XI �/ with state space Y,

2As a matter of fact, Banach asked this for transformations preserving the Lebesgue measure on
R, see S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc.,
New York, 1964 � page 76.
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i.e., X D .X; ˙; �/, X WD Q
n2Z Y with the product measure �X WD N

n2Z 
on the product �-algebra ˙ WD N

n2Z˙Y and � the left shift (see Section 5.1).
Prove that .XI �/ is a K-system. (Hint: Denote by �0 W X ! Y the 0th coordinate
projection and let ˙ 0 WD �

S
n2N0 �

�nf��1
0 A W A 2 ˙Yg, i.e., the �-algebra of

sets “depending” only on coordinates n � 0. Verify that ˙ 0 has the properties
as required for a K-system. For that purpose show that for a given A 2 ˙ the
set D WD fB 2 ˙ W �.A \ B/ D �.A/�.B/g is a Dynkin system, and if
A 2Tn2N0 �

�n˙ 0, then A 2 D.)

24 (Automorphisms on Groups). Let G be a compact group with Haar measure
m, and let ' be a continuous group automorphism. Prove that .G;mI'/ is an
invertible measure-preserving system. (Hint: Uniqueness of the Haar measure.)

25. Prove Proposition 18.41. (Hint: Use arguments as in Section 18.4.)

26 (Example of Halmos and von Neumann). Consider the skew rotation system
.T2;mT2 I a/ (i.e.,  a.x; y/ D .ax; xy/) with a not a root of unity, and the product
system .T;mI a/˝B. 1

2
; 1
2
/, where B. 1

2
; 1
2
/ is the two-sided Bernoulli shift. Prove that

the two systems are spectrally isomorphic. (The proof that they are not isomorphic
can be found, e.g., in Halmos (1956, pp. 57–60).)

27. Let k; m 2 N, and let a 2 T be not a root of unity.

a) Let n 2 f�1; 1g, b 2 T, and � W T ! T be measurable satisfying
(18.10). Prove that �.x; y/ D .bx; �.x/yn/ defines an isomorphism between
the systems .T2;mT2 I a;m/ and .T2;mT2 I a;k/.

b) Prove that for k; m 2 N, k < m, the systems above are not isomorphic.
(Hint: Assume the two systems to be isomorphic under � given by �.x; y/ D
.bx; �.x/yn/. Then the system .T2;mT2 I a;m�k/ and the group rotation
.T2;mT2 I .a; bk// must be isomorphic, a contradiction to Proposition 18.41.)



Chapter 19
Topological Dynamics and Colorings

La couleur est mon obsession quotidienne, ma joie et mon tourment.1

Claude Monet2

In this chapter we explain the connection between coloring results from com-
binatorics and topological dynamical systems, an aspect that was discovered by
Furstenberg and Weiss. Since their seminal paper (Furstenberg and Weiss 1978b)
a new area has emerged that has been an active field of research ever since.

A basic result is the classical theorem of van der Waerden (1927) about arithmetic
progressions. An arithmetic progression of length k 2 N is a set A of natural
numbers of the form

A WD ˚a; aC n; aC 2n; : : : ; aC .k � 1/n� D ˚aC jn W 0 � j < k
�

for some a; n 2 N. The number a is called the starting point and n the difference
of this arithmetic progression. An arithmetic progression of length k is also
called a k-term arithmetic progression. A subset A � N is called AP-rich if it
contains arbitrarily long (finite) arithmetic progressions, or which is the same, it
contains k-term arithmetic progressions for every k 2 N.

Theorem 19.1 (Van der Waerden). If one colors the natural numbers with finitely
many colors, then there is a monochromatic AP-rich set. In other words: If N D
A1 [ A2 [ : : : [ Ar for some r 2 N, then there exists j0 2 f1; : : : ; rg such that for
every k 2 N there are a; n 2 N such that

a; aC n; aC 2n; : : : ; aC .k � 1/n 2 Aj0 :

1Color is my day-long obsession, joy and torment.
2Encyclopédie Larousse: Claude Monet.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_19
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One aspect of combinatorial number theory deals with similar questions: If we color
the natural numbers with finitely many colors arbitrarily, is there a monochromatic
part in which a specific structure can be found?

We shall actually prove van der Waerden’s theorem in two ways, and in
strengthened versions at that. As a preparation we investigate the Stone–Čech
compactification “S of a discrete semigroup S, and on our way we shall encounter
Hindman’s theorem about colorings of N. We first prove van der Waerden’s theorem
by using the right-topological semigroup “N and deduce then a generalization of
Birkhoff’s recurrence theorem from it. But that is not the whole story: We prove
this latter generalization, the Furstenberg–Weiss multiple recurrence theorem, by
a direct and elementary topological argument, and deduce from it combinatorial
statements, such as the Gallai–Witt theorem. Thus closing the circle, we present
an introduction to the fascinating interplay between topological dynamics and
combinatorial number theory.

19.1 The Stone–Čech Compactification

First we take a small detour to explore the C�-algebra

`1.S/ WD ˚x W x is a bounded function from S to C
�

in some detail, where S is a nonempty set. On S we shall consider the discrete
topology. The operations are defined pointwise, and the norm is given by

kxk1 D sup
s2S
jx.s/j :

Denote by “S the Gelfand representation space of `1.S/, and recall from Section 4.4
that “S is the set of nonzero multiplicative linear functionals on `1.S/. The space
“S carries the weak� topology of .`1.S//0 restricted to “S, and by Gelfand’s theory
one has the isomorphism

`1.S/ ' C.“S/; x 7! .p 7! p.x//:

In “S there are the point-evaluations ıs for all s 2 S. If we identify s with ıs, we can
consider S as a subset of “S. Notice also that by Theorem 7.23 every p 2 “S is a
positive functional.

Proposition 19.2. The mapping

� W S! “S; s 7! ıs 2 “S

is a homeomorphism onto its range, when S is endowed with the discrete topology.
Furthermore, the range �.S/ is dense.
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Proof. The mapping � is trivially injective, and it is continuous since S is discrete.
Let s0 2 S and " > 0 be given. For s 2 S define x.s/ WD " if s ¤ s0 and set
x.s0/ D 0. Then x 2 `1.S/, and jx.s/ � x.s0/j < " holds if and only if s D s0, i.e.,
when ıs D ıs0 . This proves that � is a homeomorphism.

Assume that �.S/ is not dense in “S, and take p 2 “S, x1; : : : ; xn 2 `1.S/, " > 0

with

nX

jD1
jxj.s/ � p.xj/j2 D

nX

jD1
jıs.xj/ � p.xj/j2 � "2 for all s 2 S.

Since p is positive, we conclude

"2 �
nX

jD1
p
�
jxj � p.xj/1j2

�
D

nX

jD1
p
�
.xj � p.xj/1/.xj � p.xj/1/

�

D
nX

jD1
p
�

xj � p.xj/1
�
� p
�

xj � p.xj/1
�
D 0:

But this is a contradiction, so that �.S/ is dense in “S. ut
The next proposition summarizes properties of elements of “S. By means of

the previous proposition we may identify S with a dense subspace of “S when
convenient.

Proposition 19.3. Let x W S ! C be a bounded (continuous) function. Then there
is a unique continuous extension Qx W “S! C.

Proof. For p 2 “S define

Qx.p/ WD p.x/:

Continuity of Qx follows since “S has the restriction of the weak� topology
�.`1.S/0; `1.S//. ut

We obtain the following corollary.

Proposition 19.4. Let K be a compact space, and let x W S ! K be a (continuous)
function. Then there is a unique continuous extension Qx W “S ! K, i.e., a unique
continuous function Qx such that the diagram below commutes.

Proof. Let f 2 C.K/ be arbitrary. By Proposition 19.3 we can uniquely extend
f ı x to a continuous function .f ı x/Q W “S! C. The mapping

C.K/! C.“S/; f 7! .f ı x/Q
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βS

S K

x̃

x

ι

is a C�-algebra homomorphism, so by Theorem 4.13 there is a continuous mapping
Qx W “S! K with f ı Qx D .f ı x/Q for all f 2 C.K/. Therefore, f ı Qx.s/ D f ı x.s/
for s 2 S. By Urysohn’s Lemma 4.2 we have x.s/ D Qx.s/, i.e., Qx is an extension of x.
Uniqueness follows from denseness of S in “S, see Proposition 19.2. ut

It can be easily seen that, up to homeomorphism, “S is the unique compact
topological space with the property in the previous proposition, see Exercise 1. The
space “S is called the Stone–Čech compactification of the discrete space S.

Given a function x W S! K and p 2 “S, we introduce the notation

lim
s!p

x.s/ WD Qx.p/;

where Qx is furnished by the proposition above. We call lims!p x.s/ the p-limit of x.

Proposition 19.5. Let K, L be compact spaces, let x W S! K be a function, and let
f W K ! L be continuous. Then for every p 2 “S we have

f
�

lim
s!p

x.s/
�
D lim

s!p
f .x.s//:

Proof. Let Qx W “S ! C be the unique extension of x yielded by Proposition 19.4.
For s 2 S we have f ı Qx.s/ D .f ı x/Q.s/. By continuity of f ı Qx and by uniqueness
of the extension we obtain f ı Qx D .f ı x/Q. ut

The terminology “p-limit” is underlined by the proposition below showing
that nontrivial elements of “N extend the usual notion of the limit of convergent
sequences. We first need a lemma.

Lemma 19.6. a) Let p 2 “S and A � S. Then p.1A/ 2 f0; 1g.
b) If p 2 “S n S, then p.1A/ D 0 for every finite set A � S.

c) If S D A1 [ A2 [ � � � [ Ar, then there is j0 2 f1; : : : ; rg with p.1j0/ D 1.

Proof. a) We have 1A D 1A1A, so by multiplicativity of p we obtain

p.1A/
2 D p.1A/p.1A/ D p.1A1A/ D p.1A/;

which implies the assertion.

b) Let p 2 “S n S, and notice first that p is also a positive functional (see
Theorem 7.23). By additivity of p it suffices to prove that for a 2 S one has
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p.1fag/ D 0. If this is not so, by part a) we have p.1fag/ D 1, and by additivity
p.1Snfag/ D 0. For a positive function x 2 `1.S/ we have

x.a/ D p.x.a/1fag/ � p.x/ � p.x.a/1fag/C kxk1p.1Snfag/ D x.a/:

This shows that p D ıa, contradicting the choice of p.

c) Since p is a positive functional, 1 D p.1/ � p.1A1/ C p.1A2/ C � � � C p.1Ar/.
By part a) p.1Aj/ 2 f0; 1g, hence the assertion follows. ut
Proposition 19.7. a) If x 2 `1.N/ is a convergent sequence, then for every

p 2 “N nN

lim
n!1 xn D p.x/:

b) Let K be a compact space and let x D .xn/n2N be a convergent sequence in
K. Then for every p 2 “N nN

lim
n!1 xn D p.x/:

Proof. a) Denote by ˛ the limit of x D .xn/n2N and let " > 0 be fixed. Take n0 2 N

such that

jxn � ˛j � " for all n 2 N with n > n0;

and let A WD f1; : : : ; n0g. Then by Lemma 19.6 we have p.1A/ D 0, so p.1Ac/ D 1.
By the algebraic properties of p we obtain

ˇ
ˇp.x/� ˛ˇˇ2 D p

�jx � ˛1j2� D p
�jx � ˛1

ˇ
ˇ21Ac/ � p."1/ D ":

Since " > 0 was arbitrary, the claim is proved.

b) Let f 2 C.K/ be arbitrary. Then by part a), by Proposition 19.5, and by continuity
of f we obtain

f
�

lim
n!p

xn

�
D lim

n!p
f .xn/ D lim

n!1f .xn/ D f
�

lim
n!1 xn

�
:

Urysohn’s lemma finishes the proof. ut

19.2 The Semigroup Structure on “S

We now suppose that S is a semigroup and extend the semigroup structure from S
to “S. Denote by Lr the left rotation on `1.S/ by an element r 2 S, i.e.,
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�
Lrx
�
.s/ D x.rs/:

(In case of S D N we speak of translation .Lmx/.n/ D x.m C n/.) Now, given an
element p 2 “S and a function x 2 `1.S/, the function

r 7! p.Lrx/ 2 C

is bounded. So for two elements p; q 2 “S we can define their convolution by

.p � q/.x/ WD p
�

r 7! q.Lrx/
�
D lim

r!p

�
lim
s!q

x.rs/
�
:

The next proposition summarizes the algebraic properties of this operation.

Proposition 19.8. a) For s; t 2 S we have

ıs � ıt D ıst:

b) For p; q 2 “S we have p � q 2 “S.

c) For p; q; u 2 “S we have

.p � q/ � u D p � .q � u/;

i.e., � is associative, hence .“S;�/ is a semigroup.

Proof: a) Let x 2 `1.S/ and let s; t 2 S. Then

ıs � ıt.x/ D ıs.r 7! ıt.Lrx// D ıs.r 7! x.rt// D x.st/ D ıst.x/:

b) Since p; q 2 “S and for every r 2 S the mappings Lr are C�-algebra homo-
morphisms (preserving 1), so is p � q, hence an element of “S.

c) Take p; q; u 2 “S and x 2 `1.S/. Then we have

.p � q/ � u.x/ D lim
s!p�q

�
lim
t!u

x.st/
�
D lim

r!p

 

lim
s!q

�
lim
t!u

x.rst/
�
!

D lim
r!p

�
lim

s!q�u
x.rs/

�
D p � .q � u/.x/: ut

Since the mapping s 7! ıs is injective, we may identify s with ıs. So by virtue of a)
we can consider S as a subsemigroup of “S.

The next proposition describes continuity properties of the convolution. Recall
again that the topology on “S is the weak� topology of `1.S/0 restricted to “S.
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Proposition 19.9. a) For each p 2 “S the right multiplication by p

q 7! q � p

is continuous on “S.

b) For each s 2 S the left multiplication by s

q 7! s � q

is continuous on “S.

c) “S is compact right-topological semigroup with S a dense subsemigroup.

Proof. a) Let " > 0, let x 2 `1.S/, and let q 2 “S. For q0 2 “S we have

ˇ
ˇq � p.x/� q0 � p.x/

ˇ
ˇ D ˇˇ.q � q0/

�
r 7! p.Lrx/

�ˇˇ < ";

if q0 is such that j.q � q0/.y/j < " for y.r/ WD p.Lrx/.

b) Let q 2 “S, let " > 0, let x 2 `1.S/, and let s 2 S be fixed. Then

ˇ
ˇs � q.x/� s � q0.x/

ˇ
ˇ D ˇˇ.q � q0/

�
Lsx
�ˇˇ < ";

whenever q0 2 “S is in an appropriate weak�-neighborhood of q.

c) The assertion follows from Theorem 19.2 and part a). ut
Exercise 2 shows that the left multiplication by an arbitrary element is not

always continuous, so “S is not commutative in general. In particular, “N is not
commutative. Nevertheless, from now on we shall use the symbol C for the
operation � in “N and in “S when S is commutative. Furthermore, we note that
even if S is a group the resulting compactification “S need not be so. In fact, it
may contain many idempotents, hence in general is not a group. For example, “Z
contains 22

@0 idempotents, see Hindman and Strauss (1998, Ch. 6).
The following is an important property of p � q-limits.

Proposition 19.10. Let K be a compact space, let x W S ! K and let p, q 2 “S.
Then

lim
r!p�q

x.r/ D lim
s!p

�
lim
t!q

x.st/
�
:

Proof. The statement for scalar-valued sequences is just the definition of the
convolution. For the general case one can employ the standard argument using
Urysohn’s lemma, already familiar from the proof of Proposition 19.7. ut
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19.3 Topological Dynamics Revisited

We now return to topological dynamical systems where the semigroup “N will yield
new insights. In what follows, we shall write pC q instead of p � q even though this
operation is noncommutative.

Proposition 19.11. Let .KI'/ be a topological system. For x 2 K and p 2 “N we
define

'p.x/ WD lim
n!p

'n.x/:

Then

E WD ˚'p W p 2 “N�

is a semigroup of transformations on K. The mapping ˚ W “N 3 p 7! 'p 2 E is
a semigroup homomorphism, continuous when E is endowed with the topology of
pointwise convergence.

Proof. For p; q 2 “N we have by Propositions 19.10 and 19.5 that

'pCq.x/ D lim
n!p

lim
m!q

'nCm.x/ D lim
n!p

'n
�

lim
m!q

'm.x/
�
D 'p

�
'q.x/

�
:

This shows that E is a semigroup and ˚ is a homomorphism. To see continuity
take p 2 “N, x 2 K and U � K open with 'p.x/ 2 U. Choose f 2 C.KIR/ with
0 � f � 1 on K and f .'p.x// D 1, Œ f > 0 � � U. Then, by using Proposition 19.5,

f .'q.x// D lim
n!q

f .'n.x// for all q 2 “N.

Whence, f .'q.x// > 0, i.e., 'q.x/ 2 U, whenever q is in an appropriate weak�
neighborhood of p. ut

The semigroup E in the proposition above is called the enveloping semigroup
or Ellis semigroup of the topological system .KI'/. Here is another description.

Proposition 19.12. For a topological system .KI'/ define

T WD ˚'n W n 2 N
� � KK ;

where the closure is understood in the topology of pointwise convergence of the
compact space KK (see Tychonoff’s Theorem A.5). Then T D E , the enveloping
semigroup.
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Proof. For  2 T there is a net .n˛/˛ with 'n˛ !  in KK . Since “N is compact,
.n˛/˛ has a convergent subnet .n˛0/˛0 with limit p 2 “N. By continuity of p 7! 'p

we have 'p D  . On the other hand, if p 2 “N, then there is a net .n˛/˛ � N

converging to p. By compactness of T there a subnet .'n˛0 /˛0 with limit  2 T .
By continuity of p 7! 'p we conclude  D 'p. ut

As a corollary we obtain the following.

Proposition 19.13. Let .KI'/ be a topological system.

a) For x 2 K

orb>0.x/ D
˚
'p.x/ W p 2 “N�:

b) If .LI'/ is a subsystem, then L is invariant under 'p for every p 2 “N.

Proof. a) Let T be as in Proposition 19.12. By compactness of T and by the
continuity of point evaluations on KK the equality T x D f .x/ W  2 T g D
orb>0.x/ holds. Since E D T by Proposition 19.12, the assertion is proved.

b) follows from a). ut
Given a topological system .KI'/ two points x; y 2 K are called proximal (with

respect to the system) if there is a point z such that for every open neighborhood U
of z there is n 2 N with

'n.x/; 'n.y/ 2 U:

For metrizable spaces we have the following characterization.

Proposition 19.14. For a topological system .KI'/, K metrizable with metric d,
and for x; y 2 K the following statements are equivalent:

(i) x; y 2 K are proximal.

(ii) For every " > 0 there is n 2 N with d.'n.x/; 'n.y// < ".

(iii) There is a subsequence .nk/k2N in N such that

d.'nk.x/; 'nk.y//! 0 as k!1:

We leave the proof as Exercise 3. Being proximal is a symmetric and reflexive
relation on K as it is easy to see. By a result of Ellis it is an equivalence relation
if and only if the enveloping semigroup E contains exactly one minimal right ideal,
see Ellis (1960).

Proposition 19.15 (Idempotents and Proximal Points). Let .KI'/ be a topolog-
ical system. For x; y 2 K the following assertions (i)–(iii) are equivalent:
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(i) The points x; y are proximal.

(ii) There is p 2 “N with

'p.x/ D 'p.y/:

(iii) There is an idempotent p 2 “N (i.e., p2 D p) with

'p.x/ D 'p.y/:

The next two assertions are equivalent and any one of them implies each of (i)–(iii):

(iv) There is an idempotent p 2 “N with 'p.x/ D y.

(v) There is p 2 “N with 'p.x/ D y and 'p.y/ D y.

If the system .KI'/ is minimal, (i)–(v) are all equivalent.

Proof. (i)) (ii): Suppose x; y 2 K are proximal points, and let z 2 K be point as
in the definition of proximality. Then for every open neighborhood U of z we can
take the corresponding minimal nU 2 N with 'nU .x/; 'nU .y/ 2 U. By compactness
a subnet of .nU/ converges to some p 2 “N (U ranging in a neighborhood basis),
and clearly 'p.x/ D z D 'p.y/.

(ii)) (iii): Define

S WD ˚q 2 “N W 'q.x/ D 'q.y/
�
:

By assumption S is nonempty, and it is compact by Proposition 19.11. Evidently S
is a subsemigroup of “N, hence by Ellis’ Theorem 16.3 contains an idempotent p.

(iii)) (i): Given p 2 “N with 'p.x/ D 'p.y/, let U be an arbitrary open neigh-
borhood of z WD 'p.x/. Then by Proposition 19.11 there is n 2 N with
'n.x/; 'n.y/ 2 U.

(iv)) (v): Take an idempotent p 2 “N as in (iv). Then y D 'p.x/ D 'p'p.x/ D
'p.y/.

(v)) (iv): Consider the set

S WD ˚q 2 “N W 'q.x/ D y and 'q.y/ D y
�
;

which is nonempty by assumption (v). By continuity of p 7! 'p it is closed, hence
compact. Since it is evidently a subsemigroup, it contains an idempotent p 2 “N.

The implication (v)) (ii) is trivial.

Suppose now that the system .KI'/ is minimal.

(ii)) (v): Let q 2 “N be such that 'q.x/ D 'q.y/. By minimality one has
orb>0.'q.x// D K, so by Proposition 19.13 there is u 2 “N with 'u'q.y/ D
'u'q.x/ D y, i.e., p WD uC q is as asserted. ut
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Theorem 19.16 (Auslander, Ellis). Let .KI'/ be a topological system. For x 2 K
let L WD orb>0.x/.

a) Then for any subsystem .MI'/ of .LI'/ there is y 2 M proximal to x.

b) There is a uniformly recurrent point proximal to x.

Proof. a) Define

S WD ˚p 2 “N W 'p.x/ 2 M
�
;

which is nonempty by Proposition 19.13 and a closed subset of “N by the definition
of the topology of pointwise convergence and by the continuity of p 7! 'p.x/, see
Proposition 19.11. If z 2 M, then z D 'q.x/ for some q 2 “N by Proposition 19.13,
but then q 2 S. We conclude M D f'p.x/ W p 2 Sg. For q 2 “N, p 2 S we have
'p.x/ 2 M, 'q'p.x/ 2 M by Proposition 19.13.b, so that “NCS � S, in particular S
is a semigroup. By Theorem 16.3 it contains an idempotent u. By Proposition 19.15
y WD 'u.x/ 2 M and x are proximal.

b) Take a minimal subsystem .MI'/ of .LI'/ (see Theorem 3.5). By Theorem 3.11
each point in M is uniformly recurrent. By part a) there is one proximal to x. ut

A topological system is called distal if every point is proximal only to itself.

Examples 19.17. 1) An isometric system (or, which is the same by Exer-
cise 2.17, an equicontinuous system) is distal. This is Exercise 3 below.

2) Let .HI / be a group extension of a distal system .KI'/ along ˚ W K ! G.
Then two points .x; g1/, .y; g2/ 2 H can only be proximal in .HI / if x D y.
For .x; g1/; .x; g2/ 2 H we have

 n.x; g1/ D .'n.x/; ˚Œn�
x g1/ and  n.x; g2/ D .'n.x/; ˚Œn�

x g2/;

where˚Œn�
x is the cocycle of the group extension, see Remark 2.21.4. Suppose

that g1 ¤ g2 and let U be an open neighborhood of 1 2 G such that Ug�1
1 \

Ug�1
2 D ;. If .y; h/ 2 K �G is an arbitrary element, then V D K � hU is an

open neighborhood of .y; h/. If  n.x; g1/ 2 V and  n.x; g2/ 2 V , then

h�1˚Œn�
x 2 Ug�1

1 \ Ug�1
2 ;

which is impossible. Hence, .x; g1/ and .x; g2/ can be proximal only for g1 D
g2. The system .HI / is therefore distal.

3) A group rotation .GI a/ is distal. Indeed, .GI a/ is (isomorphic to) the group
extension of the trivial system .f0gI id/ (trivially distal) along ˚ W f0g ! G
given by ˚.0/ D a. So the preceding statement applies.

4) The skew shift .Œ0; 1/ � Œ0; 1/I ˛/ is distal, but by Exercise 2.18 is not
equicontinuous (i.e., cannot be made isometric with a compatible metric).

5) A Heisenberg system .HI Œ˛; ˇ; 
�/ is distal. This is Exercise 5.
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In view of the preceding list of examples it is interesting to note that Glasner (2006)
gives a characterization in terms of the enveloping semigroup of those minimal and
distal systems that are isometric (in a compatible metric), see also Glasner (2007b).

Proposition 19.18 (Ellis). A topological system .KI'/ is distal if and only if its
enveloping semigroup E is a group.

Proof. Suppose that the enveloping semigroup is a group. Then the only idempotent
element in E is id W K ! K, i.e., 'p D id for every idempotent p 2 “N. By
Proposition 19.15 a point can be only proximal to itself.

Suppose .KI'/ is distal, and let  2 E be an idempotent. For x 2 K set y WD
 .x/, then by Proposition 19.15 y and x are proximal, hence they must be equal
by assumption. This shows that  D id, i.e., the only idempotent in E is id. By
Lemma 16.4 there is a minimal idempotent in E , which is then the only idempotent
id. Lemma 16.1 shows that E D id E id is a group. ut

As a consequence we obtain that a distal system is in fact invertible. Distal
systems have a simple “structure theorem” similarly to isometric systems, cf.
Corollary 3.7, see also Exercise 3.

Proposition 19.19. A distal topological system is a disjoint union of its minimal
subsystems.

Proof. By Theorem 19.16 every point x is proximal to a uniformly recurrent point z
in its orbit closure. By distality we must have x D z, hence every point is uniformly
recurrent. This proves the statement by Theorem 3.11 and Remark 3.2.4. ut

Furstenberg in (1963) proved a more detailed structure theorem for distal
systems, see also Glasner (2003, Ch. 10).

19.4 Hindman’s Theorem

In this section we shall apply the foregoing results to one particular topological
system, namely the shift, and thereby arrive at a first result in combinatorial number
theory. The following proposition describes proximality in the shift system (see
Example 2.5).

Proposition 19.20. For given r 2 N consider the shift system .W C
r I �/. Two points

x; y 2 W C
r are proximal if and only if the set

˚
n 2 N0 W x.n/ D y.n/

�

is thick, i.e., contains arbitrarily long blocks of consecutive integers.
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Proof. By the definition of the topology on W C
r , for each compatible metric d

on W C
r and every N 2 N there is " > 0 such that d.x; y/ < " if and only if

the first N letters of x and y coincide. This observation implies the assertion by
Proposition 19.14. ut

Given an infinite sequence .nj/j2N in N we define

FS.nj/ WD
nX

j2F

nj W F � N finite and nonempty
o
;

the set of nonempty finite sums of distinct members of the sequence. A finite
sequence .n1; : : : ; nk/ 2 N

k we complete by zeros to an infinite one and interpret
FS.n1; : : : ; nk/ accordingly. A set I containing FS.nk/ for some infinite sequence
.nk/k2N in N is called an IP set.3

Remark 19.21. Some authors use the term IP set for sets that are of the form
FS.nk/, see, e.g., Furstenberg (1981, Def. 2.3) and Bergelson (2010).

Clearly, N and 2N are IP sets, while N n 2N is not, see also Exercise 8.

Theorem 19.22 (Hindman, Arithmetic Version). If N D A1 [ A2 [ : : : [ Ar is
a partition, then there is j0 2 f1; : : : ; rg such that Aj0 is an IP set. More precisely,
there is a strictly increasing sequence .nk/k2N in N such that FS.nk/ is contained
in Aj0 .

Proof. Let N D A1 [ A2 [ � � � [ Ar be a partition. Consider the one-sided shift
topological system .W C

r I �/ and define x 2 W C
r by x.0/ WD 1, and for n 2 N by

x.n/ WD j if n 2 Aj:

Then by Theorem 19.16 there is a uniformly recurrent point z proximal to x. Set
j0 WD z.0/. We claim that Aj0 has the asserted properties. For the proof, recall that
z 2 W C

r is uniformly recurrent if every finite block (word) that occurs in it, occurs
actually infinitely often with bounded gaps (i.e., syndetically, see Example 3.10.b).

By Proposition 19.20, x and z are proximal if and only if x and z coincide
on arbitrarily large blocks occurring at the same position in x and z. Since every finite
block of z appears in every sufficiently large segment of z, it follows that every
finite block of z appears infinitely often somewhere at the same position in x and
in z.

Consider the block b1 D .j0/ that occurs—by what is said above—in x and z at
position n1 2 N. Then x.n1/ D z.n1/ D z.0/ D j0. Next consider the block b2 of
the first n1 C 1 letters of z. Also the block b2 occurs in x and z at the same position
n2 2 N with n2 > n1. We therefore have

3The terminology “IP” may refer to “Infinite Parallelepiped.” In fact, FS.nk/ D fn1; n2; n1 C
n2; n3; n1 C n3; n2 C n3; n1 C n2 C n3; : : : g resembles an infinite parallelepiped.
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z.0/ D z.n2/; z.1/ D z.n2 C 1/; : : : z.n1/ D z.n2 C n1/;

x.n2/ D z.n2/; x.n2 C 1/ D z.n2 C 1/; : : : x.n2 C n1/ D z.n2 C n1/:

These yield

x.n1 C n2/ D z.n1 C n2/ D z.n1/ D j0;

hence n1; n2; n1 C n2 2 Aj0 . We continue this construction inductively. Suppose
n1 < n2 < � � � < nk have been found such that for any N 2 FS.n1; : : : ; nk/ we have
z.N/ D j0. Then let bkC1 be the block of the first n1 C n2 C � � � nk C 1 letters of z to
be found at the same position, say at nkC1 > nk both in x and z. This yields

z.j/ D z.nkC1 C j/; for all j D 0; : : : ; n1 C n2 C � � � nk;

z.nkC1 C j/ D x.nkC1 C j/ for all j D 0; : : : ; n1 C n2 C � � � nk:

If N 2 FS.n1; : : : ; nk/, then x.N C nkC1/ D z.N C nkC1/ D z.N/, the latter being
equal to j0 by assumption. Thus we obtain N C nkC1 2 Aj0 . Hence, by construction
we have FS.nj/ � Aj0 . ut

We denote by F WD F .N0/ the set of finite nonempty subsets of N0, and for a
given sequence .˛k/k2N in F of pairwise disjoint sets we define

FU.˛j/ WD
n[

j2F

˛j W F � N finite and nonempty
o
� F :

We arrive at the following consequence of Hindman’s theorem.

Theorem 19.23 (Hindman, Set Theoretic Version). If F D A1 [A2 [ : : :[Ar

is a partition, then there is j0 2 f1; : : : ; rg and a sequence .˛j/j2N in F of pairwise
disjoint finite sets such that FU.˛j/ � Aj0 . The sequence .˛j/j2N can be chosen such
that max˛j < min˛jC1 for all j 2 N.

Proof. Identify N with the set of nonzero, finite 0-1-sequences via the binary
expansion of n 2 N, and in turn identify this latter set with F . That is, we consider
the bijection

� W F ! N; �.˛/ 7!
X

j2˛
2j D n:

The partition of F therefore induces a partition N D �.A1/[ : : :[ �.Ar/. Hindman’s
Theorem 19.22 yields a strictly increasing sequence .nk/k2N with FS.nk/ � �.Aj0 /

for some j0 2 f1; : : : ; rg. The proof will be finished if we find a subsequence .n0
k/k2N

in FS.nk/ such that ��1.n0
k/ are pairwise disjoint for k 2 N and FS.n0

k/ � FS.nk/.
Indeed, in that case ˛j WD ��1.n0

j/, j 2 N, have the asserted properties, because
�.˛j [ ˛j0/ D �.˛j/C �.˛j0/.

To construct the required sequence we first show that for every finite set N � F
and for every K 2 N there is m 2 FS.nk/ such thatˇ\��1.m/ D ; for all ˇ 2 N and
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such that m is the sum of elements nj with j > K. This assertion is trivial if there are
only finitely many members of .nk/k2N that intersect some element ˇ of N . So we
can suppose that this happens for infinitely many of the members. Let N be greater
than the maximum of any element of any ˇ 2 N . Then for infinitely many members
of .nk/k2N we have nk 
 constant modulo 2N , i.e., that ��1.nk/\f0; : : : ;Ng D 
 for
some 
 . We add up 2N of such nk with k > K, the result m then belongs to FS.nk/

and has the asserted properties.
Let now n0

1 D n1, and suppose n0
1; : : : ; n

0
k 2 FS.nk/ have been defined. Let N WD

f��1.n0
j/ W j D 1; : : : ; kg and let K 2 N be greater than the index j of elements nj that

occur in the sums giving n0
1; : : : ; n

0
k. Take m 2 FS.nk/ as above and set n0

kC1 WD m.
By construction we have FS.n0

k/ � FS.nk/ and .n0
k/k2N is as required. Note also that

the construction yields .˛j/j2N with the asserted additional property. ut
A subset A � N is called an IP� set if it intersects every IP set. Trivially, N is

an IP� set. In some sense IP� sets are large (near infinity). In fact, an IP set may
contain arbitrarily growing gaps, so a set intersecting any such set must be indeed
“large near infinity.” By Exercise 14 an IP� set is syndetic (i.e., has bounded gaps).
If I� � N is an IP� set, then N D I� [ I�c is a partition, hence by the arithmetic
version of Hindman’s theorem, I� is an IP set. See also Exercise 21.

Corollary 19.24. a) Let I � N be an IP set and let I D A1 [ A2 [ � � � [ Ar be
a partition. Then there is j0 2 f1; : : : ; rg such that Aj0 is an IP set.

b) If I� and J� are IP� sets, so is I� \ J�.

Proof. a) Let .nk/k2N be a sequence in N with FS.nk/ � I. For j D 1; : : : ; r we define

Aj WD
n
˛ W

X

k2˛
nk 2 Aj

o
:

Then F D A1 [ � � � [Ar, and Hindman’s Theorem 19.23 yields .˛k/k2N pairwise
disjoint with FU.˛k/ � Aj0 for some j0. Then with mk WD �.˛k/ we have FS.mk/ �
Aj0 , i.e., Aj0 is an IP set, where � is as in the proof of Theorem 19.23.

b) Let I� and J� be IP� sets, and let I be an IP set. Then I D .I n I�/ [ .I \ I�/ is
a partition, hence by part a) one of the sets contains an IP set, but since I� is an IP�
set, this cannot hold for I n I�. Hence, there is an IP set J � I \ I�, which is then
intersected by J�. This shows that I� \ J� intersects any IP set I, i.e., I� \ J� is an
IP� set. ut

19.5 From Coloring to Recurrence Results

In this section we give a proof of van der Waerden’s theorem on arithmetic
progressions using directly the semigroup “N. Then we show how topological
recurrence results can be deduced from this theorem.
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Theorem 19.25 (Van der Waerden). Let

N D A1 [ A2 [ : : : [ Ar for some r 2 N:

Then there is j0 2 f1; : : : ; rg such that Aj0 contains arithmetic progressions of
arbitrary length, i.e., for all k 2 N there are a; n 2 N such that

a; aC n; aC 2n; : : : ; aC .k � 1/n 2 Aj0 :

We prepare the proof by defining the sets

Ik WD
˚
.a; aC n; aC 2n; : : : ; aC .k � 1/n/ W a 2 N; n 2 N

� � N � N � � � � �N

for all k 2 N. A set A � N contains a k-term arithmetic progression if and only if

Ik \ A � A � � � � � A ¤ ;:

In order to have compact spaces we consider the k-fold product

.“N/k D “N � “N � � � � � “N;

which is a right-topological semigroup with the coordinatewise operation and the
product topology. The closure Ik of Ik is a compact set in .“N/k. Clearly, Ik is a
subsemigroup, and if we take the semigroup

Sk WD
˚
.a; aC n; aC 2n; : : : ; aC .k � 1/n/ W a 2 N; n 2 N0

� � .“N/k;

then Ik becomes an ideal in Sk. We next prove a general result about right-topological
semigroups.

Proposition 19.26. Let S be subsemigroup in a compact right-topological semi-
group H such that the left multiplications by elements from S are continuous, and
let I be a two-sided ideal in S. Then S is a compact right-topological subsemigroup
of H, and I is a two-sided ideal of S.

Proof. Compactness of S and the continuity of right multiplications is clear. To show
that S is a semigroup take x; y 2 S and W an open neighborhood of xy. By the
continuity of the right multiplication by y there is an open neighborhood V of x with
Vy � W. Take z 2 V \ S. By the continuity of the left multiplication by z, there is
an open neighborhood U of y with zU � W. For w 2 U \ S we have wz 2 W \ S.
This proves xy 2 S. The arguments to show that I is an ideal in S are similar. ut

By this proposition Sk is a right-topological subsemigroup in .“N/k, and Ik is a
two-sided ideal of Sk. In the search for a k-term arithmetic progression in A � N it
suffices to show that for the set
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A� WD ˚p 2 “N W p.1A/ D 1
�

one has

Ik \ A� � A� � � � � � A� ¤ ;:

Indeed, the set A� is open since by Lemma 19.6 we have

A� D ˚p 2 “N W p.1A/ ¤ 0
�
:

Hence, the product set A��A��� � ��A� is open in .“N/k. So if it intersects Ik, then
for some a; n 2 N one has

.a; aC n; : : : ; aC .k � 1/n/ 2 A� � A� � � � � � A�;

a; aC n; : : : ; aC .k � 1/n 2 A:meaning that

We therefore try to find elements of Ik.

Theorem 19.27. Let p 2 “N be contained in a minimal right ideal of “N. Then

.p; p; : : : ; p/ 2 Ik:

Proof. Notice first that .p; p; : : : ; p/ 2 Sk. Since by Proposition 19.26 Ik is a two-
sided ideal, by Lemma 16.4 it is enough to show that .p; p; : : : ; p/ is contained in
a minimal right ideal. Let R be a minimal right ideal containing p, which exists
by assumption. Since the right ideal R � R � � � � � R is not minimal in general,
we need the following considerations. Of course, .p; : : : ; p/ C Sk is a right ideal
in Sk, hence contains a minimal right ideal J. This right ideal is itself a compact
right-topological semigroup, so contains an idempotent element .q1; q2; : : : ; qk/ by
Ellis’ Theorem 16.3. By construction there is .u1; u2; : : : ; uk/ 2 Sk with

pC ui D qi for i D 1; : : : ; k:

Hence, from p 2 R we obtain qi 2 R since R is a right ideal. Thus qi C “N � R
and by minimality of R even the equality qi C “N D R is true. For some elements
q0

i 2 “N one has qi C q0
i D p and then

qi C p D qi C qi C q0
i D qi C q0

i D p:

To conclude the proof notice that

.p; : : : ; p/ D .q1; : : : ; qk/C .p; : : : ; p/ 2 J C S D J;

so .p; : : : ; p/ is contained in a minimal right ideal. ut
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Proof of van der Waerden’s Theorem 19.25. Notice that it suffices to prove that for
every k 2 N there is a j0.k/ 2 f1; : : : ; rg with Aj0.k/ containing a k-term arithmetic
progression. Indeed, we have j0.k/ D j0 for some j0 2 f1; : : : ; rg and for infinitely
many k 2 N. This j0 will serve our purposes.

By Theorem 16.3 there is a minimal right ideal R in “N. Take p 2 R. From
Theorem 19.27 we obtain .p; p; : : : ; p/ 2 Ik. By Lemma 19.6.c, p.1Aj0

/ D 1 for
some j0 2 f1; : : : ; rg, i.e., p 2 A�

j0
. Whence it follows that

Ik \ A�
j0 � A�

j0 � � � � � A�
j0 ¤ ;;

proving that Aj0 contains a k-term arithmetic progression. ut
We show how to deduce recurrence results from combinatorial ones. Recall

Birkhoff’s recurrence theorem from Chapter 3: In any metric topological system
.KI'/ there is point x0 2 K which is recurrent, meaning that 'nj.x0/ ! x0 as
j! 1 for a subsequence .nj/j2N in N. We now search for a point x0 which enjoys
even stronger recurrence properties, such as

'nj.x0/! x0 and '2nj.x0/! x0 as j!1:

We saw in Exercise 11 that any point x0 that is recurrent for ' is also recurrent for
'2 (actually for every 'm, m 2 N). So there are subsequences .nj/j2N and .n0

j/j2N in
N such that

'nj.x0/! x0 and '2n0

j .x0/! x0 as j!1:

But nothing prevents these subsequences from being disjoint. However, we shall
derive the existence of such an x0 from van der Waerden’s theorem.

Theorem 19.28 (Furstenberg, Weiss). Let .KI'/ be a topological system.

a) Let U1;U2; : : : ;Ur � K be open subsets covering K. Then there is j0 2
f1; : : : ; rg such that for all k 2 N there is n 2 N with

Uj0 \ '�nUj0 \ '�2nUj0 \ � � � \ '�knUj0 ¤ ;:

b) If .KI'/ is a minimal TDS, then for every ; ¤ U � K open set and for every
k 2 N there is n 2 N such that

U \ '�nU \ '�2nU \ � � � \ '�knU ¤ ;:
Proof. a) Let x 2 K be arbitrary, and for j 2 f1; : : : ; rg let

Aj WD
˚
n 2 N W 'n.x/ 2 Uj

�
:
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Now, by van der Waerden’s Theorem 19.25, there is j0 2 f1; : : : ; rg such that Aj0
contains arbitrarily long arithmetic progressions. This means that for every k 2 N0

there is a; n 2 N such that a; aC n; aC 2n; : : : ; aC kn 2 Aj0 , i.e.

'a.x/ 2 Uj0 \ '�nUj0 \ '�2nUj0 \ � � � \ '�nkUj0 ;

hence the assertion follows.

b) In a minimal topological system we have

K D
[

i2N
'�i.U/;

see Proposition 3.3. So one can apply part a) to a finite subcover (which exists by
compactness) to obtain the assertion (see also the proof of Lemma 19.32). ut

Let .KI'/ be a topological system with .K; d/ a metric space, and let k 2 N.
A point x 2 K is called simultaneously k-recurrent if there is a subsequence .nj/j2N
in N such that

'nj.x/! x; '2nj.x/! x; : : : ; 'knj.x/! x as j!1:

Theorem 19.29 (Multiple Recurrence). Let .KI'/ be a topological system with
.K; d/ a metric space, and let k 2 N. Then there is a simultaneously k-recurrent
point x 2 K. If the system is minimal, then the set of k-recurrent points is residual.

Proof. By passing to a subsystem we may assume that .KI'/ is minimal, see
Theorem 3.5, so it suffices to show the second assertion only. Consider the set

G" WD
˚
x 2 K W d.'ni.x/; x/ < " for some n 2 N and for all i D 1; : : : ; k�;

which is evidently open in K. We now show that it is even dense. Let U � K be a
nonempty open set, then by compactness and minimality

K D
r[

jD1
'�j.U/ for some r 2 N:

For a given " > 0 let ı > 0 be chosen, by the uniform continuity of the occurring
mappings, such that

d
�
y; z
�
< ı H) d

�
' j.y/; ' j.z/

�
< "; j D 1; : : : ; r:

Theorem 19.28.b applied to an arbitrary ball of radius ı=2 yields n 2 N and y 2 K
with d.' in.y/; y/ < ı, i D 1; : : : ; k. Then y 2 '�j0 .U/ for some j0 2 f1; : : : ; rg, and
hence x WD ' j0 .y/ 2 U \ G".

The set G WD T
n G1=n is a dense Gı set by Baire’s Category Theorem A.11.

Every x 2 G is k-recurrent. ut
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19.6 From Recurrence to Coloring Results

In this section we shall give a direct proof of the multiple recurrence theorem
of Furstenberg and Weiss (1978b), and deduce coloring results from it. The
surprisingly simple proof will yield some additional structural information about
the sequences .nj/j2N that occur in the multiple recurrence theorem.

Theorem 19.30 (Furstenberg, Weiss). Let '1; : : : ; 'k W K ! K be commuting
homeomorphisms of the compact space K, and let U1;U2; : : : ;Ur � K be open
subsets covering K. Then there is j0 2 f1; : : : ; rg and n 2 N with

Uj0 \ '�n
1 Uj0 \ '�n

2 Uj0 \ � � � \ '�n
k Uj0 ¤ ;: (19.1)

For an invertible topological system .KI'/ and 'i WD ' i, i D 1; : : : ; k the above
reduces to Theorem 19.28. As a further generalization, we prove that the good n’s
can be taken from an arbitrarily chosen IP set.

Theorem 19.31. Let K be a compact space, let '1; : : : ; 'k W K ! K be commuting
homeomorphisms, and let I � N be an IP set. Take U1;U2; : : : ;Ur � K open
subsets covering K. Then there is j0 2 f1; : : : ; rg and n 2 I such that

Uj0 \ '�n
1 Uj0 \ '�n

2 Uj0 \ � � � \ '�n
k Uj0 ¤ ;:

For the proof we need some preparations. Let S be a semigroup of continuous
self-mappings of the compact space K. We say that S acts minimally on K if
whenever a closed set F � K is invariant under every ' 2 S , then either F D ; or
F D K, cf. Section 3.1.

