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Preface

The book is based on the special courses “Introduction to the asymptotic methods”
and “Asymptotic method in mechanics” for postgraduate students at St. Petersburg
State University and first read by Prof. P.E. Tovstik more than 40 years ago. The
authors would like to underline the special role of Prof. P.E. Tovstik, who initiated
the study of asymptotic methods applied to problems of solid mechanics at Saint-
Petersburg (then Leningrad) State University and who is a teacher of the
contributors.

The present book is a result of the scientific cooperation of researchers from the
Departments of Theoretical and Applied Mechanics of the Faculty of Mathematics
and Mechanics of St. Petersburg State University and the Department of
Mathematics of the University of Ottawa.

Since in most of the papers in the collection on mechanics of solids published in
1993 [10] asymptotic ideas and methods were used the publisher proposed to
supply the volume with survey by S.M. Bauer, S.B. Filippov, A.L. Smirnov, and
P.E. Tovstik entitled “Asymptotic Methods in Mechanics with Applications to Thin
Shells and Plate.” Later this survey encouraged the authors to write a textbook on
the application of the asymptotic method in mechanics. The present book is the
elaborated version of the Russian edition published in 2007. The book is supplied
with the Introduction containing a brief discussion of publications on asymptotic
methods in mechanics of solids, especially those that are not referred to in the main
text. The reference section is significantly enlarged.

The authors believe that studying the basics of asymptotic methods may be useful
to advanced undergraduate, postgraduate, and Ph.D. students in Mathematics,
Physics, and Engineering, to researchers and engineers working in the analysis
and construction of thin-walled structures and continuous media, and to applied
mathematicians who are interested in asymptotic methods in problems of mechanics.

This work was supported in part by the Russian Foundation for Basic Research
through Grants #13-01-00523-a and #15-01-06311-a.
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The authors are thankful to master’s and Ph.D. students of the Department of
Theoretical and Applied Mechanics of St. Petersburg State University for their
dedicated help in reducing the number of errors in the solutions of the exercises.

Svetlana M. Bauer
Sergei B. Filippov
Andrei L. Smirnov

Petr E. Tovstik
Rémi Vaillancourt
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Introduction

Asymptotic methods of various types have been successfully used since almost the
birth of science itself. Transformation of the ideas of asymptotic analysis to a
specific area in mathematics happened at the end of the nineteenth century when
Henri Poincare introduced the idea of the asymptotic series and gave a rigorous
definition of an asymptotic expansion. In the twentieth century asymptotic methods
were widely used in different areas of applied mathematics. Now asymptotic
methods based on the expansion of solutions in series in small or large parameters
or coordinates hold a central place among approximate methods. Asymptotic
methods give a qualitative characteristic of the behavior of solutions. Besides that,
in some cases, asymptotic expansions have small errors for a rather wide parameter
domain.

The number of textbooks, monographs, and journal papers devoted to the
asymptotic methods is rather large and it grows constantly. The asymptotic
expansions are also discussed in publications on general methods of solution of
applied problems. For example, the book by Bender and Orszag [11] contains many
interesting examples of application of the perturbation methods.

For introduction to the general principles of asymptotic analysis, the textbooks
by Nayfeh [49, 50] may be recommended. In these books the definitions of the
asymptotic series and simple operations with them are introduced together with
methods of solution of algebraic and transcendent equations, methods of integra-
tions (Laplace method, stationary phase method, and steepest descent method), and
classical methods of solution of linear and nonlinear ordinary differential equations
with a parameter, including the multiscale method. Some of these problems are
discussed in detail in books by de Bruijn [14], Erdèlyi [20], Kevorkian and Cole
[37], and Holms [34]. In addition, monograph [34] includes chapters on homoge-
nization, discrete equations, wave propagation, and Lyapunov-Schmidt method.
Books by Maslov [43], Maslov, and Nazaikinskii [44] contain descriptions of the
most general methods of asymptotic integration of linear and nonlinear non-
stationary partial differential equations.

In 1963, Martin David Kruskal coined the term Asymptology to describe the “art
of dealing with applied mathematical systems in limiting cases.” He tried to show
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that asymptology is a special branch of knowledge, intermediate, in some sense,
between science and art. Kruskal’s ideas were lately developed in works by
Andrianov and Manevitch [3] and Barantsev [8], which contained the heuristic
description of different asymptotic methods.

In the majority of cases in the listed books the authors limit themselves with
construction of a few first terms of the asymptotic series without rigorous estimating
the errors. These are so-called formal asymptotic expansions. The estimates for the
asymptotic expansions are given by Murdock [48], Fröman and Fröman [27],
Fedoruk [23], Evgrafov [21].

One of the main areas of application of asymptotic methods is the analysis of
differential equations. In asymptotic integration of differential equations containing
small parameter the cases of regular and singular perturbations are considered
separately [33]. The perturbation is called regular if the orders of the differential
equation or the system of equations do not change when the small parameter
becomes equal to zero. For singular perturbation, when the small parameter is set
equal to zero the order of the equation or system decreases since the small
parameter is a multiplier at the higher derivatives. Asymptotic expansions of
solutions of singularly perturbed equations are usually divergent series [50].

In the presented book special attention is devoted to the analysis of singular
perturbed differential equations. The authors of this book use different asymptotic
methods to solve applied problems not pretending to develop the general theory of
singular perturbations. The systematic studies of asymptotic solutions of some
singular problems may be found in monographs by Eckhaus [19] and Lomov [42].

Consider singularly perturbed linear differential equation of the nth order

Xn

k¼0

μkakðxÞ d
ky

dxk
¼ 0; ð1Þ

where μ[ 0 is a small parameter. Solution of (1) we seek in the form

yðx;μÞ ¼
X1

k¼0

μkukðxÞ exp 1
μ

Zx

x0

λðxÞdx
0
@

1
A: ð2Þ

Substituting (2) into (1) and equating the coefficients at μk to zero we get the
system of equations to find the unknown functions λðxÞ and ukðxÞ. For nontrivial
solutions λðxÞ is a root of the characteristic equation

Xn

k¼0

akðxÞλk ¼ 0 ð3Þ

For anðxÞ 6¼ 0 Eq. (3) has n roots. Let λðxÞ be a simple root of Eq. (3). Then
series (2) may be constructed with the coefficients ukðxÞ, which makes Eq. (1) an
identity. Such series is called formal asymptotic solution. Further, we limit
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ourselves to construction of such solutions leaving aside the question of existence
of exact solutions, for which the obtained solutions are asymptotic expansions.

For the system of singularly perturbed linear differential equations

μ
dy
dx

¼ AðxÞy; μ[ 0; ð4Þ

where y is the nth dimensional vector and A is the square matrix of the nth order, for
formal asymptotic solution we seek the form

yðx;μÞ ’
X1

k¼0

UkðxÞμk exp
1
μ

Zx

x0

λðxÞdx
0
@

1
A:

The function λðxÞ satisfies the characteristic equation

detðA0ðxÞ � λðxÞInÞ ¼ 0;

where In is the identity matrix of the order n.
If all n roots of the characteristic equation are simple, then we get n linearly

independent asymptotic solutions of Eq. 1 or system (4), which may be used to
solve the boundary value problems. Solutions, for which <ðλÞ 6¼ 0, increase or
decrease exponentially are called the edge effect integrals in solid mechanics and
boundary layer integrals in hydromechanics. For <ðλÞ ¼ 0 the solution rapidly
oscillates and for λ ¼ 0 the solution changes slowly.

The difficulties arise when the characteristic equation has multiple roots. First
consider the case of the zero root of the multiplicity m that is often met in appli-
cations. The linear differential equation of the order n ¼ lþ m

Lμy ¼
Xl

k¼0

μkakþmðxÞ d
kþmy

dxkþm
þ
Xm�1

k¼0

akðxÞ d
ky

dxk
¼ 0 ð5Þ

for μ ¼ 0 transforms to the equation of the order m

L0y ¼
Xm

k¼0

akðxÞ d
ky

dxk
¼ 0: ð6Þ

If Eq. (5) is multiplied by μm, we get it in the form (1), for which the charac-
teristic equation

Xl

k¼0

akþmðxÞλkþm ¼ 0

has zero root of multiplicity m. Let anðxÞ 6¼ 0, amðxÞ 6¼ 0 and all roots of equation
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Xl

k¼0

akþmðxÞλk ¼ 0

are simple. Then Eq. (5) has l solutions of form (2). The remaining m solutions are
slowly changing functions in x and have the expansions

yðx;μÞ ¼
X1

k¼0

μkvkðxÞ; ð7Þ

If the multiplicity of the roots changes with the argument x, then the points at
which the changes happen are called the turning points. The first approximate
studies of the behavior of solutions at the neighborhoods of the turning points were
made by Wentzel et al. [11, 37], thus the methods of integration of equations with
the turning point are sometimes called WKB-methods. The constructions of
asymptotic solutions for system of differential equation of the second and higher
orders under different assumptions on the character of the turning point are made in
the fundamental monograph by Wasow [65]. Usually, for construction of the
asymptotic solutions for equations with turning point the method of comparison
equations is used [64]. These equations have the same singularities as the initial
equations, but they are simpler than the last ones.

The equation of the second order

μ2 d
2y

dx2
� qðxÞy ¼ 0

with the small parameter at the derivative has the turning point x ¼ x�, if qðx�Þ ¼ 0.
For the simple turning point, for which q0ðx�Þ 6¼ 0, the asymptotic expansions of the
solutions may be expressed in the Airy functions AiðηÞ and BiðηÞ. These functions
are the solutions of the comparison equation

d2v
dη2

� ηv ¼ 0:

In the general formulation the problem of asymptotic integration of equations
with the turning points has not been solved yet. Only some special cases for the
equations encountered in applications has been analyzed.

In the paper by Lin and Rabestein [41] the fourth order equation describing the
stability of the laminar viscous flow is considered. Its characteristic has the form
λ4 þ xλ2 ¼ 0, and its roots are quadruple for x ¼ 0. The analysis of axisymmetric
vibrations of noncylindrical shell of revolution may be reduced to study of the sixth
order equation with the characteristic equation λ6 þ f ðxÞλ2 ¼ 0 and sextuple
turning point. The asymptotic solutions for that equation were constructed by
Goldenveizer et al. [30] with the help of the comparison equations method.
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The solution of many problems in mechanics of solids may be reduced to
solution of the boundary value problems for linear differential equations. The
approximate solution of the boundary value problem may be obtained by substi-
tuting the asymptotic expansions of solutions into the boundary conditions. For
singular perturbed ordinary differential equations such expansion may have the
form (2). In this case the method to obtain the approximate solution of the boundary
value problem depends on behavior of integrals (2), which is defined, in turn, by the
values of the roots of the characteristic equation.

Consider boundary value problem for Eq. (5). Assume that its solution satisfies n
homogeneous boundary conditions. When the small parameter μ vanishes Eq. (5)
degenerates to Eq. (6) which has the order of m\n. Therefore, solution of (6)
cannot satisfy all n boundary conditions of the initial boundary value problem. The
questions are: (i) can the solution of unperturbed Eq. (6) be zero approximation to
solution of the initial problem and (ii) which m out of n given boundary conditions
should be selected for Eq. (6)? The answer to these questions is given in the
classical paper by Vishik and Lyusternik [62]. In that paper the concept of regular
degeneracy, for which the solution of the boundary value problem converges to
solution of the unperturbed problem as μ ! 0, is given.

For regular degeneracy it is necessary that all solutions of form (2) be the edge
effect integrals and the number of decreasing and increasing integrals corresponds
to the number of the boundary conditions on the left and right ends of the inte-
gration interval. In this case the solution of the initial boundary value problem is
represented as the sum of solutions (2) and (7). In problems of mechanics of solids
solution of form (7) is called the main state, the boundary conditions for the
unperturbed problem are the main boundary conditions, and the other conditions are
the auxiliary conditions.

The thin shell theory provides numerous problems to be solved by asymptotic
methods. Two-dimensional differential equations of the eighth order in the theory of
shells are singularly perturbed since they contain the natural small parameter h, the
dimensionless relative thickness of the shell, which is a factor at the higher
derivatives. Often the dimensionless parameter μ, which is proportional to

ffiffiffi
h

p
is

used instead of h. For μ ¼ 0 we have the unperturbed system of equations of the
fourth order, which is called membrane (or momentless).

The foundations of asymptotic analysis of linear equations of the theory of shells
are formulated in the classical works by Gol’denveizer [28, 29]. In those works an
important concept of the index of variation of solution is introduced. The index of
variation for function F is a real number t, such that

oF
ox

�μ�tF; as μ ! 0:

For t[ 0, the function F varies fast while for t� 0 it varies slowly. Solutions (2)
have the index of variation t ¼ 1, at the same time the index of variation for
solutions (7) is zero.
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The analysis of possible solutions of shell equilibrium equations with different
indices of variations in two space variables given in [29] permits to classify the
main stress states: membrane (momentless) state, the edge effect, etc. Based on this
analysis the approximate methods of solution of the problems of shell statics have
been developed. For example, under some conditions the solution may be sought in
the form of a sum of the main membrane state and the edge effect integrals.

For the shells closed in the circumferential direction it is convenient to select as
space coordinates on the shell mid-surface (neutral surface) the length of the
meridian arc s and the angle in the circumferential direction ϕ. After separating the
variables

yðs;ϕÞ ¼ yðsÞeimϕ; ð8Þ

the equations of shell statics transform to ordinary differential equations, the
coefficients of which depend on the wavenumber in the circumferential direction m.
In equations describing vibrations or buckling of shells the additional dimensionless
parameter Λ, which is proportional to the square of the natural frequency or critical
loading, appears. The form of the asymptotic solutions depends on the relations
between parameters μ, m and Λ.

For m ¼ 0 the shell deformation is axisymmetric and it is described by the
system of differential equations of the sixth order. For low frequency vibrations of
cylindrical and conical shells, which are of the great importance to the applications,
m�μ�1=2 and Λ�μ2. In this case the degeneration of the initial system of the
eighth order to the system of the fourth order is regular. The stress state described
by the unperturbed system is called semi-momentless. For the cylindrical shell the
unperturbed system has an explicit solution. The detailed asymptotic analysis of
free vibrations of shells is given by Goldenveizer et al. [30].

To solve the linear problems of buckling of momentless initial stress state, the
same methods of asymptotic integration as for the problems of free vibrations are
used. The only difference is that for buckling problems the lowest eigenvalue
corresponding to the critical load is sought as a rule. Numerous methods and results
on buckling of shells are included in the book by Tovstik and Smirnov [56]. In this
book the main attention is devoted to the methods of construction of asymptotic
expansions of localized buckling modes based on algorithm proposed by Maslov
[43]. In the classical problems of shell buckling the radii of the curvature of the
mid-surface, its thickness, and momentless initial stress resultants are usually
constant. In this case the pits cover the entire surface of a shell under buckling. On
the other hand, if the parameters of the shell and the initial stress state depend on the
space coordinates, then the localization of the buckling pits may happen at the
vicinities of some lines or points on the mid-surface, which are called the weakest
lines (points).

In the book by Tovstik and Smirnov [56] the buckling modes for the convex
shells of revolution localized at the neighborhood of the weakest parallel have been
constructed. Under nonhomogeneous axial compression of cylindrical shells the
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buckling modes are localized at the vicinity of the weakest generatrix. The convex
shell and cylindrical shell may buckle under nonhomogeneous compression with
the buckling mode localized at the weakest point. For these cases the asymptotic
expansions for the buckling modes are found. The method of asymptotic separation
of the variables is developed and applied to represent the total stress state of the
shell as a sum of the semi-momentless state and edge effect. Simultaneously, the
problem of separation of the boundary conditions at the shell edges for the main and
auxiliary conditions is solved. This method is applied for cylindrical and conic
shells, for which the problem may not be reduced to one dimensional by separating
the variables in form (8).

In the book by Filippov [26] the method of asymptotic separation of the vari-
ables is applied for analysis of free vibrations and buckling under external pressure
of the joint shells and shells reinforced by rings. For cylindrical and conic shells the
boundary conditions on the shells joint lines and on the lines of the contact of the
shell and rings are split into the main and auxiliary boundary conditions.

The solutions of the problems of shell theory by means of the Lyapunov-
Schmidt procedure, multiscale method, homogenization, Padé approximants, and
other asymptotic methods are included in the monograph by Andrianov et al. [2],
which contains a vast bibliography.

The theoretical results in this book are supplemented with the analysis of
problems and exercises. In the solution of many problems, asymptotic and
numerical methods are used together. The combination of these two methods makes
the results more reliable, permits to estimate the applicability domain for asymptotic
formulas, and makes easier the numerical analysis of the problem. For example,
when evaluating a root of an equation one should know the interval boundary for
the root. This boundary may be found by means of asymptotic methods.

Asymptotic estimates of functions, solutions of algebraic and transcendental
equations, and also systems of linear algebraic equations are considered in the first
chapter. This part is traditional for many manuals on asymptotic methods. However,
some of the questions are rarely discussed in textbooks. For example, the Newton
polyhedron, which is a generalization of the Newton polygon for equations with
two or more parameters, is considered in Chap. 1. Then the important concept of the
index of variation for functions is introduced. Special attention is devoted to
eigenvalue problems containing a small parameter.

Chapter 2 is dedicated to asymptotic methods for calculating integrals (inte-
gration by parts, Laplace transform, stationary phase, saddle point) which are used
later in the book to construct asymptotic expansions for solutions of differential
equations containing small parameters.

In Chap. 3 the construction of solutions of regularly perturbed ordinary differ-
ential equations is discussed. The traditional methods include Poincaré’s averaging
and multiscale methods. In addition, linear boundary value problems for differential
equations with small parameters are considered. Problems for equations with fast
oscillating coefficients are also analyzed.

The main part of the book is Chaps. 4 and 5, which deal with methods of
asymptotic solutions of linear singularly perturbed boundary value and eigenvalue
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problems without or with turning points, respectively. In Chap. 4, the asymptotic
expansions of linearly independent solutions of systems of linear ordinary differ-
ential equations with small parameters at the derivatives are constructed. These
asymptotic expansions are later used in the book for approximating solution of
nonhomogeneous boundary value and eigenvalue problems. The cases where the
eigenfunctions are localized near the edge of the integration interval are also
studied. As examples, one-dimensional equilibrium, dynamics, and stability prob-
lems for rigid bodies and solids are examined.

In Chap. 5, the singular perturbed problems are analyzed in the case where there
exist turning points inside the interval of integration. At a turning point, the
asymptotic expansions obtained in Chap. 4 are not valid, since in the expressions
one of the functions in the denominator is zero. Approximate asymptotic solutions
in a neighborhood of a turning point for linear differential equations of the second
order with small parameters at the higher derivative are given in Chap. 5. Then the
eigenvalue problems describing the vibration of circular plates and shells of rev-
olution are examined. Asymptotic expansions for the eigenfunctions localized near
the internal point of the interval of integration are also found.

Finally, in Chap. 6 the asymptotic integration of nonlinear differential equations
is considered, where questions of singular perturbation and ramification of solutions
are discussed.

Many of the problems of asymptotic integration are not discussed in this book.
Among them there is the method of matching of asymptotic expansions, which is
widely used in hydromechanics. Its description may be found, for example, in
books by Van Dyke [59] and Hinch [33]. One of the versions of this method is the
application of Padé approximants, numerous examples of which are given in the
monograph by Baker and Graves-Morris [6].

In our book we analyze only stationary vibrations. We note that the considerable
progress has been also made in study of the process of wave propagations by
asymptotic methods. In the book by Mikhasev and Tovstik [47] the authors study
both localized buckling modes and the motion of the wave packages running on the
shell of revolution either in circumferential on axial directions. The book by Babich
and Buldyrev [5] concerns the analysis of short-wave asymptotics for solution of
Helmholtz equation for the wave propagation with constant or variable wave speed
in two-dimensional or three-dimensional spaces. In the book by Kaplunov et al.
[36] the asymptotic approach is used to describe the waves of different types in thin
elastic solids and in particularly in shells of revolution.

One of the important areas of application of asymptotic methods, which is not
included in this book due to its complexity, is the continuum mechanics in the
narrow domains. These are the problems of thin-walled beams, plates, and shells
theory and also the contact problems for solids on different dimensions. The
asymptotic methods are applicable here since these problems contain the geometric
small parameter, ratio of the minimum and maximal solid dimensions. In appli-
cations the equations are simplified as usual as a result of assumptions on distri-
bution of the unknown functions in the thickness direction. In this case one of the
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goals of the asymptotic analysis is the verification of the hypotheses and the esti-
mate of the errors happened under the assumptions.

The monograph by Nazarov [51] concerns these problems. It contains the
asymptotic expansions of solutions of static problems and problems of free vibra-
tions of beam, plates, and shells. The main attention is devoted to the error esti-
mates, when only the main terms of the asymptotic expansions are considered and
to the solvability of the boundary value problems, which appear in the process
of the asymptotic integration.

In the book by Gol’denveizer [28] the method to derive the equations of the
theory of shells from the three-dimensional equations of the theory of elasticity is
proposed. The asymptotic approach developed by Kaplunov et al. in [36] is a
dynamical generalization of Goldenveizer’s method of asymptotic integration of
partial differential equations in narrow domains. In the monograph by Ciarlet [16]
two-dimensional equations of the theory of shells describing the membrane stress
state are derived by means of the asymptotic method and strong error estimates are
obtained. An ingenious sequence of the shell theories refining one another is given
by Libai and Simmonds [40].

The authors do not claim the bibliography section to be complete. The references
include mostly textbooks and monographs concerning the methods and problems
considered in the book.
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Chapter 1
Asymptotic Estimates

In this chapter, asymptotic estimates for functions, algebraic and transcendental equa-
tions are considered.

1.1 Estimates of Functions

1.1.1 Basic Definitions

Let the functions f (z) and g(z) be defined on a set S of complex or real numbers and
let a be a limit point in S. The point a is a limit point of the set S if any neighborhood
of a contains at least one point of S different from a. Consider z ∈ S. We recall the
definitions of some symbols used to compare a function f (z) with a known and, as
a rule, simpler function g(z).

The big “O” notation, f (z) = O (g(z)) as z → a, means that there exists a
neighborhood U of the point a and a constant C (depending on U ) such that

| f (z)| ≤ C |g(z)|, for z ∈ U ∩ S. (1.1.1)

The notation f (z) = O (g(z)) is also used if there exists a constant C such that
(1.1.1) is valid for all z. It is clear that if this inequality is satisfied for some C , it is
also satisfies for any larger C . The least upper bound of the ratio | f (z)|/|g(z)| for
z ∈ U is called the exact upper bound or the boundary constant:

Cmin(U ) = sup
z∈U

| f (z)|
|g(z)| .
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2 1 Asymptotic Estimates

We list several examples where S = U = R is the set of real numbers:

sin x = O(x), x ∈ R, Cmin = 1,

sin x = O(1), x ∈ R, Cmin = 1,

(x + 1)2 = O(x2), x ∈ [1,∞), Cmin = 4.

If the functions f (z) and g(z) also depend on other variables or parameters but the
neighborhood U and the constant C in (1.1.1) do not depend on them, then relation
(1.1.1) is said to be uniform in those parameters. For example, if u is a parameter in
the interval [0, a], where a is a positive constant, then

e(x−u)2 = O
(
ex2)

as x → ∞ uniformly in u.
The small “o” notation, f (z) = o (g(z)) as z → a, means that

lim
z→a

f (z)

g(z)
= 0 for z ∈ S. (1.1.2)

For example, for S = R,

ln x = o(xα), as x → ∞, α > 0,

xα = o(ex ), as x → ∞, α > 0,

xα1 = o(xα2), as x → 0, α1 > α2.

If f (z) and g(z) depend on parameters then relation (1.1.2) is called uniform in these
parameters if f (z)/g(z) converges to zero uniformly in these parameters, i.e. for any
ε > 0 one can find a neighborhood Ua of the point a such that the inequality

∣∣
∣∣

f (z)

g(z)

∣∣
∣∣ < ε

holds for any z ∈ Ua∩S simultaneously for all values of the parameters. For example,
if u ∈ [0, a], then e−|z−u| = o(|z|−b) as |z| → ∞ uniformly in u. Here a and b are
arbitrary real numbers.

Thus f = O(g) means that the order of f is not greater than the order of g, and
f = o(g) means that the order of f is less than the order of g as z → a.
For functions f and g whose orders are equal as z → a we use the notation

f ∼ g as z → a. In this case f = O(g) and g = O( f ) simultaneously as z → a.
In many publications the symbol “∼” is only used when the functions f and g are
equivalent, i.e.

lim
z→a

f (z)

g(z)
= 1.



1.1 Estimates of Functions 3

In the sequel, we do not assume that the last equality holds for f ∼ g. For example,
for S = R,

sin x ∼ x, and sin x ∼ 2x, x → 0,

ln(1 + x) ∼ x, as x → 0,

sin x − x ∼ x3, as x → 0.

The relation “∼” similar to relations (1.1.1) and (1.1.2) may be uniform (or non-
uniform) in other variables or parameters. For example, for small ε, the relation

1

1 − x − ε
∼ 1

1 − x

is non-uniform in a neighborhood of the point x = 1 but uniform in any domain that
does not contain this neighborhood, since, as ε → 0 and x ≈ 1, the second and the
following terms in the expansion have the same orders as the first term:

1

1 − x − ε
∼ 1

1 − x
− ε

(1 − x)2
+ · · ·

1.1.2 Operations with Symbols

The notation o (g(z)) and O (g(z)) characterizes the classes of functions f , satisfying
relations (1.1.1) and (1.1.2). From this follow the rules for operating with these
symbols:

o (g(z)) + o (g(z)) = o (g(z)) , o (g(z)) + O (g(z)) = O (g(z)) ,

o (g(z)) × o ( f (z)) = o (g(z) × f (z)) , o (g(z)) × O ( f (z)) = o (g(z) × f (z)) ,

O (o (g(z))) = o (g(z)) , o (O (g(z))) = o (g(z)) ,

o (o (g(z))) = o (g(z)) , o (g(z)) = O (g(z)) ,

as z → a and z ∈ S. We note that some of the relations of this type, for example,
the last two are irreversible. For example, the equality O (g(z)) = o (g(z)) does not
hold.

We prove the first formula in the list. The reader may prove the others in a simi-
lar way.

Let f1(z) = o (g(z)) and f2(z) = o (g(z)) as z → a. Then

lim
z→a

f1(z) + f2(z)

g(z)
= lim

z→a

f1(z)

g(z)
+ lim

z→a

f2(z)

g(z)
= 0,

i.e. f1(z) + f2(z) = o (g(z)), as was to be proved.



4 1 Asymptotic Estimates

Asymptotic relations and order relations may be integrated under some evident
conditions guaranteeing the convergence of the integrals.

Example
If S = R, the function | f (t)| is integrable and f (x) = O(xα) as x → ∞, then,

for α > −1, ∫ x

0
f (t)dt = O(xα+1), as x → ∞.

Indeed, there exists X such that for x > X the relation | f (t)| ≤ C |xα| is satisfied
and

∫ x

0
f (t)dt ≤

∫ x

0
| f (t)|dt =

∫ X

0
| f (t)|dt +

∫ x

X
| f (t)| dt

≤ C1 + C
xα+1

α
− C

Xα+1

α
= C2 + C

xα+1

α
≤ Dxα+1

(1.1.3)

for

D ≥ C

α
+ C2

Xα+1 .

Similarly, it may be proved that under the same assumptions for α < −1

∫ ∞

x
f (t)dt = O

(
xα+1

)
, as x → ∞.

For α = −1, if the function | f (t)| is locally integrable,

∫ x

0
f (t)dt = O(ln x), as x → ∞.

Operations with the symbols O , o and ∼ and many examples can be found in
[14, 20, 21, 49, 50, 53].

1.1.3 Exercises

1.1.1. Arrange the following relations in decreasing order for small ε.

ln(1 + ε),
1 − cos ε

1 + cos ε
,

√
ε(1 − ε).



1.1 Estimates of Functions 5

1.1.2. Determine the boundary constants in the interval [1,∞) for the relations
(a)

√
(x2 − 1) = O(x) and (b) xn = O(ex ).

1.1.3. Let S be the sector | arg z| ≤ π
2 − ε < π

2 in the complex plane z ∈ C. Show
that there exists a real number c1 > 0 such that e−cz = O(e−c1|z|) as z → ∞ for
any c > 0.

1.1.4. Show that if f is integrable and f (x) = o(g(x)) as x → ∞, where g(x) is a
positive non-decreasing differentiable function x , then

∫ x

a
f (t) dt = o(xg(x)).

1.1.5. Show the following order relations:

(a)
1 − √

cos x

1 − cos(
√

x)
∼ x, as x → 0,

(b) sin
√

x + 1 − sin
√

x = O

(
1√
x

)
, as x → ∞,

(c) sin ln(x + 1) − sin ln x = O

(
1

x

)
, as x → ∞,

(d) For n �= 1, ln
nx + √

1 − n2x2

x + √
1 − x2

∼ x, as x → 0.

1.2 Asymptotic Series

1.2.1 Definitions

Consider the sequence of functions

ϕn(z), n = 0, 1, 2, . . . , (1.2.1)

defined on a set S that has a limit point a. The sequence (1.2.1) is called asymptotic
as z → a if, for any integer n ≥ 0,

ϕn+1(z) = o (ϕn(z)) , as z → a. (1.2.2)

We give some examples of asymptotic series under the assumption that S ⊂ R is
a set of real numbers:

(x − a)n, x → a; x−n, x → ∞;

eλn x , x → ∞, (λn+1 − λn) < 0; (1.2.3)
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�(x)(x − a)αn , x → a, αn+1 > αn,

where �(x) is an arbitrary function defined on S. The first two sequences in (1.2.3)
are called power sequences .

Let the function f (z) be defined on the same set S. The series

f (z) �
∞∑

n=0

anϕn(z), as z → a, (1.2.4)

is called Poincaré asymptotic expansion of f (z) in terms of the asymptotic sequence
(1.2.2) if an are constants and, for any integer N ≥ 0,

RN (z) = f (z) −
N∑

n=0

anϕn(z) = o (ϕN (z)) , as z → a, (1.2.5)

or, what is same,

RN (z) = O (ϕN+1(z)) , as z → a. (1.2.6)

For asymptotic expansion here and later we use the approximation symbol �
instead of the equality sign =.

Series (1.2.4) may diverge. Relation (1.2.5) produces a sequence of approximate
formulas,

f (z) ≈
N−1∑

n=0

anϕn(z), N = 1, 2, . . . ,

the errors of which, RN (z), has the order of the first deleted term in series (1.2.4),
RN (z) ∼ ϕN+1(z). The sumof the first N terms of series (1.2.4) is called the N -terms
approximation to the function f (z).

In the books [1, 21, 35, 49, 50, 53] one can find many asymptotic expansions for
special functions. For example, the integral exponential function has the asymptotic
expansion [1]

Ei(z) =
∫ ∞

z
t−1e−t dt � e−z

∞∑

n=0

(−1)nn!
zn+1 , as |z| → ∞, (1.2.7)

and series (1.2.7) diverges for almost all z. At the same time, the error RN (z) (see
formula (1.2.5)) is not larger than the first deleted term in expansion (1.2.7).
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1.2.2 Properties of Asymptotic Series

Properties of asymptotic series and operations on them are discussed in [14, 20,
21, 35]. Here we list only the main ones.

If the function f (z) is expanded in the asymptotic series (1.2.4) in terms of the
sequence (1.2.1), then this expansion is unique, i.e. the coefficients an in (1.2.4) are
defined in a unique way:

an = lim
z→a

f (z) − ∑n−1
k=0 akϕk(z)

ϕn(z)
.

However f (z) is not defined in a unique way by the asymptotic series. Indeed, the
function f (z) + f1(z) has the same asymptotic expansion (1.2.4) if, for all n ≥ 0,

f1(z) = o (ϕn(z)) , as z → a.

For example, the functions Ei(z) and Ei(z) + e−2z have the same expansion (1.2.7).
From the above remarks, it is clear that in the choice of sequence (1.2.1) for

the asymptotic expansion of f (z) one should take the behavior of f (z) as z → a
into account. For a bad choice of ϕn(z), expansion (1.2.4) either does not exist or
produces the trivial result f (z) � 0. For example, expanding e−z in the sequence
z−n , one gets e−z � 0 as z → ∞, i.e. in (1.2.4) an = 0 for all n.

Asymptotic expansions may be summed, multiplied by functions, differentiated
and integrated under special assumptions. The power asymptotic expansions

f (z) �
∞∑

n=0

anzn, g(z) �
∞∑

n=0

bnzn, as z → 0 (1.2.8)

may be multiplied: f (z)g(z), and, if b0 �= 0, divided: f (z)/g(z). If b0 = 0 we
may substitute the function g(z) into f (z): f [g(z)]. In this case, the asymptotic
expansions for the resulting functions are obtained following the rules for convergent
Maclaurin series (1.2.8). If the series

∞∑

n=0

anzn (1.2.9)

converges in the open disk S = {z : |z| < R}, then it defines an analytic function
f (z) in this domain, the asymptotic expansion of which coincides with (1.2.9) as
z → 0. It is not difficult to give an example where series (1.2.9) diverges for all
z �= 0 (for example, when an = n).

It should be noted that any coefficients an of series (1.2.9) gives the asymptotic
expansion as z → 0 of some function f (z), analytic in the sector
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Fig. 1.1 Errors for
asymptotic expansions of
Bi(x)

S = {z : |z| < R, α1 < arg z < α2}

for any α1,α2.
We underline the significant difference from the computational point of view

between convergent series and divergent asymptotic series. If series (1.2.4) converges
for some z, this means that for given z

lim
N→∞ RN (z) = 0,

i.e. the value of the function f (z) may be (in principle) found to any accuracy. If
series (1.2.4) diverges, then the error RN (z), keeping the (N +1)th term of the series,
attains its maximum value for some N = N0(z) and the accuracy of the computation
may not be higher than RN0(z). In Fig. 1.1 the errors R0(x), R2(x) and R6(x) are
plotted for the Airy function Bi(x) for x > 0 (see Sect. 5.1).

In the simplest cases, for example, special functions, one can construct the entire
asymptotic series. In other cases, in particular, for the integration of differential
equations, we must limit ourselves to first or the first two terms of the series because
of awkward calculations (see the following chapters).

If the function f (z) (and, perhaps, ϕn(z)) depends on the parameter u, and the
terms with symbols O and o in (1.2.2), (1.2.5) and (1.2.6) are uniform (non-uniform)
in u in some set U then the asymptotic expansions is called uniform (non-uniform)
in u in U .

For example, the expansion

1

x − 1 + ε
=

∞∑

n=0

(−1)nεn

(x − 1)n+1 , x > 1, as ε → 0,

is not uniform for (x − 1)/ε = O(1). In that domain the error due to the deletion of
the terms beyond the N th term does not have order O(εN ).

http://dx.doi.org/10.1007/978-3-319-18311-4_5
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1.2.3 Exercises

1.2.1. Find the first three terms of the asymptotic expansions of the following func-
tions for small ε:

(a)

√
1 − ε

2
+ 2ε2, (b) sin

(
1 + ε − ε2

)
, (c)

(
1 − aε + a4ε2

)−1
,

(d) sin−1
(

ε√
1 + ε

)
, (e) ln

1 + 2ε − ε2

3
√
1 + ε

, (f) ln [1 + ln(1 + ε)] .

1.2.2. Which of the following expansions are not uniform for all x as ε → 0? In
which domains these expansions are not uniform?

(a) f =
∞∑

n=0

(−1)n(εx)n, (b) g =
∞∑

n=1

εn−1 cos nx, (c) q =
∞∑

n=0

( ε

x

)n
.

1.2.3. Show that the asymptotic expansion of the function f (x) = e−x sin ex in terms
of the sequence x−n as x → ∞ gives the trivial result f (z) � 0.

1.2.4. Find a series

∞∑

n=0

an xn,

that formally satisfies the differential equation

x3u′′ + (x2 + x)u′ − u = 0.

Show that this series diverges.

1.3 Newton Polygons

1.3.1 Introduction

We consider the problem of finding a solution, x(μ), of the implicit equation

F(μ, x) = 0,

where μ and x are real variables and F(μ0, x0) = 0.
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Expanding F(μ, x) in a power series of (μ−μ0) and (x − x0), we seek a solution
of the form

x = x0 + γ(μ − μ0)
β + γ′(μ − μ0)

β′ + · · · ,

where β,β′, . . . is an increasing sequence of positive integers.
Presumably, Isaac Newton was the first who studied this problem without the

assumption that F ′
x (μ0, x0) �= 0 and proposed a geometrical method for evaluating

γ,β, γ′,β′, . . . , which was later called the Newton diagram (or Newton polygon),
the description of which may be found in [58].

1.3.2 Statement of the Problem

Consider the case where F(μ, x) is a polynomial in x :

n∑

k=0

ak(μ)xk = 0. (1.3.1)

Let the coefficients ak have the form

ak(μ) =
mk∑

j=0

akjμ
αk j , (1.3.2)

where

ak0 �= 0, αk, j+1 > αk j , 0 � mk � ∞, k = 0, 1, . . . , n.

Thus, ak(μ) ∼ μαk0 asμ → 0.We assume thatm p = 0 andαp0 = ∞ for ap(μ) ≡ 0,
and let an(μ) �= 0 and a0(μ) �= 0.

We seek asymptotic expansions for the roots xq of equation (1.3.1) in the form

xq �
∞∑

j=0

xq jμ
βq j , μ → 0, βq, j+1 > βq j , q = 1, . . . , n, (1.3.3)

or

xq � xq0μ
βq0 + o

(
μβq0

)
. (1.3.4)

To find the values of xq0 and βq0 we substitute relation (1.3.4) in (1.3.1), collect
terms with the lowest power in μ and set to zero the coefficient of that power. Until
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Fig. 1.2 Newton polygon

the value of βq0 is determined, we do not know which terms have the lowest power
in μ. It is only clear that these terms are among the followings:

a00μ
α00 , a10xq0μ

α10+βq0 , a20x2qoμ
α20+2βq0 , . . . , an0xn

qoμ
αn0+nβq0 .

For cancelling the terms of lowest order in μ (the main terms) two of the exponents

α00, α10 + βq0, α20 + 2βq0, . . . , αn0 + nβq0,

must coincide and the rest should be not less than them. Equating the powers we find
all the values for βq0, and then obtain xq0.

To find the values of the parameter βq0 by means of the Newton polygon, draw
n +1 points Mk = {k,αk0} in the (k,α) plane with integer abscissas (Fig. 1.2). Then
draw the segment determined by the points M0 and M1. The tangent of the angle
between the segment and the axis of abscissas, k, is equal to the value of βq0, for
which the orders of the first and second terms coincide. It is not hard to check that
the points which lie above the line passing through M0 and M1 correspond to the
terms with highest order in μ (the smaller terms).

We are interested only in the main terms; this is why one should join the points
Mk with segments in such a way that the points Mk not belonging to this segment
lie above the obtained broken line.

To construct the broken line we rotate anticlockwise the ray going vertically down
from the point M∗

0 = M0. We denote by M∗
1 the first of the points Mk that is touched

by the ray. Then we rotate anticlockwise the vertical ray going from the point M∗
1

until it touches the next point M∗
2 . And so on until the final ray touches the point

M∗
s = Mn . If the ray contains several points Mk then for M∗

i we take the rightmost
point (with maximal k).
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The broken line connecting the points M∗
i is called the Newton polygon which

is the lower part of a convex hull for a point set. The slope ratio for the segment
determined by the points M∗

i and M∗
i+1 gives the order βq0 for the root xq . The

length of the projection of the segment on the k axis is equal to the number of roots
xq of such power and the number of points Mk through which the segment passes is
equal to the number of terms in the equation for evaluating xq0.

We note that the Newton polygon usually permits to estimate the order of the
correction (the order of the next term) in the expression for the root,

x ∼ μβq0
[
1 + O

(
μδ/κ

)]
= μβq0 + O

(
μδ/κ+βq0

)
,

where the value of δ is defined as the minimal length of the segments going vertically
from points Mk (Mk �= M∗

i and Mk �= M∗
i+1) till the straight line containing the

segment determined by the points M∗
i and M∗

i+1, and κ is the multiplicity of the
root xq0 .

The equations

−μx3 + x2 − μ2 = 0

and

−μx3 + x2 − 2μx + μ2 = 0

have similar Newton polygons (Fig. 1.3), and also, in both cases, δ = 2 for the roots
x1,2 = O(μ).

However, the multiplicity of the root (κ = 2) for the second equation increases
the error in the expansion for a root. So, for the first equation x1,2 = ±μ + O(μ3)

and for the second x1,2 = μ + O
(
μ2

)
.

k

α

0M

31 2

M

M3

2

M
1

k

α

0
M

31 2

M

M3

2

Fig. 1.3 Effect of the root multiplicity on the error of the expansion
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Example 1
Consider the equation

μ3x5 + x4 − 2x3 + x2 − μ = 0 (1.3.5)

and find initially the first term in expansion (1.3.3), omitting the index q. Substituting
x = x0μβ0 into (1.3.5) we get

μ3+5β0x50 + μ4β0x40 − 2μ3β0x30 + μ2β0x20 − μ = 0. (1.3.6)

Now we must find the main terms in (1.3.6) and the values of β0 for which at least
two main terms have equal orders. For β0 < 0, the main terms are the first two terms.
The value of β0 = −3 is found from the condition for equal orders of the main terms
3+5β0 = 4β0, and x0 = −1 is obtained from the equation x50 +x40 = 0. The Newton
polygon for Eq. (1.3.5) is plotted in Fig. 1.4. It consists of three parts: descending,
constant and ascending. Moreover,

β10 = −3, x1 = −μ−3
[
1 + O

(
μ3

)]
, since |K1M3| = 3;

β20 = β30 = 0, β40 = β50 = 1/2, since |K M3| = 1/2.

Therefore x2,3 = 1 + O
(
μ1/2

)
and x4,5 = ±μ1/2

[
1 + O

(
μ1/2

)]
.

To obtain the following terms of series (1.3.3) we substitute xq = μβq0(1 + Rq)

in (1.3.2). Then for Rq we get an algebraic equation of type (1.3.2). However, now
we seek only the roots that satisfy the relation Rq = o(1). The number of such roots
is equal to the multiplicity of the root xq0.

Fig. 1.4 Newton polygon
for (1.3.5)
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Fig. 1.5 Newton polygon
for (1.3.7)
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The two-term approximations for the roots of equation (1.3.6) are the followings:

x1 = −μ−3 − 2+ o(1), x2,3 = 1± μ1/2 + o
(
μ1/2

)
, x4,5 = ±μ1/2 + μ + o(μ).

Example 2
Consider the equation

x3 + 3μx2 −
(
μ + μ3/2

)
x + 2μ2 = 0. (1.3.7)

The Newton polygon for this equation is shown in Fig. 1.5.
It is clear that

β10 = β20 = 1/2, |K M2| = 1/2, x1,2 = ±μ1/2
[
1 + O

(
μ1/2

)]
.

For the third root, we get

β30 = 1, |K1M2| = |K2M3| = 1, x3 = 2μ
(
1 + O

(
μ1/2

))
,

since |M ′
1M1| = 1/2. Here M ′

1 = {k,αk1}. The second term in the coefficient
a1(μ) = μ + μ3/2 affects the order of the correction.

The approximate values for the roots of equation (1.3.7) are

x1 = −μ1/2 − 3μ + O
(
μ3/2

)
,

x2 = μ1/2 − 2μ + O
(
μ3/2

)
,

x3 = 2μ − 2μ3/2 + O
(
μ2

)
.
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Fig. 1.6 Newton polygon
for (1.3.8)
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Example 3
We consider one more equation similar to that for the problem of the spectrum

of axisymmetric free vibrations of a circular cylindrical thin shell (see Sect. 4.4 in
Chap.4),

μ4x6 +
(
1 − ν2

)
λμ4x4 + (1 − λ)x2 + λ

[
1 −

(
1 − ν2

)
λ
]

= 0. (1.3.8)

Here λ is the frequency parameter, where λ, ν, (1 − ν2) ∼ 1 and also (1 − λ) ∼ 1.
The Newton polygon for Eq. (1.3.8) is plotted in Fig. 1.6. Clearly,

β10 = β20 = 0 and x1,2 = ±ib, b2 = λ
[
1 − (

1 − ν2
)
λ
]

(1 − λ)
.

For the other four roots,

βk0 = −1, where k = 3, 4, 5, 6, xk = c

μ
, c4 = (λ − 1)1/4.

We note that considering a linear differential equation of order n with constant
coefficients depending in the parameter μ,

n∑

k=0

ak(μ)
dk z

dtk
= 0,

after the substitution z = ext we obtain the algebraic equation (1.3.1).

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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1.3.3 Newton Polyhedra

A more difficult problem is to find asymptotics for the roots of equations containing
two or more parameters. In this case, the shape of the Newton polygon depends on
the relation between the two parameters.

Consider an equation containing two parameters, the main small parameter μ and
an arbitrary parameter λ,

P(x;μ,λ) =
n∑

k=0

∑

i

akiμ
αki λβki xk = 0, aki � 0, aki = O(1).

We draw points {k,αki ,βki } in 3D space and construct the convex hull of such
point set. Since one of the parameters, μ, is small, one should construct only the
“lower” facets of the hull, i.e. only the facets visible from the point (0,−∞, 0) in
the {k,α,β} space. The facets of the convex hull determine the relations for the
parameters for which the Newton polygon changes shape. To get these relations
(abridged equations) one should equate the orders of the terms corresponding to the
nodal points of such facets.

RemarkThe abovemethodmay be used also when the coefficients aki have arbitrary
signs. But in this case, the order of the main term in the abridged equation, which
is the difference of two terms of the same order, may go down. This is a specific
situation that must be considered separately (see Example 4).

Example 4
Find the main terms of the equation

μ4x6 +
(
1 − ν2

)
λμ4x4 + (1 − λ)x2 + λ

[
1 −

(
1 − ν2

)
λ
]

= 0

for μ � 1. As noted before, an equation of this type describes the spectrum of
free axisymmetric vibrations of a circular cylindrical thin shell. Now the order of
the frequency parameter λ may be arbitrary (compare with Example 3 where λ has
order 1).

The 3D convex hull for the above equation consists of the three facets:

1. (M1, M2, M3, M4),
2. (M3, M4, M6),
3. (M2, M4, M5, M6),

where the points Mi have the following coordinates:

M1 = {0, 0, 1}, M2 = {0, 0, 2}, M3 = {2, 0, 0},
M4 = {2, 0, 1}, M5 = {4, 4, 1}, M6 = {6, 4, 0},

(see Fig. 1.7).
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Fig. 1.7 Newton polyhedron

Equating the orders of the terms which define the facets we get

λ ∼ λ2 ∼ x2 ∼ λx2,

λx2 ∼ x2 ∼ μ4x6,

λ2 ∼ λx2 ∼ λμ4x4 ∼ μ4x6.

Hence, for the first and second relations, λ ∼ 1, and for the third, λ ∼ μ−4, and the
entire domain of the parameter λ splits into three subdomains, where the Newton
polygon has a similar structure.

In the subdomain λ � 1, the Newton polygon has two segments determined
by the points M1, M3, and M3, M6, respectively, which correspond to the abridged
equations λ + x2 = 0 and 1 + μ4x4 = 0.

In the subdomain 1 � λ � μ−4, the Newton polygon has two segments deter-
mined by the points M2, M4, and M4, M6, respectively, which correspond to the
abridged equations (1 − ν2)λ + x2 and −λ + μ4x4 = 0.

In the subdomain λ � μ−4, the Newton polygon has two segments determined
by the points M2, M5, and M5, M6, respectively, which correspond to the abridged
equations −λ + μ4x4 = 0 and (1 − ν2)λ + x2 = 0.

On the boundary of the subdomains for λ ∼ 1, the Newton polygon has two
segments determined by the points M1, M2, M3, M4, and M3, M4, M6, respectively,
which correspond to the abridged equations (1 − λ)x2 + λ(1 − (1 − ν2)λ) = 0
and μ4x4 + (1 − λ) = 0 (see Example 3). The situation becomes more difficult if
1−λ ∼ μα forα > 0.Here the order of the coefficient at themain term in the abridged
equation goes down and this requires a special consideration (see Sect. 4.4.5).

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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On the boundary of the domains for λ ∼ μ−4, the Newton polygon has one
segment determined by the points M2, M4, M5 and M6, which corresponds to the
abridged equation

μ4x6 +
(
1 − ν2

)
λμ4x4 − λx2 −

(
1 − ν2

)
λ2 = 0.

1.3.4 Exercises

Use Newton polygons to find the first and second terms in the expansions for the
roots of the following equations for μ � 1.

1.3.1. x3 − 3xμ + μ3 = 0.

1.3.2. μ4x4 − x2 + x − μ = 0.

1.3.3. μ−3x3 + μ−1x2 − μ−2x + 1 = 0.

1.3.4. μ5x5 − μ2x3 + x − μ3 = 0.

1.3.5. Find the main terms in the expansion for the roots of the following equation
for μ � 1:

μ4x4 + λ2μ2x4 + μλx2 + λ = 0.

1.4 Variation Index of a Function

1.4.1 Definitions

When integrating ordinary differential equations with parameter λ > 0, we obtain
functions F(x,λ) of two variables. For the asymptotic integration and qualitative
study of solutions as λ → ∞, one should have a way to describe the rate of change
of F(x,λ) as a function of x , i.e. the derivative of ∂F/∂x , as λ → ∞. Gol’denveizer
in [28] introduced the concept of the variation index of a function.

The variation index of a function F(x,λ) as λ → ∞ is the value t such that

∂F

∂x
∼ λt F, as λ → ∞. (1.4.1)

For t > 0, the function F varies fast and for t < 0 it varies slowly.
As an example consider the function

F(x,λ) = g(x) ez (1.4.2)
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where

z = λt f (x) as λ → ∞, t ≥ 0, f ′(x) �= 0 (1.4.3)

( f and g do not depend on λ). Since

∂F

∂x
= λt eλt f (x)

[
g(x) f ′(x) + g′(x)

λt

]
∼ λt f ′(x)F, as λ → ∞,

then, the variation index of function (1.4.2) is equal to t . Similarly, the variation
index of the function

F(x,λ) = g(x) sin z (1.4.4)

under condition (1.4.3) is also equal to t since, for λ → ∞,

∂F

∂x
= λt [

g(x) f ′(x) cos(λt f (x)) + g′(x) sin(λt f (x))
] ∼ λt f ′(x)F

cos z

sin z
.

In fact, for function (1.4.4) the estimate (1.4.1) is not valid in neighborhoods of
the points where cos z or sin z are equal to zero, but these cases used to be ignored
when introducing the variation index.

Example
The variation index may be different in different domains of variation of x . As an

example consider the equation

F ′′ − λq(x)F = 0, ()′ = ∂/∂x, (1.4.5)

with holomorphic coefficient q(x). For q(x) �= 0, the variation index of the solutions
F(x,λ) for Eq. (1.4.5) is t = 1/2 since, in this case, for q > 0 (see Chap.4)

F(x,λ) � C1 exp
(∫ √

λq(x) dx
) + C2 exp

(− ∫ √
λq(x) dx

)

4
√

q(x)
,

and for q < 0

F(x,λ) � C1 cos
(∫ √−λq(x) dx

) + C2 sin
(∫

(
√−λq(x) dx

)

4
√−q(x)

.

If q(x0) = 0 and q ′(x0) = a �= 0, then, for x − x0 ∼ λ−1/3, the variation index
is equal to t = 1/3. To prove this we use the substitution x = x0 + (λa)−1/3η. Then
Eq. (1.4.5) in the given domain may be represented in the form

∂2F

∂η2
− ηF = 0, (1.4.6)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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which does not contain the parameterλ, and, therefore,wemay consider∂F/∂η ∼ F
as λ → ∞; consequently ∂F/∂x ∼ λ1/3F .

Equation (1.4.6) is called Airy’s equation.
The characteristic length of the deformation profile, l ∼ λ−t , is connected with

the variation index t (this concept is used to describe the field of deformation of
solids).

1.4.2 Auxiliary Definitions

The variation index may also be introduced for functions of a larger number of
variables. Consider the function F(x, y,λ). The general variation index of F is the
number t , such that

max

{∣∣∣∣
∂F

∂x

∣∣∣∣ ,
∣∣∣∣
∂F

∂y

∣∣∣∣

}
∼ λt F, as λ → ∞.

If arbitrary functions F have different orders in different variables or different direc-
tions in the (x, y) plane, then we introduce partial variation indexes, ti < t . For
example, the function F(x, y,λ) = A sin(λt1x) sin(λt2 y) has variation indexes t1
and t2 in x and y, respectively.

To compare the orders of several functions, we use the indexes of intensity. Con-
sider two functions F1(x,λ) and F2(x,λ) which can be represented in the form

Fk = gk(x,λ)Hk(x,λ), k = 1, 2,

where

gk ∼ λpk , k = 1, 2; H1 ∼ H2, as λ → ∞.

Then the numbers pk are called the indexes of intensity of the functions Fk .
For example, if the functions Fk have the form (1.4.4), Fk = gk sin(z + αk), then

we may consider H1 ∼ H2 ∼ 1, and the variation indexes coincide with the orders
of the functions Fk , i.e.

Fk ∼ λpk . (1.4.7)

For functions Fk = gkez of type (1.4.3), the estimate (1.4.7) is not valid.
Let the function F have variation index t and index of intensity p. Then by (1.4.3),

for t ≥ 0 the index of intensity p1 for its derivative ∂F/∂x is equal to p1 = p + t .
Clearly the variation index cannot be introduced for every function. Often solu-

tions of differential equations with a parameter may be represented as a sum of
several functions with different variation indexes.
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1.4.3 Exercises

1.4.1. Find the variation index of the function F(x,λ) = g(x) sinh z for z =
λt f (x), λ → ∞, t ≥ 0, f ′(x) �= 0.

1.4.2. For the following functions, find the general variation index. Show the direc-
tions in the (x, y) plane, in which the partial variation indexes attain their minima as
λ → ∞ for n ≥ 0.

(a) F(x, y,λ) = sin (λn(x − ay)),
(b) F(x, y,λ) = eλn x/y .

1.4.3. Find the indexes of variation of the solutions of the differential equations:

(a) y′′′ + 4λ2y′′ − λy′ − λ2y = 0.
(b) y(5) − y(4) − λ2y′′′ + λ2y′′ + λy′ − λy = 0.

1.5 Asymptotic Solution of Transcendental Equations

Asymptotic methods are also used to solve transcendental equations, though, natu-
rally, apart from algebraic equations there does not exist a unified approach.

Example 1
We want to solve the equation

tan x = x

a
, (1.5.1)

for large positive values of x . Herea is a positive number. For example, such equations
occur in the solution of problems of high frequency transverse vibrations of a clamped
beam with variable cross-section area.

It is evident that for large values of x the solution of equation (1.5.1) has the form
x = ( 1

2 + n
)
π + o(1), where n is a positive integer. Denote λ = ( 1

2 + n
)
π and seek

the correction δ for this root. Then, Eq. (1.5.1) may be represented as:

tan(λ + δ) = − 1

tan δ
= λ + δ

a

or

tan δ = − a

λ + δ
= −a

λ
+ O

(
δ

λ2

)
.

Thus, it follows that

δ = −aλ−1 + O
(
λ−3

)
or x = λ − aλ−1 + O

(
λ−3

)
.
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Further, the main part of the correction δ1 is

x = λ − aλ−1 + δ1, δ1 = O
(
λ−3

)
.

Then, Eq. (1.5.1) becomes

1

tan
(
aλ−1 − δ1

) = λ − aλ−1 + δ1

a
,

or

a
(
λ − aλ−1 + δ1

)−1 = tan
(
aλ−1 − δ1

)
. (1.5.2)

Expanding both sides of equality (1.5.2) in series, we obtain

∞∑

k=0

bk

λ2k+1 = a

λ
+ a2

λ3 + o
(
λ−3

)

=
(

aλ−1 − δ1

)
+

(
aλ−1 − δ1

)3

3
+ O

(
λ−5

)

= a

λ
− δ1 + a3

3λ3 + o
(
λ−3

)
,

which, in turn, gives

δ1 = a2
(a

3
− 1

)
λ−3 + O

(
λ−5

)
,

i.e.

x = λ − aλ−1 + a2
(a

3
− 1

)
λ−3 + O(λ−5).

Similarly, one can find the next approximations. Hence,

x = λ +
∞∑

k=0

ck

λ2k+1 , (1.5.3)

where

c0 = −a, c1 = a2
(a

3
− 1

)
, c2 = a3

(4a

3
− 2 − a2

5

)
, . . . .

The asymptotic order of the error steadily goes down with the number of approxi-
mation. Note that, for a = 1, the first root of equation (1.5.1) with an accuracy of
five decimal places is equal to x1 = 4.49341, and the asymptotic approximations for
the first three roots are
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xn,i = λn +
k=i∑

k=0

ck

λ2k+1
n

, where λn = π

2
+ πn.

Results are in the next table.

i x1,i x2,i x3,i
0 4.71239 7.85398 10.99557
1 4.50018 7.72666 10.90463
2 4.49381 7.72528 10.90413
3 4.49344 7.72525 10.90412

∞ 4.49341 7.72525 10.90412

Example 2
Consider the similar equation

tan
b

x
=

∞∑

k=0

ak x2k+1 (1.5.4)

for small x . Here ak and b are real numbers. The problem of free transverse vibrations
of a string with variable density with fixed ends leads to such equation.

Clearly, the solution of equation (1.5.4) has the form

b

x
= πn

[
1 + o

(
1

n

)]
or x = b

πn
+ o

(
1

n2

)
,

where n is a positive integer and x → 0.
Similar to Example 1, the asymptotic expansion for the root is

x =
∞∑

k=0

ck

(πn)2k+1 , c0 = b. (1.5.5)

Substituting this series into Eq. (1.5.4) and equating the coefficients of the same
power of the small parameter 1/(πn) to zero, we can find the coefficients ck, (k > 0)
for series (1.5.5):

c1 = −a0b2, c2 = b3
(

2a2
0 − a1b + a3

0

3

)

, . . . .

Example 3
Consider the equation,

x2 − ln x = u, (1.5.6)
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where u is a large positive parameter.
It is evident that x2 − ln x ∼ x2 as x → ∞. Then Eq. (1.5.6) may be written in

the form

u = [1 + o(1)]x2, as x → ∞,

whence

x = u1/2[1 + o(1)], as u → ∞.

Substituting this approximation in equation x2 = u+ ln x and taking ln[1+o(1)] =
o(1) into account, we find

x2 = u + 1

2
ln u + o(1),

i.e.

x = u1/2
[
1 + ln u

4u
+ o

(
1

u

)]
. (1.5.7)

As in Example 1, one can iterate this substitution and find the asymptotic approxi-
mation to any order.

For u = 10, Eq. (1.5.6) has the solution x = 3.3478, while relation (1.5.7) gives
x ≈ 3.3443.

For u = 100 the exact solution is x = 10.11504 and relation (1.5.7) gives
x ≈ 10.11512.

Example 4
Construct the asymptotic solution of the equation

sin z + z = 0 (1.5.8)

in the complex plane for large values of |z|.
Note that on the real axis this equation has only the root z = 0. Substituting

z = x + iy, where i is the imaginary unit, into Eq. (1.5.8) and setting the real and
imaginary parts equal to zero, we obtain the system:

ey + e−y

2
sin x + x = 0,

ey − e−y

2
cos x + y = 0.

(1.5.9)

One can see from system (1.5.9) that |y| increases as |x | goes up. It is also clear that
if the pair of real numbers x, y is a solution of system (1.5.9) then the pair x,−y is
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also a solution. That is why one can consider y > 0 and for large values of y system
(1.5.9) can be approximately represented in the form

ey

2
sin x + x = 0,

ey

2
cos x + y = 0.

(1.5.10)

From the second equation in (1.5.10) we get

x = ± arccos
(−2y e−y) + 2πn, (1.5.11)

and, therefore, x ∼ n as n → ∞. Since | − 2y e−y | → 0 as y → ∞, then

x = 2πn ± π

2
+ o(1). (1.5.12)

Thus, Eq. (1.5.10) leads to

y = ln

(−2x

sin x

)
� ln(4πn − π) � ln 4πn + O

(
n−1

)
. (1.5.13)

Note that the “+” sign is not acceptable in equality (1.5.12), since the argument of
the logarithm must be positive. Substituting expression (1.5.13) into (1.5.11) one
gets the next approximation for x :

x ≈ 2πn − π

2
− ln 4πn

2πn

Therefore,

z � 2πn − π

2
− ln 4πn

2πn
+ i ln 4πn + O

(
n−1

)
as n → ∞.

Example 5
Many asymptotic solutions of transcendental equations can be obtained by the

direct use of the Lagrange–Bürmann inversion formula. This formula is defined for
functions of a complex variable, but it can also be used for functions of a real variable.

Let the function f (z) be analytic in a neighborhood of the point z = 0 and
f (0) �= 0. Consider the equation

μ = z

f (z)
, (1.5.14)

where z is unknown. Then, there exists a > 0 such that, for |μ| < a, Eq. (1.5.14)
has only one solution in a neighborhood of z = 0 and that solution is an analytic
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function of μ:

z =
∞∑

n=1

cnμn, cn = 1

n!
[( d

dz

)n−1
( f (z))n

]∣∣∣
z=0

, (1.5.15)

The generalized formula determines the value of g(z), if the function g(z) is
analytic in a neighborhood of z = 0:

g(z(μ)) = g(0) +
∞∑

n=1

dnμn, dn = 1

n!
[( d

dz

)n−1
g′(z)( f (z))n

]∣∣∣
z=0

.

For example, solution (1.5.3) can be obtained by formula (1.5.14) since it is obvious
that each segment π(n + 1/2) < x < π(n + 3/2) contains only the root x∗ and the
difference x∗ − π(n + 1/2) → 0 as n → ∞.

Assuming that x = π(n+1/2)+z = λ+z andμ = λ−1, Eq. (1.5.1) is transformed
into an equation of type (1.5.14), where

f (z) = −z

sin z
(a cos z + z sin z), f (0) = −a.

Note that Eq. (1.5.4) can be transformed into Lagrange–Bürmann equation in a
similar manner, but this method of solution is more cumbersome than the above
direct solution. To transform equation (1.5.6) into an equation of type (1.5.14) is
much more difficult than for Example 1.

1.5.1 Exercises

1.5.1. Find the first three terms of the asymptotic expansion for the roots of the
equation xe1/x = eu, where u is a large positive number.

1.5.2. Find the first two terms of the asymptotic expansion of the equation
cos x cosh x = −1 for large positive roots. The problem of buckling under a dis-
tributive loading of a beam with one clamped edge and one free edge is reduced to
this equation.

1.5.3. Find the first three terms of the asymptotic expansion for large positive roots
of the equation x sin x = 1.

1.5.4. Find first three terms of the asymptotic expansion for large positive roots of
the equation x tan x = 1.

1.5.5. Find the first three terms of the asymptotic expansion for large positive roots
of the equation tan x = xk , where k is a positive integer.

1.5.6. Find the first two terms of the asymptotic expansion for a root of the equation
x ln x = u, where u is a large positive number.
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1.5.7. Find first three terms of the asymptotic expansion for a root of the equation
x + tanh x = u, where u is a large positive number.

1.5.8. Find the first three terms of the asymptotic expansion for a root in the interval
(0,π/2) for the equation x tan x = u, where u is a large positive number.

1.5.9. Find the asymptotic solution of the equation cos z + z = 0 in the complex
plane for large values of |z| (z > 0, �z > 0).

1.6 Solution of Systems of Linear Algebraic Equations

1.6.1 Regular Unperturbed Systems

Consider the system of linear algebraic equations

A(μ)x = b(μ), x = (x1, . . . xN )T , b = (b1, . . . bN )T , (1.6.1)

where

A(μ) =
∞∑

n=0

Anμn, b(μ) =
∞∑

n=0

bnμn . (1.6.2)

As μ → 0, system (1.6.1) degenerates into the system

A0x = b0. (1.6.3)

If for small μ the determinant det A(μ) �= 0, then Eq. (1.6.1) has a solution x(μ).
We shall discuss shortly the problem of expanding the solution x(μ) in powers of
μ and the relation between that solution and the solution of the confluent equa-
tion (1.6.3).

In the simple casewhere det A0 �= 0 and A−1
0 exists, the solution of system (1.6.1)

is obtained in the form of a power series in μ:

x = x0 + μx1 + μ2x2 + · · · . (1.6.4)

Substituting the asymptotic expansion (1.6.4) into Eq. (1.6.1) and equating the terms
with the same power of μ we get

μ0 : A0x0 = b0,
μ1 : A0x1 = b1 − A1x0,

μ2 : A0x2 = b2 − A1x1 − A2x0,
...

(1.6.5)

System (1.6.5) is an iterative process for defining the expansion coefficients of (1.6.4).
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1.6.2 Singular Unperturbed Systems in Special Cases

In the case det A0 = 0, problem (1.6.3) is, generally speaking, unsolvable and the
solution of problem (1.6.1), x(μ), if it exists, is singular at the point μ = 0. If we
assume that det(A0 + μA1) �= 0 for small μ, then Eq. (1.6.1) has solution x(μ). A
detailed discussion of this issue may be found in [63].

In the sequel, we only quote some results.
If det A0 = 0, then the confluent equation (1.6.3) is not solvable for all b0 and

the corresponding homogeneous equation

A0x = 0 (1.6.6)

has a limited number, r < N , of linearly independent solutions, xi0 (i = 1, 2, . . . , r).
The nonhomogeneous equation (1.6.3) admits a solution if and only if its right side,
b0, is orthogonal to all solutions y(k) (k = 1, 2, . . . , r) of the adjoint homogeneous
equation

A∗
0 y(k) = 0 (k = 1, 2, . . . , r), (1.6.7)

i.e.

(
b0, ȳ(k)

)
≡

N∑

j=1

b j ȳ j = 0.

Here A∗
0 denotes the adjoint transpose of matrix A0 (a∗

i j = ā j i , where the bar means
complex conjugation) and (·, ·) is the vector scalar product.

For simplicity assume that r = 1. Then the homogeneous equation (1.6.6) has
only one solution, x10, up to a constant factor. In this case, the adjoint equation
(1.6.7) also has just one solution, y(1). We expand the solution x(μ) of Eq. (1.6.1) in
terms of μ:

x = C0x10

μ
+(x0+C1x10)+μ(x1+C2x10)+· · ·+μn(xn+Cn+1x10)+· · · (1.6.8)

Here the unknowns are the coefficients Ci and the vectors xi . To evaluate these we
substitute expression (1.6.8) into Eq. (1.6.1) and equate coefficients of equal powers
of μ:

μ−1 : C0 A0x10 = 0,
μ0 : A0x0 + C0 A1x10 = b0,
μ1 : A0x1 + A1x0 + C1 A1x10 + C0 A2x10 = b1,

...

(1.6.9)
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The first equality in (1.6.9) holds for any C0. The second equation is solvable for x0
if and only if

(
b0 − C0 A1x10, y(1)

)
= 0.

From this equation the constant C0 may be found:

C0 =
(
b0, y(1)

)

(
A1x10, y(1)

) .

Once C0 is calculated, one can obtain x0 as a partial solution of the second equation
in (1.6.9). Hence, the first two equations in (1.6.9) provide C0 and x0. We write the
third equation in the form

A0x1 = b1 − A1x0 − C1 A1x10 − C0 A2x10.

From the solvability conditions for that equation,

(
b1 − A1x0,−C1 A1x10 − C0 A2x10, y(1)

)
= 0

we find the next coefficient C1 and then the next partial solution x1. Continuing this
process, one can find C2 and x2, etc.

1.6.3 Singular Unperturbed Systems in General Cases

To construct a solution in the general case where r > 1 we must recall some defini-
tions of linear algebra.

Let A be a matrix of order N . If the vector u0 satisfies the equation Au0 = 0,
and the nonzero vectors u1, . . . ,uk−1 satisfy the equations Aui = ui−1 for i ≥ 1
but the equation Ax = uk−1 is unsolvable, then the vectors u1, . . . ,uk−1 form a
Jordan chain of length k, and the vector ui is called a generalized eigenvector of the
i th order.

Let A0, . . . , Al be matrices of order N from (1.6.2) and consider the generalized
characteristic equation

P(λ) ≡ det
(

A0 + λA1 + λ2 A2 + · · · + λl Al

)
= 0.

If λ = 0 is a root of this equation (a generalized eigenvalue), then there exists
an eigenvector u0 (Au0 = 0). In this case the so-called generalized eigenvectors
u0,u1, . . . ,uk−1 satisfy the equations
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A0u1 = −A1u0 = z1,
A0u2 = −A1u1 − A2u0 = z2,

... = ...

A0uk−1 = −A1uk−2 − A2uk−3 − · · · − Aluk−l = zk−1,

(1.6.10)

where z1, z2, . . . , zk−1 are orthogonal to all eigenvectors of the adjoint matrix A∗
0

corresponding to the eigenvalue λ = 0 and zk is not orthogonal to all eigenvectors.
Thus, suppose Eq. (1.6.6) has r > 1 linearly independent solutions xi0 (i =

1, 2, . . . , r). Let xi j ( j = 0, 1, . . . , ni − 1) be a complete system of eigenvectors
and generalized eigenvectors with respect to the matrices A0, A1, . . .. Then we want
to expand the solution of equation (1.6.1) in the form

x(μ) =
r∑

i=1

[
Ci0xi0

μni
+ Ci0xi1 + Ci1xi0

μni −1 + · · ·

+ Ci0xi,ni −1 + Ci1xi,ni −2 + · · · + Ci,ni −1xi0

μ

]

+ x0 +
r∑

i=1

(Ci1xi,ni −1 + · · · + Cini xi0) + · · ·

+ μs
[

xs +
r∑

i=1

(Ci,s+1xi,ni −1 + · · · + Ci,s+ni xi0)

]
+ · · · (1.6.11)

The coefficients Cim and the vectors xs are the unknowns. As before, to obtain these
unknowns we substitute (1.6.11) into Eq. (1.6.1) and equate the coefficients with
equal powers of μ. This case is considered in greater detail in [63].

1.6.4 Exercises

Find the first three terms of the asymptotic expansion for the solution of the following
systems of equations.

1.6.1.

(1 + μ)x + μy + z = a1,

μx + y + μz = a2,

x + μy + (1 + μ)z = a3.

1.6.2.

(6 + μ)x + μy + (−2 + μ)z = 16 + 26μ,

(−3 + 2μ)y + (2 + μ)z = 8μ,

(1 + μ)x + 4y + (−3 − 2μ)z = 6 + 2μ.
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1.6.3.

(1 + μ)x + y + z = b1,

x + (1 + μ)y + z = b2,

x + y + (1 + μ)z = b3.

1.6.4.

(−4 − μ)x + y + 2z = d1,

−8x + (2 − μ)y + 4z = d2,

−4x + y + (2 − μ + αμ2)z = d3.

Note: In Exercise 1.6.4, the form of the expansion depends on the value of α.

1.7 Eigenvalue Problems

Now, we consider eigenvalue problems for systems of linear algebraic equations:

(A(μ) − λI)x = 0, (1.7.1)

where, as before,

A(μ) =
∞∑

n=0

Anμn .

Here I is the identity matrix. Let A0 be a Hermitian matrix, that is A0 = A∗
0. If A

is an N × N Hermitian matrix, then for any N vectors x, y we have

(Ax, y) = (x, A y) .

We recall that Hermitian matrices have only real eigenvalues and a full set of eigen-
vectors which can be chosen to be orthonormal.

Given a solution of an eigenvalue problem, we expand the eigenvalue and the
eigenvector in power series in μ:

λ = λ0 + μλ1 + μ2λ2 + · · · , x = x0 + μx1 + μ2x2 + · · · (1.7.2)

Substituting the asymptotic expansions (1.7.2) into (1.7.1) and equating the terms of
equal power of μ we get:
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μ0 : (A0 − λ0 I) x0 = 0,
μ1 : (A0 − λ0 I) x1 = λ1x0 − A1x0,

...

μk : (A0 − λ0 I) xk =
k−1∑

l=0

(λk−l xl − Ak−l xl) ,

...

(1.7.3)

The first equation in (1.7.3) has N eigenvalues λ0i and N eigenvectors x0i . First,
consider the case where all eigenvalues are simple. We seek the corrections to the
eigenvalues λ0i . Normalize the eigenvectors x0i : (x0i , x0i ) = 1. Since det

(
A0 −

λ0i I
) = 0, for the second equation in (1.7.3) to have a solution it is necessary that

its right side be orthogonal to the eigenvectors of the matrix on the left side:

((A0 − λ0i I)x1i , x0i ) = λ1i |x0i |2 − (A1x0i , x0i ) .

