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PREFACE

Disorders that involve a broad array ofconditions, such as atherosclerosis, cancer,
cardiovascular disease, diabetes, neurodegeneration, infertility,or autoimmune disease,
affect a wide spectrum of the world's population leading to significant disability or
untimely demise. For example, metabolic disorders that include diabetes mellitus occur
in greater than 16 million individuals in the United States and more than 165 million
individuals worldwide. In addition, by the year 2030, it is predicted that more than
360 million individuals will be afflicted with diabetes mellitus and its debilitating
conditions. Successful care and treatment for anyone of these disease entities can
therefore rely heavily upon the modulation ofnovel cellular pathways that integrate
cellular proliferation, metabolism, inflammation, and longevity.

If history serves as a potential guide for the sophisticated basic and clinical
research enterprises that exist today, one can look back upon early pioneers in
medicine such as Ernest Starling who astutely recognized that systems within the
body were involved in constant communication that could affect numerous bodily
functions . In his second Croonian lecture to the Royal College ofSurgeons in 1905,
Starling states that "these chemical messengers, however, or hormones, as we
might call them, have to be carried from the organ where they are produced to the
organ which they affect by means of the blood stream and the continually recurring
physiological needs of the organism must determine their repeated production and
circulation throughout the body". With this presentation, Starling invoked the term
"hormones" that was initially derived from the Greek term "excite" or "arouse".
It is believed in his conversations with William Hardy and the Greek poet scholar
W.T. Vesey that he may have desired to portray a more integrated approach to
address disease processes that involves multiple organs.

Although prior to this time the use of the term "hormone" in the scientific lit
erature was extremely limited, work during the mid-nineteenth century, such as by
Claude Bernard, described additional processes responsible for the internal secretion
ofchemicals. With his studies that focused upon the release ofglucose from glycogen
in the liver, Bernard illustrated the importance to understand the intimate relationship
that existed among the systems ofthe body. During this period, other pioneers such as
AmoldAdolphe Berthold also spoke ofthe interaction and commun ication between
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vi Preface

the different organs in the body.As these concepts became more accepted, physicians
later in the nineteenth century reported the use ofextracts ofanimal thyroid, pancreas,
and even adrenal glands to treat patients suspected of suffering from the loss of
circulating chemicals . Eventually, subsequent investigations in disciplines such as
endocrinology have fostered the understanding of disease processes in numerous
other fields that involve cardiovascular biology, neuroscience, renal physiology,
genetics, metabolomics, organ development, cancer, and immunology. Clinically,
the advances from these fields that rely upon the basic premise that cells, tissues,
and organ systems are tightly integrated during normal physiology and disease
have led to remarkable strides in areas such as diabetes, cardiovascular medicine,
neurodegeneration, and reproductive medicine .

In the present time, the ability to "excite" or "arouse" appears to have been
captured by a family ofproteins known as forkhead transcription factors. Forkhead
proteins function as transcription factors to either inhibit or activate target gene
expression. As a result , these proteins bind to DNA through the forkhead domain
that consists of three a-helices, three ~-sheets, and two loops that are referred to
as the wings. On X-ray crystallography or nuclear magnetic resonance imaging,
the forkhead domain is described as a "winged helix" as a result ofa butterfly-like
appearance. Forkhead transcription factors are extremely compelling to consider
as potential clinical targets for multiple disorders since they control processes
associated with angiogenesis, stem cell proliferation, cardiovascular injury, neuro
degeneration, metabolism, cancer, immune surveillance, aging, and cell longevity.
More than 100 forkhead genes and 19 human subgroups that range from FOXA
to FOXS are now known to exist since the initial discovery of the fly Drosophila
melanogaster gene forkhead.

As a result, Forkhead Transcription Factors: Vital Elements in Biology and
Medicine provides a unique platform for the presentation of novel work and new
insights into the vital role that forkhead transcription factors play in multiple
systems throughout the body. Leading international authorities provide their
knowledge and insights to offer a novel perspective for translational medicine
that highlights the role of forkhead genes and proteins that may have the greatest
impact for the development ofnew strategies for a broad array ofdisorders. Equally
important, Forkhead Transcription Factors: Vital Elements in Biology and
Medicine clearly sets a precedent for the necessity to understand the diverse and
complex nature of forkhead proteins since this family of transcription factors can
limit as well as foster disease progression depending upon the cellular environment.
The presentation and discussion of innovative studies and especially those that
examine previously unexplored pathways that may influence clinical survival
and longevity offer an exciting approach to address the potential of forkhead
transcription factors for new therapeutic avenues in multiple disciplines.

Kenneth Maiese, MD
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CHAPTER!

FOXOI, T-Cell Trafficking
and Immune Responses
Florent Carrette, Stephanie Fabre and Georges Bismuth"

Abstract

Efficient T-celladaptiveimmuneresponse requireafaultlesscoordinationbetweenmigration
of naiveT-cellsinto secondarylymphoidorgansand criticalbiological outcomesdrivenby
antigensuchascelldivisionand celldifferentiationinto effectorand memorycells. Recent

works haveshown that the phosphoinositide 3-kinase (PI3K) pathwaycould governseveral of
theseprocesses. In this control, transcriptionalfactorsof the Forkheadbox 0 (FoxO) family, in
particular FOXO 1, a downstreameffectorofPI3K, appearsto playa major rolebycoordinating
both cellularproliferationofT-cells afterantigenrecognitionand expression of homingmolecules
essential for their trafficking in the body.

Introduction
Efficient immune surveillance requires that naiveT-Iymphocytes circulatepermanentlybe

tween the blood stream,secondarylymphoid organs and lymphaticvessels. It hasbeenestimated
that at a giventime the pool ofT-cells in the blood represents only 5%of the total T-cellcount,
70% of them being localizedin lymph nodes and approximately 20% in the spleen. In normal
conditions, a T-cell usually staysless than 30 minutes in the blood circulation, makingrepeated
visitsof several hours in secondarylymphoid organs.Because of the limited number of specific
T-lymphocytes for a givenantigen, this trafficking isfundamental to increase the probabilityfor
a T-cell to encounter the antigen and therebywarrant immunologicalsurveillance of the body.
Moreover, antigen-presenting cells (APC), especially dendritic cells(DCs) (the only APC that
can activatenaiveT-cells), migrate preferentially into lymph nodes afi:er the capture of foreign
antigensin tissues at the periphery. Thus,lymphnodesoccupyastrategicpositionat the crossroads
of the blood and lymphatic vessels to bring together in an adapted microenvironmentthese dif
ferent actors of the immune response. This trafficking ofT-cells, the so calledhoming process, is
tightly controlled by a set of coordinated mechanisms, notably involvingcell surface molecules
and solublesignals suchaschemokines.Wewilldescribein thischapter the mechanisms bywhich
this sparioremporal control canbeexercised at the differentstepsofaT-cellresponse and consider
very recent discoveries showing that the Forkhead box 0 transcriptional factor FOXO 1, one
majordownstreameffectors of the PI3K pathway, has an unanticipated role in theseregulations.

Mechanisms ofT-Cell Homing into Lymph Nodes
T-lymphocytesmigrate into lymph nodes by crossingthe vascularendothelium at the level

of specialized postcapillary vessels, termed high endothelial venules (HEV). This passage is
based on a hierarchical sequence of interactions between lymphocytes and endothelial cells,
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France. Email: bisrnuthsscochin.inserrn.fr
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Figure 1. The different steps of T-cell transmigration. In HEV L-selectin expressed at tips of
T-cell microvilli can interact with peripheral node addressins (PNAd) like CD34 or GlyCAM-1
decorated with carbohydrates. A rolling movement along the endothelium that slows down the
cell and allows its firm adhesion follows this initial anchoring. The integrin LFA-1 (Leukocyte
Function-associated Antigen-1) and the adhesion molecule ICAM-1 (Intercellular Adhesion
Molecule-1) expressed on T-cells and endothelial cells, respectively, are the two key receptors
involved dur ing this phase. However, in resting T-cells, the avid ity of LFA-1 for its ligand is
weak and the T-cell needs supplementary signals to transmigrate at the level of the HEV. These
signals are triggered by chemokines present on endothelial cells (such as CCL19 or CCL21)
that interact with CCR7 on T-cells and strongly increase the avidity of LFA-1 for ICAM-1.

governed by adhesion molecules, such as selectins and integrins and signals given by chemokines
(Fig. 1). L-selectin, a Type C lectin of -90 kDa also named CD62-L or LAM-I (Leukocyte
Activated Molecule-I), is a key player in this process . It was discovered nearly two decades
ago as a glycoprotein involved in the interaction ofleukocytes with the endothelium oflymph
nodes and inflamed tissues."! L-selectin is expressed at the end ofplasma membrane microvilli
and specifically interacts with sialylated oligosaccharides carried by molecules like CD34 and
glycosylation-dependant celladhesion molecule-I (GlyCAM-I) (also called PNAd for peripheral
node addressins), constitutively expressed on the surface ofHEV endothelial cells. Invalidation
of the L-selectin gene in the mouse has demonstrated the essential role played by this molecule
in the migration ofleukocytes into secondary lymphoid organs in vivo,"Deficient mice show a
severe reduction ofthe number ofT-lymphocytes in lymph nodes, as well as a defect ofprimary
immune responses to antigen. Lymphocytes from these mice cannot adhere to the HEV anymore ,
indicating that the interaction between L-selectin and its vascular ligands is essential for later
stages oftransendothelial migration.

According to this central role played by L-selectin in the migration ofT-cells within lymph
nodes, the mechanisms regulating its membrane expression were the subject of many studies.
Lselecrin expression is rapidly down-modulated (in a few tens ofminutes) after T-cell receptor
(TCR) triggering by andgen? and activated T-cells always express reduced levels of Lselecdn,"
Our knowledge of the molecular mechanisms controlling this rapid decrease, early after activa
tion, is still partial but the use of pharmacological inhibitors has revealed the involvement of
metalloproteases from the extracellular matrix ,7.8 with as a potential, but not exclusivecandidate,
the ADAMI? metalloprotease (also known as CDI56b or TNF-a converting enzyrnej.t The
contribution ofL-selectin proteolysis in T-cell homing was unambiguously demonstrated by the
study oftransgenic mice expressinga shedding-resistant L-selectin molecule.P!' While these mice
do not present abnormalities in the cellular composition ofsecondary lymphoid organs, suggest
ing that the cleavageofL- selectin is not required for the migration ofnaive T-Iymphocytes into
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these organs, activated T-cells harboring this L-selectin mutant still migrate into lymph nodes
after adoptive transfer.

However, in addition to proteolytic cleavage, transcriptional mechanisms are also at work in
T-lymphocytes to regulate the membrane expression of Lselectin. Indeed , analyses in murine
T-cells have revealed three distinct phases after activation in vitro: a fast decrease of Lselectin,
linked to the action ofmetalloproteases, ariseswithin the first four hours; then L-selectin levelsare
restored during 48 hours, a process likely related to a greater stability of its mRNA (this phase is
not clearlydistinguishable in human Tvcells): finally,a prolonged decrease isobserved from day-3
to day-4 after stimulation, corresponding to a decline in the rate oftranscription ofthe L-selectin
gene.'? Consistently, transgenic T-Iymphocytes expressing a mutant Lselectin molecule resistant
to proteolysis also show after a few days of stimulation in vitro a similar decrease in membrane
expression ofLselecrin, suggesting the implementation ofa late transcriptional control. I I

As already mentioned, chemokines also play a key role in T-cell homing within lymph nodes
besides other effects like leukocyte maturation, organization of lymphoid organs and recruit
ment ofeffector T-cells at the sites of intlammarion." The main chemokines involved in T-cell
homing within lymph nodes are CCLl9 and CCL2!, whose common receptor is CCR7.14•1S

CCR7 is expressed in naive Tscells, but it is down-regulated after activation.The essential role of
these chemokines in the migration ofT-cells at the level of the HEV in vivo was demonstrated
by the study ofpit (paucity of lymph node T-cells) mice carrying a spontaneous alteration of
CCLl9 and CCL2I expression in lymphoid organs accompanied by a defective homingT-cells
into lymph nodes. 16

'
18 After adoptive transfer of normal T-lymphocytes in pit mice the firm

adhesion of the T-cells to the HEV of these mice is largely comprornised.Y " Identical results
have been obtained with mice deficient in CCR7Y Bystimulating CCR7, CCL2I and CCLl9
allow LFA-I-dependent interactions of naive T-lymphocytes with ICAM- I (intercellular ad
hesion molecule-l ), expressed by endothelial cells, by an inside-out activation mechanism.P'"
CCL2I is produced by stromal cells in the T-cell zone of the lymph node and by endothelial
cells of the HEV.2s.26 CCLl9 is only produced by stromal cells and diffuses by transcytosis to
the luminal face of the HEV.27Chemokines can be immobilized on the luminal surface of the
HEV either directly by glycosamoniglycans and proteoglycans with heparan-sulfate of the
extracellular matrix, " or indirectly via glycoproteins susceptible to modulate their function
and their bioavailability, "

FOXOI, L-Selectin andT-Cell Homing
Until very recently no experimental data were available suggesting that the PI3K/FOXO I

pathway isinvolved in the homingofT-cells. This gapwasrecently filledbystudies conducted in the
human Jurkat leukemic T-cell line deficient in PTEN (phosphatase and tensin homologdeleted on
chromosome IO),the master lipid phosphatase that regulates cellularphosphatidylinositol-3,4,5-P3

(PIP3) levels." These cells show a constitutive activation of the PI3K pathway and only residual
activity ofFOXO I after its phosphorylation by the serine/threonine kinase Akt , the main down
stream effector ofPI3K, and its nuclear eviction as illustrated in Figure 2. Unexpectedly, it was
found that in this cell line an active FOXOI molecule, mutated on its three phosphorylation
sites by Akt (T24/S256/S3I9), strongly increases transcription of the SELL gene coding for
L-selectinY Strikingly, CCR7 as well as the sphingosine-l-phosphare (SIP) endothelial dif
ferentiation gene-I (EDG-I) receptor which controls T-cell egress from secondary lymphoid
organs (see below) are also up-regulated . Restoration ofnuclear localization ofFOXO I in these
cells after PIP 3 hydrolysis by PTEN (see Fig. 2) has a similar effect. Finally, FOXO I also blocks
the prolonged decrease ofL-selectin at the plasma membrane observed in normal human T-cells
after activation. Accordingly, activated murine T-cells transduced with the same active FOXO I
mutant and adoptively transferred into recipient mice show a persistent ability to home into

lymph nodes as compared to control cells (Fig. 3). Surprisingly, they also migrate better into the
spleen, though L-selectin is usually not required for T-cell homing into this specificorgan. Thus,
apparently, T-lymphocytes make use ofseveral routes to regulate L-selectin levels: firstly,a rapid
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Figure 2. PTEN opposes PI3K to sequester FOXOl outs ide the nucleus in T-cells. A) In lurkat
T-cells that lack the lipid phosphatase PTEN, the PH domain of Akt (Akt-PH), which binds the
PI3K product Ptdlns-3,4,5-P3 and expressed as a GFP-tagged molecule, is heavily recru ited to
the plasma membrane. In these cells, a FOX01-GFP molecule is sequestered into the cytoplasm
and inactive. B) Restoration of PTEN activity and hydrolysis of Ptdlns-3,4,5-P3 by expressing of
a membrane targeted form of PTEN (myristoylated-PTEN; myr-PTEN) has the opposite effect.

proteolytic cleavage, early after T-cell activation and secondly a transcriptional arrest, mer the
nuclear exclusion ofFOXO1 triggered via the PI3K/Akt pathway. Captivatingly, another recent
report has shown that the rapid shedding of L-selectin mer TCR stimulation is inhibited in
murine CD8+ T-cells expressing a catalytically inactive form of p 11O~, the predominant PI3K
catalytic subunit activated downstream ofantigen recognition in T-cellsY Thus both cleavageand
transcriptional regulation ofL-selectin might be under the control ofPI3K, though preliminary
results do not show a clear inhibition ofL-selectin shedding in human T-cells treated with phar
malogical inhibitors ofPI3K (nc, Marianne Mangeney and G.B., unpublished). Interestingly
enough, in the mouse , comparative transcriptome analyses of thymocytes with conditional loss
ofall three FoxO alleles (FoxO1,Fox03and Fox04)also point toward SELL as a candidate gene
for FoxOs in this cell type.33 Finally, a recent work has reported homing defects together with
alteration ofL-selectin levelsin murine B-cellslacking FoxO I, showing that it might be a cornmon
transcriptional activator ofthe SELL gene in lymphoid tissues." One challenge now, using these
gene invalidation models, will be to see how loss ofall three or individual FoxO genes could alter
Lselectin expression and other homing molecules in mature peripheral T-cells in homeostatic
conditions or during immune response ; concomitantly, these mouse models would also help
clarify functional redundancy among these closely related transcription factors to regulate T-cell
trafficking in vivo.

Mechanistically, it is not yet clear whether FOXO1 needs to bind the promoter ofL-selectin
directly to exerciseits transcriptional control in human T-cells. Favoring this hypothesis, a FOXO1
molecule mutated on the residue that binds DNA (H215R mutation in the helix 3 ofthe so-called
winged-helix domain of FOXOI to bind DNA) does not trigger this effect anymore. Analysis
between species of the promoter ofthe SELL gene, coding for L-selectin, does not show typical
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Figure 3. Active FOX01-transduced T-cells show a better abil ity to home into lymph nodes.
T-Iymphocytes were purified from C5781/6 mice and stimulated in vitro w ith anti-CD3 (10
ug/rnl) and anti-COl8 (10 Itg/ml) monoclonal antibodies coated on 24 well -plate in RPMI
1640 medium supplemented with 10% FCS and IL2 (30 u/rnl). At 1 day poststimulation, cells
were transduced w ith retroviral constructs encoding either GFP alone or a constitutively ac
tive FOX01 molecule (T24A/S256A/S319A) fused to GFP (FOX01-(A3)-GFP). 48 hours later
cells were adoptively transferred into recipient mice during 4 hours. Lymph nodes (axillaries,
brachials and inguinals) and spleen were harvested and analyzed by flow cytometry for GFP
expression. Histogram represents fold change compared to GFP alone.

IRS (insulin response sequence) FoxO binding motifs (S'-TTGTTTAC-3'), which represents
the conserved consensus core recognition motif. Nevertheless, several IRS-like sequences are
present in the promoter, indicating that SELL might be a true direct target of FoxOs in T-cells.
However, unexpectedly, we have observed that this mutant has also a strong dominant negative
effect on L-selectin membrane levels when it is expressed in primary resting T-cells. This result
suggests that the transcriptional control by FOXO1 is permanent and sufficient to maintain high
levels of L-selectin in unstimulated T-cells; but it is also indicative that L-selectin regulation by
FOXO1 might be indirect, as demonstrated for many other genes regulated by FOXOs. For ex
ample, FoxO transcription factors cooperate with delta EF1 to activate growth suppressive genes
in Bvlymphocyres." In fact, various interactions with various transcription factor protein partners
have been reported to help control the expression ofFoxO target genes in different cell systems; it
has also been proposed that a "FoxO" code may exist, dictated by the posttranslational modifica
tions ofFoxOs and interpreted by protein partners to direct the activity of FoxOs within cells"
Thus, it is possible that the FOXO1 mutant competes with the endogenous wild-type molecule
to make these partnerships fruitless in the control ofLselectin,

FOXOI andT-CellProliferation
Intravital microscopy analyses of lymph nodes have considerably increased our knowledge

of the in situ behavior ofT-lymphocytes. In the absence ofantigen, naive T-cells migrate in the
paracortex, then move rapidly and continually within this zone along privileged axes formed by
a network of follicular reticular cellsy-42 During this course, they establish very transient and
unceasing interactions with DCs to scan their surface. This very dynamic behavior, helped by the
multiple extensions ofDCs inside the lymphoid tissue, is highly efficient to detect antigen and it



8 ForkheadTranscription Factors: VitalElements in Biologyand Medicine

is estimated that a DC can contact between 500 and 5000 T-cells per hour. 3M3 Chemokines plays
a key role in supporting this performance ofT-cells within lymph nodes, in particular CCLl9
and CCL2I, the two ligands of CCR7.4446 However, afier antigen recognition a "stop" signal is
given to the T-cell and a stable contact is established with the DC, which can last 24 hours.38.39.47
Later on, a new phase occurs duringwhich T-cells start to divide actively and show concomitantly
loosen contacts with DCs.

The PI3K pathway is a key regulator ofcell growth and proliferation and frequent alterations of
its members are involved in a broad range ofcancers. Several effectors ofthis pathway are affected
downstream of PI3K that may explain this trait and particularly FoxOs . FoxOs are important
regulators ofcell quiescence in different cell systems," including in T-cells. Numerous studies have
shown that Akt phosphorylares these transcription factors, promoting their nuclear exclusion and
their inacrivarion.P?' This explains why the introduction ofFOX03 or FOX04 constitutively
active molecules inJurkat leukemic T-cells leads to apoptosis and cell cycle arrest ;52,53 consistently,
the nuclear exclusion ofFOXO I also regulates Il-2-dependent cell growth ofthe murine CTLL-2
Tvcell line.f We previously showed that conjugate formation ofa T-cell with an APC in the pres
ence ofantigen in vitro leads to a dramatic increase ofPIP 31evels.55Hence, we raised the possibility
that a comparable process of FoxOs exclusion was running during the antigenic stimulation of
primary T -cells to support their clonal expansion.

Confirming this hypothesis, we have shown that FOXO I is excluded from the nucleus of
human T -cells activated by antigen, afier its phosphorylation by Akr, Live imaging experiments
reveal that this process is not immediate after the formation of the conjugate, but starts -5
minutes after the initial accumulation of PIP3 into the plasma rnembrane.f Our results also
indicate that this exclusion is very stable, lasting for hours and requires a permanent activation
ofPI3K, as revealed by the rapid movement ofFOXO I back into the nucleus after addition of
PI3K inhibitors. Importantly, a constitutively active FOXO I mutant has a strong inhibitory
effect on T-cell blastogenesis, indicating that this prolonged inactivation ofFOXO I is essential
to permit cell cycle entry of resting T-cells; similar results have been obtained with stimulated
primary murine B-cells which are also retained into quiescence by FOXOS.57 Consistently, an
other study has shown that the PI3K/Akt/FOXO I pathway is directly controlled by YavI in
murine T-cells and that the inhibition ofthe proliferation observed in Yavf-deficlenr T-cells is
related to a defect in nuclear exclusion of FOXO I and a persistent expression of the cell cycle
inhibitor p27kipI, a distinctive target ofFOXO I in various tissues." It is to note here that the
H2I 5R mutation ofFOXO I uncouples the control ofcell growth and homing since an active
FOXO I molecule harboring this mutation in the DNA binding site has the same potential to
inhibit T-cell growth induced by antigen. Interestingly enough, in PTEN-deficient tumoral
cell lines also, inhibition of tumoral cell growth does not require direct binding ofFOXO I to
DNA.59These findings suggest that distinct mechanisms support the biological functions of
FOXO I in human T-Iymphocytes. Mainly they show that like in typical oncogenic situations
with deregulated PI3K activity, one major functional consequence of the massive production
of PIP3 in T-cell contacting APCs might be to securely sequester FoxO lout of the nucleus
and neutralize its negative regulation on the cell cycle. As in many other cellular systems, PI3K
appears therefore as a major molecular switch for T-cell commitment into cell growth and
cell division. In agreement, mice expressing catalytically inactive pI lOb PI3K, show a defect
in their T-cell proliferative responses to antigen stimulation.60•61 For the same reason, it is also
attractive to speculate here that one rationale for the T-cell/APC conjugate to last for hours in
the lymph node is to keep up this process ofFoxOs inactivation effective, as long as cell divi 
sions continue. However this speculation is still hazardous since we do not know in vivo how
inactivation of FoxOs and T-cell division progress in parallel, at which stage of the immune
response FoxOs are again within the nucleus and active and how all these changes are correlated
with PI3K activity.

It is obvious that these results do not exclude other molecular requirement in the control
ofT-cell proliferation. Indeed, we know that cell quiescence is actively controlled by various
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molecular actors probably acting in a cooperative way on multiple targets;62 moreover the fact
that the surexpression ofan active FOXO1 molecule blocks the proliferation ofT-cells is only
indicative that the inactivation ofme endogenous forms is necessary to allow the clonal expan
sion after antigen exposure in physiological situation. It is also a rather simplistic view to liken
nuclear localization ofFOXO 1 and transcriptional activity, as far as supplementary mechanisms
independent from PI3K and Akt can regulate the activity of this factor within the nucleus.
Various previously identified partners ofFoxOs, such as p53, Smad, OEF·1, nuclear receptors or
~-catenin could be involved in this suppressive effect35.63.66 and any modification ofsuch interac
tions during me stimulation ofT-cells could also contribute to alter the transcriptional control
exercised by FoxOs. Thus, a review ofevery facet ofFoxO metabolism in T-cells is now needed
to understand their specific contribution. However, it remains clear that the loss ofthe control
exercised by FoxOs may have dramatic consequences on the survival and the proliferation of
T-cells as attested by studies demonstrating mat mice deficient in Fox03 present a spontaneous
inflammatory syndrome and T-celilymphoproliferative disorders.F'The aforementioned triple
FoxOl/Fox03/Foxo4 null mice also show signs of lymphoid development abnormalities that
can culminate with thymic lymphomas after a few weeks ofage.33So, we can hope that further
studies using these models will help deciphering the real position ofFoxOs in the network of
molecules involved in T-cell clonal expansion.

New Potential Targets ofFOXOl to Impose T-Cell Fate
It is now well-admitted that the activity ofFoxOs is largelydependent on the cellular context,

though, regardless of the cellular system, prototypical targets regulating cell survival and cell
proliferation are usually found. Curiously, despite the strong antiproliferative and proapoptotic
effects of an active form of FOXO1 in Jurkat T-cells, only a few of them were identified in
our screen . For example, Bim and FasL, two typical FOX03 targets in T-cells54were poorly
induced. The increase of the cell cycle inhibitor p27kip1 was also modest (-2x), but it has
been established mat the induction of this gene is not required to block the proliferation of
PTEN-deficient cells.59 In these cells, FOXO1 seems rather to regulate the proliferation via the
inhibition ofcyclin D and the increase ofp 130Rb2 proteins, but both were also not significantly
induced in our model. We nevertheless found other potential targets ofFOXO 1 susceptible to
explain the inhibitory effect of this factor on the survival and the proliferation ofT-cells. This
is the case ofthe pro -apoptorique gene BBC3 (Bcl-2-binding component), also named PUMA
(p53-upregulated modulator ofapoptosis). Initially identified as a target of p53 , PUMA can
promote Bax (Bcl-2 associated X protein) multimerisation at the mitochondrial membrane.
releasing cytochrome c and inducing pro-apoptotic cascades. Interestingly, PUMA has been
described as a direct target of FOX03 involved in the apoptosis of activated T-Iymphocytes
following cytokine or growth factor withdrawal/"

Noticeably, a marked inhibition ofseveral genes of the early growth respon se (EGR) family
of transcription factors was also observed. The most strongly repressed molecule was EGRl,
initially described as a positive regulator of the GO/G 1 transition in human Iymphocytes,"
EGR1 is frequently overexpressed in prostatic cancer cells and stimulates their proliferation by
inducing cyclin D 1 and by repressing cell cycle inhibitors such as p19. Rb2 and cyclin G2.70.71

Thus, FOXO 1 may control the expression of these molecules indirectly via EGR1 to regulate
T-cell proliferation. However, the functional effects ofEGRl are very complex and it can have
an antiproliferative role by positively regulating tumor suppressors like PTEN, pS3 or TGF-~
in some tumor models. Amongst the other genes strongly induced by FOXO 1, int erleukin-16,
the CD52 antigen or the CD 10 endopeptidase are other candidates to be cited, since all of
them can exert antiproliferative functions in T-cells.72-74 It is to note that CD 10, which is also a
marker ofapoptotic 'Tlymphocytes," isa tumor suppressor apparently involved in the membrane
recruitment of PTEN,76Thus, via the induction of CD 10, FOXO1 could also contribute to

the negative regulation ofPIP3levels to maintain its own activity. Would this also hold true for
normal T-cells during clonal expansion remains however to be established.
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FOXOl, T-CellEgress andPeripheral Homing
Once proliferating, activated T-cells differentiate to several types of memory cells: central

memory T-cells (TCM) and effector memory T-cells (TEM) , which need to return to peripheral
blood circulation and infected organs. To this end, they migrate from the lymph node paracortex
to the cortical sinusoids, directly linked to efferent lymphatic. Efferent lymphatic then return to
blood circulation via the thoracic duct." Lymphocytes that did not encounter their specific anti
gen presented on APC also exit lymph nodes through this way,but once back in blood re-enter
and explore other lymphoid organs. Only T CM that express L-selectin and CCR7 at similar levels
than naive T-cells are found in secondary lymphoid organs , such as lymph nodes and spleen,
to give faster and stronger immune responses after a new challenging with the same antigen . In
contrast, effector memory T-cells never recover a normal expression ofCCR7 and usually show
altered levels of Lselecrin, a phenotype functionally important to circumvent any recirculation
into secondary lymphoid organs.'?" These cells also usually express a new set of chemokine re
ceptors (like CCRI, CCR3 and CCR5) to gain access to sites ofinfection and inflammation in
nonlymphoid tissues.78•80

We are still ignorant of the mechanisms involved in this striking difference between T CM and
T EM' In fact, the activation status ofT-cells when they leave the lymph nodes is largely unknown.
One could expect that activation , including of PI3K, is rapidly shut off in circulating TeM and
T EM with a restoration of membrane levels of L-selectin and CCR7. In agreement, it has been
observed that the totality ofactivated CD4+ T-cells detected in the blood circulation after im
munization is Lselecrin high .81In this case the loss ofexpression ofL-selectin in T EM would arise
secondarily, in the periphery. However it has been reported unexpectedly that TCM in human
have higher phospho-FOX03levels than T EM.

82Thus, the phosphorylation status ofFOX03 in
T CM does not seem to be in accordance with high CD62L expression at their cell surface. We still
do not know whether FOX03 is as effective as FOXO I to trigger Lselectin expression and if
FOXO I is also phosphorylated in these cells,but these findings might be suggestiveofa persistent
activation ofPI3K in T CM' Another possibility to explain the difference between TCM and T EM

is that the transcriptional activity of FoxOs is unproductive in this latter subset. Indeed, many
other regulatory mechanisms control the activity of FoxOs. We know for example that, beside
phosphorylation, the nature of the genes regulated by FoxOs in various cellular systems can be
strongly influenced by other posttraductional modifications; thus, acetylation by CBP /p300 and
deacetylation by Sirt l , as well as molecular partnerships with transcriptional coactivators like
f3-cateninor PGC-Ia can strongly alter FOXO activity positively or negatively.83.86In agreement,
we have observed that L-selectin expression in T-cells is strongly affected by mutation ofcritical
residues controlling FOXO1acetylation (Marianne Mangeney and G.B., unpublished). Overall ,
these regulations have been however poorly documented in T-cells and an interesting challenge
would be to investigate these molecular aspects in effector and memory T-cells at the various
stages ofthe immune response.

As already discussed, during differentiation, T-cells profoundly reshape their pattern ofcell
surface receptors in order to express molecules involved in lymphoid organs egress and homing
to inflamed tissues. The first characterisation of molecular process involved in egress has been
obtained by using of a immunosuppressive and allograft rejection preventing drug, FTY720.87

FTY720 greatly decreases the number of lymphocytes in periphery by sequestrating them in
lymph nodes, but not spleen. Further experiments showed that FTY720 is structurally similar
to SIP.88.89TheSIP receptor SIPI , also called EDGI, is a 7-transmembrane receptor belonging
to the G-protein-coupled family of receptor; it is sensitive to SIP concentration gradient, which
increases between the lymph node to the efferent lymphatic. Recent studies have demonstrated
that EDG I levels in murine T-cells are controlled by kruppel-like factor 2 (KLF2) directly at the
transcriptional level. KLF2 belongs to the zinc-finger transcription factor family. It was firstly
described to control quiescence ofTdymphocyres." but has recently been reported as playing a
role in T-cell trafficking.91•n KLF2-deficient T-cells recapitulate part of the behaviour ofT-cells
lacking SIP1, with partial retention in the thymus. However, these two knockout models also
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display uniquefunctions.ThusKLF2-deficient T-cells in peripheryarefound neither in bloodnor
in lymphnodes,but onlyin spleen, whereas EDG I-knockoutTdymphocyres aresequestratedinto
lymphnodes.Thisdiscrepancy isrelatedto the factthat KLF2-deficient T-cells abnormally express
chemokinesreceptorslikeCCRI and CCRS, allowingthem to massively home to nonlymphoid
organs, such as liver, colon and skeletal muscle. The mode of regulationof KLF2 is still poorly
understood.KLF2mRNAand proteinaredramatically repressed veryearlyalterT-cellactivation,
but its wasnot suspectedthat P13Khas to do with KLF2 expression until a recent studyproved
that KLF2 mRNA levels are restoredin activatedCD8+cytotoxicmurineT-Iymphocytestreated
with drugs inhibiting the P13Kand the mTOR pathways." Collectively, these resultspoint to
KLF2 as a critical target gene to control T-cell trafficking, an assumption further consolidated
bythe strikingobservationthat restorationof significant KLF2protein levels in activatedT-cells
alsoup regulates Lselecein.v-"

Remarkably, we found in our array study in T-cells that, together with Lselecrin mRNA,
FOXOI alsostronglyinducesthose ofEDGI and KLF2, arguingfor a FOXOI KLF2 EDGI/
L-selectin functional link in T-celltrafficking. In this cascade, the roleofFOXO1 maybe limited
to the controlofKLF2. However, someindependent regulationbythe two transcriptionalfactors
isalsopossible sinceinJurkat cells, in contrast to normalT-cells, KLF2overexpressionup-regulates
EDG1 but not L-selectin (FC, MarianneMangeneyand GB, unpublished). A similarresult was
reported in an independent study analyzinggenes directlyactivatedby KLF-2 in this cellline,"
This intriguing result needsfurther investigations, but it mayindicate that the two transcription
factorscanstand-aloneto regulategenes, likeSELL. Yet, assomeevidences of epigenetic changes
affecting the chromatinstatearemediatedbyFOXO 1in the nucleus," the promoterofL-selectin
might also be less accessible to KLF2 depending of the activation status of the cell,specifically
in leukemiccells likeJurkat that no more express nuclear FOXO 1. Analysis of FOXO 1 effects
in KLF2-deficient cells mayhelp to clarifythis important issue. It isworth mentioninghere that
expression of the FOXO1 H2I SRDNA binding mutant in primaryTdymphocytesinducesthe
activation membrane marker CD69,31 CD69 is one of the earliest induciblecell surface glyco
protein acquired during lymphoid activation. This observation is probably not fortuitous since
previous results have demonstrated that CD69 inhibits EDG 1 and lymphocyte egress from
lymphoidorganscausedby a mutual negative regulationof their membraneexpressionlevels in
Tdymphocytes." Moreover, in jurkat T-cells, activeFOXO 1 reducesCD69 mRNA levels.Thus,
the opposite modificationof CD69 and EDG1 seenin activatedT-cellsmight be controlled by
FOXO1.Interestingly, KLF2-deficient T-cells in lymphoidorganspresentsacomparable EDG Ilow,
CD69highphenotype,further establishingthe proposedFOXO I/KLF2 network in the regulation
of essential T-celltrafficking molecules.

Conclusion
Be in the right place and at the right time and get the signal as soon as it becomes avail

able to clonallyexpand: this is the credo of a naiveT-cell. To fulfill this mission the cellneeds
first to home into secondary lymphoid organs to meet APCs and then cycleveryactively alter
antigen recognition. Convergent studies described in this chapter show now that these two
essential biological processes of the adaptive immunity are probably coregulated in vivo by
a network of signaling molecules and transcriptional factors, such as FOXO 1, controlling
expression of variousmoleculesinvolvedin both T-cell proliferation and trafficking(Table 1).
This spatio-temporal control makessenseas it would seem important that mechanisms regu
lating expression of membrane receptors that guide T-cellswithin secondarylymphoid organs
stay constantly "on" in naive T-cells. The discovery that one molecule controlling this traffic
is FOXOI (and possiblyother FoxOs), a well-known and important switch to maintain cell
quiescencedownstreamofP13K, further suggests that the two missionsof a naiveT-cell, "travel
and stay at rest", are in fact the two sides of the same medal (Fig. 4). Thus, it is probably not
accidental that the exactopposite orders, "stayhere and cycle',are alsosimultaneouslygivento
the T-cellwhen this control is "off" alter antigen recognition in the lymph node. This scenario
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Table 1. FOX01 candidatetargetmolecules in T-cell trafficking and proliferation

Molecule Name Function Text References?'

L-selectin/CCR7/KLF2 Homing 31-33,91-93

KLF2/EDG1/CD69 Egress 31 ,91 -94

p27kipl/KLF2/EGR1/IL-16/CD52 Cell proliferation 31,54,56,58,90,94

(a)selected text references are shownsuggesting, as describedin the chapter, somedirector indirect
control by FOX01 of the listed molecules and corresponding functions.
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CCR7 + naive T cells

Lymphatic
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FOXOI (?)
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memory T cells
Clonal
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~~~
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KLF210w
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CCR7 ·

HEV
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node
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Figure 4. An hypothetical model of regulation by FOX01 of T-cell homing and egress. The
following scenario can be proposed: in naive T-cells the transcriptional control exerted by
FOX01 contributes to the preservationof the membrane levelsof L-selectin, EDG-1 and CCR7
receptors, possiblyvia KLF2 (at leastfor EDG1) whose expression isalsocontrolled by FOX01.
As long as no antigen isdetected within lymph nodes, this control allowsthe cells to maintain
their homing and egress capacities unaffected. Afterantigen recognition, steady activation of
PI3K at the immunological synapse leads to prolonged inactivation of FOXOl together with
rapid decrease of KLF2 protein. Asa result, membrane levelsof L-selectin, CCR7 and EDG-l
are down regulated. This may help sequestering activated T-cells in LN during their clonal
expansion, before their differentiation into effector and memory cells. One central question
here will be to understand the mechanisms that make this captivity reversible at this stage.
In particular, we do not know whether in these cells the transcriptional control exercised by
FOXOl is restored together with normal levelsof KLF2, keeping in mind that EDG-l is a direct
transcriptional target of KLF2 and is required for T-cell egress in the lymphatic sinus.

is probably oversimplified as many other parameters such as the strength of the signal,which
is an essentialparameter controlling the T-cell fate after antigen encounter, may modify this
behavior.However, thesenew insights into T-cell physiologyshowingthat PI3K/Akt signaling
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has a key role in this choreography are ofinvaluable interest as they give us new potential targets
to control this critical phase ofthe adaptive immune response . Indeed, extensive drug discovery
activities have been directed over the past few years to identify compounds that effectively and
specifically disrupt the intracellular components of this pathway in cancer cells, which could
represent now novel immunomodulatory therapies.
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CHAPTER 2

FOXP3 and Its Role
in the Immune System
ChangH. Kim*

Abstract

F
OXP3 is a member of the forkhead transcription factor family. Unlike other members, it
is mainly expressed in a subset ofCD4+ T-cells that playa suppressive role in the immune
system. A function ofFOXP3 is to suppress the function ofNFAT and NFKB and this leads

to suppression ofexpression ofmany genes including IL-2 and effector T-cell cytokines. FOXP3
acts also as a transcription activator for many genes including CD25, Cytotoxic T-Lymphocyte
Antigen 4 (CTLA4),glucocorticoid-induced TNF receptorfamilygene (GITR)andfolate receptor4.
FOXP3+ T-cells are made in the thymus and periphery. The FOXP3+ T-cells made in the thymus
migrate to secondary lymphoid tissues and suppress antigen priming of lymphocytes. Antigen
priming of naive FOXPY T-cells and naive FOXP3- T-cells leads to generation of memory
FOXP3+ T-cells which are efficient in migration to nonlymphoid tissues. Memory FOXP3+
T-cells are, therefore, effective in suppression of effector T-cell function, while naive FOXP3+
T-cells are adept at suppressing the early immune responses in lymphoid tissues. Both naive and
memory FOXP3+ T-cells are required for effective maintenance of tolerance and prevention of
autoimmune diseases throughout the body. Many factors such as cytokines and noncytokine
factors regulate the generation ofFOXP3+ T-cells. For example, retinoic acid, produced by the
dendritic cells and epithelial cells in the intestine, works together with TGF-~l and promotes
generation ofsmall intestine-homing FOXPY T-cells by upregulating the expression ofFOXP3
and gut homing receptors. FOXPY T-cells can be produced in vitro from autologous naive
T-cells and, therefore, have great therapeutic potentials in treating a number of inflammatory
diseases and graft rejection.

Introduction
FOXP3 is one of the most extensively studied members of the FOX family which is defined

by a common DNA-binding domain (DBD) termed the forkhead box or winged helix domain.'
FOXP3 receives a lot of attention because of its clear role in generation of immune suppressor
T-cells. The function ofFOXP3 in programming the gene expression to make suppressor T-cells
is attributed to its transcription regulation activity.' Its major targets include NFAT and NFKB,
key transcription factors that mediate antigen receptor signals. FOXP3 suppresses the function of
these transcription factors but induces expression ofmany other genes through mechanisms that
are incompletely understood at this stage. Our body is making FOXPY T-cells in both the thymus
and periphery. FOXPY T-cells play important roles in limiting the activation ofimmune cells in
response to infection.t" They play important roles also in prevention ofautoimmune diseases. It
appears that some pathogens and cancer cellshave been evolved to utilize FOXP3+ T-cells to avoid

*Chang H. Kim-Department of Comparative Pathobiology, 725 Harrison Street, Purdue
University, West Lafayette, Indiana 47907, USA. Email: chkimepurdue.edu
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immuneresponses because FOXPY T-cells wouldeffectivelysuppress antipathogen andanticancer
cell-specific immuneresponses." While FOXP3 ismainlyexpressed byT-cells, it isalsoexpressed
byepithelialcells in certainorganssuchasthymusandmanunaryglands,"Intheseorgans, FOXP3
seems to playcompletely different roles.9•10Thismonographis to providegeneral informationon
the structure and function of the FOXP3 geneand protein and on the immunological rolesof
the cells expressing FOXP3.

Structure and Function ofFOXP3
Thehuman FOXP3geneiscomposedof11exons and ispresentin thep armoftheX chromo

some (Xp11.23, Fig.1).11.12 The translationof the FOXP3 protein starts from the middleof the
secondexon.The mousegeneisat X 2.1 eM. a locationcomparable to that of the humangene.It
isalsocalled]M2 (human)or scurfin (mouse).FOXP3isa48 kD protein composed of431 amino
acids. The FOXP3 protein has four distinctive domains:forkhead(FH) domain, leucinezipper,
zinc-finger and the proline-rich repressor domain.i The C-terminal forkheaddomain consists of
-100 amino acidsand formsa DNA bindingdomain. FOXP3 binds genes containingthe fork
head bindingmoti£l3.14The forkheaddomain isrequiredalsofor nuclearlocalization ofFOXP3.
The roleof the zinc-finger domain isunknown.Theleucinezipperdomain is thought to mediate
dimerizationor tetramerization of the transcription factor. 15The N-terminal repressor domain
(aminoacids1-193) iscomposedof two subdomains.The firstsubdomain(aminoacids1-105)is
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Figure 1. The structure of the FOXP3 gene and prote in. The human FOXP3 gene is located on
the p arm of chromosome X (Xpll.23). The FOXP3 gene is composed of 11 exons. There are
four identifiable domains in the FOXP3protein. The N-terminal proline-rich domain is involved
in suppression of NFKB and NFAT. The leucine zipper domain is required for dimerization or
tetramerization. The C-terminal forkhead domain has a nuclear localization sequence and
a DNA binding domain. FOXP3 functions to induce the expression of many genes such as
CTLA-4, FR4 (folate receptor 4),142 GITR and CD25 and to suppress the expression of other
genes such as IL-2,IL-4 and IFN-y. It has been reported that expression of 700-1000 genes is
regulated by FOXP3 either directly or indirectly.
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involved in generaltranscriptionalrepression byFOXP3 and the secondsubdomain(N-terminal
106- to 190-aaproline-rich region) is involved in suppression ofNFAT and NFKB-mediated
transcription.l'v'iThesecondhalfof the domain mediatesthe association of the FOXP3 protein
with keytranscriptionalregulators suchasTat-interactive protein 60 kDa (TIP60)17and class II
histone deacetylases (HDAC7) .18 Mutations havebeen found in the forkheaddomain, leucine
zipperdomain and repressor domain of the FOXP3 geneof human IPEX panenrs."?'

FOXP3 can bind forkhead DNA binding elementsin manygenesincluding IL-2,CTLA4 ,
GITRand CD2S.22FOXP3 decreases IL-2 expression but increases the expression ofCTLA4,
GITR and CD2S. Thus,FOXP3 acts asa transcriptional activator and repressor. Studiesusing
Chip-on-Chip (chromatin immunoprecipitation) revealed that 700-1100 genesare regulated
either positivelyor negatively by FOXP3.23,24 Most of the geneswould be indirectly regulated
as the result of T-cell differentiation rather than as the consequenceof direct FOXP3 bind
ing. For suppression of NFAT, the N-terminal repressor domain is required." FOXP3 and
NFAT cooperatively bind to the antigen receptor responseelement (AREE2)within the IL-2
promoter in a manner similar to the binding of AP-l and NFAT.25Some amino acid residues
in the forkhead domain are important for this interaction. FOXP3 also interacts with NFKB
and suppresses its acriviry,"

Expression ofFOXP3
FOXP3 is mosthighlyexpressed bya subsetofCD4+T-cells, commonlycalledCD4+CD2S+

regulatoryT-cells.5.26 Expression of the FOXP3 gene is more tightly regulatedin mouseT-cells
comparedto human T-cellsY In humanT-cells, simpleT-cellactivationinducesFOXP3 at alow
but detectable level. Inaddition,someCD8+T-cells alsoexpress FOXP3andfunctionasregulatory
T-cells.28In the mousethymus, FOXP3expression isdetectedon asmallsubsetofCD4 and CD8
doublepositiveT-cells and CD4 single positive T_cells.29.31In humans,however, smallnumbersof
doublenegative thymocytes alsoexpress FOXP3.32Expression ofFOXP3 isimportant forT-cells
to gain the suppressive function. In mice, FOXP3 over-expression byretroviral genetransferwas
sufficient to generatesuppressive T-cellsY·34 Again, there isa species difference in this regardthat
enforced FOXP3 expression in human T-cells by itselfwasnot sufficient to turn regularT-cells
into suppressor T-cells.35

While normalT-cellreceptor (TCR) activationwouldnot efficiently induceFOXPY T-cells,
prematureterminationofTCRsignalingand inhibition ofphosphatidylinositol3-kinase(PI3K)
pllOa, pl IOd, protein kinaseB (Akr), or mammalian target of rapamycin (mTOR) effectively
induced FOXP3 expression.l" FOXP3 expression is regulated at both genetic and epigenetic
levels. NK-cells, for example, don't express FOXP3 but do express it when they are treated with
S-aza-2'-deoxycytidine,a DNA methylationInhibitor," Completedemethylation ofCpG motifs
aswell as histone modifications are found on the conserved region of the FOXP3 promoter in
FOXP3+ cells but not FOXP3- T-cells.38Methylation at the FOXP3 promoter can block the
bindingoftranscription factorssuchascyclic-AMP response elementbindingprotein (CREB)/
activating transcriptionfactor (ATF)which areinvolved in activation of the FOXP3 promoter;"
TGF-~1 induces FOXP3 expression in T-cells undergoing T-cell receptor activarion.w" The
transcription factors Smad3which mediates TGF-~1 signaling and NFAT which mediates the
T-cellreceptoractivationsignalare required to induce FOXP3 expression." Interestingly, these
TGF-~I-induced FOXPY T-cellsare not heavily methylatedon their FOXP3 promoter locus
comparedto naturalFOXP3+ T-cells.43However, anothergroupreportedmorecomplete methyla
tion at the FOXP3promoter locusin inducedFOXP3+ T-cells,suggesting that the methylation in
the invitro-inducedFOXP3+T-cells varies dependingon theculturecondidon." InducedFOXP3+
cells, generatedin vivofrom naiveT-cells, exhibitedmore completemethylationon the FOXP3
locusand thus natural and fullydifferentiated-induced FOXPY T-cellsare indistinguishable in
methylationat the FOXP310cus.45

InadditiontoTGF-~1,IL-2promotesthegeneration ofinducedFOXP3+ T-cells. Consistently,
the intracellular signaling mediatorsofIL-2 such as STATSa and STATSb playpositiveroles in
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expression ofFOXP3.37.46 It hasbeenreportedthat IL-4suppressed, whileSTAT6 (amediatorof
IL-4signaling) genedeletionenhanced, theTGF~ I-inducedexpression ofFOXP3.47TGF-~ I can
enhanceFOXP3 expression but suppress the expression ofFOXP3 whenIL-6ispresent. Indeed,
TGF-~ I and IL-6inducedifferent effector T-cells called"ThI7 cells", whichcancharacteristically
produceIL-I7 .48.49 In linewith this,TGF-~ I treatmentincreases acetylaeed FOXP3on the chro
matin but IL-6down-regulates FOXP3 bindingto the chromatinin the presence ofTGF-~1.50

Ontogeny and Migration ofFOXP3+ Cells
FOXPY T-cells aregeneratedin thymus asnaive FOXP3+ cells and in peripheryasinduced

FOXP3+ cells (Fig.2).Thenaive FOXP3+ T-cells,generated in thymus,express CD62LandCCR7
and migrateto secondary lymphoidtissues." CD62L would mediaterollingand CCR7 triggers
inregrin-mediated firmadhesion on endothelialcells.51.56This trafficking receptorphenotype is
retained as long as the FOXPY T-cells do not encounter antigens in the secondary lymphoid
tissues." Unlike the naive FOXP3+ T-cells, the induced FOXP3+ T-cells haveheterogeneous
memory/effector type trafficking receptors." It is thought that memory FOXP3+ T-cells and
induced FOXP3+ T-cells are similar to each other in trafficking receptor phenotype and sup
pressive function. Someinduced FOXP3+ T-cells express gut homing receptors such as CCR9
and a4~7Y Thesereceptors allowthe migrationof the T-cells into the smallintestine.57-63 Some
FOXP3+ T-cells express CXCRS and migrateinto B-cell follicles includinggerminal centers.r'
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Figure 2. Generation and trafficking of FOXP3+ T-cells . FOXP3+T-cells are made in the thymus
at the double negative stage (human), double positive stage and single positive stage (human
and mice). The thymus emigrating FOXP3+ T-cells have the naive T-cell phenotype in traf
ficking behavior and migrate to secondary lymphoid tissues. The migration of natural FOXP3+
T-cells into secondary lymphoid tissues is to regulate the antigen priming of lymphocytes and
to undergo antigen priming themselves . Antigenic stimulation of naive FOXP3+ T-cells changes
their hom ing behav ior for migration to various non lymphoid tissues. Antigen priming of naive
T-cells also drives the conversion of FOXP3-naive T-cells into FOXP3+ T-cells . Certain factors
such as TGF-~l and retinoic acid play important roles in promotion of this event.
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Someother FOXP3+T-cellsexpress CCR8 ,a skin-homing related receptor," In general,induced
or memory FOXPY T-cells highly express CD103, CCR4, CCR6, CXCR3, CXCR4 and
CXCR6.31.65CCR4 isrequired for successful suppressionofinflammation byFOXP3+T-cells.In
a heart transplantation model, recruitment ofFOXPY cellsto the allografttissueisdependent on
CCR4.66The CCR4-dependent recruitment ofFOXPY T-cellsis requiredfor effective induction
of tolerance with tolerizing strategiessuch as CD154 mAb therapy. Scurfy mice reconstituted
with CCR4-deficient FOXPY cellsdevelopsevereinflammatorydiseases in the skin and lungs.67

Another chemokine receptor CCR7 appears to be important for FOXPY T-cell migration to
the T-cell area oflymphoid tissues. CCR7-deficienc FOXPY cellsfail to migrate into the lymph
nodes and suppressantigen-induced T-cell responses.f

The induction mechanism of gut homing FOXPY T-cells has been elucidated. In 2007, six
groups reported that retinoic acid has the function of triggering the expression of FOXP3 in
T-cells undergoing activation.69.76Retinoic acid induces chromatin reorganization by inducing
histone acetylation in the FOXP3 promoter. Retinoic acid alone can generate human FOXP3+
T-cells but TGF-~1 is required at least at a suboptimal level to induce retinoid-induced mouse
FOXP3+T-cells," Retinoic acid is produced from retinol by dendritic cellsand epithelial cells
in the intestine." Therefore, the intestinal microenvironment provides the signal to induce gut
homing FOXP3+T-cells. This role of retinoic acid is thought to be important for inducing toler
ance in the gut by generating FOXP3+T-cells that would suppresspotentially harmful immune
responsesin the intestine. It has been well-established that immune responsesto commensals can
causeinflammatory bowel diseases such as Crohns diseaseand ulcerativecolitis.79.8° It is thought
that retinoic acid functions to prevent inflammatory bowel diseases by promoting the immune
tolerance in the intestine. Another function of retinoic acid is to suppress the differentiation of
naiveT-cellsinto Th17cells invitro.Thiscouldalsopromote the immune tolerancein the intestine
by suppressingTh17 cells.69,73.74.81 However,the function of retinoic acid in suppressionofTh17
cellshas not been confirmed in vivo.This maybe becauseofthe fact that retinoic acidproduction
in vivo is tightly regulated that retinoic acid would not be available at the high concentrations
(100-1000 nM) used in vitro in demonstration of the suppressionofTh17 cells.

Another traffickingreceptor that is potentially important for FOXP3+ regulatory T-cells is
CD 103.65.82.83CD103 is the alpha subunit of the integrin aE~7, which servesas the ligand for
E-cadherin. It is unclear how CD 103 functions in terms of the suppressive function ofFOXP3+
T-cells.It wasproposed that CD 103+ FOXP3+T-cellsarememorycellsand theyaremore efficient
in suppressionofinflammationin the joints." One caveatwith this is that there aremanyCD 103
memory FOXPY T-cellsaswell.Thus, CD 103 is not a universalmarker for allmemory FOXP3+
T-cells. In suppressionofgrafi-versus-hosc disease(GVHD), however, CD62L+ FOXP3+Tvcells
aremore efficient than CD62L- memoryFOXPY T_cells.84,85 Therefore, it isnot memoryFOXP3+
T-cellsthat are always more efficientthan naiveFOXP3+T-cellsin suppressionofinflammation.
Whether a FOXPY T-cell subset is effective or not effective in suppressionof inflammation in a
certain tissuewould be determined by the migration ability of the FOXP3+T-cells to the major
tissue site of initiation or amplification of the inflammation. In other words, naive FOXP3+
T-cells or their migration into lymphoid tissues is important if initiation and amplification of
the inflammatory diseaseoccur in the lymphoid tissues.Otherwise, memory FOXP3+T-cellsor
their migration to effector sites would be important for suppressionof inflammation at effector
sites (Fig. 3).

Mechanisms ofSuppression Mediated byFOXPY T-Cells
TGF-~1isimplicatedin the suppressive function ofFOXP3+ T-cells.Nakamuraet al reported

that spleenCD4+CD25+T-cellsproducesolubleTGF-~1.86In their study, theTGF-~1concentra
tion in the culture supernatant ofCD4+CD25+T-cellsreached-2 ng!ml,which isa concentration
sufficientto suppresstarget T-cells.Moreover,CD4+CD25+T-cellsexpressed surfaceTGF-~1as
the latency associatedprotein. Neutralizing anti-TGF-~1 abrogated the suppressive activity of
CD4+CD25+T-cells. Piccirilloet al, however, reported that neutralization ofTGF-~1 was not
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Figure 3. Immune regulatory functions of FOXP3+ T-cells. Naive FOXP3+ T-cells have the tis
sue tropism for secondary lymphoid tissues while memory FOXP3+ T-cells have diverse tissue
tropisms for nonlymphoid tissues (e.g., gut versus other tissues). Therefore, naive T-cells are
designed to suppress the immune responses in secondary lymphoid tissues perhaps to lim it
the activation of various immune cells . This would be important to prevent the generation
of autoimmune effector T- and B-cells . Memory FOXP3+ T-cells can migrate to nonlymphoid
tissues. Depending on the site of antigen priming, some can migrate to the gut, while others
migrate to different tissue sites. Therefore, memory FOXP3+ T-cells can suppress the potentially
inflammatory activity of effector lymphocytes in diverse peripheral tissues. It is thought that
FOXP3+ T-cells can suppress harmful autoimmune responses but can be utilized by tumors
and pathogens to delay beneficial immune responses.

able to abrogate the suppressive effectof CD4+CD2S+ Tvcells." Similarly, Smad3 (-/-) T-cells
and the T-cellsthat cannot receive theTGF-131signalingwere suppressed byCD4+CD2S+ Tvcells,
In their study,TGF-131 (-/-) CD4+CD2S+ T-cells wereableto suppress targetT-cells.1hisgroup
alsoperformed an in vivostudy through which they found that the suppression of autoimmune
gastritisbyCD4+CD2S+ T-cells wasnot reversed byanti-TGF-131. A caveat with this studyisthat
in vivoneutralizationwould not always work and thus this data doesnot provelackof a role for
TGF-131 in vivo.Mamuraet alprovides evidence that compromises the resultsof the two reports."
Adoptive transfer ofTGF-131 (-/-) splenocytes into TGF-131 (+/+) Rag2 (-/-) mice induced
an autoimmune inflammatory disease and cotransfer ofTGF-131 (-/-) CD4+CD2S+ T-cells
partiallyamelioratedthe disease. However, this suppression wasweakercomparedto that bywild
type CD4+CD2S+ T-cells, suggesting that CD4+CD2S+ cells maysuppress target T-cellsin both
TGF-131-dependent and independent manners. Usinga dextran sodium sulfate (DSS).induced
colitismousemodelin conjunctionwithamodelwith impairedTGF-131-signalingbyoverexpress
inga truncatedversionof the TGF-13 TypeII receptorin T-cells, Huber et al reported that transfer
of wild-type but not transgenicCD4+CD2S+ T-cells wasfound to suppress colitis in wild-type
mice." UnlikeCD4+CD2S+T-cells fromwildtypemice,CD4+CD2S+T-cells fromTGF-131(-/-)
micedid not protect recipientmicefrom colitisin T-cellinduced SCID mice." In contrast,adif
ferent group reported that CD4+CD2S+ cells from either TGF-131 (+/+) or TGF-131 (-/-) mice
cansuppress the incidenceand severity ofcolitis," Itwasnotable,however, that CD4+CD2S+ cells
from TGF-131 (+/+) micewerealways more efficient than the CD4+CD2S+ cells from TGF-131
(-/-) micein suppression ofinflammation.1hese authors observedthat anti-TGF-131 neutraliza
tion exacerbated effecror-T cellinduced colitisand claimedthat CD4+CD2S+ T-cellsareableto

suppress intestinal inflammationby a mechanismnot requiringTregcell-derived TGF-l3l. One
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problem with this claim is that FOXPY T-cellscan be induced following naiveT-cell transfer.
Overall,it appearsthat TGF-~l has certain rolesin the suppressive function ofFOXP3+ T-cells
but the degreeof contribution maydepend on the type of disease and immune responses. This
impliesthat there areTGF-~l-independent mechanisms of suppression.

Indeed, there are a number of candidate mechanisms that could mediate the suppressive
function ofFOXP3+T-cells. FOXP3+ T-cellshighlyexpress CTLA-4 and CTLA-4 cansuppress
antigenpresentingcells through the cognateCTLA4-B7interaction.92.93TheCTLA4-B7interac
tion triggers the expression of indoleamine2, 3-dioxygenase (IDO) . IDO converts tryptophan to
kynurenine, 3-hydroxyanthranilic acid,picolinicacid and quinolinic acidand thus is an enzyme
that depletes tryptophan requiredforproliferationand functionofimmune cells." Certain regula
tory T-cells express cytotoxicmolecules suchasgranzyme A and granzyme B,whichcankill target
cells in perforin-dependent and independent rnechanisms.t ':" FOXP3+ T-cells express alsoheme
oxygenase (H 0 )-1, an enzymethat producescarbon monoxide.98.99The suppressive function of
human CD4+CD25+ T-cellswasblockedin the presenceof an HO-1 inhibitor, suggesting a role
of carbon monoxidein the suppressive function ofFOXP3+ Tvcells."

RoleofFOXP3+T-Cellsin Suppression ofDiseases
Immunedysregulation, polyadenopathy,enteropathyandX-linkedinheritance(IPEX) patients

developvariousclinicalsymptoms. Most patients suffer from systemic autoimmunediseases evi
dencedbysevere acuteenteritis, TypeI diabetes,elevatedserumIgEand eczema.19'2IThe patients
variably havealsohypothyroidism, anemia,thrombocytopenia, neutropeniaand autoantibodies.
The exactphenotype is thought to be determined by the type of mutations in the FOXP3 gene
becausepartially functional FOXP3 can be made with certain types of mutations. Also, other
factorssuchasgeneticsand environmentalfactorscanaffectthe progression of the disease. Scurfy
micearea mouseversionof human IPEX.IOO.lOl Malescurfymicewith the scurfymutation in the
X chromosomedeveloprunting, exfoliative dermatitis,hypergammaglobulinemia and severe ane
mia.lOO.lOl In a manner similarto IPEX patients, scurfymicedie youngat around 3 weeks of age.
The phenotypes ofIPEX patients and scurfymiceclearly showthat autoimmune responses play
centralrolesin developingthe disease. FOXP3 ismainlyexpressed byCD4+T-cells and therefore,
this suggests that FOXP3+ T-cells playimportant rolesin preventionof the autoimmunedisease.
The scurfy symptom can be preventedbyadoptivetransferof FOXP3+ T-cells,I02. 103further sup
porting the role of thesecells in preventionof the disease.

Because FOXP3+ T-cellscansuppress manytypesofimmune cellsuchasCD4+T-cells, CDS+
Tvcells,CD Id-restricted NKT cells. monocytes/macrophages, naive/memory Bvcells, dendritic
cellsand NK cells,104·110 they havethe potential to suppressa wide spectrum of immunological
diseases. Thisisindeed true in animalmodelsthat FOXP3+ T-cells caneither preventor suppress
existing immunological diseases such as experimental autoimmune encephalomyelitis (EAE),
inflammatory bowel disease (IBD), diabetes, collagen-induced arthritis, lupus, autoimmune
gastritisand allergy.III.118Similarly, FOXP3+ T-cellscan effectively suppressallogeneicimmune
responses leading to graft rejection and graft-versus-host disease.'!"!" Infection is a type of
diseases that are different from autoimmune diseases and the suppressive function ofFOXPY
T-cellsmaybe disadvantageous for the hosts during infection. In infection, somepathogenscan
suppress immune responses by expanding FOXP3+T-cells.122' 12S FOXP3+ T-cells are perhaps
required to terminate immune responses and preventover-active immuneresponses which could
leadto autoimmunediseases. However, excessive expansionofFOXP3+T-cellscoulddeter clear
ance ofpathogens by the immune system.Cancer is yet another class of diseases.Most tumor
typesincludingcolorectalcancer,head and neckcancer,hepatocellularcarcinoma,breastcancer,
pancreas adeno caricinoma, melanoma, cervicalcarcinoma, gastrointestinal tract cancer, lung
cancer,ovarian cancer, leukemia and lymphoma have increased numbers of tumor-infiltrating
FOXPY T-cells.126·137 It is unclear if these cells are induced within the tumor or immigrated
into tumors. What seemsclearisthat thesetumor-associatedFOXP3+ Tvcells havethe potential
to suppressantitumor immune responses.
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Functions ofFOXP3 in Nonhematopoietic Cells
FOXP3 appears to havea role in thymic epithelialcells. The scurfymutation in the FOXP3

gene causes diminished proliferation of double negative thymocytes and thymic atrophy,"
Interestingly, FOXP3 is expressed also by nonimmune cells such as epithelialcells in mammary
glands, prostate and lungs.1O•138 The function ofFOXP3 in the epithelialcellsis largely unknown
but FOXP3-deficientmammarygland cells are more prone to becomecancerous." It ispossible
that FOXP3 would regulate the expression of certain oncogenes in these cells. HER-2/ErbB2
oncogeneand S-phasekinase-associated protein 2 (SKP2,acomponent of the E3 ubiquitin ligase
SKPl-Cull-Fbox complex) aresuchoncogenes that areimplicatedin FOXP3-mediatedsuppres
sion of cell proliferation in mammarygland cells.1O

•139 FOXP3 functions to down-regulate the
expression ofERB2 and SKP2.10 Therefore, FOXP3 appearsto playa potentiallyimportant role
in regulationof the proliferationofepithelialcells in certainorgans. Although the roleisunclear,
FOXP3 is expressed alsobysometumor cells.140.141

Concluding Remarks
The significance ofFOXP3 in regulationof the immune systemis well-established. FOXP3

functionsasa transcriptionactivatorand suppressor and programsthe geneexpression programin
T-cells in adirection to promote immunetolerance.Thedetailedmechanisms for the geneexpres
sion regulation by FOXP3 remain to be determined but it appears to modulate the function of
majortranscriptionfactorsand to changethe chromosomalconformation.Aplethoraof informa
tion is available regardingthe immune regulatoryfunction of FOXP3+ T-cells. The data clearly
support the clinicalapplicationpotential ofFOXPY T-cellsin suppression of inflammationand
preventionof immunological diseases. Control of immunological diseases can be achieved either
through increasing the numbersofFOXP3+T-cells for suppression of immunecellsor decreasing
the numbers for promoting immuneresponses. Autoimmunediseases can be treated by utilizing
the former method, whilecancerand control of infection can be achievedbyadopting the latter
method. FOXP3+ T-cellscan be prepared in vitro by culturing naiveCD4+T-cells in the pres
enceofTGF-131 and IL-2 or variousother agentsthat can turn on the expression ofFOXP3. The
migratoryand functionalpropertiesof FOXP3+ T-cellscan be altered byusinghoming receptor
inducerssuch as retinoicacidor bygenetherapy. Thiswould makethem more efficient in migra
tion to target tissues and to control diseases. It isexpectedthat FOXP3-basedtherapieswould be
actively utilized in treatinghuman patients in the near future.
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Molecular Regulation ofCellular
Immunity by FOXP3
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Abstract

T he immune system is responsible for not only eliminating threats to the body,but also
for protecting the body from its own immune responses that would causeharm if left
unchecked. Forkhead box protein 3 (FOXP3) is a forkhead family member with an

important role in the development and function of a type of CD4+ T cell calledT regulatory
cells that is fundamental for maintaining immune tolerance to self. This chapter reviews the
structure of FOXP3 and how its role in the immune systemwasdiscovered. Studiesof patients
with mutations in FOXP3 who suffer from a syndromeknown as IPEX (immunedysregulation,
polyendocrinopathy,enteropathy,x-linked) arealsodiscussed. Investigation into howexpression of
FOXP3 is regulatedand how it interactswith other proteins haverecentlyprovided considerable
insightinto mechanisms bywhichthe lackof this protein couldcausedisease.Wealsodiscuss how
FOXP3isinvolved in the reciprocal development ofT regulatorycells andproinflammatoryT-cells
that produce IL-I? A better understandingof how FOXP3 is regulatedand the molecularbasis
for its function will ultimatelycontribute to the developmentofT regulatorycell-based cellular
therapiesthat could be used to restoredysregulated immune responses.

Introduction
The immunesystem isdesignedto maintain a balancebetweendestroyingthreats to the body

and protecting selffrom immune-mediateddamagecausedby inflammationand autoimmunity.
One of the mechanisms bywhich this balanceiscontrolled is immunesuppression byspecialized
T-cellsknown asT regulatorycells. Although manydifferenttypesofT regulatorycellshavebeen
identified,those that are CD4+ and express the forkheadbox protein P3 (FOXP3) transcription
factor(hereafterTregcells) havebeenthe mostintensely studieddue to thecompellingevidence for
their therapeuticpotentialto preventandevenreverse manyimmune-mediateddiseases.' Although
the mechanisms bywhich Tregcells suppress the activationand effectorfunctions of CD4+ and
CD8+ T-cells, antigenpresentingcellsand Bcellsremainto be fullyelucidated,what isclearisthat
FOXP3 is of central importance to both the developmentand function ofTreg cells,"? Beyond
its role in immunity,FOXP3 alsohas a newlyrecognizedroleasa tumour suppressor geneand is
alsoexpressed in epithelialcells of multipleorgans.8•9 Sincethis isan emergingfieldand relatively
little isknown about how FOXP3 functions in nonimmune cells, in this chapterwewillfocus on
its immunological functions. Wewillbeginbysummarizingwhat isknownabout the structureof
FOXP3 and how its role in Treg-cell genesis wasdiscovered. Wewill alsodiscuss how the study
of T-cells from patients who suffer from IPEX (immune dysregulation, polyendocrinopathy,
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enteropathy,x-linked) due to mutations in FOXP3 havehelped us to understand the role of this
protein in immunity.Sinceunderstandingdisease mechanisms and developing strategies to target
Tregcellstherapeutically relyon understandinghow FOXP3 actsat the molecularlevel, wewill
alsodiscuss what is known about differentisoforms ofFOXP3, how it interactswith other pro
teins,and how epigeneticchanges control its expression. Finally, the functional consequences of
interactionsbetween FOXP3 and other transcription factors will be illustratedby reviewing its
role in the reciprocal developmentofTreg cells and a newly-described proinflammatorysubset
ofT-cells calledTh17 cells.

Discovery ofFOXP3 and Key Structural Features
FOXP3 is an X-linked gene (located in Xpl1.23) whose fundamental importance in im

mune regulationwasfirst recognizedin 2001 when three parallelstudiesidentified it as the gene
mutated in the scurfY mouse'?and in humanswith IPEX.II.12Scurfymicearoseasa spontaneous
mutation at the Oak RidgeNationalLaboratoryin 1949and sufferfromanX-linked,rapidlyfatal
autoimmune disease mediated by CD4+'l-cells.'! The similarphenotype ofIPEX patients will
be discussed in more detail below. Sequence analysis of the mutated generevealed a protein with
a classicalforkhead (FKH) domain and ultimatelyrecognition of a novel member of the FKH
familyof transcriptionalfactors,'? Earlystructure-function studiesconfirmed that FOXP3 was
ableto bind the consensus FKH binding sitesin the transthyretin and immunoglobulinvariable
regionsVI (VIP) promoters." Although FOXP3 was originally thought to exclusively repress
transcriptionsinceit inhibited luciferase activitydrivenbyan SV40 promoter appendedto three
VIP forkheadconsensus sites," more recentstudieshaverevealed that it can alsoact asan activa
tor of transcription.IS·I?

In humansFOXP3 isa431aminoacid(aa)proteinconsistingofanaminoterminalproline-rich
region(aa 1-193),a C2H2 zincfingerdomain (aa200-223), a leucinezipper motif(aa 240-261)
and acarboxyl-terminal forkheaddomain (aa338-421)(Fig. 1).18ItsFKH and zincfinger/leucine
zippersequences are73-80%and 44-51%identicalto FOXP1,FOXP2 and FOXP4, respectively,
while the remainderof the sequenceis divergent." Specifically, the proline-rich amino terminal
regionofFOXP3 contrastssignificantlywith theglutamine-rich aminoterminiof theother FOXP
members." Furthermore,FOXP3lacks the C terminalbindingprotein 1(CtBP1)transcriptional
repressor domain present betweenthe leucinezipperand FKH domainsin FOXP1and FOXP2,
suggesting that the mechanisms bywhichit represses transcriptiondifferfromother FOXP family
members," Theamino-terminal 106 to 190aashaverecentlybeen identifiedasnecessary, but not
sufficient for the repressive activityofFOXP3.21.22As discussed in more detail below, this region
is also responsible for binding to the histone aceryltransferase TIP60 and histone deacetylase
HDAC7.22 The leucinezipper region is essential for homo- and herero-dimerization 'Pe" while
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Figure 1. Schematic diagram of the exon/intron structure of FOXP3 and its known functional
doma ins. Black shading indicates uncharacterized regions and locations of mutations found
in IPEXpatients are indicated by black dots. Regionsencoding sitesof known protein-protein
interactions are shown . Regions known to be subject to epigenetic regulation include the
promoter, TGF-~ sensor and Treg-cell-specific demethylated region (TSDR).
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the zinc fingerdoesnot seemto be essential for either homodimerizationor repressive activity,"
Asfor allFKH proteins, the FKH domainofFOXP3 containsa DNA-bindingsequence, aswell
asa nuclearlocalizationsequence."

Phenotype and Function ofFOXP3+ Treg Cells
In the immunesystem, FOXP3 isexpressed bya populationof CD4+Tregcells25-27whichwere

originally identifiedbasedon high and constitutiveexpression of the high affinity IL-2Ra chain
(CD25) andfunctional capacity to suppress immuneresponses invitroandinvivo.28.29 SinceFOXP3
isa nuclearprotein, liveFOXP3+ cells cannot be isolatedexceptfrom reportermice;3<l-32 thus, the
majorityof studiesrelyon expression of CD25 to isolateTregcells and investigate their biological
properties.Beyondexpression of CD25, someother notable characteristics ofFOXPY Tregcells
includetheir inabilityto producetypically T-cell-derived cytokines suchasIL-2, IFN-yor TNF-a
and their in vitrohyporesponsiveness to T-cellreceptor (TCR) activation.1•33.34Theydo, however,
retain the abilityto produceimmunosuppressive cytokines suchasIL-10,TGF-~ and the recently
describedIL-35.35-41 Thecell-surface proteinsexpressed byTregcells aregenerally characteristic of
activatedT-cells, and in addition to CD25, include cytotoxicT-lymphocyre-accociated antigen
4 (CTLA-4) and glucocorticoid.induced tumour-necrosis factor receptor family-related gene
(GITR)42-44 but not CD 127(IL-7 receptor, alphachain).45.46 Other potentiallymoreTreg-specific
proteinsincludefolatereceptor447and neuropilin-I,48 but further research isrequiredto clarifythe
specificityand utilityof thesemolecules.Theprosand consofvarious cellsurface markers proposed
to be usefulfor isolating Tregcells havebeen reviewed byothers.33.49.50

There is extensive evidence from animal models that insufficient Tregcell numbers and/or
function can leaddirectlyto autoimmunityand allergy,whereasan overabundanceof thesecells
can suppress antitumor and antipathogen immunity.The role of Treg cells in disease has been
extensively reviewed1.34,42,49.51 and thus wewillnot focuson this topic here. Briefly, evidence that
adoptive transferofTreg cells can not only prevent autoimmunity in scurfj mice" but can also
preventand/or reverse other pathologiessuchasType 1diabetes," inflammatoryboweldisease/"
graftversus host disease54.55 and rejectionof transplantedorgans56.57has leadto widespread interest
in developingsimilarcelltherapy-based approaches in humans.Indeed, in humans,a reduction in
the number or function ofTreg cells isoften,but not always, associated with variousautoimmune
diseases including myastheniagravis, autoimmune polyglandularsyndrome Type II, ulcerative
colitisand multiple sclerosis,43.58-63aswellasgraft-versus host disease and allograft rejection.64.65

Role ofFOXP3 in the Development ofTreg Cells

Naturally Occurring versus Induced Treg Cells
Treg cells mayeither arisedirectly in the thymusor be induced in the peripherywhen naive

CD4+ T-cells encounter their antigen in a tolerogenic environment. Currently, there are no
known phenotypic markers that distinguish thymically-derived or naturally-occurring (n) Treg
from peripherally-induced (i) Treg cells. There is evidence, however, that they likelydiffer in
antigen-specificity sincenTreg cells tend to recognize selfantigens66•67and areselectedwhen the
strength ofTCR signalling is abovethat of classical positiveselectionbut belowthat of negative
selection.f In contrast, iTregcells canbe specific for anyantigenpresentedin the context of tole
rogenicdendritic cells,69 or immunosuppressive cytokinessuch asTGF-~, as discussed in more
detail below.

There is little doubt that FOXP3 is required for the normal function ofTreg cells since the
lackof this generesultsin autoimmunity,but there isdebateon the preciseroleofFOXP3 in the
thymicdifferentiationof nTreg cells. Several years ago mixedbone marrowchimeraexperiments
revealed that stem cellsfrom mice genetically deficient for FOXP3 were unable to give rise to
CD4+CD25+ Tvcells," leadingto the conclusion that FOXP3 wasnecessary for this process. In
more recent experiments, however, it wasfound that although expression ofFOXP3 is required
for suppressive activity,cells expressingaTreg-associated genesignatureand cellsurface molecules
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stilldevelopedin the absence ofFOXP3.31,70 Thesefindings suggest that the roleofFOXP3 may
to be amplifyand stabilizethe predeterminedTreglineagerather than to definethe lineageitself
In support of this idea, it has been reported that manyaspectsof the Tregcellsignatureare not
directly controlled by FOXP3 since it contains gene clusters that are co-activated with, rather
than trans-activated by, FOXP3.71

When naiveperipheral T-cellsare activatedin the presenceofTGF-~ and IL-2, expression
of FOXP3 is induced and the resulting iTregcells are suppressive in vitro72-74 and in vivo?S-77
Interestingly, addition of all-transretinoicacid, a vitaminA metabolite, in vitro can enhancethis
conversion and it has recentlybeen shown that the sourceof a similarvitamin A signalcould be
from gut derived CD lOY dendritic cells.78-8l TGF-~ may also be involved in the development
of nTreg cells sinceit has recentlybeen shown that conditional deletionofTGF-~RI blocksthe
appearance of Foxp3+ rhymocytes.f An outstanding question is whether theseTGF-~-induced

Tregs arestableand persistentFOXPY cells. Floess and colleagues observedthat whenTGF-~ is
removed, FOXP3 expression israpidlyreduced." suggestingthat exposure toTGF-~ aloneisnot
sufficient to generateiTregcells. Indeed,beyondTGF-~ there isalsoclearly a requirementfor IL-2
in this conversion."Evidence that expressionofFOXP3 in TGF-~-inducedTregsisstabilizedin
inflamedenvironmentsin vivosuggests that cytokinesignals in addition to IL-2 maybe required
for the stability, survival and/or expansion of iTegcells?6,77

Reprogramming CD4+T-Cells into Treg Cells by Ectopic Expression ofFOXP3
The finding that retrovirus-mediated over-expression ofFOXP3 in naiveCD4+T-cells from

mice is sufficient to recapitulate all of the known features of Treg cells, including suppression
of autoimmunity and rejection of transplanted grafts in vivo,26,27,8s led to the idea that similar
gene-and-cell therapybasedapproaches shouldbepossible in humans.Wefirstbeganto investigate
thisquestionin 2003, followingthe originalreportsfrom the groupsof Sakaguchi, Rudensky and
Ramsdell.P:" We initially found, however, that retrovirus mediated over-expression ofFOXP3
in human CD4+T-cellswasnot sufficient to generatea population of cellswith potent in vitro
suppressive capaclry," Further investigation into whytherewasan apparentdiscrepancy between
the abilityof FOXP3 to reprogrammouseand human cellsinto Tregcellsled to the findingthat
in order forhuman CD4+T-cellsto beefficiently convertedinto Tregs, they mustexpress not only
high, but alsostablelevels ofFOXP3,87

We developeda Ientivirus-based method to ectopicallyexpress FOXP3 under control of the
elongation factor one alpha promoter, the activityof which does not depend on the activation
state of the cell. When FOXP3 wasover-expressed in naiveor memory CD4+T-cells from adult
peripheralblood usingthis method,wewereableto generateapopulation ofT-cells that wasphe
notypicallyand functionallyidenticalto exvivoTregcellsbasedon in vitroassays of proliferation,
cytokineproduction, cellsurface markerexpression and suppressive capacity.Thesedata indicate
that the abilityofFOXP3 to convertconventional CD4+T-cells intoTregs ismoretightlyregulated
in humans than in mice,possibly due to the fact that FOXP3 can alsobe expressed transientlyin
activatedT effector(Teff) cells" asdiscussed below.Theabilityto generateand efficiently expand
stablepopulationsof suppressive Tregcellsin vitro isan important advance in the developmentof
therapeuticapplications to translatethe immunosuppressive powersof thesecells to the clinic.

