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Preface

The 20th century was rich with great scientific and mathematical discoveries. One
of the most influential events in mathematics was the introduction of the Lebesgue
integral (Lebesgue, 1901) followed soon after by Borel’s development of measure
theory (Borel, 1903). Combined with Cantor’s set theory, whose axiomatic form ap-
peared in the beginning of the century (Zermelo, 1907), these sources with their deep
and remarkable ideas made possible the development of a large number of function
spaces that are extremely important in modern analysis, such as Lp-spaces (F. Riesz,
1910), Sobolev spaces (Sobolev, 1938), Schwatz’s distributions (Schwartz, 1951),
and many more. Undoubtedly, modern functional analysis, including measure the-
ory, the theory of topological vector spaces, and operator theory, with their various
powerful techniques and methods, ultimately takes their origin from these remark-
able sources.

Another extremely influential series of events was the emergence of the math-
ematical formalism of probability theory (Kolmogorov, 1933) in conjunction with
the introduction of Brownian motion (Einstein, 1905; Wiener, 1927) and Lévy pro-
cesses (Lévy, 1938). These led to a number of deep developments in the theory of
stochastic processes, two of which are the Itô’s stochastic calculus (Itô, 1948) and
the theory of stochastic ordinary and partial differential equations. An important
attribute in this chain is the Fokker-Planck-Kolmogorov equation (Fokker, 1913;
Planck, 1917; Kolmogorov, 1931), which provides a deterministic way of describ-
ing stochastic processes.

By the 1950s the ideas behind Sobolev spaces were well understood, Schwartz
distributions were introduced (justifying, in particular, the Dirac delta function in-
tensively used in physics), mathematical theories of Brownian motion and Lévy
processes were developed, and mathematical reasoning of stochastic integrals, Itô’s
stochastic calculus had emerged (justifying the Langevin stochastic differential
equations introduced in 1908). This spawned the rapid development in the 1960s not
only of new powerful methods and generalizations of the above theories, but also the
initiation of a number of new theories. Just to mention a few, these are the theory of
pseudo-differential operators (J.J. Kohn and L. Nirenberg 1965, and L. Hörmander,
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1965) in its modern form, Fourier integral operators (Hörmander, 1968–71), contin-
uous time random walks (Montroll and Weiss, 1965), and fractional order Fokker-
Planck and diffusion equations. There was an abundance of applications of these
theories in the natural and social sciences and engineering, including the filtering
theory (Kalman, Bucy, 1961), etc. In the scope of these theories, a number of long-
standing mathematical problems have found their solutions. The related theories of
fractional order differential operators and equations have also led to a huge number
of applications in science and engineering, as well as inside mathematics itself.

Many good books and papers have been written about the classical theories men-
tioned above, and continue to appear, since extensive investigations, discovering
new concepts and developing new theories, are ongoing. With no pretense of com-
pleteness, we refer the reader to the books [Nik77, BIN75, Tri77, Tri83] on func-
tion spaces, [Hor83, Tre80, Tay81, Shu78, Won99] on pseudo-differential operators
and Fourier integral operators, [IW81, Pro91, KSh91, Sit05, App09] on Itô calculus
and stochastic differential equations, and [OS74, SKM87, Rub96, Pod99, KST06,
Mai10] on fractional calculus and fractional order differential equations.

What is the present book about? This book is an introduction to the theory
of pseudo-differential operators with symbols singular with respect to dual vari-
ables combined with fractional order differential equations and their applications
to various applied fields. One of the essential requirements in the classical theory
of pseudo-differential operators is the symbol must be smooth on the cotangent
bundle, that is a(x,ξ ) ∈ C∞(Ω ,Rn). However, in the solution of many problems
of mathematical physics pseudo-differential operators with singular symbols arise.
For instance, solution operators of two- or multi-point boundary value problems fre-
quently appear to have symbols singular in dual variables. For example, the symbol
of the solution operator of the following simple nonlocal boundary value problem

∂ 2u(t,x)
∂ t2 +

∂ 2u(t,x)
∂x2 (t,x) = 0, t ∈ (0,2), x ∈R,

u(0,x) = ϕ(x), u(1,x) = u(2,x), x ∈ R,

is (see for details, Section 2.2)

s(t,ξ ) =
cos(ξ t)[sinξ − sin(2ξ )]− sin(ξ t)[cosξ − cos(2ξ )]

sinξ − sin(2ξ )
,

which has irreducible singularities at the points πk, k = ±1,±2, . . . , and ±π/3+
2πm, m = 0,±1, . . . . Nonlocal boundary value problems arise, for instance, in
plasma physics, diffusion in porous media, etc. Pseudo-differential operators with
symbols singular with respect to dual variables (ΨDOSS) allow us to revisit from
a new angle many classic boundary value problems, as well. Examples include
the Schrödinger operator i ∂∂ t − ω

ch̄

√
I−ω2Δ , arising in the theory of relativisti-

cally free particles, the theory of Bessel potentials with symbols |ξ |−α , where α
is an arbitrary positive number. Many other examples, including fractional order
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pseudo-differential equations with singular symbols, will be considered throughout
the book.

Pseudo-differential operators with symbols singular with respect to dual
variables were first considered systematically by Cordes, Williams [CW77],
Plamenevski [Pla86], and Ju. A. Dubinskii [Dub82], though episodically appeared
earlier in works of other authors (e.g., [Kon67]). Cordes and Williams used meth-
ods of abstract algebra to define algebras of pseudo-differential operators with non-
smooth symbols with respect to dual variables ξ = (ξ1, . . . ,ξn), and applied these
algebras to solution of singular elliptic pseudo-differential equations. Plamenevski
used the Mellin’s transform approach to the construction of singular pseudo-
differential operators. Dubinskii defined his operators with the help of infinite
order differential operators. The latter requires the analyticity of the symbols in
domains not containing singularities. Hence, the corresponding algebras of pseudo-
differential operators have locally analytic symbols. We also note that pseudo-
differential operators with symbols singular with respect to the current variable were
studied by Nagase in [Nag77].

Our approach is different from those mentioned above. In Chapter 2 of this book
we introduce and studyΨDOSS in the form

A f (x) =
1

(2π)n

∫

Rn

a(x,ξ )F[ f ](ξ )e−i(x,ξ )dξ ,

where F [ f ](ξ ) is the Fourier transform of f and (x,ξ ) = x1ξ1 + . . . ,+xnξn. Due to
singularity of the symbol a(x,ξ ), this operator is not well defined even on infinitely
differentiable functions with compact support. Indeed, let f0 ∈ C∞

0 (R
n), such that

F [ f0](ξ0) = 1 in a neighborhood of a non-integrable singular point ξ0 of the symbol
a(x,ξ ). Then the integral in the above definition of the operator A diverges. There-
fore, we introduce a special class of test functions and the corresponding space of
distributions, for which the operator A with a singular symbol a(x,ξ ) is well defined.
The space of test functions denoted byΨG,p(R

n), where G⊂R
n and p ∈ [1,∞), and

the corresponding space of distributions (we call them ψ-distributions) denoted by
Ψ ′
−G,p′(R

n), are relatively new and not adequately presented in the literature. These
spaces are studied in detail in Chapter 1. The Fourier transform of any function in
ΨG,p(R

n), by definition, has a compact support contained in G. The dependence
of spaces ΨG,p(R

n) and Ψ ′
−G,p′(R

n) on the parameter p is not formal (see details
in Section 1.10). L. Hörmander in his book [Hor83] pointed out that the Fourier
transform is not well adapted to Lp-spaces. However, in the above construction
one cannot avoid working with Fourier transform in Lp-spaces, sinceΨG,p(R

n) and
Ψ ′
−G,p′(R

n) depend in an essential way on p.
Chapter 4 discusses the existence and uniqueness problem of general nonlo-

cal boundary value problems for ΨDOSS as well as their applications to vari-
ous problems of analysis. Initial and other types of boundary value problems for
fractional order ΨDOSS are important to include in our book due to their wide
applications in science and engineering. For instance, the fractional order Fokker-
Planck-Kolmogorov (FPK) equations are used as mathematical models of various
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processes in physics, biology, finance, hydrology, etc. In particular, it is well known
that a deep triple relationship exists between the classical FPK equation, its associ-
ated Itô stochastic differential equation, and the corresponding driving process. The
driving process in the classical case is a Brownian motion. If one changes the driving
process, then its corresponding stochastic differential equation and FPK equation
counterparts will also change. In this sense the driving process plays an important
role. What is the driving process in the case of fractional order FPK equations?
And what form does the associated stochastic differential equation assume? These
are natural questions arising in the case of fractional FPK equations. Chapter 7 dis-
cusses these questions in detail. The reader will see that the driving process can be
described as a scaling limit of continuous time random walks, which first appeared
in the literature in 1965 in the paper [MW65] by Montroll and Weiss. The stochas-
tic differential equation associated with fractional FPK equation will take a form
that is driven by a time-changed Brownian motion if there are no jump components.
Random walks, including continuous time random walks, approximating mixed and
time-changed Lévy processes, which will serve as driving processes in SDEs arising
in Chapter 7, will be discussed in Chapter 8.

Chapters 3, 5, and 6 provide fractional calculus background including recent
developments in this area, such as distributed and variable fractional order differen-
tial operators, as well as boundary value problems for fractional order differential
equations. Chapters 5 and 6, in particular, discuss fractional generalizations of the
famous Duhamel principle to various forms of fractional order differential equa-
tions.

Finally, in Chapter 9 we develop a complex analogue of pseudo-differential op-
erators with singular symbols. We note that in this theory many issues still remain
open. In the earlier works, the complex theory was constructed by methods essen-
tially different from the methods used in real analysis. The main reason for that
was the absence of a suitable Fourier transform technique in the complex case. The
existence of the Borel and the Fourier-Laplace transforms do not give appropri-
ate results because of their narrow application. We will develop a new complex
Fourier transform technique on fiber spaces of analytic and exponential functions
and functionals. Based on this construction we will be able to study not only the
new wide classes of differential and pseudo-differential equations but also to im-
prove the existing results. This method allows us also to detect the deep connection
between analytic and exponential solvability of initial and boundary value problems
for pseudo-differential equations with analytic and meromorphic symbols.

Nowadays the number of applications of the theory of ΨDOSS and fractional
order differential equations is rapidly increasing. The author hopes that the selected
material reflects the current state and will serve as a good source for those who
want to study the theory of ΨDOSS and fractional differential equations and use
their methods in their own research. It seems as though this is the first attempt to
present systematically the theory of ΨDOSS in the chosen format. Therefore, the
style of the book is introductory. Each chapter supplies a section containing histori-
cal and additional notes on related topics for those readers who want further reading
(Tashkent-Boston-New Haven).
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Chapter 1
Function spaces and distributions

1.1 Introduction

This chapter is devoted to function and distribution spaces. We first recall definitions
of some well-known classical function and distribution spaces, simultaneously in-
troducing the terminology and notations used in this book. Then we introduce (see
Section 1.10) a new class of test functions and the corresponding space of distribu-
tions (generalized functions), which play an important role in the theory of pseudo-
differential operators with singular symbols introduced in Chapter 2. By singular
symbols we mean, if not otherwise assumed, symbols singular in dual variables.
We will denote the space of test functions endowed with the strong topology by
ΨG,p(R

n), where G ⊂ R
n and p ∈ [1,∞), while the corresponding space of distri-

butions, called ψ-distributions, byΨ ′
−G,p′(R

n). The dependence of spacesΨG,p(R
n)

and Ψ ′
−G,p′(R

n) on the parameter p is not formal (see examples in Section 1.10).
For p = 2 these spaces coincide with the spaces H±∞(±G) introduced and studied
in [Dub82]. The general case of p ≥ 1 was introduced in [Uma97, Uma98]. For
further historical details see Section 1.13.

Pseudo-differential operators with singular symbols in the dual variable (ΨDOSS)
are important in the modern theory of partial differential equations (see exam-
ples in Section 2.2). To solve boundary value problems for pseudo-differential
equations with ΨDOSS in the Sobolev, Besov, BMO, Lizorkin, and other clas-
sical spaces one needs to know when ΨDOSS has a continuous closure to these
spaces. The closure of ΨDOSS to classical function spaces requires the denseness
of ΨG,p(R

n) in these spaces. The necessary and sufficient conditions of the dense-
ness of ΨG,p(R

n) in Lp(R
n) and other classical function spaces will be studied in

detail in Section 1.11. By definition, elements of ΨG,p(R
n), i.e., test functions, are

Lp-functions such that their Fourier transforms have compact support. In accordance
with the Paley-Wiener-Schwartz theorem elements ofΨG,p(R

n) are entire functions
of a finite exponential type whose restrictions to R

n belong to Lp(R
n).

© Springer International Publishing Switzerland 2015
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2 1 Function spaces and distributions

The class of entire functions of a finite exponential type and its various subspaces
are broadly used by many researchers in different fields of analysis. In our construc-
tion there is one subtlety: G in the definition of ΨG,p(R

n) allows to localize singu-
larities of symbols ofΨDOSS. At the same time,ΨG,p(R

n) is a subclass of the class
of exponential functions of a finite type. The smaller is G, the narrower isΨG,p(R

n).
It is not hard to indicate such a G so that the corresponding spaceΨG,p(R

n) will not
be dense in Lp(Rn).

Lizorkin type spaces, introduced in Section 1.12, are exact spaces for which
ΨDOSS’ with symbols singular at the origin are well defined. The exactness used
here means that the number of orthogonality conditions, under which ΨDOSS is
well defined, is minimal.

In this book we use the following notations: R, C, N, and Z denote the set of
real, complex, natural, and integer numbers, respectively. N0 is the set of extended
natural numbers: N0 ≡ N∪ {0}. For n ∈ N by R

n we denote the n-dimensional
Euclidean space of n-tuples x = (x1, . . . ,xn), x j ∈R, j = 1, . . . ,n. Let r be a positive
real number and a be a point in R

n. Then by Br(a) we denote the n-dimensional
open ball with the radius r and center a, that is Br(a) = {x∈R

n : |x−a|< r}, where

|x| =
√

x2
1 + . . .+ x2

n. A nonempty set A ⊂ R
n is called open if Bε(a) ⊂ A for every

a ∈ A with some ε = ε(a) > 0. By a neighborhood of a point a ∈ A we understand
any open subset of A which contains a. For a given sequence yk ∈ A,k = 1,2, . . . ,
its limit, in general, may not belong to A. The set A is called closed if it contains all
its limit points. One can make a set closed adding its all the limit points, which is
called a a closure of A and denoted by A. For instance, Br(a) = {x∈R

n : |x−a| ≤ r}.
A point of A is interior if it has a neighborhood contained in A. By the boundary

of a given set A we understand A \ ◦
A, where

◦
A is the set of interior points of A,

and the symbol “\” means, as usual, “set-minus.” For the boundary of A we will
use the notation ∂A. For instance, the boundary of Br(a) is the n− 1-dimensional
sphere Sr(a) = ∂Br(a) ≡ {x ∈ R

n : |x− a| = r}. There are sets with no boundary,
i.e., ∂A = /0. An example of such a set is Sr(a). The set A is called bounded if there
is a ball with a finite radius containing A. Any closed bounded set in R

n will be
called a compact. If A is a compact subset of B, then we write A � B. We will say
that a property P holds almost everywhere (a.e.) in A if P breaks down only in a set
of zero measure in A.

We assume that the reader is familiar with the theory of Borel sets, the Lebesgue
integral, the Lebesgue measure, as well as some basic notions of normed/Banach
and Hilbert spaces, including the notions such as norm, inner product, fundamental
sequence, and completeness. If x is an element of a Banach space X , then the norm
of x will be denoted by ‖x|X‖ or ‖x‖X .

Finally, for the reader’s convenience in Chapter 1 we provide the necessary aux-
iliary results, but not all of them with proofs. In case, when proof is not provided we
refer the reader to other appropriate sources.
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1.2 Hölder-Zygmund spaces

Let Ω be a bounded open set in R
n with a smooth boundary ∂Ω . We denote by

C(Ω) the set of functions f defined and continuous on Ω and by C(Ω ) the set of
functions defined on the closed set Ω and continuous up to the boundary of Ω .
C(Ω ) is endowed with the norm

‖ f‖C(Ω) = max
x∈Ω̄

| f (x)|.

Further, let Cm(Ω) be the set of functions differentiable in Ω up to order m :

Cm(Ω) = { f ∈C(Ω) : Dγ f ∈C(Ω), |γ| ≤ m}.

And finally,

Cm(Ω) = { f ∈C(Ω) : Dγ f ∈C(Ω), |γ| ≤ m}
is the set of functions, whose derivatives up to order m are continuous on Ω . We
define the norm in Cm(Ω ) by

‖ f‖Cm(Ω) = ∑
|γ|≤m

‖Dγ f‖C(Ω ). (1.1)

The space Cm(Ω ),m ∈ N0, is a Banach space with respect to the norm (1.1). For
a continuous function f the set {x : f (x) �= 0} is called a support of f and denoted
supp f . Further, we denote by Cm

0 (Ω) the subset of Cm(Ω ) consisting of functions f
for which Dγ f (x) = 0,x ∈ ∂Ω , |γ| ≤ m.

Definition 1.1. Let 0 < λ < 1. We denote by Cλ (Ω ) the set of functions f ∈C(Ω)
such that

| f (x)− f (y)| ≤C|x− y|λ (1.2)

holds for arbitrary x,y ∈ Ω with a positive constant C. Cλ (Ω ) is a Banach space
with respect to the norm

‖ f‖Cλ (Ω) = ‖ f‖C(Ω) + sup
x�=y

| f (x)− f (y)|
|x− y|λ .

If λ = 1 then condition (1.2) is called a Lipschitz condition, and the corresponding
set of functions is called a Lipschitz class. The Lipschitz class will be denoted by
Lip(Ω ). We notice that if λ > 1 then a function satisfying condition (1.2) is a con-
stant. For λ > 1 Hölder spaces can be defined as follows. Let λ = m+ μ , where
m ∈ N, and 0 < μ < 1. Then we denote by Cλ (Ω) the set of functions f ∈Cm(Ω)
such that

|Dα f (x)−Dα f (y)| ≤C|x− y|μ
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holds for all α, |α| = m, and x,y ∈ Ω with a positive constant C, not depending
on x and y. Here α = (α1, . . . ,αn), α j ∈ N0, j = 1, . . . ,n, is a multi-index, |α| =
α1 + · · ·+αn, and

Dα f (x) =
∂ |α | f (x)

∂xα1
1 . . .∂xαn

n
.

The Hölder space Cλ (Ω ) with λ = m + μ , 0 < μ < 1, is also denoted by
Cm,μ(Ω ), emphasizing that m < λ < m+ 1. In this notation if 0 < λ < 1, one has
Cλ (Ω) = C0,λ (Ω ) and Lip(Ω ) = C0,1(Ω). The space Cλ (Ω ) = Cm,μ(Ω) is a Ba-
nach space with respect to the norm

‖ f‖Cλ (Ω) = ‖ f‖Cm(Ω) + sup
x�=y

|Dα f (x)−Dα f (y)|
|x− y|μ .

We also introduce the space Cλ (Ω) of functions f such that f ∈Cλ (K) for arbitrary
compact K �Ω . The spaces Cλ (Ω) and Cλ (Ω), where 0 < λ �= 1,2, . . . , are called
a Hölder spaces of order λ . A function in Cλ (Ω) is called uniformly Hölder con-
tinuous, while a function in Cλ (Ω) is called locally Hölder continuous. We notice
that the class of Lipschitz continuous functions does not coincide with the class of
continuously differentiable functions, that is C1(Ω) �= C0,1(Ω ). Indeed, a simple
example f (x) = |x| shows that f is Lipschitz continuous on [−1,1], but not contin-
uously differentiable on this interval.

Definition 1.2. Let 0 < λ ≤ 1. We denote by C λ (Ω) the set of functions f ∈C(Ω)
such that

| f (x− h)+ f (x+ h)− 2 f (x)| ≤C|h|λ

holds for arbitrary x,x± h ∈ Ω and with a positive constant C not depending on h
and x ∈Ω . The expression Δ2

h f (x) = f (x−h)+ f (x+h)−2 f (x) is called a second
finite difference of f at the point x with the step vector h ∈ R

n. C λ (Ω) is a Banach
space with respect to the norm

‖ f‖C λ (Ω) = ‖ f‖C(Ω) + sup
x,x±h∈Ω ,h �=0

|Δ2
h f (x)|
|h|λ .

The space C λ (Ω ) is called a Zygmund space of order λ . Obviously, any Lipschitz
continuous function is in C 1(Ω ). On the other hand, Zygmund [Zyg45] showed that
there is a function in C 1(Ω) and nowhere differentiable, and hence, is not Lipschitz
continuous. Thus the inclusions C1(Ω)⊂C0,1(Ω)⊂ C 1(Ω) are strict.

For λ > 1 Zygmund spaces can be defined as follows. Let λ = m+ μ , where
m ∈ N, and 0 < μ ≤ 1. Then we denote by C λ (Ω) the set of functions f ∈Cm(Ω)
such that

|Δ2
h Dα f (x)| ≤C|h|μ

holds for all α, |α| = m, and x,x± h ∈ Ω with a positive constant C not depending
on h and x. The space C λ (Ω) is a Banach space with respect to the norm
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‖ f‖Cλ (Ω) = ‖ f‖Cm(Ω) + sup
x,x±h∈Ω ,h �=0

|Δ2
h Dα f (x)|
|h|λ .

Introduce also a Zygmund space C λ (Ω) of functions f such that f ∈ C λ (K) for an
arbitrary compact K � Ω . Thus, the Zygmund spaces C λ (Ω ) and C λ (Ω) are de-
fined for all λ ≥ 0, including integers. If λ = m, then the spaces Cm(Ω) and Cm(Ω)
are strict subspaces of C m(Ω) and C m(Ω), respectively. The following proposition
says that Hölder and Zygmund spaces coincide if λ is not integer.

Proposition 1.1. [Tri77] Let λ > 0 and λ /∈ N. Then Cλ (Ω) = C λ (Ω).

If Ω = R
n, or unbounded open set, then one needs to take into account the be-

havior of a function near infinity. For instance, the set of functions f : Rn →C with
continuous and bounded derivatives Dα f for all α, |α| ≤ m, endowed by the norm

‖ f‖Cm(Rn) = ∑
|α |≤m

sup
x∈Rn

|Dα f (x)|,

is a Banach space. This space is denoted by Cm
b (R

n). In analysis the set C∞(Rn) of
infinite differentiable functions defined on R

n play an important role. This set is not
normalized; however the notion of convergence, or a topology, can be defined in it
(see Section 1.5). An important subsets of C∞(Rn) are infinite differentiable func-
tions with compact support, and functions with bounded derivatives of all orders,
respectively defined by C∞

0 (R
n) and C∞

b (R
n).

The following statement known as the Arzela-Ascoli Lemma (see, e.g., [Tri83])
plays an important role in the theory of function spaces.

Lemma 1.1. (Arzela-Ascoli Lemma) Let K � R
n and a sequence of functions

{ fn}n∈N ⊂C(K) satisfy the following two conditions:

1. “Uniform boundedness”: for all n = 1,2, . . . , there exists a number M > 0, such
that ‖ fn|C(K)‖ ≤M;

2. “Equicontinuity”: for an arbitrary ε > 0 there exists a number δ > 0, such that
if x,y ∈ K, and |x− y|< δ , then | f (x)− f (y)|< ε for all n = 1,2, . . . .

Then there is a uniformly convergent subsequence of { fn(x)}n∈N.

1.3 Lp-spaces

Definition 1.3. Let 1 ≤ p < ∞. Introduce Lp(Ω), the set of Lebesgue measurable
functions f : Ω →C for which the Lebesgue integral

∫

Ω

| f (x)|pdx
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is finite; L∞(Ω) denotes the set of Lebesgue measurable functions bounded almost
everywhere on Ω , that is | f (x)| ≤C < ∞ for almost all x ∈ Ω . For f ∈ L∞(Ω) the
smallest number C such that f (x) ≤ C a.e. in Ω , is called the essential supremum
and denoted by esssup f . For instance, the function f (x) = x if x rational, and f (x) =
1/(1+ x2) otherwise, belongs to L∞(R) with esssup | f | = 1 (even though sup | f | =
∞). It follows from the definition of Lp(Ω) that two functions f and g are equal in
Lp(Ω) if f (x) = g(x) a.e. on Ω .

Lp(Ω) is a Banach space for all 1≤ p ≤ ∞ with respect to the norm

‖ f‖Lp =

⎧⎨
⎩
(
∫
Ω
| f (x)|pdx)1/p, if 1≤ p < ∞;

esssup | f |, if p = ∞.

Only the case p = 2, i.e., L2(Ω) defines a Hilbert space with the inner product

( f ,g) =
∫

Ω

f (x)g(x)dx

for f ,g ∈ L2(Ω). Here ḡ is the complex conjugate of g. Functions in L1(Ω) are
called “absolutely integrable.”

Proposition 1.2. The two following inequalities hold:

1. Minkowski’s inequality: ‖ f + g‖Lp ≤ ‖ f‖Lp + ‖g‖Lp is valid for arbitrary
f , g ∈ Lp(Ω), p≥ 1;

2. Hölder’s inequality: |( f ,g)| ≤ ‖ f‖Lp‖g‖Lq is valid for arbitrary f ∈ Lp(Ω) and
g ∈ Lq(Ω), where p,q≥ 1, 1/p+ 1/q= 1.

Two numbers p,q ≥ 1 satisfying the condition 1/p+ 1/q = 1 are called a conju-
gate pair. The Minkowski’s inequality generalizes immediately to a finite number
of functions f j ∈ Lp(Ω), j = 1, . . . ,N :

∥∥ N

∑
j=1

f j
∥∥

Lp
≤

N

∑
j=1
‖ f j‖Lp .

In general, if f (x,a) ∈ Lp(Ω) is a family of functions depending on a parameter a∈
A⊂R

m, such that ‖ f (x,a)‖Lp ∈ L1(A), then the following generalized Minkowski’s
inequality ∥∥∥∥∥∥

∫

A

f (x,a)da

∥∥∥∥∥∥
Lp

≤
∫

A

‖ f (x,a)‖Lpda (1.3)

holds.
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Proposition 1.3. Let Ω ⊂ R
n be bounded and p1 < p2. Then Lp2(Ω)⊂ Lp1(Ω).

In other words this proposition states that for Ω bounded, Lp(Ω) decreases when
p increases. The proof of this proposition can be easily obtained using the Hölder
inequality. For unbounded Ω it is not so.

Example 1.1. Indeed, let p1 < p2. Then, for instance, the function

f1(x) = (|x|n + 1)−(1+ε1)/p2 ∈ Lp2(R
n)

for any positive real ε1. But, f1(x) /∈ Lp1(R
n), if 0 < ε1 < p2/p1− 1. On the other

hand, for the function

f2(x) =

{
|x|−n(1−ε2)/p1 , if |x| ≤ 1,

0, if |x|> 1,

one can easily verify that f2 ∈ Lp1(R
n) for any positive ε2, but f2(x) /∈ Lp2(R

n), if
0 < ε2 < 1− p1/p2.

The proposition below provides some well-known properties of Lp-spaces.

Proposition 1.4. Let Ω ⊆R
n. The space Lp(Ω) possesses the following properties:

1. For all 1≤ p < ∞ the space Lp(Ω) is separable;
2. If 1 < p < ∞ and q is its conjugate then Lp(Ω) is reflexive, and its dual

(Lp(Ω))∗ = Lq(Ω) in the sense of isometric isomorphism. For p = 1 one has
(L1(Ω))∗ = L∞(Ω). However, if p = ∞, then the dual (L∞(Ω))∗ is not isomor-
phic to L1(Ω);1

3. The set of step functions defined on Ω form a dense set in Lp(Ω) for all p ∈
[1,∞). Moreover, C∞

0 (Ω) is also dense in Lp(Ω), p ∈ [1,∞). Here C∞
0 is the set

of infinitely differentiable functions vanishing outside a compact set in Ω . (These
denseness statements are not valid if p = ∞.)

The second statement in this Proposition is a part of the Riesz representation
theorem on Lp-spaces. Namely, for any linear continuous functional defined on
Lp(Ω), p ∈ [1,∞), there exists a unique function g ∈ Lq(Ω), where q is the con-
jugate of p, so that

L( f ) =< f ,g >=

∫

Ω

f (x)g(x)dx,

and the norm of L is equal to ‖g‖Lq . Recalling the norm of linear continuous func-
tionals, one has

‖L‖= sup
0 �= f∈Lp(Ω)

|L( f )|
‖ f‖Lp(Ω)

= ‖g‖Lq(Ω).

1 In fact, (L∞(Ω))∗ is isomorphic to the space of finite Borel measures with the total variation
norm. The latter contains L1(Ω) as a linear subspace, see, e.g., [Tri77].
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The last equality in this chain shows also that for the norm of g∈ Lq(Ω), q ∈ (0,∞],
the relations

‖g‖Lq(Ω) = sup
0 �= f∈Lp(Ω)

|< g, f > |
‖ f‖Lp(Ω)

= sup
f∈Lp(Ω),‖ f‖Lp(Ω)=1,

|< g, f > | (1.4)

hold.

1.3.0.1 The Riesz-Thorin interpolation theorem

Interpolation theorems play an important role in modern analysis, see, for exam-
ple, Bergh and Löfström [BL76], or Triebel [Tri77]. The Riesz-Thorin theorem on
interpolation of Lp-spaces was the first theorem in this theory.

Theorem 1.1. Let T be a linear mapping on a generic space containing all the
spaces Lp(Ω), 1 ≤ p ≤ ∞,Ω ⊆ R

n. Suppose T1 and T2 are restrictions of T, such
that operators

T1 : Lp1
(Ω)→ Lq1

(Ω) and T2 : Lp2
(Ω)→ Lq2

(Ω)

where 1≤ p1, p2,q1,q2 ≤∞, are bounded and have norms M1 and M2, respectively.
Further, let pθ and qθ be defined by

1
pθ

=
1−θ

p1

+
θ
p2

and
1
qθ

=
1−θ

q1

+
θ
q2

,

where θ ∈ [0,1]. Then the restriction Tθ of T to Lpθ
(Ω) :

Tθ : Lpθ
(Ω)→ Lqθ

(Ω) (1.5)

is a bounded operator with the norm

‖Tθ‖ ≡M ≤M1−θ
1 Mθ

2 . (1.6)

1.4 Euler’s gamma- and beta-functions

The function
Γ (z) =

∫ ∞

0
e−t tz−1dt, ℜ(z) > 0,

is called Euler’s gamma-function. Γ (z) can be analytically extended to the whole
complex plain C except points z = 0,−1,−2, . . . , which are simple poles of the
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gamma-function. Using the integration by parts, one can show that Γ (1 + z) =
zΓ (z). Obviously, Γ (1) = 1. These two facts immediately imply Γ (n+ 1) = n! for
n ∈ N0 (with the convention 0! = 1).

For z = 1
2 , using the substitution t = s2, one has

Γ
(

1
2

)
=

∫ ∞

0

e−t dt√
t

= 2
∫ ∞

0
e−s2

ds.

One can easily show that A =
∫ ∞

0 e−s2
ds = π/2. Indeed, changing to the polar coor-

dinates,

A2 =

⎛
⎝

∞∫

0

e−s2
ds

⎞
⎠
⎛
⎝

∞∫

0

e−u2
du

⎞
⎠=

1
4

∫

R2

e−(s
2+u2)dsdu =

π
2

∞∫

0

er2
rdr =

π
4
.

Hence, Γ ( 1
2 ) =

√
π.

Further, Euler’s beta-function B(s,u) is defined by

B(s,u) =
∫ 1

0
xs−1(1− x)u−1dx, ℜ(s) > 0,ℜ(u)> 0.

Taking the productΓ (s)Γ (u) =
∫
R2
+

xs−1yu−1e−(x+y)dxdy, and using the substitution

x+y= z, one obtainsΓ (s)Γ (u) =Γ (s+u)B(s,u).Hence, Euler’s beta- and gamma-
functions are connected through the formula

B(s,u) =
Γ (s)Γ (u)
Γ (s+ u)

, ℜ(s)> 0,ℜ(u)> 0.

We also note the following property of the gamma-function, which will be used in
our further analysis [AS64]:

Γ (z)Γ (1− z) =
π

sinπz
. (1.7)

(We will prove this equality in Section 3.13).

1.4.0.2 The Fourier transform

Definition 1.4. Let f ∈ L1(R
n). The Fourier transform of f denoted by f̂ or F [ f ],

by definition, is

f̂ (ξ ) = F [ f ](ξ ) =
∫

Rn

f (x)eixξ dx, ξ ∈R
n, (1.8)

where i =
√−1 and xξ = (x,ξ ) = x1ξ1 + · · ·+ xnξn.
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The Fourier transform of f ∈ L1(R
n) is continuous. Namely, the following prop-

erty holds (see, e.g., [RS80]):

Theorem 1.2. Let f ∈ L1(R
n). Then its Fourier transform f̂ (ξ ) is continuous on

R
n, and f̂ (ξ )→ 0, as |ξ | → ∞.

It follows from this theorem that F is a linear operator, mapping L1(R
n) into the

set of functions C0(R
n) continuous on R

n and tending to zero at infinity. The inverse
Fourier transform F−1 is given by the formula

f (x) = F−1[ f̂ ](x) =
1

(2π)n

∫

Rn

f̂ (ξ )e−ixξdξ . (1.9)

We note that for f ∈ L1(R
n) its Fourier transform f̂ may not belong to L1(R

n). In
fact, the Fourier preimage of C0(R

n) is not L1(R
n). In fact, F−1(C0(R

n))⊃ L1(R
n).

Therefore, one must be careful when using the inversion formula (1.9). We will
discuss the question how to extend the Fourier transform to spaces of functions
much larger than L1(R

n) in Section 1.5.3.
The properties given in the following proposition can easily be verified by direct

calculation.

Proposition 1.5. Let f ∈ L1(R
n). Then for 0 �= a ∈ R and y ∈ R

n the following
formulas hold:

1. F [ f (ax)](ξ ) = 1
an F[ f ]( ξa );

2. 1
an F [ f ( x

a )](ξ ) = F[ f ](aξ );
3. F [ f (x+ y)](ξ ) = e−iyξF [ f ](ξ );
4. F [eiyx f (x)](ξ ) = F [ f ](ξ + y).

In the two propositions below xα and ξα for a multi-indexα = (α1, . . . ,αn) mean
xα1

1 . . .xαn
n , and ξα1

1 . . .ξαn
n . These properties of the Fourier transform can be proved

by integration by parts.

Proposition 1.6. Let xα f ∈ L1(R
n). Then (̂ix)α f (ξ ) = Dα f̂ (ξ ).

Proposition 1.7. Let Dα f ∈ L1(R
n). Then D̂α f (ξ ) = ξα f̂ (ξ ).

Consider some examples which will be exploited later.

Example 1.2. 1. Let f (x) = e−|x|, x ∈ R. This function belongs to L1(R). We have

F [e−|x|](ξ ) =
∞∫

−∞
e−|x|eixξdx =

0∫

−∞
ex(1+iξ )dx+

∞∫

0

e−x(1−iξ )dx

=
1

1+ iξ
+

1
1− iξ

=
2

1+ ξ 2 .
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Using the first formula in Proposition 1.5 with a > 0, one obtains

F[e−a|x|](ξ ) =
2a

a2 + ξ 2 . (1.10)

One can easily see that in this fortunate case the Fourier transform f̂ (ξ ) = 2
1+ξ 2

of f is also in L1(R). Therefore one can use the inverse Fourier transform for-
mula (1.9) to equation (1.10), to obtain

F−1
[

2
1+ ξ 2

]
(x) = e−|x|.

2. It follows from the previous example that

F

[
1

π(1+ x2)

]
(ξ ) = e−|ξ |. (1.11)

Further, using the second formula in Proposition 1.5 and (1.11), one has

F

[
t

π(t2 + x2)

]
(ξ ) = e−t|ξ |, t > 0. (1.12)

3. Now we find the Fourier transform of the function f (x) = e−x2
, x ∈ R. This

function belongs to L1(R). Differentiating f̂ (ξ ) =
∫
R

e−x2+ixξdx, and using the
relation

ixe−x2+ixξ =− i
2

d(e−x2+ixξ )− ξ
2

e−x2+ixξ ,

one can see that f̂ satisfies the ordinary differential equation d f̂ (ξ )
dξ = − ξ

2 f̂ (ξ ).

The solution to this equation is f̂ (ξ ) =Ce−
ξ2

4 , where C = f̂ (0) =
∫
R

e−x2
dx = π .

Hence,

F[e−x2
](ξ ) =

√
πe−

ξ2

4 . (1.13)

Using again the second formula in Proposition 1.5 with b=
√

4t, t > 0, we obtain

F

[
1√
4πt

e−
x2
4t

]
(ξ ) = e−tξ 2

. (1.14)

4. Let f (x) = e−|x|2 , x ∈ R
n. Then it follows immediately from formula (1.13) that

F

[
1

(
√
π)n

e−|x|
2
]
(ξ ) = e−

|ξ |2
4 , ξ ∈R

n. (1.15)
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Now using this formula and proposition 1.5, one can derive the multidimensional
case of (1.14):

F

[
1

(
√

4πt)n
e−

|x|2
4t

]
(ξ ) = e−t|ξ |2 , ξ ∈R

n. (1.16)

5. The n-dimensional analog of formula (1.12) is

F

[
Γ ( n+1

2 )

π
n+1

2

t

(|x|2 + t2)
n+1

2

]
(ξ ) = e−t|ξ |, t > 0, ξ ∈R

n. (1.17)

where Γ (s) is Euler’s gamma-function. See Section 1.13 “Additional notes” for
the proof of (1.17).

1.4.0.3 The Laplace transform. Watson’s lemma

Let a function f (t), defined on [0,∞), be piece-wise continuous and satisfy the con-
dition | f (t)| ≤ Ceσt for some σ > 0. We denote the set of such functions by Mσ .
The Laplace transform of f ∈Mσ is defined by

L[ f ](s) =
∫ ∞

0
f (t)e−stdt, ℜ(s)> σ ,

For the Laplace transform of f we also use the notation f̃ (s). The Laplace transform
f̃ (s) is an analytic function of s = p+ iη in the half-plane ℜ(s) = p > σ .

Here are some well-known properties of the Laplace transform, which follow
directly from the definition.

Proposition 1.8. Let f ,g ∈Mσ . Then for s with ℜ(s)> σ ,

1. L[a f + bg] = aL[ f ](s)+ bL[g](s), a,b ∈ C;
2. L[ f ∗ g](s) = L[ f ](s) ·L[g](s);
3. L[eβ t f ](s) = L[ f ](s−β ),ℜ(s)> σ +β ;
4. L[ f

′
](s) = sL[ f ](s)− f (0);

5. d
ds L[ f ](s) =−L[t f ](s).

In property 2) ( f ∗ g)(t) is a convolution of functions f and g defined by

( f ∗ g)(t) =
∫ t

0
f (τ)g(t− τ)dτ.

One can easily verify that if f , g ∈Mσ , then f ∗ g ∈Mσ , as well.

Example 1.3. Let β > 0 be a real number. Then

L[tβ−1](s) =
Γ (β )

sβ
, s > 0. (1.18)
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Indeed, using the substitution ts = u in the integral

L[tβ−1](s) =
∫ ∞

0
e−sttβ−1dt

we have

L[tβ−1](s) = s−β
∫ ∞

0
e−uuβ−1du =

Γ (β )
sβ

.

If β = n, a positive integer, then the latter reduces to the well-known formula

L[tn−1](s) =
(n− 1)!

sn .

In particular, if n = 1, then L[1](s) = 1
s . Obviously, the formula (1.18) extends for

all complex s with ℜ(s)> 0.
If 0 < β < 1, then (1.18) extends also for all s with ℜ(s) = 0, except s = 0, as

well, that is s = iη , η ∈ R, η �= 0. In fact, in this case the left-hand side of (1.18)
takes the form

L[tβ−1](iη) =
∫ ∞

0

e−iηt

t1−β dt. (1.19)

Using the known formulas (see, for instance, [AS64], formulas 6.5.7,8,20)

∫ ∞

0

cosηt

t1−β dt =
Γ (β )cos πβ

2

ηβ and
∫ ∞

0

sinηt

t1−β dt =
Γ (β )sin πβ

2

ηβ ,

one obtains ∫ ∞

0

e−iηt

t1−β dt =
Γ (β )ei πβ2

ηβ =
Γ (β )
(iη)β

. (1.20)

Hence, (1.19) and (1.20) imply the formula

L[tβ−1](iη) =
Γ (β )
(iη)β

, η �= 0. (1.21)

Below are two other properties of the Laplace transform important for our further
considerations. The first one is the differentiation formula for the Laplace transform,
which generalizes Property 4 in Proposition 1.8 for arbitrary integer order m≥ 1.

Proposition 1.9. Let f ∈Cm(0,∞)∩Mσ has finite values f (k)(0), k = 0, . . . ,m− 1.
Then the formula

L[ f (m)](s) = smL[ f ](s)−
m−1

∑
k=0

f (k)(0)sm−1−k (1.22)

holds.

The second property is known as Watson’s lemma.
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Proposition 1.10. (Watson’s Lemma) Let f (t) = tγg(t), g(0) �= 0, where γ > −1,
and g ∈Mσ . Suppose the function g(t) has the expansion

g(t) =
n

∑
k=0

aktk +Rn(t), 0 < t < t0,

with |Rn(t)| ≤Ctn+1, t ∈ (0, t0). Then

L[ f ](s) =
n

∑
k=0

akΓ (k+ γ+ 1)
sk+γ+1 +O

(
1

sn+γ+2

)
, s→ ∞.

1.5 Distribution spaces

1.5.1 Schwartz distributions

Definition 1.5. Let C∞
0 (Ω) be the set of infinitely differentiable functions with com-

pact support in Ω . For a sequence of functions ϕm ∈ C∞
0 (Ω),m = 1,2, . . . , we in-

troduce the following convergence: ϕm converges to an element ϕ0 ∈C∞
0 (Ω) if the

following two conditions are fulfilled:

1. there exists a compact K ⊂Ω such that suppϕm ⊂ K for all m = 1,2, . . . ;
2. Dγϕm(x)⇒ Dγϕ0(x) uniformly on K for all |γ|= 0,1, . . . .

C∞
0 (Ω) with the introduced convergence is denoted by D(Ω), and called a space of

test functions.

D(Ω) is a linear space. Obviously, if ϕ1, ϕ2 ∈ D(Ω), then for arbitrary complex
numbers c1, c2 ∈C, one has c1ϕ1 + c2ϕ2 ∈D(Ω).

Let f be a linear and continuous functional defined on D(Ω). This means that
for f : D(Ω)→C the following two conditions, namely the linearity condition:

f (c1ϕ1 + c2ϕ2) = c1 f (ϕ1)+ c2 f (ϕ2), ∀c1,c2 ∈ C,

and the continuity condition:

ϕm → ϕ0 ⇒ f (ϕm)→ f (ϕ0), m → ∞,

are fulfilled. Here f (ϕ) stands for the value of f on ϕ . For instance, the functional
defined as δa(ϕ) = ϕ(a),ϕ ∈D(Ω), a ∈Ω , satisfies both conditions.

Definition 1.6. Denote by D
′
(Ω) the set of all linear and continuous functionals de-

fined on D(Ω). A sequence fm ∈D
′
(Ω) is said to converge weakly to f0 ∈D

′
(Ω) if

for arbitrary ϕ ∈D(Ω) the sequence of numbers fm(ϕ) converges to f0(ϕ). D
′
(Ω)

with this convergence is called the space of Schwartz distributions.

The functional δa(ϕ) = ϕ(a) introduced in the example above is a Schwartz distri-
bution. This distribution is called the Dirac delta function with mass on a.
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The space D
′
(Ω) is a vector space. The sum f1 + f2 of two distributions

f1, f2 ∈D
′
(Ω) is defined as ( f1 + f2)(ϕ) = f1(ϕ)+ f2(ϕ) for arbitrary ϕ ∈D(Ω).

Similarly, the scalar multiplication c f , where c ∈ C and f ∈ D
′
(Ω), is defined as

(c f )(ϕ) = c f (ϕ) for arbitrary ϕ ∈D(Ω). Thus, the space of Schwartz distributions,
as well as the space of corresponding test functions, have both structures, the vector
structure and the topological structure (defined through convergence). Therefore,
both spaces D(Ω) and D

′
(Ω) are topological-vector spaces. Their deeper proper-

ties, such as the completeness, local convexity, and inductive and projective limit
structures, will follow from general assertions presented in Section 1.5.4 in the ab-
stract case.

The following statement provides a criterion for a linear functional defined on
D(Ω) to be a Schwartz distribution [Sch51]:

Proposition 1.11. A linear functional f defined on D(Ω) is in D
′
(Ω) if and only if

for arbitrary open set Ω0 �Ω there exist an integer m = m(Ω0)≥ 0 and a constant
C =C(Ω0)> 0, such that for all ϕ ∈D(Ω) the estimate

| f (ϕ)| ≤C‖ϕ‖Cm(Ω)

holds.

If m in this Proposition does not depend on Ω0, then it is called an order of
distribution f . The Dirac delta function satisfies the estimate

|δa(ϕ)|= |ϕ(a)| ≤ ‖ϕ‖C(Ω).

Therefore, δa is a distribution of order 0.

Definition 1.7. The derivative of order α of a distribution f ∈D
′
(Ω) is defined by

Dα f (ϕ) = (−1)|α | f (Dαϕ), ∀ϕ ∈D(Ω).

Let a(x) ∈C∞(Ω) and f ∈D
′
(Ω). Then the multiplication of the distribution f by

a(x) is defined by
a f (ϕ) = f (aϕ), ∀ϕ ∈D(Ω).

It follows from Proposition 1.11 that for a Schwartz distribution f both Dα f for any
multi-index α and a f for any a ∈ C∞(Ω) are Schwartz distributions again. More-
over, the mappings

Dα : D
′
(Ω)→D

′
(Ω) and a(x)· : D

′
(Ω)→D

′
(Ω)

are continuous. This statement is a direct implication of Definition 1.7.
The notion of support can be extended to distributions as well. We say that a

distribution f ∈ D
′
(Ω) is zero on an open set Ω ′ ⊂ Ω , if for all ϕ ∈ D(Ω ′), one

has f (ϕ) = 0. The union of all open sets where f is zero is called a null-set of
the distribution f . By definition, the support of f ∈D

′
(Ω), denoted by supp f , is the

closure of Ω \Ω0( f ), whereΩ0( f ) is the null-set of f , namely, supp f =Ω \Ω0( f ).
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For example, the support of the Dirac delta function δa is {a}. Indeed, if Ω ′ is an
open set not containing a, then for all ϕ ∈ D(Ω ′

), one has δa(ϕ) = 0. Therefore,
the null-set of δa is Ω \ {a}, implying suppδa = {a}.

It is not hard to see that if supp f �Ω , then m in Proposition 1.11 can be chosen
independent of all open sets Ω0 �Ω . Hence, any distribution with compact support
has a finite order.

Example 1.4. 1. Let a function g be locally integrable on Ω , that is for arbitrary
compact set A �Ω the integral

∫
A
|g(x)|dx is finite. Then, g defines a linear func-

tional G on D(Ω) by the expression

G(ϕ) =
∫

Ω

g(x)ϕ(x)dx.

Moreover, for each Ω0 �Ω the estimate | f (ϕ)| ≤C‖ϕ‖C(Ω), with C =C(Ω0) =∫
Ω0
|g(x)|dx, holds. Due to Proposition 1.11, G is a Schwartz distribution of

order 0. A distribution defined by a locally integrable function is called regular,
otherwise it is called singular. For instance, the Dirac delta function is singular
(try to prove this. It is a good exercise!).
The Heaviside function

θ (x) =

{
1, if x > 0,

0, otherwise,

is locally integrable on R= (−∞,∞), and therefore, is a regular distribution. For the
derivative (in the sense of distributions) of θ (x) one has Dθ = δ0. Indeed, for an
arbitrary ϕ ∈D(R),

Dθ (ϕ) =−θ (Dϕ) =−
∞∫

0

ϕ
′
(x)dx = ϕ(0) = δ0(ϕ).

Similarly, one can easily verify that Θ(x− a) = θ (x1− a1) · · · · · θ (xn− an), where
a = (a1, . . . ,an) ∈ R

n is a fixed point, is a regular distribution, and

D1 . . .DnΘ(x− a) = δa(x). (1.23)

2. Introduce the distribution P.v. 1
x , where P.v. stands for principal value (in the sense

of Cauchy), and defined by

< P.v.
1
x
,ϕ >= lim

ε→0

⎛
⎝

−ε∫

−∞

ϕ(x)
x

dx+

∞∫

ε

ϕ(x)
x

dx

⎞
⎠ .

One can easily verify that for any d > 0 the integral P.v.
d∫
−d

dx
x = 0. Taking this

into account, and assuming suppϕ ⊂ [−d,d], we have



1.5 Distribution spaces 17

|< P.v.
1
x
,ϕ > |=

∣∣∣∣∣∣
∞∫

−∞

ϕ(x)−ϕ(0)
x

dx

∣∣∣∣∣∣≤C‖ϕ‖C1(R),

where C = 2d. Hence, P.v. 1
x ∈D

′
(R), singular, and of order 1.

Proposition 1.12. (Sokhotski-Plemelj formulas) The following formulas hold:

1
x+ i0

=−iπδ0(x)+V.p.
1
x
, (1.24)

1
x− i0

= iπδ0(x)+V.p.
1
x
. (1.25)

Proof. To prove this statement we calculate the limit limε→0
1

x+iε in D
′
(R). Let

ϕ ∈D(R) with the support suppϕ ⊂ [−d,d]. We have

lim
ε→0

<
1

x+ iε
,ϕ(x)>= lim

ε→0

∫

R

ϕ(x)
x+ iε

dx = lim
ε→0

d∫

−d

x− iε
x2 + ε2

[
ϕ(0)+

(
ϕ(x)−ϕ(0)

)]
dx

=−2iϕ(0) lim
ε→0

tan−1
(

d
ε

)
+

∫

R

ϕ(x)−ϕ(0)
x

dx

=−iπϕ(0)+
∫

R

ϕ(x)−ϕ(0)
x

dx

=<−iπδ0(x)+P.v.
1
x
,ϕ(x)>,

obtaining (1.24). Formula (1.25) follows from (1.24) replacing i by −i.

1.5.2 Distributions with compact support

Definition 1.8. Denote by E (Ω),Ω ⊂ R
n, the set of functions ϕ ∈C∞(Ω) with the

following convergence: a sequence ϕk ∈ E (Ω),k = 1,2, . . . is said to converge to
ϕ0 ∈ E (Ω) in E (Ω) if for every multi-index γ and any compact set K �Ω

sup
x∈K

|Dγϕk(x)−Dγϕ0(x)| → 0, (1.26)

as k → ∞.

Definition 1.9. Denote by E
′
(Ω) the set of all linear and continuous functionals

defined on E (Ω). A sequence fm ∈ E
′
(Ω) is said to converge weakly to f0 ∈ E

′
(Ω),

if for arbitrary ϕ ∈ E the sequence fm(ϕ) converges to f0(ϕ). With this convergence
the set E

′
(Ω) is said to be the space of distributions with compact support.



18 1 Function spaces and distributions

The name of the space E
′
(Ω) is not a game. In fact, any distribution in E

′
(Ω) has

a compact support. This fact can be proved by contradiction. Assume the support of
f ∈ E

′
(Ω) is not compact. Then there exist a sequence of sets ωk,k = 1,2, . . . , and a

sequence of test functions ϕk ∈ E , k = 1,2, . . . , with the following requirements: the
sets ωk, k = 1,2, . . . , are compact in Ω ,ωk ⊂ωk+1 for all k = 1,2, . . . , and∪ωk =Ω ;
the function ϕk ∈ E (Ω) has compact support suppϕk ⊂ Ω \ωk, and f (ϕk) = 1 for
all k = 1,2, . . . . By construction, obviously, ϕk → 0 as k → ∞ in E (Ω). Hence,
f (ϕk)→ 0, as k → 0. The letter contradicts to f (ϕk) = 1 � 0.

Example 1.5. As we have seen, the Dirac delta function δa with mass on a ∈Ω is a
distribution with compact support, supp(δa) = {a}. Hence, δa ∈ E

′
(Ω).

The following two propositions (see, e.g., [Vla79]) describe the structure of dis-
tributions with compact support and distributions concentrated at a point a ∈ R

n,
respectively.

Proposition 1.13. Let f ∈ E
′
(Ω). Then f is a distribution of a finite order m and

there exists a function h ∈ L∞(Ω), such that

f (x) = ∑
|α |≤m

Dαh(x).

An illustration of this proposition is (1.23) for f (x) = δa(x).

Proposition 1.14. Let a distribution f ∈ E
′
(Ω) has the support supp f = {a}. Then

there exist an integer m and numbers bα , |α| ≤ m, such that

f (x) = ∑
|α |≤m

bαDαδa(x).

Proposition 1.15. The general solution of the equation

(x− a)βu(x) = 0 (1.27)

in the space E
′
(Rn) is

u(x) = ∑
α j ≤ β j− 1
j = 1, . . . ,n

CαDαδa(x),

where Cα are arbitrary constants.

Proof. First we notice that since (x−a)β ∈C∞(Rn), the left side of equation (1.27)
is meaningful in E

′
(Ω). Moreover, equation (1.27) immediately implies

suppu = {a}. Hence, due to Proposition 1.14,

u(x) = ∑
|α |≤m

CαDαδa(x),
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for some integer m and constants Cα . Substituting the latter to equation (1.27), we
have

0 =< (x− a)βu(x),ϕ(x)>=< u(x),(x− a)βϕ(x)>

= ∑
|α |≤m

Cα < Dαδa(x),(x− a)βϕ(x)>

= ∑
|α |≤m

(−1)|α |CαDα
[
(x− a)βϕ(x)

]
|x=a

.

which implies Cα = 0 if α j ≥ β j, j = 1, . . . ,n.

1.5.3 Tempered distributions

Definition 1.10. Denote by G the set of functions in C∞(Rn) satisfying the follow-
ing condition: for every multi-index γ and m ∈ N0,

pγ,m(ϕ) = max
x∈Rn

{(1+ |x|)m|Dγϕ(x)|} (1.28)

is finite. We say that a sequence ϕk ∈ G ,k = 1,2, . . . converges to ϕ0 ∈ G in G if for
all multi-indices γ and m ∈ N0,

pγ,m(ϕk−ϕ0)→ 0, k → ∞.

Definition 1.11. Denote by G
′

the set of linear and continuous functionals defined
on G . A sequence fm ∈ G

′
is said to converge weakly to f0 ∈ G

′
if for arbitrary

ϕ ∈ G the sequence fm(ϕ) converges to f0(ϕ). G
′

endowed with this convergence
is called the space of tempered distributions. For convenience we use the notation
< f ,ϕ > for f (ϕ).

The inclusions D(Rn) ⊂ G ⊂ E (Rn) imply E
′
(Rn) ⊂ G

′ ⊂ D
′
(Rn). Hence, a

distribution with compact support is also a tempered distribution. The distribution
P.v. 1

x is an example of a tempered distribution with non-compact support.
Using Propositions 1.6 and 1.7 one can easily see that if ϕ belongs to G , then

the same does its Fourier transform, F[ϕ ] ∈ G . In other words G is invariant with
respect to the Fourier transform F, and the mapping

F : G → G (1.29)

is continuous. Moreover, the mapping (1.29) is onto, and the inverse F−1 is given
by the formula

F−1g(x) =
1

(2π)n

∫

Rn

g(ξ )e−ixξdξ , g ∈ G . (1.30)
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The continuity of F in G implies the following assertion:

Proposition 1.16. A sequence ϕn → 0 as n → ∞ in G if and only if F [ϕn]→ 0 as
n→ ∞ in G .

Let S and F∗ be the operators on G defined as Sϕ(x) = ϕ(−x) and F∗ = SF, i.e.

F∗ϕ(ξ ) =
∫

Rn

ϕ(x)e−ixξ dx, ξ ∈ R
n.

Obviously, the mapping S : G → G is onto with the inverse S−1 = S. This implies
that F∗ = SF is also onto with the inverse operator F∗−1 = F−1S. Notice that (1.30)
and definitions of S and F∗ yield

F−1 =
1

(2π)n F∗ =
1

(2π)n SF. (1.31)

Now assume that ϕ ∈ G and f is a regular distribution in G
′
, that is f is identified

with a locally integrable function. In other words, f ∈ L1(K) for any compact K ⊂
R

n and grows at infinity at a polynomial rate. Then changing order of integration,
which is legitimate under our assumptions, one has

< f̂ ,ϕ >=
∫

R
n
ξ

∫

Rn
x

f (x)ϕ(ξ )eixξ dxdξ =< f , ϕ̂ > .

Making use of this fact and the continuity of the Fourier transform F in G one can
extend the Fourier transform to the space of tempered distributions. Namely, by
definition, if f ∈ G

′
then its Fourier transform f̂ is defined by

< f̂ ,ϕ >=< f , ϕ̂ > (1.32)

for all ϕ ∈ G . As a direct implication of (1.29) we obtain that the mapping

F : G
′ → G

′

is also continuous. This fact due to Proposition 1.16 immediately implies

Proposition 1.17. A sequence fn → 0 as n → ∞ in G
′

if and only if F [ fn]→ 0 as
n→ ∞ in G

′
.

Moreover, the properties of F indicated in Propositions 1.6 and 1.7 are extended
to distributions in G

′
:

Proposition 1.18. Let f ∈ G
′
. Then

(1) (̂ix)α f (ξ ) = Dα f̂ (ξ ).
(2) D̂α f (ξ ) = ξα f̂ (ξ ).

Since any function f ∈ Lp(R
n), p≥ 1, is also a tempered distribution, the Fourier

transform for these functions is well defined in the sense of distributions. In particu-
lar, L2(R

n) is invariant with respect to the Fourier transform. This fact follows from
celebrated Parseval’s equality (see, e.g., [RS80]).
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Theorem 1.3. (Parseval) Let f ,g ∈ L2(R
n). Then

( f ,g) = (2π)−n( f̂ , ĝ). (1.33)

Corollary 1.1. Let f ∈ L2(R
n). Then

‖ f̂‖2
L2

= (2π)n‖ f‖2
L2
. (1.34)

Corollary 1.2. The transform F : L2(R
n)→ L2(R

n) is continuous.

Lp-spaces are not invariant with respect to the Fourier transform if p �= 2. In
particular, for 1≤ p < 2 the following statement holds.

Theorem 1.4. (Hausdorff-Young) If f ∈ Lp(R
n), p∈ [1,2), then f̂ ∈ Lq(R

n), where
q = p/(p− 1) and ‖ f̂‖Lq ≤Cp‖ f‖Lp , with a constant Cp > 0 not depending on f .

The proof immediately follows from the Riesz-Thorin theorem (Theorem 1.1) tak-
ing p2 = q2 = 2 due to Corollary 1.2, and p1 = 1, q1 = ∞ due to Theorem 1.2.
Moreover, inequality (1.6) implies that Cp ≤ (2π)n(1−1/p).

Definition 1.12. For f ,g ∈ G define the convolution f ∗ g by the integral

( f ∗ g)(x) =
∫

Rn

f (y)g(x− y)dy. (1.35)

It is easy to verify that if f ,g ∈ G , then (1.35) exists and f ∗g∈ G . The convolu-
tion exists for any pair of functions f ∈ L1(R

n) and g ∈ L∞(Rn), as well. Moreover,
in this case

‖ f ∗ g‖L∞ ≤ ‖ f‖L1‖g‖L∞. (1.36)

For functions f ∈ Lp(R
n), p ∈ [1,∞], and g ∈ Lq(R

n) with q = p/(p− 1), the con-
jugate of p, due to Hölder’s inequality, one has

‖ f ∗ g‖L∞ ≤ ‖ f‖Lp‖g‖Lq . (1.37)

Further, for functions f ,g ∈ L1(R
n) using Minkowski’s inequality in the integral

form (1.3), we obtain

‖ f ∗ g‖L1 =

∥∥∥∥∥∥
∫

Rn

f (y)g(x− y)dy

∥∥∥∥∥∥
L1

≤
∫

Rn

‖ f (y)g(x− y)‖L1dy

≤ ‖g‖L1

∫

Rn

| f (y)|dy = ‖ f‖L1‖g‖L1. (1.38)

The following theorem represents the general case.
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Theorem 1.5. (Young) Let 1≤ p,q≤ ∞, and f ∈ Lp(R
n), g ∈ Lq(R

n). Suppose

1+
1
r
=

1
p
+

1
q
. (1.39)

Then f ∗ g ∈ Lr(R
n) and the inequality

‖ f ∗ g‖Lr ≤ ‖ f‖Lp‖g‖Lq (1.40)

holds.

Proof. We sketch a brief proof based on the Riesz-Thorin theorem (Theorem 1.1).
Let f ∈ L1(R

n) be fixed. Then the operator Tf (g) = f ∗ g is bounded as a mapping:
(a) Tf : L1(R

n)→ L1(R
n) with the norm ‖ f‖L1 , due to (1.38); (b) Tf : L∞(Rn) →

L∞(Rn) with the same norm ‖ f‖L1 , due to (1.36). Hence, the Riesz-Thorin theo-
rem yields that the mapping Tf : Lq(R

n)→ Lq(R
n) is bounded for any q ∈ [1,∞]

with the norm ≤ ‖ f‖L1 . This conclusion for fixed g ∈ Lq(R
n) can also be inter-

preted as follows: (c) the mapping Tg : L1(R
n)→ Lq(R

n) is bounded with the norm
‖g‖Lq . At the same time inequality (1.37) implies that (d) Tg : Lq′ (R

n)→ L∞(Rn) is

bounded with the norm ‖g‖Lq . Here q
′

is the conjugate of q. Now again using the
Riesz-Thorin theorem for Tg as mappings in (c) and (d), we obtain that the opera-
tor Tg : Lp(R

n)→ Lr(R
n) is bounded with the norm ≤ ‖g‖Lq, and r satisfying the

condition (1.39). This is equivalent to desired inequality (1.40).

Remark 1.1. The inequality (1.40) is called Young’s inequality. To feel it better, it is
useful to look at some particular cases. One particular case is p = 1 and q = ∞ in
equation (1.39). In this case one has r =∞. Hence, (1.40) recovers inequality (1.36).
In general, for any conjugate pare p and q, i.e., 1/p+ 1/q = 1, one obtains r = ∞,
and (1.40) takes the form ‖ f ∗ g‖L∞ ≤ ‖ f‖Lp‖g‖Lq , recovering (1.37). Another
particular case is q = 1. In this case r = p and Young’s inequality (1.40) reduces to

‖ f ∗ g‖Lp ≤ ‖g‖L1‖ f‖Lp . (1.41)

The latter is valid for p = 1 as well, obtaining (1.38). Inequality (1.38) shows that
L1(R

n) is closed with respect to the convolution operation “∗.”

Proposition 1.19. Let f ,g ∈ L1(R
n). Then

F [ f ∗ g](ξ ) = F [ f ](ξ ) ·F[g](ξ ). (1.42)

Formula (1.42) is valid, in particular, for any functions f ,g ∈ G . Hence, it can be
extended by continuity to any tempered distribution f ∈ G

′
and g ∈ G .

Consider some examples of the Fourier transform of tempered distributions.

Example 1.6. 1. The Fourier transform of the Dirac delta function is

F [δ0] = 1. (1.43)
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Indeed, for any ϕ ∈ G ,

< F [δ0],ϕ >=< δ0,Fϕ >= Fϕ(0) =
∫

Rn

ϕ(x)dx =< 1,ϕ >,

which means F[δ0] = 1 in the distributional sense. Further, applying the inverse
Fourier transform F−1 to the letter and using (1.31), one has δ0 = (2π)−nSF[1].
Now inverting the operator S and taking into account the symmetry of the Dirac
delta function δ0, we obtain F [1] = (2π)nδ0.

2. We show that

F

[
1
π

sin x
x

]
(ξ ) = I[−1,1](ξ ). (1.44)

The function 1
π

sinx
x does not belong to L1(R), but it is in Lp(R) for any p > 1,

and hence, a tempered distribution. Using formula (1.30), one has

< F−1[I[−1,1](ξ )],ϕ >=< I[−1,1](ξ ),F−1ϕ >=
1

2π

1∫

−1

∫

R

ϕ(x)e−ixξ dxdξ

=
1

2π

∫

R

ϕ(x)
( 1∫

−1

e−ixξ dξ
)

dx =
1

2π

∫

R

ϕ(x)
sinx
πx

dx

=<
sinx
πx

,ϕ > .

Hence, F−1[I[−1,1](ξ )] = 1
π

sinx
x in the sense of G

′
. Now applying the operator F

to both sides we obtain (1.44). Using Proposition 1.5, for arbitrary t > 0, we have

F

[
1
π

sin tx
tx

]
(ξ ) =

1
t

I[−1,1]

(
ξ
t

)
=

I[−t,t](ξ )
t

,

or, canceling t in the denominators,

F

[
1
π

sin tx
x

]
(ξ ) = I[−t,t](ξ ). (1.45)

3. One can easily verify that the right-hand side of (1.45) converges to 1 in G
′
, when

t → ∞. Hence, due to Proposition 1.17 and equation (1.43),

1
π

sin tx
x

→ δ0(x), t → ∞.

Similarly, formulas (1.16) and (1.17) imply

1

(
√

4πt)n
e−

|x|2
4t → δ0(x), t → 0 (x ∈ R

n),
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and
Γ ( n+1

2 )

π
n+1

2

t

(|x|2 + t2)
n+1

2

→ δ0(x), t → 0 (x ∈R
n),

respectively, in the topology of G
′
.

4. The Heaviside function θ (x) does not belong to Lp(R) for p ∈ [1,∞), but θ ∈
L∞(R). Hence, it is a tempered distribution. Since θ (x) = limε→0 θ (x)e−εx in
G
′
, one has

F [θ ](ξ ) = lim
ε→0

F[θ (x)e−εx](ξ ) = lim
ε→0

∞∫

0

e−εx+ixξ dx

= lim
ε→0

−1
−ε+ iξ

=
i

ξ + i0
.

Due to Sokhotski-Plemelj formula (1.24), the latter takes the form

F [θ (x)](ξ ) = πδ0(ξ )+ iV.p.
1
ξ
. (1.46)

Similarly,

F[θ (−x)](ξ ) = πδ0(ξ )− iV.p.
1
ξ
. (1.47)

5. Next, we find the Fourier transform of sign(x). Using the obvious equality
sign(x)=θ (x)−θ (−x), and formulas (1.46) and (1.47), one obtains

F[sign(x)](ξ ) = F [θ (x)](ξ )−F[θ (−x)](ξ ) = 2iV.p.
1
ξ
. (1.48)

6. The Fourier transform of the distribution P.v. 1
x is

F[P.v.
1
x
](ξ ) = iπsign(ξ ) = iπ

⎧⎪⎨
⎪⎩

1, if ξ > 0;

0, if ξ = 0;

−1, if ξ < 0.

(1.49)

Indeed, using the relationship F[ f ](ξ ) = 2πF−1[ f ](−ξ ) (formula (1.31) in the
one-dimensional case), and (1.48), we have

F[P.v.
1
x
](ξ ) = 2πF−1[P.v.

1
x
](−ξ ) = π

i
sign(−ξ ) = iπsign(ξ ).

7. Consider the function f (x) = ei|x|2 , x∈R
n. This function is in L∞(Rn), and hence,

a tempered distribution. We find the Fourier transform of this function. It suffices
to find the Fourier transform for n = 1. First, consider the functions
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C(x) =

√
2
π

x∫

0

cost2dt and S(x) =

√
2
π

x∫

0

sin t2dt

called Fresnel’s cosine and sine integrals. It is known (see [AS64], formula
7.3.20), that

lim
x→∞

C(x) = lim
x→∞

S(x) =
1
2
.

Using this fact, one has

∞∫

−∞
eix2

dx = 2
∫ ∞

0
(cosx2 + isinx2)dx

= 2

√
π
2

(
C(∞)+ iS(∞)

)
=
√
πei π4 . (1.50)

Now, it is easy to compute the Fourier transform of eix2
. Indeed, exploiting (1.50),

F [eix2
](ξ ) =

∫ ∞

−∞
eixξ+ix2

dx = e−iξ 2/4
∫ ∞

−∞
eiz2

dz =
√
πe−i ξ

2−π
4 .

It follows in the n-dimensional case that

F [ei|x|2 ](ξ ) = (π)n/2e−
i
4 |ξ |2+ i

4 nπ . (1.51)

The latter can be rewritten in the form

F

[
1

(iπ)n/2
ei|x|2

]
(ξ ) = e−

i
4 |ξ |2 , ξ ∈ R

n. (1.52)

8. Let f (x) = 1
|x|1−α , where x ∈ R and 0 < α < 1. Obviously, f is a tempered (reg-

ular) distribution, but f /∈ Lp(R) for all p ∈ [1,∞]. The Fourier transform of this
distribution exists in G

′
. In fact, the following relation

F [ f ](ξ ) = bα |ξ |−α , (1.53)

where bα = 2Γ (α)cos απ
2 , holds. In order to compute the Fourier transform of

f , it suffices to compute the oscillatory integral

∫

R

eixξ

|x|1−α dx. (1.54)

This is seen from the following relation

< F

[
1

|x|1−α
]
,ϕ >=

∫

R

ϕ(ξ )
(∫
R

eixξ

|x|1−α dx
)

dξ
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between the Fourier transform of f (x) = |x|−(1−α) and the integral in (1.54).
The integral (1.54) is (conditionally) convergent. In the integral in (1.54) setting
ξ = |ξ |μ , where μ = sign(ξ ), and substituting y = |ξ |x, one has

∫

R

eixξ

|x|1−α dx = |ξ |−α
∫

R

eiμy

|y|1−α dy.

In fact, the integral on the right-hand side does not depend on μ =±1, and hence,
we get (1.53) with constant

bα =

∫

R

eiμy

|y|1−α dy = 2

∞∫

0

cosy
y1−α dy = 2Γ (α)cos

απ
2

.

In Section 3.7 we demonstrate a different method of calculation of bα .
9. Let f (x) = 1

|x|σ , x ∈ R
n, where 0 < σ < n. This function is locally integrable,

hence is a regular tempered distribution. We will show that the Fourier transform
in the sense of G

′
of this function is

F

[
1
|x|σ

]
(ξ ) =

bσ ,n
|ξ |n−σ , ξ ∈R

n, (1.55)

where

bσ ,n =
2n−σπn/2Γ ( n−σ

2 )

Γ (σ2 )
. (1.56)

In order to show this fact we use formula (1.16):

F

[
1

(
√

4πt)n
e−

|x|2
4t

]
(ξ ) = e−t|ξ |2 , ξ ∈R

n,

in the sense of G
′

(see (1.32)). Namely, for arbitrary function ϕ ∈ G ,

〈 1

(
√

4πt)n
e−

|x|2
4t ,F [ϕ ](x)〉 = 〈e−t|ξ |2 ,ϕ(ξ )〉. (1.57)

Multiplying both sides of (1.57) by t(n−σ)/2−1 and integrating over the interval
(0,∞), we obtain

1

2nπn/2
〈
∞∫

0

t−
σ
2 −1e−

|x|2
4t dt,F[ϕ ]〉= 〈

∞∫

0

t
n−σ

2 −1e−t|ξ |2 dt,ϕ〉.

Changing the order of integration performed above is valid. Now using the sub-

stitution |x|2
4t = s on the left integral, and t|ξ |2 = u on the right integral, one gets
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〈F
[

1
|x|σ

]
(ξ ),ϕ(ξ )〉= 〈2n−σπn/2Γ ( n−σ

2 )

Γ (σ2 )

1
|ξ |n−σ ,ϕ(ξ )〉,

proving (1.55), (1.56). We note that the Fourier transform F[ 1
|x|n−α ](ξ ) serves

as a symbol of, so-called, Riesz potential, considered in Section 3.7. See also
Section 1.13 for additional notes.

Finally, we notice that the Fourier transform in the last example allows the ana-
lytic continuation to all σ ∈ C, except those which satisfy the equations:

n−σ
2

=−1,−2, . . . , and
σ
2
=−1,−2, . . . .

Thus, the following statement holds:

Proposition 1.20. Let σ ∈ C such that σ �= −2m and σ �= n+ 2m, for all m ∈ N.
Then

F

[
1
|x|σ

]
(ξ ) =

2n−σπn/2Γ ( n−σ
2 )

Γ (σ2 )

1
|ξ |n−σ , ξ �= 0. (1.58)

Let f ∈Mσ and s = p+ iη . We have

L[ f ](s) = L[ f ](p+ iη) =
∫ ∞

0
f (t)e−(p+iη)tdt =

∫
R

[ f (t)e−pt ]e−itηdt

= Fη [ f (t)e
−pt ](−η).

This relation can be taken as the base for the Laplace transform of distributions.
Namely, let f ∈D

′
(R) with the null-set Ω0( f ) = (−∞,0), and such that f (t)e−st ∈

G
′
. Then the Laplace transform L[ f ](s) is defined by

L[ f ](s) = Fη [ f (t)e
−pt ](−η) (1.59)

The reader can easily verify that L[δ0(t)](s) = 1 and L[θ (t)](s) = 1/s, where θ (t) is
the Heaviside function.

Since the Fourier transform is a continuous mapping in G
′
, the Laplace transform

L[ f ](p+ iη) is a tempered distribution in the variable η for each fixed p > σ . All
the properties of the Laplace transform, mentioned in Section 1.4.0.3, are valid for
distributions as well. Let us briefly discuss the property

L[ f
′
](s) = sL[ f ](s)− f (0). (1.60)

For distributions this property takes the form

L[D f ](s) = sL[ f ](s), (1.61)

where D = d/dt in the sense of distributions. Indeed, using the equality
D[ f (t)e−pt ] = D f (t)e−pt − p f (t)e−pt , one has
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L[D f ](s) = Fη [D f e−pt ](−η) = Fη
[
D[ f (t)e−pt ]

]
(−η)+ pFη [ f (t)e

−pt ](−η)
= (iη)L[ f ](s)+ pL[ f ](s) = sL[ f ](s),

obtaining (1.61). This is consistent with (1.60). To see this we use the relationship
Dg(t) = f

′
(t)+δ0(t) f (0+) between generalized and usual derivatives of a function

f differentiable on R\ {0}, and having a jump f (0+)− f (0) at t = 0, to obtain

L[ f
′
](s) = L[D f − δ0(t) f (0+)](s) = L[D f ](s)− f (0+)L[δ0](s)

= sL[ f ](s)− f (0+).

1.5.4 Some basic principles of distribution spaces

In Sections 1.5.1–1.5.3 we introduced three different distribution spaces. In Sec-
tion 1.10 we will introduce a new space of distributions appeared in the literature rel-
atively recently. In construction of distribution spaces one should follow some basic
principles common for all distribution spaces. Below we briefly discuss these princi-
ples in abstract case referring the reader for details, for instance, to [Hor83, GS53].

In this context Fréchet type locally convex topological vector spaces play an
important role. They generalize Banach spaces and can be defined with the help of
a family of seminorms. By definition, a function p : X → R+ defines a seminorm
in a vector space X , if for arbitrary x,y ∈X and λ ∈ C,

(1) p(x+ y)≤ p(x)+ p(y),
(2) p(λx) = |λ |p(x).
If additionally, p(x) = 0 implies x = 0, then p : X → R+ defines a norm in X .
An example of a seminorm is p(x) = max[0,1]|x′(t)| for functions x ∈C(1)[0,1]. Let
U = {x ∈X : p(x) < ε}, where p is a seminorm and ε > 0. Then, conditions (1)
and (2) imply that for arbitrary x,y ∈U and α ≥ 0,β ≥ 0 such that α+β = 1, one
has αx+βy ∈U. In other words, U is a convex subset of X .

Since topology of a topological vector space is translation-invariant, one can
assume that its topology consists of a family of neighborhoods of zero and their
translations. Let X be a topological vector space with a family of neighborhoods
τ of zero of X . We say that X is locally convex if it is Hausdorff (that is for
any x and y there exists neighborhoods Ux and Uy such that Ux ∩Uy = /0), and
members of τ are convex. Locally convex topological vector spaces can be de-
fined with the help of a family of seminorms. Let p j, j ∈ J, where J is an index
set, be a family of seminorms in X . Then the set of convex neighborhoods of zero
Uj,ε = {x∈X : p j(x)< ε, j ∈ J, ε > 0} form a base topology of zero of X . Hence,
locally convex topological vector space X has a fundamental base of convex neigh-
borhoods of every point x ∈X . If the family of seminorms p j is separating, that
is p j(x) = 0 for all j ∈ J implies x = 0, and X is complete, then X is called a
Fréchet type space. Fréchet type spaces are metrizable, and a metric in X can be
introduced by

d(x,y) = ∑
j∈J

1
2 j

p j(x− y)
1+ p j(x− y)

.
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Distribution spaces can be constructed as a strict inductive or projective limits of
sequences of locally convex topological vector spaces. Let Xn, n = 1,2, . . . , be a se-
quence of locally convex spaces, such that the inclusion Xn ⊂Xn+1 is continuous,
and let

X = ∪∞n=1Xn.

The set X equipped with the finest topology such that Xn ⊂X is continuous for
each n ∈ N is called a strict inductive limit of the sequence Xn, and denoted by

X = ind lim
n→∞

Xn.

Proposition 1.21. ([R64, SW66]) Let Xn be a sequence of locally convex topo-
logical vector spaces, Xn be a closed subspace of Xn+1 for each n ∈ N, and
X = ind limn→∞Xn. Then

1. a sequence xk ∈X converges to x0 ∈X if and only if there exists some n ∈ N

such that all xk are elements of Xn and xk → x0 in the topology of Xn;
2. a subset A of X is bounded if and only if there exists some n ∈ N such that

A⊂Xn and bounded in the topology of Xn;
3. a set K in X is compact in X if and only if there is some n ∈ N such that K is

compact in Xn;
4. if each Xn is complete, then X is also complete.

Let Yn, n = 1,2, . . . , be a sequence of locally convex spaces, such that the inclu-
sion Yn+1 ⊂ Yn is continuous, and let

Y = ∩∞n=1Yn.

The set Y equipped with the coarsest topology such that Y ⊂ Yn is continuous for
each n ∈ N is called a strict projective limit of the sequence Yn, and denoted by

Y = pr lim
n→∞

Yn.

Proposition 1.22. ([R64, SW66]) Let Yn be a sequence of locally convex topo-
logical vector spaces, Yn+1 be a closed subspace of Xn for each n ∈ N, and
Y = pr limn→∞Yn. Then

1. Y is a locally convex topological vector space;
2. a sequence yk ∈ Y converges to y0 ∈ Y if and only if yk → y0 in the topology of

Yn for all n ∈N;
3. a subset A of Y is bounded if and only if A⊂ Yn and bounded in the topology of

Yn for all n ∈N;
4. if each Yn is complete, then Y is also complete.

As an example consider the space of test functions E (Ω) introduced in Sec-
tion 1.5.2. Let K ⊂ Ω be a compact set and E(K) be the set of functions infinitely



30 1 Function spaces and distributions

differentiable in a neighborhood of K. Introduce in E(K) a family of seminorms as
follows:

p j(ϕ) = sup
x ∈ K
|α|= j

{|Dαϕ(x)|}.

The set E(K) is metrizable locally convex space and the metric is

d(ϕ ,ψ) =
∞

∑
j=0

1
2 j

p j(ϕ−ψ)

1+ p j(ϕ−ψ)
, ϕ ,ψ ∈ E(K).

Using the classical theorem on uniform convergence of uniformly continuous func-
tions on a compact set one can easily verify that E(K) is complete. Further, let
Kn, n ∈ N, be a sequence of compact sets in Ω , such that Kn ⊂ Kn+1 and ∪∞n=1Kn =
Ω . Consider the sequence of locally convex spaces En =E(Kn), n∈N. Obviously, if
ϕ ∈ En+1 then ϕ ∈ En. Moreover, since Kn ⊂Kn+1 the topology of En is coarser than
the topology of En+1, implying continuity of the inclusion En+1 ⊂ En. Therefore, we
can define a strict projective limit

E (Ω) = pr lim
n→∞

En.

The convergence of ϕm to ϕ0 associated with the strict projective limit topology
of E (Ω) means that for every compact Kn ⊂ Ω and for every multi-index α with
|α|= j,

p j,n(ϕm−ϕ0) = sup
x∈Kn

|Dαϕm(x)−Dαϕ0(x)| → 0, m→ ∞,

which coincides with the convergence (1.26) of the space E (Ω). Completeness of
each En implies, due to Proposition 1.22, completeness of E (Ω). Hence, E (Ω) is a
locally convex Fréchet type topological vector space.

Now consider the space of test functions D(Ω). Let Kn again be a sequence of
compact sets in Ω , such that Kn ⊂ Kn+1 and ∪∞n=1Kn = Ω . Let Dn be the set of
infinite differentiable functions ϕ with the support suppϕ ⊂ Kn. We equip Dn with
the topology of E (Kn), which makes Dn a locally convex topological vector space.
Obviously, Dn ⊂Dn+1 and since Kn ⊂ Kn+1, the topology of Dn+1 is finer than the
topology of Dn. Therefore each inclusion Dn ⊂Dn+1 is continuous. Moreover,

∪∞n=1Dn =D(Ω).

Hence,
D(Ω) = ind lim

n→∞
Dn,

with the finest topology for which each inclusion Dn ⊂D(Ω) is continuous. Since
each Dn is complete, due to Proposition 1.21, D(Ω) is complete. The convergence
of ϕm to ϕ0 in D(Ω) means, in accordance with Proposition 1.21, that there ex-
ists a natural number n0 such that ϕm → ϕ0 in the topology of Dn0 , which in
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turn, means that there is a compact K ⊂ Ω , such that suppϕm ⊂ K for all m, and
Dαϕm(x)→ Dαϕ0 uniformly on K for all α. This convergence is exactly the con-
vergence introduced in the definition of D(Ω) (see Definition 1.5 ).

The topology of the space of test functions G also can be defined with the help
of a family of seminorms. Let ϕ ∈C∞(Rn) and

pn(ϕ) = max
m+|α |=n

{pm,α(ϕ)}, n = 0,1, . . . , (1.62)

where (see (1.28))

pm,α(ϕ) = sup
x∈Rn

{(1+ |x|)m|Dαϕ(x)|}. (1.63)

One can easily verify that pn defined in (1.62) is indeed a norm. Let pn(ϕ) = 0. Then
it follows from (1.62) and (1.63) that Dαϕ(x)≡ 0, |α|= n, that is ϕ(x) is a polyno-
mial of order less than n. The only polynomial for which the expression in (1.28) is
finite, is zero-polynomial. Therefore, ϕ(x) ≡ 0. This immediately implies that G is
a Fréchet type locally convex topological vector space. The reader can verify as an
exercise what is the metric in G and that the convergence associated with this metric
coincides with the convergence introduced in the definition of G (Definition 1.10).

Thus all the three spaces of test functions D(Ω), E (Ω), and G are complete.
Moreover, they are dense in L2-spaces. Namely, D(Ω) is densely embedded into
L2(Ω) (see Proposition 1.4), G is densely embedded into L2(R

n), and E (Ω) is
densely embedded into L2,loc(Ω), where L2,loc is the set of locally square-integrable
functions. These two properties, completeness and denseness, are important in the
construction of corresponding distribution spaces. The denseness of spaces of test
functions in the Lp-spaces is important in applications. For instance, a solution space
of a differential equation found in the frame of test functions can be extended to
wider classes of functions (Sobolev, Besov, Triebel-Lizorkin, etc.) if the denseness
in these classes of functions holds. Thus, we assume that

(A) X is a complete metrizable locally convex topological vector space,
and

(B) X is densely embedded into a Banach space X in the sense of the norm of X.

Further, let X
′
be the dual space to X with respect to X, i.e., the space of linear

continuous functionals endowed with the weak topology. Namely,

(i) if F ∈X
′

and ϕ1, ϕ2 ∈X , then

F(λ1ϕ1 +λ2ϕ2) = λ1F(ϕ1)+λ2F(ϕ2),

for all λ1, λ2 ∈ C.
(ii) if ϕm → ϕ0 in X , then limm→∞F(ϕm) = F(ϕ0).

It follows from properties (A) and (B) that

(C) X
∗ ⊂X

′
,
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which shows that indeed the space of distributions generalizes elements of the Ba-
nach space X

∗, containing them as a particular case. In some cases the duality be-
tween the strict inductive and strict projective topologies helps to study a structure
of distribution spaces.

Proposition 1.23. Let a sequence of complete locally convex topological vector
spaces Xn form a sequence of embeddings

X1 ⊂ . . .Xn ⊂Xn+1 ⊂ ·· · ⊂X ⊂ X,

where X = ind limn→∞Xn , which densely embedded into a Banach space X. Then
the duals X ′

n with the weak topologies form the following sequence of embeddings

X
′ ⊂X

′ ⊂ . . .X
′

n+1 ⊂X
′

n ⊂ ·· · ⊂X
′

1 ,

where X
′
= pr limn→∞X

′
n and X

′
is the dual of X.

Another important principle in construction of the spaces of distributions is that
all the derivatives of distributions should exist in some weaker sense. Of course,
speaking about the derivatives, we assume that elements of X are functions. Since
by definition the (generalized) derivative of order α of a distribution F ∈X

′
is

DαF(ϕ) = (−1)αF(Dαϕ) (1.64)

for all ϕ ∈X , then the corresponding test functions must have all the derivatives.
This leads to the following property of the space of test functions:

(D) X is invariant with respect to differentiation operator Dα .

This property together with (1.64) immediately implies that

(E) F ∈X
′

has all the derivatives DαF in the sense of (1.64).

1.6 Fourier multipliers

Now we briefly discuss Fourier Lp-multipliers, which play an important role in our
further considerations. Suppose ϕ ∈ G and m(ξ ) s a bounded function. Then the
operator T defined as T f = F−1[mF[ f ]] performs a mapping T : G → G

′
. In the

multiplier problem we are interested in functions m(ξ ) for which the operator T
extends to a continuous mapping T : Lp(R

n)→ Lq(R
n) for some p, q ∈ [0,∞].

Definition 1.13. A bounded function m(ξ ), ξ ∈ R
n, is called a Fourier multiplier

of type (p,q) if for all f ∈ Lp(R
n) the inequality

‖T f‖ = ‖F−1[mF [ f ]]‖Lq ≤C‖ f‖Lp (1.65)
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holds. Here the constant C > 0 does not depend on f . The operator T is called a
Fourier multiplier operator. The set of Fourier multipliers of type (p,q) is denoted
by Mq

p. If q = p, then m is called an Lp-multiplier. Correspondingly, in this case we
write Mp instead of Mp

p .

Proposition 1.24. The following assertions hold:

(a) If m1, m2 ∈Mq
p, and λ1, λ2 ∈ C, then λ1m1 +λ2m2 ∈Mq

p;
(b) If m1 ∈Mq

r and m2 ∈Mr
p, then their product m1 ·m2 ∈Mq

p;
(c) If m ∈Mq

p, then m(·+ c) ∈Mq
p for any c ∈ R

n;
(d) M2 = L∞(Rn);
(e) Mp ⊂ L∞(Rn), 1 < p < ∞, p �= 2;

(f) Mq
p = Mp

′

q′
, where 1 < p,q < ∞ and (p, p

′
) and (q,q

′
) are conjugate pairs;

(g) M1 = M∞ = F[B(Rn)], where F[B(Rn)] is the Fourier image of the set of
bounded Borel measures B(Rn).

Proof. Part (a) immediately follows from Definition 1.13. To show (b) we assume
that m1 ∈Mq

r and m2 ∈Mr
p. Then it follows from Definition 1.13 that

‖F−1 [m1 m2 F[ f ]]‖Lq = ‖F−1[m1FF−1[m2 F [ f ]]]‖Lq

≤C1‖F−1[m2 F [ f ]]‖Lr ≤C1C2‖ f‖Lp .

Since F−1[m(ξ + c)F [ f ]] = exp(icx)F−1[m(ξ )F[ f ]](ξ − c), every Fourier multi-
plier of type (p,q) is translation invariant, that is if m ∈ Mq

p, then m(·+ c) ∈ Mq
p

for any c ∈ R
n, yielding (c). Part (d) follows easily from Parseval’s equality, see

Lemma 1.3. Part (e) follows from Mikhlin’s theorem (see Theorem 1.7 below)
when α = 0. Mikhlin’s theorem provides a description of the class Mp. To show
(f), suppose m ∈ Mq

p and ϕ ∈ Lq′ (R
n). Then, using relations F−1 = (2π)−nFS and

F = (2π)nF−1S, where S is a reflection operator acting as Sg(x) = g(−x), one has

〈F−1mF f ,ϕ〉 = 〈 f ,F−1mFϕ〉.

Therefore,

|〈 f ,F−1[mF [ϕ ]]〉|= |〈F−1[mF[ f ]],ϕ〉| ≤ ‖F−1[mF[ f ]]‖Lq‖ϕ‖L
q
′

≤C‖ f‖Lp‖ϕ‖L
q
′ .

Due to (1.4) this implies

‖F−1[mF[ϕ ]]‖L
p
′ = sup

0 �= f∈Lp(Rn)

|〈 f ,F−1[mF[ϕ ]]〉|
‖ f‖Lp

≤C‖ϕ‖L
q
′ ,

yielding m ∈Mp
′

q′
. For the proof of the fact that M∞ = F [B(Rn)] see [Ste70].
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Let K(x) ∈ G
′
denote the inverse Fourier transform of m ∈Mq

p, i.e., K = F−1[m].
Assume that f ∈ G . Then, taking into account the equation F−1[m(ξ )F[ f ]] = K ∗ f ,
inequality (1.65) can be rewritten in the form

‖K ∗ f‖Lq ≤C‖ f‖Lp (1.66)

which can be extended to functions f ∈ Lp by continuity. Moreover, (1.40) implies
that if K = F−1[m] ∈ Lr(R

n), where r ∈ [1,∞) and satisfies the condition

1+
1
q
=

1
r
+

1
p
,

then (1.66) holds with C = ‖K‖Lr . In particular, if p = q, and consequently, K =
F−1[m] ∈ L1(R

n), then m is a Lp-multiplier with C = ‖K‖L1 in inequality (1.66).
However, the condition F−1[m] ∈ L1(R

n) is not necessary for m to be an Lp-
multiplier. Consider an example. Let m(ξ ) = I[−1,1](ξ ), where I[−1,1](ξ ) is the in-

dicator function of the interval [−1,1]. Then F−1[m](x) = sinx
πx /∈ L1(R). However,

F−1[m]∈ Lr(R) for any r > 1. Therefore, m ∈Mq
p, where 1 < p,q <∞, and (p,q) is

a conjugate pair. In particular, m ∈M2. In the one-dimensional case, in fact, m ∈Mp

for all p > 1.
In dimensions n≥ 2, surprisingly, the function m = I|ξ |≤1(ξ ) is an Lp-multiplier

if and only if p = 2. This fact was proved by Fefferman [Fef71] in 1971.

Theorem 1.6. (Fefferman [Fef71]) Let D be the unit disc in R
n, n ≥ 2. Then the

Fourier multiplier operator TD = F−1IDF is unbounded in Lp(R
n) for every p �= 2.

The theorem below is due to Mikhlin [Mih56]. This theorem describes a class of
Lp-multipliers in the whole scale 1 < p < ∞.

Theorem 1.7. (Mikhlin) Let m(ξ )∈C1+[ n
2 ](Rn\0), where [a] designates the integer

part of a, and there exists a positive constant C such that

|ξ ||α ||Dαm(ξ )| ≤C, ξ ∈R
n \ {0}, (1.67)

for all |α| ≤ 1+[ n
2 ]. Then m ∈Mp, 1 < p < ∞.

Example 1.7. The function m(ξ ) = isign(ξ ), ξ ∈ R
1, satisfies the Mikhlin condi-

tion. Therefore, this function belongs to Mp for all 1 < p < ∞. The corresponding
multiplier operator T f = F−1[m(ξ )F [ f ]], due to formula (1.49), has the form

T f (x) =
1
π
(p.v.

1
x
∗ f )(x) =

1
π

∞∫

−∞

f (y)
x− y

dy,

and is called a Hilbert transform.

Lizorkin [Liz67] proved the following theorem under a weaker condition
than (1.67).
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Theorem 1.8. (Lizorkin [Liz67]) Let m(ξ ) be a function differentiable out of hyper-
planes ξ j = 0, j = 1, . . . ,n, and satisfy the condition

sup
ξ∈Rn

|ξαDαm(ξ )| ≤C, (1.68)

for all α = (α1, . . . ,αn) with components α j, j = 1, . . . ,n, equal either 0 or 1. Then
m ∈Mp, 1 < p < ∞.

Example 1.8. 1. It is easy to see that the characteristic function m
R

n
+
(ξ ) of the set

R
n
+ = {ξ ∈ R

n : ξ1 > 0, . . . ,ξn > 0} satisfies the condition (1.68). Therefore,
m

R
n
+
(ξ ) ∈Mp, 1 < p < ∞.

2. Consider the following radial function for γ > 0 :

m(ξ ) = ρ(|ξ |) = |ξ |γ
(1+ |ξ |)γ , ξ ∈ R

n.

Taking the derivative of ρ(τ) =
(
τ/(1+ τ)

)γ
, τ > 0, we have

ρ
′
(τ) =

γ
τ

(
τ

1+ τ

)γ 1
1+ τ

≤ γ
τ
, τ > 0.

Similarly,
|τmρ (m)(τ)| ≤C, τ > 0,

for all m = 2,3, . . . . Now it is readily seen that these estimates imply that m(ξ )
satisfies condition (1.68), and hence m ∈Mp, 1 < p < ∞.

The theorem below with an integral condition instead of (1.67) is due to
Hörmander [Hor83].

Theorem 1.9. ([Hor83]) Let m(ξ ) for some integer s > n
2 satisfy the condition

∑
|α |≤s

∫

R/2<|ξ |<2R

|RαDαm(ξ )|dξ ≤C < ∞, ∀R > 0. (1.69)

Then m ∈Mp, 1 < p <∞.

Remark 1.2. Condition (1.69) in the Hörmander’s multiplier theorem implies conti-
nuity of m(ξ ). The indicator function of the unit ball obviously does not satisfy this
condition, as well as Lizorkin’s condition (1.68).

1.7 Sobolev spaces and Bessel potentials: case p=2

Let m be a nonnegative integer number. Let a function f ∈ L2(Ω),Ω ⊆ R
n,

be such that its all the derivatives Dα f , |α| ≤ m, in the sense of distributions,
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belong to L2(Ω). The set of such functions endowed with the norm

‖ f |W m
2 (Ω)‖ = ∑

|α |≤m

‖Dα f‖L2(Ω), (1.70)

and denoted by W m
2 (Ω), is called a Sobolev space of order m. Another norm, equiv-

alent to (1.70), is given by

‖ f |W m
2 (Ω)‖ =

(
∑

|α |≤m

‖Dα f‖2
L2(Ω)

) 1
2
.

For Sobolev spaces as a direct implication of the definition, the following inclusions
hold:

L2(Ω)⊃W 1
2 (Ω)⊃ ·· · ⊃W m

2 (Ω)⊃W m+1
2 (Ω)⊃ ·· · . (1.71)

Define by W−m
2 (Ω) the dual space to W m

2 (Ω). In other words W−m
2 (Ω) is the set

of linear continuous functionals defined on W m
2 (Ω). The norm in W−m

2 (Ω) is de-
fined by

‖ f |W−m
2 (Ω)‖ = sup

0 �=ϕ∈Wm
2 (Ω)

|< f ,ϕ > |
‖ϕ |W m

2 (Ω)‖ .

W−m
2 (Ω) is called a negative order Sobolev space. With this definition one can

extend (1.71) to the full scale of Sobolev spaces

· · · ⊂W (m+1)
2 (Ω)⊂W m

2 (Ω)⊂ ·· · ⊂W 1
2 (Ω)⊂ L2(Ω)

⊂W−1
2 (Ω)⊂ ·· · ⊂W−m

2 (Ω)⊂W−(m+1)
2 (Ω)⊂ ·· · . (1.72)

Obviously, the norms satisfy the inequalities

· · · ≤ ‖ f |W−(m+1)
2 (Ω)‖ ≤ ‖ f |W−m

2 (Ω)‖ ≤ ·· · ≤ ‖ f‖L2

≤ ·· · ≤ ‖ f |W m
2 (Ω)‖ ≤ ‖ f |W m+1

2 (Ω)‖ ≤ ·· · (1.73)

Hence, if a sequence fk ∈W m+1
2 (Ω), where m ∈ Z, converges to f0 ∈W m+1

2 (Ω)

in the norm of W m+1
2 (Ω), then fk → f0 in the norm of W m

2 (Ω), too. This implies
that each of the embeddings in (1.72) is continuous. We use the symbol ↪→ for
continuous embeddings. Thus, unifying (1.72) and (1.73) one can write

· · · ↪→W (m+1)
2 (Ω) ↪→W m

2 (Ω) ↪→ ··· ↪→W 1
2 (Ω) ↪→ L2(Ω)

↪→W−1
2 (Ω) ↪→ ··· ↪→W−m

2 (Ω) ↪→W−(m+1)
2 (Ω) ↪→ ··· .

Further, each of these embeddings is dense due to Proposition 1.4, Part (3). Applying
Arzela-Ascoli Lemma (Lemma 1.1) and the denseness of C∞

0 (Ω) in Sobolev spaces
one can verify that each of the embeddings in the scale (1.72) is compact.



1.7 Sobolev spaces and Bessel potentials: case p = 2 37

Due to Lemma 1.18 and Parseval’s equality Dα f ∈ L2(R
n) is equivalent to

ξαF [ f ] ∈ L2(R
n). Therefore, in the case Ω = R

n Sobolev spaces can easily be ex-
tended to fractional order Sobolev spaces. These spaces serve also as local elements
in construction of Sobolev spaces on manifolds M ⊂ R

n without boundary.

Definition 1.14. Let s≥ 0 be a real number. Introduce the space

Hs ≡ Hs(Rn) = { f ∈ L2(R
n) : (1+ |ξ |2) s

2 F [ f ] ∈ L2(R
n)}. (1.74)

Hs is called a space of Bessel potentials, or Liouville space. Similar to the integer
order Sobolev spaces one can introduce H−s(Rn) as the space of linear continuous
functionals defined on Hs(Rn). The norm of f ∈ H−s(Rn) we denote by ‖ f‖−s.
Both Hs(Rn) (s > 0) and H−s(Rn) are Hilbert spaces. The inner product and the
norm in Hs(Rn) are defined

(ϕ ,ψ)s =
(
(1+ |ξ |2)s/2F [ϕ ],(1+ |ξ |2)s/2F [ψ ]

)
L2
,

and
‖ϕ‖s = ‖(1+ |ξ |2)s/2F [ϕ ]‖L2 ,

respectively. Obviously, Hs(Rn) is equivalent to W m
2 (Rn) if s = m ∈ Z. If s2 > s1,

then Hs2(Rn) ⊂ Hs1(Rn), and this inclusion is continuous, dense, and compact. It
is also useful to note that continuous and dense inclusions G ⊂ Hs(Rn) ⊂ L2(R

n)

imply continuous and dense inclusions L2(R
n)⊂ H−s(Rn)⊂ G

′
.

The definitions of the spaces Hs(Rn) for positive and negative numbers s can be
unified for any real s. Namely, a distribution f in G

′
is in the space Hs(Rn), where

s is a real number (not necessarily positive), if

‖ f‖s = ‖(1+ |ξ |2)s/2F [ f ](ξ )‖L2 < ∞.

Assume K0 = {ξ ∈ R
n : |ξ | ≤ 1} and Kj = {2 j−1 ≤ |ξ | ≤ 2 j}, j = 1,2, . . . . Obvi-

ously,∪∞j=0Kj =R
n. Further, for a given set A denote by IA(ξ ) the indicator function

of A, i.e.

IA(ξ ) =

{
1, if ξ ∈ A;

0, if ξ �= A.

Then for a f ∈ Hs(Rn) one has

C1

∞

∑
j=0

22 js‖ f j‖2
L2
≤ ‖ f‖2

s ≤C2

∞

∑
j=0

22 js‖ f j‖2
L2
, (1.75)

where C1 <C2 are positive constants and f j(x) = F−1(I j(ξ )F [ f ](ξ )) ∈ L2(R
n) due

to Proposition 1.24, part (d), since the indicator function IA(ξ ) is a L2-multiplier
for any bounded set A⊂R

n. Here I j(ξ ) = IKj (ξ ), and therefore supp F [ f j ]⊂Kj for
each j = 0,1, . . . . Moreover,∑∞

j=0 I j(ξ )≡ 1, yielding f (x) =∑∞
j=0 f j(x). These facts

and the Parseval equality imply (1.75). This technique of characterization of the
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spaces Hs is called a dyadic (or spectral) decomposition method. A modification of
this idea will be used in the next section for introduction of the Besov and Lizorkin-
Triebel spaces.

We have noted above that L2(R
n) is invariant with respect to the Fourier trans-

form F . The Hausdorff-Young Theorem (see Theorem 1.4) provides the range of
the Fourier transform F acting on Lp(R

n) in the case p ∈ [1,2). If p > 2, then the
spaces Hs(Rn), s ∈R, can be used for description of the range F[Lp(R

n)].

Theorem 1.10. (Hörmander) Let p > 2. Then the Fourier transform F maps the

space Lp(R
n) into H−s where s > n

(
1
2 − 1

p

)
, and the inequality ‖F f‖−s ≤C‖ f‖Lp

holds with a constant C > 0, which does not depend on f .

In Example 1.6 we obtained that F [1] = (2π)nδ0. The function f (x)≡ 1 belongs
to L∞(Rn), but does not belong to Lp(R

n) for any p ∈ [1,∞). Hence, letting p → ∞
in Theorem 1.10 one has that the Dirac delta function δ ∈ H−s, only if s > n/2.

The classic Paley-Wiener theorem characterizes the Fourier transform of func-
tions f ∈C∞

0 (R
n).

Theorem 1.11. (Paley-Wiener [Hor83]) Let ϕ ∈C∞
0 (R

n) with a support contained
in the ball BR = {x : |x| ≤ R}. Then its Fourier transform F(ξ ) = F [ϕ ](ξ ) can be
extended analytically to the entire complex space Cn and for any m∈N0 there exists
a number Cm > 0, such that

|F(ξ + iη)| ≤Cm(1+ |ξ |)−meR|η|, ξ + iη ∈ C
n. (1.76)

Conversely, if an entire function F(ζ ), ζ = ξ + iη ∈ C
n, satisfies the inequal-

ity (1.76), then there exists a function ϕ ∈ C∞
0 (R

n) with a support suppϕ ⊂ BR,
such that F [ϕ ](ξ ) = F(ξ ).

By construction, the sets of test functions introduced in Sections 1.5.1–1.5.3 are
in the following relation: D(Rn) ⊂ G (Rn) ⊂ E (Rn). Moreover, the topology of a
larger set in this series of inclusions is finer making each of these inclusions contin-
uous. Therefore, their duals endowed with the corresponding weak topologies are
related as E

′
(Rn)⊂ G

′
(Rn)⊂D

′
(Rn), where each inclusion is continuous. In Sec-

tion 1.5.3 we established that every distribution f in G
′
(Rn) has the Fourier trans-

form F [ f ], which is again a distribution in G
′
(Rn). The Paley-Wiener-Schwartz

theorem, proved by Laurent Schwartz [Sch51], shows that if a distribution f has
a compact support, that is if f ∈ E

′
(Rn), then its Fourier transform is actually a

function F[ f ](ξ ) = F(ξ ) =< f ,eixξ > called a Fourier-Laplace transform, and this
function can be characterized as an entire function on C

n.

Theorem 1.12. (Paley-Wiener-Schwartz [Sch51, Hor83]) Let f ∈ E
′
(Rn) with a

support contained in the ball BR = {x : |x| ≤ R}. Then its Fourier transform
F(ξ ) = F [ϕ ](ξ ) can be extended analytically to the entire complex space C

n and
satisfies the estimate

|F(ξ + iη)| ≤Cm(1+ |ξ |)meR|η|, ξ + iη ∈ C
n. (1.77)
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for some m ∈ N0 and Cm > 0. Conversely, if an entire function F(ζ ), ζ = ξ + iη ∈
C

n, satisfies the inequality (1.77) for some m ∈ N0 and Cm > 0, then there exists a
distribution f ∈ E

′
(Rn) with a support suppϕ ⊂ BR, such that

F(ξ ) =< f ,eixξ >, ξ ∈ R
n. (1.78)

Remark 1.3. The Fourier transform of a tempered distribution f ∈ G
′
was defined as

F [ f ](ϕ) = f (F [ϕ ]) for all ϕ ∈ G . This definition works well for a Schwartz distri-
bution f ∈D

′
(Rn), as well: F[ f ](ϕ) = f (F [ϕ ]) for all ϕ ∈D(Rn). This definition

does not work for distributions with compact support f ∈ E
′
(Rn), since F[ϕ ] may

not exist for ϕ ∈ E (Rn). However, it follows from Theorem 1.12 that the Fourier
transform of f ∈ E

′
(Rn) can be defined by the Fourier-Laplace transform (1.78).

The Fourier-Laplace transform is valid for functions of complex variables also and
widely used in complex analysis. We will exploit it, in particular, in Chapter 7 in the
context of complexΨDOSS’.

1.8 Sobolev, Sobolev-Slobodecki, and Besov spaces: general case

Sobolev spaces and spaces of Bessel potentials for arbitrary 1 ≤ p ≤ ∞ are defined
as follows.

Definition 1.15. Let m ∈N and 1≤ p≤ ∞. Then

W m
p (Ω)≡ { f ∈D

′
(Ω) : ‖ f |W m

p (Ω)‖ = ∑
|α |≤m

‖Dα f‖Lp(Ω) < ∞}. (1.79)

Definition 1.16. Let s ∈ R and 1≤ p≤ ∞. Then

Hs
p ≡ Hs

p(R
n) = { f ∈ G

′
: F−1

[
(1+ |ξ |2) s

2 F [ f ]
]
∈ Lp(R

n)}. (1.80)

Hs
p is a Banach space with respect to the norm

‖ f‖Hs
p
=
∥∥∥F−1

[
(1+ |ξ |2)s/2F [ f ]

]∥∥∥
Lp
. (1.81)

Elements of Hs
p are also called Bessel potentials. Sobolev-Slobodecki spaces inter-

polate Sobolev spaces to noninteger order. Let μ ∈ (0,1). Then for 1 ≤ p < ∞ the
Sobolev-Slobodecki space of order μ is

W μ
p (Ω) ≡ { f ∈ Lp(Ω) : ‖ f |W μ

p (Ω)‖=
(∫
Ω

∫

Ω

| f (x)− f (y)|p
|x− y|μ p+n dxdy

)1/p

=
( ∫

|h|≤h0

‖Δh f‖p
Lp(Ω)

dh
|h|n+μ p

)1/p
< ∞}.
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Here Δ f (x) = f (x+ h)− f (x), the first order finite difference, and h0 is a positive
number, 0< h0 < 1. Note that norms in the above definition for all h0 are equivalent,
and hence, W μ

p (Ω) does not depend on h0. In a similar manner, if λ = m+μ , where
m ∈ N and 0 < μ < 1, then

Wλ
p (Ω)≡ { f ∈W m

p (Ω) : ‖ f |Wλ
p (Ω)‖= ‖ f |W m

p (Ω)‖

+ ∑
|α |=m

( ∫

|h|≤h0

‖ΔhDα f‖p
Lp(Ω)

dh
|h|n+μ p

)1/p
< ∞}.

It is known (see, e.g., [Tri83]) that for integer μ = m the Sobolev-Slobodecki space
does not coincide with the Sobolev space W m

p (Ω). Sobolev-Slobodecki spaces are
important in the study of traces of functions from Sobolev spaces. Namely, the the-
orem below holds. Denote by γ the trace operator γ f = f|∂Ω , where ∂Ω is the
boundary of Ω .

Theorem 1.13. Let 1 < p <∞, m≥ 1, andΩ be a bounded domain with a Lipschitz
boundary ∂Ω . Then the trace operator

γ : W m
p (Ω)→W

m− 1
p

p (∂Ω)

is continuous.

Definition 1.17. Let s = m+μ , 0< μ ≤ 1, 1≤ p,q≤∞, 0< h0 < 1, and Ωh = {x∈
Ω : x+ h∈Ω}. The Besov space is a normed space of functions

Bs
p,q(Ω)≡ { f ∈W m

p (Ω) : ∑
|α |=m

∫

|h|<h0

‖Δ2
h Dα f‖q

Lp(Ωh)

dh
|h|n+μq < ∞},

relative to the norm

‖ f |Bs
p,q(Ω)‖ = ‖ f |W m

p (Ω)‖+ ∑
|α |=m

( ∫

|h|<h0

‖Δ2
h Dα f‖q

Lp(Ωh)

dh
|h|n+μq

)1/q
,

if q < ∞, and

‖ f |Bs
p,q(Ω)‖= ‖ f |W m

p (Ω)‖+ ∑
|α |=m

sup
|h|<h0

‖Δ2
h Dα f‖Lp(Ωh)

|h|μ ,

if q = ∞.
The Besov space is a Banach space and does not depend on h0. If Ω = R

n, then
obviously,Ωh =Ω . In the particular case q=∞, Bs

p,∞(Ω) is called Nikol’skii space,
and in the case p = q = ∞, Bs

∞,∞(Ω) coincides with the Hölder-Zygmund space
C s(Ω). If p = q = 2, then Bs

2,2(Ω) = W s
2 (Ω) (Sobolev-Slobodecki space). Thus,

the Besov space represents a wide generalization of the spaces introduced above
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and in previous sections. The Besov and Lizorkin-Triebel spaces on the base of
spectral decomposition method will be introduced in the next section.

Remark 1.4. 1. We note that the spectral decomposition method of characterization
of the space of Bessel potentials, we used above in the case p = 2, does not work
in the case p �= 2. The reason is indicator functions of the sets K0 = {ξ ∈ R

n :
|ξ | ≤ 1} and Kj = {2 j−1 ≤ |ξ | ≤ 2 j}, j = 1,2, . . . , are not Fourier multipliers for
p �= 2, n≥ 2, due to Fefferman’s theorem, see Theorem (1.6). We will see in the
next section that a suitable modification of the method of spectral decomposition
works for characterization of not only Hs

p, but also wider spaces, the Besov and
Lizorkin-Triebel spaces.

2. We also note that one can define the Sobolev space Hs
p(Ω) for bounded domain

Ω ⊂ R
n with a smooth boundary, as the set

Hs
p(Ω) = {g = f|Ω : f ∈ Hs

p(R
n)},

where f|Ω is a restriction of f onto Ω . The space Hs
p(Ω) relative to the norm

‖g|Hs
p(Ω)‖ = inf

f|Ω=g
‖ f |Hs

p‖,

is a Banach space. This space is important in the modern theory of boundary
value problems for linear and nonlinear differential and pseudo-differential equa-
tions (see, e.g., [Tri83, Tre80, Tay81, BL81]).

The relations of the space W μ
p (Ω) to the spaces Lp(Ω) and C(Ω) are given in

the theorem below, which is known as the Sobolev embedding theorem.

Theorem 1.14. 1. Let 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. Assume that μ ≥ n(1/p− 1/q).
Then the embedding

W μ
p (Ω)⊂ Lq(Ω) (1.82)

is continuous.
2. Let 1≤ p≤ ∞. Assume that μ > n/p. Then the embedding

W μ
p (Ω)⊂C(Ω) (1.83)

is continuous.

The particular case p = 2 will be used frequently in our further analysis. Namely,
if s≥ n(1/2− 1/q), then the embedding

Hs
2(Ω) ⊂ Lq(Ω) (1.84)

is continuous, and if s > n/2, then the embedding

Hs
2(Ω) ⊂C(Ω) (1.85)

is continuous.
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Finally, we introduce two topological vector spaces important for our further
analysis. Let Ω ⊆ R

n be a domain, p ≥ 1, and s ∈ R
n. Introduce the following

spaces:

Hs
p,comp(Ω) = { f ∈Hs

p(R
n) : supp f �Ω};

Hs
p, loc(Ω) = { f ∈ G

′
: ‖ f |Hs

p(K)‖ < ∞} for all compact sets K ⊂Ω .

If s = 0, then we write H0
p,comp(Ω) = Lp,comp(Ω) and H0

p, loc(Ω) = Lp, loc(Ω).

The spaces Hs
p,comp(Ω), Hs

p, loc(Ω) are not normed. We say that a sequence fk ∈
Hs

p,comp(Ω) converges to f0 ∈Hs
p,comp(Ω), if there is a compact set K ⊂Ω such that

supp fk ⊆ K for all k ∈N, and ‖ fk− f0|Hs
p(R

n)‖→ 0, when k→ ∞. Further, we say
that a sequence fk ∈ Hs

p, loc(Ω) converges to f0 ∈ Hs
p, loc(Ω), if ‖ fk− f0|Hs

p(K)‖→
0, as k → ∞, for arbitrary compact set K ⊂Ω .

Proposition 1.25. Let 1< p<∞ and p
′
be its conjugate. Then the spaces Hs

p,comp(Ω)
and Hs

p, loc(Ω) satisfy the following duality relations:

1. [Hs
p,comp(Ω)]∗ = H−s

p′ , loc
(Ω);

2. [Hs
p, loc(Ω)]∗ = H−s

p′ ,comp
(Ω).

1.9 Besov and Lizorkin-Triebel spaces

Besov and Lizorkin-Triebel type spaces widely generalize the spaces like Lp,
Hölder, Sobolev, Bessel, and other spaces. In Definitions (1.18) and (1.19) below
we assume that 1≤ p,q < ∞ and s ∈R.

Definition 1.18. A function f is said to belong to the Besov space Bs
pq(R

n) if f has
the representation

f =
∞

∑
j=0

a j(x)

in the sense of G
′
(Rn), where a j ∈ Lp(R

n),

supp F [a j]⊂Mj = {2 j−1 ≤ |ξ | ≤ 2 j+1}, j = 0,1, . . . ,

and

‖ f |Bs
pq‖∗ = (

∞

∑
j=0

2s jq‖a j‖q
Lp
)

1
q (1.86)

is finite.

In fact, the expression ‖ f |Bs
pq‖∗ in equation (1.86) defines a norm. This can be easily

verified. The triangle inequality follows due to Minkowski’s inequality.

Definition 1.19. A function f is said to belong to the Lizorkin-Triebel space Fs
pq(R

n)
if f has the representation
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f =
∞

∑
j=0

a j(x)

in the sense of G
′
(Rn), where a j ∈ Lp(R

n), supp F [a j]⊂Mj, j = 0,1, . . . , and

‖ f |Fs
pq‖∗ = ‖(

∞

∑
j=0

2s jq|a j(x)|q)
1
q ‖Lp (1.87)

is finite.

Notice that these two function spaces differ by the form of their norms (1.86)
and (1.87). Namely, the norm of Bs

pq(R
n) can be interpreted as lq-norm of the se-

quence ‖2s ja j‖Lp , while the norm of Fs
pq(R

n) as Lp-norm of the function ‖2s ja j(x)‖lq .
Now, due to this fact, it is straightforward to extend the definitions of Besov and
Lizorkin-Triebel spaces to the cases p = ∞ or q = ∞. For instance, Bs

p∞(R
n) is de-

fined by the finite norm sup j ‖2s ja j‖Lp . Similarly, Fs
p∞(R

n) is defined by the finite

norm
(∫

Rn(sup j |2s ja j|)pdx
)1/p

. We refer the reader for details to [Tri77, Tri83].

There is a wide class of norms equivalent to (1.86) (or (1.87)) and defined via the
family Φ of functional sequences defined below, see [Tri83].

Definition 1.20. A sequence {ψ j(ξ )}∞j=0 is said to belong to ΦN , N ∈ N, if the fol-
lowing conditions hold:

1) ψ j ∈ G (Rn), F [ψ j]≥ 0, j ≥ 0;
2) suppF [ψ j] ⊂ {ξ ∈ R

n : 2 j−N ≤ |ξ | ≤ 2N+ j}, j ≥ 1, and suppF [ψ0] ⊂ M0 =
{|ξ | ≤ 2N};

3) there exists a positive number η > 0 such that

F [ψ0 +ψ1 + . . . ](ξ )≥ η ;

4) for an arbitrary α there exists C(α)> 0 such that

|ξ ||α ||DαF[ψ j](ξ )| ≤C(α), j = 1,2, . . . .

Definition 1.21. Φ = ∪∞N=1ΦN .

If {ψ j(ξ )}∞j=0 ∈Φ , then the norm equivalent to (1.86) is defined as

‖ f |Bs
pq‖= (

∞

∑
j=0

2s jq‖F−1[ϕ jF [ f ]]‖q
Lp
)

1
q , (1.88)

where ϕ j = F[ψ j], j ≥ 0. Similarly, the norm equivalent to (1.87) is defined as

‖ f |Fs
pq‖= ‖(

∞

∑
j=0

2s jq|F−1[ϕ jF[ f ]]|q)
1
q ‖Lp .
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Hence, the definition of the Besov and Lizorkin-Triebel spaces can be given in the
following equivalent forms:

Bs
pq = { f ∈G ′ : ‖ f |Bs

pq‖=(
∞

∑
j=0

2s jq‖F−1[ϕ jF [ f ]]‖q
Lp
)

1
q <∞}, {F−1[ϕ j] =ψ j}∈Φ,

and

Fs
pq(R

n)= { f ∈G ′ : ‖ f |Fs
pq‖= ‖(

∞

∑
j=0

2s jq|F−1[ϕ jF [ f ]]|q) 1
q ‖Lp <∞}, {F−1[ϕ j] =ψ j}∈Φ .

For the proof of the equivalence of corresponding norms we refer the reader to
[Tri83].

Example 1.9. The example below shows that ΦN , and hence, Φ are not empty. We
construct a sequence of functions {ψk}∞k=0, which belongs to ΦN for N = 1. Con-
sider two functions ϕ0(ξ ) and φ(ξ ) with the following properties:

1. ϕ ∈C∞
0 (|ξ |< 2), φ ∈C∞

0 (
1
2 < |ξ |< 2);

2. ϕ ≥ 0, φ ≥ 0, and ϕ ≡ 1 on {ξ : |ξ | ≤ √2}, and φ = 1 on {ξ : 1√
2
≤ |ξ | ≤ √2}.

We set

ψ0(x) = F−1[ϕ(ξ )],

ψk(x) = F−1[φ(2−kξ )], k = 1,2, . . . .

It is not hard to verify that {ψk}∞k=0 ∈ Φ1. By definition, the functions ϕ and φ are
infinite differentiable with compact support, and therefore belong to G (Rn). This
implies that ψk ∈ G (Rn) for each k ∈ N0. Moreover, by construction, F[ψk](ξ ) =
φ(2−kξ ) ≥ 0 for all k ∈ N, and F [ψ0](ξ ) = ϕ(ξ ) ≥ 0. Hence, condition 1) in
Definition 1.20 is fulfilled. Condition 2) is immediate by construction of the sys-
tem {ψk(x)}. Further, by construction, F [ψ0]≡ 1 on the set |ξ | ≤√2, F [ψ1]≡ 1 on
the set

√
2≤ |ξ | ≤ 2

√
2, F [ψ2]≡ 1 on the set 2

√
2≤ |ξ | ≤ 22

√
2, etc. These imply

that F [ψ0 +ψ1 + . . . ]≥ 1, yielding Condition 3). Condition 4) is also verified, since
ϕ , φ ∈C∞

0 (R
n). In a similar manner one can easily construct a system {ψk(x)} ∈ΦN

for any N > 1.

Besov and Lizorkin-Triebel spaces represent a wide class of function spaces con-
taining Hölder-Zigmund, Sobolev, Slobodecki, Liouville, and other spaces as partic-
ular cases. For instance, for s ∈R one has Fs

p,2(R
n) = Hs

p(R
n), 1 < p <∞, (Sobolev

spaces), or Bs
∞,∞(R

n)=C s(Rn) (Hölder-Zigmund spaces) for s> 0. The proposition
below contains some important properties of the Besov space. Similar properties
hold for the Lizorkin-Triebel space. See details in [Tri83].

Proposition 1.26. Let s ∈ R and 1 < p < ∞.

1. The spaces G (Rn) and C∞
0 (R

n) are dense in Bs
p,q(R

n) if 1 ≤ q < ∞, and are not
dense if q = ∞.
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2. If 1≤ q1 ≤ q2 ≤ ∞, then Bs
p,1(R

n) ↪→ Bs
p,q1

(Rn) ↪→ Bs
p,q2

(Rn) ↪→ Bs
p,∞(R

n);
3. For ε > 0 and any 1≤ q1,q2 ≤∞ the embedding Bs+ε

p,q1
(Rn) ↪→ Bs

p,q2
(Rn) is com-

pact;
4. If s > n

p , then the continuous embedding Bs
p,q(R

n) ↪→ C(Rn), holds for every
1≤ q≤ ∞;

5. If 1 < q≤ p <∞, then Bs
p,q(R

n) ↪→ Fs
p,q(R

n) ↪→ Bs
p,p(R

n), and if 1 < p≤ q <∞,
then Bs

p,p(R
n) ↪→ Fs

p,q(R
n) ↪→ Bs

p,q(R
n);

6. If 2 ≤ p < ∞, then Bs
p,2(R

n) ↪→ Hs
p(R

n) ↪→ Bs
p,p(R

n), and if 1 < p ≤ 2, then
Bs

p,p(R
n) ↪→Hs

p(R
n) ↪→ Bs

p,2(R
n). Moreover, If 1 < p = q <∞, then Bs

p,p(R
n) =

Fs
p,p(R

n) and if p = q = 2, then Bs
2,2(R

n) = Hs(Rn).

Remark 1.5. 1. Statements 4) and 6) of the above proposition imply the Sobolev
embedding theorem, Theorem 1.14. Namely, taking q = p, for s > n/p one has
Hs

p(R
n) ↪→ Bs

p,p(R
n) ↪→C(Rn), recovering Theorem 1.14.

2. Besov spaces Bs
p,q(R

n) are reflexive Banach spaces for all 1 < p <∞, 1≤ q <∞.
For the conjugate space (Bs

p,q(R
n))∗ to Bs

p,q(R
n) the following duality relation

holds:
(Bs

p,q)
∗ = B−s

p′ ,q′ (R
n),

where (p, p
′
) and (q,q

′
) are conjugate pairs.

3. Similar to Sobolev spaces (see Remark 1.4), if Ω ⊂R
n is a bounded domain with

a smooth boundary, then the space

Bs
p,q(Ω) = {g = f|Ω : f ∈ Bs

p,q(R
n)},

is a Banach space relative to the norm

‖g|Bs
p,q(Ω)‖ = inf

f|Ω=g
‖ f |Bs

p,q(R
n)‖.

1.10 ψ-distributions

We have introduced three types of distributions above. Now we introduce a fourth
type of distributions space appeared relatively recently and therefore not well rep-
resented in the literature. Therefore, we will study its properties in detail. We will
show that this space possesses all the basic principles discussed in Section 1.5.4.
Moreover, this space is often convenient and preferable for the study of various ini-
tial and boundary value problems for pseudo-differential equations with symbols
depending only on dual variables and with possible singularities.

Let 1 ≤ p ≤ ∞ and let G be an open set in R
n. Suppose that {gk}∞k=0 is a locally

finite covering of G, i.e., G = ∪∞k=0gk, gk ⊂ G is compact and every compact set
K ⊂ G has a nonempty intersection with a finite number of sets gk. For a set K
compact in G we write K � G. We denote by {φk}∞k=0 the smooth partition of unity
for G corresponding to the covering {gk}∞k=0.
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Definition 1.22. Denote by ΨG,p(R
n) the set of functions ϕ ∈ Lp(R

n) such that
suppF[ϕ ] � G, i.e., the Fourier transform of ϕ has a compact support in G. We
say that a sequence ϕm ∈ΨG,p(R

n), m = 1,2, . . ., converges to ϕ0 ∈ΨG,p(R
n) in

ΨG,p(R
n) if the following two conditions are fulfilled:

(i) there exists a compact set K ⊂ G such that suppFϕm ⊆ K, ∀m ∈ N;
(ii) ϕm → ϕ0 in the norm of Lp(R

n), as m→ ∞.

It follows from the Paley-Wiener-Schwartz Theorem (Theorem 1.12) that ϕ ∈
ΨG,p(R

n) if and only if it has the analytic extension ϕ(x+ iy) to C
n, which is an

entire function of a finite exponential type, i.e., there exist constants C > 0, r > 0,
and γ ∈R, such that

|ϕ(x+ iy)| ≤C(1+ |x|)γer|y|.

Since ϕ ∈ Lp(R
n), obviously γ < −n/p. This observation supplies examples of

functions of ΨG,p(R
n). Namely, any entire function of a finite exponential type

whose restriction to R
n belongs to Lp(R

n), gives an example ofΨG,p(R
n).

Example 1.10. 1. Consider the function ϕ1(z) = sinrz
πz , z ∈ C, r > 0, which is an en-

tire function of type r. The restriction of this function to the real axis ϕ1(x) =
sin rx
πx , belongs to Lp(R) for any p > 1. Therefore, ϕ1(x) ∈ ΨG,p(R

n), for all
p > 1, where G is any interval containing [−r,r]. The Fourier transform of ϕ1

is F [ϕ1](ξ ) = I[−r,r](ξ ), where I[−r,r](ξ ) is the indicator function of the interval
[−r,r], yielding suppF[ϕ1] = [−r,r]. This again confirms that ϕ1(x) is a function
inΨG,p(R

n). Similarly, one has

ϕ2(x) =
eirx− 1

x
∈ΨG,p(R

n), p > 1,and

ϕ3(x) =
sin2 rx

x2 ∈ΨG,p(R
n), p≥ 1.

2. The function ϕ1(x) in the first example gives rise to n-dimensional case. Let

ϕ(x) =
n

∏
j=1

sinx j

πx j
.

Then the n-dimensional Fourier transform of this function is F[ϕ ](ξ ) = IK(ξ ),
where K = {−1 ≤ ξ1 ≤ 1, . . . ,−1 ≤ ξn ≤ 1}, is an n-dimensional cub. Ap-
plying Fubini’s theorem we have that ϕ ∈ Lp(R

n) for any p > 1. Therefore,
ϕ ∈ΨG,p(R

n) for any p > 1 and any domain G⊆ R
n containing K.

3. The Bessel function of the first kind J�(x) with nonnegative integer � admits
the analytic extension to the whole complex plane C. This extension J�(z) is an
entire function of finite exponential type and of order one. Moreover, J�(x) ∈
Lp(R) for any p > 2, since it behaves like 1/

√
x when |x| → ∞. Therefore, J� ∈

ΨG,p(R
n), p > 2.
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4. Consider the function

φ(x) =
1

(2π |x|) n
2

Jn
2
(|x|), x ∈ R

n,

where again Jn
2

is the Bessel function of the first kind of order n/2. Passing
on to the spherical coordinates one can show that the Fourier transform of φ is
F [φ ](ξ ) = IB(ξ ), with B = {ξ ∈ R

n : |x| ≤ 1}, the unit ball. Remembering the
asymptotic behavior Jn/2(x)∼ 1/

√
x, when |x|→∞, one can see that φ ∈Lp(R

n),

if p > 2n
n+1 . Hence,

φ ∈ΨG,p(R
n) for all p >

2n
n+ 1

, and G⊃ B.

Remark 1.6. 1. The above examples show that the parameter p in the definition of
Ψp,G is essential. The space Ψp,G in the particular case p = 2 was introduced in
1981 by Dubinski [Dub82] (Dubinski used the notation H∞(G) for test functions
and H−∞(G) for distributions). For arbitrary p ∈ [1,∞] the space ΨG,p(R

n) and
its dual were introduced in 1997 in [Uma97, Uma98].

2. How ΨG,p(R
n) is related to other spaces of test functions? First, it is obvious

by construction, that ΨG,p(R
n)∩D(Rn) = /0 for any p ≥ 1 and any G ⊆ R

n.
A function with compact support cannot have Fourier transform with compact
support. Secondly, the spaceΨG,p(R

n) is a topological subspace of E (Rn). This
follows from the fact that any entire function is infinitely differentiable, and the
convergence in ΨG,p(R

n) implies the convergence in E (Rn). To show the latter
we notice that if ϕn ∈ΨG,p(R

n) and ‖ϕn‖Lp → 0, then ϕn(x)→ 0 for every point
x ∈R

n. Therefore ϕn → 0 uniformly on every compact K ⊂R
n. Since ϕn,n ∈N,

are entire functions, it follows that Dαϕn → 0 locally uniformly for all multi-
indices α. However, the embeddingΨG,p(R

n) ⊂ E (Rn) may not be dense. The
denseness of this and other embeddings will be discussed in Section 1.11. Finally,
one can see that there is a function ϕ ∈ G such that ϕ /∈ΨG,p(R

n), and vise
versa, there is a function ψ ∈ΨG,p(R

n) such that ψ /∈ G . Indeed, a function
ϕ ∈C∞

0 (R
n), ϕ(0) = 1, is also a function in G . On the other hand, ϕ /∈ΨG,p(R

n),
since any analytic function with compact support is identically zero. Conversely,
as we have seen above, the function ψ(x) = sin(x)/x ∈ΨG,p(R) for all p > 1.
However, obviously, ψ /∈ G .

Now we turn our attention to the topological structure of ΨG,p(R
n). This space

of test functions can be represented as an inductive limit of a sequence of Banach
spacesΨN,p, for instance, defined as follows. Let

GN = ∪N
k=0gk, κN(ξ ) =

N

∑
k=0

φk(ξ ). (1.89)

It is clear that GN ⊂ GN+1,N = 0,1, . . ., and GN → G when N → ∞.
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Definition 1.23. Denote byΨN,p the set of functions ϕ ∈ Lp(R
n), satisfying the fol-

lowing conditions:

1. suppF ϕ ⊂GN ;
2. suppF ϕ ∩ suppφ j = /0, j > N;
3. pN(ϕ) = ‖F−1[κNF[ϕ ]]‖Lp

<∞.

One can easily verify that ΨN,p is a Banach space for each N ∈ N with norm
‖ϕ |ΨN,p‖ = pN(ϕ). We want to show that ΨG,p(R

n) can be represented as the in-
ductive limit of the sequence of Banach spaces ΨN,p. First we prove the following
assertion.

Proposition 1.27. The following continuous embeddings hold:

1. ΨN,p ⊂ΨN+1,p, ∀N ≥ 0;
2. ΨN,p ⊂ Lp(R

n), N ≥ 0.

Proof. Let ϕ ∈ΨN,p, which implies suppF[ϕ ] ⊂ GN . Hence, suppF [ϕ ] ⊂ GN+1.
Since suppφN+1,p∩ suppF [ϕ ] = /0, we obtain

pN+1(ϕ) = ‖F−1[κN+1F[ϕ ]]‖Lp

≤ ‖F−1[κNF [ϕ ]]‖Lp + ‖F−1[φN+1F [ϕ ]]‖Lp

= pN(ϕ).

Since ϕ ∈ΨN,p, then its Fourier transform has a compact support. Furthermore,
suppF ϕ has empty intersection with each gk, k > N. Therefore, one has

‖ϕ‖Lp =

∥∥∥∥∥F−1

[
∞

∑
k=0

φkF[ϕ ]

]∥∥∥∥∥
Lp

=

∥∥∥∥∥F−1

[
N

∑
k=0

φkF [ϕ ]

]∥∥∥∥∥
Lp

= ‖F−1[κN [ϕ ]]‖Lp = pN(ϕ)<∞.

Proposition 1.28. ΨG,p(R
n) = ind limN→∞ΨN,p.