Lemma 19.32. Let K be a compact space, let S be a commutative semigroup of
self-homeomorphisms of K acting minimally on K, let '1; : : : ; 'k 2 S and let I � N

be an IP set. Suppose that for every r 2 N, for every finite open covering K �
U1 [ U2 [ � � � [ Ur there is j0 2 f1; : : : ; rg and n 2 I such that the intersection
in (19.1) is nonempty. Then for every ; ¤ V � K open set we have

V \ '�n
1 V \ '�n

2 V \ � � � \ '�n
k V ¤ ; for some n 2 I:

Proof. Let ; ¤ V � K be an open set. Since K n S 2S  �1V ¤ K is closed
and invariant under the action of S , it must be empty by minimality of the action.
By compactness there are  1; : : : ;  r 2 S such that K D Sr

jD1  �1
j V . By the

assumption there is j0 2 f1; : : : ; r} and n 2 I with

 �1
j0

V \ '�n
1  �1

j0
V \ '�n

2  �1
j0

V \ � � � \ '�n
k  �1

j0
V ¤ ;:

This implies the assertion. ut
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Lemma 19.33. Let K be a compact space, let S be a commutative semigroup of
self-homeomorphisms of K. Then there is a nonempty closed set F � K invariant
under the action of S such that S acts minimally on F.

We leave the proof of this lemma as Exercise 19, cf. the proof of Theorem 3.5.
The idea of the following proof is taken from Leibman (1994) and Bergelson and
Leibman (1996).

Proof of Theorem 19.31. We may suppose without loss of generality that I D FS.ti/
for some strictly increasing sequence .ti/i2N in N. The proof is by induction on the
number of transformations k. For the case k D 0 the statement is trivial.

Suppose the assertion is proved for k 2 N0 transformations. Let '1; : : : ; 'kC1
be given, and let S be the group generated by these mappings. By Lemma 19.33
we may pass to a nonempty closed subset F � K invariant under the action of
S with the action being minimal. In the induction step (from k to k C 1), we
first find a sequence x1; : : : ; xrC1 2 K, j1; : : : ; jrC1 2 f1; : : : ; rg and a sequence
n2; n3; : : : ; nrC1 2 I such that for every `; m 2 N with ` � m � r C 1 one has
n`C1 C � � � C nm 2 I and

'
n`C1C���Cnm
i .xm/ 2 Uj` for i D 1; : : : ; kC 1:

(For ` D m in the exponent we have the empty sum, so that the condition is xm 2
Ujm .) Now k is fixed and we define these sequences by recursion on m. Let x1 2 K
be arbitrary and let j1 be minimal with the property x1 2 Uj1 . Then suppose that all
the elements of these sequences have been chosen until index m � 1. By continuity
of the mappings appearing above there is an open set V with xm 2 V and

'
n`C1C���Cnm
i .V/ � Uj` for all i D 1; : : : ; kC 1 and 1 � ` � m:

(For m D 1 there is no restriction on V except x1 2 V , so we may take V D Uj1 .)
We have n2; : : : ; nm 2 FS.t1; : : : ; tN/ for some N 2 N, and we pass to the IP set
J WD FS..ti/i>N/ � I (for m D 1 we have no restriction here, as n2 is still to be
chosen). For i D 1; : : : ; k consider

 i WD 'i'
�1
kC1;

and apply the induction hypothesis together with Lemma 19.32 to these mappings,
to V and to the IP set J. We thus obtain nmC1 2 J and ymC1 2 V with

 
nmC1

i .ymC1/ D 'nmC1

i '
�nmC1

kC1 .ymC1/ 2 V for all i D 1; : : : ; k:

If we set xmC1 WD '�nmC1

kC1 .ymC1/, then for all i D 1; : : : ; kC 1

'
nmC1

i .xmC1/ 2 V

'
n`C1C���Cnm
i '

nmC1

i .xmC1/ 2 Uj` for 1 � ` � m:and hence
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Let jmC1 2 f1; : : : ; rg be minimal with the property xmC1 2 UjmC1
. The construction

of the sequences (for the fixed k) is completed successively.
Given these sequences, by the pigeonhole principle we find `; m 2 N with ` < m

such that j` D jm. For j0 WD j` and for n WD n`C1C� � �Cnm we have by construction
n 2 I and

'n
i .xm/ D 'n`C1C���Cnm

i .xm/ 2 Uj0 for all i D 1; : : : ; kC 1;
xm 2 Uj0 \ '�n

1 Uj0 \ '�n
2 Uj0 \ � � � \ '�n

kC1Uj0 :i.e., ut

Remark 19.34. Let S be the semigroup generated by the transformations
'1; : : : ; 'k. Lemma 19.32 and Theorem 19.31 imply that if the action of S is
minimal on K, then for every nonempty open set V we have

V \ '�n
1 V \ '�n

2 V \ � � � \ '�n
k V ¤ ;:

Even more, the set

A WD ˚n 2 N W V \ '�n
1 V \ '�n

2 V \ � � � \ '�n
k V ¤ ;�

intersects an arbitrary IP set I nontrivially, i.e., it is an IP� set. By Exercise 14 an
IP� set is syndetic, so that we see that the set A of simultaneous return times for
'1; : : : ; 'k has bounded gaps. Compare this with Birkhoff’s Theorem 3.14.

We conclude this chapter by showing how to obtain combinatorial results from
topological ones, thereby putting the last color (in this book) to the landscape
of topological dynamics and combinatorics. Rado (1943) attributes the following
multi-dimensional van der Waerden type result to Gallai. It was Witt who gave the
first published proof in (1952). Using the result of Furstenberg and Weiss a proof is
readily at hand.

Theorem 19.35 (Gallai, Witt). Let

N
m D A1 [ : : : [ Ar for some r 2 N:

Then there is j0 2 f1; : : : ; rg such that for any finite set F � N
m there are n 2 N and

a 2 N
m such that

aC nF � Aj0 :

Proof. Of course, it is enough to prove the assertion for disjoint sets A1; : : : ;Ar and
finite configurations of the form

F D ˚.b1; b2; : : : ; bm/ W bj 2 f1; : : : ; kg
�

for some k 2 N.
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Consider the r-letter alphabet f1; : : : ; rg and the compact space L WD f1; : : : ; rgZm

of all r-colorings of Zm. Define the function x 2 L by

x.b/ WD
(

j if b D .b1; : : : ; bm/, bi > 0 for all i and b 2 Aj with j minimal;

1 if b D .b1; : : : ; bm/ and bi � 0 for some i:

Let �i be the two-sided shift in the ith coordinate, i.e.,

�i.x/.b1; : : : ; bi; : : : ; bm/ D x.b1; : : : ; bi C 1; : : : ; bm/:

For a 2 N
m
0 , a D .a1; : : : ; am/ we introduce the notation �a WD �a1

1 �
a2
2 � � � �am

m . Let K
be the set of limit points of the sequences �a.x/ as minfa1; : : : ; amg ! 1. It is easy
to see that K is closed (use a diagonal argument) and invariant under �i and ��1

i , so
.KI �i/ is an invertible system for each i D 1; : : : ;m.

For j 2 f1; : : : ; rg define

Uj WD
˚
z W z 2 K; z.0; 0; : : : ; 0/ D j

�
:

Theorem 19.31 applied to this open covering of K, to I WD N and to the
homeomorphisms �b, b 2 F yields j0 2 f1; : : : ; rg, n 2 N and z 2 K with

z.0; 0; : : : ; 0/ D z.b1n; b2n; : : : ; bmn/ D j0 for all b 2 F:

By the definition of K we can take a D .a1; : : : ; am/ so large that �a.x/ 2 L coincides
with z 2 K on all points z 2 Z

m with jzij � kn C 1, i D 1; : : : ;m. We therefore
obtain

x.a1; a2; : : : ; am/ D x.a1 C nb1; a2 C nb2; : : : ; am C nbm/ D j0;

i.e., .a1 C nb1; a2 C nb2; : : : ; am C nbm/ 2 Aj0 for all b 2 F. ut
We conclude this chapter by indicating how topological considerations may be used
to prove finitary combinatorial versions of coloring results.

Theorem 19.36 (Gallai, Witt, Finitary Version). Let r; m 2 N and let F � N
m

be a finite nonempty set. Then there exists N D N.r;m;F/ 2 N such that whenever
˚
1; 2; : : : ;N

�m D A1 [ A2 [ � � � [ Ar

is a partition, then there is j0 2 f1; : : : ; rg, a 2 N
m, n 2 N with aC nF � Aj0 .

Proof. Fix k 2 N with F � f1; : : : ; kgm. Let K WD f1; : : : ; rgNm
be the space of all

r-colorings of Nm and define the mapping

� W K ! N; �.x/ WD min
˚
nC jaj W n 2 N, a 2 N

m, x is constant on aC nF
�
;
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which is well defined by Theorem 19.35. Here we abbreviate jaj D ja1j C ja2j C
� � � C jamj. We claim that � W K ! N is continuous. Indeed, let n; a be such that x is
constant on aCnF and the minimum above is attained, i.e., �.x/ D nCjaj. If y 2 K
is any other mapping coinciding with x on aC nF, then clearly �.y/ � �.x/. Define

U WD ˚y W y.b/ D x.b/ whenever b 2 a0 C n0F

for some n0 � n and a 2 N
m with ja0j � jaj� � K:

Then U is an open neighborhood of x and for any y 2 U we have �.y/ D �.x/ by
the minimality of nC jaj for x. This proves the continuity of �.

Define

N WD .kC 1/ sup
˚
�.x/ W x 2 K

�
;

which is finite (and attained as maximum) by compactness and by the proven
continuity of �. By construction for every coloring x W Nm ! f1; : : : ; rg there is
a; n such that x is constant on aC nF and aC nF � f1; 2; : : : ;Ngm, and this was to
be shown. ut

Notes and Further Reading

Van der Waerden’s theorem solves a conjecture of Baudet4 and was published in
van der Waerden (1927), see also van der Waerden (1971, 1998). Our proof in
Section 19.5 is from Todorcevic (1997, Ch. 2). The Stone–Čech compactification
can be constructed for every completely regular topological space X via the universal
property described in Proposition 19.4 and Exercise 1, see, e.g., Willard (2004,
Sec. 19). This compactification “X is the Gelfand representation space of the C�-
algebra Cb.X/ of bounded and continuous functions on X. Our treatment of “S
follows this route, in contrast to the more standard way in topological dynamics
of utilizing ultrafilters. See Haase (1997) for a detailed account on the various
approaches to “N and for applications in topological dynamics. A standard reference
on the semigroup “S is Hindman and Strauss (1998), where the notions introduced
in this chapter are studied systematically in the utmost detail. The enveloping
semigroup goes back to Ellis (1960) and to Ellis and Gottschalk (1960), see also
Glasner (2007a). Ellis (1958) proved Proposition 19.18 for general group actions,
and the proof we presented carries over for the case of semigroups actions as well.

Theorem 19.16 is due to Auslander (1960) and Ellis (1960). The notion of
distality can be traced back to Hilbert (1902) where he attempts the foundation
of plane geometry via axiomatizing rigid motions, see the discussion after his
Axiom III in Hilbert (1902). Distal dynamical systems gained considerable attention

4P.J.H. Baudet (1891–1921), Professor of Pure and Applied Mathematics and Mechanics at the
Technische Hogeschool te Delft
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during the years, see Gottschalk and Hedlund (1955), culminating in the famous
Furstenberg structure theorem for distal systems, see Furstenberg (1963). The
attention was even intensified after the tight connection to combinatorics was
discovered.

Hindman’s theorem appeared in Hindman (1974), the presented proof is due
to Furstenberg and Weiss (1978b). The results of Section 19.3 were taken from
Furstenberg’s book (1981, Ch. 8), but there are a number of other sources that were
helpful, among which Bergelson’s papers (1987), (1996), (2000) and (2010) were
the most inspiring. For more on this circle of ideas, for extensions we refer to these
papers and the references therein.

The proof of Theorem 19.31 is extracted from two papers by Bergelson and
by Leibman. They proved that the multiple recurrence theorem remains valid
even if the powers 'n

1 ; : : : ; '
n
k are replaced by 'p1.n/

1 ; : : : ; '
pk.n/
k for some integer

polynomials, see Bergelson and Leibman (1996). Further, instead of commutativity
of the transformations it suffices to suppose that the homeomorphisms '1; : : : ; 'k

generate a nilpotent group, see Leibman (1994). However, the core of the presented
proof goes back to the seminal paper Furstenberg and Weiss (1978b).

The first published proof of the Gallai–Witt theorem was by Witt (1952).
However, according to Rado (1943), Gallai (Grünwald) had his proof for this
beautiful result some 20 years before. Section 42 of Soifer (2009) contains historical
information on the Gallai–Witt theorem together with a combinatorial proof.

Exercises

1. Let S be a nonempty set (with the discrete topology) and let K; L be compact
spaces with the property that for an arbitrary compact space M any (continuous)
function f W S! M factorizes through both K and L. Prove that K and L are
homeomorphic and that S is homeomorphic to a topological subspace of K
and L. A compact space K with the above property is called the Stone–Čech
compactification of the discrete space S, which we see, by virtue of this exercise,
to be unique up to homeomorphisms.

2. Prove the following assertions:

a) For n 2 N and p 2 “N one has nC p D pC n.

b) “N0 contains at least two idempotents.

c) “N0 and “N are homeomorphic, but not isomorphic as right-topological
semigroups.

d) “N is noncommutative, and not left-topological.

3. Prove that an isometric system is distal. Then prove Proposition 19.14.

4 (Homogeneous Systems). A topological left G-system .KIG/ is called distal if
whenever x; y; z 2 K are such that for every open neighborhood U of z there is g 2 G
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with g�x; g�y 2 U, then x D y. In this exercise we study the distality of homogeneous
systems. Let G be a Hausdorff topological group, 	 a closed cocompact subgroup.
Consider the homogeneous G-system .G=	 IG/ (see Example 15.20).

a) Verify that if a homogeneous G-system .G=	 IG/ is distal, then for every
a 2 G the homogeneous system .G=	 I a/ is distal.

b) Prove that for a homogeneous G-system the following assertions are
equivalent:

(i) 	 D
\˚

	 U	 W U is open, 1G 2 U
�
.

(ii) 1G 2 	 g	 implies g 2 	 for each g 2 G.

(iii) The system is distal.

5 (Heisenberg System). Perform the following steps to prove that a Heisenberg
system from Example 2.13 is distal: Recall from Section 17.4 that the center of the
Heisenberg group G is

C D ˚Œ0; 0; z� W z 2 R
�
:

a) Determine the action of G on G=C	 and prove directly that the homoge-
neous G-system .G=C	 IG/ is distal (in the sense given in the foregoing
exercise).

b) Determine the action of C	 on C	 =	 and prove directly that the homoge-
neous C	 -system .C	 =	 IC	 / is distal.

c) Use Exercise 4 to conclude that the G-system .G=	 IG/ is distal and, as a
consequence, that each Heisenberg system is distal.

6. Let .KI'/ be a topological system with K metrizable for a compatible metric d.
Prove that if x; y 2 K are proximal, then for every " > 0 the set

˚
n 2 N W d.'n.x/; 'n.y// < "

�

is thick, i.e., contains arbitrarily long sequences of consecutive integers.

7. Prove that an infinite subshift .FI �/ of .W C
k I �/ is not distal. More precisely,

prove that F contains two points x and y with x.0/ ¤ y.0/, but x.n/ D y.n/ for every
n 2 N. (Hint: Show first that for each N 2 N there are x; y 2 F such that x.0/ ¤ y.0/
and x.n/ D y.n/ for every n 2 f1; : : : ;Ng.)
8. This exercise provides some examples of IP sets.

a) Show that the set of natural numbers having only two different decimal digits
is an IP set.

b) Determine those pairs a; n 2 N for which aCnN D faCn; aC2n; aC3n; : : : g
is an IP set.

c) For ˛ 2 Œ0; 1� give an example of an IP set I with density d.I/ D ˛.

9. Deduce van der Waerden’s theorem from Theorem 19.29.
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10. Formulate and prove by topological arguments the finitary version of van der
Waerden’s theorem, i.e., Theorem 19.36 for m D 1, F WD f1; 2; : : : ; kg. Determine
the minimal number W.r; k/ WD N.r; 1; f1; 2; : : : ; kg/, called van der Waerden
number, for r D 2 colors and k D 3.

11. A set F � P.N/ is called partition regular if whenever A 2 F is partitioned
into finitely many pieces then one of the pieces is contained in F . We define

F� WD ˚B W B \ A ¤ ; for all A 2 F
�
:

Prove that if F is partition regular, then F� is \-stable (i.e., A1; A2 2 F� implies
A1 \ A2 2 F ), and conversely if F is \-stable, then F� is partition regular. Prove
also that F � F��, and give an example for a strict inclusion here.

12. A set A � N is called AP-rich if it contains arbitrarily long arithmetic
progressions.

a) Prove that a syndetic set is AP-rich, but the converse is not true.

b) Give an example of an AP-rich set which is not an IP set.

c) Give an example of an IP set which is not AP-rich (hence a fortiori not
syndetic).

13. Prove that if an AP-rich set A � N is partitioned into finitely many pieces,
one of the pieces contains arbitrarily long arithmetic progressions. In other words,
AP-rich sets form a partition regular family.

14. Prove that a subset I � N has bounded gaps, i.e., is syndetic if and only if
F C I � F D N for some finite set F � N, where � is understood as

A � B D ˚c W c 2 N; c D a � b with a 2 A and b 2 B
�
:

Prove that an IP� set A � N is syndetic.

15. Let .S;C/ be a commutative semigroup and call a subset I � S an IP set
if FS.sj/ � I for some infinite sequence .sj/j2N in S, where FS.sj/ denotes the
set of nonrepeating, nonempty finite sums formed from the elements of .sj/j2N as
in the case of S D N. Formulate and prove Hindman’s theorem for IP sets in S.
An IP� set I� � S is one that intersects each IP set nontrivially. Show that each
idempotent element in S is contained in every IP� set. Prove that IP� sets have the
finite intersection property.

16. Consider the shift .W2I �/. Give an example of a point x 2 W2 which is recurrent
but not 2-recurrent.

17. Give an example of an invertible topological system .KI'/ and x 2 K such that
x is recurrent for .KI'/, but not for .KI'�1/.



432 19 Topological Dynamics and Colorings

18. Deduce Theorem 19.30 for commuting but not necessarily invertible continuous
mappings '1; : : : ; 'k W K ! K from an appropriate combinatorial statement.

19. Prove Lemma 19.33. (Hint: See the proof of Theorem 3.5.)

20. Prove directly that in a group rotation system .GI a/ every point is simulta-
neously k-recurrent for each k 2 N.

21. This exercise establishes a connection between IP sets and idempotents in “N.5

a) Prove that if A � N is such that p.1A/ D 1 for some idempotent p 2 “N,
then A is an IP set. (Hint: Use that m 7! p.Lm1A/ is a characteristic function
of some set B and use that p is multiplicative. Construct a sequence .nk/k2N
in N with FS.nk/ � A successively.)

b) Prove the converse: If A is an IP set, then there is an idempotent p 2 “N with
p.1A/ D 1. (Hint: Suppose FS.nk/ � A and set S WD T1

nD1 FS.nk/k�n where
the closure is in “N. Prove that S is a subsemigroup of “N and conclude that
there is an idempotent p 2 S. Prove that p.1FS.nk// D 1.)

c) Prove that A � N is an IP� set if and only if p.1A/ D 1 for every idempotent
p 2 “N.

5According to some authors the terminology IP set refers to IdemPotents.



Chapter 20
Arithmetic Progressions and Ergodic Theory

If I have seen less than other men, it is because I have walked in the footsteps of giants.

Paul R. Chernoff

In Chapter 19 we saw van der Waerden’s theorem (1927) as an application
of topological dynamics: If we color the natural numbers with finitely many
colors, then we find arbitrarily long monochromatic arithmetic progressions, i.e.,
progressions all of whose members carry the same color.

Many years later, a major extension of this result was proved by Szemerédi
(1975) using the concept of the upper density

d.A/ WD lim sup
n!1

card.A \ f1; : : : ; ng/
n

of a subset A � N (in connection with the upper density see also Section 9.2,
Exercises 9.4 and 9.5).

Theorem 20.1 (Szemerédi). Any subset A � N with d.A/ > 0 is AP-rich, i.e.,
contains arbitrarily long arithmetic progressions.

Note that by Exercise 9.5, van der Waerden’s theorem is indeed a consequence of
this: If N D A1 [ � � � [ Ar, r 2 N, then d.Aj0 / > 0 for at least one j0 2 f1; : : : ; rg.

Furstenberg and Weiss showed how to deduce number theoretic statements like
van der Waerden’s theorem from multiple recurrence properties of topological
dynamical systems. The forerunner for this was a ground-breaking discovery
of Furstenberg who transferred Szemerédi’s theorem to a multiple recurrence
statement about measure theoretic dynamical systems, yielding an alternative proof
of Szemerédi’s theorem relying on ergodic theory.

Furstenberg’s ideas—building heavily on the structure theory of ergodic
measure-preserving systems—were further developed by many authors and finally
led to one of the most striking results in this area so far.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2_20
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Theorem 20.2 (Green–Tao). The set P of prime numbers is AP-rich.

We refer to Green and Tao (2008) and in particular to Tao’s ICM lecture (2007)
and Kra (2007) for the connection with ergodic theory. Newer developments in this
direction concerning patterns in the set of primes can be found in Green and Tao
(2010a), Tao and Ziegler (2008), and Tao and Ziegler (2013).

The discovery of such a beautiful structure within the chaos of prime numbers
was preceded and accompanied by various numerical experiments. Starting from
the arithmetic progression 7; 37; 67; 97; 127; 157 (of length 6 and difference 30)
the actual world record (smallest difference, as of November, 2014) by Fry1 is a
progression of length 26 starting at

3 486 107 472 997 423

with difference

371 891 575 525 470:

However striking, the Green–Tao theorem still falls short of the following
audacious conjecture formulated by Erdős and Turán in 1936, cf. Exercise 1.

Conjecture 20.3 (Erdős–Turán). Let A � N be such that
P

a2A
1
a D 1. Then A is

AP-rich.

The Green–Tao theorem is—even in its ergodic theoretic parts—beyond the
scope of this book. However, we shall describe the major link between “density
results” (like Szemerédi’s) and ergodic theory and apply it to obtain weaker, but
nevertheless stunning results (the theorems of Roth and Furstenberg–Sárközy). Our
major operator theoretic tool will be the JdLG-decomposition.

20.1 From Ergodic Theory to Arithmetic Progressions

We first translate assertions about arithmetic progressions to the language of ergodic
theory. Let us fix a subset A � N with positive upper density d.A/ > 0. For given
k 2 N consider the following statement.

There exist a; n 2 N such that a; aC n; aC 2n; : : : aC .k � 1/n 2 A. (APk)

Our goal is to construct an associated dynamical system that allows us to reformu-
late (APk) in ergodic theoretic terms. This construction is known as Furstenberg’s
correspondence principle.

1http://www.primerecords.dk/aprecords.htm
The quest for a 27-term arithmetic progression still continues.

http://www.primerecords.dk/aprecords.htm


20.1 From Ergodic Theory to Arithmetic Progressions 435

Consider the compact metric space W C
2 D f0; 1gN0 and the left shift � on it.

A subset B � N0 can be identified with a point in W C
2 via its characteristic function:

B � N0  ! 1B 2 W C
2 :

We further define

K WD f�n1A W n 2 N0g � W C
2 :

Then K is a closed �-invariant subset of W C
2 , i.e., .KI �/ is a (forward transitive)

topological system. The set

M WD ˚.xn/n2N0 2 K W x0 D 1
�

is open and closed in K, and hence so is every set ��j.M/ (j 2 N0). Note that we
have

n 2 A if and only if �n.1A/ 2 M: (20.1)

We now translate (APk) into a property of this dynamical system. By (20.1), we
obtain for a 2 N and n 2 N0 the following equivalences:

a; aC n; : : :; aC .k � 1/n 2 A

” �a1A 2 M; �n�a1A 2 M; : : : ; � .k�1/n�a1A 2 M

” �a1A 2 M \ ��n.M/ \ : : : \ ��.k�1/n.M/:

Since each ��j.M/ is open and f�a1A W a 2 Ng is dense in K, we have that (APk) is
equivalent to

9n 2 N such that M \ ��n.M/ \ : : : \ ��.k�1/n.M/ ¤ ;: (20.2)

The strategy to prove (20.2) is now to turn the topological system into a measure-
preserving system by choosing an invariant measure � in such a way that for some
n 2 N the set

M \ ��n.M/ \ : : : \ ��.k�1/n.M/

has positive measure. Since d.A/ > 0, there is a subsequence .nj/j2N in N such that

lim
j!1

1

nj

njX

kD1
1A.k/ D d.A/ > 0:



436 20 Arithmetic Progressions and Ergodic Theory

We define a sequence of probability measures .j/j2N on K by

j.B/ WD 1

nj

njX

kD1
ı�k1A

.B/ .B 2 Ba.K/; j 2 N/;

where ı�k1A
stands for the Dirac measure at � k1A. By (20.1) we have

j.M/ D 1

nj

njX

kD1
1A.k/! d.A/ as j!1: (20.3)

The metrizability of the compact set M1.K/ for the weak�-topology implies that
there exists a subsequence (again denoted by .j/j2N) weakly� converging to some
probability measure  on K. Since M is open and closed, the characteristic function
1M W K ! R is continuous, hence (20.3) implies that .M/ D d.A/.

To show that  is �-invariant, take f 2 C.K/ and note that

Z

K
.f ı �/ dj �

Z

K
f dj D 1

nj

njX

kD1

�
f .� kC11A/� f .� k1A/

�

D 1

nj

�
f .�njC11A/� f .�1A/

�

for every j 2 N. By construction of , the first term in this chain of equations
converges to

Z

K
.f ı �/ d �

Z

K
f d

as j!1, the last one converges to 0 since nj !1, implying that  is �-invariant
(cf. Remark 10.3.3).

In this way we obtain a topological measure-preserving system .K; I �/ such
that .M/ D d.A/ > 0. Recall from (10.1) in Chapter 10 that

M1
� .K/ D conv

˚
� 2 M1

� .K/ W � is ergodic
�
:

By the above there is at least one  2 M1
� .K/ with

R
K 1M d D .M/ D d.A/ > 0,

so there must also be an ergodic measure � with �.M/ � d.A/ > 0. Hence, we
obtain an ergodic measure-preserving system .K; �I �/ with �.M/ > 0.

Consider now the associated Koopman operator T WD T� on C.K/. As said above,
to prove the existence of a k-term arithmetic progression in A, i.e., (APk), we need
to establish (20.2), or which is the same

9n 2 N W 1M � Tn1M � � �T.k�1/n1M ¤ 0
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(recall that 1M is continuous because M is clopen). Hence, (APk) follows from the
ergodic theoretic statement about the Koopman operator T WD T� on L2.K; �/

lim sup
N!1

1

N

NX

nD1

Z

K
1M � .Tn1M/ � � � .T.k�1/n1M/ d� > 0: (20.4)

We have established the most important part of Furstenberg’s correspondence
principle, see Furstenberg (1977).

Theorem 20.4. Let k � 2 be fixed. If for every ergodic measure-preserving system
.XI'/ the Koopman operator T WD T' on L2.X/ satisfies

lim sup
N!1

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�
> 0 (20.5)

for all 0 < f 2 L1.X/, then (APk) holds for every A � N with d.A/ > 0.

(Here and in the following we write f > 0 when we mean f � 0 and f ¤
0.) In Furstenberg (1977) it was shown that (20.5) is indeed true for every ergodic
measure-preserving system and every k 2 N. This completed the ergodic theoretic
proof of Szemerédi’s theorem. As a matter of fact, Furstenberg proved the truth of
the seemingly stronger version

lim inf
N!1

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�
> 0 (20.6)

of (20.5) As we shall see in a moment, this makes no difference because, actually,
the limit exists.

20.2 Back from Arithmetic Progressions to Ergodic Theory

We have seen how to obtain Szemerédi’s theorem from ergodic theoretic results. In
this section, we go in the opposite direction and show how to deduce statements
about measure-preserving systems from Szemerédi’s theorem.

First of all we need a finitary reformulation of Szemerédi’s theorem, in analogy
to the finitary version of Gallai’s Theorem 19.36. We deduce it from Theorem 20.1,
while the converse implication is direct, see Exercise 2.

Theorem 20.5 (Szemerédi, Finitary Version). For every " > 0 and k 2 N, k � 2
there is N D N."; k/ such that whenever A � N is contained in an interval of length
` � N and card.A/ � "`, then A contains a k-term arithmetic progression.
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Proof. Suppose by contradiction that the statement is false, i.e., that there is " >
0 and k 2 N such that for every N there is AN � N without k-term arithmetic
progressions but contained in an interval of length ` � N and having cardinality
card.A/ � `". This indirect assumption for N D 1 yields `1 and A1 � Œ1; `1�

without k-term arithmetic progressions and with cardinality card.A1/ � `1". We set
I1 WD Œ1; `1�, b1 WD `1, a1 WD 1. Inductively, by using the indirect assumption and
shifting the sets, we find intervals Ij D Œaj; bj� of length `j D bj�ajC1 such that for
every j 2 N we have `jC1 > bj and the gap gj WD ajC1 � bj � 1 between Ij and IjC1
equals bjC `jC1, and such that each Ij contains a set Aj with card.Aj/ � "`j � "j but
without k-term arithmetic progressions. If we set

A WD
1[

jD1
Aj;

then any k-term arithmetic progression (k � 3) contained in A must belong to one
of the finite sets Aj. This is impossible by construction, so A contains no k-term
arithmetic progressions. However, the set A has upper density

d.A/ � lim sup
n!1

Pn
jD1 "`j

Pn
jD1 `j CPn�1

jD1 .bj C `jC1/

� lim sup
n!1

Pn
jD1 "`j

Pn
jD1 `j CPn�1

jD1 2`jC1
� "

3
;

a contradiction with Szemerédi’s Theorem 20.1. ut
We can now exploit this finitary version to obtain the following information about

measure-preserving systems.

Proposition 20.6. Let .X; ˙; �/ be a probability space, let " > 0 and k 2 N, k � 2
be given, and N WD N."=2; k/ obtained from the finitary Szemerédi Theorem 20.5.
Suppose that A1; : : : ;AN 2 ˙ satisfy �.Ai/ � " for i D 1; : : : ;N. Then there is a
k-term arithmetic progression a; a C n; : : : ; a C .k � 1/n 2 f1; 2; : : : ;Ng, n 2 N

such that

�
�k�1\

jD0
AaCnj

�
>

"

2N2
:

Proof. Define

A.x/ WD ˚i W i 2 f1; 2; : : : ;Ng; x 2 Ai
� � N:

For the function f defined by f .x/ WDPN
iD1 1Ai.x/ D card.A.x// we have kf k1 �

N". Since 0 � f � N, we conclude
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�
	
f � N"

2



> "

2
: (20.7)

For every x 2 	 f � N"
2



we have by Theorem 20.5 a k-term arithmetic progression

a.x/; a.x/C n.x/; : : : ; a.x/C .k � 1/n.x/ � A.x/, i.e.,

	
f � N"

2


 �
[

a;n2f1;:::;Ng

k�1\

jD0
AaCjn:

Thus for some a; n 2 f1; : : : ;Ng we have by (20.7)

�
�k�1\

jD0
AaCnj

�
>

"

2N2
: ut

The following multiple version of the Poincaré Recurrence Theorem 6.13 is a direct
corollary of the above result (recall we have assumed the validity of Szemerédi’s
theorem).

Theorem 20.7 (Furstenberg, Multiple Recurrence). Let .XI'/, X D .X; ˙; �/,
be a measure-preserving system, and let A 2 ˙ with �.A/ > 0. Then for every
k 2 N there is n 2 N such that

�
�

A \ '�n.A/ \ � � � \ '�.k�1/n.A/
�
> 0:

Proof. Take Aj WD '�j.A/, " WD �.A/, and let n; a 2 f1; 2; : : : ;Ng be as in
Proposition 20.6. Since ' is measure-preserving, the assertion follows. ut
Corollary 20.8. Let .XI'/, X D .X; ˙; �/, be a measure-preserving system with
Koopman operator T WD T' , and let 0 < f 2 L1.X/. For every k 2 N there is
n 2 N such that

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d� > 0:

Proof. Apply Theorem 20.7 to the set A WD 	
f > 1

2
kf k1



and use that Tj f �

1
2
kf k1Tj1A for each j 2 N. ut

We now show assuming Szemerédi’s theorem that the ergodic averages

1

N

NX

nD1

Z

X
1M � .Tn1M/ � � � .T.k�1/n1M/ d� (20.8)

as in (20.5) in Theorem 20.4 can be bounded from below independently of the
measure-preserving system and the occurring function f > 0.
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We begin with an auxiliary lemma.

Lemma 20.9. Let .KI'/ be a topological system with K metrizable, T WD T' be
the Koopman operator on C.K/ and 0 < g 2 C.K/. For every k 2 N and " > 0

there is a constant c.k; "/ > 0 and there is an arbitrarily large N0 WD N0.k; "/ 2 N

such that for every '-invariant Baire probability measure � on K with
R

K gd� > "

one has

1

N0

N0X

nD1

Z

K
g � �Tng

� � � � �T.k�1/ng
�

d� > c.k; "/:

As a consequence,

lim sup
N!1

1

N

NX

nD1

Z

K
g � �Tng

� � � � �T.k�1/ng
�

d� � c.k; "/ > 0

for every '-invariant Baire probability measure � on K with
R

K gd� > ".

Proof. Suppose by contradiction that there are k; n0 2 N and " > 0 such that for
every j 2 N and for every N0 2 N with N0 � n0 there is an invariant probability
measure �j;N0 with

˝
g; �j;N0

˛
> " and

1

N0

N0X

nD1

Z

K
g � �Tng

� � � � �T.k�1/ng
�

d�j;N0 �
1

j2
:

By weak� compactness (see Section 10.1) and by passing to a subsequence we may
assume that �j;j ! � in the weak� topology for some invariant probability measure
� 2 M1

'.K/. For n 2 N arbitrarily fixed and j � n; n0 we obtain

Z

K
g � �Tng

� � � � �T.k�1/ng
�

d�j;j �
jX

iD1

Z

K
g � �Tig

� � � � �T.k�1/ig
�

d�j;j � 1

j
:

Then, by the definition of weak� convergence, we conclude

Z

K
g d� � " and

Z

K
g � �Tng

� � � � �T.k�1/ng
�

d� D 0;

a contradiction to Corollary 20.8. ut
Recall from Chapter 12 the following construction connecting an arbitrary

measure-preserving system with the fixed compact shift system .W C
2 I �/. Consider

a measure-preserving system .XI'/, M 2 ˙ and the shift system .W C
2 I �/.
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In Example 12.2 we constructed a shift invariant measure  on W C
2 and a point

factor map � W .XI'/ ! .W C
2 ;˙

0; I �/, where ˙ 0 is the product �-algebra. The
factor map is given by

�.x/ WD �1Œ 'n2M �.x/
�

n2N0 D
�
Tn1M.x/

�
n2N0 ; (20.9)

where T is the Koopman operator of .XI'/.
The relevance of this construction in the context of multiple recurrence becomes
evident from the following simple lemma.

Lemma 20.10. Let .XI'/ and .YI / be measure-preserving systems and let
S 2 M.YIX/ be a Markov embedding that intertwines the Koopman operators T'
and T . Then for all f 2 L1.Y/ and all n 2 N

Z

Y
f � �Tn

 f
� � � � �T.k�1/n

 f
� D

Z

X
Sf � �Tn

'Sf
� � � � �T.k�1/n

' Sf
�
:

Proof. By Theorem 13.9 a Markov embedding is multiplicative, the assertion hence
follows from the identity T'S D ST . ut

The next lemma is a multiple recurrence result for a single N but with a lower
bound independent of the measure-preserving system (again based on Szemerédi’s
theorem).

Lemma 20.11. For every k 2 N and " > 0 there is a constant c1.k; "/ > 0 and
there is N1 WD N1.k; "/ 2 N such that for every measure-preserving system .XI'/
with Koopman operator T, for every f 2 L1.X/ with f � 0, kf k1 D 1 andR

X f > "

1

N1

N1X

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�
> c1.k; "/:

Proof. Consider the shift system .W C
2 I �/, and let g 2 C.W C

2 / be the 0th coordinate
projection, i.e., g..xn/n2N0 / D x0. For k and " take N1 WD N0.k; "=2/ and c.k; "=2/
as in Lemma 20.9. Let .XI'/, X D .X; ˙; �/, be a measure-preserving system.
For f 2 L1.X/ with f � 0 and kf k1 D 1 we set M WD Œ f > "=2 �. By
the construction preceding Lemma 20.10 we have a point homomorphism � of the
measure-preserving systems .XI'/ and .W C

2 ;˙
0; I �/ D .YI �/. By Remark 12.8

and by Proposition 12.10, the Koopman operator S WD T� 2 M.YIX/ is a Markov
embedding. From (20.9) one easily sees that Sg D 1M . Since

" �
Z

X
f d� D

Z

Œ f�"=2 �
f d�C

Z

Œ f >"=2 �

f d� � "

2
C �.M/;
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we obtain
R
W C

2
Sg d D �.M/ � "

2
. Since f > "

2
1M, we conclude from Lemma

20.9 that

1

N1

N1X

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d�

� "k

2kN1

N1X

nD1

Z

X
1M � .Tn1M/ � � � .T.k�1/n1M/ d�

D "k

2kN1

N1X

nD1

Z

X
Sg � .TnSg/ � � � .T.k�1/nSg/ d�

D "k

2kN1

N1X

nD1

Z

W C

2

g � .Tn
� g/ � � � .T.k�1/n

� g/ d >
"k

2k
c.k; "

2
/ DW c1.k; "/: ut

Finally, we are able to deduce a general multiple recurrence result from Sze-
merédi’s theorem.

Theorem 20.12. For every k 2 N and " > 0 there is a constant c.k; "/ > 0 and a
natural number N0 WD N0.k; "/ 2 N such that for every measure-preserving system
.XI'/, for every f 2 L1.X/ with f � 0, kf k1 D 1 and

R
X f d� > ", and for

every N 2 N, N � N0, we have

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d� > c.k; "/:

As a consequence,

lim inf
N!1

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d� � c.k; "/ > 0

for every measure-preserving system .XI'/ and for every f 2 L1.X/ with f � 0,
kf k1 D 1 and

R
X f d� > ".

Proof. For every a 2 N we apply Lemma 20.11 to the measure-preserving system
.XI'a/ to obtain

1

N1

N1X

nD1

Z

X
f � �Tanf

� � � � �Ta.k�1/nf
�

d� > c1.k; "/

with some 2 � N1 WD N1.k; "/ independent of a. For given M 2 N we average over
a 2 fM.N1 � 1/C 1; : : : ;MN1g and obtain

1

M

MN1X

aDM.N1�1/C1

1

N1

N1X

nD1

Z

X
f � �Tanf

� � � � �Ta.k�1/nf
�

d� > c1.k; "/: (20.10)
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For a1; a2 2 fM.N1 � 1/C 1; : : : ;MN1g and n1; n2 2 f1; : : : ;N1g with n2 > n1 we
have

a2n2 � a1n1 > M.N1 � 1/n2 �MN1n1 D MN1.n2 � n1/�Mn2 � MN1 �MN1 D 0:

Hence, for a and n as specified in (20.10) the products an are pairwise different, and
therefore

1

MN2
1

MN21X

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d�

� 1

MN2
1

MN1X

aDM.N1�1/C1

N1X

nD1

Z

X
f � .Tanf / � � � .T.k�1/anf / d�:

Together with (20.10) we obtain

1

MN2
1

MN21X

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d� >
c1.k; "/

N1
:

If N 2 N is such that MN2
1 � N < .M C 1/N2

1 , then

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d�

D 1

N

MN21X

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d�

C 1

N

NX

nDMN21C1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�

d�

>
MN2

1

NN1
c1.k; "/ >

M

.M C 1/N1 c1.k; "/ � c1.k; "/

2N1
:

The assertion now follows with N0 WD N2
1 and c.k; "/ WD c1.k; "/=.2N1/. ut

The Furstenberg Correspondence Principle: The Full Version

We now summarize in a final statement the connections discovered in the preceding
paragraphs.
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Theorem 20.13 (Furstenberg Correspondence Principle). Each of the following
statements implies the others:

(i) (Furstenberg’s Multiple Ergodic Theorem I). For every measure-
preserving system .XI'/ the Koopman operator T WD T' satisfies

lim inf
n!1

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�
> 0 (20.11)

for all 0 < f 2 L1.X/.
(ii) (Furstenberg’s Multiple Ergodic Theorem II). For every ergodic

measure-preserving system .XI'/ the Koopman operator T WD T' satisfies

lim sup
n!1

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�
> 0

for all 0 < f 2 L1.X/.
(iii) (Furstenberg’s Recurrence Theorem). For every measure-preserving sys-

tem .XI'/, X D .X; ˙; �/, for every A 2 ˙ with �.A/ > 0 and for every
k 2 N there is n 2 N such that

�
�

A \ '�n.A/\ � � � \ '�.k�1/n.A/
�
> 0:

(iv) (Szemerédi’s Theorem). A subset A � N with d.A/ > 0 is AP-rich, i.e.,
contains arbitrarily long arithmetic progressions.

(v) (Szemerédi’s Theorem, Finitary Version). For every " > 0 and k 2 N

there is N D N."; k/ such that whenever A � N is contained in an interval
of length ` � N and card.A/ � "`, then A contains a k-term arithmetic
progression.

20.3 The Host–Kra Theorem

As we saw before, Furstenberg (1977) in his correspondence principle worked with
expressions of the form

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
� D

Z

X
f � 1

N

NX

nD1

�
Tnf

� � � � �T.k�1/nf
�
:
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In (2005b), Host and Kra and later independently Ziegler (2007) by a different
method answered affirmatively a quite long-standing open question regarding the
multiple .k � 1/-term Cesàro sums on the right-hand side.

Theorem 20.14 (Host–Kra). Let .XI'/ be an ergodic measure-preserving system,
and consider the Koopman operator T WD T' on L2.X/. Then the limit of the multiple
ergodic averages

lim
N!1

1

N

NX

nD1

�
Tnf1

� � �T2nf2
� � � � �T.k�1/nfk�1

�
(20.12)

exists in L2.X/ for every f1; : : : ; fk�1 2 L1.X/ and k � 2.

Note that for k D 2 the Host–Kra theorem is just von Neumann’s mean ergodic
Theorem 8.1 (and holds for arbitrary f1 2 L2.X/). (Of course, the difference in
summation index of the Cesàro averages is immaterial.) We shall give a proof of the
Host–Kra theorem for general ergodic systems only for the case k D 3. But before
doing that we discuss the statement for arbitrary k 2 N but for two special classes
of ergodic measure-preserving systems.

Weakly Mixing Systems

The following result proved in Section 9.4 is actually the Host–Kra theorem for
weakly mixing systems.

Proposition 20.15. Let .XI'/ be a weakly mixing measure-preserving system and
let T WD T' be the Koopman operator on L2.X/. Then

lim
N!1

1

N

NX

nD1

�
Tnf1

� � �T2nf2
� � � � �T.k�1/nfk�1

� D
� Z

X
f1 � � �

Z

X
fk�1

�
� 1

in L2.X/ for every k � 2 and every f1; : : : ; fk�1 2 L1.X/.

Recall that the van der Corput Lemma 9.28 played the central role in the proof.

Systems with Discrete Spectrum

Proposition 20.16. Let .XI'/ be an ergodic measure-preserving system and let
T WD T' be the Koopman operator on L2.X/. If T has discrete spectrum on L2.X/,
then the limit

lim
N!1

1

N

NX

nD1

�
Tnf1

� � �T2nf2
� � � � �T.k�1/nfk�1

�
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exists in L2.X/ for every k � 2 and every f1; : : : ; fk�1 2 L1.X/.

Proof. Let f1; : : : ; fk�1 2 L1.X/ be eigenvectors of T corresponding to unimodular
eigenvalues �1; : : : ; �k�1. Then we have

1

N

NX

nD1

�
Tnf1

� � �T2nf2
� � � � �T.k�1/nfk�1

� D 1

N

NX

nD1

�
�1�

2
2 � � ��k�1

k�1
�n � f1 � � �fk�1;

and hence the limit as N ! 1 exists as asserted. This implies convergence
also when f1; : : : ; fk�1 are linear combinations of L1-eigenvectors of T. By
Proposition 7.18, these form a dense subspace of L2.X/.

Take now arbitrary f1; : : : ; fk�1 2 L1.X/ and " > 0. For each g1 2 L1.X/ we
have

1

N

NX

nD1

�
Tnf1

� � � � �T.k�1/nfk�1
� D 1

N

NX

nD1

�
Tn.f1 � g1/

� � �T2nf2
� � � � �T.k�1/nfk�1

�

C 1

N

NX

nD1

�
Tng1

� � �T2nf2
� � � � �T.k�1/nfk�1

�
:

Choose now g1 as a linear combination of L1-eigenvectors such that

�
�
�
�
�
1

N

NX

nD1

�
Tn.f1 � g1/

� � �T2nf2
� � � � �T.k�1/nfk�1

�
�
�
�
�
�
2

� kf1 � g1k2 kf2k1 � � � kfk�1k1 �
"

3k

holds for every N. Proceeding by carefully choosing the linear combinations of L1-
eigenvectors g2; : : : ; gk�1 that approximate f2; : : : ; fk�1 we arrive at

�
�
�
��
1

N

NX

nD1

�
Tnf1

� � � � �T.k�1/nfk�1
� � 1

N

NX

nD1

�
Tng1

� � � � �T.k�1/ngk�1
�
�
�
�
��
2

< k
"

3k
D "

3

for every N. From this we obtain, by the already proved convergence for linear
combinations g1; : : : ; gk�1 2 L1 of eigenvectors, that

�
�
�
��
1

N

NX

nD1

�
Tnf1

� � � � �T.k�1/nfk�1
� � 1

M

MX

nD1

�
Tnf1

� � � � �T.k�1/nfk�1
�
�
�
�
��
2

< "

whenever N; M 2 N are sufficiently large. The proof is complete. ut



20.3 The Host–Kra Theorem 447

The Host–Kra Theorem for k D 3

The proof is based on the foregoing particular cases. Our major tool is the JdLG-
decomposition of E WD L2.X/ with respect to the semigroup TT WD fI;T;T2; : : : g:

L2.X/ D ran.Q/˚ ker.Q/ D Erev ˚ Eaws;

see Section 17.1. The space Erev is the Kronecker factor and the projection

Q W L2.X/! Erev

is a Markov projection. Let us recall some facts from Chapters 13, 16, and 17.