Since the matrix (A0 − λ0i I) is Hermitian, then

((A0 − λ0i I)x1i , x0i ) = (x1i , (A0 − λ0i I)x0i ) = 0,

and the correction to the eigenvalue is

λ1i = (A1x0i , x0i )

|x0i |2 = (A1x0i , x0i ) .

After obtaining the value of λ1i , we can find the correction x1i to the eigenvector
x0i from the second equation in (1.7.3). Continuing this process one can get the next
terms in the expansions (1.7.2).

1.7.1 Multiple Eigenvalues

Now consider the more complex case of multiple eigenvalues. Let the unperturbed
problem (the first equation in (1.7.3)) have an eigenvalue λ0 of multiplicity r with
associated pairwise orthonormal eigenvectors e1, e2, . . . , er . For the perturbed prob-
lem, a bifurcation of the r -fold eigenvalue occurs.

As before, represent the perturbed eigenvalues and eigenvectors in power series
( j = 1, 2, . . . , r)

λ j = λ0 + μλ1 j + μ2λ2 j + · · · , x = x0 j + μx1 j + μ2x2 j + · · · .

As opposed to the case of simple eigenvalues, it is not clear now how to find the
vectors x0 j . It is only known that these vectors are linear combinations of the vectors
e1, e2, . . . , er . Write
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x0 j = a0
j1e1 + a0

j2e2 + · · · + a0
jr er . (1.7.4)

Comparing the coefficients of equal powers of μ we get:

μ1 : A1x0 j + A0x1 j = λ0x1 j + λ1 j x0 j . (1.7.5)

One should find the scalar coefficients a0
j1, . . . , a0

jr and the values of λ1 j . Taking
the scalar product of both sides of equality (1.7.5) with ep we get

(
A1x0 j , ep

) + (
A0x1 j , ep

) = λ0
(
x1, j , ep

) + λ1 j
(
x0 j , ep

)
,

or taking (
A0x1 j , ep

) = (
x1 j , A0ep

) = λ0
(
x1, j , ep

)

into account, we have (
A1x0 j , ep

) = λ1 j
(
x0 j , ep

)
.

Substituting (1.7.4) in the above equality, we find

r∑

i=1

(
A1ei , ep

)
a0

j i = λ1 j a
0
j p,

or
r∑

i=1

cipa0
j i = λ1 j a

0
j p, where cip = (

A1ei , ep
)
, (1.7.6)

i.e. the quantities λ1 j are the eigenvalues of the matrix C = (cip), i, p = 1, 2, . . . , r ,
and may be determined from the equation

det |C − λ1 j I | = 0, j = 1, 2, . . . , r.

The coefficients a0
jk are obtained from Eq. (1.7.6).

1.7.2 Generalized Eigenvalue Problems

A similar approach is used to solve the generalized eigenvalue problem

Ax = λBx, where A =
∞∑

n=1

Anμn, B =
∞∑

n=1

Bnμ
n,

where the matrices A0 and B0 are symmetric.
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One seeks the eigenvalues and eigenvectors as series in small parameters. The
eigenvectors for the unperturbed problem, e j , possess the following properties

(
A0e j , ei

) = δi jλ0 j ,
(
B0e j , ei

) = δi j .

Applying the same algorithm and taking these properties into account, one gets
formulas for ak

ji and the next approximations to λk j .

1.7.3 Spectrum of a Bundle of Operators

Now we come to the problem of non-selfadjoint perturbation, i.e. of the spectrum of
a bundle of operators. Consider the problem

Ax = B(λ)x, (1.7.7)

where the matrices A and B are represented in the form

A =
∞∑

n=0

Anμn, B(λ) =
∞∑

i=1

Biλ
i , Bi =

∞∑

n=0

Bn,iμ
n .

Asbefore,we seek a solution as a series in the small parameterμ. Consider a particular
case of the problem where

A = A0 + A2μ
2, B = B1,1μλ + Iλ2. (1.7.8)

Such problems arise in the study of free vibrations of rotating solids. In this case the
term A0 is related to the elastic strain energy of the non-rotating solid, A2 is related to
the energy of initial stresses and centrifugal forces, and B1,1 is related to the energy
of the Coriolis force, x is the displacement vector, λ is the natural frequency, and μ
is the angular velocity. For convenience, we denote B1,1 = A1. Now, representing
eigenvectors and eigenvalues for the matrix A in the form (1.7.2), substituting (1.7.2)
into (1.7.7) and equating the coefficients of equal powers of μ we get

μ0 : (
A0 − λ2

0 I
)
x0 = 0,

μ1 : (
A0 − λ2

0 I
)
x1 = λ0 A1x0 + 2λ0λ1x0,

...

μk : (
A0 − λ2

0 I
)
xk =

k−1∑

l=1

(
λk−l−1 A1xl − A2xk−2 +

k−l∑

p=0

λpλk−p−l xl

)
,

(1.7.9)
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The spectrum of the unperturbed problem (the first equation in (1.7.9)) consists of
N pairs of frequencies +λ0 j ,−λ0 j , both of which corresponding to the eigenvector
x0 j . Consider the case where all eigenvalues λ0 are simple and nonzero. Then the
eigenvectors form an orthogonal basis, the normalized elements of which we denote
as ei . Representing the vectors in a form similar to (1.7.2) we have

xk j =
N∑

i=1

ak
ji ei , j = 1, . . . , N , (1.7.10)

and substituting them into (1.7.9) we obtain

μ1 :
N∑

i=1

(
λ2
0i − λ2

0 j

)
a1

j i ei = (
λ0 j A1 + 2λ0 jλ1 j I

)
e j ,

...

μk :
N∑

i=1

(
λ2
0i − λ2

0 j

)
ak

ji ei =
N∑

i=1

k−1∑

l=0

(
al

j,iλ j,k−l−1 A1ei − ak−2
j,i A2ei +

k−l∑

p=0

λ j,pλ j,k−p−la
l
j,i ei

)
.

(1.7.11)
Multiplying (1.7.11) by ep and assuming that p = j , we obtain an expression for
the correction to the frequency λ jk , and for p �= j we get the corrections to the
eigenvector xk j . Here we took a0

i j = δi j and ak
ii = 0 into account. We list the first

corrections to the eigenvalue and eigenvector.

λ1 j = −
(

A1e j , e j
)

2
, j = 1, . . . , N ,

a1
i j = λ0 j

(
A1e j , ei

)

λ2
0i − λ2

0 j

, i, j = 1, . . . , N , j �= i.
(1.7.12)

One can see that the first corrections to the eigenvalues from the pair±λ j are equal
to each other and the corrections to the corresponding eigenvectors have opposite
signs. For the second correction the situation is reversed.

±λ j = ±λ0 j + μλ1 j ± μ2λ2 j · · · , x j = x0 j ± μx1 j + μ2x2 j ± · · · .

Perturbations in the problem under consideration lead to the bifurcation of eigen-
values and eigenvectors and their shift. In Fig. 1.8, three lower frequencies of free
vibrations of a rotating cylindrical shell versus the angular velocityμ are plotted.Here
the solid line is an exact solution, and the dashed line is a two-term approximation.
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Fig. 1.8 Three lower
frequencies of free vibrations
versus the angular velocity μ

λ

μ
O

1.7.4 Exercises

Find the eigenvalues and eigenvectors of the matrix A(μ) to accuracy O(μ).

1.7.1.

A(μ) =
⎡

⎣
μ 1 1 + μ
1 μ −1

1 + μ −1 μ

⎤

⎦ .

1.7.2.

A(μ) =
⎡

⎣
1 + 2μ 3μ 0

μ 1 + 4μ 0
0 0 1 + 2μ

⎤

⎦ .

1.7.3.

A(μ) =
⎡

⎣
1 + μ 0 μ
0 1 + μ μ2

−μ 0 1 + 3μ

⎤

⎦ .

1.7.4.

A(μ) =
⎡

⎣
1 + μ 0 μ
0 1 + μ μ2

0 0 1 + 3μ

⎤

⎦ .
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1.7.5.
A(μ)x =

(
λμA1 + λ2 I

)
x,

where

A(μ) =
⎡

⎣
1 0 μ2

0 4 + μ2 0
0 0 9

⎤

⎦ , A1 =
⎡

⎣
1 0 0
0 1 −1
0 1 1

⎤

⎦ .

1.7.6.
A(μ)x =

(
λμA1 + λ2 I

)
x,

where

A(μ) =
⎡

⎣
1 0 −μ2

0 4 + μ2 0
μ2 0 9

⎤

⎦ , A1 =
⎡

⎣
0 −1 0
1 0 −1
0 1 0

⎤

⎦ .

1.8 Answers and Solutions

1.1.1. For small ε we have

ln(1 + ε) ∼ ε,
1 − cos ε

1 + cos ε
∼ ε2,

√
ε(1 − ε) ∼ √

ε.

1.1.2a.

√
x2 − 1

|x | ≤ 1; therefore, Cmin = 1.

1.1.2b. |xn| ≤ C |ex |, C ≥ |xn e−x |. The maximal value of xn e−x is attained at
x = n and is equal to Cmin = nn e−n .

1.1.3. Since z ≥ |z|/ sin ε as z ∈ S, then |e−cz | ≤ e−c1|z|, c1 = c/ sin ε.

1.1.4. Show that lim
x→∞

(∫ x

a
f (t)dt

)/
xg(x) = 0. Use l’Hôpital’s rule:

lim
x→∞

∫ x
a f (t)dt

xg(x)
= lim

x→∞
f (x)

g(x) + x · g′(x)
,

∣∣∣∣
f (x)

g(x) + x · g′(x)

∣∣∣∣ ≤
∣∣∣∣

f (x)

g(x)

∣∣∣∣ ,

since g′(x) ≥ 0, and | f (x)|/|g(x)| → 0 as x → ∞.



38 1 Asymptotic Estimates

Fig. 1.9 Graphs of the
function in Exercise 1.1.5b
and the function 1

2
√

x

1.1.5a. As x → 0

1 − √
cos x

1 − cos(
√

x)
� 1 − √

1 − x2/2

1 − (1 − x/2)
� 1 − (1 − x2/4)

x/2
= x

2
∼ x .

1.1.5b.

sin
√

x + 1− sin
√

x = 2 sin

√
x + 1 − √

x

2
cos

√
x + 1 + √

x

2

= 2 sin

[√
x

2

(√
1 + 1/x − 1

)]
cos

[√
x

2

(√
1 + 1/x + 1

)]
.

In the last expression, the second factor is bounded and the first one has order

2 sin

(√
x

2

1

2x

)
� 1

2
√

x
= O

(
1√
x

)
as x → ∞.

Figure 1.9 shows graphs of the given function and the function 1
2
√

x
.

1.1.5c.

sin ln (x + 1) − sin ln x = 2 sin

(
1

2
ln

1 + x

x

)
cos

(
1

2
ln x(1 + x)

)
,

∣∣∣∣cos
(
1

2
ln x(1 + x)

)∣∣∣∣ < 1,

and

sin

(
1

2
ln

(
1 + 1

x

))
� sin

1

2x
as x → ∞.

Hence sin (ln(x + 1)) − sin (ln x) = O(1/x). Figure1.10 shows the graphs of the
given function and the function 1/x .
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Fig. 1.10 Graphs of the
function in exercise 1.1.5c
and the function 1/x

1.1.5d.

ln
nx + √

1 − n2x2

x + √
1 − x2

� ln
nx + 1 − n2x2/2

x + 1 − x2/2

� ln [1 + (n − 1)x] � (n − 1)x ∼ x, as x → 0.

1.2.1a.

√
1 − ε

2
+ 2ε2 = 1 − ε

4
+ 31ε2

32
+ O

(
ε3

)
.

1.2.1b. sin
(
1 + ε − ε2

)
= sin(1) + cos(1)ε −

[
cos(1) + sin(1)

2

]
ε2 + O

(
ε3

)
.

1.2.1c. (1 − aε + a4ε2)−1 = 1 + aε + a2ε2(1 − a2) + O(ε3).

1.2.1d. sin−1
(

ε√
1 + ε

)
= 1

ε
+ 1

2
+ ε

24
+ O(ε2).

1.2.1e. ln
1 + 2ε − ε2

3
√
1 + ε

= 5ε

3
− 17ε2

6
+ 41ε3

9
+ O(ε4).

1.2.1f. ln [1 + ln(1 + ε)] = ε − ε2 + 7ε3

6
+ O(ε4).

1.2.2a. The expansion does not hold as x → ∞.

1.2.2b. Uniformly.

1.2.2c. The expansion does not hold for x = O(ε).

1.2.3. an = lim
x→∞ xne−x sin ex = 0 for all n.

1.2.4. Let u =
∞∑

n=0

an xn . Substituting this series into the initial equation

∞∑

n=3

[
an−1(n − 1)2 + an(n − 1)

]
xn + (a1 + a2)x2 − a0 = 0
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we get

a0 = 0, a2 = −a1, an = −(n − 1)an−1 or an = (−1)n−1(n − 1)!a1,

i.e. u = a1

∞∑

n=1

(n −1)!(−1)n−1xn . The series diverges by d’Alembert criterion since

lim
n→∞

an xn

an−1xn−1 = − lim
n→∞(n − 1)x .

One should note that the given equation of the second order has two independent solu-
tions. The second solution, which is singular at the point x = 0, may be represented
in the form

u =
∞∑

n=0

b0
n!xn

.

1.3.1. x1 = 1

3
μ2 + 1

81
μ5 + O

(
μ8

)
, x2,3 = ±√

3μ1/2 − 1

6
μ2 + O

(
μ7/2

)
.

1.3.2. x1 � μ+μ2 + O
(
μ3

)
, x2 � 1−μ+ O

(
μ2

)
, x3,4 � ±μ−2 − 1/2+ O

(
μ2

)
.

1.3.3. x1 � μ2 − 2μ5 + O
(
μ8

)
, x2,3 � ±μ1/2 − μ2 + O

(
μ7/2

)
.

1.3.4. x1 = μ3 + μ11 + o(μ11), x2,3 = ±
(
1

μ
+ 1

2

)
+ o(1),

x4,5 = ±
(

1

μ3/2 − 1

2μ1/2

)
+ o(1/μ1/2).

1.3.5. We find 3 boundary points corresponding to the lower (in μ) facets of the
Newton polyhedron which, in this case, is a tetrahedron with vertices M1 = {0, 0, 1},
M2 = {4, 4, 0}, M3 = {4, 2, 2}, and M4 = {2, 1, 1} and, four intervals, or four
ranges, for λ with a specific structure of the Newton polygon: (I) λ � μ2, (II)
μ2 � λ � μ, (III) μ � λ � 1, and (IV) λ � 1 (see Fig. 1.11). For example, in
the closed domains I and IV the Newton polygon consists of one segment and in the
remaining domains it consists of two segments.

Fig. 1.11 Newton
polyhedron for equation in
Exercise 1.3.5

3

2

1

M

M

M

M4
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1.4.1.
∂F

∂x
= g′(x) sinh z + g(x)λt f ′(x) cosh z ∼ λt F(x,λ). The variation index is

equal to t .

1.4.2a. The general variation index is equal to n. On the line ay = x , the partial
variation index is equal to zero.

1.4.2b. The general variation index is equal to n. On the line y = x , the partial
variation index is equal to −∞.

1.4.3. We seek a solution of the differential equation in the form y = ez . The
characteristic equation is z3 + 4z2λ2 − zλ − λ2 = 0. Upon substituting λ = 1/μ,
we get μ2z3 + 4z2 − μz − 1 = 0. Using the Newton polygon, we can get the roots
of the characteristic equation:

z1,2 � ±1

2
+ μ

8
+ O

(
μ2

)
, or z1,2 � ±1

2
+ 1

8λ
+ O

(
1

λ2

)
,

z3 � − 4

μ2 − μ

4
+ O

(
μ2

)
, or z3 � −4λ2 − 1

4λ
+ O

(
1

λ2

)
.

Hence, the given differential equation has two roots with variation index equal to 0:
y(x,λ) � e± x

2 and ∂y
∂x � ± 1

2 y(x,λ), and one solution with variation index equal to

2: y(x,λ) � e−4λ2xand ∂y
∂x � −4λ2y(x,λ).

1.4.4. After the substitution λ = 1/μ, the characteristic equation z5 − z4 − λ2z3 +
λ2z2 + λz − λ = 0 becomes μ2z5 − μ2z4 − z3 + z2 + μz − μ = 0 with roots
z1,2 = ±μ1/2 + O(μ), or z1,2 = ±λ−1/2 + O(λ−1), z3 = 1, z4,5 = ±1/μ +
O(1), or z4,5 = ±λ + O(1).

Hence, the initial differential equation has two solutionswith variation index equal
to −1/2:

y(x,λ) � e±x/λ1/2
,

∂y

∂x
� ± 1

λ1/2 y(x,λ),

One solution with variation index equal to 0

y(x,λ) � ex ,
∂y

∂x
� y(x,λ),

and two solutions with variation index equal to 1:

y(x,λ) � e±λx ,
∂y

∂x
� ±λy(x,λ).

1.5.1. Equation xe1/x = eu is equivalent to the equation

1

x
+ ln x = u. (1.8.1)
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For large u, this equation has two roots. One root corresponds to small values of x
and for this case the main term in the left side of the equation is equal to 1/x . The
other root corresponds to large values of x and then the main term in the left side
of equation is ln x . So, in the first case, to first approximation x = 1/u + o(1/u).
We seek a correction to this root. Substituting x = 1/u + δ into Eq. (1.8.1) and,
expanding the left side of the equation, we obtain

1

1/u + δ
+ ln

(
1 + δu

u

)
≈ u − u2δ + δu − ln u = u,

and δ = − ln u/u2. In a similar way, one can get the next correction:

x = 1

u
− ln u

u2 + ln2 u

u3 + O

(
ln u

u3

)
.

For the second root, in the first approximation, one has x = eu. In the next approxi-
mation,

x = eu −
∞∑

i=1

i i

(i + 1)!e−iu.

1.5.2. The equation cos x cosh x = −1 may be represented in the form cos x =
−1/ cosh x . For large x , cos x = − 2

ex . The right side of this equation converges to
zero as x → ∞; this allows us to write the roots of the equation as x = π/2+ πn +
o(1) = λn + o(1). Taking cos(λn + δ) = (−1)n+1 sin δ into account and expanding
sin δ in a series, one gets δ = 2(−1)n/eλn . Continuing this process, one can find the

next terms of the series x = λn +
∞∑

k=1

ck

ekλn
.

1.5.3. Equation x sin x = 1 may be written in the form sin x = 1/x . Then for large x
the roots of the equation are x = πn + O(1/πn). Taking sin(πn + δ) = (−1)n sin δ
into account and expanding sin δ in a series, one can obtain the next terms of the
series

x =
∞∑

k=−1

ak(πn)−2k−1 : x = πn + (−1)n

πn
− 1

π3n3

[
1 − (−1)n

6

]
+ O

(
n−5

)
.

1.5.4. Equation x tan x = 1 may be written in the form tan x = 1/x . It follows that,
for large x , the roots of the equation may be written as x = πn + O(1/πn). Taking
into account that tan(πn + δ) = tan δ and expanding tan δ in a series one can find
the next terms in the expansion:

x =
∞∑

k=−1

ak(πn)−2k−1, x = πn + 1

πn
− 4

3π3n3 + O
(

n−5
)

.
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1.5.5. Similar to Example 1 of Sect. 1.5, for large x the solution of the equation
has the form x = ( 12 + n)π + o(1), where n is a positive integer. We denote
λ = ( 12 + n)π and seek the correction δ to this root. We obtain tan(λ + δ) =
−1/tan δ = (λ+δ)k ; whence δ = −1/λk + o(λ−k). Evaluating the next correction,
we get δ1 ≈ 1/(3λ3k) − k/λ2k+1. It is clear that for k = 1 both terms have equal
orders and δ1 = −2/3λ−3. For k > 1, the correction is δ1 = −k/λ2k+1 or x =
λ − λ−k − k/λ2k+1.

1.5.6. We show that the first approximation to the root of the equation x = u/ ln x
has the form x = u/ ln u. Substituting this expression into the initial equation we
obtain

u

ln u
ln

( u

ln u

)
= u

ln u

(
ln u − ln ln u

) = u − u
ln ln u

ln u
= u + o(u).

Further, we seek the correction δ. Substitute x = u/ ln u + δ into the given equation

and keep only the main terms. Then δ = u ln ln u

ln2 u
or x ≈ u

ln u
+ u ln ln u

ln2 u
.

1.5.7. We write the initial equation in the form x = u − tanh x . Then taking
tanh x = 1 + o(1) for large x into account, we obtain x = u − 1 + o(1). For
the next approximation, expand tanh x in a series for large x :

tanh x =
∞∑

k=0

ake−2kx = 1 − 2e−2x + 2e−4x − · · · .

This gives us x = u−1+O(e−2u) and at the next step x = u−1+2e−2u+2+O(e−4u).

1.5.8. For large u, the root of the equation x tan x = u in the interval (0,π/2)
may be written as x = π

2 − δ, where δ = o(1). Since tan
(

π
2 − δ

) = 1/ tan δ

then
(

π
2 − δ

)
u−1 = tan δ ≈ δ and δ = π/2u. For the next approximations x =

π
2

(
1 − 1

u + 1
u2

)
+ O(u−3).

1.5.9. As in Example 3 in Sect. 1.5, the initial equation may be represented in the
form of the system

(ey + e−y) cos x + 2x = 0,

(e−y − ey) sin x + 2y = 0, z = x + iy.

Arguing as in Sect. 1.5.3, one gets

z � (2n + 1)π − ln(4πn)

2πn
+ i ln(4πn) + O(n−1) as n → ∞.
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1.6.1. We write the initial system of equations in the form

(A0 + μA1)X = a, where X = [x, y, z]T , a = [a1, a2, a3]T ,

A0 =
⎡

⎣
1 0 1
0 1 0
1 0 1

⎤

⎦ , A1 =
⎡

⎣
1 1 0
1 0 1
0 1 1

⎤

⎦ .

We note that det(A0 + μA1) = μ(2+ μ − 2μ2) > 0 for 0 < μ � 1, but det A0 = 0
and r = 1. Thematrix A0 is symmetric. Homogeneous equation (1.6.6) has a solution
X10 = [1, 0,−1]T . Expanding the solution of the initial system X(μ) in μwe seek a
solution in the form (1.6.8). From the solvability condition with respect to x0 for the
second equation in (1.6.9) we obtain C0 = (a, X10) / (A1X10, X10) = (a1 − a3)/2.
One of the partial solutions of this equation is x0 = [a1/2, a2, a3/2]T .

Continuing this process, one finds

C1 = −C0/2, x1 = − [(a1 + a3)/4, (a1 + a3)/2, a2]
T , C2 = (a1 + a3 − 4a2)/8,

or

x = 1

2μ
(a1 − a3) + 1

4
(a1 + a3) − μ

8
(a1 + a3 + 4a2) + O

(
μ2

)
,

y = a2 − μ

2
(a2 + a3) + O

(
μ2

)
,

z = 1

2μ
(a3 − a1) + 1

4
(a1 + a3) − μ

8
(a1 + a3 + 4a2) + O

(
μ2

)
.

1.6.2. We write the initial system of equations in the form

(A0 + μA1)X = b0 + μb1,

where
X = [x, y, z]T , b0 = [16, 0, 6]T , b1 = [26, 8, 2]T .

A0 =
⎡

⎣
6 0 −2
0 −3 2
1 4 −3

⎤

⎦ , A∗
0 =

⎡

⎣
6 0 1
0 −3 4

−2 2 −3

⎤

⎦ , A1 =
⎡

⎣
1 1 1
0 2 1
1 0 −2

⎤

⎦ ,

and det A0 = 0 and r = 1. The homogeneous equation (1.6.6) has the solution
X10 = [1, 2, 3]T . The adjoint homogeneous equation A∗

0 y = 0 has the solution
y = [1,−8,−6]T . From the solvability condition with respect to x0 for the second
equation in (1.6.9) we get C0 = 1, and one of the partial solutions of this equation
is x0 = [1, 1,−2]T .

Subsequently, one can find

x = 1

μ
+2+ 11

4
μ+ O

(
μ2

)
, y = 2

μ
+3− 3

2
μ+ O

(
μ2

)
, z = 3

μ
+1− 7

4
μ+ O

(
μ2

)
.
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1.6.3. The initial system of equations may be written as

(A0 + μA1)X = b, where X = [x, y, z]T , b = [b1, b2, b3]T .

A0 =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ , A1 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

The matrix A0 is symmetric and det A0 = 0. The solution of the homogeneous
equation (1.6.6) may be represented in the form X0 = a [1, 0 − 1]T +b [0, 1,−1]T ,
i.e. r = 2. It may be shown that for any value of the constants a and b there exist no
solutions of system (1.6.10), i.e. there exist no generalized adjoint vectors. Hence,
onemay seek a solution of the given system in the form (1.6.11) for n1 = n2 = 1, i.e.

x = C10x10 + C20x20
μ

+ (x0 + C11x10 + C21x20) + μ (x1 + C12x10 + C22x20) + · · · .

As vectors x10 and x20, onemay chose any two linear independent vectors, for exam-
ple, x10 = [1, 0,−1]T and x20 = [1,−2, 1]T . Substituting asymptotic expansion
(1.6.11) into the initial equation and equating the terms of equal powers of μ we get

μ−1 : C10 A0x10 + C20 A0x20 = 0,
μ0 : A0x0 + C11 A0x10 + C21 A0x20 + C10 A1x10 + C20 A1x20 = b,

μ1 : A0x1 + A1x0 + C11 A1x10 + C21 A1x20 = 0,
· · ·

The first of these equalities holds for any C10 and C20. For solvability of the second
equation with respect to x0 it is necessary and sufficient that

b − C10x10 − C20x20, xi0 = 0, i = 1, 2.

From that we find the constants

C10 = (b1 − b3) /2, C20 = (b1 − 2b2 + b3) /6.

With these constants one can obtain the partial solution x0 and from the solvability
condition for the next equation A0x1 = −A1x0 − C11 A1x10 − C21 A1x20 we find
the next constants C11 and C21. Continuing this process we get

X = 1

3μ

⎡

⎣
2b1 − b2 − b3
2b2 − b1 − b3
2b3 − b1 − b2

⎤

⎦ + b1 + b2 + b3
9

⎡

⎣
1
1
1

⎤

⎦ − μ
b1 + b2 + b3

27

⎡

⎣
1
1
1

⎤

⎦ + O
(
μ2

)
.
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1.6.4. The initial system of equations is written as

(A0 + μA1 + μ2 A2)X = d, where X = [x, y, z]T , d = [d1, d2, d3]T ,

and

A0 =
⎡

⎣
−4 1 2
−8 2 4
−4 1 2

⎤

⎦ , A1 =
⎡

⎣
−1 0 0
0 −1 0
0 0 −1

⎤

⎦ , A2 =
⎡

⎣
0 0 0
0 0 0
0 0 α

⎤

⎦ .

Thematrix A0 is symmetric, det A0 = 0 and r = 2. The solution of the homogeneous
equation (1.6.6) may be represented as X0 = a[1, 4, 0]T + b[0,−2, 1]T , i.e. r = 2.
The first equation in (1.6.10) has a solution if u0 = X0 for a = b, i.e. if u0 =
a[1, 2, 1]T . Then the general solution depending on the two arbitrary constants a1
and b1 has the form u1 = [a1, a +4a1 −2b1, b1]T . The second equation in (1.6.10),
A0u2 = −A1u1 − A2u0, has a solution only if α = 1/2. Then, for b1 = a1 + a/2,
this equation is transformed into A0u2 = a1[1, 2, 1]T . Therefore, one should seek
the solution of the given system in the form (1.6.11), and if α �= 1/2, then n1 = 2
and n2 = 1, i.e.

x = C10x10

μ2 +C10x11 + C11x10 + C20x20

μ
+(x0+C11x11+C12x10+C21x20)+· · ·

The vector x10 must have the form x10 = a[1, 2, 1]T for any a and the vector
x11 = [a1, a + 4a1 − 2b1, b1]T for any a1 and b1. For example, we may assume

x10 = [4, 8, 4]T , x11 = [−1, 0, 0]T , x20 = [1,−2, 3]T .

If α = 1/2, then n1 = 3 and n2 = 1, i.e.

x = C10x10

μ3 +C10x11 + C11x10

μ2 + C10x12 + C11x11 + C12x10 + C20x20

μ

+ (x0 + C11x12 + C12x11 + C13x10 + C21x20) + · · ·

and

x10 = [4, 8, 4]T , x11 = [−1, 0, 0]T , x12 = [0,−1, 0]T , x20 = [1,−2, 3]T .

Substituting this asymptotic expansion into the initial equation and equating the terms
with equal powers of μ one get the coefficients C10, C20, etc. successively.

For α = 1/2,

X = 4d3 + 2d2 − 8d1
μ3

⎡

⎣
1
2
1

⎤

⎦ + 1

μ2

⎡

⎣
4d1 − d2
8d1 − 2d2

2d3

⎤

⎦ − 1

μ

⎡

⎣
d1
d2
0

⎤

⎦ .
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For α �= 1/2,

X = 2d3 + d2 − 4d1
(2α − 1)μ2

⎡

⎣
1
2
1

⎤

⎦ + O

(
1

μ

)
.

1.7.1. For this problem

A0 =
⎡

⎣
0 1 1
1 0 −1
1 −1 0

⎤

⎦ , A1 =
⎡

⎣
1 0 1
0 1 0
1 0 1

⎤

⎦ .

The first equation in (1.7.3) (the unperturbed problem) has a double eigenvalue
λ0(1,2) = 1 and a simple eigenvalue λ01 = −2. Orthonormal eigenvectors corre-
sponding to the first eigenvalue are

e1 =
[
1/

√
2, 1/

√
2, 0

]T
, e2 =

[
1/

√
6,−1/

√
6,

√
2/3

]T
.

By relations (1.7.6) one can obtain the corrections to the eigenvalue λ0(1,2) = 1 and
find the coefficients a j to determine the corresponding eigenvectors:

c11 = (A1e1, e1) = 1, c12 = (A1e1, e2) = 1/
√
3,

c21 = (A1e2, e1) = 1/
√
3, c22 = (A1e2, e2) = 5/3.

The eigenvalues for the matrix ci j are found from the equation λ̃2 − 8

3
λ̃ + 4

3
= 0,

i.e. λ̃1 = 2 and λ̃2 = 2/3. The coefficients ak , corresponding to λ̃1 = 2, can be
obtained from relations (1.7.5): a1 = 1 and a2 = √

3. Similarly, for λ̃2 = 2/3 one
can get a1 = −√

3 and a2 = 1. Therefore for the matrix A we have

λ1 = 1 + 2μ + O
(
μ2

)
, λ2 = 1 + 2

3
μ + O

(
μ2

)
.

The eigenvector is x01 =
[√

2, 0,
√
2
]T

and, for convenience, we assume that x01 =
[1, 0, 1]T and x02 = 1√

6
[−2,−4, 2]T or consider x02 = [−1,−2, 1]T . By (1.7.4)

the correction to the third eigenvalue may be found as λ3 = −2 + μ

3
+ O

(
μ2

)

and taking (1.7.3) into account we finally find x13 = [1/3, 0,−1/3]T , i.e. x3 =
[1 + μ/3,−1,−1 − μ/3]T + O

(
μ2

)
.

1.7.2. For this problem
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A0 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , A1 =
⎡

⎣
2 3 0
1 4 0
0 0 2

⎤

⎦ .

The unperturbed problem has a triple eigenvalue λ0(1,2,3) = 1 with corresponding
orthonormal eigenvectors e1 = [1, 0, 0)]T , e2 = [0, 1, 0]T , and e3 = [0, 0, 1]T .

Using relations (1.7.6) one can find the corrections to the eigenvalue λ0(1,2,3) = 1
and the coefficients a j to determine the corresponding eigenvectors which are the
columns of the matrix C ,

C =
⎡

⎣
2 3 0
1 4 0
0 0 2

⎤

⎦ .

The eigenvalues of C are λ̃1 = 2, λ̃2 = 1, λ̃3 = 5.
The coefficients ak corresponding to λ̃1 = 2 are a1 = a2 = 0, and a3 = 1, for

λ̃2 = 1 they are a1 = −3, a2 = 1, and a3 = 0, and for λ̃2 = 5 they are a1 = a2 = 1,
and a3 = 0. Therefore for the matrix A

λ1 = 1 + 2μ + O
(
μ2

)
, λ2 = 1 + μ + O

(
μ2

)
, λ3 = 1 + 5μ + O

(
μ2

)
,

x01 = [0, 0, 1]T , x02 = [−3, 1, 0]T , x03 = [1, 1, 0]T .

1.7.3.
λ1 = 1 + μ, λ2,3 = 1 + 2μ,

x1 = [0, 1, 0]T , x2,3 = [1,μ, 1].

1.7.4.
λ1,2 = 1 + μ, λ3 = 1 + 3μ,

x1 = [0, 1, 0]T , x2 = [1, 0, 0]T , x3 = [1,μ, 2].

1.7.5. The unperturbed problem
(

A0 − λ2 I
)

x = 0 has eigenvalues λ01 = ±1,
λ02 = ±2, λ03 = ±3 and the eigenvectors are the columns of the identity matrix.
The corrections to the eigenvalues λ1i and coefficients a1

i j can be obtained from
(1.7.12):

λ11 = λ12 = λ13 = −1

2
, a1

23 = ±2

5
, a1

32 = ±3

5
, a1

12 = a1
21 = a1

13 = a1
31 = 0.
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Then, from (1.7.10) one can get the eigenvectors

x01 = [1, 0, 0]T + O
(
μ2

)
,

x02 = [0, 1,±2μ/5]T + O
(
μ2

)
,

x03 = [0,±3μ/5, 1]T + O
(
μ2

)
.

1.7.6. The unperturbed problem has the same eigenvalues and eigenvectors as in
1.7.4. However, in this case λ11 = λ12 = λ13 = 0 and the eigenvectors are

x01 = [1,±μ/3, 0]T + O
(
μ2

)
,

x02 = [±2μ/3, 1,±2μ/5]T + O
(
μ2

)
,

x03 = [0,±3μ/5, 1]T + O
(
μ2

)
.



Chapter 2
Asymptotic Estimates for Integrals

Mechanical problems can be described by differential equations, the solutions of
which often cannot be expressed by elementary functions, but have an integral rep-
resentation. In this chapter, we discuss asymptotic estimates of integrals of the form

F(μ) =
∫ b(μ)

a(μ)

f (z,μ) dz, (2.1)

where μ is a small parameter and z ∈ C. Sometimes, it is more convenient to use a
large parameter λ and consider the integral

F(λ) =
∫ b(λ)

a(λ)

f (z,λ) dz. (2.2)

With obvious adjustments, all statements which are valid for integrals hold also
for (2.2). In the general case, asymptotic estimates are given as μ → 0 and λ → ∞.

2.1 Series Expansion of Integrands

Suppose the integrand in (2.1) can be expanded in an asymptotic series of the form

f (z,μ) =
N∑

n=0

an(z)μpn + O
(
μpn+1

)
, p0 < p1 < · · · < pn < · · · < +∞,

(2.1.1)

uniformly in z over the interval [a(μ), b(μ)]. Then this series can be integrated term-
by-term and

© Springer International Publishing Switzerland 2015
S.M. Bauer et al., Asymptotic Methods in Mechanics of Solids,
International Series of Numerical Mathematics 167,
DOI 10.1007/978-3-319-18311-4_2
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F(μ) =
N∑

n=0

bn(μ)μpn + O
([b(μ) − a(μ)]μpn+1

)
, bn(μ) =

∫ b(μ)

a(μ)

an(z) dz.

(2.1.2)

The form of expansion (2.1.2) is simplest if the integrand can be expanded in Taylor
series.

Example 1
Find the asymptotic expansion of the function

F(μ) =
∫ 1

0

sin μx

x
dx, x ∈ R.

The function sin μx has the asymptotic expansion

sin μx =
N∑

n=0

(−1)n x2n+1

(2n + 1)! μ2n+1 + O
(
μ2N+3

)
,

which is uniform over the interval of integration [0, 1]. Therefore,

F(μ) =
N∑

n=0

∫ 1

0

[
(−1)n x2n

(2n + 1)! μ2n+1 + O
(
μ2N+3

)]
dx

=
N∑

n=0

(−1)n

(2n + 1)!(2n + 1)
μ2n+1 + O

(
μ2N+3

)
.

When the limits of the interval of integration depend on a small parameter, the change
of variable

t = z − a(μ)

b(μ) − a(μ)
(2.1.3)

transforms integral (2.1) to an integral of the form

F(μ) =
∫ 1

0
f1(t,μ) dt.

A similar problem is solved for integrals with large parameters.

Example 2
Find an asymptotic expansion for the function

F(μ) =
∫ μ

0
x−3/4 exp(−x) dx .
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Substitution (2.1.3) transforms the given integral into

F(μ) = μ1/4
∫ 1

0
t−3/4 exp(−μt) dt.

The function exp(−μt) has the asymptotic representation

exp(−μt) =
N∑

n=0

(−1)n

n! μntn + O
(
μN+1

)
,

that is uniform for all t in the interval of integration [0, 1]. Therefore,

F(μ) = μ1/4
N∑

n=0

∫ 1

0

[
(−1)n

n! tn−3/4μn + O
(
μN+1

)]
dt

=
N∑

n=0

(−1)n

n!(n + 1/4)
μn+1/4 + O

(
x N+5/4

)

= 4μ1/4 − 4

5
μ5/4 + 2

9
μ9/4 + O

(
μ13/4

)
.

In some cases, the integrand does not have a uniform asymptotic representation
on the entire interval of integration. In this case one should try to split the initial
interval into parts such that, in some of them, the function has a uniform asymptotic
expansion and in others the integral could be calculated by means of quadratures or
estimated.

Example 3
Find an asymptotic expansion for the function

F(μ) =
∫ ∞

μ
exp

(
−x2

)
dx .

The function exp(−x2) has the uniform asymptotic expansion

exp
(
−x2

)
=

N∑

n=0

(−1)n x2n

n! + O
(

x2N+2
)

in any segment [0, x0]. Therefore, we write the given integral as

∫ ∞

μ
exp

(
−x2

)
dx =

∫ ∞

0
exp

(
−x2

)
dx −

∫ μ

0
exp

(
−x2

)
dx .
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The first integral in the right side can be easily calculated after a change of Cartesian
coordinates to polar coordinates [49] and it is equal to

√
π/2. For the second inte-

gral, the expansion of the integrand is uniform in the interval of integration [0, 1].
Therefore,

F(μ) = √
π/2 −

N∑

n=0

μ

∫ 1

0

[
(−1)nt2n

n! μ2n + O
(
μ2N+2

)]
dt

= √
π/2 −

N∑

n=0

(−1)nμ2n+1

n!(2n + 1)
+ O

(
μ2N+2

)
.

2.1.1 Exercises

2.1.1. Find an asymptotic expansion of the function

F(μ) =
∫ π/2

0

√
1 − μ sin2 x dx .

2.1.2. The function F is defined by the integral

F(μ) =
∫ μ

0

dx
√
1 − m sin2 x

, m ∈ N.

The Jacobi elliptic functions are defined as

sn(x) = sin(F−1(x)),

cn(x) = cos(F−1(x)),

am(x) = F−1(x).

Find the first two terms of the asymptotic expansions for the Jacobian functions.

2.1.3. Find an asymptotic expansion for the function

F(μ) =
∫ π/2

0

dx
√
1 − μ sin2 x

.

2.1.4. Find the first two terms of the asymptotic expansions of the function

F(λ) =
∫ λ

0

√
1 + x2 dx
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and the order of the correction,

(a) by calculating the given integral by means of quadratures,
(b) by expanding the integrand in a series.

2.2 Integration by Parts

Integration by parts is the next method to find asymptotic estimates for integrals. Let
the integrand in (2.1) be a product of two functions:

f (z,μ) = g(z,μ)h(z,μ) (2.2.1)

under the assumption that h(z,μ) is analytic in z in some domain containing the path
of integration and g(z,μ) is integrable in z.

Denote

h0(z,μ) ≡ h(z,μ), hn(z,μ) ≡ ∂n

∂zn
h(z,μ),

g0(z,μ) ≡ g(z,μ), g−n+1(z,μ) ≡ ∂

∂z
g−n(z,μ). (2.2.2)

Integrating (2.1) n times by parts with respect to z over [a, b], we get the following
expression

F(μ) =
n−1∑

k=0

(−1)k[g−k−1(b,μ)hk(b,μ) − g−k−1(a,μ)hk(a,μ)
]

+ (−1)n
∫ b(μ)

a(μ)

g−n(z,μ)hn(z,μ) dz (2.2.3)

If

(1) relation (2.2.3) holds for all n ∈ N,
(2) the terms under the summation sign in (2.2.3) form an asymptotic sequence,
(3) for all n ∈ N, the remainder of the series satisfies the condition in the definition

of asymptotic expansion,

then (2.2.3) is the required asymptotic expansion.
The main problem in the application of the method is a successful choice of the

functions g and h.

Example 1
Find an asymptotic expansion of the function

F(λ) =
∫ λ

1

ex

x
dx .
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We write the integrand as f (x) = g(x)h(x), where g(x) = ex and h(x) = 1/x .
Then, by formula (2.2.3)

F(λ) =
n∑

k=1

(
eλ k!

λk
− e k!

)
+ n!

∫ λ

1

ex

xn+1 dx .

The second term under the summation sign has order O(1) and for the integral the
following estimates are valid:

n!
∫ λ

1

ex

xn+1 dx = n!
∫ λ/2

1

ex

xn+1 dx + n!
∫ λ

λ/2

ex

xn+1

< n!
∫ λ/2

1
ex dx + n!

∫ λ

λ/2
ex

(
2

λ

)n+1

dx = O

(
eλ

λn+1

)

.

Hence,

F(λ) =
n∑

k=1

eλ k!
λk

+ O

(
eλ

λn+1

)

.

The numerical (solid line) and the asymptotic (dashed line) values of the integral
versus μ are plotted in Fig. 2.1 for n = 8.

Example 2
Find an asymptotic expansion of the function

F(λ) =
∫ ∞

λ

e−x

x2
dx .

We assume that f (x) = g(x)h(x), where g(x) = e−x and h(x) = 1/x2. Then an
integration by parts gives

Fig. 2.1 Numerical values
(solid line) and asymptotic
values (dashed line) for
Example 1
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F(λ) = − e−x 1

x2

∣
∣∣∣

∞

λ

− 2
∫ ∞

λ

e−x

x3
dx .

Integrating by parts again we obtain

F(λ) =
n∑

k=2

(−1)ke−λ (k − 1)!
λk

+ n!(−1)n−1
∫ ∞

λ

e−x

xn+1 dx .

For λ ≤ x < ∞,

xn+1 � λn+1 and
1

xn+1 ≤ 1

λn+1 ,

and, therefore, ∫ ∞

λ

e−x

xn+1 dx ≤ 1

λn+1

∫ ∞

λ
e−x dx = e−λ

λn+1 .

Hence, we obtain the asymptotic expansion

F(λ) = e−λ
n∑

k=2

(−1)k (k − 1)!
λk

+ O

(
e−λ

λn+1

)

.

This series diverges since the ratio of the mth and the (m − 1)th terms goes to −∞
as m → ∞:

lim
m→∞

(−1)m−1m!λm

λm+1(−1)m−2(m − 1)! = − lim
m→∞

m

λ
= −∞.

The numerical (solid line) and asymptotic (dashed line) values of the integral versus
μ are plotted in Fig. 2.2 for n = 8.

Fig. 2.2 Numerical values
(solid line) and asymptotic
values (dashed line) for
Example 1
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2.2.1 Exercises

Find the asymptotic expansions of the following functions as λ → ∞.

2.2.1. F(λ) =
∫ ∞

0

e−x

λ + x
dx .

2.2.2. F(λ) =
∫ ∞

λ

cos(x − λ)x dx

.

2.2.3. F(λ) =
∫ ∞

λ

e−x x dx

.

2.3 Laplace Method

Consider the integral

F(λ) =
∫ b(λ)

a(λ)

f (x,λ) dx, x ∈ R.

If the function f (x,λ) has a sharp maximum at the point x0 ∈ I , I = [a, b], which is
sharper when λ is larger, then it is good to calculate the integral by means of Laplace
method. This method, which is most conveniently applied to integrals of the form

F(λ) =
∫ b(λ)

a(λ)

ϕ(x) eλS(x) dx, x ∈ R, (2.3.1)

is called a Laplace integral [12].
We look for the asymptotic expansion of F(λ) as λ → ∞. A vast literature is

devoted to this question, for example the books [14, 20, 22, 23, 66] and handbooks
[1, 35].Wemention, in particular, the three volumes of themonograph by Riekstynsh
[54], inwhich integrals of type (1.3.1) and integrals ofmore general types are studied.

We start with several particular cases to illustrate the application of the method.

Example 1
Let S(x) = −x in (2.3.1). In a neighborhood of the point x = 0, we expand the

function ϕ(x) in a Taylor series

ϕ(x) =
∞∑

n=0

ϕ(n)(0)

n! xn,

and consider the integral

F(λ) =
∫ ∞

0
ϕ(x)e−λx dx . (2.3.2)

http://dx.doi.org/10.1007/978-3-319-18311-4_1
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Integrating (2.3.2) n times by parts, one gets the asymptotic expansion

F(λ) �
N∑

n=0

ϕ(n)(0)

λn+1 + O

(
1

λN+2

)
, as λ → ∞.

Example 2
Let S(x) = −x in (2.3.1). If in a neighborhood of the point x = 0, the function

ϕ(x) admits the convergent asymptotic expansion

ϕ(x) =
∞∑

n=0

an xn+α, α > −1,

then the integral

F(λ) =
∫ b

0
ϕ(x)e−λx dx, b > 0, (2.3.3)

has the asymptotic expansion

F(λ) �
∞∑

n=0

�(n + α + 1)

λn+α+1 an, as λ → ∞, (2.3.4)

where �(z) is the Gamma-function.
Indeed, an integration by parts in (2.3.3) gives

F(λ) =
∞∑

n=0

an Fn(λ), Fn(λ) =
∫ b

0
xn+αe−λx dx .

Integrating by parts, one can show that

∫ ∞

b
xn+α e−λx dx = o

(
λN

)
,

where N is any natural number. Therefore,

Fn(λ) =
∫ ∞

0
xn+α e−λx dx −

∫ ∞

b
xn+α e−λx dx

=
∫ ∞

0
xn+α e−λx dx + o

(
λN

)
.
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Taking

∫ ∞

0
xn+α e−λx dx = 1

λn+α+1

∫ ∞

0
zn+α e−z dz = �(n + α + 1)

λn+α+1 ,

into account, we obtain formula (2.3.4).
Note, that depending on an , the series (2.3.4) may diverge or converge. However,

in the last case, it may not converge to the function F(λ), but gives only its asymptotic
expansion. For example, applying formula (2.3.4) with α = 0 to the integral

F(λ) =
∫ π/2

0
e−λx sin x dx,

we get

F(λ) �
∞∑

k=0

(−1)k

λ2k+2 = 1

1 + λ2 . (2.3.5)

The exact solution,

F(λ) = 1

1 + λ2

(
1 − λe−πλ/2

)
,

differs from the function to which series (2.3.5) converges. This is, as in similar
further cases, because the series (2.3.4), or (2.3.5), contributes to the integral only in
a neighborhood of the point of maximum of the function eλh(x) while exponentially
small terms are neglected.

Example 3
Let

ϕ(x) =
∞∑

n=0

an xn, S(x) = −x2, a < 0, b > 0. (2.3.6)

Then integral (2.3.1) has the expansion

∫ b

a
ϕ(x)e−λx2dx �

∞∑

n=0

�(n + 1/2)

λn+1/2 a2n, as λ → ∞. (2.3.7)

Series (2.3.7) is a contribution to integral of the neighborhood of the point x = 0,
where the function e−λx2 attains its maximum.

Nowwe go back to the general integral (2.3.1). For that integral one cannot assume
u = ϕ(x) and dv = eλS(x) dx to integrate by parts since the last expression cannot
be integrated in the general case. We suppose that S′(x) 
= 0 in the interval (a, b),
and let

u = ϕ(x)

S′(x)
, dv = eλS(x)S′(x) dx .
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Then

F(λ) = eλS(x)ϕ(x)

λS′(x)

∣∣∣∣∣

b

a

− 1

λ

∫ b

a
eλS(x)

[
ϕ(x)

S′(x)

]′
dx

or, as λ → ∞,

F(λ) � eλS(b)ϕ(b)

λS′(b)
− eλS(a)ϕ(a)

λS′(a)
+ O

( 1

λ2

)
.

If S(a) 
= S(b), then the asymptotic behavior is determined by the end point
where S(x) is larger. Suppose, for definiteness, that S(a) > S(b). Continuing the
process one gets

F(λ) = −
N∑

k=0

Mk
(

P(a)eλS(a)
)

λk+1 + O

(
eλS(a)

λN+2

)

, (2.3.8)

where

Mk =
( −1

S′(x)

d

dx

)k
, P(x) = ϕ(x)

S′(x)
.

Thus far, everything that was said allows us to conclude that the point x = c ∈ (a, b)

corresponding to the largest value of S(x) makes the main contribution in F(λ),
whether it is an end point or not.

Assume that c = a and in the neighborhood on this point

ϕ(x) � ϕ0(x − a)α, S′(a) = 0, S′′(a) < 0,

i.e.

S(x) � S(a) + S′′(a)(x − a)2

2! .

For the integral to exist, it is necessary that α > −1. Then

F(λ) � ϕ0 eλS(a)

∫ a+δ

a
(x − a)α eλS′′(a)(x−a)2/2! dx .

Since S′′(a) < 0, the error is exponentially small if a + δ is replaced by ∞. After
the change of variables

τ = −λS′′(a)(x − a)2

2! ,

one gets τ = 0 for x = a and
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F(λ) � ϕ0

2

[
2

−λS′′(a)

](α+1)/2

eλS(a)

∫ ∞

0
τ (α−1)/2e−τ dτ ,

or

F(λ) � ϕ0

2

[
2

−λS′′(a)

](α+1)/2

eλS(a)�

(
α + 1

2

)
.

Let now a < c < b and S′′(c) < 0. As above, one obtains

F(λ) � ϕ0

[
2

−λS′′(c)

](α+1)/2

eλS(c)�

(
α + 1

2

)
.

In a similar manner we consider cases where a larger number of derivatives are
equal to zero at x = c (or x = a). Here we consider the case when α = 0.

Let

(1) ϕ(x), S(x) ∈ C([a, b]),
(2) maxx∈I S(x) is attained only at the point x0,
(3) ϕ(x), S(x) ∈ C∞ for x close to x0,

then the following statement is valid [54]:

(A) If the maximum is attained for x ∈ (a, b) and

S( j)(x0) = 0, 1 ≤ j ≤ 2m − 1, S(2m)(x0) 
= 0, m ≥ 1,

then the main term of the asymptotic expansion has the form

F(λ) = �(1/2m) eλS(x0)

mλ1/2m

[
− (2m)!

S(2m)(x0)

]1/2m [
ϕ(x0) + O

(
1

λ1/2m

)]
. (2.3.9)

(B) If the maximum is attained at one end of the interval (x0 = a) and

S( j)(x0) = 0, 1 ≤ j ≤ m − 1, S(m)(x0) 
= 0, m ≥ 2,

then the main term of the asymptotic expansion has the form

F(λ) = �(1/m) eλS(x0)

mλ1/m

[
− (m)!

S(m)(x0)

]1/m [
ϕ(x0) + O

(
1

λ1/m

)]
. (2.3.10)

Example 4
Find an asymptotic expansion of the function

F(λ) =
∫ b

a
e−λx4 dx, a ≤ 0, b > 0.
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Fig. 2.3 Exact values (solid
line) and asymptotic values
(dashed line) of the integral
F(λ) of Example 4

For a < 0 and b > 0 we should use the asymptotic formula (2.3.9), which defines
the main term of the asymptotic expansion

1

2
�

(
1

4

)
λ−1/4.

For a = −∞ and b = ∞, the main term of the integral coincides with the exact
value of the integral. In Fig. 2.3, we compare the exact (solid line) and asymptotic
(dashed line) values of the integral for a = −1, b = 1.

For a = 0, b > 0 one should use formula (2.3.10), which defines the main term
of the asymptotic expansion

1

4
�

(
1

4

)
λ−1/4.

As expected, the value of the integral is twice smaller than in the first case.

2.3.1 Exercises

2.3.1. Find the first two terms of the asymptotic expansion of the function

F(λ) =
∫ π2/4

0
exp(λ cos

√
x ) dx .

Find the first term of the asymptotic expansion of the following functions.

2.3.2. F(λ) =
∫ 1

0
exp(−1/x − λx) dx .

2.3.3. F(λ) =
∫ ∞

0
exp(−αx−α − λx) dx, α > 0.

2.3.4. F(λ) =
∫ 1

−1
(1 − x2)λx2 dx .
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2.3.5. F(λ) =
∫ 1

−1
(1 − x2)λ dx .

2.3.6. F(λ) =
∫ 1

0
(1 − x2)λx dx .

2.3.7. F(λ) =
∫ π

0
xλ sin x dx, λ ∈ N.

2.3.8. Fν(λ) =
∫ ∞

0
exp(−λ cosh x) cosh(νx) dx .

2.4 Stationary Phase Method

Consider integrals of the form

F(λ) =
∫ b(λ)

a(λ)

ϕ(x) exp(iλS(x)) dx, x ∈ R, (2.4.1)

where ϕ(x) is a complex valued function and S(x) a real valued function called
phase function, and, as before, λ > 0 is a large parameters.

2.4.1 Integrals Without Stationary Points

Consider a finite interval I = [a, b], in which

ϕ(x) ∈ C N+1(I ), S(x) ∈ C N+2(I ), S′(x) 
= 0, (2.4.2)

i.e. ϕ(x) and S(x) have N + 1 and N + 2 continuous derivatives. Then

F(λ) =
N∑

k=0

1

(iλ)k+1

[
Mk(P(x)) exp(iλS(x))

]∣∣
∣∣

b

a
+ O

(
1

λN+2

)
, (2.4.3)

where

M = −1

S′(x)

d

dx
, P(x) = ϕ(x)

S′(x)
.

In this case, the main term of the asymptotic expansion is

F(λ) = 1

iλ

[
ϕ(x)

S′(x)
exp(iλS(x))

]∣∣∣∣

b

a
+ O

(
1

λ2

)
.
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Formula (2.4.3) can be proved by integration by parts and the Riemann–Lebesgue
lemma [14, 53] ∫ b

a
ϕ(x)eiλx dx = o(1), as λ → ∞

for a piecewise continuous function ϕ(x).

Example 1
Find the first term of the asymptotic expansion and an estimate of the error for

the function

F(λ) =
∫ π/4

0
sin(λ sin x)x dx .

Write the given integral in the form

F(λ) = �
∫ π/4

0
exp(iλ sin x)x dx .

Applying formula (2.4.3) we get

F(λ) = �
(

π

4iλ

2√
2
exp

(

iλ

√
2

2

)

+ O

(
1

λ2

))

= − π

2
√
2λ

cos

(

λ

√
2

2

)

+ O

(
1

λ2

)
.

In Fig. 2.4, the numerical (solid line) and asymptotic (dashed line) values for the
integral are compared.

From relation (2.4.3) and under assumption (2.4.2), it follows that the asymptotic
expansion F(λ) depends only on the values of the functions ϕ(x) and S(x) and their
derivatives at the end of the interval of integration. In neighborhoods of other points,
oscillation interference occurs. In Fig. 2.5, the graph of the function (exp(S(x)))

is plotted where S(x) = i(x − 6)2 and S′(x) 
= 0 in the interval [−3, 5].
Ifϕ(x) and S(x) or their derivatives have a finite number of points of discontinuity,

the interval of integration [a, b] may be split in parts in such a way that the points of

Fig. 2.4 Numerical values
(solid line) and asymptotic
values (dashed line) of the
function F(λ) of Example 1
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Fig. 2.5 Graph of the
function (exp(S(x))) of
Example 1

discontinuity coincide with the ends of these parts and then apply formula (2.4.3) to
each of the parts.

If b = ∞, conditions (2.4.2) are still satisfied and

Mk(P(x)) = o(1) as x → ∞,
d

dx
Mk(P(x)) ∈ L1[0,∞],

then

F(λ) =
N∑

k=0

1

(iλ)k+1

[
Mk(P(x)) exp(iλS(x))

]∣∣∣∣
a

+ O

(
1

λN+2

)
. (2.4.4)

Example 2
Find the first two terms of the expansion and the estimate of the error for the

integral

F(λ) =
∫ ∞

0

eiλx dx

(1 + x)α
, α > 0.

In this case, S(x) = x , S′(x) = 1, Mk(x) = (−1)k dk

dxk
,

P(x) = (1 + x)−α, M0(P(x)) = (1 + x)−α,

Mk(P(x)) = (α + k − 1)Mk−1(P(x))(1 + x)−1.

Therefore formula (2.4.4) holds and

F(λ) = −
[
1

iλ
+ α

1

(iλ)2

]
+ O

(
1

λ3

)
.
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Fig. 2.6 Numerical values (solid line) and asymptotic values (dashed line) of Fs(λ) and Fc(λ) of
Example 2

Separating the real and imaginary parts, we obtain

Fs(λ) = �(F(λ)) =
∫ ∞

0

sin λx dx

(1 + x)α
= 1

λ
+ O

(
1

λ2

)
,

Fc(λ) = (F(λ)) =
∫ ∞

0

cosλx dx

(1 + x)α
= α

λ2 + O

(
1

λ3

)
.

In Fig. 2.6, the numerical (solid line) and asymptotic (dashed line) values of (a)
the function Fc(λ) = (F(λ)) and (b) Fs(λ) = �(F(λ)) are compared for α = 3.

2.4.2 Erdélyi’s Lemma [20]

Consider the integral

F(λ) =
∫ a

0
xβ−1ϕ(x) exp(iλxα) dx . (2.4.5)

If
ϕ(x) ∈ C∞((0, a]), α ≥ 1, β > 0, ∀k ϕ(k)(a) = 0,

then the following expansion holds

F(λ) = 1

α

∞∑

k=0

1

λ(k+β)/α
�

(
k + β

α

)
ϕ(k)(0)

k! exp

(
iπ(k + β)

2α

)
. (2.4.6)

Erdélyi’s lemma defines the contribution of the point x0 = 0 in the asymptotic
expansion of the integral.
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Fig. 2.7 Graph of
(exp(S(x))) with
stationary point x = 1

2.4.3 Integrals with Stationary Points

The points x = c, where S′(x) = 0, are called stationary points. With stationary
points, expansion (2.4.3) does not hold. In Fig. 2.7 we plot the graph of the function
(exp(S(x))), where S(x) = i(x − 1)2, which has the stationary point x = 1 in the
interval [−3, 5].

To illustrate the input of the stationary point in the value of the integral we start
with an example with only one stationary point, x = 0, where S′′(0) 
= 0,

F(λ) =
∫ 3

−1
exp(iλx2) dx .

The function S(x) = x2 attains its minimum at the point x0 = 0 and x0 ∈ I .
Represent the initial integral in the form

∫ 3

−1
exp(iλx2) dx =

∫ +∞

−∞
exp(iλx2) dx − J1 − J2,

where

J1 =
∫ −1

−∞
exp(iλx2) dx, J2 =

∫ +∞

3
exp(iλx2) dx .

It may be shown by integration by parts that that the integrals J1 and J2 have order
O(λ−1), i.e.

F(λ) =
∫ +∞

−∞
exp(iλx2) dx + O(λ−1) = 2

∫ +∞

0
exp(iλx2) dx + O(λ−1).

Weevaluate this integral byCauchy’s theorem,which says that the circulation integral
of an analytic function of a complex variable, in a domain limited by a closed contour,
is equal to zero. The main idea for calculating the integral F(λ) is in selecting the
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Fig. 2.8 Integral along the
closed path C1C2C3

3C

π
4 x

R

y

R

C1

C2

contour in such a way as to transform the initial Fourier integral into a Laplace
integral. The integral along the closed path C1C2C3 (see Fig. 2.8) is equal to 0.

Besides that it can be shown that for R → ∞ the integral over C2 converges to
0. Therefore, assuming that x2 = z2 exp(iπ/2) and using Laplace’s method we get

∫ +∞

0
exp(iλx2) dx = exp(iπ/4)

∫ +∞

0
exp(−λz2) dz = exp(iπ/4)

2

√
π

λ

or

F(λ) = exp(iπ/4)

√
π

λ
+ O(λ−1).

In Fig. 2.9a, b, the numerical (solid line) and asymptotic (dashed line) values of
functions Fc(λ) = (F(λ)) and Fs(λ) = �(F(λ)) are compared.

If the function S(x) has a finite number of isolated stationary points xi in the
interval [a, b], then the asymptotic expansion of integral (2.4.1) consists in a sum of
contributions of the stationary points of F(λ, xi ).

As a rule, using the stationary phase method, one limits oneself to the calculation
of the first term of an asymptotic expansion.

We define the contribution of a stationary point.
Let I = [a, b] be a finite segment where S(x) ∈ C(I ). Assume that S(x) attains

its maximum, maxx∈I S(x), at only the point x0 and ϕ(x) ≈ C(x − x0)α, α > −1,
in a neighborhood of the point x0. Then

(A) If a < x0 < b and S( j)(x0) = 0, 1 ≤ j ≤ 2m − 1, S(2m)(x0) 
= 0, m ≥ 1, then
the main term of the asymptotic expansion has the form

F(λ, x0) = m−1�

(
1 + α

2m

)[
(2m)!

|S2m(x0)|
](1+α)/2m

λ−(1+α)/2m

× exp

(
iλS(x0) + iπ(1 + α)

4m
sgn(S2m(x0))

) [
ϕ(x0) + O(λ−1/2m)

]
.

(2.4.7)

(B) If x0 = a and S( j)(x0) = 0, 1 ≤ j ≤ m − 1, S(m)(x0) 
= 0, m ≥ 2, then the
main term of the asymptotic expansion has the form
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Fig. 2.9 Numerical values (solid line) and asymptotic values (dashed line) of functions Fc and Fs

F(λ, x0) = m−1�

(
1 + α

m

)[
(m)!

|Sm(x0)|
](1+α)/m

λ−(1+α)/m

× exp

[
iλS(x0) + iπ(1 + α)

2m
sgn(Sm(x0))

] [
ϕ(x0) + O(λ−1/m)

]
. (2.4.8)

Example 3
Find the first term of the asymptotic expansion of the integral

F(λ) =
∫ 1

0

exp
(
iλx3

)

√
x

dx

The integrand has only the critical point x0 = 0, the contribution ofwhich is evaluated
by Erdélyi’s lemma. For α = 3, β = 1/2, ϕ(x) ≡ 1, one gets

F(λ) = 1

3
λ−1/6�

(
1

6

)
exp(iπ/12).

In Fig. 2.10 the numerical (solid line) and asymptotic (dashed line) values of the
functions (a) Fc(λ) = (F(λ)) and (b) Fs(λ) = �(F(λ)) are compared.

Example 4
Find the first term of the asymptotic expansion and estimate the error of Bessel’s

function of positive integer index n, defined by the integral

Fig. 2.10 Numerical values (solid line) and asymptotic values (dashed line) of functions Fc and Fs
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Fig. 2.11 Numerical values
(solid line) and asymptotic
values (dashed line) of the
integral Jn(λ) of Example 4

Jn(λ) = π−1
∫ π

0
cos(λ sin x − nx) dx .

Represent the given integral as

Jn(λ) = π−1
∫ π

0
exp(iλ sin x) exp(−inx) dx,

For this we have S(x) = sin x , x0 = π/2, S(x0) = 1, S′′(x0) = −1, m = 1,
ϕ(x0) = exp(−inπ/2). As a result, we obtain

Jn(λ) = 
[

π−1�

(
1

2

) [
2!
1

]1/2
λ−1/2 exp

(
iλ − iπ

4

) [
exp(−inπ/2) + O(λ−1)

]
]

= 1√
λ

√
2

π
cos

(
λ − nπ

2
− π

4

)
+ O

(
λ−1

)
. (2.4.9)

In Fig. 2.11 the numerical values (solid line) and asymptotic values (dashed line)
of the integral are compared.

2.4.4 Complete Asymptotic Expansions

By van der Korput’s lemma [20], the interval of integration may be split into parts
to provide only one point in the interval to contribute to the value of the integral. To
calculate the contribution of a point, the following complete asymptotic expansions
are used:

For case (A), i.e. if the stationary point x0 is within the interval of integration
and the first 2m − 1 derivatives of the function S(x) at x0 are equal to zero and
S(2m)(x0) 
= 0, then
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F(λ, x0) = 1

λ(1+α)/2m
exp

(
iλS(x0) + iπ(1 + α)

4m
sgn(S2m(x0))

) ∞∑

k=0

ak
1

λk/m
.

where

ak = 22k+1/2

(2k)! �

(
2k + 1 + α

2m

)
exp

[
iπ(2k + 1 + α)

4m
sgn(Sm(x0))

]

×
[(

h−1(x, x0)
d

dx

)2k

(ϕ(x)h(x, x0))

] ∣∣∣∣
x=x0

,

and
h(x, x0) = [

2 sgn(S2m(x0))[S(x) − S(x0)]
]1−1/2m

/S′(x).

For case (B), if a stationary point x0 coincides with an end of the interval, the first
m − 1 derivatives of the function S(x) at the stationary point are equal to zero and
S(m)(x0) 
= 0, then

F(λ, x0) = 1

λ(1+α)/m
exp(iλS(x0))

∞∑

k=0

akλ
−k/m,

where

ak = 1

k!m �

(
k + 1 + α

m

)
exp

(
iπ(1 + k + α)

2m
sgn(Sm(x0))

)

[(
d

dx

)k

[ϕ(x)h(x, x0)]
] ∣∣

∣∣
x=x0

,

and
h(x, x0) = [−sgn(Sm(x0)(S(x) − S(x0))

]−(k+1)/m
(x − x0)

k+1.

So, contributions to integral (2.4.1) come only from neighborhoods of

(i) the ends of the integration interval,
(ii) points of discontinuity for the functions ϕ(x) and S(x) or their derivatives,
(iii) the stationary points.

For example, the integral

F(λ) =
∫ +∞

−∞
eiλx

1 + x2
dx = πe−λ

admits the asymptotic expansion (2.4.3) with zero terms, since it has no points of
discontinuity nor stationary points and the contributions of the ends are equal to zero
since ϕ(n) → 0 as x → ±∞.
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2.4.5 Exercises

2.4.1. Find the first term of the asymptotic expansion and estimate the error for
Bessel’s function of the large real index ν for a fixed argument t > 0,

Jν(νt) = π−1
∫ π

0
cos(ν(x − t sin x)) dx

− π−1 sin νπ

∫ ∞

0
exp(−ν(x + t sinh x)) dx

2.4.2. Find the first term of the asymptotic expansion and estimate the error of the
integral

F(λ) =
∫ 1

0
exp(iλx3) dx .

2.4.3. Find the first term of the asymptotic expansion and estimate the error of the
integral

Fn(λ) =
∫ 1

0
exp(iλxn) dx .

2.5 Saddle Point Method

2.5.1 Description of the Method

We seek an asymptotic expansion of the integral

F(λ) =
∫

γ
ϕ(z) eλh(z) dz, as λ → ∞, (2.5.1)

where the curve γ lies in the complex plane and the functions ϕ(z) and h(z) are
analytic in a domain S which contains γ.

The saddle point method includes two stages [20, 24, 53]:

(1) deforming the contour γ into the contour γ0 is most convenient to find the
asymptotic estimates.

(2) calculating asymptotics for the integral over the contour γ0.

As λ → ∞, the absolute value of the integrand attains its maximum at points z
where the function (h(z)) is maximal. Assume that, among the contours with the
same ends as γ, there exists a contour γ0 where

min
γ

max
z∈γ

(h(z)) = max
z∈γ0

(h(z)).
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We also assume that one can deform the contour γ to contour γ0 inside the domain
S. Then, according to Cauchy’s theorem,

F(λ) =
∫

γ0

ϕ(z)eλh(z) dz. (2.5.2)

For simplicity, let the maximum,

max
z∈γ0

(h(z))

be attained only at the point z = c. If z = c is an inner point of γ0, then, from
the minimax property of the contour γ0, it follows that c is a stationary point of the
function f (x, y) = (h(z)), where z = x + iy. At c, fx = fy = 0, and from the
Cauchy–Riemann conditions it follows that h′(c) = 0.

The point z = c is called a saddle point, and the value of (h(c)) is the height
of the saddle point. A sable point is called simple if h′′(c) 
= 0. In this case, two
straight lines, � (h(z) − h(c)) = 0, intersect at right angle at point c. On these lines,
the function f (x, y) changes in the fastest way. One of the lines, on which f (x, y)

decreases away from point z = c, is called the line of fastest descent.
The contour γ0 may be deformed such that in the neighborhood of the point

z = c it coincides with the line of fastest descent. Then, in this neighborhood,
�(h(z)) = const and to estimate integral (2.5.2) it is convenient to use the Laplace
method.

If the contour γ0 lies entirely in the domain of regularity of the functions ϕ(z)
and h(z) and the maximum value, (h(z)), on γ0 is attained at the saddle points (or
at the ends of the interval) where the contour passes through, then the asymptotic
behavior of integral (2.5.1) as λ → ∞ is given as the sum of the contributions of the
saddle points (or the ends of the contour).

There exists no general algorithm to construct the contour γ0. For the specific
integral (2.5.1) we firstly should find the saddle points and draw the lines of fastest
descent through them. After that, one should try to deform the contour γ in such a
way that it consists of the parts of the lines of fastest descent and maybe some other
curves over which the integrals may be neglected for being asymptotically small.

2.5.2 Asymptotics of Airy’s Functions

Find the first terms of the expansions for Airy’s functions. Consider the integrals [17]

wk(η) = Ck

∫

γk

ez3/3−ηz dz, (2.5.3)

where γk are the contours with ends going to infinity over rays O An where arg z =
π
3 (−1 + 2n), n = 1, 2, 3 (Fig. 2.12). Suppose the integrand in (2.5.3) converges to
zero as |z| → ∞ along these rays.



2.5 Saddle Point Method 75

Fig. 2.12 Rays O An ,
n = 1, 2, 3

The standard Airy’s functions Ai(η) and Bi(η) are real for real η and are defined
by the formulas [1, 53]:

Ai(η) = w1(η), C1 = i/2π, γ1 = A1O A3,

Bi(η) = w2(η), C2 = 1/2π, γ2 = A2O A1 + A2O A3. (2.5.4)

Airy’s functions find applications in the asymptotic integration of differential equa-
tions with parameter which contain turning points (see Chap. 5).

Consider the case η > 0. After the change of variables z = √
η z1, formula (2.5.3)

becomes

wk(η) = Ck
√

η

∫

γk

eλh(z1) dz1, h(z) = z3

3
− z, λ = η3/2. (2.5.5)

Evaluate the integral in (2.5.5) by the saddle point method. The roots of the equation
h′(c) = 0 are the saddle points c1,2 = ±1. Since h′′(ck) = 2ck 
= 0, the saddle
points are the saddle foci for the function f (x, y) = (h(z)), where z = x + iy. In
Fig. 2.13a we plot the graph of the function  f (x, y) near the point c = 0.

The lines of fastest descent passing through the saddle points ck , are defined by
the equation

� h(z) = � h(ck). (2.5.6)

In the case under consideration, � h(ck) = 0 for k = 1, 2. Equation (2.5.6) are
equivalent to the equations y = 0 and x2 − y2/3 = 1. The lines of fastest descent
through c1 and c2 are shown in Fig. 2.13b with thick lines and the contour lines for
function (h(z)) with thin lines.

The paths of integration γ1 and γ2 are deformed into the paths γ10 = A1c1A3 and
γ20 = A2c2c1A1 + A2c2c1A3, consisting of the parts of the lines of fastest descent.