Proof. We show that the topology of the inductive limit agrees with the topology
of ΨG,p(R

n). In other words, we show that the inductive limit agrees with the limit
in the sense of the convergence introduced in Definition 1.22. In fact, let ϕm → ϕ0

in ΨG,p(R
n). Then there exists a compact set K ⊂ G such that supp ϕ̂m ⊂ K. Since

K has a finite number of nonempty intersections with the system {gk}, there is a
number N such that K ⊂GN . Moreover, κN is a multiplier in Lp for arbitrary N ≥ 0.
Therefore,

pN(ϕm−ϕ0) = ‖F−1[κNF [ϕm−ϕ0]]‖Lp

≤CN,p‖ϕm−ϕ0‖Lp → 0, as m→ ∞, ∀N ∈ N.

Vice versa, let pN(ϕm−ϕ0)→ 0, as m→∞, for all N ≥N0. Then supp F [ϕm]⊂GN0 .
Hence, there exists a compact set K ⊂ GN0 ⊂ G such that supp F [ϕm] ⊂ K for all
m ∈ N. Moreover, due to Theorem 1.27, one has
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‖ϕm−ϕ0‖Lp ≤ pN(ϕm−ϕ0)→ 0,m→ ∞,N ≥ N0.

Theorem 1.15. ΨG,p(R
n) is complete.

Proof. Let fm, m = 1,2, . . . , be a fundamental sequence, i.e., for all m = 1,2, . . .
there exists a compact set K � G such that

i) supp fm ⊂ K, m = 1,2, . . . ;
ii) ‖ fm− fn‖Lp → 0,m,n→ ∞.

Since Lp(R
n) is complete, then there exists f0 ∈ Lp(R

n) such that fm → f0 in the
norm of Lp(R

n). Besides, it is easy to see that suppF [ f0]⊂ K.

Theorem 1.16. The Fourier transform F is continuous as the mapping:

F :ΨG,p(R
n)→

{
Lp′ ,comp(G), if 1≤ p≤ 2;

H−s
2,comp(G), if 2 < p < ∞.

(1.90)

where s is any number satisfying the inequality s > n
(

1
2 − 1

p

)
.

Proof. The inclusion f ∈ΨG,p(R
n) implies immediately that supp F [ f ] � G. Be-

sides, in accordance with Theorem 1.27, ΨG,p(R
n) ⊂ Lp(R

n). If p ∈ [1,2], then
Young’s inequality implies F[ f ] ∈ Lp′ (R

n), where p
′
= p/(p− 1). Hence, in this

case F [ f ] ∈ Lp′ ,comp(G). If p > 2, then in accordance with Theorem 1.10, one has

F [Lp(R
n)] ↪→ H−s(Rn), s > n(

1
2
− 1

p
).

Further, let fm → 0 in ΨG,p(R
n). Then there exists a total compact set K � G with

supp F [ fm]⊂ K for every m ∈N. If 1≤ p≤ 2, then using Young’s inequality again,
we obtain

‖F[ fm]‖L
p
′ ≤Cp ‖ fm‖Lp ≤Cp pN( fm)→ 0, m→ ∞,

for all N ≥ 0. This implies continuity of mapping (1.90) in the case 1 ≤ p ≤ 2.
Similarly, one can readily see that F is continuous in the case p> 2, as well. Indeed,
in this case due to Theorem, we have the estimate

‖F fm‖H−s(Rn) ≤Cp ‖ fm‖Lp ≤Cp pN( fm),

which implies the continuity of the mapping (1.90) in the case p > 2, as well.

Denote the right side of (1.90) by F [ΨG,p](G). Theorem 1.16 implies the follow-
ing assertion (cf. Proposition 1.16):

Proposition 1.29. A sequence ϕn → 0 as n→∞ inΨG,p(R
n) if and only if F[ϕn]→ 0

as n→ ∞ in F[ΨG,p](G).
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Due to the relation F−1 = (2π)−nSF (see (1.31)), or the same F−1[ϕ ](x) =
(2π)−nF [ϕ ](−x), Theorem 1.16 implies also

F−1 :ΨG,p →
{

Lp′ ,comp(−G), if 1≤ p≤ 2;

H−s
2,comp(−G), if 2 < p < ∞.

(1.91)

Theorem 1.16 shows that unlike G the space ΨG,p(R
n) is not invariant with re-

spect to the Fourier transform F. It follows from the statement below that, in general,
ΨG,p(R

n) is not closed with respect to the convolution operation as well.

Theorem 1.17. Let ϕ1 ∈ΨG,p1(R
n) and ϕ2 ∈ΨG,p2(R

n). Then ϕ1 ∗ϕ2 ∈ΨG,p(R
n),

where p satisfies the equation 1+ 1/p= 1/p1 + 1/p2.

Proof. The equality F [ϕ1 ∗ϕ2](ξ ) = F[ϕ1](ξ ) ·F[ϕ2](ξ ) immediately implies that
suppF [ϕ1 ∗ϕ2]� G. The fact that p satisfies the equation 1+ 1/p = 1/p1 + 1/p2,
follows from Theorem 1.5.

We note that the spaceΨG,p(R
n) is closed with respect to the convolution opera-

tion only if p = 1.

Definition 1.24. Let 1 < p < ∞. We denote by Ψ ′
−G,p′ (R

n), p
′
= p(p− 1)−1, the

space of linear continuous functionals defined on ΨG,p(R
n). A sequence fm ∈

Ψ ′
−G,p′ (R

n) is said to converge weakly to f0 ∈ Ψ ′
−G,p′ (R

n) if for arbitrary

ϕ ∈ΨG,p(R
n) the sequence fm(ϕ) converges to f0(ϕ). The elements of the space

Ψ ′
−G,p′ (R

n) will be called ψ-distributions. The duality of a pair of elements f ∈
Ψ ′
−G,p′ (R

n) and ϕ ∈ΨG,p(R
n) we will denote by < f ,ϕ >. Two elements f and g

inΨ ′
−G,p′ (R

n) coincide if and only if < f ,ϕ >=< g,ϕ > for all ϕ ∈ΨG,p(R
n).

It follows from Propositions 1.23 and 1.28 that

Ψ
′
−G,p′ (R

n) = pr lim
N→∞

Ψ
′

N,p,

where Ψ ′
N,p is dual to the Banach space ΨN,p introduced in Definition 1.23.

Proposition 1.22 implies that Ψ ′
−G,p′ (R

n) is a locally convex topological vector
space.

Definition 1.25. The differentiation operator Dα (with multi-indexα) onΨ ′
−G,p′ (R

n)

is defined by
< Dα f ,ϕ >≡ (−1)|α | < f ,Dαϕ >, (1.92)

where f ∈Ψ ′
−G,p′ (R

n) and ϕ is an arbitrary function inΨG,p(R
n).

Proposition 1.30. The differentiation operator Dα maps continuously the space
Ψ ′
−G,p′ (R

n) into itself.
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Proof. Let ϕ ∈ΨG,p(R
n). Then, obviously, Dαϕ ∈ΨG,p(R

n) for each multi-index
α. Therefore, the right-hand side of (1.92), and consequently its left-hand side de-
fine a linear continuous functional onΨG,p(R

n). This yields Dα f ∈Ψ ′
−G,p′ (R

n).

Definition 1.26. Let f ∈Ψ ′
−G,p′ (R

n) and ψ ∈ΨG,q. Then the convolution f ∗ψ is

defined by < f ∗ψ ,ϕ >=< f ,ψ ∗ϕ > for an arbitrary ϕ ∈ΨG,r. Here p, q, and
r are connected through the relation 1 + 1/p = 1/q+ 1/r. Due to Theorem 1.17
ψ ∗ϕ ∈ΨG,p(R

n). Therefore, the convolution f ∗ψ is well-defined.

Theorem 1.18. Let f ∈Ψ ′
−G,p′ (R

n) and ψ ∈ΨG,q(R
n). Then f ∗ψ ∈Ψ ′

−G,r′ (R
n),

where r
′

is the conjugate of r, which satisfies the equation 1/r = 1+ 1/p− 1/q.

Proof. By the above definition the convolution of f ∈Ψ ′
−G,p′ (R

n) and ψ ∈ΨG,q

(Rn) is
< f ∗ψ ,ϕ >=< f ,ψ ∗ϕ >, ∀ϕ ∈ΨG,r(R

n).

Since ψ ∗ϕ ∈ΨG,p(R
n) (Theorem 1.17), the right-hand side is well defined for all

ϕ ∈ΨG,r(R
n) and ψ fixed. This means that the left-hand side is well defined for all

ϕ ∈ΨG,r(R
n), implying f ∗ψ ∈Ψ ′

−G,r′ (R
n).

Since ΨG,p(R
n) is not invariant with respect to the Fourier transform, one has

to be careful in extending the Fourier transform F to Ψ ′
−G,p′ (R

n). First, if f , ϕ ∈
L2(R

n), then the following Parseval relation

(F [ f ],ϕ) =
∫
Rn

∫
Rn

f (x)ϕ(ξ )eixξ dxdξ = ( f ,F [ϕ ]) (1.93)

holds. Here (·, ·) is the inner product of L2(R
n).

Now suppose that f ∈Ψ ′
−G,p′ (R

n). Then, in order to have a well-defined quantity

on the right-hand side of (1.93), the Fourier transform of ϕ must be in ΨG,p(R
n).

Denoting φ = F[ϕ ], one can write < F [ f ],ϕ >=< f ,φ >, where φ ∈ΨG,p(R
n)

is an arbitrary function, and ϕ = F−1[φ ]. By virtue of relations (1.91) we have
ϕ ∈ Xp,comp(G), where

Xp,comp(G) =

{
Lp′ ,comp(−G), if 1≤ p≤ 2;

H−s
2,comp(−G), if 2 < p < ∞.

(1.94)

These facts lead to the following definition of the Fourier transform in the space
of ψ-distributions.

Definition 1.27. The Fourier transform of a ψ-distribution f ∈Ψ ′
−G,p′ (R

n) is an

element F [ f ] defined by the relation

< F [ f ],ϕ >=< f ,F [ϕ ]>, (1.95)

for all ϕ ∈ Xp,comp(G).
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Sometimes we will use the following form of the Fourier transform for a ψ-
distribution f , which is convenient from the calculations point of view:

< F[ f ](ξ ),ϕ(ξ ) >=< f (x),φ(x) >,

where, as was mentioned above, φ = F [ϕ ] ∈ΨG,p(R
n), or equivalently,

< F [ f ],F [φ ]>= (2π)n < f ,φ >, ∀φ ∈ΨG,p(R
n). (1.96)

Theorem 1.19. Let 1 ≤ p < ∞ and (p, p
′
) be a conjugate pair. Then the Fourier

transform F acts continuously as the mapping

F :Ψ
′
−G,p′ (R

n)→ Lp, loc(G) (1.97)

in the weak topology.

Proof. Let 1 ≤ p ≤ 2. Then the proof of this assertion follows immediately from
Theorem 1.16 and Proposition 1.25. Suppose that p > 2 and f ∈Ψ ′

−G,p′ (R
n). Then

again using Theorem 1.16 and the duality relationship stated in Proposition 1.25,

one obtains that F [ f ] ∈ Hs
2, loc(G), where s > n

(
1
2 − 1

p

)
. Let Km, m ∈ N, be a

sequence of expanding compact sets such that limm→∞ Km = ∪∞m=1Km = G. We
have F [ f ] ∈ Hs

2(Km) for each m. Therefore, due to Theorem 1.14 it follows that
F [ f ] ∈ Lp(Km) for each m, that is F [ f ] ∈ Lp, loc(G).

To prove continuity of mapping (1.97), assume that the sequence fm ∈Ψ ′
−G,p′ (R

n)

weakly converges to zero in Ψ ′
−G,p′ (R

n), that is for an arbitrary element φ ∈
ΨG,p(R

n), we have < fm,φ >→ 0, as m → ∞. Then relation (1.95) implies that
< F [ fm],ϕ >→ 0 for all ϕ ∈ Xp,comp(G). In the case 1 ≤ p ≤ 2, due to defini-
tion (1.94) of Xp,comp, the latter immediately implies the weak convergence of the
sequence F [ fm] to zero in Lp,loc(G). If p > 2, then again due to (1.94) we have the
convergence< F[ fm],ϕ >→ 0 as m→∞ for an arbitrary element ϕ ∈H−s

2,comp(−G),

where s > n(1/2− 1/p). Further, Theorem 1.14 by duality implies the inclusion
Lp′ ,comp(G)⊂ H−s

2,comp(G). Hence, < F [ fm],ϕ >→ 0 for all ϕ ∈ Lp′ ,comp(G), yield-
ing F [ fm]→ 0, as m → ∞, in the weak topology of Lp,loc(G).

As a corollary we obtain the following assertion:

Proposition 1.31. A sequence fn → 0 as n→ ∞ in the spaceΨ ′
−G,p′ (R

n) if and only

if F [ fn]→ 0 as n→ ∞ in Lp,loc(G).

Proposition 1.32. Let fn ∈ Ψ ′
−G,p′ (R

n) and ψ ∈ ΨG,q(R
n). Further, let r satisfy

the equation 1/r = 1+ 1/p− 1/q and r
′

be the conjugate number to r. Then the
sequence fn ∗ ψ converges to f ∗ ψ in Ψ ′

−G,r′ (R
n), if and only if the sequence

F [ fn](ξ ) ·F[ψ ](ξ ) converges to F [ f ](ξ ) ·F[ψ ](ξ ) as n→ ∞ in Lr,loc(G).
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Proof. Due to Theorem 1.18, fn ∗ψ ∈Ψ ′
−G,r′ (R

n). Now the statement of the propo-

sition follows from Proposition 1.31.

Now we prove the structure theorem for ψ-distributions.

Theorem 1.20. Let 1 < p < ∞ and p
′

be its conjugate. For each distribution f ∈
Ψ ′
−G,p′ (R

n) there exist a function A(ξ ) analytic in G and a function f0 with the

Fourier transform F [ f0] ∈ Lp(G), such that the representation

f (x) =
∞

∑
|α |=0

DαA(ξ0)

α!
(D− ξ0)

α f0(x), x ∈ R
n, (1.98)

holds for any fixed ξ0 ∈ G.

Proof. Let f ∈Ψ ′
−G,p′ (R

n). Then, in accordance with Theorem 1.19, for the Fourier

transform of f one has F [ f ] ∈ Lp, loc(G). The Fourier transform of the distribution
f in (1.98) has the form

F [ f ](ξ ) =
∞

∑
|α |=0

DαA(ξ0)

α!
(ξ − ξ0)

αF[ f0](ξ ) = A(ξ )F[ f0](ξ ), (1.99)

for all ξ in a neighborhood of any point ξ0 ∈ G. More precisely, equation (1.99)
holds for all ξ ∈ {ξ : |ξ − ξ0| < dist(ξ0,∂G)}, where dist(ξ0,∂G) is the distance
between ξ0 and the boundary of G. Therefore, the theorem will be proved, if one
proves the following statement:

Lemma 1.2. Every function g ∈ Lp,loc(G) can be represented in the form g(ξ ) =
A(ξ )g0(ξ ), where A(ξ ) is an analytic function in G and g0(ξ ) ∈ Lp(G).

Proof of Lemma. We recall that for G there exists a locally finite covering {gk}∞k=1,
that is G = limk→∞gk = ∪∞k=1gk, with compact sets gk � G. Let h ∈ Lp,loc(G) be
fixed. We will construct functions A(ξ ) and h0(ξ ), which will satisfy all the re-
quirements of the statement. We choose gk and A(ξ ) so that the following condition
is satisfied:

sup
ξ∈gk

1
|A(ξ )|p ≤

C
Mkk2 ,

where
Mk =

∫

gk

|g(ξ )|pdξ .

Such a function A(ξ ) exists since analytic functions may grow arbitrarily fast when
it approaches to the boundary of domain. Further, defining the function

g0(ξ ) =
g(ξ )
A(ξ )

, ξ ∈G, (1.100)
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one obtains
∫

G

|g0(ξ )|pdξ =
∞

∑
k=1

∫

gk

∣∣∣ g(ξ )
A(ξ )

∣∣∣pdξ ≤
∞

∑
k=1

sup
ξ∈gk

1
|A(ξ )|p

∫

gk

|g(ξ )|pdξ

≤C
∞

∑
k=1

Mk

Mkk2 =C
∞

∑
k=1

1
k2 < ∞.

From equation (1.100) the desired result follows.

Hence, for F[ f ] ∈ Lp, loc(G) there exist an analytic function A(ξ ) defined on G
and h0 ∈ Lp(G), such that

F [ f ](ξ ) = A(ξ )h0(ξ ) =
∞

∑
|α |=0

DαA(ξ0)

α!
(ξ − ξ0)

αh0(ξ ), (1.101)

for ξ ∈ Br(ξ0), r < dist(ξ0,∂G), ξ0 ∈G. The proof of the theorem is complete.

Remark 1.7. 1. Theorem 1.20 requires that F[ f0] ∈ Lp(G). Extending F [ f0] by zero
outside of G, one can assume F [ f0] ∈ Lp(R

n) (the extension is again denoted
by F [ f0]). If 1 ≤ p ≤ 2, due to Hausdorff-Young’s Theorem (Theorem 1.4), for
F [ f0] ∈ Lp(R

n) one can find the inverse Fourier transform F−1[F [ f0]] = f0 ∈
Lp′ (R

n), where p
′
= p/(p− 1) is the conjugate number to p. Since 1 ≤ p ≤ 2,

its conjugate satisfies p
′ ≥ 2. Thus, if 1 ≤ p ≤ 2, then for a distribution f ∈

Ψ ′
−G,p′ (R

n) there exist an analytic function A(ξ ) defined on G and a function f0 ∈
Lp′ (R

n) with suppF [ f0] ⊂ G (note that suppF[ f0] is not necessarily compact),
such that the representation

f (x) =
∞

∑
|α |=0

DαA(ξ )
α!

(D− ξ )α f0(x) (1.102)

holds. Thus, for 1 ≤ p ≤ 2, in Theorem 1.20 one can assume that f0 ∈ Lp′ (R
n)

with suppF[ f0]⊂ G.
As the following example shows this argument, in general, is not valid if p > 2.
Indeed, consider a ψ-distribution

f (x) =
∞

∑
|α |=0

1
α!

Dαδ0(x).

This distribution belongs toΨ ′
−G,p′ (R

n) with G� 0. However, F [ f ](ξ ) = eξ1(ξ ),
and F[ f0](ξ ) = 1(ξ ) /∈ Lp(R

n).
2. In representation (1.102) the order of the differential operator is not bounded

from above. Therefore, in general,ψ-distributions may have infinite order, unlike
tempered distributions and distributions with compact support.

3. In Section 2.3 we reformulate Theorem 1.20 in terms of pseudo-differential op-
erators with singular symbols.
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1.11 Denseness ofΨG,p(R
n) in Besov and Lizorkin-Triebel spaces

In this section we prove the denseness theorem of ΨG,p(R
n) in the Besov and

Lizorkin-Triebel type spaces, and in particular in Lp(R
n). For a set A ⊂ R

n we de-
note by μn(A) its n-dimensional Lebesgue measure. First we prove the following
denseness lemma.

Lemma 1.3. (Denseness lemma) For the embedding

ΨG,p(R
n)∩G ↪→ G (1.103)

to be dense the condition μn(R
n \G) = 0 is necessary if 1 < p < ∞, sufficient if

2≤ p < ∞.

Proof. Sufficiency: Let the complement of G in R
n have the n-dimensional mea-

sure zero, i.e., mn(R
n \G) = 0. Let f ∈ G and the collection {ψ j(ξ )} ∈ Φ1 (see

Definition 1.20 for ΦN ). Namely, let the functions ψ0, ψ ∈ G satisfy the conditions:

1. 0≤ ψ0, ψ ≤ 1;
2. supp ψ0 ⊂ {|ξ | ≤ 2}, supp ψ ⊂ {1≤ |ξ | ≤ 4};
3. ∑∞

j=0ψ j(ξ ) = 1, ψ j(ξ ) = ψ(21− jξ ), j = 0,1,2 . . . .

Then due to (1.88) the sequence of functions

fm(x) =
m

∑
j=0

F−1[ψ jF [ f ]
]
(x), m = 0,1, . . .

tends to f in the norm of Lp(R
n) as m → ∞. Obviously,

supp F[ fm]⊂ {|ξ | ≤ 2m+1}= Bm.

So we can assume suppF [ f ] ⊂ Bm. As an approximating sequence we take the se-
quence of functions

fN(x) = F−1[κNF [ f ]
]
(x), N = 0,1, . . . ,

where functions κN(ξ ) are defined in (1.89). By construction, fN ∈ΨG,p(Rn) for all
N ≥ 0. We have

f (x)− fN(x) = F−1
[(

1−κN
)
F [ f ]

]
(x) = F−1[γNF [ f ]

]
(x),

where γN(ξ ) = 1− κN(ξ ). Putting wm,N = supp (γN · χBm), where χBm(ξ ) is the
characteristic function of the ball Bm, we see that the set wm,N is a compact subset
of (Rn \GN)∩Bm. Evidently, μn(wm,N)→ 0 as N → ∞ for each fixed m = 0,1, . . . ,
since μn((R

n \GN)∩Bm)→ 0 for N → ∞.
To prove the lemma we have to show that the sequence of functions F−1

[
γNF [ f ]

]
converges to zero in the norm of Lp(R

n) for all p ∈ [2,∞) when N → ∞. Since
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the functions γN ∈ C∞(G) for all N = 0,1, . . . , and |γN(ξ )| ≤ 1, ξ ∈ G, we have
γNF f ∈ Lp′ (R

n), where p
′
= p/(p− 1), the conjugate to p. Using the Housdorff-

Young inequality (Theorem 1.4), we obtain

‖F−1[γNF [ f ]
]‖p

′
p ≤C(p

′
)‖γNF [ f ]‖p

′

p′
=Cp′

∫

Rn

∣∣∣γN(ξ )F [ f ](ξ )
∣∣∣p
′

dξ

≤Cp′
∫

wm,N

∣∣∣F [ f ](ξ )
∣∣∣p
′

dξ . (1.104)

The integral on the right-hand side tends to 0 as N → ∞, since F [ f ] ∈ G , and there-
fore, ∫

wm,N

∣∣∣F [ f ](ξ )
∣∣∣p
′

dξ ≤Cμ(wm,N)→ 0, N → ∞. (1.105)

Estimates (1.104) and (1.105) imply F−1
[
γNF [ f ]

]→ 0 as N → ∞ in the norm of
Lp(R

n).
Necessity: Suppose that mn(R

n \G)> 0. Then there exists a compact V ⊂R
n \G

such that mn(V ) > 0. Let us take a function f ∈ Lp, f �= 0 and let suppF f = V .
Then for any v ∈ΨG,p(R

n) we have suppF f ∩ suppFv = /0. For p = 2 this yields

‖ f − v‖2
2 = ( f − v, f − v)L2 = ‖ f‖2

2 + ‖v‖2
2 ≥ ‖ f‖2

2 > 0.

For 1 < p < 2 we obtain the analogous estimate using the Hausdorff-Young lemma.
In fact,

(2π)
n
q ‖ f − v‖p ≥ ‖F f −Fv‖q = (‖F f‖q

q + ‖Fv‖q
q)

1/q ≥ ‖F f‖q > 0.

For 2 < p < ∞ and for an arbitrary fixed g ∈ Lq(R
n), ‖g‖q = 1, q = p/(p− 1),

we have

‖ f − v‖p = sup
h∈Lp,h �=0

|( f − v,h)|
‖h‖q

≥ |( f − v,g)|.

We choose g ∈ Lq(R
n) (note that q ∈ (1,2)) satisfying the following conditions:

(i) supp Fg =V ; (ii) Fg∈Hβ
2 (R

n), β > n( 1
2 − 1

p); (iii)
∫
Rn f (x)g(x)dx �= 0.

It is not difficult to verify that such function exists. According to the Hausdorff-
Young lemma the Fourier transform of g belongs to Lp(R

n) and ‖Fg‖p≤ (2π)
n
p ‖g‖q.

For any v∈ΨG,p(R
n) its Fourier transform has a compact support in G by the defini-

tion of the spaceΨG,p(R
n). Moreover, the Fourier transform of v is an element of a

Sobolev space H−β
2 (Rn) for some β > n( 1

2 − 1
p), because v ∈ Lp(R

n) (see Theorem
1.10). Hence

(g,v) =
∫

Rn
g(x)v(x)dx =

1
(2π)n < Fv,Fg >,
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where < Fv,Fg> means the value of the functional Fv∈H−β
2 (Rn) on Fg. It is well

defined due to Fg∈Hβ
2 (R

n). Moreover,<Fv,Fg>= 0, since suppFv∩suppFg⊂
G∩V = /0. Hence, ‖ f − v‖p ≥ |( f ,g)|> 0.

Since G is dense in the spaces Bs
pq(R

n) and Fs
pq(R

n) if q <∞, Lemma 1.3 imme-
diately implies the following theorem.

Theorem 1.21. Let 1 < p,q < ∞, −∞< s <+∞.

1. Then the following embeddings

ΨG,p(R
n) ↪→ Bs

pq(R
n) ↪→Ψ

′
−G,p′ (R

n), (1.106)

ΨG,p(R
n) ↪→ Fs

pq(R
n) ↪→Ψ

′
−G,p′ (R

n) (1.107)

are continuous.
2. Moreover, if R

n \G has the n-dimensional zero measure and 2 ≤ p < ∞, then
the left embeddings in (1.106) and (1.107) are dense. Conversely, the dense-
ness of the left embeddings in (1.106) and (1.107) implies that Rn \G has the
n-dimensional zero measure, that is μn(R

n \G) = 0.

Proof. We prove only Part 1. Part 2 of this theorem, as was noted above, is the di-
rect implication of the denseness lemma (Lemma 1.3). Let f ∈ΨG,p(R

n) and s≥ 0.
Assume that suppF[ f ] ⊂ GN ⊂ {|ξ | ≤ 2N1}, where N and N1 are positive integers.
Since the functions ϕ j(ξ ), j = 0, . . . ,N1, are multipliers in Lp(R

n), 1< p <∞, there
exist constants Cj,p > 0 such that ‖F−1

[
ϕ jF [ f ]

]‖Lp ≤ Cj,p‖ f‖Lp , j = 0, . . . ,N1.
These estimates and Proposition 1.27 imply

‖ f |Bs
pq‖=

(
N1

∑
j=0

2s jq‖F−1[ϕ jF[ f ]
]‖q

Lp

) 1
q

≤CpN ( f ).

Thus, the embedding ΨG,p(R
n) ↪→ Bs

pq(R
n) is continuous. The latter also implies

the continuity of the embeddingΨG,p(R
n) ↪→ Fs

pq(R
n), since according to Proposi-

tion 1.26 the embedding Bs
pq(R

n) ↪→ Fs
pq(R

n) is continuous. Now the continuity of
the right embeddings in (1.106) and (1.107) follows by duality.

Remark 1.8. What concerns the case 1 < p < 2, then in the particular case, when
R

n \G is a quasi-polygonal set the space ΨG,p(R
n) is dense in the spaces Bs

pq(R
n)

and Fs
pq(R

n) for all s ∈R and 1 < q <∞. For details see Section “Additional notes.”

1.12 Lizorkin type spaces

It is known that the classical Neumann boundary value problem for the Laplace
equation in a bounded domain has a unique solution if and only if the boundary
function is orthogonal to 1 (a polynomial of order 0). This is natural if the boundary
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operator is a (pseudo) differential operator of order ≥ 1 with the homogeneous
symbol. The spaces of functions orthogonal to polynomials provide solution spaces
for boundary value problems with such boundary operators. Lizorkin [Liz63, Liz69]
studied some spaces of functions orthogonal to monomials of selected variables with
the induced topology of G and their dual spaces. Therefore, the spaces of functions
orthogonal to a collection of monomials with an appropriate topology will be called
Lizorkin type spaces. In this section we construct Lizorkin type spaces, originating
from Besov and Lizorkin-Triebel spaces endowed with topologies of strict inductive
or projective limits of sequences of Banach spaces. These spaces will be exploited
in Chapter 5 in the context of boundary value problems with special fractional order
boundary operators.

Lizorkin spacesΨ (Rn) and Φ(Rn) are defined as follows. LetΨ(Rn) be the set
of functions v ∈ G satisfying the conditions:

Dγv(0) = 0, |γ|= 0,1, . . . , (1.108)

andΦ(Rn) is the Fourier pre-image of the spaceΨ(Rn). We assume that both spaces
have topologies induced from G . Hence, Φ(Rn) = {ϕ ∈ G : F[ϕ ] ∈Ψ(Rn)} and it
follows from (1.108) that any function ϕ ∈Φ(Rn) satisfies the orthogonality condi-
tions ∫

Rn
xγϕ(x)dx = 0, |γ|= 0,1, . . . .

We need also the spaces Φ ′
(Rn) andΨ ′

(Rn), which are topologically dual toΦ(Rn)

and Ψ(Rn), respectively. For Ψ ′
(Rn) the factorization Ψ ′

(Rn) = G
′
/Ψ ′

0 holds,
whereΨ ′

0 is the set of all functionals of the form

v(x) =
Mv

∑
|γ|=0

aγD
γδ (x).

Here δ is the Dirac distribution and Mv is a finite number depending on v. Analo-
gously, Φ ′

(Rn) can be represented as the quotient space G
′
/P, where P is the set

of all polynomials on R
n. The Lizorkin spaces were studied in [Liz63, Liz69], and

more general Lizorkin type spaces in [Sam77, Sam82]. See more in Section “Addi-
tional Notes.”

Now we introduce other variations of Lizorkin type spaces, which will be defined
on the base of Besov and Lizorkin-Triebel spaces. In this section we assume that
s≥ 0, 1 < p < ∞, and 1 < q < ∞.

Definition 1.28. Let a function f ∈ Bs
pq(R

n) has a compact support supp f ⊂R
n and

satisfies the following orthogonality conditions

( f ,xβ ) =
∫

Rn

f (x)xβdx = 0, for all β : |β | ≤ m− 1.
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We shall denote the class of such functions by
◦
B

s

pq,m(R
n). The topology of this space

is defined below as a strict inductive limit of a sequence of Banach spaces.

Definition 1.29. Similarly, we introduce the class
◦
B

s′,sn

pq,m(R
n) of functions f in non-

isotropic Besov space Bs′,sn
pq (Rn), s′ = (s1, . . . ,sn−1), with a support in the strip

{|xn| ≤ N}, N > 0, and satisfying the orthogonality conditions

+∞∫

−∞
xk

n f (x)dxn = 0,k = 0, . . . ,m− 1.

Let RN , N = 1,2, . . . , be a sequence, such that RN →∞. We introduce a sequence of
Banach spaces XN :

XN = { f ∈ ◦
B

s

pq,m(R
n) : supp f ⊆ BRN (0)},

with the induced norm ‖ f |XN‖= ‖ f |Bs
p,q‖. Obviously,

X1 ⊂ X2 ⊂ ·· · ⊂ XN ⊂ . . . ,

with the norms
‖ f |X1‖ ≥ ‖ f |X2‖· · · ≥ ‖ f |XN‖ ≥ . . . . (1.109)

It is not hard to see that
◦
B

s

pq,m(R
n) = ∪∞N=1XN in the theoretical-set sense. Now

taking into account the norm relations (1.109) we can define the inductive limit
space

X∞ = ind lim
N→∞

XN ,

The space X∞ coincides with
◦
B

s

pq,m(R
n), if the latter is endowed with the strict in-

ductive topology of X∞. Hence,
◦
B

s

pq,m(R
n) is a locally convex topological vector

space. In a similar manner
◦
B

s′,sn

pq,m(R
n) also can be defined as a strict inductive limit

of Banach spaces, thus being a locally convex topological vector space.

Theorem 1.22. Let f ∈ Bs
pq(R

n), s ≥ 0, and supp f ⊂ QN ≡ {|x j| ≤ Nj},Nj > 0.
Then the inequality

‖F±1[ f ]|C(B1)‖ = sup
ξ∈B1

∣∣∣F±1[ f ](ξ )
∣∣∣ ≤CN,p‖ f |Bs

pq‖ (1.110)

holds. Here B1 is the unit ball in Rn
ξ with the center at the origin, and CN,p is a

positive constant independent on f .

Proof. First suppose that f ∈ Lp(R
n) and has a compact support in QN . Then

f ∈ E (Rn), that is a distribution with compact support. In accordance with the
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Paley-Wiener-Schwartz theorem the Fourier transform F[ f ] is an entire function.
This function is bounded on R

n. Indeed,
∣∣∣F±1[ f ](ξ )

∣∣∣≤
∫

QN

| f (x)|dx ≤ |QN |
1
p′ ‖ f |Lp‖, (1.111)

where |QN | is the volume of QN , and p
′

is the conjugate number to p. Now esti-
mate (1.110) follows from (1.111) taking into account the embedding Br

pq(R
n) ↪→

Bs
pq(R

n) valid for any r > s and 1 < p,q < ∞.

Remark 1.9. Analogously, one can show that for the derivatives of order β =
(β1, . . . ,βn) of F[ f ] the inequality

‖DβF[ f ]|C(B1)‖ ≤C
n

∏
j=1

N
β j+n/p
j (p′β j + 1)−1/p′‖ f |Bs

pq‖ (1.112)

holds with a conjugate pair (p, p
′
).

Theorem 1.23. Let f ∈ B◦s
pq,m(R

n). Then there exists a function v ∈ Bs+m
pq (Rn), such

that

(i) F [ f ](ξ ) = |ξ |mFv(ξ );
(ii) ‖v|Bs+m

pq ‖ ≤C1‖ f |Bs
pq‖;

(iii) ‖F[v]|C(B1)‖ ≤C2‖ f |Bs
pq‖,

where C1,C2 are positive constants depending on the size of supp f .

Proof. Since f ∈ B◦s
pq,m(R

n) the orthogonality conditions ( f ,xβ ) = 0, |β | ≤ m− 1,
hold. These conditions imply that

DβF[ f ](0) = 0, |β | ≤ m− 1. (1.113)

Further, since f has a compact support, due to the Paley-Wiener-Schwartz theorem
F [ f ] is an entire function. Therefore, taking into account (1.113), we have

F [ f ](ξ ) =
∞

∑
|β |=0

DβF [ f ](0)
β !

ξβ = ∑
|β |≥m

DβF [ f ](0)
β !

|ξ ||β |θβ

= |ξ |m ∑
|β |≥m

|ξ ||β |−m 1
β !

DβF [ f ](0)θβ , (1.114)

where we have used the substitution ξ = |ξ |θ , θ = ξ/|ξ | ∈ S, and S is the unit
sphere in Rn with the center at the origin. Hence, F [ f ](ξ ) = |ξ |mV (ξ ), where

V (ξ ) = ∑
|β |≥m

|ξ ||β |−m 1
β !

DβF[ f ](0)θβ .
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We set v = F−1[V ], and show that, in fact, v ∈ Bs+m
pq (Rn). Indeed, using the repre-

sentation (1.114) and conditions DβF[ f ](0) = 0, |β | ≤ m− 1, we obtain

‖v|Bs+m
pq ‖q =

∞

∑
j=0

2(s+m) jq

∥∥∥∥∥F−1

[
ϕ j

1
|ξ |m ∑

|β |≥m

|ξ ||β | 1
β !

DβF f (0)θβ
]
|Lp

∥∥∥∥∥
q

≤C
∞

∑
j=0

2s jq

∥∥∥∥∥F−1

[
ϕ j

∞

∑
|β |=m

1
β !

DβF[ f ](0)ξβ
]
|Lp

∥∥∥∥∥
q

=
∞

∑
j=0

2s jq‖F−1[ϕ jF [ f ]
]|Lp‖q =C‖ f |Bs

pq‖q.

In the second inequality of this chain we used the fact that suppϕ j ⊂ Mj

≡ {2 j−1 ≤ |ξ | ≤ 2 j+1}, and consequently, in the j-th term of the sum, 1/|ξ |m ≤
2m2− jm.

Now let us prove Part (iii). Suppose |ξ | ≤ 1. Then it follows from (1.112) that

|Fv(ξ )| ≤ ∑
|β |≥m

1
β !
|DβF [ f ](0)| ≤CNn/p′‖ f |Bs

pq‖ ∑
|β |≥m

Nβ

(p′β + 1)1/p′

≤C
( Nn

(p′m+ 1)

)1/p′
(enN − 1)‖ f |Bs

pq‖.

This inequality immediately implies the desired estimate (iii).

Theorem 1.24. Let 1 < p < ∞, p
′

the conjugate of p, and α a positive number
satisfying the condition α p′ < n. Further, let ϕ0 ∈ C∞

0 (B1) and f ∈ Lp(R
n) has a

compact support. Then the following estimates hold:

(i)
∥∥∥F−1

[
ϕ0
|ξ |α F[ f ]

]
|Lp

∥∥∥≤C1‖ f |Lp‖,
(ii)
∥∥∥F
[

ϕ0
|ξ |α F−1[ f ]

]
|Lp

∥∥∥≤C2‖ f |Lp‖,
where C1 and C2 are positive constants depending on the size of supp f .

Proof. First assume that p ∈ [2,∞). Let f ∈ Lp(R
n) has a compact support. The

Paley-Wiener-Schwartz theorem implies that F±[ f ] is a smooth function on R
n.

Therefore supξ∈B1
|F±[ f ](ξ )| ≤C1,1, with some constant C1,1 > 0. Using this fact

and supp (ϕ0F[ f ]) ⊆ B1, one can verify that

ϕ0

|ξ |α F±1[ f ] ∈ Lp′ , (1.115)

if α satisfies the condition α p
′
< n. Indeed, making use of Theorem 1.22,
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‖ ϕ0

|ξ |α F±1[ f ]|Lp′ ‖ ≤C
(∫

B1

|F±1[ f ]|p′
|ξ |α p′ dξ

)1/p′

≤C sup
B1

|F±1[ f ]|
∫

B1

dξ
|ξ |α p′ ≤C1,2‖ f |Lp‖. (1.116)

As the conjugate of p, the number p′ belongs to the interval (1,2]. Therefore,
Hausdorff-Young’s inequality is applicable implying the estimate in part (i) in the
case p ∈ [2,∞) :

∥∥∥∥F

[
ϕ0

|ξ |α F−1[ f ]

]
|Lp

∥∥∥∥≤C1,3‖ ϕ0

|ξ |α F−1[ f ]|Lp′ ‖ ≤C1‖ f |Lp‖. (1.117)

Now we show that this estimate is valid for p ∈ (1,2], too. Let g be an arbitrary
function in Lp′ ,comp, where p

′
is conjugate of p, and hence, p

′ ∈ [2,∞). Then, in

accordance with estimate (1.117), we have F
[

ϕ0
|ξ |α F−1[g]

]
(x)∈ Lp′ (R

n). Moreover,

‖F
ϕ0

|ξ |α F−1g|Lp′ ‖ ≤C1‖g|Lp′ ‖. (1.118)

Further, using the form of the Lp-norm given by (1.4) and estimate (1.118), we
obtain

∥∥∥∥F−1
[
ϕ0

|ξ |α F[ f ]

]
|Lp

∥∥∥∥= sup
g �=0

∣∣∣(F−1
[

ϕ0
|ξ |α F [ f ]

]
,g)
∣∣∣

‖g|Lp′‖
= sup

g �=0

∣∣∣( f ,F
[

ϕ0
|ξ |α F−1[g]

]
)
∣∣∣

‖g|Lp′‖

≤ sup
g �=0

‖ f |Lp‖‖F
[

ϕ0
|ξ |α F−1[g]

]
|Lp′‖

‖g|Lp′‖
≤C1‖ f |Lp‖.

In the Lp-norm given by relation (1.4) the sup is taken over all functions g∈Lp′ (R
n).

It is not hard to see that the space Lp′ ,comp(R
n) is dense in Lp′ (R

n). Therefore, it
suffices to take sup over all functions g ∈ Lp′ ,comp(R

n) in the definition of the Lp-
norm. The proof of part (i) is complete. The proof of part (ii) is similar.

Remark 1.10. 1. Obviously, Theorem 1.24 remains valid if one changes |ξ |α in con-
ditions 1) and 2) to a function h(ξ ) satisfying the condition c|ξ |α ≤ h(ξ ) ≤
C|ξ |α , where c, C are positive constants.

2. We note that constants in all the estimates obtained in this section (Theo-
rems 1.22–1.24) depend only on the size of the supp f , but not on the function
f itself. This is important, since such estimates are coherent with the inductive

topologies of spaces
◦
B

s

pq,m(R
n) and

◦
B

s′,sn

pq,m(R
n). In the sequel we will use this fact

for the study of the uniqueness of a solution of some initial-boundary value prob-
lems, as well as the continuous dependence on boundary and initial functions.
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1.13 Additional notes

1. The Lebesgue integral and the Lebesgue space. The Lebesgue measure and Lebesgue inte-
gral were introduced in 1901 by H. Lebesgue in his seminal paper [Leb01]. The first paper on
Lp-spaces seems was [Ri10] by Friedrich Riesz published in 1910. Let (Ω ,Σ ,μ) be a measure
space, where Ω ⊆ R

n, Σ is a σ -algebra of subsets of Ω , and μ is a measure defined on the
measurable space (Ω ,Σ ). Let f : Ω → R be a Σ -measurable function: for any open interval
A ⊂ R the inclusion f−1(A) ∈ Σ holds. Then the Lebesgue integral

∫
Ω f (x)dx and Lebesgue

space Lp(Ω), discussed in Section 1.3, can be generalized to the integral
∫
Ω f (x)dμ with re-

spect to the measure μ , and to the space

Lp(Ω ;μ) = { f is Σ -measurable :
∫
Ω
| f |pdμ < ∞}, p≥ 1,

respectively. Lp(Ω ;μ) is a Banach space with the norm ‖ f |Lp(Ω ;μ)‖. The Hölder and
Minkowski inequalities in the general form take the following forms, respectively:

∣∣∣
∫
Ω

f (x)g(x)dμ
∣∣∣ ≤
(∫

Ω
| f (x)|pdμ

) 1
p
(∫

Ω
|g(x)|qdμ

) 1
p

,

where f ∈ Lp(Ω ;μ), g ∈ Lq(Ω ;μ), and p,q≥ 1 and 1/p+1/q = 1;

(∫
Ω

∣∣∣∣
∫

A
f (x,a)da

∣∣∣∣
p

dμ
) 1

p

≤
∫

A

(∫
Ω
| f (x,a)|pdμ

) 1
p

da

where f (x,a)∈ Lp(Ω ;μ), p≥ 1, is a family of functions depending on a parameter a∈ A⊂R
m,

such that ‖ f (x,a)|Lp(Ω ;μ)‖ ∈ L1(A).

Theorem 1.25. (Lebesgue’s dominated convergence theorem [RS80]) Let a sequence fn(x) be
defined on a measure space (Ω ,Σ ,μ), such that fn(x)→ f (x) as n→ ∞ for μ-a.e. x ∈Ω , and
| fn(x)| ≤ g(x), where g ∈ L1(Ω ;μ). Then f ∈ L1(Ω ;μ) and fn → f as n → ∞ in the norm of
L1(Ω ;μ). Moreover,

lim
n→∞

∫
Ω

fn(x)dμ =
∫
Ω

f (x)dμ .

2. Hölder-Zygmund spaces. Hölder-Zygmund spaces appear naturally in the context of solution
of boundary value problems for Poisson equation Δu = f in an open domain Ω with a smooth
boundary ∂Ω ; see, e.g., [GT83]. In fact, a solution of the Poisson equation with the Dirichlet
boundary condition u|∂Ω = ϕ , can be represented as

u(x) =
∫
Ω

G f dx+
∫
∂Ω

∂G
∂n

ϕds,

where G(x) is the Green function, and n is the outside normal. The continuity of f is not
sufficient for the solution u(x) to be in class C2(Ω). However, if f ∈Cλ (Ω), 0 < λ < 1, then
the twice differentiable unique classic solution exists for any continuous boundary function ϕ ;
see details in [GT83].

If m < λ < μ < m+ 1, and Ω is bounded, then Cμ (Ω) ⊂Cλ (Ω). This fact is seen from
the inequality

f (x)− f (y)

|x− y|λ =
f (x)− f (y)
|x− y|μ |x− y|λ−μ ≤ dλ−μ

f (x)− f (y)
|x− y|μ ,

where d = diam(Ω). The above inequality implies ‖ f |Cλ (Ω)‖ ≤C‖ f |Cμ (Ω)‖. However, in
general, the inclusion Cμ (Ω)⊂Cλ (Ω) for λ < μ may not be valid. Here is an example [GT83]:
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Let Ω = {(x,y) ∈ R
2 : x2 + y2 < 1, y≤√|x|}. Then the function

f (x,y) =

{
sign(x)yα , if y > 0,

0, if y≤ 0,

where 1 < α < 2, defined on Ω , belongs to C1(Ω ), and hence, is Lipschitz continuous. At the
same time f /∈Cλ (Ω ) for all λ satisfying the inequality α/2 < λ < 1.

3. Function spaces and distributions. Sobolev spaces W m
p (Ω) were introduced by S.L. Sobolev

in his papers [Sob35, Sob36, Sob38] in 1935–38, and with comprehensive presentation in his
book [Sob50] published in 1950. His monograph [Sob74] uses completion procedure to de-
scribe W m

p (Ω). The dyadic approach for description of Besov and, in particular, Sobolev spaces
was used by Peetre in [Pee76]. Various results related to function spaces are provided in mono-
graphs by Nikolskii [Nik77], Besov, Il’in, Nikolskii [BIN75], and Triebel [Tri77, Tri83], which
now became classic books in the theory of function spaces. Methods used in these spaces dif-
fer. Nikolskii [Nik77] used a technique based on the approximation by exponential functions.
Anisotropic Sobolev, Besov, and other spaces are studied in [BIN75]. Triebel [Tri77, Tri83]
uses modifications of the dyadic approach and Fourier multiplier theorems to describe Besov
and Lizorkin-Triebel spaces. The theory of distributions was published in 1951 by L. Schwartz
[Sch51]. The fundamental spaces (test functions) in building of Schwartz distributions are C∞-
functions. Wider classes of distributions, called ultra-distributions, use as a fundamental spaces
versions of non-quasi-analytic classes. Fundamental spaces of ψ-distributions are entire func-
tions of finite exponential type belonging to Lp-spaces. Examples in Section 1.10 show that the
dependence of these spaces on p is not formal.

4. Lizorkin type spaces. The Lizorkin spaces V (Rn) and Φ(Rn) and their duals were introduced
in [Liz63]. Samko [Sam77] introduced more general spaces ΨV (R

n) and ΦV (R
n), where V is

a closed subset of R
n. The space ΨV (R

n) consists of functions ϕ ∈ G such that Dαϕ(x) =
0, x ∈ V, for all |α | = 0,1, . . .. The space ΦV (R

n) is the Fourier pre-image of ΨV (R
n). The

topologies of both spaces are induced from the topology of G . If V = {0}, then the latter
spaces coincide with Lizorkin spaces Ψ(Rn) and Φ(Rn). In the paper [Sam82] Samko studied
the denseness of these spaces in Lp(R

n). He established that if the n-dimensional measure of
V is zero, then: (a) ΨV (R

n) is dense in Lp(R
n) for all 1 ≤ p < ∞; (b) ΦV (R

n) is dense in
Lp(R

n) for all 2 ≤ p < ∞. He also proved that if V is a quasi-polygonal set, then ΦV (R
n)

is dense in Lp(R
n) in the case 1 < p < 2, as well. A set in R

n is called quasi-polygonal if
in each finite ball it can be embedded in the union of a finite number of hypersubspaces of
dimension ≤ n− 1. Samko [Sam95] announced a conjecture on the density of ΦV (R

n) for
any V satisfying μn(V ) = 0, which still remains an open problem. Finally, we note that the
fundamental space ΨG,p(R

n) of ψ-distributions as a set of functions is isomorphic to ΦV (R
n)

(with different topologies), where V = R
n \G. This fact immediately implies the denseness of

ΨG,p(R
n) in Bs

p,q(R
n), s ∈R, 1 < q < ∞, for all 1 < p < 2, if Rn \G is quasi-polygonal.

5. The Fourier transform.

(a) Proof of formula (1.17). In order to prove formula (1.17) we first find the Fourier transform
of the function

f (x) =
Γ ( n+1

2 )

π n+1
2

1

(1+ |x|2) n+1
2

, x ∈R
n. (1.119)

We have

F [ f ](ξ ) =
Γ ( n+1

2 )

π
n+1

2

∫

Rn

eixξ dx

(1+ |x|2) n+1
2

. (1.120)

Using the transformation x = Ty, where T is an orthogonal matrix with entries tk, j :

tk,1 =
ξk

|ξ | ,
n

∑
k=1

tk, jξk = 0, j = 2, . . . ,n,
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one can reduce (1.120) to

F [ f ](ξ ) =
Γ ( n+1

2 )

π n+1
2

∫ ∞

−∞
eiy1|ξ |

[∫
Rn−1

dy2 . . .dyn

(1+ y2
1 + · · ·+ y2

n)
n+1

2

]
dy1

=
Γ ( n+1

2 )

π
n+1

2

∫ ∞

−∞
eiy1|ξ |H(y1)dy1. (1.121)

Setting ω2 = 1+ y2
1 + · · ·+ y2

n−1 and integrating the inner integral with respect to yn, we
have

H(y1) =
∫
Rn−2

(∫ ∞

−∞
dyn

(ω2 + y2
n)

n+1
2

)
dy2 . . .dyn−1

=
∫
Rn−2

1

ω
n
2

(∫ ∞

−∞
d( yn

ω )

(1+( yn
ω )2)

n+1
2

)
dy2 . . .dyn−1

=Cn

∫
Rn−2

1

(1+ y2
1 + · · ·+ y2

n−1)
n/2

dy2 . . .dyn−1,

where Cn = 2
∫ ∞

0
dz

(1+z2)(n+1)/2 . Repeating this with respect to yn−1, . . . ,y2, one obtains

H(y1) =CnCn−1 . . .C2
1

1+ y2
1

, Cj = 2
∫ ∞

0

dz

(1+ z2)( j+1)/2
, j = 2, . . . ,n.

Further, using substitution s = 1/(1+ z2), one can verify that Cj =
√
πΓ ( j/2)

Γ (( j+1)/2) . Hence,

H(y1) = (
√
π)n−1Γ ( 2

2 )

Γ ( 3
2 )

Γ ( 3
2 )

Γ ( 4
2 )

. . .
Γ ( n

2 )

Γ ( n+1
2 )

1

1+ y2
1

=
π

n−1
2

Γ ( n+1
2 )

1

1+ y2
1

.

Therefore, substituting the latter to (1.121) and using relation (1.11), one obtains

F [ f ](ξ ) =
1
π

∫ ∞

−∞
eiy1|ξ |dy1

1+ y2
1

= e−|ξ |.

Finally, due to Proposition 1.5, formula (1.17) follows.
(b) Let

f (A,μ ,x) =
Γ ( n+1

2 )√
det(A)π n+1

2

1(
1+(x−μ)T A−1(x−μ)

) n+1
2

, x ∈ R
n,

where A is a positive definite n×n-matrix and μ = (μ1, . . .,μn) is a fixed vector. The func-
tion f (A,μ ,x) generalizes (1.119), coinciding with it if A= I, the identity matrix, and μ = 0,
zero vector. The Fourier transform of f (A,μ ,x) is

F [ f (A,μ ,x)](ξ ) = eiμξ−
√

ξ T Aξ , ξ ∈ R
n.

The function f (A,μ ,x) is the Cauchy-Poisson density function, a particular case of the
multivariate Student’s t-distribution with one degree of freedom. See [Sut86] for the Fourier
transform (characteristic function) of Student’s t-distribution with an arbitrary degrees of
freedom.

(c) Let

g(A,μ ,x) =
√

det(A)

πn/2
e(x−μ)

T A(x−μ), x ∈ R
n,
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where again A is a positive definite matrix and μ ∈ R
n is a fixed vector. Then,

F [g(A,μ ,x)](ξ ) = eiμξ− 1
4 ξ

T Aξ , ξ ∈ R
n.

The latter generalizes formula (1.15). The function g(A,μ ,x) represents the density of the
multivariate Gaussian variable with a position μ and a covariance matrix A.

(d) Similarly, one can generalize formula (1.51), as well. Let A be a positive definite n× n-
matrix. Then

F [eixT Ax](ξ ) =
πn/2√
det(A)

e−
i
4 (ξ

T A−1ξ−nπ).

This formula is important in the study of solution properties of the Cauchy problem for the
Schrödinger equation.

6. The Bochner-Schwartz theorem. A continuous function f (x) defined on R
n is called positive

definite, if for arbitrary x1, . . . ,xN ∈ R
n and complex numbers z1, . . . , zn, one has

N

∑
i, j=1

f (xi− x j)ziz̄ j ≥ 0.

One can reduce the latter to
∫
Rn

f (x− y)ϕ(x)ϕ̄(x)dx ≥ 0, (1.122)

where ϕ ∈D(Rn). Using (1.122) one can extend the definition of positive definite functions to
any distribution f ∈D

′
(Rn). Namely, a distribution f is positive definite if < f ,ϕ ∗ ϕ̄ >≥ 0 for

all ϕ ∈D(Rn). The Bochner-Schwartz theorem describes positive definite distributions through
the Fourier transform.

Theorem 1.26. A Schwartz distribution φ is positive definite if and only if it is the Fourier
transform of a tempered positive measure μ .

7. Sato’s hyperfunctions. The statement of Proposition 1.15 can be generalized to equations of the
form

(x−a)β u(x) = f (x), (1.123)

where f ∈ E
′
(Rn). If u0(x) is a particular solution to equation (1.123), then the general solution

has the representation
u(x) = u0(x)+ ∑

α j ≤ β j −1
j = 1, . . . ,n

CαDαδa(x),

where Cα are arbitrary constants. In fact, this is valid for arbitrary hyperfunction f , as well (see,
e.g., [Gra10]). The space of hyperfunctions was introduced by M. Sato in papers [Sat59, Sat60],
in 1959. By definition, a hyperfunction defined on an interval I ⊂ R is an equivalence class of
differences f (x)=F1(x+ i0)−F2(x− i0), where F1(z) and F2(z) are analytic functions on upper
and lower complex neighborhoods of the interval I, respectively. Sato showed that the functions
F1, F2, called defining functions of the hyperfunction f , can also be selected harmonic. Any
Schwartz distribution is also a hyperfunction. Moreover, there is a hyperfunction, which is not a
Schwartz distribution. Hence, the space of hyperfunctions is wider than the space of Schwartz
distributions. The following statement on the structure of hyperfunctions is due to Kaneko
[Kan72]:

Theorem 1.27. Any hyperfunction f is globally represented as

f = J(D)g, (1.124)



1.13 Additional notes 67

where J(D) is a local operator with constant coefficients, that is, J(D) is an infinite order
differential operator J(D) = ∑α aαDα with the coefficients satisfying

lim
|α|→∞

|α |√|aα |α! = 0,

and g is an infinitely differentiable function.

Thus, hyperfunctions may have the infinite order singularity like ψ-distributions (see
Remark 1.7.2.). This fact and Kaneko’s structure theorem in conjunction with the structure
theorem for ψ-distributions (Theorem 1.20) shows that ψ-distributions are in close relation-
ship with hyperfunctions. However, what is the exact relationship between them is currently an
open question.



Chapter 2
Pseudo-differential operators with singular
symbols (ΨDOSS)

2.1 Introduction

We begin Chapter 2 with simple examples of initial and boundary value problems,
solution operators of which have singularities of one or another type in the dual
variable. The presence of a singularity often causes a failure of well posedness of the
problem in the sense of Hadamard. Let A be a linear differential operator mapping
a function space X into another function space F. The differential equation Ax = f
is (X ,F) well posed in the sense of Hadamard,1 if

(1) for any f ∈ F a solution x ∈ X exists,
(2) the solution is unique, and
(3) the solution continuously depends on the data in terms of norms of F and X .

A classical example of the boundary value problem, which can be found in textbooks
and is not well posed in the sense of Hadamard, is the initial value problem for the
Laplace equation

Δu(t,x)≡ ∂ 2u(t,x)
∂ t2 +

∂ 2u(t,x)
∂x2 = 0, t > 0,x ∈ R,

u(0,x) = 0,
∂u(0,x)

∂ t
= 0, x ∈ R.

The operator A in this example is the pair A=(Δ ,B), where B is the boundary opera-

tor B[u(t,x)] = (u(0,x), ∂u(0,x)
∂ t ); X =C2(Rn+1

+ ), and F =C(Rn+1
+ )×C(Rn)×C(Rn).

Obviously, u(t,x)≡ 0 solves this problem. If one changes the initial conditions to

u(0,x) = 0,
∂u(0,x)

∂ t
= ε sin

x
ε
,

1 Jacques Hadamard introduced the notion of well posedness in his 1902 paper [Had02].
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where ε > 0 is a small number, then the corresponding solution is v(t,x) = ε2 sin x
ε

sinh t
ε . Taking, for instance x = επ/2 and t = 1, one can see that a small change of

the data affected to an arbitrarily large (exponential) change of the solution. Text-
books usually ignore mathematical explanation of this ill-posedness phenomenon,
just giving a physical explanation, that the elliptic equations describe a stationary
processes, and therefore, initial-value problems for them are not physical. However,
mathematical reason can easily be explained in terms of singularities of the solution
operators.

As we will see in Section 2.2, in the above example the symbols of the solution
operators have a singularity at infinity causing ill-posedness. Examples discussed
there show that depending on the problem formulation different types of singular-
ities may arise for the solution operators. In Section 2.3 we introduce an algebra
of pseudo-differential operators with singular symbols (ΨDOSS) and study their
properties. In the subsequent sections we develop a periodic and an abstract form of
ΨDOSS, namely an operator calculus with symbols which have singularities on the
spectrum of the generic operator.

2.2 Some examples of boundary value problems
leading toΨDOSS

2.2.0.1 The Cauchy Problem

The first example is the Cauchy problem for the one-parameter family of differential
equations

∂ 2u(t,x)
∂ t2 +λ 2D2u(t,x) = 0, t > 0,x ∈ R, (2.1)

u(0,x) = ϕ(x),
∂u(0,x)

∂ t
= ψ(x),x ∈ R, (2.2)

where D = −i∂/∂x, λ = σ + iτ ∈ C. As is well known, (2.1),(2.2) represents the
Cauchy problem for the wave equation if λ = 1, and it is well posed in the classical
sense of Hadamard. However, if λ = i, then (2.1),(2.2) represents the Cauchy prob-
lem for the Laplace equation, which, as discussed in Introduction, is not well posed
in the sense of Hadamard. Now we will take an attempt to understand why it is so
in terms of symbols of solution operators.

Let us temporarily replace in (2.1) D by a parameter ξ , assuming that ξ takes
values in R. Then we have a linear ordinary differential equation depending on
parameters ξ ∈ R and λ ∈C

u
′′
(t)+λ 2ξ 2u(t) = 0, t > 0.

Solving this equation, we obtain

u(t) =C1 cos(ξλ t)+C2 sin(ξλ t), t > 0,
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where C1,C2 do not depend on t. Further, taking into account conditions (2.2), we
have

u(t,ξ ) =Φ(ξ )cos(ξλ t)+Ψ(ξ )
sin(ξλ t)

λξ
,

where Φ andΨ are the Fourier transforms of ϕ and ψ , respectively.
The well posedness of problem (2.1),(2.2) essentially depends on the behavior of

two functions, namely

cos(ξλ t) and
sin(ξλ t)

λξ
. (2.3)

In fact, a solution, as we will see later, can be written in the form (returning
back to D)

u(t,x) = [cos λ tD]ϕ(x)+
[

sin λ tD
λD

]
ψ(x), (2.4)

where

cos λ tD and
sin λ tD
λD

are pseudo-differential operators with symbols in equation (2.3), respectively. So,
these two important functions in (2.3) are symbols of solution operators. Now, as-
sume λ = 1 (in fact, λ may be any real number). Then, both symbols cos(ξ t) and
sin(ξ t)

ξ are well defined and bounded on R :

|costξ | ≤ 1, | sin tξ
ξ

| ≤ Ct

1+ |ξ | , ξ ∈R.

These estimates imply well posedness in the sense of Hadamard (see Chapter 4) in
this case. If λ = i (or λ ∈ C \R), then the symbols of solution operators become

cosh(ξ t) and sinh(ξ t)
ξ . These functions are not bounded on R, exponentially increas-

ing at infinity. That is, the symbols of the solution operators now have asymptotic
behavior

cosh(tξ ) = O(etξ ),
sinh (tξ )

ξ
= O(etξ ), t > 0, |ξ | → ∞, (2.5)

resulting the failure of the problem to be well posed in the sense of Hadamard. We
keep in mind that in this particular case a singularity appears at infinity.

The solution operators in this example are examples ofΨDOSS. We will see in
Section 2.3 that such operators are well defined on the spacesΨG,p(R

n), where G is
determined by singularities of the symbol. Therefore, depending on singularities of
the symbols of solution operators the problem is well posed in certain space. This
space we will call a well-posedness space. In our example the well-posedness space
corresponding to λ = i is the most narrow space in terms ofΨG,p(R

n) and it is not
closable up to classical Sobolev, Besov, or Lizorkin-Triebel spaces, thus is not well
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posed in the sense of Hadamard. Vice versa, in the case λ = 1 the well-posedness
space is the widest among the spacesΨG,p(R

n), and in this case it is closable up to
Sobolev and other classical function spaces of finite order, making the problem well
posed in the sense of Hadamard.

Finally, one can notice that the representation (2.4) is just a different form of the
well-known D’Alembert’s formula. Taking into account that the operator [expt ∂

∂ t ]
acts as a translation operator

[expt
∂
∂x

] : ϕ(·)→ ϕ(·+ t),

and accepting

(
∂
∂x

)−1ϕ(x) =
∫ x

0
ϕ(ξ )dξ + c,

one can see that (2.4) can be reduced to the usual form of D’Alembert’s formula

u(t,x) =
ϕ(x+λ t)+ϕ(x−λ t)

2
+

1
2λ

∫ x+λ t

x−λ t
ψ(ξ )dξ . (2.6)

Remark 2.1. Instead of differential equation (2.1) one can consider the equation

∂ 2u(t,x)
∂ t2 +λ 2Au(t,x) = 0, t > 0,x ∈Ω ,

where A is an elliptic operator with an appropriate domain D(A) containing func-
tions defined on Ω ⊆ R

n. However, the essence of the question concerning the sin-
gularity of the symbols of solution operators remains the same.

2.2.0.2 The Dirichlet problem

The second problem we want to consider is the Dirichlet problem in the infinite strip
{(t,x) : 0≤ t ≤ 1,x ∈ R} for the same one-parameter differential equation as in the
previous example. A peculiarity of this problem is now we observe totally different
type of singularities of the solution operators. Namely, in this case for λ = 1 the
symbols of the solution operators have a pole type singularities. Ergo, consider the
following boundary value problem:

∂ 2u(t,x)
∂ t2 +λ 2D2u(t,x) = 0, (2.7)

u(0,x) = ϕ(x), u(1,x) = ψ(x), (2.8)

where again λ = σ + iτ ∈ C. It is well known that if λ = i, then this problem rep-
resents the Dirichlet problem for the Laplace equation, which is well posed. In con-
trary, if λ = 1, then we have the Dirichlet problem for the wave equation, which is
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not well posed in the sense of Hadamard. Similar to the previous example, applying
the operator method we obtain the following representation for a solution

u(t,x) =

[
sin λ (1− t)D

sin λD

]
ϕ(x)+

[
sin λ tD
sin λD

]
ψ(x).

The symbols of solution operators in this case are

sin (1− t)λξ
sin λξ

,
sin tλξ
sinλξ

.

They are bounded if λ = i:
∣∣∣∣ sinh (1− t)ξ

sinh ξ

∣∣∣∣≤ 1,

∣∣∣∣ sinh tξ
sinhξ

∣∣∣∣≤ 1, ξ ∈ R, 0 < t < 1.

In accordance with results obtained in Chapter 4 this fact implies a possibility of
closure of the well posedness space up to classical spaces. At the same time if λ = 1
the symbols of the solution operators

sin (1− t)ξ
sin ξ

,
sin tξ
sinξ

have pole type singularities at points ξk = kπ , k �= 0. Again from the results of
next sections it follows that the well-posedness space is not closable up to classical
spaces. This fact implies ill-posedness in the sense of Hadamard of the considering
problem in the case when λ is a real number, i.e., the Dirichlet problem for the wave
equation.

We note that in the multi-dimensional case, that is x ∈ R
n in (2.7), (2.8), the

symbols of solution operators when λ = 1, are

sin (1− t)|ξ |
sin |ξ | ,

sin t|ξ |
sin |ξ | .

In this case singularities occur on concentric hyperspheres {ξ ∈ R
n : |ξ |= kπ , k =

1,2, . . .}.

2.2.0.3 Diffusion equation

The classical diffusion process without drift can be described by the Cauchy
problem

∂u(t,x)
∂ t

= κΔu(t,x), t > 0, x ∈R
n, (2.9)

u(0,x) = f (x), (2.10)
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where Δ =−(D2
1 + . . .+D2

n), D j =−i ∂
∂x j

, j = 1, . . . ,n, is the Laplace operator, and

κ > 0 is a (constant) diffusion coefficient. The operator method leads now to the
following representation for a solution

u(t,x) = eκtΔ f (x)

=
1

(2π)n

∫

Rn

e−κt|ξ |2 f̂ (ξ )e−ixξdξ , t > 0, (2.11)

where f̂ (ξ ) = F [ f ](ξ ), the Fourier transform of f . The symbol of the solution oper-
ator eκtΔ is e−κt|ξ |2 . This is a “nice” function in the sense that it belongs to C∞(Rn),
bounded, and decreases exponentially when |ξ | → ∞ with all its derivatives. These
properties of the solution operator ‘make’ problem (2.9),(2.10) not only well posed
in the sense of Hadamard in the classical spaces, but also provide hypo-ellipticity.
By definition, a pseudo-differential operator A acting on distributions defined on
Ω ⊂R

n is called hypo-elliptic, if for any distribution u∈D ′(Ω ′),Ω ′ ⊂Ω , Au∈C∞

implies u ∈C∞(Ω ′).
The solution in the variable x is the inverse Fourier transform of the product

e−κt|ξ |2 f̂ (ξ ). Due to the convolution formula (1.42) and relation (1.16) the solution
in the variable x is represented in the form

u(t,x) =
1

(
√

4πκt)n

∫

Rn

e−
|x−y|2

4κt f (y)dy. (2.12)

The Cauchy problem (2.9)–(2.10) and its solution (2.12) have a clear probabilistic
interpretation. In fact, if the initial function f is the Dirac delta function, then the
equation (2.9) is the Fokker-Planck equation (or forward Kolmogorov equation)
for the density function of Brownian motion Bt . In this particular case the solution
u(t,x) in (2.12) is a Gaussian density2 evolved in time:

u(t,x) = Gt(x) =
1

(
√

4πκt)n
e−

|x|2
4κt . (2.13)

If the initial function is the density function of a random variable Y, then the solution
u(t,x) in (2.12) represents the density function of the random process Xt = Y +Bt .
In the theory of stochastic processes it is well known that Brownian motion has
a continuous path. This implies that the random process Xt also has a continuous
path. We will return to stochastic applications of differential and pseudo-differential
equations in Chapter 7 where more detailed discussion will be provided.

In Chapter 7 we will discuss non-Gaussian random processes, sometimes called
anomalous diffusion processes, the mathematical model of which is given by the
equation

∂u(t,x)
∂ t

= κα(−Δ)α/2u(t,x), t > 0, x ∈ R
n, (2.14)

2 With mean 0 and correlation matrix I
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where α is a positive real number, (−Δ)α is the fractional power α of the positive
definite operator −Δ , see Section 3.9. This operator has the symbol −|ξ |α . In this
case the solution operator has the symbol e−t|ξ |α . Even though this function de-
creases at infinity at an exponential rate, but in contrast to the classical case (α = 2)
it is not so “nice.” This symbol is continuous, but not differentiable at the origin.
This type of singularity again effects in the well-posedness space, which as we will
see later (Chapter 4), is narrower than the well-posedness space of the classic diffu-
sion equation.

Note that for α < 2 the continuity path discussed above breaks down. Let us
check this for α = 1. In this case the solution u(t,x) of equation (2.14) satisfying
the initial condition u(0,x) = f (x), due to the convolution formula (1.42) and rela-
tion (1.12), is (n = 1)

u(t,x) =
1
π

∞∫

−∞

t f (y)
t2 +(x− y)2 dy.

If the initial function f (x) is the Dirac delta function, then the latter reduces to

u(t,x) =
1
π

t
t2 + x2 .

This is an evolved Cauchy distribution, which is a representative of stable distri-
butions with pure jumps. The next example discusses a model of the general jump
processes which, in particular, covers all the values of α ∈ (0,2].

2.2.0.4 Equations associated with jump processes

Let ρ(x), x ∈ R
n, be a function defined as

ρ(x) =

{
|x|2, if |x| ≤ 1;

1, if |x|> 1.

Definition 2.1. A measure ν defined on R
n is called a Lévy measure if it satisfies

the conditions

ν({0}) = 0 and
∫
Rn
ρ(x)dν < ∞.

Consider the following equation on {(t,y) ∈ R
n+1 : t > 0,y ∈ R

n}
∂u(t,x)
∂ t

=
∫

Rn

(
u(t,x+ y)− u(t,x)− b(y)

n

∑
j=1

y j
∂u(t,x)
∂x j

)
dν(y), (2.15)

where b(y) is a bounded function, so that the integral in (2.15) is finite. For instance,
if

∫
|y|≤1

|y|dν(y) < ∞, then b can be selected identically zero; if
∫

|y|>1
|y|dν(y) < ∞,

then b can be the constant function b(y) ≡ 1. If both of these conditions are not
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fulfilled, then b possesses the following properties: b(y)→ 1 when |y| → 0, and
b(y) =O( 1

|y| ) when |y|→∞. Equation (2.15) arises in the study of random processes

accompanied with “pure jumps.” In order to see that, let us take b = 0 and dν(y) =
δa(y)dx, where δa is the Dirac delta function with mass on a, 0 �= a ∈ R

n. Then
the right-hand side of equation (2.15) takes the form Ju(t,x) = u(t,x+ a)− u(t,x).
Using the formula F [ f (x+a)](ξ ) = eiaξF [ f ](ξ ), where aξ = a1ξ1+ · · ·+anξn, it is
easy to check that the Fourier transform of Ju is F[Ju](t,ξ ) = (eiaξ − 1)F[u](t,ξ ).
Therefore, the solution operator of the equation (2.15) with the initial condition

u(0,x) = δ (x) has the symbol eeiaξ−1. The latter is the characteristic function of
the Poisson process with intensity parameter λ = 1 and values ak, k ∈ N (see, e.g.,
[Fel68]). It is well known in the probability theory that the Poisson process is a
purely jump process. In particular, in our example the jump size is |a|. In general,
the measure ν identifies all the possible jump sizes, and intensity of these jumps.

Now, denote the operator on the right-hand side of equation (2.15) by A, that is

A f (x) =
∫

Rn

(
f (x+ y)− f (x)− b(y)

n

∑
j=1

y j
∂ f (x)
∂x j

)
dν(y). (2.16)

Computing the Fourier transform of A f , one has

F[A f ](ξ ) = F [ f ](ξ )
∫

Rn

(
eiξy− 1− ib(y)

n

∑
j=1

y jξ j

)
dν(y).

It follows that the symbol of operator A in (2.16) is

σA(ξ ) =
∫

Rn

(
eiξy− 1− ib(y)

n

∑
j=1

y jξ j

)
dν(y). (2.17)

Hence, due to the formula for the inverse Fourier transform the operator A can also
be represented in the form

A f (x) =
1

(2π)n

∫

Rn

σA(ξ )F f (ξ )e−ixξ dξ .

Suppose that there is a finite measure λ defined on the unit sphere S = {x ∈ R
n :

|x|= 1}, such that for any Borel set E ⊂ R
n

ν(E) =
∫

S

( ∞∫

0

IE(rθ )
dr

rα+1

)
dλ (θ ),

where α ∈ (0,2]. Then the symbol σA(ξ ) in (2.17) of the operator A can be written
in the form

σA(ξ ) =
∫

S

( ∞∫

0

[eirξθ − 1− b(rθ )rξθ ]
dr

rα+1

)
dλ (θ ),

with ξθ = ξ1θ1 . . .ξnθn, ξ ∈R
n,θ ∈ S.
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Let 0 < α < 1. Then the condition
∫
|y|≤1 |y|dν(y)< ∞ is verified and we can set

b(y)≡ 0. Using the substitution rξθ = η , we have

σA(ξ ) =
∫

S

(ξθ )α
( ∞∫

0

[eiη − 1]
dη
ηα+1

)
dλ (θ ).

Obviously, the internal integral in this equation is finite and does not depend on ξ
and θ . Let us denote it by jα . Hence,

σA(ξ ) = jα |ξ |α
∫

S

(
ξ
|ξ |θ

)α
dλ (θ ). (2.18)

If we require additionally that the measure λ is uniform on S then the integral∫
S θ1θdλ (θ ) does not depend on θ1, i.e., this integral is constant depending only

on α. Since ξ/|ξ | ∈ S, the integral in (2.18) does not depend on ξ . Therefore, the
symbol σA(ξ ) has the representation

σA(ξ ) =−κα |ξ |α , where κα =− jα

∫

S

(θ1θ )dλ (θ ). (2.19)

The constant κα is positive and corresponds to the diffusion coefficient κ in the
classic diffusion equation (2.9).

Further, let 1 < α < 2. Now the condition
∫

|y>1|
|y|dν(y) < ∞ is verified, and

therefore we can take b(y) ≡ 1. In this case performing similar calculations, as we
did in the case 0 < α < 1, we arrive again at the same representation (2.19), where

the constant jα is defined as jα =
∞∫
0
(eiη−1−η) dη

ηα+1 . Not going into details we note

that representation (2.19) is valid for α = 1 as well under the additional condition
on the measure λ :

∫
S θdλ (θ ) = 0.

Thus, the anomalous diffusion equation (2.14) is a particular case of equa-
tion (2.15) describing jump processes. This fact explains the nature of anomalous
diffusion processes modeled by equation (2.14), which is very different from the
continuous nature of the classic diffusion modeled by equation (2.9). The gen-
eral case of random processes, in which both continuous and jump components are
present, will be discussed in Chapter 7.

2.2.0.5 The Schrödinger equation

If one takes the parameter D in equation (2.9) equal to ω
ih̄ , where ω is a positive

constant depending on the light velocity, mass of a particle, and Planck’s constant
h̄, then (2.9) becomes the Schrödinger equation

i
∂u(t,x)
∂ t

=
ω
h̄
Δu(t,x), t > 0, x ∈ R

n, (2.20)
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which describes the probability of particle distribution in the quantum mechanics.
Now the symbol of the solution operator takes the form eiωh̄ t|ξ |2 . This function is not
so “nice” to compare to the symbol of the solution operator of the diffusion equa-
tion (2.9), or anomalous diffusion equation (2.14). Unlike the symbols of solution
operators of (2.9) and (2.14), the symbol eiωh̄ t|ξ |2 does not decrease at infinity. It
does not increase at infinity either, unlike the symbols in (2.5). In fact, this symbol
is an oscillatory function with the amplitude equal to one, and hence, is in L∞(Rn).

The solution of the Schrödinger equation is frequently interpreted as a density of
dispersive waves. Therefore, their Lp-estimates are useful. The Riesz-Thorin theo-
rem can be used to get such an estimates. Indeed, if the solution satisfies the initial
condition u(0,x) = f (x), x ∈ R

n, then, we have

u(t,x) =
1

(2π)n

∫

Rn

eiωh̄ t|ξ |2 f̂ (ξ )e−ixξdξ , t > 0, x ∈ R
n, (2.21)

or, inverting the latter in the distributional sense (see formula (1.52)),

u(t,x) = St f (x) =

(
h̄

i4πωt

)n/2∫

Rn

ei h̄
ω
|y|2
4t f (x− y)dy, t > 0, x ∈R

n. (2.22)

It follows from (2.22) that

|u(t,x)| ≤ 1

(4πc0t)
n
2
‖ f‖L1 .

This estimate shows that St : L1(R
n)→ L∞(Rn) with the norm

‖St‖L1(Rn)→L∞(Rn) ≤ (4πc0t)−
n
2 ,

where c0 = ω/h̄. On the other hand, for f ∈ L2(R
n) equation (2.21) together with

Parseval’s equality yields St : L2(R
n)→ L2(R

n) with the norm ‖St‖L2(Rn)→L2(Rn)=1.
Now applying the Riesz-Thorin theorem, we obtain

‖u(t,x)‖Lp ≤
1

(4πc0t)n(1/2−1/p)
‖ f‖Lq , t > 0, (2.23)

where p ≥ 2 and q is the conjugate of p. Estimate (2.23) shows the rate of decay
when t → ∞. Estimates when f is an element of Besov or Lizorkin-Triebel spaces
will be discussed in Chapter 4, as a corollary of general well-posedness theorems.

For relativistically free particles J. Björken and S. Drell [BD64] (see also [Dub82,
Sam83]) considered the Schrödinger equation in the following form

∂u(t,x)
∂ t

= D
√

I−Δu(t,x), (2.24)
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where again D = ω
ih̄ . A peculiarity of equation (2.24) is that the equation itself is

given as a pseudo-differential equation. The symbol of the corresponding solution

operator now has the form eiωh̄ t
√

1+|ξ |2 , which either does not decrease at infinity.

2.2.0.6 Multi-point problems

Consider a problem

∂ 2u(t,x)
∂ t2 −Δu(t,x) = 0, t ∈ (0,2), x ∈ R

n, (2.25)

u(0,x) = ϕ(x), u(1,x) = u(2,x), (2.26)

in which the values of a solution at three time instants are involved. This is a typical
example of multi-point nonlocal boundary value problems. Multi-point and other
nonlocal boundary value problems arise in various fields, including the plasma
physics, fluid flows in porous media, etc. Equation (2.25) is included to the fam-
ily of equations (2.1) with λ = i. The same method used in the previous examples
gives a representation u(t,x) = S(t,D)ϕ(x) for a solution, where the solution oper-
ator S(t,D) has the symbol

s(t,ξ ) =
cos(|ξ |t)[sin |ξ |− sin(2|ξ |)]− sin(|ξ |t)[cos |ξ |− cos(2|ξ |)]

sin |ξ |− sin(2|ξ |) . (2.27)

This symbol has non-integrable strong singularities at concentric spheres |ξ | =
kπ , k ∈ Z\ {0}, and |ξ |=±π/3+ 2πm,m ∈ Z. Due to these singularities the exp-
ression S(t,D)ϕ(x) loses its meaning even on infinitely differentiable functions with
compact support. Hence, one cannot expect the well posedness of this problem in
the classical function spaces.

Later, when we gather enough information aboutΨDOSS, we will return to these
examples and discuss their well-posedness spaces in detail. We will also see other
examples and applications of ΨDOSS, such that boundary values (traces) of har-
monic functions (cf. with Sato’s hyperfunctions; see Section 1.13 “Additional notes”
to Chapter 1), uniqueness of a solution of polyharmonic equation, etc.

2.3 ΨDOSS: constant symbols

As we have seen in the previous section, in many boundary value problems of math-
ematical physics symbols of solution operators have different type of singularities:
strong singularities on a finite part of the space, singularities due to increase or
non-sufficiently fast decrease at infinity, or singularities due to irregular points of
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symbols. These kind of operators have two distinction from the standard pseudo-
differential ones. First, their symbols contain singularities with respect to dual vari-
able, and second, their orders, generally speaking, are not bounded.

In this section we determineΨDO whose symbols have singularities with respect
to dual variables.

Definition 2.2. Let A(ξ ) ∈C∞(G), G ⊂ Rn. We determine an operator A(D) by the
formula

A(D) f (x) =
1

(2π)n

∫

G

A(ξ )F [ f ](ξ )e−ixξ dξ , (2.28)

provided the integral on the right-hand side exists. The function A(ξ ) is called a
symbol of A(D).

In definition 2.2 the function A(ξ ) may have arbitrary type of singularities outside
G or on its boundary. Generally speaking, operators A(D) with symbols A∈C∞(G),
may not be meaningful even for functions in the space C∞

0 (R
n). Indeed, let ξ0 ∈R

n

be a non-integrable singular point of A(ξ ) and denote by O(ξ0) some neighbor-
hood of ξ0. Let us take a function f0 ∈ C∞

0 (R
n) with F [ f0](ξ ) > 0 for ξ ∈ O(ξ0)

and F [ f0](ξ0) = 1. Then it is easy to verify that A(D) f0(x) = ∞. However, for
functions f ∈ΨG,p(R

n) the integral in (2.28) is convergent due to the compact-
ness of supp F [ f ]⊂G, and therefore, A(D) f is well defined. In this sense the space
ΨG,p(R

n) serves as a domain of pseudo-differential operators with symbols singular
in the dual variable. We use the abbreviationΨDOSS for pseudodifferential opera-
tors with singular symbols.

Theorem 2.1. The space ΨG,p(R
n), 1 ≤ p ≤ ∞, is invariant with respect to any

operator A(D) with the symbol A(ξ ) ∈ C∞(G). Moreover, the mapping A(D) :
ΨG,p(R

n)→ΨG,p(R
n) is continuous.

Proof. Let f ∈ΨG,p(R
n) and supp f ⊂ GN for some N ∈ N. Then f ∈ΨN,p (see

Definition 1.23). It is obvious that

suppF[A(D) f ] = supp(A(ξ )F[ f ]) = suppF[ f ] ⊂GN .

Moreover, since κN ∈C∞
0 (GN) the product mN(ξ )= κN(ξ )A(ξ )∈C∞

0 (G). Mikhlin’s
theorem implies that any infinitely differentiable function with compact support is
an Lp-multiplier. Therefore,

pN(A(D) f ) = ‖F−1[κN(ξ )A(ξ )F[ f ]]‖Lp ≤CN,p‖ f‖Lp ≤CN,p pN( f )< ∞, (2.29)

where CN,p > 0 is a constant not depending on f . It follows that A(D) f ∈ΨN,p. Since
ΨN,p ⊂ Lp(R

n) for each N ∈ N, we have A(D) f ∈ΨG,p. Estimate (2.29) together
with Proposition 1.28 implies the continuity of A(D) inΨG,p.

Theorem 2.2. The set of operators A(D) with symbols A ∈ C∞(G) and defined on
ΨG,p forms an operator algebra which is isomorphic to the algebra of symbols
C∞(G). This isomorphism is given by the correspondence A(D)↔ A(ξ ), i.e.
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αA(D)+βB(D)↔ αA(ξ )+βB(ξ ),α,β ∈C1,

A(D) ·B(D)↔ A(ξ ) ·B(ξ ).
If 1/A(ξ ) is also in C∞(G), then the operator A−1(D) corresponding to the symbol
1/A(ξ ) is the operator inverse to A(D).

Proof. The proof is clear.

In the definition of the operator A(D) for a fixed p∈ [0,∞], it is not necessary that
the symbol A(ξ ) was in C∞(G). For example, assume that p = 1. Then the Fourier
transform of f ∈ΨG,1 belongs to L∞,com(G). Therefore, for any A ∈ L1, loc(G), one
has

|A(D) f (x)| ≤ ‖A|L1(K)‖‖F[ f ]|L∞‖< ∞,

where K is any compact subset of G containing supp f . The latter together with the
Housdorf-Young inequality implies

‖A(D) f‖L∞ ≤C‖ f‖L∞ .

If p = 2, then a similar result holds true for the class of symbols A ∈ L∞, loc(G).
Namely, for any symbol A ∈ L∞, loc(G) the corresponding operator A(D) in (2.28)
is meaningful for any function f ∈ΨG,2, and maps ΨG,2(R

n) into ΨG,2(R
n). These

two examples show that classes of symbols, for which (2.28) is meaningful, depends
on p.

Let Sp(G) denote the class of symbols for which (2.28) is well defined on the
spaceΨG,p(R

n). Theorem 2.1 shows that C∞(G)⊂ Sp(G) for each fixed p ≥ 1. For
a class of symbols X(G) defined on G we set

XSp(G) = {a ∈ Sp(G) for some p ∈ [1,∞], such that a ∈ X(G)}.
For example, C∞Sp(G) =C∞(G). The class CSp(G) consists of continuous symbols
in Sp(G). Further, we denote by OPSp(G) and OPXSp(G) the classes of operators
corresponding to the classes of symbols Sp(G) and XSp(G), respectively.

Example 2.1. Consider the symbols of solution operators of boundary value prob-
lems discussed in Problems 2.2.0.1–2.2.0.6 of the previous section.

1. Problem 2.2.0.1: The symbols of solution operators in this problem given in
equation (2.3), namely a1(λ , t,ξ ) = cos(ξλ t) and a2(λ , t,ξ ) = sin(ξλ t)

λξ both be-

long to the class C∞Sp(R) for every λ ∈ C and fixed t > 0.
2. Problem 2.2.0.2: The symbols of solution operators in this problem a3(λ , t,ξ ) =

sin (1−t)λξ
sin λξ , and a4(λ , t,ξ ) = sin tλξ

sinλξ are in the class C∞Sp(G), where G = R \
{ξk =

πk
λ , k =±1,±2, . . .} for every fixed λ ∈ C and t ≥ 0.

3. Problem 2.2.0.3: The symbol of the solution operator of the Cauchy prob-
lem (2.9), (2.10) is a5(t,ξ ) = exp(−t|ξ |2) ∈C∞Sp(R

n) for every t ≥ 0.
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4. Problem 2.2.0.4: The symbol of the solution operator of the Cauchy problem
for equation (2.15) is a6(t,ξ ) = exp(tσA(ξ )), where σA(ξ ) is defined in equa-
tion (2.17). In particular, under some conditions to the Lévy measure ν one has
σA(ξ ) = −κα |ξ |α , 0 < α < 2; see equation (2.19). This particular case shows
that the symbol σA(ξ ) is not differentiable. This is true in the general case as
well. Thus, we have σA(ξ ) ∈ CSp(R

n) and a6(t,ξ ) ∈ CSp(R
n) for every fixed

t ≥ 0.
5. Problem 2.2.0.5: The symbol of the solution operator of the Cauchy problem for

the Schrödinger equation (2.20) is a7(t,ξ ) = exp
(

iωh̄ t|ξ |2
)
∈C∞Sp(R

n) for each

fixed t ≥ 0.
6. Problem 2.2.0.6: The symbol a8(t,ξ ) = s(t,ξ ) of the solution operator for the

three-point problem (2.25), (2.26) is defined in equation (2.27), and belongs to
the class of symbols C∞Sp(G), where G = R\M , and

M = ∪k∈Z\{0}{|ξ |= kπ}∪∪m∈Z{|ξ |=±π/3+ 2πm}.

The following theorem provides an extension of Theorem 2.2 to the general case
of algebras of pseudo-differential operators.

Theorem 2.3. Let X(G) be an algebra of functions defined on G⊂ R
n with respect

to operations ⊕ and �. Then OPXSp(G) forms an operator algebra which is iso-
morphic to the algebra of symbols XSp(G). This isomorphism is given by the corre-
spondence A(D)↔ A(ξ ), i.e.

αA(D)⊕βB(D)↔ αA(ξ )⊕βB(ξ ),α,β ∈C1,

A(D)�B(D)↔ A(ξ )�B(ξ ).

If 1/A(ξ ) is also in XSp(G), then the operator A−1(D) corresponding to the symbol
1/A(ξ ) is the operator inverse to A(D).

Theorem 2.4. The spaceΨG,p is invariant with respect to any operator A(D) with a

symbol A(ξ )∈H
n
2+ε

loc (G) for some ε > 0. Moreover, the mapping A(D) :ΨG,p(R
n)→

ΨG,p(R
n) is continuous.

Proof. Let f ∈ΨG,p(R
n) and supp f ⊂GN . It is obvious that

supp(F [A(D) f ])⊆ suppF [ f ].

Hence, A(D) f ∈ΨG,p(R
n). Moreover, since κN ∈C∞

0 (GN) the product

mN(ξ ) = κN(ξ )A(ξ ) ∈ H
n
2+ε

com (G), ε > 0.

The function mN for each fixed N satisfies the condition of Mikhlin-Hörmander’s
multiplier theorem 1.9, and therefore is an Lp-multiplier. Hence, for each N ∈N,

pN(A(D) f ) = ‖F−1[κN(ξ )A(ξ )F[ f ]
]‖Lp ≤Cp,N‖ f‖Lp ≤Cp,N pN( f )< ∞, (2.30)
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where Cp,N > 0 is a constant not depending on f . Estimate (2.30) together with
Proposition 1.28 implies the continuity of A(D) inΨG,p(R

n).

Let Aw(−D) be a weak extension of A(D), i.e.

< Aw(−D)g, f >=< g,A(D) f >, f ∈ΨG,p(R
n),g ∈Ψ ′

−G,p′(R
n). (2.31)

Theorem 2.5. The space Ψ ′
−G,p′(R

n) is invariant with respect to any weakly ex-
tended operator Aw(−D) with a symbol A(ξ ) analytic in −G. Moreover, the map-
ping Aw(−D) :Ψ ′

−G,p′(R
n)→Ψ ′

−G,p′(R
n) is continuous.

Proof. Let g ∈ Ψ ′
−G,p′(R

n) be an arbitrary element. We show that Aw(−D)g ∈
Ψ ′
−G,p′(R

n), as well. It is obvious from definition (2.31) that Aw(−D)g is a linear
functional. Assume that f j ∈ΨG,p(R

n) is an arbitrary convergent sequence. We have

< Aw(−D)g, f j >=< g,A(D) f j >=< g,v j >, (2.32)

where v j = A(D) f j . It follows from Theorem 2.1 that v j → 0 inΨG,p(R
n) if f j → 0

inΨG,p(R
n). Since g ∈Ψ ′

−G,p′(R
n), it follows that < g,v j >→ 0, as j → ∞. Hence,

Aw(−D)g is a continuous linear functional, implying Aw(−D)g ∈Ψ ′
−G,p′(R

n). Now
let gm ∈Ψ ′

−G,p′(R
n) be a sequence convergent to 0 in Ψ ′

−G,p′(R
n). Then evidently,

< Aw(−D)gm, f >=< gm,v >→ 0, m→∞, since v = A(D) f ∈ΨG,p(R
n), obtaining

the continuity of the operator Aw(−D) inΨ ′
−G,p′(R

n).

Theorem 2.6. The set of operators Aw(−D) with symbols A(ξ ) ∈ XSp(G) and def-
ined on Ψ ′

−G,p′(R
n) forms an operator algebra which is isomorphic to the algebra

of functions XSp(G). This isomorphism is given by the correspondence Aw(−D)↔
A(ξ ), i.e.

αAw(−D)+βBw(−D)↔ αA(ξ )+βB(ξ ),α,β ∈C1,

Aw(−D) ·Bw(−D)↔ A(ξ ) ·B(ξ ).

If 1/A(ξ ) is also in XSp(G), then the operator
(

Aw
)−1

(−D) corresponding to

the symbol 1/A(ξ ) is the operator inverse to Aw(−D).

Proof. Follows immediately from Theorem 2.2.

Theorem 2.7. Let 1 < q < ∞, −∞ < s < +∞ and μ(Rn \G) = 0. For a pseudo-
differential operator

A(D) :ΨG,2(R
n)→ΨG,2(R

n)

there exists a closed extension

Â(D) : Bs
2q(R

n)→ B�
2q(R

n),

if and only if the symbol A(ξ ) satisfies the estimate
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|A(ξ )| ≤C(1+ |ξ |)s−�, C > 0,ξ ∈ Rn. (2.33)

Proof. First we show that the estimate

‖A(D) f |B�
2q(R

n)‖ ≤C‖ f |Bs
2q(R

n)‖, (2.34)

where ϕk = F [ψk], holds for any test function f ∈ΨG,2(R
n). Using the Parseval

equality (1.34), one has ‖F−1
[
ϕF [ f ]

]|L2‖= (2π)−n‖ϕF[ f ]|L2‖. This implies

‖A(D) f |B�
2q(R

n)‖= (
∞

∑
k=0

2�kq‖F−1
[
ϕkF [A(D) f ]

]
‖q

L2
)

1
q

= (2π)−n(
∞

∑
k=0

2�kq‖ϕk(ξ )A(ξ )F [ f ](ξ )‖q
L2
)

1
q

≤C1(
∞

∑
k=0

2skq‖F−1
[
ϕkF [ f ]

]
‖q

L2
)

1
q =C1‖ f |Bs

2q(R
n)‖,

since for ξ ∈ suppϕk the estimate |A(ξ )| ≤C12(s−�)k holds due to condition (2.33).
Extension of inequality (2.34) to an arbitrary function f ∈ Bs

2q(R
n) one can pro-

ceed in a standard way. Indeed, since the space of test functionsΨG,2(R
n) is dense in

Bs
2q, then f ∈Bs

2q(R
n) can be approximated by a sequence f j ∈ΨG,2(R

n) in the norm
of Bs

2q(R
n). Due to the invariance theorem (Theorem 2.3 for p = 2) the sequence

h j = A(D) f j ∈ΨG,2(R
n), and since ΨG,2(R

n) is dense in B�
2q(R

n) as well, one has

h j ∈ B�
2q(R

n), j = 1,2, . . . . Further, since B�
2q(R

n) is a complete Banach space, the

sequence h j converges to a limit h in the norm B�
2q(R

n). Define an extension Â of

the operator A(D) to B�
2q(R

n) by setting Â(D) f = h = lim j→∞ h j = lim j→∞ A(D) f j.
The inequality (2.34) implies the estimate

‖Â(D) f |B�
2q‖ ≤C‖ f |Bs

2q‖, (2.35)

valid for all f ∈ Bs
2q(R

n). Indeed, one needs to replace f by its approximating se-
quence f j ∈ΨG,p(R

n) in (2.34) and let j → ∞, obtaining the estimate (2.35), and
proving first part of the theorem.

Necessity. Let in a neighborhood of a point ξ∗ ∈ R
n the inequality |A(ξ )| >

N(1+ |ξ |)s−� holds. Here N is an arbitrary number. We shall show that there exists a
function w ∈ Bs

2q(R
n) such that ‖A(D)w|B�

2q‖> ‖w|Bs
2q‖. Let 0 �= w ∈ Bs

2q(R
n) and

suppF[w] ⊂ U(ξ∗). Without loss of generality we can take U(ξ∗) ⊂ {2L ≤ |ξ | ≤
2L+1} with some L. It is evident that w ∈ΨG,2(R

n). Using the Parseval equality we
have
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‖Â(D)w|Bs
2q‖q =

∞

∑
j=0

2� jq‖F−1[ϕ jF [A(D)w]
]|L2‖q

=
∞

∑
j=0

2� jq‖ϕ jF [A(D)w]|L2‖q ≥ 2�qL
( ∫
U(ξ∗)

|A(ξ )|2|F[w]|2dξ
) q

2

> Nq2�sL‖ϕLFw|L2‖q = Nq‖w|Bs
2q‖q.

Theorem 2.8. Let 1< p,q<∞,−∞< s <+∞, mn(Rn\G) = 0 and the symbol A(ξ )
of an operator A(D) :ΨG,p(R

n)→ΨG,p(R
n) satisfies the condition

|ξ ||α ||Dα
ξ A(ξ )| ≤Cα(1+ |ξ |)s−�,Cα > 0, ξ ∈ G, |α| ≤ [

n
2
]+ 1. (2.36)

Then

(i) there exists a unique continuous extension Â(D) : Bs
pq(R

n)→ B�
pq(R

n) of the
operator A(D);

(ii) there exists a unique continuous closed restriction Âc(−D) : B−�p′q′(R
n) →

B−s
p′q′(R

n) of the operator Aw(−D) ;

(iii) the equality Â+
c (−D) = Â(D), where Â+

c (−D) is the conjugate to Âc(−D), is
valid.

Proof. The sufficiency of condition (2.36) can be proved similar to the previous
case, however, now we use the multiplier property instead of Parseval’s equality.
Let again f ∈ΨG,p(R

n) and the symbol A(ξ ) of the pseudo-differential operator
A(D) satisfy condition (2.36). Let {ψk}∞k=0 ∈ Φ. For test functions f ∈ΨG,p(R

n)
we show the estimate

‖A(D) f |B�
pq‖= (

∞

∑
k=0

2lkq‖F−1
[
ϕkF [A(D) f ]

]
‖q

Lp
)

1
q ≤C‖ f |Bs

pq‖, (2.37)

where ϕk = F [ψk], k ≥ 0. Due to Part 4) of Definition 1.20, ϕk ∈ Mp, 1 < p < ∞,
for each k = 0,1, . . . . Since f ∈ ΨG,p(R

n), there exists a compact set K ⊂ G,
such that suppF[ f ] ⊂ K. Moreover, there exists a natural number m, such that
ϕkF [A(D) f ](ξ ) ≡ 0 for all k > m. Therefore, inequality (2.37) for f ∈ΨG,p(R

n)
takes the form

‖A(D) f |B�
pq‖= (

m

∑
k=0

2lkq‖F−1
[
ϕkF[A(D) f ]

]
‖q

Lp
)

1
q ≤C‖ f |Bs

pq‖,

with some natural number m depending on f .
Now consider a collection of functions

φk(x) = F−1
(
ϕk(ξ ) · 2νk

(1+ |ξ |2)ν/2

)
, k = 0,1,2, . . . .,
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with ν = s− l. One can check that the functions φk(x) satisfy conditions (1) - (4) of
Definition 1.20. Hence, {φk}∞k=0 ∈Φ. Since, both collections {ψk}∞k=0 and {φk}∞k=0
belong to Φ, the respective norms ‖ f |Bs

pq‖ψ and ‖ f |Bs
pq‖φ are equivalent. Hence,

‖A(D) f |B�
pq‖ ≤C‖A(D) f |B�

pq‖φ =C(
m

∑
k=0

2lkq‖F−1
(

F[φk] ·F[A(D) f ]
)
‖q

Lp
)

1
q

=C(
m

∑
k=0

2lkq‖φk ∗A(D) f‖q
Lp
)

1
q , (2.38)

where C > 0 is a constant. Further, it is easy to see that

φk ∗A(D) f = F−1(Fφk ·FA(D) f ) = F−1
(
ϕk · 2νk

(1+ |ξ |2)ν/2
A(ξ )F f

)
.

Denote by m(ξ ) the function A(ξ ) · (1 + |ξ |2)− ν
2 . It follows from the Michlin’s

Theorem (see Theorem 1.7) that m(ξ ) is a Fourier multiplier in the space Lp. We
have

φk ∗A(D) f = 2νk(F−1m∗ϕk ∗ f ).

Using the multiplier property of m(ξ ) we obtain the estimate

‖φk ∗A(D) f |Lp‖= 2νk‖F−1(m(ξ )F [ϕk(ξ ) f (ξ )]
)|Lp‖

≤Cp2νk‖ϕk ∗ f |Lp‖. (2.39)

Estimates obtained in (2.39) and (2.38) imply that

‖A(D) f |B�
pq‖ ≤C(

m

∑
k=0

2lkq‖φk ∗A(D) f |Lp‖q)
1
q

≤CCp(
m

∑
k=0

2(l+ν)kq‖ϕk ∗ f |Lp‖q)
1
q

=CCp‖ f |Bν+�
pq ‖=CCp‖ f |Bs

pq‖.

Thus, estimate (2.37) is valid for any test function f ∈ΨG,p(R
n). The extension of

inequality (2.37) to an arbitrary function f ∈ Bs
pq(R

n) repeats exactly the extension
process proceeded in the previous theorem. Hence, part (i) of the theorem is proved.

Now let g∈ B−�p′q′(R
n) and f ∈ Bs

pq(R
n). Since f = lim j→∞ f j , f j ∈ΨG,p(R

n), the

restriction Âc(−D) to B−�p′q′(R
n) of the operator Aw(−D) :Ψ ′

−G,p′ (R
n)→Ψ ′

−G,p′ (R
n)

we determine by

< Âc(−D)g, f >= lim
j→∞

< g,A(D) f j >=< g, Â(D) f > . (2.40)

Here Â(D) is the extension of the operator A(D) :ΨG,p(R
n)→ΨG,p(R

n) constructed
above. We have the estimate

|< Âc(−D)g, f > | ≤ ‖g|B−�p′q′ ‖ · ‖Â(D) f |B�
pq‖ ≤C‖g|B−�p′q′ ‖ · ‖ f |Bs

pq‖.
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It follows that

‖Âc(D)g|B−�p′q′ ‖= sup
f �=0

‖< Âc(−D)g, f > ‖
‖ f |Bs

pq‖
≤C‖g|B−�p′q′ ‖, (2.41)

proving part (ii).
Finally, when both operators Â(D) and Âc(−D) are determined, it follows from

(2.40) that < Âc(−D)g, f >=< g, Â(D) f > valid for arbitrary g ∈ B−�p′q′(R
n) and

f ∈ Bs
pq(R

n). The latter yields the equality Â+
c (−D) = Â(D), completing the proof.

Theorem 2.8 remains valid for Lizorkin-Triebel spaces Fs
pq(R

n) as well.

Theorem 2.9. Let 1< p,q<∞,−∞< s <+∞, mn(Rn\G) = 0 and the symbol A(ξ )
of an operator A(D) :ΨG,p(R

n)→ΨG,p(R
n) satisfies the condition

|ξ ||α ||Dα
ξ A(ξ )| ≤Cα(1+ |ξ |)s−�,Cα > 0,ξ ∈ G, |α| ≤ [

n
2
]+ 1. (2.42)

Then

(i) there exists a unique continuous extension Â(D) : Fs
pq(R

n)→ F�
pq(R

n) of the
operator A(D);

(ii) there exists a unique continuous closed restriction Âc(−D) : F−�
p′q′(R

n) →
F−s

p′q′(R
n) of the operator Aw(−D) ;

(iii) the equality Â+
c (−D) = Â(D), where Â+

c (−D) is the conjugate to Âc(−D), is
valid.

Returning to properties of pseudo-differential operators with singular symbols
defined on Ψ ′

−G,p′(R
n) one can reformulate the representation Theorem 1.20 in

terms of pseudo-differential operators.

Theorem 2.10. Let 1 < p <∞ and p
′
= p/(p−1), the conjugate number of p. For

each distribution f ∈Ψ ′
−G,p′(R

n) there exist a pseudo-differential operator A(D)

with the symbol A(ξ ) analytic in G and a function f0 with F f0 ∈ Lp(G) such that
the representation f (x) = A(D) f0(x) holds.

Remark 2.2. This result has an independent interest for analysis. We will use it es-
sentially in proofs of uniqueness theorems in the next chapter.

2.4 Pseudo-differential operators with continuous symbols
and hypersingular integrals

In Example 2.2.0.4 of Section 2.2, related to jump processes, the solution opera-
tor appeared to be a pseudo-differential operators with a non-differentiable symbol.
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Moreover, the symbol σA(ξ ) = −κα |ξ |α , 0 < α < 2, in equation (2.19) is contin-
uous on R

n, but not differentiable at the origin. Pseudo-differential operators like
this will play an important role in the various random walk models discussed in
Chapter 8 and used for description of fractional order diffusion processes.

Assume that G is an open domain in R
n. Let a function f be continuous and

bounded on R
n, i.e., f ∈Cb(R

n), and have a Fourier transform F [ f ](ξ ) in the sense
of distributions, which has a compact support in G. The set of all such functions
endowed with the convergence in the following sense is denoted by CΨG(R

n): a seq-
uence of functions fm ∈CΨG(R

n) is said to converge to a function f0 ∈CΨG(R
n) if:

1. there exists a compact set K ⊂G such that suppF [ fm]⊂ K for all m = 1,2, . . .;
2. ‖ fm− f0|Cb‖= supx∈Rn | fm− f0| → 0 as m → ∞.

In the case G = R
n we write simply CΨ (Rn) omitting R

n in the subindex of
CΨG(R

n). Note that according to the Paley-Wiener-Schwartz theorem (Theorem
1.12) functions in CΨG(R

n) are entire functions of finite exponential type. In acc-
ordance with Theorem 1.10 a function f ∈ Lp(R

n) with p > 2 has the Fourier trans-
form F[ f ] belonging to H−s(Rn),s > n( 1

2 − 1
p). Letting p → ∞ we have F [ f ] ∈

H−s(Rn),s > n
2 for f ∈ L∞(Rn). Taking into account this fact and the Paley-Wiener-

Schwartz theorem we have that the Fourier transform of f ∈ΨG(R
n) belongs to the

space ⋂
s> n

2

H−s
comp(G),

where H−s
comp(G) is a negative order Sobolev space of functionals with compact sup-

port on G. Moreover, since lim
p→∞

‖ f‖Lp = ‖ f‖L∞ for f ∈ L∞(Rn) (see, for example,

[RS80]), it follows from Theorem 1.10 that

‖F[ f ]‖−s ≤C‖ f‖L∞ . (2.43)

Thus, F [ f ] is a distribution well defined on the space of continuous functions with
the topology of locally uniform convergence.

Denote by CΨ ′
−G(R

n) the space of all linear bounded functionals defined on the
space CΨG(R

n) and endowed with the weak topology. Namely, we say that a se-
quence of functionals gm ∈CΨ ′

−G(R
n) converges to an element g0 ∈CΨ ′

−G(R
n) in

the weak sense, if for all f ∈ CΨG(R
n) the sequence of numbers < gm, f > con-

verges to < g0, f > as m→∞. By < g, f > we mean the value of g ∈CΨ ′
−G(R

n) on
an element f ∈CΨG(R

n).
Let A(ξ ) be a continuous function defined in G ⊂ R

n. By definition, a pseudo-
differential operator A(D) with the symbol A(ξ ) is

A(D)ϕ(x) =
1

(2π)n 〈F [ϕ ],A(ξ )e−ixξ 〉, (2.44)

which is well defined on functions of CΨG(R
n). We recall that xξ in equation (2.44)

is the dot product of vectors x ∈ R
n
x , ξ ∈R

n
ξ , that is xξ = x1ξ1 + · · ·+ xnξn. If F[ϕ ]
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is an integrable function with suppF[ϕ ]⊂G, then (2.44) becomes the usual form of
pseudo-differential operator

A(D)ϕ(x) =
1

(2π)n

∫

G

A(ξ )F [ϕ ](ξ )e−ixξdξ ,

with the integral taken over G. Note that, in general, this may not be meaningful
even for infinitely differentiable functions with finite support (see Remark 2.3).

We define the operator A(−D) acting on the space CΨ ′
−G(R

n) by the extension
formula

< A(−D) f ,ϕ > = < f ,A(D)ϕ >, f ∈CΨ
′
−G(R

n), ϕ ∈CΨG(R
n). (2.45)

Lemma 2.1. The pseudo-differential operators A(D) and A(−D) with a continuous
symbol A(ξ ) are continuous mappings:

A(D) :ΨG(R
n)→ΨG(R

n), A(−D) :Ψ
′
−G(R

n)→Ψ
′
−G(R

n).

Proof. Indeed, since suppF [A(D) f ]⊂ supp A(ξ )F[ f ], one has suppF [A(D) f ]� G
for any function f ∈ CΨG(R

n). Further, suppose that fm → 0 in ΨG(R
n), that

is there exists a compact K � G such that suppF[ fm] ⊂ K for all m ≥ 1, and
sup | fm| → 0, m → ∞. Since F [ fm] ∈ H−s(K) for some s > n/2, using (2.43) we
have the estimate

|A(D) fm(x)|=
∣∣∣ 1
(2π)n 〈F [ fm](ξ ),A(ξ )e−ixξ 〉ξ

∣∣∣
≤C‖F[ fm]|H−s(K)‖‖A(ξ )e−ixξ |Hs(K)‖
≤C1‖ fm‖|L∞‖A(ξ )e−ixξ |Hs(K)‖. (2.46)

Further, since A(ξ ) is a function uniformly bounded over any compact, one has

‖A(ξ )e−ixξ |Hs(K)‖2 =

∫

K

|A(ξ )|2(1+ |ξ |2)sdξ =CK < ∞.

Taking this and estimate (2.46) into account, we finally get

sup
x∈Rn

|A(D) fm(x)| ≤CCK‖ fm‖→ 0 as m → ∞.

The continuity of the second mapping in the lemma now follows by duality.

Lemma 2.2. Let A(ξ ) be a function continuous on R
n. Then for ξ ∈ R

n

A(D){e−ixξ}= A(ξ )e−ixξ , x ∈R
n. (2.47)
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Proof. For any fixed ξ ∈ R
n the function e−ixξ is in CΨ(Rn). By definition (2.44)

of A(D), we have

A(D){e−ixξ}= 1
(2π)n 〈F[e−ixξ ](η),A(η)e−ixη 〉

= 〈δ (η− ξ ),A(η)e−ixη〉= A(ξ )e−ixξ .

Corollary 2.11 The following relations hold:

i) A(ξ ) = (A(D)e−ixξ )eixξ ;
ii) A(ξ ) = (A(D)e−ixξ )|x=0;

iii) A(ξ ) =< A(−D)δ0(x),e−ixξ >, where δ0 is the Dirac distribution.

Proof. The first two assertions immediately follow from (2.47). To prove (iii), we
have

< A(−D)δ0(x),e
−ixξ >=< δ0(x),A(D)e−xξ >=< δ0(x),A(ξ )e−ixξ >= A(ξ ).

Remark 2.3. Equality (2.47) holds in the space CΨ(Rn), and therefore, understood
in the usual pointwise sense. It is a valid equality, as indicated in many sources
(see, e.g., [Hor83, Tre80]), in the space E (Rn) of test functions, as well. However,
since the function e−ixξ does not belong to S(Rn) and D(Rn), the representations
for the symbol obtained in Lemma 2.2 and Corollary 2.11 are not applicable in these
spaces.

Example 2.2. Consider the operator

D
α
0 f (x) =

1
d(α, l)

∫

Rn

Δ l
y f (x)

|y|n+α dy≡ 1
d(α, l)

lim
N→∞

∫

|y|≤N

Δ l
y f (x)

|y|n+α dy (2.48)

where 0 < α < l, l is a positive integer, Δ l
y is the finite difference of order l in

the y direction, either centered or non-centered, and d(α, l) is a constant defined
in dependence on what type of difference is taken (see for details [SKM87]). Due
to a strong singularity in the integrand, this operator is also called a hypersingular
integral. As we will show in Section 3.8 (see Theorem 3.4), this operator is a pseudo-
differential operator with the continuous symbol−|ξ |α , and plays an important role
in random walk constructions studied in Chapter 8.

Note that in this book we consider only the centered case of the finite difference
Δ l

y in the definition of Dα
0 . In this case d(α, l) is defined as (see [SKM87])

d(α, l) =
π1+n/2Al(α)

2αΓ (1+ α
2 )Γ ( n+α

2 )sin(απ/2)
, (2.49)

with Al(α) determined by the formula

Al(α) = 2
[l/2]

∑
k=0

(−1)k−1
(

l
k

)(
l
2
− k

)α
.
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Moreover d(α, l) �= 0 for all α > 0 and for even l, but d(α, l) is identically zero for
odd orders l. Let l be a given positive integer. Denote by τy a shift operator with
spatial vector-step y

(τy f )(x) = f (x− y), x,y ∈ R
n.

Using this operator we determine the symmetric difference operator of order l

(Δ l
y f )(x) = (τ− y

2
− τ y

2
)l f (x) =

l

∑
k=0

(−1)k
(

l
k

)
f
(

x+(
l
2
− k)y

)
.

For l = 2, we have

A2(α) =−2,

d(α,2) =− 2π1+n/2

2α α
2Γ (α2 )Γ ( n+α

2 )sin(απ/2)
,

(Δ2
y f )(x) = f (x− y)− 2 f (x)+ f (x+ y).

Hence, the operator Dα
0 in the case l = 2 can be written in the form

D
α
0 f (x) = B(n,α)

∫
Rn

f (x− y)− 2 f (x)+ f (x+ y)
|y|n+α dy, (2.50)

where

B(n,α) =−αΓ (α2 )Γ ( n+α
2 )sinαπ

2

22−απ1+n/2
. (2.51)

It is seen from (2.51) that the value α = 2 is degenerate. For 0 < α < 2, it follows
from Lemma 2.2 (and some calculations provided in Section 3.8, see Theorem 3.4)
that

D
α
0

(
eixξ
)
|x=0

= B(n,α)

(∫
Rn

Δ2
y eixξ

|y|n+α dy

)

|x=0

=−|ξ |α ,0 < α < 2.

Therefore, for f ∈ Hs(Rn), s ∈ R, one has

‖Dα
0 f |Hs−α‖2 =

∫

Rn

(1+ |ξ |2)s−α |ξ |2α |F[ f ](ξ )|2dξ ≤C‖ f |Hs‖2.

Thus, the mapping D
α
0 : Hs(Rn)→ Hs−α(Rn) is continuous.

We note also that Dα
0 in (2.50) can be considered as a fractional power of the

Laplace operator, namely D
α
0 = −(−Δ)α/2. Fractional powers of positive definite

operators are discussed in Section 3.9.
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2.5 ΨDOSS: variable symbols

In this section we briefly discuss algebras of pseudo-differential operators with sym-
bols a(x,ξ ) depending on both variables x and ξ . J. Kohn and L. Nirenberg first con-
structed an algebra of pseudo-differential operators OPSm(Ω) with smooth symbols
a(x,ξ ) ∈C∞(Ω ,Rn \ {0}), satisfying the condition

|Dβ
x Dα

ξ a(x,ξ )| ≤C(1+ |ξ |)m−|α |, x ∈ K, ξ ∈ R
n, (2.52)

for all multi-indices α and β . Here α = (α1, . . . ,αn) and β = (β1, . . . ,βn) are multi-
indices, |α| = α1 + · · ·+ αn is the length of α; Dx = (−i∂/∂x1, . . . ,−i∂/∂xn),
Dξ = (−i∂/∂ξ1, . . . ,−i∂/∂ξn); K ⊂Ω is a compact subset, and C =C(α,β ,K) is a
positive constant. By definition, A ∈OPSm(Ω) with the symbol a(x,ξ ) ∈ Sm(Ω), if

A f (x) =
1

(2π)n

∫

Rn

a(x,ξ )F [ f ](ξ )e−ixξ dξ , x ∈Ω .

A differential operator

A(x,D) = ∑
|α |≤m

aα(x)D
α

with coefficients aα ∈ C
∞(Ω) is an example of the operator in OPSm(Ω). The cor-

responding symbol is a polynomial in the variable ξ ,

a(x,ξ ) = ∑
|α |≤m

aα(x)ξα .

Thus, the algebra OPSm(Ω) contains all the differential operators of order m with
infinite differentiable in Ω coefficients. In the algebra OPSm(Ω) the addition and
multiplication (composition) operations are well defined, as well as the adjoint ope-
rator. The reader is referred to books [Tay81, Tre80, Hor83] for details. Below we
briefly mention the main ideas laid behind the construction of the algebra OPSm(Ω)
and its generalizations. The algebra OPSm(Ω) is constructed so that it contains the
parametrices of all the elliptic operators of order m. A differential operator A(x,D)
with the symbol a(x,ξ ) is called elliptic, if its main symbol

am(x,ξ ) = ∑
|α |=m

aα(x)ξα

satisfies the condition

am(x,ξ )≥C0|ξ |m (2.53)

for all x ∈ Ω and ξ ∈ R
n. For the symbol a(x,ξ ) of an elliptic differential operator

it is obvious that |a(x,ξ )− am(x,ξ )| ≤ (1+ |ξ |)m−1 for all ξ such that |ξ | ≥ R for
some R > 0. Therefore, using this fact and (2.53), one can see that there exists a
constant C > 0, such that the estimate
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|a(x,ξ )|= |am(x,ξ )+ [a(x,ξ )− am(x,ξ )]|
≥ |am(x,ξ )|− |a(x,ξ )− am(x,ξ )|
≥C(1+ |ξ |)m

holds for all x ∈ Ω and for all |ξ |> R, where R is sufficiently large. This property
can be used for extension of the definition of ellipticity for operators in OPSm(Ω).
Namely, an operator A∈OPSm(Ω) is called elliptic, if there exists a constant C > 0,
such that the symbol of A satisfies the condition

|a(x,ξ )≥C(1+ |ξ |)m|, x ∈Ω , |ξ | ≥ R,

with some number R > 0. Further, an operator P ∈ OPSm(Ω) with the symbol
p(x,ξ ) is called a parametrix for an elliptic operator A∈OPSm(Ω) with the symbol
a(x,ξ ), if the following relations

a(x,ξ )p(x,ξ ) = 1+ b(x,ξ )
p(x,ξ )a(x,ξ ) = 1+ c(x,ξ ),

hold, in which the symbols b(x,ξ ),c(x,ξ ) ∈ S−∞(Ω) ≡ ∩∞m=1Sm(Ω). As it follows
from Proposition 2.1, Part (3) below, that the operators with symbols in S−∞(Ω)
possess the smoothing property: these operators transfer distributions to infinitely
differentiable functions.

Though within OPSm(Ω) one can describe parametrices of elliptic operators,
the class OPSm(Ω) is too restrictive to describe, so-called, hypo-ellipticity of
(pseudo) differential operators. If for arbitrary f ∈C∞(Ω) a distributional solution
u ∈D(Ω ′

), Ω ′ ⊂Ω , of the equation Au = f , is in C∞(Ω ′
), then A is hypo-elliptic.

Any elliptic pseudo-differential operator is hypo-elliptic [Hor83]. Another example
of hypo-elliptic operators is the heat operator ∂

∂ t −Δ , which is not an elliptic opera-
tor. The hypo-ellipticity of differential operators was studied in works by Hörmander
[Hor61, Hor67], Egorov [Ego67], etc. The class of symbols Sm

ρ ,δ (Ω) depending on
parameters ρ ∈ (0,1] and δ ∈ [0,1] was introduced by Hörmander [Hor65]. By def-
inition, a symbol a(x,ξ ) ∈C∞(Ω ,Rn \ {0}) belongs to the class Sm

ρ ,δ (Ω) if a(x,ξ )
satisfies the condition

|Dβ
x Dα

ξ a(x,ξ )| ≤C(1+ |ξ |)m−ρ |α |+δ |β |, x ∈ K, ξ ∈ R
n, (2.54)

for all multi-indices α and β , and compacts K ⊂ Ω . The corresponding class of
pseudo-differential operators OPSm

ρ ,δ (Ω) is wider than OPSm(Ω) and within this
class one can describe the hypo-ellipticity property of (pseudo) differential opera-
tors. The class of operators OPSm

ρ ,δ (Ω) coincides with OPSm(Ω) if ρ = 1, δ = 0.
We write Sm, Sm

ρ ,δ , OPSm, and OPSm
ρ ,δ , if Ω = R

n.

Proposition 2.1.(1) Let A∈OPSm
ρ ,δ (Ω). Then the mapping A :D(Ω)→ E (Ω), and

by duality the mapping A : E ′(Ω)→D ′(Ω) are continuous;
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(2) Let A∈OPSm
ρ ,δ , δ < 1. Then the mapping A :G →G , and by duality the mapping

A : G ′ → G ′ are continuous;
(3) Let A ∈ OPSm

ρ ,δ , 0 ≤ δ < ρ ≤ 1. Then the mapping A : Hs(Rn)→ Hs−m(Rn) is
continuous for all s ∈ R;

(4) Let A ∈ OPSm
ρ ,δ . Then the mapping A :Ψp,G(R

n)→ E (Rn), and by duality the

mapping A : E
′
(Rn)→Ψ ′

p′ ,−G
(Rn) are continuous; If additionally the Fourier

transform of the symbol a(x,ξ ) of the operator A with respect to the variable x
has a compact support Ka for all ξ ∈ G, then the mapping
A : Ψp,G(R

n) →Ψp,Ga(R
n), where Ga = G + Ka, and by duality the mapping

A :Ψ ′
p′ ,−Ga

(Rn)→Ψ ′
p′ ,−G

(Rn) are continuous.

Proof. Parts (1)–(3) are known (see, e.g., [Tay81, Hor83]). Part (4) is a particular
case of the more general statement established in Theorems 2.12 and 2.13.

One can notice that the symbols of solution pseudo-differential operators obt-
ained in Section 2.2, except some of them, do not belong to Sm

ρ ,δ for any finite m. For

instance, the symbols a1(1, t,ξ ) = cos(tξ ) and a2(1, t,ξ ) = ξ−1 sin(tξ ) (these sym-
bols do not depend on x) emerged in Problem 2.2.0.1, do not satisfy estimate (2.54).
Indeed, for α = 0 one has

|a1(1, t,ξ )| ≤ 1, |a2(1, t,ξ )| ≤Ct(1+ |ξ |)−1, ξ ∈ R,

One can easily verify that derivatives of a1(1, t,ξ ) and a2(1, t,ξ ) in the variable ξ
satisfy the inequalities

|Dm
ξ a1(1, t,ξ )| ≤Ct , and |Dm

ξ a2(1, t,ξ )| ≤Ct(1+ |ξ |)−1,

for all ξ ∈R. These facts show that (2.54) does not hold for any finite m and positive
ρ , 0 < ρ ≤ 1.

Remark 2.4. Notice that if one includes ρ = 0 in the definition of Sm
ρ ,δ , then a1 ∈ S0

0,0

and a2 ∈ S−1
0,0. Calderon and Vaillancourt [CV71] showed that operators with sym-

bols in Sm
ρ ,ρ , where 0≤ ρ < 1 are bounded in the Sobolev spaces Hs(Rn). This fact

implies well posedness in the sense of Hadamard in spaces Hs(Rn) of the Cauchy
problem in Example 2.2.0.1 in the case λ = 1.

On the other hand, both symbols a1(1, t,ξ ) and a2(1, t,ξ ) can be expanded to the
Taylor series

a1(1, t,ξ ) =
∞

∑
j=0

t2 j

(2 j)!
ξ 2 j, a2(1, t,ξ ) =

∞

∑
j=0

t2 j+1

(2 j+ 1)!
ξ 2 j. (2.55)

In other words a1, a2 ∈ S∞. The class of corresponding pseudo-differential operators
OPS∞ represents differential operators of infinite order. The differential operators of
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infinite order play an important role in the modern theory of differential equations
[BG76, Dub82, K73], complex analysis [Dub84, Leo76], and functional analysis
[Sat60, Kan72, Gra10].

Similarly, the solution operator exp(iωh̄ tΔ) in Example 2.2.0.6 for the
Schrödinger equation is also a differential operator of infinite order with the sym-
bol a7(t,ξ ) = exp(iωh̄ t|ξ |2), which does not belong to Sm

ρ ,0 for any finite m and
ρ ∈ (0,1]. Unlike the previous example a3 does not belong Sm

ρ ,0 for any finite m
even for ρ = 0. However, this symbol does belong to S∞, with the power series
representation

a7(t,ξ ) =
∞

∑
j=0

(iωt) j

h̄J j!
|ξ |2 j. (2.56)

The reader can verify that symbols a3(λ , t,ξ ), a4(λ , t,ξ ),a6(t,ξ ),a8(t,ξ ) also
do not belong to Sm

ρ ,0 for any finite m and positive ρ . All these symbols can be
represented as differential operators of infinite order locally or globally. The symbol
a5(t,ξ ) is an exception. Due to infinite differentiability and exponential decay at
infinity, this symbol belongs to Sm

ρ ,0 for any finite m and 0< ρ ≤ 1. Hence, a5(t,ξ )∈
S−∞ρ ,0 , confirming that the operator ∂

∂ t −Δ is hypoelliptic.
The power series for the symbols a1(1, t,ξ ) and a2(1, t,ξ ) in (2.55), and for

a7(t,ξ ) in (2.56) converge for all ξ ∈ R and for all ξ ∈ R
n, respectively. However,

power series representations of the symbols

a3(1, t,ξ ) =
sin (1− t)ξ

sin ξ
, a4(1, t,ξ ) =

sin tξ
sinξ

of the solution operators arising in Problem 2.2.0.2 converge locally in the open set
G = R\ {kπ ,k =±1,±2, . . .}, and are functions of C∞(G).

Now we introduce a class of symbols which contains all the above symbols.

Definition 2.3. Let G⊆R
n
ξ andΩ ⊆R

n
x be open sets. We denote by S∞G(Ω) the class

of symbols a(x,ξ ) ∈C∞(Ω ×G). We do not require any conditions for the growth
in the variable ξ like estimates in equations (2.52) and (2.54). Symbols in S∞G(Ω)
as functions of variables (x,ξ ) are jointly infinite differentiable in Ω ×G, or in
general, functions in C∞(G) on the cotangent bundle T ∗(Ω), and may have any type
of singularities on the boundary of G or outside of G. The class of corresponding
pseudodifferential operators will be denoted by OPS∞G(Ω). We write S∞G and OPS∞G
if Ω = R

n.

Theorem 2.12. Let a(x,ξ ) ∈ S∞G.

1. The mapping

A :ΨG,p(R
n)→ E (Rn) (2.57)

is continuous;
2. If a(x,ξ ) has compact support in x, then the mapping

A :ΨG,p(R
n)→D(Rn) (2.58)

is continuous;
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3. If the Fourier transform of the symbol a(x,ξ ) of the operator A with respect to
the variable x has a compact support Ka for all ξ ∈ G, then the mapping

A :Ψp,G(R
n)→Ψp,Ga(R

n), (2.59)

where Ga = G+Ka, is continuous.

Proof. Let a(x,ξ ) ∈ S∞G be the symbol of the operator A. Then for f ∈Ψp,G(R
n),

one has

A f (x) =
1

(2π)n

∫

G

a(x,ξ )F [ f ](ξ )e−ixξ dξ . (2.60)

Moreover, since F [ f ] has a compact support in G, the integral in (2.60) is taken over
a compact set. This implies that A f ∈C∞(Rn). Now we show the continuity of the
mapping (2.57). Let fm ∈ΨG,p(R

n) be a sequence converging to 0 in the topology
of ΨG,p(R

n). Recall that ΨG,p(R
n) is the inductive limit of the Banach spaces ΨN,p

(see Section 1.10). Therefore, one can assume that fm ∈ΨN,p for all m ∈ N, and
fm → 0 in the norm ofΨN,p. Moreover, since fm ∈ΨN,p, then suppF[ fm] ⊂ Gn and
‖ fm|ΨN,p‖= ‖F−1[κn(ξ )F[ f ]]|Lp‖ (see Definition 1.23). We show that A fm → 0 in
the topology of E (Rn). Let K ⊂ R

n be an arbitrary compact. For the derivative of
order α of A fm, we have

Dα
x A fm(x) =

1
(2π)n ∑

β�α

(
α
β

)∫
G

Dβ
x a(x,ξ )(iξ )α−βκN(ξ )F[ fm](ξ )e−ixξdξ

= ∑
β�α

(
α
β

)∫
Rn

b(x,y) fm(y)dy, x ∈ K, (2.61)

where

b(x,y) =
1

(2π)n

∫

G

Dβ
x a(x,ξ )(iξ )α−βκN(ξ )e−i(x−y)ξdξ .

The function b(x,y) for every fixed x ∈ K is a function of Lq(R
n
y), where q is the

conjugate of p, that is q−1 + p−1 = 1. Indeed, putting for convenience

cN(x,ξ ) =
1

(2π)n Dβ
x a(x,ξ )(iξ )α−βκN(ξ ),

one has

‖b(x,y)‖q
Lq(Rn

y )
=

∫

Rn

∣∣∣
∫

G

cN(x,ξ )e−i(x−y)ξdξ
∣∣∣qdy =

∫

|y−x|≤1

∣∣∣
∫

G

cN(x,ξ )e−i(x−y)ξdξ
∣∣∣qdy

+

∫

|y−x|≥1

∣∣∣
∫

G

cN(x,ξ )e−i(x−y)ξdξ
∣∣∣qdy. (2.62)
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The first integral on the right of (2.62) is finite, since the integral is taken over a
compact set {|y− x| ≤ 1}× g⊂ R

2n. For the second integral using integration by
parts and taking into account that cN(x,ξ ) has a compact support suppcN(x, ·)⊂GN
for every fixed x ∈ K, one has

∫

|y−x|≥1

∣∣∣
∫

G

cN(x,ξ )e−i(x−y)ξdξ
∣∣∣qdy =

∫

|y−x|≥1

1
|x− y|qM

∣∣∣
∫

G

cN(x,ξ )Dγ
ξe−i(x−y)ξ dξ

∣∣∣qdy

=
∫

|y−x|≥1

1
|x− y|qM

∣∣∣
∫

G

(−Dξ )
γcN(x,ξ )e−i(x−y)ξdξ

∣∣∣qdy

≤CN

∫

|y−x|≥1

1
|x− y|qM dy <∞,

where |γ| = M and Mq > n, and CN is a positive constant. Applying the Hölder
inequality to (2.61), one obtains the desired estimate

sup
x∈K

|DαA fm(x)| ≤CN‖ fm|ΨN,p‖.

The proof of Part 1 is complete. The proof of Part 2 is similar to the proof of Part
1. Therefore, we leave it to the reader. To prove Part 3 we notice that the Fourier
transform of A f (x) is

F[A f ](η) =
∫

Rn

â(η− ξ ,ξ )F[ f ](ξ )dξ , η ∈R
n, (2.63)

where

â(η ,ξ ) =
1

(2π)n

∫

Rn

a(x,ξ )e−ixηdx. (2.64)

It follows from (2.63) that F[A f ](η) = 0 if η /∈ G+Ka, implying

suppF [A f ] = suppF[ f ]+Ka ⊂ G+Ka.

Further, letΨG+Ka,p = ind limL→∞ΦL,p, where ΦL,p is a sequence of Banach spaces,
corresponding to a locally finite covering {hL}∞L=0 of G+Ka, and the smooth parti-
tion of unity {vL}∞L=0. Since, this inductive limit does not depend on the partition of
unity, one can construct it in the form

v j(η) = φk(ξ )w�(η− ξ ), (2.65)

where j = k+ �, η ∈ G+Ka, ξ ∈ G, and φk and w� are smooth partition of unities
of G and Ka, respectively. Let

κL(η) =
L

∑
j=1

v(η), κ̃M(ζ ) =
M

∑
�=1

w(ζ ), and κN(ξ ) =
N

∑
k=1

φk(ξ ).
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The numbers L,N, and M are such that L = N +M. Using (2.65), one can easily
verify that κL(η) = κN(ξ )κ̃M(η− ξ ). Exploiting this and (2.63), we have

‖F−1
[
κL(η)F [A f ]

]
|Lp‖= ‖ 1

(2π)n

∫

Rn

κL(η)
(∫
Rn

â(η−ξ ,ξ )F[ f ](ξ )dξ
)

e−iηxdη |Lp‖

= ‖ 1
(2π)n

∫

G

F [ f ](ξ )
(∫
Rn

κL(η)â(η−ξ ,ξ )e−iηxdη
)

dξ |Lp‖

= ‖ 1
(2π)n

∫

G

κN(ξ )F[ f ](ξ )
(∫
Rn

κ̃M(ζ )â(ζ ,ξ )e−iζxdζ
)

e−iξxdξ |Lp‖

= ‖(2π)nF−1
[
κN(ξ )F−1

(
κ̃M(ζ )â(ζ ,ξ )

)
F [ f ](ξ )

]
|Lp‖. (2.66)

In the third equality of this chain we used the change of variable η = ξ + ζ . Now,
due to definition of the symbol a(x,ξ ) the function

pN(x,ξ ) = κN(ξ )F−1
[
κ̃M(ζ )â(ζ ,ξ )

]
=

κN(ξ )
(2π)n

∫

Rn

κ̃M(ζ )â(ζ ,ξ )e−ixζ dζ (2.67)

is infinite differentiable and has a compact support as a function of ξ for every
fixed x, and therefore can be considered as a symbol in S−∞(Rn). It is known (see
[Hor83, Tay81]) that if the order of the pseudodifferential operator with a symbol
in Sm(Rn) is negative, then this operator maps Lp(R

n) to itself. Using this fact, one
obtains from (2.66) that

‖A f |ΨL,p‖= ‖F−1
[
κL(η)F [A f ]

]
|Lp‖= ‖PN(x,D) f (x)|Lp‖

≤CN‖ f |ΨN,p‖, (2.68)

where PN(x,D) is the pseudo-differential operator with the symbol in (2.67). The
estimate obtained in (2.68) implies the continuity of mapping (2.59).

Theorem 2.13. Let a(x,ξ ) ∈ S∞G.