Wealsousedthe lentivirus-based system to investigate the dose-and time-dependent require
ments for expression of FOXP3 to mediate efficient conversion into Tregcells. Usinga version
of FOXP3 fused to the hormone binding domain of the estrogenreceptor (ER), we created an
inducibleformofthe transcription factor, the activityofwhichcanbepharmacologicallycontrolled
by the estrogenanalog4-hydroxytamoxifen (4HT).89 In the absence of4HT, the FOXP3-ERfu
sion protein is sequestered in the cytoplasmand inactive. Upon addition of 4HT, which causes
protein-refolding, stimulatesnuclear translocationand increases protein stability, wefound that
the relative suppressive capacityis correlatedwith the concentrations of 4HT and presumably
higher levels of FOXP3 activity. Moreover, the suppressive capacityis maximal when cells are
kept in 4HT for7-12 days. Since4HT-induced nucleartranslocationofFOXP3 happenswithin
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a fewhours, thesedata suggest that significant changesin geneexpression arenecessary beforethe
functional effects aremanifested. Notably, the suppressive capacityis rapidlyreversed when4HT
is withdrawn from the FOXP3-ER-expressing cells, lending support to the notion that FOXP3
doesmorethan definethe Treglineage.Theconclusion that FOXP3 isrequiredfor the suppression
functionofTregcells isalsosupportedbyevidence in mousemodels.31·70

•
90This conditionallyactive

form ofFOXP3 willalsobe avaluable tool to further study the cellularand molecularphenotype
ofTregs and indeed, it wasrecentlyshown that Foxp3-ERexpressing cells canbe usedto suppress
collagen-induced arthritis "ondemand" upon in vivoadministration of 4HT.91

Role ofFOXP3 in Conventional T-Cells
A unique property of conventional CD4+ T-cells in humans is that they also express

FOXP3 transiently when they are activated.92.% It has been suggested that this is exclusively a
TGF-f3-mediated process," but wewerenot able to confirm this (unpublisheddata). We found
that activated Teffcellsexpress FOXP3 maximally three days after TCR-stimulation and that
under conditions of strong activation, almost 100% ofTeffcells becomeFOXpy.94 However, a
keydifference betweenactivated Teffcells and Tregcells remainsevident:althoughthe intensityof
FOXP3 expression of activatedTeffcellsreaches that of restingTregcells, it remainssignificantly
lowerthan that in similarly-activated Tregs cells." Thesedata correlatewith our findingthat only
stableand high expression ofFOXP3 canconverthuman CD4+T-cellsinto Tregs87.89and further
support the conclusionthat Tregcelldevelopmentand function doesnot simplyrelyon the pres
enceor absence ofFOXP3, but rather on the magnitude and stabilityof its expression.

A consistentfindingisthat the transientexpression ofFOXP3 in activatedTeffcells isnot suf
ficientto suppress celldivision or cytokineproduction.92.94.95 Thesedataindicatethat the molecular
activityofFOXP3 inTregandTeffcells isfundamentallydifferent, likely asaconsequence ofother
yet-to-be-defined interactionswith other Treg-specific proteins. One point of controversy that
has arisenfrom these studies iswhether FOXPY Teffcellstransientlyacquiresuppressive activ
ity. Somereports indicatethat FOXP3+ Teffcellstemporarilybecomesuppressive'T" whereas we
and others could not confirmthis finding.92'94.96 It should be noted that it isverydifficultto make
meaningful conclusions from in vitro suppression assays performed with activatedTeffcellsas
they are not only susceptible to activation-induced-cell death but also havefundamentallydif
ferent kineticsof proliferation.Thus, it ispossible that "suppression" of thymidineincorporation
could be due to either induction of celldeath or that the peak of proliferationwasmissed, aswe
previously showed in comparisons ofT-cells activatedby immature or mature dendritic cells,99
rather than true suppression. Nevertheless, further investigation into the role ofFOXP3 in Teff
cellsis clearly warranted.

Molecular and Cellular Biology ofIPEX
The main featuresofIPEX areentheroparhy,characterizedbyrefractorydiarrhoea, multiple

endocrine organs autoimmunity, such as Type I insulin-dependent diabetes and thyroiditis,
hyper IgE and eczema (www.ipexconsortium.org)y·I2.I00.I02 The onset of the disease is often
in early infancy and the coursecan be rapidly lethal. The diseaseis rare, but retrospectivedata
on clinical cases of earlyautoimmune enteritis associatedwith Type I diabetes or of neonatal
diabetes ofunknown origin suggests that the actual frequency of the diseasemaybe underesti
mated.lo2Inaddition to supportive care including parenteral nutrition, blood transfusionsand
treatment of diabetes, immunosuppressive drugs, such as high-dose steroids, cyclosporin A,
racrolimus,methotrexate, infliximab and rituximab,arecommonlyusedto treat IPEX parlenrs.'?'
Unfortunately, immunosuppressionis usuallyonly partially effective and the dose is limited by
infectious complications and toxicity. More recently, sirolimus [rapamycin) has been used to
treat IPEX patientsI03.104 since it can specifically suppressTeffcellsand spare, or evenpromote,
Tregcellexpansion.I05.1M

Currently, the onlycurativetreatment for IPEX patients isbone marrowtransplantation,102.107
but this approachis limited bytoxicityand availability ofHLA-compatible donors.Thus,weare
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also exploringwhether a gene-therapybased approach to correct genetic defects in FOXP3 in
T-cellswould be a novel treatment option. In healthy females who are heterozygous for different
types of FOXP3 mutations, we found that their peripheral blood mononuclear cellsand CD4+
naive, effector and memory T-cells have a random pattern of X-chromosome inactivation (Di
Nunzio et al, submitted). In contrast, circulatingTregcellsin thesewomen exclusively express the
wildtypeallele ofFOXP3,suggestingeither that wildtypeFOXP3 isnecessary for the development
of Tregcells, or that in vivoit gives a selective advantagefor the normal homeostasisofTreg cells.
The latter possibilitywouldbe in linewith the notion that FOXP3 isrequired for the "competitive
fitness" ofTreg cells." The fact that Tregcells expressing wildtype FOXP3 can maintain periph
eral tolerance in subjectswhose other haematopoietic cellsare mosaicsof wildtype and mutant
FOXP3 supports the rationale for gene or cellular-based therapeutic approachesto restoreTreg
cellfunction in IPEX patients.

To date, more than 30 different types of FOXP3 mutations have been described, including
mis-sense mutations,splicesitealterationsand deletions.101 Importantly, the typeof mutation does
not necessarily correlatewith clinicalmanifestations. We recentlystudied 14 unrelated affected
malesto investigate whether FOXP3 mutationsand changesin protein expression correlatedwith
molecularand clinicaldata.Notably,the onlyknown mutationsthat completelypreventtranscrip
tion and expression of FOXP3 protein are those that occur in the ATG start codon and these
IPEX patientshaveverysevere disease.102Allpatients and particularlythosecarryingmutations in
knownfunctionaldomainsofFOXP3 or mutationsthat alterprotein expression, haveenteropathy,
generallyassociated with endocrinopathyand eczema. Similargenotypes, however,do not always
result in similardisease presentation and severity. Thesedata indicate that beyond FOXP3, other
geneticand environmental factorscontribute to the development ofIPEX.102

In order to understand how FOXP3 regulatesautoimmunity in humans,we alsoinvestigated
whether IPEX patients havenumericalor functional defectsin Tregcells. Wefound that depend
ingon the type of mutation, surprisinglymanyIPEX patientshavenormal numbersof circulating
FOXPY T-cells.102.108 Moreover, only Tregcells from patients with mutations in the ATG start
codon, which completelyabrogatesexpression ofFOXP3, completelylacksuppressive activityin
vitro.l'" In contrast,patientswho havemutations in the FKH domain ofFOXP3 havemoresubtle
changes in Tregcellfunction that dependon thestrengthofTCRactivation andwhetherthe targets
of suppressionareallogeneic or autologous.Thusnormal DNA-binding activityofFOXP3 isnot
essentialfor Tregdevelopment, and moreover, IPEX is not simplya result of a global defect in
Tregcells. Studiesare currentlyon-goingto better definehow different typesof mutations affect
Tregcelldevelopmentat both the cellularand molecular level.

Another surprising finding from our studies on IPEX patients is that their conventional
CD4+CD2S- T-cells display a defect in production of IL-2 and IFN-y, suggesting that IPEX
could be due not only to impaired Treg cell function but also to a parallel defect in Teff cell
function.!" These data are in direct contrast to the finding that in FOXP3-deficient mice Teff
cells are hyper-activated and produce increasedlevels of pro-inflammatorycyrokines.ltIhey do,
however, correlatewith the fact that in humans FOXP3 is alsoexpressedtransientlyin activated
T-cells,92-97 suggesting that there is a functional role for FOXP3 outside ofTreg cells that has yet
to be defined.

Isoforms ofFOXP3 in Humans
In humans, T-cellsco-express two isoformsofFOXP3: FOXP3a is the full-length transcript

that isexclusively expressed in mice,whereasFOXP3b isa splicevariant that lacksexon2.86,1 09 We
investigated whether FOXP3a and b differ in their ability to driveTregdevelopmentand found
that although FOXP3b suppresses transcription of a luciferase reporter under control of the IL-2
promoter, ectopic expression of FOXP3b in T-cellsis lesseffective than FOXP3a at suppressing
IL-2.86In contrast,Smithet al reported that FOXP3b isequallyeffective asFOXP3aat suppressing
IL-2 producrion.'!" Functional differences between FOXP3a and b haverecentlybeen attributed
to differentialinteractions between another transcription factor involvedin T-celldevelopment:
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retinoic acid-related orphan receptor (ROR)-a. Specifically, FOXP3 and ROR-a interact viaan
LxxLLmotif in exon 2 of FOXP3, resultingin inhibition of ROR-a-mediated transcriptional
activation. I I I Inaddition,it hasbeenreportedthat whileFOXP3aisdistributedboth in the nucleus
and cytoplasm,FOXP3b isprimarilylocatedin the nucleus, possibly due to the lackofalysine-rich
regionencoding a typicalnuclearexport signalpresent in exon2.19

Another spliceform ofFOXP3 that lacksboth exon2 and exon7, which containspart of the
leucinezipper domain, has alsobeen identifiedand is referred to as FOXP3 112117Yo Recently,
preferentialexpression ofFOXP3b and 112117 wasobservedin asubgroupofpatientswith Sezary
syndrome(SS), aformofcutaneousT-celllymphoma(CTCL) characterized bylymphocytes with
atypicalcerebriformnuclei(Sezarycells) in the skin,lymphnodesand blood.!" Interestingly, both
the FOXP3b and 112117 isoforms aredefective at repressingan NFKB-driven luciferase reporter.l'!
Although CTCL celllinesfromSSpatientsweresuppressive, this functionwasmediatedbyIL-l 0
and independent of FOXP3. Thesedata suggestthat the alternative spliceformsofFOXP3 may
mediate malignantTregcelldifferentiationbut not their suppressive action.

FOXP3 Protein Interactions

Homo-Oligomerization
Increasingevidence indicatesthat protein-protein interactionsare a keyfor the normal func

tion ofFOXP3. For example, FOXP3 forms homotetramers and homooligomers," and one of
the mutations that causes IPEX isadeletionofaa251 in the leucinezipperdomain that abrogates
homotetramerization and association with FOXPl,24 This mutant is defective at suppressing
transcription and cannot bind to the NFAT/forkhead site of the IL-2 promoter, suggesting that
homo- or herero-associations are important for the ability of FOXP3 to act as a transcriptional
regulator.21.24Indeed,knockdownofFOXP 1in FOXP3-expressingJurkat T-cells partiallyinhibits
FOXP3-mediatedrepression ofIL-2 productlon." Furthermore,ahomologousdeletionofaa250
in mouseFoxp3decreases its transcriptionalrepressoractivityand whenexpressed in Tregcellsin
terferes with their abilityto suppress inflammatoryboweldisease." Notably,mousecellsexpressing
Foxp3 11250 retaintheir abilityto suppress IFN-yintrinsicallyand fromother CD4+CD25-T-cells,
but not from fullydifferentiatedThl cells." Thus,although leucinezipper-mediatedinteractions
are necessary for manyof the functions of FOXP3, some aspectsof its activityare independent
from this domain.

Interactions with NFAT
As its name suggests, the nuclear factor of activated T-cells (NFAT) transcription factor is

fundamental for the transcriptionof activation-associated genesin T-cells.l 13 Interestingly, many
of the genesregulatedby NFAT are also regulatedby FOXP3, includingIL-2, IL-4, CD25 and
CTLA-4.15,26,114 Recently, it wasfound that FOXP3 and NFAT form a cooperative complexthat
regulates NFAT-mediatedtranscriptionofpromoterswith NFAT:API bindingsitessuchasIL-2,
CD25 and CTLA-4.15.115A mutant form ofFoxp3 that isunableto interact with NFAT isdefec
tive at inhibiting IL-2 and upregulatingCTLA-4 and CD25, and moreover, when ectopically
expressed in T-cells, is less able to suppress autoimmunity in vivo." Since FOXP3 occupies the
AP1bindingsiteof the NFAT:AP1consensus, it hasbeensuggested that NFATmaypreferentially
bind to FOXP3 in Tregcellsand API in Teffcells. In line with this hypothesis, a constitutively
activeformofNFAT whichcannot bind to AP1inducesT-cellanergy!"and cooperates effectively
with FOXP3.15

Interactions with API
FOXP3 also directly interacts with API, which is a heterodimer of C-FOS and C-JUN.

Forced expression of FOXP3 blocks the ability of C-JUN to bind to the AP1 promoter and
inhibits C-JUN-drivenAP1 transcriptionalactivityin cotransfecced HEK 293 cells or activated
Tregcells.!'? The amino terminal region of FOXP3, but not the forkhead domain, is sufficient
for association with c-junand suppression of API transcription activiry!" Interestingly, ectopic
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expression of the amino terminal region of FOXP3 alone is sufficient to promote the in vitro
anergic characteristic ofTreg cells but not to confer suppressive capacity,"? indicating that these
two biological events are molecularly distinct. Phosphorylation ofC -]UN by]NK is required for
AP I transcriptional activityl1S.1l9 and evidence that pharmacological inhibition of]NK interferes
with the association between FOXP3 and C-]UN indicates that phosphorylation of C-]UN is
also essential for this interaction.I 17

Interactions with NFKB
FOXP3 has also been reponed to associate with NFKB in nonimmune cells and inhibit

NFKB-mediated transcription,115.120 partly via inhibiting translocation ofNFKB to the nucleus.P"
Normally, in the absence ofT-cell activation, nuclear translocation ofNFKB is inhibited by IKB.
Expression ofFOXP3 however, increases the stability OfIKB, thereby reducing NFKB translocation
and the activity ofNFKB-responsive genes.!" It has yet to be shown whether FOXP3 interacts
with NFKB in immune cells and thus whether direct interaction between these two proteins is
important for normal Treg cell function remains unclear.

Interactions with Runxl
FOXP3 also binds to the runt-related transcription factors Runxl, Runx2 and Runx3. Most

investigations are focussed on Runxl since it isexpressed in Treg and Teff cellsand regulates expres
sion from the IL-2 and IFN-y promorers.!" Indeed, FOXP3 suppresses Runxl-stimulated IL-2
production in Teff and Treg cells.!" The Runxl-binding domain ofFOXP3 is located within aa
278-336, a region between the leucine zipper and FKH domain. A mutant form ofFOXP3 un
able to bind to Runx I fails to suppress IL-2 production, demonstrating that interaction is critical
for this function.!" The importance of Runxl to Treg cell function is further illustrated by the
fact that mouse CD4+ T-cells transduced with a mutant FOXP3 that cannot bind to Runxl are
less suppressive than cells transduced with wild type FOXP3. Moreover knockdown ofRunxl in
human Treg cells attenuates their suppressive capacity!" Recent data indicate that interactions
between Runxl and Foxp3 are also necessary for Foxp3-mediated inhibition ofIL-17-prod ucing
T-cells. 122 Of note, one of the known point mutations of FOXP3 that causes IPEX occurs in
the Runxl-binding region ofFOXP3 and causes a late-onset, mild and spontaneously remitting
disease.lOSFurther investigation will be required to define ifaltered interactions between FOXP3
and Runxl may underlie autoimmunity in this patient.

Interaction with ROR-a
ROR-a was first shown to interact with the amino terminal region ofFOXP3 in a yeast-two

hybrid screen and the interaction was confirmed in coimrnunoprecipitation studies.' !' FOXP3
suppresses ROR-a·mediated transcription,but unlike repression ofNFAT-mediated transcription,
this function does not depend on the FKH domain, but rather on a region in exon 2, as discussed
above. Recently the association between Foxp3 and ROR-a was also found to occur in mouse
cells.123 Since ROR-a has a newly recognized role in the development ofThl7 cells, it will be of
interest to investigate how FOXP3 may affect this process.

Interaction with ROR-yt
Mer finding that TGF-~-inducedFoxp3 expression represses expression of ROR-yt-driven

IL-17 production, it was of interest to investigate whether ROR-yt and FOXP3 interact.
Indeed, the two proteins co-immunoprecipitate in transfected 293T cells via a mechanism that
is DNA-independent.124 Notably, cotransduction of CD4+ T-cells with ROR-yt and FOXP3
suppresses IL-17 production, but there are conflicting data on the domains ofFOXP3 required
for this effect. Zhou et al found that a FKH deletion mutant ofFOXP3 and a form containing a
point mutation (R397W) in the FKH domain from an IPEX patient, lost their ability to suppress
IL-17.124 On the other hand, Yang et al found that mutant forms of FOXP3 that either lacked
the FKH domain or had a mutant leucine zipper retained their ability suppress IL-17 and Thl7
cell differenriarion.F' Notably, the interaction involves a region encoded by exon 2.124 Further
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studies will be required to fully elucidate the molecular interactions between these two proteins.
Interestingly, the inhibitory effects of FOXP3 on ROR-yt-induced IL-17 production can be
reversed by IL-6 or IL-21, suggesting that these cytokines may cause inhibitory or stimulatory
posttranslational modifications ofFOXP3 or ROR-yt, respectively.I24

TheFOXP3-TIP60-HDAC7 Complex
FOXP3 interacts with the histone acetyltransferase (HAT) protein HIV-I TAT-interactive

protein, 60kDa (TIP60) via an amino terminal domain (106-190) ofFOXP3.22 Since this region
ofFOXP3 is also required for transcription repression," Li et al investigated whether TIP60 is
required for this function. Indeed, when expression ofTIP60 is knocked down FOXP3-mediated
repression of reporter activity is reduced." Moreover, a HAT-deficient form ofTIP60 reduces
the ability of FOPX3 to repress transcription, suggesting that the HAT activity of TIP60 is
important for the repressive activity of FOXP3,22 One hypothesis is that the HAT activity of
TIP60 may be directly involved in acetylation of FOXP3. Since acetylated FOXP3 binds to
chromatin preferentially.!" TIP60 may function to enhance the ability of FOXP3 to bind to
promoters. Since TIP60 is known to recruit Class II histone deacetylase 7 (HDAC7) in other
transcriptional repressor complexes, the possibility that FOXP3 also interacts with this protein
was investigated. Indeed, co-immmunprecipitation studies demonstrated that FOXP3 associ
ates with HDAC7 in human Treg cells. As for TIP60, the HDAC7-association domain is in
the amino terminal 1-190 aa.22 Thus, the amino terminal 106-190 aas are key for the ability of
FOXP3 to repress transcription via a mechanism that depends on a tri-molecular complex of
FOXP3, TIP60 and HDAC7.

Interaction with HDAC9
Beyond associations with HDAC7, depending on the state ofactivation, FOXP3 also interacts

with HDAC9 in Treg cells. In resting Treg cells HDAC9 is primarily located in the nucleus, but
upon stimulation it is transported out ofthe nucleus, suggesting that it only associateswith FOXP3
in the resting state and that release of this interaction is required for suppression.!" Further evi
dence for the role ofHDAC9 as a negative regulator ofFOXP3 function comes from analysis of
Hdac9+ mice. These mice not only have a 50% increase in Treg cells in lymphoid tissues, but their
Treg cells are also three to fourfold more suppressive than control cells.l 26 Inhibiting the catalytic
activity ofHDAC9 has a similar effect on Treg cells as the absence of the protein: treatment of
mice with the HDAC-inhibitor trichostarin A (TSA) increases Foxp3 expression in Treg cells
and Treg cells from TSA treated mice are more suppressive in vitro and in vivo than the cells from
control-treated mice. 126 HDAC9 may inhibit Treg cell activity by deacetylating FOXP3, thereby
decreasing its ability to bind DNA. Consistent with this notion, treatment with TSA increases
the amount ofacetylated FOXP3 in Treg cells and binding to the IL-2 promorer.P"

Post-Translational Modifications ofFOXP3
FOXP3 is subject to posttranslational acetylation oflysines and phosphorylation oftyrosines,

serines and threonines. The significance ofphosphorylation has yet to be reported, thus here we
will discuss acetylation. Focussing on lysine residues conserved between mouse and humans in
the FKH domain, Toa et al found that mutation ofLys383 and Lys393 significantly reduced the
capacity of FOXP3 to suppress IL-2 and confer suppressive capacity to naive CD4+ T-cells .l26

Thus , acetylation ofLys383 and Lys393 is important for enhancing the association ofFOXP3 with
target genes. Notably, the possibility ofpharmacological inhibition ofHDACs to enhance FOXP3
acerylation and improve Treg function has important clinical implications.Work in animal models
has shown that TSA-treated mice have increased numbers ofFoxp3+Treg cells in lymphoid tissues
and reduced disease severity in the mouse model of colitis induced by dextran sulphate sodium.
Furthermore, mice transplanted with MHCvmismarched cardiac and islet grafts and treated with
TSA have a small survival advantage that is greatly enhanced by the combined treatment ofTSA
and rapamycin to inhibit the proliferation ofalloreactive T-cells.l 26
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Epigenetic Regulation ofFOXP3 and Its Target Genes

Epigenetics ofGenes Regulated by FOXP3
One wayto promote or repress transcriptionis to modifychromatinstructure at targetgenes.

SinceFOXP3 associates with histone-modifyingproteins such as T1P60 and HDACs 7 and 9,
this maybe fundamental to its mechanisms of action. Usually, acetylationof histones on lysine,
particularlyon histone 3, isassociated with an open chromatin structure conducive to genetran
scription,while methylationof histone 3 at lysine9 marks closedchromatin and repressed gene
transcription.!" Interestingly, bindingofFOXP3 to promoters it represses (e.g.,1L-2and 1FN-y)
resultsin histone 3 deacetylation at thesepromoters. In contrast, for promoters it transactivates
(e.g., GITR, CD25 and CTLA-4), Foxp3binding is correlatedwith increasedhistone acreyla
tion.!" Furtherevidence that FOXP3anditsassociated proteinsmodifychromatinstructurecomes
from studieson the effectofFOXP3 on the 1L-4promoter and a cis-regulatoryelementwhen it
is over-expressed in Th2 cells. The normallyhigh levels of acetylated histone 3 in the regulatory
elementsof the 1L-4promoter in Th2 cells are significantly reduced in the presenceof FOXP3.
Moreover, levels of repressive methylatedhistone 3 at lysine 9 arelowin Th2 cells expressing 1L-4,
but enhanced when FOXP3 is overexpressed.!" As this is an emergingarea of interest, further
research willbe required to better definehow FOXP3 directlyalterschromatin structure.

Epigenetic Regulation ofFOXP3 Expression
In general, expression ofFOXP3 is induced byshort and weakTCR stimulationand weand

others have shown that pharmacological treatment with inhibitors of the phosphatldylinosirol
3' kinase(PI3K) pathwayfavours FOXP3 expression.IOS,129.13l Activationof STAT5 downstream
ofIL-2 is alsokeyfor induction and maintenanceof FOXP3 in both nTreg and iTreg cells.132,m
Moreover, asdiscussed above,TGF-13 candirectlystimulatedenovoexpression ofFOXP3 and con
tribute to the developmentoff'Iregcells." Ultimately, thesefactorsallcontribute to the epigenetic
changes that determine the stabilityand magnitude of FOXP3 expression. Sincestableand high
levels ofexpression arenecessary for Treglineage-commitment and function,87,89,9O understanding
how epigeneticchanges contribute to FOXP3 expression isfundamental for the developmentof
cell-therapy basedapplications.

Currently, three main regionsof FOXP3, which are highly conservedin mice and humans,
are known to be subject to epigeneticmodifications that impact transcriptional activityof the
locus: the promoter, the so-calledTGF-13-sensorregion, and the Treg-cell-specific demethylated
region(TSDR).134Bisulphice sequencingto analyze the methylationstateofCpG motifsin these
regionsrevealed that they werehighlymethylated(indicativeof inactivechromatin) in Teffcells
but almostcompletelydernethylatedin Tregcells.83,13sFurther examinationof the histone modi
fications associated with these regionsbychromatin irnmunoprecipitationdemonstrated that in
Tregcellsthese regionsalsohaveincreased acetylationof histone 3 and trimethylationof lysine 4
on histone 3 compared to Teffcells, indicatingan open chromatin structure for Tregcells and a
condensedstructure for Teffcells. l 36

Thereisagreatdealofinterest in determininghowthe epigenetic changes in thesethree regions
act as on/off switchesand whether they also determine the stabilityand magnitude ofFOXP3
expression. Forexample, evidence that the degreeof demethylationin the TSDR isless in thymic
than peripheralTregscells, suggests that expressionofFOXP3 maybeseablized in the periphery,"
Moreover, when the effects ofTGF-13 on epigeneticchangesin theselociwereinvestigated, it was
found that although there is a certain amount of demethylationof the locus,it isnot to the same
extentand is transient in comparisonto exvivoTregcells.83 Thefact that TGF-13 alonemaynot be
sufficient to irreversiblyopen the FOXP3locus could underliethevariable reportson the capacity
ofTGF-13to induce suppressive Tregcells.84Epigeneticanalysis also provided further evidence
that the expression ofFOXP3 upon TCR activationofTeff cells is transienr.!" Importantly, the
stability of FOXP3 expression can be manipulated pharmacologically using compounds that
alter epigeneticchanges. For example, blockingmaintenance DNA methylation induces stable
activation-dependent FOXP3 expression inTeffcells and alsoconfersstabilityto TGF-13-mediated
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induction of Foxp3 expression.l" Thus, the development of successful cell therapies based on
generatingiTregcells in vitro mayrelyon the useof strategies to ensurethe epigenetic changes in
the FOXP310cusarestable.

Role ofFOXP3 in Tregversus 1hI7 Cell Development
When naiveCD4+T-cellsencounter their antigen they differentiate into subsetsdefined by

differences in cytokine production and effectorfunction. For example, Thl cells developin the
presence ofIL-I2 and secrete IFN-y thereby promoting cellular immunity and elimination of
intracellularpathogens. Bycontrast, IL-6, IL-I13 and TGF-13 promote the developmentofThI7
cellswhich contribute to host defenceagainst pathogens that require robust tissue inflamma
tion to be cleared.P? Pathologically, both Thl and ThI7 cells can also mediate autoimmunity.
The fact that TGF-13 seems to be required, either directly or indirectly, for the developmentof
pro-inflammatoryTh17cells isat oddswith theparallelrolefor thiscytokinein thedevelopment of
anti-inflammatory Tregcells. Thishasleadto agreatdealofinterestindefiningthe molecularbasis
for the developmental relationshipbetweenTh17cellsand Tregcells, sincetherapeuticstrategies
to reduceautoimmunity must not be confounded byparallelpromotion ofTh17 cells.

Asdiscussed above, ROR-a, ROR-yt and Runxl arecriticaltranscriptionfactorsin ThI7 de
velopmentand function and thereismuch interestindefininghowtheir interactionswith FOXP3
definethe Tregversus ThI7 celllineage.122,139.140 It is thought that in the presenceofTGF-13 alone,
expression of FOXP3 is induced and that it interactswith Runxl and ROR-yt to inhibit expres
sionofIL-I7 ,eitherdirectlyviaa Foxp3/RunxI complexor indirectlybypreventingRunxl from
enhancingROR-y r-mediatedIL-I7 transcriprion.!" Conversely, in Th17polarizingconditions,
signals from TGF-13 and IL-6 are thought to combine to decrease FOXP3, allowingRunxl to
preferentially bind to ROR-yt and enhance IL-I7 expression.

In addition to direct interactions with ROR-ytand Runxl, interactions betweenFoxp3 and the
TIP60/HDAC7 complex alsocontributeto repression ofROR-yt-mediatedtranscription andthus
IL-I7 production. Analysis of a mutant formofFoxp3 (LUOS-I90) that cannot bind to TIP60 or
HDAC7 revealed that itsabilityto suppress ROR-a or ROR-ytmediated-transcription wasattenu
ated22Mutationofboth theROR-a-interaetingdomain (theLxxLL motif) andtheTIP60/HDAC7
bindingdomaincompletelyabolished theabilityofFoxp3to suppress ROR-a andROR-yt-mediated
reporter activity. Thus Foxp3 cooperates with both TIP60/HDAC7 and the ROR transcription
factors to repress ROR-mediated transcription and ThI7 celldifferentiation.

Because FOXP3 inhibitsThI7 differentiation, it wasof interest to determineifin the absence
ofFOXP3 TG F-13 issufficient to induceTh17cells.However, whenCD4+T-cells fromscurfy mice
are stimulated with TGF-13 they do not produce IL-I7, indicatingthat the role ofIL-6 in ThI7
celldifferentiationisnot simplyto inhibit Foxp3.123Moreover,whenFoxp3'T-cells arestimulated
with TGF-13 and IL-6, theyhavereducedIL-I7 andenhancedIFN-yproductioncomparedto wild
type cells. Further investigation revealed that although FOXP3 isnot directlyrequired for Th17
celldevelopment,it isindirectlyrequiredviaitsabilityto suppress Th1celldevelopment.123 These
data lend further support to the paradox that FOXP3 has a dual role in immune homeostasis:
beyond defining the Treglineageit can alsopotentially contribute to the developmentofThI7
cells. SinceCD4+T-cellswhich co-express FOXP3 and ROR-rt aresuppressive.!" Tregdevelop
ment maybe dominant in this process.

A further complexityin the relationshipbetween FOXP3, Tregand ThI7 cells is that several
groups haverecentlyshown that Tregcells can be reprogrammedinto ThI7 cells.123·142.144 When
Treg cells are activated in the presence of pro-inflammatory cyrokines such as IL-6 or IL-I13,
expression of FOXP3 is downregulatedand there is a parallelincrease in IL-I7 expression and
lossof suppressive capacity.123This conversion is blocked by inhibition of histone deacerylases,
suggesting that the differentiationofTreg cells into IL-I7 producingcells dependson epigenetic
modifications.P'Evidence that this conversion canalsooccur in vivocomesfromstudiesin which
CD4S.2+ GFP+ Tregcellsfrom Foxp3 reporter mice were mixed with congenic CD4S.l+Teff
cells and transferredinto RagI-I- recipients. When experimentalautoimmuneencephalomyelitis
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isinduced in thesemice, the CD45.2+ cells, whichwereoriginally Tregcells, downregulateFoxp3
and start to secreteIL-17.123Thus,there appearsto be a considerable amount of plasticityin the
Tregcelllineageand further research into how expression ofFOXP3 contributes to this process
willbe keyto understandinghow this processmaygo awryand lead to autoimmunity.

Conclusion
Studies of how the structure of FOXP3 relates to its function have provided significant

insight into how this FKH transcription factor regulates the developmentand function ofTreg
cells. Originally it was thought that the DNA-binding FKH was the major effector region of
the protein, but it is now clearthat manyof the criticalactivities ofFOXP3 are mediated not by
direct DNA-binding, but rather by interactionswith proteins such as histone acetyltransferases
and deacetylases and transcription factorssuch as NFAT, ROR-a, ROR-yt and Runxl. Manyof
these interactionsdirectlyimpact the balancebetween the developmentof the immunosuppres
sive Tregprogram and the pro-inflammatoryTh17program. It willbe of considerable interest to
define the molecularbasisfor how mutations in FOXP3 causeIPEX and tip immune responses
towardspathologicalinflammation.

A majoroutstandingquestion iswhat isthe roleofFOXP3 in human Teffcells? Evidence that
Teffcellsfrom IPEX patients havereduced cytokine production suggests that FOXP3's role in
cytokine production in conventionalT-cells maybe the opposite from that in Tregcells.108 The
findingthat in activatedTeffcells essentially allofthe cyrokine-producing cells arealsoFOXP3+ 94

lendsindirect support for this hypothesis. Another possibilityisthat in IPEX patients the mutant
formsofFOXP3 could act asdominant negatives and interferewith the normal function of tran
scriptionfactors, suchasNFATandAP-1, which regulatecytokineproduction.Ifthis istrue, then
the normal function ofFOXP3 in Teffcellscould be to act aspart of a negative feedback pathway
that controlseffectorfunction.Sinceto date there isnoevidence forasimilarroleofFOXP3 inTeff
cells in mice, studiesto investigate thesevarious possibilities mustbeperformedwith human cells.
An additionalconsiderationin humanT-cells isthe co-expression of two isoforms ofFOXP3 .one
of which cannot interact with ROR-a or ROR-yt. AsTreg-based therapiesfor autoimmunityare
translated to the clinic, studies to definehow expression ofFOXP3b maylead to human-specific
moleculareventsthat impact Th17 celldevelopmentwillbe key.

Mousemodelshaveillustrated the powerofTreg-cellbased therapiesto preventor evencure
autoimmunity and to restore antitumour immunity. It is clear that the further developmentof
therapeuticstrategies to performsimilarTreg-based manipulationsin humanswillrequirea more
detailedunderstandingofwhat regulatesstableand highexpression ofFOXP3 and the molecular
basisfor its function.Therecentfindingthat pharmacological-manipulations ofepigenetic changes
can stabilizethe Treglineagerepresents a major advance in this direction.134 Intenseresearch into
the underlyingmechanisms for the newlyrecognizedplasticityof the Treglineageand the biologi
cal relevance of their ability to turn into Th17 cellswill shed light onto the potential dangers of
Treg-based celltherapiesand hopefullyalsopoint to strategies to ensurethat effective tolerogenic
therapiesbecomeavailable to humans in the future.
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CHAPTER 4

The Biology ofFoxP3:
A Key Player in Immune Suppression
during Infections, Autoimmune Diseases and Cancer
Frances Mercer and Derya Unutmaz*

Abstract

TheTranscription factorFoxP3 belongs to theforkhead/winged-helix family oftranscriptional
regulators and shares general structural features with other FoxPfamily members. FoxP3
functions asa masterof transcription for the development of regulatory T-cells (Tregcells)

both inhumansandin mice.NaturalgeneticmutationsofFoxP3that disruptitsfunctionin humans
result in an autoimmune syndrome called Immune Polyendocrinoparhy, Enteropathy, X-linked
(IPEX) and in mice, its deletioncauses the Scurfyphenotype,with similarpathology.The finding
that FoxP3 isrequiredfor the development and functionofTregs hasledto anexplosion of research
in determiningits regulation and function in the immune system. Understanding the biological
propertiesofFoxP3has awiderangeof implications for immunetolerance, autoimmune disorders,
inflammation and immuneresponse to infectious diseases and cancer.

Introduction
The Immune system has evolved sophisticated mechanisms to mount effective protective

immune responses and to limit damageto the host by tightly regulatingits potentially harmful
side effects. A specialized cell type within the immune system called regulatoryT-cells (Tregs)
is instrumental in preventing immune responses against self-antigens and dampening immune
activationto nonselfantigens.TheseregulatoryT-cells were initiallydefinedby high expression
of the IL-2 receptor alpha chain (CD25) and werefound to be part of the CD4+helper T-cell
subset. Tregcells were then shown to expressand require the transcription factor FoxP3, which
alsobecamea definingfactor for their biology.

The Discovery ofFoxP3
The forkhead family transcription factor Foxp3wasshown to be critically important for the

developmentand function of regulatoryT-cells.1•
2 FoxP3wasfirst identifiedasthe culprit mutant

gene responsible for the spontaneous scurfymutation in mice and the human syndrome called
Immunedysregulation Polyendocrinopathy Enteropathy, X-linked, or IPEXY Both of these
geneticdefectsresultedin death of animals and humans.

In2003 it wasdiscovered that FoxP3 isexpressed in 5-10%ofperipheralCD4+T-cells in mice
and 1-5% in humans.FoxP3 expression wasshownto besufficient formurineTregcelldevelopment
and function as revealed bystudies usingectopic expression ofFoxP3 in otherwiseconventional
Tvcells.' Inhumans,ectopicoverexpression ofFoxP3in naive T-cells wasalsoshownto differentiate
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these cellsinto Tregmimicsin vitro,5.6 although the roleofFoxP3 turned out to be more complex
in the human system,as discussedbelow.

Tregs are functional only when activated though their T-cell receptors (TCR) and are de
rived from the thymus, where they are selected based on their positive affinityfor selfantigens?
Thus, Tregscan recognizeselfantigens to suppressself-reactive T-cellsonce they migrate to the
periphery. Although Tregsrequire antigenic stimulation for their suppressive function, they are
hyporesponsiveto in vitro TCR activation.8•9Upon stimulation, Treg cellsfail to efficiently flux
calcium, displayimpaired proliferativecapacityand produce reduced levels ofproinflammatory
cytokines, such as IL-2 and IFNy, when compared to effectorT-cells?·9.lo

How Tregs exert their suppressive function is not fully characterized; however a number of
mechanisms have been identified or proposed." Treg cellsconstitutively express severalsurface
markers, including CD25 , GITR and CTLA-4? However these molecules are also present on
activatedconventionalT-cells.ThediscoveryofFoxP3 wasmonumental in this regard,asit served
to define Tregcellsboth genetically and phenotypically through protein expression.

Functional and Structural Features ofFoxP3
Inhumans,FoxP3mapsto theXp11.23-Xq13.310cus.4FoxP3has 11 exons,whichencodea431

amino acid protein." Murine FoxP3is 86% similar to the human protein." FoxP3sharesa struc
tural scaffoldwith FoxP1,FoxP2and FoxP4. Ithas the greatestpercent homologywith FoxP1.13•14

Similarto other membersofthe family, FoxP3has a forkhead domain at the Cvtermlnus,which is
responsiblefor DNA binding, a leucinezipper likedomain, which mediates oligomerizationand
a zinc fingermotifwith unknown funcdon.P" At the Ncerminus, FoxP3contains a proline rich
region,whileother FoxPproteins haveaglutamaterichpolyQregion.P'Ihe N-terrninusisthought
to be the repressordomain." Most of the IPEX mutations map to the Forkheaddomain ofFoxP3.
Theproline rich repressordomain and the leucinezipper domain arealsomutated in severalIPEX
patients, albeit at a lower frequency," Missensemutations within the Forkhead, leucine zipper
and repressordomainsalsocauseIPEX sydnrome,15.16 suggesting the necessityofallthree domains
for proper function ofthis transcription factor. Other Foxp3mutations in IPEX patients include
C-terminal elongation due to lossofa stop codon and a point mutation in the polyadenylation
site, which affectsmRNA stability.16The latter mutation in the polyA site is interesting because
it was identified in a multlgenerational family in which some affected maleslived well into the
first decade and one even into the third decade oflife,12 indicating an intermediate IPEX sever
ity due to low levels of mRNA translation. Also, the deaths associatedwith these 'intermediate
IPEX patients' occurred after infection or immunization" highlighting the importance ofintact
Treg function during an immune response. A similar phenotype is seen in 'HUG' mice, which
haveattenuated expressionofFoxP3. Thesemice displayuncontrolled lymphocyteproliferation,
but the diseaseseverityis lowerin HUG mice compared to scurfymice," which completelylack
FoxP3expressiondue to a frameshiftmutation.'!

ForkheadDomain
The FoxPfamilyof proteins is unique in that the Forkheaddomain liesat the C-terminal end,

whereas the other Fox family members have an N-terminal Forkhead domain .P The Forkhead
domains of the 4 FoxPfamilymembers share a >90% similarity!" In FoxP3,this domain extends
from exon 9 to exon 11.16TheForkheaddomain contains aputativenuclear localizationsequence
(NLS) at the C terminal end." It is also responsiblefor binding the DNA targets ofFoxP3 and
for binding Nuclear Factor ofActivatedT-cells (NFAT).19.20

Cofractionation experiments in FoxP3 transfected and activated T-cells found that FoxP3
associates with both a high molecular weight and a low molecular weight complex. The former
contains chromatin remodeling factors, while the latter is associated with FoxPl and NFATY
Although the interaction with FoxP1has not been characterized, the interaction with NFAT has
been localized to the Forkheaddomain."



The Biology ofFoxP3:A KeyPlayer in Immune Suppression 49

NFAT is a transcription factor activatedby the calciumfluxthat occurswhen all T-cellsare
activated.Togetherwith another protein calledAP-I , the NFATcomplexbinds to promoters of
cellactivationgenes,such as IL-2 and CD25. The FoxP3 Forkheaddomain binds to NFAT, as
wellas the AP-I target DNA sequence.ThusFoxP3effectively blocksAP-I activitybystealingits
bindingpartner and byoccupyingitspositionon the DNA. Usinga ChIP assay, the NFAT-FoxP3
complexwasshownto bind to the promotersofIL-2 , CD25 and CTLA-4.19 Interestingly, acety
lation of FoxP3 in the Forkhead region wasalso shown to enhance FoxP3 binding to the IL-2
promoter," suggesting that the Forkheaddomain can undergoposttranslationalmodification to
modulate its function.

TheForkheaddomainofFoxP3alsohasnumerousDNA bindingsites. Agenomewideanalysis
usingmicroarrayon the nuclearfractionfrom mouseCD4+CD2Y cells and a CHIP assay found
that FoxP3 binds at 1,276 regions throughout the mouse genome." FoxP3 binding sites were
substantiallyenriched within 10 kb of the 5' untranslared regionof genes, correlatingwith the
position of promoter regions, aswould be expectedfrom a transcription factor.The listofFoxP3
binding targetsthat areup or downregulatedin FoxP3+ cells confirmsthat FoxP3 can act asboth
an activator and a repressor.P Histone H3 modifications are common at FoxP3 binding sites,
indicating that chromatin remodelingoccursduring FoxP3activity. This is probablya result of
the abilityof the N-terminal regionofFoxP3 to recruit chromatin-remodeling factors. It wasalso
revealed that FoxP3bound genesweremostlyinvolved in TCR signaling, cellcommunication and
transcriptionalregulation.Theseprofiles support the notion that FoxP3is involved in regulating
TCR mediated signals intracellularly, can promote the expressionof geneswith intercellularef
fector functionsand contributes to geneticprogrammingand celldevelopment."

Leucine Zipper Domain
Leucinezipperand zincfingerdomainsareboth traditionallyknownasprotein-proteininterac

tiondomains, whichhavethepotentialto bindDNA.16Theleucinezipperisknownto be indispens
able for FoxP3function basedon two IPEX patient missense mutations. Although the function
of the zinc fingerdomain ofFoxP3 is not currently established, the leucinezipper is responsible
for oligomerformation. FoxP3 can form homo-oligomersand can alsoform a heterodimerwith
FoxPI. In fractionationexperiments, FoxPI wasfound in the lowmolecularweightcomplexwith
FoxP3and NFAT.13In addition, recombinantFoxP3 raisedin eitherbacterialor mammalian cells,
formshomotetramers.The IPEX E251 mutation ofFoxP3 eluted asa monomer,indicatingthat
compromisingthe oligomerformation could be disrupting protein function."

Forkhead- Leucine Zipper LinkerRegion
The region that bridges the Forkhead and leucine Zipper domains in FoxP3 (aa 278-336)

bindsto the AcuteMyeloid Leukeamia-I(AML-I)/Runt Relatedtranscriptionfactor(RUNX-I)
protein, specifically, in the C-terminal repressor domain.AML-I bindsupstreamofthe IL-2gene,
actingasa promoter enhancer.FoxP3 isshown to block this enhancementand FoxP3mutations
that attenuate binding to AML-l , result in increasedIL-2 production. Furthermore,thesemuta
tions impair the expression ofTreg phenotype markers and some Tregfuncrions."

N-TerminalProline Rich Repressor Domain
Analysis of ChIP and microarrayexperiments showthat FoxP3 directlybinds only 6%of the

genes that it regulates."Thiscouldbe because FoxP3binds to the promotersof genesthat in turn
controlother genes or because DNA bindingisnot theonlymechanism bywhichFoxP3 altersgene
expression. Indeed, DNA binding activityaloneprobablydoesnot account for the indispensable
activityofFoxP3 in regulatoryT-cells, asTregs alsoexpress FoxPl, which has 90%similarityto
FoxP3 in the Forkheaddomain." Inother studies, it wasnoted that the N-terminusof the protein
isalsoimportant in interactionofFoxP3with NFATand its funcrion.P'Ihus it isconceivable that
the N-terminaldomain of FoxP3isa majordistinguishingfactor between the function ofFoxP3
and the other membersof the family."
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The N-terminal proline rich region has crucialfunction in binding to chromatin remodeling
factors that are necessary for FoxP3 transcriptional activity. As mentioned above, fractionation
experiments with FoxP3overexpressing cellsshowedthat FoxP3associates with both a high and
a low molecularweight complex in cells," The high molecularweight complexis composedof
chromatin remodelingfactors." Specifically, it wasfound that TIP60, a histone acetyltransferase,
binds to the N-terminal proline rich region of FoxP3.24 TIP60 acetylates FoxP3in Tregs and a
TIP60 mutant, deficientin the abilityto acetylate (HAT domain mutated) cannot promote tran
scriptionalrepression. Thisinteractionwasthought to be necessary for repression ofFoxP3 target
genesas assessed through IL-2 production, because repression ofIL-2 does not occur in TIP60
knockdown cells," In addition, TIP60 recruits a histone deacetylase calledHDAC7.13 Histone
deacerylases remove acetylgroupsfromhistonetails, whichin turn encourages high-affinitybinding
of histones to DNA. Therefore, HDAC7 could be preventingtranscriptionalaccess, consistent
with a model ofFoxP3 mediated repression of sometarget genes. Indeed, HDAC7 isalsofound
in complexwith FoxP3during coimrnunoprecipitation experiments. Mutating the N terminal
proline richregionabolishes the coimmunoprecipitation ofFoxP3and HDAC7 and abolishes the
transcriptional repressor function of FoxP3.J3 However, it wasalsoshownthat treatingTregcells
with a broad based HDAC inhibitor increasedtheir suppressive function." Thiseffecthowever,
maybe the result of HDAC regulationof the FoxP3 gene itself, as HDAC inhibitor treatment
alsoresultedin increased expression ofFoxP3 in the cells. In addition, FoxP3 binding to the pro
moters of cytokinesIL-2 and IFNy wasshown to deacetylate histone H3, inhibiting chromatin
remodelingand effectively blockingtranscription."

Multiple Isoforms and Subcellular Localization
In contrast to the murineversion, humanFoxP3hastwo isoforms, whicharecalledFoxP3a and

FoxP3b. FoxP3aisfull-lengthprotein and FoxP3bisa splicevariant lackingexon2. Interestingly,
in activated CD4+CD2S+ cells, FoxP3acan be found in both the nucleus and the cytoplasm,
FoxP3bis only found in the nucleus." Exon2 has a nuclearexport signal(NES), thus FoxP3bis
not properlyexported to the cytoplasmafteractivationdue to lackof an NES.14The implications
ofa cytoplasmicexport in human cells isnot clearsincemouseFoxP3appearsto beonlylocalized
to the nucleus,"

Itwasalsoreported that expression of full length FoxP3aresultsin a moreunresponsive T-cell
phenotype as compared to the FoxP3bisoform. Human cells expressing only FoxP3bhave an
intermediate Tregphenotype in terms of curbed proliferative capacityand dampened cytokine
secretion." However, in other reports,both isoforms wereshown to possess a similarcapacityto
induceTregsand to suppress T-cellactivation.6.2S,29The regionencodedbyexon2 isalsothought
to be criticalfor the association of Foxp3 with transcription factors retinoic acid relatedorphan
receptoralpha RORa30 and RORyt,28 which aremaster transcriptionfactorsfor developmentof
a proinflammatoryT-celi subsetcalledTh17.

FoxP3 Regulation and Function

Role ofFoxP3 in DevelopmentandFunction ofTregs
It isnowwell-established that FoxP3isrequiredfor developmentofTregcellsboth in humans

and mice. However, it is not fullyclearwhether FoxP3expression alone is sufficient to program
conventionalT-cells into bona fideTregs, especially in the human system. Ectopicexpression of
FoxP3in CD4+CD2S· non-Tregcells produced a regulatoryphenotype, as these cells exhibited
suppressive activityin vitro and alsoprotected the host micefromautoimmunediseases in several
adoptivetransfermodels.1.2.31 In humans,ectopicoverexpression ofFoxP3in naiveT-cells wasalso
shownto differentiatethesecells into Tregmimicsin vitro.5•6 Howeverin microarray experiments
the geneexpression profilebetweennatural Tregs and FoxP3ectopicallyexpressing cellsin mice
werefound to be differenn" specifically, there aregenesupregulatedin Tregs that are not under
the controlofFoxP3.In experiments utilizingFoxP3knock-out/GFP knock-inmice,it wasfound
that someTregcharacteristics and markergenes arepresentevenin theabsence ofFoxP3.33•

34Taken
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together,theseresultssuggest theremaybe other important factorsrequiredalongwith FoxP3, in
the developmentofTreg lineagecells.

CellExtrinsic Regulation ofFoxP3
ThecytokineTGF~ inducesFoxP3expression in CD4+CD2S·cells,"In mice,TGF~ induced

FoxP3programscellswith Tregcharacteristics and the abilitysuppress T-cellactivation, thesecells
aresometimes referredas iTreg,or inducibleTreg.42 Peripheral, but not thymicTregs werefound
to be reduced in eight to ten dayold TGF~l-l- miceand Tregs deficientin TGF~ ReceptorII
werealsopoorly maintained in the periphery, suggesting TGFWs criticalrole in peripheralTreg
rnaineenance.t-" Human CD4+CD2S-T-cellsupregulateFoxP3 upon activationin the presence
ofTGF~Y However, in human cells, such induction does not confer suppressive funcrion.F"
It is possible that FoxP3 has a second role in human cells, in mediating hyporesponsiveness of
CD4+CD2S- T-cells in vivo." Recently, a moleculecalled GARP was shown to be specifically
expressed on Tregs and can potentiallybe used to differentiate between FoxPY bona fideTregs
and TGF~-induced FoxP3expressing cells."

Thedownstream signalingcascade leading to FoxP3 inductionisnot yetclearly established;how
everseveral keyplayers havebeenidentified. In keepingwith conventional TGF~ signaling, Smad3
hasbeen identifiedasnecessary for FoxP3 inducrion." StatS,whichfunctionsdownstream ofIL-2
signaling, bindsthe FoxP3 promotersimilarly to NFAT,whichisactivated afterTCRtriggering.48

•
49

Thesefindings areconsistentwith the requirementofIL-2 and TCR activation for Tregfunction.
Signaling through the Notch receptor/trancriprionfactorpathwaymayalsobe involved in FoxP3
expression, aspharmacological inhibition of Notch1blocksFoxP3 lnducrion." Another signaling
protein important in cellular survival calledAkrhasbeenestablished asa repressor of novelFoxP3
induction, although it cannot reverse already established FoxP3 expression." Phosphoinositide
3-kinase and downstream signaling molecule mTOR can alsoantagonizeFoxP3expression." in
fact, the mTOR inhibitor Rapamycin promotesFoxP3expressionboth in vitroand invivoand has
been usedtherapeutically in IPEX patients.52·54

Itwasrecently reportedthat theVitaminA metaboliteretinoicacid(RA)couldpromoteFoxP3
expression in T-cells.55 RA ispresentin the gut and produced by antigen-presenting cells such as
macrophages,whichhavethe necessary metabolicenzymes.55•56 It ispossiblethat RAmayplayarole
in establishing oral toleranceto ingestedfood and to the vastmicrobiome that inhabits the human
gut.In fact,dietaryvitaminAhasbeenknownforovertwentyyears to protectagainst autoimmunity
in mice.57 It wasalsosuggested that RA enhancesstabilityof FoxP3 inducedbyTGF~.58

Epigenetic andPosttranslationalRegulation ofFoxp3
Asdiscussed in the structural section,FoxP3issubjectto posttranslationalmodification in its

N-terminal repressor domain by TIP60. FoxP3can also be acerylatedin the Forkheaddomain
and optimal Tregrepressorfunction is dependent on this acetylation, as it allows binding to the
IL-2 promorer.P The administration ofHDAC inhibitors therefore positively regulates FoxP3
acriviry,"

Evidence alsoexists that FoxP3 mayregulateitselfthrough positivefeedback. During analysis
of micegenetically modifiedto replace FoxP3with GFP at the Foxl'Slocus(FoxP3-GFP knock-in
mice), FoxP3-GFP+ T-cells downregulated GFP over time, while the majority of the Foxl"/
GFP- cells maintained FoxP3expression.P'" indicating that FoxP3 presencepromotes further
transcriptionat the FoxP310cus. A positivefeedbackloop for FoxP3 expression isalsosupported
bythe findingsthat FoxP3obstructsdevelopmentofother helperT-cellsubsets." Recentresearch
has suggested a role for epigeneticchromatin patterning in this process. Specifically, dernerhyla
tion occurs near the FoxP3 promoter in naturally occurringTregs.59 Methylation of DNA is a
mechanismto limit access to transcriptionalproteins and demethylationwould be predicted to
relieve this restriction. Usingazacytidine, a DNA methyltransferaseinhibitor, FoxP3expression
wasinduced stablyin cellsthat do not physiologically express it, includingconventionalT-cells.60

Furthermore,dernethylarion at the FoxP310cus wasa faithful markerof naturalTregs and neither
transiently FoxP3 expressingcells norTGF~ inducedFoxP3+ cells weredemethylated at thislocus."
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The stableexpression that demethylation at the FoxP3 genelocusconfers mayalsocontribute to a
positive feedback mechanism inwhichFoxP3 promotesitsownsynthesis, thusmaintainingabundant
and sustainedlevels in the cell.

Recentstudieshave confirmed thelinkofchromatinremodeling to the regulation ofFoxP3and
haveprovidedmechanistic insightintocellextrinsic mechanisms in this process. Anenhancerregion
upstreamof the FoxP3 genetogetherwith Smad3and NFATarerequiredforhistoneacetylation at
the enhancer, thusopeningup the regionfor transcription," Asseveral Smads areinvolved inTGF~
signaling, this mayalsohelp to explain the TFG~-mediated induction ofFoxP3 expression." The
T-cellcytokineIL-4wasalso foundto inhibitFoxP3 induction, throughtranscription factorSTAT6,
whichwasshownto bind to the silencer regionin the vicinityofFoxP3 and inhibit chromatinre
modelingat the locus,"Interestingly, RAreducedSTAT6 bindingto thesilencer region, relieving the
inhibition and enhancinghistoneacetylation.S Another cytokine, IL-6, canpromotemethylation
at the FoxP3locus, silencingitsrranscriprion," Epigenetic controlof the FoxP3locus maytherefore
be criticalin understanding complex regulation ofFoxP3geneexpression.

Role ofFoxP3 in Cancer
AsFoxP3+ Tregs mainlyfunctionto eliminate self-reactive lymphocytes, theycanbepotentially

detrimental to the immuneresponse againsttumors. Because most tumor-associated antigens are
recognized asself theyaremorelikely to activateTregs ratherthan effectorT-cells capable ofmount
ingan immuneresponse. In addition,tumor cells oftenacquire the abilityto secrete cytokines such
asTGF~, which induces FoxP3 expression in T-cells. Indeed,high levels of FoxP3+ cells havebeen
detectedin the tumor environments ofmanycancers and strategies to eliminatethem to blocktheir
tumor protective effects arein development.

Foxp3+ T-cells arealsoactively recruited to tumor sites. In a modelof human ovarian cancer, it
wasfound that a chemokine called CCL22 isreleased bycells in the tumor microenvironment and
specifically recruits Tiegs," Severalgroupshave shownthat invarious tumormodels inmiceandman,
naturalTregs arepresentandproliferatinginthe tumor tissue.65-68TGF~, whichisoftenproducedby
tumor cells," is favored to be the inducerTregproliferation in thesetumor microenvironmenrs."

It is also known that tumors can induce expression of FoxP3 in conventional T-cells. In ad
dition to TGF~, indoleamine 2,3-dioxygenase (IDa) can contribute to this induction. An IDa
inhibitor abolishes conversion of conventional CD4+cells to Tregin the A20 lymphomamodel"
and IDa expression by human leukemia cells correlates with the number of FoxP3+ cells in the
blood.Tumorresident antigen-presening cells suchasplasmacytoid dendriticcells canalsoproduce
IDo.72Both TGFI3 and IDa inhibitors are under investigation to override tumor mediatedim
munesuppression.?

FoxP3 expression bynon-T-cells mayalso havean important rolein development of certainma
lignancies suchasbreastcancer. Forexample, micethat areheterozygous for FoxP3, haveincreased
incidence of breastcancerdevelopment. Furthermore, human breastcancercells that express the
HERIneu markers of aggressive malignancy, downregulate FoxP3 in breasttissue." In fact, FoxP3
wasfound to repress transcription ofSKP2,abreastcanceroncogene," Loss ofFoxP3in non-T-cells
thereforemayleadto moreaggressive tumorgrowth.ThusFoxp3 expression isadouble-edgedsword
in cancer.

FoxP3 in Infectious Diseases

Parasitic Infections
Recent observations havefurther demonstratedthat FoxP3+ Tregs mayinfluence the immune

response to manymicrobes. One of the firstobservations on the roleofTregsduringinfectionwas
madewith the parasitic pathogenLeishmania major?5.76 When Tregs wereremoved fromthe siteof
infection, the animals couldbetter discard the infecdon." However, further studies showedthat in
certainstrainsofmiceTregs actually held the cutaneousinfectionin check,whichotherwisewould
result in progressive lesions,"A similarpicturewasobserved in adoptive transferofTreg depleted
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cells into SCID mice,whichdeveloped moresevere infections than thosethat alsoreceived the Treg
subset.From thesestudiesit isclearthat Tregs couldplaya useful role in Leishmania pathogenesis,
althoughtoo muchTregresponse alsodiminishes the immunityto thepathogenresultingin chronic
disease. Similarly, inMalaria, increasedTregsweredetectedin theperipheralblood,wherePlasmodium
faldparum resides on redblood cells.A positive correlationbetweenFoxP3+ T-cells and growthrate
of the parasitewasobserved."

ViralInfections
Several viral infections, especially those that persist, may perturb the immune response.Y?

which can result in increasedsusceptibilityto other infections,tumors or even auroimmuniry."
Tregs have recentlybeen implicatedin mediating functional impairment of CD8+T-cellsduring
persistent retroviralinfection." Other instancesofviralinfectionswherein the Tregresponseacts
to the detriment of the host are recognized. For example, in HSV infection of mice, the magni
tude of both CD8 and CD4 responses against the virus wereelevatedtwo to three fold if mice
were depleted of Treg cells prior to the infection." In chronic hepatitis C infection, Tregscan
curb liverdamage." Tregsare alsoexpanded in micepersistentlyinfected with Friend retrovirus,
suggestingthat they maycontribute to immunosuppressionin the absenceofT-cell depletion in
chronic viral infecrlons."

HIV Infection
Another viralinfectionwhereFoxP3+ T-cells mayhavea criticaldual role isHIV infection.The

abilityof HIV to establish apersistentinfectioniscriticallydependenton T-cellactivation signals.84

Indeed,a chronicstateof hyperactivation isa hallmarkof HIV Infection." Consequently, this state
of chronic immuneactivationcombinedwith the direct destructionof CD4+T-cells byHIV leads
to a profound immunodeficiency characterized byprogressive deteriorationin immunefunction.86

FoxP3+ T-cells werefound to be highlysusceptible to HIV infectionboth in vitro!and in vivo." It
ispossiblethat the lossofFoxPY T-cells in turn couldpotentiallyresult in hyperactivity of conven
tional T-cells due to the lackof regulationby Tiegs, therebycreatingmore T-celltargetsfor HIV.
In a mousemodel reconstitutedwith a human immunesystem to studyHIV pathogenesis, FoxP3+
Tregcells werepreferentially infectedand depleted.f When thesemiceweredepletedof theirTregs
during acute infection,HIV infectionwasreduced." Conversely, ifTregs are specifically activated
by HIV during the earlierstages of infection,this couldhavea suppressive effect on the protective
immuneresponse againstthe viruS.89'91

Foxp3mayalsoplaya direct rolein facilitating HIV transcriptionin infectedT-cells. HIV gene
transcriptionisdependant on endogenoushost cellfactorssuch asNFAT and NFKB.92FoxP3 was
shown to enhance NFKB binding the HIV LTR, increasing HIV-transcription in these cells."
AbrogatingFoxP3 binding to NFKB prevented this enhancement.However, other groups found
that FoxP3suppressed geneexpression fromthe HIV LTR,94.95 FoxP3and FoxP3+ T-cells thus play
a multifacetedroleduring HIV infection.

Foxp3 in Transplantation Tolerance
FoxP3+Tregsarepartly responsible for maintainingperipheraltoleranceto selfin the bodyand

could be invoked to suppressimmune responses to foreign antigens.This would be particularly
important in a not fully matched organ transplantion, which can result either in rejectionof the
transplanted tissueor an immuneresponsebythe donor calledgrafi-versus-hose disease (GVHD).
It is conceivable for example to educate donor Tregsto recognizeallogeneic antigens from the
transplated host and transfer these alongwith the transplant tissue. This would presumably sup
pressdonor effectorT-cellsfrom attackingthe host, thuspreventingGVHD. Patientswith chronic
GVHD indeed show diminished FoxPY T-cellnumbers and low dose IL-2 therapy is currently
beingexploredas an approach to induce FoxP3and promote Tregsurvivalin thesepatients."

Alternatively, ifFoxP3 expression can be induced byhost cells aftertransplantation, this could
alsohelp to establishtoleranceand complement immune-suppressive therapies.Thereisevidence
to support that the Tregresponsedoesnot need to be specific to transplant tissueand can prevent
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immune activationby bystandersuppression." Indeed. higher levels of FoxP3mRNA detected
in the urine of renal transplant patients and higherTregcellscorrelatedwith reducedgraft rejec
tion." In this regard.the immune-suppressive drug rapamycin could havedual function both by
dampening immune responses and byselectively inducingFoxP3+ Tregs.97

FoxP3 in Autoimmune Diseases
Disruption of FoxP3 function leads to severe autoimmunity both in humans and mice,

highlighting the criticalimportanceof this transcriptionfactor in preventingunwanted immune
responseagainstself Here wewillreviewsomeofthe experimentalautoimmunemodelsin mice,
where FoxPY Tregs wereshown to playa crucialrole.

Multiple Sclerosis
Experimentalautoimmuneencephalomyelitis (EAE)isasyndromeofinflammation oftheCentral

NervousSystem (CNS).whichisusedasa mousemodelfor humanmultiplesclerosis (MS)disease.
alsocaused byautoimmuneresponse to myelin,"EAE is typically induced by myelin injectionor
by transferring myelin-reactive CD4+cells to susceptible mice. Earlyexperiments done beforethe
discovery ofFoxP3 showedthat CD4+CD2s+ T-cells transferred from healthymicecouldprotect
susceptible miceagainstEAE.99 It wasthen determinedthat FoxP3+ Tregcells wereresponsible for
this protection in an antigen(myelin) specific or bystander fashion," In humans. analysis of blood
samples and spinalfluidfromMSpatientsalsoshows evidence ofTregperturbation."

Inflammatory BowelDiseases
The murine colitis model is used to gain insight into ways to control human autoimmune

diseases of the intestine,suchas ulcerative colitisand Crohns disease. In this model.immunede
ficientmicearepopulated with naiveCD4+Tcells, which causes severe intestinal inflammation.
Mice that receive CD4+FoxP3+ T-cells are cured of the disease within weeksand it wasshown
that Tregcells migrated to the colon,which is the siteof'inflammation."

Type I Diabetes
TypeI diabetes,or diabetesmellitus, isan autoimmunesyndromein whichthe insulinproduc

ing beta cells in the pancreasare attacked by the immune system. Neonatal diabetesmellitus is
characteristic ofIPEXpatientswith FoxP3 mutations.A broadstudywithType1diabetespatients
showedthat (GT)n microsatellite polyrnorphisms in the FoxP3 genewerealsoassociated with the
disease.'?"Another study correlateda lowerFoxP3mRNA levelwith TypeI diabetespatients.'?'
In a mousemodel of TypeI diabetescallednonobesediabetic (NOD). FoxP3+ T-cellsdecreased
as the disease progressed.l'v The main culprit in this mousemodel appears to be increasedbeta
cellspecific effectorT-cells that arealso resistant to suppression by FoxP3+ T_cells;103.104 there is
no defectin the generationor maintenanceofTregs, indicatingthat FoxP3 function isintact.I05.106
However.when beta cellspecific Tregs fromdiabeticmicewereexpandedin vitroand transferred
backto diseased mice. the diabetesregressed.!" In alternative experiments T-cells specific to pan
creaticbeta cells weregenetically manipulated to express FoxP3,which alsocausedregression of
disease when transferredto diabeticmice.!"

Emerging and Potential Therapeutic Intervention
Foxp3"Tiegsor Foxp3-programmed T-cells havea vastarrayof functionsand rolesin human

diseases (Table1).Thus.Foxp3ispotentiallyasignificant targetfor therapeuticapproaches against
thesediseases. On theonehandenhancingFoxPYTregs couldbeuseful in the treatmentofautoim
munesyndromes. inflammatorydisorders, transplantationand complications fromchronicinfec
tions.On the other hand attenuatingthe FoxP3+ Tregresponses wouldbebeneficial in enhancing
antitumor immunity. responses to acute infectionsand boostingthe potency of vaccines.

Although the prospect of targetinga transcription factor is generally avoided because of the
widespread and oftenunforeseen activities of transcriptional regulators. FoxP3 has been shownto
berelatively specific to the immunesystem andassociatedprimarilywithimmuneactivation.Several
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Table 1. Function and role of Foxp3 in diseases
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Disease Role of Foxp3 References

IPEX syndrome

Ovarian cancer

Breastcancer

Breastcancer

Malaria

HSV infection

Hepatit is C
infection

HIV infection

HIV infection

GVHD

Renal transplant
rejection

Multiple sclerosis

Type I diabetes

Natural genetic mutations in Foxp3 causesautoimmune 3,4
syndrome in humans

Foxp3+ Tregsrecruited to the site of tumor 64

Breastcancer cells that expressthe HER/neu markersof 73

aggressive malignancy, downregulate FoxP3 in breast tissue

FoxP3 represses transcription of SKP2, a breast cancer oncogene 74

A positive correlation between FoxPJ+ T-cells and the growth 77
rate of plasmodium falciparum was observed

The magnitude of immune responses against the virus elevated if 82
mice were depleted of Foxp3+ T-cells prior to the infection

Foxp3 expressingTregscan curb liver damage 77

FoxP3+ T-cells were found to be highly susceptible to HIV infec- 87,88
tion

FoxP3 shown to enhance NFKB binding the HIV LTR, increasing 93
HIV-transcription in infected cells

In chronic GVHD FoxP3+ T-cell numbers are reduced, they 96

could potentially be protective against the disease

Higher levelsof FoxP3 mRNA detected in the urine of renal 97
transplant patients correlated with reduced graft rejection

FoxPY Treg cells are responsible for protection of mice against 98
EAE, the model of multiple sclerosis in mice

Polymorphism in the FoxP3 gene is associatedwith the disease, 100,101
lower FoxP3 mRNA level in Type I diabetes patients

questionsremain to be answered in order to manipulateFoxP3or FoxP3expressing cells duringhu
man diseases. First,how can weinduce FoxP3in specific cell types?It ispossible that the signaling
pathwaysused byTGF~ to induce FoxP3can beexploitedto developpharmacological agonists to
induceFoxP3expression. Conversely, in conditionssuchascanceror acuteinfectiousdiseases it may
be desirable to dampen FoxP3expression to amplifythe immune response.

Second,howcanwegenerateantigen-specific FoxP3+Tregsand direct them to the sitesofinflam
mation?It maybepossibleto identifycertainepitopesofantigensthat preferentially stimulateTregs
versus effectorT-cells. Reverse approaches to exclude theseepitopesin vaccineswouldboostimmune
response to antigens. MigrationofT-cellsto tissues islargely dependenton their chemokinereceptor
expression profiles. Increased knowledgein this fieldhas revealed various biological agentssuch as
cytokinesthat can program cells to express givenchemokine receptorsand target them to sitesof
infectionor inflammation. Futureapproaches to genetically manipulateT-cells to ectopicallyexpress
FoxP3,forced expression ofTCRs specific to antigensof interest or specific chemokine receptors
on bona fideTregcouldalsobepowerfulcellulartreatment options in controllingchronic immune
activationor inflammation.
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The Cooperative Roles ofFoxcl
and Foxc2 in Cardiovascular
Development
Tsutomu Kume*

Abstract
Foxcl and Foxc2 are closelyrelated members ofthe Forkhead/Fox transcription factor family.

The two Foxc genes have overlapping expression patterns in mesodermal and neural crest deriva
tives during development, as well as similar functions ofgene regulation. Consistently, mouse
mutants for each gene have similar abnormalities in multiple embryonic tissues, including the
eye, kidney and cardiovascular system. Analysis of compound Foxc1; Foxc2 mutant embryos
reveals that the two Foxc genes have dose-dependent, cooperative roles in development. In
particular, recent studies demonstrate that Foxcl and Foxc2 are essential for arterial cell speci
fication , lymphatic vessel formation, angiogenesis and cardiac outflow tract development. This
chapter will summarize and discuss current knowledge about the function ofFoxcl and Foxc2
in cardiovascular development.

Introduction
The cardiovascular system is the first functional unit to form in the developing vertebrate

embryo. The generation of the vasculature and heart requires a complicated series ofmorpho
genetic interactions involving cells of several embryonic origins. Indeed, congenital cardio
vascular defects represent the most common group ofhuman birth defects , but the molecular
mechanisms underlying the different anomalies still remain largely unknown. In particular,
many studies must be completed to fully understand gene regulation associated with critical
signalingpathways during cardiovascular development.This chapter will discuss recent findings
concerning the cooperative and overlapping roles of Foxcl and Foxc2 transcription factors in
this complex developmental process.

FoxCl and FoxC2 Proteins
Murine Foxc1 (formerly Mfl) and Foxc2 (formerly Mfbl] encode proteins with virtually

identical DNA binding domains (97% identity; 99% similarity), while the N- and C- terminal
flanking regions are somewhat diverse (56% and 30% homology, respectively).A duplication ofthe
ancestral FoxC gene is likely to have taken place in deurerostomes, ' as vertebrate speciesincluding
frog, chicken, mouse and human, possessthe two FoxC genes. Human FOXC1and FOXC2 genes
are located on chromosomes 6 (6p25) and 16 (16q22-q24), respectively, while mouse Foxc1 and
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Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, Tennessee
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Foxc2 genesare located on chromosomes 13 and 8 in regionsofconservedsyntenybetween hu
man and mouse,respectively (MouseGenome Informatics; http://www.informatics.jax.org).In
addition to in vitro DNA binding assays to determine the consensus DNA binding sequencefor
FOXCI,2 NMR structural analysis suggests that the two FOXC proteins act as monomers and
havethe samebinding specificity to target sequences.t Therefore, it is likely that the two proteins
regulate the samedownstreamrargeels) where they areco-expressed in the samecells.

Overlapping Expression ofFoxcl and Foxc2 during Development
While mouseFoxcl and Foxc2 are not transcribed in the axial-mesodermand its derivatives

such as the notochord, they showlargely overlapping domainsof expression in manyembryonic
tissues that arederivedfrom the nonaxialmesoderm, includingthe cardiovascular sysrem.r" For
instance,expression of Foxcl and Foxc2 is detected in endothelial and mesenchymal cells of the
developingheart and bloodvessels, secondheart field(SHF) progenitorsand their derivatives, as
wellas the proepicardium.Foxcl and Foxc2 areexpressed in arterialand venousendothelialcells
of the developingblood vessels.'? In addition, Foxcl and Foxc2 are co-expressed in neural crest
derivatives, includingcellspopulated in the pharyngealarchesand the endocardialcushionsof
the cardiacoutflowtract.13.14There are some regionsin which expression domainsofFoxcl and
Foxc2 do not overlap during development. Although transcriptsofboth Foxc genes are detected
in neuralcrest-derived periocularmesenchyme surroundingthe developing eye,15.16Foxcl, but not
Foxc2, isexpressed in mesoderm-derived periocularmesenchyme.15 Theonset of expression of the
Xenopus homologue of Foxc2 beforegastrulation is earlier than that of the Xenopus homologue
ofFoxclY

Developmental Defects in Foxc Mutant Mouse Embryos
While this chapter focuses primarilyon the functions of Foxcl and Foxc2 in cardiovascular

development, it shouldbenoted that single mousemutantsforeachgenesimilarlyexhibitnumerous
developmental abnormalities inaccordancewith theirbroadexpression patterns.Acomprehensive
summaryof the phenotypesofsingleFoxcmutant mice,aswellascompoundFoxcl;Foxc2 mutant
mice,is givenin Table 1.

Micethat arehomozygous for eitheraspontaneousmutation in Foxcl (congenital hydrocepha
lus, Foxclch) or an engineerednullmutation (Foxclla<Z) die prenatallyor perinatallywith identical
phenotypes.7.l8·19 Thesephenotypes include hemorrhagic hydrocephalus and multiple skeletal,
ocular, genitourinaryand cardiovascular defects, includingthe interruption or coarctationof the
aortic arch, ventricular septaldefects (VSD) and aortic and pulmonary valve dysplasia.6'8.16.2Q-22
Foxcl mutant micealsolackthe frontal bonesof the skullvault,derivatives of cranialneuralcrest
cells." Endothelial-specific Foxcl mutant mice have recently been generated and survive into
adulthood,but theseconditionalFoxcl mutant micehavedefects in thepostnatalmicrovasculature
(Table 1).24.25 In addition, a forwardgeneticscreenusingethylnitrosurea (END) mutagenesis has
recentlyidentifiedahypomorphicmousealleleforFoxcl (hole-in-the-head,Foxclhith) that survives
into adulthood."A missense mutation in the Foxcl hithalleleresultsin a Phe-to-Leusubstitutionat
amino acid 107within the secondhelixof the DNA bindingdomain,leadingto destabilizationof
the protein. Analysis ofFoxclhith hasrevealed that Foxcl playsa rolein meaningealdifferentiation,
thereby regulatingcorticaldevelopment.

Foxc2 null mutants alsodie pre or perinatallywith skeletal, genitourinaryand cardiovascular
defectssimilar to those seen in Foxcl homozygous mutants.5.6.8.12,13.27It isof interest to note that
Foxc2has been implicated in lymphaticvessel development. Heterozygous Foxc2 mutant mice
have hyperplasia of lymphaticvessels/" while homozygousFoxc2 mutant mice show defective
lymphaticvalves and abnormal pericyte recruitment oflymphatic vessels." Theseabnormalities
underlie congenital defects causedby FOXC2 mutations in humans (see below). Additionally,
endothelial cells isolated from heterozygous Foxc2 mutant mice exhibit impaired formation of
rnicrovessels." Together, thesefindings demonstrate that Foxcl and Foxc2 are requiredfor mam
malianembryonicdevelopment, includingthe cardiovascular system.
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Table 1. Developmentaldefects foundin Foxc mouse mutants
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Mutant

Foxct": (Foxe/ ch/»

Foxct": (Foxc1ch!ch)

Foxe/hUh/hUh

Conditional Foxcl
(Endothelial

specif ic)

Foxc?":

Foxcl:':

Foxcl:"; Foxc2<1

Foxcr"; Foxcr':

Phenotype

Delayed calvarial formation; Anterior segment abnorm alities

in the eye

Hydrocephalus; Malformations in the cranial and axial

skeleton; Duplex kidneys and double ureters; Impaired gonad

development; Anterior segment abnormalities in the eye

Hydrocephalus; Incomplete skull closure; Cortical dysplasia;

Microphthalmia

Reduced migration of endothelial cells; Reduced expression of
CXCR4 and Hey2

Hype rplastic lymphatic vessels; Extra eyelashes; Anterior

segment abnormalities in the eye; Impaired functions of

microvessels

Malformations in the cranial and axial skeleton; Hypoplastic

kidneys; Abnormal aortic arch pattern ing; VSD; Increased
pericyte investment and agenesisof valves of lymphatic

vessels; Abnormal glomerular development

Hypoplastic kidneys and a single hydroureter; Abnormal

aor tic arch patterning; VSD; Anterior segment abnormalities
in the eye

Die at around E12.5; Etiology of lethality is not determined

Small somites; expansion of intermediate mesoderm; Impaired

remodeling of blood vessels; Hypoplastic OFT; Apoptotic

neural crest; Abnormal epicardium

No somites formed ; Expansion of intermediate mesoderm;
Impaired remodeling of blood vessels; Disrupted arterial cell
specification; Absence of the OFT; Apoptotic neural crest

References

19,21,22

6,7,16,18,
19,20,21,76

26

24,25

22,28,30

5,6,12,27,

29,76

6,13,22

8,10,11 ,37

8,10,11 ,37

8,10,11,37

Mutations in FOXCI and FOXC2 Genes Associated
with Developmental Disorders in Humans

Consistent with the importance ofFoxc genes in murine development, mutations of human
FOXCgenes have been found in individuals with congenital anomalies. Mutations ofthe human
FOXCl are associated with the dominantly inherited Axenfeld-Rieger anomaly (ARA), charac
terized by anterior chamber dysgenesis in the eye and congenital glaucoma [Online Mendelian
Inheritance in Man (OMIM) no. 601090].31.32 Foxcl+/- mice exhibit ocular abnormalities similar
to those seen in human ARA patients, but these Foxcl heterozygous mice do not show increased
intraocular pressure, the most important risk factor for glaucoma." Some humans heterozygous
for mutations in FOXCl have congenital heart defects such as mitral valve dysplasia and atrial
septal defects.13.3I.33

Mutations in human FOXC2 are responsible for the autosomal dominant syndrome,
Lymphedema-distichiasis (LD), characterized by the obstruction of lymphatic drainage of the
limbs and the growth ofan extra set ofeyelashes(0MIM no. 602402).34 In addition to lymphatic
valve failure, mutations of human FOXC2 are also associated with venous valve failure." while
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-15% of thesehumansexhibitconotruncalcardiacdefects," AlthoughFoxc2+/- micehavesimilar
ocularabnormalities asthoseseeninFoxc1+/- mice," LD patientswithFOXC2mutationspresent
mildanterior chamberabnormalities unassociated with glaucoma,"MutationsofhumanFOXCI
or FOXC2are likelyto lead to haploinsufficiency and no individuals that are homozygous for a
mutation of either FOXCI or FOXC2 havebeen found. Elucidationof overlapping functions of
the two FoxCgenesrequiredgeneticanalysis of compound Foxc1; Foxc2 mutant mice.

Cooperative Roles ofFoxc1 and Foxc2 in Cardiovascular Development
Todetermine functional interactionsbetweenFoxc1and Foxc2, the generationofcompound

Foxc1; Foxc2 mutant mice was performed. It is remarkable that the majority of compound
Foxc1; Foxc2 heterozygousmice from crosses of Foxc1+/-and Foxc2+/-mice die pre or peri
natally,whereas only a smallpercent of the compound hecerozygores surviveinto adulthood .
Most compound heterozygotesshow a similar spectrum of cardiovascular, genitourinary and
eye abnormalities like those seen in each single homozygous null mutant.6.13.22 These include
interruption/coarctation of the aortic arch, VSD, dysplasia ofthe aortic and pulmonary valves
and an abnormally thin myocardium.Thus, these findingsdemonstrate that the two Foxc genes
functionally overlapand cooperate with each other in vivoand that they playdose-dependent
roles in many aspectsofembryonic development.