Lemma 20.17 (Properties of the Kronecker Factor). The space Erev \ L1.X/ is
a closed subalgebra of L1.X/ and

Q.f � g/ D .Qf / � g (20.13)

for all f 2 L1.X/ and g 2 Erev \ L1.X/. Moreover, Erev is generated by eigen-
functions corresponding to unimodular eigenvalues of T.

In order to prove that

lim
N!1

1

N

NX

nD1

�
Tnf

� � �T2ng
�

(20.14)

exists for every f; g 2 L1.X/, we may split f according to the JdLG-decomposition
and consider separately the cases

(1) f 2 Eaws and (2) f 2 Erev:

Case (1) is covered by the following lemma which actually yields more information
than just convergence.

Lemma 20.18. Let .XI'/ be an ergodic measure-preserving system. Let f; g 2
L1.X/ such that f 2 Eaws or g 2 Eaws. Then

lim
N!1

1

N

NX

nD1

�
Tnf

� � �T2ng
� D 0

in L2.X/.
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Proof. The proof is an application of the van der Corput lemma. We let un WD
.Tnf / � .T2ng/ and write

.un j unCm / D
Z

X

�
Tnf

� � �T2ng
� � �TnCmf

� � �T2nC2mg
�

D
Z

X
Tn
	�
f � Tmf

� � Tn
�
g � T2mg

�


D
Z

X

�
f � Tmf

� � Tn
�
g � T2mg

�
:

Hence, for fixed m 2 N

1

N

NX

nD1
.un j unCm / D

Z

X

�
f � Tmf

� 1
N

NX

nD1
Tn�g � T2mg

� !
Z

X
f Tmf �

Z

X
gT2mg

as N !1 since .XI'/ is ergodic. Therefore we have


m W D lim
N!1

ˇ
ˇ̌ 1
N

NX

nD1
.un j unCm /

ˇ
ˇ̌ D

ˇ
ˇ̌
Z

X

�
f � Tmf

� �
Z

X

�
g � T2mg

� ˇˇ̌

D
ˇ
ˇ̌
.f jTmf / � �g

ˇ
ˇT2mg

�ˇˇ̌
:

If f 2 Eaws, by Theorem 16.34 we obtain that

0 � 1

N

NX

mD1

m � 1

N

NX

mD1

ˇ
ˇ.f jTmf /

ˇ
ˇ � kgk21 ! 0 as N !1:

In the case when g 2 Eaws, the reasoning is similar, cf. Corollary 9.18. Now, the van
der Corput Lemma 9.28 implies that

1

N

NX

nD1

�
Tnf

� � �T2ng
� D 1

N

NX

nD1
un ! 0: ut

Proof of Theorem 20.14, case k D 3. By Lemma 20.18 and the JdLG-decomposi-
tion we may suppose that f 2 Erev. Let g 2 L1.X/ be fixed, and define .SN/N2N �
L .E/ by

SNf WD 1

N

NX

nD1

�
Tnf

� � �T2ng
�
:

If f is an eigenfunction of T with corresponding eigenvalue � 2 T, then

SNf D f 1
N

NX

nD1

�
�T2

�n
g
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holds. Since the operator �T2 is mean ergodic as well (see Theorem 8.6), we have
that .SNf /N2N converges as N ! 1. This yields that .SNf /N2N converges for
every

f 2 lin
˚
h W Th D �h for some � 2 T

�
;

which is a dense subset of Erev by Theorem 16.33. Since the estimate kSNk � kgk1
is valid for all N 2 N, we obtain the convergence of .SN/N2N on all of Erev. ut

Some Ideas Behind the Proof for k � 4

We very briefly present the general strategy to prove Theorem 20.14 and highlight
some of the main ideas. First we recall some facts about factors of measure-
preserving systems (see Chapters 13 and 17). Let X D .X; ˙; �/ and Y D
.Y; ˙ 0; / be probability spaces and let .XI'/ and .YI / be measure-preserving
systems with Koopman operators T WD T' and S WD T , respectively. The system
.YI / is called a factor of .XI'/ if there is a Markov embedding R W L1.Y/ !
L1.X/ intertwining the Koopman operators, i.e., with TR D RS. In this case, .XI'/
is called an extension of .YI /. The range F WD ran.R/ of R is a unital Banach
sublattice of L1.X/ and is the range of the Markov projection Q D RR0. Moreover,
there is a sub-�-algebra˙F with F D L1.X; ˙F; �/, and we have

Qf D E.f j˙F/ the conditional expectation:

For the sake of convenience and without loss of generality, we shall assume that
the system .XI'/ is standard. Then by Theorem 13.42 we can pass to the minimal
invertible extension, which is ergodic if the original system was ergodic. Exercise 16
yields that it suffices to prove the Host–Kra theorem for invertible systems.

A factor .ZI �/ with corresponding Markov projection Q is called characteristic for
the .k � 1/-term averages

lim
N!1

1

N

NX

nD1

�
Tnf1

� � � � �T.k�1/nfk�1
�

(20.15)

if for every f1; : : : ; fk�1 2 L1.X/ one has

lim
N!1

�
�
�
��
1

N

NX

nD1

�
Tnf1

� � � � �T.k�1/nfk�1
� � 1

N

NX

nD1

�
TnQf1

� � � � �T.k�1/nQfk�1
�
�
�
�
��
2

D 0:

This means that to show the existence of the limit of (20.15) and to calculate its
value we can replace each fj by its projection Qfj on the factor. Thus, provided
one has enough structure in the characteristic factor to compute the averages, the
problem may become easier.
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For k D 2, the fixed factor is characteristic for one-term averages as we saw in the
proof of von Neumann’s Theorem 8.1. On the other hand, Lemma 20.18 shows that
the Kronecker factor Erev is characteristic for two-term averages, and it was simple
to compute the averages for functions coming from this factor. Note that in general
the Kronecker factor is not characteristic for .k � 1/-term averages for k � 4, see
Exercise 15.

For k � 4, the philosophy remains the same: One looks for a characteristic factor
with enough structure such that the limit of the averages (20.15) can be computed
whenever all functions are from this characteristic factor. In general, however, the
characteristic factors are considerably more complicated than the Kronecker factor.
One way to find these factors is to start with the “negligible” part for the multiple
averages. We define for f 2 L1.X/

kf kU1.T/ WD kf kU1 WD lim
N!1

ˇ
ˇ
ˇ
1

N

NX

nD1

Z

X
Tnf � f

ˇ
ˇ
ˇ
1=2 D .Pf j f /1=2 D kPf k2 ;

where P is the mean ergodic projection corresponding to T. For d 2 N we continue
recursively

kf kUdC1.T/ WD kf kUdC1 WD lim sup
N!1

� 1
N

NX

nD1

�
�
�Tnf � f

�
�
�
2d

Ud

�1=2dC1

;

called the Gowers–Host–Kra (or uniformity) seminorms. Note that by ergodicity
of .XI'/ and by Theorem 8.10,

kf kU1 D
ˇ
ˇ
ˇ
Z

X
f
ˇ
ˇ
ˇ:

Exercise 13 contains some properties of these seminorms. Host and Kra (2005b)
defined the seminorms k�kUd differently and showed that their definition coincides
with the previous ones, and also that one can take the limit instead of the limsup in
the definition above.

We have ker k�kU1 D ˚f 2 L1.X/ W f ? 1
�

and the trivial orthogonal decom-
position

L1.X/ D C1˚ ker k�kU1

which is precisely the decomposition used in the proof of von Neumann’s mean
ergodic theorem (i.e., the convergence of one-term averages). For k�kU2 we have

kf k4U2 D lim sup
M!1

1

M

MX

mD1

ˇ
ˇ
ˇ
Z

X
Tmf � f

ˇ
ˇ
ˇ
2

:
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This implies by Theorem 16.37 that Eaws \ L1.X/ D ker k�kU2 . By Exercise 14 we
have that Eaws \ L1.X/ is dense in Eaws, so that

Erev D E?
aws D .Eaws \ L1.X//? D .ker k�kU2 /

?:

This corresponds to the JdLG-decomposition used to show convergence of two-
term averages. Also for d WD k � 1 � 3 the kernel of Gowers–Host–Kra seminorms
plays a central role. The orthogonal complement of ker k�kUd can be proved to be
a unital sublattice of L2.X/ being invariant under T, hence giving rise to a factor
.Zd�1I �d�1/ of the system .XI'/. As we saw above Z0 is the fixed factor, Z1
is the Kronecker factor. In general, an application of the van der Corput lemma,
see Exercise 13, implies that the factor .Zd�1I �d�1/ is characteristic for the d-term
multiple averages, and it is sometimes called the universal characteristic factor.
The main difficulty is to find enough structure for these factors. One can show that
the factors .Zd�1I �d�1/ come from homogeneous systems G=	 for a .d � 1/-step
nilpotent Lie group G and a discrete cocompact subgroup 	 of G rather than from
rotations on compact Abelian groups as for the Kronecker factor. For such systems
(even pointwise) convergence of multiple ergodic averages had been known for
some time, so the Host–Kra theorem could be proved this way. We refer to Parry
(1969b), Parry (1970), Lesigne (1991), Host and Kra (2005b), and Kra (2007) for
details.

The above construction of the uniformity seminorms and their equivalent
geometric characterization due to Host and Kra (2005b) goes back to Gowers
(2001) who used analogous seminorms on finite Abelian groups in his Fourier
analytic proof of Szemerédi’s theorem. For further properties of the Gowers–Host–
Kra seminorms, see Eisner and Tao (2012).

20.4 Furstenberg’s Multiple Recurrence Theorem

In order to obtain Theorem 20.1 it remains to show that the limit in the Host–Kra
theorem is strictly positive whenever 0 < f D f1 D : : : D fk�1.

Theorem 20.19. Let .XI'/ be an ergodic measure-preserving system, and con-
sider the Koopman operator T WD T' on E WD L2.X/. Then

lim
N!1

1

N

NX

nD1
f � �Tnf

� � �T2nf
� � � � �T.k�1/nf

�
> 0

if 0 < f 2 L1.X/.

Again, we prove this result for k D 3 only. Our argument follows Furstenberg (1981,
Thm. 4.27).
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Proof for the case k D 3. For f > 0 we need to show

lim
N!1

1

N

NX

nD1

Z

X
f � .Tnf / � .T2nf / > 0: (20.16)

We have f D faws C frev with frev WD Qf 2 Erev and faws D f � Qf 2 Eaws,
where Q is the projection onto Erev coming from the JdLG-decomposition. Since Q
is a Markov operator and f > 0, it follows that frev > 0 as well. Let g; h 2 L1.X/
be arbitrary. By Lemma 20.18 we have

1

N

NX

nD1

Z

X
f � .Tng/ � .T2nh/ ! 0

if at least one of the functions g; h is from Eaws. Since Erev ? Eaws in L2.X/, it
follows from Lemma 20.17 that

Z

X
f � .Tng/ � .T2nh/ D 0;

whenever two of the functions f; g; h are in Erev and the remaining one is from Eaws.
So we have

lim
N!1

1

N

NX

nD1

Z

X
f � .Tnf / � .T2nf / D lim

N!1
1

N

NX

nD1

Z

X
frev � .Tnfrev/ � .T2nfrev/:

We may therefore suppose without loss of generality that f D frev.
Take now 0 < " <

R
X f

3 and suppose that kf k1 � 1. We show that there is
some subset B � N with bounded gaps (also called relatively dense or syndetic,
see Definition 3.9.b) such that

Z

X
f � �Tnf

� � .T2nf / >

Z

X
f 3 � " for all n 2 B: (20.17)

Recall that this property of B means that there is L 2 N such that every interval of
length L intersects B.

Since f 2 Erev, there exists  of the form  D c1g1 C : : : C cjgj for some
j 2 N, c1; : : : ; cj 2 C and some eigenfunctions g1; : : : ; gj of T corresponding to
eigenvalues �1; : : : ; �j 2 T such that kf �  k2 < "

6
. Observe first that for every

ı > 0 there is a relatively dense set B � N such that

j�n
1 � 1j < ı; : : : ; j�n

j � 1j < ı for all n 2 B:

Indeed, if we consider the rotation by .�1; : : : ; �j/ on T
j, this is precisely the uniform

recurrence of the point .1; : : : ; 1/ 2 T
j (see Proposition 3.12). Now, by taking a

suitable ı > 0 depending on the coefficients c1; : : : cj, we obtain
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kTn �  k2 < "

12

kTnf � f k2 � kTnf � Tn k2 C kTn �  k2 C k � f k2 < "

2
and

for all n 2 B. Moreover, for n 2 B one has

kT2nf � f k2 � kT2nf � T2n k2 C kT2n � Tn k2 C kTn �  k2 C k � f k2
� 2kf �  k2 C 2kTn �  k2 < "

2
:

Altogether we obtain for n 2 B

ˇ
ˇ
ˇ
Z

X
f � �Tnf

� � �T2nf
� �

Z

X
f 3
ˇ
ˇ
ˇ �

Z

X
f � �Tnf

� � ˇˇT2nf � f ˇˇ C
Z

X
f 2 � ˇˇTnf � f ˇˇ

� kf k21
�kT2nf � f k2 C kTnf � f k2

�
< ";

and (20.17) is proved. Since B \ ŒjL; .jC 1/L/ ¤ ; for some L 2 N and all j 2 N0,
it follows that

1

LN

LNX

nD1

Z

X
f � �Tnf / � �T2nf

� � 1

LN

LNX

n2B;nD1

Z

X
f � �Tnf /��T2nf /

� 1

L

�Z

X
f 3 � "

�
> 0:

Thus the limit in (20.16), which exists by the considerations in the previous
subsection, is positive. ut

Combining the above results leads to the classical theorem of Roth (1953), a
precursor of Szemerédi’s Theorem 20.1.

Theorem 20.20 (Roth). If A � N has positive upper density, then A contains
infinitely many arithmetic progressions of length 3.

Sketch of the Proof of Furstenberg’s Theorem for k � 4

The above proof of convergence and recurrence for k D 3 is due to Furstenberg
(1977). The case k � 4 is substantially more complicated. There are several
ergodic theoretic proofs of Szemerédi’s theorem: the original one from Furstenberg
(1977) using diagonal measures, one using characteristic factors due to Fursten-
berg et al. (1982), one using the construction in the proof of Host and Kra,
see Bergelson et al. (2008). There are also several further proofs using tools from
other areas such as “higher-order” Fourier analysis, see Gowers (2001), model
theory, see Towsner (2010), hypergraphs, see Gowers (2007), Tao (2006), Nagle,
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Rödl, Schlacht (2006), Schlacht, Skokan (2004), and more, see, e.g., Green, Tao
(2010b). Thus the fascinating story of finding alternative proofs of Szemerédi’s
theorem seems not to be finished yet.

We now sketch very briefly the proof due to Furstenberg, Katznelson, Ornstein
(1982), and for details we refer to Furstenberg (1981, Ch. 7), Petersen (1989,
Sec. 4.3), Tao (2009, Ch. 2), or Einsiedler and Ward (2011, Ch. 7).

If .YI / is the trivial factor, i.e.,˙Y D f;;Yg, then the corresponding projection
is Qf D R

Y f , L1.Y/ D C1,
R

Y c1 D c. By Theorem 17.19 a measure-preserving
system .XI'/ is weakly mixing if and only if its Kronecker factor is trivial, and if
and only if it has no nontrivial compact factors (i.e., factors that are isomorphic to a
compact Abelian group rotation).

We say that a measure-preserving system .XI'/ has the SZ-property (SZ for
Szemerédi) if for every k � 2 and every f 2 L1.X/ with f > 0 (20.11) holds.
Theorem 20.19 thus expresses that each ergodic measure-preserving system has the
SZ-property. By Proposition 20.15 we know that weakly mixing systems do have
the SZ-property, and so do systems with discrete spectrum by Exercise 3.

To prove Furstenberg’s theorem, one needs relativized versions of the notions
“weak mixing” and “discrete spectrum.” Let .XI'/, .YI / be measure-preserving
systems with Koopman operators T and S, respectively, and suppose .YI / is a
factor of .XI'/with the associated Markov projection Q 2 M.XIY/. We call .XI'/
weakly mixing relative to .YI /, or a relatively weakly mixing extension of .YI /
if

lim
N!1

1

N

NX

nD1

Z

Y
jQ.Tnf � g/� SnQf � Qgj2 D 0

holds for every f; g 2 L1.X/. For the trivial factor .YI / this means

lim
N!1

1

N

NX

nD1
jhTnf; gi � hf; 1i � h1; gij2 D 0;

i.e., weak mixing by Theorem 9.19 (and Remark 9.20). One can prove the following
result:

1) Suppose .YI / has the SZ-property and .XI'/ is a relatively weakly mixing
extension of .YI /, then also .XI'/ has the SZ-property.

The proof uses the van der Corput lemma and is almost literally the same as for
Proposition 20.15.

Another notion needed is that of compact extensions which can be defined in
purely measure theoretic terms. We shall not give the definition here but note that
for the proof of Furstenberg’s theorem only the following two properties of compact
extensions are needed:
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2) If .XI'/ is a not relatively weakly mixing extension of .YI /, then there
is an intermediate factor .ZI �/ of .XI'/ which is a compact extension of
.YI /.

3) If .ZI �/ is a compact extension of .YI / and .YI / has the SZ-property,
then so does .ZI �/.

Consider now the set F of all factors with the SZ-property which is nonempty
since it contains the trivial factor. The set F can be partially ordered by the
relation of “being a factor.” By an argument using Zorn’s lemma, after checking the
chain condition, one finds a maximal element .YI / in F . If .XI'/ is a weakly
mixing extension of .YI /, then by 1) above also .XI'/ has the SZ-property.
Otherwise, by 2), there is a compact extension .ZI �/ of .YI /, which by 3) has
the SZ-property, contradicting maximality.

20.5 The Furstenberg–Sárközy Theorem

We continue in the same spirit, but instead of arithmetic progressions we now look
for pairs of the form fa; aC n2g for a; n 2 N, see Furstenberg (1977) and Sárközy
(1978a).

Theorem 20.21 (Furstenberg–Sárközy). If A � N has positive upper density,
then there exist a; n 2 N such that a; aC n2 2 A.

In order to prove the above theorem we first need an appropriate correspondence
principle.

Theorem 20.22 (Furstenberg Correspondence Principle for Squares). If for
every ergodic measure-preserving system .XI'/, its Koopman operator T WD T'
on L2.X/ and every 0 < f 2 L1.X/ there exists n 2 N such that the condition

Z

X
f � .Tn2f / > 0 (20.18)

is satisfied, then Theorem 20.21 holds.

The proof of this correspondence principle is analogous to the one of Theorem 20.4.
Then, to prove Theorem 20.21 one first shows that for a measure-preserving system
.XI'/ and its Koopman operator T WD T' the limit

lim
N!1

1

N

NX

nD1
f � Tn2f (20.19)

exists in L2.X/ for every f 2 L1.X/, see Theorem 21.17 below for a more general
case. To complete the proof it remains to establish the next result.
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Proposition 20.23. Let .XI'/ be an ergodic measure-preserving system. Then the
limit (20.19) is strictly positive for every 0 < f 2 L1.X/.

The proof is analogous to that of Theorem 20.19 for k D 3 and again uses the
decomposition L2.X/ D Eaws ˚ Erev, the vanishing of the above limit on Eaws and a
relative denseness argument on Erev, see Exercise 4.

A sequence .nk/k2N is called a Poincaré sequence (see, e.g., Def. 3.6 in
Furstenberg (1981)) if for every measure-preserving system .XI'/, X D .X; ˙; �/,
and A 2 ˙ with �.A/ > 0 one has

�
�
A \ '�nk.A/

�
> 0 for some k 2 N:

In this case the set fnk W k 2 Ng is called a set of recurrence. Poincaré’s Theo-
rem 6.13 tells that .n/n2N is a Poincaré sequence, explaining the terminology. One
can prove that Proposition 20.23 remains valid even for not necessarily ergodic
measure-preserving systems, so we obtain that .n2/n2N is a Poincaré sequence. More
generally, we will see in the next chapter that .p.n//n2N is a Poincaré sequence for
every integer polynomial p with p.0/ D 0, see also Exercise 17.

Furthermore, Sárközy (1978b) showed that Theorem 20.21 also remains valid if
one replaces the set of differences fn2 W n 2 Ng by the shifted set of primes P � 1,
i.e., if A has positive upper density then there are a 2 N, p 2 P with a; aCp�1 2 A.
As in the case of arithmetic progressions handled earlier in this chapter, one can
establish a Furstenberg correspondence principle in both directions and show that
Sárközy’s result is equivalent to the statement that P � 1 is a set of recurrence. For
more examples of sets of recurrence such as PC1 and sets coming from generalized
polynomials as well as properties and related notions see, e.g., Bourgain (1987),
Bergelson and Håland (1996), and Bergelson et al. (2014).

Host and Kra (2005a) proved convergence of multiple ergodic averages for totally
ergodic systems with powers p1.n/; : : : ; pk�1.n/ replacing n; : : : ; .k�1/n in (20.12):

lim
N!1

1

N

NX

nD1

�
Tp1.n/f1

� � �Tp2.n/f2
� � � � �Tpk�1.n/fk�1

�
;

where p1; : : : ; pk�1 are arbitrary polynomials with integer coefficients. Leibman
(2005a) tackled the case of general ergodic systems. With an additional assumption
pj.0/ D 0 for every j 2 f1; : : : ; k � 1g, this leads to an alternative proof of the
so-called polynomial Szemerédi theorem, i.e., the existence of a subset of the form
fa; aC p1.n/; : : : ; aC pk�1.n/g in every set A � N with positive upper density. This
has been proved originally in Bergelson and Leibman (1996), see Bergelson et al.
(2008) for details and for the weakest possible assumption on the polynomials.

The results of Szemerédi and Furstenberg–Sárközy presented in this chapter remain
true in a slightly strengthened form. One can replace the upper density d by the
so-called upper Banach density defined as
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Bd.A/ WD lim sup
m;n!1

card.A \ fm; : : : ;mC ng/
nC 1 ;

while the lower Banach density Bd.A/ is defined analogously by the lim inf. The
actual change to be carried out in order to obtain these generalizations is in
Furstenberg’s correspondence principle(s), see Furstenberg (1981) and Exercise 5.

Banach densities and Banach limits (see Exercise 10.3) are intrinsically con-
nected: By Jerison (1957) the upper Banach density of A � N is the supremum of
the values of Banach limits on 1A, and in turn, the lower Banach density is given by
the infimum of all these values.

Exercises

1. Prove that

X

p2P

1

p
D1:

Hence, the Green–Tao theorem would follow from the validity of the Erdős–Turán
conjecture. (Hint: Prove that

NX

nD1

1

n
�

NY

pD1
p2P

�
1C 1

p

�
�

NX

nD1

1

n2
� exp

� NX

pD1
p2P

1

p

� NX

nD1

1

n2

for each N 2 N. Use this to estimate the partial sums of the series
P

p2P 1
p from

below.)

2. Deduce Theorem 20.1 directly from Theorem 20.5.

3. Let .XI'/ be a measure-preserving system with discrete spectrum and with
Koopman operator T WD T' , and let k 2 N. Prove that

lim inf
N!1

1

N

NX

nD1

Z

X
f � �Tnf

� � � � �T.k�1/nf
�
> 0

for all f 2 L1.X/ with f > 0.

4. Prove Proposition 20.23 for E WD L2.X/, f 2 Erev. (Hint: Use a similar scheme
as in the proof of Theorem 20.19 for k D 3 and results from Sections 10.4 and 10.5.)

5 (Szemerédi’s Theorem with Banach Density). If A � N is a subset with
Bd.A/ > 0, then A is AP-rich, i.e., contains arbitrarily long arithmetic progressions.
Prove that this result implies and follows from the finitary version of Szemerédi’s
Theorem 20.5.
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6 (Density vs. Banach Density). Give an example of a set A � N with d.A/ D 0

and Bd.A/ D 1.

7. Let .XI'/ be a measure-preserving system with Koopman operator T on
E D L2.X/. Prove that for every 0 < f 2 L1.X/, f 2 Erev

lim inf
N;M!1

1

M

NCMX

nDN

Z

X
f � �Tnf

� � � � �T.k�1/nf
�
> 0:

8 (Van der Corput Lemma II). Let H be a Hilbert space and let .un/n2N be a
sequence in H with kunk � 1. For j 2 N define


j WD lim sup
N;M!1

ˇ
ˇ
ˇ
1

N

NCMX

nDM

�
un

ˇ
ˇ unCj

�ˇˇ
ˇ:

Prove the inequality

lim sup
N;M!1

�
�
�
1

N

NCMX

nDN

un

�
�
�
2 � lim sup

J; L!1
1

J

LCJX

jDL


j:

9. Let .XI'/ be a weakly mixing measure-preserving system with Koopman
operator T on E D L2.X/. Let k 2 N, k � 2 and f 2 L1.X/.

a) Prove that if f 2 Eaws, then

lim
N;M!1

1

N

NCMX

nDN

Z

X
f � �Tnf

� � � � �T.k�1/nf
� D 0:

b) Prove that

lim
N;M!1

1

N

NCMX

nDN

Z

X
f � �Tnf

� � � � �T.k�1/nf
� D

� Z

X
f1 � � �

Z

X
fk�1

�
� 1:

(Hint: Use the result of the foregoing exercise.)

10. Let .XI'/ be a measure-preserving system with Koopman operator T on E D
L2.X/. Prove that for 0 < f 2 L1.X/

lim inf
N;M!1

1

N

NCMX

nDN

Z

X
f � �Tnf

��
T2nf

�
> 0:

(Hint: Carry out a proof similar to the ones of the Host–Kra and the Furstenberg
theorems for k D 3 by using the results of the previous exercises.)
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11 (Syndetic Return Times). Let .XI'/ be a measure-preserving system and let
A 2 ˙ with �.A/ > 0. Show that the set of all n 2 N with

�
�
A \ '�n.A/ \ '�2n.A/

�
> 0

is syndetic. (Hint: Use the result of Exercise 10.)

12 (Furstenberg Correspondence for General Sequences). Prove the following
statement:
Let .an/n2N be a subsequence in N. Suppose that for every ergodic measure-
preserving system .XI'/, its Koopman operator T WD T' on L2.X/ and every
0 < f 2 L1.X/ there exists n 2 N such that

Z

X
f � .Tanf / > 0: (20.20)

Then for every set A � N with d.A/ > 0 there is n 2 N and a; aC an 2 A.
For an D n2 this is Theorem 20.22. Of course, this is useful only for those sequences
.an/n2N for which Theorem 20.21 and the corresponding recurrence result holds,
such as N, N2, the shifted primes P � 1, PC 1, etc.

13 (Gowers–Host–Kra Seminorms). For an invertible ergodic measure-
preserving system .XI'/ with Koopman operator T consider the Gowers–Host–Kra
seminorms k�kUk.T/ on L1.X/.

a) Prove that k�kU1.T/ is seminorm on L1.X/ and that

kf kU1.T/ D lim
N!1

��
�
1

N

NX

nD1
Tnf

��
�
2
:

b) Prove that the limsup in the definition of k�kU2 is in fact a limit. Prove also
the following identity

kf k4U2 D lim
M!1 lim

N!1
1

NM

MX

mD1

NX

nD1

Z

X

�
TnCmf

� � �Tmf
� � �Tnf

� � f:

(Hint: One can, e.g., apply Proposition 16.37.)

c) Prove that kf kUk.T/ � kf kUkC1.T/ � kf k1 for each k 2 N and f 2 L1.X/.
d) Show that .XI'/ is weakly mixing if and only if kf kUk.T/ D kf kU1.T/ holds

for every k 2 N and f 2 L1.X/.
e) Prove that k�kUk.T/ D k�kUk.T�1/.

f) Prove that k�kUk.Tm/ � m1=2k k�kUk.T/ holds for every m; k 2 N.

g) Prove the following fact, called the Gowers–Cauchy–Schwarz inequality:
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For every k � 2, a1 < a2 < � � � < ak�1 2 Znf0g there is C � 0 (actually
independent of the measure-preserving system) such that for f1; : : : ; fk�1 2
L1.X/ with kfjk1 � 1, j D 1; : : : ; k � 1, one has

lim sup
N!1

�
�
�
1

N

NX

nD1

�
Ta1nf1

� � � � �Tak�1nfk�1
���
�

L2.X/
� C min

j2f1;:::;k�1g
kfjkUk�1.T/:

(Hint: Use van der Corput’s lemma.)

h) Deduce that the factor .Zk�2I �k�2/ mentioned on page 451 is characteristic
for the .k � 1/-term multiple ergodic averages (20.15).

14. Let P 2 M.X/ be a Markov projection. Prove that P leaves L1.X/ invariant and
that L1.X/\ ker.P/ is dense in L2.X/\ ker.P/ with respect to the L2-norm.

15. Consider the skew rotation .T2;mI a/ from Example 5.15. Prove that its
Kronecker factor is not characteristic for three-term averages. (Hint: Consider the
functions f1.x; y/ D y3, f2.x; y/ D y�3 and f3.x; y/ D y.) Let it be remarked here
that from the general structure theory of Host and Kra (2005b) it follows that Z2 is
already the whole system.

16. Prove that if the Host–Kra theorem holds for some measure-preserving system
.XI'/, then it holds for each of its factors .YI /.
17. As we will see in the next chapter, one can replace p.n/ D n2 in the
Furstenberg–Sárközy Theorem 20.21 by any integer polynomial with p.0/ D 0.
Show that the condition p.0/ D 0 cannot be dropped.



Chapter 21
More Ergodic Theorems

Jede wahre Geschichte ist eine unendliche Geschichte.1

Michael Ende2

As we saw in previous chapters, ergodic theorems, even though being originally
motivated by a recurrence question from physics, found applications in unexpected
areas such as number theory. So it is not surprising that they attracted continuous at-
tention among the mathematical community, thus leading to various generalizations
and extensions. In this chapter we describe a very few of them.

21.1 Weighted Ergodic Theorems

As a first generalization we study convergence of weighted ergodic averages and
characterize weights which are “good” for the mean ergodic theorem.

Definition 21.1. A sequence .an/n2N in C is called a (universally) good weight for
the mean ergodic theorem if for every Hilbert space H and every linear contraction
T on H, the weighted averages

AN;.an/ŒT�f WD
1

N

NX

nD1
anTnf (21.1)

converge for every f 2 H as N !1.

1Every real story is a Neverending Story.
2Die unendliche Geschichte, Thienemann Verlag, 2012 � Translation from: Michael Ende, The
Neverending Story, translated by Ralph Mannheim, Puffin Books, 1983.
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T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
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The following is a surprisingly simple criterion for a sequence to be good in the
previous sense, see, e.g., Berend et al. (2002).

Theorem 21.2. For a bounded sequence .an/n2N in C the following assertions are
equivalent:

(i) The sequence .an/n2N is a good weight for the mean ergodic theorem.

(ii) For every isometry T on a Hilbert space H the weighted averages AN;.an/ŒT�f
converge strongly for every f 2 H.

(iii) For every isometry T on a Hilbert space H the weighted averages
AN;.an/ŒT�f converge weakly for every f 2 H.

(iv) The limit

lim
N!1

1

N

NX

nD1
an�

n DW c.�/ (21.2)

exists for every � 2 T.

In this case, for every contraction T 2 L .H/ one has

lim
N!1 AN;.an/ŒT�f D lim

N!1
1

N

NX

nD1
anTnf D

X

�2¢p.T/\T

c.�/P�f; (21.3)

where the operators P� are the orthogonal projections onto the mutually orthogonal
eigenspaces ker.T � �I/ for � 2 ¢p.T/ \ T.

Proof. First of all we note that the sum on the right-hand side of (21.3) is strongly
convergent for every bounded function c W T ! C, because by Exercise 16.19
eigenvectors of a contraction to different unimodular eigenfunctions are orthogonal.

The implications (i)) (ii)) (iii) are trivial, and (iii)) (iv) follows by considering
the multiplication by � as an operator on H D C.

Now, we show that for an isometry T one has AN;.an/ŒT�f ! 0 for every f 2 Haws.
For f 2 Haws we define un WD anTnf . Then with C WD supn2N janj we have

ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
.unCk j un /

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
anCkan

�
TnCkf

ˇ
ˇ Tnf

�
ˇ
ˇ
ˇ
ˇ
ˇ

� C2 1

N

NX

nD1

ˇ
ˇ�Tkf

ˇ
ˇ f

�ˇˇ D C2
ˇ
ˇ�Tkf

ˇ
ˇ f
�ˇˇ :

So the averages (21.1) converge to 0 by the van der Corput Lemma 9.28.

To prove (iv)) (ii), we take an isometry T on a Hilbert space H. By the JdLG-
decomposition, see Section 16.3, it suffices to prove convergence of the weighted
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averages for f 2 Hrev and f 2 Haws separately. By the previous paragraph we know
convergence to 0 on Haws. If f is an eigenvector to some eigenvalue � (necessarily
unimodular), then

AN;.an/ŒT�f D
1

N

NX

nD1
an�

nf:

So by assumption (iv) and by Theorem 16.33 we obtain convergence on Hrev, hence
on H, and the formula (21.3) in the case of isometries.

Finally, we prove the implication (ii)) (i) and the formula (21.3) for contractions.
Let T be a contraction on a Hilbert space H. By the Foiaş–Szőkefalvi-Nagy
decomposition in Section D.7, one has the orthogonal decomposition H D Huni ˚
Hcnu into two T-invariant subspaces, where T is unitary on Huni and completely
nonunitary and weakly stable on Hcnu, i.e., the powers Tn restricted to Hcnu converge
to 0 in the weak operator topology. By (ii) and by the already proven formula (21.3)
for isometries, we may assume that H D Hcnu. In this case we need to prove that
AN;.an/ŒT�f ! 0 for every f 2 H as N ! 1. By the Szőkefalvi-Nagy dilation
theorem in Section D.8 there is a Hilbert space K 	 H and a unitary operator U
on K such that Tn D PHUnjH holds for every n 2 N. Since the weighted ergodic
averages converge for U by assumption, they also converge for T. It remains only to
show that the limit (21.3) is zero. Since T is weakly stable, the operators Sn WD anTn

converge weakly to 0 as n!1, and we obtain that

1

N

NX

nD1
Snf

converges weakly hence strongly to 0 for every f 2 H. ut
An alternative proof for unitary operators based on the spectral theorem is

Exercise 1.

Remarks 21.3. 1) One can show that (iii) implies that c.�/ ¤ 0 holds for
at most countably many � 2 T, see Kahane (1985, p. 72) or Boshernitzan’s
proof in Rosenblatt (1994). Moreover, the assertion of Theorem 21.2 can be
generalized to some classes of unbounded sequences .an/n2N, see Berend et
al. (2002) and Lin et al. (1999) for details.

2) Again using the JdLG-decomposition, see Section 16.3, one can add another
equivalent condition to the list in Theorem 21.2:

(v) For every operator T with relatively (strongly) compact orbits on a
Banach space E, the averages (21.1) converge strongly/weakly for
every f 2 E, and the limit is as given in (21.3). Here, P� denotes
the mean ergodic projection of the operator �T for � 2 T and the
sum on the right-hand side of (21.3) becomes for fixed f a strongly
convergent series.
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Note that for such operators, Tn converges strongly to 0 on Eaws.

3) We see that only the reversible part of Hrev contributes to the limit in (21.3).
Therefore, for Koopman operators the Kronecker factor is characteristic for
averages (21.3), cf. page 449 in Chapter 20.

4) By considering rotation systems .T;mI�/ for � 2 T we can formulate one
more condition equivalent to the ones in Theorem 21.2.

(vi) For every measure-preserving system .XI'/ with Koopman operator
T WD T' the weighted averages AN;.an/ŒT�f converge in L2 for every
f 2 L2.X/.

Example 21.4. As examples of good weights we can take polynomial sequences of
the form

�
an
�

n2N D
�
�q.n/

�
n2N with � 2 T and q W Z! Z a polynomial,

see Exercise 2. More examples appear in the next section.

Analogously, one defines (universally) good weights for the pointwise ergodic
theorem on Lp, p 2 Œ1;1/, as weights .an/n2N for which the averages AN;.an/ŒT�f
converge a.e. for the Koopman operator T WD T' of every measure-preserving
system .XI'/, and every f 2 Lp.X/. There seems to be no pointwise analogue
of Theorem 21.2.

For an extension of Birkhoff’s pointwise ergodic theorem for weights coming
from orbits of measure-preserving systems see Theorem 21.10 and the discussion
below. For more examples of pointwise good and bad (i.e., not good) weights
see, e.g., Section 21.2 below, Conze (1973), Bellow and Losert (1985) or Krengel
(1971).

21.2 Wiener–Wintner and Return Time Theorems

In this section we study sequences of weights coming from a measure-preserving
system, i.e., having the form .an/n2N D .f .'n.x///n2N for a system .XI'/, x 2 X
and f 2 L1.X/. We will see that for almost every x such weights are good for both
the mean and the pointwise ergodic theorem.

We begin with the following classical result due to Wiener and Wintner (1941)
showing almost everywhere convergence of weighted ergodic averages with weights
an D �n, � 2 T.

Theorem 21.5 (Wiener–Wintner). Let .XI'/, X D .X; ˙; �/, be a measure-
preserving system and f 2 L1.X/. Then there exists a set X0 2 ˙ with �.X0/ D 1

such that

1

N

NX

nD1
�nf

�
'n.x/

�
(21.4)

converges
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At the first glance, the coefficients .�n/n2N in (21.4) can be considered as a sequence
of weights. However, we can change perspective and consider instead the sequence
.an/n2N WD .f .'n.x///n2N as a weight. With this point of view the averages (21.4)
coincide with those in (21.2) in Theorem 21.2. We thus immediately obtain the
following corollary relating Theorems 21.2 and 21.5.

Corollary 21.6. Let .XI'/ be a measure-preserving system and f 2 L1.X/. Then
for almost every x the sequence of weights .f .'n.x///n2N is good for the mean
ergodic theorem.

The almost everywhere convergence of (21.4) for a fixed � 2 T follows from
Birkhoff’s Theorem 11.1 applied to the product system .Y; I / and g 2 L1.Y; /
for Y WD T�X with product measure ,  .z; x/ WD .�z; �.x// and g.z; x/ WD zf .x/.
The difficulty is to find a set X0 of full measure independent of � 2 T.

For the proof of Theorem 21.5 we first need a simple lemma responsible for
a density argument. Here, for an ergodic measure-preserving system .XI'/, X D
.X; ˙; �/ and an integrable function f on X we call a point x 2 X generic for f if

1

N

NX

nD1
f
�
'n.x/

�!
Z

X
f d�;

cf. Exercise 11.4 for the topological case. By Birkhoff’s Theorem 11.1, for an
ergodic measure-preserving system .XI'/ and f 2 L1.X/ almost every point is
generic for f .

Lemma 21.7. Take a bounded sequence .an/n2N in C, an ergodic measure-
preserving system .XI'/ and f; f1; f2; : : : integrable functions on X with
limj!1 kf � fjk1 D 0. Let x 2 X be generic for jfjj and for jf � fjj, j 2 N,
and suppose that

lim
N!1

1

N

NX

nD1
anfj

�
'n.x/

� DW bj

exists for every j 2 N. Then limj!1 bj DW b exists and

lim
N!1

1

N

NX

nD1
anf

�
'n.x/

� D b:

Proof. Since x is generic for jfjj and the sequence .kfjk1/j2N is bounded, the
sequence .bj/j2N is bounded and hence has a convergent subsequence, say bjm ! b
as m ! 1. For a given " > 0 we obtain with M WD supn2N janj and m 2 N

sufficiently large that
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ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
anf

�
'n.x/

� � b

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

N

NX

nD1
M
ˇ
ˇfjm � f

ˇ
ˇ �'n.x/

�C
ˇ̌
ˇ
ˇ
ˇ
1

N

NX

nD1
anfjm

�
'n.x/

� � bjm

ˇ̌
ˇ
ˇ
ˇ
C ˇˇbjm � b

ˇ
ˇ

� 1

N

NX

nD1
M
ˇ̌
fjm � f

ˇ̌ �
'n.x/

�C
ˇ
ˇ
ˇ̌
ˇ
1

N

NX

nD1
anfjm

�
'n.x/

� � bjm

ˇ
ˇ
ˇ̌
ˇ
C ":

Since x is generic for
ˇ
ˇfjm � f

ˇ
ˇ, by the definition of bjm we conclude that

lim
N!1

1

N

NX

nD1
anf

�
'n.x/

� D b;

and, in particular, that b is independent of the subsequence .bjm/m2N. ut
We now prove the Wiener–Wintner theorem under the additional assumption that

the system .XI'/ is ergodic.

Proof of Theorem 21.5 for ergodic systems. In the whole proof we work with
arbitrarily chosen representatives instead of equivalence classes in L2, still denoted
by the same letter. Let H WD L2.X/, T WD T' be the corresponding Koopman
operator, and consider the JdLG-decomposition H D Hrev˚Haws, see Section 16.3.
We first prove convergence of (21.4) for f in the reversible part Hrev. Let f be an
eigenfunction of T for an eigenvalue  2 T. Then there is a set X 2 ˙ with full
measure such that .Tnf /.x/ D nf .x/ for every x 2 X and n 2 N. For such x we
have

1

N

NX

nD1
�nf .'n.x// D 1

N

NX

nD1
.�/nf .x/;

and convergence follows for every � 2 T. Clearly, if f is a finite sum of eigen-
functions corresponding to unimodular eigenvalues, then the asserted convergence
holds.

Let now f D limj!1 fj in L2, where each fj is a finite sum of eigenfunctions
corresponding to unimodular eigenvalues. There are only countably many eigen-
functions gi that occur as a summand in any of the functions fj. Let X0 be the
intersection of the sets of convergence corresponding to each gi obtained from the
previous argument together with the generic points of each jfjj and jf � fjj. This
set is of full measure, and from Lemma 21.7 one obtains the convergence of the
averages in (21.4).

Suppose now that f 2 Haws. Define X0 to be the set of the generic points of every
function Tkf � f , k 2 N. We show that the limit of (21.4) is 0 for all x 2 X0 and all
� 2 T using the van der Corput lemma. We take x 2 X0 and set un D �nf .'n.x//
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for n 2 N. For k 2 N we have

ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
unCkun

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
�k
�
Tkf � f ��'n.x/

�
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
.Tkf � f /�'n.x/

�
ˇ
ˇ
ˇ
ˇ
ˇ

!
ˇ
ˇ
ˇ
ˇ

Z

X
Tkf � f d�

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ�Tkf

ˇ
ˇf
�ˇˇ as N !1:

Since f 2 Haws, by Theorem 16.34 the Cesàro averages of the right-hand side above
converge to 0. By the van der Corput Lemma 9.28 we obtain

lim
N!1

1

N

NX

nD1
�nf

�
'n.x/

� D 0

for every � 2 T finishing the argument in case f 2 Haws.
If f 2 L1.X/ is arbitrary, then its reversible and stable parts frev and faws both

belong to L1.X/, see Lemma 20.17. By what is said above we obtain the statement
for every f 2 L1.X/.

Take now f 2 L1.X/ and a sequence .fj/j2N in L1.X/ with limj!1 kf �fjk1 D
0. For each j, let Xj be the set of full measure from the previous consideration
corresponding to fj intersected with the generic points of jfjj and jf � fjj. Then
the set X0 WD T

j2N Xj has full measure, and for every x 2 X0 the averages in (21.4)
converge by Lemma 21.7. ut

As we see from the proof, only functions from the reversible part contribute to
the limit of (21.4), or, in other words, the Kronecker factor is characteristic for the
Wiener–Wintner ergodic averages. In fact, one has even stronger convergence on
the stable part, as the following extension due to Bourgain (1990) shows, see also
Assani (2003, Thms. 2.4, 2.10).

Theorem 21.8 (Uniform Wiener–Wintner Theorem). Let T be a Koopman
operator as above and let f 2 L1.X/ be orthogonal to all eigenfunctions of T.
Then

lim
N!1 sup

�2T

ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
�nf

�
'n.x/

�
ˇ
ˇ
ˇ
ˇ
ˇ
D 0

for almost every x 2 X. If, in addition, the .K; �I'/ is a uniquely ergodic topological
measure-preserving system and f 2 C.K/, then one has

lim
N!1 sup

�2T; x2K

ˇ
ˇ̌
ˇ
ˇ
1

N

NX

nD1
�nf

�
'n.x/

�
ˇ
ˇ̌
ˇ
ˇ
D lim

N!1 sup
�2T

�
��
�
�
1

N

NX

nD1
�nTnf

�
��
�
�

1
D 0:
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In particular, in the latter case the sequence .f .'n.x///n2N is a good weight for the
mean ergodic theorem for every x 2 K.

The proof is analogous to the one of Theorem 21.5 using a finitary version of the
van der Corput lemma, see, e.g., Assani (2003, Ch. 2) and Schreiber (2013a).

Remark 21.9. For extensions of Theorems 21.5 and 21.8 to more general classes
of weights, see Lesigne (1990, 1993), Frantzikinakis (2006), Host and Kra (2009)
and Eisner and Zorin-Kranich (2013).