1. The mapping
A : E

′
(Rn)→Ψ

′
−G,p′ (R

n)

is continuous;
2. If a(x,ξ ) has compact support in x, then the mapping

A : D
′
(Rn)→Ψ

′
−G,p′ (R

n)

is continuous;
3. If the Fourier transform of the symbol a(x,ξ ) of the operator A with respect to

the variable x has a compact support Ka for all ξ ∈ G, then the mapping
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A :Ψ
′
p′ ,−Ga

(Rn)→Ψ
′
p′ ,−G

(Rn),

where Ga = G+Ka, is continuous.

Proof. The proof of this theorem follows from Theorem 2.12 by duality.

Theorem 2.14. Let 1< p,q<∞,−∞< s<+∞, G⊂R
n, and the symbol a(x,ξ ) of a

pseudo-differential operator A(x,D) belong to S∞G. Assume the following conditions:

(i) mn(Rn\G) = 0;
(ii) the Fourier transform of the symbol a(x,ξ ) of the operator A(x,D) with respect

to the variable x has a compact support containing in a compact Ka for all
ξ ∈ G;

(iii) there are a function k ∈ L1(R
n) and a number m ∈R such that the inequality

|a(x,ξ )| ≤ k(x)(1+ |ξ |2)m/2, x ∈ R
n, ξ ∈ G, (2.69)

holds.

Then the mapping A(x,D) : Hs(Rn)→Hs−m(Rn) is continuous.

Proof. Due to Theorem 2.12 condition (ii) implies that

A(x,D) :ΨG,p(R
n)→ΨGa,p(R

n).

Condition (i), in accordance with Theorem 1.21, implies that ΨG,p(R
n) is dense in

the Sobolev spaces Hs(Rn) and Hs−m(Rn). Therefore, in order to prove the Theorem
we need to estimate the A(x,D) f (x), f ∈ΨG,p(R

n), in the norms of the correspond-
ing Sobolev spaces. Recall that f ∈ Hs(Rn) if (1+ |ξ |2)s/2F [ f ](ξ ) ∈ L2(R

n), or
equivalently, (I−Δ)s/2 f (x) ∈ L2(R

n). The norm of f ∈ Hs(Rn) is (see Parseval’s
equality (1.34))

‖ f |Hs‖= ‖(1+ |ξ |2)s/2F [ f ]|L2‖= (2π)n‖F−1
[
(1+ |ξ |2)s/2F[ f ]

]
|L2‖.

Let f ∈ΨG,p(R
n) with supp f = G0 � G. Then, taking into account (2.63), one has

‖A(x,D) f |Hs−m‖= (2π)n‖F−1
[
(1+ |η |2) s−m

2 F[A(x,D) f ](η)
]
|L2‖

=
∥∥∥
∫

Rn

(1+ |η |2) s−m
2

(∫
G

â(η− ξ ,ξ )F[ f ](ξ )dξ
)

e−iηxdη
∥∥∥

L2
, (2.70)

where â(ζ ,ξ ) is defined in (2.64). Further, changing order of integration and using
substitution η− ξ = ζ , one can reduce (2.70) to

‖A(x,D) f |Hs−m‖= (2π)n
∥∥∥F−1

[∫
Rn

(1+ |ξ + ζ |2) s−m
2 â(ζ ,ξ )e−iζxdζ

]
F [ f ](ξ )

∥∥∥
L2

= ‖q(x,ξ )F[ f ](ξ )‖L2 , (2.71)
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where

q(x,ξ ) =
∫

Ka

(1+ |ξ + ζ |2) s−m
2 â(ζ ,ξ )e−iζxdζ .

Here Ka is a compact set due to condition (ii). Further, it follows from condi-
tion (2.69) and equation (2.64) that

|â(ζ ,ξ )| ≤ 1
(2π)n

∫
Rn
|a(x,ξ )|dx≤ ‖k(x)‖L1

(2π)n (1+ |ξ |2)m
2 . (2.72)

Moreover, for all ξ , ζ ∈ R
n, the inequality 1+ |ξ + η |2 ≤ 2(1+ |ξ |2)(1+ |ζ |2)

holds. Taking into account this inequality and estimate (2.72), one has

|q(x,ξ )| ≤ (
√

2)s−m‖k(x)‖L1

(2π)n (1+ |ξ |2) s
2

∫

Ka

(1+ |ζ |2) s−m
2 dζ ≤C(1+ |ξ |2) s

2 ,

where C is a positive constant. Thanks to this estimate for q(x,ξ ), it follows
from (2.71) that

‖A(x,D) f |Hs−m‖ ≤C‖(1+ |ξ |2) s
2 F [ f ](ξ )‖L2 =C‖ f |Hs‖.

Theorem 2.15. Let 1 < p,q <∞, −∞< s <+∞. Let the set G⊂R
n and the symbol

a(x,ξ ) of a pseudodifferential operator A(x,D) satisfy the following conditions:

(a) mn(Rn\G) = 0;
(b) a(x,ξ ) has a compact support Ka in the variable x for all ξ ∈ G;
(c) for all x ∈ Ka and ξ ∈ G there exist numbers s, l ∈ R and a constant Cα > 0,

such that

|ξ ||α ||Dα
ξ a(x,ξ )| ≤Cα(1+ |ξ |)s−�,Cα > 0, |α| ≤ [

n
2
]+ 1.

Then

(i) there exists a unique continuous extension Â(x,D) : Bs
pq(R

n)→ B�
pq(R

n) of the
operator A(x,D);

(ii) there exists a unique continuous closed restriction Âc(x,−D) : B−�p′q′(R
n) →

B−s
p′q′(R

n) of the operator Aw(x,−D) ;

(iii) the equality Â+
c (x,−D) = Â(D), where Â+

c (−D) is the conjugate to Âc(x,−D),
is valid.

2.6 ΨDOSS in spaces of periodic functions and periodic
distributions

In this section we briefly consider pseudo-differential operators with singular sym-
bols introduced above in the spaces of periodic functions and distributions.
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Let Zn be the n-dimensional integral lattice and T
n be an n-dimensional torus,

namely T
n ≡ {x ∈ R

n : |x j| ≤ π , j = 1, . . . ,n} is an n-dimensional cube whose opp-
osite sides are identified. Let ϕ ∈ L1(T

n) and its formal Fourier series is

ϕ(x)∼ ∑
k∈Zn

ϕkeikx, x ∈ T
n, (2.73)

where ϕk, k ∈ Z
n, are Fourier coefficients of ϕ , i.e.

ϕk = (2π)−n
∫
Tn
ϕ(x)e−ikxdx.

Since ϕ ∈ L1(T
n) its Fourier coefficients are finite: |ϕk| ≤ (2π)−n‖ϕ‖L1 . However,

the Fourier series on the right-hand side of (2.73), in general, may not converge to
ϕ(x) in the norm of L1(T

n). In fact, Kolmogorov [Kol26] constructed an example of
a function f ∈ L1[−π ,π ] whose Fourier series is divergent everywhere on [−π ,π ].
Even for continuous function its Fourier series may not converge (see Additional
Remarks to this chapter). In multidimensional case the situation is much more com-
plicated. Now, convergence of the Fourier series depends on how partial sums are
formed. We refer the reader to survey papers [Ste58, AP89, Wei12] where the con-
vergence of Fourier series in different norms (uniform, Lp, etc.) for various forms
of partial sums (spherical, cubic, rectangular, etc.) are discussed.

In order to avoid such difficulties we consider only functions ϕ ∈ L2(T
n). In this

case the Fourier series on the right side of (2.73) converges to ϕ(x) in the norm of
L2(T

n), no matter how the corresponding partial sum is formed. The inner product
of f , g ∈ L2(T

n) is denoted by ( f ,g). For f , g ∈ L2(T
n), Parseval’s equality reads

( f ,g) = (2π)n ∑
k∈Zn

fkgk,

which immediately implies the following relation for the norm:

‖ f |L2(T
n)‖2 = (2π)n ∑

k∈Zn

| fk|2.

The Sobolev space with the smoothness order s and denoted by W s
2 ≡W s

2 (T
n) is

defined as the set of functions f ∈ L2(T
n), such that

‖ f |W s
2‖2 = ∑

k∈Zn

(1+ |k|2)s| fk|2 < ∞.

Now we develop periodic analogs of the spaces ΨG,2(R
n) and Ψ ′

−G,2(R
n). Let

M2 be the set of entire functions of the form

a(ξ ) =
∞

∑
|α |=0

aαξ 2α , ξ ∈ R
n,

where aα ≥ 0 and lim�→∞ �
√
∑|α |=�aα = 0. In other words, any function a ∈M2

admits an analytic (entire) continuation to C
n.
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Definition 2.4. We introduce the space

W+∞
Tn = {ϕ ∈ L2(T

n) : ‖ϕ‖2
a = ∑

k∈Zn

a(k)|ϕk|2 <∞,∀ a ∈M2},

where ϕk, k ∈ Z
n, are Fourier coefficients of ϕ , and a(k) is the value of a(ξ ) at the

lattice point k = (k1, . . . ,kn) ∈ Z
n. A sequence ϕm(x) ∈W+∞

Tn is said to converge to
ϕ in W+∞

Tn if for every a ∈M2 the sequence ‖ϕm−ϕ‖a → 0.

Theorem 2.16. A function ϕ belongs to W+∞
Tn if and only if there exists integer N(ϕ)

such that ϕk = 0 if |k|> N.

Proof. The sufficiency is obvious. Let us show the necessity. We will prove it by
contradiction. Let ϕ ∈ L2(T

n). Assume that for every natural N there exists k ∈ Zn

such that |k|> N and ϕk �= 0. We choose two sequences Rl and σl which satisfy the
following conditions:

i) Rl → ∞, l → ∞;
ii) ∑∞

l=1σlτl = ∞, where τl = ∑k∈Zn
l
|ϕk|2, Zn

l = {k ∈ Zn : Rl ≤ |k| ≤ Rl+1}.
Let for k ∈ Z

n
l the inequality

al(k) =
ml

∑
|α |=ml−1

k2α

R2|α |
l

≥ σl . (2.74)

holds. This inequality can always be achieved by an appropriate choice of numbers
ml . Consider the function

a0(ξ ) =
∞

∑
l=1

al(ξ ) =
∞

∑
l=1

ml

∑
|α |=ml−1

ξ 2α

R2|α |
l

.

In fact, a0(ξ ) is an entire function. Indeed, due to condition i) we have

lim
k→∞

lim
|α |→∞

(
1

R2|α |
l

) 1
2|α|

= 0,

which shows that the radius of convergence of the power series expansion of a0 is
infinite. Now taking into account assumptions i), ii), and inequality (2.74), we obtain

‖ϕ‖2
a0
=

∞

∑
|α |=0

a0(k)|ϕk|2 =
∞

∑
l=1

∑
k∈Zn

l

al(k)|ϕk|2 ≥
∞

∑
l=1

σlτl =+∞,

i.e., ϕ does not belong to W+∞
Tn .

Definition 2.5. W−∞
Tn is the space of linear continuous functionals defined on W+∞

Tn

and endowed with the weak convergence. The value of f ∈W−∞
Tn on the element

ϕ ∈W∞
Tn will be written in the form < f ,ϕ > .
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Let f ∈W−∞
T n and the series ∑ fkeikx be its formal Fourier series. Here

fk = (2π)−n < f (x),e−ikx >, k ∈ Z
n.

One can show that this series converges to f in the weak sense and the equality

< f ,ϕ >= (2π)n ∑
k∈Zn

f−kϕk, ϕ ∈W+∞
Tn ,

holds.

Theorem 2.17. Let s ∈ R. Then the embedding W+∞
Tn ↪→W s

2 (T
n) is continuous and

dense.

Proof. Since the embeddings

W s
2 (T

n) ↪→ L2(T
n) ↪→W−s

2 (Tn), s > 0,

are continuous and dense, it is sufficient to show that W+∞
Tn is continuously and

densely embedded to L2(T
n). It follows from Theorem 2.16 that the convergence of

a sequence ϕm to ϕ0 in W+∞
Tn is equivalent to the following:

(i) there exists a natural number N such that ϕ(m)
k = 0 for all k : |k| > N, and m =

1,2, . . . ;
(ii) ‖ϕm−ϕ0‖L2 → 0, m → ∞.

This immediately implies the continuity of the embedding in the theorem. Further,
suppose ϕ ∈W s

2 (T
n). We take as the approximating sequence

ϕN(x) = ∑
|k|≤N

ϕkeikx ∈W∞
Tn .

Then
‖ϕ−ϕN‖2

L2
= (2π)n ∑

|k|≤N

|ϕk|2(1+ |k|2)s → 0, N → ∞.

Definition 2.6. Let A(k) : Zn → C be a discrete function defined on the integer lat-
tice Z

n. We define a pseudo-differential operator with the symbol A(k) by

A(D) f (x) = ∑
k∈Zn

A(k) fkeikx, x ∈ T
n. (2.75)

Theorem 2.18. The space W+∞
Tn is invariant with respect to the operator A(D).

Moreover, the mapping A(D) : W+∞
Tn →W+∞

Tn is continuous.

Proof. Let f ∈W+∞
Tn , i.e. there is a natural number Nf , so that

f (x) = ∑
|k|≤Nf

fkeikx.
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Then

A(D) f (x) = ∑
|k|≤Nf

A(k) fkeikx ∈W+∞
Tn .

Moreover, one has the estimate

‖A(D) f‖2
a = ∑

k∈Zn

a(k)|[A(D) f ]k|2 = ∑
|k|≤Nf

a(k)|A(k)|2| fk|2 ≤C‖ f‖2
a,

where C = max|k|≤Nf
|A(k)|. This inequality immediately implies the continuity of

the mapping A(D) : W+∞
Tn →W+∞

Tn .

Further, we determine a weak extension of A(D) to the dual space W−∞
Tn by the

formula

< Aw(D) f ,ϕ >=< f ,A(−D)ϕ >, f ∈W−∞
Tn , ϕ ∈W+∞

Tn .

Theorem 2.18 implies the following corollary.

Corollary 2.19 W−∞
Tn is invariant with respect to the operator Aw(D). Moreover,

the mapping

Aw(D) : W−∞
Tn →W−∞

Tn

is continuous.

Theorem 2.20. Let A(D) : W+∞
Tn →W+∞

Tn be a pseudo-differential operator defined
in (2.75). This operator has a unique closed extension Â(D) : W s

2 (T
n)→W l

2(T
n) if

and only if the condition |A(k)| ≤C(1+ |k|2) s−l
2 ,C > 0, k ∈ Z

n, is fulfilled.

Proof. Sufficiency. Let f ∈W+∞
Tn . Then

‖A(D) f‖2
l = (2π)n ∑

k∈Zn

|A(k)|2| fk|2(1+ |k|2)l

≤ (2π)n ∑
k∈Zn

C2| fk|2(1+ |k|2)s =C2‖ f‖2
s . (2.76)

If f ∈W s
2 (T

n), then according to Theorem 2.17 there exists a sequence fm ∈W+∞
Tn

converging to f in the norm of W s
2 (T

n). We put gk = A(D) fk. Due to Theorem 2.18
gk ∈W+∞

Tn . It follows from (2.76) that ‖gk− gm‖l ≤C‖ fk − fm‖s. Since fm is con-
vergent in W s

2 (T
n), it follows that gm is fundamental in W l

2(T
n). Hence, there exists

a function g∈W s
2 (T

n) such that A(D) fk → g in the norm of W s
2 (T

n). We set Â f = g.
It is easy to see that this definition does not depend on the choice of fm. Closing the
estimate (2.76) we obtain that Â(D) is bounded.

Necessity. Assume that there is a sequence kN ,N = 1,2, . . . , such that |kN | → ∞,
and

|A(kN)|> N(1+ |kN|2) s−l
2 . (2.77)
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Consider the sequence of functions

fN(x) = fkN eikN x, x ∈ T
n,

with fkN = (1+ |kN|2)−s/2. It is clear that ‖ fN‖s = 1 for all N, i.e., fN ∈W s
2 . More-

over, due to inequality (2.77), one has the estimate

‖A(D) fN‖2
l = (2π)n|A(kN)|2| fkN |2(1+ |kN|2)l > N2.

This estimate contradicts to the continuity of A(D).

2.7 Pseudo-differential operators with complex arguments

In this section we briefly discuss pseudodifferential operators with symbols a(ζ )
depending on complex variables ζ = (ζ1, . . . ,ζn)∈C

n. If one follows the procedure

A(D)u(z) = F−1
[
a(ζ )F [u(ζ )]

]
(z) (2.78)

for construction of classes of pseudo-differential operators, then one needs to know
what is the Fourier transform F and its inverse F−1 for functions depending on
complex variables. There are two classical alternatives for the complex Fourier
transform: the Fourier-Laplace transform and the Borel transform. We have seen
the Fourier-Laplace transform, when we formulated the Paley-Wiener-Schwartz
theorem, Theorem 1.12. Below we introduce the Fourier-Laplace transform in gen-
eral case and establish a connection with the Borel transform. For simplicity we
show this connection in the case n = 1. Then we introduce a complex version of
the Fourier transform F, which actually is an extension of the Borel transform to
the class of analytic functionals. The operator F is very convenient for construction
of pseudo-differential operators using the procedure (2.78). In Chapter 9 we will
go further and will study pseudo-differential operators and equations with singular
symbols depending on n complex variables.

Let O(Cn) be the space of entire analytic functions endowed with the topol-
ogy of uniform convergence. Taking a sequence of compacts Kn ⊂ C

n, such that
Kn ⊂ Kn+1, and C

n = ∪∞n=1Kn, and introducing Banach spaces An of functions f
analytic in a neighborhood of Kn with the norm ‖ f |An‖ = maxKn | f (z)|, one can
see that O(Cn) can be represented as the inductive limit of An. Therefore, due to
Proposition 1.21 O(Cn) is a locally convex topological vector space of Fréchet type.
The conjugate space of O(Cn) with the weak topology is called analytic functionals
and denoted by O

′
(Cn). The value of μ ∈O

′
(Cn) on f ∈O(Cn) we denote by μ( f )

or < μ , f > . For each analytic functional μ there exists a compact set Kμ determin-
ing μ (see, [Hor90]). Also, linear combinations of functions of the form exp(z,ζ ),
where ζ ∈C

n and (z,ζ ) = z1ζ1 + · · ·+ znζn, form a dense subset of O(Cn) [Hor90].
Let Exp(Cn) be the space of entire functions of finite exponential type, that is

Exp(Cn)≡ { f ∈ O(Cn) : | f | ≤Cer1|z1|+...+rn|zn|},
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with some constant C > 0 and r = (r1, . . . ,rn), r1 > 0, . . . ,rn > 0. Taking a sequence

r(k) = (rk
1, ..,r

(k)
n ),k = 1,2, . . . , such that rk+1

j > r(k)j , j = 1, . . . ,n, and rk → ∞, as
k → ∞, one has a sequence of Banach spaces

Xk ≡ { f ∈ O(Cn) : | f | ≤Cker
(k)
1 |z1|+...+r

(k)
n |zn|},

with the norm ‖ f |Xk‖ = supz∈Cn(e−r(k)1 |z1|−...−r(k)n |zn|| f (z)|). It is easy to see that
Xk ⊂Xk+1 is a continuous inclusion for each k, and Exp(Cn) is the inductive limit
of Xk. Hence, Exp(Cn) is a locally convex topological vector space of Fréchet type.
The conjugate of Exp(Cn) denoted by Exp

′
(Cn) with the weak topology is called a

space of exponential functionals.

Definition 2.7. The Fourier-Laplace transform of an analytic functional μ is

μ̃(ζ ) = μ(exp(z,ζ )) =< μ(z),exp(z,ζ ) >, ζ ∈ C
n.

The Fourier-Laplace transform of μ ∈O
′
(Cn) is well defined due to above-mentioned

denseness of linear combinations of exp(z,ζ ) in O(Cn). Moreover, one can readily
see that μ̃(ζ ) is an entire analytic function (see, e.g., [Hor90]).

Further, assume n = 1. By definition, the Borel transform B[ f ] of an entire func-
tion f ∈ Exp(C) with the power series representation

f (z) =
∞

∑
k=0

akzk (2.79)

is

B[ f ](ζ ) =
∞

∑
k=0

akk!
ζ k+1 . (2.80)

The series in (2.80) converges absolutely if |ζ |> r , where r is the exponential type
of f . Indeed, for coefficients ak of f , an entire function of exponential type r, one
has the estimate [Leo76]

|ak| ≤ ek(r+ ε)k

kk
, (2.81)

where ε is an arbitrary positive number. Using Stirling’s inequality k! ≤ e1−k
√

kkk,
it follows from (2.81) that

k!|ak|
|ζ |k+1 ≤

e
|ζ |
√

k

(
r+ ε
|ζ |

)k

,

for all k sufficiently large. Hence, for the absolute convergence of (2.80), one needs

lim
k→∞

( k!|ak|
|ζ |k+1

)1/k
=

r+ ε
|ζ | < 1,

which yields |ζ |> r.
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The inverse Borel transform is given by (see, e.g., [Hor90, Leo76])

f (z) =
1

2π i

∫
γ

B[ f ](ζ )exp (zζ )dζ , z ∈C, (2.82)

where the closed contour γ lies in the region |ζ |> r. For a function g analytic in the
domain |ζ |> r the expression

L[g](z) =
1

2π i

∫
γ

g(ζ )exp(zζ )dζ , z ∈ C,

defines a linear functional. The latter can be extended to an analytic functional with
defining compact K = {ζ : |ζ | ≤ r} [Hor90], that is L[g](z) =< g,exp(z,ζ ) >.
Therefore, one can rewrite formula (2.82) for the inverse Borel transform in the
form

f (z) =< B[ f ](ζ ),exp(zζ ) >, |ζ |> r,

In other words, the inverse Borel transform is the Fourier-Laplace transform.

Proposition 2.2. Let f ∈Xk. Then for its Borel transform B[ f ](ζ ) the estimate

|B[ f ](ζ )| ≤ Cer(k+1)|ζ |

|ζ |− r
‖ f |Xk+1‖, |ζ |> r, (2.83)

holds.

Proof. First we obtain an estimate for the coefficients a j of the power series repre-
sentation of f . Using the relation [GR09]

a j =
1

2π i

∫
|ζ |=r

f (ζ )dζ
ζ j+1 , j = 0,1, . . . ,

where r(k) < r < r(k+1), one has

|a j|= 1
2π

∣∣∣
∫
|ζ |=r

f (ζ )e−zζ ezζdζ
ζ j+1

∣∣∣≤C‖ f |Xk+1‖ r j

j!
er|z|

≤C‖ f |Xk+1‖ r j

j!
er(k+1)|z| j = 0,1, . . . .

Taking this into account, for |ζ |> r,

|B[ f ](ζ )| ≤
∞

∑
j=0

|a j| j!
|ζ | j+1 ≤

C
|ζ | ‖ f |Xk+1‖er(k+1)|z|

∞

∑
j=0

( r
|ζ |
) j
,

obtaining (2.83).
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Example 2.3. An entire function f of the form

f (z) = c1ea1z + · · ·+ cmeamz (2.84)

is called a quasi-polynomial. We want to find the Borel transform of f . Since the
Borel transform is a linear operator, it suffices to calculate B[eaz](ζ ). Using the Tay-
lor expansion of the exponential function eaz, one can easily obtain that B[eaz](ζ ) =
(ζ − a)−1. Hence, the Borel transform of the quasi-polynomial f in (2.84) is

B[ f ](ζ ) =
m

∑
j=1

c j

ζ − a j
, |ζ |> max{a1, . . . ,am}.

Let a ∈ O(Cn) with a power series representation a(ζ ) = ∑∞
|α |=0 cαζα . Define a

differential operator of infinite order a(D), where D≡
(

∂
∂ z1

, . . . , ∂
∂ zn

)
, in the form

a(D) =
∞

∑
|α |=0

cαDα . (2.85)

Proposition 2.3. Let a ∈O(Cn). Then the mapping

a(D) : Exp(Cn)→ Exp(Cn) (2.86)

is continuous.

Proof. Let f ∈ Exp(Cn). Applying the operator a(D) in (2.85) to f one has a(D) ∈
O(Cn). This immediately follows from the fact that any analytic function f satisfies
the Cauchy-Riemann equation ∂ j f = 0, j = 1, . . . ,n.Applying the Cauchy-Riemann
operator ∂ j to a(D) f , one has

∂ j[a(D) f (z)] =
∞

∑
|α |=0

cαDα∂ j f (z) = 0, j = 1, . . . ,n,

which yields a(D) f ∈ O(Cn).
Further, let f ∈ Exp(Cn). Then f ∈Xk ⊂Xk+1 for some k ∈ N. We show that

‖a(D) f |Xk+1‖ ≤C‖ f |Xk+1‖, (2.87)

which implies that a(D) f ∈ Exp(Cn). We have

a(D) f (z) =
∞

∑
|α |=0

cαDα f (z) =
∞

∑
|α |=0

Dα f (z)
[ 1
(2π i)n

∫
Π(0,r(k))

a(ζ )dζ
ζα+1

]

=
∞

∑
|α |=0

Dα f (z)
α!

[ α!
(2π i)n

∫
Π(0,r(k))

a(ζ )dζ
ζα+1

]

=
1

(2π i)n

∫
Π(0,r(k))

( ∞

∑
|α |=0

Dα f (z)
α!

α!
ζα+1

)
a(ζ )dζ . (2.88)



2.7 Pseudo-differential operators with complex arguments 109

Here Π(0,r(k)) is the polydisc with the center 0 and polyradius r(k). The expression

∞

∑
|α |=0

Dα f (z)
α!

α!
ζα+1

is the Borel transform of the entire function

h(w) =
∞

∑
|α |=0

Dα f (z)
α!

wα , w ∈ C
n,

which is related to f through h(u) = f (u+ z). Therefore, (2.88) takes the form

a(D) f (z) =
1

(2π i)n

∫
Π(0,r(k))

B[ f (z+ ·)](ζ )a(ζ )dζ .

Due to Proposition 2.2, it follows from the latter that

|a(D) f (z)| ≤C max
K
|a|‖ f |Xk+1‖ er(k+1)|z+u|

∏n
j=1(r

(k+1)
j − r(k)j )

≤C
′ ‖ f |Xk+1‖er(k+1)|z|,

implying estimate (2.87).
Finally, to show the continuity of the mapping (2.86) we assume that a sequence

fm ∈ Exp(Cn) converges to zero in the topology of Exp(Cn). That is, fm ∈Xk+1

for some k for all m ∈ N, and fm → 0 in the norm of Xk. Due to estimate (2.87),
one has

‖a(D) fm|Xk+1‖ ≤C‖ fm|Xk+1‖→ 0,

as m → ∞, hence a(D) fm → 0 in the topology of Exp(Cn).

Proposition 2.4. Let a∈O(Cn). Then the mapping a(−D) : Exp
′
(Cn)→ Exp

′
(Cn)

is continuous.

Proof. The proof follows from Proposition 2.3 by duality, since

< a(−D) f ,ϕ >=< f ,a(D)ϕ >

for arbitrary f ∈ Exp
′
(Cn) and ϕ ∈ Exp(Cn).

The following propositions can be proved similar to Propositions 2.3 and 2.4.

Proposition 2.5. Let a ∈ Exp(Cn). Then the mapping a(D) : O(Cn)→ O(Cn) is
continuous.

Proposition 2.6. Let a∈ Exp(Cn). The mapping a(−D) : O
′
(Cn)→O

′
(Cn) is also

continuous.
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Definition 2.8. Let f ∈ O(Cn). Then the exponential functional

f̂ (ζ ) = (2π)n f (−D)δ (ζ ) (2.89)

is called a Fourier transform of the analytic function f . Similarly, if f ∈ Exp(Cn),
then the analytic functional f̂ (ζ ) defined by the same formula in (2.89) is called a
Fourier transform of the entire function of a finite exponential type f . In either case
we use both notations f̂ (ζ ) and F [ f ](ζ ) for the Fourier transform of f .

Proposition 2.7. The following statements hold:

1. The mappings F : O(Cn)→ Exp
′
(Cn) and F : Exp(Cn)→ O

′
(Cn) are continu-

ous;
2. If f ∈ Exp(Cn), then F [ f ] = (2π)nB[ f ], where B[ f ] is the Borel transform of f ;
3. The inverse Fourier transform F−1 satisfies the relation

F−1[ f̂ ](z) = f (z) = (2π)−n < f̂ ,exp(z,ζ ) >,

where f̂ = F[ f ].

Proof. Part 1 immediately follows from Propositions 2.4 and 2.6. To prove Part
2, suppose f is an entire function of a finite exponential type, that is satisfies the
condition | f (z)| ≤Cer1|z1|+···+rn|zn|, where r1 > 0, . . . ,rn > 0. We show that in this
case the equality < F [ f ],ϕ >= (2π)n < B[ f ],ϕ > holds for an arbitrary function

ϕ ∈ O(Cn). Indeed, let aα = Dα f (0)
α! . Using the Taylor expansion of f , one has

< F[ f ](ζ ),ϕ(ζ ) >= (2π)n <
∞

∑
|α |=0

aα(−D)αδ (ζ ),ϕ(ζ ) >

= (2π)n
∞

∑
|α |=0

aα < δ (ζ ),Dαϕ(ζ )>

= (2π)n
∞

∑
|α |=0

aαDαϕ(0). (2.90)

Due to the Cauchy formula,

Dαϕ(0) = (2π i)−nα!
∫
γ

ϕ(ζ )dζ
ζα+1 ,

where γ = γ1⊗·· ·⊗γn, the direct product of closed contours γ j, j = 1, . . . ,n, contain-
ing the discs |ζ j| < r j , j = 1, . . . ,n, respectively, and α + 1 = (α1 + 1, . . . ,αn + 1).
Using this fact in (2.90), and taking into account the absolute and uniform conver-
gence of the series ∑α aαα!ζ−α−1 outside of the polydisc Π(0,r) = ⊗n

j=1{|ζ j| <
r j} with the center at the origin and polyradius r = (r1, . . . ,rn), one obtains

< F [ f ](ζ ),ϕ(ζ ) >=
1
(i)n

∫
γ

( ∞

∑
|α |=0

aαα!
ζα+1

)
ϕ(ζ )dζ = (2π)n < B[ f ](ζ ),ϕ(ζ ) >,

as desired.
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To show Part 3, one has

1
(2π)n < f̂ ,exp(z,ζ )>=< f (−Dζ )δ (ζ ),exp(z,ζ )>

=< δ (ζ ), f (Dζ )exp(z,ζ ) >=< δ (ζ ), f (z)exp(z,ζ ) >
= f (z) < δ (ζ ),exp(z,ζ ) >= f (z).

Remark 2.5. Proposition 2.7 Part 2 shows that the complex Fourier transform F int-
roduced in Definition 2.8 is an extension of the Borel transform to the space of
exponential functionals Exp′(Cn). Part 3 of this proposition says that the inverse of
the complex Fourier transform is exactly the Fourier-Laplace transform, that is

F−1[g(ζ )](z) =
1

(2π)n < g(ζ ),e(ζ ,z) > . (2.91)

Formula (2.91) can be used to prove shift, similarity, and delay properties of com-
plex Fourier transform. Indeed, for a ∈ C

n, one has

F−1[e−(a,ζ )F [ f ]](z) =
1

(2π)n < e−(a,ζ )F[ f ],e(z,ζ ) >=
1

(2π)n < F [ f ],e(ζ ,z−a) >

= f (z− a).

This implies the shift formula: F [ f (z− a)](ζ ) = e(−a,ζ )F [ f ](ζ ). Similarly, one can
easily verify that

F [ f (bz)](ζ ) =
1
bn F[ f ](

ζ
b
), b ∈ C, b �= 0,

and
F [e(a,z) f (z)](ζ ) = F[ f ](ζ − a), a ∈ C

n. (2.92)

The following properties of the complex Fourier transform also follow from the
definition of F and Proposition 2.7:

1. F [a f + bg](ζ ) = aF[ f ](ζ )+ bF[g](ζ ), for any constants a,b ∈ C;
2. F [Dα

z f ](ζ ) = ζαF [ f ](ζ );
3. F [ζα f ](ζ ) = (−Dζ )

αF [ f ](ζ );

Further properties of the complex Fourier transform in some Banach spaces of ana-
lytic and exponential functions and functionals will be discussed in Chapter 9.

Example 2.4. 1. Let f (z) ≡ 1 ∈ O(Cn). Then F [1](ζ ) = (2π)nδ (ζ ).
2. Let f (z) = e−z, z ∈ C. Then

F [e−z](ζ ) = 2π exp(D)δ (ζ ) = 2π
∞

∑
n=0

Dnδ (ζ )
n!

.
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This is an analytic (or exponential) functional acting on analytic (or exponential)
functions. The formula (2.92) shows that this functional can be written in the
form F [e−z](ζ ) = 2πδ0(ζ + 1) = 2πδ−1(ζ ), or

< F [e−z](ζ ),ϕ(ζ ) >= 2πϕ(ζ − 1)

for arbitrary entire (or exponential) function ϕ(ζ ).
3. Now let f (z) = exp(z2). This function does not belong to Exp(C), but is an entire

function. Therefore, we find its Fourier transform as of an element of O(C). Due
to Proposition 2.7 the Fourier transform of f is an analytic functional, that is
F [ez2

](ζ ) ∈ Exp′(C). We use the following representation for the Dirac delta
function [Dub96]:

δ0(ζ ) =
1

2
√

aπ
e
−aD2

ζ [e−
ζ2

4 ]. (2.93)

Applying the operator 2πe
D2
ζ to both sides of (2.93) with a = 1, we have

F[ez2
](ζ ) =

√
πe−

ζ2

4 , ζ ∈ C,

obtaining the complex analog of relation (1.13).

2.8 Functional calculus with singular symbols

Previous sections discussed pseudo-differential operators with singular symbols in
various cases. In this section we develop the abstract theory of pseudo-differential
operators with singular symbols. In the abstract case we assume that singularities
occur in the spectrum of a generic operator A defined on a Banach space. Let X be
a reflexive Banach space with a norm ‖v‖, v ∈ X . Let A be a closed linear operator
with a domain D (A) dense in X and with a spectrum σ(A) ⊂ C. We assume that
σ(A) is not empty.

We will develop an operator calculus f (A) for analytic functions f (λ ) in an open
domain G ⊂ C. If G contains σ(A), then we define

f (A) =
∫
ν
R(ζ ,A) f (ζ )dζ , (2.94)

where ν is a contour in G containing σ(A), and R(ζ ,A ), ζ ∈ C \σ(A ), is the
resolvent operator of A.

In the case when f has singular points in the spectrum σ(A) of the operator A
the construction in equation (2.94) is invalid. Below we show how f (A) can be
constructed in presence of singularities of f in the spectrum σ(A). Assume that G is
an open set in C not necessarily containing σ(A). Further, let 0 < r≤+∞ and ν < r.
Denote by ExpA,ν(X) the set of elements u ∈ ∩k≥1D(Ak) satisfying the inequalities
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‖Aku‖ ≤ Cνk for all k = 1,2, . . . , with a constant C > 0 not depending on k. An
element u ∈ ExpA,ν(X) is said to be a vector of exponential type ν. A sequence of
elements un, n = 1,2, . . . , is said to converge to an element u0 ∈ ExpA,ν(X) if:

1) All the vectors un are of exponential type ν < r, and
2) ‖un− u0‖→ 0, n→ ∞.

Obviously, ExpA,ν1
(X)⊂ ExpA,ν2

(X), if ν1 < ν2. Let ExpA,r(X) be the inductive
limit of spaces ExpA,ν(X) when ν → r. For basic notions of topological vector
spaces including inductive and projective limits we refer the reader to [R64]. Set
Aλ = A−λ I, where λ ∈G, and denote ExpA,r,λ (X) = {uλ ∈ X : uλ ∈ ExpAλ ,r

(X)},
with the induced topology. Finally, for arbitrary G⊂ σ(A), denote by ExpA,G(X) the
space whose elements are the locally finite sums of elements in ExpA,r,λ (X), λ ∈
G, r < dist(λ ,∂G), with the corresponding topology. Namely, any u ∈ ExpA,G(X),
by definition, has a representation u = ∑λ uλ with a finite sum. It is clear that
ExpA,G(X) is a subspace of the space of vectors of exponential type if r <+∞, and
coincides with it if r = +∞. ExpA,G(X) is an abstract analog of the space ΨG, p(R)

introduced in Chapter 1, where A = −i d
dx , G ⊆ R, X= Lp(R), 1 < p < ∞. In the

case A =−i d
dx , X= L2(R), the corresponding space is H∞(G) [Dub82].

Further, let f (λ ) be an analytic function on G, represented as a finite sum. Then
for u ∈ ExpA,G(X) with the representation u = ∑λ∈G uλ , uλ ∈ ExpA,r,λ (X), the
operator f (A) is defined by the formula

f (A)u = ∑
λ∈G

fλ (A)uλ , where fλ (A)uλ =
∞

∑
n=0

f (n)(λ )
n!

(A−λ I)nuλ . (2.95)

In other words, each fλ represents f locally in a neighborhood of λ ∈G, and for uλ
the operator fλ (A) is well defined.

Additionally assume that there exists a one-parameter family of bounded invert-
ible operators

Uλ : X → X (2.96)

such that AUλ −UλA = λUλ , or the same

A−λ I =UλAU−1
λ , λ ∈ σ(A). (2.97)

Obviously, Uλ maps ExpA,r,λ (X) onto ExpA,r(X) and it is a bijective mapping.

Example 2.5. For example, if X = L2 ≡ L2(R) and A =−i d
dx : L2 → L2 with domain

D(A) = {v ∈ L2 : Av ∈ L2}, then the operators Uλ : v(x)→ eiλ xv(x) satisfy

AUλ v(x) =−i
d
dx

(eiλ xv(x)) = λeiλ xv(x)− ieiλ x dv
dx

= λUλ v(x)+UλAv(x),
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obtaining (2.97). The relationship A− λ I = UλAU−1
λ follows from the latter mul-

tiplying from the right by the inverse operator U−1
λ , which is the multiplication

operator by e−iλ x.

This example tells us that condition (2.97) is essentially a shift of the spectrum of
operator A to λ . It follows from equation (2.97) that (A−λ I)n =UλAnU−1

λ , for all
n = 1,2, . . . , yielding

f (A)u = ∑
λ∈G

∞

∑
n=0

f (n)(λ )
n!

UλAnU−1
λ uλ = ∑

λ∈G

Uλ f (A)U−1
λ uλ .

Let X∗ denote the dual of X , and A∗ : X∗ → X∗ be the operator adjoint to A.
Further, denote by Exp

′
A∗,G∗(X

∗) the space of linear continuous functionals defined
on ExpA,G(X), with respect to weak convergence. Specifically, a sequence u∗m ∈
Exp

′
A∗,G∗(X

∗) converges to an element u∗ ∈ Exp
′
A∗,G∗(X

∗) if for all v ∈ ExpA,G(X)
the convergence < u∗m − u,v >→ 0 holds as m → ∞. For an analytic function f w

defined on G∗ = {z ∈ C : z̄ ∈ G}, we define a weak extension of f (A) as follows:

< f w(A∗)u∗,u >=< u∗, f (A)u >, ∀u ∈ ExpA,G(X),

where u∗ ∈ Exp
′
A∗,G∗(X

∗).

Lemma 2.3. Let X be a reflexive Banach space and A be a closed operator defined
on D(A)⊂X . Let f be an analytic function defined on an open connected set G⊂C.
Then the following mappings are well defined and continuous:

1. f (A) : ExpA,G(X)→ ExpA,G(X),

2. f w(A∗) : Exp
′
A∗,G∗(X

∗)→ Exp
′
A∗,G∗(X

∗).

Proof. We will prove that f (A) maps ExpA,G(X) into itself. Let u ∈ ExpA,G(X) has
a representation u=∑λ uλ , uλ ∈ ExpAλ ,ν(X). Then for f (A)u defined in (2.95), one
has the following estimate

‖Ak
λ fλ (A)uλ‖ ≤

∞

∑
n=0

| f n(λ )|
n!

‖(A−λ I)nAk
λuλ‖ ≤Cνk‖uλ‖, (2.98)

with some ν < r. It follows that fλ (A)uλ ∈ ExpAλ ,ν(X) with the same ν. Hence,
f (A)u has a representation ∑λ wλ , where wλ = fλ (A)uλ ∈ ExpAλ ,ν (X), and there-
fore f (A)u∈ ExpA,G(X). The estimate (2.98) also implies continuity of the mapping
f (A) in the topology of ExpA,G(X).

Now assume that a sequence u∗n ∈ Exp
′
A∗,G∗(X

∗) converges to 0 in the weak topol-

ogy of Exp
′
A∗,G∗(X

∗). Then for arbitrary u ∈ ExpA,G(X) we have

< f w(A∗)u∗n,u >=< u∗n, f (A)u >=< u∗n,v >,

where v = f (A)u ∈ ExpA,G(X) due to the first part of the proof. Hence, f w(A∗)u∗n →
0, as n→ ∞, in the weak topology of Exp

′
A∗,G∗(X

∗).
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Remark 2.6. Note that if σ(A) is discrete then the space ExpA,G(X) consists of the
root lineals of eigenvectors corresponding to the part of σ(A) with nonempty inter-
section with G. If the spectrum σ(A) is empty, then an additional investigation is
required for solution spaces to be nontrivial [Uma88].

Definition 2.9. Let X be a topological vector space and two operators A and B lin-
ear operators mapping X into X . Let X1 and X2 be closed subspaces of X . Sup-
pose, there is a linear bounded invertible operator U defined on X , with bounded
inverse U−1, and U : X1 → X2, such that A = UBU−1. Then operators A and B are
called similar and U is called a transformation operator for A and B. If U is unitary,
then A and B are called unitary equivalent.

Example 2.6. 1. The operator Uλ defined in equations (2.96) and (2.97) is a trans-
formation operator for similar operators A− λ I and A. Here X = ExpA,G(X),
X1 = ExpAλ ,ν(X), and X2 = ExpA,ν(X).

2. Let P(D), D=−i(∂/∂x1, . . . ,∂/∂xn) be a differential operator and p(ξ ) its sym-
bol. Then for all f ∈ G (Rn) one has P(D) f = F−1[p(ξ )F [ f ]], where F is the
Fourier transform. Hence, the differential operator P(D) and the multiplication
operator by p(ξ ) are unitary equivalent with the transformation operator F.

3. Let X = C1[0,∞) with the topology of uniform convergence on any compact

interval in [0,∞). Consider operators A j = − d2

dx2 + q j(x), j = 1,2, where q j ∈
C[0,∞). Further, let Xj = { f ∈X : f

′
(0) = α j f (0)}, α j ∈C, j = 1,2, and α1 �=

α2. Then operators A1 and A2 are similar with the transformation operator

U f (x) = f (x)+
∫ x

0
K(x,y) f (y)dy, x ∈ [0,∞),

where the kernel K(x,y) satisfies the partial differential equation

Kxx−Kyy = (q2(y)− q2(x))K,

and conditions:

K(x,x) = (α2−α1)+
1
2

∫ x

0
[q1(s)− q2(s)]ds,

∂K(x,0)
∂y

−α1K(x,0) = 0.

For the proof the reader is referred to [LS70], where many other examples, simi-
lar operators, and their applications to harmonic analysis can be found.

It follows from Definition 2.9 that if A and B are similar with the transforma-
tion operator U , then operators An and Bn are similar for any n ∈ N with the same
transformation operator U, namely

An =UBnU−1, n = 2,3, . . . . (2.99)

This implies the following proposition
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Proposition 2.8. Let operators A and B are similar. Then

1. the spaces ExpA,G(X) and ExpB,G(X) are isomorphic;
2. for any f analytic in G both mappings f (A) : ExpA,G(X) → ExpA,G(X) and

f (B) : ExpB,G(X)→ ExpB,G(X) are continuous simultaneously.

Proof. Let u ∈ ExpA,ν(X). Then w =U−1u ∈ ExpB,ν(X). Indeed, using (2.99) we
have

‖Bnw‖ = ‖U−1AnUw‖= ‖U−1Anu‖ ≤C‖Anu‖ ≤C1νn‖u‖ ≤C2νn‖w‖,

which implies both statements of the proposal.

Further, let Πν,λ be a projection operator of the space X to a subspace ExpA,ν,λ
(X), λ ∈ G, ν < dist(λ ,∂G). We want to build a projector-valued measure E with
the help of Πν,λ . It is easy to see that σ(Πν,λ ) ⊆ Dν(λ ), where Dν(λ ) ⊂ G is the
disc with the radius ν and center λ . Let Ω be a union of finite number nonintersect-
ing discs Dr j(λ j), j = 1, . . . ,M. We set Ẽ(Ω) = E1 + . . .+EM, where E j =Πr j ,λ j

.

It is evident that Ẽ(Ω) is a projector and if Ω1∩Ω2 = /0, then

Ẽ(Ω1)◦ Ẽ(Ω2) =Θ , and Ẽ(Ω1∪Ω2) = Ẽ(Ω1)+ Ẽ(Ω2). (2.100)

Let Σ be the smallest σ -algebra containing all possible finite unions of discs
Dr(λ ). Due to conditions (2.100) there exists an extension of Ẽ to Σ , which is
denoted by E.

Lemma 2.4. Let E(σ(A) \G) = Θ and Dν(0)∩σ(A)∩G ⊆ ⋃∞
j=1 Dr j (λ j), where

λ j ∈G, r j < dist(λ j,G), j ≥ 1. Then the limit

lim
M→∞

‖Πν,0− (E1 + . . .+EM)‖= 0

holds.

Proof. We set

VM =
∞⋃

j=M+1

Dr j(λ j).

Taking into account

Πν =−(2π i)−1
∫
Γν+ε

Rλ (A)dλ ,

where Rλ (A) is the resolvent of A and Γν+ε = ∂Dν+ε (0) is the circle of the radius
ν+ ε, and the condition of the lemma, we have

lim
M→∞

‖Πν,0−
M

∑
j=1

E j‖= lim
M→∞

‖E(VM)‖= ‖E((σ(A)\G)∩Kν(0))‖ = 0.

In the theorem below ExpA(X) is the space of vectors of exponential type, cor-
responding to the operator A, and G = C.
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Theorem 2.21. For density of the space ExpA,G(X) in ExpA(X) it is sufficient (if X
is a Hilbert space, then it is necessary) that E(σ(A)\G) =Θ .

Proof. Sufficiency. Let x ∈ ExpA(X), i.e., there exists ν > 0, such that
x ∈ ExpA,ν,0(X). We set xM = (E1 + . . .+EM)x. It is clear that xM ∈ ExpA,G(X).
Moreover, it follows from Lemma 2.4 that xM → x as M → ∞ in the norm of X .

Necessity. Suppose that X is a Hilbert space and E(σ(A)\G) = E◦ >Θ . One can
find a number ν such that 0 �= x∈ (E◦ ◦Πν,0)X . For arbitrary element y∈ExpA,G(X)
we have

‖x− y|X‖2 = (x− y,x− y) = ‖x|X‖2− 2Im(x,y)+ ‖y|X‖2 ≥ ‖x|X‖2,

since due to the selection of x the equality (x,y) = 0 holds.

Denote by A the class of operators for which ExpA(X) is dense in X . For ins-
tance, it is known [39,41] that if A is a generator of a bounded strongly continuous
group of operators, then ExpA(X) is dense in X . Theorem 2.21 implies the following
statement.

Theorem 2.22. Let A ∈ A . For density of ExpA,G(X) in X it is sufficient (if X is a
Hilbert space, then it is necessary also) that E(σ(A)\G) =Θ .

2.9 Additional notes

1. Pseudo-differential operators in its modern form first was introduced by Kohn and Nirenberg
[KN65] and Hörmander [Hor65]. The algebra of pseudo-differential operators constructed
in these works, which now became classic, contained differential operators, singular inte-
gral operators of Calderon and Zygmund [CZ58], and parametrices of elliptic operators.
A symbol a(x,ξ ) of such a pseudo-differential operator was assumed to be infinite differ-
entiable on co-tangent bundle of Ω , that is a(x,ξ ) ∈ C∞(Ω ×R

n). The class of symbols of
pseudo-differential operators of order m was denoted by Sm(Ω). Hörmander [Hor68] also
introduced the class of symbols Sm

ρ,δ (Ω) containing parametrices of hypo-elliptic operators.
Many researchers contributed to the classic theory of pseudo-differential operators; see, for
instance, books [Hor83, Tay81, Tre80, Shu78, Ego67, RSc82] and the references therein.
Pseudo-differential operators with non-smooth or singular symbols were studied by Cordes and
Williams [CW77], Plamenevskii [Pla86], and Dubinskii [Dub82], using different approaches.
Cordess and Williams used abstract algebra methods for construction of pseudo-differential
operators with non-regular symbols. Plamenevskii considered symbols with pole type singu-
larities and used the Mellin transform to build corresponding pseudo-differential operators.
Dubinskii used differential operators of infinite order for construction of pseudo-differential
operators. The corresponding symbols are defined on a domain G ⊂ R

n and locally ana-
lytic functions, with arbitrary type of singularities on the boundary of G. For properties of
such defined pseudo-differential operators and their applications, we refer the reader to books
[Dub91, VH94]. Our approach developed in this chapter combines the ideas of differential op-
erators of infinite order with the original form of pseudo-differential operators, and considered
in the papers [Uma97, Uma98, GLU00]. In Chapter 9 of this book we will also present a ver-
sion of complex pseudo-differential operators with analytic and meromorphic symbols studied
in the papers [Uma91-1, Uma91-2, Uma92, Uma14]. There we will apply this theory to general
boundary value problems for systems of complex pseudo-differential operators.
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2. Hypersingular Integrals. A class of pseudo-differential operators, qualified asΨDOSS, is given
by hypersingular integrals [Sam80, Rub96]. An example of such operators is the operator

Dα
0 f (x) =− 1

d(α , l)

∫
Rn

Δ l
y f (x)

|y|n+α dy, 0 < α < l,

introduced in Example 2.2 with the symbol −|ξ |α (see Proposition 3.4 in Chapter 3). This op-
erator is a model case of the class of hypersingular integrals. The general form of hypersingular
integrals is

Aα f (x) =
∫
Rn

ω( y
|y| )Δ

l
y f (x)

|y|n+α dy, α > 0,

where ω(x) is a kernel function defined on the unit sphere and satisfying some conditions. The
symbol of Aα has the representation through the surface integral [Sam80]:

σAα (ξ ) =
Γ ( n+α

2 )

(2π)
n−1

2 Γ ( 1+α
2 )

∫

Σn−1

ω(σ )|(ξ ,σ )|αsign(ξ ,σ )dσ ,

where Σn−1 is the unit sphere in R
n with the center at the origin, and (x,σ ) = x1σ1+ · · ·+xnσn.

Hypersingular integrals with variable α(x) are studied by Almeida and Samko in their recent
paper [AS09]. These hypersingular integrals are examples of variable fractional order differen-
tial operators. In Chapter 3 we will introduce time-variable fractional order derivatives. Variable
order fractional derivatives based on the Liouville-Riemann fractional derivative were studied
by Lorenzo and Hurtley in [LH02]. Variable order derivatives based on the Caputo-Djrbashian
fractional derivative, their memory properties, and the Cauchy problem for associated differen-
tial equations are studied in [US09] by Umarov and Steinberg. In Chapter 3 we also introduce
a pseudo-differential operator of the form

A f (x) =
∫ 2

0
D
α
0 f (x)dρ(α), x ∈R

n,

where ρ is a finite measure defined on the interval [0,2]. This operator, called a distributed
order differential operator, has the symbol

Ψ(ξ ) =−
∫ 2

0
|ξ |αdρ(α), ξ ∈R

n.

3. Another interesting class of pseudo-differential operators, also containing Dα
0 , consists of in-

finitesimal generators of strongly continuous semigroups, associated with, so-called, Feller
processes, discussed, for instance, in Applebaum [App09], Jacob [Jac01], Jacob and Schilling
[JSc02], and Hoh [Hoh00]. These operators have the following generic form [App09, JSc02]

Aϕ(x) = c0(x)ϕ(x)+
n

∑
j=1

b j(x)
∂ϕ(x)
∂x j

−
n

∑
j,k=1

a jk
∂ 2ϕ(x)
∂x j∂xk

+
∫
Rn\{0}

[
ϕ(x+ y)−ϕ(x)− χ|y|≤1(y)(∇ϕ(x),y)

]
dν(y), (2.101)

where functions c0 and b j, j = 1, . . . ,n, are continuous from R
n to R, such that c0(x)≤ 0 for all

x ∈ R
n; mappings ai j : Rn → R, i, j = 1, . . . ,n, such that each (ai j(x)) is a positive symmetric

matrix for each x ∈ R
n and the map x → (y,a(x)y) is upper semicontinuous for each y ∈ R

n;
ν is a Lévy measure, that is a measure satisfying the condition

∫
Rn min(1, |x|2)dν(x) < ∞; and

χ|y|≤1(y) is the indicator function of the unit ball B1(0) ⊂ R
n
y . Symbols of these operators are

not differentiable, therefore, according to our terminology, these operators can be classified
as ΨDOSS. The symbol corresponding to the operator A in (2.101) has the form (see, e.g.,
[JSc02])
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p(x,ξ ) = c0(x)+(b(x),ξ )− (A (x)ξ ,ξ )

+
∫
Rn\{0}

[
ei(ξ ,y)−1− iχ|y|≤1(y)(ξ ,y)

]
dν(y).

Symbols of this form, by construction, are negative definite. By definition, a continuous func-
tion φ (ξ ) defined on R

n is called negative definite, if for any ξ1, . . .,ξm ∈R
n and z1, . . ., zm ∈C,

the inequality
m

∑
j,k=1

[φ (ξ j)+φ (ξk)−φ (ξ j−ξk)]z j z̄k ≥ 0

holds. It turns out that the class of negative definite symbols is in one-to-one correspondence
with the class of pseudo-differential operators which are infinitesimal generators of strongly
continuous semigroups. We refer the reader to [App09, Jac01] for further properties of oper-
ators of the form (2.101) and their relation with stochastic processes. We will return to these
operators in Chapter 7 in connection with fractional Fokker-Planck-Kolmogorov equations.
Taira [Tai91] considered boundary value problems to describe Markovian diffusion processes
in a bounded domain.

4. The Fourier transform plays a vital role in the theory of pseudo-differential operators of real
variables. A pseudo-differential operator A(D) with the symbol A(ξ ) in Definition 2.2 can be
written in the form A(D) f = F−1[A(ξ )F [ f ]], that is both direct and inverse Fourier transforms
are involved. Therefore, introduction of a complex Fourier transform with properties similar to
the real Fourier transform, and for which the inverse Fourier transform is explicitly determined,
would allow to develop complex theory of pseudo-differential operators. In 1984 Dubinskii
[Dub84] introduced a complex Fourier transform of a complex function in the form

F [ f ](ζ ) = f (−D)δ (ζ ). (2.102)

This Fourier transform inherits many properties of the real Fourier transform and was used
for the construction of PsDO with analytic symbols [Dub84, Dub90, Dub96]. The complex
Fourier transform F defined in Section 2.7 is equivalent to (2.102) and differs from it only by
the constant factor (2π)n. Due to this constant factor the complex Fourier transform becomes
consistent with its real version (1.8), thus generalizing it. In Chapter 9 we apply the complex
Fourier transform F to develop complex ΨDOSS with meromorphic symbols and study sys-
tems of pseudo-differential equations.

5. In Section 2.8 we introduced the Frechet type topological vector space ExpA,G(X) and its dual
Exp

′
A,G(X), where G is an open subset of the complex plain C. These spaces represent an

abstract modification of the space ΨG,p(R
n) and ψ-distributions Ψ ′

G,p(R
n). In the particular

case G = C the spaces ExpA,C(X) and Exp
′
A,C(X) were used in [Rad82] as solution spaces of

the Cauchy problem for abstract differential-operator equations. We note that in some particular
cases of the operator A the space ExpA,G(X), and hence its dual can effectively be described.
Below we consider some examples of such operators. Let A be a linear closed operator defined
in a Hilbert space H, that is D(A) ⊂ H. A is called normal, if A∗A = A∗A. For any normal
operator there exists an operator-valued measure Eλ , such that

A =
∫
σ(A)

λdEλ ,

where σ (A) is the spectrum of A. The widest class of operators, for which a spectral decom-
position formula holds true, is the class of spectral operators studied by Dunford and Schwartz
[DS88]. Spectral operators defined in a Banach space X , in general, have the form A = S+N
(see [DS88]), where S is the spectral part, and N is the quasi-nilpotent part of A. If A is a spec-
tral operator, then for any function f analytic in a neighborhood of the spectrum of the spectral
part S, the representation
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f (A)u =
∞

∑
k=0

Nk

k!

∫

σ(A)

f (k)(s)E(ds)u

holds for all u ∈ X in the domain of f (A). In particular, if f (s) = sn, then

Anu =
n

∑
k=0

(
n
k

)
Nk

∫

σ(A)

sn−kE(ds)u.

We show that u ∈ ExpA,ν (X) if u = E(|s| ≤ ν−ε)x, where x ∈ X , for some ε > 0. Indeed, this
follows from the following estimate

‖Anu‖ ≤
n

∑
k=0

(
n
k

)
‖N‖k

∥∥∥∥∥∥∥
∫

|s|≤ν−ε
|s|n−kE(ds)x

∥∥∥∥∥∥∥
≤
(
‖N‖+ν− ε

)n‖x‖ ≤ νn‖x‖,

since the norm of a quasi-nilpotent operator is arbitrarily small ([DS88]), ‖N‖ < δ , where
0 < δ < ε .



Chapter 3
Fractional calculus and fractional order
operators

3.1 Introduction

Fractional order differential equations are an efficient tool to model various processes
arising in science and engineering. Fractional models adequately reflect subtle inter-
nal properties, such as memory or hereditary properties, of complex processes that
the classical integer order models neglect. In this chapter we will discuss the theo-
retical background of fractional modeling, that is the fractional calculus, including
recent developments - distributed and variable fractional order differential operators.

Fractional order derivatives interpolate integer order derivatives to real (not
necessarily fractional) or complex order derivatives. There are different types of
fractional derivatives not always equivalent. The first attempt to develop the frac-
tional calculus systematically was taken by Liouville (1832) and Riemann (1847)
in the first half of the nineteenth century, even though discussions on non-integer
order derivatives had been started long ago.1 In the 1870s Letnikov and Grünwald
independently used an approach for the definition of the fractional order derivative
and integral different from that of Riemann and Liouville. The Cauchy problem
for fractional order differential equations with the Riemann-Liouville derivative is
not well posed (Section 3.3), that is the Cauchy problem in this case is unphysical.
In the 1960s Caputo and Djrbashian introduced independently, so-called, a regu-
larization of the Riemann-Liouville fractional derivative, which was later named a
fractional derivative in the sense of Caputo-Djrbashian (Section 3.5). The useful-
ness of the Caputo-Djrbashian derivative is that the Cauchy problem for fractional
order differential equations with the Caputo-Djrbashian derivative is well posed.
Thus the definition used by Caputo and Djrbashian returned the “physicality” of the

1 The first existing documented record on fractional derivatives goes back to year 1695. Leibniz
in his letter (dated September 30, 1695) to L’Hôpital wrote on the derivative of order 1/2 of the
function f (t) = t .

© Springer International Publishing Switzerland 2015
S. Umarov, Introduction to Fractional and Pseudo-Differential Equations
with Singular Symbols, Developments in Mathematics 41,
DOI 10.1007/978-3-319-20771-1 3

121



122 3 Fractional calculus and fractional order operators

Cauchy problem for fractional order differential equations. For the detailed history
of fractional calculus, we refer the reader to books [OS74, SKM87].

Starting from the 1960s an intensive growth of the fractional modeling has been
observed. A number of new approaches have been developed and extensive appli-
cations in various fields have been found. Sections 3.11, 3.12 present two novel
concepts appeared relatively recently, namely distributed and variable order frac-
tional differential operators. Initial and boundary value problems with distributed
and variable order differential operators and their applications will be discussed
in Chapters 6–8. Distributed order differential equations model ultraslow diffusion
[CGSG03, MS06], fractional kinetics with accelerating super-diffusion and decel-
erating sub-diffusion, macromolecule movement in cell membrane [SJ97, AUS06],
etc. They model stochastic processes with mixed diffusion regimes; see Chapter 7.
Variable order differential equations are used in modeling of processes arising in vis-
coelastic materials [LH02], in modeling of relaxation processes and reaction kinet-
ics of proteins [GN95], in the study of rheological properties of fluids [KM67], etc.

What is a fractional order derivative and what is the key idea behind the definition
of it? To answer this question let us first review the usual integer order derivative and
integral. Let D = d

dt be the differentiation operator and J be the integration operator,
that is J f (t) =

∫ t
0 f (τ)dτ. Then the fundamental theorem of calculus states that for

a continuous function f

DJ f (t) =
d
dt

∫ t

0
f (τ)dτ = f (t).

In the operators language one can write the latter in the form DJ = I, where I is
the identity operator, which means that the operator D is a left inverse to the opera-
tor J. One can easily check that D is not a right inverse to J, since, according to the
same fundamental theorem of calculus, for any differentiable function f the equality
JD f (t) = f (t)− f (0) holds. The similar relations are true by induction for opera-
tors Dn and Jn, where Dn = dn

dtn , “n-th derivative,” and Jn is the n-fold integration
operator. Namely,

DnJn f (t) = f (t), (3.1)

and

JnDn f (t) = f (t)−
n−1

∑
k=0

Dk f (0)
k!

tk. (3.2)

Thus Dn is the left inverse to Jn, and is the right inverse to Jn in the class of
functions satisfying additional conditions: f (k)(0) = 0, k = 0, . . . ,n− 1. These re-
lations between “differentiation” and “integration” operators valid for n = 1,2, . . . ,
form the basis for the definitions of fractional derivatives in the sense of Riemann-
Liouville and Caputo-Djrbashian, as soon as the fractional order integration operator
is defined.
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3.2 Fractional order integration operator

In this section we introduce the fractional order integration operator of order α > 0
(ℜ(α) > 0). One can verify (by changing order of integration) that the n-fold inte-
gration operator

Jn f (t) =
∫ t

0
· · ·
∫ τ2

0︸ ︷︷ ︸
n−times

f (τ1)dτ1 · · ·dτn

can be represented as

Jn f (t) =
1

(n− 1)!

∫ t

0
(t− τ)n−1 f (τ)dτ.

Taking into account the relationship Γ (n) = (n− 1)!, where

Γ (s) =
∫ ∞

0
e−tts−1dt, ℜ(s)> 0,

is the Euler’s gamma-function (see Section 1.4, Chapter 1), one can define a frac-
tional order integral for any α,ℜ(α)> 0, by

Jα f (t) =
1

Γ (α)

∫ t

0
(t− τ)α−1 f (τ)dτ. (3.3)

Incidentally, we recall also Euler’s beta-function defined for all α, β ∈ C, with
ℜ(α) > 0,ℜ(β ) > 0, as B(α,β ) =

∫ 1
0 sα−1(1− s)β−1ds, which is connected with

the gamma-function through the following relationship (Section 1.4)

B(α,β ) =
Γ (α)Γ (β )
Γ (α+β )

. (3.4)

Before embarking on the world of fractional calculus let us make two important
notes. The first note is about integration end-points, which are also called terminal
points. So far we have used only the origin for the lower terminal point. In the
general case the fractional integration operator can be defined with arbitrary lower
terminal point a ∈ [−∞,∞). Indicating terminal points in the notation, the fractional
integration operator can be written in the form

aJαt f (t) =
1

Γ (α)

∫ t

a
(t− τ)α−1 f (τ)dτ, (3.5)

where f is a continuous function in the interval (a,b). In what follows, if the lower
terminal point is finite, then we preferably work with the interval (a,b) = (0,∞)
and denote 0Jαt = Jα , unless otherwise specified. This is convenient for the study of
initial value problems, as well.
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Second, the family {Jα ,α > 0} (as well as the family {aJαt , α > 0} for an
arbitrary −∞ ≤ a < ∞) possesses the semigroup property: JαJβ = Jα+β . Indeed,
for any α > 0 and β > 0 changing order of integration, we have

JαJβ f (t) =
1

Γ (α)

∫ t

0
(t− τ)α−1

( 1
Γ (β )

∫ τ

0
(τ− u)β−1 f (u)du

)
dτ

=
1

Γ (α)Γ (β )

∫ t

0
f (u)

(∫ t

u
(t− τ)α−1(τ − u)β−1dτ

)
du.

The internal integral after substitution τ = t− (t− u)s takes the form

(t− u)α+β−1
∫ 1

0
sα−1(1− s)β−1ds = B(α,β )(t− u)α+β−1.

Therefore, due to (3.4) we obtain the equality JαJβ f (t) = Jα+β f (t).

Example 3.1. Let α > 0 and γ >−1. Then

Jα tγ =
Γ (1+ γ)

Γ (1+ γ+α)
tγ+α , t > 0. (3.6)

To show this, one needs to use the substitution τ = ts in the integral Jα [tγ ], and
property (3.4). Then,

Jα tγ =
1

Γ (α)

∫ t

0
(t− τ)α−1τγdτ =

tα+γ

Γ (α)

∫ 1

0
(1− s)α−1sγds

=
tα+γ

Γ (α)
B(α,γ+ 1) =

Γ (1+ γ)
Γ (1+ γ+α)

tγ+α .

In the particular case γ = 0, we have

Jα1 =
tα

Γ (1+α)
.

Example 3.1 shows that if −1 < γ < 0 and α + γ < 0, then limt→0 Jα [tγ ] = ∞.
However, if γ ≥ 0, then for any α > 0, the limit limt→0 Jα [tγ ] = 0. The latter is valid
for any function continuous up to zero. In fact, the following statement holds.

Proposition 3.1. Let T > 0 be an arbitrary number and f ∈C[0,T ]. Then

lim
t→0+

Jα f (t) = 0, 0 < t < T, (3.7)

for any α > 0.

Proof. We can assume that T ≤ 1. Making use of the substitution τ = ts in the
integral

Jα [ f ](t) =
1

Γ (α)

∫ t

0
(t− τ)α−1 f (τ)dτ,
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one obtains

Jα [ f ](t) =
tα

Γ (α)

∫ 1

0
(1− s)α−1 f (ts)ds.

Due to continuity of f on the interval [0,1], we have | f (st)| ≤ M < ∞, 0 ≤ s ≤ 1.
Therefore, the estimate

|Jα f (t)| ≤= Mtα

Γ (α)

∫ 1

0
(1− s)α−1ds =

Mtα

αΓ (α)

holds, yielding (3.7) when t → 0+ .

The fractional integral aJαt is called left-sided. The fractional integral, called right-
sided, and defined as

t J
α
b f (t) =

1
Γ (α)

∫ b

t
(b− τ)α−1 f (τ)dτ , (3.8)

is also frequently used. In fact, the operators aJαt and t Jαb are mutually adjoint oper-
ators. Namely, for arbitrary functions u,v ∈ L2(a,b), the relation [SKM87]

(aJαt u(t),v(t)) = (u(t), t J
α
b v(t))

holds.
The proposition below states the continuity of the operators aJαt and t Jαb in Lp

and Hölder spaces.

Proposition 3.2. ([SKM87]) Fractional order integration operators aJαt and tJαb are
continuous mappings:

aJαt : Lp(a,b)→ Lp(a,b), t J
α
b : Lp(a,b)→ Lp(a,b),

aJαt : Cλ [a,b]→Cλ+α [a,b], t J
α
b : Cλ [a,b]→Cλ+α [a,b],

where p≥ 1, and 0 < λ < 1, λ +α �= 1. Moreover, the following estimates hold:

‖aJαt f (t)|Lp(a,b)‖ ≤ (b− a)α

αΓ (α)
‖ f |Lp(a,b)‖,

‖t J
α
b f (t)|Lp(a,b)‖ ≤ (b− a)α

αΓ (α)
‖ f |Lp(a,b)‖.

In particular, the mappings aJαt : C[a,b]→Cα [a,b] and t Jαb : C[a,b]→Cα [a,b] are
continuous.
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3.3 The Riemann-Liouville fractional derivative

Riemann and Liouville defined the fractional derivative as the left inverse to the
fractional integration operator of order α > 0.

Suppose that 0 < α < 1 and consider the operator DJ1−α . We claim that this
operator is the left-inverse to Jα . In fact, using the above-mentioned semigroup
property, one has DJ1−αJα = DJ = I. Hence, for 0 < α < 1 the definition of the
fractional derivative of order α in the sense of Riemann-Liouville would be

Dα = DJ1−α . (3.9)

This operator, as we checked above, satisfies DαJα = I, extending the relation
DnJn = I to any real number α ∈ (0,1). Obviously, this form of fractional derivative
extends to α = 1 giving D1 = D. However, in the explicit form written below one
has to assume that 0 < α < 1, accepting conventionally D1 = D.

Definition 3.1. The fractional derivative of order α, 0 < α < 1, of a function f
defined on [0,∞) in the Riemann-Liouville sense, is

Dα f (t) =
1

Γ (1−α)
d
dt

∫ t

0

f (τ)dτ
(t− τ)α

, t > 0, (3.10)

provided the right-hand side exists.

In a similar manner for α satisfying m−1< α < m, m = 2,3, . . . , one can easily
verify that the operator

Dα =
dm

dtm Jm−α (3.11)

is the left-inverse to Jα , that is DαJα = I. Since 0 < m− α < 1, due to (3.9)
d
dt Jm−α = Dα−m+1. Therefore, one can write (3.11) in the form

Dα =
dm−1

dtm−1 Dα−m+1, m− 1 < α < m.

Thus, one has the following definition of the fractional derivative in the sense of
Riemann-Liouville for an arbitrary α ≥ 0.

Definition 3.2. Let α ≥ 0. The Riemann-Liouville derivative of order α of a func-
tion f is

Dα f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ (1−α)

d
dt

∫ t
0

f (τ)dτ
(t−τ)α , if 0 < α < 1 (associated with m = 1),

dm−1

dtm−1 Dα−m+1 f (t), if m− 1 < α < m, m = 2,3, . . . ,

dm f (t)
dtm , α = m = 0,1, . . . ,

(3.12)

provided the right-hand side exists in each case. Sometimes, to avoid a confusion,
we denote the Riemann-Liouville fractional derivative of order α by Dα

+.
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Remark 3.1. 1. The explicit form of Dα f (t) for α ∈ (m− 1,m), as it follows from
equations (3.10) and (3.11), is

Dα f (t) =
1

Γ (m−α)
dm

dtm

∫ t

0

f (τ)dτ
(t− τ)α−m+1 , t > 0. (3.13)

Here one can put α = m− 1. In this case, as it is readily seen, Dα f (t) =
dm

dtm J f (t) = dm−1

dtm−1 f (t). However, in the explicit form (3.13) one cannot replace
α with its upper bound m, since in this case a strong singularity appears in the
integral. On the other hand, the operator form of the fractional derivative in equa-
tion (3.13) is

Dα =
dm

dtm Jm−α , (3.14)

where α satisfies the condition m−1< α < m. Here one can formally put α =m
obtaining Dα = Dm = dm

dtm , which is consistent with Definition 3.2. In our further
considerations we sometimes write m− 1 ≤ α < m, assuming informal setting
α = m−1 in the explicit form (3.13), or m−1 <α ≤m, assuming formal setting
α = m in the operator form (3.14) of the fractional derivative of order α.

2. The fractional derivative operator defined in (3.14) is called left-sided, since
the corresponding fractional integral Jm−α is left-sided. A right-sided Rieman-
Liouville fractional order derivative is defined in a similar manner: tDα

T =
(−D)m

tJm−α
T (see formula (3.16) below).

3. The fractional derivative Dα for non-integer α, unlike the integer order differen-
tiation operator, is not a local operator. It depends on the whole interval (0, t).
If the interval where the fractional derivative is defined is (a,b), then the corre-
sponding left-sided Riemann-Liouville fractional derivative is denoted by aDα

t ,
and defined as

aDα
t f (t) =

1
Γ (m−α)

dm

dtm

∫ t

a

f (τ)dτ
(t− τ)α−m+1 , t ∈ (a,b). (3.15)

Similarly, the right-sided Riemann-Liouville fractional derivative is defined by

tD
α
b f (t) =

(−1)m

Γ (m−α)
dm

dtm

∫ b

t

f (τ)dτ
(t− τ)α−m+1 , t ∈ (a,b). (3.16)

Example 3.2. Let f (t) = tγ , where γ >−1. Then for α > 0 one has

Dα f (t) =
Γ (1+ γ)

Γ (1+ γ−α)
tγ−α , t > 0. (3.17)

Suppose m−1<α ≤m. Then formula (3.17) follows immediately, if one uses (3.6)
in the relation Dα [tγ ](t) = DmJm−α [tγ ](t). In (3.17) one needs to use the analytic
extension of Euler’s gamma function to the left complex plane, if 1+ γ −α < 0,
which has simple poles at points−1,−2, . . . . Therefore, Dα [tγ ] = 0, if α = 1+ γ+
k, k = 0,1, . . . .
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Consider two important particular cases in equation (3.17):

(1) γ = 1. In this case

Dα1 =
1

Γ (1−α)
t−α . (3.18)

This shows that the fractional derivative of a constant is not zero! (unlike
the usual derivative). However, recall that the function Γ (s) has the analytic
extension to the complex plane except points {0,−1,−2, . . .}, which are sim-
ple poles. So,

Γ (s) = ∞ if s = 0,−1,−2, . . . . (3.19)

Therefore, it follows from (3.18) that Dα1 = 0 if α = 1,2, . . . .
(2) γ = α− 1. In this case

Dα tα−1 = 0. (3.20)

This shows that the kernel of the operator Dα (with the domain in L1(0,1)) is
not trivial!

Example 3.3. Consider the fractional order homogeneous differential equation

Dαu(t) = 0, t > 0, (3.21)

where 0<α < 1. Introduce the set K (α) = {h(t) : h(t)=Ctα−1,C ∈R}. It follows
from (3.20) that any function h∈K (α) satisfies equation (3.21). In fact, the kernel
of operator Dα consists of all functions h ∈ K (α) and not other functions, i.e.,
Ker(Dα ) =K (α). Assuming Ker(Dα ) =K (α), one can see that the initial value
problem

Dαu(t) = 0, t > 0, (3.22)

u(0) = a, (3.23)

where a �= 0, has no solution. Therefore, the Cauchy problem (3.22)–(3.23) is ill-
posed. On the other hand, if the initial condition (3.23) is replaced by

(J1−αu)(0) = a, (3.24)

then due to Example 3.1 for a function h(t) = Ctα−1 ∈K (α) one has J1−αh(t) =
CΓ (α). (Notice that h is not continuous at t = 0, therefore Proposition 3.1 is
not applicable here.) Therefore, the choice C = a

Γ (α) provides a unique solution
to the Cauchy type problem (3.22)–(3.24). We note that the initial value prob-
lem (3.22), (3.24) is not a Cauchy problem, since the initial condition (J1−αu)(0) =
a is not a Cauchy condition. This crucial observation is valid for the homogeneous
fractional order differential equation

Dαu(t) = 0, t > 0,
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for any α > 0, m− 1 < α < m, with the initial conditions

(DkJm−αu)(0) = ak, k = 0, . . . ,m− 1.

In this case K (α) = {h(t) : h(t) = ∑m−1
k=0 CKtα−m+k}.

Example 3.4. Let h ∈K (α), α > 0. Then (3.20) immediately implies that for β ∈
(0,α), such that α−β is not integer:

1. 0 = DβDαh(t) �= DαDβh(t) �= 0;
2. 0 = DβDαh(t) �= Dα+βh(t) �= 0.

A natural question arising in connection with the Riemann-Liouville derivative is
for what class of functions f one can ensure the existence of the fractional derivative
Dα f (t) of order α . Below we reproduce one well-known and useful statement (see
Samko et al. [SKM87], p. 239) answering this question.

Proposition 3.3. ([SKM87]) Let b be any positive number and f ∈Cλ [0,b], 0< λ ≤
1. Then for anyα < λ the fractional derivative Dα f (t) exists and can be represented
in the form

Dα f (t) =
f (0)

Γ (1−α)tα
+ψ(t), (3.25)

where ψ ∈Cλ−α [0,b], andψ(0)= 0. Moreover, the estimate ‖ψ |Cλ−α‖≤C‖ f |Cλ‖
holds with some constant C > 0.

Representation (3.25) carries an important information related to Riemann-
Liouville fractional derivatives. Namely, if f is continuous at t = 0 and its Riemann-
Liouville derivative of order α exists, then this derivative has the singularity of or-
der α at t = 0. Therefore, the fact that the Cauchy problem (3.22)–(3.23) is not well
posed is not surprising.

Proposition 3.4. Let α > 0. Then the Laplace transform of Jα f (t) is

L[Jα f ](s) = s−αL[ f ](s), s > 0. (3.26)

Proof. By definition,

L[Jα f ](s) =
1

Γ (α)

∫ ∞

0
e−st

∫ t

0
(t− τ)α−1 f (τ)dτdt, s > 0. (3.27)

Changing the order of integration (Fubuni is allowed) the right-hand side of (3.27)
can be written as

1
Γ (α)

∫ ∞

0
f (τ)

∫ ∞

τ
(t− τ)α−1e−stdtdτ, s > 0. (3.28)

The substitution t− τ = u/s in the internal integral reduces it into

∫ ∞

τ
(t− τ)α−1e−stdt = Γ (α)

e−sτ

sα
, s > 0.

The latter and equations (3.27), (3.28) imply (3.26).
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Proposition 3.5. Let m− 1 < α ≤ m, m = 1,2, . . . . Then the Laplace transform of
Dα f (t) is

L[Dα f ](s) = sαL[ f ](s)−
m−1

∑
k=0

(DkJm−α f )(0)sm−1−k. (3.29)

Proof. Making use of the equation Dα = DmJm−α and Proposition 3.4, one has

L[Dα f ](s) = L[DmJm−α f ](s) = smL[Jm−α f ](s)−
m−1

∑
k=0

(DkJm−α f )(0)sm−1−k

= sαL[ f ](s)−
m−1

∑
k=0

(DkJm−α f )(0)sm−1−k.

Let 0 < α ≤ 1. Then formula (1.22) with m = 1 reduces to

L[Dα f ](s) = sαL[ f ](s)− (J1−α f )(0). (3.30)

Example 3.5. In Example 3.3 we introduced the set K (α) of functions h(t) =
Ctα−1, t > 0, satisfying the fractional order differential equation Dαu(t) = 0, 0 <
α < 1. Now we show that K (α) exhausts all possible solutions of this equation.
Suppose h(t) satisfies the equation Dαh(t) = 0, t > 0. Then in accordance with for-
mula (3.30) one has

L[Dαh](s) = sαL[h](s)− (J1−αh)(0) = 0, s > 0.

Solving this for L[h](s),

L[h](s) =
b
sα

, s > 0,

where b = (J1−αh)(0) is a constant. Hence, see Example 1.3, h(t) = b
Γ (α) t

α−1 ∈
K (α). This yields Ker(Dα)≡K (α).

Example 3.6. Consider Abel’s integral equation

Jαu(t) = h(t), t > 0, 0 < α < 1, (3.31)

where h ∈Cα+λ [0,b], b > 0, with λ satisfying 0 < λ < 1−α, and h(0) = 0. This
equation has a unique solution in Cλ [0,b]. Moreover, the solution has the represen-
tation

u(t) = Dαh(t). (3.32)

To see this we take the Laplace transform of both sides of (3.31), obtaining
s−αL[u](s) = L[h](s). This can be written as

L[u](s) = sαL[h](s) = sαL[h](s)− (J1−αh)(0). (3.33)

since J1−αh(0) = 0 due to Example 3.1 and continuity of h at t = 0. Equation (3.33)
immediately implies u(t) = Dαh(t), in accordance with (3.30). The fact that u(t) ∈
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Cλ [0,b] follows from Proposition 3.3. The case α > 1 can be reduced to (3.31) by
differentiating.

If h is not continuous up to t = 0, then we cannot rely on the fact that
J1−αh(0) = 0. In the general case the following statement holds.

Proposition 3.6. ([Djr66]) Let h ∈ L1(0,b). Then equation (3.31) has a unique
solution u(t) ∈ L1(0,1), which is represented in the form (3.32), if and only if

1. Dm−1Jm−αh(t) is absolute continuous on [0,b];
2. Jm−αh(0) = · · ·= (Dm−1Jm−αh)(0) = 0.

Example 3.7. Consider the fractional differential equation

Dαu(t) = h(t), t > 0, (3.34)

subject to the initial conditions

Jm−αu(0) = a0, . . . , Dm−1Jm−αu(0) = am−1, (3.35)

where m− 1 < α < m, and h is a continuous function. This problem has a unique
solution

u(t) = Jα [h](t)+
m−1

∑
k=0

ak

Γ (α−m+ k+ 1)
tα−m+k, t > 0. (3.36)

Indeed, applying the Laplace transform to equation (3.34), one has

sαL[u](s)−
m−1

∑
k=0

Dk(Jm−αu)(0)sm−k−1 = L[h](s), s > 0,

or solving it for L[u](s) and taking into account conditions (3.35),

L[u](s) =
L[h](s)

sα
+

m−1

∑
k=0

ak

sα−m+k+1 , s > 0.

Now (3.36) follows from the latter due to Proposition 3.4 and (1.18).

3.4 Mittag-Leffler function and its Laplace transform

The Mittag-Leffler function Eα(z), z ∈ C, is an entire function defined as a power
series

Eα(z) =
∞

∑
n=0

zn

Γ (αn+ 1)
,

where Γ (·) is Euler’s gamma function. Obviously, Eα(z) = exp(z) if α = 1. For
real z = x the Mittag-Leffler function Eα(x) increases exponentially (∼ exp(x1/α)),
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when x→∞, and tends to 0 behaving like Eα(x)∼ 1/|x|, when x→−∞. Therefore,
the Laplace transform of the function e(t) = Eα(−t) defined on the half-axis R+, is
well defined. In our considerations the function e(λ tα) = Eα(−λ tα), i.e.

Eα(−λ tα) = 1− λ tα

Γ (α+ 1)
+

λ 2t2α

Γ (2α+ 1)
+ . . . (3.37)

for λ ∈ C, will emerge frequently. Therefore we find its Laplace transform.

Proposition 3.7. For the Laplace transform of Eα(−λ tα), t ≥ 0, where λ ∈ C, the
following formula holds:

L[Eα(−λ tα)](s) =
sα−1

λ + sα
, s > |λ |1/α . (3.38)

Proof. Using the formula (see (1.18) )

∫ ∞

0
e−sttαndt = L[tαn](s) =

Γ (αn+ 1)
sαn+1 , s > 0,

one has

L[Eα (−λ tα)](s) =
∞

∑
n=0

(−1)nλ n

Γ (αn+ 1)

∫ ∞

0
e−sttαndt

=
1
s

∞

∑
n=0

(
− λ

sα

)n

=
sα−1

λ + sα
. (3.39)

The geometric series in (3.39) converges if |λ/sα |< 1, or the same, if s > |λ |1/α .

Let 0 < α < 1. Differentiating Eα(−λ tα) in (3.37) in the variable t, one has

d
dt

Eα(−λ tα) =−λ tα−1

Γ (α)
+
λ 2t2α−1

Γ (2α)
+ . . . ,

which implies |Eα(−λ tα)| = O( 1
t1−α ), t → 0. Similarly, if m− 1 < α < m, then m

times differentiating Eα(−λ tα), one obtains that
∣∣∣ dm

dtm Eα(−λ tα)
∣∣∣= O( 1

tm−α ), when

t → 0. Thus we have proved the following proposition.

Proposition 3.8. Let m− 1 < α < m. Then for each fixed λ ∈ C the asymptotic
behavior ∣∣∣∣ dm

dtm Eα(−λ tα)

∣∣∣∣= O

(
1

tm−α

)
, t → 0, (3.40)

holds.

An integral representation of the function Eα(−tα) was provided by R. Gorenflo
and F. Mainardi in [GMM02]. The proposition below reproduces this representation
for Eα(−λ tα) with an arbitrary positive real λ . Introduce the function
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Kα (r) =
1
π

rα−1 sin(απ)
r2α + 2rα cos(απ)+ 1

, r > 0. (3.41)

Proposition 3.9. Let λ be a positive real number. Then for Eα(−λ tα) the following
representations hold:

1. if 0 < α < 1, then

Eα(−λ tα) =
∫ ∞

0
e−λ

2/αrtKα (r)dr. (3.42)

2. if 1 < α < 2, then

Eα(−λ tα) =
∫ ∞

0
e−rtλ 2/α

Kα(r)dr+
2
α

etλ 1/α cos π
α cos

(
tλ 1/α sin

π
α

)
(3.43)

Proof. It follows from Proposition 3.38 that

Eα(−λ tα) = L−1
[

sα−1

sα +λ

]
(t) =

1
2π i

∫ σ+i∞

σ−i∞

sα−1est

λ + sα
ds,

where σ > λ 1/α . Since α is not an integer, the function H(s) = sαest

sα+1 under the
integral has a branching point at s= 0. We take values in the main branch. Moreover,
H(s) has poles at points sk = λ 1/αeiπ/α(2k+1), k∈Z. The poles which are in the main
branch satisfy the condition−π < arg(sk)< π . Further, deforming integration path
to the Hankel path Hε , which starts at −∞ along the lower side of the cut negative
real axis of the complex s-plane, along the circle of radius ε centered at zero, and
then goes to −∞ along the upper side of negative axis, one can reduce the above
integral to

Eα(−λ tα) =
1

2π i

∫

s=τe±iπ

sα−1est

λ + sα
ds+ ∑

sk∈P
esktRes|s=sk

[
sα−1

λ + sα

]
,

where P is the set of relevant poles of the function H(s), and Res|s=a means
the residue at the pole s = a. Obviously, the function H(s) has simple poles and

Res|s=sk

[
sα−1

λ+sα

]
= 1/α. Hence, Eα(−λ tα) = Mα(t)+Nα(t), where

Mα(t) =
1

2π i

∫

s=τe±iπ

sα−1est

λ + sα
ds and Nα (t) =

1
α ∑

sk∈P
eskt .

In computing the integral along two sides of the negative axis, one can see that the
real parts cancel out and the imaginary parts are added, so

Mα(t) =
1
π

∞∫

0

e−λ
1/ατtℑ

(
sα−1

λ + sα
∣∣s=τeiπ

)
dr, (3.44)
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where ℑ(z) means the imaginary part of z. It is easy to verify that

ℑ

(
sα−1

λ + sα
∣∣s=τeiπ

)
=

λτα−1 sin(απ)
λ 2 + 2λτα cos(απ)+ τ2α .

Substituting this into (3.44) and changing τ = rλ 1/α , one obtains

Mα(t) =
∫ ∞

0
e−λ

2/αrtKα (r)dr,

where Kα (r) is defined in (3.41). Now notice that if 0 < α < 1, there are no poles
of H(s) satisfying −π < arg(sk) < π . Hence Nα(t) = 0, and in this case we have
Eα(−λ tα) = Mα(t), obtaining (3.42).

If 1 < α < 2, then there are two poles λ 1/αe±iπ/α in the main branch. This
implies

Nα(t) =
2
α

etλ 1/α cos π
α cos(tλ 1/α sin

π
α
).

Hence, in this case Eα(−λ tα) = Mα(t)+Nα(t), obtaining (3.43).

Remark 3.2. The function Eα(−tα) has the following asymptotes near zero and
infinity [GM97]:

Eα(−tα)∼ 1− tα

Γ (α+ 1)
+

t2α

Γ (2α+ 1)
+ . . . , t →+0,

Eα(−tα)∼ t−α

Γ (1−α)
− t−2α

Γ (1− 2α)
+ . . . , t → ∞, (0 < α < 2).

3.5 The Caputo-Djrbashian fractional derivative

The fractional derivative in the Caputo sense, introduced by Caputo [Cap67] in
1967, contrary to Riemann-Liouville derivative, is more convenient for the study of
the Cauchy problem. This is important in the study of fractional models of various
physical problems. On the other hand, the Caputo derivative is restrictive to compare
to the Riemann-Liouville one, since to define the derivative of order α ∈ (m−1,m)
in the sense of Caputo, one requires the existence of the derivative of order m.

Definition 3.3. By definition, the Caputo fractional derivative of order α ≥ 0 is

(Dα
∗ ) f (t) =

⎧⎪⎨
⎪⎩

f (t), α = 0,
1

Γ (1−α)
∫ t

0
f
′
(τ)dτ

(t−τ)α , 0 < α < 1 (associated with m = 1),

Dα−m+1∗ dm−1

dtm−1 f (t), m− 1≤ α < m, m = 2,3, . . .

(3.45)

provided the right-hand side exists in each case.
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The third line of this definition requires some explanation. If m− 1 ≤ α < m, then
0 ≤ α−m+ 1 < 1. Hence, one uses the first or second line to define the fractional
derivative Dα−m+1∗ g(t) of the function g(t) = f (m−1)(t).

Let 0 < α < 1. Then it follows from Definition 3.3 (second line) that

Dα
∗ = J1−αD. (3.46)

This is an operator form of Dα∗ . Equation (3.46) implies that

JαDα
∗ f (t) = JαJ1−αD f (t) = JD f (t) = f (t)− f (0), (3.47)

which means that Dα∗ is the right-inverse to Jα up to the additive term− f (0). Recall
that the fractional derivative Dα in the sense of Riemann-Liouville was the (exact)
left-inverse to the operator Jα . In general, if m− 1 < α < m, m = 1,2, . . . , then the
operator form of Dα∗ becomes

Dα
∗ = Jm−α dm

dtm , (3.48)

and relation (3.47) takes the form

JαDα
∗ f (t) = JαJm−αDm f (t) = JmDm f (t) = f (t)−

m−1

∑
k=0

Dk f (0)
k!

tk, (3.49)

showing that Dα∗ is the right-inverse to Jα up to the additive polynomial

−
m−1

∑
k=0

Dk f (0)
k!

tk.

Now again assume that 0 < α < 1. Then the definition of Dα∗ f (t) uses the first
derivative f

′
(t). Therefore, if one works with Definition 3.3, then one must ensure

the existence of the first derivative of f in some sense. However, the relationship

Dα
∗ f (t) = Dα [ f (t)− f (0)]. (3.50)

between Dα and Dα∗ , obtained by applying Dα to both sides of (3.47), can be
used to overcome the restriction connected with the presence of the first deriva-
tive. Obviously, the expression on the right-hand side of (3.50) exists representing
an extension of Dα∗ to the class of functions f for which the fractional derivative in
the sense of Riemann-Liouville exists, and f (0) is finite. If additionally, f is dif-
ferentiable (or absolutely continuous), then Dα∗ f (t) in (3.50) and in Definition 3.3
coincide. Moreover, equation (3.50) shows that Dα∗ and Dα coincide in the class of
functions satisfying f (0) = 0.

In the general case the Caputo fractional derivative is related to the Riemann-
Liouville one through the following formula
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Dα
∗ f (t) = Dα

(
f (t)−

m−1

∑
k=0

tk f (k)(0)
k!

)
, (3.51)

which shows that these two derivatives coincide if f (n)(0) = 0, n = 0, . . . ,m− 1.
To prove (3.51) let us denote g(t) = Dα∗ f (t). Applying the fractional integration
operator Jα , one has (see (3.49))

Jαg(t) = JαJm−αDm f (t) = JmDm f (t) = f (t)−
m−1

∑
k=0

f (k)(0)
k!

tk.

Now since Dα is the left-inverse to Jα , one obtains

DαJαg(t) = g(t) = Dα

(
f (t)−

m−1

∑
k=0

tk f (k)(0)
k!

)
,

thus (3.51).
The relationship (3.51) was noted by M. Djrbashian in his 1966 monograph

[Djr66] with the aim to prove existence of the Riemann-Liouville derivative of or-
der α . The fractional derivative Dα∗ justly called the Caputo-Djrbashian fractional
derivative. From now on we will also call Dα∗ the Caputo-Djrbashian fractional
derivative.

Proposition 3.10. (Djrbashian [Djr66]) Let Dm−1 f (t) be absolutely continuous on
[0,b] for any b > 0. Then Dα f (t) exists a.e. in (0,b) for any α ∈ (0,m]. And if
m− 1 < α ≤ m, then

Dα
∗ f (t) = Dα f (t)−

m−1

∑
k=0

f (k)(0)
Γ (1+ k−α)

tk−α , (3.52)

Proof. Formula (3.52) follows from (3.51) immediately if one takes into account

Dα [tk] =
k!

Γ (1+ k−α)
tk−α ;

see Example 3.2.

Remark 3.3. 1. Notice that the functions tk−α , k= 0, . . . ,m−1, in (3.52) are singular
at t = 0. The Caputo-Djrbashian derivative “removes” all the possible singu-
larities of the RL derivative arising intrinsically as an action of Dα . Therefore,
Dα∗ f (t) is also called a regularization of the RL derivative Dα f (t).

2. If m−1<α ≤m, f (t) is defined on the interval [a,b], and Dm−1 f (t) is absolutely
continuous on [a,b], then the relationship between the Riemann-Liouville and
Caputo-Djrbashian fractional derivatives takes the form

aDα
t f (t) =

m−1

∑
k=0

f (k)(a)(t− a)k−α

Γ (1+ k−α)
+a Dα

∗t f (t). (3.53)
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Here aDα
t is defined in (3.15), and

aDα
∗ t f (t) =

1
Γ (m−α)

∫ t

a

f (m)(τ)
(t− τ)α−m+1 dτ, t ∈ (a,b). (3.54)

3. The derivative aDα∗ t in (3.54) is the left-sided Caputo-Djrbashian fractional
derivative. The right-sided Caputo-Djrbashian fractional derivative is defined as

tD
α
∗ b f (t) =

(−1)m

Γ (m−α)

∫ b

t

f (m)(τ)
(t− τ)α−m+1 dτ, t ∈ (a,b).

Proposition 3.11. Let m − 1 < α ≤ m. The Laplace transform of the Caputo-
Djrbashian derivative of a function f ∈Cm[0,∞) is

L[Dα
∗ f ](s) = sαL[ f ](s)−

m−1

∑
k=0

f (k)(0)sα−1−k, s > 0. (3.55)

Proof. Since Dα∗ f = Jm−αDm f we have

L[Dα
∗ f ](s) = L[Jm−αDm f ](s) = s−(m−α)L[Dm f ](s)

= s−(m−α)
(

smL[ f ](s)−
m−1

∑
k=0

f (k)(0)sm−1−k

)

= sαL[ f ](s)−
m−1

∑
k=0

f (k)(0)sα−1−k, s > 0.

Example 3.8. 1. It follows from the definition of the Caputo-Djrbashian fractional
derivative that Dα∗ 1 = 0, ∀α > 0;

2. Let α > 0 and γ > 0. Then

Dα
∗ [t

γ ] =
Γ (γ+ 1)

Γ (γ+ 1−α)
tγ−α .

Indeed, suppose m− 1 < α ≤ m. Then, using the formula

Dm[tγ ] =
Γ (γ+ 1)

Γ (γ−m+ 1)
tγ−m,

and relationship (3.6), one obtains

Dα
∗ [t

γ ] = Jm−αDm[tγ ] =
Γ (γ+ 1)
γ+ 1−m

Jm−α [tγ−m] =
Γ (γ+ 1)

Γ (γ+ 1−α)
tγ−α .

Example 3.9. Let m− 1 < α ≤ m. Consider the following fractional order differen-
tial equation

Dα
∗ u(t) = h(t), t > 0,
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where h(t) ∈C[0,T ]. We solve this equation under the assumption that u(t) satisfies
the initial conditions

u(k)(0) = ak, k = 0, . . . ,m− 1.

Applying the Laplace transform and taking into account formula (3.55), one has

L[u](s) = s−αL[h](s)+
m−1

∑
k=0

u(k)(0)s−k−1.

Inverting the latter, one obtains a unique solution

u(t) = Jαh(t)+
m−1

∑
k=0

ak

k!
tk.

Example 3.10. Consider the following Cauchy problem:

Dα
∗ u(t)+λu(t) = 0, t > 0,

uk(0) = ak, k = 0, . . . ,m− 1,

where λ is a complex number. Applying the Laplace transform, one has

(sα +λ )L[u](s) =
m−1

∑
k=0

aksα−k−1

Hence, due to Proposition 3.7,

u(t) =
m−1

∑
k=0

akL−1
[

1
sk

sα−1

sα +λ

]
=

m−1

∑
k=0

akJkEα(−λ tα). (3.56)

where Eα(z) is the Mittag-Leffler function.

3.6 The Liouville-Weyl fractional derivative

Consider the pseudo-differential operator Aα(D) for α > 0 with the symbol
σAα (ξ ) = (iξ )−α , i.e.

Aα(D) f (x) =
1

2π

∫ ∞

−∞
F [ f ](ξ )e−ixξ dξ

(iξ )α
. (3.57)

Obviously, Aα is aΨDOSS whose symbol has a strong singularity at ξ = 0 if α ≥ 1.
In Section 2.3 we saw that this operator is well defined on the spaceΨG,p(R), or on
its dualΨ ′

−G,p′ (R). Moreover, since the symbol of A is isolated and is of finite order,
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this operator can be extended to a Lizorkin type spaces introduced in Section 1.12
with the base spaces of Besov or Lizorkin-Triebel. The number of orthogonality
conditions depends on α.

Now we show that the operator Aα(D) in (3.57) is related to the fractional inte-
gration operator of order α. Let 0 < α < 1. Due to Corollary 2.11 (ii) one can write
the symbol in the form

1
(iξ )α

= σAα (ξ ) = (Aα(D)e−ixξ )|x=0, ξ �= 0. (3.58)

In equation (3.58) one can assume that the operator Aα(D) acts on the space
ΨG,p(R), or onΨ ′

−G,p′ (R). On the other hand, by virtue of formula (1.21), one has

1
(iξ )α

=
1

Γ (α)
Γ (α)
(iξ )α

=
1

Γ (α)
L[yα−1](iξ )

=
1

Γ (α)

∫ ∞

0
yα−1eiyξdy =

1
Γ (α)

∫ 0

−∞
(−y)α−1e−iyξdy

= lim
x→0

1
Γ (α)

∫ x

−∞
(x− y)α−1e−iyξdy. (3.59)

Equation (3.59) shows that (iξ )−α is also the symbol of the fractional integral with
the lower terminal point−∞ :

−∞Jα f (x) =
1

Γ (α)

∫ x

−∞
(x− y)α−1 f (y)dy. (3.60)

Indeed, one can rewrite (3.59) in the form

1
(iξ )α

= (−∞Jαe−ixξ )|x=0, ξ �= 0.

Hence, the two operators Aα(D) and −∞Jα have the same symbol, and therefore co-
incide, if one considers them on the spacesΨG,p(R) orΨ ′

−G,p′ (R), p≥ 1, or Lizorkin
type spaces.

The dual to Aα(D) operator A∗α(D) has the symbol (−iξ )−α . Analogously, one
can verify that the dual fractional integral operator can be written in the form

xJα∞ f (x) =
1

Γ (α)

∫ ∞

x
(y− x)α−1 f (y)dy. (3.61)

Example 3.11. 1. Let a > 0. Then for an arbitrary α > 0 one has −∞Jα [eax] =
a−αeax.

2. Similarly, for a > 0 one has xJα∞ [e
−ax] = a−αe−ax.

Further, similar to the Riemann-Liouville fractional derivatives, one can define
fractional derivatives exploiting the fractional integrals −∞Jα and xJα∞ with terminal
points ±∞. Let m− 1 < α ≤ m, m = 1,2, . . . . Introduce the operators
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−∞Dα = Dm−∞Jm−α ,

and
xDα

∞ = (−D)m
xJm−α
∞ ,

which are called Liouville-Weyl forward (LWf) and backward (LWb) fractional
derivatives, respectively. Explicit forms of LWf and LWb fractional derivatives are

−∞Dα f (x) =
1

Γ (m−α)
dm

dxm

∫ x

−∞
f (y)

(x− y)α−m+1 dy, (3.62)

and

xDα
∞ f (x) =

(−1)m

Γ (m−α)
dm

dxm

∫ ∞

x

f (y)
(y− x)α−m+1 dy. (3.63)

Notice that the LWf and LWb fractional derivatives are related to the usual inte-
ger order derivatives through −∞Dm = Dm and xDm

∞ = (−D)m. It follows from the
explicit representations (3.62) and (3.63) that for the existence of Liouville-Weyl
fractional derivatives the function f must satisfy some differentiability and decay
conditions. Namely, it is not hard to see that

(a) LWf derivative exists on (−∞,a] if f ∈Cλ (−∞,a] has the asymptotic behavior
| f (x)| ∼ |x|−m+α−ε , x→−∞, and

(b) LWb derivative exists on [b,∞) if f ∈ Cλ [b,∞) has the asymptotic behavior
| f (x)| ∼ |x|−m+α−ε , x→+∞,

where Cλ , λ > α, is the Hölder space, a and b finite numbers, and ε is an arbitrary
positive number. Moreover, Liouville-Weyl fractional derivatives can be interpreted
asΨDOSS. Namely, for functions f ∈ΨG,p(R

n), 0 /∈ G, we can write

−∞Dα f (x) = DmAm−α(D) f (x),

as well as for ψ-distributions F,

xDα
∞F(x) = (−D)mA∗m−α(D)F(x).

Using the properties of the Fourier transform and symbols of Liouville-Weyl
integrals one can easily derive the symbols of LWf and LWb fractional derivatives.
Namely,

F [−∞Dα f ](ξ ) = F [Dm−∞Jm−α f ](ξ ) = (iξ )m 1
(iξ )m−α F [ f ](ξ )

= (iξ )αF [ f ](ξ ),

and

F [ xDα
∞ f ](ξ ) = F[(−1)mDm

xJm−α
∞ f ](ξ ) = (−1)m(iξ )m 1

(−iξ )m−α F [ f ](ξ )

= (−iξ )αF [ f ](ξ ).
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Proposition 3.12. The symbols of operators −∞Dα and xDα
∞ are

σ−∞Dα (ξ ) = (iξα) and σ
xDα∞

(ξ ) = (−iξ )α . (3.64)

Example 3.12. Show that for an arbitrary a > 0 the following formulas are valid:

1. −∞Dαeax = aαeax;
2. xDα

∞e−ax = aαe−ax.

3.7 Riesz potential. Connection withΨDOSS

Let 0 < α < 1. The integral

Rα f (x) =Cα

∫
R

f (y)dy
|x− y|1−α (3.65)

defined for f ∈ L1(R) is called the Riesz potential. Here the constant Cα is normal-
ized in such a way that σRα (ξ ) = |ξ |−α . Since Rα f (x) = (K ∗ f )(x), that is a
convolution operator with K = Cα

|x|1−α , Proposition 1.20 implies that

σRα (ξ ) = F [K ](ξ ) =CαF

[
1

|x|1−α
]
(ξ ) = |ξ |−α , (3.66)

where we set Cα = 1
bα
. Therefore, in order to determine Cα one needs to know

bα , which appears in the Fourier transform of |x|−(1−α), see Example 1.6, 8. How-
ever, instead of computing bα , one can find Cα applying the symbolic calculus for
ΨDOSS introduced in Chapter 2.

Indeed, we show that there is a constant dα such that

dα{σAα (ξ )+σA∗α (ξ )}= σRα (ξ ).

First, notice that φ(ξ ) = σAα (ξ )+σA∗α (ξ ) = 2ℜ{σAα (ξ )} = 2ℜ{ 1
(iξ )α }, where ℜ

stands for the real part. Second, the function φ(ξ ) is symmetric, i.e., φ(−ξ ) = φ(ξ ).
Therefore, it suffices to find ℜ{ 1

(iξ )α } only for ξ > 0. We have

ℜ{ 1
(iξ )α

}=ℜ{e−i π2 α
1
ξα
}= 1

|ξ |α cos
πα
2

, ξ > 0.

This immediately implies that

dα{σAα (ξ )+σA∗α(ξ )}= 2
1
|ξ |α cos

πα
2

,
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which yields

dα =
1

2cos πα
2

.

Proposition 3.13. Let α ∈ (0,1). Then for the one-dimensional Riesz potential Rα
the following relations hold:

1. σRα (ξ ) =
1

2cos πα
2
{σAα (ξ )+σA∗α (ξ )}= |ξ |−α ;

2. Rα = 1
2cos πα

2
{Aα(D)+A∗α(D)};

3. Rα = 1
2cos πα

2
{−∞Jα + xJα∞}.

Since

Rα f (x) = { −∞Jα + xJα∞
2cos πα

2

} f (x)

=
1

2Γ (α)cos πα
2

(∫ x

−∞
f (y)dy

(x− y)1−α +

∫ ∞

x

f (y)dy
(y− x)1−α

)

=
1

2Γ (α)cos πα
2

∫ ∞

−∞
f (y)dy

|x− y|1−α ,

obviously,

Cα =
1

2Γ (α)cos πα
2
.

Hence, the constant bα in Example 1.6, 8 is

bα = 2Γ (α)cos
πα
2

.

Now we extend the definition of the Riesz potential for arbitrary α setting

Rα =
1

2cos πα
2

{−∞Jα + xJα∞}, 0 < α �= 2k+ 1, k = 0,1, . . . . (3.67)

The operator Rα with the symbol σRα (ξ ) = 1
|ξ |α , where α > 0 and α �= 2k−1, k =

1,2, . . . , has the strong singularity at ξ = 0, if α ≥ 1. Hence, Rα is aΨDOSS if we
consider it on the space of ψ-distributionsΨ ′

−G,p′ (R
n). Therefore, all the properties

related toΨDOSS are valid for Rα . The operatorRα is well defined on the Lizorkin
spaces Φ(Rn), as well. Additionally, we note that Rα is the inverse operator to

the fractional power α of the operator D2 = − d2

dx2 , i.e., (D2)α/2, whose symbol is
|ξ |α . The Riesz-Feller derivatives, which we are going to introduce, tell us how to
construct such fractional powers.

By definition, the Riesz-Feller derivative of order α (analogously to (3.67)) is

Dα
0 f (x) =

−1

2cos (απ)
2

(−∞Dα f (x)+ xDα
∞ f (x)), 0 < α �= 2k+ 1, k = 0,1, . . . ,

(3.68)
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where −∞Dα and xDα
∞ are LWf and LWb fractional derivatives of order α defined

in (3.62) and (3.63), respectively.

Proposition 3.14. The symbol of the Riesz-Feller derivative is

σ
Dα

0
(ξ ) =−|ξ |α .

Proof. Taking into account (3.64) one has

σ
Dα

0
(ξ ) =− 1

2cos πα
2
{σ−∞Dα (ξ )+σ

xDα∞
(ξ )}

=− 1
2cos πα

2

{(iξ )α +(−iξ )α}=− 1
2cos πα

2

2ℜ{(iξ )α}

=−|ξ |α 1
cos πα

2

cos
πα
2

=−|ξ |α .

Introduce the shift operator τh f (x) = f (x+ h), where 0 < |h|< 1. Then the �-th
order central finite difference operator Δ �

h can be defined in the form

Δ �
h f (x) = (τ h

2
− τ h

2
)� f (x). (3.69)

In particular, for �= 0,1, and 2, the operators Δ0
h f (x), Δ1

h f (x), and Δ2
h f (x) take the

form

Δ0
h f (x) = I f (x) = f (x);

Δ1
h f (x) = f (x+ h/2)− f (x− h/2);

Δ2
h f (x) = f (x+ h)− 2 f (x)+ f (x− h).

Proposition 3.15. Let 0 < α < 2. Then the Riesz-Feller derivative of order α of a
function f in the Hölder space Cλ (R)∩L∞, λ > α, has the representation

Dα
0 f (x) = ωα

∫ ∞

0

Δ2
h f (x)

h1+α dh, (3.70)

where ωα = (1/π)Γ (α+ 1)sin πα
2 .

Proof. We show (3.70) for 0 < α < 1. The general case follows from Theorem 3.4
(in the particular case n = 1). By definition,

Dα
0 f (x) =

−1
2cos απ

2

(−∞Dα + xDα
∞) f (x)

=
−D

2cos απ
2
(−∞J1−α + xJ1−α

∞ ) f (x)

=
−D

2Γ (1−α)cos απ
2

(∫ x

−∞
f (y)dy
(x− y)α

−
∫ ∞

x

f (y)dy
(y− x)α

)
. (3.71)
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The substitutions x− y = u and y− x = v in two integrals on the right-hand side
of (3.71) give

Dα
0 f (x) =

−D
2Γ (1−α)cos απ

2

(∫ ∞

0

f (x− u)du
uα

−
∫ ∞

0

f (x+ u)du
(u)α

)
.

By virtue of the equality u−α = α
∫ ∞

u
dh

hα+1 and changing the order of integration, we
have

−α
2Γ (1−α)cos απ

2

(∫ ∞

0
f ′(x− u)

∫ ∞

u

1
hα+1 dhdu−

∫ ∞

0
f ′(x+ h)

∫ ∞

u

1
hα+1 dhdu

)

=
α

2Γ (1−α)cos απ
2

∫ ∞

0

f (x− h)− 2 f (x)+ f (x+ h)
h1+α dh.

Now using the known property

Γ (1−α)Γ (1+α) =
πα

sinπα

of Euler’s gamma function, we obtain

α
2Γ (1−α)cos απ

2

= (1/π)Γ (α+ 1)sin
πα
2

,

and, consequently, the representation (3.70).

Theorem 3.1. For the Fourier transforms of Rα
0 f (x) and Dα

0 f (x) for α ≥ 0 the
following formulas are valid:

1. F [Rα
0 f ](ξ ) = |ξ |−α f̂ (ξ );

2. F [Dα
0 f ](ξ ) =−|ξ |α f̂ (ξ ).

Part 2 of this theorem implies that the α values in the operator Dα
0 f (x) can

naturally be extended to α = 2 as D2
0 = d2

dx2 .

3.8 Multidimensional Riesz potentials and their inverses

The natural generalizations of the one-dimensional Riesz potential Rα
0 and Riesz-

Feller derivative Dα
0 to the n-dimensional case, respectively, are the n-dimensional

Riesz potential (with the normalizing constant Cn,α )

R
α
0 f (x) =Cn,α

∫
Rn

f (y)dy
|x− y|n−α , α > 0, α �= n,n+ 2, . . . , (3.72)
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and the n-dimensional hyper-singular integral (the inverse Riesz potential) defined
as (see (2.48))

D
α
0 f (x) =

1
d(α, l)

∫
Rn

Δ l
y f (x)

|y|n+α dy, 0 < α �= 2m, m ∈N. (3.73)

The normalizing constant in (3.72) is

Cn,α =
Γ ( n−α

2 )

2απn/2Γ (α2 )
.

In equation (3.73) l is integer, l > α, Δ l
y is the centered finite difference of the

order l in the y direction, and d(α, l) is constant defined by (2.49). For our further
considerations it suffices to consider the case l = 2 and 0 < α < 2. In this case the
operator Dα

0 takes the form (see Section 2.4)

D
α
0 f (x) = Bn,α

∫
Rn

f (x− y)− 2 f (x)+ f (x+ y)
|y|n+α dy, 0 < α < 2, (3.74)

where

Bn,α =
αΓ (α2 )Γ ( n+α

2 )sinαπ
2

22−απ1+n/2
. (3.75)

Below we will derive (3.75) (see Theorem 3.4). It is seen from equation (3.75) that
the value α = 2 is degenerate.

Theorem 3.2. Let α > 0 and α �= n,n+ 2, . . . . Then for the symbol σR
α
0
(ξ ) of the

n-dimensional Riesz potential the formula

σR
α
0
(ξ ) = |ξ |−α , ξ ∈R

n, (3.76)

holds.

Proof. The Riesz potential can be expressed as a convolution. Namely,

R
α
0 f (x) =

(
Cn,α

|x|n−α ∗ f

)
(x).

Applying the Fourier transform, one has

F [Rα
0 f ](ξ ) = σR

α
0
(ξ ) ·F[ f ](ξ ),

where

σR
α
0
(ξ ) =Cn,αF

[
1

|x|n−α
]
(ξ ).

In Proposition 1.20 of Chapter 1 setting σ = n−α, one has

F

[
1

|x|n−α
]
(ξ ) = bα ,n|ξ |−α ,
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where

bα ,n =
2απn/2Γ (α2 )

Γ ( n−α
2 )

.

Obviously, Cn,αbα ,n ≡ 1, and we obtain (3.76).

Theorem 3.3. Let 1< p,q<∞, s∈R. Then the following mappings are continuous:

1. if 0 < α < n(p−1)
p , then

R
α
0 :

◦
B

s

pq(R
n)→ Bs+α

pq (Rn); (3.77)

2. if n(p−1)
p + 2(m− 1)< α < n(p−1)

p + 2m− 1,m ∈ N, then

R
α
0 :

◦
B

s

pq,2m−1(R
n)→ Bs+α

pq (Rn); (3.78)

3. if n(p−1)
p + 2m− 1≤ α < n(p−1)

p + 2m, m ∈ N, then

R
α
0 :

◦
B

s

pq,2m(R
n)→ Bs+α

pq (Rn). (3.79)

Proof. One can easily verify that the symbol of the operator Rα
0 considered as a

ΨDOSS defined on ΨG,p, where G = R
n \ {0}, satisfies the condition (2.36) with

l = s+α. Due to Theorem 3.2 the symbol of Rα
0 has a singularity of order α at

ξ = 0. Let α ∈ [0,n(p− 1)p−1) and ϕ ∈ Bs
pq(R

n) with suppϕ ⊂ Q.. Further, let
{φ j}∞j=0 with {F−1φ j}∞j=0 ∈Φ, define the norm of the Besov space Bs

pq(R
n). Then

we have

‖Rα
0 ϕ(x)|Bs+α

pq ‖q ≡
(∫

Rn
|F−1φ0

1
|ξ |α Fϕ |pdx

) p
q

+
∞

∑
j=1

2(s+α) jq‖F−1φ j
1
|ξ |α Fϕ |Lp‖q. (3.80)

Since α p′< n, the first term on the right of (3.80), in accordance with Theorem 1.24
of Chapter 1, can be estimated as

∫
Rn
|F−1φ0

1
|ξ |α Fϕ |pdx≤C‖ϕ |Bs

pq‖p,

where C is a positive constant depending on Q, α, and p. Further, since suppφ j ⊆
{2 j ≤ |ξ | ≤ 2 j+1}, j = 1, . . . , the second term in (3.80) can be estimated as

∞

∑
j=1

2(s+α) jq‖F−1φ j
1
|ξ |α Fϕ |Lp‖q ≤C

∞

∑
j=1

2s jq‖F−1φ jFϕ |Lp‖q

=C‖ϕ(x)|Bs
pq‖q. (3.81)
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Estimates (3.80)–(3.81) imply ‖Rα
0 ϕ(x)|Bs+α

pq ‖ ≤ ‖ϕ(x)|Bs
pq‖, and thus, the conti-

nuity of the mapping in (3.77).
Now suppose that α ∈ (2(m−1)+n(p−1)p−1,2m−1+n(p−1)p−1) and ϕ ∈

◦
B

s

pq,2m−1, or α ∈ (2m− 1+ n(p− 1)p−1,2m+ n(p− 1)p−1) and ϕ ∈ ◦
B

s

pq,2m. Then
due to Theorem 1.23 there exists a function v ∈ Bs+m̄

pq such that Fϕ = |ξ |m̄Fv. Here
m̄ = 2m− 1 in the first case, and m̄ = 2m in the second case. In both cases this fact
yields the following estimate for the first term of (3.80)

C
(∫

suppφ0

|ξ |(m̄−α)p′dξ
)p−1‖v|Bs+m̄

pq ‖p ≤C‖ϕ |Bs
pq‖p,

where C is a positive constant depending on Q, α, p, and m. One can estimate the
second term on the right side of (3.80) as in the previous case, and hence, obtain the
continuity of mappings in (3.78) and (3.79). The proof is complete.

Theorem 3.4. Let 0 < α < 2. Then for the symbol σD
α
0
(ξ ) of the n-dimensional

Riesz-Feller derivative the formula

σD
α
0
(ξ ) =−|ξ |α , ξ ∈ R

n, (3.82)

holds.

Proof. Due to Corollary 2.11, Part ii) for the symbol of Dα
0 , we have

σD
α
0
(ξ ) = D

α
0 e−ixξ |x=0 = Bn,α

∫
Rn

Δ2
y e−ixξ

|y|n+α dy|x=0,

where Bn,α is defined in (3.75). Therefore, in order to prove the proposition we need
to show that ∫

Rn

Δ2
y e−ixξ

|y|n+α dy|x=0 =−|ξ |
α

Bn,α
. (3.83)

For the left-hand side we have

∫

Rn

Δ2
y e−ixξ

|y|n+α dy|x=0 =

∫

Rn

e−i(x+y)ξ − 2+ e−i(x−y)ξ

|y|n+α dy|x=0

=

∫

Rn

e−iyξ − 2+ eiyξ

|y|n+α dy

= F [
1

|y|n+α ](−ξ )− 2F[
1

|y|n+α ](0)+F[
1

|y|n+α ](ξ )

= Δ2
ξF [

1
|y|n+α ](0).
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In Proposition 1.20 taking σ = n+α, we have

F

[
1

|x|n+α
]
(ξ ) =

2−απn/2Γ (−α
2 )

Γ ( n+α
2 )

|ξ |α ,

where Γ (−α
2 ) is the value at z =−α/2∈ (−1,0) of the analytic continuation of the

Euler gamma-functionΓ (z) to the interval (−1,0). It follows from this equality that

Δ2
ξF

[
1

|y|n+α
]
(0) =

21−απn/2Γ (−α
2 )

Γ ( n+α
2 )

|ξ |α . (3.84)

Finally, using the relationship (see [AS64], formula 6.1.17)

−α
2
Γ
(
−α

2

)
Γ
(α

2

)
=

π
sin πα

2

in equation (3.84), we obtain (3.83).

Theorem 3.5. Let 1 < p,q < ∞, s ∈ R, and 0 < α < 2. Then the mapping

D
α
0 : Bs

p,q(R
n)→ Bs−α

pq (Rn)

is continuous.

Proof. Due to Theorem 3.4 operator Dα
0 can be considered as aΨDOSS defined on

ΨG,p(R
n) with G = R

n \ {0}. Now the proof follows from Theorem 2.8, since the
symbol of Dα

0 satisfies all the conditions of this theorem.

Remark 3.4. 1. Riesz potentials form a semigroup. Namely, ifℜ(α)> 0,ℜ(β )> 0,

and ℜ(α +β ) > 0, then R
α
0 R

β
0 f = R

α+β
0 f for f ∈ G . It is not hard to see that

the mapping R
α
0 : G → G is continuous. By duality, the mapping R

α
0 : G

′ → G
′

is continuous, and thus the semigroup property extends to G
′
, as well.

2. The operator Dα
0 in (3.74) is defined for 0 < α < 2. As was noted above in this

definition the value α = 2 is degenerate. However, the symbol of this operator is
meaningful for α = 2, as well:

lim
α→2

σD
α
0
(ξ ) =−|ξ |2.

We know that this function is the symbol of the Laplace operator. Therefore, it is
natural to extend D

α
0 to α = 2, setting D

2
0 = Δ .

3.9 Fractional powers of positive definite operators

The relationship between the symbols of the operatorDα
0 and the (negative) Laplace

operator −Δ , i.e.
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σD
α
0
(ξ ) =−|ξ |α =−(|ξ |2)α/2 =−[σ−Δ (ξ )]α/2,

obtained in the previous section, at least at the formal level, gives an idea to represent
D
α
0 as a fractional power of−Δ , namely Dα

0 =−(−Δ)α/2. Therefore, in this section
we briefly discuss fractional powers of positive definite operator. By definition, a
closed linear operator A with a domain D(A), dense in a Banach space X , is called
positive definite, if its spectrum does not contain the negative axis (−∞,0], and the
estimate ‖(A−λ I)−1‖ ≤C(1+ |λ |)−1 holds for λ ∈ (−∞,0].

First, as is known from the spectral theory of linear operators [DS88], that for
an arbitrary positive self-adjoint operator A defined in a Hilbert space H and with
a spectrum Σ(A) and a spectral decomposition Eλ , one can define the fractional
powers of A :

Aα =
∫

Σ(A)

λαdEλ ,

whose domain is

D(Aα) = { f ∈H :
∫
Σ(A)

λ 2α(dEλ f , f ) <∞}.

For instance, the Laplace operator A =−Δ in L2(Rn) is a positive self-adjoint oper-
ator, whose spectrum is Σ(−Δ) = (0,∞), so one can define its fractional powers in
the form

(−Δ)α/2 =

∫ ∞

0
λα/2dEλ , α > 0,

where Eλ is the spectral decomposition corresponding to−Δ . Though this approach
is nice from the theoretical point of view, however it is not always practical. To use
this approach one needs to know how to find and work with the spectral decompo-
sition of A.

The following statement will be used in our further considerations.

Proposition 3.16. Let μ > 0 and 0 < α < m. Then

∞∫

0

sα−1ds
(μ+ s)m = μα−mΓ (α)Γ (m−α)

Γ (m)
. (3.85)

Proof. The substitution s = μu
1+u in the integral yields

∞∫

0

sα−1ds
(μ+ s)m = μα−m

∞∫

0

uα−1(1− u)m−α−1du = μα−mB(α,m−α),

where B(·, ·) is Euler’s beta function. Now using formula (3.4), one obtains (3.85).
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Let A be a positive definite operator and 0 < α < 1. Then for f ∈D(A) fractional
powers of A is defined by

Aα f =
1

Γ (α)Γ (1−α)

∞∫

0

λα−1(A+λ I)−1A f dλ . (3.86)

This definition was first given by Balakrishnan in 1960 [Bal60]. To feel this defini-
tion better let us assume that A= t, that is A f = t f , where t is a positive number, then
the expression on the right side of (3.86) becomes tα f (= Aα f ). Indeed, changing
λ/t → s, one has ∫ ∞

0

tλα−1

t +λ
f dλ =

(
tα
∫ ∞

0

sα−1ds
1+ s

)
f .

The integral on the right-hand side equals Γ (α)Γ (1−α). This follows from (3.85)
taking μ = 1 and m = 1. Balakrishnan in his paper [Bal60] proved that this idea
works for any positive definite operators.

The definition (3.86) can be generalized to the case 0 < α < m, where m ∈ N;
see [Kom66]. Namely, for arbitrary f ∈D(Am)

Aα f =
Γ (m)

Γ (α)Γ (m−α)

∞∫

0

λα−1[(A+λ I)−1A]m f dλ .

In particular, if m = 2, 0 < α < 2, and A = −Δ , then for f (x) ∈ H2(Rn), where
H2(Rn) is the Sobolev space, we have

− (−Δ)α/2 f (x) =
−1

Γ (α)Γ (2−α)

∞∫

0

λ
α
2 −1[(−Δ +λ I)−1(−Δ)]2 f (x)dλ . (3.87)

Applying the Fourier transform to the right side of (3.87), and changing the order of
integration, we have

−1
Γ (α)Γ (2−α)

∞∫

0

λ
α
2 −1F [[(−Δ +λ I)−1(−Δ)]2 f ](ξ )dλ

=
−1

Γ (α)Γ (2−α)

∞∫

0

λ
α
2 −1 |ξ |4

(λ + |ξ |2)2 dλ

=−|ξ |α .

In the last stage of this calculation we used (3.85) with m = 2 and μ = |ξ |2 > 0.
Thus, the operatorDα

0 defined in (3.74) and the fractional power operator−(−Δ)α/2

defined in (3.87) have the same symbol, and therefore these two operators coincide
in the space H2(Rn).
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3.10 Grünwald-Letnikov fractional derivative

In the numerical calculation of fractional derivatives the Grünwald-Letnikov
approximation or its modifications are frequently used.

Definition 3.4. By definition, the Grünwald-Letnikov fractional derivative of order
α ≥ 0 is aD

α
t defined for t ∈ (a,b) as

aD
α
t f (t) = lim

h→0

(Δα
h f )(t)

hα
, (3.88)

provided the limit exists, where Δα
h means the finite difference of fractional order α

with step h > 0:

(Δα
h f )(t) =

� t−a
h �
∑

m=0

(−1)m
(
α
m

)
f (t−mh). (3.89)

Here (
α
m

)
=

Γ (α+ 1)
Γ (α−m+ 1)m!

,m = 0,1, . . . . (3.90)

If α = 0, then Δ0
h f (t) = f (t), since

(
0
m

)
=

1
Γ (1−m)m!

=

{
1 if m = 0,

0 if m = 1,2, . . . .

due to poles of the gamma function Γ (z) at points z = 0,−1,−2, . . . . Hence,
aD0

t = I, where I is, as usual, the identity operator. If α = 1, in a similar way
we get Δ1

h f (t) = f (t)− f (t− h), and therefore, in this case the Grünwald-Letnikov
derivative coincides with the first order derivative:

aD
1
t f (t) = lim

h→0

f (t)− f (t− h)
h

= f ′(t).

Analogously, it can easily be verified that aDn
t f (t)= f (n)(t) for every integerα = n :

aD
n
t f (t) = lim

h→0

1
hn

n

∑
m=0

(−1)m
(

n
m

)
f (t−mh), (3.91)

where (
n
m

)
=

n!
m!(n−m)!

=
Γ (n+ 1)

m!Γ (n−m+ 1)
.

What concerns non-integer α, the definition of aDα
t in (3.88) and (3.89) is essen-

tially obtained from (3.91) replacing n by α. Hence, the binomial coefficients take
the form (3.90), and apart from the integer case, the binomial coefficients never
vanish. However, if m > (t − a)/h, then t −mh < a, that is t −mh will be out of
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interval (a,b). Therefore, in the case of non-integer α, the upper limit of the sum
in the Grünwald-Letnikov derivative is N = �(t− a)/h�, and N → ∞ when h → 0.
If the interval (a,b) coincides with the real axis (−∞,∞), then the upper limit in
the summation becomes ∞. Thus in this case the Grünwald-Letnikov derivatives are
defined through infinite series.

We note that aDα
t defined in (3.88) and (3.89) is called a forward Grünwald-

Letnikov derivative, in accordance with the forward finite difference in its definition.
If one replaces the step size h to −h, h > 0, in the definition of aD

α
t , then the ob-

tained expression is called a backward Grünwald-Letnikov derivative and is denoted
by tDα

b . Hence, by definition, the backward Grünwald-Letnikov derivative is

tD
α
b f (t) = (−1)αΓ (α+ 1) lim

h→0

⎡
⎣ 1

hα

� b−t
h �
∑

m=0

(−1)m

m!Γ (α−m+ 1)
f (t +mh)

⎤
⎦ . (3.92)

Now we present two important assertions related to Grünwald-Letnikov deriva-
tives without proof. The first one is due to Letnikov proved in his original work
[Let68] published in 1868.

Proposition 3.17. (Letnikov) Let n− 1 < α < n and f ∈Cn[a,b]. Then

aD
α
t f (t) =

n−1

∑
k=0

f (k)(a)(x− a)k−α

Γ (k−α+ 1)
+

1
Γ (n−α+ 1)

∫ t

a

f (n)(τ)dτ
(t− τ)α−n . (3.93)

Comparing (3.93) with (3.53) one can see that the Grünwald-Letnikov derivative
aDα

t and the Riemann-Liuoville derivative aDα
t coincide in the class of functions

satisfying the conditions of Proposition 3.17. Therefore, both Riemann-Liuoville
and Caputo-Djrbashian derivatives can be numerically evaluated using the
Grünwald-Letnikov approximation.

The second result is on the order of accuracy of the Grünwald-Letnikov approx-
imation. The reader is referred to paper [Gor97] for details.

Proposition 3.18. Let f ∈Cn[a,b]. Then for all α ∈ (0,n],

aD
α
t f (t) =

(Δα
h f )(t)

hα
+O(h), h→ 0,

where (Δα
h f )(t) is defined in (3.89).

Remark 3.5. 1. Similar results hold for the backward GL derivatives and approxi-
mations

2. If (a,b) = (−∞,∞), then the forward and backward Grünwald-Letnikov deriva-
tives of order α ∈ (m− 1,m) take the forms

−∞Dα
t f (t) = lim

h→0

1
hα

∞

∑
m=0

(−1)m
(
α
m

)
f (t−mh), (3.94)
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tD
α
∞ f (t) = lim

h→0

1
hα

∞

∑
m=0

(−1)m+α
(
α
m

)
f (t +mh), (3.95)

respectively, and coincide with the corresponding forward and backward
Liuoville-Weyl derivatives of order α in the class of suitable functions (see
[SKM87]).

3.11 Generalized fractional order operators. Distributed order
operators

A distributed fractional order differential operator generalizes fractional order
derivatives.

Definition 3.5. Let T > 0 be an arbitrary number and function f ∈ Cm[0,T ]. Let
μ be a bounded measure defined on the interval [0,ν], where ν ∈ (m− 1,m], m ∈
N, and such that the function α → Dα∗ f (t), where Dα∗ is the Caputo-Djrbashian
derivative of order α, is μ-measurable for all t ∈ [0,T ]. The operator Dμ defined by

Dμ f (t) =
∫ ν

0
Dα
∗ f (t)dμ(α), 0 < t ≤ T, (3.96)

is called a distributed fractional order differential operator with mixing measure μ .

Since the integral in (3.96) is carried out with respect to a measure, some explana-
tion is needed. First, for any function f ∈Cm[0,T ] the function ϕ(α, t) = Dα∗ f (t) is
an analytic function of α on the complex domain ℜ(α)< m (see [OS74], page 49).
Therefore, in general, μ can be a measure defined on the complex plane with the
support on ℜ(α) ≤ m. However, we will consider only measures defined on the in-
terval (0,m], to have a generalization of fractional order differential equations.

Second, since ϕ(α, t) is an analytic function of α for each fixed t the inte-
gral (3.96) is well defined for any Borel measure μ ∈ B[0,m]. In particular, if μ
is a linear combination of the Dirac delta functions concentrated on integer points
jk ∈ (0,m], then Dμ defines a differential operator.

Third, the specification of (3.96) is that the integration is carried out in the
variable α , the order of differentiation. Therefore, it is named a distributed order
differential operator. In what follows we use the abbreviation DODO for distributed
fractional order differential operators, and DODE for distributed fractional order
differential equations. Models with DODO arise naturally in various fields, for in-
stance, in the kinetic theory [CGSG03] when the exact scaling is lacking or when
diffusion is too slow (ultra-slow diffusion), in the theory of elasticity [LH02] for
description of rheological properties of composite materials. Caputo [Cap67] was
first who introduced DODO to model waves in viscoelastic media.

Fourth, Definition 3.5 is based on the Caputo-Djrbashian fractional derivative.
Similarly, one can introduce the DODO based on the Riemann-Liouville fractional
derivative, i.e.
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RLDμ f (t) =
∫ ν

0
Dα f (t)dμ(α), 0 < t ≤ T, (3.97)

There is a connection between these two approaches, which will be established
later on; see Proposition 3.23. In Chapter 7 we also introduce DODO based on
the Liouville-Weyl fractional derivative.

Consider some examples of DODO.

Example 3.13. 1. Let μ = δβ , i.e., Dirac’s delta with mass on β ∈ (0,ν]. Then one

has Dμ = Dβ
∗ .

2. Let μ = ∑a jδα j , where a j ∈R and α j ∈ (0,ν], j = 1, . . . ,J. Then

Dμ f (t) =
J

∑
j=1

a jD
α j∗ f (t).

3. Let dμ(α) = a(t)dt, where a ∈C[0,ν] is a positive function. Then

Dμ f (t) =
∫ ν

0
a(t)Dα

∗ f (t)dt.

In the theory of DODOs the following functions play an important role:

Kμ, j(t) =
∫ j

j−1

t j−α−1dμ(α)
Γ ( j−α)

, t > 0, j = 1, . . . ,m, (3.98)

which will be called kernel functions, and

Φu(s) =
∫ u

0
sαdμ(α), ℜ(s) > 0, u ∈ (0,ν]. (3.99)

Since suppμ ⊂ [0,ν], for Km(t) one has

Kμ,m(t) =
∫ ν

m−1

tm−α−1dμ j(α)
Γ (m−α)

.

The substitution α− ( j− 1) = β reduces the operators Kj to

Kμ j(t) =
∫ 1

0

t−βdμ j(β )
Γ (1−β )

,

where μ j(β ) = μ(β +( j− 1)). Therefore, it suffices to study the properties of the
kernel function

Kν(t) =
∫ 1

0

t−βdν(β )
Γ (1−β )

,

where ν is a bounded measure defined on [0,1].