Fromcrossing fertilecompoundFoxc1; Foxc2 heterozygores, compoundhomozygous and her
ere/homozygous embryos havebeen obtained and analyzed.8.10

•
11

.37 While compound Foxc1+/-;
Foxc2-/-andFoxc1-/-;Foxc2+/- mutantsdieat embryonic day12.0-12.5 (EI2.0-12.5),compound
homozygous embryosdie around E9.5 with a phenotype that is much more severe than that of
a single homozygote, a compound heterozygote, or a compound hetero/homozygous mutant
(Table1).Asdescribed below, compoundhomozygous embryosshowdisruptedarterialspecifica
tion.'? In addition, compound Foxc1+/-; Foxc2-/- mutants havea reduction in the number of
Proxl-positivelymphaticendothelialcells sproutingfrom the cardinalvein .!" Compound Foxc1;
Foxc2 mutantsalso have awidespectrumofearlycardiac abnormalities inadose-dependent manner. I I

Theseobservations further reinforce the ideaof gene-dosage effects of the two Foxc genes during
cardiovascular development. Ofinterest,zebrafish hasonlyonejoxC gene,joxCI, although,due to
genomeduplication, therearetwozebrafish homologues,jOxCl.l andflxCl .2.38GiventhatjOxC2
appearsto be absentfrom the zebrafish genome,39.40 knockdownofjOxCI.I, but not FoxCl.2, in
zebrafish resultsin the lackofsegmentedsornites,"a phenotypesimilarto that seenin compound
Foxc1; Foxc2 homozygous mousemutants (Table1).8It isthereforelikely that the cooperative roles
of the FoxC genes in development areconservedin vertebrates.

Foxc Function in Arterial Specification
During vasculardevelopment, angioblasts, which are rnultipotent endothelial progenitors

originatingfromthe mesoderm,coalesce and undergovasculogenesis to formtheprimitivecapillary
plexus. Angiogenesis, the subsequentprocessofvascularremodeling,whichgives riseto a mature
network of bloodvessels includingarteriesand veins, is regulatedin part byhemodynamicforces.
However, recent studiesin zebrafish and miceclearly demonstratethat in the developing embryo,
arterial and venous identity is establishedby genetic mechanisms before circulation begins.42.43
For arterialspecification (Fig. 1), vascular endothelialgrowth factor (VEGF) inducesexpression
ofNotch signalinggenes, includingNotchl and its ligand,Delta-like 4 (DIl4) and also triggers a
positive-feedbackloop by inducing expression of Neuropilin 1 (NrpJ), an arterial-specific core
ceptor for VEGF.Upon activationof Notch signaling, the Notch effectorgenes, Heyl/2 in mice
or gridlock in zebrafish, further promote arterialdifferentiation. In contrast, the orphan nuclear
receptor,COUP-TFII, is a determinant factor for venousspecification by inhibiting expression
of arterial specific genes, includingNrp1 and Notch/Dl14 (Fig. 1).44

Compound Foxc1; Foxc2homozygous mousemutants showdefective vascular remodelingof
primitive blood vessels and abnormalvascular connectionsbetweenarteriesand veins (socalled
arteriovenous malformations).8.10 Arteriovenousmalformations similarly developin endothelial
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Figure 1. Genetic program of arterial-venous specification during vascular development.
The VEGF and Notch pathways control the specification of arterial endothelial cells, wh ile
COUP-TF-II regulates venous cell fate. Foxcl and Foxc2 interact with VEGFand Notch signal
ing and thereby induce arterial-specific genes, DII4 and Hey2. Bi-directional Ephrin B2 and
EphB4 signaling is induced arterial and venous endothelial cells, respecti vely and is involved
in interactions between arter ies and veins.

cellsof mutant miceand zebrafish in which Notch signalingisdefective.45049 Endothelialcells of
compound Foxc1; Foxc2 homozygous mutants fail to express arterial-specific genessuchasNrp1
as wellas Notch signalingmolecules includingNotch1, DI14 and Hey2, whereas venousmarkers
such as COUP-TFII and EphB4 are normally expressed in compound homozygores." Most
significantly, Foxc1and Foxc2 candirectlyactivatethe DIUpromoter viaa Foxc-binding element
(FBE). Together, Foxcl and Foxc2 act upstreamof Notch signalingin arterial cellspecification
(Fig.1).10 Thisobservationisconsistentwith the roleofFoxc genesin regulationofNotch signaling
eventsduring the formation of the sornires,"

In addition to DIl4,a recent study has demonstrated that Foxcl and Foxc2 directly regulate
expression of the Notch target gene,Hey2 (alsocalledHRT2, HERP1, CHF1 and Hesr-2) , by
activatingits promoter in endothelialcells." Consistently, Foxc-mutant endothelialcells isolated
fromadult lungsofeitherendothelial-specific Foxc1 mutant miceor Foxc2+ /- miceshowreduced
expression of Hey2. The Hey2 promoter includes two FBEs that are adjacent to a binding site
for Suppressor of Hairless [Su(H)]. Upon activationof Notch signaling leadingto a proteolytic
cleavage to release the Notch intracellulardomain (NICD) into the cytoplasm, Su(H) interacts
with translocatedNICD in the nucleusand iscriticalfor Notch-mediatedHey2induction.When
Foxc2 is combined with NICD, the Hey2promoter is synergistically activatedas compared to
eitherFoxc2 or NICD. In contrast,Foxclshowsnosynergistic effects on NICD-induced promoter
activity.Thesedata, together with the fact that Foxc2, but not Foxc l ,directlybinds to Su(H) and
forms a protein complexwith Su(H) and NICD, suggest that Foxc2 functionallyinteractswith
Notch signalingto induceHey2 expression in endothelialcells."

Foxc-induced promoter activityof DIU and Hey2is significantly enhanced by VEGF in en
dothelialcells (Fig. 1).25 In in vitromammalian cellstudies,theVEGF-mediatedphosphoinositide
3-kinase (PI3K) pathwayinduces the transcription of Notch1, D1l4 and Hey2. 25•50 Interestingly,
modulation ofFoxcactivitybyVEGFisenhancedbythe PI3K pathwayor inhibited bythe extra
cellularsignal-regulated kinase/mitogen-activatedprotein kinase (ERK/MAPK) pathway. This
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suggests that Foxc1 and Foxc2 interact with VEGF signaling in arterial gene expression. However,
in the zebrafish embryo, the VEGF-activated PI3K pathway inhibits the stimulation ofthe ERK
signaling cascade, leading to suppression of arterial differennadon." Although reasons for the
discrepancy between the in vitro and in vivo results remain unclear, one possible explanation is that
these in vitro experiments were not conducted in uncommitted endothelial progenitor cells.25•5o

Since Foxcl and Foxc2 are expressed in both arteries and veins in the mouse embryo," it is pos
sible that VEGF-mediated posmanslational modifications, such as phosphorylation, are critical
for the activation ofFoxc proteins in the induction ofarterial-specific genes. Another interesting
aspect ofFoxc function in VEGF signaling is enhanced expression ofVEGFincompound Foxc1;
Foxc2 mutants compared with the wild-type," suggesting upregulation ofa feedback response to
impaired VEGF signaling.

There is now compelling evidence that arterial-venous cell fate determination is regulated by
the multi-step regulatory system associated with the VEGF and Notch pathways," A critical step is
the induction ofNeuropilin 1 (Nrp1),coreceptor for VEGF and VEG F signaling promotes arterial
differentiation as a positive feedback 100pY Nrp1expression is regulated by Foxc2 in endothelial
cells," Since COUP-TFII suppresses an arterial cell fate by inhibitingexpression ofNrpl.t' it will
be important to determine whether Foxcproteins functionally counteract with COUP-TFII in the
positive feedback loop ofVEGF signaling during arterial-venous specification. These observations
suggest that Foxc transcriptional factors control multiple steps of the VEGF-Notch/DIl4-Hey2
molecular cascade, thereby reinforcing arterial cell determination.

Foxc Function in Lymphatic Vessel Development
After arterial and venous endothelial cellsdifferentiate, a subpopulation ofvenous endothelial

cells is thought to become competent to acquire a lymphatic cell fate by progressively expressing
the transcription factors Soxl8 and Proxl to differentiate into lymphatic endothelial cells.53.54

The mammalian lymphatic vascular system originates solely from the venous endothelial cells.55

VEGF-C, a VEGF receptor 3 (VEGFR-3) ligand, is expressed mainly in mesenchymal cells
surrounding embryonic veins." ProxINEGFR-3-positive lymphatic endothelial progenitors
subsequently sprout from the veins via paracrine VEGF-C/VEGF-R3 signaling, leading to the
formation of the lymphatic network. a process called (developmental) lymphangiogenesis.

Compound Foxc1+/-; Foxc2-/- mutant embryos show a significant reduction in the number
ofProxl+ lymphatic endothelial cells sprouting from the cardinal vein (Fig. 2).10 Importantly,
SoxI8RaOP mutants have similar defects in lymphatic vessel formation and Sox18 can induce
Proxl expression in the cardinal vein.54 These data indicate that Soxl8 directly acts upstream of
Proxl in the specification oflymphatic cell fate. Although Foxc genes and SoxI8 are co-expressed
in lymphatic endothelial progenitors in the cardinal veins, the nature of functional interactions
between Foxcproteins and Sox18 in lymphatic specification remains to be elucidated. On the other
hand, expression domains ofFoxc1 and Foxc2 overlap with those ofVEGF-C in the mesenchyme
surrounding the cardinal vein. Since compound Foxc1-t-. Foxc2-/- mutant embryos exhibit
significant reduction in VEGF-C expression," it is possible that Foxcl and Foxc2 regulate the
paracrine signal ofVEGF-C in lymphatic vasculature development. This idea is supported by the
finding that Foxc-dependene regulation ofpotent angiogenic factors, including Angiopoietin-2,
in adipocytes influences vascular formation in a paracrine manner,"

Foxc Function in Angiogenesis
Angiogenesis isa critical process to grow new blood vesselsfrom pre-existingvesselsand involves

endothelial cell proliferation, sprouting, migration and vascular tube formation. Angiogenesis
is a necessary process in development, while pathological angiogenesis is involved in cancer and
other ischemic diseases. Although angiogenic factors such as VEGF are known to control various
processes ofangiogenesis, the mechanistic basis for the regulation ofendothelial gene expression
is largely unknown. Recent studies have demonstrated that Foxcl and Foxc2 control the process
of angiogenesis by directly regulating the expression of two cell surface proteins in endothelial
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+/+ +/-- -/-,

Figure 2. Compound Foxct-J-; Foxc2-/- mutants have defective lymphatic vesseldevelopment.
A-D) Immunohistochemical analysis to detect a lymphatic endothelial cell marker, Proxl, using
transverse sections at the level of the heart at ElO.S (A,B) and El1.S (C,D). A,B) Compound
Foxc1+/-; Foxc2-/- mutant embryo (B) shows a reduction in the number of Proxl-positive
lymphatic endothelial cells (arrows) from the card inal vein (cv), compared to the wild type (A).
C,D) At Ell .S, the wild-type embryo (C) has well-formed lymph sacs(asterisks) and the sprout
ing of lymphatic endothel ial cells (arrows). By contrast, abnormal formation of the lymph sacs
and the reduced sprout ing of lymphatic endothelial cells are observed in compound Foxc1+/-;
Foxc2-/- mutant D. da, dorsal aorta . Scale bars, 50 urn. Adapted from Seo et al,lO ©2006 with
permission from Elsevier.

cells, the chemokine receptor CXCR4 and integrin (33,24.30 which are essential for endothelial cell
migration.58•59 Upon bindingofthe CXCLl2ligand, CXCR4 activates downstream components
to induce cell migration. The integrin (33 subunit forms a heterodimeric complex with the integrin
av subunit to allow interaction with extracellular matrix components. The integrin (33 subunit
also functionally interacts with VEGF receptor 2 (VEGFR-2) in endothelial cells.Although Foxc2
does not enhance endothelial proliferation, Foxc2 increases endothelial cell migration, as well
as sprouting and microvessel formation in aortic ring assay (Fig. 3).30 In contrast, microvascular
endothelial cells isolated from either endothelial-specific Foxc1 mutant mice or Foxc2+/- mice
show reduced cell migration.24.30 These results indicate that Foxc transcription factors directly
regulate angiogenesis via induction ofintegrin (33 and CXCR4.60Consistent with these findings ,
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Figure 3. Foxc2 regulates angiogenesis. Aortic ring assay using adult aortas of wild-type
and Foxc2+/- mice. Data are presented as the relative number of microvessels sprouting
from aortic rings. Resultsare presented as the means ± S.D. (n = 9 or more). P values were
determined by the corresponding sample indicated using Student's t test. *, P < 0.05 versus
the corresponding control. Adapted from Hayashi et al,30 ©2008 with permission from The
American Society for Biological Chemistry.

Foxc2 has alsobeen shown to enhance the migration of Maden-Darbycanine kidney (MDCK)
epithelialcellsby upregulatingmatrixmetalloproteinase (MMP)-2, 9.61

The Notch-Dll4 pathwayis alsocriticalfor angiogenesis.f VEGF inducesvascular sprouting
through the filopodiaofendothelialtip cells at the beginningofangiogenesis. On the other hand,
Dll4 isinduced in the tip cellsbyVEGFand precisely controlsvessel branching.However, several
important questionsabout thisprocess need to be answered. For instance, it iscurrentlyunknown
whether endothelial tip cells are positivefor integrin av~3 during vascular sprouting. Similarly,
it remainsto be elucidatedwhether the expression and activityof Foxcl and Foxc2 are localized
in the tip cellsduring angiogenesis.

Foxc Function in the Second Heart Field
Thepopulationofcardiacprogenitors,derivedfrom the anterior lateralmesodermand located

symmetrically in the cardiaccrescent, isknown as the firstheart field(FHF) and gives riseto the
leftventricleof the mammalian heart. The second heart field(SHF), which is originallylocated
dorsaland medialto the FHF in the mesoderm, gives riseto cells that form the rightventricle, the
outflowtract (OFT) and portionsof the inflowtract.63The recentidentificationofgenesinvolved
in SHF progenitors,includingIslet 1 {lslJ),Fox genes (Foxa2,Foxc1/c2 and FoxhJ) and Tbx1, has
provided the geneticand molecularbasisfor transcriptionalregulationduringthe formation and
developmentof the FHF and SHF.63-66

Although the FHF and SHF lineages derivefrom a common progenitor probablybeforethe
cardiaccrescentstage{at the onset of gaserularion)," the two lineages diverge with distinct gene
expression patterns. Whereas Nkx2.5 and Mef2c are expressed in both lineages at the cardiac
crescentstage,other genesappearto be restrictedto either lineage. For instance,Is11 expression is
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primarily detectedin the SHF at thecardiac crescent stageandisdownregulated asSHF progenitors
migrate into the heart tube, although recent studiesshow that Is11 isdetected in both FHF and
SHF regionsat the cardiaccrescentstage.68 Togetherwith the GATA4 transcription factor, Is11
regulates the SHF-specific enhancerofMej'2c,69 whereas activityofanotherSHF-specific enhancer
ofMej'2c requires the combinationofNkx2.5,Foxh1andSmad,?" LikeMej'2cexpression in the SHF,
Is11 can alsocooperatewith GATA4 aswellas Thx20 to activate the SHF enhancerofNkx2.5.71

IslJ mutant embryoslack the OFT and right ventricleand Is11 is required for the proliferation
and survival of SHF cells as wellas transcriptional regulationof other SHF genes and signaling
molecules such as bone morphogeneticproteins (BMP) and fibroblast growth factors (FGF).72
Therefore, Is11 is a keyearlyregulatorfor the molecularhierarchyin SHF progenitors.Another
keymoleculeis Tbxl, which is lost in 22q11.2deletion syndromein humans and is requiredfor
the alignmentand separationof the OFT.?3Ofnote, Foxtranscription factors(Foxa2, Foxcl and
Foxc2) havebeen shown to activate an enhancersufficient to driveTbxl expression in the SHF,74
whileTbxl, in turn, regulates an enhancerof Fg{8 in the pharyngealmesoderm."

Compound Foxc1;Foxc2 mutant embryoshaveawidespectrumofearlycardiacabnormalities.
Theseincludehypoplasia or lackof the OFT, rightventricle and the inflowtract aswellasabnormal
formationof the epicardiumin adosedependent manner (Fig. 4).J1 InSHP progenitorsand their
derivatives in compound Foxc1; Foxc2 mutants, expression of Tbxl and Fg{8/10 is significantly

\

Figure 4. CompoundFoxel; Foxc2 mutantembryos have cardiac abnormalities. A-C) Histological
analysisof wild-type (A)and compoundFoxel+/-; Foxc2-/- (B) and Foxel-/-; Foxc2-/- mutant(C)
embryos atE9.0 atthelevelsof theheart.CompoundFoxel; Foxc2mutantembryos showhypoplasia
(B) or lack(C) of the OFT in a dose-dependent manner. Note thedirect connectionof thedisorga
nizedaortic sac (AS) to the ventricle (V) in compoundFoxel-/-; Foxc2-/- mutant(C). Dotted lines
indicatetheboundarybetween theaortic sac (AS) and outflow tract (OFT). D-G) Whole-mount in
situhybridizationat E9.0 to detectWntl1 expression in the OFT. Theexpression domainof Wnt11
is reduced in compoundFoxel+/-; Foxc2-/- mutant(E, right view), while it isnot detected in com
pound Foxel-/-; Foxc2-/- mutant(arrows) (F, rightview; G, front view).Dotted linesdemarcate the
expression domain of Wnt11 in theOFT. A, atrium; LV, leftventricle; RV, rightventricle; V,ventricle.
Scale bar, 100 urn, Adapted from Seo and Kume," ©2006 with permission from Elsevier.
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downregulared, whereas IslJ expression is slightly reduced but still remains. This observation sug
gests that Foxcl and Foxc2function upstream ofthe Tbd-FGF cascadeduring the morphogenesis
ofthe OFT. Since it is unknown whether Foxc proteins and Isll functionally interact with each
other in SHP progenitors, it remains to be determined whether a reduction in cellproliferation in
the SHF ofcompound Foxc1; Foxc2 mutants is due to a failure ofthe expansion ofthe Isll -posirive
SHP lineage. Foxcl and Foxc2 can directly regulate Tbxl expression in the SHF as well as head
mesenchyme by binding to multiple FBEs on its enhancers,?4.76 Since compound Foxc1; Foxc2
mutants have much more severe OFT defects than Tbxl mutants, it is plausible that in addition
to controlling Tbxl expression, Foxcl and Foxc2 are required for regulating additional genes/
pathways in SHF development.

Foxc Function in Cardiac Neural Crest Cells
Cardiac neural crest cells are a nonmesodermally derived cell population that significantly

contributes to the developing heart. They arise from the caudal hindbrain (rhornbomeres
6-8), migrate through the branchial arch 3, 4 and 6 and invade the aortic arch and OFT of the
heart." This cell population subsequently participates in OFT septation and differentiates into
the cardiac ganglia and the tunica media of the great vessels. Disruption of the cardiac neural
crest before migration in chick embryos leads to a variety ofmalformations such as interruption
or coarctation of the aortic arch, VSD and persistent truncus arteriosus (PTA).77.78 Ablation
of the cardiac neural crest is also associated with aplastic or hypoplastic thymus, parathyroid
and thyroid glands . These abnormalities are frequently seen in human congenital syndromes,
including DiGeorge syndrome, which in most cases results from chromosome 22q 11.2 dele
tion (deI22ql1). Moreover, cardiac neural crest cells influence cardiac development in a non
cell autonomous manner. Ablation of the cardiac neural crest in the chick results in a failure
to elongate the SHF-derived OFT myocardium.I?Although the precise effects of the cardiac
neural crest on SHF development remain unknown, this cell population alters the availability
ofFGF8 in the caudal pharynx.8o.8!

Besides the broad expression ofFoxc1 and Foxc2 in the mesoderm and it derivatives, the two
genes are also expressed in the neural crest cell lineage. As described above, singleFoxc mutant mice
exhibit abnormal aortic arch patterning, suggesting that Foxcl and Foxc2 in the neural crest play
a role in remodeling aortic arch arteries.S•B Furthermore, cardiac neural crest cells ofcompound
Foxc1; Foxc2 mutant embryos undergo abnormal apoprosis during migration, leading to a failure
ofthe OFT septation (PTA) , a characteristic phenotype of the ablation ofthis cell lineage in the
chick.F'Ihis observation indicates that Foxcl and Foxc2 are required for the survival for cardiac
neural crest cells. Despite extensive apoptosis, Foxc-mutant cardiac neural crest cells are able to
differentiate into smooth muscle. Compound Foxc1+/-; Foxc2-/- mutants also show lack ofthe
2nd pharyngeal arch, suggesting defects in cranial neural crest cells.! Although the indirect effects
of cardiac neural crest cells on the addition of SHF-derived myocardial cells to the developing
heart have been suggested,78.82 autocrine FGF signaling in the SHF is primarily required for OFT
morphogenesis." Thus, given the fact that reduced expression ofSHF markers such as Tbxl and
Fgf8/10 is already observed in compound Foxc1; Foxc2 mutant embryos at E8.5 before the onset of
cardiac neural crest migration, the 0 FT abnormalities in these Foxcmutants are likelyattributable
to defective SHF progenitors in a cell-autonomous manner.

Foxc Function in Epicardial-Derived Cells
Another tissue that is critical to form the heart is the epicardium, which is the epithelial cell

layer that covers the surface ofthe heart. The epicardium originates from a specific population of
mesothelial cells from the proepicardium (PE) .The epicardium plays an essential role in coronary
vessel development by providing a source ofvascular smooth muscle and endothelial cells after
epithelial to mesenchymal transformation (EMT).84.8s Importantly, multipotent epicardial progeni 
tor cells that differentiate into cardiac myocytes have recently been identified.86.8?
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Both Foxc1 and Foxc2 are expressed in a subset ofcells in the PE before the formation of the
epicardium, while transcripts of the Foxc genes appear to be downregulated in the developing
epicardium." Compound Foxc1+/-; Foxc2-/- mutant embryos have abnormal formation ofthe
epicardium, which is detached from the underlying myocardium, while Foxc single mutants or
compound Foxc1-/-; Foxc2+/- mutants normally form the epicardium. Although the epicardi
al-derived mesenchymal cells are generated over the entire surface ofthe heart through EMT, the
majority of these cells are produced at the atrioventricular junction." Intriguingly, compound
Foxc1+/-; Foxc2-/- mutants show abnormal accumulation ofmesenchymal cells that are particu
larly localized at the subepicardial space of the conoventricular region and some ofthese cells are
differentiated into either smooth muscle or endothelial lineage. I I It is, however, unclear whether
the mesenchymal cells at the subepicardial space of compound Foxc1; Foxc2 mutants are solely
derived from the epicardium.

Signal(s) from the myocardium are important for the initiation ofEMT in the epicardium"
and several molecular signals such as VEGF, FGF and TGF~ are critical for the regulation of
epicardial EMT.84.90 Since compound Foxc1+/-; Foxc2-/- mutants have the above-mentioned
defects in the OFT, the abnormal mesenchymal phenotype at the subepicardial space may result
from dysregulation ofmyocardially-derived signaling molecules. Another, nonexclusive possibil
ity is that compound Foxc1; Foxc2 mutants may lack proper cell-cell interactions between the
myocardium and epicardium. Further experiments are needed to clarify the nature ofepicardial
defects in compound Foxc1; Foxc2 mutants.

Future Directions
I have presented a summary ofthe current understandingofthe cooperative roles ofFoxc1 and

Foxc2 in cardiovascular development. Evidently, they are key transcriptional regulators control
ling multiple processes in this system. However, many important questions about the function
ofthe Foxc genes in cardiovascular development remain to be answered. At present, much ofour
knowledge about Foxc function has been obtained from the studies ofconventional Foxc mutant
mice. Given their broad expression in mesodermal and neural crest derivatives, tissue- and/or
time-specific ablation of Foxc genes will provide further invaluable information on the direct
involvement ofFoxc genes in the development of the cardiovascular system. For example, it has
recently been shown that cardiac neural crest cellsand SHF-derived cellsreciprocally interact with
each other during OFT morphogenesis." In addition, although the two Foxc genes have overlap
ping expression patterns in the cardiovascular system, an unsolved question is whether they have
similar but distinct functions. It is important to note that Foxc2, but not Foxc1, can functionally
interact with Notch-mediated transcription in endothelial cells." Moreover, given evidence that
other Fox genes are also expressed during cardiovascular development, functional redundancy
of the Fox gene family must be considered. For instance, Foxh1 is essential for the development
of the SHF,7° while Foxo1 mutant embryos have impaired angiogenesis.t' :? A new aspect of the
mechanism ofFoxc function in vascular development is the combinatorial activity of Foxc2 and
the Ets transcription factor Etv2 in regulating endothelial-specific gene expression during early
development." Further studies are needed to reveal the mechanisms oftranscriptional regulation
involving Foxc and other transcription factors/cofactors.

Although knockout and transgenic approaches in mice and other species have facilitated
cardiovascular research over the past decade, the utility of stem cell-based research on cardiac
and endothelial cell differentiation is likely to lead to significant progress in deciphering complex
networks of transcriptional events associated with multiple signaling pathways . In particular,
recent studies have shown that signaling pathways such as FGF, BMP and Wnt are critical for
the induction and expansion ofcardiac progenitor cells." Therefore , it is anticipated that future
studies using cell-based approaches will contribute to understanding the molecular mechanisms
that control the genetic program associated with the critical pathways and Foxc-mediared tran
scriptional regulation in cardiovascular progenitors.
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CHAPTER 6

FoxO Proteins and Cardiac Pathology
AlbertWongandElizabeth A. Woodcock*

Abstract

T he FoxO family of transcription factorsmediate a wide rangeof cellularresponses from
celldeath to cellsurvival,growthinhibition and glucose utilization.Thiscomplex arrayof
responses isregulatedbyanequallycomplex regulatorysystem, involvingphosphorylation,

ubiquitinization and acetylation, in addition to interactionswith other transcriptionfactorsand
transcriptionalmodifiers. In heart,FoxOproteinshavebeenshownto beinvolved indevelopment,
in limitinghypertrophicgrowthresponses and in cardioprotectionprovidedbysilentinformation
regulator 1 (Sirtl) . However, the rangeof responses mediatedbyFoxOproteinsand the clearevi
dence for involvement ofFoxO regulatorsin cardiacpathology, suggest that further pathological
actionsofFoxO family membersremain to be elucidated.

TheFoxOFamily
FoxOproteinsaremembers of the forkhead family of transcription factors characterized bythe

presence ofa forkhead boxor Fox, whichbindsDNA at GTAAACAconsensus sequences.P Genes
encodingthe FoxO proteinswereinitially identified at chromosome breakpoints in tumour cells
and shownto behomologues ofthe Caenohabditis elegansDAF 16protein that regulates longevity.'
Thus,from their initialdiscovery, the FoxOproteinshavebeenassociated with cellsurvival and cell
death responses. Therearecurrently four FoxOproteinsknown to beexpressed in mammalian tis
sues;FoxO1,Fox03, Fox04 andthemorerecentlydescribed Fox06.4.5The first3 FoxOproteinsare
expressed in heart,"showstrongsequence similarity and areregulated similarly. Fox06 is expressed
only in the centralnervous system and will not be discussed further here. While FoxOs 1,3 and 4
areexpressed in cardlornyocytes, there is relatively little informationabout their functionalroles in
the heart.However, a numberof factorsthat regulate FoxOactivity havebeenshownto have major
roles inprotectingtheheartunderpathological conditions orinsomecases incausingcardiac damage.
This chapterwill examine the evidence for an involvement of FoxOproteinsin cardiac pathology
and will also examine the roles of known FoxOeffectors and suggest ways in which their cardiac
responses maybe mediatedbyFoxOtranscription factors.

TheSpectrumofTranscriptional Responses Mediated
byFoxOFamily Members

FoxO proteinsare transcription factors that mediatea bewildering rangeof cellular responses,
whichin somecases appearto beopposing. In wormsand flies the FoxOhomologues,DAF 16and
dFoxOrespectively,extendlongevitybypromotingresistance tostressors, includinginfectious agents
and oxidative stress.I The functions of the FoxOs aremore complex in mammalian tissues. FoxO 1
and 3 arewidely expressed in mammalian celltypesand responses observed dependto an extenton
the celltypestudied.Expression ofFox04 ismorerestricted, but it isexpressed in the myocardium
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along with FoxOs 1 and 3. Evenwithin the one cell type, responses generally differ berween the
FoxOsubrypes.i" Furthermore,there isevidence that FoxOscan havedifferentfunctionsdepend
ingon the nature or the magnitudeof the stimulus, aswellason the presence other transcriptional
effectors.9-14 In various mammalian cell types, FoxOscan promote resistance to oxidative stress by
transcriptionalactivation of catalase and Mn50D that serveto removereactive oxygen species.15.16

However, FoxOmembersarealsoableto initiateapoptosisviatranscriptionalincreases in apoptotic
effectors such as Fas-L and Bim.14.17.19 FoxO proteins increase DNA repairvia growth arrest and
DNA damage-inducible45 (GADD 45) and damagedDNA binding protein 1 (DDB1),20 cause
cellcycle arrestviap21, p27, p130 cyclin-dependenr kinase inhibitors,aswellascyclin G221.23and
regulateglucose and energyhomeostasis viaglucose 6-phosphatase, phosphoenolpyruvate carboxy
kinase, Agoutyrelatedpeptide (AgRP) and neuropeptideY (NPY).24-27

Regulation ofFoxO Proteins

Phosphorylation
In keepingwith the arrayof responses associatedwith FoxO transcription factors, their regu

lation, both positive and negative, involves multiple mechanisms. Initially FoxO proteins were
shown to be phosphorylated by the protein kinaseAke(or protein kinaseB, PKB).28 Akt itselfis
activatedbyphosphorylationsubsequentto phosphatidylinositol3-kinase(PI 3-kinase) activation
followingstimulation with growth factors or G protein coupled receptor agonises." Akt phos
phorylates FoxOs 1,3 and 4 at three specific sites,as outlined in Figure 1.This phosphorylation
resultsin nuclearexclusion and association with 14-3-3proteins" and therebyinhibitsFoxOfrom
functioning asa transcription factor. Asshown in Figure 1, one of the Akt phosphorylation sites
is in the DNA binding domain and the nuclear localization sequence. Phosphorylation of this
site (5253in mouse FoxO1) generally occursprior to phosphorylation occurringat the other two
sires," It is now alsoclear that phosphorylation of 5253displaces DNA-bound FoxO and thereby
directly inhibits transcriptional acrivlry," in addition to facilitatingexclusion from the nucleus.
Thus, there is a defined hierarchy between the Akt phosphorylation sites in FoxO. Removalof
phosphorylated FoxO from the nucleusisa complexprocessinvolvingboth the nuclearexclusion
sequence (NE5) exposed following phosphorylation and the 14-3-3 associarlon.f -" In heart,

Forkhead domain

c

Akt phosphorylation

Mst1 phosphorylation

acetylation

Skp2 ubiquitinization

E3 ubiquitinization

Figure 1. The structure of FoxO family members. FoxOl, Fox03 and Fox04 follow a similar
pattern of phosphorylation, ubiquitinization and acetylation sites. NLS, nuclear localization
sequence; NES, nuclear exclusion sequence; LxxLL is s sequence associated with binding of
nuclear hormone receptors.
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phosphorylation of FoxO by Akt has been demonsrrared'' and, under basal conditions, FoxO
proteins are largely cytoplasmic.

In markedcontrast,more recentstudies have revealed that FoxOfamily members can alsobe
activatedbyphosphorylation, although ondifferent sites fromthosephosphorylatedbyAkt,asshown
in Figure 1.Activating phosphorylation ismediatedbymammalian sterile 20 likekinase 1 (Mstl) a
homologueof theDrosophila sterile 20 kinase." Mst1 isa Ser, Thrdirectedproteinkinase activated
bystressors, includingoxidative stress.15,34ThebiologyofMstl remains to befully investigated. Mstl
isactivated byphosphorylation downstream ofK-Rassignalling" andK-Ras canbeactivated down
streamofNADPH oxidase 1(Noxl).36 Mstl canalsobeactivated following cleavage bycaspase 3.37

Under thisscenario, activation bycaspase 3 cleavage couldserve to perpetuateMstl activation and
consequentcellular damage following initiationof apoptosls." Mstl phosphorylates FoxOfamily
members on Ser/Thrresidues withinthe DNA-bindingforkhead domainto enhance DNA binding
and therefore FoxOtranscriptional activity.39Mstl phosphorylation alsodisrupts association with
14-3-3 proteinsand thusfacilitates nuclear retention.

Ubiquitinization
FoxO proteins, phosphorylated by Akt and shunted into the cytoplasm, are subsequently

polyubiquitinated and degraded viathe proteosome sysrem," bya process that absolutely requires
phosphorylation of Aktphosphorylation sites.Theligase mostprominent in this response isSkp2
andoverexpression ofSkp2canreverse FoxOmediatedresponses.v Thus,polyubiquitinization and
proteosomal destruction isthe end point ofAktinitiatedFoxOinhibition (Fig. 2).