The paths γk0 have the rays O An as their asymptotes on which the integrand in
(2.5.5) goes to zero as z → ∞. Therefore the asymptotic expansions of integrals
(2.5.5) consist only of the contributions of the neighborhoods of the saddle points.

http://dx.doi.org/10.1007/978-3-319-18311-4_5
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Fig. 2.13 a Graph of the function  f (x, y). b Thick lines of fastest descent and thin contour lines

For Ai(η), we get

Ai(η) = w1(η) = C1
√

η

∫

γ10

eλh(z) dz � C1
√

η J1,

where

J1 =
∫

γ∗
10

eλh(z) dz

is the contribution of the saddle point c1 and γ∗
10 is a small arc of the contour γ10,

containing the saddle point c1. On the arc γ∗
10 we have

τ2 = h(c1) − h(z) � −h′′(c1)(z − c1)
2/2. (2.5.7)

From (2.5.7) it follows that on γ∗
10 the approximate equality dz � i dτ holds. Hence,

J1 � eλh(c1)
∫ −δ

δ
e−λτ2 i dτ = −i eλh(c1)

∫ ∞

−∞
e−λτ2dτ = −i

√
π/λ e−2λ/3,

Ai(η) � iη1/2

2π
J1 = 1

2
√

π
η1/4 e−ζ , ζ = 2

3
η3/2.

In a similar manner, the main term of the asymptotic expansion can be found for the
function Bi(η) as η → ∞,

Bi(η) � 1√
π

η1/4 eζ .
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A calculation shows that the contribution of the point c2 is doubled since the path γ20
goes through this point twice and the contribution of the point c1 may be neglected
since the height of the saddle point c1 is smaller than the height of the point c2.

To find asymptotics for Airy’s function as η → −∞ we change the variable
z = √−ηz1 in (2.5.3). Then, formula (2.5.3) becomes

wk(−η) = Ck
√

η

∫

γk

eλh(z1) dz1, h(z1) = z31
3

+ z1, λ = η3/2. (2.5.8)

The approximate expressions for integrals (2.5.8) may be obtained by means of the
saddle point method (see the solution for Exercise 2.5.1).

2.5.3 Exercises

2.5.1. Find the first terms of the asymptotic expansions for Airy’s functions as η →
−∞.
Find the first term of the asymptotic expansions of the following integrals as λ → ∞.

2.5.2. F(λ) =
∫ ∞

0
exp(λ(x + i x − x3)) dx .

2.5.3. F(λ) =
∫ ∞

−∞
exp(iλx)(1 + x2)−λ dx .

2.5.4. F(λ) =
∫ +∞

−∞
exp(iλ(3x − x3)) dx .

2.6 Answers and Solutions

2.1.1. F(μ) = 1

2
π

[
1 − 1

4
μ − 3

64
μ2 + O

(
μ3

)]
.

2.1.2. After a change of variables, the given function is represented in the form

F(μ) = μ

∫ 1

0

dt
√
1 − m sin2 μt

.

The integrand is expanded into the truncated series

f (t) = 1 + m

2
sin2 μt + 3m2

8
sin4 μt + O

(
μ6

)
.
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In its turn

sin μt = μt − (μt)3

6
+ O

(
μ5

)
, sin2 μt = (μt)2 − (μt)4

3
+ O(μ6),

sin4 μt = (μt)4 + O
(
μ6

)
.

Hence,

f (t) = 1 + m

2
(μt)2 +

(
−m

6
+ 3m2

8

)
(μt)4 + O

(
μ6

)

and after an integration by parts we obtain

F(μ) = μ + m

6
μ3 +

(
− m

30
+ 3m2

40

)
μ5 + O

(
μ7

)
.

To find the inverse function F−1 we use the method of undetermined coefficients
and represent μ as a truncated series,

μ = F + aF3 + bF5 + O
(

F7
)

, as F → 0.

Equating the coefficients of F of equal powers, we get

a = −m

6
, b = m

30
− m

6
3a − 3m2

40
.

Whence b = m2 + 4

120
. Therefore

am(μ) = μ − m

6
μ3 + m2 + 4

120
μ5 + O

(
μ7

)
,

sn(μ) = sin
(

F−1(μ)
)

= μ − m + 1

6
μ3 + m2 + 14m + 1

120
μ5 + O

(
μ7

)
,

cn(μ) = cos
(

F−1(μ)
)

= 1 − 1

2
μ2 + 4m + 1

24
μ4 + O

(
μ6

)
.

2.1.3. F(μ) = π

2

[
1 + 1

4
μ + 9

64
μ2

]
+ O

(
μ3

)
.

2.1.4.
(a) Using the substitution t = sinh x one gets
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∫ √
1 + x2 dx =

∫
sinh2 t dt = t

2
+ sinh 2t

4

= 1

2
ln

(
x +

√
x2 + 1

)
+ x

√
x2 + 1

2
.

Then

F(λ) = 1

2
ln

(
λ +

√
λ2 + 1 )

)
+ λ

√
λ2 + 1

2
= 1

2
ln(2λ) + λ2

2
+ 1

4
+ O

(
λ−2

)
.

(b) The integrand can be expanded in a series for x > 0

√
1 + x2 = x

[
1 + 1

2x2
+ O

(
x−2

)]
= x + 1

2x
+ O

(
x−1

)
.

Write the given integral in the form

∫ λ

0

√
1 + x2 dx =

∫ 1

0

√
1 + x2 dx +

∫ λ

1

√
1 + x2 dx .

For the first integral in the right side the estimate O(1) holds. Substitute in the second
integral the expansion for the integrand and integrate term by term,

F(λ) = λ2

2
+ 1

2
ln(λ) + O(1).

2.2.1. F(λ) =
N∑

n=1

(−1)n−1(n − 1)!
λn

+ O

(
1

λN+1

)
.

2.2.2. F(λ) =
N∑

n=1

(−1)n−1(2n − 1)!
λ2n

+ O

(
1

λ2N+2

)
.

2.2.3. F(λ) = e−λ

[
N∑

n=1

(−1)n−1(n − 1)!
λn

+ O

(
N !

λN+1

)]

.

2.3.1. In this case S(x) = cos(
√

x ), S′(x) = − sin(
√

x )

2
√

x
, S′(x) 
= 0 for x ∈

(
0,

π2

4

]
, S′(+0) = −1

2
. Therefore we may use formula (2.3.6). Calculate

d

dx

(
1

S′(x)

)
=

sin
√

x√
x

− cos
√

x

sin2
√

x
.
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Fig. 2.14 Numerical
solution (solid line) and
one-term asymptotic
approximation (dashed line)

Hence,

F(λ) = − 1

λS′(0)
eλS(0) + 1

λ2S′(0)
d

dx

(
1

S′(x)

) ∣∣∣∣
x=0

e(λS(0)) + O

(
1

λ3

)
.

Calculating d
dx

(
1

S′(x)

)

x=0
and substituting sin

√
x with

√
x −(

√
x, )3/6 and cos

√
x

with 1 − x/2, we obtain

F(λ) = eλ

[
2

λ
+ 2

3λ2 + O

(
1

λ3

)]
.

In Fig. 2.14 the solid line corresponds to the numerical solution and the dashed line
to the one-term asymptotic approximation.

2.3.2. The substitution x = zλ−1/2 transforms the integral into

F(λ) = 1√
λ

∫ √
λ

0
exp

(
−√

λ

(
z + 1

z

))
dz.

So,
F(λ) = λ−3/4 exp

(
−2

√
λ

) [√
π + O

(
λ−1

)]
.

In Fig. 2.15 the solid line corresponds to numerical solution and the dashed line to
the one-term asymptotic approximation.

2.3.3. Substituting x = z (α/λ)1/(1+α) we get the integral

F(λ) =
(α

λ

)1/(1+α)
∫ ∞

0
exp

(
−λα/(α+1)α1/(α+1) (

z + z−α
))

dz.
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Fig. 2.15 Numerical
solution (solid line),
one-term asymptotic
approximation (dashed line)

Fig. 2.16 Numerical
solution (solid line),
one-term asymptotic
approximation (dashed line)

Therefore

F(λ) � λ− α+2
2(1+α) α

1
1+α exp

(
−(α + 1)α

1−α
1+α λ

α
1+α

)
(√

2π

1 + α

)

.

In Fig. 2.16 the solid line corresponds to the numerical solution and the dashed line
to the one-term asymptotic approximation for α = 0.3.

2.3.4. We write the given integral as F(λ) = ∫ 1
−1 exp(λS(x))x2 dx . In this case,

S(x) = ln(1− x2), x0 = 0, S(x0) = 0, S′′(x0) = −2, m = 1, ϕ(x) = x2, i.e. α = 2.
Hence F(λ) = λ−3/2(

√
π/2+ O(λ−3/2)). In Fig. 2.17 the solid line corresponds to

the numerical solution and the dashed line to the one-term asymptotic approximation.

2.3.5. We write the initial integral in the form

F(λ) =
∫ 1

−1
exp(λS(x)) dx .



82 2 Asymptotic Estimates for Integrals

Fig. 2.17 Numerical
solution (solid line) and
one-term asymptotic
approximation (dashed line)

Fig. 2.18 Numerical
solution (solid line) and
one-term asymptotic
approximation (dashed line)

In this case, S(x) = ln(1 − x2), x0 = 0, S(x0) = 0, S′′(x0) = −2, m = 1,
ϕ(x) = 1, i.e. α = 0. Thus, F(λ) = λ−1/2(

√
π + O(λ−1/2)). In Fig. 2.18 the solid

line corresponds to numerical solution and the dashed line to one-term asymptotic
approximation.

2.3.6. Write the given integral as F(λ) = ∫ 1
0 exp(λS(x))x dx . In this case, S(x) =

ln
(
1 − x2

)
, x0 = 0, S(x0) = 0, S′′(x0) = −2, m = 1, ϕ(x) = x , i.e. α = 1.

Note that now the point of maximum lies on the boundary (this point coincides with
the interval end point). So, we have F(λ) = λ−1(1/2 + O(λ−1)). In Fig. 2.19 the
solid line corresponds to the numerical solution and the dashed line to the one-term
asymptotic approximation.

2.3.7. We represent the initial integral in the form

F(λ) =
∫ π

0
exp(nS(x)) sin x dx .

In this case, S(x) = ln x , x0 = b = π (note that the function S(x) attains its
maximum at the upper limit), S(x0) = ln π, S′(x0) = 1/π, m = 1, h(x, x0) = x .
Hence,ϕ(x0) = 0, i.e. the asymptotic expansion does not include the term for k = 0.
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Fig. 2.19 Numerical
solution (solid line) and
one-term asymptotic
approximation (dashed line)

Fig. 2.20 Numerical
solution (solid line),
one-term asymptotic
approximation (dashed line)

Calculate x d
dx (x sin x)|x=π = −π2. Thus,

F(λ) = λ−2 exp(λ ln π)
[
π2 + O

(
λ−1

)]
= πλ+2λ−2

[
1 + O

(
λ−1

)]
.

In Fig. 2.20 the solid line corresponds to the numerical solution and the dashed line
to the one-term asymptotic approximation.

2.3.8. The function S(x) = cosh(x) has a critical point at x0 = 0. S(x0) = 1,
S′′(x0) 
= 0.

Fν(λ) =
√

π

2

exp(−λ)√
λ

[
1 + O

(
λ−1/2

)]
.

In Fig. 2.21 the solid line corresponds to the numerical solution and the dashed line
to the one-term asymptotic approximation.

2.4.1. Jν(νt) =
√

2

πν
√

t2 − 1
cos

(
ν arccos

1

t
− ν

√
t2 − 1 + π

4

)
+ O

(
ν−1

)
. In

Fig. 2.22 the solid line corresponds to the numerical solution and the dashed line to
the one-term asymptotic approximation for t = 1.3.
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Fig. 2.21 Numerical
solution (solid line),
one-term asymptotic
approximation (dashed line)

Fig. 2.22 Numerical
solution (solid line),
one-term asymptotic
approximation (dashed line)

2.4.2. S(x) = x3, x0 = 0, S′′(x0) = 0, S′′′(x0) = 6, S(x0) = 0. Therefore

F(λ) = 1

3
�

(
1

3

)
λ−1/3 exp

(
iπ

6

) [
1 + O

(
λ−1

)]
.

The numerical (solid line) and asymptotic (dashed line) values of the functions
Fc(λ) = (F(λ)) and Fs(λ) = �(F(λ)) are compared in Fig. 2.23.

2.4.3. S(x) = xn , x0 = 0, S(n−1)(x0) = 0, S(n)(x0) = n!, S(x0) = 0. Therefore,

F(λ) = 1

n
�

(
1

n

)
λ−1/n exp

(
iπ

2n

)[
1 + O

(
λ−1/n

)]
.

2.5.1. Let h(z) = z + z3/3. The saddle points c1,2 = ±i for integrals (2.5.8) are
obtained from the condition h′(c) = 0. The lines of fastest descent passing through
the saddle points are found fromEq. (2.5.6), which, for this case, are x2y− y3+3y =
±2, where x = (z) and y = �(z). In Fig. 2.24a we plot the function (h(z)) in a
neighborhood of z = 0, and in Fig. 2.24b the lines of fastest descent passing through
the saddle points c1 and c2 and the contour lines of the function (h(z)).
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Fig. 2.23 Numerical (solid line) and asymptotic (dashed line) values of Fc and Fs

Fig. 2.24 For (h(z)), a plot in a neighborhood of z = 0, b lines of fastest descent through c1 and
c2 and contour lines

The integration paths γ1 and γ2 are deformed into the paths γ10 = A1c1A2 +
A2c2A3 (consisting of two lines of fastest descent with the end points going to
infinity) and γ20 = A2c1A1 + A2c2A3, respectively.

Let Jk = ∫
γ∗

k0
eλh(z)dz, k = 1, 2, be the contributions of the saddle points c1 and

c2, corresponding to integrations from A2 to A1 and from A2 to A3, respectively.
Taking into account that for the inverse direction the sign of the contribution Jk is
reversed, one gets

Ai(−η) � C1
√

η (J2 − J1), Bi(−η) � C2
√

η (J2 + J1), as η → ∞.

To calculate the contribution J1 of the integral over the arc γ∗
10 we change the variable

(2.5.7). With dz � exp(iπ/4)dτ one finds

J1 � eλh(c1)+iπ/4
∫ ∞

−∞
e−λτ2dτ = √

π/λ ei(2λ/3+π/4).
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Fig. 2.25 For (h(z)), a plot in a neighborhood of z = 0, and b lines of fastest descent through
c1 and c2 and contour lines

Fig. 2.26 The path γ0

Similarly, we obtain
J2 � √

π/λ e−i(2λ/3+π/4).

Hence,

Ai(−η) � 1√
π

η−1/4 sin
(
ζ + π

4

)
, Bi(−η) � 1√

π
η−1/4 cos

(
ζ + π

4

)
,

where ζ = 2
3 (−η)3/2 and λ = (−η)3/2.

2.5.2. Let h(z) = z + i z − z3. The equation h′(z) = 0 has two roots: c1,2 =
±21/43−1/2eiπ/8. In Fig. 2.25a we plot the graph of the function (h(z)) in a neigh-
borhood of z = 0, and in Fig. 2.25b the lines of fastest descent through the saddle
points c1 and c2 and the contour lines of the function(h(z)). The equation for the line
of fastest descent through c1 has the form y3−3x2y + x + y = 27/43−3/2 sin(3π/8).

For the path γ0 we chose the contour consisting of the segment O A1 and a part
of the line of fastest descent A1c1A2 (see Fig. 2.26).

The main term of the asymptotics of F(λ) as λ → ∞ is equal to the contribution
J1 of the saddle point c1, since, compared to it, the contribution of the segment O A1
is exponentially small.
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Fig. 2.27 For (h(z)), a plot in a neighborhood of z = 0, b lines of fastest descent through c1 and
c2 and contour lines

Fig. 2.28 For (h(z)), a plot in a neighborhood of z = 0, b lines of fastest descent through c1 and
c2 and contour lines

After the change of variable (2.5.7), in view of dz � 2−1/83−1/4 eiπ/16 dτ , one
gets

F(λ) � J1 = √
π/λ 2−1/83−1/4 exp

(
27/43−3/2 e3πi/8λ − iπ/16

)
.

2.5.3. Let h(z) = i z − ln
(
1 + z2

)
. Then F(λ) is of the form (2.5.1) and ϕ(z) ≡ 1. In

this case, there are two simple saddle points: c1 = i(
√
2− 1) and c2 = −i(

√
2+ 1).

In Fig. 2.27a we have the graph of the function (h(z)) in a neighborhood of z = 0,
and in Fig. 2.27b we have the lines of fastest descent passing through the saddle
points c1 and c2 and the contour lines of the function (h(z)). The equation for the
line of fastest descent through c1 is sin x(1 + x2 − y2) = 2xy cos x .

The main term of the asymptotic expansion of F(λ) is equal to the contribution
J1 of the saddle point c1. Changing the variable (2.5.7) we get
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F(λ) � J1 = λ−1/2 exp(−λc)(2c)−λ[π(1 − c)]1/2,

where c = √
2 − 1.

2.5.4. The saddle points for the function h(z) = i(3z − z3) are obtained from the
equation h′(z) = 0 with roots c1,2 = ±1.

In Fig. 2.28a, we plot the graph of the function (h(z)) in a neighborhood of
z = 0, and in Fig. 2.28b the lines of fastest descent through the saddle points c1 and
c2 and the contour lines of the function (h(z)).

The main term of the expansion of F(λ) is equal to the sum of the contributions
of the saddle points c1 and c2,

F(λ) � J1 + J2 = 2π1/2(3λ)−1/2 cos(2λ − π/4).



Chapter 3
Regular Perturbation of Ordinary
Differential Equations

In this chapter we find asymptotic solutions of regularly perturbed equations and
systems of equations, to which problems in mechanics are reduced. We consider
Cauchy problems, problems for periodic solutions and boundary value problems.

3.1 Introduction

A system of differential equations of first order

d y
dt

= f (t, y, ε), (3.1.1)

where y and f are vector functions, t an independent scalar variable and ε a small
parameter, is said to be regularly perturbed if

f (t, y, ε) �
∞∑

k=0

f k(t, y)εk . (3.1.2)

In this case, the solution of the system can be found in the form of an asymptotic
series

y(t, ε) �
∞∑

k=0

yk(t)ε
k . (3.1.3)

Asymptotic expansions of type (3.1.3) are called direct expansions [50].
Substituting (3.1.2) and (3.1.3) in (3.1.1) and equating coefficients of equal powers

of ε in the right and in the left sides of system (3.1.1), we get a sequence of equations
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90 3 Regular Perturbation of Ordinary Differential Equations

to find the vector functions yk(t). The differential system determining y0(t) has the
form:

d y0
dt

= f (t, y0, 0) (3.1.4)

and it is called the generating system for system (3.1.1). The systems of equations for
y1(t), y2(t), . . . is linear. If the generating system (3.1.4) is also linear, then (3.1.1)
is called a quasilinear system.

System (3.1.1) is said to be autonomous if the vector function f does not depend
explicitly on t . For an autonomous quasilinear system, the generating system is a
linear system with constant coefficients.

A differential equation of the form

L(x, t, ε) = 0, (3.1.5)

where L is a differential operator and x(t, ε) is a scalar function will be called
regularly perturbed if it is reducible to a regularly perturbed system of equations.

For example, the equation

d2x

dt2
= f (t, x, ε),

where the function f is expanded as

f (t, x, ε) �
∞∑

k=0

fk(t, x)εk,

is regularly perturbed since after the change of variables x = y1, ẋ = y2 it reduces
to the system

dy1
dt

= y2,
dy2
dt

= f (t, y1, ε).

Solution of regularly perturbed differential equation may be represented in the form

x(t, ε) �
∞∑

k=0

xk(t)ε
k,

where

L(x, t, 0) = 0

is the generating equation for Eq. (3.1.5).
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3.2 Cauchy Problems

The Cauchy problem for system (3.1.1) consists in this system with the initial con-
dition y(t∗) = y∗. Initial conditions for the nth order equation (3.1.5) have the
form

x = x∗,
dx

dt
= x (1)∗ , . . . ,

dn−1x

dtn−1 = x (n−1)∗ for t = t∗.

3.2.1 Motion of a Material Point in a Gravity Field

Assume that amaterial point ofmassm with initial velocity v0 at angleαwith respect
to the horizon moves freely under the action of gravity P = mg and air resistance
R = −νv f (v) (Fig. 3.1).

According to Newton’s second law of motion,

m
dv

dt
= P − νv f (v), v = d r

dt
. (3.2.1)

Projecting the vector equalities (3.2.1) on the coordinate axes Ox and Oy, we obtain
the following system of differential equations

m
dvx

dt
= −νvx f (v), m

dvy

dt
= −mg − νvy f (v),

dx

dt
= vx ,

dy

dt
= vy .

(3.2.2)

The initial conditions for system (3.2.2) are:

vx = v0 cosα, vy = v0 sinα, x = y = 0 for t = 0. (3.2.3)

We introduce the dimensionless variables by means of the formulas

t = v0

g
τ , x = v20

g
ξ, y = v20

g
η, u = vx

v0
, w = vy

v0
.

Fig. 3.1 Motion of point
under gravity with initial
velocity v0 at angle α

α
0

0

y

L
P

R

x
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In the non-dimensional variables, system (3.2.2) and boundary conditions (3.2.3)
become

du

dτ
= −εu f,

dw

dτ
= −1 − εw f,

dξ

dτ
= u,

dη

dτ
= w, (3.2.4)

u = cosα, w = sinα, ξ = η = 0 for τ = 0, (3.2.5)

where
ε = νv0

mg

is a non-dimensional parameter.
Assume, that ε � 1 and consider the case f (v) ≡ 1 when the resistance force is

proportional to velocity. We seek a solution of system (3.2.4) in the form

u = u0 + εu1 + ε2u2 + · · · . (3.2.6)

Formulas for w, ξ, and η are obtained when u in (3.2.6) is replaced with the corre-
sponding variables.

The generating system

du0

dτ
= 0,

dw0

dτ
= −1,

dξ0

dτ
= u0,

dη0

dτ
= w0

with initial conditions

u0 = cosα, w0 = sinα, ξ0 = η0 = 0 for τ = 0

describes the motion of the material point without resistance ( f = 0) and it has
solution

u0 = cosα, w0 = −τ + sinα,

ξ0 = τ cosα, η0 = −τ2

2
+ τ sinα.

(3.2.7)

In the zeroth approximation the trajectory is a parabola.
Next approximations (k = 1, 2,…) are found after solving the systems

duk

dτ
= −uk−1,

dwk

dτ
= −wk−1,

dξk

dτ
= uk,

dηk

dτ
= wk, k = 1, 2, . . .

with zero initial conditions. The solution of the system of first approximation (k = 1)
is

u1 = −τ cosα, w1 = τ2

2
− τ sinα,

ξ1 = −τ2

2
cosα, η1 = τ3

6
− τ2

2
sinα.

(3.2.8)
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Fig. 3.2 Motion with
resistance (dashed line) and
motion without resistance
(solid line)

0

η
0.2

0.1

0.2 0.4 0.6 0.8 1.0
ξ

In Fig. 3.2, we plot trajectories for the motion with resistance (dashed line) and
without resistance (solid line) for ε = 0.2, α = π/6.

3.2.2 Duffing Equation

Consider the construction of the asymptotic expansion for the solution of the Cauchy
problem for Duffing equation [50]

ẍ + ω2x + εbx3 = 0, ẍ = d2x

dt2
, (3.2.9)

which, in particular, describes vibrations of a mass on a non-linear spring. Here x
and t are dimensionless variables and ε is a small parameter.

Assume that for t = 0 the initial conditions are

x(0) = a, ẋ(0) = 0. (3.2.10)

We seek the solution for problem (3.2.9)–(3.2.10) in the form of a series

x = x0 + εx1 + ε2x2 + · · · . (3.2.11)

Substitute (3.2.11) into (3.2.9) and (3.2.10) and equate the coefficients of equal
powers of ε in the right and left sides. Equating the terms not containing ε (the zeroth
approximation), one gets the generating equation

ẍ0 + ω2x0 = 0 (3.2.12)

with initial conditions
x0(0) = a, ẋ0(0) = 0. (3.2.13)
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The equations of first and second approximations to determine x1 and x2 are

ẍ1 + ω2x1 + bx30 = 0, (3.2.14)

ẍ2 + ω2x2 + 3bx1x20 = 0. (3.2.15)

From formulas (3.2.10) and (3.2.13) it follows that

xk(0) = ẋk(0) = 0 for k ≥ 1. (3.2.16)

Substituting the general solution of the generating equation (3.2.12)

x0 = M0 cos z + N0 sin z, z = ωt,

into the initial conditions (3.2.13), we find M0 = a, N0 = 0 and, therefore,

x0 = a cos z. (3.2.17)

Substituting (3.2.17) into (3.2.14) and using the formula

cos3 z = 1

4
(cos 3z + 3 cos z),

lead to the equation

ẍ1 + ω2x1 = −a3b

4
(cos 3z + 3 cos z). (3.2.18)

Its general solution is the sum of a partial solution and a general solution of the
corresponding homogeneous equation. The partial solution for equation (3.2.18)
according to the principle of superposition for linear equations may be written as a
sum of solutions of the equations

ẍ + ω2x = −a3b

4
cos 3z and ẍ + ω2x = −3a3b

4
cos z.

We seek the solution of the first equation in the form x = A cos 3z, and of the
second equation in the form x = Bt sin z. After evaluating of the constants A and B
we obtain

x1 = M1 cos z + N1 sin z − a3b

32ω2 (12z sin z − cos 3z).

The constants M1 and N1 are found from the initial conditions (3.2.16):

M1 = − a3b

32ω2 , N1 = 0.
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Fig. 3.3 Numerical solution
(solid line) and asymptotic
solution (dashed line)

Hence the two-term approximation for the solution of equation (3.2.9) has the form

x � a cos z − ε
a3b sin z (sin 2z + 6z)

16ω2 . (3.2.19)

In a similar manner, after substituting the expressions for x0 and x1 in Eq. (3.2.15),
one gets x2.

In Fig. 3.3 the solid line is the solution of equation (3.2.9) obtained with a Runge–
Kutta method for ω = b = 1, ε = 0.1, and a = 2. The dashed line is the solution
obtained by formula (3.2.19). The error of the asymptotic formula increases with t
since the two-term approximation contains the term with the multiplier εt and for
t ∼ ε−1 the direct asymptotic expansion (3.2.19) becomes non-uniform.

Remark One may seek a solution for the Cauchy problem for Eq. (3.2.9) in the
form

x = M(ε) cos z + N (ε) sin z + εx1 + ε2x2 + · · · . (3.2.20)

where
M = M0 + εM1 + · · · , N = N0 + εN1 + · · · ,

and the function xk is a particular solution of the equation of the kth approximation.
This construction method of asymptotic expansion appears to be more convenient in
some cases (see Sect. 4.1).

3.2.3 Exercises

3.2.1. Consider the time and range (the length of segment OL) for the trajectory
of a material point with accuracy O(ε2) for a problem of Sect. 3.2.1 (Fig. 3.2) with
f (v) ≡ 1. Find the angle α∗ for which the trajectory range in maximal.

3.2.2. Find an exact solution of system (3.2.4) for f (v) ≡ 1 and compare it with the
asymptotic expansion (3.2.6).

3.2.3. Construct the first approximation for the solutions u and v of system (3.2.4)
when the resistance force is proportional to the velocity squared f (v) = √

u2 + w2.

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Compare the numerical solution of system (3.2.4) with the zeroth and first approxi-
mations for different values of ε.

3.2.4. Find a two-term asymptotic representation of the solutions of the system of
differential equations

t ẋ = x + εy, t ẏ = (2 − x)y

with initial conditions
x(1) = 1, y(1) = e−1.

Compare the obtained solution with the numerical solution for the system.

3.2.5. Find a two-term asymptotic representation of the solution of the differential
equation

ẍ + ω2x = εẋ2x

with initial conditions
x(0) = 0, ẋ(0) = v0.

Compare the obtained approximate solution with the numerical solution.

3.2.6. The system of non-dimensional equations

ẍ = −εẏ sinϕ, ÿ = ε(ẋ sinϕ − ż cosϕ), z̈ = 2 + εẏ cosϕ

with zero initial conditions describes the drop of a material point on the Earth surface
from height h taking into account Coriolis forces. Here x is the vertical deviation
southward, y is the vertical deviation westward, ϕ is the latitude (ϕ < 0 in the
southern hemisphere). The motions ends when z = 1. It is assumed that

ε = 2ω
√
2h/g

is a small parameter, where ω is the Earth angular velocity, and g is the acceleration
due to gravity.

Find the main terms of the asymptotic expansions for the functions x(t), y(t), and
z(t). Construct the exact solution of the system and compare it to the approximate
solution.

3.3 Periodic Solutions

The asymptotic expansions (3.1.3) can be used for approximating the periodic solu-
tions of some non-autonomous systems of differential equations when their right
sides contain periodic functions of the independent variable. These problems are
considered in Sects. 3.3.1 and 3.3.2.
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For autonomous systems, where the right sides do not contain explicit functions
of the independent variable, direct expansions (3.1.3) appear to be inconvenient for
evaluating periodic solutions because of the so-called secular terms in the expansions.
Secular terms lead to non-uniform asymptotic expansions for large values of the
independent variable [50]. In this case, asymptotic expansions of a more complex
form are used, as constructed in Sect. 3.3.3.

3.3.1 Solution of Non-autonomous Quasilinear Equations
Without Resonance

Consider the quasilinear equation

ẍ + ω2x = h sin t + εϕ(x, ẋ) (3.3.1)

The generating equation
ẍ + ω2x = h sin t

for ω 
= 1 has the periodic solution

x0 = A sin t, A = h

ω2 − 1
. (3.3.2)

We seek a periodic solution of equation (3.3.1) with a period 2π of the form

x = x0 + εx1 + ε2x2 + · · · . (3.3.3)

Substitute (3.3.3) into (3.3.1). Then, from

ϕ(x, ẋ) = ϕ(x0 + εx1 + · · · , ẋ0 + εẋ1 + · · · ) = ϕ0 + εϕ1 + ε2ϕ2 + · · · ,

where

ϕ0 = ϕ(x0, ẋ0), ϕ1 = ∂ϕ0

∂x0
x1 + ∂ϕ0

∂ ẋ0
ẋ1, . . . ,

one finds
ẍn + ω2xn = ϕn−1(t), n = 1, 2, . . . (3.3.4)

Expand the function ϕ0(t) = ϕ(A sin t, A cos t) in a Fourier series

ϕ0(t) = A00 +
∞∑

k=1

(A0k cos kt + B0k sin kt). (3.3.5)
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Remark For the expansion of some functions into a Fourier series it is handier to
use the formulas:

sin t = eit − e−i t

2i
, cos t = eit + e−i t

2
.

For example,

sin3 t = (eit − e−i t )3

(2i)3
= −e3i t − 3eit + 3e−i t − e−3i t

8i
= 1

4
(3 sin 3t − sin 3t).

(3.3.6)
Forω 
= k, the equation of the first approximation (3.3.4) has the periodic solution

x1 = A00

ω2 +
∞∑

k=1

(
A0k

ω2 − k2
cos kt + B0k

ω2 − k2
sin kt

)
.

The functions x2, x3, . . . are sequentially evaluated from equation (3.3.4):

xn+1 = An0

ω2 +
∞∑

k=1

(
Ank

ω2 − k2
cos kt + Bnk

ω2 − k2
sin kt

)
, n = 1, 2, . . . ,

where Ank and Bnk are the Fourier coefficients of ϕn(t).
The asymptotic expansion (3.3.3) is not uniform in the parameter ω. Uniformity

is violated due to the appearance of small denominators for |ω2 − k2| = O(ε). The
case ω2 = k2 − εδ, with δ = O(1), is called resonance and will be considered
further.

Find the first terms of the asymptotic expansion of the 2π-periodic solution (3.3.3)
of Duffing equation

ẍ + ω2x + εbx3 = h sin t (3.3.7)

in the non-resonance case.
The zeroth approximation has the form (3.3.2). Substitute (3.3.2) in the equation

of the first approximation
ẍ1 + ω2x1 = −bx30

and use formula (3.3.6). Since ω 
= k, the differential equation

ẍ1 + ω2x1 = −b

4
A3(3 sin t − sin 3t)

admits the periodic solution

x1 = −b

4
A3

(
3 sin t

ω2 − 1
− sin 3t

ω2 − 9

)
.
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3.3.2 Solution of Non-autonomous Quasilinear Equations
with Resonance

Consider the case of the main resonance ω2 = 1 − εδ for Eq. (3.3.1)

ẍ + x = h sin t + εδx + εϕ(x, ẋ). (3.3.8)

The generating equation
ẍ + x = h sin t

has the general solution

x0 = M cos t + N sin t − h

2
t cos t,

which is not periodic for any value of the constants M and N . However, one can
construct a 2π-periodic solution of equation (3.3.8) if h = εa. Indeed, in this case,
the generating equation

ẍ + x = 0

has a two-parameter family of 2π-periodic solutions of the form

x0 = M cos t + N sin t. (3.3.9)

For some values of the constants M and N , which are found from the existence
conditions for periodic solutions of the equation of first approximation

ẍ1 + x1 = a sin t + δx0 + ϕ0(t), (3.3.10)

equation (3.3.8) may have periodic solutions of the form (3.3.3).
For Eq. (3.3.10) to have a 2π-periodic solution it is necessary and sufficient that

the expansion of its right side in Fourier series does not contain terms of the form
A cos t and/or B sin t . Equating to zero the coefficients of functions cos t and sin t
in the expansion of the right side of (3.3.10) in a Fourier series, we get a system of
two equations for evaluating M and N :

P(M, N ) = 0, Q(M, N ) = 0, (3.3.11)

with
P = Mδ + A01(M, N ), Q = a + Nδ + B01(M, N ),
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where

A01 = 1

π

∫ 2π

0
ϕ(M cos t + N sin t,−M sin t + N cos t) cos t dt,

B01 = 1

π

∫ 2π

0
ϕ(M cos t + N sin t,−M sin t + N cos t) sin t dt,

are the Fourier coefficients of ϕ0(t) in expansion (3.3.5).
Let the system of equations (3.3.11) have the solution M = M0 and N = N0.

Then
x0 = M0 cos t + N0 sin t,

and the equation for evaluating x1,

ẍ1 + x1 = A00 +
∞∑

k=2

(A0k cos kt + B0k sin kt),

has a periodic solution

x1 = M1 cos t + N1 sin t + �1(t),

where

�1 = A00 +
∞∑

k=2

A0k cos kt + B0k sin kt

1 − k2
.

From the existence condition for periodic solution for the equation of second approx-
imation,

ẍ2 + x2 = δx1 + ∂ϕ0

∂x0
x1 + ∂ϕ0

∂ ẋ0
ẋ1,

we obtain a system of two linear algebraic equations for the constants M1 and N1:

∂P

∂M
M1 + ∂P

∂N
N1 = D11,

∂Q

∂M
M1 + ∂Q

∂N
N1 = D12, (3.3.12)

where

D11 = − 1

π

∫ 2π

0

(
∂ϕ0

∂x0
�1 + ∂ϕ0

∂ ẋ0
�̇1

)
cos t dt,

D12 = − 1

π

∫ 2π

0

(
∂ϕ0

∂x0
�1 + ∂ϕ0

∂ ẋ0
�̇1

)
sin t dt.
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The partial derivatives of M and N in formulas (3.3.12) are calculated at M = M0
and N = N0. The system of equation (3.3.12) has a unique solution if its determinant,

D = ∂P

∂M

∂Q

∂N
− ∂P

∂N

∂Q

∂M
,

is non-vanishing. In this case, the construction of asymptotic solutions may be con-
tinued. The functions xk are recursively calculated by the formulas

xk = Mk cos t + Nk sin t + �k(t), k = 1, 2, . . . ,

and the constants Mk and Nk are found after solving the system of linear equations

∂P

∂M
Mk + ∂P

∂N
Nk = Dk1,

∂Q

∂M
Mk + ∂Q

∂N
Nk = Dk2, k = 1, 2, . . .

The peculiarity of the resonance case compared to the non-resonance case is in the
excitation of the oscillations with amplitude of order 1 under the action of a periodic
force with small amplitude of order ε.

Example 1
Consider the Duffing equation for the case ω2 = 1 − εδ, h = εa, a 
= 0:

ẍ + x = ε(a sin t + δx − bx3). (3.3.13)

The zeroth approximation for the solution of equation (3.3.13) has the form (3.3.9).
Substitute the expression for x0 into the equation of first approximation

ẍ1 + x1 = a sin t + δx0 − bx30

and transform it into

ẍ1 + x1 = P cos t + Q sin t − b

4

(
M3 − 3M N 2

)
cos 3t + b

4

(
N 3 − 3M2N

)
sin 3t,

(3.3.14)
where

P = M

[
δ − 3b

4

(
M2 + N 2

)]
, Q = a + N

[
δ − 3b

4

(
M2 + N 2

)]
.

Equation (3.3.14) has a periodic solution if P = Q = 0. Assume that M 
= 0. Then
from the equations P = 0 and Q = 0 it follows that

δ − 3b

4

(
M2 + N 2

)
= 0, a = 0,
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which contradicts the condition a 
= 0. Therefore M = 0. To obtain N one gets a
cubic equation

3b

4
N 3 − δN − a = 0. (3.3.15)

Let N0 be a real root of equation (3.3.15). Then

x0 = N0 sin t, (3.3.16)

and Eq. (3.3.14) becomes

ẍ1 + x1 = b

4
N 3
0 sin 3t.

The constants M1 and N1 in the 2π-periodic solution

x1 = M1 cos t + N1 sin t − b

32
N 3
0 sin 3t (3.3.17)

are found from the existence condition for periodic solutions of the second approxi-
mation equation

ẍ2 + x2 = δx1 − 3bx20 x1.

Substitute (3.3.16) and (3.3.17) in this equation, transform its right side to a linear
combination of the functions cos kt and sin kt , and equate to zero the coefficients of
sin t and cos t . Thus, we get

M1

(
δ − 3b

4
N 2
0

)
= 0, N1

(
δ − 9b

4
N 2
0

)
= 3

128
b2N 5

0 . (3.3.18)

From first equation in (3.3.18) it follows that M1 = 0. Indeed, if not, then from the
equality

δ − 3b

4
N 2
0 = 0,

we get a = 0 by (3.3.15).
If δ 
= 9bN 2

0 /4, then

N1 = 3b2N 5
0

32(4δ − 9bN 2
0 )

,

and a periodic solution of equation (3.3.13) can be represented in the form (3.3.3).
Similarly, one constructs asymptotic expansions of 2π-periodic solutions of the

type ω2 = k2 − εδ for k 
= 1 in the resonance case (see Exercise 3.3.4).
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3.3.3 Poincaré’s Method

The quasilinear equation
ẍ + ω2x = εϕ(x, ẋ) (3.3.19)

is said to be autonomous since its right side does not depend explicitly on time.
An application of the direct asymptotic expansion (3.3.3) for solving Eq. (3.3.19)

usually leads to the appearance in this expansion of secular terms of type Aεt sin t
and Aεt cos t (see formula (3.2.19) and the solution of Exercise 3.2.5). As a result
the direct asymptotic expansion is non-uniform for large values of t ∼ ε−α, α ≥ 1.
The term “secular term” was introduced for the solution of celestial problems, where
the value of εt often plays an important role only for values of t equal to centuries.

The appearance of secular terms comes from the fact that, as a rule, the period of
the solution of equation (3.3.19) depends on the parameter ε. For example, the direct
asymptotic expansion of the function

x = sin[(ω0 + εω1)t] = sinω0t + εω1t cosω0t + · · ·

contains the secular term εω1t cosω0t .
To get a uniform asymptotic expansion one may use Poincaré’s method. Assume

that the desired solution of equation (3.3.19) has period

T (ε) = 2π

ω
g(ε), g(ε) = 1 + εg1 + ε2g2 + · · ·

where gk are unknown constants. Under the change of variable:

t = τ

ω
g(ε), (3.3.20)

Eq. (3.3.19) becomes

d2x

dτ2
+ xg2 = εϕ

(
x,

ω

g

dx

dτ

)
g2

ω2 . (3.3.21)

Let x(t) be the periodic solution of equation (3.3.19) with period T . Then

x

[
τ + 2π

ω
g(ε)

]
= x(t + T ) = x(t) = x

[ τ

ω
g(ε)

]
,

and, therefore, the function x[τg(ε)/ω], which is a solution of equation (3.3.21), has
period 2π.
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For the periodic solution of equation (3.3.21) there exists a value τ = τ0 such that

dx

dτ
= 0, for τ = τ0.

If we change the variable τ ′ = τ − τ0 in Eq. (3.3.21), then the equality

dx

dτ ′ = 0, for τ ′ = 0,

holds and the form of the equation does not change. Therefore, without loss of
generality, we may assume that τ0 = 0.

We seek a solution of equation (3.3.21) in the form

x(τ , ε) = x0(τ ) + εx1(τ ) + ε2x2(τ ) + · · · , (3.3.22)

where

xi (τ + 2π) = xi (τ ),
dxi

dτ
= 0, for τ = 0, i = 0, 1, 2, . . . (3.3.23)

We substitute (3.3.22) in Eq. (3.3.21) and equate to zero the coefficients of equal
powers of ε. Then, the generating equation

d2x0
dτ2

+ x0 = 0

has the family of solutions
x0 = M cos τ , (3.3.24)

satisfying conditions (3.3.23).
The first approximation equation

d2x1
dτ2

+ x1 = ϕ0

ω2 − 2g1x0 (3.3.25)

includes the 2π-periodic function

ϕ0(τ ) = ϕ(M cos τ ,−ωM sin τ ).

We expand the function ϕ0/ω
2 in the Fourier series:

ϕ0

ω2 = A0 +
∞∑

k=1

(Ak cos kτ + Bk sin kτ ).
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Equation (3.3.25) has a periodic solution if

B1(M) = 1

πω2

∫ 2π

0
ϕ(M cos τ ,−ωM sin τ ) sin τ dτ = 0 (3.3.26)

and

A1(M) − 2g1M = 1

πω2

∫ 2π

0
ϕ(M cos τ ,−ωM sin τ ) cos τ dτ − 2g1M = 0.

Let M = M0 
= 0 be a solution of equation (3.3.26). Then

g1 = A1(M0)

2M0
,

and the zeroth approximation periodic solution of equation (3.3.19) has the form

x0 = M0 cos
ωt

1 + εg1
.

The equation of first approximation

d2x1
dτ2

+ x1 = A0 +
∞∑

k=2

(Ak cos kτ + Bk sin kτ )

admits the solution
x1 = M1 cos τ + N1 sin τ + �1, (3.3.27)

where

�1 = A0 +
∞∑

k=2

Ak cos kτ + Bk sin kτ

1 − k2
.

From the condition
dx1
dτ

= 0, for τ = 0

we obtain

N1 = −
∞∑

k=2

k Ak

1 − k2
.

To find M1 one should consider the equation of second approximation

d2x2
dτ2

+ x2 = −2g2x0 − 2g1x1 + 1

ω2

∂ϕ0

∂x0
x1 + 1

ω

∂ϕ0

∂x0τ

dx1
dτ

+ ψ2, (3.3.28)
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where

ψ2 = −g1x20 − g1

ω

∂ϕ0

∂x0τ

dx0
dτ

+ 2g1ϕ0, x0τ = dx0
dτ

.

Substitute (3.3.24) and (3.3.27) in (3.3.28), expand the right side in Fourier series
and equate to zero the coefficients of cos τ and sin τ . After these transformations,
we find two equations for M1 and g2:

d B1

d M
M1 = − 1

π

∫ 2π

0
ϕ2 sin τdτ = 0,

− 2g2M0 + 2
dg1

d M
M0M1 = − 1

π

∫ 2π

0
ϕ2 cos τ dτ , (3.3.29)

where

ϕ2 = 1

ω2

∂ϕ0

∂x0
�1 + 1

ω

∂ϕ0

∂x0τ

d�1

dτ
− 2g1�1 + ψ2.

The derivatives with respect to M in (3.3.29) are calculated at M = M0. If

d B1

d M

= 0 at M = M0,

then, from the first equation in (3.3.29), one gets M1, and, from the second, g2. In this
case, one can continue the construction of the periodic solution of equation (3.3.19)
and find xk recursively for k ≥ 2.

Let ϕ be an analytic function. Then the obtained series is convergent for small
enough ε. Hence, the quasilinear equation (3.3.19) has a periodic solution for suffi-
ciently small ε if Eq. (3.3.26) has a simple root M = M0. It follows that the number
of roots of equation (3.3.26) depends on the properties of the function ϕ.

If the functionϕ does not depend on ẋ , then Eq. (3.3.26) is satisfied identically for
any M , and, therefore, for sufficiently small ε, Eq. (3.3.19) has an infinite number of
periodic solutions. Assume that Eq. (3.3.19) describes the motion of a material point
of unit mass. Then, in this case, the law of conservation of energy is valid, i.e. the
mechanical system is conservative.

If ϕẋ < 0, then B1 < 0, and Eq. (3.3.26) has no solution. The corresponding
mechanical system is dissipative, since its mechanical energy decreases.

If Eq. (3.3.26) has a finite number of solutions, the mechanical system if called a
self-oscillating system.

One of the simple equations describing the motion of a self-oscillating system is
the Van der Pol equation [50]:

ẍ − ε(1 − x2)ẋ + x = 0. (3.3.30)

Assume that ε � 1 and find an asymptotic expansion of the periodic solution for
equation (3.3.30) by the Poincaré method.
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After the substitution t = τg(ε), Eq. (3.3.30) becomes:

d2x

dτ2
+ xg2 = ε

(
1 − x2

) dx

dτ
g. (3.3.31)

We seek a solution of (3.3.31) in the form (3.3.22). We substitute the solution of the
generating equation (3.3.24) in the equation of first approximation

d2x1
dτ2

+ x1 =
(
1 − x20

) dx0
dτ

− 2g1x0.

After these transformations one gets

d2x1
dτ2

+ x1 =
(

M2

4
− 1

)
M sin τ − 2g1M cos τ + 1

4
M3 sin 3τ . (3.3.32)

Equation (3.3.32) has a periodic solution if

(
M2

4
− 1

)
M = 0, 2g1M = 0.

The value M = 0 corresponds to the trivial solution x = 0. Assuming that M 
= 0
one obtains

M = M0 = ±2, g1 = 0.

The values M0 = 2 and M0 = −2 correspond to the same periodic solution, so we
analyze only the case M0 = 2. In this case,

x0 = 2 cos τ , (3.3.33)

and Eq. (3.3.32) becomes

d2x1
dτ2

+ x1 = 2 sin 3τ .

Its solution

x1 = M1 cos τ + N1 sin τ − 1

4
sin 3τ (3.3.34)

contains the unknown constants M1 and N1. From the condition

dx1
dτ

= 0, for τ = 0

we find N1 = 3/4.
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The constants M1 and g2 are determined from the existence condition for a periodic
solution of the equation of second approximation

d2x2
dτ2

+ x2 = −2g2x0 +
(
1 − x20

) dx1
dτ

− 2x0
dx0
dτ

x1. (3.3.35)

Substitute (3.3.33) and (3.3.34) in (3.3.35), represent the right side in the form of a
linear combination of the functions sin kτ and cos kτ and equate to zero the coeffi-
cients of sin τ and cos τ . As a result we get

M1 = 0, g2 = 1

16
.

Therefore the two-term asymptotic expansion of the periodic solution of the Van der
Pol equation (3.3.30) has the form

x = 2 cos τ + ε

4
(3 sin τ − sin 3τ ), τ = 16t

16 + ε2
. (3.3.36)

The construction of periodic solutions by means of numerical methods appears
to be essentially a more difficult problem than the solution of the Cauchy problem.
That is why we limit ourselves with finding the phase curves. The phase curve for
Eq. (3.3.1) is a trajectory of a representative point with coordinates x(t) and ẋ(t)
in the phase plane (x, ẋ) when the variable t changes. Plotting a sufficiently large
number of phase curves permits us to judge the qualitative behavior of the solutions
of the equation under consideration for different initial conditions. The closed phase
curves correspond to periodic solutions. The phase curves corresponding to periodic
solutions of self-oscillating systems are called limit cycles.

In Fig. 3.4, we plot with dashed line the limit cycle for equation (3.3.30) found
by the asymptotic formula (3.3.36) for ε = 0.3. The solid line is a phase curve
obtained by means of the numerical integration of the Cauchy problem with the
initial conditions x = 3, ẋ = 0. For sufficiently large values of t , the representative
point traces out a curve which, within the accuracy of the plot, seems closed. This

Fig. 3.4 Limit cycle (dashed
line), phase curve (solid line)
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closed linemaybe treated as a limit cycle obtained bymeans of the numericalmethod.
In practice, the limit cycles found by asymptotic and numerical methods coincide.

It is easy to verify that for other initial conditions the phase curves for Eq. (3.3.30)
approach the limit cycle; this implies its asymptotic stability (see Sect. 3.4.2).

3.3.4 Exercises

3.3.1. Find the function x2 in the expansion (3.3.3) for Eq. (3.3.7).

3.3.2. Find the asymptotic expansion of the 2π-periodic solution of the equation

ẍ + ω2x = h sin t + εẋ2x

in the non-resonance case.

3.3.3. Find the two-term asymptotic expansion of the 2π-periodic solution of the
equation

ẍ + x = ε(a sin t + δx + ẋ2x), a 
= 0.

3.3.4. Find the main term of the asymptotic expansion of the 2π-periodic solution of
the equation

ẍ + 9x = ε(δx − bx3) + h sin t, h 
= 0.

3.3.5. Use Poincaré’s method to find a uniform asymptotic expansion of the periodic
solutions of the equations

(1) ẍ + x = ε(1 − x4)ẋ,

(2) ẍ + x = ε(1 − x2)ẋ − εx3,

for ε � 1. For the first equation, find the limit cycle with the obtained asymptotic
formulas. Study the behavior of the phase curves near the limit cycle with a numerical
method.

3.4 Transient Regimes

Periodic solutions of systems of differential equations (3.1.1) and solutions of the
form y = y0, where y0 is a constant vector, are called stationary. Solutions which
approache some stationary regime as t → ∞ are called transient regimes. Such
solutions cannot be found with Poincare’s method since they are not periodic. Due
to its non-uniformity, the method of direct asymptotic expansions can obtain the
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transient regimes only for a relatively small t interval of length O(1), which, as a
rule, is not so interesting for the applications.

In this section, we consider the averaging method [13] and the multiscale method
[42] which can obtain uniform solutions for Cauchy problems with arbitrary initial
conditions in intervals of order O(ε−1).

3.4.1 Van der Pol Method

Approximate solutions of the equation

ẍ + ω2x = εϕ(x, ẋ). (3.4.1)

can be obtained by a method proposed by the Dutch engineer Van der Pol. We seek
a solution of equation (3.4.1) in the form

x = a(t) cos z, z = ωt + β(t). (3.4.2)

Then
ẋ = −aω sin z + ȧ cos z − aβ̇ sin z.

Solution (3.4.2) contains two unknown functions a(t) and z(t). One of the condi-
tions to determine them is that solution (3.4.2) must satisfy Eq. (3.4.1). The second
condition is our choice. We require that

ȧ cos z − aβ̇ sin z = 0. (3.4.3)

In this case,

ẋ = −aω sin z, ẍ = −aω2 cos z − ȧω sin z − aωβ̇ cos z. (3.4.4)

Substituting (3.4.2) and (3.4.4) into (3.4.1) one gets

− ȧω sin z − aωβ̇ cos z = εϕ(a cos z,−aω sin z). (3.4.5)

Formulas (3.4.3) and (3.4.5) imply that

ȧ = − ε

ω
ϕ(a cos z,−aω sin z) sin z,

β̇ = − ε

ωa
ϕ(a cos z,−aω sin z) cos z.

(3.4.6)

The change of variables (3.4.2) and (3.4.4) allows us to reduce Eq. (3.4.1) to the
equivalent system of two equation (3.4.6). The functions a(t) and β(t) are called
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the slow variables (ȧ ∼ β̇ ∼ ε), the function z(t) the fast variable (ż ∼ 1), and the
above transformation separation of slow and fast variables.

Replace the right sides of system (3.4.6) with their average values over the z
interval [0, 2π]. We thus obtain the shortened system

ȧ = − ε

ω
B(a), β̇ = − ε

ωa
A(a), (3.4.7)

where

A(a) = 1

2π

∫ 2π

0
ϕ(a cos z,−ωa sin z) cos z dz,

B(a) = 1

2π

∫ 2π

0
ϕ(a cos z,−ωa sin z) sin z dz,

for which the solution can be found by quadratures. The transition from (3.4.6) to
(3.4.7) is called the averaging.

The approximate solution (3.4.2), where a and β are determined from system
(3.4.7), is the main term of the asymptotic expansion of the solution of equation
(3.4.1) in the t interval of length O(1/ε).

The Van der Pol method is also convenient for determining the zeroth approxi-
mation of the solution. However, it does not permit to find the next approximations.
To construct them one may use the multiscale method (see Sect. 3.4.3).

Apply the Van der Pol method to approximate the solution of the equation

ẍ + �2x = ε[ϕ(x, ẋ) + h sinωt], (3.4.8)

where the right side contains a periodic function of t .
We seek a solution of the form (3.4.2). By (3.4.3) we get the system

ȧ cos z − aβ̇ sin z = 0,

−ȧω sin z − aωβ̇ cos z = a(ω2 − �2) cos z + εϕ + εh sinωt
(3.4.9)

to find a(t) and β(t).
The transition to the shortened system is justified if ω2 − �2 = O(ε) which

corresponds to the case of the main resonance (see Sect. 3.3.2). Taking

sinωt = sin(z − β) = sin z cosβ − sin β cos z

into account, after averaging (3.4.9) with respect to the variable z, one finds

ȧω = −ε

[
B(a) + h

2
cosβ

]
,

aωβ̇ = −ε

[
A(a) − h

2
sin β

]
− a

2

(
ω2 − �2

)
.

(3.4.10)
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In the case ȧ = β̇ = 0, the solution (3.4.2) is periodic

x(t) = a0 cos(ωt + β0), (3.4.11)

where the constants a0 and β0 are evaluated from the system of equations

B(a0) + h

2
cosβ0 = 0,

A(a0) − h

2
sin β0 + a0

2ε

(
ω2 − �2

)
= 0.

(3.4.12)

Solution (3.4.11) with accuracy of order O(ε) coincides with the approximate solu-
tion (3.3.9).

If we exclude β0 from system (3.4.12) then we have the equation

F(a0,ω) = B2 +
[

A + a0
2ε

(ω2 − �2)
]2 − h2

4
= 0, (3.4.13)

which connects the amplitude of the periodic solution, a0, with its frequency ω. The
dependence of a0 on ω is called the amplitude frequency response.

Consider the equation

ẍ + x = ε
(

h sinωt − nẋ − bx3
)

, (3.4.14)

which, when compared to Eq. (3.3.13), contains in the right side the additional term
−εnẋ emerging, in particular, in problems where the resistance forces are propor-
tional to velocity. The functions A and B for Eq. (3.4.14) are obtained by the formulas

A(a) = 1

2π

∫ 2π

0

(
naω sin z − ba3 cos3 z

)
cos z dz = −3

8
ba3,

B(a) = 1

2π

∫ 2π

0

(
naω sin z − ba3 cos3 z

)
sin z dz = naω

2
.

The equation for the amplitude frequency response has the form

n2a2
0ω

2 +
[

a0
ε

(
ω2 − 1

)
− 3

4
ba3

0

]2
− h2 = 0, a0 > 0.

In Fig. 3.5, the amplitude frequency responses for Eq. (3.4.14) are plotted for
different values of b for h = n = 1 and ε = 0.02.
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Fig. 3.5 Amplitude frequency responses for Eq. (3.4.14)

The case b = 0 corresponds to a linear equation. If b 
= 0 then, for some values
of ω, Eq. (3.4.14) can have more than one periodic solutions.

3.4.2 Stability of Stationary Solutions

In real systems which are modeled with differential equations, there usually exist
small random perturbations. In many cases, these perturbations may be taken into
account when making small changes in the initial conditions. If small perturbations
in the initial conditions lead to significant perturbations of solutions in the considered
time interval, such unstable solutions are a bad description of the real process. In
this case, one should study the behavior of the solutions with initial conditions close
to the initial conditions of the solution under consideration, i.e. to study the solution
stability.

Let system (3.1.1) have a solution y(t) satisfying the initial conditions y(0) = y0.
Denote η = ỹ − y, η0 = ỹ0 − y0, where ỹ is any other solution satisfying the initial
conditions ỹ0(0) = ỹ0. The solution y(t) is said to be stable in the sense of Lyapunov,
if, for any δ > 0, one can find δ0 > 0 such that, if |η0| < δ0, then, for any values of
t , the inequality |η| < δ also holds. A stable solution is called asymptotically stable
if |η| → 0 as t → ∞.

The study of stability of solutions of equations (3.4.1) and (3.4.8) is a rather
difficult problem. In this section we limit ourselves to study the stability of solutions
of shortened systems (3.4.7) and (3.4.10). Generally, from the stability of a solution
for a shortened equation it does not follow that the corresponding solution of the
given equation is stable in the sense of Lyapunov. Nevertheless, information on the
stability of solutions of shortened systems can be useful when solving many applied
problems.

Consider the first of equations of system (3.4.7)

ωȧ = −εB(a). (3.4.15)

To study the stability of the stationary solution a = a0 satisfying equation

B(a0) = 0, (3.4.16)



114 3 Regular Perturbation of Ordinary Differential Equations

one considers the solution of equation (3.4.15)

a = a0 + ξ. (3.4.17)

Substitute (3.4.17) in (3.4.15) and expand the right side of the obtained identity in a
series of powers of ξ. Taking (3.4.16) into account, we find

ωξ̇ = −εB0ξ + · · · , B0 = d B

da

∣∣
∣∣
a=a0

. (3.4.18)

By the theorem on the stability of a linear approximation, the trivial solution of
equation (3.4.18) is asymptotically stable if the trivial solution of the linear equation

ωξ̇ = −εB0ξ (3.4.19)

is asymptotically stable. The solution of equation (3.4.19) has the form

ξ = C exp
(
− ε

ω
B0t

)
.

Obviously, ξ → 0 as t → ∞ if B0 > 0. Therefore, the stationary solution a = a0 is
asymptotically stable if

d B

da

∣∣∣∣
a=a0

> 0. (3.4.20)

For Eq. (3.3.30),

B(a) = a

2

(
a2

4
− 1

)
.

The equation B(a) = 0 has the roots a0 = 0 and a0 = 2. From the inequalities

d B

da

∣∣∣∣
a=0

= −1

2
< 0,

d B

da

∣∣∣∣
a=2

= 1 > 0,

it follows that the trivial solution a0 = 0 is unstable and the limit cycle a0 = 2 is
stable.

Consider now the stability of the stationary solutions of the shortened system
(3.4.10). Write this system in the form

ωȧ = X (a,β), aωβ̇ = Y (a,β), (3.4.21)

where

X = −ε

[
B(a) + h

2
cosβ

]
, Y = −ε

[
A(a) − h

2
sin β

]
− a

2
(ω2 − �2).
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The stationary solution a = a0, β = β0 of system (3.4.21) is a solution of the system
of equations

X (a0,β0) = 0, Y (a0,β0) = 0. (3.4.22)

Consider the solution of system (3.4.21)

a = a0 + ξ, β = β0 + η. (3.4.23)

Substitute (3.4.23) in (3.4.21) and expand the right sides of the obtained system in
series of powers of ξ and η. Taking (3.4.22) into account, one gets

ωξ̇ = ∂X

∂a
ξ + ∂X

∂β
η + · · · , a0ωη̇ = ∂Y

∂a
ξ + ∂Y

∂β
η + · · · . (3.4.24)

The partial derivatives in (3.4.24) are calculated at a = a0,β = β0. From the theorem
on the stability of linear approximation, it follows that the trivial solution of system
(3.4.24) is asymptotically stable if the trivial solution of the linear system is also
stable, which is obtained from (3.4.24) when omitting the non-linear terms. Hence,
the trivial solution of the linear system is asymptotically stable if the roots �1 and
�2 of the characteristic equation

(
1

ω

∂X

∂a
− �

)(
1

a0ω

∂Y

∂β
− �

)
− 1

a0ω2

∂X

∂β

∂Y

∂a
= 0 (3.4.25)

have negative real parts. The last condition is satisfies if the coefficients of the
quadratic equation (3.4.25) are positive, i.e.

− 1

a0ω

(
a0

∂X

∂a
+ ∂Y

∂β

)
> 0,

1

a0ω2

(
∂X

∂a

∂Y

∂β
− ∂X

∂β

∂Y

∂a

)
> 0. (3.4.26)

From the relations

∂X

∂a
= −ε

d B

da

∣
∣
∣
∣
a=a0

,
∂Y

∂β
= εh

2
cosβ0 = −εB(a0),

∂Y

∂a
= − d

da

[
εA(a) + a

2
(ω2 − �2)

]
,

∂X

∂β
= εh

2
sin β0 = −εA(a0)+ a

2
(ω2−�2)

it follows that inequalities (3.4.26) are equivalent to the inequalities

d(aB)

da

∣
∣∣∣
a=a0

> 0,
d F

da

∣
∣∣∣
a=a0

> 0, (3.4.27)

where the function F(ω, a) is evaluated by formula (3.4.13).
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Fig. 3.6 Plot of the curve
F(ω, a) = 0 in the (ω, a)

plane

If inequalities (3.4.27) are satisfied, then the stationary solution a = a0, β = β0
of the shortened system (3.4.21) is asymptotically stable.

For Eq. (3.4.14) the function B(a) = naω/2, and the first inequality in (3.4.27)
imply that na0ω > 0. This inequality is satisfied for all stationary solutions if n > 0.
To check the second inequality in (3.4.27) it is convenient to plot the curve F(ω, a) =
0 in the (ω, a) plane. Consider the case b > 0 (Fig. 3.6).

The inequality F(ω, a) < 0 is satisfied in the shaded area under the curve and
F(ω, a) > 0 above the curve. Consider the point M∗ with coordinates (a∗,ω∗) that
lies on the curve above the shaded area. Obviously, F < 0 for a∗ < 0 and F > 0 for
a∗ > 0. This is why

d F

da
> 0 for a = a∗, ω = ω∗,

and the solution corresponding to this point is asymptotically stable. The unstable
solutions correspond to the points of the curve F = 0 which lie under the shaded
area. Thus there is one stable periodic solution in both intervals (0,ω1) and (ω2,∞)

and, in the interval (ω1,ω2), there are three periodic solutions two of which are
stable.

The character of vibrations depends on the wayω changes. Ifω increases, then the
amplitude changes according to the rule given by the broken line M0M1M2M5. For
ω = ω2, the amplitude sharply goes down. This phenomenon is called the oscillation
drop. When the frequency decreases, the law of variation of amplitude is given by
the broken line M5M3M4M0. In this case an oscillation jump occurs when ω = ω1.

3.4.3 Multiscale Method

Introduce the variables

τ = t, τ1 = εt, τ2 = ε2t, . . .
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and seek a solution of equation (3.4.1) in the form of an asymptotic series

x = x0(τ , τ1, τ2, . . .) + εx1(τ , τ1, τ2, . . .) + · · · . (3.4.28)

Applying the chain rule one obtains

dx

dt
= ∂x

∂τ
+ ε

∂x

∂τ1
+ ε2

∂x

∂τ2
+ · · · ,

d2x

dt2
= ∂2x

∂τ2
+ 2ε

∂2x

∂τ∂τ1
+ ε2

∂2x

∂τ21
+ 2ε2

∂2x

∂τ∂τ2
+ · · · .

(3.4.29)

After substituting (3.4.28) into (3.4.1), taking (3.4.29) into account, and equating the
coefficients of equal powers of ε on the right and left sides of (3.4.1), we find the
equation for the k-approximation

The equation for the zeroth approximation

∂2x0
∂τ2

+ ω2x0 = 0

has the solution
x0 = a cos z, (3.4.30)

where
a = a(τ1, τ2, . . .), z = ωτ + β(τ1, τ2, . . .).

Substitution of (3.4.30) into the equation for the first approximation

∂2x1
∂τ2

+ ω2x1 = −2
∂2x0
∂τ∂τ1

+ ϕ

(
x0,

∂x0
∂τ

)

leads to the equality

∂2x1
∂τ2

+ ω2x1 = 2ω
∂a

∂τ1
sin z + 2aω

∂β

∂τ1
cos z + ϕ(a cos z,−aω sin z). (3.4.31)

The periodic function ϕ(a cos z,−aω sin z) is expanded in a Fourier series,

ϕ = A0 +
∞∑

k=1

(Ak cos kz + Bk sin kz).

For the asymptotic expansion (3.4.28) to have no secular terms it is necessary that
the coefficients of sin z and cos z in the right side of equation (3.4.31) be equal to
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zero. This gives

2ω
∂a

∂τ1
+ B1(a) = 0, 2aω

∂β

∂τ1
+ A1(a) = 0, (3.4.32)

where

A1(a) = 1

π

∫ 2π

0
ϕ(a cos z,−ωa sin z) cos z dz,

B1(a) = 1

π

∫ 2π

0
ϕ(a cos z,−ωa sin z) sin z dz.

In the zeroth approximation one should assume that a = a(τ1) and β = β(τ1).
Indeed,

a(τ1, τ2, . . .) = a(τ1, 0, . . . ) + ∂a

∂τ2
τ2 + · · · = a(τ1) + ∂a

∂τ2
ε2t + · · ·

and for t ∼ 1/ε the error in replacing a(τ1, τ2, . . .) with a(τ1) is of order O(ε).
Hence, the system of zeroth approximation (3.4.32) coincides with the shortened
system (3.4.7) obtained bymeans of the averagingmethod. The approximate formula
for the solution of equation (3.4.1) has the form

x = a(εt) cos[ωt + β(εt)] + O(ε).

Nowwe come to the construction of the first approximation. To find solutions with
accuracy of order O(ε2) one should assume that a = a(τ1, τ2) and β = β(τ1, τ2).
Considering τ2 as a parameter, rewrite (3.4.32) as

dτ1 = −2ω
da

B1(a)
,

dβ

dτ1
= − A1(a)

2ωa
.

After integration we get

τ1 = −2ω
∫

da

B1(a)
+ c1(τ2), β = − 1

2ω

∫
A1(a)

a
dτ1 + c2(τ2). (3.4.33)

Equating to zero the coefficients of sin z and cos z in the right side of the equation
of second approximation we find two equations for the evaluation of the functions
c1(τ2) and c2(τ2). In more detail, we consider the problem of constructing the first
approximation for the Van der Pol equation

ẍ − ε(1 − x2)ẋ + x = 0.
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Substituting the zeroth approximation for the solution of this equation

x0 = a(τ1, τ2) cos[τ + β(τ1, τ2)] (3.4.34)

into the equation of the first approximation

∂2x1
∂τ2

+ x1 = −2
∂2x0
∂τ∂τ1

+
(
1 − x20

) ∂x0
∂τ

,

we obtain, after transformations,

∂2x1
∂τ2

+ ω2x1 = 2
∂a

∂τ1
sin z + 2a

∂β

∂τ1
cos z + a

(
a2

4
− 1

)
sin z + a3

4
sin 3z.

The equations for a and β are

∂a

∂τ1
= a

2

(
1 − a2

4

)
,

∂β

∂τ1
= 0. (3.4.35)

The solutions of equations (3.4.35),

a = 2
√
1 + c(τ2)e−τ1

, β = β(τ2),

are represented in terms of the unknown functions c(τ2) and β(τ2). To construct a
solution with accuracy of order O(ε) we assume that c(τ2) = c0, β(τ2) = β0,

x = 2 cos(t + β0)√
1 + c0e−εt

+ O(ε). (3.4.36)

For c0 
= 0, the solution (3.4.36) is a transient regime approaching a periodic solution
with amplitude a = 2 as t → ∞.

From equalities (3.4.35) it follows that

∂2x1
∂τ2

+ x1 = a3

4
sin 3z. (3.4.37)

Assume that the arbitrary constants in solution (3.4.28) are functions of ε (see
Sect. 3.3.2). Then x1 is a particular solution of equation (3.4.37) and, therefore,

x1 = −a3

32
sin 3z. (3.4.38)
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Substitute (3.4.34) and (3.4.38) in the equation of second approximation

∂2x2
∂τ2

+x2 = −2
∂2x1
∂τ∂τ1

−2
∂2x0
∂τ∂τ2

−∂2x0
∂τ21

+
(
1 − x20

)(
∂x1
∂τ

+ ∂x0
∂τ1

)
−2x0

∂x0
∂τ

x1,

represent the right side in the form of a linear combination of the functions sin kz
and cos kz and equate to zero the coefficients of sin z and cos z. Thus, we obtain

∂a

∂τ2
= 0, 2a

dβ

dτ2
+ a5

128
− ∂2a

∂τ21
+ ∂a

∂τ1

(
1 − 3a2

4

)
= 0. (3.4.39)

From the first equality in (3.4.39) it follows that c(τ2) = c0, and from the second
equality in (3.4.39) with the help of formula (3.4.35) we get the following equation
for β(τ2):

dβ

dτ2
= 1

8

(
−1 + a2 − 7a4

32

)
.

The multiscale method is a generalization of Poincaré’s method. For periodic
solutions the methods give similar results. In the case c0 = 0 the multiscale methods
gives the asymptotic expansion

x � 2 cos z − ε

4
sin 3z, z = t − ε2t

16
+ β0

for a periodic solution, which for β0 = −3ε/8 coincides with expansion (3.3.36)
obtained with the Poincaré method with accuracy of order O(ε2).

3.4.4 Exercises

3.4.1. Find by the Van der Pol method the approximate solution of equation

ẍ + x = ε
(
1 − x2

)
ẋ − εbx3, ε � 1.

3.4.2. Study the stability of the stationary solutions of the equation

ẍ + x = ε(1 − x4)ẋ, ε � 1.

3.4.3. Write the shortened system (3.4.10) for the equation

ẍ + x = ε
(

h sinωt + ẋ − ẋ3/3
)

.
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3.4.4. Obtain the amplitude frequency response for the equation

ẍ + x = ε
(

h sinωt + 8x ẋ2 − nẋ
)

.

3.4.5. Find the zeroth and first approximations for the solution of the equations of
Exercise 3.4.1 for b = 1 and Exercise 3.4.2 by means of the multiscale method.

3.5 Boundary Value Problems

We limit ourselves to boundary value problems for linear ordinary differential equa-
tions. Non-homogeneous regularly perturbed boundary value problems are consid-
ered in Sect. 3.5.1. Solutions of boundary value problems are discussed in Sect. 3.5.2.
In both cases, we use direct asymptotic expansions. In Sect. 3.5.3, boundary value
problems describing media with periodic structure are solved by the multiple scale
method.

3.5.1 Non-homogeneous Boundary Value Problems

Consider the linear differential equation of the nth order

Ly = f (x), (3.5.1)

with the boundary conditions

Gi y
∣∣
x=0 = gi , i = 1, 2, . . . n1, Hj y

∣∣
x=l = h j , j = 1, 2, . . . n2, (3.5.2)

where n1 + n2 = n and

L =
n∑

k=0

ak(x, ε)
dk

dxk
, an = 1,

Gi =
n−1∑

k=0

bik
dk

dxk
, Hj =

n−1∑

k=0

c jk
dk

dxk
.

(3.5.3)

If

ak(x, ε) �
∞∑

m=0

akm(x)εm, k = 0, 1, . . . , n − 1, (3.5.4)



122 3 Regular Perturbation of Ordinary Differential Equations

then

L =
∞∑

m=0

Lmεm, Lm =
n∑

k=0

akm
dk

dxk
,

and the solution of the boundary value problem (3.5.1)–(3.5.2) can be searched in
the form of a direct asymptotic expansion

y(x, ε) �
∞∑

m=0

ym(x)εm . (3.5.5)

The function y0(x) is a solution of the generating equation

L0y = f (x) (3.5.6)

satisfying the boundary conditions (3.5.2). For m ≥ 1, the function ym satisfies the
mth approximation equation

L0ym = −
m∑

k=1

Lk ym−k

and the homogeneous boundary conditions (3.5.2)

Gi y
∣∣∣
x=0

= Hj y
∣∣∣
x=l

= 0.

Example 1
Use the asymptotic expansions (3.5.5) to find the longitudinal displacements,

u(x), of a bar of length l under force P applied to the bar end (see Fig. 3.7). Assume
that the cross-sectional area of the bar is given by the formula

S = S0(1 − εx/ l), 0 ≤ x ≤ l, ε � 1. (3.5.7)

The function u(x) satisfies the equation

d

dx

(
E S

du

dx

)
= 0 (3.5.8)

Fig. 3.7 Bar u(x) of length l
under force P
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and the boundary conditions are

u = 0 for x = 0, E S
du

dx
= P for x = l. (3.5.9)

where E is Young’s modulus.
From Eq. (3.5.8) and the second boundary condition in (3.5.9) it follows that

E S
du

dx
= P, 0 ≤ x ≤ l. (3.5.10)

We seek a solution of equation (3.5.10) in the form

u = u0 + εu1 + · · ·

From (3.5.7) and (3.5.9) we get

E S0
du0

dx
= P, u0 = Px

E S0
.