Proposition 3.19. (Kochubey [Koc08]) Let dν(β ) = a(β )dβ , a ∈ C3[0,1], and
a(1) �= 0. Then
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1. Kν(t) =
a(1)

t(ln t)2 +O( 1
t(lnt)3 ), t → 0;

2. Φ1(s) =
a(1)
lns +O( 1

(lns)2 ), s→ ∞,

3. If a ∈C[0,1] and a(0) �= 0, then Φ1(s)∼ a(0)
s lns , s→ 0.

Another description of the kernel function K ≡Kν is due to Meerschaert and
Scheffler [MS06]. Denote by RV∞(γ) the set of functions regularly varying at infinity
with exponent γ, that is eventually positive functions with behavior g(λ t)/g(t) =
λγ , t → ∞, for any λ > 0. Similar meaning has the set of functions regularly varying
at zero, which is denoted by RV0(γ).

Proposition 3.20. (MMM) Let dν(β ) = a(β )dβ , where a∈ RV0(β −1). Then there
exists K∗ ∈ RV∞(0) such that K (t) = (ln t)−βK∗(ln t). Especially, K (t) = M(ln t)
for some M ∈ RV∞(−β ) and K ∈ RV∞(0), so K (t) is slowly varying at infinity.
Conversely, if for K (t) we have K = M(ln t) for some M ∈ RV∞(−β ) and β > 0,
then a ∈ RV0(β − 1).

Proposition 3.21. Let m ∈ N and ν ∈ (0,m]. Then the distributed fractional order
operator Dμ defined in (3.96) has the representation

Dμ f (t) =
m

∑
j=1

(K j ∗ f ( j))(t), (3.100)

where ∗ denotes the convolution operation and the kernel functions K j ≡ Kμ, j,
j = 1, . . . ,m, are defined by equation (3.98).

Proof. Dividing the interval (0,m] into subintervals ( j−1, j], j = 1, . . . ,m, one has

Dμ f (t) =
m

∑
j=1

∫ j

j−1
Dα
∗ f (t)dμ(α).

Since, the Caputo-Djrbashian derivative of order α ∈ ( j− 1, j]) of a function f is a

convolution Kα
j ∗ f ( j), Kα

j (t) =
t j−α−1

Γ ( j−α) , then

Dμ f (t) =
m

∑
j=1

∫ j

j−1
Kα

j ∗ f ( j)dμ(α) =
m

∑
j=1

(K j ∗ f ( j))(t),

obtaining (3.100).

In the same manner one can prove the following proposition.

Proposition 3.22. Let m ∈ N and ν ∈ (0,m]. Then the distributed fractional order
operator RLDμ defined in (3.97) has the representation

RLDμ f (t) =
m

∑
j=1

d j

dt j (K j ∗ f )(t),
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where ∗ denotes the convolution operation and the kernel functionsK j, j = 1, . . . ,m,
are defined by equation (3.98).

The following proposition generalizes relation (3.52) establishing a connec-
tion between DODOs based on the Caputo-Djrbashian and Riemann-Liouville
derivatives.

Proposition 3.23. The two DODOs Dμ and RLDμ are related to each other through
the formula

Dμ f (t) = RLDμ f (t)−
m−1

∑
k=0

f (k)(0)Mk(t), (3.101)

where

Mk(t) =
∫ ν

0

dμ(α)
Γ (1+ k−α)tα−k , k = 0, . . . ,m− 1.

Proof. The proof of this statement immediately follows from (3.52) by integration
with respect to the measure μ(α).

Proposition 3.24. For the Laplace transform of the kernel functionK j, j = 1, . . . ,m,
the following formulas hold:

L [K j](s) =
∫ j

j−1
sα− jdμ(α)

=
Φ j(s)−Φ j−1(s)

s j , s > 0, j = 1, . . . ,m. (3.102)

Proof. The Laplace transform of K j(t) is

L [K j](s) =
∫ ∞

0
e−st

(∫ j

j−1

t j−α−1dμ(α)
Γ ( j−α)

)
dt =

∫ j

j−1
L
[ t j−α−1

Γ ( j−α)

]
dμ(α).

Now the result follows due to formula (1.18) and the definition of Φ j(s) given in
equation (3.99).

Proposition 3.25. Let f ∈ C(m)[0,∞). Then for the Laplace transform of Dμ f the
following formula holds:

L [Dμ f ](s) =Φν (s)L [ f ](s)−
m−1

∑
k=0

f (k)(0)
Φν(s)−Φk(s)

sk+1 , s > 0, (3.103)

where Φu(s) is defined in (3.99).

Proof. Due to Proposition 3.21, one has Dμ f (t) =∑m
j=1(K j ∗ f ( j))(t). This implies

L [Dμ f ](s) =
m

∑
j=1

L [K j](s)L [ f ( j)](s), s > 0.
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Further, using (3.102) and the first differentiation formula for the Laplace transform
(see (1.22)), one obtains

L [Dμ f ](s) =
m

∑
j=1

Φ j(s)−Φ j−1(s)

s j

(
s jL [ f ](s)−

j−1

∑
k=0

f (k)(0)s j−1−k

)

=L [ f ](s)
m

∑
j=1

(
Φ j(s)−Φ j−1(s)

)

−
m

∑
j=1

j−1

∑
k=0

(
Φ j(s)−Φ j−1(s)

) f (k)(0)
sk+1 , s > 0. (3.104)

Taking into account Φ0(s) ≡ 0 and Φm(s) = Φν(s) due to the assumption that

suppμ ⊂ (0,ν], where ν ∈ (m− 1,m], one has ∑m
j=1

(
Φ j(s)−Φ j−1(s)

)
= Φν (s).

Therefore, the first term on the right-hand side of (3.104) equals Φν (s)L [ f ](s).
Changing order of summation in the second term,

m

∑
j=1

j−1

∑
k=0

(
Φ j(s)−Φ j−1(s)

) f (k)(0)
sk+1 =

m−1

∑
k=0

f (k)(0)
sk+1

m

∑
j=k+1

(
Φ j(s)−Φ j−1(s)

)

=
m−1

∑
k=0

f (k)(0)
sk+1

(
Φν(s)−Φk(s)

)
,

yielding (3.103).

Proposition 3.26. For the Laplace transform of RLDμ f the following formula holds:

L [RLDμ f ](s) =Φν (s)L [ f ](s)−
m−1

∑
k=0

Nksm−k−1,s > 0, (3.105)

where Nk =
∫ ν

0 (DkJm−α f )(0)dμ(α).

Proof. The proof of this statement immediately follows from (3.29) by integrating
with respect to the measure μ(α) on the interval [0,ν).

3.12 Variable order fractional derivatives and the memory effect

Another generalization of fractional order derivatives are fractional variable
order differential operators. We will use the abbreviation VODO for fractional vari-
able order differential operators. The study of variable fractional order derivatives
and operators started in the middle of the 1990s by N. Jacob et al. [JL93], S. G.
Samko et al. [SR93, Sam95], W. Hoh [Hoh00]. A. V. Chechkin et al. [CGS05] used
a version of variable order derivatives to describe kinetic diffusion in heterogeneous
media. Lorenzo and Hartley [LH02] introduced a wide class of variable fractional
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order derivatives, which can be used for modeling of processes with various types
of memory effects.

Definition 3.6. Let a function β (t), t > 0, satisfies the condition 0 < β (t) ≤ 1. By
definition, a variable order fractional derivative is

D
β (t)
μ,ν f (t) =

d
dt

∫ t

0
K

β
μ,ν(t,τ) f (τ)dτ, (3.106)

where μ and ν are real parameters, t > 0, and

K
β
μ,ν(t,τ) =

1

Γ (1−β (μt+ντ))(t− τ)β (μt+ντ) , 0 < τ < t . (3.107)

The function β (t) is called an order function. If β (t) = 1 for some t0 > 0, then

we agree that the integral on the right-hand side of (3.106) equals d f (t)
dt whenever

μt+ντ = t0. The operator Dβ (t)
μ,ν depends on parameters μ and ν. These parameters

run in the parallelogram Π shown in Figure 3.1, which we call Lorenzo-Hartley
causality parallelogram (or LH-parallelogram). Therefore, we call the operator

D
β (t)
μ,ν a Riemann-Liouville type (μ ,ν)-VODO with the order function β .

Similarly, one can introduce the Caputo-Djrbashian type (μ ,ν)-VODO with the
order function β .

Definition 3.7. Let a function β (t), t > 0, satisfy the condition 0< β (t)≤ 1. By def-
inition, a Caputo-Djrbashian type (μ ,ν)-VODO with the order function β is

D
β (t)
∗μ,ν f (t) =

∫ t

0
K

β (t)
μ,ν (t,τ)

d f (τ)
dτ

dτ. (3.108)

μ

ν<0

ν>0

ν

-1

1

10

Fig. 3.1 The Lorenzo-Hartley (LH) causality parallelogram Π .

where parameters μ and ν and the kernel function K
β (t)
μ,ν (t,τ) are defined as in

Definition 3.6.
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The Caputo-Djrbashian type (μ ,ν)-VODOs can be defined for any positive
bounded piecewise continuous order functions. Denote by [β (t)] the integer part of

β (t) for each t > 0, and by {β (t)} its fractional part. Then one can rewriteDβ (t)
∗μ,ν f (t)

in equation (3.108) in the form

D
β (t)
∗μ,ν f (t) =

∫ t

0
K

{β}
μ,ν (t,τ) f [β (μt+ντ)]+1(τ)dτ. (3.109)

Obviously, if β (t) < 1, then [β (μt + ντ)] = 0 and {β (μt + νt)} = β (μt + νt).
Therefore, (3.109) coincides with (3.108). For those values of t0 > 0 for which
β (t0) = 1, as we did in Definition 3.6, we agree that the integral on the right-

hand side of (3.109) equals d f (t)
dt whenever μt + ντ = t0. The definition (3.109)

is valid for any bounded (not necessarily bounded with 1) piecewise continu-
ous function β (t) with the additional agreement that if β (t0) = m ∈ N for some

t0 > 0, then the right-hand side of (3.109) equals dm f (t)
dtm whenever μt + ντ = t0.

To verify validity of this claim, assume that m− 1 < β (t) < m, in some interval
(a,b). Then [β (μt + ντ)] = m− 1 and {β (μt + ντ)} = β (μt + ντ)−m+ 1 when
μt+ντ ∈ (a,b). The latter makes the integral in (3.109) consistent with the Caputo-
Djrbashian form of the fractional derivative.

Remark 3.6. The role of the Lorenzo-Hartley causality parallelogram (see Fig-
ure 3.1) Π =

{
(μ ,ν) ∈ R2 : 0≤ μ ≤ 1,0≤ μ+ν ≤ 1

}
in the VODOs (3.106) and

(3.108) or, in more general case, in (3.109), is that μt + ντ runs in the interval
(0, t) when (μ ,ν) ∈ Π . Indeed, the conditions (μ ,ν) ∈ Π and τ ∈ (0, t) yield
μt + ντ ∈ (μt,(μ + ν)t) ⊂ (0, t). In other words, the condition (μ ,ν) ∈ Π pre-
determines the causality, since 0≤ μt +ντ ≤ t for all t > 0 and 0≤ τ ≤ t.

Remark 3.7. In Chapter 5 we will use VODOs to model complex diffusion processes
in heterogeneous media with different diffusion modes in different time intervals
(see Definition 3.8). The corresponding mathematical model is the Cauchy problem
for a pseudo-differential equation with a singular symbol and a variable fractional
order time derivative. Such a model takes into account the memory effects of the past
in computing present or future states of the underlying diffusion process. Diffusion
processes in heterogeneous media are accompanied by frequent changes of diffusion
modes. It is known that a non-Markovian random process possesses a memory of
past (see [MK00, Zas02]). For instance, protein movement in cell membrane, as is
recorded in [SJ97, Sax01], follows a non-Markovian (anomalous) diffusion process.
Descriptions of such processes using random walk models also show the presence
of non-Markovian type memory [AUS06, GMM02, LSAT05]. It turns out there is
another type of memory noticed first by Lorenzo and Hartley in their paper [LH02]
in some particular cases of μ and ν . This kind of memory arises when the diffusion
mode changes. Below we study memory effects in the case when the order function
is piecewise constant.
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The kernel (3.107), and thus, both the operators (3.106) and (3.108) are weakly
singular for (μ ,ν) ∈Π . Further, denote

K (t,τ,s) =
1

Γ (1−{β (s)})(t− τ){β (s)}
, t > 0, 0 < τ < t, 0 < s < t, (3.110)

where 0 < β (s) ≤ M, for some M < ∞, is an order function. Let 0 = T0 < T1 <
.. . < TN < TN+1 = ∞ be a partition of the interval (0,∞) into N + 1 sub-intervals
(Tk,Tk+1). Let β (t) be a piecewise constant function

β (t) =
N

∑
k=0

βk Ik(t), t ∈ (0,∞), (3.111)

where Ik is the indicator function of the interval (Tk,Tk+1) and 0 < βk ≤ 1, k =
0, . . . ,N, are constants. Under these conditions, the function (3.110) becomes

K(t,τ,s) =
N

∑
k=0

Ik(s)
1

Γ (1−βk)(t− τ)βk
, t > 0, 0 < τ < t, 0 < s < t, (3.112)

and the kernel of the fractional order operator (3.108) becomes

K
β (t)
μ,ν (t,τ) = K(t,τ,μt +ντ), t > 0, 0≤ τ < t. (3.113)

with K(t,τ,s) defined in (3.112).

Theorem 3.6. Let the order function β (t) be a piecewise constant. Then the mapping

D
β (t)
∗μ,ν : Cm[0,T ]→C[0,T ]

is continuous.

Proof. For simplicity we assume m = 1. The proof for m > 1 does not have an

essential difference. Let f ∈C1[0,T.] Then h(t) =D
β (t)
∗μ,ν f (t) is continuous. Indeed,

exploiting (3.112) and (3.113), we have

D
β (t)
∗μ,ν f (t)|=

∫ t

0
K(t,τ,μt +ντ)

d f
dt

dt

=
N

∑
k=0

1
Γ (1−βk)

∫ t

0

Jk(μt +ντ) d f
dt

(t− τ)βk
dτ =

N

∑
k=0

Jβk
k D f (t),

where Jβk
k is a fractional order integration operator. Since D f = d f

dt ∈C[0,T ], it fol-

lows from Proposition 3.2 that Jβk
k D f (t) ∈C[0,1] for each k = 0, . . . ,N. Moreover,

since the kernel Kk(t,τ) =Jk(μt +ντ)(t− τ)−βk ∈ L1(0,1) for each k = 0, . . . ,N,
it follows that
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|Jβk
k D f (t)| ≤ ‖Kk|L1‖ sup

[0,T ]

∣∣∣∣d f
dt

∣∣∣∣ , k = 0, . . . ,N,

implying the continuity of Dβ (t)
∗μ,ν .

Remark 3.8. With slight modification of the proof one can show that Theorem 3.6
can be extended to any piecewise continuous order functions.

Definition 3.8. Let the order function β (t) be defined as in (3.111) and (μ ,ν) ∈Π .
We say that the triplet (βk,μ ,ν) determines a diffusion mode in the time interval
(Tk,Tk+1).

Remark 3.9. If one assumes that the input is a triplet (βk,μ ,ν), then the output is
determined by the fact that which values of β (t) are used to compute the variable
order derivative, or in other words, by the fact that which interval (Tk,Tk+1) the
point s = μt + ντ belongs to. Since (μ ,ν) ∈ Π implies μt + ντ ∈ (μt,(μ + ν)t),
this means that the operators Dβ (t)

μ,ν and D
β (t)
∗μ,ν use information taken in the time sub-

interval (μt,(μ+ ν)t) if ν is positive and from the sub-interval ((μ + ν)t,μt) if ν
is negative. In both cases, the length of this interval is |ν| t.

Now we analyze the memory effects in a special case of a single change of dif-
fusion mode, that is, a diffusion mode given by a triplet {β1,μ ,ν} changes at time
T to a diffusion mode corresponding to another triplet {β2,μ ,ν}.
Definition 3.9. Let {β1,μ ,ν} and {β2,μ ,ν} be two admissible triplets which deter-
mine two distinct diffusion modes. Assume the diffusion mode is changed at time
t = T from {β1,μ ,ν}-mode to {β2,μ ,ν}-mode. Then the process is said to have a
‘short-range’ (or short) memory, if there is a finite T ∗ > T such that for all t > T ∗
the {β2,μ ,ν}-mode holds. Otherwise, the process is said to have a ‘long-range’ (or
long) memory.

Remark 3.10. According to Definition 3.9, a diffusion mode has a long memory if
the effect of the previous diffusion mode never vanishes, even the diffusion mode is
changed, i.e., the particle never forgets its past. In the case of short memory, particle
remembers the previous mode until some critical time, and then forgets it fully,
recognizing the new mode.

Theorem 3.7. ([US06]) Let ν > 0 and μ �= 0. Assume the {β1,μ ,ν}-diffusion mode
is changed at time t = T to the {β2,μ ,ν}-diffusion mode (Figure 3.2). Let T ∗= T/μ
and t∗ = T/(μ+ν). Then the process has a short memory. Moreover,

(i) for all 0 < t < t∗ the {β1,μ ,ν}-diffusion mode holds;
(ii) for all t > T ∗ the {β2,μ ,ν}-diffusion mode holds;

(iii) for all t∗< t < T ∗ a mix of both {β1,μ ,ν} and {β2,μ ,ν}-diffusion modes hold.
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Fig. 3.2 These figures illustrate Theorem 3.7. Moving from the upper curve to the lower curve (left
figure), and from lower curve to the upper one (right figure) does not occur at time T, when one
diffusion mode changed to another mode. Instead, it occurs at time T ∗ > T fully accepting a new
diffusion mode. The curves in these figures are kernel functions corresponding to two diffusion
modes.

Proof. Let β (s) = β1 for 0 < s < T and β (s) = β2 for s > T. Assume ν > 0. Denote
s= μt+ντ. So, the {β1,μ ,ν}-diffusion mode holds if μt+ντ <T . Let 0< t < t∗=
T/(μ+ν). Then for every τ ∈ (0, t) we have μt +ντ < (μ+ν)t < T . This means

that the order operator β (s) in D
β (t)
∗{μ,ν} takes the value β1 giving (i). If t > T/μ ,

then for all τ > 0, μt + ντ > T . Hence, β (s) = β2, obtaining (ii). Now assume
T/(μ+ν)< t < T/μ . Denote τ0 = (T −μt)/ν . Obviously τ0 > 0. It follows from
(μ+ν)t > T dividing by ν that t > T/ν− tμ/ν = τ0, i.e., 0 < τ0 < t. It is easy to
check that if 0 < τ < τ0 then μt +ντ ∈ (μt,T )⊂ (0,T ), giving β (s) = β1, while if
τ0 < τ < t then μt +ντ ∈ (T,(μ+ν)t) ⊂ (T,∞), giving β (s) = β2. Hence, in this
case the mix of both {β1,μ ,ν} and {β2,μ ,ν}-diffusion modes is present.

Theorem 3.8. ([US06]) Let ν < 0 and μ + ν �= 0. Assume the {β1,μ ,ν}-diffusion
mode is changed at time t = T to the {β2,μ ,ν}-diffusion mode. Let t∗

′
= T/μ and

T ∗′ = T/(μ+ν). Then the process has a short memory. Moreover,

(i
′
) for all 0 < t < t∗

′
the {β1,μ ,ν}-diffusion mode holds;

(ii
′
) for all t > T ∗

′
the {β2,μ ,ν}-diffusion mode holds;

(iii
′
) for all t∗

′
< t < T ∗′ a mix of both {β1,μ ,ν} and {β2,μ ,ν}-diffusion modes

hold.

Proof. Let ν < 0. Assume again β (s)= β1 for 0< s< T and β (s) = β2 for s> T. As
in the previous theorem, denote s = μt+ντ. First we notice that if 0< t < T/μ then
μt + ντ < T , which implies β (s) = β1, giving (i

′
). Now let t > T/(μ + ν) be any

number. Then for 0< τ < t we have μt+ντ > T , which yields β (s) =β2. So, we get
(ii

′
). Now assume T/μ < t < T/(μ+ν). Again denote τ0 = (T −μt)/ν . Obviously

τ0 > 0. It follows from (μ+ν)t < T dividing by ν < 0 that t > T/ν− tμ/ν = τ0,
i.e., 0 < τ0 < t. It is easy to check that if 0 < τ < τ0 then μt+ντ ∈ (T,μt)⊂ (T,∞),
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giving β (s) = β2, while if τ0 < τ < t then μt +ντ ∈ ((μ+ν)t,T )⊂ (0,T ), giving
β (s) = β1. Hence, in this case the mix of both {β1,μ ,ν} and {β2,μ ,ν}-diffusion
modes is present, obtaining (iii

′
).

Corollary 3.9 Let ν = 0 and μ �= 0. Assume the {β1,μ ,ν}-diffusion mode is
changed at time t = T to the {β2,μ ,ν}-diffusion mode. Let T ∗ = T/μ . Then the
process has a short memory. Moreover,

(a) for all 0 < t < T ∗ the {β1,μ ,ν}-diffusion mode holds;
(b) for all t > T ∗ the {β2,μ ,ν}-diffusion mode holds.

Proof. If ν = 0, then we have β (s) = β (μt) = β1 for t < T/μ and β (s) = β2 for
t > T/μ .

Corollary 3.10 Let μ = 0 or μ + ν = 0. Assume the {β1,μ ,ν}-diffusion mode is
changed at time t = T to the {β2,μ ,ν}-diffusion mode. Then the process has the
long memory.

Proof. According to the structure of LH-parallelogram μ = 0 implies ν > 0. In this
case T ∗ = ∞. If μ + ν = 0, then ν < 0 and t∗ = ∞. In both cases we have long
memory effect.

Remark 3.11. Notice, that if ν = 0 then there is no intervals of mix of modes. More-
over, if ν = 0, μ = 1, then T ∗ = t∗ = T. In this sense we say that a process has
no memory. For all values of {μ ,ν} except the bold lines in the LH-parallelogram

(see Figure 3.1), the operator Dβ (t)
∗{μ,ν} has a short memory. Memory is stronger in

the region ν < 0 and weaker in ν > 0. On the dashed line μ + ν = 1 we have
t∗ = T < T ∗. The bold lines μ = 0, ν ≥ 0 and μ + ν = 0 identify the long range
memory.

3.13 Additional notes

1. The starting point of fractional calculus goes back to 1695, when L’Hôpital wrote a letter to
Leibnitz asking him about the notation dn f /dxn for f (x) = x, if n = 1/2. Leibnitz responded
stating that “An apparent paradox, from which one day useful consequences will be drawn.”
Contributions to factional calculus were made by classics Euler, Laplace, Fourier, Abel, Liou-
ville, Riemann, Grünwald, Letnikov, Hadamard, Heaviside, Weyl, Lévy, Marchaud, Zygmund,
M. Riesz, etc. Several books devoted to fractional calculus are written among which we would
like to mention the encyclopedic book by Samko, Kilbas, and Marychev [SKM87] published
first in Russian in 1987, the earlier books by Djrbashian [Djr66], Oldham and Spanier [OS74],
Miller and Ross [MR93], books appeared relatively recently and written by Kiryakova [Kir94],
Podlubni [Pod99], Rubin [Rub96], Hilfer [Hil00], Kilbas, Srivastava, and Trijillo [KST06], etc.
The survey papers written by Gorenflo and Mainardi [GM97], Metzler and Klafter [MK00],
contain a vast material including recent developments and historical facts.
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2. Example 3.4 shows that the semigroup property JαJβ = Jα+β = Jβ Jα valid for fractional
integrals and for integer order derivatives, in general, fails in the case of Riemann-Liouville
fractional derivatives. However, as is shown in [OS74], if f satisfies the condition f = JβDβ f ,
then the rule DαDβ f =Dα+β f , called a composition rule, holds. Some differentiation rules and
properties valid in the classical calculus generalize to the fractional calculus as well. Obviously,
all the different versions of fractional derivatives and operators introduced in this chapter, in-
cluding distributed and variable order derivatives, are linear. The product rule, or in the general
case the Leibniz rule (n ∈ N)

( f g)(n) =
n

∑
k=0

(
n
k

)
f (n−k)g(k),

in the case of fractional Riemann-Liouville derivatives takes the form [OS74]

aDα
t [ f g](t) =

∞

∑
k=0

(
α
k

)
aDα−k

t f (t)g(k)(t),

where
(α

k

)
= Γ (α +1)/(k!Γ (α− k+1)). To generalize the chain rule to fractional derivatives

one needs first the chain rule for n-th order derivative, called the Faá di Bruno formula (see
[AS64]):

[ f (g(x))](n) = n!
n

∑
k=1

f (k)∑
n

∏
j=1

1
Pj!

[
g( j)

j!

]Pj

,

where the sum inside is over all combinations of nonnegative integer numbers P1, . . . ,Pn such
that

n

∑
j=1

jPj = n, and
n

∑
j=1

Pj = k.

Then the fractional generalization of the chain rule for the Riemann-Liouville derivative reads
[OS74]

aDα
t f (g(t)) =

f (g(t))
Γ (1−α)(t−a)α

+
∞

∑
n=1

(
α
n

)
(t−a)n−q

Γ (n−q+1)
n!

n

∑
k=1

f (k)(g(t))∑
n

∏
j=1

1
Pj!

[
g( j)(t)

j!

]Pj

with the same meaning of Pj, j = 1, . . .,n, as in the Faá di Bruno’s formula. For further frac-
tional generalizations of the Leibniz and chain rules, we refer the reader to papers [Osl72,
SKM87, FGT12]. In particular, for suitable functions f (z) and g(z) we note the representation
of the fractional derivative of order α > 0 of f (z) with respect to g(z), that is Dα

g(z) f (z) =

Dα
wF(g−1(w)) [FGT12]:

Dα
g(z) f (z) =

Γ (α +1)
2π i

∫
C

f (t)g
′
(t)(

g(t)−g(z)
)α+1 dt,

and [FGT12]

Dα
g(z)

(
[g(z)]p f (z)

)
=

e−iπ pΓ (α +1)
4π sin pπ

∫
C1

f (t)[g(t)]pg
′
(t)(

g(t)−g(z)
)α+1 dt, (3.114)

where contours C and C1 are special Pochhammer contours.
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3. Proof of formula (1.7). The formula (3.6) can be used for the proof of the following property
of the Gamma-function:

Γ (α)Γ (1−α) =
π

sinπα
, 0 < α < 1. (1.14)

First, we note that using the contour integrals method one can easily verify that

∫ ∞

0

x−α

1+ x
dx =

π
sinπα

. (3.115)

Further, taking γ =−α in equation (3.6),

Jα t−α = Γ (1−α) =
1

Γ (α)

∫ t

0

τ−αdτ
(t− τ)1−α .

The substitution τ = t− t/(x+1) in the latter integral implies

Γ (α)Γ (1−α) =
∫ ∞

0

x−α

1+ x
dx.

Comparing this with equation (3.115) we obtain (1.7).
4. Marchaud fractional derivative. One can use the idea of analytic continuation of −∞Jα f (x)

defined in (3.60) (or xJα∞ f (x) in (3.61)) to the domain ℜ(α)< 0, in order to define a fractional
order derivative for suitable functions f (x). This idea leads to the following definition of the
Marchaud fractional derivative:

Definition 3.10. The fractional order derivative in the sense of Marchaud is defined by

(Dα
+) f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x), if α = 0;

α
Γ (1−α)

∫ ∞
0

f (x)− f (x+h)
h1+α dh, if 0 < α < 1;

dk

dxk Dα−k
− f (y), if k ≤ α < k+1, k = 1,2, . . . ,

(3.116)

subject to the integral on the right is finite.

Indeed, let 0 < α < 1. Then, one can write formally

−∞J−α f (x) =
1

Γ (−α)
∫ ∞

0

f (x−h)
h1+α dh.

However, the integral on the right diverges due to the strong singularity of the integrand at
h = 0. Regularizing (and using the equality Γ (1−α) =−αΓ (−α)), one obtains a meaningful
integral

(Dα
+) f (x) =

α
Γ (1−α)

∫ ∞

0

f (x)− f (x−h)
h1+α dh,

convergent for suitable functions. Hence, the Marchaud fractional derivative in Definition 3.10
is “a regularization” of −∞J−α f (x). Similarly, the regularization of xJ−α∞ f (x), 0< α < 1, gives

(Dα
−) f (x) =

α
Γ (1−α)

∫ ∞

0

f (x+h)− f (x)
h1+α dh.

The derivatives Dα
+ and Dα− are called, respectively, a forward and backward Marchaud frac-

tional derivatives. We note that if for a function f ∈ Lp(R), 1 < p < ∞, one of the fractional
derivatives (Dα

+) f (x) (Marchaud), −∞Dα f (x) (Liouville-Weyl), and −∞Dα
x f (x) (Grünwald-

Letnikov) exists, then other two also exist and all the three coincide (see [SKM87]):
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(Dα
+) f (x) =−∞ Dα f (x) =−∞ Dα

x f (x).

The same is true for backward versions of Marchaud, Liouville-Weyl, and Grünwald-Letnikov
fractional derivatives. Further, it follows from Example 3.12 that if B±α is a one-sided Marchaud,
Grünwald-Letnikov, or Liouville-Weyl fractional derivative of order α , then

B±α e±ax = aαe±ax, a > 0. (3.117)

This formula will be used in our further considerations.
For functions defined on a finite interval (a,b) the general forms of forward and backward
fractional Marchaud derivatives are (0 < α < 1):

(Dα
a+) f (x) =

f (x)
Γ (1−α)(x−a)α

+
α

Γ (1−α)

∫ x

a

f (x)− f (y)
(x− y)α+1 dy, x ∈ (a,b),

and

(Dα
b−) f (x) =

f (x)
Γ (1−α)(b− x)α

+
α

Γ (1−α)

∫ b

x

f (y)− f (x)
(y− x)α+1 dy, x ∈ (a,b).

5. Generalized Mittag-Leffler function. Mainardi’s function. The Mittag-Leffler function is an en-
tire function of the complex variable z ∈ C and depends on two parameters, α and β :

Eα,β (z) =
∞

∑
n=0

zn

Γ (αn+β )
, α > 0, β > 0.

The function Eα(z) introduced in Section 3.4 corresponds to the case β = 1. For various
properties of the Mittag-Leffler functions, we refer the reader to [GK14, HMS11]. For the
reader’s convenience, below we provide some of them, which will be used in subsequent
chapters. It is easy to see that in particular cases Mittag-Leffler functions are related to the
exponential, cosine, and sine functions. Namely, the equalities E1(z) = ez, E2(−z2) = cos z,
and E2,2(−z2) = (sinz)/z hold. The function Eα,β (z) is an entire function of exponential order
1/α , and the following asymptotic behavior is valid for 0 < α < 2, β = 1, as |z| → ∞ through
different sectors [GK14]:

Eα (z) ∼
{

1
α exp(z1/α )−∑∞

k=1
z−k

Γ (1−αk) , if |z|< απ
2 ,

∑∞
k=1

z−k

Γ (1−αk) , if απ
2 < arg z < 2π− απ

2 ,
|z| → ∞.

The formula

L
[
tβ−1Eα,β (−λ tα)

]
(s) =

sα−β

sα +λ
, ℜ(s) > |λ |1/α ,

generalizes (3.38). One can derive from the latter the following useful formula valid for all
k = 0,1, · · · :

L
[
tαk+β−1E(k)

α,β (−λ tα)
]
(s) =

k!sα−β

(sα +λ )k+1 , ℜ(s) > |λ |1/α , (3.118)

Further, the function, called M-Wright or Mainardi function, and defined as

Mβ (z) =
∞

∑
n=0

(−1)nzn

n!Γ
(−β (n+1)+1

) , 0 < β < 1,

is useful in description of Lévy distributions. In fact, for Mβ (t), t ≥ 0, and 0 < β < 1 the
following relations hold [Mai10]:
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L[Mβ ](s) = Eβ (−s), L

[
β

tβ+1
Mβ

(
1

tβ

)]
(s) = e−sβ ,

L

[
β
tβ

Mβ

(
1

tβ

)]
(s) = sβ−1e−sβ .

We note also the following connection with the Gaussian density evolved in time (see (2.13)
with κ = 1)

1

2
√

t
M1/2(x/

√
t) = Gt(x) =

1

2
√
πt

e−
x2
4t , t > 0, x ∈ R.

6. Distributed fractional order differential operators. The idea of a distributed order fractional
derivative was first appeared in the paper [Cap69] by Michele Caputo in 1969 in connection
with modeling of wave propagation in viscoelastic media. In the papers [Cap95, Cap01] he
applied DODE models to other processes arising in filtering, dielectric induction, and diffu-
sion. Distributed order derivatives can be used to model complex processes with a simultane-
ous effect of different modes, and therefore, become an attractive tool for many researchers.
For instance, Chechkin et al. [CGSG03, CSK11] used DODE for modeling of hereditary and
ultra-slow diffusion, Podlubny [Pod99] for control and signaling systems, Kazemipour et al.
[KAN10] for Klein-Gordon distributed order equation, Andries et al. [AUS06] for cell biol-
ogy, etc. Mathematical foundations of distributed fractional order derivatives are studied in
[BT00] by Bagley and Torvik, [UG05-2] by Umarov and Gorenflo, [MS06] by Meerschaert
and Scheffler, and [Koc08] by Kochubei. Section 3.11 also contains new mathematical proper-
ties of DODOs. In the papers [SCK04, CSK11] fractional diffusion processes are modeled by
two different forms of time-DODEs and two different forms of space-DODEs.

a. The natural time-DODE form:

∫ 1

0
τβ−1w(β )Dβ

∗ p(t,x)dβ = K
∂ 2 p(t,x)
∂ t2 , t > 0, x ∈ R,

where w(β ) is a nonnegative dimensionless function satisfying the condition
∫ 1

0 w(β )dβ =
1, τ > 0, and K is the diffusion coefficient;

b. The modified time-DODE form:

∂ p(t,x)
∂ t

=
∫ 1

0
w(β )K(β )D1−β

t

[
∂ 2 p(t,x)
∂ t2

]
dβ , t > 0, x ∈ R,

where w(β ) has the same properties as in the natural form, and K(β ) = τ1−β ;
c. The natural space-DODE form:

∂ p(t,x)
∂ t

= K
∫ 2

0
ρ(α)�α−2

D
α
0

[
∂ 2 p(t,x)

∂ t2

]
dα , t > 0, x ∈ R,

where � and K are positive constants, and ρ(α) is a nonnegative dimensionless function
satisfying the condition

∫ 2
0 ρ(α)dα = 1; and

d. The modified space-DODE form:

∫ 2

0
ρ(α)�2−α

D
2−α
0 p(t,x)dα =−K

∂ 2 p(t,x)
∂ t2 , t > 0, x ∈ R,

where �, K, and ρ(α) have the same meaning as in the natural space-DODE form. In all
the four cases the initial condition p(0,x) = δ0(x) is required.

7. Variable fractional order differential operators. Another mathematical apparatus, relatively
young and being intensively developed last two decades, is the variable fractional order deriva-
tives. Variable order derivatives can be effectively used for modeling of diffusion processes in a
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heterogeneous media, processes with changing regimes in time, etc. A variable fractional order
derivative was introduced and studied by S. G. Samko and his collaborators in 1993–95 [SR93,
Sam95]. In the papers [LH02] Lorenzo and Hartley introduced several types of fractional vari-
able order derivatives based on the Riemann-Liouville derivative and applied them to engi-
neering problems. A. V. Chechkin at al. [CGS05] used variable fractional order derivatives to
describe kinetic diffusion in heterogeneous media. Umarov et al. [US09] studied variable frac-
tional order derivatives based on the Caputo-Djrbashian fractional derivatives. In this paper the
memory effects provided by variable order differential operators are studied in detail. For nu-
merical approximations of fractional variable order derivatives, see papers [SCWC11, VC11],
and the references therein.

8. Fractional order integrals. In Section 3.2 we showed that the families of operators aJαt and
t Jαb , where α ≥ 0, form semigroups of operators. These semigroups are strongly continuous
on Banach spaces Lp(a,b), p≥ 1, and C[a,b]. See the definition of strongly continuous semi-
groups in Section 7.3.
In Section 3.7 we established the equality of the ΨDOSS Aα (D) and the fractional Liouville-
Weyl integral operator −∞Jαt inΨG,p(R), 0 /∈ G. The equality of these operators remains valid
in the scale of Sobolev spaces, as well, with some orthogonality conditions. To feel it better
let us consider some examples. Let 1 ≤ α < 2. Then Aα(D) f (x), f ∈ Hs(R), is meaningful
if f is orthogonal to 1, i.e., < f ,1 >= 0, or, the same, F [ f ](0) = 0. It is easy to see that
Aα (D) f ∈ Hs+α(R). On the other hand, −∞Jαt f ∈ Hs+α(R) also implies

∫ ∞
−∞ f (x)dx = 0, that

is F [ f ](0) = 0. For example, the function

f (x) =
sign(x)
1+ x2 ,

belongs to H0(R) = L2(R) and satisfies the condition < f ,1 >= 0. For α = 1 we have

−∞Jαt f (x) =

{
− π

2 + tan−1 x, if x > 0

− π
2 − tan−1 x, if x < 0.

This function is continuous and has asymptotics 1/x as x →±∞. Hence, −∞Jα f (x) ∈ H1(R).
However, we note that, in general, for the operator −∞Jαt to be meaningful, it is not necessary
that f ∈ Hs(R) was orthogonal to 1. But, now one cannot guarantee that −∞Jαt f ∈ Hs+α(R).
An example, again for α = 1, is the function g(x) = (1 + x2)−1 ∈ H0(R), but −∞Jαg(x) =
tan−1(x) /∈ H1(R). Obviously the function g does not satisfy the condition < g,1 >= 0.



Chapter 4
Boundary value problems for pseudo-differential
equations with singular symbols

4.1 Introduction

Let Ω ⊂R
n be a bounded domain with a smooth boundary or Ω =R

n. This chapter
discusses well-posedness problems of general boundary value problems for pseudo-
differential and differential-operator equations of the form

L[u]≡ ∂mu
∂ tm +

m−1

∑
k=0

Ak(t)
∂ ku
∂ tk = f (t,x), t ∈ (T1,T2), x ∈Ω , (4.1)

Bk[u]≡
m−1

∑
j=0

bk j
∂ ju(tk j,x)

∂ t j = ϕk(x), x ∈Ω , k = 0, . . . ,m− 1, (4.2)

where f (t,x) is defined on (T1,T2)×Ω , −∞< T1 < T2 ≤ ∞, and ϕk(x), x ∈Ω , k =
0, . . . ,m− 1, are given functions; Ak(t) and bk j, k = 0, . . . ,m− 1, j = 0, . . . ,m− 1,
are operators acting on some spaces (specified below) of functions defined on Ω ;
and t jk ∈ [T1,T2], j,k = 0, . . . ,m− 1. For example, when Ω = R

n, the latter opera-
tors may act as ΨDOSS defined on the space of distributions Ψ ′

−G,p′ (R
n) with an

appropriate G ⊂ Rn.
Examples discussed in Section 2.2 showed that the solution operators of simplest

boundary value problems can be interpreted as ΨDOSS. Moreover, the equation
in Examples 2.2.0.4 and 2.2.0.5 (that is, equation (2.24)) is a pseudo-differential
equation with a symbol singular in the dual variable.

The classes OPXSp(G) of ΨDOSS’ introduced in Chapter 2) are convenient in
the study of boundary value problems of the form (4.1)–(4.2). The role of the set G is
to localize singularities of the coefficients, as well as the solution operators. This al-
lows to construct algebras ofΨDOSS’ complete in the sense that not only operators
Ak(t) and bk j, but also solution operators of boundary value problem (4.1)–(4.2) be-
long to the same algebra. Moreover, this approach (being a variation of the operator
method) works independently of the type of equation (4.1).
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In general, due to singularity of symbols of operators Ak(t) and bk j,
problem (4.1)–(4.2) is not well posed in the sense of Hadamard in classical func-
tion spaces. However, as we have seen in Chapter 2, one can always find a space
(possibly too narrow) in which the problem is well posed in the strong sense. By
duality, this can be extended to the dual space of distributions, but now the solu-
tion is understood in the weak sense (the exact definitions are given in Section 4.2).
Depending on the symbol of solution operators sometimes the well-posedness space
can be extended up to Sobolev, or Besov and Lizorkin-Triebel spaces. In this chap-
ter we obtain general conditions of well posedness in classical Sobolev, Besov, and
Lizorkin-Triebel type spaces.

4.2 General boundary value problems forΨDOSS:
homogeneous case

Consider the following general boundary value problem for a pseudo-differential
equation

L(t,
∂
∂ t

,D)u(t,x) =
∂mu
∂ tm +

m−1

∑
k=0

Ak(t,D)
∂ ku
∂ tk = f (t,x), t ∈ (T1,T2), x ∈R

n,

(4.3)

Bk(D)[u] =
m−1

∑
j=0

bk j(D)
∂ ju(tk j,x)

∂ t j = ϕk(x), x ∈ R
n, k = 0, . . . ,m− 1,

(4.4)

where m ≥ 1, −∞< T1 < T2 ≤ ∞, tk j ∈ [T1,T2], D = (D1, . . . ,Dn), D j =−i ∂
∂x j

; op-

erators Ak(t,D), k = 0, . . . ,m− 1, and bk j(D), k, j = 0, . . . ,m− 1, areΨDOSS with
respective symbols Ak(t,ξ ) and bk j(ξ ), k, j = 0, . . . ,m−1; the functions f (t,x) and
ϕk(x), k = 0, . . . ,m− 1, are given functions in certain spaces that will be specified
later. Problem (4.3)–(4.4) cover all the examples (Examples 2.2.0.1–2.2.0.6) dis-
cussed in Section 2.2.

Definition 4.1. Let f ∈ C0[T1,T2;ΨG,p(R
n)], and ϕk ∈ ΨG,p(R

n), k = 1, . . . ,m.
A function u(t,x) ∈ Cm[T1,T2;ΨG,p(R

n)] is called a strong solution to boundary
value problem (4.3)–(4.4) if it satisfies both relations (4.3) and (4.4) pointwise.

A ψ-distribution valued function u(t,x) ∈ Cm[T1,T2;Ψ ′
−G,p′ (R

n)] is said to be a

weak solution to boundary value problem (4.3)–(4.4) if the following relations hold
for every φ ∈ΨG,p(R

n) and all t ∈ (T1,T2):

<
∂mu
∂ tm ,φ >+

m−1

∑
k=0

<
∂ ku
∂ tk ,Ak(t,−D)φ >=< f (t,x),φ >,

< Bk(u),φ >=
m−1

∑
j=0

<
∂ ju(tk j,x)

∂ t j ,bk j(−D)φ)>=< ϕk(x),φ(x) > .
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If at least two points tk j in the boundary conditions (4.4) are distinct, then
(4.3)–(4.4) are nonlocal multi-point boundary value problems. If tk j ≡ t0 ∈ [T1,T2]
for all k, j = 0, . . . ,m− 1, and operators bk j = δk jI, where δk j is the Kronecker’s
symbol and I is the identity operator, then (4.3)–(4.4) represent the Cauchy
problem:

L(t,
∂
∂ t

,D)u(t,x) = f (t,x), t > t0,x ∈R
n, (4.5)

∂ ku(t,x)
∂ tk

∣∣∣
t=t0

= ϕk(x), x ∈ R
n, k = 0, . . . ,m− 1, (4.6)

where L(t, ∂∂ t ,D) is the operator defined in (4.3). Cauchy problem (4.5)–(4.6) for an
inhomogeneous equation ( f (t,x) �= 0) can always be reduced to the Cauchy problem
for the corresponding homogeneous equation

L(t,
∂
∂ t

,D)u(t,x) = 0, t > τ, (4.7)

∂ ku(τ,x)
∂ tk = ψk(x), k = 0, . . . ,m− 1, (4.8)

for some τ ≥ t0, and with nonhomogeneous Cauchy conditions with the initial data
ψk, which depend on functions (or functionals) ϕk and f (t,x). Here the operator
L(t, ∂

∂ t ,D) is the same as in equation (4.3), however it acts on functions (func-
tionals) defined on the interval (τ,T2). The reduction procedure was first found by
Jean-Marie-Constant Duhamel in the 1830th, and therefore it is called the Duhamel
principle. We will discuss the Duhamel principle in the general case later on and
obtain its generalizations to various classes of boundary value problems, including
fractional order pseudo-differential equations. However, here we introduce the no-
tions of the Duhamel integral and Duhamel principle in a simple case. The classical
Duhamel integral (see, e.g., [TS66, BJS64]) is used for representation of a solution
of the Cauchy problem for a given inhomogeneous linear partial differential equa-
tion with homogeneous initial conditions via the solution of the Cauchy problem
for the corresponding homogeneous equation. Consider the Cauchy problem for the
second order inhomogeneous differential equation

∂ 2u
∂ t2 (t,x) = Au(t,x)+ f (t,x), t > 01, x ∈ R

n, (4.9)

with homogeneous initial conditions

u(0,x) = 0,
∂u
∂ t

(0,x) = 0, (4.10)

1 For simplicity here it is assumed that t0 = 0.
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where A is a linear differential operator containing the temporal derivatives of order,
not higher then 1. Further, let a sufficiently smooth function v(t,τ,x), t ≥ τ, τ ≥ 0,
x ∈ R

n, be a solution of the homogeneous equation

∂ 2v
∂ t2 (t,τ,x) = Av(t,τ,x), t > τ,

satisfying the following conditions:

v(t,τ,x)|t=τ = 0,
∂v
∂ t

(t,τ,x)|t=τ = f (τ,x).

Then the solution of Cauchy problem (4.5)–(4.8) is given by means of the Duhamel
integral

u(t,x) =
∫ t

0
v(t,τ,x)dτ.

The formulated statement is called the “Duhamel principle” (see for details, e.g.,
[BJS64] or [TS66]).

An analogous construction is possible in the case of the Cauchy problem with a
homogeneous initial condition for the first order inhomogeneous partial differential
equation

∂u
∂ t

(t,x) = Bu(t,x)+ f (t,x), t > 0, x ∈ R
n,

where B is a linear differential operator containing only spatial derivatives.
Now we prove the Duhamel principle, for simplicity, in the case of second order

(in the sense of time-derivatives) pseudo-differential equations with singular sym-
bols. Namely, consider the Cauchy problem

∂ 2u
∂ t2 +A1(t,x,Dx)

∂u
∂ t

+A0(t,x,Dx)u = h(t,x), t > 0, x ∈R
n,

u(0,x) = ϕ0(x) and
∂u
∂ t

(0,x) = ϕ1(x), x ∈ R
n.

We assume that symbols a j(t,x,ξ ), j = 0,1, of the pseudo-differential operators
A j(t,x,Dx), j = 0,1, belong to S∞G for some G ⊂ R

n for every fixed t > 0 and con-
tinuous in the variable t > 0. In this case the Duhamel principle is formulated as
follows.

Proposition 4.1. Let a twice differentiable in the variable t function U(t,τ,x) ∈
Ψp,G, t > τ ≥ 0, be a solution of the Cauchy problem for a homogeneous equation

∂ 2U
∂ t2 +A1(t,x,Dx)

∂U
∂ t

+A0(t,x,Dx)U = 0, 0 < τ < t, x ∈ R
n, (4.11)

U(t,τ,x)|t=τ = 0, x ∈R
n, (4.12)

∂U
∂ t

(t,τ,x)|t=τ = f (τ,x), x ∈ R
n, (4.13)
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in the domain D = {t > τ, x ∈ R
n}, where τ ≥ 0. Then the function

u(t,x) =
∫ t

0
U(t,τ,x)dτ (4.14)

is a solution of the Cauchy problem

∂ 2u
∂ t2 +A1(t,x,Dx)

∂u
∂ t

+A0(t,x,Dx)u = h(t,x), t > 0, x ∈ R
n, (4.15)

u(0,x) = 0 and
∂u
∂ t

(0,x) = 0, x ∈ R
n. (4.16)

Proof. Obviously u(0,x) = 0. Further, for the first order derivative, one has

∂u
∂ t

(t,x) =U(t, t,x)+
∫ t

0

∂
∂ t

U(t,τ,x)dτ

=
∫ t

0

∂
∂ t

U(t,τ,x)dτ,

since U(t, t,x) = 0 for any t > 0 due to condition (4.12). It follows that ∂u
∂ t (0,x) = 0.

Therefore, the function u(t,x) in (4.14) satisfies the initial conditions (4.16). Fur-
ther, for the second derivative, using condition (4.13), one obtains

∂ 2

∂ t2 u(t,x) =
∂
∂ t

U(t, t,x)+
∫ t

0

∂ 2

∂ t2 U(t,τ,x)dτ

= h(t,x)+
∫ t

0

∂ 2

∂ t2 U(t,τ,x)dτ.

Moreover,

∂ 2u
∂ t2 +A1(t,x,Dx)

∂u
∂ t

+A0(t,x,Dx)u = h(t,x)+
∫ t

0

∂ 2

∂ t2 U(t,τ,x)dτ

+A1(t,x,Dx)

∫ t

0

∂
∂ t

U(t,τ,x)dτ+A0(t,x,Dx)

∫ t

0
U(t,τ,x)dτ

= h(t,x)+
∫ t

0
[
∂ 2U
∂ t2 +A1(t,x,Dx)

∂U
∂ t

+A0(t,x,Dx)U ]dτ = h(t,x),

since U(t,τ,x) is a solution to equation (4.11). Hence, u(t,x) in (4.14) satisfies the
equation (4.15) as well.

Remark 4.1. The Duhamel principle for abstract differential-operator equations of
arbitrary order m will be proved in Section 4.7, and for fractional order differential
equations in Sections 5.5 and 6.4.

Unfortunately, the Duhamel principle is not valid for multi-point problems. It is
convenient to split the general boundary value problems (4.3)–(4.4) into two partial
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problems. Namely, the boundary value problem with the homogeneous equation and
inhomogeneous boundary conditions

L(t,
∂
∂ t

,D)u(t,x)
∂ ku
∂ tk = 0, t ∈ (T1,T2), x ∈ R

n, (4.17)

Bk(D)[u] = ϕk(x), x ∈R
n, k = 0, . . . ,m− 1, (4.18)

and the boundary value problem with the corresponding inhomogeneous equation
and homogeneous boundary conditions

L(t,
∂
∂ t

,D)u(t,x)
∂ ku
∂ tk = f (t,x), t ∈ (T1,T2), x ∈ R

n, (4.19)

Bk(D)[u] = 0, x ∈R
n, k = 0, . . . ,m− 1. (4.20)

In this section we will study boundary value problem (4.17)–(4.18). The bound-
ary value problem (4.19)–(4.20) will be studied in Section 4.3. Since the Duhamel
principle does not work for general multi-point value problems, we will use the
Green’s function or fundamental solution approaches to solve boundary value prob-
lem (4.19)–(4.20).

Consider in the interval (T1,T2) the following ordinary differential equation,
called a characteristic equation of pseudo-differential equation (4.17):

u(m)(t)+
m−1

∑
k=0

Ak(t,ξ )u(k)(t) = 0, t ∈ (T1,T2), (4.21)

which depends on the parameter ξ ∈ G. Assume that the symbols Ak(t,ξ ) are con-
tinuous in the variable t for each fixed value of the parameter ξ . Then there exist
m linearly independent solutions uk(t,ξ ), k = 1, . . . ,m, of equation (4.21) which
are defined on the interval (T1,T2) and m-times differentiable in this interval, that
is uk(t,ξ ) ∈ C(m)(T1,T2) for each fixed value of ξ . The set {uk(t,ξ )}m

k=1 is called
a fundamental system of solutions of the characteristic equation (4.21). It is clear
that a fundamental system of solutions is not defined uniquely. Depending on our
purposes we will construct different fundamental systems of solutions.

Let u j(t,ξ ), where j ∈ {0, . . . ,m−1}, be a solution to differential equation (4.21)
satisfying the conditions

u(k)j (t0,ξ ) = δ jk, k = 0, . . . ,m− 1. (4.22)

It is known [Nai67] that u j(t,ξ ) ∈ Cm(T1,T2) exists and unique. Moreover, the set
of solutions u0(t,ξ ), . . . ,um−1(t,ξ ) are linearly independent, and hence, form a fun-
damental system of solutions.

Theorem 4.1. Let the symbols Ak(t,ξ ), k = 0, . . . ,m− 1, and bk j(ξ ), k, j =
0, . . . ,m− 1, of the operators Ak(t,D) and bk, j(D) in equation (4.17) belong to
S∞G for some open set G ⊂ R

n. Then there is a subset G0 of G, such that for
all ϕk ∈ΨG0,p(R

n), 1 < p < ∞, there exists a unique strong solution u(t,x) to the
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multi-point value problem (4.17)–(4.18) in C(m)[(T1,T2),ΨG0,p(R
n)]. Moreover, the

solution has the representation

u(t,x) =
m−1

∑
k=0

Sk(t,D)ϕk(x),

where solution operators Sk(t,D), k = 0, . . . ,m−1, have symbols sk(t,ξ )∈ S∞G0
, k =

0, . . . ,m− 1, which form a fundamental system of solutions to (4.21).

Proof. Consider the boundary value problem for ordinary differential equation with
a parameter ξ :

L(t,
d
dt
,ξ )u(t,ξ ) =

dmu
dtm +

m−1

∑
k=0

Ak(t,ξ )
dku
dtk = 0, t ∈ (T1,T2), (4.23)

Bk(ξ )[u] =
m−1

∑
j=0

bk j(ξ )
d ju(tk j,ξ )

dt j = F [ϕk](ξ ), k = 0, . . . ,m− 1, (4.24)

where F[ϕk](ξ ) is the Fourier transform of ϕk(x). We look for a solution of prob-
lem (4.23)–(4.24) in the form

u∗(t,ξ ) =
m−1

∑
k=0

fk(ξ )uk(t,ξ ), (4.25)

where the set uk(t,ξ ), k = 0, . . . ,m− 1, is a fundamental system of solutions
of (4.21) satisfying Cauchy conditions (4.22). It is clear that u∗(t,ξ ) ∈ Cm(T1,T2)
and satisfies (4.23). Substituting it into (4.24) we get a system of linear algebraic
equations

M(ξ )F(ξ ) = Φ̂(ξ ). (4.26)

Here M(ξ ) is the square matrix of order m with entries

mkl =
m−1

∑
j=0

Bk j(ξ )u
( j)
l (tk j ,ξ ), k, l = 0, . . . ,m− 1, (4.27)

F(ξ ) = ( f0(ξ ), . . . , fm−1(ξ )) is an unknown vector, and Φ̂(ξ ) is the transpose of

the vector
(

F [ϕ0](ξ ), . . . ,F [ϕm−1](ξ )
)
. Denote by M0 the set of points ξ ∈ G at

which the determinant of M(ξ ) vanishes, that is DetM(ξ ) = 0. If ξ �∈ M0, then
equation (4.26) has a unique solution

F(ξ ) = M−1(ξ )Φ̂(ξ ). (4.28)

We note that M0 is the singular set for the symbols of the solution operators.
Substituting the representation (4.28) of the vector F(ξ ) = ( f0(ξ ), . . . , fm−1(ξ ))
into (4.25) and applying the inverse Fourier transform one obtains the solution of
the general multi-point value problem (4.17)–(4.18) in the form
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u(t,x) =
m−1

∑
k=0

Sk(t,D)ϕk(x), (4.29)

where the Sk(t,D), k = 0, . . . ,m − 1, are solution pseudo-differential operators
of (4.17)–(4.18) with the symbols

sk(t,ξ ) = u∗k(t,ξ ) =
(
(M∗)−1(ξ )u(t,ξ )

)
k
, k = 0, . . . ,m− 1, (4.30)

where the symbol (·)k means k-th component of a vector (·), (M∗)−1(ξ ) is the ma-
trix inverse to the Hermitian conjugate of M(ξ ). Indeed, the symbols sk(t,ξ ) ∈
Cm(T1,T2), k= 0, . . . ,m−1, for all ξ ∈G0 ⊂G\M0.This together with Theorem 2.1
implies u(t,x) ∈ C(m)[(T1,T2),ΨG0,p(R

n)]. The system {s0(t,ξ ), . . . ,sm−1(t,ξ )} is
linearly independent, otherwise the system {u0(t,ξ ), . . . ,um−1(t,ξ )} would not be
linearly independent due to the fact that the matrix M(ξ ) has nonzero determinant
if ξ ∈ G0. The proof is complete.

Remark 4.2. 1. The vector-function S(t,ξ )=
(

s0(t,ξ ), . . . ,sm−1(t,ξ )
)
, components

of which are symbols of solution operators Sk(t,D), k = 1, . . . ,m, depends on op-
erators Ak(t,D), k = 0, . . . ,m−1, and Bk j(D), k = 0, . . . ,m−1, j = 0, . . . ,m−1,
given in (4.17), (4.18), respectively. Its behavior may be of different nature: it
may have singularities in variables (ξ1, . . . ,ξn) in G if M0 ∩G �= /0, or may in-
crease or decrease when |ξ | → ∞. The well posedness of boundary value prob-
lem (4.17)–(4.18) in the classical Sobolev, Besov, and other spaces essentially
depends on the behavior of the vector function S(t,ξ ); see Section 4.4.

2. It is useful to have a maximal G0 in this theorem, which is actually G \M0. In
accordance with Theorem 1.21,ΨG0,p(R

n) is dense in classical spaces if G0 is a
dense subset of Rn.

Theorem 4.2. Let f = 0 and let the symbols Ak(t,ξ ), k = 0, . . . ,m − 1, and
bk j(ξ ), k, j = 0, . . . ,m−1, of the operators Ak(t,D) and bk, j(D) in equations (4.3)–
(4.4) belong to S∞G for some open set G⊂ R

n. Then there is a subset G0 of G, such
that for all ϕk ∈Ψ ′

−G0,p
′ (Rn), 1 < p <∞, there exists a unique weak solution w(t,x)

to the multi-point value problem (4.17)–(4.18) in C(m)[(T1,T2),Ψ
′
−G0,p

′ (Rn)]. More-

over, the solution has a representation

W (t,x) =
m−1

∑
k=0

Sw
k (t,−D)ϕk(x), (4.31)

where solution operators Sw
k (t,−D), k = 0, . . . ,m− 1, have symbols sk(t,ξ ), k =

0, . . . ,m− 1, which form a fundamental system of solutions to (4.21).

Proof. Let ϕk ∈Ψ ′
−G0,p

′ (Rn), k = 0, . . . ,m− 1, and φ be an arbitrary function in

ΨG,p(R
n). We only need to show that w(t,x) defined in (4.31) is a weak solution

of boundary value problem (4.17)–(4.18) with weak extensions “Aw
k (t,−D)” and

“bw
k j(−D)” instead of operators “Ak(t,D)” and “bk j(D).” Let

W (t,x) =W0(t,x)+ · · ·+Wm−1(t,x), (4.32)
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where Wj(t,x) = Sw
j (t,−D)ϕ j(x), that is the j-th term in representation (4.31).

We have

< Lw(t,
∂
∂ t

,−D)Wj(t,x), φ(x) >

=<
∂mWj

∂ tm +
m−1

∑
k=0

Aw
k (t,−D)

∂ kWj

∂ tk , φ(x) >

=<
∂mSw

j (t,−D)ϕ j(x)

∂ tm +
m−1

∑
k=0

Aw
k (t,−D)

∂ kSw
j (t,−D)ϕ j(x)

∂ tk , φ(x)>

=< ϕ j(x),

[
∂mS j(t,D)

∂ tm +
m−1

∑
k=0

Ak(t,D)
∂ kS j(t,D)

∂ tk

]
φ(x) >

=< ϕ j(x), F−1

[(
∂ms j(t,ξ )

∂ tm +
m−1

∑
k=0

Ak(t,ξ )
∂ ks j(t,ξ )

∂ tk

)
F [φ ](ξ )

]
>

= 0, ∀t ∈ (T1,T2),

since by construction s j(t,ξ ) satisfies equation (4.23). Similarly,

< Bw
k (−D)[Wj],φ(x) >=<

m−1

∑
�=0

bw
k�(−D)

∂ �S j(tk�,D)ϕ j

∂ t�
, φ(x)>

=< ϕ j(x),
m−1

∑
�=0

bk�(D)
∂ �S j(tk�,D)

∂ t�
φ(x) >

=< ϕ j(x), F−1

[(
m−1

∑
�=0

bk�(ξ )
∂ �s j(tk�,ξ )

∂ t�

)
F [φ ](ξ )

]
>

=< ϕk(x),δk, jφ(x)>=< δk, jϕ j(x), φ(x) >, k, j = 0, . . . ,m− 1. (4.33)

Now summing up (4.33) by index j = 0, . . . ,m− 1, and taking into account (4.32),
we have Bw

k (−D)[W ] = ϕk(x) in the sense of Ψ ′
−G0,p

′ (Rn). Thus, W (t,x) given by

in (4.31) satisfies boundary value problem (4.17)–(4.18) in the weak sense.

4.3 General boundary value problems forΨDOSS:
inhomogeneous case

Theorems 4.1 and 4.2 establish well posedness of boundary value problems for
homogeneous equations with nonhomogeneous boundary conditions in the spaces

ΨG0,p(R
n), andΨ ′

−G0,p
′ (Rn), where G0 ⊆ G\ ◦

M. Here
◦

M defined as

◦
M = {ξ ∈ R

n : det M(ξ ) = 0}, (4.34)

where M(ξ ) is the matrix with entries defined in equation (4.27).
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Now consider an inhomogeneous equation with homogeneous boundary
conditions

L(t,
∂
∂ t

,D)u = h(t,x), t ∈ (T1,T2), x ∈ R
n, (4.35)

Bk(D)u = 0, x ∈ R
n, k = 0, . . . ,m− 1, (4.36)

where operators L(t, ∂∂ t ,D) and B(D) are defined in equations (4.3) and (4.4), re-
spectively. As was noted above the Duhamel principle is not applicable in the case
of multi-point boundary value problems. Below we show the well posedness of
problem (4.35)–(4.36) in the spacesΨG0,p(R

n) andΨ ′
−G0,p

′ (Rn).

Applying the Fourier transform in x in equations (4.35) and (4.36) one obtains the
following multi-point boundary value problem for an ordinary differential equation
with the parameter ξ ∈R

n :

L(t,
d
dt
,ξ )v = ĥ(t,ξ ), t ∈ (T1,T2), (4.37)

Bk(ξ )v = 0, k = 0, . . . ,m− 1, (4.38)

where v(t,ξ ) = F [u](t,ξ ) and ĥ(t,ξ ) = F [h](t,ξ ).
One can find a solution to problem (4.35)–(4.36) using the fundamental solution

of the operator

L(t,
d
dt
,ξ ) =

dm

dtm +
m−1

∑
k=0

Ak(t,ξ )
dk

dtk

in a suitable space of distributions. Since symbols Ak(t,ξ ) by assumption are
continuous functions in the variable t for each fixed ξ ∈ G ⊆ R

n, this operator
has a fundamental solution (see, e.g., [Vla79]) E (t,s,ξ ) satisfying the differential
equation

L(t,
d
dt
,ξ )E (t,s,ξ ) = δs(t), t ∈ (T1,T2), (4.39)

for arbitrary s ∈ (T1,T2). From the general theory it follows also that the function
E (t,s,ξ ) is m times differentiable on each of the intervals T1 < t < s and s < t < T2.
The function

e(t,ξ ) =
∫ T2

T1

E (t,s,ξ )ĥ(s,ξ )ds

obviously solves equation (4.37). Let E(t,x) be the inverse Fourier transform of
e(t,ξ ) in the sense of distributions, that is E(t,x) = F−1[e](t,x). Then, one can
easily verify that

E(t,x) =
∫ T2

T1

E (t,s,D)h(s,x)ds, (4.40)

and by construction it satisfies the equation

L(t,
∂
∂ t

,D)E(t,x) = h(t,x).
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Indeed,

L(t,
∂
∂ t

,D)E(t,x) =
∫ T2

T1

L(t,
∂
∂ t

,D)E (t,s,D)h(s,x)ds

=

∫ T2

T1

δt(s)h(s,x)ds = h(t,x).

In fact, we would like to have a fundamental solution which would satisfy not only
equation (4.39), but also boundary conditions (4.38). Therefore, we fix E (t,s,ξ )
adding an additional term, namely

E0(t,s,ξ ) = E (t,s,ξ )+W0(t,s,ξ ), (4.41)

where W0(t,s,ξ ) is a solution to the boundary value problem

L(t,
d
dt
,ξ )w = 0, t ∈ (T1,T2), x ∈ R

n, (4.42)

Bk(ξ )w = φk(s,ξ ), x ∈ G0, k = 0, . . . ,m− 1, (4.43)

with

φk(s,ξ ) =−Bk(ξ )[E ] =−
m−1

∑
j=0

bk j(ξ )
d jE

dt j (t,s,ξ )
∣∣∣

t=tk j

. (4.44)

Since ξ /∈ ◦
M, boundary value problem (4.42)–(4.43) has a unique solution

W0(t,s,ξ ) ∈ C(m)(T1,T2), which represents the second term in (4.41). Moreover,
the desired fundamental solution E0(t,s,ξ ) has the representation

E0(t,s,ξ ) = E (t,s,ξ )−
m−1

∑
k=0

sk(t,ξ )φk(s,ξ ), (4.45)

where sk(t,ξ ), k = 0, . . . ,m− 1, are the symbols of solution operators to prob-
lem (4.42)–(4.43). Now one can readily verify that

u(t,x) =
∫ T2

T1

E0(t,s,D)h(t,x)ds (4.46)

satisfies both equation (4.35) and boundary conditions (4.36). The latter can be rep-
resented in the form

u(t,x) = E(t,x)+w(t,x,) (4.47)

where E(t,x) is defined in (4.40) and

w(t,x) =
∫ T2

T1

W (t,s,D)h(s,x)ds.

Here W (t,s,D) is the pseudo-differential operator with the symbol W0(t,s,ξ ).
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Another approach to the solution of problem (4.35)–(4.36) is based on the
Green’s function of the operator L(t, d

dt ,ξ ) with boundary conditions (4.38) for suit-
able values of parameter ξ .

By definition, the Green’s function of the operator L(t, d
dt ,ξ ) with boundary con-

ditions (4.38) is a function G(t,s,ξ ) defined on (T1,T2)×(T1,T2)×G, and satisfying
the following conditions:

1. all the derivatives in the variable t up to order m− 2 are continuous;
2. m times differentiable on intervals T1 < t < s and s < t < T2;
3. (m− 1)-st derivative satisfies the jump condition at t = s :

G(m−1)
t (t,s,ξ )∣∣∣

t=s+0

−G(m−1)
t (t,s,ξ )∣∣∣

t=s−0

= 1;

4. satisfies the equation L(t, d
dt ,ξ )G(t,s,ξ ) = 0 on intervals T1 < t < s and s < t <

T2, and boundary conditions Bk(D)[G] = 0.

Let {u0(t,ξ ), . . . ,um−1(t,ξ )} be a fundamental system of solutions of the operator
L(t, d

dt ,ξ ). Then one can look for G(t,s,ξ ) in the form

G(t,s,ξ ) =

{
G−(t,s,ξ ) if T1 < t < s,

G+(t,s,ξ ) if s < t < T2.

where

G−(t,s,ξ ) =
m−1

∑
j=0

c j(ξ )u j(t,ξ ), t < s, ξ /∈ ◦
M,

G+(t,s,ξ ) =
m−1

∑
j=0

d j(ξ )u j(t,ξ ), t > s, ξ /∈ ◦
M.

Here c j(ξ ), d j(ξ ), j = 0, . . . ,m−1, are 2m unknown coefficients to be found. Due
to the definition of G(t,s,ξ ) for these unknowns we have the following 2m relations

⎧⎪⎨
⎪⎩

Bk(D)[G(t,s,ξ )] = 0, k = 0, . . . ,m− 1,

G j
+(s+,s,ξ )−G j

−(s−,s,ξ ) = 0 j = 0, . . . ,m− 2,

Gm−1
+ (s+,s,ξ )−Gm−1

− (s−,s,ξ ) = 1.

This system of equations has a unique solution if ξ /∈ ◦
M, thus identifying the Green’s

function. Once G(t,s,ξ ) is found, one can find the solution to problem (4.35)–(4.36)
using the formula

u(t,x) =
∫ T2

T1

G(t,s,D)h(s,x)ds.

Theorem 4.3. Let the symbols Ak(t,ξ ), k = 0, . . . ,m− 1, and bk j(ξ ), k, j =
0, . . . ,m−1, of the operators Ak(t,D) and bk, j(D) in boundary value problem (4.3)–
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(4.4) belong to S∞G for some open set G⊂R
n. Then for any f ∈C[(T1,T2),ΨG0,p(R

n)]

and ϕk ∈ΨG0,p(R
n), k = 0, . . . ,m−1, where 1< p <∞ and G0 ⊆G\ ◦

M, there exists
a unique strong solution u(t,x) ∈ C(m)[(T1,T2),ΨG0,p(R

n)] of problem (4.3)–(4.4).
Moreover, the solution has the representation

u(t,x) =
m−1

∑
k=0

Sk(t,D)ϕk(x)+
∫ T2

T1

E0(t,s,D) f (s,x)ds, (4.48)

where E0(t,s,ξ ) is the fundamental solution of the operator L(t, d
dt ,ξ ) defined

in (4.45) and the solution operators Sk(t,D), k = 1, . . . ,m, have symbols sk(t,ξ ) ∈
S∞G0

, k = 1, . . . ,m, which form a fundamental system of solutions to equation (4.21).

Proof. Recall that general boundary value problem (4.3)–(4.4) was split into two
problems: problem (4.17)–(4.18) with homogeneous equation and nonhomoge-
neous boundary conditions, and problem (4.35)–(4.36) with nonhomogeneous equa-
tion and homogeneous boundary conditions. Taking into account Theorem 4.1,
which summarizes problem (4.17)–(4.18), and equation (4.46), which resumes prob-
lem (4.35)–(4.36), one obtains representation (4.48).

By duality it follows from Theorem 4.3 the following theorem.

Theorem 4.4. Let the symbols Ak(t,ξ ), k = 0, . . . ,m− 1, and bk j(ξ ), k, j =
0, . . . ,m− 1, of the operators Ak(t,D) and bk, j(D) in problem (4.3)–(4.4) belong
to S∞G for some open set G ⊂ R

n. Then for all f ∈ C[(T1,T2),Ψ
′
−G0,p

′ (Rn)], and

ϕk ∈Ψ ′
−G0,p

′ (Rn), 1 < p < ∞, there exists a unique weak solution uw(t,x) in the

space C(m)[(T1,T2),Ψ
′
−G0,p

′ (Rn)]. Moreover, the solution has a representation

w(t,x) =
m−1

∑
k=0

Sw
k (t,−D)ϕk(x)+

∫ T2

T1

E w
0 (t,s,−D) f (s,x)dx,

where symbols sk(t,ξ ), k = 1, . . . ,m, of solution operators, and E0(t,ξ ) is defined
as in Theorem 4.3.

Remark 4.3. In Theorems 4.3 and 4.4 one can replace operators E0(t,s,D), E w
0

(t,s,−D) by G(t,s,D), Gw(t,s,−D) with the symbol being the Green’s function
G(t,s,ξ ), respectively.
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4.4 Well posedness of general boundary value problems
in Besov and Lizorkin-Triebel spaces

This section discusses well posedness in the sense of Hadamard of boundary value
problem (4.3)–(4.4) in the classical function spaces, including Sobolev, Besov, and
Lizorkin-Triebel spaces. Let X denote one of these spaces. The approach we want
to use to establish well posedness in X is based on the possible closability of solu-
tion operators Sk(t,D), k = 1, . . . ,m, defined on the space ΨG,p(R

n) up to bounded
operators acting on the scales of X . This strategy requires a verification of two
conditions:

1. the denseness ofΨG,p(R
n) in X ; and

2. the closability of solution operators Sk(t,D), k = 1, . . . ,m, up to bounded opera-
tors acting on the scales of the space X .

The denseness ofΨG,p(R
n) in the Besov and Lizorkin-Triebel spaces was studied

in Section 1.11 of Chapter 1; see Theorem 1.21. The existence of a closed extension
in the Sobolev, Besov, and Lizorkin-Triebel spaces of pseudo-differential operators
defined on ΨG,p(R

n) was studied in Section 2.3 of Chapter 2; Theorems 2.7–2.9.
Thus, we are prepared to investigate conditions for the well posedness of general
multi-point boundary value problem (4.3)–(4.4) in the classical function spaces. We
start from the definition of well-posed problems in the Besov spaces.

Definition 4.2. Let � = (�0, . . . , �m) ∈ R
m+1, s = (s0,s1, . . . ,sm) ∈ R

m+1, and
1 < p,q < ∞. The problem (4.3)–(4.4) is said to be (�,s) - well posed in the
scale of Besov spaces if for every ϕ j−1(x) ∈ B

s j
pq(R

n), j = 1, . . . ,m, and for every
h ∈ C0[T1,T2;Bs0

pq(Rn)] there exists a functional u(t,x) ∈C(m)[(T1,T2);Ψ
′
−G,p′ (R

n)]

for some G⊆ R
n, such that

(i) u(k)t (t,x) ∈C(m−k)[(T1,T2);Blk
pq(R

n)], k = 0, . . . ,m;
(ii) u(t,x) satisfies the considering problem in the weak sense;

(iii) the estimate

sup
t∈(T1 ,T2)

m

∑
k=0

‖u(k)t |Blk
pq‖ ≤C

m

∑
j=1
‖ϕ j−1|Bs j

pq‖+ sup
t∈(T1,T2)

‖h(t,x)|Bs0
pq‖, (4.49)

holds with C > 0 independent on ϕ j(x), j = 0, . . . ,m− 1, and h(t,x). Recall that
here ‖ · |B�

pq‖ is a norm of the Besov space B�
pq(R

n).

Similarly one can define a (�,s) - well-posed problem in the scale of Lizorkin-
Triebel spaces Fs

pq(R
n). For shortness, we will say that boundary value prob-

lem (4.3)–(4.4) is (�,s;B)-well posed and (�,s;F)-well posed if it is (�,s)-well posed
in the scale of Besov and Lizorkin-Triebel spaces, respectively.

In formulations of the well-posedness theorems below s j(t,ξ ), j = 0, . . . ,m− 1,
are symbols of the solution operators constructed in Theorem 4.1.
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Theorem 4.5. Let ϕ j(x) ∈ B
s j
pq(R

n), j = 0, . . . ,m− 1, and f ∈ C0[T1,T2;Bs0
pq(R

n)],
where 1 < p,q < ∞. Let the symbols s j(t,ξ ), j = 0, . . . ,m− 1, and E (t,ξ ) for all
k = 0, . . . ,m, and |α| ≤ [ n

2 ]+ 1 satisfy the estimates

|ξ ||α ||Dα
ξ
∂ ks j(t,ξ )

∂ tk
| ≤Cα(1+ |ξ |)s j−�k , t ∈ [T1,T2], ξ ∈ Rn, j = 0, . . . ,m− 1,

(4.50)

|ξ ||α ||Dα
ξ
∂ kE0(t,ξ )

∂ tk
| ≤Cα(1+ |ξ |)s0−�k , t ∈ [T1,T2], ξ ∈ Rn, (4.51)

where Cα is a positive constant. Then boundary value problem (4.3)–(4.4) is
(�,s;B)-well posed.

Proof. Let ϕ j ∈B
s j
pq(R

n), j = 0, . . . ,m−1. Consider ϕ0, . . . ,ϕm−1 as ψ-distributions
in Ψ ′

−G,p′(R
n), with some G dense in R

n. Then, in accordance with Theorem 4.4,

the problem has a unique solution u(t,x) ∈ C(m)[(T1,T2),Ψ
′
−G0,p

′ (Rn)]. Moreover,

u(t,x) has the representation

u(t,x) =
m−1

∑
k=0

Sw
k (t,−D)ϕk(x)+

∫ T2

T1

E w
0 (t− s,−D)h(s,x)dx,

Further, it follows from Theorem 2.8 that there are closed restrictions Ŝ jc(t,−D), j =

0, . . . ,m− 1, of operators Sw
j (t,−D) mapping continuously the space B−�k

p′q′ to the

space B
−s j

p′q′ , and a closed restriction Ê0c(t − s,−D) of the operator E w
0 (t − s,−D)

mapping continuously the space B−�k
p′q′ to the space B−s0

p′q′ for each fixed t and s. Their

adjoint operators, Ŝ+jc(t,−D) = Ŝ j(t,D) : B
s j
pq → B�0

pq and Ê +
0c(t,−D) = Ê0(t,D) :

Bs0
pq → B�0

pq serve as solution operators of the considered problem. That is, for the
solution we have the representation

u(t,x) =
m−1

∑
k=0

Ŝk(t,D)ϕk(x)+
∫ T2

T1

Ê0(t− s,D)h(s,x)ds, (4.52)

Indeed, u(t,x) defined in (4.52) satisfies all the three conditions of Definition 4.2.
Condition (i) of this definition immediately follows from the conditions 4.50 and
4.51 of the theorem. Condition (ii) is fulfilled due to construction of the solution
u(t,x). Condition (iii) follows from conditions 4.50 and 4.51 of the theorem and
Theorem 2.8.

Remark 4.4. Theorem 4.5 remains valid for Lizorkin-Triebel spaces, as well.

For p = 2 the inverse assertion is fulfilled under weaker assumption.
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Theorem 4.6. Let p = 2, 1< q <∞. The problem (4.3)–(4.4) is (�,s;B) (or (�,s;F))
-well posed if and only if for any t ∈ [T1,T2] and k = 0, . . . ,m the estimates

|∂
ks j(t,ξ )
∂ tk | ≤C(1+ |ξ |)s j−�k , C > O, ξ ∈ Rn, j = 0, . . . ,m− 1.

and

|∂
kE0(t,ξ )
∂ tk | ≤C(1+ |ξ |)s0−�k , C > O, ξ ∈ Rn,

hold.

Proof. We only need to prove the “only if” part. Assume that the condition of the
Theorem is not fulfilled. For simplicity, assume that the first estimate is not verified.
This means that for some component s j0(t,ξ ) of the system S(t,ξ ) there exists a

neighborhood U(ξ∗) of a point ξ∗ ∈
◦

M, such that for any N > 0 and L > 0 the
inequality

|s j0(t,ξ )|> N(|ξ − ξ∗|)−L, ξ ∈U(ξ∗), (4.53)

holds. If the condition is not verified at infinity, then for large |ξ | and for some
t0 ∈ (T1,T2), k0 ∈ {0, . . . ,m}, and j0 ∈ {0, . . . ,m− 1}, the inequality

|∂
k0s j0(t0,ξ )
∂ tk0

|> N(1+ |ξ |)s j0−�k0 (4.54)

holds. Inequalities (4.53) or (4.54) imply that

‖ ∂
r

∂ tr Ŝ j0(t0,D)ϕ j0 |B�r
2q‖> N‖ϕ j0 |B

s j0
2q ‖, (4.55)

where ϕ j0 ∈B
s j0
2q , suppFϕ0 ⊂U(ξ∗) and r is 0 or k0. Further, setting ϕ j = 0 if j �= j0,

it follows from (4.55) that

‖ ∂
r

∂ tr u(t0,x)|B�r
2q‖> N‖ϕ j0 |B

s j0
2q ‖.

The latter contradicts to the (�,s;B)-well posedness of boundary value
problem (4.3)–(4.4).

4.5 On sufficient conditions for existence of a solution

If conditions of Theorems 4.5 and 4.6 are not fulfilled, then generally speaking, the
problem (4.3)–(4.4) is not well posed in the scales of Besov and Lizorkin-Triebel

spaces. However, if the structure of the set
◦

M defined in (4.34) is simple, then one
can find effective sufficient conditions for ϕ j ∈ B

s j
pq(R

n) under which a solution
exists. One of such problems is a boundary value problem for uniformly elliptic
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operator of the order 2� with a boundary operator containing normal or oblique
derivatives of higher order. Here for simplicity we assume that � = 1. Thus, let us
consider the problem

∂ 2u
∂ t2 +L(D)u = 0, t > 0, x ∈ R

n, (4.56)

Bαu(t,x)|t=0 = ϕ(x), x ∈ R
n, (4.57)

where L(D) is a second order pseudo-differential operator whose symbol L(ξ ) sat-
isfies the two-side estimate C1|ξ |2 ≤ −L(ξ ) ≤ C2|ξ |2, C1,C2 > 0; Bα = Dα

t or
Bα = Dα

xn
, where α ≥ 0 is an integer number. For example, let α = 1 and L(D) = Δ ,

the Laplace operator. Then, if the boundary operator is B1 = Dt , then we have the
Neumann problem for the Laplace operator. In this case, as is known, the necessary
and sufficient condition for the existence of a unique solution is the orthogonality of
the boundary function ϕ to 1. Similarly, if the boundary operator is B1 = Dxn , then
we have a boundary problem with the oblique derivative (which is tangent to the
boundary in our case). In this case, the solution exists if ϕ is orthogonal to 1(xn),
that is

∫
R
ϕ(x)dxn = 0, for all (x1, . . . ,xn−1) ∈ R

n−1.
Fractional generalizations of these boundary conditions will be discussed in de-

tail in Chapter 5.

Remark 4.5. For higher values of α some consistency relationship between equa-
tion (4.56) and boundary condition (4.57) may appear. For instance, if Bα = Dα

t and
α ≥ 2, then one has

ϕ(x)+Dα−2
t L(D)u(t,x)∣∣

t=0

= 0.

The solutions found below (e.g., (4.59)) automatically satisfy this relationship.
Therefore, we do not emphasize this condition in formulations of theorems.

Theorem 4.7. Let Bα = Dα
t , 1 < p <∞, 1 < q <∞ and the following conditions are

fulfilled:

1) if 0≤ α < n(p− 1)p−1, then ϕ ∈ Bs
pq has a compact support;

2) if m− 1+ n(p− 1)p−1 ≤ α < m+ n(p− 1)p−1, m ≥ 1 integer, then ϕ ∈ ◦
B

s

pq,m,

where
◦
B

s

pq,m is a Lizorkin type space defined in Section 1.12.

Then there exists a unique solution u(t,x) of problem (4.56)–(4.57) with Bα = Dα
t

in the space L∞(R+;Bs+α
pq,m). Moreover, for the solution the estimate

sup
t>0

‖u(t,x)|Bs+α
pq,m‖ ≤C‖ϕ |Bs

pq‖, (4.58)

holds, where C > 0 depends on the size of suppϕ .

Remark 4.6. The case 1) is associated with m = 0. Hence, in estimate (4.58) one
needs to put Bs+α

pq,m = Bs+α
pq,0 = Bs+α

pq .
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Proof. One can easily verify that a bounded solution of problem (4.56)–(4.57) with
Bα = Dα

t can be represented in the form

u(t,x) = Pα(t,D)ϕ(x), (4.59)

where Pα(t,D) is the pseudo-differential operator with the symbol

Pα(t,ξ ) =
exp(−t

√−L(ξ ))
(−√−L(ξ ))α

, ξ �= 0. (4.60)

The latter has only singular point ξ = 0, and its order of singularity equals α.
Therefore, u(t,x) is well defined only under some conditions on ϕ . Depending
on α the sufficient conditions for ϕ are given in items 1) and 2) of the theorem.
To verify these conditions one needs to show the validity of estimate (4.58). Let
α ∈ [0,n(p− 1)p−1) and ϕ ∈ Bs

pq(R
n). Further, let the collection {φ j}∞j=0 with

{F−1φ j}∞j=0 ∈ Φ, define the norm of the Besov space Bs
pq(R

n). Using repre-
sentation (4.59), (4.60) of the solution u(t,x) and the definition of the norm of the
Besov space (see, (1.88)), one has

‖u(t,x)|Bs+α
pq ‖q ≡

(∫
Rn

∣∣∣∣∣F−1

[
φ0

exp(−t
√−L(ξ ))

(−√−L(ξ ))α
F [ϕ ]

]∣∣∣∣∣
p

dx

) p
q

+
∞

∑
j=1

2(s+α) jq

∥∥∥∥∥F−1

[
φ j

exp(−t
√−L(ξ ))

(−√−L(ξ ))α
F [ϕ ]

]
|Lp

∥∥∥∥∥
q

. (4.61)

We will estimate each term on the right of (4.61). For the first term, since α p′ < n,
in accordance with Theorem 1.24 and Remark 1.10 of Chapter 1, one obtains

∫
Rn

∣∣∣∣∣F−1

[
φ0

exp(−t
√−L(ξ ))

(−√−L(ξ ))α
F [ϕ ]

]∣∣∣∣∣
p

dx≤C‖ϕ |Bs
pq‖p, (4.62)

where C is a positive constant depending on the size of the support of ϕ , α, and p.
Further, taking into account the fact suppφ j ⊆ {2 j ≤ |ξ | ≤ 2 j+1}, j = 1, . . . , the
second term in (4.61) can be estimated by the expression

C
∞

∑
j=1

2s jq‖F−1 [φ jF[ϕ ]] |Lp‖q.

The latter together with (4.61) and (4.62) implies estimate (4.58).

Now let us assume α ∈ [m− 1+ n(p− 1)p−1,m+ n(p− 1)p−1) and ϕ ∈ ◦
B

s

pq,m.
Then in accordance with Theorem 1.23 there exists a function v ∈ Bs+m

pq such that
Fϕ = |ξ |mFv. Thanks this fact the first term on the right-hand side of (4.61) can be
estimated by

C

(∫
suppφ0

|ξ |(m−α)p′dξ
)p−1

‖v|Bs+m
pq ‖p ≤C‖ϕ |Bs

pq‖p,
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where C is a positive constant depending on the size of the support of ϕ , α, p, and m.
One can estimate the second term on the right side of (4.61) as in the previous case.

The theorem below uses the oblique derivative in the boundary condition in the
form Bα = Dα

xn
. Its proof is similar to the proof of Theorem 4.7. We leave it for the

reader as an exercise.

Theorem 4.8. Let Bα = Dα
xn

, 1 < p < ∞, 1 < q < ∞, and the following conditions
are fulfilled:

1) if α = 0, then ϕ ∈ Bs′,sn
pq and has a support in the strip {|xn| ≤ N} with a width

2N, N > 0;

2) if α = 1,2, . . . , then ϕ ∈ ◦
B

s′,sn

pq,α , where
◦
B

s′,sn

pq,α is a Lizorkin type space defined in
Section 1.12.

Then there exists a unique solution u(t,x) of the problem (4.56)–(4.57) with Bα =

Dα
xn

in the space L∞(R+;Bs′,sn+α
pq,α ). Moreover, the estimate

sup
t>0

‖u(t,x)|Bs′,sn+α
pq,α ‖ ≤C‖ϕ |Bs′,sn

pq ‖, C > 0,

holds.

4.6 Examples and applications

In this section we demonstrate a few examples and discuss some applications of
ΨDOSS. We start with a brief analysis of Problems (examples) 2.2.0.1–2.2.0.5
discussed in Section 2.2 with a nonhomogeneous term. Then we will discus appli-
cations of established theorems to the analysis of boundary values of harmonic func-
tions
(hyperfunctions) and the uniqueness problem of a solution of polyharmonic
equation.

4.6.1 Examples

1. Problem 2.2.0.1: This is the Cauchy problem

∂ 2u(t,x)
∂ t2 +λ 2D2u(t,x) = h(t,x), t > 0,x ∈ R,

u(0,x) = ϕ(x),
∂u(0,x)

∂ t
= ψ(x), x ∈R,

where λ = μ + iν and D = ∂/i∂x. Here the Duhamel principle is applicable.
Therefore, we first consider the case h(t,x) = 0. In this case the symbols of



188 4 Boundary value problems for pseudo-differential equations with singular symbols

solution operators are s0(λ , t,ξ ) = cos(ξλ t) and s1(λ , t,ξ ) = sin(ξλ t)
λξ . These

symbols satisfy the conditions of Theorem 4.5 only if λ is real, which corre-
sponds to the Cauchy problem for the wave equation. Moreover, in accordance
with the Duhamel principle we need to solve the following Cauchy problem for
arbitrary τ > 0 :

∂ 2V (t,τ,x)
∂ t2 +λ 2D2V (t,τ,x) = 0, t > τ,x ∈ R,

V (τ,τ,x) = 0,
∂V (τ,τ,x)

∂ t
= h(τ,x), x ∈R,

Exploiting the solution operators with symbols s0(λ , t−τ,ξ ) and s1(λ , t−τ,ξ ),
we have

V (t,τ,x) =
[

sinλ (t− τ)D
λD

]
h(τ,x).

Hence, if λ is real, then the problem is well posed in the Besov spaces. Namely,
for any ϕ ∈ Bs

p,q(R
n), ψ ∈ Bs+1

p,q and h ∈C[t ≥ 0;Bs
p,q(R

n)] there exists a unique
solution u(t,x) in the space

C2[t > 0;Bs
p,q(R

n)]∩C[t ≥ 0;Bs
p,q(R

n)]∩C1[t ≥ 0;Bs+1
p,q (R

n)].

If λ has nonzero imaginary part, and in particular, purely imaginary, then the
problem cannot be well posed in Besov or Lizorkin-Triebel spaces, because of
an exponential growth at infinity of the symbols of solution operators.

2. Problem 2.2.0.2: This is the Dirichlet problem

∂ 2u(t,x)
∂ t2 +λ 2D2u(t,x) = h(t,x),

u(0,x) = ϕ(x), u(1,x) = ψ(x),

where again λ = μ+ iν and D = ∂/i∂x. The Duhamel principle is not applicable
for this problem. Again, we first assume that h(t,x) = 0. Then the symbols of

solution operators are s0(λ , t,ξ ) = sin (1−t)λξ
sin λξ and s1(λ , t,ξ ) = sin tλξ

sinλξ . These

symbols belong to the class C∞Sp(G), where G =R\{ξk =
πk
λ , k =±1,±2, . . .}

for a fixed λ ∈ C and t ≥ 0. Obviously, conditions of Theorems 4.5 and 4.6 are
not verified if λ is real (the Dirichlet problem for the wave equation). If λ ∈C\R,
then conditions of Theorem 4.6 is verified. Moreover, one can readily verify that
the Green function G(t,τ,ξ ) for the operator

L(
d
dt
,ξ ) =

d2

dt2 +λ 2ξ 2, v(0) = v(1) = 0,

has the form

G(t,τ,ξ ) =

⎧⎨
⎩

sinλξ t sin(τ−1)λξ
λξ sinλξ , if t < τ,

sin(t−1)λξ sinλξ
λξ sinλξ , if t > τ.
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Therefore, for any ϕ , ψ ∈Hs(R) and h∈C[[0,1];Bs
p,q(R

n)] there exists a unique
solution of the problem in the space C2[(0,1);Hs(R)]∩C[[0,1];Hs(R)]. If λ is
real, then the problem cannot be well posed in Besov or Lizorkin-Triebel spaces,
because of pole type singularities of the symbols of solution operators.

3. Problem 2.2.0.3: This is the Cauchy problem

∂u(t,x)
∂ t

= κΔu(t,x)+ h(t,x), t > 0, x ∈ R
n,

u(0,x) = f (x), x ∈ R
n.

We apply the Duhamel principle. The symbol of the solution operator of this
problem when h(t,x) = 0 is s(t,ξ ) = exp(−tκ |ξ |2) and belongs to C∞Sp(R

n) for
t ≥ 0. The conditions of Theorems 4.5 and 4.6 are verified if κ > 0 (forward heat
equation). The function V (t,τ,x), which solves the Cauchy problem

∂V (t,τ,x)
∂ t

= κΔV (t,τ,x), t > τ, x ∈ R
n,

V (τ,τ,x) = h(τ,x), x ∈ R
n.

has the form
V (t,τ,x) = eκ(t−τ)Δh(τ,x).

Hence, in the case κ > 0 for any functionsϕ ∈Bs
p,q(R

n) and h∈C[t≥ 0;Bs
p,q(R

n)],
1 < p,q < ∞, s ∈ R, there is a unique solution

u(t,x) ∈C2[(0,1),Bs
p,q(R

n)]∩C[[0,1],Bs
p,q(R

n)].

In fact, it is known from the classical theory that u(t,x) is infinite differentiable in
R

n+1
+ ≡{(t,x) : t > 0, x∈R

n}. If κ < 0 (backward heat equation), then evidently
the conditions of Theorems 4.5 and 4.6 are not verified. Due to Theorem 4.1, in
this case a solution exists for ϕ ∈ΨG,p(R

n), but the solution operator cannot be
closed up to Besov and Lizorkin-Triebel spaces.

4. Problem 2.2.0.4: We consider this problem in a particular case, namely the
Cauchy problem

∂u(t,x)
∂ t

= D
α
0 u(t,x)+ h(t,x), t > 0, x ∈ R

n, (4.63)

u(0,x) = ϕ(x), x ∈R
n, (4.64)

Equation (4.63) is a fractional order differential equation. Fractional order dif-
ferential equations are studied in detail in the next chapter. Here, we consider the
case α = 1. The symbol of the solution operator of the Cauchy problem (4.63)–
(4.64) when h(t,x) = 0 is s(t,ξ ) = exp(−t|ξ |). This symbol is not differentiable
at the origin. Thus, we have s(t,ξ ) ∈CSp(R

n) for every fixed t ≥ 0. We note that
the integrand V (t,τ,x) in Duhamel’s principle has the form

V (t,τ,x) = e−(t−τ)
√−Δh(τ,x).
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Like the previous example the symbol of the solution operator also satisfies
the conditions of Theorems 4.5 and 4.6, and hence, is well posed in the Besov
and Lizorkin-Triebel spaces. However, there is a crucial difference between so-
lutions of these two problems. The inverse Fourier transform of the symbol
s(t,ξ ) = exp(−t|ξ |) due to formula (1.12) is Ct(t2 + |x|2)−1. Thanks to this fact
the fundamental solution E (t,x) has a power law decay when |x| → ∞, while the
fundamental solution of the previous problem has an exponential decay at infin-
ity. This is true in the general case of 0 < α < 2, as well.

5. Consider the following boundary value problem with a nonlocal integral bound-
ary condition:

∂u(t,x)
∂ t

= Δu(t,x)+ h(t,x), 0 < t < 1, x ∈R
n, (4.65)

∫ 1

0
u(t,x)dt = f (x), x ∈R

n. (4.66)

The Duhamel principle is not applicable for this problem. It is not hard to verify
that the symbol of the solution operator of this problem in the homogeneous case
(h(t,x) = 0) is

s(t,ξ ) =
|ξ |2e−t|ξ |2

1− e−|ξ |2
,

and the Green function for the operator

L(
d
dt
,ξ ) =

d
dt

+ |ξ |2,
∫ 1

0
v(t)dt = 0,

has the form

G(t,τ,ξ ) =

⎧⎪⎨
⎪⎩

e−t|ξ |2−e−(1−τ+t)|ξ |2

e−|ξ |2−1
, if t < τ,

e−t|ξ |2−e−(t−τ)|ξ |2

e−|ξ |2−1
, if t > τ.

From the forms of s(t,ξ ) and G(t,τ,ξ ) it follows that the problem in (4.65), (4.66)
is well posed in the sense of Hadamard in the Besov and Lizorkin-Triebel spaces.

4.6.2 The Cauchy problem for the Schrödinger equation
of a relativistically free particle

This is Problem 2.2.0.5 in Section 2.2. The state function of a relativistically free
particle, as is shown in [BD64], satisfies the following Cauchy problem for a
Schrödinger equation
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i
∂u(t,x)
∂ t

=
ω
h̄

√
I−ω2Δ u(t,x), t > 0, x ∈ R

n,

u(0,x) = ϕ(x), x ∈ R
n,

where I is the identity operator; ω = c
mh̄ , c is the speed of light, m is the mass of

the particle, h̄ is the Planck’s constant. It is easy to see that in this case the symbol
of the solution operator is s(t,ξ ) = exp(−iωth̄−1

√
1+ω2|ξ |2) and the solution

u(t,x) belongs to C[R+;Bs
pq(R

n)]∩C1[R+;Bs−1
pq (Rn)], provided ϕ ∈ Bs

pq(R
n). The

well posedness of this problem in H±∞(±G) was studied in [Sam83], in the Sobolev
spaces Hs(Rn) in [Uma98].

4.6.3 On uniqueness of a solution of the polyharmonic equation

Edenhofer [Ede75] proved the uniqueness theorem for the m-polyharmonic equation
with zero levels on m given concentric hyperspheres with the center at the origin.
Applying Theorems 4.1 and 4.2, one can prove similar result in the case of half-
space Rn+1

+ ≡{(t,x) : t > 0,x∈R
n}with zero levels on m given hyperplanes parallel

to t = 0. Namely, consider

( ∂ 2

∂ t2 +Δx

)m
u(t,x) = 0, t > 0, x ∈R

n, (4.67)

u(t j,x) = ϕ j(x), x ∈ R
n, j = 1, . . . ,m, (4.68)

|u(t,x)|= O(1), t → ∞, (4.69)

where Δx =
∂ 2

∂x2
1
+ . . .+ ∂ 2

∂x2
n

is the Laplace operator, and 0≤ t1 < .. . < tm < ∞. The

characteristic equation corresponding to (4.67) is

(
d2

dt2 −|ξ |2)v(t,ξ ) = 0.

Its m linearly independent solutions, due to constraint (4.69), are tke−t|ξ |, k =
0, . . . ,m− 1. Therefore, in order to find the symbols s j(t,ξ ), j = 1, . . . ,m, of so-
lution operators one needs to solve the system of linear algebraic equations

⎡
⎢⎢⎢⎢⎢⎢⎣

1 t1 t2
1 . . . tm−1

1
1 t2 t2

2 . . . tm−1
2

. . . . . . . . . . . . . . .

1 t j t2
j . . . tm−1

j
. . . . . . . . . . . . . . .
1 tm t2

m . . . tm−1
m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c0(ξ )
c1(ξ )
. . .

c j(ξ )
. . .

cm−1(ξ )

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
. . .

et j |ξ |
. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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One can write this system in the form VC(ξ ) = B jet j |ξ |, where V is the Vander-
monde matrix, and B j ∈ R

m is the vector, whose the only nonzero component is
b j = 1. Since, Det(V) =∏1≤k< j≤m(tk− t j) �= 0, this system has a unique solution

Cj(ξ ) = v−1
k j et j |ξ |, k = 0, . . . ,m− 1,

where v−1
k j , k = 0, . . . ,m− 1, j = 1, . . . ,m, are entries of the inverse matrix V−1. It

follows from this fact that the symbols s j(t,x), j = 1, . . . ,m, have representations

s j(t,ξ ) =
(m−1

∑
k=0

v−1
k j tk

)
e−(t−t j )|ξ |, j = 1, . . . ,m.

Obviously, the symbol s j(t,x) has a singularity at infinity if 0 < t < t j, and has
no singularities if t ≥ t j. Hence, corresponding operators S j(t,D), j = 1, . . . ,m, are
ΨDOSS defined on ΨG,p(R

n) and Ψ ′
−G,p′ (R

n) for any G ⊆ R
n and 1 < p < ∞.

Now it follows from Theorem 4.1 (Theorem 4.2) that for ϕ j ∈ΨG,p(R
n) ( ϕ ∈

Ψ ′
−G,p′ (R

n)) there exists a unique solution u(t,x) ∈ C2[R+;ΨG,p(R
n)] (u(t,x) ∈

C2[R+;Ψ ′
−G,p′ (R

n)]) of boundary value problem (4.67)–(4.69). In particular, if

ϕ j(x) ≡ 0 (zero levels), then u(t,x) ≡ 0 in R
n+1
+ . We note that the solution oper-

ator S j(t,D) is closable up to the class of functions ϕ ∈ G
′
, such that

|Fϕ j(ξ )| ≤Ce−(t j+ε)|ξ |, j = 1, . . . ,m.

where C > 0, ε > 0 are some constants.

4.6.4 On derivatives of harmonic functions
with a given trace (hyperfunction)

The space of hyperfunctions, introduced by Mikio Sato [Sat59, Sat60] in 1959, con-
tains distributions, ultra-distributions, and analytic functionals as subclasses. A hy-
perfunction on an open set Ω ⊂R

n is defined as a boundary values of a pair of holo-
morphic functions (F+,F−) defined on “upper” and “lower” tubular neighborhoods
D± ⊂ C

n of Ω . In the theory of hyperfunctions it is well known [Sat59, SKK73]
that hyperfunctions can be represented as boundary values of harmonic functions.
In particular, for any hyperfunction h(x) there exists a defining harmonic function
u(t,x) defined on (0,T )×R

n, such that u(t,x)→ h(x), as t → 0+, in a suitable
inductive topology.

Here we consider the problem of existence of a function u(t,x), harmonic in
Rn+1
+ , whose derivative of order α ∈ N0 tends to a given trace ϕ ∈Ψ ′

2,−G(R
n) in a

certain topology. We note that in two cases, namely if 0 /∈G orα = 0, it follows from
Theorem 4.4 (in the case of p = q = 2) that for any ϕ ∈Ψ ′

−G,2(R
n) there exists a
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harmonic function u(t,x), such that Dα
t u(t,x) → ϕ(x) as t → 0+ in Ψ ′

−G,2(R
n).

Below we assume that 0 ∈ G and α ∈ N, the cases which are not covered by
Theorem 4.4. The case of arbitrary real α > 0 will be discussed in Chapter 5.

Definition 4.3. Denote by Hβ (G), β >− n
2 +α, the class of functionsϕ ∈Ψ2,G(R

n),
such that for any ε ∈ (0,ε1), 0 < ε1 < 1, the estimate

|ξ |−β ∣∣F[ϕ ](ξ )∣∣≤C < ∞, |ξ |< ε,

holds in the ε-neighborhood of the origin. Evidently, if β1 > β2 > α − n/2, then
Hβ1

(G)⊂Hβ2
(G). We introduce the space Z+

α (G) as an inductive limit of Hβ (G) as
β → (α− n/2) from the right, i.e.

Z+
α (G) = ind lim

β↘(−n/2+α)
Hβ (G).

Let H∗
β (−G) be the space, conjugate to Hβ (G). Then, it follows from Proposi-

tion 1.23 that the topological dual to Z+
α (G) is the projective limit

Z−α (−G) = pr lim
β↘(−n/2+α)

H∗
β (−G).

Since Z+
α (G) ↪→ΨG,p(R

n), then the topological inclusionΨ ′
−G,2(R

n) ↪→ Z−α (−G) is
valid.

Lemma 4.1. The pseudo-differential operator P(α;t,D) with the symbol

p(α;t,ξ ) = (exp(−t|ξ |− iπα))/|ξ |α (4.70)

for any fixed t > 0, is continuous as the mapping

P(α;t,D) : Z+
α (G)→ΨG,2(R

n).

Proof. Let ϕ ∈ Z+
α (G), i.e., there is the β0 >− n

2 +α such that |ξ |−β0 |F [ϕ ](ξ )| ≤C
for |ξ |< ε, where ε > 0. It follows that the Fourier transform F[P(α; t,D)ϕ(x)](ξ )
has the asymptotic behavior O(|ξ |β0−α) as |ξ |→ 0. Since α−β0 <

n
2 , then we have

F [P(α; t,D)ϕ ] ∈ L2(R
n
ξ ). Hence, due to Parseval’s equality, P(α; t,D)ϕ ∈ L2(R

n
x).

Moreover, it is obvious that

suppF [P(α;t,D)ϕ ]⊆ suppF[ϕ ]� G. (4.71)

Thus, P(α; t,D)ϕ ∈ΨG,2(R
n). Further, let the sequence ϕ� ∈ Z+

α (G), � = 1,2, . . . ,
converge to zero in the topology of Z+

α (G). This means that there are a general
compact K0 ⊂ G, a number β0 > n/2−α, and a number ε0 ∈ (0,1), such that

1. suppϕ� ⊆ K0 for all �= 1,2, . . . ,
2. |ξ |−β0 |Fϕ�(ξ )| ≤C provided |ξ |< ε < ε0, and
3. ‖ϕ�‖L2 → 0 as �→ ∞.
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It follows from (4.71) that suppF [P(α;t,D)ϕ�] ⊆ K0 for all � ≥ 1. Further, since
2(α−β0)< n, one has the estimate

‖P(α;t,D)ϕ�|L2‖2 =
1

(2π)n ‖
e(−t|ξ |−iπα)

|ξ |α F [ϕ�]|L2‖2

≤C
∫
|ξ |<ε

dξ
|ξ |2(α−β0)

+Kε‖ϕ�|L2‖2, (4.72)

where C > 0, Kε > 0 are positive constants. Now suppose that δ is an arbitrary
preassigned positive number. Choosing ε small enough so that the first term on the
right-hand side of (4.72) is less than δ/2, and � large enough so that the second
term is less than δ/2, we obtain that P(α;t,D)ϕ� → 0 as �→ ∞, in the topology of
ΨG,2(R

n).

By duality we immediately obtain the following statement.

Lemma 4.2. A pseudo-differential operator P(α;t,D) with the symbol in (4.70) is
continuous for every fixed t as the mapping

P(α;t,D) :Ψ
′
−G,2(R

n)→ Z−α (−G).

Lemma 4.3. Let ϕ(x) ∈ Z+
α (G). Then there exists a harmonic function u(t,x) such

that
lim

t→+0
Dα

t u(t,x) = ϕ(x)

in the topology ofΨG,2(R
n).

Proof. Suppose that the harmonic function u(t,x) solves the boundary value
problem

(D2
t +Δ)u(t,x) = 0, t ∈ (0,T ), x ∈ R

n,

Dα
t u(0,x) = ϕ(x), |u(T,x)|< ∞, x ∈ R

n,

where Dt = ∂/∂ t and Δ is the Laplace’s operator. One can then easily verify
(see also the proof of Theorem 4.7) that u(t,x) = P(α; t,D)ϕ . Due to Lemma 4.1
u(t,x) ∈ΨG,2(R

n) for every fixed t ∈ (0,T ). Moreover, its derivative Dα
t u(t,x) =

P(0; t,D)ϕ(x) represents the Poisson’s integral for ϕ(x). It follows from this fact
that limt→+0 Dα

t u(t,x) = ϕ(x) in the topology ofΨG,2(R
n).

Theorem 4.9. Let h(x) ∈Ψ ′
−G,2(R

n). Then there exists a harmonic function u(t,x)
such that limt→+0 Dα

t u(t,x) = h(x) in the topology of Z−α (−G).

Proof. By duality, u(t,x) = P(α;t,−D)h(x) is harmonic in the weak sense in
(0,T )×R

n. In accordance with the Weyl’s lemma [Shu78] it is an ordinary har-
monic function. Moreover, it follows from Lemma 4.2 that it is as an element of the
space Z−α (−G) for any fixed t. Let v be an arbitrary function in Z+

α (G). One has
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< Dα
t u(t,x)− h(x),v(x)>=< h(x), [Dα

t P(α; t,D)− I]v(x)> .

Now Lemma 4.3 implies that Dα
t u(t,x)→ h(x) as t →+0.

4.6.5 Boundary values of harmonic functions

We have seen above thatψ-distributionsΨ ′
−G,2(R

n) are boundary values of harmonic
functions in a special topology. Continuing the discussion on boundary values of
harmonic functions, we note that Gorbachuk [G84] found the necessary and suffi-
cient conditions for boundary values of harmonic functions to belong to the Sobolev
spaces W s

2 (R
n) for arbitrary s ∈ R. Below we will study boundary values of har-

monic functions in spaces Bs
2q(R

n) (or Fs
2q(R

n)) for arbitrary s ∈ R and 1 < q < ∞,

generalizing the results of [G84].

Theorem 4.10. A harmonic on (0,T )×R
n function, u(t,x) has boundary values as

t →+0 belonging to the space Bs
2q(R

n), s≥ 0, if and only if the estimate

sup
0<t<ε

‖u(t,x)|Bs
2q‖ ≤C < ∞ (4.73)

holds for some ε > 0.

Proof. The necessity of condition (4.73) is the particular case of Theorem 4.7,
corresponding to the case of α = 0 and p = 2. Suppose condition (4.73) is fulfilled.
The sufficiency of this condition follows from the following estimate

C ≥ ‖u(t,x)|Bs
2q‖q =

∞

∑
j=o

2s jq‖F−1
[
ϕ je

−t|ξ |F [u(0,x)]
]
|L2‖q

≥C1

∞

∑
j=0

2s jq‖F−1
[
ϕ jF [u(0,x)]

]
|L2‖q

=C1‖u(0,x)|Bs
2q‖q. (4.74)

Here we used the inequality e−t|ξ | ≤ 1 on the support of each ϕ and the Parseval’s
equality.

Theorem 4.11. A harmonic in (0,T )×R
n function u(t,x) has boundary values as

t →+0 belonging to B−s
2q (R

n), s > 0, if and only if the estimate
∫ ε

0
tqs−1‖u(t,x)|B0

2q‖qdt ≤C < ∞ (4.75)

holds for some ε > 0.
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Proof. Necessity. Suppose for the harmonic function u(t,x) its limit u(0,x) as t →
0+ in the norm of B−s

2q (R
n) exists and belongs to B−s

2q (R
n). Then, as we have seen

above,
u(t,x) = P(0;t,D)u(0,x),

where the operator P(0;t,D) has the symbol P(0;t,ξ ) = e−t|ξ |. Let a collection
{ϕ j(ξ )}∞j=0 define the norm of the Besov space B−s

2q (R
n) in accordance with (1.88).

Recall that suppϕ j ⊂ {2 j−1 ≤ |ξ | ≤ 2 j+1}. Further, for ξ ∈ suppϕ j the inequality

e−t2 j−1 ≤ e−t|ξ | ≤ e−t2 j+1
(4.76)

holds for the symbol P(0;t,ξ ). Therefore, using the right inequality in (4.76) and
the Parseval’s equality, one has

∫ ε

0
tqs−1‖u(t,x)|B0

2q‖qdt =
∫ ε

0
tqs−1

∞

∑
j=0

∥∥∥F−1
[
ϕ je

−t|ξ |F[u(0,x)]
]∣∣∣L2

∥∥∥q

≤C
∞

∑
j=0

(∫ ε

0
tqs−1e−t2 j+1qdt

)
‖F−1 [ϕ jF[u(0,x)]] |L2‖q. (4.77)

Now consider the function

μ(λ ) =
∫ ε

0
tqs−1e−λ tdt, λ ≥ 1

2
. (4.78)

The substitution λ t = τ in this integral yields the estimate

μ(λ ) = λ−qs
∫ λε

0
τqs−1e−τdτ ≤ Γ (qs)λ−qs, (4.79)

where Γ (·) is the Euler’s gamma function. Using the latter estimate with λ = q2 j+1

in inequality (4.77), one obtains

∫ ε

0
tqs−1‖u(t,x)|B0

2q‖qdt ≤C
∞

∑
j=0

2−s jq‖F−1[ϕ jF [u(0,x)]
]|L2‖q

=C‖u(0,x)|B−s
2q ‖q < ∞,

proving (4.75).
Sufficiency. Assume that (4.75) holds for some ε > 0. We need to show that

u(0,x) ∈ B−s
2q (R

n). Using the left inequality in (4.76) and the Parseval’s equality, we
have

∫ ε

0
tqs−1‖u(t,x)|B0

2q‖qdt =
∫ ε

0
tqs−1

∞

∑
j=0

∥∥∥F−1
[
ϕ je

−t|ξ |F [u(0,x)]
]
|L2

∥∥∥q

≥C
∞

∑
j=0

(∫ ε

0
tqs−1e−t2 j−1qdt

)∥∥F−1[ϕ jF[u(0,x)]
]|L2

∥∥q
. (4.80)
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Further, replacing λ by its lowest value 1/2 in the upper integration endpoint in the
integral in (4.79), we have μ(λ )≥Cελ−qs. Now using this estimate with λ = q2 j−1

in inequality (4.80), we obtain

∞>

∫ ε

0
tqs−1‖u(t,x)|B0

2q‖qdt ≥Cε
∞

∑
j=0

2−s jq
∥∥F−1[ϕ jF [u(0,x)]

]|L2
∥∥q

=Cε‖u(0,x)|B−s
2q ‖q,

which shows that u(0,x) ∈ B−s
2q (R

n).

4.7 Duhamel principle for differential-operator equations

Recall that in Section 2.8 of Chapter 2 we introduced the space of exponential ele-
ments ExpAλ ,G

(X) and its dual Exp
′
A∗,G∗(X

∗), where X is a reflexive Banach space
and A is a closed operator with a dense domain D(A) ⊂ X , and defined operators
of the form f (A) with symbols f analytic in a domain G. Using this construction
one can study abstract boundary value problems for differential operator equations
of the form

L(t,
d
dt
,A)u(t) = u(m)(t)+

m−1

∑
k=0

fk(t,A)u
(k)(t) = h(t), t ∈ (T1,T2), (4.81)

Bk(A)[u] =
m−1

∑
j=0

bk j(A)u
( j)(tk j) = yk, k = 1, . . . ,m, (4.82)

where h(t) and yk, k = 1, . . . ,m, are given elements. Boundary value problem
(4.81)–(4.82) generalizes problem (4.3)–(4.4) for ΨDOSSs considered above to
the case of abstract differential-operator equations. The next section (Section 4.8)
presents generalizations of the results obtained forΨDOSSs to the abstract case of
boundary value problem (4.81)–(4.82). In this section we will discuss the Duhamel
principle for abstract Cauchy problem for differential-operator equations.

Consider the Cauchy problem

u(m)(t)+
m−1

∑
k=0

fk(A)u
(k)(t) = h(t), t > 0, (4.83)

u(k)(0) = ϕk, k = 0, . . . ,m− 1. (4.84)

The Duhamel principle establishes a connection between the solutions of the Cauchy
problem for nonhomogeneous equation (4.83) with the homogeneous initial
conditions

u(k)(0) = 0, k = 0, . . . ,m− 1, (4.85)
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and the Cauchy problem for the corresponding homogeneous equation

∂mU
∂ tm (t,τ)+

m−1

∑
k=0

fk(A)
∂ kU
∂ tk (t,τ) = 0, t > τ, (4.86)

∂ kU
∂ tk (t,τ)|t=τ+0 = 0, k = 0, . . . ,m− 2, (4.87)

∂m−1U
∂ tm−1 (t,τ)|t=τ+0 = h(τ). (4.88)

Note that if h(t) is a continuous ExpAλ ,G
(X)-valued (Exp

′
A∗,G∗(X

∗)-valued) func-
tion then the solution of (4.86)–(4.88) is an m times differentiable ExpAλ ,G

(X)-

valued (Exp
′
A∗,G∗(X

∗)-valued) function (see [Uma98]). Taking this fact into account,
in the following theorem we assume that the vector-functions h(t) and U(t,τ) are
ExpAλ ,G

(X)-, or Exp
′
A∗,G∗(X

∗)-valued, h(t) is continuous, U(t,τ) is m times differ-

entiable with respect to the variable t, and the derivatives ∂ jU(t,τ)
∂ t j , 0≤ j ≤ k−1, are

jointly continuous in the topology of ExpAλ ,G
(X), or of Exp

′
A∗,G∗(X

∗), respectively.

Lemma 4.4. Suppose v(t,τ) is a X-valued function defined for all t ≥ τ ≥ 0,

the derivatives ∂ jv(t,τ)
∂ t j , 0 ≤ j ≤ k− 1, are jointly continuous in the X-norm, and

∂ kv(t,τ)
∂ tk ∈ L1(0, t;X) for all t > 0. Let u(t) =

∫ t
0 v(t,τ)dτ. Then

dk

dtk u(t) =
k−1

∑
j=0

d j

dt j

[ ∂ k−1− j

∂ tk−1− j v(t,τ)|τ=t

]
+

∫ t

0

∂ k

∂ tk v(t,τ)dτ. (4.89)

Proof. For a fixed t > 0 and small h one can easily verify that

u(t + h)− u(t)
h

=
1
h

(∫ t+h

0
v(t + h,τ)dτ−

∫ t

0
v(t,τ)dτ

)

=
1
h

∫ t+h

t
v(t + h,τ)dτ+

∫ t

0

v(t + h,τ)− v(t,τ)
h

dτ. (4.90)

Due to the continuity and differentiability conditions of the lemma, in the X-norm
we have

‖1
h

∫ t+h

t
v(t + h,τ)dτ− v(t, t)‖X = ‖1

h

∫ t+h

t
[v(t + h,τ)d− v(t, t)]dτ‖X

≤ sup
t<τ<t+h

‖v(t + h,τ)− v(t, t)‖X = o(h), h→ 0, (4.91)

‖
∫ t

0

v(t + h,τ)− v(t,τ)
h

dτ−
∫ t

0

∂v(t,τ)
∂ t

dτ‖X = o(h), h→ 0. (4.92)

Now, letting h→ 0, estimates (4.91), (4.92) and equation (4.90) imply the formula

d
dt

u(t) = v(t, t)+
∫ t

0

∂
∂ t

v(t,τ)dτ. (4.93)

Formula (4.89) follows from (4.93) by repeated differentiation.
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In the general case of abstract differential-operator equations the Duhamel
principle is formulated as follows.

Theorem 4.12. Let U(t,τ) be a solution of the Cauchy problem (4.86)–(4.88). Then
a solution of the Cauchy problem (4.83), (4.85) is represented via Duhamel’s inte-
gral

u(t) =
∫ t

0
U(t,τ)dτ. (4.94)

Proof. Let u(t) be as defined by (4.94). Obviously u(0) = 0. Further, for the first
order derivative of u(t), using (4.89) in the case k = 1, one has

du
dt

(t) =U(t, t)+
∫ t

0

∂U
∂ t

(t,τ)dτ,

By virtue of (4.87) (k = 0) the latter implies that du
dt (0) = 0. Further, differentiating

k times,
dku
dtk (t) =

∂ k−1U
∂ tk−1 (t, t)+

∫ t

0

∂ kU
∂ tk (t,τ)dτ,

which due to condition (4.87) implies that dku
dtk (0) = 0, k = 2, . . . ,m− 1. Therefore,

the function u(t) in (4.94) satisfies initial conditions (4.85). Moreover, substitut-
ing (4.94) to (4.83), and taking into account (4.88), we have

u(m)(t)+
m−1

∑
k=0

fk(A)u
(k)(t)

=
dm

dtm

∫ t

0
U(t,τ)dτ+

m−1

∑
k=0

fk(A)
dk

dtk

∫ t

0
U(t,τ)dτ

=
∂m−1U
∂ tm−1 (t, t)+

∫ t

0

∂mU
∂ tm (t,τ)dτ +

m−1

∑
k=0

fk(A)
∫ t

0

∂ kU
∂ tk (t,τ)dτ

= h(t)+
∫ t

0

[
∂mU
∂ tm (t,τ)+

m−1

∑
k=0

fk(A)
∂ kU
∂ tk

(t,τ)

]
dτ = h(t).

Hence, u(t) in (4.94) satisfies equation (4.83) as well.

Remark 4.7. In Chapters 5 and 6 we will discuss fractional generalizations of the
Duhamel principle for a wide class of fractional and distributed order differential
equations.
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4.8 Well posedness of general boundary value problems
for differential-operator equations

In this section we prove an abstract analog of Theorems 4.3 and 4.5. On the base of
these results we consider broad class of boundary value problems (see § 6).

Consider the following nonlocal boundary value problem for differential operator
equations

u(m)(t)+
m−1

∑
k=0

ak(t,A)u
(k)(t) = 0, t ∈ (T1,T2), (4.95)

m−1

∑
j=0

bk j(A)u
( j)(tk j) = yk, k = 1, . . . ,m, (4.96)

where the ak(t,A), k = 0, . . . ,m− 1, and the bk j(A), k, j+ 1 = 1, . . . ,m, are oper-
ators defined in the sense of (2.95), Section 2.8, by functions ak(t,λ ) and bk j(λ ),
analytic in G; tk j ∈ [T1,T2]. Assume that the operator A commutes with d

dt .
Let {U0(t,λ ), . . . ,Um−1(t,λ )} be a fundamental system of solutions to the char-

acteristic equation

u(m)(t)+
m−1

∑
k=0

ak(t,λ )u(k)(t) = 0, λ ∈ C,

corresponding to equation (4.95), and satisfying the Cauchy conditions

u(k)j (0) = δ j,k, j,k = 0, . . . ,m− 1.

Further, introduce the set

◦
M = {λ ∈ C : detM(λ ) = 0} ⊂ C, (4.97)

where M(λ ) is the m×m matrix with entries

mkl =
m−1

∑
j=0

bk j(λ )u
( j)
l (tk j,λ ), k, l = 0, . . . ,m− 1.

We also introduce a vector-function U∗(t,λ ) = (u∗0(t,λ ), . . . ,u∗m−1(t,λ )) defined as

U∗(t,λ ) = (M∗(λ ))−1U(t,x), (4.98)

where M∗ is the Hermitian adjoint of the matrix M(λ ), and U(t,λ ) is the vector-
function with components u0(t,λ ), . . . ,um−1(t,λ ).

Theorem 4.13. Let yk ∈ ExpA,G(X) and
◦
M
⋂

G = /0, where
◦

M is defined in (4.97).
Then there exists a unique solution u(t) of the problem (4.95)–(4.96) in the space
C(m)[(T1,T2);ExpA,G(X)], and for the solution the representation
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u(t) =
m

∑
k=1

u∗k(t,A)yk, (4.99)

holds. Here u∗k(t,A), k = 0, . . . ,m−1, are operators with the corresponding symbols
uk(t,λ ), k-th component of the vector-function U∗(t,λ ) in (4.98).

Proof. We set

wj(t) = u∗j(t,A)y j = ∑
λ∈G

u∗jλ (t,A)yλ j, j ∈ {1, . . . ,n},

where yλ j ∈ ExpA,ν,λ (X), ν < R(λ ). By substituting wj(t) to (4.95) and taking into
account the equality

w(k)
j (t) = ∑

λ∈G

u∗(k)jλ (t,A)yλ j,

we have

w(m)
j (t)+

m−1

∑
k=0

ak(t,A)w
(k)
j (t) = ∑

λ∈G

{
∞

∑
n=0

1
n!

Dn
λ

[
u∗(m)

j (t,λ )

+
m−1

∑
k=0

ak(t,λ )u
∗(k)
j (t,λ )

]
(A−λ I)n}yλ j ≡ 0, (4.100)

because the expression in the square brackets in (4.100) vanishes. Similarly, one can
verify that the solution u(t) defined in (4.99) satisfies boundary conditions (4.96),
as well.

Remark 4.8. If one changes the operators ak(t,A) and bk j(A) in (4.95)–(4.96) to
their weak extensions, then the similar assertion is valid in the dual space. Namely,

for any yk ∈ Exp
′
A∗,G∗(X

∗), k = 1, . . . ,m, under the condition
◦

M ∩G = /0, there

exists a unique weak solution in the space C(m)[(T1,T2);Exp′A∗,G∗(X
∗)]. In this case

in representation (4.99) the operators u∗k(t,A) also change to their weak extensions.

In the next theorem we assume that for A the space ExpA(X) is dense in X and
�k ≥ 0, k = 0, . . . ,m, s j ≥ 0, j = 1, . . . ,m.

Theorem 4.14. Let the set
◦

M does not contain unremovable singularities of the
vector-function U∗(t,λ ). Moreover, let for |λ | ≥ L, λ ∈ σ(A), L > 0, the estimate

| ∂
k

∂ tk u∗j(t,λ )| ≤C|λ |s j−�k , j = 1, . . . ,m, k = 0, . . . ,m t ∈ [T1,T2], C > 0,

holds. Then for any y j ∈ D(As j), j = 1, . . . ,m, there exists a unique solution
u(t) ∈C(m)[(T1,T2);D(A�0)], u(k)(t) ∈C(m−k)[(T1,T2);D(A�k )], k = 1, . . . ,m, of the
problem (4.95)–(4.96), for which the estimate
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max
t∈[T1,T2]

[
m

∑
k=0

�k

∑
q=0

(‖Aqu(k)(t)|X‖)]≤C
m

∑
j=1

s j

∑
q=0

‖Aqu j|X‖, C > 0, (4.101)

holds.

Proof. We sketch the proof, since it is similar to the proof of Theorem 4.5. We first
assume that y j ∈ ExpA,G(X). Then, due to Theorem 4.13 there exists a unique solu-
tion u(t) in the form (4.99) through the solution operators u∗k(t,A), k = 0, . . . ,m−1.
Further, if u∗k(t,λ ) satisfies the condition of the theorem, then due to denseness of
ExpA,G(X) in X , there exists a unique closure û∗k to the space D(Ask) of the operator
u∗k(t,A), and consequently, estimate (4.101) holds. In conclusion we note that the
construction of the closure Û∗(t,A) is standard.

Remark 4.9. 1. If � < 0 and s j < 0 for certain j ∈ {1, . . . ,m}, then one can show
that the estimate

sup
x�=0

|< û∗+jc (t,A)y j,x > |
∑−�q=0 ‖Aqx|X‖ ≤Cj sup

x�=0

|< y j,x > |
∑
−s j
q=0 ‖Aqx|X‖

,

holds. Here û∗jc(t,A) is the closed restriction of u∗w
j (t,A) which is the weak

extension of u∗j(t,A). Taking this into account we can conclude that Theo-
rem 4.14 remains valid in this case also, however with appropriate understanding
of estimate (4.101).

2. If A is defined in a Hilbert space and self-adjoint, then one can show that the con-
dition of the theorem is also necessary for well posedness of the problem (4.95)–
(4.96). This statement extends for arbitrary spectral operators of the scalar type,
in particular, for normal operators.

As an application of Theorems 4.13 and 4.14 let us consider two examples: the
general boundary value problem in the space of periodic functions and a differential-
operator equation with a self-adjoint elliptic operator.

Example 4.1. 1. The first application is to the theory of periodic boundary value
problems. In other words, we set X = L2(T

n), where T
n is the n-dimensional

torus, and A = ( ∂
i∂x1

, . . . , ∂
i∂xn

). Consider the following general boundary value
problem for a homogeneous pseudo-differential equation on T

n :

∂mu
∂ tm +

m−1

∑
k=0

Ak(t,D)
∂ ku
∂ tk = 0, t ∈ (T1,T2), x ∈ T

n (4.102)

Bk(u) =
m−1

∑
j=0

bk j(D)
∂ ju(tk j,x)

∂ t j = ϕk(x), k = 0, . . . ,m− 1, (4.103)

where tk j ∈ [T1,T2), m≥ 1; D = (D1, . . . ,Dn), D j =−i ∂
∂x j

; the operators Ak(t,D)

and bk j(D) are defined in Section 2.6, and ϕk(x) are given periodic functions
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in certain spaces indicated below. Recall that the spaces W±∞
Tn of periodic test

functions and functionals, as well as Sobolev spaces W s(Tn) were introduced in
Section 2.6.

Theorem 4.15. a. Let ϕk ∈W∞
Tn ,k = 1, . . . ,m. Then there exists a unique func-

tion u(t,x) ∈Cm[T1,T2;W∞
Tn ] that satisfies problem (4.102)–(4.103) pointwise.

Moreover, for the solution u(t,x) the following representation holds:

u(t,x) =
m−1

∑
k=0

Sk(t,D)ϕk(x),

where Sk(t,D) is a pseudo-differential operator with the symbol sk(t,m), m ∈
Z

n, defined in (4.30).
b. Suppose there exist a unique weak solution u(t,x) ∈ Cm[(T1,T2);W

−∞
Tn ] of

problem (4.102)–(4.103), such that for all ψ ∈W∞
Tn and all t ∈ (T1,T2):

<
∂mu
∂ tm ,ψ >+

m−1

∑
k=0

<
∂ ku
∂ tk ,Ak(t,−D)ψ >= 0,

< Bk(u),ψ >=
m−1

∑
j=0

<
∂ ju(tk j,x)

∂ t j ,bk j(−D)ψ)>=< ϕk(x),ψ(x) > .

c. Let � = (�0, . . . , �m−1), s = (s0,s1, . . . ,sm−1) ∈ R
m. Let symbols sk(t,λ ), k =

0, . . . ,m− 1, satisfy the conditions

|sk(t,m)| ≤C(1+ |m|2) sk−lk
2 , m ∈ Z

n,

Then problem (4.102)–(4.103) is (�,s)-well posed in the scale of Sobolev
spaces W s

2 (T
n).

2. As the second application consider the following example. Let Ω ⊂ Rn be a
bounded domain with a smooth boundary S = ∂Ω . Let A ≡ A(x,D) be an el-
liptic self-adjoint operator of order 2m of the form

A(x,D) = ∑
|α |≤2m

aα(x)D
α ,

where aα(x) are smooth functions onΩ . The domain D(A)=W 2m
2 (Ω)∩ ◦

W
m

2 (Ω).
Consider the boundary value problem

∂ ku(t,x)
∂ tk +A(x,D)u(t,x) = 0, t ∈ (0,T ), x ∈Ω , (4.104)

∂ ju(t,x)
∂n j

∣∣∣
S
= 0, j = 0, . . . ,m− 1, t ∈ (0,T ), (4.105)

u(0,x)− μu(1,x) = ϕ0(x), x ∈Ω , (4.106)

∂u(0,x)
∂ t

= ϕ1(x), x ∈Ω , (4.107)
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where T is a positive number, T > 1; n is the normal to S , μ is a complex
parameter, k = 1 or k = 2. If k = 1, then the condition (4.107) has to be removed.
We introduce the space

W s =W 2sm
2 (Ω)∩

{
u ∈W (2s−1)m

2 (Ω) :
∂ j

∂n j ◦Aku
∣∣∣
S
= 0,

k = 0, . . . ,s− 1, j = 0, . . . ,m− 1
}
,

with the norm induced from W 2sm
2 (Ω). In order to apply Theorem 4.14 to this

problem one should reduce it to the differential-operator form. We assume that

A = A(x,D) and X = {ϕ ∈D(A) : ∂ jϕ(x)
∂n j

∣∣∣
S
= 0, j = 0, . . . ,m−1}. Then one can

easily calculate symbols of solution operators. Namely,

(i) if k = 1, then

s(t,λ ) = e−tλ (1− μe−λ)−1, λ ∈ σ(A)⊆ [0,∞);

(ii) if k = 2, then
s1(t,λ ) = cost

√
λ (1− μ cos

√
λ )−1,

s2(t,λ ) =
sin t

√
λ + μ sin

√
λ(1− t)

μ
√
λ (1− μ cos

√
λ )

.

Let k = 1. It is obvious that if μ ∈ [1,∞), then there exists the λ◦ ∈ R1
+ (since

σ(A) ⊂ R1
+, it is sufficient to consider only λ ∈ R1

+), namely the λ◦ = lnμ ,
which is an unremovable singular point of s(t,λ ). Thus, we have the following
assertion.

Proposition 4.2. (The case k = 1) Let μ ∈C1\ [1,∞). Then for any ϕ0 ∈W s there
exists a unique solution u(t,x) of (4.104)–(4.106) belonging to C[[0,∞);W s].
Moreover, the estimate

sup
t≥0

‖u(t)|W s
2 (Ω)‖ ≤C‖ϕ0|W s

2 (Ω)‖, C > 0,

holds.

For k = 2, if μ ∈ (−∞,−1]∪ [1,∞), then s j(t,λ ), j = 1,2, have no unremovable
singularities. Moreover, it is easy to verify that the symbols satisfy the following
estimates: |s1| ≤C, |s1t | ≤C(1+λ )1/2, |s2| ≤C(1+λ )−1/2, |s2| ≤C. Therefore,
it follows from Theorem (4.14) the following statement.

Proposition 4.3. (The case k = 2) Let μ ∈C1 \ [(−∞,−1]∪ [1,∞)]. Then for any
ϕ0 ∈W s and ϕ1 ∈W s−1 there exists a unique solution u(t,x) ∈ C[(0,T );W s]∩
C1[(0,T );W s−1] of (4.104)–(4.107) and the estimate
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sup
t∈(0,T )

(
‖u(t,x)|W s

2 (Ω)‖+ ‖ut(t,x)|W (s−1)m
2 (Ω)‖

)

≤C
(
‖ϕ0|W s

2 (Ω)‖+ ‖ϕ1|W (s−1)m
2 (Ω)‖

)

holds.