Skp2
___~) proteosome

Akt PP2A

USP7 CBP/p300

~~~
E3 Sirt1

MSI1 \
• •

Figure 2. Regulation of FoxO family members under conditions of ischemia and reperfusion.
FoxO proteins are phosphorylated by Akt and dephosphorylated by protein phosphatase 2A
(PP2A). Skp2 ubiquitinates Akt-phosphorylated, 14-3-3-bound FoxO and targets it for deg
radation. E3 ubiquitin ligase activates FoxO and this is reversed by herpes virus-associated
ubiquitin specific protease (HAUSP or USP7).Mstl phosphorylation activates transcriptional
activity of FoxO. Additionally, FoxO activity is regulated by acetylation by cAMP response
element binding protein (CBP) and p300 histone acetyltransferase. Deacetylation is achieved
by silent information regulator 1 (Sirtl).
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In addition to this polyubiquitinization that is required for proteosomal degradation, FoxO
proteins can also be selectively ligated with monomers ofubiquitin. This mono-ubiquitinization,
(on K63in mouse FoxOl) mediated by ligases such as E3-ubiquitin ligase, enhances nuclear
localization and transcriptional activity. ? This increases nuclear localization and enhances
transcriptional activity of FoxO. 43 Removal of these ubiquitin residues is achieved by herpes
virus-associated ubiquitin specific protease (HAUSP).The balance between mono-ubiquinylated
and nonubiquinylated FoxO determines transcriptional activity and this balance is regulated by
reactive oxygen species.

Acetylation
In addition to regulation by phosphorylation and ubiquitinization, FoxO proteins are

regulated by acetylation. Acetylation is mediated by histone acetyl transferases including p300
and the cAMP response element binding protein (CBP) and involves critical lysine residues
(K242, K24

5, K262
, in mouse FoxO 1).44 Such acetylation reduces the positive charge on the FoxO

protein reducing DNA binding and thereby reducing transcriptional activity,'? Acetylation also
facilitates Akr phosphorylation ofS253, further limiting FoxO functioning, as described above."
Deacetylation is achieved primarily by class III histone deacetylases, particularly silent informa
tion regulator 1 (Sirt l ), a homologue ofSir2 in C.elegans. Inhibition, rather than activation, of
FoxO activity by deacetylation has also been reported.45.46 The reason for the apparently opposing
effects of FoxO acetylation is not known. Given that acetylation of positively charged lysine
residues inhibits DNA binding, it is possible that increased transcriptional responses reflect
FoxO acting as a transcriptional partner rather than a direct DNA binding transcription factor
at those particular promoters.

Transcriptional Partners ofFoxO
FoxO family members have direct transcriptional activity by binding forkhead consensus se

quences, but in addition these proteins also interact with other transcription factors and transcrip
tion modifiers to regulate transcription. There are a number ofdifferent ways in which this can be
accomplished. In some cases,FoxO and its transcriptional partner both bind their respective DNA
sequences, as occurs for the interaction between FoxO and Smads." In other cases FoxO -DNA
interaction is not involved. This mechanism is exemplified by the inhibitory interaction with
myocardin, where Fox04 reduces the association between myocardin and serum response factor,"
There are also examples ofFoxO functioning by simply soaking up a transcriptional cofactor and
reducing its availability. The interaction between FoxO and l3-catenin removes l3-catenin from
another transcription factor (TCF) and reduces its activiry" (Fig. 3).

FoxOs interact stronglywith nuclear hormone receptors via its LxxLL domain (Fig. 1), resulting
in altered activity ofboth proteins,"Among these, interactions with peroxisome proliferator-ac
tivatcd receptors (PPAR), PPARa and PPARy are likely to be important in heart, where these
transcription factors are protective.50S! FoxO proteins also interact with the PPARy co-activator
PGC-la; in this case the interaction enhances FoxO activiry" PGC-la is deacerylated by Sirt l,
This suggests a complex relationship between PPAR and FoxO family members.

The transcriptional modifier, myocardin, is active only in smooth and cardiac muscle where it
plays critical roles in development and in postnatal growth, via association with serum response
factor," Myocardin interacts with Fox04 in a mutually inhibitory manner," but this interaction
has not been reported in heart, to date.

The Smad family oftranscription factors is activated by phosphorylation downstream oftrans
forming growth factor 13 (TGFI3) receptors. Phosphorylated Smad3 translocates to the nucleus
where it associates with Smad4 and the Smad3/4 complex is transcriptionally active. The Smad3/4
complex can form a larger complex with FoxO family members and this heightens responses to
both FoxO and Smad transcription factors. 9,54 As shown in Figure 3, both FoxO and Smad bind
to their respective consensus sequences, but with heightened activity. Thus some of the responses
initiated by FoxO family members may result from interaction with Smads.
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Figure 3. Transcriptional activity of FoxO transcription factors. A) FoxO family members can
bind DNA consensus sequences to activate transcription. B)FoxO proteins can associate with
other transcription factors, with both factors binding their respective consensus sequences, as
shown for the Smad family of transcription factors. C) FoxO proteins can interact with tran
scriptional enhancers to reduce their activity, as shown for myocardin enhancement of serum
response factor (SRF) activity. D) FoxO can bind other transcriptional activators removing
them from other effectors , as shown for ~-catenin activation of TCF responses.

l3-catenin isanother factor that associates with FoxOfamily members, in this casein a mutually
inhibitory fashion.t? Underconditionsofcellstress, l3-catenin translocates fromthe plasmamem
brane to the nucleusand initiatescellsurvival responses bybinding its parmer, the transcription
factor TCE FoxOinhibits these responses bysequestering l3-catenin away from TCp5 (Fig. 3).

FoxO Transcription Factors in Cardiac Pathology

Myocardial Ischemia andPost-Ischemic Reperfusion
Bydefinition, myocardial ischemia involves acritical reductionin thebloodsupply to themyocar

dium.Clinically, thisgenerally involves blockage of the coronaryarteries supplying theventricle. In
theexperimental situation, isolated heartsaresubjected to reduced flow ofperfusatedeliveringoxygen
andnutrients.l'' or isolated cardiomyoeytes aresubjected to lowoxygen togetherwithchanges inmedia
composition.57Reperfusion isachieved byre-instating blood flow, or in the experimental situation,
by re-introducing oxygen.56•58While reperfusion is essential to prevent irreversible tissue damage,
it introducesfurther damage to the myocardium, mediated, in part, by the generation of reactive
oxygen species (ROS).Ischemia andpostischemic reperfusion aremajorinitiatorsofcardiac pathol
ogy.Acutely, ischemic episodes cause arrhythmiaoftenleadingto suddencardiac death.59.60 Ischemic
episodes that arenot immediately fatalcause myocardial infarctionthat isfollowed bycompensatory
cardiomyocyte hypertrophy, leadingeventually to heart failure.61Damage to cardiomyocytes during
ischemia and subsequent reperfusion involves both necroticandapoptoticcelldeath62andat leastin
animalmodels, reductionin cardiomyoeyte apoptosis improves functionalourcomesf'

In modelsystems,ischemic injurycanbeamelioratedbyactivation ofPI 3-kinaseandsubsequent
activation of the proteinkinase Akt,a FoxOinhibitordescribed above.64.65Aktprotectionresults in
reducedinfarctsize, indicatingimproved cellsurvival, as wellas improved functionalrecovery.64.65
Aktphosphorylates anumberoftargets includingpro-apoptotic effectors.Importantamongtheseare
thepro-apoptoticproteinsBAD,Mstl , caspase 966and allof the FoxOproteinsexpressed in heart."
FoxOproteinspromoteapoptosis viatranscriptional activation ofapoptoticeffectors suchastumor
necrosis factorrelatedapoptosis inducingligand(TRAIL),Bimand Fasligand.67-69 Cardiomyocytes
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are relatively resistant to apoptosis and, in particular, the extrinsic pathway of apoptosis is though
to be only minimally involved in cardiomyocyte damage7o.71However, there havebeen reports of
Fasactivation and its possible involvement in ischemic injury.72.73 Cardiomyocyte apoptosis most
commonlyinvolves the mitochondrial, intrinsicpathways," Bim,a proapoptoticBcL-2 protein, is
a transcriptional targetof FoxOproteinsand thus increased Bimexpression, subsequent to FoxO
activation, is a possible contributor to Akt-reversible cardiomyocyte cell death. This, of course,
leaves open the questionof how FoxOs wouldbe activated by ischemia/reperfusion.This question
isdiscussed further below.

One possible mechanism bywhichFoxOproteinsmight be activated underconditionsof isch
ernia/reperfusion involves the activating protein kinase Mstl , alludedto earlier. Mstl is activated
bystressors, includingoxidative stress,15.34 asoccursunder conditionsof ischemia/reperfusion." As
noted above, Mstl phosphorylates FoxOfamily members within the forkhead domain to enhance
DNA bindingand thereforeFoxOtranscriptional acrivity.'" Thus,Mstl phosphorylation ofFoxO
acts in opposition to the inhibitory phosphorylation mediated by Akt. Recently, Ste20/oxidant
stress response kinase-I (SOKl) , a close relative ofMstl, hasbeenshownto be directly activated by
interactionwith reactive oxygen species." However, thereareno similarreportsofdirectactivation
by ROS for Mstl itself. Overexpression ofMstl in heart in vivo (Tg-Mstl) causes severe dilated
cardiomyopathy," byinhibitinghypertrophy andautophagywhileactivatingapoptosis. Importantly,
inhibitingMst1activity byexpressing adominant negative Mst1mutant in heart reducedapoptosis
anddysfunction following myocardial infarction." Thissuggests thatMstl isan importantcontribu
tor to heart failure followingischemic insult.

However, it is less clearthat FoxOfamily members are the mediators of Mstl-induced cardiac
pathology. Mst1 inhibits hypertrophyand autophagy, while increasing apoptosis. Inhibition of
hypertrophyby Fox03 hasbeendemonstratedin heart" and initiationof apoptosis byFoxOfam
ilymembers hasbeendescribed in other tissues67.69.78Fox03, however, is associated with increased
autophagyin the myocardium.Y? seemingly opposite to responses initiated by Mstl. However, it
is clearthat transcriptional responses mediatedby the FoxOs varydependingon the celltype, the
natureof the stimulusand the intensityof the stimulus.Therefore, it ispossible that FoxOmembers
mediatetheapoptoticandantihypertrophic actions ofMstl,but not theinhibitionofautophagy.The
questionofFoxO mediationofMsrl-induced cardiac pathologywill onlybeanswered satisfactorily,
with FoxOknock-out animals, or byexpressing dominant negative FoxO.

As discussed earlier, FoxO family members are subject to acetylation/deacerylarion reactions
mediated by histone acetyl transferases (HATs) and class III histone deacetylases (HDACs),
respectively. In heart, Fox03 is acetylated by cAMP response elementbinding protein (CBP)81
and p300 acetylase"and deacerylated by silent information regulator-I (Sirrl , a homologueof
yeast Sir2).82.84 In mammalian heart, Sirtl isa cardioprotective factoractivated following oxidative
stress.1O,l6 Moderateincreases in Sirt1expression in heart areprotective underconditionsof patho
logical growthor under ischemic challenge and thisis relatedto increased expression ofdetoxifying
enzymes suchascatalaseand manganese superoxide dismutase (MnSOD). Thisprotective response
waspreventedbydominant negative FoxO,pointingto a rolefor FoxOin ischemic prorection." As
dominant negative FoxOinhibits the activity ofallmembers of the FoxOfamily, the FoxOsubtype
responsible for this response wasnot identified in this study. This apparently protective action of
FoxOmembers isoppositeto whatwouldbe expected basedon effects of Aktand Mst1. However,
in addition to its transcriptional activation of potentiallyapoptoticfactors, FoxOproteinsincrease
transcription ofcatalase and MnSOD,lO factors that aidin removing ROSandwouldbeexpected to
ameliorate ischemic damage. Higherlevels ofexpression ofSirt1 in heartcaused rapiddevelopment
of hypertrophy, followed byheart failure."It isnot clearwhether this deleterious response to Sirtl
wasalsomediatedbyFoxOfamily members.

From these data, it appears that FoxO proteins can haveboth advantageous and disadvanta
geouseffects on the heart during ischemic episodes. It should be noted that there arealsoreports
that deacetylation bySirtl caninhibit FoxO1andspecifically canreduceFoxO-mediated apoptosis,
althoughtheseobservations werenot madein cardiomyocytes.16.46.84.85
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FoxO proteins are regulatedpositivelyand negativelybyubiquitination. Ubiquitinization bySkp2
is essentially the end point ofAkt mediated FoxO inhibition, by targeting FoxO for proteosomal
degradation." On the other hand, ubiquitinization is also a mechanism of FoxO activation and
this process is enhanced under ischemic conditions." Bythis E3ligase mediated mechanism, FoxO
proteins are ubiquitinated on K63 in mouse FoxO 1,42 enhancing nuclear localization and transcrip
tional activity.43 Removalofthese ubiquitin residues isachieved by herpes virus-associatedubiquitin
specificprotease (HAUSP).The balance between mono -ubiquinitated and nonubiquinitated FoxO
determines transcriptional activity and this balance is regulated by reactiveoxygenspeciesgenerated
under conditions ofischemia/ reperfusion.43

FoxO proteins interact with a number ofcritical factors, ofien in a mutually inhibitory fashion.
important among these is ~-catenin.49 ~-catenin translocates from the sarcolemma to the nucleus of
cardiomyocycesunder ischemicconditions and protects from cardiomyocyceapoptosis," Expression
of ~-catenin reduces infarct size following myocardial infarction and furthermore, inhibition of
~-cateninby cardiac-targeted knock-out or by expression ofa dominant negative mutant leads to
growth failurein responseto challengeand thus precipitates heart failure.87.88 The interaction between
~-catenin and FoxO is heightened under ischemic condidons." As this is a mutually inhibitory as
sociation, FoxO would be expected to reduce the beneficial effectsof~-catenin. However, there are
also reports that ~-catenin is required for adaptive cardiac hypertrophy," but it is not certain that
this involvesFoxO family members.

Hypertrophy
Cardiomyocytes are terminally differentiated and do not undergo cell division to any signifi

cant extent after birth. However, heart sizecan be induced to increase by a process ofhyper trophy
whereby the size of the individual cells increases without their undergoing mitosis. The heart
undergoes hypertrophic growth in response to increased work demand on the cardiomyocytes.
Essentially there are two apparently distinct types of hypertrophy; physiological hypertrophy
that accompanies exercise and pathological hypertrophy. Physiological hypertrophy results in a
larger more powerful heart that does not degenerate into heart failure ." Pathological hypertro
phy, on the other hand, is initially a compensatory response to produce a larger more powerful
heart, but in this scenario, increased growth is associated with arrhythmia and sudden death and
in the longer term degenerates into heart failure .91.92Pathological hypertrophy follows loss of
myocytes due to infarction, as mentioned above, or when there is pressure or volume overload
exerted on the heart, e.g., by increased blood pressure or renal impairment, respectively. FoxO
transcription factors are associated with inhibition ofgrowth in many cell types. This involves
transcriptional activation ofthe cell cycle regulators, p21 and p27 , aswell asother intermediates
and this maintains cells in the Go state? In terminally differentiated cardiomyocyres, Fox03
has been shown to inhibit hypertrophic growth. Fox03 induces transcription ofatrogin-I," a
muscle F-box protein. Atrogin-I associates with calcineurin promoting its degradation via the
proteosorne," thereby inhibiting the calcineurin/nuclear factor of activated T-cells (NFAT)
response pathway that is pivotal in pathological hypertrophy. In addition, atrogin-I and E3
ubiquitin ligase cause ubiquitinization on K63 of FoxO I and Fox03, promoting nuclear local
ization and transcriptional activity. This ubiquitinization serves to oppose the actions of Akt
and by this mechanism FoxO members can limit physiological hypertrophy,86.93.94 that depends
on PI 3-kinase and Akt activation."

Other anrihyperrrophic mechanisms involving FoxO have been reported also. Statins,
cholesterol-lowering drugs that inhibit HMG CoA reductase, have a direct action to limit
cardiac hypertrophy, in addition to their lipid lowering activity. Studies by Hauck et al (2007)96
show that statins facilitate the recruitment ofFox03 to the p21 promoter and thereby initiate
growth-suppression via p21 signaling pathways .

Fox04 interacts in a mutually inhibitory manner with myocardin" and myocardin is a
powerful activator of cardiac hypertrophy," However, the interaction between Fox04 and
myocardin has not been demonstrated in heart as yet .
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Development
Unlikepost natal growth, the fetaldevelopment of the heart requires cellgrowth and division

and FoxO family proteins are involved in this process. This wasdemonstrated in studieswhere
FoxOl, Fox03 and Fox04 wereexpressed under a ~-myosin heavychain promoter to initiate
expression duringfetaldevelopment." Overexpression ofFox03 caused death at embryonic day18
due to restrictedmitosis, whereas embryonicoverexpression of FoxO1 waslethalby 10.5. Fox04
overexpression wasnot lethalduringprenatalgrowth. Knockoutof the FoxO1 geneisembryonic
lethalat E 10.5due to restrictedvasculardevelopment. Deletionofeither Fox03 or Fox04 wasnot
lethalduringdevelopment."

As noted earlier, the transcriptional partner of serum response factor, myocardin, is a critical
regulatorof heart specificatlon,'?"In addition to beingnegatively regulatedby Fox04, myocardin
isa transcriptional targetofFoxO,which, in this case, actstogetherwith myocyte enhancerfactor2
(Mef'2) to activate myocardin genetranscription.Pl Thisbeingthe case, it isunclear whydeletionof
FoxOdoesnot preventearlyheart development. Theanswer may reside in functional redundancy
betweenfamily members.Thispossibility willonlybe addressed byexpressing adominantnegative
mutant FoxOin early embryos to interfere with the transcriptional activity of allfamily members.

Conclusion
TheFoxOfamily oftranscription factors clearlymediateawiderangeofcellular responses andthis

isachieved byan evenmorecomplex regulatory networkresponsible for FoxOactivity.Todate,the
onlycardiac effects definitively ascribed to FoxOaredevelopmental regulation and growthinhibi
tion. However, given the number of cardiac effectors that are FoxOregulators, it seems inevitable
that further functionswillbe described for FoxOfamily members in the myocardium.
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CHAPTER 7

The Forkhead Transcription Factors
Play Important Roles inVascular
Pathology and Immunology
Xiao-FengYang," Pu Fang, ShuMeng,MichaelJan, Xinyu Xiong,
YingYinandHongWang

Abstract

T ranscription factor families are a small number of upstream master genes in "higher
hierarchy" that control the expressionof a large number of downstream genes. These
transcription factorshavebeen found to integrate the signalingpathways underlyingthe

pathogenesis of cardiovascular diseases with or without autoimmuneinflammatorymechanisms.
In this chapter, weorganizeour analysisof recentprogressin characterization offorkhead (FOX)
transcriptionfactorfamily members invascular pathologyand immuneregulationinto the follow
ingsections: (1) Introductionof the FOX transcriptionfactorsuperfamily; (2) FOX transcription
factorsand endothelialcellpathology; (3) FOXtranscriptionfactorsandvascular smooth muscle
cells;and (4) FOX transcription factors, inflammation and immunesystem.Advances in theseareas
suggest that the FOX transcriptionfactor familyisimportant in regulatingvascular development
and the pathogenesis of autoimmuneinflammatorycardiovascular diseases.

Introduction
Theforkhead(FOX) transcriptionfactorfamily modulatesthe expression ofa largenumberof

major regulatorygenesthat expansively regulatestillmore signaling pathways, integrationpoints
and pathologicalprocesses. Givensuchaposition atop a regulatoryhierarchy, it iseasyto seewhy
studies of FOX transcription factors havegrown exponentially since their discovery. While we
cannot propose to detail everyknown aspectof FOX transcription factorswithin the scopeof a
singlechapter,wecan relatethe rolesof FOX transcription factorsin well-worn fields of medical
research that could derivebeneficial therapeuticstrategies.

Atherosclerosis ischaracterized byfocalarteriallesionscontainingcholesterol, fibrosis, intense
immunologicalactivity, inflammatorycellinfiltratesand celldeath.' Several riskfactorshavebeen
identifiedfor the atherogenicprocessincludinghyperlipidemia, lowdensity lipoprotein (LDL),
cigarettesmoking,diabetes, hypertension,obesity' and excessive quiescence.' Wang's laboratory
and others haveconfirmedthat hyperhomocysteinemia (HHcy) alsoactsasan independent risk
factor in accelerating atherosclerosis.t" In addition, atherosclerosis is positively correlatedwith
the endotoxin loadin patients'plasma? Theseriskfactorsindependentlyor synergistically leadto
chronic vascular inflammation, which is an essential requirement for the progression of athero
sclerosis in patients." Most recently, Yang's laboratory and others haveshown that transcription
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factor Foxp3-controlled CD4+CD2Shigh regulatory T-cells9 suppress vascular infiammarion.P! '
diabetes" and arherosclerosis.P''" Despite significant advances in elucidating atherosclerotic pa
thology, atherosclerosis remains as the leading cause ofmorbidity and mortality in industrialized
society.Therefore, continuous improvement ofour understandingofthe atherogenesis and vascular
inflammation initiated and promoted by risk factors will lead to the future development ofnovel
therapeutics for ischemic stroke, myocardial infarction and other cardiovascular diseases.

Inunderstanding the molecular signals underlyingvascular inflammation and metabolic stress,
the expression profiles ofnumerous genes in vascular cells in response to inflammation and meta
bolic stressstimuli have been identified.15.16The question remains whether there are a small number
ofupstream master genes in "higher hierarchy" that controls the expression ofa large number of
downstream genes and integrates the signaling pathways underlying vascular development and the
pathogenesis ofcardiovascular diseases. Among these master genes are several transcription factor
families, notch Signaling components and epigenetic machinery. Recent reviews more specifically
detail FOX transcription factors," myocardin related transcription factors," notch signaling,' ?
Kruppel-like transcription factors," E26 transforming-specific sequence (ETS) transcription
factors" and epigenetic regulatory mode." The results obtained in the studies of transcriptional
genomics using microarrays associate several FOX transcription factors (FOXC1, C2, PI, P4
and 01A) with human heart failure , suggesting the pathophysiological significance of this gene
family.23Inthis chapter, we focus on analyzing the roles ofFOX transcription factors identified in
vascular pathology, diabetes and immunology. We apologize for not being able to include many
valuable articles and reviews due to limited space.

Introduction ofthe FOX Transcription Factor Superfamily

Structure
Since the discovery of Drosophila transcription factor fork head" and subsequent identi

fication of the forkhead DNA-binding domain in the 1990s,25 more than 100 FOX genes and
19 human subgroups have been identified (FOXA to FOXS).26 Subgroups are designated by a
letter and within each subgroup proteins are given a number.27The FOX transcription factors
are termed using the following convention: all capital letters for human (e.g., FOXA1): only the
first letter capitalized for mouse (e.g., Foxa1); and the first letter and subgroup capitalized for all
other chordates [e.g., FoxA1). 27Members of this family have three a helices and two large loops
or butterfly-like 'wings'.27Therefore, the forkhead domain with approximately 100 amino acids is
sometimes referred to as the forkhead/winged helix domain.27The FoxO subgroup has received the
most attention because ofits recentl ydiscovered roles in reactive oxygen species (ROS) detoxifies
tion,2s.29cell cycle progression .f apoprosis.l':" cell size,17.33-35DNA repair." glucose metabolism36-3S
and vascular homeostasis." Given such extensive characterization, the FoxO subgroup will serve
as a basis for introduction to the FOX transcription factor family.

Expression
FoxO protein expression has been reported in the ovary, prostate, skeletal muscle, brain, heart,

lung, liver,pancreas, spleen, thymus and testis. However, in different cell types or organs, the expres
sion levels of those FoxOs can differ considerably," FoxO1 is highly expressed in adipose tissue,
whereas Fox04 is highly expressed in muscle and Fox03a in liver." Fox06 expression appears to
be restricted to brain." FOX01, FOX02, FOX03a and FOX04 are identified in fusion genes
derived from chromosomal translocations in human soft tissue tumors and leukemias. FOXO1 is
known as forkhead in rhabdomyosarcoma (FKHR), FOX03a is termed as FKHR like protein 1
(FKHRL1), FOX04 is known as AFK, an acute leukemia fusion gene located in chromosome X ,
and a fusion between FOX02 and MLL occurs in some cases ofacute myeloid leukemia."

FunctionalModes ofFOX Transcription Factors
FoxO transcription factors must bind to DNA to either activate or repress target gene expression.

They preferentially bind to DNA at the "FoxO -recognized element," which has the core consensus
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sequence 5'-T/C-G/A-A-A-A-C-A-A-3'. Fourteenprotein-DNA contactsoccur in the forkhead
domain with the primaryrecognition sitelocatedat a-helix H3.26Both the firstand secondloops
ofFoxO proteinsmakecontactwith DNA, but it isthesecondloop that canenhancethe specificity
and stabilityof the binding.26The mechanisms underlying the bindingofFoxO proteins to DNA
havenot beencompletely defined. FOXtranscriptionfactors mayinteractwithavariety ofcofactors
suchasCBP/p300, Smad(aclass of transcription factors that modulatethe activity of transforming
growth factor (TGF)-~ ligands), STAT(the Signal Transducers and Activators of Transcription
protein), PPAR (the peroxisome proliferator-activared receptors), Runx (a transcription factor
that controls the timing of gene activation/inactivation), p53 (a tumor suppressor), other FOX
transcriptionfactors and nuclear receptors for androgens, glucocorticoids, thyroid hormone and
retinoicacid.Suchinteractions maychangethe FOX transcription factors' DNA binding ability,
therebyaffecting their abilityto promoteor repress targetgeneexpression.26.42 FoxOtranscription
factors contributeto cardiac muscle remodelingand insulinsignalingandlinkinsulinresistancewith
maladaptive heart hypertrophy. Calcineurin isan important phosphatase that activates a cascade of
generegulation throughthe nuclearfactorof activated T-celll (NFATl) transcription factors. The
heterotrimeric protein phosphatase 2 (PP2, formerly PP2A) isa ubiquitousand conserved serine/
threonine phosphatase with broad substrate specificity and diverse cellular functions. Sustained
activation ofFoxO1or Fox03 in cardiornyocytes selectively enhances the activity ofprotein kinase
B(Akt) and reduces insulinsignaling through inhibitionof calcineurin and PP2.43,44

CombinatorialRegulation ofGene Expression byFOX Transcription Factors
and Other Transcription Factors

In additionto workingwithothercofacrors,FOXtranscription factors oftenfulfill theirfunction
in regulatinggeneexpression in combination withother transcription factors,Vascular development
begins when mesodermal cells differentiate into endothelialcells, whichthen formprimitivevessels.
A44 bp transcriptionalenhancerin thegenes' promoterregions issufficient to directgeneexpression
specifically and exclusively to the developing vascular endothelium.Thisenhanceris regulatedby
a compositecis-acting element, the FOX:ETS motif,which isbound and synergistically activated
byFOX and ETStranscriptionfactors. Coexpression ofFoxC2 and the ETSprotein Etv2induces
ectopic expression of vascular genes in Xenopusembryos. Combinatorial knockdown of the or
thologousgenesin zebrafish embryos disruptsvascular development. Finally,FOX:ETSnucleotide
sequence motifs are present in many known endothelial-specific enhancers, indicatingthat this
motif isan efficient predictor ofendothelialenhancers in the human genome.v The interactionof
FoxOwith other transcriptionfactors suchasnuclearfactor-xll (NF-KB) likely contributesto the
complexity of the synergybetweenvascular endothelialgrowthfactor(VEGF)Signalingand FoxO
in the upregulationofnumerousgenes includingmatrixmetalloproteinase-I0 (MMP-l 0),vascular
endothelialcelladhesionmolecule-I (VCAM-l), endothelial-specific molecule-I (ESM-l), bone
morphogeneticprotein-Z (BMP-2) andCBP-interaeringtransactivator-2 (CITED-2).46 HOXA13 is
a transcriptionfactorthat plays aroleon placentalformation." FoxF1promotersbind to HOXAl3
and canusetheseboundpromoterregions to directgeneexpression, providingafunctionalvascular
endotheliallabyrinthnecessary for embryonicgrowthand survival."

Post-TranslationalModification
In addition to being regulatedat transcriptional and translational levels, the activities of the

FOX transcription factor family are also regulated posttranslationallyvia phosphoryaltion by
Akt, a serine/threonine kinase." FOXOl has phosphorylation sites at residues 1hr24, Ser256
and Ser3l9.48FOX04 has phosphorylation sitesat residues Thr28, Serl93 and Ser258.48These
phosphorylation sitesarenot equallymodified. Amongthe threephosphorylation sitesofFOX03a
(1hr32, Ser253, Ser3l5), Akt preferentially phosphorylatesSer253.32Mutation of the Akt phos
phoacceptoraminoacidsto alanineresidues on FOXO canrenderit resistantto Akt phosphoryla
tion and enhancesthe transcriptionalactivityofFOXO, suggesting that phosphorylationbyAkt
inhibits the transcriptionalactivityof FOXO.49 After activation, Akttranslocates to the nucleus
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and phosphorylatesthe FOXO transcription factor,which resultsin the export of FOXO into
the cycosol/" Alternatively, the phosphorylation ofFOXO proteins resultsin their inactivation
throughcytoplasmic retendon." In the absence ofAkt activity or following themutationofFOXO
phosphorylationsites,FOXO isexclusively localized to the nucleus.v'The translocationofFOXO
following Akt phosphorylation isassociated with the protein 14-3-3.48 The 14-3-3family of pro
teins functions by binding to its protein ligandsin a phosphorylation-dependentmanner. Two
binding motifsof 14-3-3 proteins havebeen identified,namelyRSXpSXP and RXY/FXpSXP,50
which are present in nearlyallknown 14-3-3proteins. Akt phosphorylationof FOX03a results
in the association ofFOX03a with 14-3-3protein and retention ofFOX03a in the cytoplasm,
renderingit ineffective to target genesin the nucleusand thus blockingits pro-apoptotic role."
In addition, translocation of FOXO can alsooccur in response to a cellularinsult, such as oxy
gen or glucose deprivation." FoxO factorscan also be phosphorylated by other cellularkinases
includingNF-KB inhibitor (IKB) kinase, serum-glucocorticoid-regulated kinase, caseinkinase1,
dual-specificity tyrosine-(Y)-phosphorylation regulated kinase lA , cyclin-dependent kinase 2
and mammalianSte20-like kinase.?

Somephosphorylationeventscan alsoregulateFoxOactivityindependent of cytosol-nuclear
shuttling. For example, the phosphorylation mediated by Ras-related GTPase 9Ral-]unkinase,
cyclin-dependent kinase" and other mitogen-activated protein kinasepathways? modulateFoxO
activity.In additionto phosphorylation, FOXO factors arealsotightlyregulated byotherposttrans
lationalmodifications includingcAMPresponse element-bindingprotein (CBP)/p300-mediated
acerylation," ubiquitinligase Skp2-mediated ublqulrination" anddeubiquitinase USP7-mediated
deubiqulrination.f

In addition to being regulated by Akr, Fox03a can also regulate the activationof Akt and
extracellular signal-regulated kinases (ERK)asafeedbackpathway.FoxoIa-deficient micedevelop
marked neutrophilia with age or during hematopoietic recovery afier myelosuppressive stress
induced by S-fluorouracil (S-FU), an antitumor chemotherapeuticdrug, in a cell-autonomous
manner.Akt and ERKactivationareevidentin hematopoieticstemcells (HSCs) of S-FU-treated
or agedFox03a-l-deficient mice.Fox03a-l-deficient cellsarehyperresponsive to cytokinestimula
tion,aphenotypeeffectively reversed bytreatmentwith inhibitorsof theAkt-mammalian targetof
rapamycin (mTOR)pathwayor theMEK(mitogen-activated proteinkinase kinase)-ERKpathway,
indicatingthat Fox03a plays apivotalrolein maintenance,integrityand stressresistance ofHSCs
through negative feedbackpathways for proliferation."

FOX Transcription Factors and Endothelial Cell Pathology
The work of Wang's laboratory suggests that the roles of risk factor(s) in atherogenesis are

relatedto endothelialdamagecausedbythe riskfactor(s).5.6 It isseenthat endothelialdamageisa
mainmechanism underlying thepathogenesis ofatherosclerosis, restenosisandposttransplantgrafi
atherosclerosisin addition to infiltrationofinflammatorycells andproliferationofsmoothmuscle
cells. Blockedapoptosisof endothelial cells resultsin significant reduction ofintimal hyperplasia
in vivo.54FOX transcription factorsfit into this paradigmaccordingto Figure1,whichwillserve
asa usefulreference for the ensuingdiscussion.

EndothelialApoptosis
Invascular endothelialcells, Foxo1and Fox03a arepro-apoptotic proteins regulatedbyAkt.55

Uponactivation byVEGFor insulin/insulin-like growthfactor-l (IGF1),Aktmediates prosurvival
and anti-apoproticsignalingin part via the phosphorylationand inactivationofFoxO transcrip
tion factors,32·56-57Akc-regularedFOX03a controlsendothelialcellviabilitythrough modulation
of the expression ofcaspase-8 inhibitor FLIP (FLICE-inhibitory protein).58FLIP isa homologue
of caspase-8 that lackscatalyticactivityand has been shown to be important in protecting en
dothelial cells from apoptosis." Akr promotes FLIP expression in endothelial and tumor cells.58

Transductionofanonphosphorylarable, constitutively active mutant ofFOX03a (TM-FOX03a)
down-regulates FLIP,increases caspase-8 activityand promotes apoptosis in endothelial cells/"
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Figure 1. FOX transcription factors in endothelial cells. Various FOX transcription factors affect
the growth and apoptosis of endothelial cells (EC) and endothelial progenitor cells (EPC).

Conversely, transductionofadominant-negative mutant ofFOX03a up-regulates FLIPlevels and
protectsendothelialcells fromapoptosis inducedbyserumdeprivation conditions." Restoration of
intracellularFLIPblockscaspase-8 activationand inhibitsapoptosisin TM-FOX03a-transduced
cells.58Thisestablishes a convincingmechanismfor FOX-mediatedendothelial cellapoptosis.

EPCApoptosis andMaturation
FOXO maycontribute to endothelial progenitor cell (EPe) apoptosis. EPCs are present in

the systemic circulationand homein on sitesof ischemic injury.59.60 CirculatingEPC levels arean
indicator of cardiovascular health.61•62 Phosphorylationand thereforeinactivationofFOX04 by
statins preventsEPC apoptosis," In addition, statins reduce the expression of the pro-apoptotic
FOX-regulated protein Bim in a phosphatidylinositol 3-kinase (PI3K)-dependent manner."
Similarly, sclerodermaserum-induced EPC apoptosis ismainlymediatedbytheAkt-FOX03a-Bim
pathway, which mayaccount, at least in part, for the decreasedcirculatingEPC levels in sclero
dermapatients.64Moreover, Akt expression isattenuated in the earlystages ofdifferentiationand
isgradually upregulatedduring EPC maturation. FOX03a, an Akt downstreamtarget, isdown
regulatedthrough phosphorylation in the latestages ofEPC differentiation. Adenovirus-mediated
overexpression of activatedFOX03a in peripheral blood mononuclear cells markedly increases
the number of cell foci but reducesthe number of Di-aceryl LDL-expressing EPCs that appear
at later time points. Thesedata suggest that Akt/FOX03a signalingisan important regulatorof
EPC maturarion/?

Endothelial Cell Proliferation
FOX transcription factors modulate the migration and proliferation of aortic endothelial

cells, which are critical processes involved in atherosclerosis and postangioplasty restenosis."
Inhibition ofFOXO factorspromotes endothelialproliferationby down-regulating p27Kipl, a
memberof the universal cyclin-dependenr kinaseinhibitor family.66 Transfectionof endothelial
cells with constitutively active TM-FOX03a up-regulates p27Kipl, whereas transfectionwith a
constitutively activeAktdecreases p27Kipl expresslon.f ReducingFOXO expression usingRNA
interferenceattenuatesp27Kipl expression and stimulatesendothelialcellproliferation.f In con
trast, targeted inactivationof FoxF1leadsto lossof vasculature." FoxF1 is crucialfor assembly of
endothelialcells into simpletubesfromclusters ofmesodermal angioblasts," Similarly. endothelial
cell-restricted disruptionofFoxM1impairsendothelialrepairfollowing bacterial toxinlipopolysac
charide(LPS)-inducedvascular injury.68 Endothelialcellsisolatedfromendothelialcell-restricted
Foxml-deficientmouse lungs fail to proliferate and small interfering RNA (siRNA)-mediated
suppression of FOXMl in human endothelial cells results in defective cell cycle progression.f
Thesedata suggest differential rolesof FOX proteins in endothelialcellproliferation.
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Another mode by which FOX transcription factors may regulate endothelial cell proliferation
is downstream ofhomocysteine (Hcy)-induced effects. Wang's laboratory and others confirmed
that HHcy acts as an independent risk factor in accelerating atherosclerosis.v" High levels of
Hey induce a sustained injury ofarterial endothelial cells, which accelerates the development of
thrombosis and atherosclerosis . In addition, Hey specifically inhibits the growth of endothelial
cells. Hey induces dephosphorylation ofAkt and FOX03a and upregulates p27Kip1 in a time- and
dose-dependent manner. PI3K activator peroxovanadate (PV) and PP2 inhibitor okadaic acid can
reverse the Hey inhibition ofendothelial growth. Pretreatment with PV and okadaic acid prevents
Hey-induced cellcycleG 1phase arrest. Transfection with specificantisense oligonucleotides to Akt
further supports these observations. These results suggest a new pathogenic mechanism underlying
HHcy as an independent risk factor for cardiovascular diseases,"

Roles ofFOX Transcription Factors in VEGF Signaling
FoxC 1 and FoxC2 are essential for arterial cell specification during development. In the

developing embryo, arterial and venous identity is established by genetic mechanisms before
circulation begins. VEG F signaling and its downstream Notch pathway play critical roles in arte
rial cell fate determination. FoxC 1 and FoxC2 directly induce the transcription ofDelta-like 4
(D1l4), a ligand for Notch receptors. FoxC2 physically and functionally interacts with a Notch
transcriptional activation complex containing Su(H) and Notch intracellular domains to induce
Hey2 promoter activity. FoxC transcriptional factors interact with VEGF and Notch signaling
to regulate arterial gene expression in multiple steps of the VEGF-D1l4-Notch-Hey2 signaling
pathway?" In addition, VEGF is a direct transcriptional target of FoxMlb. In glioma cells,
FoxMlb overexpression increases VEGF expression, whereas blockade of FoxMlb expression
suppresses VEGF expression."

Incubation ofhuman coronary artery endothelial cellswith hepatocyte growth factor (HGF)
induces prolonged PI3K/Akr-dependent phosphorylation and nuclear exclusion of FOXO1.
H GF-mediated inhibition ofFOXO1activity results in secondary attenuation ofVEGF-induced
expression of FOXO l-dependent genes including VCAM-l, manganese superoxide dismutase
(MnSOD), ESM-l, CBP/p300 interacting transactivator with ED -rich tail-Z,BMP-2, MMP-lO
and MG C 5618 .72 Foxol-deficient mice have also been ascribed to have an insufficient endothelial
response to VEG F. FoxO l-deficient yolk sacs show reduced expression of essential endothelial
gap junction connexins 37 and 40 and ephrin-B2 (a ligand for the Eph receptor respon sible for
vascular patterning and identity).'?Postnatal deletion ofthe FoxO 1 gene by the transient activa
tion ofCre recombinase through the Mxl promoter results in the appearance ofhemangiomas.
but deficiencies ofFox03 and/or Fox04 do not recreate the tumor phenotype observed in Foxol
deficient mice. These results suggest that in endothelial cells, FoxO 1 is the dominant factor in
suppressing tumor formarion.'?

EndothelialResponses to Stress
FOX transcription factors have specific responses under conditions ofstress. Prolonged shear

stress (18 hours) leads to a significant (50%) decrease in hydroxyl-merhylgluraryl coenzyme A
reductase (HCR) mRNA expression via the phosphorylation and degradation of FoxOla.73

HCR is the rate -limiting enzyme for cholesterol synthesis." Correspondingly, the downregu
lation of FoxO with siRNA decreases HCR expression." In addition, angiotensin II (Ang II)
is a powerful accelerator of atherosclerosis and modulates the expression ofendothelial nitric
oxide synthase (eNOS),74 Exposure ofhuman umbilical vein endothelial cells to Ang II elicits
a rapid phosphorylation ofAkt and FoxO l,74Constitutively active Akt inhibits the promoter
activity ofa scavenger receptor of the BI class (hSR-BI/CLA-l), whereas a dominant-negative
mutant of Akt or mutagenesis of a FoxOI response element in hSR-BIICLA-l abolishes the
ability ofAng II to suppress promoter activity,74Thus FoxO 1 mediates two distinctive outcomes
in response to stress.
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Neovascularization
eNOS, whichisessential forpostnatalneovascularization, isregulatedbyFoxO1and Fox03a.?5

EPCs promote neovascularization in sitesof ischemic injury.59.60 Constitutivelyactive FoxO1and
Fox03a repress eNOS expression bybindingto the eNOS promoter," In vivo, Fox03a deficiency
increases eNOS expression and enhancespostnatalvessel formation and maturarlon." BMPsare
involved in embryonic and adult blood vessel formation in health and disease. BMPER (BMP
endothelial cell precursor-derived regulator) is a differentially expressed protein in embryonic
endothelial precursor cells. BMPER is a downstream target of Fox03a and consistently exerts
activatingeffects on endothelialcellsproutingand migration in vitro and in vivo." Intercellular
junctionsmediateadhesionand communicationbetweenadjoiningcells. Althoughformedbydif
ferentmolecules, tightjunctions(T]s)andadherens junctions(Als) arefunctionally andstructurally
linked. Vascular endothelial(VE)-cadherin at A]supregulates T] adhesive protein claudin-5.1his
regulationrequiresalleviation from inhibition by FoxO1 and the T-cellfactor (Tcf)-4-I3-catenin
transcriptional repressor complex. VE-cadherin acts by inducing the phosphorylationof FoxO1
throughAktactivationandbylimitingthe translocation ofl3-catenin to the nucleus," Collectively,
the studies of FOX transcription factors in endothelial cells show a myriad of distinct rolesfor
development, proliferationand celldeath assummarized in Figure1.

FOX Transcription Factors andVascular Smooth
Muscle Cells (VSMCs)

VSMC Apoptosis
FoxO transcription factors haverolesin regulating VSMC apoptosis. VSMCsareessential for

the structuralintegrityand contractile responses of the arterialvessel wall," Duringthe early phase
of atherogenesis, the proliferation ofVSMCs in response to inflammatory stimulidominantes over
VSMC apoptosis," Aswith endothelialcells, apoptosis ofVSMCs isan important regulatorof the
stabilityofatheroscleroticplaques."Blockage ofphosphorylation ofFox03 correlateswithincreased
VSMC apoprosis." FoxOtranscription factors canmodulateVSMC cellsurface expression ofCD95
(Fas) ligand(FasL),whichisan importantdeterminantforcelldeath.80Ectopicexpression ofFox03
in VSMCs induces FasL expression and DNA fragmentation, which ispartially dependenton the
activity of caspase-S," Brunetet al.identifiedthreeputativeoverlapping FOx03response elements
in the FasL promoter,twoof whicharefound to bind Fox03.32

VSMC Proliferation
FoxOtranscription factors also regulateVSMC proliferation. VSMCproliferation andsurvivalare

implicated invasculardiseases suchasrestenosis followingangioplastyor stenting. Inactivation ofFOX
transcription factorscan lead to transcriptional down-regulation of p27Kip.81'83Down-regulation
of p27Kipl is associated with increased cellcycle entry.82 FOX transcription factor inactivation
and p27Kip1downregulation arepreventedbyone of the following approaches: (1) inhibition of
PI3K with wortrnanninor LY294002; (2) overexpression of a constitutively inactive form of Akr:
or (3) overexpression of constitutively active forms of FOX transcription factors.81.831he antipro
liferative effectofTM-FOX03 can alsobe partially reversed bysiRNAagainstp27Kip1.81In the
carotid artery balloon injury model, TM-FOX03 delivered by adenovirus to arteries decreases
the proliferation ofVSMCs and reduces the intima/media ratio with an accompanying increase
of p27Kip.81.83 Recentevidence alsosuggests that the upregulation of p27Kipmaynot be the only
mechanism bywhich FoxOinhibitsVSMC proliferation.171he cysteine-rich protein 61 (CYR61,
CCN1),animmediateearlygeneandapotent angiogenic factorrapidlyexpressed andsecreted from
VSMCsafrerangioplasty or AngII stimulation. CYR61hasbeenshownto be negatively regulated
by FoxO in VSMCS.84 CYR61 is an extracellular matrix-associated protein that can interactwith
integrinsto promoteVSMCmigrationandadhesion.CYR61hasbeenimplicated in processes such
asatherosclerosis andvascular resenosis.85.87A functionalassociation betweenFoxOand CYR61is
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firstnoted afteridentification ofa forkhead bindingelementin the promoterof the CYR61gene.'?
Adenoviral deliveryoffM-FOX03 suppresses CYR61 expression,inhibitsproliferation andreduces
cellviability.78.84This repression seems to workviaa direct effect because FOX03a is detectedat
the CYR61promoter bychromatinimmunoprecipiranon." Moreover, a reporterassay shows that
deletion of the FOXO binding site in the CYR61 promoter abrogates the repression of CYR61
expression byTM-FOX03a.78 Conversely,concomitantdeliveryofadenoviruses expressingCYR61
and TM-FOX03a reverses the intima-sparing effect ofTM-FOX03, inhibits FOX03a-induced
cellular detachmentand reduces viability in vitro without affecting the proportion of cells in the
sub-GI (presumablyapoptotic) populationidentifiedbypropidiumiodideapoptoticcellStaining.78.84
Epidermal growthfactorligand,suchasbetacellulin (BTC),induces thephosphorylation ofFoxO1
and Fox04, in a dose-and time-dependent manner," Fox0410calization in the nuclei of cultured
aortic smooth muscle cells isassociated with reducedexpression of myogenic markers.'?Myogenic
differentiation-specific genes that are likely to be repressed by nuclearFox04 includeSMa-actin,
SM-calponin and SM-22a.17 In agreement with thismodel,the nuclear translocation ofFox04 is
found to occurin proliferatingVSMCsafterinvivo vascular injury.89Cyclin D1isakeyregulator of
cellproliferation that promotesthe progression of G1phase. Recently, a correlation betweenFoxO
phosphorylation andcyclin D1expression hasbeenfoundinthe regulation ofVSMCproliferarion."
BTC,whichincreases the expression ofcyclin D1in VSMC, induces the phosphorylation ofFoxO
viathe PI3K/Akt signaling pathway. Thisindicates that the up-regulation of cyclin D I inducedby
BTC in VSMC maybe caused byreleasing the repression ofFoxO factors.

FoxO in VSMC Differentiation
Fox04 has been shown to modulate the transition ofVSMCs from a contractile to a more

proliferative phenorype.?" Myogenic differentiation-specific genes arerepressed bynuclearFox04.
Thesegenesareunderpositiveregulationof myocardin," a transcriptional coactivator that isessen
tialfor the inductionofdifferentiation in VSMCS.92,93TheinteractionofFox04with myocardin in
culturedaorticsmoothmuscle cells wasshownto repress the differentiation ofVSMCsinitiatedby
myocardia." Thenucleartranslocation ofFox04 wasfound to occurin proliferatingVSMCsafter
in vivovascularinjury," Thissuggests that nuclearprevalence ofFox04 isnecessary to suppress the
differentiationprogram and promote a dedifferentiated and more proliferativephenotype.

FoxO in Aging VSMCs
In VSMCsofold rats,phosphorylatedFox03a isincreased." MnSOD isone of the majorcel

lularantioxidantdefense systems and a recentstudyshowedthat both MnSOD protein expression
and activityare reduced in VSMCsfrom old animalsas compared to that from younganimals.
Fox03 interactswith the promoter of the rat MnSOD geneand inhibition ofFox03a transcrip
tion leadsto reduction ofMnSOD expression.

One of Akrs VSMC protectiveeffects has been identifiedas its inhibition ofFox03a or gly
cogensynthasekinase-3 (GSK3)byphosphorylation.Activationof!GF1R,which isincreased in
the VSMCsof old animals, leadsto the activationofAkt and Fox03a. Genesfor p27Kip,catalase
and MnSOD, whichplayimportant rolesin the controlofcellcycle arrestand stressresistance, are
found to be FOX03a targets. IGF1R signalingmodulates thesegenesthrough activationof the
Akt/FOX03a pathway,"Thederegulation of theAkt-Fox03a-GSK3pathway, due to a reduction
ofIGFIRsignaling, promotes apoptosisin atherosclerosis."

Roles olOtherFOX Transcription Factors in VSMCs
In addition to FoxO,other forkheadtranscriptionfactorsarealsoinvolved in VSMC survival.

LungsofFoxm1-1- miceexhibitsevere hypertrophyofarteriolarsmooth muscle cells and defectsin
the formationofperipheralpulmonarycapillaries asevidenced bysignificant reductionin thestain
ingofcapillary-marker plateletendothelialcelladhesionmolecule1in the disrallung." Premature
expression of the FoxM1b transgeneprotein accelerates proliferationof differentlung celltypes,
includingendothelialcells of pulmonarycapillaries and arteries." ThusFOX transcriptionfactors
haveimportant rolesin multiple types of cardiopulmonarysmooth muscle.
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Figure 2. FOX transcription factors in immune responses and inflammation. Various FOX
transcription factors mediate immune responses that regulate inflammation. Dashed lines
represent pathways that do not necessarily produce inflammation. PAI-l, Plasminogen Activator
Inhibitor-l; NF-KB, Nuclear Factor-xfl.

FOX Transcription Factors, Inflammation and Immune System
Recent studies performed on hypercholesterolemic mice deficient in different components

ofthe immune system uniformly suggest that the net effect ofimmune activation is pro-athero
genic and that atherosclerosis, at least to some extent, should be regarded as an autoimmune
disease.3.16.99.100 Therefore, some of the roles of FOX transcription factors in the pathogenesis
ofcardiovascular diseases are associated with their roles in the regulation of immune responses
and inflammation. In addition, it becomes clear that these FOX transcription factors also play
crucial roles in various aspects ofimmune regulation. Several members ofthe FOX transcription
factor family, for example FOXFI, FOXP3, FOXNI, FOXOI and FOX03, have been shown
to execute diverse functions in regulating inflammation and adaptive immune response .9•42,lOl .102

Figure 2 will serve as a reference for our following discussion.

FOX Transcription Factors andInflammation
FOX transcription factors play important roles in vascular inflammation. FoxFl (previously

known as HFH-8 or Freac-l) isexpressed in endothelial and smooth muscle cellsin the embryonic
and adult lung. Haploinsufficient Foxfl +/- mice develop severe airway obstruction and bronchial
edema associatedwith increasednumbers ofpulmonarymast cellsand increased mast celldegranula
tion after injury. Pulmonary inflammation in Foxfl +/- mice isassociatedwith diminished expression
ofFoxfl, increased mast cell tryptase and increased expressionofCXCL12, the latter being essential
for mast cell migration and chemotaxis . Foxfl haploinsufficiency causespulmonary mastocytosis
and enhanced pulmonary inflammation after chemically-induced or allergen-mediated lung injury,
indicating that Foxfl playsan important role in inhibiting the pathogenesis ofpulmonary inflam
matory responses via suppressing mast cell migration and chernotaxis.l'"

FoxDl has a role in the induction ofplasminogen activator inhiblror-I (PAl-I), aserpin class
protease inhibitor that plays a central role in the regulation ofvascular function and tissue remod
eling by modulating thrombosis, inflammation and the extracellular matrix . A central mediator
in controlling PAl-I expression is immunosuppressive cytokine TGF-~, which induces PAI-I
expression and promotes fibrosis. Overexpression ofSmad6s (an endothelial splice variant) from
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the Smad family of signal transduction molecules in endothelial cells increases PA1-! promoter
activity and secretion, whereas antisense Smad6s suppresses the induction ofPA1-! by TGF-~.

The levels ofSmad6s can alter the levels ofTGF-~ and the subsequent induction ofPA1-! via a
FoxD! transcription site. Further data suggests that this process, which is up-regulated in diseased
vessels, can be modulated by the inhibition ofprotein kinase C (PKC)_~.I04

FoxO proteins may have a role in propagating the obesity-associated low-grade inflammation in
adipose tissue that results from increased production ofpro-inflammatory cytokines. Subsequently,
increased proinflammatory cytokines can contribute to the development of insulin resistance.
Tumor necrosis factor (TNF)-a treatment attenuates Akr-dependenr phosphorylation ofFoxO!
and enhances transcriptional activity of FoxO 1. FoxO! increases the expression of CCAAT/
enhancer binding protein (C/EBP~, a positive regulator of monocyte chemoattracrant protein
(MCP)-! and interleukin (lL)-6 genes) through directly binding to its promoter. These findings
suggest that activation ofFoxO l triggered by TNF-a up-regulates the expression ofC/EBP~ in
3T3-Ll adipocytes, thereby leading to an increased production ofpro-inflammatory cytokines,
MCP-! and IL_6.10S However, unlike TNF-a, bacterial endotoxin LPS utilizes the PI3K pathway
to inhibit Fox03a. Inhibition ofPI3K attenuates LPS-induced production ofproinflammatory
cytokine IL-8. LPS-induced IL-8 is increased in HT-29 cells with silenced FOX03a. Moreover,
in HT-29 cells with silenced FOX03a, the expression level of IKBa, an NF-KB inhibitor, is
decreased. Thus , LPS and bacterial infection inactivate Fox03a in intestinal epithelia via the
PI3K pathway and further suppresses IKBa, leading to the activation ofNF-KB and subsequent
upregulation ofIL-8.106Currently, it remains unclear whether the roles ofFOX factors in regulat
ing proinflammatory cytokines either positively or negatively are cell-specific, cytokine specific,
or inflammation phase specific.

FoxP3, Regulatory T-Cells andImmune Suppression
FoxP3 is by far the most intensely studied forkhead family member in immune regula

tion due largely to its roles in differentiation, homeostasis and suppression of CD4+CD25high

regulatory T-celis (Tregs).? Tregs, characterized by high expression ofCD25 (an IL-2 receptor
a -chain), comprise 5-10% ofthe total population ofCD4+ T-celis in mice. Tregs downregulate
the reactivity ofCD4+CD25- T helper cells (Th cells) and play crucial roles in the supp ression
of inflammation, antitumor immune responses, autoimmune diseases and transplant rejec
tion.9,107.109 FoxP3 is highly expressed in Tregs in both humans and in mice.llO,lll The Scurfy
mice have been identified to have defective Foxp3 genes. The function of Foxp3 is essential
for normal immune homeostasis.!'? The phenotypes in the Scurfy mice include lethality of
hemizygous males 16-25 days after birth and overproliferation ofactivated CD4+ T -cells with
multi-organ infiltration.I13Interestingly, adoptive transfer ofwild-type lymphocytes can control
the T-cell activation in the Scurfy mice and prevents autoimmune disease development,113which
indicates that the Scurfy mice lack a certain lymphoid compartment that can repress the activity
of activated T-cells. A variety ofstudies on patients' families also indicate that FOXP3 muta
tion leads to the immunodysregulation polyendocrinopathy enteropathy X-linked syndrome
(IPEX) in humans .!'" Patients with IPEX have massive T-cell infiltration into the skin and
gastrointestinal tract as well as high levels of autoantibodies in serum. Foxp3 transgenic mice
have increased numbers ofTregs, which strongly suppress the proliferation ofantigen-stimulated
CD4+ Tvcells. Transgenic CD4+ and CD8+ cells are hyporesponsive to activation. All of the
disease manifestations and animal models support the crucial role ofFoxP3 in Tregs' develop
ment. Most recently, Yang's laboratory and others showed that the survival!apoptosis pathway
ofFoxp3-controlled CD4+CD25high Tregs modulate vascular inflammation.P'" diabetes" and
atherosclerosis. 13These studies clearly suggest that Foxp3, through its function in differentiation
and promotion ofTregs' homeostasis and suppressive function, suppresses inflammation and
inhibits certain inflammatory cardiovascular diseases like atherosclerosis and hyperlipidemia.
Tregs represent a safe and efficient source for therapy and they could become an important
weapon in the fight against immune mediated parhology.!"
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FoxNl and Thymocyte Development
FoxN 1has an important role in epithelial celldevelopment. FoxN 1mediates thymic epithelial

cell differentiation both in mice and human. Thymic epithelial cells create a proper microenvi
ronment in the thymus stoma for the development and selection of thymocytes (precursors of
T-cells).116 The role ofFoxN1in thymic epithelial development makes it a focus for immunology
research."? Mouse nude mutations, eliminating the DNA binding domain of FoxNl , lead to
defective differentiation ofepithelial progenitor cellsin the thymus. lIS Consequently, these defec
tive epithelial cells fail to attract lymphoid progenitors to the thymic anlage and finally results in
defective thymocyre/T cell developmenr.!'? Human nude/severe combined immunodeficiency
(SCID) syndrome, consisting ofT-cell deficiency,congenital alopecia and nail dystrophy, iscaused
by a nonsense mutation in FOXN l,1 20 Even bone marrow transplantation cannot restore normal
levelsofCD4+ T-cells in this syndrome, suggesting that defects resulting from FOXN1mutation
are thymus-derived but not bone marrow-derived.

FOX Transcription Factors and T-Cell Activation
Although the FoxO transcription factors have been widely studied for their metabolic and

homeostatic roles, the immunological role of Fox03a in suppressing spontaneous T-cell activa
tion and autoimmunity makes it a widely studied target in immunology. Interferon-y driven
tryptophan catabolism by cytotoxic T-Iymphocyte antigen 4 (CTLA-4) might activate Fox03a
to protect dendritic cells from injury in nonobese diabetic mice.!" At the transcriptional level,
Fox03a is the dominant isoform expressed in lymphocytes. Foxo3a-l- mice develop lymphoprolif
erative disease with multi-organ infiltrates, resulting in multisystem inflammation,enlarged spleen
and lymph nodes due to the increased lymphocyte proliferadon.!" Foxo3a deficient mice have
spontaneous, autoreactive helper T-cell activation. Fox03a-l- deficient T-cells possess increased
spontaneous NF-KB activity and are relatively deficient in the NF-KBinhibitors, IKB~ and IKBE
subunits,'?' Fox03a can also regulate cell proliferation and apoptosis, both ofwhich contribute to
lymphocyte homeostasis. For example, FOX03a has been shown to regulate celldivision through
a cyclin G2-dependent mechanism.!" Cyclin G2 has been shown to maintain the quiescent state
ofdifferentiated cells and negatively regulates lymphocyte proliferation. Activated FOX03a has
been shown to control the expression ofsome proapoptotic genes, for example, FasL.No human
immunological diseases caused by FOX03a defects have been clearly identified. However, there
is Fox03a dysregulation in cancers in which anticancer immunosurveillance is weakened . For
example, mixed lineage leukemia transcription factor fusion proteins with Fox03a have been
identified in acute lymphoblastic leukernia.!" Many other forkhead transcription factors also play
important role in the regulation ofa variety ofimmunologic functions. Fox]1 suppresses sponta
neous T-cell activation and autolmmunity,':" In animals with Fox]l (hepatocyte nuclear factor/
forkhead homolog 4, HNF-4, FKHL-l3) deficient lymphoid systems,Th spontaneously activate,
resulting in multi-system inflammation, particularly ofthe lung , liver, kidney and salivary glands.
Unlike Fox03a deficiency, Fox]1 deficiency appears to be much more severe, affecting a different
spectrum oforgans and skewing toward cytokine production by Type I Th [Th l ).'?' Moreover,
recent reports show that FoxQ1 promotes natural killer cell function.!" FoxP1 regulates tissue
macrophage dlfferenrlation.'?' FoxD2 modulates T-cell activation by fine-tuning sensitivity to
cAMP.101Thus it is seen that numerous Fox proteins have numerous roles in regulating immuno
logical activity as summarized in Figure 2.

Conclusion
Mammalian FOX transcription factors have increasingly become recognized as important

targets for disorders ofthe cardiovascular system and in the immunoregulation ofcardiovascular
disease pathogenesis. Knowledge of FOX transcription factors will continue to lay the founda
tion for the successful translation of these transcription factors into novel and robust clinical
rherapies.!"
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CHAPTERS

Regulatory T-Cells, FoxP3
and Atherosclerosis
Michal Entin-Meer, Arnon Afek and Jacob George*

Abstract

I nnate immune responses follow accumulation of modified lipids within the arterial wall
thereby influencing atherosclerotic plaque progression. One of the mechanisms evolved in
maintaining immunologic self-tolerance involves upregulation of regulatory Tvcells, among

which the CD4+CD25+ FoxPY regulatory T-cells (Treg) are best characterized. The putative
important role of Treg in the initiation of atherosclerotic lesions as well as in the progression
towards unstable plaques leading to ischemic events, supported by human studies and , indirectly,
by murine models . Herein, we summarize the experimental approaches taken in order to study
the possible mechanisms ofTreg involvement in atherosclerosis as well as the beneficial clinical
potential ofTreg in stabilizing atherosclerotic plaques .

Atherosclerosis, Inflammation and Autoimmunity
The immune system plays a pivotal role in the pathogenesis ofatherosclerosis, the underlying

cause ofmany cardiovascular diseases, including myocardial infarction, stroke and ischemic gan
grene.P Atherosclerosis involves the innate immune responses with the recruitment and activa
tion ofmonocytes/macrophages that respond to the accumulation ofmodified lipids, mainly the
oxidatively modified LD L (OxLDL) within the arterial wall. These events are possibly followed
by adoptive immune responses comprising differential antigen-specific T-Iymphocytes. Most of
the effector T-Iymphocytes in atherosclerotic lesions are CD4+ T-helper cellswith the phenotype
characteristic ofa proinflammatory T-helper I (Thl) subset."! Most of the T-cells bear T-cell
receptors (TCR)6.7and are often found in clusters in shoulder regions ofthe lesion .8•9These cells
specifically recognize antigens that are produced in relative abundance in hypercholesterolemic
individuals or in plaques, including Ox-LDL and HSP 60/65 in the form ofantigen-presenting
cells(APC) such as macrophages or dendritic cells." The accumulation of inflammatory cells
within the arterial wall leads to local production of chemokines, interleukines and proteases
that enhance the influx ofmonocytes and lymphocytes, among which are IFN-gamma, tumor
necrosis factor (TNF)-alpha and membrane CD40 ligand, thereby amplifying the immune
response and promoting progression ofatherosclerotic lesions.

Regulatory T-Cells, Developmental and Functional Aspects
Many mechanisms have evolved to maintain immunologic self-tolerance and to limit responses

to foreign antigens." One of these mechanisms involves regulatory T-cells that actively suppress
responses ofeffector T-cells,via homing in on peripheral tissues in order to maintain self-tolerance
and to prevent autoimmunity by inhibiting pathogenic lymphocytes. Several types of regulatory
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Medical Center, Tel Aviv, Israel. Email: [acobgwpost.tau.ac.ll
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Figure 1. Potential involvement of Treg in atherosclerosis.
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T-cells havebeenidentified, includingIL-l O-producingType1regulatoryT-cells (Tr1),transform
ing growth factor beta (TGF betaj-producingTh3 cells l4

•1S and the CD4+CD2Y (interleukin-2
receptor-a chain) FoxPY regulatoryT-cells (Treg) which are best ones characterized. Tregs are
natural regulatoryT-cells that mature in the thymusand comprise 5% to 10%of the peripheral
CD4+T-cells.16 FoxP3, a forkhead family transcriptionfactor, isa lineage-specific factor for Treg,
whichplays acrucialrolein their suppressive functionasoutlined in Figure 1.Whereasinitialstud
iescharacterized thesecells bytheir co-expression of CD4 and CD25 surface markers, subsequent
reportsidentifiedexpression ofothersurface markers includingCTLA-4(CytotoxicT-Lymphocye
Antigen4 alsoknownasCD 152)and GITR (Glucocorticoid-Induced TNF Receptor)17.18aswellas
CD 103,CD62L, lymphocyteactivationgene3protein (LAG3),C-C chemokinereceptorType5
(CCR5) andneurophiIin, andtheconcomitantabsence ofcertainmarkers suchasCD 127(thealpha
chainof the IL-7receptor).18.21 Majorprogress in the understandingof the homeostasis ofnaturally
occurringTregs wasmadewith the identification ofFoxP3asarequisitefactorfor thedevelopment
ofTregsand for their suppressive functions, aswillbe describedin detail in the sectionbelow.

NaturalTregaregeneratedduringthymicdevelopment, but arealsoinducedin peripheral tissues
duringimmuneresponses" andatherosclerosis(Fig. 2).Tregexpress antigenreceptors typical ofeffec
tor Tvcells and arepresumably activated bypeptideantigens presentedbyAPCs.Theyalsoacquire
interleukin (IL)-2receptor fordevelopment andsurvival. Inthiscontext, twopopulations ofpotential
Treghave beendescribed: thosethatoriginatefromacommittedlineage ofFoxP3-expressingcells in
thethymus andthosethat convertfrommatureCD4+ cells in theperiphery.22Thebasiccharacteristics
of naturalTreg, and adaptive Tregversus effector T-cells aresummarized in Table 1.Threegeneral
models ofsuppression havebeenproposedtoexplain the inhibitoryactionsofTregcells on activated
T-cells, none of which havebeen completely elucidated: 1. Cell contact-dependantsuppression
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Figure 2. Tregand atherosclerosis. Natural Tregdevelop in the thymus and may be induced
in peripheral tissues. Naive T-cells specific for plaque antigens (such as oxidized LDL and
HSP60) are activated by APCs and differentiate into Thl effector cells, which migrate into
atherosclerotic lesions, reactivated by lesionalAPCs, secrete IFN-gammaand promote disease.
The reduced numbers and functional impairment of Tregscould promote atherosclerosis by
several mechanisms as described.

mediated by engagement of CTLA-4 (expressed on Tregcells) with CD80 molecules (expressed
on effectorT-cells) or interaction of CTLA-4 with CD80/CD86 on APCs.232. Consumption
and limitationof growthfactors suchas IL-2.Effector T-cells secrete IL-2upon activation, which
binds to CD25 on Tregcells. thus maintainingand activating Tregcellgenes suchasFoxP3, which
in turn down-regulate IL-2 secretion in a feedback loop. This action results in deprivation of ef
fectorT-cells from the essential growthfactor IL-2. Thisfeedback process might therefore induce
apoptosis ofactivated T-cells in vitroand in vivo.l4 3.Productionof inhibitorycytokines, including
IL-lO,TGF-p or IL-35.25Productionof thesecytokines mayinducedeactivation of dendriticcells,
leadingto a loss of abilityto activate effectorT-cells with distinctantigenspecificity to Tregcells, a
mechanism called'bystander immunesuppression: In addition, TGF-p inhibits the proliferation,
activation and differentiation ofT-cellstowardsThl and Th2.26.27

FoxP3 (Forkhead Box Protein P3), a member of the forkhead winged helix protein fam
ily of transcription factors. wasdemonstrated to governmouse CD4+CD25+Tregfunction.28.29

Lossof function mutations of FoxP3wereshown to eliminate CD25+Tregand result in lethal
lymphoproliferative autoimmune syndromein mice associated with extremely enlargedspleens
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Table 1. A basiccomparison between naturally-occurring Tregs, induced Tregs and
effector Tcells
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Generationsite
CD25 expression
FoxP3 expression
IL-2 dependency
Specificity

Natural Treg

Thymus
High
Yes
Yes
Self

Induced Treg

Peripheral lymph nodes
Variable
Yes
Yes
Selfand foreign

EffectorT cells

Thymus
No

No

No

Foreign

and lymph nodes and lymphocytic infiltrates in multiple organs, associated with deficiencyor
malfunction ofTreg.30This finding wasstrongly supported by the observation that patients with
the rareimmune systemdysregulation, polyendocrinopathy,enterophathyand X-linkedinheritance
(IPEX), haveasevereinflammatorydiseaseaccompanied bya mutation in the FOXP3 gene." The
requirement of FoxP3 in CD4+CD2S+ regulatory T-cell development was demonstrated upon
generation ofa mixed bone marrow (BM) chimeric mice in which lethally- irradiated CS7BL/6
(B6) Thy1.1+congenic mice were reconstituted with T-cell-depleted BM from congenic B6
LyS.l+mice mixed at a 1:1 ratio with BM from either FoxP3- or FoxPY mice. The CD4+CD2S+
regulatory T-cell population in the (LyS.PB6+FoxP3-) chimeras was solelyof LyS.l+B6 origin
in both the thymus and lymph nodes, whereas, both LyS.l+B6 and FoxP3+ BMs contributed
equallyto the CD4+CD2S+regulatoryT-cellcompartment in the (LyS.lB6+FoxP3+/+) chimeras."
Moreover,ectopic FoxP3expressionwas found to be sufficientto activatea program ofsuppressor
function in peripheral CD4+CD2S-,28,29pointing to FoxP3 as a unique marker of CD4+CD2S+
Treg, distinguishing them from activated CD4+CD2S- T-cells and as a master transcriptional
regulator ofTreg homeostasis . Therefore, in contrast to other molecular markersused to identify
regulatory T-cells, such as GITR, CTLA-4 and CD2S, FoxP3 is not upregulated by activated
CD4+CD2S- T-cells.

Recently, several monoclonal antibodies specificfor human Foxp3 became availablefor de
tection ofendogenous human FoxP3 by flowcytometry and irnmunohistochernisrry," Similar
to murine FoxP3, the majority of human FoxP3 was also expressed by the majority of the
CD4+CD2Shigh T-cells in peripheral blood, enabling investigation ofhuman FoxP3 for clinical
use. FoxP3-GFP knock-in mice33as well as FoxP3-GFP-hCre bacterial artificial chromosome
transgenic mouse" were recently created. Those mouse strains may pave the way for better
characterization ofthe different FoxPYTreg subpopulations and thus provide a better analytic
tool to identify the subpopulation mostly involved in atherosclerosis progression.

FoxP3 in Experimental Models ofAutoimmunity and Atherosclerosis
In recent decades, the role of the immune systemin atherosclerosisdevelopment has received

considerable arrention.R'Ihe general belief is that risk factors such as hypertension, hyperlipi
demia, familyhistory ofpremature atherosclerosisaswell as infectious pathogens could promote
LDL oxidation within the vessel walland in the circulation.Thesedownregulate the numbers and
functions of FoxP3-expressing Treg (Fig. 1).35In the last decade experimentalapproachessuccess
fullyused in other disease model, havebeen employed to test the importance of autoimmunity in
the development of atherosclerosis. Initial studieshaveidentifiedputative autoantigens within ath
erosclerotic plaques,includingheat shock proteins, oxidizedLDL and p2-glycoprotein.36-38Several
studies, some ofwhich were performed in our laboratory, demonstrated that adoptive transfer of
antigen-responsive lymphocytesor alternativelypassive transferofantibodies,significantlyenhance
developmentofatherosclerosis in experimentalmodels.39-41Furthermore, induction ofimmunetoler
anceto plaque-associated components,suchasOxLDL,attenuated the progression ofatherosclerosis
in mice.42-44Several studieswerelaterconducted in an attempt to elucidate the potential roleof the
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CD4+CD25+FoxP3+ Tregcellrepertoire in the controlofatherosclerotic plaquedevelopment. Since
CD25-deficient (lL2ra-/-) micedie prematurely from severe autoimmunedisease with cachexia
and malabsorption," theyarenot suitable for thestudyoftheeffectofTregcelldeficiencyon athero
sclerosis. Therefore, twoalternative transgenic atherosclerosis-prone micestrainshave beenstudied
for assessment of the development of atherosclerotic plaques: 1. The apolipoprotein E-deficient
(ApoE-/-) mice.Thesemicedevelop complex atherosclerotic lesions that resultfromplasmaaccu
mulationofcholesterol-rich lipoproteins.f Thenumberandfunctional properties ofTregwerefound
to becompromised inApoE-/- micecomparedwith thoseinwild-type C57BL/6littermates.47.482.
Thelow-density lipoproteinreceptor-deficient (Ldlr-/-) mice, knownto besusceptible to develop
mentofatherosclerosis whenfedahigh-fat,high-cholesterol diet.49 Theexperimentaldesign included
depletionofTregcells byeithergeneticor antibody-mediatedmeans" andbyenrichmentofTregby
adoptivetransfer, asreportedbyour research groupand others.50.51Usingtheseapproaches, adirect
effectof Tregon atherosclerosis wasdemonstrated. Our group has recently shownthat compared
with controls,ApoE-/- mice exhibit reducedTreg numbers and compromised Tregfuncrion."
Interestingly,proatherogenic Ox LDLtriggered amorerobustdepletion in thesplenicTregpopulation
than in the effector T-cellpopulation,and theApoE-/- miceweremoresusceptible to thisattenua
tion than controlanimals. Moreover, Tregdeficiency relatedto genetic ablationof theB71/2-CD28
costimulatory pathway in the hematopoietic compartmentwas shown to enhanceatherosclerotic
lesiondevelopment in Ldlr-/- mice.52 Tregdepletionusingan anti-CD25 antibodyalsoenhanced
atherosclerosis inApoE-/- mice."Deficiencyof theT-cellcostimulatory molecule lCOS resultedin
enhancedatherosclerosis inLdlr-/- mice, whichcanbeattributedto an impairedTregdevelopment
and function.53Interestingly, Tregdepletion didnot influence lesion sizeor inflammatoryphenotype
whena host effectorT-cellpopulationwasgenetically engineered to be insensitive to TGF~.50 This
findingtogetherwithaprevious workshowingmarkedlyenhancedatherosclerosis inApoE-/-mice
with TGF-~ resistant Tcells," suggests that TGF-~ is requiredfor the atheroprotective effects of
Treg. Reduction in atherosclerosis in Apo E -/- micehas also been achieved through adoptive
transferof CD4+CD25+ regulatory T_cells,so.51 possibly through expression of distinct formsof
TNF-alpha in ApoE(-/-)mice54or viainductionof oral tolerance to HSP60 in Ldlr (-/-) mice.44

A recentstudyperformedin our laboratorydemonstratedan association betweenhypoxia and the
homeostasis oITregmediatedbyupregulation ofHIF-Ia (hypoxia-inducingfactoralpha),pointing
to the additionalpotentialmechanismsofvasculo-protective effects ofTreg.55 Invivoexpression of
HlF-la achieved byhydrodynamic injectionofHlF-la expressing vector inducedan increase in
FoxP3expression andan increase in thenumberoffunctionallyactiveFoxP3+CD4+CD25+ Treg. We
thereforeassume that hypoxic sites(tumoral, ischemic,inflammatory) maydownregulate localearly
Thl-rnediaredinflammatory response byinducingexpression ofHlF-Ia within locallymphocytes
with consequentupregulation of the TregpooL

Foxp3, Regulatory T-Cells and Atherosclerosis in Humans
When comparingthe data fromhuman studiesinvestigating the potential involvement ofTreg

in atherosclerosis withdata from murinestudies, it isimportant to keepin mind one crucialfactor.
Whereasmost murinestudiestestplaqueburden asdetermined bylipid accumulation, in humans
it is practicallyimpossible to quantitatively evaluatethe extent of atherosclerotic vasculatur.l" In
humans,amore realistic markerfor assessing atherosclerosis maybe the clinicalsyndrome, namely
the presence ofplaquerupture asevidenced bythe occurrence ofacutecoronarysyndromes (ACS).
It is now recognizedthat most plaquesthat causeACS exhibit angiographic obstruction ofless
than 70%57.58and that the onset of ACS is mainlyassociated with changesin the inflammatory
response in theselesions, includingashifrin thephenotypeofintraplaqueT-cells.59.60Themajority
ofACS-relatedatheromas arecausedbyruptureof plaques consistingofalarge, thrombogeniccore
oflipidand necroticdebris,includingfociof macrophages, T-cells, old haemorrhage,angiogenesis
and calcium.Thefactorsthat governthe transition of the plaquefrom a stableto a rupture-prone
lesionarenot entirelyunderstood. However, accumulatingevidence supports the roleof immune
systemdysregulation, including reduction and impaired function of the pool of the naturally
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occurring CD4+CD2S+ FoxPY Tregs in the alteration of the plaque phenotype. Indeed, in two
independent studies, one ofwhich wasperformed in our laboratory, Tregpurified from peripheral
blood ofpatients with ACS exhibited a significantly reduced expression ofFoxP3 compared to
blood from patients with stable angina or from normal coronary arteries.61.62An additional in situ
study pioneered by De Boer et al63demonstrated significantly reduced mean numbers ofintimal
as well as adventitias FoxP3 and GITR in atherosclerotic lesions compared to inflammatory skin
leslons/" as opposed to normal vesselfragments in which T-cellswere virtually absent. This novel
finding may account for the chronic inflammatory process that takes place throughout the long
standing course ofatherosclerosis. In addition, high-risk lesions contained significantly-increased
numbers of Treg compared to early lesions. Similarly, the frequency of FoxP3+cells in high-risk
lesions was somewhat higher compared to the stable ones. Similar to Treg, the frequency of
activated T-lymphocytes is reported to be significantly increased in unstable lesionss9•60 and the
onset ofACS was shown to be associated with the antigen-driven proliferation ofcertain T-cell
subpopulations.f It appears that the overall increase in Tvcell-medlared inflammatory activity
within the unstable plaque environment may account for the subsequent increased frequency of
Treg in these unstable lesions. De Boer et al63speculated that the reason for this low frequency
ofTreg in atherosclerosis may rise from local inhibition by oxidized lipids already present in the
intima or from the direct contact with plaque-derived lipoproteins transported via microves
sels to the adventitia. The mechanisms involved in Treg suppression ofproarherogenic immune
responses, however, have yet to be resolved. The mechanisms may involve contact-dependant or
cytokine-dependant suppression assome studies would suggest.M.50.53However, when interpreting
the data, caution should be taken when extrapolating findings from animal models to humans.
One should keep in mind that unlike mice, in which most CD4+CD2S+ Tregexpress FoxP3, this
master transcription factor is less abundant in humans in an equivalent popularion .v Moreover,
in humans, T-cell receptor engagement is sufficient to stimulate a notable expression of FoxP3,
whereas this is not evident in CD2S- cells from mice.

Our laboratory has recently demonstrated that several statins (HMG-CoA reductase inhibi
tors), which are in widespread usedue to their LD L-reducing properties and concomitant improve
ment ofclinical outcome in patients with and without preexisting atherosclerosis, induce expansion
offunctionally activeCD4+CD2S+Foxp3+Treg in humans in vitro and in vivo.66Increased numbers
ofTreg cells by statins in the atherosclerotic lesion may be beneficial by reducing the pathogenic
responses mediated by the effector T-cells in the atheroma and thus possibly enhance the stability
of the atheromatous plaque. Altogether, those studies shed light on the encouraging beneficial
clinical potential ofTreg in stabilizing atherosclerotic plaques .

Treg and Atherosclerosis: Prospects
The last decade has witnessed very important progress in our understandingofthe pathophysi

ology ofatherosclerosis. The discovery ofendogenous counter-regulators ofthe pathogenic im
mune response in atherosclerosis led to the identification ofan important role for Treg cells in
the control oflesion development and!or progression. FoxP3 was demonstrated to be a "master
regulator" gene for this subset ofT-cells. Data gathered from in vivo data in general, and in
particular data demonstrating that increasing the numbers ofTregs in the atherosclerosis prone
(ApoE-/-) mice by means ofadoptive transfer leads to smaller atherosclerotic lesions, suggests
that the Treg population appears to be capable of modifying plaque burden in vivo. Reduced
numbers of functionally active intraplaque Treg as well as in peripheral blood in patients with
ACS compared to bood from patients with stable plaques or blood from healthy individuals
further supports the perception ofTreg involvement in immunomodulatory reactions protecting
from coronary diseases. Although the data reviewed here suggest that Treg function has a central
role in the regulation of the proatherogenic T-cell response, much effort should be directed
towards the delineation of the major determinants of the regulatory response and to the mo
lecular mechanisms involved in their survival, homing and suppressive function. The potential
for treating atherosclerosis by manipulatingTreg responses will require a better characterization
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of the antigens that proatherogenic T-cells recognize and the antigens that drive development
ofperipheral induction ofTregwhich migrate into atherosclerotic lesions. Identification ofsuch
antigens might pave the way for vaccination-like strategies using such antigens to promote a
disease-specific regulatory response and reduce atherosclerosis development. In addition, greater
knowledge about the long-term behavior ofTreg after transfer to humans is also essential in order
to establish treatment protocols. Thus preliminary human trials of adoptive Treg transfer may
provide further insights into the use ofTreg- modulating strategies in the treatment ofpatients
with atherosclerosis and ACS. Lastly, although the expression ofFoxP3 is now accepted as the
gold standard for defining either thymic-derived Treg cells or Treg cells that might be generated
in the periphery, one must consider the potential role of subpopulations of FoxP3+ Treg with
different functional properties, especially in humans in whom the CD2S expression levelsmight
vary among the CD4+FoxPY T-cell expressors.
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CHAPTER 9

FOXP Genes, Neural Development,
Speech and Language Disorders
Hiroshi Takahashi,*Kaoru Takahashi and Fu-Chin Liu

Abstract

F oxPsubfamily geneswererecentlyrecognizedto be membersof the Fox genefamily.Foxp
subfamily memberscontain a zinc fingerdomain and a leucinezipper motif in addition
to a forkheaddomain and their DNA binding capacities and transcriptionalactivities are

regulated by homo- and heterodimerization via a zinc fingerand a leucine zipper motif Three
Foxpsubfamily membersareabundantly expressed in developing brains.The expression patterns
of thesegenesareoverlapping, but they aredistinctlyexpressed in someregions. Thus thesegenes
appearto beinvolved in thedevelopmentcontrolof the centralnervoussystem.Recently,FOXP2,
a member of the Foxp subfamily, was identified as the first gene to be linked to an inherited
form oflanguage and speechdisorder. The discovery ofa mutation in FOXP2 in a family with a
speech and language disorder opened a new window to understandingthe geneticcascades and
neural circuits that underliespeechand languagevia molecular approaches. The spatiotemporal
FOXP2 mRNA expression pattern suggests that the basicneural network that underlies speech
and languagemayincludemotor-relatedcircuits,includingfrontosrriaral and/or frontocerebellar
circuits.Thisassumptionissupported bybrain imagingdata obtained byusingfMRI and PET on
the FOXP2-mutated patients and alsobyanalysis of Foxp2mutant mice.

Introduction
TheFox genefamilyencodesa largegroupof transcription factorsthat sharea commonDNA

bindingdomainofsequences calledtheforkheador wingedhelixmotif afterthe foundingmember
of this gene family,Jorkhead in Drosophila:' ManyFoxfamily membersare involved in embryonic
morphogenesis and mutations in Fox geneshavebeen implicated in a rangeof human develop
mental disorders.' Foxp subfamily genes wererecently recognizedto be membersof the Fox gene
family. Membersof the Foxp subfamilycontain a zincfingerdomain and aleucinezippermotif in
addition to a forkheaddomain.' Recentstudieshaverevealed that threeFoxp subfamily members
areabundantlyexpressed in developing brainsand that the expression patterns of thesegenes are
overlapping,but distinctlyin someregions.Thusthesegenesappearto beinvolved in development
of the centralnervoussystem. Recently, FOXP2, amemberof theFoxpsubfamily,wasidentified. It
is the firstgeneto be linked to an inherited form oflanguage and speechdisorder,"Thediscovery
of a mutation in FOXP2 in a family with a speechand languagedisorderopens a newwindowto
understandingof the geneticcascades and neural circuits that underlie speechand language via
molecularapproaches. In this chapter,wefocuson the neuralexpression ofFOXP2 asa 'Language
Gene' as well as the expression patterns ofother Foxp subfamily membersand their correlation
with anatomicaland functional abnormalities in the brains ofFOXP2-mutated patients.
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TheFoxpSubfamily
The Foxpsubfamily, whichconsists of four members, Foxp1,Foxp2, Foxp3 and Foxp4, ischar

acterizedon the basisof its memberscontaininga C2H2-type zinc fingerdomain and a leucine
zipper motif in addition to a forkheaddomain at the Cvterminus .l" C-terminallocation of the
forkhead domain is an atypicalfeaturein the Foxpsubfamily, as most other Foxfamily members
havethisdomain in N-terminalportion. Amongthe subfamily members, Foxp1,Foxp2and Foxp4
are highly homologous (showing more than 60%identity at the amino acid level); in particular,
their forkheaddomainsshowapproximately 80%identityat the aminoacidlevel. Also,Foxp1and
Foxp2, but not Foxp4, havepolygluramine tractsat the N-terminus and thesemaybe involved in
protein-protein interactions.

Members of the Fox family of proteins have been demonstrated to bind to target DNA as
monomers. Bycontrast, Foxpl, Foxp2and Foxp4proteins require dimerizationfor DNA bind
ing and their transcriptional activities are regulated by homo- and hererodimerization,? The
dimerizationsare dependent on the conservedstretch of sequence, containing a zinc fingerand
a leucinezipper motif.

Although one might suspectthat the FOXP2 gene, beinglinked to an inherited language and
speechdisorder, mightbeahuman-specific gene,because speechand language isuniqueto humans,
orthologs existin manyspecies. Comparison of the Foxp2 genesof manyorganisms has revealed
that the Foxp2protein isratherextraordinarilyconserved(amongthe 5%mostconservedproteins)
among mammals.8 Thereareonly two amino acidsdifferent (out of71 5 amino acid residues) be
tween humans and chimpanzees and three differentbetweenhumansand mice.Surprisingly, the
amino acid sequenceof the forkheaddomain is completelyidenticalamongrodents,nonhuman
primatesand humans.Recently, Krause and colleagues? reported that the Neanderthalscarrieda
FOXP2 protein that wasidentical to that of modern humans in the two positions that differed
betweenhumans and chimpanzees.

DiscoveryofFOXP2 asa 'Language Gene'
Speechand languagedisordersarecommon in childhood.Although twin studieshaveshown

that genetic factors play an important role in the etiology of such disorder,a gene that predis
poses individuals to speech and languagedisorders had not been identified until FOXP2 was
discovered.

In 1990,Hurst and colleagues reporteda uniquecaseofalargethree-generation pedigree (called
the KE family), halfofwhosemembershaveadevelopmental verbaldyspraxia that is inherited in
a pattern consistent with an autosomaldominant penerrance.'? (Detailsof the languageimpair
ments of the KE family willbe addressed later). Usingstandard positional cloningtechniquesin
combination with bioinformatics, Fisherand colleagues!' performed a genome-wide searchfor
the candidategeneunderlyingthe speechand language disordersin this family. Theymappedthe
genelocus to the long arm of chromosome7. In 2001, they finally identifiedFOXP2 as the gene
responsible for this speechand language disorderby further analyzing the breakingpoint of the
genome of a patient, CS, who had similarsymptomsto the affectedmembersof the KE family
and a translocationbetweenchromosomes 5 and 7.4

The one point mutation in the FOXP2 geneof the affectedmembers of the KE family ispre
dicted to result in an arginine-to-histidinesubstitution (RSS3H) in the forkheaddomain of the
FOXP2protein. RSS3 isinvariantamongallFOXproteinsin species rangingfromyeast to humans.
Thismutation occurredin everyaffectedKE family member, but not in unaffectedmembers, nor
in unrelated control subjects. The translocation breakpoint in CS disrupted the gene structure
ofFOXP2. Furthermore, a nonsensemutation at arginine 328 (R328X) in the FOXP2 genewas
found in a family, whoseaffectedmembershad orofacialdyspraxia.P'Iherefore, it islikelythat the
amino acidsubstitution in FOXP2 protein leadsto a lossof function of one copyof the FOXP2
geneand that the remainingcopyis insufficient for FOXP2 function (haploinsufficiency).There
areseveral examples of human disease statesregardedto bes consequence of haploinsufficiencyof
FOX proteins: mutationsinFOXCl, FOXC2, FOXEl andFOXL2in humansareassociated with
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congenital hereditary glaucoma, hereditary lymphedema-distichiasis syndrome, thyroid agenesis
and ovarian failure with craniofacial anomalies (blephalophimosis/ptosis/epicanthus inversus
syndrome) with autosomal dominant inherirance .P:"

FOXP2 and SpecificLanguage Impairment(SLI) andAutism
Although the phenotype in the KE family characterized byverbal dyspraxia does not duplicate

the language abnormalities ofautism and common forms ofspecificlanguage impairment, chromo
some 7q31, in which FOXP2 is located, has been considered to be a potential susceptibility locus
for the language deficits in specific language impairment (SLI) and autism. Therefore , association
and mutation screening analyses on FOXP2 gene have been performed in these disease groups .

Chromosome 7q31 has been implicated in SLI,1?,18 No mutations were found in exon 14
(where the KE family mutation exists) of the FOXP2 gene, but a strong association to genetic