The functionu0 describes the longitudinal displacements of the barwith cross-section
of constant area S0.

The equation of first approximation

du1

dx
= x

l

du0

dx

with boundary condition u1 = 0 at x = 0 has the solution

u1 = Px2

2l E S0
.

Therefore

u(x) � Px

E S0

(
1 + εx

2l

)
.

The same result can be obtained if we expand the exact solution for this problem in
a power series of the small parameter ε,

u = − Pl

E S0ε
ln(1 − εx/ l).

Example 2
Consider the bending of a beam of length l under the action of a uniformly

distributed load q (Fig. 3.8).



124 3 Regular Perturbation of Ordinary Differential Equations

Fig. 3.8 Bending of beam of
length l under a uniformly
distributed load q

The equation for the deflection of a beam, w(x), has the form

d2

dx2

(
E J

d2w

dx2

)
= −q, (3.5.11)

where E is Young’s modulus and J is the moment of inertia of the cross-section.
Assume that the left end of the beam, x = 0, is clamped and the right end, x = l,

is free. Then

w = dw

dx
= 0 for x = 0,

d2w

dx2
= d3w

dx3
= 0 for x = l. (3.5.12)

Let the beam have a rectangular cross-section of constant height b0 but with variable
width a according to the linear law: a = a0(1 − εx/ l). In this case, the moment of
inertia is

J = ab30
12

= J0
(
1 − εx

l

)
, J0 = a0b30

12
. (3.5.13)

We seek a solution of equation (3.5.11) in the form

w = w0 + εw1 + · · · . (3.5.14)

The function w0 satisfies the equation

E J0
d4w

dx4
= −q,

Its general solution,

w0 = − q

E J0

x4

4! + A
x3

3! + B
x2

2! + Cx + D, (3.5.15)

contains four arbitrary constants A, B, C , and D. After evaluation of these constants
with the help of the boundary conditions (3.5.12), we find

w0 = − qx2

24E J0

(
x2 − 4xl + 6l2

)
.
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The function

w1 = − qx3

120E J0l

(
3x2 − 10xl + 10l2

)

is obtained from the solution of the equation of first approximation

d4w1

dx4
= d2

dx2

(
x

l

d2w0

dx2

)
(3.5.16)

with the boundary conditions (3.5.12).

3.5.2 Eigenvalue Problems

Consider the homogeneous linear differential equation

Ly = �M0y (3.5.17)

with the homogeneous boundary conditions

Gi y
∣
∣
x=0 = 0, i = 1, 2, . . . n1, Hj y

∣
∣
x=l = 0, j = 1, 2, . . . n2. (3.5.18)

Here � is the required parameter, the operators L , G and H are defined by formulas
(3.5.3), and

M0 =
m∑

k=0

bk(x)
dk

dxk
, m < n.

Assume that expansions (3.5.4) hold. Then the solution of the eigenvalue problem
(3.5.17)–(3.5.18) can be represented in the form

y(x, ε) �
∞∑

m=0

ym(x)εm, � �
∞∑

m=0

�mεm . (3.5.19)

For some �0, let the eigenvalue problem of the zeroth approximation,

L0y = �0M0y, Gi y
∣∣
x=0 = Hj y

∣∣
x=l = 0, (3.5.20)

have nontrivial solution y0.
In the first approximation we get

L0y1 − �0M0y1 = −L1y0 + �1M0y0. (3.5.21)
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Denote (y, z) the scalar product of the functions y and z and assume that for any
y and z satisfying the boundary conditions (3.5.18) the operators L0 and M0 are
self-adjoint, i.e.

(L0y, z) = (y, L0z), (M0y, z) = (y, M0z).

Scalar multiply Eq. (3.5.21) by y0. Due to the self-adjointness of L0 and M0 we get

(y1, L0y0 − �0M0y0) = −(L1y0, y0) + �1(M0y0, y0).

From (3.5.20) it follows that

�1 = (L1y0, y0)

(M0y0, y0)
.

This last equality is a solvability condition for the eigenvalue problem of first approx-
imation.

In a similar manner, �k and yk may be found for k > 1.

Example 3
Use the asymptotic method to obtain the approximate values of the frequencies

and modes of the longitudinal vibrations of a bar of length l and cross-sectional area
which changes according to (3.5.7).

The equation of the longitudinal vibrations of a bar has the form

∂

∂x

(
E S

∂u

∂x

)
− ρS

∂2u

∂t2
= 0, (3.5.22)

where ρ is the material density. Assume that the left end of the bar is fixed and the
right end is free. Then

u = 0 for x = 0,
∂u

∂x
= 0 for x = l.

We seek a solution of equation (3.5.22) in the form

u(x, t) = u(x) sin(ωt + α).

We have the eigenvalue problem for u(x) and ω:

(Su′)′ + �Su = 0, u(0) = u′(l) = 0,

where � = ρω2/E . Here the prime denotes derivative with respect to x .
The equation of zeroth approximation

u′′
0 + �0u0 = 0 (3.5.23)
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has the solution
u0 = A sinαx + B cosαx, α2 = �0.

Taking the boundary conditions into account, we obtain

u0n = A sinαn x, αn = (π/2 + πn)/ l, n = 0, 1, 2, . . .

The found modes u0n and frequencies ω0n = αn
√

E/ρ describe the vibrations of a
bar of constant cross-section of area S0.

We multiply the equations of first approximation,

u′′
1 + �0u1 = u′

0/ l − �1u0,

by u0 and integrate by parts over the interval [0, l]. Taking (3.5.23) into account, we
find

�1 = I1
l I

, I1 =
∫ l

0
u′
0u0 dx, I =

∫ l

0
u2
0 dx .

Evaluating the integrals we obtain the correction of first approximation �1 = 1/ l2.
Note that, in this problem, �1 does not depend on n.

If the boundary conditions (3.5.18) contain a small parameter, an integration by
parts of the equation of first approximation may result in the appearance of nonzero
terms outside the integral.

Example 4
Consider the longitudinal vibrations of a bar with fixed left end and right end

tighten with a spring of stiffness c. Let the cross-sectional area of the bar, S0, be
independent of the coordinate x . Then the eigenvalue problem for the bar has the
form

u′′ + �u = 0, u(0) = 0, u′(l) = −εu(l)

l
, ε = cl

E S0
.

Assume that ε � 1 and seek a solution of the eigenvalue problem in the form
(3.5.19). The solution of the first-approximation problem coinsides with the solution
of Example 3. In the first approximation we get

u′′
1 + �0u1 = −�1u0, u1(0) = 0, u′

1(l) = −u0(l)/ l.

Multiplying the first-approximation equation by u0 and integrating by parts over the
interval [0, l], then, by equality (3.5.23) we obtain

�1

∫ l

0
u2
0 dx = − [

u′
1u0 − u1u

′
0

]l
0 .
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From this formula and the boundary conditions for u0 and u1 it follows that

�1 = 2
u2
0(l)

A2l2
= 2

l2
.

Regularly perturbed eigenvalueproblems arise, in particular, in thebuckling analy-
sis.

Example 5
Find the effect of gravity on the critical axial load T for a stand-up free-supported

beam.
The buckling equation

E J
d4w

dx4
+ ρgS

d

dx

(
x

dw

dx

)
+ T

d2w

dx2
= 0

and the boundary conditions

w = d2w

dx2
= 0 for x = 0, x = l, (3.5.24)

are rewritten in the non-dimensional form

d4w

dξ4
+ ε

d

dξ

(
ξ

dw

dξ

)
+ �

d2w

dξ2
= 0

w = d2w

dξ2
= 0 for ξ = 0, ξ = π.

Assume that ε � 1 and seek a solution in the form (3.5.19). In the zeroth approxi-
mation we obtain the classical Euler problem

d4w0

dξ4
+ �0

d2w0

dξ2
= 0, w = d2w

dξ2
= 0 for ξ = 0, ξ = π.

The first eigenvalue, �0 = 1, provides the critical load, T = E Jπ2/ l2, and the
buckling mode, w0 = A sin ξ. From the first-approximation equation

d4w1

dξ4
+ �0

d2w1

dξ2
= − d

dξ

(
ξ

dw0

dξ

)
+ �1

d2w0

dξ2
,

we find �1 = −π/2.
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3.5.3 Boundary Value Problems for Equations with Highly
Oscillating Coefficients

The multiple scale method described in Sect. 3.4.3 can be used for solving boundary
value problems for differential equationswith highly-oscillating periodic coefficients
[4, 7, 55].

As an example, we consider the problem of the longitudinal deformation of a
bar with highly oscillating cross-sectional area. The equation for the longitudinal
displacement of a bar, u(x), under a uniformly distributed load q has the form

d

dx

(
a

du

dx

)
= q, a = E S > 0. (3.5.25)

Let the bar ends be fixed. Then

u(0) = u(l) = 0. (3.5.26)

Assume that a is a periodic function of the variable ξ = x/εwith period 1 and ε � 1.
Replace Eq. (3.5.25) with the equivalent system of two equations of first order

du

dx
= w

a
,

dw

dx
= q. (3.5.27)

We seek the solution of the boundary value problem (3.5.26) and (3.5.27) in the form

u = u0 + εu1 + · · · , w = w0 + εw1 + · · · , (3.5.28)

where

ui (x, ξ + 1) = ui (x, ξ), wi (x, ξ + 1) = wi (x, ξ), i = 0, 1, 2, . . .

Substituting expressions (3.5.28) in Eq. (3.5.27) and taking

dui

dx
= ∂ui

∂x
+ 1

ε

∂ui

∂ξ
,

dwi

dx
= ∂wi

∂x
+ 1

ε

∂wi

∂ξ
,

into account, we get, in the zeroth approximation,

∂u0

∂ξ
= 0,

∂w0

∂ξ
= 0.

Therefore u0(x, ξ) = u0(x) and w0(x, ξ) = w0(x).
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The system of equations of first approximation has the form

du0

dx
+ ∂u1

∂ξ
= w0

a
,

dw0

dx
+ ∂w1

∂ξ
= q. (3.5.29)

Introduce the following notation for the average value of the function f (x, ξ) for
the period

〈 f (x, ξ)〉 =
∫ 1

0
f (x, ξ) dξ

and apply the averaging operator 〈·〉 to the equations of system (3.5.29). By the
equalities 〈

∂u1

∂ξ

〉
=

〈
∂w1

∂ξ

〉
= 0,

following from the periodicity of u1 and w1 we obtain the system

du0

dx
= 〈1/a〉 w0,

dw0

dx
= q,

which can be reduced to the equation

â
d2v0

dx2
= q, â = 〈1/a〉−1 . (3.5.30)

Thus, in the zeroth approximation, we come to the problem of evaluating the dis-
placements of a bar with some averaged cross-sectional area.

The solution of equation (3.5.30) with the boundary conditions (3.5.26) has the
form

u0 = q

2â
x(x − l).

The construction of the next approximations is considered in [4].
The above described method can also be used for solving eigenvalue problems.
Consider the equation

− d2u

dx2
+ cu

n−1∑

i=1

δ

(
x − i

n

)
= �u (3.5.31)

with boundary conditions
u(0) = u(1) = 0. (3.5.32)

Here δ(x) is the Dirac delta function, c is a constant coefficient and � is the required
eigenvalue. The problemof evaluating the frequencies andmodes of a vibrating string
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supported by n − 1 springs uniformly distributed along the string can be reduced to
the eigenvalue problem (3.5.31) and (3.5.32).

Assume that n � 1 and introduce the variable ξ = nx . Noting that δ(ax) =
δ(x)/a, replace Eq. (3.5.31) with the equivalent equation

− d2u

dx2
+ A(ξ)u = �u, (3.5.33)

where

A(ξ) = cn
n−1∑

i=1

δ (ξ − i) .

Solutions of (3.5.33) are searched as asymptotic expansions in negative powers of
the large parameter n:

u(x, ξ) = u0(x, ξ) + n−2u1(x, ξ) + · · · , � = �0 + n−2�1 + · · · , (3.5.34)

where ui (x, ξ + 1) = ui (x, ξ). Further we assume that the coefficient c is small and
cn ∼ 1.

Substitute (3.5.34) in (3.5.33). In the zeroth approximation one gets

∂2u0

∂ξ2
= 0,

∂u0

∂ξ
= C0(x).

Apply the averaging operator 〈·〉 to the last equality. The periodicity of u0 implies
that C0(x) = 0 and u0(x, ξ) = v0(x). Taking the equality 〈A(ξ)〉 = cn into account,
we find that the averaged equation of first approximation

− ∂2u1

∂ξ2
− d2v0

dx2
+ A(ξ)v0 = �0v0 (3.5.35)

results in the equation
d2v0

dx2
+ (�0 − cn)v0 = 0. (3.5.36)

From the physical point of view, the transition from Eq. (3.5.33) to equation (3.5.36)
means that the springs supporting the string are replaced with an elastic foundation.

The non-trivial solution of equation (3.5.36) satisfying the boundary conditions
v0(0) = v0(1) = 0 has the form v0k = sin kπx and the corresponding eigenvalue is
�0k = (πk)2 + cn.

To construct the next approximation, represent u1 as the sum

u1(x, ξ) = v1(x) + w1(x, ξ),
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where 〈w1(x, ξ)〉 = 0. It follows from (3.5.35) that

∂w1

∂ξ
= cn(i − ξ)v0 + C1i , i ≤ ξ ≤ i + 1. (3.5.37)

Averaging (3.5.37) we get C1i = 1/2. Integrating (3.5.37) with respect to ξ permits
to find

w1 = cnv0(2iξ − ξ2 + ξ)/2 + D1i , i ≤ ξ ≤ i + 1.

Averaging the last equality gives the value

D1i = −cnv0

2

[
i(i + 1) + 1

6

]
.

Therefore,

w1 = −cnv0

2

[
(ξ − i)(ξ − i − 1) + 1

6

]
, i ≤ ξ ≤ i + 1. (3.5.38)

After applying the operator 〈·〉 to the equation of second approximation

−∂2u2

∂ξ2
− ∂2u1

∂x2
+ A(ξ)u1 = �0v1 + �1v0,

we obtain the equation for evaluating v1(x):

−d2v1

dx2
+ (cn − �0)v1 = c2n2

12
v0 + �1v0.

Multiply the last equation by v0 and integrate by parts over the interval (0, 1). Taking
(3.5.36) and the boundary conditions v1(0) = v1(1) = 0 into account, we get the
correction of first approximation

�1 = −c2n2

12
.

3.5.4 Exercises

3.5.1. Find the two-term asymptotic approximation for the displacements of the
beam considered in Sect. 3.5.1 in the case q = 0 and the vertically directed force P
is applied on the beam right end x = l. Neglect the weight of the beam.

3.5.2. Consider the beam described in Sect. 3.5.1 with freely supported ends. Find
the first two terms of the asymptotic expansion of the function w(x).
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Fig. 3.9 Two joint bars
made of the same material

x

l

0

l2

3.5.3. For Example 4 of Sect. 3.5.2 consider the case where the value of E S0/(cl) is
a small parameter. Find �0 and �1 for the lowest eigenvalue for the corresponding
boundary value problem.

3.5.4.Consider the longitudinal vibrations of two joint barsmade of the samematerial
(Fig. 3.9).

The left end, x = 0, of the first bar is fixed and the right end of the second bar,
x = 2l, is free. The areas of the cross-sections for the first and the second bar, S1
and S2, respectively, are connected by the relation S2 = (1 + ε)S1, where ε � 1.
For the eigenvalue problem describing the vibrations of the bars find the coefficients
�0 and �1 for the series expansion of the first eigenvalue.

3.5.5. The transverse vibrations of a beam (see Sect. 3.5.1) are described by the
equation

∂2

∂x2

(
E J

∂2w

∂x2

)
+ ρS

∂2w

∂t2
= 0.

Representing its solution in the form

w(x, t) = w(x) sin(ωt + α),

we get an ordinary differential equation for evaluating the frequencies and vibrations
modes

d2

dx2

(
β

d2w

dx2

)
= �βw,

where

β = 1 − ε
x

l
, � = ρS0ω2

E J0
, S0 = a0b0.

Assume that the ends of the beam are freely supported (3.5.24). Representing the
solution in the form (3.5.19), find the coefficients �0 and �1 of the series expansion
of the lowest eigenvalue.

3.5.6. The free vibrations of a rectangular membrane are given by the equation

T

(
∂2w

∂x2
+ ∂2w

∂y2

)
+ ρω2w = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b,

where w(x, y) is the deflection of the membrane, a and b are the lengths of the
membrane edges, ω is the vibrations frequency, T is the tensile stress, and ρ is the
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material density. The boundary conditions have the form

w = 0 for x = 0, x = a, y = 0, y = b.

Assuming that c = ρ/T = c0[1 + εg(x)], where ε is a small parameter find the
first two terms of the asymptotic expansion for the vibrations frequencies of the
membrane.

3.5.7. The non-dimensional system of equations

u′′ +
(

B ′

B
u

)′
− ν

R2
w′ −

(
1

R2

)′
w = −�u,

ν

R2
u′ + B ′

R2B
u − w

R2
2

= −�w

(3.5.39)

describes the axisymmetric membrane vibrations of a truncated conic shell. The
prime denotes derivatives with respect to the non-dimensional length of the cone,
u and w are the projections of the displacements of the points on the shell neutral
surface, B(s) = 1− s sin β is the distance between the axis of symmetry of the shell
and its neutral surface, R2(s) = B(s) cos−1 β is the radius of curvature, 2β is the
angle at the vertex of the cone, ν is the Poisson ratio, and � is the required spectral
parameter proportional to the squared frequency.

The section of the shell with the plane passing through the axis of symmetry is
shown in Fig. 3.10.

For clamped shell edges, the boundary conditions for the membrane vibrations
system have the form u(0) = u(l) = 0. Consider the case β � 1 and find the first
two terms of the asymptotic expansion in powers of β for the lowest eigenvalue �.

3.5.8. Find the two-term asymptotic expansion in powers of the parameter n−2 � 1
for the function u(x) satisfying the equation

−d2u

dx2
+ cu

n−1∑

i=1

δ

(
x − i

n

)
= sin πx,

where c ∼ 1/n, and the boundary conditions are u(0) = u(1) = 0.

Fig. 3.10 Section of shell
with plane passing through
the axis of symmetry

sw

u
B

R2

β
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The function u(x) describes the deflection of a string supported by springs under
a distributed load.

3.5.9. Find the first two terms of the asymptotic expansion in powers of the parameter
n−4 � 1 for the eigenvalue � of the eigenvalue problem

d4u

dx4
+ cu

n−1∑

i=1

δ

(
x − i

n

)
= �u,

u = d2u

dx2
= 0 for x = 0, x = 1,

which describes the free vibrations of a freely supported beam stiffened with springs.
Assume cn ∼ 1 in the construction of the asymptotic expansion.

3.6 Answers and Solutions

3.2.1. We seek the flight time in the form τ∗ � τ∗
0 + ετ∗

1 . Substitute the expression
for τ∗ in the equation

η � η0 + εη1 = 0,

where η0 and η1 are defined by formulas (3.2.7) and (3.2.8). Equating the coefficients
of equal powers of ε we obtain

τ∗
0 = 2 sinα, τ∗

1 = − (τ∗
0 )2

6
, τ∗ � 2 sinα

(
1 − ε sinα

3

)
.

In dimensional variables we have

t∗ = v0

g
τ∗ � 2v0 sinα

g

(
1 − νv0 sinα

3mg

)
.

Substituting τ = τ∗ in the formula for ξ we find the flight distance

ξ∗ = ξ(τ∗) � ξ0(τ
∗) + εξ1(τ

∗) � cosα(τ∗
0 + ετ∗

1 − ε(τ∗
0 )2/2).

Therefore

ξ∗ � τ∗
0 cosα

(
1 − 2ετ∗

0

3

)
= sin 2α(3 − 4ε sinα)

3
.

The angle α∗ is evaluated by means of the equation

dξ∗

dα
� 2(3 cos 2α + ε(sinα − 3 sin 3α))

3
= 0,
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The approximate solution of this equation is

α∗ � π

4
− ε

√
2

6
.

3.2.2. For f (v) ≡ 1 the exact solution of system (3.2.4) with initial conditions (3.2.5)
is defined by the formulas

u = e−ετ cosα, w = e−ετ sinα + 1

ε
(e−ετ − 1),

ξ = cosα

ε
(1 − e−ετ ), η = 1 + ε sinα

ε2
(1 − e−ετ ) + τ

ε
.

3.2.3. The system of first approximation for evaluating u1 and w1 is

du1

dτ
= −u0

√
u2
0 + w2

0,
dw1

dτ
= −w0

√
u2
0 + w2

0,

where u0 and w0 are determined by formulas (3.2.7).
Taking the initial conditions u1(0) = w1(0) = 0 into account, we get

u1 = −I cosα, w1 = (s3 − 1)/3,

where

I =
∫ τ

0
s(τ ) dτ = 1

2

[
(τ − sinα)s + sinα + cos2 α ln

s + τ − sinα

1 − sinα

]
,

s(τ ) =
√

τ2 − 2 sinατ + 1.

In Fig. 3.11 the solid line is the graph of the numerical solutionu of system (3.2.4) and
the dashed line is the graph of the corresponding approximate asymptotic solution
for ε = 0.05, α = π/4.

3.2.4. The solution of the generating system

t ẋ0 = x0, t ẏ0 = (2 − x)y0

with the initial conditions

x0(1) = 1, y0(1) = e−1

has the form
x0 = t, y0 = t2e−t .
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Fig. 3.11 Numerical
solution u (solid line) and
approximate asymptotic
solution (dashed line)

The solution of the system of first approximation,

t ẋ1 = x1 + y0, t ẏ1 = (2 − x0)y1 − x1y0,

is represented as the sum of the general solution of the homogeneous system coincid-
ing with the generating system and the particular solution of the non-homogeneous
system of first approximation that can be found by the variation of constants:

x1 = Ct + C1(t)t, y1 = Dt2e−t + D1(t)t
2e−t .

After substituting the expressions for x1 and y1 in the system of first approximation,
we obtain

Ċ1 = e−t , C1 = −e−t ,

Ḋ1 = e−t − e−1, D1 = −e−t − te−1.

From the initial conditions x1(1) = y1(1) = 0, we find

C = e−1, D = 2e−1.

Therefore,

x � x0 + εx1 = t[1 + ε(e−1 − e−t )],
y � y0 + εy1 = t2 e−t {1 + ε[(2 − t) e−1 − e−t ]}.

In Fig. 3.12, the numerical solution y for ε = 0.5 is plotted with the solid line and
the approximate asymptotic solution with the dashed line.

3.2.5. The solution of the Cauchy problem for the generating equation

ẍ0 + ω2x0 = 0,
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Fig. 3.12 Numerical
solution y (solid line) and
approximate asymptotic
solution (dashed line)

t

y

0.5

1 6

with initial conditions x0(0) = 0 and ẋ0(0) = v0, is

x0 = a sin z, a = v0

ω
, z = ωt.

The general solution of the equation of first approximation,

ẍ1 + ω2x1 = a3ω2 cos2 z sin z = a3

4
ω2 (sin z + sin 3z),

is

x1 = M1 cos z + N1 sin z − a3

32
(4z cos z + sin 3z).

From the initial conditions x1(0) = ẋ1(0) = 0 we find

M1 = 0, N1 = 7a3

32
.

Therefore,

x � a

[
sin z + εa2

32
(7 sin z − sin 3z − 4z cos z)

]
.

To find the numerical solution, it is convenient to replace the initial equation with a
system of two first-order equations in normal form:

ẋ = y, ẏ = −ω2x + εy2x .

In Fig. 3.13, the numerical solution is plotted with a solid line and the two-term
asymptotic approximation with a dashed line for ω = 1, v0 = 2 and ε = 0.1.

3.2.6. We represent the approximate solution in the form

x = x0+εx1+ε2x2+· · · , y = y0+εy1+ε2y2+· · · , z = z0+εz1+ε2z2+· · · .
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Fig. 3.13 Numerical
solution (solid line) and
two-term asymptotic
approximation (dashed line)

2

0

−2

0 2π

x

t

After substituting this solution into the system and taking

xk = yk = zk = ẋk = ẏk = ẏk = 0, k = 0, 1, 2, . . . for t = 0,

into account, we find

x0 = x1 = 0, x2 = t4

12
sinϕ cosϕ, y0 = 0, y1 = − t3

3
cosϕ, z0 = t2.

To obtain the exact solution, we integrate the first and the third equations of the
system. Taking the initial conditions ẋ(0) = ż(0) = 0 into account, we get ẋ =
−εy sinϕ and ż = 2t + εy cosϕ. Substitutig these expressions into the second
equation and transforming it, we obtain

ÿ + ε2y = −2εt cosϕ.

The function

y = 2

ε
cosϕ

(
sin εt

ε
− t

)
� −ε

t3

3
cosϕ

is a solution of this equation with zero initial conditions. From the first and the third
equations of the system we find

x = 2 sinϕ cosϕ

(
cos εt − 1

ε2
+ t2

2

)
� ε2

t4

12
sinϕ cosϕ,

z = t2 − 2 cos2 ϕ

(
cos εt − 1

ε2
+ t2

2

)
� t2.

3.3.1. The equation of second approximation

ẍ2 + ω2x2 = −3bx20 x1
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has the solution

x2 = 3

4
b2A5

[(
9

ω2 − 1
+ 1

ω2 − 9

)
sin t

4(ω2 − 1)

−1

4

(
3

ω2 − 1
+ 2

ω2 − 9

)
sin 3t

ω2 − 9
+ sin 5t

4(ω2 − 9)(ω2 − 25)

]
.

3.3.2. We seek a solution of the equation in the form (3.3.3). The zeroth approxi-
mation x0 for ω 
= 1 is defined by formula (3.3.2). For ω 
= 3 the equation of first
approximation

ẍ1 + ω2x1 = −bA3 sin t cos2 t

has the 2π-periodic solution

x1 = −b

4
A3

(
sin t

ω2 − 1
+ sin 3t

ω2 − 9

)
.

3.3.3. After substituting the zeroth approximation (3.3.8) into the equation of first
approximation

ẍ1 + x1 = a sin t + δx0 + x0 ẋ20

we get

ẍ1 + x1 = P cos t + Q sin t + 1

4

(
3M N 2 − M3

)
cos 3t + 1

4

(
N 3 − 3M2N

)
sin 3t,

where

P = M

[
δ + 1

4

(
M2 + N 2

)]
, Q = a + N

[
δ + 1

4

(
M2 + N 2

)]
.

This equation has a periodic solution for x1 if P = Q = 0. Assuming that M 
= 0
we arrive at a contradiction with the condition a 
= 0. Therefore M = 0 and we get
the cubic equation

1

4
N 3 + δN + a = 0

for N .
Let N0 be a real root of this equation. The equation of first order

ẍ1 + x1 = 1

4
N 3
0 sin 3t

has the solution

x1 = M1 cos t + N1 sin t − 1

32
N 3
0 sin 3t.
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From the existence condition for a periodic solution of the equation of second approx-
imation,

ẍ2 + x2 = δx1 + ẋ20 x1 + 2x0 ẋ0 ẋ1,

we obtain the two equations

M1

(
δ + 1

4
N 2
0

)
= 0, N1

(
δ + 3

4
N 2
0

)
= −5N 5

0

128
.

From the first equation and the condition a 
= 0, it follows that M1 = 0. For
δ 
= −3N 2

0 /4, from the second equation we find

N1 = − 5N 5
0

32
(
4δ + 3N 2

0

) .

3.3.4. The generating equation

ẍ0 + 9x0 = h sin t

has a family of 2π-periodic solutions

x0 = M cos 3t + N sin 3t + H sin t, H = h/8.

The constants M and N are found from the existence condition for the periodic
solution of the equation of first approximation

ẍ1 + 9x1 = δx0 − bx30 .

Substituting the expression for x0 into this equation, we expand the right side in a
Fourier series and equate to zero the coefficients of cos 3t and sin 3t . Thus, we find

3bM

4

(
M2 + N 2 + 2H2)−δM = 0,

3bN

4

(
M2 + N 2 + 2H2)−δN − b

4
H3 = 0.

Assuming that M 
= 0 we arrive at a contradiction with the condition h 
= 0.
Therefore, M = 0 and to find N we have the cubic equation

3bN 3 +
(
6bH2 − 4δ

)
N − bH3 = 0.

Let N0 be a real root of this equation. Then

x0 = N0 sin 3t + H sin t.
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3.3.5.

(1) After the change of variables (3.3.20) the equation becomes

ẍ + g2x = εg(1 − x4)ẋ, (̇) ≡ d()/dτ .

We seek its solution in the form (3.3.22). Substituting the solution of the generating
equation (3.3.24) into the equation of first approximation

ẍ1 + x1 = (1 − x40 )ẋ0 − 2g1x0

and taking the existence condition for 2π-periodic solution x1(τ ) into account, we
get (

M4

8
− 1

)
M = 0, 2g1M = 0.

The periodic solution corresponds to M = M0 = 4
√
8, g1 = 0. The solution of the

equation of first approximation,

ẍ1 + x1 = M0

2
(3 sin 3τ + sin 5τ ),

is

x1 = M1 cos τ + N1 sin τ − 3

16
M0 sin 3τ − 1

48
M0 sin 5τ .

From the condition ẋ1 = 0 for τ = 0 we obtain N1 = 2M0/3. The constants M1 and
g2 are evaluated from the existence condition for a periodic solution of the equation
of second approximation

ẍ2 + x2 = −2g2x0 + (1 − x40 )ẋ1 − 4x30 ẋ0x1.

After transformations we arrive at M1 = 0, g2 = 7/48.
In Fig. 3.14 the limit cycle obtained by means of the two-term asymptotic approx-

imation for ε = 0.2 is plotted with dashed line. The solid line is a phase curve found
by a numerical integration of the Cauchy problem with initial conditions x = 2.5,
ẋ = 0.

(2) The change of variable (3.3.20) transforms the equation into

ẍ + g2x = εg
(
1 − x2

)
ẋ − εg2x3.

From the existence condition for a 2π-periodic solution of the equationoffirst approx-
imation,

ẍ1 + x1 = (1 − x20 )ẋ0 − 2g1x0 − x30 ,
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Fig. 3.14 Limit cycle
(dashed line) and phase
curve (solid line)

where x0 = M cos τ , we obtain M = 2 and g1 = −3/2. We substitute the functions
x0 and

x1 = M1 cos τ − 3

4
sin τ + 1

4
(cos 3τ − sin 3τ )

into the equation of second approximation

d2x2
dτ2

+ x2 = − 2g1x1x0 +
(
1 − x20

)(
dx1
dτ

+ g1
dx0
dτ

)

− x0

(
2g2 + g21 + 2x0

dx0
dτ

x1 + 3x0x1 + 2g1x20

)
.

The existence conditions for a periodic solution provide the following system for
evaluating M1 and g2:

6M1 + 4g2 = 13, 2M1 = −1,

which has the solution M1 = −1/2 and g2 = 4.

3.4.1. We seek a solution of equation (3.4.2) in the form

x = a(t) cos z, z = t + β(t).

The shortened system

ȧ = εa

2

(
1 − a2

4

)
, β̇ = −3ε

8
ba2,

has the solution

a = 2√
1 + c0e−εt

, β = 3b

2
ln

(
eεt + c0

) + β0,
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where c0 and β0 are arbitrary constants. Since a → 2 as t → ∞, the stationary
solution a = 2 is stable.

3.4.2. In the case at hand, Eq. (3.4.15) has the form

ȧ = −εB(a), B(a) = a

2

(
a4

8
− 1

)
.

The stationary solutions a = 0 and a = a0 = 4
√
8 correspond to the state of

equilibrium and to a limit cycle. Using condition (3.4.20) we find that the state of
equilibrium is unstable and the limit cycle is stable since

d B

da

∣∣
∣∣
a=0

= −1

2
,

d B

da

∣∣
∣∣
a=a0

= 2.

3.4.3.

ȧω = ε

[
aω

2

(
1 − a2ω2

4

)
− h

2
cosβ

]
,

aωβ̇ = εh

2
sin β − a

2

(
ω2 − 1

)
.

3.4.4. For the equation under consideration

A(a) = a3, B(a) = naω/2.

Substituting these expressions into (3.4.13) we get the equation of the amplitude-
frequency response

n2a2
0ω

2 +
[
2a3

0 + a0
ε

(ω2 − 1)
]2 − h2 = 0.

To plot the amplitude-frequency response characteristic (AFRC) in the plane (ω, a)

one should find all the real values of a0 satisfying the equation of the amplitude-
frequency response for different values of ω. As it was noted above (see Sect. 3.4.1)
plotting the AFRC with this method is justified only in a small neighborhood of the
straight line ω = 1. Calculating a0 for a given ω amounts to solve a cubic equation.
A more convenient way to construct the AFRC is to find ω for the given value of a0,
since, in this case, one needs to solve a quadratic equation.

Introduce the new variables y = ω2, ξ = a2. Then the equation for the amplitude-
frequency response can be transformed into y2 − py + q = 0, where

p = 2γ − n2ε2, q = γ2 − ε2h2/ξ, γ = 1 − 2εξ.
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Fig. 3.15 Amplitude-
frequency response
characteristic for h = 1,
n = 1 and ε = 0.02

The roots of the last equation,

y1,2 =
(

p ± √
D

)
/2, where D = ε2

(
4h2/ξ − 4γn2 + ε2n4

)
,

are positive real numbers for 0 < ξ ≤ ξ1, where ξ1 = c

4ε

⎛

⎝1 −
√

1 − 8εh2

c2n2

⎞

⎠ is a

root of the equation D(ξ) = 0 with c = 1 − ε2n2/4.
The curves y1(ξ) and y2(ξ) representing the amplitude-frequency response char-

acteristic in the plane (ξ, y) intersect at the point ξ = ξ1. To plot the AFRC in the
plane (a,ω) one should come back to the initial variables a and ω.

The AFRC for h = 1, n = 1 and ε = 0.02 is plotted in Fig. 3.15.

3.4.5.

(1) We seek a solution of the equation

ẍ + x = ε
(
1 − x2

)
ẋ − εbx3

in the form (3.4.28), where

x0 = a(τ1, τ2) cos z, z = τ + β(τ1, τ2).

The equation of first approximation

∂2x1
∂τ2

+ x1 = −2
∂2x0
∂τ∂τ1

+
(
1 − x20

) ∂x0
∂τ

− x30

has a periodic solution x1 = a3

32
(cos 3z − sin 3z) if

∂a

∂τ1
= a

2

(
1 − a2

4

)
,

∂β

∂τ1
= 3

8
a2,
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a = 2
√
1 + c0(τ2)e−τ1

, β = 3

2
ln

[
eτ1 + c0(τ2)

] + β0(τ2).

From the existence condition for a periodic solution for the equation of second
approximation,

∂2x2
∂τ2

+ x2 = − 2
∂2x1
∂τ∂τ1

− 2
∂2x0
∂τ∂τ2

− ∂2x0
∂τ21

+ (1 − x20 )

(
∂x1
∂τ

+ ∂x0
∂τ1

)

− 2x0
∂x0
∂τ

x1 − 3x20 x1,

we get
∂a

∂τ2
= a3

32
(a2 − 6),

∂β

∂τ2
= 1

8

(
−1 + a2 − 11a4

16

)
.

With the first equation one finds the function c0(τ2) and with the second β0(τ2).

(2) For the equation ẍ + x = ε
(
1 − x4

)
ẋ in the first approximation we have

∂2x1
∂τ2

+ x1 = −2
∂2x0
∂τ∂τ1

+
(
1 − x40

) ∂x0
∂τ

.

The equations for a and β as function in τ1,

∂a

∂τ1
= a

2

(
1 − a4

8

)
,

∂β

∂τ1
= 0,

have the solutions

a4 = 8

1 + c0(τ2)e−2τ1
, β = β0(τ2).

We substitute the periodic solutions of the zeroth and first approximations

x0 = a cos z, x1 = − a5

128

(
sin 5z

3
+ 3 sin 3z

)

into the right side of the equation of second approximation,

∂2x2
∂τ2

+ x2 = − 2
∂2x1
∂τ∂τ1

− 2
∂2x0
∂τ∂τ2

− ∂2x0
∂τ21

+ (1 − x40)

(
∂x1
∂τ

+ ∂x0
∂τ1

)

− 4x30
∂x0
∂τ

x1,
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and equate to zero the coefficients of sin z and cos z. We then obtain

∂a

∂τ2
= 0,

∂β

∂τ2
= −1

8
+ 3

4

a4

8
− 37

48

(
a4

8

)2

.

From the first equation it follows that c0 does not depend on τ2, and from the second
equation we find β0(τ2).

3.5.1. The boundary value problem consists of a fourth order equation (E Jw′′)′′ = 0
and 4 boundary conditions:

w = w′ = 0, for x = 0, w′′ = 0, (E Jw′′)′ = P for x = l,

where the moment of inertia J is given by formula (3.5.13).
An integration of the bending equations with the boundary conditions at x = l

gives
E Jw′′ = P(x − l), 0 ≤ x ≤ l.

Represent w in the form (3.5.14). Then E J0w′′
0 = P(x − l), and therefore

w0 = Px2

6E J0
(x − 3l).

The equation of first approximation

d4w1

dx4
= d2

dx2

(
x

l

d2w0

dx2

)

has solution

w1 = Px2

12E J0l
(x2 − 4lx + 6l2).

3.5.2. After evaluating the constants A, B, C , and D in (3.5.15) with the help of the
boundary conditions

w0 = w′′
0 = 0 for x = 0, x = l,

one gets

w0 = − qx

24E J0
(x3 − 2x2l + l3).

In this case the solution of equation (3.5.16) is

w1 = − qx

120E J0l

(
3x4 − 5x3l + 2l4

)
.
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3.5.3. Let ε = E S0/(cl) � 1 and seek a solution of the eigenvalue problem

u′′ + �u = 0, u(0) = 0, u(l) = −εlu′(l)

in the form (3.5.19). The lowest eigenvalue, �0, for the problem of first approxima-
tion,

u′′
0 + �0u = 0, u0(0) = 0, u0(l) = 0,

is determined by the formula �0 = α2, where α = π/ l, and the corresponding
vibrations mode has the form u0 = sinαx .

Taking the boundary conditions for the first approximation

u1(0) = 0, u1(l) = −lu′
0(l)

into account, we obtain

�1 = −2

l

[
u′
1u0 − u1u

′
0

]l
0 = −2π2

l2
.

3.5.4. The equations describing the longitudinal vibrations of bars are

d2u(k)

dx2
+ �u(k) = 0, k = 1, 2,

where u(k) are the displacements of points of the kth bar. We seek the solution of
these equations satisfying the boundary conditions

u(1)(0) = 0, u(1)(l) = u(2)(l),
du(1)

dx
(l) = (1 + ε)

du(2)

dx
(l),

du(2)

dx
(2l) = 0

in the form
u(k) = u(k)

0 + u(k)
1 ε + · · · , �0 + �1ε + · · · .

The eigenvalue problem of the zeroth approximation,

d2u
(k)
0

dx2
+ �u(k)

0 = 0, k = 1, 2,

u
(1)
0 (0) = 0, u

(1)
0 (l) = u

(2)
0 (l),

du(1)
0

dx
(l) = du(2)

0

dx
(l),

du(2)
0

dx
(2l) = 0,

has the solution
�0 = α2, u(1)

0 = u(2)
0 = sinαx .

The first eigenvalue is α = π/(4l).
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Multiplying the equation of first approximation,

d2u
(k)
1

dx2
+ �0u

(k)
1 = −�1u

(k)
0 , k = 1, 2,

by u
(k)
0 and integrating by parts over the intervals [0, l] for k = 1 and [l, 2l] for k = 2

we obtain the equalities

�1 I1 = −
[

du
(1)
1

dx
u

(1)
0 − du

(1)
0

dx
u

(1)
1

]l

0

, �1 I2 = −
[

du
(2)
1

dx
u

(2)
0 − du

(2)
0

dx
u

(2)
1

]2l

l

,

where

I1 =
∫ l

0
sin2

πx

4l
dx, I2 =

∫ 2l

l
sin2

πx

4l
dx .

Adding the obtained equalities and taking the boundary conditions of the first approx-
imation

u(1)
1 (0) = 0, u(1)

1 (l) = u(2)
1 (l),

du(1)
1

dx
(l) = du(2)

1

dx
(l)+du(2)

0

dx
(l),

du(2)
1

dx
(2l) = 0

into account, we get the formula

�1(I1 + I2) = −du
(2)
0

dx
(l)u

(2)
0 (l),

from which we have
�1 = − π

8l2
.

3.5.5. In the zeroth approximation we get a problem for the vibrations of a beamwith
constant cross-section

w′′′′
0 − �0w0 = 0, w0 = w′′

0 = 0 for x = 0, l.

The vibrations mode w0 = A sinα0x corresponds to the first eigenvalue �0 = α4
0,

where α0 = π/ l. From the equation of first approximation,

w′′′′
1 − �0w1 = 2

l
w′′′
0 + �1w0,

we find that �1 = 0.

3.5.6. After separating the variables

w(x, y) = w(x) sin βy, β = πn

b
, n = 1, 2, . . . ,
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we get the ordinary differential equation

d2w

dx2
+

[
�(1 + εg) − β2

]
w = 0, � = c0ω

2

for the function w(x) and the boundary conditions

w(0) = w(a) = 0.

We seek a solution of the eigenvalue problem in the form (3.5.19). The zeroth approx-
imation problem,

d2w0

dx2
+ (�0 − β2)w0 = 0, w0(0) = w0(a) = 0,

has the nontrivial solution

w0 = A sinαx, α = πm

a
, m = 1, 2, . . . ,

for

�0 = α2 + β2 = π2
(

m2

a2 + n2

b2

)
.

From the solvability condition for the equation of first approximation,

d2w1

dx2
+

(
�0 − β2

)
w1 + �1w0 + �0gw0 = 0,

we obtain

�1 = −2�0

a

∫ a

0
g sin2 αx dx .

3.5.7. We expand the coefficients of the system of equations in series in powers of β
and omit the terms containing βm for m > 1. We come to the system

u′′ − βu′ − ν(1 + sβ)w′ − βw = −�u,

ν(1 + sβ)u′ − βu − (1 + 2βs)w = −�w.

We represent its solutions in the form

u = u0 + βu1, w = w0 + βw1, � = �0 + β�1.

In the zeroth approximation we have the system of equations

u′′
0 − νw′

0 = −�0u0, νu′
0 − w0 = −�0w0,
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which describe the membrane vibrations of the cylindrical shell. This system is
equivalent to the equation

u′′
0 + α2u0 = 0, α2 = (1 − �0)�0

1 − ν2 − �0
.

Taking the boundary conditions u0(0) = u0(l) = 0 into account, we find u0n =
sin[αn(s − l)], αn = πn/ l, n = 1, 2, . . . The lowest eigenvalue,

�0 = 1

2

[
1 + α2

1 −
√(

1 + α2
1

)2 − 4
(
1 − ν2

)
α2
1

]
,

corresponds to the vibrations mode

u0 = sin[α1(s − l)], w0 = να1

1 − �0
cos[α1(s − l)].

Consider the system of equations of first approximation

u′′
1 − νw′

1 + �0u1 = u′
0 + νsw′

0 − �1u0 + w0,

νu′
1 − w1 + �0w1 = −νsu′

0 + u0 + 2sw0 − �1w0.

Multiply the first equation by u0, the second by w0, add together and integrate the
obtained equality by parts over the segment [0, l]. Taking the boundary conditions and
the system of equations of zeroth approximation into account, we find the equation

�1 I0 =
∫ l

0

(
u′
0u0 + νsw′

0u0 + 2w0u0 − νsu′
0w0 + 2sw2

0

)
ds,

where

I0 =
∫ l

0
(u2

0 + w2
0) ds = l

2

[

1 +
(

να1

1 − �0

)2
]

.

After evaluating the integral, we find

�1 = �2
0ν

2l2

2I0(1 − ν2 − �0)(1 − �0)
.

3.5.8. To construct the asymptotic expansion we apply the method that was used
in Sect. 3.5.3 to solve Eq. (3.5.31). Representing the solution in the form (3.5.34)
instead of Eq. (3.5.36) we get an equation for v0,

−v′′
0 + cnv0 = sin πx .
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Its solution, v0 = sin πx/(π2 + cn), satisfies the boundary conditions v0(0) =
v0(1) = 0. For the function w1(x, ξ) we again obtain expression (3.5.38). The
equation

−v′′
1 + cnv1 = c2n2v0/12

admits the solution

v1 = c2n2v0

12(π2 + cn)
.

Therefore

u(x) � sin πx

π2 + cn

{
1 − c

2n

[
(ξ − i)(ξ − i − 1) + 1

6

]
+ c2

12(π2 + cn)

}
.

i ≤ ξ ≤ i + 1, ξ = nx .

3.5.9. Represent the solution of the eigenvalue problem in the following form

u = v0(x) + n−4[v1(x) + w1(x, ξ)] + · · · , 〈w1(x, ξ)〉 = 0,

� = �0 + n−4�1 + · · · , ξ = nx .

After averaging the equation of first approximation we obtain the equation

d4v0

dx4
+ (cn − �0)v0 = 0,

which describes the vibrations of a beam on an elastic foundation. Taking the bound-
ary conditions

v0 = d2v0

dx2
= 0 for x = 0, x = 1,

into account, we find the eigenvalues �0k = (πk)4 + cn and the eigenfunctions
v0k = sin kπx for the eigenvalue problem of first approximation.

The equation for evaluating w1(x, ξ) is

∂4w1

∂ξ4
= cnv0

[
1 −

n−1∑

i=1

δ (ξ − i)

]
.

Integrating this equation with respect to ξ, one gets

∂3w1

∂ξ3
= cn(i − ξ)v0 + C1i .
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After averaging the last equation we find C1i = 1/2. Continuing integration with
respect to ξ in combination with averaging we obtain

w4(x, ξ) = cnv0

[
(ξ − i)2(ξ − i − 1)2 − 1/720

]
, i ≤ ξ ≤ i + 1.

An application of the averaging operator to the equation of second approximations
produces the equation

d4v1

dx4
+ cnv1 − c2n2

720
v0 = �0v1 + �1v0,

from which we can find �1 = −c2n2/720.



Chapter 4
Singularly Perturbed Linear Ordinary
Differential Equations

In this chapter, we study systems of linear differential equations with variable coef-
ficients containing a small parameter μ in the derivative terms [10, 25, 49, 50, 57,
62, 63, 65]. Singular perturbation is characterized by the fact that for μ = 0 the
initial system transforms to a system of differential equations of lower order or even
sometimes to a system of algebraic equations. In the absence of turning points, we
construct an asymptotic expansion of the fundamental system of solutions as μ → 0.

We discuss methods of asymptotic solutions of linear boundary value problems.
As examples, we analyze one-dimensional problems for equilibrium, dynamics and
stability of solids.

4.1 Solutions of Linear Ordinary Differential Equations
of the nth Order

Consider the linear differential equation of order n

Mμy =
n∑

k=0

μkak(x,μ)
dk y

dxk
= 0, μ > 0, (4.1.1)

where

ak(x,μ) �
∞∑

j=0

μ j ak j (x), μ → 0, x ∈ S,

in the real or complex domain S under the assumption that the coefficients akj (x)

are real analytic or complex analytic (holomorphic) in S, respectively. Later in the
book, domains are assumed to be real unless specifically stated. However most of the
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156 4 Singularly Perturbed Linear Ordinary Differential Equations

results hold also for complex domains. After the introduction of additional unknown
functions

y j = μ j d j y

dx j
, j = 0, 1, . . . , n − 1,

Equation (4.1.1) can be transformed into a system of equations. However for the sake
of illustration the equation is studied separately.

4.1.1 Simple Roots of the Characteristic Equation

We seek a solution of equation (4.1.1) in the form

y(x,μ) = U (x,μ) exp

(
1

μ

∫ x

x0
λ(x) dx

)
, U (x,μ) =

∞∑

k=0

μkuk(x). (4.1.2)

After substitution in (4.1.1) and equating the coefficients of μk to zero. we obtain
a system of equations in the unknowns λ(x) and uk(x):

P0u0 = 0, (4.1.3)

P0u1 + P(1)
0 u′

0 + 1

2
P(2)
0 λ′u0 + P1u0 = 0, ()′ = d

dx
(4.1.4)

P0u2 + P(1)
0 u′

1 + 1

2
P(2)
0 λ′u1 + P1u1 + 1

2
P(2)
0 u′′

0 + 1

2
P(3)
0 λ′u′

0 + 1

6
P(3)
0 λ′′u0

+ 1

8
P(4)
0 (λ′)2u0 + P(1)

1 u′
0 + 1

2
P(2)
1 λ′u0 + P2u0 = 0, . . . , (4.1.5)

where the functions P(m)
k are polynomials in λ with coefficients depending on x and

their derivatives in λ of order m:

Pj = Pj (x,λ) =
n∑

k=0

akj (x)λk, j = 0, 1, . . . ,

P(m)
j = P(m)

j (x,λ) = dm Pj

dλm
, m = 1, 2, . . . (4.1.6)
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To derive formulas (4.1.3)–(4.1.5) one should use the expansion

1

μk

dk

dxk

[
U exp

(
1

μ

∫ x

x0
λ(x) dx

)]
=

[
Uλk + μ

(
kλk−1U ′ + k(k − 1)

2
λk−2λ′U

)

+ μ2
(

k(k − 1)

2
λk−2U ′′ + k(k − 1)(k − 2)λk−3

(
λ′U ′

2
+ λ′′U

6

)

+ k(k − 1))k − 2)(k − 3)

8
(λ′)2 U

)
+ O(μ3)

]
exp

(
1

μ

∫ x

x0
λ(x) dx

)
,

whichmay be checked bymeans ofmathematical induction. After that this expansion
and also expansions for coefficients ak(x,μ) and function U (x,μ) are substituted in
Eq. (4.1.1).

We are interested only in nontrivial solutions of equation (4.1.1). Thus, Eq. (4.1.3)
produces the characteristic equation in λ,

P0(x,λ) =
n∑

k=0

ak0(x)λk = 0. (4.1.7)

For an0(x) �= 0, Eq. (4.1.7) has n roots

λ1(x), λ2(x), . . . , λn(x). (4.1.8)

Let λ(x) be a simple root of equation (4.1.7), i.e. P(1)
0 (x,λ(x)) �= 0 for x ∈ S.

Then Eqs. (4.1.4), (4.1.5),…have solutions u0(x), u1(x), . . . analytic in S. Therefore,
series (4.1.2), with analytic coefficients uk(x), transform equation (4.1.1) into an
identity in S. Such series is called a formal asymptotic solution. Further, we limit
ourselves to the construction of such solutions leaving aside the question of existence
of exact solutions for which the obtained solutions are asymptotic expansions.

If all n roots (4.1.8) of Eq. (4.1.7) are simple, one can construct n linearly inde-
pendent solutions of equation (4.1.1) in the following way.

Find the asymptotic expansion (4.1.2) of a linearly independent solution of the
equation

μ2 d2y

dx2
+ ρ(x)y = 0, ρ(x) > 0, (4.1.9)

where μ > 0 is a small parameter and the function ρ(x) is analytic. The problem of
free vibrations of a string with variable linear density along the length of the string
is reduced to this equation (see Sect. 4.4.3).

The characteristic equation (4.1.7) takes the form λ2 + ρ(x) = 0 and has solu-
tions λ(x) = ±iq(x), q(x) = (ρ(x))1/2. Construct a solution corresponding to the
root λ(x) = iq(x). The second solution is the complex conjugate of the first one.
Equations (4.1.4), (4.1.5), . . . give:
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2qu′
n + unq ′ = iu′′

n−1, n = 0, 1, . . . , u−1 = 0, ()′ = d

dx
. (4.1.10)

Solving these equations we obtain

u0 = [ρ(x)]−1/4, un+1 = i

2
u0(x)

∫ x

x0
u0(ξ)u

′′
n(ξ) dξ, n = 0, 1, . . . , (4.1.11)

where the lower limit of integration, x0, is arbitrary and may be chosen for conve-
nience. In the particular case ρ(x) = 1 + αx we get

un = (−iα)nbn(ρ(x))−βn , (4.1.12)

where

b0 = 1, bn = (6n − 5)(6n − 1)

48n
bn−1, βn = 1

4
+ 3n

2
.

It is clear that series (4.1.2) converges since the ratio of two consequent terms
goes to infinity with n.

As a second example, we construct the asymptotic expansions (4.1.2) for the
solutions of the equation

μ4 d2

dx2

(
p(x)

d2y

dx2

)
− ρ(x)y = 0, p(x), ρ(x) > 0, (4.1.13)

where the functions p(x) and ρ(x) are analytic. The problem of transverse vibrations
of a beamwith variable cross-section can be reduced to this equation (see Sect. 4.4.4).
In this case

P0(λ) = pλ4 − ρ, P1(λ) = 2p′λ3, P2(λ) = p′′λ2.

The characteristic equation (4.1.7) has four roots:

λk = qrk, k = 1, 2, 3, 4, q =
(

ρ

p

)1/4

, r1 = i, r2 = −i, r3 = −1, r4 = 1.

(4.1.14)
Equation (4.1.4) gives

L0u0 = 4λ3 pu′
0 + 6λ2λ′ pu0 + 2λ3 p′u0 = 0,

from which we find u0 = p−1/8ρ−3/8 for all λk .
Equation (4.1.5) has the form

L0u(k)
1 + r2k L1u0 = 0,
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where

L1u0 = 6pq2u′′
0 + 12pqq ′u′

0 + 4pqq ′′u0 + 3p(q ′)2u0

+ 6p′q2u′
0 + 6p′qq ′u0 + p′′q2u0.

From the last relation, we obtain

u(k)
1 = − u0

4rk

∫
u0L1u0 dx, k = 1, 2, 3, 4.

For the important case p = const, we get, after simplification,

u(k)
1 = −v1

rk
, v1 = 5u0

8

∫
3(q ′)2 − 2qq ′′

q3 dx . (4.1.15)

For the general case, see Sect. 4.4.4.
The integrals y(1) and y(2) oscillate and the integrals y(3) and y(4) are edge effect

integrals.

4.1.2 Multiple Roots of the Characteristic Equation

The case of multiple roots is a matter of significant difficulties. If the multiplicity of
the roots (4.1.8) changes at some points x = x∗, such points are called turning points
or transition points. They are considered in Chap.5. Besides that, the roots may be
multiple identically. In this case, fractional powers of μ can appear in expansion
(4.1.2). Here we limit ourselves to study the case of the root zero of multiplicity m,
that is widely met in applications.

Consider the linear differential equation of order n = l + m,

Lμy =
l∑

k=0

μkak+m(x,μ)
dk+m y

dxk+m
+

m−1∑

k=0

ak(x,μ)
dk y

dxk
= 0, (4.1.16)

under the same assumptions on the coefficients ak(x,μ) as for Eq. (4.1.1). For μ = 0,
Eq. (4.1.16) degenerates into the following equation of order m:

L0y =
m∑

k=0

ak(x, 0)
dk y

dxk
= 0. (4.1.17)

Multiply equation (4.1.16) by μm to get an equation of the form (4.1.1). The
corresponding characteristic equation

http://dx.doi.org/10.1007/978-3-319-18311-4_5
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l∑

k=0

ak+m(x, 0)λk+m = 0, (4.1.18)

has the root zero of multiplicity m. Let an(x, 0) �= 0 and am(x, 0) �= 0, and suppose
that all roots of the equation

l∑

k=0

ak+m(x, 0)λk = 0 (4.1.19)

are simple. Then Eq. (4.1.16) has l solutions of the form (4.1.2), the otherm solutions
are not fast oscillating functions in x and they admit the expansions

y(x,μ) =
∞∑

k=0

μkvk(x), (4.1.20)

where v0(x) satisfies Eq. (4.1.17), and the functions vk(x) satisfy non-homogeneous
equations, with left sides the same as in (4.1.17).

Find asymptotic expansions for the solutions of the second-order equation

μ
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = 0, a0(x) �= 0, a1(x) �= 0, (4.1.21)

where μ is a small parameter, and the functions a0(x) and a1(x) are analytic.
The characteristic equation (4.1.18) has two roots: λ1(x) = −a1(x) and λ2(x) =

0. The root λ1(x) provides a solution of the form (4.1.2) and by (4.1.5) the functions
un(x) satisfy the equations

(λun)′ + a0un + u′′
n−1 = 0, n = 0, 1, . . . , u−1 = 0.

When solving these equation we obtain

u0 = 1

a1(x)
exp

(∫
a0
a1

dx

)
, un = u0

∫
u′′

n−1

a1u0
dx, n = 1, 2, . . .

In the particular case a1(x) = 1 + αx , we get

un = αnbn(1 + αx)βn , βn = 1

α
− 2n − 1, b0 = 1, bn+1 = −βn(βn − 1)

2n + 3
bn .

The series (4.1.2) diverges.
Now, find the slowly varying solution (4.1.20) of Eq. (4.1.21) corresponding to

the root λ2(x) = 0. So, we have
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a1v
′
0 + a0v0 = 0, v0 = exp

(
−

∫
a0
a1

dx

)
,

a1v
′
n + a0vn + v′′

n−1 = 0, vn = −v0

∫
v′′

n−1

a1v0
dx, n = 1, 2, . . .

In the particular case a1(x) = 1 + αx , we have

vn = αncn(1 + αx)γn , γn = − 1

α
− 2n, c0 = 1, cn+1 = γn(γn − 1)

2n + 3
cn .

The series (4.1.20) is also divergent.

4.1.3 Asymptotic Solutions of Parameter-Free Equations

The above algorithm for the construction of solutions may be applied to some linear
equations not containing the parameter μ as ξ → ∞. Consider the equation

n∑

k=0

dk(ξ)
dk y

dξk
= 0 (4.1.22)

in the domain S = [ξ0,∞) for

dk(ξ) =
∞∑

j=0

dkjξ
− j . (4.1.23)

After the change of variable x = μξ, Eq. (4.1.22) takes the form (4.1.1) where
akj = dkj x− j .

As before, we seek a solution in the form (4.1.2). Since the coefficients ak0 are
constant, the roots (4.1.8) of Eq. (4.1.7) are also constant. For the simple root λ,
Eqs. (4.1.4), (4.1.5), . . . provide the system

P(1)
0 u′

0 + b1x−1u0 = 0, b1 =
n∑

k=0

dk1λ
k,

P(1)
0 u′

1 + b1x−1u1 + 1

2
P(2)
0 u′′

0 + b(1)
1 x−1u′

0 + b2x−2u0 = 0,

b(1)
1 =

n∑

k=0

kdk1λ
k−1, b2 =

n∑

k=0

dk2λ
k, . . .

(4.1.24)
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Solving system (4.1.24), we obtain

uk = ck xα−k, k = 0, 1, . . . , (4.1.25)

where c0 is an arbitrary constant and

α = − b1

P(1)
0

, c1 = c0

[
1

2
α (α − 1) P(2)

0 + b(1)
1 α + b2

] (
P(1)
0

)−1
, . . .

Returning to the original variable ξ we find an asymptotic solution of equation
(4.1.22) in the form

y �
∞∑

k=0

ckξ
α−keλξ, as ξ → ∞. (4.1.26)

In this manner, if all n roots of equation (4.1.7) are simple we find all n solutions.
Naturally, it is more convenient to seek solutions of equation (4.1.22) in the form
(4.1.26) without introducing the auxiliary variable x . These manipulations were
made to show the relation between asymptotic expansions in the parameter μ and
asymptotic expansions of solutions of linear differential equations in a neighborhood
of the singular point ξ = ∞.

Find the asymptotic expansion of the Bessel function Jν(x) (see [1]) satisfying
Bessel’s equation

d2y

dx2
+ 1

x

dy

dx
+

(
1 − ν2

x2

)
y = 0, (4.1.27)

as x → +∞.
This equation is a particular case of equation (4.1.22) and its solutions have the

form (4.1.26):

y = eλx
∞∑

k=0

ck xα−k .

Substituting this solution in Eq. (4.1.27) we have λ1,2 = ±i. For λ1 = i we obtain

α = −1

2
, c0 = 1, ck+1 = i

(k + 1/2)2 − ν2

2(k + 1)
ck, k = 0, 1, . . .

So, we have Jν(x) � 	(Cy), whereC is a complex constant, which can be evaluated
by the integral representation of Jν(x),

Jν(x) = (x/2)ν√
π �(ν + 1/2)

∫ π

0
cos(x cos θ) sin2ν θ dθ.
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Using the method of stationary phase (see Sect. 2.4) we find the main term in the
asymptotic expansion

Jν(x) �
√

2

πx

[
cos

(
x − πν

2
− π

4

)
+ O

(
1

x

)]
.

Comparing this formula with the first term of the series for y(x), we obtain

C =
√

2

π
exp

(
− iπ

2

(
ν + 1

2

))
.

4.1.4 Asymptotic Solutions of Non-homogeneous Equations

Now, we construct particular solutions for non-homogeneous equations. Consider
the equation

Mμy = f (x,μ) exp

(
1

μ

∫ x

x0
γ(x) dx

)
, f (x,μ) �

∞∑

k=0

μk fk(x), (4.1.28)

where the functions γ(x) and fk(x) are analytic in S and Mμy is the operator in the
left side of (4.1.1). If

γ(x) �= λk(x), k = 1, . . . , n, x ∈ S, (4.1.29)

where λk(x) are roots of equation (4.1.7), then a particular solution y∗(x,μ) of
Eq. (4.1.28) has the form

y∗(x,μ) �
∞∑

k=0

μkvk(x) exp

(
1

μ

∫ x

x0
γ(x) dx

)
, as μ → 0. (4.1.30)

The functions vk(x) are analytic in S and they are evaluated after substitution of
(4.1.30) in (4.1.28). In particular,

v0(x) = f0(x)(P0(γ(x), x))−1. (4.1.31)

If condition (4.1.29) fails at distinct points x , then the solution differs from (4.1.30).
This is the so-called resonance case, which is discussed, for example, in [25].

The non-homogeneous equation (4.1.16)

Lμy = f (x,μ) �
∞∑

k=0

μk fk(x), as μ → 0, (4.1.32)

http://dx.doi.org/10.1007/978-3-319-18311-4_2
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where the operator Lμy is as in (4.1.16) with am(x, 0) �= 0, has particular solution

y∗(x,μ) �
∞∑

k=0

μk y∗
k (x), as μ → 0. (4.1.33)

Here y∗
0 (x) is one of the particular solutions of the equation

L0y = f0(x) (4.1.34)

and L0y is the operator in the left side of Eq. (4.1.17).

4.1.5 Exercises

4.1.1. Find the asymptotic expansion (4.1.2) for the solutions of the equation

μ2 d

dx

(
p(x)

dy

dx

)
− μ2r(x)y + ρ(x)y = 0, p(x), ρ(x) > 0,

where the functions p(x), r(x) and ρ(x) are analytic. This equations appears when
studying asymptotic solutions of Sturm–Liouville problems. Consider the particular
case p = ρ = 1 + αx and r = 0, corresponding to longitudinal vibrations of a bar
with a linearly varying cross-section.

4.1.2. Find the asymptotic expansion (4.1.2) for the solutions of the equation

μ2 d2y

dx2
− c(x)y = 0, c(x) > 0,

where c(x) is analytic.

4.1.3. Find u0 and u(k)
1 for Eq. (4.1.13) for p(x) = ρ(x) = 1 + αx . In this case, the

equation describes the vibrations of a beam with a linearly varying width.

4.1.4. Under the conditions of Exercise 4.1.3 find u0 and u(k)
1 for a beam with a

linearly varying thickness, i.e. p(x) = ρ(x)3, ρ(x) = 1 + αx .

4.1.5. Find the first two terms of the asymptotic expansions (4.1.2) for the solutions
of the equation

μ4 d2

dx2

(
p(x)

d2y

dx2

)
+ c(x)y = 0, p(x), c(x) > 0,

describing the deflection of a beam on an elastic foundation.

4.1.6. Find the first terms of the asymptotic expansions for the solutions of the
following equation with constant coefficients
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−μ2 d4y

dx4
+ d2y

dx2
+ �y = 0,

which describes the vibrations of a non-absolutely flexible string (see Sect. 4.4.2).

4.1.7. The modified Bessel functions Iν(x) and Kν(x) satisfy the equation

d2y

dx2
+ 1

x

dy

dx
−

(
1 + ν2

x2

)
y = 0.

Find the asymptotic expansions of the functions Iν(x) and Kν(x) for fixed ν as
x → +∞. To evaluate the constant multipliers use the integral representations:

Iν(x) = 1

π

∫ π

0
exp(x cos θ) cos(νθ) dθ − sin(πν)

π

∫ ∞

0
exp(−x cosh t − νt) dt,

Kν(x) =
∫ ∞

0
exp(−x cosh t) cosh(νt) dt.

and apply the Laplace method (see Sect. 2.3).

4.2 Solutions of Systems of Linear Ordinary Differential
Equations

The results obtained in this section are largely similar to those found in Sect. 4.1.
Consider the system of equations

μ
d y
dx

= A(x,μ) y, μ > 0, (4.2.1)

where y is an n-dimensional vector and A is a square matrix of order n with real or
complex analytic coefficients in the complex domain S, in the form

A(x,μ) �
∞∑

k=0

μk Ak(x), as μ → 0, (4.2.2)

4.2.1 Simple Roots of the Characteristic Equation

We seek a formal asymptotic solution of system (4.2.1) in the form

y(x,μ) �
∞∑

k=0

Uk(x)μk exp

(
1

μ

∫ x

x0
λ(x) dx

)
. (4.2.3)

http://dx.doi.org/10.1007/978-3-319-18311-4_2
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The function λ(x) satisfies the characteristic equation

det(A0(x) − λ(x)In) = 0, (4.2.4)

where In is the identity matrix of order n. If λ(x) is a simple root of equation
(4.2.4) for all x ∈ S, then all vector-functions Uk(x) are recursively evaluated after
substitution of (4.2.3) into (4.2.1) and they are analytic in domain S.

We consider in detail the process of evaluating a vector-function U0(x). After
substitution of (4.2.3) in system (4.2.1) and equating coefficients at μ0 and μ1 we
obtain the equations

[A0 − λ(x)In]U0 = 0,

[A0 − λ(x)In]U1 + A1U0 = dU0

dx
. (4.2.5)

From the first of these equations it follows that

U0(x) = ϕ0(x)V (x), (4.2.6)

where ϕ0(x) is a scalar function and V (x) is an eigenvector of the matrix A0(x)

corresponding to the simple root λ(x) of Eq. (4.2.4).
The function ϕ0(x) is evaluated only at the next approximation. The second

equation in (4.2.5) is considered as a system of linear non-homogeneous equations
in the components of the vector U1. The determinant of this system is equal to zero
and the compatibility condition for the system is

W T A1U0 = W T dU0

dx
, (4.2.7)

where W(x) is an eigenvector of matrix AT
0 (x) and the symbol T means matrix

transpose, [
AT
0 (x) − λ(x)In

]
W = 0. (4.2.8)

From (4.2.7) we obtain a differential equation of first order for the function ϕ0(x):

dϕ0(x)

dx
= b0(x)ϕ0(x), where b0 = W T (A1V − V ′

x )

W T V
, (4.2.9)

which can be integrated by quadratures.
For a simple root λ(x) all functions λ(x) and Uk(x) are analytic in S. If for

all x ∈ S all roots of equation (4.2.4) are simple, then formula (4.2.6) defines the
fundamental matrix of formal asymptotic solutions.
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Find the asymptotic expansion of the solutions of the system of equations

μ
dy

dx
= y cos x + z sin x, μ

dz

dx
= y sin x + 3z cos x (4.2.10)

as μ → 0. We seek a solution in the form (4.2.3):

{y(x,μ), z(x,μ)} =
∞∑

k=0

μk{yk(x), zk(x)} exp
(
1

μ

∫
λ(x) dx

)
. (4.2.11)

The characteristic equation (4.2.4)

[λ(x)]2 − 4λ(x) cos x + 3 cos2 x − sin2 x = 0

has the roots λ1,2(x) = 2 cos x ± 1. These roots are simple for all x and thus the
required solution exists.

We now consider only λ1(x) = 2 cos x + 1. Substituting (4.2.11) in system
(4.2.10) and equating the coefficients of μk we get the equations

−yk(1 + cos x) + zk sin x = y′
k−1,

yk sin x + zk(cos x − 1) = z′
k−1, k = 0, 1, . . . ,

(4.2.12)

and y−1 = z−1 ≡ 0.
For k = 0, we obtain

y0 = ϕ0(x) sin
x

2
, z0 = ϕ0(x) cos

x

2
,

where the function ϕ0(x) is evaluated at the next approximation.
For k ≥ 1, system (4.2.12) in yk and zk has zero determinant and the compatibility

conditions for the system are

y′
k−1 sin

x

2
+ z′

k−1 cos
x

2
= 0, k = 1, 2, . . .

For k = 1, the compatibility condition implies ϕ′
0 = 0.

Assume that ϕ0(x) = 1. Then the solution of system (4.2.12) for k ≥ 1 has the
form

yk = ϕk(x) sin
x

2
− 1

2
y′

k−1, zk = ϕk(x) cos
x

2
− 1

2
z′

k−1, (4.2.13)

Substituting this solution into the compatibility condition we get

ϕ′
k = 1

2
y′′

k−1 sin
x

2
+ 1

2
z′′

k−1 cos
x

2
, k = 1, 2, . . . , (4.2.14)
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from which, for k = 1, we obtain

ϕ′
1 = −1

8

(
sin2

x

2
+ cos2

x

2

)
= −1

8
, ϕ1 = − x

8
,

y1 = ϕ1 sin
x

2
− 1

4
cos

x

2
, z1 = ϕ1 cos

x

2
+ 1

4
sin

x

2
.

Thus, the first two terms of series (4.2.11) are obtained. Using the recursive formulas
(4.2.13) and (4.2.14) one can find any number of terms; however one could hardly
expect to find a general formula.

4.2.2 Multiple Roots of the Characteristic Equation

As in the case of one equation of order n, we should separately consider the cases
where the roots λk(x) of Eq. (4.2.4) change multiplicity at some points (turning
points) and when the roots are identically equal to each other. The first of these cases
is discussed in Chap.5.

Here, we consider the system of equations

d y
dx

= A11 y + A12z, μ
d z
dx

= A21 y + A22z, (4.2.15)

where y and z are vectors of dimensions m and l, respectively, and Ai j are matrices
of the corresponding sizes regularly depending on μ:

Ai j = Ai j (x,μ) =
∞∑

k=0

μk A(k)
i j (x). (4.2.16)

Multiplying the first equation in (4.2.15) by μ we get a system of characteristic
equations of the form (4.2.1) which has m roots identically equal to zero. The other
l roots satisfy the equation

det
(

A(0)
22 (x) − λ(x)I l

)
= 0. (4.2.17)

A root λ(x) of Eq. (4.2.17), which is simple and vanishes nowhere, provides a
solution of the form (4.2.3). If all l roots of equation (4.2.17) are of this type then
we get l solutions of the form (4.2.3).

For μ = 0, det(A(0)
22 (x)) �= 0 and system (4.2.15) degenerates into a system of

equations in y0 of order m:

d y0
dx

=
(

A(0)
11 − A(0)

12 A(0)−1
22 A(0)

21

)
y0, z0 = −A(0)−1

22 A(0)
21 y0, (4.2.18)

http://dx.doi.org/10.1007/978-3-319-18311-4_5
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which has m linearly independent solutions.
For μ �= 0, the original system (4.2.15) has m solutions of the form

y(x,μ) �
∞∑

k=0

μk yk(x), z(x,μ) �
∞∑

k=0

μk zk(x), as μ → ∞, (4.2.19)

where y0(x) and z0(x) are the same as in (4.2.18).
We examine the behavior of solutions of the gyroscopic system

d

dx

(
A(x)

d y
dx

)
+ H G(x)

d y
dx

+ B(x)y = 0 (4.2.20)

under the assumption that y is an n-dimensional vector, A(x) is a positive definite
symmetricmatrix, G(x) is a skew-symmetricmatrixwith det G(x) �= 0, the elements
of the matrices A, G, and B are analytic, and H is a large parameter. System (4.2.20)
is analyzed in [46]. Note that n is even since, for odd n, det G(x) ≡ 0.