We also refer to Lenz (2009b) for the connection of topological Wiener–Wintner
theorems to diffraction in quasicrystals. More topological Wiener–Wintner type
results are in Robinson (1994), Lenz (2009a, 2009b), Walters (1996), Santos and
Walkden (2007), and Schreiber (2014).

We now discuss the more difficult situation regarding pointwise convergence.
Viewing the sequence .f .'n.x///n2N in the averages (21.4) as a sequence of weights
we can reformulate the Wiener–Wintner Theorem 21.5 as follows: For every rotation
system .T; dzI�/, for g D idk (k 2 Z), f 2 L1.X/, and for almost every x, the
averages

1

N

NX

nD1
f
�
'n.x/

�
g
�
�ny

�

converge for (almost) every y 2 T. By linearity and by density argument we can
actually allow here arbitrary g 2 L1.T/.

A celebrated result of Bourgain, first published in the preprint Bourgain (1988b)
with a subsequent proof given in Bourgain et al. (1989), shows that one can replace
the rotation system .T; dzI�/ by an arbitrary measure-preserving system.

Theorem 21.10 (Bourgain Return Time Theorem). Let .XI'/ be a measure-
preserving system and f 2 L1.X/. Then for almost every x 2 X, the sequence
.f .'n.x///n2N is a good weight for the pointwise ergodic theorem, i.e., the averages

1

N

NX

nD1
f
�
'n.x/

�
g
�
 n.y/

�

converge for every measure-preserving system .YI /, g 2 L1.Y/ and for almost all
y 2 Y.

The name “return time theorem” is explained by taking f D 1A as the characteristic
function of a measurable set A. Then f .'n.x// D 1 if x returns to A at time n
while f .'n.x// D 0 otherwise, and so the sequence .f .'n.x///n2N is a return time
sequence.

For the proof we refer to the original paper of Bourgain (1989) or to a more
detailed version in Assani (2003). Further proofs and generalizations are in Rudolph
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(1994, 1998), Ornstein and Weiss (1992) and Zorin-Kranich (2014a, 2014b), see
also Demeter et al. (2008) and the survey article by Assani and Presser (2013).

Remark 21.11. The following natural question seems still to be open, cf. Assani
(2003, Prop. 5.3): Let .KI'/ be a uniquely ergodic topological system with invariant
probability measure �, and let f 2 C.K/. By Theorem 21.8, the sequence
.f .'n.x///n2N is a good weight for the mean ergodic theorem for every x. Is it
also a good weight for the pointwise ergodic theorem, i.e., does the assertion of
Theorem 21.10 hold for every x?

21.3 Linear Sequences as Good Weights

In the previous section we encountered two classes of good weights for the
pointwise ergodic theorem: “deterministic” sequences of the form .�n/n2N for � 2 T

and the “random” sequences of the form .f .'n.x///n2N for a measure-preserving
system .XI'/, f 2 L1.X/ and x from some “good” set X0 � X of full measure. In
the latter case, although the proof gives conditions on the set X0, it can be difficult
to identify a concrete x 2 X0. In this section we present a different class of good
weights being deterministic and hence easy to construct. This class comes from
orbits of operators instead of orbits of measure-preserving transformations.

Definition 21.12. We call a sequence .an/n2N in C linear if there exist an operator
S 2 L .E/ with relatively weakly compact orbits on a Banach space E and y 2 E,
y0 2 E0 such that an D hSny; y0i holds for every n 2 N.

For details about operators having relatively weakly compact orbits see Section 16.2.
Using the Wiener–Wintner Theorem 21.5 and the JdLG-decomposition, we show

that linear sequences are good weights for the pointwise ergodic theorem, where the
set of convergence of full measure can be chosen to be independent of the linear
sequence, see Eisner (2013).

Theorem 21.13. Let .XI'/, X D .X; ˙; �/, be a measure-preserving system and
f be an integrable function on X. Then there exists a set X0 2 ˙ with �.X0/ D 1

such that the weighted averages

1

N

NX

nD1
anf .'

n.x// (21.5)

converge for every x 2 X0 and every linear sequence .an/n2N. In particular, every
linear sequence is a good weight for the pointwise ergodic theorem.

Proof. By the approximation argument based on Lemma 21.7, cf. the proof of
Theorem 21.5, it suffices to take f 2 L1.X/. Let S be an operator on a Banach space
E with relatively weakly compact orbits (hence power-bounded), y 2 E, y0 2 E0,
and take .an/n2N to be the corresponding linear sequence an WD hSny; y0i. Due to
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the JdLG-decomposition E D Erev ˚ Eaws corresponding to S, see Section 16.3, it
suffices to prove the statement separately for y 2 Eaws and y 2 Erev. Suppose first
y 2 Eaws. Then by Theorem 16.34 we have

lim
N!1

1

N

NX

nD1
janj D 0:

This implies that for every x 2 X

lim sup
N!1

ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
anf

�
'n.x/

�
ˇ
ˇ
ˇ
ˇ
ˇ
� lim

N!1
1

N

NX

nD1
janjkf k1 D 0:

Suppose now that Sy D �y for some � 2 T. Then we have

1

N

NX

nD1
anf

�
'n.x/

� D 1

N

NX

nD1
�nf

�
'n.x/

� ˝
y; y0˛ :

By Theorem 21.5 there exists X0 2 ˙ with full measure such that the averages
above converge for every x 2 X0 and every � 2 T. Note that this set is independent
of .an/n2N. Of course, one obtains the convergence for finite linear combinations of
eigenvectors corresponding to unimodular eigenvalues.

Suppose now y 2 Erev. Then, by Theorem 16.33, y is the norm limit of finite
linear combinations yk of eigenvectors. Since

ˇ
ˇ˝Sn.y � yk/; y

0˛ˇˇ � Mky � ykkky0k;

where M WD supn2N kSnk, the `1-distance between .an/n2N and the linear sequence
corresponding to yk tends to 0 as k!1. By the triangle inequality, convergence of
the averages (21.5) for every x 2 X0 follows. ut

Using the same kind of argument and some further results, one can show that
linear sequences are good weights for more classes of ergodic theorems as well, see
Eisner (2013).

21.4 Subsequential Ergodic Theorems

A second class of extensions of the classical ergodic theorems has been touched
upon in Chapter 9 when we discussed the Blum–Hanson theorem. In this case the
sequence .n/n2N for the operator powers Tn is replaced by a subsequence.

We begin with the following analogue of Theorem 21.2 for subsequences, see
Rosenblatt and Wierdl (1995) and Boshernitzan et al. (2005).
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Theorem 21.14. Let .kn/n2N be a subsequence of N. Then the following assertions
are equivalent:

(i) For every contraction T on a Hilbert space H, the averages

1

N

NX

nD1
Tknf (21.6)

converge strongly for every f 2 H as N !1.

(ii) The averages (21.6) converge strongly for every isometry T on a Hilbert
space H and every f 2 H.

(iii) The averages (21.6) converge weakly for every isometry T on a Hilbert space
H and every f 2 H.

(iv) The averages

1

N

NX

nD1
�kn

converge for every � 2 T.

The proof of the implication (iv)) (ii) is Exercise 4, and (ii)) (i) follows as in the
proof of Theorem 21.2.

Definition 21.15. A subsequence .kn/n2N in N is good for the mean ergodic
theorem (or norm good) if it satisfies the equivalent assertions in Theorem 21.14. A
subsequence .kn/n2N in N is good for the pointwise ergodic theorem (or pointwise
good) in Lp.X/, p � 1, if the averages (21.6) converge almost everywhere for
every measure-preserving system .XI'/, the corresponding Koopman operator T
and every f 2 Lp.X/.

We note that such sequences are sometimes called universally good (e.g., in
Krengel 1985) to emphasize that one has the convergence along such sequences
independently of the Hilbert space contraction or the measure-preserving system,
respectively.

Remark 21.16. If the set fkn W n 2 Ng has positive density, then .kn/n2N is good
for the mean (or pointwise) ergodic theorem if and only if the corresponding 0-1-
sequence of weights is good for the mean (or pointwise) ergodic theorem in the
sense of Section 21.1, see Exercise 3. Examples of such sequences are return time
sequences .1A.'

n.x///n2N for a measure-preserving system .XI'/, X D .X; ˙; �/,
and A 2 ˙ with positive measure. Indeed, by Birkhoff’s Theorem 11.1 such a
sequence has density �.A/. Thus, convergence for sequences having density zero or
not having a density cannot be obtained via Section 21.1.
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An important class of good sequences are polynomial ones. We give a structural
proof for this fact based on Furstenberg (1981, Sec. 3–4). For an alternative proof
using the spectral theorem or Theorem 21.14 see Exercise 4.

Theorem 21.17. Let q W N! N be a polynomial. Then for every contraction T on
a Hilbert space H, the averages

1

N

NX

nD1
Tq.n/f (21.7)

converge strongly for every f 2 H as N ! 1. In particular, .q.n//n2N is a good
sequence for the mean ergodic theorem. Moreover, the limit of the averages (21.7)
is given by

X

�2¢p.T/\T

c.�/P�f;

where c.�/ denotes the limit of 1
N

PN
nD1 �q.n/ and P� is the orthogonal projection

onto the eigenspace ker.T � �I/.

Proof. By Exercise 16.19 the eigenspaces corresponding to different unimodular
eigenvalues are orthogonal. Since c.�/ exists—as will be shown in a moment—and
is bounded by 1 for � 2 ¢p.T/ \ T, the sum

P
�2¢p.T/\T

c.�/P�f exists for every
f 2 H.

By the JdLG-decomposition, see Section 16.3, it again suffices to prove conver-
gence of the averages (21.7) for f 2 Hrev and f 2 Haws separately.

Let f be an eigenfunction to the eigenvalue � 2 T. If � is not a root of unity, i.e.,
� … e2 iQ, then by Weyl’s equidistribution result for polynomials, Theorem 10.23,
the limit

1

N

NX

nD1
Tq.n/f D 1

N

NX

nD1
�q.n/f

is zero. If � is a root of unity, say � D e2 ia=b, then the convergence follows from

lim
N!1

1

N

NX

nD1
e2 iq.n/a=b D 1

b

bX

nD1
e2 iq.n/a=b

since q.nC b/� q.n/ is divisible by b for every n 2 N.
It remains to show that the limit of (21.7) is zero for f 2 Haws. If deg.q/ D 1,

this follows from the mean ergodic theorem because by Corollary 9.18 we have
Haws.T/ D Haws.Tk/ for every k 2 N. We induct on deg.q/. Let q W N ! N be
a polynomial, and suppose that the assertion is proved for every polynomial with
degree strictly less than deg.q/. We define un WD Tq.n/f and obtain
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�
unCk

ˇ
ˇun
� D �Tq.nCk/�q.n/f

ˇ
ˇf
�
:

Since the polynomial q.� C k/� q.�/ has degree deg.q/� 1, we obtain by induction
hypothesis that

lim
N!1

1

N

NX

nD1
.unCk j un / D 0

holds for every k 2 N. The van der Corput Lemma 9.28 finishes the argument. ut
Remark 21.18. The above proof shows that the limit of (21.7) is 0 whenever f is
orthogonal to the subspace

Hrat WD lin
˚
f 2 H W Tf D e i˛f for some ˛ 2 Q

�
; (21.8)

called the space of rational eigenfunctions of T. Thus, for Koopman operators the
factor generated by (21.8) (i.e., corresponding to the smallest �-algebra with respect
to which all rational eigenfunctions are measurable) is characteristic for polynomial
averages (21.7). Note that this factor is in general not the smallest characteristic
factor. For an examination of the limit of (21.7) see, e.g., Kunszenti-Kovács (2010)
and Kunszenti-Kovács et al. (2011).

The following celebrated result of Bourgain (1989) shows that polynomials
are good also for pointwise convergence for every p > 1, see also Thouvenot
(1990), Lacey (1997), Demeter (2010), and Krause (2014). For p D 1 pointwise
convergence fails as shown by Buczolich and Mauldin (2010).

Theorem 21.19 (Bourgain). Let q W N ! N be a polynomial. Then the sequence
.q.n//n2N is good for the pointwise ergodic theorem for every p > 1.

We now mention more classes of good sequences.

Examples 21.20. 1) The first generalization of integer polynomial sequences
are sequences of the form .bq.n/c/n2N for a polynomial q with real coefficients, e.g.,
.b�n5 C p2nc/n2N. Such sequences are good for the pointwise (and hence mean)
ergodic theorem for every Lp, p > 1, by Bourgain (1989).

2) A further generalization concerns logarithmico-exponential functions or,
more generally, elements of a Hardy field. A logarithmico-exponential (log-exp)
function is a function which can be obtained by combining the variable x, real
constants, and the symbols C, �, exp and log, see, e.g., Hardy (1971). For such a
function a, consider the sequence .ba.n/c/n2N and call such a sequence a log-exp
sequence. An example of such a sequence is .Œn˛�/n2N for ˛ 2 R.

Boshernitzan et al. (2005) presented a complete characterization of log-exp
sequences of subpolynomial growth which are good for the mean ergodic theorem.
Roughly speaking, their condition says that the corresponding function should
be either asymptotically close to a polynomial or far from every polynomial.
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Moreover, a similar sufficient condition is valid for the pointwise ergodic theorem.
We just mention some examples. The notion “pointwise good” (“pointwise bad,”
respectively) refers here to the corresponding notion in L2.

a) If the limit limx!1.a.x/ � q.x// exists for some real polynomial q, then
.ba.n/c/n2N is pointwise (and hence norm) good. A concrete example of such
a sequence is .b�n7 � n�1=2 log nCp2nc/n2N.

b) Let a D q C r, where q is a polynomial and r.x/ grows slower than x and
quicker than logm x for every m 2 N. Then .ba.n/c/n2N is pointwise good for
every Lp, p > 1. An example is .bnCpnc/n2N.

c) Let q be a polynomial with rational coefficients. Then every coefficient of q
can be perturbed by an arbitrarily small irrational number such that for the
new polynomial Qq, .bQq.n/C log nc/n2N is pointwise bad.

d) The sequences .bn3=2c/n2N and .bp2n2CnC log nc/n2N are pointwise good.
However, by c) there is a dense set of irrational numbers� such that .b�n2C
n C log nc/n2N is pointwise bad. It is not clear what happens, for example,
for � D � .

e) The sequence .bpnc/n2N is pointwise bad as shown by Bergelson, Bosher-
nitzan, and Bourgain (1994), see also Jones and Wierdl (1994) for an
elementary proof.

3) Extending a result of Bourgain (1988a), Wierdl (1988) showed that the
sequence of primes is good for pointwise convergence for every Lp, p > 1. For
more examples, see, e.g., Niederreiter (1975) and Bellow (1989).

21.5 Even More Ergodic Theorems

There are even more ways to generalize the classical ergodic theorems.

Ergodic Theorems for Semigroup Actions

Instead of the powers of a single Koopman operator and their Cesàro averages, one
can look at an action of a (semi)group of measure-preserving transformations and
ask for an analogue of the ergodic theorems. Here one has to distinguish between
actions of amenable and nonamenable (semi)groups. We refer, e.g., to Bergelson
(1996) for results on Z

d-actions, to Lindenstrauss (2001) and to the book by
Tempelman (1992) for pointwise ergodic theorems for actions of amenable groups.
The book by Gorodnik and Nevo (2010) contains information on nonamenable
group actions. Mean ergodic operator semigroups were briefly touched upon in
the supplement of Chapter 8, for more details we refer, e.g., to Nagel (1973), Satō
(1978), Satō (1979), Krengel (1985), Schreiber (2013b).
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Noncommutative Ergodic Theorems

Another generalization (which can be combined with the one above) is to con-
sider a noncommutative von Neumann system instead of the commutative system
.L1.X/;

R � d�IT/ for the Koopman operator T. See Lance (1976), Kümmerer
(1978), Junge and Xu (2007), Niculescu et al. (2003), Duvenhage (2009), Beyers
et al. (2010), Austin et al. (2011), Bátkai et al. (2012).

Entangled Ergodic Theorems

The so-called entangled ergodic theorems come from quantum stochastics and deal
with averages such as

1

N

NX

nD1
TnATnf;

where A is a fixed bounded operator on a Hilbert space. For results regarding strong
convergence, see Liebscher (1999), Fidaleo (2007, 2010) and Eisner and Kunszenti-
Kovács (2013). Pointwise convergence of such averages of Koopman operators on
Lp spaces has not yet been studied.

More Multiple Ergodic Theorems

In Chapter 20 we briefly discussed convergence of multiple ergodic averages.
Tao (2008) proved the following generalization of Theorem 20.14. Let T1; : : : ;Tk

be commuting Markov isomorphisms on L1.X/ with X a probability space. Then
the limit

lim
N!1

1

N

N�1X

nD0
.Tn
1f1/ � � � � � .Tn

k fk/

exists in the L2-sense for every f1; : : : ; fk 2 L1.X/. Subsequently, Austin (2010),
Host (2009), and Towsner (2009) discovered different proofs, see also de la Rue
(2009). Walsh (2012) generalized the previous result by assuming only that
T1; : : : ;Tk generate a nilpotent group, see also Austin (2014) and Zorin-Kranich
(2011). Unlike in the Host–Kra theorem, not much is known about the limit of the
averages.

One can now combine this with the ergodic theorems above. For example, Host,
Kra (2009) showed the following weighted multiple norm convergence result: For
a measure-preserving system .XI'/ and f 2 L1.X/, for almost every x 2 X the
sequence .f .'n.x///n2N is a good weight for multiple ergodic averages, i.e., the
averages
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1

N

NX

nD1
f .'n.x//.Sng1/ � � � .Skngk/

converge in L2-norm for every other system .Y; I / with the Koopman operator S,
every g1; : : : ; gk 2 L1.Y; / and every k 2 N.

While the theory of multiple norm convergence is quite well established,
pointwise convergence of multiple ergodic averages is not well understood yet. In
particular, the question whether the multiple averages

1

N

NX

nD1
.Tnf1/.T

2nf2/ � � � .Tknfk/

converge almost everywhere for every measure-preserving system .XI'/ and every
f1; : : : ; fk 2 L1.X/ is open for k � 3. In the case k D 2 the question was answered
affirmatively by Bourgain (1990) using harmonic analysis. Also almost everywhere
convergence of the simplest multiple polynomial averages

1

N

NX

nD1
.Tnf /.Tn2g/

is open.
For further variations on ergodic theorems we refer, e.g., to Zorin-Kranich

(2011), Krengel (1985), Lacey et al. (1994), Aaronson (1997), Wierdl (1998),
Bergelson and McCutcheon (2000), Leibman (2005b), Li et al. (2007), Frantzik-
inakis et al. (2010), Gomilko et al. (2011), Karlsson and Ledrappier (2011),
LaVictoire et al. (2014), Parrish (2012).

Clearly, the above list is far from being exhaustive, but we hope to have motivated
the reader to delve deeper into the subject.

Exercises

1 (Spectral Theoretic Proof of Theorem 21.2). Using the spectral theorem, give
an alternative proof of Theorem 21.2 for unitary operators via the next steps:

a) Show that the following assertions are equivalent:

(i) For every unitary operator T on a Hilbert space H, averages (21.1)
converge for every f 2 H.

(ii) Averages (21.2) converge for every � 2 T.
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b) Let � be a continuous positive measure on T and T be the unitary operator
on E WD L2.T; �/ given by Tf .z/ D zf .z/. Show that the limit of
averages (21.1) equals 0 for every f 2 E. (Hint: Use Wiener’s lemma,
Proposition 18.20.)

c) Derive from b) and the spectral theoretic proof of a) the representation (21.3)
for the limit of the weighted averages (21.1).

2 (Polynomial Sequences as Good Weights).

a) Show, by using Theorem 21.2 and Weyl’s Theorem 10.23, that for a
polynomial q W Z ! Z and z 2 T, the sequence .zq.n//n2N is a good weight
for the mean ergodic theorem and compute c.�/ for every � 2 T, where we
use the notation of Theorem 21.2.

b) Using the skew product construction, see Example 2.22, show that the poly-
nomial sequences in a) can be written in the form .f .'n.x///n2N for some
measure-preserving system .XI'/ and f 2 L1.X/. Using Corollary 21.6
deduce that the polynomial sequences from above are good weights for the
pointwise ergodic theorem.

3 (Weighted vs. Subsequential Ergodic Theorems). For a subsequence .kn/n2N
in N, define .an/n2N by

an WD
(
1 if n D km for some m;

0 if otherwise:

Suppose fkn W n 2 Ng has positive density. Prove that then .kn/n2N is a good
subsequence for the mean (or pointwise) ergodic theorem if and only if .an/n2N
is a sequence of good weights for the mean (or pointwise) ergodic theorem.

4. Give a spectral theoretic proof of Theorems 21.14 and 21.17 for unitary operators
on a Hilbert space using Weyl’s equidistribution theorem for polynomials, see
Theorem 10.23.

5 (Linear Sequences: A Counterexample). Let E WD `1 and let S W E ! E be the
right shift operator defined by S.x1; x2; : : :/ WD .0; x1; x2; : : :/:

a) Show first that for x D .xj/j2N 2 `1 and y WD .yj/j2N 2 `1 one has

lim
N!1

ˇ
ˇ̌ 1
N

NX

nD1
hSnx; yi � 1

N

NX

nD1
yn

1X

jD1
xj

ˇ
ˇ̌ D 0:

b) Using a) show that there exist dense open sets M � E and M0 � E0 such
that for every x 2 M and every y 2 M0, the sequence .Snx; y/n2N is Cesàro
divergent and hence fails to be a good weight even for the mean ergodic
theorem.



Appendix A
Topology

A.1 Metric Spaces

A metric space is a pair .˝; d/ consisting of a nonempty set ˝ and a function
d W ˝ �˝ ! R with the following properties:

1) d.x; y/ � 0, and d.x; y/ D 0 if and only if x D y,

2) d.x; y/ D d.y; x/,

3) d.x; y/ � d.x; z/C d.z; y/ (triangle inequality).

Such a function d is called a metric on˝ . If instead of 1) we require only d.x; x/ D
0 for all x 2 ˝ we have a semi-metric. For A � ˝ and x 2 ˝ we define

d.x;A/ WD inf
˚
d.x; y/ W y 2 A

�
;

called the distance of x from A. By a ball with center x and radius r > 0 we mean
either of the sets

B.x; r/ WD ˚y 2 ˝ W d.x; y/ < r
�
;

B.x; r/ WD ˚y 2 ˝ W d.x; y/ � r
�
:

A set O � ˝ is called open if for each x 2 O there is a ball B � O with center x
and radius r > 0. A set A � ˝ is called closed if ˝ n A is open. The ball B.x; r/ is
open, and the ball B.x; r/ is closed for any x 2 ˝ and r > 0.

A sequence .xn/n2N in˝ is convergent to the limit x 2 ˝ (in notation: xn ! x),
if for all " > 0 there is n0 2 N with d.xn; x/ < " for n � n0. Limits are unique, i.e.,
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if xn ! x and xn ! y, then x D y. For a subset A � ˝ the following assertions are
equivalent:

(i) A is closed.

(ii) If x 2 ˝ and d.x;A/ D 0, then x 2 A.

(iii) If .xn/n2N � A and xn ! x 2 ˝ , then x 2 A.

A Cauchy sequence .xn/n2N in ˝ is a sequence with the property that for all " > 0
there is n0 2 N with d.xn; xm/ < " for n; m � n0. Each convergent sequence is
a Cauchy sequence. If conversely every Cauchy sequence is convergent, then the
metric d as well as the metric space .˝; d/ is called complete.

A.2 Topological Spaces

Let ˝ be a set. A set system O � P.˝/ is called a topology on ˝ if it has the
following three properties:

1) ;; ˝ 2 O,

2) O1; : : : ;On 2 O; n 2 N H) O1 \ � � � \ On 2 O,

3) O� 2 O, � 2 I H) S
�2I O� 2 O.

A topological space is a pair .˝;O/, where˝ is a set and O � P.˝/ is a topology
on ˝ . A subset O � ˝ is called open if O 2 O. A subset A � ˝ is called closed if
Ac D ˝ n A is open. By de Morgan’s laws, finite unions and arbitrary intersections
of closed sets are closed.

If .˝; d/ is a metric space, the family O WD fO � ˝ W O openg of open sets (as
defined in A.1) is a topology, called the topology induced by the metric (Willard
2004, Thm. 2.6).

If the topology of a topological space is induced by a metric, the space is called
metrizable and the metric is called compatible (with the topology). If there is a
complete compatible metric, the topological space is called completely metrizable.
Not every topological space is metrizable, cf. Section A.7 below. On the other hand,
two different metrics may give rise to the same topology. In this case the metrics are
called equivalent. It is possible in general that a complete metric is equivalent to
one which is not complete.

If O; O0 are both topologies on˝ and O0 � O, then O is called finer than O0 and
O0 coarser than O. On each set there is a coarsest topology, namely O D f;;˝g,
called the trivial topology; and a finest topology, namely O D P.˝/, called the
discrete topology. The discrete topology is metrizable, e.g., by the discrete metric
d.x; y/ WD ıxy (Kronecker delta). Clearly, a topology on ˝ is the discrete topology
if and only if every singleton fxg is an open set.
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If .O�/� is a family of topologies on ˝ , then
T
� O� is again a topology. Hence, if

E � P.˝/ is any set system one can consider

�.E/ WD
\˚

O W E � O � P.˝/; O is a topology
�
;

the coarsest topology in which each member of E is open. It is called the topology
generated by E.

Let .˝;O/ be a topological space. A neighborhood in ˝ of a point x 2 ˝ is
a subset U � ˝ such that there is an open set O � ˝ with x 2 O � U. A set is
open if and only if it is a neighborhood of all of its points. If A is a neighborhood of
x, then x is called an interior point of A. The set of all interior points of a set A is
denoted by Aı and is called the interior of A. The closure of a subset A � ˝ is

A WD
\˚

F W A � F � ˝; F closed
�
;

which is obviously the smallest closed set that contains A. Alternatively, the closure
of A is sometimes denoted by

cl A or clO A;

especially when one wants to stress the particular topology considered.
The (topological) boundary of A is the set @A WD A n Aı. For x 2 ˝ one has

x 2 A if and only if every neighborhood of x has nonempty intersection with A. If
.˝; d/ is a metric space and A � ˝ , then A D fx W d.x;A/ D 0g, and x 2 A if and
only if x is the limit of a sequence in A.

A subset A of a topological space .˝;O/ is called dense in ˝ if A D ˝ . A
topological space ˝ is called separable if there is a countable set A � ˝ which is
dense in ˝ .

If ˝ 0 � ˝ is a subset, then the subspace topology on ˝ 0 (induced by the
topology O on ˝) is given by O˝0 WD f˝ 0 \ O W O 2 Og. If O is induced by
a metric d on ˝ , then the restriction of d to ˝ 0 � ˝ 0 is a metric on ˝ 0, and this
metric induces the subspace topology there.

A subspace of a separable metric space is again separable, but the analogous
statement for general topological spaces is false (Willard 2004, §16).

A topological space ˝ is called Hausdorff if any two points x; y 2 ˝ can be
separated by disjoint open neighborhoods, i.e., there are U; V 2 O with U \ V D
; and x 2 U, y 2 V . A subspace of a Hausdorff space is Hausdorff and each
metric space is Hausdorff. If O, O0 are two topologies on ˝ , O finer than O0 and
O0 Hausdorff, then also O is Hausdorff. In a Hausdorff space each singleton fxg is a
closed set.

If .˝;O/ is a topological space and x 2 ˝ , then one calls

U.x/ WD ˚U � ˝ W U is a neighborhood of x
�
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the neighborhood filter of x 2 ˝ . A system U � U.x/ is called an (open)
neighborhood base for x or a fundamental system of (open) neighborhoods of x,
if for each O 2 U.x/ there is some U 2 U with x 2 U � O (and each U 2 U is
open). In a metric space .˝; d/, the family of open balls B.x; 1n /, n 2 N, is an open
neighborhood base of x 2 ˝ .

A base B � O for the topology O on ˝ is a system such that each open set
can be written as a union of elements of B. If B is a base for the topology of ˝ ,
then fU 2 B W x 2 Ug is an open neighborhood base for x, and if Ux is an open
neighborhood base for x, for each x 2 ˝ , then B WD S

x2˝ Ux is a base for the
topology. For example, in a metric space .˝; d/ the family of open balls is a base
for the topology.

A topological space is called second countable if it has a countable base for its
topology.

Lemma A.1. Every second countable space is separable, and every separable
metric space is second countable.

A proof is in Willard (2004, Thm. 16.11). A separable topological space need not be
second countable (Willard 2004, §16).

Let .˝;O/ be a topological space and let ˝ 0 � ˝ . A point x 2 ˝ 0 is called
an isolated point of ˝ 0 if the singleton fxg is open. Further, x 2 ˝ is called an
accumulation point of˝ 0 if it is not isolated in˝ 0[fxg for the subspace topology,
or equivalently, if every neighborhood of x in ˝ contains points of ˝ 0 different
from x. A point x 2 ˝ is a cluster point of the sequence .xn/n2N � ˝ if each
neighborhood of x contains infinitely many members of the sequence, i.e., if

x 2
\

n2N

˚
xk W k � n

�
:

If ˝ is a metric space, then x is a cluster point of a sequence .xn/n2N � ˝ if and
only if x is the limit of a subsequence .xkn/n2N.

A.3 Continuity

Let .˝;O/, .˝ 0;O0/ be topological spaces. A mapping f W ˝ ! ˝ 0 is called
continuous at x 2 ˝ , if for each (open) neighborhood V of f .x/ in ˝ 0 there is an
(open) neighborhood U of x such that f .U/ � V .

The mapping f is called continuous if it is continuous at every point. Equiva-
lently, f is continuous if and only if the inverse image f �1.O/ of each open (closed)
set O 2 O0 is open (closed) in ˝ . If we want to indicate the used topologies, we say
that f W .˝;O/! .˝ 0;O0/ is continuous.

For metric spaces, the continuity of f W ˝ ! ˝ 0 (at x) is the same as sequential
continuity (at x), i.e., f is continuous at x 2 ˝ if and only if f .xn/ ! f .x/
whenever xn ! x in ˝ .
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A mapping f W ˝ ! ˝ 0 is called a homeomorphism if f is bijective and both
f and f �1 are continuous. Two topological spaces are called homeomorphic if
there is a homeomorphism that maps one onto the other. The Hausdorff property,
separability, metrizability, complete metrizability, and the property of having a
countable base are all preserved under homeomorphisms.

A mapping f W .˝; d/ ! .˝ 0; d0/ between two metric spaces is called uni-
formly continuous if for each " > 0 there is ı > 0 such that d.x; y/ < ı implies
d0.f .x/; f .y// < " for all x; y 2 ˝ . Clearly, a uniformly continuous mapping is
continuous. If A � ˝ , then the distance function d.�;A/ from ˝ to R is uniformly
continuous since the triangle inequality implies that

jd.x;A/� d.y;A/j � d.x; y/ .x; y 2 ˝/:

A.4 Inductive and Projective Topologies

Let .˝�;O�/, � 2 I, be a family of topological spaces, let ˝ be a nonempty set, and
let f� W ˝� ! ˝ , � 2 I, be given mappings. Then

Oind WD
˚
A � ˝ W f �1

� .A/ 2 O� for all � 2 I
�

is a topology on˝ , called the inductive topology with respect to the family .f�/�2I .
It is the finest topology such that all the mappings f� become continuous. A mapping
g W .˝;Oind/! .˝ 0;O0/ is continuous if and only if all the mappings g ıf� W ˝� !
˝ 0, � 2 I, are continuous (Figure A.1).

Fig. A.1 Continuity for the
inductive (on the left) and for
the projective topology (on
the right)

Ω
g

fι g◦ fι

g

fιfι ◦g

WiWi

WW¢W¢

As an example of an inductive topology we consider a topological space .˝;O/
and a surjective map f W ˝ ! ˝ 0. Then the inductive topology on ˝ 0 with respect
to f is called the quotient topology. In this case ˝ 0 is called a quotient space of
˝ with respect to f , and f is called a quotient mapping.

A common instance of this situation is when˝ 0 D ˝=� is the set of equivalence
classes with respect to some equivalence relation� on˝ , and f W ˝ ! ˝=� is the
natural mapping, i.e., f maps each point to its equivalence class. A set A � ˝=� is
open in ˝=� if and only if

S
A, the union of the elements in A, is open in ˝ .
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Let .˝�;O�/, � 2 I, be a family of topological spaces, let ˝ be a nonempty set,
and let f� W ˝ ! ˝�, � 2 I, be given mappings. The projective topology on˝ with
respect to the family .f�/�2I is

Oproj WD �
˚
f �1
� .O�/ W O� 2 O� for all � 2 I

� � P.˝/:

This is the coarsest topology for which all the functions f� become continuous.
A base for this topology is

Bproj WD
˚
f �1
�1
.O�1 /\ � � � \ f �1

�n
.O�n/ W n 2 N; O�k 2 O�k for k D 1; : : : ; n�:

A mapping g W .˝ 0;O0/ ! .˝;Oproj/ is continuous if and only if all the functions
f� ı g W ˝ 0 ! ˝�, � 2 I, are continuous (Figure A.1).

An example of a projective topology is the subspace topology. Indeed, if ˝ is a
topological space and ˝ 0 � ˝ is a subset, then the subspace topology on ˝ 0 is the
projective topology with respect to the inclusion mapping˝ 0 ! ˝ .

A.5 Product Spaces

Let .˝�/�2I be a nonempty family of nonempty topological spaces. The product
topology on

˝ WD
Y

�2I

˝� D
n
x W I !

[
˝� W x.�/ 2 ˝� 8 � 2 I

o

is the projective topology with respect to the canonical projections �� W ˝ ! ˝�.
Instead of x.�/ we usually write x�. A base for this topology is formed by the open
cylinder sets

A�1;:::;�n WD
˚
x D .x�/�2I W x�k 2 O�k for k D 1; : : : ; n�

for �1; : : : ; �n 2 I, n 2 N and O�k open in ˝�k . For the product of two (or finitely
many) spaces we also use the notation ˝ � ˝ 0 and the like. Convergence in the
product space is the same as coordinatewise convergence. If ˝� D ˝ for all � 2 I,
then we use the notation˝ I for the product space.

If .˝j; dj/, j 2 I is a family of countably many (complete) metric spaces, then
their product

Q
j2I ˝j is (completely) metrizable. For example, if I � N one can use

the metric

d.x; y/ WD
X

j2I

d.xj; yj/

2j.1C d.xj; yj//
.x; y 2

Y

j2I

˝j/:
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It follows from the triangle inequality that in a metric space .˝; d/ one has

jd.x; y/� d.u; v/j � d.x; u/C d.y; v/ .x; y; u; v 2 ˝/:

This shows that the metric d W ˝ �˝ ! R is uniformly continuous.

A.6 Spaces of Continuous Functions

For a topological space ˝ the sets C.˝IK/ and Cb.˝IK/ of all continuous,
respectively bounded and continuous functions f W ˝ ! K are algebras over K
with respect to pointwise multiplication and addition (K stands for R or C). The
unit element is 1, the function which is constant with value 1. For f 2 Cb.˝IK/
one defines

kf k1 WD sup
˚jf .x/j W x 2 ˝�:

Then k�k1 is a norm on Cb.˝IK/, turning it into a commutative unital Banach
algebra, see Section C.2. Convergence with respect to k�k1 is called uniform
convergence. In the case that ˝ is a metric space, the set

UCb.˝IK/ WD
˚
f 2 Cb.˝IK/ W f is uniformly continuous

�

is a closed subalgebra of Cb.˝IK/.
For a general topological space ˝ , the space C.˝IK/ may be quite “small.” For

example, if ˝ carries the trivial topology, the only continuous functions thereon are
the constant ones. In “good” topological spaces, the continuous functions separate
the points, i.e., for every x; y 2 ˝ such that x 6D y there is f 2 C.˝IK/ such that
f .x/ 6D f .y/. (Such spaces are necessarily Hausdorff.) An even stronger property
is when continuous functions separate closed sets. This means that for every pair
of disjoint closed subsets A; B � ˝ there is a function f 2 C.˝IK/ such that

0 � f � 1; f .A/ � f0g; f .B/ � f1g:

If .˝; d/ is a metric space and A � ˝ , then the function d.�;A/ is uniformly
continuous; moreover, it is zero precisely on A. Hence, by considering functions
of the type

f .x/ WD d.x;B/

d.x;A/C d.x;B/
.x 2 ˝/

for disjoint closed sets A; B � ˝ , one obtains the following.

Lemma A.2. On a metric space .˝; d/, bounded uniformly continuous functions
separate closed sets.
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A.7 Compactness

Let ˝ be a set. A collection F � P.˝/ of subsets of ˝ is said to have the finite
intersection property if

F1 \ � � � \ Fn 6D ;

for every finite subcollection F1; : : : ;Fn 2 F, n 2 N.
A topological space .˝;O/ has the Heine–Borel property if every collection

of closed sets with the finite intersection property has a nonempty intersection.
Equivalently,˝ has the Heine–Borel property if every open cover of ˝ has a finite
subcover.

A topological space is called compact if it is Hausdorff and has the Heine–Borel
property. (Note that this deviates slightly from the definition in Willard (2004, Def.
17.1.)) A subset ˝ 0 � ˝ of a topological space is called compact if it is compact
with respect to the subspace topology. A compact set in a Hausdorff space is closed,
and a closed subset in a compact space is compact (Willard 2004, Thm. 17.5).
A relatively compact set is a set whose closure is compact.

Lemma A.3. a) Let ˝ be a Hausdorff topological space, and let A; B � ˝

be disjoint compact subsets of ˝ . Then there are disjoint open subsets
U; V � ˝ such that A � U and B � V.

b) Let ˝ be a compact topological space, and let O � ˝ be open and x 2 O.
Then there is an open set U � ˝ such that x 2 U � U � O.

A proof of a) is in Lang (1993, Prop. 3.5). For b) apply a) to A D fxg and B D Oc.
The case of compact spaces is studied in some detail in Chapter 4.

Proposition A.4. Let .˝;O/ be a compact space.

a) If f W ˝ ! ˝ 0 is continuous and ˝ 0 Hausdorff, then f .A/ D f .A/
is compact for every A � ˝ . If in addition f is bijective, then f is a
homeomorphism.

b) If O0 is another topology on ˝ , coarser than O but still Hausdorff, then
O D O0.

c) Every continuous function on ˝ is bounded, i.e., Cb.˝IK/ D C.˝IK/.
For the proof see Willard (2004, Thms. 17.7 and 17.14).

Theorem A.5 (Tychonoff). Suppose .˝�/�2I is a family of nonempty topological
spaces. Then the product space ˝ D Q

�2I ˝� is compact if and only if each ˝�,
� 2 I, is compact.

The proof rests on Zorn’s lemma and can be found in Willard (2004, Thm. 17.8) or
Lang (1993, Thm. 3.12).

Theorem A.6. For a metric space .˝; d/ the following assertions are equivalent:
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(i) ˝ is compact.

(ii) ˝ is complete and totally bounded, i.e., for each " > 0 there is a finite set
F � ˝ such that ˝ �Sx2F B.x; "/.

(iii) ˝ is sequentially compact, i.e., each sequence .xn/n2N � ˝ has a
convergent subsequence.

Moreover, if˝ is compact, it is separable and has a countable base, and C.˝IK/ D
Cb.˝IK/ D UCb.˝IK/.
For the proof see Lang (1993, Thm. 3.8–Prop. 3.11).

Theorem A.7 (Heine–Borel). A subset of Rd is compact if and only if it is closed
and bounded.

A proof can be found in Lang (1993, Cor. 3.13).

Theorem A.8. For a compact topological space K the following assertions are
equivalent:

(i) K is metrizable.

(ii) K is second countable.

The proof is based on Urysohn’s metrization theorem (Willard 2004, Thm. 23.1).
A Hausdorff topological space .˝;O/ is locally compact if each of its points has
a compact neighborhood. Equivalently, a Hausdorff space is locally compact if the
relatively compact open sets form a base for its topology.

If ˝ is locally compact, A � ˝ is closed and O � ˝ is open, then A \ O is
locally compact (Willard 2004, Thm. 18.4).

A compact space is (trivially) locally compact. If ˝ is locally compact but not
compact, and if p is some point not contained in ˝ , then there is a unique compact
topology on˝� WD ˝[fpg such that˝ is a dense open set in˝� and the subspace
topology on ˝ coincides with its original topology. This construction is called the
one-point compactification of ˝ (Willard 2004, Def. 19.2).

A.8 Connectedness

A topological space .˝;O/ is connected if ˝ D A [ B with disjoint open (closed)
sets A; B � ˝ implies that A D ˝ or B D ˝ . Equivalently, a space is connected
if and only if the only closed and open (abbreviated clopen) sets are ; and˝ itself.
A subset A � ˝ is called connected if it is connected with respect to the subspace
topology. A disconnected set (space) is one which is not connected.

A continuous image of a connected space is connected. The connected subsets of
R are precisely the intervals (finite or infinite).

A topological space .˝;O/ is called totally disconnected if the only connected
subsets in ˝ are the trivial ones that is ; and the singletons fxg, x 2 ˝ .
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Subspaces and products of totally disconnected spaces are totally discon-
nected (Willard 2004, Thm. 29.3). Every discrete space is totally disconnected.
Consequently, products of discrete spaces are totally disconnected. An example of a
not discrete, compact, uncountable, totally disconnected space is the Cantor set C.
One way to construct C is to remove the open middle third from the unit interval, and
then in each step remove the open middle third of each of the remaining intervals.
In the limit, one obtains

C D
n
x 2 Œ0; 1� W x D

1X

jD1
aj

3j ; aj 2 f0; 2g
o
:

The space C is homeomorphic to f0; 1gN via the map x 7! .
aj

2
/j2N, see for example

Willard (2004, Ex. 19.9.c).

Theorem A.9. A compact space is totally disconnected if and only if the set of
clopen subsets of ˝ is a base for its topology.

The proof is in Willard (2004, Thm. 29.7).

A topological space .˝;O/ is called extremally disconnected if the closure of
every open set G 2 O is open. Equivalently, a space is extremally disconnected if
each pair of disjoint open sets have disjoint closures.

Open subspaces of extremally disconnected spaces are extremally disconnected.
Every discrete space is extremally disconnected, and an extremally discon-
nected metric space is discrete. In particular, the Cantor set is not extremally
disconnected, and this shows that products of extremally disconnected spaces need
not be extremally disconnected (Willard 2004, §15G).

A.9 Category

A subset A of a topological space˝ is called nowhere dense if its closure has empty
interior, i.e., .A/ı D ;. A set A is called of first category in ˝ if it is the union of
countably many nowhere dense subsets of ˝ . Clearly, countable unions of sets of
first category are of first category.

A set A is called of second category in ˝ if it is not of first category.
Equivalently, A is of second category if, whenever A � S

n2N An then one of the
sets An \ A must contain an interior point.

Sets of first category are considered to be “small,” whereas sets of second
category are “large.” A topological space .˝;O/ is called a Baire space if every
nonempty open subset of ˝ is “large,” i.e., of second category in ˝ . The proof of
the following result is in Willard (2004, Cor. 25.4).

Theorem A.10. Each locally compact space and each complete metric space is a
Baire space.
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A countable intersection of open sets in a topological space˝ is called a Gı-set;
and a countable union of closed sets of˝ is called a F� -set. In a metric space, every
closed set A is a Gı-set since A D T

n2Nfx 2 ˝ W d.x;A/ < 1
ng. The following

result follows easily from the definitions.

Theorem A.11. Let ˝ be a Baire-space.

a) An F� -set is of first category if and only if it has empty interior.

b) A Gı-set is of first category if and only if it is nowhere dense.

c) A countable intersection of dense Gı-sets is dense.

d) A countable union of F� -sets with empty interior has empty interior.

A.10 Nets

A directed set is a set � together with a relation � on � with the following
properties:

1) ˛ � ˛,

2) ˛ � ˇ and ˇ � 
 imply that ˛ � 
 ,

3) for every ˛; ˇ 2 � there is 
 2 � such that ˛; ˇ � 
 .

The relation� is called a direction on�. Typical examples of directed sets include

a) N with the natural meaning of �.

b) N with the direction given by divisibility: n � m , njm.

c) U.x/, the neighborhood filter of a given point x in a topological space ˝ ,
with the direction given by reversed set inclusion: U � V , V � U.

Let .˝;O/ be a topological space. A net in ˝ is a map x W � ! ˝ , where
.�;�/ is a directed set. In the context of nets one usually writes x˛ in place of x.˛/,
and x D .x˛/˛2� � ˝ .

A net .x˛/˛2� � ˝ is convergent to x 2 ˝ , written x˛ ! x, if

8U 2 U.x/ 9˛0 2 � 8˛ � ˛0 W x˛ 2 U:

In this case the point x 2 ˝ is called the limit of the net .x˛/˛. (Note that if � D N

with the natural direction and ˝ is a metric space, this coincides with the usual
notion of a limit of a sequence.) If˝ is Hausdorff, then a net in ˝ can have at most
one limit.

A subnet of a net .x˛/˛2� in ˝ is each net .x�.˛0//˛02�0 , where .�0;�/ is a
directed set and � W �0 ! � is increasing and cofinal. The latter means that for
each ˛ 2 � there is ˛0 2 �0 such that ˛ � �.˛0/. A subnet of a sequence need not
be a sequence any more (Willard, 2004, Ex. 11B).
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All the fundamental notions of set theoretic topology can be characterized in
terms of nets, see Willard (2004, Ch. 11) and Willard (2004, Thm. 17.4).