markers adjacent to FOXP2 was found. However, no mutation or association with FOXP2 within
SLI patients was found in two studies. 19.20 Thus it is still unclear whether the role ofFOXP2 in
speech and language disorders is generalized to more common and genetically complex forms of
language impairment.

Chromosome 7q31 has been repeatedly linked to autism, suggesting that this chromosomal
region is likely to harbor a susceptibility gene for autism. Therefore, association studies with
FOXP2 and autism were conducted. Although two genetic association studies in Japanese and
Chinese subjects showed a positive association.i' :" the results ofthe majority ofassociation stud
ies ofFOXP2 and autism have been negative.23-25The FOXP2 gene is very large in size (>600 Mb)
and novel exons have recently been found. " Further genetic studies on the relationship between
FOXP2 and SLI or autism will be necessary.

Expression ofFoxp SubfamilyMembers in the Brain
The tissue distributions ofFoxp subfamily genes and proteins have been investigated in many

species, such as zebrafish, mice, rats, songbirds, nonhuman primates and humans. Foxpl, Foxp2
and Foxp4 are expressed in the brain, whereas Foxp3 is not. Foxp3 is exclusively expressed in the
immune system." However, the brain is not the only region where Foxpl, Foxp2 and Foxp4 are
expressed: their expression is also seen in other organs, including the lung , heart and gut.

Since this chapter is focused on the relationship between Foxp subfamily members and the
nervous system, we will first describe the expression patterns ofFoxpl and Foxp4 in other organs
briefly, because their mutant mice have some phenotypes in tissues outside the brain.

Murine Foxpl is expressed in the developing brain, heart, lung and gut. Foxpl null embryos
have severe defects in the cardiovascular system, including defects in ventricular and outflow tract
separation, endocardial cushion development and cardiac myocyte proliferation and maturation,"
BecauseFoxp1null embryos die at E14.5, the role ofFoxp1 in the later stagesofbrain development
has not been fully clarified. Foxpl null embryos showed abnormalities in motor neuronal identity
in the spinal cord.29,30 In addition,FOXP1has received considerable attention in the field ofcancer
research, as discussed in another chapter,"

It has been revealed that Foxp4 is essential for cardiac morphogenesis: mouse Foxp4 null mice
developed abnormally, with two complete hearts and died in the embryonic srage." Although
Foxp4 is expressed in developing rodent brains as described below, the role of Foxp4 in neural
development has not yet been fully elucidated, because ofearly embryonic death.

Several groups have demonstrated the expression patterns ofFoxp2 mRNA or protein in rodent,
nonhuman primate and human brains Y-38The expression patterns ofFoxp2 in fetal mouse, rat,
nonhuman primate and human brains show striking similarities at comparative developmental
stages. Therefore, we describe the data on the expression pattern in rodents, unless otherwise
commented in this section.

Foxp2 is expressed in several structures of the central nervous system during development,
including the cerebral cortex, striatum, thalamus, cerebellum and spinal cord. There are many
overlaps between the expression patterns ofFoxp2 and those of its paralogs Foxpl and Foxp-i,
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although detailed analysis revealed a distinct pattern of expression for each member in some
neuronal cell types, even though they are expressed in the same anatomical regions. Given that
homo- or heterodimerization ofFoxpl, Foxp2 and Foxp4 proteins is required for DNA binding
and their transcriptional activities? the precise combination ofhomodimers and heterodimers of
different Foxp proteins in the same neurons may regulate the transcription ofdownstream target
genes during brain development and, thus control the patterning ofbrain structures.

Basal Ganglia
Foxpl, Foxp2 and Foxp4 share partially overlapping and yet differentially regulated expression

patterns in the striatum during development.33.37.39.4O During development in rodents, these three
Foxp genes are expressed in the striatal primordia (lateral ganglionic eminence, LGE) . Foxp2 and
Foxpl are persistently expressed in adulthood, whereas expression of Foxp4 is developmentally
down-regulated in the postnatal stage.

Although these three genes have a common character in that all three Foxp genes are expressed
only in the LGE, but not in the MGE (medial ganglionic eminence), there was a subtle difference
among the expression patterns ofthese three genes within the LGE . Recent studies havesuggested
that the LGE can be divided into a large ventral domain (ventral LGE) giving rise to the striatum
and a smaller dorsal domain (dorsal LGE) suggested to giverise to interneurons that migrate in the
rostral migratory stream to populate the olfactory bulb." Both Foxp2 and Foxp4 are expressed in
the subventricular zone (SVZ) and the mantle zone ofthe dorsal and ventral LGE, while Foxp1 is
only expressed in the SVZ and the mantle zone ofthe ventral LGE, but not in the dorsal LGE .36

The ontogeny ofFoxp expression is also distinct in the striatal compartments.35.36The striatum
comprises two distinct neurochemical compartments, striosomes (or patch) and the matrix.42•44

Neurons in these two compartments differ in terms ofthe expression levelsofvarious neurochemi
cal molecules, neurogenesis and neural connectivity.

Expression ofFoxp1starts later than that ofFoxp2 and Foxp4 in the earlyembryonic stage.Foxp1
expression is detected in both striosomal and matrix compartments until adulthood. Although
expression ofFoxp2 and Foxp4 in the striatum starts at the same earlyembryonic stage and similar
and homogeneous expression patterns continue until the late embryonic stage, Foxp2 expression
becomes restricted to the striosomal compartment and continues until adulthood, while Foxp4
expression declines in compartmental order : first in the striosomes and later in the matrix, from
the late embryonic to the early postnatal stages. Thus in a certain time window, the striosomes are
Foxp2high/Foxp4low, whereas the matrix is Foxp2n,gative-low/Foxp4high. The differential expression of
Foxpl, Foxp2 and Foxp4 might play an important role in establishing specific types ofneuron in
each compartment ofthe striatum.

In the fetal human brain, FOXP2and FOXP1 mRNAs are also expressed in the striatal
primordia.34.38The expression ofFOXP2 is developmentally regulated: the expression isquite low
in the adult according to northern blot analysis,"

In developing nonhuman primates, FoxP2 is selectively expressed in the striosomal com
partment of the basal ganglia in the perinatal period." Thus the Foxp2/FOXP2 expression
pattern in the basal ganglia seems to be conserved in rodents and primates. Nevertheless, there
are several aspects in which Foxp2/FoxP2 striatal expression differs in monkey and rodent
brains. First, the striosomal FoxP2 expression pattern in the monkey striatum is only detected
during the perinatal and early postnatal periods and expression declines during postnatal
development. By contrast, Foxp2 striosomal expression in the rodent striatum persists into
adulthood. Second, regional differences in FoxP2 mRNA expression exist within the striatum.
The monkey striatum comprises the caudate nucleus and the putamen. In the monkey brain,
the FoxP2 mRNA expression level in the striosomal compartment is differentially regulated
in the caudate nucleus and putamen; specifically, FoxP2 expression in the caudate nucleus is
higher than that in the putamen in the perinatal stage and expression is barely detectable in
the putamen in the postnatal period (Fig. I) .
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Figure 1. Expression of FoxP2 and FoxP1 in postnata l monkey striatum . FoxP2-pos itive patches
were aligned w ith PPT(preprotachykinin)-positive striosomes in the monkey caudate nucleus .
In contrast, FoxP1 was expressed homogeneously in the caudate nucleus and the putamen.

In contrast to the striosomal FoxP2 expression pattern, FoxP1 mRNA expression is homoge
neous in the caudate nucleus and putamen in the prenatal and postnatal periods in monkeys."
Then, FoxP1 expression decreases both in the caudate nucleus and the putamen.

Cerebral Cortex andHippocampus
Foxp family genes are also differentially expressed in the developing cerebral cortex. The ex

pression patterns ofFoxpl, Foxp2 and Foxp4 genes show characteristic rnedio-lateral differences
and layer specificity.33-36

In the early embryonic stage, Foxp4 has a mediolateral graded expression in the cerebral cortex:
high expression in the medial cortex, low expression in the lateral cortex. By contrast, the cortical
expression pattern ofFoxp2 mRNA isvery different from that ofFoxp4. Foxp2 is only expressed in
the lateral telencephalon without any gradient. Foxplexpression starts a little later than expression
ofFoxp2 and Foxp4 and becomes apparent in the medial telencephalon.

In the embryonic and postnatal periods, Foxp-t,Foxp2 and Foxp1genes are expressed in specific
layers ofthe cerebral cortex. During the early developmental stages in the cerebral cortex,Foxp4 is
expressed in proliferatingcells in the ventricular zone/subventricular zone (VZ/SVZ) and migrat
ing neurons in the intermediate zone (IZ). Expression ofFoxp1mRNA isobserved in the upper half
ofthe cortical plate (CP), while that ofFoxp2 mRNA is observed in the lower part ofthe cortical
plate (CP). Thus the expression pattern ofFoxp2 appears complementary to that ofFoxpl.
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During the latedevelopmental stages of corticogenesis,Foxp2 isexpressed in the lowercortical
layers, where early-born neurons resideand Foxp1 isexpressed in the upper corticallayers, where
late-born neurons reside. On the other hand, Foxp4 is expressed in the entire cortical layers, in
cluding the subplate (SP).This complexpattern of expression maysuggest the possibilitythat a
layer-specific identity of corticalneurons maybe defined,at leastin part, bycombinatorialcodes
ofFoxp genes.

In the postnatal cerebralcortex,expression ofeachFoxp geneshowsregionalspecificity.Foxp1
is expressed in the dorsaland medialcortex,whileFoxp2 isnot expressed in the dorsalor medial
cortex,but isexpressed in the lateralcortex, suchasin the insularcortex. In addition, both Foxp2
and Foxp1 are expressed in the olfactory tubercle,but not in the piriform cortex,although the
expression patterns of thesetwo genes aredifferentwithin the olfactorytubercle.Bycontrast, the
regionalexpression of Foxp4 is different from that of Foxp1 or Foxp2. Foxp4 is expressed in the
piriform cortex,but not in the olfactorytubercle. Theseexpression patterns of Foxp1 and Foxp2
in the cerebralcortexpersistuntil adulthood, whileFoxp4 expression declinesbyadulthood.

In addition to the developing cerebral cortex, Foxpl, Foxp2 and Foxp4 are differentially
expressed in the developing hippocampus. Foxp4 expression is first observed in the medial tel
encephalon, including the hippocampal anlage, but is absent from the most medial part called
the cortical hem. During this developmental stage, there is no expression of Foxp2 or Foxp1 in
the hippocampal anlage.

In the postnatal hippocampus, Foxp4 isexpressed in the hilar regionand from CA3 to CAl,
while Foxp1 is expressed mainly in CAL There is no Foxp2 expression in the hippocampus
throughout development. Foxp4 expression declines in the mature hippocampus, while Foxp1
expression persistsuntil adulthood. In human fetalcortex,FOXP1 isexpressed in moresuperficial
layers than FOXP2,asin rodents.The expression of FOXP1 and FOXP2 in the cerebralcortex is
not asymmetrical.

In the developing monkey cerebral cortex, differential expression of FoxP1 and FoxP2 is
evident. FoxP2 is expressed in the deeper cortical layers, whereas FoxP1 is highly expressed in
the more superficial layers. Thelayer-specific expression of these two FoxP genes issimilarto that
in mouse, rat and human brain.33.35.38 FoxP2 is widelyexpressed throughout the cortical areas,
including frontal, parietal, temporal, insular and occipital cortices,although expression is faint
in the cingulatecortex. Bycontrast,moderateFoxP1 expression isdetected in all areasexamined,
includingthe cingulatecortex.Foxp2/FoxP2 expression in the developing cerebralcortexappears
to be conservedin rodents and primates.

HippocampalFoxP2 andFoxP1 expression patterns in the nonhuman primatearealsosimilar
to thosein the rat;35.37 that is,lowFoxP2 expression isdetectedin thehippocampus, whereas FoxP1
is expressed in the CAl-CA3 regionof the hippocampus.On the whole,regionalFoxp2/FoxP2
expression isverysimilarin ratsand nonhuman primates,although the temporal expression pat
tern of Foxp2/FOXP2 isdifferent.

Thalamus
In the developingdiencephalon, Foxp1, Foxp2 andFoxp4 areexpressed in the epithalamus, the

dorsalthalamus(DT) , theventralthalamusand the hypothalamus. However, thedistributionsand
expression levels of thesefamily membersin eachregionaredistinct; for example,Foxp4 ishighly
expressed in the proliferatingcellsin the DT, whereas Foxp2 expression is high in differentiated
cellslocated in the lateralpart of the DT, but lowin proliferatingcells. Thusexpression pattern of
Foxp2 iscomplementaryto that ofFoxp4. Theexpression ofFoxp1 in differentiatedcellsissimilar
to that of Foxp2, although the level of Foxp1 expression ismuch lowerthan that ofFoxp2.

Human FOXPI and FOXP2 expression overlaps in the developingthalamus." FOXP2 is
highly expressed in the centromedian nucleusand mediodorsal nucleusof the thalamus. More
moderateexpression ofFOXP2 isobservedin the anterior nucleusand parafascicular nucleus. In
the neonatal nonhuman primate brains, expression of FoxP1 and FoxP2 is quite similar to that
in human counterparts.
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Cerebellum
Foxpl, Foxp2 and Foxp4 are all expressed in the cerebellar primordia. Expression of these

members is detected in Purkinje cells, cerebellar nuclear neurons, but not in granular neurons
or cerebellar interneurons.Theyare alsoexpressed in the inferiorolive. The expression of these
membersin cerebellum and inferiorolivedeclines postnatallyand diminished in the adulthood.

Spinal Cord
Foxpl is expressed in most of the motor neurons in the brachial spinal cord, whileFoxp4 is

expressed in asubsetof motor neuronsand asubsetofspinalinterneurons." Foxp2 isnot expressed
in motor neurons,but isexpressed in a largenumber ofinterneurons.

Language Impairments in the Affected Members ofthe KE Family
Despitethe extensive behavioral analyses of the KEfamily, therehave beeninconsistencies in the

analyses and it is stillunclear how manycoredeficits there are. However, there isat leastone core
deficit, verbal and orofacial dyspraxia underlying the speechand language disorders, in the affected
members of the KE family. The verbal and orofacial apraxia in the affected members strikingly re
sembles 'Broca's aphasia', whichisusually seenin patientssuffering frombraindamage in the 'Broca's
language center' locatedin the leftfrontallobe,oftencaused bycerebrovascular diseases. ThereKE
patientshaveno hearingloss or neurological deficits that affect swallowingor limbmovements.Nor
do theyhave abnormalityin other organs. In that sense, the disease observed in the affected family
members in the KE family is really regarded asdistinctive speech and language disorders.

Imaging Studies on the KE Family
Although there is still much to be learned about neuropathology, there is no reported

autopsy of an affected member of the KE family. The structural and functional abnormalities
in the brains of the affectedmembersof the KE familyhave been investigatedusingMRI.45.46
The structural brain abnormalities in the affectedmembersof the KE familywereinvestigated
usingvoxel-based morphometric (VBM) methods ofMRI analysis. The VBM analyses showed
bilateral abnormalities in the caudate nucleus, the inferior frontal gyrus (Broca's area), the
precentral gyrus, temporal pole and the cerebellum(lobules VIIB and VIIIB) in the affected
members, compared with unaffected members and age-matched controls, who did not differ
from each other. The abnormality in the caudate nucleus was of particular interest, because
functional abnormality wasalsofound in a relatedpositron emissiontomography (PET) study.
Moreover, the reduction in volume was Significantly correlated with the performance of the
affectedmemberson severallanguagetasks.

The affectedmembersof the KE family showedhighlyatypicalfMRI brain activationwhen
performingboth covert(silent)and overt(spoken)verbgenerationtasks, aswellaswordrepetition
tasks.VThe unaffectedfamily membersshoweda typicalleft-dominantactivationin the inferior
frontal gyrus,including Broca's area, in both generation tasksand a more bilateralactivationin
the repetition tasks,whereas the affectedmembersshowedsignificant underactivation of Broca's
areaand its right homolog, aswellaslanguage-related cortical regionsand the putamen. Also,in
affectedcases, paradoxical activationwasobservedin corticalregionsthat arenot usually involved
in language tasks.

The underactivationof Broca's areain affectedmembersremindsusof patients suffering from
motor aphasiacausedbycerebrovascular brain damage. Thelanguage deficits in both cases arevery
similar. The functional abnormality in the putamen suggests dysfunctionof the striatum.

The FOXP2 Expression Pattern in the Brain and Its Relation
to the Cognitive Functions ofSpeechand Language

FOXP2 is extensively expressed in the developing brain and its expression is down-regulated
in the adult. This fact suggests the possibilities that the speechand language impairmentsfound
in the affected members of the KE family are due to the developmental defects of the neural
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network critically involved in speechand language function and that formationof this network
is dependent upon a genenetworkvia FOXP2. The spatiotemporalFOXP2 mRNA expression
pattern suggests that the basicneural network that underlies speechand language mayinclude
motor-relatedcircuits,includingcorticostriatal and/or corticocerebellar circuits.

Thisassumption issupportedbybrainimagingstudiesonFOXP2-mutated KEfamily members.
Morphometricalanalysis usingMRI and a functional anatomicalstudy,usingPET and fMRI,
revealed abilateralabnormality in the inferiorfrontalcortex,caudate-putamen andcerebellum.v"
In particular,FOXP2 expression in the striosomes of the caudatenucleus might haveimportant
implications forbrainabnormalities inducedbyFOXP2 mutationsin KEfamily patients.Graybiel
and colleagues haveshown that striosomes with patches containing low levels of acetylcholin
esterase activityare more prominent in the caudatenucleus than in the putamen,43.49 suggesting
that striosomes mayfullyengage in the neural circuits running through the caudatenucleus. If
FOXP2 expression levels in the caudatenucleus of the human brain are truly higher than those
in the putamen, the FOXP2 mutation mayresultin a strongerphenotype in the caudatenucleus,
which isobservedin the brainsof affected KE family members.

The affected membersof the KE family showimpairedmovementof mouth, lipsand tongue
duringspeech.A studyusingmonkeys hasshownthat astriosorne-dominant activation, asmarked
by immediate-earlygene expression, could occur under conditions in which repetitive move
ments are induced by dopamineagonists." Moreover, dopamine agonist-induced dyskinesia of
repetitivemovements ispresentinexperimental parkinsonism.l' :" Therefore,wehypothesize that
the symptomsof orofacial dyspraxia in KE family patients maybe related to dysfunction of the
striosomalsystem in the striatum.

Asdescribedabove, language impairments in the affected members of the KEfamily resemble
thosein Broca's aphasia, whichusually involves the inferiorfrontallobe.Althoughthebasalganglia
are not generally considered to be necessary for language acquisition, several recent reports sug
gest that the caudatenucleus, in particular, is involved in language processing.P'" Damasio and
Darnasio" hypothesize that the basalganglia circuitrycontributesto granunatical ruleprocessing
in conjunctionwith the frontallobe. Ullmanand colleagues'S" found that granunatical mistakes
occurred in patients suffering from Parkinson's disease or Huntington's disease and developed a
declarative/procedural modeloflanguage.Accordingto the model,the mentalgranunarinvolves
proceduralmemory-like skills and habits and is rooted in the frontal lobe-basal ganglia, whereas
the mental lexicon dependson declarative memoryand is rooted in the temporallobe.

The role of the cerebellum in languagefunction is partially understood." It is not certain
whether the speech and language disturbances in the KE family are caused by defects of
cortico-striatal or cortico-cerebellar circuits,or borh."

Phenotype in Foxp2 Mutant Mice
Foxp2 mutant mice have been generated and analyzed by three groupS.59-61 Homozygotes

deficientfor both Foxp2 alleles (null mutant) showedsevere motor impairment (delayed right
ening-reflex maturation), prematuredeath and an absence of ultrasonicvocalization when pups
were isolated from their mothers. Shu and colleagues" reported abnormalities in the cerebella
ofhomozygotes. Specifically, alignmentofPurkinje cells wasirregularand the externalgranular
layer(EGL),which should not be retained at the comparative age, wasretained. Heterozygotes
alsoshoweda modest developmental delay, cerebellar abnormalities and a significant changein
ultrasonicvocalization in response to isolation.

Other groupS59.60 generatedknock-inmicewith apoint mutation in theFoxp2 geneto giverise
to aRSS2Hmutation(corresponding to the humanFOXP2RSS3Hmutation).Homozygous and
heterozygous RSS2HmicereportedbyFujitaand colleagues"showedlargely similarphenotypes
to the KO mice reported by Shu.61 Of particular interest, in the homozygous RSS2H mutants,
some neurons had nuclearaggregates of Foxp2 protein. In addition to the immaturecerebellar
development, the nuclearaggregates might further compromise the functionofPurkinje cells and
cerebralneurons,resultingin their death.
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Thereweresomedifferentphenotypesand interpretationsin another lineof mutant micewith
the sameR552H mutation/" HomozygousR552H miceshowedsevere reductions in cerebellar
growth and postnatal weight gain, but wereable to produce complexultrasonicvocalization in
response to isolation. Heterozygous R552H mice were overtlynormal in brain structure and
development.The most interestingfindingsin their study were that heterozygous R552H mice
show significant deficits in motor-skilllearning and abnormal synapticplasticityis observedin
striataland cerebellar brain slices byelectrophysiological analysis.

Thus findingsin thesemutant miceseemto support a role for Foxp2in the developmentand
function of the striatum and cerebellum and a possible involvement of corticostriatal and/or
corticocerebellar circuits in the brainsof the FOXP2-mutatedKE familymembers.

Transcriptional Activity ofthe FOXP2 Protein
Protein expression, subcellular localization, DNA-binding and transactivationproperties of

disease-causing mutations in FOXP2 havebeen studied usingcultured cellmodels.62,63
Wild-type FOXP2 protein expressed in human cell lines is localizedmainly in the nucleus.

This intracellular localizationis disrupted in the mutants: FOXP2 with a R553H mutation is
localizedin both nucleusand cytoplasm, whereas FOXP2 with R328X localizedpredominantly
in the cytoplasm.In addition, R328X yields an unstable protein product possibly by nonsense
mediated RNA decay.

The DNA-binding propertiesofwild-typeand mutant formsofFOXP2 wereinvestigated via
electrophoretic mobility shift assays (EMSAs) usingan oligonucleotideprobe bound to mouse
Foxpl. Wild-type FOXP2 protein possesses DNA-binding capacity, while neither R553H nor
R328X mutants bound to the target DNA.

It wasreported that mouseFoxp1and Foxp2proteins stronglyrepress transcription from the
SV40promoter, viabinding to a naturallyoccurring target site in the promoter sequence.v The
transcription capacities of FOXP2 variantswere determined by luciferase reporter gene assays.
Wild-typeFOXP2, FOXP1and FOXP4 function astranscriptionalrepressor forSV40 promoter,
whereas R528H and R328X mutants losethe repressor activity.62

In sum, FOXP2 disease-causing mut ations disrupt normal subcellular localization,
DNA-binding or transactivation capacities in mammalian cell model systems. Thus similar
functional changescausedby the mutations are expected to occur in vivoin affectedhumans.

Foxp2 Upstream and Downstream Genes (Fig. 2)
FOXP2gene mutation is so far the only known causeof developmental speechand language

disordersin humans.Identifyingthe molecularnetwork of this geneand its encodedprotein will
provide a unique window into neural processes involved in speechand language. The upstream
regulatorymechanisms that controlFOXP2 expression and the downstreammoleculareventsthat
are regulatedby the FOXP2 genearebeinginvestigated byseveral approaches asfollows.

Since FOXP2 is a transcription factor, its potential transcriptional targets can be identified
byusingthe technique of chromatin irnmunoprecipitationfollowed bythe microarray analysis of
promoter regions (ChIP-chip assay) and the functional regulationof targetsby FOXP2 can be
validated in vitro and in vivo.TwogroupshaveidentifiedtargetsofFOXP2 in vivoin two brain
regions (basalgangliaand inferior frontal cortex) of the human fetal brain and also in a human
neuronal cellmodels.65.66 Interestingly, halfof the target genes identifiedby the thesestudies are
overlapped. FOXP2 protein bound to the promotersof genesinvolved in diverse biological func
tions, includingcellsignaling, synaptictransmission, neuraldevelopment, ion transport and axon
guidancein fetalhuman brain and livingneuron-likecelllines.Theexpression ofa majorityof the
targetgenes(suchasANKl, KCN] 15and LBR)wasrepressed byFOXP2 in cellculture models,
while expression of a minority of the targets (such asTAGLN and CALCRL) wasactivatedby
FOXP2. Thus FOXP2 can act as both a repressor and an activatorunder certain circumstances,
possibly dependent upon FOXP2 cofactors(such as Foxpl, Foxp4and CtBPI) or its posttrans
lational modifications.



126 Forkhead Transcription Factors: VitalElements in Biology andMedicine

I Identification of Foxp2-Downstream Genes I
D D

Susceptible genes for
Gene cascades involved

in formation of
SLI(Specific language

fronto-striatal /
impairment) and Autism

Ironto-cerebellar D
circuits, and Identification of

striatal compartments disease pathway

.n. .0.
Understanding of Drug development for
neural correlate of speech and language
language acquisition disorders

Figure 2. Perspectives. Identification of Foxp2-downstream genes may provide insights into
the molecular mechanisms underlying the neural developmentsuch asstriatalcompartmen
talization and the neural network formation of frontostriatal and frontocerebellar circuits,
potentially related to language acquisition. Theidentification of the Foxp2-downstream genes
mightalsoleadto thediscoveryof thesusceptible genes for SLI (specific language Impairment)
and autism.Further understanding the genenetwork maybe valuable for development of the
therapeutics for SLI and autism.

Ithasbeen reportedthat Foxp1worksasacofactorfor Hoxprotein inestablishingspinalmotor
neuronal identity.29JO A numberof transcriptionfactorshavebeen shownto bepreferentially and
highlyexpressed in the developing striarurn/"A geneexpression studyusingin situ hybridization
revealed that two transcriptionfactorgenes,Pbx3andMeis2, belongingto theTALE(threeamino
acidloop extension) superclass of the homeoboxgenefamily,68 aswellasFoxp2,to bepreferentially
expressed in the striosomes of the developingrat and nonhuman primate striatum.3s.37Because
Pbxand Meisproteinsact ascofactorsfor varioustranscription factors, suchas Hox proteinsand
bHLH proteins,69.70 and Foxp2, Pbx3 and Meis2 are co-expressed in the developing striatum, a
direct or indirect interaction between Foxp2and Pbx/Meisproteins is expected.

There is so far only one report on the upstream regulationof the Foxp2 gene." There are six
Lefl binding sitescornmonbetweenzebrafish, mouseand humans in the Foxp2 genomicregion
and expressions ofLef1 and Foxp2 isoverlappedin the zebrafish brain duringdevelopment. Lefl
is a transcription factor activatedby the canonicalWnt/~-catenin signalingpathwayinvolved in
body patterning, neuronal cell specification and axon pathfinding. Knockdown of Lefl using
siRNA causedlossofFoxp2 expression in a restrictedpart of the brain in zebrafish experiments.
Also, a ChIP experimentconfirmedthat Lefl binds to sitesin the Foxp2 enhancer region. Thus
Lefl mayalsoregulatethe expression ofFoxp2 in humans.

Perspectives
Molecular networkanalysis regardingFOXP2willprovideat leasttwoimportantopportunities

in the fieldofcognitiveand behavioral neurology. First,uncoveringthe geneand protein networks
related to FOXP2/FOXP2 willaid elucidationof the molecularmechanisms underlyingneural
developmentpotentiallyinvolved in language acquisition(especially in the striatalcompartments,
cerebral and cerebellar structures).Second,understandingthegenes andpathways that areregulated
byFOXP2 might leadto discovery ofcandidategenesfor SLI(specific language Impairment)and
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autism. Finally, the progresses that wemakein the 'neurobiology oflanguage'willgive ushints in
developing pharmacological tools not only for treatingspeechand language disorders, but also
for potentiating or improvingspeechand language skills.
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CHAPTER 10

Pathophysiological Relevance
ofForkhead Transcription Factors
in Brain Ischemia
KohjiFukunaga* andNorifumi Shioda

Abstract

F
orkhead box transcription factor , class0 (FOXO) is a mammalian homologue ofDAF-I6,
which is known to regulate the lifespan ofCaenorhabditis elegansand includes subfamilies
offorkhead transcription factors such as FOXO1 (FKHR), FOX03 (FKHRLI), FOX04

(AFX) and FOX06. All these FOXO members are expressed in the brain with different spatial
patterns. FOXOI is phosphorylated on three sites (Thr-24, Ser-256 and Ser-3I9) in phosphati
dylinositol 3-kinase (PI3-K)/Akr-dependent manner, thereby inhibiting apoptosis signals. We
here documented dephosphorylation of FOXO1, FOX03 and FOX04 following transient
forebrain ischemia with its concomitant translocation into the nucleus in neurons in the gerbil and
mouse brains. The dephosphorylation ofFOXO1 following brain ischemia is in part mediated by
constitutively active calcineurin in the mouse hippocampus. The activation ofFOXOs preceded
delayed neuronal death in the vulnerable hippocampal regions following ischemic brain injury.The
FOXO1activation isaccompanied by an increase in DNA bindingactivity for FOXO l -responsive
element on the Fas ligand promoter. Thus, downstream targets induced by FOXO1 include Fas
ligand and Bcl-2-interacting mediator of cell death (Bim) in the brain ischemia. Accumulating
evidence documented how FOXO activation is involved in the mechanisms of ischemic cell
death. In this chapter, we document the activation mechanism ofFOXO factors following brain
ischemia and define their downstream targets underlying neuronal death. The pathophysiologi
cal relevance ofcrosstalk between FOXOs and calcineurin pathways is also discussed. Finally, we
propose therapeutic perspectives to rescue neurons from delayed neuronal death by promoting
the Akt signaling. Vanadium compounds, protein tyrosine phosphatase inhibitor, up-regulates
Akt activity in the brain and thereby rescues neurons from delayed neuronal death by inhibiting
FOXO-dependent and -independent death signals in neurons.

FOXO Phosphorylation Regulating Shuttlingbetween Nucleus
andCytoplasm

The forkhead box transcription factor, class0 (FOXO) ismammalian homologue ofDAF-I6,
which is known to regulate life span of Caenorbabditis elegans1 and includes subfamilies of fork
head transcription regulators such as FOXOI (FKHR), FOX03 (FKHRLl), FOX04 (AFX)
and FOX06. The FOXO factors share DNA-binding specificity to a core consensus site named
as Forkhead-responsive elernenr' and downstream targets of diverse protein kinases stimulated
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Figure 1. Possible phosphorylation sites for Akt and other possible kinases in FOXOs. The
FOXO members are phosphorylated by several protein kinases. Phosphorylation ofT1, 51 and
52 by Akt activity through PI3-K underling growth factor signaling is crucial step of the FOXO
function . Serum- and glucocorticoid-inducible kinase (5GK) underlying PI3-K pathway also
phosphorylates T1 and 52. The 52 phosphorylation by Akt is required for subsequent phos
phorylation of 5er 322 and 5er325 in FOX01 by casein kinase 1 (CK1). Together with these
phosphorylation, the 53 phosphorylation by the dual-specific tyros ine-regulated kinase 1a
(DYRK1a)may contribute the nuclear export of FOXO.ln addition, T2 in the C terminal regions
is also phosphorylated by JNK underlying the Ras-Ral pathways as described in the text.

by variouscellular stresses such as DNA damage, nutrient deprivation, cytokines and hypoxia.
FOXO factorsare phosphorylatedin vivoon multiple threonine and serineresidues (T1, T2,
S1, S2 and S3) as shown in Figure 1. Protein kinase B (Ake) in response to growth factor and
insulin stimulationdirectlyphosphorylate FOXOI at three specific sites (Thr-24, Ser-256 and
Ser-319, labeled'Tl, S1and S2,respectively).' Serum-and glucocorticoid-inducible kinase (SGK)
underlying PI3-Kpathways alsophosphorylates T! and S2ofFOX03.4The functionsofFOXO
factorsnegatively regulatedbyAkr- and SGK-dependentphosphorylationon thesesites, thereby
promoting maintenanceof cellsurvival. Akt phosphorylates Ser-256 and SGK phosphorylates
Ser-319 preferentially. Reporter assays for transcriptionalactivityand mutational analysis of the
phosphorylationsitesTI, S1 and 52 showthat Akr-induced phosphorylationinhibits the tran
scriptional activityof FOXO factors. The Akt/SGK-dependent phosphorylationregulates the
shuttlingof FOXO factorsbetweenthe nucleus and the cytoplasm. Homologoussequences for
nuclearlocalization signal(NLS)and nuclearexportsignal(NE5) havebeenidentifiedwithin the
FOXO factorsasshownin Figure 2. Theshuttlingof FOXOs betweennucleus and cytoplasm is
regulatedby accessory proteins such as importinsor exportins (CrmI) .The phosphorylation of
murine FOXOI at Ser-253 (corresponding to Ser-256 in human FOXOl) is requiredfor phos
phorylation of the other two sitesfor Akr.' In the caseof FOXO1, one of the NLS liesnear the
Akr-dependenr phosphorylation siteSl. Uponphosphorylation on SI byAkt,theNLSin FOXOs
isinactivated.The 14-3-3protein possibly recognized the S1phosphorylated formofFOXO 1and
exportit to thecytoplasmbymasking the NLSand/or bypromotingnuclearexport.Howeverthe
importin that binds to the NLS remainsunidentified. Thefunction of additionalAkt-dependent
phosphorylationsitesofTl and S2alsoremains unclear. SincenuclearexportofFOXOs isinhib
ited byleptomycinBtreatment,implying involvement of Crm1in the nuclearexport. Zhao et al6

proposedtwo putativeNES in the C terminal regionand one NE5 nearphosphorylationsiteS3.
Althoughexportin (Crm1) maynot directlybind to the NES, the phosphorylationofT! and S3
possibly affects the Crm1bindingto the NES.ThephosphorylationofT1and S2dosenot affect
the binding between FOXOs and Crml. The association between FOXO and exportinsis also
regulatedby the small GTPase Ran. Phosphorylation of Ser-322 and Ser-325 by casein kinase1
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Figure 2. Functional relevance of FOXO phosphorylation in the shuttling between cytoplasm
and nucleus. FOX01 in the neurons normally staysin the cytoplasm becauseof Akt -dependent
phosphorylation. Once Akt activity is reduced by growth factor depletion or ischemic con
ditions, FOX01 is dephosphorylated by protein phosphate 2A and calcineu rin in neurons.
Although importins remains undefined, the dephosphorylation contributes its nuclear import
though nuclear localization signal (NLS). DNA-binding domain is required for activation of
the promoters of (as-ligand and bim genes. Thus FOX01-inducible proteins are involved in
the apoptosis. Neurotrophic factors and their mimetic compounds such as orthovanadate
activate Akt pathways, thereby rescuing neurons from apoptosis though phosphorylation and
inactivation of FOX01. An exportin, Crm1 together with 14-3-3 protein and Ran are involved
in the nuclear export though nuclear export signal in FOX01 molecule.

(CKl) may also contribute to promote FOXO1 relocalization to cytoplasm by increasing the bind
ing to exportins.?Likewise phosphorylation ofSer-329 by dual-specific tyrosine-phosphorylated
and -regulated kinase la (DYRKla) also accelerates nuclear export and inhibition of FOXOs'
transcriptional activity,"

FOXO Phosphorylation in Response to Oxidative
and Ischemic Stresses

Generally, once survival factors are depleted, FOXOs are dephosphorylated and translocate
into the nucleus.5•9.

12 Inthe nucleus, FOXOs are activated by other protein kinases which are inte
grated to cellular stressessuch as oxidative stress, DNA damage, cytokines and ischemia . Oxidative
stress induced by HzOz treatment triggers activation ofthe small GTPase RaL The Ral activation
results injun N-terminal kinase (JNK)-dependent phosphorylation ofFOX04 on ThrM? and
Thr-451 in mouse NIH3T3 cells.13 The phosphorylation of these residues is critical to FOX04
activation on its transcriptional activity. Stimulation with tumor necrosis factor a (TNFa) also
induced FOX04 activation with the similar mechanism.The HzOz-inducedJNK activation dose
not affect Ala-dependent phosphorylation ofFOX04. The mild activation ofFOX04 by HzOz
or TNFa likely mediates induction ofmanganese superoxide disrnutase (MnSOD) and catalase
to reduce the level ofcellular oxidative stress."
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Bycontrast, the mammalian Ste20-like kinase1 (MSTl)-mediatedFOX03 phosphorylation
in response to oxidative stress induced apoptosis in cultured cerebellar granule neurons.P The
MST1-induced phosphorylationat Ser-207disrupts FOX03's interaction with 14-3-3 proteins
and promotes its translocationto nucleus. Thus,the MST1-inducedactivationofFOX03 medi
atescelldeath in neurons.UnlikeJNK-inducedFOX04phosphorylation,neuronalAla pathways
is higWy sensitive to oxidative stress. In culture cerebellar granule neurons, H202inhibits Akt
activitythrough downregulationofPI3-Kpathways byp38 MAPK.lSConcomitant with reduced
Akr-dependentphosphorylationofFOX03,itsphosphorylationbyJNK triggers neuronaldeath
byoxidative stress.

DNA damage also reduces FOX01 phosphorylation at Ser-249 through inhibition of
cyclin-dependene kinase2 (CDK2) and therebyinducesapoptosisin prostate cancercells.16The

CDK2 inhibition in part mediated by the protein kinases Chk1 and Chk2 activatedby DNA
damage. CDK2-induced FOXO1phosphorylationat Ser-249 iscriticalto its trafIickingfrom the
nucleusto the cytoplasm.However, the pathologicalrelevance ofFOXOl phosphorylation by
CDK2 in neuronal apoptosisremainsunclear.

The diverse functions of FOXOs are also mediated by phosphorylation through the energy
sensorAMP-activatedprotein kinase(AMPK) in neurons.An elevationof AMP levels or an in
crease in theAMP/ATPratiotriggersactivation ofAMPK, therebyregulating cellular metabolism
and geneexpression to restoreATP levels.17.18The reducedATP level iscriticalto brain ischemic
damage. Thus,a persistentactivationof AMPK is documented in the brain ischemia." Notably,
the pharmacological inhibition of AMPK rescues neurons from ischemic damage. However, the
downstreamtargets for AMPK underlyingdeterioration of neuronal damagehavenot been de
fined.AMPK directlyphosphorylateshuman FOX03 at Ser-413, Ser-588 and Ser-626in vivo."
Nutrient deprivation induced these phosphorylation in mammalian cultured cells. The AMPK
phosphorylationofFOX03 doesnot affectitscellularlocalizationbut enhancesthe abilityof the
transcription factor to upregulatethe specific target genes," The decreased Akt activityis more
criticalto lead to neuronaldeath following brain ischemia comparedto the AMPK activationY

Decreased Akt Activity following Brain Ischemia Triggers Activation
ofProapoptotic Proteins

Transient forebrain ischemia results in delayed neuronal death of pyramidalneurons in the
hippocampalCAl region.Although molecularmechanisms underlyingthe pathogenesis of de
layedneuronal death is unclearat present,histological and biochemical evidences demonstrated
involvement ofapoptosisin dyingcells afterischemia.ActivationofAkt hasbeendemonstratedto

protect cellsfrom apoptosis.22.23We recentlyreported that a decreased Ala activityis involved in
ischemic-induced celldeath2l.24-26and that an increased Akt activityaccount for neuroprotection
in ischemictolerancein gerbilhippocampalneurons." Akt isphosphorylatedon the two residues
Thr-308 and Ser-473prior to it acrivation." Plasma membrane translocation is alsoan essential
step in the Akt activation. Thereafter, the activatedAkt detaches from plasma membrane and
translocares to the nucleus.Several potential substrates forAla relatedto cellsurvival includeBad,
caspase 9 in the cytoplasmand cAMP-responsive elementbindingprotein (CREB), NF-kappaB
and FOXOs in the nucleus.9.29·36

Dephosphorylation and Activation ofFOXOs following Brain Ischemia
Because Ala phosphorylates FOXOssuchasFOXO1and FOX03 asdownstream targetin cell

survival signaling,4.9.29.34 wefirstfocusedon FOXO1phosphorylationaswellasAkt phosphoryla
tion in thegerbilhippocampus aftertransientforebrain ischemia.24 Thetransientforebrain ischemia
induced dephosphorylationof FOX01-Ser-256 in the hippocampal CAl region immediately,
0.5and 1h afterreperfusion without changes in the FOXO 1protein levels. The FOXO 1-Ser-256
phosphorylation returned to the basal level within 2 h after reperfusion. The FOX01-Ser-256
dephosphorylation wasclosely correlatedwith thedephosphorylation ofAla-Ser-473.The dephos
phorylation ofFOXO I leadsto translocationinto the nucleusin the hippocampalCAl regions.



134 Forkhead Transcription Factors: VitalElementsin Biology andMedicine

In sham-operatedanimals, phosphorylatedFOXOI predominantlylocalized in the cytoplasmof
the pyramidalneuronsin the CAl regions. Thetransient ischemia causedapparenttranslocation
ofFOXO I into the nucleiof the CAl pyramidalneurons.

However, severe brain ischemia in mousetransientmiddlecerebral arteryocclusion (MCAO)
model, dephosphorylation and subsequentactivation of FOXOI , FOX03 persistedfor more
than 6 hoursin the ischemic hemisphere (Fig.3).37On the other hand, FOX04 phosphorylation
unchangedat lease until24 h afterocclusion. Consistentwith dephosphorylation ofFOXO I and
FOX03, DNA bindingactivities to forkhead-responsive elementwith in the Pas-ligandpromoter
elevated until 6 hours.The DNA binding complexes following brain ischemia mainlyincluded
FOXO I and FOX03 and faintly FOX04 in the hippocampalnuclearextracts. To ensurethe
involvement ofdecreasedAktactivity in the FOXO dephosphorylation, a novelPI3·K/Aktactiva
tor,vanadyl compoundVO(OPT) testedon the ischemia-induced dephosphorylation ofFOXO I
and FOX03. VO(OPT) treatment stimulatedthe decreased phosphorylationof Akt (Ser-473)
observedI and 2 hours afterMCAO.37Likewise, the prolongeddephosphorylation of FOXOI
and FOX03 restoredto the levels comparable to sham-operated animals(Fig.3).

Crosstalk between Akt and Calcineurin Signaling in Neuronal Death
Notably, the dephosphorylation of Akt following MCAO wastransient and returned to the

basalphosphorylationwithin 6 hours,whereas the dephosphorylation of FOXOI and FOX03
afterMCAO wasprolongedup to 6 hours.Theprotein levels ofFOXOs unchangedat leastuntil
6 hours after MCAO. Specific protein phosphatases may account for the dephosphorylation
of FOXOs. Calcineurin (CaN) is compound of A and B subunits with 60-kDa and 19·kDa,
respectively. CaN A subunit contains the catalytic, CaN B binding, calmodulin binding and
autoinhibitory domains,whileCaN Bsubunit hasan intrinsicCa2+bindingdomain.Theenzyme
becomes active whencalmodulin(CaM) bindsto CaN A subunit by releasing the autoinhibitory
domain from the catalytic active site.38.39In addition to Ca2+/CaM-dependent activation, CaN is
convertedinvitroto aconstitutively active bycleavingout the autoinhibitorydomainwith calpain
treatment.38.40 Previous studieshave shownthat artificial overexpression oftheconstitutivelyactive
CaN inducesapoptosis in neuronalandnonneuronalcells.41-43 In the recentin vivo studies, genera
tion ofconstitutively active CaN activitywasevidentin neuronalinsultsincludingkinate-induced
neurotoxicityin rat brainand Alzheimer's disease in humanbrain.44•4sThegenerationofconstitu
tivelyactiveCaN bycalpainand the calpain-induced CaN activation mediates delayed neuronal
death inbrain ischemia.46•47Interestingly,phosphorylatedSer-256 ofFOXO I isdephosphorylated
by constitutively active CaN. FOXO I formsa complexwith CaN and thereafterthe complex is
translocated into nuclei in the hippocampal CAl neuronsafterMCAO (Fig.4).Since thecomplex
following MCAO isnot affected with treatment FK506, a specific CaN inhibitor, implying that
the catalytic activityisnot requiredto makethe complex. CaN alsomediates Akt dephosphoryla
tion in the ischemic retinal cells.48The interaction between CaN and Akt alsoevidentafter the
ischemic retina. In this case, the formationof CaN-Aktcomplexisinhibited byFK506treatment,
suggesting that Akt is recognized asa substrateby CaN during ischemia. The CaN-inducedAkt
dephosphorylationprecededthe apoptotic neuronaldeath in ischemic rat retina.48

Synergistic Activation ofFas-Ligand Promoter by NFATs and FOXOs
Nuclear factor of activatedT-cells (NFAT), a downstream target for CaN is an attractive

candidateunderlying itsdetrimentaleffects. Fivemembersof the NFATfamily includingNFATl
(NFATp or NFATc2), NFAT2(NFATcl),NFAT3(NFATc4), NFAT4(NFATc3 or NFATx) and
NFAT5 havebeen identified.49.50 The translocation ofNFATs into the nucleus in response to an
increase of intracellular Ca2

+ isledby the dephosphorylation byCaN. Followingdephosphoryla
tion ofNFAT by CaN, NFATmakes a complexwith CaN and in turn leadsto translocationof
CaN with NFATfromthecytoplasm into the nucleus in U20S cells," Wealsofound in vivothat
activation of constitutively active CaN led to translocationofNFATc4into the nucleifollowing
ischemic brain." NFAT and FOXO I dephosphorylated by constitutively active CaN activate
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A

complex ~ 1 sham
2 vehicle (2 hr aft r Ischemlalreperfuslon)
3 ischemia . FK506 (3 mglkg)
4 negaUve con trol (IP: CaMKII)

B

Sham

Ischemia

1 2 3 4

Figure 4. Calcineurin(CaN) makes complex with FOX01 and the complex translocates into
the nuclei after brain ischemia. A) Extracts obtained from the ipsilateral hemisphere from
sham-operated (lane. 1), subjected to MCAO at 2 h after ischemia/reperfusion (vehicles)
(lane. 2), subjected to MCAO at 2 h after ischemia/reperfusion pretreated FK506 (lane. 3)
underwent immunoprecipitation (IP) with anti-CaN antibody and the immunoprecipitates
were then analyzed by immunoblotting (lB) with anti-FOX01 antibody. The negative control
underwent immunoprecipitation w ith anticalcium/calmodulin-dependent protein kinase II
(CaMKII) antibody (lane. 4). B)Hippocampal slicesfrom sham-operated and ischemic animals
at 2 h after ischemia/reperfusion were double stained with FOX01 and CaN antibodies . In
sham-operated animals, the immunoreactivities for FOX01 and CaN predominantly local
ize in the cytoplasm, whereas both immunoreactivities translocated to the nuclei in some
neurons in the hippocampal CAl region. Modified from Shioda et al. J Neurochem 2007;
102:1506-1517;47©2007 with permission from Wiley-Blackwell.

Fas-ligand promoter activity and synergistically promote Fas-ligand expression. FOXO l-indeuced
Pas-ligand expression is also correlated with neuronal death in gerbil hippocampal CAl after global
ischemia." The DNA-binding activity of FOXOl and NFAT within the Fas-ligand promoter
following MCAO are inhibited by FKS06 treatment."

Downstream Targets for FOXOI in Delayed Neuronal Death
Fas (also called CD9S, APO-l), a member ofTNF receptor family and Fas ligand (also called

CD9S-L, APO-lL) play the important role in apoprosis." Activation ofFas leads to formation of
death-inducing signaling complex composed with Pas-associated death domain and pro -caspase 8.
Pro-caspase 8 isproteolytically cleavedand consequentlyactivates caspasepathways and thereby cells
are led to apoptosis . Fas/Fas ligand system, which was first documented in the immune system, is
also important for pathophysiology in the neurodegenerative disorders such as Alzheimer'sdisease,
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multiplesclerosis, traumaand ischemia. Recently Fas/Fas ligandsystem isinvolved in the mitochon
drialapoptoticpathway bycleaving the Bcl-2 family member, Bid.53.54 FOXOsareknownto induce
theexpressionofapoptosis-relaredgenes suchasFas-ligand andBH3-onlymember oftheBcl-2 family
(Bim).9.55 Expression ofFas ligandin the ischemic brain regionwaselevated 2 days afterischemia/
reperfusion."Vanadium compound treatmentspreventedthe ischemia-induced expression ofFas
ligand.37Likewise,FasligandmRNAexpression increased in thecerebral cortexfollowing permanent
MCAO inadultrats56andFas ligandmRNAanditsproteinwereexpressed inthecerebralcortexafter
reversible MCAO inadult rats.57-59Furthermore lprmiceexpressingmutant Faswithout itsfunction
had significantly smaller infarctsizeafterMCAO ascomparedto thewildtypemice."

Activation of FOXOs also accounts for expression of another apoptotic protein, Bim.55

Developingsympatheticneurons die byapoptosiswhen derivedof nervegrowth factor (NGF).
BimisinducedafterNGF deprivation inwhichFOX03 isinvolved in the Bimexpression." FOXO
binding sitesare required for activationof the bim promoter by FOX03 and NGF withdrawal.
Induction ofBim isalsoassociated with vulnerabilityofhippocampalneuronsafterexperimental
seizures and in hippocampifrompatientswith intractabletemporallobeepilepsy." Toaddress the
relevance of activationFOXO1in the Biminduction in ischemic brain injury, expression ofBim
wasalsoinvestigated in mouseMCAO. Bimprotein levelmarkedly increased 24 h afterischemia/
reperfusion.37,62 FOXOs are required for Bim promoter activation as seen in cultured human
BV173and mouseBaF3/Bcr-Abl-expressing cells/" Bimoriginally plays an important rolein the
apoptosisof hematopoieticcells/" Bim is alsopresent in the adult central nervoussystem65and
plays a pathogenic role in ischemic brain.66 For example, increased mitochondrial localization of
Bimcoincides with a markedreleaseof cytochromecfrom mitochondria, resultingin Caspase-9
activation/f Furthermore,active Caspase-9 cleavesthe executionerofapoptosis, Caspase-S, which
leads to apoptosisin brain ischemla.? Both Bim expression and Caspase-3 activationfollowing
MCAO wereinhibited byvanadiumcompound stimulatingAkt activiry,"

Regulation ofFOXO Pathways bySIRTI
Inadditionto phosphorylation ofFOXOs,deacetylation ofFOXOs bySIRTl isknownto regu

latetheirtranscriptional activities.SIRT1,themammalian homologofsilence informationregulator
2 (Sir2)in Saccharomyces cereoisiae, isan NAD-dependentdeacetylase implicated in regulation of
lifespan.Theinvivo deacetylation targets ofmammalian SIRTI includenuclear transcription factors
such as p53,68 FOX069,70and nuclear factor (NF)-kappaB7I • In cerebellar granulecells, fibroblast
and embryonicstemcells, apoptosis triggered byFOX03 acetylation in response to oxidative stress
and DNA damage is inhibited by SIRT1.69,n Indeed, the acetylationof FOXO1 and FOX04 by
cAMP-response element-binding protein (CREB)-bindingprotein(CBP) inhibits their transcrip
tional activities73,74Conversely, deacerylation of FOXO1 by SIRTI activates its transcriptional
activity75The acetylation of FOXOI alsoincreases its phosphorylation at Ser-253 by Akt.Thus,
the consequence ofSIRTl mediateddeacetylation ofFOXOs is rathercomplex and elicits diverse
effects dependingon promoter of targetgenes. Takentogether, SIRTI enhances the expressionof
FOXO targetgenes that areinvolved in the cellarrestand resistance to oxidative stress, but inhibits
the expression ofFOXO genes associated with celldeath induction."

Therapeutic Perspectives
The characterization of Akt/FOXO pathwaywhich is criticalfor decisionof cell death fol

lowingthe ischemic brain opensthe potentialstrategyfor clinical treatmentsnot onlyin ischemic
insult but alsoin neurodegenerative disorders. Neurotrophicfactors includingIGF-l, basicFGF
and brain derived neurotrophic factor (BDNF) are potentiallyimportant therapeutic agents for
neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The benefits of these
neurotrophictreatmentsincludeactivation ofPI3 -K/Aktpathways concomitantwith extracellular
signal-regulatedkinase(ERK)activation,both ofwhichhavepivotalrolein upregulation ofsurvival
signaling. However, likemostproteins,neurotrophins have poormedicalproperties, includinglimited
abilityofpenetrationinto braintissue andpoorchemical stability in bloodcirculation. Our goalisto
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develop stable, smallmolecules havingneurotrophin mimeticfunctions to preventneuronallossand
to maintain neuronalconnection.Wehave introducedanovel approach forcreatingAkt stimulants as
asmallcompoundsuchassodiumorthovanadate, vanadyl sulfate andbis(1-oxy-2-pyridinethiolato)
oxovanadium(IV) [VO(OPT)] . Indeed,thephosphatidylinositol3-kinase (PI3-K)/Akt activation
bysodiumorthovanadate (Na3V04) rescue neuronsfromtransientforebrain ischemia ingerbils and
rats.24,2S-27.771heinhibitionof FOXO-inducedFas-ligand and Bimexpression in part mediatedthe
neuroprotective actionof orthovanadate and VO(OPT).2S.37 Importantly, in vivo treatments with
orthovanadate and VO(OPT) markedly enhancedneurogenesis following brain ischemia in the
subventricular zoneof the frontalcortexand the subgranular zoneof thehippocampus.V" Likethe
protective effects ofvanadium compounds in brainischemia, vanadyl sulfate andVO(0 PT) elicits
cardioprotection inmyocardial ischemia/reperfusion-induced injuryandthereby markedlypromoted
the functional recovery of heart constriction.8ll-831he VO(OPT)-induced cardioprorection was
mediatedbyincreased FLICE-inhibitory protein (FLIP)expression and decreased Fas ligandand
Bimexpression viaAkt activation.

Possible mechanismunderlying neuroprotective mechanism ofVO(OPT) on brain ischemic
neuronalcelldeath wasshownin Figure5. Bindingof trophic/survivalfactorsto tyrosinekinase

: .
C8lpaa In
cIeg Ion

Protein tyrosine
phosphatllUS

T Akt

~ 7
c a'CineUrin

cllM
activation +--

FOXOs dephosphorylation
(FOXOs 1, 3a, 4)

-~----_...I~

Figure 5. Possible mechanisms underlyingFas-ligand expression and neuroprotectiveaction of
VO(OPT) in ischemic brain insults. Bindingof trophic/survival factorsto tyrosinekinaserecep
torsactivateAkt through PI3K activation. Akt inhibits FOXOfunction by phosphorylation. Brain
ischemiacauses atransient inactivationof Akt viadephosphorylationby proteinphosphatase 2A
andcalcineurin, therebypromotingapoptosis throughdephosphorylation of FOXOs.Calcineurin
activatingbyCa2+elevation andcalpain-inducedlimitedproteolysis alsoaccounts fordephospho
rylation of FOXOs both in the cytoplasmand nucleus. VO(OPT) activates Akt activity through
inhibition of protein tyrosine phosphatases, therebypreventingdephosphorylation of FOXOs.
Finally, the VO(OPT)treatmentpreferentiallyinhibits expression of Bim and Fas-Iigandthrough
inactivation of FOXOs. The inhibition of Bim and Fas-l igandexpression leads to prevention of
apoptosis induction. Caspase-3 activation triggers degradation of calpastatin, an endogenous
calpain inhibitor, promotesaberrantcalpainactivation, therebygenerating constitutivelyactive
calcineurin. The calcineurin activation also promotesapoptotic neuronal death.
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receptors activates Aktthrough PI3 -K activation.The Akt inhibits functions ofFOXOs by phos
phorylation. The ischemia/reperfusion causesdephosphorylation and inactivation ofAke,thereby
decreasing phosphorylation ofFOXOs. Calcineurin activation is likely involved both in dephos
phorylation ofAktand FOXOs. Once FOXOs are dephosphorylated, the factors translocate into
nucleus and in turn elicit apoptosis by inducing Bim and Fas-ligand. Fas is a tumor necrosis factor
(TNF) receptor family member and is activated by Fas-ligand binding. Activation ofFas-ligand/
Fassignaling leads to caspase-8 activation through a death-inducingsignaling complex with FADD.
The mitochondrial-dependent and -independent apoptosis is induced following caspase-8 activa
tion. In the mitochondrial-dependent pathway,caspase-8 cleavesBid, a "BH3-only" pro-apoptosis
Bcl-2 family protein, thereby promoting cytochrome c release. The released cytochrome c binds
to apoptotic protease-activating factor-I (Apaf-I) and in turn triggers caspase-9 activation. In the
mitochondrial-independent pathway, caspase-8 activation directly leads to caspase-3 activation.
Thus, YO(OPT) treatment inhibit protein tyrosine phospharases , thereby stimulating receptor
tyrosine kinases activated by growth and trophic factor s. Akt activation through PI3-K in turn
restores the phosphorylation of FOXO phosphorylation, thereby inhibiting FOXO-mediated
Pas-ligand and Bim expression. The inhibition ofFas ligand and Bim expression rescues neurons
from the mitochondrial-dependent and -independent apoptosis.

In addition to Akt signaling pathway, beneficial effects ofcaloric restriction on longevity are
mediated by SIRT1. Resveratol (trans-3, 5, 4"-crihydrovystibene), a naturally occurring polyphe
nol produced by a wide variety 0 plants, activates SIRTl. SIRTI is located in the nucleus and
deacetylates p53, NF-kappaB and FOXOs. Ischemic preconditioning is protective against lethal
ischemic indults by deactivating p53 in the heart and brain. 84•85 SIRTI inhibitor sirtinol abolished
resverarol-mediated hippocampal neuroprotection in oxygen glucose deprivation-induced cell
death in the organotipic hippocampal slices.86 Resveratol also protect PC12 cell injury against
A~-induced reactive oxygen species (ROS) production and DNA damage." Since SIRTl en
hances expression ofan antioxidant manganese superoxide dismurase (MnSOD) in NF-kappaB
and FOXO-dependent manner, the upregulation of MnSOD likely mediates the ROS-induced
cell damage," Likewise, caloric restriction is potential clinical therapy ofAlzheimer's disease by
increasing expression ofneurotrophic factor.88 Taken together, regulation ofFOXO function by
Akt and SIRTI is attractive therapeutic strategy for the neuroprotection against ischemic insults
and neurodegenerative disorders.
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New Insights for FOXO and Cell-Fate
Decision in HIV Infection and HIV
Associated Neurocognitive Disorder
Min Cui, YunlongHuang, YongZhaoandJialin Zheng*

Abstract

H uman immunodeficiency virus Type 1 (HIV-I) infection and associated diseases con
tinue to represent major health problem worldwide. FOXO transcriptional factors play
an important role in the regulation of cell apoptosis, cell cycle arrest , stress resistance,

metabolism and differentiation.This chapter will discuss the diverse functions ofFOXO in differ
ent cell types including'l-cells, macrophages, neurons and astrocytes within the context ofHIV-I
infection. Given the overwhelmingevidence that FOXO proteins influence the cell fate ofimmune
cells and involve in the homeostasis ofthe central nervous system (CNS), we will also discuss the
potential role ofFOXO factors in HIV-I -associated neurological disorders.

Introduction
The Forkhead Box 0 (FOXO) transcription factor family, the mammalian orthologs of

Caenorhabditis elegans "forkhead protein" DAF -16, is characterized by a conserved DNA bind
ing domain commonly known as a "forkhead box" or a "winged helix".I-4 FOXO proteins play an
essential role in the crosstalk between many signaling pathways, including cell cycle, metabolism,
apoptosis and cell survival. Regulation ofFOXO transcription factors is carried out by a complex
interplay of phosphorylation, acetylation, ubiquitination and interaction with other protein
partners. These post translational modifications ofFOXO proteins work in concert to determine
the role of FOXO in diverse cellular processes, which may be dependent on the microenviron
mental cues and the appropriate downstream signals. Recently accumulating evidence shows that
FOXO proteins playa critical role in the pathogenesis ofHIV-I-infection. This chapter provides
an overview ofFOXO proteins and their potential roles in various pathological conditions such
as HIV-I infection and its associated neurological complications. Understanding the involvement
ofFOXO proteins in the pathogenesis ofHIV-I infection and other CNS-associated diseasesmay
provide therapeutic targets for the treatment ofHIV-I infection and its associated neurodegenera
tive disorders and neuronal injury.

FOXO Family Members and GeneralFunction
Four FOXO isoforms, namely FOXOI, FOX03a, FOX04 and FOX06, have been identi

fied in mammalian cells to dare.'? The expression and function of FOXO isoforms have been
investigated in great detail. Unlike other members of the family, FOX06 is only detected in
the developing brain and has different posttranslational regulation mechanisms due to the lack
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of conserved Ake-I phosphorylation motifs FOXOl, FOX03a and FOX04 are ubiquitously
expressed and participate in diverse physiologic processes, including cell cycle regulation, dif
ferentiation, apoptosis, stress resistance and metabolism. Notably, the cellular outputs and the
cell fate decisions of FOXO are determined by a host of downstream factors that appear to be
cell type- and microenvironment-specific. One important aspect ofthe FOXO family is that the
gene expression pattern overlaps during development and in the adulthood, implying that FOXO
proteins may bind to and regulate the same target genes. Thereby, FOXO isoforms display func
tional redundancy and compensation in vivo, whilst keeping lsoform-specific function in some
cell linages and tissues.

Regulation ofFOXO Protein Activity
Multiple posttranslational modifications of FOXO proteins affect FOXO transcription ac

tivity, including phosphorylation, acetylation, ubiquitination and protein-protein interactions.
Phosphorylation is the most critical modification as it essentially regulates the translocation of
all FOXO proteins between the nucleus and cytoplasm. An exception to this is FOX06, which
is a nuclear factor and does not translocate out of the nucleus. FOXO phosphorylation primar
ily inhibits FOXO function with rare exceptions. Phosphatidylinositol 3-kinase (PI3K), which
responds to growth factors and cytokines, has been known to regulate FOXO function,"? Akr-I
phosphorylates FOX03a at three residues and retains FOX03a in the cytoplasm by promoting
its association with adaptor molecule14-3-3,8.1O,1l subsequent deactivation and degradation of
FOX03a. In the absence of Akt-l phosphorylation, FOX03a translocates to the nucleus and
controls cell cycle, apoptosis and other processions through transcription of target genes.P:" In
addition to Akr-I , many kinases also phosphorylate FOXO. These include serum and glucocorti
coid-regulated kinase (SGK), c-jun N-terminal kinase (JNK), extracellular signal-related kinase
(ERK), dual specificity tyrosine-phosphorylated and regulated kinase (DYRKIA), mammalian
Ste20-like kinase-I (MSTl) and IKBkinase (IKK) (for summary, see Table 1).8,II ,lsThough phos
phorylation usually prevents activation of FOXO through cytoplasmic translocation, there are
two exceptions to this rule. In response to stress stimuli, ]NK and Mstl phosphorylate FOXO at
a distinct set of threonine residues and promote nuclear translocation leading to transcriptional
activation (see Table 1). Commonly, following cytoplasmic translocation, FOXO phosphoryla
tion also results in FOXO ubiquitination and proteasomal degradation, further reducing the
transcriptional activity ofFOXO.1O,16.18

Another intriguing regulation method ofFOXO isacetylation and/or deacerylation. Due to its
influence on phosphorylation, acetylation can also affect FOXO subcellular localization. FOXO
can be acerylated by the calcium response element-binding (CREB)-bindingprotein (CBP), p300
and p300/CBP-associated factor (PCAF);whereas FOXO can bedeacetylated byhistone deacety
lases (HDACs) and NAD-dependent deacerylases.P" Acetylation may suppress FOXO protein
activity and serve as a negative feedback signal during FOXO activation. Acetylation-defective
FOXO1 mutants have higher transcription than wild-type , but the mutant FOXO1 tends to be
rapidly ubiquitinated and degraded . However, mutations that mimic the acetylated state ofFOXO
increase stability but impair FOXO1 transcriprion." More specifically, acetylation ofFOXO by
CBP and/or p300 prevents the binding ofFOXO to its target DNA, reduces the stability ofthe
FOXO-DNA complex and increases the phosphorylation ofthe nonessential Akt-l phosphoryla
tion site.38,39 Deacetylation, on the other hand, may enhance the transcription activity ofFOXO.
Duringoxidative stress,SIRT2 expression increases and results in the acetylation levelofFOX03a
reduced. As a consequence, FOXO transcriptional activity increases along with its target genes,
p27Kip1,manganese superoxide dismutase (MnSOD) and Bel-2-interactingmediator ofcelldeath
[Bim), which work on oxidative stress mediated apoprosis," Interestingly, in mouse pancreatic ~

cells, acetylation and deacetylation seems to reach equilibrium to maintain FOX03a transcrip
tion activity. FOXO1 protects pancreatic ~ cells against oxidative stress by forming a complex
with promyelocytic leukemia protein (Pml) and deacetylase SIRTl, subsequently activating the



FOXOand Cell-Fate Decision in HIVInfection 145

Table 1. Summaryofupstreamkineses, phosphorylation sitesand the cellular
outcomes for FOXO members

FOXOl FOX03a FOX04 CellularOutcome References

Akt-1 T24,5256, T32*, 5253*, T28,5193, Inactivation, cytopl asmic 19-22

5319 5315 5258 translocation

5GK T24,5256, T32',5253, T28,5193, Inactivation, cytoplasmic 11 ,23-25

5319 5315' 5258 translocat ion

CK1 5322, 5318,5321 5261,5264 26,27

5325

CDK2 5249 28

M5T1 5212 5207 Activation, interact with JNK 12

pathway

DYRK1 5329 5325 5268 29

ERK 5344,5294, Inactivation, cytoplasmic 30

5425 translocation

JNK T447, T451 Activat ion, nuclear translocation 31

IKK~ 5644 Cytoplasmic translocation and 32
ubiquitination

* indi cates the phosphorylation preference of Akt-1, and ' indicates the phosphorylation
preference of 5GK.

expression ofNeuroD and MafA, two Insulin2 (Ins2) gene transcription factors that are known
to alleviate oxidative stress.

Ubiquitination ofFOXO proteins provide another avenue to regulate their transcriptional
activities . Notably, poly- and mono-ubiquitination result in different cellular outcomes for
FOXO. Phosphorylation by Akt -I, ERK, or SGK not only retains FOXO in the cytoplasm
but also facilitates the polyubiquitination and degradation of FOXO. This polyubiquitina
tion provides a potential negative feedback regulation to properly control FOXO activity in
response to growth factor signalingy·30.41-43 Phosphorylation of FOX03a C-terminal residue
Ser-644 by IKK also promotes polyubiquitination and degradation of FOX03a through the
proteasome pathway. Residue Ser-644 is exclusiveto FOX03a and is absent in the other FOXO
proteins." Though polyubiquitination promotes degradation ofFOXO,41,45 monoubiquitination
of FOXO in response to cellular oxidative stress leads to the nuclear translocation and tran 
scriptional activation ofFOXO proreins.w" Monoubiquitination ofFOXO is counteracted by
USP7, a deubiquitinating enzyme that binds to FOXO proteins and represses FOXO activity.
Surprisingly, neither monoubiquitination nor USP7 -rnediated deubiquitination affects FOXO
protein stability."

One crucial protein in the regulation ofsubcellular localization ofFOXO is the chaperone
protein 14-3-3, which plays a direct role in the phosphorylation and acetylation ofFOXO. The
14-3-3 protein has a U-shaped structure that serves as a dock for the phosphorylated serine or
threonine residues ofFOXO. The 14-3-3 protein isoforms are also able to form stable homo- or
heterodimers and thus could bind two ligands simulraneously/Y" Many ofthe phosphorylated
serine or threonine residues are located in the FOXO nuclear localization sequence (NLS).
Binding of 14-3-3 proteins to FOXO therefore masks or obscures the NLS and subsequently
prevents FOXO protein translocation into the nucleus. I1 ,1 2.49,51 In addition to binding to the
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phosphorylated residues, the 14-3-3proteinsseemto be required to bridgeFOX03a and SIRTl
together to facilitate the deacetylationprocess.

The fine-tuned regulationofFOXO transcriptionalactivitytypically involves the interaction
ofFOXO and other partners. Dependingon the celltype and cuesfrom the microenvironment,
theseprotein-protein interactionscaneither fosteror suppress FOXO transcriptionalactivityand
affectthe subsequentcellularresponse. FOXO proteinsplaykeyrolesin cellcycle control through
p21Gp1, p27Kip1 and other genes by directly binding to their promoters. Furthermore, in the
caseof transforminggrowthfactorbeta (TGF~) stimulation,FOXO requiresadditionalproteins,
namely Smadsand FOXG1, to control the expression of the growth inhibitory genep21Gp1.
Smad2and Smad3hetero-oligornerize with Smad4,translocateto the nucleusand formacomplex
with FOXO. This complexcan bind to the promoter ofp21Gp1 and turn on its expression. In
contrast,FOXG1,aprotein fromadistinct FOX subfamily, inhibitsp21Gp1 expression through
binding FOXO/Smad complexes. These interactions enable the TGF~/Smad pathwayand the
FOXG1 to delicately regulate the expression of downstreamfactorsof FOXO.52-56 In addition,
plSINK4b, another downstreamfactor of FOXO, requiresCCAAT/enhancer binding protein
~ (C/EBP~) and the FOXO-Smad complexto properly respond to TGF~.52 RUNX3, a runt
domain-containing transcription factor, is also required by FOXO to induce the expression of
Bim.TheBim promoter containsone FOXO bindingsiteand two RUNX3 bindingsitesin close
proximity and the interaction ofFOXO and RUNX3 coordinatelyupregulates Bimexpression
and promotes apoptosisin gastriccancercells."

The interaction ofFOXO proteins and their partners mayrelease the transcriptional repres
sor from the promoter of target genesand this removalleads to the expression of these genes.
In this case,FOXO proteins serveasco-activatorsrather than specific transcription factors.For
example,the tumor suppressorpS3 normally inhibits Sirt1 expressionby binding to two sites
ofSirt1 promoter. Under nutrient deprivation, FOXO binds to pS3 and releases pS3 from the
Sirt1 promoter, thereforeactivatingSirt1 expression.This interaction betweenFOXO and pS3
is independent of the binding between FOXO and the Sirt1 promoter." Similarly, in muscle
cells,the binding of FOXO with the transcriptional repressorCsl also releases Csl from Hesl
promoter and induces Hesl expression. In addition, FOXO may interact with other proteins
and inhibit FOXO transcriptionactivityin return. Forexample,FOXG1binds to FOXO-Smad
complex and leads to FOXO target gene suppression. Furthermore, the nuclear receptor per
oxisome proliferator-activated receptor-y (PPARy) may inhibit FOXO activity transcription
through the interacting with FOXO.59

FOXO in HIV-l Infection and HIV-l Associated Neurocognitive
Disorders

In HIV-l pathogenesis, depletion ofT-cells and other immune cells is the most fundamental
pathophysiological consequence. Notably, the immuneactivation mayinduceT-cells and other cell
lossin different stages of HIV-l -infection.60•61HIV-l can directlykill the infected CD4+T-cells
and destroy the uninfecredand bystandercells simultaneously. In addition to the disruption of
the peripheral immune system, HIV-l also leads to a spectrum ofviral-induced neurocognitive
disorders.Although the mechanisms haveyet to befullyelucidated, HIV-l-mediated brain inflam
mationincludingoverproductionofcytokines, chemokines, glutamate andothersfactorshavebeen
shownto playsignificant rolesin disease progression.62-64HIV-l entersthe brainshortlyafterinitial
infection,crossing thebloodbrainbarrierviaperipherally infectedmonocytes.f Brainmacrophages
and microglia,unlikeother cellularresidentsin the CNS, are ableto sustaina productiveHIV-l
infection within the brain.66 Therefore, while the restof the body in generalexperiences a riseof
viral load followed bya gradualdecline,the isolatedeNS maintainsa low, but persistentlevelof
HIV-l-infection. Although neuronsarenot infectedbyHIV-l , a dementiaspecific to HIV-l has
been describedas HIV-l -associated dementia (HAD).67.68

HAD is the clinicalconsequence of neuronal injuryand dropout. Thepathologiccorrelateto
HAD, HIVencephalitis (HIVE), ischaracterized byHIV-l -infectedand -activatedmacrophages
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and microglia, damage of neuronal dendrites and axons and apoptotic neurons. As a result of
HIV-1 infection, the immune cells are recruited to the proximatesite and produce an array of
factorsincludingcytokines,proteases and other factors, yet theyareunableto clearthe infection.
Thedifficultyin eradicatingHIV-1 infectionprolongs the immuneresponseleadingto a chronic
inflammatorystate. Chronic inflammation has both detrimental and beneficial effects. On one
hand, theseresponses areessential in limitingviralspread; yeton the other hand,excessive inflam
mation isdetrimental to residentcellssuchas neurons or neural stem cells that are important for
the neuronal repairprocess.

HIV-1 infection and its consequence in the brain, macrophage/microglia infection and acti
vationand its associated neuronal injuryand/or loss, and the changes in neuronal repairprocess
havebeen the focusof much investigation. Asintroduced previously, FOXO isa keyfactor in the
determination of cellfate in differentenvironments. In the following sections,wewilldiscuss the
potential rolesofFOXO in HIV-1 infection,its associated immunodeficiency and the long-term
consequences on the host central nervesystem during HIV-1 infection.

FOXO in T-CellDepletion

Potential SignalingPathway ofFOX03a in T-CellDepletion
HIV-1 Infection leads to progressive CD4+ T-cell depletion, resulting in AIDS (Acquired

ImmuneDeficiency syndrome)development. The mechanisms that triggerthe CD4+T-celldeath
are not fullyunderstood, but data indicatethat apoptosisplays a major role in this cellloss. Both
infectedand uninfectedCD4+T-cells dieduring HIV-1 infectionbydifferentcelldeath pathways
and bystanderCD4+T-celllossis now recognizedasessential to the immunodeficiency'"?'

The general rolesof FOXO proteins in the immune system might be relevant to immune
homeostasis." ?' Normally, FOXO inactivation is indispensable to maintain T-cell survival and
proliferation. Once FOXO is activated, FOXO triggers apoptosis in T-cells by regulatingthe
expression of several pro-apoptotic genes, such asFasL (Fasligand,alsoknown asCD95 ligand),
Bcl-6(B-celllymphoma 6), Bim and Puma (p53 upregulated modulator of apoprosis)." :" In
HIV-1-inducedT-cellapoptosis, FOXO mayalsoplayan important role.Accumulatingevidence
suggests FOXO membersparticipate in HIV-1-induced T-cellapoptosis, directly or indirectly,
through a differential regulationof apoprosis, Specifically, HIV-1-infectioncan triggerboth in
trinsicand extrinsicapoptotic pathwaysthat are regulatedviaFOXO in infected and uninfected
T-cellsduring HIV-1 infection.

Several HIV-1 proteins havebeen shown to interferewith cellularproteins implicated in the
controlofcellcycle andapoprosis, particularly,cellcycle G2 arrest." HIV-1proteinVprinducescell
cycle G2 arrestand blocksinfectedcells from proliferaeing." Vprblockscell cycle progression by
activatingthe ATR (ataxia-telangiectasiaand Rad3-related)complex(includingATR,Rad17and
Rad9-Hus1-Rad1),leadingto Cdc25cfunctionalsuppression, Cdk1 and cyclin Bdownregulation.
At the sametime, activationof ATR complexalsoinduces Gadd45a expression. Both G2 arrest
and Gadd45a expression result in Baxactivation,which inducesapoptosisviathe mitochondrial
pathway," :" Interestingly, FOX03a hasbeenmechanistically linked to Vpr-induced cellcycle ar
restand apoptosis.84,86-88 VprmaymodulateFOXO function through two ways. First,Vprisableto
interferewith the association of FOX03a with 14-3-3and subsequentlyimpedethe shuttlingof
FOX03a from the nucleusto the cytoplasm. Second,Vprinhibits insulin/PI3K/Akt-I signaling
pathway, leadingto FOX03a activationand translocation to the nucleus.89,90 The activation of
FOXO mayalso induce GUM cellcycle arrest through the upregulationof Gadd45aand cyclin
G2.91•92 In addition, FOXO may facilitate cellcyclearrest through the inhibition of the FOXM,
which isknown to positively driveGUM phasetransition.29

•
93

FOXO is also involved in HIV-1 protein Tat-induced CD4+T-cell apoptosis. Tat triggers
Egr1-PTEN-Akt-I (earlygrowth response-I /phosphateand tensinhomologdeletedon chromo
some 1O/Akt-1) and p53 pathways, which converge on the regulationof FOX03a transcription
factor and result in FOX03a activation. The FOX03a target genes, FasL and TRAIL (Tumor
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necrosis factor(TNF)-related apoptosis-inducing ligand), are the primary TNF family members
that engage in the extrinsic apoptotic pathway ; while Puma,Noxaand Bimare members ofBCL-2
family that participate in the intrinsic apoptotic pathway. Therefore, HIV-l protein Tat could
induce apoptosis in CD4+ T-cells through multiple pro-apoptoric target genes associated with
FOX03a.94 As Tat can be secreted by infected cellsand taken up by uninfected cells,Tat-induced
apoptosis could potentially affect both infected cells and uninfected cells.95.%

As reviewed by Selliah, other HIV-l proteins have been implicated in aspects of apoptosis,
including Nef Vpu, Env and protease." Limited evidence is available to confirm the involvement
ofFOXO in apoptosis induced by those aforementioned proteins. However, the potential function
ofFOXO members through their target genes (such as FasL, TRAILandBim) and the participa
tion ofthese genes in the HIV-l-induced celldeath, indicates that FOXO might contribute to the
cell death induced by HIV-l-infection or HIV-l encoded proteins.

FOX03a Commits to the Survival o/CentralMemory CD4+ T-Cell
in HIVInjection

CD4+ central memory (TCM) and effector memory (TEM) T-cells are two distinct popula
tions ofmemory T-cells that can recognize foreign invaders such asbacteria or viruses upon second
encounter. TCM and TEM have different properties regarding proliferation, apoptosis and per
sistence. TCM cells are more resistant to apoptosis and have an increased capacity to proliferate
or survive than TEM cells in vitro. These fundamental functional differences ofTCM and TEM
are conferred by the activation and phosphorylation status of two transcription factors, STAT5
and FOX03a.97 In response to proliferative signals, TCM cells showed a significant increase in
the levels of STAT5 phosphorylation compared with TEM cells; moreover, ex vivo TCM cells
express higher levels of the inactive phosphorylated forms of FOX03a and lower levels of the
pro-apoptotic FOX03a target protein Bim.The high levelofactive STAT5 and inactive FOX03a
ensure the TCM cell longevity and survival, which are critical in immunological memory. In
HIV/AIDS, the persistence ofTCM cellsis critical to maintain proper immunological functions,
as the rate ofTCM cell decline predicts HIV disease progression. TCM and TEM cells from
HIV+ elite controller (EC) subjects, who naturally control viral replication, are less susceptible
to FasL-mediated apoptosis and survive longer after multiple rounds ofT-cell receptor activation
when compared to TCM and TEM cellsfrom successfullytreated aviremicsubjects or from HIV-l
seronegative donors. The persistence ofTCM cells from EC subjects is a direct consequence of
inactivation ofthe FOX03a pathway. Silencing the FOX03a by small interfering RNA or intro
ducing a FOX03a dominant-negative form extends the long-term survival ofTCM cells from
successfully treated subjects to a length of time similar to that of TCM cells from EC subjects.
Therefore, inactivation of FOX03a in both TCM and TEM cells of HIV patients may benefit
the immune response specifically to HIV-l and protect T-cells from apoptosis . The crucial role
ofFOX03a in the persistence ofmemory T-cells provides a new prospect of therapeutic avenue
to control the HIV-l persisrence.T"

FOXO in Macrophage/Monocyte Pathology ofHIV-I Infection
Macrophage represents early cellular target and a reservoir of HIV-l in its natural host.

Compared to T-cel1s, macrophage/rnonocyres are more resistant to cytopathic effects ofvirus
and sustain long-term productive infection throughout the disease course. Although the virus
follows similar life cycle in macrophages and Tdymphocyees, the infected macrophages are prone
to evade the immunological attack , which results in the establishment oflong-term reservoirs in
macrophages and subsequently disseminates the virus to various tissues such as the brain and lung.
The investigation ofthese tissue macrophages isoften difficult because oftheir limited accessibility
and inefficient recovery. Therefore, many in vitro studies of infection utilize monocyte-derived
macrophages (MDMs), which provide a unique model for effectivelaboratory and primary HIV-l
infection.With this cellular model, we have found that FOX03a contributes to HIV-l-mediated
celldeath ofmacrophages during productive infection.Similar role ofFOX03a has been identified
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in lymphocyte apoptosis. However, significantquestion remains to be answered regarding the exact
role ofFOX03a in human macrophage in vivo.Whether the in vitro cellular model could fully
recapitulate the complexity ofthe viral replication and transmission in vivo?The complex nature
ofviral infection requires an integration ofviral proteins, RNA and a range ofhost cellular factors.
Therefore , multiple metabolic or cellular signaling pathways may participate and interfere with
the regulation oftranscription factors such as FOXO, which often affect the data interpretation
and variable results may co-exist in the literature."

ThePotentialRelationship ofFOXO Proteins and Viral Replication
in Macrophage

HIV-l accessory protein Vpr, which arrests T-cells in cell cycle G2 phase, has been found
to disrupt the interaction between adaptor molecule 14-3-3 and FOX03a. The transcriptional
activity of FOX03a is normally suppressed by insulin-induced phosphorylation. Vpr inhib
ited insulin-mediated Akt-I phosphorylation and may change the subcellular localization of
FOX03a. Vpr may also interfere with insulin-induced coprecipitation of 14-3-3 and FOX03a
and antagonize the negative effect ofinsulin on FOX03a transactivation on FOXO-responsive
promoter. These results indicate that Vpr has the potential to activate FOX03a and cause cell
cyclearrest ofHIV-I-infected cells." Incontrast to CD4+ T-cells, HIV-l-infected macrophages,
which are terminally differentiated cell, typically resist cell death, support viral replication and
consequently may facilitate HIV-l transmission. There is evidence that shows HIV-l acces
sory protein Vpr may also affect viral replication in macrophages through transcription factor
FOX03a. HIV-l accessory protein Vpr has been found to regulate cyclin-dependent kinase
inhibitor lA (p21Cipl), which is significantly upregulated during HIV-l replication.l'" The
signaling pathway involved in Vpr-mediated p21 increase is unknown. Ithas been reported that
transcription factor FOX03a binds to p21 promoter and triggers p21 expression. Therefore, it is
possible that Vpr activates FOX03a through interfering with the 14-3-3-FOX03a interaction
and leads to p21 protein upregulation and contributing to viral replication. '?"

Another potential player interacting with FOX03a in macrophage during HIV-l infection is
NF - KB.FOX03a could inhibit NF-KB activity, because Fox03a-deficient mice show increased
NF-KB activation." In HIV-l infection, FOX03a may also playa similar role in the inhibition
of macrophage NF-KB activation. It has been known that HIV-l replication in macrophage
requires NF- KBactivity. In the early stage of HIV-l-infection, NF-KB is activated by upstream
kinases; and FOXO is functionally inhibited by its upstream kinases such as Akt-l or ERKs. This
functional inhibition is important for NF-KB activation, which would promote HIV-l replica
tion and inflammatory cytokine production in HIV-l-infected rnacrophages.!" In the later stage
of HIV-l-infection, productive HIV-l infection attenuates PI3k/Akt -I pathway, which lead to
the activation of FOXO and translocation of FOXO into the nucleus. Activated FOXO may
further inhibit NF-KB activity, preventing its pro-survival function as demonstrated in infected
macrophages.

TheDualRole ofFOX03a in HIVInfection in Macrophages
The exact molecular changes of protein profile in macrophages during HIV-l-infection in

vivo remain to be fully understood. Studies have shown that HIV-l-encoded proteins are able to
manipulate cellular pathways, modifying the apoptotic machinery that regulates host cell death
in either a pro- or anti-apoptotic manner. This is critical during early stage of HIV-I infection,
in which proper cell survival is needed for viral replication. Akt-I and NF -KB, important for
macrophage survival, are activated, so that cells are highly resistant to cell death compared with
other tissue cell types. With infection progresses, RNA transcription in productively infected
macrophages indicates a conflicted state where pro-apoptotic and anti-apoprotic cascades are
modified as the cells respond to HIV-l. Death factors such as TRAIL, TNF and Fas are up
regulated and the anti-apoptotic factors Bcl-2, NAIP (neuronal apoptosis inhibitory protein)
and Akt-3 are significantly downregulared,but survival factors includingXIAP (X chromosome
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linked inhibitor ofapoptosis protein), MDM2 (murine double minute 2) and SOD2 (superoxide
dismutase 2) are upregulated as well (N. Erdmann et al manuscript in preparation). These data
suggest that HIV-I infection in macrophages is quite dynamic and HIV-I may modulate the
survival-apoptotic equilibrium in favorofoptimal viral replication. Disruption ofthe equilibrium
in either way during viral life cycle has been proved to be detrimental. The role that FOX03a
plays in the HIV-I infection may also be bidirectional. First, during the early stage ofinfection,
phosphorylation of Akt-I and FOX03a is increased and this benefit cell survival and HIV-I
replication.102.103 HIV-I proteins, such as Tat, gp120 and Nef, have been shown to activate the
PI3K/Akr-l-dependenr survival pathway, which facilitates HIV-I replication and viral particle
production.102.1Q4.106 Second, PI3K/Akt-I pathway is important for the resistance to cell death
of HIV-I-infected macrophages. As the inhibition or attenuation of Akt-I activity dramati
cally reduces the viability of long-living virus-infected rnacrophages. Alternatively, inhibition
or attenuation ofAkt-I may sensitize infected macrophages to stresses or extracellular stimuli,
which would otherwise not causecelldeath ofmacrophages.l'" Indeed, both the phosphorylation
of Akr-I and FOX03a decreased once productive infection established.107.108 These evidences
suggest that PI3K/Akr-I activation contributes to viral replication and macrophage resistant to
cell death in the early stage ofinfection. As a main downstream factor ofPI3K/Akr-I pathway,
FOXO is regulated through phosphorylation on T32, S253 and S3I5 (FOX03a) or on homolo
gous sites (other members). The detailed mechanism ofhow Akr-I activation leads to FOX03a
inhibition and subsequent apoptosis-resistance has been well-documented. However, the exact
role ofthis signaling pathway during HIV infection has remained to be fully elucidated. HIV-I
does not induce significant apoptosis during early replication. Once the productive infection
established , HIV-I increases the activity of transcription factor FOX03a by translocation to
nucleus. Adenoviral delivery of constitutively active FOX03a, which contains three mutated
phosphorylation sites maintaining a transcriptional active FOX03a was found to induce DNA
fragmentation with decreased cell viability in MDM. Moreover, a dominant-negative mutant
ofFOX03a, or small interfering RNA for FOX03a in Hlv-l-infected MDM decreased DNA
fragmentation and protected macrophages from cell death, which suggests elevated FOX03a
activity promotes Hl'V-l-lnfecred macrophage celldearh .!" In addition, overexpressionofconsti
tutive active Akt-l issufficient to induce FOX03a phosphorylation,suggesting that FOX03a is
a downstream ofAkr-I in macrophage.!" Comparison ofprimary HIV-I isolateswith laboratory
strains also indicates that a similar infection course and cell loss during productive infection.
The infection levels and cell loss are associated with the phosphorylation status of Akt-I and
FOX03a, suggesting Akt-l/FOX03a pathway plays an important role in HIV-I-induced cell
death ofhuman macrophage .

Based on the studies described above, we propose that FOX03a may playa dual role in
HIV-I-infected macrophages (Fig. 1). In the early stage of infection, PI3K/Akt-I are activated
leading to FOX03a inactivation and subsequent resistance to cell death; with the virus replica
tion and accumulation in macrophages, the PI3K/Akr-I pathway isgraduallydownregulated and
leads to FOX03a activation. As a consequence ofFOX03a activation, cell death and apoptosis
signaling pathways are triggered that result in macrophage cell death. Further investigation of
this proposed model and the elucidation of the PI3K/Akt-l/FOX03a pathway and its role in
macrophages during HIV-I infection should continue, as it will bring further understanding of
HIV-I pathogenesis .

FOXO andHIV-l Mediated Central Nervous System Damage
Hl'V-l-infected monocytes or macrophages infiltrate into the CNS and may serve as a viral

reservoir for persistent replication. Currently, about 40% to 70% ofpeople infected with HIV-I
develop CNS disorders and neurological complicarions.P''!'? More serious neurological symp
toms typically present in patients with high HIV loads, when a person has advanced AIDS.
HIV-associated neurocognitive disorder (HAND), which includes HIV-I-associated mild
neurocognitive disorders and HIV-I associated dementia (HAD), is frequently accompanied by
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Figure 1. Proposed mechanisms for how FOXO affects macrophage function during early
and late stage of HIV-1 infection. A) In the early stage of HIV infection, the binding of HIV-1
or HIV-1 proteins with macrophage cell surface receptors induces intracellular signaling
cascades such as Akt-1, ERKs and NF-KB pathways. Activated Akt-1 and ERKs may inhibit
FOXO function by phosphorylation. Subsequently, phosphorylated FOXO translocates to the
cytoplasm and facilitates ubiquitination and degradation . As a consequence, inhibitory effect
of FOXO to NF-KB was removed, which leads to enhanced NF-KB activation that promote
viral replication, cell survival, inflammation and cytokine/chemokines production. B) In the
late stage of HIV infection, it has been suggested that productive HIV-1 infection compro
mises PI3k/Akt-1 pathway, which lead to the activation of FOXO and translocation of FOXO
in the nucleus. Act ivated FOXO triggers apoptosis pathways through increased expression