System (4.2.20) is reduced to a system of the form (4.2.15) by introducing the
auxiliary variables z = Ad y/dx :

d y
dx

= A−1z, μ
d z
dx

= −G A−1z + μB y, (4.2.21)

where μ = H−1 is a small parameter. This system has n rapidly oscillating solutions
of the form (4.2.3) and Eq. (4.2.17) for λ(x) is

f (λ(x)) = det(G + λ(x)A) = 0. (4.2.22)

We prove that all roots of this equation are pure imaginary by considering the
auxiliary system of equations

A(x)
du
dt

+ G(x)u = 0,

where x is a parameter. By virtue of Lyapunov‘s Theorem [45] a trivial solution
of this system is stable since the quadratic form V = uT Au is positive defi-
nite and its derivative dV/dt = −2uT Gu ≡ 0 because the matrix G is skew-
symmetric. Therefore, Eq. (4.2.22) does not have any roots λ(x) with 	λ(x) > 0.
But f (−λ(x)) ≡ f (λ(x)), and also roots with 	λ(x) < 0 do not exist. There are
no trivial roots because det G �= 0.

Thus, the system has n rapidly oscillating integrals. The behavior of the other n
integrals differs from those of type (4.2.19) since they are very slow varying integrals
(d y/dx ∼ μ y). To find the integrals we replace system (4.2.20) with the following
equivalent system of Volterra integral equation of the first kind
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y = y0 − μ

∫ x

0
G−1

[
B y + d

dx

(
A

d y
dx

)]
dx ≡ L( y), (4.2.23)

where y0 is an arbitrary vector. The solution of this system obtained by the iterative
scheme yn+1 = L( yn) results in the asymptotic expansion (4.2.19), in which

y0 = const, y1 = −
∫ x

0
G−1B y0 dx,

y2 =
∫ x

0

[
G−1B

∫ x

0
G−1B y0 dx + G−1 d

dx
(AG−1B) y0

]
dx .

4.2.3 Asymptotic Solutions of Parameter-Free Systems

Similar to Sect. 4.1, we consider asymptotic equations for solutions of the system of
equations

d y
dξ

= A(ξ) y (4.2.24)

as ξ → ∞. Assume that

A(ξ) �
∞∑

k=0

Akξ
−k, as ξ → ∞, (4.2.25)

where Ak are constant matrices.
The change of variable x = μξ transforms system (4.2.24) into one of the form

(4.2.1). A simple root λ(ξ) of the characteristic equation (4.2.4) defines the solution

y(ξ) �
∞∑

k=0

Ukξ
α−k eλξ, as ξ → ∞, (4.2.26)

where Uk are constant and the factor α is equal to

α = − V T
0 A1U0

V T
0 U0

. (4.2.27)

Here U0 is the eigenvector of the matrix A0 corresponding to the eigenvalue λ(ξ)
and V 0 is the eigenvector of the transposed matrix AT

0 .
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4.2.4 Asymptotic Solutions of Non-homogeneous Systems

Consider the non-homogeneous system of equations

μ
d y
dx

= A(x,μ) y + F(x,μ) exp

(
1

μ

∫ x

x0
γ(x)dx

)
, (4.2.28)

where

F(x,μ) �
∞∑

k=0

μk Fk(x), as μ → 0,

the matrix A(x,μ) is the same as in (4.2.1), and the vector-functions Fk(x) and the
function γ(x) are analytic in S.

If condition (4.1.29) holds, where now λk(x) are the roots of equation (4.2.4),
then the solution of equation (4.2.28) has the asymptotic expansion

y∗(x,μ) �
∞∑

k=0

y∗
k(x)μk exp

(
1

μ

∫ x

x0
γ(x) dx

)
, (4.2.29)

The analytic coefficients, y∗
k(x), are found recursively by substituting (4.2.29) into

(4.2.28). In particular,

y∗
0(x) = [A0(x) − Inγ(x)]−1F0(x). (4.2.30)

The case γ(x) = 0 is not excluded from our consideration. However condition
(4.1.29) requires that none of the roots of equation (4.2.4) vanishes at some points.

4.2.5 Equations of the Theory of Shells

The system of Donnell’s equations [18]

Eh3

12(1 − ν2)
�1�1w − �1

k�
1 − ρhω2w = 0,

1

Eh
�1�1�1 + �1

kw = 0,

(4.2.31)

describes the free vibrations of a shallow shell, wherew is deflection,�1 is the stress
function, E is Young’s modulus, ν is Poisson’s ratio, ρ is the density, h is the shell
thickness,ω is the vibrations frequency,�1 and�1

k are linear differential operators of
the second order. We apply system (4.2.31) to describe non-axisymmetric vibrations
of a shell of revolution with m waves in the circumferential direction. On the surface
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Fig. 4.1 A shell of
revolution with curvilinear
coordinates s1 and ϕ

B

R2
1R

s

w

ϕ

of the shell we introduce the curvilinear coordinates s1, ϕ, where s1 is the arc length
of the meridian and ϕ is the angle in the circumferential direction (see Fig. 4.1).

After separation of variables,

w(s1,ϕ) = w(s1) cosmϕ, �(s1,ϕ) = �(s1) cosmϕ, (4.2.32)

and the operators �1 and �1
k take the form

�1w = 1

B
(Bw′)′ − m2

B2 w, �1
kw = 1

B

(
Bw′

R2

)′
− m2

R1B2 w, ′ = d( )

ds1
,

(4.2.33)

where B(s1) is the distance from the axis of revolution, and R1(s1) and R2(s1) are
the main radii of curvature (see Fig. 4.1).

Let R be the characteristic size of the neutral surface. We turn to non-dimensional
variables:

s = s1

R
, b = B

R
, k1 = R

R1
, k2 = R

R2
,

� = �1

Eh Rμ2 , � = ρω2R2

E
, μ4 = h2

12(1 − ν2)R2 ,

(4.2.34)

where � is the frequency parameter and μ > 0 is a small parameter.
System (4.2.31) contains three main parameters, μ, m, and �, and the asymptotic

expansions of the solutions of the system depend on the relations between the orders
of the parameters [30].
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4.2.6 The Case m ∼ µ−1, � ∼ 1

Consider non-axisymmetric vibrationswithm waves in the circumferential direction,
wherem is large. Assume that� = O(μ0),m ∼ μ−1. Let r = μm ∼ 1. Then system
(4.2.31) can be rewritten in the form

��w − �k� − �w = 0, ��� + �kw = 0, (4.2.35)

where

�w = μ2 1

b
(bw′)′ − r2

b2
w, �kw = μ2 1

b
(bk2w

′)′ − k1r2

b2
w, ( )′ = d( )

ds
.

System (4.2.35) contains a small parameter μ in the derivative terms. This system
can be reduced to the standard form (4.2.1) by introducing the auxiliary functions

yk = μk−1 dk−1w

dsk−1 , yk+4 = μk−1 dk−1�

dsk−1 , k = 1, 2, 3, 4, (4.2.36)

Hence, one should seek a solution of system (4.2.35) in the form

w(s,μ) �
∞∑

k=0

μkwk(s) exp

(
1

μ

∫ s

s0
λ(s) ds

)
,

�(s,μ) �
∞∑

k=0

μk�k(s) exp

(
1

μ

∫ s

s0
λ(s) ds

)
,

(4.2.37)

Substituting series (4.2.37) in system (4.2.35) and equating the coefficients of
equal powers of μ we find that the function λ(s) satisfies the characteristic equation,
which is an algebraic equation of the degree eight:

f (λ, s) =
(

λ2 − r2

b2

)4

− �

(
λ2 − r2

b2

)2

+
(

k2λ
2 − k1r2

b2

)2

= 0, (4.2.38)

and the leading coefficients of series (4.2.37) are equal to

w0 =
(

λ2 − r2

b2

) (
b
∂ f

∂λ

)−1/2

,

�0 = −
(

k2λ
2 − k1r2

b2

) (
λ2 − r2

b2

)−1 (
b
∂ f

∂λ

)−1/2

.

(4.2.39)

See Example 4.2.3.
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Each simple root λ(s) of Eq. (4.2.38) provides solution (4.2.37) with analytic
coefficients wk(s) and �k(s). The exceptions are shells in the shape of a cupola. At
the apex of the cupola b = 0 and therefore expansions (4.2.37) are not applicable in
a neighborhood of the apex.

With this method we get a general solution of system (4.2.35) if all eight roots of
equation (4.2.38) are simple.

At the turning points s = s∗ the roots λ(s) become multiple, ∂ f/∂λ = 0 and
expansions (4.2.37) are inapplicable. This case is considered in Sect. 5.3.

4.2.7 The Case m ∼ µ−1/2, � ∼ 1

We obtain asymptotic expansions for solutions of system (4.2.31) under the assump-
tion that m ∼ μ−1/2 and� ∼ 1.We now take system (4.2.35) as the original system:

�w = μ2 1

b
(bw′)′ − μ

r20
b2

w, �kw = μ2 1

b
(bk2w

′)′ − μ
k1r20
b2

w, (4.2.40)

where r0 = μ1/2m ∼ 1. In this case, one cannot assume that all solutions have asymp-
totic expansions of type (4.2.37). To clarify the structure of asymptotic expansions
we start by seeking solutions in the form

w(s,μ) � w0 exp

(∫ s

s0
p ds

)
, �(s,μ) � �0 exp

(∫ s

s0
p ds

)
, |p| � 1.

For the function p(s), we get an algebraic equation similar to (4.2.38)

μ2

(

μp2 − r20
b2

)4

− �

(

μp2 − r20
b2

)2

+
(

μk2 p2 − k1r20
b2

)2

= 0. (4.2.41)

This equation has four roots p j ∼ μ−1:

p j = μ−1λ j + O(1), λ4
j + k22 − � = 0, j = 1, 2, 3, 4, (4.2.42)

and four roots p j ∼ μ−1/2:

p j = μ−1/2q j + O(1), �

(

q2
j − r20

b2

)2

=
(

k2q2
j − k1r20

b2

)2

, j = 5, 6, 7, 8,

q5,6 = ±r0
b

√√
� + k1√
� + k2

, q7,8 = ±r0
b

√√
� − k1√
� − k2

. (4.2.43)

http://dx.doi.org/10.1007/978-3-319-18311-4_5


4.2 Solutions of Systems of Linear Ordinary Differential Equations 175

Thus, the four solutions of system (4.2.35), (4.2.40) have expansions (4.2.37), where

w0(s) = b−1/2λ−3/2 exp

(
−r20

∫ s

s0

b(� − 2λ4) + b′′

2b3λ5
ds

)
, �0 = −k2w0

λ2 .

(4.2.44)
The variation index (see Sect. 1.4) of these solutions is equal to 1. Four other solutions
have variation index 1/2 and may be represented as

w(s,μ) �
∞∑

k=0

μk/2wk(s) exp

(
μ−1/2

∫ s

s0
q(s) ds

)
,

�(s,μ) � μ−1
∞∑

k=0

μk/2k�k(s) exp

(
μ−1/2

∫ s

s0
q(s) ds

)
,

(4.2.45)

and

w0 = 1√
� ± k2

(
k1 − k2

qb3

)1/2

, �0 = − �w0

k2q2 − k1r20b−2
,

where we take the plus sign for q = q5,6, and the minus sign for q = q7,8.
As it follows from the above formulas for w0 and �0, the obtained solutions are

inapplicable in neighborhoods of the cupola apex (b = 0) and of the turning points
s = s∗, where

� = k21

(
s(1)∗

)
or � = k22

(
s(2)∗

)
.

For s = s(1)∗ , two of the roots q j vanish as hey become equal to each other and

for s = s(2)∗ four roots λ j vanish and two of the roots q j become infinite.

4.2.8 Low Frequency Vibrations of Shells of Revolution
of Zero Gaussian Curvature

Now consider non-axisymmetric low frequency vibrations of shells of revolution of
zero Gaussian curvature for the following values of the parameters: k1 = 0, m ∼
μ−1/2, � ∼ μ2. As in Sect. 4.2.7, we proceed from system (4.2.35) and (4.2.40),
in which we assume that k1 = 0, � = μ2�0, and �0 ∼ 1.

Under the above assumptions, the characteristic equation (4.2.41) is

(

μp2 − r20
b2

)4

− �0

(

μp2 − r20
b2

)2

+ k2 p4 = 0. (4.2.46)

http://dx.doi.org/10.1007/978-3-319-18311-4_1
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This equation has four roots p j ∼ μ−1, j = 1, 2, 3, 4, which correspond to solutions
(4.2.37), (4.2.42) and (4.2.44) for � = 0.

Four other roots p j ∼ 1, j = 5, 6, 7, 8, have small absolute values; thus, the
solutions corresponding to them are

w(s,μ) �
∞∑

k=0

μkwk(s), �(s,μ) �
∞∑

k=0

μk�k(s). (4.2.47)

Asymptotic expansions (4.2.47) are used to find approximately the lower part of
the frequency spectrum for free vibrations of shells of revolution of zero Gaussian
curvature [30].

4.2.9 Low Frequency Vibrations of Shells of Revolution
of Negative Gaussian Curvature

Consider non-axisymmetric vibrations of a shell of revolution under the assumptions
that k1k2 < 0, m ∼ μ−2/3, � ∼ μ4/3. Introduce the small parameter μ1 = μ2/3 and
set r1 = mμ1 ∼ 1, � = μ2

1�1, and �1 ∼ 1. Then system (4.2.35) may be written as

μ1�1�1w − �k1� − μ1�1w = 0, μ1�1�1� + �k1w = 0, (4.2.48)

where

�1w = μ2
1
1

b
(bw′)′ − r21

b2
w, �k1w = μ2

1
1

b
(bk2w

′)′ − k1r21
b2

w.

The characteristic equation for system (4.2.48),

μ2
1

(

μ2
1 p2 − r21

b2

)4

− μ2
1�1

(

μ2
1 p2 − r21

b2

)2

+
(

μ2
1k2 p2 − k1r21

b2

)2

= 0,

has the roots

p j = μ
−3/2
1 λ j + O

(
μ

−1/2
1

)
, λ4

j + k22 = 0, j = 1, 2, 3, 4, (4.2.49)

p j = μ−1q j + O(1),

(

k2q2
j − k1r21

b2

)2

= 0, j = 5, 6, 7, 8. (4.2.50)
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The roots (4.2.49) define the solutions

w(s,μ1) �
∞∑

k=0

μ
k/2
1 wk(s) exp

(
μ−3/2

∫ s

s0
λ(s) ds + μ−1/2

∫ s

s0
λ(1)(s) ds

)
,

λ(1) = − r21
2λb2

(
1 + b′

bk2

)
, w0 = b−1/2λ−3/2.

and the roots (4.2.50) provide the solutions

w(s,μ1) �
∞∑

k=0

μk
1wk(s) exp

(
1

μ1

∫ s

s0
q(s) ds

)
,

�(s,μ1) �
∞∑

k=0

μk
1�k(s) exp

(
1

μ1

∫ s

s0
q(s) ds

)
.

(4.2.51)

Solutions (4.2.51) are used to find approximately the lower part of the frequency
spectrum for free vibrations of shells of revolution of negative Gaussian curvature
[30].

4.2.10 Exercises

4.2.1. Find the first two terms of the asymptotic expansions of the solutions of system
(4.2.10) for λ1(x) = 2 cos x − 1.

4.2.2. Small vibrations of a dynamically symmetric top are described by the system
of equations

d2y1
dt2

− H
dy2
dt

− k2y1 = 0,
d2y2
dt2

+ H
dy1
dt

− k2y2 = 0, (4.2.52)

where y1 and y2 are small deviations of the top axis from the vertical, t is time,
H = Cω/A and k2 = W zc/A. Here C is the moment of inertia of the top about the
axis of symmetry, A is the moment of inertia of the top about the orthogonal axis
passing through the point of support, W is the top weight, zc is the distance between
the center of gravity and the point of support, ω is the angular velocity of the top.

Under the assumption H → ∞, find the asymptotic expansion of the solutions
of system (4.2.52) and compare it with the exact solution.

4.2.3. Determine formulas (4.2.39) for w0, �0.

4.2.4. The stability of a membrane axisymmetric stress state in a shell of revolution
is described by the following system of equations [10, 31, 56]:
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��w + ��tw − �k� = 0, ��� + �kw = 0, (4.2.53)

where

�tw = μ2 1

b
(bt1w

′)′ − t2r2

b2
w, tk = − T 0

k

�Ehμ2 , k = 1, 2.

Here T 0
k (s) are the membrane initial stress-resultants and � > 0 is the loading

parameter. The other notations are the same as for system (4.2.35).
Find the asymptotic expansions of the solutions of system (4.2.53).

4.2.5.Establish the equation for evaluating the functionsw0 and�0 in the asymptotic
expansions (4.2.47).

4.2.6. Derive the system of equations for evaluating the main terms of series (4.2.51).

4.3 Non-homogeneous Boundary Value Problems

4.3.1 Statement of Boundary Value Problems

Let the domain S contain a segment x1 ≤ x ≤ x2 of the real axis. Here we consider
both the differential equation (4.1.28) and the system of first order equations (4.2.28).
We suppose that the conditions of Sects. 4.1 and 4.2 on the solutions hold, the main
condition being the absence of turning points. Then, the general solution may be
written in the form

y(x,μ) =
n∑

k=1

Ck y(k)(x,μ) + y∗(x,μ), (4.3.1)

where Ck are arbitrary constants, y(k)(x,μ) are particular solutions of the homo-
geneous equations (4.1.1) or (4.2.1), y∗(x,μ) is a particular solution of the non-
homogeneous equation (4.1.28) or (4.2.28).

For brevity’s sake, we write formula (4.3.1) as

y(x,μ) = Y(x,μ)C + y∗(x,μ), C = (C1, . . . , Cn)T , (4.3.2)

where Y(x,μ) is a fundamental system, i.e. nonsingular matrix of order n consisting
of particular solutions y(k)(x,μ) of the homogeneous equation.

For system (4.2.28) the boundary conditions are introduced in the form

B j (μ) y = b j (μ) for x = x j , j = 1, 2, (4.3.3)

where y is an n-dimensional vector, B j is a matrix of size n j × n, b j is a vector of
dimension n j , and n1 + n2 = n. The vector y and the matrix B j are represented in
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powers of μ as

B j (μ) �
∞∑

k=0

B jkμ
k, b j (μ) �

∞∑

k=0

b jkμ
k, as μ → 0. (4.3.4)

We assume that the boundary conditions are linearly independent in the zeroth
approximation, i.e.

rank{B0 j } = n j , j = 1, 2. (4.3.5)

The general form of the boundary conditions of Eq. (4.1.28) is also of the form
(4.3.3), if for y we use the n-dimensional vector

y =
[

y, μ
dy

dx
, . . . ,μn−1 dn−1y

dxn−1

]T

. (4.3.6)

Here the condition on the matrices B j0 is the same as above.
Substituting the general solution (4.3.1) in the boundary conditions (4.3.3) results

in a system of n linear non-homogeneous equations in the constants Ck :

D(μ)C = d(μ), (4.3.7)

where

D =
[

D1
D2

]
, d =

[
d1
d2

]
,

D j (μ) = B j (μ) y(x j ,μ), d j (μ) = b j (μ)−B j (μ) y∗(x j ,μ), j = 1, 2. (4.3.8)

If
det D(μ) �= 0, (4.3.9)

then system (4.3.7) with the boundary value problem at hand has a unique solution. If

det D(μ) = 0, (4.3.10)

the boundary value problem does not have a solution for all right sides f (x,μ) and
b(μ). In this case we deal with the spectrum problem.

The difficulty with the roots of equation (4.3.10) is that the limit

D0 = lim
μ→0

D(μ). (4.3.11)

does not always exists
We now study some particular cases (see also Sects. 4.4 and 4.5).



180 4 Singularly Perturbed Linear Ordinary Differential Equations

4.3.2 Classification of Solution Types

Firstly, consider all possible variants of the behavior of integrals (4.1.2) and (4.2.3)
depending on the roots λk(x). For 	(λk(x)) > 0 the integral grows exponentially,
for	(λk(x)) < 0 it decreases, and for	(λk(x)) = 0 and �(λk(x)) �= 0 it oscillates.
If λk(x) ≡ 0, then integrals (4.1.20) and (4.2.19) vary slowly.

If the conditions

	(λk(x1)) < 0, 	
∫ x

x1
λk(x))dx < 0, x1 < x < x2, (4.3.12)

hold, then the integrals (4.1.2) or (4.2.3) are called edge effect integral or boundary
layer integral at the left edge x = x1. In this, casewe assume that x0 = x1 in (4.1.2) or
(4.2.3). Then the given integral decreases exponentially away form the edge x = x1
and remains exponentially small for all x > x1. In computing the corresponding
entries of the matrix Y(x2,μ) in (4.3.8) with an error of order e−c/μ, c > 0 we may
assume them to be zero.

To describe an edge effect integral, besides (4.1.2) or (4.2.3) one may use the
representation

yk(x,μ) �
∞∑

m=0

μm P (k)
m (ξ)eλ0

kξ, ξ = x − x1
μ

, (4.3.13)

where λ0
k = λk(x1) < 0, P(k)

m (ξ) are polynomials in ξ of degree smaller than 2m.
Edge effect integrals at the right edge x = x2 are introduced the same way.
If for all x ,	(λk(x)) = 0 and�(λk(x)) �= 0, then the integral is called oscillating.

There may exist integrals belonging to none of the mentioned types. We note among
them the integrals oscillating in S0 ⊂ [x1, x2] (see Chap.5). If the coefficients of
equations (4.1.1) or (4.2.1) are real, then only the turning points or terminal points,
x1 or x2, can be the ends of S0.

4.3.3 The Simplest Case

Now consider the system of equations (4.3.7). We start with the simplest case when
the characteristic equation (4.2.4) or (4.1.7) does not have zero or pure imaginary
roots for all x . Let

	(λk(x)) < 0, k = 1, 2, . . . , l1,

	(λk(x)) > 0, k = l1 + 1, l1 + 2, . . . , l1 + l2,
(4.3.14)

where l1 + l2 = l = n, l1 = n1, l2 = n2 and n1 and n2 are the same as in (4.3.3),
i.e. they are equal to the numbers of boundary conditions at x = x1 and at x = x2.

http://dx.doi.org/10.1007/978-3-319-18311-4_5
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Then with an error of order e−c/μ, c > 0, the matrix (4.3.8) is block-diagonal

D =
[

D1 0
0 D2

]
, D(μ) �

∞∑

k=0

μk D(k), (4.3.15)

where D1 and D2 are square matrices of dimensions n1 and n2, respectively.
For sufficiently small μ, condition (4.3.9) holds if

� j (0) = det D j (0) �= 0, j = 1, 2. (4.3.16)

The solution of the boundary value problem (4.2.1) and (4.3.3) consists of a
particular solution y∗(x,μ) corrected in the neighborhoods of the edges x = x1 and
x = x2 with edge effect integrals.

Example 1
Consider the deflection, y(x1), of a string on an elastic foundation. The function

y(x1) satisfies the equation

T
d2y

dx21
− c1(x1)y + q1(x1) = 0, y(0) = y(l) = 0, (4.3.17)

where T is the tension, c1(x1) > 0 is the foundation stiffness, q1(x1) is the intensity
of external load. Under the assumption that the tension T is relatively small, find an
approximate value of the deflection. The functions c1(x1) and q1(x1) are considered
to be analytic.

In Eq. (4.3.17) we introduce the non-dimensional variables

x1 = lx, 0 ≤ x ≤ 1, c1(x1) = c0c(x), c(x) ∼ 1.

Then, Eq. (4.3.17) is transformed into

μ2 d2y

dx2
− c(x)y + q(x) = 0, y(0) = y(1) = 0, (4.3.18)

where μ2 = T/(c0l2) and q(x) = q1(x1)/c0. Assume the parameter μ to be small.
This is a formalization of the original assumption on the relative smallness of the
tension.

Here and below, when introducing a small parameter we are guided by a matter
of convenience. We also wish that the obtained asymptotic series will contain only
integer powers of μ. For that, the variation index (see Sect. 1.4) of fast oscillating
solutions is equal to 1 as for formulas (4.1.2).

The general solution of equation (4.3.18) has the form (4.3.1):

y(x,μ) = C1y(1)(x,μ) + C2y(2)(x,μ) + y∗(x,μ), (4.3.19)

http://dx.doi.org/10.1007/978-3-319-18311-4_1
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where C1 and C2 are arbitrary constants, and y(1) and y(2) are particular solu-
tions of the corresponding homogeneous equation obtained in Exercise 4.1.1, which
has characters of edge effect integrals. The particular solution y∗(x,μ) of the non-
homogeneous equation (4.3.18) is of the form (4.1.33):

y∗(x,μ) =
∞∑

k=0

μk y∗
k (x),

where

y∗
0 (x) = q(x)

c(x)
, y∗

2k+1(x) ≡ 0, y∗
2k+2(x) = 1

c(x)

d2y∗
2k

dx2
, k = 0, 1, 2, . . .

The constants C1 and C2 in (4.3.19) are obtained from the boundary conditions
y(0) = y(1) = 0. The boundary conditions

y(0) = C1y(1)(0,μ) + y∗(0,μ) = 0, y(1) = C2y(2)(1,μ) + y∗(1,μ) = 0,

can be satisfied separately within an error or order

ε = exp

(
− 1

μ

∫ 1

0

√
c(x) dx

)
.

Now choose the lower limit of integration x (1) = 0, x (2) = 1 in the formulas for
evaluating y( j)

k (x), k > 0 (see the answer to Exercise 4.1.1) is such a way that

u(1)
k (0) = 0, u(2)

k (1) = 0 for k > 0. Then

C1 = −c(0)1/4y∗(0,μ), C2 = −c(1)1/4y∗(1,μ).

4.3.4 Deflection of a Beam on an Elastic Foundation

The deflection of a beam on an elastic foundation is described by the equation

d2

dx21

(

E I
d2y

dx21

)

+ c1(x1)y = g1(x1), 0 ≤ x1 ≤ l,

where E I is the beam bending stiffness, c1(x1) is the foundation stiffness and g1(x1)
is the load intensity.

In terms of the non-dimensional variables

E I = E0 I0 p(x), c1(x1) = c0c(x), g1(x1) = E0 I0g(x),
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x1 = lx, 0 ≤ x ≤ 1,

the above equation becomes

μ4 d2

dx2

(
p(x)

d2y

dx2

)
+ c(x)y = g(x), μ4 = E0 I0

c0l4
, (4.3.20)

where μ is a small parameter and the functions p(x), c(x) and g(x) are assumed to
be analytic. Moreover p(x) ∼ 1, c(x) ∼ 1, p(x) > 0, c(x) > 0.

The small parameter μ allows us to find approximate asymptotic solutions and
satisfy separately boundary conditions at x = 0 and x = 1. We seek an approximate
solution of equation (4.3.20) which satisfies the boundary conditions of free support
type

y = d2y

dx2
= 0 for x = 0, x = 1.

The general solution of equation (4.3.20) is a linear combination of the edge effect
integrals and a particular solution (see Exercise 4.1.5):

y(x,μ) =
∑

k=1,2

Ck

[
u0(x) + μu(k)

1 (x) + O(μ2)
]
exp

(
rk

μ

∫ x

0
q(x)dx

)

+
∑

k=3,4

Ck

[
u0(x) + μu(k)

1 (x) + O
(
μ2

)]
exp

(
rk

μ

∫ x

1
q(x)dx

)

+ y∗
0 (x) + O

(
μ4

)
,

where

u0(x) = (pq3)−1/2, q(x) =
(

c

p

)1/4

, y∗
0 (x) = g

c
,

r1,2 = − 1√
2

± i√
2
, r3,4 = 1√

2
± i√

2
,

and the functions u(k)
1 (x) are the same as in Exercise 4.1.5. We find the constants Ck

from the boundary conditions.
We take u(k)

j (x), j > 0 in such a way that the equalities

u(k)
j (0) = 0, k = 1, 2, u(k)

j (1) = 0, k = 3, 4,

are satisfied. Then with an error of order

ε = exp

(
− 1

μ
√
2

∫ 1

0
q(x) dx

)
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the boundary conditions at x = 0 and x = 1 can be satisfied separately. At x = 0,
the boundary conditions provide the equations

∑

k=1,2

Cku0(0) + y∗
0 (0) = 0,

∑

k=1,2

Ck

[
r2k q2(0)u0(0)

μ2 + rk

μ
[2q(0)u′

0(0) + q ′(0)u0(0)] + O(1)

]

+ y∗′′
0 (0) = 0.

Similar equations for C3 and C4 are obtained from the boundary conditions at x = 1.
Solving these equations, we get

C1,2 = − y∗
0 (0)

2u0(0)

[
1 ± iμa(0)√

2
+ O

(
μ2

)]
,

C3,4 = − y∗
0 (1)

2u0(1)

[
1 ± iμa(1)√

2
+ O

(
μ2

)]
,

a(x) = 1

q(x)

d

dx
ln(qu2

0),

where the plus sign goes with C1 and C3 and the negative sign goes with C2 and C4.
Thus, the constants Ck are found within an error of order O

(
μ2

)
. We try to

simplify the solution y(x,μ) in such a way that its error is not larger than O
(
μ2

)
.

Taking
xe−bx/μ = O(μ), 0 ≤ x ≤ 1.

for b ∼ 1 into account, we get

y(x,μ) = 2u0(x)	
[

C1 exp

(
r1
μ

∫ x

0
q(x) dx

+ C3 exp

(
r3
μ

∫ x

1
q(x)dx

)]
+ y∗

0 (x) + O
(
μ2

)
. (4.3.21)

If we accept a larger error of order O(μ), then the solution can be simplified
further,

y(x,μ) = y∗
0 (x) − 	

[
y∗
0 (0) exp

(
r1q0x

μ

)
+ y∗

0 (1) exp

(
r3q1(x − 1)

μ

)]
+ O(μ),

(4.3.22)
where q0 = q(0) and q1 = q(1).
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Example 2
Study the deflection of a beam on an elastic foundation in a neighborhood of the

point of discontinuity of the load. As an example, we consider the equation with
constant coefficients

μ4 d4y

dx4
+ y = g(x),

{
g(x) = 0, x < 0,
g(x) = 1, x ≥ 0.

In a neighborhood of the point of discontinuity, x = 0, of the load, the solution has
the form:

y = C3 er3x/μ + C4 er4x/μ, r3,4 = 1√
2

± i√
2
, x < 0,

y = C1 er1x/μ + C2 er2x/μ + 1, r1,2 = − 1√
2

± i√
2
, x > 0.

The constants Ck are found from the continuity conditions on the function y and its
first three derivatives at x = 0,

C3rm
3 + C4rm

4 = δm0 + C1rm
1 + C2rm

2 , m = 0, 1, 2, 3,

δ00 = 1, δm0 = 1, m > 0.

The solution of this system is

C1 = C2 = −1/4, C3 = C4 = 1/4.

Now, we find

y(x1) = 1

2
ex1 cos x1, x1 = x

μ
√
2
, x < 0;

y(x1) = 1 − 1

2
e−x1 cos x1, x ≥ 0.

The deflection, y1(x), of a clamped beam (y(0) = y′(0) = 0) and the deflection,
y2(x), of a freely supported beam (y(0) = y′′(0) = 0) are given by the expressions

y1(x1) = 1 − e−x1(cos x1 + sin x1), x ≥ 0.

y2(x1) = 1 − e−x1 cos x1, x ≥ 0.

In Fig. 4.2, the functions y(x), y1(x) and y2(x) are plotted as curves 0, 1 and 2,
respectively.
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Fig. 4.2 Plot of y(x), y1(x)

and y2(x) as curves 0, 1 and
2, respectively

The maximal deflection values are

ymax = y(3π/4) = 1.0335,

ymax
1 = y(π) = 1.0432,

ymax
2 = y(3π/4) = 1.0670.

Away from the point x = 0, y � 1. Therefore, in a neighborhood of the point of
discontinuity of the load or the point of support of the beam, the deflection slightly
increases. A similar effect also exists for a beam with variable parameters since, in
this case, the main terms of the asymptotic expansions are the same as for a beam
with constant parameters.

4.3.5 Regular Degeneracy

We consider now the case of a regular degeneracy firstly studied by Vishik and
Lyusternik [62]. Let the characteristic equation (4.2.4) or (4.1.7) have l roots of the
form (4.3.14) with l < n. The other m = n − l roots are identically equal to zero. In
other words, we consider Eq. (4.1.16) or system (4.2.15). We assume that

m1 = n1 − l1 ≥ 0, m2 = n2 − l2 ≥ 0, m = m1 + m2, (4.3.23)

where n1 and n2 are the same as in (4.3.3).
As before, with an error of order O

(
e−c/μ

)
, where c > 0, matrix (4.3.8) is

D =
[

D1 D01 0
0 D02 D2

]
, D(μ) �

∞∑

k=0

μk D(k), (4.3.24)

where the rectangular matrices D1, D01, D02, and D2 are of dimensions n1 × l1,
n1 × m, n2 × m, and n2 × l2, respectively.
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We assume that
rank D j (0) = l j , j = 1, 2. (4.3.25)

If
det D(0) �= 0, (4.3.26)

then, for a sufficiently small μ, conditions (4.3.9) holds. Then, the required solution
exists and has the asymptotic expansion

y �
∞∑

k=0

μk yk(x) +
∑

j=1,2

∞∑

k=0

μk z( j)
k (ξ j ) + y∗(x,μ), (4.3.27)

where the first term is a solution of type (4.1.20) with (4.2.19) corresponding to the
zero roots of the characteristic equations (4.1.7) or (4.2.4). The second term consists
of the edge effect integrals at the edges x = x1 and x = x2 and

ξ1 = x − x1
μ

, z(1)
k (ξ1) → 0 as ξ1 → ∞,

ξ2 = x − x2
μ

, z(2)
k (ξ2) → 0 as ξ2 → −∞.

(4.3.28)

The last term in (4.3.27) is the particular solution (4.1.30) or (4.2.29). If γ(x) ≡ 0,
then the particular solution y∗(x,μ) is also slowly varying and can be included in
the first sum in (4.3.27).

We consider Eq. (4.1.32) with boundary conditions of the special type

dk y

dxk
= bkj for x = x j , k = 0, 1, . . . , m j + l j − 1, j = 1, 2, (4.3.29)

where bkj do not depend on μ. If conditions (4.3.14) hold, then, as μ → 0, the
boundary value problem (4.1.32), (4.3.29) degenerates to problem (4.1.34) with the
boundary conditions

dk y

dxk
= bkj for x = x j , k = 0, 1, . . . , m j − 1, j = 1, 2. (4.3.30)

If the solution y0(x) of the degenerate problem exists and is unique, then, for suffi-
ciently small μ, the solution y0(x,μ) of the original problem exists and is unique.
The solution has the form (4.3.27) where some of the first terms in the second sum
are equal to zero,

y(x,μ) �
∞∑

k=0

μk yk(x) +
∑

j=1,2

∞∑

k=m j

μk z( j)
k (ξ j ). (4.3.31)
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The passage to the limit

lim
μ→0

y(x,μ) = y0(x) (4.3.32)

in the segment x1 + ε ≤ x ≤ x2 − ε, ε > 0, is uniform in x together with all
derivatives. In the segment x1 ≤ x ≤ x2 − ε it is uniform in x together with m1 − 1
derivatives, and in the segment x1 + ε ≤ x ≤ x2 it is uniform in x together with
m2 − 1 derivatives.

The appearance of pure imaginary roots, λk(x), of the characteristic equation
(4.1.19) or (4.2.4) makes the construction of the solution significantly more difficult
since, in this case, condition (4.3.11) does not usually hold and the set of zeros of the
function D(μ) has the accumulation pointμ = 0.Under such conditions, we consider
the homogeneous problem of Sect. 4.4 and do not consider the non-homogeneous
problem in this book. We find approximate asymptotic solutions of some boundary
value problems of mechanics of solids for which regular degeneracy takes place.

4.3.6 Non-absolutely Flexible String

The deflection of a non-absolutely flexible string is described by the equation

d2

dx21

(

E I
d2y

dx21

)

− T
d2y

dx21
= g1(x1), 0 ≤ x1 ≤ l,

where E I is the string bending stiffness, T is the tension and g1(x1) is the intensity
of the external load.

The introduction of the non-dimensional variables

x1 = lx, 0 ≤ x ≤ 1, E I = E0 I0 p(x) > 0, g1(x1) = E0 I0g(x)

transforms the equation into

μ2 d2

dx2

(
p(x)

d2y

dx2

)
− d2y

dx2
= g(x), μ2 = E0 I0

T l2
, (4.3.33)

where μ > 0 is a small parameter.
We consider the boundary conditions

y(x) = dy

dx
= 0 for x = 0, x = 1, (4.3.34)

corresponding to fixing the string edges.
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Find the first terms of the asymptotic expansions of the solution of the boundary
value problem (4.3.33) and (4.3.34) assuming for simplicity that p(x) ≡ 1.

The characteristic equation (4.1.19),λ2−1 = 0, has one positive and one negative
root. Therefore, as μ → 0, problem (4.3.33) and (4.3.34) degenerates into the regular
boundary value problem

− d2y0
dx2

= g(x), y0(0) = y0(1) = 0. (4.3.35)

The solution of this problem can be represented by three sums (4.3.27):

y �
∞∑

k=0

μk yk(x) +
∑

j=1,2

∞∑

k=1

μk z( j)
k (ξ j ),

where

ξ1 = x

μ
, z(1)

k (ξ1) → 0 as ξ1 → ∞,

ξ2 = x − 1

μ
, z(2)

k (ξ2) → 0 as ξ2 → −∞.

The first sum provides the slow varying part of the solution and the other two sums
(for j = 1, 2) provide the edge effect integrals. It is convenient to evaluate the terms
in these sums step by step. We show how this can be done.

Let solution (4.3.35) be found

y0(x) = xg2(1) − g2(x), g2(x) =
∫ x

0

(∫ t

0
g(t1)dt1

)
dt.

In general, this solution does not satisfies the boundary conditions y′(x) = 0 at x = 0
and x = 1, which were omitted in the transition from the original problem (4.3.33)
and (4.3.34) to the degenerate problem (4.3.35). We consider the edge x = 0 and
add to the solution y0 the edge effect integral

y(x,μ) = y0(x) + Cμe−x/μ.

For C = y′
0(0), the condition y′(x) = 0 at x = 0 holds. If this condition is also

satisfied at x = 1, we get an approximate solution of the form

y(x,μ) = y0(x) + μy′
0(0) e−x/μ − μy′

0(1) e(x−1)/μ.

As before, we neglect the mutual influence of the edge effects. This allows an error
of order ε = e−1/μ, i.e. we approximately consider ε = e−1/μ = 0.
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Now the obtained solution does not satisfies the conditions y(0) = y(1) = 0. The
residual has order μ. We assume that

y(1)(x,μ) = y0(x) + μy1(x) + μy′
0(0) e−x/μ − μy′

0(1) e(x−1)/μ.

The function y1(x) can be found from the solution of the boundary value problem

d2y1
dx2

= 0, y1(0) = −y′
0(0), y1(1) = y′

0(1).

Therefore y1(x) = −y′
0(0) + x(y′

0(0) + y′
0(1)).

So far, the function y(1)(x,μ) does not satisfy the conditions y′
1(0) = y′

1(1) = 0.
The residual has order μ. The next step should be refining the edge effect integrals.
In such a manner, one can find any number of terms of series (4.3.27).

4.3.7 Axisymmetric Deformation of a Shell of Revolution

The thin shell theory provides numerous problems to be solved by asymptotic meth-
ods [10, 28, 29, 30, 56].We consider a system of equations describing the axisymmet-
ric deformation of a thin shell of revolution. We write three equations of equilibrium
of a shell in the form [31, 56]:

dT1
ds

+ B ′

B
(T1 − T2) − Q1

R1
+ q∗

1 = 0,

d Q1

ds
+ B ′

B
, Q1 + T1

(
1

R1
+ κ1

)
+ T2

(
1

R2
+ κ2

)
+ q∗

n = 0,

d M1

ds
+ B ′

B
(M1 − M2) + Q1 = 0, ()′ = d

ds
,

(4.3.36)

where s in the length of the meridian arc. The shape of the neutral surface is char-
acterized by the functions B(s), R1(s), R2(s), θ(s) (see Fig. 4.3), where B(s) is the
distance between a point on the neutral surface and the axis of revolution, R1(s) and
R2(s) are the main radii of curvature and

R1 = −dθ

ds
, R2 = B

sin θ
, B ′ = − cos θ.

Here, T1 and T2 are the stress-resultants in the neutral surface, Q1 is the transverse
shear force, M1 and M2 are the bending moments, q∗

1 and q∗
n are the intensity of the

external distributed loads in the projections on the tangent and on the normal to the
shell.

The stress-resultants and themoments are related to the deformations of the neutral
surface by the formulas:
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Fig. 4.3 Functions
characterizing the shape of
the neutral surface

B

w

s
O

O'

R2
u

θ

T1 = K (ε1 + νε2), T2 = K (ε2 + νε1), K = Eh

1 − ν2
,

M1 = D(κ1 + νκ2), M2 = D(κ2 + νκ1), D = Eh3

12(1 − ν2)
, (4.3.37)

where E , ν, h are Young’s modulus, Poisson’s ratio and the shell thickness, respec-
tively. The tensile deformations of the neutral surface ε1 and ε2 and its bending
deformations κ1 and κ2 are related to the displacements u(s), w(s) (see Fig. 4.3) as

ε1 = du

ds
− w

R1
, ε2 = B ′

B
u − w

R2
,

κ1 = d2w

ds2
+ 1

R1

du

ds
, κ2 = B ′

B

(
dw

ds
+ u

R1

)
. (4.3.38)

Equations (4.3.36)–(4.3.38) is a closed system of order six. The system becomes
linear if we neglect the nonlinear terms T1κ1 + T2κ2 in the second equation in
(4.3.36). The role of these terms is clarified below.

At each edge of the shell, one should introduce three boundary conditions denoted
by Ci , Si , i = 1, 2, 3, 4,

u = w = 0, {w′ = 0 or M1 = 0} C1 or S1
T1 = w = 0, {w′ = 0 or M1 = 0} C2 or S2
u = Q1 = 0, {w′ = 0 or M1 = 0} C3 or S3

T1 = Q1 = 0, {w′ = 0 or M1 = 0} C4 or S4 (4.3.39)

In particular, the conditions of clamped type are denoted by C1, freely support by S2,
and free edge by S4. If nonzero displacements or forces are introduced at the edges
then the boundary conditions are non-homogeneous.
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One often uses a simplified approach for the analysis of shells, the so-called
membrane theory, when a shell is assumed to be absolutely flexible, i.e. M1 =
M2 = Q1 = 0. As a result one gets only the first two equations from the three
equations in (4.3.36)

dT 0
1

ds
+ B ′

B

(
T 0
1 − T 0

2

)
+ q∗

1 = 0,
T 0
1

R1
+ T 0

2

R2
+ q∗

n = 0. (4.3.40)

Together with relations (4.3.37) and (4.3.38), system (4.3.40) has second order.
Therefore, from the three boundary conditions (4.3.39) one should keep only one,
namely, the first condition u = 0 or T1 = 0.

A sufficiently accurate approximate solution of the original system (4.3.36) can
be obtained as a sum of the membrane solution and the edge effect integrals in
neighborhoods of the shell edges s = s1 and s = s2.

Introduce the characteristic size, R, of the neutral surface and refer to it all linear
sizes. Introduce a small parameter μ by the formula

μ4 = h2

12R2(1 − ν2)
.

Then, system (4.3.36)–(4.3.38) transforms into two equations in the displacements
u(s) and w(s):

L11u + μ4N11u + L13w + μ4N13w + q1 = 0,

L31u + μ4N31u + L33w + μ4N33w + qn = 0,
(4.3.41)

where

L11u = 1

1 − ν2

(
d2u

ds2
+ B ′

B

du

ds
−

(
B ′

B

)2

u + νB ′′

B

)

,

L13w = 1

1 − ν2

(
B ′c2w

B
− (Bc1w)′

B

)
,

L31u = 1

1 − ν2

(
c1

du

ds
+ B ′c2u

B

)
,

L33w = − 1

1 − ν2

(
w

R2
1

+ 2νw

R1R2
+ w

R2
2

)

,

N33 = −d4w

ds4
− 2B ′

B

d3w

ds3
+ · · · ,

c1 = 1

R1
+ ν

R2
, c2 = ν

R1
+ 1

R2
, q1 = q∗

1

Eh
, q2 = q∗

2

Eh
.
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We keep only the main terms of the operator N33 and do not show the other operators
Ni j since they are not used in the construction of the main terms of the solution.

We seek edge effect integrals in the form (4.2.3):

wk(s,μ) =
∞∑

n=0

μnwk
n(s) exp

(
1

μ

∫
λ(s) ds

)
,

uk(s,μ) = μ

∞∑

n=0

μnuk
n(s) exp

(
1

μ

∫
λ(s) ds

)
, k = 1, 2, 3, 4,

(4.3.42)

After substitution in system (4.3.41) we find

λ4(s) + 1

R2
2(s)

= 0, wk
0(s) = B−1/2R3/4

2 , uk
0(s) = 1

λ

(
1

R1
+ ν

R2

)
wk
0(s).

(4.3.43)

For the particular case of a circular cylindrical shell, R1 = 0, R2 = B = 1 and
system (4.3.41) transforms into

1

1 − ν2

(
d2u

ds2
− ν

dw

ds

)
+ q1 = 0,

1

1 − ν2

(
ν

du

ds
− w

)
− μ4 d4w

ds4
+ qn = 0.

(4.3.44)

Eliminating the function u, we get a fourth order equation for w(s),

μ4 d4w(s)

ds4
+ w(s) = qn(s) − ν I (s),

u(s) =
∫ s

s0

[
νw(s) −

(
1 − ν2

)
I (s)

]
ds, I (s) =

∫ s

s0
q1(ξ) dξ.

(4.3.45)

The homogeneous equation (4.3.45) describes the edge effect. Note that this equation
is identical to the equation for the deflection of a beam on an elastic foundation
(4.3.20).

Neglecting terms with multiplier μ4 in (4.3.44), we come to the membrane system
of equations:

d2u

ds2
= q1 − ν

dqn

ds
, w = ν

du

ds
+

(
1 − ν2

)
qn . (4.3.46)

4.3.8 Shell Deformation Under External Pressure

We find approximate expressions for the displacements u andw of a cylindrical shell
under an external uniformnormal pressure, qn .We introduce the boundary conditions
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of free support type S2 in (4.3.39) at the edges x = 0 and x = l in the form

du

ds
= w = d2w

ds2
= 0 for s = 0, s = l.

The membrane part of the solution is

u0 = C + νqns, w0 = qn,

where the constant C is unknown so far since the given boundary conditions do not
resist axial displacement of the shell. When constructing a membrane solution, we
satisfy the condition

T1 = du

ds
− νw = 0.

We add edge effect integrals to the obtained membrane solution in order to satisfy
the boundary conditions w = d2w/ds2 = 0, the first of which does not hold for the
membrane solution. Hence

u = C + νqns + μνqn√
2

[
e−s1(cos s1 − sin s1) − es2(cos s2 + sin s2)

]
,

w = qn(1 − e−s1 cos s1 − es2 cos s2), s1 = s

μ
√
2
, s2 = s − l

μ
√
2
.

This solution satisfies equations (4.3.44) exactly. At the same time, the boundary
conditions S2 in (4.3.39) hold with an error of order exp(−l/(μ

√
2)). Therefore, for

short shells, for which l = L/R � 1, one should take the mutual influence of the
edge effects into account. Here we assume that l ∼ 1.

In Fig. 4.4 we plot the functions u(s) and w(s) for l = 2, μ = 0.1, ν = 0.3,
qn = 1, C = −νl.

Fig. 4.4 Plot of the
functions u(s) and w(s)

0

w(s)

u(s)

1

1

s2
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4.3.9 Shell Deformations Under Axial Force

Here we examine the displacements in a cylindrical shell under axial tension or
compression under the assumption that the following boundary conditions are given
at the shell edges:

T1 = T 0
1 , w = d2w

ds2
= 0 for s = 0, s = l.

Due to the first equation in (4.3.36), T1(s) ≡ T (0)
1 . Taking

T1 = Eh

(1 − ν2)R

(
du

ds
− νw

)

into account, we obtain the membrane solution

u(0) = C + as, w(0) = νa, a = T 0
1 R

Eh
, (4.3.47)

where C is an arbitrary constant.
Find the edge effect integrals that should be added to the obtainedmembrane solu-

tion to satisfy the boundary conditions for the deflectionw. Consider a neighborhood
of the edge s = 0. Here, as in Sect. 4.3.8, the solution has the form

u = C + as + μν2a√
2

e−s1(cos s1 − sin s1),

w = νa
(
1 − e−s1 cos s1

)
, s1 = s

μ
√
2
.

(4.3.48)

Find the validity limits for the obtained solution resulting from an increase in
the axial force |T 0

1 | (under compression T 0
1 < 0). For that purpose, we consider the

second equation in (4.3.36) and keep in it the nonlinear term, T1κ1, that was omitted
when we passed to system (4.3.44). As a result, instead of (4.3.45) for the edge effect
integrals, we get the equation

μ4 d4w

ds4
− 2μ2τ

d2w

ds2
+ w = 0, τ = T 0

1

2Ehμ2 . (4.3.49)

We consider its characteristic equation

λ4 − 2τλ2 + 1 = 0. (4.3.50)

For τ > −1, i.e. under the tension T 0
1 > 0 and for a not too heavy compression,

T 0
1 < 0 and |τ | < 1, Eq. (4.3.7) has two roots with positive real parts and two
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roots with negative real parts. In other words, one can find edge effect integrals. We
construct the integral so that their sum and solution (4.3.47) satisfy the boundary
conditions w = d2w/ds2 = 0 at s = 0. Thus, for |τ | < 1, we get

u = C + as + O(μ), w = w0
[
1 − e−α1(cosβ1 + b sin β1) + O(μ)

]
,

λ1,2 = −
√
1 + τ

2
± i

√
1 − τ

2
= −α ± iβ, b = τ

τ1
, α1 = αs

μ
, β1 = βs

μ
,

and for τ > 1 we get

u = C + as + O(μ), w = w0

[
1 − 1

2τ1

(
λ2
2 e−λ1s/μ − λ2

1 e−λ2s/μ
)

+ O(μ)

]
,

λ1 = √
τ − τ1, λ2 = √

τ + τ1, w0 = νa = νhτ
√
3(1 − ν2)

,

where τ1 = √|1 − τ2|.
We should note that w → ∞ as τ → −1 + 0. For τ = −1 or under the

compressive force T 0
1 = −2Ehμ2, the shell buckles under axial compression. Note

that for τ = +1 the function w(s) is nonsingular since the uncertainty of type 0/0 is
expanded as

w = w0

[
1 − e−ξ(1 + ξ/2) + O(μ)

]
, ξ = s/μ, τ = 1.

4.3.10 Exercises

4.3.1. Solve the boundary value problem (4.3.18) for the particular case c(x) = 1+x
and q(x) ≡ 1 keeping in the solutions only the terms of orders up to μ2 inclusively.
Plot the function y(x,μ) for μ = 0.1.

4.3.2. Find the asymptotic expansion of the solution of the equation μ2y′′ − y +
q(x) = 0, y → 0 as x → ±∞, where q(x) = x for 0 ≤ x ≤ 1 and q(x) ≡ 0 for
x < 0 or x > 1. This equation describes the deflection of a sufficiently long string
on an elastic foundation under a variable load. Plot the function y(x,μ) for μ = 0.2.

4.3.3. In the conditions of Exercise 4.3.2 consider q(x) = 1 and 0 ≤ x ≤ 1. Find
the exact and approximate solutions of the equation μ2y′′ − y +q(x) = 0, as y → 0
and x → ±∞.

4.3.4. Plot the approximate solutions (4.3.21) and (4.3.22) for a beam of variable
thickness when p(x) = (1 + αx)3, c(x) ≡ 1 and g(x) ≡ 1. Consider α = 0.2 and
μ = 0.2.
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4.3.5. Find approximate solutions of equation (4.3.20) similar to solutions (4.3.21)
and (4.3.22) for a beam with two clamped ends y(x) = y′(x) = 0 at x = 0 and
x = 1.

4.3.6. Find the terms of order μ2 of the asymptotic solution of the boundary value
problem (4.3.33) and (4.3.34).

4.3.7. Substituting (4.3.42) in system (4.3.41) derive formulas (4.3.43).

4.3.8. In the conditions of Sect. 4.3.8, consider the boundary conditionsC2 in (4.3.39).

4.3.9. In the conditions of Sect. 4.3.8, consider the boundary conditions of a clamped
edge type C1 in (4.3.39).

4.3.10. Find the deflection, w, of a cylindrical shell under axial tension, or compres-
sion under the assumption that the following boundary conditions are introduced at
the shell edges: T1 = T 0

1 , w = w′ = 0 at s = 0 and s = l.

4.4 Eigenvalue Problems

In this section, we consider the same problems as in Sect. 4.3; however, the equa-
tions and the boundary conditions are assumed to be homogeneous, i.e. we study
Eqs. (4.1.1), (4.1.16), (4.2.1) and (4.2.15) with boundary conditions of type (4.3.3)
for b j (μ) = 0. Let the coefficients of the equations and perhaps also of the boundary
conditions depend on a spectral parameter,�. We seek the eigenvalues� = �(k)(μ)

for which there exist nontrivial solutions of given eigenvalue problems. We limit
ourselves to real �.

4.4.1 Asymptotics Solutions of Eigenvalue Problems

To evaluate � we use Eq. (4.3.10) written in the form

�(�,μ) = det D(�,μ) = 0. (4.4.1)

Here two cases are possible. In the first case, the limit

lim
μ→0

�(�,μ) = �(�, 0) (4.4.2)

exist, but not in the second case.
In the first case, under natural auxiliary conditions, the expansion in integer powers

of μ,
� = �0 + μ�1 + μ2�2 + · · · , (4.4.3)

exists. Here, �0 is a root of the equation �(�, 0) = 0. This case occurs for some
eigenvalue problems (see Sect. 4.3) for which the characteristic equation does not
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have pure imaginary roots. In particular, if the characteristic equation does not have
pure imaginary and zero roots and conditions (4.3.14) hold, then

�(�,μ) = �1(�, 0)�2(�, 0) + O(μ) (4.4.4)

and for each simple root, �0, of the equations � j (�, 0) = 0, j = 1, 2, expansion
(4.4.3) takes place. The eigenfunctions have the character of edge effect integrals
and they are localized in a neighborhood of the corresponding edge of the segment
[x1, x2].

If the boundary conditions (4.3.29) for bkj = 0 are introduced for Eq. (4.1.16) and
the nontrivial roots of equation (4.1.18) satisfy conditions (4.3.14), then, as μ → 0,
the original eigenvalue problem degenerates to a problem for equation (4.1.17) with
boundary conditions (4.3.30) for bkj = 0.

Now we write (4.1.17) and (4.3.30) in the form

L0(�)y ≡
m∑

k=0

ak0(x,�)
dk y

dxk
= 0,

dk y

dxk

∣∣∣∣
x=x j

= 0, k = 0, 1, . . . , m j − 1, j = 1, 2.

(4.4.5)

For each simple eigenvalue,�0, of the degenerate problem (4.4.5), expansion (4.4.3)
exists and the eigenfunction has expansion (4.3.31).

For the last problem, we describe the algorithm for the construction of the eigen-
value and the eigenfunction, limiting ourselves to the evaluation of�1 in (4.4.3). Let
�0 and y0(x) be obtained for the degenerate problem and suppose that �0 is simple,
i.e. the function y0(x) is unique up to a multiple constant. We find functions z( j)

m j (ξ j )

satisfying the equation

n∑

k=0

ak+m(x j , 0)
dk z( j)

m j

dξk
j

= 0, ξ j = x − x j

μ
, j = 1, 2, (4.4.6)

the damping conditions (4.3.28) and the boundary conditions at ξ j = 0:

dm j z( j)
m j

dξ
m j
j

= −dm j y0(x j )

dxm j
, j = 1, 2,

dk z( j)
m j

dξk
j

= 0, k = m j + 1, m j + 2, . . . , m j + l j − 1.

(4.4.7)

The function z( j)
m j (ξ j ) exists and is unique.

For the function y1(x) we obtain the eigenvalue problem
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L0(�0)y1 = ϕ1(x),

ϕ1(x) =
m∑

k=0

ak1(x,�0)
dk y0
dxk

+ c1�1, c1 =
m∑

k=0

∂ak0(x,�0)

∂�0

dk y0
dxk

= 0,

dk y1
dxk

∣∣
∣∣
x=x j

= 0, k = 0, 1, . . . , m j − 2, (4.4.8)

dm j −1y1

dx
m j −1
j

= d j = −dm j −1z( j)
m j

dξ
m j −1
j

∣∣
∣∣
ξ j =0

, j = 1, 2.

Since the homogeneous problem corresponding to (4.4.8) has a nontrivial solution,
y0(x), the non-homogeneous problem (4.4.8) does not have a solution for all right
sides. The compatibility condition for c1 �= 0, which is used for evaluating �1, is
written in the form

∫ x2

x1
ϕ1(x)z(x) dx − (−1)m1am0(x2,�0)d2

dm1 z(x2)

dxm1
2

+ (−1)m2am0(x1,�0)d1
dm2 z(x1)

dxm2
1

= 0, (4.4.9)

where z(x) is a nontrivial solution of the eigenvalue problem conjugated to (4.4.5)

m∑

k=0

(−1)k dk

dxk

[
ak0(x,�0)z

] = 0,

dk z

dxk

∣∣∣
∣
x=x j

= 0, k = 0, 1, . . . , m − m j − 1, j = 1, 2.

(4.4.10)

If problem (4.4.5) is self-adjoint, then z(x) = y0(x) in (4.4.9).
If the characteristic equation has one or several pairs of pure imaginary roots,

then limit (4.4.2) may not exist. For example, if Eq. (4.1.7) has only one pair of pure
imaginary roots, λ1,2 = ±iq(x,�), and have no zero roots, then the determinant
(4.4.1) is given in the form

�(�,μ) = a(�,μ) sin(μ−1ϕ(�) + �(�,μ)) = 0, ϕ(�) =
∫ x2

x1
q(x,�) dx .

(4.4.11)

If r = ∂ϕ/∂� �= 0, then Eq. (4.4.11) has dense roots because its small multiplier μ
makes it fast oscillating. The distance between neighboring roots has order μ and is
equivalent to

�(k+1) − �(k) � πμr−1. (4.4.12)

Later, we shall find asymptotic solutions for some vibrations problems.
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4.4.2 Vibrations of Non-absolutely Flexible Strings

The free vibrations of a non-absolutely flexible string are described by the equation

−E J
d4y

dx41
+ T

d2y

dx21
+ ρω2y = 0, 0 ≤ x1 ≤ l,

where E J is the bending stiffness, T is the tension, ρ is the linear density, ω is
the vibrations frequency, and l is the string length. We write this equation in non-
dimensional variables as

− μ2 d4y

dx4
+ d2y

dx2
+ �y = 0, 0 ≤ x ≤ 1, (4.4.13)

where

μ2 = E J

T l2
, � = ρω2l2

T
, x1 = lx .

As μ → +0, we obtain asymptotic expansions of the eigenvalues � of (4.4.13)
with the boundary conditions

y = dy

dx
= 0 at x = 0, x = 1. (4.4.14)

The asymptotic expansions of the integrals of equation (4.4.13) are found in Exercise
4.1.5 and they can be used to satisfy the boundary conditions (4.4.14). However, now
we face difficulties since � = �0 + μ�1 + · · · . With this in mind, we apply an
iteration method (see Sect. 4.3.6).

For the zeroth approximation we use the degenerate problem,

d2y0
dx2

+ �0y0 = 0, y0(0) = y0(1) = 0, (4.4.15)

which describes an absolutely flexible string. Here, regular degeneracy, due to
Vishik–Lyusternik, takes place. The solution of the problem is

�0 = n2π2, y0 = sin nπx, n = 1, 2, . . . ,

and the solution of the original problem has the form

y(x,μ) �
∞∑

k=0

μk yk(x) +
∑

j=1,2

∞∑

k=1

μk z( j)
k (ξ j ), (4.4.16)

where the notation of Sect. 4.3.6 is used.
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To satisfy the boundary conditions y′(0) = y′(1) = 0, we find the edge effect
integrals

z(1)
1 = nπ e−ξ1 , ξ1 = x

μ
, z(2)

1 = (−1)n+1nπ eξ2 , ξ2 = x − 1

μ
.

Therefore,

y(x,μ) � sin nπx + μnπ
[
e−x/μ + (−1)n+1 e(x−1)/μ

]
.

Then we evaluate �1 and y1(x) by means of the eigenproblem

d2y1
dx2

+ �0y1 + �1y0 = 0, y1(0) = −nπ, y1(1) = (−1)nnπ.

We obtain
�1 = 4n2π2, y1(x) = nπ(2x − 1) cos nπx .

Thus, the approximate solution of the problem is

� = n2π2 + 4μn2π2 + O(μ2), n = 1, 2, . . . ,

y(x,μ) = sin nπx + μnπ
[
e−x/μ + (−1)n+1e(1−x)/μ + (2x − 1) cos nπx

]
+ O

(
μ2

)
.

In Fig. 4.5, the first vibrations mode of an absolutely flexible (curve 1) and non-
absolutely flexible strings (curve 2) with clamped ends are plotted. As it may be
expected, the string frequencies increase when the string bending stiffness is taken
into account (μ �= 0).

Fig. 4.5 Absolutely flexible
string (curve 1) and
non-absolutely flexible string
(curve 2) with clamped ends

π
x

1

0

2

1

y
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4.4.3 Vibrations of Strings with Variable Density

The free vibrations of a string with variable thickness are described by the equation

T
d2y

dx21
+ ρ1(x1)ω

2y = 0, y(0) = y(l) = 0,

where T is the tension, ρ1(x1) is the linear density, ω is the vibrations frequency, and
l is the string length.

We write this equation in non-dimensional form

d2y

dx2
+ �ρ(x)y = 0, y(0) = y(1) = 0,

where

x1 = lx, ρ1(x1) = ρ0ρ(x), ρ0 ∼ 1, � = ρ0ω
2

T
.

To find asymptotics for the eigenvalues �n as n → ∞ we introduce the small
parameter μ = �−1/2. Then, the equation takes the form

μ2 d2y

dx2
+ ρ(x)y = 0, y(0) = y(1) = 0, (4.4.17)

similar to the equation in Exercise 4.1.1 and we use the solution obtained in that
exercise:

y(x,μ) �
∞∑

n=0

μnun(x) eiϕ(x)/μ, ϕ(x) =
∫ x

0

√
ρ(x) dx . (4.4.18)

As it was shown in that exercise, the functions un(x) with even n are real and with
odd n are pure imaginary. Assume that

U = u0 + μ2u2 + · · · , V = μv1 + μ3v3 + · · · , v2n+1 = −iu2n+1. (4.4.19)

Then, separating the real and imaginary parts of solution (4.4.18), we find the general
solution

y(x,μ) = C1

[
U cos

(
ϕ

μ

)
− V sin

(
ϕ

μ

)]
+ C2

[
U sin

(
ϕ

μ

)
+ V cos

(
ϕ

μ

)]
,

(4.4.20)

whereC1 andC2 are arbitrary constants. After substituting this solution in the bound-
ary conditions (4.4.17) and equating to zero the determinant of second order we get
the following equations for μ:
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tan
ϕ1

μ
= V (0)U (1) − U (0)V (1)

U (0)U (1) + V (0)V (1)
�

∞∑

k=0

akμ
2k+1, ϕ1 =

∫ 1

0

√
ρ(x) dx .

(4.4.21)
The asymptotic expansion of the nth solution of this equation has the form

μn �
∞∑

k=0

ck

(nπ)2k+1 , as n → ∞,

where

c0 = ϕ1, c1 = a0ϕ
2
1, a0 = v1(1)

u0(1)
− v1(0)

u0(0)
.

Evaluating the coefficients ck for large k is troublesome since one needs to divide
series by series and substitute one series into another. For an approximate evaluation
of the roots μn it is more convenient to solve Eq. (4.4.21) directly with an iterative
method while keeping a particular number of terms in expansions (4.4.19).

4.4.4 Vibrations of Beams with Variable Cross-Section

Free vibrations of a beam with variable cross-section are described by the equation

d2

dx21

(

E J (x1)
d2y

dx21

)

− ω2ρ0S1(x1)y = 0, 0 ≤ x1 ≤ l,

where E J in the bending stiffness, ρ0 is the density, S1(x1) in the cross-sectional
area, l is the beam length, and ω is the vibrations frequency.

In the non-dimensional variables

x1 = lx, E J (x1) = E J0 p(x), S1(x1) = S0ρ(x), μ4 = E J0
ρ0S0ω2l4

,

ω =
√

E J0
ρ0S0l4

�, � = 1

μ2 . (4.4.22)

the equation of vibrations of a beam is

μ4 d2

dx2

(
p(x)

d2y

dx2

)
− ρ(x)y = 0, 0 ≤ x ≤ 1.

We find the first terms of the asymptotic expansions of the frequencies and vibra-
tions modes for a beam with clamped ends
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y = dy

dx
= 0 at x = 0, x = 1.

The general solution of equation (4.4.22) is obtained in Sect. 4.1.1. Here we write
the first two terms of its asymptotic expansion:

y(x,μ) = C1(u0 cos z − μv1 sin z) + C2(u0 sin z + μv1 cos z)

+ C3e−z(u0 + μv1) + C4ez1(u0 − μv1),

where Ck are arbitrary constants,

z = 1

μ

∫ x

0
q(x) dx, z1 = 1

μ

∫ x

1
q(x) dx, q(x) =

(
ρ

p

)1/4

,

u0 = p−1/2q−3/2, v1 = u0

8

∫ x

0

[
15(q ′)2 − 10qq ′′

q3 + 3(p′)2 − 4pp′′

p2q

]
dx .

After substitution into the boundary conditions and setting the determinant of fourth
order to zero we get, to an accuracy of order μ2,

cos z(1) − μb1 sin z(1) + O
(
μ2

)
= 0, b1 = v1(1)

u0(1)
,

whence we find (see Example 1 in Sect. 1.5)

μn = f1cn

c2n − f1/b1
, cn = π

2
(2n + 1), f1 =

∫ 1

0
q(x) dx .

The value of �n , which is proportional to the vibrations frequency ωn , is defined by
the formula

�n =
(

cn

f1
− 1

b1cn

)2

+ O
(

n−1
)

, as n → ∞.

4.4.5 Axisymmetric Vibrations of Cylindrical Shells

Now, we study the spectrum of free axisymmetric vibrations of a circular cylindrical
thin shell with freely supported edges.

Add to Eq. (4.3.44) the inertial terms:

1

1 − ν2

(
d2u

ds2
− ν

dw

ds

)
+ �u = 0,

1

1 − ν2

(
ν

du

ds
− w

)
− μ4 d4w

ds4
+ �w = 0,

(4.4.23)

http://dx.doi.org/10.1007/978-3-319-18311-4_1
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where

� = ρω2R2

E
, μ4 = h2

12(1 − ν2)R2 .

Here, u andw are the projections of the displacement in the directions of the genera-
trix and normal,ω is the vibrations frequency, ρ is the density, E is Young’s modulus,
ν is Poisson’s ratio, μ is a small parameter, and � is the frequency parameter. The
boundary conditions of free support type have the form

du

ds
= w = d2w

ds2
= 0 at s = 0, s = l = L

R
, (4.4.24)

where L is the shell length and R is the shell radius.
For μ = 0, we get the equations for the membrane vibrations of a shell. Since the

order of the system of equations reduces from 6 to 2 we should keep only one of the
three boundary conditions in (4.3.39), namely S2,

T1 = 0 or
du

ds
− νw = 0 for s = 0, s = l.

The solution of both the original and the membrane problems have the same form:

u = u0 cos
nπs

l
, w = w0 sin

nπs

l
, n = 0, 1, . . . , (4.4.25)

Substituting this in system (4.4.23) leads to an equation for evaluating the frequency
parameter �:

(
� − k2n

1 − ν2

) (
� − 1

1 − ν2
− μ4k4n

)
− ν2k2n

(1 − ν2)2
= 0, kn = nπ

l
. (4.4.26)

For each n this equation has two roots: �n1 and �n2. For fixed μ and n → ∞,

�n1 ∼ k2n
1 − ν2

, �n2 ∼ μ4k4n,

i.e. both frequency series have accumulation point � = ∞.
For μ = 0 we denote the roots of equation (4.4.26) as �0

n1 and �0
n2:

�0
n1 = k2n

1 − ν2
+ O(1), �0

n2 = 1− ν2

(1 − ν2)k2n
+ O

(
n−4

)
, n → ∞, (4.4.27)

i.e. the membrane shell vibrations have two frequency series. The series with �0
n1

has accumulation point � = ∞, and the other with �0
n2 has accumulation point

� = 1.
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Comparing the roots �nj and �0
nj of Eq. (4.4.26) for μ �= 0 and μ = 0 we get

�nj = �0
nj + O

(
μ4

)
, j = 1, 2.

The residual term in the last formula for j = 2 is non-uniform in n since, for n ∼ μ−1,
it has the order of the main term.

We now consider the spectrum of free axisymmetric vibrations of a thin circular
cylindrical shell with clamped edges. The complete eigenproblem consists in the
system of equation (4.4.23) and the boundary conditions C1 in (4.3.39),

u = w = dw

ds
= 0 for s = 0, s = l. (4.4.28)

We compare the solution of the complete eigenproblem with the solution of the
degenerate problem

d2u0

ds2
+ a(�0)u0 = 0, u0 = 0 for s = 0, s = l, (4.4.29)

a
(
�0

)
= �0

[
1 − (1 − ν2)�0

]

1 − �0 , w0 = ν

1 − (1 − ν2)�0

du0

ds
,

which is obtained for μ = 0 after eliminating w from system (4.4.23). This gives
the frequencies and modes for the membrane vibrations of a shell. The frequencies
of the free membrane vibrations are evaluated by the equation

a
(
�0

nj

)
= n2π2

l2
, n = 1, 2, . . . , j = 1, 2

and coincide with the frequencies of a freely supported shell for n > 0 [see (4.4.26)].
The vibrations mode is the following:

u0 = sin
nπs

l
, w0 = νnπ

l[1 − (1 − ν2)�0] cos
nπs

l
. (4.4.30)

In the present case, the complete eigenproblem does not have a simple solution of
type (4.4.25) satisfying all the boundary conditions (4.4.28). So, firstly we find the
general solution of system (4.4.23),

u =
6∑

k=1

Ckuk epk s, w =
6∑

k=1

Ckwk epk s, (4.4.31)

where Ck are arbitrary constants and uk and wk satisfy the equation
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[
p2k +

(
1 − ν2

)
�

]
uk − ν pkwk = 0,

where pk are obtained from the polynomial equation of degree 6:

μ4 p6 +
(
1 − ν2

)
�μ4 p4 + (1 − �)p2 + �

[
1 −

(
1 − ν2

)
�

]
= 0. (4.4.32)

Let, firstly,� �= 1. Then (see Sect. 1.3) this equation has two roots pk ∼ 1 (k = 1, 2).
For the other four roots pk ∼ μ−1, k = 3, 4, 5, 6, and if � < 1, then all roots have
nontrivial real parts. The edge effect integrals correspond to these roots. If � > 1,
then two of the roots, pk , k = 3, 4, are pure imaginary and they provide oscillating
integrals. In the discussion below, the specific features of the spectrum are explained
with the different behavior of the integrals for � < 1 and for � > 1.

For � < 1, the problem Aμ degenerates regularly into the problem A0 and its
solution can be obtained by an iterative method (see Exercise 4.4.8).

For � > 1, we represent the approximate expression for the roots (4.4.32):

p1,2 = ±ib + O
(
μ2

)
, p3,4 = ± ic

μ
+ O(μ), p5,6 = ± c

μ
+ O(μ), (4.4.33)

where

b2 = �
[
1 − (

1 − ν2
)
�

]

1 − �
, c4 = � − 1

and substitute the general solution (4.4.31) into the boundary conditions (4.4.28).
Equating to zero the obtained sixth-order determinant and after transformations, we
find the relation

sin bl cos
cl

μ
+ O(μ) = 0. (4.4.34)

With the error of O(μ), the left part of this equation is transformed into the product
of two multipliers. Therefore, for � > 1 the spectrum consists of two parts. The
equation sin bl = 0 provides b = nπ/ l and due to (4.4.33) has roots coinciding with
the eigenvalues of the membrane vibrations problem A0 [see (4.4.29)].

From the equation cos(cl/μ) = 0 we calculate

�n = 1 +
[
(2n + 1)πμ

2l

]4
, n = 1, 2, . . . (4.4.35)

These are additional eigenvalues which do not have analogs in the membrane vibra-
tions problem.