Theorem A.12. a) If x 2 ˝ and A � ˝ , then x 2 A if and only there is a net
.x˛/˛2� � A such that x˛ ! x.

b) If A � ˝ , then A is closed if an only if it contains the limit of each net in A,
convergent in ˝ .

c) For a net .x˛/˛2� � ˝ and x 2 ˝ the following assertions are equivalent:

(i) Some subnet of .x˛/˛2� is convergent to x.

(ii) x is a cluster point of .x˛/˛2�, i.e.,

x 2
\

˛2�
fxˇ W ˇ � ˛g:

d) A Hausdorff space˝ is compact if and only if each net in˝ has a convergent
subnet.

e) The map f W ˝ ! ˝ 0 is continuous at x 2 ˝ if and only if x˛ ! x implies
f .x˛/! f .x/ for every net .x˛/˛2� � ˝ .

f) Let f� W ˝ ! ˝�, � 2 I. Then ˝ carries the projective topology with respect
to the family .f�/�2I if and only if for each net .x˛/˛2� � ˝ and x 2 ˝ one
has

x˛ ! x ” f�.x˛/! f�.x/ 8 � 2 I:

In particular, f) implies that in a product space ˝ D Q
� ˝� a net .x˛/˛2� � ˝

converges if and only if it converges in each coordinate � 2 I.
Let .˝; d/ be a metric space. A Cauchy net in˝ is a net .x˛/˛2� � ˝ such that

8 " > 0 9˛ 2 � W ˛ � ˇ; 
 H) d.xˇ; x
 / < ":

Every subnet of a Cauchy net is a Cauchy net. Every convergent net is a Cauchy net,
and if a Cauchy net has a convergent subnet, then it is convergent.

Theorem A.13. In a complete metric space every Cauchy net converges.

See Willard (2004, Thm. 39.4) for a proof.



Appendix B
Measure and Integration Theory

We begin with some general set theoretic notions. Let X be a set. Then its power set
is denoted by

P.X/ WD ˚A W A � X
�
:

The complement of A � X is denoted by Ac WD X n A, and its characteristic
function is

1A W X ! C; 1A.x/ WD
(
1 if x 2 A;

0 if x 2 Ac:

One often writes 1 in place of 1X if the reference set X is understood. For a sequence
.An/n2N � P.X/ we write An & A if

An 	 AnC1 for each n 2 N and
\

n2N
An D A:

Similarly, An % A is a shorthand notation for

An � AnC1 for each n 2 N and
[

n2N
An D A:

A family .A�/� � P.X/ is called pairwise disjoint if � 6D � implies that A�\A� D ;.
A subset E � P.X/ is often called a set system over X. A set system is called \-
stable ([-stable, n-stable) if A; B 2 E implies that A \ B (A [ B, A n B) belongs to
E as well. If E is a set system, then a mapping � W E! Œ0;1� is called a (positive)
set function. Such a set function is called �-additive if
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�

 1[

nD1
An

!

D
1X

nD1
�.An/

whenever .An/n2N � E is pairwise disjoint and
S

n An 2 E. Here we adopt the
convention that

aC1 D1C a D 1 .�1 < a � 1/:
A similar rule holds for sums aC .�1/ where a 2 Œ�1;1/. The sum1C .�1/
is not defined. Other conventions for computations with the values˙1 are:

0 � .˙1/ D .˙1/ � 0 D 0; ˛ � .˙1/ D .˙1/ � ˛ D ˙1
ˇ � .˙1/ D .˙1/ � ˇ D �1

for �1 < ˇ < 0 < ˛. If f W X ! Y is a mapping and B � Y then we denote

Œ f 2 B � WD f �1.B/ WD ˚x 2 X W f .x/ 2 B
�
:

Likewise, if P.x1; : : : ; xn/ is a property of n-tuples .x1; : : : ; xn/ 2 Yn and f1; : : : ; fn W
X ! Y are mappings, then we write

ŒP.f1; : : : ; fn/ � WD
˚
x 2 X W P.f1.x/; : : : ; fn.x// holds

�
:

For example, for f; g W X ! Y we abbreviate Œ f D g � WD fx 2 X W f .x/ D g.x/g.

B.1 � -Algebras

Let X be any set. A �-algebra over X is a set system ˙ � P.X/, such that the
following hold:

1) ;; X 2 ˙ .

2) If A; B 2 ˙ then A [ B;A \ B;A n B 2 ˙ .

3) If .An/n2N � ˙ , then
S

n2N An;
T

n2N An 2 ˙ .

If a set system˙ satisfies merely 1) and 2), it is called an algebra, and if˙ satisfies
just 2) and ; 2 ˙ , then it is called a ring. A pair .X; ˙/ with ˙ being a �-algebra
over X is called a measurable space.

Clearly f;;Xg is the smallest and P.X/ is the largest �-algebra over X. Arbitrary
intersection of �-algebras over the same set X is again a �-algebra. Hence, for E �
P.X/ one can form

�.E/ WD
\˚

˙ W E � ˙ � P.X/; ˙ a �-algebra
�
;
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the �-algebra generated by E. It is the smallest �-algebra that contains all sets
from E. If ˙ D �.E/, we call E a generator of ˙ .

If X is a topological space, the �-algebra generated by all open sets is called the
Borel �-algebra Bo.X/. By 1) and 2), Bo.X/ contains all closed sets as well. A set
belonging to Bo.X/ is called a Borel set.

As an example consider the extended real line X D Œ�1;1�. This becomes
a compact metric space via the (order-preserving) homeomorphism arctan W
Œ�1;1� ! Œ� 

2
;  
2
�. The Borel algebra Bo.Œ�1;1�/ is generated by f.˛;1� W

˛ 2 Rg.
A Dynkin system (also called �-system) on a set X is a subset D � P.X/ with

the following properties:

1) X 2 D,

2) if A; B 2 D and A � B then B n A 2 D,

3) if .An/n2N � D and An % A, then A 2 D.

Dynkin systems play an important technical role in measure theory due to the
following result, see Bauer (1990, p. 8) or Billingsley (1979, Thm. 3.2).

Theorem B.1 (Dynkin). If D is a Dynkin system and E � D is \-stable, then
�.E/ � D.

B.2 Measures

Let X be a set, and let ˙ � P.X/ a �-algebra over X. A (positive) measure is a
�-additive set function

� W ˙ ! Œ0;1�:

In this case the triple .X; ˙; �/ is called a measure space and the sets in ˙ are
called measurable sets. If �.X/ < 1, the measure is called finite. If �.X/ D 1,
it is called a probability measure and .X; ˙; �/ is called a probability space.
Suppose E � ˙ is given and there is a sequence .An/n2N � E such that

�.An/ <1 .n 2 N/ and X D
[

n2N
An;

then the measure � is called �-finite with respect to E. If E D ˙ , we simply call it
�-finite.

From the �-additivity of the measure one derives the following properties:

a) (Finite Additivity) �.;/ D 0 and

�.A [ B/C �.A \ B/ D �.A/C �.B/ .A; B 2 ˙/:
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b) (Monotonicity) A; B 2 ˙; A � B H) �.A/ � �.B/.
c) (�-Subadditivity) .An/n2N � ˙ H) �.

S
n2N An/ �P1

nD1 �.An/.

See Billingsley (1979, p. 134) for the elementary proofs. The following is an
application of Dynkin’s theorem, see Billingsley (1979, Thm. 10.3).

Theorem B.2 (Uniqueness Theorem). Let ˙ D �.E/ with E being \-stable. Let
�;  be two measures on ˙ , both �-finite with respect to E. If � and  coincide on
E, they are equal.

B.3 Construction of Measures

An outer measure on a set X is a mapping

�� W P.X/! Œ0;1�

such that ��.;/ D 0 and �� is monotone and �-subadditive. The following
result allows to obtain a measure from an outer measure, see Billingsley (1979,
Thm. 11.1).

Theorem B.3 (Carathéodory). For an outer measure �� on the set X define

M.��/ WD ˚A � X W ��.H/ D ��.H \ A/C ��.H n A/ 8H � X
�
:

Then M.��/ is a �-algebra and ��jM.��/ is a measure on it.

The set system E � P.X/ is called a semi-ring if it satisfies the following two
conditions:

1) E is \-stable and ; 2 E.

2) If A; B 2 E, then A n B is a disjoint union of members of E.

An example of such a system is E D f.a; b� W a � bg � P.R/. If E is a semi-ring,
then the system of all disjoint unions of members of E is a ring.

Theorem B.4 (Hahn). Let E � P.X/, and let � W E ! Œ0;1� satisfy ; 2 E and
�.;/ D 0. Then �� W P.X/! Œ0;1� defined by

��.A/ WD inf
nX

n2N
�.En/ W .En/n2N � E; A �

[

n

En

o
.A 2 P.X//

is an outer measure. Moreover, if E is a semi-ring and � W E! Œ0;1� is �-additive
on E, then �.E/ �M.��/ and ��jE D �.

See Billingsley (1979, p. 140) for a proof. One may summarize these results in
the following way: If a set function on a semi-ring E is �-additive on E, then it has
an extension to a measure on �.E/, called the Hahn extension. If in addition X is
�-finite with respect to E, then this extension is unique.
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Sometimes, for instance in the construction of infinite products, it is convenient
to work with the following criterion from Billingsley (1979, Thm. 10.2).

Lemma B.5. Let E be an algebra over a set X, and let � W E! Œ0;1/ be a finitely
additive set function with �.X/ < 1. Then � is �-additive on E if and only if for
each decreasing sequence .An/n2N � E, An & ;, one has �.An/! 0.

B.4 Measurable Functions and Mappings

Let .X; ˙/ and .Y; ˙ 0/ be measurable spaces. A mapping ' W X ! Y is called
measurable if

Œ ' 2 A � 2 ˙ for all A 2 ˙ 0:

(It suffices to check this condition for each A from a generator of ˙ 0.) We denote
by M.XIY/ the set of all measurable mappings between X and Y, implying that the
�-algebras are understood. For the special case Y D Œ0;1� we write

MC.X/ WD
˚
f W X ! Œ0;1� W f is measurable

�
:

A composition of measurable mappings is measurable. For A 2 ˙ its characteristic
function 1A is measurable. If X; Y are topological spaces and ' W X ! Y is con-
tinuous, then it is Bo.X/-Bo.Y/ measurable. The following lemma summarizes the
basic properties of positive measurable functions, see Billingsley (1979, Sec. 13).

Lemma B.6. Let .X; ˙; �/ be a measure space.

a) If f; g 2MC.X/, ˛ � 0, then f g; f C g; f̨ 2MC.X/.
b) If f; g 2M.XIR/ and ˛; ˇ 2 R, then f g; f̨ C ˇg 2M.XIR/.
c) If f; g W X ! Œ�1;1� are measurable, then �f; minff; gg; maxff; gg are

measurable.

d) If fn W X ! Œ�1;1� is measurable for each n 2 N then supn fn; infn fn are
measurable.

A simple function on a measure space .X; ˙; �/ is a linear combination of
characteristic functions of measurable sets. Positive measurable functions can be
approximated by simple functions, see Billingsley (1979, Thm. 13.5).

Lemma B.7. Let f W X ! Œ0;1� be measurable. Then there exists a sequence of
simple functions .fn/n2N such that

0 � fn % f pointwise as n!1;

and such that the convergence is uniform on sets of the form Œ f � ˛ �, ˛ 2 R. In
particular, the convergence is uniform if f is bounded.
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B.5 The Integral of Positive Measurable Functions

Given a measure space .X; ˙; �/ there is a unique mapping

MC.X/! Œ0;1�; f 7!
Z

X
f d�;

called the integral, such that the following assertions hold for f; fn; g 2 MC.X/,
˛ � 0, and A 2 ˙ :

a)
Z

X
1A d� D �.A/.

b) f � g H)
Z

X
f d� �

Z

X
g d�.

c)
Z

X
.f C ˛g/ d� D

Z

X
f d�C ˛

Z

X
g d�.

d) If 0 � fn % f pointwise, then
Z

X
f d� D lim

n!1

Z

X
fn d�.

See Rana (2002, Sec. 5.2) or Billingsley (1979, Sec. 15). Assertion d) is called the
monotone convergence theorem or the theorem of Beppo Levi.

If .X; ˙; �/ is a measure space, .Y; ˙ 0/ a measurable space and ' W X ! Y
measurable, then a measure is defined on ˙ 0 by

Œ'���.B/ WD �Œ' 2 B� .B 2 ˙/:

The measure '�� is called the image of � under ', or the push-forward of �
along '. If � is finite or a probability measure, so is '��. If f 2MC.Y/, then

Z

Y
f d.'��/ D

Z

X
.f ı '/ d�:

B.6 Product Spaces

If .X1;˙1/ and .X2;˙2/ are measurable spaces, then the product �-algebra on the
product space X1 � X2 is

˙1 ˝˙2 WD �
˚
A � B W A 2 ˙1; B 2 ˙2

�
:

If Ej is a generator of ˙j with Xj 2 Ej for j D 1; 2, then

E1 � E2 WD
˚
A � B W A 2 E1; B 2 E2

�
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is a generator of ˙1 ˝ ˙2. If .X; ˙/ is another measurable space, then a mapping
f D .f1; f2/ W X ! X1�X2 is measurable if and only if the projectionsf1 D �1ıf ,
f2 D �2ıf are both measurable. If f W .X1�X2;˙1˝˙2/! .Y; ˙ 0/ is measurable,
then f .x; �/ W X2 ! Y is measurable for every x 2 X1, see Billingsley (1979,
Thm. 18.1).

Theorem B.8 (Tonelli). Let .Xj; ˙j; �j/, j D 1; 2, be �-finite measure spaces and
f 2MC.X1 � X2/. Then the functions

F1 W X1 ! Œ0;1�; x 7!
Z

X2

f .x; �/ d�2

F2 W X2 ! Œ0;1�; y 7!
Z

X1

f .�; y/ d�1

are measurable and there is a unique measure �1 ˝ �2 such that

Z

X1

F1 d�1 D
Z

X1�X2

f d.�1 ˝ �2/ D
Z

X2

F2 d�2:

For a proof see Billingsley (1979, Thm. 18.3). The measure �1 ˝ �2 is called the
product measure of �1 and �2. Note that for the particular case F D f1 ˝ f2 with

.f1 ˝ f2/.x1; x2/ WD f1.x1/ � f2.x2/ .fj 2MC.Xj/; xj 2 Xj .j D 1; 2//;

we obtain
Z

X1�X2

.f1 ˝ f2/ d.�1 ˝ �2/ D
�Z

X1

f1 d�1

� �Z

X2

f2 d�2

�
:

Let us turn to infinite products. Suppose ..X�; ˙�//�2I is a collection of measur-
able spaces. Consider the product space

X WD
Y

�2I

X�

with corresponding projections �� W X ! X�. A set of the form

\

�2F

Œ�� 2 A�� D
Y

�2F

A� �
Y

�…F

X�

with F � I finite and sets A� 2 ˙� for � 2 F, is called a (measurable) cylinder. Let

E WD ˚
\

�2F

Œ�� 2 A�� W F � I finite; A� 2 ˙�; .� 2 F/
�
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be the semi-ring of all cylinders. Then

O

�2I

˙� WD �.E/

is called the product �-algebra of the ˙�.

Theorem B.9 (Infinite Products). Let ..X�; ˙�//�2I be a collection of probability
spaces. Then there is a unique probability measure � WD N

� �� on ˙ D N
� ˙�

such that

�

�\

�2F

Œ�� 2 A��

�
D
Y

�2F

��.A�/

for every finite subset F � I and sets A� 2 ˙�, � 2 F.

The proof is based on Lemma B.5, see Hewitt and Stromberg (1969, Ch. 22) or
Halmos (1950, Sec. 38).

B.7 Null Sets

Let X D .X; ˙; �/ be a measure space. A set A � X is called a null set if there
is a set N 2 ˙ such that A � N and �.N/ D 0. (In general a null set need not be
measurable). Null sets have the following properties:

a) If A is a null set and B � A, then B is also a null set.

b) If each An is a null set, then
S

n2N An is a null set.

The following results show the connection between null sets and the integral, see
Billingsley (1979, Thm. 15.2).

Lemma B.10. Let X D .X; ˙; �/ be a measure space and let f W X ! Œ�1;1�
be measurable.

a)
R

X jf j d� D 0 if and only if the set Œ f 6D 0 � D Œ jf j > 0 � is a null set.

b) If
R

X jf j d� <1, then the set Œ jf j D 1 � is a null set.

One says that two functions f; g are equal �-almost everywhere (abbreviated
by “f D g a.e.” or “f �� g”) if the set Œ f 6D g � is a null set. More generally, let P
be a property of points of X. Then P holds almost everywhere or for �-almost all
x 2 X if the set

˚
x 2 X W P does not hold for x

�

is a �-null set. If � is understood, we leave out the reference to it.
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For each set E, the relation �� (“is equal �-almost everywhere to”) is an
equivalence relation on the space of mappings from X to E. For such a mapping
f we sometimes denote by Œf � its equivalence class, in situations when notational
clarity is needed. If � is understood, we write simply � instead of ��.

Let X D .X; ˙; �/ be a measure space. If .E; d/ is a separable metric space with
its Borel �-algebra, we denote by

L0.XIE/ WD L0.X; ˙; �IE/ WDM.XIE/=�

the space of equivalence classes of measurable mappings modulo equality almost
everywhere. Prominent examples here are E D R, E D Œ0;1� or E D Œ�1;1�. In
the case E D C we abbreviate L0.X/ WD L0.X; ˙; �IC/.

B.8 The Lebesgue Spaces

Let X D .X; ˙; �/ be a measure space. For f 2 L0.X/ we define

kf k1 WD inf
˚
t > 0 W � Œ jf j > t � D 0�

and, if 1 � p <1,

kf kp WD
�Z

X
jf jp d�

� 1
p

:

Then we let

Lp.X/ WD Lp.X; ˙; �IC/ WD ˚f 2 L0.X/ W kf kp <1
�

for 1 � p � 1. The space L1.X/ is called the space of (equivalence classes of)
integrable functions. The following is in Rudin (1987, Ch. 3).

Theorem B.11. Let X D .X; ˙; �/ be a measure space, and let 1 � p � 1.

a) The space Lp.X/ is a Banach space with respect to the norm k�kp.

b) If fn ! f in Lp.X/, then there is g 2 Lp.X/ and a subsequence .fnk /k2N
such that jfnk j � g a.e. for all k 2 N and fnk ! f pointwise a.e.

c) Suppose 1 � p <1. If .fn/n2N � Lp.X/ is such that fn ! f a.e. and there
is g 2 Lp.X/ such that jfnj � g a.e. for all n 2 N, then f 2 Lp.X/, and
kfn � f kp ! 0.

Assertion c) is called the dominated convergence theorem or Lebesgue’s the-
orem.
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The Integral

If f 2 L1.X; ˙; �/, then the functions .Re f /˙; .Imf /˙ are positive and have
finite integral. Hence, one can define the integral of f by

Z

X
f d� WD

Z

X
.Re f /C d��

Z

X
.Re f /� d�Ci

�Z

X
.Imf /C d��

Z

X
.Imf /� d�

�
:

The integral is a linear mapping L1.X; ˙; �/! C and satisfies

ˇ̌
ˇ
ˇ

Z

X
f d�

ˇ̌
ˇ
ˇ �

Z

X
jf j d�;

see Rudin (1987, Ch. 1).

Theorem B.12 (Averaging Theorem). Let S � C be a closed subset and suppose
that either .X; ˙; �/ is �-finite or 0 2 S. Let f 2 L1.X/ such that

1

�.A/

Z

A
f d� 2 S

for all A 2 ˙ such that 0 < �.A/ <1. Then f .�/ 2 S almost everywhere.

A proof is in Lang (1993, Thm. IV.5.15). As a corollary one obtains that if
R

A f D 0
for all A of finite measure, then f D 0 almost everywhere.

Approximation

The following is an immediate consequence of Lemma B.7.

Theorem B.13. Let X D .X; ˙; �/ be a measure space. Then the space linf1A W
A 2 ˙g of simple functions is dense in L1.X/.

Let X D .X; ˙; �/ be a measure space, and let E � ˙ . The space of step
functions (with respect to E) is

Step.X;E; �/ WD lin
˚
1B W B 2 E; �.B/ <1�:

We abbreviate Step.X/ WD Step.X; ˙; �/. By using the approximation f 1Œ jf j�n � !
f and Theorem B.13 we obtain an approximation result for Lp.

Theorem B.14. For a measure space X D .X; ˙; �/ and 1 � p < 1, the space
Step.X/ is dense in Lp.X/.

Theorem B.14 combined with a Dynkin system argument yields the following.
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Lemma B.15. Let X D .X; ˙; �/ be a finite measure space. Let E � ˙ be
\-stable with X 2 E and �.E/ D ˙ . Then Step.X;E; �/ is dense in Lp.X/ for
each 1 � p <1.

Theorem B.16. Let X D .X; ˙; �/ be a measure space, and let E � ˙ be
\-stable with �.E/ D ˙ . Suppose further that X is �-finite with respect to E. Then
Step.X;E; �/ is dense in Lp.X/ for each 1 � p <1.

A related result, proved by a Dynkin system argument, holds on the level of sets.

Lemma B.17. Let X D .X; ˙; �/ be a finite measure space, and let E � ˙ be an
algebra with �.E/ D ˙ . Then for each A 2 ˙ and each " > 0 there is B 2 E such
that �.A4B/ < ".

See also Billingsley (1979, Thm. 11.4) and Lang (1993, Sec. VI.§6).

Fubini’s Theorem

Consider two �-finite measure spaces Xj D .Xj; ˙j; �j/, j D 1; 2, and their product

X1 � X2 WD .X; ˙; �/ D .X1 � X2;˙1 ˝˙2;�1 ˝ �2/:

Let E WD fA1 � A2 W Aj 2 ˙j; �.Aj/ < 1 .j D 1; 2/g be the set of measurable
rectangles. Then E satisfies the conditions of Theorem B.16.

Corollary B.18. The space linf1A1 ˝ 1A2 W Aj 2 ˙j; �.Aj/ < 1 .j D 1; 2/g is
dense in Lp.X1 � X2/ for 1 � p <1.

Combining this with Tonelli’s theorem yields the following famous theorem (Lang
1993, Thm. 8.4).

Theorem B.19 (Fubini). Let f 2 L1.X1 � X2/. Then for �1-almost every x 2 X1,
f .x; �/ 2 L1.X2/ and with

F WD
�

x 7!
Z

X2

f .x; �/ d�2

�

(defined almost everywhere on X1) one has F 2 L1.X1/. Moreover,

Z

X1

F d�1 D
Z

X1

Z

X2

f .x; y/ d�2.y/ d�1.x/ D
Z

X1�X2

f d.�1 ˝ �2/:
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B.9 Complex Measures

A complex measure on a measurable space .X; ˙/ is a mapping� W ˙ ! C which
is �-additive and satisfies �.;/ D 0. If the range of � is contained in R, � is called
a signed measure. The set of all complex (signed) measures on .X; ˙/ is denoted
by M.X; ˙/ (M.X; ˙ IR/), and they are vector spaces with the natural operations.

The conjugate of � 2 M.X; ˙/ is � defined by

�.A/ WD �.A/ .A 2 ˙/:
The real part and imaginary part of � are then given by

Re� WD 1

2
.�C �/; and Im� WD 1

2i
.� � �/:

Clearly Re� and Im� are signed measures, and � D Re�C i Im�.
A complex measure � 2 M.X; ˙/ is positive, written: � � 0, if �.A/ � 0 for

all A 2 ˙ . It is then a positive finite measure in the sense of Section B.2. The set of
positive finite measures is denoted by MC.X; ˙/. The signed measures are ordered
by the partial ordering given by

� �  Def.”  � � � 0:
This turns M.X; ˙ IR/ into a (real) ordered vector space. The total variation or
modulus j�j of a complex measure � 2 M.X; ˙/ is defined by

j�j .A/ WD sup
n 1X

nD1
j�.An/j W .An/n2N � ˙ pairwise disjoint; A D

[

n2N
An

o

for A 2 ˙ . Then j�j is a positive finite measure, see Rudin (1987, Thm. 6.2). It is
characterized by the property

 2 M.X; ˙/; 8A 2 ˙ W j�.A/j � .A/ H) j�j � :
Consequently,

j�j D sup
c2T

Re.c�/ D sup
t2Q

Re.ei t�/:

With respect to the norm k�kM WD j�j .X/, the space M.X; ˙/ is a Banach space,
and hence a complex Banach lattice (see Definition 7.2).

Let � 2 M.X; ˙/. For a step function f D Pn
jD1 xj1Aj 2 Step.X; ˙; j�j/ one

defines

Z

X
f d� WD

nX

jD1
xj�.Aj/
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as usual, and shows (using finite additivity) that this does not depend on the
representation of f . Moreover, one obtains

ˇ
ˇ̌
Z

X
f d�

ˇ
ˇ̌ �

Z

X
jf j dj�j D kf kL1.X;˙;j�j/ ;

whence the integral has a continuous linear extension to all of L1.X; ˙; j�j/.

B.10 Absolute Continuity

Fix, as before, a measurable space .X; ˙/, and let �;  2 M.X; ˙/. Then  is called
absolutely continuous with respect to �, in notation   �, if

j�j .B/ D 0 H) .B/ D 0 for every B 2 ˙ .

The measures � and  are called mutually singular (denoted by � ? ) if there is
B 2 ˙ with j�j .B/ D 0 D jj .Bc/, and equivalent (denoted by � � ) if � 

and   �. The next lemma (whose proof is straightforward) contains information
about the basic properties of these relations.

Lemma B.20. Let .X; ˙/ be a measurable space, and let �; ; � 2 M.X; ˙/. Then
the following assertions hold:

a) �  if and only if j�j  jj; and � ?  if and only if j�j ? jj.
b) �  and   � implies � �.

c) � is an equivalence relation on M.X; ˙/.

d) If � ?  and � , then � D 0.

e) If �  and  ? �, then � ? �.

f) If � ? , then j�C j D j�j C jj.
g) The set f� 2 M.X; ˙/ W � �g is norm closed in M.X; ˙/.

h) The set f� 2 M.X; ˙/ W � ? �g is norm closed in M.X; ˙/.

For fixed � 2 MC.X; ˙/ we abbreviate L1.�/ WD L1.X; ˙; �/. Given h 2 L1.�/,
one can form the complex measure h�, given by

.h�/.A/ WD
Z

A
h d� D

Z

X
1A h d� .A 2 ˙/:

Then, obviously, h� � and, by approximation,
Z

X
f d.h�/ D

Z

X
f h d� .f 2 L1.�//:

The following result says that in passing from h to h� no information is lost, see
Rudin (1987, Thm. 6.13).
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Proposition B.21. The mapping L1.�/ ! M.X; ˙/; h 7! h�, is an isometric
lattice isomorphism, i.e., one has

jh�j D jhj� and kh�kM D khkL1.�/ for all h 2 L1.�/.

By virtue of Proposition B.21 one may identify L1.�/ with a subspace of
M.X; ˙/ and write L1.�/ � M.X; ˙/. Even more, L1.�/ � f 2 M.X; ˙/ W
  �g. The following famous theorem states, in particular, that this inclusion is
an equality.

Theorem B.22 (Radon–Nikodym). Let .X; ˙/ be a measurable space, and let
�;  2 M.X; ˙/ with � � 0. Then the following assertions are equivalent:

(i)   �.

(ii)  2 L1.�/, i.e., there is h 2 L1.�/ such that  D h�.

(iii) L1.jj/ � L1.�/ as subsets of M.X; ˙/.

Note that by Proposition B.21 the function h 2 L1.�/ from (ii) is unique. It
is called the Radon–Nikodym derivative of  with respect to �, and sometimes
denoted by d

d� WD h. By uniqueness and Proposition B.21 again, it follows that
 � 0 if and only if h � 0.

Corollary B.23. Let .X; ˙/ be a measurable space and let � 2 M.X; ˙/. Then
there is a unique h 2 L1.j�j/ with � D h j�j, i.e., satisfying

Z

X
f d� D

Z

X
f h dj�j for all f 2 L1.j�j/:

Moreover, jhj D 1.

The next corollary rephrases the Radon–Nikodym theorem in lattice theoretic
terms. (See Section 7.2 for the relevant definitions.)

Corollary B.24. For a measurable space .X; ˙/, a measure � 2 M.X; ˙/ and a
subspace I � M.X; ˙/ the following assertions hold:

a) L1.j�j/ is the smallest closed ideal of M.X; ˙/ that contains �.

b) I is an ideal of M.X; ˙/ if and only if it satisfies

 2 M.X; ˙/; � 2 I;   � H)  2 I:

A proof of the Radon–Nikodym theorem can be found in Rudin (1987, Ch. 6) or
Bogachev (2007, Ch. 3). There, a stronger statement is established that also includes
the following decomposition result.
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Theorem B.25 (Lebesgue Decomposition). Let .X; ˙/ be a measurable space,
and let �;  2 M.X; ˙/ such that � � 0. Then there are unique measures
1; 2 2 M.X; ˙/ such that

 D 1 C 2; 1  �; 2 ? �:

A consequence is the following lattice theoretic characterization of mutual
singularity.

Corollary B.26. Let .X; ˙/ be a measurable space, and let �;  2 M.X; ˙/ with
� � 0. Then

 ? � ” L1.jj/ \ L1.�/ D f0g:

For the following we suppose (for simplicity) that fxg 2 ˙ for each x 2 X.
A complex measure � on .X; ˙/ is called continuous if �fag D 0 for every a 2 X,
and discrete if there are sequences .�n/n2N in C and .an/n2N in X such that

� D
X

n2N
�nıan ;

where ıan denotes the Dirac measure at an. The following, rather straightforward,
result collects the basic facts.

Proposition B.27. Let .X; ˙/ be a measurable space such that fxg 2 ˙ for all
x 2 X. Then the following assertions hold for �;  2 M.X; ˙/:

a) � is continuous if and only if j�j is continuous if and only if j�j .B/ D 0 for
every countable subset B of X.

b) � is discrete if and only if j�j is discrete if and only if j�j .Bc/ D 0 for some
countable subset B of X.

c) If � is continuous and  is discrete, then � ? .

d) If �  and  is continuous or discrete, then so is �, respectively.

e) There are unique measures �c; �d 2 M.X; ˙/ such that �c is continuous,
�d is discrete, and � D �c C �d.

f) j�jc D j�cj and j�jd D j�dj. So, if � is positive, then so are �c and �d.

g) If � , then �d  d   and �c  c  .

From Proposition B.27 it follows easily that the subsets

Mc.X; ˙/ WD
˚
� 2 M.X; ˙/ W � is continuous

�

and Md.X; ˙/ WD
˚
� 2 M.X; ˙/ W � is discrete

�

are closed complementary ideals of the Banach lattice M.X; ˙/.



Appendix C
Functional Analysis

In this appendix we review some notions and facts from functional analysis but refer
to Dunford and Schwartz (1958), Schaefer (1980), Rudin (1991), Conway (1990),
Rudin (1987), Megginson (1998), or Haase (2014) for more information.

C.1 Banach Spaces

Let E be a vector space over K, where K D R or C. A semi-norm on E is a mapping
k�k W E! R satisfying

kxk � 0; k�xk D j�j kxk ; and kxC yk � kxk C kyk

for all x; y 2 E, � 2 K.
A semi-norm is a norm if kxk D 0 implies that x D 0. A norm on a vector space

defines a metric via

d.x; y/ WD kx � yk .x; y 2 E/;

and hence a topology, called the norm topology. It follows directly from the
properties of the norm that the mappings

E � E! E; .x; y/ 7! xC y and K � E! E; .�; x/ 7! �x

are continuous. From the triangle inequality it follows that

ˇ̌kxk � kykˇ̌ � kx � yk .x; y 2 E/;

which implies that also the norm mapping itself is continuous.

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
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Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2
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A normed space is a vector space together with a norm on it, and a Banach
space if the metric induced by the norm is complete. If E is a normed space, its
closed unit ball is

BE WD
˚
x 2 E W kxk � 1�:

The set BE is compact if and only if E is finite-dimensional.
Recall that a metric space is separable if it contains a countable dense set.

A normed space E is separable if and only if there is a countable set A such that
its linear span

lin A D
n nX

jD1
�jaj W n 2 N; �j 2 K; aj 2 A .j D 1; : : : ; n/

o

is dense in E.
A subset A � E of a normed space is called (norm) bounded if there is c > 0

such that kak � c for all a 2 A. Every compact subset is norm-bounded since the
norm mapping is continuous.

If E is a Banach space and F � E is a closed subspace, then the quotient space
X WD E=F becomes a Banach space endowed with the quotient norm

kxC FkX WD inf
˚kxC f k W f 2 F

�
:

The linear mapping q W E ! X, q.x/ WD xC F, is called the canonical surjection
or quotient map.

C.2 Banach Algebras

An algebra is a (real or complex) linear space A together with an associative bilinear
mapping

A � A! A .f; g/ 7! f g

called multiplication and a distinguished element e 2 A satisfying

ea D ae D a for all a 2 A;

called the unit element. (Actually, one should call A a “unital” algebra then, but all
the algebras we have reason to consider in this book are unital, so we include the
existence of a unit element into our notion of “algebra” for convenience.) An algebra
A is nondegenerate if A 6D f0g, if and only if e 6D 0. An algebra A is commutative
if f g D gf for all f; g 2 A.
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An algebra A which is also a Banach space is called a Banach algebra if

kabk � kak kbk for all a; b 2 A:

In particular, multiplication is continuous. If e 6D 0, then kek � 1.
An element a 2 A of an algebra A is called invertible if and only if there is an

element b such that ab D ba D e. This element, necessarily unique, is then called
the inverse of a and denoted by a�1.

A linear mapping T W A ! B between two algebras A; B with unit elements
eA; eB, respectively, is called multiplicative if

T.ab/ D .Ta/.Tb/ for all a; b 2 A;

and an algebra homomorphism if in addition T.eA/ D eB. An algebra homomor-
phism is an algebra isomorphism if it is bijective. In this case, its inverse is also an
algebra homomorphism.

Let A be a commutative Banach algebra with unit e. An (algebra) ideal of A is a
linear subspace I � A satisfying

f 2 I; g 2 A H) f g 2 I:

Since the multiplication is continuous, the closure of an ideal is again an ideal. An
ideal I of A is called proper if I 6D A, if and only if e … I. For an element a 2 A,
the ideal Aa is called the principal ideal generated by a. It is the smallest ideal that
contains a. Then a is not invertible if and only if aA is proper. A proper ideal I of A
is called maximal if

I � J � A H) J D I or J D A

for any ideal J of A.
If T W A ! B is a continuous algebra homomorphism, then the kernel ker.T/

is a closed ideal. Conversely, if I is closed ideal of A, then the quotient space A=I
becomes a Banach algebra with respect to the multiplication

.xC I/.yC I/ WD .xyC I/ .x; y 2 A/

and unit element e C I. Moreover, the canonical surjection q W A ! A=I is a
continuous algebra homomorphism with ker.q/ D I.

An involution on a complex Banach algebra A is a map x 7! x� satisfying

.x�/� D x; .xC y/� D x� C y�; .�x/� D �x�; .xy/� D y�x�

for all x; y 2 A, � 2 C. In an algebra with involution one has e� D e since

e� D e�e D .e�e/�� D .e�e��/� D .e�e/� D .e�/� D e:
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An algebra homomorphism T W A! B between algebras with involution is called a
�-homomorphism if

T.x�/ D .Tx/� for all x 2 A:

A bijective �-homomorphism is called a �-isomorphism.
A Banach algebra A with involution is a C�-algebra if kxk2 D kx�xk for all

x 2 A. It follows that kx�k D kxk for every x 2 A. If A is a nondegenerate
C�-algebra, then kek D 1.

C.3 Linear Operators

A linear mapping T W E ! F between two normed spaces is called bounded if
T.BE/ is a norm-bounded set in F. The linear mapping T is bounded if and only if
it is continuous, and if and only if it satisfies a norm estimate of the form

kTxk � c kxk .x 2 E/ (C.1)

for some c � 0 independent of x 2 E. The smallest c such that (C.1) holds is called
the operator norm of T, denoted by kTk. One has

kTk D sup
˚kTxk W x 2 BE

�
:

This defines a norm on the space

L .EIF/ WD ˚T W E! F W T is a bounded linear mapping
�
;

which is a Banach space with the operator norm, if F is a Banach space. If E; F; G
are normed spaces and T 2 L .EIF/, S 2 L .FIG/, then ST WD S ı T 2
L .EIG/ with kSTk � kSk kTk. The identity operator I is neutral with respect to
multiplication of operators, and clearly kIk D 1 if E 6D f0g. In particular, if E is a
Banach space, the space

L .E/ WD L .EIE/

is a Banach algebra with unit element I.
Linear mappings are also called operators. Associated with an operator

T W E! F are its kernel and its range

ker.T/ WD ˚x 2 E W Tx D 0�; ran.T/ WD ˚Tx W x 2 E
�
:

One has ker.T/ D f0g if and only if T is injective. If T is bounded, its kernel ker.T/
is a closed subspace of E.
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A subset T � L .EIF/ that is a bounded set in the normed space L .EIF/ is
often called uniformly (norm) bounded. The following result—sometimes called
the Banach–Steinhaus theorem—gives an important characterization. [See Rudin
(1987, Thm. 5.8) for a proof.]

Theorem C.1 (Principle of Uniform Boundedness). Let E; F be Banach spaces
and T � L .EIF/. Then T is uniformly bounded if and only if for each x 2 E the
set fTx W T 2 T g is a bounded subset of F.

A bounded linear mapping T 2 L .EIF/ is called contractive or a contraction
if kTk � 1. It is called isometric or an isometry if kTxk D kxk holds for all x 2 E.
Isometries are injective contractions. An operator P 2 L .E/ is called a projection
if P2 D P. In this case, Q WD I � P is also a projection, and P induces a direct sum
decomposition

E D ran.P/ ˚ ran.I � P/ D ran.P/ ˚ ker.P/

of E into closed subspaces. Conversely, whenever E is a Banach space and one
has a direct sum decomposition X D F ˚ E into closed linear subspaces, then the
associated projections X ! F, X ! E are bounded. This is a consequence of the
closed graph theorem (Rudin 1987, p. 114, Ex. 16).

An operator T 2 L .EIF/ is called invertible or an isomorphism (of normed
spaces) if T is bijective and T�1 is also bounded. If E; F are Banach spaces, the
boundedness of T�1 is automatic by the following important theorem (Rudin 1987,
Thm. 5.10).

Theorem C.2 (Inverse Mapping Theorem). If E; F are Banach spaces and T 2
L .EIF/ is bijective, then T is an isomorphism.

A linear operator T 2 L .EIF/ is compact if it maps bounded sets in E to
relatively compact sets in F. Equivalently, whenever .xn/n2N � E is a bounded
sequence in E, the sequence .Txn/n2N � F has a convergent subsequence. The set
of compact operators

C .EIF/ WD ˚T 2 L .EIF/ W T is compact
�

is an (operator-)norm closed linear subspace of L .EIF/ that contains all finite-
rank operators. Moreover, a product of operators ST is compact whenever one of its
factors is compact. See Conway (1990, VI.3).

C.4 Duals, Bi-duals, and Adjoints

For a normed space E its dual space is E0 WD L .EIK/. Since K is complete, this is
always a Banach space. Elements of E0 are called (bounded linear) functionals. One
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frequently writes hx; x0i in place of x0.x/ for x 2 E; x0 2 E0 and calls the mapping

E � E0 ! K; .x; x0/ 7! ˝
x; x0˛

the canonical duality. The dual space E0 becomes a Banach space with the operator
norm

�
�x0�� WD sup

˚ˇˇ˝x; x0˛ˇˇ W kxk � 1�:

Theorem C.3 (Hahn–Banach). Let E be a Banach space, F � E a linear
subspace, and f 0 2 F0. Then there exists x0 2 E0 such that x0 D f 0 on F and
kx0k D kf 0k.
For a proof see Rudin (1987, Thm. 5.16). A consequence of the Hahn–Banach
theorem is that E0 separates the points of E. Another consequence is that the norm
of E can be computed as

kxk D sup
˚ˇˇ˝x; x0˛ˇˇ W ��x0�� � 1�: (C.2)

A third consequence is that E is separable whenever E0 is.
Given normed spaces E; F and an operator T 2 L .EIF/ we define its adjoint

operator T 0 2 L .F0IE0/ by T 0y0 WD y0 ı T, y0 2 F0. Using the canonical duality this
just means

˝
Tx; y0˛ D ˝x;T 0y0˛ .x 2 E; y0 2 F0/:

The map .T 7! T 0/ W L .EIF/ ! L .F0IE0/ is linear and isometric, and one has
.ST/0 D T 0S0 for T 2 L .EIF/ and S 2 L .FIG/.

The space E00 is called the bi-dual of E. The mapping

E! E00; x 7! hx; �i D �x0 7! ˝
x; x0˛�

is called the canonical embedding. The canonical embedding is a linear isometry
(by (C.2)), and hence one can consider E to be a subspace of E00. Given T 2 L .EIF/
one has T 00jE D T. If the canonical embedding is surjective, in very sloppy notation:
E D E00, the space E is called reflexive.

C.5 The Weak� Topology

Let E be a Banach space and E0 its dual. The coarsest topology on E0 that makes all
mappings

x0 7! ˝
x; x0˛ .x 2 E/
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continuous is called the weak� topology (or: �.E0;E/-topology) on E0 (cf.
Appendix A.4). A fundamental system of open (and convex) neighborhoods for a
point y0 2 E0 is given by the sets

n
x0 2 E0 W max

1�j�d

ˇ
ˇ˝xj; x

0 � y0˛ˇˇ < "
o

.d 2 N; x1; : : : ; xd 2 E; " > 0/:

Since the weak� topology is the projective topology with respect to the functions
.hx; �i/x2E, a net .x0̨ /˛ � E0 converges weakly� (that is, in the weak� topology) to
x0 2 E0 if and only if hx; x0̨ i ! hx; x0i for every x0 2 E0 (cf. Theorem A.12).

Theorem C.4 (Banach–Alaoglu). Let E be a Banach space. Then the dual unit
ball BE0 D fx0 2 E0 W kx0k � 1g is weakly� compact.

The proof is a more or less straightforward application of Tychonoff’s Theorem A.5,
see Rudin (1991, Thm. 3.15). Since the weak� topology is usually not metrizable,
one cannot in general test continuity of mappings or compactness of sets via criteria
using sequences. Therefore, the following theorem is often useful, see Dunford and
Schwartz (1958, V.5.1).

Theorem C.5. Let E be a Banach space. Then the weak� topology on the dual unit
ball BE0 is metrizable if and only if E is separable.

Recall that E can be considered (via the canonical embedding) as a norm closed
subspace of E00. The next theorem shows in particular that E is �.E00;E0/-dense in
E00, see Dunford and Schwartz (1958, V.4.5).

Theorem C.6 (Goldstine). Let E be a Banach space. Then the closed unit ball BE

of E is �.E00;E0/-dense in the closed unit ball of E00.

C.6 The Weak Topology

Let E be a Banach space and E0 its dual. The coarsest topology on E that makes all
mappings

x 7! ˝
x; x0˛ .x0 2 E0/

continuous is called the weak topology (or: �.E;E0/-topology) on E (cf.
Appendix A.4). A fundamental system of open (and convex) neighborhoods of the
point y 2 E is given by the sets

n
x 2 E W max

1�j�d

ˇ
ˇ˝x � y; x0

j

˛ˇˇ < "
o

.d 2 N; x0
1; : : : ; x

0
d 2 E0; " > 0/:

Since the weak topology is the projective topology with respect to the functions
.h�; x0i/x02E0 , a net .x˛/˛ � E converges weakly (that is, in the weak topology) to
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x 2 E if and only if hx˛; x0i ! hx; x0i for every x0 2 E0 (Theorem A.12). When
we view E � E00 via the canonical embedding as a subspace and endow E00 with the
weak� topology, then the weak topology on E coincides with the subspace topology.
If A � E is a subset of E, then its closure in the weak topology is denoted by cl� A.

Theorem C.7. Let E be a Banach space and let A � E be convex. Then the norm
closure of A coincides with its weak closure.

See Rudin (1991, Thm. 3.12) or Dunford and Schwartz (1958, V.3.18).
The weak topology is not metrizable in general. Fortunately, there is a series of

deep results on metrizability and compactness for the weak topology, facilitating its
use. The first is the analogue of Theorem C.5, see Dunford and Schwartz (1958,
V.5.2).

Theorem C.8. The weak topology on the closed unit ball of a Banach space E is
metrizable if and only if the dual space E0 is norm separable.

The next theorem allows using sequences in testing of weak compactness, see
Theorem G.17 below, or Dunford and Schwartz (1958, V.6.1) or the more recent
Vogt (2010).

Theorem C.9 (Eberlein–Šmulian). Let E be a Banach space. Then A � E is
(relatively) weakly compact if and only if A is (relatively) weakly sequentially
compact.

Although the weak topology is usually far from being metrizable, the following
holds, see the proof of Theorem 16.34 in the main text or Dunford and Schwartz
(1958, V.6.3).

Theorem C.10. The weak topology on a weakly compact subset of a separable
Banach space is metrizable.

The next result is often useful when considering Banach-space valued (weak)
integrals.

Theorem C.11 (Kreı̆n). The closed convex hull of a weakly compact subset of a
Banach space is weakly compact.

For the definition of the closed convex hull see Section C.7 below. For a proof see
Theorem G.7 below or Dunford and Schwartz (1958, V.6.4).

Finally, we state a characterization of reflexivity, which is a mere combination of
the Banach–Alaoglu theorem and Goldstine’s theorem.