4.9 Additional notes

1. General well-posedness conditions. The well-posedness condition for general boundary value
problems for differential and pseudo-differential equations was a focus of many researchers.
There is a rich literature on this topic; see, e.g., [Pet96, Hor83, ADN69, Tre80, Går98]. From
the general results we mention Petrovsky’s “A-condition” (1945–48) [Pet96] for the well posed-
ness of the Cauchy problem for higher order hyperbolic equations and for 2b-parabolic equa-
tions. The Shapiro-Lopatinskiĭ condition (1953) [Sha53, Lop53] provides the well-posedness
condition of general boundary value problems for elliptic equations. Assuming the equations
and boundary conditions have coefficients not depending on x, these conditions are given in
terms of roots of characteristic equations and, in essence, eliminate strong singularities aris-
ing in solution formulas. The boundary value problems in (4.3)–(4.4), in general, represent
multi-point nonlocal boundary value problems for general pseudo-differential equations (with
ΨDOSS coefficients), the type of which is not specified. Therefore, Theorem 4.5 generalizes
both cases.

Indeed, if bk j(ξ ) = δ jk, where δ jk is the Kronecker symbol, and tk j = t0, then conditions (4.4)
become the Cauchy conditions. In this case the condition of the well-posedness theorem (The-
orem 4.5) essentially represents Petrovsky’s “A-condition.” Indeed, the latter declares the equa-
tion is hyperbolic, if ℜ(λ j(ξ )) ≤C, where λ j(ξ ) are roots of the characteristic equation. For
instance, for the Laplace equation ℜ(λ j(ξ )) = ±|ξ |, j = 1,2, which does not satisfy the
“A-condition,” and hence is not hyperbolic. Similarly, for the heat equation ℜ(λ (ξ )) = |ξ |2.
However, for the wave equation ℜ(λ j(ξ )) = 0, j = 1,2, and hence it is hyperbolic. Now if
one applies Theorem 4.5 to the Cauchy problem for an equation hyperbolic in the sense of
Petrovsky, then

1) the set
◦

M consist of only 0, so G0 = R
n \ ◦

M is dense in R
n, thereby getting well posedness

inΨG0,p(R
n); and

2) the symbols of solution operators have the form s j(t,ξ ) = h j(ξ )etλ j(ξ ) with functions h j(ξ )
of polynomial growth, and hence the conditions in (4.50) are verified with some �k and s j ,
thereby obtaining boundedness of solution operators in Sobolev spaces.

These imply the well posedness of the Cauchy problem for hyperbolic equations in appropriate
Sobolev spaces. Schwartz [Sch51] showed that the “A-condition” is necessary and sufficient
for the well posedness of the Cauchy problem for equations with coefficients depending on t
smoothly in the space of tempered distributions.
What concerns elliptic (local) boundary value problems the condition of Theorem (4.5) es-
sentially represents the Shapiro-Lopatinskiĭ condition. We note that any elliptic equation nec-
essarily is of even order, that is m = 2p. Moreover, the characteristic equation of an elliptic
equation has p roots with positive imaginary parts, and p roots with negative imaginary parts.
This implies that the number of boundary conditions is p. Under these assumptions, if one
applies Theorem 4.5, then

a)
◦

M = /0, so G0 = R
n, thereby getting well posedness inΨRn,p(R

n); and
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b) the symbols of solution operators have exponential decay at infinity, and hence the conditions
in (4.50) are verified with some �k and s j , thereby obtaining boundedness of solution oper-
ators in Sobolev spaces.

These imply the well posedness of boundary value problems for elliptic equations, satisfying
the Shapiro-Lopatinskiĭ condition, in appropriate Sobolev spaces.

2. General nonlocal boundary value problems. As is was noted above, the boundary value prob-
lems in (4.3)–(4.4) are general nonlocal boundary value problems for ΨDOSS equations of
any type, and therefore, in general, are not well posed in the sense of Hadamard. Singulari-
ties arising in solution formulas, also called a “small denominators problem,” can be treated
with the help of Diophantine equations/approximations [Pta84]. The construction and estima-
tion of Green’s function for Vallee-Poussin boundary value problem, that is with multi-point
conditions u(t j) = a j, t j ∈ [a,b], for ordinary, or partial differential equations, are studied in
the papers [Pok68, Tsk94] and for convolution type operators in [Nap82, N12]. Uniqueness
classes for multi-point nonlocal boundary value problems for differential equations are stud-
ied in [Bor69, Bor71]. In works [Pta84, FJG08, Pul99, Zh14] various nonlocal boundary value
problems, including multi-point and integral ones, and their applications, are studied. Theo-
rem 4.5 is not valid if p = ∞. The main barrier here is non-denseness of ΨG,p(R

n) in Besov
and Lizorkin-Triebel type spaces, if p = ∞. Saydamatov [Say06, Say07] modified the method
developed in this chapter to the case p = ∞ and obtained existence results. Nazarova [Naz97]
studied multi-point boundary value problems generated by a singular Bessel type operators.

3. Uniqueness of polyharmonic function with given zero levels. The question of uniqueness of
polyharmonic function of order m, vanishing at m pairwise distinct hypersurfaces S j, j =
1, . . . ,m, is an important question in many applications, including polyharmonic interpola-
tion [HK07], wavelet analysis [BRV05], etc. It is known [HK93] that the uniqueness does not
hold for the set of arbitrary smooth hypersurfaces S j. For instance, in the paper [Ata02] in the
2-D case, the author constructed two curves γ1 and γ2, with γ1 inside γ2, such that there ex-
ists a nonzero biharmonic inside γ2 function u(x,y), which vanishes on both curves γ1,γ2. In
the paper [Ede75] of Edenhofer the uniqueness of a polyharmonic function of order m vanish-
ing at m concentric hyperspheres is proved. As is shown in the paper [HK93], the uniqueness
holds for m arbitrary (not necessary concentric) hyperspheres as well. Moreover, one of these
hyperspheres can be replaced by a smooth hypersurface. The more general result is proved in
[Ren08]: Let ψ1, . . . ,ψk be nonhyperbolic, sign-changing irreducible polynomials in n variables
of degree 2. If the polynomial f vanishes on the pairwise different sets {x ∈ R

n : ψ j(x) = 0}
for j = 1, . . . ,k, and Δ k f = 0, then f is identically zero. The result obtained in Section 4.6.3
represents an analog of the Edenhofer’s result. From this point of view the question, whether
hyperplanes {t = tk} ⊂ R

n+1 can be replaced by other hyperplanes/hypersurfaces, is a chal-
lenging open question.

4. Duhamel principle. The role of the classical “Duhamel principle,” introduced by Jean-Marie-
Constant Duhamel [Du33] in 1833, is well known. The main idea of this famous principle is
to reduce the Cauchy problem for a given linear inhomogeneous partial differential equation to
the Cauchy problem for the corresponding homogeneous equation, which is more simpler to
handle. The classical Duhamel principle is not directly applicable in the case of fractional dif-
ferential equations. In Chapters 5 and 6 we establish fractional generalizations of the Duhamel
principle for wide classes of fractional differential equations and DODEs.



Chapter 5
Initial and boundary value problems
for fractional order differential equations

5.1 Introduction

In this chapter we will discuss boundary value problems for fractional order dif-
ferential and pseudo-differential equations. For methodological clarity we first
consider in detail the Cauchy problem for pseudo-differential equations of time-
fractional order β , m− 1 < β < m, (m ∈ N)

Dβ
∗ u(t,x) = A(D)u(t,x)+ h(t,x), t > 0, x ∈ R

n, (5.1)

∂ ku(0,x)
∂ tk = ϕk(x), x ∈R

n, k = 0, . . . ,m− 1, (5.2)

where h(t,x) and ϕk, k = 0, . . . ,m− 1, are given functions in certain spaces de-
scribed later, D = (D1, . . . ,Dn), D j =−i ∂

∂x j
, j = 1, . . . ,n, A(D) is aΨDOSS with a

symbol A(ξ )∈ XSp(G) defined in an open domain G⊂R
n, and Dβ

∗ is the fractional
derivative of order β > 0 in the sense of Caputo-Djrbashian (see Section 3.5)

Dβ
∗ f (t) =

1
Γ (m−β )

∫ t

0

f (m)(τ)dτ
(t− τ)m−β−1

, t > 0. (5.3)

Then we will focus on general boundary value problems for distributed order differ-
ential equations

∫ α

0
A(β , t,D)Dβ

∗ u(t,x)μ(dβ ) = h(t,x), t > 0, x ∈ R
n, (5.4)

m−1

∑
j=0

Γk j(D)
∂ ku(tk j,x)

∂ tk = ϕk(x), k = 0, . . . ,m− 1, x ∈ R
n, (5.5)

where α ∈ (m− 1,m], A(β , t,D) is a family ofΨDOSSs with symbols A(β , t,ξ ) ∈
XSp(G), and μ is a finite measure with suppμ = [a,b] ⊂ (0,α], b > m− 1, and
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Γk j(D), k, j = 0, . . . ,m− 1, are ΨDOSSs whose symbols Γk j(ξ ) ∈ XSp(G), k, j =
0, . . . ,m− 1, tk j ∈ [0,T ], 0 < T < ∞, and h(t,x) and ϕk, k = 0, . . . ,m− 1, are
given functions/functionals. Equation (5.4) contains, as a particular case, pseudo-
differential equations of fractional order

Dαm∗ u(t,x)+
m−1

∑
k=1

Ak(D)Dαk∗ u(t,x)+A0(D)u(t,x) = h(t,x), t ∈ (0,T ), x ∈ R
n,

(5.6)
with the highest order αm ∈ (m−1,m]. In turn, the Cauchy problem (5.1), (5.2) is a
particular case of boundary value problem (5.6), (5.5).

For the study of the Cauchy and multi-point boundary value problems we use
the properties of pseudo-differential operators with singular symbols developed in
Chapter 2 and the properties of fractional derivatives developed in Chapter 3. In the
case of Cauchy problem we establish the fractional generalization of the Duhamel
principle. The fractional Duhamel principle differs from the classic Duhamel prin-
ciple. As we have seen in Section 4.7, in the case of integer order differential equa-
tions the Duhamel principle moves the source term h(t,x) to the initial condition

for the (m− 1)-th derivative, changing it to V (m−1)
t (τ,x) = h(τ,x). In the fractional

case the updated boundary condition contains a fractional derivative of the source

function. Namely, the updated initial condition appears in the form V (m−1)
t (τ,x) =

Dm−αh(τ,x). This fact will be rigorously proved in Sections 5.5 and 6.4.
We recall that the Duhamel principle is not valid for multi-point problems. Sec-

tions 6.2–6.3 discuss general boundary value problems for distributed fractional or-
der differential equations of the form (5.4)–(5.5). Here we derive a representation
formula for a solution and study their continuity properties as mappings in appro-
priate function and distributions spaces.

Boundary value problems for elliptic operators with boundary conditions involv-
ing fractional order pseudo-differential operators is a subject of Section 5.7. The
results obtained there generalize theorems proved in Section 4.5 of the previous
chapter. These results also allow to study limits of fractional derivatives of harmonic
functions in certain topologies, leading to a new representations of hyperfunctions
as boundary values of fractional derivatives of harmonic functions (cf. with Sec-
tion 4.6.5). Section 6.7 discusses the Cauchy problem for variable order differential
equations with a piecewise constant order function and some of their applications to
sub-diffusion processes.

5.2 Some examples of fractional order differential equations

To illustrate the Cauchy problem (5.1), (5.2) consider three examples.

1. Time-fractional differential equation. The first example is the time-fractional
differential equation

Dα
∗ u(t,x) = Δu(t,x), t > 0, x ∈ R

n, α > 0,
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whereΔ is the Laplace operator. The Cauchy problem for this equation represents
a fractional model of sub-diffusion processes in the case 0<α < 1, and processes
intermediate between diffusion and wave propagation in the case 1 < α < 2.
In Section 5.4 we prove the relaxation property of the solution in the case 0 <
α < 1, and the oscillation-relaxation property in the case 1 < α < 2.

2. Space-fractional differential equations. The second example is the space-
fractional equation

∂u(t,x)
∂ t

= D
β
0 u(t,x), t > 0, x ∈ R

n, β > 0,

where D
β
0 is the operator introduced in Section 3.8 and whose symbol is −|ξ |β .

This equation models jump processes (cf. with Example 2.2.0.4 in Chapter 2)
arising in various applied sciences. We recall that the pseudo-differential operator
D
β
0 can be represented as the inverse operator to the fractional Riesz potential and

can be written in the form

D
β
0 f (x) =

1
dn,l(β )

∫
Rn

(Δ l
h f )(x)

|h|n+β dh,

where Δ l
h is the centered finite difference of an even order l > β with the vector-

step h ∈ R
n and dn,l(β ) is the normalizing constant. In the one-dimensional case

and under the condition 0< β ≤ 2 this equation describes symmetric Lévy-Feller
diffusion processes [Fel52]. Approximating random walk models for Lévy-Feller
diffusion processes were presented by Gorenflo and Mainardi in a series of works
[GM98-1, GM98-2, GM99].

3. Space-time fractional differential equations. The third example is the time-
and space-fractional differential equation

Dα
∗ u(t,x) = D

β
0 u(t,x), t > 0, x ∈ R

n, α,β > 0.

This equation generalizes the equations in the first two examples and models
sub-diffusive processes accompanying with jumps. With β = 2 we obtain the
first, with α = 1 the second equation. In Section 5.4 we prove the smoothness
theorem for a solution of the Cauchy problem for this equation in the Sobolev
spaces Hs(Rn), s ∈ R, for all values α ∈ (0,2].

5.3 The Cauchy problem for fractional order pseudo-differential
equations

In this section we will discuss the existence and uniqueness of a solution of Cauchy
problem (5.1)–(5.2) in the spaces Ψp,G(R

n) and Ψ ′
−G,p′ (R

n), and derive a repre-

sentation of a solution through the solution operators with symbols through the
Mittag-Leffler function. Since the fractional Duhamel principle is valid for Cauchy
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problem (5.1)–(5.2) (see Section 5.5), it suffices to consider a homogeneous equa-
tion, so we will assume that h(t,x) = 0 in equation (5.1). Thus, consider the Cauchy
problem

Dβ
∗ u(t,x) = A(D)u(t,x), t > 0, x ∈ R

n, (5.7)

∂ ku(0,x)
∂ tk = ϕk(x), x ∈ R

n, k = 0, . . . ,m− 1, (5.8)

where m− 1 < β < m, and Dβ
∗ is the Caputo-Djrbashian fractional derivative, and

A(D) is aΨDOSS with the symbol A(ξ )∈XSp(G). The class XSp(G) in this section
is either C∞Sp(G), the class of symbols smooth in G, or class CSp(G) of symbols
continuous in G. Recall that symbols may have arbitrary type of singularities on the
boundary of G. Recall also that if A(ξ ) ∈ C∞(G), then the corresponding operator
A(D) is continuous inΨG,p(R

n) (see Section 2.3), and if A(ξ ) ∈C(G), then A(D) is
continuous inΨG(R

n) (Section 2.4).
It should be noted that, for the dual theory, we always assume that the operator

A(D) on the right-hand side of equation (5.7) is replaced with its weak extension
Aw(D) = A(−D). Namely,

Dβ
∗ u(t,x) = A(−D)u(t,x), t > 0, x ∈ R

n, (5.9)

∂ ku(0,x)
∂ tk = ϕk(x), x ∈ R

n, k = 0, . . . ,m− 1, (5.10)

First, performing formal manipulations, we get a representation for the solu-
tion of Cauchy problem (5.7)–(5.8). We note that the solution operators are again
pseudo-differential operators with symbols from the same class XSp(G). Then we
study the properties of their symbols and use them to prove existence and unique-
ness theorems. Applying formally the Fourier transform to equations (5.7) and(5.8),
we get

Dβ
∗ û(t,ξ ) = A(ξ )û(t,ξ ), t > 0, ξ ∈ G, (5.11)

∂ kû(0,ξ )
∂ tk = ϕ̂k(ξ ), ξ ∈ G, k = 0, . . . ,m− 1. (5.12)

This is an initial value problem for an ordinary differential equation of fractional
order β , that depends on the parameter ξ ∈ G. This problem is a particular case of
Example 3.10 (in Section 3.5 of Chapter 3) with λ = −A(ξ ) and ak = ϕk(ξ ),k =
0, . . . ,m− 1. Due to formula (3.56), one obtains the representation

û(t,ξ ) =
m

∑
k=1

Jk−1Eβ (t
αA(ξ ))ϕ̂k−1(ξ )

for the solution of (5.11)–(5.12). In this formula Jk−1 is the (k−1)-st order integra-
tion operator with the lower limit 0, and Eβ (z) is the Mittag-Leffler function; see
Section 3.4. Introducing the notation

Bk(β ;t,ξ ) = Jk−1Eβ (A(ξ )tβ ), k = 1, . . . ,m (5.13)
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and applying the inverse Fourier transform, one obtains the solution of the Cauchy
problem (5.7)–(5.8) in the form

u(t,x) =
m

∑
k=1

Bk(β ;t,D)ϕk−1(x). (5.14)

Here the pseudo-differential operator Bk(β ;t,D), k = 1, . . . ,m, has the symbol
Bk(β ; t,ξ ) given by (5.13). We call it the k-th solution operator of the Cauchy prob-
lem (5.7)–(5.8).

Example 5.1. Let 0 < β < 1. Then the symbol of the solution operator B(β ; t,D)≡
B1(β ; t,D) is B(β ;t,ξ ) = Eβ (−A(ξ )tβ ). It follows, in the particular case of a fun-
damental solution, corresponding to the initial condition u(0,x) = ϕ(x) = δ0(x),

u(t,x) = Eβ (−A(D)tβ )δ0(x) =
1

(2π)n

∫
Rn

Eβ (−A(ξ )tβ )e−ixξ dξ . (5.15)

Definition 5.1. Let m− 1 < β < m, m ∈ N. A function

u(t,x) ∈C(m)(t > 0;ΨG,p(R
n))∩C(m−1)(t ≥ 0;ΨG,p(R

n))

is called a strong solution of the problem (5.7)–(5.8), if it satisfies the equation (5.7)
and the initial conditions (5.8) pointwise.

Definition 5.2. Let m− 1 < β < m, m ∈ N. A function

u(t,x) ∈C(m)(t > 0;Ψ
′
−G,q(R

n))∩C(m−1)(t ≥ 0;Ψ
′
−G,q(R

n))

is called a weak solution of the problem (5.9)–(5.10), if it satisfies the equation (5.9)
and the conditions (5.10) in the following sense: for arbitrary v ∈ΨG,p(R

n) the
equalities

< Dβ
∗ u(t,x),v(x)> = < u(t,x),A(D)v(x)>, t > 0,

limt→+0 < u(k)(t,x),v(x)> = < ϕk(x),v(x)>, k = 0, . . . ,m− 1,

hold.

To prove existence and uniqueness theorems we need some auxiliary assertions.
First we introduce some notations. Denote by C�[t ≥ 0;C(G)] the space of functions
f (t,ξ ) continuous with respect to ξ at any fixed t ∈ [0,∞), and having continuous
derivatives up to order � with respect to t on t ≥ 0 for each fixed ξ . The similar
meaning has the space C�[t > 0;C(G)]. Analogously, we denote by C∞[t > 0;C(G)]
the space of functions infinitely differentiable with respect to the variable t in the
interval t ∈ (0,∞).
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Lemma 5.1. For k = 1, . . . ,m the following assertions are valid:

(i) Bk(β ; t,ξ ) ∈Cm+k−2[t ≥ 0;C(G)];
(ii) Bk(β ; t,ξ ) ∈C∞[t > 0;C(G)].

Proof. The symbol B1(β ;t,ξ ) = Eβ (−A(ξ )tβ ) is a composition of the Mittag-
Leffler function Eβ (z), which is an entire function, and of the function ψ(ξ , t) =
−A(ξ )tβ . The continuity of A(ξ ) implies that for every fixed t > 0 the function
B1(β ; t,ξ ) is also continuous in the domain G. Moreover, the function φ(t) = tβ

is infinitely often differentiable at any point t > 0. Hence, B1(β ; t,ξ ) ∈ C∞[t >
0;C(G)]. For m− 1 < β < m it is easy to check that φ(t) = tβ has all derivatives
up to order m− 1, which are continuous up to t = +0. This implies B1(β ; t,ξ ) ∈
Cm−1[t ≥ 0;C(G)]. Further, we have (Jk−1 acting with respect to the variable t)

Bk(β ;t,ξ ) = Jk−1Eβ (A(ξ )tβ ) = Jk−1B1(β ; t,ξ ).

This function is m+ k− 2 times differentiable with respect to t for a fixed ξ due to
the fact that the integration operator Jk−1 increases the order of differentiability of
B1(β ; t,ξ ) by k− 1. Hence, Bk(β ;t,ξ ) ∈Cm+k−2[t ≥ 0;C(G)].

Lemma 5.2. Let m− 1 < β < m. Then the following relations hold:

(i) ∂ k−1Bk(β ;t,ξ )
∂ tk−1 → 1 as t → 0 for all k = 1, . . . ,m;

(ii) ∂ �Bk(β ;t,ξ )
∂ t�

→ 0 as t → 0 for all �= 0, . . . ,m− 1, k = 1, . . . ,m, l �= k− 1.

Proof. In accordance with the definition of the solution operators, one has

∂ k−1Bk(β ;t,ξ )
∂ tk−1 = Eα(A(ξ )tβ ), k = 1, . . . ,m.

This relation and the fact that Eβ (0) = 1 obviously implies (i). Now suppose that

k−1 < �≤m−1. It is not difficult to verify that the derivative ∂ �Bk(β ;t,ξ )
∂ t�

is a linear
combination of expressions of the type

tβ− jE( j)
β (A(ξ )tβ ), j ≤ �. (5.16)

Since m− 1 < β < m, then all the functions in (5.16) tend to zero if t →+0. In the
case 0≤ � < k− 1, one has

∂ �Bk(β ; t,ξ )
∂ t�

= Jk−�−1Eβ (A(ξ )tβ )

=
1

(k− �− 1)!

∫ t

0
(t− τ)k−�−2Eβ (A(ξ )tβ )dτ → 0 as t →+0.

Theorem 5.1. Let m−1< β <m, m∈N and ϕ j ∈ΨG,p(R
n), j = 0, . . . ,m−1. Then

the Cauchy problem (5.7)–(5.8) has a unique strong solution. This solution is given
by the representation (5.14).
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Proof. Let ϕ j ∈ ΨG,p(R
n), j = 0, . . . ,m− 1. By construction each term on the

right-hand side of (5.14) satisfies (at least formally) the equation (5.7) and, due
to Lemma 5.2, conditions (5.8). It follows from Lemma 5.1 that for the symbol of
the k-th solution operator, we have the inclusion

Bk(β ;t,ξ ) ∈Cm+k−2[t ≥ 0;C(G)]∩C∞[t > 0;C(G)].

Theorem 2.1 (or Lemma 2.1 in the case of continuous symbols) yields

Bk(β ;t,D)ϕk−1(x) ∈ΨG,p(R
n) for every fixed t > 0,

Bk(β ; t,D)ϕk−1(x) ∈Cm+k−2(t ≥ 0)∩Cm(t > 0) for every fixed x ∈R
n.

Hence,
u(t,x) ∈Cm[t > 0;ΨG,p(R

n)]∩Cm−1[t ≥ 0;ΨG,p(R
n),

and u(t,x) is a strong solution of the Cauchy problem (5.7)–(5.8). Its uniqueness fol-
lows from the representation formula (5.14) and theΨG,p(R

n)-continuity of pseudo-
differential operators with symbols in CSp(G).

Theorem 5.2. Let m− 1 < β < m and ϕ j ∈Ψ ′
−G,q(R

n), j = 0, . . . ,m− 1. Then the
Cauchy problem (5.9)–(5.10) has a unique weak solution. This solution is given by

u(t,x) =
m

∑
k=1

Bk(β ;t,−D)ϕk−1(x), (5.17)

where Bk(β ; t,−D), k = 1, . . . ,m, is the k-th solution operator with the symbol
Bk(β ; t,ξ ).

Proof. Let ϕ j ∈Ψ ′
−G,q(R

n), j = 0, . . . ,m−1. Theorem 2.5 implies that each term on
the right-hand side of (5.17), namely, uk(t,x) = Bk(β ; t,−D)ϕk−1(x),k = 1, . . . ,m, is
a functional in the spaceΨ ′

−G,q(R
n). Further, to prove the theorem we have to show

that uk(t,x), k = 1, . . . ,m, satisfies the equation (5.9) and initial conditions (5.10) in
the weak sense. Let v ∈ΨG,p(R

n) be an arbitrary function. We have

< Dβ
∗ uk(t,x)−A(−D)uk(t,x),v(x)>

=< [Dβ
∗ Bk(β ;t,−D)−A(−D)Bk(β ; t,−D)]ϕk−1(x),v(x) >

= < ϕk−1(x), [D
β
∗ Bk(β ;t,D)−A(D)Bk(β ; t,D)]v(x)> .

In accordance with the definition of Bk(β ;t,D), one has Dβ
∗Bk(β ; t,D) ≡ A(D)Bk

(β ;t,D). Hence, uk(x, t) satisfies the equation (5.9) in the weak sense. Moreover,
Lemma 5.2 implies

∂ k−1

∂ tk−1 Bk(α;0,D) = δk,� · I, k = 1, . . . ,m, �= 1, . . . ,m,

where I is the identity operator and δk,� is Kronecker’s symbol. This, in turn, yields
initial conditions (5.10) in the weak sense.
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Definition 5.3. Denote by BC(t ≥ 0,ΨG(R
n)) the set of functions f (t,x), such that

1. f (t,x) as a function of x is in the spaceΨG(R
n) for every fixed t > 0;

2. f (t,x) ∈C[t > 0;ΨG(R
n)];

3. ‖ f (t,x)‖2 ≤C for all t ∈ [0,T ], where T is an arbitrary (but fixed) positive number
and C is a constant not depending on f (C may depend on T ).

Similarly, let BC(t ≥ 0,Ψ ′
−G(R

n)) be the set of functions f (t,x) such that

(a) f (t,x) is inΨ ′
−G(R

n) for every fixed t > 0;

(b) f (t,x) ∈C[t > 0;Ψ ′
−G(R

n)];
(c) for a fixed T < ∞ the estimate | < f (t,x),v(x) > | ≤ C holds for all t ∈ [0,T ]

and for all v ∈ΨG(R
n) with a constant C not depending on f (C may depend on

v and T ).

Lemma 5.3. Let m−1 < β < m. For all k = 1, . . . ,m, and ξ ∈ K � G there exists a
positive constant Cβ ,K such that the inequality

∣∣∣Dβ
∗Bk(β ;t,ξ )

∣∣∣≤Cβ ,K , t > 0, (5.18)

holds.

Proof. Using the definition Dβ
∗ f = Jm−βDm f , we have

Dβ
∗ Bk(β ; t,ξ ) = Jm−βDmBk(β ;t,ξ )

= Jm−βDmJk−1Eβ (A(ξ )tβ ) = Jm−βDm−k+1Eβ (A(ξ )tβ )

=
1

Γ (m−β )

∫ t

0
(t− τ)m−β−1Dm−k+1

τ Eβ (A(ξ )τβ )dτ,

where Dτ is differentiation with respect to the variable τ, and Eβ (z) is the Mittag-
Leffler function. It is easy to see that the most irregular case in the latter integral is
k = 1, i.e.,

Dβ
∗B1(β ; t,ξ ) =

1
Γ (m−β )

∫ t

0
(t− τ)m−β−1Dm

τ Eβ (A(ξ )τβ )dτ. (5.19)

Due to Proposition 3.8, for any fixed ξ ∈ K � G, we get the asymptotic behavior
(for A(ξ ) �= 0) ∣∣∣Dm

t Eβ (A(ξ )tβ )
∣∣∣= O(

1

tm−β ), t → 0.

Therefore, the integral on the right-hand side of (5.19) is absolute integrable and it
does not exceed the expression

Iβ = Cα ,K

∫ t

0

(t− τ)m−1−β

tm−β dτ,

where Cβ ,K is a positive constant dependent on β and the compact K. Using the
substitution τ = ts in this integral, one has
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Iβ =Cβ ,K

∫ 1

0
s(β+1−m)−1(1− s)m−β−1ds

= Cβ ,K B(β + 1−m,m−β ) =Cβ ,KΓ (m−β )Γ (β + 1−m),

where B(·, ·) is Euler’s beta function. Hence,
∣∣∣Dβ

∗B1(β ;t,ξ )
∣∣∣≤Cβ ,KΓ (β + 1−m)< ∞,

proving (5.18).

Theorem 5.3. Let m− 1 < β < m and the conditions of Theorem 5.1 be fulfilled.
Then the strong solution of the Cauchy problem (5.7)–(5.8) given by (5.14) possesses
the following properties:

(a) u(t,x) ∈C∞[t > 0;ΨG(R
n)];

(b) Dβ
∗ u(t,x) ∈ BC[t ≥ 0,ΨG(R

n)].

Proof. Part (a) is an implication of properties of symbols Bk(β ; t,ξ ), k = 1, . . . ,m, of
the solution operators Bk(β ;t,D), k = 1, . . . ,m, indicated in Part (ii) of Lemma 5.1.
Let us prove Part (b) of the theorem. We need only to show condition 3) of Defini-
tion 5.3. Suppose suppϕk ⊂ Kk � G, k = 0, . . . ,m− 1. Using the Parseval equality
and Lemma 5.3, we have

‖Dβ
∗ u(t,x)|L2‖2 ≤

m

∑
k=1

∫

Rn

|Dβ
∗Bk(α;t,D)ϕk−1(x)|2dx

= C
m

∑
k=1

∫

Kk−1

|Dβ
∗ Bk(β ;t,ξ )|2|F[ϕk−1](ξ )|2dξ

≤C
m

∑
k=1

C2
β ,Kk−1

‖ϕk−1|L2‖2 < ∞.

Theorem 5.4. Let m− 1 < β < m and the conditions of Theorem 5.2 be fulfilled.
Then the weak solution of the problem (5.9)–(5.10) given by (5.17) possesses the
following properties:

(i) u(t,x) ∈C∞[t > 0;Ψ ′
−G(R

n)];

(ii) Dβ
∗ u(t,x) ∈ BC[t ≥ 0,Ψ ′

−G(R
n)].

Proof. Let ϕk ∈ΨG(R
n), k = 0, . . . ,m−1.Again Part (a) is an implication of proper-

ties of symbols Bk(β ;t,ξ ), k = 1, . . . ,m, of the solution operators Bk(β ; t,−D), k =
1, . . . ,m, indicated in Part (ii) of Lemma 5.1. We prove Part (ii). Let φ be an arbitrary
element of ΨG(R

n), whose Fourier transform has the support suppF [φ ] ⊆ K � G.
We have seen in Section 2.4 that F [φ ] ∈ H−s

com(G) for some s > n/2. We recall that
for g ∈Ψ ′

−G(R
n) the equality (see equation (1.96))

< g(x),φ(x) > = (2π)−n < F [g](ξ ),F[φ ](ξ )> (5.20)
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holds. This equality shows that F[g] ∈ Hs
loc(G) ⊂ L2,loc(G), that is F[g] is locally

square-integrable in G. Moreover, one has the following estimate

|< g,φ > |= (2π)−n|< F [g](ξ ),F[φ ](ξ )> | ≤C‖F[g]|Hs(K)‖‖F[φ ]|H−s(K)‖
≤C‖F[g]|L2(K)‖‖F [φ ]|H−s(K)‖. (5.21)

Taking into account relation (5.20) and estimates (5.21) and (5.18), we have

|< Dβ
∗ u(t,x),φ(x)> | ≤

m

∑
k=1

|< Dβ
∗ Bk(β ; t,−D)ϕk−1(x),φ(x)> |

≤C
m

∑
k=1

|< F [Dβ
∗Bk(β ; t,−D)ϕk−1],F [φ ]> |

≤C1

m

∑
k=1

‖Dβ
∗ Bk(β ; t,ξ )F[ϕk−1]|L2(K)‖‖F [φ ]|H−s(K)‖

≤C2

m

∑
k=1

sup
ξ∈K

|Dβ
∗Bk(β ; t,ξ )| ‖F [ϕk−1]|L2(K)‖‖F [φ ]|H−s(K)‖

≤ C2Cβ ,K

m

∑
k=1

‖F [ϕk−1]|L2(K)‖‖F[φ ]|H−s(K)‖< ∞.

5.4 Well posedness of the Cauchy problem in Sobolev spaces

In this section we extend the results on the existence and uniqueness obtained in the
previous section to Sobolev spaces. We start with establishing a general result.

Consider the symbol e(ξ ) =Eβ (A(ξ )tβ ), where t ≥ 0, Eβ (·) is the Mittag-Leffler
function, and A(ξ ) is a continuous symbol defined on a domain G⊆R

n. Recall (see
Remark 3.2 in Section 3.4), that for 0 < β < 2 the Mittag-Leffler function Eβ (z)

has asymptotic behavior ∼ exp(z1/β ), |z| → ∞, if |arg(z)| ≤ βπ/2, and Eβ (z) ∼
1/|z|, |z| → ∞, if βπ/2 ≤ |arg(z)| ≤ 2π −βπ/2. Therefore, if the symbol A(ξ ) is
complex-valued, then e(ξ ) may have an exponential growth when |ξ | → ∞, even
though A(ξ ) has a polynomial growth at infinity.

Theorem 5.5. Let ϕk ∈Hsk(Rn), k = 0, . . . ,m−1, sk ∈R. Suppose that the estimate

|Eβ (A(ξ )tβ )| ≤ C(1+ |ξ |)�, 0≤ t ≤ T, ξ ∈ R
n

holds for any T > 0 and some � ∈ R. Then there exists a unique solution of the
Cauchy problem (5.7)–(5.8) in the space

Cm[0 < t ≤ T ;H�0(Rn)]∩Cm−1[0≤ t ≤ T ;H�0(Rn)],
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where �0 = min{s0− �, . . . ,sm−1− �}. This solution is given by the formula

u(t,x) =
m

∑
k=1

Bk(β ;t,D)ϕk−1(x), (5.22)

where Bk(β ; t,D) is the closure in the Sobolev space Hsk(Rn) of the k-th solution
operator Bk(β ; t,D), k = 0, . . . ,m− 1, with the symbol Bk(β ; t,ξ ) defined in (5.13).

Proof. Let ϕk ∈ Hsk(Rn), k = 0, . . . ,m− 1. We can choose any domain G whose
complement Rn \G has zero measure. In particular, one can take G =R

n. Then due
to Theorem 1.21 the densenessΨG(Rn) = Hsk(Rn) holds for each k = 0, . . . ,m− 1.
Hence, for each ϕk we have an approximating sequence of functions ϕk,N ∈ΨG(R

n),
N = 0,1,2, . . . , such that ϕk,N → ϕk in the topology of ΨG(R

n). For fixed N, due
to Theorem 5.1, there exists a unique solution of the Cauchy problem (5.7)–(5.8)
(where the initial data ϕk, k = 0,1 . . . ,m−1, are replaced by ϕk,N , k = 0,1 . . . ,m−1)
represented by the formula

uN(t,x) =
m

∑
k=1

Bk(β ;t,D)ϕk−1,N(x).

We recall that B1(β ;t,ξ ) = Eβ (A(ξ )tβ ). Since this symbol satisfies the estimate
|B1(β ; t,ξ )| ≤ C(1+ |ξ |)�, 0 ≤ t ≤ T, ξ ∈ R

n, it follows from Theorem 2.7 (the
case q = 2) that there exists a unique continuous closure B1(β ; t,D) of the operator
B1(β ; tD), such that B1(β ;t,D) : Hs0(Rn)→Hs0−�(Rn) is continuous. Further, it is
not difficult to verify that if Eβ (A(ξ )tβ ) satisfies the condition of the theorem then
its k-th integral with respect to t also satisfies the same condition, namely

|Bk(β ;t,ξ )| ≤ C(1+ |ξ |)�, 0≤ t ≤ T, ξ ∈ R
n.

Indeed, for k = 2 we have

|B2(β ;t,ξ )|= |
∫ t

0
Eβ (A(ξ )τβ )dτ| ≤Ct|Eβ (A(ξ )tβ )|

≤C1(1+ |ξ |)�, 0≤ t ≤ T, ξ ∈ R
n.

Therefore, there exists a unique continuous closure B2(β ; t,D) : Hs1(Rn)→Hs1−�(Rn)
of the operator B2(β ;tD). By induction, for each k = 3, . . . ,m − 1, there is a
unique continuous closure Bk(β ;t,D) : Hsk−1(Rn)→ Hsk−1−�(Rn) of the operator
Bk(β ; tD). Thus for the solution u(t,x) we have representation (5.22). The k-th term
in this representation is an element of Hsk−1−�(Rn) for each fixed t ∈ [0,T ]. There-
fore, u(t,x) ∈ H�0(Rn), where �0 = min{s0− �, . . . ,sm−1− �}.

Now we apply Theorem 5.5 to the particular case A(D) = D
α
0 , where 0 < α < 2

and the operator Dα
0 is defined in Section 3.8. For α = 2 we assume that A(D) is

the Laplace operator, that is D
2
0 = Δ . With this convention one can assume that
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0 < α ≤ 2. We also assume 0 < β ≤ 2. In other words we consider the Cauchy
problem

Dβ
∗ u(t,x) = D

α
0 u(t,x), t > 0, x ∈ R

n, (5.23)

∂ ku(0,x)
∂ tk = ϕk(x), x ∈ R

n, k = 0, . . . ,m− 1, (5.24)

where m = 1 or m = 2. We recall that the operator Dα
0 has the symbol −|ξ |2 (see

Theorem 3.4) and acts continuously from Hs(Rn) to Hs−α(Rn) (Example 2.2).
The Cauchy problem (5.23)–(5.24) model sub-diffusion (0 < β < 1) and super-

diffusion (1 < β < 2) processes with jumps. Therefore, it is convenient to proceed
these two cases separately, as well as integer values β = 1 and β = 2.

1. The case 0 < β < 1. Consider the Cauchy problem for the space-time fractional
equation

Dβ
∗ u(t,x) = D

α
0 u(t,x), t > 0, x ∈ R

n, (5.25)

u(0,x) = ϕ(x), x ∈ R
n. (5.26)

Then we have only one solution operator, namely, B1(β ; t,D) whose symbol is

B1(β ; t,ξ ) = Eβ

(
−|ξ |αtβ

)
. The Mittag-Leffler function Eα(−t), t > 0, has the

asymptotic behavior Eα(−t) = O(1/t) when t → ∞ (see Sections 3.4 and 3.13).
Using this fact, we obtain

|B1(β ;t,ξ )| ≤C(1+ |ξ |)−α , 0≤ t ≤ T, ξ ∈ R
n. (5.27)

Applying Theorem 5.5 and estimate (5.27) we get the following result:

Theorem 5.6. Let 0 < β < 1 and ϕ ∈ Hs(Rn). Then the Cauchy problem (5.25)–
(5.26) has a unique solution in the space C∞(t > 0;Hs+α(Rn))∩C(t ≥ 0;Hs(Rn)).
This solution is given by the formula

u(t,x) = B1(β ;t,D)ϕ(x). (5.28)

Moreover, there exists a positive constant C, such that for the solution the estimate

‖u(t,x)|Hs+α‖ ≤CT−β‖ϕ |Hs‖ (5.29)

holds for all t > T.

Proof. We only need to prove estimate (5.29). Due to Proposition 3.9 in the case
0 < β < 1 and λ = |ξ |α > 0, we have for the symbol B1(β ; t,ξ ) = Eβ (−|ξ |αtβ ) the
representation (see Proposition 3.9)

B1(β ;t,ξ ) =
∫ ∞

0
e−rt|ξ |2α/β Kβ (r)dr, (5.30)
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where

Kβ (r) =
1
π

rβ−1 sin(βπ)
r2β + 2rβ cos(βπ)+ 1

.

For t ≥ T the representation (5.30) can be rewritten in the form

B1(β ;t,ξ ) =
∫ ∞

0
e−rT |ξ |

2α
β

e−r(t−T )|ξ |
2α
β

Kβ (r)dr,

which gives the estimate1

|B1(β ;t,ξ )| ≤
∫ ∞

0
e−rT |ξ |

2α
β

Kβ (r)dr, t ≥ T. (5.31)

Notice that the right-hand side of (5.31) represents the Laplace transform of Kβ (r)

evaluated at T |ξ |2α/β :

|B1(β ;t,ξ )| ≤ L[Kβ ]
(

T |ξ |2α/β
)
, t ≥ T.

Moreover, Kβ (r) ∼ rβ−1, as r → 0. Therefore, due to Watson’s lemma (Proposi-

tion 1.10), we obtain for large values of T |ξ | 2
α the following asymptotic relation for

large T :

L[Kβ ]
(

T |ξ |2α/β
)

= O

(
1

T β |ξ |2α
)
, T >> 1.

This implies

|B1(β ;t,ξ )| ≤ Cβ

T β (1+ |ξ |2)−α , t > T, ξ ∈ R
n.

Using the latter, we obtain

‖u(t,x)|Hs+α‖2 =

∫
Rn
|B1(β ;t,ξ )|2|ϕ̂ |2(1+ |ξ |2)s+αdξ

≤
C2
β

T 2β ‖ϕ |Hs‖2, t ≥ T,

proving (5.29).

Corollary 5.1. Under the conditions of Theorem 5.6 for the solution of the Cauchy
problem (5.25)–(5.26) the following asymptotic relation holds:

lim
t→∞

‖u(t,x)Hs+α‖= 0. (5.32)

Remark 5.1. If the initial function ϕ(x) ≥ 0 and
∫
Rn ϕ(x)dx = 1, then the solution

u(t,x)> 0 for all t > 0. This fact follows from (5.28) and Bochner’s theorem, since

1 Kβ (r)> 0 for all r > 0 if 0 < β < 1.
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F [ϕ ](ξ ) is positive definite and Kβ (r) > 0, r > 0. Therefore, property (5.32) of the
solution of the Cauchy problem (5.25)–(5.26) expresses its relaxation property. We
note also that if s > n

2 −α, then it follows from the Sobolev embedding theorem that
the convergence to zero is uniform for all x ∈ R

n.

2. The case 1 < β < 2. Consider the Cauchy problem for the space-time fractional
differential equation

Dα
∗ u(t,x) = D

α
0 u(t,x), t > 0, x ∈ R

n, (5.33)

u(0,x) = ϕ(x), ut(0,x) = ψ(x), x ∈ R
n. (5.34)

In this case we have two solution operators, B1(β ; t,D) and B2(β ; t,D) with
the symbols B1(β ;t,ξ ) = Eβ (−|ξ |αtβ ) and B2(β ; t,ξ ) = JEβ (−|ξ |α tβ ), respec-
tively. The symbol B2(β ;t,ξ ) has the same asymptotics (5.27) for |ξ | → ∞ as
B1(β ; t,ξ ).

Theorem 5.7. Let 1 < β < 2, ϕ ∈Hs(Rn), and ψ ∈Hs(Rn). Then the Cauchy prob-
lem (5.33)–(5.34) has a unique solution

u(t,x) ∈C∞[t > 0;Hs+α(Rn)]∩C1[t ≥ 0;Hs(Rn)].

This solution is given by the formula

u(t,x) = B1(β ;t,D)ϕ(x)+B2(β ; t,D)ψ(x). (5.35)

Moreover, there exists a positive constant C, such that for the solution the estimate

‖u(t,x)|Hs+α‖ ≤ C

Tβ−1

(‖ϕ |Hs‖
T

+ ‖ψ |Hs‖
)
, (5.36)

holds for all t > T.

Proof. Again we need only to prove estimate (5.36). Other conclusions of the the-
orem follow from Theorem 5.5 and estimate (5.27). Due to Proposition 3.9 for the
symbol B1(β ; t,ξ ) = Eβ (−|ξ |αtβ ) with 1 < β < 2 and λ = |ξ |α > 0, the represen-
tation

B1(β ; t,ξ ) =
∫ ∞

0
e−rt|ξ |

2α
β

Kβ (r)dr+
2
β

et|ξ |
2α
β cos π

β cos

(
t|ξ | 2α

β sin
π
β

)
(5.37)

holds. One can verify by integration of (5.37) that for the symbol B2(β ; t,ξ ) =
JEβ (−|ξ |α tβ ) the following representation

B2(β ; t,ξ ) = |ξ |−2α/β
∫ ∞

0
e−rt|ξ |

2α
β

Kβ ,1(r)dr

+
2|ξ |2α/β

β
e

t|ξ |
2α
β cos π

β cos

[
t|ξ | 2α

β sin

(
π
β

)
− π

2

]
, (5.38)
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holds, where Kβ ,1(r) = −r−1Kβ (r). Obviously cos(π/β ) < 0 for 1 < β < 2, so
the second terms in representations (5.37) and (5.38) have exponential decay when
|ξ | →∞. Therefore, asymptotic behaviors of symbols B1(β ; t,ξ ) and B2(β ; t,ξ ) are
determined by the first terms of these representations. Thus, similar to the previous
case, we use Watson’s lemma to obtain the asymptotics (t ≥ T )

L[Kβ ]
(

T |ξ |2α/β
)

= O

(
1

T β |ξ |2α
)
, T >> 1,

and

L[Kβ ,1]
(

T |ξ |2α/β
)

= O

(
1

(T |ξ |2α/β )β−1

)
, T >> 1,

which imply

|B1(β ;t,ξ )| ≤ C1

T β (1+ |ξ |2)−α , t > T, ξ ∈ R
n.

and

|B2(β ;t,ξ )| ≤ C2

T β−1
(1+ |ξ |2)−α , t > T, ξ ∈ R

n.

Taking these estimates into account we have

‖B1(β ; t,D)ϕ |Hs+α‖ ≤ C1

T β ‖ϕ |Hs‖, ‖B2(β ;t,D)ψ |Hs+α‖ ≤ C2

T β−1
‖ψ |Hs‖,

for all t ≥ T, which imply the estimate (5.36).

Corollary 5.2. Let the conditions of Theorem 5.7 be verified. Then for the solution
of the Cauchy problem (5.33)–(5.34) the following asymptotic relation holds:

‖u(t,x)|Hs+α‖= o(1), t → ∞. (5.39)

Remark 5.2. The property (5.39) of the solution of the Cauchy problem (5.33)–
(5.34) expresses its oscillation-relaxation property. Oscillation of the solution is due
to second terms in presentations (5.37) and (5.38) of the symbols of solution oper-
ators. We note also that if s > n

2 −α, then the convergence to zero holds uniformly
for all x ∈ R

n.

Apart from non-integerβ , for β = 1 and β = 2 we have a pure relaxation and pure
oscillation, respectively. We formulate the corresponding results without proofs,
which can easily be obtained analogously to the classical cases.

3. The case β = 2. First we consider the Cauchy problem for the space-fractional
equation with the time derivative of second order:

∂ 2u(t,x)
∂ t2 = D

α
0 u(t,x), t > 0, x ∈ R

n, β > 0, (5.40)

u(0,x) = ϕ(x), ut(0,x) = ψ(x), x ∈ R
n. (5.41)
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It is easy to see that the solution operators have the symbols

B1(t,ξ ) = cos(t|ξ |α), B2(t,ξ ) =
sin(t|ξ |α)
|ξ |α ,

satisfying the estimates

|B1(t,ξ )| ≤ 1, |B2(t,ξ )| ≤ 1
1+ |ξ |α , ξ ∈R

n.

Theorem 5.8. Let α > 0, ϕ ∈ Hs(Rn), ψ ∈ Hs−α(Rn). Then the problem (5.40),
(5.41) has a unique solution in the space

C[t ≥ 0;Hs(Rn)]∩C1[t ≥ 0;Hs−α(Rn)].

This solution is given by the formula

u(t,x) = B1(t,D)ϕ(x)+B2(t,D)ψ(x).

4. The case β = 1. The solution operator of the Cauchy problem for the space-
fractional equation with the time derivative of the first order

∂u(t,x)
∂ t

=D
α
0 u(t,x), t > 0, x ∈R

n, α > 0, (5.42)

u(0,x) = ϕ(x), x ∈ R
n, (5.43)

has the symbol
B1(t,ξ ) = e−t|ξ |α ,

and for every l > 0 there exists a positive constant Cl such that the estimate

|B1(t,ξ )| ≤ Cl(1+ |ξ |)−�, ξ ∈,Rn

holds. Correspondingly, we arrive at the result:

Theorem 5.9. Let β > 0 and ϕ ∈ Hs(Rn). Then the problem (5.42), (5.43) has a
unique solution in the space

C∞[t > 0;∩s∈RHs(Rn)]∩C[t ≥ 0;Hs(Rn)].

This solution is given by the formula

u(t,x) = B1(t,D)ϕ(x).

Remark 5.3. The technique used above for the Sobolev spaces Hs(Rn) remains ap-
plicable for the general Sobolev spaces Hs

p(R
n), Besov spaces Bs

pq(R
n), and Triebel-

Lizorkin spaces Fs
pq(R

n) as well, provided 1 < p,q < ∞.
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5.5 Fractional Duhamel principle

In this section we establish a fractional analog of the Duhamel principle, which al-
lows to extend the results obtained in previous sections to inhomogeneous equation.
Thus, consider the Cauchy problem for inhomogeneous time-fractional pseudo-
differential equations

Dβ
∗ u(t,x) = A(Dx)u(t,x)+ h(t,x), t > 0, x ∈ Rn, (5.44)

∂ ku
∂ tk (0,x) = ϕk(x), x ∈ Rn, k = 0, . . . ,m− 1, (5.45)

where β ∈ (m− 1,m], m ≥ 1 is an integer; h(t,x) and ϕk(x), k = 0, . . . , m− 1
are given functions in certain spaces defined later; Dx = (D1, . . . ,Dn) D j =

−i ∂
∂x j

, j = 1, . . . ,n; A(Dx) is a pseudo-differential operator with a symbol A(ξ )
defined in an open domain G ⊆ Rn.

In this section we also prove the Duhamel principle for fractional order differen-
tial equations with the Riemann-Liouville derivative (Subsection 5.5.3). More gen-
eral case of the Duhamel principle for inhomogeneous distributed order abstract
differential-operator equations will be discussed in Section 6.4.

Note that the classical Duhamel principle is not valid for fractional order in-
homogeneous differential equations. The fractional generalization of the Duhamel
principle established below can be applied directly to inhomogeneous fractional or-
der differential equations reducing them to corresponding homogeneous equations.

Recall the following relationship between the Riemann-Liouville and Caputo-
Djrbashian fractional derivatives (cf. (3.53) with a = 0):

Dβ
+ f (t) = Dβ

∗ f (t)+
m−1

∑
k=0

f (k)(0)
Γ (k−β + 1)

tk−β . (5.46)

Recall also that for the Cauchy problem (5.44), (5.45) in the homogeneous case (i.e.,
for f (t,x)≡ 0 in equation (5.44)) the following representation formula for a solution
was obtained in (5.14):

u(t,x) =
m

∑
k=1

Jk−1Eβ (t
βA(Dx))ϕk−1(x), (5.47)

where Jk is the k-th order integral operator, Eβ (t
βA(Dx)) is a pseudo-differential

operator with the symbol Eβ (t
βA(ξ )) and Eβ (z) is the Mittag-Leffler function (see

Section 3.4).

Lemma 5.4. For all β ∈ (m− 1,m] and γ ≥ 0 the relation

Jγ+β f (t) = Jγ+mDm−β
+ f (t) (5.48)

holds.
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Proof. Obviously, the relationship (5.48) is fulfilled, if β = m. Let m− 1 < β < m.
Then 0 < m−β < 1. It follows from (5.46) that

Dm−β
+ f (t) = Dm−β

∗ f (t)+
f (0)tβ−m

Γ (1−m+β )
, t > 0. (5.49)

Taking into account (5.49) and the definition of the Caputo-Djrbashian fractional
derivative Dm−β

∗ = Jβ+1−mD (see (3.48)), we have

Jγ+mDm−β
+ f (t) = Jγ+mDm−β

∗ f (t)+
f (0)

Γ (1−m+β )
Jγ+mtβ−m

= Jγ+β J f
′
(t)+

f (0)
Γ (β + γ+ 1)

tβ+γ .

Further, using (3.2) with n = 1, we obtain

Jγ+mDm−β
+ f (t) = Jβ+γ

[
f (t)− f (0)

]
+

f (0)
Γ (β + γ+ 1)

tβ+γ .

The last equation immediately implies (5.48), if we take into account the well-

known formula Jδ1 = tδ

Γ (δ+1) , δ > 0.

Corollary 5.10 Assume f (0) = 0. Then for all β ∈ (m−1,m] and γ ≥ 0 the relation

Jγ+β f (t) = Jγ+mDm−β
∗ f (t) (5.50)

holds.

Proof. We notice that m− β < 1. Now the relation (5.50) immediately follows
from (5.48) and (5.46).

5.5.1 Fractional Duhamel principle: the case 0 < β < 1

The following heuristic observation is useful in understanding of the fractional
Duhamel principle. Assume 0 < β < 1. Consider the Cauchy problem for the non-
homogeneous fractional heat equation

Dβ
∗ u(t,x) = kβΔu(t,x)+ h(t,x), (5.51)

with the initial condition u(0,x) = 0. Using the notations introduced in Section 4.7,
the solution is represented as the Duhamel integral

u(t,x) =
∫ t

0
V (t,τ,x)dτ,

where V (t,τ,x) is a solution of the Cauchy problem for the corresponding homoge-
neous equation
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τDβ
∗V (t,τ,x) = kβΔV (t,τ,x) = 0, t > τ, x ∈ Rn, (5.52)

with the initial condition V (τ,τ,x) = H(τ,x). Here τDβ
∗ is the Caputo-Djrbashian

fractional derivative of order β with the initial point τ, and H(τ,x) is a function re-
lated to h(t,x) in a certain way. In order to see this relationship between H(t,x)
and h(t,x), suppose that t is small and the initial temperature is zero. Then ig-
noring the heat flow during the time interval (0,t), that is kΔu ∼ 0, the tempera-
ture change is Dβ

∗ u(t,x) ∼ h(t,x), or taking into account Dβ
∗ = J1−βD, we have

Du(t,x) ∼ D1−β
+ h(t,x). For small t this implies V (0,0,x) ∼ Du(0) ∼ D1−β

∗ h(0,x).
Repeating these heuristic calculations for small time interval (τ,τ+ε) we obtain the

relationship H(τ,x)∼ D1−β
+ h(τ,x). Hence, one can expect that the initial condition

for V (t,τ,x) in equation (5.52) has the form

V (t,τ,x)|t=τ = D1−β
+ h(τ,x),

where h(t,x) is the function on the right-hand side of equation (5.51). Below we
will prove this fact rigorously.

First we formulate a formal fractional generalization of the Duhamel principle
and then we discuss applications of this principle in various situations.

Theorem 5.11. Suppose that V (t,τ,x), 0≤ τ ≤ t, x∈Rn, is a solution of the Cauchy
problem for homogeneous equation

τDβ
∗V (t,τ,x)−A(Dx)V (t,τ,x) = 0, t > τ, x ∈R

n, (5.53)

V (τ,τ,x) = D1−β
∗ h(τ,x), x ∈ R

n, (5.54)

where h(t,x) ∈C1[t ≥ 0;D(A(Dx))], and satisfies the condition f (0,x) = 0. Then

v(t,x) =
∫ t

0
V (t,τ,x)dτ (5.55)

is a solution of the inhomogeneous Cauchy problem

Dβ
∗ v(t,x)−A(Dx)v(t,x) = h(t,x), (5.56)

v(0,x) = 0. (5.57)

Proof. Notice that in accordance with (5.47) a solution of the Cauchy problem
(5.53)-(5.54) is represented in the form

V (t,τ,x) = Eβ ((t− τ)βA(Dx))D
1−β
∗ h(τ,x). (5.58)

Further, we apply the operator Jβ to both sides of equation (5.56) and use the relation
JβDβ

∗ v(t,x) = v(t,x)− v(0,x), to obtain an integral equation

v(t,x)− JβA(Dx)v(t,x) = Jβh(t,x).
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It follows from the general theory of operator equations that a solution of the last
equation can be represented in the form

v(t,x) =
∞

∑
n=0

Jβn+βAn(Dx)h(t,x). (5.59)

Further, (5.50) implies that if γ = βn and m = 1, then for arbitrary function g(t)

satisfying the condition g(0) = 0, the equality Jβn+βg(t) = Jβn+1D1−β
∗ g(t) holds.

Taking this into account we have

v(t,x) =
∞

∑
n=0

Jβn+1An(Dx)D
1−β
∗ h(t,x)

=
∫ t

0

∞

∑
n=0

(t− τ)βnAn(Dx)

Γ (βn+ 1)
D1−β
∗ h(τ,x)dτ

=

∫ t

0
Eβ ((t− τ)βA(Dx))D

1−β
∗ h(τ,x)dτ. (5.60)

Due to equation (5.58) the integrand in (5.60) coincides with V (t,τ,x), and we ob-
tain (5.55).

Remark 5.4. 1. The series in (5.59) converges, for instance, if h∈C1[t ≥ 0;ΨG,p(R
n)].

In this case there exist positive numbers C and a, not depending on x and t, such
that pk(An(Dx)h)≤Can pm(h). It follows from (5.59) that

pk(v(t,x))≤
∞

∑
n=0

∣∣∣∣ 1
Γ (βn+β )

∫ t

0
(t− τ)βn+β−1pk(A

n(Dx)h)

∣∣∣∣

≤Cpm(h)a
−β

∞

∑
n=0

(a1/β t)nβ+β

Γ (nβ +β )
=Cpm(h)t

βEβ ,β (atβ )< ∞,

where Eβ ,β (z) is the generalized Mittag-Leffler function (see, Section “Addi-
tional notes” to Chapter 3). This estimate means that the series on the right
of (5.59) converges in the topology ofΨG,p(R

n).
2. The condition h ∈ C1[t ≥ 0;ΨG,p(R

n)] for h(t,x) is too strong. In Sections 6.4
and 6.5 we will prove two fractional generalizations of the Duhamel principle
for distributed order differential equations, using a different method, weakening
conditions for h(t,x). We recall (see Proposition 3.10) that the fractional deriva-

tive D1−β
∗ h(t), 0< β < 1 exists a.e., if h(t)∈AC[0≤ t ≤ T ], where T is a positive

finite number and AC[0,T ] is the class of absolutely continuous functions.
3. The condition h(0,x) = 0 in Theorem 3.1 is not essential. If h(t,x) does not

satisfy this condition, then in the formulation of the theorem the Cauchy condi-
tion (5.54) has to be replaced by

V (τ,τ,x) = D1−β
+ h(τ,x), x ∈R

n,
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where D1−β
+ is the operator of fractional differentiation of order 1− β in the

Riemann-Liouville sense. The case β = 1 recovers the classic Duhamel principle.
Theorem 3.1 coincides with the classic Duhamel principle in the set of functions
h(t,x) with h(0,x) = 0.

Theorem 5.12. Let ϕ0(x) ∈ΨG,2(R
n), h(t,x) ∈C1[t ≥ 0;ΨG,2(R

n)], and f (0,x) =
0. Then the Cauchy problem (5.44)–(5.45) (with 0 < β < 1) has a unique solution

u(t,x) ∈C1[t > 0;ΨG,2(R
n)] ∩C[t ≥ 0;ΨG,2(R

n)].

This solution has the representation

u(t,x) = Eα(t
βA(Dx))ϕ0(x)+

∫ t

0
Eβ ((t− τ)βA(Dx))D

1−β
∗ h(τ,x)dτ. (5.61)

Proof. The representation (5.61) is a simple implication of (5.47) and Theorem 5.11.
The first term in (5.61) was studied in Section 5.3 in detail. Denote by v(t,x) the sec-
ond term in (5.61). For a fixed t > 0 making use of the semi-norm ofΨN we have

p2
N
(v(t,x)) = ‖F−1χN Fv‖2

L2
= ‖χN Fv‖2

L2

=

∫
Rn
|χN (ξ )|2 · |

∫ t

0
Eβ ((t− τ)βA(ξ ))FD1−β

∗ h(τ,ξ )dτ|2dξ .

For χN (ξ ) there exists a compact set KN ⊂ G such that suppχN (ξ )⊂ KN . Using the
Hölder inequality we get the estimate

p2
N
(v(t,x))≤

∫
KN

|χN (ξ )|2 ·
∫ t

0
|Eβ ((t− τ)βA(ξ ))|2dτ ·

∫ t

0
|FD1−β

∗ h(τ,ξ )|2dτdξ .

The function
∫ t

0 |Eβ ((t − τ)βA(ξ ))|2dτ is bounded on KN . Consequently, there
exists a constant CN > 0, such that

p2
N
(v(t,x))≤CN

∫
KN

|χN (ξ )|2 ·
∫ t

0
|FD1−β

∗ h(τ,ξ )|2dτdξ

≤CN

∫ t

0

∫
Rn
|χN (ξ )|2 · |FD1−β

∗ h(τ,ξ )|2dξdτ

=CN

∫ t

0
‖χN (ξ )FD1−β

∗ h(τ,ξ )‖2
L2

dτ =CN

∫ t

0
p2

N
(D1−β

∗ h(τ,x))dτ.

It follows from the condition D1−β
∗ h(t,x) ∈ C[t ≥ 0;ΨG,2(R

n)] that the function

pN (D
1−β
∗ h(τ,x)) is continuous with respect to τ ∈ (0;t) and for a fixed t > 0 and

some N1 the estimate

p2
N
(v(t,x))≤CN · t · sup

0<τ<t
p2

N
(D1−β

∗ h(τ,x))≤CN1
· t · sup

0<τ<t
p2

N1
(h(τ,x))

holds. Hence, for every fixed t ∈ (0;+∞) the function v(t,x) in (5.55) belongs to
the space ΨG,2(R

n). The analogous estimate is valid for ∂
∂ t v(t,x). Thus v(t,x) ∈
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C1[t > 0;ΨG,2(R
n)] ∩ C[t ≥ 0;ΨG,2(R

n)]. Hence, u(t,x) ∈ C1[t > 0;ΨG,2(R
n)] ∩

C[t ≥ 0;ΨG,2(R
n)], as well. The uniqueness of a solution follows from the represen-

tation formula for a solution of the homogeneous Cauchy problem.

5.5.2 Fractional Duhamel principle: the case of arbitrary β > 0

Now we consider the Cauchy problem (5.44)–(5.45) for arbitrary order β satisfying
m− 1 < β ≤ m, m ∈ N. Obviously, in this case 0≤ m−β < 1.

Theorem 5.13. Assume m ≥ 1, m− 1 < β ≤ m, and V (t,τ,x) is a solution of the
Cauchy problem for the homogeneous equation

τDβ
∗V (t,τ,x)−A(Dx)V (t,τ,x) = 0, t > τ, x ∈ R

n, (5.62)

with the Cauchy conditions

∂ kV
∂ tk

(t,τ,x)|t=τ = 0, k = 0, . . . ,m− 2, (5.63)

∂m−1V
∂ tm−1 (t,τ,x)|t=τ = Dm−α

∗ h(τ,x), (5.64)

where h(t,x), t > 0, x ∈ R
n, is a given function as in Theorem 5.11. Then

v(t,x) =
∫ t

0
V (t,τ,x)dτ (5.65)

is a solution of the Cauchy problem for the inhomogeneous equation

Dβ
∗ v(t,x)−A(Dx)v(t,x) = h(t,x), (5.66)

with the homogeneous Cauchy conditions

∂ kv
∂ tk (0,x) = 0, k = 0, . . . ,m− 1. (5.67)

Proof. It follows from the representation formula (5.47) that

V (t,τ,x) = Jm−1Eβ ((t− τ)βA(Dx))D
m−β
∗ f (τ,x) (5.68)

solves the Cauchy problem for equation (5.62) with the initial conditions (5.63),
(5.64). Further, apply the operator Jβ to both sides of the equation (5.66) and obtain

v(t,x)−
m−1

∑
j=0

t jv j(0,x)
j!

− JβA(Dx)v(t,x) = Jβh(t,x). (5.69)
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Taking into account the conditions (5.67), we rewrite equation (5.69) in the form

v(t,x)− JβA(Dx)v(t,x) = Jβh(t,x).

A solution of this equation is represented as2

v(t,x) =
∞

∑
n=0

Jβn+βAn(Dx)h(t,x).

It follows from (5.50) (with γ = βn) that for arbitrary function g(t) satisfying the

conditions g(0) = 0, one has Jβn+βg(t) = Jβn+m(Dm−β
∗ g(t)). Taking this into ac-

count, we have

v(t,x) =
∞

∑
n=0

Jβn+1Jm−1An(Dx)D
m−β
∗ h(t,x)

=

∫ t

0
Jm−1

∞

∑
n=0

(t− τ)βnAn(Dx)

Γ (βn+ 1)
Dm−β
∗ h(τ,x)dτ

=

∫ t

0
Jm−1Eβ ((t− τ)βA(Dx))D

m−β
∗ h(τ,x)dτ. (5.70)

Comparing (5.68) and (5.70) we obtain (5.65), and hence, the proof of the theorem.

The condition h(0,x) = 0 in the theorem is not essential. If this condition is not
verified, then the formulation of the fractional Duhamel principle takes the following
form.

Theorem 5.14. Assume m ≥ 1, m− 1 < β ≤ m, and V (t,τ,x) is a solution of the
Cauchy problem for the homogeneous equation (5.62) with the Cauchy conditions

∂ kV
∂ tk (t,τ,x)|t=τ = 0, k = 0, . . . ,m− 2,

∂m−1V
∂ tm−1 (t,τ,x)|t=τ = Dm−β

+ h(τ,x),

where h(t,x), t > 0, x ∈ R
n, is a given function. Then v(t,x) defined in (5.65) is a

solution of the following Cauchy problem for the inhomogeneous equation

Dβ
∗ v(t,x)−A(Dx)v(t,x) = h(t,x),

∂ kv
∂ tk (0,x) = 0, k = 0, . . . ,m− 1.

Remark 5.5. Note that if β = m, then Theorems 5.11 and 5.13 recover the classic
Duhamel principle discussed in Section 4.7.

2 Regarding the convergence of this series see Remark 5.4.
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The theorem below generalizes Theorem 5.12 for higher orders β .

Theorem 5.15. Let m − 1 < β ≤ m and ϕk(x) ∈ ΨG,2(R
n), k = 0, . . . , m − 1,

h(t,x) ∈ AC[t ≥ 0;ΨG,2(R
n)], Dm−β

∗ h(t,x) ∈ C[t ≥ 0;ΨG,2(R
n)] and f (0,x) = 0.

Then the Cauchy problem (5.44)–(5.45) has a unique solution. This solution is given
by the representation

u(t,x) =
m

∑
k=1

Jk−1Eβ (t
βA(Dx))ϕk−1(x)

+

∫ t

0
Jm−1Eβ ((t− τ)βA(Dx))D

m−β
∗ h(τ,x)dτ. (5.71)

Proof. Splitting the Cauchy problem (5.44)–(5.45) into the Cauchy problem for the
equation (5.44) with the homogeneous initial conditions and the Cauchy problem for
the homogeneous equation corresponding to (5.44) with the initial conditions (5.45),
and applying Theorem 5.13 and representation formula (5.47), we obtain (5.71). The
fact that

m

∑
k=1

Jk−1Eβ (t
βA(Dx))ϕk−1(x) ∈C(m)[t > 0;ΨG,2(R

n)]∩C(m−1)[t ≥ 0;ΨG,2(R
n)]

is proved in Section 5.3. Further, since the m− 1-th derivative with respect to t of
the last term in (5.71) belongs to AC[[0,T ];ΨG,2(R

n)]3, then the estimation obtained
in the proof of Theorem 5.12 holds in this case as well.

Remark 5.6. If h(t,x) does not vanish at t = 0, then in accordance with Theo-
rem 5.14, the representation formula (5.71) takes the form

u(t,x) =
m

∑
k=1

Jk−1Eβ (t
βA(Dx))ϕk−1(x)

+
∫ t

0
Jm−1Eβ ((t− τ)βA(Dx))D

m−β
+ f (τ,x)dτ.

Example 5.2. 1. Let 0 < β < 1 and h(t,x) be a given suitable function satisfying
f (0,x) = 0. Consider the Cauchy problem for the fractional order heat equation
with nonzero external force

Dβ
∗ u(t,x) = Δu(t,x)+ h(t,x), t > 0, x ∈R

n, (5.72)

u(0,x) = ϕ0(x), (5.73)

where Δ is the Laplace operator. In accordance with the fractional Duhamel prin-
ciple the influence of the external force h(t,x) to the output can be counted from
the Cauchy problem

3 T is an arbitrary positive finite number.
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τDβ
∗V (t,τ,x) = ΔV (t,τ,x), t > τ, x ∈ R

n,

V (τ,τ,x) = D1−β
∗ h(τ,x).

The function V (t,τ,x) = Eβ ((t− τ)βΔ)D1−β
∗ h(τ,x) solves this problem. Hence,

the solution of the Cauchy problem (5.72)–(5.73) is given by

u(t,x) = Eβ (t
βΔ)ϕ0(x) +

∫ t

0
Eβ ((t− τ)βΔ)D1−β

∗ f (τ,x)dτ.

2. Let 1 < β < 2, and F(t,x) is a given function. Consider the Cauchy problem

Dβ
∗ u(t,x) = Δu(t,x)+F(t,x), t > 0, x ∈ R

n,

u(0,x) = ϕ0(x), ut(0,x) = ϕ1(x).

Again in accordance with the fractional Duhamel principle the influence of the
external force F(t,x) appears in the form

τDβ
∗V (t,τ,x) = ΔV (t,τ,x), t > τ, x ∈ R

n,

V (τ,τ,x) = 0,
∂V
∂ t

(τ,τ,x) = D2−β
+ F(τ,x).

The unique solution of the latter is V (t,τ,x) = JEβ ((t − τ)βΔ)D2−β
+ F(τ,x).

Hence,

u(t,x) = Eβ (t
βΔ)ϕ0(x)+ JEβ (t

βΔ)ϕ1(x)

+
∫ t

0
JEβ ((t− τ)βΔ)D2−β

+ F(τ,x)dτ.

5.5.3 Fractional Duhamel principle: the case of Riemann-Liouville
derivative

A fractional generalization of Duhamel’s principle is also possible when the frac-
tional order differential equation is given through the Riemann-Liouville fractional
derivative. In this section we briefly discuss this important case proving the corre-
sponding theorem in the abstract differential-operator case

Dβu(t) = Bu(t,x)+ h(t),

where 0 < β < 1, and B is a closed operator, independent of t, and with a domain
D(B) dense in a Banach space X . The initial value problem, called the Cauchy type
problem, in this case has the form
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τL[u](t) = h(t), t > 0, (5.74)

τJ1−αu(τ+) = ϕ ∈ X . (5.75)

where τL[·] =τ Dβ −B. The initial condition (5.75) can be rewritten as the weighted
Cauchy type initial condition limt→τ+(t− τ)1−αu(t) = ϕ (see, e.g., [KST06]).

Theorem 5.16. Suppose that V (t,τ), t ≥ τ ≥ 0, is a solution of the Cauchy type
problem for the homogeneous equation

τDαV (t,τ)+BV(t,τ) = 0, t > τ, (5.76)

τJ1−αV (t,τ)|t=τ+ = h(τ), (5.77)

where 0 < α < 1 and h(τ), τ ≥ 0, is a continuous vector-function. Then Duhamel’s
integral

u(t) =
∫ t

0
V (t,τ)dτ (5.78)

solves the Cauchy type problem for the inhomogeneous equation

Dαu(t)+Bu(t) = h(t), t > 0, (5.79)

with the homogeneous initial condition J1−αu(0+)= 0.

Proof. Let V (t,τ) satisfy the conditions of the theorem. Then for the Duhamel in-
tegral (5.78), by virtue of Lemma 4.4, we have

Dαu(t)+Bu(t) =
1

Γ (1−α)
d
dt

∫ t

0

∫ s
0 V (s,τ)dτ
(t− s)α

ds+
∫ t

0
BV (t,τ)dτ

=
d
dt

∫ t

0
τJ1−αV (t,τ)dτ +

∫ t

0
BV (t,τ)dτ

= τJ1−αV (t,τ)|τ=t +

∫ t

0
[ τDαV (t,τ)+BV(t,τ)]dτ = h(t). (5.80)

On the other hand, changing the order of integration and using the mean value the-
orem, we obtain

‖J1−αu(t)‖= ‖
∫ t

0
τJ1−αV (t,τ)dτ‖ ≤ t‖ τ∗J1−αV (t,τ∗)‖, (5.81)

where τ∗ ∈ (0, t), and the operator τ∗J
1−α on the rightmost term of (5.81) acts in the

variable t. Condition (5.77) implies that limt→0+ τJ1−αV (t,τ) = h(0) in the norm
of X . It follows from (5.81) that limt→0+ J1−αu(t) = 0 in the norm of X .

Remark 5.7. Theorem 5.16 can be generalized to differential-operator equations of
higher order α > 1, as well. In Section 6.5 we will generalize the Duhamel principle
for higher fractional order distributed order differential-operator equations defined
through the Riemann-Liouville fractional derivatives.



5.6 Multi-point value problems for fractional order pseudo-differential equations 233

5.6 Multi-point value problems for fractional order
pseudo-differential equations

Equation (5.1) contains only a single fractional derivative. However, in modeling
of real processes equations with several fractional derivatives emerge frequently. In
this section we discuss general multi-point value problems for partial differential
equation of fractional order of the form

Dαm∗ u(t,x)+
m−1

∑
k=1

Ak(D)Dαk∗ u(t,x)+A0(D)u(t,x)

= h(t,x), t ∈ (0,T ), x ∈ R
n, (5.82)

m−1

∑
j=0

Γk j(D)
∂ ku(tk j,x)

∂ tk = ϕk(x), k = 0, . . . ,m− 1, x ∈R
n, (5.83)

where Ak(D), k = 0, . . . ,m, and Γk j(D), k, j = 0, . . . ,m− 1, are pseudo-differential
operators whose symbols Ak(ξ ), k = 0, . . . ,m, and Γk j(ξ ), k, j = 0, . . . ,m− 1, are
in the class of symbols Sp(G); tk j ∈ [0,T ], 0 < T < ∞; and ϕk, k = 0, . . . ,m− 1,
are given functions. We assume that the orders of fractional derivatives satisfy the
ordering

0 < α1 < 1, 1 < α2 < 2 , . . . , m− 2 < αm−1 < m− 1, m− 1 < αm ≤ m.

Boundary value problem (5.82)–(5.83) is a particular case of boundary value prob-
lems for distributed order differential equations, studied in Chapter 6.

Denote by Δ(s,ξ ) the “characteristic function” of equation (5.82), namely,

Δ(s,ξ ) = sαm +
m−1

∑
k=1

Ak(ξ )sαk +A0(ξ ), ξ ∈ G\ ◦
M.

Introduce the function

cδ (t,ξ ) = L−1[
sδ−1

Δ(s,ξ )
](t),

where 0 < δ < αm, and L−1 means the inverse Laplace transform. This function
will be used in the construction of symbols of solution operators to the considering
problem. Since

sδ−1

Δ(s,ξ )
= o

(
1
s

)
, s→ ∞,

for each fixed ξ ∈ G\ ◦
M, we have cδ (t,ξ ) ∈C(αm−δ )(R+).

We first consider the Cauchy problem for the equation (5.82) with the initial
conditions

u(k)(0,x) = ψk(x), k = 0, . . . ,m− 1. (5.84)
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Applying the Fourier transform with respect to the variable x in equation (5.82) and
Cauchy conditions (5.84), we have

Dαm∗ û(t,ξ )+
m−1

∑
k=1

Ak(ξ )D
αk∗ û(t,ξ )+A0(ξ )û(t,ξ ) = 0, (5.85)

t ∈ (0,T ), ξ ∈ G,

∂ kû(0,ξ )
∂ tk = ψ̂k(ξ ), k = 0, . . . ,m− 1, ξ ∈ G, (5.86)

where û(t,ξ ) = F [u](t,ξ ), the Fourier transform of u(t,x). Further, the Laplace
transform, due to formula (3.55), reduces equation (5.85) to

Lt→s

[
Dαm∗ û(t,ξ )+

m−1

∑
k=1

Ak(ξ )D
αk∗ û(t,ξ )+A0(ξ )û(t,ξ )

]
(s)

= sαmL[û](s,ξ )−
m−1

∑
�=0

û(�)(0,ξ )sαm−�−1

+
m−1

∑
j=1

A j(ξ )

[
sα j L[û](s,ξ )−

j−1

∑
�=0

û(�)(0,ξ )sα j−�−1

]
+A0(ξ )L[û](s,ξ ) = 0.

It follows from the latter that
[

sαm +
m−1

∑
k=1

Ak(ξ )sαk +A0(ξ )

]
L[û](s,ξ )

=
m−1

∑
�=0

û(�)(0,ξ )sαm−�−1 +
m−1

∑
j=1

A j(ξ )
j−1

∑
�=0

û(�)(0,ξ )sα j−�−1,

or

L[û](s,ξ ) =
m−1

∑
k=0

sαm−k−1 +∑m−1
j=k+1 A j(ξ )sα j−k−1

Δ(s,ξ )
û(k)(0,ξ ).

Now, inverting first the Laplace transform and then the Fourier transform, and taking
initial conditions (5.86) into account, we have the representation

u(t,x) =
m−1

∑
k=0

Bk(t,D)ψk(x),

for the solution of the Cauchy problem (5.82)–(5.84), where

Bk(t,ξ ) = cαm−k(t,ξ )+
m−1

∑
j=k+1

A j(ξ )cα j−k(t,ξ ). (5.87)
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We notice that formula (5.87) for the symbols Bk(t,ξ ), k = 0, . . . ,m− 1, of
the solution operators of boundary value problem (5.82)–(5.84), generalizes for-
mula (5.13) for the symbols obtained in the case of one single fractional derivative
(see equation (5.7)), that is αm = β , A j(ξ )≡ 0, j = 1, . . . ,m−1. Indeed, if αm = β ,
where m− 1 < β < m, and A j(ξ ) = 0, j = 1, . . . ,m− 1, and A0(ξ ) = −A(ξ ),
then (5.87) implies

Bk(t,ξ ) = cβ (t,ξ ) = L−1[
sβ−k−1

sβ +A0(ξ )
](t)

= JkEβ (−A(ξ )tβ ), k = 0, . . . ,m− 1,

recovering (5.13).
Now we construct the system of solution operators of the general problem (5.82)–

(5.83). Applying the Fourier transform to boundary conditions (5.83),
we have

m−1

∑
j=0

Γk j(ξ )
∂ kû(tk j ,ξ )

∂ tk
= ϕ̂k(ξ ), k = 0, . . . ,m− 1, ξ ∈ G. (5.88)

We look for a solution of multi-point value problem (5.85)–(5.88), in the form

û(t,ξ ) =
m−1

∑
k=0

fk(ξ )Bk(t,ξ ) (5.89)

with Bk(t,ξ ), k = 0, . . . ,m− 1, given by (5.87), and unknown coefficients fk(ξ ),
k = 0, . . . ,m− 1. It is clear that û(t,ξ ) satisfies (5.85). Substituting it into (5.88) we
obtain a system of linear algebraic equations

M(ξ )F(ξ ) = Φ̂(ξ ), (5.90)

where F(ξ ) = ( f0(ξ ), . . . , fm−1(ξ )), Φ̂(ξ ) = (ϕ̂0(ξ ), . . . , ϕ̂m−1(ξ )), and M(ξ ) is a
square matrix of the order m with entries

mkl =
m−1

∑
j=0

Γk j(ξ )B
( j)
l (tk j ,ξ ), k, l = 0, . . . ,m− 1.

Denote by
◦

M the set of all points ξ ∈ G such that Det M(ξ ) = 0. If ξ �∈ ◦
M, then the

equation (5.90) has a unique solution

F(ξ ) = M−1(ξ )Φ̂(ξ ). (5.91)

We note that M0 is the singular set for the symbols of the solution operators. Sub-
stituting (5.91) of the vector F(ξ ) = ( f0(ξ ), . . . , fm−1(ξ )) into (5.89) and apply-
ing the inverse Fourier transform we get the solution of general multi-point value
problem (5.82)–(5.83) as
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u(t,x) =
m−1

∑
k=0

Uk(t,D)ϕk(x), (5.92)

where the Uk(t,D), k = 0, . . . ,m− 1 are solution pseudo-differential operators with
the symbols

Uk(t,ξ ) =
(
(M∗)−1(ξ )B(t,ξ )

)
k
, k = 0, . . . ,m− 1. (5.93)

Here (M∗)−1(ξ ) is the matrix inverse to the Hermitian adjoint of M(ξ ), and B(t,ξ )
is the transpose of the vector row (B0(t,ξ ), . . . ,Bm−1(t,ξ )) with the components
given by (5.87).

A behavior of the vector-function U(t,ξ ) with components U0(t,ξ ), . . . ,Um−1

(t,ξ ) near singular points and at infinity depends on operators Ak(D), k = 0, . . . ,m−
1, and Γk j(D), k = 0, . . . ,m−1, j = 0, . . . ,m−1, in problem (5.82)–(5.83). The well
posedness of the multi-point value problem (5.82)–(5.83) in the classical Sobolev,
Besov, and other function spaces depends on the behavior of the vector function
U(t,ξ ). In particular, we have the following result:

Theorem 5.17. Let ϕk ∈ΨG0,p(R
n), k = 0, . . . ,m− 1, G0 = G \ ◦

M. Then multi-
point value problem (5.82)–(5.83) has a unique solution in the space Cm[(0,T );
ΨG0,p(R

n)]. This solution is represented by formula (5.92).

Similar theorem is valid for the dual problem too. Under the dual problem we
mean a problem obtained by replacing the operators Ak(D), k = 0, . . . ,m − 1,
and Γk j(D), k = 0, . . . ,m− 1, j = 0, . . . ,m− 1, by their dual operators (see for-
mula (2.45)).

Theorem 5.18. Let ϕk ∈Ψ ′
−G0,q

(Rn), k = 0, . . . ,m−1, G0 = G\M0. Then the dual

multi-point value problem has a unique solution in the space Cm[(0,T );Ψ ′
−G0,q

(Rn)].
This solution is given by the formula

u(t,x) =
m−1

∑
k=0

Uk(t,−D)ϕk(x).

For the Sobolev spaces Hs we get the following result:

Theorem 5.19. Let the n-dimensional measure of
◦

M is zero and for all t ∈ (T1,T2)
and for the symbols Uj(t,ξ ) defined in (5.93), the estimates

|∂
kUj(t,ξ )
∂ tk | ≤C(1+ |ξ |)s j−�k , C > 0, ξ ∈R

n, j = 0, . . . ,m− 1

hold for all k = 0, . . . ,m−1 with some s j ∈R, � j ∈R, j = 0, . . . ,m−1. Then for any
ϕ j ∈ Hs j (Rn), j = 0, . . . ,m− 1, there exists a unique solution u(t,x) of boundary
value problem (5.82)–(5.83) such that
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∂ ku(t,x)
∂ tk

∈Cm−1−k[(T1,T2);H�k(Rn)], k = 0, . . . ,m− 1,

and satisfying the estimate

sup
t∈(T1,T2)

m−1

∑
k=0

‖∂
ku
∂ tk |H�k‖ ≤C

m−1

∑
j=0

‖ϕ j|Hs j‖.

5.7 Boundary value problems for elliptic operators
with a boundary operator of fractional order

In Section 4.5 we briefly studied existence and uniqueness conditions for boundary
value problems for elliptic differential equations on the half-space with boundary
operators of integer order. However, the exact existence conditions can be obtained
only if one extends the class of boundary operators to fractional order boundary op-
erators. In this section we present a detailed analysis of such problems. Important
questions arising in this context are “What type of fractional derivatives can be used
as a boundary operator?” and “What values of the order of the boundary operator are
critical, in terms of changing of orthogonality conditions?” As a boundary operator
one can consider fractional derivatives in the sense of Marchaud, Liouville-Weyl,
Grünwald-Letnikov, or operators in the form of a hypersingular integral. The ex-
act number of orthogonality conditions for the existence of a solution depends on
solution spaces.

Consider the boundary value problem

∂ 2u
∂y2 +A(Dx)u(y,x) = 0, y > 0, x ∈ R

n, (5.94)

Bαu(+0,x) = ϕ(x), x ∈ R
n, (5.95)

|u(y,x)| →0 as y→ ∞, uniformly for x ∈ R
n, (5.96)

where Dx = −i( ∂
∂x1

, . . . , ∂
∂xn

), A(Dx) is an elliptic pseudo-differential operator of
order 2m, m ∈ N, acting on u(y,x) with respect to the variable x. Its symbol A(ξ ) is
a smooth function satisfying the condition

C1|ξ |2m ≤−A(ξ ) ≤C2|ξ |2m, C1 > 0, C2 > 0, (5.97)

and Bα is a boundary operator depending on a positive real parameter α acting on
u(y,x) with respect to the variable y. As the model operator Bα we consider the one-
sided Marchaud fractional derivative Dα− defined in (3.116) (see Section “Additional
notes” of Chapter 3), defined for y > 0 as

Dα
− f (y) =

α− k
Γ (1+ k−α)

dk

dyk

∫ ∞

0

f (y)− f (y+ h)
h1+α−k

dh,
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if k < α < k+1, k = 0,1, . . . . We recall that in Lp-spaces, 1≤ p <∞, the Marchaud
derivative coincides with the one-sided Grünwald-Letnikov fractional derivativeDα−
(see Section 3.10). Moreover, in the class of well-behaved functions both the Mar-
chaud and Grünwald-Letnikov derivatives coincide with the one-sided Liouville-
Weyl fractional derivative −∞Dα (see Section 3.6).

We also recall that if Bα = Dα−, then one has (see Example 3.12)4

Bαe−ay = (−a)αe−ay, ∀a > 0. (5.98)

This formula plays an essential role in our constructions in this section.
We denote the problem (5.94)–(5.96) by Pα . As particular cases of the problem

Pα we obtain the Dirichlet problem, P0, if α = 0 and the Neumann problem, P1,
if α = 1. When α is non-integer and α ∈ (0,1) the problem Pα interpolates these
two problems, which are used in description of stationary states. It is well known
that the Dirichlet problem is unconditionally solvable, while for solvability of the
Neumann problem an additional condition on orthogonality is necessary. We will
show that for ϕ in the Sobolev space Hs(R) (one-dimensional case) the problem Pα
preserves unconditional solvability for all α ∈ [0, 1

2 ). At the same time, if α ∈ ( 1
2 ,1],

the corresponding problem Pα is solvable only if ϕ is orthogonal to 1. We will also
show that if α increases, then the number of orthogonality conditions increases as
well. A new orthogonality condition appears exactly when α passes through the
critical values

α∗j = j+
1
2
, j = 0,1,2, . . . . (5.99)

Let N(α) be the number of conditions necessary for solvability of Pα and let
l(α) = [mα − n

2 + 1]+, where [s] stands for the integer part of s, and [s]+ = [s], if
[s]> 0 and [s]+ = 0, if [s]≤ 0. Then the formula

N(α) =
(l(α)+ n− 1)!
(l(α)− 1)!n!

holds. It is easy to see that, if n = 1 (one-dimensional case) and m = 1, then

N(α) = l(α)!/(l(α)− 1)! = l(α) = [α+
1
2
]+,

justifying the critical values (5.99) in the one-dimensional case. Indeed, if 0 < α <
1/2, then N(α) = 0, if 1/2≤ α < 3/2, then N(α) = 1, and so forth.

Critical values depend on solution spaces. We consider three different types of
function spaces. The first one is a subspace of the Sobolev space Hs(Rn) satisfying
some orthogonality conditions. The number of these conditions depends on the or-
der α of the operator Bα in (5.95) and on the order 2m of the pseudo-differential
operator A(D) in (5.94). This space is the most suitable one in terms of the exact
number of conditions necessary for solvability of the problem Pα .

The second type spaces are Lizorkin type spaces. On one hand, these spaces are
natural from the point of view of describing the solvability of Pα for any α ≥ 0.

4 With the sign correction effected by the definition of Dα−.
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On the other hand, unfortunately, it is not possible to provide the exact number of
solvability conditions of Pα in these spaces for a given α .

The third type spaces are some modifications of the spaces (ΨG,p(R
n), Ψ ′

−G,p′

(Rn)) introduced in Section 1.10. As a simple corollary we obtain in Section 5.9
that such distributions may be treated as boundary limits of fractional derivatives of
harmonic functions in the sense of Marchaud (or Grünwald-Letnikov or Liouville-
Weyl).

5.8 Existence theorems for the problem Pα

In this section we will study the existence and uniqueness of a solution of the bound-
ary value problem Pα . A solution of Pα will be understood in the following sense.
Let ϕ be an element of a topological space X . A function u(y,x) ∈ L∞(y ≥ 0;X)
is said to be a solution of the problem Pα if it satisfies the equation (5.94) in the
distributional sense and the boundary conditions (5.95), (5.96) in the sense of the
topology of X . Let C�[y ≥ 0;X ] be the space of X-valued functions u(y,x), hav-
ing derivatives up to the order � with respect to y continuous up to the boundary
y = 0. The corresponding meaning is given to C�[y > 0;X ]. Analogously, we write
C∞[y > 0;X ] for the space of functions infinitely often differentiable with respect
to y. As the space X we will use the spaces considered in Section 2. We recall
l(α) = [αm− n

2 + 1]+.

Theorem 5.20. Let α ≥ 0, ϕ ∈Hs
comp,l(α)(R

n), s≥ 0. Then Pα has a unique solution

u(y,x) and for this solution the following inclusions hold:

(i) u(y,x) ∈C[y≥ 0;Hs+αm(Rn)];
(ii) Bαu(y,x) ∈C[y ≥ 0;Hs(Rn)];

(iii) u(y,x) ∈C∞[y > 0;Hs+αm(Rn)].

Proof. Let 0≤ α < n
2m , ϕ ∈Hs

comp(R
n) and suppϕ ⊂QN . By using (5.98) it can be

straightforward verified that the solution of the problem Pα has a representation in
the form

u(y,x) =Πα(y,D)ϕ(x),

where Πα(y,D) is the pseudo-differential operator with the symbol

Πα(y,ξ ) = [−A(ξ )]−α exp(−iαπ− y
√
−A(ξ )), (5.100)

Further, since |exp(−iπα − y
√−A(ξ ))| ≤ 1, then taking into account (5.97), we

have
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‖u(y,x)|Hs+αm‖2 = ‖Πα(y,D)u(y,x)|Hs+αm‖2

≤C
∫
Rn
(1+ |ξ |2)s+αm |F [ϕ ](ξ )|2

|ξ |2αm dξ

=C(
∫
|ξ |≤1

{. . .}dξ +
∫
|ξ |≥1

{. . .}dξ ) = I1 + I2, (5.101)

where I1, I2 are integrals over {|ξ | ≤ 1} and {|ξ | ≥ 1}, respectively. Since 2αm< n,
Theorem 1.24 (see Remark 1.10) implies

I1 ≤CN‖ϕ |Hs‖2
∫
|ξ |≤1

dξ
|ξ |2αm ≤CN‖ϕ |Hs‖2. (5.102)

For the second term in the right-hand side of (5.101) we have the estimate

I2 ≤C
∫
|ξ |≥1

(1+ |ξ |2)s|F[ϕ ](ξ )|2dξ ≤C‖ϕ |Hs‖2. (5.103)

Further, let α > n
2m be an arbitrary number, ϕ ∈ Hs

comp,l(α)(R
n) and suppϕ ⊂ QN .

Then, according to Theorem 1.23, there exists a function v ∈ Hs+l(α) such that
ϕ̂(ξ ) = |ξ |l(α)v̂(ξ ) and ‖v|Hs+l(α)‖ ≤ CN‖ϕ |Hs‖. We note that in this case the
solution of Pα is represented in the form u(y,x) = Π ′

α(y,D)v(x), where Π ′
α(y,D) is

the pseudo-differential operator with the symbol

Πα(y,ξ ) = |ξ |−αm+l(α) exp(−iαπ− y
√
−A(ξ ))

and αm− l(α) < n
2 . So, one can use the same technique used above in the case

0≤ α < n
2m . Hence, we have the estimate

‖u(t,x)|Hs+αm‖ ≤C
′
N‖v|Hs+l(α)‖ ≤C

′′
N‖ϕ |Hs‖,

which, together with (5.102) and (5.103), gives the inclusion (i) in the theorem.
Now we show that the boundary conditions are verified. Indeed,

‖Bαu(y,x)−ϕ(x)Hs‖=‖(exp(−iαπ−y
√

A(−ξ ))−1)|F [ϕ ](ξ )|2(1+|ξ |2)s|L2‖→ 0

as y →+0 according to Lebesgue’s dominated convergence theorem.
Further, let Y > 0 and y ≥ Y . Using again the representation

F[ϕ ](ξ ) = |ξ |l(α)F [v](ξ ), v ∈ Hs+l(α)(Rn),

we obtain
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|u(y,x)|

=

∣∣∣∣
∫
Rn

e−Y
√
−A(ξ ) exp(−i(απ − xξ )− (y−Y)

√
−A(ξ ))

F [v](ξ )
(−A(ξ ))mα−l(α) dξ

∣∣∣∣

≤C‖v|Hs+l(α)‖
⎛
⎝∫
Rn

e−2Y
√
−A(ξ )

|ξ |2mα−2l(α)(1+ |ξ |2)l(α)dξ

⎞
⎠

1
2

≤C‖ϕ |Hs‖ ·Y2mα−2l(α)−n, y ≥ Y, x ∈ R
n.

Since 2mα− 2l(α)< n, letting Y → ∞, one can see that boundary condition (5.96)
is also verified.

Moreover, it is easy to see that Bαu(y,x) = Π0(y,D)ϕ(x), where Π0(y,ξ ) =
exp(−y

√−A(ξ )). Hence, Bαu(y,x) can be represented as a Poisson type integral,
that is Bαu(y,x) =P(y,x)∗ϕ(x), where P(y,x) = F−1[Π0(y,ξ )](x). So, the con-
tinuity property of Bαu(y,x) in the variable y is an implication of the continuity
property of this integral. Further, since , |exp(−y

√−A(ξ ))| ≤ 1, one has

‖Bαu(y,x)|Hs‖= ‖exp(−y
√
−A(ξ ))|F [ϕ ](ξ )|(1+ |ξ |2)s/2|L2‖ ≤C‖ϕ |Hs‖,

proving (ii).
Finally, if y > 0, then

∂ k

∂ykΠα(y,ξ ) = (−1)k[A(ξ )]
k−α

2 exp(−iαπ− y
√

A(−ξ )), k = 1,2, . . . .

Taking into account (5.97) we have

| ∂
k

∂ykΠα(y,ξ )| = O(e−ε|ξ |
m
), |ξ | → ∞

with some ε > 0. This yields the assertion (iii).

The next two assertions follow immediately from Theorem 5.20 and from the
fact that the total number of n-dimensional monomials up to order K is

(K + n− 1)!
(K− 1)!n!

.

Corollary 5.3. For the dimensions of the kernel and co-kernel of the operator
Pα , α ≥ 0, corresponding to the problem Pα the formulas

dimKerPα = 0, dimCo KerPα = N(α) =
(l(α)+ n− 1)!
(l(α)− 1)!n!

hold.
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Corollary 5.4. Let ϕ ∈ C∞
0 (R

n). Then there exists a unique solution u(y,x) of Pα
and for this solution the following inclusions hold true:

(a) u(y,x) ∈C[y≥ 0;C∞(Rn)];
(b) Bαu(y,x) ∈C[y≥ 0;C∞(Rn)];
(c) u(y,x) ∈C∞[y > 0;C∞(Rn)].

Now we consider the problem Pα in the Lizorkin space Φ(Rn). First we prove
the following auxiliary lemma.

Lemma 5.5. For every fixed y ≥ 0 the pseudo-differential operator Πα(y,D) acts
continuously from Φ(Rn) into Φ(Rn).

Proof. Let ϕ ∈ Φ(Rn). We will first show that Πα(y,D)ϕ(x) ∈ Φ(Rn) as well. In-
deed, using the well-known Leibnitz formula, we have

Dγ
ξ [F(Πα(y,D)ϕ(x))] = Dγ

ξ (Πα(y,ξ )F [ϕ ](ξ ))

=∑
β

(
γ
β

)
Dγ−β
ξ Πα(y,ξ )Dβ

ξ F[ϕ ](ξ ),

where F stands for the Fourier transform operator, Dβ
ξ for the derivative with respect

to ξ of the “order” β = (β1, . . . ,βn), and

(
γ
β

)
=

γ!
β !(γ−β )!

, β ! =
n

∏
i=1

βi!.

The function Dθ
ξΠα(y,ξ ) has a singularity of the order αm+ |θ | only at the origin.

Since ϕ ∈Φ(Rn), in accordance with he definition of Φ(Rn) (see Section 1.12), we
have

Dγ
ξ (Πα(y,D)ϕ(x))(0) = 0

for all multi-indices γ . Furthermore, for arbitrary real number l and multi-index γ ,
there exists a real number l1 such that

(1+ |ξ |2)l |Dγ
ξF(Πα(y,D)ϕ(x))| ≤C(1+ |ξ |2)l1 |Dγ

ξ ϕ̂(ξ )|.

This implies the continuity of Πα(y,D).

Theorem 5.21. Let ϕ ∈ Φ(Rn). Then for arbitrary α ≥ 0 there exists a unique so-
lution u(y,x) of Pα and for this solution the following inclusions hold true:

(i) u(y,x) ∈C[y≥ 0;Φ(Rn)];
(ii) Bαu(y,x) ∈C[y ≥ 0;Φ(Rn)];

(iii) u(y,x) ∈C∞[y > 0;Φ(Rn)].

Proof. (i) is a simple consequence of Lemma 5.5. (ii) and (iii) can be proved analo-
gously to Theorem 5.21.
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Theorem 5.22. Let ϕ ∈Φ ′
(Rn). Then the problem Pα has a solution u(y,x) unique

to within an arbitrary additive polynomial, and for this solution the following inclu-
sions hold true:

(a) u(y,x) ∈C[y≥ 0;Φ ′
(Rn)];

(b) Bαu(y,x) ∈C[y≥ 0;Φ ′(Rn)];
(c) u(y,x) ∈C∞[y > 0;Φ ′(Rn)].

The proof of Theorem 5.22 is based on the following lemma.

Lemma 5.6. For every fixed y≥ 0 the pseudo-differential operator Πα(y,−D) with
the symbol defined by (5.100) acts continuously from Φ ′

(Rn) into Φ ′
(Rn).

Proof. Let ϕ ∈Φ ′
(Rn). Then for arbitrary v ∈Φ(Rn) the equality

<Πα(y,−D)ϕ ,v >=< ϕ ,Πα(y,D)v >

holds. In accordance with Lemma 5.5, Πα(y,D)v ∈ Φ(Rn). The continuity of
Πα(y,−D) in Φ ′

(Rn) follows from the continuity of Πα(y,D) in Φ(Rn).

Finally, we solve the problem Pα in the spaces Z±α (±G), which was introduced
in Section 4.6.4 (see Definition 4.3). Recall that ϕ ∈ Z+

α (G), if ϕ ∈ΨG,2(R
n) ≡

ΨG(R
n) and |ξ |−β |F [ϕ ](ξ )| ≤ C < ∞ in the neighborhood of the origin for some

β > α− n/2.

Theorem 5.23. Let ϕ ∈ Z+
mα (G). Then there exists a unique solution u(y,x) of Pα

and this solution has the properties:

(i) u(y,x) ∈C[y≥ 0;ΨG(R
n)];

(ii) Bαu(y,x) ∈C[y ≥ 0;ΨG(R
n)];

(iii) u(y,x) ∈C∞[y > 0;ΨG(R
n)].

The proof of the theorem is based on the following auxiliary result:

Lemma 5.7. For every fixed y≥ 0 and α ≥ 0 the pseudo-differential operator

Πmα(y,D) : Z+
mα(G)→ΨG(R

n) (5.104)

is continuous.

Proof. Let ϕ ∈ Z+
mα(G). We show that Πα(y,D)ϕ belongs to ΨG(R

n). Indeed, by
definition, for ϕ ∈ Z+

mα(G) there exists a number β > mα− n
2 and a constant C > 0

such that
|ξ |−β |F [ϕ ](ξ )| ≤C < ∞

in some neighborhood of the origin. Hence,

|Πα(y,ξ )F [ϕ ](ξ )|= O(|ξ |β−αm), |ξ | → ∞.
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Since mα−β < n
2 , then Πα(y,ξ )ϕ̂(ξ ) ∈ L2(R

n). In accordance with the Plancherel
theorem Πα(y,D)ϕ(x) ∈ L2(R

n). Moreover, suppF[Πα(y,D)ϕ ] ⊂ suppF [ϕ ] ⊂ G.
Thus we have Πα(y,D)ϕ ∈ΨG(Rn).

Now we show the continuity of the mapping (5.104). Let a sequence of functions
ϕk ∈ Z+

mα(G) tend to zero in the topology of Z+
mα(G). This means that there exists a

compact set K ⊂ G and numbers β > mα− n
2 and C > 0 such that:

(i) suppF[ϕk]⊂ K, k = 1,2, . . . ;
(ii) |ξ |−β |F [ϕk](ξ )| ≤C < ∞, k = 1,2, . . . ;

(iii) ‖ϕk‖0 → 0, k → ∞.

Obviously, suppF [Πα(y,D)ϕk]⊂ K for all k = 1,2, . . . . Moreover,

‖Πα(y,D)ϕk(x)‖2
0 = (2π)n

∫
K
|Πα(y,ξ )|2|F [ϕ ](ξ )|2dξ

≤C
∫
|ξ |≤ε

dξ
|ξ |2(mα−β ) +Cε

∫
Rn
|F [ϕk]|2dξ ,

with some positive real numbers ε and Cε . Let δ > 0 be an arbitrarily small number.
Then we can choose ε small enough to ensure that

C
∫
|ξ |≤ε

dξ
|ξ |2(mα−β ) <

δ
2
.

Further, we can take k large enough to ensure that

Cε

∫
Rn
|F [ϕk]|2dξ <

δ
2
.

These inequalities imply ‖Πα(y,D)ϕk‖0 → 0, k → ∞.

Theorem 5.24. Let ϕ ∈Ψ ′
−G(R

n). Then there exists a unique solution u(t,x) of Pα ,
and this solution has the properties:

(a) u(y,x) ∈C[y≥ 0;Z−mα (−G)];
(b) Bαu(y,x) ∈C[y≥ 0;Z−mα(−G)];
(c) u(y,x) ∈C∞[y > 0;Z−mα (−G)].

The proof of this theorem is based on the following lemma:

Lemma 5.8. For every fixed y≥ 0 and α ≥ 0 the pseudo-differential operator

Πα(y,−D) :Ψ
′
−G(R

n)→ Z−mα(−G)

is continuous.

Lemma 5.8 follows from Lemma 5.7. Its proof is analogous to that of Lemma 5.6.

Remark 5.8. The obtained results can be easily extended to the more general Sobolev
spaces Hs

p with arbitrary 1 < p < ∞, Besov or Lizorkin-Triebel type spaces. In the
paper [Uma98] the case m = 1 was considered in these spaces.
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5.9 On fractional derivatives of harmonic functions
with given traces

In Section 4.6.4 we discussed the problem of the existence of a function u(t,x),
harmonic in Rn+1

+ , whose derivative of integer order α ∈ N0 converges to a given
hyperfunction ϕ ∈Ψ ′

2,−G(R
n) in a certain topology. We can extend these results to

arbitrary α ∈ R+ using the theorems established in the previous section.
Assuming m = 1 and A(Dx) = Δ , the Laplace operator, in the problem Pα we

have

(
∂ 2

∂y2 +Δ)u(y,x) = 0, y > 0, x ∈ R
n,

Bαu(0,x) = ϕ(x), lim
y→∞

|u(y,x)|< ∞, x ∈R
n.

A solution u(y,x) of this problem is a harmonic function in Rn+1
+ whose fractional

derivative of order α has a given trace ϕ . The following proposition directly follows
from Theorem 5.23.

Proposition 5.1. Let ϕ ∈ Z+
α (G). Then there exists a function u(y,x), harmonic on

the upper half-space y > 0, x∈R
n, such that limy→+0 Bαu(y,x) = ϕ(x) in the topol-

ogy of the spaceΨG(R
n).

Using this proposition we prove the following theorem on a harmonic function
whose fractional derivative of order α has a given trace in the space Ψ ′

−G(R
n) (a

subclass of hyperfunctions).

Proposition 5.2. Let ϕ ∈Ψ ′
−G(R

n). Then there exists a function u(y,x), harmonic
on the upper half-space y > 0, x ∈ R

n, such that limy→+0 Bαu(y,x) = ϕ(x) in the
topology of the space Z−α (−G).

Proof. Let ϕ ∈Ψ ′
−G(R

n). Then the functional u(y,x) = Πα(y,−D)ϕ(x) is a har-
monic function in the distributional sense. HereΠα(y,−D) is the pseudo-differential
operator with the symbol Πα(y,ξ ) = |ξ |−α exp(−απ− y|ξ |). According to Weyl’s
lemma5, u(y,x) is an ordinary harmonic function. Moreover, due to Lemma 5.8
u(y,x) is an element of Z−α (−G) for any fixed y. Let v be an arbitrary function in
Z+
α (G). We have

< Bαu(y,x)−ϕ(x),v(x)>=< ϕ(x), [BαP(α;y,D)− I]v(x)> .

Due to Proposition 5.1 the right-hand side of the latter tends to 0 as y→ 0, implying
Bαu(y,x)→ ϕ(x) as y→+0.

5 Weyl’s lemma [Hor83] states that a distribution f (x), satisfying the equation Δ f = 0 on an open
set Ω ⊂ R

n in the weak sense, is an ordinary harmonic function.
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5.10 Additional notes

1. Perhaps the first application of fractional integro-differential operators was the Abel’s integral
equation of first kind (with α = 1/2) connected with the famous tautochrone problem (see de-
tails, for instance, in [OS74], pp. 183–186). Abel published his paper in 1826. In this paper
the solution is obtained essentially in the form of the Riemann-Liouville fractional derivative
of order 1/2. We note that Abel also solved the problem in the general case, i.e., for arbitrary
α ∈ (0,1) [A26]. A historical perspective on the fractional calculus in linear viscoelasticity is
given in Mainardi’s book [Mai10]. Recent review paper [RSh10] by Rossikhin and Shitikova
contains the novel trends and recent results in applications of the fractional calculus to solid
mechanics (containing over 300 citations). Seems Gerasimov [Ger48] was first who modeled
movement of a viscous fluid between two moving surfaces using partial differential equations
of fractional order in 1948, though earlier Gemant (1936) and Scott-Blair (1944) used frac-
tional order ODEs (of order 1/2) to analyze experimental results obtained from elasto-viscous
bodies. Oldham and Spanier, in their book [OS74] published in 1974, discussed fractional gen-
eralizations of transport and diffusion equations. Note that in the same year (June, 1974), the
University of New Haven hosted the first international conference on fractional calculus and
its applications. Proceedings of this conference edited by Ross [Ros75] was published in 1975.
Starting from the 1980th applications of fractional calculus to various fields profoundly in-
creased. In particular, Nigmatullin [Nig86] studied anomalous diffusion in a porous media,
Wyss [Wis86] and Schneider and Wyss [SW89] fractional diffusion processes, Fujita [Fuj90]
investigated fractional diffusion-wave processes, Schneider [Sch90] used fractional differen-
tial equations to describe the “grey”-noise. Moreover, applications to cell signaling and protein
movement in cell biology [Sax01, SJ97], bioengineering [Mag06], zoology [ScS01], and to
many other fields have appeared [MK00, MK04, Lim06, LH02, McC96, RSh10]. These in-
vestigations revealed many important intrinsic properties of processes, modeling by fractional
equations, including hereditary properties and memory effects, oscillation-relaxation proper-
ties, connection with Lévy processes and subordinating processes, and many other proper-
ties, which cannot be captured by integer order models. The theoretical background of frac-
tional calculus, its historical development, and various applications can be found in books
[SKM87, OS74, MR93, Pod99, Hil00, Mag06, KST06, Mai10]. In Chapter 7 of this book
we will discuss further applications of fractional models establishing a triple relationship be-
tween fractional Fokker-Planck-Kolmogorov type equations, stochastic differential equations,
and their time-changed driving processes.

2. Diffusion. Diffusive processes can be classified according to the behavior of their mean square
displacement (MSD), MSD(t) = 〈X2

t 〉− 〈Xt 〉2, as a function of time t. If the MSD is linear,
then the process is classified as normal, otherwise anomalous. For many processes, the MSD
satisfies the power-law behavior, MSD(t) ∼ Kβ tβ , t → ∞, where Kβ is a constant. If β = 1
the diffusion is normal, if β > 1 the process is super-diffusive, while if β < 1 the process is
sub-diffusive (see, for instance, [MK00, Zas02]). There are many interesting processes, arising
in physics, cell biology, signaling, etc., which do not have the above-mentioned power-law
behavior. For example, the ultra-slow diffusion processes studied in [CKS03, MS01, Koc08]
have MSD with logarithmic behavior for large t . The MSD of a more complex process with
retardation [CGSG03, CGKS8] behaves like tβ2 for t small, and tβ1 for t large, where β1 < β2.
We will consider models of such processes in Chapter 6.

3. The Cauchy and multi-point problems for fractional differential equations. There is a vast liter-
ature on the Cauchy problem for integer order abstract differential-operator equations. The first
order evolution equations u

′
(t) = Au(t) in the spaces of abstract exponential vector-functions of

a finite type, ExpA(X) (and in more general bornological spaces) were studied in [Rad82]. What
regards to fractional order differential-operator equations, Kochubei [Koc89] studied existence
and uniqueness of a solution to the abstract Cauchy problem Dα∗ u(t) = Au(t), u(0) = u0, with
Caputo-Djrbashian fractional derivative for 0 < α < 1 and a closed operator A with a dense do-
main D(A) in a Banach space. El-Sayed [ES95] and Bazhlekova [Baz01] investigated Cauchy
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problem for 0 < α < 2. In the papers [Koc89] and [Baz98] the necessary and sufficient con-
ditions for solvability of the abstract Cauchy problem in the case 0 < α < 1 were given, by
extending the conditions of the Hille-Yosida theorem from α = 1 to α ∈ (0,1]. Kostin [Kos93]
proved that the abstract initial value problem (Cauchy type problem)

Dαu(t) = Au(t), Dα−ku(0) = ϕk, k = 1, . . . ,m,

where α ∈ (m− 1, m], Dα is the Riemann-Liouville derivative of order α , and A is a linear
closed operator with a dense domain in a Banach space, is well posed. For more information
about recent results on the Cauchy problem for abstract fractional differential-operator equa-
tions, we refer the reader to [Baz01, EK04, KJ11, KMSL13].

4. Fundamental solutions of fractional differential equations. The fundamental solution of the
Cauchy problem for a fractional diffusion-wave equation can be interpreted in terms of Lévy’s
stable probability distribution [SW89, MPG99]. This fact leads to a range of applications of
fractional diffusion-wave equations connected with the description of various stochastic pro-
cesses arising in science and engineering. The explicit formula for the Green function for the
relevant Cauchy problem was given by Mainardi et al. [MPG99]. In the paper [MLP01] the
convergent and asymptotic power series forms of fundamental solutions for space-time frac-
tional differential equations were given. The spatial derivative used in this paper is the Riesz-
Feller fractional derivative with a skewness parameter. In particular, for the density function
f (τ), τ > 0, of Lévy’s stable subordinator the following asymptotic behavior at zero and infin-
ity is obtained (see also [UZ99]):

f (τ)∼ ( βτ )
2−β

2(1−β)√
2πβ (1−β )

e
−(1−β )( τβ )

− β
1−β

, τ→ 0;

f (τ)∼ β
Γ (1−β )τ1+β , τ → ∞.

In the paper [MPG07] fundamental solutions of some DODEs are obtained in the integral form
with the Fox-Wright function involved in the integrand. We note that fundamental solutions
to fractional diffusion-wave equations are closely related to the random walk approximation
models developed in a series of papers by Gorenflo and Mainardi and their collaborators (see,
for example, [GM98-1, GM99, SGM00, GM01, GMM02, GV03, GAR04]). In Chapter 8 we
will discuss random walk approximations of time-changed stochastic processes, generalizing
some of the results obtained in these series of publications.

5. Fractional boundary value problems. As to boundary value problems for partial differen-
tial equations of fractional order in bounded and unbounded domains, there are a lot of
applications including computer tomography, electrodynamics, electro-statics, and elasticity
theory. For mathematical investigations of such problems we refer, for example, to the works
by Päivärinta and Rempel [PR92] and Natterer [Nat86], where the equation Δ±1/2u = f in
two dimensions was studied in domains having piecewise smooth boundaries without sharp
peaks. Boundary value problems for elliptic and fractional differential equations with boundary
operators of fractional order is currently the focus of increasing number of researchers. For in-
stance, in the papers [Nak75, Uma94, TU94, Naz97, Uma98, GLU00a, Goo10, GK10] various
boundary value problems with fractional order boundary operators are studied.

6. Fractional Duhamel principle. The fractional Duhamel principle is established in the papers
[US06, US07] in the case of single time fractional differential equation, and extended for wider
classes of distributed fractional order differential equations in [Uma12]. For various applica-
tions of the fractional Duhamel principle we refer the reader to papers [ZhX11, Sto13, Ibr14,
MN14, KO14, Tat14, WZh14].



Chapter 6
Distributed and variable order
differential-operator equations

6.1 Introduction

In Section 5.6 we studied the existence of a solution to the multi-point value problem
for a fractional order pseudo-differential equation with m fractional derivatives of
the unknown function. This is an example of fractional distributed order differential
equations. Our main purpose in this chapter is the mathematical treatment of bound-
ary value problems for general distributed and variable order fractional differential-
operator equations. We will study the existence and uniqueness of a solution to
initial and multi-point value problems in different function spaces.

In the general setting the distributed time fractional order differential-operator
equation has the form

∫ μ

0
A(r)Dr

∗u(t)Λ(dr) = Bu(t)+ h(t), t > 0, (6.1)

where μ ∈ (m− 1,m], m ∈ N; Λ is a finite Borel measure with suppΛ ⊂ [0,μ ];
A(r) (for a fixed r ∈ (0,μ ]) and B are linear closed operators defined in a certain lo-
cally convex topological vector space X , h(t) ∈C(R+;X); the vector-function u(t)
is unknown and belongs to the space C(m)(0,T ;X) with some T > 0 and Dr∗ is the
operator of fractional differentiation of order r in the sense of Caputo-Djrbashian
(see, Section 3.5). An essential distinctive feature of that model is that integration
in (6.1) is performed by the variable r, the order of differentiation. Such models
arise naturally in the kinetic theory [CGSG03] when the exact scaling is lacking
or in the theory of elasticity [LH02] for description of rheological properties of
composite materials. The list of practical applications where distributed order dif-
ferential equations arise can be continued (see [Cap01, BT00, Lim06, CSK11] and
references therein). Mathematical theory of the Cauchy problem for distributed or-
der differential equations was developed in works [BT00, UG05-2, MS06, Koc08].

The equation (6.1) is a generalization of fractional/non-fractional differential
equations. To illustrate this consider a few examples.

© Springer International Publishing Switzerland 2015
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Example 6.1. 1. Let Λ(dr) = δ (r − β )dr, where δ is the Dirac delta-function
(distribution), A(r) = I, the identity operator, and B = A(D) is a ΨDOSS. Let
X =ΨG,p(R

n) or its dual X =Ψ ′
−G,p′ (R

n). In this case we have the following

fractional differential equation

Dβ
∗ u(t,x) = A(D)u(t,x), t > 0, x ∈ R

n, β > 0,

discussed in Chapter 5.
2. Let Λ(dr) = δ (r−β )dr, β ∈ (0,2], A = I, and B(D) =D

α
0 , 0 < α ≤ 2. Then we

have the space-time fractional differential equation

Dβ
∗ u(t,x) = Dα

0 u(t,x), t > 0, x ∈ R
n,

studied in Section 5.4. As we will see in the next chapter, this equation models
non-Gaussian non-Markovian stochastic processes.

3. The next example relates to sub-diffusion equation with retardation, studied in
[CGSG03]. Let Λ(dr) = [b1δ (r− β1) + b2δ (r− β2)]dr, with 0 < β1 < β2 ≤
1,b1 > 0,b2 > 0,b1 + b2 = 1, A(r) = I and B(D) = k ∂ 2

∂x2 (n = 1). Then we have
the equation

b1Dβ1∗ u(t,x)+ b2Dβ2∗ u(t,x) = k
∂ 2

∂x2 u(t,x),

which describes a subdiffusion process with retardation. In [CGSG03] the Cauchy
problem for the equation

∫ 1

0
τβ−1w(β )

∂β p

∂ tβ
dβ = k

∂ 2 p
∂x2

referred to as the “normal form” of the distributed order fractional diffusion is
also studied. Note that this equation corresponds to the caseΛ(dr) = τr−1w(r)dr

with τ > 0, w(r) > 0, A(r) = I, and B(D) = k ∂ 2

∂x2 .
4. The authors of [LH02] derived the equations of the form

∫ 2

0
k(q)Dqy(t)dq+F(y) = f (t), t > 0,

which describes properties of composite materials. Note that k(q),F(y), and f (t)
are given functions connected with different characteristics of viscoelastic and
viscoinertial materials with rheological properties.

5. Let A(r) = A(r;D)) = ∑m
k=1 δ (r− βk)Ak(D) with k− 1 < βk ≤ k, Ak(D), k =

0, . . . ,m−1, are pseudo-differential operators with symbols Ak(ξ ) continuous in
G, and Λ(dr) = dr. In this case we obtain the equation

Dβm∗ u(t,x)+
m−1

∑
k=1

Ak(D)Dβk∗ u(t,x)+A0(D)u(t,x) = 0, t ∈ (0,T ), x∈R
n, (6.2)
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discussed Section 5.6. In the case βk ∈ N, k = 1, . . . ,m, the Cauchy problem
for this equation with analytic symbols or with symbols having singularities was
studied, for example, by Dubinskij [Dub81], Umarov [Uma86], and Tran Duc
Van [Van89]. Antipko and Borok [AB92], Borok [Bor71], Ptashnik [Pta84], and
Umarov [Uma97, Uma98] (see also references therein) considered multi-point
value problems with integer αk. For fractional αk the Cauchy and multi-point
value problems are studied in [GLU00].

6.2 Distributed order fractional differential-operator equations

In this section we find a representation formula for a solution of the Cauchy problem
for the distributed order differential-operator equation

∫ μ

0
A(r)Dr

∗u(t)Λ(dr) = Bu(t), t > 0, (6.3)

∂ ku(0)
∂ tk = ϕk, k = 0, . . . ,m− 1. (6.4)

To do that we apply a formal operator method. Namely, we assume that A(r) and B
complex-valued function and parameter, respectively. Whenever, a formal represen-
tation is obtained, we give an informal meaning, depending on the problem being
considered.

We split the problem (6.3), (6.4) into m Cauchy problems, one for each index j ∈
{0,1, . . . ,m− 1}, for the same DODE (6.3) with the following Cauchy conditions

u(0) = 0, . . . ,
∂ j−1u(0)
∂ t j−1 = 0,

∂ ju(0)
∂ t j = ϕ j, (6.5)

∂ j+1u(0)
∂ t j+1 = 0, . . . ,

∂m−1u(0)
∂ tm−1 = 0.

If one denotes by u j(t) a solution to (6.3), (6.5) then the general solution to (6.3),
(6.4) due to its linearity, has the form

u(t) =
m−1

∑
j=0

u j(t).

We rewrite the left-hand side of (6.3) in the form

∫ μ

0
A(r)Dr

∗u(t)Λ(dr) =
m

∑
k=1

∫ k

k−1
A(r)Dr

∗u(t)Λ(dr),
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and apply the Laplace transform to both sides. Recall that if k− 1 < r < k, then the
formula (see (3.55))

L[Dr
∗ f (t)](s) = L[ f ](s)sr −

k−1

∑
l=0

f (l)(0)sr−l−1,

holds. Making use of this formula, we have

∫ k

k−1
A(r)L[Dr

∗u](s)Λ(dr) = L[u](s)
∫ k

k−1
srA(r)Λ(dr)

−
k−1

∑
l=0

u(l)(0)
sl+1

∫ k

k−1
srA(r)Λ(dr), (6.6)

where L[u](s) is the Laplace transform of u. Now summing up over the indices
k = 1, . . . ,m in equation (6.6), we obtain the following equation for the Laplace
transform of u :

L[u](s)
∫ μ

0
A(r)srΛ(dr)−

m−1

∑
k=0

ϕk

sk+1

∫ m

k
A(r)srΛ(dr) = BL[u](s). (6.7)

Further, let us introduce the functions Φ0(s), . . . ,Φm(s) by

Φ0(s) = 0; Φ j(s) =
∫ j

0
srA(r)Λ(dr), j = 1, . . . ,m. (6.8)

Then it follows from (6.7) and the hypothesis that only the j-th Cauchy condition
contains nonzero (see (6.5)) right-hand side, that

L[u](s) =
Φm(s)−Φ j(s)

s1+ j[Φm(s)−B]
ϕ j, j = 0, . . . ,m− 1. (6.9)

Now inverting (6.9), we obtain the j-th solution u j(t) = S j(t)ϕ j, through the opera-
tor S j(t), in the form

S j(t) = L−1

[
Φm(s)−Φ j(s)

s1+ j
(
Φm(s)−B

)
]
(t), j = 0, . . . ,m− 1. (6.10)

Example 6.2. 1. Let 0 < α < 1 andΛ(dr) = δα(r)dr. Then Φ0(s) = 0, Φ1(s) = sα .
Hence

S(B;t) = L−1
[

sα−1

sα −B

]
(t) = Eα(Btα).

2. Let 1< μ < 2 and 0< β < 1. SupposeΛ(dr) = [δμ(r)+aδβ (r)]dr, where a > 0.

Then the operator on the left of (6.3) simplifies to Dμ
∗ u(t)+a Dβ

∗ u(t). Moreover,
Φ1(s) = a sβ , Φ2(s) = sμ + asβ . Therefore

S0(B; t) = L−1

[
sμ−1 + asβ−1

sμ + asβ −B

]
(t), S1(B;t) = L−1

[
sμ−1

s(sμ + asβ −B)

]
(t).
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Using the equality

1

sμ + asβ −B
=

∞

∑
n=0

s−βn−β

(sμ−β + a)n+1
(−B)n

and formula (3.118), one can easily find power series representations of S j(B; t),
j = 0,1. Leaving the details to the reader, we give the final forms of these series.
Namely,

S0(B; t) = S∗(B;t)+ atμ−βS∗∗(B;t), S1(B; t) = JS∗(B; t), (6.11)

where

S∗(B;t) =
∞

∑
n=0

(−Btμ)n

n!
E(n)
μ−β , nβ+1(−atμ−β ); (6.12)

S∗∗(B;t) =
∞

∑
n=0

(−Btμ)n

n!
E(n)
μ−β , nβ−β+μ+1(−atμ−β ). (6.13)

Remark 6.1. The operators in (6.10) have informal meaning in concrete situations.
For example, let A(r) = A(r,D) and B = B(D) beΨDOSS with respective symbols
A(r,ξ ) and B(ξ ). We assume that these operators are defined on X =ΨG,p(R

n) (or
on its dual), where G ⊆ Rn is an open set. Let ξ ∈ G be fixed. Denote by s0(ξ ) the
greatest positive root of the equation Φm(s,ξ ) = B(ξ ), where

Φm(s,ξ ) =
∫ m

0
srA(r,ξ )Λ(dr).

If A(r,ξ ) preserves its sign for every 0 < r < m, then it follows from the inequality
sr

1 < sr
2 for 0 < s1 < s2 and r > 0 that Φm(s,ξ ),s > 0, is a monotone function.

Hence, the equation Φm(s,ξ ) = B(ξ ) may have no more than one positive root for
every fixed ξ ∈ G. Thus, the function

Ψj(s,ξ ) =
Φm(s,ξ )−Φ j(s,ξ )
s[Φm(s,ξ )−B(ξ )]

, (6.14)

where

Φ j(s,ξ ) =
∫ j

0
srA(r,ξ )Λ(dr),

is well defined for s > s0(ξ ) if the equation Φm(s,ξ ) = B(ξ ) has a positive root,
or for s > 0 if there is no such a root. Moreover, it is not difficult to verify that the
collection of functions Φ0(s,ξ ), . . . ,Φm−1(s,ξ ) is linearly independent. In this case
the solution operators S j(t,D), j = 0, . . . ,m−1, areΨDOSS, whose symbols are the
Laplace preimages of s− jΨj(s,ξ ), that is

S j(t,D) = J jUj(t,D), j = 0, . . . ,m− 1, (6.15)
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where Uj(t,D), j = 0, . . . ,m− 1, areΨDOSS with symbols

Uj(t,ξ ) = L−1

[
Φm(s,ξ )−Φ j(s,ξ )
s
(
Φm(s,ξ )−B(ξ )

)
]
, j = 0, . . . ,m− 1 (6.16)

and J j is the j-th power of the integration operator with lower limit 0. Using the
theorem on uniqueness of the inverse Laplace transform, we can conclude that the
collection S0(t,ξ ), . . . ,Sm−1(t,ξ ) is linearly independent as well. Thus for u j(t,x)
we get the representation

u j(t,x) = S j(t,D)ϕ j(x),

where S j(t,D) is the pseudo-differential operator with the symbol S j(t,ξ ). Here, for
the solution of (6.3), (6.4) we have the representation

u(t,x) =
m−1

∑
j=0

S j(t,D)ϕ j(x), (6.17)

Now returning to the abstract case we have the representation for the solution

u(t) =
m−1

∑
j=0

S j(t)ϕ j, (6.18)

where S j(t) is defined in (6.10). We note that in the abstract case also we can write
S j(t) = J jUj(t), where

Uj(t) = L−1

[
Φm(s)−Φ j(s)

s
(
Φm(s)−B

)
]
, j = 0, . . . ,m− 1

Remark 6.2. The obtained representation formula is useful both from mathemat-
ical and physics point of views. This representation is obtained as the action of
the operators J jUj(t,ξ ), j = 0, . . . ,m− 1, called j-th solution operator, to the given
functions. These operators have the same structure. The formula (6.18) says that
no matter how many different fractional order derivatives in the sense of Caputo-
Djrbashian are there between two consecutive integers, only the initial data with
integer order derivatives define the solution. Moreover from this formula it can be
derived that if the maximal order of the derivatives in the equation is not greater
than m− 1, then the Cauchy problem with m given data becomes ill-posed. Indeed
if A(r) = δ (r−α),α ≤ m− 1, rewriting (6.14) for j = m− 1 in the form

Ψm−1(s,ξ ) =
∫ m

m−1 srA(r,ξ )dr

s[Φm(s,ξ )−B(ξ )]

we have Sm−1(t,ξ )≡ 0.
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Further, to describe solution spaces of Cauchy problem (6.3)–(6.4) we need to
study properties of symbols of solution operators. Below we establish necessary
properties of symbols of solution operators. Let

Fa(k; f ) :=
∫ a

0
ekt f (t)Λ(dt), k ∈ R, (6.19)

where a is a fixed positive real number, Λ(dt) is a finite measure on the interval
[0,a], and f is a distribution with supp f ⊂ [0,a].

Lemma 6.1. 1. For a regular distribution f (t) with supp f ⊂ [0,μ ], d ≤ a,

|Fa(k; f )| = O(eμk), k → ∞;

2. For a singular generalized function f (t) with supp f = {d}

|Fa(k; f )| = o(e(μ+ε)k), k → ∞;

where ε > 0 is arbitrarily small.

Proof. Let first f ∈ L∞(0,a), | f (t)| ≤M < ∞ and supp f ⊂ [0,μ ]. Then

|Fa(k; f )| = |
∫ μ

0
ekt f (t)dt| ≤MeμtΛ([0,a]) =Cekμ , k → ∞.

For a regular generalized function f with supp f ⊂ [0,μ ] there is a sequence fm ∈
L∞(0,a), all supported in [0,μ ] and with common constant M bounding above, and
such that fm → f ,m→∞ in the weak sense. For fm we have |Fa(k; fm)| ≤Cekμ with
positive constant C. Letting m→ ∞ we obtain the desired result.

If f is a singular generalized function with support supp f = {α},0 < α < a,
then due to Proposition 1.14, f is a finite linear combination of δ ( j)(t−α), where
δ is the Dirac function. Substituting this linear combination to (6.19), one has
|Fa(k; f )| = O(kNeαk) for some N, and hence, |Fa(k; f )| = o(e(α+ε)k) for any ε > 0
as k → ∞.

Lemma 6.2. For Φ j(s), j = 0, . . . ,m, defined in (6.8) the following assertions hold:

1. If A(r) is a regular distribution with suppA(r) ⊂ [0,μ ], then Φ j(s) = O(sν ),
s→ ∞, where ν = min{μ , j};

2. If A(r) is a singular distribution with suppA(r) = {μ}, then Φ j(s) = o(sμ+ε),
where ε is arbitrarily small, s→∞, in the case μ ≤ j and Φ j(s) = 0 when μ > j.

Proof. The function Φ j(s) can be reduced to Fa(k; f ). In fact,

Φ j(s) =
∫ j

0
srA(r)Λ(dr) =

∫ j

0
er lnsA(r)Λ(dr) =: Fj(lns;A(r)), s > σ(B)> 0,

where σ(B) is a positive number depending on the operator B. Now it is an easy
exercise to apply Lemma 6.1 and obtain the asymptotics in cases 1) and 2).
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Corollary 6.1 Let

Ψj(s) =
Φm(s)−Φ j(s)
s[Φm(s)−B]

, j = 0, . . . ,m. (6.20)

ThenΨj(s) = O( 1
s ),s→ ∞, for each j = 0, . . . ,m.

Lemma 6.3. For every j = 0, . . . ,m, and k = 0,1, . . . , j− 1, the equality

Φ(k)
j (s) =

Fj

(
lns; Γ (r+1)rk

Γ (r−k+1)A(r)
)

sk
, s > σ0(B)> 0,

holds.

Proof. Computing first, second, etc. derivatives consecutively, we have

Φ
′
j(s) =

∫ j

0
rsr−1A(r)Λ(dr) =

1
s

∫ j

0
rsrA(r)Λ(dr) =

Fj(lns;rA(r))
s

,

Φ
′′
j (s) =

∫ j

0
r(r− 1)sr−2A(r)Λ(dr) =

1
s2

∫ j

0
r(r− 1)srA(r)Λ(dr)

=
Fj(lns;r(r− 1)A(r))

s2 =
Fj

(
lns; Γ (r+1)

Γ (r−1)A(r)
)

s2 .

Similarly for the k-th derivative,

Φ(k)
j (s) =

∫ j

0
r(r− 1) . . . (r− k+ 1)sr−kA(r)Λ(dr)

=
1
sk

∫ j

0

Γ (r+ 1)
Γ (r− k+ 1)

srA(r)Λ(dr) =
Fj(lns; Γ (r+1)rk

Γ (r−k+1)A(r))

sk .

Corollary 6.2 For j = 0, . . . ,m− 1,Ψ (k)
j (s) = O( 1

sk+1 ),s→ ∞, k = 0, . . . , j− 1.

Lemma 6.4. For Uj(t) = L−1
s→tΨj(s), j = 0, . . . ,m−1, the following assertions hold:

1. Uj(t)→ 1 as t →+0, j = 0, . . . ,m− 1;

2. U (�)
j (t)→ 0 as t →+0, ∀ j = 0, . . . ,m− �− 1, �= 1, . . . ,m− 1.

Proof. It follows from the representation (6.20) forΨj(s) and the fact thatΨj(s) =
O(1/s) for large s (see Corollary 6.1), that Ψj(s) is Laplace invertible. Thus Uj(t)
exists for all j = 0, . . . . . . ,m− 1. Further, we use the following relation [DP65],
[Wid46]

lim
s→∞

sL[ f ](s) = lim
ε→+0

1
ε

∫ ε

0
f (t)dt, (6.21)

which is an implication of tauberian theorems, valid for functions bounded below,
meaning that if one of these limits exists, then the other limit also exists and the
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equality holds. It is easy to see that Corollary 6.1 implies sΨj(s)→ 1, or the same
sL[Uj ](s)→ 1, as s→∞. Hence, due to (6.21), we have U(t) is continuous near zero
and Uj(t)→ 1, as t →+0. Part 1) of the lemma is proved.