of apoptotic proteins such as Puma. Activated FOXO can also inhibit NF-KB, preventing its
prosurvival funct ion. Dashed line indicates signal attenuation.
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neuronal injury and lossof neuronal subpopulations in the neocortex, limbic system and basal
gangliain association withsynaptic anddendriticdamage, astrogliosis and formationof microglial
nodulesand multinucleated giantcells. I I I AlthoughHIV cannotinfectneurons,cellof the nervous
system, suchasastrocytes and microglia, aswellasrnonocytes/macrophages that havemigratedto
the brain, canbe infectedwith the virus.Hlv-l-infecred cells release proinflammatorycytokines,
chemokinesand sometoxicproductsand deliveraberrantsignals, leadingto neuronaltoxicityand
neuronal damagein the brain.

In thissection,wewill furtherdiscuss the roleofFOXO members in Hlv-l-induced neurologi
cal disorders. It is acknowledged that HIV-I-induced neurological disorders share somesimilar
molecular mechanisms with other neurodegenerative diseases as it decreases neuronal survival,
changesin neuralstem/progenitor cells function and causes astrogliosis.Thus,wewillexpandour
topic to the potential function ofFOXO in generalneuronal stem/progenitor cellhomeostasis,
neuronal apoptosisand astrogliosis.

FOXO Proteins in the Regulation 0IStem CellHomeostasis in the Nervous
System

FOXO proteinsarehomologous to C. elegans Daf-16,whichdetermines metabolic insulinsignal
ingand leadsto lifespan extension. It isknownthat insulin-like signaling isessential for growthand
metabolism in C. elegans. Inhibitionofinsulin-like signalingleads to Daf-16activation and increase
ofsrress resistance andlongeviry.'" Restoredinsulin-like pathway in neuronsissufficient to reinstate
a wild-type lifespan.'!' Furtherinvestigation revealed that Daf-16 is the key factordownstream of
insulin-like pathways that controls the lifespan of C. elegans and regulates the expression of free
radical-scavenging enzymes, catalase and SOD. In mammals, it hasalsobeen reportedthat FOXO
proteinsare important to maintain the stem cellpool. In Foxooa-deficient mice, the proliferation
and differentiation of hematopoietic progenitorswerenormal,but the numberofcolonyformation
cells wasreduced.Theabilityof Fox03a-/- hematopoietic stemcells (HSCs) to support long-term
reconstitutionofhematopoiesis wasalsoimpairedandwascoupledto anelevation ofreactive oxygen
species (ROS),defective maintenance ofquiescence and hypersensitive to cell-cycle-specific myelo
toxicinjury. Consequently, HSC frequencies weresignificantly decreased in agedFox03a-deficient
mice.I13 Consideringthe redundancyand compensability of threeFOXO members, anothergroup
useconditionalknockoutofallFoxOI,Fox03 andFox04 in theadultmousehematopoietic system.
FoxO-deficient miceexhibitedan expansion of both myeloid and lymphoidlineages accompanied
withcellcycle progression of thelong-termhematopoietic stemcells, suggesting that FoxOpreoteins
areimportant in maintainingHSCs in thequiescent state.TheFoxO-deficient HSCs alsodisplayan
increased level ofapoptosis furthercontributingto the aberrantdecrease in cellnumber.I14Allthese
observations demonsrrated thatFOXOproteinsareimportantin themaintenanceofstem/progenitor
cellhomeostasis viacellcycle regulation and functionalresistance to oxidative stress.

How FOXO regulates the function of neural stem cells or progenitor cells remainsunclear,
but evidence showsthat FOXO proteins alsoplaya role in the regulationof neuronal precursor
cells. Erythropoietin (EPO), the traditional mediator of erythroid maturation, was found to
modulate neural stem cellin the cellularprotection and angiogenesis during development. EPO
significantly increased neural progenitor cellproliferationand promoted neural progenitor cell
differentiationinto neurons,whileit alsofunctioned asaprotectiveand an anti-inflammatory fac
tor during oxidative stress.I IS Further signalingstudiesdemonstratethat EPO can activate Akr-I,
JAK2 and negatively regulate downstreamtranscriptionfactorFOX03a.1lS•

1l7This studyindicates
that FOXO mayplaya similarrolein neuronal stem cells and in hematopoieticstem cells asboth
share common propertiesof allstem cells. Basedon this understandingand our observationon
neuronalstemcells, weproposethe following hypotheses (Fig.2). First,FOXO proteinsplaya role
in the maintenanceof neuronalstem/progenitor cellhomeostasis. FOXOs control the cellcycle
of stem cellsand maintain the majorityof stem cells in a quiescentstate whilea subset of them
enter the cellcycle for self-renewal or differentiation. Second,FOXO proteins prevent neuronal
stem/progenitor cells fromoxidative stress-induced celldamagethrough scavenging freeradicals,
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Figure 2. Proposed mechanism for how FOXO influence neurons, astrocytes and neuronal
progenitor cell function. In response to oxidative stressor starvation, FOXO-dependent tran
scription in neurons serves to trigger apoptosis by inducing gene expression of FasL, BcL-6,
Bim, etc. In astrocyte, FOXO suppress cell proliferation by inducin g cell cycle regulatory
proteins cyclin G2, Gadd45a and p27/p21 . FOXO also playa crucial role in the homeostatic
maintenance of neuronal progenitor cells by coord inating quiescence, stress resistance and/
or terminal differentiation.

regulating SOD expression. Note that many aspects ofthis model have been derived from studies
in nonneuronal stem cells and have been extrapolated to neuronal stem/progenitor cells here.

FOXO Proteins Are PivotalFactors in NeuronalApoptosis
In the nervous system, aberrant neuronal death is a feature of neurodegenerative diseases.

Compared with other cell types, neurons are more sensitive to stress or other apoprotic stimuli
other cells of the brain. Indeed, oxidative stress-induced neuronal death is involved in Alzheimer's
disease, HIV-associated dementia and other neuronal disease.lI s

.
l2O In response to stress stimuli,

FOXO-triggered expression ofdownstream factors Bim, FasL,Puma and TRAIL, may contribute to

neuronal death. A recent study showed that oxidative stresselicits neuronal death through activation
ofFOXO by a dual process that involves timed activation ofstress kinasesand abrogation ofIGF-I
neuroprotection. On the one side, ROS induces activation ofp38 MAPK, which inhibits IGF -I
signaling by interfering IGF-I receptor/IRS-I interactions through phosphorylation ofIRS-I. This
leads to abrogate the inhibition ofFOXO. On the other side, ROS recruitsJNK2 to activate FOXO.
These two pathways are independently in response to ROS; but both pathways inhibit FOX03a
trafficking from the nucleus to the cytoplasm and result in FOX03a transcriptional activation and
downstream pro-apoprotic factor Bim expression.!" Similarly, epileptic brain injury in rats leads to
FoxO 1and Fox03a activation in hippocampal neurons followed byBim upregulation and neuronal
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apoptosis.F' Manyother studies alsodemonstratedthat FOXO transcriptional regulators provide
an important link betweenstress signaling pathways and the neuronalcelldeath.l22om

FOX03a in Proinflammatory Cytokine-InducedAstrogliosis
Reactive asrrogliosis, includingastrocyteproliferationand activation, isoneof the hallmarks of

neurodegenerative diseases. Astrocytes proliferation in response to abnormalstimulicontributesto
astrogliosis during brain disorders. The cellcycleinhibitors (cyclin-dependenr kinaseinhibitors),
includingflavopiridol, roscovitine and olomoucineinhibit cellcycle progression at the G1ISand
G2IM phasesand reducereactive astrogliosis initiated byischemia or traumaticbrain injury.I26.127
The PI3klAkt-l pathwayseems to beimportant in the cellproliferationandcellcycle regulationin
astrocytes, It hasbeenreportedthat PI3KIAkt-pathwayisinvolved in the process ofinjury-induced
astroglialproliferation and anti-apoptosisin vivo. p-Akt1l2l3 increasedin immunostainingin
temporal correlation with the mechanicaldamage. The phosphorylated Akr-posirive-cells were
often found colabeledwith GFAParound the stab wound.P"Thisindicated that the brain injury
could activateAkt in astrocytes and subsequentastrocyteproliferationand result in astrogliosis.

Neurodegeneration is often found to be accompanied with an increase of proinflamma
tory cytokines,such asIL-l~, TNF-a and IL-6 and theseproinflarnmatory cytokineshavebeen
showed to mediate astrogliosis; however, the mechanisms by which this process occurs are not
well-defined. The investigationabout the role of FOX03a in inflammatory factor-mediated
astrocyteproliferationhas suggested that FOX03a interfereastrogliosis viacellcycle regulation
(Cui et al unpublished observation). IL-l~ and TNF-a induced a significant increase of astro
cyte proliferationasdeterminedbyKi67 immunostaining.CyclinD1,which marksthe cellcycle
progression, wasalsoincreased. FOX03a, the main upstream regulatorof cyclinD1,wasphos
phorylated and translocatedfrom the nucleusto the cytoplasmwith IL-l~ and TNF-a stimula
tion.Wild-type FOX03a (WT-FOX03a) overexpression significantly upregulateddownstream
factor p2, therefore inhibited cyclinDl expression, which affects on Gl phase; WT-FOX03a
alsoupregulatedGadd45a expression, which can arrest cellcycle in G2 phase. In contrast,dom
inant-negative FOX03a (DN-FOX03a) decreased p27 and Gadd45a whileupregulatedcyclin
D1.Consequently, WT-FOX03a inhibitedastrocyteproliferation. Alltheseresults demonstrated
that FOX03a isapivotaltranscriptionalfactor in proinflarnmatory cytokine-induced astrogliosis
(Cui et al unpublished observation).

Summary and Future Directions
Theregulationand functionof the FOXO family havebeenextensivelystudiedin the lastdecade

and substantialprogress hasbeenmadein understandingthe signaling pathways and mechanisms
involved indifferentcelltypesand systems. However,manyquestionsremainto beanswered about
FOXO in HIV-diseases. FOXO appears to be important in cell survival and apoptosisin both
HIV-l -infectedcells and noninfectedcells. Unraveling the multifaceted aspects ofFOXO regula
tion will provideimportant insights to the processes includingT-celland macrophage apoptosisl
survival in HIV-l infection,neuronalapoptosis and astrogliosis in HIV-neurological diseases. Thus,
a detailedunderstandingofFOXO proteins and their biologywill providenewopportunities for
developing more effective therapeuticapproaches to treat HIV-diseases.
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CHAPTER 12

FOXP3+ Regulatory T-Cells in Chronic
Kidney Disease:
Molecular Pathways and Clinical Implications
PascalMeier"

Abstract

CD4+/FOXP3+regulatoryT-cells (Tregs) areessential for the maintenanceofself-tolerance
and Tregs deficiency resultsin spontaneousautoimmunity in both miceand humans.The
forkheadboxP3 (FOXP3) expression is requiredfor both survival ofTregsprecursorsas

wellastheir function.Thissuggests that Tregs mayusemultiplemechanisms to limitautoimmunity
and mayreflectfunctionalheterogeneityamongTregs subsetsthat localize to distinct tissueenvi
ronments.Both cellcontact- and cytokine-based immunosuppressivemechanisms would require
that Tregs be in closeproximityto their targets. The fundamental regulatoryactivitythat can be
consistentlydemonstratedbyTregs in vivoand in vitrohasstimulatedgreatinterest in developing
novelstrategies for treatingongoinginflammatoryconditions. Patientswith end-stage kidneydis
ease(ESKD)areknownto displayacellularimmunedysfunction. Uremicsolutesthat accumulate
during ESKD may be involved in these processes. In these patients, oxidative stress induced by
oxLDL mayincrease Tregs sensitivity to Fas-mediatedapoptosisin part asa consequence of26S
proteasomeactivation. The 26Sproteasome, an ATP-dependentmultisubunit proteasecomplex
found in the cytoplasmand in the nucleusofalleukaryoticcells, constitutesthe centralproteolytic
machineryofthe ubiquitin/proteasomesystem.Consideringtheeffectofuremiaand oxLDL,Tregs
from patientswith ESKD exhibitearlycell-cycle arrestand becomeapoptotic.Thesephenomena
are the consequence of the oxLDL inhibited proteasomeproteolyticactivityof p27Kipi and Bax
proteins in Tregs. This maybe one mechanisticexplanationof the cellularimmune dysfunction
in patientswith ESKD and mayhaveimportant implicationsin clinics, sincethis response could
contribute to the micro-inflammation and atherogenesis encountered in this population.

Introduction
Alterationsof the immunesystem in patientswith end-stagekidneydisease (ESKD) represent

a complexissue. On one hand, hypercytokinemia is a typical featureof uremia,likely due to ac
cumulationofpro-inflammatory cytokines asaconsequence ofdecreased renaleliminationand/or
increased generationfollowing induction byuremictoxins,oxidative stress andvolumeoverload.P
On the other hand, uremiaisassociated with immunosuppresiondue to the impactofthe uremic
milieuand avarietyof associated disordersexertedon immunocompetent cells.

The increased rate of infections, together with an impaired response to vaccination and a
common failureof tuberculin skin test to diagnoselatent tuberculosis indicate that the adaptive
immunity is weakenedin the ESKD population.' Studies performed in vitro show that T-cell
proliferationisdecreasedin the uremicmilieu.v' As mentioned,T helperlymphocytes(Th)playa

*CorrespondingAuthor: Pascal Meier-CHCVs-H6pital de Sion, Grand Champsec 80,1951
Sion, Switzerland. Email: pascal.meier@chuv.ch

Forkhead Transcription Factors: VitalElementsin Biology andMedicine,editedbyKennethMaiese.
©2009 LandesBioscience and SpringerScience+Business Media.



164 Forkhead Transcription Factors: VitalElements in Biology and Medicine

crucialrolein controllingthe immuneresponse. Th1cellsproduceseveral proinflammarory cytok
ines,notably tumor necrosingfactor (TNF)-a, interleukin (IL)-12 and interferon (IFN)-yz.Th2
cells, in turn, produce mainlylL-4 and IL-5.Byproducingdifferentcyrokines, theyhaveadiverse
impacton the immuneresponse.vTh1lymphocytes activate macrophages and neutrophils,whereas
Th2 cellsare involved in promoting humoral immunity.In patients with ESKD, the maturation
of both subsetsofTh cells is impaired comparedwith controls.Although the maturation ofTh
lymphocytesis sustained,ESKD patients present with significantly elevatedTh1 levels, leading
to an increasedThl/Th2 ratioP

ThespectrumofCD4+/FOXP3+ regulatoryT-cells (Tregs) capable of mediatingdominantsup
pression is expanding to includeboth naturally arising and inducible subsets. In addition to their
expression of CD4 and CD25, thesecells areanergic to proliferative responses in vitro and do not
express keycytokines, includingIL-2 or IFN-yin response to stimulation.P Functionally, they are
characterized bythecapacity to suppressproliferation ofeffectorT-cells invitroinaprocess requiring
activation and cellcontactbut not IL-4,IL-lO,or transforming growthfactor-f (TGF-~).lO

Patientswith ESKD chronicallyhemodialyzedpresent changes not only in T-cell immunity
but also in lipid profileY·12 Apart from their immune function, circulatingT-cellsmayactively
participate to atherogenesis and treatments aimed at reducingT-cellactivationand apoptosisin
patientswith ESKD reducethe riskofdeveloping cardiovascular disease."Evidence exists that HD
patients areexposedto enhancedoxidative stress that is initiated bythe generationof oxygen free
radicals, mainlyin tissueand probablyin the circulation.Themost potent Oz-generatingproteins
are oxidatively modifiedlipoproteins,mainlyoxidizedlow-densitylipoproteins (oxLDL).14The
pathophysiological relevance of oxLDL-inducedTregs immunodeficiency and pro-atherogenic
effectin HD patients remainsuncertain,but maybe one explanationof the immunedysfunction,
illustratedbythe high rate of bacterialinfectionsand impairedvaccine response seenin thesepa
tients and maybe suggested asa contributor of the micro-inflammation seenin the atherogenesis
frequentlyencountered in patientswith ESKD and especially in chronic HD patients."

Pathobiology of CD4+/FOXP3+ Regulatory T-Cells
CD4+/FOXP3+ regulatory T-cells seem to represent the resurrection of the old suppres

sor T-cells.While most basic knowledgeabout these cells is derived from animal studies, the
recent identification of these cellsin humans has further attributed to their characterisationby
in vitro analysis. Results obtained have led to broad speculations about therapeutic potential
by interference with these regulatoryT-cells. Thesecellsare characterizedby the expression of
CD25 and the forkhead-familytranscription factor FOXP3 (forkhead box P3) and they have
the capacity to suppress the activation of other T-cells in a contact-dependent manner.P""
Furthermore, FOXP3 can inhibit activation-induced expression of IL2 by T-cells. However,
FOXP3 can target genesother than cytokine genesor genesthat are regulated by nuclearfactor
of activated T-cells (NFAT ).

CD4+/FOXP3+regulatory T-cells constituteapproximately 7-10%of peripheral CD4+T-cells
in humansand miceand cansuppress T-cellfunctionboth in vitroand invivo.Theyappearto influ
enceimmuneresponses to selfantigens, tumorsandpathogenicorganisms. Research mainlyfromin
vitrostudies hasrevealed that Tregs canexertsuppressive effects againstmultiplecelltypesinvolved
in immunity and inflammation." These includethe induction aswellas the effectorand memory
function of CD4+and CD8+T-cells, the inhibition of proliferation, immunoglobulin production
and class switchingof Bvcells, the inhibition ofNK and NK T-cellcytotoxicity, the function and
maturationofdendriticcells, aswellaseffects on the function and survival of neutrophils.

CD4+/FOXP3+regulatoryT-cells havea specific response to T-cellreceptor (TCR) engage
ment. Several studieshaveshownthat Tregsisolatedboth from humansand from rodentsdo not
proliferatewhenappropriately activated.z0.21Theyalsodo not producecytokinessuchasIL-2, IL-4
and IFN-y, aswellasother effectormolecules such asTNF and TNF-receptor-familymembers.
However, Tregsare not completely unresponsiveto TCR-mediated signals, asTCR engagement
is required for their abilityto suppress the activationof responderT-cells.
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In addition to makinga start at identifyingFOXP3-target genes, the preciserole ofFOXP3
in establishingthe Treg-cell differentiation programme is also beingworkedout. Several recent
papershaveaddressedthe role ofFOXP3 in Tregs developmentand function in the thymusand
in the periphery. Twogroups,Gavinet aland Lin et al,generatedknock-inmicein whichthe gene
encodinggreenfluorescent protein (GFP) or enhancedGFP (EGFP)wasfusedin frameinto the
Foxp3 endogenouslocusresultingin afluorescent nonfunctionalFOXP3 protein (referredto here
asFoxp3GFPknock-in mice).22.23Thesestudiesindicatethat FOXP3 is requiredfor the suppressive
functionsofTregs, aswellasfor their anergicstate,but there areother factorsthat haveimportant
rolesin Tregs development.

Forkhead BoxP3 andT-CellReceptor Signalingin Tregs
CD4+effectorT-cellsundergoastereotypicalactivationprogrammeafterengagement of their

TCRandappropriatecostimulation. Thisprogrammeconsists of the activation ofspecific signaling
pathways that resultin the induction ofeffectorfunctions,includingthe production ofIL-2,24·25 It
is suggested that generationofTregs mayrequirehigher affinityinteraction between the agonist
peptides/MHC II and TCR within the thymusin contrast to the processof conventionalCD4+
T-cells production." Support for thisnotion hasbeenprovidedbyanalyzingTregs development in
miceexpressing a transgenicTCR and its cognateligandin the thymus.Recentstudiesshowthat
TCR transgenicCD4+T-cellscan adopt the regulatorycellphenotype with a higher frequency
when they encounter their cognateantigen in the thymus.Basedon these observations, engage
ment of transgenicTCRbyahigh-affinity self-ligandisexpectedto initiatesignalingcascades that
ultimatelyinduce FOXP3 expression and commit thyrnocytes to Tregs lineage.

Costimulatory SignalingPathways andFOXP3Expression
Itiswidelyacceptedthat T-cellactivationrequiresat leasttwo signals.The firstone isspecific

and initiated by the interaction betweenTCR and the MHC-peptidecomplex;the engagement
of CD28 by B7 molecules on the antigenpresentingcells providesthe nonspecific costimulatory
signals essential for T-cell full activation and function." Similarly, FOXP3 expression and the
production ofTregs both in the thymusand in the peripherycritically depend on the costimula
tory signaling. CD28-1- andB7-I-I- /B7-2-1- (CD80-l-/CD86-1-) miceshowsignificantly reduced
numbersofTregs in the thymusand theperiphery, indicatingthat CD28:B7interactionisrequired
for the developmentand maintenanceofTregs. CD4+/FOXP3+regulatoryT-cellsconstitutively
express the intracellularand surface CTLA-4.28CTLA-4 deficientmice display the phenotypes
critically resembling the Foxp3mutant ones, indicatinga close link mayexistbetween CTLA-4
and Tregs" In addition, other costimulatorymolecules mayalsocontribute to FOXP3 expres
sion and Tregsdevelopmentand function. Blockade of the programmed death I (PDl)-PD-L
pathway with the anti-PD I mAb significantly interrupted the vascularendothelium-induced
FOXP3 expression and the conversion into the Tregs from CD4+/CD2S- T-cells, indicatingthat
PD I-PD-L interaction seems to be criticalfor Foxp3 expression and the conversion into Tregs in
mice." OX40-0X40 ligand (OX40-L) interaction may be important for the developmentand
homeostasis of Tregs, as the significantly reduced number of Tregs in OX40-deficient miceand
the increased Tregs in constitutivelyactiveOX40-Lexpressing micewereobserved."

Interleukin-2 andFOXP3Expression
Interleukin-2 haslongbeenknownasapotent T-cellgrowthfactoressential forT-cellprolifera

tion and function. Interleukin-2signalinghas been associated with Tregs development, homeo
stasisand function. Ithasbeenproposedthat IL-2 hasan essential, nonredundant function in the
developmentofTregs in the thymus.v lr hasalsobeenproposed that in the absence ofIL-2, Tregs
cannot survive or expandtheir numbersin the thymusor in the periphery.v-" Finally, studieshave
suggested that IL-2isdirectlyrequiredfor Tregs function and in its absence, Tregs fail to suppress
T-cellproliferation.35.36Although thoseproposedfunctionsfor IL-2arenot mutuallyexclusive, in
manycases the resultsand conclusions of thosestudieshavebeen contradictory.
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Impaired CD4+/FOXP3+ Regulatory T-CellFunctionin Patients
with ESKD

In chronickidneydisease, asin other chronicinflammatorydiseases,monocytes/macrophages
andtheir mediatorsmakean importantcontributionto the inflammatoryprocess.Previous findings
suggested that in patientswith ESKD,asignificantlyhighpercentage ofactivated T-cells ultimately
did not proliferate but becameapoptotiC.37.38The induction of activated Tregs apoptosis from
hemodialyzed(HD) patients is dependent on Fas/FasLexpression, which leadsto a cellcontact
formofcirculatingCD4+T-cellself-injury.39 Furthermore,activated Tregs fromHD patientsfailto
respondadequately to exogenous IL-2.Thisisdue to thedown-modulationofsurface IL-2 receptor
(IL-2R)a.-subunits(IL-2Ra.)expression, impairedIL-2signaltransduction in CD4+T-cells and/
or increasedserum levels of solubleIL-2R (sIL-2R)Y Decreasedproliferative capacityofTregs
from subjectswith normalrenalfunction incubatedwith serumfromchronicHD patientsand its
restoration bynormal serumstronglysuggests that mediatorsinduced byHD affecttransduction
mechanismsin the IL-21IL-2Rpathway. Finally, IL-2 seemsto inhibit the apoptotic processat
manystagesby interactingwith variousproteins."

The clinical consequences of the Tregs dysfunction in patients with ESKD are numerous
includingimmune dysregulation, micro-inflammation and atherogenesis.":'>"

PlaceofoxLDLin Tregs Apoptosis in Patients with ESKD
In HD patients.oxLDL mayplaya dual rolein Tregs. On the one hand,oxLDL activates Tregs

and inducesFasexpression. therebyinitiatinga cascade ofsubstrate-specific pro-apoptoriccaspases
leadingto cellcycle arrest." On the other hand, oxLDL altersIL-21IL-2R pathwayand sensitizes
activatedTregs from HD patients to exogenous IL-2 explaining the reported Tregs apoptosisin
thesepatients.I I In activatedTregs from uremicpatientsand more particularlyin thosefrom HD
patientsthat oxLDLinduceFasexpression on the cellsurface, whichcorresponds to the earlyphase
ofcellapoptosis.The evaluation of intracellular Fassynthesis and DNA fragmentation confirms
Pas-mediatedapoptosisin Tregs in response to oxLDL.Thepercentage of apoptotic cells is related
to the coppermildlyoxidized LDLconcentration.Fasactivation inducesthe recruitmentofprocas
pase-8 to the Fasreceptorand this association triggers the caspase cascade that leadsto apoprosis.?
Overexpression ofFas sensitizes cells to Fas-induced apoptosis,suggesting that increased clustering
ofFas on the plasmamembraneresultsin a strongerabilityto recruit procaspase-S, which would
overcome the sequestering of procaspase-8 by Bcl-2 and could influence the inhibitory function
ofBel-2or Bcl-xl, on Fas-inducedapoptosis." Moreover, experiments with blockingantibodiesto
Fassuggest that mildlyoxidized LDLactsmainlybyup-regulatingexpression ofFas.?Activationof
the Faspathwayresults in oligomerization ofFas and recruitmentof Fas-associated death domain
(FADD)andFADDhomologous,interleukin-1~-convertingenzyme(ICE)-likeprotease (FLICE),
whichthen activate caspases.The observation that the FLICE inhibitoryprotein isdown-regulated
byoxLDLfurther supports the involvement of the Faspathwayin oxLDL-induced apoptosis.44-46
Finally, mildlyoxidized LDL causes an overexpression ofFas at the Tregs surface.Thestimulation
of Fasexpression seems to be a keyelement of this process. Indeed, activation of Tregs induces
transient expression ofFasLtriggering Fas-dependent apoptosis.

Placeof26S Proteasome in Tregs Apoptosis
Proliferation and division of cells implies two basicsteps finally yielding to a proper genome

duplication: (1) the replication of chromosomal DNA and (2) the separation and division ofsister
chromosomes. Both of thesesteps have to ensurea proper distributionof the entiregenomeinto
two newcells:

1. During the tightlyregulated GliS-phase, the sisterchromatids areseparatedand comple
mentalDNA synthesis and replication takesplace. Thepropercustodial regulation ofDNA
replication generally refers to the timelyorderedprogression fromG1-to S-phase that con
stitutesthe strict initiationand completionof onlyone round of DNA replication in each
cellcycle. Thisduplicationrelies on the coordinatedactivities of positive regulators, such
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as cyclins, cyclin-dependent kinases (CDK), CDK-cyclin complexes, E2F and Cdc6 and
negative regulators,suchasCDK inhibitors (CKl) ofthe Cip/Kip and INK4 families. The
coordinated timelypresence and actionof thesepositiveand negative regulators isgoverned
byinactivationasa resultof proteasomaldegradation."

2. During the GUM-phase, the doubled chromosomeset isseparatedalongkinetochorerni
crotubulesand dividedinto two newcells. The orderedprogression of the S-and M-phase
also highly depends on the spatialand temporal control of cellcycle regulatoryproteins
by proteasomaldegradationthat finally ensures proper cellcycle transitionsand adequate
frequencies of celldivision."

Proteasomal degradationof the CKI p27Kip1isthought to berequiredforGl-to-Sphase progres
sionand mainlyoccursat theearlyonsetofS-phase),althoughp27Kipidegradationalso cantake place
at the GO-to-Gl-phase transition.Consequently, p2?4'1protein isabundant in GO and G1cells and
is down-regulated in proliferatingand S-phase cells. Moreover, ectopic overexpression of mutant
p27Kip1, but not ofwild-typep27Kipl, resultsin cellcycle attest in the S-phase stronglysuggesting that
proteasomaldegradationof p27Kipl isessential for the entry into S-phase.49However, inactivation of
p27Kip1function maynot only occur by proteasomaldegradation,but alsoviaalternative pathways
suchasproteolyticprocessing.

One candidatemechanismofhowproteasomalactivitypromotesapoptosisat an upstreampoint
of apoptotic signaltransduction hasbeen uncoveredrecentlyin primarymousethymocytes: XIAP
and c-IAPI, members of the higWy conservedfamily of inhibitors of apoptosis proteins (lAPs)
that exert their anti-apoptotic activity, at least in part, by inhibiting the activation and enzymatic
activityof caspases and by ubiquitination and targetingofcaspase-3 for proteasomaldegradation,
are autoubiquitinated and subsequently degraded by the 26S proteasome in response to various
apoptotic stimuli.S<l-SZ

Anothercandidatemechanismofprovidingproapoptoticsignals byproteasomal activityhas been
demonstratedin HUVECsinducedto undergoapoptosisbytreatmentwith TNF-a. Earlymer the
initiation ofTNF-a treatment ofHUVECs, Bcl-2, a mitochondrial membrane-anchoredprotein
capableof blockingapoptosis induced bydiverse stimuli, wasshown to be specifically degradedby
the 26Sproteasome.s3.54Thiseventwasdemonstratedto beoperativein inducingapoptosis,because
pretreatmentofHUVECswith specific proteasomeinhibitors reversed both TNF-a-inducedBcl-2
degradationand induction of apoptosis.

FOXP3+ Regulatory T-Cells Apoptosis in Uremia: Role ofthe 26S
Proteasome

As recentlydemonstrated, oxLDL inhibit proteasome enzymaticactivityof the CKI p27Kipl

and the pro-apoptotic molecule Bax." The consequences result in the increased accumulation
of these key regulatory proteins in Tregsfrom HD patients. The mechanismsby which oxLDL
modify Tregsproteasome activityin uremicpatients remain poorlyunderstood. However,besides
enhancing the oxidativedamageofproteins suchasp27kip1and Bax,oxLDL mayleadto accumula
tion of ubiquitinated proteins via inhibition of proteasome enzymaticactivity (Fig. 1). It can be
speculated that the oxLDL-reiated protein damageis responsiblefor the Tregscyclearrest at G1

phase and their apoptosis. Indeed, oxLDL produce a rapid decayof proteasomal proteolysis in
inducing derivatizationofcellproteins by4-hydroxynonenal(4-HNE) resultingin an inhibition
ofthe 19S.Thisisbecause4-HNE cross-linked proteins areresistant to proteolysisand areableto
inhibit the 26S proteasome and because26S proteasome is lessresistant to HzOz-inducedoxida
tive stress than the 20S proteolytic core. The second step (i.e., inhibition of the 20S core) maybe
a resultofthe progressingintracellularoxidativestressinduced byoxLDL.At this stage,when the
proteasome iscompletelyinhibited , Tregsare rapidlydying.

On the other hand, oxLDL affectthe anti-apoptotic protein Bcl-xl,degradation byincreasing
its removalin parallelwith the activationofthe 20S and 26S proteasome in phytohemagglutinin
(PHA)-stimulated Tregsfrom healthy subjects treated with variousconcentrations of oxLDL or
cultured with uremic serum from HD patients.
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Figure 1. Model for 26 S proteasome-mediated regulation of FOXP3+ regulatory T-cells apop
tosis in uremia.

Conclusion
Accumulatingevidence suggests an important role for Tregs in the control of immunity and

some inflammatorydiseases development and/or progression. Future studies should aim at the
delineationof the criticalsubtypesofTregsresponsible for theseprotectiveeffects, the factorsand
molecularmechanisms involved in their survival,migrationand suppressive function especially in
patients with E5KD. Indeed, the modifiedTregs number and function seenin this patient popu
lation are the consequences of the p27Kipi and Baxaccumulationin these CD4+T-cell subtypes,
which wasdue to oxLDLproteasomeactivityalteration. Proteolyticdegradationof cellproteins
by the 265 proteasome is a highlycomplexand tightly regulatedprocess that plays pivotal roles
in the regulation of basiccellularprocesses, includingdifferentiation,proliferation,cellcycling,
apoptosis,geneexpression and signaltransduction. Froma mechanistic view, the 265 proteasome
iscapableofgoverningstrictlyoppositebiologicfeatures that crucially determinethe fateofacell,
proliferation and apoptosis. Because proteasomal protein degradation is a highly ordered and
elaborated process, it is obvious that this process also can underlie deregulation as observed in
several human diseases that exhibitan imbalanceof proliferationand apoptosisasa fundamental
pathogenetic featureas encountered in patients with E5KD. A fact which mayhaveimportant
implicationsin clinics, sincethis response could contribute to the CD4+T-cellimmunedysfunc
tion in patientswith E5KD includingmicro-inflammation and atherogenesis.

References
1. Kimmel PL, Phillips TM, Simmens SJ et aI. Immunologic function and survival in hemodialysis patients.

Kidney Int 1998: 54:236-244 .
2. Stenvinkel P, Ketteler M, Johnson RJ et al. IL-I0, IL-6 and TNF-alpha: central factors in the altered

cytokine network of uremia-the good, the bad and the ugly. Kidney Int 2005 : 67:1216-1233.
3. Eleftheriadis T, Antoniadi G, Liakopoulos V et al. Disturbances of acquired immun ity in hemodi alysis

patient s. Semin Dia 2007 ; 120:440-451.
4. Meuer SC, Hauer M, Kurz P et aI. Selective blockade of the antigen-receptor-mediated pathway ofT-cell

activation in patients with impaired primary immune responses. J Clin Invest 1987; 80:743-749 .



Tregs in Chronic KidneyDisease 169

5. Stachowski]. Pollok M, Burrichter H et al. Signalling via the TCRlCD3 antigen receptor complex in
uremia is limited by the receptors number. Nephron 1993; 64:369-375.

6. Ando M, Shibuya A, Yasuda M et al. Impairment of innate cellular response to in vitro stimuli in
patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2005 ; 20:2497-2503.

7. Fernandez-Fresnedo G, Ramos MA, Gonzalez-Pardo MC et al. B-lymphopenia in uremia is related to an
accelerated in vitro apoptosis and dysregulation of Bcl-2. Nephrol Dial Transplant 2000; 15:502-510.

8. Mahajan D, Wang Y, Qin X et al. CD4+CD25+ regulatory T-cells protect against injury in an innate
murine model of chronic kidney disease. J Am Soc Nephrol2006; 17:2731-2741.

9. Meier P, Spertini F, Blanc E et al. Oxidized low-density lipoproteins activate CD4+ T-cell apoptosis in
patients with end-stage renal disease through Fas engagement. J Am Soc Nephro12007; 18:331-342.

10. Randolph DA, Farhman CG. Cd4+Cd25+ regulatory T-cells and their therapeutic potential. Annu Rev
Med 2006; 57:381-402.

11. Meier P. Dayer E. Ronco P er al. Dysregulation of IL-2/IL-2R system alters proliferation of early acti
vated CD4+ T-cell subset in patients with end-stage renal failure. Clin Nephrol 2005 ; 63:8-21.

12. Kronenberg F, Lingenhel A, Neyer U er al. Prevalence of dyslipidemic risk factors in hemodialysis and
CAPD patients. Kidney Int 2003 ; 84(Suppl 3):S1l3-S116.

13. Wanner C. Zimmermann]. Schwedler S et al. Inflammation and cardiovascular risk in dialysis patients.
Kidney Int 2002 ; 80(Suppl 3):S99-S102.

14. Ziouzenkova 0 , Asatryan L. Akmal M et al. Oxidative cross-linking of ApoBI00 and hemoglobin results
in low density lipoprotein modification in blood. Relevance to atherogenesis caused by hemodialysis.
J Bioi Chern 1999; 274:18916-18924.

15. Meier P, Golshayan D, Blanc E er al. Altered proteasome activity by oxidized low-density lipoproteins
plays a key role in regulatory T-cell apoptosis in patients with end-stage kidney disease. J Am Soc
Nephrol in press.

16. Bluestone JA. Abbas AK. Natural versus adapted regulatory Tvcells. Nature Rev Immunol 2003;
3:253-257.

17. Fontenot JD. Rudensky AY. A well adapted regulatory contrivance: regulatory 'l-cell development and
the forkhead family transcription factor Foxp3. Nature Immunol 2005; 6:331-337.

18. Sakaguchi S. Regulatory T-cel1s: key controllers of immunologic self-tolerance. Cell 2000; 101: 455-458.
19. Miyara M. Sakaguchi S. Natural regulatory T-cells: mechanisms of suppression . Trends Mol Med 2007;

13:108-116.
20. Baecher-Allan C. Brown JA, Freeman GJ er al. CD4+CD25high regulatory cells in human peripheral

blood . J Immunol 2001 ; 167:1245-1253.
21. Hori S. Nomura T. Sakaguchi S. Control of regulatory T-cell development by the transcription factor

Foxp3. Science 2003 ; 299:1057-1061.
22. Gavin MA, Foxp3-dependent programme of regulatory T-cell differentiation. Foxp3-dependent

programme of regulatory Tvcell differentiation. Nature 2007;445:771-775.
23. Lin W, Haribhai D. ReIland LM er al. Regulatory T-cell development in the absence of functional

Foxp3. Nature Immunol 2007; 8:359-368.
24. Crabtree GR. Clipstone NA. Signal transmission between the plasma membrane and the nucleus of

T-lymphocytes. Annu Rev Biochem 1994; 63:1045-1083.
25. Picca CC. Larkin J 3rd, Boesteanu A et al. Role ofTCR specificity in CD4+ CD25+ regulatory 'l-cell

selection . Immunol Rev 2006 ; 212 :74-85
26. Polanczyk MJ, Carson BD. Subramanian S et al. Cutting edge: Estrogen drives expansion of the

CD4+CD25+ regulatory T-cell compartment. J Immunol 2004 ; 173:2227-2230.
27. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;

23:515-548.
28. Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25(+)CD4(+)

regulatory T-cells const itutively expressing cytotoxic Tvlymphocyte-associated antigen 4. J Exp Med
2000; 192:303-310.

29. Tivol EA. Borriello F, Schweitzer AN et al. Loss of CTLA-4 leads to massive Iymphoproliferanon and
fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity
1995 ; 3:541-547.

30. Krupnick AS, Gelman AE, Barchet W et al. Murine vascular endothelium activates and induces the
generation of allogeneic CD4+25+Foxp3+ regulatory T-cells. J Immunol 2005 ; 175:6265-6270.

31. Takeda I, Ine S, Killeen N et al. Distinct roles for the OX40-0X40 ligand interaction in regulatory
and nonregulatory T-cells. J Immunol 2004; 172:3580-3589.

32. Malek TR. Yu A, Vincek V et al. CD4 regulatory T-cells prevent lethal autoimmunity in IL-2Rj3-de/icient
mice. Implications for the nonredundant function ofIL-2. Immunity 2002 ; 17:167-178.

33. Bayer AL. Yu A. Adeegbe D et al. Essential role for interleukin-Z for CD4+CD25+ T regulatory cell
development during the neonatal period. J Exp Med 2005 ; 201 :769-777.



170 Forkhead Transcription Factors: VitalElements in Biology andMedicine

34. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N ec al. Incerleukin 2 signaling is required for
CD4+ regulatory T-cell function . J Exp Med 2002; 196:851-857.

35. de la Rosa M, Rutz S. Dominger H et al. Interleukin-Z is essential for CD4+CD25+ regulatory T-cell
function. Eur J Immunol 2004; 34:2480-2488 .

36. Thornton AM, Donovan EE. Piccirillo CA et al. Cutting edge: IL-2 is critically required for the in vitro
activation of CD4+CD25+ T-cell suppressor function . J Immuno12004; 172:6519-6523.

37. Meier P. Dayer E. Blanc E et al. Early T-cell activation correlates with expression of apoptos is markers
in patients with end-stage renal disease. J Am Soc Nephrol 2002; 13:204-212.

38. Ankersmit HJ. Deicher R, Moser B et al. Impaired T-cell proliferation. increased soluble death-inducing
receptors and activation-induced T-cell death in patients undergoing haemodialysis. Clin Exp Immunol
2001; 125:142-148.

39. Meier P, Blanc E. Plasma level of soluble Fas is an independent marker of cardiovascular disease in
ESRD patients . Kidney Int 2003; 64:1532-1533.

40. Fung MM. Rohwer F. McGuire KL. IL-2 activation of a PI3K-dependent STAT3 serine phosphorylation
pathway in primary human T-cells. Cell Signal 2003; 15:625-636.

41. Mallat Z. Ait-Oufella H, Tedgui A. Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc
Med 2007; 17:113-118.

42. Kischkel FC, Hellbardt S. Behrmann I et al. Cytotoxicity-dependent APO-l (Fas/CD95)-associated
proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995 ;
14:5579-5588 .

43. Clement MY, Stamenkovic I. Fas and tumor necrosis factor receptor-mediated cell death : similarities
and distinctions . J Exp Med 1994; 180:557-567.

44. Peter ME, Kischkel FC, Scheuerpflug CG et al. Cleavage ofFLICE (caspase-S) by granzyme B during
cytotoxic T-Iymphocyte-induced apoprosis, Eur J Immuno11997; 27:1207-1212.

45. SaraM. WalshK. Endothelial cell apoptosisinduced by oxidizedLDL is associatedwith the down-regulation
of the cellular caspase inhibitor FLIP. J Bioi Chern 1998; 273:33103-33106.

46. Napoli C. Q!!.ehenberger 0, De Nigris F et aI. Mildly oxidized low density lipoprotein activates multiple
apoptotic signaling pathways in human coronary cells. FASEBJ 2000; 14:1996-2007.

47. YewPR oUbiquitin-mediated proteolysis of vertebrate Gl- and S-phase regulators. J Cell Physiol2001 ;
187:1-10.

48. Tatebe H, YanagidaM. Cut8. essential for anaphase. controls localization of26S proteasome, facilitating
destruction of cyclin and Cut2. Curr Bioi 2008; 10:1329-1338.

49. Sutterluty H, Chatelain E, Marti A et aI. p45SKP2 promotes p27K;pl degradation and induces S phase in
quiescent cells. Nat Cell Bioi 1999; 1:207-214.

50. Devereaux QL. Takahashi R. SalvesenGS et al. X-linked lAP is a direct inhibitor of cell-death proteases.
Nature 1997; 398:300-304.

51. Suzuki Y, Nakabayashi Y. Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of
apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptoric effect
in Fas-induced cell death. Proc Nat! Acad Sci USA 2001; 98:8662-8667.

52. Yang Y, Fang S, Jensen JP et al. Ubiquitin protein ligase of lAPs and their degradation in proteasomes
in response to apoptotic stimuli. Science 2000; 288:874-877.

53. Breitschopf K, Haendeler J, Malchow P et al. Posttranslational modification of Bcl-2 facilitates its
proreasome-dependenr degradation: Molecular characterization of the involved Signalingpathways. Mol
Cell Bioi 2000; 20:1886-1896 .

54. Dimmeler S, Breitschopf K, Haendeler J et al. Dephosphorylation targets Bcl-2 for ubiquidn-dependcnr
degradation : A link between the apoptosome and the proteasome pathway. J Exp Med 1999 ;
189:1815-1822.



CHAPTER 13

Transcriptional Role ofFOXOI
inDrug Resistance through Antioxidant
Defense Systems
Tomoko Goto* and Masashi Takano

Abstract

F
oxo transcription factors promote cellcycle arrest, apoptosis, DNA damagerepair and
detoxification of reactive oxygen species byregulatingspecific genesetting.As FOXO pos
sess diverse functions,which partly seemed opposing, the multiplemechanisms, including

transcriptionalactivityand subcellular localization, aredifferentially regulatedaccordingto vari
ous typesor intensities of cellularstressresponses. SinceFOXO transcriptionfactorsare critical
mediatorsofapoptosisin cytotoxicityinducingdrugs, its involvement in the development ofdrug
resistance is an important issuein cancer therapy. Indeed, FOXO1 expressionwas distinctively
upregulatedin paclitaxel resistantcelllineandenhancedbyexposure to paclitaxel with subcellular
translocation. In addition, FOXO 1overexpression, predominantlyin cytosol,wasfrequently ob
servedincancertissuesamples fromchemoresistant patientscomparedto chemosensitive patients.
FOXO 1 silencing in paclitaxel resistantcellline decreasedits resistance through modulation of
downstreamtargetsofFOXO1involvingoxidative stress.Alterationofoxidative stress bycotreat
ment with pharmacologic modulators of reactive oxygen species alsoattenuated cytotoxicityof
paclitaxel. Furthermore,FOXO 1silencing attenuated intracellularreactive oxygen species levels,
whichcollectively suggest one of possible explanations in transcriptionalroleofFOXO1asredox
mechanism leadingto drugresistance through itsdownstreamtargetinvolvingdefence mechanism
againstoxidative stress.

Introduction
The mammalian FOXO family of Forkhead transcription factors, consisting of FOXO 1,

FOX03a and FOX04, isadirectdownstream targetof the PI3K/AktpathwayYPosttranslational
modificationofFOXO proteins isan important mechanismthat regulates the abilityof different
transcription factors to activatedistinct gene sets, involved in cellcycleinhibition.' apoptosis,"
defenseagainstoxidative stress and DNA repair.5.6 FOXO-induced cellcycle arrestand apoptosis
iscriticalas antiproliferative effectfor tumors,whereas FOXO proteinsplayan important rolein
protection ofcellsagainstgenotoxicand environmentalstresses, such asFOXO-dependent resis
tance to oxidative stressfor longevity. As FOXO possess diverse functions,which partly seemed
opposing, the multiplemechanisms,includingtranscriptional activityand subcellular localization,
are differentially regulated according to various types or intensitiesof cellularstress responses.
SinceFOXO proteinswerereported to be criticalmediatorsofapoptosisin cytotoxicityinducing

*Corresponding Author: Tomoko Goto-Department ofObstetrics and Gynecology, National
Defense Medical College, 3-2 Namiki, Iokorozawa,Saitama 359-851 3, Japan.
Email: tmkgoto@aol.com

Forkhead Transcription Factors: VitalElements in Biology andMedicine, editedbyKennethMaiese.
©2009 LandesBioscience and SpringerScience+Business Media.



172 Forkhead Transcription Factors: VitalElements in Biology andMedicine

drugs in manycells,4.7.8 wepostulated that FOXO expression or transcriptionalactivitycould be
important event in the drug sensitivity in cancer cells. The consequence of FOXO 1 expression
correlatingwith paclitaxel cytotoxicityand sensitivitywasexamined in ovariancancer celllines
usingparent cells and paclitaxel resistantderivative cells and its expression wasalsoconfirmedin
clinicalsamples from chemosensitive and resistantpatients.Furthermore, the possible underling
mechanismin involvement ofFOXO 1with paclitaxel resistance wasexploredand discussed.

Differential Expression ofFOXOl in Cancer Cells
To examine the role of FOXO transcriptional factor, screeningof FOXO protein expres

sion wasperformed in three representative ovariancancercell lines, parent cells KF28, cisplatin
resistantderivative and paclitaxel resistantderivative cells, KFr13 and KFr13Tx.9•10 Among these
cells, KFr13Tx,paclitaxel resistantcellline,onlyshowedmarkedFOXO 1expression in transcript
leveland protein level(Fig. IA). Comparing to FOXOI, FOX03a and FOX04 did not show
much difference amongthesecelllines. Asspeculated,PI3K/Aktactivitywasconsiderably lower
in KFrl3Tx, as reflectedby the phosphorylatedAkt levels. The sameobservasion was reported
in the previous study for endometrial cancer cell lines, paclitaxelsensitive Ishikawa cells and
resistant HEC-IB cells (Fig. 1C). The resultsfrom two differentcancersstronglysuggested that
overexpression ofFOXOI correlates especially with the mechanismof paclitaxel resistance. To
investigate whether in vitrodata is relevantto clinicalpractice,immunohistochemical reactivities
ofFOXO 1 in ovariancancersamples, obtained at surgeryprior to chemotherapy, with different
chemotherapeutic response to paclitaxel-based chemotherapy, were examined. Representative
immunohistological stainingof responder and nonresponder are shown in Figure IE. FOXOI
overexpression with strong cytoplasmic stainingwaspredominantlyobservedin nonresponders,
whereasit wasless frequentlydetected in responders.

Induction and Translocation ofFOXOl byPaclitaxel
in Cancer Cell Lines

To further investigate the correlationofFOXO1 and paclitaxel, FOXO1 expression wasex
amined in parent KF28 cells and paclitaxel resistantKFr13Txcells treated with paclitaxel at the
increasedconcentrationsfor 24 hours. Stronginduction of FOXO1 expression wasobservedin
KFr13Txcellsbypaclitaxel treatment,whereas itsinduction wasveryweakin KF28cells (Fig. 2A).
Conversely, cleaved PARPexpression asapoptosismarkerwasdistinctively inducedin KF28 cells,
whereasitsexpression wasalmostundetectablein KFr13Txcells. FOXO 1mRNAexpression was
alsoinduced in both cells, whichwerepeakedafter24 hours, especially markedin KFr13Txcells.
Forfurther analysis, translocationofFOXO1wasalsoinvestigated usingprotein fraction.Nuclear
translocationofFOXO1wasclearlyobservedin both cells, whichwereagainpeakedafter24 hours
treatment (Fig.2B).Thenucleardecrease after48 hourscorrelates with increase in phosphorylated
(Ser2S6) FOXO 1levels in cytosol. Thesameobservasions werealsoreported in previousstudyfor
endometrial cancercelllines,paclitaxel sensitive Ishikawa cellsand resistantHEC-IB cells(Fig.
2C,D). Notably, cytoplasmic FOXO1, which islikely to be inactiveand should haveno affecton
expression of targetgenes in stress response, wasstronglyexpressed in resistantcells both inovarian
cancer cell linesand clinicalsamples. In contrast, induction and nuclearFOXO 1 wasmarkedly
induced by24 hoursexposure of paclitaxel in both sensitive and resistantovariancancercells. It is
likelythat acute exposure to paclitaxelleads to FOXO l-dependenr activationofa pro-apoprotic
gene program and that prolonged or chronic exposure promotes selectionof cellswith another
transcriptionallyactivatedgenesettingsby FOXO 1, which are involved in cellularsurvival and
drug resistance.Themajormechanism how FOXO transcriptionfactorsareregulatedin response
to externalstimuliisbychangesin subcellular localization, whicharerapidlyreversible.Acquiring
intracellularmechanisms during response to the tumor environment,if localization of a nuclear
protein into the cytoplasmmay render it ineffective as a target for chemotherapy, it is possible
that blockingnuclearexport reverse drug resistance.
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FOXOI Attenuates Sensitivity to Paclitaxel-Induced Cell Death
in Paclitaxel Resistant Cell Lines

Toclarify theroleofFOXO 1inovarian cancercells, genesilencingexperiment priorto paclicaxel
treatmentwasperformedinKFrl3Txcells.FOXO1siRNAconsiderably increased thesensitivity to
paclitaxel asdeterminedbyMTS assay (Fig. 3A).Thesefindings wereconfirmed byFACSanalysis
usingPI-stainingfor24hourstreatmentofpaclitaxel (Fig.3B)Thesame observasions were reported
in the previous endometrialcancerstudyfor paclitaxel resistant HEC-IB cells (Figs. 3C and D).
Although drug resistance in cancershould be multifactorial, it is well-recognized that a slower
growthrate represents one componentof drug resistance. Afterthe samesilencing experiment in
KFr13Txcells bytransfection with FOXO1siRNA,cellular proliferation wasmonitoredbyMTS
assay. FOXO1siRNAslightly promotedcellular proliferation, whose effectwasnot quite remark-
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increasing doses of paclitaxel for 24 h. B) In parallel experiments, KFr13Tx cells transfected
with nontargeting (NT) siRNA or FOX01 siRNA were treated with 10 nM pacl itaxel for 24
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or FOX01 siRNA and treated later with increasing doses of paclitaxel for 24 h. D) In parallel
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treated with 10 nM paclitaxel for 24 h and the apoptotic cell fraction was determined by flow
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able.Indeed, FOXO1 silencing decreased expression level of p27Kipi in thesecells (seeFig. 5B),
which is one FOXO1 target geneinvolving cellcycle inhibirion.' However, cellular proliferation
wasnot actuallyattenuated,whichsuggests more criticaleventother thancellgrowthretardation
is involved in paclitaxel sensitivity.

Attenuation ofOxidative Stress byPaclitaxel and FOXOI
in Ovarian Cancer Cell Lines

Reactive oxygen spices (ROS)levels areincreased in cells exposed to various stress agents, includ
ingpaclitaxel and other anticancer drugs.11.12 Toinvestigate the possible underlying mechanism that
FOXO1attenuatespaclitaxelsensitivityinovarian cancercells, intracellular ROSinducedbypaclitaxel
wasfustmeasured inKF28cells andKFr13Txcells.Asassessed byC-H2DCFDA fluorescence, intra
cellular H202levels wereincreased inKF28cellswhenexposed for4hoursto increasingconcentratios
ofpaclitaxel or H202 asindicated, whereas thosechanges werenot marked in KFr13Txcells exposed
with paclitaxel (Fig. 4A). Agents that decrease ROS can suppress taxol-induced cytotoxicity, while
increase ofROS levels byinhibitionofSOD or glutarnylcysteine synthase canenhanceraxol-induced
cytotoxicityin cancer celllines."Tofurtherstudythe roleofROSaccumulation inpaclitaxelcytotoxic
ity, theeffectsofco-incubationofpaclitaxelor H202withantioxidant, N-acetylcysteine (NAC),H202

scavenger, or NaN3, inhibitorof catalase, wereinvestigated in both cells. Cotreatmenr with NAC or
NaN3in KF28cells significantlydecreasedor increasedpaclitaxelor H202inducedcelldeath,whereas
cotreatmentwithNabl,inKFr13Txcells also increasedpaclitaxelor H202inducedcelldeath(Fig.4B).
Thecellular responses to paclitaxel involve activation ofMAPK pathways." HigherROSlevels and
SAPK(stress-activatedproteinkinases)JNK activityweremeasured intumourcells thatweresensitive
to anticancer agents thanin thosethat weredrug-resistant, suggesting that ROS-mediatedJNK and
p38 activation played akeyrolein thesensitization to stress signals and to anticancer drugS.14

•
ISThus,

controlofendogenous ROSlevel and the regulation ofMAPK pathway mayinvolve in proliferation
and sensitivity to stress stimuliincludinganticancer drugsin cancercells. Whether FOXO1attenu
atespaclitaxel-induced cytotoxicity throughoxidative stress wasstudiedagain byROSmeasurement
in KFr13Txcells usingsilencing experiment. Asshownin Figure 4C, intracellular H202levels were
increased in KFr13Txcells transfected with FOXO1siRNAwhenexposed for4 hoursto increasing
concentratios ofpaclitaxeL Thus,modifying intracellular ROSlevel bypharmacologic modulators as
wellasFOXO1silencing couldindeedattenuatepaclitaxel sensitivity in thesecells.

MnSOD Expression in Paclitaxel Sensitive and Resistant Ovarian
Cancer Cell Lines and Ovarian Cancer Samples

FOXO enhances the expression of the several keyenzymes in the antioxidant defense system,
includingDNA repairenzyme GADD45a, mitochondrialMnSOD (manganese superoxide dis
mutase) andcatalase,whicharescavengersofoxygen-free radicals.' CellslackingMnSOD have greatly
reducedoxidantdamage protection, demonstrating the critical role in the oxidative stress defence
pathway. In human endometrialstroma cells, FOXOI induces the expression of MnSOD upon
differentiation with heighteneddefence mechanisms againstoxidative stress? Tofurtherdetermine
the relevance ofputativeFOXO1targetgenes in ovarian cancercells, the proteinlevels ofp27Kipl ,
MnSOD,catalase andGADD45aexpression inKF28,KFr13andKFr13Txcells werecompared.As
shownin Figure 5A,p27Kip1and MnSOD werestrongly expressedespecially in paclitaxel resistant
cellline,whereas GADD45a expression wasalso comparably obsereved incisplatin resistant KFr13
cells and catalase expressionswerealmostthesameamongthesethreecelllines. Tofurtherinvestigate
the possibilitywhetherFOXO1attenuatespaclitaxel-induced cytotoxicity throughoxidative stress,
FOXO1 silencing followed bypaclitaxel treatment in KFr13Txcells wasagainperformedand the
sameFOXO targetgenes wereexamined. Transfection with FOXO1siRNAdecreased expression
levels ofthesetargetgenes, especially inp27Kipi andMnSOD,regardless ofpaclitaxel treatment(Fig.
5B). Notably, cleaved PARPwasdetectable bypaclitalxel treatmentonlyin FOXO1silencing cells,
supportingthe previous results (Fig. 3A).Thus,FOXO1silencing not onlyattenuatedintracellular
H202levels but alsodecreased expression of its downstream targetgene, MnSOD, simultaneously
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Reprinted with permission from : Goto T. Br JCancer 2008; 98:1072-1074.16

showingincreased paclitaxel-inducedcytotoxicity, whichcollectively suggest one of possibleexpla
nation in transcriptional roleofFOXO1asredoxmechanismto cytotoxic stimulisuchaspaclitaxel
in thesecells. Againto investigate whether in vitro data is relevant to clinical practice, immunohis
tochemical reactivitiesofMnSOD inthesameovarian cancersampleswereexamined. Representative
immunohistological stainingof responder and nonresponder are shown in Figure Sc. MnSOD
overexpressionwithstrongcytoplasmicstainingwassignificantlyobserved innonresponders,whereas
it wasless frequentlydetectedin responders.Furthermore, the cases withoverexpression ofFOXO 1
also showed MnSOD overexpression in nonresponderpatients.Drugresistance stillremainsamajor
problemandunderstandingitsmechanismisnecessaryfordevelopingeffective cancer therapy.More
research needs to be done to elucidate far more mechanismshow FOXO switchits control from
pro-apoptotic to pro-survival targetgenes in response to a varietyofenvironmental stimulithough
(Fig. 6), FOXO1 islikely to be the candidateto predict the chemotherapeutic response and could
be a molecular targetfor the treatmentof drug resistant cancers.
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CHAPTER 14

Foxp3 Expressing Regulatory T-Cells
inAllergic Disease
Kayhan T. Nouri-Aria"

Abstract

A llergicdiseases suchasasthma,rhinitis and eczemaareincreasingin prevalenceworldwide,
in particular in industrialisedcountriesaffectingup to 20%ofthe population. Regulatory
T-cells(Tregs) havebeenshownto becriticalinT-cellhomeostasis andin the maintenance

of immune responses, such asprevention of autoimmunity and hamperingallergic diseases. The
so-called'natural' CD4+CD25+ Tregsand/or IL-lO-producingTrl cells havebeen shown to be
responsible for theprotectionofimmunetolerance and intact immunereactions followingexposure
to allergens such asaeroallergens or food allergens. In this regard, both cell-cell contact (through
membrane bound TGF-p or via suppressive molecules such as CLTA-4) and solublecytokine
(TGF-p and IL-10) dependent mechanisms havebeenshownto contribute to the abilityofTregs
to operate effectively. The transcription factor Foxp3, a member of the forkhead-winged helix
family, appearsto be criticalin the suppressive abilities of regulatoryT-cells. Adoptivetransferof
CD4+CD25+ Tregs fromhealthyto diseased animalscorroboratedand providedfurther evidence
of the vital roleof thesepopulations in the preventionor cureof certainautoimmuneconditions.
Clinicalimprovementseenafterallergen immunotherapyfor allergic diseases suchasrhinitis and
asthma has also been associated with the induction ofIL-lQ and TGF-p producingTrl cellsas
wellasFoxp3expressingCD4+CD25+T-cells, resultingin the suppression ofTh2 cytoklnemilieu.
Activationand expansionof antigen-specific CD4+CD25+ Tregs in vivousingadjuvants such as
IL-10 or pharmacological agentssuch as lowdose steroidsor vitamin D3 could representnovel
approachesto induce antigen-specific tolerancein immune-mediatedconditions such asallergic
asthma,autoimmunedisease and the rejectionof transplanted organsin man.

Introduction
ThepursuitofregulatoryT-cellswasrevived in the 1990sfollowing theobservation that athymic

nudemiceinjectedwithCD25+ -depletedCD4+cells developed multiorganautoimmunediseases'{
and that these autoimmuneincidentscould be reversed by the adoptivetransferof CD4+CD25+
T-cells from healthymiceto the nude mice. Thislandmarkobservationprovidedrobust evidence
for the putative regulatoryrole of CD4+CD25+ T-cells in the control of immune responses and
generatedconsiderable interest in all aspects of basicand clinical immunology. The discovery of
CD4+CD25+ Tregs in the peripheralblood and lymphoid tissues in micewasfollowed bysimilar
findings in man.3-6 Numerousinvitrostudieson CD4+CD25+T-cells revealed acriticalrolefor these
T populations as the regulatorof immune responses in clinicalsettings includingautoimmunity,
tumour and microbialinfection, transplantationand allergic diseases.

*Kayhan T. Nouri-Aria-Department of Allergyand Clinical Immunology, National Heart and
l ung Institute at Imperial College london, Exhibition Road, london SW72AZ, England, UK.
Email: k.nouri-aria@imperial.ac.uk

Forkhead Transcription Factors: VitalElements in Biology andMedicine,edited byKennethMaiese.
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Background
Natural regulatory T-cells (Tregs) constitutively express the high-affinity imerleukin-2 (IL-2)

receptor a.-chain (CD25), a receptorwhich is crucial for IL-2 signalling and events leadingto
maintenance,homeostasis and functionofTregscells in vivo. However, the mainsource ofIL-2 for
the survival of CD4+CD25+ Tregcells seems to be T-cells other than Tregs themselves presentin
close proximity to CD4+CD25+ Tregs within lymphoid organs,?·8 Natural CD4+CD25+ Tregs are
alsoequippedwith a variety of cellsurface molecules includingcytotoxic T-lymphocyte antigen-4
(CTLA-4,orCD 152)andglucocorticoid-induced turnournecrosis factorreceptor(GITR),OX40
andprogrammed death-I (PD-l) antigen."!' UnlikeCD25 whichisupregulared on both newly ac
tivatedand regulatoryT-cells, theintensityofCD 127antigenon naturalTregs hasbeenreportedto
inversely correlatewith theirsuppressive ability, makingCD127uniqueamongst cellsurface markers
expressed on TregsY CD4+CD25+ Tregs alsoexpress highlevels ofLAG-3 (aCD4-relatedmolecule
thatbindsMHC class II)uponactivation (Fig. 1).Tregs mayalso express CCR4and CCR6,lymphoid
homingreceptors CD 103and CD62Landmolecules suchasperforinandgranzyme A.13 However,
noneofthesesurface markers areuniqueto naturalTregs, but combinations ofthesemoleculeswould
makeuseful surrogate markes for the functional abilityofTregs.

Thymicselection ofCD4+CD25+ Tregs isregulatedbythe transcription factorfoxp3 ,13.ISagene
withapivotalroleinthedevelopment offunctionalTregs.Foxp3 isamemberoftheforkhead-winged
helixfamily oftranscription regulators locatedon chromosomeXp11.23. Foxp3 full-length protein
is encodedby 11 exons and containsa forkhead DNA-bindingdomain at the C terminuswhich
can bind to the IL-2 promoter and repress IL-2 mRNA transcription." Foxp3 is constitutively
expressed at highlevels on naturalTregs in both man and mice. I? Foxp3 canactivate or stifle other
transcriptionfactorse.g., Tbet (Thl) and STAT6and GATA3 (Th2) (Table1),signalling path
ways or membraneexpression ofcertain molecules in the periphery. Scurfj micelacking Foxp3 are
deficient in CD4+CD25+ Tregs anddevelop severe lymphoproliferative and autoimmune disease."

Regulatory T cell subsets

Natural CD4+CD25+T cells

Foxp3, CTLA-4, GITR,CD127'
OX40, PD-l, LAG-3,

Trl cell

Th3 cell

IL-l0
Foxp3? TGF-p

TGF-~

Figure 1. Regulatory T-cells(natural andadaptive-Tr1 andTh3).Cellsurface markers, thetranscrip
tion factor Foxp3 andtheir cytokines(IL-1 0 andTGF-~) aredepicted. Reproduced with permission
from Nouri-Aria KT, Durham Sr. Inflammation & Allergy-Drugs Targets, 2008; 7:237-252.
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Table 1. T-cell subsets, their transcription factors and cytokines

Subset

Thl (Autoimmunity)

Th2(Allergy and helminith infection)

Th17 (Inflammationand autoimmunity)

Treg (Immunetolerance)

Transcription Factor

T-bet, STAT1, STAT4

GATA3, STAT6

RORgt (mice), RORC2 (man)

Foxp3 (mice), FOXP3 (man)

Cytokines

IFN-y, Il-2, TNF-a

Il-4, Il-S, Il-9, Il-13

Il-17, Il-2S, u-zr,
Il-22

Il-lO, TGF-~

Mutations in the foxp3 genein man result in IPEX syndrome, a condition with the spontaneous
developmentof allergic airways inflammation, hyper IgE and eosinophilia which predominantly
affectmaleoffspring." Conversely, the ectopicexpression ofFoxp3 phenotypically and function
allyconverteffectorT-cells to Tregs with full regulatoryfunction." In mice, Foxp3 expression has
been shownto be both necessary and sufficient for Tregs development," Whereasin man there is
increasing evidence demonstratingthat Foxp3 isalsotransientlyexpressed in activated T_cells.20.21

Theobservationthat Foxp3 mRNAexpression in newlyactivated CD4+CD25+cells lackingregula
tory function" maysuggest that in humans Foxp3 alone is not sufficient to commandregulatory
activityof CD4+CD25+cells.

The molecular mechanisms involved in the regulation of Foxp3 expression remain poorly
understood. However, it hasbeen establishedthat the transcriptionalactivityofFoxp3 promoter
isdependent on TCR signalling and several AP1-and NFAT-bindingsiteswithin the promoter.P
The binding ofSTAT5 and STAT3 to conservedbinding sitesof the Foxp310cus havealsobeen
implicated in the regulationofFoxp3 expression in man.24In both peripheral blood and tissues
Foxp3+CD4+CD25+ Tregs can be induced from CD4+CD25· T-cells in the presenceofTGF-13
and interleukin-2 (IL-2).25 Demethylation of DNA plays a critical role in the conversion of
CD4+CD25· T-cellsinto Foxp3+ Tregs.26The mechanismof suppression used by Tregs remains
contentious,nonetheless it hasbeenpostulatedthat TGF-13 1maymediatethe immunosuppressive
activityofTregs. In a recent report the in vitro induction ofFoxp3 failed to upregulateEBI3,p35
mRNA, or IL-35 secrerion," refutingthe earliersuggestion that IL-35 contribute to the suppres
sivemechanismof human Treg.28.29

Regulatory T-Cells in Health and Allergic Conditions
In the last fewdecadesallergic diseases suchasasthma,atopicdermatitisand rhinitishavebeen

increasingin prevalence worldwide and in particularin the industrialised countries.Theprominent
roleof natural Tregsin preventingautoimmunediseases, rejectionof solidorgan transplantsand
uncontrolled tumour growth collectively suggest CD4+CD25+ Tregs mayalsoplaya criticalrole
in hamperingallergic diseases.A lowproportion ofTregs and/or adefect in the abilityof allergen
specific Tregsmaybe responsible for the increase in the numberofindividuals with allergyseenin
the past 30 years. Thus, better understandingof mechanisms ofTregs controllingTh2 responses,
the characteristic featureofallergic conditions,mayhelp in developing moreeffective therapeutic
strategies for treatment of thesediseases.

Theroleof1h2-driven immuneresponses has beendecisivelyestablished in thedevelopment ofal
lergicdiseases.Neverthelessenvironmental factors andthegeneticpredisposition ofallergic individuals
arealsobelieved to contribute, ascofacrors, in theseverityof theseTh2diseases." Conversely, the lack
ofresponses to allergens in nonatopichealthyindividuals andthemechanisms bywhichsuchimmune
tolerance isinducedandregulatedarepoorlyunderstood.Thischaptersummarises invitroandinvivo
evidence for the functional abilities of regulatory T-cells in controlling effector T-cellresponses (cell
proliferation andeytokineproduction) inhealthandinanumberofallergicdisorders indudingasthma,
allergic rhinitisandatopicdermatitis aswellasinexperimental models ofallergies. It alsodiscusses the
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effects of treatment(glucocorticoids and allergen immunotherapy) on modification ofTregs and the
possibility of manipulating these T-cellpopulations for treatmentof allergic conditions.

Health
Despiteconstant exposure to aeroallergens or food allergens, healthysubjectsmaintain stable

immunetolerancein theirgastrointestinal and respiratorysystems.The roleofCD4+CD25+Tregs
in controllingimmune responses to allergens in man wasestablished'! bythe lackof proliferative
responses to allergens and a trend towards cytokine profile of Tr1 cells in healthy volunteers.
This wasin sharp contrast to T-cell recognition of allergens resultingin elevatedTh2 cytokine
production (IL-4, IL-5 and IL-13) and heightened proliferative T-cell responses to allergens in
atopicindividuals.32Thesefindings mayimplythat active immunesurveillance byTregpopulations
operates in healthy nonatopic individualand is possibly absent in atopic subjects. The majority
of allergen-specific T-cells in these healthy individuals were ofIL-iO-secreting Trl type. These
observations support the notion that an impairment in the abilityofTregs to controlexaggerated
Th2 responses rather than an imbalance betweenTh2:ThI responses, mayexistin atopy. It would
alsoprovidea plausible explanationasto whyno immunological responses areseenin nonatopic
healthyvolunteersfollowing allergenexposure.

In linewith thesefindings wasthe lackofproliferative T-cellresponses to cows' milkantigenin
healthychildren. Depletion of CD4+CD25+ T-cellsfrom PBMCs reversed T-cellrecognitionof
cow's milk antigen,implyingthat the food toleranceto dietary antigensmaybe an activeprocess
imposedbyCD4+CD25+ TregsY Contrary to thesedata, childrenwho had outgrowncows' milk
allergy revealed increases in thefrequency ofcirculating CD4+CD25+ T-cells anddecreased invitro
proliferative responses to bovine~-lactoglobulin (a milk protein) when comparedwith children
who remainedclinically milksensitive," A similarscenarioofIL-IO-associated T-cell-induced an
ergyhasbeenreportedin hyperimmune individuals i.e.,beekeepers,whohad received multiplebee
stings.Theintracytoplasmic IL-IQ+ cellsfrom theseindividuals werecolocalized to CD4+CD25+
T-cellswith specificity for beevenomanrigens."

ExperimentalModels
The strategic role of CD25 in the induction of CD4+ Tregs in a murine model of allergic

conjunctivitis was identified following the injection of anti-CD25 in thymectomizedmice im
munized with ragweed pollen. Subsequent allergen challenge in these mice resulted in severe
allergic conjunctivitisas judged by conjunctivaleosinophil numbers, ragweed-specific IgE and
IgG1 levels, an increasedproliferative response and Th2 cytokine production by splenocytes to
ragweedallergen, confirmingthat thymus-derived CD2S+ T-cells areinvolved in the development
and the regulationof allergic conjuctivitis. The adoptive transferof CD4+CD25+Foxp3+ T-cells
from healthy, naive mice into ragweed-sensitized mice, suppressed the developmentof allergic
conjuctivitis, reinforcingthe perception that Foxp3 expressing Tregs playa pivotal role in the
regulationof allergic conditions."

Foxp3 mutant mice, generated by means of knock-in mutagenesis developed an intense
multiorgan inflammatoryresponse associated with allergic airwayinflammation, hyperirnmuno
globulinemiaE,eosinophiliaand dysregulated Thland Th2 cytokineproduction in the absence
of overt Th2 skewing, is consistent with the striking influenceof Foxp3 in the developmentof
allergic inflammation."

The influence of IL-I 0 producing Tr1 cells governingTh2 type responses in experimental
model of OVA challengedmicewasestablishedby the adoptive transferofIL-1O+CD4+CD25+
cells fromnaivemiceto OVA sensitized mice,resultingin the resolutionofinflammatory responses
in the bronchial mucosa." Thisobservationisconsistent with the lowconcentration ofIL-l 0 in
the bronchoalveolar lavage fluid of adult asthmatic patients compared with healthy controls."
Neutralization studies using anti-IL-IO almost abolished the suppressive effectofTrl cells in
vitro and further strengthened the roleof this immunesuppressive cytokine in the controlofTh2
responses and in the maintenanceofT-cell homeostasis.
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Similarly to IL-l 0,TGF-~ isalsoinvolved in the control of atopicconditions.ThusinTGF-~
knockout mice a higher susceptibility to bronchial hyperreactivity and bronchial inflammation
resemblingasthmatic reactionsin man has been observed." In a mouse model of food allergy,
a significant reduction of secreted IgA antibodies, a class of immunoglobulin which is tightly
regulatedbyTGF-~ hasbeen demonstrated in the gut. Subsequentrecovery from food allergyin
these micewasassociated with localproduction ofTGF-~.40

A failureof immunetolerancerather than a defective inThl immunityappearsto underliethe
immunobiologyofTh2-drivenallergen-induced airwaydisease in a mousemodelof asthma.The
reduction in the bronchial inflammationappearsto be the consequence of regulatoryprocesses
involving dendritic cell-T-cell interactions.In contrast to OVA-inducedmurinemodelsofasthma
in which mice developedTh2-drivenairwaydisease, the prolonged/three week OVAexposures
resulted in the suppression of airwayhypersensitivity. The mechanismunderlyingtolerance by
chronic repetitive allergen (OVA) exposure in this rodent model included the recruitment of
considerable numbersofTregs expressingCD4+CD25+Foxp3+plusenhancedTGF-~1production
in the airways, despite tissueeosinophiliaand high serum levels of, OVA-specific IgEand IgG1•

The resolution of airwayhyperresponsiveness, tissueeosinophiliaand Th2 cytokineprofilewere
associated with the accumulationof Foxp3 expressing regulatoryT-cells in localdraining lymph
nodes.41•42 Understandingof mechanisms involved in airwaytoleranceto inhaled allergens could
potentially help to improvetreatment for allergic diseases and asthma.

In another study of murine model, immune tolerance was induced by repeated low-dose
aerosolized OVA exposure. In this model, CD4+ T-cells with regulatory effects expressed
both cell surfaceand the soluble form ofTGF-~ and inhibited the development of an allergic
phenotype when these cells were administrated to naive recipient mice challenged with the
allergen. Although the blockade of TGF-~ particularly interfered with immunosuppression,
the severityofsuppressionwasprofound when CD4+T-cellswereobtained from the tolerized
miceexpressinghigh levels ofFoxp3.43 Thesefindingssuggestthat the cellsurfaceexpressionof
TGF-~ rather than the secreted form of this immunosuppressive cytokine maybe responsible
for the effective inhibition and blunting the development of allergicresponses. The study also
suggestedantigen-induced tolerance requires cell-cell contact with Tregsexpressing Foxp3and
the expressionof membrane bound TGF-~ as the dominant component in the mechanismsof
suppression of allergicresponses.?

AllergicRhinitis andAsthma
Allergic rhinitis,adebilitatingallergic conditionaffectingup to 30%ofpopulationsin northern

Europeand in the USA,isaTh2predominantdisease. ThefactorsdrivingsuchTh2 responses have
not been fullyresolved and pathologicalmechanisms are unclear. It ishowever, conceivable that
reductions in absolutenumbersor a defect in function of the Foxp3+CD4+CD25+ in circulation
and/or in the nasal mucosaof allergic rhinitics'" could, in pans , be responsible for the clinical
manifestationand the high prevalence of this condition in the westernworld. In several in vitro
studies,CD4+CD25+ T-cells from aeroallergen sensitive individuals (e.g., grass and birch pollens,
cat and house dust mite) werefound to be defective resultingin high proliferative responses and
IL-5 secretionwhen CD4+CD25+ T-cellswere cocultured with autologousallergen-stimulated
CD4+CD25' T_cells.4S-46The dysregulation ofCD4+CD25+Tregs in the atopiescontrollingIL-13
and IL-5production'! wasmostpronouncedduringthepeakof thebirchand grass pollenseasons.
In contrast, CD4+CD25- T-cellsfrom both allergic and nonallergic individuals wereefficiently
ableto suppress T-cellproliferationandTh2 cytokineproduction to allergens outsideof the pollen
seasonwith significant levels ofFoxp3.

Thefrequencies of the Foxp3+, CD4+CD25+ and Foxp3+CD4+CD25+ populationswerefound
to be moreabundant in the nasalmucosaofhealthycontrolsthan in hayfever sufferers, whereas the
concentration ofIL-2 and IFN-ysecretedbyPBMC in hayfeversufferers wassignificantly greater
than in the controlgroup,consistentwith adefectin regulatorypathways in thisclinicalcondition.
Theresults funher indicatethatCD4+CD25+ Tregs aswellasFoxp3 expressingcells mayplayacrucial
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rolein immunological imbalance in hayfever, suggesting that Foxp3+CD4+CD2S+ T-cells have the
potential to act asa newtherapeutic targetfor the treatmentof this allergic disorder,"

Childrenwith allergic disease have beenshownto havefewer CD4+CD2Shi T-cells than control
subjects. Surprisingly, numbersof CD4+CD2S+ and CD4+CD2Shi Tdymphocyres werehigher in
childrenwithpersistent allergic rhinitisand/or moderate-severe bronchialasthmathan inthosewith
respective milderdisease and the frequency of thesecells werecorrelated with total serumimmuno
globulinE level," Foxp3 expression of CD4+CD2S+ T-cells waselevated in moderate-severe versus
mildasthma.Similarly,patientswith moderate-severe bronchialasthmahad increased expression of
IL-lOcomparedwith patientswith mild asthma. Thesuppressive capability of Tregs from patients
with moresevere asthmaappearedto be intactin vitro." On balance,decreased numbersofTregs in
childrenwith allergic airwaydisease mayalsorepresent adefectof theTregfunction.Theunexpected
findings mayhowever represent the recruitmentofFoxp3+IL-IQ+ Tregs from the lymphoidorgans
to the targetorganand/or circulation to combatand dampenof the ongoingallergic inflammation
in the lungsof severe asthmatics.

Theantigenspecificity ofTregsand its influence in the induction and maintenance of tolerance
remaincontentious. Studies on Tregs from nonallergic healthysubjects demonstrated a profound
inhibition of proliferation of effector cells stimulatedwith influenza antigenaswellasbirchpollen
allergen.ThiswasinsharpcontrastwithCD4+CD2S+ cells fromallergic rhinitispatientswhichwere
capable of dampeningproliferative responses ofT-cells to influenza antigen,but not birchpollen.
Similarly, the regulation of1h2, butnot Thl cyrokineproductionbyCD4+CD2s+ cells was impaired
in allergic patients, upon stimulationwith birch pollenextract. Neutralization ofIL-lO led to in
creased productionofIFN-y and TNF-a in the nonatopic controls, substantiating a dysregulation
ofallergen-specific Foxp3 expressingCD4+CD25+ T-cells inatopicsubjects.Theelevatedconcentra
tion ofTNF-a following neutralization ofIL-I 0,however suggests apro-inflammatory rolefor this
cytokineand that the IL-!0 producedbyTregs ispossibly involved in promotingtolerance."

Furtherevidence for the existence of antigenspecificity ofFoxp3expressing Tregs wasprovided
bystudiesofallergen (Der-p 1)-specific and streptokinase (SK)specific-CD4+CD2S+Foxp3+ Tregs
in the peripheralbloodof atopicindividuals.soCD4+CD2S+Foxp3+ T-cells from Der p 1-sensitive
atopicindividuals whenculturedwithDCs activatedwithDerp-I, but not thoseculturedwitheither
unloaded or SK-Ioaded DCs, suppressed the proliferative responses of autologous CD4+CD2S'
phenotype to Der p 1 or SK respecnvely.'" Thesefindings mayalsoimplythat the pool of human
circulatingCD4+CD2ShighFoxp3+ T-cells consist ofTregpopulations specialised inthe recognition of
antigens withdifferent specificities. Ithasbeenposrulated that naturalTregs withalarge repertoire for
self-specificT-cellreceptors suppress immuneresponses viacontact-dependentmechanisms,whereas
the inducibleTregs consistof both self- and nonself-specific cells recognising autoantigens aswellas
foreign antigens and the latter populations arecapable of suppressing a widerangeof immunecells
viahigh concentrations ofTGF-~ ! (possibly Th3 cells) or IL-l O/TGF-~ 1 producingTr1cells,"
AlthoughantigencontactisrequiredbyTregs to induceasuppressive mechanism, oncetheyareset
in motion,subsequent suppression maynot requireantigens and caninhibit both in antigenspecific
and antigennonspecific fashion.

MucosalSystem
Theinduction of mucosaltolerancethrough the recruitment ofFoxp3expressing cellshasbeen

proposedasanalternative approachfor the treatmentofrespiratoryallergy. Long-termefficacy and
mechanisms of mucosal tolerance induction were investigated by the meansof an experimental
modelof birchpollenallergy.Twostructurallydiverse products of Betvl allergen i.e., unmodified
nativethree-dimensional major BP allergen Bet v 1 and nonconformationalhypoallergenic frag
mentwereappliedintranasallybefore- (prophylactic) or afrersensitization (therapeutic) with birch
pollenallergen." Bothnative-and the modifiedfragmentBetv 1allergen showedprophylactic and
therapeuticeffects.Theimmunetoleranceinducedwith the nativeBetv 1allergen however wasas
sociatedwith the enhancedexpressionofTGF-~, IL-lOand Foxp3 expressing CD4+T-cells. These
observations providefurtherevidence on antigenspecificityofTregsand suggest that thenativeand
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conformationalstructureofantigens ratherthan modifiedfragmentisan important componentin
the induction of appropriateimmuneregulatoryeffects byTregs." In this scenario Foxp3 seemto
be the dominant molecule for the long-termefficacy ofimmunosuppression and in the dampening
of immunopathologyof birch allergy.

Epidemiological studieshaveindicatedthat infectionwith helminth parasitesmaycounteract
allergies, possiblybygenerating Tregsand suppressionof the Th2limb ofimmunity.To address
whether the gastrointestinalnematode Heligmosomoidespolygyruswascapableof down-regu
latingallergicreactions,a rodent modelof OVAand housedust mite allergen-Der p l -lnduced
asthma wasused.53The administration ofthe parasite induced suppressionofinflammatory cell
infiltrates in the lung, but wasreversedif micewere treated with anti-CD2S . The inhibition of
bronchial hyperresponsiveness and airwayinflammationwastransferable with mesenteric lymph
node cells (MLNe) from helminth infected animals to uninfected allergen sensitized mice.
MLNC from infected animalsshowedsignificantnumbersofCD4+CD2S+FoxpYT-cells, high
expressionofTGF-~ and strong interleukin IL-10 responsesto parasite antigen. Unexpectedly,
MLNC from IL-1D-deficlent animalsalsotransferredsuppressionto sensitizedhosts,indicating
that IL-10 per se may not be the primary suppressorof the allergicresponse." Thesedata sup
port the contention that helminth infectionscanelicit a regulatory T-cellpopulation capableof
down-regulatingallergen-induced lungpathology in vivo. Intervention studieswith hookworm
in parasite-naiveallergicindividualsarecurrentlyongoing in the United Kingdom to test these
hypotheses further.54

Atopy
Maternal atopic status and the adaptive immune responses to microbialexposure at an early

stagein lifemaydecidethe outcomeof developing allergic disease or atopyduringthe childhood.
Usingcordblood mononuclearcells from SO healthyneonates(31 nonatopicand 19atopicmoth
ers) and the innate TLR2 agonistpeptidoglycan (Ppg) or the adaptive allergen house dust mite
Dermatophagoides farinae (Derf 1)55 asstimulidemonstratedthat peptidoglycan wasmoreableto
induce high levels ofIL-IQ, IFN-y, IL-13 and TNF-a cytokinesecretionand lymphocyte prolif
eration than Der f 1.Foxp3 and GITR expression of cord blood mononuclearcells (CBMC)and
IL-10 production werealsogreaterin CBMC from neonateswithout maternalatopythan those
withmaternalatopy. IL-10 productionwashighlycorrelatedwith theincreased expression ofFoxp3,
GITR and CTLA4, independentof maternalatopy. The increased IL-10 and Foxp3 induction in
cordbloodmononuclearcells ofnonatopiccomparedto atopicmothersand the inductionoHL-10
producingTregs viaTLR2, suggest possible intrinsicdefectin the induction of adaptive responses
to microbialstimuliwhich maybe associated with acopy,"

In a group of childrenwith eggallergy, the abilityof CD4+CD2S+CD12710w Tregcells in sup
pressionofIFN-y production byautologous CD4+effectorT-cells in responses to staphylococcal
endotoxinBrevealedsignificandylessTregcell-associatedsuppression intheallergic groupcompared
with nonallergic children,althoughtheproportion ofcirculating CD4+CD2S+CD12710wTregand
Foxp3 expressing cells weresimilarin both groups.56

Maternalatopyisalsoconsideredasastrongcandidatepredictingthedevelopment ofchildhood
allergic diseases. Cord blood from offspring of atopicmothers showedfewer Lipid A peptidogly
can-inducedCD4+CD2Sh;ghTregcells, lowerexpression of GITR and Foxp3 and decreased IL-10
and IFN-y secretion. In contrast IL-17 response to Lipid A was independent of maternalatopy
and highlycorrelatedwith IL-13secretion," Similarly, mitogen-inducedsuppression ofT effector
cells in cord blood ofoffspring fromatopicmotherswasalsoimpaired."Thesefindings implythat
impairmentsin Foxp3 expressing Tregnumbersand/or function maybe a predisposing factor in
the developmentof atopicdiseases in childhood.

Atopic Dermatitis
The high levels of serum IgE in patients with atopic dermatitis was hypothesized to de

rive from a dysregulation of Tregs controlling IgE synehesis." The frequency of circulating
Foxp3+CCR4+CLN cells was found to be greater in atopic dermatitis with highly elevated
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serum IgE compared with low IgE levels with a strong association between Foxp3 expressing
cells and the disease severity. CD2Shi T-cells appeared to consist of two subsets based on the
differential expression of the chemokine receptor CCR6. Although the ratio of CCR6+ and
CCR6- subtypes within the CD2Shi subset were similar in atopic dermatitis, the intensity of
CCR6 expression was strongly correlated with the suppressive ability ofTregs. CCR6- popula
tions, in contrast, demonstrated functional characteristics ofTh2 effector cells and synthesized
large quantities ofIL-S in response to Staphylococcus aureus superantigen derived from the skin
colonizing organism, possibly indicating the expression ofCD2S on the se populations merely
represent cell activation.57 Moreover, the CCR6+FoxpYCLA+ cells had greater suppressive
abilities controlling proliferation ofeffector cells than CCR6- populations.

Studies on the cutaneous coexpression ofFoxp3 and GITR on a panel ofdifferent inflamma
tory skin diseases using dual immunohistochemical staining revealed that Foxp3 and GITR were
almost exclusivelypresent on T-cells that express both CD4 and CD2S and were more prevalent
in the inflammatory skin conditions than in healthy skin.58Similar findings were identified using
peripheral blood CD4+ T-cells co-expressing Foxp3 and GITR. In contrast to healthy volunteers
whose biopsies showed low numbers of Foxp3+GITR+ Tvcclls, cutaneous Foxp3+ T-cells in
patients with spongiotic dermatitis, psoriasis and lichen planus showed a frequency of2S-29%
and in patients with leishmanias is this was _IS%.58 These observations at a glance were sugges
tive ofmechanisms ofsuppression via molecules ofFoxp3 and GITR may be intact in these skin
conditions. However, the recruitment of Foxp3+GITR+ T-cells in the inflamed skin may playa
central role in the disease recovery, cessation ofimmune responses to invasive pathogens and the
establishment of immunologic tolerance.

Analysis of Treg cells infiltrated in the skin conditions such as atopic dermatitis and psoria
sis showed that CD2S+ cells were present in the perivascular and papillar dermis of alilesional
specimens and FoxP3+cells were distributed in the perivascular and inter stitial atopic dermatitis
dermis. In atopic dermatitis and psoriatic skin, CD4+CD2S+FoxPY T-cells were absent in the
lesional region and in the atop y patch test areas of the skin, despite the abundant expression of
IL-I0 and TGF-13as well as receptors for these cytokines in the dermis.59ln contrast skin biopsies
from healthy volunteers despite having few Foxp3+T-cells showed an even distribution through
the dermis. Double immunostaining demonstrated that CD2S+FoxP3+ cells were distributed in
the perivascular, interstitial and periadnexal dermis , in contrast healthy skin specimens featured
few CD2S+ FoxP3+ cells scattered throughout the derm is. These findings suggest an impaired
regulatory T-cell function rather than the absolute numbers ofTregs in the cutaneous lesions may
playa key role in the immunopathology ofatopic dermatitis.

Modulation ofTRegs with Treatment

Glucocorticoids
The administration of glucocorticoids, inhaled or systemic, has been reported to increase

Foxp3 and IL-l0 expression in the bronchial mucosa in patients with severeasthma. Foxp3+ T-cells
were tightly correlated with IL-1Oexpressing cells but not with the expression ofTGF-131, pos
sibly suggesting the Tr1 nature of the Treg population. The frequency ofCD4+CD2S+ T-cells in
circulation and the Foxp3 expression by CD4+ T-cells was transient, but significantly greater in
patients who received systemic glucocorticoid treatment. In vitro cultures of CD4+ T-cells with
corticosteroid induced upregulation ofIL-l0 and Foxp3 expression on these cells,60-61corroborates
that glucocorticoids are not only potent immunosuppressor agents with anti-inflammatoryeffects.
They are also capable ofinducing the differentiation ofCD4+ T-cells towards a Foxp3 expressing
Tr1 phenotype with suppressive consequences.

In asthmatic children, inhaled corticosteroid treatment was also associated with an increased
proportion ofCD4+CD2Shi T-cells in both peripheral blood and bronchial alveolar lavage fluid
(BALF) and an improvement in suppre ssion of proliferation and cytokine/chernokine produc
tion by CD4+CD2S- responder T_cells.62 The role of immunosuppressive drugs , vitamin D3
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and dexamethasone. in the induction of IL-l0 producing regulatory T-cells from naive CD4+
T-cells have been reported in man and mouse . The newly induced Tregs failed to synthesize IL-S
or IFN-y. despite retaining strong proliferative capacity. The inhibition nuclear factor (NF)-K B
and activator protein (AP)-1 activities confirmed the influence ofthese two immunosuppressive
agents in the development of'Tregs/"

The population of CD4+CD2Shi Tregs and Foxp3 mRNA levels in peripheral blood and in
the BALF of asthmatic children were found to be lower than in children with chronic cough
and healthy control children." Increased percentages of CD4+CD2Shi T-cells in peripheral
blood and BALF were identified in asthmatic children after inhaled corticosrerold.f In contrast
to the asthmatic group. isolated BALF and peripheral blood CD4+CD2Shi T-cells from non
asthmatic subjects suppressed the proliferation and cytokine as well as chemokine production
by CD4+CD2S- responder T-cells . Corticosteroid treatment restored the regulatory activities
of CD4+CD2Shi T -cells after inhalation. suggesting that the lung pathology seen in paediatric
asthma. as with adult asthma, may stem from impaired regulatory T-cell control ofTh2 responses.
Pulmonary Tregs may also represent a therapeutic target in paediatric asthma .f

Specific Allergen Immunotherapy
The efficacy ofallergen specific immunotherapy (SIT) in treatment ofselected patients with

IgE mediated diseases has been established.64•65 SIT was initially described about 100 years ago66

and involves subcutaneous administration ofsmall but increasingdoses ofallergen using a relatively
crude allergen extract.

To date SIT is the only treatment that can alter the natural course ofallergic rhinitis. conjunc
tivitis and allergic reactions to stinging insects." Conventional subcutaneous allergen immuno
therapy prevents further allergen sensitisations and the development ofasthma in patients with
allergic rhinitis.68 The clinical improvement following allergen immunotherapy is sustained for
years after discontinuation. thus SIT is believed to modify the underlying immunological mecha
nisms ofallergic responses.v The mechanisms by which allergen immunotherapy reduces allergic
symptoms have been studied for decades . Induction ofblocking antibody i.e.• IgG4. a shift from
Th2 to IFN-y producing Thl cytokine profile7°.71 and reductions in the numbers ofeffector cells
such as eosinophils, mast cell and basophils in the target organ are amongst the immunological
changes observed following successful SIT.

More recently induction offunctional CD4+CD2S+ Tregs72 capable ofattenuating allergen-in
duced proliferation ofTh2 cellsand their cytokine pattern have been reported with successful SIT.
The intracellular IL-l0 positive T-cells from patients who had completed a course ofallergen im
munotherapywas almost exclusivelylocalized to CD4+CD2S+ cells. IL-I0-producing CD4+CD2S+
regulatory T-cells have therefore emerged as potential mediators ofimmune tolerance following
grass pollen Immunotherapy,"

Two subsets ofregulatory T-cells , IL-lO-producing Type 1 regulatory T-cells and the natural
CD4+CD2S +Foxp3+Treg cells have been reported to play important roles in the control ofallergic
inflammation. Successful SIT dampens allergen-specific effector T-cells and activates uncommit
ted CD4+CD2S- phenotypes to possibly IL-l0 secreting Tr 1 populations. Tr 1 cells suppress Th2
cells and effector cells ofallergic inflammation. such as eosinophils, mast cells. basophils, through
IL-I0 and possibly TGF-~. Understanding ofthe mechanisms ofIL-IQ+ Tr 1 cells may be helpful
in developing new strategies for treatment ofallergic diseases.Y"

The effect of house dust mite (HDM) specific immunotherapy on the induction ofTregs
expressing markers such as Foxp3. CTLA4. IL -I0 and TGF-~ was studied using peripheral
blood CD4+ T-cells from both HDM sensitive asthmatic- and nonatopic children. This revealed
a temporary increase in CTLA-4 at three months after SIT with no significant changes in
IL -I0 production or in the expression Foxp3 +Tregs . Contrary to these findings were significant
increases in TGF-~ and Foxp3 expression by CD4+CD2S+ Tregs and the associated clinical
improvement following the completion of SIT at one year. suggesting that conventional SIT
requires high concentrations of allergens to induce an effective clinical and immunological