Theorem C.12. A Banach space is reflexive if and only if its closed unit ball is
weakly compact.

For a proof see Dunford and Schwartz (1958, V.4.7). In particular, every bounded
set is relatively weakly compact if and only if the Banach space is reflexive.
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C.7 Convex Sets and Their Extreme Points

A subset A � E of a real vector space E is called convex if, whenever a; b 2 A then
also ta C .1 � t/b 2 A for all t 2 Œ0; 1�. Geometrically this means that the straight
line between a and b is contained in A whenever a and b are. Inductively one shows
that a convex set contains arbitrary convex combinations

t1a1 C � � � C tnan .0 � t1; : : : ; tn � 1; t1 C � � � C tn D 1/

whenever a1; : : : ; an 2 A. Intersecting convex sets yields a convex set, and so for
any set B � E there is a smallest convex set containing B, its convex hull

conv.B/ WD
\˚

A W B � A; A convex
�
:

Alternatively, conv.B/ is the set of all convex combinations of elements of B.
A vector space E endowed with a topology such that the operations of addition

E � E ! E and scalar multiplication K � E ! E are continuous, is called a
topological vector space. In a topological vector space, the closure of a convex set
is convex. We denote by

conv.B/ WD conv.B/

the closed convex hull of B � E, which is the smallest closed convex set
containing B.

A topological vector space is called locally convex if it is Hausdorff and the
topology has a base consisting of convex sets. Examples are the norm topology of a
Banach space E, the weak topology on E, and the weak� topology on E0.

Theorem C.13 (Hahn–Banach Separation Theorem). Let E be a locally convex
space, let A; B � E be closed convex subsets with A \ B D ;, and suppose that
one of the sets is compact. Then there are a continuous linear functional x0 on E and
c 2 R such that

Re
˝
a; x0˛ < c < Re

˝
b; x0˛ for each a 2 A, b 2 B.

Let A � E be a convex set. A subset F � A is called a face of A if it has the
following property: Whenever a; b 2 A and t 2 .0; 1/ is such that taC .1� t/b 2 F,
then a; b 2 F. A point p 2 A is called an extreme point if F WD fpg is a face. That
is, p is an extreme point of A if it cannot be written as a convex combination of two
points of A distinct from p. The set of extreme points of a convex set A is denoted
by ex.A/.

Theorem C.14 (Kreı̆n–Milman). Let E be a locally convex space and let ; 6D
K � E be compact and convex. Then K is the closed convex hull of its extreme
points: K D conv.ex.K//. In particular, ex.K/ is not empty.
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For a proof see Rudin (1991, Thm. 3.23). Since for a Banach space E the weak�
topology on E0 is locally convex, the Kreı̆n–Milman theorem applies in particular to
weakly� compact convex subsets of E0.

Theorem C.15 (Milman). Let E be a locally convex space and let ; 6D K � E be
compact. If conv.K/ is also compact, then K contains the extreme points of conv.K/.

A proof is in Rudin (1991, Thm. 3.25). Combining Milman’s result with Kreı̆n’s
Theorem C.11 yields the following.

Corollary C.16. Let E be a Banach space and let K � E be weakly compact. Then
K contains the extreme points of conv.K/.

C.8 The Strong and the Weak Operator Topology on L .E/

Let E be a Banach space. Besides the norm topology there are two other canonical
topologies on L .E/. The strong operator topology is the coarsest topology such
that all evaluation mappings

L .E/! E; T 7! Tx .x 2 E/

are continuous. Equivalently, it is the projective topology with respect to the family
.T 7! Tx/x2E. A fundamental system of open (and convex) neighborhoods of T 2
L .E/ is given by the sets

n
S 2 L .E/ W max

1�j�d

�
�Txj � Sxj

�
� < "

o
.d 2 N; x1; : : : ; xd 2 E; " > 0/:

A net of operators .T˛/˛ � L .E/ converges strongly (i.e., in the strong operator
topology) to T if and only if

T˛x! Tx for every x 2 E:

We denote by Ls.E/ the space L .E/ endowed with the strong operator topology,
and the closure of a subset A � L .E/ in this topology is denoted by cls A. The
strong operator topology is metrizable on (norm-)bounded sets if E is separable.

The weak operator topology is the coarsest topology such that all evaluation
mappings

L .E/! K; T 7! ˝
Tx; x0˛ .x 2 E; x0 2 E0/

are continuous. Equivalently, it is the projective topology with respect to the family
.T 7! hTx; x0i/x2E;x02E0 . A fundamental system of open (and convex) neighborhoods
of T 2 L .E/ is given by the sets
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n
S 2 L .E/ W max

1�j�d

ˇ
ˇ˝.T � S/xj; x

0
j

˛ˇˇ < "
o

.d 2 N; x1; : : : ; xd 2 E; x0
1; : : : ; x

0
d 2 E0; " > 0/:

A net of operators .T˛/˛ converges to T in the weak operator topology if and only if

˝
T˛x; x0˛! ˝

Tx; x0˛ for every x 2 E; x0 2 E0:

The space L .E/ considered with the weak operator topology is denoted by Lw.E/,
and the closure of a subset A � L .E/ in this topology is denoted by clw A. The weak
operator topology is metrizable on norm-bounded sets if E0 is separable.

The following is a consequence of the uniform boundedness principle.

Proposition C.17. Let E be a Banach space and let T � L .E/. Then the
following assertions are equivalent:

(i) T is bounded for the weak operator topology, i.e., supT2T jhTx; x0ij < 1
for all x 2 E and x0 2 E0.

(ii) T is bounded for the strong operator topology, i.e., supT2T kTxk < 1 for
all x 2 E.

(iii) T is uniformly bounded, i.e., supT2T kTk <1.

The following simple property of strong operator convergence is very useful.

Proposition C.18. For a uniformly bounded net .T˛/˛ � L .E/ and T 2 L .E/ the
following assertions are equivalent:

(i) T˛ ! T in Ls.E/.

(ii) T˛x! Tx for all x from a (norm-)dense set D � E.

(iii) T˛x! Tx uniformly in x from (norm-)compact subsets of E.

We now consider continuity of the multiplication

.S;T/ 7! ST .S;T 2 L .E//

for the operator topologies considered above.

Proposition C.19. The multiplication on L .E/ is

a) (jointly) continuous for the norm topology in L .E/,

b) (jointly) continuous on bounded sets for the strong operator topology,

c) separately continuous for the weak and strong operator topology, i.e., the
mappings

S 7! TS and S 7! ST
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are continuous on L .E/ for every fixed T 2 L .E/.

The multiplication is in general not jointly continuous for the weak operator
topology. Indeed, if T is the right shift on `2.Z/ given by T..xk/k2Z/ WD .xk�1/k2Z.
Then .Tn/n2N converges to 0 weakly, and the same holds for the left shift T�1.
But TnT�n D .TT�1/n D I does not converge to 0.

C.9 Spectral Theory

Let E be an at least one-dimensional complex Banach space and T 2 L .E/. The
resolvent set �.T/ of T is the set of all � 2 C such that the operator �I � T is
invertible. The function

�.T/! L .E/; � 7! R.�;T/ WD .�I � T/�1

is called the resolvent of T. Its complement ¢.T/ WD Cn�.T/ is called the spectrum
of T. The resolvent set is an open subset of C, and given �0 2 �.T/ one has

R.�;A/ D
1X

nD0
.�0 � �/nR.�0;T/

nC1 for j� � �0j < kR.�0;T/k�1:

In particular, dist.�0; ¢.T// � kR.�0;T/k�1, showing that the norm of the resolvent
blows up when �0 approaches a spectral point.

Every � 2 C with j�j > kTk is contained in �.T/, and in this case R.�;T/ is
given by the Neumann series

R.�;T/ WD
1X

nD0
��.nC1/Tn: (C.3)

In particular, one has r.T/ � kTk, where

r.T/ WD sup
˚j�j W � 2 ¢.T/�

is the spectral radius of T. An important result states that the spectrum is always
a nonempty compact subset of C and the spectral radius can be computed by the
spectral radius formula

r.T/ D lim
n!1 kT

nk 1n D inf
n2N kT

nk 1n : (C.4)

See Rudin (1991, Thm. 10.13) or Proposition 4.29 for a proof.
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An operator is called power-bounded if supn kTnk < 1. From the formula (C.3)
it follows that the spectrum of a power-bounded operator is contained in the closed
unit disc. For isometries one has more precise information.

Proposition C.20. If E is a complex Banach space and T 2 L .E/ is an isometry,
then exactly one of the following two cases holds:

1) T is not surjective and ¢.T/ D fz W jzj � 1g D D is the entire closed unit
disc.

2) T is an isomorphism and ¢.T/ � T.

An important part of the spectrum is the point spectrum

¢p.T/ WD
˚
� 2 C W .�I � T/ is not injective

�
:

Each � 2 ¢p.T/ is called an eigenvalue of T. For � 2 ¢p.T/ the closed subspace

ker.�I � T/

is called the corresponding eigenspace, and every nonzero element 0 6D x 2
ker.�I � T/ is a corresponding eigenvector. An eigenvalue � is called simple if
its eigenspace is one-dimensional.



Appendix D
Operator Theory on Hilbert Spaces

In this appendix we review some elementary facts from the theory of Hilbert space
operators. Most of the results are presented without proof, but we provide more
details and self-contained proofs concerning self-adjoint operators, orthogonal pro-
jections (important for Chapter 13), and dilations of contractions on Hilbert spaces
(relevant for Chapter 21). As reference we recommend textbooks on functional
analysis such as Halmos (1982), Conway (1990), Halmos (1998), and Haase (2014).

D.1 Hilbert Spaces

A semi-inner product on a complex vector space E is a mapping . � j �/ W E�E! C

that is sesquilinear, i.e., satisfies

.f C �g j h/ D .f j h/C � .g j h/ ;

.h jf C �g/ D .h jf /C � .h j g/ .f; g; h 2 E; � 2 C/;

symmetric, i.e., satisfies

.f j g/ D .g jf / .f; g 2 E/;

and positive semi-definite that is

.f jf / � 0 .f 2 E/:

If in addition . � j �/ W E � E! C is positive definite, i.e., satisfies

0 6D f H) .f jf / > 0;
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then it is called an inner product. The (semi-)norm associated with a (semi-)inner
product on E is

kf k WD
p
.f j f /: (D.1)

For a semi-inner product and the corresponding semi-norm the following elemen-
tary identities hold:

a) kf C gk2 D kf k2 C kgk2 C 2Re .f j g/,
b) 4Re .f j g/ D kf C gk2 � kf � gk2,
c) 2 kf k2 C 2 kgk2 D kf C gk2 C kf � gk2.

Here b) is called the polarization identity and c) the parallelogram identity.

Given a semi-inner product, two vectors f; g are called orthogonal if .f j g/ D 0,
in symbols: f ? g. If we replace g by �g in a) above and vary � 2 C, we can
conclude that

kgk D 0 ” .f j g/ D 0 for all f 2 H.

For a set A � E its orthogonal is

A? WD ˚f 2 E W f ? g for all g 2 A
�
:

Two sets A; B � E are called orthogonal (in symbols A ? B) if f ? g for all
f 2 A; g 2 B.

Property a) above accounts also for Pythagoras’ theorem:

f ? g ” kf C gk2 D kf k2 C kgk2 :

Since
� kgk2 f � .f j g/ g

� ? g, it follows from Pythagoras’ theorem that

kgk4 kf k2 D �� kgk2 f � .f j g/ g
��2 C j.f j g/j2 kgk2 � j.f j g/j2 kgk2 :

This amounts to the Cauchy–Schwarz inequality

j.f j g/j � kf k kgk :

If . � j �/ is an inner product, then one has equality here if and only if the vectors
f and g are linearly dependent. From the Cauchy–Schwarz inequality one readily
infers that

kf k D sup
kgk�1

j.f j g/j (D.2)

implying the triangle inequality for k�k, and hence that (D.1) indeed defines a semi-
norm on E. In case that . � j �/ is an inner product this semi-norm is a norm.
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An inner product space is a vector space E together with an inner product on it.
An inner product space .E; . � j �// is a Hilbert space if E is a Banach space, i.e.,
complete with respect to the norm given in (D.1).

The following is an application of the so-called Gram–Schmidt procedure.

Lemma D.1. An inner product space H is separable if and only if it admits a
countable orthonormal base, i.e., a sequence of pairwise orthogonal unit vectors
.en/n2N with linfen W n 2 Ng D H.

D.2 The Riesz–Fréchet Theorem

The following result is fundamental in the theory of Hilbert spaces.

Theorem D.2. Let C be a nonempty closed convex subset of a Hilbert space H, and
let x 2 H. Then there is a unique x0 2 C such that

kx � x0k D inf
y2C
kx � yk :

If C is a closed subspace, then x0 is equivalently characterized by the conditions
x0 2 C and x � x0 ? C.

Based on this one can prove the next essential result concerning Hilbert spaces.

Theorem D.3. If F is a closed subspace of a Hilbert space, then

H D F ˚ F?

is a decomposition into closed orthogonal subspaces.

A proof of these theorems can be found in Rudin (1991, Thms. 12.4, 12.3) or
Conway (1990, Sec. I.2).

As a consequence, one obtains that if F � H is a proper closed subspace of F,
then F? 6D f0g. A simple consequence of this fact is the following important result,
see Rudin (1991, Thm. 12.5) or Conway (1990, Thm. I.3.4).

Theorem D.4 (Riesz–Fréchet). Let H be a Hilbert space and let  W H ! C be
a bounded linear functional on H. Then there is a unique g 2 H such that  .f / D
.f j g/ for all f 2 H.

An important consequence of the Riesz–Fréchet theorem is that a net .f˛/˛ in
H converges weakly to a vector f 2 H if and only if .f˛ � f j g/ ! 0 for each
g 2 H.

Corollary D.5. Each Hilbert space is reflexive. In particular, the closed unit ball of
a Hilbert space is weakly (sequentially) compact.
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Also the following result is based on the Riesz–Fréchet theorem.

Corollary D.6. Let H; K be Hilbert spaces and let b W H�K ! C be a sesquilinear
map such that there is M � 0 with

jb.f; g/j � M kf k kgk .f 2 H; g 2 K/:

Then there is a unique linear operator S W H ! K with

b.f; g/ D .Sf j g/ .f 2 H; g 2 K/:

Moreover, kSk � M.

For a given bounded linear operator T W K ! H there is hence a unique linear
operator T� W H ! K such that

�
T�f j g�K

D .f j Tg/H .f 2 H; g 2 K/:

The operator T� is called the (Hilbert space) adjoint of T. One has

kT�k D sup
kf k�1

kT�f k D sup
kf k;kgk�1

ˇ
ˇ�T�f j g�ˇˇ D sup

kf k;kgk�1
j.Tg jf /j D kTk

by (D.2). Furthermore, for all f 2 H

kTf k2 D ˇˇ�T�Tf j f �ˇˇ � kT�Tf k kf k � kT�Tk kf k2 ;

which implies that kT�Tk D kTk2.
Theorem D.7. The set of contractions

Con.HIK/ WD ˚T 2 L .HIK/ W kTk � 1�

between Hilbert spaces H and K is compact in the weak operator topology.

Proof. Let BH ;BK be the closed unit balls of H and K, respectively. Consider the
injective mapping

˚ W Con.HIK/!
Y

f 2BH ;g2BK

C; ˚.T/ WD � .Tf j g/ �
f 2BH ;g2BK

:

We endow the target space with the product topology (Appendix A.5), and
Con.HIK/ with the weak operator topology, so ˚ is a homeomorphism onto its
image ˚.Con.HIK//. We claim that this image is actually closed. Indeed, suppose
.T˛/˛ is a net in Con.HIK/ such that
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b.f; g/ WD lim
˛
.T˛f j g/ exists for all f 2 BH ; g 2 BK .

Then this limit actually exists for all f 2 H and g 2 K, the mapping b W H�K ! C

is sesquilinear, and jb.f; g/j � kf k kgk for all f 2 H; g 2 K. By Corollary D.6
there is T 2 L .HIK/ such that b.f; g/ D .Tf j g/ for all f 2 H; g 2 K. It follows
that T 2 Con.HIK/ and ˚.T/ D lim˛ ˚.T˛/.

Finally, note that ˚.Con.HIK// � Q
f 2BH ;g2BK

fz 2 C W jzj � 1g, which is
compact by Tychonoff’s Theorem A.5. Since ˚.Con.H;K// is closed, it is compact
as well, and since ˚ is a homeomorphism onto its image, Con.HIK/ is compact as
claimed. ut

D.3 Self-Adjoint Operators

An operator T 2 L .H/ is called self-adjoint if T� D T and positive semi-definite
if .Tf j f / � 0 for all f 2 H. An operator T 2 L .H/ is self-adjoint if (and only
if) .Tf jf / 2 R for all f 2 H. Indeed,

�
T�f j f � D .f jT�f / D .f jT�f / D .Tf jf / ;

so by polarization .Tf j g/ D .T�f j g/ for every f; g 2 H, i.e., T� D T. In
particular, a positive semi-definite operator is self-adjoint.

Among self-adjoint operators we introduce an ordering as follows: For self-
adjoint operators S; T 2 L .H/

S � T
Def.” T � S is positive semi-definite.

In particular, a positive semi-definite operator is greater than or equal to 0 in this
ordering. Clearly, if S; T; U 2 L .H/ are self-adjoint operators and S � T, then
also S C U � T C U and �S � �T for every � 2 Œ0;1/. The next proposition
follows also easily from the definition.

Proposition D.8. The set LC.H/ of positive semi-definite operators is a convex
cone, closed with respect to the weak and the strong operator topologies.

If S is positive semi-definite, the mapping .f; g/ 7! .Sf j g/ defines a semi-inner
product on H.

Proposition D.9. Let S 2 L .H/ be a positive semi-definite operator. Then

kSf k2 � kSk .Sf jf / for all f 2 H:

Proof. The Cauchy–Schwarz inequality applied to the semi-inner product .S � j �/
yields
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.Sf j Sf / � �S2f
ˇ
ˇ Sf

�1=2 � .Sf j f /1=2 � kSk1=2 kSf k .Sf jf /1=2 :

If Sf D 0, then the desired inequality is trivial. Otherwise divide by kSf k in the
inequality above and take squares to obtain the assertion. ut
Corollary D.10. Let S 2 L .H/ be a positive semi-definite operator. Then S is a
contraction if and only if S � I.

Proof. If S � I, then kSf k2 � kSk kf k2 by Proposition D.9, whence kSk � 1

follows. The converse implication is a direct consequence of the Cauchy–Schwarz
inequality. ut

The square of a self-adjoint operator is clearly positive semi-definite. More
generally, if T is positive semi-definite and S 2 L .H/, then STS� is positive semi-
definite, too. If T is positive semi-definite, so are all of its powers.

Proposition D.11. Let T 2 L .H/ be positive semi-definite. Then all powers Tn,
n 2 N0 are positive semi-definite. If T is in addition contractive, then TnC1 � Tn for
every n 2 N0.

Proof. For k 2 N0 and f 2 H we have

�
T2kC1f

ˇ
ˇ f
� D �TTkf

ˇ
ˇ Tkf

� � 0;

since T is positive semi-definite. On the other hand

�
T2kf

ˇ
ˇ f
� D �Tkf

ˇ
ˇ Tkf

� � 0;

hence the first claim follows.

Next suppose that T is a positive semi-definite contraction. For k 2 N we have by
Proposition D.9

�
T2kf

ˇ
ˇ f
� D �TT2k�2f

ˇ
ˇTf

� � �TT2k�2f
ˇ
ˇ f
� � �T2k�1f

ˇ
ˇf
�
;

and by Corollary D.10

�
T2kC1f

ˇ
ˇ f

� D �TTkf
ˇ
ˇTkf

� � �Tkf
ˇ
ˇ Tkf

� D �T2kf
ˇ
ˇ f
�
;

So indeed the sequence .Tn/n2N0 is decreasing. ut
Proposition D.12. Let .Sn/n2N0 be a bounded and increasing sequence of self-
adjoint operators L .H/, i.e., Sn � SnC1 � T for all n 2 N0 and for some
self-adjoint operator T 2 L .H/. Then .Sn/n2N0 converges strongly to some self-
adjoint operator S satisfying Sn � S � T for all n 2 N0.
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Proof. Since for every f 2 H the sequence ..Snf j f //n2N0 is increasing and
bounded above by .Tf j f /, it is convergent. Hence, by the polarization identity
for the semi-inner products .Sn � j �/, also the limit

.Sf j g/ WD lim
n!1 .Snf j g/

exists for all f; g 2 H, and hence defines a bounded linear operator S on H.
Obviously, S is self-adjoint and Sn � S � T. Notice that the operators Sn are
uniformly bounded, i.e., kSnk � M for some M � 0 and for all n 2 N0. By
Proposition D.9

kSf � Snf k2 � kS � Snk�. .S � Sn/f j f / � 2M . .S � Sn/f j f / for all f 2 H.

This implies that Sn ! S in the strong operator topology as n!1. ut
Theorem D.13. Let A 2 L .H/ be a positive semi-definite operator. Then there is
a unique positive semi-definite square root A1=2 of A, and this operator commutes
with each operator that commutes with A.

Proof. Since A is bounded, by rescaling we may suppose that A � I, and set T WD
I � A, which then satisfies 0 � T � I. We set S0 WD 0, and then recursively

SnC1 WD 1
2

�
T C S2n

�
for n 2 N. (D.3)

One sees by induction that for every n 2 N0 there is a polynomial qn with positive
coefficients such that Sn D qn.T/. This implies, by virtue of Propositions D.8
and D.11, that the operators Sn are all positive semi-definite. Next we show that
for each n 2 N0 there is a polynomial pn with positive coefficients such that

SnC1 D Sn C pn.T/:

For n D 0 we have

S1 D 1
2
T D S0 C 1

2
T D S0 C p0.T/:

Suppose for some n 2 N we have Sn D Sn�1 C pn�1.T/ with pn�1 as asserted. Then

SnC1 D 1
2

�
T C S2n

� D 1
2

�
T C .Sn�1 C pn�1.T//2

�

D 1
2

�
T C S2n�1 C pn�1.T/2 C 2Sn�1pn�1.T/

�
;

hence the polynomial pn WD 1
2
.p2n�1 C 2qn�1pn�1/ is as required. Again by

Proposition D.11, pn.T/ is positive semi-definite, therefore SnC1 � Sn. Since T � I,
one can prove inductively, by using Proposition D.11, that S2n � Sn and that Sn � I.
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By Proposition D.9 the bounded and increasing sequence of self-adjoint operators
.Sn/n2N has a strong limit S 2 L .H/ satisfying 0 � S � I. From the recursion
relation (D.3) we obtain

S D lim
n!1 SnC1 D lim

n!1
1
2

�
T C S2n

� D 1
2

�
T C S2

�
;

since multiplication is continuous for the strong operator topology on bounded sets.
We obtain .I � S/2 C T � I D 0, i.e., taking A1=2 WD I � S,

.A1=2/2 D A;

with A1=2 positive semi-definite. Let B be an operator that commutes with A. Then
B commutes with T, hence with Sn, and therefore with S and A1=2.

Suppose B is another positive semi-definite square root of A. Then B commutes with
A hence with A1=2. Let f 2 H be arbitrary, and set g WD Bf � A1=2f . Then

0 � �Bg
ˇ
ˇg
�C �A1=2gˇˇg� D �.BC A1=2/g

ˇ
ˇg
� D �.A � A/f

ˇ
ˇf
� D 0:

Therefore both .Bg j g/ D 0 and
�

A1=2g
ˇ
ˇ g
� D 0, which implies Bg D 0 and

A1=2g D 0 by Proposition D.9. We conclude

��Bf � A1=2f
��2 D � .B � A1=2/2f

ˇ̌
f
� D � .B � A1=2/g

ˇ̌
f
� D 0:

Whence B D A1=2 follows. ut

D.4 Contractions, Isometries, and Unitaries

Hilbert space contractions have plenty of special properties. The following lemma
characterizes, among other things, their fixed spaces.

Lemma D.14. For a contraction T 2 L .HIK/ and a vector f 2 H the following
assertions are equivalent:

(i) Tf D f .

(ii) T�f D f .

(iii) .Tf j f / D .f j f / D kf k2.
In particular, fix.T/ D fix.T�/.
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Proof. It is clear that (i) and (ii) both imply (iii). If (iii) holds, then

kf � Tf k2 D kf k2 � 2Re .f j Tf /C kTf k2 D kTf k2 � kf k2 � 0

since T is a contraction. Hence, (i) follows, and (ii) as well, by symmetry. ut
The following consequence is used in Lemma D.16 below.

Corollary D.15. For a contraction T 2 L .HIK/ and a vector f 2 H the following
assertions are equivalent:

(i) kTf k D kf k.
(ii) .Tf jTg/ D .f j g/ for all g 2 H.

(iii) T�Tf D f .

Proof. The implications (iii)) (ii)) (i) are straightforward. If (i) holds, then

kf k2 D kTf k2 D .Tf j Tf / D �T�Tf j f �

Since T�T is a contraction, Lemma D.14 implies that T�Tf D f , i.e., (iii). ut
Let H, K be Hilbert spaces. An operator T W H ! K is an isometry if kTf k D

kf k for all f 2 H. Here is a useful characterization of isometries.

Lemma D.16. For an operator T 2 L .HIK/ the following assertions are equiva-
lent:

(i) T is an isometry, i.e., kTf k D kf k for all f 2 H.

(ii) .Tf jTg/ D .f j g/ for all f; g 2 H.

(iii) T�T D I.

Proof. (i)) (iii): Every isometry is a contraction, hence we can apply the
implication (i)) (iii) in Corollary D.15. The remaining implications (iii)) (ii))
(i) are straightforward. ut

A surjective isometry U W H ! K is called a unitary operator. The following
characterization is an immediate consequence of Lemma D.16.

Corollary D.17. Let H; K be Hilbert spaces, and let U 2 L .HIK/. Then the
following assertions are equivalent:

(i) U is unitary, i.e., a surjective isometry.

(ii) UU� D I and U�U D I.

(iii) U is invertible and U� D U�1.
(iv) U is an invertible contraction with contractive inverse.
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Now we turn to the study of the weak and the strong operator topologies on the
set of contractions. We begin with a characterization of weak convergence.

Lemma D.18. For a net .f˛/˛ in a Hilbert space H and some f 2 H the following
assertions are equivalent:

(i) kf˛ � f k ! 0.

(ii) f˛ ! f weakly and kf˛k ! kf k.
Proof. The nontrivial implication follows from the standard identity

kf˛ � f k2 D kf˛k2 C kf k2 � 2Re .f˛ j f / ut

We obtain the following straightforward consequence of Lemma D.18.

Corollary D.19. On the set

Iso.HIK/ WD ˚T 2 L .HIK/ W kTf k D kf k for all f 2 H
�

of isometries from H into K the weak and the strong operator topologies coincide.

The final result in this section states that in case the Hilbert space is reflexive, the
sets of contractions, isometries, and unitaries are Polish spaces (cf. Appendix F.1)
with respect to the weak and strong operator topologies.

Proposition D.20. Let H and K be separable Hilbert spaces. Then both the strong
and weak operator topologies on the set Con.HIK/ of contractions are separable
and completely metrizable, i.e., are Polish topologies. The same holds for the strong
(= weak) operator topologies on the set Iso.HIK/ of isometries and the set U.HIK/
of unitaries on H.

Proof. We first show that the weak operator topology on the set of contractions is
metrizable. By compactness (Theorem D.7) it follows that it is separable and the
metric is complete.

Fix, by virtue of Lemma D.1, countable orthonormal bases .en/n2N and .fn/n2N. For
each pair .n;m/ 2 N

2 the mapping dn;m.T; S/ WD j. .T � S/en jfm /j is a semi-metric
on Con.HIK/, continuous for the weak operator topology. Then

d.T; S/ WD
1X

n;mD1
2�.nCm/dn;m.T; S/

is a metric on Con.HIK/, continuous for the weak topology. But that topology
is compact (Theorem D.7), hence coincides with the topology induced by d
(Proposition A.4.b).
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Likewise,

d.T; S/ WD
1X

nD1
2�n kTen � Senk

is a complete metric inducing the strong operator topology on Con.HIK/.
The set Iso.HIK/ of isometries is strongly closed in Con.HIK/, whence also
completely metrizable. Furthermore, the mapping

U.HIK/! Iso.HIK/ � Iso.KIH/ U 7! .U;U�1/

is a homeomorphism onto a closed subset of the completely metrizable space
Iso.HIK/ � Iso.KIH/. Hence, also U.HIK/ is completely metrizable. The sepa-
rability of U.HIK/ and Iso.HIK/ follow from the weak separability of Con.HIK/
and the fact that the weak and strong topologies coincide on Iso.HIK/.
For the strong separability of Con.HIK/ let for n 2 N the orthonormal projections
(see below) onto linfe1; : : : ; eng and linff1; : : : ; fng be denoted by Pn; Qn, respec-
tively. For a contraction T W H ! K the operator Tn WD QnTPn is a contraction
contained in the linear span of the operators f 7! .f jej/fl, j; l � n. But Tn ! T
strongly, and this concludes the proof. ut

D.5 Orthogonal Projections

An operator P 2 L .H/ is called an orthogonal projection if

P2 D P and ran.P/ ? ran.I � P/:

The following result is a characterization of orthogonal projections.

Theorem D.21. Let H be a Hilbert space, and let P 2 L .H/. Then the following
assertions are equivalent:

(i) P D SS� for some Hilbert space K and some linear isometry S W K ! H.

(ii) P2 D P and kPk � 1.

(iii) ran.I � P/ ? ran.P/.

(iv) P2 D P D P�.

(v) ran.P/ is closed, and P D JJ� with J W ran.P/! H the canonical inclusion
map.

Under these equivalent conditions ran.S/ D ran.P/ holds in (i).
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Proof. (i)) (ii): Lemma D.16 above, S�S D I, whence P2 D .SS�/.SS�/ D
S.S�S/S� D SS� D P. Also, kPk D kS�Sk � kS�k kSk D 1. For the final statement
notice that ran.S/ � ran.P/ since P D SS�. The converse inclusion follows from
PS D SS�S D S.

(ii)) (iii): Take f 2 ran.P/, g 2 H. Then for c 2 C we have by (ii)

kf � cPgk2 D kP.f � cg/k2 � kf � cgk2 :

Expanding the scalar products yields

2Re c .f j g � Pg/ � jcj2 .kgk2 � kPgk2/:

We now specialize c D t.f j g � Pg/ with t > 0, and obtain

2t
ˇ
ˇ.f j g � Pg/

ˇ
ˇ2 � t2

ˇ
ˇ.f j g � Pg/

ˇ
ˇ2�kgk2 � kPgk2� for all t > 0:

This implies f ? .g � Pg/ as was to be proved.

(iii)) (iv): By (iii) we obtain for f; g 2 H

��Pf � P2f
��2 D .P.f � Pf / j .I � P/Pf / D 0;

whence P2 D P. Moreover, by (ii) and by symmetry

.Pf j g/ D .Pf j g � Pg/C .Pf jPg/ D .Pf jPg/

D .Pf � f jPg/C .f jPg/ D .f jPg/ ;

which means P� D P.

(iv)) (v): Let Q WD JJ�. Since ran.J/ D ran.P/ by construction, PJ D J, and
hence PQ D Q, and then QP D Q by (iv). On the other hand, since J is an isometry,
QJ D J.J�J/ D J, whence QP D P. It follows that Q D P.

The implication (v)) (i) is trivial. ut
As a consequence, an orthogonal projection is positive semi-definite since

.Pf jf / D �P2f
ˇ
ˇ f

� D .Pf jPf / D kPf k2 � 0

for every f 2 H.

Corollary D.22. a) For an orthogonal projection P 2 L .H/ and f 2 H:

Pf D f ” kPf k D kf k :

b) Orthogonal projections P; Q 2 L .H/ satisfy
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ran.P/ � ran.Q/ ” PQ D P ” QP D P:

c) To every closed subspace F of H there is a unique orthogonal projection
P 2 L .H/ such that ran.P/ D F. In this case

H D ran.P/˚ ran.I � P/ D F ˚ F?:

Proof. a) Since ran.I � P/ ? ran.P/, by Pythagoras’ theorem

kf k2 D kPf k2 C k.I � P/f k2

for every f 2 H.

b) It is clear that ran.P/ � ran.Q/ is equivalent with QP D P. But since Q and P
are self-adjoint, the latter is equivalent with P D P� D .QP/� D P�Q� D PQ.

c) If P; Q are orthogonal projections on H with ran.P/ D ran.Q/, then by b) we
have P D PQ D Q. To show existence we define P WD JJ� where J W F ! H
is the inclusion mapping. Since J is an isometry, I D J�J, hence J� is surjective.
It follows that ran.P/ D F is closed, and Theorem D.21 applies, showing that P is
the orthogonal projection onto F D ran.P/. In particular, ran.I � P/ � F?. Since
H D ran.P/˚ ran.I � P/, it follows that ran.I � P/ D F?. ut

Next, we aim at characterizing invariance of a subspace under an operator in
terms of orthogonal projections.

Proposition D.23. Let P and Q be orthogonal projections on Hilbert spaces H and
K, respectively, and take F D ran.P/ and G D ran.Q/, so that

H D F ˚ F? and K D G˚ G?

are the corresponding orthogonal decompositions. Then for a linear operator T 2
L .HIK/ the following assertions are equivalent:

(i) T.F/ � G and T�.G/ � F.

(ii) T.F/ � G and T.F?/ � G?.

(iii) TP D QT.

Proof. If (i) holds, then QTP D TP and PT�Q D T�Q. Taking adjoints in the second
identity yields QTP D QT and combining this with the first one we obtain (iii). If
(iii) holds, then T.F/ D TP.H/ D QT.H/ � G and QT.F?/ D TP.F?/ D Tf0g D
0, whence T.F?/ � ker.Q/ D G?. All in all we have established (ii). Finally,
suppose that (ii) holds, and let g 2 G and h 2 F?. Then .T�g j h/ D .g jTh/ D 0

since Th 2 T.F?/ � G?. This yields T�g 2 .F?/? D F for every g 2 G. The
proof of (i) is hence complete. ut
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Let T 2 L .H/ be a bounded linear operator on a Hilbert space H. A closed
subspace F � H is called T-bi-invariant if F is T- and T�-invariant, i.e., if TF C
T�F � F.

Corollary D.24. Let P be an orthogonal projection on a Hilbert space H and let
F D ran.P/, so that H D F ˚ F? is the corresponding orthogonal decomposition.
Then the following assertions are equivalent for an operator T 2 L .H/:

(i) The subspace F is T-bi-invariant.

(ii) Both subspaces F and F? are T-invariant.

(iii) TP D PT.

D.6 Normal Operators

An operator T 2 L .H/ is called normal if TT� D T�T. Clearly, bounded self-
adjoint and unitary operators are normal.

Lemma D.25. Let T 2 L .H/ be a normal operator. Then the following assertions
hold:

a) kTf k D kT�f k for all f 2 H.

b) ker.�I � T/ D ker.�I � T�/ for all � 2 C.

c) ker.�I � T/ ? ker.�I � T/ for all �; � 2 C with � 6D �.

d)
�
�T2

�
� D kTk2.

e) For the spectral radius we have r.T/ D kTk.
Proof. a) is immediate after squaring the identity and using the polarization identity,
b) follows from a) with T replaced by �I� T. For c) let f; g 2 H be with Tf D �f
and Tg D �g. Then

.� � �/ .f j g/ D .�f j g/� .f j�g/ D .Tf j g/� �f jT�g
� D 0;

since T�g D �g by b). For the proof of d) we compute

��T2
�� D

p
kT2�T2k Dpk.T�T/.T�T/�k D kT�Tk D kTk2 :

e) follows from d) and the spectral radius formula (C.4) by restricting to the
subsequence nk D 2k. ut

Normal operators have nice spectral properties, especially if they are com-
pact. The general spectral theorem for bounded normal operators is presented in
Chapter 17.
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Theorem D.26 (Spectral Theorem). Let T be a compact normal operator on a
Hilbert space H. Then H has an orthonormal basis consisting of eigenvectors of T,
and every eigenspace corresponding to a nonzero eigenvector is finite dimensional.

More precisely, T is the norm convergent sum

T D
X

�2�
�P� (D.4)

where � � C n f0g is a countable set, and for � 2 � the operator P� is the
orthogonal projection onto the eigenspace H� WD ker.�I � T/ satisfying 0 <

dim H� <1.

Proof. We first remark that by the compactness of T the space ker.�I � T/ is
finite dimensional if � ¤ 0, see Appendix C.1. By virtue of the orthogonality of
eigenspaces and the compactness of T it is equally simple to show that for each
" > 0 there can be only finitely many eigenvalues � of T with j�j � ".
It remains to show that H is the orthogonal sum of T-eigenspaces. By c) of
Lemma D.25, all eigenspaces are pairwise orthogonal, so we take K as the closed
subspace of H generated by all eigenvectors associated with nonzero eigenvalues.
Then, by b) of Lemma D.25, K is invariant under T�, whence K? is T-invariant.
Restricting T to K? we may suppose in the following that T has no nonzero
eigenvalues.

Let � 2 C be from the topological boundary of �.T/. Then there is .�n/n2N in
�.T/ with �n ! �. Since kR.�n;T/k � dist.�n; �.T//�1 !1, we can find un 2 H
with kunk � 1 and such that ˛n WD kR.�n;T/unk ! 1. Then vn WD ˛�1

n R.�n;T/un

is a unit vector. By the compactness of T and by passing to a subsequence we may
suppose that

Tvn D ˛�1
n .�yn C �nR.�n;T/un/ D �˛�1

n un C �nvn;

hence �nvn ! w as n ! 1. If � D limn!1 �n 6D 0, then vn ! ��1w, a unit
eigenvector of T associated with �. But T has no nonzero eigenvalues, whence
� D 0.

All in all we can conclude that �.T/ D f0g, i.e., r.T/ D 0. By e) of Lemma D.25
we obtain kTk D r.T/ D 0, and we are done. ut

D.7 Unitary Part and Wold Decomposition
of a Contraction

Let T be any contraction on a Hilbert space H. We shall first construct an orthogonal
decomposition

H D Huni ˚ Hcnu
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of H, where Huni is (in a sense) the largest closed subspace on which T acts as a
unitary operator. This result is due to Szőkefalvi-Nagy and Foiaş (1960). We follow
the presentation in Eisner (2010, Sec. II.3.2).

Theorem D.27 (Szőkefalvi-Nagy–Foiaş). Let T be a contraction on a Hilbert
space H. Then

Huni WD
˚
f 2 H W kTnf k D kT�nf k D kf k for all n 2 N

�

is the largest among all closed T-bi-invariant subspaces of H on which T restricts
to a unitary operator.

Proof. Let F � H be any closed T-bi-invariant subspace of H. If TjF is unitary, then
T�jF D .TjF/� D .TjF/�1 is also unitary. In particular, for each n 2 N the operators
Tn and T�n are isometries on F, whence F � Huni.

It remains to show that Huni itself is a closed T-bi-invariant subspace on which T
restricts to a unitary operator. By Corollary D.15 applied to Tn and T�n we obtain

Huni D
˚
f 2 H W T�nTnf D f D TnT�nf for all n 2 N

�
: (D.5)

It follows immediately that Huni is a closed subspace. To see that Huni is T-invariant,
take f 2 Huni and n 2 N. Then kTnTf k D kTnC1f k D kf k and

kT�nTf k D kT�.n�1/.T�Tf /k D kT�.n�1/f k D kf k :

This shows that Tf 2 Huni and a similar argument leads to T�f 2 Huni. Finally, by
definition of Huni, TjHuni is an isometry on Huni and surjective since f D TT�f for
each f 2 Huni. The proof is complete. ut

Let T be a contraction on a Hilbert space H. Then Huni as in Theorem D.27 is
called the unitary part of H with respect to T. The orthogonal complement

Hcnu WD Huni
?

is called the completely nonunitary part of H with respect to T, because it does
not contain any nontrivial T-bi-invariant closed subspace of H on which T acts
as a unitary operator. A contraction T on a Hilbert space H is called completely
nonunitary if H D Hcnu.

Theorem D.28. Let T be a contraction on a Hilbert space H. Then the restriction
of T to Hcnu is weakly stable, i.e., for every f; g 2 Hcnu

.Tnf j g/! 0 as n!1:

Proof. For every f 2 H the sequence .kTnf k/n2N is decreasing, hence convergent.
Thus for fixed k 2 N0 we obtain
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kT�kTkTnf � Tnf k2 D kT�kTkTnf k2 � 2Re
�

T�kTkTnf
ˇ
ˇ
ˇ Tnf

�
C kTnf k2

D kT�kTnCkf k2 � 2kTnCkf k2 C kTnf k2

� kTnCkf k2 � 2kTnCkf k2 C kTnf k2

D kTnf k2 � kTnCkf k2 ! 0 as n!1.

Therefore, for each k 2 N0

�
.I � T�kTk/Tnf

ˇ̌
g
�! 0 for every f; g 2 H as n!1,

hence

�
Tnf

ˇ
ˇg
�! 0 for every f; g 2 ran.I � T�kTk/ as n!1.

The same argument for T� instead of T yields

�
Tnf

ˇ
ˇg
� D �f ˇˇT�ng

�! 0 for every f; g 2 ran.I � TkT�k
/ as n!1.

Altogether we obtain, also by using (D.5), that .Tnf j g/! 0 as n!1 for every

f; g 2cl
X

k2N0

�
ran.I � T�kTk/C ran.I � TkT�k

/
�

D
�\

k2N0
ran.I � T�kTk/? \ ran.I � TkT�k

/?
�?

D
�\

k2N0
fix.T�kTk/\ fix.TkT�k

/
�? D H?

uni D Hcnu: ut

We remark that the property “Tnf ! 0 weakly” does not characterize elements
f of Hcnu. For example, if T is the shift on H D `2.Z/, then T is unitary and
H D Huni. But Tn ! 0 weakly as n!1.

Let us now specialize the previous construction to an isometry T 2 L .H/. Then
we obtain what is called the Wold decomposition.

Theorem D.29 (Wold Decomposition). Let T be an isometry on a Hilbert
space H. Then

Huni D
\

n�0
ran.Tn/;
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and Hcnu can be written as a Hilbert orthogonal sum

Hcnu D
M

˛2A

H˛

for some index set A, where each H˛ is T-invariant and T W H˛ ! H˛ is unitarily
equivalent to the right shift R on `2.N0/.

Proof. Let K WD T
n�0 ran.Tn/. Then K is a T-invariant closed subspace and T is

surjective on K. Moreover, K must contain every closed T-invariant subspace on
which T is surjective, so in particular Huni � K. Conversely, if f 2 K and n 2 N,
then there is g 2 H with Tng D f . Therefore

kT�nf k D kT�nTngk D kgk D kTngk D kf k ;

since T�T D I. By definition of Huni, f 2 Huni.

For the remaining part we define for each n � 1 the closed subspace Kn as
the orthogonal complement of ran.Tn/ within ran.Tn�1/, i.e., by the orthogonal
decomposition

ran.Tn�1/ D ran.Tn/˚ Kn: (D.6)

Then all the spaces Kj are pairwise orthogonal, and

1\

nD1
ran.Tn/ ?

1M

jD1
Kj:

Moreover, if f ? Kn for every n 2 N, then, inductively, f 2 ran.Tn/ for every
n 2 N. Therefore

1M

nD1
Kn D H?

uni D Hcnu:

Since T is an isometry and hence preserves orthogonality, it follows from (D.6) for
n D k and n D kC 1 that

ran.TkC1/˚ KkC1 D ran.Tk/ D T
�

ran.Tk�1/
� D T

�
ran.Tk/˚ Kk

�

D ran.TkC1/˚ TKk:

This yields TKk D KkC1 for every k � 1.

Finally, fix an orthonormal basis .e˛/˛2A of K1. Then .Tke˛/˛2A is an orthonormal
basis of TkK1 D KkC1, and hence H˛ WD linfTke˛ W k 2 N0g has the asserted
properties. ut
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D.8 Unitary Dilations of Contractions

Let T be a bounded operator on a Hilbert space H, let K be another Hilbert space
with J W H ! K an isometric embedding, and let S 2 L .K/. We call the pair .S; J/
a dilation of T if

J�SJ D T:

It is clear that, if .S; J1/ is a dilation of T and .R; J2/ is a dilation of S, then .R; J2ıJ1/
is a dilation of T.

By Theorem D.21, P WD JJ� W K ! K is an orthogonal projection. We then have

PSJ D JJ�SJ D JT:

After identifying H with ran.J/ � K the projection P becomes the orthogonal
projection onto H and we obtain

PSjH D T:

In this case we call T a compression of S. Conversely, if T is a compression of S
with the corresponding orthogonal projection P 2 L .K/, ran.P/ D H, then again
by Theorem D.21, P D JJ� with the identical embedding J W H ! K. In this case
J� acts as the identity on H. Hence

J�SjH D J�JJ�SjH D J�T

and thus

J�SJ D T;

i.e., .S; J/ is a dilation of T.

Given a contraction T 2 L .H/ we look for a dilation .S; J/ with S unitary such
that .Sn; J/ is a dilation of .Tn; J/ for every n 2 N0. Let us discuss an important
special case first.

Example D.30 (Dilation of Isometries). Suppose that T is an isometry on H and
that .S; J/ is a dilation of T to a unitary operator S on a Hilbert space K. Then
PSJ D JT for the orthogonal projection P D JJ�. But since JT is an isometry,
PSJ D SJ and therefore SJ D JT. It follows that ran.J/ is S-invariant and that
.Sn; J/ is a dilation of Tn for all n � 0.