Further, the Laplace transform of U
′
j(t) is

L[U
′
](s) = sΨj(s)−Uj(+0) =

Φm(s)−Φ j(s)

Φm(s)−B
− 1 =

−Φ j(s)+B

Φm(s)−B
, s > σ(B),

which is O(1/sμ− j) for large s, where μ = supsuppA(r). Note that μ > m− 1.
Otherwise the Cauchy problem is meaningless (see Remark 6.2). Hence, sL[U

′
](s) =

O(1/sμ− j−1), which due to relation (6.21) implies U
′
j(+0) = 0 if μ− j− 1 > 0, or

for all j = 0, . . . ,m− 2. Thus, we have

U
′
j(+0) = 0, j = 0, . . . ,m− 2.

Similarly, the Laplace transform of U
′′
j (t) is

L[U
′′
](s) = s2Ψj(s)−U

′
j(+0)− sUj(+0) = s [sΨj(s)− 1] = O(

1
sμ− j−1 ), s→ ∞

which implies sL[U
′′
](s) = O(1/sμ− j−2), s → ∞. Hence, due to relation (6.21), we

have U
′′
(+0) = 0 for all j = 0, . . . ,m− 3.

Continuing this process for the Laplace transforms of derivatives U (�)
j (t),

�= 3,4, . . . ,m− 1, by induction we obtain

L[U (�)
j ](s) = sl−1 [sΨj(s)−Uj(+0)] = O(1/sμ− j−l+1), s→ ∞. (6.22)

Consequently, we have sL[U (�)
j ](s) = O(1/sμ− j−l), s → ∞. Using this and rela-

tion (6.21) we obtain 2). The proof is complete.

Lemma 6.4 can be reformulated in the following more convenient form:

Lemma 6.5. For Uj(t) = L−1
s→t [Ψj(s)](t), j = 0, . . . ,m− 1, the following assertions

hold:

1. Uj(t)→ 1 as t →+0, j = 0, . . . ,m− 1;

2. U (�)
j (t)→ 0 as t →+0, ∀ j = 0, . . . ,m− 1, �= 1, . . . ,m− j− 1.

Lemma 6.6. For every j = 0, . . . ,m− 1 the following assertions hold:

1. Uj(t) ∈Cm− j−1[0,∞);
2. If the upper bound of suppA(r) = μ = m, then U (m− j)

j (t), j = 0, . . . ,m−1, exists
for almost all t ∈ (0,∞).

Proof. Proving the previous lemma we have noticed that the Uj(t), j = 0, . . . ,m−1,
exist. Now we will check their differentiability properties. It is known that if for
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given f (t) its Laplace transform L[ f ](s) additionally to (6.21) satisfies the condition
sL[ f ](s)→ 0, when s→∞, then f is a continuous function. This fact directly follows
from the inverse Laplace transform formula. It follows from (6.22) that

sL[U (�)
j ](s) = O(1/sμ−l− j), s→ ∞. (6.23)

Let l = m− j− 1. Then (6.23) takes the form sL[U �
j ](s) = O(1/sμ−m+1), s → ∞.

Hence, sL[U �
j ](s) vanishes as s→ ∞, since μ > m− 1. Thus, U (m− j−1)(t) is contin-

uous on [0,∞). Now assume that μ = m and �= m− j. Then it follows from (6.23)

that L[U (m− j)
j ](s) = O(1/s), as s → ∞, which implies U (m− j)

j (t), j = 0, . . . ,m− 1,
exists for a.e. t ∈ (0,∞).

Remark 6.3. If m− 1 < μ < m one can show that Dμ− j
∗ S j(t,ξ ), j = 0, . . . ,m− 1,

exists and bounded for a.e. t. Compare with Lemma 7 in [GLU00].

Lemma 6.7. For S j(t) = J jUj(t), j = 0, . . . ,m− 1, the following assertions hold:

1. S( j)
j (t)→ 1 as t →+0, j = 0, . . . ,m− 1;

2. S(�)j (t)→ 0 as t →+0, ∀ j, �= 0, . . . ,m− 1, � �= j;

3. S j(t) ∈Cm−1[0,∞).

Proof. Since S( j)
j (t) = Uj(t), the first statement immediately follows from

Lemma 6.5. Further, if 1≤ � < j, then obviously, S�j(t) = J j−�Uj(t)→ 0, as t → 0+ .

If j < �≤m−1, then S�j(t) =U �− j
j (t)→ 0, as t → 0+, due to Part 2 of Lemma 6.5.

Finally, the third statement is a simple implication of Part 1 of Lemma 6.6.

The established properties of solution operators (of course, in the formal level)
play an important role in the description of solution spaces for boundary value prob-
lems (6.3)–(6.4). In particular, these abstract results combined with properties of
ΨDOSS, studied in Chapter 2, can be applied for the Cauchy problem for distributed
order fractional pseudo-differential equations with singular symbols. Consider the
following distributed order time-fractional differential equation with spatial pseudo-
differential operators

∫ m

0
A(r;D)Dr

∗u(t,x)dr = B(D)u(t,x), t > 0, x ∈ R
n, (6.24)

with the Cauchy conditions

∂ ku(0,x)
∂ tk = ϕk(x), x ∈ R

n, k = 0, . . . ,m− 1, (6.25)

where the ϕk, k = 0, . . . ,m−1, are given functions in certain spaces described later,
D = (D1, . . . ,Dn), D j = −i ∂

∂x j
, j = 1, . . . ,n, A(r;D) (for every fixed value of the

parameter r ∈ [0,m]) and B(D) are pseudo-differential operators with the symbols
A(r;ξ ) and B(ξ ) in CSp(G), respectively.
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The following two corollaries, which immediately follow from Lemmas 6.7
and 6.6, will be used in the next section.

Corollary 6.3 For symbols S j(t,ξ ) = J jUj(t,ξ ), j = 0, . . . ,m − 1, of operators
S j(t,D) defined in (6.15), for any fixed ξ ∈G, the following assertions hold:

1. S j(t,ξ )→ 1 for t →+0, j = 0, . . . ,m− 1;

2.
∂ �S j(t,ξ )

∂ t�
→ 0 for t →+0, j, �= 0, . . . ,m− 1, � �= j.

Corollary 6.4 For every j = 0, . . . ,m− 1 the following assertions hold:

1. S j(t,ξ ) ∈Cm−1[t ≥ 0;C(G)];

2. If the upper bound of suppA(r,ξ ) = m, then U (m− j)
j (t,ξ ) exists for almost all

t ∈ (0,∞).

6.3 Solution of the Cauchy problem for distributed order
pseudo-differential equations

In this section we describe solution spaces using the properties of solution opera-
tors and their symbols established in the previous section. Consider the following
Cauchy problem for distributed order fractional differential operator

LΛ [u]≡
∫ μ

0
f (α,A)Dα

∗ u(t)dΛ(α) = B(A)u, t > 0, (6.26)

u(k)(0) = ϕk, k = 0, . . . ,m− 1, (6.27)

where μ ∈ (m− 1,m] and ϕk, k = 0, . . . ,m− 1, are elements of a locally convex
topological vector space ExpA,G(X), defined in Section 2.8. The operator B(A) and
the family of operators f (α,A) are defined through the symbol B(z) and the family
of symbols f (α,z), that are continuous in the variable α ∈ [0,μ ], and analytic in the
variable z ∈ G ⊂ C; see definition in Section 2.8. The operator A is a closed linear
operator in a reflexive Banach space X with a dense domain D(A). The measure Λ
is finite and defined on [0,μ ].

The strong and weak solutions of the Cauchy problem (6.3), (6.4) are understood
in the following sense.

Definition 6.1. A function u(t) is called a strong solution to the Cauchy prob-
lem (6.3), (6.4) if the following conditions are verified:

1. u(t) ∈Cm−1[t ≥ 0;X ];
2. u(m)(t) ∈ X exists for almost all t > 0; and
3. it satisfies the equation (6.3) for almost all t ∈ (0,∞) and initial conditions (6.4)

pointwise.

Definition 6.2. A function u(t) is called a weak solution to the Cauchy prob-
lem (6.3), (6.4) (replacing A by A∗, the adjoint of A) if
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1. u(t) ∈Cm−1[t ≥ 0;X
′
] (X

′
is the dual space to X);

2. u(m)(t) ∈ X
′

for almost all t > 0 and
3. the following equalities hold true for arbitrary v ∈ X

∫ m

0
< Dα

∗ u(t), f (α,A)v >Λ(dα) = < u(t),B(A)v >,

for almost all t ∈ (0,∞) and

limt→+0 < u(k)(t),v > = < ϕk,v >, k = 0, . . . ,m− 1.

Theorem 6.5. Let G be a domain of continuity of the symbols A(r,z) (r fixed) and
B(z). Let ϕ j ∈ ExpA,G(X), j = 0, . . . ,m−1. Then the Cauchy problem (6.26), (6.27)
has a unique strong solution. This solution is given by the following representation
(cf. (6.18))

u(t) =
m−1

∑
j=0

S j(t,A)ϕ j, (6.28)

where S j(t,A) is the operator with the symbol S j(t,z) = J jUj(t,z), Uj(t,z) =
L−1

s→t [Ψj(s,z)](t), andΨj(s,z), j = 0, . . . ,m− 1, are defined in (6.14).

Proof. Let G ⊂ C be a domain of continuity of the symbols A(r,z) and B(z) and
ϕ j ∈ X , j = 0, . . . ,m− 1. By construction of the representation (6.28) each of its
term satisfies the equation (6.26) and, by virtue of Corollary 6.3 (part 1), the
conditions (6.27). Moreover, due to Corollary 6.4, for every j = 0, . . . ,m− 1, the
inclusion J jUj(t,z) ∈Cm−1(t ≥ 0;C(G)) holds and Dd∗J jUj(t,z) is bounded for al-
most every t ∈ (0,∞). Lemma 2.3 in Section 2.8 yields J jUj(t,A)ϕ j ∈ ExpA,G(X),

j = 0, . . . ,m− 1, for every fixed t > 0. Hence, u(t,x) ∈ Cm−1[t ≥ 0;ExpA,G(X)],
and u(t,x) is a strong solution of the Cauchy problem (6.26), (6.27). Its unique-
ness follows from the representation formula (6.28) and the ExpA,G(X)-continuity
of operators S j(t,A) with continuous symbols S j(t,z) = J jUj(t,z) (see Lemma 2.3).

Theorem 6.6. Let ϕ j ∈ Exp
′
A∗,G∗(X

∗), j = 0, . . . ,m− 1. Then the Cauchy prob-
lem (6.26)–(6.27) has a unique weak solution. This solution is given by

u(t,x) =
m−1

∑
j=0

Sw
j (t,A

∗)ϕ j , (6.29)

where Sw
j (t,A

∗), j = 1, . . . ,m, is the j-th solution operator with the symbol S j(t,z).

Proof. Let ϕ j ∈Ψ ′
−G,q(R

n), j = 0, . . . ,m− 1. It follows from Lemma 2.3 that ev-

ery term on the right-hand side of (6.29), namely, u j(t) = J jSw
j (t,A

∗)ϕk−1, j =

0, . . . ,m− 1, is a functional from the space Exp
′
A∗,G∗(X

∗). To prove the theorem we
have to show that u j(t), j = 0, . . . ,m− 1, satisfies the equation (6.26) and the ini-
tial conditions (6.27) in the weak sense. Let v ∈ ExpA,G(X) be an arbitrary element.
Then for u j(t) = J jSw

j (t,A
∗)ϕ j we have
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∫ μ

0
< Dα

∗ u j(t), f (α,A)v >Λ(dα) − < u j(t),B(A)v >

= <

∫ μ

0
Dα
∗ Sw

j (t,A
∗)ϕ j ,A(α,A)v >Λ(dα) − < Sw

j (t,A
∗)ϕ j,B(A)v >

= < ϕ j,

[∫ μ

0
Dα
∗ A(α,A)S j(t,A)Λ(dα) −B(A)S j(t,A)

]
v > . (6.30)

Since, by construction, S j(t,A) for each j = 0, . . . ,m− 1, satisfies equation (6.26),
we conclude that the expression in the square brackets on the right of equation (6.30)
is zero for a. e. t ∈ (0,∞). Moreover, Corollary 6.3 yields

lim
t→+0

< u(k)j (t),v > = < δ j,kϕk,v >, j,k = 0, . . . ,m− 1.

Hence, u(t) defined by (6.29) satisfies Cauchy problem (6.26)-(6.27) in the weak
sense.

The following two theorems follow immediately from Theorems 6.5 and 6.6,
respectively.

Theorem 6.7. Let G be a domain of continuity of the symbols A(r,ξ ) (r fixed) and
B(ξ ). Let ϕ j ∈ΨG,p(R

n), j = 0, . . . ,m− 1. Then the Cauchy problem (6.24)-(6.25)
has a unique strong solution. This solution is given by the representation (6.17).

Theorem 6.8. Let ϕ j ∈ Ψ ′
−G,q(R

n), j = 0, . . . ,m− 1. Then the Cauchy problem
(6.24)-(6.25) has a unique weak solution. This solution is given by

u(t,x) =
m−1

∑
j=0

S j(t,−D)ϕ j(x),

where S j(t,−D), j = 1, . . . ,m, is the j-th solution operator with the symbol S j(t,ξ )
= J jUj(t,ξ ) defined in equations(6.15) and (6.16).

6.4 Abstract Duhamel principle for DODE with fractional
Caputo-Djrbashian derivative

Let X be a reflexive Banach space and A : D → X be a closed linear operator with a
domain D ⊂ X . In Section 2.8 we introduced a Frechét type topological vector space
ExpA,G(X) and its dual, where G is an open subset of the complex plain C. We also
introduced a functional calculus f (A), where f is an analytic function defined on G.
The function f is called the symbol of the operator f (A).

The goal of this section is to generalize the Duhamel principle for the Cauchy
problem for general inhomogeneous fractional distributed order differential-operator
equations of the form
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LΛ [u]≡
∫ μ

0
f (α,A)Dα

∗ u(t)dΛ(α) = B(A)u(t)+ h(t), t > 0,

u(k)(0) = ϕk, k = 0, . . . ,m− 1,

where μ ∈ (m− 1,m] and h(t) and ϕk, k = 0, . . . ,m− 1, are given X-valued vector-
functions. The family of operators f (α,A) is defined through the family of symbols
f (α,z) that are continuous in the variable α ∈ [0,μ ], and analytic in the variable
z ∈ G⊂ C. The measure Λ is defined on [0,μ ], and such that the DODO LΛ is well
defined (see, Section 3.11). The integrals are understood in the sense of Bochner if
the integrand is a vector-function with values in some topological-vector space.

Let Λ = δμ +λ , where μ is a number such that m−1 < μ < m, and λ is a finite
measure with suppλ ⊂ [0,m− 1]. Consider the operator

τL(μ,λ )[u](t)≡ τDμ
∗ u(t)+

∫ m−1

0
f (α,A) τDα

∗ u(t)λ (dα), (6.31)

acting on m-times differentiable vector-functions u(t), t ≥ τ ≥ 0. If τ = 0, then
instead of 0L(μ,λ )[u](t) we write L(μ,λ )[u](t).

Consider the Cauchy problem for the inhomogeneous equation

L(μ,λ )[u](t) = h(t), t > 0, (6.32)

with the homogeneous Cauchy conditions

u(k)(0) = 0, k = 0, . . . ,m− 1. (6.33)

The fractional Duhamel principle establishes a connection between the solutions of
this problem and the Cauchy problem for the homogeneous equation

τL(μ,λ )[V (·,τ)](t) = 0, t > τ, (6.34)

∂ kV
∂ tk (t,τ)|t=τ+0 = 0, k = 0, . . . ,m− 2, (6.35)

∂m−1V
∂ tm−1 (t,τ)|t=τ+0 = Dm−μ

+ h(τ), (6.36)

where h(t) is a given vector-function and Dγ
+ is the Riemann-Liouville fractional

derivative of order γ. In Theorem 6.9 we assume that the vector-functions h(t), t≥ 0,
and V (t,τ), t ≥ τ ≥ 0, are ExpAλ ,G

(X)-, or Exp
′
A∗,G∗(X

∗)-valued, h(t) is differ-
entiable, V (t,τ) is an m times differentiable with respect to the variable t, and

the derivatives ∂ jV (t,τ)
∂ t j , 0 ≤ j ≤ k− 1, are jointly continuous in the topology of

ExpAλ ,G
(X), or of Exp

′
A∗,G∗(X

∗), respectively.
We start with the following lemma proved in Section 3.3, Example 3.6.

Lemma 6.8. Let h(t) be a continuously differentiable function for all 0≤ t < T < ∞.
Then the equation Jαu(t) = h(t), 0 < t < T, where 0 < α < 1, has a unique contin-
uous solution given by the formula

u(t) = Dα
+h(t), 0 < t < T. (6.37)
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Lemma 6.8 is essentially the well-known result on a solution of Abel’s integral
equation of first kind. Tonelli [Ton28] sowed that if h is absolutely continuous on
[0,T ], then a unique solution to Jαu(t) = h(t) is given by (6.37) and u ∈ L1(0,T ).
If h is in a Hölder class Cγ [0,T ], α < γ < 1, then u ∈Cβ [0,T ] for some β < γ−α.
See [GV91, SKM87] for further details.

Theorem 6.9. Suppose that V (t,τ) is a solution of the Cauchy problem (6.34)–
(6.36). Then Duhamel’s integral

u(t) =
∫ t

0
V (t,τ)dτ (6.38)

solves the Cauchy problem (6.32), (6.33).

Proof. First notice that since m−1< μ <m, or 0 <m−μ < 1, due to Lemma 6.8,
the equation Jm−μg(t) = h(t) has a unique solution

g(t) = Dm−μ
+ h(t). (6.39)

Let V (t,τ) as a function of the variable t be a solution to Cauchy problem (6.34)-
(6.36) for any fixed τ. We verify that u(t) =

∫ t
0 V (t,τ)dτ satisfies equation (6.32),

and conditions (6.33). Splitting the interval (0,m− 1] into subintervals [0,1], (1,2],
. . . ,(m− 2,m− 1], we have

L(μ,λ )[u](t) = Dμ
∗ u(t)+

m−1

∑
k=1

∫
(k−1,k]

f (α,A)Dα
∗ u(t)λ (dα). (6.40)

For α ∈ (k− 1,k), k = 1, . . . ,m− 1, using Definition (3.3) of Dα∗ , we have

Dα
∗ u(t) =

1
Γ (k−α)

∫ t

0
(t− s)k−α−1 dk

dsk

∫ s

0
V (s,τ)dτds.

Lemma 4.4 and conditions (6.35) imply that

dk

dsk

∫ s

0
V (s,τ)dτ =

∫ s

0

∂ k

∂ sk V (s,τ)dτ, k = 1, . . . ,m− 1. (6.41)

Hence,

Dα
∗ u(t) =

∫ t

0

1
Γ (k−α)

∫ t

τ
(t− s)k−α−1 ∂ k

∂ sk V (s,τ)dsdτ. (6.42)

Again due to Lemma 4.4 and condition (6.36),

dm

dsm

∫ s

0
V (s,τ)dτ =

∂m−1

∂ sm−1 V (s,τ)|τ=s
+

∫ s

0

∂m

∂ sm V (s,τ)dτ

= Dm−μ
+ h(s)+

∫ s

0

∂m

∂ sm V (s,τ)dτ.
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Therefore the first term on the right-hand side of (6.40) takes the form

Dμ
∗ u(t) =

1
Γ (m− μ)

∫ t

0
(t− s)m−μ−1 dm

dsm

∫ s

0
V (s,τ)dτds

=
1

Γ (m− μ)

∫ t

0
(t− s)m−μ−1

(
Dm−μ
+ h(s)+

∫ s

0

∂m

∂ sm V (s,τ)dτ
)

ds. (6.43)

Furthermore, by virtue of (6.39),

1
Γ (m− μ)

∫ t

0
(t− s)m−μ−1Dm−μ

+ h(s) = Jm−μDm−μ
+ h(t) = h(t). (6.44)

Now equations (6.40), (6.42), (6.43), and (6.44) imply that

L(μ,λ )[u](t) = h(t)+
1

Γ (m− μ)

∫ t

0
(t− s)m−μ−1

∫ s

0

∂m

∂ sm V (s,τ)dτ ds

+
m−1

∑
k=1

∫ k

k−1
f (α,A)

1
Γ (k−α)

∫ t

0
(t− s)k−α−1

∫ s

0

∂ k

∂ sk V (s,τ)dτ dsλ (dα).

(6.45)

Changing the order of integration (Fubini is allowed) in (6.45) we get

L(μ,λ )[u](t) = h(t)+
∫ t

0

∫ t

τ

1
Γ (m− μ)

(t− s)m−μ−1 ∂m

∂ sm V (s,τ)dsdτ

+
m−1

∑
k=1

∫ t

0

∫ k

k−1
f (α,A)

∫ t

τ

1
Γ (k−α)

(t− s)k−α−1 ∂ k

∂ sk V (s,τ)dsλ (dα)dτ

= h(t)+
∫ t

0
τDαm∗ V (t,τ)dτ +

∫ t

0

∫ m−1

0
f (α,A) τDα

∗V (t,τ)λ (dα)dτ

= h(t)+
∫ t

0
τL(μ,λ )[V (·,τ)](t)dτ = h(t).

Finally, using the relations (6.41) it is not hard to verify that u(t) in (6.38) satisfies
initial conditions (6.33) as well.

If the vector-function h satisfies the additional condition h(0) = 0 then condi-
tion (6.36), in accordance with the relationship (7.41), can be replaced by

∂m−1V
∂ tm−1 (t,τ)|t=τ = Dm−μ

∗ h(τ),

with the Caputo-Djrbashian derivative Dm−μ
∗ of order m−μ . As a consequence the

formulation of the fractional Duhamel principle takes the form:

Theorem 6.10. Suppose that for all τ : 0 < τ < t a function V (t,τ), is a solution to
the Cauchy problem for the homogeneous equation
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τL(μ,λ )[V (·,τ)](t) = 0, t > τ,
∂ kV
∂ tk (t,τ)|t=τ+0 = 0, k = 0, . . . ,m− 2,

∂m−1V
∂ tm−1 (t,τ)|t=τ+0 = Dm−μ

∗ h(τ),

where h(t) is a given differentiable vector-function such that h(0) = 0. Then
Duhamel’s integral u(t) =

∫ t
0 V (t,τ)dτ solves the Cauchy problem for the inhomo-

geneous equation (6.32), (6.33).

Remark 6.4. In Theorems 6.9 and 6.10 we assumed that f (μ ,A) is the identity oper-
ator (see equation (6.31)). In the general case, with appropriate selection of G, we
can assume that the inverse operator [ f (μ ,A)]−1 exists. Then with the condition

∂m−1V (t,τ)
∂ tm−1

∣∣
t=τ+ = [ f (μ ,A)]−1Dm−μ

+ h(τ)

instead of (6.36), Theorems 6.9 and 6.10 remain valid.

6.5 Abstract Duhamel principle for DODE with fractional
Riemann-Liouville derivative

The operator τLΛ in Theorem 6.9 is defined via the fractional derivative in the
sense of Caputo-Djrbashian. A fractional generalization of the Duhamel princi-
ple is also possible when this operator is defined via the Riemann-Liouville frac-
tional derivative. In this section we prove the fractional Duhamel principle in
the case Λ(dα) = [δμ(α) +∑m−1

k=1 δμ−k(α)]dα, where m− 1 < μ ≤ m. Namely,
consider the following Cauchy type problem for a nonhomogeneous differential-
operator equation

LΛ+[u] = Dμu(t)+
m−1

∑
k=1

BkDμ−ku(t)+B0u(t) = h(t), t > 0, (6.46)

Dμ− ju(t)|t=0+
= 0, j = 1, . . . ,m− 1, (6.47)

Jm−μu(t)|t=0+
= 0. (6.48)

where Bk, k = 0, . . . ,m− 1, are linear closed operators independent of the variable
t, and with domains dense in X .

The following lemma will be used in the proof of the Duhamel principle for
Cauchy type problem (6.46)–(6.48).
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Lemma 6.9. Suppose V (t,τ) is a X-valued function defined for all t ≥ τ ≥ 0 and
jointly continuous in the X-norm. Then for any β > 0 the equality

Jβ
(∫ t

0
V (t,τ)dτ

)
=

∫ t

0
τJβt V (t,τ)dτ

holds.

Proof. We have

Jβ
(∫ t

0
V (t,τ)dτ

)
=

1
Γ (β )

∫ t

0
(t− s)β−1

(∫ t

0
V (t,τ)dτ

)
ds

=
1

Γ (β )

∫ t

0

∫ t

τ
(t− s)β−1V (t,τ)dsdτ

=

∫ t

0

(
1

Γ (β )

∫ t

τ
(t− s)β−1V (s,τ)ds

)
dτ

=
∫ t

0
τJβt V (t,τ)dτ.

Theorem 6.11. Suppose that V (t,τ) is a solution of the following Cauchy type
problem:

τLΛ+[V (t,τ)] = τDμ
t V (t,τ)+

m−1

∑
k=1

Bk τDμ−k
t V (t,τ)+B0V (t,τ) = 0, t > τ,

(6.49)

τDμ−1
t V (t,τ)|t=τ+ = h(τ), (6.50)

τDμ− j
t V (t,τ)|t=τ+ = 0, j = 2, . . . ,m− 1, (6.51)

τJm−μ
t V (t,τ)|t=τ+ = 0. (6.52)

Then the Duhamel integral

u(t) =
∫ t

0
V (t,τ)dτ (6.53)

solves the Cauchy type problem (6.46)–(6.48).

Proof. Let V (t,τ) as a function of the variable t be a solution to Cauchy type prob-
lem (6.49)-(6.52) for any fixed τ. We show that u(t) =

∫ t
0 V (t,τ)dτ satisfies equa-

tion (6.46), and conditions (6.47) and (6.48). We set α = μ− k, k = 0,1, . . . ,m− 1.
Then m− k − 1 < α < m− k. Using the definition Dα = DkJk−α of Dα , and
Lemma 6.9, we have

Dαu(t) = Dm−kJm−k−α
(∫ s

0
V (s,τ)dτ

)
=

dm−k

dtm−k

∫ t

0
τJm−k−α

t V (t,τ)dτ. (6.54)
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For a solution V (t,τ) of problem (6.49)-(6.52) the function τJk−α
t V (t,τ) satisfies

the conditions of Lemma 4.4. Using Lemma 4.4, we have

dm−k

dtm−k

∫ t

0
τJm−k−α

t V (t,τ)dτ =
m−k−1

∑
j=0

d j

dt j

[
∂m−k−1− j

∂ tm−k−1− j τJm−k−α
t V (t,τ)|τ=t

]

+

∫ t

0

∂m−k

∂ tm−k τJm−k−α
t V (t,τ)dτ. (6.55)

Conditions (6.51) and (6.52) imply that for all k = 1, . . . ,m− 1

∂m−k−1− j

∂ tm−k−1− j τJm−k−α
t V (t,τ)|τ=t = 0, j = 0, . . . ,k− 1. (6.56)

Indeed, since α ∈ (m− k− 1,m− k), we have 0 < m− k−α < 1. Therefore,

∂m−k−1− j

∂ tm−k−1− j τJm−k−α
t V (t,τ)|τ=t = Dm−k− j−1

τJm−k− j−1−(α− j−1)
t V (t,τ)|τ=t

= τDα− j−1
t V (t,τ)|τ=t = τDμ−k− j−1

t V (t,τ)|τ=t = 0. (6.57)

The special case is k = 0. In this case, when j = 0, in equation (6.56) due to condi-
tion (6.50) we have

∂m−1

∂ tm−1 τJm−α
t V (t,τ)|τ=t = Dm−1

τJm−1−(μ−1)
t V (t,τ)|τ=t τ

=τ Dμ−1
t V (t,τ)|τ=t = h(t). (6.58)

Taking into account (6.57) and (6.58), it follows from (6.54) and (6.55) that

Dμ−ku(t) =
∫ t

0
τDμ−k

t V (t,τ)dτ, k = 1, . . . ,m− 1, (6.59)

Dμu(t) =
∫ t

0
τDμ

t V (t,τ)dτ + h(t). (6.60)

Substituting (6.59) and (6.60) into equation (6.46), we have

LΛ+[u] = h(t)+
∫ t

0
τLΛ+[V (t,τ)]dτ = h(t).

Thus, the Duhamel integral u(t) in (6.53) satisfies equation (6.46). Finally, letting
t → 0+ in (6.59) one can see that u(t) satisfies initial conditions (6.47). Evidently,
u(t) satisfies condition (6.48), as well.
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Corollary 6.1. Suppose that V (t,τ) is a solution of the following Cauchy type
problem:

τDμ
t V (t,τ)+B0V (t,τ) = 0, t > τ,

τDμ−1
t V (t,τ)|t=τ+ = h(τ),

τDμ− j
t V (t,τ)|t=τ+ = 0, j = 2, . . . ,m− 1,

τJm−μ
t V (t,τ)|t=τ+ = 0.

Then the Duhamel integral

u(t) =
∫ t

0
V (t,τ)dτ

solves the Cauchy type problem

Dμu(t)+B0u(t) = h(t), t > 0,

Dμ−1u(t)|t=0+
= 0,

Dμ− ju(t)|t=0+
= 0, j = 2, . . . ,m− 1,

Jm−μu(t)|t=0+
= 0.

Remark 6.5. Theorem 6.11 represents a fractional generalization of the Duhamel
principle for integer order differential-operator equations proved in Theorem 4.12
in Section 4.7, recovering it in the case μ = m.

6.6 Applications of the fractional Duhamel principles

Theorems 6.9, 6.10, and 6.11 can be applied to general boundary value problems
for distributed order differential equations, in terms of analysis of the existence
and uniqueness of a solution. Below we demonstrate this in two different cases,
namely in the case of an abstract Cauchy problem for DODEs determined by the
Caputo-Djrbashian derivative, and in the case of a Cauchy type problem for DODEs
determined by the Riemann-Liouville derivative.

Case I. Let LΛ be the distributed fractional order abstract differential operator
defined in (6.31), that is

τL(μ,λ )[u](t)≡ τDμ
∗ u(t)+

∫ m−1

0
f (α,A) τDα

∗ u(t)λ (dα),

with the lower endpoint of the time interval τ = 0. The characteristic function of
this operator is

Δ(s,z) = sμ +
∫ m−1

0
f (α,z)sαdλ ,
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where μ is a fixed number in the interval (m− 1,m], λ is a finite measure with
suppλ ⊂ [0,m− 1], and f (α,z) is a function continuous in α and analytic in z ∈
G ⊂ C. Denote by ṽ(s) =L [v](s), the Laplace transform of a vector-function v(t),
namely

L [v](s) =
∫ ∞

0
e−stv(t)dt, s > s0,

where s0 ≥ 0 is a real number. It is not hard to verify that if v(t) ∈ ExpA,G(X) for
each t ≥ 0 and satisfies the condition ‖v(t)‖ ≤ Ceγt , t ≥ 0, with some constants
C > 0 and γ , then ṽ(s) exists and the inequality

‖Akṽ(s)‖ ≤ Cs

s− γ
νk, s > γ,

holds, implying ṽ(s) ∈ ExpA,G(X) for each fixed s > γ. The lemma below gives a
formal representation formula for a solution of the general abstract Cauchy problem

LΛ [u](t) = h(t), t > 0, (6.61)

u(k)(0+) = ϕk, k = 0, . . . ,m− 1. (6.62)

Let δ j,k denote the Kronecker delta, that is δ j,k = 1 if j = k, and δ j,k = 0, if j �= k.

Lemma 6.10. Let cβ (t,z) =L −1[ sβ

Δ (s,z) ](t), z ∈ G ⊂ C, where L −1 stands for the
inverse Laplace transform, and

Sk(t,z) = cμ−k−1(t,z)+
∫ m−1

k
f (α,z)cα−k−1(t,z)λ (dα), k = 0, . . . ,m− 1. (6.63)

Then Sk(t,A)ϕk solves the Cauchy problem

LΛ [u] = 0, u( j)(0) = δ j,kϕ j, j = 0, . . . ,m− 1.

Proof. Applying formula (3.55) we have

L̃Λ [u](s) = sμ ũ(s)−
m−1

∑
i=0

ui(0)sμ−i−1

+
m−1

∑
k=1

∫ k

k−1
f (α,A)(sα ũ(s)−

k−1

∑
j=0

u j(0)sα− j−1)λ (dα) = 0.

Due to the initial conditions u j(0) = δ j,kϕ j, j = 0, . . . ,m− 1, the latter reduces to

Δ(s,z)ũ(s) = ϕk

(
sμ−k−1 +

∫ m−1

k
f (α,z)sα−k−1λ (dα)

)
.

Now it is easy to see that the solution in this case is represented as uk = Sk(t,A)ϕk,
k = 0, . . . ,m− 1.
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Corollary 6.12 Let Sk(t,A),k = 0, . . . ,m−1, be the collection of solution operators
with the symbols Sk(t,z) defined in Lemma 6.10. Then the solution of the Cauchy
problem

LΛ [u] = 0, u( j)(0) = ϕ j, j = 0, . . . ,m− 1. (6.64)

is given by the following representation formula

u(t) =
m−1

∑
k=0

Sk(t,A)ϕk.

Remark 6.6. 1. Corollary 6.12 can easily be extended to the operator τLΛ in (6.64)
as well with the initial conditions u j(τ) = ϕ j, j = 0, . . . ,m− 1. In this case
the symbols of solution operators depend on τ and have the form Sk(t,τ,z) =
Sk(t− τ,z),k = 0, . . . ,m− 1, where Sk(t,z) is defined in (6.63).

2. A particular case of Lemma 6.10 when Λ = ∑m
k=0 δαk

, k− 1 < αk < k, is proved
in [GLU00].

A vector-function u(t)∈C(m)[t > 0; ExpA,G(X)] ∩C(m−1)[t ≥ 0; ExpA,G(X)] is
called a solution of the problem (6.61), (6.62) if it satisfies the equation (6.61) and
the initial conditions (6.62) in the topology of ExpA,G(X).

Theorem 6.9 and Corollary 6.12 imply the following results.

Theorem 6.13. Let ϕk ∈ExpA,G(X), k = 0, . . . ,m−1, and for any T > 0 the vector-
function h(t) ∈ AC[0≤ t ≤ T ; ExpA,G(X)]. Then the Cauchy problem (6.61), (6.62)
has a unique solution. This solution is given by

u(t) =
m−1

∑
k=0

Sk(t,A)ϕk +

∫ t

0
Sm−1(t− τ,A)Dm−μ

+ h(τ)dτ. (6.65)

Proof. We split the Cauchy problem (6.61),(6.62) into two Cauchy problems

LΛ [U ](t) = 0, t > 0, (6.66)

U (k)(0+) = ϕk, k = 0, . . . ,m− 1, (6.67)

and

LΛ [v](t) = h(t), t > 0, (6.68)

v(k)(0+) = 0, k = 0, . . . ,m− 1. (6.69)

Due to Corollary 6.12 the unique solution to (6.66),(6.67) is given by

U(t) =
m−1

∑
k=0

Sk(t,A)ϕk. (6.70)
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Lemma 2.3 implies that U(t) ∈ Cm[t > 0; ExpA,G(X)]. For the Cauchy
problem (6.68)–(6.69), in accordance with the fractional Duhamel’s principle
(Theorem 6.9), it suffices to solve the Cauchy problem for the homogeneous
equation:

τLΛ [V (t,τ)](t) = 0, t > τ,
∂ kV (t,τ)

∂ tk
∣∣t=τ+ = 0, k = 0, . . . ,m− 2,

∂m−1V (t,τ)
∂ tm−1

∣∣t=τ+ = Dm−μ
+ h(τ).

The solution of this problem, again using Corollary 6.12 (with the note in Remark
6.6), has the representation

V (t,τ) = Sm−1(t− τ,A)Dm−μ
+ h(τ).

Again it follows from Lemma 2.3 that V (t,τ) ∈Cm[t > τ; ExpA,G(X)] for all τ ≥ 0,
as well as its Duhamel integral. Thus, the Duhamel integral of V (t,τ) and represen-
tation (6.70) lead to formula (6.65). The uniqueness of a solution also follows from
the obtained representation (6.65).

By duality we immediately obtain the following theorem.

Theorem 6.14. Let ϕ∗k ∈Exp
′
A∗,G∗(X

∗), k = 0, . . . , m−1, and the vector-functional

h∗(t) ∈ AC[t ≤ t ≤ T ; Exp
′
A∗,G∗(X

∗)]. Assume also that ExpA,G(X) is dense in X .
Then the Cauchy problem (6.61), (6.62) (with A switched to A∗) is meaningful and
has a unique weak solution. This solution is given by

u∗(t) =
m−1

∑
k=0

Sk(t,A
∗)ϕ∗k +

∫ t

0
Sm−1(t− τ,A∗)Dm−μ

+ h∗(τ)dτ.

Assume that ExpA,G(X) is densely embedded into X . Besides, let the solution
operators Sk(t,A) for each k = 0, . . . ,m− 1, satisfy the estimates

‖Sk(t,A)ϕ‖ ≤C‖ϕ‖, ∀ t ∈ [0,T ], (6.71)

where ϕ ∈ ExpA,G(X), and C > 0 does not depend on ϕ . Then there exists a unique
closure S̄k(t) to X of the operator Sk(t,A) which satisfies the estimate ‖S̄k(t)u‖ ≤
C‖u‖ for all u ∈ X . Using the standard technique of closure (see Section 2.3), we
can prove the following theorem.

Theorem 6.15. Let ϕk ∈ X, k = 0, . . . ,m− 1, h(t) ∈ AC[0 ≤ t ≤ T ; X ] for any
T > 0, and Dm−μ

+ h(t) ∈ C[0 ≤ t ≤ T ; X ]. Further let ExpA,G(X) be densely
embedded into X , and the estimates (6.71) hold for solution operators Sk(t,A),
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k = 0, . . . ,m− 1. Then the Cauchy problem (6.61), (6.62) has a unique solution
u(t) ∈Cm[0 < t ≤ T ;X ]. This solution is given by

u(t) =
m−1

∑
k=0

S̄k(t)ϕk +

∫ t

0
S̄m−1(t− τ)Dm−μ

+ h(τ)dτ.

Case II. Consider the following Cauchy type problem

D3/2u(t)+ bD1/2u(t)+Au(t) = h(t), t > 0, (6.72)

(D1/2u)(0+) = ϕ1 (6.73)

(J1/2u)(0+) = ϕ2. (6.74)

where b ∈ R, Dα is the Riemann-Liouville derivative of order α, and A is a closed
operator defined on a Hilbert space H , has a discrete spectrum λ1,λ2, . . . , with
corresponding eigenvectors φ1,φ2, . . . , which form a base in H . We assume that
ϕk ∈ ExpA,G(X), k = 1,2, and h(t) ∈C[t ≥ 0;ExpA,G(X)], where G ⊆ R

n.

Remark 6.7. Equation (6.72) belongs to the family of fractional differential equa-
tions (also interpreted as a fractional diffusion-wave equation)

aDαu(t)+ bDβu(t)+Au(t) = f (t),

where 0 < β ≤ 1 < α ≤ 2, a and b are constants, and A is a linear operator. The
case α = 2, β = 1/2, and A ≡ d4/dx4 is studied by Agraval [Agr04], and the case
α = 2, β = 3/2, and A is constant, by Bagley and Torvik in [BT00].

Let us first solve the Cauchy type problem for homogeneous equation (6.72) with
nonhomogeneous conditions, namely

D3/2u(t)+ bD1/2u(t)+Au(t) = 0, t > 0, (6.75)

(D1/2u)(0+)= ϕ1 (6.76)

(J1/2u)(0+)= ϕ2. (6.77)

Applying the Fourier transform to (6.75), we have

M(s)L[u](s) = (s+ b)ψ+ϕ , s > η0,

where M(s) = s3/2 + bs1/2 +A, and η0 > 0 is a number such that M(s) �= 0 for all
s > η0.

1 Let S1(t,A) = L−1[1/M(s)] and S2(t,A) = L−1[(s+ b)/M(s)]. The power
series representations of operators S j(t,A) can be obtained similar to (6.11)–(6.13).
Then the solution to problem (6.75)–(6.77) has the representation

u(t) = S1(t,A)ϕ1 + S2(t,A)ϕ2,

1 We assume that such η0 exists.
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where

Sk(t,A)ϕk =
∞

∑
n=1

Sk(t,λn)ϕk,nφn, k = 1,2,

Here ϕk,n = (ϕk,φn), Fourier coefficients of elements ϕk, k = 1,2.
Now, we return to the nonhomogeneous problem (6.72)–(6.74); however, we as-

sume now that ϕk = 0, k= 1,2.To solve this we apply the fractional Duhamel princi-
ple. In accordance with Theorem 6.11 the solution is given by the Duhamel integral∫ t

0 V (t,τ)dτ, where V (t,τ) is a solution to the following problem:

τD3/2
t V (t,τ)+ bτD1/2

t V (t,τ)+Au(t) = 0, t > τ, (6.78)

τD1/2
t V (τ+,τ) = h(τ), (6.79)

τJ1/2
t V (τ+,τ) = 0. (6.80)

It is not hard to verify that the solution of the Cauchy type problem (6.78)–(6.80)
can be obtained from the solution of problem (6.75)–(6.77) by translation t → t +
τ. Namely, V (t,τ) = S1(t − τ,A)h(τ). Hence, the solution to the given problem
in (6.72)–(6.74) has the representation

u(t) = S1(t,A)ϕ1 + S2(t,A)ϕ2 +
∫ t

0
S1(t− τ, A)h(τ)dτ.

6.7 The Cauchy problem for variable order differential
equations

In this section we study the Cauchy problem for variable order differential equations
with a piecewise constant order function β (t) =∑N

k=0 Ikβk, where Ik is the indica-
tor function of [Tk,Tk+1), and 0< βk ≤ 1, k = 0, . . . ,N. We assume that the diffusion
mode change times T1 < T2, . . . ,TN are known, and set T0 = 0, TN+1 =∞. We assume
that the solution will stay continuous at the diffusion mode change times. Hence, the
Cauchy problem for variable order differential equations has the form

D
β (t)
∗{μ,ν}u(t,x) =A (D)u(t,x), t > 0, x ∈ R

n, (6.81)

u(0,x) = ϕ(x), (6.82)

u(Tk− 0,x) = u(Tk + 0,x), k = 1, . . . ,TN , x ∈R
n. (6.83)

where D
β (t)
∗{μ,ν} is the Caputo-Djrbashian type (μ ,ν)-VODO, defined as (see

Definition 3.7)

D
β (t)
∗μ,ν f (t) =

∫ t

0
K

β (t)
μ,ν (t,τ)

d f (τ)
dτ

dτ,

with the kernel function
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K
β
μ,ν(t,τ) =

1

Γ (1−β (μt+ντ))(t− τ)β (μt+ντ) , 0 < τ < t.

The parameters ν and μ belong to the following causality LH-parallelogram: Π ={
(μ ,ν) ∈ R

2 : 0≤ μ ≤ 1,−1≤ ν ≤+1,0≤ μ+ν ≤ 1
}

(see Figure 3.1).
An interesting phenomenon related to variable order fractional differential equa-

tions is that an internal memory quantified as an inhomogeneous term in the equa-
tion may be generated. Consider a simple example, which demonstrates how such
an inhomogeneous term arises in a single change of diffusion mode. Assume the
function β (t) takes only two values β1, if 0 < t < T and β2, if t > T. In other
words, the diffusion mode changes at time t = T from a sub-diffusive mode β1 to
a sub-diffusive mode β2. Since the first mode is sub-diffusive, a non-Markovian
memory arises, which effects on the actual change of diffusion mode occurring at
time T∗ ≥ T. Here T∗ depends on the parameters μ and ν; see Section 3.12, where
the value of T∗ is calculated. For simplicity, suppose ν = 0 and μ = 1. In this case
T∗ = T, and we assume the following continuity condition at the change of mode
time t = T :

u(T ) = u(T − 0). (6.84)

For 0 < t < T, equation (6.81) is a fractional equation of order β1, so a solution to
the Cauchy problem (6.81)–(6.82) can be found by standard methods in this interval
(see, Section 5.3). If t > T, then one has

D
β (t)
∗ u(t) =

∫ T

0
K

β1
1,0 (t,τ)

du(τ)
dτ

dτ+
∫ t

T
K

β2
1,0 (t,τ)

du(τ)
dτ

dτ.

Hence, equation (6.81) takes the form

TD
β2∗,t u(t) =A u(t)+ h(t), t > T, (6.85)

with the initial condition (6.84). Equation (6.85) is no longer homogeneous, due to
the nonhomogeneous term

h(t) =−
∫ T

0
K β1

1,0 (t,τ)
du(τ)

dτ
dτ.

Therefore, the Duhamel principle developed for fractional order differential equa-
tions play an important role in the theory of the Cauchy problem for variable order
fractional differential equations.

We note that, since the order β (t) depends on the variable t, the fractional inte-
gration operator becomes

Jβ (t) f (t) = Jβ (t)μ,ν f (t) =
N

∑
k=0

Jk f (t),
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where

Jk f (t) =
∫ t

0

Ik(μt +ντ)(t− τ)βk(μt+ντ)−1 f (τ)
Γ (βk(μt +ντ))

dτ, k = 0, . . . ,N.

Lemma 6.11. Suppose that min0≤ j≤N{β j}= β∗ > 0 and [kβ∗] is the integer part of
kβ∗. Let v(t) be a function continuous in [0,∞). Then for arbitrary T > 0 and every
k = 1,2, . . . the estimate

max0≤t≤T |Jβ (t)kv(t)| ≤ ψk−1(T )
Γ (kβ∗)

max0≤t≤T |v(t)| (6.86)

holds with

ψ(τ) =

{
τβ∗ , if 0 < τ < 1,

τ, if τ ≥ 1.

Proof. Let v(t) be a function continuous in [0,∞). For k large enough, such that
β∗k ≥ 2, we have minΓ (kβ (μt + ντ)) = Γ (kβ∗). Taking this into account, for all
such k and for all t ∈ (0,T ] we obtain the estimate

|Jβ (t)kv(t)|=
∣∣∣∣∣
∫ t

0

(t− τ)kβ (μt+ντ)−1v(τ)dτ
Γ (kβ (μt +ντ))

∣∣∣∣∣≤
ψk−1(T )
Γ (kβ∗)

max
0≤t≤T

|v(t)|,

and hence, the estimate in equation (6.86).

Let tcr, j = Tj/(μ+ν), j = 1, . . . ,N, be critical points corresponding to diffusion
mode change times Tj, j = 1, . . . ,N. We accept the conventions tcr,0 = 0, tcr,N+1 =
∞. Let Eβ (z) be the Mittag-Leffler function with parameter β ∈ (0,1]. Now we in-
troduce the symbols which play an important role in the representation of a solution.
Let

S j(t,ξ ) = Eβ j
((t− tcr, j)

β j A(ξ )), t ≥ tcr, j, j = 0, . . . ,N, (6.87)

and

Mk(t,ξ ) = Sk(t− tcr,k,ξ )
k−1

∏
j=0

S j(tcr, j+1− tcr, j,ξ ), t ≥ tcr,k, k = 1, . . . ,N. (6.88)

Further, we define recurrently the symbols

R1(t,ξ ) =− 1
Γ (1−β1)

∫ tcr,1

0

∂
∂τ S0(τ,ξ )
(t− τ)β1

dτ

=
−β0A(ξ )
Γ (1−β1)

∫ tcr,1

0

E
′
β0
(τβ0A(ξ ))dτ

τ1−β0(t− τ)β1
,

P−1(t,ξ )≡ 0, P0(t,ξ )≡ 1,

P1(t,ξ ) =
∫ t

tcr1

S j(t + tcr,1− τ,ξ ) tcr,1D1−β1
τ R1(τ,ξ )dτ,
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and if

Pj(t,ξ ) =
∫ t

tcr j

S j(t + tcr, j− τ,ξ ) tcr, j D
1−β j
τ R j(τ,ξ )dτ,

is defined for t ≥ tcr, j and for all j ≤ k− 1, then for t ≥ tcr,k,

Rk(t,ξ )

=− 1
Γ (1−βk)

k−1

∑
j=0

tcr, j+1∫

tcr, j

∂
∂τ [Mj(τ,ξ )+ S j(τ− tcr, j,ξ )Pj−1(tcr, j,ξ )+Pj(τ,ξ )]

(t− τ)βk
dτ,

(6.89)

for k = 2, . . . ,N.

The case ν = 0. First we solve problem (6.81)–(6.83) in the particular case ν = 0.

Theorem 6.16. Assume ν = 0 and ϕ ∈ΨG,p(R
n). Then Cauchy problem (6.81)-

(6.83) has a unique solution u(t,x) ∈ C([0,T ],ΨG,p(R
n)), T < ∞, which is repre-

sented in the form u(t,x) =S (t,D)ϕ(x), where S (t,D) is the pseudo-differential
operator with the symbol

S (t,ξ ) =I
′

0S0(t,ξ )+
N

∑
k=1

I
′

k (t)
{

Mk(t,ξ )

+ Sk(t,ξ )
∫ tcr,k

tcr,k−1

Sk−1(tcr,k + tcr,k−1− τ,ξ ) tcr,k−1D1−βk
τ Rk(τ,ξ )dτ

+

∫ t

tcr,k

Sk(t + tcr,k− τ,ξ ) tcr,k D1−βk
τ Rk(τ,ξ )dτ

}
. (6.90)

Here I
′

k = I[tcr,k ,tcr,k+1)(t), k = 0, . . . ,N, are indicator functions of the intervals
[tcr,k, tcr,k+1), k= 0, . . . ,N; S j(t,ξ ), j = 0, . . . ,N, Mk(t,ξ ) andRk(t,ξ ), k = 1, . . . ,N,
are defined in (6.87), (6.88) and (6.89), respectively.

Proof. It is not hard to verify that

Jβ (t){μ,0}D
β (t)
∗{μ,0}u(t,x) =

N

∑
k=0

I
′

k JβkDβk∗ u(t,x) = u(t,x)−
N

∑
k=0

I
′

k u(tcr,k,x)+ g(t,x),

(6.91)
where

g(t,x) =
N

∑
k=1

I
′

k
tβk

Γ (1+βk)

k−1

∑
j=0

tcr, jD
βk
∗{μ,0}u(tcr, j+1,x).

Multiplying both sides of equation (6.81) by Jβ (t){μ,0} and applying the formula (6.91),
we obtain

u(t,x)−
N

∑
k=0

I
′

k JβkA (D)u(t,x) =
N

∑
k=0

I
′

k u(tcr,k,x)− g(t,x). (6.92)
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Let t ∈ (0, tcr,1). Then β (μt) = β0 and g(t,x) ≡ 0. In this case taking into account
the initial condition (6.82), we can rewrite equation (6.92) in the form

u(t,x)− Jβ0A (D)u(t,x) = ϕ(x), 0 < t < tcr,1. (6.93)

The obtained equation can be solved by using the iteration method. Determine the
sequence of functions {u0(t,x), . . . ,um(t,x)} in the following way. Let u0(t,x) =
ϕ(x) and by iteration

um(t,x) = Jβ0A (D)um−1(t,x)+ϕ(x), m = 1,2, . . . (6.94)

We show that this sequence is convergent in the topology of the space C[0,T ;Ψ (Rn)]
and its limit is a solution to the Cauchy problem (6.81)-(6.82). Moreover, this solu-
tion can be represented in the form of functional series

u(t,x) =
∞

∑
k=0

Jβ0kA k(D)ϕ(x). (6.95)

Indeed, it follows from the iteration process (6.94) that

um(t,x) = Jβ (t)mA m(D)ϕ(x)+ Jβ (t)(m−1)A m−1(D)ϕ(x)+ . . .+ϕ(x). (6.96)

Now we estimate um(t,x) applying Lemma 6.11 term by term in the right-hand side
of (6.96). Indeed, let N ∈ N. Then taking into account the fact that the Fourier
transform in x commutes with Jβ (t), we have

max
[0,T ]

pN

(
Jβ0kA k(D)ϕ(x)

)
≤ ψk−1(T )

Γ (kβ0)
pN(A ϕ(x)).

Further, since A(ξ ) is continuous on G there exists a constant CN > 0, such that
maxξ∈suppκN

|A(ξ )| ≤ CN , or, by induction maxξ∈suppκN
|Ak(ξ )| ≤ Ck

N . Hence, for
every N ∈ N we have

pN(J
β (t)kA k(D)ϕ(x))≤ ‖ϕ‖p

Ck−1
N ψk−1(T )

Γ (kβ0)
. (6.97)

It follows from (6.97) that

max
[0,T ]

pN(um(t,x))≤ ‖ϕ(x)‖p

m

∑
k=0

Ck
Nψk(T )

Γ (β0k+ 1)

≤C‖ϕ(x)‖pEβ0
(CN ψ(T )), N = 1,2, . . . ,

where Eβ0
(τ) is the Mittag-Leffler function corresponding to β0. Since the right-

hand side of the latter does not depend on m, we conclude that um(t,x) defined
in (6.96) is convergent. Again making use of Lemma 6.11 we have

pN(u(t,x)− um(t,x))≤ ‖ϕ(x)‖p

∞

∑
k=m+1

CNψk(T )
Γ (β0k+ 1)

, N = 1,2, . . . . (6.98)
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The function

Rm(η) =
∞

∑
k=m+1

ηk

Γ (β0k+ 1)

on the right side of equation (6.98) is the reminder of the (convergent ) power series
representation of the Mittag-Leffler function Eβ0

(η), and, hence, Rm(η)→ 0, when
m→ ∞ for any real (or even complex) η . Consequently, um(t,x)→ u(t,x) for every
N = 1,2, . . . ,, that is in the inductive topology of the space C

[
t ≥ 0;ΨG,p(R

n)
]
.Thus,

u(t,x) ∈C
[
t ≥ 0;ΨG,p(R

n)
]

is a solution. Moreover, it is readily seen that u(t,x) in
(6.95) in the interval (0, tcr,1) can be represented through the pseudo-differential
operator S(t,D) with the symbol S0(t,ξ ) = Eβ0

(tβ0A (ξ )) in the form

u(t,x) = u1(t,x) = S0(t,D)ϕ(x), t ∈ (0, tcr,1). (6.99)

By construction, the solution u(t,x) is unique and continuous in t. So, the limit

lim
t→tcr,1−0

u1(t,x) = Eβ0

(
tβ0
cr,1A (D)

)
ϕ(x)

exists inΨG,p(R
n). Further we extend u1(t,x) to [tcr,1, tcr,2). We denote this extension

by u2(t,x). Equation (6.81) in the interval (tcr,1, tcr,2) reads

Dβ1∗ u(t,x) =A (D)u(t,x), t ∈ (tcr,1, tcr,2).

Splitting the integration interval (0, t) on the left-hand side of the last equation into
subintervals (0, tcr,1) and (tcr,1, t), we can rewrite it in the form

tcr,1 Dβ1∗ u(t,x) =A (D)u(t,x)+F1(t,x), t ∈ (tcr,1, tcr,2),

where

F1(t,x) =− 1
Γ (1−β1)

∫ tcr,1

0

∂
∂τ u1(τ,x)
(t− τ)β1

dτ,

Taking into account relation (6.99), it is not hard to see that F1(t,x) =R1(t,D)ϕ(x),
where

R1(t,ξ ) =
−β0A(ξ )
Γ (1−β1)

∫ tcr,1

0

E
′
β0
(τβ0 A(ξ ))

τ1−β0(t− τ)β1
dτ.

Due to continuity condition (6.83), we have also

u(tcr,1− 0,x) = u1(tcr,1 + 0,x) = Eβ0

(
tβ0
cr,1A (D)

)
ϕ(x).

In the general case, assuming that solutions u1(t,x), . . . ,uk(t,x) are found in the
respective intervals [0, tcr,1), . . . , [tcr,k−1, tcr,k), we have the following inhomogeneous
Cauchy problem for the interval (tcr,k, tcr,k+1) :
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tcr,k Dβk∗ u(t,x) =A (D)u(t,x)+Fk(t,x), t ∈ (tcr,k, tcr,k+1), (6.100)

u(tcr,k,x) = uk(tcr,k,x), (6.101)

where

Fk(t,x) =− 1
Γ (1−βk)

k−1

∑
j=0

∫ tcr, j+1

tcr, j

∂
∂τ u j(τ,x)
(t− τ)βk

dτ.

The solution of this problem we denote by uk+1(t,x). It is not hard to verify that
Fk(t,x) can be represented in the form Rk(t,D)ϕ(x) with a pseudo-differential oper-
ator Rk(t,D), whose symbol is given in (6.89). A unique solution to (6.100),(6.101)
can be found by applying the fractional Duhamel principle (see Section 5.5)

uk+1(t,x) = Sk(t,D)uk(tcr,k,x)+
∫ t

tcr,k

Sk(t− (τ− tcr,k),D) tcr,k D1−βk
τ Fk(τ,x)dτ,

k = 1, . . . ,N, tcr,k < t < tcr,k+1.

Now taking into account the equality

uk(tcr,k,x) =

[
k

∏
j=0

S j(tcr, j+1− tcr, j,D)

]
ϕ(x)

+

∫ tcr,k

tcr,k−1

Sk−1(tcr,k− (τ− tcr,k−1),D)tcr,k−1D
1−βk−1
τ Fk−1(τ,x)dτ,

we obtain a solution u(t,x) =S (t,D)ϕ(x) through the solution operator S (t,D),
whose symbol is given by equation (6.90).

Remark 6.8. Assume in equation (6.81) β (t) = β , where β is a constant in (0,1].
Then the representation formula in (6.90) is reduced to

u(t,x) = Eβ (t
βA (D))ϕ(x),

which coincides with the result obtained in Section 5.3.

Applying the technique used in Section 5.3 and the duality of the spacesΨG,p(R
n)

andΨ ′
−G,q(R

n) one can prove the following theorem.

Theorem 6.17. Assume ν = 0 andϕ ∈Ψ ′
−G,q(R

n). Then the Cauchy problem (6.81)–

(6.83) (with ‘-D’ instead of ‘D’) has a unique weak solution u(t,x) ∈ C
[
[0,T ],

Ψ ′
−G,q(R

n)
]
, T < ∞, which is represented in the form
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u(t,x) =I
′

0S0(t,−D)ϕ(x)+
N

∑
k=1

I
′

k (t)
{

Mk(t,−D)ϕ(x)

+ Sk(t,−D)

∫ tcr,k

tcr,k−1

Sk−1(tcr,k + tcr,k−1− τ,−D) tcr,k−1D1−βk
τ Rk(τ,−D)ϕ(x)dτ

+

∫ t

tcr,k

Sk(t + tcr,k− τ,−D) tcr,k D1−βk
τ Rk(τ,−D)ϕ(x)dτ

}
,

Corollary 6.2. If ν = 0, then the fundamental solution of equation (6.81) with the
continuity conditions in (6.83) is represented in the form

U(t,x) =I
′

0(t)
1

(2π)n

∫
Rn

Eβ0
(tβ0A (−ξ ))dξ

+
N

∑
k=1

I
′

k (t)
1

(2π)n

∫
Rn

{
Eβk

((t− tk)
βkA (−ξ ))

k−1

∏
j=0

Eβ j
((t j+1− t j)

β jA (−ξ ))

+Eβk
((t− tk)

βk A(−ξ ))
∫ tk

tk−1

Eβk−1
((tk− τ)βk−1A(−ξ )) tk−1D1−βk−1

τ Rk−1(τ ,−ξ )dτ

+

∫ t

tk
Eβk

((t− τ)βk A(−ξ )) tk D1−βk
τ Rk(τ ,−ξ )dτ

}
eixξ dξ ,

where t j = tcr, j. Moreover, U(t,x) ∈Ψ ′
−G,q(R

n) for every fixed t > 0.

The case −1 < ν ≤ 1. Now we derive asymptotic behaviors for large and small t
of the solution of Cauchy problem (6.81)–(6.83) in the general case of ν, that is
−1 < ν ≤ 1.

The solution u(t,x) =S (t,D)ϕ(x) obtained in Theorem 6.16 in the case ν = 0
has the structure u(t,x) =Ψ1(t,D)ϕ(x)+Ψ2(t,D)ϕ(x), whereΨ1(t,D) andΨ2(t,D)
are operators with symbols

Ψ1(t,ξ ) =I
′

0S0(t,ξ )+
N

∑
k=1

I
′

k (t)Mk(t,ξ ),

and

Ψ2(t,ξ )

=
N

∑
k=1

I
′

k (t)
[
Sk(t,ξ )

∫ tcr,k

tcr,k−1

Sk−1(tcr,k + tcr,k−1− τ,ξ ) tcr,k−1D1−βk
τ Rk(τ,ξ )dτ

+

∫ t

tcr,k

Sk(t + tcr,k− τ,ξ ) tcr,k D1−βk
τ Rk(τ,ξ )dτ

]

The term v(t,x) =Ψ(t,D)ϕ(x) reflects the effect of diffusion modes, while the term
w(t,x) =Ψ2(t,D)ϕ(x) reflects the memory of past. We note that this structure re-
mains valid in the general case ν ∈ (−1,1] also; however, the symbols of solution
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operators get further restructuring, depending on the intervals of mixture of (two or
more) modes. The theorems below concern time intervals free of mixed modes, that
is time intervals, where a new diffusion mode is established, or not yet started to
effect.

Theorem 6.18. Assume μ �= 0, μ + ν �= 0 and ϕ ∈ΨG,p(R
n). Then there exists a

number T ∗ > 0 and pseudo-differential operators P∗(D) and R∗(t,D) with contin-
uous symbols, such that for t > T ∗ the solution of the Cauchy problem (6.81)-(6.83)
coincides with the solution of the Cauchy problem

T ∗D
βN∗ u(t,x) =A (D)u(t,x)+ f ∗(t,x), t > T ∗, x ∈R

n, (6.102)

u(T ∗,x) = ϕ∗(x), x ∈R
n. (6.103)

where f ∗(t,x) =R∗(t,D)ϕ(x) and ϕ∗(x) =P∗(D)ϕ(x).

Proof. Without loss of generality one can assume that ν > 0. Then as it follows
from Theorem 3.7 that the actual mode changes occur at times T ∗j = Tj/μ and
t∗j = Tj/(μ + ν), j = 1, . . . ,N, if diffusion modes change at times Tj, j = 1, . . . ,N.
Obviously, t∗1 < .. . < t∗N and T ∗

1 < .. . < T ∗
N if T1 < .. . < TN . The order function

β (μt + ντ) under the integral in Dβ (t)
∗{μ,ν} takes the value βN for all t > T ∗N and

τ > 0. Hence, the variable order operator on the left side of (6.81) becomes DβN∗
if t > T ∗

N . Analogously it follows from Theorem 3.8 that if ν < 0, then β (μt +ντ)
takes the value βN for all t > t∗N and τ > 0. Thus, if ν �= 0, then for all t > T ∗ =
max{T ∗N , t∗N} and 0 < τ < t we have β (μt + ντ) = βN . Similar to the case ν = 0,
splitting the interval (0, t), t > T ∗, into subintervals, we can represent the equa-
tion (6.81) in the form (6.102). Further, from the continuity condition (6.83) we have
u(T ∗,x) = limt→T ∗−0 v(t,x), where v(t,x) is a solution to the Cauchy problem for
fractional order pseudo-differential equations in sub-intervals of the interval [0,T ∗N )
constructed by continuation. Therefore there exists an operator S∗(t,D), such that
v(t,x) = S∗(t,D)ϕ(x). Denote P∗(D) = S∗(T ∗,D). Then u(T ∗,x) =P∗(D)ϕ(x).
This means that for t > T ∗ solutions of problems (6.81)-(6.83) and (6.102),(6.103)
coincide. If ν = 0, then the statement follows from Theorem 6.16.

Theorem 6.19. Assume ϕ ∈ΨG,p(R
n). Then there exists a number t∗ > 0, such that

for 0 < t < t∗ the solution of the Cauchy problem (6.81)–(6.83) coincides with the
solution of the Cauchy problem

Dβ0∗ u(t,x) =A (D)u(t,x), t > 0, x ∈ R
n, (6.104)

u(0,x) = ϕ(x), x ∈ R
n. (6.105)

Proof. It follows from Theorems 3.7 and 3.8 that the order function β (μt + ντ)
under the integral in Dβ (t)

∗{μ,ν} takes the value β0 for all t < t∗ = min{t∗1 ,T
∗

1 } and

0 < τ < t. Hence, the variable order operator in (6.81) becomes Dβ0∗ if 0 < t < t∗.
The order β1 (or diffusion mode {β1,μ ,ν}) has no influence in this interval. For
t > t∗ two diffusion modes {β0,μ ,ν} and {β1,μ ,ν} are present. If t < min{t∗2 ,T

∗
2 },
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then for all τ > 0 we have μt +ντ < T2. That is, there is no influence of the mode
{β2,μ ,ν} if t < min{t∗2 ,T

∗
2 }. In the same manner the other values of β have no

influence in the interval 0 < t < t∗. This means that for 0 < t < t∗ solutions of
problems (6.81)–(6.83) and (6.104)–(6.105) coincide.

6.8 Additional notes

1. Models with DODEs. A distributed fractional order differential operator was first considered in
the paper [Cap67] by Michele Caputo in 1967 in connection with modeling of linear dissipation.
In Equation (3) of this paper, generalizing a stress–strain relation used earlier by Knopoff, he
writes the following relation:

τrs =
∫ b1

a1

f1(r, z)
dz

dtz (g
higrsehi)dz+2

∫ b1

a1

f2(r, z)
dz

dtz (ers)dz, (∗)

where dz

dtz in this expression is understood in the sense of Caputo-Djrbashian derivative Dz∗, the
definition of which is given in Equation (5) on the same page. Both integrals on the right of
equation (∗) are distributed order differential operators in the sense of Definition 3.5. Namely,
the first term corresponds to μ(dα)= f1(r,α)dα , and the second term to μ(dα)= 2 f2(r,α)dα .
In the sense of Definition 3.5 differential equations with a finite number of fractional derivatives
in the sum are also qualified as DODEs. In this case μ is defined as μ(dα)=∑m

j=1Cjδα j (α)dα .
An example is the Bagley-Torvik equation [Pod99]

d2u
dt2 +aD3/2

+ u+ cu = h(t), (6.106)

arising in the theory of viscoelastic materials and corresponding to the case μ(dα) = [δ2(α)+
aδ3/2(α) + cδ0(α)]dα . The solution to equation (6.106) satisfying the homogeneous initial
conditions can be represented in the form u(t) = (G∗h)(t), where the function G is defined as

G(t) =
∞

∑
k=0

(−1)kckt2k+1

k!
E(k)

1/2, 2+3k/2(−a
√

t),

with the generalized Mittag-Leffler function Eμ,ν (z). Agraval [Agr04] used the model

d2u
dt2 +aD1/2

+ u+Au = h(t),

which corresponds to the measure μ(dα) = [δ2(α)+aδ1/2(α)+ cδ0(α)]dα , to describe frac-
tionally damped beam. Podlubny [Pod99] investigated general m-term equations of the form

m

∑
k=0

CkDαk u = h(t),

and found the corresponding Green function assuming αm > αm−1 > · · · > α0. DODEs are
broadly used by many researchers to model various processes arising in modern science and
engineering, see, e.g., [Pod99, Cap01, LH02, CSK11, JCP12, AUS06, KAN10, HKU10]. Nu-
merical methods of solution of DODEs are discussed in [DF09, DF01, Kat12]. See also papers
[BT00, UG05-2, MS06, Koc08], where abstract properties of DODEs, not tied to any physical
model, are presented. DODEs also arise in the theory of factional Fokker-Planck-Kolmogorov
equations discussed in Chapter 7.
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2. Models with VODEs. The theory of variable order differential equations is a relatively new
branch of fractional differential equations. In the last few decades a number of publications ap-
peared where VODEs were used to model processes with changing in time diffusion exponents.
We recall the classification of diffusion processes through their mean square displacement
(MSD), which is a function of time: MSD(t) ∼ Kβ tβ , t →,∞, where the exponent β indicates
the actual diffusion mode. For instance, if a diffusion process has the normal mode, then β = 1,
if it has a sub-diffusive (slower) mode, then β < 1, and if the process has a super-diffusive
mode, then β > 1. In many applications the exponent β turns out to depend on time, that is
β = β (t), or some other parameters of the model. In the paper by Lorenzo et al. [LH02] a num-
ber of examples of such a dependence arising naturally in applied sciences are given. Chechkin
et al. [CGS05] modeled the evolution of a composite system with different sub-diffusion ex-
ponents using a space-variable fractional differential equation. Papers [SCK05, RC10] used
VODE for analysis of viscoelastic oscillators.
The mathematical theory of initial and boundary value problems for VODEs is not yet satisfac-
torily developed. The Cauchy problem studied in Section 6.7 partially shows difficulties arising
in such an analysis. Even for piecewise order functions at every mode change time an inhomo-
geneous term emerges, making analysis complicated. It is not clear into what form turns this
phenomenon in the case of more general, for instance, continuous order functions.

3. Fractional Duhamel principle for DODEs and VODEs. the fractional Duhamel principle for
general DODEs formed with the help of a bounded measure Λ is discussed in the paper
[Uma12]. In this paper the basic fractional derivative is the Caputo-Djrbashian derivative. In
this case Λ can be rather general measure. However, in the case of DODEs defined with the
Riemann-Liouville derivative, the problem on the fractional Duhamel principle is more chal-
lenging. In Section 6.5 we proved the fractional Duhamel principle only in the case of measures
of the form

Λ(dα) =

[
δμ (α)+

m−1

∑
k=1

ckδμ−k(α)

]
dα .

Note that there is another way to prove Theorem 6.11. Namely, applying the operator Jμ−m+1

to both sides, one can reduce it to an integer order integro-differential equation (differential
equation if B0 = 0) for which the classic Duhamel principle is applicable. Is the Duhamel
principle valid for more general measures of the form

Λ(dα) =

[
δμ (α)+

m−1

∑
k=1

ckδαk (α)

]
dα ,

with arbitrary αk ∈ [k− 1,k)? If the answer is “Yes,” then in what form? This is a challeng-
ing open question, as well as the Duhamel principle in the case of variable order differential
equations.



Chapter 7
Fractional order Fokker-Planck-Kolmogorov
equations and associated stochastic processes

7.1 Introduction

This chapter discusses the connection between pseudo-differential and fractional
order differential equations considered in Chapters 2–6 with some random (stochas-
tic) processes defined by stochastic differential equations. We assume that the reader
is familiar with basic notions of probability theory and stochastic processes, such
as a random variable, its density function, mathematical expectation, characteris-
tic function, etc. Since we are interested only in applications of fractional order
ΨDOSS, we do not discuss in detail facts on random processes that are already
established and presented in other sources. For details of such notations and related
facts we refer the reader to the book by Applebaum [App09] (or [IW81, Sat99]). We
only mention some basic notations directly related to our discussions on fractional
Fokker-Planck-Kolmogorov equations.

Fokker-Planck-Kolmogorov(FPK) equations are partial differential equations in-
troduced first by Fokker (1913) and Planck (1917) for time evolution of the density
function of the velocity of a minute substance diffusing in a white noise environ-
ment. Later Kolmogorov (1931) developed a mathematical theory [of a broad class
of such equations] obtaining forward and backward Kolmogorov equations. FPK
equations are closely related to stochastic differential equations. Historically, first
stochastic differential equation was introduced and studied by Langevin (1908),
three years after a theoretical explanation of Brownian motion by Einstein (1905).
Wiener (1927) showed that Brownian motion is nowhere differentiable and its path
has infinite total variation over an arbitrary time interval. Due to these facts, mathe-
matically, both differential and integral versions of stochastic differential equations
were not justified. In the second half of the 1940s Itô developed a strict mathemati-
cal theory of stochastic differentials and integrals, which now is referred to as an Itô
stochastic calculus. Section 7.4 discusses briefly Brownian motion, Itô’s stochastic
differential equations driven by Brownian motion, and associated FPK equations.

© Springer International Publishing Switzerland 2015
S. Umarov, Introduction to Fractional and Pseudo-Differential Equations
with Singular Symbols, Developments in Mathematics 41,
DOI 10.1007/978-3-319-20771-1 7
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Fractional FPK equations model sub- and super-diffusion and other complex
stochastic processes revealing subtle intrinsic properties of such processes. For ins-
tance, in the last few decades, fractional FPK equations have appeared as an essen-
tial tool for the study of dynamics of various complex stochastic processes arising
in anomalous diffusion in physics, finance, hydrology, cell biology, etc. Complexity
includes phenomena such as the presence of weak or strong correlations, simul-
taneous presence of different sub- or super-diffusive modes, and various types of
jump effects, which occur in various real world processes. Consider one exam-
ple from cell biology. Experimental studies of the motion of proteins and other
macromolecules in the cell membrane show apparent subdiffusive motion (see det-
ails in [Sax01]). Moreover, these experiments show that several diffusive modes
simultaneously affect the motion. An experiment describing such a phenomenon
is provided in [GW94], which recorded that approximately 50 % of case mea-
surements on the LDL receptor labeled with diILDL show subdiffusive motion,
with diffusion mode parameter β between 0.2 and 0.9. Subdiffusive motion with
0.1 < β < 0.9 or with 0.22 < β < 0.48 were found in [GW94, WEKN04], depend-
ing on a type of macromolecules and cells. Protein molecules diffuse 5 to 100 times
slower [Edi97, GW94, Sax01, SJ97] than free Brownian motion at different times
and regions. Here, the smaller the parameter β , the more slowly the particles scat-
ter, whereas the case β = 1 corresponds to the classical diffusion. Examples can be
drawn from numerous other fields.

Boundary value problems for fractional order differential equations discussed in
Chapters 5 and 6 can be used to model random processes driven by time-changed
stochastic processes. A deeper relationship between processes modeled by stochas-
tic differential equations driven by a time-changed stochastic process and their
associated deterministic fractional order differential equations (fractional Fokker-
Planck-Kolmogorov equations) is the main subject of study in this chapter.

The SDEs associated with fractional FPK equations are driven by Brownian mo-
tion subordinated to a special time-change process, the first hitting time of a Lévy’s
stable subordinator. Section 7.6 presents a description of Lévy’s stable subordinators
of stability index β ∈ (0,1) and their inverse (first hitting time) processes.

Driving processes of stochastic differential equations play a key role in mod-
eling of complex stochastic processes. Therefore, understanding of the properties
of the driving process elucidate many properties of the process itself. Driving pro-
cesses can be approximated by random walks. For instance, as is shown in the next
chapter, Brownian motion without drift (the definition is given in Section 7.2) can
be approximated by a simple random walk. Moreover, the transition probabilities
pt(x,y) from a point x to a point y at a time t satisfies the following initial value
problem:

∂ pt(x,y)
∂ t

=
1
2
∂ 2 pt(x,y)

∂y2 , t > 0, (7.1)

p0(x,y) = δx(y). (7.2)
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Equation (7.1) is the Fokker-Planck-Kolmogorov equation associated with Brow-
nian motion. The stochastic processes associated with fractional order Fokker-
Planck-Kolmogorov equations are usually driven by complex processes. Even in
the simplest case of the fractional equation

Dβ
t u =

1
2
∂ 2u
∂y2 ,

where Dβ is a fractional derivative of order 0< β < 1, the driving process belongs to
the class of non-Markovian semimartingales (see Section 7.16, “Additional notes”).
We note that semimartingales form the largest class of processes for which Itô’s
stochastic calculus is valid. Driving processes play a key role for processes def-
ined by stochastic differential equations. As we will see, driving processes of frac-
tional Fokker-Planck-Kolmogorov equations are time-changed processes. These
time-changed processes are scaling limits of, so-called, continuous time random
walks (CTRW). The connection between CTRW and fractional order differen-
tial equations will be discussed in detail in Chapter 8. Thus, in the theory of
fractional Fokker-Planck-Kolmogorov equations a triple relationship between a
driving process, the corresponding stochastic differential equation, and the asso-
ciated Fokker-Planck-Kolmogorov equation, is apparent. This triple relationship for
SDEs driven by a time-changed Lévy processes was recently studied in the papers
[HKU10, HKU11, HU11].

For additional comments and historical notes see Section 7.16.

7.2 Itô’s stochastic calculus and stochastic differential equations

In this section, for the reader’s convenience, we introduce some basic notions related
to stochastic processes, Itô’s calculus, and Itô’s stochastic differential equations
(SDEs). In Probability Theory, one always assumes that random variables (vectors)
under consideration are given in a probability space consisting of a triple (Ω ,F ,P),
which depends on an underlying model. Here Ω is a set of elementary events (sam-
ple set), F is a σ -algebra of subsets of Ω , and P is a measure defined on F ,
such that P(Ω) = 1. By definition, an n-dimensional random vector X is a mapping
X :Ω →R

n, such that X−1(A)∈F for any Borel set A⊂R
n. We denote the density

function of X by fX (x) and the mathematical expectation of X by E(X), which, by
definition, is

E(X) =

∫
Ω

XdP, (7.3)

or if the density function fX is known, then

E(X) =

∫
R

x fX (x)dx. (7.4)
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A real (complex) function g(X) of the random variable X defines naturally as a
mapping g : A×Ω →R (A×Ω →C), where A⊂R

n is in the range of X . Note that
the expectation of g(X) is

E[g(X)] =

∫
Ω

g(X)dP=

∫
R

g(x) fX (x)dx,

generalizing (7.3) and (7.4). For given events A,B and a random variable X we
frequently use notations P(A|B) and E[X |B], called a conditional probability and
conditional expectation, respectively, and meaning the probability of the event A
and the expectation of the random variable X , under the condition B.

Definition 7.1. Let T be a set of indices. A family of random variables {Xt , t ∈ T},
is called a stochastic process.

It follows from this definition that for each fixed t ≥ 0 the stochastic process Xt

is a random variable defined on (Ω ,Ft ,P). Frequently one needs to consider a
stochastic process adopted to a certain filtration. By definition, a filtration Ft is
an increasing family of sub-σ -algebras of F , that is Fs ⊂Ft , if 0 ≤ s ≤ t. A fil-
tration Ft is called right-continuous, if Ft+ = ∩ε>0Ft+ε =Ft for each t ≥ 0. We
say that the stochastic process Xt is adapted to the filtration Ft , or Ft -adapted if Xt

is Ft -measurable for each t ≥ 0.

Definition 7.2. Brownian motion Bt is a stochastic process {Bt , t ≥ 0}, such that

1. B0 = 0;
2. for all nonoverlapping intervals (t1, t2) and (s1,s2) random variables (increments)

Bt2 −Bt1 and Bs2 −Bs1 are independent;
3. for arbitrary 0≤ s < t the random variable Bt −Bs has the density

fBt−Bs(x) = p(t− s,x) =
1√

2π(t− s)
e
− x2

2(t−s) , (7.5)

that is Bt −Bs is normal with mean 0 and variance t− s;
4. Bt has a continuous path.

N. Wiener [Wie28] proved that Bt is nowhere differentiable and has the infinite
total variation over arbitrary interval (t1, t2). Hence, the integral

∫ t
0 f (s)dBs is mean-

ingless if one understands it in the Lebesgue-Stieltjes sense. Itô developed a special
stochastic calculus in the frame of which the above integral becomes meaningful.
Below we briefly reproduce the definition of the Itô integral and its properties with-
out proofs. For details we refer the reader to nicely written book [IW81].

Introduce the space L2 of Ft -measurable stochastic processes Xt , such that for
an arbitrary T > 0

‖X |L2‖2
T = E

[∫ T

0
X2

s ds

]
< ∞. (7.6)
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L2 is a complete metric space with respect to the metric

ρ(X ,Y ) =
∞

∑
k=1

‖(X −Y )|L2‖k ∧1
2k ,

where the symbol a∧b means min{a,b}. A random variable Y is said to belong to
L(P), if E[|Y |]<∞. Hence, equation (7.6) means that

∫ T
0 X2

s ds∈ L(P) for each fixed
T > 0. We also introduce a class L∞[0,T ;L(P)] of stochastic processes Yt , such that
Yt ∈ L(P) for each fixed t ∈ [0,T ], and supt∈[0,T ]E[Yt ]< ∞.

Let L0 be a subspace of L2 containing stochastic processes Xt with the following
property: there exists a partition 0 = t0 < t1 < · · · < tn < .. . , and a sequence of
Ftk -measurable random variables fk, k = 0,1, . . . , with supk ‖ fk|L∞‖<∞, such that

Xt = f0It=0(t)+
∞

∑
k=0

fkI(tk,tk+1]
(t).

Here I(a,b) is the indicator function of the interval (a,b). Elements of L0 are called
simple processes.

Proposition 7.1. 1. L2 is a complete metric space;
2. L0 is dense in L2.

Define an operator I in L0 by

I(Xt) =
n−1

∑
k=0

fk(Btk+1 −Btk)+ fn(Bt −Btn)

for t ∈ [tn, tn+1], n = 0,1, . . . . I(Xt) is called a stochastic integral of a simple process
Xt ∈L0 with respect to Brownian motion Bt , and denoted by

I(Xt) =

∫ t

0
XsdBs.

Using the independence of increments of Brownian motion and the fact that the
variance E(Bt −Bs)

2 = t− s, one has

E[I(Xt)
2] =

n−1

∑
k=0

E[ f 2
k ](tk+1− tk)+E[ f 2

n ](t− tn) = E

[∫ t

0
X2

s ds

]
.

Hence we have the following equality

E

[(∫ t

0
XsdBs

)2
]
= E

[∫ t

0
X2

s ds

]
, ∀Xt ∈L0. (7.7)

Now let Xt ∈L2 be an arbitrary process. Due to Proposition 7.1 there exists a
sequence Xtn ∈L0, such that Xtn → Xt in the sense ρ(Xtn,Xt)→ 0, when n → ∞.
We set
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I(Xt) =

∫ t

0
XsdBs = lim

n→∞

∫ t

0
Xsnds = lim

n→∞
I(Xtn).

Using Lebesgue’s dominated convergence theorem it follows from (7.7) that

E[I(Xt)
2] = E

[(∫ t

0
XsdBs

)2
]
= E

[∫ t

0
X2

s ds

]
, ∀Xt ∈L2, (7.8)

which is called the Itô identity. This identity shows that the mapping

I : L2 → L∞[0,T ;L((P))],

is continuous for each fixed T > 0.
Thus, for each Xt ∈L2 the stochastic process defined by the integral

∫ t

0
XsdBs

is well defined and is called Itô’s stochastic integral. The proposition below contains
some important properties of Itô’s stochastic integral.

Proposition 7.2. 1. (Linearity)
∫ t

0 [αXs +βYs]dBs = α
∫ t

0 XsdBs +β
∫ t

0 YsdBs, where
α, β ∈ C, and Xt , Yt ∈L2;

2. (Itô’s identity) E
[(∫ t

0 XsdBs
)2
]
= E

[∫ t
0 X2

s ds
]

;

3. E
[∫ t

0 XsdBs
]
= 0 for all t ≥ 0;

Proof. The linearity property immediately follows from the definition of Itô’s inte-
gral. Itô’s identity is proved above. The third property (called a martingale property)
follows from the fact that E(Bt) = 0 for each t ≥ 0 and from the independence of
Brownian motion Bt and the stochastic process Xt .

Let b(x) and σ(x) be Lipschitz continuous functions with linear growth1 for large
x ∈ R. Consider a stochastic differential equation (SDE)

dXt = b(Xt)dt +σ(Xt)dBt , (7.9)

with the initial condition

Xt=0 = X0, (7.10)

where X0 is a random variable independent of Bt . The meaning of SDE (7.9) with
initial condition (7.10) is

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs, (7.11)

where the first integral is a usual integral and the second one is in the sense of Itô
stochastic integral.

1 The Lipschitz and linear growth conditions in n-dimensional case are given in (7.12) and (7.13),
respectively.



7.3 Connection between stochastic and deterministic descriptions: FPK equations 291

Further, suppose Bt is an m-dimensional Brownian motion, that is
Bt = (B1t , . . . ,Bmt ), where B1t , . . . ,Bmt are independent Brownian motions in the
sense of Definition 7.2. Then n-dimensional analog of SDE (7.9) takes the follow-
ing component-wise form

dXjt = b j(X1t , . . . ,Xnt)dt +
m

∑
k=1

σ jk(X1t , . . . ,Xnt)dBkt , j = 1, . . . ,n,

where the mappings b = (b1, . . . ,bn) : Rn → R
n, σ = {σ jk}n, m

j=1,k=1 : Rn → R
n×m

satisfy the conditions:

Lipschitz: ‖b(x)− b(y)‖+ ‖|σ(x)−σ(y)‖|≤C‖x− y‖, x,y ∈R
n, (7.12)

Linear growth: ‖b(x)‖+ ‖|σ(x)‖| ≤C(1+ ‖x‖), x ∈ R
n. (7.13)

Here the vector-norm ‖b‖ and the matrix-norm ‖|σ‖| are defined

‖b‖2 =
n

∑
j=1

|b j|2, ‖|σ‖|2 =
n

∑
j=1

m

∑
k=1

|σ jk|2,

respectively.
In the theory of Ito’s stochastic differential equations Ito’s formula plays an im-

portant role. Below we formulate Ito’s formula in a particular case. In the proposi-
tion below we assume that b(t) and σ(t) are Ft -adapted stochastic processes, where
Ft is a filtration associated with Bt .

Proposition 7.3. (Itô’s formula) Let f ∈C2
0(R) and Xt be a stochastic process of the

form

Xt = X0 +

∫ t

0
b(s)ds+

∫ t

0
σ(s)dBs.

Then

f (Xt) = f (X0)+
∫ t

0

[
b(s) f

′
(Xs)+

1
2
σ2(s) f

′′
(Xs)

]
ds+

∫ t

0
σ(s) f

′
(Xs)dBs. (7.14)

For the proof see, e.g., [IW81]. See Section “Additional Notes” for more general
forms of Itô’s formula.

7.3 Connection between stochastic and deterministic
descriptions of random processes:
Fokker-Planck-Kolmogorov equations

In Section 8.2 we will show that the limiting stochastic process of the so-called
simple random walk can be described with the help of the diffusion equation (7.1),
whose solution satisfying the initial condition (7.2) is the Gaussian density function
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(7.5) (with s = 0), evolved in time. This limiting stochastic process is Brown-
ian motion without drift. Thus, Brownian motion Bt and the partial differential
equation (7.1) for the density of Bt are related. Equation (7.1) is the Fokker-Planck
equation associated with Bt . Such a relationship holds for a wide class of stochastic
processes.

The aim of this section is to give a precise formulation of the connection between
certain classes of stochastic processes and their associated deterministic partial dif-
ferential equations (FPK equations). Let (Ω ,F ,P) be a probability space with a
complete right-continuous filtration (Ft). Consider an example Yt = σBt +bt of an
n-dimensional Brownian motion (with constant drift bt, b ∈R

n, and a constant cov-
ariance (n×m)-matrix σ ) defined on this filtered probability space. This example
is useful for understanding of the general form of operators appearing in partial dif-
ferential equations associated with stochastic processes. Let A ⊂ R

n be a Borel set
and PZ(t,x,A) = P(Zt ∈ A|Z0 = x) be the transition probability (from a point x ∈R

n

to A) of the process Zt with density pZ(t,x,y), i.e., pZ(t,x,y)dy = PZ(t,x,dy). Then
pZ(t,x,y) satisfies (in the weak sense) the following partial differential equation (see
Section 7.4)

∂ pZ(t,x,y)
∂ t

=−
n

∑
j=1

b j
∂ pZ(t,x,y)

∂y j
+

1
2

n

∑
i, j=1

ai j
∂ 2 pZ(t,x,y)
∂yi∂y j

, t > 0, x,y ∈R
n,

with the additional condition pZ(0,x,y) = δx(y), where δx is the Dirac delta function
with mass on x. Here, the matrix ai j is a square (n× n)-matrix equal to the product
of σ by its transpose σT .

A deep generalization of this relationship between a stochastic process and its
associated partial differential equation is expressed through the Fokker-Planck-
Kolmogorov forward and backward equations. As we will show in Section 7.4 that
this concept is based on the relationship between two main components:

(I) the Cauchy problem

∂u(t,x)
∂ t

=A u(t,x), t > 0, x ∈ R
n, (7.15)

u(0,x) = ϕ(x), x ∈ R
n; (7.16)

where A is a differential operator

A =
n

∑
j=1

b j(x)
∂
∂x j

+
1
2

n

∑
i, j=1

ai, j(x)
∂ 2

∂xi∂x j
, (7.17)

with coefficients b j(x) and ai, j(x) satisfying some mild regularity conditions;
and

(II) the associated class of Itô SDEs given by

dXt = b(Xt)dt +σ(Xt)dBt , X0 = x, (7.18)
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where Bt is an m-dimensional Brownian motion. Here Xt is a solution, and the
coefficients are connected with the coefficients of the operator A as follows:
b(x) = (b1(x), . . . ,bn(x)) and ai, j(x) is the (i, j)-th entry of the product of the
n×m matrix σ(x) with its transpose σT (x). Finally, x is a random variable,
independent of Bt and with the density ϕ(x).

Example 7.1. Let in equation (7.18) the coefficients b(x)= 0, identically zero vector,
and σ(x) = I, the identity matrix. In this case, Xt = Bt , and as follows from the
definition of Bt and equations (8.4) and (8.5) that the density of Bt satisfies the
Cauchy problem

∂ p
∂ t

=
1
2
Δ p, t > 0, x ∈ R

n, (7.19)

p(0,x) = ϕ(x), x ∈ R
n. (7.20)

That is, in this case A = Δ .

One mechanism for establishing the relationship between (i) and (ii) is via semi-
group theory of linear operators. Let X be a Banach space and Tt , t ≥ 0, be a one-
parameter family of linear operators mapping X to itself. The family Tt is called a
strongly continuous semigroup if

1. T0 = I, the identity operator;
2. TtTs = Tt+s, for all t,s≥ 0; and
3. Ttϕ → Tt0ϕ for all ϕ ∈X in the norm of X as t → t0.

A linear operator A defined as

Aϕ = lim
t→0+

Ttϕ−ϕ
t

, (7.21)

provided the limit exists, is called an infinitesimal generator of the semigroup Tt . In
fact, the set of elements ϕ ∈X for which the limit (7.21) exists is a dense subset of
X and is the domain of the operator A. We will denote the domain of A by Dom(A).

Returning to our discussion on the connection of the stochastic process Xt defined
by SDE (7.18) and the operator A in (7.19), we notice that the operator A is rec-
ognized as the infinitesimal generator of the semigroup Ttϕ(x) := E[ϕ(Xt)|X0 = x]
(defined, for instance, on the Banach space C0(R

n) with sup-norm), i.e., A ϕ(x) =
limt→0 (Tt − I)ϕ(x)/t,ϕ ∈Dom(A ), the domain of A . A unique solution to (7.15)–
(7.16) for A in (7.17) is represented by u(t,x) = (Ttϕ)(x) (see details, e.g., in
[App09]).

Example 7.2. Suppose again b(x) = 0 and σ(x) = I. Then

Ttϕ(x) = E[ϕ(Bt)|B0 = x] =
1

(
√

2πt)n

∫
Rn

e−
|y−x|2

2t ϕ(y)dy. (7.22)
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Due to relationships (2.11) and (2.12) with κ = 1/2 the latter can be written in the
form ofΨDOSS

Ttϕ(x) =
1

(2π)n

∫
Rn

e−
t
2 |ξ |2−ixξF [ϕ ](ξ )dξ = et( 1

2Δ)ϕ(x).

In terms of the semigroup theory the latter is advantageous, since it shows the direct
connection between the semigroup Tt and its infinitesimal generator A = 1

2Δ , i.e.,

Tt = et( 1
2Δ). Recall also that the unique solution of (7.19)–(7.20) is given by the

right-hand side of (7.22) (see (2.12) of Section 2.2 with κ = 1/2): u(t,x) = Ttϕ(x).

The relationship between (I) and (II) says that the equation given in (7.15), with
the first order time derivative on the left and the operator A on the right defined in
equation (7.17), is related to SDE in (7.18) driven by a Brownian motion with drift,
as long as the coefficients satisfy appropriate conditions. In such cases we say that
the deterministic partial differential equation in (7.15) (or Cauchy problem (7.15)–
(7.16)) is associated with SDE (7.18), or vice versa, SDE (7.18) is associated with
deterministic equation (7.15).

The mechanism for establishing the relationship reveals that the transition prob-
abilities PX(t,x,dy) = P(Xt ∈ dy|X0 = x) of a solution Xt to (7.18) satisfy in the
weak sense the following partial differential equations (this is discussed in the next
section):

∂PX (t,x,dy)
∂ t

=A PX(t,x,dy), (A acts on the variable x) (7.23)

∂PX (t,x,dy)
∂ t

=A ∗PX(t,x,dy), (A ∗ acts on the variable y) (7.24)

where A ∗ is the formal adjoint to A . Equation (7.23), in which A acts on the
backward variable x, is called a backward Kolmogorov equation. Equation (7.24),
where A ∗ acts on the forward variable y, is called a forward Kolmogorov equation
or, in the Physics literature, a Fokker-Planck equation. We call them Fokker-Planck-
Kolmogorov equations, of for short, FPK equations.

In subsequent sections we will establish FPK equations, including space and
time fractional, as well as DODE FPK equations, associated with various classes
of SDEs.

7.4 FPK equations associated with SDEs driven
by Brownian motion

There are different ways of derivation of FPK equations. Below we show the deriva-
tion of FPK equations (7.23) and (7.24) based on Itô’s formula (7.14).
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Suppose a process Xt solves the stochastic differential equation

dXt = b(Xt)dt +σ(Xt)dBt , X0 = x. (7.25)

Consider the conditional expectation

u(t,x) = E
x[ f (Xt)] = E[ f (Xt)|X0 = x], (7.26)

of f (Xt) given X0 = x. Here f (y), y∈R
n, is an arbitrary twice differentiable function

with compact support. If p(t,y;x) is the density of Xt (in the variable y), given that
X0 = x (transition probability from x to y during the time period t), then we have

u(t,x) =
∫
R

f (y)p(t,y;x)dy.

We will show that u(t,x) satisfies the following Cauchy problem

∂u
∂ t

=− ∂
∂x

(
b(x)u(t,x)

)
+

1
2
∂ 2

∂x2

(
σ2(x)u(t,x)

)
, u(0,x) = f (x).

Applying Ito’s formula (Proposition 7.3) to the stochastic process Xt , that is

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs,

we have

f (Xt) = f (X0)+
∫ t

0

[
f
′
(Xs)b(Xs)+

1
2

f
′′
(Xs)σ2(Xs)

]
ds+

∫ t

0
f
′
(Xs)σ(Xs)dBs.

Then, the expectation of f (Xt) under the condition X0 = x becomes

E[ f (Xt )|X0 = x] = f (x)+E[

∫ t

0
[ f

′
(Xs)b(Xs)+

1
2

f
′′
(Xs)σ2(Xs)]ds]

=
∫ t

0

∫
R

[ f
′
(y)b(y)+

1
2

f
′′
(y)σ2(y)]p(s,y;x)dyds, (7.27)

since

E[
∫ t

0
f
′
(Xs)σ(Xs)dBs] = 0,

due to the martingale property of Itô’s stochastic integral. Therefore, differentiat-
ing (7.27) with respect to the variable t, we have

∫
R

f (y)
∂ p(t,y;x)

∂ t
dy =

∫
R

f (y)A∗p(t,y;x)dy,

where

A∗ϕ(y) =− ∂
∂y

(
b(y)ϕ(y)

)
+

1
2
∂ 2

∂y2

(
σ2(y)ϕ(y)

)
.
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Due to arbitrariness of f it follows from the latter that

∂ p(t,y;x)
∂ t

= A∗p(t,y;x), (7.28)

in the weak sense, and p(t,y;x) as the density of Xt with the condition X0 = x,
satisfies the initial condition

p(0,y;x) = δx(y),

where δx(y) is the Dirac delta function concentrated at x. Equation (7.28) is the
Fokker-Planck, or Kolmogorov forward equation associated with stochastic differ-
ential equation (7.25).

Now let A be the formal adjoint operator to A∗, that is

Aφ(x) = b(x)
∂φ(x)
∂x

+
σ2(x)

2
∂ 2φ(x)
∂x2 .

Then, as an adjoint equation to (7.28), we obtain the backward Kolmogorov equa-
tion in the form

∂ p(t,y;x)
∂ t

= Ap(t,y;x),

with the initial condition
p(0,y;x) = δy(x).

In the n-dimensional case the operator A takes the form (c.f. (7.17))

Aφ(x) =
n

∑
j=1

b j(x)
∂φ(x)
∂x j

+
1
2

n

∑
i, j=1

ai j(x)
∂ 2φ(x)
∂xi∂x j

, (7.29)

where ai j(x), i, j = 1, . . . ,n, are entries of the matrix obtained by multiplying the
matrix σ(x) by its transpose σ(x)T .

7.5 Lévy processes and Lévy stable subordinators

Fractional Fokker-Planck-Kolmogorov equations are connected with the SDEs driven
by a specific time-changed stochastic process. A time-change process is the inverse
to, so-called, a stable Lévy subordinator, which is a Lévy process. Below we intro-
duce Lévy processes and stable subordinators. Lévy processes form a wide class of
stochastic processes. For us particular Lévy processes, namely, Lévy stable subor-
dinators, and symmetric stable Lévy processes will be of interest.

Definition 7.3. By definition, a Lévy process Lt ∈R
n, t ≥ 0, is an adapted stochastic

process satisfying the following conditions:

1. L0 = 0;
2. has independent stationary increments;
3. for all ε, t > 0, lims→t P(|Lt −Ls|> ε) = 0.
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Comparing with Definition 7.2 of Brownian motion, we notice that a Lévy process
is not required to have the density (7.5), and the path wise continuity condition is
weakened to the “continuity in probability.” Hence, Lévy processes may have jumps
in a countable number of points. To study jumps it is convenient to introduce a class
of càdlàg processes. A càdlàg process, by definition, is right continuous with left
limits. Any Lévy process has a càdlàg modification, which is again Lévy process
[App09]. Moreover, any Lévy process is a semimartingale. (See the definition in
Section 7.16 “Additional notes”).

Lévy processes are characterized by three parameters (b,Σ ,ν), called a charac-
teristic triple, where b ∈ R

n, Σ is a nonnegative definite (n× n)-matrix, and ν is a
measure defined on R

n \ {0}, such that
∫
Rn

min(1, |x|2)dν < ∞. (7.30)

The measure ν is called a Lévy measure. The Lévy-Khintchine formula character-
izes a Lévy process (as an infinitely divisible process) in terms of its characteristic
function

Φt(ξ ) = E(eiξLt ) = etΨ (ξ ), (7.31)

with

Ψ(ξ )= i(b,ξ )− 1
2
(Σξ ,ξ )+

∫
Rn\{0}

(ei(w,ξ )−1− i(w,ξ )χ(|w|≤1)(w))ν(dw). (7.32)

The functionΨ is called the Lévy symbol of Lt .
Another characterization of Lévy processes is given by the Lévy-Itô decomposi-

tion theorem, which states that

Lt = b0t +σBt +

∫
|w|<1

wÑ(t,dw)+
∫
|w|≥1

wN(t,dw), (7.33)

where b0 ∈ R
n, σ is an n×m-matrix such that σσT = Σ , Bt is an m-dimensional

Brownian motion, and N(t,dw) is a Poisson random measure and Ñ(t,dw) =
N(t,dw) − tν(dw) is a compensated Poisson martingale-valued measure; see
“Additional notes” for the definition.

The first two terms in equations (7.32) and (7.33) characterize a Brownian com-
ponent of the Lévy process and the other terms are responsible for jumps. In Lévy-
Ito’s decomposition (7.33) small and large jumps are classified by the third and
fourth terms.

Consider some examples of Lévy processes. Two important subclasses of Lévy
processes (examples 2 and 3 below), called symmetric α-stable Lévy processes and
β -stable Lévy subordinators will essentially be used in our further considerations.
Symmetric α-stable processes will be used as alternatives to Brownian motion, and
inverses to stable subordinators as time-change processes.



298 7 Fractional Fokker-Planck-Kolmogorov equations

Example 7.3. 1. Let in the triple (b,Σ ,ν) the Lévy measure ν ≡ 0. Then the corre-
sponding Lévy process is Brownian motion, that is Lt = Bt , with the drift b and
the correlation matrix Σ . This is the only class of Lévy processes with no jump
components.

2. Lévy’s symmetric α-stable processes. Let b = 0, Σ = 0 in the triple (b,Σ ,ν),
and the Lévy measure ν is defined so that the Lévy symbol is

Ψ (ξ ) =−|ξ |α , 0 < α < 2. (7.34)

In this case the corresponding Lévy process is called a symmetric α-stable pro-
cess. Let, for example, the Lévy measure ν depend only on the radial variable

r =
√

x2
1 + · · ·+ x2

n, and be defined as

ν(dx) =
Cαdx
|x|α+n ,

where Cα is the normalizing constant specified below. This measure satisfies the
condition (7.30) if 0 < α < 2. One can show that in this case the Lévy symbol
has the form (7.34). Indeed, it follows from (7.32) that

Ψ(ξ ) =Cα

∫

|w|≤1

ei(w,ξ )− 1− i(w,ξ )
|w|α+n dw+Cα

∫

|w|>1

ei(w,ξ )− 1
|w|α+n dw.

The substitution w = x/|ξ |, ξ �= 0, leads

Ψ(ξ ) =Cα |ξ |α
⎛
⎜⎝

∫

|x|≤|ξ |

ei(x,θ)− 1− i(x,θ )
|x|α+n dx+

∫

|x|>|ξ |

ei(x,θ)− 1
|x|α+n dx

⎞
⎟⎠ ,

where |θ | is a point on the unit sphere in R
n with the center at the origin, and

therefore, the expression in parentheses does not depend on θ . Taking into ac-
count the equality ∫

Rn

(x,θ )(I|x|≤1− I|x|≤|ξ |)
|x|n+α dx = 0,

one has

Ψ(ξ ) =Cα |ξ |α
∫

Rn

(
ei(x,θ)− 1− i(x,θ )I|x|≤1

) dx
|x|α+n dx =−|ξ |α ,

where we set

Cα =−
⎡
⎣∫
Rn

(
ei(x,θ)− 1− i(x,θ )I|x|≤1

) dx
|x|α+n dx

⎤
⎦
−1

.
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We denote Lévy’s m-dimensional symmetricα-stable process byLα ,t . A stochas-
tic differential equation driven by Lα ,t we write in the form

dXt = g(Xt−)dLα ,t , Xt=0 = X0,

where g(x) is (n×m)-matrix valued function satisfying the Lipschitz continuity
and growth conditions.

3. Lévy’s β -stable subordinators. One-dimensional nonnegative, nondecreasing
Lévy processes are called subordinators. This implies Σ to be the zero ma-
trix, b ≥ 0, ν(−∞,0) = 0 and

∫
min(1, |x|)ν(dx) < ∞. We will not consider

in this book subordinators in such a general form. We will be interested only
in the subclass of Lévy’s stable subordinators. For β ∈ (0,1), a β -stable sub-
ordinator is a strictly increasing subordinator Wt , which is self-similar, i.e.
Wt = t1/βW1 in the sense of finite-dimensional distributions, and with the Lévy
symbolΨ (s) = −sβ , s≥ 0. Due to equations (7.31) and (7.32), the latter can be
written as

E[e−sW1 ] = e−sβ , s≥ 0. (7.35)

This in terms of the density function fW1(τ), τ ≥ 0, of the random variable W1

takes the form

E[e−sW1 ] =

∞∫

0

e−sτ fW1(τ)dτ = L[ fW1 ](s) = e−sβ ,

where L[ fW1 ](s) is the Laplace transform of fW1(τ). Since the Laplace transform
of fW1(τ) decays exponentially at infinity, it follows from the general theory of
Laplace transforms and Watson’s lemma that fW1(τ) is infinitely differentiable
on (0,∞), and vanishes at zero at an exponential rate. In fact, fW1

(τ) has the
following asymptotic behavior at zero and infinity: [MLP01, UZ99]:

fW1
(τ)∼ (βτ )

2−β
2(1−β)√

2πβ (1−β )
e
−(1−β )( τβ )

− β
1−β

, τ→ 0; (7.36)

fW1
(τ)∼ β

Γ (1−β )τ1+β , τ → ∞. (7.37)

The Lévy-Ito decomposition (7.33), in fact, gives a clue how the stochastic differ-
ential equation (7.11) driven by Brownian motion can be extended to SDEs driven
by a Lévy process Lt . Namely, by SDE driven by a Lévy process we understand the
equation

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs +

∫ t

0

∫
|w|<1

H(X−s,w)Ñ(ds,dw)

+

∫ t

0

∫
|w|≥1

K(X−s,w)N(ds,dw), (7.38)
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where the continuous mappings b(x) : Rn →R
n, σ(x) : Rn →R

n×m, and G(x,w) =
χ(|w|<1)(w)H(x,w)+ χ(|w|≥1)(w)K(x,w) : Rn×R

n → R
n satisfy the following Lip-

schitz and growth conditions, respectively:

|b(x)− b(y)|2 + ‖σ(x)−σ(y)‖2+
∫
|w|<1

|H(x,w)−H(y,w)|2ν(dw)

≤C1|x− y|2, ∀x,y ∈ R
n; (7.39)∫

|w|<1
|H(x,w)|2ν(dw)≤C2(1+ |x|2), ∀x ∈ R

n. (7.40)

7.6 Inverse processes to Lévy’s stable subordinators

Let Et be the first hitting time process for a stable subordinator Wt with stability
index β ∈ (0,1). The process Et is also called an inverse to Wt . The relation between
Et and Wt can be expressed as Et = min{τ : Wτ > t}. Since Wt is strictly increasing,
its inverse process Et is continuous and nondecreasing, but not a Lévy process.
Likewise the time-changed process BEt is also not a Lévy process (see details in
[HKU10]).

We denote by ft(τ) the density function of Et . If fW1
(t) is the density function of

W1, then

ft (τ) =
∂
∂τ

P(Et ≤ τ) =
∂
∂τ
(
1−P(Wτ < t)

)

=− ∂
∂τ

P(W1 <
t

τ1/β ) =− ∂
∂τ

[J fW1
](

t

τ1/β )

=− ∂
∂τ

∫ t
τ1/β

0
fW1

(u)du =
t

βτ1+ 1
β

fW1
(

t

τ
1
β
), τ ≥ 0. (7.41)

Since fW1
(u)∈C∞(0,∞), it follows from representation (7.41) that ft(τ) ∈C∞(R2

+),

where R
2
+ = (0,∞)× (0,∞). Further properties of ft (τ) are represented in the fol-

lowing lemma.

Lemma 7.1. Let ft(τ) be the function given in (7.41). Then

(a) limt→+0 ft (τ) = δ0(τ) in the sense of the topology of the space of Schwartz
distributions D ′(R);

(b) limτ→+0 ft (τ) = t−β
Γ (1−β ) , t > 0;

(c) limτ→∞ ft(τ) = 0, t > 0;

(d) Lt→s[ ft(τ)](s) = sβ−1e−τsβ , s > 0, τ ≥ 0,

where Lt→s denotes the Laplace transform with respect to the variable t.
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Proof. (a) Let ψ(τ) be an infinitely differentiable function with compact support.
We have to show that limt→+0 < ft ,ψ >= ψ(0). Here < ft ,ψ > denotes the value
of ft ∈D ′(R) on ψ . We have

lim
t→+0

< ft(τ),ψ(τ) >= lim
t→+0

∫ ∞

0
ft(τ)ψ(τ)dτ = lim

t→+0

∫ ∞

0
fW1

(u)ψ
(
(

t
u
)β
)
du

= ψ(0)
∫ ∞

0
fW1

(u)du = ψ(0).

Parts (b) and (c) follow from asymptotic relations (7.37) and (7.36), respectively.
Part (d) is straightforward. One needs just to compute the Laplace transform of
ft (τ) using the representation ft (τ) =− ∂

∂τ [J fW1
]( t
τ1/β ). Indeed,

Lt→s[ ft (τ)](s) = Lt→s

[
− ∂
∂τ

[J fW1
](

t

τ1/β )

]
(s)

=−1
s
∂
∂τ

Lt→s

[
fW1

(
t

τ1/β )

]
(s)

=−1
s
∂
∂τ

(
e−τsβ

)
= sβ−1e−τsβ .

Due to part (b) of Lemma 7.1, ft ∈ C∞(0,∞) for each fixed τ ≥ 0. Hence, the

fractional derivative Dβ
∗,t ft (τ) in the variable t is meaningful and is a generalized

function of the variable τ . Notice also that Part (d) means

L−1
s→t

[
sβ−1e−τsβ

]
(t) = ft(τ).

Lemma 7.2. The function ft (τ) defined in (7.41) for each t > 0 satisfies the equation

Dβ
∗,t ft (τ) =− ∂

∂τ
ft(τ)− t−β

Γ (1−β )
δ0(τ). (7.42)

Remark 7.1. Equality (7.42) is understood in the sense of distributions. The frac-
tional derivative Dβ

∗,t and the partial derivative ∂
∂τ in this equation are in the usual

sense, since ft (τ) ∈C∞(R2
+).

Proof. The Laplace transform (in variable t) of Dβ
∗,t ft(τ), due to formula (3.55) in

the case 0 < β < 1, and using Parts (a) and (d) of Lemma 7.1, equals

Lt→s[D
β
∗,t ft (τ)](s) = sβLt→s[ ft(τ)](s)− sβ−1 lim

t→+0
ft (τ)

= s2β−1e−τsβ − sβ−1δ0(τ), s > 0.

On the other hand, computing the inverse Laplace transform of both sides of this
equality, one obtains
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Dβ
∗,t ft(τ) = L−1

s→t

[
s2β−1e−τsβ − sβ−1δ0(τ)

]
(t)

= L−1
s→t

[
−sβ−1 ∂

∂τ
e−τsβ

]
(t)− δ0(τ)L−1

s→t

[
1

s1−β

]
(t)

=− ∂
∂τ

L−1
s→t [s

β−1e−τsβ ](t)− δ0(τ)
t−β

Γ (1−β )

=− ∂
∂τ

ft(τ)− t−β

Γ (1−β )
δ0(τ),

completing the proof.

Proposition 7.4. The function ft (τ) defined in (7.41) for each t > 0 satisfies the
equation

ft (τ) =− ∂
∂τ

Jβt ft (τ). (7.43)

Proof. Applying the fractional integration operator Jβ to equation (7.42), we have

ft (τ)− lim
t→0+

ft(τ) =− ∂
∂τ

Jβt ft(τ)− δ0(τ)
Γ (1−β )

Jβt t−β ,

in the sense of distributions. Due to part (a) of Lemma 7.1 we have limt→0+ ft(τ) =
δ0(τ). This fact together with the equation Jβ t−β = Γ (1−β ) implies (7.43).

7.7 Fractional FPK equations

Suppose Xt ∈R
n is a solution to the stochastic differential equation

dXt = b(Xt)dt +σ(Xt)dBt , Xt=0 = x,

where vector-functions b : Rn → R
n and σ : Rn → R

n×m satisfy the Lipschitz and
linear growth conditions, Bt is an m-dimensional Brownian motion, and x ∈ R

n is a
fixed point. We have seen above (Section 7.3) that in this case the associated FPK is

∂u(t,x)
∂ t

=A u(t,x), t > 0, x ∈R
n, (7.44)

u(0,x) = ϕ(x), x ∈R
n; (7.45)

where A is a differential operator defined in (7.17). The solution u(t,x) to Cauchy
problem (7.44)–(7.45) is connected with the stochastic process Xt via the relation-
ship u(t,x) = E[ϕ(Xt)|X0 = x].

Below we will show that the FPK equation associated with the time-changed
process XEt , where Et is the process inverse to the Lévy’s stable subordinator with
the stability index β , has the form

Dβ
∗ v(t,x) =A v(t,x), t > 0, x ∈ R

n, (7.46)
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with the initial condition

v(0,x) = ϕ(x), (7.47)

where Dβ
∗ is the fractional derivative in the sense of Caputo-Djrbashian. We note

that solutions to equations (7.44) and (7.46) are connected via a certain relationship.
Namely, a solution v(t,x) to equation (7.46) satisfying the initial condition (7.47)
can be represented through the solution u(t,x) to equation (7.44), satisfying the
same initial condition (7.45), by the formula

v(t,x) =
∫ ∞

0
ft(τ)u(τ,x)dτ,

where ft (τ) is the density function of Et for each fixed t > 0. Indeed, conditioning
on the event [Et = τ], τ ∈ (0,∞),

v(t,x) = E
x(ϕ(XEt )) =

∫ ∞

0
E

x
(
ϕ(XEt )|Et = τ

)
P(Et ∈ dτ)

=

∫ ∞

0
u(τ,x) ft (τ)dτ.

Using Lemma 7.2, we have

Dβ
∗,tv(t,x) =

∫ ∞

0
Dβ
∗,t ft (τ)u(τ,x)dτ

=−
∫ ∞

0

[ ∂
∂τ

ft (τ)+
t−β

Γ (1−β )
δ0(τ)

]
u(τ,x)dτ

=− lim
τ→∞

[ ft(τ)u(τ,x)]+ lim
τ→0

[ ft(τ)u(τ,x)]

+
∫ ∞

0
ft (τ)

∂
∂τ

u(τ,x)dτ− t−β

Γ (1−β )
u(0,x).

Due to Lemma 7.1, part (c) implies the first term vanishes since u(τ,x) is bounded,
while part (b) implies the second and last terms cancel. Taking into account (7.44),

Dβ
∗,t v(t,x) =

∫ ∞

0
ft (τ)A u(τ,x)dτ =A v(t,x).

Moreover, by property (a) of Lemma 7.1,

lim
t→+0

v(t,x) =< δ0(τ),u(τ,x) >= u(0,x) = ϕ(x).

Thus, we proved the following theorem:

Theorem 7.1. Let u(t,x) be a solution of Cauchy problem (7.44)–(7.45). Then the
function v(t,x) =

∫ ∞
0 ft(τ)u(τ,x), where ft(τ) is the density function of Et , satisfies

the Cauchy problem for fractional order differential equations (7.46)–(7.47).



304 7 Fractional Fokker-Planck-Kolmogorov equations

7.8 Mixed time-changed processes

Let Wt be an (Ft)-adapted strictly increasing càdlàg process, or equivalently, a
strictly increasing (Ft)-semimartingale, and Et = inf{τ ≥ 0 : Wτ > t}, the first
hitting time process. Then it follows from the definition of Et that Et is a contin-
uous (Ft)-time-change and P(Et ≤ τ) = P(Wτ > t). If Wt = W1,t +W2,t , where
W1,t and W2,t are independent (Ft)-adapted strictly increasing càdlàg processes,
then Wt also possesses the same property and its inverse process, Et , satisfies

P(Et ≤ τ) = 1− (F (1)
τ ∗ F (2)

τ )(t), where for k = 1,2, F (k)
τ (t) = P(Wk,τ ≤ t) with

density f (k)τ , and ∗ denotes convolution of cumulative distribution functions or den-
sities, whichever is required. For notational convenience, if a,b > 0, let

[
F (1)

1

( ·
a

)
∗F(2)

1

( ·
b

)]
(t) :=

∫ s=t

s=0
F (1)

1

(
t− s

a

)
dF (2)

1

( s
b

)
,

which through the density functions can also be written as

[
F (1)

1

( ·
a

)
∗F(2)

1

( ·
b

)]
(t) =

1
b

∫ s=t

s=0

(
J f (1)1

)( t− s
a

)
f (2)1

( s
b

)
ds,

where J is the usual integration operator.

Lemma 7.3. Let Wt = c1W1,t + c2W2,t , where c1,c2 are positive constants and W1,t

and W2,t are independent stable subordinators with respective indices β1 and β2 in
(0,1). Then the inverse Et of Wt satisfies

P(Et ≤ τ) = 1−
[

F (1)
1

(
·

c1τ
1
β 1

)
∗F(2)

1

(
·

c2τ
1
β 2

)]
(t) (7.48)

and has density

fEt (τ) =− ∂
∂τ

{
1

c2τ
1
β 2

[(
J f (1)1

)( ·
c1τ

1
β 1

)
∗ f (2)1

(
·

c2τ
1
β 2

)]
(t)

}
. (7.49)

Proof. Since W1,τ and W2,τ are independent and self-similar processes,

P(Et ≤ τ) = P(Wτ > t) = 1−P

(
c1τ

1
β 1W1,1 + c2τ

1
β 2W2,1 ≤ t

)

= 1−
[

F(1)
1

(
·

c1τ
1
β 1

)
∗F(2)

1

(
·

c2τ
1
β 2

)]
(t),

from which (7.49) follows immediately upon differentiating with respect to τ .

The following lemma provides an estimate for the density function fEt (τ).
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Lemma 7.4. For any t < ∞, the density fEt (τ) in (7.49) is bounded and there exist
a number β ∈ (0,1) and positive constants C, k, not depending on τ , such that

fEt (τ)≤C exp
(
−kτ

1
1−β
)

(7.50)

for τ large enough.

Proof. Suppose for clarity that 0 < β1 < β2 < 1 in representation (7.49). It follows
that fEt (τ) = I1 + I2 + I3, where

I1 =
1

β2c2τ
1+ 1

β2

∫ t

0

(
J f (1)1

)( s

c1τ
1
β 1

)
f (2)1

(
t− s

c2τ
1
β 2

)
ds,

I2 =
1

β1c1c2τ
1+ 1

β1
+ 1

β2

∫ t

0
s · f (1)1

(
s

c1τ
1
β 1

)
f (2)1

(
t− s

c2τ
1
β 2

)
ds,

and

I3 =
1

c2τ
1
β2

∫ t

0
s · (J f (1)1

)( s

c1τ
1
β 1

)(
f (2)1

)′
(

t− s

c2τ
1
β 2

)
ds.

It is easy to see that integration by parts reduces I3 to the sum of integrals of types

I1 and I2, namely, I3 = β2c2τ
1+ 1

β 2I1 +β1τI2. Therefore, it suffices to estimate I1

and I2. First notice that both functions f (1)1 , f (2)1 are continuous on [0,∞), and

J f (1)1 (t)≤ 1. Consequently, in accordance with the mean value theorem, there exist
numbers s∗,s∗∗ ∈ (0, t) such that

I1 ≤ t

β2c2τ
1+ 1

β2

f (2)1

(
s∗

c2τ
1
β 2

)
, (7.51)

and

I2 =
ts∗∗

β1c1c2τ
1+ 1

β1
+ 1

β2

f (1)1

(
s∗∗

c1τ
1
β 1

)
f (2)1

(
t− s∗∗

c2τ
1
β 2

)
. (7.52)

For τ small enough, (7.37) implies

I1 ≤C1, I2 ≤C2τ and I3 ≤C3τ2,

where C1,C2, and C3 are constants not depending on τ . These estimates and conti-
nuity of convolution imply boundedness of fEt (τ) for any τ < ∞.

Now suppose that τ is large enough. Then taking into account (7.36) in (7.51)
and (7.52), it is not hard to verify that

I1 ≤ C3

τ
1−2β2

2(1−β2)

exp

(
−k1τ

1
1−β2

)
,
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and

I2 ≤ C4

τ1− β1
2(1−β1)

− β2
2(1−β2)

exp

(
−k2(τ

1
1−β1 + τ

1
1−β2 )

)
,

where C3,C4 and k1,k2 are positive constants not depending on τ. Selecting
β = β1 = min(β1,β2), C = max(C3,C4), and k = min(k1,2k2) − ε, where
ε ∈ (0,min(k1,2k2)), yields (7.50).

Two lemmas proved above can be extended to weighted averages of an arbitrary
number of independent stable subordinators. It is easy to verify that the process
Wt = ∑N

k=1 ckWk,t satisfies

lnE
[
e−sDt

]∣∣∣
t=1

=−
N

∑
k=1

cβk
k sβk , s≥ 0. (7.53)

The function on the right-hand side of (7.53) can be expressed as the integral
−∫ 1

0 sβdμ(β ), with μ the finite atomic measure,

dμ(β ) =
N

∑
k=1

cβk
k δβk

(β )dβ .

Definition 7.4. Let μ be a finite measure defined on the interval [0,1]. Let S desig-
nate the class of strictly increasing (Ft )-semimartingales Vt ,V0 = 0, whose Laplace
transform is given by

lnL[ fVt (τ)](s) = lnE
[
e−sVt

]
=−t

∫ 1

0
sβdμ(β ), s≥ 0,

where fVt (τ), τ > 0, is the density function of the process Vt . This class obviously
contains stable subordinators and all mixtures of finitely many independent stable
subordinators. By construction, V0 = 0 a.s., and Vt can be considered as a weighted
mixture of independent stable subordinators. For the process Vt ∈ S corresponding
to a finite measure μ , we use the notation Vt =W μ

t to indicate this correspondence.
In particular, if dμ(β )= a(β )dβ , where a is a positive continuous function on [0,1],
we write Vt =W a

t .

Remark 7.2. Lemma 7.4 remains valid for the inverse Eμ
t of any mixture W μ

t of
independent Lévy’s stable subordinators with a mixing measure μ whose support
suppμ ⊂ (0,1].

7.9 Distributed order FPK equations

The technique used in Section 7.7 extends to the more general case when the
time-change process is the first hitting time for an arbitrary mixture of indepen-
dent stable subordinators. Let φ(s) =

∫ 1
0 sβdμ(β ), where μ is a finite measure
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with suppμ ⊂ (0,1]. Let W μ
t be a nonnegative stochastic process satisfying

E(e−sW μ
t ) = e−tφ(s), and Eμ

t = min{τ : W μ
τ > t}. The process W μ

t represents a mix-
ture of independent stable subordinators with a mixing measure μ .

Theorem 7.2. Let u(t,x) be a solution of the Cauchy problem

∂u(t,x)
∂ t

=A u(t,x), t > 0, x ∈ R
n, (7.54)

u(0,x) = ϕ(x), x ∈R
n. (7.55)

Then the function v(t,x) =
∫ ∞

0 f μt (τ)u(τ,x), where f μt (τ) is the density function of
Eμ

t , satisfies the initial value problem for the distributed order differential equation

Dμv(t,x)≡
∫ 1

0
Dβ
∗,t v(t,x)dμ(β ) =A v(t,x), t > 0, x ∈R

n, (7.56)

v(0,x) = ϕ(x), x ∈ R
n. (7.57)

The proof of this theorem requires two lemmas which generalize Lemmas 7.1
and 7.2. Define the function

Φμ(t) =
∫ 1

0

t−β

Γ (1−β )
dμ(β ), t > 0. (7.58)

Lemma 7.5. Let f μt (τ) be the function defined in Theorem 7.1. Then

(a) limt→+0 f μt (τ) = δ0(τ), τ ≥ 0;

(b) limτ→+0 f μt (τ) =Φμ(t), t > 0;

(c) limτ→∞ f μt (τ) = 0, t > 0;

(d) Lt→s[ f
μ
t (τ)](s) = φ(s)

s e−τφ(s), s > 0, τ ≥ 0.

Proof. First, notice that f μt (τ) = fEμ
t
(τ) =− ∂

∂τ [J fW μ
τ
](t), where J is the usual int-

egration operator. The proofs of parts (a)− (c) are similar to the proofs of parts
(a)− (c) of Lemma 7.1. Further, using the definition of W μ

t ,

Lt→s[ f
μ
t (τ)](s) =−1

s
∂
∂τ

Lt→s[ fW μ
τ
(t)](s) =

φ(s)
s

e−τφ(s), s > 0,

which completes the proof.

Lemma 7.6. The function f μt (τ) defined in Theorem 7.1 satisfies for each t > 0 the
following equation

Dμ,t f μt (τ) =− ∂
∂τ

f μt (τ)− δ0(τ)Φμ(t), (7.59)

in the sense of tempered distributions.
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Proof. Integrating both sides of the equation

Lt→s
[
Dβ
∗,t f μt (τ)

]
= sβLt→s[ f

μ
t (τ)](s)− sβ−1δ0(τ),

and taking into account part (d) of Lemma 7.5, yields

Lt→s
[
Dμ,t f μt (τ)

]
=

φ2(s)
s

e−τφ(s)− φ(s)
s

δ0(τ).

It is easy to verify that the latter coincides with the Laplace transform of the right-
hand side of (7.59).

Proof (of Theorem 7.2). Using Lemma 7.6, we have

Dμ,t v(t,x) =
∫ ∞

0
Dμ,t f μt (τ)u(τ,x)dτ

=− lim
τ→∞

[ f μt (τ)u(τ,x)]+ lim
τ→0

[ f μt (τ)u(τ,x)]

+

∫ ∞

0
f μt (τ)

∂
∂τ

u(τ,x)dτ−Φμ(t)u(0,x) =
∫ ∞

0
f μt (τ)

∂
∂τ

u(τ,x)dτ,

since the limit limτ→∞[ f
μ
t (τ)u(τ,x)] = 0 due to parts (c) of Lemma 7.5, and

limτ→0[ f
μ
t (τ)u(τ,x)] = Φμ(t)u(0,x) due to part (b) of Lemma 7.5. Now taking

into account equation (7.54),

Dμ,t v(t,x) =
∫ ∞

0
f μt (τ)A u(τ,x)dτ =A v(t,x).

The initial condition (7.55) is also verified by using property (a) of Lemma 7.5:

lim
t→+0

v(t,x) =< δ0(τ),u(τ,x) >= u(0,x) = ϕ(x),

which completes the proof.

Corollary 7.1. Let the Cauchy problem (7.54)–(7.55) represent the FPK equation
associated with stochastic differential equation dXt = b(Xt)dt +σ(Xt)dBt with the
initial condition X0. Then the fractional FPK equation associated with the time-
changed stochastic process XEμ

t
is given by Cauchy problem (7.56)–(7.57).

Unfortunately, this method does not provide any information about stochastic
differential equations associated with fractional order FPK equations. To establish
the connection between fractional FPK equations and their associated stochastic
differential equations we further need to study properties of densities of time-change
processes, and to establish some auxiliary results. This is done in the next section.
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7.10 Connection with semigroups and their infinitesimal
generators

In Example 7.2 we saw that Brownian motion Bt is associated with a semigroup
Tt : C0(R

n)→C0(R
n) (or Tt : L2(R

n)→ L2(R
n)) of linear bounded operators with

the infinitesimal generator A = 1
2Δ , which is a closed operator with the domain

D(A ) =C2
0(R

n) (or D(A ) = H1(Rn)).
This relationship is true for wide class of (Markovian) stochastic processes. For

every Lévy process (see, e.g., [App09]) there is an associated semigroup {Tt , t ≥ 0}
defined on C0(R

n) with infinitesimal generator A whose domain contains C2
0(R

n).
The infinitesimal generator of the Lévy process with characteristics (b,Σ ,ν) is a
pseudo-differential operator A =Ψ (Dx) with the symbol Ψ(ξ ) defined in (7.32).
The explicit form of this operator with the domain C2

0(R
n) is

Ψ (Dx)ϕ(x) =
n

∑
j=1

b j
∂ϕ
∂x j

+
1
2

n

∑
i j=1

σi j
∂ 2ϕ
∂xi∂x j

+

∫
Rn\{0}

[
ϕ(x−w)−ϕ(x)− χ(|w|≤1)(w)

n

∑
j=1

wj
∂ϕ
∂x j

]
ν(dw). (7.60)

Indeed, due to definition (7.32) of the symbolΨ(ξ ), one has

Ψ(Dx)ϕ(x) =
1

(2π)n

∫
Rn

e−i(x,ξ )Ψ(ξ )F[ϕ ](ξ )dξ

=
1

(2π)n

∫
Rn

e−i(x,ξ )
[
i(b,ξ )− 1

2
(Σξ ,ξ )

+
∫
Rn\{0}

(
ei(w,ξ )−1− i(w,ξ )χ(|w|≤1)(w)

)
ν(dw)

]
F [ϕ ](ξ )dξ

=
n

∑
j=1

b j
∂ϕ
∂x j

+
1
2

n

∑
i j=1

σi j
∂ 2ϕ
∂xi∂x j

+

∫
Rn\{0}

[ 1
(2π)n

∫
Rn

e−i(x−w,ξ )F[ϕ ](ξ )dξ − 1
(2π)n

∫
Rn

e−i(x,ξ )F [ϕ ](ξ )dξ

−χ(|w|≤1)(w)
n

∑
j=1

w j
∂ϕ
∂x j

]
ν(dw)

Now changing the order of integration, valid for functions ϕ ∈ C
2
0(R

n),
implies (7.60).

We note that {Tt , t ≥ 0}, associated with the Lévy process Lt , is also a semigroup
on L2(Rn) and the domain of its infinitesimal generator Ψ(Dx) is the anisotropic
Sobolev space W (Rn) = {ϕ ∈ L2(Rn) :

∫
Rn |Ψ(ξ )|2|ϕ̂(ξ )|2dξ < ∞} (see [Jac01]).

If Lt is a symmetric α-stable process, then W (Rn) coincides with the Sobolev space
Hα(Rn).
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Further, if Xt solves SDE (7.38), then (Ttϕ)(x) = E[ϕ(Xt)|X0 = x] is a strongly
continuous contraction semigroup defined on the Banach space C0(R

n). Moreover,
its infinitesimal generator is the operator [App09, Sit05]

L (x,Dx)ϕ(x) =
n

∑
j=1

b j(x)
∂ϕ
∂x j

+
1
2

n

∑
i j=1

σi j(x)
∂ 2ϕ
∂xi∂x j

+
∫

Rn\{0}

[
ϕ
(
x−G(x,w)

)−ϕ(x)− iχ(|w|<1)(w)
n

∑
j=1

G j(x,w)
∂ϕ(x)
∂x j

]
ν(dw),

(7.61)

with G(x,w) =H(x,w) if |w|< 1, and G(x,w) =K(x,w) if |w| ≥ 1. This is a pseudo-
differential operator with the symbol

Ψ (x,ξ ) = i(b(x),ξ )− 1
2
(Σ(x)ξ ,ξ ) (7.62)

+

∫
Rn\{0}

(ei(G(x,w),ξ )− 1− i(G(x,w),ξ )χ(|w|<1)(w))ν(dw),

Indeed, for ϕ ∈C2
0(R

n)⊂D(L (x,D)), one has

L (x,Dx)ϕ(x) =
1

(2π)n

∫

Rn

e−i(x,ξ )Ψ(x,ξ )F [ϕ](ξ )dξ

=
1

(2π)n

∫

Rn

e−i(x,ξ )
[
i(b(x),ξ )− 1

2
(Σ (x)ξ ,ξ )

+
∫
Rn\{0}

(ei(G(x,w),ξ )−1− i(G(x,w),ξ )χ(|w|<1)(w))ν(dw)
]
F [ϕ](ξ )dξ

=
n

∑
j=1

b j(x)
∂ϕ
∂x j

+
1
2

n

∑
i j=1

σi j(x)
∂ 2ϕ
∂xi∂x j

++
1

(2π)n

∫

Rn

e−i(x,ξ )
[ ∫

Rn\{0}
(ei(G(x,w),ξ )−1− i(G(x,w),ξ )χ(|w|<1)(w))ν(dw)

]
F [ϕ](ξ )dξ

Changing the order of integration in the last line, which is valid for any ϕ ∈C2
0(R

n),
we reduce it to

∫
Rn\{0}

[ 1
(2π)n

∫

Rn

e−i(x−G(x,w),ξ )F[ϕ ](ξ )dξ − 1
(2π)n

∫

Rn

e−i(x,ξ )F [ϕ ](ξ )dξ

− χ(|w|<1)(w)
n

∑
j=1

G j(x,w)
∂ϕ(x)
∂x j

]
ν(dw).