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tolerance, with TGF-~ and Foxp3 as the two sensitivebiomarkers for monitoring the response
to imrnunotherapy,"

Usinghouse dust mite-sensitivemice,peptide IT increasedthe number ofCD4+CD25+Tregs
in the peripheral blood and the adoptive transfer of CD4+CD25+Tregsprecluded the induction
ofexperimentalallergicencephalomyelitis." Although theseCD4+CD2 5+ Tregsshowedsuppres
sivecapabilitiesin vitro, their effectsin vivodepended on the induction of antigen-specific IL-I 0
producing Tr-I cells. Asindicated above, Tr I cellsare likelyto playa crucial role in the control of
allergicdiseasewith major effector mediator cytokinessuch as IL-lO and TGF-~.

The suppressive mechanismsofTrl cellsnot only involvecytokinesIL-lO and TG F-~, but also
moleculessuch as CTLA-4 and PD-I antigens. IL-lO inhibits CD28 tyrosine phosphorylation
and prevents the binding ofphosphatidylinositol3-kinase p85,hence reducing the costimulatory
CD28 signallingpathway," Induction ofantigen-specific TrI cellscan thus redirect inappropriate
immune responsesagainst allergensusinga broad rangeof suppressormechanisms.

The autocrine action of IL-lO and TGF-~ is important the induction of peripheral T-cell
tolerance and playsa crucial role in the mechanismsof allergen-SIT.78.79 ReactivationofT-cells
tolerized by IL-lO and TGF-~ can result in the distinct pattern of either Thl or Th2 cytokine
profilesdepending on the cytokine milieu in the target organ. Peptide presentation to the anergic
T-cellswas,however, fullyrestoredin the presenceofIL-2 or IL-15asdocumented bythe secretion
ofIFN-y, but no IL-4 could be detected in this systemsuggestingthat the suppressioninduced
by Tregsare reversible." Both IL-I 0 and TGF-~ expressing cellshavebeen reported to increase
in the nasal mucosaofgrasspollen IT treated patients, with a strong associationbetweenTGF-~
expressed in the nasalmucosaand the levels of secretory IgA2produced in the circulation, imply
ing that the immunologicalchangesare not only systemic,but occur in the target organ, i.e., nasal
mucosa.Thus, in addition to their cellularinhibitory influence,IL-I 0 and TGF-~ are the critical
factors in switching from an inflammatory immunoglobulin E (IgE) to the noninflammatory
isotypes IgG4 and IgA respectively, the two classes ofIg with significantvaluesin the outcome of
SIT treatment and protection of mucosalsurfaces.78.79

Another crucial change seen after successful allergen-SITis a shift in the balancefrom IgEto
IgG, in particular to IgG4 subclass, the latter being under the regulation ofIL-I O. Two indepen
dent studies havereported that the increasedIL-lO- and TGF-~ production byTregsin vivomay
endorse that high and increasingdosesof allergensadministrated during the courseofgrasspollen
IT are responsiblefor the proliferation and activationofTrI populations. jurel et al reported the
suppression inducedbyCD4+CD25+TrI+cells waspartiallyblockedbyneutralizationofantibodies
against secreted forms or membrane-bound IL-lO and TGF-f3.80

Regulatory T-cells are thought to play an important role in allergic diseases and tolerance
induction during specific immunotherapy. In a recent publication, significant numbers of
CD4+CD2S+Foxp3 expressingcellswere identified in the nasal mucosaofallergicrhinitics who
had completed a successful courseofSIT. Seasonalincreases in CD4+FoxpY and CD2S+Foxp3+
cellsin these patients wereaccompanied bysuppressionoflocal allergicinflammation, indicative
of the development and differentiation of a regulatory T-cell phenotype post immunotherapy.
CD2S+IL-1O+ T-cellswereboth Foxp3positiveand Foxp3negativeand co-existedin a closemi
croenvironmentwithin the nasalmucosa,providingevidencefor the emergenceof phenotypically
and functionallydistinct populations ofregulatorycellsi.e.,"adaptive" Foxp3expressingTregsand
IL-IOexpressing"TrI"cellsfollowingSIT.8I A5 Similarobservationshavebeen reported in patients
with inflammatoryboweldisease, in whom IL-I0 producingFoxp3+CD4+CD25+cells werepresent
at increaseddensity in the colon and the presenceofIL-I0 expressingTregswereassociatedwith
amelioration ofcolitis.82Thesefindingsencouragestrategieswhich augment numericallyand/or
functionally Tregslocallywhich would be beneficialin the treatment ofallergicrhinitis.

Venom Immunotherapy
Venom immunotherapy (VIT) induces long-lasting immune tolerance to hymenoprera

venom antigens; however, the underlying mechanisms haveyet to be clarified.In a longitudinal
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study VIT induced a significant progressive increase in percentage and absolute numbers of
CD2SbrightFoxpY CD4+ regulatory T-cells, with the particular effect on Foxp3 confirmed both
at mRNA and protein levels.83 These changes were unrelated to alterations in the expression of
activation markers or imbalances in the naive/memory T-cell compartments. Interestingly, the
increase in the circulating FoxpYTregs were correlated with a shift from the venom-specific IgE
to IgG4, corroborating the findings in grass pollen IT in allergic rhinitis. VIT is also associated
with a progressive expansion ofcirculating regulatory T-cells as defined by high expression of
CD2S and/or CD4+Foxp3+Tcells,supporting a role for these cells in the induction oftolerance
and unresponsiveness to subsequent venom exposure similar to the phenomenon ofnatural sting
tolerance in bee keepers. Wasp venom- or phospholipase A2-pulsed dendritic cell stimulation
of CD4+CD2S- T-cells from healthy donors resulted in inhibition of proliferation and Th2
cytokine production by Tregs at lO-fold lower than the optimal concentration. In contrast,
IFN-y production was inhibited at all concentrations, suggesting that the threshold ofresponse
is different between allergic and nonallergic individuals.f

Less is known about the underlying molecular mechanisms ofTGF-~-mediated suppression
in allergen immunotherapy. Blocking of CTLA-4 was associated with decreased TGF-~ levels
within the bronchoalveolar lavagefluid ofa murine model ofallergic inflammation." TGF-~has
been recognized to deviate antibody response from an IgE to an IgA-dominated response in man
and in mice post IT.

Based on these observations and the decreased Treg cell populations as possibly one major
cause of allergic diseases, the upregulation ofTregs numerically or functionally gives promise of
therapeutic potential in the treatment ofallergic diseases. Novel strategies should be adopted to
improve the clinical efficacyofIT using adjuvants such as IL-l0,vitamin D3 ,or TLR agonist such
as CpG. Mycobacterium induced allergen-specific Tregs producing IL-l0 and TGF-~ protected
against airway inflammation in mice.86-89 The application of adenoviral vectors encoding IL-l0
also resulted in a longer suppressive effect, with avery limited half-life ofIL-l0, hence with lessor
no side effects. Alternatively immunostimulatory CpG motifs, an agonist ofTLR9, may improve
clinical efficacywhen combined with pollen immunotherapy.

Conclusion
Natural CD4+CD2S+ Tregs playa critical role in the control of peripheral tolerance to

self-antigens and in prevention ofallergicdiseasesincluding rhinitis, atopic dermatitis and asthma.
CD4+CD2S+Foxp3+ Tregsand IL-l0 producingTr1 cells capable ofsuppressing Th2 responses to
allergens seem to be defective in those who develop allergic sensitization. Significant progress has
been made in understandingspecific mechanisms resulting in allergic inflammation and IL-4 may
be a key factor in preventing the de novo induction ofTreg cellsand re-induction ofallergen toler
ance. However the exact mechanism ofsuppression remains controversial. Better understanding
ofregulatory mechanisms involved in the development ofallergic sensitization and the manipula
tion ofTreg cells holds the promise ofeffective treatment strategies to prevent and treat allergic
diseases. Allergen immunotherapy modifies T-cell responses to allergen and may do so through
induction ofadaptive Tiegs, e.g., IL-lO-producing Tr1 cells contributing to the clinical efficacy
ofthe treatment in aeroallergen sensitive individuals. Allergen immunotherapy may enhance the
development ofallergen-specificTregs and provide safe,specific and long-term control ofallergic
diseases and asthma. Co-administration of specific allergen immunotherapy with drugs such as
corticosteroids and vitamin D3, adjuvants, for example IL-IO or CpG, are promising candidates
for enhancing and generating antigen specific regulatory responses.

Adoptive transfer of Tregs may represent an effective, donor-specific therapeutic approach,
although it can also be cost effective.In vivo induction and/or expansion ofTregsin patients remain
an attractive option. This may present a more realistic line to improve allergen specificTregs and
provide significant benefit to allergic rhinitis and asthmatic patients.
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CHAPTER 15

Human Clinical Phenotype Associated
with FOXNI Mutations
Claudio Pignata,*Anna Fusco and StefaniaAmorosi

Abstract

I n humans, a proper immune response relies on the innate immunity,characterized by a rapid
and nonspecific initial response to infections and later on the adaptive immunity,character
ized by a specific response to a particular antigen. Disruption ofany part ofthe orchestrated

immune response results in the inability to control infections and, subsequently, in illness. An
impairment ofboth effector arms ofthe specific immunity characterizes the clinical phenotype,
known as severe combined immunodeficiency (SCID),which represents a heterogeneousgroup
of inherited disorders due to abnormalities of T, Band NK cells. The first congenital SCID
was described as spontaneous immunodeficiency in 1966 in mice and referred as Nude/SCID,
based on the association of athymia with complete hairless. In 1996, the human equivalent of
the murine Nude/SCID phenotype (MIM #601705) was reported. As in mice, also in humans
this form is characterized by an intrinsic defect of the thymus, congenital alopecia and nail
dystrophy and is due to mutations ofthe FOXN1gene, as well. FOXN1 is mainly expressed in
the thymus and skin epithelial cells, where it plays a critical role in differentiation and survival.
FOXNl belongs to the forkhead box (FOX) gene family that comprises a diverse group of
'winged helix' transcription factors involved in development, metabolism, cancer and aging.
These transcription factors share the common property ofbeing developmentally regulated and
of directing tissue specific transcription and cell fate decisions . In immune system, alterations
ofFOXNl result in a thymus anlage that lacks the capacity to generate mature and functional
thymocytes. Because the significant expression levelsofFOXN1 in skin elements, keratinocytes
have been successfully used to support a full process of human T-cell development in vitro,
resulting in the generation ofmature Tvcells from hematopoietic precursor cells (HPCs) . This
finding would imply a role for skin as a primary lymphoid organ. Thus, the present chapter
will focus on the information that came out from the original description ofthe human Nudel
SCID phenotype and on the role of FOXN1 and of the other members of FOX subfamilie s
in those immunological disorders characterized by abnormal T-cell development or abnormal
T-cell regulatory homeostasis.

Introduction: Severe Combined Immunodeficiencies
Primary immunodeficiency (PID) diseases are heritable disorders of immune system.'

Disruption ofany part of the orchestrated immune response can result in an inability to control
infections and subsequent illness.Apart from physical barriers, the immune response is composed
from a diversenetworkofdefenses,includingcellularcomponents and soluble mediators .A proper
immune response relies on the innate immunity, characteri zed by a rapid and nonspecific initial
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Table 1. Different genotypicforms of SOD classified on the basis of the
immunological phenotype

Lymphocyte Phenotype Form ofSCID

X-linked (deficit ofyc)
Deficitof[ak3
Deficit of CD45
Deficitof IL-7Ra chain
Deficit of CD30 chain
Deficit of Adenosine Deaminase
Deficit of RAGl or RAG2
Deficit of Artemis
Deficit of FOXNl

response to infections and later on the adaptiveimmunity, characterized by a specific response
to a particular antigen. The innate immune response involves three major celltypes: phagocytic
cells, such asneutrophilsand macrophages, natural killer(NK) cellsand antigenpresentingcells,
which are also involved in the induction of an adaptiveimmune response. The adaptiveimmune
systemincludesT and Blymphocytes responsible forcellularand humoral responses, respectively.
However, these componentsof immunesystem to maintain a normal resistance to infectionsact
in a well-orchestrated and integrated unique system.

In the last 5decades, sincethe first human geneticdefect wasidentified more than 200 PID
syndromes havebeendescribed.PIDscanbedividedinto subgroups basedon thecomponentof the
immunesystemthat ispredominantlyaffected, includingT,B,NK lymphocytes, phagocyticcells
and complementproteins(Table1).Theantibodydeficiencies (B-cellor humoralimmunodeficien
cies) arecharacterized byageneticlesion,that selectively affects antibodyproduction,but anormal
cell-mediated immunity.Inthe cellulardeficiencies,cellular effectormechanisms arecompromised,
whereas antibody production is largely normal in that B-cell intrinsic machineryis intact. The
combined immunodeficiencies are characterizedby an impairment of both effectorarms of the
specific immunity,which resultsin a more severe clinicalphenotype. However, sincean efficient
B-cellantibody response alsodependson T-cdl activationofB lymphocytes, defectsin either cell
type havethe potential to affectboth cellularand humoral immunity to varyingdegrees.

Ofnote,mostofthe diseases within the lastcategoryaredue to genetically determined blocks
in the T-lymphocytedifferentiation program. In the absence ofmatureTvcells, adaptive immunity
isabrogated, thus resultingin a broad-spectrumsusceptibility to multiplepathogensalsoinclud
ing opportunistic micro-organisms. Overall,unrespectively of the pathogenicmechanismof the
individual form of severe combined immunodeficiencies (SCIDs), a common hallmarkof these
diseases is the featurethat bacterial, viraland fungal infectionsareoften overwhelming.

Thediscovery ofasowidenumberofdistinct clinicalentitieswhich differin either the genetic
causeor the altered immunological function led to an uncomparableincrease in the knowledge
of the intimate mechanismby which a proper immune response is generated. Intriguingly, most
ofthe geneswhosealterationsunderliePID are selectively expressed in hematopoieticcellswith
a few exception as, for example, ataxia telangiectasia mutated (ATM) gene, also expressed in
Purkinje cellsand adenosinedeaminase (ADA) which is ubiquitous. This dogma, however, led
to underestimatethose novelimmunodeficiencies, which havedifferentfeatures involving other
nonhemaropoletic tissues.

In 1996, a novelform ofSCID (MIM 601705; Pignaraguarinosyndrome)wasdescribedand
referredasthe human equivalentof the well-known murinephenotypenamedNude/SCID.2 This
disease is the first example of SCID not primarilyrelated to an hematopoieticcellabnormality,
but rather to an intrinsic thymicepithelialcelldefect .'
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The Nude/SCID Phenotype
In 1966,S.P.Flanaganidentifieda new mousephenotype that spontaneouslyappearedin the

VirusLaboratoryof RuchillHospital, Glasgow, UK, characterized bylossof the hair.Thismouse
showedan abnormalkeratinizationin hair fibers, with follicular infundibulumunableto enter the
epiderrnis.t'Ihe micealsoshowedan inborn dysgenesis of the thymus ! resultingin acompromised
immune system lackingT-cells.

Subsequently, the molecular nature of the nude defect was characterized and attributed to
a geneticalteration of the transcription factor FOXN 1 (alsocalledWHN or HFH 11), mainly
expressed in thymusand skin.6·8Theanalysis of the genomicsequenceof the nude mouserevealed
the presenceof a singlebasepair deletion in exon 3, absent in the wild-typeallele. This deletion
led to a frameshiftthat resultedin an aberrantprotein prematurelyterminatingin exon6 and the
lossof the postulated DNA binding domain.

Themousenudemutationledto anabnormaldevelopment of theskinandrhymus'"and asevere
alterationof the nails.10Laterstudies demonstratedthat both defects,aslackoffur development and
agenesis of the thymus, arepleiotropiceffects of the samegene. I I In particular, the skinof the nude
mousecontainsthesamenumberofhairfollicles asawild-typecontrol,but thesefollicles resultinan
uncompletehair, that couldnot enter skinsurface.4•10Flanagan analyzed carefully nude mouseskin
and observedthat at birth the hair follicles werenormal,but bysixdaysafterbirth the hair started
to twistand coil,failingto penetratetheepidermis.4Thishairless conditioncould bereverted byoral
administration ofcyclosporine Aor recombinant kerarinocyte growthfactor(KGFor FGF-7), that
influence the number of hair follicles or the cyclic hair growth.12

,13 Furthermore, the nude mouse
epidermis shows failure in differentiation and a reducednumberof tonofilaments areobserved in
spinous, granular andbasallayers.P'Ihe nudeFoxn1genedoesn't affect thegrowthofhairfollicles, but
theepidermaldifferentiation process, regulating thebalance between proliferation anddifferentiation
ofkeratinocytesin the hair follicle.14•15 In addition to thesecutaneousabnormalities, nude animals
develop an abnormalthymus, resulting in a severe T-celldeficiency and an overall severely impaired
immunesystem. In fact, thymusmorphogenesis isstoppedat the firststages ofdevelopment withno
subcapsular, corticaland medullary regions formation, that characterizes a normalmatureorgan."
In addition,the observation that thymusrestorationdoesn'tleadto hairgrowthdemonstratedthat
the lackof the hair and the athymiawerenot relatedone to eachother.16•17

Furthermore, the nude phenotype is characterized by nail malformationsand poor fertility.
The first condition is attributed to an abnormal production of filaggrin protein in nail matrix
and nail plate,subsequentto a lossof keratin 1protein. Differently, the secondcondition maybe
the resultof changesin hormonal status, asdemonstratedby the altered serumlevels ofestradiol,
progesteroneand thyroxine.'?

Formanyyears the human counterpartof nude mousephenotypehasbeenerroneously consid
ered the DiGeorgesyndrome, whichoccursspontaneouslyand ismainlycharacterized bythymic
hypoplasia or aplasia. However, several linesof evidence argueagainstthe analogybetween these
two disorders. In fact, DiGeorge syndrome is often associated with neonatal tetany and major
anomalies of great vessels. Thesedefectsare due to malformation of the parathyroid and heart,
derivedfrom a major embryologic defect in the third and fourth pharyngealpouch from which
the thymusprimordium emerged. In addition, in this syndromehairlessness is missing and gross
abnormalities in skin annexaare not found. Children with DiGeorge syndrome also havelym
phopenia, with a reduction ofT-cells, that arepoorly responsive to common mitogens."

The discovery of the human phenotype completelyequivalentto the nude mousephenotype
beganwith the identificationoftwo sisters,whoseclinicalphenotype wascharacterizedbycon
genital alopecia,eyebrows, eyelashes, naildystrophy, as shown in Figure 1 and several T-cell im
munodeficiencies, illustratedinTable2.2 Thetwo patientswereborn fromconsanguineous parents
who originated from a smallcommunityof South ofItaly that maybe consideredgeographically
and genetically isolated,as belowdetailed.This led to consider the syndromeas inherited as an
autosomalrecessive disorder.TheT-celldefectwascharacterized byasevere functionalimpairment,
as shown bythe lackofproliferative response to mitogens,
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Figure 1. A,B) Alopecia of scalp, eyebrows and eyelashes in two sisters in whom the human
Nude/SCID phenotype was first described. C) Nail dystrophy in human Nude/SCID. Reprinted
with permission from : Pignata C, Fiore M, Guzzetta V et al. Congenital Alopecia and nail
dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med
Genet 1996; 65:167-170.

Alopeciaand naildystrophyarealsofound in other syndromes, suchasdyskeratosis congenita
(DC).19.20 However, this novelsyndromeprofoundlydifferedfrom DC, in that majorsigns, such
asabnormalpigmentationof the skinand mucosalleucoplakia, werelackingin the Nude/SCID.
Moreover, the immunologicalabnormalitiesweredifferent from those reported in patients with
DC in either the severity of clinicalcourseor type of alterations.21,22 Both Nude/SCID patients
showedalopeciaat birth and in one sib it stillpersistedaftera bone marrowtransplantation, thus
rulingout that it wassecondary to anacquiredskindamage. Thisfindingsuggested that the alopecia
in this patient wasprimitivein nature.' Furthermore,thesefeatures weresimilarto thosereported
in athymicmice, that completely lackbodyhair and in which restorationofa thymusdid not lead
to hairgrowth.I I Takentogether, theseobservations suggested that the association betweenalopecia
and the immunodeficiency reported in the two sisters werelinked to a singlegenedefect.'

Due to the similarities between the human clinicalfeatures and the mouseNude/SCID phe
notype,a molecularanalysis of the FOXN1genewasperformedin thesepatientsand revealed the
presenceof a C-to-T shifrat 792 nucleotideposition in the cDNA sequence.Thismutation leads
to anonsensemutation R255Xin exon5,withacompleteabsence ofa functionalprotein" similar
to the previously describedrat and mouseFoxnl mutations.24-26 In humans, FOXNl islocatedon
chromosome1723and encodesa transcriptionfactor mainlyexpressed in the epithelialcellsof the
skinand thymus,whereit maintainsthe balancebetweengrowth and differentiation.

Sincethe firstdescriptionof theseNude/SCID patients,other patientswith a similarpheno
typewereidentified. In particular,aNude/SCID patient wasdiagnosedin Portugal.Thenewborn
presented with alopeciaand nail dystrophyassociated with severe infections. The screening for
R255X mutation of FOXN1generevealed that the patient washomozygous for the mutation. It
should be noted that the patient wasborn to consanguineous parents,both from Lisbon (com
municated to EuropeanSocietyfor Immunodeficiencies, 2006).
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Table 2. Major clinical and immunological features of the first identifiedhuman
Nude/SOD patients. For more detailssee reference3.

199

Clinical features

Alopecia

Nail dystrophy

Growthfailure

Omen-likesyndrome

Severe interstitial pneumopathy

Patient 1

+

+

+

+

Patient 2

+

+

+

+

Immunological features

Percentage of positivecells

T-cells (CD3)

B-cells (CD19)

NK cells (CD56)

Proliferative response to mitogens

Serum immunoglobulins

IgG (giL)

IgA (giL)

IgM (giL)

IgE (KU/L)

Specific antibody response

Tetanus toxoid

Allohemoagglutinins

HbsAg

WHN mutation

32 25

63 37

23 25

Absent Absent

4.94 6.10

0.49 0.43

0.80 1.25

N.T. 2760

Absent Absent

Absent Low

Absent Absent

R255X R255X

Reprinted with permission from: Pignata C. A lesson to unraveling complex aspects of novel im
munodeficiencies from the humanequivalent of the nude/SCID phenotype. J Hematother Stem Cell
Res 2002; 11 :409-414.

In the villagewhere the patients originated. additional patients ofprevious generations were
affectedwith congenital alopecia and died earlyin childhood becauseof severeinfections."

A population study aimed to identify an ancestralfounder effect for this phenotype was con
ducted in thevillage and in particularageneticscreeningfor the presenceof the R255Xmutationwas
performed.Thestudyled to identify 55subjects.correspondingto 6.52% of the studied population.
who carried the mutation in heterozygosityP The identificationof the haplotype for the FOXNJ
locus.byanalysing 47chromosomescarryingthe mutation R255X,led to identify the singleances
tral event that underlies the human Nude/SCm phenotype. All the affectedcases belonged to an
extendedseven-generational-pedigree. founded bya singleancestralcoupleborn at the beginningof
the 19thcenturyfromwhichfourfamily groupsoriginated.Thepedigreeanalysis revealed that 33.3%
ofheterozygotes inherited the mutant allele from their mother, whereas66.7% from their father.
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Figure 2. Nail dystrophy patterns in subjects heterozygous for the FOXNl mutation: A)
koilonychia; B) canaliform dystrophy; and C) leukonychia. Reprinted with permission from:
Auricch io L, Adriani M, FrankJ et al. Nail distrophy associated with a heterozygous mutation
of the Nude/SCID human FOXNl (WHN) gene. Arch Dermatol 2005; 141:647-648; ©2005
American Medical Association. All rights reserved.

Moreover, this pedigree wasalsocharacterized bya high rateof consanguineous matings, typicalof
asmallcommunity. In fact, 14of 151marriages werebetweenconsanguineous subjects."

Subsequently, the identifiedheterozygous subjects were examined with a particular regard to
ectodermalalterations, namely of hair and nails, in order to define whether the heterozygosity was
associatedwith mildclinical signs. Theexamination revealed no association betweengross alteration
of thehairandheterozygosity,while39ofthe 55heterozygous subjects showedanaildystrophy," Of
note, thisalterationwasnot foundin other controlsubjects andwasnot relatedto anacquiredform
ofnaildystrophy.Themostfrequentphenotypic alteration affectingthenails waskoilonychia ("spoon
nail"),characterized byaconcave surface andraisededges of the nailplate,associated withsignificant
thinningof theplateitsel£Less frequently, acanaliformdystrophy and atransverse groove ofthenail
plate(Beauline)wasalsoobserved(Fig. 2).28 However, the mostspecific phenotypicalterationwas
leukonychia, characterized bya typicalarciform pattern resembled to a halfmoon and involving the
proximal part of the nailplate.Thesealterations ofdigitsand nailswerealsoreportedin afewstrains
of nude mice." FOXN1 isknown to be selectively expressed in the nailmatrixwherethe nailplate
originates,thusconfirmingthat thistranscription factorisinvolved in thematurationprocess ofnails
and suggesting naildystrophy asan indicative signof heterozygosity for this molecular alrerarion,"

As this form of SCID is severe due to the absence of the thymusand the blockage of T-cell
development, a screening programfor prenataldiagnosis in this populationwasconductedfor the
identification of fetuses carryingthe mutation.Thegeneticcounselling offered to couples at riskled
to identify two affected female fetuses during the first trimesterof pregnancy, thus indicatingthe
importanceof thiseffort.Bothfetuses werehomozygous forthe R255Xmutationandtheautoptical
examination revealed the absence of the thymusand a grossly abnormalskinwhichwastighter than
usualandwhichshowedbasalhyperplasia anddysmaturiry, suggestive ofan impaireddifferentiation
program.Ofnote, one of the two fetuses alsoshowedmultiple-site neural tube defects, including
anencephaly and spinabifidathat couldexplain the high rateof mortalityin utero observedin the
described population. Intriguingly, the other formsofSCID becomeclinically evident in postnatal
life, when theprotectionof the newbornbythe mother immunesystem declines. In the community
wherethe Italianpatientsoriginated,ahigh rateofprenatalmortalitywasobserved. Moreover, there
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was an evidence that the mouse Foxnl gene is also expressed in epithelial cells of the developing
choroids plexus, a structure filling the lateral, third and fourth ventricles of the embryonic brain."
Even though no formal demonstration is available,a possible explanation for the prenatal mortality
could bethat FOXNI genetical alteration is also implicated in more severe development defects at
least in the conditions ofhighest clinical expressiviry, This could also explained the surprising long
interval oftime that elapsed between the description ofmouse and human diseases.

Fox Family Members and Immune System
The forkhead box (FOX) gene family comprises a diverse group of 'winged helix' transcrip

tion factors that are involved in development, metabolism, cancer and aging . These transcription
factors share the common property of being developmentally regulated and of directing tissue
specific transcription and cell fate decisions. " They were first recognized in Drosophila,but later
they were also identified in other organisms, from yeasts to humans. The term FOX is now used to
refer to all chordate forkhead transcription factors. A phylogenetic analysisled to classifyall known
FOX proteins in at least 15 subfamilies (named from A to Q) 31on the basis of their structure;
in each subfamily (or class), an individual gene is identified by a number. The crystal structure of
the forkhead DNA binding domain is a 'winged helix' motif, consisting ofthree a helices flanked
by two 'wings' of ~ strands and 100ps.32The structure and the amino acids sequence are highly
conserved within species and family members.

The functional effect ofall FOX proteins can be either the activation (transactivation) or the
inhibition ofgene transcription33 in a wide range ofcontext.Fox gene mutations can be associated
with diverse phenotypes as cranio-pharyngeal developmental defect (FOXEI), speech and language
abnormalities (Foxp2) and hearing loss (FoxjI) .34 Moreover, most of these winged helix proteins
play crucial roles in several aspects of immune regulation. In particular, genetic alterations of at
least four FOX family members, FOXP3, FOX]1, members ofthe FOXO subfamily and FOXN1 ,
result in paradigmatic immune disorders and well-defined novel clinical entities."

FOXP3 [scurfin, sf,]M2) is the most studied forkhead family member in immunology, be
cause ofits role in the pathogenesis ofautoimmunity associated with immunological functional
disorders.v'" FOXP3 was found to be expressed in CD4+ CD25+ regulatory T-cells (Treg), that
represent a subset ofCD4+ T-cells bearing high levelsofCD25 (the IL-2 receptor a-chain), whose
role is to maintain self-tolerance by downregulating the reactivity ofconventional CD25- CD4+
helper T_cells.3538Foxp3 is also expressed in lymphoid organs, such as spleen and thymus , where it
plays an essential role during development, allowing the differentiation ofthe Treg population. The
study ofscurfy mice (mice with X-linked recessivemutation in Foxp3) revealed an overproliferation
ofactivated CD4+ T-cells, resulting in dysregulation oflymphocyte activity.39.40The lack ofDNA
binding domain of the protein leads to death of hemizygous males at 16-25 days after birth39.40
and in the surviving mice in a great exacerbation ofthe autoimmune phenotype."

The corresponding human disorder is represented by immunodysregulation polyendocrinopa
thy enteropathy X-linked syndrome (IPEX; also known as X-linked autoimmunity and allergic
dysregulation syndrome, XLAAD). This fatal recessive disorder is due to truncated protein or
inhibition ofDNA bindingdomain. It develops in earlychildhood and is associated with protracted
diarrhoea, thyroiditis, dermatitis, allergic manifestations, insulin-dependent-type 1 diabetes and
anaemia, besides massive T-cell infiltration into the skin and gastrointestinal tract and high serum
levels ofautoantibodies, as a sign ofautoreaction.

Recent studies have shown that the expression ofFOXP3 and the subsequent conversion of
human and mouse peripheral naive T-cells in Treg is induced by transforming growth factor-B
(TGF-~).42.43 Most probably, this event is mediated by activation ofsmall mothers against decap
entaplegic (SMAD) transcription factors. Generally, the inhibition ofTGF-~-mediatedsignaling
involves SMAD7 in an autoregulatory loop, but it was also shown that FOXP3 can inhibit it, as
well. The induction ofFOXP3 expression by Treg results in a prolongation ofTGF-~-mediated

signaling, perhaps allowing the stabilization or expansion ofthe Treg pooJ.33
FOXOs are the mammalian homologues ofthe Caenorhabditiselegans dauer formation mutant

16 (DAF-16) and, in this organism, they seem to be involved in longevity regulation. FOXOI
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(FKHR ,forkheadin rhabdomyosarcoma),FOX03A (FKHRLI , FKHR-like I) ,FOX04 (AFX,
mixed lineage-leukemia (trirhorax homolog) translocated to 7 homolog, MIlt?) and FOX0644

are the most studied members of this family for their implicationin the regulationof apoptosis,
cell cycle, metabolismand resistance to oxidative stress.45-47 Gene targetingexperiments in mice
havedemonstrated that FOXO I regulates insulin sensitivity,48.49 adipocytedifferenriation" and
angiogenesis."whileFOX03A regulates ovariandevelopmentand fertility5!.53 and FOX04 ap
pearsto belargely dispensable forgross organismal homeostasis.52 FOXO proteinsareubiquitously
expressed, even if there is a tissuespecific expression for the diverse isoforms. While FOXO I is
ubiquitous, FOX03A is expressed in lymphocytes and it appears the dominant isoform of the
mammalianfamily.Cellularstimulationbymitogensor cellularstress, leadsto activationofseveral
intracellularkinases suchasphosphatidyl inositol3 kinase(PI3K),serum/glucocorticoid-regulated
kinase(SGK)and protein kinaseB (PKB,Akr), resultingin the phosphorylationof the FOXOs.
This makes FOXO unable to bind DNA and rendersit susceptible to I4-3-3-mediatednuclear
export54.59and/or proteasomemediated degradation (IkB kinase (IKK))60·61 therebypreventing
FOXO-mediated transcription.In restingcells,unphosphorylatedformsofthe FOXOs arelocal
ized in the nucleus, wheretheyaretranscriptionally activeand regulateseveral biologicprocesses,
includingproliferation,apoptosisand response to cellularstress.

To date, there is no evidence that an alterated FOXO activity is associated with a human
immunologicaldisease. However, in mice a significant diminished FOXO activityin T-cellsis
associated with autoimmunelupussyndrome, thus leadingto hypothesize a possible relationship
between the FOXO genesand inflammationin humans.62 Differently, FOXO genedysregulation
has been well-documented in human cancer.

The FOX] I (hepatocytenuclearfactor/forkhead homolog-4, HNF-4 , FKHL-I3) transcrip
tion factor playsan important role in the developmentof ciliatedepithelia.63-66Thus, FOX]I is
expressed in all structures containing ciliated cells, such as the lungs, spermatids, oviducts and
choroidplexus.67Thelossof FOX]I resultsin lethalityin uteroor soonafterbirth asdemonstrated
byobservations ofFOXj1-I-micethat dieduringembryonicdevelopment.w" Infact,Foxjl-deficient
micearecharacterized byabsence ofciliaand, subsequently, suffer fromsignificant developmental
abnormalitiesincludingheterotaxyand hydrocephalus." Besides its role in the differentiationof
ciliated cells, recentlya new role for FOX]I has been discovered in the differentiationof other
celltypes.Itwasobservedthat Fox)1 isdownregulatedin lymphocytesisolatedfrom miceaffected
with systemic lupus erythematosus (SLE); this evidence suggests that FOX]I might prevent
autoimmune reactions/"

FOX]1 is expressed in naiveT-cells and its downregulationoccursafter interleukin-2 (IL-2)
and/orT-cellreceptor (TCR) stimularlon/" FOX]1,similarly to FOX03A,is requiredin vivoto
modulateNF-KB activity, upregulatingIkB13 and maintainsT-celltolerance, but unlikeFOX03A
deficiency, FOX]1deficiency ismuchmoresevere,affecting adifferentspectrumoforgansandTh1
cytokineproduction.Thus,thesetwoforkheadmembersplayeitheroverlappingor clearlydistinct
rolesin helper T-cells, eventhough the intimate mechanisms remain to be eluddated/"

Foxnl , a highlyconservedtranscription factor,has been previously extensively mentioned. It
exertsits function afteractivationthrough phosphorylation,that promotes its nuclear transloca
tion.54-56Into the nuclei it interactswith DNA as a monomer through its forkheadbox, but the
target genesand the specific biochemical mechanismof interaction with the promoter regions
remainto be elucidaeed.F" FOXN I expression isstronglyregulatedbywingless (Wnt) proteins"
and bone morphogeneticproteins (BMPs)72 in both autocrine and paracrinefashions" and its
expression isrestrictedto epithelialcells in the skin" and in the thymus.Thereareno data available
on FOXNI mRNA expression in liver, spleen, testis, lung, heart and brain, but murine choroid
plexus."During embryogenesis,FOXN1isexpressed in several mesenchymal and epithelialcells,
includingthoseof the liver, lung, intestine, kidneyand urinarytract. In adult life, its expression is
limited to epithelialcells of the intestine,spermatocytes of the testisand thymus," In particular,
on the basisof the observationthat nude micekeratinocytes do not differentiate in a normal fash
ion, FOXN I couldbe consideredasa keyregulatorof the balancebetweenkeratinocytes growth



Human Nude/SCID Phenotype 203

and differentiation. It suppresses the involucrinand locrin expression, both components of the
cornifiedenvelope and the profilaggrin, involved in the aggregation of the intermediatefilaments.
Other factorshavebeen identifiedasFoxn1 target. In fact,recent studieshaveshown that Foxn1
islinkedto Akt (PKB) expression," thus givinga possible explanation ofFOXN1involvement in
epidermallayerregulation. FOXN 1alsocontrolsfollicular formation,influencing the expression
of two hair keratins,mHa3 and mHb5,7s

Moreover, FOXNI transcription factor regulates thymusepithelialcells differentiation. Null
mutationofthisproteinledto an immaturethymus, but the molecular mechanism usedbyFOXN1
in this context remainsstillunclear.

The human and mouse clinicalphenotype associated with FOXNI genetical alteration has
been extensively describedabove.

FOXNl SkinSpecific Expression andT-CellDevelopment
Sofar, the thymictissue hasbeenconsideredtheonlyorganwithauniquecapacity to support the

generation ofafunctionalpopulationofhumanmatureT-cells, thusexpressingadiverse repertoireof
antigenreceptors.Y" Inparticular,withinthematureandfunctional thymus,matureT-Iymphocytes
derive fromthe interactionbetween the thymicepithelial cells, that arethe maincomponentof the
stromaandtheT-cellprecursors originatedin thebonemarrow.78

•
79 Thymic epithelial cells areimpli

catedineitherthymusorganogenesis or in moststages ofmaturationof thymocytes,78.791he absence
ofFOXNI, asin Nude/SCID phenotype, results, aspreviously extensively mentioned,in a thymus
anlage that lacks the capacity to interactwith the hematopoietic progenitor cells, thus precluding
the maturationof thymocytes80.81and leading to the imrnunodeficiency."

FOXNl genespansabout 30 kilo bases (kb)! and it is composedof nine exons." Interesting,
an extensive screeningof eDNA clonesobtained from skincells revealed the presence of two dif
ferent firstexonswhich arenoncoding," the exons la and 1b, that undergoto alternative splicing
to either of two spliceacceptorsitesof the exon2, locatedupstreamof the initiation codon.This
suggests the presenceof two distinct promoters of exons la and lb .l The alternative usage of the
exon 1aor 1b seems to be tissuespecific," in that promoter 1a isactive in thymusand skin, while
promoter 1b isactiveonly in skin.

In the interfollicularepidermis,FOXN 1expression parallels the onsetofterminaldifferentia
tion. It is primarilyexpressed in the first suprabasallayerthat contains keratinocytes in the early
stages of differentiation, that haveleft the cellcycle and initiated terminaldifferentiation.15In the
hair follicle, FOXN 1expression isrestrictedto aspecific compartment,the suprarnatrical region,15
wherethecells stop to proliferateand beginterminaldifferendarion.P On the basisof theseobser
vations,FOXN 1 could be considereda markerof transition from proliferation to a postmitotic
state and an important regulatorof the initiation of terminaldiffereneiarion.'

Ofnote, significant expression levels ofFOXNI werefound in culturescontainingskin cells
alongwith hematopoieticprecursorcells (HPCs), suggesting a roleof human skin in supporting
a full process of human T-cell development." Although thymus and skin are different in their
three-dimensional structure,experiments performedwith keratinocytes and fibroblasts of the skin
and HPCs obtainedfrombonemarrow,reconfigured inadifferent three-dimensional arrangement,
demonstratedthe capacityof this"surrogate"organto generatematureand functionalT-cells from
precursors/" Ofnote, these cellsshow the samecharacteristicsof recent thymic emigrantssuch
as the T-cell surface markers, including the CD3/TCR complex" and the TCR rearrangement
excision circles (TRECs),derivedfrom the recombinationofTCRgenes.Thesecells alsopossess a
diverse TCRrepertoireandcanbeconsidered matureand functionalbecause theyhavefull capacity
to proliferate, express the activationantigen CD69 and produce cytokinesin response to TCR/
CD3 stimularion ."Thus,it isconceivable that skinandbonemarrowderived cells canbepotentially
used to generatede novo mature, functional,diverse and self-tolerant T-cells. Thesedata would
implytheir potential future therapeuticusage in patients with immunological disorders. P

Thepresentchapter containsinformationof the recentworks that cameout from the original
descriptionofNude/SCID phenotype. For the first time, only recently, a carefuldescriptionof
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clinical manifestations associated with an alteration ofthe FOXNI gene has been provided, thus
leading to identify the human equivalent of the well-studied spontaneous murine Nude/SCm
immunodeficiency. In this context, alterations ofFOXNl and of other members of FOX sub
families are now emerging as intriguing causes of immunological disorders mainly characterized
by abnormal T-cell development or abnormal T-cell regulatory homeostasis .

Eventually, it should be underlined that the Nude/SCm phenotype is the only form ofscm
associated with an alteration ofa gene that is not expressed in the hematopoietic cell.

Novel knowledge in this field would be very helpful in the comprehension of the intimate
mechanisms underlying T-cell ontogeny process in humans and in discovering novel clinical enti
ties related to abnormalities ofthe process.
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CHAPTER 16

FOXL2:
At the Crossroads ofFemale Sex Determination
and Ovarian Function
Berenice A. Benayoun, Aurelie Dipietromaria, Claude Bazin
and Reiner A. Veitia*

Abstract

T he geneFOXL2encodesa forkhead transcription factor whose mutations are responsible
for the blepharophimosis ptosis epicanrhus-inversus syndrome. This genetic disorder
is characterized by eyelid and mild craniofacialabnormalities often in associationwith

premature ovarian failure. FOXL2 orthologs are found throughout the animal phylum and its
sequence is highly conserved in vertebrates. FOXL2 is one of the earliestovarian markersand it
offers, alongwith its targets,amodel to scudyovarian developmentand function, In this chapter,we
reviewrecentdata concerningitsmutations.targets.regulationand fimctions.Studiesofthe cellular
consequencesof FOXL2 mutations seem to indicate that aggregation is a common pathogenic
mechanism. However.no reliablegenotype/phenotype correlationhasbeen establishedto predict
the exact impact ofpoint mutations in the coding region ofFOXL2. FOXL2 has been suggested
to be involvedin the regulationofcholesterolhomeostasis. steroid metabolism,apoptosis,reactive
oxygenspecies detoxificationand inflammationprocesses. Interestingly, all theseprocesses arenot
equallyaffectedby FOXL2 mutations. The elucidation of the impact of the FOXL2 function in
the ovarywill allowa better understanding of normal ovarian development and function aswell
as the pathogenic mechanismsunderlyingBPES.

Introduction
The geneFOXL2,previouslyknown asPErk, encodes a transcription factor (MIM 605597),

whose mutations are responsiblefor the blepharophimosisptosis epicanthus-inversus syndrome
(BPES; MIM 110100). BPES is a rare genetic disease, mainly characterized by severe eyelid
malformations. Patients present with small palpebral fissures. epicanthus-inversus (fold curving
in the mediolateral direction. inferior to the inner canthus), ptosis of the eyelidsand a flat nasal
bridge.'Vignes(1889) wasprobablythe first to describethis entity,asan eyeliddysplasia.' In 1976.
Moraine and collaborators suggestedthat femaleinfertility wasa pleiotropic effectof mutations
in the samelocus.tThis link between BPESand female infertility wasconfirmed afterwards. with
a report on a familyin which all affected females had Premature Ovarian Failure (POF).4 More
recently. Zlotogora and collaborators defined 2 forms ofBPES : Type I (with POF) and Type II
(isolatedBPES,without POF) .5 BPESwaslong consideredasan exclusively autosomaldominant
disease. but a caseof recessive BPES in a large consanguineous Indian familyhas recentlybeen
described,"
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FOXL2 is a member of the superfamily of winged helix/Forkhead transcription factors and
containsacharacteristic conservedDNA-binding domain,the Forkheaddomain, spanningabout
IIO-amino acids?Forkheadtranscriptionfactorsareinvolved in manydifferentdevelopmental and
metabolicprocesses and their mutationsareresponsible forseveral humandiseases.t'? FOXL2 also
contains a polyAlanine tract (polyAla), whosepreciserole (if any)still remainselusive. However,
lengthvariationsof the polyAla domain havebeenassociated with the BPESphenotype.S'! FoxL2
hasbeenshownto localize to the nucleusofcellswhereit isexpressed.P'Ihis iscompatiblewith the
fact that twodistinctNuclearLocalization Sequences (NLS)havebeenmappedto the C-terminus
ofits ForkheadDomain."

FoxL2 Protein Sequence Is Highly Conserved
FOXL2orthologsarefoundquitewidelythroughout the animalphylumand moreparticularly

in chordates. Indeed, FoxL2 orthologs havebeen confirmedin mammals, birds, teleosteanfishes
(Le., rainbowtrout, tilapia, medaka), chondrichtyans (Le., dogfish),amphibians (i.e.,Africanclawed
frog,japanesewrinkledfrog), reptiles(i.e., turtle) and evenin the UrochordateCiona intestinalis
(NCBI ID :AB210441).7.14-20 In all the species whereFoxL2function hasbeen investigated, it has
been found to be involved to someextent in ovariandetermination/differentiation.

The ratio dN/dS (wheredS is the rate of synonymous/silentsubstitutions. and dN the rate of
nonsynonymoussubstitutionsbetween pairsof homologoussequences), gives a good indication
of the selective pressure at the protein level." Such an analysis has been performed for FoxL2
proteinsand allpairwisecomparisons involving mammaliansequences resultin lowdN/dSratios,
indicating a strong purifyingselecrion.f Interestingly, the multiple alignmentof FoxL2 protein
sequences shows that homopolymeric runs of amino acids (polyAla, polyPro, or PolyGly) are
not conservedamong species, in contrast with the strong conservationof the rest of the protein
sequence." Indeed, in all eutherian mammals whose sequences are available, the length of the
polyAlanineregion is strictlyconserved[i.e., 14 residues), whereas in fishes and in the chicken,
thisdomain iscompletelyabsent.Thissuggests that,whereas the polyAlatract length in eutherian
mammalsis under strong evolutive constraints limiting its length, it is a dispensable element in
other species (seediscussion below).

TheN-terminal regionofFOXL2 isless conservedthan the C-terminal region.Thus,it might
be responsible for functional differences among species, or could have a less important role in
FOXL2 function. On the contrary, the high conservationof the C-terminal regionindicatesthat
it should contain functionallyrelevantdomains,yet to be mapped.

Expression ofFOXL2
The pattern of expressionof FoxL2has been studied at the mRNA and/or protein levels in

severalspecies. In human, mouse and goat, FOXL2 has mainly been detected in the develop
ing eyelids as well as in fetal and adult ovaries, in agreement with the BPES phenotype.7.12·23
Interestingly, FoxL2 expression at the protein level is always absent in testes at any stage of
development analyzed thus far.

In human developingeyelids, FOXL2 is expressed in a wide regionof the primordial mesen
chyma.Consistently,atrophyor hypotrophyof the eyelidsuperiorlevatormuscle in BPESpatients
was found through magnetic resonance imaging (MRI).24 This led the authors to suggest that
FOXL2 could be involved in the developmentof this muscle. However, the much wider expres
sion domain of the protein in the peri-ocularregion, in the primordial mesenchyma, could also
suggesta role in the developmentof other tissues."

In mammals, FOXL2 ovarian expression begins early in developmentduring the period of
ovarian determination, well before the onset of folliculogenesis and is maintained until adult
hood. The expression of FOXL2 seems restricted to the somaticcompartment, with granulosa
cells displaying a strongprotein expression and the stromalcells a more diffuseone.IU S However,
stainingofmousestromalcellsisbarelydetectable,in linewith RNA in situhybridizationresults?
Interestingly, Foxl2mRNA has been observedin both granulosacellsand someoocytesof fetal
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and adult mouseovaries." In the chicken,FoxL2 protein isexpressed in a sex-dimorphic manner
and is mainly found in granulosacells and at lowerlevels in aromatase-positive thecal cells." In
the turtle, a species whosesexdetermination is temperature-dependent, FoxL2 is more strongly
expressed in the developing gonadsat female-promoting remperatures." Interestingly, weaklevels
ofFoxl2 mRNA havebeen detected in goat,mouseand chickentestis,but the proteins havebeen
undetectable in those tissues.12•16,23.25 Either the levels of mRNA are too weak to be relevant, or
FoxL2expression could undergo some kind of negative translational regulation.This may also
explainthe presenceof Foxl2 transcript in somemouseoocytesand in chickenoocyres, whereas
the protein isundetectable.16FoxL2 isone of the earliestknown sex-dimorphic markerofovarian
determination/differentiation.Theconservationof its sequenceand expression pattern suggests
that it should be a keygenein the earlydevelopmentand in the maintenanceof the ovary.

FoxL2 expression is not restrictedto eyelids and gonads. Indeed,Foxl2 isexpressed ventrally
in the developing pituitary (in the invaginating Rathke's pouch) and is expected to participate
in its organogenesis.w" Foxl2 expression is maintained in the adult pituitary gland, where it is
found essentially in gonadotropeand thyrotropecells aswellasin someprolactin-containingcells
during pregnancy,"

EvenifFoxL2expression pattern hasnot beencharacterized extensively outsideof the cranio
facial and gonadal regions, RNA expression studiessuggest its expression pattern maybe wider.
Indeed, an exploration of the Gene expression Omnibus database (GEO ; http ://www.ncbi.
nlrn.nih.gov/sites/entrezidb « geo), suggests that FoxL2 is expressed in the heart (GDS2614),
in macrophages (GDS2686; GDS2041), in circulatingblood reticulocytes (GDS2655), in the
colon (GDS756; GDS3226; GDS1780), in heparocytes (GDSl729; GDS2766; GDS2239), in
bronchial muscle cells(GDS2628), etc. The relevance of FoxL2 expression in these cells/tissues
remainsto be investigated.

Disease-Causing FOXL2 Mutations in Humans
Themutationsidentifiedin theFOXL210cus affecteither the structureof the protein, its func

tion (intragenicmutations) or its expression/regulation (exrragenlc mutations). Suchmutations
hasbeen found in 83%ofBPES patients (http ://medgen.igent.be/foxl2/).29BPESis found both
assporadicand familial cases.

Intragenic FOXL2 Mutations
Intragenic mutations represent70% of identified FOXL2 mutations. They can be sorted in

any of 4 types: (i) Missense mutations, (ii) Nonsensemutations or early-stop codon- inducing
Frameshift mutations, leadingto the synthesis of a truncated protein, (iii) Frameshifi mutations
leading to elongated proteins and (iv) polyAlanine expansions. A detailed analysis of FOXL2
mutations asa function of its domainscan be found in Figure 1.

Missense Mutations
The analysis of missense mutations associatedwith BPES indicates that most of them lie

within the Forkheaddomain. Asexpected,the consequences of the mutations aredependent on
the affectedamino acid.Functionalassays of missense mutations in vitro (cultured cell) indicate
that most of them caninduce nuclearand cytoplasmic aggregation ofFOXL2, alongwith altered
transcriptionalactivity.30.31

A structural 3D-model ofFOXL2 Forkheaddomain wasestablished usingthe FoxP2crystal
structureasamodelinorder to identifyinteractions (protein/proteinor protein/DNA) whichwere
compromisedbyknown amino-acidmutations." Asexpected, the majorityof mutationspresent
in the third helixof the Forkheaddomain, such as RI03C, HI04R or NI05S, wereproposed to
alterDNA-binding,whereas mutationsin the firstor secondhelices,suchasI63T,A66Vor E69L,
weresuggested to interferewith protein/protein interacdons." Nevertheless thisdistinctionisnot
absolute,asmutationsin the secondhelixmightalsointerferewith DNA-binding(L77P) and mu
tations in the third helixcouldalterprotein/protein interactions(W98R,L106F).J1 Interestingly,
the residues R103,H104 and N109,whichwerefound mutated in BPESpatients,werepredicted
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Figure 1. Schematic representat ion of FOXL2 and analysis of 106 different described mutations
according to their types and their local ization. Domains of FOXL2 are drawn to scale. Amino
acids positions of FOXL2 domains are written in white. Mutations are analyzed according to
their type (frameshift truncation or elongation, missense, nonsense and in-frame mutations),
values are given in percentage and in brackets as absolutes. Values represent the numbers
of a particular type of mutat ion in each domain of FOXL2. In bold, percentage value for the
main doma in where each type of mutation occurs . The last line of the table gives the num
ber of mutations for each domain of FOXL2 and the last column the number of each type of
mutations among all studied FOXL2 mutations.

to mediate at least in part the interaction ofthe Forkhead with its target DNA sequence, byanal
ogy with conserved interactions previously demonstrated for other Forkhead factors .32Thus far,
it is difficult to predict the type ofBPES induced by FOXL2 missense mutations. Interestingly,
a missense mutation in the ORF ofFOXL2, leading to the amino-acid substitution Y258N, was
identified in a nonsyndromic POF patient.P

Nonsense or Early Stop Codon-Inducing Frameshift Mutations
The phenotypic consequences of these mutations are more or less severe depending on the

position of the mutation. If the truncation occurs before the Forkhead DNA-binding domain,
the mutation is likely to lead to a loss of function and therefore to complete haploinsufficiency.
This is the case for the BPES Type I-associated mutation Q53X,34 which was shown to lead to
the absence of FOXL2 synthesis from this allele in COS-7 cells." Stop mutations within the
Forkhead domain should lead to the synthesis of inactive proteins and have also been described
in association with BPES, as for instance Y83X, W98X and Q99X.24.36.37FOXL2 mutated alleles
leading to the synthesis ofa truncated protein with a complete Forkhead domain, but lacking the
polyAlanine tract have also been described, such as F167X, Gl96X or S203X .7·37.38They might
compete with the normal protein for DNA binding. However, our preliminary evidence suggest
this potential competition does not lead to a dominant negative effect. Interestingly, mutations
leading to truncated FOXL2 without a polyAlanine domain always induce Type I BPES. ll.36
Mutations leading to the synthesis of FOXL2 proteins truncated after the polyAlanine domain
(lacking the C-terminus), such as A253fs or Y274X , have also been reported.!' :" Interestingly,
the Y274X mutation can lead to both types ofBPES (Le.,with or without ovarian dysfunction).'!
This indicates that the polyAlanine domain and, to a lesserextent, the very C-terminus ofFOXL2,
have an important role in the function ofFOXL2 in the ovary. The phenotypic variability associ
ated with FOXL2 mutations also suggests the existence ofother sources ofgenetic variability that
can modulate the severity/impact of FOXL2 mutations, such as polymorphisms in target gene
promoters or protein partners.
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Frameshift Mutations Leading to Elongated Proteins
This kind ofmutations in the FOXL2 ORF is supposed to induce the synthesis of (mostly)

aberrant proteins. For instance. the mutation L376fs (FOXL2 mutation database identifier:
FOXL2_00240), leading to an out of frame extension, has been associated with BPES of an
unknown type. Again, the position of mutation in the ORF is crucial. as the closer the muta
tion is to the initiating ATG, the more severe the loss of function is predicted to be. Not only
this kind of aberrant proteins cannot assume their function . but also their presence could be
toxic. The molecular consequences of this type of mutations inducing protein elongation are
still unknown.

PolyAlanine Length Variations
Mutations leading to expanded polyAlanine domains in FOXL2 are found in 30% ofBPES

patients.lI •36The most frequent expansion leads to a +10 Alanine residues in the polyAlanine
domain (FOXL2-Ala24) and is found most often in Type II BPES patients (without ovarian
dysfunction).J·36 A +12 expansion (Ala26) has been described in a Type I BPES patient with
secondary amenorrhea and an enormous ovarian cyst." Interestingly. a +5 expansion (AlaI9)
was also recently described in association with BPES.6Whereas the Ala24 and Ala26 alleles are
associated with a classicdominant transmission ofBPES, the Ala19 variant was found to induce a
BPES Type I phenotype only when at a homozygous state and following a recessivetransmission
pattern in an Indian consanguine family.6Moreover, a deletion of 10 Alanines ofthe polyAlanine
domain (Ala4) has been identified in a patient presenting with isolated POF.33.40

The effects polyAlanine length alterations on its subcellular localization and to a lesserextent
on its function as a transcription factor, has been assessed in cellular models. Interestingly. the
frequent FOXL2-Ala24 mutant induces strong cytoplasmic delocalization, as well as nuclear and
cytoplasmic aggregation and is able to interfere with the availability ofthe synexpressed wild-type
protein." Indeed, a potential promoter-specific dominant-negative effect of the FOXL2-Ala24
protein on the WT protein has recently been reported." Mournne and collaborators have gener
ated and studied the properties ofan allelic series ofFOXL2 variants presenting with increasingly
expanded polyAlanine domains, includ ing the naturally-occuring Ala19 and Ala24.42They have
shown that the longer the polyAlanine domain ofFOXL2. the more it is delocalized to the cyto
plasm and that its solubility and transactivation ability decreases with the length of its polyAla
nine." This length-dependent loss oftransactivation has been shown to be more or lesssevere for
each variant depending on the number ofFOXL2 binding sites and of their affinity in the target
promoters.32.42 The Ala24 variant seems to retain a partial tran sactivation abilit y on high-affinity
promoters, which was suggested to be the explanation why it is most often associated with Type
II BPES.32,42Interestingly, the complete deletion ofFOXL2 polyAlanine domain (AlaO)seems to
induce nuclear aggregation in 20% of cells when expressed in COS-7 cells." This suggests that
contractions ofthe polyAlanine domain, such as was found in the isolated POF patient described
by Harris and collaborators in 2002 ,33could also somehow compromise protein solubility and
FOXL2 interaction with its partners. Considering the high conservation ofthe length ofFOXL2
polyAlanine in mammals and the isolated POF phenotype induced by its contraction, we can
surmise that the polyAlanine domain could be essential for FOXL2 function in the ovary.22.33As
shown above, poly-Ala tracts display a threshold length beyond which deleterious effects appear.
Thus, polyAla runs might serve a general function. such as species-dependent regulation of the
intranuclear concentrations ofactivefactor by tuning the equilibrium between inactive/aggregated
and active forms.22.43

The variety ofmutations associated with BPES or isolated POF in the ORF ofFOXL2 indi
cates that its structure, localization and function are very sensitive to even slight alterations ofthe
protein sequence.

ChromosomalRearrangementandExtragenic Mutations Leading to BPES
Chromosomal rearrangements represent 16% of molecular defects found in BPES patients.

Partial or total deletion ofthe FOXL2 ORF conducing to the total loss offunction ofFOXL2 has
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been observed.t' Moreover, a minimalregionof126kbmappingat around 230kbupstreamof the
FOXL2 transcription unit (the Shortest Regionof Overlap; SRO) has been delimited through
the comparative analysis of deletionsleadingto BPES.44 Interestingly, thesedeletionsalways lead
to Type II BPES, which suggests that this region could mostly regulate palpebral expression.
Interestingly, balancedtranslocations at 170kbupstreamto FOXL2, with a chromosomalbreak
point in the sameregion than the deletions, havealsobeen identifiedin association with BPES,
presumablyinducingalteredFOXL2 expression through the disruption oflong-range regulatory
elementsor owingto position effectsP6.4s.46 The regulatory implications of these chromosomal
rearrangements outside of the FOXL2 transcription unit and the conservedmechanisms they
suggest, willbe discussed in detailsafterwards.

A Genotype/Phenotype Correlation?
TypeI BPESissupposedto stem from lossof function mutations,whileTypeII BPESissup

posed to be the consequence ofhypomorphy in the ovary(partial function, sufficient for correct
ovarianfunction, but not for palpebralmorphogenesis). The first studiesof FOXL2 mutations,
performed in 200I, reported a genotype-phenotype correlation." Indeed, it seemedthat a muta
tion leadingthe production ofa truncated protein led to aTypeI BPES(withaprematureovarian
failure),whereas amutationleadingto theproductionofan elongatedproteinledto aTypeII BPES
(without ovariandysfunction). However, predictionscannot be made for missense mutations in
the Forkheaddomain,assomeleadto TypeII BPES,such asN109K or N lOSS, whileothers lead
to TypeI BPES,such asI80T or I84S. Moreover, exceptions to the genotype/phenotype correla
tion havebeen found for nonsensemutants (suchasY274X,seebefore),with the samemutation
leadingto both types ofBPES in different family members (or in differentfamilies). Therefore,
it seems verydifficultto predict the type ofBPES in a child with palpebraldefectsjust from her
genotype. Indeed,nowadays, the diagnosticof the type ofBPES ismadea posterioribasedon the
presenceor not ofP 0 F. Furthermore, POFin itselfisa rather frequent condition (1-3%)and can
havemultiple origins,such asgenetic,environmentalor iatrogenic, which could explainsomeof
the observedphenotypic variability. It would therefore be most valuable to obtain a diagnostic
tool to diagnosethe potential BPEStype from only the detected mutation.

LearningfromMiceModels
In2004,two independentFoxl2 knock-out(KO)micemodelsweredeveloped.47.48 Interestingly,

neither of these two KO modelspresentwith astrikingphenotype at the heterozygous state.This
is in line with the fact that miceare less sensitive to gene-dosage effects.

During the firstweekfollowing birth, homozygous KO micedisplay more than 50%perinatal
lethaliry."Foxl2 KO micearecharacterized byasmallsize(lessthan 85%of the wildtype'ssize).48
This wasproposed to result from the reduction of 60% of plasmaticIgfl (Insulin-Like Growth
FactorI) concentration,whichcouldbelinkedto apituitarydefect," Moreover, theydisplaysevere
craniofacial abnormalities, including a severe eyelidhypoplasia and they are born with opened
eyes, which is consistentwith the BPESphenotype in humans."

Thereareno defectsin the testisdevelopmentofmaleFoxlJ,-l-mice,whichhaveanormalfertil
ity.47.48 XX Foxir':micearesterile, but phenotypicallyfemale.47.48OvariesofKO micearesmall,
severely disorganizedand primaryfollicles arenot formed.f'" Surprisingly, the defect resultingin
the absence ofprimaryfollicles differs alittlebetweenthe twoKO models. Schmidtand collabora
torsobservea normalformationofprimordial follicles. However, in their model,the squamousto
cuboidalmorphologicaltransition of granulosacells doesnot occur (the cells stay'flattened' and
primaryfollicles do not form)." Uda and collaboratorsdescribe an earlierdefectin the formation
ofthe follicularpool. Indeed, their KO female micedo not evenformcorrectprimordialfollicles,
presumablybecause ofasevere impairmentof the granulosa-cell differentiation program." Indeed,
the main reported defect involves a faulty intercalation of oocyte clusters by pregranulosa cells
(fragmentationofsexcords).48 Thedifferences betweenthe onsetof the follicular formationdefects
could be explainedby the differences in the geneticbackgroundsof the two Foxl2 KO models
(129S6/SvEvTacversus 129/BlackSwiss/CD1 backgrounds).47.48
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Interestingly,germ cellsofneither Foxl2 KO mice models seemaffectedduring the first stages
offolliculogenesis.f''" Immediatelyafter birth, the number of oocytesare similarbetween mutant
and wild-type mice.47.48However, folliculogenesis is stopped by a massive follicular atresia, lead
ing to a severedepletion of the follicularstock, to a significantdecreasein the ovarian sizeand to
premature infertility.47.48 Interestingly, KO micefor another Forkhead transcription factorFoxo3a,
alsodisplaya premature infertility phenotype, consequent to globalfollicularactivationleadingto
oocyte death and earlydepletion offunctional follicles.49.so Although the onset ofinfertilityoccurs
later than in FoxlJ,-l-mice, these two Forkhead factors could indicate a potential cooperation in
the regulation offemalefertility.

Further analysis ofFoxl2 KO mice modelshas shown that their granulosacellsacquire Sertoli
cell-specific characteristics,including a high expressionofSox9, Amh, aswellasother genesofthe
testiculardifferentiationprogram.51 Thispartial transdifferentiationoccurslate in gonadformation,
afteroocytedetermination and thereforeisindependent ofoocyte loss.51In the absenceofFoxl2, the
genital tract remainsmorphologicallyfemale."Foxl2 surexpression in SertolicellsofXY transgenic
mice lead to adisorganization ofseminiferoustubules and to the development of an ovotestis-like
gonadY All these observations argue in the favour of an 'anti-testis' action ofFoxl2.

A latephenotypic reversion ofgranulosacells to Sertolicells isalsoobservedin Wnt4 KO mice.53
Wnt4-1- XX micehavemalegenitaliaand testes,but do not developseminiferous tubulesor express
the testisdifferentiationgeneSOX9. 53 Contrary to Foxl2 KO XX mice,granulosa-to-Sertoli transdif
ferentiationonlyappearsafteroocyteloss,"Double-mutantsWnt4-1-FoxlJ,-l-micepresentacomplete
female-to-male sex-reversion phenotype, which suggests that these two genes and the signaling
cascades they arepart of, havea complementaryrole in ovarianformation and testisrepression.52

The analysisof Foxl2 KO models highlights the crucial role ofFoxl2 in ovarian development
and differentiation, partly through granulosacelldifferentiation and repressionof the testisdevel
opmental program. However,maintenance ofFoxl2 expressionin the ovaryafterovariandevelop
ment points towards a function ofFoxl2 in the ovary throughout female fertile life. Generating
KO models inducible after ovarian development will be a powerful tool to study Foxl2 function
in the adult ovary.

Regulation ofthe Expression and Activity ofFOXL2
In goats, the polled intersexsyndrome (PIS) is characterizedbyhornlessnessand XX recessive

female-to-male sex-reversal.r' Ihe mutation underlyingPIS has been mapped to a 11.7-kbdeletion
located in the goat lq43 band, which is homologous to the human 3q23 band and whose DNA
sequencecontainsmainlyrepetitiveelernents .P The PISmutation hasbeenshown to induceextinc
tion ofFoxL2 expression, presumablythrough a cis-regulationeffect,from about 200kb awayfrom
the transcriptional start siteofFoxL2, suggesting the presenceofalong-rangeregulationelementof
the locus." Nongenic sequencesdeleted in the PIS mutation werefound to be conservedbetween
the goat, mouse and human locus.44.45 Genetic evidence suggeststhat the long-range regulation
ofFoxL2 expression by the PIS locus is somehow conserved in humans. Indeed, as mentioned
above, breakpoints or deletions encompassing the PIS locus orthologous sequences in humans
can induce a BPES, without direct disruption of the sequence of the FOXL2 coding sequence
(seebefore).44.45The disruption of FoxL2 expressionin PIS mutant goats and in patients carrying
rearrangements or deletions of the orthologous region suggest that these nongenic sequences
contain distant cis-elementsaffectingthe global state ofthe chromatin around the FOXL210cus
and imposing long-range regulation of FOXL2 expression.23.44.45The precise mechanistic details
ofthis conserved long-range regulation ofFoxL2 in mammals remain to be explored.

FOXL2 expressionlevelsare also regulated through a more direct modulation of the activity
ofits promoter. Indeed, it was recently shown through luciferaseassay experiments that FOXL2
is able to up-regulate the activity of its own promoter, thus giving rise to a positive feedback
100p.42 This is consistent with the observation that transcription from the Foxl2 promoter was
compromised and decreasedsignificantlyto very low levelsuntil 16 weeksoflife in homozygous
Foxlpz mutant ovaries." This positive feedback loop could explain why,once activated, FoxL2
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expression is maintained throughout !ifeY Recent evidenceshows that this positive feedback
can be counterbalancedbya negative feedbackthrough the NAD-dependent deacetylase SIRT1
(detailsbelow).55 In vitro transactivation assays indicate that the balancebetween the activation
of these positive and negative feedbackloops can be disturbed by pathogenic mutations, thus
providing a potential molecular pathogenesis mechanism, through altered cellular dosage of
FOXL2.55Interestingly, disruption of this negative feedbackloop through supplementation of
cultured cellswith nicotinamide,the activeform of Vitamin B3 and a noncompetitiveinhibitor
ofSIRT1 , wasshown to upregulare FOXL2 expression/activity and this action wasalsoseen in
wholemiceovaries afterintraperitonealinjections ." SincemanyBPES-causingmutations induce
haploinsufficiency (seebefore),nicotinamidesupplementationmight be a promisingtherapeutic
lead to treat the infertilityassociated with BPES.

Interestingly, yetanotherpositivefeedbackregulation,though indirect,hasbeensuggested for
FoxL2, through the regulationofone of its targets,the CYP19A1arornatase, which catalyzes the
synthesis of estrogens (seebelow). Indeed, treatment of caryotypically maleRainbowtrouts with
estrogensinducesFoxL2 expression'? and treatment of female chickenembryoswith aromatase
inhibitorsdownregulatesFoxL2 in thegonads." However,nosuchphenomenoncouldbeobserved
in the Medakafish." Thispotentialdiscrepancycouldindicatethat thisfeedback loopisnot strictly
conservedamongvertebrates, or wasat leastlost secondarily in the Medaka.

Many homeobox containing transcription factorsare required for ovariandevelopmentand
funcrion." Moreover, joint regulationof targetsbetweendirectlyinteractingHOX and FOX fac
tors hasbeenpreviouslysuggested asapotentialhighlyconservedmechanism ofgeneregulation.59
Interestingly, the FoxL2 caprinepromoter-drivenluciferase reporterpFoxL2-luc6°was found to be
activatedin consequence to the overexpression of the homeoboxtranscription factor Hoxd13 in
human granulosatumor KGN cells 61 (Fig. 2). An analysis of transcriptomein KGN cells shows
that 48 transcription factors from the superfamily of homeobox factors are expressed, among
which, interestingly, is found HOXD1362 (ArrayExpress accession number E-MEXP-98S).The
roleof homeoboxgenesin sexdifferentiationand development,processes which areboth known
to involve FOXL2, hasremainedrelatively unexplored. Thus,the potential regulationofFOXL2
expression earlyin the gonaddevelopment byhomeoboxtranscriptionfactors, through not neces
sarilyexclusively by HOXD13, deserves further investigation.

The FoxL2 promoter has been shown to havea bidirectionalactivityin goatsand humans ."
PFOXic, for promoter FoxL2 inverse complementary, is transcribed in the samesex-dimorphic
manner as FoxL2 and is also under the regulation of the PIS locus in goats.60 Interestingly, in
heterozygous PIS mutants,whichdo not displaythe characteristic PISphenotype,FoxL2 expres
sionlevels areidenticalto thoseofwild-type goats,whereas theirPFOXicexpression isdramatically
decreased." Pannetier and colleagues havethus proposed that FoxL2 transcription is regulated
through a negative feedback mechanism, which, once a certain FoxL2 expression threshold is
reached, inducesthe upregulationof PFOXictranscription,redirectingthe "transcriptionalover
flow" on the other generegulatedby the bidirectionalprornoter/"

Although no definiteposttranscriptional regulationmechanisms havebeenfullydemonstrated
in the caseof FoxL2, experimental cluesseemto indicate that they couldexist. In rodents, Foxl2
has been shown to possess 2 distinct polyadenylation sitesseparatedby about 400bp, givingrise
to 2 alternativetranscriptswith different3'-UTRs (untranslaredregions), whicharesynexpressed,
though they could havedistinct stabilityproperties.P Evenif the role of theseFoxl2 alternative
transcripts is not clear, in other instances, the useof alternativeUTRs hasbeen shownto partici
pate in the regulationof geneexpression, by influencingmRNA stabilityas wellas translational
efficiency.64 Moreover, the existence ofan antisense RNA in rodents,Foxl20S(forFoxl2 Opposite
Strand), spanning the Foxl2 transcription unit and the 3'-UTR of the short Foxl2 polyadenyla
tion isoformwasalsodemonsrrared.v Antisensetranscriptshavebeen proposed to regulate the
stability status of the correspondingsensetranscript by maskingparts of their UTRs through a
RNA duplexformation,aswasshown in the caseofbcl_2.65 Interestingly, sequencingofRT-PCR
reactionsspecific of the reverse strand of FOXL2 haveshown that antisense RNAsare produced
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Figure 2. Activation of the pFoxL2-luc promoter reporter by HOXD13 overexpression in
granulosa-l ike KGN cells Transfections were carried out in five biological replicates . pFoxL2-luc
was described previously." The Hoxd 13 expression vector was a kind gift from Dr. S. Mundlos.
Error bars represent the standard deviation. **: p < 0.01 in a Student t-test.

in human cells, someof whichcoverthe completecodingregionofFOXL2. Thestructureof these
antisense RNAs,whichseems to existin numerousisoforms, isdifferentfromthe murineFoxl20S
transcriptspreviously described, but somesplicingsitesare conserved(J. Cocquet, unpublished
observations). Theseresultsindicate the conservationof the expression ofFoxL2 antisense tran
scriptsin mammals and suggest that they could playa regulatoryfunction.

Another potential level of regulation of FOXL2, through posttranslational modification
(PTM), wasuncoveredrecently.66 Indeed, FOXL2 wasshown to possess a rich pattern ofPTM
isoformsboth in human granulosa-likeKGN cellsand in micewholeovaries through 2D-Western
Blot expertmenes.f FOXL2 modificationisoforms are contained in two distinct trains of modi
fication, a basicpoorly modified train and a more acidichypermodified train, separatedby a pI
(isoeletricpoint) leap,with a remarkable absence of modificationintermediares/" Perturbations
ofFOXL2 2D migrationprofilethrough forceddephosphorylationor forced acetylation, coupled
witha bioinformatics pI prediction analysis, haverevealed that FOXL2isahighlyposttranslarion
allymodifiedprotein, with multiple potential acetylations and phosphorylaeions.f This analysis
alsosuggested that FOXL2undergoesparallelprocessive/concertedmodifications, leadingto the
existence of several distinct 'mature' forms. Theabsence of modificationintermediatesiscompat
iblewith the recruitmentofpoorlymodifiedFOXL2isoforms inaposttranslational'modification
factory'.66 Theexactpositionof the residues actuallymodifiedin protein sequenceofFOXL2 have
not beenmappedyetbut, interestingly, the sequence ofFOXL2 containsmanymodifiable residues,
whosepositionsand sequencecontextsare conserved in a multiplesequencealignment between
Gallusgallus, Xenopus tropicalis,Daria rerio, Takifugu rubripes, Musmusculus and Homo sapiens
FoxL2 proteins (Fig.3A,B).Moreover, several BPES-causingFOXL2 mutationsand onedescribed
in an isolatedPOF casealter potentiallymodifiableresidues (Fig. 3C). When investigated, these
mutations induced at leasta partial alterationoftransactivation, aggregation and/or cytoplasmic
delocalization, thus indicating the potential importance of the pomranslational modification
levelof regulationin the control ofFOXL2 function and subcellularlocalization." The studyof
FOXL2 regulationthrough PTM isparticularlyrelevant, asmodulationbydistinct combinations
ofphosphorylationsand acetylations havebeenprovencrucialin the regulationof the subcellular
localization and activityofother forkhead family members. Indeed,FOXO factorsfamily members
are inactivatedand relocatedto the cytoplasmthrough phophorylation byAkt/PKB67and their
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action is proposed to shift from apoptosis induction to survivalpromotion depending on their
acetylationstatus." In contrast, FOXM1phosphorylationbythe Raf-MEK-ERK signalingcascade
isnecessary to its relocationto the nucleusand FOXP3 acerylation byTIP60 iscrucialto itscorrect
function." Interestingly, PTM has been shown to alter the DNA-binding specificity and affinity
of the Forkhead transcription familymember FOXO 1.69 More generally, the existence of'PTM
codes'on transcription factorsisemergingasa common and powerful tool for swiftadaptation of
cellulareffectsto environmental cuesthrough modulation of binding parmers and specificity of
targets.?O,71 Interestingly, the action of the SIRTI deacetylase on FOXL2 does not alter FOXL2
abilityto regulateits targetsuniformly, asmanytargetsareregulatedless efficiently bydeacerylated
FOXL2 and at least one target is regulated more efficiently by deacetylatedFOXL2.55 Distinct
hyperrnodified mature forms of FOXL2, with distinct sets of PTM , could thus differ in their
preferred protein partners or in their DNA binding specificity, allowingdistinct FOXL2 pools
to regulatedistinct cellularprocesses accordingto different input signals.
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Figure 3. Map of potential posttranslational modification acceptor sites in human FOXL2
Distances are drawn to scale. Conservation measured in a ClustalW alignment between Gallus
gallus, Xenopus tropicalis, Daria rerio, Takifugu rubripes , Mus musculus and Homo sapiens
FoxL2 protein sequences (Alignment not shown). A) Map of conserved phophorylatable residues
in human FOXL2. Predictions using the NetPhosK 1.0 Server (http ://www.cbs.dtu.dk/services/
NetPhosK/) and the NetPhos 2.0 Server (http://w w w.cbs.dtu.dk/services/ NetPhos/ ). B)Map of
conserved Iysines in human FOXL2. C) Map of BPES- and nonsyndromic POF-causing point
mutations on potentially modifiable residues in human FOXL2. Mutations from the FOXL2
mutation database (http://medgen.ugent.belfoxI2/) and POF mutant Y258N.33
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Regulation ofTarget Genes and ofCellular Functions by FOXL2
In spite of the crucial importance of FOXL2 in ovarian development, ovarian maintenance

and testis repression, as illustrated by the phenotypes ofPIS goats, KO and transgenic mice and
BPES Type I patients, only few ofirs direct or indirect targets have been identified and confirmed
thus far [Table 1).

FOXL2 Targets in the Pituitary
Expression ofFoxl2 immediately precedes the differentiation ofgonadotrope and thyreotrope

cellsin the developing anterior pituitary.26This expression isdetected in the progenitors ofgonado
trope and thyreotrope cells during the pituitary gland development and is maintained through
adulthood.F" Foxl2 seems to playa crucial role in the pituitary organogenesis and function.26-28
Two pituitary specific Foxl2 targets have been described until now, the gonadotropin-releasing
hormone receptor (GnRHR) and the glycoprotein hormone a-subunit (a_GSU).28.n In gonado
trope cells, the secretion ofgonadropins is regulated by the bindingofthe gonadotropin-releasing
hormone (GnRH) secreted by hypothalamic neurons to its receptor, the GnRHR. The secretory
response is a function of both the amount of secreted GnRH and of expressed GnRHR at the
plasma membrane of gonadotrope cells. GnRHR expression is regulated through a composite
regulatory sequence, the GnRHRactivating sequence (GRAS) and composed ofpartially overlap
ping binding sites for Smad3, AP-I and Foxl2.72 Each transcription factor ofthe complex interacts
directly with its target subsequence inside the GRAS element and seems necessary for the correct
regulation ofGnRHR expression ." In participating to the regulation ofthe GnRHR expression,
Foxl2 seems to playa crucial role in gonadotropin secretion regulation. This critical involvement
is further supported by recent experimental evidence. Indeed, in the pituitary thyreotrope and
gonadotrope cells, the expression ofFoxl2 precedes the expression of the a-GSU (the common
subunit to pituitary glycoprotein hormones LH, FSH and TSH), though colocalization of ex
pression patterns is achieved secondarily," Stimulation ofa-GSU expression by Foxl2 has been
demonstrated in both a cellular model and in transgenic mice."

FOXL2 Targets in the Ovary
In homozygous mutant PIS XX goats, which display a female-to-male sex reversal and have an

impaired expression ofFoxL2, genes normally upregulated only in males, such asSOX9 and AMH,
are found upregulared." Later in the development,WNT4 isdownregulared in sex-reversedgonads,
in a male-specific expression." This female-to-male sex-reversal is reminiscent ofthe phenotype of
the Wnts:':Foxll,-I- double KO mice.52Upregulation ofSox9 and Amh is observed in Foxl2 mice
KO Y Consistently,Amh is downregulated in the ovotestis -like gonads ofFoxl2 transgenic mice.52
Since Foxl2 KG female mice and BPES XX patients are phenotypically female, sex-reversalin PIS
goats should be the result ofthe deregulation ofanother key sex-determ ining gene in addition to
FoxL2. Recent evidence has excluded the role ofPISRTl, another gene cis-regulated by the PIS
region." However, these observations suggest that FOXL2 represses directly or indirectly the
expression ofthe key male-determining genes SOX9 and AMH in gonads, thus inhibiting ectopic
activation of the male sexual differentiation program in females.

Homozygous PIS mutant goats alsopresent with astrongdecreasein expressionofthe CYP 19Al
aromatase in their ovaries as early as 36 days postcoiturn, which points towards a potential regula
tor y relationship. " FoxL2 has also been suggested to regulate aromatase expression in numerous
other vertebrate species, such as the chicken, the Rainbow trout, the Nile Tilapia and the Japanese
wrinkled frog.16.18.20.56The demonstration of the direct up-regulation of aromatase expression by
FOXL2 was done in human and goat granulosa cells" and in the Medaka fish.76The steroidogen
esis acute response (StAR) is an enzyme that catalyzes the limiting step ofsteroidogenesis , i.e., the
translocation of the cholesterol from the outer to the inner mitochondrial membrane, where it
undergoes transformation into pregnenolone and other derived steroid hormones," Pisarska and
colleagues have shown that FOXL2 interacts with a Forkhead family response element found in
the StAR promoter and that FOXL2 can repress robustl y the transcriptional activity ofthe StAR
promoter," StAR expression is a marker of late differentiation ofgranulosa cells ofpre-ovulating
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follicles and the inhibition ofits expression by FOXL2 was proposed to allow the maintenance of
immature follicles in a quiescent state." This repression was found to be mediated by the Proline
and Alanine-rich C-terminal region ofFOXL2.78The role ofFOXL2 in the regulation ofsteroid
metabolism in the ovary was further illustrated by a recent transcriptome perturbation study in
granulosa-like KGN cells through overexpression of FOXL2.62 Indeed, the expression levels of
other actors ofsteroid metabolism, such as PPARGCIA, NRSA2 and CH2SH, were found to be
upregulated by FOXL2.62The involvement ofFoxL2 in the regulation ofgonadotropin secretion
in the pituitary and in the steroid hormone production in the ovary makes it a key regulator of
hypothalamus-pituitary-ovarian axis,whose deregulation could explain the POF phenotype associ
ated with some ofits mutations.

Other molecular and cellular pathways have been recently proposed to be regulated by
FOXL2. Indeed, FOXL2 overexpress ion in KGN tumor cells upregulated several inflamma
tory chemokine ligands of the CCL and CXCL families, of pro-inflammatory cytokines, as
well as of the PTGS2 (Prostaglandin synthase 2) .62 Interestingly, in Ptgs2 KO mice, ovulation
is severely compromised, even under hyperstimulation, despite an apparently normal follicu
logenesis." Moreover. treating rats with a PTGS2 inhibitor reduces dramatically the rate of
induced ovulation." This is compatible with the hypothesis according to which ovulation is an
inflammatory-like process" and is in line with a role ofFOXL2 throughout follicular matura
tion, up to ovulation.

The massive follicular atresia occurring in the ovaries ofFoxl2 KO mice first suggested that
FoxL2 acted as an anti-apoptotic agent .47.48This was in accordance with the clinical BPES data.
with pathogenic FOXL2 mutations inducing POF in BPES Type I patients. In contrast, FOXL2
was also proposed to be pro-apopotoric, using the DEAD-box RNA helicase DDX20 (DP103)
as a co-activator. v The involvement ofFOXL2 in apoptosis regulation, as well as its ambivalent
behavior, were further illustrated by its ability to up-regulate the expression ofseveral apoptosis
regulators in KGN cells, such as BCL2AI, IERJ. TNFAIP3, FOS, ATF3 and CH2SH62Direct
binding ofFOXL2 to the promoters ofCH2SH, TNFAIP3, BCL2AI andATF3after induction
ofoxidative stress has been proven .P The potential ambivalence ofa Forkhead transcription fac
tor with regard to apoptosis is not restricted to FOXL2. Indeed. FOXO factors can promote cell
survival or cell death according to the signaling input and cellular contexts .67,82

The transcriptome perturbation study by Batista and colleagues revealed another cellular func
tion/process that could potentially be regulated by FOXL2 in the granulosa: the metabolism of
reactive oxygen species (ROS).62Indeed, FOXL2 overexpression induced robust transcriptional
activation of the Manganese mitochondrial Superoxide Dismutase (MnSOD), the Peroxisome
Proliferative Activated Receptor y Co-activator 10. (PPARGCIA) and the Immediate Early
Response 3 gene (IER3) .62Regulation if the promoter ofIER3 has been confirmed in luciferase
assays in human granulosa-like KGN cells (Fig. 4).The direct involvement ofFOXL2 in the cell
stress response was confirmed recently.55 Indeed, FOXL2expression was found to be upregulated
in consequence to oxidative and heat stress in KGN cells.55 FOXL2 was also hyperacetylated in
response to oxidative stress,which was associated with an increased recruitment to stress-response
target promoters as assessedby Chromatin Immunoprecipitation (includingIERJ and MnSOD)
and an increased trans activation abiliry." As already mentioned, the NAD-dependant deacetylase
SIRT1, whose involvement in the cell stress response and the regulation ofaging is conserved from
yeasts to mammals, inhibited robustly FOXL2 activity on chosen target promoters. SIRTI was
also found to be a direct transcriptional target ofFOXL2.55 Interestingly. SIRTI action enhanced
FOXL2 ability to regulate the SIRTI promoter," This negative feedback loop could serve as a
molecular brake, helping the return to "normal" FOXL2 activity after the end ofa stress.Theories of
aging suggest that accumulation ofoxidative damages in cellsover time is part ofthe aging process
at the cellular level and that the control ofoxygen free radicals production and detoxification is
crucial for cell survival and protection against age-related diseases, such as cancer.P The issue of
the regulation ofthe oxidative stress response is even more topical in the ovary. as ovulations are
accompanied by massive ROS production."
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Figure 4. Act ivation of the IER3-luc promoter reporter by FOXL2 in human granulosa-like
KGN cells Transfections were carried out in five biological replicates . IER3-luc (IEX1-luc) was
described previously?' and was a kind gift from Dr. F. Porteu. Error bars represent the standard
deviation. ***: p < 0.001 in a Student t-test.

Interestingly, a recent study ofFOXL2 expression in ovarian granulosa cell tumors in children
revealed that FOXL2 expression was switched off, or markedly tuned down, in the most aggressive
tumors." Interestingly, granulosa tumors with reduced or absent FOXL2 expression displayed a
higher mitotic activity and a more advanced oncologic staging than others." This suggests that
FOXL2 could act as a potential tumor-suppressor in the granulosa and deserves further molecular
exploration. A role ofFOXL2 in the regulation ofcell cycle would not be unprecendented among
Forkhead factors , as other members have been involved in oncogenesis or tumor suppression ."

The FOXL2 Response Element (FLRE) andItsSpecificity
Members of the Forkhead superfamily of transcription factors are involved in many cellular

and developmental processes.t'" These include, not exhaustively, eye organogenesis (FoxCl-2),
language acquisition (FoxP2), thymus organogenesis (FoxN 1), stress response and aging regulation
(FoxO 1,3.4), as well as ovarian determination and female fertility (FoxL2).8.9.47.48.861he Forkhead
DNA-binding domain is highly conserved among members of the superfamily," However, since
Forkhead transcription factors are involved in this variety of processes, regulating a potential
great diversity oftarget genes, it is expected that some target recognition specificity should exist
to achieve the regulation of distinct targets by distinct members. This can be achieved through
three nonexclusive mechanisms: (i) differences in expression patterns (for instance, the high
hepatic expression ofFOXA3,88versus the high ovarian, periocular and pituitarian expression of
FOXL222.28), allowing access to a differentially open chromatin in expressing cells, (ii) existence
ofcofactors specific to some family members through tissue-specificityor specific protein/protein
interaction domains and (iii) a specific DNA target binding sequence.

Interestingly,whereas the 12 otherdescribed Forkhead transcription factor high -affinity binding
sites are highly similar and correspond to the general consensus 5'-( G/A)(T/C)(A/C)AA(CIT)
A-3', FOXL2 possesses a divergent high-affinity response element, the FLRE (FoxL2 Response
Element), whose consensus is 5'-GT(C/G)AAGG-3'. 32Interestingly, it is specifically bound and
regulated by FOXL2 and other FOX factors seem unable to properly activate it.321he gonadal
primordium is unique among all organ primordia because ofits bipotential nature,which allows it
to develop into one oftwo distinct organs,a testis or an ovary," Given that FOXL2 is essential for
ovarian development and testis repression,47.48.51.52the strong target specificity that can be achieved
through the FLRE is therefore not unexpected. Indeed, to ensure proper testicular development