Let us identify H with ran.J/ and consider H as a subspace of K. Under this
identification T D S on H, so we may use the single letter T for both maps. Then
T is a unitary operator on K, but (in general) not surjective on H. This leads to the
ascending sequence of subspaces
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H � T�1H � T�2H � � � � � K:

The closed subspace F WD cl
S

n�0 T�n.H/ is T-bi-invariant, and there is no loss of
generality if we suppose that K D F, i.e., that the dilation is minimal.

Thus, we observe that the dilation space K is an inductive limit of isometric
copies Hi of H, and the operator T maps each copy Hi isometrically onto the copy
Hi�1. Consequently, Hi�1 lies within Hi like T.H/ lies within H, and therefore

K D H ˚
1M

nD1
T.H/?:

This shows that a minimal dilation is unique.

We can now use this information to construct a minimal dilation for a given
isometry T on a Hilbert space H. Define

K WD H ˚
1M

nD1
T.H/?

and on K the operator S W K ! K by

S.f0; f1; f2; : : : / WD .Tf0 C f1; f2; f3 : : : / .f0 2 H; fn 2 T.H/?; n � 1/:

Then it is easy to see that S is unitary. If J W H ! K is defined by Jf WD
.f; 0; 0; : : : /, then clearly ran.J/ is S-invariant, and .S; J/ is a dilation of T.

The isometric case being done, we can now prove an important intermediate
result.

Proposition D.31. Let T be a contraction on a Hilbert space H. Then there is a
Hilbert space K and an isometry S 2 L .K/ such that .Sn; J/ is a dilation of Tn for
each n 2 N0, i.e.,

PSnjH D Tn for every n 2 N0.

Proof. Since T is a contraction, the operator V WD I�T�T is positive semi-definite,
hence it has a positive semi-definite square-root V1=2 by Theorem D.13. Consider
the Hilbert space

K WD `2.N0IH/ D
M

n2N0
H:

Let Q 2 L .KIH/ be the coordinate projection Q.fk/k2N0 WD f0, and let J 2
L .HIK/ be the embedding J.f / WD .f; 0; : : : ; 0 : : : /. Then J� WD Q. We define
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S.fk/k2N0 WD .Tf0;V1=2f0; f1; f2; : : : /:

Then S 2 L .K/ is an isometry. Indeed, for every f D .fk/k2N0

kTf0k2 C kV1=2f0k2 D
�
Tf0

ˇ
ˇTf0

�C �V1=2f0
ˇ
ˇV1=2f0

�

D �T�Tf0
ˇ
ˇf0
�C �Vf0

ˇ
ˇf0
� D kf0k2:

For n 2 N0 we have

Sn.fk/k2N0 D .Tnf0;V
1=2Tn�1f0; : : : ;V1=2f0; f1; f2; : : : /:

By definition J�SnJ D Tn, and the proof is complete. ut
Combining Proposition D.31 with Example D.30 yields the following celebrated

theorem.

Theorem D.32 (Szőkefalvi-Nagy). For every contraction T 2 L .H/ there is a
unitary operator S 2 L .K/, J W H ! K isometric embedding such that .Sn; J/ is a
dilation of Tn for each n 2 N0.



Appendix E
The Riesz Representation Theorem

In this appendix we give a proof for the Riesz Representation Theorem 5.7. In the
whole section, K denotes a nonempty compact topological space, Ba.K/ and Bo.K/
denote the �-algebra of Baire and Borel sets of K, respectively, i.e.,

Ba.K/ D �˚Œ f > 0 � W 0 � f 2 C.K/
�

and Bo.K/ D �˚O W O � K open
�
:

Moreover, M.K/ denotes the Banach space of complex Baire measures on K
endowed with the total variation norm k�kM. It will eventually become clear that
each such Baire measure has a unique extension to a regular Borel measure.

Each � 2 M.K/ induces a linear functional

d� W C.K/! C; d�.f / WD hf;�i WD
Z

K
f d�:

This functional is bounded (by k�kM) since

jhf;�ij �
Z

K
jf j dj�j � kf k1 j�j .K/ D kf k1 k�kM

for all f 2 C.K/. In this way we obtain a linear and contractive map

d W M.K/! C.K/0; � 7! d� D h�; �i (E.1)

of M.K/ into the dual space of C.K/. The statement of the Riesz representation
theorem is that this map is an isometric isomorphism.
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E.1 Uniqueness

Let us introduce the space

BM.K/ WD ˚f W K ! C W f is bounded and Baire measurable
�
:

This is a commutative C�-algebra with respect to the sup-norm. Moreover, it
is closed under the so-called bp-convergence. We say that a sequence .fn/n2N
of functions on K converges boundedly and pointwise (or: bp-converges) to a
function f if

sup
n2N
kfnk1 <1 and fn.x/! f .x/ for each x 2 K:

The following result is very useful in extending results from continuous to general
Baire measurable functions.

Theorem E.1. Let K be a compact topological space, and let E � BM.K/ such
that (1) C.K/ � E and (2) E is closed under bp-convergence. Then E D BM.K/.

Proof. By taking the intersection of all subsets E of BM.K/ with the properties (1)
and (2), we may suppose that E is the smallest one.

We show first that E is a linear subspace of BM.K/. For f 2 BM.K/ we define

Ef WD
˚
g 2 E W f C g 2 E

�
:

If f 2 C.K/, then Ef has the properties (1) and (2), whence E � Ef . This means
that C.K/C E � E. In particular, it follows that Ef has properties (1) and (2) even
if f 2 E. Hence, E � Ef for each f 2 E, whence E C E � E. For � 2 C the set

˚
g 2 E W �g 2 E

�

has properties (1) and (2), whence �E � E. This establishes that E is a linear
subspace of BM.K/.

In the same way one can show that if f; g 2 E, then jf j 2 E and f g 2 E. It follows
in view of condition (2) that the set

F WD ˚A 2 Ba.K/ W 1A 2 E
�

is a �-algebra. If 0 � f 2 C.K/ then nf ^ 1% 1Œ f >0 � pointwise. Hence,
Œ f > 0 � 2 F, and therefore F D Ba.K/. By standard measure theory, see Lemma
B.7, linf1A W A 2 Ba.K/g is sup-norm dense in BM.K/, so by (2) we obtain E D
BM.K/. ut

As a consequence we recover Lemma 5.5.
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Corollary E.2 (Uniqueness). Let K be a compact topological space. If �;  are
complex Baire measures on K such that

Z

K
f d� D

Z

K
f d for all f 2 C.K/;

then � D .

Proof. Define E WD ff 2 BM.K/ W R f d� D R f dg. By dominated convergence,
E satisfies (1) and (2) in Theorem E.1, hence E D BM.K/. ut

To prove that the mapping d defined in (E.1) is isometric, we need a refined
approximation result.

Lemma E.3. Let 0 � � 2 M.K/. Then C.K/ is dense in Lp.K; �/ for each 1 � p <
1. More precisely, for f 2 L1.K; �/ there is a sequence of continuous functions
fn 2 C.K/ such that fn ! f �-a.e. and jfnj � kf kL1

for all n 2 N.

Proof. Let 1 � p < 1. The spaces C.K/ and BM.K/ embed continuously into
Lp.K; �/ by mapping a function to its equivalence class. A function, as usual, is
identified by its equivalence class. Let Y be the Lp-closure (of the image under this
embedding) of C.K/. Define E WD ff 2 BM.K/ W f 2 Yg. Then E satisfies (1)
and (2) of Theorem E.1, whence E D BM.K/. But this implies that L1.K; �/ � Y,
whence Y D Lp.K; �/ follows.

For the second assertion, let 0 6D f 2 L1.K; �/. Then, by the already proven part,
there is a sequence .gn/n2N of continuous functions such that gn ! f in L1. By
passing to a subsequence we may suppose that gn ! f �-almost everywhere. Now
define

fn WD
8
<

:

kf k1
gn

jgnj on Œ jgnj � kf k1 �;

gn on Œ jgnj � kf k1 �.

Then fn is continuous, jfnj � kf k1, and fn ! f �-almost everywhere. ut
Now the claimed isometric property of the mapping d is in reach.

Corollary E.4. The map d W M.K/! C.K/0 is isometric.

Proof. Fix � 2 M.K/. The functional d� is bounded by 1 with respect to the norm
of L1.K; j�j/:

jhf;�ij � hjf j ; j�ji D kf kL1.K;j�j/

for f 2 C.K/. Hence, there is g 2 L1.K; j�j/ such that
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hf;�i D
Z

K
f g dj�j for all f 2 C.K/:

Let h WD g= jgj on the set where g 6D 0, and h D 0 elsewhere. By Lemma E.3 from
above there is a sequence of continuous functions fn 2 C.K/ with kfnk1 � 1 and
fn ! h in L1.K; j�j/. But then

hfn; �i D
Z

K
fng dj�j !

Z

K
hg dj�j D j�j .K/ D k�kM :

This implies that k�kM � kd�kC.K/0 , hence d is isometric. ut

E.2 The Space C.K/0 as a Banach Lattice

In this section we reduce the problem of proving the surjectivity of the mapping d
from (E.1), i.e., the representation problem, to positive functionals. We do this by
showing that each bounded linear functional on C.K/ can be written as a linear
combination of positive functionals. Actually we shall show more: C.K/0 is a
complex Banach lattice. (See Definition 7.2 for the terminology and recall from
Example 7.3.2 that C.K/ is a complex Banach lattice.)

Recall that a linear functional � W C.K/! C is called positive, written � � 0, if

�.f / � 0 for all 0 � f 2 C.K/:

This means that � is a positive operator in the sense of Section 7.1.

Lemma E.5. Each positive linear functional � on C.K/ is bounded with norm
k�k D �.1/.
Proof. This is actually a general fact from Banach lattice theory, see Lemma 7.5,
but we give a direct proof here. Let f 2 C.K/ and determine c 2 T such that
c�.f / D j�.f /j. Then

j�.f /j D Re.c�.f // D Re�.cf / D �.Re cf / � � jf j � �.1/ kf k1 ;

proving k�k � �.1/. Specializing f D 1 concludes the proof. ut
Our aim is to show that this notion of positivity turns C.K/0 into a Banach lattice.

In order to decompose C.K/0 naturally into a real and an imaginary part, for � 2
C.K/0 we define �� 2 C.K/ by

��.f / D �.f / .f 2 C.K//
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and subsequently

Re� WD 1

2
.�C ��/ and Im� WD 1

2i
.� � ��/:

A linear functional � 2 C.K/0 is called real if � D ��, and

C.K/0
R
WD ˚� 2 C.K/0 W � D ���

is the R-linear subspace of real functionals. Then we have

� 2 C.K/0
R
” �.f / 2 R for all 0 � f 2 C.K/:

Moreover, � D Re�C i Im� for each � 2 C.K/0, and hence

C.K/0 D C.K/0
R
˚ iC.K/0

R

is the desired decomposition. Clearly, each positive linear functional is real, and by

� � � Def.” �.f / � �.f / for each 0 � f 2 C.K/

a partial order is defined in C.K/0
R

turning it into a real ordered vector space.

In the next step we construct the modulus mapping, and for that we need a
technical tool.

Theorem E.6 (Partition of Unity). Let K be a compact space, and let
O1; : : : ;On � K be open subsets such that

K D O1 [ � � � [On:

Then there are functions 0 �  j 2 C.K/, j D 1; : : : ; n, with

nX

jD1
 j D 1 and supp. j/ � Oj for all j D 1; : : : ; n: (E.2)

Proof. We first construct compact sets Aj � Oj for j D 1; : : : ; n with

K D
n[

jD1
Aj: (E.3)

By hypothesis, for each x 2 K there is j.x/ 2 f1; : : : ; ng such that x 2 Oj.x/. Since
singletons are closed, Lemma 4.1 yields a closed set Bx and an open set Ux such that

x 2 Ux � Bx � Oj.x/ .x 2 K/:
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By compactness, there is a finite set F � K such that K �Sx2F Ux. Define

Aj WD
[˚

Ax W x 2 F; j.x/ D j
�

.j D 1; : : : ; n/:

Then every Aj is closed, Aj � Oj and (E.3) holds as required.

In the second step we apply Urysohn’s Lemma 4.2 to obtain continuous functions
'j 2 C.K/ such that

1Aj � 'j � 1Oj and supp.'j/ � Oj .j D 1; : : : ; n/:

Now note that
Pn

kD1 'k � Pn
kD1 1Ak � 1, whence the well-defined continuous

functions

 j WD 'jPn
kD1 'k

.j D 1; : : : ; n/

are positive and satisfy
Pn

jD1  j D 1. Moreover, supp. j/ � supp.'j/ � Oj for
each j D 1; : : : ; n, as required. ut
The sequence . j/

n
jD1 yielded by the theorem above is called a partition of unity

subordinate to the covering O1; : : : ;On.

In the next step, for 0 � f 2 C.K/ we consider the “order-ball”

Bf WD
˚
g 2 C.K/ W jgj � f �

around 0 with “radius” f . Based on the partitions of unity, we can prove the
following result.

Lemma E.7. For a compact space K the following assertions hold:

a) Given 0 � f 2 C.K/ the set of functions g DPn
jD1 ˛jfj with

n 2 N; 0 � fj 2 C.K/; ˛j 2 T .j D 1; : : : ; n/;
nX

jD1
fj � f

is dense in Bf .

b) Given 0 � f1; f2; : : : ; fn 2 C.K/, the set of functions g DPn
jD1 gj with

n 2 N; gj 2 C.K/;
ˇ
ˇgj

ˇ
ˇ � fj .j D 1; : : : ; n/

is dense in Bf1C���Cfn .

Proof. a) Let jgj � f , and let " > 0. For each x 2 K let ˛x 2 T be such that
˛x jg.x/j D g.x/. By compactness of K there are finitely many points x1; : : : ; xn 2 K
such that the open sets
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Uj WD
	 ˇˇg � ˛xj jgj

ˇ
ˇ < "



.j D 1; : : : ; n/

cover K. Let . j/
n
jD1 be a subordinate partition of unity and define fj WD jgj j � 0.

Then

nX

jD1
fj D jgj � f and

ˇ̌
g �

nX

jD1
˛xjfj

ˇ̌ � ":

b) Fix jgj � f1 C � � � C fn and " > 0. The open sets

U1 WD Œ jgj > 0 � and U2 WD Œ jgj < " �

cover K. Take a subordinate partition of unity ( ; 1 �  / and define

gj WD
8
<

:
 g

fj

f1 C � � � C fn
on supp. /;

0 on Œ  D 0 �

for j D 1; : : : ; n. Then g1C g2C � � �C gn D  g,
ˇ
ˇgj

ˇ
ˇ � fj on K and gj 2 C.K/. The

proof is concluded by

ˇ
ˇ
ˇg �

nX

jD1
gj

ˇ
ˇ
ˇ D j.1�  /j jgj � "1: ut

Finally, we define the modulus of a functional � 2 C.K/0 by

j�j .f / WD sup
˚j�.g/j W g 2 C.K/; jgj � f � D sup

g2Bf

j�.g/j (E.4)

for 0 � f 2 C.K/. This is a finite number since we have j�j .f / � k�k kf k1 <

1. On a moments reflection, we also notice that

k�k D j�j .1/ .� 2 C.K/0/: (E.5)

The following is the key step.

Lemma E.8. For � 2 C.K/0, the mapping j�j defined by (E.4) on the positive cone
on C.K/ extends (uniquely) to a bounded linear functional on C.K/.

Proof. The positive homogeneity of j�j is obvious from the definition. We turn to
prove additivity of j�j. Take f1; f2 � 0 and jg1j � f1 and jg2j � f2. Then for
certain c1; c2 2 T

j�.g1/j C j�.g2/j D jc1�.g1/C c2�.g2/j D j�.c1g1 C c2g2/j � j�j .f1 C f2/
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since jc1g1 C c2g2j � f1 C f2. By varying g1; g2 we obtain

j�j .f1/C j�j .f2/ � j�j .f1 C f2/:

For the converse inequality take jgj � f1 C f2 and " > 0. By Lemma E.7 we find
jg1j � f1 and jg2j � f2 such that kg � .g1 C g2/k1 � ". This yields

j�.g/j � j�.g1 C g2/j C " k�k � j�j .f1/C j�j .f2/C " k�k :

Letting "& 0 and varying g yields j�j .f1 C f2/ � j�j .f1/C j�j .f2/ as desired.

Finally, we extend j�j first to all of C.KIR/ by

j�j .f / WD j�j .f C/� j�j .f �/ .f 2 C.KIR//;

and then to C.K/ by

j�j .f / WD j�j .Re f /C i j�j .Imf / .f 2 C.K//:

To prove that in this way j�j becomes a linear mapping on all of C.K/ is lengthy but
straightforward, and we leave this task to the reader. ut

We note that, by definition,

j�.f /j � j�j jf j for all f 2 C.K/:

It follows that if � is a real functional, then � � j�j. Hence, � D � � .j�j � �/ is a
difference of positive functionals.

Corollary E.9. Every bounded real functional on C.K/ is the difference of two
positive linear functionals. The positive linear functionals generate C.K/0 as a
vector space.

In order to complete the proof that C.K/0 is a Banach lattice we note that by (E.5)
we have

j�j � j�j H) k�k � k�k ;

and hence the norm on C.K/0 is a lattice norm. The next result connects the
modulus and the real lattice structure, characteristic for complex vector lattices, see
Definition 7.2 and Schaefer (1974, Def. II.11.3).

Proposition E.10. For � 2 C.K/0 one has j�j D supc2T Re.c�/ in the ordering of
C.K/0

R
.
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Proof. Fix c 2 T and f � 0. Then

ŒRe.c�/�f D 1
2
.c�C c��/.f / D 1

2

�
c�.f /C c � �.f /�

D ReŒc�.f /� � j�.f /j � j�j .f /:

On the other hand, suppose that  2 C.K/0
R

satisfies Re.c�/ �  for all c 2 T. Let
f 2 C.K/ be given, let g DPn

jD1 ˛jfj 2 Bf be as in Lemma E.7, and let cj 2 T be
such that cj�.fj/ D

ˇ
ˇ�.fj/

ˇ
ˇ for each j. Then

j�.g/j �
nX

jD1

ˇ
ˇ˛j

ˇ
ˇ
ˇ
ˇ�.fj/

ˇ
ˇ D

nX

jD1

ˇ
ˇ�.fj/

ˇ
ˇ

D
nX

jD1

�
Re.cj�/

�
.fj/ �

nX

jD1
.fj/ D 

� nX

jD1
fj

�
� .f /:

By Lemma E.7 we obtain that j�.g/j � .f / for all g 2 Bf , and hence j�j � .
This completes the proof. ut

E.3 Representation of Positive Functionals

By Corollary E.9, to complete the proof of the Riesz representation theorem it
suffices to establish the following result.

Theorem E.11 (Riesz–Markov). Let � be a positive linear functional on the
Banach space C.K/. Then � is bounded and there is a unique positive regular Borel
measure � 2 M.K/ such that

�.f / D
Z

K
f d� for all f 2 C.K/:

Our presentation is a modification of the treatments in Rudin (1987, Ch. 2) and Lang
(1993, Ch. IX).

Let K be a compact topological space, and let � W C.K/ ! C be a positive
linear functional. We shall construct a positive regular Borel measure � 2 M.K/
with � D h�; d�i. Such representing measure is necessarily unique: If �;  are both
regular Borel measures representing �, then their Baire restrictions must coincide
by Corollary E.2, and then they must be equal by Proposition 5.6.

The program for the construction of the measure � is now as follows. First, we
construct an outer measure ��. Next, we show that every open set is ��-measurable
in the sense of Carathéodory. This yields the measure � on the Borel sets. Then we
show that � is regular and, finally, that � is given by integration against �.
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For an open set O � K define

��.O/ WD sup
˚
�.f / W f 2 C.K/; 0 � f � 1; supp.f / � O

�
:

Then ��.;/ D 0, �� is monotone, and ��.K/ D �.1/.
Lemma E.12. The map �� is �-subadditive on open sets.

Proof. Suppose that O D S
k2N Ok, and take 0 � g 2 C.K/ such that 0 � g � 1

and supp.g/ � O. Then the compact set supp.g/ is covered by the collection of open
sets Ok, and hence there is n 2 N such that

supp.g/ �
n[

jD1
Oj:

Take a partition of unity f0; : : : ; fn on K subordinate to the cover O0 WD Knsupp.g/,
O1; : : : ;On, see Theorem E.6. Then each gj WD f � fj has support within Oj and

g D g �
nX

jD0
fj D

nX

jD1
gj:

It follows that

�.g/ D
nX

jD1
�.gj/ �

nX

jD1
��.Oj/ �

1X

jD1
��.Oj/:

Taking the supremum on the left-hand side yields ��.O/ � P1
jD1 ��.Oj/ as

claimed. ut
We now extend the definition of �� to all subsets A � K by

��.A/ WD inf
˚
��.O/ W A � O � K; O open

�
: (E.6)

Recall from Appendix B.3 the notion of an outer measure.

Lemma E.13. The set function �� W P.K/! Œ0; �.1/� is an outer measure.

Proof. By Lemma E.12, �� coincides with the Hahn extension to P.K/ of its
restriction to open sets, see Appendix B.4. Hence, it is an outer measure. ut

By Carathéodory’s Theorem B.3, the outer measure �� is a measure on the
�-algebra

M.��/ WD ˚A � K W 8 H � K W ��.H/ � ��.H \ A/C ��.H n A/
�
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of “��-measurable” sets. Our next aim is to show that each open set is ��-
measurable. We need the following auxiliary result.

Lemma E.14. If A; B � K such that A\B D ;, then ��.A[B/ D ��.A/C��.B/.

Proof. Fix " > 0 and take an open subset O of K such that

��.O/ � ��.A [ B/C ":

Then take, by Lemma 4.1, open subsets U; V of K such that

A � U; B � V; U \ V D ;:

Let f; g be continuous functions with 0 � f; g � 1 such that supp.f / � U \ O
and supp.g/ � V \ O. Then 0 � f C g � 1 and

supp.f C g/ � supp.f / [ supp.g/ � .U \O/[ .V \O/ � O:

Hence, �.f /C �.g/ D �.f C g/ � ��.O/ � ��.A[ B/C ". By varying f and g
we conclude that

��.A/C ��.B/ � ��.A [ B/C ":

Since " > 0 is arbitrary, this finishes the proof. ut
The next result says that �� is regular on open sets.

Lemma E.15. One has ��.O/ D supf��.L/ W L � O; L compactg for each open
set O � K.

Proof. Fix t < ��.O/ and f 2 C.K/ such that 0 � f � 1, L WD supp.f / � O
and t < �.f /. Then for any open set U 	 L we have �.f / � ��.U/. As U was
arbitrary, �.f / � ��.L/, and this concludes the proof. ut

We have all tools in our hands to take the next step.

Lemma E.16. Every open set is ��-measurable, i.e., Bo.K/ �M.��/.

Proof. Let O be an open set, and let H � K be an arbitrary subset. We need to show
that

��.H/ � ��.H \ O/C ��.H nO/: (E.7)

Fix an open set U 	 H and a compact set L � U \ O. Then H n O � Oc, and Oc is
a closed set disjoint from L. Hence, by Lemma E.14 we obtain

��.U/ � ��.L [ .H nO// D ��.L/C ��.H n O/:
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By Lemma E.15 it follows that

��.U/ � ��.U \ O/C ��.H nO/ � ��.H \O/C ��.H n O/:

By taking the infimum with respect to U 	 H (see (E.6)) we arrive at (E.7). ut
At this stage we conclude from Carathéodory’s Theorem B.3 that the restriction

� of �� to the Borel algebra of K is a (finite) measure of total mass �.K/ D �.1/.
Lemma E.17. The measure � is regular on Bo.K/, i.e., for every B 2 Bo.K/ one
has

�.B/ D sup
˚
�.A/ W A compact, A � B

� D inf
˚
�.O/ W O open, B � O

�
: (E.8)

Proof. Define

D WD ˚B 2 Bo.K/ W B has the regularity properties as in (E.8)
�
:

By Lemma E.15, D contains all open sets. We shall show that D is a Dynkin system.
Since the open sets form a \-stable generator of the Borel algebra, it follows that
D D Bo.K/.

Clearly ;; K 2 D. If A; B 2 D with A � B and " > 0 then there are L � A � O,
L0 � B � O0, L; L0 compact and O; O0 open, such that �.O n L/C �.O0 n L0/ < ".
Then

L0 n O � B n A � O0 n L; L0 n O compact, O0 n L open.

Moreover, .O0 n L/ n .L0 n O/ � .O n L/ [ .O0 n L0/ and hence

�..O0 n L/ n .L0 nO// � �.O n L/C �.O0 n L0/ < ":

Since " > 0was arbitrary, it follows that BnA 2 D. Finally, suppose that An 2 D and
An % A. Take Ln � An � On, Ln compact and On open, such that �.On n Ln/ < ".
Without loss of generality we may suppose that Ln � LnC1 and On � OnC1 hold
for all n 2 N. Let O WD S

n2N On, and take N such that �.O n ON/ < ". Then
LN � A � O and

�.O n LN/ � �.O n ON/C �.ON n LN/ � 2":

It follows that A 2 D, and that concludes the proof. ut
Finally, we conclude the proof of the Riesz–Markov Theorem E.11 by showing

that � induces the functional �, i.e., d� D �.

Lemma E.18. For all f 2 C.K/
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�.f / D
Z

K
f d�:

Proof. By considering real and imaginary parts separately we may suppose that f
is real-valued. Then there are real numbers a; b such that K D Œ a � f < b �. Fix
" > 0 and take points

a D t0 < t1 < � � � < tn D b

with tj � tj�1 < ". The sets

Aj WD
	

tj�1 � f < tj



.j D 1; : : : ; n/

form a partition of K into disjoint Baire sets, and the step function

g WD
nX

jD1
tj1Aj satisfies f � g � f C "1:

For each j we take sj < tj. Then the open sets
	

sj�1 < f < tj


, j D 1; : : : ; n, cover K.

Let . j/
n
jD1 be a partition of unity on K subordinate to this cover. Then f  j � tj j

for each j, hence

�.f / D
nX

jD1
�.f  j/ �

nX

jD1
tj�. j/ �

nX

jD1
tj�
	

sj�1 < f < tj


:

(The last inequality here comes from the definition (E.6) of �.) Now we let sj�1 %
tj�1 for each j D 1; : : : ; n and obtain

�.f / �
nX

jD1
tj�
	

tj�1 � f < tj

 D

Z

K
g d� �

Z

K
f d�C "�.K/:

Since " > 0 was arbitrary, this implies that �.f / � RK f d�. Finally, we replace f
by �f and arrive at �.f / D RK f d�. ut

With the Riesz representation theorem we have established an isometric isomor-
phism between the dual space C.K/0 and the space M.K/ of complex Baire (regular
Borel) measures on K, allowing us to identify functionals with measures. This may
lead to the problem that the symbol j�j now has two meanings, depending on
whether we interpret� as a functional (Section E.2) or as a measure (Appendix B.9.)
The next result shows that this ambiguity is only virtual. More precisely, it says that
the isometric isomorphism

d W M.K/! C.K/0
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from the Riesz representation theorem is a lattice isomorphism.

Lemma E.19. For � 2 M.K/ one has jd�j D dj�j.
Proof. For jgj � f 2 C.K/ we have

j.d�/.g/j D
ˇ
ˇ̌
ˇ

Z

K
g d�

ˇ
ˇ̌
ˇ �

Z

K
jgj dj�j � .dj�j/.f /:

Hence, jd�j � d j�j. For the converse, let  be the unique positive regular Borel
measure on K such that d D jd�j. Then

ˇ̌R
K f d�

ˇ̌ � RK jf j d for all f 2 C.K/.
By virtue of Theorem E.1 we obtain that

ˇ
ˇ
ˇ
ˇ

Z

K
f d�

ˇ
ˇ
ˇ
ˇ �

Z

K
jf j d

holds even for all f 2 BM.K/. By the definition of the measure j�j (see Appen-
dix B.9) it follows that j�j � , and hence dj�j � d D jd�j. ut



Appendix F
Standard Probability Spaces

F.1 Polish Spaces

A topology O on a space X is called Polish if it is separable and completely
metrizable, in which case X is called a Polish space. A Polish topology is Hausdorff
and has a countable base. If d is a complete compatible metric, then

d0 W X � X ! Œ0; 1�; d0.x; y/ WD d.x; y/

1C d.x; y/

is an equivalent (hence compatible) complete metric. So when fixing a compatible
metric d for a Polish space we may always assume that d � 1.

Lemma F.1. Each closed and each open subset of a Polish space becomes Polish
when endowed with the subspace topology. Products and topological direct sums of
countably many Polish spaces are Polish.

The last statement means that if X DSn On is the union of at most countably many
pairwise disjoint open sets On � X and each On is Polish in the subspace topology,
then X itself is Polish.

Proof. Note first that a subspace of a separable metric space is separable. Hence,
each closed subset of a Polish space is obviously Polish. If O � X is an open subset
of a Polish space with compatible complete metric d, then

d0.x; y/ WD d.x; y/C
ˇ
ˇ
ˇ

1

d.x;Oc/
� 1

d.y;Oc/

ˇ
ˇ
ˇ .x;2 y 2 O/

is a compatible complete metric on O for the subspace topology.

Let .Xn/n2N be a countably infinite collection of Polish spaces. (The case of finitely
many factors is left as an exercise.) Then X D Q

n2N Xn is completely metrizable,

© Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel 2015
T. Eisner et al., Operator Theoretic Aspects of Ergodic Theory, Graduate
Texts in Mathematics 272, DOI 10.1007/978-3-319-16898-2
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see Appendix A.5. If Mn is a countable dense set in Xn and xn 2 Xn, n 2 N, is a fixed
chosen point in Xn, then the set

M WD
[

n2N

�
M1 �M2 � � � � �Mn �

Y

m>n

fxmg
�

is a countable set, dense in X. This shows that X is separable.

Finally, suppose that X D S
n On is the union of at most countably many pairwise

disjoint open subsets On, and each On is Polish. Then clearly X is separable. For
each n let dn be a compatible complete metric on On with dn � 1. We define

d.x; y/ WD
(

dn.x; y/ if x; y 2 On;

1 else:

It is an easy exercise to show that d is a complete compatible metric on X. ut
Let .X;O/ be a Polish space. The �-algebra Bo.O/ generated by all open sets

is called the Borel algebra. If the topology is understood we write Bo.X/ for the
Borel algebra. A mapping f W X ! Y between Polish spaces X; Y is called Borel
measurable if it is Bo.X/-Bo.Y/ measurable, i.e., if f �1.A/ 2 Bo.X/ for every
A 2 Bo.Y/. Clearly, each continuous mapping is Borel measurable. A measurable
space .X; ˙/ is a standard Borel space if there is a Polish topology O on X such
that ˙ D Bo.O/.

A complex measure defined on Bo.X/, X a metrizable topological space, is called
a Borel measure. The space of all complex Borel measures on X is denoted by
M.X/, and M1.X/ is the subset of probability measures. (This is compatible with
our notation M.K/ for compact spaces K: If X is compact and Polish, then the Borel
and the Baire �-algebra coincide, see Section 5.2.)

The following is a standard result in topological measure theory. It says that each
Borel probability measure on a Polish space is tight.

Lemma F.2. Let � be a Borel probability measure on a Polish space. Then for each
" > 0 there is a compact set K � X such that �.K/ � 1 � ".
Proof. Fix a complete compatible metric d and a dense countable subset M � X.
For each n 2 N we can find a finite set Fn � M such that

�.An/ � 1 � "

2n
where An WD

[

x2Fn

B.x; 1n /:

The set An is closed, and hence so is K WD T
n2N An. Since �.Ac

n/ � "
2n , we must

have�.Kc/ � " and hence�.K/ � 1�". But K is totally bounded (by construction)
and complete (it is closed in X and X is complete), so it is compact by Theorem A.6.

ut
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A probability space X D .X; ˙; �/ is called a Borel probability space if .X; ˙/
is a standard Borel space. It is called standard or a (standard) Lebesgue space
if there is a Borel probability space Y D .Y; ˙ 0; / and an essentially invertible
(measurable and) measure-preserving map ' W X! Y (see Definition 6.3).

Remark F.3. In the literature it is often required that a standard Lebesgue space
is complete. However, as all relevant notions are taken modulo null sets anyway,
this difference is inessential. Our definition appears to be a little more general than
Glasner (2003, Def. 2.12) but is the same when one interprets the term “isomorphic”
there in the right way. Some historical information about standard probability spaces
is included in Remark 7.22.

F.2 Turning Borel into Clopen Sets

This section has a preparatory character with the aim to establish the following
theorem.

Theorem F.4. Let .X;O/ be a Polish space, and let .An/n2N be a sequence of Borel
subsets of X. Then there is a Polish topology O0 on X such that O � O0, Bo.O/ D
Bo.O0/ and An 2 O0 for every n 2 N.

The proof, taken from Kechris (1995, Sec. 13A), requires several steps.

Lemma F.5. Let .X;O/ be a Polish space, and for each n 2 N let a Polish topology
On 	 O be given with Bo.O/ D Bo.On/. Consider O0 WD �

�S
n On

�
the topology

generated by all the On. Then O0 is Polish and Bo.O/ D Bo.O0/.

Proof. Let Y WD Q
n2N.X;On/ with the product topology, which is Polish by

Lemma F.1. The topology O0 is the smallest that renders the diagonal embedding
f W X ! Y, f .x/ WD .x; x; : : : /, continuous, and hence f W .X;O0/ ! f .X/ is a
homeomorphism. Since the diagonal f .X/ is closed in Y, it is Polish (Lemma F.1)
and hence O0 is a Polish topology.

For each n 2 N let Bn be a countable base for On. Then the sets

O1 \ � � � \ On; .n 2 N; Oj 2 Bj; 1 � j � n/

form a countable base for O0. By hypothesis, these sets are all included in Bo.O/,
and therefore Bo.O0/ � Bo.O/. The converse inclusion is trivial. ut

As a consequence of the preceding lemma we note that in the proof of
Theorem F.4 we need only to consider an extension of the topology by one single
Borel set. The special case that A is closed is treated first.

Lemma F.6. Let .X;O/ be a Polish space, and let A � X be a closed subset. Then
there is a Polish topology O0 on X such that O � O0, Bo.O/ D Bo.O0/ and A 2 O0.
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Proof. Let the topology O0 be defined as the disconnected sum topology of A and
O WD X n A, i.e.,

U 2 O0 ” U \ O is open in O and U \ A is open in A:

By Lemma F.1 the subspace topologies on A and O are Polish. Since in A; O 2 O0,
Lemma F.1 again yields that O0 is Polish. It is straightforward to see that O0 �
Bo.O/, whence the claim follows. ut

Now we can give the proof of the main result of this section.

Proof of Theorem F.4. We define

˙ WD˚A 2 Bo.O/ W 9 Polish top. O0on X with O[fAg � O0;Bo.O0/DBo.O/
�

and claim that it is a �-algebra. Indeed, it is trivial that X 2 ˙ , and it follows from
Lemma F.5 that ˙ is closed under countable unions. Finally, take A 2 ˙ and let O0
be a Polish topology extending O, containing A and with Bo.O0/ D Bo.O/. Then
Ac is closed in .X;O0/. By virtue of Lemma F.6 we find a Polish topology O00 	 O0
such that Ac 2 O00 and Bo.O00/ D Bo.O0/. Hence, Ac 2 ˙ and that remained only
to be proved.

Since ˙ defined as above is a sub-�-algebra of Bo.O/ with O � ˙ , it follows that
˙ D Bo.O/. Then for a given sequence .An/n2N in Bo.O/ D ˙ we successively
find Polish topologies O � O1 � O2 : : : with An 2 On and Bo.On/ D Bo.O/. An
application of Lemma F.5 then concludes the proof. ut

Remark F.7. By applying Theorem F.4 to the sequence A1;Ac
1;A2;A

c
2; : : : we can

even achieve that each An is clopen (closed and open) in the new topology O0.
Whence comes the title of this section.

The preceding results have a stunning consequence.

Corollary F.8. Let f W .X;O/ ! .Y; QO/ be a Borel measurable mapping between
Polish spaces. Then there is a Polish topology O0 	 O on X with Bo.O0/ D Bo.O/
and such that f W .X;O0/! .Y; QO/ is continuous.

Proof. Simply apply Theorem F.4 with An WD f �1.On/, where fOn W n 2 Ng is a
countable base of QO. ut

F.3 The Theorem of Von Neumann

We use the terminology of Chapter 12. Recall that a measure-preserving mapping
' W X! Y between probability spaces X and Y induces a corresponding homo-
morphism '� W ˙.Y/ ! ˙.X/ of measure algebras and a Markov embedding
T' W L1.Y/! L1.X/. In general, passing from ' to '� or T' one loses information,
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see Example 6.7. However, each Polish space has a countable set of characteristic
functions that separate the points. Hence, by Lemma 6.9 a measure-preserving map
' W X ! Y between standard probability spaces is uniquely determined (almost
everywhere) by its associated Koopman operator.

We saw in Theorem 12.10 that there is a one-to-one correspondence between
Markov embeddings T W L1.Y/ ! L1.X/ and measure algebra homomorphisms
˚ W ˙.Y/! ˙.X/ via T1A D 1˚A, A 2 ˙.Y/. If ' W X! Y is a measure-
preserving map, then the induced operator T' is a Markov embedding. The
following celebrated result states that for standard probability spaces the converse
also holds (cf. Theorem 7.20).

Theorem F.9 (Von Neumann). Let X; Y be standard probability spaces, and let
T W L1.Y/! L1.X/ be a Markov embedding. Then there is a �X-almost everywhere
unique measure-preserving map ' W X ! Y such that T D T' .

The proof is based on the following result.

Proposition F.10. Let ' W X ! Y be a measure-preserving (Borel measurable)
map between Borel probability spaces X and Y. If ' is injective, then ' is essentially
invertible.

Proof. We begin by picking Polish topologies on X and Y such that ˙X D Bo.X/
and˙Y D Bo.Y/. By Corollary F.8 we may then suppose without loss of generality
that ' is continuous. By Lemma F.2 the measure �X is tight. Therefore, there is a
sequence of compact subsets Kn � X such that A WD S

n2N Kn has full measure.
Since ' is continuous, B WD '.A/ D S

n2N '.Kn/ � Y is �-compact, whence a
Borel set. Moreover, '�1.B/ D '�1'.A/ 	 A, hence B has full measure.

Now fix an arbitrary point x0 2 X and define  W Y ! X by

 .y/ WD
(
'�1.y/ if y 2 B

x0 else:

It is clear that A � Œ  ı ' D idX � and B � Œ ' ı  D idY �, so it remains to show
that  is measurable. To this end, take a closed subset C � X. Then

 �1.C/\ B D '.C/ \ B D
[

n

'.C \ Kn/

is �-compact, whence measurable. Hence,

 �1.C/ D
(
 �1.C/ \ B if x0 … C
�
 �1.C/\ B

� [ Bc if x0 2 C

is measurable. As the closed sets generate the Borel algebra,  is measurable. ut
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Proof of Theorem F.9. Without loss of generality we may suppose that X and Y are
Borel probability spaces. From the given Markov embedding T W L1.Y/ ! L1.X/
pass to ˚ W ˙.Y/ ! ˙.X/ defined by T1A D 1˚A for A 2 ˙.Y/. Choose a
countable base fAn W n 2 Ng for the topology of Y and Borel subsets Bn of X such
that ˚An D Bn modulo null sets for each n 2 N. Then define K WD f0; 1gN and the
maps

�X W X ! K; �X.x/ WD .1Bn.x//n2N;

�Y W Y ! K; �Y.y/ WD .1An.y//n2N:

Then, clearly, �X and �Y are Borel measurable, and �Y is injective.

We claim that �X��X D �Y��Y. To prove this, we write A1 WD A and A0 WD Ac for
any Borel subset A of a Polish space. A generator of the Borel algebra on K is then
given by the sets

K� WD f�1g � f�2g � � � � � f�ng �
Y

m>n

f0; 1g; .� 2 f0; 1gn; n 2 N/:

Then ��1
Y .K�/ D A�11 \ A�22 \ � � � \ A�n

n DW A� and

��1
X .K�/ D B�11 \ B�22 \ � � � \ B�n

n D ˚.A�11 \ A�22 \ � � � \ A�n
n / D ˚.A�/

modulo null sets. Since �X.˚A/ D �Y.A/ for each A 2 ˙.Y/, the claim is proved.

Define the measure � WD �Y��Y 2 M1.K/. By Proposition F.10 the map �Y W
.Y; �Y/ ! .K; �/ is essentially invertible, so let  be an essential inverse of �Y

and define ' WD  ı �X W X ! Y. Then

'�A� D ��
X 

�A� D ��
X .�

�
Y /

�1A� D ��
X K� D ˚.A�/

by the computation above. Since ��
Y W Bo.K/ ! ˙.Y/ is an isomorphism of

measure algebras, the sets A� D ��
Y .K�/ form an essential generator of ˙.Y/,

whence ˚ D '�. It follows that T D T' , and the proof is complete. ut
Theorem F.9 was proved by von Neumann as “Satz 1” in (1932a) for Borel

probability spaces but with a proof different from ours. Since the extension
to standard probability spaces is straightforward, we find that the name “Von
Neumann’s theorem” is justified.

Our proof is inspired by the proof of Theorem 2.15 in Glasner (2003) but with
the difference that we avoid the application of Souslin’s theorem. Employing deep
theorems (like Souslin’s) from the theory of Borel spaces becomes necessary when
one tries to treat the analogous problem of finding a point map inducing a given set-
valued map. So taking the measures into account and staying on the level of measure
algebras simplifies the matter considerably.



Appendix G
Theorems of Eberlein, Grothendieck, and Ellis

Let K be a compact space. We denote by Cp.K/ the space C.K/ endowed with the
pointwise topology, i.e., as a topological subspace of

X WD C
K D

Y

x2K

C

with the product topology. If M � Cp.K/ then its closure in X is denoted
by M

p
, so that M

p \ C.K/ is its closure in Cp.K/. We shall also speak of
p-open/closed/dense/. . . subsets of C.K/ to refer to these notions in the pointwise
topology.

We begin with a central auxiliary result.

Lemma G.1 (Double Limit Lemma). Let M � C.K/, and let .xn/n2N be a seq-
uence in K and x 2 K such that

f .xn/! f .x/ as n!1 (G.1)

for every f 2 M. Then (G.1) holds for every f 2 M
p \ C.K/.

Proof. Let A WD Tj2N fxn W n � jg � K be the set of cluster points of the sequence
.xn/n2N. By assumption, for each g 2 M we have

g.A/ �
\

j2N

˚
g.xn/ W n � j

� D ˚g.x/�;

i.e., g is constant on A with value g.x/. Hence, by the definition of the pointwise
topology, it follows that f .A/ � ff .x/g for every f 2 M

p
.
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On the other hand, if f 2 C.K/ and s 2 C is a cluster point of .f .xn//n2N, then, by
the compactness of K and the continuity of f , we have s 2 f .A/. Combining this
with the previous observation, we see that for f 2 M

p \ C.K/ the point f .x/ is the
unique cluster point of the sequence .f .xn//n2N, and hence its limit. ut

G.1 Separability and Metrizability

Every compact metrizable space is separable, but the converse is not true: A
separable compact space need not be metrizable. The next result shows that compact
subsets of Cp.K/, however, are special in this respect.

Theorem G.2. Let A � Cp.K/ be compact. Then A is separable if and only if A is
metrizable.

Proof. For the nontrivial implication suppose that A is separable, and let M D ffn W
n 2 Ng � A be p-dense in A. The function

d W K � K ! RC; d.x; y/ WD
1X

nD1

jfn.x/� fn.y/j
.1C kfnk1/2n

:

is a continuous semi-metric. By looking at the d-balls Ux WD
	

d.x; �/ < 1
n



and using

the compactness of K one finds a countable set fxm W m 2 Ng � K that is d-dense
in K.

Now define cm WD 1C supf 2A jf .xm/j, which is finite by the compactness of A, and

e W A � A! RC; e.f; g/ WD
1X

mD1

jf .xm/ � g.xm/j
2mcm

for f; g 2 A. We claim that e is a metric for the topology of A. Clearly, e is
continuous, hence by compactness it suffices to show that e is indeed a metric. The
triangle inequality is trivial. Suppose that e.f; g/ D 0. Then f .xm/ D g.xm/ for all
m 2 N. Let x 2 K be arbitrary. By passing to a subsequence we may suppose that
d.xm; x/ ! 0, i.e., fn.xm/ ! fn.x/ for all n 2 N. By Lemma G.1, it follows that
f .xm/! f .x/ and g.xm/! g.x/. Hence, f .x/ D g.x/ for every x 2 K. ut

Recall that a subset A of a topological space ˝ is called relatively compact in
˝ if its closure A is compact. Note that A � C.K/ is relatively compact in Cp.K/ if
and only if the pointwise closure A

p
is compact and contained in C.K/.

Theorem G.3 (Eberlein). Let M � C.K/ and f 2 M
p \ C.K/. Then there is

a countable subset M0 � M such that f 2 M0
p
. If, in addition, M is relatively

compact in Cp.K/, then f is the pointwise limit of a sequence in M.
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Proof. For n 2 N and x WD .x1; : : : ; xn/ 2 Kn take gx;n 2 M such thatˇ̌
gx;n.xj/� f .xj/

ˇ̌
< 1

n for j D 1; : : : n. Then

x 2 Ux;n WD
nY

jD1

	 jgx;n � f j < 1
n



;

which is an open subset of Kn. By compactness, there is a finite set Fn � Kn such
that fUx;n W x 2 Fng is a cover of Kn. Then M0 WD S

nfgx;n W x 2 Fng is countable
and its pointwise closure contains f .