Further, using properties of Fourier transform, the expression under the outer inte-
gral in the latter can be written in the form
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ϕ
(
x−G(x,w)

)−ϕ(x)− χ(|w|<1)(w)
n

∑
j=1

G j(x,w)
∂ϕ(x)
∂x j

.

Thus, the infinitesimal generator L (x,Dx) of the solution of SDE (7.38) has the
form (7.61). Moreover, if vector-functions b(x), Σ(x), and G(x,w) satisfy Lipschitz
and linear growth conditions, then the mapping L (x,Dx) : C2

0(R
n) → C0(R

n) is
continuous, that is C2

0(R
n)⊂ Dom

(
L (x,Dx)

)
.

A time-changed stochastic process, in general, does not have an associated semi-
group. This is the case when the time-change process Et is the inverse to Lévy’s
β -stable subordinator. However, if a stochastic process Xt has an associated strongly
continuous semigroup Tt with an infinitesimal generator A , then this information
can be effectively used in description of the time-changed process XEt or XEμ

t
, where

μ is a mixing measure. Below we establish two important abstract theorems in this
context which are required for the main results of Section 7.11.

Let {Tt , t ≥ 0} be a strongly continuous semigroup defined on a Banach space
X with norm ‖ · ‖, such that the estimate

‖Ttϕ‖ ≤M‖ϕ‖eωt (7.63)

is valid for some constants M > 0 and ω ≥ 0. This assumption implies that any
number s with Re(s) > ω belongs to the resolvent set ρ(A ) of the infinitesimal
generator A of Tt and the resolvent operator is represented in the form R(s,A ) =∫ ∞

0 e−stTt dt [EN99].

Theorem 7.3. Define the process Wt = c1W1,t +c2W2,t , where W1,t and W2,t are ind-
ependent stable subordinators with respective indices β1,β2 ∈ (0,1) and constants
c1 > 0, c2 > 0. Let Et be the inverse process to Wt. Suppose Tt is a strongly continu-
ous semigroup in a Banach space X satisfies (7.63), and has infinitesimal genera-
tor A withDom(A )⊂X . Then, for each fixed t ≥ 0, the integral

∫ ∞
0 fEt (τ)Tτϕ dτ

exists and the vector-function v(t) =
∫ ∞

0 fEt (τ)Tτϕ dτ, where ϕ ∈ Dom(A ), sat-
isfies the abstract Cauchy problem for the distributed order fractional differential
equation

C1Dβ1∗ v(t)+C2Dβ2∗ v(t) =A v(t), t > 0, (7.64)

v(0) = ϕ , (7.65)

where Dβ
∗ is the fractional derivative of order β in the sense of Caputo-Djrbashian,

and C1 = cβ1
1 and C2 = cβ2

2 .

Proof. First, define a vector-function p(τ) = Tτϕ , where ϕ ∈ Dom(A ). In accor-
dance with the conditions of the theorem, p(τ) satisfies the abstract Cauchy problem

∂ p(τ)
∂τ

=A p(τ), p(0) = ϕ , (7.66)
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where the operator A is the infinitesimal generator of Tτ . Now consider the integral∫ ∞
0 fEt (τ)Tτϕ dτ. It follows from Lemma 7.4 and condition (7.63) that

∥∥∥
∫ ∞

0
fEt (τ)Tτϕ dτ

∥∥∥≤
∫ ∞

0
fEt (τ)‖Tτϕ‖dτ (7.67)

≤C‖ϕ‖
∫ ∞

0
e−(kτ

1
1−β −ωτ) dτ < ∞,

where β ∈ (0,1) and C, k > 0 are constants. Hence, the integral
∫ ∞

0 fEt (τ)Tτϕ dτ
exists in the sense of Bochner for each fixed t ≥ 0. Denote this vector-function by

v(t) =
∫ ∞

0
fEt (τ)Tτϕ dτ.

It follows immediately from the definition of the semigroup Tt that

v(0) = lim
t→0+

∫ ∞

0
fEt (τ)Tτϕ dτ = T0ϕ = ϕ ,

in the norm of X . By (7.49),

v(t) =−
∫ ∞

0

∂
∂τ

{
1

c2τ
1
β 2

[
(J f (1)1 )

(
·

c1τ
1
β 1

)
∗ f (2)1

(
·

c2τ
1
β 2

)]
(t)

}
Tτϕ dτ.

Since

L

[
1
b

(
J f (1)1

)( t
a

)
∗ f (2)1

( t
b

)]
(s) =

1
b

1
as

(
a f̃ (1)1 (as)

)(
b f̃ (2)1 (bs)

)

=
1
s

f̃ (1)1 (as) f̃ (2)1 (bs),

using (7.35), the Laplace transform of v(t) takes the form

ṽ(s) =−
∫ ∞

0

∂
∂τ

{1
s

e−τc
β1
1 sβ1 e−τc

β2
2 sβ2

}
Tτϕ dτ (7.68)

= (cβ1
1 sβ1−1 + cβ2

2 sβ2−1)
∫ ∞

0
e−τ(c

β1
1 sβ1+c

β2
2 sβ2 )Tτϕ dτ

= (C1sβ1−1 +C2sβ2−1) [̃Tτϕ ](C1sβ1 +C2sβ2)

= (C1sβ1−1 +C2sβ2−1) p̃(C1sβ1 +C2sβ2),

which is well defined for all s such that C1sβ1 +C2sβ2 >ω , where Ck = cβk
k , k = 1,2.

On the other hand it follows from (7.66) that

(s−A )p̃(s) = ϕ , ∀s > ω . (7.69)
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Let ω0 ≥ 0 be a number such that s > ω0 iff C1sβ1 +C2sβ2 > ω . Then (7.68)
and (7.69) together yield

[C1sβ1 +C2sβ2 −A ]ṽ(s) = (C1sβ1−1 +C2sβ2−1)ϕ , s > ω0.

Writing this in the form

C1[s
β1 ṽ(s)− sβ1−1v(0)]+C2[s

β2 ṽ(s)− sβ2−1v(0)] =A ṽ(s), s > ω0, (7.70)

recalling the formula L[Dβ
∗ v(t)](s) = sβL[v](s)−sβ−1v(0) for 0< β < 1 (see Propo-

sition 3.11), and applying the inverse Laplace transform to both sides of equa-
tion (7.70), we obtain

C1Dβ1∗ v(t)+C2Dβ2∗ v(t) =A v(t).

Hence v(t) satisfies the Cauchy problem (7.64)–(7.65).

This theorem can easily be extended to the linear combination of a finite number
of processes Wk,t , k = 1, . . . ,N. The proof has no essential difference.

Theorem 7.4. Define the process Wt = ∑N
k=1 ckWk,t , where Wk,t , k = 1, . . . ,N, are

independent stable subordinators with respective indices βk ∈ (0,1) and constants
ck > 0. Let Et be the inverse process to Wt . Suppose Tt is a strongly continuous
semigroup in a Banach space X , satisfies (7.63), and has infinitesimal generator
A withDom(A )⊂X . Then, for each fixed t ≥ 0, the integral

∫ ∞
0 fEt (τ)Tτϕ dτ ex-

ists and the vector-function v(t) =
∫ ∞

0 fEt (τ)Tτϕ dτ, where ϕ ∈ Dom(A ), satisfies
the abstract Cauchy problem for the distributed order fractional differential equa-
tion

N

∑
k=1

CkDβk∗ v(t) =A v(t), t > 0,

v(0) = ϕ ,

where Dβ
∗ is the fractional derivative of order β in the sense of Caputo-Djrbashian,

and Ck = cβk
k , k = 1, . . . ,N.

The next theorem provides an extension of Theorem 7.4 to an arbitrary time-
change process W μ

t ∈ S; see Definition 7.4.

Theorem 7.5. Assume that W μ
t ∈ S where μ is a positive finite measure with

suppμ ⊂ (0,1), and let Eμ
t be the inverse process to W μ

t . Then the vector-function
v(t) =

∫ ∞
0 fEμ

t
(τ)Tτϕ dτ, where Tt and ϕ are as in Theorem 7.4, exists and satisfies

the abstract Cauchy problem

Dμv(t) =
∫ 1

0
Dβ
∗ v(t)dμ(β ) =A v(t), t > 0, (7.71)

v(0) = ϕ . (7.72)
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Proof. We briefly sketch the proof, since the idea is similar to the proof of Theorem
7.4. Since suppμ ⊂ (0,1), the density f

W
μ
t
(τ),τ ≥ 0, exists and has asymptotics

(7.36) with some β = β0 ∈ (0,1) and (7.37) with some β = β1 ∈ (0,1). This implies
existence of the vector-function v(t). Further, one can readily see that

v(t) =−
∫ ∞

0

∂
∂τ
{J f

W
μ
τ
(t)}(Tτϕ)dτ.

Now it follows from the definition of W μ
t that the Laplace transform of v(t) satisfies

L[v](s) =

∫ 1
0 sβdμ(β )

s

∫ ∞

0
e−τ

∫ 1
0 sβ dμ(β )(Tτϕ)dτ

=
φ(s)

s
L[p](φ(s)), s > ω̄ , (7.73)

where φ(s) =
∫ 1

0 sβdμ(β ), p(t) is a solution to the abstract Cauchy problem (7.66),
and ω̄ > 0 is a number such that s > ω̄ if ρ(s) > ω (ω̄ is uniquely defined, since
φ(s) is a strictly increasing function). Combining (7.73) and (7.69),

(φ(s)−A )ṽ(s) = ϕ
η(s)

s
, s > ω̄ . (7.74)

Applying the Laplace transform to (7.71) yields (7.74), as desired.

Remark 7.3. If ω = 0 in (7.63), that is the semigroup Tt satisfies the inequality
‖Tt‖ ≤ M, then the condition suppμ ⊂ (0,1) in Theorem 7.5 can be replaced by
suppμ ⊂ [0,1).

Example 1. Time-changed Lévy process. The operator A associated with the Lévy
process Lt with characteristics (b,Σ ,ν) is a pseudo-differential operator with the
symbolΨ(ξ ) given in (7.32). The corresponding Cauchy problem takes the form

∂u(t,x)
dt

=A (Dx)u(t,x), u(0,x) = ϕ(x).

Theorem 7.5 implies that if Eμ
t is the first hitting time of the process W μ

t defined
in this theorem and if Eμ

t is independent of Lt , then the Cauchy problem associated
with the time-changed Lévy process LEμ

t
is the initial value problem for the time-

fractional distributed order pseudo-differential equation

Dμu(t,x) =A (Dx)u(t,x), t > 0, x ∈ R
n,

u(0,x) = ϕ(x), x ∈ R
n.
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7.11 Fractional Fokker-Planck-Kolmogorov equations associated
with SDEs driven by a time-changed Lévy process

Suppose Lt is a Lévy process and Et is a continuous time-change process, both with
respect to a filtration Ft . Consider the following SDE driven by the time-changed
Lévy process LEt :

Xt = x+
∫ t

0
b(Xs−)dEs +

∫ t

0
σ(Xs−)dBEs +

∫ t

0

∫
|w|<1

H(Xs−,w)Ñ(dEs,dw)

+

∫ t

0

∫
|w|≥1

K(Xs−,w)N(dEs,dw), (7.75)

where the mappings b(x) :Rn →R
n, σ(x) :Rn →R

n×m, and H(x,w), K(x,w) :Rn×
R

n →R
n satisfy the same conditions as in SDE (7.38). SDE (7.75) is obtained from

SDE (7.38) upon replacing its driving process Lt by a time-changed process LEt . It
is known [Jac79] that, if Lt is an (Ft )-semimartingale and Et is a continuous time-
change process, then LEt is an (FEt )-semimartingale. Thus, (7.75) is the integral
form of an SDE driven by an (FEt )-semimartingale. We use the following shorthand
differential form of SDE (7.75):

dXt = F(Xt−)� dLEt , X0 = x, (7.76)

where F(x) = (b(x),σ(x),G(x, ·)) indicates the triple of coefficients controlling the
drift, Brownian, and jump terms, respectively. Similarly, the SDE in (7.76) we write
in the following shorthand differential form (to avoid confusion with SDE (7.76)
we use letter Y for the unknown process and τ for the time variable):

dYτ = F(Yτ−)� dLτ , Y0 = x. (7.77)

SDE (7.77) has been a focus of many researchers (see, [Sit05, App09] and the ref-
erences therein). In particular, the following theorem is proved.

Theorem 7.6. ([Sit05, App09]) If F(x) = (b(x),σ(x),G(x, ·)) satisfies the Lipschitz
and growth conditions (7.39) and (7.40), respectively, then SDE (7.77) has a unique
strong solution with càdlàg paths.

Theorem 7.7. Let Wt be a (Ft)-adapted strictly increasing càdlàg process and Et

be its inverse. Suppose a stochastic process Yτ satisfies SDE (7.77). Then Xt =YEt is
an (FEt )-semimartingale and satisfies SDE (7.76).

Proof. Since Wt is a strictly increasing (Ft)-adapted process, its inverse Et is a
continuous (Ft )-time-change. Suppose Yτ satisfies SDE (7.77) and let Xt = YEt .
Then due to well-known time-change formula [Jac79], we have

Xt = x+
∫ Et

0
F(s,Ys−)� dLs = x+

∫ t

0
F(Es,YE(s)−)� dLEs. (7.78)
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Xt will satisfy SDE (7.76) provided Xs−=(Y ◦E)s− can replace YE(s)− in (7.78). The
equality YE(s)− = (Y ◦E)s− fails only when s > 0 and E is constant on some closed
interval [s− ε,s]⊂ (0, t] with ε > 0. However, the integrator L◦E on the right-hand
side of (7.78) is constant on this interval. Hence, the difference between the two
values YE(s)− and Xs− = (Y ◦E)s− does not affect the value of the integral. Conse-
quently, (7.78) is valid with Xs− in place of YE(s)−. Thus, Xt satisfies SDE (7.76), as
desired.

Remark 7.4. There is a general duality between the classes of SDEs (7.76) and
SDE (7.77) studied in detail in [Kob11]. Theorem 7.7 is an adopted case to to our
special case.

Theorems 7.7 and 7.6 together yield

Corollary 7.2. If F(u,x) satisfies the Lipschitz and growth conditions (7.39) and
(7.40), respectively, then SDE (7.76) has a unique strong solution with càdlàg paths.

Now we are ready to prove the following theorem, which generalizes
Theorem 7.3.

Theorem 7.8. Let W1,t and W2,t be independent stable subordinators of respective
indices β1, β2 ∈ (0,1). Define Wt = c1W1,t + c2W2,t , with positive constants c1

and c2, and let Et be its inverse. Suppose that a stochastic process Yτ satisfies the
SDE (7.77) driven by a Lévy process Lt . Let Xt = YEt . Then

1) Xt satisfies the SDE (7.76) driven by the time-changed Lévy process LEt .
2) if Yτ is independent of Et , then the function u(t,x) =E[ϕ(Xt)|X0 = x] satisfies the

following Cauchy problem

C1Dβk∗ u(t,x)+C1Dβk∗ u(t,x) =L (x,Dx)u(t,x), t > 0, x ∈ R
n, (7.79)

u(0,x) = ϕ(x), (7.80)

where ϕ ∈ C2
0(R

n), Ck = cβk
k , k = 1,2, and the pseudo-differential operator

L (x,Dx) is as in (7.61) with symbol in (7.62).

Proof. The proof of part 1) easily follows from Theorem 7.7. Notice that since
Wt is a linear combination of stable subordinators, which are càdlàg and strictly
increasing, it follows that Wt is also càdlàg and strictly increasing. Hence, Xt = YEt

satisfies SDE (7.76).
2) Consider TY

τ ϕ(x) = E[ϕ(Yτ )|Y0 = x], where Yτ is a solution of SDE (7.77).
Then TY

τ is a strongly continuous contraction semigroup in the Banach space C0(R
n)

(see [App09]) which satisfies (7.63) with ω = 0, has infinitesimal generator given
by the pseudo-differential operator L (x,Dx) with symbolΨ(x,ξ ) defined in (7.62),
and C2

0(R
n)⊂Dom(L (x,Dx)). So the function pY (τ,x) = TY

τ ϕ(x) with ϕ ∈C2
0(R

n)
satisfies the Cauchy problem

∂ pY (τ,x)
∂τ

=L (x,Dx)pY (τ,x), pY (0,x) = ϕ(x).
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Furthermore, consider pX(t,x) = E[ϕ(Xt)|X0 = x] = E[ϕ(YEt )|Y0 = x] (recall that
E0 = 0). Using independence of the processes Yτ and Et ,

pX(t,x) =
∫ ∞

0
E[ϕ(Yτ)|Et = τ,Y0 = x] fEt (τ)dτ =

∫ ∞

0
fEt (τ)T

Y
τ ϕ(x)dτ. (7.81)

Now, in accordance with Theorem 7.4, pX(t,x) satisfies the Cauchy problem (7.79)-
(7.80).

Theorem 7.9. ([HKU10]) Let Wk,t , k = 1, . . . ,N be independent stable subordina-
tors of respective indices βk ∈ (0,1). Define Wt = ∑N

k=1 ckWk,t , with positive con-
stants ck, and let Et be its inverse. Suppose that a stochastic process Yτ satisfies the
SDE (7.77) driven by a Lévy process Lt . Let Xt = YEt . Then

1) Xt satisfies the SDE (7.76) driven by the time-changed Lévy process LEt .
2) if Yτ is independent of Et , then the function u(t,x) =E[ϕ(Xt)|X0 = x] satisfies the

following Cauchy problem

N

∑
k=1

CkDβk∗ u(t,x) =L (x,Dx)u(t,x), t > 0, x ∈ R
n,

u(0,x) = ϕ(x),

where ϕ ∈ C2
0(R

n), Ck = cβk
k , k = 1, . . . ,N, and the pseudo-differential operator

L (x,Dx) is as in (7.61) with symbol in (7.62).

Theorem 7.10. ([HKU10]) Assume that W (μ ;t) ∈ S, where μ is a positive finite
measure with suppμ ⊂ [0,1), and let Et be its inverse. Suppose that a stochastic
process Yτ satisfies SDE (7.77), and let Xt = YEt . Then

1) Xt satisfies SDE (7.76);
2) if Yτ is independent of Et , then the function u(t,x) = E[ϕ(Xt)|X0 = x] satisfies

the following Cauchy problem for the time-fractional distributed order pseudo-
differential equation

Dμu(t,x) =L (x,Dx)u(t,x), t > 0, x ∈ R
n,

and the initial condition
u(0,x) = ϕ(x).

Proof. The proof of part 1) again follows from Theorem 7.7. Part 2) follows from
Theorem 7.5 in a manner similar to the proof of part 2) of Theorem 7.9.

Remark 7.5. Theorems 7.9 and 7.10 reveal the class of SDEs which are associated
with the wide class of time fractional distributed order pseudo-differential equations.
Each SDE in this class is driven by a semimartingale which is a time-changed Lévy
process, where the time-change is given by the inverse of a mixture of independent
stable subordinators. Therefore, these SDEs cannot be represented as classical SDEs
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driven by a Brownian motion or a Lévy process. The general extensions provided
by these two theorems were motivated by their requirement in many applications,
such as the cell biology example considered in the introduction.

Corollary 7.3. Let the coefficients b, σ , H, K of the pseudo-differential operator
L (x,Dx) defined in (7.61) with symbol in (7.62) be continuous, bounded, and sat-
isfy Lipschitz and growth condition. Suppose ϕ ∈C2

0(R
n). Then the Cauchy problem

for the time-fractional DODE

Dμu(t,x) =L (x,Dx)u(t,x), t > 0, x ∈ R
n,

u(0,x) = ϕ(x), x ∈ R
n,

has a unique solution u(t,x) ∈C2
0(R

n) for each t > 0.

Proof. The result follows from the representation (7.81) in conjunction with esti-
mate (7.67).

Example 7.4. Time-changed α-stable Lévy process. Let Lα(t) be a symmetric n-
dimensional α-stable Lévy process, which is a pure jump process. If pL(t,x) =
E[ϕ(Lα (t))|Lα(0) = x], where ϕ ∈C2

0(R
n) (or, ϕ ∈ Hα(Rn), the Sobolev space of

order α), then pL(t,x) satisfies in the strong sense the Cauchy problem

∂ pL(t,x)
∂ t

=−κα(−Δ)α/2 pL(t,x), t > 0, x ∈R
n, (7.82)

pL(0,x) = ϕ(x), x ∈ R
n, (7.83)

where κα is a constant depending on α and (−Δ)α/2 is a fractional power of the
Laplace operator. The operator on the right-hand side of (7.82) can be represented
as a pseudo-differential operator with the symbol ψ(ξ ) := |ξ |α . It can also be rep-
resented as a hyper-singular integral (Section 3.8), which is more convenient in
random walk approximation of α-stable Lévy processes (see Chapter 8).

Example 7.5. Let SS be the set of Lévy processes Xρ
t , such that

lnE(eiXρ ξ ) =Ψ(ξ ) =−
∫ 2

0
|ξ |αdρ(α)

Evidently, if ρ(dα) = δα0(α)dα, then Xρ
t = Lα0(t). Hence, the set SS contains all

the symmetric α-stable Lévy processes. Moreover, if Lα1(t) and Lα2(t) are inde-
pendent symmetric α1- and α2-stable Lévy processes, respectively, then ALα1(t)+
BLα2(t) ∈ SS with ρ(dα) = [Aδ0(α−α1)+Bδ0(α−α2)]dα.

Now let Xρ
Eμ

t
be the time-changed process, where Eμ

t is the inverse to a process

W (μ ; t)∈ S. Then due to Theorem 7.10, the FPK equation, associated with Xρ
Eμ

t
, has

the form
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Dμu(t,x) =
∫ 2

0
D
α
0 u(t,x)dρ(α),

u(0,x) = ϕ(x).

Now suppose Yt solves SDE

dYt = g(Yt−)dLα(t), Y0 = x,

where g(x) is a function satisfying the growth and Lipschitz conditions, and such
that g(x) �= 0, x ∈R

n. In other words each for each component Yj(t) of the n dimen-
sional stochastic process Yt , we have SDE

dYj(t) = g(Yj(t−))dLα j(t), Yj(0) = x j, j = 1, . . . ,n,

where Lα j(t) is j-th component of the process Lα(t). In this case, the forward FPK
equation takes the form

∂ pY (t,x)
∂ t

=−κα(−Δ)α/2{|g(x)|α pY (t,x)}, t > 0, x ∈ R
n. (7.84)

In order to prove this statement we recall that the forward FPK equation uses the
adjoint operator A ∗ (see (7.24)). In our case Lα (t) is SαS-process, and therefore,
the operator A =Ψ(x,D), due to formula (7.61), is

Ψ(x,D)ϕ(x) =
∫

Rn\{0}
[ϕ(x− g(x)w)−ϕ(x)− g(x)(w,∇ϕ(x))χ|w|≤1(w)]

dw
|w|n+α ,

where ϕ ∈D(Ψ(x,D))=H1(Rn). Using the substitution y j =−g(x)wj, j = 1, . . . ,n,
in the latter integral, one has

Ψ(x,D)ϕ(x) =
∫

Rn\{0}
[ϕ(x+ y)−ϕ(x)+ (y,∇ϕ(x))χ|y|≤|g(x)|(y)]

|g(x)|αdy
|y|n+α .

Therefore, for arbitrary v ∈H1(Rn),
(
Ψ(x,D)ϕ(x),v(x)

)

=
∫

Rn

∫

Rn\{0}
v(x)[ϕ(x+y)−ϕ(x)+(y,∇ϕ(x))χ|y|≤|g(x)|(y)]

|g(x)|αdy
|y|n+α dx

=
∫

Rn

∫

Rn\{0}
ϕ(x)[(|g|αv)(x−y)− (|g|α v)(x)− (y,∇(|g|α v)(x))χ|y|≤1(y)]

dy
|y|n+α dx

=
(
ϕ(x),Ψ (x,D)

(
|g(x)|αv(x)

))
= (ϕ(x),Ψ ∗(x,D)v(x)) .

Hence, the adjoint operator isΨ∗(x,D)v(x) =Ψ(x,D)
(
|g(x)|αv(x)

)
, and we obtain

(7.84).
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Application of Theorem 7.10 implies that Xt = YEt satisfies the SDE

dXt = g(Xt−)dLα ,Et , X0 = x, (7.85)

where Et is the first hitting time of the process D(μ ; t) described in this theorem.
Moreover, if Et is independent of Yt , then the corresponding forward Kolmogorov
equation becomes a {time-fractional DODE/pseudo-differential} equation

Dμ pX(t,x) =−κα(−Δ)α/2{[g(x)]α pX (t,x)}, t > 0, x ∈ R
n, (7.86)

where Dμ is the operator defined in (7.71). When the SDE in (7.85) is driven by
a nonsymmetric α-stable Lévy process, an analogue of (7.86) holds using instead
of (7.84) its analogue appearing in [SLDYL01].

Example 7.6. Fractional analogue of the Feynman-Kac formula. Suppose Yt is a
strong solution of SDE (7.77). Let Ȳ ∈R

n be a fixed point, which we call a terminal
point. Let q be a nonnegative continuous function. Consider the process

Y q
t =

{
Yt , if 0≤ t <Tq,

Ȳ , if t ≥Tq,

where Tq is an (Ft)-stopping time satisfying

P(Tq > t|Ft) = exp

(
−
∫ t

0
q(Ys)ds

)
.

The process Y q
t is a Feller process with associated semigroup (see [App09])

(T q
t ϕ)(y) = E

[
exp

(
−
∫ t

0
q(Ys)ds

)
ϕ(Yt)

∣∣∣Y0 = y

]
, (7.87)

and infinitesimal generator Lq(x,Dx) = −q(x)+L (x,Dx), where L (x,Dx) is the
pseudo-differential operator defined in (7.61). Let Et be the inverse to a β -stable
subordinator independent of Yt . Then it follows from Theorem 7.9 with N = 1 that
the transition probabilities of the process Xt =YEt solve the Cauchy problem for the
fractional order equation

Dβ
∗ u(t,x) = [−q(x)+L (x,Dx)]u(t,x), t > 0, x ∈ R

n,

u(0,x) = ϕ(x), x ∈ R
n.

Consequently, (7.87), with Xt = YEt replacing Yt , and dEt replacing dt, represents a
fractional analogue of the Feynman-Kac formula.
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7.12 Fractional Brownian motion

Brownian motion does not adequately model stochastic processes having corre-
lations arising in a range of diverse applied fields, including finance, biology,
hydrology, solar physics, turbulence, etc. A better mathematical model for such pro-
cesses is achieved using fractional Brownian motion (fBM). Our next goal is to de-
rive fractional Fokker-Planck-Kolmogorov type equations, associated with stochas-
tic differential equations driven by a time-changed fBM.

By definition, a one-dimensional fBM BH
t is a zero-mean Gaussian process with

continuous paths and covariance function

RH(s, t) = E(BH
s BH

t ) =
1
2
(s2H + t2H −|s− t|2H),

where the parameter H, called a Hurst parameter, takes values in the interval (0,1).
If H = 1

2 , then BH
t coincides with the standard Brownian motion. In this case, obvi-

ously, R1/2(s, t) = min(s, t), which is a well known property of Brownian motion.
Fractional Brownian motion, as a driving process for SDEs, does not satisfy con-

ditions required for Itô’s calculus,2 unless H = 1
2 (see Section “Additional notes”).

Nevertheless, there are several approaches [Ben03, BHOZ08, DU98, Nua06] to a
stochastic calculus in order to interpret in a meaningful way as an SDE of the form

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBH

s , (7.88)

driven by an m-dimensional fBM BH
t , where mappings b : Rn → R

n and σ : Rn →
R

n×m are Lipschitz continuous; X0 is a random variable independent of BH
t . We

do not discuss here these approaches referring the interested reader to [BHOZ08,
DU98, Nua06]. Instead, we focus our attention on the FPK equation associated with
SDE (7.88) driven by fBM whose generic form is given by

∂u(t,x)
∂ t

= B(x,Dx)u(t,x)+Ht2H−1A(x,Dx)u(t,x), (7.89)

where

B(x,Dx) =
n

∑
j=1

b j(x)
∂
∂x j

, (7.90)

a first order differential operator, and A(x,Dx) is a second order elliptic differential
operator

A(x,Dx) =
n

∑
j,k=1

a jk(x)
∂ 2

∂x j∂xk
. (7.91)

Functions a jk(x), j,k = 1, . . . ,n are entries of the matrix A (x) = σ(x)× σT (x),
where σT (x) is the transpose of matrix σ(x). By definition A (x) is positive definite:

2 It is not a semimartingale
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for any x ∈ R
n and ξ ∈R

n one has ∑n
j,k=1 a jk(x)ξ jξk ≥C|ξ |2, where C is a positive

constant. The operator A(x,Dx) can also be given in the divergent form

A(x,Dx) =
n

∑
j,k=1

∂
∂x j

(
a jk(x)

∂
∂xk

)
. (7.92)

The right-hand side of (7.89) depends on the time variable t, which, in fact, reflects
the presence of correlation. Additionally, u(t,x) in equation (7.89) satisfies the initial
condition

u(0,x) = ϕ(x), x ∈ R
n, (7.93)

where ϕ(x) belongs to some function space, or is a generalized function. In the
particular case of FPK equation associated with SDE (7.88), ϕ(x) = fX0

(x), the
density function of X0. If X0 = x0 ∈R

n, then ϕ(x) = δx0
(x), Dirac’s delta with mass

on x0. In this case the solution to the FPK equation is understood in the weak sense.
In the one-dimensional case with H ∈ ( 1

4 ,1), as is shown in [BC07], the function
u(t,x) = Ex[ϕ(Xt)] solves the equation (7.89) with initial condition (7.93) when Xt

solves SDE (7.88) with b = 0 and a stochastic integral in the sense of Stratanovich.
The operator A(x,Dx) appearing in (1.3) is expressed in the divergence form (7.92).

7.13 Abstract theorem

In this section we prove an abstract theorem for a class of differential operator equa-
tions, containing (7.89) as a particular case. Let A and B be linear closed operators
with D(A)⊂D(B)⊂ X , where X is a Banach space. Introduce the operator

Lγ(t) = B+
γ+ 1

2
tγA, t > 0, (7.94)

where γ ∈ (−1,1). The parameter γ is related to the Hurst parameter H through
γ = 2H − 1. The introduction of γ is made so that the operators Gγ arising below
(see (7.99)) will have the semigroup property.

Our starting point is the differential-operator equation

du(t)
dt

= Lγ (t)u(t), t > 0, (7.95)

with an initial condition
u(0) = u0 ∈ X . (7.96)

If γ = 0, or equivalently H = 1
2 , and operators B = B(x,Dx) and A = A(x,Dx) are

defined in (7.90) and (7.91), respectively, then the operator L0(t) = L0(t,x,Dx) has
a form with coefficients not depending on t:

L0(t,x,Dx)≡ L(x,Dx) = B(x,Dx)+
1
2

A(x,Dx),
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and equation (7.95) coincides with the FPK equation associated with the SDE driven
by Brownian motion (see Section 7.4)

∂u(t,x)
∂ t

= L(x,Dx)u(t,x) t > 0, x ∈ R
n.

As before, integrals below are understood in the sense of Bochner, if integrands
are vector-functions with values in a topological vector space.

Theorem 7.11. Let u(t) be a solution to initial value problem (7.95)–(7.96). Let
ft (τ) be the density function of the process inverse to a Lévy’s stable subordinator
of index β . Then the vector function v(t) =

∫ ∞
0 ft(τ)u(τ)dτ satisfies the following

initial value problem for a fractional order differential-operator equation

Dβ
∗ v(t) = Bv(t)+

γ+ 1
2

AGγ,t v(t), t > 0, (7.97)

v(0) = ϕ , (7.98)

where the operator Gγ,t is defined through u(t) by

Gγ,t v(t) =
∫ ∞

0
ft (τ)τγu(τ)dτ.

Moreover, for Gγ,t the following explicit representation holds:

Gγ,t v(t) = βΓ (γ+ 1)J1−β
t L −1

s→t

[ 1
2π i

∫ C+i∞

C−i∞

L[v](z)

(sβ − zβ )γ+1
dz
]
(t), (7.99)

where 0 <C < s, and zβ = eβLn(z), Ln(z) being the principal value of the complex
ln(z) with cut along the negative real axis.

Proof. Let v(t) =
∫ ∞

0 ft (τ)u(τ)dτ, where u(t) satisfies initial value problem (7.95)–
(7.96). Using relation (7.42) valid for ft(τ), we have

Dβ
∗,tv(t) =

∫ ∞

0
Dβ
∗,t ft (τ)u(τ)dτ =−

∫ ∞

0

[ ∂
∂τ

ft (τ)+
t−β

Γ (1−β )
δ0(τ)

]
u(τ)dτ

=− lim
τ→∞

[ ft(τ)u(τ)]+ lim
τ→0

[ ft(τ)u(τ)]

+

∫ ∞

0
ft(τ)

du(τ)
dτ

dτ− t−β

Γ (1−β )
u(0).

Due to Lemma 7.1, part (c) the first term vanishes since u(τ,x) is bounded, and due
to part (b) of the same lemma the second and last terms cancel. Moreover, taking
into account (7.95), one has
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Dβ
∗,t v(t) =

∫ ∞

0
ft (τ)Lγ (τ)u(τ)dτ =

∫ ∞

0
ft (τ)

[
Bu(τ)+

γ+ 1
2

τγAu(τ)
]

dτ

= Bv(t)+
γ+ 1

2
AGγ,t v(t),

where

Gγ,t v(t) =
∫ ∞

0
ft (τ)τγu(τ)dτ. (7.100)

It follows from the definition of v(t) and equation (7.100) that if γ = 0, then
G0,t =

∫ ∞
0 ft (τ)u(τ)dτ = v(t), that is the identity operator. To show representa-

tion (7.99) in the case γ �= 0, we find the Laplace transform of Gγ,t v(t). In accordance
with the property (d) of Lemma 7.1, we have

L[Gγ,t v(t)](s) = sβ−1
∫ ∞

0
e−τsβ τγu(τ)dτ = sβ−1L[τγu(τ)](sβ ).

Obviously, if γ = 0, then L[G0,t v(t)](s) = sβ−1ũ(sβ ), which implies ṽ(s) = sβ−1

ũ(sβ ). If γ �= 0, then

L[tγu(t)](s) = L[tγ ](s)∗ ũ(s) =
1

2π i

∫ c+i∞

c−i∞

Γ (γ+ 1)
(s− z)γ+1 L[u](z)dz, (7.101)

where ∗ stands for the convolution of Laplace images of two functions and
0 < c < s. Now using the substitution z = eβLn(ζ ), with Ln(ζ ) the principal part
of the complex function ln(ζ ), the right-hand side of (7.101) reduces to

L[tγu(t)](s) =
β

2π i

∫ C+i∞

C−i∞

Γ (γ+ 1)

(s− ζβ )γ+1
ζβ−1L[u](ζβ )dζ (7.102)

=
β

2π i

∫ C+i∞

C−i∞

Γ (γ+ 1)

(s− ζβ )γ+1
L[v](ζ )dζ .

The last equality uses the relation ṽ(ζ ) = ζβ−1ũ(ζβ ). Further, replacing s by sβ

and taking the inverse Laplace transform in (7.102) yields the desired representa-
tion (7.99) for the operator Gγ,t since L [J1−β f ](s) = sβ−1 f̃ (s). In accordance with
part (a) of Lemma 7.1 we have v(0,x) = u(0,x) as well, which completes the proof.

In the more general case when the time-change process Eμ
t is the inverse to W μ

t ,
the mixture of stable subordinators with the mixing measure μ , a representation for
the abstract fractional FPK equation is given in the following theorem.

Theorem 7.12. Let u(t) be a solution to initial value problem (7.95)–(7.96). Let
f μt (τ) be the density function of the process inverse to W μ

t . Then the vector-function
v(t) =

∫ ∞
0 f μt (τ)u(τ)dτ satisfies the following initial value problem for a fractional

order differential equation
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Dμv(t) = Bv(t)+
γ+ 1

2
AGμ

γ,t v(t), t > 0, (7.103)

v(0) = ϕ ∈ X . (7.104)

The operator Gμ
γ,t acts on the variable t and is defined by

Gμ
γ,t v(t) =

∫ ∞

0
f μt (τ)τγu(τ)dτ.

Moreover, for Gγ,t the following explicit representation holds:

Gμ
γ,t v(t) =Φμ(t)∗L −1

s→t

[Γ (γ+ 1)
2π i

∫ C+i∞

C−i∞

mμ(z)ṽ(z)

(ρ(s)−ρ(z))γ+1 dz
]
(t), (7.105)

where ∗ denotes the usual convolution of two functions, 0 <C < s, Φμ(t) is defined
in (7.58), and

ρ(z) =
∫ 1

0
eβLn(z)dμ(β ), mμ(z) =

∫ 1
0 β zβdμ(β )

ρ(z)
.

Proof. The proof is similar to the proof of Theorem 7.11. We only sketch how to
obtain representation (7.105) for the operator

Gμ
γ,t v(t) =

∫ ∞

0
f μt (τ)τγu(τ)dτ.

The Laplace transform of Gμ
γ,t v(t), due to part (d) of Lemma 7.5, is

Lt→s
[
Gμ
γ,t v(t)

]
(s) =

ρ(s)
s

L[tγu(t)](ρ(s)),s > 0.

Since L[Φμ ](s) =
ρ(s)

s ,s > 0, we have

Gμ
γ,t v(t) =Φμ(t)∗L−1

s→t

[
L[tγu(t)](ρ(s))

]
(t).

Further, replacing s by ρ(s) in (7.101), followed by the substitution z = ρ(ζ ) =∫ 1
0 eβLn(ζ )dμ(β ) in the integral on the right side of (7.101), yields the form (7.105).

The following theorem represents the general case when the time-change process
Et is not necessarily the first hitting time process for a stable subordinator or their
mixtures.

Theorem 7.13. Let γ ∈ (−1,1). Let Et be a time-change process and assume that
its density K(t,τ) = fEt

(τ) satisfies the hypotheses:

i) limτ→+0
[
K(t,τ)τ−γ

]
< ∞ for all t > 0;

ii) limτ→∞[K(t,τ)τ−γu(τ,x)] = 0 for all t > 0 and x ∈ R
n,
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where u(t) is a solution to the initial value problem (7.95)–(7.96). Let Ht be an
operator acting in the variable t such that

HtK(t,τ) =− ∂
∂τ

[
K(t,τ)(

t
τ
)γ
]
− δ0(τ) lim

τ→+0

[
(

t
τ
)γK(t,τ)

]
.

Then the function v(t) =
∫ ∞

0 K(t,τ)u(τ)dτ satisfies the initial value problem

Htv(t) = tγḠ−γ,tBv(t)+
γ+ 1

2
tγAv(t), τ > 0, (7.106)

v(0) = u(0), (7.107)

where Ḡ−γ,t v(t) =
∫ ∞

0 K(t,τ)τ−γu(τ)dτ.

Remark 7.6. Obviously, if γ �= 0, then Ht cannot be a fractional derivative in the
sense of Caputo (or Riemann-Liouville). A representation of Ht in cases when Et is
the inverse to a stable subordinator, is given below in Corollary 7.4.

Proof. We have

Htv(t) =
∫ ∞

0
HtK(t,τ)u(τ)dτ

=−
∫ ∞

0

{ ∂
∂τ

[
K(t,τ)(

t
τ
)γ
]
+ δ0(τ) lim

τ→+0

[
(

t
τ
)γK(t,τ)

]}
u(τ)dτ

=−tγ lim
τ→∞

[K(t,τ)τ−γu(τ)]+ tγ lim
τ→0+

[K(t,τ)τ−γu(τ)]

+
∫ ∞

0
K(t,τ)

( t
τ
)γ du(τ)

dτ
dτ− lim

τ→+0

[
(

t
τ
)γK(t,τ)

]
u(0). (7.108)

The first term on the right of (7.108) is zero by hypothesis ii) of the theorem. The
sum of the second and last terms, which exist by hypothesis i), also equals zero.
Now taking equation (7.95) into account, we have

Htv(t) = tγB
∫ ∞

0
K(t,τ)τ−γu(τ,x)dτ+

γ+ 1
2

tγAv(t).

Further, since E0 = 0 it follows that

lim
t→0

v(t) =
∫ ∞

0
δ0(τ)u(τ)dτ = u(0),

which completes the proof.

Let Πγ denote the operator of multiplication by tγ , i.e. Πγh(t) = tγh(t),
h ∈C(0,∞). Applying Theorem 7.13 to the case K(t,τ) = ft(τ) in conjunction with
Theorem 7.11, we obtain the following corollary.

Corollary 7.4. Let γ ∈ (−1,0] and K(t,τ) = ft(τ), where ft (τ) is defined in (7.41).

Then (i) G−γ,t = G−1
γ,t ; (ii) Ht =ΠγG−γ,tD

β
∗ .
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This corollary yields an equivalent form for equation (7.97) in the case when Et

is the inverse to the stable subordinator with index β and γ ∈ (−1,0]:

Htv(t) = tγG−γ,tBv(t)+
γ+ 1

2
tγAv(t), (7.109)

with Ht as in Corollary 7.4.
Suppose the operator in the “drift” term B = 0. Then equation (7.109) takes the

form

Htv(t) =
γ+ 1

2
tγA(x,Dx)v(t). (7.110)

Notice that equation (7.109) is valid for γ ∈ (0,1) as well. Indeed, part (ii) of
Corollary 7.4 can be rewritten in the form Gγ,t = G−1

−γ,t for γ > 0. For γ < 0 part (ii)

of Corollary 7.4 also implies (G−1
γ,t )

−1 =G−1
−γ,t =Gγ,t . Now applying operators G−γ,t

and Πγ consecutively to both sides of (7.97) we obtain (7.109) for all γ ∈ (−1,1).
Analogously, the fractional order equation (7.103) obtained in Theorem 7.12 with

the mixing measure μ can be represented in its equivalent form as

Hμ
t v(t) = tγGμ

−γ,tBv(t)+
γ+ 1

2
tγAv(t), t > 0, τ > 0, (7.111)

where Hμ
t =ΠγG

μ
γ,tDμ . We leave verification of the details to the reader as an exer-

cise.
The equivalence of equations (7.97) and (7.109) and the equivalence of equa-

tions (7.103) and (7.111) are obtained by means of Theorem 7.13. This fact can also
be established with the help of the semigroup property of the family of operators
{Gγ ,−1 < γ < 1} :

Gγg(t) =
∫ ∞

0
ft(τ)τγh(τ)dτ =Fγh(t), (7.112)

where h ∈ C∞(0,∞) is a nonnegative bounded function. Denote the class of such
functions by U. Functions g and h in (7.112) are connected through the relation
g(t) =

∫ ∞
0 ft (τ)h(τ)dτ = Fh(t). It follows from the behavior of ft(τ) as a func-

tion of t, that g ∈ C∞(0,∞). On the other hand, obviously, operator F is bounded,
‖Fh‖ ≤ ‖h‖ in the sup-norm, and one-to-one due to positivity of ft (τ). Therefore,
the inverse F−1 : FU → U exists. Let a distribution H(t,τ) with suppH ⊂ R

2
+

be such that F−1g(t) =
∫ ∞

0 H(t,τ)g(τ)dτ. Since ft(τ) ∈FU as a function of t for
each τ > 0, for an arbitrary h ∈U one has

h(t) =F−1Fh(t) =
∫ ∞

0
H(t,s)

(∫ ∞

0
fs(τ)h(τ)dτ

)
ds

=

∫ ∞

0
h(τ)

(∫ ∞

0
H(t,s) fs(τ)ds

)
dτ =<

∫ ∞

0
H(t,s) fs(τ)ds,h >τ .

We write this relation between H(t,τ) and ft (τ) in the form
∫ ∞

0
H(t,s) fs(τ)ds = δt(τ). (7.113)
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Proposition 7.5. Let−1< γ < 1,−1<α < 1, and−1< γ+α < 1. Then Gγ ◦Gα =
Gγ+α .

Proof. The proof uses the following two relations:

(1) Gγg(t) =
∫ ∞

0 Fγ,tH(t,s)g(s)ds, γ ∈ (−1,1);

(2)
∫ ∞

0 Fγ,t H(t,s)Fα ,sH(s,τ)ds = Fγ+α ,tH(t,τ), with −1 < γ, α < 1, and
−1 < γ+α < 1.

Indeed, using (7.112) and changing the order of integration, we obtain the first
relation

Gγg(t) =
∫ ∞

0
ft (τ)τγ

(∫ ∞

0
H(τ,s)g(s)ds

)
dτ (7.114)

=
∫ ∞

0
g(s)

(∫ ∞

0
ft(τ)H(τ,s)τγdτ

)
ds =

∫ ∞

0
Fγ,tH(t,s)g(s)ds.

It is readily seen that the internal integral in the second line of (7.114) is mean-
ingful, since ft (τ) is a function of exponential decay when τ → ∞, which follows
from (7.36). Further, in order to show the second relation, we have
∫ ∞

0
Fγ,t H(t,s)Fα ,sH(s,τ)ds =

∫ ∞

0

(∫ ∞

0
ft (p)H(p,s)pγd p

)(∫ ∞

0
fs(q)H(q,τ)qαdq

)
ds

=
∫ ∞

0

∫ ∞

0
ft(p)H(q,τ)pγqα

(∫ ∞

0
H(p,s) fs(q)ds

)
d pdq.

Due to (7.113), this equals
∫ ∞

0
ft(p)pγ

(∫ ∞

0
H(q,τ)qαδp(q)dq

)
dp =

∫ ∞

0
H(p,τ)pα ft(p)pγdp =Fγ+α ,tH(t,τ).

Now we are ready to prove the claimed semigroup property. Making use of the two
proved relations,

(Gγ ◦Gα)g(t) = Gγ
[
Gαg(t)

]

= Gγ

[∫ ∞

0
Fα ,tH(t,s)g(s)ds

]
=

∫ ∞

0
Fγ,t H(t,s)

[∫ ∞

0
Fα ,sH(s,τ)g(τ)dτ

]
ds

=
∫ ∞

0
g(τ)

∫ ∞

0
Fγ,t H(t,s)Fα ,sH(s,τ)dsdτ =

∫ ∞

0
Fγ+α ,tH(t,τ)g(τ)dτ = Gγ+αg(t),

which completes the proof.

Similarly one can prove the semigroup property of the family of operators Gμ
γ,t .

Proposition 7.6. The operator Gμ
γ,t possesses the semigroup property. Namely, for

any γ,δ ∈ (−1,1),γ+δ ∈ (−1,1), one has Gμ
γ,t ◦Gμ

δ ,t = Gμ
γ+δ ,t = Gμ

δ ,t ◦Gμ
γ,t , where

“◦” denotes the composition of two operators.
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Remark 7.7.

1. FPK equations associated with SDEs driven by Brownian motion and time-
changed Brownian motion had very simple connection. Namely, retain the right-
hand side of FPK equation corresponding to SDE driven by Brownian motion and
change the left-hand side to a fractional derivative, to obtain FPK equation corre-
sponding to SDE driven by the time-changed Brownian motion. Equation (7.110)
shows that this drastically changes in the case of fBM. Moreover, if a fractional
derivative is desired on the left-hand side in the time-changed case, then (3.4)
shows that the right-hand side must be a different operator from that in the non-
time-changed case.

2. Proposition 7.5 immediately implies that G−1
γ = G−γ for arbitrary

γ ∈ (−1,1). Indeed, Gγ ◦G−γ = G0 = I, as well as G−γ ◦Gγ = I, where I is the
identity operator. Thus, the statement in Corollary 7.4 is valid for all γ ∈ (−1,1).

3. Theorem 7.12 generalizes Theorem 7.5. In fact, if B = 0 and γ = 0, then Gμ
0,t ≡ I,

where I is the identity operator, so Theorem 7.12 represents Theorem 7.5 in a
slightly disguised formulation. Notice that Theorem 7.12 does not use the semi-
group structure. The Cauchy problem (7.95)-(7.96) is important from the appli-
cations point of view too. Indeed, if B = 0, γ = 2H−1 and A = Δ , then (7.95) is
the FPK equation associated with the fractional Brownian motion with the Hurst
parameter H ∈ (0,1).

7.14 Applications of the abstract theorem

7.14.1 Fractional FPK equations associated
with time-changed fBM

Now let us focus on the FPK equation associated with SDE driven by a time-
changed fBM BH

Et
:

Xt = X0 +

∫ t

0
b(Xs)dEs +

∫ t

0
σ(Xs)dBH

Es
,

where Et is the inverse process to the Lévy’s stable subordinator of the stability
index β ∈ (0,1). Recall that the FPK equation associated with an SDE driven by an
fBM (without time-change) has the form

∂u(t,x)
∂ t

= Lγ(t,x,Dx)u(t,x),

where Lγ (t,x,Dx) is defined in (7.94) with operators B and A defined in (7.90)
and (7.91), respectively. Here the Hurst parameter H is connected with γ via
2H − 1 = γ. Again for simplicity, we first consider a time-change process Et in-
verse to a single stable subordinator Wt , and then Eμ

t , the inverse to a mixture of
stable subordinators with mixing measure μ .
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Theorem 7.14. ([HKU11]) Let u(t,x) be a solution to the initial value problem

∂u(t,x)
∂ t

= B(x,Dx)u(t,x)+
γ+ 1

2
tγA(x,Dx)u(t,x), t > 0, x ∈ R

n, (7.115)

u(0,x) = ϕ(x), x ∈ R
n. (7.116)

Let ft(τ) be the density function of the process inverse to a stable subordinator of in-
dex β . Then v(t,x) =

∫ ∞
0 ft (τ)u(τ,x)dτ satisfies the following initial value problem

for a fractional order differential equation

Dβ
∗ v(t,x) = B(x,Dx)v(t,x)+

γ+ 1
2

Gγ,tA(x,Dx)v(t,x), t > 0, x ∈ R
n, (7.117)

v(0,x) = ϕ(x), x ∈R
n, (7.118)

where the operator Gγ,t acts on the variable t and is defined by (7.99).

Theorem 7.15. [HKU11] Let u(t,x) be a solution to the initial value problem
(7.115)–(7.116). Let f μt (τ) be the density function of the process inverse to W μ

t .
Then

v(t,x) =
∫ ∞

0
f μt (τ)u(τ,x)dτ

satisfies the following initial value problem for a fractional order differential
equation

Dμv(t,x) = B(x,Dx)v(t,x)+
γ+ 1

2
Gμ
γ,t A(x,Dx)v(t,x), t > 0, x ∈ R

n, (7.119)

v(0,x) = ϕ(x), x ∈R
n. (7.120)

The operator Gμ
γ,t acts on the variable t and is defined by (7.105).

Proof. The proofs of these theorems follow immediately from abstract Theorems
7.11 and 7.12, respectively.

Example 7.7. 1. If H = 1/2, then BH
t is Brownian motion. In this case Theorem 7.11

implies the fractional FPK equation obtained in (7.46)–(7.47). Similarly, Theo-
rem 7.12 reduces to Theorem 7.1.

2. Consider the following equation (0 < H < 1):

∂h
∂ t

(t,x) = 2Ht2H−1a
∂ 2h
∂x2 (t,x).

This equation was obtained in the paper [MNX09] as a governing equation for
fBM. Theorem 7.11 and Proposition 7.5 imply that the governing equation for
the corresponding time-changed fBM is either of the following equivalent forms:

Dβ
∗ h(t,x) = 2HG2H−1,t a

∂ 2h
∂x2 (t,x),

G1−2H,t Dβ
∗ h(t,x) = 2Ha

∂ 2h
∂x2 (t,x).



7.14 Applications of the abstract theorem 331

Remark 7.8. The formula v(t,x) = Fu(t,x) for a solution of FPK equations asso-
ciated with time-changed fBM provides a useful tool for analysis of properties
of a solution to initial value problem (7.97)–(7.98), (7.103)–(7.104), and (7.106)–
(7.107).

7.14.2 Fractional FPK equation for LFSM

The method used above can be applied for derivation of the fractional FPK equation
for SDEs driven by time-changed Lévy’s stable processes and linear fractional stable
motions (LFSM).

The Lévy symbol of a one-dimensional Lévy’s α-stable (not necessarily sym-
metric) process Lt for t = 1 is given by

ψ(ξ ) = iaξ − b|ξ |α{1− iβ
ξ
|ξ |ω(ξ ,α)}, (7.121)

where a,b,α,β are constants, a is real, b > 0, 0 < α ≤ 2, −1 < β < 1 and

ω(ξ ,α) =
{

tan(π2α), if α �= 1;
2
π log|ξ |, if α = 1.

One can easily see that the case a = 0,β = 0 corresponds to the symmetric distribu-
tion. The corresponding FPK equation in the 1-D case has the form

∂u
∂ t

=−a
∂u
∂x

+Dq
∂αu

∂ (−x)α
+Dp

∂αu
∂ (x)α

, t > 0, x ∈ R,

where D is some constant depending on α , p ≥ 0, q ≥ 0 and p+ q = 1, and in
multi-dimensional case has the form [MBB01]

∂u(t,x)
∂ t

=−a∇u(t,x)+D∇α
Mu(t,x), t > 0, x ∈ R

n,

where a ∈ R
n and ∇α is the pseudo-differential operator with the symbol

∫
|θ |=1

(−iξ ,θ )αM(dθ )

with M(dθ ), a probability measure on the unit sphere. If a = 0 and

M(dθ ) =
Γ (1+ n

2 )dθ
nπn/2

,

then we get the symmetric case considered above. Setting γ = 0, B = −a∇, and
A = D∇α

M in Theorem 7.12, we obtain the following assertion.
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Theorem 7.16. Let Lt be an n-dimensional Lévy’s α-stable process. Let Et be the
inverse to the mixture of Lévy’s stable subordinators with a mixing measure μ , and
independent of Lt . Then the density function p(t,x) of the time-changed process LEt

satisfies the following initial value problem

Dμ p(t,x) =−a∇p(t,x)+D∇α
M p(t,x), t > 0, x ∈ R

n,

p(0,x) = δ0(x), x ∈ R
n.

Theorem 7.17 below is an application of Theorem 7.11 to linear LFSM. Let
Lα ,H , 0 < α < 2, 0 < H < 1, be a LFSM. Then its density solves the following
equation [MNX09]

∂u(t,x)
∂ t

= αHtαH−1[ap∂αx u(t,x)+ aq∂α−xu(t,x)] (7.122)

where p+ q = 1, ∂αx and ∂α−x are space-fractional order derivatives in the sense
of Liouville. Denoting γ = αH − 1 and A = 2a[ap∂αx + aq∂α−x], one can rewrite
equation (7.122) in the form (7.95) with B = 0 and the initial condition

u(0,x) = ϕ(x), x ∈ (−∞,∞). (7.123)

Theorem 7.17. Let u(t,x) be a solution to the Cauchy problem (7.122), (7.123). Let
f μt (τ) be the density function of the process W μ

t . Then v(t,x) =
∫ ∞

0 f μt (τ)u(τ,x)dτ
satisfies the following initial value problem for a fractional order differential equation

Dμv(t,x) = αHtαH−1Gμ
γ,t [ap∂αx u(t,x)+ aq∂α−xu(t,x)]v(t,x),

t > 0, x ∈ (−∞,∞),
v(0,x) = ϕ(x), x ∈ (−∞,∞),

where the operator Gμ
γ,t , γ =αH−1, acts in the variable t, and is defined in (7.105).

7.14.3 Fractional FPK equation associated with time-changed
infinite-dimensional Wiener process

Theorem 7.12 can be applied to fractional FPK equations in the infinite dimensional
case. Below we consider only the simplest case. Let H be an infinite dimensional
separable Hilbert space, and Q be a positive definite trace operator on H. In this
section we suppose Bt is the infinite dimensional Wiener process associated with
the operator Q. We refer the reader to [DPZ02] for the definition and properties of
the infinite dimensional Wiener process. Then the corresponding FPK equation has
the form (see [DPZ02])

∂u(t,x)
∂ t

=
1
2

Tr[QD2u(t,x)], t > 0, x ∈H, (7.124)
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where Tr stands for the trace, and D2 is the second order Fréchet derivative. Note
that equation (7.124) is the FPK equation associated with the simplest Itô SDE
dXt = dBt . Denote A(·) = 1

2 Tr[QD2·] with Dom(A) =UC2
b(H), the space of func-

tions u : H → R such that D2u is uniformly continuous and bounded. Then applying
Theorem 7.12 with B = 0 and γ = 0, one obtains the following theorem.

Theorem 7.18. Let u(t,x) be a strong solution to equation (7.124) with the initial
condition u(0,x) = ϕ(x), ϕ ∈ UCb(H). Let f μt (τ) be the density function of the
process W μ

t . Then v(t,x) =
∫ ∞

0 f μt (τ)u(τ,x)dτ is a strong solution to the following
initial value problem for the infinite dimensional time-fractional distributed order
differential equation

Dμv(t,x) =
1
2

Tr[QD2v(t,x)], t > 0, x ∈ H,

v(0,x) = ϕ(x), x ∈H.

Remark 7.9. The associated stochastic process is, obviously, the time-changed Wiener
process Xt = BWt

.

7.15 Filtering problem: fractional Zakai equation

The filtering problem is a wide generalization of the concept discussed in this chap-
ter. Namely, in the filtering problem one is interested in a stochastic process under
additional information obtained from observation/measurement. The FPK equations
correspond to the particular case, when additional information consists of only the
initial condition. The additional information obtained through certain measurements
form a sigma-algebra of events. Given this sigma algebra one needs to optimize the
state process. As a result, the FPK counterpart of the filtering process is not deter-
ministic, but is a stochastic partial differential equation. The latter is called a Zakai
equation, which was first derived by Zakai [Zak69] in 1969.

In this section we are interested in the fractional Zakai type equations, which
describe filtering problems whose state and observation processes are driven by a
time-changed Brownian motion (or other standard driving processes). Below we
will show a derivation of the fractional Zakai equation, in which the time-change
process is the inverse to a Lévy stable subordinator with the stability index β ∈ (0,1)
and discuss existence and uniqueness of a solution, as well as some methods of
solution.

We have seen above that if one is interested in a solution of an SDE conditioned
on the value at the initial time t = 0, then the associated FPK equation is a deter-
ministic PDE (Section 7.4). In the filtering problem one has information of the past
for all times s, 0≤ s < t, coming from observations (measurements). Suppose

Zt =

∫ t

0
h(Xs)ds+Wt , (7.125)
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are Rm-valued measurements, or observations related to the process Xt in the noisy
environment. Let Zt be a σ -algebra generated by the measurement process Zt . One
of the formulations of the filtering problem is to find the best estimation of Xt at
time t in the mean square sense, given Zt . Namely, to find a stochastic process X∗

t
such that

E[‖Xt −X∗
t ‖2] = inf

{Yt}
E[‖Xt −Yt‖2],

where inf is taken over all stochastic processes Yt ∈ L2(P) under the condition
that the sigma-algebra Zt is given. It follows from the abstract theory of func-
tional analysis that X∗

t is the projection of Xt onto the space of stochastic pro-
cesses L (Zt ) = {Y ∈ L2(P) : given Zt}. The latter can be written in the form
X∗

t =E[ f (Xt )|Zt ], generalizing (7.26) from the initial condition X0 = x to the entire
history Zt . Hence, the filtering problem comprises of SDEs

dYt = b(Yt)dt +σ(Yt)dBt , Yt=0 = X0, (7.126)

called a state process, and

dZt = h(Yt)dt + dWt , Z0 = 0, (7.127)

called an observation process obtained from (7.125) by differentiating. Brownian
motion Wt is assumed to be independent of Bt and the initial random variable X0.

This problem was first posed and solved in the linear case by Kalman and Bucy
[KB61] in 1961. The filtering problem is still under active development due to its
significant applications. In the linear case Kalman and Bucy [KB61] reduced the fil-
tering problem to a linear SDE and a deterministic Riccati type differential equation.
In the case of nonlinear filtering Kushner [Kus67], Lipster and Shiryaev [LS02], and
Fujisaki, Kallianpur and Kunita [FKK72] obtained a nonlinear infinite dimensional
stochastic differential equations for the posterior conditional density of Xt given Zt .
However, two issues arise:

(1) it is not easy to solve these equations, and
(2) it is computationally ‘expensive’ due to the two-stage calculation procedure

(prediction and correction) in the real time.

In 1969 Zakai [Zak69] suggested a simpler approach, reducing the solution of the
filtering problem to a partial stochastic differential equation for the posterior unnor-
malized conditional density Φ(t,x) = p(t,x|Zt) for Xt . Below we briefly sketch this
method. Introduce the process

ρ(t) = exp{−
m

∑
k=1

∫ t

0
hk(Ys)dWs− 1

2

∫ t

0
|h(Ys)|2ds}

and the probability measure dP0 = ρ(t)dP. Further, let

Λt =
dP
dP0

∣∣Zt

,
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and Ê be the expectation under the reference measure P0. Then, as is known, the
optimal solution of the filtering problem (7.126), (7.127) is given by the following
Kallianpur-Striebel’s formula (see, e.g., [Roz90])

E[ f (Yt )|Zt ] =
Ê[ f (Yt)Λt |Zt ]

Ê[Λt |Zt ]
. (7.128)

Moreover, under some mild conditions the unnormalized filtering measure pt( f ) =
Ê[ f (Yt)Λt |Zt ] satisfies the following stochastic differential equation, called the
Zakai equation:

pt( f ) = p0( f )+
∫ t

0
ps(A f )ds+

m

∑
k=1

∫ t

0
ps(hk f )dZk

s , (7.129)

where A is a second order elliptic differential operator given by equation (7.29).
Further, introducing the filtering density U(t,x) through

pt( f ) =
∫
Rn

f (x)U(t,x)dx,

one can show that U(t,x) solves the following partial stochastic differential equation
(called an adjoint Zakai equation)

dU(t,x) = A∗U(t,x)dt +
m

∑
k=1

hk(x)U(t,x)dZk(t), (7.130)

with the initial condition U(0,x) = p0(x). Here A∗ is the adjoint operator of A def-
ined in (7.29). Thus, if one has a solution of equation (7.130), then one will be able
to establish a solution to the original filtering problem using Kallianpur-Striebel’s
formula (7.128). Equation (7.130) reduces to FPK equation (7.28) if the observation
process Zt stays constant in time, which means no additional information is obtained
from measurement/observation.

Now consider a filtering problem with the state process and observation process
driven by time-changed Brownian motions. Namely, suppose the state process is

dXt = f (Xt )dTt +σ(Xt)dBTt , Xt=0 = X0, (7.131)

and the observation process is

dZt = h(t,Xt)dTt + dWTt , Z0 = 0, (7.132)

where Tt is the inverse of the Lévy stable subordinator with the stability index
β ∈ (0,1), and independent of Bt and Wt . We show that the Zakai equation cor-
responding to this problem has the form

Φ(t,x) = p0(x)+
∫ t

0
A∗Φ(s,x)dTs +

∫ t

0
hs(x)Φ(s,x)dZTs . (7.133)

A few remarks before deriving this equation. The stochastic integral in equa-
tion (7.133) is well defined in the sense of Itô’s integral. If β → 1, then we recover
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the classical Zakai equation, since Tt = t in this case. Hence, equation (7.133) gen-
eralizes the classic Zakai equation (7.130) for the case of filtering problem with
time-changed driving processes. Note also that the time-changed process BT is not
Markovian and has no independent increments. Therefore, the model (7.131), (7.132)
can be applied to a class of correlated state processes. An important question is the
existence and uniqueness (in an appropriate sense) of a solution for this new Zakai
equation. We will discuss this question in this section as well as some solution meth-
ods useful from the application point of view.

The fractional, or time-changed version of the Zakai equation in the general case
of time-changed Lévy processes is obtained in the paper [UDN14] for filtering prob-
lems driven by Lévy processes. For completeness, we demonstrate the derivation of
the fractional Zakai equation in our particular case of filtering problem (7.131)–
(7.132). We assume that the following conditions on the input data of the filtering
problem:

(C1) the vector-functions f (x), h(x), and n×m-matrix-function σ(x) satisfy the
Lipschitz and linear growth conditions:

‖ f (x)− f (y)‖2 + ‖h(x)− h(y)‖2+ ‖|σ(x)−σ(y)‖|2
≤C1‖x− y‖2, ∀x,y ∈ R

n;

‖b(x)‖2 + ‖h(x)‖2 + ‖|σ(x)‖|2 ≤C2(1+ ‖x‖2), ∀x ∈ R
n,

where ‖ · ‖ and ‖| · ‖| are vector- and matrix-norms, respectively.
(C2) the time-change process Tt and Brownian motions Bt and Wt are independent

processes;
(C3) the initial random vector X0 is independent of processes Bt , Wt , and Tt and

has an infinite differentiable density function p0(x) decaying at infinity faster
than any power of |x|.

Theorem 7.19. Let the conditions (C1)-(C3) be verified. Then the filtering density
Φ(t,x) associated with the filtering measure φt( f ) = Ê[ f (Xt)ΛTt |Vt ], where Vt is
the filtration generated by Vt = ZTt , satisfies the following Zakai equation

Φ(t,x)−Φ(0,x) =
∫ t

0
A∗Φ(s,x)dTs +

m

∑
k=1

∫ t

0
hk(x)Φ(s,x)dZ(k)

Ts
. (7.134)

Proof. Let conditions (C1)-(C3) be verified. Then, in particular, the conditions for
the existence of an unnormalized filtering distribution pt( f ) = Ê[ f (Yt)Λt |Zt ] which
solves the Zakai equation (7.129), are also verified. Here Yt is a solution to stochas-
tic differential equation (7.126). According to Theorem 3.3 in [HKU10] the time-
changed process Xt = YTt solves stochastic differential equation (7.131).

The connection Xt = YTt between the state processes Xt and Yt implies the
connection Vt = ZTt between the observation processes Vt and Zt . Indeed, letting
Tt = τ, or the same Dτ = t, one obtains from the relation dVt = h(YTt )dTt + dWTt

and from (7.127) that Zτ = VDτ , or the same Vt = ZTt . It follows that the filtra-
tion Vt coincides with the filtration Z ◦Tt ≡ ZTt generated by the time-changed
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observation process ZTt . Hence, the unnormalized filtering distribution φt( f ) =
Ê[ f (Xt)ΛTt |Z ◦T t ] corresponding to the filtering problem (7.131), (7.132) is the
time-changed process

φt( f ) = pTt ( f ). (7.135)

Therefore, due to equation (7.19) the process φt( f ) satisfies

φt( f ) = pTt ( f ) = p0( f )+
∫ Tt

0
ps(A f )ds+

m

∑
k=1

∫ Tt

0
ps(hk f )dZ(k)

s . (7.136)

Further, using the change of variable formula (see [Jac79], Proposition 10.21)∫ Tt
0 HsdSs =

∫ t
0 HTs−dSTs , for stochastic integrals driven by a semimartingale St , we

obtain
∫ Tt

0
ps(A f )ds =

∫ t

0
Ê[A f (YTs)ΛTs |ZTs ]dZ(k)

Ts
=

∫ t

0
Ê[A f (Xs)ΛTs |ZTs ]dZ(k)

Ts

=
∫ t

0
φs(A f )dZ(k)

Ts
. (7.137)

and

m

∑
k=1

∫ Tt

0
ps(hk f )dZ(k)

s =
m

∑
k=1

∫ t

0
Ê[hk(YTs) f (YTs)ΛTs |ZTs ]dZ(k)

Ts

=
m

∑
k=1

∫ t

0
Ê[hk(Xs) f (Xs)ΛTs |ZTs ]dZ(k)

Ts

=
m

∑
k=1

∫ t

0
φs(hk f )dZ(k)

Ts
. (7.138)

Equations (7.136), (7.137), and (7.138) imply the desired equation (7.134).

Let Tt be the inverse to a stable Lévy subordinator Dt of a stability index β ∈
(0,1) and let the stochastic processes Πt( f ) and Πt,Z( f ) are defined by

Πt( f ) = Apt( f ) =
∫ ∞

0
gt(τ)pτ ( f )dτ, (7.139)

Πt,Z( f ) =Cpt( f ) =
∫ ∞

0
gt(τ)pτ ( f )dZτ . (7.140)

where gt(τ) is the density function of the process Tt and pt( f ) is the unnormalized
filtering distribution of the Zakai equation (7.129) corresponding to the filtering
model (7.126)–(7.127). Then it follows from equation (7.134) that the following
stochastic relation holds:

Πt( f )− p0( f ) = Jβt
(
Πt(A f )+

m

∑
k=1

Πt,Z(k) (hk f )
)
, (7.141)

where Jβt is the fractional integration operator of order β .
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Let B map the class of stochastic processes Πt( f ) to the class of processes
Πt,Z( f ), that is Πt,Z( f ) = BΠt( f ). One can verify easily that the operator B can
be expressed with the help of operators A and C in equation (7.139). Namely,

B =CA−1.

Using L2(P)-norm and calculus of stochastic processes one can show that A is a
one-to-one bounded linear operator and C is a bounded linear operator. Therefore,
it follows that operator B is well defined bounded linear operator. We note that
equation (7.141) can be written in the form

Πt( f )− p0( f ) = Jβt
(
Πt(A f )+

m

∑
k=1

BkΠt(hk f )
)
,

where

BkΠt( f ) =Πt,Z(k) ( f ).

The differential form of (7.141) involves a fractional derivative in the Riemann-
Liouville sense

dΠt( f ) =D
1−β
t Πt(A f )dt +

m

∑
k=1

D
1−β
t BkΠt(hk f )dt, Πt=0( f ) = p0( f ). (7.142)

The latter in terms of unnormalized densities associated with the process Πt( f ) can
be represented in the form

Dβ
∗U(t,x) = A∗U(t,x)+

m

∑
k=1

hk(x)BkU(t,x), U(0,x) = f (x), (7.143)

where Dβ
∗ is the fractional derivative in the sense of Caputo. Equation (7.143) gener-

alizes the forward version (that is A∗ instead of A) of fractional FPK equation (7.46)
to the case of fractional adjoint Zakai equation.

Theorem 7.20. Let the conditions (C1)-(C3) be verified. Then there exists a unique
filtering density Φ(t,x) satisfying the fractional Zakai equation (7.134). Moreover,
there exist uniquely defined stochastic processes in equation (7.139) satisfying ini-
tial value problem (7.142).

Proof. Suppose there are two filtering densities Φ1(t,x) and Φ2(t,x) such that both
satisfy equation (7.134). Then the processΨ (t,x) = Φ2(t,x)−Φ1(t,x) satisfies the
following equation

Ψ(t,x) =
∫ t

0
A∗Ψ (s,x)dTs +

m

∑
k=1

∫ t

0
hk(x)Ψ(s,x)dZ(k)

Ts
.

This is an SDE driven by time-changed processes Ts given ZTs . Its counterpart with
non-time-changed process has the form
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V (t,x)−V0(x) =
∫ t

0
A∗V (s,x)ds+

m

∑
k=1

∫ t

0
hk(x)V (s,x)dZ(k)

s , (7.144)

with V0(x) ≡ 0. The solutions V (t,x) and Ψ(t,x) are related through Ψ(t,x) =
V (Tt ,x). Equation (7.144) has a unique solution (see, e.g., [Roz90]). Since the ini-
tial condition is V (0,x) = 0, then the corresponding solution V (t,x)≡ 0 in the sense
of L2(P). This implies Ψ (t,x) ≡ 0, or the same, Φ1(t,x) = Φ2(t,x) in the sense of
L2(P). The latter, in turn, implies that the process defined in equation (7.139) is
unique.

How to solve a fractional filtering problem? Knowing a solution of a nonlinear
filtering problem one can use it for solution of the associated fractional nonlinear
filtering problem. Two approaches to the solution of nonlinear filtering problems
are commonly used. Namely,

(1) direct solution of filtering problem (7.131)–(7.132).
(2) solution of the Zakai equation followed by the Kallianpur-Striebel formula.

For the filtering problem with no time-changed driving processes both approaches
are well studied; see, e.g., works [Ku90, Roz90, Da87, IX00] for the first approach,
and [Zak69, BGR90, BK96, LMR97] for the second approach. Both type of Zakai
equations (7.134) and (7.142) (or its adjoint form (7.143)) are of great interest in var-
ious applications of fractional filtering problems. For solutions of these equations,
due to relations (7.135) and (7.140), the following formulas are important:

Φt( f ) = pTt ( f )

and

Πt( f ) =
∫ ∞

0
gt(τ)pτ( f )dτ,

where pt( f ) is the solution of non-time-changed filtering problem and gt(τ) is the
density function of the time-changed process Tt . Therefore, in the first step one
needs to find the stochastic process pt( f ) which solves the classical Zakai equation.
Then using the above formulas one can find solutions to fractional Zakai equations.
Like the non-fractional case, one can develop analytic and numerical methods, and
methods for solution of filtering problem directly, or through the associated Za-
kai equation. Accordingly, in the fractional case the methods can be developed for
solution of the three following situations:

(a) Direct solution of the fractional filtering problem;
(b) Solution of the fractional filtering problem through the Zakai equation (7.134);
(c) Solution of the fractional filtering problem through the adjoint Zakai equation

(7.143).
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7.16 Additional notes

1. Brownian motion. The term “Brownian motion” was coined in one of Albert Einstein’s Annus
Mirabilis 1905 papers, titled “Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen” (“On the Motion
of Small Particles Suspended in a Stationary Liquid, as Required by the Molecular Kinetic
Theory of Heat”). In this paper A. Einstein first provided theoretical explanation of Brown-
ian motion from the point of view of thermal diffusion. A little earlier (in 1900) Bachelier
published his doctoral dissertation “Théorie de la spéculation” (“The Theory of Speculation”)
modeling Brownian motion from the economics point of view, founding financial mathematics.
In 1908 Langevin published his work with a stochastic differential equation which was “und-
erstood mathematically” only after a stochastic calculus was introduced by Itô in 1944–48.
The Fokker-Planck equation, a deterministic form of describing of the dynamics of a random
process in terms of transition probabilities, was invented in 1913–17. Its complete “mathe-
matical understanding” become available after the appearance of the distribution (generalized
function) theory (Sobolev, 1938; Schwartz, 1951) and was embodied in Kolmogorov’s back-
ward and forward equations (1931). Deep mathematical properties of Brownian motion, like
nowhere differentiability and infinite total variation over arbitrary time interval, were studied
by N. Wiener in his paper [Wie28] published in 1927.

2. Fractional FPK equation. The classic FPK equation establishes a relationship between Itô’s
stochastic differential equation driven by Brownian motion and its associated partial differential
equation. In fact, this is a triple relationship. Indeed, changing the driving process, one gets a
different FPK equation. In the paper [MGZ14] a fractional Fokker-Planck equation is obtained
in the form

∂u
∂ t

=

[
−∂F(t,x)

∂x
+

1
2
∂ 2D(t,x)

∂x2

]
D1−αu, t > 0, x ∈R, (7.145)

with the initial condition u(0,x) = δ0(x). Here D1−α is the Riemann-Liouville fractional deriva-
tive, F(t,x) and D(t,x) are the drift and diffusion coefficients, respectively. If F(t,x) = F(x)
and D(t,x) = D(x), i.e., do not depend on the time variable t, then one can easily verify using
Proposition 3.1 that (7.145) is equivalent to the forward version of the fractional FPK equation
in (7.46). Equation (7.145) in the case F(x, t) = F(x) and D(t,x) = const was first established
using CTRW approach in [MBK99], in the case F(x, t) = F(t) and D(t,x) = const in [SK06],
and in the case F(x, t) = F(x) f (t) and D(t,x) = D(x)d(t) in [LQR12]. Fractional FPK equa-
tions associated with SDEs with time-independent coefficients and driven by a time-changed
Lévy processes are studied in the papers [HKU10, HKU11, HU11, HKRU11]. Another app-
roach to the theory of FPK is based on the Tsallis entropy, which leads to a nonlinear equation
of the form [Tsa09]

∂uμ

∂ t
=− ∂

∂x
[F(x)uμ ]+D

∂ 2 [uν ]
∂x2 , t > 0, x ∈ R,

where (μ ,ν) ∈ R
2, D > 0 is a diffusion constant, and F(x) is a drift coefficient. The solution

of this equation under certain conditions is given by Tsallis’ q-Gaussian.
3. Feynman-Kac formula. The relationship between the stochastic process Xt in (7.18) and another

associated partial differential equation

∂w
∂ t

=A w−qw, w(0,x) = ϕ(x),

for a nonnegative continuous function q, is given by the Feynman-Kac formula:

w(t,x) = E

[
exp

(
−
∫ t

0
q(Xs)ds

)
ϕ(Xt)

∣∣∣X0 = x

]
.
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4. Martingales, Poisson processes and random measures. Brownian motion Bt adapted to a fil-
tration Ft possess the following property: E[Bt |Fs] = Bs. This property is called a martingale
property of Brownian motion. A stochastic process Xt adapted to a filtration Ft is called a
martingale, if it satisfies the following conditions:

a. E[|Xt |]< ∞ for all t ≥ 0;
b. E[Xt |Fs] = Xs, for all 0≤ s≤ t.

One of the general properties of martingales is E[Xt ] does not depend on t, that is constant, if
Xt is a martingale. For example, for Brownian motion E[Bt ] = 0 for all t ≥ 0.
A process N(t) with values on N0, defined on a probability space (Ω ,F ,P), and adapted to
a filtration Ft is a Poisson process with an intensity λ > 0, if N(0) = 0, N(t)− N(s) and
N(b)−N(a) are independent for any nonoverlapping intervals (s, t) and (a,b) of the semiaxis
R+, has stationary increments, and

P(N(t) = n) =
(λ t)n

n!
e−λ t , n ∈ N0, ∀t ≥ 0.

It is easy to see that the characteristic function of Nt is

E[exp(iξN(t))] = eλ t(eiξ−1). (7.146)

The Poisson process N(t) is not a martingale. Indeed, its expected value E[N(t)] = λ t, that is
t-dependent. However, the process Ñ(t) = N(t)− tλ , called a compensated Poisson process, is
a martingale (try to show this!). Let Yi be a sequence of independent and identically distributed
random variables independent of the Poisson process N(t). Then the process

Xt =
N(t)

∑
i=1

Yi

is called a compound Poisson process.
Let μ be a measure defined on a measurable space (S,E ), that is for each set A ∈ E its measure
μ(A) is defined. Let (Ω ,F ,P) be a probability space. By Poisson random measure we mean a
(random) measure N : (Ω ,E )→ R+, such that

a. For each fixed ω, N(ω,A) is a measure on (S,E ), and for any fixed A ∈ E the random
variable N(ω,A) is P-measurable;

b. N(ω, /0) = 0;
c. For arbitrary disjoint collection of sets A1, . . .,An ∈ E random variables N(A1), . . .,N(An)

are independent;
d. For all A∈ E with μ(A)<∞, the random variable N(ω,A) has the Poisson distribution with

the intensity parameter E[N(A)] = μ(A).

The first integral on the right of equation (7.33) is performed with respect to the compensated
Poisson random measures Ñ(t,dw) = N(t,ν(dw))− tν(dw), where ν is a Lévy measure. The
random measure Ñ(t,dw) is a martingale-valued measure. The second integral in this represen-
tation is performed with respect to the Poisson random measure N(t,ν(dw)), and this integral
represents a compound Poisson process [Sat99, App09].

5. Lévy processes. Lévy processes were introduced in the 1930th by Paul Lévy. Today there are
many books on Lévy processes among which we would like to indicate Bertoin [Ber96], Sato
[Sat99], Barndorff-Nielsen, Mikosch, Resnick (Editors) [BMR01], Rong [Sit05], and Apple-
baum [App09]. One of the important properties of Lévy processes is they are infinite divisible.
Such processes are characterized by Lévy-Khinchin representation. Namely, for a Lévy process
Lt its characteristic function E[eiξLt ] = etΨ(ξ ), whereΨ(ξ ) has the form given in (7.32):

Ψ(ξ ) = i(b,ξ )− 1
2
(Σξ ,ξ )+

∫
Rn\{0}

(ei(w,ξ )−1− i(w,ξ )χ(|w|≤1)(w))ν(dw). (7.34)
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The functionΨ(ξ ), called a Lévy symbol, is continuous, Hermitian, conditionally positive def-
inite, and satisfies Ψ(0) = 0 [App09]. The triplet (b,Σ ,ν) uniquely defines the corresponding
Lévy process. If b = 0 and Σ =Θ , then the Levy process is a purely jump process. Compar-
ing (7.146) with (7.32) one can be convinced that any Poisson process is a purely jump Lévy
process.

6. Semigroup. The semigroup theory and boundary value problems for ΨDOSS are powerful
tools for the study of Markovian diffusion processes. Many researchers have contributed to
the development of the interrelation of semigroups, pseudo-differential operators, and Markov
processes; see [Bo55, Co65, Tai91, FOT94, Jac01, App09, JSc02, Hoh00] and the refer-
ences therein. In the fractional case solution operators do not possess the semigroup prop-
erty. Bazhlekova [Baz98] studied strong continuity and analyticity of abstract solution oper-
ators to the Cauchy problem for fractional order differential-operator equations of orders α
and β ,0 < α < β ≤ 2, with a closed operator A on the right, satisfying some conditions. In
particular, she established the following relationship, called a subordination principle:

Sα (t) =
∫ ∞

0
φt ,γ(s)Sβ (s)ds, t > 0, (7.147)

where γ = β/α , and φt ,γ(s) = t−γMγ (st−γ ). Here Mγ (z) is the M-Wright or Mainardi function
discussed in Section 3.13. In the case α = 1 and β = 2 relationship (7.147) implies the known
fact S1(t) = etA, which is a semigroup with the infinitesimal generator A. Relation (7.147) also
allows to get a solution of the Cauchy problem for a fractional order α equation, through the
solution of the second order equation (β = 2) with A = k2d2/dx2 :

Sα f (x) =
1

2ktα/2

∫
R

Mα/2

( |s|
ktα/2

)
f (x− s)ds.

This representation was obtained earlier in [Mai96].
7. Càdlàg and semimartingales. A càdlàg process, by definition, is right continuous with left lim-

its. Any Lévy process has a càdlàg modification, which is again a Lévy process [App09]. Lévy
processes are an important subclass of the so-called semimartingale processes. By definition,
an (Ft )-semimartingale is a càdlàg process Zt which allows a decomposition

Zt = Z0 +Mt +At , (7.148)

where Z0 is F0-measurable, Mt is an (Ft )-local martingale, and At is an (Ft )-adapted càdlàg
process of finite variation on compact sets. Rearranging the Lévy-Itô decomposition given
in (7.33) of a Lévy process Lt , one can write it in the form Lt = Mt +At , where

Mt = σBt +
∫
|w|<1

wÑ(t,dw), At = b0t ++
∫
|w|≥1

wN(t,dw), (7.149)

confirming that Lt has form (7.148) with Z0 = 0 and Mt and At in (7.149). Hence, Lt is a
semimartingale. Semimartingales are the widest class of integrators for which the stochastic
calculus in the sense of Itô can be extended; see details, for instance, in [Pro91].

8. Time-change process. Itô’s formula. In our discussions in this chapter semimartingales have
appeared in the context of time-changed Brownian motion or time-changed Lévy processes.
By definition, an (Ft)-time-change is a càdlàg, nondecreasing family of (Ft )-stopping times.
Let Et be an (Ft )-time-change and define a new filtration (Gt) by Gt :=FEt . Then the right
continuity of Ft and Et yields that of Gt . The following statement justifies that all the stochastic
integrals, considered in this chapter and driven by a time-changed Brownian motion or time-
changed Lévy process, are meaningful.

Proposition 7.7. ([Jac79]) Let Zt be an (Ft)-semimartingale and let Et be an (Ft)-time-
change. Then the time-changed process ZEt = (Z ◦ E)t is a (Gt)-semimartingale, where
Gt =FEt .
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The Itô’s formula plays an essential role in the theory of SDEs driven by semimartingales. It
states that if Zt is a semimartingale and f ∈C2(R), then f (Zt) is again a semimartingale and

f (Zt)− f (0) =
∫ t

0
f ′(Zs−)dZs +

1
2

∫ t

0
f ′′(Zs−)d[Z,Z]cs

+ ∑
0<s≤t

{
f (Zs)− f (Zs−)− f ′(Zs−)ΔZs

}
.

We also note that Kobayashi [Kob11] proved an analog of Itô’s formula for time-changed
stochastic processes and applied it to solution of various SDEs driven by a time-changed pro-
cess and to derivation of fractional FPK type equations.

Theorem 7.21. (Time-changed Itô Formula [Kob11]) Let Zt be an (Ft )-semimartingale. Let
Dt be a strictly increasing (Ft)-semimartingale with limt→∞Dt = ∞ and let Et denote the
inverse of Dt. Define a filtration (Gt) by Gt =FEt . Let Xt be a process defined by

Xt :=
∫ t

0
Asds+

∫ t

0
FsdEs +

∫ t

0
GsdZEs

where At ∈ L(m,Gt), Ft ∈ L(E,Gt ), Gt ∈ L(Z ◦E,Gt), and m is the identity map on R corre-
sponding to Lebesgue measure. If f ∈ C2(R), then f (Xt) is a (Gt)-semimartingale and with
probability one, for all t ≥ 0,

f (Xt)− f (0) =
∫ t

0
f ′(Xs−)Asds+

∫ Et

0
f ′(XD(s−)−)FD(s−)ds

+
∫ Et

0
f ′(XD(s−)−)GD(s−)dZs +

1
2

∫ Et

0
f ′′(XD(s−)−){GD(s−)}2d[Z,Z]cs

+ ∑
0<s≤t

{
f (Xs)− f (Xs−)− f ′(Xs−)ΔXs

}
.

Here L(μt ,Ft) is the set of Ft -adapted processes Ht for which the stochastic integral
∫ t

0 Htdμs

exists.
9. Fractional Brownian motion. Fractional Brownian motion was introduced by Kolmogorov

[Kol40] in 1940. Mandelbrot and Van Ness in their paper [MVN68] coined the name “frac-
tional Brownian motion” and studied its self-similarity, path continuity, dependent increments,
and other properties, and indicate various applications of fBM BH

t . The parameter H is called
the Hurst exponent, due to British hydrologist E.H. Hurst, who studied statistics of water lev-
els of Nile river. Fractional Brownian motion, like standard Brownian motion, has nowhere
differentiable sample-paths and stationary increments, but the increments over nonoverlapping
intervals are no longer independent. Namely, the covariance between increments over nonover-
lapping intervals is positive, if 1

2 < H < 1, and negative, if 0 < H < 1
2 . In particular, when

1
2 < H < 1, increments of BH

t exhibit long range dependence. BH
t has the integral representa-

tion

BH
t =

∫ t

0
KH (t, s)dBs,

where Bt is a Brownian motion. We refer the reader to [ST94, Nua06, BHOZ08] for details
of the above properties, including various representations for KH (t, s). Fractional Brownian
motion is not a semimartingale [BHOZ08, Nua06], unless H = 1

2 , and hence, as a driving
process for SDEs, does not satisfy conditions required for Itô’s calculus, However, it works
[Ben03, BHOZ08, DU98, Nua06] several different approaches are used to develop an appro-
priate stochastic calculus in order to interpret in a meaningful way SDEs of the form

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ (Xs)dBH

s , (7.114)
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driven by fBM BH
t . What concerns FPK equation associated with fractional Brownian motion,

it is derived with different methods in [BC07, BHOZ08, MNX09]. In the general setting, a
FPK equation associated with SDE (7.88), to author’s best knowledge, is not yet known. In the
paper [BC07], in the case b = 0 for H ∈ (1/4,1), it is shown that u(t,x) = E[ϕ(Xt)|X0 = x]
solves the equation of the form ∂t u = Ht2H−1A(x,D)u, when Xt solves SDE (7.88) and the
stochastic integral in the sense of Stratanovich. Fractional Black-Scholes partial differential
equations are obtained in [Mag09] when the driving process is Brownian motion, and in [LW12]
when the driving process is fBM. In the paper [LW12] also a fractional Fokker-Planck equation
associated with the fractional geometric Brownian motion is derived.



Chapter 8
Random walk approximants of mixed
and time-changed Lévy processes

8.1 Introduction

Random walks are used to model various random processes in different fields. In this
chapter we are only interested in random walks as approximating processes of some
basic driving processes of stochastic differential equations discussed in the pre-
vious chapter. There is a vast literature (see, e.g., [GK54, Don52, Bil99, Taq75,
GM98-1, GM01, MS01]) devoted to approximation of various basic stochastic pro-
cesses like Brownian motion, fractional Brownian motion, Lévy processes, and their
time-changed counterparts. In the context of approximation, the question in what
sense a random walk approximates (or converges to) an associated stochastic pro-
cess becomes important. We will be interested only in the convergence in the sense
of finite-dimensional distributions, which is equivalent to the locally uniform con-
vergence of corresponding characteristic functions (see, e.g., [Bil99]).

We start our discussion with the model case - a simple random walk (Section 8.2),
which approximates Brownian motion. The idea of convergence of random walks
to associated mixed and time-changed stochastic processes, used in subsequent sec-
tions, is given here in the simplest case. In Section 8.3 we construct random walks
approximating symmetric α-stable Lévy processes Lα ,t , which was used as driv-
ing processes for SDEs in Section 7.5. Random walks approximating stable Lévy
processes (not necessarily symmetric) in the one-dimensional case were studied
in a series of papers [GM98-1, GM99, GM01], and symmetric multi-dimensional
case in [UG05-1]. In Section 8.4 we construct random walks approximating mixed
symmetric Lévy processes with some mixing measure. And finally, in Section 8.5
we will construct continuous time random walk (CTRW) approximants of time-
changed mixed symmetric Lévy processes and develop an analytic method for the
convergence.

Note that CTRW was first introduced by Montroll and Weiss in their paper
[MW65] in 1965, and by definition, is a random walk subordinated to a renewal
process. More precisely, this means that CTRW comprises of two i.i.d. sequences
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of random variables (vectors), one expressing jumps, and another one expressing
waiting times between successive jumps. The mathematical definition of CTRW
and some of its properties are provided in Section 8.5.

8.2 Simple random walk as an approximant

Suppose a variable X takes randomly two values, ±h, with probability 1/2 each,
i.e., P(X = h) = 1/2 and P(X = −h) = 1/2. Here P(A) means the probability of a
random event A. With the help of the variable X one can model random movement of
a particle on the one-dimensional uniform lattice x j = jh, j ∈Z. Indeed, the position
of the particle, initially located at some point x j0 (Y0 = x j0 = 0), after n moves is Yn =
X1+ . . .+Xn, where each Xk is the same as X , and each movement is independent of
other movements. In probability theory Xk, k = 1, . . . ,n, are called an independent
and identically distributed (i.i.d.) random variables, which represent “n independent
copies of X ,” and the sequence Y0,Y1, . . . , is called a (simple) random walk. Suppose
the probability of the particle being at x j in n-th movement is yn

j , that is P(Yn =
x j) = yn

j . Since the particle can arrive at x j only from two neighboring points x j−1

and x j+1, with probability 1/2, then for the (n+ 1)-st movement we have

yn+1
j =

1
2

yn
j−1 +

1
2

yn
j+1, y0

0 = 1, n ∈ N0, j ∈ Z. (8.1)

From this recursive equation one gets a unique solution {yn
j , j ∈ Z, n ∈ N0} for the

probability distribution of the above random walk model.
Simple random walk models serve as discrete approximations of, the so-called,

Gaussian stochastic processes (diffusion process in physics terminology). There-
fore, if one is interested in the limiting process of the above random walk, then a
natural question would be what is a “continuous” version of equation (8.1) and its
solution? In fact, the answer to this question can be obtained by letting h → 0 in
equation (8.1). For this purpose we subtract yn

j from both sides of equation (8.1) to
obtain

yn+1
j − yn

j =
1
2

(
yn

j+1− 2yn
j + yn

j−1

)
.

Dividing by h2 and assuming that the time step τ = tn+1− tn for each movement
equals h2, that is τ = h2, we have

yn+1
j − yn

j

τ
=

1
2

yn
j+1− 2yn

j + yn
j−1

h2 , (8.2)

Let p(t,x) be the probability of being the particle at the position x at time t. Then,
taking into account the equality yn

j = p(x j, tn), one can rewrite equation (8.2) in the
form

p(tn + τ,x j)− p(tn,x j)

τ
=

1
2

p(tn,x j + h)− 2p(tn,x j)+ p(tn,x j − h)

h2 .
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Now letting h→ 0, for (t,x) = (tn,x j) one obtains the equation

∂ p(t,x)
∂ t

=
1
2
∂ 2 p(t,x)
∂x2 . (8.3)

Due to arbitrariness of the pair (tn,x j), in fact, equation (8.3) is valid for all t > 0,
x ∈ R. The initial condition Y0 = 0 implies p(0,x) = δ0(x).

In the d-dimensional case1 the simple random walk is constructed with the help
of the random vector X taking 2d values (±h,0, . . . ,0), . . . ,(0, . . . ,0,±h), with prob-
ability 1

2d . Then Yn =X1+ . . .+Xn, Y0 = 0, where random vectors X j, j = 1, . . . ,n,
have the same distribution as X and independent, represent a random walk on
the d-dimensional uniform lattice hZd = {hk = (hk1, . . . ,hkd) : (k1, . . . ,kd) ∈ Z

d}.
Repeating the above arguments, for the probability p(t,x) of finding the particle at
x ∈ R

d at time t > 0, one has the equation

∂ p(t,x)
∂ t

=
1
2
Δ p(t,x), t > 0, x ∈ R

d , (8.4)

where Δ is the d-dimensional Laplace operator, with the initial condition

p(0,x) = δ0(x). (8.5)

The unique solution to this initial value problem is given by the following function2

G2(t,x) =
1

(2πt)d/2
e
−|x|2

2t , t > 0, x ∈R
d . (8.6)

We have seen (see Section 1.5.3) that G2(t,x)→ δ0(x), as t → 0, in the weak sense.
These heuristic calculations show that the simple random walk introduced above

converges to a Brownian motion, whose density for each fixed t is given by (8.6).
Below we show that in fact the random walk Yn converges as n → ∞ to a d-
dimensional Brownian motion Bt = (B1 t , . . . ,Bd t) in the sense of finite-dimensional
distributions.

The characteristic function ŷn(ξ ) = E

[
eiYnξ

]
of Yn has the form

ŷn(ξ ) = E
(
ei[(X1,ξ )+···+(Xn,ξ )]

)
=

n

∏
j=1

E(eiX jξ ) = [ŷ(ξ )]n, ξ ∈ R
d ,

where

ŷ(ξ ) = E(eiXξ ) =
d

∏
j=1

[
1

2d
e−ihξ j +

1
2d

eihξ j

]
=

d

∏
j=1

cos(hξ j)

d
.

Therefore, taking into account the relation t = nτ = nh2, we have

ln[ŷn(ξ )] = n
d

∑
j=1

ln

[
cos(hξ j)

d

]
= t

d

∑
j=1

ln
[

cos(hξ j)
d

]

h2 .

1 For the dimension in this chapter we use the letter d, since n is overloaded.
2 The Gaussian density function with mean 0 and correlation matrix I evolving in time.



348 8 Random walk approximants of mixed and time-changed Lévy processes

Now, applying L’Hôpital’s rule, one has limh→0 h−2 ln
[

cos(hξ j)
d

]
=−ξ 2

j /2. Hence,

lim
h→0

ŷn(hξ ) = e−t |ξ |
2

2 = F

[
1

(2πt)d/2
e
−|x|2

2t

]
= E

[
eiBtξ

]
,

with Btξ = ξ1B1 t + · · ·+ξdBd t . Thus, for each fixed t > 0 the characteristic function
of the random walk Yn locally uniformly converges as n → ∞ to the characteristic
function of the standard Brownian motion Bt with mean zero and variance t. The
latter convergence is equivalent to the convergence in distributions (in law). Now,
since t is an arbitrary fixed number, it follows the convergence in the sense of finite-
dimensional distributions, as well. Concluding, we have that the simple random
walk on the lattice hZd approximates Brownian motion.

8.3 Random walk approximants for Lévy-Feller processes

Now consider the fractional order differential equation

∂u(t,x)
∂ t

=
1
2

Dα
0 u(t,x), t > 0, x ∈ R

d , (8.7)

which generalizes equation (8.4), and where Dα
0 , 0 < α < 2, is the pseudo-

differential (hyper-singular) operator

Dα
0 f (x) = b(α)

∫
Rd

Δ2
y f (x)

|y|n+α dy, (8.8)

defined in Section 3.8, with the symbol−|ξ |α . See equation (3.75) for b(α)= bd(α)
in (8.8). In accordance with limα→2 |ξ |α = |ξ |2 one can accept D2

0 = Δ , where Δ
is the Laplace operator. In the general case we have formally Dα

0 =−(−Δ)α/2 (see
Section 3.9). A weak solution, namely a distribution Gα(t,x), which satisfies (8.7)
and the condition

u(0,x) = δ0(x), x ∈ R
d , (8.9)

with the Dirac delta-function δ0(x), concentrated at 0, in the sense of distributions,
is called a fundamental solution of the Cauchy problem (8.7), (8.9).

It is clear that in the case α = 2 we have equation (8.4) whose fundamental
solution is the Gaussian probability density function evolving in time, given by (8.6).
In the case α = 1 the corresponding fundamental solution is given by the Cauchy-
Poisson probability density function evolving in time (c.f. (1.119)):

G1(t,x) =
Γ ( d+1

2 )

2π (d+1)/2

t(
|x|2 +(t/2)2

)(d+1)/2
.
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It is well known that for the Fourier transforms of the functions Gq(t,x),q = 1,2,
the relations (cf. formulas (1.16) and (1.17))

Ĝ2(t,ξ ) = e−
t
2 |ξ |2 and Ĝ1(t,ξ ) = e−

t
2 |ξ |

hold. For other values of α , 0 < α < 2, applying the Fourier transform to equa-
tion (8.7), and then the inverse Fourier transform to the solution of the equation
in the Fourier domain, one can find the fundamental solution to the Cauchy prob-
lem (8.7), (8.9), represented in the form

Gα(t,x) =
1

(2π)d

∫
Rd

e−
t
2 |ξ |α eixξ dξ . (8.10)

The question we want to explore is the existence of a random walk approximating
the diffusion process governed by equation (8.7). Let X be an d-dimensional random
vector [MS01] which takes values in hZd with the probability mass function pk =
P(X = hk), k ∈ Z

d . Notice that in the case of simple random walk

pk =

{
1

2d , if |k|= 1,

0, otherwise.

Further, let the random vectors X1,X2, . . . , be an independent and identically dis-
tributed random vectors, all having the same probability distribution as X does.
We introduce a spatial grid {x j = jh, j ∈ Z

d}, with h > 0, and a temporal grid
{tn = nτ,n= 0,1,2, . . .}with a step τ > 0. Consider the sequence of random vectors

Sn = X1 +X2 + · · ·+Xn, n = 1,2, . . .

assuming S0 = 0, for convenience. We interpret X1,X2, . . . , as jumps of the particle
being at x = x0 = 0 at the starting time t = t0 = 0 and making a jump Xn from
the position Sn−1 to the position Sn at the time instance t = tn. Then the position
S(t), t > 0, of the particle at time t is

S(t) = ∑
1≤k≤t/τ

Xk, t > 0.

Due to independence of random vectors X1, . . . ,Xn, the probabilities pk =
P(X1 = xk) can be interpreted as transition probabilities from a point x j ∈ hZd to
a point x j+k ∈ hZd . By this we automatically assume that the particle jumps are
isotropic in all directions. They satisfy the following nonnegativity and normaliza-
tion conditions:

(a) pk ≥ 0, k ∈ Zd ;
(b) ∑k∈Zd pk = 1.

We recall a fact from probability theory that for two random vectors X and Y
with probability mass functions pk and qk, k ∈ Z

d , the probability mass function of
X +Y is defined as a convolution p ∗ q, by the rule
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(p ∗ q)k = ∑
j∈Zd

p jqk− j, k ∈ Z
d . (8.11)

Also for a random variable X its characteristic function is defined by the formula

p̂(ξ ) = ∑
k∈Zd

pkeikξ , ξ ∈ R
d , (8.12)

where kx = k1x1+ · · ·+kdξd . We will consider the solution u(t,x) of diffusion equa-
tion (8.7) with initial condition (8.9) as a probability density function (with respect
to x). Namely, for given time t > 0, u(t,x) is the probability of sojourn of a dif-
fusing particle at x ∈ R

d . For the discrete random walk introduced above we use
the notation yn

j for the (discrete) probability of sojourn (in the time instant tn) of the
wandering particle at the point x j. Heuristically, we consider yn

j as an approximation

of hdu(tn,x j)≈
∫

Cj
u(tn,x)dx, the total probability of sojourn inside a cubical cell Cj

with the center x j and side length h.
We also will use the fact that for a continuous function f (x) integrable over Rd ,

the following convergence of the Riemann sum

hd ∑
j∈Zd

f ( jh)→
∫

Rd

f (x)dx. (8.13)

as h→ 0, holds.

Lemma 8.1. For the probabilities yn
j the following statements hold:

1. yn+1
j = ∑

k∈Zd
pkyn

j−k, j ∈ Z
d ;

2. yn
j = (p ∗ · · · ∗ p︸ ︷︷ ︸

n times

) j.

Proof. The first statement follows from the recursion Sn+1 = Sn +Xn and (8.11).
The second statement follows from the first one by induction.

Lemma 8.2. Let s(τ),τ ≥ 0, be a differentiable function, such that

(a) s(τ)→ s0, τ → ∞;
(b) τs

′
(τ)→ 0, τ → ∞. Then

lim
τ→∞

(
1+

s(τ)
τ

)τ
= es0 . (8.14)

Proof. Consider the function

g(τ) =
ln
(

1+ s(τ)
τ

)
1
τ

, τ > 0.
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Condition (a) implies that the function s(τ) is bounded at infinity, and therefore,
one can apply the L’Hôpital’s rule to find the limit of g(τ) when τ → ∞. Then, due
to conditions (a) and (b)

lim
τ→∞

g(τ) =
[τs

′
(τ)− s(τ)]τ−2

−τ−2
(

1+ s(τ)
τ

) = s0.

The latter implies (8.14).

Theorem 8.1. Let X1,X2, . . . , be an independent and identically distributed random
vectors with the probability mass function pk = P(X j = hk),k ∈ Z

d , of each random
vector X j, j = 1, . . . ,n. Assume that

(a) if 0 < α < 2, then

pk =

{
1− μb(α)∑m∈Zd\{0}

1
|m|d+α , if k = 0;

μb(α)|k|−(d+α), if k �= 0,
(8.15)

with μ satisfying the condition

0 < μ ≤ 1
b(α)∑m∈Zd\{0} |m|−d−α ,

and the space and time steps h and τ being connected by the scaling relation
τ = τ(h) = μhα ;

(b) if α = 2, then

pk =

{
1

2d , if |k|= 1;

0, if |k|= 0,

with τ = h2

d .

Then the sequence of random vectors Sn = X1 + . . .+Xn converges as n→ ∞ in the
sense of distributions to the random vector whose probability density is the funda-
mental solution of the Cauchy problem (8.7), (8.9), i.e., to G(t,x) defined in (8.10).

Proof. Let 0 < α < 2. We will show that the sequence of random vectors Sn con-
verges as n → ∞ to the random vector whose probability density function evolving
in time is of the form

G(t,x) =
1

(2π)d

∫
Rd

e−
1
2 t|ξ |α eixξ dξ , t > 0, x ∈ R

d .

It is obvious that the Fourier transform of G(t,x) with respect to the variable x is the

function Ĝ(t,ξ ) = e−
1
2 t|ξ |α . Let p̂h(ξ ) be the characteristic function correspond-

ing to the random vector X1 ∈ hZd with the probability mass function pk defined
in (8.15), that is (see (8.12))
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p̂h(ξ ) = ∑
k∈Zd

pkeihkξ .

Due to Lemma 8.1 the characteristic function of Sn can be represented in the form

ŷ(tn,ξ ) = ∑
k∈Zd

yn
keihkξ =

[
p̂h(ξ )

]n
.

Taking this into account it suffices to show that

[
p̂h(ξ )

]n → e−
t
2 |ξ |α , n→ ∞. (8.16)

The latter is equivalent to

lim
h→0

ln p̂h(ξ )
τ(h)/2

=−|ξ |α .

where τ(h) = t
n = μhα . Below we show the validity of the limit in (8.16). Using the

definition of pk given in equation (8.15), we have

[
p̂h(ξ )

]n
=
[
1− μb(α) ∑

0 �=k∈Zd

1
|k|d+α + μb(α) ∑

0 �=k∈Zd

eikξh

|k|d+α
]n

=
[
1− μb(α) ∑

0 �=k∈Zd

1− eikξh

|k|d+α
]n
. (8.17)

Further, one can easily verify that

∑
0 �=k∈Zd

1− eikξh

|k|d+α = ∑
0 �=k∈Zd

1− e−ikξh

|k|d+α .

Due to the definition of the symmetric second finite difference of the function eixξ

at the origin, this implies

∑
0 �=k∈Zd

1− eikξh

|k|d+α =
1
2 ∑

0 �=k∈Zd

2− eikξh+ e−ikξh

|k|d+α

=−1
2 ∑

0 �=k∈Zd

(Δ2
kheixξ )|x=0

|k|d+α . (8.18)

Now in equation (8.17) substituting μ = t
nhα and using equality (8.18), one obtains

[
p̂h(ξ )

]n
=
[
1+

t
2 b(α)∑k∈Zd\{0}

(Δ2
kheixξ )|x=0

|kh|d+α hd

n

]n
. (8.19)
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Further, it follows from Lemma 8.2 that if a sequence sn = s(n), n = 1,2, . . . , con-
verges to s when n→ ∞, and τs

′
(τ)→ 0, τ → ∞, then

lim
n→∞

(1+
sn

n
)n = es. (8.20)

Due to (8.13) and Corollary 2.11 the expression

sn = sn(h) =
t
2

b(α) ∑
k∈Zd\{0}

(Δ2
kheixξ )|x=0

|kh|d+α hd

converges to

s =
t
2

b(α)
∫
Rd

(Δ2
y eixξ )x=0

|y|d+α dy =
t
2
(Dα

0 eixξ )|x=0
=− t

2
|ξ |α ,

as h → 0 (or, the same, n → ∞ ) for all α ∈ (0,2). Moreover, utilizing the equality
hα = t/(μn) the function s(τ) can be written in the form

s(τ) = μb(α) ∑
k∈Zd\{0}

τ(cos kξ
τ − 1)

|k|d+α .

Exploiting the dominating convergence theorem, it is not hard to see that τs
′
(τ)→ 0,

as τ → ∞. Hence in accordance with (8.20), letting n→ ∞ in (8.19), we have

ŷ(tn,ξ ) = [p̂h(ξ )]n → e−
t
2 |ξ |α , ξ ∈ R

d .

The case α = 2, with probabilities pk given in Part b) of Theorem 8.1, corre-
sponds to the N-dimensional simple random walk and was shown earlier.

Remark 8.1. The constructed random walk can be generalized to the class of sta-
ble motions Lt , characteristic functions of which in the one-dimensional case have
the form exp(tψ(ξ )), with ψ(ξ ) defined in (7.121). In multidimensional case the
symbol ψ(ξ ) has the form

ψ(ξ ) =−i(a,ξ )+
∫
|θ |=1

(−iξ ,θ )αM(dθ ), ξ ∈ R
d ,

where a ∈ R
d and M(dθ ) is a probability measure defined on the unit sphere. If

a = 0 and M(dθ ) = const ·dθ , then we get the symmetric case considered above.
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8.4 Random walk approximants for mixed Lévy processes

The objective of this section is twofold. The first objective is to describe the driving
process of SDEs considered in previous sections, approximating it by a discrete
random walk. To achieve this we develop a DODE model in this section and CTRW
model in the next section. The second objective is to generalize the random walk
construction discussed in Section 8.2 and some random walks models introduced
and studied in the papers [GM01, US06].

Definition 8.1. Let ρ be a finite measure with the support suppρ ⊆ (0,2]. Denote
by SS the class of (Ft )-semimartingales Zt , Z0 = 0, whose characteristic function
is given by

E
[
eiξZt

]
= exp

{
− t

2∫

0

|ξ |αdρ(α)
}
, ξ ∈ R

d . (8.21)

If fZt (x), x ∈ R
d , is the density function of the process Zt , then equation (8.21) can

be expressed as the Fourier transform E
[
eiξZt

]
= F[ fZt ](ξ ). The class SS obviously

contains Lévy’s SαS-processes and all mixtures of their finitely many independent
representatives. For the process Zt ∈ SS corresponding to a finite measure ρ , we use
the notation Zt = Xρ

t to indicate this correspondence.

Suppose Xρ
t is a stochastic process obtained by mixing of independent Lévy’s

SαS-processes with a mixing measure ρ , suppρ ⊂ (0,2).3 Then its associated FPK
equation has the form

∂u(t,x)
∂ t

=

2∫

0

D
α
0 u(t,x)dρ(α), t > 0, x ∈ R

d , (8.22)

where D
α
0 is given by (8.8). Indeed, it is seen from (8.21) that the Lévy symbol of

Xρ
t equals

Ψ(ξ ) =−
∫ 2

0
|ξ |αdρ . (8.23)

On the other hand, due to the formula F [Dα
0 ϕ ](ξ ) =−|ξ |2F [ϕ ](ξ ) (see (3.82)), the

Fourier transform of the right-hand side of (8.22) is

F
[∫ 2

0
Dα

0 ϕ(x)dρ(α)
]
=

∫ 2

0
F[Dα

0 ϕ ](ξ )dρ(α) =
(
−
∫ 2

0
|ξ |αdρ

)
F [ϕ ](ξ ).

Hence, the symbol of the pseudo-differential operator on the right-hand side of (8.22)
coincides withΨ(ξ ). This means that the FPK equation associated with Xρ

t is given
by equation (8.22). Since Xρ

0 = 0 the function u(t,x) in (8.22) satisfies the initial

3 The set (0,2) can be replaced by (0,2], but this requires an additional care (see [US06]).
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condition u(0,x) = δ0(x). Using the Fourier transform technique, one can verify
that the solution of (8.22) satisfying the latter initial condition can be expressed in
the form

Gρ(t,x) =
1

(2π)d

∫
Rd

etΨ (ξ )−ixξdξ . (8.24)

The following theorem provides a random walk approximation of the stochastic
process Xρ

t .

Theorem 8.2. Let Xj ∈ hZd , j ≥ 1, be i.i.d. random vectors with the probability
mass function

pk = P(X1 = k) =

⎧⎨
⎩

1− 2τ ∑m�=0
Qm(h)
|m|d , if k = 0;

2τ Qk(h)
|k|d , if k �= 0,

(8.25)

where τ > 0, h > 0, and

Qm(h) =
∫ 2

0

b(α)dρ(α)
(hm)α

, m �= 0. (8.26)

Assume that

σ(τ,h) := 2τ ∑
m�=0

Qm(h)
|m|d ≤ 1. (8.27)

Then the sequence of random vectors Sn = X1 + . . .+Xn, converges in law to Xρ
t as

n→ ∞.

Proof. In order to construct a random walk relevant to (8.80) we use the approxi-
mation (8.13) for the integral on the right-hand side of (8.22), namely

D
α
0 u(t,x j)≈ b(α) ∑

k∈Zd

u j+k(t)− 2u j(t)+ u j−k(t)

|k|d+αhα
, (8.28)

and the first order difference ratio

∂u
∂ t

≈ u j(tn+1)− u j(tn)

τ

for ∂u
∂ t with the time step τ = t/n, and u j(t) = u(x j, t), x j ∈ hZd . Following notations

in Section 8.2, we denote the probability of walker being at x j at time tn by yn
j =

u(tn,x j), tn = nτ, x j = h j. Then, taking into account the recursion Sn+1 = Sn +Xn,
one has

yn+1
j = ∑

k∈Zd

pkyn
j−k, j ∈ Z

d , n = 0,1, . . . . (8.29)

with the transition probabilities

pk =

⎧⎨
⎩

1− 2τ∑m�=0
Qm(h)
|m|d , if k = 0;

2τ Qk(h)
|k|d , if k �= 0,

(8.30)
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where Qm(h) is defined in (8.26). Assume that the condition (8.27) is fulfilled. Then,
obviously, the transition probabilities satisfy the properties:

∑
k∈Zd

pk = 1, and pk ≥ 0, k ∈ Z
d . (8.31)

Introduce the function

R(α) = ∑
k �=0

1
|k|d+α =

∞

∑
m=1

Mm

md+α , 0 < α ≤ 2,

where Mm = ∑
|k|=m

1. (In the one-dimensional case R(α) relates to the Riemann’s

zeta-function through R(α) = 2ζ (1+α).) The inequality (8.27) can be rewritten as

σ(τ,h) = 2τ
∫ 2

0

b(α)R(α)
hα

dρ(α)≤ 1.

It follows from the latter inequality that h → 0 yields τ → 0. This, in turn, yields
n = t/τ→ ∞ for any finite t.

In order to prove the theorem we have to show that the sequence of random vec-
tors Sn tends to the random vector with the density function Gρ(t,x) (for a fixed t)
in (8.24). This means that the discrete function y j(tn) tends to Gρ(t,x) as n→ ∞. It
is obvious that the Fourier transform of Gρ(t,x) with respect to the variable x is the
function Ĝρ(t,ξ ) = etΨ (ξ ). Let p̂(ξ ) be the characteristic function corresponding to
the discrete function pk, k ∈ Z

d , that is

p̂(ξ ) = ∑
k∈Zd

pkeikξ . (8.32)

It follows from the recursion formula (8.29) (which exhibits the convolution) and the
well-known fact that convolution goes over in multiplication by the Fourier trans-
form, the characteristic function of y j(tn) can be represented in the form

ŷ j(tn,ξ ) = ŷ j(tn−1,ξ )p̂(ξ ) = · · ·= ŷ j(0,ξ )[p̂(ξ )]n

= [p̂(ξ )]n, n = 1,2, . . . .

Taking this into account it suffices to show that [p̂(hξ )]n → etΨ (ξ ), n→∞. The next
step of the proof uses (8.20). We have

[p̂(hξ )]n =

(
1− τ ∑

k �=0

Qk

|k|d (1− eikξh)

)n

=

(
1− τ ∑

k �=0

1
|k|d

∫ 2

0

a(b(α)dρ(α)
|k|αhα

(1− eikξh)

)n

=

⎛
⎜⎜⎝1+

t
∫ 2

0 {b(α)∑
(Δ2

kheixξ )|x=0
|kh|d+α hn}dρ(α)

n

⎞
⎟⎟⎠

n
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In Section 8.2 we have proved that the expression

b(α) ∑
k∈Zd

(
Δ2

kheixξ
)
|x=0

|kh|d+α hd

tends to (Dα
0 eixξ )|x=0

= −|ξ |α as h → 0 (or, the same, n → ∞ ) for all α ∈ (0,2).
Hence

sn = sn(h) =

∫ 2

0

{
b(α)∑ Δ2eikξh

|kh|d+α hd

}
dρ(α)→−

∫ 2

0
|ξ |αdρ(α)

=Ψ(ξ ), n→ ∞ (h → 0).

Moreover, the function sτ (sn = s(n)) satisfies condition τs
′
(τ)→ 0, τ → ∞. Thus,

in accordance with (8.20) we have

[p̂(hξ )]n → etΨ (ξ ), n→ ∞,

completing the proof.

The random walk related to the multiterm fractional diffusion equation can be de-
rived from Theorem 8.2. Assume that dρ(α) has the form

dρ(α) =
M

∑
m=1

amδα j (α)dα,

with 0 < α1 < .. .αM < 2. So, we again exclude the case {2} ∈ singsuppρ .

Theorem 8.3. ([US06]) Let the transition probabilities pk = P(X = xk),k ∈ Z
d , of

the random vector X be given as follows:

pk =

⎧⎨
⎩

1−∑ j �=0
1
| j|d ∑

M
m=1

μmamb(αm)
| j|αm , if k = 0;

1
|k|d ∑

M
m=1

μmamb(αm)
| j|αm , if k �= 0,

where μm = 2τ
hαm ,m = 1, . . . ,M. Assume,

M

∑
m=1

amb(αm)R(αm)μm ≤ 1.

Then the sequence of random vectors Sn = hX1 + . . .+ hXn, converges as n → ∞
in law to the random vector whose probability density function is the fundamental
solution of the multiterm fractional order differential equation
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∂u(t,x)
∂ t

=
M

∑
m=1

amD
αm
0 u(t,x), t > 0, x ∈ R

d .

Remark 8.2. 1. Theorem 8.2 in the particular case of the measure ρ(dα) = a(α)dα,
where a(α) ∈C[0,2], is proved in [US06].

2. The condition {2} /∈ singsuppρ is required, because the value α = 2 is singular
in the definition of Dα

0 (see (3.75)). The particular case of ρ(dα) = δ (α− 2)dα
reduces equation (8.22) to the classic diffusion equation and as was seen in Sec-
tion 8.2, the corresponding (simple) random walk converges to Brownian motion.

8.5 Continuous time random walk approximants
of time-changed processes

8.5.1 Continuous time random walk. Montroll-Weiss equation

Driving processes of the SDEs associated with time-fractional FPK equations ap-
pear to be time-changes of basic processes like Brownian motion, Lévy process,
fractional Brownian motion, etc. Donsker’s theorem states that Brownian motion is
the limit in the weak topology of a scaled sum of a sequence of independent and
identically distributed (i.i.d.) random variables {Xj}, with X1 ∈ L2(P). This fact is
important from the approximation point of view since an approximation of the basic
driving process Bt yields, under some conditions, an approximation of other pro-
cesses Xt driven by Bt . Natural approximants of time-changed processes BW , LW ,
etc., where W is the inverse to a stable subordinator, are continuous time random
walks (CTRWs). A CTRW is a random walk subordinated to a renewal process.
CTRWs are described by two sequences of random variables: one representing the
length of the jump, and the other one representing the waiting time between succes-
sive jumps. More precisely, let Y1,Y2, . . . ,Yn, . . . , (Yi ∈R

d), be a sequence of i.i.d.
random vectors, and let τ1,τ2, . . . ,τn, . . . , (τi ∈R) be an i.i.d. sequence of positive
real-valued random variables. Then

Sn = Y1 + · · ·+Yn (8.33)

is the position after n jumps, and

Tn = τ1 + · · ·+ τn (8.34)

is the time of the nth jump. Assume that S0 = 0 and T0 = 0. The stochastic process

Xt = SNt =
Nt

∑
i=1

Yi, (8.35)
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where
Nt = max{n≥ 0 : Tn ≤ t}, (8.36)

is called a continuous time random walk. We assume that the random variable τ1

and random vector Y1 are independent. This case is referred to as uncoupled CTRW.
Suppose ϕ(t,x) = φ(t)w(x), τ ≥ 0, x ∈ R

d , is the joint density of (τ1,Y1), where
φ(t) and w(x) are density functions of τ1 and Y1, respectively. Then the probability
p(t,x) of being the walker at x at time t satisfies the following integral equation (see,
e.g., [MK00, SGM00, GM05])

p(t,x) = δ0(x)Φ(t)+
∫ t

0

∫
Rn
φ(t− τ)w(x− y)p(τ,y)dydτ, (8.37)

called a master equation. In this equation Φ(t) = 1− ∫ t
0 φ(τ)dτ =

∫ ∞
t φ(τ)dτ. One

can easily verify that the Laplace transform of Φ(t) is

Φ̃(s) = L[Φ](s) =
1− φ̃(s)

s
, ℜ(s)> 0. (8.38)

Applying the Laplace transform and then the Fourier transform to both sides
of (8.37), one has

ˆ̃p(s,ξ ) =
Φ̃(s)

1− ˆ̃ϕ(s,ξ )
, ℜ(s)> 0, ξ ∈ R

d . (8.39)

Equation (8.39) is known as the Montroll-Weiss equation, and first was obtained
by Montroll and Weiss in [MW65] using a different argumentation, which does
not use the master equation. In our case of uncoupled CTRW ˆ̃ϕ(s,ξ ) = φ̃(s)ŵ(ξ ).
Therefore, taking into account (8.38), one can write the Montroll-Weiss equation in
the form

ˆ̃p(s,ξ ) =
1− φ̃(s)

s
1

1− φ̃(s)ŵ(ξ )
, ℜ(s)> 0, ξ ∈ R

d . (8.40)

Our aim is to study limit processes of CTRWs. For this purpose, consider τTn,
where τ > 0 is a nonrandom parameter. Due to (8.34), this is equivalent to the change
of the sequence τn to the sequence τ ·τn. The density function of the latter is φτ (t) =
τ−1φ(t/τ) and the corresponding Laplace transform is φ̃τ (s) = φ̃(τs). Similarly,
with a nonrandom parameter h > 0 consider hSn, which is equivalent to the change
of Yn in (8.33) to hYn. The density function of the vector hYn is wh(x) = h−nw(x/h),
and the corresponding characteristic function is ŵh(ξ ) = ŵ(hξ ). In this case the
CTRW process takes the form X τ,h

t = hSNt/τ , with the corresponding Montroll-Weiss
equation

ˆ̃pτ,h(s,ξ ) =
1− φ̃(τs)

s
1

1− φ̃(τs)ŵ(hξ )
, ℜ(s)> 0, ξ ∈R

d . (8.41)
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Now assume that
φ̃(s)∼ 1−λ sβ , s→ 0, (8.42)

with some λ > 0, and
ŵ(ξ )∼ 1+A(ξ ), |ξ | → 0, (8.43)

where A(ξ ) is a continuous radial function taking negative values, and such that
A(0)= 0. Further, assume that parameters τ and h are connected so that τ−βA(hξ )→
λA(ξ ), as τ→ 0. The validity of the latter limit yields also that h is a function of τ,
and h(τ)→ 0 if τ → 0. Under these assumptions equation (8.41) implies

ˆ̃pτ,h(s,ξ )∼ λτβ sβ−1

λτβ sβ −A(hξ )+λτβsβA(hξ )

=
sβ−1

sβ − 1
λτβ A(hξ )+ sβA(hξ )

. (8.44)

Hence, letting τ → 0, or h→ 0, in (8.44), one obtains locally uniform convergence

ˆ̃pτ,h(s,ξ )→ sβ−1

sβ +(−A(ξ ))
, τ → 0 (h→ 0), (8.45)

since A(hξ )→ 0 as h → 0. It follows from Proposition 3.7 that the right-hand side
of (8.45) is the Laplace transform of Eβ (t

βA(ξ )), which, in turn, is the Fourier
transform of the distribution

E (t,x) = Eβ (t
βA(D))δ0(x), t > 0,x ∈ R

d .

Due to Theorem 5.2 the latter is a (unique) solution of the Cauchy problem for the
fractional order differential equation

Dβ
∗ u(t,x) = A(D)u(t,x), t > 0, x ∈R

d , (8.46)

u(0,x) = δ0(x), x ∈ R
d . (8.47)

Thus, the limiting process of the CTRW under conditions (8.42) and (8.43) is a
process associated with the initial value problem (8.46)–(8.47) for the fractional
order FPK type equation. Consider an example.

Example 8.1. Let τ1 be Levy’s stable subordinator with the stability index 0< β < 1.
The density function of τ1 has the asymptotic behavior (see (7.37))

φ(t)∼ β
Γ (1−β )t1+β , t → ∞.

It follows that ∫ ∞

t
φ(u)du∼ 1

Γ (1−β )tβ
, t → ∞. (8.48)
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Further, we use the following fact [GM05]: the Laplace transform of a density ϕ(t)
satisfying the condition

∫ ∞

t
ϕ(u)du∼ C

β tβ
, t → ∞, C > 0, (8.49)

has the asymptotic behavior (8.42) with

λ =
Cπ

Γ (1+β )sin(πβ )
.

In our case C = β/Γ (1−β ). Hence, using the relationship (1.7), one has

λ =
βπ

Γ (1+β )Γ (1−β )sin(πβ )
=

π
Γ (β )Γ (1−β )sin(πβ )

= 1.

Thus, the density of the stable subordinator τ1 with the stability index 0 < β < 1
satisfies (8.42) with λ = 1.

Further, let 0 < α < 2 and Y1 be a Lévy’s symmetric α-stable distribution, that is
ŵ(ξ ) = e−|ξ |α ∼ 1+(−|ξ |α), |ξ |→ 0. Hence, the density of Y1 satisfies (8.43) with
A(ξ ) =−|ξ |α . This is the symbol of the operator Dα

0 (see Proposition 3.4). Thus, in
this particular example the CTRW approximates the process Xt associated with the
fractional FPK equation

Dβ
∗ u(t,x) = D

α
0 u(t,x), t > 0,x ∈R

d .

It follows from Theorem 7.10 (the case of one subordinatorWt ) that the process Xt is
a time-changed process with the time-change process Et , the inverse to the Lévy’s
stable subordinator Wt with the stability index β , that is Xt = YEt , where Yt is the
Lévy’s α-stable process.

With appropriate scaling parameters this example can be extended to an arbitrary
process Y ρ

t ∈ SS, as well. That is, the limiting process is associated with the Cauchy
problem

Dβ
∗ u(t,x) =Ψ(D)u(t,x), t > 0, x ∈ R

d , (8.50)

u(0,x) = δ0(x), x ∈ R
d , (8.51)

where Ψ (D) is the pseudo-differential operator with the symbol Ψ(ξ ) defined
in (8.23). For the sake of clarity, we consider a particular case, namely

ρ(dα) =
m

∑
j=1

a jδα j (α)dα.

Suppose i.i.d. random vectors Yk in (8.33) have the structure

Yk =
m

∑
j=1

A jY
( j)
k ,
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where A j = a
1/α j
j and Y ( j)

k are symmetric α j-symmetric distributions independent

for all k ∈ N. The densities of Y ( j)
k are wj(x) with the corresponding characteristic

functions ŵ j(ξ ) = exp(−|ξ |α j). By construction, the characteristic function ŵ(ξ )
of the random vector Yk is the product of characteristic functions of Y ( j)

k , that is

ŵ(ξ ) =
m

∏
j=1

ŵ j(A jξ ) = exp

(
−

m

∑
j=1

a j|ξ |α j

)
∼ 1−

m

∑
j=1

a j|ξ |α j , |ξ | → 0.

Like the previous case we again rescale τk and Yk introducing nonrandom parameters
τ and h = (h1, . . . ,hm). Namely, we change τk in (8.34) and Yk in (8.33) respectively

by τ ·τk and Yk = A1h1Y (1)
k + · · ·+AmhmY (m)

k . Then, it follows from the correspond-
ing Montroll-Weiss equation that

ˆ̃pτ,h(s,ξ )∼ τβ sβ−1

τβ sβ +∑m
j=1 a jh

α j
j |ξ |α j − τβ sβ ∑m

j=1 a jh
α j
j |ξ |α j

=
sβ−1

sβ +∑m
j=1 τ−βh

α j
j a j|ξ |α j − sβ ∑m

j=1 a jh
α j
j |ξ |α j

. (8.52)

If one selects the multi-scaling parameter h∈R
m such that h j = τβ/α j , j = 1, . . . ,m,

then (8.52) implies the locally uniform convergence

ˆ̃pτ,h(s,ξ )→ sβ−1

sβ +∑m
j=1 a j|ξ |α j

, τ → 0 (|h| → 0).

Hence, in this case the constructed CTRW approximates the process Xt associated
with the time-fractional distributed order FPK equation

Dβ
∗ u(t,x) =

m

∑
k=0

akD
αk
0 u(t,x), t > 0,x ∈R

d .

Now we construct a CTRW approximation (called fully discrete random walk model
[GMM02, GV03]) of the time-changed process associated with the fractional FPK
equation (8.50) with initial condition (8.51). Note that the solution u(t,x) is the den-
sity function of the time-changed process Xt =YWt , where Yt is a driving process and
Wt is the inverse to a β -stable subordinator. Since Xt is non-Markovian, an approxi-
mating random walk also can not be independent. Therefore, transition probabilities
split into two different sets of probabilities:

(a) non-Markovian transition probabilities, which express a long non-Markovian
memory of past; and

8.5.2 Continuous time random walk approximants of time-changed
processes
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(b) Markovian transition probabilities, which express transition from positions at
the previous time instant.

Suppose that non-Markovian transition probabilities are given by (see [GMM02])

c� = (−1)�+1
(
β
�

)
=
∣∣∣
(
β
�

)∣∣∣, �= 1, . . . ,n,

γn =
n

∑
�=0

(−1)�
(
β
�

)
, (8.53)

and Markovian transition probabilities {pk}k∈Zn are given by

pk =

⎧⎨
⎩

c1− 2τβQ(h), if k = 0;

2τβ Qk(h)
|k|d , if k �= 0,

(8.54)

where Qk(h), k �= 0, is defined in (8.26), and Q(h) = ∑k �=0 Qk(h)|k|−d . Then the
probability qn+1

j of the walker being at the site x j = jh, j ∈ Z
d , at the time instant

tn+1 is

qn+1
j = γnq0

j +
n−1

∑
�=1

cn−�+1q�j +
(

c1− τβQ0(h)
)

qn
j +∑

k �=0

pkqn
j−k.

It follows from Theorems 8.2 and 7.10 that the density function of the process
Xt = YEt satisfies the equation

Dβ
∗ u(t,x) =Ψ(Dx)u(t,x), (8.55)

where the pseudo-differential operatorΨ(Dx) has the symbolΨ(ξ ) defined in equa-
tion (8.23), that is

Ψ(Dx)ϕ(x) =
∫ 2

0
D
α
0 ϕ(x)dρ ,

with a finite measure ρ , suppρ ⊂ (0,2), and the initial condition u(0,x) = δ0(x).
Due to Theorem 5.1, the unique solution to (8.55) with this initial condition is given
by (see Example 5.1 and equation (5.15))

u(t,x) = Eβ (Ψ(D)tβ )δ0(x) =
1

(2π)n

∫
Rn

Eβ (Ψ (ξ )tβ )e−ixξdξ .

Therefore, the Fourier-Laplace transform of u(t,x), in accordance with
Proposition 3.7, is

L[F [u](ξ )](s) = L[Eβ (Ψ (ξ )tβ )](s) =
sβ−1

sβ +(−Ψ(ξ ))
, s > 0, ξ ∈ R

d . (8.56)
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Theorem 8.4. ([Uma15]) Fix t > 0 and let h > 0, τ = t/n. Let Yj ∈ Z
d , j ≥ 1, be

identically distributed random vectors with the non-Markovian and Markovian tran-
sition probabilities defined in (8.53) and in (8.54), respectively. Assume that

τ ≤
( β

Q(h)

) 1
β
. (8.57)

Then the sequence of random vectors Sn = hY1 + . . .+ hYn, converges as n → ∞ in
law to Xt =YEt whose probability density function is the solution to equation (8.55)
with the initial condition u(0,x) = δ0(x).

Proof. For the Caputo fractional derivative on the left-hand side of (8.55) we will
use the backward Grünwald-Letnikov discretization (3.94):

Dβ
∗ un

j =0 D
β
t un

j ≈
n+1

∑
m=0

(−1)m
(
β
m

)
un+1−m

j − u0
j

τβ
(8.58)

where un
j = u(tn,x j), n = 0,1, . . . , j ∈ Z

d , x j ∈ Z
d
h , and tn = nτ, τ > 0. Using nota-

tions (8.53) and rearranging terms, equation (8.58) can be expressed in the form

Dβ
∗ un

j ≈
1

τβ

(
un+1

j − c1un
j −

n+1

∑
m=2

cmun+1−m
j − γnu0

j

)
. (8.59)

For the discretization of the right-hand side of (8.55), due to approximation (8.28),
valid for all 0 < α < 2, one obtains

Ψ(Dx)u
n
j ≈ ∑

k∈Zd
h

dkun
j−k, dk :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
Qk(h)
|k|d , k �= 0,

−2∑
k �=0

Qk(h)
|k|d , k = 0,

(8.60)

where Qk(h) is defined in (8.26). Setting the discretizations for the time and space-
fractional derivatives in (8.58) and (8.60)) equal to each other, we get

1

τβ

(
un+1

j − c1un
j −

n

∑
m=2

cmun+1−m
j − γnu0

j

)
= ∑

k∈Zd
h

dkun
j−k. (8.61)

Rearranging terms and solving for un+1
j , the following recursion equation is

constructed:
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un+1
j = γnu0

j +
n

∑
m=2

cmun+1−m
j + ∑

k∈Zd
h

qkun
j−k, (8.62)

qk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τβdk = τβ
∫ 2

0

(
bα
hα

)
dρ(α)
|k|d+α , k �= 0

c1−∑
k �=0

qk, k = 0.
(8.63)

By construction, u0
j = 1 if j = 0 = (0, . . . ,0), and u0

j = 0 otherwise.