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and preventunscheduledovariandifferentiationin males, a specific regulationofFOXL2 ovarian
differentiationtargetsshould be mandatory on evolutionarygrounds.

Conclusion
As alreadystated, FOXL2 is a verywell-conserved transcription factor and its orthologs are

foundin awiderangeofspecies across evolution.Historically, FOXL2wasidentified independently
as an actor ofpituitary organogenesis in miceand as an actor of eyemorphogenesis and female
fertilityactor through the positionalcloningof the BPES10cus.7·26 Consequently, its involvement
in eyemorphogenesis, in the pituitary function and in ovariandetermination/development has
been more particularly investigated fruitfully until now. However, FoxL2expression and role
outside these tissues remains largely inexploredand deservefurther investigation.

Recent evidencehas suggestedthat FOXL2 is also involved in other processes, such as the
ovarian oxidativestress response.SS.62Current theories of agingpropose that oxidativedamage
accumulation is an important part of the aging process at the cellular leveland that control
of oxygen free radicals levels and detoxification is necessary to ensure cell survival, stem cell
pool conservation and protection against age-related diseases.P The importance of the stress
response in the control of aging, coupled with the premature ovarian aging seen observed in
BPES Type I women and Foxl2 KO mice, suggests that FOXL2 belongs to the complex net
works that orchestrate the onset and the rate ofagingin mammals, at least at the ovarian level.
Other than infertility, ovarianaginghas deleteriousconsequenceson postmenopausalwomen,
such asincreasedprevalenceof osteoporosis." cardio-vascular diseases"and neurodegenerative
diseases.92•931herefore, the in-depth study ofFOXL2 as a potential regulator of ovarian aging
is ofhigh relevancenowadays.

Finally, even if FOXL2 mutations lead to BPES, the precise molecularand developmental
pathogenesis mechanisms arestillpoorlyunderstood.Forinstance, no reliable genotype/phenotype
correlationhasbeenestablished to predict the exactphenotypicimpactofpoint mutationsin 0 RF
of FOXL2(TypeI BPES,TypeII BPES,or isolatedPOF).1he developmentof a diagnostictool
could be usefulin the caseof female prepubertalpatients,assometherapeuticoptions, including
ovary cryo-preservation or hormonal therapy, have to be consideredearlyin order to improve
their outcome. Interestingly, studiesof the cellularconsequences of FOXL2 mutations seemto
indicate that aggregation isacommonpathogenicmechanism.30,31 .3S.421heuseofanti-aggregation
molecules to resolubilize at leastpartiallyFOXL2couldthereforebeaseducingtherapeuticavenue
for BPESpatients and deserves further exploration.However, the aspectof FOXL2 aggregates
varygreatlybetweenmutants.30.35.421his suggests the existence of specific protein partners in the
aggregates, which, if uncovered, could be targeted more finely in patients' ovaries to restore an
adequate FOXL2-and, hopefully, ovarian-function.
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CHAPTER 17

FOXO Transcription Factors:
From Cell Fate Decisions to Regulation ofHuman
Female Reproduction
JanJ. Brosens," MirandaS. C. Wilson and EricW.-F. Lam

Abstract

A ll key reproductive events in the human ovary and uterus, including follicle activation,
ovulation, implantation, decidualization, luteolysis and menstruation, are dependent
upon profound tissue remodelling, characterised by cyclical waves of cell proliferation,

differentiation, apoprosis, tissue breakdown and regeneration. FOXO transcription factors, an
evolutionarily conserved subfamily ofthe forkhead transcription factors, have emerged as master
regulators ofcell fate decision capable ofintegrating avariety ofstress,growth factor and cytokine
signaling pathways with the transcription machinery. The ability of FOXOs to regulate seem
ingly opposing cellular responses, ranging from cell cycle arrest and oxidative stress responses to
differentiation and apoprosis, renders these transcription factors indispensable for cyclic tissue
remodelling in female reproduction. Conversely, perturbations in the expression or activity of
FOXO transcription factors are increasingly linked to common reproductive disorders , such as
pregnancy loss, endometriosis, endometrial cancer and primary ovarian insufficiency.

Introduction
The first forkhead protein to be described was Fork headin 1989,' named after the mutant

Drosophila's "forked" head.' Since then, more than 150 forkhead transcription factors have been
characterised, including over 40 in humans. v' All share a conserved forkhead domain/forkhead
box containinga "winged helix" type structure, making forkheads a superfamily ofhelix-turn-helix
proteins.' Initial work on th is diverse family provided an equally diverse set of names, but the
number offorkhead proteins being discovered meant that a unified nomenclature became neces
sary to avoid confusion," The proteins became known as FOXs (forkhead box). In vertebrates,
FOX proteins have been classifiedalphabetically into 19 subgroups, FOXA to FOXS .The agreed
nomenclature alsodistinguishes between different systems: for all forkheads, capitalising all letters
(such as for FOXOl) is reserved for human proteins. Mouse proteins have a capital F only (e.g.,
Foxol), while other chordates are named with capitals for the group letter as well as the initial
letter (e.g., FoxO 1).

Some of these 19 FOX subgroups have attracted more interest than others, perhaps non e
more so than the FOXO subfamily of tumor suppressors . In humans, this group contains four
members : FOXO1 (previously known asFKHR), FOX03 (FKHRLl), FOX04 (AFX or Mllt7)
and FOX06. In addition, a number ofpoorly characterised splice variants have been described ?
With the exception ofFOX06, which reportedly isonly present in adult brain tissue, mammalian
FOXOs are ubiquitously expressed in a variety oftissues throughout the body.s However, there is
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Ovulation

secretory

Figure 1. Expression of FOX01 in human endometrium. The uterine mucosa undergoes cyclical
waves of proliferation, secretory transformation, menstrual shedding and regenerat ion. FOX01
is constitutively expressed in endometrial epithelial cells . In the stroma, FOX01 expression is
confined to decidualizing cells during the latter half of the secretory phase of the cycle.

significant differential expression. dependingon tissuetype anddevelopmental stage," Forexample.
mouseFoxo3aismosthighlyexpressed in the developingliverbut moreabundant in the brain and
spleenin adult animals.Similarly,Fox04isexpressed highlyin skeletalmuscle duringdevelopment
but alsoin cardiacmuscle and adiposetissuein adulthood. The highest levels of Foxo1are found
in adiposetissuebut alsoin the uterusand ovaries of cyclingfemale animals. In the human uterus,
FOXO 1 is constitutively expressed in the endometrial epithelium throughout the menstrual
cycle.lOol2 It isalsoexpressed in the stroma,but onlyupon differentiationofendometrialfibroblast
into decidualcells duringthe mid-secretory phaseof the cycle (Fig. 1). In contrast to the induction
ofFOXO 1,decidualtransformationof endometrialstromalcells isassociated with repression of
FOX03a expression." AlthoughFOX04 transcriptsarepresentin humanendometrium.evidence
ofexpression at protein level isasyetlacking. Foxos-and morespecifically Foxo3a-have emerged
as master regulatorsof ovarianfunction, at least in rodents.Iv'?Although FOXO transcriptsare
present in the human ovary," somewhatsurprisingly their expression profileat protein levels has
not yet been studied.

In this chapter.wediscuss the mechanisms that control FOXO activity, highlight the roleof
these transcription factors in cellfate decisions and focuson their role in normal and abnormal
uterine and ovarianfunction.

Regulation ofFOXO Activity
Theforkhead boxDNA bindingdomainrecognises theconsensus sequence 5'-TTGTTTAC-3'.21

FOXO family members arehighlyhomologous within the forkhead box(about40%identityover
all, but up to 70-90% within forkhead box),8.22.23 often showfunctional redundancyand can bind
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to the samepromoter sequences. As transcription factors with manydiverse targetsand apparently
contradictoryactivities, rangingfrompromotingdifferentiation to inducinggenenetworksinvolved
in cellcycle arrest and apoptosis, FOXOs must be tightly regulated for correct cellular function.
This occursmainlyby posttranslational modifications, which can affect FOXO stability, subcel
lularlocalisation, or DNA bindingactivity. Perhaps the mostprominent regulator ofFOXOs isthe
serine/threoninekinase Akt(alsocalled PKB),whichactsdownstream ofphosphoinositol-3-kinase
(PI3K)in the insulin/growthfactorsignalingpathway (Fig. 2).Aktphosphorylates FOXO atseveral
hierarchical conserved sites(Thr24,Ser256and Ser319 in FOXO1).24.25Themiddlesite,withinthe
forkhead box, ismodifiedfirst, resulting in aconformational change, whichexposes the other sites.
Next, the N-terminalresidue is phosphorylated, allowing the inhibitory 14-3-3 complex to bind.
Finally,phosphorylation of the N-terminalsitebringsabout nuclear exportand thustranscriptional
inactivation of FOXOs. FOX06 isan exception to this rule asit lacks the third Aktphosphoryla
tion site,8 which rendersit constitutively nuclearalthough not constitutively active." Compelling
evidence hasemerged indicatingthat FOXOsengage in a feedback mechanism with the PI3K/Akt
pathway by trans-activating PIK3CA, which encodes the catalytic p lIOa subunit of PI3K (class
lA)27or by repressing the expression of the Akt inhibitor tribble3.28Thus,whileactivation of the
PI3K/Akt pathwayantagonises FOXO activity, FOXOs in turn are capable of amplifying PI3K/
Aktsignaling. Thishomeostatic mechanism maybe of particularrelevance for the survival of cells
underadverse conditions.

In addition to Akt, other kinases, such asSGKI (serum- and glucocorticoid-inducible kinase
1),IKK~ (inhibitor ofNFKB kinase ~), CKI (casein kinase 1) and DYRKIA (dual-specificity
tyrosine-phosphorylatedand regulatedlA), havealsobeenimplicatedin FOXO phosphorylation
and nuclearexport." Once in the cytoplasm, FOXO issequestered and taggedfor degradationby
the proteasomebypolyubiquitination by the E3 ubiquitin ligase SCfSkp2complex." Conversely,
kinases such c-jun N-terminal kinase (]NK) and MSTl (mammalian Sterile20-likekinase 1)
havebeenshownto enhanceFOXO transcriptionalactivity.24.30]NK phosphorylatesThr447and
Thr451in FOX04 andpresumably similarresidues in FOXO1and FOX03a.31]NK isalsoknown
to phosphorylate 14-3-3 directlyand represses Akr activityindirectly. MST1 can phosphorylate
FOXO1and FOX03 (at Ser207, Ser213,Ser229andSer230in FOX03),30but itsroleinenhanc
ing FOXO activationiscomplicatedby the fact that theseprotein modifications actuallyreduce
FOXO 1 DNA binding." MSTI maythereforeincrease FOXO activityprimarilybydisrupting
14-3-3binding,allowingFOXO to enter the nucleusbeforeother proteins remove the inhibitory
phosphate groups.Moreover, MSTI isalsoableto increase]NK activiry."

Other posttranslational modifications alsoaffect FOXO activity, eitherdirectly or indirectly. For
example, methylation of arginines within a consensus motif for Akt phosphorylation in FOXO1
(Arg248 andArg250)byPRMTI (proteinargininemethyltransferase 1)antagonises Aktphospho
rylation, thereby promotingnuclear localisation andtranscriptional activityofFOXOs.34 Acetylation
by proteinssuch as the histone acerylases p300 and CBP increases FOXO1 stability by reducing
polyubiquitination yetalsoenhances inhibitoryphosphorylation byAktandreduces FOXO1DNA
binding activity.'" Conversely, the nicotinamide adeninedinucleotide (NAD)-dependentprotein
deacerylases Sirtuins(also calledSIRTs) arecapable of reversing FOXO acetylation,whichenhances
oxidative and genotoxic stress defences and attenuatescelldeath responses (Fig. 2).35.36

FOXO andCell Fate
Asalludedto, FOXOsarecapable ofpromotingdifferentiation, survival aswellascelldeath,de

pendingon the cellularenvironmentand the natureofupstreamsignalingpathways.Consequently,
FOXOs are important determinants of the function ofspecific organs,asdiscussed later for the
uterusand ovary, but alsofor the fateof the entireorganism. Invertebrates, suchasCaenorhabditis
elegans (c. elegans) and Drosophila melanogaster, havebeen particularlyinformative in delineat
ing the role of FoxO proteins within the context of the whole organism, especially as essential
determinants of organismalstressresponses, metabolismand lifespan in response to nutritional
and environmentalcues.28.37
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Figure 2. FOXO proteins are key regulator of cell fate and regulated by insulin/IGF signaling
pathway. Insulin or IGF stimulation leads to PI3K activation, which in turn results in AktlPKB
induction. AktlPKB phosphorylates and inactivates FOXOs by promoting translocation to the
cytoplasm, which promotes proliferation. The transcriptional programs regulated by FOXOs
are influenced by SIRT-and INK-dependent modifications. Phosphorylation and acetylation
are denoted by P and AC, respectively.

Cell CycleProgression, Checkpoint ControlandApoptosis
FOXO proteins are important for correct progression through the cell cycle, a tightly

regulatedprocess dividedinto four phases: an S (DNA-synthesis) phaseand M (mitosis)phase,
which are separatedby two intervals, GI (gap J-berween M and S) and G2 (gap 2-between5
and M) phases. In GI , cyclin Ds are upregulatedand bind to CDK4 (cyclin-dependenr kinase
4) and CDK6.381hese active cyclinD-CDK4/6 complexes are necessary to passthe restriction
point (R), a checkpointnear the end of the GI phaseand enter Sphase,byphosphorylatingand
activating pRBfamily proteinsand byupregulatingthe transcriptionfactorE2F.39Constitutively
activeFOXO is ableto cause cellcycle arrest in GI bydownregulating both CDK4 activityand
expression of D-type cyclins, possibly viadownregulationof cyclinD I and upregulationof the
knownFOXO targetBcl-6, a cyclinD2 transcriptional repressor.S" Cyclin-CDKcomplexactivity
is alsodownregulatedby CKIs (cyclin-dependene kinaseinhibitors). FOXOs can upregulateat
least two Cip/Kip class CKIs, p2I cipl and p27Kip1, aswellas two INK4 class CKls, piSINK4band
pI9INK4d.38Furthermore, the regulationof the pRB-relatedprotein p130 h by FOXO is believed
to havea role in cellcycle exit.42
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Assuming that cellsmake it through into Sphase, the next FOXO-regulated hurdle is the GUM
DNA damage checkpoint. FOXO1 reducesexpressionofimportant GUM proteins such ascyclins
BI and B2.43Cyclin G2, a cyclin B-CDKI inhibitor, is also a target induced by FOXO.44 In the
absence of DNA damage, CDKI and 2 help regulate the G2/M transition by phosphorylating
and inhibiting FOXO (at Ser249 in FOXOI).21.4S When damage is present , it is recognised by
damage sensors such as the MRN (Mre 11-RadSO-Nbs 1) complex and ATR (ataxia telangiectasia
mutated (ATM) and Rad3 related) , which induce repair as well as aiding cell cyclearrest," ATR
has in fact been identified as a positive regulator ofFoxO in a screen for FoxO-regulating kinases
and phosphacases in Drosophila aswell as in another proteomic screen ofproteins phosphorylated
in response to DNA damage,47.48 FOX03a may also upregulate ATM expression and activity.49.so
Another FOXO target, GADD4Sa, is also capable of causing cell cycle arrest at GUM and aid
in DNA damage repairy-s3

Ifthe damage is too great to repair, FOXO can trigger the expression ofseveralpro-apoptotic
proteins, including the BH3-only Bcl-2 family members Bim and bNIP3, as well as TRAIL and
Fasl.," which induce extrinsic or mitochondria-independent apoptosis upon binding to death
receptors .Bcl-6expression also aids apoptosis by repressingBcl_xL.sSFOX03a-induced apoptosis
has been reported to be dependent on induction ofPUMA and its downstream mediator Bax.S6

Interestingly,Fox03ahas been shown to bind and promote the nuclear export ofpS3, the "guardian
ofthe genome'l" Like FOXO proteins, pS3 is an important transcription factor in several linked
pathways that controls various cellular responses, ranging from metabolism to apoptosis and
senescence. This tumor suppressor is well-known to induce proapoptotic genes, such as PUMA
and p2ICipl, but can also elicit apoptosis by inducing the expression of Bax which binds to and
inhibits Bcl-2 and Bcl-xLat the mitochondria."

Cellular Stress Response andLongevity
In addition to DNA damage , FOXO factors are regulated by a variety ofother stress stimuli,

including nutrient deprivation, hypoxia and reactive oxygen species (ROS). In C.elegans,dauer
denotes an alternative developmental stage of the larva, characterised by low metabolism,
resistance to harsh conditions and increased longevity. Dauer formation is induced by food
deprivation, oxidative stress or other environmental stress." In fact , many longevity mutants
in C. elegans are resistant to oxidative stress." Dauer formation requires the activation of the
nematode FoxO homologue Daf-I6 to induce G 1 cell cycle arrest, mediated at least partially
through the induction of the nematode Cip/Kip inhibitor, Cki-L'" Expression of Cki-I can
induce premature cell cycle arrest in G1, whereas silencing of Cki -I activity by RNA interfer
ence (RNAi) promotes S phase entry/" Consequently, Daf-16 silencing by RNAi reduces the
resistance of worms to oxidative stress.61.62 However, Daf-16 is normally inactivated by the
insulin/insulin-like growth factor (IGF) signaling (IIS) pathway in conditions of high nutri
ent availability and low environmental stressY ·63Similarly, in the fruit fly DrosophilaP when
nutrients are scarce the IIS pathway is suppressed, dFoxO activation promotes G 1 cell cycle
arrest and reduces the metabolic rate but lengthens lifespan.r'

The stress-activated kinase ]NK negatively contr ols metabolism and lifespan in both
Drosophila and C.elegansby antagonising the IIS pathway through phosphorylation ofFoxO.16.29

At molecular level, ]NK-phosphorylation leads to nuclear translocation and acetylation of
FoxO.2SIn this context, sirtuin regulation of FoxO is of particular interest because the yeast
homolog ofdeacetylase SIRTI, Sir2, is associated with increased lifespan in yeast and required
for the longevity response to caloric restriction (CR), an extremely conserved mechanism for
increasing lifespan.6sOverexpression ofSir2 homologs in Drosophila or in C.elegans also suffices
to extend lifespan/" Consistent with the role of FoxO in controlling oxidative stress response
and lifespan , FOX03a knockout in human fibroblasts increases intracellular ROS levels and
induces senescence-like morphological changes/" Thus, in multicellular organisms, from worms
to flies to mammals , FOXO are modulators oflifespan and stress responses, capable ofcausing
cell cycle arrest, lowering metabolism and the reby counteracting aging.
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TumorSuppression
FOXO proteins are known tumor suppressors, which regulate and are regulated by other tu

mor suppressors [e.g., p53) and oncogenes (e.g., ~-catenin). Cellular senescence is an important
anti tumorigenic mechanism that prevents precancerous cells from proliferating. Loss of PTEN
activity, Akt hyperactivity and deregulation ofdownstream targets such as FOXOs are prevalent
features in cancer that interfere with normal senescence." In breast cancer, downregulation or loss
of FOXO activity is associated clinically with a poor prognosis/" In glioblastoma, an aggressive
brain tumor, increased activity ofAkt reduces FOXO binding to the p21Cipl promoter, thereby
disabling cell cycle arrest .54 RUNX, a tumor suppressor often lost in gastric cancer, mediates
apoptosis by enhancing FOXO-mediated transcription ofBIM.69 Moreover, FOXO proteins have
been implicated in the mechanism ofaction for many chemotherapeutic drugs , including taxol,
doxorubicin, cisplatin and gefitinlb ."

Hormone-dependent malignancies are particularly relevant, due to the interactions between
FOXO factors and various nuclear steroid receptors , including the androgen, estrogen and pro
gesterone receptors (AR, ER and PR, respectively). For example androgens control proliferation
of normal prostate cells by activating AR , which then regulates transcription ofvarious target
genes." In early stage cancer of the prostate (CaP) androgens are still required for proliferation
and androgen ablation therapy isan effectivefirst-line treatment.As well as increasing proliferation
by regulating cell cycle proteins, such as CDKs androgens confer protection against apoptosis,"
Activated AR binds to FOXO 1 and probably FOX03a, reduces its DNA binding activity and
thereby attenuating the expression ofproapoptotic proteins, such as FasL,72 PTEN is known to
inhibit AR activity, which is mediated by FOXOs, possibly via antagonising the interactions be
tween the AR and its coactivators and/or by interfering with the ability of the receptor to adopt
an active conformation upon androgen binding." Cross-talk between these transcription factors is
further exemplified by the observation thatAR isa direct FOX03a target gene." CaP cellseventu
allydevelop the ability to proliferate in the absence ofandrogens.Androgen insensitivity has been
linked to a reduction in the activity and expression ofFOX03a, the most abundant family member
in prostate cells," Deregulation of the interactions between steroid receptors and PI3K/AKT/
FOXO pathway playsan important role in other endocrine cancers. For example, in MCF-7 breast
cancer cells, FOX03a not only binds and inhibits the ER but also represses the expression ofthis
nuclear receptor. Expression ofFOX03a in the ER-positive MCF-7 cellsdecreases the expression
ofseveralER-regulated genes and upregulates expression ofthe cyclin-dependent kinase inhibitors
p21 Cipl , p27Kip1 and p57 Kip2? 9 Together, these observations highlight the importance offunctional
interactions between FOX03a and nuclear hormone receptors in suppressing steroid-dependent
cancer cellgrowth and tumorigenesis. The role ofFOXO 1in mediating the antiproliferative effects
ofprogesterone in the endometrium will be discussed later.

FOXO proteins are also involved in the response to chemotherapy aswell as the emergence of
treatment resistance, which often occurs in late stage or recurring cancers. For example, FOX03a
mediates the cytotoxic effects ofcisplatin in colon cancer cells and inhibition ofAkr-dependenr
phosphorylation of FOX03a activity resensitises resistant ovarian cancer cells to cisplatin .8o•81

Although activation ofFOXOs by anticancer drugs may induce cyclearrest and programmed cell
death, chronic FOXO activity may in fact contribute to development ofdrug resistance in some
cancer cells, for example by inducing the expression of multi-drug resistance tran sporter genes
such as MDRI (ABCBJ).82.83Using the K562 chronic myelogenous leukaemia (CML) cell line
and the doxorubicin-resistant derivatives lines KD30 and KD225 as models, we recently observed
that enhanced PI3K/Akt activity and acquisition of chemoresistance paradoxically correlated
with increased expression and nuclear accumulation of FOX03a. Moreover, knockdown of
endogenous FOX03a expression reduced PI3K/Akt activity and sensitised these cells to doxo
rublcin.F'Ihe FOXO target DUSP6, mentioned above, also modulates responses to therapy. For
example, increased DUSP6 expression levels in breast cancer cells is associated with resistance to
the anti -estrogen tamoxifen." while loss ofthis MAPK inhibitor in ovarian cancer plays a role in
cisplatin resistance.f Although the underlying mechanisms remain to be further explored, it is
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increasingly clear that FOXO proteins havea veryambivalent role in drug treatment of cancers;
on the one hand conferringthe desirable cytotoxiceffects and, on the other, contributing to the
emergence of drug resistance.

FOXO andthe Endometrium
The endometrium is the mucosa, characterised by glandsand stroma,which lines the lumen

of the uterus. During the reproductive phase, ovarian estradiol induces the ordered growth of
the endometrium whereasthe posrovulacory rise in progesteronelevels controls differentiation
of this tissuein preparation for an implantingembryo.This differentiationprocess is character
ised first by secretory transformation of the endometrial glands, followed by influxof various
bone-marrowimmunecells, predominantlyuterine naturalkillercells, angiogenesis and transfor
mation of endometrialstromalcells into specialized epitheloiddecidualcells, a process known as
'decidualization." Both in vitro and in vivo,initiation of the decidualprocessrequireselevated
intracellularcAMP levels and sustained activation of the protein kinaseA but maintenanceof
the decidualphenotype isstrictlydependent upon elevatedprogesteronelevels.87

,88 In the absence
of pregnancy, fallingsexhormone levels induce a switch in the secretoryrepertoire of decidual
stromal cells, now characterisedby expression of pro-inflammatorycytokines, chemokines and
matrixmetalloproteinases, which triggers a sequenceofeventsleadingto menstrual sheddingof
the superficial endometrial layer,"

EndometrialDifferentiation andMenstrual Shedding
FOXO1hasemerged asamajorregulatorofprogesterone-dependent differentiation ofthehuman

endometriumand subsequent menstrual shedding(Fig. 3). It wasfirst identified in this tissue asa
transcriptional regulatorof PRL (prolactin) , a majordifferentiation markerof decidualizing endo
metrialstromalcells."Subsequent studiesdemonstratedFOXO1expression isnot onlyinducedin
endometrialstromalcells in response tocAMPsignalingbut alsothat itsexpression invivo duringthe
mid-secretory phaseof the cycle coincides with that of several other transcriptional regulators of the
decidualprocess, includingwild-rype p53,Sp1,STAT5 (signal transducers andactivators oftranscrip
tion 5) and C/EBP~(CCAAT/enhancer-bindingprotein ~)y.90.91 Moreover, manyof thesefactors
arecapable ofphysically interactingwiththeprogesterone receptor(PR)andregulate PRLexpression
bybindingto a discrete regionin the proximal decidua-specificpromoter that containsoverlapping
FOXO andC/EBP~ DNA bindingsites aswell asPRresponse elementhalf-sites. These observations
haveleadto the suggestion that the activated PR serves asa platformfor bindingof cAMP-induced
transcription factors, includingFOX01, and that thesemultimeric complexes regulate the expres
sion of decidualgenenetworks.87•88 In a recentstudy, FOXO1 knockdown usingsmall interfering
RNA wasshownto perturb the expression of 507 genes regulatedupon decidualization, whichac
countedfor 15%ofall regulatedtranscripts." Several genes thatencodeformajorsecretoryproducts
of decidual cells (e.g., IGFBPl,PRL,LEFTY2 and WNT4) are FOX01-dependent. Moreover,
FOXO1 regulates the induction of CDKNl C (pS'7GP2) , a cyclin-dependent inhibitor involved in
G1arrestand simultaneously represses several genesimportant for eitherDNA replication/S phase
(e.g., MCMS), GUM transition (e.g., CCNBl, CCNB2, CDC2, BIRCS and BRIP!) or mitosis
(e.g., PRCl, NUSAPi , CENPF, SPBC2S and ASPM). As mentioned, FOXO transcription fac
tors integratevarious signal transductionpathways bybindingto Smad3and Smad4in response to
TGF-~ signaling or to ~-catenin upon activation of the canonical WNT pathway. In differentiating
endometrialcells, FOXO1 in turn regulates the expression of several genes capable of modulating
the activities of theseupstreamregulatory pathways. For instance, FOXO1 induces the expression
of INSR (insulinreceptor), a majoractivator of the PI3K pathway, as wellas WNT4 and BAMBI
(EMPandactiuin membrane-bound inhibitor).43 BAMBIisa transmembrane glycoprotein related
to TGF-~ family TypeI receptors. However, it lacks an intracellular kinase domainand serves asa
potentinhibitorofBMP,activin andTGF-/3 signalling." Thus, theprofilingofFOXO1targetgenes in
decidualizingendometrial cells furtherpointstowards theexistence ofcomplex feedback mechanisms
that determinethe preference and fine-tune the activity ofupstream regulatory pathways.
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Figure 3. Regulation of FOXOl by progesterone signall ing in decidualizing endometrial
stromal cells. A) progesterone triggers a partial translocation of FOXOl from the nucleus to
the cytoplasm . B)the progesterone receptor (PR) servesasplatform for interaction with several
decidua-specific transcription factors, including FOX01.
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Although cAMP is the primary signal for induction and nuclear accumulation of FOXO1
in decidualizing endometrial cells, its transcriptional output in these cells is tightly regulated by
progesterone through multiple mechanisms. First, progesterone enhances SGKI expression and
activity, which in turn causes a partial translocation ofFOXOI to the cytoplasm." Second, the
progesterone inhibits the expression ofSkp2, which directs FOXO 1 ubiquitination and protea
some degradation." Consequently, in addition to nuclear FOXO1,decidual cellsalsoaccumulate a
pool ofinactive FOXO1in the cytoplasm upon continuous progesterone signaling.Withdrawal of
progesterone from differentiated cultures results in nuclear re-accumulation ofFOXO1,enhanced
B1M expression and cell death, a response that likely contributes to menstrual shedding of the
endometrium in the absence ofpregnancy,"

TheDecidua o/Pregnancy
Human pregnancy has been described as a hyper-inflammatory process , characterised by

influx of macrophages and specialised natural killer cells, profound vascular remodelling and
deep invasion ofthe fetal trophoblast into the maternal deciduas and underlying inner myome
trium.P Ihe ability ofthe maternal decidua to cope with proinflammatory and oxidative stress
signals is key to safeguarding the integrity of the feto-maternal interface during the process of
deep trophoblast invasion. There are several components to the mechanism that confers this
resistance to environmental insults. First, decidualization is associated with the induction of
various free radical scavengers, most notably mitochondrial superoxide disrnutase 2 (SOD2),
monoamine oxidases A and B, thioredoxin, glutaredoxin, peroxiredoxin and glutathione per
oxidase 3 (GPx3), a secreted enzyme with potent extracellular antioxidant actlviry." Second,
and most importantly, ROS strongly induce FOX03a expression in undifferentiated but not in
decidualizing endometrial cells. Notably, expression ofa constitutively active FOX03a mutant
triggers apoptosis in decidualized cells whereas silencingofendogenous FOX03a expression in
undifferentiated cells abrogates apoptosis induced by free radicals .' ! Finally,]NK activation in
response to ROS is firmly silenced upon decidual transformation ofthe endometrium, which is
accounted for, at least in part, by the strong induction of the MAPK phosphatase MKP1 (also
called DUSP1) (Brosens], unpublished observations). Thus, decidual cells not only possess
heightened ROS defences and repair capacity but the simultaneous repression of]NK signaling
and FOX03a expression also disables the pathway responsible for oxidative cell death. Oxidative
cell death at the maternal-fetal interface is a feature ofa variety ofcommon pregnancy disorders,
ranging from recurrent pregnancy loss to fetal growth restriction and preeclampsia." While as
yet untested. it appears likely that impaired decidualization and FOX03a silencing underpin
these obstetric complications.

Endometriosis andEndometrial Cancer
These cyclical waves ofendometrial proliferation, differentiation, shedding and regeneration

are unparalleled in any other tissue ofthe body and occur on average400 times during reproduc
tive life. Not surprisingly, endometrial cancer is the most common malignancy of the female
reproductive tract and its incidence is increasing in North America and Europe. Endometrial
carcinomas are divided into two groups; endometrioid (Type I) and nonendometrioid (Type II)
endometrial cancers.97•98The common Type I, which accounts for 80% ofall endometrial carcino 
mas, is estrogen-related, low-grade, affects pre and peri-menopausal women and is ofien preceded
by complex atypical endometrial hyperplasia. In contrast, Type II tumors are not estrogen-driven
and mostly develop in atrophic endometrium.

In addition to its key role in regulating normal endometrial cyclicity, severalstrandsofevidence
indicated that loss of FOXO1 activity would be an integral event in neoplastic transformation
of the endometrium, especially in endometrioid endometrial cancer (EEC). First, loss or muta
tion of the tumor-suppressor gene PTEN is the earliest detectable genetic defect in EECs and
leads to unrestrained PI3K/Akt signaling." which in turn causes phosphorylation, inactivation
and cytoplasmic sequestration of FOXO transcription factors . Second, Skp2 is overexpressed
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in EEC78,lOO suggesting increased FOXO1 degradation. Finally, unopposed estrogen signaling
is a well-recognised risk factor for EEC and has been shown to enhance PI3K/Akt activity, for
instance through binding ofER to the p85a regulatory subunit ofPI3K.lOl In agreement, several
studies have now reported a marked decrease or complete loss of FOXO1 expression in both
low- and high-grade EECs, which in turn has been functionally linked to uncontrolled cell pro
liferation, increased susceptibility to genotoxic insults and decreased responsiveness to progestin
treatment.ll,78,102 However, loss ofFOXO1 expression in EECs is not merely the consequence of
PI3K/Akt hyperactivity and proteasomal degradation but reflects a marked decrease in transcript
levels.A recent study demonstrated methylation ofthe FOXO1 promoter in 9 out of 10 primary
EECs, although the degree varied considerably between tumor samples. On the other hand, com
parative analysisoftwo widely used EEC lines, HEC-lB and Ishikawa cells,suggested that loss of
FOXO1 expression is the consequence ofincreased decay ofits mRNA.ll It is interesting to note
that microRNAs complementary to FOXO 1 have been identified in several species, including
humans (http://microrna.sanger.ac.uk/). Furthermore, FOXO1mRNA has an extended 3'-UTR
that contains severalAUUA pentamers, indicatingpotential regulation by RNA-bindingproteins.
Thus, loss of FOXO1 in ECCs may involve several mechanisms, including promoter inhibition
and increased mRNA instability.

Interestingly, FOXO1 mRNA levels are also lower in eutopic endometrium ofpatients with
endometriosis.P't'?' although this is not attributable to methylation of the FOXO1 promoter
(Brosens and Lam, unpublished observation). Endometriosis is a prevalent disorder, affecting
5-10% ofwomen during the reproductive years and a major cause ofpelvic pain and infertility. It
is characterised by the presence ofendometrial lesions at ectopic sites, predominantly the pelvic
cavity and ovaries. There is overwhelming evidence indicating that retrograde menstruation and
implantation ofviable endometrial cells at ectopic sites is the primary cause of endometriosis.
How attenuated FOXO1 expression in europic endometrium contributes to the pathogenesis
of this debilitating disease is unknown but likely to involve impaired apoptotic responses prior
to menstruation, leading to an increased load ofviable cells in the menstrual effluent. Although
somewhat controversial, several studies indeed reported that apoptosis is markedly reduced in
premenstrual endometrium ofendometriosis patients as well as in the endometriotic lesions.105,106

Whatever the mechanism, it is clear that FOXO1 is indispensable for safeguarding endometrial
homeostasis during the rapid waves ofproliferation, differentiation, apoprosis, menstrual shed
ding and regeneration.

FOXO andthe Ovary

Follicular Developmentand Ovulation
While FOXO1 is a master regulator of endometrial differentiation, FOX03a orchestrates

ovarian follicular development. In recent years,severalelegant mouse models illustrated the critical
role ofthis transcription factor in ovarian follicle activation, a term that refers to the recruitment
and development of primary follicles from the primordial pool. Castrillon and colleagues were
the first to show that Fox03a-l- female mice exhibit a distinctive ovarian phenotype of global
follicular activation, leading to oocyte death, early depletion of functional ovarian follicles and
secondary infertility; an observation confirmed by others.F'" More recently, Liu et al generated
transgenic mice in which a constitutively active Fox03a mutant is selectivelyexpressed in oocytes
under the control ofthe zona pellucida glycoprotein 3 gene promoter."? Interestingly, these mice
were also infertile, caused by retarded oocyte growth and follicular development and anovula 
tion. Unrestrained Fox03a activity enhanced nuclear localization ofp27 kip1 in oocytes and caused
a dramatic reduction in the expression of bone morphogenic protein 15, connexin 37 and 43,
which are important for paracrine signaling and gap junction communications in follicles.While
perhaps not entirely conclusive, these observations indicate that intra-oocyte Fox03a activity plays
a decisive role in follicular development.
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Two other mousemodelsprovided additional evidence for the central role of Foxoda in fol
licleactivation.The firstwasdesignedto explorethe roleof intra-ovarianPRL signaling. I08 After
ovulation PRL is important for maintenanceof corpus luteum formation and continuous pro
gesteroneproduction afterovulation. It mediatesits effectthrough binding and activationof the
PRLreceptor(PRLR),amemberof the class 1cytokinereceptorsuperfamily. Alternative splicing,
both in humans and rodents, generates a long PRLR form and several shorter forms that differ
in their intracellulardomains.PRLR null female miceare infertilebecause of premature corpus
luteum involutionand insufficient progesteroneexpression. Interestingly, selective expression of
a short receptor isoforrn, termed PR-I, in PRLR-I- mice leadsto a dramatic down-regulation of
Fox03a expression,prematurefollicular development, followed bymassive follicular celldeathand
prematureovarianfailure.108 More recentlyit wasshown that selective ablation ofPtenin mouse
oocytesresultsin activationof the entireprimordialfollicle pool and completedepletionbyearly
adulthood.l'"While the roleofFOX03a isbeyonddispute,FOXO Ia mayalsobe important for
normal ovarianfunction. For example, induction, phosphorylationand inactivation ofFoxO1in
response to follicle-stimulating hormone havebeen implicated in differentiationof primary rat
granulosacells.19,110

Primary Ovarian Insufficiency
Primaryovarianinsufficiency, a designationnow preferredoverterms like'prematureovarian

failure' or 'hypergonadotropichypogonadism: is defined as a primary ovariandefect character
isedby absentmenarche (primaryamenorrhea)or bypremature depletionof ovarianfollicles or
arrested folliculogenesis before the ageof 40 years (secondaryamenorrhea).'!' Primaryovarian
insufficiency is a multifactorialdisorder that affects approximately 1% of women.In addition to
iatrogenic (e.g.,radiotherapy),endocrine, environmental, infectiousand immunological causes,
a number of single gene defects (e.g., FMRl, FSHR, GALT, EIF2B and FOXL2) have been
implicated in familialprimary ovarianinsufficiency, I I 1-116 although the majorityof cases remain
unexplained. In view of the premature reproductivesenescence phenotype of Foxo3a+ female
mice, a recentstudyexaminedthe prevalence of heterozygous or homozygous polymorphisms or
mutations in FOX03a in a cohort of women with primary ovarianinsufficiency. I I? Although 8
single-nucleotidepolymorphisms wereidentified, none seemto affectFOX03a activityor were
associated withovarianinsufficiency.Notably, primaryovarianinsufficiencyisadynamicdisorder
and spontaneous remissions, leadingto pregnancy, are not uncommon although often transient.
Therefore, rather than geneticmutations, perturbation in the mechanisms that control FOX03a
expression or activityare more likely implicated in this distressingdisorder.
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CHAPTER 18

The "0" Class:
Crafting Clinical Care with FoxO Transcription Factors
KennethMaiese,*ZhaoZhongChong,Jinling Hall andYan ChenShang

Abstract

Forkhead Transcription Factors: VitalElements in Biology and Medicine providesa unique
platform for the presentationof novelwork and new insightsinto the vital role that fork
head transcription factors play in both cellularphysiology as well as clinical medicine.

Internationallyrecognizedinvestigators provide their insightsand perspectives for a number of
forkheadgenesand proteins that mayhavethe greatestimpact for the developmentof newstrate
giesfor a broad arrayof disordersthat can involve aging,cancer, cardiacfunction, neurovascular
integrity,fertility, stem celldifferentiation, cellularmetabolism, and immune system regulation.
Yet, the work clearly sets a precedent for the necessity to understand the cellularand molecular
function of forkheadproteins sincethis familyof transcription factorscan limit aswellas foster
disease progression dependingupon the cellularenvironment.

With this in mind,our concludingchapterforForkhead Transcription Factors:VitalElements in
BiologyandMedicine offers to highlightboth thediversityand complexityoftheforkhead transcrip
tion family byfocusing upon the manunalian forkhead transcriptionfactors of the 0 class (FoxOs)
that includeFoxO1,Fox03,Fox04,andFox06. FoxOproteinsareincreasinglyconsidered to repre
sentuniquecellular targetsthatcancontrolnumerousprocesses suchasangiogenesis, cardiovascular
development,vascular tone,oxidative stress, stemcellproliferation,fertility,andimmunesurveillance.
Furthermore, FoxOtranscription factors areexciting considerations for disorders suchascancerin
lightof theirpro-apoptoticandinhibitorycellcycle effects aswellasdiabetes mellitus given theclose
association FoxOsholdwithcellular metabolism. In addition, thesetranscriptionfactorsareclosely
integratedwithseveralnovelsignal transductionpathways, suchaserythropoietin andWnt proteins,
that mayinfluence the abilityofFoxOsto leadto cellsurvival or cellinjury. Furtherunderstandingof
both the function and intricatenatureof the forkhead transcriptionfactorfamily, and in particular
the FoxOproteins,shouldallowselective regulationof cellular development or cellular demise for
the generationof successful futureclinical strategies and patientwell-being.

Abbreviations
A~, ~-amyloid;Akt,proteinkinase B;AFX,acuteleukemiafusion genelocatedinchromosomeX;

AGC, proteinkinase A/protein kinase G/protein kinase C; CBP,CREB-bindingprotein; DAF-I6,
DAuerFormation-I6;DM,diabetes mellitus; EPO,erythropoietin; FKHR, forkhead in rhabdomyo
sarcoma; FKHRLI, forkhead inrhabdomyosarcoma likeprotein1;IKK,IKE kinase; IGF-I, insulin-like
growth factor-I: IGFBPI, insulin-like growth factor binding protein-I: IRS, insulin-responsive
sequence;JNK,JunNrerminalkinase:NF-KB, nuclear factor-KB; PCP,planarcellpolarity;PS,phos
phatidylserine; PTEN, tumor suppressor phosphatase and tensinhomologdeleted on chromosome
ten; PSR,phosphatidylserine receptor; ROS, reactive oxygen species; ug,Drosophila Wingless.
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Introduction
Clinical care for many disease entities requires new therapeutic strategies that focus upon a

numberofpathways and systems in thebodyto modulatecellular proliferation,metabolism, inflam
mation,and longevity. In this respect,membersof the mammalian forkheadtranscriptionfactors
of the 0 class (FoxOs) that include Fox01 , Fox03, Fox04, and Fox06 havebeen identifiedas
important regulators ofcellularproliferation, function,and demise.Thesetranscriptionfactorsare
increasingconsidered aspotentialclinicaltargetsformultipledisorders sincetheycontrolprocesses
associated with angiogenesis, stem cellproliferation, cardiovascular injury, neurodegeneranon,
tumorigenesis, and celllongevity. More than 100 forkheadgenesand 19 human subgroupsthat
rangefromFOXA to FOXSarenowknownto existsincethe initialdiscovery of the fly Drosophila
melanogastergeneflrkhead.1Theprior nomenclaturefor theseproteins,such asforkheadin rhab
domyosarcoma (FKHR), the Drosophilagenefork head (jkh), and ForkheadRElatedACtivator
(FREAC)-1 and -2, hasbeen replaced.The current nomenclaturefor human Foxproteins places
alllettersin uppercase, otherwiseonly the initial letter islistedasuppercase for the mouse, and for
allother chordatesthe initial and subclass letters arein uppercase.'Initially, the FoxOswerefirst
reported in fusiongenes in humansoft-tissuetumorsand leukemias. FOXO1,termedforkheadin
rhabdomyosarcoma (FKHR), and FOX03a, alsoknown as FKHRL1 (forkheadin rhabdomyo
sarcomalikeprotein 1), and their geneswereidentifiedthrough chromosomaltranslocations in
alveolar rhabdomyosarcoma tumors.l Theacute leukemiafusion genelocated in chromosomeX
(AFX), alsoknown asthe FOX04 gene,wasdescribedasagenethat fused to MLL transcription
factor asa resultof the t(X; 11) chromosomaltranslocationin acutelymphoblastic leukemia.'A
fusion between FOX02 and MLL alsooccursin somecases of acute myeloid leukemiathat also
isbelievedto be identical to FOX03a.5

FoxO Protein Expression
FoxOproteinsare found throughout the bodyand areexpressed in tissues of the reproductive

system ofmales and females, skeletal muscle, thecardiovascular system,lung,liver, pancreas, spleen,
thymus,and the nervoussystem."!'SinceFoxO proteins are not equallyexpressed in all tissues,
it is possible that individual FoxO proteins mayhavespecificity in regardsto cellularfunction.
For example, Fox06 expression isfound in several regionsof the brain that playa significant role
in cognitivefunction and emotion, such as the hippocampus,the amygdala, and the nucleusac
cumbens,?In contrast,FoxO1maybe moresuited for the control of motor function and memory
formation,sincethe expression of this protein is primarilyin the striatum and sub-regions of the
hippocampus.t In addition, Fox03 ismorediffusely represented in the hippocampus,cortex, and
cerebellum,suggestingacomplementary rolefor this FoxOprotein to controlcognitive and motor
function. FoxOexpression can be variable in other tissues. Although studiesin micehaveshown
that the mRNAdistributionofFoxo1,Foxo3a,and Fox04 issimilarin theembryoandadult? Foxo1
expression washighest in adiposetissue, Foxo3a expression wasgreatest in the liver, and Fox04
expression wasstrongestin muscle? Subsequentwork in micehasdescribedFoxo1 expression in
all tissues with high levels in the ovaries." Foxo3a alsowasfound to be expressed in all tissues and
Fox04expression wasconsideredto be more tissuespecific in skeletal muscle.P

FoxO Protein Structure and Function as Transcription Factors
Forkhead proteins function as transcription factors to either inhibit or activate target gene

expression." As a result, these proteins must bind to DNA through the forkhead domain that
relies upon fourteen protein-DNA contacts. The forkhead domain in Fox proteins consists
of three a -helices, three ~-sheets, and two loops that are referred to as the wings," but not all
wingedhelixdomains areconsideredto be Foxproteins." On X-raycrystallography" or nuclear
magnetic resonance imaging," the forkhead domain is describedas a "winged helix"as a result
of a butterfly-like appearance. High sequencehomology is present in the a-helices and ~-sheets

with variationsdescribedin either absent ~-sheets and loops or additional a -helices. Although
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both the first and second loops make contact with DNA, it is the second loop that can influence
the stability ofDNA binding. In addition, posttranslational modification ofFoxO proteins, such
as phosphorylation or acetylation that block FoxO activity, alter the binding of the C-terminal
basic region to DNA to prevent transcriptional activity.'?However, other mechanisms may influ
ence DNA binding offorkhead proteins, such as variations in the N-terminal region ofthe DNA
recognition helix, changes in electrostatic distribution, and the ability offorkhead proteins to be
shuttled to the cell nucleus. IO,18

FoxO Proteins, Posttranslational Modulation, Novel Signal
Transduction Pathways, and Cell Cycle Regulation

Posrrranslational modulation ofFoxO proteins involvespathways associatedwith phosphoryla
tion, acetylation, and ubiquitylation (Fig. 1).3,10,19.21 The serine-threonine kinase protein kinase B
(Akt) isa primary mediatorofphosphorylation ofFoxO1, Fox03a,and Fox04 that can blockactiv
ity ofthese proteins.3,22 Activation ofAkt is usuallycytoprorecrive , such asduring hyperglycemia,"
hypoxia,24 ~-amyloid (A~) toxicity,"cardiornyoparhy.'scellular aging,27and oxidativestress.28•3O Akt
can prevent cellular apoptosis through the phosphorylation ofFoxO proteins." Posttranslational
phosphorylation ofFoxO proteins will maintain FoxO transcription factors in the cytoplasm by
association with 14-3-3 proteins and prevent the transcription ofpro -apoptotic target genesy,33
An exception to these observations involving the subcellular trafficking ofFoxO proteins involves
Fox06. This FoxO protein usually resides in the nucleus of cells and is phosphorylated by Akt
in the nucleus . Fox06 does not contain a conserved C-terminal Akt motifwhich limits nuclear
shuttling of this protein, but Fox06 transcriptional activity can be blocked by growth factors
independent ofshuttling to the cytosol through a Fox06 N-terminal Akt site.34

Modulation ofAkt activity also oversees apoptotic pathways of caspases that may offer an
alternative mechanism to regulate FoxO proteins (Fig. 1).35 Caspases are a family of cysteine
proteases that are synthesized as inactive zymogens that are proteolytically cleaved into subunits
at the onset ofapoptosis.36'38The caspases 1 and 3 have been linked to the apoptotic pathways of
genomic DNA cleavage,cellular membrane PS exposure, and activation ofinflarnmatory cells,":"
Caspase pathways may be tied to the forkhead transcription factor Fox03a since increased ac
tivity ofFox03a can result in cytochrome c release and caspase-induced apoptotic death.32,42-44
Pathways that can inhibit caspase 3 activity appear to offer a unique regulatory mechanism. For
example , cell death pathways that rely upon Fox03a also appear to involve caspase 3 activation.
Prior studies suggest that not only does Fox03a activity promote caspase-induced apoptotic
death,32,42-44 but also demonstrate that inhibition ofcaspase 3 has been shown to maintain the
phosphorylated "inactive" state of Fox03a to prevent cell injury.32,42.43 Other work has shown
that caspase 3 activity and cleavage is promoted during transfection ofa triple mutant Fox03a
expression in which three phosphorylation sites have been altered to prevent inactivation of
Fox03a.45Recent work adds further insight to these studies by illustrating that Fox03a may con
trol early activation and subsequent apoptotic injury in microglia during amyloid (A~) exposure
through caspase 3 (Fig. 2).46 Since A~ exposure can facilitate the cellular trafficking ofFox03a
from the cytoplasm to the cell nucleus to potentially lead to "pro-apoproric" programs by this
transcription factor," one program in particular that may be vital for apoptotic injury appears
to involve the activation ofcaspase 3. A~ exposure leads to a rapid and significant increases in
caspase 3 activity with 6 hours followingA~ administration, but that this induction ofcaspase
3 activity by A~ requires Fox03a, since loss of Fox03a through gene silencing prevents the
induction ofcaspase 3 activity by A~.

Posttranslational modulation of FoxO proteins also requires pathways associated with
ubiquitylation and acerylarion.F'" Akt phosphorylation of FoxO proteins not only retains
these transcription factors in the cytoplasm, but also leads to ubiquitination and degradation
through the 26S proteasome 19,48. In the absence ofAkt, IKB kinase (IKK) also can directly
phosphorylate and block the activity of FoxO proteins, such as Fox03a.3,1OThis leads to the
proteolysis of Fox03a via the Ub-dependent proteasome pathway.3,10,19.21 The serum- and
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glucocorticoid-inducible protein kinase (Sgk), a member of a family of kinases termed AGC
(protein kinase A/protein kinase G/protein kinase C) kinases which includes Akt, also can
phosphorylate and retain Fox03a in the cytoplasm." Knowledge that Sgk and Akt can phos
phorylate Fox03a at different sites may offer new opportunities to more effectively prevent
apoptotic cell injury that may be mediated by Fox03a activity. Yet, phosphorylation of FoxO
proteins does not always lead to negative regulation. The protein kinase mammalian sterile
20-like kinase-I also can phosphorylate FoxO proteins directly and lead to their acrivation ." The
ability of sterile 20-like kinase-I to activate FoxO proteins may be linked to c-jun N-terminal
kinase (JNK), since sterile 20-like kinase-I can increaseJNK activation." FoxO proteins also
are acerylated by histone acetyltransferases that include p300, the CREB-binding protein
(CBP), and the CBP-associated factor and are deacetylated by histone deacerylases, such as
Sirr I , a NAD+-dependent deacetylase and the mammalian ortholog of the silent information
regulator 2 (Sir2) protein (Fig.L)." Acetylation ofFoxO proteins provides another avenue for
the control of these proteins. Once acetylated such as by CBP, FoxO proteins may translocate
to the cell nucleus but have diminished activity since acetylation of lysine residues on FoxO
proteins has been shown to limit the ability ofFoxO proteins to bind to DNAY In addition,
acetylation can increase phosphorylation ofFoxO proteins by Akt .52

FoxO proteins are also tied to other unique signal transduction pathways that involve proteins
derived from the Drosophila Wingless (Ttg) and the mouse Int-I genes." The Wnt proteins are
secreted cysteine-rich glycosylated proteins that can control cell proliferation, differentiation,
survival, and tumorigenesis.tv" More than eighty target genes ofWnt signaling pathways have
been demonstrated in human, mouse,Drosophila, Xenopus, and zebrafish. These genes are present
in severalcellular populations, such as neurons , cardiornyocytes, endothelial cells.cancer cells, and
pre-adipocytes.v At least nineteen oftwenty-four Wnt genes that express Wnt proteins havebeen
identified in the human.53.54.56

The canonical Wnt pathway controls target gene transcription through ~-catenin. 53.54 It is the
~-catenin pathway that appears to tie FoxO proteins and Wnt signaling together.57 For example, in
relation to Alzheimer's disease,A~ is toxic to cells,25.58 and is associated with the phosphorylation
ofFoxO I and Fox03a that can be blocked with ROS scavengers.l?A common denominator in the
pathways linked to Ab toxicity involvesWnt signaling through ~-catenin. ~-cateninmay increase
FoxO transcriptional activity and competitively limit ~-catenin interaction with members of the
lymphoid enhancer facror /T cell factor family'? and ~-catenin also has been demonstrated to be
necessary for protection against A~ toxicity in neuronal cells.58

Additional shared signal transduction pathways between Wnt and FoxO proteins involveAkr,
Processes that involve cellular proliferation, injury, and immune system modulation with FoxO
proreins" also have parallel cellular pathways with Wnt and Akr. For example, Wnt relies upon
Akt for the proliferation and differentiation ofcardiomyocytes/" In addition. reduction in tissue
injury during pressure overload cardiac hypertrophy and the cytoprotcctive benefits of cardiac
ischemic preconditioning also appear to depend upon Akt .53.54Furthermore,Wnt over-expression
can independently increase the phosphorylation and the activation of Akt to promote cellular
protection and control microglial activarion ."

Yet, other members ofthe forkhead family in addition to FoxOs also rely upon Wnt signaling
in severalscenarios that involve regulated aswellas unchecked cellproliferation.53.54.61For example,
FoxD3 is activated by the Wnt pathway to control neural plate development'" and Foxll activates
the Wnt/~-catenin pathway to increase extracellular proteoglycans, promote gastrointestinal cell
proliferation, and possiblyfoster carcinogenesis.65The Wnt pathway also utilizes forkhead members
to modulate endocrine activity and can activate Foxn I for regulatory control ofthymic function."
In other examplesofcelldevelopment, Wnt signaling has been shown to relyupon Foxfl and Foxfl
during intestinal maturation in mur ine models.? In addition, Foxa2 in mice may be a significant
component in early anterior-posterior axis polarization.f Deregulation ofWnt alone also pro
motes activation of~-catenin that has been associated with the proliferation ofmedulloblastoma
tumors/" In addition, reduced expression of inhibitors of the Wnt pathway, such as axin, may
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Figure 1, viewed on previous page. Posttranslational modulation of FoxO proteins is associated with
intricate cellular signal transduct ion pathways. Posrrranslarional modulation of FoxO proteins involves
pathways associated with phosphorylation, acetylation, and ubiquirylarlon, Protein kinase B (Akt) can
preventcellularapoptosis through the phosphorylation ofFoxO proteins and phosphorylation (p)ofFoxO
proteins will inhibit FoxO transcription factors through cytoplasmic localization by association with
14-3-3proteins and prevent the transcription of target genesthatlead to apoprosis.Ifactivated, FoxOscan
prevent inflammatory cellactivation through the inhibitionofnuclear facror-xll (NF-KB) and maycontrol
inflammatorycell activation through membrane phosphatidylserine (PS)externalization . FoxO proteins
can lead to apoptotic death pathwaysthat involvemitochondrial (Miro) releaseof cytochrome c (Cytoc)
andcaspaseactivation through aFas-rnediared ligand (FasL)death pathway,rumor-necrosis-factor-related
apoptosis-inducingligand (TRAIL), BH3-only proteins Noxa and Birn,or pS3. Cell cycleinhibition that
blocks rumor growth through FoxO protein activation may require c-myc, p27,and NF-KB.

foster lung cancer cell invasion." Multiple other studies also point to the activation of the Wnt
pathway during gastric cancer. For example, Wnt5a expression has been correlated with advanced
gastric cancer stages and a poor prognosis" while experimental activation ofthe ~-catenin pathway
leads to the development ofgastric rumors." In conjunction with forkhead proteins, loss ofFoxll
that can regulate the Wnt pathway and prevent ~-cateninnuclear accumulation is believed to be
a significant etiology for gastrointestinal tumorigenesis."

FoxO proteins also appear to be ideal to cellular proliferation not only through Wnt medi
ated pathways, but also through the blockade of cell cycle progression. For example, Fox03a
and Fox04 can promote cell cycle arrest in mouse myoblastic cell lines through modulation of
growth-arrest and DNA-damage-response protein 45. 10.73 Treatment of chronic myelogenous
leukemia cell lines with the Bcr-Abl tyrosine kinase inhibitor imatinib requires Fox03a activa
tion to antagonize cell proliferation and promote apoptotic cell death through increased TRAIL
producrlon." In addition, the transcription factor E2F-l that controls the induction of the cell
cycle has been reported in cell lines to increase the endogenous expression ofFoxO 1 and Fox03a
to lead to cell cycle arrest. " Incontrast, the loss ofFox03a activity in association with c-myc, p27,
and nuclear factor-KB (NF-KB) can result in cell cycle induction and malignant transformation
ofmouse cells in the presence ofoncogene activation (Fig. 1).3.10 Other work suggests that FoxO
proteins utilize the p53 upstream regulator p19(Arf) through myc to block cell cycle induction
and lymphoma progression."

FoxO Proteins, Apoptosis, and Oxidative Stress
Although genes linked to apoptosis sometimes foster cellular proliferation rather than cell

death, cellular apoptosis can become a significant component for pathology in diseases such as
neurodegenerative disease, diabetes mellitus (DM), and cardiovascular injury," More importantly,
regulation of apoptotic pathways appears to serve a critical juncture for the control of tumor
growth and unregulated cell proliferation.IO•

57 Apoptotic cell death is considered to be a dynamic
process that involves both early and late events . Membrane phosphatidylserine (PS) externaliza
tion is an early event during cell apoptosis that assists microglia to target cells for phagocyrosis.Y"
This process occurs with the expression of the phosphatidylserine receptor (PSR) on microglia
during oxidative stress,79.81 since blockade of PSR function in microglia prevents the activation
of microglia.3o.40 As an example, externalization of membrane PS residues occur in cells during
periods ofoxidative stress that involve anoxia ." reactive oxygen species (ROS) exposure." and with
agents that produce ROS, such as 6-hydroxydopamine.83 In contrast to cells with PS exposure,

Figure 2, viewed on previous page. During amyloid (A~I.42) exposure in inflammatory microglial cells,
Fox03a translocares to the cellnucleus to governan initial activation and proliferationof microglialcells.
Microglia were followed at 6 hours after A~I.42 (10 /AM) (A~) administration with immunofluorescent
stainingfor Fox03a (Texas-red). Nucleiof microgliawerecounterstained with DAPI. In mergedimages,
control cells have readily visiblenuclei (white in color) that illustrate absence ofFox03a in the nucleus.
In contrast, merged imagesafter A~I.42 (10 !!M) exposure are not visible (red in color) and demonstrate
translocation ofFox03a ro the nucleus. Control = untreated microglia.
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the cleavage ofgenomic DNA into fragments is considered to be a later event during apoptotic
injury.77.84 Endonucleases responsible for DNA degradation have been identified and include the
acidic, cation independent endonuclease (DNase II), cyclophilins, and the 97kDa magnesium
dependent endonuclease. In the nervous system, endonucleases include a constitutive acidic
cation-independent endonuclease, a constitutive calcium/magnesium-dependent endonuclease,
and an inducible magnesium-dependent endonuclease.T'"

Interestingly, the induction ofapoptosis in cells through FoxO proteins may require pathways
aligned with oxidative stress. Oxidative stress is a result ofthe release ofreactive oxygen species
(ROS) that consist of oxygen free radicals and other chemical entities. Oxygen free radicals
and mitochondrial DNA mutations have become associated with tissue injury, aging , and ac
cumulated toxicity for an organism." ROS include superoxide free radicals, hydrogen peroxide,
singlet oxygen, nitric oxide, and peroxynitrite." Most reactive species are produced at low levels
during normal physiological conditions and are scavenged by endogenous antioxidant systems
that include superoxide dismutase, glutathione peroxidase, catalase, and small molecules, such
as vitamins C, E, D3 and nicotinamide, the amide form ofniacin or vitamin B3.78.85.86 During
periods of oxidative stress, FoxO transcription factors can lead to apoptosis," since forkhead
transcription factors such as FoxO 1 and Fox03a must be present for oxidative stress to result
in apoptotic cell injury," Under other conditions of oxidative stress, Fox03a in conjunction
with JNK have been shown to modulate an apoptotic ligand activating a Fas-mediated death
pathway in cultured rnotoneurons.f to lead to apoptosis through tumor-necrosis-factor-related
apoptosis-inducing ligand (TRAIL) and BH3-only proteins Noxa and Bim in neuroblastoma
cells," and to promote pro-apoptotic activity ofp53 .89Additional work shows that loss ofFoxO
expression during oxidative stress is protective to cells. For example , protein inhibition or gene
knockdown of FoxO 1 or Fox03a can lead to reduction in ischemic infarct size in the brain,"
mediate protection of metabo tropic glutamate receptors during vascular injury,42 enhance
pancreatic ~-cell or neuronal survival through NAD+ precursors during oxidative stress," and
provide trophic factor protection with erythropoietin (EP0)32 and neurotrophins." Yet, it
should be noted that some studies suggest that the loss ofFoxO 1, Fox03a, and Fox04 protein
expression may actually lead to an increase in free radical release that can be responsible for
oxidative stress." In addition, FoxO proteins may be protective during aging and exercise, since
Fox03a activity may enhance vascular smooth muscle antioxidant properties in aged animals
and be beneficial to the cardiovascular system during physical exertion."

FoxO Proteins, Metabolism and Cell Longevity
Clinical and experimental studies higWight the role otFoxO proteins during cellular metabo

lism and cellular longevity. When one considers DM, this disorder is a significant health concern
for both young and older populations.94.95Approximately 16 million individuals in the United
States and more than 165 million individuals worldwide suffer from DM. By the year 2030 , it is
predicted that more than 360 million individuals will be afflicted with DM and its debilitating
conditions. Type 2 DM represents at least 80% ofall diabetics and is dramatically increasing in
incidence as a result of changes in human behavior and increased body mass index.85.94Type 1
insulin-dependent D M ispresent in 5-10% ofall diabetics, but is increasing in adolescent minority
groupS.85.94 Furthermore, the incidence ofundiagnosed diabetes and impaired glucose tolerance
in the population raises additional concerns.

Patients with DM can develop significant neurodegenerative55.85.96 and cardiovascular dis
ease.85.97 Interestingly, the development of insulin resistance and the complications of DM can
be the result of cellular oxidative stress.85.94 Hyperglycemia can lead to increased production of
ROS in endothelial cells,liver cells,and pancreatic ~-cells.85.94.95 Recent clinical correlates support
these experimental studies to show that elevated levelsofceruloplasmin are suggestiveofincreased
ROS.85.94.95 Furthermore, acute glucose swings in addition to chronic hyperglycemia can trigger
oxidative stress mechanisms, illustrating the importance for therapeutic interventions during acute
and sustained hyperglycemic episodes.85.94
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Earlyworkwith FoxO proteins hasshownthat metabolicsignalingwith thesetranscription fac
tors isconservedamongmultiplespecies includingCaenorbabditiselegans. Drosophila melanogaster,
and mammals. FoxO proteins are homologous to the transcription factor DAuer Formation-16
(DAF-16) in the worm Caenorhabditis elegans that can determine metabolic insulin signaling
and lead to lifespan extension.98.99suggestinga significant role for FoxO proteins in relation to
mammalian cell funcdon.v" In fact, FoxO proteins can stimulate the insulin-likegrowth factor
binding protein-I (IGFBP1) promoter by binding to the insulin-responsive sequence (IRS).IOO
Both insulin and insulin-like growth factor-I (IGF-1) can suppress this activity through activa
tion ofAkt.IOO•101

In clinical studies. analysisof the genetic variance in FOXOla and FOX03a on metabolic
profiles,age-related diseases, fertility,fecundity, and mortality haveobserved higher HbA lc levels
and increased mortality risk associated with specific haplotypes of FOXOla. I 02 These clinical
observations may coincide with the demonstration in human endothelial progenitor cells that
elevatedglucoselevelscan reduce posttranslational phosphorylation ofFOXO1, FOX03a, and
FOX04 and allowfor the nuclear translocation oftheseproteins to initiatean apoptotic program
in endothelial progenitor cells.'?' In experimental models, FoxO proteins may prevent the toxic
effectsof high serumglucoselevels. Interferon-gammadrivenexpressionof tryptophan catabolism
by cytotoxic T lymphocyte antigen 4 may activate Foxoda to protect dendritic cells from injury
in nonobese diabetic rnice.l'" Additional studies have demonstrated that adipose tissue-specific
expression of Fox01 in mice improved glucose tolerance and sensitivity to insulin during an
elevated fat diet. !Os FoxO proteins also may protect against diminished mitochondrial energy
levels known to occur during insulin resistancesuch as in the elderlypopulations .85.94.95 In caloric
restricted mice that havedecreasedenergyreserves, Foxo1, Fox03a. and Fox04mRNA levels were
noted to progressively increase over a two-year course.t Theseobservations complement studies
in Drosophila and mammalian cellsthat demonstrate an increase in insulin signalingto regulate
cellularmetabolism during the up-regulation ofFoxO1 expression.l'"

However, the ability for FoxO proteins to maintain proper physiologiccontrols over cellular
metabolism maybe limited and occur only during specificcircumstances.For example.mice with
a constitutively active Fox01 transgene have increased microsomal triglyceride transfer protein
and elevated plasma triglyceride levels.!" Studies in cardiomyocytes also suggest detrimental
results with enhanced FoxO activity. Increased transcriptional activity ofFoxO1, such as by the
Sirtl activator resverarrol, can diminish insulin mediated glucose uptake and result in insulin
resistance.!" In addition. over-expression of Foxo1in skeletalmusclesof mice can lead to reduced
skeletalmusclemassand poor glycemic control,109 illustratingthat activation ofFoxO proteins also
mayimpair cellularenergy reserves. Additional investigationsthat block the expressionofFoxo1
in normal and cachectic mice!'?or reduce Fox03 expressionIII show the reversewith an increase
in skeletal muscle massor resistance to muscle atrophy. These results become especiallyrelevant
in patients with cancer and cachexia,since FoxO protein expression may further musclewasting
for these individuals. Given these concerns.one potential agent to consider for the maintenance
ofcellularmetabolism in cancer patients isnlcodnamide.v-" an agent that alsocan inhibit FoxO
protein activiry," Inpatients with DM.oral nicotinamide protects ~-cell function, preventsclinical
diseasein islet-cellantibody-positivefirst-degreerelativesofType-1 DM. and can reduce HbA1c
levels.36.78.94 Nicotinamide, which is closelylinked to cell longevity pathways.1l2·m may derive its
protectivecapacitythrough two separatemechanismsofposttranslationalmodificationofFox03a.
Nicotinamide not only can maintain phosphorylation of Fox03a and inhibit its activity. but
also can preserve the integrity ofthe Fox03a protein to block Fox03a proteolysis that can yield
pro-apoptotic amino-terminal fragments."

As an extension to the work with cellular metabolism, FoxO proteins also have been
linked to cell longevity and aging as shown by early studies linking DAF-16 in Caenorhabditis
elegans to increased longevity.3.19.21 .114However. the relationship between FoxO transcription
factors and proteins that increased cellular lifespan has been met with controversy. Sirt1 is a
NAD+-dependent deacetylaseand the mammalian ortholog ofthe silent information regulator
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2 (Sir2) protein associated with increased lifespan in yeast. Some studies suggest that stimula
tion ofSirtl during starvation is dependent upon Fox03a activity as well as p53 .115In contrast,
other work has shown in cell culture that Sirt 1 may repress the activity ofFoxO 1, Fox03a, and
Fox04, suggesting that cellular longevity may benefit from reduction in FoxO protein gener 
ated apoptosis.!" Additional studies offer alternative views to illustrate that Sirtl binds to
FoxO proteins, such as Fox04, to catalyze its deacetylation and enhance Fox04 activity while
acetylation of Fox04 by cyclic-AMP responsive element binding (CREB)-binding protein
serves to inhibit Fox04 transcriptional activity.3,19,2I ,1l4

FoxO proteins also may be protective during aging, cell senescence, and exercise. In cultured
human dermal fibroblasts, gene silencing of Fox03a protein results in cell morphology consis
tent with cell senescence, cell population doubling times, and the generation ofROS, suggesting
that FoxO protein activity may be required to extend cell longevity and limit oxidative stress."?
Additional work in animal models of aging demonstrates a reduction in Sirt1 in the heart, but
no significant change in Fox03a expression with advanced age. However, during exercisetrain
ing, an up-regulation ofFox03a and Sirtl activity is observed in the heart," suggesting that the
benefits ofphysical activity for the cardiovascular system may be associated with FoxO proteins.
Interestingly, increased levelsofSirt 1 less than 7.5-fold can be associated with expression ofcata
lase, an anti-oxidant that is controlled by Fox01a to possibly reduce cell injury during oxidative
stress.Yet,elevated levelsofSirtl at 12.5-fold can result in cardiomyocyte apoptosis and decreased
cardiac funcrion.!" In addition, FoxO proteins may be protective during aging, since loss of
Fox03a activity in explanted vascular smooth muscle ofaged animals maylimit tissue antioxidant
properties through decreased manganese-superoxide dismutase and lead to enhanced cell injury
with aging.1l9 Extension ofcellular lifespan that depends upon the prevention ofcell senescence
at least in primary human cultured vascular cells also may require the negative regulation ofAkt
to allow for the activation ofFox03a.120

FoxO Proteins, Stem Cells and Cardiovascular Development
FoxO proteins represent important targets for several disorders, but high on the list may

be therapies to block cancer growth since FoxO proteins can modulate stem cell proliferation
and new vessel growth. The initial identification of FoxO proteins in soft-tissue tumors and
leukemias , neoplasms now believed to harbor cancer stem cellsfor tumor self-renewal," suggests
that FoxO proteins may be closely associated with the oversight ofstem cell proliferation and
differentiation. For example, either simultaneous deletion ofFoxol, Foxo3a,and Foxo4 or single
deletion ofFoxo3a in mice prevents the repopulation ofhematopoietic stem cells and leads to
apoptosis in these stem cell populations.t -!" Furthermore,vascular cytoprotective agents, such
as the growth factor EPO,33,122,123 also may be required to modulate FoxO protein activity such as
during erythroid progenitor cell developmem.I-!" suggesting that current clinical use ofagents
such as EPO during anemia or cancer may have less defined treatment implications for patients
than originally anticipated.33.124 In cell culture and animal studies, EPO is cytoprotective in
vascular cells and can stimulate postnatal neovascularization by increasing endothelial progeni
tor cell mobilization from the bone marrow.73.124,125 Interestingly, the ability ofEPO to foster
eythroid progenitor cell development is dependent upon the inhibition ofFox03a activity,33,124
but also may require regulation of specific gene expression through an EPO-Fox03a associa
tion to promote erythropoiesis in cultured cellsy6 In relation to the reproductive potential of
an organism, deletion of the Fox03a gene results in the depletion of oocytes and subsequent
infertility!" Other work using a mouse model of Fox03a over-expression in oocytes further
suggests that Fox03a retards oocyte growth and follicular development and leads to anovulation
and luteinization ofunruptured follicles.128These studies may suggest a role for FoxO proteins,
and specifically Fox03a, in relation to not only the development of cancer stem cell niches,
but also in regards to oocyte and follicular cell maturation. For example, in a small percentage
ofwomen who suffer from premature ovarian failure mutations in FOX03a and FOXO1a have
been observed.!"



CraftingClinicalCarewith FoxOProteins 251

In addition to the modulation of stem celldevelopment, FoxO proteins playa significant role
to govern new vessel growth that can impact upon tumor cellgrowth and dispersion. New capil
lary formation from pre-existingvessels into an avascular area isa processknown as angiogenesis
that ispresent during embryogenesis,during menstruation,and during pathologicalprocesses that
involvewound healing,chronicinflammation,and tumor growth.54.124 FoxOproteinsareintimately
involvedin endothelial celldevelopment and angiogenesis. For example,Foxo3a -/- and Foxo4 -/
micedevelopwithout incidenceand areindistinguishablefromcontrol litterrnates.However, mice
that aresinglydeficientin Foxo1 die byembryonicdayelevenand lackdevelopmentofthe vascular
systern.P? Additional studies illustrate that endothelial cell colonies in Foxo l-deficient mice fail
to respond to vascular endothelial growth factor in a manner similar to wild-type endothelial
cells.!"suggestingthat FoxOsare necessaryfor the development ofvascularcellsaswellas for the
biologicalresponseto cellularmediators.

During cardiac development, FoxO proteins also appear to be necessary to modulate car
diomyocyte proliferation . Both FoxO1 and Fox03 are expressed during embryonic through
prenatal stages in the developing myocardium. The expression of these FoxO proteins is
believed to negatively regulate cardiomyocyte growth, since overexpressionof FoxO1 blocks
cardiomyocyte proliferation but expression of dominant negative FoxO1 leads to enhanced
cardiomyocyte growth.132Theseobservations mayprovide clues into the roles ofFoxO proteins
during cardiac hypertrophy. Atrogin-I, a protein that can block cardiac hypertrophy, may rely
upon the up-regulation of Foxol and Fox03a to disrupt cardiac hypertrophy, since mice lack
ing atrogin-I are susceptible to cardiac hypertrophy and do not yield increased expression of
Foxol and Fox03a.133

In regards to smooth muscle cell growth, Foxo'Ia has been demonstrated to block vascular
smooth muscleproliferation and maylessenthe effectsfrom disorderssuch asatherosclerosis and
hypertension. In a rat balloon carotid arterial injury model, gene transfer ofFox03a can inhibit
neointimal hyperplasia through the preventionofvascularsmooth musclegrowth.134However,not
all FoxO proteins mayexert an inhibitory effectupon vascularsmooth musclecells. Fox04 may
inhibit smooth musclecelldifferentiation through the repressionof the transcriptional coactiva
tor of smooth musclegenes myocardin.I" but other work suggests that Fox04 also can increase
matrix metalloproteinase 9 expressionto promote vascularsmooth musclemigration and foster
neointimal hyperplasla.t"

In light ofthe ability ofFoxO proteins to regulate vascularsmooth musclecellproliferation,
these transcription factors mayhavea significant clinical role in regards to disorders that involve
hypertension and cardiac failure. Vascularsmooth muscle cells are vital for the regulation of
vascular tone and systemicarterial blood pressure. For example, high flowstates in vessels can
reduce FoxO1 activity, resulting in the potential proliferation ofvascular smooth muscle cells,
vascular neointimal hyperplasia, and subsequent pathological states such as hypertension."?In
fact, o.l-adrenergic agonists that increase systemic blood pressure can have the reverse effect
and stimulate the expression ofFoxOI and its nuclear translocation that ultimately may lead
to apoptotic endothelial cell injury.138 In addition, more than moderate levelsof vessel cyclic
stretch that can occur during hypertension may lead to the phosphorylation and inhibition of
Foxo1and Foxo3ain smooth musclecellsto further contribute to pathological smooth muscle
cellproliferation.139 Furthermore, in human aswellasmurine models of cardiacfailure,increased
expressionofFoxtranscription factors, suchasFoxOIa, havebeen observed to suggestapotential
association ofFoxO proteins with imminent cardiac failure.!"

FoxO Proteins and the Immune System
Forkhead transcription factors have a vital role in maintaining immune system function.

For example, the forkhead family member FoxP3 can control the development and function of
thymic-derived CD4(+)CD25(+) regulatory T cells (Treg) that impart autoimmunity. Lossof
FoxP3can result in autoimmune disorders.l" In addition, recent work identifiesthe expressionof
FoxP3in tumor cells, suchasmelanoma,142 aswellasin Tregswhich maysignificantly affectpatient
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mortality sincethe increasedpresenceofTregsin cancerpatients combinedwith FoxP3expression
in tumors mayimpair antitumor autoimmune responsesand lead to high mortality.t"

In regards to FoxO proteins, these forkhead transcription factors also may impact upon
neoplastic progressionsince they lead to the induction ofapoptotic pathwaysand mayinfluence
early apoptotic membrane PS externalization (Fig. 1). The ability to regulate early apoptotic
membrane PSexposure" and inflammatorycellactiviry" can ultimatelyimpact upon cellsurvival
sinceactivated immune cellscan lead to the phagocytic removaloftumor cells.79•

84Inflammatory
cells, such as macrophages or microglia, require the activation of intracellular cytoprotective
pathwaysto proliferate and removeinjured cells.80.144At times,this can be a beneficialprocessand
form a barrier for the removalof foreign micro-organismsand promote tissue repair during cell
injury.73.8S However,inflammatorycellsalso maylead to cellulardamage through the generation
of ROS and through the production of cytokines." Interestingly, in mice deficient for Foxo3a,
lymphoproliferation, organ inflammation ofthe salivaryglands, lung, and kidney,and increased
activity of helper T cells results, supporting an important role for Fox03a in preventing T cell
hyperaccivity.!" Fox03a also appears to be necessaryfor neutrophil activity, since Foxo3a null
miceare resistantto modelsofneutrophilic inflammationthat involveimmunecomplex-mediated
intlammatory arrhritis.U"

In clinicalstudies,patients with rheumatoid arthritis and osteoarthritis showphosphorylation
ofFOX03a in T lymphocytesaswellasFOXO 1and FOX04 in synovial macrophages, suggesting
that lossoffunctional FOXO familymembers maylead to inflammatory cellactivation in these
disorders,"? FOXOIgene transcript levels alsoare down-regulated in peripheral blood mononu
clearcellsofpatients with systemiclupus erythematosusand rheumatoid arthritis,148 illustratinga
potential etiology through the lossof functional FOXO proteins for these disordersand possibly
providingabiomarkerofdisease activity. Otherworkhasdemonstrated that FOXO 1protein regu
latesL-selectinexpression that can regulatehuman T lymphocytetrafficking.149More importantly,
studies suggesta relationship between the regulation ofimmune system activityand the induc
tion ofapoptotic pathwaysthat aredependent upon FoxO proteins. Preventionofinflammatory
activation and apoptosis in the nervous systemsuchas in systemiclupuserythematosus in animal
models mayrequire the up-regulation ofdifferent Foxproteins, such as Fox]l and Fox03a, that
can block NF-KBactivationand interferon-gammasecretion.ISO FoxO proteins alsomaywork in
concert with Fassignalingto clearactivatedT cellsfollowinga decreasein cytokinestimulation in
patients with autoimmune lymphoproliferative syndromes,lSIsuggestingthat activationofspecific
FoxO proteins may be beneficialfor autoimmune disorders but mayimpair treatments designed
to target tumor cellsthrough immune mediated pathways.

FoxO Proteins and Cancer
Aspreviouslymentioned, one of the most important treatment possibilities for FoxOproteins

involves strategiesdesigned to control human cancer progression in light of the ability of FoxO
proteins to lead to apoptosis and block cellcycleprogression. For example, studies with prostate
cancer haveshown that the tumor suppressorphosphatase and tensin homolog deleted on chro
mosome 10 (PTEN) is mutated in approximately80%of tumors with the loss of FOXO 1 and
FOX03a activity. In cell cultures, over-expression of FoxO1 and Fox03a in prostrate tumor
cell lines also leads to apoptosis, suggestingthat FoxOl and Fox03a are necessaryfor limiting
prostate cell tumor growth." In addition, it has been shown that inhibition of Fox03a activity
can result in enhanced prostate tumor cellgrowthlS2while agents that increaseFox03a activity
in both androgen sensitive and androgen insensitive prostate cell lines prevent prostate cancer
cell progression.l" Furthermore, therapeutic strategies that rely upon the over-expression of a
nonphosphorylatable form of Fox03a that cannot be inactivated can sensitizeprostate cancer
cells to androgen-withdrawal-inducedapoptosis.P" Yet, it should be noted that in prostate cell
lines Fox03a can be a positive regulator of androgen receptor expressionand therefore mayplay
a complex role in prostate cancer cell proliferation and growth inhibition.1ss Other factors that
control FoxO protein function alsomayplaya roleduring prostate tumor progression. In prostate
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cancercells, cyclin-dependent kinase 1(CDKl ) canbecomeover-expressed andsubsequentlyphos
phorylateFOXO1to blockits transcriptional activityand contributeto prostateturnorigenesis.P"
In asimilarmanner,it hasbeenshownthat astrocyte-elevated gene-I (AEG-l) canbeupregulated
in clinicalprostate cancer.!" possibly lead to activationof Akr that suppresses FOX03al58 and
apoptosisin prostate tumor cells.

Initialinvestigations ofFOX03a inclinicalbreastcancersuggested that activation ofFOX03a
wasassociated with lymph nodal metastasis and a poor prognosis.P" In contrast to these obser
vations,other studies reported that FOX03a was inactivatedby IKK and that inactivationof
FOX03a was associated with a poor prognosis in breast cancer.l'" suggesting that FOX03a
sub-cellular localization and pathways that enhanceitsactivity couldbeusednot onlyasprognostic
assays but also as therapeutic targets. Other work in breast cancer cells demonstrate the tumor
repressive abilityofFoxOsbyillustratingthat increased activityofFox03a inassociation with]NK
in breastcancercelllines"! or in association withcyclin-dependent kinase inhibitor p27 in isolated
human breastcancercellscanpreventbreastcancergrowth.162 In addition, FoxOproteinsmaybe
able to modulate estrogenfunction and indirectlyblock breast cancergrowth. Over-expression
of Fox03a in breast cancercell linescan decrease the expression of estrogenreceptor regulated
genesand inhibits 17beta-estradiol (E2)-dependentbreastcancergrowth.!"

In addition to the ability to inhibit prostate and breast tumor growth, FoxO proteins may
representaviable option to control tumor progression in other tissues. FoxOproteinscanfunction
asredundant repressors of tumor growth.Forexample, somaticdeletionin miceofFoxo1,Foxo3a,
and Foxo4 resultsin the growthof thymiclymphomas and hemangiomas.l'" Other workillustrates
that Fox03a activationin colon carcinomacelllinesprevents tumor proliferation through Myc
targetgenes that involve the Mad/Mxd family of transcriptionalrepressors. 165In addition, the loss
ofFox03a activitymayparticipatein oncogenictransformationin B-chroniclymphocyticleuke
mial66 and in the progression of chronic myelogenous leukemiacelllines," Furthermore, studies
suggestthat some proteins, such as the Kaposi's sarcoma-associated herpesvirus latent protein
LANA2,mayspecifically blockthe transcriptionalactivityofFox03a to leadto tumor growth.167

In cellmodelsof endometrial cancer, presensitization of cells to block Akt activationand foster
transcriptionactivityof FoxO1enhancesthe effectof chemotherapyto limit tumor growth.168

Conclusions and Future Perspectives for Clinical Care
Thepotential translationofFoxO proteinsand their signaltransduction pathways into viable

therapeuticstrategies offerexcitingprospects for the future. FoxO proteins control several vital
cellularpathways in relation to cell proliferation, metabolism, inflammation, and survival. For
example, the known mutations in FoxOproteins that existin several disease entitiesmayprovide
novelinsightsfor therapeuticstrategies that canaddress abroadrangeofdisorders.Furtheranalysis
in largerpopulationsof patientswith prematureovarianfailure, diabetes,or strokecouldenhance
our understandingof the role of FoxO proteins in thesedisorders. When one considers the role
ofFoxO proteinsat the cellularlevelsuchasin cardiacand endothelialcells, targetingthe activity
of FoxO1, Fox03a, or Fox04 mayprevent the onset of pathologicalcardiachypertrophy and
neointimal hyperplasia that may result in atherosclerosis. Interestingly, new work suggests that
the utilizationand combinationof multiplebiomarkers mayimproveriskassessment for patients
suffering fromcardiovascular disorders.F' Thesestudiesillustratethat FoxOproteinsmayserveas
biomarkers of disease activitysuchas in individuals with imminent cardiacfailure. l40

In regards to potential treatments directed against cancer, the ability of FoxO proteins to
control cellcycle progression and promote apoptosishighlightsthe potential ofFoxOs to become
an important component for new strategies directed against tumorigenesis. For example, useof
triplemutant FoxO1or Fox03a expression in whichthreephosphorylationsiteshavebeenaltered
to prevent inactivationofthis protein has beenproposed asa potential therapeuticagent against
melanomarumors" and endometrialcancer,'?" Other work alsooffers additional support for the
useofFoxO proteins asbiomarkers ofcancerprogression. Asan example, down regulationof the
phosphatidylinositol3 kinaseand Akt pathways havebeen associated with increased transcript
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levels for FOXO la and FOX03a in clinical prostate cancer samples and may indicate the onset
ofprecancerous changes or the progression ofon-going tumor growth.!" Although loss ofAkt
activity in prostate cancer cells can result in enhanced Fox03a activity and subsequent apoptosis
oftumor cells.!" it is conceivable that early stages ofcancer may lead to reduced Akt activity with
insufficient levelsofactive forkhead transcription factors to limit tumor progression. In addition,
the early and persistent expression ofphosphorylated FOXO la in gastric tumors may not only
indicate the onset ofcancer, but also suggest an improved prognosis for patients."?

Despite the presently known attributes ofFoxO proteins to potentially treat a number ofdisor
ders, FoxO transcription factors also may limit clinical utility. Further investigations are required
since FoxO protein inhibition ofcell cycleprogression may not consistently lead to apoptotic cell
death. Some investigations suggest that during oxidative stress, Fox03a activation in association
with Sire1can lead to cell cyclearrest,but not result in apoptotic cell injury.!" Furthermore, during
hypoxic stress, forkhead transcription factors, such as FOX03a, may potentiate anti-apoptotic
pathways in breast cancer cells to further tumor growth. 174FoxO proteins also have been linked to
potential chemotherapy drug resistance. Increased expression ofMDRl (P-glycoprotein) has been
associated with chemotherapy drug resistance in breast cancer cells and recent work shows that
FoxO 1 can stimulate the transcriptional activity ofMDRl that may promote increased tolerance
oftumor cells.!" In addition, the common pathways shared between Wnt and forkhead proteins
may have another side that impacts upon the ability to control tumor growth. 53

•
63 FoxO proteins

may assist with ~-catenin activation in the Wnt pathway and lead to tumor cell proliferadon."
In the presence ofWnt deregulation and increased ~-catenin activity, tumorigenesis may ensue,
such as with the proliferation ofmedulloblastoma tumors." Therefore , prediction of biological
outcomes during FoxO protein involvement may be uncertain and may be influenced by a host
of factors such as tissue characteristics, cellular metabolic state, and the age of an individual.
Given these circumstances , further basic and clinical investigations will be required to continue
to elucidate the immense potential ofFoxO proteins as well as to understand the potential limits
ofthese transcription factors.
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