To prove the second statement, suppose that M is relatively compact in Cp.K/. Then
M0

p
is a separable and compact subset of Cp.K/, whence by Theorem G.2 it is

metrizable. Consequently, there is a sequence in M0 converging to f . ut
A subset A of a topological space ˝ is called sequentially closed in ˝ if it

contains the limit of each sequence .fn/n2N that converges in ˝ .

Corollary G.4. If A � C.K/ is relatively compact and sequentially closed in
Cp.K/, then it is compact.

G.2 Grothendieck’s Theorem

The next result connects the pointwise topology on C.K/ with the weak topology
of the Banach space C.K/. We shall write .A; p/ and .A;w/ to denote the pointwise
and weak topologies on A � C.K/, respectively.

Theorem G.5 (Grothendieck). Let M � C.K/. Then the following statements are
equivalent:

(i) M is weakly compact.

(ii) M is norm bounded and compact in Cp.K/.

If (i) and (ii) hold, then the two mentioned topologies coincide on M.

Proof. Note first that the identity mapping

id W .C.K/;w/! .C.K/; p/

is continuous, and both topologies are Hausdorff. Hence, by the uniform bounded-
ness principle, (i) implies (ii) and both topologies coincide on M.

Conversely, suppose that M is norm bounded and p-compact in C.K/. It suffices to
show that id W .M; p/ ! .M;w/ is continuous. To this end, let A � M be weakly
closed in M and f 2 A

p
. Then f 2 M � C.K/ by hypothesis. By Eberlein’s

Theorem G.3 there is a sequence .fn/n2N in A such that fn ! f pointwise. By the
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Riesz Representation Theorem 5.7 and dominated convergence, we obtain fn ! f

weakly. Since A is weakly closed in M, we obtain that f 2 A. Consequently, A is
p-closed. ut
Corollary G.6. For a norm-bounded set M � C.K/ the following statements are
equivalent:

(i) M is relatively weakly compact.

(ii) M is relatively compact in Cp.K/, i.e., M
p � C.K/.

If (i) and (ii) hold, then M
p D M

w
and the two mentioned topologies coincide on M.

Proof. Let A WD M
w

and B D M
p
. Then A � B. If (i) holds, then A is weakly

compact, hence by Theorem G.5 it is p-compact. This implies that A D B and the
two topologies coincide on A, hence also on M.

Conversely, if (ii) holds then by Theorem G.5, B is weakly compact. Hence, A � B
is also weakly compact, i.e., (i) holds. ut

G.3 The Theorem of Kreı̆n

Grothendieck’s theorem has an enormous range of applications. As an example, we
give a quite simple proof of the following result, see Theorem C.11.

Theorem G.7 (Kreı̆n). Let K � E be a weakly compact subset of a Banach space
E. Then conv.K/ is weakly compact.

Proof. Let B WD fx0 2 E0 W kx0k � 1g be the dual unit ball. Then B is weakly�
compact, by the Banach–Alaoglu theorem. The map

' W .E;w�/! Cp.K/ x0 7! x0jK
is continuous and the set C WD '.B/ is norm bounded. By Grothendieck’s theorem,
C is weakly compact and the pointwise topology coincides with the weak topology
on C. It follows that ' W .B;w�/ ! .C.K/;w/ is continuous. For � 2 M.K/ we
define f D ˚.�/ by

f .x0/ WD
Z

K
'.x0/ d� D

Z

K

˝
x0; x

˛
�.dx/ .x0 2 E0/:

Then f 2 E00 and f jB is weakly� continuous. By Proposition G.8 below, f 2 E.
Hence, ˚ W M.K/! E is a bounded linear mapping, and obviously weak�-to-weak
continuous. Since the set M1.K/ of probability measures is weakly� compact and
convex, its image ˚.M1.K// is weakly compact and convex. But ˚.ıx/ D x for
every x 2 K, whence K � ˚.M1.K//. Consequently
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conv.K/ � ˚.M1.K//

and since the latter is weakly compact, the proof is complete. ut
Our proof of Kreı̆n’s theorem still rests on an auxiliary result from the theory of

locally convex vector spaces. For A � E, where E is a locally convex space, the
polar is defined as

Aı WD ˚x0 2 E0 W ˇ̌˝x0; x
˛ˇ̌ � 1 for all x 2 A

�
:

The bipolar theorem (Conway 1990, Thm. V.1.8)—a simple consequence of the
Hahn–Banach separation theorems (Conway 1990, Cor. VI.3.10)—states that

Aıı D absconv.A/

where on E0 one takes the weak�, i.e., the �.E0;E/-topology. (The set absconv.A/ is
the closed absolutely convex hull of A, i.e., the intersection of all closed absolutely
convex sets containing A.) We can now state the result, interesting in its own right.

Theorem G.8 (Banach). Let E be a Banach space and let f 2 E00 be such that its
restriction to B WD fx0 2 E0 W kx0k � 1g is weakly� continuous. Then f 2 E.

Proof. For the proof we regard E as a subset of E00 and consider the dual pair .E00;E0/
of locally convex spaces, each with the weak topology with respect to this duality.
Let " > 0. Since f jB is weakly� continuous, there are vectors x1; : : : ; xn 2 E and
ı > 0 such that

��x0�� � 1; ˇ̌˝
x0; xj

˛ˇ̌ � ı .j D 1; : : : ; n/ ) ˇ̌
f .x0/

ˇ̌ � ": (G.2)

By scaling, we may suppose that ı D 1. Let

U WD ˚x0 2 E0 W ˇˇ˝x0; xj
˛ˇˇ � 1 for j D 1; : : : ; n� D ˚x1; : : : ; xn

�ı D Kı;

where K D absconvfx1; : : : ; xng. Then (G.2) simply says that 1
"
f 2 .U\B/ı. Now,

.U \ B/ı D .Kı \ Bı
E00

/ı D .K [ BE00/ıı D absconv.K [ BE00/ � K C BE00

where the closure is in the weak� topology on E00. But K is compact, and hence
K C BE00 is already weakly� closed. This yields 1

"
f 2 K C BE00 , and hence there is

x 2 K � E such that kf � "xk � ". As " > 0 was arbitrary and E is complete, it
follows that f 2 E. ut
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G.4 Ellis’ Theorem and the Haar Measure
on a Compact Group

A semigroup S endowed with a topology is called a semitopological semigroup if
the multiplication mapping

S � S! S .a; b/ 7! ab

is separately continuous. A group G endowed with a topology is a topological
group if multiplication is jointly continuous and also inversion is continuous.
Equivalently, the mapping

G � G! G; .a; b/ 7! ab�1

is continuous.
A fundamental theorem of Ellis states that a compact semitopological semigroup

that is algebraically a group must be a topological group. Another important
theorem, due to Haar, states that on a compact topological group there exists a
unique invariant probability measure, called the Haar measure. In this section we
shall prove both results, however, in reverse order. We shall first construct the
Haar measure (on a compact semitopological semigroup which is algebraically a
group) and afterwards prove Ellis’ theorem. The cornerstones for the proofs are the
theorems of Grothendieck and Kreı̆n.

Construction of the Haar Measure

Let G be a compact semitopological semigroup, which is algebraically a group. We
define

La; Ra W C.G/! C.G/; .Laf /.x/ WD f .ax/; .Raf /.x/ WD f .xa/;

the left and the right rotations by a 2 G. The operators La and Ra are isometric
isomorphisms on C.G/. Since the multiplication is separately continuous, for f 2
C.G/ the mapping

G! Cp.G/ a 7! Laf

is continuous. Hence, by Grothendieck’s Theorem G.5, the orbit

˚
Laf W a 2 G

�

is weakly compact. By Kreı̆n’s Theorem G.7, its closed convex hull
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Kf WD conv
˚
Laf W a 2 G

�

is weakly compact, too. (The closure here is the same in the weak and in the norm
topology, by Theorem C.7.) Grothendieck’s theorem implies that Kf is p-compact.

The first step now consists in finding a constant function cf 2 Kf . To achieve
this, let us define the oscillation

osc.g/ WD sup
x; y2G

jg.x/� g.y/j

of g 2 C.G/. Then g is constant if and only if osc.g/ D 0. Note that

g 2 Kf implies Kg � Kf and osc.g/ � osc.f /:

Now we let s WD infg2Kf osc.g/. For every n 2 N, the set

˚
g 2 Kf W osc.g/ � sC 1

n

�

is nonempty and p-closed, whence also weakly closed, by Grothendieck’s theorem.
By compactness, the intersection of these sets is nonempty, hence there is g 2 Kf
such that osc.g/ D s. The following lemma now shows that in case f is real-valued,
s D 0, i.e., g is constant.

Lemma G.9. Let g 2 C.KIR/ and osc.g/ > 0. Then there exists h 2 Kg with
osc.h/ < osc.g/.

Proof. After scaling and shifting we may suppose that �1 � g � 1 and osc.g/ D 2.
By compactness, there are a1; : : : ; an 2 G such that

	
g � 1

2


 �
n[

jD1
a�1

j

	
g < � 1

2



:

Define h WD 1
nC1 .gC

Pn
jD1 Laj g/ 2 Kg. Then clearly �1 � h. If g.x/ � 1

2
then there

exists at least one aj such that g.ajx/ < � 12 . Hence

h.x/ � 1
nC1

�
1 � 1

2
C .n� 1/

�
D n� 1

2
nC1 :

If g.x/ < 1
2
, then

h.x/ � 1
nC1

�
1
2
C n

�
D nC 1

2
nC1 :

It follows that h � nC 1
2

nC1 and hence osc.h/ < 2 D osc.g/. ut
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By decomposing a function f into real and imaginary parts, we conclude that
each set Kf contains a constant function cf . Of course, the same argument is valid
for right rotations, and hence for f 2 C.K/ there is a constant function

df 2 K0
f WD conv

˚
Raf W a 2 G

�
:

Claim: We have cf D df .

Proof. By construction there are sequences Sn 2 convfLa W a 2 Gg and Tn 2
convfRa W a 2 Gg such that Snf ! cf and Tnf ! df . Hence TmSnf ! cf as
n!1 and

TmSnf D SnTmf ! df as m!1.

But since these convergences are in norm and all the operators are contractions, the
claim follows. ut

It follows that cf is the unique constant function in Kf as well as the unique
constant function in K0

f . We shall write

cf D Pf:

It is clear that P1 D 1 and Pf � 0 whenever f � 0. Next we show that PRa D P
for a 2 G. Note that since left and right rotations commute, we have

Pf D RaPf 2 Ra.Kf / D KRaf ;

whence Pf D PRaf by uniqueness. Analogously, Pf D PLa for every a 2 G.
It remains to show that P is linear. Clearly P is R-homogeneous, and Pf D

P.Re f /C iP.Imf / by uniqueness. It follows that P is C-homogeneous.

Claim: P.f C g/ D Pf C Pg.

Proof. Let " > 0. Then there are S;T 2 convfLa W a 2 Gg such that
kSf � Pf k ; kTSg� PSgk � ". Note that TPf D Pf and PSg D Pg. Hence

kTS.f C g/� .Pf C Pg/k � kTSf � Pf k C kTSg � Pgk
D kT.Sf � Pf /k C kTSg � PSgk � 2";

since T is a contraction. It follows that Pf C Pg 2 KfCg, and hence P.f C g/ D
Pf C Pg by uniqueness. ut

Since Pf is a constant function for each f 2 C.K/ we may write

Pf D m.f /1 .f 2 C.K//:

Then m is a positive, linear functional, invariant under left and right rotations. We
have proved the major part of the following theorem.
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Theorem G.10 (Haar Measure). Let G be a compact semitopological semigroup
which is algebraically a group. Then there is a unique probability measure m on G
that is invariant under all left rotations. This measure has the following additional
properties:

a) m is strictly positive, i.e., supp.m/ D G.

b) m is invariant under right rotations.

c) m is invariant under inversion.

Proof. Existence was proved above, as well as the invariance under right rotations.
For uniqueness, suppose that � is a probability measure on G that is invariant under
all left rotations. Given f 2 C.G/, it follows that hf;�i D hg; �i for all g 2 Kf ,
and hence

hf;�i D hPf;�i D m.f / h1; �i D m.f /:

In order to see that m is strictly positive, let 0 � f 2 C.G/ such that f 6D 0. Define
Ux WD ŒLxf > 0 � for x 2 K and note that the sets Ux cover K. By compactness, there
are x1; : : : ; xn 2 K such that K D Sn

jD1 Uxj . Hence the function g WD Pn
jD1 Lxjf is

strictly positive, so that there exists c > 0 such that c1 � g. It follows that

c D m.c1/ � m.g/ D
nX

jD1
m.Lxjf / D n m.f /;

which implies that m.f / > 0.

Finally, let S W C.G/ ! C.G/ be the reflection mapping defined by .Sf /.x/ WD
f .x�1/. Since m is right-invariant, the probability measure � WD S0m 2 M.G/ is
left invariant, and hence by uniqueness � D m. This is assertion c). ut

The unique probability measure m from Theorem G.10 is called the Haar
measure on G.

Ellis’ Theorem

For a Hilbert space H let

Iso.H/ WD ˚T 2 L .H/ W T�T D I
�

and U.H/ WD ˚U 2 L .H/ W U� D U�1�

be the semigroup of isometries and the unitary group, respectively. Recall the
following from Corollary D.19.

Lemma G.11. For a Hilbert space H, the strong and the weak operator topologies
coincide on Iso.H/. The unitary group U.H/ is a topological group with respect to
this topology.
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We are now in a position to prove Ellis’ theorem.

Theorem G.12 (Ellis). Let G be a compact semitopological semigroup. If G is
algebraically a group, it is a (compact) topological group.

Proof. By Theorem G.10 we can employ the Haar measure m on G. Let H WD L2.G/
and let

R W G! L .H/; a 7! Ra

be the right regular representation of G on H, see also Section 15.1. Then R is a
homomorphism of G into the unitary group U.H/ on H. Also, R is injective, by
Urysohn’s lemma and since m is strictly positive.

We claim that R is continuous with respect to the weak operator topology on H. To
prove this claim we have to show that for f; g 2 H the mapping

 f;g W G! C;  f;g.a/ WD .Raf j g/ D
Z

G
.Raf / � g dm

is continuous. Since C.G/ is dense in H, we may suppose that f 2 C.G/. Then
by Grothendieck’s Theorem G.5 the mapping a 7! Raf is continuous for the weak
topology on C.G/, so the claim is established.

By Lemma G.11, the weak and the strong operator topologies coincide, and U.H/
is a topological group for this latter topology. Since the right regular representation
is a homeomorphism onto its image, the theorem is proved. ut

G.5 Sequential Compactness and the Eberlein–Šmulian
Theorem

A Hausdorff topological space ˝ is called countably compact if every sequence
.fn/n2N in ˝ has a cluster point, i.e.,

\

n2N

˚
fk W k � n

� 6D ;:

It is called sequentially compact if every sequence has a convergent subsequence.
Furthermore, a subset A of a topological space ˝ is called relatively countably
compact if every sequence in A has a cluster point in˝ and relatively sequentially
compact in ˝ if every sequence in A has a subsequence that converges in ˝ .

It is clear that a (relatively) compact or sequentially compact subset is also
(relatively) countably compact. However, the converses are false in general. Also,
neither notion—(relative) compactness and (relative) sequential compactness—
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implies the other. Eberlein’s Theorem G.2 is the key to the important fact that for
subsets of Cp.K/ these notions all coincide.

Lemma G.13. Let A � Cp.K/ be (relatively) compact in Cp.K/. Then A is (rela-
tively) sequentially compact.

Proof. By hypothesis, A
p D A

p \ C.K/ is compact. Let .fn/n2N be a sequence in
A. Then Y WD ffn W n 2 Ngp is a separable compact set in Cp.K/. By Theorem G.2,
Y is metrizable. Consequently, there is f 2 Y and a subsequence .fkn/n2N such that
fkn ! f pointwise as n!1. ut

The next theorem is another result due to Grothendieck.

Theorem G.14 (Grothendieck). A subset A � Cp.K/ is relatively compact if and
only if it is relatively countably compact.

Proof. If A is relatively compact, it is relatively countably compact. For the
converse, suppose that A is relatively countably compact and let B WD A

p � C
K .

For x 2 K the set ff .x/ W f 2 Ag is relatively countably compact in C, hence
bounded. By Tychonoff’s theorem, it follows that B is compact, and it remains to
show that B � C.K/.

Suppose towards a contradiction that there exists g 2 B nC.K/. Then there is y 2 K
at which g fails to be continuous, so there is " > 0 such that y is a cluster point of
Z WD Œ jg.y/� gj � " �. We shall recursively construct sequences of points .xn/n2N
in Z, of functions .fn/n2N in A and of open neighborhoods .Un/n2N of y such that

1)
ˇ̌
fn.xj/� g.xj/

ˇ̌
< 1

n for j < n and jfn.y/� g.y/j < 1
n ,

2) y 2 Un � Un � Un�1
T

j�n

	 ˇˇfj � fj.y/
ˇ
ˇ < 1

n



,

3) xn 2 Un.

Suppose that xj; fj; and Uj are constructed for 1 � j < n. (This is a vac-
uous condition for n D 1.) Since g is in the p-closure of A, one can find
fn 2 A satisfying 1). Since fn is continuous and by the induction hypothesis,
Un�1

T
j�n

	 ˇ̌
fj � fj.y/

ˇ̌
< 1

n



is an open neighborhood of y, hence one can find

another open neighborhood Un of y satisfying 2). Finally, since y is an accumulation
point of Z, one can pick xn 2 Un \ Z, i.e., we have 3).

Now, by relative countable compactness of A in Cp.K/, there is a cluster point
f 2 Cp.K/ of .fn/n2N. By 2) and 3), if n � j then

ˇ
ˇfj.xn/� fj.y/

ˇ
ˇ � 1

n . Hence
fj.xn/! fj.y/ as n!1 for each j 2 N. By the double limit lemma (Lemma G.1),
f .xn/! f .y/ as well. On the other hand, 1) implies that f .xn/ D g.xn/ for each
n 2 N and f .y/ D g.y/. Since xn 2 Z, we arrive at

" � jg.y/� g.xn/j D jf .y/� f .xn/j ! 0 .n!1/;

which is a contradiction. ut
Corollary G.15. For a subset A � Cp.K/ the following assertions are equivalent:
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(i) A is relatively compact in Cp.K/.

(ii) A is relatively countably compact in Cp.K/.

(iii) A is relatively sequentially compact in Cp.K/.

This is just a combination of Lemma G.13 and Theorem G.14.

Corollary G.16. For a subset A � Cp.K/ the following assertions are equivalent:

(i) A is compact in Cp.K/.

(ii) A is countably compact in Cp.K/.

(iii) A is sequentially compact in Cp.K/.

Proof. By Lemma G.13 (i) implies (iii), and (iii) trivially implies (ii). Suppose
that (ii) holds. Then A is relatively compact by Grothendieck’s Theorem G.14, and
sequentially closed. Hence, A is compact by Corollary G.4. ut

The Theorem of Eberlein–Šmulian

For (our) convenience, we prove only the restricted version of the Eberlein–Šmulian
theorem as stated already in Appendix C.6.

Theorem G.17 (Eberlein–Šmulian). Let E be a Banach space. Then A � E
is (relatively) weakly compact if and only if A is (relatively) weakly sequentially
compact. In this case, every f 2 A

w
is the weak limit of a sequence in A.

Proof. Let K WD fx0 2 E0 W kx0k � 1g with the weak� topology inherited from E0.
Then K is compact by the Banach–Alaoglu Theorem. Let ˚ W E ! C.K/ be the
canonical map which maps an element x 2 E to h�; xi jK . Then

˚ W .E;w/! Cp.K/

is a homeomorphism onto its image. If A is relatively weakly compact, then A
is weakly compact, and hence ˚.A/ is compact in Cp.K/. By Corollary G.16,
˚.A/ is sequentially compact in Cp.K/. Since ˚ is a homeomorphism, A is weakly
sequentially compact. In particular, A is relatively weakly sequentially compact.

Conversely, suppose that A is relatively weakly sequentially compact. Then ˚.A/ is
relatively sequentially compact in ˚.E/, and a fortiori in Cp.K/. By Corollary G.15
it follows that ˚.A/ is relatively compact in Cp.K/. By Eberlein’s Theorem G.3,

every f 2 ˚.A/
p

is the p-limit of a sequence .˚.an//n2N for some sequence
.an/n2N in A. By hypothesis, there is a 2 E such that an ! a weakly. Hence
f D ˚.a/ 2 ˚.E/. This shows that ˚.A/

p � E, hence ˚.A/
p D ˚.A/. Since

˚ is a homeomorphism onto its image, A is relatively compact.
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Finally, suppose that A is sequentially weakly compact. Then ˚.A/ is sequentially
compact in Cp.K/, whence by Corollary G.16, it is compact. Since ˚ is a
homeomorphism onto its image, A is weakly compact as well. ut

Notes

Section G.1 is heavily inspired by Todorcevic (1997, Ch. 2). There, the prominent
role of the double limit Lemma G.1 is a little obscured, and its proof is based on
the first half of Theorem G.3. Also, there is no reference for Theorem G.3 and we
could not find the result in the works of Eberlein. However, the ideas here and for
the Eberlein–Šmulian Theorem G.17 all go back to the article Eberlein (1947).

Grothendieck’s Theorems G.5 and G.14 originate in Grothendieck (1952). The
proof for Theorem G.5 given here had no direct model, but in finding it we profited
much from Hendrik Vogt’s comments during the Internetseminar 2008, especially
from his observation that one could avoid the use of the Eberlein–Šmulian theorem
in the proof. Hendrik’s comments also had their share in the shaping of Section G.1.
Theorem G.14 was taken from Todorcevic (1997, Ch. 2), but with some considerable
simplifications by Jürgen Voigt.

Kreı̆n’s Theorem G.7 goes back to Kreı̆n (1937), cf. also Kreı̆n and Šmulian
(1940, Thm. 24). The proof we give is from Glicksberg (1961, p. 207) and it differs
from the common proofs in that it does not involve reducing it to a separable case by
employing the Eberlein–Šmulian theorem. Glicksberg invokes Grothendieck (1950)
for the generalization of Proposition G.8 to complete locally convex spaces, but for
normed spaces it appears in Banach (1932, VIII, Thm. 8). (Thanks to Jürgen Voigt
for this reference.) Our proof is inspired by Schaefer (1980, IV.6.2).

Ellis’ Theorem G.12 is from Ellis (1957), but the original as well as the common
proofs all rest on a reduction to a metrizable case and then employing the Baire
category theorem in a subtle way. That one can base a proof also on Grothendieck’s
theorem was observed in de Leeuw and Glicksberg (1961, App.). Moreover, the
construction of Haar measure in Section G.4 stems directly from there, but it is
analogous to Rudin (1991, Ch. 5) and Pontryagin (1966, pp. 91–99). Note that we
deviate from de Leeuw and Glicksberg (1961, App.) in the last step, the actual
proof of Ellis’ theorem, in that we replace topological arguments by operator
theoretic ones.
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B. Szőkefalvi-Nagy and C. Foiaş
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strict factor, 266
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accumulation point, 482
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abstract measure algebra, 230
Boolean algebra, 230
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almost stable subspace, 176
almost weakly stable, 176, 331

semigroup, 334
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amenability, 156
amenable semigroup, 157, 321, 330
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arithmetic progression, 405
asymptotic density, 173
automorphism
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Markov, 257
measure-preserving, 394, 403
of a topological system, 15

B
Baire algebra, 79
Baire measure, 80
Baire space, 488
baker’s transformation, 74, 229
Banach algebra, 509
Banach density, 456
Banach lattice, 119
Banach limit, 207, 457
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Banach sublattice, 120

unital, 258
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bi-dual
group, 280
of a normed space, 512

bi-invariant set, 20
bi-Markov operator, 249
block, 21
Bohr compactification, 60, 281
Boole transformation, 90
Borel algebra, 79, 493
Borel measure, 80
Borel probability space, 98
bounded gaps, 36, 188, 431, 452
bp-convergence, 544

C
Cantor set, 11, 488
Cantor system, 11
card shuffling, 167
ceiling, 109
Cesàro

averages, 7
bounded, 146
convergent, 7
limit, 7
mean, 137

character
group, 276
of T, 58
of an Abelian group, 276, 302
orthogonality, 277

character group, see dual group
characteristic factor, 449

polynomial averages, 473
universal, 451
weighted averages, 464
Wiener–Wintner averages, 467

characteristic function, 47, 491
clopen set, 487
closed absolutely convex hull, 567
cluster point, 482

of a net, 490
cocompact subgroup, 13, 86, 87, 304
compact

countably, 572
relatively countably, 572
relatively sequentially, 572
relatively weakly, 514
relatively weakly sequentially, 514
sequentially, 572

compact group, 12, 274
compact probability space, 235
compact space, 486

compactification
Bohr, 60, 281
one-point, 59, 93, 487
Stone–Čech, 60, 408, 429
two-point, 23

compatible metric, 480
complement (in a lattice), 230
complete

lattice, 117
metric space, 480
order complete Banach lattice, 122
relatively complete sub-� -algebra, 260

complete isomorphism invariant, 285
completely nonunitary part, 536
composition operator, see Koopman operator
compression, 539
conditional expectation, 141, 257

operator, 261
conditional probability, 103
congruence in topological systems, 16
conjugate exponent, 161
conjugation

invariant, 48
of elements (in a vector lattice), 120

convergence in density, 173
convolution, 296

on semigroups, 410
coordinate function, 298
correlation, 349
countable Lebesgue spectrum, 389
cyclic subspace, 371
cyclic vector, 400
cylinder set, 497

D
d-torus, 18
decomposition

discrete-continuous, 383
Jacobs–de Leeuw–Glicksberg, 331
mean ergodic, 138
Szőkefalvi-Nagy–Foiaş, 535
Wold, 537

density
asymptotic, 173
Banach (lower/upper), 456
convergence in density, 173
upper/lower, 188

dilation, 539
Diophantine approximation, 40
Dirac functional, 51
direct limit, 70, 266
directed set, 489
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discrete spectrum, 349, 353, 386
dyadic adding machine, 358
dyadic solenoid, 358
dynamical system, 349
Halmos–von Neumann theorem, 350
Heisenberg system, 360
Kakutani–von Neumann map, 356
operator, 338

discrete-continuous decomposition, 383
disjoint union of topological systems, 21, 416
disjointness of dynamical systems, 353
distal, 415, 429
doubling map, 30, 74, 227

topological system, 30
dual group, 276, 302
dual of a normed space, 511
Dunford–Schwartz operator, 149
dyadic adding machine, 13, 358
dyadic integers, 13
dyadic odometer, 358
dyadic rational, 359
dyadic solenoid, 359, 364
dynamical system, 3

abstract, 236
measure-preserving, 73
topological, 9
topological measure-preserving, 235
with discrete spectrum, 349

Dynkin system, 493

E
eigensystem, 346
Ellis semigroup, 412
entropy, 391
enveloping semigroup, 412
equidistributed sequence, 203
Erdős–Turán conjecture, 434
Ergode, 1
Ergodenhypothese, 136
ergodic
	 -system, 306
abstract system, 236
automorphism, 395
characterization, 126
group rotation, 198
hypothesis, 136
Markov shift, 107, 144
measure, 193
measure-preserving system, 105
rotation on torus, 126
semigroup of Markov operators, 347
totally, 178
uniquely, 194

ergodic averages
subsequential, 471
weighted, 461
Wiener–Wintner, 465

ergodic hypothesis, 4
ergodic theorem

Akcoglu, 213
Bourgain (return time), 464
dominated, 223
entangled, 475
for (semi)group actions, 474
individual, 211
maximal, 216
mean ergodic, 139
noncommutative, 475
pointwise, 211, 212
return time, 468
stochastic, 213
subsequential, 470, 471
von Neumann (mean ergodic), 136
weighted, 461, 462
weighted multiple, 476
Wiener–Wintner, 464
Wiener–Wintner (linear), 469
Wiener–Wintner (uniform), 467

ergodisches System, 2
essential inverse, 97
essentially equal sets, 95
excluded block, 21
extension, 233, 449

invertible, 21
of abstract systems, 236

extremally disconnected, 488
extreme point, 515

F
face, 515
factor, 233, 449

bi-invariant, 262
characteristic, 449
fixed, 346
Kronecker, 346
Markov operator, 255
of abstract systems, 236
strict, 262

faithful probability space, 235
faithful representation, 292
finite intersection property, 486
first category, 488
fixed factor, 262, 346
fixed space, 57, 125, 137
forward (topologically) transitive, 23
Fourier coefficient of a measure, 373
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full subalgebra, 238
functional

Dirac, 51
evaluation, 51
linear, 511
order continuous, 241
positive, 546

functional calculus
Borel, 372
continuous, 369

Furstenberg correspondence, 437, 444, 455,
459

G
Gauß map, 75
Gı-set, 489
Gelfand map, 61
Gelfand space, 59, 60
generating element, 283
generator of a � -algebra, 493
generic point, 222, 465
Gilbert–Shannon–Reeds model, 167
good

subsequence, 471
weight (mean ergodic theorem), 461
weight (pointwise ergodic theorem), 464

Gowers–Host–Kra seminorms, 450, 459
group, 318

Abelian, 317
bi-dual, 280
compact, 12, 274
dual, 276
dyadic integers, 13
Heisenberg, 14
inverse element, 318
left rotation, 12
locally compact group, 274
monothetic, 283
topological, 12, 274
unitary, 571

group extension, 19
abstract, 308, 309
recurrence, 39
uniquely ergodic, 199

group representation, 292
group rotation, 12, 85, 278, 350

distal, 415
ergodic, 198
measure-preserving system, 85
minimal, 198
not weakly mixing, 180
topological system, 12

group translation as topological system, 12

H
Haar lift, 310
Haar measure, 84, 87, 275, 571
Heisenberg

group, 14
manifold, 14
system, 14, 415

Hilbert lattice, 124
Hilbert space, 521
homeomorphism, 483
homogeneous 	 -system, 304
homogeneous space, 13
homogeneous system, 13, 14, 17, 85, 87, 304

distal, 429
homomorphism

of abstract system, 236
of algebras, 509
of Banach lattices, 121
of lattices, 117
of measure algebras, 230
of measure-preserving systems, 231
of topological systems, 15
point (measure-preserving systems), 226

I
ideal

in a Banach lattice, 123
in a semigroup, 318
in an algebra, 509
maximal, 509
principal, 509
proper, 509

idempotent, 317, 413
induced operator, see Koopman operator
induced transformation, 107
inductive limit, 70

of abstract systems, 266
inequality

Cauchy–Schwarz, 522
Gowers–Cauchy–Schwarz, 459
Hölder, 131, 134
maximal, 214
van der Corput, 183, 458
Young, 297

infimum in a lattice, 117
infinite product probability space, 498
infinitely recurrent set, 100
intertwining, 233, 297
invariant measure, 73, 192

existence, 192
product system, 208
projective limit, 209
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invariant set
in a measure-preserving system, 104
in a topological system, 20

inverse
essential (measure-preserving system), 97
in a Banach algebra, 509

invertible
measure-preserving system, 97
topological system, 9

invertible core, 265
invertible extension, 21, 269, 270
involution, 509
IP set, 417, 431
IP� set, 419, 431
irrational rotation, 25
irreducible

matrix, 27
positive operator, 125
row-stochastic matrix, 143
unitary representation, 298

isolated point, 482
isometric topological system, 35
isomorphism

�-isomorphism, 510
Markov, 232
of abstract systems, 236
of algebras, 509
of lattices, 117
of measure-preserving systems, 231
of topological groups, 279
of topological systems, 15
point (measure-preserving systems), 226
spectral, 352
topological 	 -system, 303

isomorphism problem, 352, 396, 403
iterate measure-preserving system, 165

J
Jacobs–de Leeuw–Glicksberg decomp., 331

reversible part, 331
stable part, 331

JdLG-admissible, 329
JdLG-decomposition, 331

K
K-automorphism, 392
K-system, 392
Kakutani–von Neumann map, 356
Kakutani–von Neumann odometer, 356
Kolmogorov automorphism, 392
Kolmogorov–Sinaı̆ entropy, 391
Koopman operator, vii, 3, 45, 54, 115

Koopman representation, 304
Kronecker factor, 346

of affine endomorphisms, 356
of Heisenberg systems, 360
of measure-preserving systems, 349
of skew rotations, 359

L
lattice, 117

Banach lattice, 119
distributive, 230

law of large numbers
strong, 220
weak, 142

Lebesgue spectrum, 388
left ideal (in a semigroup), 318
left rotation, 12
left rotation operator, 58
left shift, 10
lemma

Bauer, 311
Fekete, 68
Hopf, 223
Kakutani–Rokhlin, 107
Koopman–von Neumann, 174
Riemann–Lebesgue, 388
Urysohn, 47
van der Corput, 183, 458
Weil, 283
Wiener, 385
Wiener (abstract), 340

letters, 11
limit

Banach, 207, 457
in density, 173
inductive, 70, 266
inverse, 31
of a net, 489
p-limit, 408
projective, 13, 31, 44, 69, 289

linear sequence, 469
linear span, 508
locally compact group, 274
locally compact space, 487
locally convex space, 515
log-exp sequence, 473

M
marginal measure, 208
Markov embedding, 231, 254
Markov isomorphism, 232
Markov measure, 78
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embedding, 254
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factor map, 255
isomorphism, 256
projection, 257
trivial, 250

Markov representation, 306
Markov shift, 79

transition matrix, 79
matrix

aperiodic, 170
irreducible, 27, 143
primitive, 170
row-stochastic, 143
row-substochastic, 10
strictly positive, 143
transition, 26, 79

Mautner phenomenon, 362
maximal ideal, 53, 509
maximal inequality, 214
maximal operator, 214
maximal spectral type, 380

of measure-preserving systems, 387
mean ergodic

operator, 138, 145
operator semigroup, 153, 262, 294, 333
projection, 138, 153, 261, 294, 346
subalgebra, 243

measurable
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mapping, 495
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set, 493

measurable space, 72, 492
measure, 493

absolutely continuous, 376, 503
Baire, 80
Borel, 80
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conjugate, 502
continuous, 383, 505
discrete, 383, 505
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ergodic, 193
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Haar, 84, 87, 275, 571
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marginal, 208
Markov, 78
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singular, 376, 503
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strictly positive, 83, 196
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measure space, 493
measure-preserving 	 -system, 306
measure-preserving map, 73
measure-preserving system, 73

affine endomorphism, 356
automorphism on a group, 403
baker’s transformation, 74
Boole transformation, 90
coprime, 353
discrete spectrum, 349
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doubling map, 74
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ergodic, 105
faithful topological, 236
Gauß map, 75
group automorphism, 394
group rotation, 85
homogeneous system, 85
invariant set, 104
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iterate, 165
Kakutani–von Neumann map, 356
metric, 236
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right rotation system, 85
skew product, 79
spectrally isomorphic, 352
standard, 98, 386
tent map, 75
topological, 235
trivial, 73

metric, 479
compatible, 480
discrete, 480
model, 239
probability space, 235
space, 479
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mildly mixing, 187
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action, 424
group rotation, 198
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topological system, 34
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measure-preserving system, 270
topological system, 21
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Markov shift, 168
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multiplicative (linear map), 509
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net, 489
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number, 223
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operator
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bi-Markov, 249
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Markov, 193, 207, 231, 249
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positive, 121, 546
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unitary, 529
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Markov, 348
mean ergodic, 153, 262, 294, 333
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opposite group, 303
orbit, 22, 305

forward, 22
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functional, 241
norm, 122

order interval, 122
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orthogonal projection, 531
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P
partition of unity, 548
partition regular, 431
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p-limit, 408
Poincaré sequence, 456
point

almost periodic, 37
generic, 222, 465
infinitely recurrent, 37
periodic, 36
recurrent, 36
simultaneously recurrent, 423
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pointwise topology (on the dual group), 278
polar (of a set), 567
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positive functional, 546
positive operator, 121
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irreducible, 125
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positive semi-definite operator, 525
power-bounded, 148
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Banach, 214
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459
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of uniform boundedness, 511
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probability measure, 493
probability space, 493

compact, 235
faithful, 235
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product
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of topological systems, 17
of topological systems (infinite), 18
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mean ergodic, 138, 261, 294
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projective limit, 13, 31, 44, 69, 289
invariant measure, 209

proximality, 413
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Q
quotient

mapping, 483
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R
Rajchman measure, 387
random literature, 112
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recurrent set, 99
reducible positive operator, 125
reducing subspace, 297
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relatively complete sub-� -algebra, 260
relatively dense, 36, 188, 452
relatively weakly mixing, 454
representation

faithful, 292
finite dimensional, 297
Gelfand, 60
kernel, 292
left/right regular, 292
of a group, 292
Stone, 240
Stone representation space, 240
strongly continuous, 292
unitary, 297
weakly continuous, 292

restricted direct product, 288
return time

expected, 107
of uniformly recurrent points, 36
theorem (Bourgain), 468
time of first return, 103

reversible part, 331
right ideal (in a semigroup), 318
rigid, 187
Rokhlin tower, 109
Rokhlin’s problem, 186
rotation, 12

irrational, 25
rational, 25
system (measure-preserving), 85
system (topological), 12
torus, 12

row-stochastic matrix, 143
irreducible, 143

row-substochastic matrix, 10

S
� -additive, 491
� -algebra, 492

invariant, 141
second category, 488
semigroup, 317

Abelian, 317
amenable, 330
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compact left-topological, 320
Ellis, 412
enveloping, 412
generated by a single operator, 328
ideal, 318
idempotent element, 317
JdLG-admissible, 329
left ideal, 318
left-topological, 319
mean ergodic, 153, 262, 294, 333
relatively weakly compact, 155
right ideal, 318
right-topological, 319
semitopological, 319, 568
subsemigroup, 318
weakly compact, 323

separable
metric space, 508
topological space, 481

separately continuous, 568
separating, 485

subalgebra, 48
subset, 147

sequence
almost periodic, 60
equidistributed, 203
linear, 469, 477
log-exp, 473
Poincaré, 456
polynomial, 477
Thue–Morse, 43

set
AP-rich, 405, 431, 433, 434
IP set, 417, 431
IP� set, 419, 431
of recurrence, 456
relatively dense, 36
syndetic, 36
thick, 416, 430

shift, 10
Bernoulli, 77
left, 10
left (operator), 159
Markov, 79
one-sided, 11
right (operator), 159
topological system, 10
two-sided, 11
two-sided Bernoulli, 229

simple Lebesgue spectrum, 402
simple spectrum, 381, 400
simultaneous recurrence, 423
singular Lebesgue spectrum, 389

skew product
cocycle, 19
of measure-preserving systems, 79
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skew rotation, 19
skew shift, 19
spectral measure, 373, 399
spectral radius

formula, 63
in unital algebras, 62
of an operator, 518

spectral theorem
compact normal operators, 535
functional calculus, 399
multiplier form, 371
spectral measures, 399

spectrally isomorphic, 352
spectrum

countable Lebesgue, 389
in unital algebras, 62
of an operator, 518

stabilizer, 305
stable

\, [, n-stable, 491
^, _-stable, 117
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standard probability space, 98
standard system, 98, 386
state space (of a Bernoulli shift), 77
step function, 500
Stone representation, 240
Stone–Čech compactification, 60, 408, 429
strictly convex, 155, 330
strictly ergodic topological system, 196
strictly positive measure, 83, 196
strongly compact operator group, 332
strongly mixing, 162, 388

of all orders, 186, 389
subalgebra, 48

conjugation invariant, 48
full, 238
in C.K/, 48
mean ergodic, 243

sublattice, 117
Banach, 120

subsemigroup, 318
subshift, 21

of finite type, 22
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maximal surjective, 20, 209
minimal, 34
of a topological system, 20

support of a measure, 82, 195
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syndetic, 36, 431, 452
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Szőkefalvi-Nagy–Foiaş decomp., 339, 535

T
tent map, 30, 75, 228

measure-preserving system, 75
topological system, 30

theorem
Akcoglu, 213
Anzai, 397
Banach’s principle, 214
Banach–Alaoglu, 513
Banach–Steinhaus, 511
bipolar theorem, 567
Birkhoff (pointwise ergodic), 211
Birkhoff (recurrence), 39
Blum–Hanson, 170
Bochner–Herglotz, 373
Borel, 219
Bourgain, 473
Bourgain (return time), 468
Bourgain–Wierdl, 474
Carathéodory, 494
Dini, 133
Dirichlet, 42
dominated convergence theorem, 499
dominated ergodic theorem, 223
Dynkin, 493
Eberlein, 564
Eberlein–Šmulian, 514, 574
Ellis (minimal idempotents), 320
Ellis (topological groups), 321, 572
existence of Haar measure, 275, 571
Fubini, 501
Furstenberg, 201
Furstenberg–Sárközy, 455
Gelfand–Mazur, 64
Goldstine, 513
Green–Tao, 5, 434
Grothendieck, 565, 573
Hahn, 494
Hahn–Banach, 512
Hahn–Banach separation, 515
Hahn–Hellinger, 381
Halmos–Rokhlin, 394
Halmos–von Neumann, 350
Heine–Borel, 487
Host, 389
Host–Kra, 445

inverse mapping, 511
Jewett–Krieger, 244
Jones–Lin, 176
Kac, 107
Kakutani, 151
Kolmogorov’s law of large numbers,

220
Kreı̆n, 514, 566
Kreı̆n–Milman, 515
Kronecker, 25, 26, 282
Krylov–Bogoljubov, 83, 192
Lebesgue, 505
Lind–Miles–Thomas, 395
Mackey, 352
Markov–Kakutani, 192
maximal ergodic theorem, 216
maximal inequality, 217
mean ergodic theorem, 139
Milman, 516
Milman–Pettis, 155
monotone convergence theorem, 496
Ornstein (Bernoulli shift), 391
Ornstein (K-systems), 392
Perron, 91, 143
Peter–Weyl, 302
Poincaré recurrence theorem, 100
pointwise ergodic theorem, 212
polynomial mean ergodic theorem, 472
polynomial pointwise ergodic theorem, 473
polynomial Szemerédi, 456
Pontryagin duality theorem, 280
prime number theorem, 7
principle of uniform boundedness, 511
Pythagoras, 522
Riesz representation theorem, 82
Riesz–Fréchet, 523
Riesz–Markov, 551
Rokhlin, 392
Roth, 453
spectral theorem (compact operators), 535
spectral theorem (functional calc.), 399
spectral theorem (multiplier form), 371
spectral theorem (spectral measures), 399
stochastic ergodic theorem, 213
Stone–Weierstraß, 49
subsequential mean ergodic theorem, 471
Szemerédi, 5, 433
Tietze, 48
Tonelli, 497
Tychonov, 486
uniqueness theorem for measures, 494
van der Corput, difference, 210
van der Waerden, 405
von Neumann (mean ergodic), 136
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von Neumann (point isomorphism), 234
weighted mean ergodic theorem, 462
Weyl, 203

for polynomials, 205
Wiener–Wintner, 464

linear version, 469
uniform, 467

Thue–Morse sequence, 43
time mean, 4
topological 	 -system, 303
topological group, 12, 274
topological measure-preserving system, 235
topological model, 237
topological semigroup, 319
topological space, 480

completely metrizable, 480
connected, 487
disconnected, 487
metrizable, 480
normal, 46
separable, 50, 481

topological system, 9
automorphism, 15
automorphism group, 309
backward/forward, 9
bi-invariant set, 20
conjugation, see isomorphism of

topological systems
discrete spectrum, 349
disjoint union, 21, 416
distal, 415, 429
doubling map, 30
dyadic adding machine, 13
equicontinuous, 43, 415
extension, 15
factor, 15
factor map, 15
Heisenberg system, 14, 415
homogeneous, 13
homomorphism, 15
invariant set, 20
invertible, 9
isometric, 35, 415
isomorphism, 15
minimal, 34
skew rotation, 19
skew shift, 19, 415
strictly ergodic, 196
subshift, 21
subsystem, 20
surjective, 9
tent map, 30
trivial, 10
uniquely ergodic, 194

topological vector space, 515
topologically transitive, 23
topology, 480

compact, 486
compact-open (on the dual group), 278
discrete, 480
Hausdorff, 481
inductive, 483
pointwise, 563
pointwise (on the dual group), 278
product, 484
projective, 484
quotient, 483
strong operator, 323, 516
subspace, 484
weak, 513
weak operator, 323, 516
weak�, 512

torus, 12
d-torus, 18
monothetic, 286
one-dimensional, 12

total orbit, 22
total variation (of a measure), 502
totally disconnected, 487
totally ergodic, 178, 402
totally minimal, 43
transition matrix, 26

of a Markov shift, 79
translation, see rotation
translation mod 1, 11
trigonometric polynomial, 277
trivial

measure-preserving system, 73
topological system, 10

two-sided Bernoulli shift, 78
two-sided shift, 11

U
uniformly continuous, 483
unimodular group, 88
uniquely ergodic topological system, 194
unit element, 508
unital Banach sublattice, 258
unitary equivalence, 352
unitary group, 325, 571
unitary operator, 529
unitary part, 536
unitary representation, 297

equivalent, 302
irreducible, 298

unitary system, 300
for a semigroup, 335
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V
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positive element, 119
real, 118
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W
wandering set, 101
weakly compact

operator group, 332
operator semigroup, 323

weakly mixing, 173, 387
abstract system, 236
affine endomorphism, 356
characterization, 459
of all orders, 182, 186
of order k, 182
relatively, 454

weakly stable, 164, 536
Weil’s formula, 90
Wold decomposition, 339, 349, 537
words, 11

Z
zero element (in a semigroup), 317
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