It should be underlined that the above consideration have a sense only if the value
of 1 − � is not close to zero. Indeed, in a neighborhood of � = 1 the estimates
(4.4.33) become non-uniform. An analysis of the residual terms in (4.4.33) shows
that

http://dx.doi.org/10.1007/978-3-319-18311-4_1
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p1,2 = ±ib

{
1 + O

[
μ2

(� − 1)3/2

]}
, pk = rkc

μ

{
1 + O

[
μ2

(� − 1)3/2

]}
,

where k = 3, 4, 5, 6 and r4k = 1. Therefore for � − 1 ∼ μ4/3 the above formulas
are not valid any more.

Find the spectrum of the eigenvalues� for the eigenproblem Aμ [see (4.4.23) and
(4.4.28)] in a neighborhood of the point � = 1 for the free axisymmetric vibrations
of a circular cylindrical thin shell with clamped edges. The point � = 1 is an
accumulation point for the frequencies of the membrane vibrations of the shell.

Assume that � = 1 + μ4/3z and represent Eq. (4.4.32) in the form

q6 − z1q2 + 1 = 0, (4.4.36)

where
p = μ−2/3a1/6q

[
1 + O

(
μ4/3

)]
, a = ν2, z = z1a2/3.

For any z1 (−∞ < z1 < ∞), Eq. (4.4.36) has a pair of pure imaginary roots
q1,2 = ±i x and z1 = (x6 − 1)/x2. We find the other roots with nonzero real parts
from the equation

q4 − x2q2 + 1

x2
= 0.

Substituting the general solution (4.4.31) into the boundary conditions (4.4.28)
and after cumbersome transformations we obtain the equation for evaluating the
unknown x :

tan
(
μ−2/3a1/6lx

)
= 2

(
x3 − 1

) √
x6 + 2x3

4x3 − 1
. (4.4.37)

The parameter � is related to x by the formula

� = 1 + μ4/3a2/3 x6 − 1

x2
. (4.4.38)

4.4.6 Exercises

4.4.1. Find the terms of order μ2 in the expansions for � and y(x) from Sect. 4.4.2.

4.4.2. Find the asymptotic expansions of the eigenvalue �(μ) and eigenfunction
y(x,μ), as μ → 0, for the free vibrations of a non-absolutely flexible string [see
Eq. (4.4.13)] with freely supported edges y = y′′ = 0 for x = 0, x = 1.

4.4.3. Find the asymptotic expansions of the eigenvalues μn , as n → ∞, of the
eigenproblem μ2y′′ + ρ(x)y = 0, y(0) = y′(1) = 0.

4.4.4. In the conditions of Sect. 4.4.3, consider the particular case ρ(x) = 1 + x
corresponding to a string with a linearly varying density being twice larger at one
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end than at the other. Compare the exact and approximate values of μn obtained
from Eq. (4.4.21) with U and V of different accuracy. Plot the graphs of the exact
and approximate eigenfunctions for n = 1, 2, 3.

4.4.5. The vibrations of a bar with a weight attached at one end are described by the
eigenproblem μ2

(
S(x)y′)′ + S(x)y = 0, y(0) = 0, μ2S(x)y′ = my for x = 1. Find

the asymptotic approximations for the first eight values of μn for α = 1, m = 1 if
S(x) = 1 + αx .

4.4.6. Find the asymptotic expansions of the frequencies and modes of the free
vibrations of a clamped beam with constant thickness and linearly varying width.

4.4.7. Compare the frequencies of a complete and a membrane eigenproblems for
the axisymmetric vibrations of a freely supported circular cylindrical thin shell for
R/h = 100, l = 3 and ν = 0.3.

4.4.8. Find a two-term asymptotic expansion for the eigenvalues � < 1 of eigen-
problems (4.4.23) and (4.4.28).

4.4.9. For a clamped cylindrical shell with R/h = 100, l = 3 and ν = 0.3, com-
pare the exact values of the frequency parameter � with the values obtained by the
asymptotic formulas (4.4.8), (4.4.26), (4.4.35) and (4.4.38).

4.5 Eigenfunctions Localized in a Neighborhood
of One End of the Interval

In Sect. 4.4, the spectrum points are associated with oscillating integrals of the sys-
tem for which edge effects integrals are auxiliary. In this section, we consider some
examples where the eigenfunctions are linear combinations of edge effect integrals
exponentially decreasing away from the edge. The study of such examples is impor-
tant since for such eigenfunctions we obtain the lower eigenvalues.

4.5.1 Vibrations of Rectangular Plates

The free vibrations of a rectangular plate are described by the equation

D�2w − ρω2w = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b,

� = ∂2

∂x2
+ ∂2

∂y2
, D = Eh3

12(1 − ν2)
,

where w(x, y) is the plate deflection, a and b are the lengths of the plate sides, ω
is the vibrations frequency, E , ν, h, ρ are Young’s modulus, Poisson’s ratio, plate
thickness and material density, respectively.
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Let the edges y = 0 and y = b be freely supported

w = ∂2w

∂y2
= 0 for y = 0, y = b,

and the edge x = 0 be free

∂2w

∂x2
+ ν

∂2w

∂y2
= 0,

∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2
= 0 for x = 0.

So far, we did not define concretely the boundary conditions at the end x = a since,
for sufficiently large a, they do not affect the result.We nowfind the lowest frequency
for plate vibrations as a → ∞ [56].

After separating variables and using the new variable x1,

w(x, y) = w(x1) sin
πy

b
, x1 = πx

b
(4.5.1)

we obtain the following ordinary differential equation for the function w(x1):

d4w

dx41
− 2

d2w

dx21
+ w − �w = 0, � = ρhω2b4

Dπ4 (4.5.2)

with the boundary conditions at the free edge

d2w

dx21
− νw = 0,

d3w

dx31
− (2 − ν)

dw

dx1
= 0 for x1 = 0. (4.5.3)

If we consider the cylindrical bending of a plate which is infinite in the direction
x1, then � = 1 and the function w does not depend on x1.

If the edges x = 0 and x = a are freely supported, then

w(x1) = sin
bx1
a

, � =
(
1 + b2

a2

)2

> 1

and the parameter � → 1 as b/a → 0.
Let � < 1. We seek a nontrivial solution of equation (4.5.2) in the form

w(x1) = C1 e−sx1 + C2 e−r x1 , s > 0, r > 0,

which satisfies conditions (4.5.3) and w(x1) → 0 as x1 → ∞, where s and r are the
roots of the equation (

z2 − 1
)2 − � = 0,



4.5 Eigenfunctions Localized in a Neighborhood of One End of the Interval 211

and C1 and C2 are arbitrary constants. So, we have

s =
√
1 − √

�, r =
√
2 − s2.

Substituting s and r into the boundary conditions (4.5.3), we obtain the following
equation for �:

s
(

r2 − ν
)2 = r

(
ν − s2

)2
, (4.5.4)

which has only one root � < 1.
Taking ν < 1/2 into account, we approximately obtain

� = 1 − 4ν4

(2 − ν)2
, s =

√
2ν2

(2 − ν)2
.

In particular, for ν = 0.3 we get � = 0.9962, s = 0.0436, r = 1.4135.
The existence of the free edge x = 0 leads to an insignificant decrease of the

parameter � compared to � = 1, and the vibrations mode (assuming w(0) = 1)

w(x1) = 0.8507 e−sx1 + 0.1493 e−r x1

slowly goes down as x1 increases. For ν = 0.5 (rubber), we have � = 0.9571,
s = 0.1472, r = 1.4065, and

w(x1) = 0.7555 e−sx1 + 0.2445 e−r x1 ,

and for ν = 0.1 (foam), we have � = 0.99997, s = 0.0039, r = 1.4142, and

w(x1) = 0.95 e−sx1 + 0.05 e−r x1 .

4.5.2 Vibrations and Buckling of Shells

In Sect. 4.5.1, a decrease of the eigenvalue due to a free edge was insignificant and
less than 1%. Now, in the problems of free vibrations and buckling considered below
the existence of a free or weakly supported edge can reduce the eigenvalue several
times.

We write the linear system of equation for shallow shells [31, 56] in a non-
dimensional form [see also (4.2.53)]

μ2�2w − �k� + Z = 0, μ2�2� + �kw = 0, (4.5.5)
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where

�w = ∂2w

∂x2
+ ∂2w

∂y2
, �kw = k2

∂2w

∂x2
+ k1

∂2w

∂y2
, 0 ≤ x ≤ a, 0 ≤ y ≤ b.

Herew(x, y) and�(x, y) are unknown deflection and stress functions, k1 and k2 are
non-dimensional variables, μ > 0 is a small parameter and

k1 = R

R1
, k2 = R

R2
, μ4 = h2

12(1 − ν2)R2 ,

where R1 and R2 are the radii of curvature, E , ν and h areYoung’smodulus, Poisson’s
ratio and shell thickness, respectively. We let R denote the characteristic linear size
of the coordinates x and y, and Z be the loading term. Further, we consider free
vibrations and buckling of shells. For the free vibrations with frequency ω we have

Z = −ρω2R2

Eμ2 w = c�

μ2 w, � = ρω2R2

Ec
, (4.5.6)

and, for the stability of the membrane, the stress state is given with the initial stress-
resultants T 0

1 and T 0
2 (under tension T 0

i < 0),

Z = 2�

(
t1

∂2w

∂x2
+ t2

∂2w

∂y2

)
, T 0

i = −2�Ehμ2ti , i = 1, 2. (4.5.7)

Here �, which is either a frequency parameter or a loading parameter depending on
the problem under consideration, is the required parameter. We normalize� and also
the parameter c in such a manner to make the characteristic value of � equal to 1.

Assume that, at the edges y = 0 and y = b, the following boundary conditions
of free support type are:

w = ∂2w

∂y2
= � = ∂2�

∂y2
= 0 for y = 0, y = b, (4.5.8)

allowing separation of variables (for ki , ti = const):

w(x, y) = w(x) sin
nπy

b
, �(x, y) = �(x) sin

nπy

b
, n = 1, 2, . . . (4.5.9)

At the edge x = 0, we consider 16 standard variants of the boundary conditions
denoted by Ci , Si , i = 1, 2, . . . , 8.
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u = v = w = 0, {w′ = 0 or M1 = 0} C1 or S1
T1 = v = w = 0, {w′ = 0 or M1 = 0} C2 or S2
u = S = w = 0, {w′ = 0 or M1 = 0} C3 or S3

T1 = S = w = 0, {w′ = 0 or M1 = 0} C4 or S4
u = v = Q∗

1 = 0, {w′ = 0 or M1 = 0} C5 or S5
T1 = v = Q∗

1 = 0, {w′ = 0 or M1 = 0} C6 or S6
u = S = Q∗

1 = 0, {w′ = 0 or M1 = 0} C7 or S7
T1 = S = Q∗

1 = 0, {w′ = 0 or M1 = 0} C8 or S8

(4.5.10)

where u and v are the projections of displacements on the x and y axes, T1 and S are
stress-resultants, Q∗

1 is the generalized transverse force, M1 is the bending moment.
In particular, the conditions of clamped type are denoted by C1, free support (4.5.8)
by S2, and free edge by S8. Compare with the boundary conditions (4.3.39).

We seek eigenfunctions, localized at the edge x = 0 and exponentially decreasing
away from it, in the form

w(x, y) =
4∑

k=1

Ckwk epk x/μ sin
qy

μ
, q = nπμ

b
, (4.5.11)

where Ck are arbitrary constants, pk are the roots of the eighth order equation satis-
fying condition 	 pk < 0 that guarantees decay of solution (4.5.11). For the case of
vibrations, this equation has the form

(
p2 − q2

)4 +
(

k2 p2 − k1q2
)2 − c�

(
p2 − q2

)2 = 0 (4.5.12)

and for buckling,

(
p2 − q2

)4 +
(

k2 p2 − k1q2
)2 + 2�

(
t1 p2 − t2q2

) (
p2 − q2

)2 = 0. (4.5.13)

The functions u, T1, Q∗
1, M1 have the form (4.5.11) and for the functions v, S one

should take cos(qy/μ) instead of sin(qy/μ). Here, we represent expressions for uk ,
vk, . . . in wk (with the index k omitted):

u = μp−1
(

k1w −
(

q2 + ν p2
)

�
)

, T1 = −Eh R−1q2�,

v = μq−1
(

k2w +
(

p2 + νq2
)

�
)

, S = Eh R−1 pq�,

Q∗
1 = −Eh R−1μ

(
p3 − (2 − ν)pq2 + 2�t1 p

)
w,

M1 = Ehμ2
(

p2 − νq2
)

w, � = −
(

k2 p2 − k1q2
) (

p2 − q2
)−2

w.

(4.5.14)
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We denote the generalized transverse force Q∗
1 as

Q∗
1 = Q1 − 1

R

∂H

∂y
+ T 0

1
∂w

∂x
,

where H is the torsion.
A substitution of solutions (4.5.11) into the boundary conditions at x = 0 yields

a system of four equations in Ck . If its determinant vanishes one gets an equation for
evaluating �,

�(�, q) = 0. (4.5.15)

We analyze solution (4.5.11) and Eq. (4.5.15) in the domain of the parameters �, q,
ki , ti , where Eqs. (4.5.12) or (4.5.13) do not have pure imaginary roots since, in this
case, only four of its roots satisfy condition 	 pk < 0.

Depending on the boundary conditions at x = 0 and also on the parameters q, ki

and ti , Eq. (4.5.15) may have or not roots we are interested in. If the root � exists,
the corresponding boundary condition at the edge x = 0 is called weak support.

Following the above scheme, we shall consider a series of particular problems of
free vibrations and buckling of thin shells.

4.5.3 Vibrations of Cylindrical Panels

Consider the free vibrations of a cylindrical panel (curved plate) with free rectangular
edge x = 0 and free supported curvilinear edges y = 0 and y = b. Find the vibrarion
frequencies of a panel for which the vibrationsmodes are localized in a neighborhood
of the edge x = 0 under the assumption that b ∼ 1.

In this case, we should take k1 = 1 and k2 = 0 in the formulas of Sect. 4.5.2.
Equation (4.5.12) has the form

(
p2 − q2

)4 + q4 − 2�q2
(

p2 − q2
)2 = 0, q = nπμ

b
. (4.5.16)

Consider, firstly, a shell closed in the circumferential direction. The periodicity
condition in the direction x provides p = imμ, where m = 1, 2, . . . is the wavenum-
ber in the circumferential direction. Representing Eq. (4.5.16) in the form

� =
(
m2μ2 + q2

)4 + q4

c
(
m2μ2 + q2

)2 ,

we find

min
m

� = 1
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for c = 2q2. Because of that, we compare the value of the required parameter�with
the value � = 1 corresponding to the lowest vibrations frequency for a cylindrical
shell closed in the circumferential direction. For � < 1, Eq. (4.5.16) does not have
pure imaginary roots.

Coming back to a panel with free edge x = 0 [see boundary conditions S8,
(4.5.10)], we find the roots of equation (4.5.16) for � < 1. By (4.5.16), q = nπμ/b.
We assume that n = 1 or n ∼ 1. Then q and μ are small parameters and the roots of
equation (4.5.16) can be represented in the form

p1,2 = −√
q e±iθ+O

(√
q3

)
, p3,4 = −√

q e±i(π/2−θ)+O

(√
q3

)
, (4.5.17)

where � = cos 4θ and
0 < θ <

π

8
. (4.5.18)

In (4.5.17), we write only the roots pk with 	 pk < 0.
For the boundary conditions S8, due to (4.5.14) and (4.5.17) with accuracy of

order q, Eq. (4.5.15) is transformed into

∣
∣∣∣∣∣
∣∣∣

p31 p32 p33 p34
p21 p22 p23 p24

p−4
1 p−4

2 p−4
3 p−4

4

p−3
1 p−3

2 p−3
3 p−3

4

∣
∣∣∣∣∣
∣∣∣

= 0.

After transformations and neglecting the values of order q compared to 1 we get

sin 2θ − sin2 6θ = 0. (4.5.19)

This equation has two roots, θ(1) = 0.36448 and θ(2) = 0.05770, which satisfy
conditions (4.5.18) and, correspondingly, �(1) = 0.113 and �(2) = 0.973.

In Fig. 4.6 we plot the corresponding eigenfunctions w(1)(x) and w(2)(x) given
by the formulas

w(k)(x) = D(k)	
[
C (k)
1 exp

(
−ξ eiθ(k)

)
+ C (k)

3 exp
(

iξ e−iθ(k)
)]

, k = 1, 2,

C (k)
1 = i e2iθ(k) + i e−2iθ(k)

[
cos 6θ(k) − sin 6θ(k)

]
,

C (k)
3 = −i e−2iθ(k) + i e2iθ(k)

[
cos 6θ(k) + sin 6θ(k)

]
,

where ξ = x
√

q .
Here, D(k) are the normalization factors evaluated from the condition

maxx w(k) = 1. The damping rate of w(k)(x) as x → ∞ decreases with q. The
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Fig. 4.6 Eigenfunctions
w(1)(x) and w(2)(x)

w

x

(2)w

w (1)

0

1

10 20

relatively slow damping of the function w(2)(x) (see Fig. 4.6) is explained by the
closeness of �(2) = 0.973 to � = 1 for which system (4.5.5) has oscillating inte-
grals.

Thus, we obtain the values of the roots �(k) for �(q) as q → 0 for Eq. (4.5.15).
Roots �(q) for q > 0 are found in Exercise 4.5.4.

4.5.4 Buckling of Cylindrical Panels

Consider the buckling of a circular cylindrical panel (curved plate) with a weakly
supported curvilinear edge x = 0 under axial compression (see Fig. 4.7). The straight
edges y = 0 and y = b are freely supported.

Now we obtain the type of week support of the edge x = 0. Using the notation
accepted in this subsection we have

Fig. 4.7 Buckling of a
circular cylindrical panel
under axial compression

v

w

u
y

0

x

y=by=0
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T (0)
1 = −2Ehμ2�, k1 = 0, k2 = 1, t1 = 1, t2 = 0,

and Eq. (4.5.13) becomes

(
p2 − q2

)4 + p4 + 2�p2
(

p2 − q2
)2 = 0, q = nπμ

b
, n = 1, 2, . . . (4.5.20)

For b ∼ 1 and n = 1, the parameter q is small. For � < 1, Eq. (4.5.20) has two
roots, pk ∼ 1 and (	 pk < 0), and two roots pk ∼ q2 and (	 pk < 0):

p1,2 = ±ie±iψ + O
(

q2
)

, p3,4 = ±iq2e±iψ + O
(

q4
)

, (4.5.21)

where � = cos 2ψ.
Consider, for example, the boundary conditions of clamped type u = v = w =

w′ = 0, i.e. conditions C1 [see (4.5.10)]. Substituting the values of the roots (4.5.21)
into (4.5.14) we obtain Eq. (4.5.15) in the form

∣
∣∣∣∣∣∣
∣

ν p−1
1 ν p−1

2 p1 p2
−(2 + ν)q2 p−2

1 −(2 + ν)q2 p−2
2 1 1

1 1 1 1
p1 p2 q2 p1 q2 p2

∣
∣∣∣∣∣∣
∣

= 0. (4.5.22)

In the determinant (4.5.22) we cancel common multipliers in the rows and neglect
terms of order q2 compared to 1. With an accuracy of order q2, Eq. (4.5.22) can be
represented as

−(p2 − p1)
2 = 4 cos2 ψ = 0.

It does not have any roots satisfying the condition

0 < ψ <
π

2
, (4.5.23)

i.e. clamped edge is not a weak support.

4.5.5 Exercises

4.5.1. Under the conditions of Sect. 4.5.1, study the effect of the ratio a/b on the
lowest vibrations frequency assuming that the edge x = 0 is free and the edge x = a
is clamped. Assume that ν = 0.3.

4.5.2. The buckling of a rectangular plate 0 ≤ x ≤ a, 0 ≤ y ≤ b, compressed with
force T in the direction y is described by the equation [56]:



218 4 Singularly Perturbed Linear Ordinary Differential Equations

Fig. 4.8 Buckling of
cylindrical panel with
weakly supported
rectangular edge x = 0
under axial compression

y=b

0
x

y

u

w
v

y=0

D�2w + T
∂2w

∂y2
= 0,

where the notation of Sect. 4.5.1 is used. Find the critical force T as a/b → ∞ if
the edges y = 0 and y = b are freely supported and the edge x = 0 is free.

4.5.3. For all 16 types of boundary conditions (4.5.10) develop equations similar to
(4.5.19) and find their roots satisfying condition (4.5.18) [56].

4.5.4. In Sect. 4.5.3 and Exercise 4.5.3, the roots of equation (4.5.15) are found as
q → 0. We recall that q = nπμ/b, n = 1, 2, . . . . For large n and/or for small b, the
assumption q � 1 does not hold any more. Find the roots �(q) of Eq. (4.5.15) for
q ∼ 1. Assume that ν = 0.3.

4.5.5.Consider the buckling of a cylindrical panel with weakly supported rectangular
edge x = 0 under axial compression (see Fig. 4.8). The curvilinear edges y = 0 and
y = b are freely supported.

For different types of boundary conditions at x = 0, analyze the existence of
buckling modes localized near the edge x = 0 and find the critical values of the
force T (0)

2 .

4.5.6. Under the conditions of Sect. 4.5.4, study the dependence of the loading para-
meter �(q) on the value of q assuming that q ∼ 1 and ν = 0.3.

4.6 Answers and Solutions

4.1.1 In the accepted notation for formula (4.1.2), we have

λ = iq(x), q(x) =
(

ρ

p

)1/2

, u0 = (pρ)−1/4,
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un+1 = iu0

2

∫
u0((pu′

n)′ − run) dx .

In the particular case p = ρ = 1 + αx , r = 0 we get

u0 = p−1/2, un = (−iα)n p−βn bn,

where b0 = 1, bn = (2n − 1)2bn−1/(8n), βn = n + 1/2, n = 1, 2, . . .
Series (4.1.2) diverges.

4.1.2 In formula (4.1.2), u(1,2)
0 (x) = (c(x))−1/4,

λ1(x) = −√
c(x), u(1)

n+1(x) = u0

2

∫ x

x (1)
u0(ξ)

d2u(1)
n

dξ2
dξ,

λ2(x) = √
c(x), u(2)

n+1(x) = −u0

2

∫ x

x (2)
u0(ξ)

d2u(2)
n

dξ2
dξ,

and, as with (4.1.11), the lower limit of integration x (1) or x (2) is arbitrary.

4.1.3. q(x) = 1, u0 = p−1/2,

u(k)
1 (x) = 3αu0(x)

8rk

(
1

p(x)
− 1

p(0)

)
, k = 1, 2, 3, 4.

4.1.4. q(x) = (ρ(x))−1/2, u0 = (ρ(x))−3/4,

u(k)
1 (x) = 3αu0(x)

16rk
(q(0) − q(x)), k = 1, 2, 3, 4.

4.1.5. We have

y(k)(x,μ) =
[
u0(x) + μu1(x) + O

(
μ2

)]
exp

(
1

μ

∫
λk(x) dx

)
, k = 1, 2, 3, 4,

λk = qrk, q =
(

c

p

)1/4

, r4k +1 = 0, r1,2 = − 1√
2

± i√
2
, r3,4 = 1√

2
± i√

2
,

and the expressions for u0 and u(k)
1 coincide with those obtained for Eq. (4.1.13). All

integrals y(k)(x,μ) are edge effect integrals.

4.1.6. Two solutions, y1 and y2, of the given equation are slowly oscillating. The
expansion of y1 is of the form

y1(x,μ) =
{

1 − μ2 (iω)3x

2
+ μ4

[
7(iω)5x

8
− (iω)6x2

8

]

+ O
(
μ6

)}

exp(iωx),
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whereω = √
�. The second solution, y2(x,μ), is the complex conjugate of y1(x,μ).

The edge effect integrals have the form

y3,4(x,μ) =
[
1 ± μ

�x

2
+ μ2�2x2

8
+ O

(
μ3

)]
e±x/μ.

4.1.7. Kν(x) �
√

π

2x
e−x

∞∑

n=0

(−1)nan, Iν(x) � ex

√
2πx

∞∑

n=0

an,where a0 = 1,

an = (ν1 − 1) · · · (ν1 − (2n − 1)2)

n!(8x)n
, ν1 = 4ν2.

4.2.1. We seek an asymptotic expansion in the form (4.2.3):

y(x,μ) =
{
cos

x

2
− μ

[
ϕ1(x) cos

x

2
− 1

4
sin

x

2

]
+ O

(
μ2

)}
eq/μ,

z(x,μ) =
{
− sin

x

2
+ μ

[
ϕ1(x) sin

x

2
+ 1

4
cos

x

2

]
+ O

(
μ2

)}
eq/μ,

where q(x) = 2 sin x − x , ϕ1 is the same as in Sect. 4.2.1.

4.2.2. The asymptotic expansions are

y1 = D
[
cos z + μk2t sin z + O

(
μ4

)]
+ y01 + μk2y02 t + O

(
μ2

)
,

y2 = D
[
− sin z + μk2t cos z + O

(
μ4

)]
+ y02 − μk2y01 t + O

(
μ2

)
,

where z = μ−1t + α, and D, α, y01 and y02 are arbitrary constants.
The exact solution of system (4.2.52) has the form

y1 = D1 cos(ν1t + α1) + D2 cos(ν2t + α2),

y2 = − ν1H D1

k2 + ν21
sin(ν1t + α1) + ν2H D2

k2 + ν22
D2 sin(ν2t + α2),

where D1, α1, D2, α2 are arbitrary constants, and

ν21,2 = H

2
− k2 ±

√
H2

4
− Hk2, ν1 ∼ H, ν2 ∼ 1

H
.

For H > 4k2, the values of ν1 and ν2 are real and the vertical position of a top is
stable. A comparison shows that the estimates of the residual terms in the asymptotic
expansion are non-uniform as t → ∞.
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4.2.3. Substituting (4.2.37) in system (4.2.35), at μ0 we get

(F − �)w0 − G�0 = 0, Gw0 + F�0 = 0,

F(λ, s) =
(

λ2 − r2

b2

)2

, G(λ, s) = k2λ
2 − k1r2

b2
,

(4.6.1)

from where follow Eq. (4.2.38) and the relation between w0 and �0.
For μ1 we obtain

(F − �)w1 − G�1 + L1w0 − L2�0 = 0,

Gw1 + F�1 + L2w0 + L1�0 = 0,
(4.6.2)

where

L1w0 =
[
4λw′

0 + 2

(
λ′ + λb′

b

)
w0

] [
λ2 − r2

b2

]
+ 2λ

[
λ2 − r2

b2

]′
w0

=
√

Fλ

b

(
w0

√
bFλ

)′
,

L2w0 = 2λk2w
′
0 + λ′k2w0 + λ(k2b)′

b
w0 =

√
Gλ

b

(
w0

√
bGλ

)′
,

Fλ = ∂F

∂λ
, Gλ = ∂G

∂λ
, ( )′ = d( )

ds
.

From the first equation in (4.6.2) multiplied by bw0 we subtract the second equation
multiplied by b�0. This eliminates the variables w1 and �1 and we obtain

w0

√
bFλ

(
w0

√
bFλ

)′ − w0

√
bGλ

(
�0

√
bGλ

)′

�0

√
bGλ

(
w0

√
bGλ

)′ − �0

√
bFλ

(
�0

√
bFλ

)′ = 0. (4.6.3)

The second equation in (4.6.1) is satisfied if we assume

w0 = √
Fz, �0 = − G√

F
z. (4.6.4)

Then taking (4.2.38) into account, Eq. (4.6.3) is transformed into the equation

(
z2b

∂ f

∂λ

)′
= 0, f = F(F − �) + G2,
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where the function f is as in (4.2.38). For z =
(

b
∂ f

∂λ

)−1/2

, formulas (4.6.4) and

(4.2.39) are equivalent.

4.2.4. The asymptotic expansions of the integrals of the system of equation (4.2.53)
have the form (4.2.37), where the function λ(s) satisfies the equation

f (λ, s) =
(

λ2 − r2

b2

)4

+�

(
t1λ

2 − t2r2

b2

) (
λ2 − r2

b2

)2

+
(

k2λ
2 − k1r2

b2

)2

= 0,

(4.6.5)
and the first coefficients w0 and �0 are the same as in (4.2.39).

4.2.5. Substituting (4.2.47) into system (4.2.35) we find that the functions w0 and
�0 satisfy the system of equations:

d2w0

ds2
+ r40

b3 cosα
�0 = 0,

d2�0

ds2
− r40

b3 cosα
w0 + �b

cosα
w0 = 0,

or the fourth order equation

d2

ds2

(
b3

d2w0

ds2

)
+

(
r80

b3 cos2 α
− �br40

cos2 α

)

w0 = 0. (4.6.6)

For a cylindrical shell of radius R one may assume that b = 1 and α = 0, and for a
conic shell α is the vertex angle and b = b(s) is a linear function of s.

4.2.6. Substituting (4.2.51) into system (4.2.48) and equating the coefficients of μ1
we obtain the following system of two differential equations for w0 and �0:

2

√
k2q

b

(√
k2qb w0

)′ + r41
b4

�0 = 0,

2

√
k2q

b

(√
k2qb �0

)′ +
(

�1 − r41
b4

)

w0 = 0.

Note that in the case of a simple root of the characteristic equation, the coefficients
of the asymptotic series can be obtained by quadratures since, in contrast to the case
under consideration, they are evaluated from first order differential equations [see
(4.1.4), (4.2.9), (4.2.43)].

4.3.1.

y(x,μ) = −1 + 2μ2

c1/4

[
1 + 5μ

48

(
1 − c−3/2

)]
exp

(
− 2

3μ

(
c3/2 − 1

))

− 4 + μ2

(211c)1/4

[
1 − 5μ

48

(
2−3/2 − c−3/2

)]
exp

(
2

3μ

(
c3/2 − 23/2

))
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Fig. 4.9 Asymptotic
solution (solid line) and less
accurate solution obtained
when keeping only the main
terms in μ (dashed line)

x0 1

0.5

y(x)

+1

c
+ 2μ2

c4
+ O

(
μ3

)
, c = c(x).

In Fig. 4.9, we plotted the obtained asymptotic solution (solid line) and the less
accurate solution obtained when keeping only the main terms in μ (dashed line). The
asymptotic solution differs from the exact one by less than 0.001.

4.3.2.

y(x,μ) = μ

2
ex/μ, x ≤ 0,

y(x,μ) = x + μ

2
e−x/μ − 1 + μ

2
e(x−1)/μ, 0 ≤ x ≤ 1,

y(x,μ) = 1 − μ

2
e(1−x)/μ, x ≥ 1.

The error of the obtained solution is not larger than ε = 1/2e−1/μ.
In Fig. 4.10 the graphs of the function q(x) (curve 1) and of the function y(x,μ)

for μ = 0.2 (curve 2) and for μ = 0.05 (curve 3) are plotted. As μ decreases the
curves q(x) and y(x,μ) approach each other.

4.3.3. The approximate solution

y(x,μ) = 1

2
ex/μ, x ≤ 0,

y(x,μ) = 1 − 1

2
e−x/μ − 1

2
e(x−1)/μ, 0 ≤ x ≤ 1,

y(x,μ) = 1

2
e(1−x)/μ, x ≥ 1.

has a discontinuity of order ε = 1/2e−1/μ at the points x = 0 and x = 1.
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Fig. 4.10 Function q(x)

(curve 1), function y(x,μ)

for μ = 0.2 (curve 2) and
μ = 0.05 (curve 3)

y(x)

31

0 1

1

-1 2

2

Fig. 4.11 Exact solution
(curve 1) and asymptotic
expansion (curve 2) for
y(x,μ) with μ = 0.5

-1 0 1 2

1

2 2

x

y(x)

1

The exact solution has the form

y(x,μ) = C ex/μ, C = 1

2

(
1 − e−1/μ

)
, x ≤ 0,

y(x,μ) = 1 − 1

2
e−x/μ − 1

2
e(x−1)/μ, 0 ≤ x ≤ 1,

y(x,μ) = C e(1−x)/μ, x ≥ 1.

In Fig. 4.11 the graphs of the exact solution (curve 1) and of the asymptotic
expansion (curve 2) for the function y(x,μ) for μ = 0.5 are plotted. For 0 ≤ x ≤ 1
the discontinuous asymptotic solution coincides with the exact solution.
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Fig. 4.12 Exact solution
(solid line) and asymptotic
solution (4.3.22) (dashed
line)

10.5

y(x)

0 x

1

4.3.4. In the problem under consideration

q(x) = (1 + αx)−3/4, u0 = (1 + αx)−15/8, a = −9α

2
(1 + αx)−7/4, y∗

0 = 1.

In Fig. 4.12 the exact solution (solid line) and the asymptotic solution (4.3.22) (dashed
line) are plotted.

4.3.5. The solution with an error of order μ2 has the form (4.3.21), where

C1 = r1y∗
0 (0)

u0(0)
√
2

+ μi

q(0)u0(0)
√
2

[
y∗′
0 (0) − y∗

0 (0)u
′
0(0)

u0(0)

]
+ O

(
μ2

)
,

C3 = − r3y∗
0 (1)

u0(1)
√
2

+ μi

q(1)u0(1)
√
2

[
y∗′
0 (1) − y∗

0 (1)u
′
0(1)

u0(1)

]
+ O

(
μ2

)
.

The solution with an error of order μ has the form

y(x,μ) = y∗
0 (x) − 	(y∗

0 (0)(1 − i) er1q0x/μ + y∗
0 (1)(1 + i) er3q1x/μ) + O(μ),

where q0 = q(0) and q1 = q(1).

4.3.6.

y(2)(x,μ) = y(1)(x,μ) + μ2
[

y2(x) + C1 e−x/μ + C2 e(x−1)/μ
]
,

where the function y(1)(x,μ) is found in Sect. 4.3.6.
Firstly, we find C1 = −C2 = y′

1 = y′
0(0)+ y′

0(1). Then from the boundary value
problem

d2y2
dx2

= d4y0
dx4

= −g′′(x), y2(0) = −C1, y2(1) = −C2
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we get y2(x) = −g(x) + (g(0) − C1) (1 − x) + (g(1) − C2) x .

4.3.7. The main terms of (4.3.42) in μ after substituting in system (4.3.41) yields
(the superscript k is omitted)

λ2u0 − λc1w0 = 0,

λc1u0 −
[

λ4(1 − ν2) + 1

R2
1

+ 2ν

R1R2
+ 1

R2
2

]

w0 = 0.

Setting the determinant of the system to zero, we obtain equation (4.3.43) for the
evaluation of λ. The first equation of the system permits to express u0 through w0.
To determine w0 we consider the next approximation in powers of μ:

λ2u1 − λc1w1 + 2λ
du0

ds
+ λ′u0 + B ′c2w0 − (Bc1)′w0

B
− c1

dw0

ds
= 0,

λc1u1 − c21w1 + c1
du0

ds

B ′c2u0

B
− 4λ3 dw0

ds
− 6λ2λ′w0 − 2B ′λ3w0

B
= 0.

Multiply the first equation by c1 and the second by λ and subtract the second from
the first. Then after cancellation of the terms with w1 and u1 we get an equation
for w0:

−λ4
[
4

dw0

ds
+

(
6λ′

λ
+ 2B ′

B

)
w0

]
= 0,

whence taking the equation for λ into account we obtain the required expression
(4.3.43) for w0.

4.3.8.

u = C + νqns + μνqn
√
2 (e−s1 cos s1 − es2 cos s2),

s1 = s

μ
√
2
, s2 = s − l

μ
√
2
,

w = qn
[
1 − e−s1(cos s1 + sin s1) − es2(cos s2 − sin s2)

]
.

As in Sect. 4.3.8, the constant C remains undetermined and the conditions C2 in

(4.3.39) are satisfied with an error of order exp
(
−l/(μ

√
2 )

)
.

4.3.9. The membrane solution is

u0 = 0, w0 = q̃n, q̃n = (1 − ν2)qn .

After adding the edge effect integrals similar to Exercise 4.3.8 we get
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u(1) = μνq̃n
√
2 (e−s1 cos s1 − es2 cos s2), s1 = s

μ
√
2
, s2 = s − l

μ
√
2
,

w(1) = q̃n
[
1 − e−s1(cos s1 + sin s1) − es2(cos s2 − sin s2)

]
.

However this solution does not satisfy conditions u(0) = 0 and u(l) = 0. To remove
this residual we add the first approximation of the membrane solution evaluated from
the boundary value problem

d2u(1)
0

ds2
= 0, u(1)

0 (0) = −μνq̃n
√
2, u(1)

0 (l) = μνq̃n
√
2,

from where we get

u(1)
0 = μνq̃n

√
2

l
(2s − l), w

(1)
0 = μνq̃n

√
8

l
.

Then we add again the edge effect integral to the obtained solution to meet the
conditions w(0) = w(l) = 0 and with an error of order μ2 we obtain

u = μνq̃n
√
2

l
(2s − l) + μνq̃n

√
2

(
e−s1 cos s1 − es2 cos s2

) + O
(
μ2) ,

w = q̃n

[

1 + μν
√
8

l

]
[
1 − e−s1(cos s1 + sin s1) − es2(cos s2 − sin s2)

] + O
(
μ2) .

4.3.10. In a neighborhood of the edge s = 0 we have

w = w0
[
1 − e−α1(cosβ1 + b sin β1)

]
, b =

√
1 + τ

1 − τ
, |τ | < 1,

w = w0

[
1 − 1

λ2 − λ1

(
λ2 e−λ1s/μ − λ1 e−λ2s/μ

)]
, τ > 1,

where the notation of Sect. 4.3.9 is used.

4.4.1. Using the notation of Sect. 4.4.2 for the next iteration we obtain z(1)
2 =

2nπe−ξ1 , z(2)
2 = (−1)n+12nπ e−ξ1 .

For �2 and y2(x) we get the eigenvalue problem

d2y2
dx2

+ �0y2 + �1y1 + �2y0 − d4y0
dx4

= 0, y2(0) = −2nπ, y2(1) = (−1)n2nπ,

from which we obtain

�2 = 12n2π2 + n4π4, y2(x) = 2n2π2(−1 + x − x2) sin nπx + 2nπ(2x − 1) cos nπx .
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4.4.2. The degenerate boundary value problem has the same form as (4.4.15) and the
same solution �0 = n2π2, y0(x) = sin nπx as in Sect. 4.4.2. However, the solution
y0(x) satisfies the boundary conditions y = y′′ = 0 at x = 0, 1. If we assume that
� = n2π2 + μ2n4π4 and y(x) = y0(x) = sin nπx , we obtain the exact solution of
the problem. Here in contrast to the problem considered in Sect. 4.4.2 no edge effect
integrals appear.

4.4.3. Differentiate the general solution (4.4.20) with respect to x and substitute into
the boundary conditions. Then for evaluating μn we get the equation

cot
ϕ1

μ
= U (0)G1 − V (0)G2

U (0)G2 + V (0)G1
�

∞∑

k=0

bkμ
2k+1, (4.6.7)

where G1 = ϕ′
1V (1) − μU ′(1), G2 = ϕ′

1U (1) + μV ′(1), ϕ′
1 = √

ρ(1), and
the other notation is as in Sect. 4.4.3. Expanding the solution of equation (4.6.7) in
series,

μn �
∞∑

k=0

c∗
k

[(n − 1/2)π]2k+1 , n → ∞,

we find the first terms

c∗
0 = ϕ1, c∗

1 = b0ϕ
2
1, b0 = v1(1)

u0(1
− v′

1(1)

ϕ′
1u0(1)

− v1(0)

u0(0)
.

4.4.4. For ρ(x) = 1 + αx , the solution is found in Sect. 4.1.1. Assuming that α = 1
with the notation (4.4.19) from Sect. 4.4.3, we obtain

U (K ) = ρ−1/4
K∑

k=0

(−1)kμ2kb2k

ρ3k
, V (K ) = μρ−7/4

K∑

k=0

(−1)k+1μ2kb2k+1

ρ3k
,

b0 = 1, bn = (6n − 1)(6n − 5)

48n
bn−1, n = 1, 2, . . .

Assuming that K = 0, 1, 2, . . . , we get different asymptotic approximations for the
functions U and V in Eq. (4.4.21) and, accordingly, different approximations for μn .

Table4.1 lists the values of the non-dimensional frequencies �n for the first five
free vibrations frequencies ωn of the vibrating string:

ωn =
√

T

ρ0
�n, �n =

√
�(n) = 1

μn
, n = 1, 2, . . . , 5.

The first column contains the values calculated by a Runge–Kutta method, the next
columns contain the values found by asymptotic formulas with different accuracy.
Firstly, the less accurate approximation



4.6 Answers and Solutions 229

Table 4.1 Exact and asymptotic non-dimensional frequencies �n

n �exact
n �n = nπ

ϕ1
�

(0)
n �

(1)
n �

(2)
n �

(3)
n �

(4)
n

1 2.559 2.577 2.556 2.561 2.555 2.572 2.466

2 5.144 5.155 5.144 5.145 5.144 5.144 5.144

3 7.725 7.732 7.725 7.725 7.725 7.725 7.725

4 10.304 10.309 10.304 10.304 10.304 10.304 10.304

5 12.882 12.886 12.882 12.882 12.882 12.882 12.882

Fig. 4.13 Exact
eigenfunction and
asymptotic approximation

1

0

-1

x0.5 1

(x)
2
y

�n = nπ

ϕ1
, ϕ1 =

∫ 1

0

√
ρ(x) dx = 2

3

(√
8 − 1

)
,

then �
(K )
n = 1/μ(K )

n , where μ
(K )
n are the roots of equation (4.4.20) obtained when

keeping the K + 1 first terms in series (4.4.19).
As it must be for asymptotic divergent series, the error firstly decreases with the

number of terms and then starts to increase (see n = 1).
In Fig. 4.13 the exact eigenfunction yn(x) for n = 2 and the less accurate asymp-

totic approximation

yn(x) � C(1 + x)−1/4 sin

(
2

3μn

[
(1 + x)3/2 − 1

])

are plotted. For comparison, both eigenfunctions are normalized by the condition
max yn = 1. In the graph, these functions are indiscernible since the maximal dif-
ference has order 10−3.
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4.4.5. The equation for the eigenvalue problem is a particular case of the equation
from Exercise 4.1.1 for p(x) = ρ(x) = S(x), r(x) = 0. Its general solution is

y(x,μ) = C1

[
U cos

(
ϕ

μ

)
− V sin

(
ϕ

μ

)]
+ C2

[
U sin

(
ϕ

μ

)
+ V cos

(
ϕ

μ

)]
,

where C1 and C2 are arbitrary constants, U = u0 + μ2u2 + · · · , V = μv1 +
μ3v3 + · · · , v2n+1 = iu2n+1 and the functions uk(x) are obtained in Exercise 4.1.1.

The equation for μ is

tan
1

μ
= U (0)F1 + V (0)F2

U (0)F2 − V (0)F1
,

where

F1 = S(1)
[
μU (1) + μ2V ′(1)

]
− aV (1),

F2 = S(1)
[
μV (1) − μ2U ′(1)

]
+ aU (1).

If a ∼ 1, the solution has the same structure as in Sect. 4.4.3,

μn �
∞∑

k=0

ck

(nπ)2k+1 , as n → ∞,

where

c0 = 1, c1 = v1(1)

u0(1)
− v1(0)

u0(0)
− S(1)

a
.

For S(x) = 1 + αx , the approximate expressions for U and V are

U (K ) =
K∑

k=0

(−1)k(μα)2kb2k

S2k+1/2 , V (K ) =
K∑

k=0

(−1)k+1(μα)2k+1b2k+1

S2k+3/2 ,

where b0 = 1, bn = (2n−1)2

8n bn−1, n = 1, 2, . . . .
The exact values of �n = 1/μn and the successive asymptotic approximations

in the sense of Table4.1 are given in Table4.2 for the first eight roots of μn for
α = a = 1.

The difference between this problem and Exercise 4.4.4 is that the root�0 cannot
be found by asymptotic formulas.

4.4.6. For the problem at hand with the notation of Sect. 4.4.4 and by Exercise 4.1.3

p(x) = ρ(x) = 1 + αx, b1 = 3α

8

(
1 − 1

1 + α

)
, q ≡ 1, f1 = 1, u0 = p−1/2,
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Table 4.2 Exact �n = 1/μn and successive asymptotic approximations

n �exact
n �n = nπ �

(0)
n �

(1)
n �

(2)
n �

(3)
n �

(4)
n

0 0.917 – – – – – –

1 3.616 3.142 3.618 3.619 3.619 3.619 3.619

2 6.567 6.283 6.568 6.568 6.568 6.568 6.568

3 9.622 9.425 9.623 9.623 9.623 9.623 9.623

4 12.717 12.566 12.718 12.718 12.718 12.718 12.718

5 15.829 15.708 15.830 15.830 15.830 15.830 15.830

6 18.951 18.850 18.952 18.952 18.952 18.952 18.952

7 22.079 21.991 22.079 22.079 22.079 22.079 22.079

8 25.209 25.133 25.210 25.210 25.210 25.210 25.210

Table 4.3 First six values of �n

n �exact
n �

(1)
n �

(2)
n

1 22.182 22.207 21.833

2 61.407 61.685 61.311

3 120.607 120.903 120.528

4 199.548 199.859 199.485

5 298.233 298.556 298.181

6 416.660 416.991 416.616

and the free vibrations frequencies, we have

ωn =
√

E J0
ρ0S0l4

�n, �n = c2n + O(n−1), cn = π

2
(2n + 1).

The approximate expression for the vibrations mode is

yn(x) = sin(cn x − π/4)

(1 + αx)1/2
+ 1√

2
e−cn x − (−1)n

√
2(1 + α)

ecn(x−1) + O
(

c−1
n

)
.

Assume that α = 1. Table4.3 includes the first six values of �n : firstly, the exact
value, then the first and the second asymptotic approximations�

(1)
n = c2n and�(2)

n =
(

cn − b1
cn

)2

.

In Fig. 4.14 the vibrations mode for n = 3 is plotted. The difference between the
exact mode and its asymptotic approximation is less than 0.01.

4.4.7. The comparison result for the vibrations frequencies of a non-membrane and
a membrane type for n ≤ 15 are given in Table4.4.
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Fig. 4.14 Exact mode and
its asymptotic approximation
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Table 4.4 Comparison of vibrations frequencies of non-membrane and membrane types

n �n1 �0
n1 �n2 �0

n2

0 1.0989 1.0989 0.0000 0.0000

1 1.5013 1.5013 0.8027 0.8027

2 4.9443 4.9443 0.9751 0.9749

3 10.9546 10.9546 0.9910 0.9901

4 19.3856 19.3856 0.9974 0.9946

5 30.2293 30.2293 1.0035 0.9966

6 43.4841 43.4841 1.0119 0.9977

7 59.1496 59.1495 1.0247 0.9983

8 77.2254 77.2253 1.0438 0.9987

9 97.7115 97.7114 1.0712 0.9999

10 120.6078 120.6077 1.1092 0.9992

11 145.9144 145.9143 1.1604 0.9993

12 173.6311 173.6310 1.2277 0.9994

13 203.7581 203.7579 1.3139 0.9995

14 236.2952 236.2950 1.4225 0.9996

15 271.2425 271.2423 1.5569 0.9996

4.4.8. For the zeroth approximation we consider the solution (4.4.30) for the degen-
erate problem (4.4.29). Since the solution does not satisfy the conditions

w = dw

ds
= 0 for s = 0, s = l, (4.6.8)
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we add to it edge effect integrals of accuracy of order μ,

ue =
∑

k=3,4

ν p−1
k Ck epk s +

∑

k=5,6

ν p−1
k Ck epk (s−l),

we =
∑

k=3,4

Ck epk s +
∑

k=5,6

Ckepk (s−l),

p3,4 = (1 − �0)1/4

μ

(
− 1√

2
± i√

2

)
, p5,6 = (1 − �0)1/4

μ

(
1√
2

± i√
2

)
.

The constants C3 and C4 are found from conditions (4.6.8) for s = 0:

C3 + C4 + nπ

1 − (1 − ν2)�0 = 0,
C3

p3
+ C4

p4
= 0.

By now, the sum u0 + ue does not satisfy condition u(0) = 0. Assume

� = �0 + μ�1, u = u0 + u1. (4.6.9)

Then the function u1 is a solution of the eigenvalue problem

d2u1

ds2
+ a(�0)u1 + �1a′

�u0 = 0, a′
� = da

d�0 , (4.6.10)

with solution

u1(0) = − ν2nπ
√
2

l(1 − (1 − ν2)�0)(1 − �0)1/4
, u1(l) = (−1)nu1(0),

where a(�0) is given by (4.4.29) and u1(l) is found as for u1(0).
The value of �1 is found from the compatibility conditions for the

non-homogeneous problem (4.6.10) for the spectrum. To obtain �1 we multiply
equation (4.6.10) by u0 and integrate with respect to s from 0 to l. Thus, we get

�1 = 4ν2n2π2
√
2

l3(1 − (1 − ν2)�0)a′
�(1 − �0)1/4

.

Only the first few roots � can be evaluated by the approximate formula (4.6.9)
since by the estimate (4.4.27) �0

n2 approaches 1 rapidly when n increases and �1 ∼
(1−�)−9/4 as� → 1. Therefore the correction term is small only if 1−� � μ4/9.

4.4.9. The 26 lower eigenvalues (� < 5) are listed in Table4.5. The table includes
the exact values � exact

n and the asymptotic approximations applicable in different
variation ranges of �. Values out of the applicability domain for the corresponding
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Table 4.5 The asymptotic and exact lower eigenvalues

n � exact
n �

(4.38)
n �

(4.35)
n �membrane

n �
(6.9)
n

1 0.82157 (0.93403) (1.00043) 0.80270 0.82039

2 0.98213 0.98593 (1.00165) 0.97493 0.98126

3 0.99603 0.99681 (1.00452) 0.99006 0.99329

4 1.00418 1.00467 (1.01008) (0.99462) (0.99667)

5 1.01465 1.01524 1.01966 (0.99662) (0.99807)

6 1.02986 1.03096 1.03484 (0.99767) (0.99877)

7 1.05275 1.05394 1.05749

8 1.07678 1.08638 1.08970

9 1.1028 1.0989

10 1.12840 1.13071 1.13386

11 1.19342 1.18958 1.19261

12 1.26062 1.26592 1.26886

13 1.36556 1.36291 1.36579

14 1.44440 1.48399 1.48681

15 1.52334 1.50128

16 1.63506 1.63287 1.63565

17 1.82056 1.81351 1.81626

18 2.03198 2.03015 2.03287

19 2.29137 2.28727 2.28997

20 2.59107 2.58964 2.59232

21 2.94535 2.94228 2.94494

22 3.35119 3.35048 3.35313

23 3.82226 3.81978 3.82242

24 4.35368 4.35600 4.35864

25 4.93833 4.94430

26 4.96726 4.96523 4.96786

formula are bracketed in parentheses, and the blank spaces indicate that the applica-
tion of the formula is senseless.

The values �
(4.38)
n are obtained from relation (4.4.38) derived under the assump-

tion that � ≈ 1. It occurs that relation (4.4.38) approximate well most values � > 1
except for n = 9, n = 15 and n = 25.

The values �
(4.35)
n are found by formula (4.4.35), which is applicable only for

� > 1. Values of � > 1 close to 1 are badly approximated and this formula is not
applicable for n = 9, n = 15 and n = 25.

The values �membrane
n are membrane eigenvalues for μ = 0. For � < 1 similar

to Exercise 4.4.9 there is an infinite number of such values with accumulation point
� = 1. However, only the first three membrane values are close to the exact values.
For � > 1 the membrane values are widely spaced (see n = 9, n = 15 and n = 25).
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To refine the membrane values, �(6.9)
n are obtained by formula (4.6.9) for � < 1,

i.e. in the domain of regular degeneracy.
FromTable4.5 it follows that in a neighborhoodof the point� = 1 the eigenvalues

are the most dense.

4.5.1. Write the general solution of equation (4.5.1),

w(x1) = C1 e−sx1 + C2, e−r x1 + C3 esx1 + C4 er x1 , (4.6.11)

where Ck are arbitrary constants obtained as a result of the substitution (4.5.3) in the
boundary conditions and w = w′ = 0 for x1 = πa/b. Then instead of evaluating �

by (4.5.4), we use the equation

s(r2 − ν)2 − r(ν − s2)2 + r + s

r − s

[
s(r2 − ν)2 + r(ν − s2)2

]
exp

(
−2πas

b

)
= 0.

(4.6.12)

We solve this equation for a � b. Thus, in its derivation the terms of order
exp(−2πa/b) are neglected. Expressing r as a function of s by the formula r =√
2 − s2 we find that, for sufficiently large a/b, this equation has only a root s > 0

through which � = (1 − s2)2 may be expressed.
For ν = 0.3, Eq. (4.6.12) has a real root if πa/b ≥ 23.42. For different a/b the

values of s and � are the following:

πa/b 25 30 35 40 ∞
s 0.0186 0.0324 0.0375 0.0400 0.0436
� 0.9993 0.9979 0.9972 0.9968 0.9962

For πa/b < 23.42, the solution should be searched in a form different from (4.6.11).
This case is not considered here.

4.5.2. After separation of variables (4.5.1) we come to the same Eq. (4.5.2), for
which � = T b2/(Dπ2). Since the boundary conditions also coincides with those
considered in Sect. 4.5.1 for ν = 0.3, the critical value is T = 0.9962π2D/b2. This
decrease of the critical load was first established by Yu. Ishlinsky [16].

4.5.3. The results are given in Table. 4.6. The dash line means the absence of roots.
From Table4.6, it follows that six types of boundary conditions are weak: S4, C6,

S6, S7, C8, S8 and the equation has two roots only for the last type (S8).
Since the listed equations have the root θ = 0, one cannot conclude that the other

10 types of boundary conditions are not weak. This question is discussed in Exercise
4.5.4, where it is shown that the type S5 is also weak.

4.5.4. The roots �(q) of Eq. (4.5.15) for seven types of boundary conditions are
plotted in Fig. 4.15. The curves are numbered in the order of increasing �(q): 1 for
the boundary conditions S8, 2 for C8, 3 for S6, 4 for C6, 5 for S4, 6 for S7, and 7
for S5.

For the types S4,C6, S6, S7,C8, S8, the roots�(q) converge to the values obtained
in Exercise 4.5.3 as q → 0, and for the boundary conditions S5 �(0) = 1.
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Table 4.6 Eigenvalue equations for different types of boundary conditions

Type of boundary conditions Equation Roots of equation

C1 sin 2θ (cos θ − sin θ)2 = 0 –

S1 cos θ (cos θ − sin θ) = 0 –

C2 sin 4θ (cos 3θ + sin 3θ) = 0 –

S2 sin2 4θ = 0 –

C3 sin 4θ (cos θ − sin θ) = 0 –

S3 sin2 2θ + sin 6θ = 0 –

C4 sin2 4θ = 0 –

S4 sin 4θ (cos 5θ − sin 5θ) = 0 � = cosπ/5 = 0.809

C5 sin 4θ (cos 3θ + sin 3θ) = 0 –

S5 sin2 4θ = 0 –

C6 sin 10θ − sin2 2θ = 0 � = 0.419

S6 sin 4θ (cos 7θ + sin 7θ) = 0 � = cos 3π/7 = 0.223

C7 sin2 4θ = 0 –

S7 sin 4θ (cos 5θ − sin 5θ) = 0 � = cosπ/5 = 0.809

C8 sin 4θ (cos 7θ + sin 7θ) = 0 � = cos 3π/7 = 0.223

S8 sin 2θ − sin2 6θ = 0 �(1) = 0.113, �(2) = 0.973

Fig. 4.15 Roots �(q) for
seven types of boundary
conditions

For q > 1, for weak support the inequality�(q) < (q2+q−2)/2must be satisfied
since only under this condition equation (4.5.16) has four roots with negative real
parts. Those are required for construction of localized solution (4.5.11).

4.5.5. In the problem at hand with the notation introduced in Sect. 4.5.2 we have

T (0)
2 = −2Ehμ2�, k1 = 1, k2 = 0, t1 = 0, t2 = 1
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Fig. 4.16 �(q) for eight
types of boundary conditions

and Eq. (4.5.13) coincides with (4.5.16). Thus all results obtained for vibrations can
be used for buckling analysis. The difference is that, in studying buckling, only the
lowest eigenvalue is of interest. Thus in (4.5.16) one should assume n = 1.

4.5.6. In Fig. 4.16 �(q) is plotted for eight types of boundary conditions (4.5.10) for
which �(q) < 1.

The curves are numbered in the order of increasing �(q): 1 for boundary condi-
tions S8, 2 for S7, 3 for S6, 4 for S5, 5 for S4, S3, C8 (the values of �(q) coincide
for three types of boundary conditions), 6 for C6. The functions �(q) are obtained
numerically by Eq. (4.5.15) and the use of the exact solutions of the roots (4.5.20).
Here to the seven types of boundary conditions (S3, S4, S5, S6, S7, C8, S8) producing
�(0) = 1/2 (see Sect. 4.5.4) one more type, C6, is added for which �(0) = 1 and
which gives �min = 0.97. The curves 1, 2, 6 in Fig. 4.16 attain their minima at
q = 0.31, q = 0.20, q = 0.36 respectively. The other curves attain their minima at
q = 0. This fact is important in the evaluation of n in (4.5.20), which is taken from
the condition that �(q) is minimum.



Chapter 5
Singularly Perturbed Linear Ordinary
Differential Equations with Turning Points

In this chapter, we consider systems of linear ordinary differential equations with
variable coefficients and a small parameter μ in the derivative terms. Asymptotic
expansions for solutions as μ → 0 are obtained under the assumption that there
exists a turning point (or points) in the integration interval. These expansions are
used in solving boundary value problems.

5.1 Airy Functions

Airy’s functions play a significant role in the construction of asymptotic expansions.
For the reader’s convenience, we briefly discuss the properties of the Airy functions
that will be used in this book (see also Sect. 2.5.2).

Airy’s functions are entire functions of a complex variable, η. They satisfy the
differential equation

d2v

dη2
− ηv = 0. (5.1.1)

Two standardAiry functions,Ai(η) andBi(η), which are real for realη are introduced.
These functions have the following Maclaurin series expansion:

Ai(η) = a1 f1(η) − a2 f2(η), Bi(η) = √
3 [a1 f1(η) + a2 f2(η)] , (5.1.2)

where

f1 =
∞∑

k=0

bkη
3k, b0 = 1, bk = bk−1

(3k − 1)3k
, a1 = 3−2/3

�(2/3)
,

f2 =
∞∑

k=0

dkη
3k+1, d0 = 1, dk = dk−1

3k(3k + 1)
, a2 = 3−1/3

�(1/3)
,

© Springer International Publishing Switzerland 2015
S.M. Bauer et al., Asymptotic Methods in Mechanics of Solids,
International Series of Numerical Mathematics 167,
DOI 10.1007/978-3-319-18311-4_5

239

http://dx.doi.org/10.1007/978-3-319-18311-4_2


240 5 Singularly Perturbed Linear Ordinary Differential …

and �(z) is the gamma function.
Note the relation

Bi(0) = Ai(0)
√
3. (5.1.3)

The asymptotic expansions of the Airy functions as η → ∞ are

Ai(η) � 1

2
√

π
η−1/4e−ζ

∞∑

k=0

(−1)kck

ζk
, | arg η| < π;

Bi(η) � 1√
π

η−1/4eζ
∞∑

k=0

ck

ζk
, | arg η| <

π

3
;

Ai(−η) � 1√
π

η−1/4
[

D1(ζ) sin
(
ζ + π

4

)
− D2(ζ) cos

(
ζ + π

4

)]
,

| arg η| <
2π

3
; (5.1.4)

Bi(−η) � 1√
π

η−1/4
[

D1(ζ) cos
(
ζ + π

4

)
+ D2(ζ) sin

(
ζ + π

4

)]
,

| arg η| <
2π

3
;

D1(ζ) �
∞∑

k=0

(−1)kc2k

ζ2k
, D2(ζ) �

∞∑

k=0

(−1)kc2k+1

ζ2k+1 ,

ζ = 2

3
η3/2, ck = �(3k + 1/2)

54kk!�(k + 1/2)
.

Series (5.1.4) are applicable not only for real η but also for complex η. We show sec-
tors in a neighborhood of the point η = ∞ where expansions (5.1.4) are asymptotic.
Series (5.1.4) are divergent.

In Fig. 5.1, the graphs of the functions Ai(η) and Bi(η) are plotted for real η.

5.1.1 Exercises

5.1.1. Compare the values of Ai(η) and Bi(η) for real η obtained with the convergent
series (5.1.2) and the asymptotic series (5.1.4). Explore the possibility of using these
series to get the values of the above functions accurate to five decimal places with
computation to twelve decimal places.
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Fig. 5.1 Ai(η) and Bi(η) for
real η
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-2 2

1

Ai(x)

Bi(x)

0

5.1.2.Find thefirst six zerosηn andη′
n of the functionsAi(η) andv0(η) = √

3Ai(η) −
Bi(η) and obtain the asymptotic formulas for ηn and η′

n as n → ∞. Compare the
exact and the asymptotic values of the zeros of these functions.

5.2 Solutions of Second-Order Ordinary Differential
Equations with Turning Points

Consider the linear second-order differential equation

μ2 d2y

dx2
− q(x,μ)y = 0, q(x,μ) =

∞∑

k=0

qk(x)μk, (5.2.1)

where μ > 0 is a small parameter and the functions qk(x) are real analytic for
x ∈ S = [x1, x2] ⊂ R. Many studies are devoted to analysis of Eq. (5.2.1) (see, for
example, [14, 20, 27, 32, 53, 65]).

The more general equation

μ2a0
d2y1
dx2

+ μa1
dy1
dx

+ a2y1 = 0, an(x,μ) =
∞∑

k=0

ank(x)μk, n = 0, 1, 2,

can be transformed into Eq. (5.2.1) by the substitution

y1(x,μ) = y(x,μ) exp

(
− 1

2μ

∫
a1dx

a0

)
,
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provided a00(x) 	= 0. Then in (5.2.1)

q = 1

4

(
a1
a0

)2

− a2
a0

+ μ

2

(
a1
a0

)′
()′ = d

dx
.

If q0(x) 	= 0 for x ∈ S, then the asymptotic expansion of the solutions of Eq. (5.2.1)
has the form (4.1.2) for λ(x) = ±√

q0(x).
Now let q0(x∗) = 0, x1 ≤ x∗ ≤ x2. Then solution (4.1.2) becomes inapplicable

since uk(x) → ∞ as x → x∗. In particular, u0(x) = q0(x)−1/4 [see (4.1.11))] and
u0(x∗) = ∞. The points x = x∗, where q0(x∗) = 0 are called turning points. If
q ′
0(x∗) 	= 0, the turning point x = x∗ is called a simple turning point.

5.2.1 Asymptotic Expansion of Solutions

The asymptotic expansions of solutions of Eq. (5.2.1) in neighborhoods of a simple
turning point x = x∗ for q ′

0(x∗) > 0 have the form [39]:

y(x,μ) = a(0)(x,μ)v [η(x,μ)] + μ1/3a(1)(x,μ)
dv

dη
, (5.2.2)

where v(η) is one of Airy’s functions (see Sect. 5.1):

η(x,μ) = μ−2/3ξ(x), ξ(x) =
[
3

2

∫ x

x∗

√
q0(x) dx

]2/3
,

a( j)(x,μ) �
∞∑

k=0

a( j)
k (x)μk, j = 0, 1. (5.2.3)

The function ξ(x) and the coefficients a( j)
k (x) are evaluated as a result of the sub-

stitution of solution (5.2.2) into (5.2.1) and equating the coefficients of μkv and
μk(dv/dη). If there are no other turning points in S, the functions ξ(x) and a( j)

k (x)

will be analytic in S, including the point x = x∗.
Calculating the first coefficients in (5.2.3) and assuming that solution y(x,μ) is

analytic at the turning point, where ξ = 0, we get

a(0)
0 = 1√

ξ′ cosh ν, a(1)
0 = 1√

ξξ′ sinh ν, ν =
∫ x

x∗

q1 dx

2ξ′√ξ
. (5.2.4)

In particular, for q1 = 0 we have ν = 0 and

a(0)
0 = 1√

ξ′ , a(1)
0 = 0. (5.2.5)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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All the coefficients a( j)
k (x) are expressed in terms of qi (x) by quadratures (see also

Exercise 5.2.1).
Expansion (5.2.2) is uniformly applicable in the entire interval S including a

neighborhood of the point x = x∗. If |η| � 1, we may use asymptotic expansions
for Airy’s functions (5.1.4) and express (5.2.2) in the form of a linear combination
of functions (5.1.2). Let the function q(x,μ) be real for real x and the conditions

q0(x∗) = 0, q ′
0(x∗) > 0, q1(x) ≡ 0,

q0(x) < 0 for x < x∗, q0(x) > 0 for x > x∗, (5.2.6)

be satisfied. Then, for two solutions, y1(x,μ) and y2(x,μ), the following asymptotic
expansions hold:

y1(x,μ) = 1√
ξ′Ai(η) [1 + O(μ)] + CAi′(η), C = O

(
μ4/3

)
,

y1(x,μ) = a

2
exp

(
− 1

μ

∫ x

x∗

√
q0(x) dx

)
[1 + O(μ)] , x > x∗,

y1(x,μ) = a

[
sin

(
1

μ

∫ x∗

x

√−q0(x) dx + π

4

)
+ O(μ)

]
, x < x∗. (5.2.7)

y2(x,μ) = 1√
ξ′ Bi(η) [1 + O(μ)] + CBi′(η), C = O

(
μ4/3

)
,

y2(x,μ) = a exp

(
1

μ

∫ x

x∗

√
q0(x) dx

)
[1 + O(μ)] , x > x∗,

y2(x,μ) = a

[
cos

(
1

μ

∫ x∗

x

√−q0(x) dx + π

4

)
+ O(μ)

]
, x < x∗, (5.2.8)

where a = μ1/6
/ (|q0|1/4√π

)
.

The first formulas of (5.2.7) and (5.2.8) are uniformly applicable for x1 � x �
x2, but the next two are uniformly applicable only for x > x∗ and for x < x∗,
respectively. For x > x∗ the function y1 decreases exponentially and the function y2
increases. For x < x∗ both functions oscillate.

5.2.2 Turning Points at the Ends of Integration Intervals

Find the asymptotic expansions for the eigenvalues �n and the eigenfunctions yn(x)

of the Sturm–Liouville problem as n → ∞:



244 5 Singularly Perturbed Linear Ordinary Differential …

y′′ + �2 f (x)y = 0, y(0) = y(l) = 0 (5.2.9)

under the assumption that f (0) = 0, f ′(0) > 0, and f (x) > 0 for 0 < x ≤ l.
The problem of the free vibrations of a string with variable density is reduced to this
problem (see Sect. 4.4.3).

Assume that � = μ−1. Then Eq. (5.2.9) is transformed into (5.2.1) with solution
(5.2.2). Limiting ourselves to the main terms of the asymptotic expansions we find

y(x,μ) = 1√
ξ′ v0(η)

[
1 + O

(
μ2

)]
+ v′

0(η)O
(
μ4/3

)
, η = −μ−2/3ξ,

v0(η) = √
3Ai(η) − Bi(η), ξ =

[
3

2
ϕ(x)

]2/3
, ϕ(x) =

∫ x

0

√
f (x) dx .

(5.2.10)

Note that v0(0) = 0. The required value μ = μn is calculated from the condition
v0[η(l)] = 0. We get

μn = 3

2
|η′

n|−3/2ϕ0 + O
(

n−3
)

, �n = 2|η′
n|3/2
3ϕ0 + O

(
n−1

)
,

ϕ0 = ϕ(l) =
∫ l

0

√
f (x) dx, (5.2.11)

where η′
n is the nth zero of the function v0(η) (see Exercise 5.1.2 and Table5.5).

Replacing η′
n with their asymptotic representations by formula (5.5.1) (see the solu-

tion of Exercise 5.1.2) we obtain

�n = π(n − 1/12)

ϕ0 + O (n−1 ), as n → ∞. (5.2.12)

Now find the asymptotic expansions of the eigenvalues �n under the assumption
that f (0) = 0, f ′(0) > 0, f (l) = 0, f ′(l) < 0, and f (x) > 0 for 0 < x < l.

There are two turning points in this problem, namely x = 0 and x = l. Thus, one
cannot construct the asymptotic expansions of the solutions uniformly applicable to
the entire interval 0 ≤ x ≤ l with the help of the standard Airy functions. We find
two different solutions, y(1)(x) and y(2)(x). The solution y(1)(x) is applicable for
0 ≤ x ≤ l − ε (ε > 0) and satisfies the condition y(1)(0) = 0 and the solution
y(2)(x) is applicable for ε ≤ x ≤ l and satisfies the condition y(2)(l) = 0. We find
the eigenvalues �n from the condition

y(1)(x) = Cy(2)(x), C = const, ε ≤ x ≤ l − ε. (5.2.13)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Taking (5.2.8) and (5.2.10) into account and omitting the residual terms for ε ≤ x ≤
l − ε, we have

y(1)(x) � 1
√

ξ′
1

v0

(
η1

)
� 1√

π f (x)
sin

(
μ−1ϕ1(x) + π/12

)
,

η1 = −μ−2/3ξ1, ξ1 =
[
2

3
ϕ1(x)

]3/2
, ϕ1(x) =

∫ x

0

√
f (x) dx;

y(2)(x) � 1
√

ξ′
2

v0(η2) � 1√
π f (x)

sin
(
μ−1ϕ2(x) + π/12

)
,

η2 = −μ−2/3ξ2, ξ2 =
[
2

3
ϕ2(x)

]3/2
, ϕ2(x) =

∫ l

x

√
f (x) dx .

Identity (5.2.13) holds only for

μ−1ϕ1(x) + π/12 + μ−1ϕ2(x) + π/12 = nπ,

whence we get the required asymptotic formula

�n = μ−1
n = π(n − 1/6)

ϕ0 + O
(

n−1
)

, as n → ∞, (5.2.14)

where

ϕ0 = ϕ1 + ϕ2 =
∫ l

0

√
f (x) dx .

5.2.3 Interior Turning Points

Find asymptotic expansions of eigenvalues �n and eigenfunctions of the Sturm–
Liouville problem

y′′ + �2 f (x)y = 0, y(x1) = y(x2) = 0, as n → ∞, (5.2.15)

under assumption that

f (x∗) = 0, f ′(x∗) > 0, x1 < x∗ < x2,

f (x) < 0 for x < x∗, f (x) > 0 for x > x∗. (5.2.16)
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We seek only eigenvalues�n such that�2
n > 0. Problem (5.2.15) also has a countable

set of eigenvalues such that �2
n < 0. Those may be obtained in a similar manner by

the substitution x ′ = −x , �′ = i�, i = √−1.
As in Sect. 5.2.2, we assume that � = μ−1 and transform the problem into

Eq. (5.2.1). We represent solution (5.2.2) in the form

y(x) = 1√
ξ′ Ai(η)[(1 + O(μ)] + CAi′(η), C = O(μ4/3), (5.2.17)

where

η = −μ−2/3ξ, ξ =
(
3

2
ϕ(x)

)2/3

, ϕ(x) =
∫ x

x∗

√
f (x) dx .

The function y(x) approximately satisfies the condition y(x1) = 0 since Ai(η) → 0
as η → ∞. Satisfying condition y(x2) = 0, we get

�n = 2|ηn|3/2
3ϕ0 + O

(
n−1

)
, ϕ0 = ϕ(x2) =

∫ x2

x∗

√
f (x) dx, (5.2.18)

where ηn is the nth zero of the function Ai(η) (see Exercise 5.1.2 and Table5.5).
Replacing ηn with the asymptotic expansions by formula (5.5.1) (see solution of
Exercise 5.1.2) we obtain

�n = π(n − 1/4)

ϕ0 + O
(

n−1
)

, as n → ∞. (5.2.19)

It should be noted that formulas (5.2.18) and (5.2.19) do not depend on the boundary
condition at x = x1 and also on the behavior of the function f (x) for x < x∗, if
only f (x) < 0. The eigenfunctions exponentially decreases with x for x < x∗ (see
Fig. 5.7).

5.2.4 Vibrations of Strings on Elastic Foundations

The free vibrations of a string on an elastic foundation are described by the equation
(see Sect. 4.3.3)

T
d2y

dx21
− c1(x1)y + ω2ρ1(x1)y = 0, y(0) = y(l) = 0, (5.2.20)

where l is the string length, T is the tension, ω is the frequency. The linear density of
the string, ρ1(x1), and the foundation stiffness, c1(x1), are assumed to be variable.