The update un+1
j in equation (8.62) is determined by Markovian contributions

(those values of u at time t = tn) and non-Markovian contributions (those values of
u at times t = {t0, t1, . . . , tn−1}). The order of the time fractional derivative β deter-
mines the effect that the non-Markovian transition probabilities (γn and c2, . . . ,cm)
has on un+1

j . This effect can be measured by sum of all of the transition probabilities
in equation (8.62): (

γn +
n

∑
m=2

cm

)
+ ∑

k∈Zd

qk = 1.

where

∑
k∈Zd

qk = (c1− q0)+∑
k �=0

qk = c1 and γn +
n

∑
m=2

cm = 1− c1.

As a result, when β = 1 one has c1 = 1, c2 = · · · = cn = γn = 0, and hence, equa-
tion (8.62) simply reduces to (8.29), with qk = pk, where pk, k ∈ Z

d , are defined
by (8.30).

Let ûn(ξ ) be the characteristic function of the discrete sequence un
j for a fixed n=

0,1, . . . , (see the definition in (8.32)). Then equation (8.62), in terms of characteristic
functions, takes the form

ûn+1(ξ ) = γn +
n

∑
m=2

cmûn+1−m(ξ )+ q̂(ξ )ûn(ξ ), (8.64)

since û0(ξ ) = 1. Further, let Ûτ(s,ξ ) be the discrete Laplace transform of ûn+1(ξ ),
namely

Ûτ(s,ξ ) = τ
∞

∑
n=0

ûn+1(ξ )e−stn , s > 0.
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Then multiplying both sides of (8.64) by τe−nτs and summing over the index n, one
obtains

Ûτ(s,ξ ) = γτ(s)+ τ
∞

∑
n=0

(
n+1

∑
m=2

cmûn+1−m(ξ )

)
e−nτs + q̂(ξ )τ

∞

∑
n=0

ûn(ξ )e−snτ

= γτ(s)− τ
∞

∑
n=0

(
n+1

∑
m=1

(−1)m
(
β
m

)
ûn+1−m(ξ )

)
e−nτs

+ d̂(ξ )τ1+β
∞

∑
n=0

ûn(ξ )e−snτ , (8.65)

where

γτ(s) = τ
∞

∑
n=0

γne−snτ = τ
∞

∑
n=0

n+1

∑
m=0

(−1)m
(
β
m

)
e−snτ .

Changing the order of summation one can show that

γτ (s) = esτ

(
∞

∑
n=0

τe−snτ

)
∞

∑
m=0

(−1)m
(
β
m

)
e−smτ .

Further, in accordance with relation (8.56), in order to prove the theorem we need
to show that Ûτ(s,hξ ) converges as h→ 0 (that implies τ → 0 too) to

L[Eβ (Ψ (ξ )tβ )](s) =
sβ−1

sβ +
(−Ψ(ξ )

) , s > 0, ξ ∈ R
d

the Laplace transform of the Mittag-Leffler function Eβ (x) composed by Ψ(ξ )tβ .
HereΨ(ξ ) =−∫ 2

0 |ξ |αdρ(α); see (8.23). Indeed, this convergence implies the con-
vergence ûn(hξ )→ Eβ (Ψ(ξ )tβ ), as n→ ∞, uniformly for all ξ ∈K , where K is
an arbitrary compact in R

d . In turn, the latter convergence is equivalent to the con-
vergence in law of the sequence Sn to the process YWt . To show the convergence
Ûτ(s,hξ )→ L[Eβ (Ψ(ξ )tβ )](s), we notice that

τ
∞

∑
n=0

ûn(ξ )e−snτ = τ+ e−sτÛτ(s,ξ ),

and changing the order of summation

τ
∞

∑
n=0

(
n+1

∑
m=1

(−1)m
(
β
m

)
ûn+1−m(ξ )

)
e−nτs

=−τβ +
(
τesτ +Ûτ(s,ξ )

)( ∞

∑
n=0

(−1)n
(
β
n

)
e−snτ − 1

)
. (8.66)
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It follows from equations (8.65)–(8.66) that

Ûτ(s,ξ ) =
esτ Iτ(β ,s)

(
∞

∑
n=0

τe−snτ − τ

)
+ τ1−β (τβ d̂(ξ )+β + esτ)

Iτ(β ,s)− d̂(ξ )e−sτ (8.67)

where
Iτ(β ,s) =

1

τβ
∞

∑
n=0

(−1)n
(
β
n

)
e−snτ .

Further, the following limits hold:

lim
τ→0

1

τβ
∞

∑
n=0

(−1)n
(
β
n

)
e−snτ =

(
−∞D

β
t est

)
|t=0

= sβ , (8.68)

lim
τ→0

(
∞

∑
n=0

τe−snτ − τ

)
= s−1, (8.69)

lim
h→0

d̂(hξ ) =Ψ(ξ ), (8.70)

lim
τ→0

τ1−β (τβ d̂(ξ )+β + esτ) = 0, (8.71)

The relation (8.68) follows from the definition (3.94), the first equality in Exam-
ple 3.12, and the fact that the Grünwald-Letnikov fractional derivative coincides
with Liouville-Weyl derivative in the class of suitable functions (see Remark 3.5).
The relations (8.69) and (8.71) can be easily verified by direct calculation. To show
the relation (8.70) we have

d̂(hξ ) =−2∑
k �=0

Qk(h)
|k|d + 2∑

k �=0

Qk(h)
|k|d eikhξ = 2∑

k �=0

Qk(h)
|k|d (eikhξ − 1)

= ∑
k �=0

Qk(h)
|k|d

(
eikhξ − 2+ eikhξ

)
= ∑

k �=0

Qk(h)
|k|d

(
Δ2

kheixξ
)
|x=0

=

∫ 2

0
b(α)

(
lim

N→∞ ∑
|kh|≤N,k �=0

Δ2
kheixξ

|kh|d+2 hd

)

|x=0

dρ(α).

Letting h→ 0, due to (8.13) and the second formula in Corollary 2.11, we obtain

lim
h→0

d̂(hξ ) =
∫ 2

0
b(α)

⎛
⎜⎝ lim

N→∞

∫

|y|≤N

Δ2
y eixξ

|y|d+2 dy

⎞
⎟⎠
|x=0

dρ(α)

=

∫ 2

0
b(α)

⎛
⎝ ∫

Rd

Δ2
y eixξ

|y|d+2 dy

⎞
⎠
|x=0

dρ(α) =
∫ 2

0
(Dα

0 eixξ )|x=0dρ(α)

=−
∫ 2

0
|ξ |2dρ(α) =Ψ (ξ ).



368 8 Random walk approximants of mixed and time-changed Lévy processes

Now taking into account the relations (8.68)–(8.71) it follows from (8.67) that

lim
h→0

Ûτ(s,hξ ) =
sβ−1

sβ −Ψ(ξ )
, s > 0, ξ ∈R

d ,

as desired.

Remark 8.3. 1. The authors of paper [LSAT05] use a different discretization for
Dβ
∗ un

j . Namely,

Dβ
∗ un

j ≈
1

Γ (1−β )

n

∑
m=0

∫ tn+1

tn

u
′
j(tn+1− s)

sβ
ds

=
1

ντβ

(
[un+1

j − un
j ]+

n

∑
m=0

[(m+ 1)1−β −m1−β ][un+1−m
j − un−m

j ],

)
(8.72)

where ν = Γ (2−β ). Setting

a(β ,τ) = (ντβ )−1, (8.73)

γm = (m+ 1)(1−β )−m(1−β ), m = 0, . . . ,n, (8.74)

ck = γk−1− γk, k = 1, . . . ,n, (8.75)

and rearranging terms, equation (8.72) can be expressed in the form

Dβ
∗ un

j ≈ a(β ,τ)

(
un+1

j − c1un
j −

n

∑
m=2

cmun+1−m
j − γnu0

j

)
. (8.76)

The latter unifies both discretizations. Indeed, in the case of the Grünwald-
Letnikov time-fractional derivative, a(β ,τ), γm and ck are re-defined as the
following:

a(β ,τ) =
1

τβ
, (8.77)

γm = 1−
m

∑
i=1

ci, (8.78)

ck = (−1)k
(
β
k

)
=

(
1− 1+β

k

)
ck−1, k = 1,2, . . . (c0 = 1). (8.79)

Note that for 0 < β ≤ 1, γ0 = 1. In addition, for β = 1, γm = 0 for m = 1, . . . ,n,
c1 = 1, ck = 0 for k = 2, . . . ,n and ν = 1. As a result, when β = 1, both dis-
cretizations reduce to the standard forward-time discretization of ∂u/∂ t:

D1
∗u

n
j =

∂u
∂ t

≈ un+1
j − un

j

τ
.
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2. Theorem 8.4 extends to the case when the left-hand side of equation (8.55) is a
time distributed fractional order differential operator with a mixing measure μ ,
whose support satisfies suppμ ⊆ [0,1], that is

Dμu(t,x) =
∫ 1

0
Dβ
∗ u(t,x)dμ(β ) =Ψ(D)u(t,x), t > 0, x ∈ R

d , (8.80)

where Ψ(D) is a pseudo-differential operator with the symbol Ψ(ξ ) defined
in (8.23). In this case for the left-hand side of (8.80) we again have a discretiza-
tion of the form (8.76). Namely, we have

Dμun
j ≈ a(τ)

(
un+1

j − c∗1un
j −

n

∑
m=2

c∗mun+1−m
j − γ∗n u0

j

)
,

where

a(τ) =
∫ 1

0
a(τ,β )dμ(β ), c∗k =

1
a(τ)

∫ 1

0
a(τ,β )ck(β )dμ(β ), k = 1, . . . ,n,

(8.81)

γ∗n =
1

a(τ)

∫ 1

0
a(τ,β )γn(β )dμ(β ), n = 1,2, . . . . (8.82)

In equations (8.81) and (8.82) the integrands a(τ,β ), ck(β ), and γn(β ) are de-
fined in (8.77)–(8.79) or (8.73)–(8.75) depending on whether the Grünwald-
Letnikov approximation or approximation (8.72) is used for discretization of
Dβ
∗ u(t,x) in (8.80).

3. We also note that condition (8.57) takes the form

τ ≤
( 2− 21−β

Γ (2−β )Q(h)

) 1
β

if the non-Markovian probabilities are selected as in (8.73)–(8.75). This condi-
tion as well as (8.57) generalize the well-known Lax’s stability condition τ ≤
h2/2 arising in the finite-difference method for solution of an initial value prob-
lem for the heat equation, which corresponds to the case β = 1 andΨ(D) = Δ ,
the Laplace operator. In this case Q(h) reduces simply to Q(h) = 2/h2.

8.6 Additional notes

1. Random walk. CTRW. The random walk problem was first set in a note by Karl Pearson in the
journal “Nature” in 1905 [Pea05]. Nowadays it is a mathematical tool broadly used in modeling
of various problems arising in science and engineering. For the general theory of random walks
and their relation to mathematical problems we refer the reader to books [Spi01, L10]. Some
aspects of the modern state of the random walk theory are presented in the following survey
papers: various applications of random walk to fractional dynamical processes arising in natu-
ral and social sciences in [MK00, MK04], random walk in graphs in [Lov93], applications of
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random walk to finance in [SGM00]. Continuous time random walk was introduced by Montroll
and Weiss [MW65] in 1965. CTRWs have rich applications in many applied sciences and the lit-
erature on CTRWs is still increasing at a rapid rate. See papers [MK00, MK04, SGM00, MS05]
and references therein for a discussion of the history of development of the CTRW theory and
its connections to fractional differential equations and other relevant fields. There are various
approaches to the study of weak CTRW limits, depending on the topology and methods used
for the proof of convergence. The methods used include master equations, constructive random
walk approximations, and use of abstract continuity theorems. CTRWs also serve as approxi-
mate for driving processes of SDEs. Driving processes of the SDEs associated with fractional
FPK equations appear to be independent time-changes of basic processes like Brownian mo-
tion, Lévy processes, fractional Brownian motions, etc.

2. Approximation of Brownian motion. Donsker’s theorem.
Let Xk, k = 1,2, . . . , be a sequence of independent and identically distributed mean zero, vari-
ance one random vectors. Consider the sequence of scaled sums

Sn(t) =
1√
n

�nt�
∑
j=1

Xj , (8.83)

where �r� means the greatest integer not exceeding r. Denote by D([0,∞),Rd) the Skorohod
space D([0,∞), Rd) of cádlág processes with the Skorohod topology; see definition in [Bil99].

Theorem 8.5. (Donsker) The random walk Sn(t) in (8.83) converges weakly to d-dimensional
standard Brownian motion in the Skorohod space D([0,∞), Rd).

If one modifies the path of the nth term making it continuous by linear interpolation of the
normalized partial sums, then the same kind of convergence holds in C([0,∞),Rd) with the
uniform topology.

3. Approximation of fBW. In the case of Hurst exponent H > 1/2 the weak convergence of scaled
sums of random variables to a fractional Brownian motion was studied by Taqqu [Taq75]. He

described the class of functions G(s), such that 1
dn
∑�nt�

j=1 G(Xj) with dn ∼ n2H L(n), L is slowly

varying, converges weakly to cBH
t , c = E[XG(X)]. Sottinen [Sot01] proved that the following

random walk

Zn(t) =
�nt�
∑
j=1

n
∫ j

n

j−1
n

z(|nt|/n, s)ds
1√
n

Xj,

where z(t, s) = cH(H−1/2)s1/2−H ∫ t
s uH−1/2(u− s)H−1/2du, converges weakly to a fractional

Brownian motion BH
t .

4. Approximation of time-changed stable laws. The CTRW approximation in different topologies
of time-changed stable Lévy processes with the time-change process being the inverse of Lévy’s
stable subordinator is studied in the paper [MS05]. Suppose that τ1 belongs to the strict domain
of attraction of a stable law with index β ∈ (0,1) and Y1 belong to the strict domain of attraction
of a generalized full operator stable law. Then, under some condition to τ1 and Y1 , there exists
a regularly varying function B(c), c > 0, and slowly varying function L, such that B(c)SL−1(ct)

converges to AEt
, as c → ∞, in the sense of finite-dimensional distributions. Here St is CTRW

associated with i.i.d. τ1,τ2, . . . ,, and i.i.d. Y1 ,Y2, . . .; At is an operator stable motion, and Et is
the inverse to the stable subordinator Wt with index β . In the paper [BMS04] the convergence of
CTRW approximation of time-changed stable Lévy processes in M1-topology of the Skorokhod
space D([0,∞), Rd), is proved.

5. Constructive random walk approximations. Gillis and Weiss [GW70] modeled random walk
with jump probabilities p(r) = p(−r) = Ar−(α+1), 0 <α ≤ 2, in the 1-D case, and p(r) = r−β ,
where r2 = r2

1+r2
2 , 1< β ≤ 2, in the 2-D case. Here A is a normalizing constant. They found the

estimated number of distinct lattice points visited in the course of the random walk. In a series
of papers (see [GM99, GM01, GM05]) Gorenflo and Mainardi constructed several classes of



8.6 Additional notes 371

random walk models (Gillis-Weiss, Grünwald-Letnikov, globally binomial, Chechkin-Gonchar,
fully discrete, etc.) approximating space- and space-time fractional diffusion processes. For
one of these models, called a Gillis-Weiss model, for the case of 0 < α < 2 they proved the
following result (see [GM01]). Let Xj ∈Z, j≥ 1, be i.i.d. random variables with the probability
mass function

pk = P(X1 = k) =

{
1−2μb(α)ζ (α+1), if k = 0;
μb(α)
|k|α+1 , if k �= 0,

where τ > 0, h > 0, μ = h−ατ , ζ (s) is Riemann’s zeta-function, and b(α) = π−1Γ (α +
1)sin(απ/2). Assume that μ ≤ 1/(2b(α)ζ (α + 1)). Then the sequence of random variables
SN = hX1 + . . .+ hXN , converges as N → ∞ in law to the process St , whose density function

(for each fixed t) is G(α)
t (x) = F−1[e−t |ξ |α ](x), where F−1 is the inverse Fourier transform.

Another model called fully discrete random walk model is presented in [GV03, GAR04]. In
particular, the following statement is obtained. Fix t > 0 and let h > 0, τ = t/n. Let variables
Xj ∈ Z, j ≥ 1, be identically distributed random variables whose non-Markovian transition
probabilities are defined as in (8.53) and Markovian transition probabilities are defined as

pk =

⎧⎨
⎩

c1−2μ , if k = 0;
±μ , if k =±1;
0, if |k| ≥ 2,

where μ = τβh−2. Assume that μ ≤ β/2. Then the sequence of random vectors Sn = hX1 +
. . .+ hXn, converges as n → ∞ in law to Xt = XWt whose probability density function is the
solution to the equation

Dβ
∗ u(t,x) =

∂ 2u(t,x)
∂x2 , t > 0, x ∈ R, (0 < β < 1)

satisfying the initial condition u(0,x) = δ0(x). A similar result is obtained in [LSAT05] with
further analysis of stability and convergence using a numerical approach. The random walk
constructed by Abdel-Rehim [A13] approximates in the weak sense the process whose density

solves the equation, Dβ
∗ u(t,x) =Dα

0 u(t,x), 0 < β < 1, 0 < α < 2, generalizing the above two
results. In the paper [US06] a random walk approximating the (multivariate) stable process,
whose density function solves the equation (8.22) (in the case ρ(dα) = a(α)dα , a ∈C[0,2]),
is constructed. Theorem 8.4 generalizes the results obtained in the papers [GM01, A13, US06].



Chapter 9
ComplexΨDOSS and systems of complex
differential equations

9.1 Introduction

In Chapters 4–7 we discussed pseudo-differential equations of integer and fractional
orders with ΨDOSS depending on real variables t ∈ R and x ∈ R

n. In this section
we will discuss differential and pseudo-differential equations depending on complex
variables t = τ + iσ ∈ C and z = x+ iy ∈ C

n. Consider two simple examples with
the one-dimensional “spatial” variable:

(i) “complex wave” equation, and
(ii) “complex heat” equation.

The first equation is obtained from the wave equation

∂ 2u(τ,x)
∂τ2 =−D2u(τ,x), τ > 0, x ∈ R, (9.1)

where D =−id/dx, by “complexifying” the variables t and x, that is

D2
t u(t,z) = D2

z u(t,z), t ∈ C, z ∈ C, (9.2)

where Dt =
∂
∂τ + i ∂

∂σ and Dz =
∂
∂x + i ∂∂y . The solution to (9.1), satisfying the initial

conditions u(0,x) = ϕ(x) and ut(0,x) = ψ(x), was obtained in Section 2.2 in the
form

u(τ,x) = [cosτD]ϕ(x)+
[

sinτD
D

]
ψ(x). (9.3)

Replacing D in (9.3) by Dz one obtains

u(t,z) = [costDz]ϕ(z)+
[

sin tDz

Dz

]
ψ(z). (9.4)
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Is u(t,z) in equation (9.4) a solution to complex equation (9.2) satisfying the “initial”
conditions u(0,z) = ϕ(z) and Dtu(0,z) = ψ(z)? If yes, in what sense the operators
costDz and sin tDz

Dz
must be understood, and in what spaces these operators act? It is

not hard to verify that d’Alembert’s formula in this case takes the form

u(t,z) =
ϕ(zeit)+ϕ(ze−it)

2
+

1
2

∫ z+t

z−t
ψ(ζ )dζ ,

where the integral is the line integral over a smooth curve connecting points z− t
and z+ t on the complex plane.

The second equation is obtained from the heat equation

∂u(τ,x)
∂τ

=−D2u(τ,x), τ > 0, x ∈R, (9.5)

complexifying the variables τ and x, that is

Dtu(t,z) = D2
z u(t,z), t ∈ C, z ∈ C. (9.6)

Again, replacing D by Dz in the solution representation u(τ,x) = exp(−tD2)ϕ(x) of
equation (9.5), satisfying the initial condition u(0,x) = ϕ(x), can we state that

u(t,z) = etD2
z ϕ(z)

solves complex equation (9.6) with the “initial” condition u(0,z) = ϕ(z)? If the
answer yes, how should we understand the operator exp(tD2

z ), and in what class of
functions it is meaningful?

We note that the complex “wave” equation has a unique solution in the class
of analytic functions near (0,0) ∈ C

2 if ϕ and ψ are analytic in a neighborhood
of 0 ∈ C, while the complex “heat” equation does not possess this property. This
is due to the fact that the complex “wave” equation is Kowalevskian (definition is
given below), while the complex “heat” equation is not. Hence, in the theory of
complex differential and pseudo-differential equations new features appear, making
this theory very distinct from its “real” counterpart.

Thus, in this chapter we will discuss the problem of existence and uniqueness of
a solution to systems of complex differential and pseudo-differential equations in
the complex (n+ 1)-dimensional space. These systems in the general form can be
represented as

D
p j
t u j(t,z)+

N

∑
k=1

pk−1

∑
q=0

Aq
jk(t,z,Dz)D

q
t uk(t,z) = f j(t,z), j = 1, . . . ,N, (9.7)

N

∑
k=1

pk−1

∑
q=0

Bmq
jk (z,Dz)D

q
t uk(t,z)

∣∣∣
t=t0

= ϕ jm(z), m = 0, . . . , p j− 1, j = 1, . . . ,N,

(9.8)
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where t ∈ D , a connected domain in C, and z ∈ C
n. The operators Aq

jk(t,z,Dz),

q = 0, . . . , p j − 1; k, j = 1, . . . ,N, and Bmq
jk (Dz), q,m = 0, . . . , p j − 1; k, j = 1, . . . ,N,

are, in general, pseudo-differential operators with analytic symbols (see the defini-
tion in Section 9.6) in a domain G ⊂ C

n, and the functions f j(t,z), j = 1, . . . ,N,
and ϕ jm(z), m = 0, . . . , p j − 1; j = 1, . . . ,N, satisfy certain conditions clarified in
Section 9.7; p j ≥ 1, j = 1, . . . ,N, are integers. We note that symbols ofΨDO have
singularities of finite order at the boundary of G or finite exponential type if G=C

n.
The Cauchy problem is a particular case, corresponding to Bmq

jk (z,Dz) = δmq
jk I,

where I is the identity operator, and

δmq
jk =

{
1, if q = m, and k = j,

0, otherwise,

is the generalized Kronecker symbol. It is not hard to see that boundary condi-
tions (9.8) can be reduced to the Cauchy conditions

Dq
t u j(t,z)

∣∣∣
t=t0

= ψ jq(z), q = 0, . . . , p j− 1, j = 1, . . . ,N, (9.9)

where the vector function ψ jq(z) of length p1 + · · ·+ pn is a solution to the system
of pseudo-differential equations

N

∑
k=1

p j−1

∑
q=0

Bmq
jk (z,Dz)ψkq(z) = ϕ jm(z), m = 0, . . . , p j − 1, j = 1, . . . ,N. (9.10)

Hence, the general boundary value problem (9.7)–(9.8) splits into two problems:

1. the system of pseudo-differential equations (9.10), and
2. the Cauchy problem (9.7), (9.9).

A brief history. We start with a brief history, since it casts light on the ques-
tion: “Where did the conditions for orders of operators Aq

jk(t,z,Dz) and Bmq
jk (z,Dz)

appeared in the theorems of this chapter came from?”
The Cauchy problem, the most important and the most studied amongst boundary

value problem (9.7)–(9.8), was always a focus of many classics (d’Alembert, Euler,
Fourier, Poisson, Cauchy, Hadamard, Holmgren, Petrovskii, Sobolev, etc.). Mizo-
hata in his book [Miz67] emphasized four problems related to the Cauchy problem:

1. existence of a local solution;
2. uniqueness of a solution;
3. continuous dependence on data;
4. existence of a global solution,

which to some extent reflect the development of the general theory of the Cauchy
problem for partial differential equations in the twenties century.

First result on the existence of a local solution was the Cauchy-Kowalevsky
theorem (see, e.g., [Miz67, Hor83]). This theorem in the case of differential ope-
rators Aq

jk(t,z,Dz) of finite order mq
jk, i.e.
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Aq
jk(t,z,Dz) = ∑

|α |≤mq
jk

aq
jkα(t,z)D

α
z ,

states that if the coefficients and data of the non-characteristic Cauchy problem are
analytic functions, then there exists a unique local solution in the class of analytic
functions. An essential contribution to the modern theory of the Cauchy problem
was made by Petrovskii [Pet96], Schwartz [Sch51], Hörmander [Hor83], Gårding,
Kotake, Leray [LGK67], Mizohata [Miz67, Miz74], Ovsyannikov [Ovs65], Treves
[Tre80], Gindikin, Volevich [VG91], Kitagawa [Kit90], etc. The Cauchy problem
in the case of infinite order differential operators Aq

jk(Dz) (not depending on z, i.e.,
with constant coefficients) were studied by Korobeynik [K73], Leont’ev [Leo76],
Baouendi, Goulaouic [BG76], Dubinskii [Dub84], Napalkov [Nap82], and others.

We note that yet Cauchy and Kowalevsky had known that if the orders mq
jk of

operators Aq
jk(z,Dz) satisfy the condition mq

jk ≤ p j − q, then there exists a unique
local solution to the Cauchy problem in the class of analytic functions. Kowalevsky
[Kow1874] in examples showed that this condition is essential for the analytic solv-
ability, namely, if this condition is not verified then the Cauchy problem may not
have a solution in the class of analytic functions. Therefore, systems satisfying this
condition are called Kowalevskian; see [Miz74]. In the case of one equation (that is
N = 1)

Dm
t u(t,z) =

m−1

∑
k=0

Ak(t,z,Dz)D
k
t u(t,z)+ f (t,z),

this condition takes the form

mk ≤ m− k, k = 0, . . . ,m− 1, (9.11)

where mk is the order of differential operator Ak(t,z,Dz). Obviously, equation (9.2)
satisfies condition (9.11), while equation (9.6) does not. In 1974 Mizohata [Miz74]
showed that in the case of one equation, condition (9.11) is also necessary for ana-
lytic solvability; see also [Kit76].

The sufficient condition for the general system, as was shown by Leray et al.
[LGK67] in 1964, is the Leray-Volevich (LV) condition

mq
jk ≤ μ j− μk + p j− q,

where μ1, . . . ,μN are collection of natural numbers (related to the orders of singu-
larities near the boundary). What concerns the necessity of the LV-condition, then
as was noted by Dubinskii [Dub90], it depends essentially on the problem setting.
Namely, if the singularities of solutions evolve cylindrically, then the necessary con-
dition for existence of a local analytic solution is mq

jk ≤ μ j − μk; however, if the
singularities evolve along the characteristic cone, then the LV-condition becomes
necessary [Dub90].

Apart from analytic theory, well posedness in classes of exponential functions
were studied. Tikhonov [Tik35] was the first, who in 1935 indicated the exact
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exponential growth conditions for uniqueness of a solution of the heat equation.
For general parabolic systems the uniqueness and well-posedness classes in terms
of exponential classes of functions were studied, in particular, in works [Tac36,
GS53, Hay78, K81]. In the above-mentioned references [Dub84, Dub90] Dubinskii
showed that the analytic and exponential theories are in a dual relationship.

In the case of real z ∈ R
n in the system (9.10) and p j = 1, j = 1, . . . ,N, and

B00
jk (z,Dz) = B jk(z,Dz) are differential operators of finite order

B jk(z,Dz) = ∑
|α |≤ν jk

bαjk(z)D
α
z ,

the elliptic systems were studied by Bernstein [Ber28], Petrovskii [Pet96],
Hörmander [Hor83], Douglis and Nirenberg [DN55], Morrey [Mor58], Oleynik and
Radkevich [OR73], etc. An important question of analyticity of a solution was al-
ways in the focus of many authors; see, e.g., [Ber04, Ber28, MN57, Mor58, OR73,
Pet96] and the references therein. Douglis and Nirenberg [DN55] studied elliptic
systems under the following conditions for orders of operators B jk(z,Dz) :

ν jk ≤ μ j−νk, k, j = 1, . . . ,N, (9.12)

where μ1, . . . ,μN and ν1, . . . ,νN are some collection of integers. In the modern liter-
ature conditions (9.12) are referred to as the Douglis-Nirenberg, or DN conditions.
Mizohata [Miz62] and Suzuki [Suz64] found examples of elliptic equations, smooth
solutions to which are not analytic. Therefore, finding necessary and sufficient con-
ditions for analytic solvability of systems is a challenging question. See more on the
history and other contributions in Section “Additional notes.”

In this chapter we will present resent results on necessary and sufficient con-
ditions for analytic and exponential solvability of general boundary value prob-
lem (9.7)–(9.8) with pseudo-differential operators Aq

jk(t,z,Dz) and B jk(z,Dz) with
analytic symbols (Section 9.7). For this purpose we construct an algebra of pseudo-
differential operators with meromorphic symbols defined on a complex domain
(manyfold) (Sections 9.5 and 9.6).

The main tool of the construction of PsDOs in the real case is the Fourier trans-
form (Chapters 2–7). However, in complex analysis there is no primary analog of the
Fourier transform. The existing Borel and Fourier-Laplace transforms, introduced
in Section 2.7, do not give desired results. In 1984 Dubinskii [Dub84] introduced a
complex Fourier transform of f as an analytic functional, defined as an image of the
PsDO with the symbol f on the Dirac delta function (see Section 2.7). This trans-
form inherits many properties of the real Fourier transform and can be easily adapted
for the construction of PsDO with analytic symbols defined on a complex many-
fold Ω ∈ C

n. We note that symbols may have singularities on the boundary of Ω .
This construction can be extended to the class of meromorphic symbols, as well
[Uma14]. However, in this case the corresponding ΨDOSS become multi-valued
(Section 9.5).
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We have seen in Section 2.7 that the complex Fourier transform is an extension
of Borel’s transform to the space of analytic and exponential functionals and the
inverse to the Fourier-Laplace transform. The complex Fourier transform in this
spirit is adapted to spaces of analytic and exponential functions and functionals,
introduced in this chapter and studied in Section 9.4. In contrast to spaces used
in [Dub84] (see Section 2.7) we introduce new spaces of analytic and exponential
functions and functionals. Under the conditions

mq
jk ≤ μ j− μk + p j− q, νqm

jk ≤ μ j − μk + q−m,

q = 0, . . . , p j− 1, m = 0, . . . , pk− 1, k, j = 1, . . . ,N,

to orders of operators Aq
i j and Bmq

jk we show the existence of a unique local solution
of (9.7)–(9.8) in the introduced spaces.

9.2 Some Banach spaces of exponential and analytic functions
and functionals

Let ξ ∈ R
n and α be a multi-index, that is α = (α1, . . . ,αn), and α j are non-

negative integers. We use notations |α| = α1 + · · ·+αn, |ξ | = ξ1 + · · ·+ ξn, and
ξα = ξα1

1 . . .ξαn
n . Introduce the function

G(ξ ) = Gα
μ,r(ξ ) =

(1+ |ξ |)μer|ξ |

ξα
, ξ ∈ R

n
+, (9.13)

where r > 0 is real and μ is integer fixed numbers and R
n
+ = {ξ ∈ R

n : ξ1 >
0, . . . ,ξn > 0}. Obviously, this function is continuous, differentiable, and strictly
positive on R

n
+. If one of the components of α is zero, say α j0 = 0, then the domain

of G(ξ ) extends to the hyperplane ξ j0 = 0. It follows from the definition of G(ξ )
that if α j �= 0, j = 1, . . . ,n, then G(ξ )→∞ as ξ → ∂Rn

+∪{∞}. If α = 0= (0, . . . ,0),
then

inf
Rn
+

G(ξ ) =

⎧⎨
⎩

G(0) = 1 if μ ≥−r,

e−μ−r
(

r
−μ
)−μ

if μ <−r.

Also it is not hard to see that if μ > −r and α j0 = 0 for some j0 ∈ {1, . . . ,n}, then
the infimum is attained on the hyperplane ξ j0 = 0. If all the components of α are
not zero, then the following statement on the infimum of G(ξ ) holds.

Proposition 9.1. For each multi-index α, α j �= 0, j = 1, . . . ,n, there is a unique infi-
mum of G(ξ ) attained at ξ ∗ ∈R

n
+, for which the asymptotic behavior |ξ ∗| ∼O(|α|)

for large |α| holds. If μ = 0, then ξ ∗j = α j/r, j = 1, . . . ,n.
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Proof. To prove this proposition we consider the system of equations

∂G(ξ )
∂ξ j

= 0, j = 1, . . . ,n,

which reduces to

r|ξ |ξ j +(μ+ r)ξ j−α j|ξ |= α j, j = 1, . . . ,n. (9.14)

Summing the latter over the indices j = 1, . . . ,n, we obtain the quadratic equation
for |ξ | :

r|ξ |2− (|α|− μ− r)|ξ |− |α|= 0. (9.15)

This equation has one positive and one negative roots if |α|> 0. The point ξ ∗ cor-
responding to the negative root of (9.15) is out of the domain of G(ξ ), and hence,
the only stationary point ξ ∗ delivering the infimum (minimum) corresponds to the
positive root of equation (9.15), i.e., |ξ ∗| > 0. The fact that ξ ∗ ∈ R

n
+ follows from

equations (9.14):

ξ ∗j = η
α j

r
> 0, j = 1, . . . ,n, (9.16)

where

η =
|ξ ∗|+ 1

|ξ ∗|+ 1+ μ/r
. (9.17)

The latter is obviously positive if μ ≥ 0. If μ < 0, then using the root representation
of equation (9.15), one can see that r(|ξ ∗|+ 1) ≤ |α| − μ + r, which implies η ≥
(|ξ ∗|+ 1)/(|α|+ r) > 0. Further, it follows from (9.16) that if μ = 0, then ξ ∗j =
α j/r, and |ξ ∗| = |α|/r, and if μ �= 0, then |ξ ∗| ∼ O(|α|), |α| → ∞. Additionally,
equation (9.16) also implies that if μ >−r andα j0 = 0 for some j = j0, then ξ ∗j0 = 0.
Thus, the infimum of G(ξ ) in this case is attained on the hyperplane ξ j0 = 0.

Define a Banach space Eμ,r as the set of entire functions ϕ(z) satisfying the
inequality

|ϕ(z)| ≤C(1+ |z|)μer|z|, z ∈ C
n, (9.18)

where C ≥ 0 is a constant. The smallest constant C =Cϕ in (9.18), that is

‖ϕ‖μ,r = sup
z∈Cn

(1+ |z|)−μe−r|z||ϕ(z)|

is a norm in Eμ,r. It follows immediately from (9.18) that if ν > μ and/or s > r, then
the embedding

Eμ,r ⊂ Eν,s (9.19)

is continuous.
Let K (α)=Kμ,r(α) = Gα

μ,r(ξ∗)= inf
ξ∈Rn

+

Gα
μ,r(ξ ). Due to Proposition 9.1 K (α)

is well defined for all multi-indices α.
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Proposition 9.2. Let ϕ ∈ Eμ,r. Then

|Dαϕ(z)|
α!

≤ ‖ϕ‖μ,rKμ,r(α)(1+ |z|)μer|z|, |α|= 0,1, . . . . (9.20)

Proof. In accordance with the Cauchy theorem on integral representation, for arbi-
trary ξ j > 0, j = 1, . . . ,n, one has

Dαϕ(z) =
α!

(2π i)n

∫

|ζ1−z1|=ξ1

. . .
∫

|ζn−zn|=ξn

ϕ(ζ )dζ
(ζ − z)α+(1)

, (9.21)

where α+(1) = (α1 +1, . . . ,αn +1). The substitution ζ = z+ξ eiθ (i.e., ζ j = z j +
ξ jeiθ j , j = 1, . . . ,n), where θ runs over the n-dimensional torus T n = {θ ∈R

n : 0≤
θ j < 2π , j = 1, . . . ,n}, reduces (9.21) to

Dαϕ(z)
α!

=
1

(2π)n ξα
∫

T n

ϕ(z+ ξ eiθ )ei(θ1+···+θn)dθ , (9.22)

Further, multiplying and dividing the integrand in (9.22) by (1 + |z + ξ eiθ |)
μer|z+ξeiθ |, and taking into account ϕ ∈ Eμ,r, one has the following estimate:

|Dαϕ(z)|
α!

≤ ‖ϕ‖μ,rG(ξ )(1+ |z|)μer|z|,

where G(ξ ) is defined in equation (9.13). Minimizing G(ξ ) over all ξ ∈ Rn
+, one

obtains (9.20).

Corollary 9.1. 1. Let ϕ ∈ Eμ,r. Then

|Dαϕ(0)|
α!

≤Kμ,r(α)‖ϕ‖μ,r, |α|= 0,1, . . . . (9.23)

2. Let ϕ ∈ Eμ,r. Then

‖Dαϕ‖μ,r ≤ α!Kμ,r(α)‖ϕ‖μ,r, |α|= 0,1, . . . . (9.24)

The converse to the first statement in Corollary 9.1 is also true in the following
sense.

Proposition 9.3. Let an entire function ϕ(z) satisfy the inequalities

|Dαϕ(0)|
α!

≤CKμ,r(α), |α| ≥ N, (9.25)

where C > 0 is a constant not depending on α, and N is a nonnegative integer. Then
ϕ ∈ Eμ,r.
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Proof. Consider the function

φ(z) =∑
α

|α|μ(er)|α |

αα zα . (9.26)

This function belongs to Eμ,r. Indeed, since

1
e

limsup
|α |→∞

⎛
⎝|α| |α|

√
(er)|α |

αα

⎞
⎠= r,

it follows from the theory of entire functions (see, e.g., [GR09, Hor90]) that the
function φ(z) is an exponential function of type r. The function φ(z) majorizes
ϕ(z). To verify this we recall that Kμ,r(α) = G(ξ ∗), where ξ ∗ = α

r η , η = (|ξ ∗|
+1)(|ξ ∗|+1+μ/r)−1. If μ ≥ 0, then 0 < η ≤ 1. If μ < 0, then due to the asymp-
totics |ξ ∗|= O(|α|), for large |α| one obtains from (9.17) that η < 1+ε, where ε is
arbitrarily small. Moreover, for large |α| it is easy to see that lim|α |→∞ η |α | = e−μ .
Therefore, there exists an integer N, such that for all |α| ≥ N the inequality
η |α | ≥ e−μ − ε holds, where 0 < ε < e−μ . Making use of these facts and taking
ε small enough, one has

Kμ,r(α) =
(1+ |α |

r η)μe|α |ηr|α |

ααη |α |
≤C

|α|μ(er)|α |

αα , C > 0. (9.27)

The latter together with (9.25) implies that series (9.26) for φ(z) is a majorant for
ϕ(z), and hence, ϕ ∈ Eμ,r as well.

We denote the space conjugate to the Banach space Eμ,r by E ∗
μ,r. The space E ∗

μ,r is
a Banach space with the norm

‖h‖∗μ,r = sup
ϕ �=0

|〈h(z),ϕ(z)〉|
‖ϕ‖μ,r , (9.28)

where h ∈ E ∗
μ,r, ϕ ∈ Eμ,r, and the symbol 〈·, ·〉 stands for the duality pair of the

spaces E ∗
μ,r and Eμ,r.

Proposition 9.4. Let h ∈ E ∗
μ,r. Then

‖h‖∗μ,r =
∞

∑
|α |=0

Kμ,r(α)|〈h,zα 〉|. (9.29)

Proof. Suppose ϕ0(z) �= 0 is a function in Eμ,r that delivers sup in equation (9.28),
that is

‖h‖∗μ,r =
|〈h(z),ϕ0(z)〉|
‖ϕ0‖μ,r .
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Expanding ϕ0(z) to Taylor series and using (9.23), we have

‖h‖∗μ,r ≤
∞

∑
|α |=0

Kμ,r(α)|〈h,zα 〉|.

On the other hand, for an arbitrary ϕ ∈ Eμ,r,

‖h‖∗μ,r ≥
|〈h(z),ϕ(z)〉|
‖ϕ‖μ,r .

We pick the function

0 �= ϕ∗(z) =C0

∞

∑
|α |=0

Kμr(α)
〈h,zα〉
|〈h,zα 〉| z

α , (9.30)

where C0 is a positive real number. Due to Proposition 9.3, ϕ∗ ∈ Eμ,r. Therefore,
‖ϕ∗‖μ,r < ∞. We set C0 = ‖ϕ∗‖μ,r in (9.30). One can easily see that by definition
of ϕ∗, the expression 〈h,ϕ∗〉 is a real positive number. Hence, we have

|〈h,ϕ∗〉|
‖ϕ∗‖μ,r ≥

〈h,ϕ∗〉
‖ϕ∗‖μ,r =

∞

∑
|α |=0

Kμ,r(α)|〈h,zα 〉|,

completing the proof.

Proposition 9.5. Let μ > 0. Linear combinations of quasi-polynomials zαeζ z,where
|α| ≤ μ and |ζ | ≤ r, form a dense set in Eμ,r.

Proof. Let h be an arbitrary element in E ∗
μ,r. Assume that 〈h,zαeζ z〉 = 0 for all

α, |α ≤ μ | and ζ , |ζ |= |ζ1|+ · · ·+ |ζn| ≤ r. To prove the statement we have to show
that h = 0. Let, first, μ = 0, i.e., 〈h,eζ z〉= 0 for all ζ , |ζ | ≤ r. Then, in accordance
with Proposition 9.4, we have

‖h‖∗0,r =
∞

∑
|α |=0

K0,r(α)|〈h,zα 〉|=
∞

∑
|α |=0

K0,r(α)
∣∣∣Dα

ζ 〈h,eζ z〉|ζ=0

∣∣∣= 0,

which implies h = 0. If μ > 0, then obviously, gα = z̄αh ∈ E ∗
μ−|α |,r. In particular,

when |α|= μ , the functional gα ∈ E ∗
0,r. Therefore,

0 = 〈h,zαeζ z〉= 〈z̄αh,eζ z〉= 〈gα ,eζ z〉, ∀ζ : |ζ | ≤ r,

implies that gα = 0. Hence, h = ∑|α |≤μ aαDαδ (z), where aα are complex con-
stants and δ is the Dirac delta function. Since, in particular h vanishes at monomials
zβ , |β | ≤ μ , in fact, aα = 0, |α| ≤ μ . Thus, h = 0.

Remark 9.1. Proposition 9.5 is not valid if either the condition |α| ≤ μ or |ζ | ≤ r is
replaced by |α|< μ or |ζ |< r, respectively. Indeed, assuming n = 1 and μ = 1, one



9.2 Some Banach spaces of exponential and analytic functions and functionals 383

can prove this claim showing that the function ϕ(z) = (1+ z)erz cannot be approxi-
mated in Eμ,r by linear combinations of quasi-polynomials zkeζ z,k = 0,1, |ζ |< r, or
exponentials eζ z, |ζ | ≤ r. We note also that linear combinations {eζ z}, |ζ | ≤ r, form
a dense set in Eμ,r if μ ≤ 0 due to embedding (9.19).

Further, introduce a Banach space Oμ,r of functions analytic on the polydisc Ur =
{ζ ∈ C

n : |ζ j|< r, j = 1, . . . ,n}, with the norm

[φ ]μ,r =
∞

∑
|α |=0

Kμ,r(α)|φα |,

where φα = Dαφ(0), |α| = 0,1, . . . . With each function φ ∈ Oμ,r it is associated a
differential operator of infinite order defined as

Φ(D)ϕ(z) =
∞

∑
|α |=0

φα
α!

Dα
z ϕ(z). (9.31)

Proposition 9.6. The operator Φ(D) associated with the function φ ∈ Oμ,r maps
continuously the space Eμ,r into itself. Moreover, for any ϕ ∈ Eμ,r the inequality

‖Φ(D)ϕ(z)‖μ,r ≤ [φ ]μ,r‖ϕ‖μ,r (9.32)

holds.

Proof. Let ϕ ∈ Eμ,r. Then using Proposition 9.2, we obtain

|Φ(D)ϕ(z)| ≤
∞

∑
|α |=0

|φα | |D
α
z ϕ(z)|
α!

≤ ‖ϕ‖μ,r(1+ |z|)μer|z|
∞

∑
|α |=0

Kμ,r(α)|φα |.

This immediately implies inequality (9.32).

By duality, one can define a differential operator of infinite order Φ(−D) associated
with the function φ ∈ Oμ,r in the space E ∗

μ,r, as well. Namely, for h ∈ E ∗
μ,r, by

definition,

〈Φ(−D)h,ϕ〉= 〈h,Φ(D)ϕ〉, ∀ϕ ∈ ϕ ∈ Eμ,r.

Proposition 9.7. The operator Φ(D) associated with the function φ ∈ Oμ,r maps
continuously the space E ∗

μ,r into itself. Moreover, for h ∈ E ∗
μ,r the inequality

‖Φ(−D)h(z)‖∗μ,r ≤ [φ ]μ,r‖h‖∗μ,r (9.33)

holds.
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Proof. Let ϕ ∈ Eμ,r be an arbitrary function in Eμ,r. Using (9.32), we obtain

|〈Φ(−D)h(z),ϕ(z)〉| = |〈h(z),Φ(D)ϕ(z)〉| ≤ ‖h‖∗μ,r‖Φ(D)ϕ‖
≤ [φ ]μ,r‖h‖∗μ,r‖ϕ‖μ,r.

This immediately implies inequality (9.33).

9.3 Complex Fourier transform

Now we define a complex Fourier transform F for functions of the space Oμ,r.

Definition 9.1. The Fourier transform of a function φ ∈Oμ,r is

F [φ ](ζ ) = (2π)nΦ(−Dζ )δ (ζ ). (9.34)

That is the Fourier transform of φ is the value of the differential operator of infinite
order (2π)nΦ(−D), associated with (2π)nφ , at the Dirac delta function. It follows
from Definition 9.1 and Proposition 9.7 that the mapping

F : Oμ,r → E ∗
μ,r (9.35)

is continuous. Let ϕ ∈ Eμ,r. Using the definition (9.31) of Φ(D), for arbitrary φ ∈
Oμ,r we have

〈F [φ ](ζ ),ϕ(ζ )〉 = (2π)n〈δ (ζ ),Φ(D)ϕ(ζ )〉 = (2π)n
∞

∑
|α |=0

φα
α!
〈δ (ζ ),Dα

ζ ϕ(ζ )〉

= (2π)n
∞

∑
|α |=0

1
α!

Dα
z φ(0)Dα

ζ ϕ(0). (9.36)

One can derive useful implications from this representation. Namely, due to esti-
mate (9.23) (see Corollary 9.1) it follows from (9.36) that

|〈F[φ ](ζ ),ϕ(ζ )〉| ≤ (2π)n‖ϕ‖μ,r
∞

∑
|α |=0

Kμ,r(α)|φα |= (2π)n[φ ]μ,r‖ϕ‖μ,r,

or

‖F[φ ]‖∗μ,r ≤ (2π)n[φ ]μ,r.

Another implication from representation (9.36) is a formula for the inverse Fourier
transform F−1. Namely, taking ϕ(ζ ) = ezζ , where zζ = z1ζ1 + · · ·+ znζn, we have

〈F [φ ](ζ ),ezζ 〉= (2π)n
∞

∑
|α |=0

Dα
z φ(0)
α!

zα = (2π)nφ(z).
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Rewriting the latter in the form

φ(z) = F−1[F[φ ]](z) =
1

(2π)n 〈F [φ ](ζ ),ezζ 〉, (9.37)

we can see that the inverse Fourier transform coincides with the known Fourier-
Laplace transform. This formula implies the following two important formulas:

F [Dα
z φ ](ζ ) = ζαF [φ ](ζ ), (9.38)

F [(−z)αφ(z)](ζ ) = Dα
ζ F[φ ](ζ ). (9.39)

Further, differentiating (9.37), we have Dα
z φ(0) = φα = (2π)−n〈F [φ ](ζ ),ζα 〉. Us-

ing this fact and Proposition 9.4, we obtain

[φ ]μ ,r =
∞

∑
|α |=0

|φα |Kμ ,r(α) =
1

(2π)n

∞

∑
|α |=0

Kμ ,r(α)|〈F[φ ](ζ ),ζα〉|= 1
(2π)n ‖F [φ ]‖∗μ ,r.

This equality expresses a complex analog of the Parseval’s equality (Theorem 1.3) of
the Fourier transform acting in L2(R

n). Summarizing, we have proved the following
statement.

Theorem 9.1. The Fourier transform operator F : Oμ,r → E ∗
μ,r is isometric isomor-

phism. The inversion formula is given in equation (9.37).

The representation for the Fourier transform obtained in equation (9.36) is symmet-
ric with respect to φ ∈Oμ,r and ϕ ∈ Eμ,r. Therefore, with an appropriate interpreta-
tion of the definition of the Fourier transform, similar to Theorem 9.1, one can prove

Theorem 9.2. The Fourier transform operator F : Eμ,r →O∗
μ,r is isometric isomor-

phism. The inversion formula is again given in equation (9.37).

Theorems 9.1 and 9.2 imply the following corollary.

Corollary 9.2. The following commutative diagram holds:

Eμ,r
∗←→ E ∗

μ,r

F−1 ↑↓ F F−1 ↓↑ F

O∗
μ,r

∗←→ Oμ,r

where symbols “
∗↔,” “

F−1→ ,” and “
F→” stand for the passage to conjugate, the inverse

Fourier transform, and the Fourier transform, respectively.

Now, when the Fourier transform F is defined on Eμ,r as well, we note that repre-
sentation (9.36) can also be interpreted as the Parseval equality

〈F [φ ](ζ ),ϕ(ζ )〉 = 〈φ(ζ ),F [ϕ ](ζ )〉, φ ∈ Oμ,r, ϕ ∈ Eμ,r.
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Proposition 9.8. Let μ > 0. A function f (z) analytic on the polydisc Ur belongs to
O−μ,r if and only if it satisfies the inequality

| f (z)| ≤ M
(r−|z|)μ−1 , z ∈Ur, (9.40)

where M > 0 is a constant.

Proof. For the sake of simplicity we show this fact for n = 1. Let f ∈O(Ur) satisfy
the estimate

| f (z)| ≤ M
(r−|z|)ν , z ∈Ur,

with a positive integer ν. Without loss of generality one can assume that f (z) =
φ(z)

(r−z)μ−1 +ψ(z), where φ(z) is regular at z = r and a singularity of ψ(z) at z = r

is weaker than the first term of the above representation of f . Then one can easily
verify that

| fα |= |Dα
z f (0)| ∼ (α+ν− 1)!

(ν− 1)!
M

rα+ν
, α → ∞. (9.41)

Using inequality (9.27) and the Stirling formula, we have

[ f ]−μ,r =
∞

∑
α=0

K−μ,r(α)| fα | ∼C
∞

∑
α=0

K−μ,r(α)
(α+ν− 1)!
(ν − 1)!rα+1

≤C
∞

∑
α=0

α!αν−1(er)α

αμααrα
≤C

∞

∑
α=0

1

αμ−ν+ 1
2

< ∞,

if ν ≤ μ− 1. Hence, f ∈ O−μ,r, if f ∈ O(Ur) and satisfies condition (9.40).
Further, if | f (z)| > M

(r−|z|)μ near the boundary of the disc |z| < r, then using the
asymptotic relations

K−μ,r(α)∼ (er)α

αμαα , α! ∼
(α

e

)α√
2πα,

when α → ∞, and (9.41), one obtains [ f ]−μ,r =∞, that is f /∈ O−μ,r.

Remark 9.2. Dubinskii denoted the class of functions f ∈ O(Ur) satisfying esti-
mate (9.40) by Dμ−1,r; see [Dub90]. Proposition 9.8 immediately implies that the
space Dμ−1,r, μ > 0, is isomorphic to the space O−μ,r. Therefore, it follows from
Corollary 9.2 that

Dμ−1,r
∗←→ D∗

μ−1,r

F−1 ↑↓ F F−1 ↓↑ F

E ∗−μ,r
∗←→ E−μ,r ,

where D∗
μ−1,r is the dual space to Dμ−1,r.



9.4 Complex Fourier transform in fiber spaces . . . 387

9.4 Complex Fourier transform in fiber spaces of analytic
and exponential functions and functionals

In this section we introduce fiber spaces of exponential and holomorphic functions
and locally convex topological vector spaces and extend the Fourier transform int-
roduced in the previous section to these spaces. Note that these spaces will serve
as solution spaces for differential and pseudo-differential equations with complex
variables.

Suppose Ω is a connected domain (or connected manifold) in C
n and let ζ ∈Ω .

Let μ and r be a nonnegative and positive real numbers, respectively, such that r <

dist(ζ ,Cn \Ω). Denote by E
ζ
μ,r the set of entire functions ϕ(z) = ezζ v(z), v ∈ Eμ,r,

where the Banach space Eμ,r was defined in the previous section. The space E ζ
μ,r is

also a Banach space with the norm ‖ϕ‖μ,r,ζ = ‖e−zζϕ‖μ,r.
Further, we introduce a fiber bundle (E,Ω ,π) ≡ EΩ

μ,r(C
n) with the base Ω and

projection
π : (E,Ω ,π)→Ω ,

where π−1(ζ ) = E ζ
μ,r, ζ ∈Ω . It follows from this definition that the fibers Eμ,r,ζ =

exp(zζ )E ζ
μ,r are Banach spaces with the respective norms ‖ϕ‖μ,r,ζ =

‖exp(−zζ )ϕ‖μ,r. It is obvious that π−1(ζ1) and π−1(ζ2) are isomorphisms for ar-
bitrary ζ1,ζ2 ∈Ω . The dual space to EΩ

μ,r(C
n) is also a fiber bundle (E∗,−Ω ,π∗)≡(

EΩ
μ,r(C

n)
)∗

with fibers E∗
μ,r,ζ ≡

(
Eμ,r,ζ

)∗
, with the base −Ω , and with the

projection
π−1
∗ : (E∗,−Ω ,π∗)→−Ω .

Schematically the relationship between introduced fiber bundles can be repre-
sented as

EΩ
μ,r(C

n)
∗←→
(

EΩ
μ,r(C

n)
)∗

π−1 ↖ ↗ π−1∗

Ω

Since fibers in the above constructions are endowed with norms, one can introduce
the structure of convergence. Namely, we say that a sequence ϕm ∈ EΩ

μ,r(C
n) con-

verges to ϕ0 ∈ EΩ
μ,r(C

n), if for arbitrary ζ ∈ Ω we have ϕm → ϕ0 as m → ∞ in
π−1(ζ ) = Eμ,r,ζ . In the dual space we introduce the weak convergence: a sequence
Φn ∈

(
Eμ,r,ζ

)∗ converges weakly to Φ0 ∈
(
Eμ,r,ζ

)∗
, if for arbitrary ζ ∈Ω we have

Φm →Φ0 as m → ∞ in π−1∗ (ζ ) = E∗
μ,r,ζ .

Similarly, let (O,Ω ,τ) ≡ Oμ,r(Ω) be a fiber bundle with fibers Oμ,r,ζ with the
base Ω and the projection τ : (O,Ω ,τ)→Ω , where τ−1(ζ ) = Oμ,r,ζ , ζ ∈ Ω . The
space Oμ,r,ζ , ζ ∈ Ω , is a Banach space of analytic functions φ(z) defined on the
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polydisc with the center at ζ and “poly-radius” (r, . . . ,r), i.e., Ur(ζ ) = {z ∈ C
n :

|z j − ζ j|< r, j = 1, . . . ,n}, with the norm

[φ ]μ,r,ζ =
∞

∑
|α |=0

|φα (ζ )|Kμ,r(α), φα(ζ ) = Dαφ(ζ ).

The dual space to Oμ,r(Ω) is also a fiber bundle (O∗,−Ω ,π∗) ≡ O∗
μ,r(Ω) with

fibers O∗
μ,r,ζ ≡

(
Oμ,r,ζ

)∗
, with the base −Ω , and with the projection

τ−1
∗ : (O∗,−Ω ,π∗)→−Ω .

Schematically the relationship between these fiber bundles can be represented as

Oμ,r(Ω)
∗←→ O∗

μ,r(Ω)

τ−1 ↖ ↗ τ−1∗

Ω

Since fibers in these constructions are endowed with norms, one can introduce
the structure of convergence. Namely, a sequence hm ∈ Oμ,r(Ω) converges to
h0 ∈Oμ,r(Ω), if for arbitrary ζ ∈Ω we have hm → h0 as m→∞ in τ−1(ζ ) =Oμ,r,ζ .
In the dual space we introduce the weak convergence: a sequence Hn ∈O∗

μ,r(Ω) con-
verges weakly to fn ∈O∗

μ,r(Ω), if for arbitrary ζ ∈Ω we have Hm →H0 as m→ ∞
in τ−1∗ (ζ ) = O∗

μ,r,ζ .

Finally we introduce the Fourier transform on the spaces Oμ,r(Ω) and EΩ
μ,r(C

n)

as the Fourier transform defined fiberwise, i.e., on fibers {τ−1(ζ ), ζ ∈ Ω} and
{π−1(ζ ), ζ ∈ Ω}, respectively. For this purpose we need the following isomor-
phisms:

fζ : Oμ,r,ζ →Oμ,r, f ∗ζ : O∗
μ,r,ζ → O∗

μ,r,

gζ : Eμ,r,ζ → Eμ,r, g∗ζ : E∗
μ,r,ζ → E∗

μ,r.

By definition, the Fourier transform in the fiber space Oμ,r(Ω) is the family of
mappings Fζ0

: Oμ,r,ζ0
→ E∗

μ,r,ζ0
,ζ0 ∈Ω , defined as

F[h](ζ ) = g−1
ζ0
◦F[ fζ0

◦ h](ζ ), ζ0 ∈Ω ,

where F [ fζ0
◦ h] is the Fourier transform given in equation (9.34). Similarly, the

Fourier transform in the space EΩ
μ,r(C

n) is the family of mappings Fζ0
: Eμ,r,ζ0

→
O∗
μ,r,ζ0

, ζ0 ∈Ω , defined as

F [ϕ ](ζ ) = f−1
ζ0
◦F[gζ0

◦ϕ ](ζ ), ζ0 ∈Ω .
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For simplicity the Fourier transform in both fiber spaces Oμ,r(Ω) and EΩ
μ,r(C

n) will
also be denoted by the same letter F. The following statement follows immediately
from Corollary 9.2.

Theorem 9.3. The following commutative diagram holds:

EΩ
μ,r(C

n) ∗←→
(

EΩ
μ,r(C

n)
)∗

F−1 ↑↓ F F−1 ↓↑ F

O∗
μ,r(Ω) ∗←→ Oμ,r(Ω)

Remark 9.3. Dubinskii [Dub84] introduced the space ExpΩ (Cn) defined as an in-
ductive limit of Banach spaces composed with the help of Eμ,r,ζ . This space and its
dual were used as solution spaces for the Cauchy problem for pseudo-differential
equations with holomorphic symbols. The Fourier transform in ExpΩ (Cn) is de-
fined by the formula F [ f ](ζ ) = (2π)n f (−Dz)δ0(ζ ), which maps ExpΩ (Cn) onto
the space O∗(Ω) of analytic functionals concentrated on compact sets in Ω . There
is a relationship similar to commutative diagram in Theorem 9.3:

ExpΩ (Cn) ∗←→ Exp∗Ω (C
n)

F−1 ↑↓ F F−1 ↓↑ F

O∗(Ω) ∗←→ O(Ω).

For details we refer the reader to [Dub84, Dub90].

9.5 An algebra of matrix-symbols with singularities

In Sections 9.6 and 9.7 we will use linear differential operators of the form

L(z,Dz) = ∑
|α |≤m

aα(z)D
α
z ,

with meromorphic coefficients aα(z), |α| ≤ m, and pseudo-differential operators of
the form

L(Dz,z) = ∑
|α |≤m

zαaα(Dz),

with meromorphic symbols aα(z) defined in a domain G ⊂ C
n. Therefore, in this

section we will study the symbols of the form

a(z,ζ ) = ∑
|α |≤m

zαaα(ζ ).
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By definition, a symbol of degree m is an ordered collection a≡ {aα(ζ )}|α |≤m of
functions aα from some space X , which is specified below. The class of symbols of
degree m is denoted by S(m,X). Note that if m is a degree of the symbol a, then m+k
for an arbitrary nonnegative integer k is also a degree. The least degree m for which
there is α, |α| = m, such that aα(ζ ) �= 0, but aα = 0 for all |α| > m is called the
exact degree of the symbol a, and denoted deg(a). The identity symbol j ∈ S(0,X)
is the symbol with a0(ζ ) ≡ 1. For the zero-symbol θ the functions aα ≡ 0 for all
|α| ≤ m. We use the following convention: if deg(a)< 0, then we accept a = 0 and
write deg(a) =−∞. By this convention deg(θ ) =−∞, and θ ∈ S(−∞,X).

The sum a+ b and product a ◦ b of two symbols a ∈ S(m1,X) and b ∈ S(m2,X)
are, respectively, defined by

a+ b≡ {aα(ζ )+ bα(ζ )}|α |≤max(m1,m2), (9.42)

and

a ◦ b≡
{

∑
|γ | ≤ m1
γ � α

∑
|β | ≤ m2
β � α− γ

(
β

β + γ−α

)
bβ (ζ )Dβ+γ−α

ζ aγ(ζ )
}
|α |≤m1+m2

, (9.43)

where γ � α means γ j ≤ α j, j = 1, . . . ,n, and
(σ
δ
)

for multi-indices σ and δ means

(
σ
δ

)
=

n

∏
j=1

σ j!
δ j!(σ j − δ j)!

.

The formula (9.43) for composition of two symbols follows from the Leibniz rule
for pseudo-differential operators. It is easy to see that, in general, a ◦ b �= b ◦ a.
Indeed, for a = {a0(ζ ),a1(ζ )} = {0,ζ} with m1 = 1 and b = {b0(ζ )} = {ζ} with
m2 = 0 formula (9.43) implies that

a ◦ b = {b0(ζ )a0(ζ ),b0(ζ )a1(ζ )} = {0,ζ 2},

while
b ◦ a = {a0(ζ )b0(ζ )+ a1(ζ )b′0(ζ ),a1(ζ )b0(ζ )} = {ζ ,ζ 2}.

Hence, the product of two symbols is not a commutative operation. The following
properties of symbols immediately follow from the above definitions of the sum and
the product of symbols.

Proposition 9.9. Let a ∈ S(m1,X) and b ∈ S(m2,X). Then

1. deg(a+ b) = max{deg(a),deg(b)};
2. deg(a ◦ b) = deg(a)+ deg(b);
3. a+θ = θ + a = a;
4. a ◦ j = j ◦ a = a.

Let Ω ⊂ Cn be an n-dimensional complex domain and M (Ω) and O(Ω) be
sheaf of germs of meromorphic and holomorphic functions, respectively. We assume
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that f ∈M (Ω) has a local representation f (z) = g(z)/h(z), where g,h ∈ O(Ω),
in a neighborhood of any point of Ω . We denote by Pf and Nf the set of poles
Pf = {z ∈ Ω : h(z) = 0}, and the set of zeros (or null-set) Nf = {z ∈Ω : g(z) = 0}
of the meromorphic function f .

Let M be an N×N-matrix whose entries mi, j, i, j = 1, . . . ,N, are allowed degrees
of symbols (i.e., nonnegative integers, or −∞). We denote by S(M,M (Ω)) the set
of N×N matrix-valued symbols with entries

ai j(z,ζ ) = ∑
|α |≤mi j

zαai j,α(ζ ), i, j = 1, . . . ,N,

where z ∈ Cn, ζ ∈ Ω , and ai j,α ∈M (Ω), |α| ≤ mi j, i, j = 1, . . . ,N. Introduce the
following analytic sets of co-dimension 1:

Pj =
N⋃

i=1

⎛
⎝ ⋃
|α |≤mi j

Paαi j

⎞
⎠ ,

Q j = (
j⋃

k=1

Na0kk
)∪
⎛
⎝ ⋃

1≤k≤ j−1

⎛
⎝ ⋃

k+1≤l≤ j

(
⋃

|α |≤mkl

Paαkl
)

⎞
⎠
⎞
⎠ .

Let A0(ζ ) be the constant part of A(z,ζ ) ∈ S(M,M (Ω)), i.e., the matrix A0(ζ ) =
(ai j,0(ζ ))N

i, j=1 and let Δ(ζ ) be its determinant Δ(ζ ) = detA0(ζ ). Obviously Δ(ζ )
is also meromorphic and let the following local representation hold:

Δ(ζ ) =
G(ζ )
H(ζ )

, G,H ∈O(Ω). (9.44)

We call the set PA = {ζ ∈ Ω : H(ζ = 0)} a polar set and the set NA = {ζ ∈ Ω :
G(ζ ) = 0} a null set of the matrix symbol A(z,ζ ). It follows from general theory
of determinants that for the inverse matrix A−1

0 (ζ ) one has a local representation
det(A−1(ζ )) = H(ζ )/G(ζ ), and therefore, PA−1 = NA and NA−1 = PA. Further, we
introduce the sets:

Z(A) = PA∪NA, Zreg(A) = Z(A)\ (PA∩NA), and Zreg,Ω (A) =Ω ∩Zreg(A).

It is obvious that these sets are invariant with respect to inversion of the symbol
A(z,ζ ).

Since symbols in S(M,M (Ω)) have entries ai j,α ∈ S(mi, j,M (Ω)), one can
define the addition, composition, and involution operations in S(M,M (Ω)) using
operations introduced in (9.42) and (9.43).

Theorem 9.4. A symbol A(z,ζ ) ∈ S(M,M (Ω)) has the inverse A−1(z,ζ ) ∈
S(M,M (Ω)) if and only if there exists a collection of integers μ1, . . . ,μN such that
the inequalities

deg(ai j)≤ μi− μ j, i, j = 1, . . . ,N, (9.45)

hold.
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Remark 9.4. Under the condition of this theorem S(M,M (Ω)) is a noncommutative
involutive algebra.

Proof. Sufficiency. Let us first assume that the numbers μ1, . . . ,μN are strictly or-
dered in the decreasing order: μ1 > .. . > μN . Then, due to conditions (9.45),
deg(ai j) < 0 if i > j, and hence ai j = θ . Thus, in this case the symbol A(z,ζ ) is
represented in the form:

A(z,ζ ) =

⎡
⎢⎢⎣

a11 a12 . . . a1N

θ a22 . . . a2N

. . . . . .
θ θ . . . aNN

⎤
⎥⎥⎦ ,

where deg(a j j) = 0, j = 1, . . . ,N, and ai j ∈ S(μi−μ j,M (Ω)) if j > i. Let bi j, i, j =
1, . . . ,N, be entries of the inverse symbol A−1(z,ζ ). The requirement A−1(z,ζ ) ∈
S(M,M (Ω)) implies bi j = θ if i > j, deg(a j j) = 0, j = 1, . . . ,N, and bi j ∈ S(μi−
μ j,M (Ω)) if j > i. This is natural, since the inverse of the right triangular matrix
is again a right triangular matrix. The symbols bi j are defined from the system of
algebraic equations

⎧⎪⎨
⎪⎩

a j j ◦ b j j = 1, j = 1, . . . ,N,

∑ j
k=i aik ◦ bk j = 0, if i < j,

bi j = θ , if i > j.

(9.46)

These equations define all the components of symbols bi j uniquely. Indeed, it fol-
lows from (9.46) immediately that

b j j = 1/a j j, j = 1, . . . ,N.

Setting j = i+ 1, we have

aii ◦ bii+1 + aii+1 ◦ bi+1 i+1 = θ ,

which implies

bii+1 =− 1
aii

[aii+1 ◦ bi+1 i+1], i = 1, . . . ,N− 1.

Similarly, if all the symbols bii+�−1, i = 1, . . . ,N− �+ 1, are found for some 1 ≤
�≤ N− 2, then bii+� is defined as

bii+� =− 1
aii

i+�

∑
k=i+1

aik ◦ bk i+�, i = 1, . . . ,N− �.

Now assume that the numbers μ1, . . . ,μN satisfy the ordering μ1 = · · · = μk1 >
μk1+1 = · · · = μk2 > · · · > μkp+1 = · · · = μN . In this case the symbol A(z,ζ ) is
represented in the block-matrix form:
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A(z,ζ ) =

⎡
⎢⎢⎣

A11 A12 . . . A1p

Θ A22 . . . A2p

. . . . . .
Θ Θ . . . App

⎤
⎥⎥⎦ ,

where k1 + . . .+ kp = N, A j j, j = 1, . . . , p, are k j × k j-matrix-symbols in S(Θ ,
M (Ω)), and Ai j, i < j, are ki × k j-matrix-symbols that belong to S(M,M (Ω))
with a degree-matrix M, entries of which are positive numbers. The inverse sym-
bol A−1(z,ζ ) is of the structure

A−1(z,ζ ) =

⎡
⎢⎢⎣

B11 B12 . . . B1p

Θ B22 . . . B2p

. . . . . .
Θ Θ . . . Bpp

⎤
⎥⎥⎦ ,

where the block Bi j belongs to the same class of symbols as the corresponding block
Ai j does. The blocks Bi j are defined from the system of algebraic equations

⎧⎪⎨
⎪⎩

A j j ◦B j j = 1, j = 1, . . . , p,

∑ j
k=i Aik ◦Bk j = 0, if i < j,

Bi j =Θ , if i > j.

These equations define all the blocks Bi j uniquely. Indeed,

B j j = A−1
j j , j = 1, . . . , p,

and if all the blocks Bii+�−1, i = 1, . . . , p− �+1, are found for some 1≤ �≤ p−2,
then Bii+� is defined as

Bii+� =−A−1
ii

i+�

∑
k=i+1

Aik ◦Bk i+�, i = 1, . . . , p− �.

Finally, if μ1, . . . ,μN are arbitrary numbers, then rearranging rows and columns of
the matrix-symbol A(z,ζ ) ∈ S(M,M (Ω)) we obtain a matrix-symbol Ā(z,ζ ), for
which μ̄1, . . . , μ̄N are ordered. Indeed, if for indices i and j, i < j, of the collec-
tion μ1, . . . ,μN the relation μi < μ j holds, then switching i-th and j-th columns,
and then switching i-th and j-th rows of A(z,ζ ), we obtain a collection μ ′

1, . . . ,μ
′
N ,

with μ ′
i = μ j > μi = μ ′

j. These two switchings are equivalent to the multiplication
by two matrices Ci and Ri with determinants det(Cj) = det(R j) = −1. Performing
these operations finitely many times we arrive to the symbol Ā(z,ζ )∈ S(M̄,M (Ω)),
where M̄ is a matrix of degrees corresponding to the ordered collection μ̄1, . . . , μ̄N .
Hence, the symbol Ā(z,ζ ) is connected with A(z,ζ ) through Ā(z,ζ ) = CA(z,ζ ),
where C = RkCk . . .R1C1 is an invertible N×N matrix not depending on z and ζ .
Therefore, A−1(z,ζ ) = Ā−1(z,ζ )C. As we have seen above in the ordered case the
symbol Ā−1(z,ζ ) also belongs to the same class S(M̄,M (Ω)). The multiplication
of Ā−1(z,ζ ) by C from the right is equivalent to switching of columns and rows
exactly in the reverse order. This implies that A−1(z,ζ ) ∈ S(M,M (Ω)).
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Necessity. Assume that the inverse symbol A−1(z,ζ ) = B(z,ζ ) ∈ S(M,M (Ω))
exists. The relations

N

∑
�=1

ai� ◦ b� j = δi j, i, j = 1, . . . ,N,

that indicate that the symbols A(z,ζ ) and B(z,ζ ) are mutually inverse, contain

L =
1
n!

N

∑
i=1

N

∑
j=1

[maxk
(

deg(aik)+mk j + n
)
]!

[maxk
(

deg(aik)+mk j
)
]!

equations. On the other hand, since each symbol bi j contains
(mi j+n)!

mi j!n! components,

then the total number of components of B(z,ζ ) is

K =
1
n!

N

∑
i=1

N

∑
j=1

(mi j + n)!
mi j!

.

Due to our assumption on the existence of the inverse symbol, we have L = K. This
implies

max
k

(
deg(aik)+mk j

)
= mi j, i, j = 1, . . . ,N. (9.47)

It follows from (9.47) that the inequalities

deg(aik)≤ mi j −mk j (9.48)

are valid for all j = 1, . . . ,N. Let μi and νi are the integer and fractional parts of
(mi1+ . . .+miN)/N, respectively. Then, equation (9.48) can be rewritten in the form

deg(aik)≤ μi− μk +(νi−νk). (9.49)

Finally, since deg(aik) are integers and |νi−νk|< 1, it follows from (9.49) that

deg(aik)≤ μi− μk, i,k = 1, . . . ,N,

proving the necessity of the condition (9.45).

Under the additional condition NA ∩Ω = /0 to A(z,ζ ) the class of symbols
S(M,O(Ω)) becomes an involutive algebra. Namely, the following theorem is valid
[Uma91-1]:

Theorem 9.5. A symbol A(z,ζ ) ∈ S(M,O(Ω)) has the inverse A−1(z,ζ ) ∈ S(M,
O(Ω)) if and only if the following two conditions hold:

(i) there exists a collection of integers μ1, . . . ,μN such that the inequalities

deg(ai j)≤ μi− μ j, i, j = 1, . . . ,N,

are fulfilled, and
(ii) NA∩Ω = /0.
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The proposition below proved in [Vol63] (see also [Miz67]) provides a sufficient
condition for the matrix mi j = deg(ai j) to exist a collection μk, k = 1, . . . ,N, satis-
fying the condition (9.45).

Proposition 9.10. Let a matrix M with rational entries mi j (including −∞) satisfy
the condition: mii = 0, i = 1, . . . ,N, and for any permutation π of the set {1, . . . ,N}
the inequality ∑N

i=1 mi,π(i) ≤ 0 holds. Then there exists a collection μ1, . . . ,μN of
rational numbers satisfying mi j ≤ μ j− μi, i, j = 1, . . . ,N.

Remark 9.5. If entries of M are integers, then in the proposition above the numbers
μ1, . . . ,μN also can be selected integer. Obviously, if mi j ≤ μ j − μi for all i, j =
1, . . . ,N, then the transposed matrix satisfies mT

i j ≤ μi− μ j for all i, j = 1, . . . ,N.

9.6 Algebras of pseudo-differential operators with complex
symbols with singularities

Let a symbol a = {aα(ζ )}|α |≤m ∈ S(m,X), where X is a class of symbols specified
below. We define the pseudo-differential operator with the symbol a as

A f = ∑
|α |≤m

zαF−1[aα(ζ )F [ f ](ζ )](z), (9.50)

where F is the complex Fourier transform defined in (9.34). The class of pseudo-
differential operators with symbols in S(m,X) will be denoted OPS(m,X). We also
write deg(A) having in mind the degree of the corresponding symbol. The sum
A+B and composition A◦B of operators A ∈ OPS(m1,X) and B ∈OPS(m2,X) are
defined as operators with symbols a+ b and a ◦ b, respectively. Hence, OPS(m,X)
is an algebra isomorphic to the algebra S(m,X).

Proposition 9.11. Let A ∈ OPS(m,Oμ,r,ζ0
), ζ0 ∈Ω . Then the mappings

A≡ A(z,Dz) : Eμ,r,ζ0
→ Eμ+m,r,ζ0

and A∗ ≡ A(z,−Dz) : E ∗
μ+m,r,ζ0

→ E ∗
μ,r,ζ0

are continuous. Moreover, for the norms of the operators A and A∗ the estimate

‖A‖= ‖A∗‖ ≤ ∑
|α |≤m

[aα ]μ,r,ζ0
(9.51)

holds.

Proof. Since the spaces Eμ,r,ζ0
for different ζ0 ∈ Ω are isomorphic, it suffices to

consider the case ζ0 = 0. Let ϕ ∈ Eμ,r be an arbitrary element. It is readily seen
that the multiplication operator by a function ψ(z) ∈ Eμ0,r0 is continuous from Eμ,r
to Eμ+μ0,r+r0 . In particular, for zα ∈ E|α |,0, taking into account Proposition 9.6, one
has
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‖Aϕ‖μ+m,r ≤ ∑
|α |≤m

‖zαaα(D)ϕ‖μ+m,r ≤ ∑
|α |≤m

‖aα(D)ϕ‖μ,r

≤ ‖ϕ‖μ,r ∑
|α |≤m

[aα ]μ,r.

The second part of the statement now follows by duality.

Introduce the following spaces of direct products with the corresponding direct
product topologies:

Eμ̄,r,ζ0
=

N⊗
j=1

Eμ j ,r,ζ0
, E ∗

μ̄,r,ζ0
=

N⊗
j=1

E ∗
μ j ,r,ζ0

,

Oμ̄ ,r,ζ0
=

N⊗
j=1

Oμ j ,r,ζ0
, O∗

μ̄,r,ζ0
=

N⊗
j=1

O∗
μ j ,r,ζ0

,

EΩ
μ̄,r(C

n) =
N⊗

j=1
EΩ
μ j ,r(C

n),
(

EΩ
μ̄,r(C

n)
)∗

=
N⊗

j=1

(
EΩ
μ j ,r(C

n)
)∗

,

Oμ̄ ,r(Ω) =
N⊗

j=1
Oμ j ,r(Ω), O ∗̄

μ,r(Ω) =
N⊗

j=1
O∗
μ j ,r(Ω),

and

Mμ̄,r(Ω) =
N⊗

j=1
Mμ j ,r(Ω),

where Mμ,r(Ω) = (M ,Ω ,π) is a fiber space of meromorphic functions with the
base Ω , fibers Mμ,r,ζ0

, and projection

π : (M ,Ω ,π)→Ω ,

where π−1(ζ0) =Mμ,r,ζ0
, ζ ∈Ω . An element of the fiber Mμ,r,ζ0

in a neighborhood
of the point ζ0 ∈ Ω has a local representation m(z) = f (z)/g(z) ∈ Oμ,r(Ω \Pm).
Hence, one can define a dual space M ∗

μ,r(Ω) of meromorphic functionals as well,
similar to their analytic and exponential counterparts.

Let A(z,Dz) be a pseudo-differential operator with the matrix-symbol A (z,ζ ),
whose entries Ai j(z,ζ ) ∈ S(mi j,Omj ,r,ζ0

), i, j = 1, . . . ,N. We define the adjoint oper-
ator A∗(z,Dz) as a pseudo-differential operator with the matrix-symbol A ∗(z,ζ ) =
A T (z,−ζ ), that is with entries A ∗

i j (z,ζ ) = A ji(z,−ζ ) ∈ S(m ji,Omj ,r,−ζ0
), i, j =

1, . . . ,N.

Proposition 9.12. Let A (z,ζ ) be a matrix-symbol with entries Ai j ∈ S(mi j,
Omj ,r,ζ0

), and let mi j ≤ μi− μ j for all i, j = 1, . . . ,N. Then the mappings

A(z,Dz) : Eμ̄,r,ζ0
→ Eμ̄,r,ζ0

; A∗(z,Dz) : E ∗
μ̄,r,ζ0

→ E ∗
μ̄,r,ζ0

are continuous. Moreover, for the norms of these operators the estimate
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‖A‖= ‖A∗‖ ≤
N

∑
i=1

⎛
⎝ max

1≤ j≤N
∑

|α |≤mi j

[aα ]μ j ,r,ζ0

⎞
⎠ (9.52)

holds.

Proof. Since the operator Ai j ∈OPS(mi j,Oμ j ,r,ζ0
), it follows from Proposition 9.11

that it maps the space Eμ j ,r,ζ0
continuously onto Eμ j+mi j ,r,ζ0

. The latter is continu-
ously embedded into Eμi,r,ζ0

due to inequality μ j +mi j ≤ μi for all i, j = 1, . . . ,N.
These imply the continuity of the operator A(z,Dz) : Eμ̄,r,ζ0

→ Eμ̄,r,ζ0
.

To show (9.52) one can use estimate (9.51) for the operator Ai j :

‖Ai jϕ j(z)‖μi ,r,ζ0
≤ ∑

|α |≤mi j

[ai jα ]μ j ,r,ζ0
‖ϕ j‖μ j ,r,ζ0

,

where ϕ j ∈ Eμ j ,r,ζ0
. It follows that

‖(Aϕ)i‖μi,r,ζ0
≤ ‖ϕ‖μ̄,r,ζ0

max
1≤ j≤N

∑
|α |≤mi j

[ai jα ]μ j ,r,ζ0
.

Here (Aϕ)i is the i-th component of the vector-function A(z,Dz)ϕ(z). Summing the
latter inequality over all i = 1, . . . ,N, one obtains estimate (9.52). The rest of the
statement of the theorem follows by duality.

Proposition 9.13. Let A (z,ζ ) be a matrix-symbol with entries Ai j ∈ S(mi j,
Oμ j ,r(Ω)). Suppose that the collection of integers {μ1, . . . ,μN} such that mi j ≤
μ j − μi for all i, j = 1, . . . ,N. Then the mappings

A(z,Dz) : EΩ
μ̄,r(C

n)→ EΩ
μ̄,r(C

n),

A∗(z,Dz) :
(

EΩ
μ̄,r(C

n)
)∗ → (

EΩ
μ̄,r(C

n)
)∗

are continuous.

Proof. Follows easily from Proposition 9.12.

Proposition 9.14. Let A (z,ζ ) be a matrix-symbol with entries Ai j ∈ S(mi j,
Mμ j ,r(Ω)). Suppose that the collection of integers {μ1, . . . ,μN} satisfy inequal-
ities mi j ≤ μ j − μi for all i, j = 1, . . . ,N. Then the pseudo-differential operators
corresponding to symbols A (z,ζ ) and A ∗(z,ζ ) are continuous as mappings

A(z,Dz) : EΩ\PA
μ̄,r (Cn)→ EΩ

μ̄,r(C
n); (9.53)

A∗(z,Dz) :
(

EΩ
μ̄,r(C

n)
)∗ → (

EΩ\PA
μ̄,r (Cn)

)∗
. (9.54)

Moreover, the inverse operator A−1(z,Dz) exists and is continuous as a mapping

A−1(z,Dz) : E
Ω\Nj
μ̄,r (Cn)→ EΩ

μ̄,r(C
n). (9.55)
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Proof. Let ϕ j ∈ Eμ j ,r,ζ0
(Cn), j = 1, . . . ,N, where ζ0 ∈ Ω \Pj. In accordance with

the definition of Mμ,r(Ω) all the functions ai jα(ζ ) in the symbol Ai j(z,ζ ) belong
to Oμ,r,ζ0

with r < dist(ζ0,∂ (Ω \Pj)). Therefore, Ai j(z,ζ ) ∈ S(mi j,Oμ j ,r(Ω \Pj)).
Now the continuity of mappings (9.53) and (9.55) follow from Proposition 9.13.
This fact implies the continuity of the inverse operator A−1(z,Dz) in mapping (9.55)
too, since due to Theorem 9.4 the inverse symbolA −1(z,ζ ) has entries A −1

i j (z,ζ )∈
S(mi j,Mμ j ,r(Ω)).

Pseudo-differential operators with meromorphic symbols in S(M,M (Ω)) behave
differently. Unlike the previous cases they act in factor-spaces. To formulate the con-
tinuity theorem first we study kernels of pseudo-differential operators with mero-
morphic symbols.

For an operator A ∈ OPS(M,M (Ω)) we denote by κ± the dimension of the
kernel of A±1 :

κ± = κ±(A,Ω) = dimKer(A±1).

The meaning of κ+ is obvious. If κ− = m, then the image of the operator A is a
factor space factorized by the m-dimensional space KerA−1. Thus, the operator A in
this case is multi-valued. The operator A ∈ OPS(M,M (Ω)) is single-valued if and
only if κ− = 0.

Let P±
k , k = 1, . . . ,K±, be connected irreducible components of PA ±1 ∩Zreg,Ω

and L±k ,k = 1, . . . ,K±, be their respective orders. Denote by W±
kl (A ) the span of all

linear combinations

fk,�(z) = F−1[δ (�)(ρ±k (ζ ))](z), �= 0, . . . ,L±k , k = 1, . . . ,K±, (9.56)

where δ is the Dirac distribution, and ρ±k (ζ ) are holomorphic functions, locally
representing P±

k , that is P±
k ≡ {ζ : ρ±k (ζ ) = 0}.

Theorem 9.6. Let A ∈ OPS(M,M (Ω)) and there exists a collection of integers
{μ1, . . . ,μN} such that mi j ≤ μ j − μi for all i, j = 1, . . . ,N. Then

Ker(A±1) =
K±⊕
k=1

(
L±k −1
⊕
�=0

W∓
k� (A)

)
.

Proof. We will show that V ∈ Ker(A−1) if and only if V ∈ Ker(A−1
0 ), where A0

is the constant part of the operator A. Indeed, without loss of generality, one can
assume that μ1, . . . ,μN are ordered, i.e., μ1 = · · ·= μk1 > μk1+1 = · · ·= μk2 > · · ·>
μkl−1+1 = · · · = μkl , k1 + · · ·+ kl = N. Otherwise, with the help of permutations of
rows and columns, which correspond to the multiplication of A by a scalar invertible
matrices, one gets a desired ordering. Hence, the operator A has the form

A =

⎡
⎢⎢⎣

A11 A12 . . . A1l

Θ A22 . . . A2l

. . . . . .
Θ Θ . . . All

⎤
⎥⎥⎦ , (9.57)
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where A j j ∈ OPS(θ ,M (Ω)) form the constant part of the operator A. Due to
Theorem 9.4 the inverse matrix A−1 also has the same block-matrix structure
as (9.57) with entries A−1

i j of the same size of Ai j. Accordingly, one has V =

(V1, . . . ,Vl), where Vj, j = 1, . . . , l, are vector-functions of length k j. Let V ∈
Ker(A−1), that is A−1V = 0. It follows from matrix structure (9.57) of the inverse
operator A−1 immediately that A−1

ll Vl = 0. Further, since

A−1
l−1l−1Vl−1 +A−1

l−1,lVl = 0, and A−1
l−1l =−A−1

l−1l−1 ◦Al−1l ◦A−1
ll ,

which also follows from (9.57), one has

A−1
l−1l−1Vl−1 =−A−1

l−1l−1 ◦Al−1l ◦A−1
ll Vl = 0.

Consecutively, one obtains A j jVj = 0, j = l − 2, . . . ,1. This implies Ker(A−1) ⊂
Ker(A−1

0 ). Making use of these formulas on reverse order, we conclude that
Ker(A−1

0 )⊂Ker(A−1). Hence, Ker(A−1) = Ker(A−1
0 ). Therefore, it suffices to con-

sider the equation A−1
0 (Dz)V (z) = 0. Due to isomorphic property of the Fourier

transform, the latter is equivalent to the system of algebraic equations A −1
0 (ζ )

F [V ](ζ ) = 0 with a parameter ζ ∈ Ω . Here A −1
0 (ζ ) is the symbol of A−1

0 . It is
not hard to see that there exists a matrix B(ζ ), detB(ζ ) �= 0, such that

A −1
0 (ζ )F [V ](ζ ) = B(ζ )

(
H(ζ )F [V ](ζ )

)
= 0, (9.58)

where H(ζ ) ∈ O(Ω) is defined in a local representation of det(A0) given in
equation (9.44). Recall a local representation of the meromorphic function
det(A −1

0 (ζ )) = H(ζ )/G(ζ ) (see (9.44)). To show (9.58) one can take B(ζ ) =
(H(ζ ))−1A −1

0 (ζ ). Then it can be easily verified that det(B(ζ )) = det(A −1
0 (ζ ))

(G(ζ ))−1 �= 0, ζ ∈Ω . Equation (9.58) means that the problem on description of the
kernel of A−1 is reduced to equations

H(ζ )F [Vj](ζ ) = 0, j = 1, . . . ,N, (9.59)

for each component F [Vj] of the vector-function F [V ](ζ ), considered on the space of
analytic functionalsO∗(Ω). Now let P−

k , k = 1, . . . ,K−, be irreducible components
of the analytic set Zreg,Ω ∩PA−1 with orders L−k . Then solutions to equation (9.59)
have the form F [Vj](ζ ) = δ (�)(ρk(ζ )), � = 0, . . . ,L−k , k = 1, . . . ,K−, for each j =
1, . . . ,N, where ρk(ζ ) locally represents P−

k . Taking the inverse Fourier transform,
one has V (ζ ) = fk,�(z)v ∈ Ker(A−1), where fk,� are defined in (9.56), and v is an
arbitrary scalar vector, obtaining the desired result.

Corollary 9.3. 1. Let A (z,ζ ) ∈ S(M,O(Ω)) with a Runge domain Ω and a matrix
M, entries of which satisfy mi j ≤ μi − μ j, i, j = 1, . . . ,N, for some collection
μ1, . . . ,μN . Then κ−(A,Ω) = 0;

2. Let A (z,ζ ) ∈ S(M,O(Ω)) with a Runge domain Ω and a matrix M, entries
of which satisfy mi j ≤ μi− μ j, i, j = 1, . . . ,N, for some collection μ1, . . . ,μN . If
NA∩Ω = /0, then κ+(A,Ω) = 0.



400 9 ComplexΨDOSS and systems of complex differential equations

It is known [Chi89] that an analytic set in a neighborhood of any regular point
represents an analytic submanifold (of co-dimension one in our case). Therefore,
for n≥ 2 it follows from Theorem 9.6 that κ± =∞, as long as Ω ∩Zreg,A±1 �= /0, and
κ± = 0, otherwise. Hence, if n ≥ 2 only two possibilities may arise. It is not so in
the one-dimensional case.

Theorem 9.7. Let n = 1. Let L+
k and L−k be orders of poles ζ+

k ∈ PA, k = 1 . . . ,K+,
and zeros ζ−k ∈ NA, k = 1, . . . ,K−, respectively. Then,

κ+(A,Ω) = ∑
ζ−k ∈Ω∩NA

L−k and κ−(A,Ω) = ∑
ζ+k ∈Ω∩PA

L+
k . (9.60)

Proof. In the one-dimensional case solutions of equation (9.59) are F[Vj](ζ ) =
gk,�(ζ ) = δ (�)(ζ − ζ+

k ), � = 0, . . . ,L+
k , k = 1, . . . ,K+. Their Fourier inverses are

Vj(z) = fk,�(z) = z�eζ
+
k z, � = 0, . . . ,L+

k , k = 1, . . . ,K+. Obviously, this set of func-
tions is linearly independent. This implies the second formula in (9.60). Since
κ+(A,Ω) = κ−(A−1,Ω), the first formula is also correct.

Theorems 9.6 and 9.7 show that if Ω contains nonempty polar- or null-set of the
symbol of a pseudo-differential operator, then the latter has a nontrivial kernel or
co-kernel. Therefore, one needs factor-spaces to formulate a continuity statements
in this case.

We will use traditional notations: if X is a generic topological space and K is its
subspace, then X /K denotes the factor-space (with the topology of factor-space)
of elements φ +ϕ , where φ ∈X and ϕ ∈ K. Elements Φ = φ +ϕ for all ϕ ∈ K
are considered identical. The conjugate (X /K)∗ to a factor-space X /K consists
of elements G ∈X ∗ orthogonal to K : < G,ϕ >= 0, ∀ϕ ∈ K. We will denote the
conjugate space X ∗

K⊥ .

Proposition 9.15. Let A (z,ζ ) be a matrix-symbol with entriesAi j ∈ S(mi j,M (Ω)).
Suppose that the collection of integers {μ1, . . . ,μN} satisfy inequalities mi j ≤
μ j − μi for all i, j = 1, . . . ,N. Then the pseudo-differential operators correspond-
ing to symbols A (z,ζ ) and A ∗(z,ζ ) are continuous as mappings

A(z,Dz) : EΩ
μ̄,r/Ker(A)→ EΩ

μ̄,r/Ker(A−1);

A∗(z,Dz) :
(

EΩ
μ̄,r

)∗
Ker(A)⊥

→
(

EΩ
μ̄,r

)∗
Ker(A−1)⊥

.

Proof. The proof follows from Theorem 9.6 and Proposition 9.14.

Consider the following examples illustrating Theorem 9.6 and 9.7.

Example 9.1. 1. Let a symbol a ∈ S(m,O(Ω)), where Ω is an arbitrary Runge do-
main. Then κ−(A,Ω) = 0, and hence the corresponding operator A is single-
valued (uniquely defined).

2. Let n= 1 and 0∈Ω . Let the symbol a(ζ ) = 1/ζ ∈ S(0,M (Ω)). Then, κ−(A,Ω)
= 1, and the corresponding operator A(Dz) = D−1

z (the primitive) is defined up
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to an additive constant. Note that if 0 /∈ Ω , then D−1
z is uniquely defined and

represents the “natural integral” (see [Dub96]):

D−1
z f (z) = nat

∫
f (ζ )dζ , f ∈ ExpΩ (C).

Now, suppose n = 2 and a(ζ1,ζ2) = 1/ζ1. Assume that Ω is a Runge domain
containing (0,0). Then PA = {(ζ1,ζ2) ∈ Ω : ζ1 = 0}. In this case the corre-
sponding operator A(Dz1 ,Dz2) = D−1

z1
represents the integral with respect to the

variable z1 and is defined up to an arbitrary function of the variable z2. Hence,
κ−(A,Ω) = ∞.

9.7 Systems of pseudo-differential equations with meromorphic
symbols

In this section we discuss the existence and uniqueness problems for general bound-
ary value problem (9.7)–(9.8). We first consider a system of pseudo-differential
equations

B(z,Dz)Ψ (z) =Φ(z), (9.61)

and the Cauchy problem for a system of first order evolution pseudo-differential
equations

DtV (t,z) = A(t,z,Dz)V (t,z)+H(t,z), (9.62)

V (0,z) =V0(z), (9.63)

where B(z,Dz) ∈ OPS(M,X), A(t,z,Dz) ∈ OPS(M1,X) for each fixed t; the space
of symbols X , as well as vector-functions (functionals) Φ(z), H(t,z), and V0(z) will
be specified below.

Theorem 9.8. Let B(z,Dz) ∈ OPS(M,M (Ω)) and assume that there exists a col-
lection μ̄ = μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequalities
mi j ≤ μi− μ j, i, j = 1, . . . ,N. Then for any vector-function Φ(z) ∈ EΩ

μ̄,r/Ker(B−1)

there exists a unique solutionΨ(z) to system (9.61) in the factor-space EΩ
μ̄,r/Ker(B).

Proof. Due to Proposition 9.15 the pseudo-differential operator B = B(z,Dz) with
the symbol B(z,ζ ) ∈ S(M,M (Ω)) is well defined in the space EΩ

μ̄,r/Ker(B).

In accordance with Theorem 9.4 there exists the inverse symbol B−1(z,ζ ) ∈
S(M,M (Ω)). The corresponding inverse operator B−1 = B−1(z,Dz) is well defined
in the space EΩ

μ̄,r/Ker(B−1). Let Φ(z) ∈ EΩ
μ̄,r/Ker(B−1), i.e., Φ(z) = φ(z)+ϕ(z),

where φ ∈EΩ
μ̄,r, andϕ ∈Ker(B−1). Now one can show thatΨ(z)=B−1(z,Dz)Φ(z)+

ψ(z), for arbitrary ψ ∈ Ker(B), solves the system (9.61). Indeed,
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B(z,Dz)Ψ (z) = B(z,Dz)
(

B−1(z,Dz)Φ(z)+ψ
)

=Φ(z)+B(z,Dz)ψ(z) =Φ(z).

Theorem 9.9. Let B(z,Dz) ∈ OPS(M,M (Ω)) and there exists a collection μ̄ =
μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequalities mi j ≤
μ j − μi, i, j = 1, . . . ,N. Then for any Φ(z) ∈

(
EΩ
μ̄,r

)∗
Ker(B∗)⊥

there exists a unique

weak solutionΨ(z) to system (9.61) in the space
(

EΩ
μ̄,r

)∗
Ker((B∗)−1)⊥

.

Proof. Let Φ(z) ∈
(

EΩ
μ̄,r

)∗
Ker(B∗)⊥

. Then for arbitrary U ∈ EΩ
μ̄,r/Ker(B∗) one has

〈B(z,Dz)Ψ(z),U(z)〉 = 〈Φ(z),U(z)〉,

or

〈Ψ (z),B∗(z,Dz)U(z)〉= 〈Φ(z),U(z)〉.
Due to Proposition 9.15 the operator B∗(z,Dz) is continuous from EΩ

μ̄,r/Ker(B∗) to

the space EΩ
μ̄,r/Ker(B∗)−1. Note that due to Theorem 9.4 there exists the inverse

symbol B−1(z,ζ ) ∈ S(M,M (Ω)), and hence, the corresponding inverse operator
(B∗)−1 exists and well defined in the space EΩ

μ̄,r/Ker(B∗)−1. Therefore, if one sets

B∗(z,Dz)U(z) =V (z), where V (z) ∈ EΩ
μ̄,r/Ker(B∗)−1, then due to Theorem 9.8 one

has U(z) = (B∗(z,Dz))
−1V (z). This implies that the functionalΨ(z) defined by

〈Ψ (z),V (z)〉= 〈Φ(z),(B∗(z,Dz))
−1V (z)〉 = 〈((B∗(z,Dz))

−1)∗Φ(z),V (z)〉 (9.64)

solves system (9.61) in the weak sense. Representation (9.64) also shows that for
the inverse the formula B−1(z,Dz) =

(
(B∗(z,Dz))

−1
)∗

holds, and 〈Ψ (z), f (z)〉 = 0
if f ∈ Ker(B∗)−1.

If one considers the operator A ∈ OPS(m,M (Ω)) in the space EΩ\PA
μ̄,r , then it

follows from the definition (9.50) of a pseudo-differential operator with a meromor-
phic symbol, that the polar set of the symbol of A does not intersect with Ω \PA.
This implies that the symbol belongs to S(m,Oμ,r). In this case Ker(A) = {0}, and
therefore, the above theorems take the form:

Theorem 9.10. Let B(z,Dz) ∈ OPS(M,M (Ω)) and assume that there exists a col-
lection μ̄ = μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequalities

mi j ≤ μi− μ j, i, j = 1, . . . ,N. Then for any vector-function Φ(z) ∈ EΩ\NB
μ̄,r there ex-

ists a unique solutionΨ (z) to system (9.61) in the space EΩ\PB
μ̄,r .

Theorem 9.11. Let B(z,Dz) ∈ OPS(M,M (Ω)) and assume that there exists a col-
lection μ̄ = μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequalities

mi j ≤ μ j − μi, i, j = 1, . . . ,N. Then for any Φ(z) ∈
(

EΩ\PB
μ̄,r

)∗
there exists a unique

weak solutionΨ(z) to system (9.61) in the space
(

EΩ\NB
μ̄,r

)∗
.
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Remark 9.6. 1. In Theorems 9.10 and 9.11 one can replace the spaces EΩ\NB
μ̄,r ,

EΩ\PB
μ̄,r , and their conjugates by the spaces ExpΩ\NB

(Cn), ExpΩ\PB
(Cn) defined

in Section 9.4 and their respective conjugates.
2. Similar to the proof of Theorem 9.4 one can show that the conditions mi j ≤
μi− μ j in the above theorems are also necessary for existence of a solution.

Using formulas (9.38) and (9.39) and the scheme (see Theorem 9.3)

Oμ̄,r(Ω)

F−→
←−
F−1

(
EΩ
μ̄,r

)∗

one can obtain dual results in terms of the Fourier transform. Namely, applying the
Fourier transform to equation (9.61), one has

B(Dζ ,ζ )H(ζ ) = G(ζ ), ζ ∈Ω \PB,

or, the same

N

∑
j=1

∑
|α |≤mi j

(−1)αai jα(ζ )Dα
ζ h j(ζ ) = gi(ζ ), ζ ∈Ω \PB, i = 1, . . . ,N, (9.65)

where H(ζ ) = (h1(ζ ), . . . ,hN(ζ ))T and G(ζ ) = (g1(ζ ), . . . ,gN(ζ ))T .

Theorem 9.12. Let the matrix-symbol B(z,ζ )∈ S(M,M (Ω)) and there exists a col-
lection μ̄ = μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequalities
mi j ≤ μ j − μi, i, j = 1, . . . ,N. Then for any vector-function G(ζ ) ∈ Oμ̄ ,r(Ω \PB)
there exists a solutionΨ(z) to system (9.65) in the space Oμ̄,r(Ω \NB).

Proof. Consider the system (9.65) in the scale of spaces Oμ̄,r(Ω). Applying the
inverse Fourier transform F−1 we have

B(z,Dz)F
−1[H](z) = F−1[G](z) (9.66)

in the scale of spaces
(

EΩ
μ̄,r

)∗
. In accordance with Theorem 9.11, under the con-

dition of our theorem, for any F−1[G] ∈
(

EΩ\PB
μ̄,r

)∗
there is a unique solution

F−1[H] ∈
(

EΩ\NB
μ̄,r

)∗
to system (9.66). Now applying the Fourier transform and

using isomorphism F :
(

EΩ\NB
μ̄,r

)∗ →Oμ̄,r(Ω \NB) one obtains the desired result.

Similarly, using the scheme (see Theorem 9.3)

O ∗̄
μ ,r(Ω)

F−1−→
←−

F

EΩ
μ̄,r

we can establish the existence of a solution of the system (9.65) in the space of
analytic functionals.
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Theorem 9.13. Let B(z,Dz) ∈ OPS(M,M (Ω)) and assume that there exists a col-
lection μ̄ = μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequalities
mi j ≤ μi− μ j, i, j = 1, . . . ,N. Then for any vector-functional Φ(z) ∈ O ∗̄

μ ,r(Ω \NB)
there exists a solutionΨ(z) to system (9.65) in the space O ∗̄

μ,r(Ω \PB).

Now assume that D ⊂C is a domain containing t0 and X be a topological vector
space. Below we use the spaces of the form O[D ;X ], elements f (t) of which for
each fixed t belong to X and analytic in the variable t in the topology of X .

Theorem 9.14. Let A = A(t,z,Dz) ∈O
[
D ;OPS(M,M (Ω))

]
and there exists a col-

lection μ̄ = μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequalities
mi j ≤ μi−μ j+1, i, j = 1, . . . ,N. Then there exist numbers r > 0 and σ > 0 such that

for any vector-functions H(t,z) ∈ O
[
D ;EΩ\PA

μ̄,r+σ |t−t0|
]
, and V0(z) ∈ EΩ\PA

μ̄,r a unique

solution V (t,z) to the Cauchy problem (9.62)–(9.63) exists in a δ -neighborhood of

t0 and belongs to the factor-space O
[
|t− t0|< δ ;EΩ\PA

μ̄,r+σ |t−t0|
]
.

Proof. The Cauchy problem (9.62)–(9.63) can be written in the equivalent integro-
differential form

V (t,z) =V0(z)+
∫ t

t0
A(τ,z,Dz)V (τ,z)dτ +

∫ t

t0
H(τ,z)dτ.

Consider the operator

AV (t,z) =
∫ t

t0
A(τ,z,Dz)V (τ,z)dτ.

For i-th component of this operator one has

(AV (t,z))i =
N

∑
j=1

∫ t

t0
Ai j(τ,z,Dz)Vj(τ,z)dτ

=
N

∑
j=1

∫ t

t0

⎛
⎝ ∑
|α |≤mi j

zαai jα(τ,Dz)Vj(τ,z)

⎞
⎠dτ. (9.67)

In order to prove the theorem it suffices to show the existence of a unique solution

for arbitrary fiber of the space EΩ\PA
μ̄,r+σ |t−t0|. Let ζ0 ∈ Ω \PA be an arbitrary fixed

point, and consider equation (9.67) in the fiber Eμ̄,r+σ |t−t0|,ζ0
. Since ζ0 is located

out of the polar set of the operator A(t,z,Dz), the symbol of this operator belongs
to Oμ̄,r,ζ0

. Therefore, making use of Proposition 9.11 and taking into account the
evolution of V (t,z) over the scale O

[
D ;Eμ̄,r+σ |t−t0|,ζ0

]
, one obtains the estimate

|(AV (t,z))i| ≤
N

∑
j=1

∑
|α |≤mi j

|z||α |
∫ |t−t0|

0
|ai jα(τ,Dz)Vj(τ,z)||dτ|

≤ I(|t− t0|)
N

∑
j=1

(1+ |z|)mi j+μ j sup
t∈D

‖Vj‖μ j ,r+σ |t−t0|,ζ0 ∑
|α |≤mi j

sup
t∈D

[ai jα ]μ j ,r,ζ0
,
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where

I(|t− t0|) =
∫ |t−t0 |

0
e(r+σ |τ−t0|)|z||dτ| ≤ |t− t0|

σ |z| e(r+σ |t−t0|)|z|.

Taking this and the inequality mi j + μ j ≤ μi + 1, i, j = 1, . . . ,N, into account, one
has

|(AV (t,z))i| ≤ |t− t0|
σ

(1+ |z|)μi er+σ |t−τ | N

∑
j=1

sup
t∈D

‖Vj(t,z)‖μ j ,r+σ |t−t0|,ζ0
sup
t∈D

[Ai j]μ j ,r,ζ0
.

This implies

‖(AV (t,z))i‖μi r+σ |t−t0|,ζ0
≤ |t− t0|

σ
sup
t∈D

‖V (t,z)‖μ̄ ,r+σ |t−t0|,ζ0
max

1≤ j≤N
sup
t∈D

‖Ai j(t,z,Dz)‖.

Now summing up by index i = 1, . . . ,N, we have

‖(AV (t,z))‖μ̄,r+σ |t−t0|,ζ0
≤ |t− t0|

σ
sup
t∈D

‖A(t,z,Dz)‖sup
t∈D

‖V (t,z)‖μ̄,r+σ |t−t0|,ζ0
.

It follows from this estimate that A is a contraction operator if the condition

|t− t0|sup
t∈D

‖A(t,z,Dz)‖ ≤ σ

holds. Hence, taking δ <σ/supt∈D ‖A(t,z,Dz)‖we have that in the δ -neighborhood
of t0 a unique solution to the Cauchy problem (9.62)–(9.63) exists.

Theorem 9.15. Let A= A(t,z,Dz)∈O[D ;M,M (Ω)] and assume that there exists a
collection μ̄ = μ1, . . . ,μN , such that the entries of the matrix M satisfy the inequali-
ties mi j ≤ μ j−μi+1, i, j = 1, . . . ,N. Then there exist numbers r > 0 and σ > 0 such

that for any vector-functionals H(t,z) ∈ O
[
D ;
(

EΩ\PA
μ̄,r

)∗]
and V0(z) ∈

(
EΩ\PB
μ̄,r

)∗
there exists a unique solution V (t,z) to the Cauchy problem (9.62)–(9.63) in the

space O
[
|t− t0|< δ ;

(
EΩ\PB
μ̄,r

)∗]
with some δ > 0.

Proof. Since the proof follows from Theorem 9.14 by duality, we only briefly sketch

its idea. Let V (t,z)∈∈O
[
D ;
(

EΩ\PA
μ̄,r

)∗]
and v(t,z)∈O

[
D ;EΩ\PA

μ̄,r+σ |t−t0|
]
. Then the

relation

Dt〈V (t,z),v(t,z)〉 = 〈DtV (t,z),v(t,z)〉+ 〈V (t,z),Dt v(t,z)〉

implies

〈V (t,z),v(t,z)〉 = 〈V (t0,z),v(t0,z)〉
+
∫ t

t0
〈DsV (s,z),v(s,z)〉ds+

∫ t

t0
〈V (s,z),Dsv(s,z)〉ds.
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The latter due to equation (9.62) and the initial condition in (9.63) takes the form

〈V (t,z),v(t,z)〉= 〈Φ(z),v(t0,z)〉+
∫ t

t0
〈A(s,z,Dz)V (s,z)+H(s,z),v(s,z)〉ds

+

∫ t

t0
〈V (s,z),Dsv(s,z)〉ds

= 〈Φ(z),v(0,z)〉+
∫ t

t0
〈V (s,z),Dsv(s,z)+A∗(s,z,Dz)v(s,z)〉ds

+
∫ t

t0
〈H(s,z),v(s,z)〉ds. (9.68)

Since the latter is valid for arbitrary v(t,z), it is also valid for v(t,τ,z), which solves
the Cauchy problem

Dτv(t,τ,z)+A∗(τ,z,Dz)v(τ,z) = 0, t0 < τ < t, (9.69)

v(t,τ,z)|τ=t = v(t,z). (9.70)

For the symbol of the adjoint operator A∗(t,z,Dz) the order-matrix m∗
i j satisfies

the inequality m∗
i j ≤ μi − μ j + 1, i, j = 1, . . . ,N. Therefore, in accordance with

Theorem 9.14 the Cauchy problem (9.69)–(9.70) has a unique solution in the space

O
[
|t− t0|< δ ;EΩ\PA

μ̄ ,r+σ |t−t0|
]

for any fixed v(t,z), if |t− t0| < δ , where δ > 0 small

enough. Substituting v(t,z) in equation (9.68) by v(t,τ,z), we have

〈V (t,z),v(t,z)〉 = 〈Φ(z),v(t, t0,z)〉+
∫ t

t0
〈H(s,z),v(t,τ,z)〉dτ, |t− t0|< δ . (9.71)

The functional V (t,z) defined by (9.71) is a unique solution to the Cauchy problem

(9.62)–(9.63). It can be readily seen that V (t,z) ∈ O
[
|t− t0|< δ ;

(
EΩ\NB
μ̄,r

)∗]
, and

hence is a desired solution.

Now consider general boundary value problems for the first order systems

DtV (t,z) = A(t,z,Dz)V (t,z)+H(t,z), (9.72)

B(z,Dz)V (t,z)|t=0 =Φ(z), (9.73)

This problem can be reduced to the equivalent Cauchy problem for system (9.72)
with the initial condition

V (0,z) =Ψ (z),

whereΨ(z) is a solution to the system of pseudo-differential equations

B(z,Dz)Ψ (z) =Φ(z).

Combining the above proved Theorems 9.8 and 9.14 (in the dual case Theo-
rems 9.9 and 9.15) one can prove the following statements.
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Theorem 9.16. Let operators A = A(t,z,Dz) ∈ O
[
D ;OPS(M,M (Ω))

]
and

B(z,Dz)∈OPS(N ,M (Ω)). Suppose there exists a collection μ̄ = μ1, . . . ,μN , such
that

i) the entries of the matrix M satisfy the inequalities mi j ≤ μi − μ j + 1, i, j =
1, . . . ,N;

ii) the entries of the matrix N satisfy the inequalities ni j ≤ μi − μ j, i,
j = 1, . . . ,N.

Then there exist numbers r > 0 and σ > 0 such that for any vector-functions

H(t,z) ∈ O
[
D ;EΩ\PA

μ̄,r+σ |t−t0|
]
, and Φ(z) ∈ EΩ

μ̄,r/Ker(B−1) a unique solution V (t,z)

to the Cauchy problem (9.72)–(9.73) exists in a δ -neighborhood of t0 and belongs

to the space O
[
|t− t0|< δ ;EΩ\PA

μ̄,r+σ |t−t0|
]
. Moreover, the kernel of this problem is

isomorphic to the kernel of the operator B(z,Dz).

Theorem 9.17. Let operators A = A(t,z,Dz) ∈ O
[
D ;OPS(M,M (Ω))

]
and

B(z,Dz)∈OPS(N ,M (Ω)). Suppose there exists a collection μ̄ = μ1, . . . ,μN , such
that

i) the entries of the matrix M satisfy the inequalities mi j ≤ μ j − μi + 1, i,
j = 1, . . . ,N;

ii) the entries of the matrix N satisfy the inequalities ni j ≤ μ j − μi, i, j = 1, . . . ,N.

Then there exist numbers r > 0 and σ > 0 such that for any vector-functionals

H(t,z) ∈ O
[
D ;
(

EΩ\PA
μ̄,r+σ |t−t0|

)∗]
, and Φ(z) ∈

(
EΩ\PA
μ̄,r

)∗
Ker(B∗)⊥

a unique solution

V (t,z) to the Cauchy problem (9.72)–(9.73) exists in a δ -neighborhood of t0 and

belongs to the space O

[
|t− t0|< δ ;

(
EΩ\PA
μ̄,r+σ |t−t0|

)∗
Ker((B∗)−1)⊥

]
.

As an example of application of these theorems consider the following boundary
value problem for a pseudo-differential equation of higher order

Dm
t u(t,z)+

m−1

∑
k=0

Ak(t,z,Dz)D
k
t u(t,z) = h(t,z), t ∈D , z ∈ C

n, (9.74)

m−1

∑
j=0

Bi j(z,Dz)D
j
t u(t,z)

∣∣∣
t=0

= ϕi(z), z ∈C
n, i = 0, . . . ,m− 1, (9.75)

where Ak(t,z,Dz), k = 0, . . . ,m− 1, are pseudo-differential operators with symbols

Ak(t,z,ζ ) = ∑
|α |≤mk

akα(t,ζ )zα .

This problem is equivalent to the following system:

Dtv(t,z)+ Ã(t,z,Dz)v(t,z) = H(t,z),

B(z,Dz)v(t,z)
∣∣∣
t=0

= φ(z),
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where the vector-functions v(t,z) = (u(t,z), . . . ,u(m−1)
t (t,z))T , H(t,z) = (0, . . . ,

h(z))T , φ(z) = (ϕ0(z), . . . ,ϕm−1(z))T , and the operator Ã(t,z,Dz) has the matrix-
symbol with entries

Ãi j(t,z,ζ ) =

⎧⎪⎨
⎪⎩

1, if j = i+ 1, i = 0, . . . ,m− 2,

A j(t,z,ζ ), if i = m, j = 0 . . . ,m− 1,

θ , otherwise.

In the matrix form

Ã(t,z,ζ ) =

⎡
⎢⎢⎢⎢⎣

θ 1 . . . θ θ
θ θ . . . θ θ

. . . . . .
θ θ . . . θ 1
A0 A1 . . . Am−2 Am−1

⎤
⎥⎥⎥⎥⎦ ,

Applying Theorem 9.16 one has μ j = j, j = 0, . . . ,m− 1. Therefore, bound-

ary value problem (9.74)–(9.75) have a local solution in the scale EΩ\PA
μ̄,r+σ |t−t0|,

μ̄ = (0, . . . ,m− 1), if the polynomial degrees mk and mi j of symbols Ak(t,z,ζ )
and Bi j(z,ζ ), satisfy, respectively, the following inequalities:

mk ≤ m− k, k = 0, . . . ,m− 1,

and

mi j ≤ i− j, i, j = 0, . . . ,m− 1.

9.8 Reduction to a system of first order

The general system of pseudo-differential equations (9.7) can be reduced to a sys-
tem of first order of the form (9.72). Boundary condition (9.8) in this process also
changes to the form (9.73). We prove the following statement:

Lemma 9.1. Let a vector-function u(t,x) = (u1(t,x), . . . ,uN(t,x)) solve the general
problem (9.7)–(9.8). Then the vector-function

V (t,x) = (u1(t,x), . . . ,D
p1−1
t u1(t,x), . . . ,uN(t,x), . . . ,D

pN−1
t uN(t,x))

of length p1 + · · ·+ pN solves a problem of the form (9.72)–(9.73), with vector-
functions H(t,z) and Φ(z)

H(t,z) = (h1(t,z), . . . ,hN(t,z)), h j(t,z) = (0,0, . . . , f j(t,z)), (9.76)

Φ(z) = (φ 1(z), . . . ,φN(z)), φ j(z) = (ϕ j0(z), . . . ,ϕ jp j−1), (9.77)
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where h j(t,z) is a vector of length p j with only nonzero p j-th component f j(t,z);
and the matrix-operators A(t,z,Dz) = Ai j(t,z,Dz) and B(z,Dz) = Bi j(z,Dz), i, j =
1, . . . ,N, are block-matrices with respective blocks of sizes pi× p j :

Ai j(t,z,Dz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

θ 1 . . . θ θ
θ θ . . . θ θ

. . . . . .

θ θ . . . θ 1

A0
j j A1

j j . . . A
p j−2
j j A

p j−1
j j

⎤
⎥⎥⎥⎥⎥⎥⎦
, if i = j,

⎡
⎢⎢⎢⎢⎢⎢⎣

θ θ . . . θ θ
θ θ . . . θ θ

. . . . . .

θ θ . . . θ θ
A0

i j A1
i j . . . A

p j−2
i j A

p j−1
i j

⎤
⎥⎥⎥⎥⎥⎥⎦
, if i �= j.

(9.78)

and

Bi, j(z,Dz) =

⎡
⎢⎢⎢⎣

B00
i j B01

i j . . . B
0p j−1
i j

B10
i j B11

i j . . . B
1p j−1
i j

. . . . . .

Bpi−10
i j Bpi−11

i j . . . B
pi−1p j−1
i j

⎤
⎥⎥⎥⎦ . (9.79)

Proof. In accordance with the definition of the vector-function V (t,z), it can be
represented in the form V (t,z) = (v1(t,z), . . . ,vN(t,z)), where

v1(t,z) = (v1, . . . ,vp1)≡
(

u1(t,z), . . . ,D
p1−1
t u1(t,z)

)
,

v2(t,z) = (vp1+1, . . . ,vp1+p2)≡
(

u2(t,z), . . . ,D
p2−1
t u2(t,z)

)
,

. . .

vN(t,z) = (vp1+···+pN−1+1, . . . ,vp1+···+pN )≡
(

uN(t,z), . . . ,D
pN−1
t uN(t,z)

)
.

This together with equation (9.7) implies that

Dtv1(t,z) = v2(t,z),

Dtv2(t,z) = v3(t,z),

. . .

Dtvp1−1(t,z) = vp1(t,z),

Dtvp1(t,z) =
N

∑
j=1

[
A0

1 jvp1+···+p j−1+1(t,z)+ · · ·+A
p j−1
1 j vp1+···+p j(t,z)

]
+ f1(t,z),

. . . . . . . . . . . .
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Dtvp1+···+pN−1+1(t,z) = vp1+···+pN−1+2(t,z),

Dtvp1+···+pN−1+2(t,z) = vp1+···+pN−1+3(t,z),

. . .

Dtvp1+···+pN−1(t,z) = vp1+···+pN (t,z),

Dtvp1+···+pN (t,z) =
N

∑
j=1

[
A0

N jvp1+···+pj−1+1(t,z)+ · · ·+A
pj−1
N j vp1+···+pj (t,z)

]
+ fN(t,z).

These equations show that the vector-function V (t,z) satisfies equation (9.72) with
the operator A(t,z,Dz) in (9.78) and H(t,z) in (9.76). Similarly, one can show that
V (t,z) satisfies boundary conditions (9.73) with the operator B(z,Dz) in (9.79) and
vector-function Φ(z) in (9.77).

9.9 Existence theorems for general boundary value problems

Theorem 9.18. Let operators A ≡ {Aq
jk(t,z,Dz)} ∈ O

[
D ;OPS(Mq,M (Ω))

]
and

B ≡ {Bmq
jk (z,Dz)} ∈ OPS(N mq,M (Ω)). Suppose there exists a collection μ̄ =

μ1, . . . ,μN , such that

i) the entries of the matrices Mq,q = 0, . . . , p j − 1, satisfy the inequalities

mq
jk ≤ μ j− μk + p j− q, j,k = 1, . . . ,N, q = 0, . . . , p j − 1;

ii) the entries of the matrix N mq, m = 0, . . . , p j − 1,q = 0, . . . , pk − 1, satisfy the
inequalities

nmq
jk ≤ μ j− μk +m− q, j,k = 1, . . . ,N, m = 0, . . . , p j− 1, q = 0, . . . , pk− 1.

Then there exist numbers r > 0 and σ > 0 such that for any vector-functions

H(t,z) ∈ O
[
D ;EΩ\PA

μ̄,r+σ |t−t0|
]
, and Φ(z) ∈ EΩ\PA

μ̄,r /Ker(B−1) a solution V (t,z) to

boundary value problem (9.7)–(9.8) exists in a δ -neighborhood of t0 and belongs

to the space O
[
|t− t0|< δ ;EΩ\PA

μ̄,r+σ |t−t0|
]
. Moreover, the kernel of this problem is

isomorphic to the kernel of the operator B.

Proof. Applying Lemma 9.1 we can reduce problem (9.7)–(9.8) to the first order
system of the form (9.72)–(9.73). Now the proof follows immediately due to Theo-
rem 9.16.

The theorem below follows from the previous by duality.

Theorem 9.19. Let operators A ≡ {Aq
jk(t,z,Dz)} ∈ O

[
D ;OPS(Mq,M (Ω))

]
and

B ≡ {Bmq
jk (z,Dz)} ∈ OPS(N mq,M (Ω)). Suppose there exists a collection μ̄ =

μ1, . . . ,μN , such that
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i) the entries of the matrices Mq,q = 0, . . . , p j − 1, satisfy the inequalities

mq
jk ≤ μk− μ j + p j− q, j,k = 1, . . . ,N, q = 0, . . . , p j − 1;

ii) the entries of the matrix N mq, m = 0, . . . , p j − 1,q = 0, . . . , pk − 1, satisfy the
inequalities

nmq
jk ≤ μk− μ j +m− q, j,k = 1, . . . ,N, m = 0, . . . , p j− 1, q = 0, . . . , pk− 1.

Then there exist numbers r > 0 and σ > 0 such that for any vector-functionals

H(t,z) ∈O
[
D ;
(

EΩ\PA
μ̄,r+σ |t−t0|

)∗]
, and Φ(z) ∈

(
EΩ\PA
μ̄,r

)∗
Ker(B∗)⊥

a solution V (t,z) to

the Cauchy problem (9.7)–(9.8) exists in a δ -neighborhood of t0 and belongs to the

space O

[
|t− t0|< δ ;

(
EΩ\PA
μ̄,r+σ |t−t0|

)∗
Ker((B∗)−1)⊥

]
.

Finally, using the duality relations between exponential and analytic functions
and functionals through the Fourier transform established in Theorem 9.3, we can
prove the existence results for general boundary value problems for systems of dif-
ferential equations of the form

D
p j
t Uj(t,ζ )+

N

∑
k=1

pk−1

∑
q=0

Aq
jk(t,Dζ ,ζ )D

q
t Uk(t,ζ ) = G j(t,ζ ), (9.80)

t ∈D , ζ ∈Ω , j = 1, . . . ,N,

N

∑
k=1

pk−1

∑
q=0

Bmq
jk (Dζ ,ζ )D

q
t Uk(t,ζ )

∣∣∣
t=t0

=Ψjm(ζ ), (9.81)

ζ ∈Ω , m = 0, . . . , p j − 1, j = 1, . . . ,N,

where D ⊂ C is a connected domain containing t0; Ω ⊂ C
n does not contain polar

sets PA and PB associated with operators Aq
jk and Bmq

jk , whose symbols are

A q
jk(t,z,ζ ) = ∑

|α |≤mq
jk

a jkα(t,ζ )zα ∈ O[D ;S(Mq,M (Ω))], (9.82)

Bmq
jk (z,ζ ) = ∑

|β |≤nmq
jk

b jkβ (ζ )zβ ∈ S(N qm,M (Ω)), (9.83)

q = 0, . . . ,p j− 1, m = 0, . . . , pk− 1, j,k = 1, . . . ,N.

Due to formulas (9.38) and (9.39), applying the Fourier transform, one can re-
duce boundary value problem (9.80)–(9.81) to the problem of the form (9.7)–(9.8).
Hence, by duality, Theorems 9.18 and 9.19 imply the following statements.

Theorem 9.20. Let the symbols of differential operators A ≡ {Aq
jk(t,Dζ ,ζ )} and

B ≡ {Bmq
jk (Dζ ,ζ )} satisfy conditions (9.82) and (9.83), respectively. Suppose there

exists a collection μ̄ = μ1, . . . ,μN , such that
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i) the entries of the matrices Mq,q = 0, . . . , p j − 1, satisfy the inequalities

mq
jk ≤ μk− μ j + p j− q, j,k = 1, . . . ,N, q = 0, . . . , p j − 1;

ii) the entries of the matrix N mq, m = 0, . . . , p j − 1,q = 0, . . . , pk − 1, satisfy the
inequalities

nmq
jk ≤ μk− μ j + q−m, j,k = 1, . . . ,N, m = 0, . . . , p j− 1, q = 0, . . . , pk− 1.

Then there exist numbers r > 0 and σ > 0 such that for any vector-functions
H(t,z) ∈ O

[
D ;Oμ̄ ,r+σ |t−t0|(Ω)

]
, and Φ(z) ∈ Oμ̄,r(Ω \NB) a solution U(t,z) to

boundary value problem (9.80)–(9.81) exists in a δ -neighborhood of t0, where
δ < r/σ , and belongs to the space O

[|t− t0|< δ ;Oμ̄ ,r+σ |t−t0|(Ω)
]
.

Theorem 9.21. Let the symbols of differential operators A ≡ {Aq
jk(t,Dζ ,ζ )} and

B ≡ {Bmq
jk (Dζ ,ζ )} satisfy conditions (9.82) and (9.83), respectively. Suppose there

exists a collection μ̄ = μ1, . . . ,μN , such that

i) the entries of the matrices Mq,q = 0, . . . , p j − 1, satisfy the inequalities

mq
jk ≤ μ j− μk + p j− q, j,k = 1, . . . ,N, q = 0, . . . , p j − 1;

ii) the entries of the matrix N mq, m = 0, . . . , p j − 1,q = 0, . . . , pk − 1, satisfy the
inequalities

nmq
jk ≤ μ j − μk +m− q, j,k = 1, . . . ,N, m = 0, . . . , p j− 1, q = 0, . . . , pk− 1.

Then there exist numbers r > 0 and σ > 0 such that for any vector-functions

H(t,z) ∈O
[
D ;O∗

μ̄ ,r+σ |t−t0|(Ω)
]
, and Φ(z) ∈O ∗̄

μ ,r(Ω) a solution U(t,z) to bound-

ary value problem (9.80)–(9.81) exists in a δ -neighborhood of t0, where δ < r/σ ,
and belongs to the space O

[
|t− t0|< δ ;O∗

μ̄ ,r+σ |t−t0|(Ω \NB)
]
.

9.10 Additional notes

1. The Cauchy problem. The Cauchy problem has a long and rich history. We refer the reader to
survey papers [Miz67, VG91, S88, Dub90] on the history and modern state of this theory. In the
general form the Cauchy problem was first posed by Augustin Louis Cauchy and the existence
of a unique local solution of this problem was proved in his paper [Cau42] in 1842. Sophie
von Kowalevsky1 was not aware of Cauchy’s result and reproved [Kow1874] this theorem in
1875. The theorem was later named the Cauchy-Kowalevsky theorem. Kowalevsky showed the
importance of the condition mk ≤m− k, k = 0, . . .,m−1, for existence of an analytic solution
of the Cauchy problem for equation (9.74) in the following example:

1 Under this name she published her paper [Kow1874]. Her original Russian full name is Sofia
Vasilyevna Kovalevskaya.
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Dtu(t, z) = D2
z u(t, z), |t|< 1, |z| ≤ 1,

u(0, z) = ϕ(z), |z|< 1,

with analeptic function ϕ(z) in the unit disc |z| < 1. The solution of this problem has the
representation

u(t, z) = etD2
zϕ(z) =

∞

∑
n=0

D2n
z ϕ(z)

n!
tn.

Now taking ϕ(z) = (1− z)−1, one can see that Dn
zϕ(z) = n!(1− z)−n−1 , one obtains a power

series

u(t, z) =
∞

∑
n=0

(2n)!
n!

tn

(1− z)n+1 ,

divergent for all t and z in any neighborhood of the origin (except t = 0).
2. On necessary conditions for existence of a solution. Mizohata [Miz74] (see also [Kit76])

showed that the condition mk ≤ m− k, k = 0, . . .,m− 1, is necessary for the existence of an
analytic solution of the Cauchy problem for equation (9.74). More precisely, he proved the
following statement.

Theorem 9.22. (Mizohata [Miz74]) In order that the Cauchy-Kowalevsky theorem for the
Cauchy problem for equation (9.74) hold at the origin, it is necessary that

mk ≤ m− k, k = 0, . . .,m−1, (9.84)

Let p = maxk,α{|α |/(k+ n(k,α))}, where n(k,α) = min{μ : aμk,α �≡ 0}, and aμ(x)k,α are coef-
ficients of the operator Ak(t, z,Dz) = ∑α,μ ak,α tμDα

z . Mizohata showed that p ≤ 1, which is
equivalent to condition (9.84). Kitagawa [Kit90] introduced weights pk and pv by

p∗ = max
k,α

{|α |/(k+n(k,α)), |α | ≤ k} and p∗ = max
k,α

{|α |/(k+n(k,α)), |α |> k},

and proved that in order that the Cauchy-Kowalevsky theorem for the Cauchy problem for
equation (9.74) hold at the origin, it is necessary that p∗ < p∗. The latter again implies condi-
tion(9.84).

Leray-Volevich’s (LV) condition (9.1), that is

mq
k j ≤ μk−μ j + pk−q, k, j = 1, . . . ,N,

first appeared in Volevich [Vol63] in 1963, and in the context of the Cauchy problem for sys-
tems of differential equations in Gårding-Kotake-Leray [LGK67], in 1964. Mizohata [Miz74]
called systems satisfying LV conditions (9.1) Kowalevskian in the sense of Volevich. The case
μk = k was used by Leray in 1953 [Ler53]. Usual Kowalevskian systems correspond to the case
μk = 0, k = 1, . . . ,N.

3. Infinite order differential operators. Differential operators of infinite order obviously do not
satisfy LV conditions, and therefore, the corresponding system with such operators are not
Kowalevskian in the sense of Volevich. The Cauchy problem for equations and systems with
differential operators of infinite order was studied by Korobeynik [K73], Leont’ev [Leo76],
Baouendi and Goulaouic [BG76], Dubinskii [Dub84], Napalkov [Nap82], and others. The rel-
ated theory of analytic pseudo-differential operators is in the focus of many researchers; see
survey paper [S88] on results up to 1988, and in works [Dub96, Ren10] on its current state.
The analytic solutions of differential equations with the real time variable and complex spatial
variables are studied in [Gal08] in model cases.

4. On uniqueness of a solution. Holmgren [Hol01] in 1901 showed that the Cauchy problem for
equations with analytic coefficients, but not necessarily analytic data, cannot have more than
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one solution. However, if coefficients of the equation are C∞ functions, then the Cauchy prob-
lem may not have a unique solution. Namely, Plis [Pl54] in 1954 constructed an example of
fourth order equation with C∞-coefficients for which the uniqueness does not hold. Later other
examples were constructed; see [Met93]. Calderon [Cal58] in 1958 proved the uniqueness the-
orem, which played a key role for further development of the Cauchy theory. Later, other vari-
ations or weaker versions of uniqueness conditions were found. In particular, the uniqueness of
a solution to the Cauchy problem for differential equations with partially holomorphic coeffi-
cients is obtained in works [Hor83, Uch04] and for systems of such equations in [Tam06].
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[LW12] Liang, J.-R., Wang, J., Lǔ, L.-J., Hui, G., Qiu, W.-Y., Ren, F.-Y.: Fractional Fokker-

Planck equation and Black-Scholes formula in composite-diffusive regime. J. Stat.
Phys., 146, 205–216 (2012)

[LSAT05] Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian ran-
dom walk approximation for the time fractional diffusion equation. ANZIAM J., 46,
488–504 (2005)

[Lim06] Lim S. C.: Fractional derivative quantum fields at positive temperature. Physica
A: Statistical Mechanics and its Applications 363, 269–281 (2006)

[LS02] Lipster, R.Sh., Shiryaev, A.N.: Statistics of Random Processes, I, II. Springer,
New-York (2002)

[Liz63] Lizorkin P.I.: Generalized Liouville differentiation and functional spaces Lr
p(En).

Embedding theorems. Mat. Sb. 60, 325–353 (1963) (in Russian)
[Liz67] Lizorkin, P.I.: Multipliers of Fourier integrals in the spaces Lp. Proc. Steklov Inst.

Math. 89, 269–290 (1967)
[Liz69] Lizorkin, P.I.: Generalized Liouville differentiation and the method of multipliers in

the theory of embeddings of classes of differentiable functions. Proc. Steklov Inst.
Math. 105, 105–202 (1969)
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