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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The non-dimensional variables x = x1/ l, c1 = c0c(x), ρ1 = ρ0ρ(x), and
c(x), ρ(x) ∼ 1 transform problem (5.2.20) into the standard form (5.2.1)

μ2y′′ − q(x)y = 0, y(0) = y(1) = 0, (5.2.21)

where q(x) = q(x,�) = c(x) − �ρ(x), μ2 = T/(c0l2) and � = ω2ρ0/c0.
Under the assumption that μ > 0 is a small parameter, we study the frequency

spectrum of the free vibrations of the string. We assume also that c(x) > 0 and
ρ(x) > 0 for 0 ≤ x ≤ 1.

We introduce the auxiliary function z(x) and the variables �− and �+ by the
formulas:

z(x) = c(x)

ρ(x)
, �− = min

x
z(x), �+ = max

x
z(x). (5.2.22)

For � < �−, the function q(x) is positive for all x and problem (5.2.21) does not
have nontrivial solutions.

For � > �+, the function q(x) is negative for all x and for � > �+ + ε, ε > 0,
onemay use solution (4.4.21) obtained in Sect. 4.4.3. Limiting ourselves to the zeroth
approximation, we write the equation for � in the form

ϕ0(�) = μnπ + O
(
μ2

)
, ϕ0 =

∫ 1

0

√−q(x) dx . (5.2.23)

For �− < � < �+, the interval of integration [0, 1] contains the turning points
which, in contrast to 5.2.2–5.2.8, move along the x-axis when � ∈ [�−,�+]
changes.

Here we consider only the case z′(x) > 0, x ∈ [0, 1]. Then the interval of
integration for all � ∈ [�−,�+] has one turning point, x∗(�), and � = z(x∗) and
q ′(x∗) > 0.

In the construction of the asymptotic expansions of Eq. (5.2.21) we find only the
main term in (5.2.2). Then

y(x) = 1√
ξ′ [C1Ai(η) + C2Bi(η)] , ϕ =

∫ x

x∗

√−q(x) dx, (5.2.24)

where C1 and C2 are arbitrary constants, η = μ2/3ξ, ξ = (3ϕ/2)2/3. Moreover,
η < 0 for x < x∗ and η > 0 for x > x∗.

Substituting (5.2.24) into the boundary conditions (5.2.21), we obtain an approx-
imate equation for � in the form

Ai
(
η0

)
− γ Bi

(
η0

)
= 0, γ = Ai

(
η1

)

Bi
(
η1

) , (5.2.25)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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where

η0 = −
(
3ϕ0

2μ

)2/3

< 0, ϕ0 =
∫ x∗

0

√−q(x) dx,

η1 =
(
3ϕ1

2μ

)2/3

> 0, ϕ1 =
∫ 1

x∗

√
q(x) dx .

We consider two particular cases.
(1) If the turning point x∗ is situated far from the edge x = 1, then η1 � 1 and γ � 1,
andEq. (5.2.25) reduces to the formAi(η0) = 0 (see Sect. 5.2.3 andExercise 5.2.5) or

ϕ0 = 2μ|ηn|3/2
3

� μπ

(
n − 1

4

)
, n = 1, 2, . . . , (5.2.26)

where ηn is the nth zero of the function Ai(η). The eigenfunction oscillates to the
left of the turning point x∗ and decreases exponentially to the right of x∗.
(2) If the turning point x∗ is situated close to the edge x = 1, then Eq. (5.2.26)
becomes inapplicable since we cannot approximately assume γ = 0. In particular,
if x∗ = 1, i.e. the turning point coincides with the edge, then γ = 1/

√
3 and Eq.

(5.2.26) is replaced with Eq. (5.2.12) ϕ0 � μπ(n − 1/12).
If we assume that tan(απ) = γ, then it follows from Eq. (5.2.25) that

ϕ0 � μπ(n + α − 1/4). (5.2.27)

For � > �+, the formula for calculating η1 becomes inapplicable. If we assume
that the functions c(x) and ρ(x) can be analytically extended to the right of the point
x = 1, then x∗ > 1 and we use the formula

η1 = −
(
3ϕ1

2μ

)2/3

, ϕ1 =
∫ x∗

1

√−q(x) dx,

to evaluate η1 in (5.2.25)
The function α(�),

� = − 1

μ

∫ 1

x∗

√
q(x) dx, x∗ < 1; � = 1

μ

∫ x∗

1

√−q(x) dx, x∗ > 1,

is plotted in Fig. 5.2.
By formulas (5.1.4),

α(�) = �

π
+ 1

4
+ O(�−1), as � → ∞,

and formula (5.2.27) transforms into (5.2.23).
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Fig. 5.2 The function α(�)
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5.2.5 Asymptotic Expansions of Bessel Functions

Find the main terms of the asymptotic expansions of the Bessel functions Iν(z),
Kν(z), Jν(z) and Nν(z) under the assumption that the order ν and the argument z of
these functions are simultaneously large positive numbers.

Assume that z = νx and consider ν → ∞ for fixed x . As z → 0 (see [1])

{Iv(z), Jν(z)} � zν

2ν�(ν + 1)
, Kv(z) � 2ν−1�(ν)

zν
, Nv(z) � −2ν�(ν)

πzν
.

(5.2.28)

On substituting z = νx and applying Stirling’s approximation [1],

�(ν) � √
2πννν−1 e−ν , as ν → ∞,

we write relations (5.2.28) in the form

{Iv(z), Jν(z)} � 1√
2πν

(ex

2

)ν
, Kv(z) �

√
π

2ν

(ex

2

)−ν
,

Nv(z) � −
√

2

πν

(ex

2

)−ν
, (5.2.29)

as x → 0 and ν → ∞. The functions Iν(νx) and Kν(νx) satisfy Bessel’s equation

x2y′′ + xy′ − ν2(x2 + 1)y = 0, ()′ = d

dx
.

If we assume that y = y1x−1/2 and μ = ν−1, then this equation becomes
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μ2y′′
1 − q(x,μ)y1 = 0, as μ → 0, (5.2.30)

where

q(x,μ) = q0(x) + μ2q2(x), q0(x) = 1 + 1

x2
, q2(x) = − 1

4x2
.

For x > 0, Eq. (5.2.30) does not contain turning points. The main terms of the
asymptotic expansions of its two solutions are

y1(x) � (q0(x))−1/4 exp

[
± 1

μ

∫ √
q0(x) dx

]
. (5.2.31)

Evaluating the integral and returning to the variable y we get

Iν(νx) � C1(x2 + 1)−1/4
[

x

1 + √
x2 + 1

]ν

eν
√

x2+1,

Kν(νx) � C2(x2 + 1)−1/4
[

x

1 + √
x2 + 1

]−ν

e−ν
√

x2+1, ν → ∞. (5.2.32)

The constants C1 and C2 are evaluated by formula (5.2.32), as x → 0, and (5.2.29):

C1 = 1√
2πν

, C2 =
√

π

2ν
.

The construction of the asymptotic expansions for the functions Jν(νx) and
Nν(νx) is reduced to the same Eq. (5.2.30), in which, now, q0(x) = x−2 − 1.
Equation (5.2.30) has the turning point x∗ = 1 and, by (5.2.2) and (5.2.5), the
asymptotic expansions of its solution are expressed in terms of Airy’s functions.

Returning to the function y, we find as ν → ∞

Jν(νx) � C3

(
ξ

1 − x2

)1/4

Ai(η), Nν(νx) � C4

(
ξ

1 − x2

)1/4

Bi(η), (5.2.33)

where

η = ν2/3ξ(x), ξ(x) = −
(
3

2
�(x)

)2/3

sgn(x − 1),

and

�(x) =
∫ x

1

√−q(x) dx =
√

x2 − 1 − arctan
√

x2 − 1, x ≥ 1,

�(x) =
∫ 1

x

√
q(x) dx = −

√
1 − x2 + ln

x

1 + √
1 − x2

, x ≤ 1.
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If |x − 1| � ν−2/3, then |η| � 1 and one can use formulas (5.2.7) and (5.2.8)
from which it follows that

Jν(νx) � C3
ν−1/6(1 − x2)−1/4

2
√

π

[
x

1 + √
1 − x2

]ν

eν
√
1−x2 , x < 1,

Nν(νx) � C4
ν−1/6(1 − x2)−1/4

√
π

[
x

1 + √
1 − x2

]−ν

e−ν
√
1−x2 , x < 1,

Jν(νx) � C3
ν−1/6(x2 − 1)−1/4

√
π

sin(ν� + π/4), x > 1,

Nν(νx) � C4
ν−1/6(x2 − 1)−1/4

√
π

cos(ν� + π/4), x > 1. (5.2.34)

Comparing formulas (5.2.34), as x → 0, and (5.2.29) we obtain

C3 = √
2 ν−1/3, C4 = −√

2 ν−1/3.

Obviously, �(x) � x − π/2 as x � 1. Substituting this approximate expression
into formula for Jν(x) we obtain the asymptotic formula (2.4.9).

5.2.6 Exercises

5.2.1.Develop recurrent formulas for the coefficients a( j)
k (x), j = 0, 1, of the expan-

sion (5.2.3) if q(x,μ) = q0(x).

5.2.2. Under the conditions of Sect. 5.2.2, find the asymptotic expansions of the
eigenvalues �n for ρ(x) = x for 0 ≤ x ≤ l.
5.2.3.Under the conditions of Sect. 5.2.2 find the asymptotic expansions of the eigen-
values �n for ρ(x) = x + x2 over the interval 0 ≤ x ≤ 1. Compare the exact and
asymptotic results.
5.2.4. Under the conditions of Sect. 5.2.2 compare the exact eigenvalues�n and their
asymptotic expansions (5.2.14) for ρ(x) = x(1 − x), l = 1.
5.2.5.Under the conditions of Sect. 5.2.3 find the asymptotic expansions of the eigen-
values�n for ρ(x) = x +x2 over the interval−1 ≤ x ≤ 1. Compare the exact eigen-
values �n and their asymptotic approximations. Plot the eigenfunction for n = 3.
Study the effect of the boundary condition at x = −1 assuming that y′(−1) = 0
instead of y(−1) = 0.
5.2.6. Find the asymptotic expansions of the eigenvalues �N and eigenfunctions
YN (x) for problem (5.2.15) as N → ∞ if

http://dx.doi.org/10.1007/978-3-319-18311-4_2
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ρ(x (k)∗ ) = 0, ρ′(x (k)∗ ) 	= 0, k = 1, 2, x1 < x (1)∗ < x (2)∗ < x2;
ρ(x) > 0 for x < x (1)∗ and for x > x (2)∗ ;
ρ(x) < 0 for x (1)∗ < x < x (2)∗ .

5.2.7. The function ρ(x) = x2 − a2 satisfies the conditions of Exercise 5.2.6 if
x1 < −a and x2 > a. Study the spectrum of the eigenvalues for a = 0.5, x1 = −1,
x2 = 1 and compare the exact and approximate eigenvalues.
5.2.8. The function ρ(x) = x2 − a2 satisfies the conditions of Exercise 5.2.6 if
a = 0.5, x1 = −0.9, x2 = 1, x1 < −a and x2 > a. Find the exact first ten
eigenvalues and compare them with those defined by formula (5.5.4). Plot some of
the eigenfunctions.
5.2.9. For problem (5.2.21) compare the first ten exact eigenvalues�n with the values
obtained by the asymptotic formulas (5.2.23), (5.2.26) and (5.2.27) if c(x) = 1+ x ,
ρ(x) = 1 and μ = 0.03.
5.2.10. The free vibrations of a circular membrane are described by the equation

T

[
1

r

∂

∂r

(
r
∂w

∂r

)
+ 1

r2
∂2w

∂ϕ2

]
+ ρω2w = 0, w(R,ϕ) = 0,

where w(r,ϕ) is the membrane deflection, T is the tension, ρ is the area density, ω
is the vibrations frequency and R is the membrane radius. Separating the variables
w(r,ϕ) = y(r) cosmϕ and scaling r = ax , a = √

T/(ρω2) we come to Bessel’s
equation for the function y(x), x2y′′ + xy′ + (x2 − m2) = 0, with the boundary
conditions y(R/a) = 0, y(0) < ∞.

Develop the approximate asymptotic formulas for the free vibrations frequencies
of a circular membrane with a large number of waves in the circumferential direction
m.
5.2.11. For m = 8, compare the exact values of αmn which are the roots of the
Bessel functions Jm(x) with their asymptotic approximations (5.5.10)–(5.5.15) (see
the solution of Exercise 5.2.10).

5.3 Solutions of Systems of Linear Ordinary Differential
Equations with Turning Points

Consider the system of Eq. (4.2.1),

μ
d y
dx

= A(x,μ) y, μ > 0, x1 ≤ x ≤ x2. (5.3.1)

under the same assumptions on the matrix A(x,μ) as in Sect. 4.2.

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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We consider cases where themultiplicity of the roots of the characteristic equation
(4.2.4),

det (A0(x) − λEn) = 0, (5.3.2)

changes at some points x = x∗ (x1 ≤ x∗ ≤ x2), called turning points.

5.3.1 Splitting Theorem

In the general case, the problem of the construction of asymptotic expansions of
solutions of system (5.3.1) asμ → 0 has not been solved yet. Here, we limit ourselves
to the simple case, where the multiplicity of the roots of equation (5.3.2) at x = x∗ is
not larger than 2. Additionally, we assume that these roots, denoted λ1(x) and λ2(x),
coincide at x = x∗ and can be written in the form

λ1,2 = p(x) ± √
q(x), q(x∗) = 0, q ′(x∗) 	= 0, (5.3.3)

where the functions p(x) and q(x) are real analytic in a neighborhood of the point
x = x∗.

Under the above assumptions, λ1(x) and λ2(x) provide integrals of system (5.3.1)
and their asymptotic expansions as μ → 0 (similar to Sect. 5.2) are expressed by
means of Airy’s functions:

y(x,μ) =
[

a(0)(x,μ)v(η) + μ1/3a(1)(x,μ)v′(η)
]
exp

(
1

μ

∫
p(x) dx

)
, (5.3.4)

where

η(x,μ) = μ−2/3ξ(x), ξ(x) =
[
3

2

∫ x

x∗

√
q(x) dx

]2/3
,

a( j)(x,μ) �
∞∑

k=0

a( j)
k (x)μk, j = 0, 1,

and v(η) is one of the solutions ofAiry’s equation (5.1.1). Here, in contrast to solution
(5.2.3), y, a( j) and a( j)

k are vector-functions. As in (5.2.3), the function ξ(x) and the

coefficients a( j)
k (x) are real analytic at x = x∗. Series (5.3.4) diverge.

Further, we mostly pay attention to the evaluation of the functions a( j)
k , in partic-

ular, a( j)
0 . The following splitting theorem may be useful for this purpose [25, 65].

The theorem states

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Splitting theorem Suppose the roots of Eq. (5.3.2) can be split into two groups,
λ1(x), . . . ,λp(x) and λp+1(x), . . . ,λn(x), such that

λ j (x∗) 	= λk(x∗), j = 1, . . . , p, k = p + 1, . . . , n. (5.3.5)

Then there exist a formal transformation

y = P z, P = P(x,μ) �
∞∑

k=0

Pk(x)μk, det P0(x∗) 	= 0. (5.3.6)

with real analytic coefficients Pk(x) at x = x∗ which transform system (5.3.1) into
the form

μ
d z
dx

= B(x,μ)z, B = P−1(AP − μP ′), (5.3.7)

where the blockdiagonal matrix B has real analytic entries at x = x∗

B =
[

B11 0
0 B22

]
(5.3.8)

with square matrices B11 and B22 of sizes p and n − p, respectively, and the eigen-
values of the matrices B11(x, 0) and B22(x, 0) are equal to λ1(x), . . . ,λp(x) and
λp+1(x), . . . ,λn(x), respectively.

As a result of repeated applications of the splitting theorem under the above
assumptions on the roots of Eq. (5.3.2), system (5.3.1) can be split into the separated
first-order equations

μ
dz j

dx
= b( j)(x,μ)z j , b( j)(x,μ) �

∞∑

k=0

b( j)
k (x)μk, b( j)

0 (x) = λ j (x), (5.3.9)

for the simple roots λ j (x∗), or into systems of two equations

μ
dz j

dx
= b( j, j)z j + b( j, j+1)z j+1,

μ
dz j+1

dx
= b( j+1, j)z j + b( j+1, j+1)z j+1, (5.3.10)

if λ j (x∗) = λ j+1(x∗).
Let λ1(x∗) = λ2(x∗) at x = x∗ and relations (5.3.3) be satisfied. Find expressions

for the vectors a(0)
0 (x) and a(1)

0 (x) in (5.3.4). For x 	= x∗, to construct the integrals
y( j)(x,μ) corresponding to the roots λ j (x), j = 1, 2, one may use formulas (4.2.3)–
(4.2.9). Then, for j = 1, 2,

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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y( j)(x,μ) = U ( j)
0 (x) exp

(
1

μ

∫ x

x0
λ j (x) dx

)
[1 + O (μ)],

U ( j)
0 = ϕ

( j)
0 V ( j), (A0 − λ j E)V ( j) = 0, ϕ

( j)′
0 = b( j)

1 ϕ
( j)
0 ,

V ( j) = V 1(x) − (−1) j√q V 2(x), b( j)
1 = c1(x)

q
− (−1) j c2(x)√

q
,

(5.3.11)

where the vector-functions V 1(x) and V 2(x) and the functions c1(x) and c2(x) are
real analytic at x = x∗. However, ϕ( j)

0 (x) → ∞ as x → x∗.
In a neighborhood of the point x = x∗, themain term of the asymptotic expansions

(5.3.4) as μ → ∞ have the form

y(x,μ) = d0(x)

[(
V 1 cosh ν√

ξ′ + V 2
√

ξξ′ sin ν + O(μ)

)
v(η)+

μ1/3
(

V 1 sinh ν√
ξξ′ + V 2

√
ξ′ cos ν + O(μ)

)
v′(η)

]
exp

(
1

μ

∫ x

x∗
p(x) dx

)
,

(5.3.12)

where η = μ−2/3ξ,

d0(x) = exp

(∫ x

x∗

4c1 + q ′

4q
dx

)
, ν =

∫ x

x∗

c2√
q

dx, ξ =
(
3

2

∫ x

x∗

√
q dx

)2/3

.

5.3.2 Vibrations of Circular Plates

The equation of free vibrations of a circular plate withm waves in the circumferential
direction has the form

D ��w − ρhω2w = 0, 0 ≤ r ≤ R, (5.3.13)

where

�w = 1

r

d

dr

(
r

dw

dr

)
− m2

r2
w, D = Eh3

12(1 − ν2)
,

w(r,ϕ) = w(r) cos mϕ is the plate deflection, R is the plate radius, E , ν, ρ, h are
Young’s modulus, Poisson’s ratio, plate density and plate thickness, respectively.

The general solution of equation (5.3.13) bounded at r = 0 is expressed by means
of the Bessel functions Jm(x) and Im(x):

w(r) = C1 Jm(αr) + C2 Im(αr), α4 = ρhω2

D
. (5.3.14)
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For a clamped edge r = R, the boundary conditions have the form

w = 0,
dw

dr
= 0 for r = R.

Denote β = αR. Then the frequency equation reduces to

f1(β) = Jm(β)I ′
m(β) − Im(β)J ′

m(β) = 0, ()′ = d

dβ
. (5.3.151)

For a freely supported edge r = R, the boundary conditions and the equation are

w = 0,
d2w

dr2
+ ν

(
1

r

dw

dr
− m2

r2
w

)
= 0 for r = R,

f2(β) = Jm(β)I ′
m(β) − Im(β)J ′

m(β) − 2β

1 − ν
Jm(β)Im(β) = 0. (5.3.152)

Finally for a free edge r = R, the boundary conditions and the equation are

d2w

dr2
+ ν

(
1

r

dw

dr
− m2

r2
w

)
= 0,

d

dr

[
d2w

dr2
+ ν

(
1

r

dw

dr
− m2

r2
w

)]

+ (1 − ν)

(
1

r

d2w

dr2
− 2m2 + 1

r2
dw

dr
+ 3m2

r2
w

)
= 0, for r = R,

f3(β) =
(

a1 Jm(β) − 1

β
J ′

m(β)

) (
m2

β3 Im(β) − a1 I ′
m(β)

)

−
(

m2

β3 Jm(β) − a2 J ′
m(β)

) (
a2 Im(β) − 1

β
I ′
m(β)

)
= 0, (5.3.153)

where

a1 = m2

β2 − 1

1 − ν
, a2 = m2

β2 + 1

1 − ν
.

In developing Eqs. (5.3.2) and (5.3.2) we used equations satisfied by the functions
Jm(β) and Im(β) (see Sect. 5.2.5).
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The frequencies ωmn are expressed by means of the roots βmn of Eqs. (5.3.15)
and the formula

ωmn =
√

D

ρh

β2
mn

R2 . (5.3.16)

As in Sect. 5.2.5, for the asymptotic analysis asm → ∞, wemake the substitution
r = mx/α and assume that μ = 1/m. Then, Eq. (5.3.13) takes the shape of (4.1.1):

�2
1w − w = 0, �1w = μ2

(
d2w

dx2
+ 1

x

dw

dx

)
− w

x2
. (5.3.17)

Equation (5.3.17) has a turning point at x∗ = 1. The above splitting theorem permits
to consider two second order equations instead of the single fourth-order equation
(5.3.17)

(a) �1w + w = 0, w = Jm(mx),

(b) �1w − w = 0, w = Im(mx), (5.3.18)

The first of equations contains the turning point x∗ = 1.
We use the asymptotic formulas obtained in Sect. 5.2.5 towrite formula (5.2.31) as

Im(β) � (m2 + β2)1/4 exp

(∫ √
m2 + β2

β
dβ

)
, (m,β) → ∞, (5.3.19)

from where we have

I ′
m(β) �

√
m2 + β2

β
Im(β), (m,β) → ∞. (5.3.20)

For the roots of equation (5.3.15), β → ∞ as m → ∞. Thus, the applicability
conditions for formula (5.3.20) hold and with an accuracy of order 1/m, Eq. (5.3.15)
transform to

(1)
√

m2 + β2 Jm(β) − β J ′
m(β) = 0,

(2) Jm(β) = 0,

(3) a2
1

√
m2 + β2 Jm(β) − a2

2β J ′
m(β) = 0, (5.3.21)

where a1 and a2 are as in (5.3.15).
For a further simplification, replace Jm(β)with its asymptotic expansion (5.2.33).

Then Eq. (5.3.21) become

Ai(η) + bkAi
′(η) = 0, k = 1, 2, 3, (5.3.22)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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where

η = −
[
3m

2
�

(
β

m

)]2/3
sgn(β − m),

b1 =
[

m2 − β2

η(m2 + β2)

]1/2
, b2 = 0, b3 = a2

2

a2
1

[
m2 − β2

η(m2 + β2)

]1/2
,

and the function �(x) is the same as in (5.2.33).

5.3.3 Vibrations of Shells of Revolution

Find the main terms of the asymptotic expansions of the integrals of system (4.2.35)
which describes the free vibrations of a shell of revolution with large wave number,
m, in the circumferential direction if the characteristic equation (4.2.38) has two
roots with changing multiplicity

λ1,2 = ±√
q(s), q(s∗) = 0, q ′(s∗) < 0, (5.3.23)

and the other roots of the equation are simple. The integrals corresponding to the
simple roots are found in Sect. 4.2.6. Consider the integrals, corresponding to the
roots (5.3.23).

To reduce system (4.2.35) to the standard form (5.3.1) we introduce the vector-
function y(s,μ) by means of formulas (4.2.36). Then, for s 	= s∗, by formulas
(4.2.3)–(4.2.9) and (4.2.39) we have

y(s,μ) � U0(s) exp

(
1

μ

∫
λ(s) ds

)
, U 0 = ϕ0(s)V (s), (5.3.24)

where

ϕ0 = (b fλ)−1/2, fλ = ∂ f

∂λ
, V = (v1, v2, . . . , v8)

T ,

v1 = λ2 − r2

b2
, v5 = −k2λ2 − k1r2/b2

λ2 − r2/b2
, vk+1 = λvk, k = 2, 3, . . . , 8.

Here the function f = f (λ, s) is given by formula (4.2.38) and the symbol T denotes
transposition.

The multiple roots (5.3.23) are of the form (5.3.3) for p(x) ≡ 0. From formulas
(5.3.9), (4.2.9) and (5.3.11),

b( j)
1 (s) = ϕ′

0

ϕ0
= c1

q
− (−1) j c2√

q
, j = 1, 2. (5.3.25)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Since f (λ, s) is a polynomial in even powers ofλ, we get c2(s) ≡ 0 and, therefore,
ν(s) ≡ 0 in (5.3.12).

The components vk , k = 1, . . . , 8, of the vector V are either even or odd functions
of λ. Therefore, in representating the vector (5.3.11), each component vk of V ( j)

contains only one of the two summands. Accordingly, formulas (5.3.12) can be
simplified to

yk(s,μ) � d0vk√
ξ′ v(η) = μ1/6 d0vkη

1/4

λ1/2 v(η), k = 1, 3, 5, 7,

yk(s,μ) � μ1/3 d0
√

ξ′vk

λ
v′(η) = μ1/6 d0vk

η1/4λ1/2 v′(η), k = 2, 4, 6, 8, (5.3.26)

where vk come from formulas (5.3.24), v(η) is Airy’s function,

d0 = λ√
b fλ

, η = μ−2/3ξ, ξ =
(
3

2

∫ s

s∗

√
q(s) ds

)2/3

,

and ξ > 0 for q > 0 and ξ < 0 for q < 0. The right sides in (5.3.26) are real analytic
for s = s∗.

We develop an approximate equation for evaluating the free vibrations frequencies
of a shell of revolution with a large wave number, m, in the circumferential direction
if in the interval of integration there exists one simple turning point of type (5.3.23).

Under the above assumptions, the turning point s = s∗ divides the interval of
integration into two parts. For s1 ≤ s < s∗, the characteristic equation (4.2.38) of
degree eight has four roots with positive real parts and four with negative real parts.
For s1 ≤ s < s∗, the equation has three roots with positive real parts, three with
negative parts and two pure imaginary roots.

We seek the vibrations mode which decays to the left of the turning point in
the form

z(s,μ) �
∑

j=1,3,4,5

C j z
( j)(s,μ), (5.3.27)

where C j are arbitrary constants, z(1)(s,μ) are solutions of the form (5.5.22) or
(5.5.23), in which v(η) = Ai(η) is the Airy function which decays for η > 0, and
z( j)(s,μ), j = 3, 4, 5, are solutions of the form (5.5.20) for which �(λ j ) > 0. A
substitution of (5.3.27) into the boundary conditions at s = s2 leads to the frequency
equation

Ai(−η2) + d

[
−q(s2)

η2

]1/2
Ai′(−η2) = 0, η2 =

(
3

2μ

∫ s2

s∗

√−q(s) ds

)2/3

> 0,

(5.3.28)
where q(s) is as in (5.3.23) and the coefficient d depends on the boundary conditions
at hand and it is a zero of a fourth-order determinant.

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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For example, for the clamped boundary conditions C1 (see formulas (4.5.9))
u = v = w = γ1 = 0, and equation for d is

∣
∣∣∣∣∣∣
∣∣∣∣

λ−1
1 u(1)

0 u(3)
0 u(4)

0 u(5)
0

dv
(1)
0 v

(3)
0 v

(4)
0 v

(5)
0

dw
(1)
0 w

(3)
0 w

(4)
0 w

(5)
0

λ−1
1 γ(1)

10 γ(3)
10 γ(4)

10 γ(5)
10

∣
∣∣∣∣∣∣
∣∣∣∣

= 0, (5.3.29)

where the functions u( j)
0 , v( j)

0 , w( j)
0 and γ

( j)
10 are calculated by formulas (5.5.21) for

λ = λ j (s). In the first column of the determinant (5.3.29) the functions (5.5.22) have
multiplier d, and the functions (5.5.23) have multiplier λ−1.

In particular, for boundary conditions of free support type S2 (T1 = v = w =
γ1 = 0) in the first column of determinant (5.3.29), all functions z(1)

0 have multiplier
d. Thus, d = 0 in (5.3.28).

For η2 � 1, if one uses formulas (5.1.4), then Eq. (5.3.28) simplifies to

tan

(
1

μ

∫ s2

s∗

√−q(s) ds + π

4

)
= d

√−q(s2), (5.3.30)

from where
∫ s2

s∗

√−q(s) = μ(π(n − 1/4) + arctan
(

d
√−q(s2)

)
, n = 1, 2, . . . (5.3.31)

The free vibrations mode is localized near the edge s = s2 (see Fig. 5.9). If the
other edge, s = s1, is weakly supported or free (see Sect. 4.5.2), then free vibrations
modes localized near this edge may also appear.

5.3.4 Exercises

5.3.1. Develop formulas (5.3.12).

5.3.2. For the three types of boundary conditions considered in Sect. 5.3.2, compare
the first six values of βmn , obtained from the exact Eq. (5.3.15) and the approximate
Eqs. (5.3.21)–(5.3.22), for m = 8 and ν = 0.3.
5.3.3. Using the expansions (4.2.5), (5.3.26) and formulas (4.5.12), obtain the main
terms of the asymptotic expansions of the functions u, v, w, γ1 = w′, T1, S, Q∗

1
and M1, which describe the stress-strain state for the free vibrations of a shell of
revolution and which enter into the boundary conditions (4.5.12).

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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5.3.4. Find the integrals of system (4.2.53) which describe the stability of an axisym-
metric stress-strain state of a momentless shell in the presence of a turning point of
type (5.3.23).
5.3.5. Using Eq. (5.3.28) find the free vibrations frequencies for a paraboloidal shell
of revolution in a neighborhood of the lowest frequency. The parameters of the
paraboloidal shell entering formulas (4.2.38) and (5.5.21) are

k2 = 1√
1 + b2

, k1 = k32,
ds

db
=

√
1 + b2, (5.3.32)

where b(s) is the dimensionless distance from the axis of revolution.
Consider the four types of boundary conditions, C1, S1, C2, S2 [see formulas

(4.5.9)]. Assume the following values of the parameters R/h = 250, ν = 0.3,
s2 = 2. As a characteristic size for R, take the radius of curvature at the top of the
cupola.
5.3.6. Find the critical load for the paraboloidal shell of revolution considered in
Exercise 5.3.5 under external normal pressure p. The initial axisymmetric stress
state is determined by the non-dimensional stresses

t1 = 1

2k2
, t2 = 1 − t1k1

k2
, (5.3.33)

where k1 and k2 are the same as in (5.3.32). The loading parameter � entering
(4.2.53) is related to the pressure p by the formula

� = pR

μ2Eh
. (5.3.34)

5.4 Localized Eigenfunctions

In Sects. 5.2 and 5.3, we considered eigenfunctions which were exponentially
decreasing when approaching one of the edges of the interval [x1, x2] and equa-
tions for evaluating the corresponding eigenvalues � within an accuracy of order
e−c/μ independent of the boundary conditions on that edge (see Exercises 5.2.5–
5.2.9, 5.3.5–5.3.6). Here we study cases where system (5.3.1) or Eq. (4.1.1) has an
oscillating solution on the interval x (1)∗ < x < x (2)∗ (x1 < x (1)∗ < x (2)∗ < x2) and
an exponentially decreasing solution when approaching the edges x1 and x2. With
an error of order e−c/μ one may assume that the solution satisfies any homogeneous
boundary conditions at x = x1 and x = x2. Below we call this solution localized.
We assume that the coefficients of Eq. (4.1.1) depend linearly on the parameter �

and seek eigenvalues � for which the localized solution exists.

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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5.4.1 Existence Conditions for Localized Solutions

Firstly, consider the second-order equation

μ2 d2y

dx2
− q(x,�)y = 0, q(x,�) = q1(x) + �q2(x). (5.4.1)

Let q(x (k)∗ ,�) = 0, q ′
x (x (k)∗ ,�) 	= 0, k = 1, 2, and q < 0 for x (1)∗ < x < x (2)∗ . Then

an existence condition for localized solution is [22, 30]:

1

μ

∫ x (2)∗

x (1)∗
g(x,�) dx = π

2
(2n +1)+ O(μ), n = 0, 1, 2, . . . , g = √−q. (5.4.2)

Now, we assume that the order of system (5.3.1) or Eq. (4.1.1) is larger than two
and for x (1)∗ < x < x (2)∗ the characteristic equation (5.3.2) or (4.1.7) has two pure
imaginary roots

λ1,2 = ±ig(x), g(x) ∼
(

x (2)∗ − x
)1/2 (

x − x (1)∗
)1/2

, as x → x (k)∗ , (5.4.3)

which, for x ∈̄ [
x (1)∗ , x (2)∗

]
, go over into real roots of opposite signs. The other roots

of the characteristic equation have nonzero real parts. Then, if condition (5.4.2) is
satisfied, system (5.3.1) has a formal localized solution.

We note one more case where localized solutions appear for a system of at least
fourth order. For x (1)∗ < x < x (2)∗ , let the characteristic equation (5.3.2) have four
pure imaginary roots,

λ1,2,3,4 = ±iq(x) ± ig(x), g(x) ∼
(

x (2)∗ − x
)1/2 (

x − x (1)∗
)1/2

, x → x (k)∗ ,

(5.4.4)

where the function q(x) is real analytic. For x ∈̄ [
x (1)∗ , x (2)∗

]
the roots of equation

(5.3.2) have nontrivial real part. Under the same assumptions on the other roots
of equation (5.3.2) the existence condition for localized solution is again relation
(5.4.2).

5.4.2 Construction of Localized Solutions

In vibrational and buckling analysis, the evaluation of the lower eigenvalues� and the
construction of the corresponding eigenfunctions is of special interest. It often occurs
that an eigenfunction for such eigenvalue is localized and the turning points x (1)∗ and
x (2)∗ are close apart (x (2)∗ − x (1)∗ ∼ μ1/2). In this case, the algorithm described below
can be applied to the example of the following self-adjoint equation of order 2m:

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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m∑

k=0

(−iμ)2k dk

dxk

(
ak(x)

dk y

dxk

)
= 0, x1 ≤ x ≤ x2. (5.4.5)

The coefficients ak are assumed to be real analytic and depending linearly on the
parameter �:

ak = a1k + �a2k, � > 0. (5.4.6)

We seek the eigenvalues � for which localized solutions of equation (5.4.5) exist in
a neighborhood of some point x0 (x1 < x0 < x2). The point x0 is called the weakest
point. We construct a solution in the form of an asymptotic series

y(x,μ) =
∞∑

k=0

μk/2yk(ξ) exp
[
i
(
μ−1/2 p0ξ + 1/2aξ2

)]
,

ξ = μ−1/2(x − x0), � = �0 + μ�1 + · · · , (5.4.7)

where yk(ξ) are polynomial in ξ, p0, x0 and �k are real, and �(a) > 0. The last
condition guarantees that solution (5.4.7) decreases as |x − x0| increases.

Substituting λ = i p into Eq. (4.1.7) and solving it, we find �:

� =
( m∑

k=0

a1k(x)p2k
)( m∑

k=0

a2k(x)p2k
)−1

≡ f (p, x). (5.4.8)

Assume that there exists a unique point (p0, x0) such that

�0 = (+)

min
p,x

{ f } = f (p0, x0) (5.4.9)

and

d2 f = f 0pp dp2 + 2 f 0px , dp dx + f 0xx dx2 > 0, f 0px = ∂2 f (p0, x0)

∂ p0∂x0
, . . .

(5.4.10)

The minimum (5.4.9) is searched for all x ∈ [x1, x2], p ≥ 0, for which f > 0. Then
a solution of the form (5.4.7) exists and

y(n)
0 (ξ) = Hn(z), z = c1/2ξ, �(n) = �0 + μ�

(n)
1 + O

(
μ2

)
,

�
(n)
1 = r(n + 1/2), n = 0, 1, 2, . . . , (5.4.11)

where

a = ir − f 0px

f 0pp
, c = r

f 0pp
, r =

[
f 0pp f 0xx − ( f 0px )

2
]1/2

> 0,

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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and Hn(z) is the Hermite polynomial of degree n. In particular, H0 = 1, H1 = z,
H2 = z2 − 1/2. Formulas (5.4.7) and (5.4.11) determine the series of eigenvalues
�(m) the lowest of which is obtained for n = 0.

Concerning the eigenfunctions, we should distinguish two cases:

(A) p0 = 0 and (B) p0 > 0. (5.4.12)

In the case p0 = 0, the eigenfunctions have the form

y(n)(x,μ) =
[

Hn(z) + O(μ)1/2
]

e−z2/2, z =
(

c

μ

)1/2

(x − x0), (5.4.13)

and the corresponding eigenvalues �(n) are simple.
In the case p0 > 0, the function (5.4.7) is complex. Since the coefficients ak

in (5.4.5) are real, the real and imaginary parts of function (5.4.7) are solutions of
equation (5.4.5). But it would be a mistake to consider eigenvalues �(n) to be double
and assume that any arbitrary combination of the real and imaginary parts of (5.4.7)
provides an eigenfunction. The point is that (5.4.7) is not convergent but asymptotic
and two fixed real functions correspond to the parameter �(n):

y(n, j)(x,μ) =
[

Hn(z) cos� j + O(μ1/2)
]
exp

(
−�(a)(x − x0)2

2μ

)
,

� j = p0x

μ
+ �(a)(x − x0)2

2μ
+ � j , j = 1, 2, z =

(
c

μ

)1/2

(x − x0),

(5.4.14)

where the phases � j are fixed (0 ≤ �1, �2 < 2π). The corresponding exact eigen-
values �(n,1) and �(n,2) are different, but

�� = �(n,2) − �(n,1) = O
(
μN

)
(5.4.15)

for any N . Such eigenvalues are called asymptotically doubled. When the charac-
teristic equation (5.3.2) has two pairs of pure imaginary roots (5.4.3) between the
turning points, the eigenvalues are also asymptotically double.

In Fig. 5.3a: the eigenfunction for p0 = 0, and Fig. 5.3b, c: two eigenfunctions
for p0 > 0 are plotted for n = 0.

5.4.3 Vibrations of Prolate Ellipsoidal Shells of Revolution

We use formulas (5.4.7)–(5.4.11) to find approximate vibrations frequencies of a thin
shell in the shape of a prolate ellipsoidal shell of revolution (a0 < b0, see Fig. 5.4).
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Fig. 5.3 a Eigenfunction for p0 = 0, and b and c two eigenfunctions for p0 > 0 for n = 0

Fig. 5.4 A prolate
ellipsoidal shell of revolution

O

b 0

a
0

The vibrations of an ellipsoidal shell withm waves in the circumferential direction
are given by the system of Eq. (4.2.35):

��w − �k� − �w = 0, ��� + �kw = 0, (5.4.16)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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where

�w = μ2 1

b
(bw′)′ − r2

b2
w, �kw = μ2 1

b
(bk2w

′)′ − k1r2

b2
w, ( )′ = d( )

ds
.

Here we use the notation of Sect. 4.2.5.
The numbers a0 and b0 are the ellipse semi-axes (a0 < b0) and R = a0 is the

characteristic size in formulas (4.2.34). Then

k2 =
√
sin2 θ + δ2 cos2 θ, k1 = k32

δ2
, b = sin θ

k2
,

δ = b0
a0

> 0,
dθ

ds
= k1, (5.4.17)

where θ is the angle between the axis of rotation and the normal to the shell.
The function (5.4.8),

f (p, s) =
(

p2 + r2

b2

)2

+ (k2 p2 + k1r2/b2)2

(p2 + r2/b2)2
, r = μm, (5.4.18)

attains its minimal value (5.4.9)

�0 =
(

r4

b4
+ k21

)

θ=θ0

= r4 + 1

δ4
(5.4.19)

at p0 = 0, θ0 = π/2.
The derivatives

f 0pp =
[
4r2

b2
+ 4k1(k2 − k1)r2

b2

]

θ=θ0

= 4r2 + 4(δ2 − 1)

r2δ4
,

f 0ss = d2

ds2

[
r4

b4
+ k21

]

θ=θ0

= 6(δ2 − 1)

δ6
+ 4r4

δ2
, f 0ps = 0, (5.4.20)

we substitute in (5.4.11) and for n = 0, we get

� � r4 + 1

δ4
+ μ

rδ5

√
(r4δ4 + δ2 − 1)(4r4δ4 + 6(δ2 − 1)), r = μm. (5.4.21)

The minimumwavenumber, m, in the circumferential direction is attained for r � 1.
Neglecting terms with the factor r4 under the radical sign in (5.4.21) we approxi-
mately find

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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�min = 1

δ4
+ 5

δ

(√
6(δ2 − 1)μ

4

)4/5

, mmin = 1

μδ

(√
6(δ2 − 1)μ

4

)1/5

.

(5.4.22)
Now the lowest frequency may be found by formula (4.2.34).

5.4.4 Buckling of Cylindrical Shells Under Non-uniform
Compression

The buckling of a circular cylindrical thin shell of radius R with freely supported
edges under non-uniform compression is described by the system of equations of
type (4.2.53):

��w − 2�r2t (ϕ)w + r2� = 0, ��� − r2w = 0, (5.4.23)

where

�w = μ2
∂2w

∂ϕ2 − r2w, r = μmπ

l
, m = 1, 2, . . . , l = L

R
, t (ϕ) = − T 0

1 (ϕ)

2�Ehμ2
.

Here T 0
1 (ϕ) is the membrane initial stress-resultant, L is the shell length, m is the

number of semi-waves in the longitudinal direction when the variables are separated
as

w(s,ϕ) = w(ϕ) sin
mπs

l
, 0 ≤ ϕ ≤ 2π, (5.4.24)

where s and ϕ are the longitudinal and circumferential coordinates of the shell
surface.

System (5.4.23) has variable coefficient t (ϕ). The loading parameter � ≥ 0 is
introduced in such a way that

max
ϕ

t (ϕ) = t (ϕ0) = 1. (5.4.25)

Without loss of generality, we assume that ϕ0 = 0.
For fixed value of r we seek a loading parameter � for which system (5.4.24) has

a nontrivial solution satisfying the periodicity conditions of ϕ. We also assume that
t ′′(0) < 0.

When using the algorithm given by formulas (5.4.5)–(5.4.15), the periodicity
condition is replaced by a damping condition for the solution away from the weakest
generatrix ϕ0 = 0.

The function (5.4.8) can be written in the form

f (p,ϕ, r) = 1

2t (ϕ)

(
z + 1

z

)
, z = (p2 + r2)2

r2
. (5.4.26)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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As in the general case (see (5.4.12)) when one seeks the minimum (5.4.9),

�0 = min
p,ϕ

f (p,ϕ, r) = f (p0, 0, r), (5.4.27)

two cases are possible depending on the value of r :

(A) p0 = 0, �0 = 1

2

(
r2 + 1

r2

)
for r > 1, (5.4.28)

(B) p0 =
√

r − r2, �0 = 1 for r < 1. (5.4.29)

In case (A), the inequality r > 1 holds. Therefore, this case can happen only for
buckling of rather short shells (m = 1, l < πμ) and we obtain the loading parameter
by the formulas (5.4.7) and (5.4.11),

�(n) = 1

2

(
r2 + 1

r2

)
+ μ

(
n + 1

2

) √

−2(r8 − 1)t ′′(0)
r6

+ O
(
μ2

)
, n = 0, 1, . . .

(5.4.30)
In case (B), from the same formulas (5.4.7) and (5.4.11) we find

�(n) = 1 + μ

(
n + 1

2

) √

−16(r − 1)t ′′(0)
r

+ O
(
μ2

)
, n = 0, 1, . . . (5.4.31)

In contrast to case (A), the eigenvalues (5.4.31) are asymptotically double (see also
Exercise 5.4.10).

Let l ∼ 1. Then for μ � 1, we have r = μmπ/ l < 1 for several values of m for
which formula (5.4.31) gives approximately equal values for the load � � 1. The
difference is only in the term of order μ. Thus, it follows that the lowest value of �

corresponds to r = 1.
Both formulas (5.4.30) and (5.4.31) give the same value of � = 1 for r = 1.

However, for r = 1 the expansion (5.4.7) together with formulas (5.4.31) is not
applicable since f pp = 0 violates assumption (5.5.29). For r � 1 the asymptotic
expansion for the solution is obtained in Exercise 5.4.11.

Remark The problem considered here is a good illustration of asymptotic analy-
sis. However, for estimate of a real critical loading under compression for real shells,
formula (5.4.31) is not applicable because of the significant influence of the initial
imperfections of the shape of the neutral surface which can reduce the critical load
by a factor of two of three (see [31, 56]). Moreover, buckling of long cylindrical
shells (l � 1) is different from the above scheme. Indeed, long shells behave like a
beam that is compressed with an axial force.
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5.4.5 Exercises

5.4.1. Find the coefficients p0, �0, �1 in formulas (5.4.7) for Eq. (5.4.1).

5.4.2. The free vibrations of a string on an elastic foundation are described by Eq.
(5.4.1), in which (see also Sects. 4.3.3 and 5.2.4)

μ2 = T

c0l2
, � = ρ0ω

2

c0
,

and q1(x) = c(x) and q2(x) = ρ(x) are the non-dimensional foundation stiffness
and the string density, respectively (see notation in Sect. 5.2.4).

Find the solution of equation (5.4.1) satisfying the damping conditions:

y(−∞) = y(∞) = 0, (5.4.32)

for q1(x) = x2 and q2(x) = 1.
5.4.3. Consider the eigenvalue problem

μ2 d2y

dx2
−

(
x2 − �

)
y = 0, y(−1) = y(1) = 0. (5.4.33)

Compare the exact eigenvalues�(n) and their asymptotic approximations found with
formulas (5.4.2) and (5.5.28) with μ = 0.1 and � < 1.
5.4.4. Consider the eigenvalue problem

μ2 d2y

dx2
−

(
x2 + 1

3
x3 − �

)
y = 0, y(−2) = y(1) = 0. (5.4.34)

Compare the exact eigenvalues �(n) and their asymptotic approximations found
by formulas (5.4.2) and (5.5.30) with μ = 0.1 and � < 1.

Consider also the boundary conditions y(−2) = y′(1) = 0 instead of (5.4.34).
5.4.5. Compute the values of the parameter � by formulas (5.4.2) and (5.4.21) for
an ellipsoidal shell of revolution with R/h = 500, ν = 0.3 and δ = √

2.
5.4.6. Find the critical value of the external pressure q for the buckling of a thin shell
of the shape of a prolate ellipsoidal shell of revolution (a0 > b0, see Fig. 5.5).
5.4.7. Compare the numerical results obtained by formulas (5.4.2) and (5.5.34)
applied to an ellipsoidal shell of revolution with R/h = 500, ν = 0.3 and δ = √

2.
5.4.8. Analyze the buckling of a thin ellipsoidal shell of revolution under the internal
pressure q > 0 for different ratios of the semi-axes δ (see formula (5.4.17)).
5.4.9. Find a formula similar to (5.5.41) for an oblate ellipsoidal shell of revolution
(δ < 1/2) under an internal pressure q > 0.
5.4.10. Consider the buckling of a circular cylindrical shell with freely supported
edges under axial force P and bending moment M applied to the shell edges (see
Fig. 5.6). Then the initial stress-resultant T (0)

1 and the function t (ϕ) are [see (5.4.23)]

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Fig. 5.5 Thin shell in the
shape of a prolate ellipsoidal
shell of revolution

O

b 0

a 0

Fig. 5.6 Buckling of a
circular cylindrical shell
with freely supported edges

M

M

s

ϕ

P

P

T (0)
1 = P

2πR
+ M cosϕ

πR2 , t (ϕ) = α + cosϕ

α + 1
,

M = −2πR2�Ehμ2

α + 1
, α = P R

2M
> −1. (5.4.35)

The generatrix ϕ0 = 0 is the weakest one.
For R/h = 100, ν = 0.3, α = 1 (see notation in Sect. 5.4.4) and different q,

compare the exact values of � obtained by means of the numerical integration of
system (5.4.23) and their asymptotic approximations obtained by formulas (5.4.30)
and (5.4.31).
5.4.11. By formulas (5.4.30) and (5.4.31), the lowest value of �(r) is attained at
r = 1, where these formulas are not applicable. Under the same assumption as in
Sect. 5.4.4, study the asymptotics of the first two eigenvalues of �(r) for problem
(5.4.23) as μ → 0 and r � 1.
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5.4.12.Consider the free vibrations of a thin non-circular cylindrical shell with freely
supported edges. A part of the frequency spectrum close to the lowest frequency can
be found by the following system of equations:

μ4 d4w

dx4
− �w + k(y)� = 0, μ4 d4�

dx4
− k(y)w = 0, (5.4.36)

μ8 = h2L4

12π(1 − ν)r6
, k(y) = R

R2(y)
, � = ρω2r2

Eμ4 ,

where y is the non-dimensional coordinate in the transverse direction, L is the shell
length, k(y) is the non-dimensional curvature of a directrix, the other notation being
the same as in Sect. 4.2.5.

Obtain the asymptotic formula for the lowest vibrations frequency, i.e. theminimal
value of � as μ → 0.

Consider the particular case of an elliptic cylindrical shell with ellipse semi-axes
a0 and b0, for which

R = a0,
dθ

dy
= k(y) = δ−2

(
sin2 θ + δ2 cos2 θ

)3/2
, δ = b0

a0
> 1. (5.4.37)

Here θ is the angle between the major axis of the ellipse and the normal to the shell.
Compare the asymptotic and the numerical results for δ = √

2 and two values of
μ (μ = 0.1 and μ = 0.2).

5.5 Answers and Solutions

5.1.1. Results on the evaluation of the function Ai(η) for η > 0 and η < 0 are
listed in Tables5.1 and5.3, respectively. Similar results are presented in Tables5.2
and5.4 for the function Bi(η). The values of Ai(1.2) and Bi(1.2) were obtained by
the convergent series (5.1.2). The values of Ai(N ) and Bi(N ) were obtained by the
first terms of the divergent series (5.1.4) with N = 1, 4, 7, 10. The decimal order is
shown inside parentheses.

Generally the convergent series (5.1.2) can be used for small |η| and the asymptotic
series (5.1.4) for large |η|. For the intermediate values of |η|, the results, according
to (5.1.2) and (5.1.4), are expected to coincide. From the above tables, it follows
that, for η > 0, the domain where these results coincide (the domain of overlap) is
narrower (4 ≤ η ≤ 5) for the function Ai(η) and wider (η ≥ 4) for the function
Bi(η). For η < 0, the domain of overlap is 4 ≤ |η| ≤ 10 for both functions.

The observed difference in the domains of overlap is explained by the fact that a
loss of accuracy occurs for calculation by series (5.1.2) for large |η| because small
differences of large values are computed. The highest loss of accuracy occurs with
Ai(η) when η > 0. Actually, for η ≥ 7 even the decimal order of Ai(η) calculated

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Table 5.1 Value of Ai(η) for η > 0

η Ai(1.2) Ai(1) Ai(4) Ai(7) Ai(10)

1 0.1353(−0) 0.1448(−0) 0.1233(−0) 0.5189(−0) −0.5894(+2)

2 0.3492(−1) 0.3599(−1) 0.3484(−1) 0.3506(−1) 0.3390(−1)

3 0.6591(−2) 0.6709(−2) 0.6589(−2) 0.6592(−2) 0.6590(−2)

4 0.9516(−3) 0.9630(−3) 0.9515(−3) 0.9516(−3) 0.9516(−3)

5 0.1084(−3) 0.1093(−3) 0.1083(−3) 0.1083(−3) 0.1083(−3)

6 0.9979(−5) 0.1002(−4) 0.9948(−5) 0.9948(−5) 0.9948(−5)

7 0.1134(−5) 0.7533(−6) 0.7492(−6) 0.7492(−6) 0.7492(−6)

8 0.5797(−5) 0.4713(−7) 0.4692(−7) 0.4692(−7) 0.4692(−7)

9 0.1029(−3) 0.2481(−8) 0.2471(−8) 0.2471(−8) 0.2471(−8)

10 0.2184(−2) 0.1108(−9) 0.1105(−9) 0.1105(−9) 0.1105(−9)

Table 5.2 Value of Bi(η) for η > 0

η Bi(1.2) Bi(1) Bi(4) Bi(7) Bi(10)

1 0.1208(1) 0.1099(1) 0.1446(1) 0.6386(1) 0.6310(3)

2 0.3298(1) 0.3127(1) 0.3292(1) 0.3342(1) 0.3563(1)

3 0.1404(2) 0.1370(2) 0.1403(2) 0.1404(2) 0.1404(2)

4 0.8385(2) 0.8263(2) 0.8384(2) 0.8385(2) 0.8385(2)

5 0.6578(3) 0.6512(3) 0.6578(3) 0.6578(3) 0.6578(3)

6 0.6536(4) 0.6488(4) 0.6536(4) 0.6536(4) 0.6536(4)

7 0.8033(5) 0.7986(5) 0.8033(5) 0.8033(5) 0.8033(5)

8 0.1200(7) 0.1194(7) 0.1200(7) 0.1200(7) 0.1200(7)

9 0.2147(8) 0.2139(8) 0.2147(8) 0.2147(8) 0.2147(8)

10 0.4556(9) 0.4541(9) 0.4556(9) 0.4556(9) 0.4556(9)

by series (5.1.2) appears to be incorrect. For Bi(η) no loss of accuracy occurs for
η > 0 since all terms in (5.1.2) are positive.

It should be noted that, for small |η|, increasing the number of terms in the asymp-
totic series (5.1.4) makes the result worse (as it must be for divergent series).
5.1.2. Using the asymptotic formulas (5.1.4) as n → ∞ we find

ηn = ηna

[
1 + O

(
n−2

)]
, ηna = − [1.5π(n − 1/4)]2/3 ,

η′
n = η′

na

[
1 + O

(
n−2

)]
, η′

na = − [1.5π(n − 1/12)]2/3 . (5.5.1)

The values of ηn , ηna , η′
n , η

′
na , for n = 1, 2, . . . , 6, are given in Table5.5.

5.2.1. Substituting (5.2.2) into (5.2.1) and equating the coefficients of v and dv/dη,
and taking (5.2.3) into account, we obtain the system of equations
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Table 5.3 Value of Ai(η) for η < 0

η Ai(1.2) Ai(1) Ai(4) Ai(7) Ai(10)

−1 0.5356(+0) 0.5602(+0) 0.5150(+0) −0.1241(+1) 0.1227(+2)

−2 0.2274(+0) 0.2151(+0) 0.2260(+0) 0.2277(+0) 0.2448(+0)

−3 −0.3788(+0) −0.3836(+0) −0.3787(+0) −0.3788(+0) −0.3788(+0)

−4 −0.7027(−1) −0.6531(−1) −0.7025(−1) −0.7027(−1) −0.7027(−1)

−5 0.3508(+0) 0.3497(+0) 0.3508(+0) 0.3508(+0) 0.3507(+0)

−6 −0.3292(+0) −0.3303(+0) −0.3291(+0) −0.3292(+0) −0.3292(+0)

−7 0.1843(+0) 0.1860(+0) 0.1843(+0) 0.1843(+0) 0.1843(+0)

−8 −0.5271(−1) −0.5423(−1) −0.5271(−1) −0.5271(−1) −0.5271(−1)

−9 −0.2213(−1) −0.2088(−1) −0.2214(−1) −0.2213(−1) −0.2213(−1)

−10 0.4024(−1) 0.3921(−1) 0.4024(−1) 0.4024(−1) 0.4024(−1)

Table 5.4 Value of Bi(η) for η < 0

η Bi(1.2) Bi(1) Bi(4) Bi(7) Bi(10)

−1 0.1040(+0) 0.6683(−1) 0.4777(−1) 0.3392(+0) 0.2630(+3)

−2 −0.4123(+0) −0.4229(+0) −0.4117(+0) −0.4099(+0) −0.4114(+0)

−3 −0.1983(+0) −0.1914(+0) −0.1982(+0) −0.1983(+0) −0.1983(+0)

−4 0.3922(+0) 0.3936(+0) 0.3922(+0) 0.3922(+0) 0.3922(+0)

−5 −0.1384(+0) −0.1417(+0) −0.1384(+0) −0.1384(+0) −0.1384(+0)

−6 −0.1467(+0) −0.1444(+0) −0.1467(+0) −0.1467(+0) −0.1467(+0)

−7 0.2938(+0) 0.2928(+0) 0.2938(+0) 0.2938(+0) 0.2938(+0)

−8 −0.3313(+0) −0.3311(+0) −0.3313(+0) −0.3313(+0) −0.3313(+0)

−9 0.3250(+0) 0.3251(+0) 0.3250(+0) 0.3250(+0) 0.3250(+0)

−10 −0.3147(+0) −0.3148(+0) −0.3147(+0) −0.3147(+0) −0.3147(+0)

Table 5.5 Values of ηn , ηna , η′
n , η

′
na

n ηn ηna η′
n η′

na

1 −2.3381 −2.3203 −2.6664 −2.6524

2 −4.0880 −4.0818 −4.3425 −4.3370

3 −5.5206 −5.5172 −5.7410 −5.7379

4 −6.7867 −6.7845 −6.9861 −6.9840

5 −7.9441 −7.9425 −8.1288 −8.1272

6 −9.0227 −9.0214 −9.1961 −9.1949

(
a(0)ξ′)′ + a(0)′ξ′ + μa(1)′′ = 0,

(
a(1)ξξ′)′ + a(1)′ξξ′ + μa(0)′′ = 0,

where ξ(x) is defined by (5.2.3). This system admits the asymptotic solution
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a(0)(x,μ) �
∞∑

n=0

a(0)
2n (x)μ2n, a(1)(x,μ) �

∞∑

n=0

a(1)
2n+1(x)μ2n+1, (5.5.2)

where a(0)
0 (x) = 1/

√
ξ′,

a(0)
2n (x) = − 1

2
√

ξ′

∫ x

x∗

a(1)′′
2n−1√

ξ′ dx, n = 1, 2, . . . ,

a(1)
2n+1(x) = − 1

2
√

ξξ′

∫ x

x∗

a(0)′′
2n√
ξξ′ dx, n = 0, 1, . . . , (5.5.3)

and all functions a( j)
k (x) are real analytic.

5.2.2. The exact solution is

y(n)(x) = v0

(
−�

2/3
n x

)
, �n = |η′

n|3/2
l3/2

,

where the function v0(η) is the same as in (5.2.10).

5.2.3.We haveϕ0 = 0.75
√
2−0.125 log

(
3 + √

8
)
. The exact values�exact

n and the

asymptotic approximations �2.11
n and �2.12

n found by formulas (5.2.11) and (5.2.12)
are compared in Table5.6.
5.2.4. Since ϕ0 = π/8, from formula (5.2.14) we get �n = 8(n − 1/6). The exact,
�exact

n , and approximate, �
approx
n = 8(n − 1/6), values of �n are compared in

Table5.7. As expected, the accuracy of the asymptotic formula increases with n.

5.2.5. In this problem, ϕ0 = ∫ 1
0

√
x + x2 dx = 0.75

√
2 − 0.125 log

(
3 + √

8
)
,

x∗ = 0. Values of �n are compared in Table5.8: (1) �exact
n for problem (5.2.15), (2)

�′exact
n for the problem when the boundary condition at the left end is replaced with

y′ = 0, (3) asymptotic values �2.18
n , and (4) �2.19

n obtained by formulas (5.2.18)
and (5.2.19) and independent of the boundary condition at the left end. It should be
noted that �exact

n and �′exact
n get closer as n increases.

The eigenfunction y3(x) is plotted in Fig. 5.7.

Table 5.6 Exact and asymptotic values

n �exact
n �2.11

n �2.12
n

1 3.4368 3.4270 3.4270

2 7.1679 7.1656 7.1656

3 10.9047 10.9042 10.9041

4 14.6427 14.6428 14.6428

5 18.3810 18.3814 18.3814

6 22.1195 22.1200 22.1199
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Table 5.7 Exact and asymptotic values

n �exact
n �

approx
n

1 6.7264 6.6667

2 14.6892 14.6667

3 22.6794 22.6667

4 30.6752 30.6667

5 38.6730 38.6667

6 46.6716 46.6667

Table 5.8 Exact and asymptotic values

n �exact
n �′exact

n �2.18
n �2.19

n

1 2.8183 2.6891 2.8364 2.8039

2 6.5296 6.52310 6.5573 6.5425

3 10.2726 10.2723 10.2906 10.2811

4 14.0137 14.0137 14.0266 14.0197

5 17.7537 17.7537 17.7638 17.7583

6 21.4931 21.4931 21.5014 21.4968

Fig. 5.7 Eigenfunction
y3(x),

3

y (x)

x

y

1-1 O

1

0.5

5.2.6. The interval of integration contains two turning points, x (1)∗ and x (2)∗ , and
two domains where the eigenfunctions oscillate, x1 ≤ x ≤ x (1)∗ and x (2)∗ ≤ x ≤
x2. Each of these domains provides a specific set of eigenvalues �

(1)
n and �

(2)
n .

For �
(2)
n , the eigenfunctions oscillate for x (2)∗ ≤ x ≤ x2 and are exponentially

small in the remaining part of the interval [x1, x2] (see Fig. 5.8a). The eigenfunction
corresponding to �

(1)
n oscillates for x1 ≤ x ≤ x (1)∗ and decreases exponentially in

the remaining part of the interval (Fig. 5.8b). If, for some m and n, �(1)
m � �

(2)
n , then
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Fig. 5.8 Eigenfunctions of �
(2)
n left and of �

(1)
n right

the two eigenfunctions oscillate for both x1 ≤ x ≤ x (1)∗ and x (2)∗ ≤ x ≤ x2 (see
Exercise 5.2.7).

The asymptotic formulas for the evaluation of�(k)
n are similar to formulas (5.2.18)

and (5.2.19):

�(k)
n = 2|ηn|3/2

3ϕ0
k

+ O
(

n−1
)

= π(n − 1/4)

ϕ0
k

+ O
(

n−1
)

, n → ∞,

ϕ0
k =

∣∣∣
∣

∫ xk

x (k)∗

√
ρ(x) dx

∣∣∣
∣, k = 1, 2. (5.5.4)

5.2.7. The interval of integration contains the two turning points x (1,2)∗ = ±0.5.
Because the function ρ(x) is even and the problem is symmetric with respect to the
point x = 0, the problem splits into two problems:

y(1)′′ + �(1) 2y(1) = 0, y(1)(−1) = 0, y(1)′(0) = 0;
y(2)′′ + �(2) 2y(2) = 0, y(2)(−1) = 0, y(2)(0) = 0. (5.5.5)

For x < 0, the functions y(1)(x) should be continued as even and the functions
y(2)(x) as odd.

From formula (5.5.4),

�(1)
n � �(2)

n � π(n − 1/4)

ϕ0 , ϕ0 = 1

4

√
3 − 1

8
log

(
2 + √

3
)

(5.5.6)

as n → ∞.
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Table 5.9 Exact and approximate values

n �
(1)
n �

(2)
n �

approx
n

1 8.7614 8.8779 8.7789

2 20.5058 20.5070 20.4841

3 32.2039 32.2039 32.1893

4 43.9053 43.9053 43.8945

5 55.6082 55.6082 55.5997

6 67.3120 67.3120 67.3049

Table 5.10 Exact and asymptotic values

N �N n �
(1)
n n �

(2)
n

1 8.8200 1 8.7789

2 12.6489 1 12.5573

3 20.5064 2 20.4841

4 29.3440 2 29.3004

5 32.2039 3 32.1893

6 43.9053 4 43.8945

7 46.0717 3 46.0435

8 55.6082 5 55.5997

9 62.8074 4 62.7865

10 67.3200 6 67.3049

A pair of close exact eigenvalues, and one odd and one even eigenfunctions
correspond to each value of �

(k)
n obtained by formula (5.5.6). Such eigenvalues will

be called asymptotically double (see also Sect. 5.4).
Table5.9 lists the exact values of �

(1)
n , �(2)

n and the values obtained by formula
(5.5.6).We see that,within the accepted accuracy, the values of�(1)

n and�
(2)
n coincide

for n ≥ 4.
5.2.8. From formula (5.5.4) we get

�(k)
n = π(n − 1/4)

ϕ0
k

, ϕ0
k =

∫ |xk |

a

√
x2 − a2 dx, k = 1, 2. (5.5.7)

Table5.10 lists the first ten exact eigenvalues �N and their asymptotic approx-
imations, �

(1)
n and �

(2)
n , obtained from formula (5.5.7). It occurs that four actual

eigenvalues are from the first series, �(1)
n , and six are from the second series, �(2)

n .
The eigenfunctions y7(x) = y(2)

4 (x) and y5(x) = y(1)
3 (x) are plotted in Fig. 5.8

(left) and (right), respectively. As expected, the function y5(x) differs significantly
from zero and oscillates near the left edge of the interval. On the other hand, the
function y7(x) oscillates near the right edge. Since �7 is close to �6, the function
y7(x) slightly oscillates near the left edge.
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Table 5.11 Exact and approximate values

n �exact
n �

(1)
n �

(2)
n �

(3)
n �

(3)
n

1 1.2257 1.2257 1.2240 1.2240

2 1.3947 1.3947 1.3941 1.3941

3 1.5330 1.5330 1.5327 1.5327

4 1.6553 1.6553 1.6550 1.6550

5 1.7671 1.7670 1.7668 1.7670

6 1.8730 1.8711 1.8710 1.8729

7 1.9819 1.9694 1.9693 1.9818

8 2.1055 2.1054 2.1082

9 2.2487 2.2486 2.2498

10 2.4119 2.4118 2.4124

5.2.9. In this problem, q(x) = 1+ x − �. The turning point x∗ = � − 1 belongs to
the interval [0, 1] for � ∈ [1, 2].

The calculated results are listed in Table5.11. The exact values, �exact
n , are

obtained from Eq. (5.2.25), where η0 = −(� − 1)μ−2/3 and η1 = −(� − 2)μ−2/3.
In contrast to the general case, here Eq. (5.2.25) is exact since the function q(x)

depends linearly on x . The next two columns contain the approximate values of�(1)
n

and �
(2)
n :

�(1)
n = 1 + μ2/3|ηn|, (5.5.8)

�(2)
n = 1 +

[
2

3
μπ(n − 1/4)

]2/3
, (5.5.9)

obtained by formula (5.2.26) which holds for � < 2 only. The solutions �
(3)
n of Eq.

(5.2.27) and the solution �
(4)
n of Eq. (5.2.23), which is valid for � > 2 only, are

listed in the last two columns of the Table5.11.
5.2.10. The exact solution is expressed through the zeros,αmn , of the Bessel function
Jm(x):

ωmn = 1

R

√
T

ρ
αmn, Jm(αmn) = 0, n = 1, 2, . . . .

Find the asymptotics for αmn as m → ∞. From formulas (5.2.33) and (5.2.34) it
follows that αmn > m for all n. Formulas (5.2.33) give

αmn = m
(
1 + β2

mn

)1/2 + O
(

m−1/3
)

, (5.5.10)
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where βmn is a positive root of the equation

β − arctan β = γ (5.5.11)

for

γ = γmn = 2

3m
|ηn|3/2. (5.5.12)

For fixed n and m → ∞, we have

γmn � 1, βmn � (3γmn)1/3, αmn � m

[

1 +
(
2

m

)2/3

|ηn|
]1/2

, (5.5.13)

where ηn it the nth root of the function Ai(η).
For n � 1, instead of (5.5.12) we may assume that

γmn � π

m
(n − 1/4). (5.5.14)

For γmn � 1, Eq. (5.5.11) can also be solved approximately:

βmn � γmn + π/2 − (γmn + π/2)−1. (5.5.15)

5.2.11. The exact values αexact
mn and the approximate values α

(k)
mn , k = 1, 2, 3, 4,

obtained form (5.5.10) are given in Table5.12 for n ≤ 10. To computeα
(1)
mn ,α

(2)
mn , and

α
(3)
mn , the values βmn in (5.5.10) are obtained from Eq. (5.5.11), in which γ = γmn are

found from (5.5.12)–(5.5.14) respectively. In the evaluation of α(4)
mn , formula (5.5.15)

is used to get βmn .

Table 5.12 Exact and approximate values

n αexact
mn α

(1)
mn α

(2)
mn α

(3)
mn α

(4)
mn

1 12.2251 12.2234 11.1079 12.1873

2 16.0378 16.0362 12.9548 16.0219

3 19.5545 19.5531 19.5443

4 22.9452 22.9438 22.9376

5 26.2668 26.2656 26.2607 26.4019

6 29.5457 29.5445 29.5405 29.6411

7 32.7958 32.7947 32.7913 32.8656

8 36.0256 36.0246 36.0217 36.0781

9 39.2405 39.2395 39.2369 39.2808

10 42.4439 42.4430 42.4407 42.4755
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The breaks in Table5.12 come from the inapplicability of the relevant approximate
formula. Formula (5.5.13) provides acceptable accuracy only for m � 8.
5.3.1. Solutions (5.3.1) can be represented in the form y( j) � V ( j)z j , where the
scalar functions z j satisfy Eqs. (5.3.9):

μ
dz j

dx
=

[
λ j (x) + μb( j)

1 (x)
]

z j , j = 1, 2, (5.5.16)

and b( j)
1 (x) are the same as b0 in formulas (4.2.9) and (5.3.11). Here and further we

write only those terms which affect the main terms in (5.3.12).
The functions λ j (x) and b( j)

1 (x) have a singular point at x = x∗. In accordance
with the splitting theorem there exists a linear transformation,

z j =
[
ν

(0)
j1 (x) + μν

(1)
j1 (x)

]
θ1 +

[
ν

(0)
j2 (x) + μν

(1)
j2 (x)

]
θ2, j = 1, 2, (5.5.17)

which reduces Eq. (5.5.16) to a system of two equations without a turning point. The
coefficients of this transform are ν

(0)
11 = ν

(0)
21 = 1/2, ν

(0)
12 = −ν

(0)
22 = 1/(2

√
q ),

ν
(1)
11 = −b(2)

1 /(2
√

q ), ν
(1)
12 = ν

(1)
21 = 0, ν

(1)
22 = b(1)

1 /(2
√

q ). Now, the obtained
system of equations

μθ′
1 = pθ1 + θ2, μθ′

2 = (q + 2μc2)θ1 +
(

p + μ
4c1 + q ′

2q

)
θ2 (5.5.18)

has no singular point x = x∗.
The main terms of the asymptotic expansions for the solutions of system (5.5.18)

are expressed by means of Airy’s functions:

θ1 = d0(x)

[
cos ν√

ξ′ v(η) + μ1/3 sin ν√
ξξ′ v

′(η)

]
exp

(
1

μ

∫ x

x∗
p(x) dx

)
,

θ2 = d0(x)
[√

ξξ′ sin ν v(η) + μ1/3
√

ξ′ cos ν v′(η)
]
exp

(
1

μ

∫ x

x∗
p(x) dx

)
,

(5.5.19)

where the notation in formulas (5.3.11) and (5.3.12) is used. To get formulas (5.3.12)
one must substitute (5.5.19) into (5.5.17) and then into the formulas y( j) = V ( j)z j .
5.3.2. For the three types of boundary conditions the results are compared in
Table5.13, where the first three columns are for clamped edges, the next three for
freely supported edges and last three for free edges. The table includes the solutions
βexact

mn of the exact equations (5.3.151), (5.3.152), and (5.3.153), the solutions β(1)
mn

of the approximate equations (5.3.211), (5.3.212), and (5.3.213), and the solution
β(2)

mn of the approximate equation (5.3.22). Note that for clamped edges, βmn do not
depend on Poisson’s ratio ν. For freely supported edges, the roots β

(1)
mn and β

(2)
mn of

the approximate equations (5.3.212) and (5.3.22) for k = 2 do not depend on ν.

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Table 5.13 Results for clamped, freely supported and free edges, respectively

n βexact
mn β

(1)
mn β

(2)
mn βexact

mn β
(1)
mn β

(2)
mn βexact

mn β
(1)
mn β

(2)
mn

1 12.971 12.957 12.964 12.195 12.225 12.223 9.039 9.214 9.277

2 16.799 16.787 16.792 16.015 16.038 16.036 13.483 13.535 13.552

3 20.323 20.312 20.312 19.536 19.554 19.553 17.086 17.121 17.131

4 23.718 23.709 23.713 22.930 22.945 22.944 20.510 20.537 20.545

5 27.043 27.034 27.038 26.253 26.267 26.265 23.850 23.871 23.878

6 30.323 30.316 30.319 29.534 29.546 29.544 27.140 27.159 27.164

Therefore the roots of the exact equation (3.15) depend weakly on ν. For a free
edge, one root of the equations under consideration is less than m. This root is not
included in Table5.13.
5.3.3. For the simple roots λ(s) of the characteristics equation (4.2.38) we have

z(s,μ) � z0(s) exp

(
1

μ

∫
λ(s) ds

)
, (5.5.20)

where z replaces any of the listed functions (u, v, . . .) and

u0 = μ

λ

[
k1w0 −

(
r2

b2
+ νλ2

)
�0

]
, T10 = − Ehr2

Rb2
�0,

v0 = μb

r

[
k2w0 +

(
λ2 + νr2

b2

)
�0

]
, S0 = Ehrλ

Rb2
�0,

w0 =
(

λ2 − r2

b2

)
(b fλ)−1/2,

�0 = −
(

k2λ
2 − k1r2

b2

) (
λ2 − r2

b2

)−2

w0,

Q∗
10 = − Ehμ

R

(
λ3 − (2 − ν)λr2

b2

)
w0,

γ10 = λ

μ
w0, M10 = Ehμ2

(
λ2 − νr2

b2

)
w0, (5.5.21)

and the notation in Sect. 4.2.5 is used.
For multiple roots, s = s∗, of Eq. (4.2.38) of type (5.3.28), the main terms of the

asymptotic expansions for these functions are expressed either by means of Airy’s
functions v(η) or their derivatives:

z(s,μ) � μ1/6η1/4z0
λ1/2 v(η), z = {v, w, T1, M1}, (5.5.22)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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z(s,μ) � μ1/6z0
λ1/2η1/4

v′(η), z = {u, γ1, S, Q∗
1}, (5.5.23)

where z replaces one of the functions inside braces. The expressions for z0 in (5.5.22)
and (5.5.23) given by formulas (5.5.21) are the same as in (5.5.20). The functions
z0 → ∞ as s → s∗. However, the right sides in (5.5.22) and (5.5.23) are regular at
s = s∗.

The obtained integrals may be used for approximating the free vibrations
frequencies.
5.3.4. We replace the function (4.2.38) with (4.6.5) and use the following formula
for Q∗

1:

Q∗
10 = − Ehμ

R

[
λ3 − (2 − ν)λr2

b2
+ 2�t1λ

]
w0, (5.5.24)

The other formulas are the same as in Sect. 5.3.3 and Exercise 5.3.3.
5.3.5. The eigenvalues � related to the free vibrations frequencies ω obtained by
means of formula (4.2.34),

� = ρω2r2

E
, (5.5.25)

are listed in Table5.14.
TheTable contains the lowest roots�m1 of Eq. (5.3.28) for the following boundary

conditions at s = s2:

S2 : T1 = v = w = M1 = 0,

C2 : u = v = w = M1 = 0,

S1 : T1 = v = w = γ1 = 0,

C1 : u = v = w = γ1 = 0. (5.5.26)

For the boundary conditions S2 we assume that d = 0 in (5.3.28), for conditions
C1 we find the value of d from Eq. (5.3.29), and for conditions C2 and S1 from the
equations

Table 5.14 Eigenvalues � for listed boundary conditions

m S2 C2 S1 C1

9 0.09844 0.09845 0.10001 0.10002

10 0.09495 0.09495 0.09675 0.09677

11 0.09311 0.09311 0.09516 0.09521

12 0.09277 0.09278 0.09511 0.09519

13 0.09387 0.09389 0.09654 0.09664

14 0.09641 0.09643 0.09945 0.09956

15 0.10041 0.10043 0.10387 0.10399

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Fig. 5.9 Eigenfunction w(s)
for m = 12 and boundary
conditions S2

12
w (s)

w

s

1

2o

∣∣∣
∣∣∣∣∣∣

λ−1
1 u(1)

0 u(3)
0 u(4)

0 u(5)
0

dv
(1)
0 v
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0 v
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0 v
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0
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(1)
0 w

(3)
0 w
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0 w

(5)
0

d M (1)
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10 M (5)
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∣∣∣
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∣∣∣
∣∣∣∣∣∣

dT (1)
10 T (3)

10 T (4)
10 T (5)

10

dv
(1)
0 v

(3)
0 v

(4)
0 v

(5)
0

dw
(1)
0 w

(3)
0 w

(4)
0 w

(5)
0

λ−1
1 γ

(1)
10 γ

(3)
10 γ

(4)
10 γ

(5)
10

∣∣∣
∣∣∣∣∣∣

= 0,

respectively.
For the considered parameters and boundary conditions the lowest frequency

is attained for m = 12. The vibrations frequencies depend rather slightly on the
boundary conditions.

The eigenfunction w(s) for m = 12 for the boundary conditions S2 is plotted in
Fig. 5.9. The turning point s∗ = 1.3914 is marked with an asterisk.
5.3.6. The lowest eigenvalues � obtained for different m from Eq. (5.3.28) are given
in Table5.15. The boundary conditions (5.5.26) are introduced at the shell edge
s = s2 = 2.

Buckling occurs for m = 20. As in Exercise 5.3.5, the values of � depend
slightly on the boundary conditions (5.5.26). Nevertheless, the higher critical load
corresponds to the stiffer edge support.
5.4.1. Formula (5.4.8) takes the form

� = f (p, x) = p2

q2(x)
+ γ(x), γ(x) = q1(x)

q2(x)
. (5.5.27)

Table 5.15 Lowest eigenvalues �

m S2 C2 S1 C1

17 0.36137 0.36160 0.37114 0.37172

18 0.35016 0.35037 0.36024 0.36077

19 0.34412 0.34431 0.35453 0.35501

20 0.34227 0.34248 0.35307 0.35350

21 0.34392 0.34407 0.35507 0.35547

22 0.34848 0.34863 0.36000 0.36035

23 0.35554 0.35568 0.36745 0.36777
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Let the function γ(x) attains its minimum at x = x0 and γ′′(x0) > 0, in the interval
x1 < x0 < x2. Then, by (5.4.9)–(5.4.11) we obtain

p0 = 0, �(n) = �0 + μ�
(n)
1 + O(μ2), n = 0, 1, . . . ,

�0 = γ(x0), �
(n)
1 =

(
n + 1

2

) √
2γ′′(x0)

q2(x0)
. (5.5.28)

The eigenfunction for n = 0 is shown in Fig. 5.3a.
5.4.2. From formulas (5.4.13) and (5.5.28) we have

�(n) = μ(2n + 1), y(n)(x) = Hn(z) e−z2/2, n = 0, 1, . . . , (5.5.29)

where z = x/
√

μ and Hn(z) is the Hermite polynomial of degree n. In contrast to
(5.4.13) the obtained solution is exact.
5.4.3. Formulas (5.4.2) and (5.5.28) provide the same result:

�(n) = μ(2n + 1), n = 0, 1, . . . (5.5.30)

The approximate values of �
(n)
approx obtained from formula (5.5.30) and the exact

values found by numerical integration are given in Table5.16. As the turning points
s(1,2)∗ = ±√

� approach the ends of the segment [−1, 1], the error of the approximate
formula (5.5.30) increases.
5.4.4. Table5.17 contains two approximate values, �(n)

approx, which are independent

of the boundary conditions and are obtained by formula (5.5.30) and �
(n)
refined found

by the refined formula (5.4.2) and also two exact values: �
(n)
exact and �

′(n)
exact for the

boundary conditions at the right end y(1) = 0 and y′(1) = 0, respectively. The last
two columns contain the coordinates of the turning points.

Formula (5.5.30) takes into account only the local properties of the function
q(x,�) near the point x = 0 and neglects the term x3/3. Formula (5.4.2) takes into
account the behavior of the function q(x,�) between the turning points and provides
a better approximation to the exact values than formula (5.5.30). As the turning points
approach the ends of the segment [−2, 1] the error of the approximate values�

(n)
approx

and �
(n)
refined increases and the difference between the values �

(n)
exact and �

′(n)
exact also

increases.

Table 5.16 Approximate and exact eigenvalues

n 0 1 2 3 4

�n
approx 0.10000 0.30000 0.50000 0.70000 0.90000

�n
exact 0.10003 0.30054 0.50413 0.71864 0.95714
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Table 5.17 Approximate values and coordinates of turning points

n �
(n)
approx �

(n)
refined �

(n)
exact �

′(n)
exact s(1)∗ s(2)∗

0 0.100 0.100 0.099 0.099 −0.335 0.301

1 0.300 0.295 0.295 0.295 −0.608 0.503

2 0.500 0.486 0.486 0.485 −0.817 0.633

3 0.700 0.671 0.672 0.668 −1.004 0.734

4 0.900 0.850 0.853 0.842 −1.185 0.817

Table 5.18 Computed �(m)

for (10 ≤ m ≤ 13)
m �

(m)
refined �

(m)
approx

10 0.2851 0.2975

11 0.2841 0.2954

12 0.2842 0.2946

13 0.2853 0.2949

5.4.5. The computed values of �(m) for (10 ≤ m ≤ 13) are given in Table5.18,
which contains the values of �

(m)
refined and �

(m)
approx obtained from the refined formula

(5.4.2) and the approximate formula (5.4.21), respectively. The lowest value of�(m)

we get for m = 11 [for m = 12 from formula (5.4.21)]. The approximate formulas
(5.4.22) provide mmin = 12.4, �min = 0.2936.
5.4.6. The buckling of an ellipsoidal shell of revolution is described by the system
of Eq. (4.2.53), for which function (4.2.8) has the form

� = f (p, s, r) = (p2 + r2/b2)4 + (k2 p2 + k1r2/b2)2

(t1 p2 + t2r2/b2)(p2 + r2/b2)2
, (5.5.31)

where, by (5.3.33) and (5.3.34),

t1 = 1

2k2
, t2 = 1 − t1k1

k2
, � = q R

Ehμ2 , r = μm, (5.5.32)

and the functions k1(s), k2(s) and b(s) are defined by formulas (5.4.17). The
minimum

�0 = min
p,s,r

f (p, s, r) = f (p0, s0, r0) = 4

2δ2 − 1
(5.5.33)

is attained at p = p0 = 0, θ = θ0 = π/2, r = r0 = 1/δ. After calculating the
derivatives (5.4.20), we use formula (5.4.11) for n = 0 to get

� = 4

2δ2 − 1
+ μ

4(δ2 − 1)
√
8δ2 − 2

(2δ2 − 1)2
+ O

(
μ2

)
. (5.5.34)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Table 5.19 Computed �(m) by formulas (5.4.2)

m 26 27 28 29 30 31 32

�(m) 1.40523 1.38697 1.37691 1.37415 1.37793 1.38762 1.40268

In terms of physical (dimensional) variables, the critical values of the pressure q and
the wave numbersm in the circumferential direction can be obtained by the formulas:

q = 2Eh2
√
3(1 − ν2)a2

0(2δ
2 − 1)

[

1 +
√

h(4δ2 − 1)

a0
√
3(1 − ν2)

(δ2 − 1)

(2δ2 − 1)2
+ O

(
h

a0

)]

,

m �
√

a0
√
12(1 − ν2)

hδ2
, δ = b0

a0
> 0,

(5.5.35)

where a0 and b0 are the ellipse semi-axes, E , ν, and h areYoung’smodulus, Poisson’s
ratio and the shell thickness, respectively.
5.4.7. From formulas (5.5.34) we get � = 1.37424 and m = 28.7. The computed
values of �(m) by formulas (5.4.2) for m close to m = 29 are listed in Table5.19.
5.4.8. Introduce the loading parameter � by formula (5.5.32):

� = q R

Ehμ2 . (5.5.36)

Then, the non-dimensional stress-resultants t1 and t2 differ by their sign from those
introduced by formulas (5.5.32),

t1 = − 1

2k2
, t2 = −1 + t1k1

k2
, (5.5.37)

where the functions k1(s) and k2(s) are defined by formulas (5.4.17). From relations
(5.5.37), t1 < 0 for all θ,

t2 = sin2 θ + δ2
(
cos2 θ − 2

)

2k2δ2
, δ = b0

a0
. (5.5.38)

Thus, t2 < 0 for 2δ2 > 1 and for all θ. By (4.2.53), the shell is only under tensile
stresses and, for the semi-axes ratio

√
2b0 < a0, the ellipsoidal shell of revolution

under internal pressure does not buckle.
Let 2δ2 < 1. To find the minimum (5.5.33) we consider only such values of p, s,

and r , for which f (p, s, r) > 0. Firstly, we find

γ(θ) = min
p,r

f (p, s, r) = 2k2
t1

= 4
(
sin2 θ + δ2 cos2 θ

)2

sin2 θ + δ2
(
cos2 θ − 2

) , p0 = 0. (5.5.39)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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Depending on δ, the function γ(θ) attains its minimum,

�0 = min
θ

γ(θ) = γ(θ0), (5.5.40)

for different values of θ0.
For 1/2 < δ < 1/

√
2, the weakest parallel is the equator θ = π/2. For that, the

loading parameter, �, and the wavenumber, m, in the circumferential direction are
found by formulas similar to (5.5.34):

� = 4

1 − 2δ2
+ μ

4(1 − δ2)
√
8δ2 − 2

(2δ2 − 1)2
+ O

(
μ2

)
, m = 1

μδ
. (5.5.41)

For δ < 1/2, the function γ(θ) has a local maximum at the equator θ = π/2. The
global minimum, which is equal to �0 = 32δ2, is attained at

θ
(1)
0 = arcsin

√
3δ2

1 − δ2
, θ

(2)
0 = π − θ

(1)
0 . (5.5.42)

5.4.9. Applying formulas (5.4.7)–(5.4.11) and (5.5.31) we find

� = 32δ2

⎡

⎣1 + μ

√
193(1 − 4δ2)

16δ2
+ O

(
μ2

)
⎤

⎦ , m = 1

μ

√
6δ

1 − δ2
.

5.4.10. In formulas (5.4.30) and (5.4.31) for α = 1 we have t ′′(0) = −0.5. We
separately seek the even and odd buckling modes w(ϕ) by numerical integration.
The boundary conditions,

w′ = w′′′ = �′ = �′′′ = 0 for ϕ = 0, ϕ = π, (5.5.43)

and
w = w′′ = � = �′′ = 0 for ϕ = 0, ϕ = π, (5.5.44)

correspond to the even and odd buckling modes, respectively.
The first and second eigenvalues, �(1) and �(2), are listed in Table5.20 for dif-

ferent values of r . The even and odd eigenfunctions w(ϕ) correspond to �(1) and
�(2), respectively. The table includes the exact values �

(1)
exact and �

(2)
exact obtained by

numerical integration, and the approximate values �
(1)
approx and �

(2)
approx obtained by

the asymptotic formulas (5.4.30) and (5.4.31) and the rounded values �
(1)
rounded and

�
(2)
rounded calculated by formulas (5.5.50).
For r < 1, the asymptotic values are asymptotically double. This is why the

values of �
(1)
exact and �

(2)
exact converge as the parameter r < 1 decreases and the same

asymptotic value, �(1)
approx = �

(2)
approx, for r < 1 corresponds to both of them.
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Table 5.20 Exact, approximate and rounded values of �

r �
(1)
exact �

(1)
approx �

(1)
rounded �

(2)
exact �

(2)
approx �

(2)
rounded

0.50 1.0792 1.0778 1.0792 1.0778

0.55 1.0713 1.0704 1.0713 1.0704

0.60 1.0639 1.0635 1.0640 1.0635

0.65 1.0571 1.0571 1.0571 1.0571

0.70 1.0505 1.0509 1.0505 1.0509

0.75 1.0438 1.0449 1.0440 1.0449

0.80 1.0366 1.0389 1.0321 1.0376 1.0389 1.0330

0.85 1.0275 1.0327 1.0249 1.0321 1.0327 1.0291

0.90 1.0169 1.0259 1.0159 1.0292 1.0259 1.0275

0.95 1.0101 1.0178 1.0100 1.0310 1.0178 1.0304

1.00 1.0108 1.0000 1.0111 1.0388 1.0000 1.0398

1.05 1.0194 1.0212 1.0208 1.0531 1.0540 1.0568

1.10 1.0356 1.0403 1.0396 1.0740 1.0845 1.0822

1.15 1.0589 1.0653 1.0679 1.1011 1.1172 1.1164

For r > 1, the asymptotic approximations�(1)
approx and�

(2)
approx for the even and odd

modes w(ϕ) are obtained form formula (5.4.30) for n = 0 and n = 1, respectively.
In a neighborhood of the point r = 1, formulas (5.4.30) and (5.4.31) are unreli-

able (see Exercise 5.4.11, where the method for calculating the values �
(1)
rounded and

�
(2)
rounded is given).

5.4.11. To study the neighborhood of the point r = 1, we assume that

r = 1 + εr1, � = 1 + ε2�1, ϕ = ϕ0 + εη, ε = μ2/3 (5.5.45)

and seek a solution of system (5.4.23) in the form

w �
∞∑

k=0

εkwk(η), � �
∞∑

k=0

εk�k(η). (5.5.46)

Substituting formulas (5.5.46) in system (5.4.23) in the zeroth approximation we get
the fourth-order equation

4

(
d2

dη2
− r1

)2

w0 + (aη2 − 2�1)w0 = 0, a = −t ′′1 (0) > 0, (5.5.47)

and the boundary conditions w0 → 0 as η → ±∞.
Equation (5.5.47) cannot be integrated in terms of known functions. To reduce

the number of parameters in the numerical integration, we substitute

x = η

b
, b =

(
4

a

)1/6

, k = r1b2, λ = 2�1b4 (5.5.48)
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Fig. 5.10 Curves λ0(k) and
λ1(k)

1

2−3

λ

λ

λ

0

Ο
1

6

and transform equation (5.5.47) to

(
d2

dx2
− k

)2

w0 + (x2 − λ)w0 = 0, w(±∞) = 0. (5.5.49)

For each k there exists a countable set of values λi (k) for the parameter λ for which
the eigenvalue problem (5.5.49) has a nontrivial solution. The curvesλ0(k) andλ1(k)

are plotted in Fig. 5.10.
From formulas (5.5.45) and (5.5.48) we have

�(i) = 1 + 2ε2

b4
λi (k) + O

(
ε3

)
, k = (r − 1)b2

ε
. (5.5.50)

The function λ0(k) attains its minimum, λ0 = 0.905, for k = −0.44. Therefore, as
r changes, the parameter λ is minimum for r = 1 − 0.44εb2 and it is equal to

�min = 1 + 0.181ε2b−4 + O
(
μ2

)
.

Table5.20 contains the values �
(1)
rounded(r) and �

(2)
rounded(r) obtained by formula

(5.5.50) for r � 1 for the parameters from Exercise 5.4.10.
5.4.12. The function (5.4.8) has the form

f (p, y) = p4 + k2(y)

p4
. (5.5.51)

After minimizing f (p, y), we obtain

�0 = 2k0, k0 = k(y0) = min
y

k(y), p0 = k1/40 , (5.5.52)

where y0 is the weakest generatrix.
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Table 5.21 Results for the first four eigenvales

μ �asympt. �oo �oe �eo �ee

0.1 1.205976 1.210790 1.212372 1.212372 1.210790

0.2 1.411953 1.450047 1.387287 1.387290 1.450068

If k′′(y0) = k′′
0 > 0, then, by formula (5.4.11), we have

�(n) = 2k0 + μ

(
1

2
+ n

) √
32k′′

0

p20
+ O

(
μ2

)
, n = 0, 1, . . . , (5.5.53)

where the eigenvalues �(n) are asymptotically double.
For an elliptic cylindrical shell, we have

k0 = 1

δ2
, k′′

0 = 3
(
δ2 − 1

)

δ6
, θ

(1)
0 = π

2
, θ

(2)
0 = 3π

2
.

Since the shell has two weakest generatrices, the eigenvalues

�(n) = 2

δ2

⎡

⎣1 + μ

(
1

2
+ n

) √
24(δ2 − 1)

δ
+ O

(
μ2

)
⎤

⎦ , n = 0, 1, . . . ,

(5.5.54)
are asymptotically quadruple.

For the numerical evaluation of the parameters �, which are close to each other,
we integrate system (5.4.23) making use of the evenness (5.5.43) or oddness (5.5.44)
conditions for θ = 0 or θ = π/2.

The numerical results for δ = √
2 and μ = 0.1, μ = 0.2 are given in Table5.21

for the first four eigenvalues.
The table contains the approximate asymptotic values�asympt., obtained from the

asymptotic formula (5.5.54) for n = 0, which are equal for all four vibrations modes,
and also four close to each other exact eigenvalues �oo, �oe, �eo, and �ee obtained
by numerical integration. These eigenvalues correspond to four types of vibrations
modes: odd in θ and θ − π/2, odd in θ and even in θ − π/2, even in θ and odd in
θ − π/2, even in θ and θ − π/2, respectively.

The values of�oo and�ee, and also�oe and�eo, forμ = 0.1, within the accepted
accuracy, coincide with each other and for μ = 0.2 are close to each other.



Chapter 6
Asymptotic Integration of Nonlinear
Differential Equations

There are several types of asymptotic expansions for the solutions of nonlinear differ-
ential equations.Regularly perturbed nonlinear equationswere considered inChap.3.

Some types of singular perturbed nonlinear equations are considered in mono-
graphs [9, 38, 57, 58, 60, 61].

Generally for solution of singular perturbed equations the methods of matched
asymptotic expansions and multiscale methods are used. However, for example, in
[15] nonlinear boundary value problems, for which these methods are inapplica-
ble, are analyzed. In [52] one of the chapters deals with nonlinear boundary value
problems. The author consider some of the second order equations those have exact
solutions to illustrate various phenomena occur as a small parameter at the higher
derivative converges to zero.

In this chapter we also consider a limited number of problems connected with
singular perturbation and ramification of solutions of nonlinear equations.

6.1 Cauchy Problems for Ordinary Differential Equations
with a Small Parameter

6.1.1 Problem Statement

Consider theCauchy problem for the following system ofm+n nonlinear differential
equations:

d y
dt

= f ( y, z, t), yT = (y1, . . . , ym),

μ
d z
dt

= F( y, z, t), zT = (z1, . . . , zn),

y(0) = y0, z(0) = z0, 0 ≤ t ≤ T . (6.1.1)
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Here y and f are m-vectors, and z and F are n-vectors. As a rule one cannot obtain
an exact solution ( y(t,μ), z(t,μ)) and the problem is to find an asymptotic solution
taking the smallness of parameter μ into account.

As μ → 0, system (6.1.1) degenerates into a system of m differential and n
algebraic equations:

d y0
dt

= f ( y0, z0, t), F( y0, z0, t) = 0. (6.1.2)

The order of this system is lower than the order of the given system since the second
equation is not differential but algebraic. One should not introduce for this system
an initial condition for the function z, but only an initial condition for y,

y0(0) = y0.

Suppose that the second system of equations in (6.1.2),

F( y0, z0, t) = 0, (6.1.3)

has an isolated solution
z0 = z0( y0, t), (6.1.4)

i.e. there exists η > 0 such that F( y0, z, t) �= 0 for 0 < |z − z0( y0, t)| < η.
Substituting this solution into system (6.1.2) we obtain the degenerate (unperturbed)
problem

d y0
dt

= f ( y0, z0( y0, t), t), y0(0) = y0. (6.1.5)

Two questions arise as problem (6.1.1) degenerates into (6.1.5): firstly, how the
solutions for (6.1.1) and (6.1.5) relate as μ → 0, and, secondly, what is the analytic
structure of the solution of problem (6.1.1) forμ > 0. TheTikhonov theorem answers
the first question [60]:

Let
(1) the right sides F( y, z, t) and f ( y, z, t) be real analytic functions of their

arguments;
(2) the function (6.1.4) be an isolated solution of system (6.1.3);
(3) the solution (6.1.4) be an asymptotically stable equilibriumpoint for the adjoint

system,

d z̃
dτ

= F( y0, z̃, t), (6.1.6)
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where y0 and t are considered as parameters, and all the roots of the complementary
characteristic equation

det(A − λE) = 0, A = ∂ F
∂ z̃

∣∣∣∣
z̃=z0( y0,t)

(6.1.7)

have negative real parts;
(4) the initial point z0 belongs to the domain of attraction of the stability condition

(6.1.4).
If conditions (1)–(4) are satisfied, then, for sufficiently small μ, problem (6.1.1)

has a unique solution y(t,μ), z(t,μ) for which the following limit equalities are
valid:

y(t,μ) → y0(t) as μ → 0, 0 ≤ t ≤ T,

z(t,μ) → z0(t) = z0( y0(t), t) as μ → 0, ε ≤ t ≤ T . (6.1.8)

It is natural that the function z0(t) does not satisfy the boundary condition (6.1.1) in
the general case.

We discuss conditions (3) and (4) of the Tikhonov theorem.
In Eq. (6.1.6) y and t are considered as parameters and by condition (2) z̃ =

z0( y0, t) is a solution of equation (6.1.6). Since this solution does not depend on
τ , then d z0( y0, t)/dτ = 0, i.e. solution (6.1.4) is an equilibrium point for system
(6.1.6).

Condition (4) means that the solution z̃(τ ) for the problem

d z̃
dτ

= F( y0, z̃, 0), z̃(0) = z0

converges to the equilibrium point z0( y0, 0) as τ → ∞.
We note that system (6.1.3) may have a non-unique solution and conditions (3)

and (4) help us select the required root (6.1.4). If one wishes to obtain only relations
(6.1.8), then conditions (1)–(4) may be relaxed.

6.1.2 Construction of a Formal Asymptotic Solution

The solution of problem (6.1.1) in the form of an asymptotic series of powers of μ
is obtained in [60] and is shortly discussed below.

Let x denote any of the symbols y and/or z. We seek a solution x(t,μ) of problem
(6.1.1) in the form

x(t,μ) �
∞∑

k=0

xk(t)μ
k +

∞∑

k=0

Xk(τ )μk, (6.1.9)
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where τ = t/μ is the fast variable, and we apply the restriction

Xk(τ ) → 0 as τ → ∞, (6.1.10)

to the functions Xk(τ ), i.e. Xk(τ ) are the boundary layers functions.
The construction of successive terms in series (6.1.9) is notably similar to the

Vishik–Lyusternik algorithm (see Chap.4). The zeroth approximation for y0(t) is
evaluated from (6.1.5), and Y0(τ ) ≡ 0. The function z0(t) is determined from
formula (6.1.4). To obtain Z0(τ ), one should solve the problem

d Z0

dτ
= F

(
y0, z0(0) + Z0(τ ), 0

)
− F

(
y0, z0(0), 0

)
,

Z0(0) = z0 − z0(0), (6.1.11)

which, by conditions (3) and (4), has a solution that satisfies the relation (6.1.10).
The next terms of series (6.1.9) are obtained from linear equations in the following

order: Y1, y1, z1, Z1, Y2, . . . . The functions Y1 are found by quadratures:

Y1(τ ) =
∫ τ

∞

[
f

(
y0, z0(0) + Z0(τ ), 0

)
− f

(
y0, z0(0), 0

)]
dτ . (6.1.12)

To obtain y1, and z1, we solve the linear Cauchy problem:

d y1
dt

=
(

∂ f
∂ y

)

0
y1 +

(
∂ f
∂z

)

0
z1, y1(0) = −Y1(0), (6.1.13)

d z0
dt

=
(

∂ F
∂ y

)

0
y1 +

(
∂ F
∂z

)

0
z1, (6.1.14)

where the subscript “0” means that the corresponding derivatives are evaluate at the
solution z0 defined in (6.1.4). By condition (4), the matrix A = (∂ F/∂z)0 has a
nontrivial determinant and from (6.1.14) we find the vectors z1, which we substitute
into (6.1.13).

By successive approximations, the right sides of Eq. (6.1.1) are represented in the
form

F(x, t) = F(x̃, t) + F∗(X, τ ), (6.1.15)

where x̃ and X denote the first and the second sums in the right side of (6.1.9),
respectively. Relation (6.1.15), which we used to derive (6.1.11) and (6.1.12), defines
the function F∗:

F∗(X, τ ) = F (x̃(μτ ) + X(τ ),μτ ) − F (x̃(μτ ),μτ ) . (6.1.16)

http://dx.doi.org/10.1007/978-3-319-18311-4_4
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The equation for Z1(τ ) appears to be rather cumbersome:

d Z1

dτ
=

(
∂ F
∂ y

)

00

[
Y1(τ ) + y1(0) + τ y′

0(0)
]

+
(

∂ F
∂z

)

00

[
Z1(τ ) + z1(0) + τ z′

0(0)
] + τ

(
∂ F
∂τ

)

00

−
(

∂ F
∂ y

)

0

[
y1(0) + τ y′

0(0)
]

−
(

∂ F
∂z

)

0

[
z1(0) + τ z′

0(0)
] − τ

(
∂ F
∂τ

)

0
, (6.1.17)

Z1(0) = −z1(0).

Here the subscript “00” means that the corresponding derivatives are evaluated at
y = y0, z = z0(0) + Z0(τ ), and t = 0.

The monograph [60] contains a proof that formal series (6.1.9) are asymptotic
expansions of exact solutions as μ → 0 (μ > 0).

Problem (6.1.1) permits a generalization to the casewhere the right sides of system
(6.1.1) depend regularly on μ.

Example 1
Consider the following example:

dy

dt
= z, μ

dz

dt
= y2 − z2, y(0) = 1, z(0) = 0.

The roots of the equation F(y0, z0, t) = 0 are z = y and z = −y. Since ∂F/∂z =
−2z, then the root z = y is stable for y > 0, and the root z = −y is stable for y < 0.
The initial point y = 1, z = 0 belongs to the domain of the stable root z = y. Thus,
the unperturbed problem has the form

dy0
dt

= y0, y0(0) = 1.

The solution of the equation is y0(t) = et , and, therefore, z0(t) = et . To find Z0(τ )

we use Eq. (6.1.11):

d Z0

dτ
= −2Z0(τ ) − Z0

2(τ ), Z0(0) = −1,

which has solution Z0(τ ) = tanh τ − 1. Hence the functions

y(t) = et , z(t) = et + tanh τ − 1

approximate the solution with an accuracy of order O(μ) in any finite interval 0 ≤
t ≤ T0 < ∞.
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The function Y1(τ ) can be found from relation (6.1.12)

Y1(τ ) = ln 2 + ln (cosh τ ) − τ .

So, to obtain y1 and z1 in series (6.1.9) we have

dy1
dt

= z1,
dz0
dt

= 2y0y1 − 2z0z1,

or
1 = 2y1 − 2z1, y1(0) = −Y1(0) = − ln 2.

This implies that

y1(t) =
(

−1

2
− ln 2

)
et + 1

2
, z1(t) =

(
−1

2
− 2 ln 2

)
et .

To find Z1(τ ) from (6.1.17) we write the equation

d Z1

dτ
= 2 ln (cosh τ ) − 2 tanh τ

(
Z1(τ ) − 1

2
− ln 2 + τ

)
− 1,

Z1(0) = 1

2
+ ln 2,

with solution

Z1(τ ) = 1

2
+ ln 2 − τ + 2

cosh2 τ

∫ τ

0
cosh2 x ln (cosh x) dx .

Therefore, combining these results we get

y(t,μ) = et − t + μ

[
1

2
−

(
1

2
+ ln 2

)
et + ln 2 + ln (cosh τ )

]
+ O

(
μ2

)
,

z(t,μ) = et + tanh τ − 1 − t + μ

(
1

2
+ ln 2

)
(
1 − et)

+ μ
2

cosh2 τ

∫ t/μ

0
cosh2 x ln (cosh x) dx + O

(
μ2

)
.

The numerical (solid lines) and the asymptotic (dashed lines) values of the func-
tions y(t) (bold lines) and z(t) (thin lines) are plotted for μ = 0.6 in Fig. 6.1a and
for μ = 0.2 in Fig. 6.1b.
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Fig. 6.1 Numerical values (solid lines) and asymptotic values (dashed lines) of y(t) (bold lines)
and z(t) (thin lines) for μ = 0.6 (left) and for μ = 0.2 (right)

Example 2
We consider one more example, the reduced Van der Pol equation for a pendulum

with a small mass:

μ
d2x

dt2
+

(
1 − x2

) dx

dt
+ x = 0, x(0) = a,

dx(0)

dt
= 0, a �= 1. (6.1.18)

As before, we seek a solution of equation (6.1.18) in the form of series (6.1.9):

x(t,μ) = x0(t) + μ [X1(τ ) + x1(t)] + O
(
μ2

)
.

For μ = 0 we get a separable equation

(
1 − x20

) dx0
dt

+ x0 = 0, x0(0) = a. (6.1.19)

To find x0(t) one gets

t = x20 − a2

2
− ln

|x0|
|a| . (6.1.20)

Write the equation for the boundary layer function X1(τ ) as

d2X1

dτ2
+

(
1 − a2

) d X1

dτ
= 0,

with solution

X1(τ ) = C + C1 e−(1−a2)τ .
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Since the function X1(τ ) should satisfy condition (6.1.10), then C = 0. The constant
C1 is evaluated from the second initial condition (6.1.18):

d X1(0)

dτ
= −dx0(0)

dt
= − a

1 − a2 , C1 = a

(1 − a2)2
.

To obtain x1, we solve the equation

dx1
dt

(
1 − x20

)
+ x1

(
1 − 2x0

dx0
dt

)
+ d2x0

dt2
= 0, x1(0) = −X1(0).

By relations (6.1.19) and (6.1.20) this equation reduces to

dx1
dt

+ x1
1 + x20

(1 − x20 )
2

+ x0(1 + x20 )

(1 − x20 )
4

= 0, x1(0) = − a

(1 − a2)2
. (6.1.21)

We note that for this example it is hard to construct the analytic solution, i.e. to find
an explicit function x0(t) from relation (6.1.20), but separating the boundary layer
functions makes it easier to solve the problem numerically. The “slow” part of the
solution can be found numerically from relations (6.1.20) and (6.1.21) while “the
boundary effect” is obtained analytically.

6.1.3 Exercises

Find the exact and asymptotic solutions for the equations
6.1.1.

μ
d2x

dt2
+

(dx

dt

)2 − 1 = 0, x(0) = x0,
dx(0)

dt
= 0. (6.1.22)

6.1.2.

μ
d2x

dt2
+ x

dx

dt
= 0, x(0) = x0,

dx(0)

dt
= ẋ0, x0 > 0. (6.1.23)

Find the main terms of the asymptotic solution of the equations
6.1.3.

μ
d2x

dt2
+ dx

dt
+ cx + kx2 = 0, x(0) = x0,

dx(0)

dt
= ẋ0, (6.1.24)

x0 > 0, c > 0, k > 0.
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6.1.4.

μ
d2x

dt2
+ dx

dt
+ cx + kx3 = 0, x(0) = x0,

dx(0)

dt
= ẋ0,

x0 > 0, c > 0, k > 0.

6.1.5.

μ
d2x

dt2
+ dx

dt
x − Ax = 0, x(0) = x0,

dx(0)

dt
= ẋ0, x0 > 0. (6.1.25)

6.1.6.

μ
d2x

dt2
+ x

dx

dt
− A = 0, x(0) = x0,

dx(0)

dt
= ẋ0, x0 > 0. (6.1.26)

6.2 Perturbation of Nonlinear Boundary Value Problems
with a Small Parameter

6.2.1 Introduction

We consider boundary value problems the solutions of which are representable as
sums of slowly varying functions and functions of boundary layer type. Besides
boundary layers in neighborhoods of the ends of the intervals of integration, internal
boundary layers may also exist.

Consider the boundary value problem:

d y
dt

= f ( y, z, t), μ
d z
dt

= F( y, z, t), t ∈ [0, 1], (6.2.1)

where y and z are m- and n-vectors, respectively. Let m + n boundary conditions of
the general type be introduced in the form

li ( y(0), y(1), z(0), z(1)) = 0, i = 1, . . . , m + n. (6.2.2)

Again, the unperturbed system of equations has the form (6.1.2). However, the prob-
lem of introducing proper boundary conditions is nontrivial.

Let z0( y0, t) be an isolated solution of equation (6.1.3). In a neighborhood of this
solution we consider the adjoint system (6.1.6), where y and t are considered as
parameters.

When solving a boundary value problem it is convenient to define stability in a
more general way than stability used in the third condition of the Tikhonov theorem:
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if all roots of the auxiliary characteristic equation (6.1.7) have negative real parts,
then the root z( y, t) is stable to the right. If all roots of Eq. (6.1.7) have positive real
parts then the root z( y, t) is said to be stable to the left.

Let Eq. (6.1.7) have n1 roots with negative real parts and n2 with positive real
parts (n1 + n2 = n) for all t and y0 from some domain containing a solution of
equation (6.1.3). In this case, we seek a solution of the problem in a form similar to
(6.1.9), but with two boundary layers:

x(t,μ) =
∞∑

k=0

xk(t)μ
k +

∞∑

k=0

X(0)
k (τ0)μ

k +
∞∑

k=0

X(1)
k (τ1)μ

k, (6.2.3)

X (0)
k (τ0) → 0 as τ0 → ∞,

X (1)
k (τ1) → 0 as τ1 → −∞, (6.2.4)

where τ0 = t/μ and τ1 = (t − 1)/μ.
Here we discuss only the question of boundary conditions for the unperturbed

problem (6.1.2). In the zeroth approximation, conditions, (6.2.2) may be written as

li
[

y0(0), y0(1), z0(0) + Z(0)
0 (0), z0(1) + Z(1)

0 (1)
]

= 0. (6.2.5)

By (6.2.4), the family of functions Z0
0 and Z(1)

0 contain n1 and n2 constants, respec-
tively. Eliminating these functions from conditions (6.2.5) leads to m relations which
do not contain boundary layer functions and are used as boundary conditions for the
unperturbed problem (6.1.2).

Example 1
Consider boundary value problem:

dy

dt
= z, y(1) = 0,

μ
dz

dt
= −(z − y − 1)(z − y)(z − y + 1), z(0) = z0, (6.2.6)

where y and z are scalar functions. In this case, equation F(y, z, t) = 0 has three
distinct solutions: (1) z = y + 1, (2) z = y, and (3) z = y − 1, each of which
may solve the boundary value problem (6.2.6). These solutions correspond to slowly
varying functions of the zeroth approximation and the adjoint equation (6.1.6):

(1) y0 = et−1 − 1, z0 = et−1,
d Z

dτ
= −Z(Z + 1)(Z + 2),

(2) y0 = 0, z0 = 0,
d Z

dτ
= −(Z − 1)Z(Z + 1),

(3) y0 = 1 − et−1, z0 = −et−1,
d Z

dτ
= −(Z − 2)(Z − 1)Z . (6.2.7)
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(1) The root z = y + 1 of the equation F = 0 is stable to the right. The domain
of attraction of the root Z = 0 of system (6.2.7) is −1 < Z(0) < ∞ or, by virtue
of (6.1.11), problem (6.2.6) has a solution which converges to y0, z0 as μ → 0 and
t ≥ ε > 0 for z0 satisfying the inequality

− 1 + e−1 < z0 < ∞. (6.2.8)

(2) The root z = y is stable to the left. Therefore, the boundary value problem
(6.2.6) does not have solutions of the form (6.2.3) converging to y0 = z0 ≡ 0 as
μ → 0, if z0 �= 0.

(3) The root z = y − 1 is stable to the right and its attraction domain is

− ∞ < z0 < 1 − e−1. (6.2.9)

Summing up the considered cases, we see that if condition z0 > 1 − e−1 is
satisfied, then problem (6.2.6) has a unique solution converging to the functions
y0, z0 (see (6.2.7) case 1) as μ → 0, as plotted in Fig. 6.2a.

For −1 + e−1 < z0 < 1 − e−1, problem (6.2.6) has two solutions, one corre-
sponding to case (1) and the other to case (3) (see Fig. 6.2b).

For z0 < −1+ e−1, we again get a unique solution corresponding to case (3) (see
Fig. 6.2c).

Example 2
Sometimes, in constructing a solution of a boundary value problem one should

use not one, but several roots of the unperturbed equation F(y, z, t) = 0 and in
the transition from a left-stable root to a right-stable root, an internal boundary layer
may appear. Consider the model example

dy

dt
= z, μ

dz

dt
= 1 − z2, y(0) = a, y(1) = b, |a − b| < 1, (6.2.10)

which is discussed in detail in [60].

Fig. 6.2 Solution of problem (6.2.6)
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It is easy, to find an exact solution for the problem

y = μ ln

(
e(t+b+1)/μ − e(t+a)/μ − e(b+1−t)/μ + e(2+a−t)/μ

e2/μ − 1

)

,

z = e(2t+b−a+1)/μ − e2t/μ − e2/μ + e(b−a+t)/μ

e(2t+b−a+1)/μ − e2t/μ + e2/μ − e(b−a+t)/μ
. (6.2.11)

We seek an asymptotic solution. Equation F = 0 has two solutions: (1) z = −1 and
(2) z = 1. The first solution is stable to the left and the second solution is stable to
the right. Since both boundary conditions in (6.2.10) are imposed on the function y,
both solutions,

(1) z = −1, y = −t + C, C = a, t < (a − b + 1)/2,

(2) z = 1, y = t + C, C = b − 1, t > (a − b + 1)/2, (6.2.12)

are used in the construction of a solution for problem (6.2.10). The lines y = −t +a
and y = t + b − 1 intersect at the internal point t = (a − b + 1)/2 and, in its
neighborhood, an internal boundary layer appears as a smoothing jump of functions
(6.2.12) at t = (a − b + 1)/2 (compare with the exact solution (6.2.11) and see
Fig. 6.3 for a = b = 0).

RemarkWenote that the internal boundary layer may have amore complex form.
The quasilinear problem

μy′′ = g1(y, t)y′ + g2(y, t), y(t0) = a, y(t1) = b. (6.2.13)

was studied in [60]. It is shown that this problem can have a solution close to a
discontinuous solution if the points (t0, a) and (t1, b) in the (t, y) plane are separated
by a curve, on which the function g1(y, t) alternates.

A solution close to a discontinuous solution can be constructed as a solution with
the following initial condition at the point t∗ ∈ (t0, t1):

Fig. 6.3 Boundary layers as
smoothing jumps
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y(t∗,μ) = y0 + μy1 + · · · ,

z(t∗,μ) = z−1

μ
+ z0 + μz1 + · · · ,

Initially, the coefficients zi , yi and the value of t∗ are unknown.
The solution of the problem has the form:

for 0 ≤ t ≤ t∗,

z(t,μ) = z(0)
0 (t) + μz(0)

1 (t) + · · · + 1

μ
Z (0)

−1(τ ) + Z (0)
0 (τ ) + · · · ,

y(t,μ) = y(0)
0 (t) + μy(0)

1 (t) + · · · + Y (0)
0 (τ ) + μY (0)

1 (τ ) + · · · ;

and for t∗ ≤ t ≤ t1,

z(t,μ) = z(1)
0 (t) + μz(1)

1 (t) + · · · + 1

μ
Z (1)

−1(τ ) + Z (1)
0 (τ ) + · · · ,

y(t,μ) = y(1)
0 (t) + μy(1)

1 (t) + · · · + Y (1)
0 (τ ) + μY (1)

1 (τ ) + · · · .

In the zeroth approximation,

y(0)
0 (t0) = a, y(1)

0 (t1) = b.

These conditions provide the solutions
(

z(0)
0 (t), y(0)

0 (t)
)
and

(
y(1)
0 (t), z(1)

0 (t)
)
. For

each of these solutions, the following condition must by satisfied:

z−1 +
∫ y0i (t∗)

y0
g1(y, t∗) dy = 0, i = 1, 2.

Subtracting one equation (i = 1) from the other (i = 2) we come to an equation
for evaluating the point of a jump discontinuity (t = t∗) for the solution of problem
(6.2.13): ∫ y02(t∗)

y01(t∗)
g1(y, t∗) dy = 0, (6.2.14)

where y01(t) and and y02(t) are solutions of the unperturbed equation stable to the
left and stable to the right, respectively.

Example 3
Consider the problem:

μy′′ = −yy′ + αy, y(0) = a, y(1) = b, a < 0, α, b > 0.

The unperturbed equation y(y′ −α) = 0 has solution y′ = α. Therefore the solution
satisfying the left boundary condition has the form y01 = a + αt and the solution
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satisfying the right boundary condition has the form y02 = b + α(t − 1). For that,
the following conditions must be satisfied

(1) g1(y01, t) = −y01 = −a − αt > 0, 0 ≤ t ≤ t∗
(2) g1(y02, t) = −y02 = −b − α(t − 1) < 0, t∗ ≤ t ≤ 1.

As seen from (6.2.14), the dependence of the point of jump at a and b has the
form

t∗ = 1

2
− b + a

2α
.

It is assumed that |a + b| < α < |b − a|.

6.2.2 Exercises

Find the main terms in the asymptotic solution of the boundary value problem

6.2.1.

μ
d2y

dt2
+ dy

dt
+ y + ky2 = 0,

dy(0)

dt
= ẏ0, y(1) = y1. (6.2.15)

6.2.2.

μ
d2y

dt2
+ dy

dt
+ y + ky3 = 0,

dy(0)

dt
= ẏ0, y(1) = y1.

6.2.3.

μ
d2x

dt2
+

(
dx

dt

)2

− dx

dt
− 2 = 0, x(0) = 0, x(1) = 0. (6.2.16)

6.2.4.

μ
d2x

dt2
+ dx

dt
x = 0, x(0) = x0, x(1) = x1, x0, x1 > 0. (6.2.17)

6.3 Bifurcation of Solutions of Nonlinear Equations

The basis of the bifurcation theory for solutions of nonlinear equations was laid in
works by H. Poincaré, A.M. Lyapunov and E. Schmidt. In those papers it was shown
that the problem on the number and behavior of solutions of integral or differential
equations can be reduced to studying systems of implicit analytical functions called
ramification equation.
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The idea of the Lyapunov–Schmidt method is the decomposition of the equation
under consideration into two equations: one in a finite dimensional subspace of
dimension n and the other in its infinite dimensional orthogonal complement. This
method, its different versions and developments are considered in [57].

Below, we briefly discuss one of the ways to solve the bifurcation problem on the
example of the bending of a clamped uniform beam caused by an axial compressive
load.

6.3.1 Statement of the Problem

The angle of rotation, θ(x), of the tangent to a beamsatisfies the following equilibrium
equation and boundary conditions:

θxx + � sin θ = 0, 0 ≤ x ≤ 1, θx (0) = θx (1) = 0. (6.3.1)

The value of� in Eq. (6.3.1) is proportional to the axial load. The function θ0(x) ≡ 0
is the solution of equation (6.3.1) for all values of �. This requires

(1) to find the values of the parameter � (for example, λ0), for which the number
of solutions of the equation changes;

(2) to find the number of solutions in a neighborhood of � = λ0;
(3) to study the behavior of these solutions in a neighborhood of � = λ0.

We linearize the problem θ0(x) = 0:

θxx + �θ = 0, θx (0) = θx (1) = 0. (6.3.2)

The eigenvalues �i = (πi)2 and corresponding eigenfunctions θi (x) = cos(πi x) of
this problem provide a family of functions orthogonal over the interval [0, 1]:

∫ 1

0
θi (x)θ j (x) dx = 0, for i �= j, and

∫ 1

0
θi

2(x) dx = 1

2
.

If the function θ(x) is continuously differentiable over [0, 1] and satisfies the bound-
ary conditions θx (0) = θx (1) = 0, then it can be expanded in a uniformly convergent
series of eigenfunctions of the linear problem (6.3.2) over [0, 1]:

θ(x) =
∞∑

n=1

cnθn(x), cn = 2
∫ 1

0
θ(t)θn(t)dt.
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6.3.2 Solution of Nonlinear Problems

Consider the solution of the problem in a neighborhood of the first eigenvalue �1 =
π2. Let � = π2 + λ. We represent Eq. (6.3.1) in the form

Bθ = θxx + π2θ = −θλ − (π2 + λ)

∞∑

i=2

θ2i−1 (−1)i+1

(2i − 1)! . (6.3.3)

It is known that the solution of the non-homogeneous equation Bθ = h(x) exists if
the necessary and sufficient condition

∫ 1

0
h(x)θ0(x) dx = 0, (6.3.4)

holds. Here θ0 is the solution of the homogeneous equation Bθ = 0.
We seek a solution θ of Eq. (6.3.3) in the form of a series in powers of the small

parameter ξ:

θ = ξ cos(πx) +
∞∑

i=1

ξ2i+1θ2i+1, ξ � 1. (6.3.5)

This solution is expanded in odd powers of ξ since the operator B is an odd func-
tion. Substituting solution (6.3.5) in Eq. (6.3.3) we write only the main terms of the
equation, taking the smallness of ξ and λ into account. Thus, we get a sequence of
boundary value problems for the evaluation of θi :

ξ3Bθ3 = π2

6
ξ3 cos3(πx) − λξ cos(πx), (θ3)x (0) = (θ3)x (1) = 0. (6.3.6)

The existence condition (6.3.4) for problem (6.3.6) provides the ramification equation

π2

8
ξ3 − λξ = 0, (6.3.7)

which has three solutions for λ > 0: one trivial (ξ ≡ 0) and two nontrivial solutions
ξ = ±23/2π−1

√
λ.

A particular solution of problem (6.3.6) is

θ3 = −cos(3πx)

24 × 8
. (6.3.8)

The general solution of problem (6.3.6) is a sum of the particular solution (6.3.8)
and the solution of the homogeneous problem:

θ3 = −cos(3πx)

24 × 8
+ C cos(πx),
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Fig. 6.4 Value of ξ versus �

in a neighborhood of the
critical value

where C is a constant that can be found from the solvability condition for the fol-
lowing problem:

ξ5Bθ5 = − π2

120
ξ5 cos5(πx) + λξ3

6
cos3(πx) − λξ3θ3 + π2ξ5

2
cos2(πx),

(θ5)x (0) = (θ5)x (1) = 0.

Hence, the angle of rotation of the tangent to the beam under loads close to the critical
load is defined as

θ � ξ cos(πx) − ξ3

24 × 8
cos(3πx) − 5ξ3

16 × 8
cos(πx) + · · · .

The graph for the value of ξ versus the parameter � in a neighborhood of the
critical value � = π2 is plotted in Fig. 6.4.

As it follows from the ramification equation (6.3.7) for small values of λ (in a
neighborhood of the critical value of the axial load) there exist three solutions of
equation (6.3.1), i.e. three equilibrium states.

We note that the bifurcation of solutions in neighborhoods of the other eigenvalues
can be studied in a similar manner.

6.3.3 Exercises

To find the ramification equation and the solution of the boundary value problems in
a neighborhood of the first eigenvalue.

6.3.1. yxx + �y = −y3, y(0) = y(1) = 0.

6.3.2. yxx + �y = y2, y(0) = y(1) = 0.



308 6 Asymptotic Integration of Nonlinear Differential Equations

6.3.3. Find the ramification equation and the solution of Exercise 6.3.2 in a neigh-
borhood of the second and third eigenvalues.

6.3.4. Find the ramification equation for the problem of axisymmetric buckling of
a clamped circular plate under a uniform compressive load applied on the edge of
the plate. The angle of rotation of the normal to the neutral plate surface, θ = −w′

r ,
where w is the plate deflection and r is the plate radius, and the membrane radial
force, Tr − 1, satisfy the nonlinear Karman equations:

d2θ

dr2
+ 1

r

dθ

dr
− θ

r2
+ �(1 − Tr )θ = 0, 0 ≤ r ≤ 1,

1

r3
d

dr

(
r3

dTr

dr

)
+ θ2

2
= 0, θ(1) = Tr (1) = 0,

and θ′(0) = T ′
r (0) = 0 from the symmetry conditions. The value of� is proportional

to the applied load.

6.4 Answers and Solutions

6.1.1. The exact solution of equation (6.1.22) is x = −t + μ ln((e2t/μ + 1)/2) + x0.
To construct the asymptotic solution, we write Eq. (6.1.22) as a system:

μ
dz

dt
= −z2 + 1,

dx

dt
= z, x(0) = x0, z(0) = 0. (6.4.1)

For μ = 0, the roots of the equation F(x0, z0, t) = −z20 + 1 = 0 are z = 1 and
z = −1. Since ∂F/∂z = −2z, then the root z0 = 1 is stable. Hence, the unperturbed
problem has solution x0 = t + x0, z0(t) = 1. To find Z0(τ ) we use Eq. (6.1.11):

d Z0

dτ
= −2Z0(τ ) − Z0

2(τ ), Z0(0) = −1,

which has solution Z0(τ ) = −2/
(
e2τ + 1

)
.

From relation (6.1.12) one can obtain the function

X1(τ ) = −2τ + ln
(

e2τ + 1
)

.

Hence, the functions

x(t) � t + x0, z(t) � 1 − 2
(

e2t/μ + 1
)−1
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approximate the solution of system (6.4.1) to an accuracy of order O(μ) in any finite
interval 0 ≤ t ≤ T0 < ∞. In other words, the difference between the exact solution
and the zeroth approximation has order μ. With the same accuracy, the solution of
equation (6.1.22) can be represented in the form

x(t) = t + x0 + μ
[
−2t/μ + ln

(
e2t/μ + 1

)]
+ O(μ)

= −t + μ ln
(

e2t/μ + 1
)

+ x0 + O(μ).

Therefore, to satisfy both the equation and the boundary conditions to an accuracy
of order O(μ), the smooth part of the solution should be obtained to an accuracy
of order O(μ) and the boundary layer to an accuracy of order O

(
μ2

)
: x(t) =

x0(t) + μX1(t) + O(μ). For evaluating x1 we have

dx1
dt

= z1 = 0, x1(0) = −X1(0) = − ln 2,

whence x1(t) = − ln 2.
Therefore the solution fond to an accuracy of order O(μ2) coincides with the

exact solution.

6.1.2. The exact solution of equation (6.1.23) is

x = a
(a + x0)eat/μ + x0 − a

(a + x0)eat/μ − x0 + a
, where a =

√
x02 + 2μẋ0.

To obtain the asymptotic solution we represent Eq. (6.1.23) in the form of the system

μ dx/dt = −zx, dx/dt = z, x(0) = x0, z(0) = ẋ0.

For μ = 0, Eq. (6.2.1), F = 0, has root z0 = 0, which is stable for x0 > 0 since
∂F/∂z = −x . The unperturbed problem has solution x0 = x0, z0(t) = 0. To find
Z0(τ ) we find the solution of equation (6.1.11)

d Z0/dτ = −x0Z0(τ ), Z0(0) = ẋ0,

that is, Z0(τ ) = ẋ0e−x0τ . From equality (6.1.12) one can find the function X1(τ ) =
−ẋ0e−x0τ/x0.

The solution of equation (6.1.23) can be written as

x(t) = x0 − μ
(

ẋ0/x0
)

e−x0t/μ + O(μ).

The function x1 is evaluated from the equation

dx1/dt = z1 = 0, x1(0) = −X1(0) = ẋ0/x0.
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Therefore, x1(t) = ẋ0/x0 or x(t) = x0 + μ(ẋ0/x0)
(
1 − e−x0t/μ

)
+ O

(
μ2

)
.

6.1.3. To construct the asymptotic solution we write Eq. (6.1.24) as a system:

μ
dz

dt
= −z − y − ky2,

dy

dt
= z, y(0) = x0, z(0) = ẋ0.

For μ = 0, we have z0 = −cy0 − ky02. Therefore, the unperturbed problem

dy0/dt = −cy0 − ky0
2, y(0) = x0

has solution y0 = (cx0)[(c + kx0)ect − kx0]−1. To obtain Z0(τ ) we write

d Z0/dτ = −Z0(τ ), Z0(0) = ẋ0 + cx0 + kx0
2,

whence it follows that Z0(τ ) =
(

ẋ0 + cx0 + kx0
2
)

e−τ . From equality (6.1.12)

one can find the function Y1(τ ) = −
(

ẋ0 + cx0 + kx0
2
)

e−τ . Thus, the solution of

equation (6.1.24) has the form

x(t) = cx0

(c + kx0)ect − kx0
− μ

(
ẋ0 + cx0 + kx0

2
)

e−t/μ + O(μ).

6.1.4.

x(t) =
√

cx02

(c + kx02)e2ct − kx02
− μ

(
ẋ0 + cx0 + kx0

3
)

e−t/μ + O(μ).

6.1.5. To construct the asymptotic solution we write Eq. (6.1.25) as the system:

μ
dz

dt
= (A − z)y,

dy

dt
= z, y(0) = x0, z(0) = ẋ0.

For μ = 0, we have z0 = A, and the unperturbed system

dy0
dt

= A, y(0) = x0

has solution y0 = At + x0. To obtain Z0(τ ) we write

d Z0/dτ = −x0Z0(τ ), Z0(0) = ẋ0 − A

or Z0(τ ) = (
ẋ0 − A

)
e−x0τ .
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From equality (6.1.12)we obtain the functionY1(τ ) = − ẋ0 − A

x0
e−x0τ . The solu-

tion of equation (6.1.25) is represented in the form

x(t) = At + x0 − μ
ẋ0 − A

x0
e−x0t/μ + O(μ).

To find x1 we solve the equations

dy1
dt

= z1, 0 = −
(

At + x0
)

z1, x1(0) = −X1(0) = ẋ0 − A

x0
,

from where x1(t) = (
ẋ0 − A

)
/x0. Thus the solution of equation (6.1.25) is

x(t) = At + x0 + μ
ẋ0 − A

x0

(
1 − e−x0t/μ

)
+ O

(
μ2

)
.

6.1.6. Equation (6.1.26) is equivalent to the system:

μ
dz

dt
= A − zy,

dy

dt
= z, y(0) = x0, z(0) = ẋ0.

For μ = 0, we have A − z0y0 = 0. The unperturbed problem

dy0/dt = A/y, y(0) = x0,

has solution y0 =
√
2At + x02, z0 = A/

√
2At + x02. To find Z0(τ ), we solve the

problem

d Z0/dτ = −x0Z0(τ ), Z0(0) = ẋ0 − A/x0,

or Z0(τ ) = (
ẋ0 − A/x0

)
e−x0τ . From equality (6.1.12) we get

Y1(τ ) =
(

A − ẋ0x0
)

e−x0τ/
(

x0
)2

.

The solution of equation (6.1.26) can be represented in the form

x(t) =
√
2At + (x0)2 + μ

A − ẋ0x0

(x0)2
e−x0t/μ + O (μ) .

6.2.1. To construct the asymptotic solution we write Eq. (6.2.15) as a system:

μ
dz

dt
= −z − y − ky2,

dy

dt
= z, y(1) = y1, z(0) = ẏ0.
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For μ = 0, we find the root z0 = −y0 − ky02. The unperturbed problem

dy0/dt = −y0 − ky0
2, y(1) = y1,

has solution y0 = y1/[(1 + ky1)et−1 − ky1]. To obtain Z0(τ ), where τ = t/μ, we
get the equation

d Z0/dτ = −Z0(τ ), Z0(0) = ẏ0 + y0(0) + ky20 (0),

or Z0(τ ) = [
ẏ0 + y1e(1 + ky1)(1 + ky1 − ky1e)−2

]
e−τ .

The root z = −y − ky2 of the equation F = 0 is stable to the right and the
attraction domain of the root Z = 0 of Eq. (6.2.17) is the entire real axis. From
equality (6.1.12) one finds the function

Y1(τ ) = −
[

ẏ0 + y1e(1 + ky1)(1 + ky1 − ky1e)−2
]

e−τ .

Thus, the solution of problem (6.2.15) to an accuracy of order o(μ) is

y = y1

(1 + ky1) et−1 − ky1
− μ

[
ẏ0 + y1e(1 + ky1)

(1 + ky1 − ky1e)2

]
e−t/μ.

6.2.2.

y(t) =
√

(y1)2

(1 + k(y1)2) e2t−2 − k(y1)2

− μ

⎡

⎣ẏ0 + 1 + ky1
2

1 + ky12 − k(ey1)2

√
(ey1)2

1 + k(y1)2 − k(ey1)2

⎤

⎦ .

6.2.3. To construct the asymptotic solution we write Eq. (6.2.16) as the system:

μ
dz

dt
= −z2 + z + 2,

dx

dt
= z, x(0) = 0, x(1) = 0.

For μ = 0, we have two roots, z = −1 and z = 2. The first root is stable to the
left and the second root is stable to the right. Since both boundary conditions are
introduced for the function x we have two solutions,

z = −1, x = −t + C, x(0) = 0 C = 0, x = −t,

z = 2, x = 2t + C1, x(1) = 0, C1 = −2, x = 2t − 2,
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Fig. 6.5 Internal boundary
layer at t0 = 2/3

t10 2/3

x

which are parts of the solution of the problem. The straight lines x = −t and
x = 2t − 2 intersect at the interior point t0 = 2/3 and in a neighborhood of that
point an internal boundary layer appears (Fig. 6.5).

6.2.4. To construct the asymptotic solution we write Eq. (6.2.17) as the system

μ
dz

dt
= −zx,

dx

dt
= z, x(0) = x0, x(1) = x1.

For μ = 0, the root of the system is z0 = 0. Since ∂F/∂z = −x , then for x0, x1 > 0
that root is stable to the right. Thus, the unperturbed problemhas the solution x0 = x1,
z0(t) = 0, in a neighborhood of the edge x = 0 and the solution has the boundary
layer x(t) = x1 + X (τ ), τ = t/μ.

To evaluate the function X (τ ) we solve the equation

d X/dτ = −x1X (τ ), X (0) =
(

x0 − x1
)

,

as X (τ ) → 0 and τ → ∞, which has the solution X (τ ) = (
x0 − x1

)
e−x1τ . The

solution of the initial value problem has the form

x(t) � x1 +
(

x0 − x1
)

e−x1t/μ + O(μ).

In Fig. 6.6, the exact and asymptotic solutions of equation (6.2.17) are plotted for
x0 = 3, x1 = 1, μ = 0.1 (a), and for x0 = 1, x1 = 5, μ = 0.1 (b).

6.3.1. The linearized problem yxx + �y = 0, y(0) = y(1) = 0, has the eigenvalues
�i = (πi)2 and the corresponding eigenfunctions y(x) = sin(πi x), which form a
set of orthogonal functions over the interval [0, 1].

Consider the solution of the problem in a neighborhood of the first eigenvalue,
�1 = π2. Let � = π2 + λ. We represent the given equation in the form By =
yxx + π2y = −λy − y3. We seek the solution of the problem, y, in a series in odd
powers of the small parameter ξ: y = ξ sin(πx) + ∑∞

i=1 ξ2i+1y2i+1, for ξ � 1.
Substituting this solution into the given equation and taking the smallness of ξ and
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Fig. 6.6 Exact and asymptotic solutions: a for x0 = 3, x1 = 1, μ = 0.1, and b for x0 = 1, x1 = 5,
μ = 0.1

λ into account, we get a sequence of boundary value problems for evaluating the
functions yi . In particular, for the evaluation of y3 we come to the problem

ξ3By3 = −ξ3 sin3(πx) − λξ sin(πx), y3(0) = y3(1) = 0. (6.4.2)

Condition (6.3.4) for the boundary problem By = h(x) provides the ramification
equation

−3

4
ξ3 − λξ = 0,

which, for λ < 0, has three solutions: the trivial solution (ξ ≡ 0) and two other
solutions ξ = ±√−λ/3. The particular solution of the homogeneous problem:
y3 = −(1/32π2) sin(3πx) + C sin(πx), where the constant C can be obtained from
the solvability condition for the following problem:

ξ5By5 = −3ξ5 sin2(πx)y3 − λξ3y3, y5(0) = y5(1) = 0.

Thus,

y � ξ sin(πx) − ξ3

32π2 sin(3πx) − ξ3

64π2 sin(πx) + · · · .

In Fig. 6.7, the graph for the value of ξ versus the parameter � is plotted in a
neighborhood of the critical value � = π2.

6.3.2. The linearized problem has the same form as in Exercise 6.3.1. One seeks the
solution of the problem

By = yxx + π2y = −λy + y2 (6.4.3)
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Fig. 6.7 ξ versus � in a
neighborhood of the critical
value � = π2

0
Λ

ξ

π 2

in the form y = ξ sin(πx) + ∑∞
i=2 ξi yi , ξ � 1. Substituting this expression for y in

Eq. (6.4.3) and keeping only the main terms, one gets:

ξ2By2 = ξ2 sin2(πx) − λξ sin(πx), y2(0) = y2(1) = 0.

The existence conditions for the solution of this problem yields the ramification
equation −λξ/2 + 4ξ2/(3π) = 0, which has the nontrivial solution, ξ = 3πλ/8,
for both λ < 0 and λ > 0. So, we obtain

y2 = 4x − 2

3π2 cos(πx) + 1

2π2 + 1

6π2 cos(2πx) + C sin(πx),

where the constant C is evaluated from the solvability condition for the problem:

By3 = [2 sin(πx) − 8/(3π)]y2, y3(0) = y3(1) = 0.

Therefore,

y �
[
ξ + 2ξ2

π3 − 5ξ2

16π

]
sin(πx)

+ ξ2
[
4x − 2

3π2 cos(πx) + 1

2π2 + cos(2πx)

6π2

]
+ O

(
ξ3

)
.

In Fig. 6.8 the dependence of ξ versus the parameter� is plotted in a neighborhood
of the critical value � = π2.

6.3.3. In a neighborhood of the second eigenvalue, the problem can be represented
in the form B1y = yxx + 4π2y = −λy + y2. We seek a solution of the problem as
y = ξ sin(2πx)+∑∞

i=2 ξi yi , ξ � 1. Substituting this solution into the equation and
keeping only the main terms, we get

ξ2B1y2 = ξ2 sin2(2πx) − λξ sin(2πx), y2(0) = y2(1) = 0.
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Fig. 6.8 ξ versus � in neighborhoods of three critical values

The solvability condition for this equation,
∫ 1
0 h(x) sin(2πx) dx = 0, provides λ =

0. This means that, in this case, λ � ξ and

y2 = C sin(2πx) + cos(4πx)

24π2 − cos(2πx)

6π2 + 1

8π2 .

For the next approximation we have the equation

ξ3B1y3 = 2y2ξ
3 sin(2πx) − λξ sin(2πx), y3(0) = y3(1) = 0.

The solvability condition for this equation provides the ramification equation λ =
5ξ2/(24π2), where the constant C in the expression for y2 is found from the solv-
ability condition for the following problem:

ξ4B1y4 = ξ4y22 + 2ξ4 sin2(πx)y3 − λξ2y2, y4(0) = y4(1) = 0.

The ramification equation has a nontrivial solution for λ > 0.
In a neighborhood of the third eigenvalue, we have

B1y = yxx + 9π2y = −λy + y2.

The solution is similar to the solution of the problem in a neighborhood of the first
eigenvalue. In this case the ramification equation isλξ−8ξ2/(9π) = 0. The nontrivial
solution in a neighborhood of the third eigenvalue has the form:

y � ξ sin(3πx) + ξ2
[
4x − 2

27π2 cos(3πx) + 1

18π2 + cos(6πx)

54π2

]

+ C1ξ
2 sin(3πx) + O

(
ξ3

)
,

where the constant C1 is evaluated from the solvability condition for the problem
for y3.
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The dependence of the variable ξ on the parameter � in a neighborhood of the
critical values � = 4π2 and � = 9π2 is plotted in Fig. 6.8.

6.3.4. Consider the linearized problem

d2θ

dr2
+ 1

r

dθ

dr
− θ

r2
+ �θ = 0, 0 ≤ r ≤ 1,

Tr ≡ 0, θ(1) = θ(0) = 0.

For � = �n (n = 1, 2, . . .), the problem has nontrivial solutions θn = C J1(
√

�n r)

and J1(
√

�n ) = 0, i.e. the eigenvalue �n is such that
√

�n is the nth root of the
Bessel function J1. The eigenfunctions form a set of orthogonal functions

∫ 1

0
J1

(√
�i r

)
J1

(√
� j r

)
r dr = 0, i �= j.

Wefind the solution of this problem in neighborhoods of the eigenvalues� = �n+δ:

BBBθ ≡ d2θ

dr2
+ 1

r

dθ

dr
− θ

r2
+ �nθ = (�n + δ)Trθ − δθ.

Since, from the second equation of the problem, Tr =
∫ 1

r

1

2τ3

∫ τ

0
θ2s ds dτ , then

the equation can be represented in terms of the angle θ as

BBBθ = (�n + δ)θ

∫ 1

r

1

2τ3

∫ τ

0
θ2s ds dτ − δθ.

We seek the solution of this problem in the form of a series:

θ = μJ1
(√

�n r
)

+ μ3θn3(r) + μ5θn5(r) + · · ·

Substituting this solution into the given equation and keeping only the main terms,
since μ and δ are small, we get a sequence of eigenvalue problems for θni . For θn3,
we have

μ3BBBθn3 = − δμJ1
(√

�n r
)

+ μ3�n J1
(√

�n r
) ∫ 1

r

1

2τ3

∫ τ

0
J1

(√
�n r

)2
s ds dτ .

The existence condition for the solution of the problem

BBBθ = f, θ(0) = 0, θ(1) = 0,
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is
∫ 1
0 f J1

(√
�n r

)
r dr = 0. It provides the ramification equation δ = �n Aμ2,

where

A =
∫ 1
0 r J 2

1

(√
�n r

)
F1(r) dr

∫ 1
0 J 2

1

(√
�n r

)
r dr

, F1(r) = 1

2

∫ 1

r

1

τ3

∫ τ

0
s J 2

1

(√
�n s

)
ds dτ .

For �1 = 14.682 (
√

�1 = 3.832), for example, A = 0.0369, and the ramification
equation has the form δ = 0.537μ2. For �2 = 49.219 (

√
�2 = 7.016) we obtain

δ = 1.606μ2. For �3 = 103.500 (
√

�3 = 10.174) we get δ = 2.911μ2.
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A
Airy’s equation, 20
Airy’s function, 8, 75, 77, 239
Amplitude frequency response, 112
Asymptotic expansion, 6

Poincaré, 6
uniform, 8

Asymptotic sequence of functions, 5
Asymptotic series, 6, 8

properties, 7
Averaging operator, 130–132, 152, 153

B
Bessel’s equation, 162, 249
Bessel’s function, 70, 73, 162, 249

modified, 165
Boundary layer

internal, 299
Boundary layer integral, 180
Buckling, 128, 237, 262

beam, 26, 128
panel, 216, 218
plate

rectangular, 218
shell, 196, 211–214

cylindrical, 267, 268, 270, 287
ellipsoidal, 269, 285, 286
paraboloidal, 261

C
Cauchy problem, 91, 93, 108–110, 291
Cauchy–Riemann conditions, 74
Cauchy’s theorem, 68, 74

Convex hull, 16
Coriolis force, 34

D
Direct expansion, 89
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Duffing equation, 93, 98, 101

E
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Eigenvalues

asymptotically double, 277
Eigenvector

generalized, 29
Equation

autonomous, 103
ramification, 304
transcendental, 21
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Formal asymptotic solution, 157
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I
Index of intensity, 20
Integral exponential function, 6

J
Jacobian function, 54
Jordan chain, 29

L
Lagrange–Bürmann formula, 25
Laplace integral, 58, 69
Laplace method, 58, 69, 74, 165
Limit cycle, 108
Line of fastest descent, 74
Lyapunov‘s theorem, 169

M
Membrane theory, 192
Multiscale method, 116

N
Newton

diagram, 10
polygon, 10–18
polyhedron, 16, 17

O
Oscillation drop, 116

P
Phase curve, 108
Phase function, 64
Poincaré method, 103, 106, 109, 120
Point

limit, 1
saddle, 74

simple, 74
stationary, 68
transition, 159
turning, 159, 174, 242, 247, 248, 253,
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interior, 245
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Power sequences, 6
Power series, 10

R
Regular perturbation, 89
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Riemann–Lebesgue lemma, 65
Runge-Kutta method, 95, 228

S
Secular term, 103
Solution

stationary, 109
transient regime, 109

Spectrum problem, 179
Stable

asymptotically, 113
in the sense of Lyapunov, 113
left, 300
right, 300

Stirling’s approximation, 249
Sturm–Liouville problem, 164, 243, 245
Symbol ∼, 2
Symbol “O”, 1, 3
Symbol “o”, 2, 3
System

autonomous, 90
conservative, 106
generating, 90
quasilinear, 90
self-oscillating, 106
shortened, 111

T
Taylor series, 52, 58
Theorem

splitting, 253
Tikhonov’s theorem, 292, 293, 299

V
Van der Pol equation, 106, 108, 118, 297
Van der Pol method, 110, 111, 120
Variable

fast, 111
Variation index, 18–20, 175

general, 20
partial, 20

Vibrations
bar, 126, 127, 133, 164, 209
beam, 21, 133, 135, 152, 158, 164, 203
membrane, 133, 134, 206, 252
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panel, 214
plate, 209, 211, 217, 255
rotating solids, 34
shell, 15, 134, 171, 175, 211, 258, 282

cylindrical, 151, 204, 208, 271, 290
ellipsoidal, 264, 265, 269
paraboloidal, 261
rotating, 35

string, 23, 131, 157, 200, 228, 244, 246,
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top, 177

Vishik–Lyusternik

algorithm, 294

regular degeneracy, 186, 200

Volterra integral equation, 169
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